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Preface
Most of the professional programmers that I've encountered are not well prepared to tackle algorithm 
design problems. This is a pity, because the techniques of algorithm design form one of the core practical 
technologies of computer science. Designing correct, efficient, and implementable algorithms for real-
world problems is a tricky business, because the successful algorithm designer needs access to two 
distinct bodies of knowledge: 

●     Techniques - Good algorithm designers understand several fundamental algorithm design 
techniques, including data structures, dynamic programming, depth-first search, backtracking, and 
heuristics. Perhaps the single most important design technique is modeling, the art of abstracting a 
messy real-world application into a clean problem suitable for algorithmic attack.

●     Resources - Good algorithm designers stand on the shoulders of giants. Rather than laboring from 
scratch to produce a new algorithm for every task, they know how to find out what is known 
about a particular problem. Rather than reimplementing popular algorithms from scratch, they 
know where to seek existing implementations to serve as a starting point. They are familiar with a 
large set of basic algorithmic problems, which provides sufficient source material to model most 
any application. 

This book is intended as a manual on algorithm design, providing access to both aspects of combinatorial 
algorithms technology for computer professionals and students. Thus this book looks considerably 
different from other books on algorithms. Why? 

●     We reduce the design process to a sequence of questions to ask about the problem at hand. This 
provides a concrete path to take the nonexpert from an initial problem statement to a reasonable 
solution.

●     Since the practical person is usually looking for a program more than an algorithm, we provide 
pointers to solid implementations whenever they are available. We have collected these 
implementations on the enclosed CD-ROM and at one central FTP/WWW site for easy retrieval. 
Further, we provide recommendations to make it easier to identify the correct code for the job. 
With these implementations available, the critical issue in algorithm design becomes properly 
modeling your application, more so than becoming intimate with the details of the actual 
algorithm. This focus permeates the entire book.

●     Since finding out what is known about a problem can be a difficult task, we provide a catalog of 
important algorithmic problems as a major component of this book. By browsing through this 
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catalog, the reader can quickly identify what their problem is called, what is known about it, and 
how they should proceed to solve it. To aid in problem identification, we include a pair of 
``before'' and ``after'' pictures for each problem, illustrating the required input and output 
specifications.

●     For each problem in the catalog, we provide an honest and convincing motivation, showing how it 
arises in practice. If we could not find such an application, then the problem doesn't appear in this 
book.

●     In practice, algorithm problems do not arise at the beginning of a large project. Rather, they 
typically arise as subproblems when it suddenly becomes clear that the programmer does not 
know how to proceed or that the current program is inadequate. To provide a better perspective on 
how algorithm problems arise in the real world, we include a collection of ``war stories,'' tales 
from our experience on real problems. The moral of these stories is that algorithm design and 
analysis is not just theory, but an important tool to be pulled out and used as needed. 

Equally important is what we do not do in this book. We do not stress the mathematical analysis of 
algorithms, leaving most of the analysis as informal arguments. You will not find a single theorem 
anywhere in this book. Further, we do not try to be encyclopedic in our descriptions of algorithms, but 
only in our pointers to descriptions of algorithms. When more details are needed, the reader should 
follow the given references or study the cited programs. The goal of this manual is to get you going in 
the right direction as quickly as possible. 

But what is a manual without software? This book comes with a substantial electronic supplement, an 
ISO-9660 compatible, multiplatform CD-ROM, which can be viewed using Netscape, Microsoft 
Explorer, or any other WWW browser. This CD-ROM contains: 

●     A complete hypertext version of the full printed book. Indeed, the extensive cross-references 
within the book are best followed using the hypertext version.

●     The source code and URLs for all cited implementations, mirroring the Stony Brook Algorithm 
Repository WWW site. Programs in C, C++, Fortran, and Pascal are included, providing an 
average of four different implementations for each algorithmic problem.

●     More than ten hours of audio lectures on the design and analysis of algorithms are provided, all 
keyed to the on-line lecture notes. Following these lectures provides another approach to learning 
algorithm design techniques. These notes are linked to an additional twenty hours of audio over 
the WWW. Listening to all the audio is analogous to taking a one-semester college course on 
algorithms! 

This book is divided into two parts, techniques and resources. The former is a general guide to 
techniques for the design and analysis of computer algorithms. The resources section is intended for 
browsing and reference, and comprises the catalog of algorithmic resources, implementations, and an 
extensive bibliography. 

Altogether, this book covers material sufficient for a standard Introduction to Algorithms course, albeit 
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one stressing design over analysis. We assume the reader has completed the equivalent of a second 
programming course, typically titled Data Structures or Computer Science II. Textbook-oriented features 
include: 

●     In addition to standard pen-and-paper exercises, this book includes ``implementation challenges'' 
suitable for teams or individual students. These projects and the applied focus of the text can be 
used to provide a new laboratory focus to the traditional algorithms course. More difficult 
exercises are marked by (*) or (**).

●     ``Take-home lessons'' at the beginning of each chapter emphasize the concepts to be gained from 
the chapter.

●     This book stresses design over analysis. It is suitable for both traditional lecture courses and the 
new ``active learning'' method, where the professor does not lecture but instead guides student 
groups to solve real problems. The ``war stories'' provide an appropriate introduction to the active 
learning method.

●     A full set of lecture slides for teaching this course is available on the CD-ROM and via the World 
Wide Web, both keyed to unique on-line audio lectures covering a full-semester algorithm course. 
Further, a complete set of my videotaped lectures using these slides is available for interested 
parties. See http://www.cs.sunysb.edu/  algorith for details. 
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This index provides fast access to important keywords and topics in the on-line Book. The menu below 
partitions the index entries by the first letter of the alphabet, for ease of access. A full document index is 
also provided.

Be aware that the index pointer typically resides at the end of the relevant paragraph in the document, so 
we recommend scrolling once towards the front of the document before reading.

A similar index has been provided for the Lecture Notes, which may also be of interest. 

A B C D E F G H

I J K L M N O P

Q R S T U V W X

Y Z

Complete Index 

(note: the complete index is large; it will take a bit of time to load)
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The CD-ROM 

Steven S. Skiena 

Department of Computer Science 
State University of New York 
Stony Brook, NY 11794-4400 

 

What is a manual without software? The electronic supplement to this book is a ISO-9660 compatible, 
multiplatform CD-ROM, which can be viewed using Netscape, Microsoft Explorer, or any other WWW 
browser. This CD-ROM contains: 

●     The Algorithm Design Manual: Hypertext Edition A complete hypertext version of the full printed book. 
Indeed, the extensive cross-references within the book are best followed using the hypertext version. 

●     The Algorithm Repository Website -- The source code and URLs for all cited implementations, 
mirroring the Stony Brook Algorithm Repository WWW site. Programs in C, C++, Fortran, and Pascal 
are included, providing an average of four different implementations for each algorithmic problem. 

●     Algorithms Lectures -- More than 30 hours of audio lectures on the design and analysis of algorithms are 
provided, all keyed to on-line lecture notes. Following these lectures provides another approach to 
learning algorithm design techniques. Listening to all the audio is analogous to taking a one-semester 
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college course on algorithms! 
●     Bibliographic References -- Pointers to the net's most important collections of references on algorithms. 

Local copies of two large bibliographies are included. 

●     About the Book 
●     Copyright Notice and Disclaimers 
●     Graphics Gallery 
●     Send us Mail 

●     Guide to Configuring Browsers 
●     Thanks! 
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CSE 373/548 - Analysis of Algorithms

Lecture Notes with Audio

Steven Skiena 
Department of Computer Science 

SUNY Stony Brook 

In Spring 1996, I taught my Analysis of Algorithms 
course via EngiNet, the SUNY Stony Brook distance 
learning program. Each of my lectures that semester was 
videotaped, and the tapes made available to off-site 
students. I found it an enjoyable experience. 

As an experiment in using the Internet for distance 
learning, we have digitized the complete audio of all 23 
lectures, and have made this available on the WWW. We 
partitioned the full audio track into sound clips, each 
corresponding to one page of lecture notes, and linked 

them to the associated text. 

In a real sense, listening to all the audio is analogous to sitting through a one-semester college course on 
algorithms! Properly compressed, the full semester's audio requires less than 300 megabytes of storage, 
which is much less than I would have imagined. The entire semesters lectures, over thirty hours of audio 
files, fit comfortably on The Algorithm Design Manual CD-ROM, which also includes a hypertext 
version of the book and a substantial amount of software. All exercise numbers refer to Corman, 
Leiserson, and Rivest's Introduction to Algorithms, the textbook I used that particular year. 

The sound quality is amazingly good, considering it was me that they were taping. Unfortunately, the 
Shockwave format we used is only supported under Windows and Macintoshes, so the sound cannot be 
heard under UNIX. On certain browsers, a new window is opened for each sound bite, so be sure to close 
these windows before they cause trouble. 

Because of space requirements, we did not digitize much of the corresponding video, which would have 
made the presentation even more interesting. Still, I hope you find that these audio lectures expand your 
understanding of both algorithm design and educational multimedia. The full video tapes themselves are 
also available. 

●     Postscript lecture transparencies
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The Stony Brook Algorithm Repository 
Steven S. Skiena 

Department of Computer Science 
State University of New York 
Stony Brook, NY 11794-4400 

This WWW page is intended to serve as a comprehensive collection of algorithm implementations for 
over seventy of the most fundamental problems in combinatorial algorithms. The problem taxonomy, 
implementations, and supporting material are all drawn from my book The Algorithm Design Manual . 
Since the practical person is more often looking for a program than an algorithm, we provide pointers to 
solid implementations of useful algorithms, when they are available. 

Because of the volatility of the WWW, we provide local copies for many of the implementations. We 
encourage you to get them from the original sites instead of Stony Brook, because the version on the 
original site is more likely to be maintained. Further, there are often supporting files and documentation 
which we did not copy, and which may be of interest to you. The local copies of large implementations 
are maintained as gzip tar archives and, where available, DOS zip archives. Software for decoding these 
formats is readily available . 

Many of these codes have been made available for research or educational use, although commercial use 
requires a licensing arrangement with the author. Licensing terms from academic institutions are usually 
surprisingly modest. The recognition that industry is using a particular code is important to the authors, 
often more important than the money. This can lead to enhanced support or future releases of the 
software. Do the right thing and get a license -- information about terms or who to contact is usually 
available embedded within the documentation, or available at the original source site. 

Use at your own risk. The author and Springer-Verlag make no representations, express or implied, with 
respect to any software or documentation we describe. The author and Springer-Verlag shall in no event 
be liable for any indirect, incidental, or consequential damages. 
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Introduction to Algorithms
What is an algorithm? An algorithm is a procedure to accomplish a specific task. It is the idea behind any computer program. 

To be interesting, an algorithm has to solve a general, well-specified problem. An algorithmic problem is specified by describing 
the complete set of instances it must work on and what properties the output must have as a result of running on one of these 
instances. This distinction between a problem and an instance of a problem is fundamental. For example, the algorithmic 
problem known as sorting is defined as follows:       

Input: A sequence of n keys  . 

Output: The permutation (reordering) of the input sequence such that  . An instance of sorting might be an array 
of names, such as {Mike, Bob, Sally, Jill, Jan}, or a list of numbers like {154, 245, 568, 324, 654, 324}. Determining whether 
you in fact have a general problem to deal with, as opposed to an instance of a problem, is your first step towards solving it. This 
is true in algorithms as it is in life. 

An algorithm is a procedure that takes any of the possible input instances and transforms it to the desired output. There are many 
different algorithms for solving the problem of sorting. For example, one method for sorting starts with a single element (thus 
forming a trivially sorted list) and then incrementally inserts the remaining elements so that the list stays sorted. This algorithm, 
insertion sort, is described below:   

InsertionSort(A)

                for i = 1 to n-1 do

                                for j = i+1 to 2 do

                                                if (A[j] < A[j-1]) then swap(A[j],A[j-
1]) 

Note the generality of this algorithm. It works equally well on names as it does on numbers, given the appropriate < comparison 
operation to test which of the two keys should appear first in sorted order. Given our definition of the sorting problem, it can be 
readily verified that this algorithm correctly orders every possible input instance. 

In this chapter, we introduce the desirable properties that good algorithms have, as well as how to measure whether a given 
algorithm achieves these goals. Assessing algorithmic performance requires a modest amount of mathematical notation, which 
we also present. Although initially intimidating, this notation proves essential for us to compare algorithms and design more 
efficient ones.   

While the hopelessly ``practical'' person may blanch at the notion of theoretical analysis, we present this material because it is 
useful. In particular, this chapter offers the following ``take-home'' lessons:   
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●     Reasonable-looking algorithms can easily be incorrect. Algorithm correctness is a property that must be carefully 
demonstrated.

●     Algorithms can be understood and studied in a machine independent way.
●     The ``big Oh'' notation and worst-case analysis are tools that greatly simplify our ability to compare the efficiency of 

algorithms.
●     We seek algorithms whose running times grow logarithmically, because  grows very slowly with increasing n.
●     Modeling your application in terms of well-defined structures and algorithms is the most important single step towards a 

solution. 

●     Correctness and Efficiency 
❍     Correctness 
❍     Efficiency 

●     Expressing Algorithms 
●     Keeping Score 

❍     The RAM Model of Computation 
❍     Best, Worst, and Average-Case Complexity 

●     The Big Oh Notation 
●     Growth Rates 
●     Logarithms 
●     Modeling the Problem 
●     About the War Stories 
●     War Story: Psychic Modeling 
●     Exercises 
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Data Structures and Sorting
When things go right, changing a data structure in a slow program works the same way an organ 
transplant does in a sick patient. For several classes of abstract data types, such as containers, 
dictionaries, and priority queues, there exist many different but functionally equivalent data structures 
that implement the given data type. Changing the data structure does not change the correctness of the 
program, since we presumably replace a correct implementation with a different correct implementation. 
However, because the new implementation of the data type realizes different tradeoffs in the time to 
execute various operations, the total performance of an application can improve dramatically. Like a 
patient in need of a transplant, only one part might need to be replaced in order to fix the problem.     

It is obviously better to be born with a good heart than have to wait for a replacement. Similarly, the 
maximum benefit from good data structures results from designing your program around them in the first 
place. Still, it is important to build your programs so that alternative implementations can be tried. This 
involves separating the internals of the data structure (be it a tree, a hash table, or a sorted array) from its 
interface (operations like search, insert, delete). Such data abstraction is an important part of producing 
clean, readable, and modifiable programs. We will not dwell on such software engineering issues here, 
but such a design is critical if you are to experiment with the impact of different implementations on 
performance.   

In this chapter we will also discuss sorting, stressing how sorting can be applied to solve other problems 
more than the details of specific sorting algorithms. In this sense, sorting behaves more like a data 
structure than a problem in its own right. Sorting is also represented by a significant entry in the problem 

catalog; namely Section . 

The key take-home lessons of this chapter are: 

●     Building algorithms around data structures such as dictionaries and priority queues leads to both 
clean structure and good performance.

●     Picking the wrong data structure for the job can be disastrous in terms of performance. Picking the 
very best data structure is often not as critical, for there are typically several choices that perform 
similarly.

●     Sorting lies at the heart of many different algorithms. Sorting the data is one of the first things any 
algorithm designer should try in the quest for efficiency.

●     Sorting can be used to illustrate most algorithm design paradigms. Data structure techniques, 
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divide-and-conquer, randomization, and incremental construction all lead to popular sorting 
algorithms. 

●     Fundamental Data Types 
❍     Containers 
❍     Dictionaries 
❍     Binary Search Trees 
❍     Priority Queues 

●     Specialized Data Structures 
●     Sorting 
●     Applications of Sorting 
●     Approaches to Sorting 

❍     Data Structures 
❍     Incremental Insertion 
❍     Divide and Conquer 
❍     Randomization 
❍     Bucketing Techniques 

●     War Story: Stripping Triangulations 
●     War Story: Mystery of the Pyramids 
●     War Story: String 'em Up 
●     Exercises 
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Algorithms 
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Breaking Problems Down
One of the most powerful techniques for solving problems is to break them down into smaller, more 
easily solved pieces. Smaller problems are less overwhelming, and they permit us to focus on details that 
are lost when we are studying the entire problem. For example, whenever we can break the problem into 
smaller instances of the same type of problem, a recursive algorithm starts to become apparent. 

Two important algorithm design paradigms are based on breaking problems down into smaller problems. 
Dynamic programming typically removes one element from the problem, solves the smaller problem, 
and then uses the solution to this smaller problem to add back the element in the proper way. Divide and 
conquer typically splits the problem in half, solves each half, then stitches the halves back together to 
form a full solution. 

Both of these techniques are important to know about. Dynamic programming in particular is a 
misunderstood and underappreciated technique. To demonstrate its utility in practice, we present no 
fewer than three war stories where dynamic programming played the decisive role. 

The take-home lessons for this chapter include: 

●     Many objects have an inherent left-to-right ordering among their elements, such as characters in a 
string, elements of a permutation, points around a polygon, or leaves in a search tree. For any 
optimization problem on such left-to-right objects, dynamic programming will likely lead to an 
efficient algorithm to find the best solution.  

●     Without an inherent left-to-right ordering on the objects, dynamic programming is usually 
doomed to require exponential space and time.

●     Once you understand dynamic programming, it can be easier to work out such algorithms from 
scratch than to try to look them up.

●     The global optimum (found, for example, using dynamic programming) is often noticeably better 
than the solution found by typical heuristics. How important this improvement is depends upon 
your application, but it can never hurt.

●     Binary search and its variants are the quintessential divide-and-conquer algorithms. 
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●     Dynamic Programming 
❍     Fibonacci numbers 
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●     Limitations of Dynamic Programming 
●     War Story: Evolution of the Lobster 
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❍     Fast Exponentiation 
❍     Binary Search 
❍     Square and Other Roots 

●     Exercises 
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Graph Algorithms
  

A graph G=(V,E) consists of a set of vertices V together with a set E of vertex pairs or edges. Graphs are 
important because they can be used to represent essentially any relationship. For example, graphs can 
model a network of roads, with cities as vertices and roads between cities as edges, as shown in Figure 

. Electronic circuits can also be modeled as graphs, with junctions as vertices and components as 
edges.      

   
Figure: Modeling road networks and electronic circuits as graphs  

The key to understanding many algorithmic problems is to think of them in terms of graphs. Graph 
theory provides a language for talking about the properties of graphs, and it is amazing how often messy 
applied problems have a simple description and solution in terms of classical graph properties.   

Designing truly novel graph algorithms is a very difficult task. The key to using graph algorithms 
effectively in applications lies in correctly modeling your problem as a standard graph property, so you 
can take advantage of existing algorithms. Becoming familiar with many different graph algorithmic 
problems is more important than understanding the details of particular graph algorithms, particularly 
since Part II of this book can point you to an implementation as soon as you know the name of your 
problem. 

In this chapter, we will present basic data structures and traversal operations for graphs, which will 
enable you to cobble together solutions to rudimentary graph problems. We will also describe more 
sophisticated algorithms for problems like shortest paths and minimum spanning trees in some detail. But 
we stress the primary importance of correctly modeling your problem. Time spent browsing through the 
catalog now will leave you better informed of your options when a real job arises. 
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The take-home lessons of this chapter include: 

●     Graphs can be used to model a wide variety of structures and relationships.
●     Properly formulated, most applications of graphs can be reduced to standard graph properties and 

using well-known algorithms. These include minimum spanning trees, shortest paths, and several 
problems presented in the catalog.

●     Breadth-first and depth-first search provide mechanisms to visit each edge and vertex of the 
graph. They prove the basis of most simple, efficient graph algorithms. 

●     The Friendship Graph 
●     Data Structures for Graphs 
●     War Story: Getting the Graph 
●     Traversing a Graph 

❍     Breadth-First Search 
❍     Depth-First Search 

●     Applications of Graph Traversal 
❍     Connected Components 
❍     Tree and Cycle Detection 
❍     Two-Coloring Graphs 
❍     Topological Sorting 
❍     Articulation Vertices 

●     Modeling Graph Problems 
●     Minimum Spanning Trees 

❍     Prim's Algorithm 
❍     Kruskal's Algorithm 

●     Shortest Paths 
❍     Dijkstra's Algorithm 
❍     All-Pairs Shortest Path 

●     War Story: Nothing but Nets 
●     War Story: Dialing for Documents 
●     Exercises 
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Combinatorial Search and Heuristic 
Methods
We have seen how clever algorithms can reduce the complexity of sorting from  to , which is good. 
However, the algorithmic stakes can be even higher for combinatorially explosive problems, whose time 

grows exponentially in the size of the problem. Looking back at Figure  will make clear the 
limitations of exponential-time algorithms on even modest-sized problems.   

By using exhaustive search techniques, we can solve small problems to optimality, although the time 
complexity may be enormous. For certain applications, it may well pay to spend extra time to be certain 
of the optimal solution. A good example occurs in testing a circuit or a program on all possible inputs. 
You can prove the correctness of the device by trying all possible inputs and verifying that they give the 
correct answer. Proving such correctness is a property to be proud of. However, claiming that it works 
correctly on all the inputs you tried is worth much, much less.   

In this section, we present backtracking as a technique for listing all configurations representing possible 
solutions for a combinatorial algorithm problem. We then discuss techniques for pruning search that 
significantly improve efficiency by eliminating irrelevant configurations from consideration. We 
illustrate the power of clever pruning techniques to speed up real search applications. For problems that 
are too large to contemplate using brute-force combinatorial search, we introduce heuristic methods such 
as simulated annealing. Such heuristic methods are an important weapon in the practical algorist's 
arsenal. 

The take-home lessons from this chapter are: 

●     Combinatorial search, augmented with tree pruning techniques, can be used to find the optimal 
solution of small optimization problems. How small depends upon the specific problem, but the 
size limit is likely to be somewhere between items.

●     Clever pruning techniques can speed up combinatorial search to an amazing extent. Proper 
pruning will have a greater impact on search time than any other factor.

●     Simulated annealing is a simple but effective technique to efficiently obtain good but not optimal 
solutions to combinatorial search problems. 
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●     Backtracking 
❍     Constructing All Subsets 
❍     Constructing All Permutations 
❍     Constructing All Paths in a Graph 

●     Search Pruning 
●     Bandwidth Minimization 
●     War Story: Covering Chessboards 
●     Heuristic Methods 

❍     Simulated Annealing 
❍     Neural Networks 
❍     Genetic Algorithms 

●     War Story: Annealing Arrays 
●     Parallel Algorithms 
●     War Story: Going Nowhere Fast 
●     Exercises 
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Intractable Problems and 
Approximations
  

In this chapter, we will concentrate on techniques for proving that no efficient algorithm exists for a 
given problem. The practical reader is probably squirming at the notion of proving anything and will be 
particularly alarmed at the idea of investing time to prove that something does not exist. Why will you be 
better off knowing that something you don't know how to do in fact can't be done at all?   

The truth is that the theory of NP-completeness is an immensely useful tool for the algorithm designer, 
even though all it does is provide negative results. That noted algorithm designer Sherlock Holmes once 
said, ``When you have eliminated the impossible, what remains, however improbable, must be the truth.'' 
The theory of NP-completeness enables the algorithm designer to focus her efforts more productively, by 
revealing that the search for an efficient algorithm for this particular problem is doomed to failure. When 
one fails to show that a problem is hard, that means there is likely an algorithm that solves it efficiently. 
Two of the war stories in this book describe happy results springing from bogus claims of hardness. 

The theory of NP-completeness also enables us to identify exactly what properties make a particular 
problem hard, thus providing direction for us to model it in different ways or exploit more benevolent 
characteristics of the problem. Developing a sense for which problems are hard and which are not is a 
fundamental skill for algorithm designers, and it can come only from hands-on experience proving 
hardness. 

We will not discuss the complexity-theoretic aspects of NP-completeness in depth, limiting our treatment 
to the fundamental concept of reductions, which show the equivalence of pairs of problems. For a 
discussion, we refer the reader to [GJ79], the truly essential reference on the theory of intractability. 

The take-home lessons from this chapter are: 

●     Reductions are a way to show that two problems are essentially identical. A fast algorithm for one 
of the problems implies a fast algorithm for the other.

●     In practice, a small set of NP-complete problems (3-SAT, vertex cover, integer partition, and 
Hamiltonian cycle) suffice to prove the hardness of most other hard problems.
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●     Approximation algorithms guarantee answers that are always close to the optimal solution and can 
provide an approach to dealing with NP-complete problems. 

●     Problems and Reductions 
●     Simple Reductions 

❍     Hamiltonian Cycles 
❍     Independent Set and Vertex Cover 
❍     Clique and Independent Set 

●     Satisfiability 
❍     The Theory of NP-Completeness 
❍     3-Satisfiability 

●     Difficult Reductions 
❍     Integer Programming 
❍     Vertex Cover 

●     Other NP-Complete Problems 
●     The Art of Proving Hardness 
●     War Story: Hard Against the Clock 
●     Approximation Algorithms 

❍     Approximating Vertex Cover 
❍     The Euclidean Traveling Salesman 

●     Exercises 
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How to Design Algorithms
Designing the right algorithm for a given application is a difficult job. It requires a major creative act, 
taking a problem and pulling a solution out of the ether. This is much more difficult than taking someone 
else's idea and modifying it or tweaking it to make it a little better. The space of choices you can make in 
algorithm design is enormous, enough to leave you plenty of freedom to hang yourself.      

This book is designed to make you a better algorithm designer. The techniques presented in Part I of this 
book provide the basic ideas underlying all combinatorial algorithms. The problem catalog of Part II will 
help you with modeling your application and point you in the right direction of an algorithm or 
implementation. However, being a successful algorithm designer requires more than book knowledge; it 
requires a certain attitude, the right problem-solving approach. It is difficult to teach this mindset in a 
book; yet getting it is essential to become a successful designer.      

The key to algorithm design (or any other problem-solving task) is to proceed by asking yourself a 
sequence of questions to guide your thought process. What if we do this? What if we do that? Should you 
get stuck on the problem, the best thing to do is move onto the next question. In any group brainstorming 
session, the most useful person in the room is the one who keeps asking, ``Why can't we do it this way?'' 
not the person who later tells them why. Because eventually she will stumble on an approach that can't be 
shot down.   

Towards this end, we provide below a sequence of questions to guide your search for the right algorithm 
for your problem. To use it effectively, you must not only ask the questions, but answer them. The key is 
working through the answers carefully, by writing them down in a log. The correct answer to, ``Can I do 
it this way?'' is never ``no,'' but ``no, because ....'' By clearly articulating your reasoning as to why 
something doesn't work, you can check if it really holds up or whether you have just glossed over a 
possibility that you didn't want to think hard enough about. You will be surprised how often the reason 
you can't find a convincing explanation for something is because your conclusion is wrong.    

An important distinction to keep aware of during any design process is the difference between strategy 
and tactics. Strategy represents the quest for the big picture, the framework around which we construct 
our path to the goal. Tactics are used to win the minor battles we must fight along the way. In problem 
solving, it is important to check repeatedly whether you are thinking on the right level. If you do not have 
a global strategy of how you are going to attack your problem, it is pointless to worry about the tactics. 
An example of a strategic question is, ``How best can I model my application as a graph algorithm 
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problem?'' A tactical question might be, ``Should I use an adjacency list or adjacency matrix data 
structure to represent my graph?'' Of course, such tactical decisions are critical to the ultimate quality of 
the solution, but they can be properly evaluated only in light of a successful strategy.   

When faced with a design problem, too many people freeze up in their thinking. After reading or hearing 
the problem, they sit down and realize that they don't know what to do next. They stare into space, then 
panic, and finally end up settling for the first thing that comes to mind. Avoid this fate. Follow the 
sequence of questions provided below and in most of the catalog problem sections. We'll tell you what to 
do next! 

Obviously, the more experience you have with algorithm design techniques such as dynamic 
programming, graph algorithms, intractability, and data structures, the more successful you will be at 
working through the list of questions. Part I of this book has been designed to strengthen this technical 
background. However, it pays to work through these questions regardless of how strong your technical 
skills are. The earliest and most important questions on the list focus on obtaining a detailed 
understanding of the problem and do not require specific expertise.       

This list of questions was inspired by a passage in that wonderful book about the space program The 
Right Stuff [Wol79]. It concerned the radio transmissions from test pilots just before their planes crashed. 
One might have expected that they would panic, so that ground control would hear the pilot yelling 
Ahhhhhhhhhhh --, terminated only by the sound of smacking into a mountain. Instead, the pilots ran 
through a list of what their possible actions could be. I've tried the flaps. I've checked the engine. Still got 
two wings. I've reset the --. They had ``the Right Stuff.'' Because of this, they sometimes managed to 
miss the mountain. 

I hope this book and list will provide you with ``the Right Stuff'' to be an algorithm designer. And I hope 
it prevents you from smacking into any mountains along the way.    

1.  Do I really understand the problem? 

1.  What exactly does the input consist of?
2.  What exactly are the desired results or output?
3.  Can I construct an example input small enough to solve by hand? What happens when I try 

to solve it?
4.  How important is it to my application that I always find an exact, optimal answer? Can I 

settle for something that is usually pretty good?
5.  How large will a typical instance of my problem be? Will I be working on 10 items? 1,000 

items? 1,000,000 items?
6.  How important is speed in my application? Must the problem be solved within one 

second? One minute? One hour? One day?
7.  How much time and effort can I invest in implementing my algorithm? Will I be limited to 

simple algorithms that can be coded up in a day, or do I have the freedom to experiment 
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with a couple of approaches and see which is best?
8.  Am I trying to solve a numerical problem? A graph algorithm problem? A geometric 

problem? A string problem? A set problem? Might my problem be formulated in more 
than one way? Which formulation seems easiest? 

2.  Can I find a simple algorithm or heuristic for the problem? 

1.  Can I find an algorithm to solve my problem correctly by searching through all subsets or 
arrangements and picking the best one? 

1.  If so, why am I sure that this algorithm always gives the correct answer?
2.  How do I measure the quality of a solution once I construct it?
3.  Does this simple, slow solution run in polynomial or exponential time? Is my 

problem small enough that this brute-force solution will suffice?
4.  If I can't find a slow, guaranteed correct algorithm, why am I certain that my 

problem is sufficiently well-defined to have a correct solution? 
2.  Can I solve my problem by repeatedly trying some simple rule, like picking the biggest 

item first? The smallest item first? A random item first? 

1.  If so, on what types of inputs does this heuristic work well? Do these correspond to 
the data that might arise in my application?

2.  On what types of inputs does this heuristic work badly? If no such examples can be 
found, can I show that it always works well?

3.  How fast does my heuristic come up with an answer? Does it have a simple 
implementation? 

3.  Is my problem in the catalog of algorithmic problems in the back of this book? 

1.  If it is, what is known about the problem? Is there an implementation available that I can 
use?

2.  If I don't see my problem, did I look in the right place? Did I browse through all the 
pictures? Did I look in the index under all possible keywords?

3.  Are there relevant resources available on the World-Wide Web? Did I do a Lycos, Alta 
Vista, or Yahoo search? Did I go to the WWW page associated with this book, ? 

4.  Are there special cases of the problem that I know how to solve exactly? 

1.  Can I solve the problem efficiently when I ignore some of the input parameters?
2.  What happens when I set some of the input parameters to trivial values, such as 0 or 1? 

Does the problem become easier to solve?
3.  Can I simplify the problem to the point where I can solve it efficiently? Is the problem 

now trivial or still interesting?
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4.  Once I know how to solve a certain special case, why can't this be generalized to a wider 
class of inputs?

5.  Is my problem a special case of a more general problem in the catalog? 

5.  Which of the standard algorithm design paradigms are most relevant to my problem? 

1.  Is there a set of items that can be sorted by size or some key? Does this sorted order make 
it easier to find the answer?

2.  Is there a way to split the problem in two smaller problems, perhaps by doing a binary 
search? How about partitioning the elements into big and small, or left and right? Does this 
suggest a divide-and-conquer algorithm?

3.  Do the input objects or desired solution have a natural left-to-right order, such as 
characters in a string, elements of a permutation, or the leaves of a tree? If so, can I use 
dynamic programming to exploit this order?

4.  Are there certain operations being repeatedly done on the same data, such as searching it 
for some element, or finding the largest/smallest remaining element? If so, can I use a data 
structure to speed up these queries? What about a dictionary/hash table or a heap/priority 
queue?

5.  Can I use random sampling to select which object to pick next? What about constructing 
many random configurations and picking the best one? Can I use some kind of directed 
randomness like simulated annealing in order to zoom in on the best solution?

6.  Can I formulate my problem as a linear program? How about an integer program?
7.  Does my problem seem something like satisfiability, the traveling salesman problem, or 

some other NP-complete problem? If so, might the problem be NP-complete and thus not 
have an efficient algorithm? Is it in the problem list in the back of Garey and Johnson 
[GJ79]? 

6.  Am I still stumped? 

1.  Am I willing to spend money to hire an expert to tell me what to do? If so, check out the 

professional consulting services mentioned in Section .  
2.  Why don't I go back to the beginning and work through these questions again? Did any of 

my answers change during my latest trip through the list? 

Problem solving is not a science, but part art and part skill. It is one of the skills most worth developing. 
My favorite book on problem solving remains Pólya's How to Solve It [Pol57], which features a catalog 
of problem solving techniques that are fascinating to browse through, both before and after you have a 
problem.    
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A Catalog of Algorithmic Problems
  

This is a catalog of algorithmic problems that arise commonly in practice. It describes what is known 
about them and gives suggestions about how best to proceed if the problem arises in your application. 

What is the best way to use this catalog? First, think a little about your problem. If you recall the name of 
your problem, look up the catalog entry in the index or table of contents and start reading. Read through 
the entire entry, since it contains pointers to other relevant problems that might be yours. If you don't 
find what you are looking for, leaf through the catalog, looking at the pictures and problem names to see 
if something strikes a chord. Don't be afraid to use the index, for every problem in the book is listed there 
under several possible keywords and applications.   If you still don't find something relevant, your 
problem is either not suitable for attack by combinatorial algorithms or else you don't fully understand it. 
In either case, go back to step one. 

The catalog entries contain a variety of different types of information that have never been collected in 
one place before. Different fields in each entry present information of practical and historical interest. 

To make this catalog more easily accessible, we introduce each problem with a pair of graphics 
representing the problem instance or input on the left and the result of solving the problem on this 
instance on the right.   We have invested considerable thought in selecting stylized images and examples 
that illustrate desired behaviors, more than just definitions. For example, the minimum spanning tree 
example illustrates how points can be clustered using minimum spanning trees. We hope that people 
without a handle on algorithmic terminology can flip through the pictures and identify which problems 
might be relevant to them. We augment these pictures with more formal written input and problem 
descriptions in order to eliminate any ambiguity inherent in a purely pictorial representation.      

Once you have identified your problem of interest, the discussion section tells you what you should do 
about it.   We describe applications where the problem is likely to arise and special issues associated with 
data from them. We discuss the kind of results you can hope for or expect and, most importantly, what 
you should do to get them. For each problem, we outline a quick-and-dirty algorithm and pointers to 
algorithms to try next if the first attempt is not sufficient. We also identify other, related problems in the 
catalog. 
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For most if not all of the problems presented, we identify readily available software implementations, 
which are discussed   in the implementation field of each entry. Many of these routines are quite good, 
and they can perhaps be plugged directly into your application. Others will be incomplete or inadequate 
for production use, but they hopefully can provide a good model for your own implementation. In 
general, the implementations are listed in order of descending usefulness, but we will explicitly 
recommend the best one available for each problem if a clear winner exists. More detailed information 

for many of these implementations appears in Chapter .     Essentially all of the implementations are 
available via the WWW site associated with this book, reachable at http://www.cs.sunysb.edu/  
algorith. 

Finally, in deliberately smaller print, we discuss the history of each problem and present results of 
primarily theoretical interest.   We have attempted to report the best results known for each problem and 
point out empirical comparisons of algorithms if they exist. This should be of interest to students and 
researchers, and also to practitioners for whom our recommended solutions prove inadequate and who 
need to know if anything better is possible. 

●     Data Structures 
❍     Dictionaries 
❍     Priority Queues 
❍     Suffix Trees and Arrays 
❍     Graph Data Structures 
❍     Set Data Structures 
❍     Kd-Trees 

●     Numerical Problems 
❍     Solving Linear Equations 
❍     Bandwidth Reduction 
❍     Matrix Multiplication 
❍     Determinants and Permanents 
❍     Constrained and Unconstrained Optimization 
❍     Linear Programming 
❍     Random Number Generation 
❍     Factoring and Primality Testing 
❍     Arbitrary-Precision Arithmetic 
❍     Knapsack Problem 
❍     Discrete Fourier Transform 

●     Combinatorial Problems 
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❍     Sorting 
❍     Searching 
❍     Median and Selection 
❍     Generating Permutations 
❍     Generating Subsets 
❍     Generating Partitions 
❍     Generating Graphs 
❍     Calendrical Calculations 
❍     Job Scheduling 
❍     Satisfiability 

●     Graph Problems: Polynomial-Time 
❍     Connected Components 
❍     Topological Sorting 
❍     Minimum Spanning Tree 
❍     Shortest Path 
❍     Transitive Closure and Reduction 
❍     Matching 
❍     Eulerian Cycle / Chinese Postman 
❍     Edge and Vertex Connectivity 
❍     Network Flow 
❍     Drawing Graphs Nicely 
❍     Drawing Trees 
❍     Planarity Detection and Embedding 

●     Graph Problems: Hard Problems 
❍     Clique 
❍     Independent Set 
❍     Vertex Cover 
❍     Traveling Salesman Problem 
❍     Hamiltonian Cycle 
❍     Graph Partition 
❍     Vertex Coloring 
❍     Edge Coloring 
❍     Graph Isomorphism 
❍     Steiner Tree 
❍     Feedback Edge/Vertex Set 

●     Computational Geometry 
❍     Robust Geometric Primitives 
❍     Convex Hull 
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❍     Triangulation 
❍     Voronoi Diagrams 
❍     Nearest Neighbor Search 
❍     Range Search 
❍     Point Location 
❍     Intersection Detection 
❍     Bin Packing 
❍     Medial-Axis Transformation 
❍     Polygon Partitioning 
❍     Simplifying Polygons 
❍     Shape Similarity 
❍     Motion Planning 
❍     Maintaining Line Arrangements 
❍     Minkowski Sum 

●     Set and String Problems 
❍     Set Cover 
❍     Set Packing 
❍     String Matching 
❍     Approximate String Matching 
❍     Text Compression 
❍     Cryptography 
❍     Finite State Machine Minimization 
❍     Longest Common Substring 
❍     Shortest Common Superstring 
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Algorithmic Resources
  

This chapter describes resources that the practical algorithm designer should be familiar with. Although 
some of this information has appeared at various points in the catalog, the most important pointers have 
been collected here for general reference. These resources take the form of software systems and 
libraries, books, and other bibliographic sources. Many of the most interesting resources are available on-
line.    

●     Software systems 
❍     LEDA 
❍     Netlib 
❍     The Stanford GraphBase 
❍     Combinatorica 
❍     Algorithm Animations with XTango 
❍     Programs from Books 

●     Data Sources 
●     Textbooks 
●     On-Line Resources 

❍     Literature 
❍     People 
❍     Software 

●     Professional Consulting Services 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Correctness and Efficiency
Throughout this book we will seek algorithms that are correct and efficient, while being easy to 
implement. All three goals are obviously desirable, but they may not be simultaneously achievable. For 
this reason, one or more of them are often ignored. Theoretical algorithm designers have traditionally 
been unconcerned with implementation complexity, since they often do not program their algorithms. 
Instead, theoreticians focus on efficiency and correctness. Conversely, quick-and-dirty is typically the 
rule of thumb in industrial settings. Any program that seems to give good enough answers without 
slowing the application down is acceptable, regardless of whether a better algorithm exists. The issue of 
finding the best possible answer or achieving maximum efficiency usually does not arise in industry until 
serious troubles do.    

Here, we stress the importance of recognizing the difference between algorithms, which always produce 
a correct result, and heuristics, which often do a good job without providing any guarantee. We also 
emphasize the potential efficiency gains resulting from using faster algorithms.   

●     Correctness 
●     Efficiency 
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Correctness

  

It is seldom obvious whether a given algorithm correctly solves a given problem. This is why correct algorithms usually come 
with a proof of correctness, which is an explanation of why we know that the algorithm correctly takes all instances of the 
problem to the desired result. In this book, we will not stress formal proofs of correctness, primarily because they take 
substantial mathematical maturity to properly appreciate and construct. However, before we go further it is important to 
demonstrate why ``it's obvious'' never suffices as a proof of correctness and usually is flat-out wrong.   

To illustrate, let us consider a problem that often arises in manufacturing, transportation, and testing applications. Suppose we 
are given a robot arm equipped with a tool, say a soldering iron. In manufacturing circuit boards, all the chips and other 
components must be fastened onto the substrate. More specifically, each chip has a set of contact points (or wires) that must 
be soldered to the board. To program the robot arm to perform this soldering job, we must first construct an ordering of the 
contact points, so that the robot visits (and solders) the first contact point, then visits the second point, third, and so forth until 
the job is done. The robot arm must then proceed back to the first contact point to prepare for the next board, thus turning the 
tool-path into a closed tour, or cycle.    

Since robots are expensive devices, we want to find the tour that minimizes the time it takes to assemble the circuit board. A 
reasonable assumption is that the robot arm moves with fixed speed, so that the time it takes to travel between two points is 
the same as its distance. In short, we must solve the following algorithm problem:   

Input: A set S of n points in the plane. 

Output: What is the shortest cycle tour that visits each point in the set S? You are given the job of programming the robot arm. 
Stop right now and think about an algorithm to solve this problem. I'll be happy to wait until you find one. 

Several possible algorithms might come to mind to solve this problem. Perhaps the most popular idea is the nearest-neighbor 
heuristic. Starting from some point  , we walk first to its nearest neighbor  . From  , we walk to its nearest unvisited 
neighbor, thus excluding only  as a candidate. We now repeat this process until we run out of unvisited points, at which time 
we return to  to close off the tour. In pseudocode, the nearest-neighbor heuristic looks like this:   

    
Figure: A good example for the nearest neighbor heuristic
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NearestNeighborTSP(P)

                Pick and visit an initial point    from P

                  

                i = 0

                While there are still unvisited points

                                 i = i+1

                                 Select    to be the closest unvisited point to   

                                 Visit   

                Return to    from    

This algorithm has a lot to recommend it. It is simple to understand and implement. It makes sense to visit nearby points 
before we visit faraway points if we want to minimize the total travel time. The algorithm works perfectly on the example in 

Figure . The nearest neighbor rule is very efficient, for it looks at each pair of points  at most twice, once when 
adding  to the tour, the other when adding  . Against all these positives there is only one problem. This algorithm is 
completely wrong. 

    
Figure: A bad example for the nearest neighbor heuristic

Wrong? How can it be wrong? The algorithm always finds a tour, but the trouble is that it doesn't necessarily find the shortest 

possible tour. It doesn't necessarily even come close. Consider the set of points in Figure , all of which lie spaced along a 
line. The numbers describe the distance that each point lies to the left or right of the point labeled `0'. When we start from the 
point `0' and repeatedly walk to the nearest unvisited neighbor, you will see that we keep jumping left-right-left-right over `0'. 
A much better (indeed optimal) tour for these points starts from the leftmost point and visits each point as we walk right 
before returning at the rightmost point. Try now to imagine your boss's delight as she watches a demo of your robot arm 
hopscotching left-right-left-right during the assembly of such a simple board.   

``But wait,'' you might be saying. ``The problem was in starting at point `0'. Instead, why don't we always start the nearest-
neighbor rule using the leftmost point as the starting point  ? By doing this, we will find the optimal solution on this 
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example.'' 

That is 100% true, at least until we rotate our example 90 degrees. Now all points are equally leftmost. If the point `0' were 
moved just slightly to the left, it would be picked as the starting point. Now the robot arm will hopscotch up-down-up-down 
instead of left-right-left-right, but the travel time will be just as bad as before. No matter what you do to pick the first point, 
the nearest neighbor rule is doomed not to work correctly on certain point sets. 

Maybe what we need is a different approach. Always walking to the closest point is too restrictive, since it seems to trap us 
into making moves we didn't want. A different idea would be to repeatedly connect the closest pair of points whose 
connection will not cause a cycle or a three-way branch to be formed. Eventually, we will end up with a single chain 
containing all the points in it. At any moment during the execution of this closest-pair heuristic, we will have a set of partial 
paths to merge, where each vertex begins as its own partial path. Connecting the final two endpoints gives us a cycle. In 
pseudocode:   

ClosestPairTSP(P)

                Let n be the number of points in set P.

                  

                For i=1 to n-1 do

                                 For each pair of endpoints (,t) of distinct partial 
paths

                                                 if    then   ,   , 
and d = dist(,t)

                                 Connect    by an edge

                Connect the two endpoints by an edge

This closest-pair rule does the right thing on the example in Figure . It starts by connecting `0' to its immediate neighbors, 
the points 1 and -1. Subsequently, the next closest pair will alternate left-right, growing the central path by one link at a time. 
The closest-pair heuristic is somewhat more complicated and less efficient than the previous one, but at least it gives the right 
answer. On this example. 
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Figure: A bad example for the closest-pair heuristic.  

But not all examples. Consider what the algorithm does on the point set in Figure (a). It consists of two rows of equally 
spaced points, with the rows slightly closer together (distance 1-e) than the neighboring points are spaced within each row 
(distance 1+e). Thus the closest pairs of points stretch across the gap, not around the boundary. After we pair off these points, 
the closest remaining pairs will connect these pairs alternately around the boundary. The total path length of the closest-pair 

tour is  . Compared to the tour shown in Figure (b), we travel over 20% farther 

than necessary when  . Examples exist where the penalty is considerably worse than this. 

Thus this second algorithm is also wrong. Which one of these algorithms performs better? You can't tell just by looking at 
them. Clearly, both heuristics can end up with very bad tours on very innocent-looking input.   

At this point, you might wonder what a correct algorithm for the problem looks like. Well, we could try all enumerating all 
possible orderings of the set of points, and then select the ordering that minimizes the total length:   

OptimalTSP(P)

                  

                For each of the n! permutations    of points P

                                 If    then    and   

                Return   

Since all possible orderings are considered, we are guaranteed to end up with the shortest possible tour. This algorithm is 
correct, since we pick the best of all the possibilities. The problem is that it is also extremely slow. The fastest computer in the 
world couldn't hope to enumerate all 20! = 2,432,902,008,176,640,000 orderings of 20 points within a day. For real circuit 
boards, where  , forget about it. All of the world's computers working full time wouldn't come close to finishing your 
problem before the end of the universe, at which point it presumably becomes moot. 

The quest for an efficient algorithm to solve this so-called traveling salesman problem will take us through much of this book. 

If you need to know how the story ends, check out the catalog entry for the traveling salesman problem in Section .    

Hopefully, this example has opened your eyes to some of the subtleties of algorithm correctness. Ensuring the optimal answer 
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on all possible inputs is a difficult but often achievable goal. Seeking counterexamples that break pretender algorithms is a 
tricky business, but it is an important part of the algorithm design process. 
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Efficiency

The skilled algorithm designer is an efficiency expert. Through cunning and experience we seek to get 
jobs done as quickly as possible. The benefits of finding an efficient algorithm for a computationally 
expensive job can be mind-boggling, as illustrated by several of the war stories scattered through this 

book. Section  shows how clever algorithms yielded a program that was 30,000 times faster than our 
initial attempt! 

Upon realizing that a given application runs too slowly, the practical person usually asks the boss to buy 
them a faster machine. Sometimes this is the cheapest option. However, the potential win from faster 
hardware is typically limited to a factor of ten or so, due to technical constraints (they don't make faster 
machines) or economic ones (the boss won't pay for it).   

To realize larger performance improvements, we must seek better algorithms. As we will show, a faster 
algorithm running on a slower computer will always win for sufficiently large instances. Always. 
Usually, problems don't have to get very large before the faster algorithm wins. 

Be aware that there are situations where finding the most efficient algorithm for a job is a complete waste 
of programmer effort. In any program, there is usually one bottleneck that takes the majority of 
computing time. The typical claim is that 90% of the run time of any program is spent in 10% of the 
code. Optimizing the other 90% of the program will have little impact on the total run time. Further, 
many programs are written with only one or two special instances in mind. If the program will be run just 
a few times, or if the job can easily be run overnight, it probably does not pay to make the programmer 
work harder in order to reduce cycle consumption.   
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Expressing Algorithms
Describing algorithms requires a notation for expressing a sequence of steps to be performed. The three 
most common options are (1) English, (2) pseudocode, or (3) a real programming language. Pseudocode 
is perhaps the most mysterious of the bunch, but it is best defined as a programming language that never 
complains about syntax errors. All three methods can be useful in certain circumstances, since there is a 
natural tradeoff between greater ease of expression and precision. English is the most natural but least 
precise language, while C and Pascal are precise but difficult to write and understand. Pseudocode is 
useful because it is a happy medium.     

The correct choice of which notation is best depends upon which of the three methods you are most 
comfortable with. I prefer to describe the ideas of an algorithm in English, moving onto a more formal, 
programming-language-like pseudocode to clarify sufficiently tricky details of the algorithm. A common 
mistake among my students is to use pseudocode to take an ill-defined idea and dress it up so that it looks 
more formal. In the real world, you only fool yourself when you pull this kind of stunt. 

The implementation complexity of an algorithm is usually why the fastest algorithm known for a problem 
may not be the most appropriate for a given application. An algorithm's implementation complexity is 
often a function of how it has been described.   Fast algorithms often make use of very complicated data 
structures, or use other complicated algorithms as subroutines. Turning these algorithms into programs 

requires building implementations of every substructure. Each catalog entry in Section  points out 
available implementations of algorithms to solve the given problem. Hopefully, these can be used as 
building blocks to reduce the implementation complexity of algorithms that use them, thus making more 
complicated algorithms worthy of consideration in practice. 
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Keeping Score
Algorithms are the most important, durable, and original part of computer science because they can be 
studied in a language- and machine-independent way. This means that we need techniques that enable us 
to compare algorithms without implementing them. Our two most important tools are (1) the RAM 
model of computation and (2) asymptotic analysis of worst-case complexity.    

This method of keeping score will be the most mathematically demanding part of this book. However, it 
is important to understand why we need both of these tools to analyze the performance of algorithms. 
Once you understand the intuition behind these ideas, the formalism becomes a lot easier to deal with. 

●     The RAM Model of Computation 
●     Best, Worst, and Average-Case Complexity 
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The RAM Model of Computation

Machine-independent algorithm design depends upon a hypothetical computer called the Random Access 
Machine or RAM. Under this model of computation, we are confronted with a computer where:   

●     Each ``simple'' operation (+, *, -, =, if, call) takes exactly 1 time step.
●     Loops and subroutines are not considered simple operations. Instead, they are the composition of 

many single-step operations. It makes no sense for ``sort'' to be a single-step operation, since 
sorting 1,000,000 items will take much longer than sorting 10 items. The time it takes to run 
through a loop or execute a subprogram depends upon the number of loop iterations or the 
specific nature of the subprogram.  

●     Each memory access takes exactly one time step, and we have as much memory as we need. The 
RAM model takes no notice of whether an item is in cache or on the disk, which simplifies the 
analysis.   

Under the RAM model, we measure the run time of an algorithm by counting up the number of steps it 
takes on a given problem instance. By assuming that our RAM executes a given number of steps per 
second, the operation count converts easily to the actual run time. 

The RAM is a simple model of how computers perform. A common complaint is that it is too simple, 
that these assumptions make the conclusions and analysis too coarse to believe in practice. For example, 
multiplying two numbers takes more time than adding two numbers on most processors, which violates 
the first assumption of the model. Memory access times differ greatly depending on whether data sits in 
cache or on the disk, thus violating the third assumption. Despite these complaints, the RAM is an 
excellent model for understanding how an algorithm will perform on a real computer. It strikes a fine 
balance by capturing the essential behavior of computers while being simple to work with. We use the 
RAM model because it is useful in practice. 

Every model has a size range over which it is useful. Take, for example, the model that the earth is flat.   
You might argue that this is a bad model, since the earth is not flat. However, when laying the foundation 
of a house, the flat earth model is sufficiently accurate that it can be reliably used. Further, it is so much 
easier to manipulate a flat-earth model that it is inconceivable that you would try to think spherically 
when you don't have to. 

The same situation is true with the RAM model of computation. We make an abstraction that in general 
is very useful. It is quite difficult to design an algorithm such that the RAM model will give you 
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substantially misleading results, by performing either much better or much worse in practice than the 
model suggests. The robustness of the RAM enables us to analyze algorithms in a machine-independent 
way. 
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Best, Worst, and Average-Case Complexity

Using the RAM model of computation, we can count how many steps our algorithm will take on any 
given input instance by simply executing it on the given input. However, to really understand how good 
or bad an algorithm is, we must know how it works over all instances. 

To understand the notions of the best, worst, and average-case complexity, one must think about running 
an algorithm on all possible instances of data that can be fed to it. For the problem of sorting, the set of 
possible input instances consists of all the possible arrangements of all the possible numbers of keys. We 
can represent every input instance as a point on a graph, where the x-axis is the size of the problem (for 
sorting, the number of items to sort) and the y-axis is the number of steps taken by the algorithm on this 
instance. Here we assume, quite reasonably, that it doesn't matter what the values of the keys are, just 
how many of them there are and how they are ordered. It should not take longer to sort 1,000 English 
names than it does to sort 1,000 French names, for example. 

   
Figure: Best, worst, and average-case complexity  

As shown in Figure , these points naturally align themselves into columns, because only integers 
represent possible input sizes. After all, it makes no sense to ask how long it takes to sort 10.57 items. 
Once we have these points, we can define three different functions over them: 

●     The worst-case complexity of the algorithm is the function defined by the maximum number of 
steps taken on any instance of size n. It represents the curve passing through the highest point of 
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each column.  
●     The best-case complexity of the algorithm is the function defined by the minimum number of 

steps taken on any instance of size n. It represents the curve passing through the lowest point of 
each column.  

●     Finally, the average-case complexity of the algorithm is the function defined by the average 
number of steps taken on any instance of size n.   

In practice, the most useful of these three measures proves to be the worst-case complexity, which many 
people find counterintuitive. To illustrate why worst-case analysis is important, consider trying to project 
what will happen to you if you bring n dollars to gamble in a casino.   The best case, that you walk out 
owning the place, is possible but so unlikely that you should place no credence in it. The worst case, that 
you lose all n dollars, is easy to calculate and distressingly likely to happen. The average case, that the 
typical person loses 87.32% of the money that they bring to the casino, is difficult to compute and its 
meaning is subject to debate. What exactly does average mean? Stupid people lose more than smart 
people, so are you smarter or dumber than the average person, and by how much? People who play craps 
lose more money than those playing the nickel slots. Card counters at blackjack do better on average than 
customers who accept three or more free drinks. We avoid all these complexities and obtain a very useful 
result by just considering the worst case. 

The important thing to realize is that each of these time complexities defines a numerical function, 
representing time versus problem size. These functions are as well-defined as any other numerical 
function, be it  or the price of General Motors stock as a function of time. Time 

complexities are complicated functions, however. In order to simplify our work with such messy 
functions, we will need the big Oh notation. 
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The Big Oh Notation
We have agreed that the best, worst, and average-case complexities of a given algorithm are numerical 
functions of the size of the instances. However, it is difficult to work with these functions exactly 

because they are often very complicated, with many little up and down bumps, as shown in Figure . 
Thus it is usually cleaner and easier to talk about upper and lower bounds of such functions. This is 
where the big Oh notation comes into the picture.    

   
Figure: Upper and lower bounds smooth out the behavior of complex functions  

We seek this smoothing in order to ignore levels of detail that do not impact our comparison of 
algorithms. Since running our algorithm on a machine that is twice as fast will cut the running times of 
all algorithms by a multiplicative constant of two, such constant factors would be washed away in 
upgrading machines. On the RAM we ignore such constant factors anyway and therefore might as well 
ignore them when comparing two algorithms. We use the following notation: 

●     f(n) = O(g(n)) means  is an upper bound on f(n). Thus there exists some constant c such that 
f(n) is always  , for large enough n.  

●      means  is a lower bound on f(n). Thus there exists some constant c such that 
f(n) is always  , for large enough n.  

●      means  is an upper bound on f(n) and  is a lower bound on f(n), for 
large enough n. Thus there exists constants  and  such that  and  . 
This means that g(n) is a nice, tight bound on f(n).   
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Figure: Illustrating the (a) O, (b)  , and (c)  notations  

Got it? These definitions are illustrated in Figure . All of these definitions imply a constant  beyond 
which they are always satisfied. We are not concerned about small values of n, i.e. anything to the left of 

 . After all, do you really care whether one sorting algorithm sorts six items faster than another 
algorithm, or which one is faster when sorting 1,000 or 1,000,000 items? The big Oh notation enables us 
to ignore details and focus on the big picture. 

Make sure you understand this notation by working through the following examples. We choose certain 
constants in the explanations because they work and make a point, but you are free to choose any 
constant that maintains the same inequality: 

 

 

 

The big Oh notation provides for a rough notion of equality when comparing functions. It is somewhat 
jarring to see an expression like  , but its meaning can always be resolved by going back to the 
definitions in terms of upper and lower bounds. It is perhaps most instructive to read `=' as meaning one 
of the functions that are. Clearly,  is one of functions that are  . 
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Growth Rates
In working with the big Oh notation, we cavalierly discard the multiplicative constants. The functions 

 and  are treated identically, even though g(n) is a million times larger than 

f(n) for all values of n. The method behind this madness is illustrated by Figure , which tabulates the 
growth rate of several functions arising in algorithm analysis, on problem instances of reasonable size. 

Specifically, Figure  shows how long it takes for algorithms that use f(n) operations to complete on a 
fast computer where each operation takes one nanosecond (  seconds). Study the table for a few 
minutes and the following conclusions become apparent:     

 
Figure:   Growth rates of common functions measured in nanoseconds

●     All of these algorithms take about the same amount of time for n=10.
●     The algorithm whose running time is n! becomes useless well before n=20.
●     The algorithm whose running time is  has a greater operating range, but it becomes impractical 

for n > 40.
●     The algorithm whose running time is  is perfectly reasonable up to about n=100, but it quickly 

deteriorates with larger inputs. For n > 1,000,000 it likely to be hopeless.
●     Both the n and  algorithms remain practical on inputs of up to one billion items.
●     You can't hope to find a real problem where an  algorithm is going to be too slow in 

practice. 

The bottom line is that even by ignoring constant factors, we can get an excellent idea of whether a given 
algorithm will be able to run in a reasonable amount of time on a problem of a given size. An algorithm 
whose running time is  seconds will beat one whose running time is  seconds 
only so long as  . Such enormous constant factor differences between algorithms occur in 
practice far less frequently than such large problems do. 
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Logarithms
Logarithm is an anagram of algorithm, but that's not why the wily algorist needs to know what 
logarithms are and where they come from. You've seen the button on your calculator but have likely 
forgotten why it is there. A logarithm is simply an inverse exponential function. Saying  is 
equivalent to saying that  . Exponential functions are functions that grow at a distressingly fast 
rate, as anyone who has ever tried to pay off a mortgage or bank loan understands. Thus inverse 
exponential functions, i.e. logarithms, grow refreshingly slowly. If you have an algorithm that runs in 

 time, take it and run. As shown by Figure , this will be blindingly fast even on very large 
problem instances.   

Binary search is an example of an algorithm that takes  time. In a telephone book with n names, 
you start by comparing the name that you are looking for with the middle, or (n/2)nd name, say Monroe, 
Marilyn. Regardless of whether you are looking someone before this middle name (Dean, James) or after 
it (Presley, Elvis), after only one such comparison you can forever disregard one half of all the names in 
the book. The number of steps the algorithm takes equals the number of times we can halve n before only 
one name is left. By definition, this is exactly  . Thus twenty comparisons suffice to find any name 
in the million-name Manhattan phone book! The power of binary search and logarithms is one of the 
most fundamental ideas in the analysis of algorithms. This power becomes apparent if we could imagine 
living in a world with only unsorted telephone books.     

Figure  is another example of logarithms in action. This table appears in the Federal Sentencing 
Guidelines, used by courts throughout the United States. These guidelines are an attempt to standardize 
criminal sentences, so that a felon convicted of a crime before one judge receives the same sentence as 
they would before a different judge. To accomplish this, the judges have prepared an intricate point 
function to score the depravity of each crime and map it to time-to-serve.   
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Figure:   The Federal Sentencing Guidelines for Fraud

Figure  gives the actual point function for fraud, a table mapping dollars stolen to points. Notice that 
the punishment increases by one level each time the amount of money stolen roughly doubles. That 
means that the level of punishment (which maps roughly linearly to the amount of time served) grows 
logarithmically with the amount of money stolen. Think for a moment about the consequences of this. 
Michael Milken sure did. It means that the total sentence grows extremely slowly with the amount of 
money you steal. Knocking off five liquor stores for $10,000 each will get you far more time than 
embezzling $100,000 once. The corresponding benefit of stealing really large amounts of money is even 
greater. The moral of logarithmic growth is clear: ``If you are gonna do the crime, make it worth the 
time!'' 

Two mathematical properties of logarithms are important to understand: 

●     The base of the logarithm has relatively little impact on the growth rate: Compare the following 
three values:  ,  , and  . A 
big change in the base of the logarithm produces relatively little difference in the value of the log. 
This is a consequence of the formula for changing the base of the logarithm: 

 

Changing the base of the log from a to c involves multiplying or dividing by  . This will be 
lost to the big Oh notation whenever a and c are constants, as is typical. Thus we are usually 
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justified in ignoring the base of the logarithm when analyzing algorithms.   

When performing binary search in a telephone book, how important is it that each query split the 
book exactly in half? Not much. Suppose we did such a sloppy job of picking our queries such 
that each time we split the book 1/3 to 2/3 instead of 1/2 to 1/2. For the Manhattan telephone 
book, we now use  queries in the worst case, not a significant change from 

 . The power of binary search comes from its logarithmic complexity, not the 
base of the log.

●     Logarithms cut any function down to size: The growth rate of the logarithm of any polynomial 
function is  . This follows because 

 

The power of binary search on a wide range of problems is a consequence of this observation. For 
example, note that doing a binary search on a sorted array of  things requires only twice as many 
comparisons as a binary search on n things. Logarithms efficiently cut any function down to size. 
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Modeling the Problem
Modeling is the art of formulating your application in terms of precisely described, well-understood 
problems. Proper modeling is the key to applying algorithmic design techniques to any real-world 
problem. Indeed, proper modeling can eliminate the need to design or even implement algorithms by 
relating your application to what has been done before. Proper modeling is the key to effectively using 
the problem catalog in Part II of this book.   

Real-world applications involve real-world objects. You might be working on a system to route traffic in 
a network, to find the best way to schedule classrooms in a university, or to search for patterns in a 
corporate database. Most algorithms, however, are designed to work on rigorously defined abstract 
structures such as permutations, graphs, and sets. After all, if you can't define what you want to do, you 
can't hope to compute it. You must first describe your problem abstractly, in terms of fundamental 
structures and properties. 

Whatever your application is, odds are very good that others before you have stumbled upon the same 
algorithmic problem, perhaps in substantially different contexts. Therefore, to find out what is known 
about your particular ``widget optimization problem,'' you can't hope to look in a book under widget. You 
have to formulate widget optimization in terms of computing properties of abstract structures such as: 

●     Permutations, which are arrangements, or orderings, of items. For example,  and 

 are two distinct permutations of the same set of four integers. Permutations are likely 
the object in question whenever your problem seeks an ``arrangement,'' ``tour,'' ``ordering,'', or 
``sequence.''       

●     Subsets, which represent selections from a set of items. For example,  and  are two 
distinct subsets of the first four integers. Order does not matter in subsets the way it does with 
permutations, so the subsets  and  would be considered identical. Subsets are likely 
the object in question whenever your problem seeks a ``cluster,'' ``collection,'' ``committee,'' 
``group,'' ``packaging,'' or ``selection.''         
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Figure: Modeling real-world structures with trees and graphs  

●     Trees, which represent hierarchical relationships between items. Figure (a) illustrates a portion 
of the family tree of the Skiena clan.    Trees are likely the object in question whenever your 
problem seeks a ``hierarchy,'' ``dominance relationship,'' ``ancestor/decendant relationship,'' or 
``taxonomy.''        

●     Graphs, which represent relationships between arbitrary pairs of objects. Figure (b) models a 
network of roads as a graph, where the vertices are cities and the edges are roads connecting pairs 
of cities. Graphs are likely the object in question whenever you seek a ``network,'' ``circuit,'' 
``web,'' or ``relationship.''     

●     Points, which represent locations in some geometric space. For example, the locations of 
McDonald's restaurants can be described by points on a map/plane. Points are likely the object in 
question whenever your problems work on ``sites,'' ``positions,'' ``data records,'' or ``locations.'' 
      

●     Polygons, which represent regions in some geometric space. For example, the borders of a 
country can be described by a polygon on a map/plane. Polygons and polyhedra are likely the 
object in question whenever you are working on ``shapes,'' ``regions,'' ``configurations,'' or 
``boundaries.''       

●     Strings, which represent sequences of characters or patterns. For example, the names of students 
in a class can be represented by strings. Strings are likely the object in question whenever you are 
dealing with ``text,'' ``characters,'' ``patterns,'' or ``labels.''       

These fundamental structures all have associated problems and properties, which are presented in the 
catalog of Part II. Familiarity with all of these problems is important, because they provide the language 
we use to model applications. To become fluent in this vocabulary, browse through the catalog and study 
the input and output pictures for each problem. Understanding all or most of these problems, even at a 
cartoon/definition level, will enable you to know where to look later when the problem arises in your 
application.   

Examples of successful application modeling will be presented in the war stories spaced throughout this 
book. However, some words of caution are in order. The act of modeling reduces your application to one 
of a small number of existing problems and structures. Such a process is inherently constraining, and 
certain details might not fit easily into the given model. Also, certain problems can be modeled in several 
different ways, some much better than others. 

Modeling is only the first step in designing an algorithm for a problem. Be alert for how the details of 
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your applications differ from a candidate model. But don't be too quick to say that your problem is 
unique and special. Temporarily ignoring details that don't fit can free the mind to ask whether they were 
fundamental in the first place. 
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About the War Stories
The best way to become convinced that careful algorithm design can have a significant impact on 
performance is to look at case studies. By carefully studying other people's experiences, we learn how 
they might apply to our work.   

Jon Bentley's Programming Pearls columns are probably the most interesting collection of algorithmic 
``war stories'' currently available. Originally published in the Communications of the ACM, they have 
been collected in two books [Ben86, Ben90]. Fredrick Brooks's The Mythical Man Month [Bro74] is 
another wonderful collection of war stories, focused more on software engineering than algorithm 
design, but they remain a source of considerable wisdom. Every programmer should read all three of 
these books, for pleasure as well as insight. 

Scattered throughout this text are several of our own war stories, presenting our successful (and 
occasionally unsuccessful) algorithm design efforts on real applications. We hope that the reader will be 
able to internalize these experiences so that they will serve as models for their own attacks on problems. 

Every one of the war stories is true. Of course, the stories improve somewhat in the retelling, and the 
dialogue has been punched up to make it more interesting to read. However, I have tried to honestly trace 
the process of going from a raw problem to a solution, so you can watch how the process unfolded.    

The Oxford English Dictionary defines an algorist as ``one skillful in reckonings or figuring.'' In these 
stories, I have tried to capture some of the attitude, or mindset, of the algorist in action as they attack a 
problem. 

The various war stories usually involve at least one and often several problems from the problem catalog 
in Part II. The appropriate section of the catalog is referenced wherever it occurs. This emphasizes the 
benefits of modeling your application in terms of standard algorithm problems. By using the catalog, you 
will be able to pull out what is known about any problem whenever it is needed. 
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War Story: Psychic Modeling
  

The call came for me out of the blue as I sat in my office. 

``Professor Skiena, I hope you can help me. I'm the President of Lotto Systems Group Inc., and we need an algorithm for a 
problem arising in our latest product.'' 

``Sure,'' I replied. After all, the dean of my engineering school is always eager for our faculty to interact with industry.     

``At Lotto Systems Group, we market a program designed to improve our customers' psychic ability to predict winning 

lottery numbers.  In a standard lottery, each ticket consists of 6 numbers selected from, say, 1 to 44. Thus any given ticket 
has only a very small chance of winning. However, after proper training, our clients can visualize a set of, say, 15 numbers 
out of the 44 and be certain that at least 4 of them will be on the winning ticket. Are you with me so far?'' 

``Probably not,'' I replied. But then I recalled how my dean wants us to interact with industry. 

``Our problem is this. After the psychic has narrowed the choices down to 15 numbers and is certain that at least 4 of them 
will be on the winning ticket, we must find the most efficient way to exploit this information. Suppose that a cash prize is 
awarded whenever you pick at least three of the correct numbers on your ticket. We need an algorithm to construct the 
smallest set of tickets that we must buy in order to guarantee that we win at least one prize.'' 

``Assuming the psychic is correct?'' 

``Yes, assuming the psychic is correct. We need a program that prints out a list of all the tickets that the psychic should buy 
in order to minimize their investment. Can you help us?'' 

I thought about the problem for a minute. Maybe they did have psychic ability, for they had clearly come to the right place. 
Identifying the best subset of tickets to buy was very much a combinatorial algorithm problem. It was going to be some type 
of covering problem, where each ticket we buy was going to ``cover'' some of the possible 4-element subsets of the 
psychic's set. Finding the absolute smallest set of tickets to cover everything was a special instance of the NP-complete 

problem set cover (discussed in Section ) and presumably computationally intractable.   
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Figure: Covering all pairs of  with tickets  ,  ,  ,   

It was indeed a special instance of set cover, completely specified by only four numbers: the size n of the candidate set S 
(typically  ), the number of k slots for numbers on each ticket (typically  ), the number of psychically promised 
correct numbers j from S (say j=4), and finally, the number of numbers l matching the winning ticket necessary to win a 

prize (say l=3). Figure  illustrates a covering of a smaller instance, where n=5, k=3, and j=l=2. 

``Although it will be hard to find the exact minimum set of tickets to buy, with heuristics I should be able to get you pretty 
close to the cheapest covering ticket set,'' I told him. ``Will that be good enough?'' 

``So long as it generates better ticket sets than my competitor's program, that will be fine. His system doesn't always provide 
enough coverage to guarantee a win. I really appreciate your help on this, Professor Skiena.'' 

``One last thing. If your program can train people to pick lottery winners, why don't you use it to win the lottery yourself?'' 

``I look forward to talking to you again real soon, Professor Skiena. Thanks for the help.'' 

I hung up the phone and got back to thinking. It seemed like a fun problem, and the perfect project to give to a bright 
undergraduate. After it was modeled in terms of sets and subsets, the basic components of a solution seemed fairly 
straightforward: 

●     We needed the ability to generate all subsets of k numbers from the candidate set S. Algorithms for generating and 

ranking/unranking subsets of sets are presented in Section .    
●     We needed the right formulation of what it meant to have a covering set of purchased tickets. The obvious criteria 

would be to pick a small set of tickets such that for each of the  l-subsets of S that might pay off with the prize, we 
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have purchased at least one ticket that contains it.
●     For each new ticket we decided to buy, we would need to keep track of which prize combinations we have thus far 

covered. Presumably, we would want to buy tickets to cover as many thus-far-uncovered prize combinations as 
possible. The currently covered combinations are a subset of all possible combinations, so we would need a data 

structure to represent the subset. Such data structures are discussed in Section . The best candidate seemed to be a 
bit vector, which would permit a constant time query of ``is this combination already covered?'' in concert with a 
way to rank the subset, i.e. hash it to a unique integer.   

●     We would need a search mechanism to decide which ticket to buy next. For small enough set sizes, we could do an 
exhaustive search over all possible subsets of tickets and pick the smallest one. For larger sizes, a randomized search 

process like simulated annealing (see Section ) would select tickets-to-buy to cover as many uncovered 
combinations as possible. By repeating this randomized procedure several times and picking the best solution, we 
would be likely to come up with a very good set of tickets.    

Excluding the search mechanism, the pseudocode for the bookkeeping looked something like this: 

LottoTicketSet(n,k,l)

                Initialize the   -element bit-vector V to all false

                While there exists a false entry of V

                                        Select a k-subset T of    as the next 

ticket to buy

                                        For each of the l-subsets    of T,  
 

                Report the set of tickets bought

The bright undergraduate, Fayyaz Younas, rose to the challenge. Based on this framework, he implemented a brute-force 
search algorithm and found optimal solutions for problems with  in a reasonable time. To solve larger problems, he 
implemented a random search procedure, tweaking it for a while before settling on the best variant. Finally, the day arrived 
when we could call Lotto Systems Group and announce that we had solved the problem. 

``See, our program found that optimal solution for n=15, k=6, j=6, l=3 meant buying 28 tickets.'' 

``Twenty-eight tickets!'' complained the president. ``You must have a bug. Look, these five tickets will suffice to cover 
everything twice over:  ,  ,  ,  ,  .'' 
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Figure: Guaranteeing a winning ticket from  using only tickets  and   

We fiddled with this example for a while before admitting that he was right. We hadn't modeled the problem correctly! In 

fact, we didn't need to explicitly cover all possible winning combinations. Figure  illustrates the principle by giving a 
better solution to the previous small example. As a different example, suppose we needed three numbers on a five element 
ticket to win, and the psychic had promised us that four numbers would be from  . Suppose that we had bought 

tickets that covered the subsets  ,  , and  . There would be no need to buy a ticket that explicitly 

covered  , because if 1 and 2 and two other psychic numbers were on a winning ticket, then at least one of the other 

two psychic numbers would have to be either 3, 4, or 5. If 1 and 2 were not on the winning ticket, a ticket covering  
would do us absolutely no good. Thus we were trying to cover too many combinations, and the penny-pinching psychics 
were unwilling to pay for such extravagance. 

Fortunately, this story has a happy ending, as reported in [YS96]. The general outline of our search-based solution described 
above still holds for the real problem. All that is needed to fix it is to change how many uncovered subsets we credit for 
covering with a given set of tickets. After this modification, we obtained the kind of results they were hoping for. Lotto 
Systems Group gratefully accepted our program to incorporate into their products, and we hope they hit the jackpot with it. 

The moral of this story is to make sure that you correctly model the problem before trying to solve it. In our case, we came 
up with a reasonable model for the problem but didn't work hard enough to validate it before we started to program. Our 
misinterpretation would have become obvious had we worked out a small but non-trivial example by hand and bounced it 
off our sponsor before beginning work. Our success in recovering from the error is a tribute to the basic correctness of our 
initial formulation and our use of well-defined routines and abstractions for such tasks as (1) ranking/unranking k-subsets, 
(2) the set data structure, and (3) combinatorial search. 
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Exercises
  

1.  Let P be a problem. The worst-case time complexity of P is  . The worst-case time 
complexity of P is also  . Let A be an algorithm that solves P. Which subset of the 
following statements are consistent with this information about the complexity of P? 

❍     A has worst-case time complexity  .

❍     A has worst-case time complexity  .

❍     A has worst-case time complexity O(n).
❍     A has worst-case time complexity  .

❍     A has worst-case time complexity  . 
2.  Suppose that an algorithm A runs in worst-case time f(n) and that algorithm B runs in worst-case 

time g(n). For each of the following questions, answer either yes, no, or can't tell and explain 
why. 

(a) Is A faster than B for all n greater than some  if  ? 

(b) Is A faster than B for all n greater than some  if  ? 

(c) Is A faster than B for all n greater than some  if  ? 

(d) Is B faster than A for all n greater than some  if  ? 

(e) Is B faster than A for all n greater than some  if  ? 

(f) Is B faster than A for all n greater than some  if  ?
3.  For each of these questions, briefly explain your answer. 

(a) If I prove that an algorithm takes  worst-case time, is it possible that it takes O(n) on 
some inputs? 
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(b) If I prove that an algorithm takes  worst-case time, is it possible that it takes O(n) on all 
inputs? 

(c) If I prove that an algorithm takes  worst-case time, is it possible that it takes O(n) on 
some inputs? 

(d) If I prove that an algorithm takes  worst-case time, is it possible that it takes O(n) on all 
inputs? 

(e) Is the function  , where  for even n and  for odd 
n?

4.  For each of the following, answer yes, no, or can't tell. Explain your reasoning! 

(a) Is  ? 

(b) Is  ? 

(c) Is  ? 

(d) Is  ?
5.  (*) Give a proof or counterexample to the following claim: if f(n) = O(F(n)) and g(n) = O(G(n)), 

then f(n)/g(n) = O(F(n)/G(n)).
6.  (*) Does f(n) = O(g(n)) imply that  ? Explain your reasoning!

7.  (*) Give a proof or counterexample to the following claim: for all functions f(n) and g(n), either 
f(n) = O(g(n)) or g(n) = O(f(n)).

8.  (*) When you first learned to multiply numbers, you were told that  means add x a total of y 
times, so  . What is the time complexity of multiplying two n-digit 
numbers in base b (people work in base 10, of course, while computers work in base 2) using the 
repeated addition method, as a function of n and b. Assume that single-digit by single-digit 
addition or multiplication takes O(1) time. (hint: how big can y be as a function of n and b?)  

9.  (*) In grade school, you learned to multiply long numbers on a digit by digit basis, so that 
 . Analyze the time complexity of multiplying 

two n-digit numbers with this method as a function of n (assume constant base size). Assume that 
single-digit by single-digit addition or multiplication takes O(1) time. 
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Fundamental Data Types
An abstract data type is a collection of well-defined operations that can be performed on a particular 
structure. The operations define what the data type does, but not how it works. Abstract data types are 
black boxes that we dare not open when we design algorithms that use them.   

For each of the most important abstract data types, several competing implementations, or data 
structures, are available. Often, alternative data structures realize different design tradeoffs that make 
certain operations (say, insertion) faster at the cost of other operations (say, search). In some 
applications, certain data structures yield simpler code than other implementations of a given abstract 
data type, or have some other specialized advantages. 

We assume that the reader has had some previous exposure to elementary data structures and some 
fluency in pointer manipulation. Therefore, we do not discuss these topics here. The reader who wants to 

review elementary data structures is referred to any of the books in Section . Instead, we focus on 
three fundamental abstract data types: containers, dictionaries, and priority queues. Detailed discussion 
of the tradeoffs between implementations of these data types is deferred to the relevant catalog entry.   

●     Containers 
●     Dictionaries 
●     Binary Search Trees 
●     Priority Queues 

Algorithms 
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Containers

Containers are abstract data types that hold stuff. They don't do much more than hold it so that it can be 
retrieved later. Still, they are critical to the functioning of society. We will use the term container to 
denote a data structure that permits storage and retrieval of data items independently of content. The two 
fundamental operations of any container are:   

●     Put(C,x): Insert a new data item x into the container C.
●     Get(C): Retrieve the next item from the container C. Different types of containers support 

different retrieval orders, based on insertion order or position. 

Containers are typically most useful when they will contain only a limited number of items and when the 
retrieval order is predefined or irrelevant. The most popular type of containers are: 

●     Stacks: Supports retrieval in last in, first out order (LIFO). Stacks are simple to implement, and 
very efficient. Indeed, stacks are probably the right container to use when the retrieval order 
doesn't matter at all, as when processing batch jobs. The put and get operations for stacks are 
usually called push and pop.    

●     Queues: Supports retrieval in first in, first out order (FIFO). FIFO may seem the fairest way to 
control waiting times. However, for many applications, data items have infinite patience. Queues 
are trickier to implement than stacks and are appropriate only for applications (like certain 
simulations) where the order is important. The put and get operations for queues are usually called 
enqueue and dequeue.    

●     Tables: Supports retrieval by position, so that put and get each accept an index as an argument. 
Tables are naturally implemented using arrays.   

Each of these containers can be implemented using either arrays or linked lists. With the exception of 
tables, the choice of lists versus tables probably doesn't matter very much. The key issue is whether an 
upper bound on the size of the container is known in advance, thus permitting a statically allocated array. 
Using arrays, put and get can be implemented in constant time per operation for each of the containers.   
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Dictionaries

  

Dictionaries are a form of container that permits access to data items by content. You put a word into a 
dictionary because you know you can look it up when you need it.   

The primary operations dictionaries support are: 

●     Search(D,k): Given a search key k, return a pointer to the element in dictionary D whose key 
value is k, if one exists.

●     Insert(D,x): Given a data item x, add it to the set of items in the dictionary D.
●     Delete(D,x): Given a pointer to a given data item x in the dictionary D, remove it from D. 

Perhaps the simplest possible dictionary implementation maintains an unsorted linked list as a data 
structure. Insertion and deletion are supported in constant time, although a query requires potentially 
traversing the entire linked list. Basing an implementation on a stored array speeds up the query 
operation to  by binary search. Making room for a new item or filling a hole left by a deletion may 
require moving arbitrarily many items, so insertion and deletion become linear-time operations. 

Many other dictionary implementations are available. Binary search trees are discussed in some detail in 
the next section. Hash tables are another attractive option in practice. A complete discussion of different 

dictionary data structures is presented catalog Section . We encourage the reader to browse through 
the data structures section of the catalog in order to learn what your options are. 

Certain dictionary data structures also efficiently support the following useful operations: 

●     Max(D) or Min(D): Retrieve the item with the largest (or smallest) key from D. This enables the 
dictionary to serve as a priority, as discussed below.

●     Predecessor(D,k) or Successor(D,k): Retrieve the item from D whose key is immediately before 
(or after) k in sorted order. By starting from the first item Min(D) and repeatedly calling Successor 
until we obtain Max(D), we traverse all elements in sorted order. 
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Binary Search Trees

Fast support of all dictionary operations is realized by binary search trees. A binary tree is a rooted tree 
where each node contains at most two children. Each child can be identified as either a left or right child. 

As shown in Figure , a binary tree can be implemented where each node has left and right pointer 
fields, an (optional) parent pointer, and a data field.   

   
Figure: Relationships in a binary search tree  

A binary search tree labels each node in a binary tree with a single key such that for any node labeled x, 
all nodes in the left subtree of x have keys < x while all nodes in the right subtree of x have keys > x. The 
search tree labeling enables us to find where any key is. Start at the root. If it does not contain the key we 
are searching for, proceed either left or right depending upon whether what we want occurs before or after 
the root key. This algorithm works because both the left and right subtrees of a binary search tree are 
binary search trees; the recursive structure yields a recursive algorithm. Accordingly, the dictionary Query 
operation can be performed in O(h) time, where h is the height of the tree. 
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BinaryTreeQuery(x, k)

                 if   

                                    then return x

                 if (k < key[x])

                                then return BinaryTreeQuery(left[x],k)

                                else return BinaryTreeQuery(right[x],k)

To insert a new item x with key k into a binary search tree T, it is important to place it where it can be 
later be found. There is only one such location in any binary search tree, namely by replacing the nil 
pointer found in T after an unsuccessful query for k. Replacing this nil pointer with a pointer to x is a 
simple, constant-time operation after the search has been performed in O(h) time.   

Deletion is somewhat more tricky than insertion, because the node selected to die may not be a leaf. Leaf 
nodes may be deleted without mercy, by clearing the pointer to the given node. However, internal nodes 
have children that must remain accessible after the deletion. By restructuring or relabeling the tree, 
however, the item to delete can always be made into a leaf and then removed. Details appear in any data 
structures text.   

When implemented using binary search trees, all three dictionary operations take O(h) time, where h is 
the height of the tree. The smallest height we could hope for occurs when the tree is perfectly balanced, 
where  . In fact, if we insert the keys in random order, with high probability the tree will have 

 height. However, if we get unlucky with our order of insertion or deletion, we can end up with a 
linear-height tree in the worst case. The worst case is a serious potential problem. Indeed, it occurs 
whenever the keys are inserted in sorted order. 

To avoid such worst-case performance, more sophisticated balanced binary search tree data structures 
have been developed that guarantee the height of the tree always to be  . Therefore, all dictionary 
operations (insert, delete, query) take  time each. Implementations of such balanced tree data 

structures as red-black trees are discussed in Section .   
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From an algorithm design viewpoint, it is most important to know that these trees exist and that they can 
be used as black boxes to provide an efficient dictionary implementation. When figuring the costs of 
dictionary operations for algorithm analysis, assume the worst-case complexities of balanced binary trees 
to be a fair measure. 
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Priority Queues

Many algorithms process items according to a particular order. For example, suppose you have to schedule a list of jobs given 
the deadline by which each job must be performed or else its importance relative to the other jobs. Scheduling jobs requires 
sorting them by time or importance, and then performing them in this sorted order.   

Priority queues provide extra flexibility over sorting, which is required because jobs often enter the system at arbitrary 
intervals. It is much more cost-effective to insert a new job into a priority queue than to re-sort everything. Also, the need to 
perform certain jobs may vanish before they are executed, meaning that they must be removed from the queue. 

The basic priority queue supports three primary operations: 

●     Insert(Q,x): Given an item x with key k, insert it into the priority queue Q.
●     Find-Minimum(Q) or Find-Maximum(Q): Return a pointer to the item whose key value is smaller (larger) than any 

other key in the priority queue Q.
●     Delete-Minimum(Q) or Delete-Maximum(Q) - Remove the item from the priority queue Q whose key is minimum 

(maximum). 

   
Figure: The maximum and minimum element in a binary search tree  

All three of these priority queue operations can be implemented in time by representing the heap with a binary search tree. 
Implementing the find-minimum operation requires knowing where the minimum element in the tree is. By definition, the 
smallest key must reside in the left subtree of the root, since all keys in the left subtree have values less than that of the root. 

Therefore, as shown in Figure , the minimum element must be the leftmost decendent of the root. Similarly, the maximum 
element must be the rightmost decendent of the root.   

Find-Maximum(x)                                                                                                                          
Find-Minimum(x)

                 while                                                                                                           
while 

                                     do x = right[x]                                                                                                                  
do x = left[x]

                 return x                                                                                                                                
return x
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Repeatedly traversing left (or right) pointers until we hit a leaf takes time proportional to the height of the tree, or  if the 
tree is balanced. The insert operation can be implemented exactly as binary tree insertion. Delete-Min can be implemented by 
finding the minimum element and then using standard binary tree deletion. It follows that each of the operations can be 
performed in  time. 

Priority queues are very useful data structures. Indeed, they are the hero of the war story described in Section . A complete 

set of priority queue implementations is presented in Section . 

        
Next: Specialized Data Structures Up: Fundamental Data Types Previous: Binary Search Trees 
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Specialized Data Structures
The basic data structures thus far described all represent an unstructured set of items so as to facilitate 
retrieval operations. These data structures are well known to most programmers. Not as well known are 
high-powered data structures for representing more structured or specialized kinds of objects, such as 
points in space, strings, and graphs. 

The design principles of these data structures are the same as for basic objects. There exists a set of basic 
operations we need to perform repeatedly. We seek a data structure that supports these operations very 
efficiently. These efficient, specialized data structures are as important for efficient graph and geometric 
algorithms as lists and arrays are for basic algorithms, so one should be aware of their existence. Details 
appear throughout the catalog. 

●     String data structures - Character strings are typically represented by arrays of characters, with 
perhaps a special character to mark the end of the string. Suffix trees/arrays are special data 

structures that preprocess strings to make pattern matching operations faster. See Section  for 
details.   

●     Geometric data structures - Geometric data typically consists of collections of data points and 
regions. Regions in the plane are usually described by polygons, where the boundary of the 
polygon is given by a chain of line segments. Polygons can be represented using an array of 
points  , such that  is a segment of the boundary. Spatial data structures such 
as kd-trees organize points and regions by geometric location to support fast search. See Section 

 for details.     
●     Graph data structures - Graphs are typically represented by either adjacency matrices or 

adjacency lists. The choice of representation can have a substantial impact on the design of the 

resulting graph algorithms, as discussed in Chapter . Implementation aspects of graph data 

structures are presented in Section .  
●     Set data structures - Subsets of items are typically represented using a dictionary, to support fast 

membership queries. A variety of data structures for manipulating sets is presented in Section . 
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Sorting
By the time they graduate, computer science students are likely to have studied the basic sorting 
algorithms in their introductory programming class, then in their data structures class, and finally in their 
algorithms class. Why is sorting worth so much attention? There are several reasons:   

●     Sorting is the basic building block around which many other algorithms are built. By 
understanding sorting, we obtain an amazing amount of power to solve other problems.

●     Historically, computers have spent more time sorting than doing anything else. A quarter of all 
mainframe cycles are spent sorting data [Knu73b]. Although it is unclear whether this remains 
true on smaller computers, sorting remains the most ubiquitous combinatorial algorithm problem 
in practice.

●     Sorting is the most throughly studied problem in computer science. Literally dozens of different 
algorithms are known, most of which possess some advantage over all other algorithms in certain 
situations. To become convinced of this, the reader is encouraged to browse through [Knu73b], 
with hundreds of pages of interesting sorting algorithms and analysis.

●     Most of the interesting ideas used in the design of algorithms appear in the context of sorting, 
such as divide-and-conquer, data structures, and randomized algorithms. 
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Applications of Sorting
  

An important key to algorithm design is to use sorting as a basic building block, because once a set of 
items is sorted, many other problems become easy. Consider the following applications:   

●     Searching - Binary search enables you to test whether an item is in a dictionary in  time, 
once the keys are all sorted. Search preprocessing is perhaps the single most important application 
of sorting.

●     Closest pair - Given a set of n numbers, how do you find the pair of numbers that have the 
smallest difference between them? After the numbers are sorted, the closest pair of numbers will 
lie next to each other somewhere in sorted order. Thus a linear-time scan through them completes 
the job, for a total of  time including the sorting.  

●     Element uniqueness - Are there any duplicates in a given a set of n items? The most efficient 
algorithm is to sort them and then do a linear scan though them checking all adjacent pairs. This is 
a special case of the closest-pair problem above, where we ask if there is a pair separated by a gap 
of zero.  

●     Frequency distribution - Given a set of n items, which element occurs the largest number of times 
in the set? If the items are sorted, we can sweep from left to right and count them, since all 
identical items will be lumped together during sorting. To find out how often an arbitrary element 
k occurs, start by looking up k using binary search in a sorted array of keys. By walking to the left 
of this point until the element is not k and then walking to the right, we can find this count in 

 time, where c is the number of occurrences of k. The number of instances of k can be 
found in  time by using binary search to look for the positions of both  and  , 
where  is arbitrarily small, and then taking the difference of these positions.  

●     Selection - What is the kth largest item in the set? If the keys are placed in sorted order in an 
array, the kth largest can be found in constant time by simply looking at the kth position of the 

array. In particular, the median element (see Section ) appears in the (n/2)nd position in sorted 
order.   
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Figure: Constructing the convex hull of points in the plane  

●     Convex hulls - Given n points in two dimensions, what is the polygon of smallest area that 
contains them all? The convex hull is like a rubber band stretched over the points in the plane and 

then released. It compresses to just cover the points, as shown in Figure . The convex hull 
gives a nice representation of the shape of the points and is the most important building block for 

more sophisticated geometric algorithms, as discussed in catalog Section .   

But how can we use sorting to construct the convex hull? Once you have the points sorted by x-
coordinate, the points can be inserted from left to right into the hull. Since the rightmost point is 
always on the boundary, we know that it will be inserted into the hull. Adding this new rightmost 
point might cause others to be deleted, but we can quickly identify these points because they lie 
inside the polygon formed by adding the new point. These points to delete will be neighbors of 
the previous point we inserted, so they will be easy to find. The total time is linear after the 
sorting has been done. 

While some of these problems (particularly median and selection) can be solved in linear time using 
more sophisticated algorithms, sorting provides quick and easy solutions to all of these problems. It is a 
rare application whose time complexity is such that sorting proves to be the bottleneck, especially a 
bottleneck that could have otherwise been removed using more clever algorithmics. Don't ever be afraid 
to spend time sorting whenever you use an efficient sorting routine. 
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Approaches to Sorting
    

Sorting is a natural laboratory for studying basic algorithm design paradigms, since many useful 
techniques lead to interesting sorting algorithms. Indeed, we introduce several techniques here that will 
be described further in subsequent chapters. Consider the algorithms below as case studies for each of the 
relevant techniques. 

●     Data Structures 
●     Incremental Insertion 
●     Divide and Conquer 
●     Randomization 
●     Bucketing Techniques 
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Data Structures

Perhaps the most dramatic algorithmic improvement made possible by using appropriate data structures 
occurs in sorting. Selection sort is a simple-to-code algorithm that repeatedly extracts the smallest 
remaining element from the unsorted part of the set:   

SelectionSort(A)

                 For i = 1 to n do

                                 Sort[i] = Find-Minimum from A

                                 Delete-Minimum from A

                 Return(Sort)

Selection sort is typically implemented by partitioning the input array into sorted and unsorted regions. 
To find the smallest item, we perform a linear sweep through the unsorted portion of the array. The 
smallest item is then swapped with the ith item in the array before moving on the next iteration. Selection 
sort performs n iterations, where the average iteration takes n/2 steps, for a total of  time. 

But what if we improve the data structure? It takes O(1) time to remove a particular item from an 
unsorted array once it has been located, but O(n) time to find the smallest item. These two are exactly the 
operations supported by priority queues. So what happens if we replace the data structure with a better 
priority queue implementation, either a heap or a balanced binary tree. Operations within the loop now 
take  time each, instead of O(n). By using such a priority queue implementation, selection sort is 
sped up to  from  . The name typically given to this algorithm, heapsort, obscures the 
relationship between them, but heapsort is nothing but an implementation of selection sort with the right 
data structure.    
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Incremental Insertion

Now consider a different approach to sorting that grows the sorted set one element at a time. Select an 
arbitrary element from the unsorted set, and put it in the proper position in the sorted set.    

InsertionSort(A)

                  

                for i = 1 to n-1 do

                                j=i

                                while (A[j] > A[j-1]) do swap(A[j],A[j-1])

Although insertion sort takes  in the worst case, it will perform considerably better if the data is almost 
sorted, since few iterations of the inner loop will suffice to sift it into the proper position. Insertion sort is 
perhaps the simplest example of the incremental insertion technique, where we build up a complicated 
structure on n items by first building it on n-1 items and then making the necessary changes to fix things in 
adding the last item. Incremental insertion proves a particularly useful technique in geometric algorithms. 
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Divide and Conquer

  

Suppose we take the n elements to sort and split them into piles S and T, each with half the elements. 
After sorting both piles, it is easy to combine the two sorted piles. To merge  and 

 , note that the smallest item must sit at the top of one of the two lists. Once identified, 
the smallest element can be removed, and the second smallest item will again be atop one of the two lists. 
Repeating this operation merges the two sorted lists in O(n) time. This provides the basis for a recursive 
algorithm.    

Mergesort(A[1,n])

                 Merge( MergeSort(  ), MergeSort(  ) )

Because the recursion goes  levels deep and a linear amount of work is done per level, Mergesort 
takes  time in the worst case. 

Mergesort is a classic divide-and-conquer algorithm. Whenever we can break one large problem into two 
smaller problems, we are ahead of the game because the smaller problems are easier. The trick is taking 
advantage of the two partial solutions to put together a solution of the full problem. The merge operation 
takes care of the reassembly in mergesort, but not all problems can be so neatly decomposed. 
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Randomization

Suppose we select, at random, one of the n items we seek to sort. Call this element p. In quicksort, we 
separate the n-1 other items into two piles: a low pile containing all the elements that will appear before p 
in sorted order and a high pile containing all the elements that will appear after p in sorted order. After 
sorting the two piles and arranging the piles correctly, we have succeeded in sorting the n items.    

Quicksort(A, low, high)

                 if (low < high)

                                 ploc = Partition(A,low,high)

                                 Quicksort(A,low, ploc - 1)

                                 Quicksort(A, ploc+1, high)

Partition(A,low,high)

                 swap(A[low],A[random(  )])

                 pivot = A[low]

                 leftwall = low
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                 for i = low+1 to high

                                  if (A[i] < pivot) then

                                                  leftwall = leftwall+1

                                                  swap(A[i],A[leftwall])

                 swap(A[low],A[leftwall])

Mergesort ran in  time because we split the keys into two equal halves, sorted them recursively, and 
then merged the halves in linear time. Thus whenever our pivot element is near the center of the sorted 
array (i.e. the pivot is close to the median element), we get a good split and realize the same performance as 
mergesort. Such good pivot elements will often be the case. After all, half the elements lie closer to the 
middle than one of the ends. On average, Quicksort runs in  time. If we are extremely unlucky and 
our randomly selected elements always are among the largest or smallest element in the array, Quicksort 
turn into selection sort and runs in  . However, the odds against this are vanishingly small. 

Randomization is a powerful, general tool to improve algorithms with bad worst-case but good average-
case complexity. The worst case examples still exist, but they depend only upon how unlucky we are, not 
on the order that the input data is presented to us. For randomly chosen pivots, we can say that 

``Randomized quicksort runs in  time on any input, with high probability.'' 

If instead, we used some deterministic rule for selecting pivots (like always selecting A[(low+high)/2] as 
pivot), we can make no claim stronger than 

``Quicksort runs in  time if you give me random input data, with high probability.'' 

Randomization can also be used to drive search techniques such as simulated annealing, which are 

discussed in Section . 
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Bucketing Techniques

If we were sorting names for the telephone book, we could start by partitioning the names according to the first letter of the last 
name. That will create 26 different piles, or buckets, of names. Observe that any name in the J pile must occur after every name 
in the I pile but before any name in the K pile. Therefore, we can proceed to sort each pile individually and just concatenate the 
bunch of piles together.    

If the names are distributed fairly evenly among the buckets, as we might expect, the resulting 26 sorting problems should each 
be substantially smaller than the original problem. Further, by now partitioning each pile based on the second letter of each 
name, we generate smaller and smaller piles. The names will be sorted as soon as each bucket contains only a single name. The 
resulting algorithm is commonly called bucketsort or distribution sort. 

Bucketing is a very effective idea whenever we are confident that the distribution of data will be roughly uniform. It is the idea 
that underlies hash tables, kd-trees, and a variety of other practical data structures. The downside of such techniques is that the 
performance can be terrible whenever the data distribution is not what we expected. Although data structures such as binary 
trees offer guaranteed worst-case behavior for any input distribution, no such promise exists for heuristic data structures on 
unexpected input distributions.    

  

 
Figure: A small subset of Charlottesville Shiffletts  

To show that non-uniform distributions occur in real life, consider Americans with the uncommon last name of Shifflett. The 
1997 Manhattan telephone directory, with over one million names, contains exactly five Shiffletts. So how many Shiffletts 

should there be in a small city of 50,000 people? Figure  shows a small portion of the two and a half pages of Shiffletts in 
the Charlottesville, Virginia telephone book. The Shifflett clan is a fixture of the region, but it would play havoc with any 
distribution sort program, as refining buckets from S to Sh to Shi to Shif to  to Shifflett results in no significant partitioning. 
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War Story: Stripping Triangulations
    

   
Figure: (a) A triangulated model of a dinosaur (b) Several triangle strips in the model  

The most common type of geometric model used for computer graphics describes the geometry of the 

object as a triangulated surface, as shown in Figure a. High-performance rendering engines have 
special hardware for rendering and shading triangles. This hardware is so fast that the bottleneck of 
rendering is simply feeding the structure of the triangulation into the hardware engine.      

Although each triangle can be described by specifying its three endpoints and any associated 
shading/normal information, an alternative representation is more efficient. Instead of specifying each 
triangle in isolation, suppose that we partition the triangles into strips of adjacent triangles and walk 

along the strip, as shown in Figure (b). Since each triangle shares two vertices in common with its 
neighbors, we save the cost of retransmitting the two extra vertices and any associated normals. To make 
the description of the triangles unambiguous, the Silicon Graphics triangular-mesh renderer OpenGL 

assumes that all turns alternate from left to right (as shown in Figure ).   

   
Figure: Partitioning a triangular mesh into strips: (a) with left-right turns (b) with the flexibility of 
arbitrary turns  

The problem of finding a small number of strips that cover each triangle in a mesh can be thought of as a 
graph problem, where this graph has a vertex for every triangle of the mesh, and there is an edge 
between every pair of vertices representing adjacent triangles. This dual graph representation of the 
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planar subdivision representing the triangulation (see Section ) captures all the information about the 

triangulation needed to partition it into triangle strips. Section  describes our experiences constructing 
the graph from the triangulation.    

Once we had the dual graph available, the project could begin in earnest. We sought to partition the 
vertices of the dual graph into as few paths or strips as possible. Partitioning it into one path implied that 
we had discovered a Hamiltonian path, which by definition visits each vertex exactly once. Since finding 

a Hamiltonian path was NP-complete (see Section ), we knew not to look for an optimal algorithm, 
but to concentrate instead on heuristics. 

It is always best to start with simple heuristics before trying more complicated ones, because simple 
might well suffice for the job. The most natural heuristic for strip cover would be to start from an 
arbitrary triangle and then do a left-right walk from there until the walk ends, either by hitting the 
boundary of the object or a previously visited triangle. This heuristic had the advantage that it would be 
fast and simple, although there could be no reason to suspect that it should find the smallest possible set 
of left-right strips for a given triangulation. 

A heuristic more likely to result in a small number of strips would be greedy. Greedy heuristics always 
try to grab the best possible thing first. In the case of the triangulation, the natural greedy heuristic would 
find the starting triangle that yields the longest left-right strip, and peel that one off first.   

Being greedy also does not guarantee you the best possible solution, since the first strip you peel off 
might break apart a lot of potential strips we would have wanted to use later. Still, being greedy is a good 
rule of thumb if you want to get rich. Since removing the longest strip would leave the fewest number of 
triangles for later strips, it seemed reasonable that the greedy heuristic would out-perform the naive 
heuristic. 

But how much time does it take to find the largest strip to peel off next? Let k be the length of the walk 
possible from an average vertex. Using the simplest possible implementation, we could walk from each 
of the n vertices per iteration in order to find the largest remaining strip to report in  time. With 
the total number of strips roughly equal to n/k, this yields an  -time implementation, which would be 
hopelessly slow on a typical model of 20,000 triangles. 

How could we speed this up? It seems wasteful to rewalk from each triangle after deleting a single strip. 
We could maintain the lengths of all the possible future strips in a data structure. However, whenever we 
peel off a strip, we would have to update the lengths of all the other strips that will be affected. These 
strips will be shortened because they walked through a triangle that now no longer exists. There are two 
aspects of such a data structure: 

file:///E|/BOOK/BOOK/NODE37.HTM (2 of 4) [19/1/2003 1:28:34]



War Story: Stripping Triangulations

   
Figure: A bounded height priority queue for triangle strips  

●     Priority Queue - Since we were repeatedly interested in identifying the longest possible next strip, 
we needed a priority queue to store the strips, ordered according to length. The next strip to peel 
would always be the top of the queue. Our priority queue had to permit reducing the priority of 
arbitrary elements of the queue whenever we updated the strip lengths to reflect what triangles 
were peeled away. Because all of the strip lengths were bounded by a fairly small integer 
(hardware constraints prevent any strip from having more than 256 vertices), we used a bounded 

height priority queue (shown in Figure  and described in Section ). An ordinary heap would 
also have worked just fine.   

To update a queue entry associated with a triangle, we needed to be able to quickly find where it 
was. This meant that we also needed a ...

●     Dictionary - For each triangle in the mesh, we needed a way to find where it was in the queue. 
This meant storing a pointer for each triangle. Since each triangle was defined by three integer 
vertex numbers, either a hash table or an array of lists of triangles would suffice. By integrating 
this dictionary with the priority queue, we built a data structure capable of a wider range of 
operations.   

Although there were various other complications, such as quickly recalculating the length of the strips 
affected by the peeling, the key idea needed to obtain better performance was to use the priority queue. 
Run time improved by several orders of magnitude after employing these data structures. 
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Figure: A comparison of the naive versus greedy heuristics for several triangular meshes  

How much better did the greedy heuristic do than the naive heuristic? Consider the table in Figure . In 
all cases, the greedy heuristic led to a set of strips that cost less, as measured by the total size of the 
strips. The savings ranged from about 10% to 50%, quite remarkable, since the greatest possible 
improvement (going from three vertices per triangle down to one) could yield a savings of only 66.6%. 

After implementing the greedy heuristic with our priority queue data structure, our complete algorithm 
ran in  time, where n is the number of triangles and k is the length of the average strip. Thus the 
torus, which consisted of a small number of very long strips, took longer than the jaw, even though the 
latter contained over three times as many triangles. 

There are several lessons to be gleaned from this story. First, whenever we are working with a large 
enough data set, only linear or close to linear algorithms (say  ) are likely to be fast enough. 
Second, choosing the right data structure is often the key to getting the time complexity down to this 
point. Finally, using a greedy or somewhat smarter heuristic over the naive approach is likely to 
significantly improve the quality of the results. How much the improvement is likely to be can be 
determined only by experimentation. Our final, optimized triangle strip program is described in [ESV96]. 
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War Story: Mystery of the Pyramids
  

That look in his eyes should have warned me even before he started talking. 

``We want to use a parallel supercomputer for a numerical calculation up to 1,000,000,000, but we need 
a faster algorithm to do it.''   

I'd seen that distant look before. Eyes dulled from too much exposure to the raw horsepower of 
supercomputers. Machines so fast that brute force seemed to eliminate the need for clever algorithms. So 
it always seemed, at least until the problems got hard enough. 

``I am working with a Nobel prize winner to use a computer on a famous problem in number theory. Are 
you familiar with Waring's problem?''    

I knew some number theory [NZ80]. ``Sure. Waring's problem asks whether every integer can be 
expressed at least one way as the sum of at most four integer squares. For example, 

 . It's a cute problem. I remember proving that four squares suffice in 

my undergraduate number theory class. Yes, it's a famous problem, sure, but one that got solved about 
200 years ago.'' 

``No, we are interested in a different version of Waring's problem. A pyramidal number is a number of 
the form  , for  . Thus the first several pyramidal numbers are 1, 4, 10, 20, 35, 56, 84, 
120, and 165. The conjecture since 1928 is that every integer can be represented by the sum of at most 
five such pyramidal numbers. We want to use a supercomputer to prove this conjecture on all numbers 
from 1 to 1,000,000,000.'' 

``Doing a billion of anything will take a serious amount of time,'' I warned. ``The time you spend to 
compute the minimum representation of each number will be critical, because you are going to do it one 
billion times. Have you thought about what kind of an algorithm you are going to use?'' 

``We have already written our program and run it on a parallel supercomputer. It works very fast on 
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smaller numbers. Still, it take much too much time as soon as we get to 100,000 or so.'' 

``Terrific,'' I thought. Our supercomputer junkie had discovered asymptotic growth. No doubt his 
algorithm ran in something like quadratic time, and he got burned as soon as n got large. 

``We need a faster program in order to get to one billion. Can you help us? Of course, we can run it on 
our parallel supercomputer when you are ready.'' 

I'll confess that I am a sucker for this kind of challenge, finding better algorithms to speed up programs. I 
agreed to think about it and got down to work. 

I started by looking at the program that the other guy had written. He had built an array of all the  

pyramidal numbers from 1 to n. To test each number k in this range, he did a brute force test to establish 
whether it was the sum of two pyramidal numbers. If not, the program tested whether it was the sum of 
three of them, then four, and finally five of them, until it first got an answer. About 45% of the integers 
are expressible as the sum of three pyramidal numbers, while most of the remaining 55% require the sum 
of four; usually each can be represented many different ways. Only 241 integers are known to require the 
sum of five pyramidal numbers, the largest one being 343,867. For about half of the n numbers, this 
algorithm presumably went through all of the three-tests and at least some of the four-tests before 

terminating. Thus the total time for this algorithm would be at least  time, where n= 

1,000,000,000. No wonder his program cried uncle. 

Anything that was going to do significantly better on a problem this large had to avoid explicitly testing 
all triples. For each value of k, we were seeking the smallest number of pyramidal numbers that sum 

exactly to k. This problem has a name, the knapsack problem, and it is discussed in Section . In our 
case of interest, the weights are the set of pyramidal numbers no greater than n, with an additional 
constraint that the knapsack holds exactly k items.   

The standard approach to solving knapsack precomputes the sum of smaller subsets of the items for use 
in computing larger subsets. In other words, if we want to know whether k is expressible as the sum of 
three numbers, and we have a table of all sums of two numbers, all we have to do is ask whether our 
number is expressible as the sum of a single number plus a number in this two-table. 

Thus what I needed was a table of all integers less than n that could be expressed as the sum of two of the 
1,818 pyramidal numbers less than 1,000,000,000. There could be at most  = 3,305,124 of them. 

Actually, there would be only about half this many because we could eliminate duplicates, or any sum 
bigger than our target. Building a data structure, such as a sorted array, to hold these numbers would be 
no big deal. Call this data structure the two-table. 

To find the minimum decomposition for a given k, I would start out by checking whether it was one of 
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the 1,818 pyramidal numbers. If not, I would then search to see whether k was in the sorted table of the 
sums of two pyramidal numbers. If it wasn't, to see whether k was expressible as the sum of three such 
numbers, all I had to do was check whether k - p[i] was in the two-table for  . This could be 
done quickly using binary search. To see whether k was expressible as the sum of four pyramidal 
numbers, I had to check whether k - two[i] was in the two-table for all  . However, since 
almost every k was expressible in many ways as the sum of four pyramidal numbers, this latter test 
would terminate quickly, and the time taken would be dominated by the cost of the threes. Testing 
whether k was the sum of three pyramidal numbers would take  . Running this on each of the n 

integers gives an  algorithm for the complete job. Comparing this to his  algorithm for n= 

1,000,000,000 suggested that my algorithm was a cool 30,000 times faster than the original! 

My first attempt to code this up solved up to n=1,000,000 on my crummy Sparc ELC in about 20 
minutes. From here, I experimented with different data structures to represent the sets of numbers and 
different algorithms to search these tables. I tried using hash tables and bit vectors instead of sorted 

arrays and experimented with variants of binary search such as interpolation search (see Section ). My 
reward for this work was solving up to n=1,000,000 in under three minutes, a factor of six improvement 
over my original program. 

With the real thinking done, I worked to tweak a little more performance out of the program. I avoided 
doing a sum-of-four computation on any k when k-1 was the sum-of-three, since 1 is a pyramidal 
number, saving about 10% of the total run time on this trick alone. Finally, I got out my profiler and tried 
some low-level tricks to squeeze a little more performance out of the code. For example, I saved another 
10% by replacing a single procedure call with in-line code. 

At this point, I turned the code over to the supercomputer guy. What he did with it is a depressing tale, 

which is reported in Section . 

In writing up this war story, I went back to rerun our program almost five years later. On my desktop 
Sparc 5, getting to 1,000,000 now took 167.5 seconds using the cc compiler without turning on any 
compiler optimization. With level 2 optimization, the job ran in only 81.8 seconds, quite a tribute to the 
quality of the optimizer. The gcc compiler with optimization did even better, taking only 74.9 seconds to 
get to 1,000,000. The run time on my desktop machine had improved by a factor of about three over a 
four-year period. This is probably typical for most desktops.   

The primary importance of this war story is to illustrate the enormous potential for algorithmic speedups, 
as opposed to the fairly limited speedup obtainable via more expensive hardware. I sped his program up 
by about 30,000 times. His million-dollar computer had 16 processors, each reportedly five times faster 
on integer computations than the $3,000 machine on my desk. That gave a maximum potential speedup 
of less than 100 times. Clearly, the algorithmic improvement was the big winner here, as it is certain to 
be in any sufficiently large computation. 
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War Story: String 'em Up
  

Biologists are hard at work on a fifteen-year project to sequence the human genome. This pattern of 
nucleotides encodes all the information necessary to build the proteins that we are built of. This project 
has already had an enormous impact on medicine and molecular biology.   

Algorists have become interested in the human genome project as well, for several reasons: 

●     DNA sequences can be accurately represented as strings of characters on the four-letter alphabet 
(A,C,T,G). Biologist's needs have sparked new interest in old algorithmic problems (such as string 

matching - see Section ) as well as creating new problems of substantial interest (such as 

shortest common superstring - see Section ).  
●     DNA sequences are very long strings. The human genome is approximately three billion base 

pairs (or characters) long. Thus sophisticated computational techniques are necessary to deal with 
them. Such large problem sizes means that asymptotic (big-Oh) complexity analysis is usually 
fully justified on biological problems.

●     Enough money is being invested in the human genome project for computer scientists to want to 
claim their piece of the action. 

My particular interest in computational biology has revolved around a recently proposed but 
algorithmically intensive technique for DNA sequencing called sequencing by hybridization (SBH) 
[CK94, PL94]. The traditional sequencing by hybridization procedure attaches a set of probes to an array, 
forming a sequencing chip. Each of these probes determines whether or not the probe string occurs as a 
substring of the DNA target. The target DNA can now be sequenced based on the constraints of which 
strings are and are not substrings of the target.     

One problem with SBH is that enormous arrays (say  strings) are necessary to sequence 

relatively short pieces of DNA (typically about 200 base pairs long). The major reason is that all of these 
 probes are made at the same time. If you want to look up a name in the telephone book but are only 

allowed to consult the book once, you must copy down every single name from the book at that time. But 
if you are allowed to ask ``is the name before Mendoza?'' and wait for the answer before asking your next 
question, you can use binary search to greatly reduce your total effort. 
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We were convinced that using several small arrays would be more efficient than using one big array. We 
even had theory to justify our technique, but biologists aren't very inclined to believe theory. They 
demand experiments for proof. Hence we had to implement our algorithms and use simulation to prove 
that they worked. 

So much for motivation. The rest of this tale will demonstrate the impact that clever data structures can 
have on a string processing application. 

Our technique involved identifying all the strings of length 2k that are possible substrings of an unknown 
string S, given that we know all length k substrings of S. For example, suppose we know that AC, CA, 
and CC are the only length-2 substrings of S. It is certainly possible that ACCA is a substring of S, since 
the center substring is one of our possibilities. However, CAAC cannot be a substring of S, since we 
know that AA is not a substring of S. We needed to find a fast algorithm to construct all the consistent 
length-2k strings, since S could be very long. 

   
Figure: The concatentation of two fragments can be in S only if all subfragments are  

The simplest algorithm to build the 2k strings would be to concatenate all  pairs of k-strings 
together, and then for each pair to make sure that all (k-1) length-k substrings spanning the boundary of 

the concatenation were in fact substrings, as shown in Figure . For example, the nine possible 
concatenations of AC, CA, and CC are ACAC, ACCA, ACCC, CAAC, CACA, CACC, CCAC, CCCA, and 
CCCC. Only CAAC can be eliminated because of the absence of AA. 

We needed a fast way of testing whether each of the k-1 substrings straddling the concatenation was a 
member of our dictionary of permissible k-strings. The time it takes to do this depends upon which kind 
of data structure we use to maintain this dictionary. With a binary search tree, we could find the correct 
string within  comparisons, where each comparison involved testing which of two length-k strings 
appeared first in alphabetical order. Since each such comparison could require testing k pairs of 
characters, the total time using a binary search tree would be  .   

That seemed pretty good. So my graduate student Dimitris Margaritis implemented a binary search tree 
data structure for our implementation. It worked great up until the moment we ran it. 
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``I've tried the fastest computer in our department, but our program is too slow,'' Dimitris complained. 
``It takes forever on strings of length only 2,000 characters. We will never get up to 50,000.'' 

For interactive SBH to be competitive as a sequencing method, we had to be able to sequence long 
fragments of DNA, ideally over 50 kilobases in length. If we couldn't speed up the program, we would be 
in the embarrassing position of having a biological technique invented by computer scientists fail 
because the computations took too long. 

We profiled our program and discovered that almost all the time was spent searching in this data 
structure, which was no surprise. For each of the  possible concatenations, we did this k-1 times. We 
needed a faster dictionary data structure, since search was the innermost operation in such a deep loop. 

``What about using a hash table?'' I suggested. ``If we do it right, it should take O(k) time to hash a k-
character string and look it up in our table. That should knock off a factor of  , which will mean 
something when  2,000.''   

Dimitris went back and implemented a hash table implementation for our dictionary. Again, it worked 
great up until the moment we ran it. 

``Our program is still too slow,'' Dimitris complained. ``Sure, it is now about ten times faster on strings 
of length 2,000. So now we can get up to about 4,000 characters. Big deal. We will never get up to 
50,000.'' 

``We should have expected only a factor ten speedup,'' I mused. ``After all,  . We need a 
faster data structure to search in our dictionary of strings.'' 

``But what can be faster than a hash table?'' Dimitris countered. ``To look up a k-character string, you 
must read all k characters. Our hash table already does O(k) searching.'' 

``Sure, it takes k comparisons to test the first substring. But maybe we can do better on the second test. 
Remember where our dictionary queries are coming from. When we concatenate ABCD with EFGH, we 
are first testing whether BCDE is in the dictionary, then CDEF. These strings differ from each other by 
only one character. We should be able to exploit this so that each subsequent test takes constant time to 
perform....'' 

``We can't do that with a hash table,'' Dimitris observed. ``The second key is not going to be anywhere 
near the first in the table. A binary search tree won't help, either. Since the keys ABCD and BCDE differ 
according to the first character, the two strings will be in different parts of the tree.'' 
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Figure: Suffix tree on ACAC and CACT, with the pointer to the suffix of ACAC  

``But we can use a suffix tree to do this,'' I countered. ``A suffix tree is a trie containing all the suffixes of 
a given set of strings. For example, the suffixes of ACAC are  . Coupled with 

suffixes of string CACT, we get the suffix tree of Figure . By following a pointer from ACAC to its 
longest proper suffix CAC, we get to the right place to test whether CACT is in our set of strings. One 
character comparison is all we need to do from there.''   

Suffix trees are amazing data structures, discussed in considerably more detail in Section . Dimitris 
did some reading about them, then built a nice suffix tree implementation for our dictionary. Once again, 
it worked great up until the moment we ran it. 

``Now our program is faster, but it runs out of memory,'' Dimitris complained. ``And this on a 128 
megabyte machine with 400 megabytes virtual memory! The suffix tree builds a path of length k for each 
suffix of length k, so all told there can be  nodes in the tree. It crashes when we go beyond 

2,000 characters. We will never get up to strings with 50,000 characters.'' 

I wasn't yet ready to give up. ``There is a way around the space problem, by using compressed suffix 
trees,'' I recalled. ``Instead of explicitly representing long paths of character nodes, we can refer back to 

the original string.'' Compressed suffix trees always take linear space, as described in Section . 

Dimitris went back one last time and implemented the compressed suffix tree data structure. Now it 

worked great! As shown in Figure , we ran our simulation for strings of length n= 65,536 on a 
SPARCstation 20 without incident. Our results, reported in [MS95a], showed that interactive SBH could 
be a very efficient sequencing technique. Based on these simulations, we were able to arouse interest in 
our technique from biologists. Making the actual wet laboratory experiments feasible provided another 

computational challenge, which is reported in Section . 

file:///E|/BOOK/BOOK/NODE39.HTM (4 of 5) [19/1/2003 1:28:38]



War Story: String 'em Up

The take home lessons for programmers from Figure  should be apparent. We isolated a single 
operation (dictionary string search) that was being performed repeatedly and optimized the data structure 
we used to support it. We started with a simple implementation (binary search trees) in the hopes that it 
would suffice, and then used profiling to reveal the trouble when it didn't. When an improved dictionary 
structure still did not suffice, we looked deeper into what kinds of queries we were performing, so that 
we could identify an even better data structure. Finally, we didn't give up until we had achieved the level 
of performance we needed. In algorithms, as in life, persistence usually pays off. 

   
Figure: Run times (in seconds) for the SBH simulation using various data structures  
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Next: Implementation Challenges Up: Data Structures and Sorting Previous: War Story: String 'em 

Exercises
  

1.  Newt Gingrich is given the job of partitioning 2n players into two teams of n players each. Each 
player has a numerical rating that measures how good he/she is at the game. Newt seeks to divide 
the players as unfairly as possible, so as to create the biggest possible talent imbalance between 
team A and team B. Show how Newt can do the job in  time.  

2.  Take as input a sequence of 2n real numbers. Design an  algorithm that partitions the 
numbers into n pairs, with the property that the partition minimizes the maximum sum of a pair. 
For example, say we are given the numbers (1,3,5,9). The possible partitions are ((1,3),(5,9)), 
((1,5),(3,9)), and ((1,9),(3,5)). The pair sums for these partitions are (4,14), (6,12), and (10,8). 
Thus the third partition has 10 as its maximum sum, which is the minimum over the three 
partitions.

3.  Assume that we are given as input n pairs of items, where the first item is a number and the 
second item is one of three colors (red, blue, or yellow). Further, assume that the items are sorted 
by number. Give an O(n) algorithm to sort the items by color (all reds before all blues before all 
yellows) such that the numbers for identical colors stay sorted. 

For example: (1,blue), (3,red), (4,blue), (6,yellow), (9,red) should become (3,red), (9,red), 
(1,blue), (4,blue), (6,yellow).

4.  (*) The mode of a set of numbers is the number that occurs most frequently in the set. The set 
(4,6,2,4,3,1) has a mode of 4.   

1.  Give an efficient and correct algorithm to compute the mode of a set of n numbers.
2.  Suppose we know that there is an (unknown) element that occurs n/2+1 times in the set. 

Give a worst-case linear-time algorithm to find the mode. For partial credit, your algorithm 
may run in expected linear time. 

5.  Given two sets  and  (each of size n), and a number x, describe an  algorithm for 
finding whether there exists a pair of elements, one from  and one from  , that add up to x. 
(For partial credit, give a  algorithm for this problem.)

6.  For each of the following problems, give an algorithm that finds the desired numbers within the 
given amount of time. To keep your answers brief, feel free to use algorithms from the book as 
subroutines. For the example,  , 19-3 maximizes the difference, while 8-6 
minimizes the difference. 
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(a) Let S be an unsorted array of n integers. Give an algorithm that finds the pair  that 
maximizes |x-y|. Your algorithm must run in O(n) worst-case time. 

(b) Let S be a sorted array of n integers. Give an algorithm that finds the pair  that 
maximizes |x-y|. Your algorithm must run in O(1) worst-case time. 

(c) Let S be an unsorted array of n integers. Give an algorithm that finds the pair  that 
minimizes |x-y|, for  . Your algorithm must run in  worst-case time. 

(d) Let S be a sorted array of n integers. Give an algorithm that finds the pair  that 
minimizes |x-y|, for  . Your algorithm must run in O(n) worst-case time.

7.  (*) Describe how to modify any balanced tree data structure such that search, insert, delete, 
minimum, and maximum still take  time each, but successor and predecessor now take O(1) 
time each. Which operations have to be modified to support this?

8.  (*) In one of my research papers [Ski88], I give a comparison-based sorting algorithm that runs in 

 . Given the existence of an  lower bound for sorting, how can this be 
possible?  

9.  (*) Suppose you have access to a balanced dictionary data structure, which supports each of the 
operations search, insert, delete, minimum, maximum, successor, and predecessor in  time. 
Explain how to modify the insert and delete operations so they still take  but now 
minimum and maximum take O(1) time. (Hint: think in terms of using the abstract dictionary 
operations, instead of mucking about with pointers and the like.)

10.  (*) Mr. B. C. Dull claims to have developed a new data structure for priority queues that supports 
the operations Insert, Maximum, and Extract-Max, all in O(1) worst-case time. Prove that he is 
mistaken. (Hint: the argument does not involve a lot of gory details-just think about what this 
would imply about the  lower bound for sorting.)

11.  Use the partitioning step of Quicksort to give an algorithm that finds the median element of an 
array of n integers in expected O(n) time.

12.  (*) You are given the task of reading in n numbers and then printing them out in sorted order. 
Suppose you have access to a balanced dictionary data structure, which supports each of the 
operations search, insert, delete, minimum, maximum, successor, and predecessor in  time. 

❍     Explain how you can use this dictionary to sort in  time using only the following 
abstract operations: minimum, successor, insert, search.

❍     Explain how you can use this dictionary to sort in  time using only the following 
abstract operations: minimum, insert, delete, search.

❍     Explain how you can use this dictionary to sort in  time using only the following 
abstract operations: insert and in-order traversal. 

13.  The running time for Quicksort depends upon both the data being sorted and the partition rule 
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used to select the pivot. Although Quicksort is  on average, certain partition rules cause 
Quicksort to take  time if the array is already sorted. 

(a) Suppose we always pick the pivot element to be the key from the last position of the subarray. 
On a sorted array, does Quicksort now take  ,  , or  ? 

(b) Suppose we always pick the pivot element to be the key from the middle position of the 
subarray. On a sorted array, does Quicksort now take  ,  , or  ? 

(c) Suppose we always pick the pivot element to be the key of the median element of the first 
three keys of the subarray. (The median of three keys is the middle value, so the median of 5, 3, 8 
is five.) On a sorted array, does Quicksort now take  ,  , or  ? 

(d) Suppose we always pick the pivot element to be the key of the median element of the first, 
last, and middle elements of the subarray. On a sorted array, does Quicksort now take  , 

 , or  ?

14.  (*) Given a set S of n integers and an integer T, give an  algorithm to test whether k of 
the integers in S sum up to T.

15.  (**) Design a data structure that allows one to search, insert, and delete an integer X in O(1) time 
(i.e. constant time, independent of the total number of integers stored). Assume that  and 

that there are m+n units of space available for the symbol table, where m is the maximum number 
of integers that can be in the table at any one time. (Hint: use two arrays A[1..n] and B[1..m].) You 
are not allowed to initialize either A or B, as that would take O(m) or O(n) operations. This means 
the arrays are full of random garbage to begin with, so you must be very careful.

16.  (*) Let P be a simple, but not necessarily convex, polygon and q an arbitrary point not necessarily 
in P. Design an efficient algorithm to find a line segment originating from q that intersects the 
maximum number of edges of P. In other words, if standing at point q, in what direction should 
you aim a gun so the bullet will go through the largest number of walls. A bullet through a vertex 
of P gets credit for only one wall. An  algorithm is possible.

17.  (**) The onion of a set of n points is the series of convex polygons that result from finding the 
convex hull, striping it from the point set, and repeating until no more points are left. Give an 

 algorithm for determining the onion of a point set. 
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Dynamic Programming
After you understand it, dynamic programming is probably the easiest algorithm design technique to 
apply in practice. In fact, I find that dynamic programming algorithms are usually easier to reinvent than 
to try to look up in a book. Until you understand it, however, dynamic programming seems like magic. 
You have to figure out the trick before you can use it.    

In algorithms for problems such as sorting, correctness tends to be easier to verify than efficiency. This is 
not the case for optimization problems, where we seek to find a solution that maximizes or minimizes 
some function. In designing algorithms for an optimization problem, we must prove that our algorithm 
always gives the best possible solution. 

Greedy algorithms, which make the best local decision at each step, occasionally happen to produce a 
global optimum for certain problems. These are typically efficient. However, you need a proof to show 
that you always end up with the best answer. Exhaustive search algorithms, which try all possibilities and 
select the best, by definition must always produce the optimum result, but usually at a prohibitive cost in 
terms of time complexity. 

Dynamic programming combines the best of both worlds. The technique systematically considers all 
possible decisions and always selects the one that proves to be the best. By storing the consequences of 
all possible decisions to date and using this information in a systematic way, the total amount of work is 
minimized. Dynamic programming is best learned by carefully studying a number of examples until 
things start to click. 

●     Fibonacci numbers 
●     The Partition Problem 
●     Approximate String Matching 
●     Longest Increasing Sequence 
●     Minimum Weight Triangulation 
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Fibonacci numbers

The tradeoff between space and time exploited in dynamic programming is best illustrated in evaluating 
recurrence relations, such as the Fibonacci numbers. The Fibonacci numbers were originally defined by 
the Italian mathematician Fibonacci in the thirteenth century to model the growth of rabbit populations. 
Rabbits breed, well, like rabbits. Fibonacci surmised that the number of pairs of rabbits born in a given 
year is equal to the number of pairs of rabbits born in each of the two previous years, if you start with 
one pair of rabbits in the first year. To count the number of rabbits born in the nth year, he defined the 
following recurrence relation:     

 

with basis cases  and  . Thus  ,  , and the series continues 
 . As it turns out, Fibonacci's formula didn't do a very good job of counting 

rabbits, but it does have a host of other applications and interesting properties. 

Since they are defined by a recursive formula, it is easy to write a recursive program to compute the nth 
Fibonacci number. Most students have to do this in one of their first programming courses. Indeed, I 
have particularly fond memories of pulling my hair out writing such a program in 8080 assembly 
language. In pseudocode, the recursive algorithm looks like this: 

Fibonacci[n]

                 if (n=0) then return(0)

                 else if (n=1) then return(1)

                 else return(Fibonacci[n-1]+Fibonacci[n-2])
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Figure: The computation tree for computing Fibonacci numbers recursively  

How much time does this algorithm take to compute Fibonacci[n]? Since 
 , this means that  . Since our recursion tree, illustrated in 

Figure , has only 0 and 1 as leaves, summing up to such a large number means we must have at least 
 leaves or procedure calls! This humble little program takes exponential time to run! 

In fact, we can do much better. We can calculate  in linear time by storing all values. We trade space 
for time in the algorithm below: 

Fibonacci[n]

                   

                   

                 For i=1 to n,    

Because we evaluate the Fibonacci numbers from smallest to biggest and store all the results, we know 
that we have  and  ready whenever we need to compute  . Thus each of the n values is computed 
as the simple sum of two integers in total O(n) time, which is quite an improvement over exponential 
time.   
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The Partition Problem

  

Suppose that three workers are given the task of scanning through a shelf of books in search of a given piece of information. To 
get the job done fairly and efficiently, the books are to be partitioned among the three workers. To avoid the need to rearrange 
the books or separate them into piles, it would be simplest to divide the shelf into three regions and assign each region to one 
worker.      

But what is the fairest way to divide the shelf up? If each book is the same length, say 100 pages, the job is pretty easy. Just 
partition the books into equal-sized regions, 

 

so that everyone has 300 pages to deal with. 

But what if the books are not the same length? Suppose we used the same partition when the book sizes looked like this: 

 

I, for one, would volunteer to take the first section, with only 600 pages to scan, instead of the last one, with 2,400 pages. The 
fairest possible partition for this shelf would be 

 

where the largest job is only 1,700 pages and the smallest job 1,300. 

In general, we have the following problem: 

Input: A given arrangement S of non-negative numbers  and an integer k. 

Output: Partition S into k ranges, so as to minimize the maximum sum over all the ranges. This so-called linear partition 
problem arises often in parallel processing, since we seek to balance the work done across processors so as to minimize the 

total elapsed run time. Indeed, the war story of Section  revolves around a botched solution to this problem. 

Stop for a few minutes and try to find an algorithm to solve the linear partition problem. 

The beginning algorist might suggest a heuristic as the most natural approach to solve the partition problem. Perhaps they 
would compute the average size of a partition,  , and then try to insert the dividers so as to come close to this average. 
However, such heuristic methods are doomed to fail on certain inputs, because they do not systematically evaluate all 
possibilities. 

Instead, consider a recursive, exhaustive search approach to solving this problem. Notice that the kth partition starts right after 
we placed the (k-1)st divider. Where can we place this last divider? Between the ith and (i+1)st elements for some i, where 
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 . What is the cost of this? The total cost will be the larger of two quantities, (1) the cost of the last partition  
and (2) the cost of the largest partition cost formed to the left of i. What is the size of this left partition? To minimize our total, 
we would want to use the k-2 remaining dividers to partition the elements  as equally as possible. This is a smaller 
instance of the same problem, and hence can be solved recursively! 

Therefore, let us define M[n,k] to be the minimum possible cost over all partitionings of  into k ranges, where the 
cost of a partition is the largest sum of elements in one of its parts. Thus defined, this function can be evaluated: 

 

with the natural basis cases of 

 

 

By definition, this recurrence must return the size of the optimal partition. But how long does it take? If we evaluate the 
recurrence without storing partial results, we will be doomed to spend exponential time, repeatedly recalculating the same 
quantities. However, by storing the computed values and looking them up as needed, we can save an enormous amount of time. 

How long does it take to compute this when we store the partial results? Well, how many results are computed? A total of  
cells exist in the table. How much time does it take to compute the result M[n',k']? Well, calculating this quantity involves 
finding the minimum of n' quantities, each of which is the maximum of the table lookup and a sum of at most n' elements. If 
filling each of k n boxes takes at most  time per box, the total recurrence can be computed in  time. 

To complete the implementation, we must specify the boundary conditions of the recurrence relation and an order to evaluate it 
in. These boundary conditions always settle the smallest possible values for each of the arguments of the recurrence. For this 
problem, the smallest reasonable value of the first argument is n=1, meaning that the first partition consists of a single element. 
We can't create a first partition smaller than  regardless of how many dividers are used. The smallest reasonable value of the 
second argument is k=1, implying that we do not partition S at all. 

The evaluation order computes the smaller values before the bigger values, so that each evaluation has what it needs waiting for 
it. Full details are provided in the pseudocode below: 

Partition[S,k]

                (* compute prefix sums:    *)

                p[0] = 0

                for i=1 to n do   

                (* initialize boundary conditions *)
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                for i=1 to n do M[i,1] = p[i]

                for i=1 to k do   

                (* evaluate main recurrence *)

                for i=2 to n do

                                 for j = 2 to k do

                                                   

                                                 for x = 1 to i-1 do

                                                                  

                                                                if (M[i,j] > ) then

                                                                                 
M[i,j] = 

                                                                                 
D[i,j] = x

   
Figure: Dynamic programming matrices M and D in partitioning   
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Figure: Dynamic programming matrices M and D in partitioning   

The implementation above in fact runs faster than advertised. Our original analysis assumed that it took  time to update 
each cell of the matrix. This is because we selected the best of up to n possible points to place the divider, each of which 
requires the sum of up to n possible terms. In fact, it is easy to avoid the need to compute these sums by storing the set of n 

prefix sums  , since  . This enables us to evaluate the recurrence in linear time per cell, yielding 

an  algorithm. 

By studying the recurrence relation and the dynamic programming matrices of Figures  and , you should be able to 
convince yourself that the final value of M(n,k) will be the cost of the largest range in the optimal partition. However, what 
good is that? For most applications, what we need is the actual partition that does the job. Without it, all we are left with is a 
coupon for a great price on an out-of-stock item. 

The second matrix, D, is used to reconstruct the optimal partition. Whenever we update the value of M[i,j], we record which 
divider position was required to achieve that value. To reconstruct the path used to get to the optimal solution, we work 
backward from D[n,k] and add a divider at each specified position. This backwards walking is best achieved by a recursive 
subroutine: 

ReconstructPartition(S,D,n,k)

                 If (k = 1) then print the first partition   

                 else

                                 ReconstructPartition(S,D,D[n,k],k-1)

                                 Print the kth partition {  }

It is important to catch the distinction between storing the value of a cell and what decision/move it took to get there. The latter 
is not used in the computation but is presumably the real thing that you are interested in. For most of the examples in this 
chapter, we will not worry about reconstructing the answer. However, study this example closely to ensure that you know how 
to obtain the winning configuration when you need it. 
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Approximate String Matching

  

An important task in text processing is string matching - finding all the occurrences of a word in the text. Unfortunately, 
many words in documents are mispelled (sic). How can we search for the string closest to a given pattern in order to 
account for spelling errors?      

To be more precise, let P be a pattern string and T a text string over the same alphabet. The edit distance between P and T is 
the smallest number of changes sufficient to transform a substring of T into P, where the changes may be: 

1.  Substitution - two corresponding characters may differ: KAT  CAT.
2.  Insertion - we may add a character to T that is in P: CT  CAT.
3.  Deletion - we may delete from T a character that is not in P: CAAT  CAT. 

For example, P=abcdefghijkl can be matched to T=bcdeffghixkl using exactly three changes, one of each of the above 
types. 

Approximate string matching arises in many applications, as discussed in Section . It seems like a difficult problem, 
because we have to decide where to delete and insert characters in pattern and text. But let us think about the problem in 
reverse. What information would we like to have in order to make the final decision; i.e. what should happen with the last 
character in each string? The last characters may be either be matched, if they are identical, or otherwise substituted one for 
the other. The only other options are inserting or deleting a character to take care of the last character of either the pattern or 
the text. 

More precisely, let D[i,j] be the minimum number of differences between  and the segment of T ending at j. 
D[i, j] is the minimum of the three possible ways to extend smaller strings: 

1.  If  , then D[i-1, j-1], else D[i-1, j-1]+1. This means we either match or substitute the ith and jth characters, 
depending upon whether they do or do not match.

2.  D[i-1, j]+1. This means that there is an extra character in the pattern to account for, so we do not advance the text 
pointer and pay the cost of an insertion.

3.  D[i, j-1]+1. This means that there is an extra character in the text to remove, so we do not advance the pattern pointer 
and pay the cost of a deletion. 

The alert reader will notice that we have not specified the boundary conditions of this recurrence relation. It is critical to get 
the initialization right if our program is to return the correct edit distance. The value of D[0,i] will correspond to the cost of 
matching the first i characters of the text with none of the pattern. What this value should be depends upon what you want 
to compute. If you seek to match the entire pattern against the entire text, this means that we must delete the first i 
characters of the text, so D[0,i] = i to pay the cost of the deletions. But what if we want to find where the pattern occurs in a 
long text? It should not cost more if the matched pattern starts far into the text than if it is near the front. Therefore, the 
starting cost should be equal for all positions. In this case, D[0,i] = 0, since we pay no cost for deleting the first i characters 
of the text. In both cases, D[i,0] = i, since we cannot excuse deleting the first i characters of the pattern without penalty. 
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Figure: Example dynamic programming matrix for edit distance computation, with the optimal alignment path highlighted 
in bold  

Once you accept the recurrence, it is straightforward to turn it into a dynamic programming algorithm that creates an  
matrix D, where n = |P| and m = |T|. Here it is, initialized for full pattern matching: 

EditDistance(P,T)

                (*initialization*)

                For i = 0 to n do D[i,0] = i

                For i = 0 to m do D[0,i] = i

                (*recurrence*)

                For i = 1 to n do

                                For j = 1 to m do

                                                  

                                                                 D[i-1,j]+1, D[i,j-
1]+1 ) 

How much time does this take? To fill in cell D[i,j], we need only compare two characters and look at three other cells. 
Since it requires only constant time to update each cell, the total time is O(mn). 
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The value to return as the answer to our pattern matching problem depends on what we are interested in. If we only needed 
the cost of comparing all of the pattern against all of the text, such as in comparing the spelling of two words, all we would 

need is the cost of D[n,m], as shown in Figure . But what if we need to identify the best matching substring in the text? 
Assuming that the initialization was performed correctly for such substring matching, we seek the cheapest matching of the 
full pattern ending anywhere in the text. This means the cost equals  , i.e. the smallest cost on the last row of 

D.   

Of course, this only gives the cost of the optimal matching, while we are often interested in reconstructing the actual 
alignment - which characters got matched, substituted, and deleted. These can be reconstructed from the pattern/text and 
table without an auxiliary storage, once we have identified the cell with the lowest cost. From this cell, we want to walk 
upwards and backwards through the matrix. Given the costs of its three neighbors and the corresponding characters, we can 
reconstruct which choice was made to get to the goal cell. The direction of each backwards step (to the left, up, or diagonal 
to the upper left) identifies whether it was an insertion, deletion, or match/substitution. Ties can be broken arbitrarily, since 
either way costs the same. We keep walking backwards until we hit the end of the matrix, specifying the starting point. This 
backwards-walking phase takes O(n+m) time, since we traverse only the cells involved in the alignment. 

The alert reader will notice that it is unnecessary to keep all O(mn) cells to compute the cost of an alignment. If we evaluate 
the recurrence by filling in the columns of the matrix from left to right, we will never need more than two columns of cells 
to store what is necessary for the computation. Thus O(m) space is sufficient to evaluate the recurrence without changing 
the time complexity at all. Unfortunately, without the full matrix we cannot reconstruct the alignment.   

Saving space in dynamic programming is very important. Since memory on any computer is limited, O(nm) space proves 
more of a bottleneck than O(nm) time. Fortunately, there is a clever divide-and-conquer algorithm that computes the actual 

alignment in O(nm) time and O(m) space. This algorithm is discussed in Section . 

        
Next: Longest Increasing Sequence Up: Dynamic Programming Previous: The Partition Problem 
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Longest Increasing Sequence

  

Hopefully, a pattern is emerging. Every dynamic programming solution has three components:   

1.  Formulate the answer as a recurrence relation or recursive algorithm.
2.  Show that the number of different values of your recurrence is bounded by a (hopefully small) 

polynomial.
3.  Specify an order of evaluation for the recurrence so you always have the partial results you need 

available when you need them. 

To see how this is done, let's see how we would develop an algorithm to find the longest monotonically 
increasing sequence in a sequence of n numbers. This problem arises in pattern matching on 

permutations, as described in Section . We distinguish an increasing sequence from a run, in that the 
selected elements need not be neighbors of each other. The selected elements must be in sorted order 
from left to right. For example, consider the sequence 

 

The longest increasing subsequence of has length 3 and is either (2,3,4) or (2,3,6). The longest increasing 
run is of length 2, either (2,8) or (1,6). 

Finding the longest increasing run in a numerical sequence is straightforward, indeed you should be able 
to devise a linear-time algorithm fairly easily. However, finding the longest increasing subsequence is 
considerably trickier. How can we identify which scattered elements to skip? To apply dynamic 
programming, we need to construct a recurrence computing the length of the longest sequence. To find 
the right recurrence, ask what information about the first n-1 elements of S, coupled with the last element 

 , would enable you to find the answer for the entire sequence? 

●     The length of the longest increasing sequence in  seems a useful thing to know. In 
fact, this will be the longest increasing sequence in S, unless  extends it or another increasing 
sequence of the same length. Unfortunately, knowing just this length is not enough. Suppose I 
told you that the longest increasing sequence in  was of length 5 and that  . 
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Will the length of the final longest increasing subsequence of S be 5 or 6?
●     Therefore, we also need the length of the longest sequence that  will extend. To be certain we 

know this, we really need the length of the longest sequence that any possible number can extend. 

This provides the idea around which to build a recurrence. Define  to be the length of the longest 
sequence ending with  . Verify that the following table is correct: 

sequence  9 5 2 8 7 3 1 6 4 

length  1 1 1 2 2 2 1 3 3 

predecessor  - - - 2 2 3 - 6 6 

The longest increasing sequence containing the nth number will be formed by appending it to the longest 
increasing sequence to the left of n that ends on a number smaller than  . The following recurrence 
computes  : 

 

These values define the length of the longest increasing sequence ending at each number. The length of 
the longest increasing subsequence of the entire permutation is given by  , since the winning 
sequence will have to end somewhere. 

What is the time complexity of this algorithm? Each one of the n values of  is computed by comparing 
 against up to  values to the left of it, so this analysis gives a total of  time. In fact, by 

using dictionary data structures in a clever way, we can evaluate this recurrence in  time. 
However, the simple recurrence would be easy to program and therefore is a good place to start. 

What auxiliary information will we need to store in order to reconstruct the actual sequence instead of its 
length? For each element  , we will store the index  of the element that appears immediately before  
in the longest increasing sequence ending at  . Since all of these pointers go towards the left, it is a 
simple matter to start from the last value of the longest sequence and follow the pointers so as to 
reconstruct the other items in the sequence. 
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Minimum Weight Triangulation

  

   
Figure: Two different triangulations of a given convex seven-gon  

A triangulation of a polygon  is a set of non-intersecting diagonals that partitions the polygon into 

triangles. We say that the weight of a triangulation is the sum of the lengths of its diagonals. As shown in Figure , 
any given polygon may have many different triangulations. For any given polygon, we seek to find its minimum weight 

triangulation. Triangulation is a fundamental component of most geometric algorithms, as discussed in Section .   

To apply dynamic programming, we need a way to carve up the polygon into smaller pieces. A first idea might be to try 

all  possible chords, each of which partitions the polygon into two smaller polygons. Using dynamic programming, 

this will work to give a polynomial-time algorithm. However, there is a slicker approach. 

   
Figure: Selecting the vertex k to pair with an edge (i,j) of the polygon  

Observe that every edge of the input polygon must be involved in exactly one triangle. Turning this edge into a triangle 

means identifying the third vertex, as shown in Figure . Once we find the correct connecting vertex, the polygon 
will be partitioned into two smaller pieces, both of which need to be triangulated optimally. Let T[i,j] be the cost of 
triangulating from vertex  to vertex  , ignoring the length of the chord  from  to  . The latter clause avoids 
double counting these internal chords in the following recurrence: 

 

The basis condition applies when i and j are immediate neighbors, as T[i,i+1] = 0. 

Since the number of vertices in each subrange of the right side of the recurrence is smaller than that on the left side, 
evaluation can proceed in terms of the gap size from i to j: 

Minimum-Weight-Triangulation(P)
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                for i=1 to n do T[i, j]=0

                for gap=1 to n-1

                                for i=1 to n-gap do

                                                 j=i+gap

                                                   

                return T[1, n]

There are  values of T, each of which takes O(j-i) time if we evaluate the sections in order of increasing size. Since j-i 

= O(n), complete evaluation takes  time and  space. 

What if there are points in the interior of the polygon? Then dynamic programming does not apply in the same way, 
because each of the triangulation edges does not necessarily cut the boundary into two distinct pieces as before. Instead 

of only  possible subregions, the number of subregions now grows exponentially. In fact, no efficient algorithm for 

this problem is known. More surprisingly, there is also no known proof of hardness. Minimum weight triangulation is 
one of the few well-studied algorithmic problems that remain in this limbo state. 

        
Next: Limitations of Dynamic Programming Up: Dynamic Programming Previous: Longest Increasing Sequence 
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Limitations of Dynamic Programming
Dynamic programming can be applied to any problem that observes the principle of optimality. Roughly 
stated, this means that partial solutions can be optimally extended with regard to the state after the partial 
solution instead of the partial solution itself. For example, to decide whether to extend an approximate 
string matching by a substitution, insertion, or deletion, we do not need to know exactly which sequence 
of operations was performed to date. In fact, there may be several different edit sequences that achieve a 
cost of C on the first p characters of pattern P and t characters of string T. Future decisions will be made 
based on the consequences of previous decisions, not the actual decisions themselves.   

Problems do not satisfy the principle of optimality if the actual operations matter, as opposed to just the 
cost of the operations. Consider a form of edit distance where we are not allowed to use combinations of 
operations in certain particular orders. Properly formulated, however, most combinatorial problems 
respect the principle of optimality. 

The biggest limitation on using dynamic programming is the number of partial solutions we must keep 
track of. For all of the examples we have seen, the partial solutions can be completely described by 
specifying the stopping places in the input. This is because the combinatorial objects being worked on 
(strings, numerical sequences, and polygons) all have an implicit order defined upon their elements. This 
order cannot be scrambled without completely changing the problem. Once the order is fixed, there are 
relatively few possible stopping places or states, so we get efficient algorithms. If the objects are not 
firmly ordered, however, we have an exponential number of possible partial solutions and are doomed to 
need an infeasible amount of memory. 

To illustrate this, consider the following dynamic programming algorithm for the traveling salesman 
problem, discussed in greater detail in [RND77]. Recall that solving a TSP means finding the order that 
visits each site exactly once, while minimizing the total distance traveled or cost paid. Let C(i,j) to be the 
edge cost to travel directly from i to j. Define  to be the cost of the optimal tour from i to 
1 that goes through each of the cities  exactly once, in any order. The cost of the optimal TSP 
tour is thus defined to be  and can be computed recursively by identifying the first edge in 
this sequence: 

 

using the basis cases 
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This recurrence, although somewhat complicated to understand, is in fact correct. However, each partial 
solution is described by a vertex subset  . Since there are  subsets of n vertices, we require 

 time and space to evaluate this recurrence. Whenever the input objects do not have an inherent left-
right order, we are typically doomed to having an exponential-sized state space. Occasionally this is 
manageable - indeed,  is a big improvement over enumerating all O(n!) possible TSP tours. Still, 
dynamic programming is most effective on well-ordered objects. 
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War Story: Evolution of the Lobster
I'll confess that I'm always surprised to see graduate students stop by my office early in the morning. 
Something about working through the night makes that time inconvenient for them. But there they were, 
two future Ph.D.s working in the field of high-performance computer graphics. They studied new 
techniques for rendering pretty computer images. The picture they painted for me that morning was 
anything but pretty, however.        

``You see, we want to build a program to morph one image into another,'' they explained. 

``What do you mean by morph?'' I asked. 

``For special effects in movies, we want to construct the intermediate stages in transforming one image 
into another. Suppose we want to turn you into Humphrey Bogart. For this to look realistic, we must 
construct a bunch of in-between frames that start out looking like you and end up looking like him.'' 

``If you can realistically turn me into Bogart, you have something,'' I agreed. 

``But our problem is that it isn't very realistic.'' They showed me a dismal morph between two images. 
``The trouble is that we must find the right correspondence between features in the two images. It looks 
real bad when we get the correspondence wrong and try to morph a lip into an ear.'' 

``I'll bet. So you want me to give you an algorithm for matching up lips?'' 

   
Figure: A successful alignment of two lines of pixels  

``No, even simpler. We just morph each row of the initial image into the identical row of the final image. 
You can assume that we give you two lines of pixels, and you have to find the best possible match 
between the dark pixels in a row from object A to the dark pixels in the corresponding row of object B. 
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Like this,'' they said, showing me images of successful matchings like those in Figure . 

``I see,'' I said. ``You want to match big dark regions to big dark regions and small dark regions to small 
dark regions.'' 

``Yes, but only if the matching doesn't shift them too much to the left or the right. We might prefer to 
merge or break up regions rather than shift them too far away, since that might mean matching a chin to 
an eyebrow. What is the best way to do it?'' 

``One last question. Will you ever want to match two intervals to each other in such a way that they 
cross?'' 

``No, I guess not. Crossing intervals can't match. It would be like switching your left and right eyes.'' 

I scratched my chin and tried to look puzzled, but I'm just not as good an actor as Bogart. I'd had a hunch 
about what needed to be done the instant they started talking about lines of pixels. They want to 
transform one array of pixels into another array, with the minimum amount of changes. That sounded 
like editing one string of pixels into another string, which is a classic application of dynamic 

programming. See Sections  and  for discussions of approximate string matching. 

The fact that the intervals couldn't cross just sealed things up. It meant that whenever a stretch of dark 
pixels from A was mapped to a stretch from B, the problem would be split into two smaller subproblems, 
i.e. the pixels to the left of the match and the pixels to the right of the match. The cost of the global match 
would ultimately be the cost of this match plus those of matching all the pixels to the left and of 
matching all the pixels to the right. Constructing the optimal match on the left side is a smaller problem 
and hence simpler. Further, there can be only  possible left subproblems, since each is completely 
described by the pair of one of n top pixels and one of n bottom pixels. 

``Your algorithm will be based on dynamic programming,'' I pronounced. ``However, there are several 
possible ways to do things, depending upon whether you want to edit pixels or runs. I would probably 
convert each row into a list of black pixel runs, with the runs sorted by right endpoint and each run 
labeled with its starting position and length. You will maintain the cost of the cheapest match between 
the leftmost i runs and the leftmost j runs for all i and j. The possible edit operations are: 
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Figure: Morphing a lobster into a head via dynamic programming  

●     Full run match: We may match run i on top to run j on the bottom for a cost that is a function of 
the difference in the lengths of the two runs and their positions.

●     Merging runs: We may match a string of consecutive runs on top to a run on the bottom. The cost 
will be a function of the number of runs, their relative positions, and their lengths.

●     Splitting runs: We may match a big run on top to a string of consecutive runs on the bottom. This 
is just the converse of the merge. Again, the cost will be a function of the number of runs, their 
relative positions, and their lengths. 

``For each pair of runs (i,j) and all the cases that apply, we compute the cost of the edit operation and add 
to the (already computed and stored) edit cost to the left of the start of the edit. The cheapest of these 
cases is what we will take for the cost of c[i,j].'' 

The pair of graduate students scribbled this down, then frowned. ``So we are going to have a cost 
measure for matching two runs that is a function of their lengths and positions. How do we decide what 
the relative costs should be?'' 
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``That is your business. The dynamic programming serves to optimize the matchings once you know the 
cost functions. It is up to your aesthetic sense to decide what penalties there should be for line length 
changes or offsets. My recommendation is that you implement the dynamic programming and try 
different values for the constants effecting the relative penalties on each of several different images. Then 
pick the setting that seems to do what you want.'' 

They looked at each other and smiled, then ran back into the lab to implement it. Using dynamic 
programming to do their alignments, they completed their morphing system, which is described in 

[HWK94]. They produced the images shown in Figure , morphing a lobster into a man. 
Unfortunately, they never got around to turning me into Humphrey Bogart. 
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War Story: What's Past is Prolog
``But our heuristic works very, very well in practice.'' He was simultaneously boasting and crying for 
help. 

Unification is the basic computational mechanism in logic programming languages like Prolog. A Prolog 
program consists of a set of rules, where each rule has a head and an associated action whenever the rule 
head matches or unifies with the current computation.       

An execution of a Prolog program starts by specifying a goal, say p(a,X,Y), where a is a constant and X 
and Y are variables. The system then systematically matches the head of the goal with the head of each of 
the rules that can be unified with the goal. Unification means binding the variables with the constants, if 
it is possible to match them. For the nonsense program below, p(X,Y,a) unifies with either of the first two 
rules, since X and Y can be bound to match the extra characters. The goal p(X,X,a) would only match the 
first rule, since the variable bound to the first and second positions must be the same. 

p(a,a,a) := h(a);

p(b,a,a) := h(a) * h(b);

p(c,b,b) := h(b) + h(c);

p(d,b,b) := h(d) + h(b); 
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Figure: Two different tries for the given set of rule heads  

``In order to speed up unification, we want to preprocess the set of rule heads so that we can quickly 
determine which rules match a given goal. We must organize the rules in a trie data structure for fast 
unification.'' 

Tries are extremely useful data structures in working with strings, as discussed in Section . Every leaf 
of the trie represents one string. Each node on the path from root to leaf is labeled with exactly one 
character of the string, with the ith node of the path corresponding to the ith character of the string.   

``I agree. A trie is a natural way to represent your rule heads. Building a trie on a set of strings of 
characters is straightforward - just insert the strings one after another starting from the root. So what is 
your problem?'' I asked. 

``The efficiency of our unification algorithm depends very much on minimizing the number of edges in 
the trie. Since we know all the rules in advance, we have the freedom to reorder the character positions in 
the rules. Instead of the root node always representing the first argument in the rule, we can choose to 
have it represent the third argument. We would like to use this freedom to build a minimum-size trie for 
the set of rules.'' 

He showed me the example in Figure . A trie constructed according to the original string position 
order (1, 2, 3) uses a total of 12 edges. However, by permuting the character order to (2, 3, 1), we can 
obtain a trie with only 8 edges. 

``Why does the speed of unification depend on minimizing the number of edges in the trie?'' 

``An open goal is one with all distinct variables in its arguments, like p(X,Y,Z). Open goals match 
everything. In unifying an open goal against a set of clause heads, each symbol in all the clause heads 
will be bound to some variable. By doing a depth-first traversal of this minimum-edge trie, we minimize 
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the number of operations in unifying the goal with all of the clause heads,'' he explained quickly. 

``Interesting...'' I started to reply before he cut me off again. 

``One other constraint. For most applications we must keep the leaves of the trie ordered, so that the 
leaves of the underlying tree go left-to-right in the same order as the rules appear on the page.'' 

``But why do you have to keep the leaves of the trie in the given order?'' I asked. 

``The order of rules in Prolog programs is very, very important. If you change the order of the rules, the 
program returns different results.'' 

Then came my mission. 

``We have a greedy heuristic for building good but not optimal tries, based on picking as the root the 
character position that minimizes the degree of the root. In other words, it picks the character position 
that has the smallest number of distinct characters in it. This heuristic works very, very well in practice. 
But we need you to prove that finding the best trie is NP-complete so our paper is, well, complete.''   

I agreed to think about proving the hardness of the problem and chased him from my office. The problem 
did seem to involve some non-trivial combinatorial optimization to build the minimal tree, but I couldn't 
see how to factor the left-to-right order of the rules into a hardness proof. In fact, I couldn't think of any 
NP-complete problem that had such a left-right ordering constraint. After all, if a given set of rules 
contained a character position in common to all the rules, that character position must be probed first in 
any minimum-size tree. Since the rules were ordered, each node in the subtree must represent the root of 

a run of consecutive rules, so there were only  possible nodes to choose from for this tree.... 

Bingo! That settled it. 

The next day I went back to the professor and told him. ``Look, I cannot prove that your problem is NP-
complete. But how would you feel about an efficient dynamic programming algorithm to find the best 
trie!'' It was a pleasure watching his frown change to a smile as the realization took hold. An efficient 
algorithm to compute what he needed was infinitely better than a proof saying you couldn't do it! 

My recurrence looked something like this. Suppose that we are given n ordered rule heads  , 
each with m arguments. Probing at the pth position,  , partitioned the rule heads into runs 

 , where each rule in a given run  had the same character value of  . The rules 

in each run must be consecutive, so there are only  possible runs to worry about. The cost of probing at 

position p is the cost of finishing the trees formed by each of the created runs, plus one edge per tree to 
link it to probe p: 
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A graduate student immediately set to work implementing dynamic programming to compare with their 
heuristic. On many programs the optimal and greedy algorithms constructed the exact same trie. 
However, for some examples, dynamic programming gave a 20% performance improvement over 
greedy, i.e. 20% better than very, very well in practice. The run time spent in doing the dynamic 
programming was sometimes a bit larger than with greedy, but in compiler optimization you are always 
happy to trade off a little extra compilation time for better execution time performance of your program. 
Is a 20% improvement worth it? That depends upon the situation. For example, how useful would you 
find a 20% increase in your salary? 

The fact that the rules had to remain ordered was the crucial property that we exploited in the dynamic 
programming solution. Indeed, without it, I was able to prove that the problem was NP-complete, 
something we put in the paper [DRR  95] to make it complete.   
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War Story: Text Compression for Bar 
Codes
Ynjiun waved his laser wand over the torn and crumpled fragments of a bar code label. The system 
hesitated for a few seconds, then responded with a pleasant blip sound. He smiled at me in triumph. 
``Virtually indestructible.'' 

I was visiting the research laboratories of Symbol Technologies, of Bohemia NY, the world's leading 
manufacturer of bar code scanning equipment. Next time you are in the checkout line at a grocery store, 
check to see what type of scanning equipment they are using. Likely it will say Symbol on the housing. 
    

Although we take bar codes for granted, there is a surprising amount of technology behind them. Bar 
codes exist primarily because conventional optical character recognition (OCR) systems are not 
sufficiently reliable for inventory operations. The bar code symbology familiar to us on each box of 
cereal or pack of gum encodes a ten-digit number with sufficient error correction such that it is virtually 
impossible to scan the wrong number, even if the can is upside-down or dented. Occasionally, the cashier 
won't be able to get a label to scan at all, but once you hear that blip you know it was read correctly. 

The ten-digit capacity of conventional bar code labels means that there is only room to store a single ID 
number in a label. Thus any application of supermarket bar codes must have a database mapping 11141-
47011 to a particular size and brand of soy sauce. The holy grail of the bar code world has long been the 
development of higher-capacity bar code symbologies that can store entire documents, yet still be read 
reliably. Largely through the efforts of Theo Pavlidis and Ynjiun Wang at Stony Brook [PSW92], 
Symbol Technologies was ready to introduce the first such product. 

   
Figure: A two-dimensional bar-code label of the Gettysburg Address using PDF-417  

``PDF-417 is our new, two-dimensional bar code symbology,'' Ynjiun explained. A sample label is 
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shown in Figure .   

``How much data can you fit in a typical one-inch square label?'' I asked him. 

``It depends upon the level of error correction we use, but about 1,000 bytes. That's enough for a small 
text file or image,'' he said. 

``Interesting. You will probably want to use some data compression technique to maximize the amount 

of text you can store in a label.'' See Section  for a discussion of standard data compression 
algorithms.    

   
Figure: Mode switching in PDF-417  

``We do incorporate a data compaction method,'' he explained. ``We figure there are several different 
types of files our customers will want to use our labels for. Some files will be all in uppercase letters, 
while others will use mixed-case letters and numbers. We provide four different text modes in our code, 
each with a different subset of ASCII characters available. So long as we stay within a mode, we can 
describe each character using only five bits. When we have to switch modes, we issue a mode switch 
command first (taking an extra five bits) and then the new code.''   

``I see. So you designed the mode character sets to try to minimize the number of mode switch 

operations on typical text files.'' The modes are illustrated in Figure . 

``Right. We put all the digits in one mode and all the punctuation characters in another. We also included 
both mode shift and mode latch commands. In a mode shift, we switch into a new mode just for the next 
character, say to produce a punctuation mark. This way, we don't pay a cost for returning back to text 
mode after a period. Of course, we can also latch permanently into a different mode if we will be using a 
run of several characters from there.'' 

``Wow!'' I said. ``With all of this mode switching going on, there must be many different ways to encode 
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any given text as a label. How do you find the smallest such encoding.'' 

``We use a greedy-type algorithm. We look a few characters ahead and then decide which mode we 
would be best off in. It works fairly well.'' 

I pressed him on this. ``How do you know it works fairly well? There might be significantly better 
encodings that you are simply not finding.'' 

``I guess I don't know. But it's probably NP-complete to find the optimal coding.'' Ynjiun's voice trailed 
off. ``Isn't it?'' 

I started to think. Every encoding started in a given mode and consisted of a sequence of intermixed 
character codes and mode shift/latch operations. At any given position in the text, we could output the 
next character code (if it was available in our current mode) or decide to shift. As we moved from left to 
right through the text, our current state would be completely reflected by our current character position 
and current mode state. For a given position/mode pair, we would have been interested in the cheapest 
way of getting there, over all possible encodings getting to this point.... 

My eyes lit up so bright they cast shadows on the walls. 

``The optimal encoding for any given text in PDF-417 can be found using dynamic programming. For 
each possible mode  and each character position  , we will maintain the cheapest 
encoding found of the string to the left of i ending in mode m. From each mode/position, we can either 
match, shift, or latch, so there are only few possible operations to consider. Each of the 4n cells can be 
filled in constant time, so it takes time linear in the length of the string to find the optimal encoding.'' 

Ynjiun was skeptical, but he encouraged us to implement an optimal encoder. A few complications arose 
due to weirdnesses of PDF-417 mode switching, but my student Yaw-Ling Lin rose to the challenge. 
Symbol compared our encoder to theirs on 13,000 labels and concluded that dynamic programming lead 
to an 8% tighter encoding on average. This was significant, because no one wants to waste 8% of their 
potential storage capacity, particularly in an environment where the capacity is only a few hundred bytes. 
For certain applications, this 8% margin permitted one bar code label to suffice where previously two 
had been required. Of course, an 8% average improvement meant that it did much better than that on 
certain labels. While our encoder took slightly longer to run than the greedy encoder, this was not 
significant, since the bottleneck would be the time needed to print the label, anyway. 

Our observed impact of replacing a heuristic solution with the global optimum is probably typical of 
most applications. Unless you really botch your heuristic, you are probably going to get a decent 
solution. But replacing it with an optimal result usually gives a small but non-trivial improvement, which 
can have pleasing consequences for your application. 
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Divide and Conquer
  

Divide and conquer was a successful military strategy long before it became an algorithm design 
paradigm. Generals observed that it was easier to defeat one army of 50,000 men, followed by another 
army of 50,000 men than it was to beat a single 100,000 man army. Thus the wise general would attack 
so as to divide the enemy army into two forces and then mop up one after the other.   

To use divide and conquer as an algorithm design technique, we must divide the problem into two 
smaller subproblems, solve each of them recursively, and then meld the two partial solutions into one 
solution to the full problem. Whenever the merging takes less time than solving the two subproblems, we 

get an efficient algorithm. Mergesort, discussed in Section , is the classic example of a divide-and-
conquer algorithm. It takes only linear time to merge two sorted lists of n/2 elements each of which was 
obtained in  time.   

Divide and conquer is a design technique with many important algorithms to its credit, including 
mergesort, the fast Fourier transform, and Strassen's matrix multiplication algorithm. However, with the 
exception of binary search, I find it to be a difficult technique to apply in practice. Therefore, the 
examples below will illustrate binary search and its variants, which yield simple algorithms to solve a 
surprisingly wide range of problems. 

●     Fast Exponentiation 
●     Binary Search 
●     Square and Other Roots 

Algorithms 
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Fast Exponentiation

Suppose that we need to compute the value of  for some reasonably large n. Such problems occur in 

primality testing for cryptography, as discussed in Section .   

The simplest algorithm performs n-1 multiplications, by computing  . However, we can do 
better by observing that  . If n is even, then  . If n is odd, then  . 

In either case, we have halved the size of our exponent at the cost of at most two multiplications, so 
 multiplications suffice to compute the final value. 

function power(a,n)

                 if (n = 0) return(1)

                 x = power(  )

                 if (n is even) then return(  )

                                 else return(  )

This simple algorithm illustrates an important principle of divide and conquer. It always pays to divide a 
job as evenly as possible. This principle applies to real life as well. When n is not a power of two, the 
problem cannot always be divided perfectly evenly, but a difference of one element between the two 
sides cannot cause any serious imbalance. 
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Binary Search

Binary search is a fast algorithm for searching in a sorted array S of keys. To search for key q, we 
compare q to the middle key S[n/2]. If q appears before S[n/2], it must reside in the top half of our set; if 
not, it must reside in the bottom half of our set. By recursively repeating this process on the correct half, 
we find the key in a total of  comparisons, a big win over the n/2 we expect with sequential search.   

This much you probably know. What is important is to have a sense for just how fast binary search is. 
Twenty questions is a popular children's game, where one player selects a word, and the other repeatedly 
asks true/false questions in an attempt to identify the word. If the word remains unidentified after 20 
questions, the first party wins; otherwise, the second player takes the honors. In fact, the second player 
always has a winning strategy, based on binary search. Given a printed dictionary, the player opens it in 
the middle, selects a word (say ``move''), and asks whether the unknown word is before ``move'' in 
alphabetical order. Since standard dictionaries contain 50,000 to 200,000 words, we can be certain that 
the process will always terminate within twenty questions.   

Other interesting algorithms follow from simple variants of binary search. For example, suppose we have 
an array A consisting of a run of 0's, followed by an unbounded run of 1's, and would like to identify the 
exact point of transition between them. Binary search on the array would provide the transition point in 

 tests, if we had a bound n on the number of elements in the array. In the absence of such a bound, 

we can test repeatedly at larger intervals (A[1], A[2], A[4], A[8], A[16], ) until we find a first non-zero 
value.     Now we have a window containing the target and can proceed with binary search. This one-
sided binary search finds the transition point p using at most comparisons, regardless of how large the 
array actally is. One-sided binary search is most useful whenever we are looking for a key that probably 
lies close to our current position.   

       

 
Next: Square and Other Roots Up: Divide and Conquer Previous: Fast Exponentiation 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK2/NODE55.HTM [19/1/2003 1:28:58]



Square and Other Roots

       

 
Next: Exercises Up: Divide and Conquer Previous: Binary Search 

Square and Other Roots

The square root of n is the number r such that  . Square root computations are performed inside 
every pocket calculator, but it is instructive to develop an efficient algorithm to compute square roots.   

First, observe that the square root of  must be at least 1 and at most n. Let l=1 and r=n. Consider the 

midpoint of this interval, m=(l+r)/2. How does  compare to n? If  , then the square root must be 

greater than m, so the algorithm repeats with l=m. If  , then the square root must be less than m, so 

the algorithm repeats with r=m. Either way, we have halved the interval with only one comparison. 
Therefore, after only  rounds we will have identified the square root to within  . 

This bisection method, as it is called in numerical analysis, can also be applied to the more general 
problem of finding the roots of an equation. We say that x is a root of the function f if f(x)=0. Suppose 
that we start with values l and r such that f(l) > 0 and f(r) < 0. If f is a continuous function, there must be 
a root between l and r. Depending upon the sign of f(m), where m=(l+r)/2, we can cut this window 
containing the root in half with each test and stop when our estimate becomes sufficiently accurate.   

Root-finding algorithms that converge faster than binary search are known for both of these problems. 
Instead of always testing the midpoint of the interval, these algorithms interpolate to find a test point 
closer to the actual root. Still, binary search is simple, robust, and works as well as possible without 
additional information on the nature of the function to be computed. 

Algorithms 
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Exercises
  

1.  Consider the problem of storing n books on shelves in a library. The order of the books is fixed by 
the cataloging system and so cannot be rearranged. Therefore, we can speak of a book  , where 

 , that has a thickness  and height  . The length of each bookshelf at this library is L. 

Suppose all the books have the same height h (i.e.  for all i, j) and the shelves are all 
separated by a distance of greater than h, so any book fits on any shelf. The greedy algorithm 
would fill the first shelf with as many books as we can until we get the smallest i such that  does 
not fit, and then repeat with subsequent shelves. Show that the greedy algorithm always finds the 
optimal shelf placement, and analyze its time complexity.

2.  (*) This is a generalization of the previous problem. Now consider the case where the height of 
the books is not constant, but we have the freedom to adjust the height of each shelf to that of the 
tallest book on the shelf. Thus the cost of a particular layout is the sum of the heights of the 
largest book on each shelf. 

❍     Give an example to show that the greedy algorithm of stuffing each shelf as full as possible 
does not always give the minimum overall height.

❍     Give an algorithm for this problem, and analyze its time complexity. Hint: use dynamic 
programming. 

3.  (*) Consider a city whose streets are defined by an  grid. We are interested in walking from 
the upper left-hand corner of the grid to the lower right-hand corner. 

Unfortunately, the city has bad neighborhoods, which are defined as intersections we do not want 
to walk in. We are given an  matrix BAD, where BAD[i,j] = ``yes'' if and only if the 
intersection between streets i and j is somewhere we want to avoid. 

(a) Give an example of the contents of BAD such that there is no path across the grid avoiding bad 
neighborhoods. 

(b) Give an O( X Y ) algorithm to find a path across the grid that avoids bad neighborhoods. 
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(c) Give an O( X Y ) algorithm to find the shortest path across the grid that avoids bad 
neighborhoods. You may assume that all blocks are of equal length. For partial credit, give an 

 algorithm.
4.  (*) Consider the same situation as the previous problem. We have a city whose streets are defined 

by an  grid. We are interested in walking from the upper left-hand corner of the grid to the 
lower right-hand corner. We are given an  matrix BAD, where BAD[i,j] = ``yes'' if and only 
if the intersection between streets i and j is somewhere we want to avoid. 

If there were no bad neighborhoods to contend with, the shortest path across the grid would have 
length (X-1) + (Y-1) blocks, and indeed there would be many such paths across the grid. Each path 
would consist of only rightward and downward moves. 

Give an algorithm that takes the array BAD and returns the number of safe paths of length X+Y-2. 
For full credit, your algorithm must run in O( X Y ).

5.  (*) Given an array of n real numbers, consider the problem of finding the maximum sum in any 
contiguous subvector of the input. For example, in the array 

 

the maximum is achieved by summing the third through seventh elements, where 59+26+(-
53)+58+97 = 187. When all numbers are positive, the entire array is the answer, while when all 
numbers are negative, the empty array maximizes the total at 0. 

❍     Give a simple, clear, and correct  -time algorithm to find the maximum contiguous 
subvector.

❍     Now give a  -time dynamic programming algorithm for this problem. To get partial 
credit, you may instead give a correct  divide-and-conquer algorithm. 

6.  In the United States, coins are minted with denominations of 1, 5, 10, 25, and 50 cents. Now 
consider a country whose coins are minted with denominations of  units. They seek an 
algorithm that will enable them to make change of n units using the minimum number of coins. 

(a) The greedy algorithm for making change repeatedly uses the biggest coin smaller than the 
amount to be changed until it is zero. Show that the greedy algorithm does not always give the 
minimum number of coins in a country whose denominations are  . 

(b) Give an efficient algorithm that correctly determines the minimum number of coins needed to 
make change of n units using denominations  . Analyze its running time.

7.  (*) In the United States, coins are minted with denominations of 1, 5, 10, 25, and 50 cents. Now 
consider a country whose coins are minted with denominations of  units. They want to 
count how many distinct ways C(n) there are to make change of n units. For example, in a country 
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whose denominations are  , C(5) = 1, C(6) to C(9)=2, C(10)=3, and C(12)=4. 

1.  How many ways are there to make change of 20 units from  ?
2.  Give an efficient algorithm to compute C(n), and analyze its complexity. (Hint: think in 

terms of computing C(n,d), the number of ways to make change of n units with highest 
denomination d. Be careful to avoid overcounting.) 

8.  (**) Consider the problem of examining a string  of characters from an alphabet on 
k symbols, and a multiplication table over this alphabet, and deciding whether or not it is possible 
to parenthesize x in such a way that the value of the resulting expression is a, where a belongs to 
the alphabet. The multiplication table is neither commutative or associative, so the order of 
multiplication matters. 

a b c 

a a c c 

b a a b 

c c c c 

For example, consider the following multiplication table and the string bbbba. Parenthesizing it 
(b(bb))(ba) gives a, but ((((bb)b)b)a) gives c. 

Give an algorithm, with time polynomial in n and k, to decide whether such a parenthesization 
exists for a given string, multiplication table, and goal element.

9.  (*) Consider the following data compression technique. We have a table of m text strings, each of 
length at most k. We want to encode a data string D of length n using as few text strings as 
possible. For example, if our table contains (a,ba,abab,b) and the data string is bababbaababa, 
the best way to encode it is (b,abab,ba,abab,a) - a total of five code words. Give an O(nmk) 
algorithm to find the length of the best encoding. You may assume that the string has an encoding 
in terms of the table.

10.  A company database consists of 10,000 sorted names, 40% of whom are known as good 
customers and who together account for 60% of the accesses to the data base. There are two data 
structure options to consider for representing the database: 

❍     Put all the names in a single array and use binary search.
❍     Put the good customers in one array and the rest of them in a second array. Only if we do 

not find the query name on a binary search of the first array do we do a binary search of 
the second array. 

Demonstrate which option gives better expected performance. Does this change if linear search on 
an unsorted array is used instead of binary search for both options?

11.  Suppose you are given an array A of n sorted numbers that has been circularly shifted k positions 
to the right. For example,  is a sorted array that has been circularly shifted k=2 
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positions, while  has been shifted k=4 positions. 

❍     Suppose you know what k is. Give an O(1) algorithm to find the largest number in A.
❍     Suppose you do not know what k is. Give an  algorithm to find the largest number in 

A. For partial credit, you may give an O(n) algorithm. 
12.  (*) Suppose that you are given a sorted sequence of distinct integers  . Give an 

 algorithm to determine whether there exists an index i such at  . For example, in 
 ,  . In  , there is no such i. 
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The Friendship Graph

   
Figure: A portion of the friendship graph  

To demonstrate the importance of proper modeling, let us consider a graph where the vertices are people, 
and there is an edge between two people if and only if they are friends. This graph is well-defined on any 
set of people, be they the people in your neighborhood, at your school or place of business, or even the 
entire world. There are many interesting aspects of people that are best understood as properties of this 
friendship graph.   

We use this opportunity to define important graph theory terminology. ``Talking the talk'' proves to be an 
important part of ``walking the walk''. 

●     If I am your friend, does that mean you are my friend? 

A graph is undirected if edge (x,y) always implies (y,x). Otherwise, the graph is said to be 
directed. The ``heard-of'' graph is directed, since many famous people who I have heard of have 
never heard of me! The ``had-sex-with'' graph is presumably undirected, since the critical 
operation always requires a partner. I'd like to think that the ``friendship'' graph is always an 
undirected graph.       

●     Am I my own friend? 

An edge of the form (x,x) is said to be a loop. If x was y's friend several times over, we can model 
this relationship using multiedges, multiple edges between the same pair of vertices. A graph is 
said to be simple if it contains no loops and no multiple edges. Simple graphs really are often 
simpler to work with in practice. Therefore, we might be better off if no one was their own friend. 
   

●     How close a friend are you? 

A graph is said to be weighted if each edge has an associated numerical attribute. We could model 
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the strength of a friendship by associating each edge with an appropriate number, say from 0 
(enemies) to 10 (blood brothers). The edges of a road network graph might be weighted with their 
length, drive-time, or speed limit, depending upon the application. A graph is said to be 
unweighted if all edges are assumed to be of equal weight. 

   
Figure: Mel Brooks is my father's sister's husband's cousin  

●     Am I linked by some chain of friends to a star? 

A path is a sequence of edges connecting two vertices. Since Mel Brooks is my father's sister's 
husband's cousin, there is a path in the friendship graph between me and him, shown in Figure 

. This is true even though the two of us have never met.  
●     How close is my link to that star? 

If I were trying to impress you with how tight I am with Mel Brooks, I would be much better off 
saying that my Uncle Lenny grew up with him than to go into the details of how connected I am 
to Uncle Lenny. Through Uncle Lenny, I have a path of length 2 to Cousin Mel, while the path is 
of length 4 by blood and marriage. I could make the path even longer by linking in people who 
know both me and my father, or are friends of Aunt Eve and Uncle Lenny. This multiplicity of 
paths hints at why finding the shortest path between two nodes is important and instructive, even 
in non-transportation applications.  

●     Is there a path of friends between every two people in the world? 

The ``six degrees of separation'' theory argues that there is always a short path linking every two 
people in the world. We say that a graph is connected if there is a path between any two vertices. 
A directed graph is strongly connected if there is always a directed path between any two vertices. 
   

If a graph is not connected, we call each connected piece a connected component. If we envision 
tribes in remote parts of the world that have yet not been encountered, each such tribe would form 
a connected component in the friendship graph. A remote hermit, or extremely unpleasant fellow 

(see Figure ) would represent a connected component of one vertex, or an isolated vertex.  
●     Who has the most friends? The fewest friends? 

The degree of a vertex is the number of edges adjacent to it. The most popular person defines the 
vertex of highest degree in the friendship graph. Remote hermits will be associated with degree-
zero vertices. In dense graphs, most vertices have high degree, as opposed to sparse graphs with 
relatively few edges. In regular graphs, each vertex has exactly the same degree. A regular 
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friendship graph would truly be the ultimate in social-ism.    
●     What is the largest clique? 

A social clique is a group of mutual friends who all hang around together. A graph-theoretic 
clique is a complete subgraph, where each vertex pair has an edge between them. Cliques are the 
densest possible subgraphs. Within the friendship graph, we would expect to see large cliques 
corresponding to workplaces, neighborhoods, religious organizations, and schools.  

●     How long will it take for my gossip to get back to me? 

A cycle is a path where the last vertex is adjacent to the first. A cycle in which no vertex repeats 
(such as 1-2-3-1 verus 1-2-3-2-1) is said to be simple. The shortest cycle in the graph defines the 
graph's girth, while a simple cycle that passes through every vertex once is said to be a 
Hamiltonian cycle. An undirected graph with no cycles is said to be a tree if it is connected; 
otherwise it is a forest. A directed graph with no directed cycles is said to be a DAG, or directed 
acyclic graph.       
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Data Structures for Graphs
  

Selecting the right data structure to represent graphs can have an enormous impact on the performance of 
an algorithm. Your two basic choices are adjacency matrices and adjacency lists, illustrated in Figure 

. 

An adjacency matrix is an  matrix M where (typically) M[i,j] = 1 if there is an edge from vertex i to 
vertex j and M[i,j]=0 if there is not. Adjacency matrices are the simplest way to represent graphs. 
However, they doom you to using  space no matter how many edges are in the graph. For large 

graphs, this will kill you. Remember that  1,000,000, and work up from there. Although there is 

some potential for saving space by packing multiple bits per word or simulating a triangular matrix for 
undirected graphs, these cost some of the simplicity that makes adjacency matrices so appealing.   

 
Figure: The adjacency matrix and adjacency list of a given graph     

Beyond simplicity, there are certain algorithmic operations that prove faster on adjacency matrices than 
adjacency lists. In particular, it takes  time to test whether edge (i,j) is in a graph represented by an 
adjacency matrix. All we must do is read the appropriate bit. 

An adjacency list consists of an n-element array of pointers, where the ith element points to a linked list 
of the edges incident on vertex i. To test whether edge (i,j) is in the graph, we search the ith list for j. 
This takes  , where  is the degree of the ith vertex. For a complete or almost complete graph, 

 , so testing the existence of an edge can be very expensive relative to adjacency matrices. 
However,  can be much less than n when the graph is sparse. Most of the graphs that one encounters in 
real life tend to be sparse. Recall the friendship graph as an example. Further, a surprising number of the 
most efficient graph algorithms can be and have been designed to avoid such edge-existence queries. The 
key is processing the edges in a systematic order like breadth-first or depth-first search.   

For most applications, adjacency lists are the right way to go. The main drawback is the complexity of 
dealing with linked list structures. Things can be made arbitrarily hairy by adding extra pointers for 
special purposes. For example, the two versions of each edge in an undirected graph, (i,j) and (j,i), can be 
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linked together by a pointer to facilitate deletions. Also, depending upon the operations you will perform 
on each list, you may or may not want it to be doubly linked, so that you can move backwards as easily 
as you move forwards. 

It is a good idea to use a well-designed graph data type as a model for building your own, or even better 

as the foundation for your application. We recommend LEDA (see Section ) as the best-designed 
general-purpose graph data structure currently available. It may be more powerful (and hence somewhat 
slower/larger) than what you need, but it does so many things right that you are likely to lose most of the 
potential do-it-yourself benefits through clumsiness.    

In summary, we have the following tradeoffs between adjacency lists and matrices: 

Comparison Winner 

Faster to test if (x, y) is in graph? adjacency matrices

Faster to find the degree of a vertex? adjacency lists

Less memory on small graphs? adjacency lists (m+n) vs.  

Less memory on big graphs? adjacency matrices (a small win) 

Edge insertion or deletion? adjacency matrices O(1) vs. O(d) 

Faster to traverse the graph? adjacency lists  vs.  

Better for most problems? adjacency lists 
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War Story: Getting the Graph
  

``It takes five minutes just to read the data. We will never have time to make it do something 
interesting.''   

The young graduate student was bright and eager, but green to the power of data structures. She would 
soon come to appreciate the power. 

   
Figure: The dual graph (dashed lines) of a triangulation  

As described in a previous war story (see Section ), we were experimenting with algorithms for 
extracting triangular strips for the fast rendering of triangulated surfaces. The task of finding a small 
number of strips that cover each triangle in a mesh could be modeled as a graph problem, where the 
graph has a vertex for every triangle of the mesh, and there is an edge between every pair of vertices 
representing adjacent triangles. This dual graph representation of the planar subdivision representing the 

triangulation (see Figure ) captures all the information about the triangulation needed to partition it 
into triangle strips.    

The first step in crafting a program that constructs a good set of strips was to build the dual graph of the 
triangulation. This I sent the student off to do. A few days later, she came back and announced that it 
took over five CPU minutes just to construct this dual graph of an object with a few thousand triangles. 

``Nonsense!'' I proclaimed. ``You must be doing something very wasteful in building the graph. What 
format is the data in?'' 
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``Well, it starts out with a list of the 3D-coordinates of the vertices used in the model and then follows 
with a list of triangles. Each triangle is described by a list of three indices into the vertex coordinates. 
Here is a small example:'' 

                    VERTICES 4
                    0.000000 240.000000 0.000000
                    204.000000 240.000000 0.000000
                    204.000000 0.000000 0.000000
                    0.000000 0.000000 0.000000
                    TRIANGLES 2
                    0 1 3
                    1 2 3

``I see. So the first triangle must use all but the third point, since all the indices start from zero. The two 
triangles must share an edge formed by points 1 and 3.'' 

``Yeah, that's right,'' she confirmed. 

``OK. Now tell me how you built your dual graph from this file.'' 

``Well, I can pretty much ignore the vertex information, once I know how many vertices there will be. 
The geometric position of the points doesn't affect the structure of the graph. My dual graph is going to 
have as many vertices as the number of triangles. I set up an adjacency list data structure with that many 
vertices. As I read in each triangle, I compare it to each of the others to check whether it has two 
numbers in common. Whenever it does, I add an edge from the new triangle to this one.'' 

I started to sputter. ``But that's your problem right there! You are comparing each triangle against every 
other triangle, so that constructing the dual graph will be quadratic in the number of triangles. Reading in 
the input graph should take linear time!'' 

``I'm not comparing every triangle against every other triangle. On average, it only tests against half or a 
third of the triangles.'' 

``Swell. But that still leaves us with an  algorithm. That is much too slow.'' 

She stood her ground. ``Well, don't just complain. Help me fix it!'' 

Fair enough. I started to think. We needed some quick method to screen away most of the triangles that 
would not be adjacent to the new triangle (i,j,k). What we really needed was just a list of all the triangles 
that go through each of the points i, j, and k. Since each triangle goes through three points, the average 
point is incident on three triangles, so this would mean comparing each new triangle against fewer than 
ten others, instead of most of them. 
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``We are going to need a data structure consisting of an array with one element for every vertex in the 
original data set. This element is going to be a list of all the triangles that pass through that vertex. When 
we read in a new triangle, we will look up the three relevant lists in the array and compare each of these 
against the new triangle. Actually, only two of the three lists are needed, since any adjacent triangle will 
share two points in common. For anything sharing two vertices, we will add an adjacency to our graph. 
Finally, we will add our new triangle to each of the three affected lists, so they will be updated for the 
next triangle read.'' 

She thought about this for a while and smiled. ``Got it, Chief. I'll let you know what happens.'' 

The next day she reported that the graph could be built in seconds, even for much larger models. From 

here, she went on to build a successful program for extracting triangle strips, as reported in Section . 

The take-home lesson here is that even elementary problems like initializing data structures can prove to 
be bottlenecks in algorithm development. Indeed, most programs working with large amounts of data 
have to run in linear or almost linear time. With such tight performance demands, there is no room to be 
sloppy. Once you focus on the need for linear-time performance, an appropriate algorithm or heuristic 
can usually be found to do the job. 
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Traversing a Graph
  

Perhaps the most fundamental graph problem is to traverse every edge and vertex in a graph in a 
systematic way. Indeed, most of the basic algorithms you will need for bookkeeping operations on 
graphs will be applications of graph traversal. These include:       

●     Printing or validating the contents of each edge and/or vertex.
●     Copying a graph, or converting between alternate representations.
●     Counting the number of edges and/or vertices.
●     Identifying the connected components of the graph.
●     Finding paths between two vertices, or cycles if they exist. 

Since any maze can be represented by a graph, where each junction is a vertex and each hallway an edge, 
any traversal algorithm must be powerful enough to get us out of an arbitrary maze. For efficiency, we 
must make sure we don't get lost in the maze and visit the same place repeatedly. By being careful, we 
can arrange to visit each edge exactly twice. For correctness, we must do the traversal in a systematic 
way to ensure that we don't miss anything. To guarantee that we get out of the maze, we must make sure 
our search takes us through every edge and vertex in the graph.   

The key idea behind graph traversal is to mark each vertex when we first visit it and keep track of what 
we have not yet completely explored. Although bread crumbs or unraveled threads are used to mark 
visited places in fairy-tale mazes, we will rely on Boolean flags or enumerated types. Each vertex will 
always be in one of the following three states: 

●     undiscovered - the vertex in its initial, virgin state.
●     discovered - the vertex after we have encountered it, but before we have checked out all its 

incident edges.
●     completely-explored - the vertex after we have visited all its incident edges. 

Obviously, a vertex cannot be completely-explored before we discover it, so over the course of the 
traversal the state of each vertex progresses from undiscovered to discovered to completely-explored. 

We must also maintain a structure containing all the vertices that we have discovered but not yet 
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completely explored. Initially, only a single start vertex is considered to have been discovered. To 
completely explore a vertex, we must evaluate each edge going out of it. If an edge goes to an 
undiscovered vertex, we mark it discovered and add it to the list of work to do. If an edge goes to a 
completely-explored vertex, we will ignore it, since further contemplation will tell us nothing new about 
the graph. We can also ignore any edge going to a discovered but not completely-explored vertex, since 
the destination must already reside on the list of vertices to completely explore. 

Regardless of which order we use to fetch the next vertex to explore, each undirected edge will be 
considered exactly twice, once when each of its endpoints is explored. Directed edges will be consider 
only once, when exploring the source vertex. Every edge and vertex in the connected component must 
eventually be visited. Why? Suppose the traversal didn't visit everything, meaning that there exists a 
vertex u that remains unvisited whose neighbor v was visited. This neighbor v will eventually be 
explored, and we will certainly visit u when we do so. Thus we must find everything that is there to be 
found. 

The order in which we explore the vertices depends upon the container data structure used to store the 
discovered but not completely-explored vertices. There are two important possibilities: 

●     Queue - by storing the vertices in a first in, first out (FIFO) queue, we explore the oldest 
unexplored vertices first. Thus our explorations radiate out slowly from the starting vertex, 
defining a so-called breadth-first search.  

●     Stack - by storing the vertices in a last in, first out (LIFO) stack, we explore the vertices by 
lurching along a path, visiting a new neighbor if one is available, and backing up only when we 
are surrounded by previously discovered vertices. Thus our explorations quickly wander away 
from our starting point, defining a so-called depth-first search.   

●     Breadth-First Search 
●     Depth-First Search 

       

 
Next: Breadth-First Search Up: Graph Algorithms Previous: War Story: Getting the 
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Breadth-First Search

   
Figure: An undirected graph and its breadth-first search tree  

The basic breadth-first search algorithm is given below. At some point during the traversal, every node in the graph changes 
state from undiscovered to discovered. In a breadth-first search of an undirected graph, we assign a direction to each edge, 
from the discoverer u to the discovered v. We thus denote u to be the parent p[v]. Since each node has exactly one parent, 

except for the root, this defines a tree on the vertices of the graph. This tree, illustrated in Figure , defines a shortest path 
from the root to every other node in the tree. This property makes breadth-first search very useful in shortest path problems.   

BFS(G,s)

                for each vertex    do

                                 state[u] = ``undiscovered''

                                 p[u] = nil, i.e. no parent is in the BFS tree

                state[] = ``discovered''

                p[] = nil

                  

                while    do

                                 u =  dequeue[Q]

                                 process vertex u as desired
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                                 for each    do

                                                 process edge (u,v) as desired

                                                 if state[v] = ``undiscovered'' then

                                                                 state[v] = 
``discovered''

                                                                 p[v] = u

                                                                 enqueue[Q,v]

                                 state[u] = ``completely-explored''

The graph edges that do not appear in the breadth-first search tree also have special properties. For undirected graphs, non-
tree edges can point only to vertices on the same level as the parent vertex or to vertices on the level directly below the 
parent. These properties follow easily from the fact that each path in the tree must be the shortest path in the graph. For a 

directed graph, a back-pointing edge  can exist whenever v lies closer to the root than u does. 

The breadth-first search algorithm above includes places to optionally process each vertex and edge, say to copy them, print 
them, or count them. Each vertex and directed edge is encountered exactly once, and each undirected edge is encountered 
exactly twice. 

        
Next: Depth-First Search Up: Traversing a Graph Previous: Traversing a Graph 
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Depth-First Search

   
Figure: An undirected graph and its depth-first search tree  

Depth-first search turns out to be, in general, even more useful than breadth-first search. The reason is that a depth-first 
search of a graph organizes the edges of the graph in a very precise way, which is quite different from breadth-first search. As 

with BFS, we assign a direction to each edge when we discover it, as shown in Figure .   

   
Figure: Edge possibilities for search trees  

Although there are four conceivable classes of edges resulting from such labelings, as shown in Figure , only two of them 
can occur with undirected graphs. In a DFS of an undirected graph, every edge is either in the tree or goes directly back to an 
ancestor. Why? Suppose we encountered a forward edge (x,y) directed toward a decendant vertex. In this case, we would 
have discovered (x,y) when exploring y, making it a back edge. Suppose we encounter a cross edge (x,y), linking two 
unrelated vertices. Again, we would have discovered this edge when we explored y, making it a tree edge. For directed 
graphs, depth-first search labelings can take on a wider range of possibilities. 

Depth-first search has a neat recursive implementation, which eliminates the need to explicitly use a stack: 

DFS(G,u)

                 state[u] = ``discovered''

                 process vertex u if desired
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                for each    do

                                 process edge (u,v) if desired

                                 if state[v] = ``undiscovered'' then

                                                 p[v] = u

                                                 DFS(G,v)

                state[u] = ``completely-explored''

As with BFS, this implementation of the depth-first search algorithm includes places to optionally process each vertex and 
edge, say to copy them, print them, or count them. Both algorithms will traverse all edges in the same connected component 
as the starting point. Since we need to start with a vertex in each component in order to traverse a disconnected graph, we 
must start from any vertex remaining undiscovered after a component search. With the proper initialization, this completes 
the traversal algorithm: 

DFS-graph(G)

                for each vertex    do

                                 state[u] = ``undiscovered''

                for each vertex    do

                                 if state[u] = ``undiscovered'' then

                                                        initialize new component, if 
desired

                                                        DFS[G,u]
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Applications of Graph Traversal
Most elementary graph algorithms involve making one or two traversals of the graph, while we update 
our knowledge of the graph as we visit each edge and vertex. Properly implemented using adjacency 
lists, any such algorithm is destined to be very fast. Both BFS and DFS run in O(n+m) on both directed 
and undirected graphs where, as usual, n is the number of vertices and m the number of edges in the 
graph. This is optimal, since it is as fast as one can hope to read the graph. The trick is seeing when 
traversal approaches are destined to work. We present several examples below. 

●     Connected Components 
●     Tree and Cycle Detection 
●     Two-Coloring Graphs 
●     Topological Sorting 
●     Articulation Vertices 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Connected Components

Either breadth-first or depth-first search can be used to identify the connected components of an 
undirected graph and label each vertex with the identifier of its components. In particular, we can modify 
the DFS-graph algorithm to increment a counter for the current component number and label each vertex 
accordingly as it is discovered in DFS.   

For directed graphs, there are two distinct notions of connectivity, leading to algorithms for finding both 
weakly connected and strongly connected components. Both of these can be found in O(n+m) time, as 

discussed in Section . 
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Tree and Cycle Detection

Trees are connected, undirected graphs that do not contain cycles. They are perhaps the simplest 
interesting class of graphs. Testing whether a graph is a tree is straightforward using depth-first search. 
During search, every edge will be labeled either a tree edge or a back edge, so the graph is a tree if and 
only if there are no back edges. Since m=n-1 for any tree, this algorithm can be said to run in time linear 
in the number of vertices.    

If the graph is not a tree, it must contain a cycle. Such a cycle can be identified as soon as the first back 
edge (u,v) is detected. If (u,v) is a back edge, then there must be a path in the tree from v to u. Coupled 
with edge (u,v), this defines a cycle. 

Algorithms 
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Two-Coloring Graphs

In vertex coloring, we seek to assign a color to each vertex of a graph G such that no edge links two 
vertices of the same color. We can avoid all conflicts by assigning each vertex its own color. However, 
the goal is to use as few colors as possible. Vertex coloring problems arise often in scheduling 

applications, such as register allocation in compilers. See Section  for a full treatment of vertex 
coloring algorithms and applications.   

A graph is bipartite if it can be colored without conflicts while using only two colors. Bipartite graphs 
are important because they arise often in practice and have more structure than arbitrary graphs. For 
example, consider the ``had-sex-with'' graph in a heterosexual world. Men have sex only with women, 
and vice versa. Thus gender defines a legal two-coloring. Irrespective of the accuracy of the model, it 
should be clear that bipartite graphs are simpler to work with than general graphs.      

But how can we find an appropriate two-coloring of a graph, thus separating the men from the women? 
Suppose we assume that the starting vertex is male. All vertices adjacent to this man must be female, 
assuming the graph is indeed bipartite. 

We can augment either breadth-first or depth-first search so that whenever we discover a new vertex, we 
color it the opposite of its parent. For each non-discovery edge, we check whether it links two vertices of 
the same color. Such a conflict means that the graph cannot be two-colored. However, we will have 
constructed a proper two-coloring whenever we terminate without conflict. We can assign the first vertex 
in any connected component to be whatever color/sex we wish. Although we can separate the men from 
the women, we can't tell them apart just using the graph. 
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Topological Sorting

   
Figure: Directed acyclic and cyclic graphs  

A directed, acyclic graph, or DAG, is a directed graph with no directed cycles. Although undirected 
acyclic graphs are limited to trees, DAGs can be considerably more complicated. They just have to avoid 

directed cycles, as shown in Figure .    

A topological sort of a directed acyclic graph is an ordering on the vertices such that all edges go from 
left to right. Only an acyclic graph can have a topological sort, because a directed cycle must eventually 
return home to the source of the cycle. However, every DAG has at least one topological sort, and we can 
use depth-first search to find such an ordering. Topological sorting proves very useful in scheduling jobs 

in their proper sequence, as discussed in catalog Section . 

Depth-first search can be used to test whether a graph is a DAG, and if so to find a topological sort for it. 
A directed graph is a DAG if and only if no back edges are encountered during a depth-first search. 
Labeling each of the vertices in the reverse order that they are marked completely-explored finds a 

topological sort of a DAG. Why? Consider what happens to each directed edge  as we encounter it 

during the exploration of vertex u: 

●     If v is currently undiscovered, then we then start a DFS of v before we can continue with u. Thus v 
is marked completely-explored before u is, and v appears before u in the topological order, as it 
must.

●     If v is discovered but not completely-explored, then  is a back edge, which is forbidden in a 

DAG.
●     If v is completely-explored, then it will have been so labeled before u. Therefore, u appears before 

v in the topological order, as it must. 
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Articulation Vertices

   
Figure: An articulation vertex is the weakest point in the graph  

Suppose you are a terrorist seeking to disrupt the telephone network. Which station in Figure  should 
you choose to blow up to cause the maximum amount of damage? An articulation vertex is a vertex of a 
connected graph whose deletion disconnects the graph. Any graph that contains an articulation vertex is 
inherently fragile, because deleting that single vertex causes a loss of connectivity.    

In general, the connectivity of a graph is the smallest number of vertices whose deletion will disconnect 
the graph. For graphs with an articulation vertex, the connectivity is one. Connectivity is an important 

measure of robustness in network design, as discussed in catalog Section .    

A simple application of either depth-first or breadth-first search suffices to find all the articulation 
vertices in a graph in O(n (m+n)). For each vertex v, delete it and then do a BFS traversal of the 
remaining graph to establish whether it is still connected. In fact, there is a clever O(n+m) algorithm that 
tests all the vertices using only a single depth-first search. Additional information on edge and vertex 

connectivity testing appears in Section . 
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Modeling Graph Problems
Proper modeling is the key to making effective use of graph algorithms. We have seen a variety of 
definitions of graph properties, and algorithms for computing them. All told, about two dozen different 

graph problems are presented in the catalog, mostly in Sections  and . These problems provide a 
framework for modeling most applications.   

The applications below demonstrate the power of proper modeling. Each of them arose in a real-world 
application as stated, and each can be modeled as a graph problem. Some of the modelings are quite 
clever, but they illustrate the versatility of graphs in representing relationships. As you read the problem, 
try to devise an appropriate graph representation before peeking to see how we did it. 

●     ``I'm looking for an algorithm to design natural routes for video-game characters to follow 
through an obstacle-filled room. How should I do it?''   

Presumably the route that is wanted is the path that looks most like the one that an intelligent 
being would choose. Since intelligent beings are either lazy or efficient, this should be modeled as 
some kind of shortest path problem. 

But what is the graph? One approach would be to lay a grid of points in the room and have a 
vertex for each point that is a valid place for the character to stand, i.e. so it does not lie within an 
obstacle. There will be an edge between any pair of nearby vertices, weighted according to the 
distance between them. The shortest path between two vertices will be close to the shortest path 
between the points. Although direct geometric methods are known for shortest paths (see Section 

), it is easier to model this discretely as a graph.  
●     ``In DNA sequencing, we are given experimental data consisting of small fragments. For each 

fragment f, we have certain other fragments that are forced to lie to the left of f, certain fragments 
forced to be to the right of f, and the remaining fragments, which are free to go on either side. 
How can we find a consistent ordering of the fragments from left to right that satisfies all the 
constraints?''      

Create a directed graph, where each fragment is assigned a unique vertex. Insert a directed edge 

 from any fragment l that is forced to be to the left of f, and a directed edge  to any 
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fragment r forced to be to the right of f. We seek an ordering of the vertices such that all the edges 
go from left to right. This is exactly a topological sort of the resulting directed acyclic graph. The 
graph must be acyclic for this to work, because cycles make finding a consistent ordering 
impossible.

●     ``In my graphics work I need to solve the following problem. Given an arbitrary set of rectangles 
in the plane, how can I distribute them into a minimum number of buckets such that the subset of 
rectangles in the same bucket do not intersect each other? In other words, there should not be any 
overlapping area between any two rectangles in the same bucket.''      

We can formulate a graph where each vertex is a rectangle, and there is an edge if two rectangles 
intersect. Each bucket corresponds to an independent set of rectangles, so there is no overlap 
between any two. A vertex coloring of a graph is a partition of the vertices into independent sets, 
so minimizing the number of colors is exactly what you want.

●     ``In porting code from UNIX to DOS, I have to shorten the names of several hundred files down to 
at most 8 characters each. I can't just take the first eight characters from each name, because 
``filename1'' and ``filename2'' will get assigned the exact same name. How can I shorten the 
names while ensuring that they do not collide?''    

Construct a graph with vertices corresponding to each original file name  for  , as well 
as a collection of acceptable shortenings for each name  . Add an edge between each 
original and shortened name. Given such a formulation, we seek a set of n edges that have no 
vertices in common, because the file name of each is thus mapped to a distinct acceptable 

substitute. Bipartite matching, discussed in Section , is exactly this problem of finding an 
independent set of edges in a graph.  

●     ``In organized tax fraud, criminals submit groups of phony tax returns in the hopes of getting 
undeserved refunds. These phony returns are all similar, but not identical. How can we detect 
clusters of similar forms so the IRS can nail the cheaters?''   

A natural graph model treats each form as a vertex and adds an edge between any two tax forms 
that are suspiciously similar. A cluster would correspond to a group of forms with many edges 

between them. In particular, a clique is a set of k vertices with all possible  edges between them. 

Any sufficiently large clique identifies a cluster worth studying.   
●     ``In the optical character-recognition system that we are building, we need a way to separate the 

lines of text. Although there is some white space between the lines, problems like noise and the tilt 
of the page makes it hard to find. How can we do line segmentation?      

Consider the following graph formulation. Treat each pixel in the image as a vertex in the graph, 
with an edge between two neighboring pixels. The weight of this edge should be proportional to 
how dark the pixels are. A segmentation between two lines is a path in this graph from the left to 
right side of the page. Of all possible paths, we seek a relatively straight path that avoids as much 
blackness as possible. This suggests that the shortest path in the pixel graph will likely find a 
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good line segmentation. 

       

 
Next: Minimum Spanning Trees Up: Graph Algorithms Previous: Articulation Vertices 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK2/NODE72.HTM (3 of 3) [19/1/2003 1:29:12]



Minimum Spanning Trees

       

 
Next: Prim's Algorithm Up: Graph Algorithms Previous: Modeling Graph Problems 

Minimum Spanning Trees
  

A tree is a connected graph with no cycles. A spanning tree is a subgraph of G that has the same set of 
vertices of G and is a tree. A minimum spanning tree of a weighted graph G is the spanning tree of G 
whose edges sum to minimum weight.   

   
Figure: Two spanning trees of point set (a); the minimum spanning tree (b), and the shortest path from 
center tree (c)  

Minimum spanning trees are useful in finding the least amount of wire necessary to connect a group of 

homes or cities, as illustrated in Figure . In such geometric problems, the point set  defines a 
complete graph, with edge  assigned a weight equal to the distance from  to  . Additional 

applications of minimum spanning trees are discussed in Section . 

A minimum spanning tree minimizes the total length over all possible spanning trees. However, there can 
be more than one minimum spanning tree in any graph. Consider a graph G with m identically weighted 
edges. All spanning trees of G are minimum spanning trees, since each contains exactly n-1 equal-weight 
edges. For general weighted graphs, however, the problem of finding a minimum spanning tree is more 
difficult. It can, however, be solved optimally using two different greedy algorithms. Both are presented 
below, to illustrate how we can demonstrate the optimality of certain greedy heuristics.   
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●     Prim's Algorithm 
●     Kruskal's Algorithm 
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Prim's Algorithm

  

Every vertex will appear in the minimum spanning tree of any connected graph G. Prim's minimum spanning tree algorithm 
starts from one vertex and grows the rest of the tree one edge at a time. 

In greedy algorithms, we make the decision of what to do next by selecting the best local option from all available choices 
without regard to the global structure. Since we seek the tree of minimum weight, the natural greedy algorithm for minimum 
spanning tree repeatedly selects the smallest weight edge that will enlarge the tree.   

   
Figure: Where Prim's algorithm goes bad? No, because   

Prim-MST(G)

                Select an arbitrary vertex  to start the tree from.

                While (there are still non-tree vertices)

                                 Select the edge of minimum weight between a tree and 
non-tree vertex

                                 Add the selected edge and vertex to the tree   .

Prim's algorithm clearly creates a spanning tree, because no cycle can be introduced by adding edges between tree and non-tree 
vertices. However, why should it be of minimum weight over all spanning trees? We have seen ample evidence of other 
natural greedy heuristics that do not yield a global optimium. Therefore, we must be particularly careful to demonstrate any 
such claim. 

Suppose that there existed a graph G for which Prim's algorithm did not return a minimum spanning tree. Since we are 
building the tree incrementally, this means that there must have been some particular instant where we went wrong. Before we 
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inserted edge (x,y),  consisted of a set of edges that was a subtree of a minimum spanning tree  , but choosing edge 
(x,y) took us away from a minimum spanning tree. But how could it? There must be a path p from x to y in  , using an edge 

 , where  is in  but  is not. This edge  must have weight at least that of (x,y), or else Prim's algorithm would 
have selected it instead of (x,y) when it had the chance. Inserting (x,y) and deleting  from  leaves a spanning tree no 
larger than before, meaning that Prim's algorithm could not have made a fatal mistake in selecting edge (x,y). Therefore, by 
contradiction, Prim's algorithm has to construct a minimum spanning tree. 

Prim's algorithm is correct, but how efficient is it? That depends on which data structures are used to implement it, but it 
should be clear that O(nm) time suffices. In each of n iterations, we will scan through all the m edges and test whether the 
current edge joins a tree with a non-tree vertex and whether this is the smallest edge seen thus far. By maintaining a Boolean 
flag along with each vertex to denote whether it is in the tree or not, this test can be performed in constant time. In fact, better 
data structures lead to a faster,  , implementation by avoiding the need to sweep through more than n edges in any 
iteration. 

        
Next: Kruskal's Algorithm Up: Minimum Spanning Trees Previous: Minimum Spanning Trees 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Kruskal's Algorithm

  

Kruskal's algorithm is an alternative approach to finding minimum spanning trees that is more efficient on sparse graphs. 
Like Prim's, Kruskal's algorithm is greedy; unlike Prim's, it does not start with a particular vertex.   

Kruskal's algorithm works by building up connected components of the vertices. Initially, each vertex forms its own separate 
component in the tree-to-be. The algorithm repeatedly considers the lightest remaining edge and tests whether the two 
endpoints lie within the same connected component. If so, the edge will be discarded, because adding it will create a cycle in 
the tree-to-be. If the endpoints are in different components, we insert the edge and merge the components. Since each 
connected component is always a tree, we need never explicitly test for cycles: 

Kruskal-MST(G)

                Put the edges in a priority queue ordered by weight.

                count=0

                while (count < n-1) do

                                 get next edge (v,w)

                                 if (component (v)    component(w))

                                                 add to   

                                                 merge component(v) and component(w)

This algorithm adds n-1 edges without creating a cycle, so clearly it creates a spanning tree of any connected graph. But why 
must this be a minimum spanning tree? Suppose it wasn't. As with the correctness proof of Prim's algorithm, there must be 
some graph for which it fails, and in particular there must a single edge (x,y) whose insertion first prevented the tree  
from being a minimum spanning tree  . Inserting edge (x,y) in  will create a cycle with the path from x to y. Since x 
and y were in different components at the time of inserting (x,y), at least one edge on this path  would have been 
considered by Kruskal's algorithm after (x,y) was. But this means that  , so exchanging the two edges yields 
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a tree of weight at most  . Therefore, we could not have made a mistake in selecting (x,y), and the correctness follows. 

What is the time complexity of Kruskal's algorithm? Inserting and retrieving m edges from a priority queue such as a heap 
takes  time. The while loop makes at most m iterations, each testing the connectivity of two trees plus an edge. In 
the most simple-minded approach, this can be implemented by a breadth-first or depth-first search in a graph with at most n 
edges and n vertices, thus yielding an O(mn) algorithm. 

However, a faster implementation would result if we could implement the component test in faster than O(n) time. In fact, the 

union-find data structure, discussed in Section , can support such queries in  time. With this data structure, 
Kruskal's algorithm runs in  time, which is faster than Prim's for sparse graphs. Observe again the impact that the 
right data structure can have in implementing a straightforward algorithm. 

        
Next: Shortest Paths Up: Minimum Spanning Trees Previous: Prim's Algorithm 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Shortest Paths

   
Figure: The shortest path from to t can pass through many intermediate vertices.  

The shortest path between two vertices and t in an unweighted graph can be constructed using a breadth-
first search from . When we first encounter t in the search, we will have reached it from using the 
minimum number of possible edges. This minimum-link path is recorded in the breadth-first search tree, 
and it provides the shortest path when all edges have equal weight. However, in an arbitrary weighted 
graph, the weight of a path between two vertices is the sum of the weights of the edges along the path. 
The shortest path might use a large number of edges, just as the shortest route (timewise) from home to 

office may involve shortcuts using backroads and many turns, as shown in Figure .   

Shortest paths have a surprising variety of applications. See catalog Section  and the war story of 

Section  for further examples. 

●     Dijkstra's Algorithm 
●     All-Pairs Shortest Path 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Dijkstra's Algorithm

  

We can use Dijkstra's algorithm to find the shortest path between any two vertices (,t) in a weighted graph, where each edge has 
non-negative edge weight. Although most applications of shortest path involve graphs with positive edge weights, such a 
condition is not needed for either Prim's or Kruskal's algorithm to work correctly. The problems that negative edges cause 
Dijkstra's algorithm will become apparent once you understand the algorithm.   

The principle behind Dijkstra's algorithm is that given the shortest path between and each of a given set of vertices  , 
there must exist some other vertex x such that the shortest path from to x must go from to  to x, for some  . 

Specifically, it is the vertex x that minimizes  over all  , where w(i,j) is the length of the edge from i 

to j and dist(i,j) is the length of the shortest path between them. 

This suggests a dynamic programming-like strategy. The shortest path from to itself is trivial unless there are negative weight 
edges, so dist(,)=0. Armed with the shortest path to , if (,y) is the lightest edge incident to , then d(,y) = w(,y). As soon as we 
decide that we have determined the shortest path to a node x, we search through all the outgoing edges of x to see whether there 
is a better path from to some unknown vertex through x: 

ShortestPath-Dijkstra(G,s,t)

                  

                for i=1 to n,   

                for each edge (, v), dist[v]=w(, v)

                last=

                while (  )

                                 select   , the unknown vertex minimizing dist[v]

                                 for each edge   ,   
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To be certain of finding the shortest path between and t, we might have to first find the shortest path between and all other 
vertices. This defines a shortest path spanning tree rooted in . For undirected graphs, this will be the breadth-first search tree, 
but in general it provides the shortest path between and all other vertices. 

What is the running time of this algorithm? When implemented using adjacency lists and a Boolean array to mark what is 
known about each vertex, the complexity is  . This is the same running time as a proper version of Prim's algorithm; 
indeed, except for the extension condition, it is the same algorithm as Prim's. 

        
Next: All-Pairs Shortest Path Up: Shortest Paths Previous: Shortest Paths 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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All-Pairs Shortest Path

  

If we want to find the length of the shortest path between all  pairs of vertices, we could run Dijkstra's algorithm n 

times, once from each possible starting vertex. This yields a cubic time algorithm for all-pairs shortest path, since 
 .   

Can we do better? Significantly improving the complexity is still an open question, but there is a superslick dynamic 
programming algorithm that also runs in  .   

There are several ways to characterize the shortest path between two nodes in a graph. The Floyd-Warshall algorithm 
starts by numbering the vertices of the graph from 1 to n. We use these numbers here not to label the vertices, but to 
order them. Define  to be the length of the shortest path from i to j using only vertices numbered from 1, 2,..., k 
as possible intermediate vertices. 

What does this mean? When k = 0, we are allowed no intermediate vertices, so that every path consists of at most one 
edge. Thus  . In general, adding a new vertex k+1 as a possible intermediary helps only if there is a short 
path that goes through it, so 

 

This recurrence performs only a constant amount of work per cell. The following dynamic programming algorithm 
implements the recurrence: 

Floyd(G)

                Let   , the weight matrix of G

                for k=1 to n

                                 for i=1 to n

                                                 for j=1 to n
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The Floyd-Warshall all-pairs shortest path runs in  time, which asymptotically is no better than n calls to Dijkstra's 
algorithm. However, the loops are so tight and the program so short that it runs better in practice. It is also notable as 
one of the rare algorithms that work better on adjacency matrices than adjacency lists. 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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War Story: Nothing but Nets
I'd been tipped off about a small printed-circuit board testing company nearby that was in need of some 
algorithmic consulting. And so I found myself inside a typically non-descript building in a typically non-
descript industrial park, talking with the president of Integri-Test, along with one of his lead technical 
people.    

``We're the leaders in robotic printed-circuit board testing devices. Our customers have very high 
reliability requirements for their PC-boards. They must check that each and every board has no wire 
breaks before filling it with components. This means testing that each and every pair of points on the 
board that are supposed to be connected are connected.'' 

``How do you do the testing?'' I asked. 

``We have a robot with two arms, each with electric probes. To test whether two points are properly 
connected, the arms simultaneously contact both of the points. If the two points are propertly connected, 
then the probes will complete a circuit. For each net, we hold one arm fixed at one point and move the 
other to cover the rest of the points.'' 

``Wait!'' I cried. ``What is a net?'' 

   
Figure: An sample net showing (a) the metal connection layer, (b) the contact points, (c) their minimum 
spanning tree, and (d) the points partitioned into clusters  
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``On a circuit board there are certain sets of points that are all connected together with a metal layer. This 
is what we mean by a net. Sometimes a net consists of two points, i.e. is an isolated wire. Sometimes a 
net can have 100 to 200 points, like all the connections to power or ground.'' 

``I see. So you have a list of all the connections between pairs of points on the circuit board, and you 
want to trace out these wires.'' 

He shook his head. ``Not quite. The input for our testing program consists only of the net contact points, 

as shown in Figure (b). We don't know where the actual wires are, but we don't have to. All we have 
to do is verify that all the points in a net are connected together. We do this by putting the left robot arm 
on the leftmost point in the net, then having the right arm move around to all the other points in the net to 
test if they are connected to the left point. If they are all connected to the left point, it means that they 
must all be connected to each other.'' 

I thought for a moment about what this meant. ``OK. So your right arm has to visit all the other points in 
the net. How do you choose the order to visit them?'' 

The technical guy spoke up. ``Well, we sort the points from left to right and then go in that order. Is that 
a good thing to do?'' 

``Have you ever heard of the traveling salesman problem?'' I asked.   

He was an electrical engineer, not a computer scientist. ``No, what's that?'' he asked. 

``Traveling salesman is the name of the exact problem that you are trying to solve. Given a set of points 
you have to visit, how do you order them so as to minimize the travel time. Algorithms for the traveling 
salesman problem have been extensively studied. For small nets, by doing an exhaustive search you will 
be able to find the optimal tour. For big nets, there are heuristics that will get you very close to the 

optimal tour.'' I would have pointed them to Section  if I had had this book handy. 

The president scribbled down some notes and then frowned. ``Fine. Maybe you can order the points in a 
net better for us. But that is not our real problem. When you watch our robot in action, the right arm 
sometimes has to run all the way to the right side of the board on a given net, while the left arm just sits 
there. It seems we would benefit by breaking a net into smaller pieces to balance things out.'' 

I sat down and thought. The left and right arms were each going to have interlocking TSP problems to 
solve. The left arm would move between the leftmost points of each net, while the right arm was going to 
visit all the other points in each net as ordered by the left TSP tour. By breaking each net into smaller 
nets, so that each net occupies a small chunk of real estate, we would avoid making the right arm cross 
all the way across the board. Further, a lot of little nets meant there would be more points in the left TSP, 
so each left-arm movement was likely to be short, too. 
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``You are right. We should win if we can break big nets into small nets. We want the nets to be small, 
both in the number of points and in the area of the net. But we must be sure that if we validate the 
connectivity of each small net, we will have confirmed that the big net is connected. Whenever there is 
one point in common between two little nets, that is enough to show that the bigger net formed by the 
two little nets is connected, since current can flow between any pair of points.'' 

Now we had to break each net into overlapping pieces, where each piece was small. This is a clustering 

problem. Minimum spanning trees are often used for clustering, as discussed in Section . In fact, that 
was the answer! We could find the minimum spanning tree of the net points and break it into little 

clusters whenever a spanning tree edge got too long. As shown in Figure (d), each cluster would share 
exactly one point in common with another cluster, with connectivity ensured because we are covering the 
edges of a spanning tree. The shape of the clusters would reflect the points in the net, exactly as we 
would want. If the points lay along a line across the board, the minimum spanning tree would be a path, 
and the clusters would be pairs of points. If the points all fell in a tight region, there would be one nice fat 
cluster that the right arm would just scoot around.    

So I explained the idea of constructing the minimum spanning tree of a graph. The boss listened, 
scribbled more notes, and frowned again. 

``I like your clustering idea. But these minimum spanning trees you talk about are defined on graphs. All 
you got are points. Where do the weights of the edges come from?'' 

``Oh, we can think of it as a complete graph, where every pair of points are connected. The weight of the 
edge defined by the two points is simply the distance. Or is it...?'' 

I went back to thinking. The edge cost between two points should reflect the travel time between them. 
While the distance was related to the travel time, it wasn't necessarily exactly the same thing. 

``Hey. I have a question about your robot. Does it take the same amount of time to move the arm left-
right as it does up-down?'' 

They thought a minute. ``Yeah, it does. We use the same type of motors to control horizontal and vertical 
movements. Further, since the two motors for each arm are independent, we can simultaneously move 
each arm both horizontally and vertically.'' 

``That so? The time to move both one foot left and one foot up is exactly the same as just moving one 
foot left? This means that the weight cost for each edge in the graph should not be the Euclidean distance 
between the two points, but the biggest difference between either the x- or y-coordinate. This is 
something we call the  metric, but we can capture it by changing the edge weights in the graph. 
Anything else funny about your robots?'' I asked.    
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``Well, it takes some time for the robot to come up to speed. We should probably also factor in 
acceleration and deceleration of the arms.'' 

``Darn right. The more accurately you can model the time your arm takes to move between two points, 
the better our solution will be. But now we have a very clean formulation. Let's code it up and let's see 
how well it works!'' 

They were somewhat skeptical whether this approach would do any good, but they agreed to think about 
it. A few weeks later they called me back and reported that the new algorithm reduced testing time by 
about 30% over their previous approach, at a cost of a little more computational preprocessing. However, 
since their testing machine costs $200,000 a pop and a PC costs $2,000, this is an excellent tradeoff. It is 
particularly advantageous since the preprocessing need only be done once when testing multiple 
instances of the same board. 

The key idea leading to the successful solution was knowing how to model the job in terms of classical 
algorithmic graph problems. I smelled TSP the instant they started talking about minimizing robot 
motion. Once I realized that they were implicitly forming a star-shaped spanning tree to ensure 
connectivity, it was natural to ask whether a minimum spanning tree would perform any better. This idea 
led to a natural way to think about clustering, and thus partitioning each net into smaller nets. Finally, by 
carefully constructing our distance metric to accurately model the costs of the robot itself, we get to 
incorporate quite complicated properties (such as acceleration and differences between horizontal and 
vertical speeds) without changing our fundamental graph model or algorithm design. 

       

 
Next: War Story: Dialing for Up: Graph Algorithms Previous: All-Pairs Shortest Path 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK2/NODE79.HTM (4 of 4) [19/1/2003 1:29:19]



War Story: Dialing for Documents

       

 
Next: Exercises Up: Graph Algorithms Previous: War Story: Nothing but 

War Story: Dialing for Documents
  

I was part of a group visiting Periphonics, an industry leader in building telephone voice-response 
systems. These are more advanced versions of the Press 1 for more options, Press 2 if you didn't press 1 
telephone systems that have come to blight everyone's lives in recent years. We were being given the 
standard tour when someone from our group asked, ``Why don't you guys use voice recognition for data 
entry. It would be a lot less annoying than typing things out on the keypad.''    

The tour guide reacted smoothly. ``Our customers have the option of incorporating speech recognition 
into our products, but very few of them do. User-independent, connected-speech recognition is not 
accurate for most applications. Our customers prefer building systems around typing text on the 
telephone keyboards.'' 

``Prefer typing, my pupik!'', came a voice from the rear of our group. ``I hate typing on a telephone. 
Whenever I call my brokerage house to get stock quotes, I end up talking to some machine, which asks 
me to type in the three letter code. To make it worse, I have to hit two buttons to type in one letter, in 
order to distinguish between the three letters printed on each key of the telephone. I hit the 2 key and it 
says Press 1 for `A', Press 2 for `B', Press 3 for `C'. Pain the neck if you ask me.'' 

``Maybe you don't really have to hit two keys for each letter?'' I chimed in. ``Maybe the system could 
figure out the correct letter from context?'' 

``There isn't a whole lot of context when you type in three letters of stock market code.'' 

``Sure, but there would be plenty of context if we were typing in English sentences. I'll bet that we could 
reconstruct English sentences correctly if they were typed in a telephone at one keystroke per letter.'' 

The guy from Periphonics gave me a disinterested look, then continued the tour. But when I got back to 
the office, I decided to give it a try. 

It was clear that not all letters were equally likely to be typed on a telephone. In fact, not all letters can be 
typed, since `Q' and `Z' are not labeled on the standard American telephone. Therefore, we adopted the 
convention that `Q', `Z', and space were all on the * key. We could take advantage of the uneven 
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distribution of letter frequencies to help us decode the text. For example, if you hit the 3 key while typing 
English, you were more likely to have meant to type an `E' than either a `D' or `F'. By taking into account 
the frequencies of a window of three characters, we could predict the typed text. Indeed, this is what 
happened when I tried it on the Gettysburg Address:   

enurraore ane reten yeasr ain our ectherr arotght eosti on ugis aootinent a oey oation aoncdivee in licesty 
ane eedicatee un uhe rrorosition uiat all oen are arectee e ual 

ony ye are enichde in a irect aitil yar uestini yhethes uiat oatioo or aoy oation ro aoncdivee ane ro 
eedicatee aan loni eneure ye are oet on a irect aattlediele oe uiat yar ye iate aone un eedicate a rostion oe 
uiat eiele ar a einal restini rlace eor uiore yin iere iate uhdis lives uiat uhe oation ogght live it is aluniethes 
eittini ane rrores uiat ye rioule en ugir 

att in a laries reore ye aan oou eedicate ye aan oou aoorearate ye aan oou ialloy ugis iroune the arate oen 
litini ane eeae yin rustgilee iere iate aoorearatee it ear aante our roor rowes un ade or eeuraat the yople yill 
little oote oor loni renences yiat ye ray iere att it aan oetes eosiet yiat uhfy eie iere it is eor ur uhe litini 
rathes un ae eedicatee iere un uhe undiniside yopl yhici uhfy yin entght iere iate uiur ear ro onaky 
aetancde it is rathes eor ur un ae iere eedicatee un uhe irect uarl rencinini adeore ur uiat eron uhere ioooree 
eeae ye uale inarearee eeuotion uo tiat aaure eor yhici uhfy iere iate uhe lart eull oearure oe eeuotioo tiat 
ye iere iggily rerolue uiat uhere eeae riall oou iate eide io 

The trigram statistics did a decent job of translating it into Greek, but a terrible job of transcribing 
English. One reason was clear. This algorithm knew nothing about English words. If we coupled it with a 
dictionary, we might be on to something. The difficulty was that often two words in the dictionary would 
be represented by the exact same string of phone codes. For an extreme example, the code string 
``22737'' collides with eleven distinct English words, including cases, cares, cards, capes, caper, and 
bases. As a first attempt, we reported the unambiguous characters of any words that collided in the 
dictionary, and used trigrams to fill in the rest of the characters. We were rewarded with:   

eourscore and seven yearr ain our eatherr brought forth on this continent azoey nation conceivee in liberty 
and dedicatee uo uhe proposition that all men are createe equal 

ony ye are engagee in azipeat civil yar uestioi whether that nation or aoy nation ro conceivee and ro 
dedicatee aan long endure ye are oet on azipeat battlefield oe that yar ye iate aone uo dedicate a rostion oe 
that field ar a final perthni place for those yin here iate their lives that uhe nation oight live it is altogether 
fittinizane proper that ye should en this 

aut in a larges sense ye aan oou dedicate ye aan oou consecrate ye aan oou hallow this ground the arate 
men litioi and deae yin strugglee here iate consecratee it ear above our roor power uo ade or detract the 
world will little oote oor long remember what ye ray here aut it aan meter forget what uhfy die here it is 
for ur uhe litioi rather uo ae dedicatee here uo uhe toeioisgee york which uhfy yin fought here iate thus ear 
ro mocky advancee it is rather for ur uo ae here dedicatee uo uhe great task renagogoi adfore ur that from 
there honoree deae ye uale increasee devotion uo that aause for which uhfy here iate uhe last eull measure 
oe devotion that ye here highky resolve that there deae shall oou iate fide io vain that this nation under ioe 
shall iate azoey birth oe freedom and that ioternmenu oe uhe people ay uhe people for uhe people shall 
oou perish from uhe earth 
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If you were a student of American history, maybe you could recognize it, but you certainly couldn't read 
it. Somehow we had to distinguish between the different dictionary words that got hashed to the same 
code. We could factor in the relative popularity of each word, which would help, but this would still 
make too many mistakes. 

At this point I started working with Harald Rau on the project, who proved a great collaborator for two 
reasons. First, he was a bright and peristent graduate student. Second, as a native German speaker he 
would believe every lie I told him about English grammar. 

   
Figure: The phases of the telephone code reconstruction process  

Harald built up a phone code reconstruction program on the lines of Figure . It worked on the input 
one sentence at a time, identifying dictionary words that matched each code string. The key problem was 
how to incorporate the grammatical constraints. 

``We can get good word-use frequencies and grammatical information using this big text database called 
the Brown Corpus. It contains thousands of typical English sentences, each of which is parsed according 
to parts of speech. But how do we factor it all in?'' Harald asked. 

``Let's try to think about it as a graph problem,'' I suggested. 
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``Graph problem? What graph problem? Where is there even a graph?'' 

``Think of a sentence as a list of phone tokens, each representing a word in the sentence. For each phone 
token, we have a list of words from the dictionary that match it. How can we choose which one is right? 
Each possible sentence interpretation can be thought of as a path in a graph. The vertices of this graph 
will be the complete set of possible word choices. There will be an edge from a possible choice for the 
ith word to each possible choice for the (i+1)st word. The cheapest path across this graph is the right 
interpretation of the sentence.'' 

   
Figure: The minimum-cost path through the graph defines the best interpretation for a sentence  

``But all the paths look the same. They have the same number of edges. Wait. Now I see! To make the 
paths different, we have to weight the edges.'' 

``Exactly! The cost of an edge will reflect how likely it is that we will want to travel through the given 
pair of words. Maybe we can count how often that pair of words occurred together in previous texts. Or 
we can weight by what part of speech each word is. Maybe nouns don't like to be next to nouns as much 
as they like being next to verbs.'' 

``It will be hard to keep track of word-pair statistics, since there are so many of them. But we certainly 
know the frequency of each word. How can we factor that into things?'' 

``We can pay a cost for walking through a particular vertex that depends upon the frequency of the word. 
Our best sentence will be given by the shortest path across the graph.''   

``But how do we figure out the relative weights of these factors?'' 

``Well, try what seems natural to you and then we can experiment with it.'' 

Harald incorported this shortest-path algorithm. With proper grammatical and statistical constraints, the 
system performed great, as reported in [RS96]. Look at the Gettysburg Address now, with all the 
reconstruction errors highlighted: 

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH ON THIS 
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CONTINENT A NEW NATION CONCEIVED IN LIBERTY AND DEDICATED TO THE 
PROPOSITION THAT ALL MEN ARE CREATED EQUAL. NOW WE ARE ENGAGED IN A 
GREAT CIVIL WAR TESTING WHETHER THAT NATION OR ANY NATION SO CONCEIVED 
AND SO DEDICATED CAN LONG ENDURE. WE ARE MET ON A GREAT BATTLEFIELD OF 
THAT WAS. WE HAVE COME TO DEDICATE A PORTION OF THAT FIELD AS A FINAL 
SERVING PLACE FOR THOSE WHO HERE HAVE THEIR LIVES THAT THE NATION MIGHT 
LIVE. IT IS ALTOGETHER FITTING AND PROPER THAT WE SHOULD DO THIS. BUT IN A 
LARGER SENSE WE CAN NOT DEDICATE WE CAN NOT CONSECRATE WE CAN NOT 
HALLOW THIS GROUND. THE BRAVE MEN LIVING AND DEAD WHO STRUGGLED HERE 
HAVE CONSECRATED IT FAR ABOVE OUR POOR POWER TO ADD OR DETRACT. THE 
WORLD WILL LITTLE NOTE NOR LONG REMEMBER WHAT WE SAY HERE BUT IT CAN 
NEVER FORGET WHAT THEY DID HERE. IT IS FOR US THE LIVING RATHER TO BE 
DEDICATED HERE TO THE UNFINISHED WORK WHICH THEY WHO FOUGHT HERE HAVE 
THUS FAR SO NOBLY ADVANCED. IT IS RATHER FOR US TO BE HERE DEDICATED TO THE 
GREAT TASK REMAINING BEFORE US THAT FROM THESE HONORED DEAD WE TAKE 
INCREASED DEVOTION TO THAT CAUSE FOR WHICH THEY HERE HAVE THE LAST FULL 
MEASURE OF DEVOTION THAT WE HERE HIGHLY RESOLVE THAT THESE DEAD SHALL 
NOT HAVE DIED IN VAIN THAT THIS NATION UNDER GOD SHALL HAVE A NEW BIRTH OF 
FREEDOM AND THAT GOVERNMENT OF THE PEOPLE BY THE PEOPLE FOR THE PEOPLE 
SHALL NOT PERISH FROM THE EARTH. 

   
Figure:   Our telephone-code reconstruction system applied to various text samples 

While we still made a few mistakes, the results are clearly good enough for a variety of applications. 
Periphonics certainly thought so, for they later licensed our program to incorporate into their products. 

Figure  shows that we were able to reconstruct over 99% of the characters correctly on a megabyte of 
President Clinton's speeches, so if Bill had phoned them in, we would certainly still be able to understand 
it. The reconstruction time is fast enough, indeed faster than you can type it in on the phone keypad. 

The constraints associated with many different pattern recognition problems can be formulated as 
shortest path problems in graphs. In fact, there is a particularly convenient dynamic programming 
solution for these problems known as the Viterbi algorithm, which is used in speech and handwriting 
recognition systems. Despite the fancy name, all the Viterbi algorithm is doing is solving a shortest path 
problem. Hunting for a graph formulation for any given problem is always a good way to proceed.    
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Exercises
  

1.  Present correct and efficient algorithms to convert between the following graph data structures, 
for an undirected graph G with n vertices and m edges. You must give the time complexity of 
each algorithm. 

1.  Convert from an adjacency matrix to adjacency lists.
2.  Convert from an adjacency list to an incidence matrix. An incidence matrix M has a row 

for each vertex and a column for each edge, such that M[i,j]=1 if vertex i is part of edge j, 
otherwise M[i,j] = 0.

3.  Convert from an incidence matrix to adjacency lists. 
2.  Is the path between a pair of vertices in a minimum spanning tree necessarily a shortest path 

between the two vertices in the full graph? Give a proof or a counterexample.
3.  Assume that all edges in the graph have distinct edge weights (i.e. no pair of edges have the same 

weight). Is the path between a pair of vertices in a minimum spanning tree necessarily a shortest 
path between the two vertices in the full graph? Give a proof or a counterexample.

4.  Suppose G is a connected undirected graph. An edge e whose removal disconnects the graph is 
called a bridge. Must every bridge e be an edge in a depth-first search tree of G, or can e be a 
back edge? Give a proof or a counterexample.

5.  (*) In breadth-first and depth-first search, an undiscovered node is marked discovered when it is 
first encountered, and marked completely-explored when it has been completely searched. At any 
given moment, several nodes might be simultaneously in the discovered state. 

(a) Describe a graph on n vertices and a particular starting vertex v such that during a breadth-first 
search starting from v,  nodes are simultaneously in the discovered state. 

(b) Describe a graph on n vertices and a particular starting vertex v such that during a depth-first 
search starting from v,  nodes are simultaneously in the discovered state. 

(c) Describe a graph on n vertices and a particular starting vertex v such that at some point during 
a depth-first search starting from v,  nodes remain undiscovered, while  nodes have been 
completely-explored. (Note, there may also be discovered nodes.)

6.  Given the pre-order and in-order traversals of a binary tree, is it possible to reconstruct the tree? If 
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so, sketch an algorithm to do it. If not, give a counterexample. Repeat the problem if you are 
given the pre-order and post-order traversals.

7.  Suppose an arithmetic expression is given as a tree. Each leaf is an integer and each internal node 
is one of the standard arithmetical operations (+,-,*,/). For example, the expression 

2+3*4+(3*4)/5 could be represented by the tree in Figure (a). 

   
Figure: Expression 2+3*4+(3*4)/5 as a tree and a DAG.  

Give an O(n) algorithm for evaluating such an expression, where there are n nodes in the tree.
8.  (*) Suppose an arithmetic expression is given as a DAG (directed acyclic graph) with common 

subexpressions removed. Each leaf is an integer and each internal node is one of the standard 
arithmetical operations (+,-,*,/). For example, the expression 2+3*4+(3*4)/5 could be represented 

by the DAG in Figure (b). Give an O(n+m) algorithm for evaluating such a DAG, where there 
are n nodes and m edges in the DAG. Hint: modify an algorithm for the tree case to achieve the 
desired efficiency.

9.  (*) Given an undirected graph G with n vertices and m edges, and an integer k, give an O(m+n) 
algorithm that finds the maximum induced subgraph H of G such that each vertex in H has degree 

 , or prove that no such graph exists. An induced subgraph F=(U,R) of a graph G=(V,E) is a 

subset of U of the vertices V of G, and all edges R of G such that both vertices of each edge are in 
U.

10.  (*) An articulation vertex of a graph G is a vertex whose deletion disconnects G. Let G be a graph 
with n vertices and m edges. Give a simple O(n+m) algorithm for finding a vertex of G that is not 
an articulation vertex, i.e. whose deletion does not disconnect G.

11.  (*) Following up on the previous problem, give an O(n+m) algorithm that finds a deletion order 
for the n vertices such that no deletion disconnects the graph. (Hint: think DFS/BFS.)

12.  (*) Let G be a weighted directed graph with n vertices and m edges, where all edges have positive 
weight. A directed cycle is a directed path that starts and ends at the same vertex and contains at 
least one edge. Give an  algorithm to find a directed cycle in G of minimum total weight. 

Partial credit will be given for an  algorithm.
13.  (*) Suppose we are given the minimum spanning tree T of a given graph G (with n vertices and m 

edges) and a new edge e=(u,v) of weight w that we will add to G. Give an efficient algorithm to 
find the minimum spanning tree of the graph G + e. Your algorithm should run in O(n) time to 
receive full credit, although slower but correct algorithms will receive partial credit.

14.  (*) (a) Let T be a minimum spanning tree of a weighted graph G. Construct a new graph G' by 
adding a weight of k to every edge of G. Do the edges of T form a minimum spanning tree of G'? 
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Prove the statement or give a counterexample. 

(b) Let  describe a shortest weighted path between vertices and t of a weighted graph 
G. Construct a new graph G' by adding a weight of k to every edge of G. Does P describe a 
shortest path from to t in G'? Prove the statement or give a counterexample.

15.  (*) In certain graph problems, vertices have can have weights instead of or in addition to the 
weights of edges. Let  be the cost of vertex v, and  the cost of the edge (x,y). This problem 
is concerned with finding the cheapest path between vertices a and b in a graph G. The cost of a 
path is the sum of the costs of the edges and vertices encountered on the path. 

❍     Suppose that each edge in the graph has a weight of zero (while non-edges have a cost of 
 ). Assume that  for all vertices  (i.e. all vertices have the same cost). Give 

an efficient algorithm to find the cheapest path from a to b and its time complexity. For 
partial credit, give a less efficient but correct algorithm.

❍     Now suppose that the vertex costs are not constant (but are all positive) and the edge costs 
remain as above. Give an efficient algorithm to find the cheapest path from a to b and its 
time complexity. For partial credit, give a less efficient but correct algorithm.

❍     Now suppose that both the edge and vertex costs are not constant (but are all positive). 
Give an efficient algorithm to find the cheapest path from a to b and its time complexity. 
For partial credit, give a less efficient but correct algorithm. 

16.  (*) Devise and analyze an algorithm that takes a weighted graph G and finds the smallest change 
in the cost of a non-MST edge that causes a change in the minimum spanning tree of G. Your 
algorithm must be correct and run in polynomial time.

17.  An arborescence of a directed graph G is a rooted tree such that there is a directed path from the 
root to every other vertex in the graph. Give an efficient and correct algorithm to test whether G 
contains an arborescence, and its time complexity.

18.  (**) The war story of Section  describes an algorithm for constructing the dual graph of the 
triangulation efficiently, although it does not guarantee linear time. Give a worst-case linear 
algorithm for the problem. 
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Backtracking
  

Backtracking is a systematic way to go through all the possible configurations of a space. These configurations may be all 
possible arrangements of objects (permutations) or all possible ways of building a collection of them (subsets). Other 
applications may demand enumerating all spanning trees of a graph, all paths between two vertices, or all possible ways to 
partition the vertices into color classes.   

What these problems have in common is that we must generate each one of the possible configurations exactly once. 
Avoiding both repetitions and missing configurations means that we must define a systematic generation order among the 
possible configurations. In combinatorial search, we represent our configurations by a vector  , where 
each element  is selected from an ordered set of possible candidates  for position i. As shown below, this representation 
is general enough to encode most any type of combinatorial object naturally.   

The search procedure works by growing solutions one element at a time. At each step in the search, we will have 
constructed a partial solution with elements fixed for the first k elements of the vector, where  . From this partial 

solution  , we will construct the set of possible candidates  for the (k+1)st position. We will then try to 
extend the partial solution by adding the next element from  . So long as the extension yields a longer partial solution, 
we continue to try to extend it. 

However, at some point,  might be empty, meaning that there is no legal way to extend the current partial solution. If 
so, we must backtrack, and replace  , the last item in the solution value, with the next candidate in  . It is this 
backtracking step that gives the procedure its name: 

Backtrack(A)

                Compute   , the set of candidate first elements of solution A.

                k = 1

                while k > 0 do

                                 while    do  (*advance*)

                                                    = the next element from   
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                                                 if    is a solution, 
report it.

                                                 k = k + 1

                                                 compute   , the set of candidate 

kth elements of solution A.

                                 k = k - 1  (*backtrack*)

Backtracking constructs a tree of partial solutions, where each vertex is a partial solution. There is an edge from x to y if 
node y was created by advancing from x. This tree of partial solutions provides an alternative way to think about 
backtracking, for the process of constructing the solutions corresponds exactly to doing a depth-first traversal of the 
backtrack tree. Viewing backtracking as depth-first search yields a natural recursive implementation of the basic algorithm: 
  

Backtrack-DFS(A,k)

                if    is a solution, report it.

                else

                                 k = k +1

                                 compute   

                                 while    do

                                                    = an element in   

                                                    =   
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                                                 Backtrack(a,k)

Although a breadth-first search could also be used to enumerate all solutions, depth-first search is greatly preferred because 
of the amount of storage required. In depth-first search, the current state of the search is completely represented by the path 
from the root to the current search node, which requires space proportional to the height of the tree. In breadth-first search, 
the queue stores all the nodes at the current level, which is proportional to the width of the search tree. For most interesting 
problems, the width of the tree will grow exponentially in its height. 

To really understand how backtracking works, you must see how such objects as permutations and subsets can be 
constructed by defining the right state spaces. Examples of several state spaces are described below. 

●     Constructing All Subsets 
●     Constructing All Permutations 
●     Constructing All Paths in a Graph 

        
Next: Constructing All Subsets Up: Combinatorial Search and Heuristic Previous: Combinatorial Search and Heuristic 
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Constructing All Subsets

To design a suitable state space for representing a collection of combinatorial objects, it is important to 
know how many objects you will need to represent. How many subsets are there of an n-element set, say 
the integers  ? There are exactly two subsets for n=1 namely  and  , four subsets for n=2, 
and eight subsets for n=3. Since each new element doubles the number of possibilities, there are  
subsets of n elements.   

Each subset is described by stating which elements are in it. Therefore, to construct all  subsets, we can 
set up an array/vector of n cells, where the value of  is either true or false, signifying whether the ith 
item is or is not in the given subset. To use the notation of the general backtrack algorithm, 

 , and A is a solution whenever  . 

Using this state space representation, the backtracking algorithm constructs the following sequence of 
partial solutions in finding the subsets of  . Final solutions, i.e. complete subsets, are marked with 
a *. False choices correspond to dashes in the partial solution, while true in position i is denoted by i 
itself: 

 

Trace through this example carefully to make sure you understand the backtracking procedure. The 

problem of generating subsets is more thoroughly discussed in Section . 

Algorithms 
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Constructing All Permutations

To design a suitable state space for representing permutations, we start by counting them. There are n 
distinct choices for the value of the first element of a permutation of  . Once we have fixed this 
value of  , there are n-1 candidates remaining for the second position, since we can have any value 
except  (repetitions are forbidden). Repeating this argument yields a total of  distinct 
permutations.   

This counting argument suggests a suitable representation. To construct all n! permutations, set up an 
array/vector A of n cells. The set of candidates for the ith position will be the set of elements that have 
not appeared in the (i-1) elements of the partial solution, corresponding to the first i-1 elements of the 
permutation. To use the notation of the general backtrack algorithm,  . The vector A 

contains a full solution whenever k = n+1. This representation generates the permutations of  in 
the following order: 

 

The problem of generating permutations is more thoroughly discussed in Section . 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Constructing All Paths in a Graph

Enumerating all the simple paths from to t through a given graph is a somewhat more complicated 
problem than listing permutations or subsets. Unlike the earlier problems, there is no explicit formula 
that counts the number of solutions as a function of the number of edges or vertices, because the number 
of paths depends upon the structure of the graph.   

   
Figure: The search tree enumerating all simple paths from vertex 1 in the graph  

Since the starting point of any path from to t is always ,  must be  . The set of possible candidates for 
the second position are the vertices v such that (,v) is an edge of the graph, for the path wanders from 
vertex to vertex using edges to define the legal steps. In general,  consists of the set of vertices 
adjacent to  that have not been used in the partial solution A. We can report a successful path whenever 

 . The solution vector A must have room for all n vertices, although most paths are likely to be 

shorter than this. Figure  shows the search tree giving all paths from a particular vertex in an example 
graph. 

Algorithms 
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Search Pruning
Backtracking ensures correctness by enumerating all possibilities. For example, a correct algorithm to 
find the optimal traveling salesman tour could enumerate all n! permutations of n vertices of the graph 
and selecting the best one. For each permutation, we could check whether each of the n edges implied in 
the tour really exists in the graph G, and if so, sum the weights of these edges together. 

For most graphs, however, it would be pointless to construct all the permutations first and then analyze 
them later. Suppose we started our search from vertex  , and it happened that edge  was not in G. 
Enumerating all the (n-2)! permutations beginning with  would be a complete waste of effort. Much 
better would be to prune the search after  and continue next with  . By carefully restricting the 
set of next elements to reflect only the moves that are legal from the current partial configuration, we 
reduce the search complexity significantly.   

Pruning is the technique of cutting off search the instant we have established that this partial solution 
cannot be extended into the solution that we want. For example, in our traveling salesman search 
program, we seek the cheapest tour that visits all vertices before returning to its starting position. 
Suppose that in the course of our search we find a tour t whose cost is  . As the search continues, 
perhaps we will find a partial solution  , where k < n and the sum of the edges on this partial tour 
is  . Can there be any reason to continue exploring this node any further? No, assuming all edges 
have positive cost, because any tour with the prefix  will have cost greater than tour t, and hence 
is doomed to be non-optimal. Cutting away such failed partial tours as soon as possible can have an 
enormous impact on running time.   

Exploiting symmetry is a third avenue for reducing combinatorial search. It is clearly wasteful to 
evaluate the same candidate solution more than once, because we will get the exact same answer each 
time we consider it. Pruning away partial solutions identical to those previously considered requires 
recognizing underlying symmetries in the search space. For example, consider the state of our search for 
an optimal TSP tour after we have tried all partial positions beginning with  . Can it pay to continue the 
search with partial solutions beginning with  ? No. Any tour starting and ending at  can be viewed as 
starting and ending at or any other vertex, for these tours are cycles. There are thus only (n-1)! distinct 
tours on n vertices, not n!. By restricting the first element of the tour to always be  , we save a factor of 
n in time without missing any interesting solutions. Detecting such symmetries can be subtle, but once 
identified they can usually be easily exploited by a search program. 
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Bandwidth Minimization

    
Figure: A pretty bandwidth-4 layout of a binary tree atop an ugly bandwidth-3 layout

To better demonstrate the power of pruning and symmetry detection, let's apply these ideas to producing 
a search program that solves the bandwidth minimization problem, discussed in detail in catalog Section 

. I annually run competitions for the fastest bandwidth-minimization program for students in my 
algorithms courses; the timings below are drawn from these experiences.   

The bandwidth problem takes as input a graph G, with n vertices and m edges. The goal is to find a 

permutation of the vertices on the line that minimizes the maximum length of any edge. Figure  gives 
two distinct layouts of a complete binary tree on 15 vertices. The clean, neat layout on the top has a 
longest edge of length 4, but the seemingly cramped layout on the bottom realizes the optimal bandwidth 
of 3. 

The bandwidth problem has a variety of applications, including circuit layout, linear algebra, and 
optimizing memory usage in hypertext documents. The problem is NP-complete, which implies that no 
polynomial time worst-case algorithm is known for the problem. It remains NP-complete even for very 
restricted classes of trees. 

Since the bandwidth problem seeks a particular permutation, a backtracking program that iterates through 
all the n! possible permutations and computes the length of the longest edge for each gives a 
straightforward  algorithm. Depending upon how well it is programmed, and how fast a machine 
it is running on, such an algorithm can expect to solve instances of approximately 8 to 12 vertices within 
one CPU minute. 

To speed up this search, we can try to exploit symmetry. For any permutation p, its reverse permutation 
will realize the exact same bandwidth, since the length of each edge is the same. Hence we can 
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immediately eliminate half of our search space. The reverse copies are easily removed by placing the 
leftmost and rightmost elements of the permutation as the first two elements of the vector and then 
pruning if  . Because we are dealing with an exponential search, removing a single factor of two 
can only be of limited usefulness. Such symmetry elimination might add one to the size of the problem 
we can do within one CPU minute. 

For more serious speedups, we need to prune partial solutions. Say we have found a permutation p that 
yields a longest edge of  . By definition,  . Suppose that among the elements in a partial layout 

 , where k < n, there is an edge that is at least  in length. Can this partial solution expand to 
provide a better bandwidth solution? Of course not! By pruning the search the instant we have created a 
long edge, typical instances of 15 to 20 vertices can be solved in one CPU minute, thus providing a 
substantial improvement. 

Efforts to further improve the search algorithm must strive for even greater pruning. By using a heuristic 
method to find the best solution we can before starting to search, we save time by realizing early length 
cutoffs. In fact, most of the effort in a combinatorial search is typically spent after the optimal solution is 
found, in the course of proving that no better answer exists. By observing that the optimal bandwidth 
solution must always be at least half the degree of any vertex (think about the incident edges), we have a 
lower bound on the size of the optimal solution. We can terminate search soon as we find a solution 
matching the lower bound. 

One limitation of this pruning strategy is that only partial solutions of length >b can be pruned, where b 
is the bandwidth of the best solution to date, since we must place b+1 vertices before we can generate 
any edges of length at least b. To achieve earlier cutoffs, we can alternately fill in the leftmost and 
rightmost slots of the configuration, instead of always proceeding from the left. This way, whenever 
there is an edge between a vertex on the left side and a vertex on the right side, this edge is likely long 
enough to achieve a cutoff. Pruning can easily occur while positioning the second vertex in the solution 
vector. 

Using these enhancements, top-notch programs are capable of solving typical problems on up to 30 
vertices consistently within one CPU minute, operating literally millions of times faster than unpruned, 
untuned efforts. The speed difference between the final and initial versions of the program dwarf the 
difference between a supercomputer and a microcomputer. Clever search algorithms can easily have a 
bigger impact on performance than expensive hardware. 
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War Story: Covering Chessboards
Every researcher dreams of solving a classical problem, one that has remained open and unsolved for 
over a hundred years. There is something romantic about communicating across the generations, being 
part of the evolution of science, helping to climb another rung up the ladder of human progress. There is 
also a pleasant sense of smugness that comes from figuring out how to do something that nobody else 
could do before you.   

There are several possible reasons why a problem might stay open for such a long period of time. 
Perhaps the problem is so difficult and profound that it requires a uniquely powerful intellect to solve. A 
second reason is technological - the ideas or techniques required to solve the problem may not have 
existed when the problem was first posed. A final possibility is that no one may have cared enough about 
the problem in the interim to seriously bother with it. Once, I was involved in solving a problem that had 
been open for over a hundred years. Decide for yourself which reason best explains why. 

Chess is a game that has fascinated mankind for thousands of years. In addition, it has inspired a number 
of combinatorial problems of independent interest. The combinatorial explosion was first recognized in 
the legend that the inventor of chess demanded as payment one grain of rice for the first square of the 

board, and twice the amount of the ith square for the (i+1)st square, for a total of  

36,893,488,147,419,103,231 grains. In beheading him, the wise king first established pruning as a 
technique for dealing with the combinatorial explosion. 

In 1849, Kling posed the question of whether all 64 squares on the board can be simultaneously 
threatened by an arrangement of the eight main pieces on the chess board - the king, queen, two knights, 
two rooks, and two oppositely colored bishops. Configurations that simultaneously threaten 63 squares 
have been known for a long time, but whether this was the best possible remained an open problem. This 
problem seemed ripe for solution by exhaustive combinatorial searching, although whether it was 
solvable would depend upon the size of the search space. 

Consider the 8 main pieces in chess (king, queen, two rooks, two bishops, two knights). How many ways 
can they be positioned on a chessboard? The trivial bound is  
positions. Anything much larger than about  positions would be unreasonable to search on a modest 
computer in a modest amount of time. 

Getting the job done would require significant pruning. The first idea is to remove symmetries. 
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Considering the orthogonal and diagonal symmetries, there are only ten distinct positions for the queen. 

Once the queen is placed, there are 2,080 distinct ways to position a pair of rooks or knights, 64 places to 
locate the king, and 32 spots for each of the white and black bishops. Thus to perform an exhaustive 
search, we must test 2,835,349,504,000  distinct positions, still much too large to try. 

We could use backtracking to construct all of the positions, but we had to find a way to prune the search 
space significantly if we could hope to finish in our lifetime. Pruning the search meant that we needed a 
quick way to prove, for a partially filled-in position, that there was no possible way to complete it so as 
to cover all 64 squares. Suppose we had already placed seven pieces on the board, and together they 
covered all but 10 squares of the board. Say the remaining piece was the king. Is there any possible 
position to place the king so that all squares are threatened? The answer must be no, because the king can 
threaten at most eight squares according to the rules of chess. There can be no reason to bother testing 
any of the subsequent positions. By pruning these positions, we might win big. 

Optimizing this pruning strategy required carefully ordering the evaluation of the pieces. Each piece 
could threaten a certain maximum number of squares: the queen 27, the king 8, the rook 14, and the 
bishop 13. To maximize the chances of a cutoff, we would want to insert the pieces in decreasing order 
of mobility. Whenever the number of unthreatened squares exceeds the sum of the maximum coverage of 
the unplaced pieces, we can prune. This sum is minimized by using the decreasing order of mobility. 

When we implemented backtrack search with this pruning strategy, we found that it eliminated over  

of the search space. After optimizing our move generation, our program could search over 1,000 
positions per second. But this was still too slow, for  seconds meant 1,000 days! Although 
we might further tweak the program to speed it up by an order of magnitude or so, what we really needed 
was to find a way to prune more nodes. 

Effective pruning meant eliminating large numbers of positions at a single stroke. Our previous attempt 
was too weak. What if instead of placing up to eight pieces on the board simultaneously, we placed more 
than eight pieces. Obviously, the more pieces we placed simultaneously, the less likely it would be that 
they didn't threaten all 64 squares. But if they didn't cover, all subsets of eight distinct pieces from the set 
couldn't possibly threaten all squares. The potential existed to eliminate a vast number of positions by 
pruning a single node. 

Thus the nodes of our search tree corresponded to chessboards that could have any number of pieces, and 
more than one piece on a square. For a given board, we would distinguish two kinds of attack on a 
square: strong and weak. The notion of strong attack corresponds to the usual notion of attack in chess. A 
square is weakly attacked if the square is strongly attacked by some subset of the board, that is, weak 
attack ignores any possible blocking effects of intervening pieces. All 64 squares can be weakly attacked 
with eight pieces. 

Our algorithm consists of two passes. The first pass lists all boards such that every square is weakly 
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attacked. The second pass filters the list by considering blocking and reports any boards with n or fewer 
safe squares. The advantage of separating weak and strong attack computations is that weak attack is 
faster to compute (no blocking to worry about), and yet the strong attack set is always a subset of the 
weak attack set. Whenever there was a non-weakly-threatened square, the position could be pruned. 

This program was efficient enough to complete the search on a machine as slow as a 1988-era IBM PC-
RT in under one day. More details of our searching procedure and results appear in our paper [RHS89]. It 
did not find a single position covering all 64 squares with the bishops on opposite colored squares. 
However, our program showed that it is possible to cover the board with seven pieces if a queen and a 
knight can occupy the same square. 

The take-home lesson of this war story should be clear. Clever pruning can make short work of 
surprisingly hard combinatorial search problems. 
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Heuristic Methods
The techniques we have discussed thus far seek to find the optimal answer to a combinatorial problem as 
quickly as possible. Traditional algorithmic methods fail whenever the problem is provably hard (as 

discussed in Chapter ), or the problem is not clean enough to lead to a nice formulation.   

Heuristic methods provide a way to approach difficult combinatorial optimization problems. 
Combinatorial search gives us a method to construct possible solutions and find the best one, given a 
function that measures how good each candidate solution is. However, there may be no algorithm to find 
the best solution short of searching all configurations. Heuristic methods such as simulated annealing, 
genetic algorithms, and neural networks provide general ways to search for good but not optimal 
solutions. 

In this section we discuss such heuristic methods. Each of these three techniques relies on a simple model 
of a real-world physical process. We devote the bulk of our attention to simulated annealing, which is the 
easiest method to apply in practice, as well as the most reliable. 

●     Simulated Annealing 
❍     Traveling Salesman Problem 
❍     Maximum Cut 
❍     Independent Set 
❍     Circuit Board Placement 

●     Neural Networks 
●     Genetic Algorithms 

Algorithms 
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Simulated Annealing

  

The inspiration for simulated annealing comes from the physical process of cooling molten materials down to the solid state. 
When molten steel is cooled too quickly, cracks and bubbles form, marring its surface and structural integrity. To end up with 
the best final product, the steel must be cooled slowly and evenly. Annealing is a metallurgical technique that uses a 
disciplined cooling schedule to efficiently bring the steel to a low-energy, optimal state.   

In thermodynamic theory, the energy state of a system is described by the energy state of each of the particles constituting it. 
The energy state of each particle jumps about randomly, with such transitions governed by the temperature of the system. In 
particular, the probability  of transition from energy  to  at temperature T is given by 

 

where  is a constant, called Boltzmann's constant.   

What does this formula mean? Consider the value of the exponent under different conditions. The probability of moving from 
a high-energy state to a lower-energy state is very high. However, there is also a non-zero probability of accepting a 
transition into a high-energy state, with small energy jumps much more likely than big ones. The higher the temperature, the 
more likely such energy jumps will occur. 

What relevance does this have for combinatorial optimization? A physical system, as it cools, seeks to go to a minimum-
energy state. For any discrete set of particles, minimizing the total energy is a combinatorial optimization problem. Through 
random transitions generated according to the above probability distribution, we can simulate the physics to solve arbitrary 
combinatorial optimization problems. 

Simulated-Annealing()

                 Create initial solution S

                 Initialize temperature t

                   repeat

                                   for i=1 to iteration-length do

                                                        Generate a random transition 
from S to   
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                                                        If    then   

                                                        else if  

  then   

                                        Reduce temperature t

                        until (no change in C(S))

                 Return S

There are three components to any simulated annealing algorithm for combinatorial search: 

●     Concise problem representation - The problem representation includes both a representation of the solution space and 
an appropriate and easily computable cost function C() measuring the quality of a given solution.

●     Transition mechanism between solutions - To move from one state to the next, we need a collection of simple 
transition mechanisms that slightly modify the current solution. Typical transition mechanisms include swapping the 
position of a pair of items or inserting/deleting a single item. Ideally, the effect that these incremental changes have on 
measuring the quality of the solution can be computed incrementally, so cost function evaluation takes time 
proportional to the size of the change (typically constant) instead of linear in the size of the solution.

●     Cooling schedule - These parameters govern how likely we are to accept a bad transition as a function of time. At the 
beginning of the search, we are eager to use randomness to explore the search space widely, so the probability of 
accepting a negative transition is high. As the search progresses, we seek to limit transitions to local improvements 
and optimizations. The cooling schedule can be regulated by the following parameters:   

❍     Initial system temperature - Typically  .
❍     Temperature decrement function - Typically  , where  . This implies an exponential 

decay in the temperature, as opposed to a linear decay.
❍     Number of iterations between temperature change - Typically, 100 to 1,000 iterations might be permitted 

before lowering the temperature.
❍     Acceptance criteria - A typical criterion is to accept any transition from  to  when  and to 

accept a negative transition whenever 

 

where r is a random number  . The constant c normalizes this cost function, so that almost all 
transitions are accepted at the starting temperature.

❍     Stop criteria - Typically, when the value of the current solution has not changed or improved within the last 
iteration or so, the search is terminated and the current solution reported. 

Creating the proper cooling schedule is somewhat of a trial and error process. It might pay to start from an existing 

implementation of simulated annealing, pointers to which are provided in Section . 
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We provide several examples below to demonstrate how these components can lead to elegant simulated annealing 
algorithms for real combinatorial search problems. 

●     Traveling Salesman Problem 
●     Maximum Cut 
●     Independent Set 
●     Circuit Board Placement 

        
Next: Traveling Salesman Problem Up: Heuristic Methods Previous: Heuristic Methods 
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Traveling Salesman Problem

The solution space for traveling salesman consists of the set of all (n-1)! possible circular permutations of 
the vertices. A candidate solution can thus be represented using an array S of n-1 vertices, where  
defines the (i+1)st vertex on the tour starting from  . The cost function evaluating a candidate solution 
is equally straightforward, for we can sum up the costs of the edges defined by S.   

   
Figure: Improving a TSP tour by swapping a pair of edges  

The most obvious transition mechanism would be to swap the current tour positions of a random pair of 
vertices  and  . This changes up to eight edges on the tour, deleting the edges currently adjacent to 
both  and  , and adding their replacements. Better would be to swap two edges on the tour with two 

others that replace it, as shown in Figure . Since only four edges change in the tour, the transitions can 
be performed and evaluated faster. Faster transitions mean that we can evaluate more positions in the 
given amount of time. 

In practice, problem-specific heuristics for TSP outperform simulated annealing, but the simulated 
annealing solution works admirably, considering it uses very little knowledge about the problem. 
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Maximum Cut

For a weighted graph G, the maximum cut problem seeks to partition the vertices into sets  and  so as 
to maximize the weight (or number) of edges with one vertex in each set. When the graph specifies an 
electronic circuit, the maximum cut in the graph defines the largest amount of data communication that 

can take place in the circuit simultaneously. As discussed in catalog Section , maximum cut is an NP-
complete version of graph partitioning.   

How can we formulate maximum cut for simulated annealing? The solution space consists of all  
possible vertex partitions; we save a factor of two over all vertex subsets because we can assume that 
vertex  is fixed to be on the left side of the partition. The subset of vertices accompanying it can be 
represented using a bit vector. The cost of a solution will be the sum of the weights cut in the current 
configuration. A natural transition mechanism is to select one vertex at random and move it across the 
partition by simply flipping the corresponding bit in the bit vector. The change in the cost function will 
be the weight of its old neighbors minus the weight of its new neighbors, so it can be computed in time 
proportional to the degree of the vertex. 

This kind of simple, natural modeling is the right type of heuristic to seek in practice. 
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Independent Set

An independent set of a graph G is a subset of vertices S such that there is no edge with both endpoints in 
S. The maximum independent set of a graph is the largest such empty induced subgraph. The need to find 
large independent sets arises in dispersion problems associated with facility location and coding theory, 

as discussed in catalog Section .   

The natural state space for a simulated annealing solution would be all  subsets of the vertices, 
represented as a bit vector. As with maximum cut above, a simple transition mechanism would be to add 
or delete one vertex from S. 

One natural cost function for subset S might be 0 if S contains an edge, and |S| if it is indeed an 
independent set. This function ensures that we work towards an independent set at all times. However, 
this condition is strict enough that we are liable to move only in a narrow portion of the possible search 
space. More flexibility in the search space and quicker cost function computations can result from 
allowing non-empty graphs at the early stages of cooling. Better in practice would be a cost function like 

 , where  is a constant, T is the temperature, and  is the number of edges in the 
subgraph induced by S. The dependence of C(S) on T ensures that the search will drive the edges out 
faster as the system cools. 
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Circuit Board Placement

In designing printed circuit boards, we are faced with the problem of positioning modules (typically 
integrated circuits) on the board. Desired criteria in a layout include (1) minimizing the area or aspect 
ratio of the board, so that it properly fits within the allotted space, and (2) minimizing the total or longest 
wire length in connecting the components. Circuit board placement is an example of the kind of messy, 
multicriterion optimization problems for which simulated annealing is ideally suited.   

Formally, we are given a collection of a rectangular modules  , each with associated dimensions 
 . Further, for each pair of modules  , we are given the number of wires  that must connect 

the two modules. We seek a placement of the rectangles that minimizes area and wire-length, subject to 
the constraint that no two rectangles overlap each other. 

The state space for this problem must describe the positions of each rectangle. To provide a discrete 
representation, the rectangles can be restricted to lie on vertices of an integer grid. Reasonable transition 
mechanisms including moving one rectangle to a different location, or swapping the position of two 
rectangles. A natural cost function would be 

 

where  ,  , and  are constants governing the impact of these components on the cost 
function. Presumably,  should be an inverse function of temperature, so after gross placement it 
adjusts the rectangle positions so they are distinct. 

Simulated annealing performs well on such module placement problems. Indeed, a similar application 
appeared in the original paper on simulated annealing [KGV83]. More details on these and other 
applications appear in [AK89]. 
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Neural Networks

  

Neural networks are a computational paradigm inspired by the architecture of the human brain. The 
intuition is that since brains are good at solving problems, machines built in the same way should be, too. 
  

The basic computational component of the brain is a neuron, a simple unit that produces a non-linear, 
weighted sum of its inputs, which are connections from other neurons. Neural networks are weighted 
digraphs with neurons as vertices and weights on edges denoting the connection strength of the pair. 

Brains are very good at learning and recognizing certain patterns. Learning in brains seems to work by 
adding connections between different pairs of neurons and changing the strengths of the connections. 
Modifying connection strength in response to training examples provides a natural way to ``teach'' a 
neural network. 

Although there have been attempts to apply neural networks to solving combinatorial optimization 
problems, the successes have been rather limited. Simulated annealing is a much more straightforward 
and efficient approach to optimization. 

Neural networks have been more successful in classification and forecasting applications, such as optical 
character recognition, gene prediction, and stock-market time-series prediction. A set of features for the 
given patterns is selected, and each training example is represented in terms of its features. The network 
is trained on a series of positive and negative examples, with the strengths of the connections adjusted to 
recognize these examples. Output cells for each class of item are provided and the strength of these cells 
on a given input used to determine the classification. Once the network is trained, feature vectors 
corresponding to unknown items can be entered and a classification made.   

Because neural networks are black boxes, with the strength of edges adjusted only by the training 
examples, there is usually no way to figure out exactly why they are making the decisions that they are. 

A particularly amusing instance where this led to trouble is reported in Section . Still, they can be 
useful in certain pattern-recognition applications. 
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Genetic Algorithms

  

Genetic algorithms draw their inspiration from evolution and natural selection. Through the process of 
natural selection, organisms adapt to optimize their chances for survival in a given environment. Random 
mutations occur to the genetic description of an organism, which is then passed on to its children. Should 
a mutation prove helpful, these children are more likely to survive to reproduce. Should it be harmful, 
these children are less likely to reproduce, so the bad trait will die with them.   

Genetic algorithms maintain a ``population'' of solution candidates for the given problem. Elements are 
drawn at random from this population and allowed to ``reproduce'', by combining some aspects of the 
two parent solutions. The probability that an element is chosen to reproduce is based on its ``fitness'', 
essentially a function of the cost of the solution it represents. Eventually, unfit elements die from the 
population, to be replaced by successful-solution offspring. 

The idea behind genetic algorithms is extremely appealing. However, they just don't seem to work as 
well on practical combinatorial optimization problems as simulated annealing does. There are two 
primary reasons for this. First, it is quite unnatural to model most applications in terms of genetic 
operators like mutation and crossover on bit strings. The pseudobiology adds another level of complexity 
between you and your problem. Second, genetic algorithms take a very long time on non-trivial 
problems. The crossover and mutation operations make no real use of problem-specific structure, so a 
large fraction of transitions lead to inferior solutions, and convergence is slow. Indeed, the analogy with 
evolution, where significant improvements require millions of years, can be quite appropriate. 

We will not discuss genetic algorithms further, in order to discourage you from considering them for 
your applications. However, pointers to implementations of genetic algorithms are provided in Section 

 if you really insist on playing with them. 
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War Story: Annealing Arrays
  

The war story of Section  reported how we used advanced data structures to simulate a new method 
for sequencing DNA. Our method, interactive sequencing by hybridization (SBH), involved building 
arrays of specific oligonucleotides on demand. Although the simulation results were very promising to 
us, most biologists we encountered were suspicious. They needed to see our technique proven in the lab 
before they would take it seriously.     

But we got lucky. A biochemist at Oxford University, got interested in our technique, and moreover he 
had in his laboratory the equipment we needed to test it out. The Southern Array Maker [Sou96], 
manufactured by Beckman Instruments, could prepare discrete oligonucleotide sequences in 64 parallel 
rows across a polypropylene substrate. The device constructs arrays by appending single characters to 

each cell along specific rows and columns of arrays. Figure  shows how to construct an array of all 
 purine (A or G) 4-mers by building the prefixes along rows and the suffixes along columns. This 

technology provided an ideal environment for testing the feasibility of interactive SBH in a laboratory, 
because with proper programming it gave an inexpensive way to fabricate a wide variety of 
oligonucleotide arrays on demand.   

   
Figure: A prefix-suffix array of all purine 4-mers.  

But we had to provide the proper programming. Fabricating complicated arrays requires solving a 
difficult combinatorial problem. We were given as input a set S of n strings (representing 
oligonucleotides) to fabricate an array (where m=64 on the Southern apparatus). We had to produce a 
schedule of row and column commands to realize the set of strings S. We proved that the problem of 
designing dense arrays was NP-complete, but that didn't really matter. My student Ricky Bradley and I 
had to solve it anyway. 
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``If it's hard, it's hard. We are going to have to use a heuristic,'' I told him. ``So how do we model this 
problem?'' 

``Well, for each string we can identify the possible prefix and suffix pairs that will realize it. For 
example, the string `ACC' can be realized in four different ways: prefix `' and suffix `ACC', prefix `A' 
and suffix `CC', prefix `AC' and suffix `C', or prefix `ACC' and suffix `'. We seek the smallest set of 
prefixes and suffixes that together realize all the given strings,'' Ricky said. 

``Good. This gives us a natural representation for simulated annealing. The state space will consist of all 
possible subsets of prefixes and suffixes. The natural transitions between states might include inserting or 
deleting strings from our subsets, or swapping a pair in or out.'' 

``What's a good cost function?'' he asked. 

``Well, we need as small an array as possible that covers all the strings. How about something like the 
maximum of number of rows (prefixes) or columns (suffixes) used in our array, plus the number of 
strings from S that are not yet covered. Try it and let's see what happens.'' 

Ricky went off and implemented a simulated annealing program along these lines. Printing out the state 
of the solution each time a transition was accepted, it was fun to watch. Starting from a random solution, 
the program quickly kicked out unnecessary prefixes and suffixes, and the array began shrinking rapidly 
in size. But after several hundred iterations, progress started to slow. A transition would knock out an 
unnecessary suffix, wait a while, then add a different suffix back again. After a few thousand iterations, 
no real improvement was happening. 

``The program doesn't seem to recognize when it is making progress. The evaluation function only gives 
credit for minimizing the larger of the two dimensions. Why not add a term to give some credit to the 
other dimension.'' 

Ricky changed the evaluation function, and we tried again. This time, the program did not hesitate to 
improve the shorter dimension. Indeed, our arrays started to be skinny rectangles instead of squares. 

``OK. Let's add another term to the evaluation function to give it points for being roughly square.'' 

Ricky tried again. Now the arrays were the right shape, and progress was in the right direction. But the 
progress was slow. 

``Too many of the prefix/suffix insertion moves don't really seem to affect many strings. Maybe we 
should skew the random selections so that the important prefix/suffixes get picked more often.'' 

Ricky tried again, Now it converged faster, but sometimes it still got stuck. We changed the cooling 
schedule. It did better, but was it doing well? Without a lower bound knowing how close we were to 
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optimal, it couldn't really tell how good our solution was. We tweaked and tweaked until our program 
stopped improving. 

Our final solution refined the initial array by applying the following random moves: 

●     swap - swap a prefix/suffix on the array with one that isn't.
●     add - add a random prefix/suffix to the array.
●     delete - delete a random prefix/suffix from the array.
●     useful add - add the prefix/suffix with the highest usefulness to the array.
●     useful delete - delete the prefix/suffix with the lowest usefulness from the array.
●     string add - randomly select a string not on the array, and add the most useful prefix and/or suffix 

that covers this string (additional preference is given to a prefix/suffix whose corresponding 
suffix/prefix is already on the array). 

A standard annealing schedule was used, with an exponentially decreasing temperature (dependent upon 
the problem size) and a temperature-dependent Boltzmann criterion for accepting states that have higher 
costs. Our final cost function was defined as 

 

where max is the size of the maximum chip dimension, min is the size of the minimum chip dimension, , 
and  is the number of strings in S currently on the chip. 

Careful analysis of successful moves over the course of the annealing process suggested a second phase 
of annealing to speed convergence. Once the temperature reaches a predetermined cutoff point, the 
temperature schedule was changed to force the temperature to decrease more rapidly, and the probability 
distribution for choosing moves was altered to include only swap, add, and delete, with preference given 
to swap moves. This modification sped up late convergence, which had been slower than it was in the 
early stages of the annealing process. 
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Figure: Compression of the HIV array by simulated annealing - after 0, 500, 1,000, and 5,750 iterations  

How well did we do? As reported in our paper [BS97], Figure  shows the convergence of a custom 

array consisting of the 5,716 unique 7-mers of the HIV-virus. Figure  shows snapshots of the state of 
the chip at four points during the annealing process (0, 500, 1,000, and the final chip at 5,750 iterations). 
Black pixels represent the first occurrence of an HIV 7-mer, while white pixels represent either 
duplicated HIV 7-mers or strings not in the HIV input set. The final chip size here is  , quite an 
improvement over the initial size of  . It took about fifteen minutes' worth of computation on a 
desktop workstation to complete the optimization, which was perfectly acceptable for the application.   

But how well did we do? Since simulated annealing is only a heuristic, we really don't know how close 
to optimal our solution is. I think we did pretty well, but I can't really be sure. In conclusion, simulated 
annealing can be the right way to handle complex optimization problems. However, to get the best 
results, expect to spend more time tweaking and refining your program than you did in writing it in the 
first place. This is dirty work, but sometimes you have to do it. 
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Parallel Algorithms
Two heads are better than one, and more generally, n heads are better than n-1. In our era of computing 
plenty, parallel processing seems like an exciting technique for solving combinatorial optimization 
problems. Today many facilities contain networks of workstations, most of them idle at night and 
underutilized during the day. Why not put them to work?   

Parallelism seems like the easy way out of hard problems. Indeed, sometimes, for some problems, 
parallel algorithms are the most effective solution. High-resolution, real-time graphics applications must 
render thirty frames per second for realistic animation. Assigning each frame to a distinct processor, or 
dividing each image into regions assigned to different processors might be the only way to get the job 
done in time. Large systems of linear equations for scientific applications are routinely solved in parallel. 

However, there are several pitfalls associated with parallel algorithms that one should be aware of: 

●     There is often a small upper bound on the potential win - Suppose that you have access to twenty 
workstations that can be devoted exclusively to your job. Potentially, these could be used to speed 
up the fastest sequential program by up to a factor of twenty. That is nice, but much greater 
performance gains are potentially possible by finding a better sequential algorithm and 
implementing that. Your time spent parallelizing a code might well be better spent enhancing the 
sequential version. Performance-tuning tools such as profilers are better developed for sequential 
machines than for parallel models.

●     Speedup means nothing - Suppose my parallel program runs 16 times faster on a 16-processor 
machine then it does on one processor. That's great, isn't it? If you always get linear speedup and 
have an arbitrary number of processors, you will eventually beat any sequential algorithm. 
However, a carefully designed sequential algorithm can often beat an easily parallelized code 
running on a typical parallel machine. The one-processor parallel version of your algorithm is 
likely to be a crummy sequential algorithm, so measuring speedup typically provides an unfair 
test of the benefits of parallelism.   

The classic example of this occurs in the minimax game-tree search algorithms used in computer 
chess programs. Brute-force tree search is embarrassingly easy to parallelize; just put each subtree 
on a different processor. However, a lot of work gets wasted because the same positions get 
considered on different machines. Moving from brute-force search to the more clever alpha-beta 
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pruning algorithm can easily save over 99.99% of the work, thus dwarfing any benefits of parallel 
brute-force search. Alpha-beta can be parallelized, but not easily, and speedups are typically 
limited to a factor of six or so regardless of how many processors you have.     

●     Parallel algorithms are tough to debug - Unless your problem can be decomposed into several 
independent jobs, the different processors will have to communicate with each other in order to 
end up with the correct final result. Unfortunately, the non-deterministic nature of this 
communication makes parallel programs notoriously difficult to debug. Perhaps the best example 
is Deep Blue, the world-champion chess computer. Although it beat Kasparov, over the years it 
has lost several games in embarrassing fashion due to bugs, mostly associated with its extensive 
parallelism.      

I recommend considering parallel processing only after repeated attempts at solving the problem 
sequentially prove too slow. Even then, I would restrict attention to algorithms that parallelize the 
problem by partitioning the input into distinct tasks, where no communication is needed between the 
processors, except in collecting the final results. Such large-grain, naive parallelism can be simple 
enough to be readily implementable and debuggable, because it really reduces to producing a good 
sequential implementation. Still, there can be pitfalls in this approach, as discussed in the war story 
below. 
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War Story: Going Nowhere Fast
  

In Section , I related our efforts to build a fast program to test Waring's conjecture for pyramidal 
numbers. At that point, my code was fast enough that it could complete the job in a few weeks running in 
the background on a desktop workstation. This option did not appeal to my supercomputing colleague, 
however.    

``Why don't we do it in parallel?'' he suggested. ``After all, you have an outer loop doing the same type 
of calculation on each integer from 1 to 1,000,000,000. I can split this range of numbers into different 
intervals and run each one of these on a different processor. Watch, it will be easy.'' 

He set to work trying to do our computations on an Intel IPSC-860 hypercube using 32 nodes, with 16 
megabytes of memory per node. However, instead of getting answers, over the next few weeks I was 
treated to a regular stream of e-mail about system reliability:   

●     ``Our code is running fine, except one processor died last night. I will rerun.''
●     ``This time the machine was rebooted by accident, so our long-standing job was killed.''
●     ``We have another problem. The policy on using our machine is that nobody can command the 

entire machine for more than thirteen hours, under any condition.'' 

Still, eventually, he rose to the challenge. Waiting until the machine was stable, he locked out 16 
processors (half the computer), divided the integers from 1 to 1,000,000,000 into 16 equal-sized 
intervals, and ran each interval on its own processor. He spent the next day fending off angry users who 
couldn't get their work done because of our rogue job. The instant the first processor completed 
analyzing the numbers from 1 to 62,500,000, he announced to all the people yelling at him that the other 
processors would soon follow. 

But they didn't. He failed to realize that the time to test each integer increased as the numbers got larger. 
After all, it would take longer to test whether 1,000,000,000 could be expressed as the sum of three 
pyramidal number than it would for 100. Thus at slower and slower intervals, each new processor would 
announce its completion. Because of the architecture of the hypercube, he couldn't return any of the 
processors until our entire job was completed. Eventually, half the machine and most of its users were 
held hostage by one, final interval. 
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When the job finally completed, the numbers were passed on to the Nobel Prize winner who had 
requested them. It turns out he had been curious about the problem because his father had made the 
conjecture back in 1928. There had never been a more important scientific reason to justify the 
computation in the first place. Indeed, no results from the computation ever appeared in print.   

What conclusions can be drawn from this? Before devoting heroic efforts to solve a problem efficiently, 
make sure that it really needs to be solved, and solved quickly. If you are going to parallelize a problem, 
be sure to balance the load carefully among the processors. Proper load balancing, using either back-of-

the-envelope calculations or the partition algorithm of Section , would have significantly reduced the 
time we needed the machine, and his exposure to the wrath of his colleagues. 
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Exercises
  

1.  (*) A derangement is a permutation p of  such that no item is in its proper position, i.e. 

 for all  .   Write an efficient backtracking program with pruning that constructs all 
the derangements of n items.

2.  (*) Multisets are allowed to have repeated elements. A multiset of n items may thus have fewer 
than n! distinct permutations. For example,  has only six different permutations: 

 ,  ,  ,  ,  , and  .   Design and implement an 
efficient algorithm for constructing all permutations of a multiset.

3.  (*) Design and implement an algorithm for testing whether two graphs are isomorphic to each 

other. The graph isomorphism problem is discussed in Section . With proper pruning, graphs 
on hundreds of vertices can be tested reliably.

4.  (**) Design and implement an algorithm for solving the subgraph isomorphism problem. Given 
graphs G and H, does there exist a subgraph H' of H such that G is isomorphic to H'. How does 
your program perform on such special cases of subgraph isomorphism as Hamiltonian cycle, 
clique, independent set, and graph isomorphism.

5.  (*) Design and implement an algorithm for solving the set cover problem, discussed in Section 

. Use it to solve special-case vertex cover problems as well as general set cover problems.
6.  (**) In the turnpike reconstruction problem, you are given n(n-1)/2 distances in sorted order. The 

problem is to find the positions of the points on the line that give rise to these distances. For 
example, the distances  can be determined by placing the second point 1 unit from 
the first, the third point 3 from the second, and the fourth point 2 from the third. Design and 
implement an efficient algorithm to report all solutions to the turnpike reconstruction problem. 
Exploit additive constraints when possible to minimize search. With proper pruning, problems 
with hundreds of points can be solved reliably.   
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Problems and Reductions
Throughout this book we have encountered problems, such as the traveling salesman problem, for which we couldn't find 
any efficient algorithm. By the early 1970s, literally hundreds of problems were stuck in this swamp. The theory of NP-
completeness provided the tools needed to show that all of these problems were really the same thing. 

The key idea behind demonstrating the hardness of a problem is that of a reduction. Suppose that I gave you the following 
algorithm to solve the Bandersnatch problem:    

Bandersnatch(G)

                 Translate the input G to an instance of the Bo-billy problem Y.

                 Call the subroutine Bo-billy on Y to solve this instance.

                 Return the answer of Bo-billy(Y) as the answer to Bandersnatch(G).

It is important to see that this algorithm correctly solves the Bandersnatch problem provided that the translation to Bo-billy 
always preserves the correctness of the answer. In other words, the translation has the property that for any instance of G, 
Bandersnatch(G) = Bo-billy(Y). A translation of instances from one type of problem to instances of another type such that 
the answers are preserved is called a reduction. 

Now suppose this reduction translates G to Y in O(P(n)) time. There are two possible implications: 

●     If my Bo-billy subroutine ran in O(P'(n)), this means I could solve the Bandersnatch problem in O(P(n)+P'(n)) by 
spending the time to translate the problem and then the time to execute the Bo-Billy subroutine.

●     If I know that  is a lower bound on computing Bandersnatch, meaning there definitely exists no faster way to 
solve it, then  must be a lower bound to compute Bo-billy. Why? If I could solve Bo-billy any faster, 
then I could solve Bandersnatch in faster time by using the above simulation, thus violating my lower bound. This 
implies that there can be no way to solve Bo-billy any faster than claimed. 

This second argument is the approach that we will use to prove problems hard. Essentially, this reduction shows that Bo-
billy is at least as hard as Bandersnatch, and therefore once we believe that Bandersnatch is hard, we have a tool for proving 
other problems hard. 

Reductions, then, are operations that convert one problem into another. To describe them, we must be somewhat rigorous in 
our definition of a problem. A problem is a general question, with parameters for the input and conditions on what 
constitutes a satisfactory answer or solution. An instance is a problem with the input parameters specified. The difference 
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can be made clear by an example. The traveling salesman problem is defined thus:   

Input: A weighted graph G. 

Output: Which tour  minimizes  ? 

Thus any weighted graph defines an instance of TSP. Each particular instance has at least one minimum cost tour. The 
general traveling salesman problem asks for an algorithm to find the optimal tour for all possible instances. 

Any problem with answers restricted to yes and no is called a decision problem. Most interesting optimization problems can 
be phrased as decision problems that capture the essence of the computation. For example, the traveling salesman decision 
problem can be defined thus: 

Input: A weighted graph G and integer k. 

Output: Does there exist a TSP tour with cost  ? It should be clear that the decision version captures the heart of the 

traveling salesman problem, for if you had a program that gave fast solutions to the decision problem, you could do a binary 
search with different values of k to quickly hone in on the correct solution. 

Therefore, from now on we will talk only about decision problems, because it is easier to reduce one problem to another 
when the only possible answers to both are true or false. 

        
Next: Simple Reductions Up: Intractable Problems and Approximations Previous: Intractable Problems and 
Approximations 
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Simple Reductions
Since they can be used either to prove hardness or to give efficient algorithms, reductions are powerful 
tools for the algorithm designer to be familiar with. The best way to understand reductions is to look at 
some simple ones. 

●     Hamiltonian Cycles 
●     Independent Set and Vertex Cover 
●     Clique and Independent Set 

Algorithms 
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Hamiltonian Cycles

The Hamiltonian cycle problem is one of the most famous in graph theory. It seeks a tour that visits each vertex of a given 

graph exactly once. It has a long history and many applications, as discussed in Section . Formally, it is defined:   

Input: An unweighted graph G. 

Output: Does there exist a simple tour that visits each vertex of G without repetition? Hamiltonian cycle has some obvious 
similarity to the traveling salesman problem. Both problems ask for a tour to visit each vertex exactly once. There are also 
differences between the two problems. TSP works on weighted graphs, while Hamiltonian cycle works on unweighted 
graphs. The following reduction from Hamiltonian cycle to traveling salesman shows that the similarities are greater than 
the differences: 

HamiltonianCycle(G=(V,E))

                 Construct a complete weighted graph G'=(V',E') where V'=V.

                 n = |V|

                 for i = 1 to n do

                                 for j = 1 to n do 
                                                        if    then w(i,j) = 1 
else w(i,j) = 2

                        Return the answer to Traveling-Salesman(G',n).

The actual reduction is quite simple, with the translation from unweighted to weighted graph easily performed in linear 
time. Further, this translation is designed to ensure that the answers of the two problems will be identical. If the graph G 
has a Hamiltonian cycle  , then this exact same tour will correspond to n edges in E', each with weight 1. 
Therefore, this gives a TSP tour of G' of weight exactly n. If G does not have a Hamiltonian cycle, then there can be no 
such TSP tour in G', because the only way to get a tour of cost n in G would be to use only edges of weight 1, which 
implies a Hamiltonian cycle in G. 

This reduction is both efficient and truth preserving. A fast algorithm for TSP would imply a fast algorithm for Hamiltonian 
cycle, while a hardness proof for Hamiltonian cycle would imply that TSP is hard. Since the latter is the case, this reduction 
shows that TSP is hard, at least as hard as Hamiltonian cycle. 
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Independent Set and Vertex Cover

  

The vertex cover problem, discussed more thoroughly in Section , asks for a small set of vertices that 
contacts each edge in a graph. More formally:   

Input: A graph G=(V, E) and integer  . 

Output: Is there a subset S of at most k vertices such that every  has at least one vertex in S? 

   
Figure: Circled vertices form a vertex cover, the dark vertices an independent set  

It is trivial to find a vertex cover of a graph, for the cover can consist of all of the vertices. More tricky is 

to cover the edges using as small a set of vertices as possible. For the graph of Figure , four of the 
eight vertices are sufficient to cover. 

A set of vertices S of graph G is independent if there are no edges (x,y) where  and  , meaning 

there are no edges between any two vertices in the independent set. As discussed in Section , the 
independent set problem arises in facility location problems. The maximum independent set decision 
problem is formally defined:   

Input: A graph G and integer  . 

Output: Does there exist an independent set of k vertices in G? Both vertex cover and independent set are 
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problems that revolve around finding special subsets of vertices, the first with representatives of every 
edge, the second with no edges. If S is the vertex cover of G, the remaining vertices S-V must form an 
independent set, for if there were an edge with both vertices in S-V, then S could not have been a vertex 
cover. This gives us a reduction between the two problems: 

VertexCover(G,k)

                 G' = G

                 k' = |V| - k

                 Return the answer to IndependentSet(G',k')

Again, a simple reduction shows that the problems are identical. Notice how this translation occurs 
without any knowledge of the answer. We transform the input, not the solution. This reduction shows 
that the hardness of vertex cover imples that independent set must also be hard. It is easy to reverse the 
roles of the two problems in this reduction, thus proving that both of these problems are equally hard. 
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Clique and Independent Set

  

Consider the clique problem, further discussed in Section : 

   
Figure: A small graph with a five-vertex clique  

Input: A graph G=(V,E) and integer  . 

Output: Does the graph contain a clique of j vertices; i.e. is there a subset  , where  , such that every pair 

of vertices in S defines an edge of G? For example, the graph in Figure  contains a clique of five vertices. In the 
independent set problem, we looked for a subset S with no edges between two vertices of S. However, for a clique, 
we insist that there always be an edge between two vertices. A reduction between these problems results by 
reversing the roles of edges and non-edges, an operation known as complementing the graph:   

IndependentSet(G,k)

                        Construct a graph G=(V',E') where V'=V, and

                                       For all (i,j) not in E, add (i,j) to E'

                     Return the answer to Clique(G',k)
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These last two reductions provide a chain linking three different problems. The hardness of clique is implied by the 
hardness of independent set, which is implied by the hardness of vertex cover. By constructing reductions in a chain, 
we link together pairs of problems in implications of hardness. Our work is done as soon as all these chains begin 
with a single problem that is accepted as hard. Satisfiability is the problem that serves as the first link in this chain. 

Algorithms 
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Satisfiability
To prove the hardness of different problems using reductions, we need to start with a single problem that 
is absolutely, certifiably, undeniably hard. The mother of all NP-complete problems is a logic problem 
named satisfiability:   

Input: A set of Boolean variables V and a set of clauses C over V. 

Output: Does there exist a satisfying truth assignment for C, i.e. a way to set the variables  either 
true or false so that each clause contains at least one true literal? This can be made clearer with two 
examples. Suppose that  over the Boolean variables  . We use  to 
denote the complement of the variable  , so we would get credit for satisfying a particular clause 
containing  if  , or a clause containing  if  . Therefore, satisfying a particular set of 
clauses involves making a series of n true or false decisions, trying to find the right truth assignment to 
satisfy all of them. 

This example set of clauses  can be satisfied by simply setting  or 

 . However, consider the set of clauses  . There can be no 
satisfying assignment because  must be  in order to satisfy the third clause, which means that  
must be  to satisfy the second clause, which then leaves the first clause unsatisfiable. Although you 
try, and you try, and you try and you try, you can't get no satisfaction. 

●     The Theory of NP-Completeness 
●     3-Satisfiability 

Algorithms 
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The Theory of NP-Completeness

For a variety of social and technical reasons, it is well accepted that satisfiability is a hard problem, one 
for which no worst-case polynomial-time algorithm exists. Literally every top-notch algorithm expert in 
the world (and countless lesser lights) has directly or indirectly tried to come up with a fast algorithm to 
test whether a given set of clauses is satisfiable, but all have failed. Further, many strange and impossible-
to-believe things in the field of computational complexity have been shown to be true if there exists a fast 

satisfiability algorithm. Satisfiability is a hard problem, and it is important to accept this. See Section  
for more on the satisfiability problem and its applications.   

The theory of NP-completeness rests on a foundation of rigorous but subtle definitions from automata 
and formal language theory. This terminology is typically confusing to or misused by beginners who lack 
a mastery of these foundations, and it is not really essential to the practical aspects of designing and 
applying reductions. For completeness, however, we briefly define the key terms below. 

A problem is said to be polynomial (or in the class P) if it can be solved in time polynomial in its size. A 
problem is said to be nondeterministically polynomial (or in the class NP) if a conjectured answer can be 
verified in time polynomial in its size. The traveling salesman decision problem is not known to be in P, 
because there is no known polynomial-time algorithm for it. However, the problem is in NP, because if 
we are given a candidate tour, we can efficiently add up the cost of the associated edges and verify 
whether the total is at most the cost bound k. It is typically straightforward to verify whether the answer 
to a problem is correct, and it certainly can be no harder than actually finding the answer in the first place. 
    

Through a complicated proof, it has been established that satisfiability is at least as hard as any problem 
in NP. This means that if a fast (i.e. polynomial-time) algorithm is discovered for solving satisfiability, 
this will yield a fast algorithm for every problem in NP. Since essentially every problem mentioned this 
book is in NP, this would be an enormously powerful and surprising result. We say that a problem is NP-
hard if, like satisfiability, it is at least as hard as any problem in NP. We say that a problem is NP-
complete if it is NP-hard, and also in NP itself. Because NP is such a large class of problems, most NP-
hard problems you encounter will in fact be complete, and the issue can always be settled by giving a 
(usually simple) verification strategy for the problem. 
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3-Satisfiability

Satisfiability's role as the first NP-complete problem implies that the problem is hard to solve in the 
worst case, but certain instances of the problem are not necessarily so tough. Suppose that each clause 
contains exactly one literal. To satisfy such a clause, we have to appropriately set that literal, so we can 
repeat this argument for every clause in the problem instance. Only when we have two clauses that 
directly contradict each other, such as  , will the set not be satisfiable.   

Since clause sets with only one literal per clause are easy to satisfy, we are interested in slightly larger 
classes. Exactly what is the clause size at which the problem turns from polynomial to hard? This 
transition occurs when each clause contains three literals, the so-called 3-satisfiability problem, or 3-
SAT: 

Input: A collection of clauses C where each clause contains exactly 3 literals, over a set of Boolean 
variables V. 

Output: Is there a truth assignment to V such that each clause is satisfied? Since this is a more restricted 
problem than satisfiablity, the hardness of 3-SAT implies that satisfiability is hard. The converse isn't 
true, as the hardness of general satisfiability might depend upon having long clauses. We can show the 
hardness of 3-SAT using a reduction that translates every instance of satisfiability into an instance of 3-
SAT without changing the result of whether it is satisfiable. 

This reduction transforms each clause independently based on its length, by adding new Boolean 
variables along the way. Suppose clause  contained k literals: 

●     If k=1, meaning that  , we create two new variables  and four new 3-literal clauses: 

 ,  ,  ,  . Note that the only way that all four of these clauses 
can be simultaneously satisfied is if  , which must be the case if the original  were to be 
satisfied.

●     If k=2, meaning that  , we create one new variable  and two new clauses:  , 

 . Again, the only way to satisfy both of these clauses is to have at least one of  and  
be true.

●     If k=3, meaning that  , we copy  into the 3-SAT instance unchanged:  .

●     If k>3, meaning that  , create n-3 new variables and n-2 new clauses in a chain, 
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where for  ,  ,  , and  . 

The most complicated case is that of the large clauses. If none of the original variables  are  , then 
there are not enough additional variables to be able to satisfy all of the new subclauses. You can satisfy 

 by setting  , but this forces  , and so on until finally  cannot be satisfied. But 
if any single literal  , then we have n-3 free variables and n-3 remaining 3-clauses, so we can 
satisfy each of them. 

This transform takes O(m+n) time if there were n clauses and m total literals in the SAT instance. Since 
any SAT solution also satisfies the 3-SAT instance and any 3-SAT solution sets the variables giving a 
SAT solution, the transformed problem is equivallent to the original. 

Note that a slight modification to this construction would serve to prove that 4-SAT, 5-SAT, or any 
 -SAT is also NP-complete. However, this construction breaks down when we try to use it for 2-

SAT, since there is no way to stuff anything into the chain of clauses. It turns out that resolution gives a 

polynomial-time algorithm for 2-SAT, as discussed in Section . 
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Difficult Reductions
Now that both satisfiability and 3-SAT are known to be hard, we can use either of them in reductions. 
What follows are a pair of more complicated reductions, designed to serve both as examples for how to 
proceed and to increase our repertoire of known hard problems from which we can start. Many 
reductions are quite intricate, because we are essentially programming one problem in the language of a 
significantly different problem.   

One perpetual point of confusion is getting the direction of the reduction right. Recall that we must 
transform every instance of a known NP-complete problem into an instance of the problem we are 
interested in. If we perform the reduction the other way, all we get is a slow way to solve the problem of 
interest, by using a subroutine that takes exponential time. This always is confusing at first, for this 
direction of reduction seems bass-ackwards. Check to make sure you understand the direction of 
reduction now, and think back to this whenever you get confused. 

●     Integer Programming 
●     Vertex Cover 
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Integer Programming

As discussed in Section , integer programming is a fundamental combinatorial optimization problem. 
It is best thought of as linear programming with the variables restricted to take only integer (instead of 
real) values.   

Input: A set V of integer variables, a set of inequalities over V, a maximization function f(V), and an 
integer B. 

Output: Does there exist an assignment of integers to V such that all inequalities are true and  ? 
Consider the following two examples. Suppose 

 

 

 

A solution to this would be  ,  . Not all problems have realizable solutions, however. For the 
following problem: 

 

 

 

the maximum value of f(v) is  (given the constraints), and so there can be no solution to the 
associated decision problem. 

We show that integer programming is hard using a reduction from 3-SAT. For this particular reduction, 
general satisfiability would work just as well, although usually 3-SAT makes reductions easier. 

In which direction must the reduction go? We want to prove integer programming that is hard, and we 
know that 3-SAT is hard. If I could solve 3-SAT using integer programming and integer programming 
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were easy, this would mean that satisfiability would be easy. Now the direction should be clear; we have 
to translate 3-SAT into integer programming. 

What should the translation look like? Every satisfiability instance contains Boolean (true/false) variables 
and clauses. Every integer programming instance contains integer variables (values restricted to 0,1,2,...) 
and constraints. A reasonable idea is to make the integer variables correspond to Boolean variables and 
have constraints serve the same role as the clauses do in the original problem. 

Our translated integer programming problem will have twice as many variables as the SAT instance, one 
for each variable and one for its complement. For each variable  in the set problem, we will add the 
following constraints: 

●     To restrict each integer programming variable  to values of 0 or 1, we add constraints  

and  . Thus they correspond to values of  and  .

●     To ensure that exactly one of the two integer programming variables associated with a given SAT 
variable is  , add constraints so that  . 

For each clause  in the 3-SAT instance, construct a constraint:  . To satisfy 
this constraint, at least one the literals per clause must be set to 1, thus corresponding to a true literal. 
Satisfying this constraint is therefore equivalent to satisfying the clause. 

The maximization function and bound prove relatively unimportant, since we have already encoded the 
entire 3-SAT instance. By using  and B=0, we ensure that they will not interfere with any 
variable assignment satisfying all the inequalities. Clearly, this reduction can be done in polynomial time. 
To establish that this reduction preserves the answer, we must verify two things: 

●     Any SAT solution gives a solution to the IP problem - In any SAT solution, a  literal 
corresponds to a 1 in the integer program, since the clause is satisfied. Therefore, the sum in each 
clause inequality is  .

●     Any IP solution gives a SAT solution - In any solution to this integer programming instance, all 
variables must be set to either 0 or 1. If  , then set literal  . If  , then set literal 

 . No Boolean variable and its complement can both be true, so it is a legal assignment, 
which must also satisfy all the clauses. 

The reduction works both ways, so integer programming must be hard. Notice the following properties, 
which hold true in general for NP-complete: 

●     The reduction preserved the structure of the problem. It did not solve the problem, just put it into a 
different format.

●     The possible IP instances that can result from this transformation are only a small subset of all 
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possible IP instances. However, since some of them are hard, the general problem must be hard.
●     The transformation captures the essence of why IP is hard. It has nothing to do with having big 

coefficients or big ranges on variables; since restricting them to 0/1 is enough. It has nothing to do 
with having inequalties with large numbers of variables. Integer programming is hard because 
satisfying a set of constraints is hard. A careful study of the properties needed for a reduction can 
tell us a lot about the problem. 
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Vertex Cover

Algorithmic graph theory proves to be a fertile ground for hard problems. The prototypical NP-complete 

graph problem is vertex cover, previously defined in Section  as follows:   

Input: A graph G=(V, E) and integer  . 

Output: Is there a subset S of at most k vertices such that every  has at least one vertex in S? 
Demonstrating the hardness of vertex cover proves more difficult than the previous reductions we have 
seen, because the structure of the two relevant problems is very different. A reduction from 3-
satisfiability to vertex cover has to construct a graph G and bound k from the variables and clauses of the 
satisfiability instance. 

First, we translate the variables of the 3-SAT problem. For each Boolean variable  , we create two 
vertices  and  connected by an edge. To cover these edges, at least n vertices will be needed, since no 
two of the edges will share a vertex. 

   
Figure: Reducing satisfiability instance  to vertex cover  

Second, we translate the clauses of the 3-SAT problem. For each of the c clauses, we create three new 
vertices, one for each literal in each clause. The three vertices of each clause will be connected so as to 
form c triangles. At least two vertices per triangle must be included in any vertex cover of these triangles. 

Finally, we will connect these two sets of components together. Each literal in the vertex ``gadgets'' is 
connected to corresponding vertices in the clause gadgets (triangles) that share the same literal. From a 3-
SAT instance with n variables and c clauses, this constructs a graph with 2n+3c vertices. The complete 
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reduction for the 3-SAT problem  is shown in Figure . 

This graph has been designed to have a vertex cover of size n+2c if and only if the original expression is 
satisfiable. By the earlier analysis, any vertex cover must have at least n+2c vertices, since adding extra 
edges to the graph can only increase the size of the vertex cover. To show that our reduction is correct, 
we must demonstrate that: 

●     Every satisfying truth assignment gives a vertex cover - Given a satisfying truth assignment for 
the clauses, select the n vertices from the vertex gadgets that correspond to  literals to be 
members of the vertex cover. Since this is a satisfying truth assignment, a true literal from each 
clause will have covered one of the three cross edges connecting each clause triangle to a vertex 
gadget. Therefore, by selecting the other two vertices of each clause triangle, we can also pick up 
the remaining cross edges and complete the cover.

●     Every vertex cover gives a satisfying truth assignment - Given any vertex cover C of size n+2c, 
exactly n of the vertices must belong to the vertex gadgets. Let these first stage vertices define the 
truth assignment, while the 2c remaining cover vertices must be distributed at two per clause 
gadget; otherwise a clause gadget edge must go uncovered. These clause gadget vertices can 
cover only two of the three connecting cross edges per clause. Therefore, if C gives a vertex 
cover, at least one cross edge per clause must be covered, meaning that the corresponding truth 
assignment satisfies. 

This proof of the hardness of vertex cover, chained with the clique and independent set arguments of 

Section , gives us a library of hard graph problems that we can use to make future hardness proofs 
easier. 
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Other NP-Complete Problems
Clique, vertex cover, and integer programming are just three of the literally hundreds of problems that 
have been shown to be NP-complete. It is important to be aware of which kinds of problems tend to be 
hard, so you recognize them when you see them in applications, and also to provide a suitable class of 
candidates for future reductions. Some, but by no means all, of the hard problems from the catalog 
include: 

●     Integer partition - Can you partition n integers into two subsets such that the sums of the subsets 

are equal? See Section  for details.
●     Bin packing - How many bins of a given size do you need to hold n items of variable size? See 

Section  for details.
●     Chromatic number - How many colors do you need to color a graph such that no neighboring 

vertices are of the same color? See Section  for details.
●     Bandwidth - Which permutation p of the vertices of a graph minimizes the length of the longest 

edge when the vertices are ordered on a line, i.e.  ? See Section  for 
details. 

A few other catalog problems exist in a limbo state, where it is not known whether the problem has a fast 

algorithm or is NP-complete. The most prominent of these are graph isomorphism (see Section ) and 

primality testing (see Section ). That this limbo list is so short is quite a tribute to the state of the art in 
algorithm design and the power of NP-completeness. For almost every important problem for which we 
do not know a fast algorithm, we have a good solid reason for why one doesn't exist. 

The same should hold true for the problems you encounter in your work. One way or another they should 
be resolved as being either hard or polynomial. Leaving them in a limbo state is a sure sign of a bush-
league algorithm designer. 

It takes experience to be able to sense whether a problem is likely to be hard or not. Perhaps the quickest 
way to gain this experience is through careful study of the catalog. Note that slightly changing the 
wording of a problem can make the difference between it being polynomial or NP-complete. Finding the 
shortest path in a graph is easy, while finding the longest path in a graph is hard. Constructing a tour that 
visits all the edges once in a graph is easy, while constructing a tour that visits all the vertices once is 
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hard. 

The first thing to do when you suspect a problem might be NP-complete is look in Garey and Johnson's 
book Computers and Intractability [GJ79], which contains a list of several hundred problems known to 
be NP-complete. Likely you will find the problem you are interested in. 
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The Art of Proving Hardness
Proving that problems are hard is a skill. But once you get the hang of it, reductions can be surprisingly 
straightforward and pleasurable to do. Indeed, the dirty little secret of NP-completeness proofs is that 
they are usually easier to create than explain, in the same way that it is often easier to rewrite old code 
than it is to understand and modify it. 

I offer the following advice to those seeking to prove the hardness of a given problem: 

●     Make your source problem as simple (i.e. restricted) as possible. 

Never try to use the general traveling salesman problem (TSP) as a source problem. Better, use 
Hamiltonian cycle, i.e. TSP where all the weights are 1 or  . Even better, use Hamiltonian path 
instead of cycle, so you don't have to worry about closing up the path. Best of all, use Hamiltonian 
path on directed planar graphs where each vertex has total degree 3. All of these problems are 
equally hard, and the more you can restrict the problem that you are reducing, the less work your 
reduction has to do. 

As another example, never try to use full satisfiability to prove hardness. Start with 3-
satisfiability. In fact, you don't even have to use full 3-satisfiability. Instead, consider planar 3-
satisfiability, where there is a way to draw the clauses as a graph in the plane such you can 
connect all instances of the same literal together without edges crossing. This property tends to be 
useful in proving the hardness of geometric problems. All these problems are equally hard, and 
hence NP-completeness reductions using any of them are equally convincing.

●     Make your target problem as hard as possible. 

Don't be afraid to add extra constraints or freedoms in order to make your problem more general. 
Perhaps your undirected graph problem can be generalized into a directed graph problem and can 
hence be easier to prove hard. Once you have a proof of hardness for the general problem, you 
can then go back and try to simplify the target.

●     Select the right source problem for the right reason. 

Selecting the right source problem makes a big difference in how difficult it is to prove a problem 
hard. Although theoretically any particular problem is as good as another, this is the first and 
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easiest place to go wrong. When faced with trying to prove that a problem is hard, some people 
fish around through dozens of problems, looking for the one that seems the best fit. These people 
are amateurs; odds are they never will recognize what they are looking for when they see it. 

I use four and only four problems as candidates for my hard source problem. Limiting them to 
four means that I can know a lot about each of these problems, such as which variants of these 
problems are hard and which are soft. My favorite problems are: 

❍     3-SAT: The old reliable. When none of the three problems below seem appropriate, I go 
back to the original source.

❍     Integer partition: This is the one and only choice for problems whose hardness seems to 
require using large numbers.

❍     Vertex cover: This is the answer for any graph problems whose hardness depends upon 
selection. Chromatic number, clique, and independent set all involve trying to select the 
correct subset of vertices or edges.

❍     Hamiltonian path: This is my choice for any graph problem whose hardness depends upon 
ordering. If you are trying to route or schedule something, Hamiltonian path is likely your 
lever into the problem. 

●     Amplify the penalties for making the undesired selection. 

Many people are too timid in their thinking about hardness proofs. You are trying to translate one 
problem into another, while keeping the problems as close to their original identities as as 
possible. The easiest way to do this is to be bold with your penalties, to punish anyone for trying 
to deviate from your intended solution. Your thinking should be, ``if you select this element, then 
you have to pick up this huge set that prevents you from finding an optimal solution.'' The sharper 
the consequences for doing what is undesired, the easier it is to prove if and only if.

●     Think strategically at a high level, then build gadgets to enforce tactics. 

You should be asking yourself the following types of questions. ``How can I force that either A or 
B but not both are chosen?'' ``How can I force that A is taken before B?'' ``How can I clean up the 
things I did not select?'' After you have an idea of what you want your gadgets to do, you can 
worry about how to actually craft them.

●     When you get stuck, alternate between looking for an algorithm or a reduction. 

Sometimes the reason you cannot prove hardness is that there exists an efficient algorithm to 
solve your problem! Techniques such as dynamic programming or reducing to polynomial-time 
graph problems such as matching or network flow sometimes yield surprising polynomial 
algorithms. Whenever you can't prove hardness, it likely pays to alter your opinion occasionally to 
keep yourself honest. 

file:///E|/BOOK/BOOK3/NODE117.HTM (2 of 3) [19/1/2003 1:29:55]



The Art of Proving Hardness

       

 
Next: War Story: Hard Against Up: Intractable Problems and Approximations Previous: Other NP-
Complete Problems 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK3/NODE117.HTM (3 of 3) [19/1/2003 1:29:55]



War Story: Hard Against the Clock

       

 
Next: Approximation Algorithms Up: Intractable Problems and Approximations Previous: The Art of 
Proving 

War Story: Hard Against the Clock
My class's attention span was running down like sand through an hourglass. Eyes were starting to glaze 
even in the front row. Breathing had become soft and regular in the middle of the room. Heads were 
tilted back and eyes shut in the rear.   

There were fifteen minutes left to go in my lecture on NP-completeness, and I couldn't really blame 
them. They had already seen several reductions like the ones presented here, but NP-completeness 
reductions are easier to create than to understand or explain. They had to watch one being created in 
order to appreciate this. 

I reached for my trusty copy of Garey and Johnson's book [GJ79], which contains a list of over four 
hundred different known NP-complete problems in an appendix in the back. 

``Enough of this!'' I announced loudly enough to startle those in the back row. ``NP-completeness proofs 
are routine enough that we can construct them on demand. I need a volunteer with a finger. Can anyone 
help me?'' 

A few students in the front held up their hands. A few students in the back held up their fingers. I opted 
for one from the front row. 

``Select a problem at random from the back of this book. I can prove the hardness of any of these 
problems in the now twelve minutes remaining in this class. Stick your finger in and read me a problem.'' 

I had definitely gotten their attention. But I could have done that by offering to juggle chainsaws. Now I 
had to deliver results without cutting myself into ribbons. 

The student picked out a problem. ``OK, prove that Inequivalence of Programs with Assignments is 
hard,'' she said.   

``Huh? I've never heard of that problem before. What is it? Read me the entire description of the problem 
so I can write it on the board.'' The problem was as follows: 
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Input: A finite set X of variables, two programs  and  , each a sequence of assignments of the form 

 

where the  are in X; and a value set V. 

Output: Is there an initial assignment of a value from V to each variable in X such that the two programs 
yield different final values for some variable in X? 

I looked at my watch. Ten minutes to go. But now everything was on the table. I was faced with a 
language problem. The input was two programs with variables, and I had to test to see whether they 
always do the same thing. 

``First things first. We need to select a source problem for our reduction. Do we start with integer 
partition? 3-satisfiability? Vertex cover or Hamiltonian path?'' 

Since I had an audience, I tried thinking out loud. ``Our target is not a graph problem or a numerical 
problem, so let's start thinking about the old reliable: 3-satisfiability. There seem to be some similarities. 
3-SAT has variables. This thing has variables. To be more like 3-SAT, we could try limiting the variables 
in this problem so they only take on two values, i.e.  . Yes. That seems convenient.'' 

My watch said nine minutes left. ``So, class, which way does the reduction go. 3-SAT to language or 
language to 3-SAT?'' 

The front row correctly murmured, ``3-SAT to language.'' 

``Right. So we have to translate our set of clauses into two programs. How can we do that? We can try to 
split the clauses into two sets and write separate programs for each of them. But how do we split them? I 
don't see any natural way how to do it, because eliminating any single clause from the problem might 
suddenly make an unsatisfiable formula satisfiable, thus completely changing the answer. Instead, let's 
try something else. We can translate all the clauses into one program, and then make the second program 
be trivial. For example, the second program might ignore the input and always outputs either only true or 
only false. This sounds better. Much better.'' 

I was still talking out loud to myself, which wasn't that unusual. But I had people listening to me, which 
was. 

``Now, how can we turn a set of clauses into a program? We want to know whether the set of clauses can 
be satisfied, or if there is an assignment of the variables such that it is true. Suppose we constructed a 
program to evaluate whether  is satisfied. We can do it like this ....'' 
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It took me a few minutes worth of scratching before I found the right program. I assumed that I had 
access to constants for  and  , which seemed reasonable, in the sense that it shouldn't make the 
problem algorithmically harder. Once my proof worked, I could later worry about removing the extra 
assumption if desired. 

  

  

   

``Great. Now I have a way to evaluate the truth of each clause. I can do the same thing to evaluate 
whether all the clauses are satisfied.'' 

  

  

   

Now the back of the classroom was getting excited. They were starting to see a ray of hope that they 
would get to leave on time. There were two minutes left in class. 

``Great. So now we have a program that can evaluate to be true if and only if there is a way to assign the 
variables so as to satisfy the set of clauses. We need a second program to finish the job. What about 

 ? Yes, that is all we need. Our language problem asks whether the two programs always 
output the same thing, regardless of the possible variable assignments. If the clauses are satisfiable, that 
means that there must be an assignment of the variables such that the long program would output true. 
Testing whether the programs are equivalent is exactly the same as asking if the clauses are satisfiable.'' 

I lifted my arms in triumph. ``And so, the problem is neat, sweet, and NP-complete.'' I got the last word 
out just before the bell rang. 

This exercise was so much fun that I repeated it the next time I taught the course, using a different 
randomly selected problem. The audio from my ultimately successful attempt to prove hardness is 
accessible from the CD-ROM, if you want to hear what the creation of an NP-completeness proof sounds 
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like. 
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Approximation Algorithms
For the practical person, demonstrating that a problem is NP-complete is never the end of the line. 
Presumably, there was a reason why you wanted to solve it in the first place. That reason for wanting the 
solve it will not have gone away on being told that there is no polynomial-time algorithm. You still seek 
a program that solves the problem of interest. All you know is that you won't find one that quickly solves 
the problem to optimality in the worst case. You still have the following options:   

●     Algorithms fast in the average case - Examples of such algorithms include backtracking 
algorithms with substantial pruning.

●     Heuristics - Heuristic methods like simulated annealing or greedy approaches can be used to find 
a solution with no requirement that it be the best one.

●     Approximation algorithms - The theory of NP-completeness does not stipulate that it is hard to get 
close to the answer, only that it is hard to get the optimal answer. With clever, problem-specific 
heuristics, we can often get provably close to the optimal answer. 

Approximation algorithms return solutions with a guarantee attached, namely that the optimal solution 
can never be much better than this given solution. Thus you can never go too far wrong in using an 
approximation algorithm. No matter what your input instance is and how lucky you are, you are doomed 
to do all right. Further, approximation algorithms realizing provably good bounds often are conceptually 
simple, very fast, and easy to program. 

One thing that is usually not clear, however, is how well the solution from an approximation algorithm 
compares to what you might get from a heuristic that gives you no guarantees. The answer could be 
worse or it could be better. Leaving your money in a savings account in a bank guarantees you 3% 
interest without risk. Still, you likely will do much better putting your money in stocks than in the bank, 
even though performance is not guaranteed.   

One way to get the best of approximation algorithms and heuristics is to run both of them on the problem 
instance and pick the solution giving the better answer. This way, you get a solution that comes with a 
guarantee and a second chance to do even better. When it comes to heuristics for hard problems, 
sometimes you can have it both ways. 
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●     Approximating Vertex Cover 
●     The Euclidean Traveling Salesman 
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Approximating Vertex Cover

  

As we have seen before, finding the minimum vertex cover of a graph is NP-complete. However, a very simple procedure 
can efficiently find a cover that is at most twice as large as the optimal cover:   

VertexCover(G=(V,E))

                while    do:

                                 Select an arbitrary edge   

                                 Add both u and v to the vertex cover

                                 Delete all edges from E that are incident on either 
u or v.

It should be apparent that this procedure always produces a vertex cover, since each edge is only deleted immediately after an 
incident vertex has been added to the cover. More interesting is the claim that any vertex cover must use at least half as many 
vertices as this one. Why? Consider just the edges selected by the algorithm. No two of these edges can share a vertex. 
Therefore, any cover of just these edges must include at least one vertex per edge, which makes it at least half the size of the 
greedy cover. 

There are several interesting things to notice about this algorithm: 

●     Although the procedure is simple, it is not stupid - Many seemingly smarter heuristics can give a far worse 
performance in the worst case. For example, why not modify the procedure above to select only one of the two 
vertices for the cover instead of both. After all, the selected edge will be equally well covered by only one vertex. 

However, consider the star-shaped graph of Figure . This heuristic will produce a two-vertex cover, while the 
single vertex heuristic can return a cover as large as n-1 vertices, should we get unlucky and repeatedly select the leaf 
instead of the center as the cover vertex. 
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Figure: Neglecting to pick the center vertex leads to a terrible vertex cover  

●     Greedy isn't always the answer - Perhaps the most natural heuristic for this problem would repeatedly select and 
delete the vertex of highest remaining degree for the vertex cover. After all, this vertex will cover the largest number 
of possible edges. However, in the case of ties or near ties, this heuristic can go seriously astray and in the worst case 
can yield a cover that is  times optimal.

●     Making a heuristic more complicated does not necessarily make it better - It is easy to complicate heuristics by adding 
more special cases or details. For example, the procedure above does not specify which edge should be selected next. 
It might seem reasonable always to select the edge whose endpoints have highest degree. However, this does not 
improve the worst-case bound and just makes it more difficult to analyze.

●     A postprocessing cleanup step can't hurt - The flip side of designing simple heuristics is that they can often be 
modified to yield better-in-practice solutions without weakening the approximation bound. For example, a 
postprocessing step that deletes any unnecessary vertex from the cover can only improve things in practice, even 
though it won't help the worst-case bound. 

The important property of approximation algorithms is relating the size of the solution produced directly to a lower bound on 
the optimal solution. Instead of thinking about how well we might do, we have to think about the worst case i.e. how badly 
we might perform. 
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The Euclidean Traveling Salesman

    

In most natural applications of the traveling salesman problem, direct routes are inherently shorter than 
indirect routes. For example, if the edge weights of the graph are ``as the crow flies'', straight-line 
distances between pairs of cities, the shortest path from x to y will always be to fly directly.       

   
Figure: The triangle inequality typically holds in geometric and weighted graph problems.  

The edge weights induced by Euclidean geometry satisfy the triangle inequality, which insists that 
 for all triples of vertices u, v, and w. The reasonableness of this condition is 

shown in Figure . Note that the cost of airfares is an example of a distance function that violates the 
triangle inequality, since it is sometimes cheaper to fly through an intermediate city than to fly to the 
destination directly. TSP remains hard when the distances are Euclidean distances in the plane. 

Whenever a graph obeys the triangle inequality, we can approximate the optimal traveling salesman tour 
using minimum spanning trees. First, observe that the weight of a minimum spanning tree is a lower 
bound on the cost of the optimal tour. Why? Deleting any edge from a tour leaves a path, the total weight 
of which must be no greater than that of the original tour. This path has no cycles, and hence is a tree, 
which means its weight is at least that of the minimum spanning tree. Thus the minimum spanning tree 
cost gives a lower bound on the optimal tour.   

file:///E|/BOOK/BOOK3/NODE121.HTM (1 of 3) [19/1/2003 1:29:59]



The Euclidean Traveling Salesman

Consider now what happens in performing a depth-first traversal of a spanning tree. Suppose we walk 
through each tree edge as we process it in a depth-first search. We will visit each edge twice, once going 
down the tree when exploring it and once going up after exploring the entire subtree. For example, in the 

depth-first search of Figure , we visit the vertices in order 1-2-1-3-5-8-5-9-5-3-6-3-1-4-7-10-7-11-7-4-
1, thus using every tree edge exactly twice. Therefore, this tour has weight twice that of the minimum 
spanning tree, and hence at most twice optimal.   

   
Figure: A depth-first traversal of a spanning tree, with the shortcut tour  

However, vertices will be repeated on this depth-first search tour. To remove the extra vertices, at each 
step we can take a shortest path to the next unvisited vertex. The shortcut tour for the tree above is 1-2-3-
5-8-9-6-4-7-10-11-1. Because we have replaced a chain of edges by a single direct edge, the triangle 
inequality ensures that the tour can only get shorter. Thus the shortcut tour is within weight twice that of 
optimal. More complicated but better approximation algorithms for Euclidean TSP are mentioned in 

Section . No approximation algorithms exist for TSPs that do not satisfy the triangle inequality.   
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Exercises
  

1.  Prove that the vertex cover problem (does there exist a subset S of k vertices in a graph G such that every edge in 
G is incident upon at least one vertex in S?) remains NP-complete even when all the vertices in the graph are 
restricted to have even degree.

2.  An instance of the set cover problem consists of a set X of n elements, a family F of subsets of X, and an integer 
k. The question is, do there exist k subsets from F whose union is X? 

For example, if  and  , there does not exist a solution for k=2 but there 

does for k=3 (for example,  ). 

Prove that set cover is NP-complete with a reduction from vertex cover.
3.  The baseball card collector problem is as follows. Given packets  , each of which contains a subset of 

that year's baseball cards, is it possible to collect all the year's cards by buying  packets? 

For example, if the players are  and the packets are 

 

there does not exist a solution for k=2 but there does for k=3, such as 

 

Prove that the baseball card collector problem is NP-hard using a reduction from vertex cover.
4.  (*) An Eulerian cycle is a tour that visits every edge in a graph exactly once. An Eulerian subgraph is a subset of 

the edges and vertices of a graph that has an Eulerian cycle. Prove that the problem of finding the number of 
edges in the largest Eulerian subgraph of a graph is NP-hard. (Hint: the Hamiltonian circuit problem is NP-hard 
even if each vertex in the graph is incident upon exactly three edges.)

5.  The low degree spanning tree problem is as follows. Given a graph G and an integer k, does G contain a 
spanning tree such that all vertices in the tree have degree at most k (obviously, only tree edges count towards 
the degree)? For example, in the following graph, there is no spanning tree such that all vertices have degree less 
than three. 
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1.  Prove that the low degree spanning tree problem is NP-hard with a reduction from Hamiltonian path.
2.  Now consider the high degree spanning tree problem, which is as follows. Given a graph G and an 

integer k, does G contain a spanning tree whose highest degree vertex is at least k? In the previous 
example, there exists a spanning tree of highest degree 8. Give an efficient algorithm to solve the high 
degree spanning tree problem, and an analysis of its time complexity. 

6.  (*) The problem of testing whether a graph G contains a Hamiltonian path is NP-hard, where a Hamiltonian path 
P is a path that visits each vertex exactly once. There does not have to be an edge in G from the ending vertex to 
the starting vertex of P, unlike in the Hamiltonian cycle problem. 

Given a directed acyclic graph G (a DAG), give an O(n+m)-time algorithm to test whether or not it contains a 
Hamiltonian path. (Hint: think about topological sorting and DFS.)

7.  (**) The 2-SAT problem is, given a Boolean formula in 2-conjunctive normal form (CNF), decide whether the 
formula is satisfiable. 2-SAT is like 3-SAT, except that each clause can have only two literals. For example, the 
following formula is in 2-CNF: 

 

Give a polynomial-time algorithm to solve 2-SAT.
8.  (*) It is an open question whether the decision problem ``Is integer n a composite number, in other words, not 

prime?" can be computed in time polynomial in the size of the input. Why doesn't the following algorithm 
suffice to prove it is in P, since it runs in O(n) time? 

PrimalityTesting(n)

                composite :=   

                for i := 2 to n-1 do

                                     if    then

                                                           composite :=    
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Data Structures
Data structures are not really algorithms that you can find and plug into your application.   Instead, they 
are the fundamental constructs for you to build your program around. Becoming fluent in what data 
structures can do for you is essential to get full value from them. 

Because of this, this section is slightly out of sync with the rest of the catalog. Perhaps the most useful 
aspect of it will be the pointers to implementations of various data structures. Many of these data 
structures are nontrivial to implement well, so the programs we point to will likely be useful as models 
even if they do not do exactly what you need. Certain fundamental data structures, like kd-trees and 
suffix trees,   are not as well known as they should be. Hopefully, this catalog will serve to better 
publicize them. 

There is a large number of books on elementary data structures available. Our favorites include:   

●     Gonnet and Baeza-Yates [GBY91] - The book is a comprehensive reference to fundamental 
searching, sorting, and text searching algorithms. It features over 2,000 references and 
implementations in C and Pascal. These programs are now available by ftp/WWW. See Section 

 for more details.
●     Weiss [Wei92] - A nice text, emphasizing data structures more than algorithms.       Comes in 

Pascal, C++, and Ada editions.
●     Wood [Woo93] - A thorough and accessible treatment of modern data structures, including suffix 

trees and geometric data structures. Pascal implementations for many of the data structures are 
provided. 

Mehlhorn and Tsakalidis [MT90b] provide a detailed and up-to-date survey of research in data 
structures. The student who took only an elementary course in data structures is likely to be impressed by 
the volume and quality of recent work on the subject. 

●     Dictionaries 
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●     Priority Queues 
●     Suffix Trees and Arrays 
●     Graph Data Structures 
●     Set Data Structures 
●     Kd-Trees 
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Dictionaries

   

   

Input description: A set of n records, each identified by one or more key fields. 

Problem description: Build and maintain a data structure to efficiently locate, insert, or delete the record 
associated with any query key q. 

Discussion: The abstract data type ``dictionary'' is one of the most important structures in computer 
science. Dozens of different data structures have been proposed for implementing dictionaries including 
hash tables, skip lists, and balanced/unbalanced binary search trees - so choosing the right one can be 
tricky. Depending on the application, it is also a decision that can significantly impact performance. In 
practice, it is more important to avoid using a bad data structure than to identify the single best option 
available.   

An essential piece of advice is to carefully isolate the implementation of the dictionary data structure 
from its interface. Use explicit calls to subroutines that initialize, search, and modify the data structure, 
rather than embedding them within the code. This leads to a much cleaner program, but it also makes it 
easy to try different dictionary implementations to see how they impact performance. Do not obsess 
about the cost of the procedure call overhead inherent in such an abstraction. If your application is so 
time-critical that such overhead can impact performance, then it is even more essential that you be able to 
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easily experiment with different implementations of your dictionary.     

In choosing the right data structure for your dictionary, ask yourself the following questions: 

●     How many items will you typically have in your data structure? - Will you know this number in 
advance? Are you looking at a problem small enough that the simple data structure will be best, or 
will it be so large that we must worry about using too much memory or swapping?

●     Do you know the relative number of insertions, deletions, and search queries? - Will there be any 
modifications to the data structure after it is first constructed, or will it be static from that point 
on?

●     Do you have an understanding of the relative frequency with which different keys will be 
accessed? - Can we assume that the access pattern will be uniform and random, or will it exhibit a 
skewed access distribution (i.e. certain elements are much more popular than others) or a sense of 
locality (i.e. elements are likely to be repeatedly accessed in clusters, instead of at fairly random 
intervals). Usually, the world is both skewed and clustered.      

●     Is it critical that individual operations be fast, or only that the total amount of work done over the 
entire program be minimized? - When response time is critical, such as in a program controlling a 
heart-lung machine, you can't wait too long between steps. When you have a program that is doing 
a lot of queries over the database, such as identifying all sex offenders who happen to be 
Republicans, it is not so critical that you pick out any particular congressman quickly as that you 
get them all with the minimum total effort.       

Once you understand what your needs are, try to identify the best data structure from the list below: 

●     Unsorted linked lists or arrays - For small data sets, say up to 10 to 20 items, an unsorted array is 
probably the easiest and most efficient data structure to maintain. They are easier to work with 
than linked lists, and if the dictionary will be kept this small, you cannot possibly save a 
significant amount of space over allocating a full array. If your dictionary will be too much larger, 
the search time will kill you in either case.         

A particularly interesting and useful variant is a self-organizing list. Whenever a key is accessed 
or inserted, always move it to head of the list. Thus if the key is accessed again in the near future, 
it will be near the front and so require only a short search to find it. Since most applications 
exhibit both uneven access frequencies and locality of reference, the average search time for a 
successful search in a self-organizing list is typically much better than in a sorted or unsorted list. 
Of course, self-organizing data structures can be built from arrays as well as linked lists.    

●     Sorted linked lists or arrays - Maintaining a sorted linked list is usually not worth the effort 
(unless you are trying to eliminate duplicates), since we cannot perform binary search in such a 
data structure. A sorted array will be appropriate if and only if there are not many insertions or 
deletions. When the array gets so large that it doesn't fit in real memory, think B-trees instead.       
 

●     Hash tables - For applications involving a moderate-to-large number of keys (say between 100 
and 1,000,000), a hash table with bucketing is probably the right way to go. In a hash table, we 
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use a function that maps keys (be they strings, numbers, or whatever) to integers between 0 and m-
1. We maintain an array of m buckets, each typically implemented using an unsorted linked list. 
For a given key, the hash function immediately identifies which bucket will contain it. If we use a 
hash function that spreads the keys out nicely and a sufficiently large hash table, each bucket 
should contain very few items, thus making linear search acceptable. Insertion and deletion from a 
hash table reduce to insertion and deletion from the bucket/list.       

A well-tuned hash table will likely outperform a sorted array in most applications. However, 
several design decisions go into creating a well-tuned hash table: 

❍     How big should the table be? Typically, m should about the same as the maximum number 
of items you expect to put in the table. Make sure that m is a prime number, so as to 
minimize the dangers of a bad hash function.  

❍     What hash function should I use? For strings, something like 

 

should work, where  is the size of the alphabet and char(x) is the function that maps each 
character x to its ASCII character code. For long strings, 8 to 10 characters should be 
sufficient to hash upon, provided they are unlikely to be padded blanks or some other 
invariant. Use Horner's rule to implement this hash function computation efficiently, as 

discussed in Section . 
    

Regardless of which hash function you decide to use, print statistics on the distribution of keys per 
bucket to see how uniform it really is. Odds are the first hash function you try will not prove to be 
the best. Botching up the hash function is an excellent way to slow down any application.

●     Binary search trees - Binary search trees are elegant data structures that support fast insertions, 
deletions, and queries. The big distinction between different types of trees is whether they are 
explicitly rebalanced after insertion or deletion, and how this rebalancing takes place. In random 
search trees, no rebalancing takes place and we simply insert a node at the leaf position where we 
can find it. Although search trees perform well under random insertions, most applications are not 
really random. Indeed, unbalanced search trees constructed by inserting keys in sorted order are a 
disaster, performing like a linked list.           

Balanced search trees use local rotation operations to restructure search trees, moving more 
distant nodes closer to the root while maintaining the in-order search structure of the tree. Among 
balanced search trees, AVL and 2/3 trees are now passé, and red-black trees seem to be more 
popular. A particularly interesting self-organizing data structure is the splay tree, which uses 
rotations to move any accessed key to the root. Frequently used or recently accessed nodes thus sit 
near the top of the tree, allowing fast search.             
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Bottom line: Which binary search tree is best for your application? Probably the balanced tree for 
which you have the best implementation readily available. See the choices below. Which flavor of 
balanced tree is probably not as important as how good the programmer was who coded it.

●     B-trees - For data sets so large that they will not fit in main memory (say more than 1,000,000 
items) your best bet will be some flavor of a B-tree. As soon as the data structure gets outside of 
main memory, the search time to access a particular location on a disk or CD-ROM can kill you, 
since this is several orders of magnitude slower than accessing RAM.         

The idea behind a B-tree is to collapse several levels of a binary search tree into a single large 
node, so that we can make the equivalent of several search steps before another disk access is 
needed. We can thereafter reference enormous numbers of keys using only a few disk accesses. To 
get the full benefit from using a B-tree, it is important to understand explicitly how the secondary 
storage device and virtual memory interact, through constants such as page size and virtual/real 
address space.     

Even for modest-sized data sets, unexpectedly poor performance of a data structure may be due to 
excessive swapping, so listen to your disk to help decide whether you should be using a B-tree.  

●     Skip lists - These are somewhat of a cult data structure. Their primary benefits seem to be ease of 
implementation relative to balanced trees. If you are using a canned tree implementation, and thus 
not coding it yourself, this benefit is eliminated. I wouldn't bother with them.   

Implementations: LEDA (see Section ) provides an extremely complete collection of dictionary data 
structures in C++, including hashing, perfect hashing, B-trees, red-black trees, random search trees, and 
skip lists. Given all of these choices, their default dictionary implementation is a randomized search tree 
[AS89], presumably reflecting which structure they expect to be most efficient in practice.       

XTango (see Section ) is an algorithm animation system for UNIX and X-windows that includes 
animations of such dictionary data structures as AVL trees, binary search trees, hashing, red-black trees, 
and treaps (randomized search trees). Many of these are interesting and quite informative to watch. 
Further, the C source code for each animation is included.       

The 1996 DIMACS implementation challenge focused on elementary data structures like dictionaries. 
The world's best available implementations were likely to be identified during the course of the 
challenge, and they are accessible from http://dimacs.rutgers.edu/ .     

Bare bones implementations in C and Pascal of a dizzying variety of dictionary data structures appear in 
[GBY91], among them several variations on hashing and binary search trees, and optimal binary search 

tree construction. See Section  for details.   
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Implementation-oriented treatments of a variety of dictionary data structures appear in [BR95], including 
hashing, splay trees, red-black trees, and what looks like a thorough implementation of B-trees. Code in 
C for these data structures is included in the text and is available on disk for a modest fee. 

Notes: Mehlhorn and Tsakalidis [MT90b] give a thorough survey of the state of the art in modern data 
structures. Knuth [Knu73a] provides a detailed analysis and exposition on fundamental dictionary data 
structures but misses such modern data structures as red-black and splay trees. Gonnet and Baeza-Yates 
[GBY91] provide implementations (in C and Pascal), detailed references, and experimental results for a 
wide variety of dictionary data structures. We defer to these sources to avoid giving original references 
for each of the data structures described above. 

Good expositions on red-black trees [GS78] include [BR95, CLR90, Woo93]. Good expositions on splay 
trees [ST85] include [Tar83, Woo93]. Good expositions on B-trees [BM72] include [BR95, CLR90]. 
Good expositions on hashing includes [Meh84, Woo93]. 

Several modern data structures, such as splay trees, have been studied via amortized analysis, where we 
bound the total amount of time used by any sequence of operations. In an amortized analysis, we show 
that if a single operation is very expensive, this is because we have already benefited from enough cheap 
operations before it to pay off the higher cost. A data structure realizing an amortized complexity of 
O(f(n)) is less desirable than one whose worst-case complexity is O(f(n)) (since a very bad operation 
might still occur) but better than one with an average-case complexity O(f(n)), since the amortized bound 
will achieve this average on any input.     

Newer dictionary data structures that explicitly incorporate randomization into the construction include 
randomized search trees [AS89] and skip lists [Pug90].   

Related Problems: Sorting (see page ), Searching (see page ).     

       

 
Next: Priority Queues Up: Data Structures Previous: Data Structures 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Priority Queues

   

   

Input description: A set of records with numerically or otherwise totally ordered keys. 

Problem description: Build and maintain a data structure for quickly inserting and deleting records, 
while enabling quick access to the smallest or largest key in the set. 

Discussion: Priority queues are useful data structures in simulations, particularly for maintaining a set of 
future events ordered by time so that we can quickly retrieve what the next thing to happen is. They are 
called ``priority'' queues because they enable you to retrieve items not by the insertion time (as in a stack 
or queue), nor by a key match (as in a dictionary), but by which item has the highest priority of retrieval. 
          

If your application performs no insertions after the first query, there is no need for an explicit priority 
queue. Simply sort the records by priority and proceed from top to bottom, maintaining a pointer to the 
last record deleted. This situation occurs in Kruskal's minimum spanning tree algorithm, or when 
simulating a completely scripted set of events.       

However, if you are mixing insertions, deletions, and queries, you need a real priority queue. The 
following questions will help select the right one: 
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●     Besides access to the smallest element, what other operations will you need? - Will you be 
searching for arbitrary keys, or just searching for the smallest? Will you be deleting arbitrary 
elements from the data, or just repeatedly deleting the top or smallest element?

●     Will you know the maximum size of your data structure in advance, or might an arbitrary number 
of items be inserted into it? - The issue here is whether you can preallocate space for the data 
structure.

●     Will you be changing the priority of elements already in the queue, or simply inserting and 
removing them? - Changing the priority of elements implies that we must be able to look up 
elements in the queue based on their key, in addition to being able to retrieve the largest element. 

Depending upon the answers, you have the following basic priority queue choices: 

●     Sorted array or list - In a sorted array,     it is very efficient to find and (by decrementing the top 
index) delete the smallest element. However, maintaining sortedness makes the insertion of new 
elements slow. Sorted arrays are suitable when there will be few insertions into the priority queue.

●     Binary heaps - This simple, elegant data structure supports both insertion and extract-min in 
 time each.       Heaps maintain an implicit binary tree structure in an array, such that the 

key of the root of any subtree is less than that of all its descendents. Thus the minimum key is 
always at the root of the heap. New keys can be inserted by placing them at an open leaf and 
percolating the element upwards until it sits at its proper place in the partial order. 

Binary heaps are the right answer whenever you know an upper bound on the number of items in 
your priority queue, since you must specify the array size at creation time.

●     Bounded height priority queue - This array-based data structure permits constant-time insertion 
and find-min operations whenever the range of possible key values is limited.   Suppose we know 
that all key values will be integers between 1 and n. We can set up an array of n linked lists, such 
that the ith list serves as a bucket containing all items with key i. We will maintain a pointer top to 
the smallest nonempty list. To insert an item with key k into the priority queue, add it to the kth 
bucket and set  . To extract the minimum, report the first item from bucket top, 
delete it, and move top down if the bucket is now empty. 

Bounded height priority queues are very useful in maintaining the vertices of a graph sorted by 
degree, which is a fundamental operation in graph algorithms.     Still, they are not as widely 
known as they should be. They are usually the right priority queue for any small, discrete range of 
keys.

●     Binary search trees - Binary search trees make effective priority queues, since the smallest 
element is always the leftmost leaf, while the largest element is always the rightmost leaf.     The 
min (max) is found by simply tracing down left (right) pointers until the next pointer is nil. Binary 
tree heaps prove most appropriate when you also need to search a dictionary of the values, or if 
you have an unbounded key range and do not know the maximum priority queue size in advance.

●     Fibonacci and pairing heaps - These complicated priority queues are designed to speed up 
decrease-key operations, where the priority of an item already in the priority queue is reduced. 
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This arises, for example, in shortest path computations whenever we discover a shorter route to a 
vertex v than we had previously established. Thus v has a higher priority of being accessed next.   
    

Properly implemented and used, they lead to better performance on very large computations. Still, 
they are sufficiently complicated that you shouldn't mess with them unless you really know what 
you are doing. 

Implementations: LEDA (see Section ) provides a complete collection of priority queues in C++, 
including Fibonacci heaps, pairing heaps, Emde-Boas trees, and bounded height priority queues. 
Fibonacci heaps are their default implementation.   

SimPack/Sim++ is a library of routines for implementing discrete event simulations, built by Robert 
Cubert and Paul Fishwick, of the University of Florida.     Priority queues are integral to such 
simulations, and Sim++ contains implementations of linked, binary, leftist, and calendar heaps [Bro88]. 
If you need a priority queue to control a simulation, check out http://www.cis.ufl.edu/  
fishwick/simpack/simpack.html. An associated book [Fis95] describes model design using SimPack.     

Bare bones implementations in C and Pascal of the basic priority queue data structures appear in 
[GBY91]. Most notable is the inclusion of implementations of exotic priority queues such as P-trees and 

pagodas. See Section  for further details.         

XTango (see Section ) is an algorithm animation system for UNIX and X-windows, that includes 
animations of such advanced priority queue data structures as binomial and Fibonacci heaps, as well as a 
spiffy animation of heapsort.     

Many textbooks provide implementations of simple priority queues, including [MS91] (see Section ). 
Algorithm 561 [Kah80] of the Collected Algorithms of the ACM is a Fortran implementation of a heap 

(see Section ).   

Notes: Good expositions on efficient heap construction algorithms include [Baa88, Ben86, CLR90, 
Man89, MT90b]. See [GBY91] for a description of several exotic priority queues. Empirical 
comparisons between priority queue data structures include [Jon86]. 

Bounded height priority queues are useful data structures in practice, but they do not have good worst-
case performance bounds when arbitrary insertions and deletions are permitted. However, von Emde 
Boas priority queues [vEBKZ77] support  insertion, deletion, search, max, and min operations 
where each key is an element from 1 to n.     

file:///E|/BOOK/BOOK3/NODE130.HTM (3 of 4) [19/1/2003 1:30:05]



Priority Queues

Fibonacci heaps [FT87] support insert and decrease-key operations in O(1) amortized time, with  
amortized time extract-min and delete operations. The constant-time decrease-key operation leads to 
faster implementations of classical algorithms for shortest-paths, weighted bipartite-matching, and 
minimum-spanning-tree.   In practice, Fibonacci heaps are nontrivial to implement and have large 
constant factors associated with them. However, pairing heaps have been proposed to realize the same 
bounds with less overhead. Experiments with pairing heaps are reported in [SV87].    

Heaps define a partial order that can be built using a linear number of comparisons.   The familiar linear-
time merging algorithm for heap construction is due to Floyd [Flo64]. In the worst case, 1.625n 
comparisons suffice [GM86] and  comparisons are necessary [CC92]. 

Related Problems: Dictionaries (see page ), sorting (see page ), shortest path (see page ).       

       

 
Next: Suffix Trees and Arrays Up: Data Structures Previous: Dictionaries 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Suffix Trees and Arrays 

   

   

Input description: A reference string S. 

Problem description: Build a data structure for quickly finding all places where an arbitrary query string 
q is a substring of S. 

Discussion: Suffix trees and arrays are phenomenally useful data structures for solving string problems 
efficiently and with elegance. If you need to speed up a string processing algorithm from  to linear 
time, proper use of suffix trees is quite likely the answer. Indeed, suffix trees are the hero of the war story 

reported in Section .       In its simplest instantiation, a suffix tree is simply a trie of the n strings that 
are suffixes of an n-character string S.     A trie is a tree structure, where each node represents one 
character, and the root represents the null string. Thus each path from the root represents a string, 
described by the characters labeling the nodes traversed. Any finite set of words defines a trie, and two 
words with common prefixes will branch off from each other at the first distinguishing character. Each 

leaf represents the end of a string. Figure  illustrates a simple trie. 
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Figure: A trie on strings the, their, there, was, and when  

Tries are useful for testing whether a given query string q is in the set.     Starting with the first character 
of q, we traverse the trie along the branch defined by the next character of q. If this branch does not exist 
in the trie, then q cannot be one of the set of strings. Otherwise we find q in |q| character comparisons 
regardless of how many strings are in the trie. Tries are very simple to build (repeatedly insert new 
strings) and very fast to search, although they can be expensive in terms of memory. 

A suffix tree is simply a trie of all the proper suffixes of S. The suffix tree enables you to quickly test 
whether q is a substring of S, because any substring of S is the prefix of some suffix (got it?). The search 
time is again linear in the length of q. 

The catch is that constructing a full suffix tree in this manner can require  time and, even worse, 

 space, since the average length of the n suffices is n/2 and there is likely to be relatively little 
overlap representing shared prefixes. However, linear space suffices to represent a full suffix tree by 
being clever. Observe that most of the nodes in a trie-based suffix tree occur on simple paths between 
branch nodes in the tree. Each of these simple paths corresponds to a substring of the original string. By 
storing the original string in an array and collapsing each such path into a single node described by the 
starting and ending array indices representing the substring, we have all the information of the full suffix 
tree in only O(n) space. The output figure for this section displays a collapsed suffix tree in all its glory. 

Even better, there exist linear-time algorithms to construct this collapsed tree that make clever use of 
pointers to minimize construction time. The additional pointers used to facilitate construction can also be 
used to speed up many applications of suffix trees. 

But what can you do with suffix trees? Consider the following applications. For more details see the 
books by Gusfield [Gus97] or Crochemore and Rytter [CR94]: 
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●     Find all occurrences of q as a substring of S - Just as with a trie, we can walk down from the root 
to find the node  associated with q. The positions of all occurrences of q in S are represented by 
the descendents of  , which can be identified using a depth-first search from  .   For collapsed 
suffix trees, this takes O(|q|+k) time if there are k occurrences of q in S.

●     Longest substring common to a set T of strings  -   Build a single collapsed suffix tree 
containing all suffixes of all strings, with each leaf labeled with its original string. In the course of 
doing a depth-first search on this tree, we can label each node with both the length of its common 
prefix and the number of distinct strings from T that are children of it. Thus the best node can be 
selected in linear time.

●     Find the longest palindrome in S -   A palindrome is a string that reads the same if the order of 
characters is reversed, such as madam. To find the longest palindrome in a string S, build a single 
suffix tree containing all suffixes of S and the reversal of S, with each leaf identified by its starting 
position. A palindrome is defined by any node in this tree that has forward and reversed children 
from the same position. 

Since the linear time suffix tree construction algorithm is tricky, I recommend either starting from an 
existing implementation or using a simple, potentially quadratic-time incremental-insertion algorithm to 
build a compressed suffix tree. Another good option is to use suffix arrays, discussed below.   

Suffix arrays do most of what suffix trees do, while typically using four times less memory than suffix 
trees.   They are also easier to implement. A suffix array is basically just an array that contains all the n 
suffixes of S in sorted order. Thus a binary search of this array for string q suffices to locate the prefix of 
a suffix that matches q, permitting efficient substring search in  string comparisons. In fact, only 

 character comparisons need be performed on any query, since we can identify the next character 
that must be tested in the binary search.   For example, if the lower range of the search is cowabunga and 
the upper range is cowslip, all keys in between must share the same first three letters, so only the fourth 
character of any intermediate key must be tested against q. 

The space savings of suffix arrays result because as with compressed suffix trees, it suffices to store 
pointers into the original string instead of explicitly copying the strings. Suffix arrays use less memory 
than suffix trees by eliminating the need for explicit pointers between suffixes since these are implicit in 
the binary search. In practice, suffix arrays are typically as fast or faster to search than suffix trees. Some 
care must be taken to construct suffix arrays efficiently, however, since there are  characters in the 
strings being sorted. A common solution is to first build a suffix tree, then perform an in-order traversal 
of it to read the strings off in sorted order!   

Implementations: Ting Chen's and Dimitris Margaritis's C language implementations of suffix trees, 

reported in the war story of Section , are available on the algorithm repository WWW site: 
http://www.cs.sunysb.edu/  algorith.   

Bare bones implementations in C of digital and Patricia trie data structures and suffix arrays appear in 
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[GBY91]. See Section  for details.   

Notes: Tries were first proposed by Fredkin [Fre62], the name coming from the central letters of the 
word ``retrieval''. A survey of basic trie data structures with extensive references appears in [GBY91].   
Expositions on tries include [AHU83]. 

Efficient algorithms for suffix tree construction are due to Weiner [Wei73], McCreight [McC76], and 
Ukkonen [Ukk92]. Good expositions on these algorithms include Crochmore and Wytter [CR94] and 
Gusfield [Gus97]. Textbooks include [Woo93] and [AHU74], where they are called position trees.   
Several applications of suffix trees to efficient string algorithms are discussed in [Apo85]. 

Suffix arrays were invented by Manber and Myers [MM90], although an equivalent idea called Pat trees 
due to Gonnet and Baeza-Yates appears in [GBY91].   

The power of suffix trees can be further augmented by using a data structure for computing the least 
common ancestor of any pair of nodes x, y in a tree in constant time, after linear-time preprocessing of 
the tree.     The original data structure is due to Harel and Tarjan [HT84], but it was significantly 
simplified by Schieber and Vishkin [SV88]. Expositions include Gusfield [Gus97]. The least common 
ancestor (LCA) of two nodes in a suffix tree or trie defines the node representing the longest common 
prefix of the two associated strings.   Being able to answer such queries in constant time is amazing, and 
useful as a building block for many other algorithms. The correctness of the LCA data structure is 
difficult to see; however, it is implementable and can perform well in practice. 

Related Problems: string matching (see page ), longest common substring (see page ).     
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Graph Data Structures

   

   

Input description: A graph G. 

Problem description: Give a flexible, efficient data structure to represent G. 

Discussion: While there are several possible variations, the two basic data structures for graphs are 
adjacency matrices and adjacency lists. What these data structures actually are is discussed in Section 

.     The issues in deciding which one to use include: 

●     How big will your graph be? -   How many vertices will it have, both typically and in the worse 
case? Ditto for the number of edges? If your graph has 100 vertices, your adjacency matrix 
contains 10,000 entries. If your graph has 1,000 vertices, your adjacency matrix contains 
1,000,000 entries. If your graph has 10,000 vertices, your adjacency matrix contains 100,000,000 
entries - so forget about it. Adjacency matrices work only for small or very dense graphs.

●     How dense will your graph be? - If the graph is very dense, meaning that a large fraction of the 
vertex pairs define edges, there is probably no compelling reason to use adjacency lists, since you 
will be doomed to using  space, anyway.        

●     Which algorithms will you be implementing? - Certain algorithms are easier on adjacency 
matrices (such as all-pairs shortest path) and others on adjacency lists (such as most DFS-based 
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algorithms). Adjacency matrices win for algorithms that repeatedly ask, ``Is (i,j) in G?'' However, 
most graph algorithms can be modified to eliminate such queries.   

●     Will you be modifying the graph over the course of your application, and if so, how? - Repeated 
edge insertions and (particularly) deletions argue for adjacency matrices, or perhaps for fancier 
versions of adjacency lists such as binary search trees. However, more likely than modifying the 
topology of graph is modifying the attributes of a vertex or edge of the graph, such as size, 
weight, or color.   Attributes are best handled as extra fields in the vertex or edge records of 
adjacency lists. 

Building a good general-purpose graph type is surprisingly tricky and difficult. For this reason, we 
suggest that you check out existing implementations (particularly LEDA) before hacking up your own. 
Note that it costs only time linear in the size of the larger data structure to convert between adjacency 
matrices and adjacency lists. This conversion is unlikely to be the bottleneck in any application, if you 
decide you want to use both data structures and have the space to store them. This usually isn't necessary 
but might prove simplest if you are confused about the alternatives. 

Planar graphs are those that can be drawn in the plane so that no two edges cross.   Many graphs arising 
in applications are planar by definition, such as maps of countries, while others are planar by 
happenstance, like any tree.   Planar graphs are always sparse, since any n-vertex planar graph can have 
at most 3n-6 edges, so they should usually be represented by adjacency lists. If the planar drawing (or 
embedding) of the graph is fundamental to what is being computed, planar graphs are best represented 

geometrically. See Section  for algorithms for constructing planar embeddings from graphs, and 

Section  for algorithms maintaining graphs implicit in the arrangements of geometric objects like 
lines and polygons.      

Hypergraphs are generalized graphs where each edge may link subsets of more than two vertices.   For 
example, suppose we want to represent who is on which Congressional committee.   The vertices of our 
hypergraph would be the individual congressmen, while each hyperedge would represent one committee. 
Such arbitrary collections of subsets of a set are naturally thought of as hypergraphs. 

Two basic data structures for hypergraphs are: 

●     Incidence matrices, which are analogous to adjacency matrices and require  space, where m 
is the number of hyperedges.   Each row corresponds to a vertex, and each column to an edge, 
with a nonzero entry in M[i,j] iff vertex i is incident to edge j. For standard graphs, there are two 
nonzero entries in each column. The degree of each vertex governs the number of nonzero entries 
in each row.

●     Bipartite incidence structures, which are analogous to adjacency lists, and hence suited for sparse 
hypergraphs.   There is a vertex of the incidence structure associated with each edge and vertex of 
the hypergraphs, and an edge (i,j) in the incidence structure if vertex i of the hypergraph is in edge 
j of the hypergraph. Adjacency lists are typically used to represent this incidence structure. This 
bipartite incidence structure also provides a natural way to visualize the hypergraph, by drawing 
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the associated bipartite graph. 

Special efforts must be taken to represent very large graphs efficiently. However, interesting problems 
have been solved on graphs with millions of edges and vertices.   The first step is to make your data 

structure as lean as possible, by packing your adjacency matrix as a bit vector (see Section ) or   
removing extra pointers from your adjacency list representation. For example, in a static graph (no edge 
insertions or deletions) each edge list can be replaced by a packed array of vertex identifiers, thus 
eliminating pointers and saving potentially half the space. 

At some point it may become necessary to switch to a hierarchical representation of the graph, where the 
vertices are clustered into subgraphs that are compressed into single vertices.   Two approaches exist for 
making such a hierarchical decomposition.   The first breaks things into components in a natural or 
application-specific way. For example, knowing that your graph is a map of roads and cities suggests a 
natural decomposition - partition the map into districts, towns, counties, and states. The other approach 

runs a graph partition algorithm as in Section .   If you are performing the decomposition for space or 
paging reasons, a natural decomposition will likely do a better job than some naive heuristic for an NP-
complete problem.   Further, if your graph is really unmanageably large, you cannot afford to do a very 
good job of algorithmically partitioning it. You should first verify that standard data structures fail on 
your problem before attempting such heroic measures. 

Implementations: LEDA (see Section ) provides the best implemented graph data type currently 
available in C++. If at all possible, you should use it. If not, you should at least study the methods it 
provides for graph manipulation, so as to see how the right level of abstract graph type makes 
implementing algorithms very clean and easy.   Although a general graph implementation like LEDA 
may be 2 to 5 times slower and considerably less space efficient than a stripped-down special-purpose 
implementation, you have to be a pretty good programmer to realize this performance improvement. 
Further, this speed is likely to come at the expense of simplicity and clarity.    

GraphEd [Him94], written in C by Michael Himsolt, is a powerful graph editor that provides an interface 
for application modules and a wide variety of graph algorithms.   If your application demands interaction 
and visualization more than sophisticated algorithmics, GraphEd might be the right place to start, 
although it can be buggy. GraphEd can be obtained by anonymous ftp from forwiss.uni-passau.de 

(132.231.20.10) in directory /pub/local/graphed. See Section  for more details on GraphEd and other 
graph drawing systems. 

The Stanford Graphbase (see Section ) provides a simple but flexible graph data structure in CWEB, a 
literate version of the C language. It is instructive to see what Knuth does and does not place in his basic 
data structure, although we recommend LEDA as a better basis for further development.    

LINK is an environment for combinatorial computing that provides special support for hypergraphs, 
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including the visualization of hypergraphs.   Although written in C++, it provides a Scheme language 
interface for interacting with the graphs.   LINK is available from 
http://dimacs.rutgers.edu/Projects/LINK.html . 

An elementary implementation of a ``lazy'' adjacency matrix in Pascal, which does not have to be 

initialized, appears in [MS91].     See Section . 

Simple graph data structures in Mathematica are provided by Combinatorica [Ski90], with a library of 

algorithms and display routines.     See Section . 

Notes: It was not until the linear-time algorithms of Hopcroft and Tarjan [HT73b, Tar72] that the 
advantages of adjacency list data structures for graphs became apparent. The basic adjacency list and 
matrix data structures are presented in essentially all books on algorithms or data structures, including 
[CLR90, AHU83, Tar83].   

An interesting question concerns minimizing the number of bits needed to represent arbitrary graphs on n 
vertices, particularly if certain operations must be supported efficiently.   Such issues are discussed in 
[vL90b]. 

Dynamic graph algorithms are essentially data structures that maintain quick access to an invariant (such 
as minimum spanning tree or connectivity) under edge insertion and deletion.    Sparsification [EGIN92] 
is a general and interesting approach to constructing dynamic graph algorithms. See [ACI92] for an 
experimental study on the practicality of dynamic graph algorithms. 

Hierarchically-defined graphs often arise in VLSI design problems, because designers make extensive 
use of cell libraries [Len90]. Algorithms specifically for hierarchically-defined graphs include planarity 
testing [Len89], connectivity [LW88], and minimum spanning trees [Len87].    

The theory of hypergraphs is presented by Berge [Ber89].   

Related Problems: Set data structures (see page ), graph partition (see page ).     
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Set Data Structures

   

   

Input description: A universe of items  and a collection of subsets  , 
where  . 

Problem description: Represent each subset so as to efficiently (1) test whether  , (2) find the 
union or intersection of  and  , and (3) insert or delete members of S. 

Discussion: In mathematical terms, a set is an unordered collection of objects drawn from a fixed 
universal set. However, it is usually useful for implementation to represent each set in a single canonical 
order, typically sorted, so as to speed up or simplify various operations. Sorted order turns the problem 
of finding the union or intersection of two subsets into a linear-time operation - just sweep from left to 
right and see what you are missing.     It also makes possible element searching in sublinear time. Finally, 
printing the elements of a set in a canonical order paradoxically reminds us that order really doesn't 
matter.    

We distinguish sets from two other kinds of objects: strings and dictionaries. If there is no fixed-size 

universal set, a collection of objects is best thought of as a dictionary, as discussed in Section .   If the 
order does matter in a subset, i.e. if  is not the same as  , then your structure is more 
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profitably thought of as a string, so see Sections  and .     

When each subset has cardinality exactly two, they form edges in a graph whose vertices are the 
universal set. A system of subsets with no restrictions on the cardinality of its members is called a 
hypergraph. It often can be profitable to consider whether your problem has a graph-theoretical analogy, 
like connected components or shortest path in a hypergraph.   

Your primary alternatives for representing arbitrary systems of subsets are: 

●     Bit vectors -   If your universal set U contains n items, an n-bit vector or array can represent any 
subset  . Bit i will be 1 if  , otherwise bit i is 0. Since only one bit is used per element, 
bit vectors can be very space efficient for surprisingly large values of |U|. Element insertion and 
deletion simply flips the appropriate bit. Intersection and union are done by ``and-ing'' or ``or-ing'' 
the bits together. The only real drawback of a bit vector is that for sparse subsets, it takes O(n) 
time to explicitly identify all members of S.  

●     Containers or dictionaries -     A subset can also be represented using a linked list, array, binary 
tree, or dictionary containing exactly the elements in the subset. No notion of a fixed universal set 
is needed for such a data structure. For sparse subsets, dictionaries can be more space and time 
efficient than bit vectors and easier to work with and program. For efficient union and intersection 
operations, it pays to keep the elements in each subset sorted, so a linear-time traversal through 
both subsets identifies all duplicates. 

In many applications, the subsets are all pairwise disjoint, meaning that each element is in exactly one 
subset.   For example, consider maintaining the connected components of a graph or the party affiliations 
of politicians.     Each vertex/hack is in exactly one component/party. Such a system of subsets is called a 

set partition.   Algorithms for constructing partitions of a given set are provided in Section . 

For data structures, the primary issue is maintaining a given set partition as things change over time, 
perhaps as edges are added or party members defect. The queries we are interested in include ``which set 
is a particular item in?'' and ``are two items in the same set?'' as we modify the set by (1) changing one 
item, (2) merging or unioning two sets, or (3) breaking a set apart.   Your primary options are: 

●     Dictionary with subset attribute -   If each item in a binary tree has associated a field recording the 
name of the subset it is in, set identification queries and single element modifications can be 
performed in the time it takes to search in the dictionary, typically  . However, operations 
like performing the union of two subsets take time proportional to (at least) the sizes of the 
subsets, since each element must have its name changed. The need to perform such union 
operations quickly is the motivation for the ...

●     Union-Find Data Structure - Suppose we represent a subset using a rooted tree, where each node 
points to its parent instead of its children.   Further, let the name of the subset be the name of the 
item that is the root. Finding out which subset we are in is simple, for we keep traversing up the 
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parent pointers until we hit the root. Unioning two subsets is also easy. Just make the root of one 
of two trees point to the other, so now all elements have the same root and thus the same subset 
name.    

Certain details remain, such as which subset should be the ultimate root of a union, but these are 
described in most every algorithms text. Union-Find is a fast, extremely simple data structure that 
every programmer should know about. It does not support breaking up subsets created by unions, 
but usually this is not an issue. 

Neither of these options provides access to all of the items in a particular subset without traversing all the 
items in the set. However, both can be appropriately augmented with extra pointers if it is important that 
this operation be fast. 

Implementations: LEDA (see Section ) provides dictionary data structures to maintain sets and the 
union-find data structure to maintain set partitions, all in C++.     

LINK is an environment for combinatorial computing that provides special support for hypergraphs, 
including visualization of hypergraphs.   Although written in C++, it provides an additional Scheme 
language interface for interacting with the graphs.   LINK is available from 
http://dimacs.rutgers.edu/Projects/LINK.html. 

Many textbooks contain implementations of the union-find data structure, including [MS91] (see Section 

).   An implementation of union-find underlies any implementation of Kruskal's minimum spanning 

tree algorithm. Section  contains a selection of minimum spanning tree codes.     

Notes: Optimal algorithms for such set operations as intersection and union were presented in [Rei72]. 
Good expositions on set data structures include [AHU83]. 

Galil and Italiano [GI91] survey data structures for disjoint set union.   Expositions on the union-find 
data structure appear in most algorithm texts, including [CLR90, MS91]. The upper bound of 

 on m union-find operations on an n-element set is due to Tarjan [Tar75], as is a matching 
lower bound on a restricted model of computation [Tar79]. The inverse Ackerman function  
grows notoriously slowly, so this performance is close to linear. Expositions on the Ackerman bound 
include [AHU74]. An interesting connection between the worst-case of union-find and the length of 
Davenport-Schintzl sequences, a combinatorial structure that arises in computational geometry, is 
established in [SA95].      

The power set of a set S is the collection of all  subsets of S.   Explicit manipulation of power sets 
quickly becomes intractable due to their size.   Implicit representations of power sets in symbolic form 
becomes necessary for nontrivial computations. See [BCGR92] for algorithms for and computational 
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experience with symbolic power set representations. 

Related Problems: Generating subsets (see page ), generating partitions (see page ), set cover (see 

page ), minimum spanning tree (see page ).         
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Kd-Trees

   

   

Input description: A set S of n points in k dimensions. 

Problem description: Construct a tree that partitions the space by half-planes such that each point is 
contained in its own box-shaped region. 

Discussion: Although many different flavors of kd-trees have been devised, their purpose is always to 
hierarchically decompose space into a relatively small number of cells such that no cell contains too 
many input objects.     This provides a fast way to access any input object by position. We traverse down 
the hierarchy until we find the cell containing the object and then scan through the few objects in the cell 
to identify the right one.   

Typical algorithms construct kd-trees by partitioning point sets. Each node in the tree is defined by a 
plane through one of the dimensions that partitions the set of points into left/right (or up/down) sets, each 
with half the points of the parent node.   These children are again partitioned into equal halves, using 
planes through a different dimension. Partitioning stops after  levels, with each point in its own leaf 
cell. Alternate kd-tree construction algorithms insert points incrementally and divide the appropriate cell, 
although such trees can become seriously unbalanced.   
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The cutting planes along any path from the root to another node defines a unique box-shaped region of 
space, and each subsequent plane cuts this box into two boxes. Each box-shaped region is defined by 2k 
planes, where k is the number of dimensions. Indeed, the `kd' in kd-tree is short for k-dimensional tree. In 
any search performed using a kd-tree, we maintain the current region defined by the intersection of these 
half-spaces as we move down the tree. 

Different flavors of kd-trees differ in exactly how the splitting plane is selected. Options include: 

●     Cycling through the dimensions - partition first on  , then  before cycling back to  .
●     Cut along the largest dimension - select the partition dimension so as to make the resulting boxes 

as square or cube-like as possible. Selecting a plane to partition the points in half does not mean 
selecting a splitter in the middle of the box-shaped regions, since all the points may be in the left 
side of the box.  

●     Quadtrees or Octtrees -     Instead of partitioning with single planes, use all axis-parallel planes 
that pass through a given partition point. In two dimensions, this means creating four child cells, 
in 3D this means eight child cells. Quadtrees seem particularly popular on image data, where leaf 
cells imply that all pixels in the regions have the same color.     

Nonorthogonal (i.e. not axis-parallel) cutting planes have also been used, although they make 
maintaining the cell boundaries more complicated.     

Ideally, our partitions evenly split both the space (ensuring nice, fat, regular regions) and the set of points 
(ensuring a log height tree) evenly, but this can be impossible for a given point set. The advantages of fat 
cells become clear in many applications of kd-trees:   

●     Point location -   To identify which cell a query point q lies in, we start at the root and test which 
side of the partition plane contains q. By repeating this process on the appropriate child node, we 

travel the tree to find the leaf cell containing q in time proportional to its height. See Section  
for more on point location.

●     Nearest neighbor search -   To find the point in S closest to a query point q, we perform point 
location to find the cell c containing q. Since c is bordered by some point p, we can compute the 
distance d(p,q) from p to q. Point p is likely very close to q, but it might not be the single closest 
neighbor. Why? Suppose q lies right at the boundary of a cell. Then q's nearest neighbor might lie 
just to the left of the boundary in another cell. Thus we must traverse all cells that lie within a 
distance of d(p,q) of cell c and verify that none of them contain closer points. With nice, fat cells, 

very few cells should need to be tested. See Section  for more on nearest neighbor search.
●     Range search -   Which points lie within a query box or region? Starting from the root, check to 

see whether the query region intersects or contains the cell defining the current node. If it does, 
check the children; if not, none of the leaf cells below this node can possibly be of interest. We 

quickly prune away the irrelevant portions of the space. See Section  for more on range search.
●     Partial key search -     Suppose we want to find a point p in S, but we do not have full information 
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about p. Say we are looking for someone of age 35 and height 5'8'' but of unknown weight in a 3d-
tree with dimensions age, weight, and height. Starting from the root, we can identify the correct 
decendant for all but the weight dimension. To be sure we find the right point, we must search 
both children of this node. We are better off the more fields we know, but such partial key search 
can be substantially faster than checking all points against the key. 

Kd-trees are most effective data structures for small and moderate numbers of dimensions, say from 2 up 
to maybe 20 dimensions. As the dimensionality increases, they lose effectiveness, primarily because the 
ratio of the volume of a unit sphere in k-dimensions shrinks exponentially compared to a unit cube in k-
dimensions.    Thus exponentially many cells will have to be searched within a given radius of a query 
point, say for nearest-neighbor search. Also, the number of neighbors for any cell grows to 2k and 
eventually become unmanageable. 

The bottom line is that you should try to avoid working in high-dimensional spaces, perhaps by 
discarding the least important dimensions. 

Implementations: Ranger is a tool for visualizing and experimenting with nearest neighbor and 
orthogonal range queries in high-dimensional data sets, using multidimensional search trees.   Four 
different search data structures are supported by Ranger: naive kd-trees, median kd-trees, nonorthogonal 
kd-trees, and the vantage point tree. For each of these, Ranger supports queries in up to 25 dimensions 
under any Minkowski metric.   It includes generators for a variety of point distributions in arbitrary 
dimensions.   Finally, Ranger provides a number of features to aid in visualizing multidimensional data, 
best illustrated by the accompanying video [MS93]. To identify the most appropriate projection at a 
glance, Ranger provides a  matrix of all two-dimensional projections of the data set. Ranger is 
written in C,   runs on Silicon Graphics and HP workstations, and is available from the algorithm 
repository.    

The 1996 DIMACS implementation challenge focuses on data structures for higher-dimensional data 
sets. The world's best kd-tree implementations were likely to be identified in the course of the challenge, 
and they are accessible from http://dimacs.rutgers.edu/.     

Bare bones implementations in C of kd-tree and quadtree data structures appear in [GBY91]. See Section 

 for details on how to ftp them. 

Notes: The best reference on kd-trees and other spatial data structures are two volumes by Samet 
[Sam90a, Sam90b], in which all major variants are developed in substantial detail. 

Bentley [Ben75] is generally credited with developing kd-trees, although they have the typically murky 
history associated with most folk data structures. The most reliable history is likely from Samet 
[Sam90b]. 
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An exposition on kd-trees for orthogonal range queries in two dimensions appears in [PS85].   
Expositions of grid files and other spatial data structures include [NH93].   

Algorithms that quickly produce a point provably close to the query point are a recent development in 
higher-dimensional nearest neighbor search.   A sparse weighted-graph structure is built from the data 
set, and the nearest neighbor is found by starting at a random point and walking greedily in the graph 
towards the query point. The closest point found during several random trials is declared the winner. 
Similar data structures hold promise for other problems in high-dimensional spaces. See [AM93, AMN  
94]. 

Related Problems: Nearest-neighbor search (see page ), point location (see page ), range search 

(see page ).       
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Numerical Problems
If most problems you encounter are numerical in nature, there is a good chance that you are reading the 
wrong book. Numerical Recipes [PFTV86] gives a terrific overview to the fundamental problems in 
numerical computing, including linear algebra, numerical   integration, statistics, and differential 
equations. Different flavors of the book include source code for all the algorithms in C, Pascal, and 
Fortran. Their coverage is skimpier on the combinatorial/numerical problems we consider in this section, 
but you should be aware of that book. 

Numerical algorithms tend to be different beasts than combinatorial algorithms, for at least two distinct 
reasons: 

●     Issues of Precision and Error - Numerical algorithms typically perform repeated floating-point 
computations, which accumulate error at each operation until, eventually, the results are 
meaningless. An amusing example [SK93] concerns the Vancouver Stock Exchange, which over 
a twenty-two month period accumulated sufficient round-off error to reduce its index from the 
correct value of 1098.982 to 574.081.        

A simple and dependable way to test for round-off errors in numerical     programs is to run them 
both at single and double precision, and then think hard whenever there is a disagreement.

●     Extensive Libraries of Codes -       Large, high-quality libraries of numerical routines have existed 
since the 1960s, which is still not the case for combinatorial algorithms. This is true for several 
reasons, including (1) the early emergence of Fortran as a standard for numerical computation, (2) 
the nature of numerical computations to remain independent rather than be embedded within large 
applications, and (3)   the existence of large scientific communities needing general numerical 
libraries. 

Regardless of why, you should exploit this software base. There is probably no reason to 
implement algorithms for any of the problems in this section instead of stealing existing codes.   

Searching Netlib (see Section ) is always a good place to start. 

Most scientist's and engineer's ideas about algorithms derive from Fortran programming and numerical 
methods, while computer scientists grew up programming with pointers and recursion, and so are 
comfortable with the more sophisticated data structures required for combinatorial algorithms. Both sides 
can and should learn from each other, since several problems such as pattern recognition can be modeled 
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either numerically or combinatorially. 

There is a vast literature on numerical algorithms. In addition to Numerical Recipes, recommended books 
include: 

●     Skeel and Keiper [SK93] - A readable and interesting treatment of basic numerical methods, 
avoiding overly detailed algorithm descriptions through its use of the computer algebra system 
Mathematica.   I like it.

●     Pizer and Wallace [PW83] - A numerical analysis book written for computer scientists, not 
engineers. The organization is by issues instead of problems. A different but interesting 
perspective.

●     Cheney and Kincaid [CK80] - A traditional Fortran-based numerical analysis text, with 
discussions of optimization and Monte Carlo methods in addition to such standard topics as root-
finding, numerical integration, linear systems, splines, and differential equations.   

●     Buchanan and Turner [BT92] - Thorough language-independent treatment of all standard topics, 
including parallel algorithms. Most comprehensive of the texts described here. 

●     Solving Linear Equations 
●     Bandwidth Reduction 
●     Matrix Multiplication 
●     Determinants and Permanents 
●     Constrained and Unconstrained Optimization 
●     Linear Programming 
●     Random Number Generation 
●     Factoring and Primality Testing 
●     Arbitrary-Precision Arithmetic 
●     Knapsack Problem 
●     Discrete Fourier Transform 

       

 
Next: Solving Linear Equations Up: A Catalog of Algorithmic Previous: Kd-Trees 

Algorithms 
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Solving Linear Equations

       

 
Next: Bandwidth Reduction Up: Numerical Problems Previous: Numerical Problems 

Solving Linear Equations

   

   

Input description: An  matrix A, and an  vector b, together representing m linear equations 
on n variables. 

Problem description: What is the vector x such that  ? 

Discussion: The need to solve linear systems arises in an estimated 75% of all scientific computing 
problems [DB74].   For example, applying Kirchhoff's laws to analyze electric circuits generates a 
system of equations, the solution of which gives currents through each branch of the circuit. Analysis of 
the forces acting on a mechanical truss generates a similar set of equations. Even finding the point of 
intersection between two or more lines reduces to solving a (small) linear system.        

Not all systems of equations have solutions; consider the equations 2x+3y = 5 and 2x+3y = 6. Some 
systems of equations have multiple solutions; consider the equations 2x+3y=5 and 4x+6y=10.   Such 
degenerate systems of equations are called singular, and they can be recognized by testing whether the 
determinant of the coefficient matrix is zero.     

Solving linear systems is a problem of such scientific and commercial importance that excellent codes 
are readily available. There is likely no good reason to implement your own solver, even though the basic 
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algorithm (Gaussian elimination) is one we learned in high school.     This is especially true if you are 
working with large systems. 

Gaussian elimination is based on the fact that the solution to a system of linear equations is invariant 
under scaling (multiplying both sides by a constant; i.e. if x=y, then 2x=2y) and adding equations (i.e. the 
solution to the equations x=y and w=z is the same as the solution to x=y and x+w=y+z).   Gaussian 
elimination scales and adds equations so as to eliminate each variable from all but one equation, leaving 
the system in such a state that the solution can just be read off from the equations. 

The time complexity of Gaussian elimination on an  system of equations is  , since for the ith 
variable we add a scaled copy of the n-term ith row to each of the n-1 other equations. On this problem, 
however, constants matter. Algorithms that only partially reduce the coefficient matrix and then 
backsubstitute to get the answer use 50% fewer floating-point operations than the naive algorithm.   

Issues to worry about include: 

●     Are roundoff errors and numerical stability affecting my solution? -     Implementing Gaussian 
elimination would be quite straightforward except for round-off errors, which accumulate with 
each row operation and can quickly wreak havoc on the solution, particularly with matrices that 
are almost singular. 

To eliminate the danger of numerical errors, it pays to substitute the solution back into each of the 
original equations and test how close they are to the desired value.   Iterative methods for solving 
linear systems refine initial solutions to obtain more accurate answers - good linear systems 
packages will include such routines. 

The key to minimizing roundoff errors in Gaussian elimination is selecting the right equations and 
variables to pivot on, and to scale the equations so as to eliminate large coefficients.     This is an 
art as much as a science, which is why you should use one of the many well-crafted library 
routines described below.

●     Which routine in the library should I use? - Selecting the right code is also somewhat of an art. If 
you are taking your advice from this book, you should start with the general linear system solvers. 
Hopefully they will suffice for your needs. But search through the manual for more efficient 
procedures for solving special types of linear systems. If your matrix happens to be one of these 
special types, the solution time can reduce from cubic to quadratic or even linear.

●     Is my system sparse? -   The key to recognizing that you might have a special-case linear system 
is establishing how many matrix elements you really need to describe A. If there are only a few 
nonzero elements, your matrix is sparse and you are in luck. If these few nonzero elements are 
clustered near the diagonal, your matrix is banded and you are in even more luck.   Algorithms for 

reducing the bandwidth of a matrix are discussed in Section .   Many other regular patterns of 
sparse matrices can also be exploited, so see the manual of your solver or a better book on 
numerical analysis for details.
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●     Will I be solving many systems with the same coefficient matrix? - In certain applications, such as 
least-squares curve fitting and differential equations, we have to solve  repeatedly with 
different b vectors. For efficiency, we seek to preprocess A to make this easier.       The lower-
upper or LU-decomposition of A creates lower- and upper-triangular matrices L and U such that 

 . We can use this decomposition to solve  , since 

 

This is efficient since backsubstitution solves a triangular system of equations in quadratic time. 
Solving  and then  gives the solution x using two  steps instead of one  

step, once the LU-decomposition has been found in  time. 

The problem of solving linear systems is equivalent to that of matrix inversion, since 
 , where  is the identity matrix.     However, avoid it, since matrix 

inversion proves to be three times slower than Gaussian elimination. LU-decompositions prove useful in 

inverting matrices as well as computing determinants (see Section ). 

Implementations: The library of choice for solving linear systems is apparently LAPACK, a descendant 
of LINPACK [DMBS79]. Both of these Fortran codes, as well as many others, are available from Netlib. 

See Section .         

Algorithm 533 [She78], Algorithm 576 [BS81], and Algorithm 578 [DNRT81] of the Collected 
Algorithms of the ACM are Fortran codes for Gaussian elimination.   Algorithm 533 is designed for 
sparse systems, algorithm 576 to minimize roundoff errors, and algorithm 578 to optimize virtual 
memory performance.   Algorithm 645 [NW86] is a Fortran code for testing matrix inversion programs. 

See Section  for details on fetching these programs. 

Numerical Recipes [PFTV86] provides routines for solving linear systems.   However, there is no 
compelling reason to use these ahead of the free codes described in this section. 

C++ implementations of  algorithms to solve linear equations and invert matrices are embedded in 

LEDA (see Section ).     

Notes: Good expositions on algorithms for Gaussian elimination and LU-decomposition include 
[CLR90] and a host of numerical analysis texts [BT92, CK80, SK93]. 

Parallel algorithms for linear systems are discussed in [Ort88]. Solving linear systems is one of relatively 
few problems where parallel architectures are widely used in practice.   
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Matrix inversion, and hence linear systems solving, can be done in matrix multiplication time using 
Strassen's algorithm plus a reduction.   Good expositions on the equivalence of these problems include 
[AHU74, CLR90]. 

Certain types of nonsparse systems can be solved efficiently via special algorithms.   In particular, 
Toeplitz matrices are constructed so that all the elements along a particular diagonal are identical, and 
Vandermonde matrices   are defined by an n-element vector x where  . 

Related Problems: Matrix multiplication (see page ), determinant/permanent (see page ).     

       

 
Next: Bandwidth Reduction Up: Numerical Problems Previous: Numerical Problems 

Algorithms 
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Bandwidth Reduction 

   

   

Input description: A graph G=(V,E), representing an  matrix M of zero and nonzero elements. 

Problem description: Which permutation p of the vertices of V minimizes the length of the longest edge 
when the vertices are ordered on a line, i.e. minimizes  ? 

Discussion: Bandwidth reduction lurks as a hidden but important problem for both graphs and matrices, 
and it is important to see how it arises so as to properly recognize it. Applied to matrices, it permutes the 
rows and columns of a sparse matrix so as to minimize the distance b of any nonzero entry from the 
center diagonal. This is important in solving linear systems, because Gaussian elimination (see Section 

) can be performed in  on matrices of bandwidth b. This is a big win over the general  
algorithm if b << n.      

Bandwidth minimization on graphs arises in more subtle ways. Arranging a set of n circuit components 
in a line on a circuit board so as to minimize the length of the longest wire (and hence time delay) is a 
bandwidth problem, where each vertex of our graph corresponds to a circuit component and there is an 
edge for every wire linking two components. Alternatively, consider a hypertext application where we 
must store large objects (say images) on a magnetic tape. From each image there is a set of possible 
images we can go to next (i.e. the hyperlinks). To minimize the search time, we seek to place linked 
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images near each other on the tape. This is exactly the bandwidth problem. More general formulations, 
such as rectangular circuit layouts and magnetic disks, inherit the same hardness and classes of heuristics 
from the linear versions.               

Unfortunately, bandwidth minimization is NP-complete. It stays NP-complete even if the input graph is a 
tree whose maximum vertex degree is 3, which is an unusually strong condition.   Further, there is no 
known approximation algorithm for bandwidth reduction, even for trees.   Thus our only options are 
brute-force search or ad hoc heuristics. 

Fortunately, ad hoc heuristics have been well-studied in the numerical analysis community, and 
production-quality implementations of the best heuristics are available.   These are based on performing a 
breadth-first search from a given vertex v, where v is placed at the leftmost point of the ordering.   All of 
the vertices that are distance 1 from v are placed to its immediate right, followed by all the vertices at 
distance 2, and so forth until we reach the vertex furthest from v. We then continue the breadth-first 
search from the vertex immediately to the right of v until all vertices in G are accounted for. The popular 
heuristics differ according to how many different start vertices are considered and how equidistant 
vertices are ordered among themselves. However, breaking ties with low-degree vertices over to the left 
seems to be a good idea. 

Implementations of the most popular heuristics, the Cuthill-McKee and Gibbs-Poole-Stockmeyer 
algorithms, are discussed in the implementation section. The worst case of the Gibbs-Poole-Stockmeyer 
algorithm is  , which would wash out any possible savings in solving linear systems, but its 
performance in practice is close to linear.     

Brute-force search programs can find the exact minimum bandwidth work by backtracking through the 
set of n! possible permutations of vertices.   Considerable pruning can be achieved to reduce the search 
space by starting with a good heuristic bandwidth solution and alternately adding vertices to the left- and 
rightmost open slots in the partial permutation.   The first edge connecting a vertex on the left to a vertex 
on the right will likely define an edge whose length is greater than our best example to date, thus leading 
to fast pruning. In our experience, graphs of size n=30 or so can be solved to optimality. See the 

discussion on backtracking in Section . However, for almost any application such an exact solution 
will not be worth the expense of finding it. 

Implementations: Fortran language implementations of both the Cuthill-McKee algorithm [CGPS76, 
Gib76, CM69] and the Gibbs-Poole-Stockmeyer algorithm [Lew82, GPS76] are available from Netlib. 

See Section .     Empirical evaluations of these and other algorithms on a test suite of 30 matrices are 
discussed in [Eve79b], showing Gibbs-Poole-Stockmeyer to be the consistent winner. 

Brute-force implementations written by Ingmar Bitter, Christian Joita, and Dario Vlah in C and C++ as 
Stony Brook class   projects and capable of solving instances of size n=30 to optimality are provided on 
the algorithm repository http://www.cs.sunysb.edu/  algorith.    
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Notes: An excellent survey on graph-theoretic and algorithmic results on the bandwidth problem to 1981 
appears in [CCDG82]. Ad hoc heuristics have been widely studied, a tribute to its importance in 
numerical computation. Everstine [Eve79b] cites no less than 49 different bandwidth reduction 
algorithms! 

The hardness of the bandwidth problem was first established by Papadimitriou [Pap76b], and its hardness 
on trees of maximum degree 3 in [GGJK78].   There are algorithms that run in polynomial time for fixed 
bandwidth k [Sax80]. An exposition on the hardness of the linear arrangement problem appears in 
[Eve79a]. 

Related Problems: Solving linear equations (see page ), topological sorting (see page ).     

       

 
Next: Matrix Multiplication Up: Numerical Problems Previous: Solving Linear Equations 

Algorithms 
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Matrix Multiplication 

   

   

Input description: An  matrix A and a  matrix B. 

Problem description: The  matrix  . 

Discussion: Although matrix multiplication is an important problem in linear algebra, its main 
significance for combinatorial algorithms   is its equivalence to a variety of other problems, such as 
transitive closure and reduction, solving linear systems, and matrix inversion. Thus a faster algorithm for 
matrix multiplication implies faster algorithms for all of these problems. Matrix multiplication arises in 
its own right in computing the results of such coordinate transformations as scaling, rotation, and 
translation for robotics and computer graphics.         

The straightforward algorithm to compute the product of  matrix A and  matrix B runs in O(x y 
z) time and is tough to beat in practice: 

for i=1 to x do
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Matrix Multiplication 

                 for j = 1 to z

                                    

In two multiplying bandwidth-b matrices, where all nonzero elements of A and B lie within b elements of 
the main diagonals,   a speedup to O(x b z) is possible, since zero elements will not contribute to the 
product. 

Asymptotically faster algorithms for matrix multiplication exist, based on clever divide-and-conquer 
recurrences. However, these prove difficult to program and require very large matrices to beat the trivial 
algorithm.   In particular, some empirical results show that Strassen's  algorithm is unlikely to beat 

the straightforward algorithm for  , and it is less numerically stable to boot. Other studies have 

been more encouraging, claiming that the crossover point is as low as  . Still, I consider it unlikely 
that you will speed up any serious application by implementing Strassen's algorithm. 

There is a better way to save computation when you are multiplying a chain of more than two matrices 
together.    Recall that multiplying an  matrix by a  matrix creates an  matrix. Thus 
multiplying a chain of matrices from left to right might create large intermediate matrices, each taking a 
lot of time to compute. Matrix multiplication is not commutative, but it is associative, so we can 
parenthesize the chain in whatever manner we deem best without changing the final product.    A 
standard dynamic programming algorithm can be used to construct the optimal parenthesization. 
Whether it pays to do this optimization will depend upon whether your matrices are large enough or your 
chain is multiplied often enough to justify it. Note that we are optimizing over the sizes of the 
dimensions in the chain, not the actual matrices themselves. If all your matrices are the same dimensions, 
you are out of luck, since no such optimization is possible. 

Matrix multiplication has a particularly interesting interpretation in counting the number of paths 
between two vertices in a graph.     Let A be the adjacency matrix of a graph G, meaning A[i,j] = 1 if 
there is an edge between i and j. Otherwise, A[i,j] = 0.   Now consider the square of this matrix, 

 . If  , this means that there must be a k such that A[i,k]=A[k,j]=1, so i to k to j is a 

path of length 2 in G. More generally,  counts the number of paths of length exactly k between i 
and j. This count includes nonsimple paths, where vertices are repeated, such as i to k to i. 

Implementations: The quick and dirty  algorithm will be your best bet unless your matrices are 
very large. For example, [CLR90] suggests that n>45 before you have a hope of winning. Experimental 
results suggest that n > 100 is more realistic [CR76], with Bailey [BLS91] finding a crossover point of 
n=128 for Cray systems. Strassen's algorithm is difficult to implement efficiently because of the data 
structures required to maintain the array partitions.     That said, an implementation of Strassen's 
algorithm in Mathematica by Stan Wagon is offered ``without promise of efficiency'' on the algorithm 
repository WWW site. 
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The linear algebra library of choice is LAPACK, a descendant of LINPACK [DMBS79], which includes 
several routines for matrix multiplication. These Fortran codes are available from Netlib as discussed in 

Section .      

Algorithm 601 [McN83] of the Collected Algorithms of the ACM is a sparse matrix package written in 
Fortran that includes routines to multiply any combination of sparse and dense matrices.     See Section 

 for details. 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows   that includes an 
animation of the  matrix multiplication algorithm.   A C++,  implementation of matrix 

multiplication is embedded in LEDA (see Section ).    

Notes: Winograd's algorithm for fast matrix multiplication reduces the number of multiplications by a 
factor of two over the straightforward algorithm. It is implementable, although the additional 
bookkeeping required makes it doubtful whether it is a win.   Expositions on Winograd's algorithm 
[Win68] include [CLR90, Man89, Win80]. 

In my opinion, the history of theoretical algorithm design began when Strassen published his  -
time matrix multiplication algorithm.   For the first time, improving an algorithm in the asymptotic sense 
became a respected goal in its own right. Good expositions on Strassen's algorithm [Str69] include 
[Baa88, CLR90, Cra94]. Progressive improvements to Strassen's algorithm have gotten progressively 
less practical. The current best result for matrix multiplication is Coppersmith and Winograd's [CW87] 

 algorithm, while the conjecture is that  suffices. 

The interest in the squares of graphs goes beyond counting paths.   Fleischner [Fle74] proved that the 
square of any biconnected graph has a Hamiltonian cycle.       See [LS95] for results on finding the 
square roots of graphs, i.e. finding A given  . 

The problem of Boolean matrix multiplication can be reduced to that of general matrix multiplication 
[CLR90]. The four-Russians algorithm for Boolean matrix multiplication [ADKF70] uses preprocessing 
to construct all subsets of  rows for fast retreival in performing the actual multiplication, yielding a 

complexity of  .   Additional preprocessing can improve this to  [Ryt85]. An 

exposition on the four-Russians algorithm, including this speedup, appears in [Man89].   

Good expositions of the matrix-chain algorithm include [Baa88, CLR90], where it is a standard example 
of dynamic programming.   
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Related Problems: Solving linear equations (see page ), shortest path (see page ).     
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Determinants and Permanents

   

   

Input description: An  matrix M. 

Problem description: What is the determinant |M| or the permanent perm(M) of the matrix m? 

Discussion: Determinants of matrices provide a clean and useful abstraction in linear   algebra that can 
used to solve a variety of problems: 

●     Testing whether a matrix is singular, meaning that the matrix does not have an inverse. A matrix 
M is singular iff |M| = 0.   

●     Testing whether a set of d points lies on a plane in fewer than d dimensions.     If so, the system of 
equations they define is singular, so |M| = 0.

●     Testing whether a point lies to the left or right of a line or plane.     This problem reduces to 

testing whether the sign of a determinant is positive or negative, as discussed in Section .
●     Computing the area or volume of a triangle, tetrahedron, or other simplicial complex. These 

quantities are a function of the magnitude of the determinant, as discussed in Section .    
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The determinant of a matrix M is defined as the sum over all n! possible permutations  of the n columns 
of M: 

 

where  is the number of pairs of elements out of order (called inversions) in permutation  .     

A direct implementation of this definition yields an O(n!) algorithm, as does the cofactor expansion 
method we learned in high school.   However, better algorithms are available to evaluate determinants 

based on LU-decomposition. They are discussed in Section .   The determinant of M is simply the 
product of the diagonal elements of the LU-decomposition of M, which can be found in  time. 

A closely related function, called the permanent,   arises often in combinatorial problems.   For example, 
the permanent of the adjacency matrix of a graph G counts the number of perfect matchings in G.    The 
permanent of a matrix M is defined by 

 

differing from the determinant only in that all products are positive. 

Surprisingly, it is NP-hard to compute the permanent, even though the determinant can easily be 
computed in  time.   The fundamental difference is that  , while 

 . Fortunately, there are permanent algorithms that prove to be 
considerably faster than the O(n!) definition, running in  time. Thus finding the permanent of a 

 matrix is not out of the realm of possibility. 

Implementations: The linear algebra package LINPACK contains a variety of Fortran routines for 
computing determinants, optimized for different data types and matrix structures. It can be obtained from 

Netlib, as discussed in Section . A C++ program to compute determinants in  time is embedded 

in LEDA (see Section ).        

Nijenhuis and Wilf [NW78] provide an efficient Fortran routine to compute the permanent of a matrix. 

See Section . 

Notes: Cramer's rule reduces the problems of matrix inversion and solving linear systems to that of 
computing determinants. However, algorithms based on LU-determination are faster. See [BM53] for an 
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exposition on Cramer's rule.   

Determinants can be computed in  time using fast   matrix multiplication, as shown in [AHU83]. 

Section  discusses such algorithms. A fast algorithm for computing the sign of the determinant,     an 
important problem for performing robust geometric computations, is due to Clarkson [Cla92]. 

The problem of computing the permanent was shown to be #P-complete by Valiant [Val79], where #P is 
the   class of problems solvable on a ``counting'' machine in polynomial time. A counting machine 
returns the number of distinct solutions to a problem. Counting the number of Hamiltonian cycles in a 
graph is a #P-complete problem that is trivially NP-hard (and presumably harder),   since any count 
greater than zero proves that the graph is Hamiltonian. Counting problems can be #P-complete even if 
the corresponding decision problem can be solved in polynomial time, as shown by the permanent and 
perfect matchings. 

Minc [Min78] is the definitive work on permanents. A variant of an  -time algorithm due to Ryser 
for computing the permanent is presented in [NW78]. Recently, probabilistic algorithms have been 
developed for estimating the permanent [FJ95]. 

Related Problems: Solving linear systems (see page ), matching (see page ), geometric primitives 

(see page ).       
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Multiplication 
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Constrained and Unconstrained Optimization

   

   

Input description: A function  . 

Problem description: What point  maximizes (or minimizes) the function f? 

Discussion: Most of this book concerns algorithms that optimize one thing or another. This section 
considers the general problem of optimizing functions where, due to lack of structure or knowledge, we 
are unable to exploit   the problem-specific algorithms seen elsewhere in this book. 

Optimization arises whenever there is an objective function that must be tuned for optimal performance.   
Suppose we are building a program to identify good stocks to invest in.   We have available certain 
financial data to analyze, such as the price-earnings ratio, the interest and inflation rates, and the stock 
price, all as a function of time t. The key question is how much weight we should give to each of these 
factors, where these weights correspond to coefficents of a formula: 

 

We seek the numerical values  ,  ,  ,  whose stock-goodness function does the best job of evaluating 
stocks.    Similar issues arise in tuning evaluation functions for game playing programs such as chess. 
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Unconstrained optimization problems also arise in scientific computation.   Physical systems from 
protein structures to particles naturally seek to minimize their ``energy functions.'' Thus programs that 
attempt to simulate nature often define energy potential functions for the possible configurations of 
objects and then take as the ultimate configuration the one that minimizes this potential.    

Global optimization problems tend to be hard, and there are lots of ways to go about them.   Ask the 
following questions to steer yourself in the right direction: 

●     Am I doing constrained or unconstrained optimization? - In unconstrained optimization,   there 
are no limitations on the values of the parameters other than that they maximize the value of f. 
Often, however, there are costs or constraints on these parameters. These constraints make certain 
points illegal, points that might otherwise be the global optimum. Constrained optimization 
problems typically require mathematical programming approaches like linear programming, 

discussed in Section .   
●     Is the function I am trying to optimize described by a formula or data? - If the function that you 

seek to optimize is presented as an algebraic formula (such as the minimum of 
 ), the solution is to analytically take its derivative f'(n) and see for which 

points p' we have f'(p') = 0.   These points are either local maxima or minima, which can be 
distinguished by taking a second derivative or just plugging back into f and seeing what happens.   
  Symbolic computation systems such as Mathematica and Maple are fairly     effective at 
computing such derivatives, although using computer algebra systems effectively is somewhat of 
a black art. They are definitely worth a try, however, and you can always use them to plot a 
picture of your function to get a better idea of what you are dealing with.

●     How expensive is it to compute the function at a given point? - If the function f is not presented as 
a formula, what to do depends upon what is given. Typically, we have a program or subroutine 
that evaluates f at a given point, and so can request the value of any given point on demand. By 
calling this function, we can poke around and try to guess the maxima. Our freedom to search in 
such a situation depends upon how efficiently we can evaluate f. If f is just a complicated formula, 
evaluation will be very fast.   But suppose that f represents the effect of the coefficients  
on the performance of the board evaluation function in a computer chess program, such that  is 
how much a pawn is worth,  is how much a bishop is worth, and so forth. To evaluate a set of 
coefficients as a board evaluator, we must play a bunch of games with it or test it on a library of 
known positions.   Clearly, this is time-consuming, so we must be frugal in the number of 
evaluations of f we use.

●     How many dimensions do we have? How many do we need? - The difficulty in finding a global 
maximum increases rapidly with the number of dimensions (or parameters). For this reason, it 
often pays to reduce the dimension by ignoring some of the parameters. This runs counter to 
intuition, for the naive programmer is likely to incorporate as many variables as possible into their 
evaluation function. It is just too hard to tweak such a complicated function. Much better is to 
start with the 3 to 5 seemingly most important variables and do a good job optimizing the 
coefficients for these.
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●     How smooth is my function? The main difficulty of global optimization is getting trapped in local 
optima.   Consider the problem of finding the highest point in a mountain range.     If there is only 
one mountain and it is nicely shaped, we can find the top by just walking in whatever direction is 
up. However, if there are many false summits or other mountains in the area, it is difficult to 
convince ourselves whether we are really at the highest point. Smoothness is the property that 
enables us to quickly find the local optimum from a given point.   We assume smoothness in 
seeking the peak of the mountain by walking up. If the height at any given point was a completely 
random function, there would be no way we could find the optimum height short of sampling 
every single point. 

Efficient algorithms for unconstrained global optimization use derivatives and partial derivatives to find 
local optima, to point out the direction in which moving from the current point does the most to increase 
or decrease the function. Such derivatives can sometimes be computed analytically, or they can be 
estimated numerically by taking the difference between values of nearby points. A variety of steepest 
descent and conjugate gradient methods to find local optima have been developed, similar in many ways 
to numerical root-finding algorithms.         

It is a good idea to try out several different methods on any given optimization problem. For this reason, 
we recommend experimenting with the implementations below before attempting to implement your own 
method. Clear descriptions of these algorithms are provided in several numerical algorithms books, in 
particular [PFTV86]. 

For constrained optimization, finding points that satisfy all the constraints is often the difficult problem. 
One approach is to use a method for unconstrained optimization, but add a penalty according to how 
many constraints are violated.     Determining the right penalty function is problem-specific, but it often 
makes sense to vary the penalties as optimization proceeds. At the end, the penalties should be very high 
to ensure that all constraints are satisfied. 

Simulated annealing is a fairly robust and simple approach to constrained optimization, particularly when 
we are optimizing over combinatorial   structures (permutations, graphs, subsets) instead of continuous 

functions. Techniques for simulated annealing are described in Section . 

Implementations: Several of the Collected Algorithms of the ACM are Fortran codes for unconstrained 
optimization, most notably Algorithm 566 [MGH81], Algorithm 702 [SF92], and Algorithm 734 
[Buc94]. Algorithm 744 [Rab95] does unconstrained optimization in Lisp. They are available from 

Netlib (see Section ).   Also check out the selection at GAMS, the NIST Guide to Available 
Mathematical Software, at http://gams.nist.gov.     

NEOS (Network-Enabled Optimization System) provides a unique service, the opportunity to solve your 
problem on computers and software at Argonne National Laboratory, over the WWW.     Linear 
programming and unconstrained optimization are both supported. This is worth checking out at 
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http://www.mcs.anl.gov/home/otc/Server/ when you need a solution instead of a program. 

General purpose simulated annealing implementations are available and probably are the best place to 
start experimenting with this technique for constrained optimization.     Particularly popular is Adaptive 
Simulated Annealing (ASA), written in C and retrievable via anonymous ftp from ftp.alumni.caltech.edu 
[131.215.139.234] in the /pub/ingber directory.   To get on the ASA mailing list send e-mail to asa-
request@alumni.caltech.edu. 

Genocop, by Zbigniew Michalewicz [Mic92], is a genetic algorithm-based program for constrained and 
unconstrained optimization, written in C.     I tend to be quite skeptical of genetic algorithms (see Section 

), but many people find them irresistible. Genocop is available from ftp://ftp.uncc.edu/coe/evol/ for 
noncommercial purposes. 

Notes: Steepest-descent methods for unconstrained optimization are discussed in most books on 
numerical methods, including [PFTV86, BT92]. Unconstrained optimization is the topic of several 
books, including [Bre73, Fle80]. 

Simulated annealing was devised by Kirkpatrick et. al. [KGV83] as a modern variation of the Metropolis 
algorithm [MRRT53].       Both use Monte Carlo techniques to compute the minimum energy state of a 
system. Good expositions on simulated annealing include [AK89]. 

Genetic algorithms were developed and popularized by Holland [Hol75, Hol92].   Expositions on genetic 
algorithms include [Gol89, Koz92, Mic92]. Tabu search [Glo89a, Glo89b, Glo90]   is yet another 
heuristic search procedure with a devoted following. 

Related Problems: Linear programming (see page ), satisfiability (see page ).     
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Linear Programming 

   

   

Input description: A set S of n linear inequalities on m variables  ,  , and a 

linear optimization function  . 

Problem description: Which variable assignment X' maximizes the objective function f while satisfying 
all inequalities S? 

Discussion: Linear programming is the most important problem in mathematical optimization and 
operations research.     Applications include: 

●     Resource allocation -   We seek to invest a given amount of money so as to maximize our return. 
Our possible options, payoffs, and expenses can usually be expressed as a system of linear 
inequalities, such that we seek to maximize our possible profit given the various constraints. Very 
large linear programming problems are routinely solved by airlines and other corporations.   

●     Approximating the solution of inconsistent equations -   A set of m linear equations on n variables 
 ,  , is overdetermined if m > n.   Such overdetermined systems are often inconsistent, 

meaning that no assignment of variables simultaneously solves all the equations. To find the 
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variable assignment that best fits the equations, we can replace each variable  by  and 
solve the new system as a linear program, minimizing the sum of the error terms.

●     Graph algorithms - Many of the standard graph problems described in this book, such as shortest 
paths, bipartite matching, and network flow, can all be solved as special cases of linear 
programming.       Most of the rest, including traveling salesman, set cover, and knapsack, can be 
solved using integer linear programming.       

The standard algorithm for linear programming is called the simplex method.   Each constraint in a linear 
programming problem acts like a knife that carves away a region from the space of possible solutions. 
We seek the point within the remaining region that maximizes (or minimizes) f(X). By appropriately 
rotating the solution space, the optimal point can always be made to be the highest point in the region. 
Since the region (simplex) formed by the intersection of a set of linear constraints is convex, we can find 
the highest point by starting from any vertex of the region and walking to a higher neighboring vertex. 
When there is no higher neighbor, we are at the highest point.    

While the basic simplex algorithm is not too difficult to program, there is a considerable art to producing 
an efficient implementation capable of solving large linear programs. For example, large programs tend 
to be sparse (meaning that most inequalities use few variables), so sophisticated data structures must be 
used.   There are issues of numerical stability and robustness, as well as which neighbor we should walk 
to next (so called pivoting rules).   Finally, there exist sophisticated interior-point methods, which cut 
through the interior of the simplex instead of walking along the outside, that beat simplex in many 
applications.   

The bottom line on linear programming is this: you are much better off using an existing LP code than 
writing your own. Further, you are much better off paying money than surfing the net.   Linear 
programming is one algorithmic problem of such economic importance that commercial implementations 
are far superior to free versions. 

Issues that arise in linear programming include: 

●     Do any variables have integrality constraints? -   It is impossible to send 6.54 airplanes from New 
York to Washington each business day, even if that value maximizes profit according to your 
model. Such variables often have natural integrality constraints. A linear program is called an 
integer program when all its variables have integrality constraints, or a mixed integer progam if 
some of them do.     

Unfortunately, it is NP-complete to solve integer or mixed programs to optimality. However, 
there are techniques for integer programming that work reasonably well in practice.   Cutting 
plane techniques solves the problem first as a linear program, and then adds extra constraints to 
enforce integrality around the optimal solution point before solving it again. After a sufficient 
number of iterations, the optimum point of the resulting linear program matches that of the 
original integer program. As with most exponential-time algorithms, run times for integer 
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programming depend upon the difficulty of the problem instance and are unpredictable. If they do 
not make progress quickly, they are unlikely make much progress over longer periods of time. 
Therefore, if you have multiple implementations available, it may well pay to try the same 
problem using different codes in the hopes that one can complete in a reasonable amount of time.

●     What if my optimization function or constraints are not linear? - In least-squares curve fitting, we 
seek the line that best approximates a set of points by minimizing the sum of squares of the 
distance between each point and the line. In formulating this as a mathematical program, the 
natural objective function is no longer linear, but quadratic. Unfortunately, quadratic 
programming is NP-complete, even without integer variables.       

There are three possible courses of action when you must solve a nonlinear program. The best is 
to see if you can model it in some other way, as is the case with least-squares fitting. The second 
is to try to track down special codes for quadratic programming, which do exist.     Finally, you 
can model your problem as a constrained or unconstrained optimization problem and try to solve 

it with the codes discussed in Section .
●     What if my model does not match the input format of my LP solver? - Many linear programming 

implementations accept models only in so-called standard form, where all variables are 
constrained to be nonnegative, the object function must be minimized, and all constraints must be 
equalities (instead of inequalities).   Do not fear. There exist standard transformations to map 
arbitrary LP models into standard form. To convert a maximization problem to a minimization 
one, simply multiply each coefficient of the objective function by -1. The remaining problems can 
be solved by adding slack variables to the model.   See any textbook on linear programming for 
details. 

Implementations: A very useful resource on solving linear programs is the USENET frequently asked 
question (FAQ) list, maintained by John W. Gregory. In particular, it provides a list of available codes 
with descriptions of experiences.   Check out the plaintext version at 
ftp://rtfm.mit.edu/pub/usenet/sci.answers/linear-programming-faq or a slicker WWW version at 
http://www.skypoint.com/  ashbury/linear-programming-faq.html. 

The noncommercial code of choice appears to be lp_solve,     written in ANSI C by Michel Berkelaar, 
who has solved problems as large as 30,000 variables and 50,000 constraints. Lp_solve can also handle 
(smaller) integer and mixed-integer problems. It is available by anonymous ftp from 
ftp://ftp.es.ele.tue.nl/pub/lp_solve but is not in the public domain. A user community for lp_solve exists, 
which has ported it to a variety of different platforms. 

NEOS (Network-Enabled Optimization System) provides a unique service, an opportunity to solve your 
problem on computers and software at Argonne National Laboratory via the WWW.   Linear 
programming and unconstrained optimization are both supported. This is worth checking out at 
http://www.mcs.anl.gov/home/otc/Server/ if you need an answer instead of a program. 

If you are serious about solving large linear programs, you likely need a commercial implementation. 
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The book [MW93] provides an overview of commercial linear programming systems, online at 
http://www.mcs.anl.gov/home/otc/Guide/SoftwareGuide/index.html. Surveys of commercial LP codes 
appear in [SR95, Sha93] and in the linear programming FAQ. I have heard good things from various 
people about CPLEX and AMPL, but do your own research before spending money.    

For low-dimensional linear programming problems, computational geometry algorithms can outperform 
more general LP codes.   See ftp://icemcfd.com/pub/linprog.a for a C language implementation of 
Seidel's randomized incremental LP algorithm, by Mike Hohmeyer.   

Algorithm 551 [Abd80] and Algorithm 552 [BR80] of the Collected Algorithms of the ACM are simplex-

based codes for solving overdetermined systems of linear equations, in Fortran.     See Section  for 
details. 

Pascal implementations of the revised and dual simplex methods for linear programming, as well as 
cutting plane and explicit enumeration algorithms for integer programming, are provided in [SDK83].   

See Section . These are likely to work only for small problems. 

Sedgewick [Sed92] provides a bare bones implementation of the simplex algorithm in C++.   See Section 

 for details. 

Notes: Good expositions on the simplex and ellipsoid algorithms for linear programming include [PS82, 
Chv83].   Expositions on low-dimensional linear programming include [PS85]. For an implementation-
oriented exposition on linear and integer programming, with references to experimental work, see 
[SDK83]. 

The need for optimization via linear programming arose in logistics problems in World War II. The 
simplex algorithm was invented by George Danzig in 1947 [Dan63]. Klee and Minty [KM72] proved 
that the simplex algorithm is exponential in worst case, but it is very efficient in practice. Khachian's 
ellipsoid algorithm [Kha79] proved that linear programming was polynomial in 1979.   Karmarkar's 
algorithm [Kar84] is an interior-point method that has proven to be both a theoretical and practical 
improvement of the ellipsoid algorithm, as well as a challenge for the simplex method. 

Linear programming is P-complete under log-space reductions [DLR79]. This makes it unlikely to have 
an NC parallel algorithm, where a problem is in NC iff it can be solved on a PRAM in polylogarithmic 
time using a polynomial number of processors.   Any problem that is P-complete under log-space 
reduction cannot be in NC unless P=NC.   See [GHR95] for a thorough exposition of the theory of P-
completeness, including an extensive list of P-complete problems. 

Related Problems: Constrained and unconstrained optimization (see page ), network flow (see page 
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Random Number Generation

   

   

Input description: Nothing, or perhaps a seed. 

Problem description: Generate a sequence of random integers. 

Discussion: Random number generation forms the foundation behind such standard algorithmic 
techniques as simulated annealing and Monte Carlo integration. Discrete event simulations, used to 
model everything from transportation systems to casino poker, all run on streams of random numbers. 
Initial passwords and cryptographic keys are typically generated randomly. New developments in 
randomized algorithms for graph and geometric problems are revolutionizing these fields and 
establishing randomization as one of the fundamental ideas of computer science.            

Unfortunately, generating random numbers is a task that looks a lot easier than it really is, primarily 
because it is fundamentally impossible to produce truly random numbers on any deterministic device.   
Von Neumann [vN63] said it best: ``Anyone who considers arithmetical methods of producing random 
digits is, of course, in a state of sin.''   All we can hope for are pseudorandom numbers, a stream of 
numbers that appear as if they were generated randomly. 

There can be serious consequences to using a bad random number generator. For example, the security of 
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an Internet password scheme was recently invalidated with the discovery that its keys were produced 
using a random number generator of such small period that brute-force search quickly exhausted all 
possible passwords. The accuracy of simulations is regularly compromised or invalidated by poor 
random number generation.   Bottom line: This is an area where people shouldn't mess around, but they 
do. Issues to think about include:     

●     Should my program use the same ``random'' numbers each time it runs? - A poker game that 
deals you the exact same hand each time you play quickly loses interest. One common solution is 
to use the lower-order bits of the machine clock as a seed or source for random numbers, so that 
each time the program runs it does something different.    

Such methods are perhaps adequate for games, but not for serious simulations. There are liable to 
be periodicities in the distribution of random numbers whenever calls are made in a loop. Also, 
debugging is seriously complicated by the fact that the results are not repeatable.   If the program 
crashes, you cannot go back and discover why. One possible compromise is to use a deterministic 
pseudorandom number generator, but write the current seed to a file between runs. During 
debugging, this file can be overwritten with a fixed initial value or seed.  

●     How good is my compiler's built-in random number generator? - If you need uniformly generated 
random numbers, and you are not going to bet the farm on the accuracy of your simulation, my 
recommendation is simply to use what your compiler provides.     Your best opportunity to mess it 
up is with a bad choice of starting seed, so read the manual for its recommendations. 

If you are going to bet the farm on the quality of your simulation, you had better test your random 
number generator. Be aware that it is very difficult to eyeball the results and decide whether the 
output is really random. This is because people have very skewed ideas of how random sources 
should behave and often see patterns that don't really exist. To evaluate a random number 
generator, several different tests should be used and the statistical significance of the results 
established. Such tests are implemented in plab and DIEHARD (discussed below) and explained 
in [Knu81].

●     What if I have to implement my own random number generator? - The algorithm of choice is the 
linear congruential generator.   It is fast, simple, and (if instantiated with the right constants) 
gives reasonable pseudorandom numbers. The nth random number  is a function of the (n-1)st 
random number: 

 

In theory, linear congruential generators work the same way roulette wheels do.   The long path of 
the ball around and around the wheel (captured by  ) ends in one of a relatively small 
number of bins, the choice of which is extremely sensitive to the length of the path (captured by 
the truncation of the  ). 

A substantial theory has been developed to select the constants a, c, m, and  . The period length 
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is largely a function of the modulus m, which is typically constrained by the word length of the 
machine. A presumably safe choice for a 32-bit machine would be  , a = 1366, c=150889, 
and m=714025. Don't get creative and change any of the constants, unless you use the theory or 
run tests to determine the quality of the resulting sequence.

●     What if I don't want large, uniformly distributed random integers? - The linear congruential 
generator produces a uniformly distributed sequence of large integers, which can be scaled to 
produce other uniform distributions.   For uniformly distributed real numbers between 0 and 1, 
use . Note that 1 cannot be realized this way, although 0 can. If you want uniformly distributed 
integers between l and h, use . 

Generating random numbers according to a given nonuniform distribution can be a tricky 
business. The most reliable way to do this correctly is the acceptance-rejection method.   Suppose 
we bound the desired probability distribution function or geometric region to sample from a box 
and then select a random point p from the box. This point can be selected by p by generating the x 
and y coordinates independently, at random. If this p is within the distribution, or region, we can 
return p as selected at random. If p is in the portion of the box outside the region of interest, we 
throw it away and repeat with another random point. Essentially, we throw darts at random and 
report those that hit the target. 

This method is correct, but it can be slow. If the volume of the region of interest is small relative 
to that of the box, most of our darts will miss the target.   Efficient generators for Gaussian and 
other special distributions are described in the references and implementations below. 

Be cautious about inventing your own technique, however, since it can be tricky to obtain the 
right probability distribution. For example, an incorrect way to select points uniformly from a 
circle of radius r would be to generate polar coordinates and select an angle from 0 to and a 
displacement between 0 and r, both uniformly at random.   In such a scheme, half the generated 
points will lie within r/2 of the radius, when only one-fourth of them should be! This is a 
substantial enough difference to seriously skew the results, while being subtle enough that it 
might escape detection.

●     How long should I run my Monte Carlo simulation to get the best results? - It makes sense that 
the longer you run a simulation, the more accurately the results will approximate the limiting 
distribution, thus increasing accuracy. However, this is only true until you exceed the period, or 
cycle length, of your random number generator. At that point, your sequence of random numbers 
repeats itself, and further runs generate no additional information. Check the period length of your 
generator before you jack up the length of your simulation. You are liable to be very surprised by 
what you learn.    

Implementations: An excellent WWW page on random number generation and stochastic simulation is 
available at http://random.mat.sbg.ac.at/others/. It includes pointers to papers and literally dozens of 
implementations of random number generators. From there are accessible pLab [Lee94] and DIEHARD, 
systems for testing the quality of random number generators.     
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The Stanford Graphbase (see Section ) contains a machine-independent random number generator 
based on the recurrence  . With the proper initialization, this generator has a 
period of at least  .     

Algorithm 488 [Bre74], Algorithm 599 [AKD83], and Algorithm 712 [Lev92] of the Collected 
Algorithms of the ACM are Fortran codes for generating random numbers according to several 
probability distributions, including normal, exponential, and Poisson distributions. They are available 

from Netlib (see Section ).          

Sim++ is a library of routines for implementing discrete event simulations, built by Robert Cubert and 
Paul Fishwick, of the University of Florida. It contains random number generators for a variety of 
different distributions, including uniform, exponential, and normal. Check out http://www.cis.ufl.edu/  
fishwick/simpack/simpack.html if you need a random number generator to control a simulation. 
Fishwick's book [Fis95] describes model design using SimPack.      

LEDA (see Section ) provides a comprehensive random source in C++ for generating random bits, 
integers, and double precision reals.   Sedgewick [Sed92] provides simple implementations of linear and 

additive congruential generators in C++. See Section  for details. 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows, which includes 
an animation illustrating the uniformity of random number generation.   

Notes: Knuth [Knu81] has a thorough and interesting discussion of random number generation, which I 
heartily recommend. He presents the theory behind several methods, including the middle square and 
shift-register methods we have not described here, as well as a detailed discussion of statistical tests for 
validating random number generators. Another good source is [PFTV86] - our recommended constants 
for the linear congruential generator are drawn from here. Comparisons of different random number 
generators in practice include [PM88].    

Tables of random numbers appear in most mathematical handbooks, as relics from the days before there 
was ready access to computers. Most notable is [RC55], which provides one million random digits. 

The deep relationship between randomness, information, and compressibility is explored within the 
theory of Kolmogorov complexity, which measures the complexity of a string by its compressibility. 
Truly random strings are incompressible. The string of seemingly random digits of  cannot be random 
under this definition, since the entire sequence is defined by any program implementing a series 
expansion for  . Li and Vitáni [LV93] provide a thorough introduction to the theory of Kolmogorov 
complexity.     
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Related Problems: Constrained and unconstrained optimization (see page ), generating permutations 

(see page ), generating subsets (see page ), generating partitions (see page ).         
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Factoring and Primality Testing

   

   

Input description: An integer n. 

Problem description: Is n a prime number, and if not what are the factors of n? 

Discussion: The dual problems of factoring integers and testing primality have surprisingly many 
applications for a problem long suspected of being only of mathematical interest.   The security of the 

RSA public-key cryptography system (see Section ) is based on the computational intractability of 
factoring large integers.   As a more modest application, hash table performance   typically improves 
when the table size is a prime number. To get this benefit, an initialization routine must identify a prime 
near the desired table size.   Finally, prime numbers are just interesting to play with.   It is no coincidence 
that programs to generate large primes often reside in the games directory of UNIX systems. 

Although factoring and primality testing are related problems, algorithmically they are quite different. 
There exist algorithms that can demonstrate that an integer is composite (i.e. not prime) without actually 
giving the factors.   To convince yourself of the plausibility of this, note that you can demonstrate the 
compositeness of any nontrivial integer whose last digit is 0, 2, 4, 5, 6, or 8 without doing the actual 
division. 
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The simplest algorithm for both of these problems is brute-force trial division.     To factor n, compute 
the remainder of n/i for all  . The prime factorization of n will contain at least one instance of 

every i such that  , unless n is prime. Make sure you handle the multiplicities correctly and 

account for any primes larger than  . 

Such algorithms can be sped up by using a precomputed table of small primes to avoid testing all 
possible i. Surprisingly large numbers of primes can be represented in surprisingly little space by using 

bit vectors (see Section ).   A bit vector of all odd numbers less than 1,000,000 fits in under 64 
kilobytes. Even tighter encodings become possible by eliminating all multiples of three and other small 
primes. 

Considerably faster factoring algorithms exist, whose correctness depends upon more substantial number 
theory. The fastest known algorithm, the number field sieve, uses randomness to construct a system of 
congruences, the solution of which usually gives a factor of the integer.   Integers with as many at 128 
digits have been factored using this method, although such feats require enormous amounts of 
computation. 

Randomized algorithms make it much easier to test whether an integer is prime.    Fermat's little theorem 
states that  for all a, when n is prime. Suppose we pick a random value of  and 

compute the residue of  . If this residue is not 1, we have just proven that n cannot be prime. 

Such randomized primality tests are very efficient. PGP (see Section ) finds 300+ digit primes using 
hundreds of these tests in minutes, for use as cryptographic keys.   

Although the primes are scattered in a seemingly random way throughout the integers, there is some 
regularity to their distribution.   The prime number theorem states that the number of primes less than n, 
commonly denoted by  , is approximately  .   Further, there are never large gaps between 
primes, so in general, one would expect to examine about  integers if one wanted to find the first 
prime larger than n. This distribution and the fast randomized primality test explain how PGP can find 
such large primes so quickly. 

Implementations: My first choice for factoring or primality testing applications would be   PARI, a 
system capable of handling complex number-theoretic problems on integers with up to 300,000 decimal 
digits, as well as reals, rationals, complex numbers, polynomials, and matrices. It is written mainly in C, 
with assembly code for inner loops on major architectures, and includes more than 200 special 
predefined mathematical functions.   PARI can be used as a library, but it also possesses a calculator 
mode that gives instant access to all the types and functions. The main advantage of PARI is its speed. 
On a Unix platform, it is between 5 to 100 times faster than Maple or Mathematica, depending on the 
applications. PARI is available for PC, Amiga, Macintosh, and most Unix platforms by anonymous ftp at 
ftp://megrez.ceremab.u-bordeaux.fr/pub/pari/. 
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A Mathematica implementation by Ilan Vardi of Lenstra's elliptic curve method of factorization is 
available in Packages/NumberTheory/FactorIntegerECM.m of the standard Mathematica distribution and 
MathSource.     It is designed to find prime factors of up to about 18 digits in reasonable time, extending 
Mathematica's ability to factor all numbers of up to 40 digits. It is faster when factoring the product of 
small primes. 

Notes: Bach and Shallit's book [BS96] is the most comprehensive reference on computational number 
theory,   while Adleman's excellent survey [Adl94a] describes the state of the art, as well as open 
problems. Good expositions on modern algorithms for factoring and primality testing include [CLR90]. 

The Miller-Rabin [Mil76, Rab80] randomized primality testing algorithm eliminates problems with 
Carmichael numbers, which are composite integers that always satisfy Fermat's theorem. The best 
algorithms for integer factorization include the quadratic-sieve [Pom84] and the elliptic-curve methods 
[HWL87].         

Mechanical sieving devices provided the fastest way to factor integers surprisingly far into the computing 
era. See [SWM95] for a fascinating account of one such device, built during World War I. Hand-cranked, 
it proved the primality of  in fifteen minutes of sieving time.    

An important problem in computational complexity theory is whether P = NP  co-NP.     The decision 
problem ``is n a composite number?'' is perhaps the best candidate for a counterexample. By exhibiting 
the factors of n, it is trivially in NP. It can be shown to be in co-NP, since every prime has a short proof 
of its primality [Pra75]. However, there is no evidence it is in P.   For more information on complexity 
classes, see [GJ79, Joh90]. 

A group headed by Arjen Lenstra has regularly broken records for general-purpose integer factoring, 
using an Internet-distributed implementation of the quadratic sieve factoring method.     The June 1993 
factorization of RSA-120 took approximately 830 MIP-years of computation. The April 1994 
factorization of RSA-129, famous for appearing in the original RSA paper [RSA78], was factored in 
eight months using over 1,600 computers.   This was particularly noteworthy because in [RSA78] they 
had originally predicted such a factorization would take 40 quadrillion years using 1970s technology. 

Related Problems: Cryptography (see page ), high precision arithmetic (see page ).     
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Input description: Two very large integers, x and y. 

Problem description: What is x+y, x-y,  , and x / y? 

Discussion: Any programming language whose level rises above basic assembler supports single- and 
perhaps double-precision integer/real addition, subtraction, multiplication, and division. But what if we 
wanted to represent the national debt of the United States in pennies? One trillion dollars worth of 
pennies requires 15 decimal digits, which is far more than can fit into a 32-bit integer.           

In other applications much larger integers are needed.     The RSA algorithm for public-key cryptography 
requires integer keys of at least 100 digits to achieve any level of security, and 1000 digits are 
recommended.   Experimenting with number-theoretic conjectures for fun or research always requires 
playing with large numbers. I once solved a minor open problem [GKP89] by performing an exact 

computation on the integer  . 

What should you do when you need large integers? 

●     Am I solving a problem instance requiring large integers, or do I have an embedded application? - 
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If you just need the answer to a specific problem with large integers, such as in the number theory 
application above, you would be well advised to consider using a computer algebra system like 
Maple or Mathematica.       These use arbitrary-precision arithmetic as a default and use nice Lisp-
like programming languages as a front end, together often reducing your problem to a 5 to 10 line 
program. 

If instead you have an embedded application requiring high-precision arithmetic, you would be 
well advised to use an existing library. In addition to the four basic operations, you are likely to 
get additional functions for computing things like greatest common divisor in the bargain.   See 
the implementations below for details.

●     Do I need high- or arbitrary-precision arithmetic? - Is there an upper bound on how big your 
integers can get, or do you really need arbitrary-precision, i.e. unbounded. This determines 
whether you can use a fixed-length array to represent your integers as opposed to a linked-list of 
digits. The array is likely to be simpler and will not be a constraint in most applications.

●     What base should I do arithmetic in? -   It is conceptually simplest to implement your own high-
precision arithmetic package in decimal and represent each integer as a string of base-10 digits, at 
one digit per node.   However, it is far more efficient to use a higher base, ideally the square root 
of the largest integer supported fully by hardware arithmetic. 

Why? The higher the base, the fewer digits we need to represent the number (compare 64 decimal 
with 1000000 binary). Since hardware addition usually takes one clock cycle independent of the 
actual numbers, best performance is achieved using the highest base.   The reason for limiting us 
to  is that in performing high-precision multiplication, we will multiply two of these 

``digits'' together and need to avoid overflow. 

The only complication of using a larger base is that integers must be converted to and from base-
10 for input and output, but the conversion is easily performed once all four high-precision 
arithmetical operations are supported.  

●     How low-level are you willing to get for fast computation? Hardware addition is much faster than 
a subroutine call, so you are going to take a significant hit on speed whenever your package is 
used where low-precision arithmetic suffices.   High-precision arithmetic is one of few problems 
in this book where inner loops in assembly language can be the right idea to speed things up.   
Finally, using bit-level masking and shift operations instead of arithmetical operations can be a 
win. 

The algorithm of choice for each of the five basic arithmetic operations is as follows: 

●     Addition - The basic schoolhouse method of lining up the decimal points and then adding the 
digits from right to left with carries works in time linear in the number of digits.   More 
sophisticated carry-look-ahead parallel algorithms are available for low-level hardware 
implementation. Hopefully they are used on your chip for low-precision addition.

●     Subtraction - Depending upon the sign bits of the numbers, subtraction can be a special case of 
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addition: (A - (-B)) = (A+B). The tricky part of subtraction is performing the borrow.   This can be 
simplified by always subtracting from the number with the larger absolute value and adjusting the 
signs afterwards, so we can be certain there will always be something to borrow from.

●     Multiplication - The simplest method of repeated addition will take exponential time on large 
integers, so stay away. The digit-by-digit schoolhouse method is reasonable to program and will 
work much better, presumably well enough for your application.   On very large integers, 
Karatsuba's  divide-and-conquer algorithm (cited in the notes) wins. Dan Grayson, author 
of Mathematica's arbitrary-precision arithmetic, found that the switch-over happened at well under 
100 digits.   Even faster on very large integers is an algorithm based on Fourier transforms. A 

discussion of such algorithms appears in Section .
●     Division - Repeated subtraction will take exponential time, so the easiest reasonable algorithm to 

use is the long-division method you hated in school.   This is a far more complicated algorithm 
than needed for the other operations, requiring arbitrary-precision multiplication and subtraction as 
subroutines, as well as trial and error to determine the correct digit to use at each position of the 
quotient. 

In fact, integer division can be reduced to integer multiplication, although in a nontrivial way, so if 
you are implementing asymptotically fast multiplication, you can reuse that effort in long division. 
See the references below for details.

●     Exponentiation - We can compute  in the obvious manner using b-1 multiplications, but a better 
way is to exploit the fact that  . By repeatedly squaring the results of our partial 

product, we can escape using  multiplications, a big win when b is large.     See Section  
for a discussion of this algorithm. 

High- but not arbitrary-precision arithmetic can be conveniently performed using the Chinese remainder 
theorem and modular arithmetic.     The Chinese remainder theorem states that an integer between 1 and 

 is uniquely determined by its set of residues mod  , where each  are relatively prime 

integers. Addition, subtraction, and multiplication (but not division) can be supported using such residue 
systems, with the advantage that large integers can be manipulated without complicated data structures. 

Many of these algorithms for computations on long integers can be directly applied to computations on 
polynomials.   See the references for more details. A particularly useful algorithm is Horner's rule for fast 
polynomial evaluation.   When  is blindly evaluated term by term,  multiplications 

will be performed. Much better is observing that , the evaluation of which uses only a linear number of 
operations. 

Implementations: All major commercial computer algebra systems incorporate high-precision 
arithmetic, including Maple, Mathematica, Axiom, and Macsyma.     If you have access to one of these, 
this is your best option for a quick, nonembedded application. The rest of this section focuses on source 
code available for embedded applications. 
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PARI, developed by Henri Cohen and his colleagues in France, is a system capable of handling complex 
number-theoretic problems on integers with up to 300,000 decimal digits, as well as reals, rationals, 
complex numbers, polynomials, and matrices.   It is probably the most powerful free software available 
for number theory. Written mainly in C (with assembly-language code for speed-critical routines), it 
includes more than 200 special predefined mathematical functions.   PARI can be used as a library, but it 
possesses also a powerful calculator mode that gives instant access to all the types and functions.   The 
main advantage of PARI is its speed. On a Unix platform, it runs between 5 to 100 times faster than 
Maple or Mathematica, depending on the applications. PARI is available for PC, Amiga, Macintosh, and 
most Unix platforms by anonymous ftp at ftp://megrez.ceremab.u-bordeaux.fr/pub/pari/. 

Algorithm 693 [Smi91] of the Collected Algorithms of the ACM is a Fortran implementation of floating-

point, multiple-precision arithmetic. See Section .       

An implementation of arbitrary-precision integer and rational arithmetic in C++ is embedded in LEDA 

(see Section ), including GCD, square roots, and logarithms as well as the basic four operations.       
Sparc assembler code is used for certain time-critical functions. 

Implementations in C of a high-precision calculator with all four elementary operations appear in [BR95]. 
The authors use base 10 for arithmetic and arrays of digits to represent long integers, with short integers 
as array indices, thus limiting computations to 32,768 digits. The code for these algorithms is printed in 
the text and available on disk for a modest fee. 

Bare bones implementations in C of high-precision multiplication and in Pascal of such special functions 

as logarithm and arctangent appear in [GBY91].   See Section  for further details. Sedgewick [Sed92] 

provides a bare bones implementation of polynomial arithmetic in C++.   See Section  for details. 

Notes: Knuth [Knu81] is the primary reference on algorithms for all basic arithmetic operations, 
including implementations of them in the MIX assembly language.   Bach and Shallit [BS96] provide a 
more recent treatment of computational number theory.   

Expositions on the -time divide-and-conquer algorithm for multiplication [KO63] include [AHU74, 
Man89].   An FFT-based algorithm multiplies two n-bit numbers in time and is due to Schönhage and 
Strassen [SS71]. Expositions include [AHU74, Knu81]. The reduction between integer division and 
multiplication is presented in [AHU74, Knu81]. 

Good expositions of algorithms for modular arithmetic and the Chinese remainder theorem include 
[AHU74, CLR90]. A good exposition of circuit-level algorithms for elementary arithmetic algorithms is 
[CLR90]. 
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Euclid's algorithm for computing the greatest common divisor of two numbers is perhaps the oldest 
interesting algorithm. Expositions include [CLR90, Man89].   

Related Problems: Factoring integers (see page ), cryptography (see page ).     
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Knapsack Problem 

   

   

Input description: A set of items  , where item i has size  and value  . A knapsack 
capacity C. 

Problem description: Find the subset  that maximizes the value of  given that  ; 
i.e. all the items fit in a knapsack of size C. 

Discussion: The knapsack problem arises whenever there is resource allocation with financial 
constraints. Given a fixed budget, how do you select what things you should buy. Everything has a cost 
and value, so we seek the most value for a given cost.   The term knapsack problem invokes the image of 
the backbacker who is constrained by a fixed-size knapsack and so must fill it only with the most useful 
items.     

The typical formulation in practice is the 0/1 knapsack problem,   where each item must be put entirely in 
the knapsack or not included at all. Objects cannot be broken up arbitrarily, so its not fair taking one can 
of coke from a six-pack or opening the can to take just a sip. It is this 0/1 property that makes the 
knapsack problem hard, for a simple greedy algorithm finds the optimal selection whenever we are 
allowed to subdivide objects arbitrarily.   For each item, we could compute its ``price per pound'', and 
take as much of the most expensive item until we have it all or the knapsack is full. Repeat with the next 
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most expensive item, until the knapsack is full. Unfortunately, this 0/1 constraint is usually inherent in 
most applications. 

Issues that arise in selecting the best algorithm include: 

●     Does every item have the same cost/value or the same size? - If each item is worth the same 
amount to us as any other item, say $1, I maximize my value by taking the greatest number of 
items. In this case the optimal solution is to sort the items in order of increasing size and insert 
them into the knapsack in this order until nothing fits.   The problem is solved similarly when 
each object has the same size but the costs are different. These are the easy cases of knapsack.

●     Does each item have the same ``price per pound''? - In this case, our problem is equivalent to 
ignoring the price and just trying to minimize the amount of empty space left in the knapsack.   
Unfortunately, even this restricted version of the problem is NP-complete, and so we cannot 
expect an efficient algorithm that always solves the problem. Don't lose hope, however, because 
knapsack proves to be an ``easy'' hard problem, one that can usually be handled with the 
algorithms described below. 

An important special case of constant ``price-per-pound'' knapsack is the integer partition 

problem, presented in cartoon   form in Figure . 

   
Figure: Integer partition is a variant of the Knapsack problem  

Here, we seek to partition the elements of S into two sets A and B such that  , or 
alternately make the difference as small as possible. Integer partition can be thought of as bin 
packing with two equal-sized bins or knapsack with a capacity of half the total weight, so all three 
problems are closely related and NP-complete. 

The constant `price-per-pound' knapsack problem is often called the subset sum problem, because 
given a set of numbers, we seek a subset   that adds up to a specific target number, i.e. the 
capacity of our knapsack.

●     Are all the sizes relatively small integers? - When the sizes of the items and the knapsack capacity 
C are all integers,   there is an efficient dynamic programming algorithm that finds the optimal 
solution in time O(n C) and O(C) space. Whether this is good for you depends upon how big C is. 
For  1,000, this might be great, but not for  10,000,000. 

The algorithm works as follows: Let S' be a set of items, and let C[i,S'] be true if and only if there 
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is a subset of S' whose size adds up exactly to i. For the empty set,  is false for  . 

One by one we add a new item  to S' and update the affected values of C[i,S']. Observe that 
 iff either C[i,S'] or  is true, since either we use  in our subset or we 

don't. By performing n sweeps through all C elements, one for each  ,  , and updating 
the array, we identify which sums of sizes can be realized. The knapsack solution is the largest 
realizable size. In order to reconstruct the winning subset, we must store the name of the item 
number that turned C[i] from false to true, for each  , and then scan backwards through 

the array. 

The dynamic programming formulation described above ignored the values of the items. To 
generalize the algorithm, add a field to each element of the array to store the value of the best 
subset to date summing up to i. We now update not only when C[i] turns from false to true, but 
when the sum of the cost of  plus the cost of  is better than the previous cost of C[i].

●     What if I have multiple knapsacks? -     When there are multiple knapsacks, your problem is 

probably better thought of as a bin packing problem. See Section . 

When the knapsack capacity gets too large for dynamic programming, exact solutions can be found using 
integer programming or backtracking.     A 0/1 integer variable  is used to denote whether item i is 
present in the optimal subset. We maximize  given the constraint that  . 

Algorithms and implementations of integer and linear programming are discussed in Section . 

When exact solutions prove too costly to compute, heuristics should be used. The simple greedy heuristic 
inserts items according to the maximum `price per pound' rule, described above.   Often this heuristic 
solution is close to optimal, but it can be arbitrarily bad depending upon the problem instance. The 
``price per pound'' rule can also be used to reduce the size of the problem instance in exhaustive search-
based algorithms by eliminating ``cheap but heavy'' objects from future consideration. 

Another heuristic is based on scaling.   Dynamic programming works well if the capacity of the knapsack 
is a reasonably small integer, say  . But what if we have a problem with capacity  ? We scale 
down the sizes of all items by a factor of  , round the size down to an integer, and then use dynamic 
programming on the scaled items. Scaling works well in practice, especially when the range of sizes of 
items is not too large. 

Implementations: Martello and Toth's book [MT90a] comes with a disk of Fortran implementations of a 
variety of knapsack algorithms.   This is likely the best source of code currently available. 

Algorithm 632 [MT85] of the Collected Algorithms of the ACM is a Fortran code for the 0/1 knapsack 

problem, with the twist that it supports multiple knapsacks.   See Section . 
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Pascal implementations of several knapsack algorithms, including backtracking and a refined greedy 

algorithm, are provided in [SDK83]. See Section  for details.   

Notes: Martello and Toth's book [MT90a] and survey article [MT87] are the standard references on the 
knapsack problem, including most theoretical and experimental results. An excellent exposition on 
integer programming approaches to knapsack problems appears in [SDK83]. See [FP75a] for a 
computational study of algorithms for 0-1 knapsack problems. 

A polynomial-time approximation scheme is an algorithm that approximates the optimal solution of a 
problem in time polynomial in both its size and the approximation factor  .     This very strong condition 
implies a smooth tradeoff between running time and approximation quality. Good expositions on the 
polynomial-time approximation scheme [IK75] for knapsack and subset sum includes [Baa88, CLR90, 
GJ79, Man89]. 

The first algorithm for generalized public key encryption by Merkle   and Hellman [MH78] was based on 
the hardness of the knapsack problem. See [Sch94] for an exposition. 

Related Problems: Bin packing (see page ), integer programming (see page ).     
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Discrete Fourier Transform

   

   

Input description: A sequence of n real or complex values  ,  , sampled at uniform 
intervals from a function h. 

Problem description: The discrete Fourier transform H of h,  , for  . 

Discussion: Although computer scientists tend to be relatively unfamiliar with Fourier transforms, 
electrical engineers and signal processors eat them for breakfast. Functionally, Fourier transforms 
provide a way to convert samples of a standard time-series into the ``frequency domain''. This provides a 
``dual'' representation of the function, in which certain operations become easier than in the time domain. 
Applications of Fourier transforms include:          

●     Filtering - Taking the Fourier transform of a function is equivalent to representing it as the sum of 
sine functions.       By eliminating undesirable high- and/or low-frequency components (i.e. 
dropping some of the sine functions) and taking an inverse Fourier transform to get us back into 
the time domain, we can filter an image to remove noise and other artifacts.   For example, the 
sharp spike in the figure above describes the period of a single sine function that closely models 
the input data.

●     Image Compression - A smoothed, filtered image contains less information than a noisy image, 
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while retaining a similar appearance. Thus encoding the smoothed image will require fewer bits to 
represent than the original image.     By eliminating the coefficients of sine functions that 
contribute relatively little to the image, we can further reduce the size of the image, at little cost in 
image fidelity.

●     Convolution and Deconvolution - Fourier transforms can be used to efficiently compute 
convolutions of two sequences.    A convolution is the pairwise product of elements from two 
different sequences, such as in multiplying two n-variable polynomials f and g or multiplying two 
long integers.     Implementing the product directly takes  , while  suffices using the 
fast Fourier transform. Another example comes from image processing.   Because a scanner 
measures the darkness of an image patch instead of a single point, the scanned input is always 
blurred. A reconstruction of the original signal can be obtained by deconvoluting the input signal 
with a Gaussian point-spread function.   

●     Computing the correlation of functions -   The correlation function of two functions f(t) and g(t) is 
defined by 

 

and can be easily computed using Fourier transforms. Note that if the two functions are similar in 
shape but one is shifted relative to the other (such as  and  ), the value of 

 will be large at this shift offset  .   As an application, suppose that we want to detect 
whether there are any funny periodicities in our random number generator.   We can generate a 
large series of random numbers, turn it into a time series (the ith number at time i), and take the 
Fourier transform of this series. Any funny spikes will correspond to potential periodicities.   

The discrete Fourier transform takes as input n   complex numbers  ,  , corresponding to 

equally spaced points in a time series, and outputs n complex numbers  ,  , each 

describing a sine function of given frequency. The discrete Fourier transform is defined by 

 

and the inverse Fourier transform is defined by 

 

which enables us move easily between h and H. 

Since the output of the discrete Fourier transform consists of n numbers, each of which can be computed 
using a formula on n numbers, they can be computed in  time. The fast Fourier transform (FFT) is 
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an algorithm that computes the discrete Fourier transform in  . This is arguably the most 
important algorithm known, as measured by practical impact, for it opened the door to modern image 
processing. There are several different algorithms that call themselves FFTs, all of which are based on a 
divide-and-conquer approach. Essentially, the problem of computing the discrete Fourier transform on n 
points is reduced to computing two transforms on n/2 points each and is then applied recursively      

The FFT usually assumes that n is a power of two. If this is not the case for your data, you are usually 
better off padding your data with zeros to create  elements rather than hunting for a more general 
code. 

Since many image processing systems have strong real-time constraints, FFTs are often implemented in 
hardware, or at least in assembly language tuned to the particular machine. Be aware of this possibility if 
the codes below prove too slow.     

Implementations: FFTPACK is a package of Fortran subprograms for the fast Fourier transform of 
periodic and other     symmetric sequences, written by P. Swartzrauber. It includes complex, real, sine, 
cosine, and quarter-wave transforms. A C language translation of the main routines is also provided.   

FFTPACK resides on Netlib (see Section ) at http://www.netlib.org/fftpack.   

Algorithm 545 [Fra79] of the Collected Algorithms of the ACM is an implementation of the fast Fourier 

transform optimizing virtual memory performance and written in Fortran.     See Section  for further 
information. 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows, which includes 
an interesting animation of the fast Fourier transform.   

A Pascal implementation of the fast Fourier transform for  points appears in [MS91].   For more 

details, see Section . Sedgewick [Sed92] provides a bare bones implementation of the fast Fourier 

transform in C++.   See Section  for details. 

Notes: Brigham [Bri74] is an excellent introduction to Fourier transforms and the FFT and is strongly 
recommended, as is the exposition in [PFTV86]. Expositions in algorithms texts on the fast Fourier 
transform include [AHU74, Baa88, CLR90, Man89]. 

Credit for inventing the fast Fourier transform is usually given to Cooley and Tukey [CT65], although it 
is not completely deserved. See [Bri74] for a complete history. 

An interesting divide-and-conquer algorithm for polynomial multiplication [KO63] does the job in 
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 time and is discussed in [AHU74, Man89]. An FFT-based algorithm that multiplies two n-bit 
numbers in  time is due to Schönhage and Strassen [SS71] and is presented in [AHU74]. 

In recent years, wavelets have been proposed to replace Fourier transforms in filtering.   See [Dau92] for 
an introduction to wavelets. 

Related Problems: Data compression (see page ), high-precision arithmetic (see page ).     
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Combinatorial Problems
In this section, we consider several classic algorithmic problems of a purely combinatorial nature. These 
include sorting and permutation generation, both of which were among the first nonnumerical problems 
arising on electronic computers. Sorting, searching, and selection can all be classified in terms of 
operations on a partial order of keys. Sorting can be viewed as identifying or imposing the total order on 
the keys, while searching and selection involve identifying specific keys based on their position in the 
total order.       

The rest of this section deals with other combinatorial objects, such as permutations, partitions, subsets, 
calendars, and schedules.    We are particularly interested in algorithms that rank and unrank 
combinatorial objects, i.e. that map each distinct object to and from a unique integer. Once we have rank 
and unrank operations, many other tasks become simple, such as generating random objects (pick a 
random number and unrank) or listing all objects in order (iterate from 1 to n and unrank). 

We conclude with the problem of generating graphs. Graph algorithms are more fully presented in 
subsequent sections. 

Books on general combinatorial algorithms, in this restricted sense, include: 

●     Nijenhuis and Wilf [NW78] - This book specializes in algorithms for constructing basic 
combinatorial objects such as permutations, subsets, and partitions. Such algorithms are often 
very short but hard to locate and usually are surprisingly subtle. Fortran programs for all of the 
algorithms are provided, as well as a discussion of the theory behind each of them. See Section 

 for details.
●     Ruskey [Rus97] - On its completion, this manuscript in preparation will become the standard 

reference on generating combinatorial objects. A preview is available via the WWW at 
http://www-csc.uvic.ca/home/fruskey/cgi-bin/html/main.html .

●     Knuth [Knu73a, Knu73b] - The standard reference on searching and sorting, with significant 
material on combinatorial objects such as permutations.

●     Reingold, Nievergelt, Deo [RND77] - A comprehensive algorithms text with a particularly 
thorough treatment of combinatorial generation and search.

●     Stanton and White [SW86] - An undergraduate combinatorics text with algorithms for generating 
permutations, subsets, and set partitions. It contains relevant programs in Pascal.
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●     Skiena [Ski90] - This description of Combinatorica, a library 230 Mathematica functions for 

generating combinatorial objects and graph theory (see Section ) provides a distinctive view of 
how different algorithms can fit together.   Its author is uniquely qualified to write a manual on 
algorithm design. 

●     Sorting 
●     Searching 
●     Median and Selection 
●     Generating Permutations 
●     Generating Subsets 
●     Generating Partitions 
●     Generating Graphs 
●     Calendrical Calculations 
●     Job Scheduling 
●     Satisfiability 
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Sorting 

   

   

Input description: A set of n items. 

Problem description: Arrange the items in increasing order. 

Discussion: Sorting is the fundamental algorithmic problem in computer science. Learning the different 
sorting algorithms is like learning scales for a musician.   Sorting is the first step in solving a host of 

other algorithm problems, as discussed in Section . Indeed, ``when in doubt, sort'' is one of the first 
rules of algorithm design. 

Sorting is also used to illustrate the standard paradigms of algorithm design.   The result is that most 
programmers are familiar with many different sorting algorithms, which sows confusion as to which 
should be used for a given application. The following criteria can help you decide: 

●     How many keys will you be sorting? - For small amounts of data (say  ), it really doesn't 
matter much which of the quadratic-time algorithms you use. Insertion sort is faster, simpler, and 
less likely to be buggy than bubblesort.       Shellsort is much faster than insertion sort, but it 
involves somewhat trickier programming and looking up good insert sequences in Knuth 
[Knu73b]. 
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If you have more than 100 items to sort, it is important to use an  -time algorithm, like 
heapsort, quicksort, or mergesort.     If you have more than 1,000,000 items to sort, you probably 
need an external-memory algorithm that minimizes disk access.   Both types of algorithms are 
discussed below.

●     Will there be duplicate keys in the data? -   When all items have distinct keys, the sorted order is 
completely defined. However, when two items share the same key, something else must 
determine which one comes first. For many applications it doesn't matter, so any sorting algorithm 
is equally good.   Often, ties are broken by sorting on a secondary key, like the first name or initial 
if the family names collide. 

Occasionally, ties need to be broken by their initial position in the data set. If the 5th and 27th 
items of the initial data set share the same key in such a case, the 5th item must be before the 27th 
in the final order.   A stable sorting algorithm preserves the original ordering in case of ties. Most 
of the quadratic-time sorting algorithms are stable, while many of the  algorithms are not. 
If it is important that your sort be stable, it is probably better to explicitly use the initial position 
as a secondary key rather than trust the stability of your implementation.

●     What do you know about your data? - In special applications, you can often exploit knowledge 
about your data to get it sorted faster or more easily. Of course, general sorting is a fast  
algorithm, so if the time spent sorting is really the bottleneck in your application, you are a 
fortunate person indeed. 

❍     Is the data already partially sorted? If so, algorithms like insertion sort perform better than 
they otherwise would.

❍     Do you know the distribution of the keys?     If the keys are randomly or uniformly 
distributed, a bucket or distribution sort makes sense. Throw the keys into bins based on 
their first letter, and recur until each bin is small enough to sort by brute force.   This is 
very efficient when the keys get evenly distributed into buckets. However, bucket sort 
would be bad news sorting names on the mailing list of the ``Smith Society.''

❍     Are your keys very long or hard to compare?   If your keys are long text strings, it might 
pay to use a radix or bucket sort instead of a standard comparison sort, because the time of 
each comparison can get expensive.   A radix sort always takes time linear in the number 
of characters in the file, instead of  times the cost of comparing two keys.

❍     Is the range of possible keys very small?   If you want to sort a subset of n/2 distinct 
integers, each with a value from 1 to n, the fastest algorithm would be to initialize an n-
element bit vector, turn on the bits corresponding to keys, then scan from left to right and 
report which bits are on. 

●     Do I have to worry about disk accesses? - In massive sorting problems, it may not be possible to 
keep all data in memory simultaneously. Such a problem is called external sorting, because one 
must use an external storage device.     Traditionally, this meant tape drives, and Knuth [Knu73b] 
describes a variety of intricate algorithms for efficiently merging data from different tapes.   
Today, it usually means virtual memory and swapping.   Any sorting algorithm will work with 
virtual memory, but most will spend all their time swapping. 
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The simplest approach to external sorting loads the data into a B-tree (see Section ) and then 
does an in-order traversal of the tree to read the keys off in sorted order.   Other approaches are 
based on mergesort. Files containing portions of the data are sorting using a fast internal sort, and 
then these files are merged in stages using 2- or k-way merging. Complicated merging patterns 
based on the properties of the external storage device can be used to optimize performance.

●     How much time do you have to write and debug your routine? -     If I had under an hour to 
deliver a working routine, I would probably just use a simple selection sort.   If I had an afternoon 
to build an efficient sort routine, I would probably use heapsort, for it delivers reliable 
performance without tuning. If I was going to take the time required to build a fast system sort 
routine, I would carefully implement quicksort. 

The best general-purpose sorting algorithm is quicksort (see Section ), although it requires 
considerable tuning effort to achieve maximum performance.   Indeed, you are probably better off using 
a library function instead of doing it yourself. A poorly written quicksort will likely run more slowly than 
a poorly written heapsort. 

If you are determined to implement your own quicksort, use the following heuristics, which make a big 
difference in practice: 

●     Use randomization -   By randomly permuting (see Section ) the keys before sorting, you can 
eliminate the potential embarrassment of quadratic-time behavior on nearly-sorted data.

●     Median of three -   For your pivot element, use the median of the first, last, and middle elements 
of the array, to increase the likelihood of partitioning the array into roughly equal pieces. Some 
experiments suggest using a larger sample on big subarrays and a smaller sample on small ones.

●     Leave small subarrays for insertion sort -   Terminating the quicksort recursion and switching to 
insertion sort makes sense when the subarrays get small, say fewer than 20 elements. You should 
experiment to determine the best switchpoint for your implementation.

●     Do the smaller partition first -   Assuming that your compiler is smart enough to remove tail 
recursion, you can minimize runtime memory by processing the smaller partition before the larger 
one.   Since successive stored calls are at most half as large as before, only  stack space is 
needed. 

Before you get started, see Bentley's article on building a faster quicksort [Ben92b]. 

Implementations: Pascal implementations of all the primary sorting algorithms are available from 

[MS91]. See Section  for details. Timing comparisons show an optimized version of quicksort to be 
the winner.   

Bare bones implementations of all basic sorting algorithms, in C and Pascal, appear in [GBY91].   Most 
notable is the inclusion of implementations of external memory sorting algorithms. Sedgewick includes 
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similar sort routine fragments in C++.   See Section  for details. 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows, which includes 
animations of all the basic sorting algorithms, including bubblesort, heapsort, mergesort, quicksort, radix 
sort, and shellsort. Many of these are quite interesting to watch. Indeed, sorting is the canonical problem 
for algorithm animation.                 

Algorithm 410 [Cha71] and Algorithm 505 [Jan76] of the Collected Algorithms of the ACM are Fortran 
codes for sorting. The latter is an implementation of Shellsort on linked lists. Both are available from 

Netlib (see Section ).       

C language implementations of Shellsort, quicksort, and heapsort appear in [BR95]. The code for these 
algorithms is printed in the text and available on disk for a modest fee. 

A bare bones implementation of heapsort in Fortran from [NW78] can be obtained in Section .     A 

bare bones implementation of heapsort in Mathematica from [Ski90] can be obtained in Section . 

Notes: Knuth [Knu73b] is the best book that has been written on sorting and indeed is the best book that 
will ever be written on sorting. It is now almost twenty-five years old, and a revised edition is promised, 
but it remains fascinating reading. One area that has developed since Knuth is sorting under 
presortedness measures.   A newer and noteworthy reference on sorting is [GBY91], which includes 
pointers to algorithms for partially sorted data and includes implementations in C and Pascal for all of the 
fundamental algorithms. 

Expositions on the basic internal sorting algorithms appear in every algorithms text, including [AHU83, 
Baa88, CLR90, Man89]. Treatments of external sorting are rarer but include [AHU83]. Heapsort was 
first invented by Williams [Wil64]. Quicksort was invented by Hoare [Hoa62], with careful analysis and 
implementation by Sedgewick [Sed78].   Von Neumann is credited with having produced the first 
implementation of mergesort, on the EDVAC in 1945.   See Knuth for a full discussion of the history of 
sorting, dating back to the days of punched-card tabulating machines. 

Sorting has a well-known  lower bound under the algebraic decision tree model [BO83].   
Determining the exact number of comparisons required for sorting n elements, for small values of n, has 
generated considerable study. See [Aig88, Raw92] for expositions. 

This lower-bound does not hold under different models of computation.   Fredman and Willard [FW93] 

present an  algorithm for sorting under a model of computation that permits arithmetic 
operations on keys.   Under a similar model, Thorup [Tho96] developed a priority queue supporting 
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 operations, implying an  sorting algorithm. 

Related Problems: Dictionaries (see page ), searching (see page ), topological sorting (see page 

).       
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Searching

   

   

Input description: A set S of n keys, a query key q. 

Problem description: Where is q in S? 

Discussion: Searching means different things to different people. Searching for the global maximum or 

minimum of a function is the problem of unconstrained optimization and is discussed in Section . 
Chess playing programs search for the best move to make next by using alpha-beta minimax search, 

which is an exhaustive search of the possible moves using a variation of backtracking (see Section ).   
    

Here we consider the simple task of searching for a key in a list or in an array, which is a fundamental 
problem associated with information retrieval.     Dictionary data structures maintain efficient access to 

sets of keys under insertion and deletion and are discussed in Section . Typical dictionaries include 
binary trees and hash tables. 

We treat searching here as a problem distinct from dictionaries because simpler and more efficient 
solutions emerge when our primary interest is static searching.   These little data structures can yield 
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large performance improvements when properly employed in an innermost loop.     Also, several of the 
ideas from list and array searching, such as binary search and self-organization, apply to other problems 
and justify our attention.    

There are two basic approaches to array searching: sequential search and binary search. Both are simple, 
yet have interesting and subtle variations. In sequential search, we simply start from the front of our list 
or array of keys and compare each successive item against the key until we find a match or reach the end. 
In binary search, we start with a sorted array of keys. To search for key q, we compare q to the middle 
key  . If q is before  , it must reside in the top half of our set; if not, it must reside in the bottom 
half of our set. By repeating this process on the correct half, we find the key in a total of  

comparisons. This is a big win over the n/2 comparisons we expect with sequential search. See Section 

 for more on binary search. 

Sequential search is the simplest algorithm, and likely to be fastest on up to 10-20 elements. For such 
tiny problems, forget about binary search. Beyond 50-100 elements, there is no question that binary 
search will be more efficient than sequential search, even factoring in the cost of the sorting (assuming 
multiple queries).   Other issues do come into play, however, particularly in identifying the proper variant 
of the algorithm: 

●     How much time can you spend programming? -   Binary search is a notoriously tricky algorithm 
to program correctly. It took seventeen years after its invention until the first correct version of 
binary search was published! Don't be afraid to start from one of the implementations described 
below. Test it completely by writing a driver that searches for every key in the set S as well as 
between the keys.

●     Are certain items accessed more often than other ones? -   Certain English words (such as ``the'') 
are much more likely to occur than others (such as ``defenestrate'').   We can reduce the number 
of comparisons in a sequential search by putting the most popular words at the top of the list and 
the least popular ones at the bottom.     Further, nonuniform access is typically the rule, not the 
exception.   Many real-world distributions, such as word use in English, are more accurately 
modeled by Zipf's law. Under Zipf's law, the ith most frequently accessed key is selected with 
probability (i-1)/i times the probability of the (i-1)st most popular key, for all  . 

However, preordering the list to exploit a skewed access pattern requires knowing the access 
pattern in advance. For many applications, it can be difficult to obtain such information.   Far 
easier are self-organizing lists, where the order of the keys changes in response to the queries.   
The simplest and best self-organizing scheme is move-to-front; that is, we move the most recently 
searched-for key from its current position to the front of the list. Popular keys keep getting 
boosted to the front, while unsearched-for keys drift towards the back of the list. There is no need 
to keep track of the frequency of access; just move the keys on demand.   Self-organizing lists 
also exploit locality of reference, since accesses to a given key are likely to occur in clusters.   
Any key will be maintained near the top of the list during a cluster of accesses, even if other keys 
have proven more popular in the past. 
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Self-organization can extend the useful size range of sequential search. However, you should 
switch to binary search beyond 50-100 elements.

●     Is the key close by? - Suppose we know that the target key is to the right of position p, and we 
think it is close by. Sequential search is fast if we are correct, but we will be punished severely 
whenever we guess wrong. A better idea is to test repeatedly at larger intervals (p+1, p+2, p+4, 
p+8, p+16,  ) to the right until we find a key to the right of our target.     After this, we have a 
window containing the target and we can proceed with binary search. 

Such a one-sided binary search finds the target at position p+l using at most  comparisons, 

so it is faster than binary search when l < < n, yet it can never be much worse.   One-sided binary 
search is particularly useful in unbounded search problems, such as in numerical root finding.

●     Is my data structure sitting on external memory? -       Once the number of keys grows too large, 
as in a CD-ROM telephone directory of all the people in the United States, binary search loses its 
status as the best search technique. Binary search jumps wildly around the set of keys looking for 
midpoints to compare, and it becomes very expensive to read in a new page from a secondary 
storage device for each comparison.   Much better are data structures such as B-trees (see Section 

), which cluster the keys into pages so as to minimize the number of disk accesses per search.
●     Can I guess where the key should be? -   In interpolation search, we exploit our understanding of 

the distribution of keys to guess where to look next. Interpolation search is probably a more 
accurate description of how we use a telephone book than binary search. For example, suppose we 
are searching for Washington, George in a sorted telephone book. We would certainly be safe 
making our first comparison three-fourths of the way down the list, essentially doing two 
comparisons for the price of one. 

Although interpolation search is an appealing idea, we caution against it for three reasons: First, 
you have to work very hard to optimize your search algorithm before you can hope for a speedup 
over binary search. Second, even if you get lucky and beat binary search, it is unlikely to be by 
enough to have justified the exercise.   Third, your program will be much less robust and efficient 
when the distribution changes, such as when your application gets put to work on French words 
instead of English. 

Implementations: The basic sequential and binary search algorithms are simple enough to implement 
that you should likely do them yourself. Still, the routines described below may be useful as models. 

Gonnet and Baeza-Yates provides code fragments in C and Pascal for sequential, binary, and 

interpolation search, as well as for related dictionary structures. LEDA (see Section ) provides a 
sorted array data type in C++ that supports binary search. Many textbooks include implementations of 

binary search, including [MS91]. See Section  for details.         
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Notes: Mehlhorn and Tsakalidis [MT90b] give a through survey of the state-of-the-art in modern data 
structures. Knuth [Knu73a] provides a detailed analysis and exposition on all fundamental search 
algorithms and dictionary data structures but omits such modern data structures as red-black and splay 
trees. Gonnet and Baeza-Yates [GBY91] provide detailed references and experimental results for a wide 
variety of search algorithms. 

Manber [Man89] provides an interesting discussion of variations of binary search, including one-sided 
binary search and searching for an index in A where  . 

  In linear interpolation search on an array of sorted numbers, the next position probed is given by 

 

where q is the query numerical key and S the sorted numerical array. If the keys are drawn independently 
from a uniform distribution, the expected search time is  [YY76]. Expositions on interpolation 
search include [Raw92]. 

Nonuniform access patterns can be exploited in binary search trees by structuring them so that popular 
keys are located near the root, thus minimizing search time.   Dynamic programming can be used to 
construct such optimal search trees in  time [Knu73b]. Expositions include [AHU74].     Splay 

trees are self-organizing tree structures, as discussed in Section . 

Related Problems: Dictionaries (see page ), sorting (see page ).     
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Median and Selection 

   

   

Input description: A set of n numbers or keys, and an integer k. 

Problem description: Find the key that is smaller than exactly k of the n keys. 

Discussion: Median finding is an essential problem in statistics, where it provides a more robust notion 
of average than the mean.       The mean wealth of people who have published research papers on sorting 
is significantly affected by the presence of one William Gates [GP79],   although his effect on the median 
wealth is merely to cancel out one starving graduate student. 

Median finding is a special case of the more general selection problem, which asks for the ith element in 
sorted order.   Selection arises in several applications: 

●     Filtering outlying elements - In dealing with noisy data samples, it is usually a good idea to throw 
out the largest and smallest 10% or so of them.       Selection can be used to identify the items 
defining the tenth and ninetieth percentiles, and the outliers are then filtered out by comparing 
each item to the two selected elements.

●     Identifying the most promising candidates -   In a computer chess program, we might quickly 
evaluate all possible next moves, and then decide to study the top 25% more carefully. Selection 
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followed by filtering is the way to go.
●     Order statistics -       Particularly interesting special cases of selection include finding the smallest 

element (i=1), the largest element (i=n), and the median element (i= n/2). 

The mean of n numbers can be easily computed in linear time by summing the elements and dividing by 
n. However, finding the median is a more difficult problem. Algorithms that compute the median can 
easily be generalized to arbitrary selection. 

The most elementary median-finding algorithm sorts the items in  time and then returns the item 
sitting the (n/2)nd position.   The good thing is that this gives much more information than just the 
median, enabling you to select the ith element (for all  ) in constant time after the sort. However, 
there are faster algorithms if all you want is the median. 

In particular, there is an O(n) expected-time algorithm based on quicksort. Select a random element in the 
data set as a pivot, and use it to partition the data into sets of elements less than and greater than the 
pivot. From the sizes of these sets, we know the position of the pivot in the total order, and hence 
whether the median lies to the left or right of the pivot. Now we recur on the appropriate subset until it 
converges on the median. This takes (on average)  iterations, with the cost of each iteration being 
roughly half that of the previous one. This defines a geometric series that converges to a linear-time 
algorithm, although if you are very unlucky it takes the same time as quicksort,  .    

More complicated algorithms are known that find the median in worst-case linear time. However, the 
expected-time algorithm will likely win in practice. Just make sure to select random pivots in order to 
avoid the worst case. 

Beyond mean and median, a third notion of average is the mode, defined to be the element that occurs the 
greatest number of times in the data set.   The best way to compute the mode sorts the set in  
time, which places all identical elements next to each other. By doing a linear sweep from left to right on 
this sorted set, we can count the length of the longest run of identical elements and hence compute the 
mode in a total of  time. 

In fact, there is no faster worst-case algorithm possible to compute the mode, since the problem of testing 
whether there exist two identical elements in a set (called element uniqueness) can be shown to have an 

 lower bound.     Element uniqueness is equivalent to asking if the mode is  . Possibilities 
exist, at least theoretically, for improvements when the mode is large by using fast median computations. 

Implementations: A bare bones implementation in C of the recursive k-selection algorithm appears in 

[GBY91].   See Section  for further details. 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows, which includes 
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an animation of the linear-time selection algorithm.   This animation is a good one. 

Notes: The linear expected-time algorithm for median and selection is due to Hoare [Hoa61]. Floyd and 
Rivest [FR75] provide an algorithm that uses fewer comparisons on average. Good expositions on linear-
time selection include [AHU74, Baa88, CLR90, Raw92], with [Raw92] being particularly enlightening. 

A sport of considerable theoretical interest is determining exactly how many comparisons are sufficient 
to find the median of n items.   The linear-time algorithm of Blum et. al. [BFP  72] proves that  
suffice, but we want to know what c is. A lower bower bound of 2n comparisons for median finding was 
given by Bent and John [BJ85]. In 1976, Schönhage, Paterson, and Pippenger [SPP76] presented an 
algorithm using 3n comparisons. Recently, Dor and Zwick [DZ95] proved that 2.95 n comparisons 
suffice. These algorithms attempt to minimize the number of element comparisons but not the total 
number of operations, and hence do not lead to faster algorithms in practice. 

Tight combinatorial bounds for selection problems are presented in [Aig88]. An optimal algorithm for 
computing the mode is presented in [DM80]. 

Related Problems: Priority queues (see page ), sorting (see page ).     
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Generating Permutations

   

   

Input description: An integer n. 

Problem description: Generate (1) all or (2) a random or (3) the next permutation of length n. 

Discussion: A permutation describes an arrangement, or ordering, of things. Many algorithmic problems 
in this catalog seek the best way to order a set of objects, including traveling salesman (the least-cost 
order to   visit n cities), bandwidth (order the vertices of a graph   on a line so as to minimize the length 
of the longest edge), and graph isomorphism   (order the vertices of one graph so that it is identical to 
another). Any algorithm for solving such problems exactly must construct a series of permutations along 
the way.     

There are n! permutations of n items, which grows so quickly that you can't expect to generate all 
permutations for n > 11, since 11! = 39,916,800.   Numbers like these should cool the ardor of anyone 
interested in exhaustive search and help explain the importance of generating random permutations. 

Fundamental to any permutation-generation algorithm is a notion of order, the sequence in which the 
permutations are constructed, from first to last.   The most natural generation order is lexicographic, the 
order they would appear if they were sorted numerically. Lexicographic order for n=3 is  ,  
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,  ,  ,  , and finally  . Although lexicographic order is aesthetically pleasing, 
there is often no particular reason to use it. For example, if you are searching through a collection of 
files, it does not matter whether the filenames are encountered in sorted order, so long as you search 
through all of them. Indeed, nonlexicographic orders lead to faster and simpler permutation generation 
algorithms. 

There are two different paradigms for constructing permutations: ranking/unranking and incremental 
change methods.     Although the latter are more efficient, ranking and unranking can be applied to solve 
a much wider class of problems, including the other combinatorial generation problems in this book. The 
key is to define functions rank and unrank on all permutations p and integers n, m, where |p| = n and 

 . 

●     Rank(p) - What is the position of p in the given generation order?   A typical ranking function is 
recursive, such as  , with  . Getting 
this right means relabeling the elements of the smaller permutation to reflect the deleted first 
element. Thus 

 

●     Unrank(m,n) - Which permutation is in position m of the n! permutations of n items?   A typical 
unranking function finds the number of times (n-1)! goes into m and proceeds recursively. 
Unrank(2,3) tells us that the first element of the permutation must be `2', since  
but  . Deleting  from m leaves the smaller problem Unrank(0,2). 
The ranking of 0 corresponds to the total order, and the total order on the two remaining elements 
(since `2' has been used) is  , so  . 

What the actual rank and unrank functions are does not matter as much as the fact that they must be 
inverses.   In other words, p = Unrank(Rank(p), n) for all permutations p. Once you define ranking and 
unranking functions for permutations, you can solve a host of related problems: 

●     Sequencing permutations -   To determine the next permutation that occurs in order after p, we 
can Rank(p), add 1, and then Unrank(p). Similarly, the permutation right before p in order is 
Unrank(Rank(p)-1,|p|). Counting through the integers from 0 to n!-1 and unranking them is 
equivalent to generating all permutations.

●     Generating random permutations -   Select a random integer from 0 to n!-1 and unrank it.
●     Keep track of a set of permutations - Suppose we want to construct random permutations and act 

only when we encounter one we have not seen before.   We can set up a bit vector (see Section 

)   with n! bits, and set bit i to 1 if permutation Unrank(i,n) has been seen.   A similar 

technique was employed with k-subsets in the Lotto application of Section . 
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The rank/unrank method is best suited for small values of n, since n! quickly exceeds the capacity of 

machine integers, unless arbitrary-precision arithmetic is available (see Section ).   The incremental 
change methods work by defining the next and previous operations to transform one permutation into 
another, typically by swapping two elements. The tricky part is to schedule the swaps so that 
permutations do not repeat until all of them have been generated. See the output picture above for an 
ordering of the six permutations of  with a single swap between successive permutations. 

Incremental change algorithms for sequencing permutations are tricky, but they are concise enough that 
they can be expressed in a dozen lines of code. See the implementation section for pointers to code.    
Because the incremental change is a single swap, these algorithms can be extremely fast - on average, 
constant time - which is independent of the size of the permutation! The secret is to represent the 
permutation using an n-element array to facilitate the swap. In certain applications, only the change 
between permutations is important. For example, in a brute-force program to search for the optimal tour, 
the cost of the tour associated with the new permutation will be that of the previous permutation, with the 
addition and deletion of four edges. 

Throughout this discussion, we have assumed that the items we are permuting are all distinguishable.     
However, if there are duplicates (meaning our set is a multiset), you can save considerable time and 
effort by avoiding identical permutations. For example, there are only ten permutations of  , 
instead of 120.   To avoid duplicates use backtracking and generate the permutations in lexicographic 
order. 

Generating random permutations is an important little problem that people stumble across often, and 
often botch up. The right way is the following two-line, linear-time algorithm. We assume that 
Random[i,n] generates a random integer between i and n, inclusive. 

for i=1 to n do a[i] = i;

for i=1 to n-1 do swap[ a[i], a[ Random[i,n] ];

That this algorithm generates all permutations uniformly at random is not obvious.   If you think so, 
explain convincingly why the following algorithm does not generate permutations uniformly: 

for i=1 to n do a[i] = i;

for i=1 to n-1 do swap[ a[i], a[ Random[1,n] ];
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Such subtleties demonstrate why you must be very careful with random generation algorithms. Indeed, 
we recommend that you try some reasonably extensive experiments with any random generator before 
really believing it. For example, generate 10,000 random permutations of length 4 and see whether all 24 
of them occur approximately the same number of times.   If you understand how to measure statistical 
significance, you are in even better shape. 

Implementations: The best source on generating combinatorial objects is Nijenhuis and Wilf [NW78], 
who provide efficient Fortran implementations of algorithms to construct random permutations    and to 
sequence permutations in minimum-change order.   Also included are routines to extract the cycle 

structure of a permutation. See Section  for details. 

An exciting WWW site developed by Frank Ruskey of the University of Victoria contains a wealth of 
material on generating combinatorial objects of different types, including permutations, subsets, 
partitions, and certain graphs. Specifically, there is an interactive interface that lets you specify which 
type of objects you would like to construct and quickly returns the objects to you. It is well worth 
checking this out at http://sue.csc.uvic.ca/  cos/. 

Combinatorica [Ski90] provides Mathematica implementations of algorithms that construct random 
permutations and sequence permutations in minimum change and lexicographic orders.     It also 
provides a backracking routine to construct all distinct permutations of a multiset, and it supports various 

permutation group operations. See Section . 

  The Stanford GraphBase (see Section ) contains routines to generate all permutations of a multiset. 

Notes: The primary reference on permutation generation is the survey paper by Sedgewick [Sed77]. 
Good expositions include [NW78, RND77, Rus97]. 

The fast permutation generation methods make only a single swap between successive permutations. The 
Johnson-Trotter algorithm [Joh63, Tro62] satisfies an even stronger condition, namely that the two   
elements being swapped are always adjacent. 

In the days before ready access to computers, books with tables of random permutations [MO63] were 
used instead of algorithms.   The swap-based random permutation algorithm presented above was first 
described in [MO63]. 

Related Problems: Random number generation (see page ), generating subsets (see page ), 
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generating partitions (see page ).       

       

 
Next: Generating Subsets Up: Combinatorial Problems Previous: Median and Selection 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Generating Subsets

   

   

Input description: An integer n. 

Problem description: Generate (1) all or (2) a random or (3) the next subset of the integers  . 

Discussion: A subset describes a selection of objects, where the order among them does not matter. 
Many of the algorithmic problems in this catalog seek the best subset of a group of things: vertex cover 
seeks the smallest subset of vertices to touch each edge in a graph; knapsack seeks the most profitable 
subset of items of bounded total size; and set packing seeks the smallest subset of subsets that together 
cover each item exactly once.          

There are  distinct subsets of an n-element set, including the empty set as well as the set itself. This 
grows exponentially, but at a considerably smaller rate than the n! permutations of n items. Indeed, since 

 1,048,576, a brute-force search through all subsets of   20 elements is easily manageable, although 
by n=30,  1,073,741,824, so you will certainly be pushing things. 

By definition, the relative order among the elements does not distinguish different subsets. Thus  

is the same as  .   However, it is a very good idea to maintain your subsets in a sorted or canonical 
order, in order to speed up such operations as testing whether two subsets are identical or making them 
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look right when printed. 

As with permutations (see Section ), the key to subset generation problems is establishing a numerical 
sequence among all  subsets. There are three primary alternatives: 

●     Lexicographic order -   Lexicographic order is sorted order, and often the most natural order for 
generating combinatorial objects. The eight subsets of  in lexicographic order are  ,  , 

 ,  ,  ,  ,  , and  . Unfortunately, it is surprisingly difficult to generate 
subsets in lexicographic order. Unless you have a compelling reason to do so, forget about it.

●     Gray Code -   A particularly interesting and useful subset sequence is the minimum change order, 
  wherein adjacent subsets differ by the insertion or deletion of exactly one element. Such an 
ordering, called a Gray code, appears in the output picture above. 

Subset generation in Gray code order can be very fast, because there is a nice recursive 
construction to sequence subsets. Further, since only one element changes between subsets, 
exhaustive search algorithms built on Gray codes can be quite efficient. A set cover program 
would only have to update the change in coverage by the addition or deletion of one subset. See 
the implementation section below for Gray code subset generation programs.

●     Binary counting -   The simplest approach to subset generation problems is based on the 
observation that any subset S' of S is defined by which of the n=|S| items are in S'. We can 
represent S' by a binary string of n bits, where bit i is 1 iff the ith element of S is in S'.   This 
defines a bijection between the  binary strings of length n, and the  subsets of n items. For 
n=3, binary counting generates subsets in the following order: {}, {3}, {2}, {2,3}, {1}, {1,3}, 
{1,2}, {1,2,3}. 

This binary representation is the key to solving all subset generation problems. To generate all 
subsets in order, simply count from 0 to  . For each integer, successively mask off each of 
the bits and compose a subset of exactly the items corresponding to `1' bits. To generate the next 
or previous subset, increment or decrement the integer by one. Unranking a subset is exactly the 
masking procedure, while ranking constructs a binary number with 1's corresponding to items in S 
and then converts this binary number to an integer.         

To generate a random subset, you could generate a random integer from 0 to  and unrank, 
although you are probably asking for trouble because any flakiness with how your random 
number generator rounds things off means that certain subsets can never occur. Therefore, a better 
approach is simply to flip a coin n times, with the ith flip deciding whether to include element i in 
the subset.   A coin flip can be robustly simulated by generating a random real or large integer and 
testing whether it is bigger or smaller than half the range. A Boolean array of n items can thus be 
used to represent subsets as a sort of premasked integer. The only complication is that you must 
explicitly handle the carry if you seek to generate all subsets. 
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Generation problems for two closely related problems arise often in practice: 

●     k-subsets -   Instead of constructing all subsets, we may only be interested in the subsets 

containing exactly k elements. There are  such subsets, which is substantially less than  , 

particularly for small values of k. 

The best way to construct all k-subsets is in lexicographic order.   The ranking function is based 

on the observation that there are  k-subsets whose smallest element is f. Using this, it is 

possible to determine the smallest element in the mth k-subset of n items. We then proceed 
recursively for subsequent elements of the subset. See the implementations below for details.

●     Strings -   Generating all subsets is equivalent to generating all  strings of true and false. To 
generate all or random strings on alphabets of size  , the same basic techniques apply, except 
there will be  strings in total. 

Implementations: Nijenhuis and Wilf [NW78] provide efficient Fortran   implementations of algorithms 
to construct random subsets and to sequence subsets in Gray code and lexicographic order. They also 
provide routines to construct random k-subsets and sequence them in lexicographic order. See Section 

 for details on ftp-ing these programs. Algorithm 515 [BL77] of the Collected Algorithms of the ACM 

is another Fortran implementation of lexicographic k-subsets, available from Netlib     (see Section ). 

An exciting WWW site developed by Frank Ruskey of the University of Victoria contains a wealth of 
material on generating combinatorial objects of different types, including permutations, subsets, 
partitions, and certain graphs. Specifically, it provides an interactive interface that lets you specify which 
type of objects you would like to construct and then returns the objects to you. Check this out at 
http://sue.csc.uvic.ca/  cos/. 

Combinatorica [Ski90] provides Mathematica implementations     of algorithms to construct random 
subsets and to sequence subsets in Gray code, binary, and lexicographic order. They also provide 

routines to construct random k-subsets and strings, and sequence them lexicographically. See Section  
for further information on Combinatorica. 

Notes: The primary expositions on subset generation include [NW78, RND77, Rus97]. Wilf [Wil89] 
provides an update of [NW78], including a thorough discussion of modern Gray code generation 
problems. 

Gray codes were first developed [Gra53] to transmit digital   information in a robust manner over an 
analog channel.   By assigning the code words in Gray code order, the ith word differs only slightly from 
the (i+1)st, so minor fluctuations in analog signal strength corrupts only a few bits. Gray codes have a 
particularly nice correspondence to Hamiltonian cycles on the hypercube.     See any of the references 
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above for details. An exposition on the more general problem of constructing Gray codes for k items 
(instead of  subsets) appears in [Man89]. 

The popular puzzle Spinout, manufactured by Binary Arts Corporation,   can be solved using Gray codes. 

Related Problems: Generating permutations (see page ), generating partitions (see page ).     

       

 
Next: Generating Partitions Up: Combinatorial Problems Previous: Generating Permutations 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Generating Partitions

   

   

Input description: An integer n. 

Problem description: Generate (1) all or (2) a random or (3) the next integer or set partitions of length n. 
There are two different types of combinatorial objects denoted by the term ``partition'', namely integer 
partitions and set partitions.     Although they are quite different beasts, it is a good idea to make both a 
part of your vocabulary: 

●     Integer partitions of n are sets of nonzero integers that add up to exactly n. For example, the seven 
distinct integer partitions of 5 are {5}, {4,1}, {3,2}, {3,1,1}, {2,2,1}, {2,1,1,1}, and {1,1,1,1,1}.   
An interesting application I encountered that required the generation of integer partitions was in a 
simulation of nuclear fission.   When an atom is smashed, the nucleus of protons and neutrons is 
broken into a set of smaller clusters. The sum of the particles in the set of clusters must equal the 
original size of the nucleus. As such, the integer partitions of this original size represent all the 
possible ways to smash the atom.

●     Set partitions divide the elements  into nonempty subsets. For example, there are fifteen 
distinct set partitions of n=4: {1234}, {123,4}, {124,3}, {12,34}, {12,3,4}, {134,2}, {13,24}, 
{13,2,4}, {14,23}, {1,234}, {1,23,4}, {14,2,3}, {1,24,3}, {1,2,34}, and {1,2,3,4}.     Several of 
the problems in this catalog return set partitions as results, such as vertex coloring and connected 
components. 
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Although the number of integer partitions grows exponentially with n, they do so at a refreshingly slow 
rate. There are only 627 partitions of n=20, and it is even possible to enumerate all partitions of n=100, 
since there there are only 190,569,292 of them. 

The best way to generate all partitions is to construct them in lexicographically decreasing order.   The 
first partition is  itself. The general rule is to subtract 1 from the smallest part that is >1 and then 
collect all the 1's so as to match the new smallest part >1. For example, the partition after 

 is  , since the five 1's left after 3-1=2 becomes the smallest part are best 
packaged as 2,2,1. When the partition is all 1's, we have completed one trip through all the partitions. 

This algorithm is not particularly complicated, but it is sufficiently intricate that you should consider 
using one of the implementations below. In either case, test it to make sure that you get exactly 627 
distinct partitions for n=20. 

Generating integer partitions uniformly at random is a trickier matter than generating random 
permutations or subsets. This is because selecting the first (i.e. largest) element of the partition has a 
dramatic effect on the number of possible partitions that can be generated. Observe that no matter how 
large n is, there is only one partition of n whose largest part is 1.   The number of partitions of n with 
largest part at most k is given by the recurrence 

 

with the two boundary conditions  and  . This function can be used to select the 
largest part of your random partition with the correct probabilities and, by proceeding recursively, to 
eventually construct the entire random partition. Implementations are cited below. 

   
Figure: The Ferrers diagram of a random partition of n=1000  

Random partitions tend to have large numbers of fairly small parts,   best visualized by a Ferrers diagram 

as in Figure . Each row of the diagram corresponds to one part of the partition, with the size of each 
part represented by that many dots. 
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Set partitions can be generated using techniques similar to integer partitions.   Each set partition is 
encoded as a restricted growth function,  , where  and  , for 

 .   Each distinct digit identifies a subset, or block, of the partition, while the growth condition 
ensures that the blocks are sorted into a canonical order based on the smallest element in each block. For 
example, the restricted growth function 0,1,1,2,0,3,1 defines the set partition {{1,5}, {2,3,7}, {4}, {6} }. 

Since there is a one-to-one equivalence between set partitions and restricted growth functions, we can use 
lexicographic order on the restricted growth functions to order the set partitions. Indeed, the fifteen 
partitions of {1,2,3,4} listed above are sequenced according to the lexicographic order of their restricted 
growth function (check it out). 

To randomly generate set partitions, we use a similar counting strategy as with integer partitions. The 
Stirling numbers of the second kind S(n,k) count the number of partitions of 1,...,n with exactly k blocks. 
They are computed using the recurrence S(n,k) = S(n-1,k-1) + k*S(n-1,k) with the boundary conditions 
S(n,n)=1. The reader is referred to the references and implementations for more details and code. 

Implementations: The best source on generating combinatorial objects is Nijenhuis and Wilf [NW78], 
who provide efficient Fortran implementations of algorithms to construct random and sequential integer 

partitions, set partitions, compositions, and Young tableaux. See Section  for details on ftp-ing these 
programs. 

An exciting WWW site developed by Frank Ruskey of the University of Victoria contains a wealth of 
material on generating combinatorial objects of different types, including permutations, subsets, 
partitions, and certain graphs. It is well worth checking this out at http://sue.csc.uvic.ca/~cos/. 

Combinatorica [Ski90] provides Mathematica implementations of algorithms to construct random and 
sequential integer partitions, compositions, strings, and Young tableaux, as well as to count and 

manipulate these objects. See Section . 

Algorithm 403 [BL77] of the Collected Algorithms of the ACM is a Fortran code for constructing integer 

partitions with k parts. It is available from Netlib     (see Section ). The Stanford GraphBase (see 

Section ) also contains generators for constructing all integer partitions. 

Notes: The standard references on combinatorial generation [NW78, RND77, Rus97] all present 
algorithms for generating integer and/or set partitions. Andrews is the primary reference on integer 
partitions and related topics. 

Interestingly, the set of all 52 set partitions for n=5 appears in the form of Murasaki diagrams in the oldest 
novel known, The Tale of Genji. 
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Two related combinatorial objects are Young tableaux and integer compositions, although they are less 
likely to emerge in applications. Generation algorithms for both are presented in [NW78, RND77, Rus97] 

Young tableaux are two-dimensional configurations of integers {1,...,n} where the number of elements in 
each row is defined by an integer partition of n. Further, the elements of each row and column are sorted 
in increasing order, and the rows are left-justified. This notion of shape captures a wide variety of 
structures as special cases. They have many interesting properties, including the existance of a bijection 
between pairs of tableaux and permutations. 

Compositions represent the set of possible assignments of a set of n indistinguishable balls to k 
distinguishable boxes. For example, we can place three balls into two boxes as {3,0}, {2,1}, {1,2}, or 
{0,3}. Compositions are most easily constructed sequentially in lexicographic order. To construct them 
randomly, pick a random (k-1)-subset of n+k-1 items using the algorithm of the previous section, and 
count the number of unselected items between the selected ones. For example, if k=5 and n=10, the (5-1)-
subset {1,3,7,14} of 1,..., (n+k-1)=14 defines the composition {0,1,3,6,0}, since there are no items to the 
left of element 1 nor right of element 14. 

Related Problems: Generating permutations (see page ), generating subsets (see page ).     

       

 
Next: Generating Graphs Up: Combinatorial Problems Previous: Generating Subsets 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Generating Graphs

   

   

Input description: Parameters describing the desired graph, such as the number of vertices n, the 
number of edges m, or the edge probability p. 

Problem description: Generate (1) all or (2) a random or (3) the next graph satisfying the parameters. 

Discussion: Graph generation typically arises in constructing test data for programs.   Perhaps you have 
two different programs that solve the same problem, and you want to see which one is faster or make 
sure that they always give the same answer.   Another application is experimental graph theory, verifying 
whether a particular property is true for all graphs or how often it is true.   It is much easier to conjecture 
the four-color theorem once you have demonstrated 4-colorings for all planar graphs on 15 vertices. 

A different application of graph generation arises in network design.   Suppose you need to design a 
network linking ten machines using as few cables as possible, such that the network can survive up to 
two vertex failures. One approach is to test all the networks with a given number of edges until you find 
one that will work. For larger graphs, more heuristic approaches, like simulated annealing, will likely be 
necessary. 

Many factors complicate the problem of generating graphs. First, make sure you know what you want to 
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generate: 

●     Do I want labeled or unlabeled graphs? -     The issue here is whether the names of the vertices 
matter in deciding whether two graphs are the same. In generating labeled graphs, we seek to 
construct all possible labelings of all possible graph topologies. In generating unlabeled graphs, 
we seek only one representative for each topology and ignore labelings. For example, there are 
only two connected unlabeled graphs on three vertices - a triangle and a simple path. However, 
there are four connected labeled graphs on three vertices - one triangle and three 3-vertex paths, 
each distinguished by their central vertex. In general, labeled graphs are much easier to generate. 
However, there are so many more of them that you quickly get swamped with isomorphic copies 
of the same few graphs.

●     What do I mean by random? -   There are two primary models of random graphs, both of which 
generate graphs according to different probability distributions. The first model is parameterized 
by a given edge probability p. Typically, p=0.5, although smaller values can be used to construct 
sparser random graphs. In this model a coin is flipped for each pair of vertices x and y to decide 
whether to add an edge (x,y). All labeled graphs will be generated with equal probability when 
p=1/2. 

The second model is parameterized by the desired number of edges m. It selects m distinct edges 
uniformly at random. One way to do this is by drawing random (x,y)-pairs and creating an edge if 
that pair is not already in the graph.   An alternative approach to computing the same things 

constructs the set of  possible edges and selects a random m-subset of them, as discussed in 

Section . 

Which of these options best models your application? Probably none of them. Random graphs, by 
definition, have very little structure. In most applications, graphs are used to model relationships, which 
are often highly structured. Experiments conducted on random graphs, although interesting and easy to 
perform, often fail to capture what you are looking for. 

An alternative to random graphs is to use ``organic'' graphs, graphs that reflect the relationships among 
real-world objects.     The Stanford GraphBase, discussed below, is an outstanding source of organic 
graphs. Further, there are many raw sources of relationships electronically available via the Internet that 
can be turned into interesting organic graphs with a little programming and imagination.   Consider the 
graph defined by a set of WWW pages, with any hyperlink between two pages defining an edge.   Or 
what about the graph implicit in railroad, subway, or airline networks, with vertices being stations and 
edges between two stations connected by direct service?   As a final example, every large computer 
program defines a call graph, where the vertices represent subroutines, and there is an edge (x,y) if x calls 
y. 

Two special classes of graphs have generation algorithms that have proven particularly useful in practice: 
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●     Trees -     Prüfer codes provide a simple way to rank and unrank labeled trees and thus solve all 

the standard generation problems discussed in Section .   There are exactly  labeled trees 
on n vertices, and exactly that many strings of length n-2 on the alphabet  . 

The key to Prüfer's bijection is the observation that every tree has at least two vertices of degree 1. 
  Thus in any labeled tree, the vertex v incident on the leaf with lowest label is well-defined. We 
take v to be  , the first character in the code. We then delete the associated leaf and repeat the 
procedure until only two vertices are left. This defines a unique code S for any given labeled tree 
that can be used to rank the tree. To go from code to tree, observe that the degree of vertex v in 
the tree is one more than the number of times v occurs in S. The lowest-labeled leaf will be the 
smallest integer missing from S, which when paired with  determines the first edge of the tree. 
The entire tree follows by induction. 

Algorithms for efficiently generating unlabeled rooted trees are presented in the implementation 
section below.

●     Fixed degree sequence graphs -     The degree sequence of a graph G is an integer partition 
 where  is the degree of the ith highest-degree vertex of G.    Since each edge 

contributes to the degree of two vertices, p is a partition of 2m, where m is the number of edges in 
G. 

Not all partitions correspond to degree sequences of graphs. However, there is a recursive 
construction that constructs a graph with a given degree sequence if one exists. If a partition is 
realizable, the highest-degree vertex  can be connected to the next  highest-degree vertices in 
G, or the vertices corresponding to parts  . Deleting  and decrementing  
yields a smaller partition, which we recur on. If we terminate without ever creating negative 
numbers, the partition was realizable. Since we always connect the highest-degree vertex to other 
high-degree vertices, it is important to reorder the parts of the partition by size after each iteration. 

Although this construction is deterministic, a semirandom collection of graphs realizing this 
degree sequence   can be generated from G using edge-flipping operations. Suppose edges (x,y) 
and (w,z) are in G, but (x,w) and (y,z) are not. Exchanging these pairs of edges creates a different 
(not necessarily connected) graph without changing the degrees of any vertex. 

Implementations: The Stanford GraphBase [Knu94]   is perhaps most useful as an instance generator for 
constructing a wide variety of graphs to serve as test data for other programs. It incorporates graphs 
derived from interactions of characters in famous novels, Roget's Thesaurus, the Mona Lisa, expander 
graphs, and the economy of the United States. It also contains routines for generating binary trees, graph 
products, line graphs, and other operations on basic graphs.   Finally, because of its machine-independent 
random number generators, it provides a way to construct random graphs such that they can be 
reconstructed elsewhere, thus making them perfect for experimental comparisons of algorithms. See 

Section  for additional information.         
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Combinatorica [Ski90] provides Mathematica generators for basic graphs such as stars, wheels, complete 
graphs, random graphs and trees, and graphs with a given degree sequence.     Further, it includes 
operations to construct more interesting graphs from these, including join, product, and line graph.   
Graffiti [Faj87], a collection of almost 200 graphs of graph-theoretic interest, are available in 

Combinatorica format. See Section . 

The graph isomorphism testing program nauty (see Section ),     by Brendan D. McKay of the 
Australian National University, has been used to generate catalogs of all nonisomorphic graphs with up 
to 11 vertices.   This extension to nauty, named makeg, can be obtained by anonymous ftp from 
bellatrix.anu.edu.au (150.203.23.14) in the directory pub/nauty19. 

Nijenhuis and Wilf [NW78] provide efficient Fortran routines to enumerate all labeled trees via Prüfer 

codes and to construct random unlabeled rooted trees. See Section .     A collection of generators for 

standard families of graphs is included with LEDA (see Section ). 

Notes: An extensive literature exists on generating graphs uniformly at random. Surveys include [Gol93, 
Tin90]. Closely related to the problem of generating classes of graphs is counting them.   Harary and 
Palmer [HP73] survey results in graphical enumeration. 

Random graph theory is concerned with the properties of random graphs. Threshold laws in random 
graph theory define the edge density at which properties such as connectedness become highly likely to 
occur.   Expositions on random graph theory include [ES74, Pal85]. 

An integer partition is graphic if there exists a simple graph with that degree sequence.     Erd•s and 
Gallai [EG60] proved that a degree sequence is graphic if and only if the sequence observes the 
following condition for each integer r < n: 

 

The bijection between n-2 strings and labeled trees is due to Prüfer [Prü18].   Good expositions on this 
result include [Eve79a, NW78]. 

Related Problems: Generating permutations (see page ), graph isomorphism (see page ).     
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Calendrical Calculations

   

   

Input description: A particular calendar date d, specified by month, day, and year. 

Problem description: Which day of the week did d fall on according to the given calendar system? 

Discussion: Many business applications need to perform calendrical calculations. Perhaps we want to 
display a calendar of a specified month and year. Maybe we need to compute what day of the week or 
year some event occurs, as in figuring out the date on which a 180-day futures contract comes due. The 
importance of correct calendrical calculations is perhaps best revealed by the furor over the ``millennium 
bug,'' the crisis in legacy programs that allocate only two digits for storing the year.     

More complicated questions arise in international applications, because different nations and ethnic 
groups around the world use different calendar systems. Some of these, like the Gregorian calendar used 
in most of the world, are based on the sun, while others, like the Hebrew calendar, are lunar calendars. 
How would you tell today's date according to the Chinese or Arabic calendar?     

The algorithms associated with calendrical calculations are different from the other problems in this 
book, because calendars are historical objects, not mathematical ones. The issues revolve around 
specifying the rules of the calendrical system and simply implementing them correctly, rather than 
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designing efficient shortcuts for the computation.   

The basic approach behind calendar systems is to start with a particular reference date and count from 
there. The particular rules for wrapping the count around into months and years is what distinguishes a 
given calendar system from another. To implement a calendar, we need two functions, one that given a 
date returns the integer number of days that have elapsed since the reference start date, the other of which 
takes an integer n and returns the calendar date exactly n days from the reference date. This is analogous 

to the ranking and unranking rules for combinatorial objects, such as permutations (see Section ).   

The major source of complications in calendar systems is that the solar year is not an integer number of 
days long. Thus if a calendar seeks to keep its annual dates in sync with the seasons, leap days must be 
added at both regular and irregular intervals. Since a solar year is 365 days and 5:49:12 hours long, an 
extra 10:48 minutes would have to be accounted for at the end of each year if we were simply to add a 
leap day every four years.    

The original Julian calendar (from Julius Caesar) did not account for these extra minutes, which had 
accumulated to ten days by 1582 when Pope Gregory XIII proposed the Gregorian calendar used today. 
Gregory deleted the ten days and eliminated leap days in years that are multiples of 100 but not 400. 
Supposedly, riots ensued because the masses feared their lives were being shortened by ten days. Outside 
the Catholic church, resistance to change slowed the reforms. The deletion of days did not occur in 
England and America until September 1752, and not until 1927 in Turkey.     

The rules for most calendrical systems are sufficiently complicated and pointless that you should lift 
code from a reliable place rather than attempt to write your own. We identify suitable implementations 
below. 

There are a variety of ``impress your friends'' algorithms that enable you to compute in your head on 
which day of the week a particular date occurred. Such algorithms often fail to work reliably outside the 
given century and should be avoided for computer implementation.   

Implementations: Dershowitz and Reingold provide a uniform algorithmic presentation [DR90, 
RDC93] for a variety of different calendar systems, including the Gregorian, ISO, Julian, Islamic, and 
Hebrew calendars, as well as other calendars of historical interest. Further, they provide Common Lisp 
and C++ routines to convert dates between calendars, day of the week computations, and the 
determination of secular and religious holidays. These are likely to be the most comprehensive and 
reliable calendrical routines you will be able to get your hands on, and are available at 
http://emr.cs.uiuc.edu:80/reingold/calendars.html. 

A nice package for calendrical computations in Mathematica by Ilan Vardi is available in the 
Packages/Miscellaneous directory of the standard Mathematica distribution, and also from MathSource. 
Vardi's book [Var91] discusses the theory behind the implementation, which provides support for the 
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Gregorian, Julian, and Islamic calendars.       

Gregorian calendar computations implemented in C appear in [BR95]. This code uses 1582 as the date of 
the calendar reform, instead of the standard UNIX date of 1752. The code for these algorithms is printed 
in the text and are available on disk for a modest fee.   

Notes: The most comprehensive discussion of calendrical computation algorithms are the papers by 
Dershowitz and Reingold [DR90, RDC93]. These papers are superseded by their book [DR97]. Histories 
of the Gregorian calendar appear in [BR95]. 

Related Problems: Arbitrary-precision arithmetic (see page ), generating permutations (see page 

).     
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Job Scheduling

   

   

Input description: A directed acyclic graph G=(V,E), where the vertices represent jobs and the edge 
(u,v) implies that task u must be completed before task v. 

Problem description: What schedule of tasks completes the job using the minimum amount of time or 
processors? 

Discussion: Devising a proper schedule to satisfy a set of constraints is fundamental to many 
applications. A critical aspect of any parallel processing system is the algorithm mapping tasks to 
processors. Poor scheduling can leave most of the expensive machine sitting idle while one bottleneck 
task is performed. Assigning people to jobs, meetings to rooms, or courses to final exam periods are all 
different examples of scheduling problems.      

Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of 
schedule desired. For this reason, several other catalog problems have a direct application to various 
kinds of scheduling: 

●     To construct a schedule consistent with the precedence constraints, see topological sorting in 

Section .   
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●     To assign a set of jobs to people who have the appropriate skills for them, see bipartite matching 

in Section .  
●     To assign a set of jobs to time slots such that no two jobs that interfere are assigned the same time 

slot, see vertex and edge coloring in Sections  and .     
●     To construct the most efficient route for a delivery person to visit a given set of locations, see the 

traveling salesman problem in Section . To construct the most efficient route for a snowplow 
or mailman to completely traverse a given set of edges, see the Eulerian cycle problem in Section 

.      

In this section, we focus on precedence-constrained scheduling problems for directed acyclic graphs. 
These problems are often called PERT/CPM, for Program Evaluation and Review Technique/Critical 
Path Method.      Suppose you have broken a big job into a large number of smaller tasks. For each task 
you know how long it should take (or perhaps an upper bound on how long it might take). Further, for 
each pair of tasks you know whether it is essential that one task be performed before another. The fewer 
constraints we have to enforce, the better our schedule can be. These constraints must define a directed 
acyclic graph, acyclic because a cycle in the precedence constraints represents a Catch-22 situation that 
can never be resolved.     

We are interested in several problems on these networks: 

●     Minimum completion time - assuming that we have an unlimited number of workers, what is the 
fastest we can get this job completed while respecting precedence constraints. If there were no 
precedence constraints, each task could be worked on by its own worker, and the total time would 
be that of the longest single task. If there were such strict precedence constraints that each task 
had to follow the completion of its immediate predecessor, the minimum completion time would 
be obtained by summing up the times for each task.   

The minimum completion time for a DAG can be easily computed in O(n+m) time. Initialize the 
completion time for all the vertices to 0, except the start vertex, which is initialized to the length 
of the start task. Perform a topological sort to order the vertices such that all precedences will 
have been considered by the time we evaluate each vertex. For each vertex u, consider all the 
edges (u,v) leaving u. The completion time of these vertices is the maximum of the current 
completion time for v plus the completion time of u plus the task time of v.

●     Critical path - The longest path from the start vertex to the completion vertex defines the critical 
path. This can be important to know, for the only way to shorten the minimum total completion 
time is to reduce the time of one of the tasks on each critical path. The tasks on the critical paths 
can be determined in O(n+m) time using the simple dynamic programming presented in Section 

.  
●     What is the tradeoff between number of workers and completion time? - What we would really be 

interested in knowing is how best to complete the schedule with a given number of workers. 
Unfortunately, this and most similar problems are NP-complete.     
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An even more general formulation seeks critical paths in networks where certain jobs are restricted to 
certain people. Such networks are known as disjunctive networks. Finding critical paths on such 
networks is more complicated than CPM/PERT, but implementations are described below.   

In any sufficiently large and sufficiently real scheduling application, there will be combinations of 
constraints that are difficult or impossible to model using these techniques. There are two reasonable 
ways to deal with such problems. First, we can ignore enough constraints that the problem reduces to one 
of the types that we have described here, solve it, and then see how bad it is using the other constraints. 
Perhaps the schedule can be easily modified by hand to satisfy constraints like keeping Joe and Bob apart 
so they can't kill each other. Another approach is to formulate your scheduling problem via linear-integer 

programming (see Section ) in all its complexity. This method can be better only if you really know 
enough about your desired schedule to formulate the right linear program, and if you have the time to 
wait for the program to give you the solution. I would start out with something simpler and see what 
happens first.   

Another fundamental scheduling problem takes a set of jobs without precedence constraints and assign 
them to identical machines so as to minimize the total elapsed time. Consider a copy shop with k Xerox 
machines and a stack of jobs to finish by the end of the day. Such tasks are called job-shop scheduling. 

They can be modeled as bin-packing problems (see Section ), where each job is assigned a number 
equal to the number of hours it will take and each machine is represented by a bin with space equal to the 
number of hours in a day.      

More sophisticated variations of job-shop scheduling provide each task with allowable start and required 
finishing times. Effective heuristics are known, based on sorting the tasks by size and finishing time. We 
refer the reader to the references for more information. Note that these scheduling problems become hard 
only when the tasks cannot be broken up onto multiple machines or interrupted (preempted) and then 
rescheduled. If your application has these degrees of freedom, you should exploit them.   

Implementations: Pascal implementations of Balas's algorithm for disjunctive network scheduling and 
Hu's algorithm for assigning jobs to processors with precedence constraints appear in [SDK83]. See 

Section .   

Algorithm 520 [WBCS77] of the Collected Algorithms of the ACM is a Fortran code for multiple-

resource network scheduling. It is available from Netlib (see Section ).    

Notes: The literature on scheduling algorithms is a vast one. For a more detailed survey of the field, we 
refer the reader to [Cof76, LLK83]. 

Good expositions on CPM/PERT include [Eve79a, Law76, PGD82, SDK83]. Good expositions on job-
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shop scheduling include [AC91, SDK83]. 

Related Problems: Topological sorting (see page ), matching (see page ), vertex coloring (see 

page ), edge coloring (see page ), bin packing (see page ).           
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Satisfiability 

   

   

Input description: A set of clauses in conjunctive normal form. 

Problem description: Is there a truth assignment to the Boolean variables such that every clause is 
simultaneously satisfied? 

Discussion: Satisfiability arises whenever we seek a configuration or object that must be consistent with 
(i.e. satisfy) a given set of constraints. For example, consider the problem of drawing name labels for 
cities on a map. For the labels to be legible, we do not want the labels to overlap, but in a densely 
populated region many labels need to be drawn in a small space. How can we avoid collisions?        

For each of the n cities, suppose we identify two possible places to position its label, say right above or 
right below each city. We can represent this choice by a Boolean variable  , which will be true if city  
's label is above  , otherwise  . Certain pairs of labels may be forbidden, such as when  's 
above label would obscure  's below label. This pairing can be forbidden by the two-element clause 

 , where  means ``not v''. Finding a satisfying truth assignment for the resulting set of clauses 
yields a mutually legible map labeling if one exists. 

Satisfiability is the original NP-complete problem. Despite its applications to constraint satisfaction, 
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logic, and automatic theorem proving, it is perhaps most important theoretically as the root problem from 
which all other NP-completeness proofs originate.   

●     Is your formula in CNF or DNF? - In satisfiability, the constraints are specified as a logical 
formula. There are two primary ways of expressing logical formulas, conjunctive normal form 
(CNF) and disjunctive normal form (DNF). In CNF formulas, we must satisfy all clauses, where 
each clause is constructed by and-ing or's of literals together, such as    

 

In DNF formulas, we must satisfy any one clause, where each clause is constructed by or-ing ands 
of literals together. The formula above can be written in DNF as 

 

Solving DNF-satisfiability is trivial, since any DNF formula can be satisfied unless every clause 
contains both a literal and its complement (negation). However, CNF-satisfiability is NP-
complete. This seems paradoxical, since we can use De Morgan's laws to convert CNF-formulae 
into equivalent DNF-formulae and vice versa. The catch is that an exponential number of terms 
might be constructed in the course of translation, so that the translation itself might not run in 
polynomial time.     

●     How big are your clauses? - k-SAT is a special case of satisfiability when each clause contains at 
most k literals. The problem of 1-SAT is trivial, since we must set true any literal appearing in any 
clause. The problem of 2-SAT is not trivial, but it can still be solved in linear time. This is very 
interesting, because many problems can be modeled as 2-SAT using a little cleverness. Observe 
that the map labeling problem described above is an instance of 2-SAT and hence can be solved in 
time linear in the number of clauses, which might be quadratic in the number of variables.    

The good times end as soon as clauses contain three literals each, i.e. 3-SAT, for 3-SAT is NP-
complete. Thus in general it will not be helpful to model a problem as satisfiability unless we can 
do it with two-element clauses.

●     Does it suffice to satisfy most of the clauses? - Given an instance of general satisfiability, there is 
not much you can do to solve it except by backtracking algorithms such as the Davis-Putnam 
procedure. In the worst case, there are  truth assignments to be tested, but fortunately, there are 
lots of ways to prune the search. Although satisfiability is NP-complete, how hard it is in practice 
depends on how the instances are generated. Naturally defined ``random'' instances are often 
surprisingly easy to solve, and in fact it is nontrivial to generate instances of the problem that are 
truly hard.   

Still, we would likely benefit by relaxing the problem so that the goal is to satisfy as many clauses 
as possible. Here optimization techniques such as simulated annealing can be put to work to refine 
random or heuristic solutions. Indeed, any random truth assignment to the variables will satisfy 
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any particular k-SAT clause with probability  , so our first attempt is likely to satisfy 
most of the clauses. Finishing off the job is the hard part. Finding an assignment that satisfies the 
maximum number of clauses is NP-complete even for nonsatisfiable instances.   

When faced with a problem of unknown complexity, proving the problem NP-complete can be an 
important first step. If you think your problem might be hard, the first thing to do is skim through Garey 
and Johnson [GJ79] looking for your problem. If you don't find it, my recommendation is to put the book 
away and try to prove hardness from first principles, using one of the basic problems in this catalog, 
particularly 3-SAT, vertex cover, independent set, integer partition, clique, and Hamiltonian cycle. I find 
it much easier to start from these than some complicated problem I stumble over in the book, and more 
insightful too, since the reason for the hardness is not obscured by the hidden hardness proof for the 

complicated problem. Chapter  focuses on strategies for proving hardness.   

Implementations: Programs for solving satisfiability problems were sought for the Second DIMACS 
Implementation Challenge, held in October 1993. Programs and data from the challenge are available by 
anonymous ftp from dimacs.rutgers.edu in the directory /pub/challenge/sat. In particular, sato is a 
decision procedure for propositional logic written in C by Hantao Zhang. There is also a random formula 
generator named mwff.c for constructing hard satisfiability instances in C by Bart Selman. Several other 
solvers and instance generators are also available from this site.     

The propositional satisfiability tester POSIT, by Jon W. Freeman, is based on a highly optimized version 
of the Davis-Putnum procedure. It is available by anonymous ftp from ftp.cis.upenn.edu in 
/pub/freeman/posit-1.0.tar.Z.    

Notes: The primary reference on NP-completeness is [GJ79], featuring a list of roughly four hundred NP-
complete problems. Although the list is now fifteen years old, it remains an extremely useful reference; it 
is perhaps the book I reach for most often. An occasional column by David Johnson in the Journal of 
Algorithms has helped to update the book. In [Joh90], Johnson gives a thorough and readable survey of 
the relationship between different complexity classes.    

Good expositions of Cook's theorem [Coo71], where satisfiability is proven hard, include [CLR90, GJ79, 
PS82]. The importance of Cook's result became clear in Karp's paper [Kar72] showing that it implied the 
hardness of over twenty different combinatorial problems. 

A linear-time algorithm for 2-satisfiability appears in [APT79]. The application of 2-satisfiability to map 
labeling is taken from [WW95]. 

Related Problems: Constrained optimization (see page ), traveling salesman problem (see page ). 
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Algorithmic graph problems constitute approximately one third of all the problems in this catalog. 
Further, several problems from other sections can be formulated strictly in terms of graphs. Identifying 
the name of a graph-theoretic invariant or problem is one of the primary skills of a good algorist. Indeed, 
this catalog will tell you exactly how to proceed as soon as you figure out your particular problem's 
name.   

We have partitioned the bulk of the algorithmic graph problems in this book between this and the 
subsequent section. Here, we deal only with problems for which there exist efficient algorithms to solve 
them. As there is often more than one way to model a given application, it makes sense to look here 
before proceeding on to the harder formulations. 

The algorithms presented here have running times that grow slowly with the size of the graph. We adopt 
throughout the standard convention that n refers to the number of vertices in a graph, while m is the 
number of edges. 

Although graphs are combinatorial objects, describing a binary relation on a set of objects, graphs are 
usually best understood as drawings. Beyond just the problems of visualization, many interesting graph 
properties follow from the nature of a particular type of drawing, such as planar graphs. In this chapter, 
we also present a variety of different problems and algorithms associated with graph drawing. 

Most advanced graph algorithms are difficult to program. However, good implementations are often 

available if you know where to look. The best single source is LEDA, discussed in Section , although 
faster special-purpose codes exist for many problems. 

Books specializing in graph algorithms include: 

●     Even [Eve79a] - This is a good book on graph algorithms, fairly advanced, with a particularly 
thorough treatment of planarity-testing algorithms.

●     Ahuja, Magnanti, and Orlin [AMO93] - While purporting to be a book on network flows, it 
covers the gamut of graph algorithms with emphasis on operations research. Strongly 
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recommended.
●     van Leeuwen [vL90a] - A 100+ page survey on research results in graph algorithms, this is the 

best source to determine what is known in algorithmic graph theory.
●     McHugh [McH90] - A more elementary but comprehensive treatment of basic graph algorithms, 

including parallel algorithms. 

●     Connected Components 
●     Topological Sorting 
●     Minimum Spanning Tree 
●     Shortest Path 
●     Transitive Closure and Reduction 
●     Matching 
●     Eulerian Cycle / Chinese Postman 
●     Edge and Vertex Connectivity 
●     Network Flow 
●     Drawing Graphs Nicely 
●     Drawing Trees 
●     Planarity Detection and Embedding 
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Connected Components

   

   

Input description: A directed or undirected graph G. 

Problem description: Traverse each edge and vertex of all connected components of G. 

Discussion: The connected components of a graph represent, in grossest terms, the pieces of the graph. 
Two vertices are in the same component of G if and only if there is some path between them.    

Finding connected components is at the heart of many graph applications. For example, consider the 
problem of identifying clusters in a set of items.   We can represent each item by a vertex and add an 
edge between each pair of items that are deemed ``similar.'' The connected components of this graph 
correspond to different classes of items. 

Testing whether a graph is connected is an essential preprocessing step for every graph algorithm.   Such 
tests can be performed so quickly and easily that you should always verify that your input graph is 
connected, even when you know it has to be.   Subtle, difficult-to-detect bugs often result when your 
algorithm is run only on one component of a disconnected graph. 
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Testing the connectivity of any undirected graph is a job for either depth-first or breadth-first search, as 

discussed in Section .     Which one you choose doesn't really matter. Both traversals initialize a 
component-number field for each vertex to 0, and then start the search for component 1 from vertex  . 
As each vertex is visited, the value of this field is set to the current component number. When the initial 
traversal ends, the component number is incremented, and the search begins again from the first vertex 
with component-number still 0. Properly implemented using adjacency lists, this runs in O(n+m), or time 
linear in the number of edges and vertices. 

Other notions of connectivity also arise in practice: 

●     What if my graph is directed? - There are two distinct definitions of connected components for 
directed graphs. A directed graph is weakly connected if it would be connected by ignoring the 
direction of edges.   Thus a weakly connected graph consists of a single piece. A directed graph is 
strongly connected if there is a directed path between every pair of vertices.     This distinction is 
best made clear by considering a network of one- and two-way streets in a city. The network is 
strongly connected if it is possible to drive legally between every two positions. The network is 
weakly connected if it is possible to drive legally or illegally between every two positions. The 
network is disconnected if there is no possible way to drive from a to b. 

The weakly and strongly connected components define unique partitions on the vertices. The 
output figure above illustrates a directed graph consisting of two weakly connected or five 
strongly connected components (also called blocks of G). 

Testing whether a directed graph is weakly connected can be done easily in linear time. Simply 
turn all edges into undirected edges and use the DFS-based connected components algorithm 
described above. Tests for strong connectivity are somewhat more complicated. The simplest 
algorithm performs a breadth-first search from each vertex and verifies that all vertices have been 
visited on each search. Thus in O(mn) time, it can be confirmed whether the graph is strongly 
connected. Further, this algorithm can be modified to extract all strongly connected components if 
it is not. 

In fact, strongly connected components can be found in linear time using one of two more 
sophisticated DFS-based algorithms. See the references below for details. It is probably easier to 
start from an existing implementation below than a textbook description.

●     How reliable is my network; i.e. how well connected is it? -     A chain is only as strong as its 
weakest link.   When it is missing one or more links, it is disconnected.   The notion of 
connectivity of graphs measures the strength of the graph - how many edges or vertices must be 
removed in order to break it, or disconnect it. Connectivity is an essential invariant for network 
design and other structural problems. 

Algorithmic connectivity problems are discussed in Section .   In particular, biconnected 
components are pieces of the graph that result by cutting the edges incident on a single vertex. All 
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biconnected components can be found in linear time using a DFS-based algorithm. Vertices whose 
deletion disconnects the graph belong to more than one biconnected component, although edges 
are uniquely partitioned among them.

●     Is the graph a tree? How can I find a cycle if one exists? -     The problem of cycle identification 
often arises, particularly with respect to directed graphs. For example, testing if a sequence of 
conditions can deadlock often reduces to cycle detection.   If I am waiting for Fred, and Fred is 
waiting for Mary, and Mary is waiting for me, we are all deadlocked. 

For undirected graphs, the analogous problem is tree identification. A tree is, by definition, an 
undirected, connected graph without any cycles. As described above, a depth-first search can be 
used to test whether it is connected. If the graph is connected and has n-1 edges for n vertices, it is 
a tree. 

Depth-first search can be used to find cycles in both directed and undirected graphs. Whenever we 
encounter a back edge in our DFS, i.e. an edge to an ancestor vertex in the DFS tree, the back 
edge and the tree together define a directed cycle. No other such cycle can exist in a directed 
graph. Directed graphs without cycles are called DAGs (directed acyclic graphs). Topological 

sorting (see Section ) is the fundamental operation on DAGs. 

Implementations:     LEDA (see Section ) provides good implementations of breadth-first and depth-
first search, connected components and strongly connected components, all in C++. XTango (see Section 

) is an algorithm animation system   for UNIX and X-windows, which includes an animation of depth-
first search. 

Pascal implementations of BFS, DFS,   and biconnected and strongly connected components appear in 

[MS91]. See Section  for details. Combinatorica [Ski90] provides Mathematica implementations    of 

the same routines. See Section . 

The Stanford GraphBase (see Section ) contains routines to compute biconnected and strongly 
connected components.    An expository implementation of BFS and DFS in Fortran appears in [NW78] 

(see Section ). 

Notes:   Depth-first search was first used in algorithms for finding paths out of mazes, and dates back to 
the nineteenth century [Luc91, Tar95]. Breadth-first search was first reported to find the shortest path out 
of mazes by Moore in 1957 [Moo59]. 

Hopcroft and Tarjan [HT73b, Tar72] first established depth-first search as a fundamental technique for 
efficient graph algorithms. Expositions on depth-first and breadth-first search appear in every book 
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discussing graph algorithms, with [CLR90] perhaps the most thorough description available. 

The first linear-time algorithm for strongly connected components is due to Tarjan [Tar72], with 
expositions including [Baa88, Eve79a, Man89]. Another algorithm, simpler to program and slicker, to 
find strongly connected components is due to Sharir and Kosaraju. Good expositions of this algorithm 
appear in [AHU83, CLR90]. 

Related Problems: Edge-vertex connectivity (see page ), shortest path (see page ).     
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Topological Sorting

   

   

Input description: A directed acyclic graph G=(V,E), also known as a partial order or poset. 

Problem description: Find a linear ordering of the vertices of V such that for each edge  , vertex 
i is to the left of vertex j. 

Discussion: Topological sorting arises as a natural subproblem in most algorithms on directed acyclic 
graphs.   Topological sorting orders the vertices and edges of a DAG in a simple and consistent way and 
hence plays the same role for DAGs that   depth-first search does for general graphs. 

Topological sorting can be used to schedule tasks under precedence constraints.     Suppose we have a set 
of tasks to do, but certain tasks have to be performed before other tasks. These precedence constraints 
form a directed acyclic graph, and any topological sort (also known as a linear extension)   defines an 
order to do these tasks such that each is performed only after all of its constraints are satisfied. 

Three important facts about topological sorting are: 

●     Only directed acyclic graphs can have linear extensions, since any directed cycle is an inherent   
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contradiction to a linear order of tasks.
●     Every DAG can be topologically sorted, so there must always be at least one schedule for any 

reasonable precedence constraints among jobs.
●     DAGs typically allow many such schedules, especially when there are few constraints. Consider n 

jobs without any constraints. Any of the n! permutations of the jobs constitutes a valid linear 
extension. 

A linear extension of a given DAG is easily found in linear time. The basic algorithm performs a depth-
first search of the DAG to identify the complete set of source vertices, where source vertices are vertices 
without incoming edges.     At least one such source must exist in any DAG. Note that source vertices 
can appear at the start of any schedule without violating any constraints. After deleting all the outgoing 
edges of the source vertices, we will create new source vertices, which can sit comfortably to the 
immediate right of the first set. We repeat until all vertices have been accounted for. Only a modest 
amount of care with data structures (adjacency lists and queues) is needed to make this run in O(n+m) 
time. 

This algorithm is simple enough that you should be able to code up your own implementation and expect 
good performance, although implementations are described below. Two special considerations are: 

●     What if I need all the linear extensions, instead of just one of them? - In certain applications, it is 
important to construct all linear extensions of a DAG. Beware, because the number of linear 
extensions can grow exponentially in the size of the graph. Even the problem of counting the 
number of linear extensions is NP-hard. 

Algorithms for listing all linear extensions in a DAG     are based on backtracking. They build all 
possible orderings from left to right, where each of the in-degree zero vertices are candidates for 
the next vertex. The outgoing edges from the selected vertex are deleted before moving on. 
Constructing truly random linear extensions is a hard problem, but pseudorandom orders can be 
constructed from left to right by selecting randomly among the in-degree zero vertices.

●     What if your graph is not acyclic? - When the set of constraints is not a DAG, but it contains 
some inherent contradictions in the form of cycles, the natural problem becomes to find the 
smallest set of jobs or constraints that if eliminated leaves a DAG.   These smallest sets of 
offending jobs (vertices) or constraints (edges) are known as the feedback vertex set and the 

feedback arc set, respectively, and are discussed in Section . Unfortunately, both of them are 
NP-complete problems. 

Since the basic topological sorting algorithm will get stuck as soon as it identifies a vertex on a 
directed cycle, we can delete the offending edge or vertex and continue. This quick-and-dirty 
heuristic will eventually leave a DAG. 

Implementations: Many textbooks contain implementations of topological sorting, including [MS91] 
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(see Section ) and [Sed92] (see Section ).     LEDA (see Section ) includes a linear-time 
implementation of topological sorting in C++. 

XTango (see Section ) is an algorithm animation system   for UNIX and X-windows, which includes 
an animation of topological sorting. 

Combinatorica [Ski90] provides Mathematica implementations     of topological sorting and other 

operations on directed acyclic graphs. See Section . 

Notes: Good expositions on topological sorting include [CLR90, Man89].   Brightwell and Winkler 
[BW91] proved that it is #P-complete to count the number of linear extensions of a partial order. The 
complexity class #P includes NP, so any #P-complete problem is at least NP-hard. 

Related Problems: Sorting (see page ), feedback edge/vertex set (see page ).     

       

 
Next: Minimum Spanning Tree Up: Graph Problems: Polynomial-Time Previous: Connected 
Components 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Minimum Spanning Tree 

   

   

Input description: A graph G = (V,E) with weighted edges. 

Problem description: The subset of  of minimum weight forming a tree on V. 

Discussion: The minimum spanning tree (MST) of a graph defines the cheapest subset of edges that keeps the graph in one 
connected component.     Telephone companies are particularly interested in minimum spanning trees, because the 
minimum spanning tree of a set of sites defines the wiring scheme that connects the sites using as little wire as possible.   It 
is the mother of all network design problems. 

Minimum spanning trees prove important for several reasons: 

●     They can be computed quickly and easily, and they create a sparse subgraph that reflects a lot about the original 
graph.

●     They provide a way to identify clusters in sets of points.     Deleting the long edges from a minimum spanning tree 
leaves connected components that define natural clusters in the data set, as shown in the output figure above.

●     They can be used to give approximate solutions to hard problems such as Steiner tree and traveling salesman.
●     As an educational tool, minimum spanning tree algorithms provide graphic evidence that greedy algorithms can give 

provably optimal solutions.   

Two classical algorithms efficiently construct minimum spanning trees, namely Prim's and Kruskal's. Brief overviews of 

both algorithms are given below, with correctness arguments in Section . We refer the reader to the codes for 
implementation details. 

Prim's algorithm starts with an arbitrary vertex v and ``grows'' a tree from it, repeatedly finding the lowest-cost edge that 
will link some new vertex into this tree.   During execution we will label each vertex as either in the tree, fringe - meaning 
there exists an edge from a tree vertex, or unseen - meaning the vertex is more than one edge away from the tree. 
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Prim(G)
                Select an arbitrary vertex to start

                While (there are fringe vertices)

                                 select minimum-weight edge between tree and fringe

                                 add the selected edge and vertex to the tree

This creates a spanning tree for any connected graph, since no cycle can be introduced via edges between tree and fringe 

vertices. That it is in fact a tree of minimum weight can be proven by contradiction, and the proof is in Section . With 
simple data structures, Prim's algorithm can be implemented in  time. 

Kruskal's algorithm is also greedy.   It starts with each vertex as a separate tree and merges these trees together by 
repeatedly adding the lowest cost edge that merges two distinct subtrees (i.e. does not create a cycle). 

Kruskal(G)
                Sort the edges in order of increasing weight

                count=0

                while (count < n-1) do

                                 get next edge (v,w)

                                 if (component (v)    component(w))

                                                 add to T

                                                 component(v) = component(w)

The ``which component?'' tests are efficiently implemented using the union-find data structure of Section , to yield an 
 algorithm.   

Minimum spanning tree is only one of several spanning tree problems that arise in practice. The following questions will 
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help you sort your way through them: 

●     Are the weights of all edges of your graph identical? -   Every spanning tree on n points contains exactly n-1 edges. 
Thus if your graph is unweighted, any spanning tree will be a minimum spanning tree.     Either breadth-first or 
depth-first search can be used to find a rooted spanning tree in linear time. Depth-first search trees tend to be long 

and thin, while breadth-first search trees better reflect the distance structure of the graph, as discussed in Section .
●     Should I use Prim's or Kruskal's algorithm? - As described, Prim's algorithm runs in  , while Kruskal's 

algorithm takes  time. Thus Prim's algorithm is faster on dense graphs, while Kruskal's is faster on sparse 
graphs. Although Prim's algorithm can be implemented in  time using more advanced data structures (in 
particular, Fibonacci heaps), this will not be worth the trouble unless you have extremely large, fairly sparse graphs. 

I personally find Kruskal's algorithm easier to understand and implement than Prim's, but that is just a matter of 
taste.

●     What if my input is points in the plane, instead of a graph? -   Geometric instances, comprising n points in d-
dimensions, can be solved by constructing the complete distance graph in  and then finding the MST of this 
complete graph. However, for points in two or even three dimensions, it can be more efficient to solve the geometric 
version of the problem directly. To find the minimum spanning tree of n points, first construct the Delaunay 

triangulation of these points (see Sections  and ).   In two dimensions, this gives a graph with O(n) edges that 
contains all the edges of the minimum spanning tree of the point set. Running Kruskal's algorithm on this sparse 
graphs finishes the job in  time.

●     How do I find a spanning tree that avoids vertices of high degree? - Another common goal of spanning tree 
problems is to minimize the maximum degree, typically to minimize the fan out in an interconnection network.   
Unfortunately, finding a spanning tree of maximum degree 2 is clearly NP-complete, since this is identical to the 
Hamiltonian path problem. Efficient algorithms are known, however, that construct spanning trees whose maximum 
degree at most one more than required. This is likely to suffice in practice. See the references below.    

Implementations: Pascal implementations of Prim's, Kruskal's, and the Cheriton-Tarjan algorithm are provided in [MS91], 
along with extensive empirical analysis that shows that the implementation of Prim's algorithm with the appropriate priority 

queue is fastest on most graphs.   See Section . 

The Stanford GraphBase (see Section ) contains implementations of four different minimum spanning tree algorithms, 
and the result of timing experiments suggesting that Kruskal's algorithm is best. The results are reported in terms of memory 
accesses (mems) instead of seconds, to make them independent of processor speed.     

A C++ implementation of Kruskal's algorithm is provided in LEDA (see Section ). Alternative implementations of 

Prim's and Kruskal's algorithms are provided in Pascal [SDK83] and C++ [Sed92]. See Section Section . XTango (see 

Section )   includes an animation of both Prim's and Kruskal's algorithms. 

Algorithm 479 [Pag74] and Algorithm 613 [HJS84] of the Collected Algorithms of the ACM are Fortran codes for minimum 
spanning tree, the former in an implementation of a point clustering algorithm.     They are available from Netlib (see 

Section ). A bare bones Fortran implementation is provided in [NW78], including the enumeration of all spanning trees. 

See Section .   

Combinatorica [Ski90] provides Mathematica implementations of Kruskal's minimum spanning tree algorithm and quickly 
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counting the number of spanning trees of a graph.     See Section . 

Notes: Good expositions on Prim's [Pri57] and Kruskal's [Kru56] algorithms will appear in any textbook on algorithms, but 
include [Baa88, CLR90, Man89, Tar83]. The fastest implementations of Prim's and Kruskal's algorithms use Fibonacci 
heaps [FT87].   Expositions of faster algorithms for geometric instances include [PS85]. 

A recent breakthrough on the minimum spanning tree problem is the linear-time randomized algorithm of Karger, Klein, 
and Tarjan [KKT95].   Simplifications will be needed before this becomes the algorithm of choice. The history of the 
minimum spanning tree problem dates back at least to Boruvka, in 1926, and is presented in [GH85].   Interestingly, it is 
Boruvka's algorithm that serves as the foundation to the new randomized one. 

Fürer and Raghavachari [FR94] give an algorithm that constructs a spanning tree whose maximum degree is almost 
minimized, indeed is at most one more than the lowest-degree spanning tree. The situation is analogous to Vizing's theorem 
for edge coloring, which also gives an approximation algorithm to within additive factor one.    

Minimum spanning tree algorithms have an interpretation in terms of matroids, which are systems of subsets closed under 
inclusion, for which the maximum weighted independent set can be found using a greedy algorithm.   The connection 
between greedy algorithms and matroids was established by Edmonds [Edm71]. Expositions on the theory of matroids 
include [Law76, PS82]. 

Algorithms for generating spanning trees in order from minimum to maximum weight are presented in [Gab77]. Good 
expositions on the matrix-tree theorem, which counts the number of spanning trees of a graph, include [Eve79a].    

Related Problems: Steiner tree (see page ), traveling salesman (see page ).     

        
Next: Shortest Path Up: Graph Problems: Polynomial-Time Previous: Topological Sorting 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Shortest Path 

   

   

Input description: An edge-weighted graph G, with start vertex and end vertex t. 

Problem description: Find the shortest path from to t in G. 

Discussion: The problem of finding shortest paths in a graph has a surprising variety of applications: 

●         The most obvious applications arise in transportation or communications, such as finding the best route to drive 
between Chicago and Phoenix or figuring how to direct packets to a destination across a network.

●         Consider the problem of image segmentation, that is, separating two characters in a scanned, bit-mapped image 
of printed text.   We need to find the separating line between two points that cuts through the fewest number of 
black pixels. This grid of pixels can be modeled as a graph, with any edge across a black pixel given a high cost. 
The shortest path from top to bottom defines the best separation between left and right.

●         A major problem in speech recognition is distinguishing between words that sound alike (homophones), such as 
to, two, and too. We can construct a graph whose vertices correspond to possible words, with an edge between 
possible neighboring words.   If the weight of each edge measures the likelihood of transition, the shortest path 
across the graph defines the best interpretation of a sentence. For a more detailed account of such an application, 

see Section .
●     Suppose we want to draw an informative picture of a graph.   The center of the page should coorespond to the 

``center'' of the graph, whatever that means. A good definition of the center is the vertex that minimizes the 
maximum distance to any other vertex in the graph. Finding this center point requires knowing the distance (i.e. 
shortest path) between all pairs of vertices. 

The primary algorithm for finding shortest paths is Dijkstra's algorithm,   which efficiently finds the shortest paths from a 
given vertex x to all n-1 other vertices. Dijkstra's algorithm starts from x. In each iteration, it identifies a new vertex v for 
which the shortest path from x to v is known. We maintain a set of vertices S to which we currently know the shortest 
path from v, and this set grows by one vertex in each iteration. In each iteration, we identify the edge (u,v) where  
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and  such that 

 

This edge (u,v) gets added to a shortest path tree, whose root is x and which describes all the shortest paths from x. See 

the discussion in Section  for more details. 

The straightforward implementation of this algorithm is O(m n). However, with simple data structures it can be reduced 
to  or  time. Theoretically faster times can be achieved using significantly more complicated data 
structures, as described below. If we are just interested in knowing the shortest path from x to y, simply stop as soon as y 
enters S. 

Dijkstra's algorithm is the right choice for single-source shortest path on positively weighted graphs.   However, special 
circumstances dictate different choices: 

●     Is your graph weighted or unweighted? - If your graph is unweighted, a simple breadth-first search   starting from 
the source vertex will find the shortest path in linear time. It is only when edges have different weights that you 
need more sophisticated algorithms. Breadth-first search is both simpler and faster than Dijkstra's algorithm.

●     Does your graph have negative cost weights? -   Dijkstra's algorithm assumes that all edges have positive cost. If 
your graph has edges with negative weights, you must use the more general but less efficient Bellman-Ford 
algorithm.     If your graph has a cycle of negative cost, than the shortest path between any two vertices in the 
graph is not defined, since we can detour to the negative cost cycle and loop around it an arbitrary number of 
times, making the total cost as small as desired. Note that adding the same amount of weight to each edge to make 
it positive and running Dijkstra's algorithm does not find the shortest path in the original graph, since paths that 
use more edges will be rejected in favor of longer paths using fewer edges. 

Why might one ever need to find shortest paths in graphs with negative cost edges?   An interesting application 
comes in currency speculation. Construct a graph where each vertex is a nation and there is an edge weighted 

 from x to y if the exchange rate from currency x to currency y is w(x,y).   In arbitrage, we seek a cycle 
to convert currencies so that we end up with more money than we started with. For example, if the exchange rates 
are 12 pesos per dollar, 5 pesos per franc, and 2 francs per dollar, by simply moving money around we can 
convert $1 to $1.20. In fact, there will be a profit opportunity whenever there exists a negative cost cycle in this 
weighted graph.

●     Is your input a set of geometric obstacles instead of a graph? -     If you seek the shortest path between two points 
in a geometric setting, like an obstacle-filled room, you may either convert your problem into a graph of distances 
and feed it to Dijkstra's algorithm or use a more efficient geometric algorithm to compute the shortest path directly 

from the arrangement of obstacles.   For such geometric algorithms, see Section  on motion planning.
●     Does your graph have cycles in it, or is it a DAG? -   If your graph is a directed acyclic graph (DAG), than the 

shortest path can be found in linear time. Perform a topological sort to order the vertices such that all edges go 
from left to right, then do dynamic programming on the left-to-right ordered vertices.   Indeed, most dynamic 
programming problems can be easily formulated as shortest paths on specific DAGs. The algorithm is discussed in 
[Man89] if you cannot figure it out from this description. Note that the same algorithm (replacing  with  )   
also suffices for finding the longest path in a DAG. which is useful in many applications like scheduling (see 

Section ).
●     Do you need the shortest path between all pairs of points? -   If you are interested in the shortest path between all 

pairs of vertices, one solution is to run Dijkstra n times, once with each vertex as the source.    However, the Floyd-
Warshall algorithm is a slick  dynamic programming algorithm for all-pairs shortest path, which is faster and 
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easier to program than Dijkstra and which works with negative cost edges (but not cycles). It is discussed more 

thoroughly in Section . Let M denote the distance matrix, where  if there is no edge (i,j). 

  

for k = 1 to n do

                 for i = 1 to n do

                                   for j = 1 to n do

                                                          

Return    

The key to understanding Floyd's algorithm is that  denotes ``the length of the shortest path from i to j that goes 

through at most k intermediate vertices.'' Note that  space suffices, since we need keep only  and  
around at time k.

●     How do I find the shortest cycle in a graph? -       One application of all-pairs shortest path is to find the shortest 
cycle in a graph, called its girth. Floyd's algorithm can be used to compute  for  , which is the length of 
the shortest way to get from vertex i to i, in other words the shortest cycle through i. 

This might be exactly what you want. However, the shortest cycle through x is likely to go from x to y back to x, 
using the same edge twice.   A simple cycle is one that visits no edge or vertex twice. To find the shortest simple 
cycle, the easiest approach is to compute the lengths of the shortest paths from i to all other vertices, and then 
explicitly check whether there is an acceptable edge from each vertex back to i. 

   
Figure: The girth, or shortest cycle, in a graph  

  Finding the longest cycle in a graph includes the special case of Hamiltonian cycle (see ), so it is NP-
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complete. 

The all-pairs shortest path matrix can be used to compute several useful invariants of any graph G, that are related to the 
center of G. The eccentricity of a vertex v in a graph is the shortest-path distance to the farthest vertex from v. From the 
eccentricity come other graph invariants. The radius of a graph is the smallest eccentricity of any vertex, while the center 
is the set of vertices whose eccentricity is the radius. The diameter of a graph is the maximum eccentricity of any vertex. 
       

Implementations:     The highest performance code (for both Dijkstra and Bellman-Ford) available for finding shortest 
paths in graphs is SPLIB [CGR93], developed in C language by Cherkassky, Goldberg, and Radzik. They report solving 
instances with over one million vertices in under two minutes on a Sun Sparc-10 workstation. Their codes are available 
from http://www.neci.nj.nec.com/homepages/avg.html for noncommercial use. 

LEDA (see Section ) provides good implementations in C++     for all of the shortest-path algorithms we have 
discussed, including Dijkstra, Bellman-Ford, and Floyd's algorithms. 

  Pascal implementations of Dijkstra, Bellman-Ford, and Floyd's algorithms are given in [SDK83]. See Section . 

XTango (see Section )   includes animations of both Dijkstra's and Floyd's shortest-path algorithms. 

Combinatorica [Ski90] provides Mathematica implementations     of Dijkstra's and Floyd's algorithms for shortest paths, 

acyclicity testing, and girth computation for directed/undirected and weighted/unweighted graphs. See Section . 

    The Stanford GraphBase (see Section ) contains an implementation of Dijkstra's algorithm, used for computing 
word ladders in a graph defined by five-letter words, as well as an implementation of a program to bound the girth of 
graphs. Algorithm 562 [Pap80] of the Collected Algorithms of the ACM is a Fortran program to find shortest paths in 

graphs (see Section ).    

Notes:       Good expositions on Dijkstra's algorithm [Dij59] and Floyd's all-pairs-shortest-path algorithm [Flo62] include 
[Baa88, CLR90, Man89]. Good expositions of the Bellman-Ford algorithm [Bel58, FF62] are slightly rarer, but include 
[CLR90, Eve79a, Law76]. Expositions on finding the shortest path in a DAG include [Law76]. 

A survey on shortest-path algorithms with 222 references appears in [DP84]. Included are citations to algorithms for 
related path problems, like finding the kth-shortest path and shortest paths when edge costs vary with time.   Expositions 
on finding the kth-shortest path include [Law76]. 

The theoretically fastest algorithms known for single-source shortest path for positive edge weight graphs are variations 
of Dijkstra's algorithm with Fibonacci heaps [FT87].   Experimental studies of shortest-path algorithms include [DF79, 
DGKK79]. However, these experiments were done before Fibonacci heaps were developed. See [CGR93] for a more 
recent study. 

Theoretically faster algorithms exist when the weights of the edges are small; i.e. their absolute values are each bounded 
by W.   For positive edge weights, the single-source-shortest-path can be found in  [AMOT88], while 

 suffices for graphs with negative edge weights [GT89] 
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Related Problems: Network flow (see page ), motion planning (see page ).     

        
Next: Transitive Closure and Reduction Up: Graph Problems: Polynomial-Time Previous: Minimum Spanning Tree 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Transitive Closure and Reduction

   

   

Input description: A directed graph G=(V,E). 

Problem description: For transitive closure, construct a graph G'=(V,E') with edge  iff there is 
a directed path from i to j in G. For transitive reduction, construct a small graph G'=(V,E') with a directed 
path from i to j in G' iff  . 

Discussion: Transitive closure can be thought of as establishing a data structure that makes it possible to 
solve reachability questions (can I get to x from y?) efficiently. After the preprocessing of constructing 
the transitive closure, all reachability queries can be answered in constant time by simply reporting a 
matrix entry.     Transitive closure is fundamental in propagating the consequences of modified attributes 
of a graph G. For example, consider the graph underlying any spreadsheet model, where the vertices are 
cells and there is an edge from cell i to cell j if the result of cell j depends on cell i. When the value of a 
given cell is modified, the values of all reachable cells must also be updated. The identity of these cells is 
revealed by the transitive closure of G. Many database problems reduce to computing transitive closures, 
for analogous reasons.    

There are three basic algorithms for computing transitive closure: 
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●     The simplest algorithm just performs a breadth-first or depth-first search from each vertex and 
keeps track of all vertices encountered.   Doing n such traversals gives an O(n (n+m) ) algorithm, 
which degenerates to cubic time if the graph is dense. This algorithm is easily implemented, runs 
well on sparse graphs, and is likely the right answer for your application.

●     If the transitive closure of G will be dense, a better algorithm exploits the fact that the strongly 

connected components of G can be computed in linear time (see Section ).   All pairs of 
vertices in each strongly connected component are mutually reachable. Further, if (x,y) is an edge 
between two vertices in different strongly connected components, every vertex in y's component 
is reachable from each vertex in x's component. Thus the problem reduces to finding the transitive 
closure on a graph of strongly connected components, which should have considerably fewer 
edges and vertices than G.

●     Warshall's algorithm constructs transitive closures in  with a simple, slick algorithm that is 

identical to Floyd's all-pairs-shortest-path algorithm of Section .    If we are interested only in 
the transitive closure, and not the length of the resulting paths, we can reduce storage by retaining 
only one bit for each matrix element. Thus  iff j is reachable from i using only vertices 

 as intermediates. 

Another related algorithm, discussed in the references, runs in the same time as matrix 
multiplication.   You might conceivably win for large n by using Strassen's fast matrix 
multiplication algorithm, although I for one wouldn't bother trying.   Since transitive closure is 
provably as hard as matrix multiplication, there is little hope for a significantly faster algorithm. 

Transitive reduction (also known as minimum equivalent digraph) is essentially the inverse operation of 
transitive closure, namely reducing the number of edges while maintaining identical reachability 
properties.   The transitive closure of G is identical to the transitive closure of the transitive reduction of 
G.   The primary application of transitive reduction is space minimization, by eliminating redundant 
edges from G that do not effect reachability.   Transitive reduction also arises in graph drawing, where it 
is important to eliminate as many unnecessary edges as possible in order to reduce the visual clutter. 

Although the transitive closure of G is uniquely defined, a graph may have many different transitive 
reductions, including G itself. We want the smallest such reduction, but there can be multiple 
formulations of the problem: 

●     A linear-time, quick-and-dirty transitive reduction algorithm identifies the strongly connected 
components of G, replaces each by a simple directed cycle, and adds these edges to those bridging 
the different components. Although this reduction is not provably minimal, it is likely to be pretty 
close on typical graphs. 

One catch with this heuristic is that it can add edges to the transitive reduction of G that are not in 
G. This may or may not be a problem for your application.

●     If, in fact, all edges of the transitive reduction of G must be in G, we must abandon hope of 
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finding the minimum size reduction. To see why, consider a directed graph consisting of one 
strongly connected component, so that every vertex can reach every other vertex. The smallest 
possible transitive reduction will be a simple directed cycle, consisting of exactly n edges. This is 
possible as a subset of edges only if G is Hamiltonian, thus proving that finding the smallest 
subset of edges is NP-complete.    

A heuristic for finding such a transitive reduction is to consider each edge successively and delete 
it if its removal does not change the transitive reduction. Implementing this efficiently means 
minimizing the time spent on reachability tests. Observe that directed edge (i,j) can be eliminated 
whenever there is another path from i to j avoiding this edge.

●     If we are allowed to have arbitrary pairs of vertices as edges in the reduction and need the 
minimum size reduction, it can be found in  time. See the references below for details. 
However, the quick-and-dirty algorithm above will likely suffice for most applications and will be 
easier to program as well as more efficient. 

Implementations:   LEDA (see Section ) provides an implementation of transitive closure in C++ 
using O(n m) time [GK79]. 

Combinatorica [Ski90] provides Mathematica implementations of transitive closure and reduction, as 

well as the display of partial orders requiring transitive reduction. See Section .    

Notes: Van Leeuwen [vL90a] provides an excellent survey on transitive closure and reduction, including 
33 references. Good expositions of Warshall's algorithm [War62] include [Baa88, CLR90, Man89]. The 
equivalence between matrix multiplication and transitive closure was proven by Fischer and Meyer 
[FM71], with good expositions including [AHU74]. 

The equivalence between transitive closure and reduction, as well as the  reduction algorithm, was 
established in [AGU72]. Empirical studies of transitive closure algorithms include [SD75].   

Estimating the size of the transitive closure is important in database query optimization.     A linear-time 
algorithm for estimating the size of the closure is given by Cohen [Coh94]. 

Related Problems: Connected components (see page ), shortest path (see page ).     
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Matching

   

   

Input description: A (weighted) graph G=(V,E). 

Problem description: Find the largest-size set of edges S from E such that each vertex in V is incident to 
at most one edge of S. 

Discussion: Consider a set of employees, each of whom is capable of doing some subset of the tasks that 
must be performed.     We seek to find an assignment of employees to tasks such that each task is 
assigned to a unique employee.   Each mapping between an employee and a task they can handle defines 
an edge, so what we need is a set of edges with no employee or job in common, i.e. a matching. 

Efficient algorithms for constructing matchings are based on constructing augmenting paths in graphs.   
Given a (partial) matching M in a graph G, an augmenting path P is a path of edges where every odd-
numbered edge (including the first and last edge) is not in M, while every even-numbered edge is. 
Further, the first and last vertices must not be already in M. By deleting the even-numbered edges of P 
from M and replacing them with the odd-numbered edges of P, we enlarge the size of the matching by 
one edge.   Berge's theorem states that a matching is maximum if and only if it does not contain any 
augmenting path.   Therefore, we can construct maximum-cardinality matchings by searching for 
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augmenting paths and stopping when none exist. 

This basic matching framework can be enhanced in several ways, while remaining essentially the same 
assignment problem: 

●     Is your graph weighted or unweighted? -   Many matching applications are based on unweighted 
graphs. Perhaps we seek to maximize the number of tasks performed, where each task is as good 
as another. Such a problem seeks a maximum cardinality matching.   We say that a matching is 
perfect if every vertex is involved in the matching. 

For certain applications, we need to augment each edge with a weight, perhaps reflecting the 
salary of the employee or their effectiveness at a given task. The problem now becomes 
constructing a maximum weighted matching, i.e. the set of independent edges of maximum total 
cost. By setting all edge weights to be 1, any algorithm for finding weighted matchings can be 
used to solve maximum cardinality matching.

●     What if certain employees can be given multiple jobs? - In a natural generalization of the 
assignment problem, certain employees can given more than one task to do. We do not seek a 
matching so much as a covering with small ``stars''. Such multiple jobs can be modeled by simply 
replicating the employee vertex as many times as the number of jobs she can handle. By adding 
sufficiently complicated constraints on the solution, we will eventually require the use of full 
integer programming.

●     Is your graph bipartite? -   Many common matching problems involve bipartite graphs, as in the 
classical assignment problem of jobs to workers. This is fortunate because faster and simpler 
algorithms exist for bipartite matching. General graphs prove trickier because it is possible to 
have augmenting paths that are odd-length cycles, i.e. the first and last vertices are the same.   
Such cycles (or blossoms) are impossible in bipartite graphs, which by definition do not contain 
odd-length cycles.    

The standard algorithms for bipartite matching are based on network flow, using a simple 
transformation to convert a bipartite graph into an equivalent flow graph. 

Another common ``application'' of bipartite matching is in marrying off a set of boys to a set of girls such 
that each boy gets   a girl he likes. This can be modeled as a bipartite matching problem, with an edge 
between any compatible boy and girl. This is possible only for graphs with perfect matchings. An 
interesting related problem seeks a matching such that no parties can be unhappy enough to seek to break 
the matching. That is, once each of the boys has ranked each of the girls in terms of desirability, and the 
girls do the same to the boys, we seek a matching with the property that there are no marriages of the 
form  and  , where  and  in fact prefer each other to their own spouses. In real life, 
these two would run off with each other, breaking the marriages.   A marriage without any such couples 
is said to be stable. 

It is a surprising fact that no matter how the boys and girls rate each other, there is always at least one 

file:///E|/BOOK/BOOK4/NODE164.HTM (2 of 4) [19/1/2003 1:31:03]



Matching

stable marriage. Further, such a marriage can be found in  time.   An important application of stable 
marriage occurs in the annual matching of medical residents to hospitals. 

Implementations: The highest performance code available for constructing a maximum-cardinality 
bipartite matching of maximum weight in graphs is CSA [GK93], developed in the C language by 
Goldberg and Kennedy. This code is based on a cost-scaling network flow algorithm. They report 
solving instances with over 30,000 vertices in a few minutes on a Sun Sparc-2 workstation. Their codes 
are available for noncommercial use from http://www.neci.nj.nec.com/homepages/avg.html    

The First DIMACS Implementation Challenge [JM93] focused on network flows and matching.   Several 
instance generators and implementations for maximum weight and maximum cardinality matching were 
collected, which can be obtained by anonymous ftp from dimacs.rutgers.edu in the directory 
pub/netflow/matching. These include: 

●     A maximum-cardinality matching solver in Fortran 77 by R. Bruce Mattingly and Nathan P. 
Ritchey that seems capable of solving   instances of 5,000 nodes and 60,000 edges in under 30 
seconds.

●     A maximum-cardinality matching solver in C by Edward Rothberg, that implements Gabow's 
 algorithm.

●     A maximum-weighted matching solver in C by Edward Rothberg. This is slower but more general 
than his unweighted solver described above. For example, it took over 30 seconds on a weighted 
graph with 500 nodes and 4,000 edges. 

LEDA (see Section ) provides efficient implementations in C++ for both maximum cardinality and 
maximum weighted matching, on both bipartite and general graphs.     Sedgewick [Sed92] provides a 

simple implementation of the stable marriage theorem in C++. See Section  for details. 

Pascal implementations of maximum cardinality matching appears in [SDK83].   Alternative Pascal 

maximum-cardinality and bipartite matching codes appear in [MS91]. All are discussed in Section . 

The Stanford GraphBase (see Section ) contains an implementation of the Hungarian algorithm for 
bipartite matching. To provide readily visualized weighted bipartite graphs, Knuth uses a digitized 
version of the Mona Lisa and seeks row/column disjoint pixels of maximum brightness. Matching is also 
used to construct clever, resampled ``domino portraits.''     

Algorithm 548 [CT80] presents a Fortran code for the assignment problem. Algorithm 575 [Duf81] 
permutes a matrix so as to minimize the number of zeros along the diagonal, which involves solving a 

matching problem. Both codes are available from Netlib (see Section ).     
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    Combinatorica [Ski90] provides a (slow) Mathematica implementations of bipartite and maximal 

matching, as well as the stable marriage theorem. See Section . 

Notes: Lovász and Plummer [LP86] is the definitive reference on matching theory and algorithms. 
Survey articles on matching algorithms include [Gal86]. Good expositions on network flow algorithms 
for bipartite matching include [CLR90, Eve79a, Man89], and those on the Hungarian method include 
[Law76, PS82]. The best algorithm for maximum bipartite matching, due to Hopcroft and Karp [HK73], 

repeatedly finds the shortest augmenting paths instead of using network flow, and runs in  . 
Expositions on the augmenting path method include [Man89, PS82, SDK83]. 

Edmond's algorithm [Edm65] for maximum-cardinality matching   is of great historical interest for 
provoking questions about what problems can be solved in polynomial time. Expositions on Edmond's 
algorithm include [Law76, PS82, Tar83]. Gabow's [Gab76] implementation of Edmond's algorithm runs 

in  time. The best algorithm known for general matching runs in  [MV80].   A faster 
algorithm for matching in geometic graphs appears in [Vai88]. 

The theory of stable matching is thoroughly treated in [GI89].   The original algorithm for finding stable 
marriages is due to Gale and Shapely [GS62] with expositions including [Law76]. 

Related Problems: Eulerian cycle (see page ), network flow (see page ).     
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Eulerian Cycle / Chinese Postman

   

   

Input description: A graph G=(V,E). 

Problem description: Find the shortest tour of G visiting each edge at least once. 

Discussion: Suppose you are given the map of a city and charged with designing the routes for garbage 
trucks, snow plows, or postmen. In all of these applications, every road in the city must be completely 
traversed at least once in order to ensure that all deliveries or pickups are made.   For efficiency, you seek 
to minimize total drive time, or equivalently, the total distance or number of edges traversed.     

Such applications are variants of the Eulerian cycle problem, best characterized by the children's puzzle 
that asks them to draw a given figure completely without lifting their pencil off the paper and without 
repeating any edges.   We seek a path or cycle through a graph that visits each edge exactly once. 

There are well-known conditions for determining whether a graph contains an Eulerian cycle, or path:   

●     An undirected graph contains an Eulerian cycle iff (1) it is connected and (2) each vertex is of 
even degree.

●     An undirected graph contains an Eulerian path iff (1) it is connected and (2) all but two vertices 
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are of even degree. These two vertices will be the start and end points of the path.
●     A directed graph contains an Eulerian cycle iff (1) it is connected and (2) each vertex has the 

same in-degree as out-degree.
●     Finally, a directed graph contains an Eulerian path iff (1) it is connected and (2) all but two 

vertices have the same in-degree as out-degree, and these two vertices have their in-degree and 
out-degree differ by one. 

Given this characterization of Eulerian graphs, it is easy to test in linear time whether such a cycle exists: 
test whether the graph is connected using DFS or BFS, and then count the number of odd-degree 
vertices. Actually constructing such a cycle also takes linear time.   Use DFS to find a cycle in the graph. 
Delete this cycle and repeat until the entire set of edges has been partitioned into a set of edge-disjoint 
cycles. Since deleting a cycle reduces each vertex degree by an even number, the remaining graph will 
continue to satisfy the same Eulerian degree-bound conditions.   For any connected graph, these cycles 
will have common vertices, and so by splicing these cycles in a ``figure eight'' at a shared vertex, we can 
construct a single circuit containing all of the edges. 

An Eulerian cycle, if one exists, solves the motivating snowplow problem, since any tour that visits each 
edge only once must have minimum length. However, it is unlikely that any real road network would 
happen to satisfy the degree conditions that make it Eulerian.   We need to solve the more general 
Chinese postman problem, which minimizes the length of a cycle that traverses every edge at least once. 
In fact, it can be shown that this minimum cycle never visits any edge more than twice, so good tours 
exist for any road network. 

The optimal postman tour can be constructed by adding the appropriate edges to the graph G so as to 
make it Eulerian. Specifically, we find the shortest path between each pair of odd-degree vertices in G.     
Adding a path between two odd-degree vertices in G turns both of them to even-degree, thus moving us 
closer to an Eulerian graph. Finding the best set of shortest paths to add to G reduces to identifying a 
minimum-weight perfect matching in a graph on the odd-degree vertices, where the weight of edge (i,j) is 
the length of the shortest path from i to j. For directed graphs, this can be solved using bipartite matching, 
where the vertices are partitioned depending on whether they have more ingoing or outgoing edges. Once 
the graph is Eulerian, the actual cycle can be extracted in linear time using the procedure described 
above. 

Implementations: Unfortunately, we have not able to identify a suitable Chinese postman 
implementation.   However, it should not be difficult for you to roll your own by using a matching code 

from Section  and all-pairs shortest path from Section . Matching is by far the hardest part of the 
algorithm. 

Combinatorica [Ski90] provides Mathematica implementations of Eulerian cycles and de Bruijn 

sequences.     See Section . 
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Nijenhuis and Wilf [NW78] provide an efficient Fortran routine to enumerate all Eulerian cycles of a 

graph by backtracking.     See Section . 

Notes: The history of graph theory began in 1736, when Euler [Eul36] first solved the seven bridges of 
Königsberg problem.       Königsberg (now Kaliningrad) is a city on the banks of the Pregel river. In 
Euler's day there were seven bridges linking the banks and two islands, which can be modeled as a 
multigraph with seven edges and four vertices. Euler sought a way to walk over each of the bridges 
exactly once and return home, i.e. an Eulerian cycle. Since all four of the vertices had odd degree, Euler 
proved that such a tour is impossible. The bridges were destroyed in World War II. See [BLW76] for a 
translation of Euler's original paper and a history of the problem. 

Expositions on linear algorithms for constructing Eulerian cycles [Ebe88] include [Eve79a, Man89].   
Fleury's algorithm [Luc91] is a direct and elegant approach to constructing Eulerian cycles. Start walking 
from any vertex, and erase any edge that has been traversed. The only criterion in picking the next edge 
is that we avoid using a bridge (edges whose deletion) unless there is no other alternative. No Eulerian 
graph contains a bridge, but what remains at some point on the walk ceases to be biconnected. 

The Euler's tour technique is an important paradigm in parallel graph algorithms.   See [Man89] for an 
exposition.   Efficient algorithms exist to count the number of Eulerian cycles in a graph [HP73]. 

The problem of finding the shortest tour traversing all edges in a graph was introduced by Kwan 
[Kwa62], hence the name Chinese postman. The bipartite matching algorithm for solving Chinese 
postman is due to Edmonds and Johnson [EJ73].   This algorithm works for both directed and undirected 
graphs, although the problem is NP-complete for mixed graphs [Pap76a]. Mixed graphs contain both 
directed and undirected edges. Expositions of the Chinese postman algorithm include [Law76]. 

A de Bruijn sequence S of span n on an alphabet  of size  is a circular string of length  containing all 
strings of length n as substrings of S, each exactly once.     For example, for n=3 and  , the 
circular string 00011101 contains the following substrings in order: 000, 001, 011, 111, 110, 101, 010, 
100. De Bruijn sequences can be thought of as ``safe cracker'' sequences, describing the shortest 
sequence of dial turns with  positions sufficient to try out all combinations of length n. 

De Bruijn sequences can be constructed by building a graph whose vertices are all  strings of length 
n-1, where there is an edge (u,v) iff  and  . Any Eulerian cycle on this 
graph describes a de Bruijn sequence. For expositions on de Bruijn sequences and their construction, see 
[Eve79a, Ski90]. 

Related Problems: Matching (see page ), Hamiltonian cycle (see page ).     
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Edge and Vertex Connectivity 

   

   

Input description: A graph G. Optionally, a pair of vertices and t. 

Problem description: What is the smallest subset of vertices (edges) whose deletion will disconnect G? 
Alternatively, what is the smallest subset of vertices (edges) that will separate from t? 

Discussion: Graph connectivity often arises in problems related to network reliability.     In the context 
of telephone networks, the vertex connectivity is the smallest number of switching stations that a terrorist 
must bomb in order to separate the network, i.e. prevent two unbombed stations from talking to each 
other.   The edge connectivity is the smallest number of wires that need to be cut to accomplish the same 
thing. One well-placed bomb or snipping the right pair of cables suffices to disconnect the network 
above. 

The edge (vertex) connectivity of a graph G is the smallest number of edge (vertex) deletions sufficient 
to disconnect G. There is a close relationship between the two quantities. The vertex connectivity is 
always no smaller than the edge connectivity, since deleting one vertex incident on each edge in a cut set 
succeeds in disconnecting the graph. Of course, smaller vertex subsets may be possible. The minimum 
vertex degree is an upper bound on both the edge and vertex connectivity, since deleting all its neighbors 
(or the edges to all its neighbors) disconnects the graph into one big and one single-vertex component. 
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Several connectivity problems prove to be of interest: 

●     Is the graph already disconnected? - The simplest connectivity problem is testing whether the 
graph is in fact connected. A simple depth-first or breadth-first search suffices to identify all 

components in linear time, as discussed in Section .   For directed graphs, the issue is whether 
the graph is strongly connected, meaning there is a directed path between any pair of vertices.     
In a weakly connected graph, there may exist paths to nodes from which there is no way to return.

●     What if I want to split the graph into equal-sized pieces? - Often, what is sought is not the 
smallest set of edges or vertices whose deletion will disconnect the graph, but a small set that 
breaks the graph into roughly equal-sized pieces. For example, suppose we want to break a 
computer program spread across several files into two maintainable units. Construct a graph 
where the vertices are subroutines, with an edge between any two subroutines that interact, say by 
one calling the other. We seek to partition the routines into equal-sized sets so that the fewest 
pairs of interacting routines are spread across the set.     

This is the graph partition problem, which is further discussed in Section .   Although the 
problem is NP-complete, reasonable heuristics exist to solve it.

●     Is there one weak link in my graph? - We say that G is biconnected if no single vertex deletion is 
sufficient to disconnect G.     Any vertex that is such a weak point is called an articulation vertex. 
  A bridge is the analogous concept for edges, meaning a single edge whose deletion disconnects 
the graph. 

The simplest algorithms for identifying articulation vertices (or bridges) would try deleting 
vertices (or edges) one by one, and then using DFS or BFS to test whether the resulting graph is 
still connected. More complicated but linear-time algorithms exist for both problems, based on 

depth-first search. Implementations are described below and in Section .
●     Are arbitrary cuts OK, or must I separate a given pair of vertices? - There are two flavors of the 

general connectivity problem. One asks for the smallest cutset for the graph, the other for the 
smallest set to separate from t.    Any algorithm for (-t)-connectivity can be used with each of the 
n(n-1)/2 possible pairs of vertices to give an algorithm for general connectivity. Less obviously, n-
1 runs will suffice, since we know that vertex  must end up in a different component from at 
least one of the other n-1 vertices in any cut set. 

Both edge and vertex connectivity can be found using network flow techniques.   Network flow, 

discussed in Section , interprets a weighted graph as a network of pipes where the maximum capacity 
of an edge is its weight, and seeks to maximize the flow between two given vertices of the graph. The 
maximum flow between  in G is exactly the weight of the smallest set of edges to disconnect G with 

 and  in different components. Thus the edge connectivity can be found by minimizing the flow 
between  and each of the n-1 other vertices in an unweighted graph G. Why? After deleting the 
minimum-edge cut set,  must be separated from some other vertex. 
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Vertex connectivity is characterized by Menger's theorem,   which states that a graph is k-connected if 
and only if every pair of vertices is joined by at least k vertex-disjoint paths. Network flow can again be 
used to perform this calculation, since in an unweighted graph G a flow of k between a pair of vertices 
implies k edge-disjoint paths.       We must construct a graph G' with the property that any set of edge-
disjoint paths in G' corresponds to vertex-disjoint paths in G. This can be done by replacing each vertex 

 of G with two vertices  and  , such that edge  for all  , and by replacing every 
edge  by edges  ,  in G'. Thus two edge-disjoint paths in G' correspond to 
vertex-disjoint paths in G, and as such, the minimum maximum-flow in G' gives the vertex connectivity 
of G. 

Implementations: Combinatorica [Ski90] provides Mathematica implementations of edge and vertex 
connectivity, as well as connected, biconnected, and strongly connected components with bridges and 

articulation vertices. See Section .    

LEDA does not currently seem to have biconnected components and bridges, but it   does contain all the 
tools to implement connectivity algorithms, including network flow. 

Pascal implementations of biconnected and strongly connected components appear in [MS91].   See 

Section  for details. 

The Stanford GraphBase (see Section ) contains   routines to compute biconnected and strongly 
connected components. 

Notes: Good expositions on the network-flow approach to edge and vertex connectivity include [Eve79a, 
Ski90]. The correctness of these algorithms is based on Menger's theorem [Men27] that the connectivity 
is determined by the number of edge and vertex disjoint paths separating a pair of vertices.   The 
maximum-flow, minimum-cut theorem is due to Ford and Fulkerson [FF62]. 

Efficient randomized algorithms for computing graph connectivity have recently been developed by 
Karger.   See Motwani and Raghavan [MR95] for an excellent treatment of randomized algorithms. 

A nonflow-based algorithm for edge k-connectivity in  is due to Matula [Mat87]. Faster k-
connectivity algorithms are known for certain small values of k.   All three-connected components of a 
graph can be generated in linear time [HT73a], while  suffices to test 4-connectivity [KR91]. 

Related Problems: Connected components (see page ), network flow (see page ), graph partition 

(see page ).       
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Network Flow 

   

   

Input description: A graph G, where each edge e=(i,j) has a capacity  . A source node and sink node t. 

Problem description: What is the maximum flow you can route from to t while respecting the capacity 
constraint of each edge? 

Discussion: Applications of network flow go far beyond plumbing.   Finding the most cost-effective way 
to ship goods between a set of factories and a set of stores defines a network flow problem, as do 
resource-allocation problems in communications networks and a variety of scheduling problems.       

The real power of network flow is that a surprising variety of linear programming problems that arise in 
practice can be modeled as network flow problems, and that special-purpose network flow algorithms 
can solve such problems much faster than general-purpose linear programming methods.   Several of the 
graph problems we have discussed in this book can be modeled as network flow, including bipartite 
matching, shortest path, and edge/vertex connectivity.   

The key to exploiting this power is recognizing that your problem can be modeled as network flow. This 
is not easy, and it requires experience and study. My recommendation is to first construct a linear 
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programming model for your problem and then compare it with the linear program for minimum-cost 
flow on a directed network G=(V,E).   Let  be a variable accounting for the flow from vertex i through 
edge j. The flow through edge j is constrained by its capacity, so 

 

Further, at each nonsource or sink vertex, as much flow comes in as goes out, so 

 

where we seek the assignment that minimizes 

 

where  is the cost of a unit of flow from i through j. 

Special considerations include: 

●     What if all my costs are identical? - Simpler and faster algorithms exist for solving the simple (as 
opposed to min-cost) maximum flow problem. This problem arises in many applications, 
including connectivity and bipartite matching.

●     What if all arc capacities are identical, either 0 or 1? - Faster algorithms exist for 0-1 network 
flows. See the references for details.

●     What if I have multiple sources and/or sinks? -     Such problems can be handled by modifying the 
network to create a vertex to serve as a super-source that feeds all the sources and a super-sink 
that drains all the sinks.

●     What if I have multiple types of material moving through the network? -   In modeling a 
telecommunications network, every message has a given source and destination. Each destination 
needs to receive exactly those calls sent to it, not a given quantity of communication from 
arbitrary places. This can be modeled as a multicommodity flow problem, where each call defines 
a different commodity and we seek to satisfy all demands without exceeding the total capacity of 
any edge. 

Linear programming will suffice for multicommodity flow if fractional flows are permitted. 
Unfortunately, multicommodity integral flow is NP-complete, even with only two commodities. 

Network flow algorithms can be complicated, and significant engineering is required to optimize 
performance. Thus we strongly recommend that you use an existing code if possible, rather than 
implement your own. Excellent codes are available and are described below. The two primary classes of 
algorithms are: 
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●     Augmenting path methods -   These algorithms repeatedly find a path of positive capacity from 
source to sink and add it to the flow. It can be shown that the flow through a network of rational 
capacities is optimal if and only if it contains no augmenting path, and since each augmentation 
adds to the flow, we will eventually find the maximum. The difference between network flow 
algorithms is in how they select the augmenting path. If we are not careful, each augmenting path 
will add but a little to the total flow, and so the algorithm might take a long time to converge.

●     Preflow-push methods -   These algorithms push flows from one vertex to another, ignoring until 
the end the constraint that the in-flow must equal the out-flow at each vertex. Preflow-push 
methods prove faster than augmenting path methods, essentially because multiple paths can be 
augmented simultaneously. These algorithms are the method of choice and are implemented in the 
best codes described below. 

Implementations: The highest-performance code available for solving maximum-flow in graphs is PRF 
[CG94], developed in the C language by Cherkassky and Goldberg.   They report solving instances with 
over 250,000 vertices in under two minutes on a Sun Sparc-10 workstation.   For minimum-cost max-
flow, the highest-performance code available is CS [Gol92], capable of solving instances of over 30,000 
vertices   in a few minutes on Sun Sparc-2 workstations. Both of their codes are available by ftp for 
noncommercial use from http://www.neci.nj.nec.com/homepages/avg.html. 

The First DIMACS Implementation Challenge on Network Flows and Matching [JM93] collected several 
implementations and generators for network flow, which   can be obtained by anonymous ftp from 
dimacs.rutgers.edu in the directory pub/netflow/maxflow. These include: 

●     A preflow-push network flow implementation in C by Edward Rothberg. It took under a second 
on a test graph of 500 nodes and 4,000 edges, but over an hour with 5,000 nodes and 40,000 
edges.

●     An implementation of eleven network flow variants in C, including the older Dinic and Karzanov 
algorithms by Richard Anderson and Joao Setubal. On an instance of 8,000 vertices and 12,000 
edges, all options finished within two seconds.     

Nijenhuis and Wilf [NW78] provide a Fortran implementation of Karzanov's algorithm for network flow. 

See Section . Fortran minimum-cost flow codes are given in [PGD82] and [KH80].   

LEDA (see Section ) provides C++ implementations of maximum-flow and minimum-cost max-flow 
algorithms. It also provides an implementation of minimum cut.      

Pascal implementations of max-flow and minimum-cost flow algorithms are provided in [SDK83].   

Alternative Pascal max-flow implementations appear in [MS91]. For both codes, see Section . 
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Combinatorica [Ski90] provides a (slow) Mathematica implementation of network flow, with 

applications to connectivity testing and matching. See Section .     

Notes: The definitive book on network flows and its applications is [AMO93]. Good expositions on 
preflow-push algorithms [GT88] include [CLR90]. Older augmenting path algorithms are discussed in 
[Eve79a, Man89, PS82]. Expositions on min-cost flow include [Law76, PS82, SDK83]. Expositions on 
the hardness of multicommodity flow [Ita78] include [Eve79a]. 

Conventional wisdom holds that network flow should be computable in O(nm) time, and there has been 
steady progress in lowering the time complexity. See [AMO93] for a history of algorithms for the 

problem. The fastest known general network flow algorithm runs in  time [GT88]. 
Empirical studies of minimum-cost flow algorithms include [GKK74, Gol92]. 

Although network flow can be used to find minimum cut sets in graphs, faster algorithms are available, 
including [SW94] and [MR95]. 

Related Problems: Linear programming (see page ), matching (see page ), connectivity (see page 

).       
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Drawing Graphs Nicely

   

   

Input description: A graph G. 

Problem description: Draw a graph G so as to accurately reflect its structure. 

Discussion: Drawing graphs nicely is a problem that constantly arises in applications, such as displaying 
file directory trees or circuit schematic diagrams.    Yet it is inherently ill-defined. What exactly does 
nicely mean? We seek an algorithm that shows off the structure of the graph so the viewer can best 
understand it. We also seek a drawing that looks aesthetically pleasing.   Unfortunately, these are ``soft'' 
criteria for which it is impossible to design an optimization algorithm. Indeed, it is possible to come up 
with two or more radically different drawings of certain graphs and have each be most appropriate in 

certain contexts. For example, page  contains three different drawings of the Petersen graph. Which of 
these is the ``right'' one?   

Several ``hard'' criteria can partially measure the quality of a drawing: 

●     Crossings - We seek a drawing with as few pairs of crossing edges as possible, since they are 
distracting.  

●     Area - We seek a drawing that uses as little paper as possible, while ensuring that no pair of 
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Drawing Graphs Nicely

vertices are placed too close to each other.  
●     Edge length - We seek a drawing that avoids long edges, since they tend to obscure other features 

of the drawing.  
●     Aspect ratio - We seek a drawing whose aspect ratio (width/height) reflects that of the desired 

output medium (typically a computer screen at 4/3) as close as possible.   

Unfortunately, these goals are mutually contradictory, and the problem of finding the best drawing under 
any nonempty subset of them will likely be NP-complete. 

Two final warnings before getting down to business. For graphs without inherent symmetries or structure 
to display, it is likely that no really nice drawing exists, especially for graphs with more than 10 to 15 
vertices. Even when a large, dense graph has a natural drawing, the shear amount of ink needed to draw it 
can easily overwhelm any display. A drawing of the complete graph on 100 vertices,  , contains 
approximately 5,000 edges, which on a  pixel display works out to 200 pixels an edge. What 
can you hope to see except a black blob in the center of the screen? 

Once all this is understood, it must be admitted that certain graph drawing algorithms can be quite 
effective and fun to play with. To choose the right one, first ask yourself the following questions: 

●     Must the edges be straight, or can I have curves and/or bends? - Straight-line drawing algorithms 
are simpler than those with polygonal lines,   but to visualize complicated graphs such as circuit 
designs, orthogonal polyline drawings seem to work best. Orthogonal means that all lines must be 
drawn either horizontal or vertical, with no intermediate slopes.    Polyline means that each graph 
edge is represented by a chain of straight-line segments, connected by vertices or bends.

●     Can you build a natural, application-specific drawing algorithm? - If your graph represents a 
network of cities and roads,   you are unlikely to find a better drawing than placing the vertices in 
the same position as the cities on a map. This same principle holds for many different applications.

●     Is your graph either planar or a tree? - If so, use one of the special planar graph    or tree drawing 

algorithms of Sections  and .
●     How fast must your algorithm be? - If it is being used for interactive update and display, your 

graph drawing algorithm had better be very fast. You are presumably limited to using incremental 
algorithms, which change the positions of the vertices only in the immediate neighborhood of the 
edited vertex.   If you need to print a pretty picture for extended study, you can afford to be a little 
more extravagant. 

As a first, quick-and-dirty drawing for most applications, I recommend simply spacing the vertices 
evenly on a circle, and then drawing the edges as straight lines between vertices.   Such drawings are easy 
to program and fast to construct, and have the substantial advantage that no two edges can obscure each 
other, since no three vertices will be nearly collinear. As soon as you allow internal vertices into your 
drawing, such artifacts can be hard to avoid. An unexpected pleasure with circular drawings is the 
symmetry that is sometimes revealed because consecutive vertices appear in the order they were inserted 
into the graph.   Simulated annealing can be used to permute the circular vertex order so as to minimize 
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crossings or edge length, and thus significantly improve the drawing. 

A good, general-purpose heuristic for drawing graphs models the graph as a system of springs and then 
uses energy minimization to space the vertices.    Let adjacent vertices attract each other with a force 
proportional to the logarithm of their separation, while all nonadjacent vertices repel each other with a 
force proportional to their separation distance. These weights provide incentive for all edges to be as 
short as possible, while spreading the vertices apart. The behavior of such a system can be approximated 
by determining the force acting on each vertex at a particular time and then moving each vertex a small 
amount in the appropriate direction. After several such iterations, the system should stabilize on a 
reasonable drawing. The input and output figures above demonstrate the effectiveness of the spring 
embedding on a particular small graph. 

If you need a polyline graph drawing algorithm, my recommendation is that you study several of the 
implementations presented below, particularly graphEd and GraphViz,    and see whether one of them can 
do the job. You will have to do a significant amount of work before you can hope to develop a better 
algorithm. 

Once you have a graph drawn, this opens another can of worms, namely where to place the edge/vertex 
labels. We seek to position the labels very close to the edges or vertices they identify, and yet to place 
them such that they do not overlap each other or important graph features. Map labeling heuristics are 
described in [WW95]. Optimizing label placement can be shown to be an NP-complete problem, but 

heuristics related to bin packing (see Section ) can be effectively used.    

Implementations: Georg Sander maintains a comprehensive WWW page on graph drawing at 
http://www.cs.uni-sb.de/RW/users/sander/html/gstools.html. This is well worth checking out and 
probably should be your first stop in hunting down programs for graph drawing. 

The best ftp-able package of graph drawing algorithms is GraphEd, by Michael Himsolt. GraphEd 
[Him94] is a powerful interactive editor that enables the user to construct and manipulate both directed 
and undirected graphs. It contains a variety of graph and tree drawing algorithms, including planar 
drawings, polyline drawings, upward drawings of directed acyclic graphs (DAGs), and spring 
embeddings, and allows variations in node, edge, and label styles. Sgraph is an interface to GraphEd to 
support user-specific extensions written in C. It includes a modest library of algorithms for planarity 
testing, maximum flow, matching, and connectivity testing. GraphEd can be obtained by anonymous ftp 
from forwiss.uni-passau.de (132.231.20.10) in directory /pub/local/graphed. GraphEd is free for 
noncommercial use. Graphlet is a more recent project by the same group, available at http://www.fmi.uni-
passau.de/Graphlet. 

GraphViz is a popular graph drawing program developed by Stephen North of Bell Laboratories. It 
represents edges as splines and can construct useful drawings of quite large and complicated graphs. I 
recommend it, even though licensing considerations make it impossible to include on the Algorithm 
Repository or CD-ROM. A noncommercial license is available from http://portal.research.bell-
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labs.com/orgs/ssr/book/reuse/. 

Combinatorica [Ski90] provides Mathematica implementations of several graph drawing algorithms, 

including circular, spring, and ranked embeddings. See Section  for further information on 
Combinatorica. 

daVinci is a graph drawing and editing system whose layout algorithm seeks to minimize edge crossings 
and line bends, from Michael Froehlich at the University of Bremen. Information about daVinci is 
available from http://www.informatik.uni-bremen.de/  davinci. Binaries are available for a variety of 
UNIX workstations, although source code is not available. 

Notes: A significant community of researchers in graph drawing has emerged in recent years, fueled by 
or fueling an annual conference on graph drawing, the proceedings of which are published by Springer-
Verlag's Lecture Notes in Computer Science series. Perusing a volume of the proceedings will provide a 
good view of the state of the art and of what kinds of ideas people are thinking about. 

The best reference available on graph drawing is the annotated bibliography on graph drawing algorithms 
by Giuseppe Di Battista, Peter Eades, and Roberto Tamassia [BETT94], which is also available from 
http://www.cs.brown.edu/  rt. See [BGL  95] for an experimental study of graph drawing algorithms. 

Although it is trivial to space n points evenly along the boundary of a circle, the problem is considerably 
more difficult on the surface of a sphere. Extensive tables of such spherical codes for  in up to five 
dimensions have been construction by Sloane, Hardin, and Smith, and are available from netlib (see 

Section ) in att/math/sloane. 

Related Problems: Drawing trees (see page ), planarity testing (see page ).     
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Drawing Trees

   

   

Input description: A tree T, which is a graph without any cycles. 

Problem description: A nice drawing of the tree T. 

Discussion: There are as many reasons to want to draw trees as there are types of structures that trees 
represent. Consider software and debugging tools that illustrate the hierarchical structure of file system 
directories, or that trace the execution of a program through its subroutines.     

The primary issue in drawing trees is establishing whether you are drawing free or rooted trees: 

●     Rooted trees define a hierarchical order, emanating from a single source node identified as the 
root. Any drawing must reflect this hierarchical structure, as well as any additional application-
dependent constraints on the order in which children must appear. For example, family trees are 
rooted, with sibling nodes typically drawn from left to right in the order of birth.     

●     Free trees do not encode any structure beyond their connection topology.    For example, there is 
no root associated with the minimum spanning tree of any graph, so a hierarchical drawing can be 
misleading. Such free trees might well inherit their drawing from that of the full underlying graph, 
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such as the map of the cities whose distances define the minimum spanning tree. 

Since trees are always planar graphs, they can and should be drawn such that no two edges cross.   Any 

of the planar drawing algorithms of Section  could be used to do so. However, such algorithms are 
overkill, because much simpler algorithms can be used to construct planar drawings of trees. The spring-

embedding heuristics of Section  also work well on free trees,   although they may be too slow for 
many applications. 

The most natural tree-drawing algorithms work with rooted trees. However, they can be used equally 
well with free trees by selecting one vertex to serve as the root of the drawing. This faux-root can be 
selected arbitrarily,   or, even better, by using a center vertex of the tree. A center vertex minimizes the 
maximum distance to other vertices. For trees, the center always consists of either one vertex or two 
adjacent vertices, so pick either one of them. Further, the center of a tree can be identified in linear time 
by repeatedly trimming all the leaves until only the center remains. 

Your two primary options for drawing rooted trees are ranked and radial embeddings: 

●     Ranked embeddings - Place the root in the top center of your page, and then partition the page into 
the root-degree number of top-down strips.   Deleting the root creates the root-degree number of 
subtrees, each of which is assigned to its own strip. Draw each subtree recursively, by placing its 
new root (the vertex adjacent to the old root) in the center of its strip a fixed distance from the top, 
with a line from old root to new root. The output figure above is a nicely ranked embedding of a 
balanced binary tree. 

Such ranked embeddings are particularly effective for rooted trees used to represent a hierarchy, 
be it a family tree, a data structure, or a corporate ladder.   The top-down distance illustrates how 
far each node is from the root. Unfortunately, such a repeated subdivision eventually produces 
very narrow strips, until most of the vertices are crammed into a small region of the page. You 
should adjust the width of each strip to reflect the total number of nodes it will contain, or even 
better, the maximum number of nodes on a single level.

●     Radial embeddings - A better way to draw free trees is with a radial embedding, where the 
root/center of the tree is placed in the center of the drawing.   The space around this center vertex 
is divided into angular sectors for each subtree. Although the same problem of cramping will 
eventually occur, radial embeddings make better use of space than ranked embeddings and appear 
considerably more natural for free trees. The rankings of vertices in terms of distance from the 
center is illustrated by the concentric circles of vertices. 

Implementations: Georg Sander maintains a comprehensive WWW page on graph drawing at 
http://www.cs.uni-sb.de/RW/users/sander/html/gstools.html. This should probably be your first stop in 
hunting down programs for tree drawing. 
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The best FTP-able package of graph drawing algorithms is GraphEd, by Michael Himsolt 
(himsolt@fmi.uni-passau.de).   It contains a variety of graph and tree drawing algorithms and an 

interface to support user-specific extensions written in C.   See Section  for more details on GraphEd 
and other graph drawing systems. 

Combinatorica [Ski90] provides Mathematica implementations    of several tree drawing algorithms, 

including radial and rooted embeddings. See Section  for further information on Combinatorica. 

Notes: The best reference available on graph drawing is the annotated bibliography on graph drawing   
algorithms by Giuseppe Di Battista, Peter Eades, and Roberto Tamassia [BETT94], also available via 
http://www.cs.brown.edu/  rt. 

Heuristics for tree layout have been studied by several researchers [RT81, Vau80, WS79], although 
under certain aesthetic criteria the problem is NP-complete [SR83].   

Related Problems: Drawing graphs (see page ), planar drawings (see page ).     
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Planarity Detection and Embedding

   

   

Input description: A graph G. 

Problem description: Can G be drawn in the plane such that no two edges cross? If so, produce such a 
drawing. 

Discussion: Planar drawings (or embeddings) make it easy to understand the structure of a given graph 
by eliminating   crossing edges, which are often confused as additional vertices. Graphs arising in many 
applications, such as road networks or printed circuit boards, are naturally planar because they are 
defined by surface structures.   

Planar graphs have a variety of nice properties, which can be exploited to yield faster algorithms for 
many problems on planar graphs. Perhaps the most important property is that every planar graph is 
sparse.     Euler's formula shows that for planar graph G=(V,E),  , so every planar graph 
contains a linear number of edges, and further, every planar graph must contain a vertex of degree at 
most 5. Since every subgraph of a planar graph is planar, this means that there is always a sequence of 
low-degree vertices whose deletion from G eventually leaves the empty graph. 
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The study of planarity has motivated much of the development of graph theory. To get a better 
appreciation of the subtleties of planar drawings, the reader is urged to construct a planar (noncrossing) 
embedding for the graph  ,    the complete graph on five vertices with any single edge deleted. 
Then construct such an embedding where all the edges are straight. Finally, attempt to do the same for  
itself. 

It is useful to distinguish the problem of planarity testing (does a graph have a planar drawing) from 
constructing planar embeddings (actually finding the drawing),   although both can be done in linear 
time. Surprisingly, many efficient algorithms for planar graphs do not make use of the drawing but use 
the low-degree deletion sequence described above. 

Algorithms for planarity testing begin by embedding an arbitrary cycle from the graph in the plane and 
then considering additional paths in G between vertices on this cycle. Whenever two such paths cross, 
one must be drawn outside the cycle and one inside. When three such paths mutually cross, there is no 
way to resolve the problem, and so the graph cannot be planar. Linear-time algorithms for planarity 
detection are based on depth-first search, but they are subtle and complicated enough that you would be 
wise to use an existing implementation if you can.   

Such path-crossing algorithms can be used to construct a planar embedding by inserting the paths into the 
drawing one by one. Unfortunately, because they work in an incremental manner,   nothing prevents 
them from inserting many vertices and edges into a relatively small area of the drawing. Such cramping 
makes the drawing ugly and hard to understand, and is a major problem with planar-embedding 
algorithms.   More recently, algorithms have been devised that construct planar-grid embeddings, where 
each vertex lies on a  grid. Thus no region can get too cramped and no edge can get too 
long. Still, the resulting drawings tend not to look as natural as one might hope. 

For nonplanar graphs, what is often sought is a drawing that minimizes the number of crossings.   
Unfortunately, computing the crossing number is NP-complete.   A useful heuristic extracts a large 
planar subgraph of G, embeds this subgraph, and then inserts the remaining edges one by one so as to 
minimize the number of crossings. This won't do much for dense graphs, which are doomed to have a 
large number of crossings, but it will work well for graphs that are almost planar, such as road networks 
with overpasses or printed circuit boards with multiple layers.    Large planar subgraphs can be found by 
modifying planarity-testing algorithms to delete troublemaking edges. 

Implementations: LEDA (see Section ) provides a nice set of data structures and algorithms to 
support working on planar subdivisions.    Included are both linear-time planarity testing and 
constructing straight-line planar-grid embeddings. 

GraphEd   includes an implementation of both planarity testing and planar graph layout. See Section  
for more details on GraphEd. Combinatorica [Ski90] provides a (slow) Mathematica implementation of 
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planarity testing.   See Section . 

Notes: Kuratowski [Kur30] gave the first characterization of planar graphs, namely that they do not 
contain a subgraph homeomorphic to  or  .       Thus if you are still working on the exercise to 
embed  , now is an appropriate time to give it up. Fary's theorem [F48] states that every planar graph 
can be drawn such that each edge is straight.   

Hopcroft and Tarjan [HT74] gave the first linear-time algorithm for drawing graphs. Expositions on 
linear-time planarity testing include [Eve79a]. Nishizeki and Chiba [NC88] provide a good reference to 
the algorithmic theory of planar graphs. Efficient algorithms for planar grid embeddings were first 
developed by [dFPP88]. See [CHT90] for an algorithm to find the maximum planar subgraph of a 
nonplanar graph. Outerplanar graphs are those that can be drawn such that all vertices lie on the outer 
face of the drawing. Such graphs can be characterized as having no subgraph homeomorphic to  and 
can be recognized and embedded in linear time.   

Related Problems: Graph partition (see page ), drawing trees (see page ).     
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Graph Problems: Hard Problems
  

A cynical view of graph algorithms is that ``everything we want to do is hard.'' Indeed, no polynomial-
time algorithms are known for any of the problems in this section. Further, with the exception of graph 
isomorphism, all of them are provably NP-complete.   

The theory of NP-completeness demonstrates that if any NP-complete problem has a polynomial-time 
algorithm, then polynomial-time algorithms must exist for all NP-complete problems. This seems 
sufficiently preposterous that NP-completeness suffices as a de facto proof that no efficient worst-case 
algorithm exists for the given problem. 

Still, do not abandon hope if your problem resides in this chapter. For each of these problems, we 
provide a recommended line of attack, be it through combinatorial search, heuristics, or approximation 
algorithms. For every problem, there exist restricted input instances that are polynomial-time solvable, 
and if you are lucky, perhaps your data happens to fall into one of these classes. Hard problems require a 
different methodology to work with than polynomial-time problems, but with care they can usually be 
dealt with successfully. 

The following books will help you deal with NP-complete problems: 

●     Garey and Johnson [GJ79] - This is the classic reference on the theory of NP-completeness. Most 
notably, it contains a concise catalog of over four hundred NP-complete problems, with associated 
references and comments. As soon as you begin to doubt the existence of an efficient algorithm 
for a given problem, browse through the catalog. Indeed, this is the book that I reach for most 
often.

●     Hochbaum [Hoc96] - This book surveys the state of the art in approximation algorithms for NP-
complete problems. Approximation algorithms efficiently produce solutions to problems that are 
always provably close to optimal.

●     Crescenzi and Kann - This compendium of approximation algorithms for optimization problems 
is available at http://www.nada.kth.se/nada/theory/problemlist.html and is the place to look first 
for a provably good heuristic for any given problem. 
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●     Clique 
●     Independent Set 
●     Vertex Cover 
●     Traveling Salesman Problem 
●     Hamiltonian Cycle 
●     Graph Partition 
●     Vertex Coloring 
●     Edge Coloring 
●     Graph Isomorphism 
●     Steiner Tree 
●     Feedback Edge/Vertex Set 
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Clique

   

   

Input description: A graph G=(V,E). 

Problem description: What is the largest  such that for all  ,  ? 

Discussion: When I went to high school, everybody complained about the ``clique'', a group of friends 
who all hung around together and seemed to dominate everything social.   Consider a graph whose 
vertices represent a set of people, with edges between any pair of people who are friends. Thus the clique 
in high school was in fact a clique in this friendship graph.   

Identifying ``clusters'' of related objects often reduces to finding large cliques in graphs.   One example is 
in a program recently developed by the Internal Revenue Service (IRS) to detect organized tax fraud,   
where groups of phony tax returns are submitted in the hopes of getting undeserved refunds. The IRS 
constructs graphs with vertices corresponding to submitted tax forms and with edges between any two 
tax-forms that appear suspiciously similar.   A large clique in this graph points to fraud. 

Since any edge in a graph represents a clique of two vertices, the challenge lies not in finding a clique, 
but in finding a large one. And it is indeed a challenge, for finding a maximum clique is NP-complete.   
To make matters worse, not only is no good approximation algorithm known, it is provably hard to 
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approximate even to within a factor of  . Theoretically, clique is about as hard as a problem in this 
book can get. So what can we hope to do about it? 

●     Will a maximal clique suffice? - A maximal clique is a subset of vertices, each pair of which 
defines an edge, that cannot be enlarged by adding any additional vertex. This doesn't mean that it 
has to be large relative to the largest   possible clique, but it might be. To find a nice maximal 
clique, sort the vertices from highest degree to lowest degree, put the first vertex in the clique, and 
then test each of the other vertices in order to see whether it is adjacent to all the clique vertices 
thus far. If so, add it; if not, continue down the list. In O(n m) time you will have a maximal, and 
hopefully large, clique. An alternative approach would be to incorporate some randomness into 
your vertex ordering and accept the largest maximal clique you find after a certain number of 
trials.

●     What if I am looking for a large, dense subgraph instead of a perfect clique? - Insisting on perfect 
cliques to define clusters in a graph can be risky, since the loss of a single edge due to error will 
eliminate that vertex from consideration.   Instead, we should seek large dense subgraphs, i.e. 
subsets of vertices that contain a large number of edges between them. Cliques are, by definition, 
the densest subgraphs possible. 

A simple linear-time algorithm can be used to find the largest set of vertices whose induced 
(defined) subgraph has minimum vertex degree  ,   beginning by repeatedly deleting all the 

vertices whose degree is less than k. This may reduce the degree of other vertices below k if they 
were adjacent to any deleted low-degree vertices. By repeating this process until all remaining 
vertices have degree  , we eventually construct the largest dense subgraph. This algorithm can 

be implemented in O(n+m) time by using adjacency lists and the constant-width priority queue of 

Section . By continuing to delete the lowest-degree vertices, we will eventually end up with a 
clique, which may or may not be large depending upon the graph.

●     What if the graph is planar? - Planar graphs cannot have cliques of size larger than four, or else 
they cease to be planar. Since any edge defines a clique of size two, the only interesting cases are 
cliques of 3 and 4 vertices.   Efficient algorithms to find such small cliques consider the vertices 
from lowest to highest degree. Any planar graph must contain a vertex of degree at most 5 (see 

Section ), so there is only a constant-sized neighborhood to check exhaustively for a clique. 
Once we finish with this vertex, we delete it to leave a smaller planar graph with at least one low-
degree vertex. Repeat until the graph is empty. 

If you really need to find the largest clique in a graph, an exhaustive search via backtracking provides the 
only real solution.   We search through all k-subsets of the vertices, pruning a subset as soon as it 
contains a vertex that is not connected to all the rest. We never need consider a subset of size larger than 
the highest vertex degree in the graph, since the maximum degree gives an upper bound on the size of the 
largest clique in the graph. Similarly, as soon as we discover a clique of size k, no vertex of degree  

can help find a larger clique. To speed our search, we should delete all such useless vertices from G. 
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Heuristics for finding large cliques based on randomized techniques   such as simulated annealing are 
likely to work reasonably well. 

Implementations: Programs for the closely related problems of finding cliques and independent sets 
were sought for the Second DIMACS Implementation Challenge, held in October 1993.   Programs and 
data from the challenge are available by anonymous ftp from dimacs.rutgers.edu. Source codes are 
available under pub/challenge/graph and test data under pub/djs. 

In particular, two C language programs by David S. Johnson and David L. Applegate are available.   The 
dfmax.c implements a simple-minded branch-and-bound algorithm similar to that of [CP90].   The 
dmclique.c uses a ``semi-exhaustive greedy'' scheme for finding large independent sets described in 
[JAMS91]. Performance data for both programs is available in files results.dfmax and results.dmclique in 
directories /pub/challenge/graph/benchmarks/clique and /pub/challenge/graph/benchmarks/volume. 

Combinatorica [Ski90] provides (slow) Mathematica implementations of cliques, independent sets, and 

vertex covers.     See Section . 

Notes: Good expositions of the proof that clique is NP-complete [Kar72] include [CLR90, GJ79, 

Man89]. It is also given in Section . This reduction established that clique, vertex cover, and 
independent set are very closely related problems, so heuristics and programs that solve one of them may 
also produce reasonable solutions for the other two. 

The linear-time algorithm for constructing maximal induced subgraphs is discussed in [Man89]. That 
clique cannot be approximated to within a factor of  is shown in [BGS95]. 

Related Problems: Independent set (see page ), vertex cover (see page ).     
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Independent Set

   

   

Input description: A graph G=(V,E). 

Problem description: What is the largest subset S of vertices of V such that no pair of vertices in S 
defines an edge of E between them? 

Discussion: The need to find large independent sets typically arises in dispersion problems, where we 
seek a set of mutually separated points.     For example, suppose you are trying to identify locations for a 
new franchise service such that no two locations are close enough to compete with each other.   
Construct a graph where the vertices are possible locations, and add edges between any two locations 
deemed close enough to interfere. The maximum independent set gives you the maximum number of 
franchises you can sell without cannibalizing sales. 

Independent sets avoid conflicts between elements and hence arise often in coding theory and scheduling 
problems.   Define a graph whose vertices represent the set of possible code words, and add edges 
between any two code words sufficiently similar to be confused due to noise. The maximum independent 
set of this graph defines the highest capacity code for the given communication channel.    

Independent set is closely related to two other NP-complete problems: 
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Independent Set

●     Vertex coloring - A coloring of a graph G is in fact a partitioning of the vertices of G into a small 
number of independent sets, since any two vertices of the same color cannot have an edge 
between them. In fact, most scheduling applications of independent set are really coloring 
problems, since all tasks eventually must be completed.

●     Clique - The complement of a graph G = (V,E) is a graph G' = (V,E'), where  iff (i,j) is 
not in E.   In other words, we replace each edge by a nonedge and vica versa. The maximum 
independent set in G is exactly the maximum clique in G', so these problems are essentially 

identical. Algorithms and implementations in Section  can thus be easily used for independent 
set. 

The simplest reasonable heuristic is to find the lowest-degree vertex, add it to the independent set, and 
delete it and all vertices adjacent to it.   Repeating this process until the graph is empty gives a maximal 
independent set, in that it can't be made larger just by adding vertices. Using randomization or perhaps 
some exhaustive search to distinguish among the low-degree vertices might result in somewhat larger 
independent sets. 

The independent set problem is in some sense dual to the graph matching problem.   The former asks for 
a large set of vertices with no edge in common, while the latter asks for a large set of edges with no 
vertex in common. This suggests trying to rephrase your problem as a matching problem, which can be 
computed in polynomial time, while the maximum independent set problem is NP-complete. 

The maximum independent set of a tree can be found in linear time by   (1) stripping off the leaf nodes, 
(2) adding them to the independent set, (3) deleting the newly formed leaves, and then (4) repeating from 
the first step on the resulting tree until it is empty. 

Implementations: Programs for the closely related problems of finding cliques and independent sets 
were sought for the Second DIMACS Implementation Challenge, held in October 1993.   Programs and 
data from the challenge are available by anonymous ftp from dimacs.rutgers.edu. Source codes are 

available under pub/challenge/graph and test data under pub/djs. See Section . 

Combinatorica [Ski90] provides (slow) Mathematica implementations of cliques, independent sets, and 

vertex covers.     See Section  for further information on Combinatorica. 

Neural-network heuristics for vertex cover and related problems such as clique and vertex coloring have 
been implemented in C   and Mathematica by Laura Sanchis and Arun Jagota, and are available in the 
algorithm repository http://www.cs.sunysb.edu/  algorith. 

Notes: Independent set remains NP-complete for planar cubic graphs [GJ79]. However, it can be solved 
efficiently for bipartite graphs [Law76]. 
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Related Problems: Clique (see page ), vertex coloring (see page ), vertex cover (see page ).     
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Vertex Cover

   

   

Input description: A graph G=(V,E). 

Problem description: What is the smallest subset of  such that each  contains at least one 
vertex of S? 

Discussion: Vertex cover is a special case of the more general set cover problem, which takes as input an 
arbitrary collection of subsets  of the universal set  .   We seek the smallest 
subset of subsets from S whose union is U.   Set cover arises in many applications, including Boolean 

logic minimization. See Section  for a discussion of set cover. 

To turn vertex cover into a set cover problem, let U be the complete set of edges, and create  to be the 
set of edges incident on vertex i. A set of vertices defines a vertex cover in graph G iff the corresponding 
subsets define a set cover in the given instance.   However, since each edge can be in only two different 
subsets, vertex cover instances are simpler than general set cover. The primary reason for distinguishing 
between the two problems is that vertex cover is a relative lightweight among NP-complete problems, 
and so can be effectively solved. 
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Vertex cover and independent set are very closely related graph problems. Since every edge in E is (by 
definition) incident on a vertex in a cover S, there can be no edge for which both endpoints are not in S. 
Thus V-S must be an independent set. Further, since minimizing S is the same as maximizing V-S, a 
minimum vertex cover defines a maximum independent set, and vice versa. This equivalence means that 
if you have a program that solves independent set, you can use it on your vertex cover problem. Having 
two ways of looking at it can be helpful if you expect that either the cover or independent set is likely to 
contain only a few vertices, for it might pay to search all possible pairs or triples of vertices if you think 
that it will pay off. 

The simplest heuristic for vertex cover selects the vertex with highest degree, adds it to the cover, deletes 
all adjacent edges, and then repeats until the graph is empty. With the right data structures, this can be 
done in linear time, and the cover you get ``usually'' should be ``pretty good''. However, for certain input 
graphs the resulting cover can be  times worse than the optimal cover. 

Much better is the following approximation algorithm, discussed in Section , which always finds a 
vertex cover whose size is at most twice as large as optimal.   Find a maximal matching in the graph, i.e. 
a set of edges no two of which share a vertex in common and that cannot be made larger by adding 
additional edges. Such a maximal matching can be built incrementally, by picking an arbitrary edge e in 
the graph, deleting any edge sharing a vertex with e, and repeating until the graph is out of edges. Taking 
both of the vertices for each edge in the matching gives us a vertex cover, since we only delete edges 
incident to one of these vertices and eventually delete all the edges. Because any vertex cover must 
contain at least one of the two vertices in each matching edge just to cover the matching, this cover must 
be at most twice as large as that of the minimum cover. 

This heuristic can be tweaked to make it perform somewhat better in practice, without losing the 
performance guarantee or costing too much extra time.   We can select the matching edges so as to ``kill 
off'' as many edges as possible, which should reduce the size of the maximal matching and hence the 
number of pairs of vertices in the vertex cover. Also, some vertices selected for our cover may in fact not 
be necessary, since all of their incident edges could also have been covered using other selected vertices. 
By making a second pass through our cover, we can identify and delete these losers. If we are really 
lucky, we might halve the size of our cover using these techniques. 

A problem that might seem closely related to vertex cover is edge cover, which seeks the smallest set of 
edges such that each vertex is included in one of the edges.   In fact, edge cover can be efficiently solved 

by finding a maximum cardinality matching in G (see Section ) and then selecting arbitrary edges to 
account for the unmatched vertices. 

Implementations: Programs for the closely related problems of finding cliques and independent sets 

were sought for the Second DIMACS Implementation Challenge, held in October 1993.   See Section  
for details. 
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Combinatorica [Ski90] provides (slow) Mathematica implementations of cliques, independent sets, and 

vertex covers.     See Section  for further information on Combinatorica. 

Neural-network heuristics for vertex cover and related problems such as clique and vertex coloring have 
been implemented in C   and Mathematica by Laura Sanchis and Arun Jagota, and are available in the 
algorithm repository http://www.cs.sunysb.edu/  algorith. 

Notes: Good expositions of the proof that vertex-cover is NP-complete [Kar72] include [CLR90, GJ79, 
Man89]. Good expositions on the 2-approximation algorithm include [CLR90]. The example that the 
greedy algorithm can be as bad as  times optimal is due to [Joh74] and is presented in [PS82]. 

Related Problems: Independent set (see page ), set cover (see page ).     
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Traveling Salesman Problem 

   

   

Input description: A weighted graph G. 

Problem description: Find the cycle of minimum cost that visits each of the vertices of G exactly once. 

Discussion: The traveling salesman problem is the most notorious NP-complete problem. This is a 
function of its general usefulness, and because it is easy to explain to the public at large. Imagine a 
traveling salesman who has to visit each of a given set of cities by car. What is the shortest route that will 
enable him to do so and return home, thus minimizing his total driving?       

Although the problem arises in transportation applications, its most important applications arise in 
optimizing the tool paths for manufacturing equipment.    For example, consider a robot arm assigned to 
solder all the connections on a printed circuit board.    The shortest tour that visits each solder point 
exactly once defines the most efficient path for the robot. A similar application arises in minimizing the 
amount of time taken by a graphics plotter to draw a given figure.   

Several issues arise in solving TSPs: 

●     Is the graph unweighted? - If the graph is unweighted, or all the edges have one of two cost 
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values, the problem reduces to finding a Hamiltonian cycle.   See Section  for a discussion of 
this problem.

●     Are you given as input n points or a weighted graph? - Geometric points are often easier to work 
with than a graph representation, for several reasons.   First, they define a complete graph, so 
there is never an issue of finding a tour, just a good one. Second, although we always could 
construct the complete distance graph on the points and feed it to a graph solver, it might be more 

efficient to construct a sparse nearest-neighbor graph (see Section ) and work primarily from 
that. Finally, geometric instances inherently satisfy the triangle inequality, discussed below.   

●     How important is the restriction against visiting each vertex more than once? - The restriction 
that the tour not revisit any vertex may be important in certain applications, but it often is 
irrelevant. For example, the cheapest way to visit all vertices might involve repeatedly visiting a 
hub site, as is common in modern air travel.   

This issue does not arise whenever the graph observes the triangle inequality; that is, for all 
vertices  ,  .   In graphs that observe the triangle inequality, the 
shortest tour visits each vertex once. Heuristics work much better on graphs that do obey the 
triangle inequality.

●     How important is that that you find the optimal tour? - If you insist on solving your TSP to 
optimality (and you probably shouldn't bother), there are two common approaches.   Cutting plane 
methods model the problem as an integer program, then solve the linear programming relaxation 
of it.   If the optimal solution is not at integer points, additional constraints designed to force 
integrality are added. Branch-and-bound algorithms perform a combinatorial search while 
maintaining   careful upper and lower bounds on the cost of a tour or partial tour. In the hands of 
professionals, problems with thousands of vertices can be solved. In the hands of one gleaning 
their knowledge from this book, problems with 50 to maybe 100 vertices are potentially solvable, 
using the implementations discussed below. 

Almost any flavor of TSP is going to be NP-complete, so the right way to proceed is with heuristics. 
These are often quite successful, typically coming within a few percent of the optimal solution, which is 
close enough for engineering work. Unfortunately, there have been literally dozens of heuristics 
proposed for TSPs, so the situation can be confusing.   Empirical results in the literature are sometime 
contradictory. However, we recommend choosing from among the following heuristics: 

●     Minimum spanning trees - A simple and popular heuristic, especially when the sites represent 
points in the plane, is based on the minimum spanning tree of the points.   By doing a depth-first 
search of this tree, we walk over each edge of the tree exactly twice, once going down when we 
discover the new vertex and once going up when we backtrack. We can then define a tour of the 
vertices according to the order in which they were discovered and use the shortest path between 
each neighboring pair of vertices in this order to connect them. This path must be a single edge if 
the graph is complete and obeys the triangle inequality, as with points in the plane. As discussed 

in Section , the resulting tour is always at most twice the length of the minimum TSP tour. In 
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practice, it is usually better, typically 15% to 20% over optimal. Further, the time of the algorithm 
is bounded by that of computing the minimum spanning tree, only  in the case of points in 

the plane (see Section ).  
●     Incremental insertion methods -   A different class of heuristics inserts new points into a partial 

tour one at a time (starting from a single vertex) until the tour is complete.   The version of this 
heuristic that seems to work best is furthest point insertion: of all remaining points, insert the 
point v into partial tour T such that 

 

The minimum ensures that we insert the vertex in the position that adds the smallest amount of 
distance to the tour, while the maximum ensures that we pick the worst such vertex first. This 
seems to work well because it first ``roughs out'' a partial tour before filling in details. Typically, 
such tours are only 5% to 10% longer than optimal.

●     k-optimal tours - Substantially more powerful are the Kernighan-Lin, or k-opt class of heuristics. 
Starting from an arbitrary tour, the method applies local refinements to the tour in the hopes of 
improving it. In particular, subsets of  edges are deleted from the tour and the k remaining 

subchains rewired in a different way to see if the resulting tour is an improvement. A tour is k-
optimal when no subset of k edges can be deleted and rewired so as to reduce the cost of the tour. 
Extensive experiments suggest that 3-optimal tours are usually within a few percent of the cost of 
optimal tours. For k > 3, the computation time increases considerably faster than solution quality. 
Two-opting a tour is a fast and effective way to improve any other heuristic.   Simulated 
annealing provides an alternate mechanism to employ edge flips to improve heuristic tours.    

Implementations: The world-record-setting traveling salesman program is by Applegate, Bixby, 
Chvatal, and Cook [ABCC95], which has solved instances as large as 7,397 vertices to optimality.   At 
this time, the program is not being distributed. However, the authors seem willing to use it to solve TSPs 
sent to them. In their paper, they describe this work as neither theory nor practice, but sport - an almost 
recreational endeavor designed principally to break records. It is a very impressive piece of work, 
however. 

The TSPLIB library of test instances for the traveling salesman problem is available from Netlib, and by 

anonymous ftp from softlib.cs.rice.edu.   See Section . 

Tsp_solve is a C++ code by Chad Hurwitz and Robert Craig that provides both heuristic and optimal 
solutions.    Geometric problems of size up to 100 points are manageable. It is available from 
http://www.cs.sunysb.edu/  algorith or by e-mailing Chad Hurrwitz at churritz@crash.cts.com. A 
heuristic Euclidean TSP solver in C due to Lionnel Maugis is available from 
http://www.cenaath.cena.dgac.fr/  maugis/tsp.shar. 
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Pascal implementations of branch-and-bound search and the insertion and Kerighan-Lin heuristics (for 2-

opt and 3-opt) appear in [SDK83].   For details, see Section . 

Algorithm 608 [Wes83] of the Collected Algorithms of the ACM is a Fortran implementation of a 
heuristic for the quadratic assignment problem, a more general problem that includes the traveling 
salesman as a special case. Algorithm 750 [CDT95] is a Fortran code for the exact solution of 

asymmetric TSP instances. See Section  for details.      

XTango (see Section ) includes animations of both the minimum spanning tree heuristic and a genetic 
algorithm for TSP. The latter converges sufficiently slowly to kill one's interest in genetic algorithms.    

Combinatorica [Ski90] provides (slow) Mathematica implementations of exact and approximate TSP 

solutions.   See Section . 

Notes: The definitive reference on the traveling salesman problem is the book by Lawler et. al. 
[LLKS85]. Experimental results on heuristic methods for solving large TSPs include [Ben92a, GBDS80, 
Rei94]. Typically, it is possible to get within a few percent of optimal with such methods. TSPLIB 
[Rei91] provides the standard collection of hard instances of TSPs that arise in practice. 

The Christofides heuristic is an improvement of the minimum-spanning tree heuristic   and guarantees a 
tour whose cost is at most 3/2 times optimal on Euclidean graphs. It runs in  , where the bottleneck 

is the time it takes to find a minimum-weight perfect matching (see Section ).   Good expositions of 
the Christofides heuristic [Chr76] include [Man89, PS85]. Expositions of the minimum spanning tree 
heuristic [RSL77] include [CLR90, O'R94, PS85]. 

Polynomial-time approximation schemes for Euclidean TSP have been recently developed by Arora 
[Aro96] and Mitchell [Mit96],   which offer  factor approximations in polynomial time for any  . 
They are of great theoretical interest, although any practical consequences remain to be determined. 

The history of progress on optimal TSP solutions is somewhat inspiring. In 1954, Dantzig, Fulkerson, 
and Johnson solved a symmetric TSP instance of 42 United States cities [DFJ54]. In 1980, Padberg and 
Hong solved an instance on 318 vertices [PH80]. Applegate et. al. [ABCC95] have recently solved 
problems that are twenty times larger than this. Some of this increase is due to improved hardware, but 
most is due to better algorithms. The rate of growth demonstrates that exact solutions to NP-complete 
problems can be obtained for large instances if the stakes are high enough. Unfortunately, they seldom 
are.   Good expositions on branch-and-bound methods include [PS82, SDK83]. Good expositions of the 
Kernighan-Lin heuristic [LK73, Lin65] include [MS91, PS82, SDK83]. 
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Size is not the only criterion for hardness. One can easily construct an enormous graph consisting of one 
cheap cycle, for which it would be easy to find the optimal solution. For sets of points in convex position 

in the plane, the minimum TSP tour is described by its convex hull (see Section ), which can be 
computed in  time. Other easy special cases are known. 

Related Problems: Hamiltonian cycle (see page ), minimum spanning tree (see page ), convex 

hull (see page ).       
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Hamiltonian Cycle 

   

   

Input description: A graph G = (V,E). 

Problem description: Find an ordering of the vertices such that each vertex is visited exactly once. 

Discussion: The problem of finding a Hamiltonian cycle or path in a graph is a special case of the 
traveling salesman problem, one where each pair of vertices with an edge between them is considered to 
have distance 1, while nonedge vertex pairs are separated by distance  . 

Closely related is the problem of finding the longest path or cycle in a graph, which occasionally arises in 
pattern recognition problems.     Let the vertices in the graph correspond to possible symbols, and let 
edges link symbols that can possibly be next to each other.   The longest path through this graph is likely 
the correct interpretation. 

The problems of finding longest cycles and paths are both NP-complete, even on very restrictive classes 
of unweighted graphs. There are several possible lines of attack, however: 

●     Do you have to visit all the vertices or all the edges? - First verify that you really have a 

Hamiltonian cycle problem. As discussed in Section , fast algorithms exist for edge-tour, or 
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Eulerian cycle, problems,   where you must visit all the edges without repetition. With a little 
cleverness, it is sometimes possible to reformulate a Hamiltonian cycle problem in terms of 
Eulerian cycles.   Perhaps the most famous such instance is the problem of constructing de Bruijn 

sequences, discussed in Section .
●     Is there a serious penalty for visiting vertices more than once? - By phrasing the problem as 

minimizing the total number of vertices visited on a complete tour, we have an optimization 
problem that now allows room for heuristics and approximation algorithms.   For example, 

finding a spanning tree of the graph and doing a depth-first search, as discussed in Section , 
yields a tour with at most 2n vertices.     Using randomization or simulated annealing might bring 
the size of this down considerably.  

●     Am I seeking the longest path in a directed acyclic graph (DAG)? - The problem of finding the 
longest path in a DAG can be solved in linear time using dynamic programming. This is about the 
only interesting case of longest path for which efficient algorithms exist.   

●     Is my graph dense? - For sufficiently dense graphs, there always exists at least one Hamiltonian 
cycle, and further, such a cycle can be found quickly.   An efficient algorithm for finding a 
Hamiltonian cycle in a graph where all vertices have degree  is given in [Man89]. 

If you really must know whether your graph is Hamiltonian, backtracking with pruning is your only 
possible solution.   Before you search, it pays to check whether your graph is biconnected (see Section 

).   If not, this means that the graph has an articulation vertex whose deletion will disconnect the 
graph and so cannot be Hamiltonian. 

Implementations: The football program of the Stanford GraphBase (see Section ) uses a stratified 
greedy algorithm to solve the asymmetric longest path problem. The goal is to derive a chain of football 
scores in order to establish the superiority of one football team over another. After all, if Virginia beat 
Illinois by 30 points, and Illinois beat Stony Brook by 14 points, then by transitivity Virginia would beat 
Stony Brook by 44 points if they played, right? We seek the longest path in a graph where the weight of 
an edge (x,y) is the number of points x beat y by.     

Nijenhuis and Wilf [NW78] provide an efficient routine to enumerate all Hamiltonian cycles of a graph 

by backtracking. See Section . Algorithm 595 [Mar83] of the Collected Algorithms of the ACM is a 
similar Fortran code that can be used as either an exact procedure or a heuristic by controlling the amount 

of backtracking.   See Section .   

XTango (see Section ) is an algorithm animation system for UNIX and X-windows,   which includes 
an animation of a backtracking solution to the knight's tour problem.   

Combinatorica [Ski90] provides a Mathematica backtracking implementation of Hamiltonian cycle.     
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See Section . 

Notes: Hamiltonian cycles - circuits that visit each vertex of a graph exactly once - apparently first arose 
in Euler's study of the knight's tour problem, although they were popularized by Hamilton's ``Around the 
World'' game in 1839.   Good expositions of the proof that Hamiltonian cycle is NP-complete [Kar72] 
include [Baa88, CLR90, GJ79]. 

Techniques for solving optimization problems in the laboratory using biological processes have recently 
attracted considerable attention.   In the original application of these ``biocomputing'' techniques, 
Adleman [Adl94b] solved a seven-vertex instance of the directed Hamiltonian path problem. 
Unfortunately, this approach requires an exponential number of molecules, and Avogadro's number 
implies that such experiments are inconceivable   for graphs beyond  . 

Related Problems: Eulerian cycle (see page ), traveling salesman (see page ).     
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Graph Partition 

   

   

Input description: A (weighted) graph G=(V,E) and integers j, k, and m. 

Problem description: Partition the vertices into m subsets such that each subset has size at most j, while 
the cost of the edges spanning the subsets is bounded by k. 

Discussion: Graph partitioning arises as a preprocessing step to divide-and-conquer algorithms, where it 
is often a good idea to break things into roughly equal-sized pieces.   It also arises when dealing with 
extremely large graphs, when we need to cluster the vertices into logical components for storage (to 
improve virtual memory performance) or for drawing purposes (to collapse dense subgraphs into single 
nodes in order to reduce cluttering).     

Several different flavors of graph partitioning arise depending on the desired objective function: 

●     Minimum cut set - The smallest set of edges to cut that will disconnect a graph can be efficiently 

found using network flow methods.     See Section  for more on connectivity algorithms. Since 
the smallest cutset can split off only a single vertex, the resulting partition might be very 
unbalanced. Hence ...

●     Graph partition - A better partition criterion seeks a small cut that partitions the vertices into 
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roughly equal-sized pieces. Unfortunately, this problem is NP-complete.   Fortunately, heuristics 
discussed below work well in practice. 

Certain special graphs always have small separators, which partition the vertices into balanced 
pieces.   For any tree, there always exists a single vertex whose deletion partitions the tree so that 
no component contains more than n/2 of the original n vertices. These components need not 
always be connected. For example, consider the separating vertex of a star-shaped tree. However, 
the separating vertex can be found in linear time using depth first-search. Similarly, every planar 
graph has a set of  vertices whose deletion leaves no component with more than 2n/3 
vertices. Such separators provide a particularly useful way to decompose planar graphs.     

   
Figure: The maximum cut of a graph  

●     Maximum cut -   Given an electronic circuit specified by a graph, the maximum cut defines the 
largest amount of data communication that can simultaneously take place in the circuit.   The 
highest-speed communications channel should thus span the vertex partition defined by the 
maximum edge cut. Finding the maximum cut in a graph is NP-complete, despite the existence of 
algorithms for min-cut. However, heuristics similar to those of graph partitioning can work well. 

The basic approach to dealing with graph partitioning or max-cut problems is to construct an initial 
partition of the vertices (either randomly or according to some problem-specific strategy) and then sweep 
through the vertices, deciding whether the size of the cut would increase or decrease if we moved this 
vertex over to the other side. The decision to move v can be made in time proportional to its degree by 
simply counting whether more of v's neighbors are on the same team as v or not. Of course, the desirable 
side for v will change if many of its neighbors jump, so multiple passes are likely to be needed before the 
process converges on a local optimum. Even such a local optimum can be arbitrarily far away from the 
global max-cut. 

There are many variations of this basic procedure, by changing the order we test the vertices in or 
moving clusters of vertices simultaneously.     Using some form of randomization, particularly simulated 
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annealing, is almost certain to be a good idea. 

Implementations: Jon Berry's implementations of several graph partitioning heuristics, including 
Kernighan-Lin, simulated annealing, and path optimization are available from 
http://www.elon.edu/users/f/berryj/www/. 

A non-network-flow-based implementation of minimum cut is included with LEDA (see Section ). 

Notes: The fundamental heuristic for graph partitioning is due to Kernighan and Lin [KL70].   Empirical 
results on graph partitioning heuristics include [BG95, LR93]. 

The planar separator theorem and an efficient algorithm for finding such a separator are due to Lipton 
and Tarjan [LT79, LT80]. Although network flow can be used to find minimum cut sets in graphs, faster 
algorithms are available, including [SW94] and [Kar96a]. 

Expositions on the hardness of max-cut [Kar72] include [Eve79a]. Note that any random vertex partition 
will expect to cut half of the edges in the graph, since the probability that the two vertices defining an 
edge end up on different sides of the partition is 1/2. Goemans and Williamson [GW95] gave an 0.878-
factor approximation algorithm for maximum-cut, based on semidefinite programming techniques.   
Tighter analysis of this algorithm followed by Karloff [Kar96b]. 

Related Problems: Edge/vertex connectivity (see page ), network flow (see page ).     
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Vertex Coloring

   

   

Input description: A graph G=(V,E). 

Problem description: Color the vertices of V using the minimum number of colors such that for each 
edge  , vertices i and j have different colors. 

Discussion: Vertex coloring arises in a variety of scheduling and clustering applications. Compiler 
optimization is the canonical application for coloring, where we seek to schedule the use of a finite 
number of registers.     In a program fragment to be optimized, each variable has a range of times during 
which its value must be kept intact, in particular, after it is initialized and before its final use. Any two 
variables whose life spans intersect cannot be placed in the same register. Construct a graph where there 
is a variable associated with each vertex and add an edge between any two vertices whose variable life 
spans intersect. A coloring of the vertices of this graph assigns the variables to classes such that two 
variables with the same color do not clash and so can be assigned to the same register.   

No conflicts can occur if each vertex is colored with a distinct color. However, our goal is to find a 
coloring using the minimum number of colors, because computers have a limited number of registers. 
The smallest number of colors sufficient to vertex color a graph is known as its chromatic number.   
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Several special cases of interest arise in practice: 

●     Can I color the graph using only two colors? - An important special case is testing whether a 
graph is bipartite, meaning it can be colored using two different colors.   Such a coloring of the 
vertices of a bipartite graph means that the graph can be drawn with the red vertices on the left 
and the blue vertices on the right such that all edges go from left to right. Bipartite graphs are 
fairly simple, yet they arise naturally in such applications as mapping workers to possible jobs. 

Fast, simple algorithms exist for problems such as matching (see Section ) on bipartite graphs. 
  

Testing whether a graph is bipartite is easy. Color the first vertex blue, and then do a depth-first 
search of the graph.   Whenever we discover a new, uncolored vertex, color it opposite that of its 
parent, since the same color would cause a clash. If we ever find an edge where both vertices have 
been colored identically, then the graph cannot be bipartite. Otherwise, this coloring will be a 2-
coloring, and it is constructed in O(n+m) time.

●     Is the graph planar, or are all vertices of low degree? -   The famous 4-color theorem states that 
every planar graph can be vertex colored using at most 4 distinct colors. Efficient algorithms for 
finding a 4-coloring are known, although it is NP-complete to decide whether a given planar 
graph is 3-colorable. 

There is a very simple algorithm that finds a vertex coloring of any planar graph using at most 6 
colors. In any planar graph, there exists a vertex of degree at most five. Delete this vertex and 
recursively color the graph. This vertex has at most five neighbors, which means that it can 
always be colored using one of the six colors that does not appear as a neighbor. This works 
because deleting a vertex from a planar graph leaves a planar graph, so we always must have a 
low-degree vertex to delete. The same idea can be used to color any graph of maximum degree  
using  colors in  time.

●     Is this an edge coloring problem? - Certain vertex coloring problems can be modeled as edge 
coloring,   where we seek to color the edges of a graph G such that no two edges with a vertex in 
common are colored the same. The payoff is that there is an efficient algorithm that always 

returns a near-optimal edge coloring. Algorithms for edge coloring are the focus of Section . 

Computing the chromatic number of a graph is NP-complete, so if you need an exact solution you must 
resort to backtracking,   which can be surprisingly effective in coloring certain random graphs. It remains 
hard to compute a provably good approximation to the optimal coloring, so expect no guarantees. 

Incremental methods appear to be the heuristic of choice for vertex coloring.   As in the previous 
algorithm for planar graphs, vertices are colored sequentially, with the colors chosen in response to 
colors already assigned in the vertex's neighborhood. These methods vary in how the next vertex is 
selected and how it is assigned a color. Experience suggests inserting the vertices in nonincreasing order 
of degree, since high-degree vertices have more color constraints and so are most likely to require an 
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additional color if inserted late. 

Incremental methods can be further improved by using color interchange.   Observe that taking a 
properly colored graph and exchanging two of the colors (painting the red vertices blue and the blue 
vertices red) leaves a proper vertex coloring. Now suppose we take a properly colored graph and delete 
all but the red and blue vertices. If the remaining graph (the induced subgraph) consists of two or more 
connected components, we can repaint one or more of the components, again leaving a proper coloring.   
After such a recoloring, some vertex v previously adjacent to both red and blue vertices might now be 
only adjacent to blue vertices, thus freeing v to be colored red. 

Color interchange is a win in terms of producing better colorings, at a cost of increased time and 
implementation complexity. Implementations are described below.   Simulated annealing algorithms that 
incorporate color interchange to move from state to state are likely to be even more effective. 

Implementations: Graph coloring has been blessed with two distinct and useful WWW resources. 
Michael Trick's page, http://mat.gsia.cmu.edu/COLOR/color.html, provides a nice overview of 
applications of graph coloring, an annotated bibliography, and a collection of over seventy graph 
coloring instances arising in applications such as register allocation and printed circuit board testing. 
Finally, it contains a C language implementation of an exact coloring algorithm, DSATUR.     Joseph C. 
Culberson's WWW page on graph coloring, http://web.cs.ualberta.ca/  joe/Coloring/, provides an 
extensive bibliography and a collection of programs to generate hard graph coloring instances. 

Programs for the closely related problems of finding cliques and vertex coloring graphs were sought for 
the Second DIMACS Implementation Challenge, held in October 1993.   Programs and data from the 
challenge are available by anonymous ftp from dimacs.rutgers.edu. Source codes are available under 
pub/challenge/graph and test data under pub/djs, including a simple ``semi-exhaustive greedy'' scheme 
used in the graph coloring algorithm XRLF [JAMS91].     

Pascal implementations of backtracking algorithms for vertex coloring and several heuristics, including 
largest-first and smallest-last incremental orderings and color interchange, appear in [SDK83].   See 

Section . 

XTango (see Section ) is an algorithm animation system for UNIX and X-windows,   and includes an 
animation of vertex coloring via backtracking. 

Nijenhuis and Wilf [NW78] provide an efficient Fortran implementation of chromatic polynomials and 

vertex coloring by backtracking.   See Section .   

Combinatorica [Ski90] provides Mathematica implementations of bipartite graph testing, heuristic 

colorings, chromatic polynomials, and vertex coloring by backtracking. See Section .     
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Notes: An excellent source on vertex coloring heuristics is Syslo, Deo, and Kowalik [SDK83], which 
includes experimental results.   Heuristics for vertex coloring include Brèlaz [Brè79], Matula [MMI72], 
and Turner [Tur88]. Wilf [Wil84] proved that backtracking to test whether a random graph has chromatic 
number k runs in constant time, dependent on k but independent of n.   This is not as interesting as it 
sounds, because only a vanishingly small fraction of such graphs are indeed k-colorable. 

Expositions on algorithms to recognize bipartite graphs include [Man89]. Expositions on the hardness of 
3-coloring graphs include [AHU74, Eve79a, Man89]. An interesting application of vertex coloring to 
scheduling traffic lights appears in [AHU83].   

Baase [Baa88] gives a very good description of approximation algorithms for graph coloring, including 
Wigderson's [Wig83] factor of  approximation algorithm, where  is the chromatic 
number of G. Hardness of approximation results for vertex coloring include [BGS95]. 

Brook's theorem states that the chromatic number  , where  is the maximum degree 
of a vertex of G.   Equality holds only for odd-length cycles (which have chromatic number 2) and 
complete graphs.   

The most famous problem in the history of graph theory is the four-color problem, first posed in 1852 
and finally settled in 1976 by Appel and Haken using a proof involving extensive computation.   Any 
planar graph can be 5-colored using a variation of the color interchange heuristic. Despite the four-color 
theorem, it is NP-complete to test whether a particular planar graph requires four colors or whether three 
suffice. See [SK86] for an exposition on the history of the four-color problem and the proof. An efficient 
algorithm to four-color a graph is presented in [RSST96]. 

Related Problems: Independent set (see page ), edge coloring (see page ).     
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Edge Coloring

   

   

Input description: A graph G=(V,E). 

Problem description: What is the smallest set of colors needed to color the edges of E such that no two 
same-color edges share a vertex in common? 

Discussion: The edge coloring of graphs arises in a variety of scheduling applications, typically 
associated with minimizing the number of noninterfering rounds needed to complete a given set of tasks. 
  For example, consider a situation where we need to schedule a given set of two-person interviews, 
where each interview takes one hour. All meetings could be scheduled to occur at distinct times to avoid 
conflicts, but it is less wasteful to schedule nonconflicting events simultaneously. We can construct a 
graph whose vertices are the people and whose edges represent the pairs of people who want to meet. An 
edge coloring of this graph defines the schedule. The color classes represent the different time periods in 
the schedule, with all meetings of the same color happening simultaneously.    

The National Football League solves such an edge coloring problem each season to make up its schedule. 
  Each team's opponents are determined by the records of the previous season.   Assigning the opponents 
to weeks of the season is the edge-coloring problem, presumably complicated by the constraints of 
spacing out rematches and making sure that there is a good game every Monday night. 
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The minimum number of colors needed to edge color a graph is called by some its edge-chromatic 
number and others its chromatic index.     To gain insight into edge coloring, note that a graph consisting 
of an even-length cycle can be edge-colored with 2 colors, while odd-length cycles have an edge-
chromatic number of 3. 

Edge coloring has a better (if less famous) theorem associated with it than does vertex coloring.   
Vizing's theorem states that any graph with a maximum vertex degree of  can be edge colored using at 
most  colors. To put this in perspective, note that any edge coloring must have at least  colors, 
since each of the edges incident on any vertex must be distinct colors. 

Further, the proof of Vizing's theorem is constructive and can be turned into an  algorithm to find an 
edge-coloring with  colors, which gives us an edge coloring using at most one extra color. Since it 
is NP-complete to decide whether we can save this one color, it hardly seems worth the effort to worry 
about it. An implementation of Vizing's theorem is described below. 

Any edge coloring problem on G can be converted to the problem of finding     a vertex coloring on the 
line graph L(G), which has a vertex of L(G) for each edge of G and an edge of L(G) if and only if the two 
edges of G share a common vertex. Line graphs can be constructed in time linear to their size, and any 

vertex coloring code from Section  can be employed to color them. 

Although any edge coloring problem can be so formulated as a vertex coloring problem, this is usually a 
bad idea, since the edge coloring problem is easier to solve. Vizing's theorem is our reward for the extra 
thought needed to see that we have an edge coloring problem. 

Implementations: Yan Dong produced an implementation of Vizing's theorem in C++ as a course 
project for my algorithms course while a student at Stony Brook.     It can be found on the algorithm 
repository WWW site http://www.cs.sunysb.edu/  algorith, as can an alternative program by Mark 
Goldberg and Amir Sehic. 

Combinatorica [Ski90] provides Mathematica implementations of edge coloring, via the line graph 

transformation and vertex coloring routines.     See Section  for further information on Combinatorica. 

Notes: Graph-theoretic results on edge coloring are surveyed in [FW77]. Vizing [Viz64] and Gupta 
[Gup66] both proved that any graph can be edge colored using at most  colors. Despite these tight 
bounds, Holyer [Hol81] proved that computing the edge-chromatic number is NP-complete. 

Whitney, in introducing line graphs [Whi32], showed that with the exception of  and  , any two 
connected graphs with isomorphic line graphs are isomorphic. It is an interesting exercise to show that     
the line graph of an Eulerian graph is both Eulerian and Hamiltonian, while the line graph of a 
Hamiltonian graph is always Hamiltonian. 
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Related Problems: Vertex coloring (see page ), scheduling (see page ).     
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Graph Isomorphism

   

   

Input description: Two graphs, G and H. 

Problem description: Find a (or all) mappings f of the vertices of G to the vertices of H such that G and 
H are identical; i.e. (x,y) is an edge of G iff (f(x),f(y)) is an edge of H.   

Discussion: Isomorphism is the problem of testing whether two graphs are really the same.   Suppose we 
are given a collection of graphs and must perform some operation on each of them. If we can identify 
which of the graphs are duplicates, they can be discarded so as to avoid redundant work.   

We need some terminology to settle what is meant when we say two graphs are the same. Two labeled 
graphs  and  are identical when  iff  .   The isomorphism 
problem consists of finding a mapping from the vertices of G to H such that they are identical. Such a 
mapping is called an isomorphism. 

Identifying symmetries is another important application of graph isomorphism.   A mapping of a graph to 
itself is called an automorphism, and the collection of automorphisms (its automorphism group)   
provides a great deal of information about symmetries in the graph. For example, the complete graph  
has n! automorphisms (any mapping will do), while an arbitrary random graph is likely to have few or 
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perhaps only one, since G is always identical to itself.   

Several variations of graph isomorphism arise in practice: 

●     Is graph G contained in (not identical to) graph H? - Instead of testing equality, we are often 
interested in knowing whether a small pattern graph G is a subgraph of H. Such problems as 
clique, independent set, and Hamiltonian cycle   are important special cases of subgraph 
isomorphism. 

There are two distinct notions of ``contained in'' with respect to graphs. Subgraph isomorphism 
asks whether there is a subset of edges and vertices of G that is isomorphic to a smaller graph H.   
Induced subgraph isomorphism asks whether there is a subset of vertices of G whose deletion 
leaves a subgraph isomorphic to a smaller graph H. For induced subgraph isomorphism, all edges 
of G must be present in H, but also all nonedges of G must be nonedges of H. Clique happens to 
be an instance of both subgraph problems, while Hamiltonian cycle is an example of vanilla 
subgraph isomorphism. 

Be aware of this distinction in your application. Subgraph isomorphism problems tend to be 
harder than graph isomorphism, and induced subgraph problems tend to be even harder than 
subgraph isomorphism.   Backtracking is your only viable approach.

●     Are your graphs labeled or unlabeled? - In many applications, vertices or edges of the graphs are 
labeled with some attribute that must be respected in determining isomorphisms.     For example, 
in comparing two bipartite graphs, each with ``worker'' vertices and ``job'' vertices, any 
isomorphism that equated a job with a worker would make no sense. 

Labels and related constraints can be factored into any backtracking algorithm. Further, such 
constraints can be used to significantly speed up the search by creating more opportunities for 
pruning whenever two vertex labels do not match up.

●     Are you testing whether two trees are isomorphic? -   There are faster algorithms for certain 
special cases of graph isomorphism, such as trees and planar graphs. Perhaps the most important 
case is detecting isomorphisms among trees, a problem that arises in language pattern matching 
and parsing applications.   A parse tree is often used to describe the structure of a text; two parse 
trees will be isomorphic if the underlying pair of texts have the same structure.   

Efficient algorithms for tree isomorphism begin with the leaves of both trees and work inward 
towards the center. Each vertex in one tree is assigned a label representing the set of vertices in 
the second tree that might possibly be isomorphic to it, based on the constraints of labels and 
vertex degrees. For example, all the leaves in tree  are initially potentially equivalent to all 
leaves of  . Now, working inward, we can partition the vertices adjacent to leaves in  into 
classes based on how many leaves and nonleaves they are adjacent to. By carefully keeping track 
of the labels of the subtrees, we can make sure that we have the same distribution of labeled 
subtrees for  and  . Any mismatch means  , while completing the process partitions the 

file:///E|/BOOK/BOOK4/NODE180.HTM (2 of 4) [19/1/2003 1:31:29]



Graph Isomorphism

vertices into equivalence classes defining all isomorphisms. See the references below for more 
details. 

No polynomial-time algorithm is known for graph isomorphism, but neither is it known to be NP-

complete.   Along with integer factorization (see Section ), it one of the few important algorithmic 
problems whose rough computational complexity is still not known.   The conventional wisdom is that 
isomorphism is a problem that lies between P and NP-complete if P  NP. 

Although no worst-case polynomial-time algorithm is known, testing isomorphism in practice is usually 
not very hard. The basic algorithm backtracks through all n! possible relabelings of the vertices of graph 
h with the names of vertices of graph g, and then tests whether the graphs are identical.   Of course, we 
can prune the search of all permutations with a given prefix as soon as we detect any mismatch between 
edges both of whose vertices are in the prefix. 

However, the real key to efficient isomorphism testing is to preprocess the vertices into ``equivalence 
classes'', partitioning them   into sets of vertices such that two vertices in different sets cannot possibly be 
mistaken for each other. All vertices in each equivalence class must share the same value of some 
invariant that is independent of labeling.   Possibilities include: 

●     Vertex degree - This simplest way to partition vertices is based on their degree, the number of 
edges incident on the vertex.   Clearly, two vertices of different degree cannot be identical. This 
simple partition can often be a big win, but it won't do much for regular graphs, where each vertex 
has the same degree.

●     Shortest path matrix - For each vertex v, the all-pairs shortest path matrix (see Section ) 
defines a multiset of n-1 distances   (possibly with repeats) representing the distances between v 
and each of the other vertices. Any two vertices that are identical in isomorphic graphs will define 
the exact same multiset of distances, so we can partition the vertices into equivalence classes 
defining identical distance multisets.

●     Counting length-k paths - Taking the adjacency matrix of G and raising it to the kth power   gives 
a matrix where  counts the number of (nonsimple) paths from i to j. For each vertex and 
each k, this matrix defines a multiset of path-counts, which can be used for partitioning as with 
distances above. You could try all  or beyond, and use any single deviation as an excuse 

to partition.    

Using these invariants, you should be able to partition the vertices of each graph into a large number of 
small equivalence classes. Finishing the job off with backtracking, using the name of each equivalence 
class as a label, should usually be quick work. If the sizes of the equivalence classes of both graphs are 
not identical, then the graphs cannot be isomorphic. It is harder to detect isomorphisms between graphs 
with high degrees of symmetry than it is for arbitrary graphs, because of the effectiveness of these 
equivalence-class partitioning heuristics. 
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Implementations: The world's fastest isomorphism testing program is Nauty, by Brendan D. McKay.   
Nauty (No AUTomorphisms, Yes?) is a set of very efficient C language procedures for determining the 
automorphism group of a vertex-colored graph. Nauty is also able to produce a canonically labeled 
isomorph of the graph, to assist in isomorphism testing.   It was the basis of the first program to generate 
all the 11-vertex graphs without isomorphs, and can test most graphs of fewer than one hundred vertices 
in well under a second.   Nauty has been successfully ported to a variety of operating systems and C 
compilers. It may be obtained from http://cs.anu.edu.au/people/bdm/. It is free for educational and 
research applications, but for commercial use contact the author at bdm@cs.anu.edu.au. 

Combinatorica [Ski90] provides (slow) Mathematica implementations of graph isomorphism and 

automorphism testing.     See Section  for further information on Combinatorica. 

Notes: Graph isomorphism is an important problem in complexity theory. Monographs on isomorphism 
detection include Hoffmann [Hof82]. 

Polynomial-time algorithms are known for planar graph isomorphism [HW74]   and for graphs where the 
maximum vertex degree is bounded by a constant [Luk80]. The all-pairs shortest path heuristic is due to 
[SD76], although there exist nonisomorphic graphs that realize the same set of distances [BH90]. A 
linear-time tree isomorphism algorithm for both labeled and unlabeled trees is presented in [AHU74]. 

A problem is said to be isomorphism-complete if it is provably as hard as isomorphism. Testing the 
isomorphism of bipartite graphs is   isomorphism-complete, since any graph can be made bipartite by 
replacing each edge by two edges connected with a new vertex. Clearly, the original graphs are 
isomorphic if and only if the transformed graphs are. 

Related Problems: Shortest path (see page ), string matching (see page ).     
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Steiner Tree 

   

   

Input description: A graph G=(V,E). A subset of vertices  . 

Problem description: Find the smallest tree connecting all the vertices of T. 

Discussion: Steiner tree often arises in network design and wiring layout problems.     Suppose we are 
given a set of sites that must be connected by wires as cheaply as possible. The minimum Steiner tree 
describes the way to connect them using the smallest amount of wire. Analogous problems arise in 
designing networks of water pipes or heating ducts in buildings. Similar considerations also arise in 
VLSI circuit layout, where we seek to connect a set of sites to (say) ground under constraints such as 
material cost, signal propagation time, or reducing capacitance.     

The Steiner tree problem is distinguished from the minimum spanning tree problem (see Section ) in 
that we are permitted to construct or select intermediate connection points to reduce the cost of the tree. 
Issues in Steiner tree construction include: 

●     How many points do you have to connect? - The Steiner tree of a pair of vertices is simply the 

shortest path between them (see Section ). The Steiner tree of all the vertices, when S=V, 
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simply defines the minimum spanning tree of G. Despite these special cases, the general 
minimum Steiner tree problem is NP-hard and remains so under a broad range of restrictions.

●     Is the input a set of geometric points or a distance graph? -   Geometric versions of Steiner tree 
take as input a set of points, typically in the plane, and seek the smallest tree connecting the 
points. A complication is that the set of possible intermediate points is not given as part of the 
input but must be deduced from the set of points. These possible Steiner points must satisfy 
several geometric properties, which can be used to reduce the set of candidates down to a finite 
number. For example, every Steiner point will have degree exactly three in a minimum Steiner 
tree, and the angles formed between any two of these edges will be exactly 120 degrees.

●     Are there constraints on the edges we can use? - Many wiring problems correspond to geometric 
versions of the problem where all edges are restricted to being either horizontal or vertical, which 
is the so-called rectilinear Steiner problem.   A different set of angular and degree conditions 
applies for rectilinear Steiner trees than for Euclidean trees. In particular, all angles must be 
multiples of 90 degrees, and each vertex is of degree up to four.

●     Do I really need an optimal tree? - In certain applications, such as minimum cost communications 
networks, construction costs are high enough to invest large amounts of computation in finding 
the best possible Steiner tree.   This implies an exhaustive search technique such as backtracking 
or branch-and-bound.   There are many opportunities for pruning search based on geometric 
constraints. For graph instances, network reduction procedures can reduce the problem to a graph 
typically one-quarter the size of the input graph. 

Still, Steiner tree remains a hard problem. Through exhaustive search methods, instances as large 
as 32 points for the Euclidean and 30 for the rectilinear problems can be confidently solved to 
optimality. We recommend experimenting with the implementations described below before 
attempting your own.

●     How can I reconstruct Steiner vertices I never knew about? - A very special type of Steiner tree 
arises in classification and evolution. A phylogenic tree illustrates the relative similarity between 
different objects or species. Each object represents (typically) a terminal vertex of the tree, with 
intermediate vertices representing branching points between classes of objects. For example, an 
evolutionary tree of animal species might have leaf nodes including (human, dog, snake) and 
internal nodes corresponding to the taxa (animal, mammal, reptile). A tree rooted at animal with 
dog and human classified under mammal implies that humans are closer to dogs than to snakes.     

Many different phylogenic tree construction algorithms have been developed, which vary in the 
data they attempt to model and what the desired optimization criterion is. Because they all give 
different answers, identifying the correct algorithm for a given application is somewhat a matter 
of faith. A reasonable procedure is to acquire a standard package of implementations, discussed 
below, and then see what happens to your data under all of them. 

Fortunately, there is a good, efficient heuristic for finding Steiner trees that works well on all versions of 
the problem. Construct a graph modeling your input, with the weight of edge (i,j) equal to the distance 
from point i to point j. Find a minimum spanning tree of this graph. You are guaranteed a provably good 
approximation for both Euclidean and rectilinear Steiner trees. 
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The worst case for a minimum spanning tree approximation of the Euclidean distance problem is three 
points forming an equilateral triangle.    The minimum spanning tree will contain two of the sides (for a 
length of 2), whereas the minimum Steiner tree will connect the three points using an interior point, for a 
total length of  . This ratio of  is always achieved, and in practice the easily-computed 

minimum spanning tree is usually within a few percent of the optimal Steiner tree. For rectilinear Steiner 
trees, the ratio with rectilinear minimum spanning trees is always  . 

Such a minimum spanning tree can be refined by inserting a Steiner point whenever the edges of the 
minimum spanning tree incident on a vertex form an angle of less than 120 degrees between them. 
Inserting these points and locally readjusting the tree edges can move the solution a few more percent 
towards the optimum. Similar optimizations are possible for rectilinear spanning trees. 

An alternative heuristic for graphs is based on shortest path. Start with a tree consisting of the shortest 
path between two terminals. For each remaining terminal t, find the shortest path to a vertex v in the tree 
and add this path to the tree. The time complexity and quality of this heuristic depend upon the insertion 
order of the terminals and how the shortest-path computations are performed, but something simple and 
fairly effective is likely to result. 

Implementations: Salowe and Warme [SW95] have developed a program for computing exact 
rectilinear Steiner minimal trees. It is available by anonymous ftp from ftp.cs.virginia.edu in the directory 
pub/french/salowe/newsteiner.tar.Z. It should be capable of handling up to 30 points routinely. A 
heuristic program by Robins and Zhang is available from the algorithm repository 
http://www.cs.sunysb.edu/  algorith. 

PHYLIP is an extensive and widely used package of programs for inferring phylogenic trees. It contains 
over twenty different algorithms for constructing phylogenic trees from data. Although many of them are 
designed to work with molecular sequence data, several general methods accept arbitrary distance 
matrices as input.     With versions written in C and Pascal, it is available on the WWW from 
http://evolution.genetics.washington.edu/phylip.html.    

Notes: The most complete reference on the Steiner tree problem is the monograph by Hwang, Richards, 
and Winter [HRW92]. Surveys on the problem include [Kuh75]. Steiner tree problems arising in VLSI 
design are discussed in [KPS89, Len90].   Empirical results on Steiner tree heuristics include [SFG82, 
Vos92]. 

The Euclidean Steiner problem dates back to Fermat, who asked how to find a point p in the plane 
minimizing the sum of the distances to three given points.   This was solved by Torricelli before 1640. 
Steiner was apparently one of several mathematicians who worked the general problem for n points, and 
he was mistakenly credited with the problem. An interesting, more detailed history appears in [HRW92]. 
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Gilbert and Pollak [GP68] first conjectured that the ratio of the length   of the minimum Steiner tree over 

the minimum spanning tree is always  . After twenty years of active research, the Gilbert-

Pollak ratio was finally proven by Du and Hwang [DH92]. The Euclidean minimum spanning tree for n 
points in the plane can be constructed in  time [PS85]. 

Expositions on the proof that the Steiner tree problem for graphs is hard [Kar72] include [Eve79a]. 
Expositions on exact algorithms for Steiner trees in graphs include [Law76]. The hardness of Steiner tree 
for Euclidean and rectilinear metrics was established in [GGJ77, GJ77]. Euclidean Steiner tree is not 
known to be in NP, because of numerical issues in representing distances. 

Analogies can be drawn between minimum Steiner trees and minimum energy configurations in certain 
physical systems.    The case that such analog systems, including the behavior of soap films over wire 
frames, ``solve'' the Steiner tree problem is discussed in [Mie58]. 

Related Problems: Minimum spanning tree (see page ), shortest path (see page ).     
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Feedback Edge/Vertex Set

   

   

Input description: A (directed) graph G=(V,E). 

Problem description: What is the smallest set of edges E' or vertices V' whose deletion leaves an acyclic 
graph? 

Discussion: Feedback set problems arise because many algorithmic problems are much easier or much 
better defined on directed acyclic graphs than on arbitrary digraphs.   Topological sorting (see Section 

) can be used to test whether a graph is a DAG, and if so, to order the vertices so as to respect the 
edges as precedence scheduling constraints.     But how can you design a schedule if there are cyclic 
constraints, such as A must be done before B, which must be done before C, which must be done before 
A? 

By identifying a feedback set, we identify the smallest number of constraints that must be dropped so as 
to permit a valid schedule.   In the feedback edge (or arc) set problem, we drop precedence constraints 
(job A must come before job B). In the feedback vertex set problem, we drop entire jobs and any 
associated constraints. It is also referred to in the literature as the maximum acyclic subgraph problem.     

●     Do any constraints have to be dropped? - Not if the graph is a DAG, which can be tested via 
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topological sort in linear time, Further, topological sorting also gives a simple way to find a 
feedback set if we modify the algorithm to delete the edge or vertex whenever a contradiction is 
found instead of simply printing a warning. The catch is that this feedback set might be much 
larger than needed, no surprise since both feedback edge set and feedback vertex set are NP-
complete on directed graphs.

●     How can I find a good feedback edge set? - A simple but effective linear-time heuristic constructs 
a vertex ordering, just as in the topological sort heuristic above, and deletes any arc going from 
right to left. This heuristic builds up the ordering from the outside in based on the in- and out-
degrees of each vertex. Any vertex of in-degree 0 is a source and can be placed first in the 
ordering. Any vertex of out-degree 0 is a sink and can be placed last in the ordering, again without 
violating any constraints. If not, we find the vertex with the maximum difference between in- and 
out-degree, and place it on the side of the permutation that will salvage the greatest number of 
constraints. Delete any vertex from the DAG after positioning it and repeat until the graph is 
empty.

●     How can I find a good feedback vertex set? - The following variant of the above heuristic should 
be effective. Keep any source or sink we encounter. If none exist, add to the feedback set a vertex 
v that maximizes  , since this vertex is furthest from becoming either a source or sink. 
Again, delete any vertex from the DAG after positioning it and repeat until the graph is empty.

●     What if I want to break all cycles in an undirected graph? - The problem of finding feedback sets 
from undirected graphs is different for digraphs, and in one case actually easier.   An undirected 
graph without cycles is a tree.   It is well known that any tree on n vertices has exactly n-1 edges. 
Thus the smallest feedback edge set of any undirected graph is |E| - (n-1), and it can be found by 
deleting all the edges not in any given spanning tree. Spanning trees can be most efficiently 

constructed using depth-first search, as discussed in Section . The feedback vertex set problem 
remains NP-complete for undirected graphs, however. 

Finding an optimal feedback set is NP-complete, and for most applications it is unlikely to be worth 
searching for the smallest set. However, in certain applications it would pay to try to refine the heuristic 
solutions above via randomization or simulated annealing.   To move between states, we modify the 
vertex permutation by swapping pairs in order or inserting/deleting vertices into the feedback set. 

Implementations: The econ_order program of the Stanford GraphBase (see Section )   permutes the 
rows and columns of a matrix so as to minimize the sum of the numbers below the main diagonal.   
Using an adjacency matrix as the input and deleting all edges below the main diagonal leaves an acyclic 
graph. 

Notes: The feedback set problem first arose in [Sla61]. Heuristics for feedback set problems include 
[BYGNR94, ELS93, Fuj96]. Expositions of the proofs that feedback minimization is hard [Kar72] 
include [AHU74, Eve79a]. Both feedback vertex and edge set remain hard even if no vertex has in-
degree or out-degree greater than two [GJ79]. 
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An interesting application of feedback arc set to economics is presented in [Knu94]. For each pair A,B of 
sectors of the economy, we are given how much money flows from A to B. We seek to order the sectors 
to determine which sectors are primarily producers to other sectors, and which deliver primarily to 
consumers.   

Related Problems: Bandwidth reduction (see page ), topological sorting (see page ), scheduling 

(see page ).       
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Computational Geometry
Computational geometry is the algorithmic study of geometric problems and objects. Compared to the 
other topics in this book, computational geometry emerged as a field quite recently, with Shamos's Ph.D. 
thesis [Sha78] typically cited as its founding event. Its emergence coincided with the explosion of 
computer graphics and windowing systems, which directly or indirectly provide much of the motivation 
for geometric computing. The past twenty years have seen enormous growth in computational geometry, 
resulting in a significant body of useful algorithms, software, textbooks, and research results.   

Good books on computational geometry include: 

●     Preparata and Shamos [PS85] - Although aging a bit, this book remains the best general 
introduction to computational geometry, stressing algorithms for convex hulls, Voronoi diagrams, 
and intersection detection.

●     O'Rourke [O'R94] - Perhaps the best practical introduction to computational geometry. The 
emphasis is on careful and correct implementation (in C language) of the fundamental algorithms 
of computational geometry. These implementations are available from 
http://grendel.csc.smith.edu/  orourke/.

●     Edelsbrunner [Ede87] - This is the definitive book on arrangements, a topic that runs through 
most of computational geometry. Although not appropriate for beginners, it provides an important 
perspective for advanced geometers.

●     Mulmuley [Mul94] - An approach to computational geometry through randomized incremental 
algorithms. Very interesting, but likely too narrow to serve as a general introduction.

●     Nievergelt and Hindrichs [NH93] - This idiosyncratic algorithms text focuses on problems in 
graphics and geometry. Good coverage of line drawing, intersection algorithms, and spatial data 
structures, but with too many topics touched on too lightly to serve as an effective reference. 

The leading conference in computational geometry is the ACM Symposium on Computational Geometry, 
held annually in late May or early June. Although the primary results presented at the conference are 
theoretical, there has been a concerted effort on the part of the research community to increase the 
presence of applied, experimental work through video reviews and poster sessions. The other major 
annual conference is the Canadian Conference on Computational Geometry (CCCG), typically held in 
early August. Useful literature surveys include [Yao90]. 

A unique source of computational geometry information is geom.bib, a community effort to maintain a 
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complete bibliography on computational geometry. It references over eight thousand books, papers, and 
reports and includes detailed abstracts for many of them. Grep-ing through the geom.bib is an amazingly 
efficient way to find out about previous work without leaving your office. It is available via anonymous 
ftp from ftp.cs.usask.ca, in the file pub/geometry/geombib.tar.Z.   

There is a growing body of implementations of geometric algorithms. We point out specific 
implementations where applicable in the catalog, but the reader should be aware of three specific WWW 
sites: 

●     The Geometry Center's directory of computational geometry software, maintained by Nina 
Amenta, is the ``official'' site for all computational geometry software. Check here first to see 
what is available: http://www.geom.umn.edu/software/cglist/.

●     Graphics Gems is a series of books dedicated to collecting small codes of interest in computer 
graphics. Many of these programs are geometric in nature. All associated codes are available from 
ftp://ftp-graphics.stanford.edu/pub/Graphics/GraphicsGems.  

●     CGAL (Computational Geometry Algorithms Library) is a joint European project now underway 
to produce a comprehensive library of geometric algorithms. This will likely become the 
definitive geometric software project. Check out its progress at http://www.cs.ruu.nl/CGAL/.   

●     Robust Geometric Primitives 
●     Convex Hull 
●     Triangulation 
●     Voronoi Diagrams 
●     Nearest Neighbor Search 
●     Range Search 
●     Point Location 
●     Intersection Detection 
●     Bin Packing 
●     Medial-Axis Transformation 
●     Polygon Partitioning 
●     Simplifying Polygons 
●     Shape Similarity 
●     Motion Planning 
●     Maintaining Line Arrangements 
●     Minkowski Sum 
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Robust Geometric Primitives

   

   

Input description: A point p and a line segment l, or two line segments  and  . 

Problem description: Does p lie over, under, or on l? Does  intersect  ? 

Discussion: Implementing basic geometric primitives is a task fraught with peril, even for such simple 
tasks as returning the intersection point of two lines.    What should you return if the two lines are 
parallel, meaning they don't intersect at all? What if the lines are identical, so the intersection is not a 
point but the entire line? What if one of the lines is horizontal, so that in the course of solving the 
equations for the intersection point you are likely to divide by zero? What if the two lines are almost 
parallel, so that the intersection point is so far from the origin as to cause arithmetic overflows? These 
issues become even more complicated for intersecting line segments, since there are a bunch of other 
special cases that must be watched for and treated specially. 

If you are new to implementing geometric algorithms, I suggest that you study O'Rourke's 
Computational Geometry in C [O'R94] for practical advice and complete implementations of basic 
geometric algorithms and data structures. You are likely to avoid many headaches by following in his 
footsteps. 
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There are two different issues at work here: geometric degeneracy and numerical stability. Degeneracy 
refers to annoying special cases that must be treated in substantially different ways, such as when two 
lines intersect in more or less than a single point. There are three primary approaches to dealing with 
degeneracy:    

●     Ignore it - Make as an operating assumption that your program will work correctly only if no 
three points are collinear, no three lines meet at a point, no intersections happen at the endpoints 
of line segments, etc. This is probably the most common approach, and what I would recommend 
for short-term projects if you can live with frequent crashes. The drawback is that interesting data 
often comes from points sampled on a grid and is inherently very degenerate.

●     Fake it - Randomly or symbolically perturb your data so that it seems nondegenerate.   By moving 
each of your points a small amount in a random direction, you can break many of the existing 
degeneracies in the data, hopefully without creating too many new problems. This probably 
should be the first thing to try as soon as you decide that your program is crashing too often. One 
problem with random perturbations is that they do change the shape of your data in subtle ways, 
which may be intolerable for your application. There also exist techniques to ``symbolically'' 
perturb your data to remove degeneracies in a consistent manner, but these require serious study 
to apply correctly.

●     Deal with it - Geometric applications can be made more robust by writing special code to handle 
each of the special cases that arise. This can work well if done with care at the beginning, but not 
so well if kludges are added whenever the system crashes. Expect to expend a lot of effort if you 
are determined to do it right. 

Geometric computations often involve floating-point arithmetic, which leads to problems with overflows 
and numerical precision.    There are three basic approaches to the issue of numerical stability: 

●     Integer arithmetic - By forcing all points of interest to lie on a fixed-size integer grid, you can 
perform exact comparisons to test whether any two points are equal or two line segments 
intersect. The cost is that the intersection point of two lines may not be exactly representable. This 
is likely to be the simplest and best method, if you can get away with it.  

●     Double precision reals - By using double-precision floating point numbers, you may get lucky 
and avoid numerical errors. Your best bet might be to keep all the data as single-precision reals, 
and use double-precision for intermediate computations.  

●     Arbitrary precision arithmetic - This is certain to be correct, but also to be slow. This approach 
seems to be gaining favor in the research community with the observation that careful analysis 
can minimize the need for high-precision arithmetic, and thus the performance penalty. Still, you 
should expect high-precision arithmetic to be several orders of magnitude slower than standard 
floating-point arithmetic.   

The difficulties associated with producing robust geometric software are still under attack by researchers. 
The best practical technique is to base your applications on a small set of geometric primitives that 
handle as much of the low-level geometry as possible. These primitives include: 
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●     Area of a triangle - Although it is well-known that the area A(t) of a triangle t=(a,b,c) is half the 
base times the height, computing the length of the base and altitude is messy work with 
trigonometric functions. It is better to use the determinant formula for twice the area:     

 

This formula generalizes to compute d! times the volume of a simplex in d dimensions. Thus 3! = 
6 times the volume of a tetrahedron t=(a,b,c,d) in three dimensions is 

 

Note that these are signed volumes and can be negative, so take the absolute value first. Section 

 explains how to compute determinants. 

The conceptually simplest way to compute the area of a polygon (or polyhedron) is to triangulate 
it and then sum up the area of each triangle. An implementation of a slicker algorithm that avoids 
triangulation is discussed in [O'R94].

●     Above-below-on test - Does a given point c lie above, below, or on a given line l?   A clean way to 
deal with this is to represent l as a directed line that passes through point a before point b, and ask 
whether c lies to the left or right of the directed line l. It is up to you to decide whether left means 
above or below. 

This primitive can be implemented using the sign of the area of a triangle as computed above. If 
the area of t(a,b,c) > 0, then c lies to the left of  . If the area of t(a,b,c) = 0, then c lies on  . 
Finally, if the area of t(a,b,c) < 0, then c lies to the right of  . This generalizes naturally to three 
dimensions, where the sign of the area denotes whether d lies above or below the oriented plane 
(a,b,c).

●     Line segment intersection - The above-below primitive can be used to test whether a line 
intersects a line segment. It does iff one endpoint of the segment is to the left of the line and the 
other is to the right. Segment intersection is similar but more complicated, and we refer you to 
implementations described below. The decision whether two segments intersect if they share an 
endpoint depends upon your application and is representative of the problems of degeneracy.  

●     In-circle test - Does the point d lie inside or outside the circle defined by points a, b, and c in the 
plane? This primitive occurs in all Delaunay triangulation algorithms and can be used as a robust 
way to do distance comparisons. Assuming that a, b, c are labeled in counterclockwise order 
around the circle, compute the determinant:   
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Incircle will return 0 if all four points are cocircular, a positive value if d is inside the circle, and 
negative if d is outside. 

Check out the implementations described below before you attempt to build your own. 

Implementations: LEDA (see Section ) provides a very complete set of geometric primitives for 
planar geometry, written in C++.   If you are writing a significant geometric application, you should 
consider basing it on LEDA. At least check them out before you try to write your own.   

O'Rourke [O'R94] provides implementations in C of most of the primitives discussed in this section. See 

Section . These primitives were implemented primarily for exposition rather than production use, but 
they should be quite reliable and might be more appropriate than LEDA for small applications. 

A robust implementation of the basic geometric primitives in C++ using exact arithmetic, by Jonathan 
Shewchuk, is available at http://www.cs.cmu.edu/  quake/robust.html. Don't expect them to be very 
fast. 

Pascal implementations of basic geometric primitives appear in [MS91]. Sedgewick [Sed92] provides 

fragments of the basic primitives in C++. See Section  for both of them. 

An alternative C++ library of geometric algorithms and data structures (although you are almost certainly 
better off sticking to LEDA) is Geolab,   written by Pedro J. de Rezende, Welson R. Jacometti, Cesar N. 
Gon, and Laerte F. Morgado, Universidade Estadual de Campinas, Brazil. Geolab requires the SUN C++ 
compiler, but a Sparc binary and visualization environment is included along with all source code. 
Geolab appears to be primarily for the brave, since its robustness is uncertain and it contains little 
documentation, but it does provide 40 algorithms, including such advanced topics as farthest point 
Voronoi diagrams, nearest neighbor search, and ray shooting.     

Notes: O'Rourke [O'R94] provides an implementation-oriented introduction to computational geometry, 
which stresses robust geometric primitives and is recommended reading. 

Shewchuk [She96] and Fortune and van Wyk [FvW93] present careful studies on the costs of using 
arbitrary-precision arithmetic for geometric computation. By being careful about when to use it, 
reasonable efficiency can be maintained while achieving complete robustness. Other approaches to 
achieving robustness include [DS88, Hof89, Mil89]. 
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Related Problems: Intersection detection (see page ), maintaining arrangements (see page ).     
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Convex Hull 

   

   

Input description: A set S of n points in d-dimensional space. 

Problem description: Find the smallest convex polygon containing all the points of S. 

Discussion: Finding the convex hull of a set of points is the most elementary interesting problem in 
computational geometry, just as minimum spanning tree is the most elementary interesting problem in 
graph algorithms. It arises because the hull quickly captures a rough idea of the shape or extent of a data 
set.   

Convex hull also serves as a first preprocessing step to many, if not most, geometric algorithms. For 
example, consider the problem of finding the diameter of a set of points, which is the pair of points a 
maximum distance apart.   The diameter will always be the distance between two points on the convex 
hull. The  algorithm for computing diameter proceeds by first constructing the convex hull, then 
for each hull vertex finding which other hull vertex is farthest away from it. This so-called ``rotating-
calipers'' method can be used to move efficiently from one hull vertex to another.   

There are almost as many convex hull algorithms as there are sorting algorithms. Answer the following 
questions to help choose between them: 
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●     How many dimensions are you working with? - Convex hulls in two and even three dimensions 
are fairly easy to work with. However, as the dimension of a space increases, certain assumptions 
that were valid in lower dimensions break down. For example, any n-vertex polygon in two 
dimensions has exactly n edges. However, the relationship between the numbers of faces and 
vertices is more complicated even in three dimensions. A cube has 8 vertices and 6 faces, while an 
octahedron has 8 faces and 6 vertices. This has implications for data structures that represent hulls 
- are you just looking for the hull points or do you need the defining polyhedron? The need to find 
convex hulls in high-dimensional spaces arises in many applications, so be aware of such 
complications if your problem takes you there.    

Gift-wrapping is the basic algorithm for constructing higher-dimensional convex hulls. Observe 
that a three-dimensional convex polyhedron is composed of two-dimensional faces, or facets, 
which are connected by one-dimensional lines, or edges.   Each edge joins exactly two facets 
together. Gift-wrapping starts by finding an initial facet associated with the lowest vertex and then 
conducting a breadth-first search from this facet to discover new, additional facets. Each edge e 
defining the boundary of a facet must be shared with one other facet, so by running through each 
of the n points we can identify which point defines the next facet with e. Essentially, we ``wrap'' 
the points one facet at a time by bending the wrapping paper around an edge until it hits the first 
point. 

The key to efficiency is making sure that each edge is explored only once. Implemented properly 
in d dimensions, gift-wrapping takes  , where  is the number of facets 
and  is the number of edges in the convex hull. Thus gift-wrapping can be very efficient when 

there is only a constant number of facets on the hull. However, this can be as bad as  

when the convex hull is very complex. 

Better convex hull algorithms are available for the important special case of three dimensions, 
where  time in fact suffices. For three or higher dimensions, I recommend that you use 
one of the codes described below rather than roll your own.

●     Is your data given as vertices or half-spaces? - The problem of finding the intersection of a set of 
n half-spaces in d dimensions is dual to that of computing convex hulls of n points in d 
dimensions. Thus the same basic algorithm suffices for both problems. The necessary duality 

transformation is discussed in Section .   
●     How many points are likely to be on the hull? - If your points are selected ``randomly'', it is likely 

that most of them lie within the interior of the hull. Planar convex hull programs can be made 
more efficient in practice using the observation than the leftmost, rightmost, topmost, and 
bottommost points must all be on the convex hull. Unless the topmost is leftmost and bottommost 
is rightmost, this gives a set of either three or four distinct points, defining a triangle or 
quadrilateral. Any point inside this region cannot be on the convex hull and can be discarded in a 
linear sweep through the points. Ideally, only a few points will then remain to run through the full 
convex hull algorithm. 
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This trick can also be applied beyond two dimensions, although it loses effectiveness as the 
dimension increases.

●     How do I find the shape of my point set? - Although convex hulls provide a gross measure of 
shape, any details associated with concavities are lost. For example, the shape of the `G' would be 
indistinguishable from the shape of the `O'. A more general structure, called alpha-shapes, can be 
parameterized so as to retain arbitrarily large concavities. Implementations and references on 
alpha-shapes are included below.    

The primary convex hull algorithm in the plane is the Graham scan. Graham scan starts with one point p 
known to be on the convex hull (say the point with lowest x-coordinate) and sorts the rest of the points in 
angular order around p. Starting with a hull consisting of p and the point with the smallest angle, we 
proceed counterclockwise around v adding points. If the angle formed by the new point and the last hull 
edge is less than 180 degrees, we add this new point to the hull. If the angle formed by the new point and 
the last ``hull'' edge is greater than 180 degrees, then a chain of vertices starting from the last hull edge 
must be deleted to maintain convexity. The total time is  , since the bottleneck is sorting the 
points around v.   

The basic Graham scan procedure can also be used to construct a nonself-intersecting (or simple) 
polygon passing through all the points. Sort the points around v, but instead of testing angles simply 
connect the points in angular order. Connecting this to v gives a polygon without self-intersection, 
although it typically has many skinny protrusions.    

The gift-wrapping algorithm becomes especially simple in two dimensions, since each ``facet'' becomes 
an edge, each ``edge'' becomes a vertex of the polygon, and the ``breadth-first search'' simply walks 
around the hull in a clockwise or counterclockwise order. The 2D gift-wrapping, or Jarvis march, 
algorithm runs in O(n h) time, where h is the number of vertices on the convex hull. I would recommend 
sticking with Graham scan unless you really know in advance that there cannot be too many vertices on 
the hull. 

Implementations: O'Rourke [O'R94] provides a robust implementation of the Graham scan in two 

dimensions and an  implementation of an incremental algorithm for convex hulls in three 
dimensions. Both are written in C. The latter has been proven capable of solving 10,000-point problems 

in a few minutes on a modern workstation. See Section . 

Qhull [BDH97] appears to be the convex hull code of choice for general dimensions (in particular from 2 
to about 8 dimensions). It is written in C and can also construct Delaunay triangulations, Voronoi 
vertices, furthest-site Voronoi vertices, and half-space intersections. Qhull has been widely used in 
scientific applications and has a well-maintained home page at 
http://www.geom.umn.edu/software/qhull/.     

An alternative higher-dimensional convex hull code in ANSI C is Ken Clarkson's Hull, available at 
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http://www.cs.att.com/netlib/voronoi/hull.html. It does not appear to be as widely used or actively 
maintained as Qhull, but it also does alpha-shapes.   For an excellent alpha-shapes code, originating from 
the work of Edelsbrunner and Mucke [EM94], check out http://fiaker.ncsa.uiuc.edu/alpha/. 

Fukuda's cdd program is the best choice for nonsimplicial polytopes in about 6D and higher. See 
ftp://ifor13.ethz.ch/pub/fukuda/cdd/. It may be used for computing convex hulls and half-space 
intersection.   

XTango (see Section ) provides animations of the Graham scan and Jarvis march algorithms in the 
plane.   

A Pascal implementation of Graham scan appears in [MS91]. See Section . C++ implementations of 

planar convex hulls includes LEDA (see Section ).    Algorithm 523 [Edd77] of the Collected 
Algorithms of the ACM is a Fortran code for planar convex hulls. It is available from Netlib (see Section 

).    

Notes: Constructing planar convex hulls plays a similar role in computational geometry as sorting does 
in algorithm theory. Like sorting, convex hull is a fundamental problem for which a wide variety of 
different algorithmic approaches lead to interesting or optimal algorithms. Preparata and Shamos [PS85] 
give a good exposition of several such algorithms, including quickhull and mergehull, both inspired by 
the sorting algorithms. In fact, a simple construction involving points on a parabola reduces sorting to 
convex hull, so the information-theoretic lower bound for sorting implies that planar convex hull requires 

 time to compute. A stronger lower bound is established in [Yao81].   

Good expositions of the Graham scan algorithm [Gra72] and the Jarvis march [Jar73] include [CLR90, 
PS85]. The gift wrapping algorithm was introduced by Chand and Kapur [CK70]. Noteworthy among 
planar convex hull algorithms is Seidel and Kirkpatrick [KS86], which takes  time, where h is the 
number of hull vertices, which captures the best performance of both Graham scan and gift wrapping and 
is (theoretically) better in between. 

Alpha-hulls, introduced in [EKS83], provide a useful notion of the shape of a point set. A generalization 
to three dimensions, with an implementation, is presented in [EM94]. 

Reverse-search algorithms for constructing convex hulls are effective in higher dimensions [AF92], 
although constructions demonstrating the poor performance of convex hull algorithms for nonsimplicial 
polytopes are presented in [AB95]. Through a clever lifting-map construction [ES86], the problem of 
building Voronoi diagrams in d-dimensions can be reduced to constructing convex hulls in (d+1)-

dimensions. See Section  for more details.     
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Dynamic algorithms for convex-hull maintenance are data structures that permit inserting and deleting 
arbitrary points while always representing the current convex hull. The first such dynamic data structure 
[OvL81] supported insertions and deletions in  time. Expositions of this result include [PS85].   

Related Problems: Sorting (see page ), Voronoi diagrams (see page ).     
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Triangulation

   

   

Input description: A set of points or a polyhedon. 

Problem description: Partition the interior of the point set or polyhedron into triangles. 

Discussion: Triangulation is a fundamental problem in computational geometry, because the first step in 
working with complicated geometric objects is to break them into simple geometric objects. The simplest 
geometric objects are triangles in two dimensions, and tetrahedra in three. Classical applications of 
triangulation include finite element analysis and computer graphics.     

   A particularly interesting application of triangulation is surface or function interpolation. Suppose that 
we have sampled the height of a mountain at a certain number of points. How can we estimate the height 
at any point q in the plane? If we project the points on the plane, and then triangulate them, the 
triangulation completely partitions the plane into regions. We can estimate the height of q by interpolating 
among the three points of the triangle that contains it. Further, this triangulation and the associated height 
values define a surface of the mountain suitable for graphics rendering. 

In the plane, a triangulation is constructed by adding nonintersecting chords between the vertices until no 
more such chords can be added. Specific issues arising in triangulation include: 
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●     Does the shape of the triangles in your triangulation matter? - There are usually many different 
ways to partition your input into triangles. Consider a set of n points in convex position in the 
plane. The simplest way to triangulate them would be to add to the convex hull diagonals from the 
first point to all of the others. However, this has the tendency to create skinny triangles.   

If the shape of the triangles matters for your application, you will usually want to avoid skinny 
triangles, or equivalently, small angles in the triangulation. The Delaunay triangulation of a point 
set minimizes the maximum angle over all possible triangulations. This isn't exactly what we are 
looking for, but it is pretty close, and the Delaunay triangulation has enough other interesting 
properties (including that it is dual to the Voronoi diagram) to make it the quality triangulation of 
choice. Further, it can be constructed in  time, with implementations described below.   

●     What dimension are we working in? - As always, three-dimensional problems are harder than two-
dimensional problems. The three-dimensional generalization of triangulation involves partitioning 
the space into four-vertex tetrahedra by adding nonintersecting faces. One important difficulty is 
that for certain polyhedra there is no way to tetrahedralize the interior without adding extra 
vertices. Further, it is NP-complete to decide whether such a tetrahedralization exists, so we should 
not feel afraid to add extra vertices to simplify our problem.  

●     What constraints does the input have? - When we are triangulating a polygon or polyhedra, we are 
restricted to adding chords that do not intersect any of the boundary facets. In general, we may 
have a set of obstacles or constraints that cannot be intersected by inserted chords. The best such 
triangulation is likely to be the so-called constrained Delaunay triangulation. Implementations are 
described below.  

●     Are you allowed to add extra points? - When the shape of the triangles does matter, it might pay to 
strategically add a small number of extra ``Steiner'' points to the data set to facilitate the 
construction of a triangulation (say) with no small angles. As discussed above, there may be no 
triangulation possible for certain polyhedra without adding Steiner points.   

To construct a triangulation of a convex polygon in linear time, just pick an arbitrary starting vertex v and 
insert chords from v to each other vertex in the polygon.   Because the polygon is convex, we can be 
confident that none of the boundary edges of the polygon will be intersected by these chords and that all 
of them lie within the polygon. The simplest algorithm for constructing general polygon triangulations 
tries each of the  possible chords and inserts them if they do not intersect a boundary edge or 
previously inserted chord. There are practical algorithms that run in  time and theoretically 
interesting algorithms that run in linear time. See the implementations and notes below for details. 

Implementations: Triangle, by Jonathan Shewchuk of Carnegie-Mellon University, is a C language code 
that generates Delaunay triangulations, constrained Delaunay triangulations (forced to have certain 
edges), and quality-conforming Delaunay triangulations (which avoid small angles by inserting extra 
points).     It has been widely used for finite element analysis and other applications and is fast and robust. 
Triangle is the first thing I would try if I needed a two-dimensional triangulation code. Although Triangle 
is available at http://www.cs.cmu.edu/  quake/triangle.html, it is copyrighted by the author and may not 
be sold or included in commercial products without a license. 
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GEOMPACK is a suite of Fortran 77 codes by Barry Joe of the University of Alberta, for 2- and 3-
dimensional triangulation and convex decomposition problems.    In particular, it does both Delaunay 
triangulation and convex decompositions of polygonal and polyhedral regions, as well as arbitrary-
dimensional Delaunay triangulations. They can be obtained from ftp://ftp.cs.ualberta.ca/pub/geompack. 

Steve Fortune is the author of a widely used 2D code for Voronoi diagrams and Delaunay triangulations, 
written in C. This code is smaller and probably simpler to work with than either of the above, if all you 
need is the Delaunay triangulation of points in the plane. It is based on Fortune's own sweepline algorithm 

[For87] for Voronoi diagrams and is available from Netlib (see Section ) at http://netlib.bell-
labs.com/netlib/voronoi/index.html.   

O'Rourke [O'R94] provides asymptotically slow implementations in C of polygon triangulation (in  ) 

and Delaunay triangulation (in  ). These will be unusable for more than modest numbers of points, 

but see Section  if interested. See Section . 

Algorithm 624 [Ren84] of the Collected Algorithms of the ACM is a Fortran implementation of 

triangulation for surface interpolation. See Section . A linear-time implementation for triangulating a 

planar map is included with LEDA (see Section ).    

Higher-dimensional Delaunay triangulations are a special case of higher-dimensional convex hulls, and 
Qhull [BDH97] appears to be the convex hull code of choice for general dimensions (i.e. three 
dimensions and beyond). It is written in C, and it can also construct Voronoi vertices, furthest-site 
Voronoi vertices, and half-space intersections. Qhull has been widely used in scientific applications and 
has a well-maintained home page at http://www.geom.umn.edu/software/qhull/.    

Notes: After a long search, Chazelle [Cha91] discovered a linear-time algorithm for triangulating a simple 
polygon. This algorithm is sufficiently hopeless to implement that it qualifies more as an existence proof. 
The first  algorithm for polygon triangulation was given by [GJPT78]. An  algorithm by 
Tarjan and Van Wyk [TW88] followed before Chazelle's result. Expositions on polygon and point set 
triangulation include [O'R94, PS85]. 

Linear-time algorithms for triangulating monotone polygons have been long known [GJPT78] and are the 
basis of algorithms for triangulating simple polygons. A polygon is monotone when there exists a 
direction d such that any line with slope d intersects the polygon in at most two points.   

A heavily studied class of optimal triangulations seeks to minimize the total length of the chords used. 
The computational complexity of constructing this minimum weight triangulation is a long-standing open 
problem in computational geometry, so the interest has shifted to provably good approximation 
algorithms. The minimum weight triangulation of a convex polygon can be found in  time using 
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dynamic programming, as discused in Section .    

Related Problems: Voronoi diagrams (see page ), polygon partitioning (see page ).     
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Voronoi Diagrams

   

   

Input description: A set S of points  . 

Problem description: Decompose space into regions around each point such that all the points in the 
region around  are closer to  than they are to any other point in S. 

Discussion: Voronoi diagrams represent the region of influence around each of a given set of sites. If 
these sites represent the locations of McDonald's restaurants, the Voronoi diagram partitions space into 
cells around each restaurant. For each person living in a particular cell, the defining McDonald's 
represents the closest place to get a Big Mac.    

Voronoi diagrams have a surprising variety of uses: 

●     Nearest neighbor search - For a query point q, finding its nearest neighbor from a fixed set of 
points S is simply a matter of determining which cell in the Voronoi diagram of S contains q. See 

Section  for more details.  
●     Facility location - Suppose McDonald's wanted to open another restaurant. To minimize 

interference with existing McDonald's, it should be located as far away from the closest restaurant 
as possible. This location is always at a vertex of the Voronoi diagram, and it can be found in a 
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linear-time search through all the Voronoi vertices.  
●     Largest empty circle - Suppose you needed to obtain a large, contiguous, undeveloped piece of 

land on which to build a factory. The same condition used for picking McDonald's locations is 
appropriate for other undesirable facilities, namely that it be as far as possible from any relevant 
sites of interest. A Voronoi vertex defines the center of the largest empty circle among the points. 
  

●     Path planning - If the sites of S are the centers of obstacles we seek to avoid, the edges of the 
Voronoi diagram define the possible channels that maximize the distance to the obstacles. Thus in 
planning paths among the sites, it will be ``safest'' to stick to the edges of the Voronoi diagram.   

●     Quality triangulations - In triangulating a set of points, we often desire nice, fat triangles, which 
avoid small angles and skinny triangles. The Delaunay triangulation maximizes the minimum 
angle over all triangulations and is exactly what we want. Further, it is easily constructed as the 

dual of the Voronoi diagram. See Section  for details.      

Each edge of a Voronoi diagram is part of the perpendicular bisector of two points in S, since this is the 
line that partitions the plane between the points. The conceptually simplest method to construct Voronoi 
diagrams is randomized incremental construction. To add another site to the diagram, locate the cell that 
contains it and add the perpendicular bisectors between the new site and all sites defining impacted 
regions. When the sites are inserted in random order, only a small number of regions are likely to be 
impacted.    

However, the method of choice is Fortune's sweepline algorithm, especially since robust 
implementations of it are readily available. Use an existing implementation instead of trying to develop 
your own. The algorithm works by projecting the set of sites in the plane into a set of cones in three 
dimensions such that the Voronoi diagram is defined by projecting the cones back onto the plane. The 
advantages of Fortune's algorithm are (1) it runs in optimal  time, (2) it is reasonable to 
implement, and (3) we need not store the entire diagram if we can use it as we sweep over it.    

There is an interesting relationship between convex hulls in d+1 dimensions and Delaunay triangulations 
(or equivalently Vornoi diagrams) in d-dimensions, which provides the best way to construct Voronoi 
diagrams in higher dimensions. By projecting each site in   into the point 

 , taking the convex hull of this (d+1)-dimensional point set and then projecting 

back into d dimensions we obtain the Delaunay triangulation. Details are given in the references below. 

Programs that compute higher-dimensional convex hulls are discussed in Section .    

Several important variations of standard Voronoi diagrams arise in practice. See the references below for 
details: 

●     Non-Euclidean distance metrics - Recall that the idea of a Voronoi diagram is to decompose space 
into regions of influence around each of the given sites. Thus far, we have assumed that Euclidean 
distance measures influence, but for many applications this is inappropriate. If people drive to 
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McDonald's, the time it takes to get there depends upon where the major roads are. Efficient 
algorithms are known for constructing Voronoi diagrams under a variety of different metrics, and 
for curved or constrained objects.  

●     Power diagrams - These structures decompose space into regions of influence around the sites, 
where the sites are no longer constrained to have all the same power. Imagine a map of the 
listening range of a set of radio stations operating at a given frequency. The region of influence 
around a station depends both on the power of its transmitter and the position of neighboring 
transmitters.    

●     kth-order and furthest-site diagrams - The idea of decomposing space into regions sharing some 
property can be taken beyond closest-point Voronoi diagrams. Any point within a single cell of 
the kth-order Voronoi diagram shares the same set of k closest points in S. In furthest-site 
diagrams, any point within a particular region shares the same furthest point in S. Point location 

(see Section ) on these structures permits fast retrieval of the appropriate points.    

Implementations: Steve Fortune is the author of a widely used 2D code for Voronoi diagrams and 
Delaunay triangulations, written in C. It is based on his own sweepline algorithm [For87] for Voronoi 

diagrams and is likely to be the right code to try first. It is available from Netlib (see Section ) at 
http://netlib.bell-labs.com/netlib/voronoi/index.html.   

LEDA (see Section ) provides an implementation of a randomized incremental construction algorithm 
for planar Voronoi diagrams in C++.    

Higher-dimensional and furthest-site Voronoi diagrams can be constructed as a special case of higher-
dimensional convex hulls. Qhull [BDH97] appears to be the convex hull code of choice in three 
dimensions and beyond. It is written in C, and it can also construct Delaunay triangulations and half-
space intersections. Qhull has been widely used in scientific applications and has a well-maintained 
home page at http://www.geom.umn.edu/software/qhull/.   

The Stanford GraphBase (see Section ) contains an implementation of a randomized incremental 
algorithm to construct Voronoi diagrams and Delaunay triangulations for use as a generator of planar 
graph instances.    

Algorithm 558 [Che80] of the Collected Algorithms of the ACM is a Fortran code for the multifacility 
location problem. It is based on a network flow approach, instead of using Voronoi diagrams. 

Interestingly, the network flow code is taken from Nijenhuis and Wilf (see Section ). See Section . 
      

Notes: Voronoi diagrams were studied by Dirichlet in 1850 and are occasionally referred to as Dirichlet 
tessellations. They are named after G. Voronoi, who discussed them in a 1908 paper. In mathematics, 
concepts get named after the last person to discover them.   
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Aurenhammer [Aur91] and Fortune [For92] provide excellent surveys on Voronoi diagrams and 
associated variants such as power diagrams. The first  algorithm for constructing Voronoi 
diagrams was based on divide-and-conquer and is due to Shamos and Hoey [SH75]. Good expositions of 
Fortune's sweepline algorithm for constructing Voronoi diagrams in  [For87] include [O'R94]. 
Good expositions on the relationship between Delaunay triangulations and (d+1)-dimensional convex 
hulls [ES86] include [O'R94]. 

In a kth-order Voronoi diagram, we partition the plane such that each point in a region is closest to the 
same set of k sites. Using the algorithm of [ES86], the complete set of kth-order Voronoi diagrams can be 

constructed in  time. By doing point location on this structure, the k nearest neighbors to a query 
point can be found in  . Expositions on kth-order Voronoi diagrams include [O'R94, PS85]. 

The smallest enclosing circle problem can be solved in  time using (n-1)st order Voronoi 
diagrams [PS85]. In fact, there exist linear-time algorithms based on low-dimensional linear 
programming [Meg83]. A linear algorithm for computing the Voronoi diagram of a convex polygon is 
given by [AGSS89].   

Related Problems: Nearest neighbor search (see page ), point location (see page ), triangulation 

(see page ).       
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Nearest Neighbor Search

   

   

Input description: A set S of n points in d dimensions; a query point q. 

Problem description: Which point in S is closest to q? 

Discussion: The need to quickly find the nearest neighbor to a query point arises in a variety of 
geometric applications. The classic example in two dimensions is designing a system to dispatch 
emergency vehicles to the scene of a fire.    Once the dispatcher learns the location of the fire, she uses a 
map to find the firehouse closest to this point so as to minimize transportation delays. This situation 
occurs in any application mapping customers to service providers.    

Nearest-neighbor search is also important in classification. Suppose we are given a collection of data 
about people (say age, height, weight, years of education, sex, and income level) each of whom has been 
labeled as Democrat or Republican. We seek a classifier to decide which way a different person is likely 
to vote. Each of the people in our data set is represented by a party-labeled point in d-dimensional space. 
A simple classifier can be built by assigning to the new point the party affiliation of its nearest neighbor. 
  

   Such nearest-neighbor classifiers are widely used, often in high-dimensional spaces. The vector-
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quantization method of image compression partitions an image into  pixel regions. This method uses 
a predetermined library of several thousand  pixel tiles and replaces each image region by the most 
similar library tile. The most similar tile is the point in 64-dimensional space that is closest to the image 
region in question. Compression is achieved by reporting the identifier of the closest library tile instead 
of the 64 pixels, at some loss of image fidelity. 

Issues arising in nearest-neighbor search include: 

●     How many points are you searching? - When your data set contains only a small number of points 
(say  ) or if only few queries are ever destined to be performed, the simple approach is 
best. Compare the query point q against each of the n data points. Only when fast queries are 
needed for large numbers of points does it pay to consider more sophisticated methods.  

●     How many dimensions are you working in? - Nearest neighbor search gets slowly but 
progressively harder as the dimensionality increases.   The kd-tree data structure, presented in 

Section , does a very good job in moderate-dimensional spaces, even the plane. Still, above 20 
or so dimensions, you might as well do a linear search through the data points. Search in high-
dimensional spaces becomes hard because a sphere of radius r, representing all the points with 
distance  from the center, progressively fills up less volume relative to a cube as the 
dimensionality increases. Thus any data structure based on partitioning points into enclosing 
volumes will become less and less effective.   

In two dimensions, Voronoi diagrams (see Section ) provide an efficient data structure for 
nearest-neighbor queries. The Voronoi diagram of a point set in the plane decomposes the plane 
into regions such that the cell containing each data point consists of the part of the plane that is 
nearer to that point than any other in the set. Finding the nearest neighbor of query point q reduces 
to finding which cell in the Voronoi diagram contains q and reporting the data point associated 
with it. Although Voronoi diagrams can be built in higher dimensions, their size rapidly grows to 
the point of unusability.  

●     Is your data set static or dynamic? - Will there be occasional insertions or deletions of new data 
points in your application? If these are just rare events, it might pay to build your data structure 
from scratch each time. If they are frequent, select a version of the kd-tree that supports insertions 
and deletions.   

The nearest neighbor graph on a set S of n points links each vertex to its nearest neighbor. This graph is a 
subgraph of the Delaunay triangulation and so can be computed in  . This is quite a bargain 
since it takes  time just to discover the closest pair of points in S.    

As a lower bound, the closest pair problem in one dimension reduces to sorting. In a sorted set of 
numbers, the closest pair corresponds to two numbers that lie next to each other in sorted order, so we 
need only check which is the minimum gap between the n-1 adjacent pairs. The limiting case of this 
occurs when the closest pair are distance zero apart, meaning that the elements are not unique.   
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Implementations: Ranger is a tool for visualizing and experimenting with nearest-neighbor and 
orthogonal-range queries in high-dimensional data sets, using multidimensional search trees. Four 
different search data structures are supported by Ranger: naive kd-trees, median kd-trees, nonorthogonal 
kd-trees, and the vantage point tree.     

For each of these, Ranger supports queries in up to 25 dimensions under any Minkowski metric. It 
includes generators for a variety of point distributions in arbitrary dimensions. Finally, Ranger provides a 
number of features to aid in visualizing multidimensional data, best illustrated by the accompanying 
video [MS93]. To identify the most appropriate projection at a glance, Ranger provides a  matrix of 
all two-dimensional projections of the data set. Ranger is written in C, using Motif. It runs on Silicon 
Graphics and HP workstations and is available in the algorithm repository http://www.cs.sunysb.edu/  
algorith. 

See Section  for a complete collection of Voronoi diagram implementations. In particular, LEDA (see 

Section ) provides an implementation of 2D Voronoi diagrams in C++, as well as planar point 
location to make effective use of them for nearest-neighbor search.     

A Pascal implementation of the divide-and-conquer algorithm for finding the closest pair of points in a 

set of n points appears in [MS91]. See Section . 

Notes: The best reference on kd-trees and other spatial data structures is two volumes by Samet 
[Sam90b, Sam90a], where all major variants are developed in substantial detail. Good expositions on 
finding the closest pair of points in the plane [BS76] include [CLR90, Man89]. These algorithms use a 
divide-and-conquer approach instead of just selecting from the Delaunay triangulation. 

A recent development in higher-dimensional nearest-neighbor search is algorithms that quickly produce a 
point that if not the nearest neighbor lies provably close to the query point.   A sparse weighted graph 
structure is built from the data set, and the nearest neighbor is found by starting at a random point and 
greedily walking in the graph towards the query point. The closest point found over several random trials 
is declared the winner. Similar data structures hold promise for other problems in high-dimensional 
spaces. See [AM93, AMN  94]. 

Related Problems: Kd-trees (see page ), Voronoi diagrams (see page ), range search (see page 

).       

       

file:///E|/BOOK/BOOK4/NODE188.HTM (3 of 4) [19/1/2003 1:31:43]



Nearest Neighbor Search

 
Next: Range Search Up: Computational Geometry Previous: Voronoi Diagrams 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK4/NODE188.HTM (4 of 4) [19/1/2003 1:31:43]



Range Search

       

 
Next: Point Location Up: Computational Geometry Previous: Nearest Neighbor Search 

Range Search

   

   

Input description: A set S of n points in  and a query region Q. 

Problem description: Which points from S lie within Q? 

Discussion: Range search problems arise in database and geographic information system (GIS) 
applications. Any data object with d numerical fields, such as person with height, weight, and income, 
can be modeled as a point in d-dimensional space. A range query describes a region in space and asks for 
all points or the number of points in the region. For example, asking for all people with income between 
$0 and $10,000, with height between 6'0'' and 7'0'', and weight between 50 and 140 lbs. defines a box 
containing people whose body and wallets are both thin.       

The difficulty of a range search problem depends on several factors: 

●     How many range queries are you going to perform? - The simplest approach to range search tests 
each of the n points one by one against the query polygon Q. This works just fine if the number of 
queries will be small. Algorithms to test whether a point is within a given polygon are presented 

in Section .
●     What shape is your query polygon? - The easiest type of regions to query against are axis-parallel 
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rectangles, because the inside/outside test reduces to verifying whether each coordinate lies 
within a prescribed range. The figure above illustrates such an orthogonal range query.    

If you are querying against a nonconvex polygon, it will pay to partition your polygon into convex 
pieces or (even better) triangles and then query the point set against each one of the pieces. This is 
because testing whether a point is inside a convex polygon can be done more quickly and easily 
than for arbitrary polygons. Algorithms for such convex decompositions are discussed in Section 

.   
●     How many dimensions? - The best general-purpose approach to range queries builds a kd-tree on 

the point set, as discussed in Section . To perform a query, a depth-first traversal of the kd-tree 
is performed, with each tree node expanded only if the associated rectangle intersects the query 
region. For sufficiently large or misaligned query regions, the entire tree might have to be 
traversed, but in general; kd-trees lead to an efficient solution. Although algorithms with efficient 
worst-case performance are known in two dimensions, kd-trees are likely to work even better in 
the plane. In higher-dimensions, kd-trees provide the only viable solution to the problem.  

●     Can I just count the number of points in a region, or do I have to identify them? - For many 
applications it suffices to count the number of points in a region instead of returning them. 
Harkening back to the introductory example, we may want to know whether there are more 
thin/poor people or rich/fat ones. The need to find the densest or emptiest region in space often 
naturally arises, and the problem can be solved by counting range queries.    

A data structure for efficiently answering such aggregate range queries can be based on the 
dominance ordering of the point set. A point x is said to dominate point y if y lies both below and 
to the left of x. Let DOM(p) be a function that counts the number of points in S that are dominated 
by p. The number of points m in the orthogonal rectangle defined by  and 

 is given by 

 

The second additive term corrects for the points for the lower left-hand corner that have been 
subtracted away twice. 

To answer arbitrary dominance queries efficiently, partition the space into  rectangles by 
drawing a horizontal and vertical line through each of the n points. The set of points dominated is 
identical for each point in each rectangle, so the dominance count of the lower left-hand corner of 
each rectangle can precomputed, stored, and reported for any query point within it. Queries reduce 
to binary search and thus take  time. Unfortunately, this data structure takes quadratic 
space. However, the same idea can be adapted to kd-trees to create a more space-efficient search 
structure. 

Implementations: LEDA (see Section ) provides excellent support for maintaining planar 
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subdivisions in C++. In particular, it supports orthogonal range queries in  time, where n is the 

complexity of the subdivision and k is the number of points in the rectangular region.    

Ranger is a tool for visualizing and experimenting with nearest-neighbor and orthogonal-range queries in 
high-dimensional data sets, using multidimensional search trees. Four different search data structures are 
supported by Ranger: naive kd-trees, median kd-trees, nonorthogonal kd-trees, and the vantage point 
tree. For each of these, Ranger supports queries in up to 25 dimensions under any Minkowski metric. It 
is available in the algorithm repository.    

A bare bones implementation in C of orthogonal range search using kd-trees appears in [GBY91]. 
Sedgewick [Sed92] provides code fragments of the grid method for orthogonal range search in C++. See 

Section  for details on both of them. 

Notes: Good expositions on data structures with worst-case  performance for orthogonal-range 
searching [Wil85] include [PS85]. An exposition on kd-trees for orthogonal range queries in two 
dimensions appears in [PS85]. Their worst-case performance can be very bad; [LW77] describes an 

instance in two dimensions requiring  time to report that a rectangle is empty. 

The problem becomes considerably more difficult for nonorthogonal range queries, where the query 
region is not an axis-aligned rectangle. For half-plane intersection queries,  time and linear space 
suffice [CGL85]; for range searching with simplex query regions (such as a triangle in the plane), lower 
bounds preclude efficient worst-case data structures. See [Yao90] for a discussion.   

Related Problems: Kd-trees (see page ), point location (see page ),     
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Point Location

   

   

Input description: A decomposition of the plane into polygonal regions and a query point q. 

Problem description: Which region contains the query point q? 

Discussion: Point location is a fundamental subproblem in computational geometry, usually needed as an 
ingredient to solve larger geometric problems. In a dispatch system to assign policemen to the scene of a 
crime, the city will be partitioned into different precincts or districts.   Given a map of regions and a 
query point (the crime scene), the system must identify which region contains the point. This is exactly 
the problem of planar point location, variations of which include: 

●     Is a given point inside or outside of polygon P? - The simplest version of point location involves 
only two regions, inside-P and outside-P, and asks which contains a given query point. For 
polygons with lots of narrow spirals, this can be surprisingly difficult to tell by inspection. The 
secret to doing it both by eye or machine is to draw a ray starting from the query point and ending 
beyond the furthest extent of the polygon. Count the number of times the polygon crosses through 
an edge. If this number is odd, we must be within the polygon. If it is even, we must be outside. 
The case of the line passing through a vertex instead of an edge is evident from context, since we 
are counting the number of times we pass through the boundary of the polygon. Testing each of 

file:///E|/BOOK/BOOK4/NODE190.HTM (1 of 4) [19/1/2003 1:31:46]



Point Location

the n edges for intersection against the query ray takes O(n) time. Faster algorithms for convex 
polygons are based on binary search and take  time.    

●     How many queries will have to be performed? - When we have a subdivision with multiple 
regions, it is always possible to repeat the inside-polygon test above on each region in the 
subdivision. However, this is wasteful if we will be performing many such point location queries 
on the same subdivision. Instead, we can construct a grid-like or tree-like data structure on top of 
our subdivision to get us near the correct region quickly. Such search structures are discussed in 
more detail below.

●     How complicated are the regions of your subdivision? - More sophisticated inside-outside tests 
are required when the regions of your subdivision are arbitrary polygons. By triangulating all 
polygonal regions first, each inside-outside test reduces to testing whether a point is in a triangle. 
Such a test can be made particularly fast and simple, at the minor cost of recording the full-
polygon name for each triangle. An added benefit is that the smaller your regions are, the better 
grid-like or tree-like superstructures are likely to perform. Some care should be taken when you 

triangulate to avoid long skinny triangles, as discussed in Section .   
●     How regularly sized and spaced are your regions? - If all resulting triangles are about the same 

size and shape, the simplest point location method imposes a regularly-spaced  grid of 
horizontal and vertical lines over the entire subdivision. For each of the  rectangular regions, we 
maintain a list of all the regions that are at least partially contained within the rectangle. 
Performing a point location query in such a grid file involves a binary search or hash table lookup 
to identify which rectangle contains query point q and then searching each region in the resulting 
list to identify the right one.   

Such grid files will perform very well, provided that each triangular region overlaps only a few 
rectangles (thus minimizing storage space) and each rectangle overlaps only a few triangles (thus 
minimizing search time). Whether it will perform well is a function of the regularity of your 
subdivision. Some flexibility can be achieved by spacing the horizontal lines irregularly, as a 
function of the regions of the subdivision. The slab method, discussed below, is a variation on this 
idea that guarantees worst-case efficient point location at the cost of quadratic space.  

●     How many dimensions will you be working in? - In three or more dimensions, some flavor of kd-
tree will almost certainly be the point-location method of choice. They are also likely to be the 
right answer for planar subdivisions too irregular for grid files. 

Kd-trees, described in Section , decompose the space into a hierarchy of rectangular boxes. At 
each node in the tree, the current box is split into a small number (typically 2 or 4 or  , where d 
is the dimension) of smaller boxes. At the leaves of the tree, each box is labeled with the small 
number of regions that are at least partially contained in the box. The point location search starts 
at the root of the tree and keeps traversing down the child whose box contains the query point. 
When the search hits a leaf, we test each of the relevant regions against q to see which one of 
them contains the point. As with grid files, we hope that each leaf contains a small number of 
regions and that each region does not cut across too many leaf cells. 
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The simplest algorithm to guarantee  worst-case access is the slab method, which draws horizontal 
lines through each vertex, thus creating n+1 ``slabs'' between the lines. Since the slabs are defined by 
horizontal lines, finding the slab containing a particular query point can be done using a binary search on 
the y-coordinate of q. Since there can be no vertices within any slab, looking for the region containing a 
point within a slab can be done by a second binary search on the edges that cross the slab. The catch is 
that a binary search tree must be maintained for each slab, for a worst-case of  space if each region 
intersects each slab. A more space-efficient approach based on building a hierarchy of triangulations over 
the regions also achieves  for search and is discussed in the notes below.   

Worst-case efficient computational geometry methods either require a lot of storage or are fairly 
complicated to implement. We identify implementations of worst-case methods below, which are worth 
at least experimenting with. However, we recommend kd-trees for most general point-location 
applications. 

Implementations: LEDA (see Section ) provides excellent support for maintaining planar 

subdivisions in C++ and, in particular, supports point location in  time.     

Arrange is a package for maintaining arrangements of polygons in either the plane or on the sphere. 
Polygons may be degenerate, and hence represent arrangements of lines. A randomized incremental 
construction algorithm is used, and efficient point location on the arrangement is supported. Polygons 
may be inserted but not deleted from the arrangement, and arrangements of several thousand vertices and 
edges can be constructed in a few seconds. Arrange is written in C by Michael Goldwasser and is 
available from http://theory.stanford.edu/people/wass/wass.html.     

A routine in C to test whether a point lies in a simple polygon has been provided by O'Rourke [O'R94], 

and a Pascal routine for the same problem by [MS91]. For information on both, see Section .   

Notes: The inside-outside test for convex polygons is described in [PS85], which has a very thorough 
treatment of deterministic planar point location data structures. Expositions on the inside-outside test for 
simple polygons include [Man89, PS85]. 

An experimental study of algorithms for planar point location is described in [EKA84]. The winner was a 
bucketing technique akin to the grid file.    

The elegant triangle refinement method of Kirkpatrick [Kir83] builds a hierarchy of triangulations above 
the actual planar subdivision such that each triangle on a given level intersects only a constant number of 
triangles on the following level. Since each triangulation is a fraction of the size of the subsequent one, 
the total space is obtained by summing up a geometric series and hence is linear. Further, the height of 
the hierarchy is  , ensuring fast query times. An alternative algorithm realizing the same time 
bounds is [EGS86]. The slab method described above is due to [DL76] and is presented in [PS85]. 
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More recently, there has been interest in dynamic data structures for point location, which support fast 
incremental updates of the planar subdivision (such as insertions and deletions of edges and vertices) as 
well as fast point location. Chiang and Tamassia's [CT92] survey is an appropriate place to begin.   

Related Problems: Kd-trees (see page ), Voronoi diagrams (see page ), nearest neighbor search 

(see page ).       
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Intersection Detection

   

   

Input description: A set S of lines and line segments  or a pair of polygons or polyhedra  and 
 . 

Problem description: Which pairs of line segments intersect each other? What is the intersection of  
and  ? 

Discussion: Intersection detection is a fundamental geometric primitive that arises in many applications. 
Picture a virtual-reality simulation of an architectural model for a building. The illusion of reality 
vanishes the instant the virtual person walks through a virtual wall. To enforce such physical constraints, 
any such intersection between polyhedral models must be immediately detected and the operator notified 
or constrained.      

Another application of intersection detection is design rule checking for VLSI layouts. A minor design 
mistake resulting in two crossing metal strips can short out the chip, but such errors can be detected 
before fabrication using programs to find all intersections between line segments.    

Issues arising in intersection detection include: 
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●     Do you want to compute the intersection or just report it? - We distinguish between intersection 
detection and computing the actual intersection. The latter problem is obviously harder than the 
former and is not always necessary. In the virtual-reality application above, it might not be 
important to know exactly where we hit the wall, just that we hit it.

●     Are you intersecting lines or line segments? - The big difference here is that any two lines with 
different slopes must intersect at exactly one point. By comparing each line against every other 
line, all points of intersections can be found in constant time per point, which is clearly optimal. 
Constructing the arrangement of the lines provides more information than just intersection points 

and is discussed in Section .    

Finding all the intersections between n line segments is considerably more challenging. Even the 
basic primitive of testing whether two line segments intersect is not as trivial as it might seem, 

and this is discussed in Section . To find all intersections, we can explicitly test each line 
segment against each other line segment and thus find all intersections in  time. Each 
segment can always intersect each other segment, yielding a quadratic number of intersections, so 
in the worst case, this is optimal. For many applications, however, this worst case is not very 
interesting.

●     How many intersection points do you expect? - Sometimes, as in VLSI design rule checking, we 
expect the set of line segments to have few if any intersections. What we seek is an algorithm 
whose time is output sensitive, taking time proportional to the number of intersection points.   

Such output-sensitive algorithms exist for line-segment intersection, with the fastest algorithm 
taking  time, where k is the number of intersections. Such algorithms are sufficiently 
complicated that you should use an existing implementation if you can. These algorithms are 
based on the sweepline approach, discussed below.

●     Can you see point x from point y? - Visibility queries ask whether vertex x can see vertex y 
unobstructed in a room full of obstacles. This can be phrased as the following line-segment 
intersection problem: does the line segment from x to y intersect any obstacle? Such visibility 

problems arise in robot motion planning (see Section ) and in hidden-surface elimination for 
computer graphics.     

●     Are the intersecting objects convex? - Better intersection algorithms exist when the line segments 
form the boundaries of polygons. The critical issue here becomes whether the polygons are 
convex. Intersecting a convex n-gon with a convex m-gon can be done in O(n+m) time, using a 
sweepline algorithm as discussed below. This is possible because the intersection of two convex 
polygons must form another convex polygon using at most n+m vertices.   

However, the intersection of two nonconvex polygons is not so well behaved. Consider the 
intersection of two ``combs'' generalizing the Picasso-like frontspiece to this section. As 
illustrated, the intersection of nonconvex polygons may be disconnected and have quadratic size 
in the worst case.   
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Intersecting two polyhedra is somewhat more complicated than intersecting polygons, because 
two polyhedra can intersect even when no edges do. Consider the example of a needle piercing 
the interior of a face. In general, however, the same issues arise for both polygons and polyhedra.

●     Are you searching for intersections repeatedly with the same basic objects? - In the walk-through 
application described above, the room and the objects in it don't change between one scene and 
the next. Only the person moves, and, further, the intersections are rare. 

One common solution is to approximate the objects in the scene by simpler objects that enclose 
them, such as boxes. Whenever two enclosing boxes intersect, then the underlying objects might 
intersect, and so further work is necessary to decide the issue. However, it is much more efficient 
to test whether simple boxes intersect than more complicated objects, so we win if collisions are 
rare. Many variations on this theme are possible, but this idea can lead to large performance 
improvements for complicated environments.    

Planar sweep algorithms can be used to efficiently compute the intersections among a set of line 
segments, or the intersection/union of two polygons. These algorithms keep track of interesting changes 
as we sweep a vertical line from left to right over the data. At its leftmost position, the line intersects 
nothing, but as it moves to the right, it encounters a series of events:    

●     Insertion - the leftmost point of a line segment may be encountered, and it is now available to 
intersect some other line segment.

●     Deletion - the rightmost point of a line segment is encountered. This means that we have 
completely swept over the segment on our journey, and so it can be deleted from further 
consideration.

●     Intersection - if we maintain the active line segments that intersect the sweep line as sorted from 
top to bottom, the next intersection must occur between neighboring line segments. After the 
intersection, these two line segments swap their relative order. 

Keeping track of what is going on requires two data structures. The future is maintained by an event 
queue, a priority queue ordered by the x-coordinate of all possible future events of interest: insertion, 

deletion, and intersection. See Section  for priority queue implementations. The present is represented 
by the horizon, an ordered list of line segments intersecting the current position of the sweepline. The 
horizon can be maintained using any dictionary data structure, such as a balanced tree.        

To adapt this approach to computing the intersection or union of polygons, we modify the processing of 
the three event types to keep track of what has occurred to the left of the sweepline. This algorithm can 
be considerably simplified for pairs of convex polygons, since (1) at most four polygon edges intersect 
the sweepline, so no horizon data structure is needed and (2) no event-queue sorting is needed, since we 
can start from the leftmost vertex of each polygon and proceed to the right by following the polygonal 
ordering. 
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Implementations: LEDA (see Section ) provides a C++ implementation of the Bentley-Ottmann 
sweepline algorithm [BO79], finding all k intersection points between n line segments in the plane in 

 time.    

O'Rourke [O'R94] provides a robust program in C to compute the intersection of two convex polygons. 

See Section .   

RAPID is a ``Rapid and Accurate Polygon Interference Detection library'' for large environments 
composed of polygonal models. It is free for noncommercial use and available from 
http://www.cs.unc.edu/  geom/OBB/OBBT.html.   

Model Pascal subroutines for convexity testing and for finding an intersection in a set of line segments 

appear in [MS91]. See Section  for details. XTango (see Section ) includes an animation of 
polygon clipping against a polygonal window.      

Finding the mutual intersection of a collection of half-spaces is a special case of higher-dimensional 
convex hulls, and Qhull [BDH97] is convex hull code of choice for general dimensions. Qhull has been 
widely used in scientific applications and has a well-maintained home page at 
http://www.geom.umn.edu/software/qhull/.   

Notes: Good expositions on line segment intersection detection [BO79, SH75] include [CLR90, Man89, 
NH93, PS85]. Good expositions on polygon and polyhedra intersection [HMMN84, MP78, SH76] 
include [PS85]. Preparata and Shamos [PS85] provide a good exposition on the special case of finding 
intersections and unions of axis-oriented rectangles, a problem that arises often in VLSI design.   

An optimal  algorithm for computing line segment intersections is due to Chazelle and 
Edelsbrunner [CE92]. Simpler, randomized algorithms achieving the same time bound are thoroughly 
presented by Mulmuley [Mul94].   

Surveys on hidden-surface removal include [Dor94, SSS74].   

Related Problems: Maintaining arrangements (see page ), motion planning (see page ).     
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Bin Packing

   

   

Input description: A set of n items with sizes  . A set of m bins with capacity  . 

Problem description: How can you store all the items using the smallest number of bins? 

Discussion: Bin packing arises in a variety of packaging and manufacturing problems.     Suppose that 
you are manufacturing widgets with parts cut from sheet metal, or pants with parts cut from cloth. To 
minimize cost and waste, we seek to lay out the parts so as to use as few fixed-size metal sheets or bolts 
of cloth as possible. Identifying which part goes on which sheet in which location is a bin-packing 
variant called the cutting stock problem.   After our widgets have been successfully manufactured, we 
will be faced with another bin packing problem, namely how best to fit the boxes into trucks to minimize 
  the number of trucks needed to ship everything. 

Even the most elementary-sounding bin-packing problems are NP-complete (see the discussion of integer 

partition in Section ),   so we are doomed to think in terms of heuristics instead of worst-case optimal 
algorithms.   Fortunately, relatively simple heuristics tend to work well on most bin-packing problems. 
Further, many applications have peculiar, problem-specific constraints that would frustrate highly tuned 
algorithms for the problem. The following factors will affect the choice of heuristic: 
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●     What are the shapes and sizes of objects? - The character of the problem depends greatly on the 
shapes of the objects to be packed. Packing pieces of a standard jigsaw puzzle is a different 
problem   than packing squares into a rectangular box. In one-dimensional bin packing, each 
object's size is given simply as an integer, making it a version of the knapsack problem of Section 

. This is equivalent to packing boxes of equal width into a chimney of that width. If all the 
boxes are of identical size and shape, the optimal packing is simply a cubic lattice, oriented 
appropriately with the walls of the bin. It is a waste to use the methods described in this section on 
such simple problems.

●     Are there constraints on the orientation and placement of objects? - In loading a truck, many of 
the boxes will say ``this side up.'' Respecting this constraint restricts our flexibility in packing and 
will likely lead to an increase in the number of trucks needed to send out the shipment. Similarly, 
boxes with fragile objects may be labeled ``do not stack'' and thus are constrained to sit on top of 
a pile of boxes. Most shippers seem to ignore these constraints. Indeed, your task will be simpler 
if you don't have to worry about the consequences of them.

●     Is the problem on-line or off-line? - Do we know the complete set of objects that we will be 
packing at the beginning of the job (an off-line problem)? Or will we get them one at a time and 
have to deal with them as they arrive (an on-line problem)?     The difference is important, 
because we can do a better job packing when we can take a global view and plan ahead. For 
example, we can arrange the objects in an order that will facilitate efficient packing, perhaps by 
sorting them from biggest to smallest. 

The standard heuristics for bin packing order the objects by size or shape (or in an on-line problem, 
simply the order they arrive in) and then insert them into bins. Typical insertion rules include (1) select 
the first or leftmost bin the object fits in, (2) select the bin with the most room, (3) select the bin that 
provides the tightest fit, or (4) select a random bin. 

Analytical and empirical results suggest that the best heuristic is first-fit, decreasing.   Sort the objects in 
decreasing order of size, so that the biggest object is first and the smallest last. Insert each object one by 
one into the first bin that has room for it. If no bin has room for it, we must start another bin. In the case 
of one-dimensional bin packing, this can never require more than 22% more bins than necessary and 
usually does much better. First-fit decreasing has an intuitive appeal to it; we pack the bulky objects first 
and hope that the little objects can be used to fill up the cracks. First-fit decreasing is easily implemented 
in  time, where  is the number of bins actually used, by doing a linear sweep 
through the bins on each insertion. A faster  implementation is possible by using binary tree to 
keep track of the space remaining in each bin. 

We can fiddle with the insertion order in such a scheme to deal with problem-specific constraints. For 
example, it is reasonable to take ``do not stack'' boxes last (perhaps after artificially lowering the height 
of the bins to give some room up top to work with) and to place fixed-orientation boxes at the beginning 
(so we can use the extra flexibility later to stick boxes into cracks). 

Packing boxes is much easier than packing arbitrary geometric shapes, enough so that a reasonable 
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approach for general shapes is to pack each part into its own box and then pack the boxes. Finding an 
enclosing rectangle for a polygonal part is easy; just find the upper, lower, left, and right tangents in a 
given orientation.   A minimum-area enclosing rectangle can be found by determining the orientation that 
leads to the smallest box. 

In the case of nonconvex parts, considerable useful space can be wasted in the holes created by placing 
the part in a box.     One solution is to find the maximum empty rectangle within each boxed part and use 
this to contain other parts if it is sufficiently large. More advanced solutions are discussed in the 
references. 

Implementations: Codes for the one-dimensional version of bin packing, the so-called knapsack 

problem, are presented in Section . 

XTango (see Section )   includes an animation of the first-fit bin packing heuristic.   Test data for bin 
packing is available from http://mscmga.ms.ic.ac.uk/info.html. 

Notes: See [CGJ96] for a survey of the extensive literature on approximation algorithms for bin packing. 
Expositions on heuristics for bin packing include [Baa88]. Experimental results on bin-packing heuristics 
include [BJLM83]. 

Sphere packing is an important and well-studied special case of bin packing, with applications to error-
correcting codes. Particularly notorious is the ``Kepler conjecture,'' the apparently still-open problem of 
establishing the densest packing of unit spheres in three dimensions. Conway and Sloane [CS93] is the 
best reference on sphere packing and related problems. Sloane provides an extensive set of tables of the 
best known packings, available from   ftp://netlib.bell-labs.com.     

Victor Milenkovic and his students have worked extensively on two-dimensional bin-packing problems 
for the apparel industry, minimizing the amount of material needed to manufacture pants and other 
clothing.   Recent reports of this work include [DM97, Mil97]. 

Related Problems: Knapsack problem (see page ), set packing (see page ).     
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Medial-Axis Transformation

   

   

Input description: A polygon or polyhedron P. 

Problem description: What is the set of points within P that have more than one closest point on the 
boundary of P? 

Discussion: The medial-axis transformation is useful in thinning a polygon, or, as is sometimes said, 
finding its skeleton. The goal is to extract a simple, robust representation of the shape of the polygon. As 
can be seen from the figures above, the thinned versions of the letters capture the essence of the shape of 
an `A' and a `B', and would be relatively unaffected by changing the thickness of strokes or by adding 
font-dependent flourishes such as serifs.       

The medial-axis transformation of a polygon is always a tree, making it fairly easy to use dynamic 
programming to measure the ``edit distance'' between the skeleton of a known model and the skeleton of 
an unknown object. Whenever the two skeletons are close enough, we can classify the unknown object as 
an instance of our model. This technique has proven useful in computer vision and in optical character 
recognition. The skeleton of a polygon with holes (like the `A' and `B') is not a tree, but an embedded 
planar graph, but it remains easy to work with.    
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There are two distinct approaches to computing medial-axis transforms, depending upon whether your 
inputs are arbitrary geometric points or pixel images: 

●     Geometric data - Recall that the Voronoi diagram of a point set S decomposes the plane into 
regions around each point  such that each point within the region around  is closer to  
than to any other site in S. Similarly, the Voronoi diagram of a set of line segments L decomposes 
the plane into regions around each line segment  such that each point within the region 
around  is closer to  than to any other site in L.   

Any polygon is defined by a collection of line segments such that  shares a vertex with  . The 
medial-axis transform of a polygon P is simply the portion of the line-segment Voronoi diagram 
that lies within P. 

Any line-segment Voronoi diagram code thus suffices to do polygon thinning. In the absence of 
such a code, the most readily implementable thinning algorithm starts at each vertex of the 
polygon and grows the skeleton inward with an edge bisecting the angle between the two 
neighboring edges. Eventually, these two edges meet at an internal vertex, a point equally far 
from three line segments. One of the three is now enclosed within a cell, while a bisector of the 
two surviving segments grows out from the internal vertex. This process repeats until all edges 
terminate in vertices.  

●     Image data - Whenever attempting geometric approaches to image processing problems, we must 
remain aware that images are pixel-based and not continuous. All the pixels sit as lattice points on 
an integer grid. While we can extract a polygonal description from the boundary and feed it to the 
geometric algorithms above, the internal vertices of the skeleton will most likely not lie at grid 
points. This may well make geometric approaches inappropriate for your intended application.    

Algorithms that explicitly manipulate pixels tend to be easy to implement, because they avoid 
complicated data structures. The basic pixel-based approach for constructing a skeleton directly 
implements the ``brush fire'' view of thinning. Imagine a brush fire along all edges of the polygon, 
burning inward at a constant speed. The skeleton is marked by all points where two or more fires 
meet.   The resulting algorithm traverses all the boundary pixels of the object, deletes all except 
the extremal pixels, and repeats. The algorithm terminates when all pixels are extreme, leaving an 
object only 1 or 2 pixels thick. When implemented properly, this takes time linear in the number 
of pixels in the image. 

The trouble with such pixel-based approaches is that the geometry doesn't work out exactly right. 
For example, the skeleton of a polygon is no longer always a tree or even necessarily connected, 
and the points in the skeleton will be close-to-but-not-quite equidistant to two boundary edges. 
The usual solution is to tweak your implementation until it gives skeletons that look decent on the 
data that you think is most interesting. Since you are trying to do continuous geometry in a 
discrete world, there is no way to solve the problem completely. You just have to live with it. 
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Implementations: MAT [Ogn93] is a medial-axis transform code designed for 2D skeletonization of 
binary images, written by Robert Ogniewicz. MAT accepts a variety of different input formats, including 
polygonal representations. This seems to be a solidly built program, and it should be your first stop on 
seeking a routine for thinning.   It available from http://hrl.harvard.edu/people/postdocs/rlo/rlo.dir/rlo-
soft.html. 

Programs for constructing Voronoi diagrams are discussed in Section . 

Notes: For a comprehensive surveys of thinning approaches in image processing, see [LLS92, Ogn93]. 
The medial axis transformation was introduced for shape similarity studies in biology [Blu67]. 
Applications of the medial-axis transformation in pattern recognition are discussed in [DH73]. Good 
expositions on the medial-axis transform include [O'R94, Pav82].   

The medial-axis of a polygon can be computed in  time for arbitrary n-gons [Lee82], although 
linear-time algorithms exist for convex polygons [AGSS89]. An  algorithm for constructing 
medial-axis transforms in curved regions was given by Kirkpatrick [Kir79]. 

Related Problems: Voronoi diagrams (see page ), Minkowski sum (see page ).     

       

 
Next: Polygon Partitioning Up: Computational Geometry Previous: Bin Packing 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK5/NODE193.HTM (3 of 3) [19/1/2003 1:31:52]



Polygon Partitioning

       

 
Next: Simplifying Polygons Up: Computational Geometry Previous: Medial-Axis Transformation 

Polygon Partitioning

   

   

Input description: A polygon or polyhedron P. 

Problem description: How can P be partitioned into a small number of simple (typically convex) 
pieces? 

Discussion: Polygon partitioning is an important preprocessing step for many geometric algorithms, 
because most geometric problems are simpler and faster on convex objects than on nonconvex ones. We 
are better off whenever we can partition a nonconvex object into a small number of convex pieces, 
because it is easier to work with the pieces independently than with the original object.   

Several flavors of polygon partitioning arise, depending upon the particular application: 

●     Should all the pieces be triangles? - The mother of all polygon partitioning problems is 
triangulation, where the interior of the polygon is completely partitioned into triangles. Triangles 
are always convex and have only three sides, so any geometric operation performed on a triangle 
is destined to be as simple as it can be.   

Because triangles all have three sides, all triangulations of polygons contain exactly the same 
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number of pieces. Therefore, triangulation cannot be the answer if we seek a small number of 
convex pieces. The goal of finding ``nice'' triangulations revolves around the shape of the 

triangles. See Section  for a thorough discussion of triangulation.
●     Do I want to cover or partition my polygon? - Partitioning a polygon means completely dividing 

the interior into nonoverlapping pieces. Covering a polygon means that our decomposition is 
permitted to contain mutually overlapping pieces. Both can be useful in different situations. In 

decomposing a complicated query polygon in preparation for range search (Section ), we seek 
a partitioning, so that each point we locate occurs in exactly one piece. In decomposing a polygon 
for painting purposes, a covering suffices, since there is no difficulty with filling in a region twice. 
We will concentrate here on partitioning, since it is simpler to do right, and any application 
needing a covering will accept a partitioning. The only potential drawback is that partitions can be 
somewhat larger than coverings.    

●     Am I allowed to add extra vertices? - A final issue associated with polygon decomposition is 
whether we are allowed to add Steiner vertices (either by splitting edges or adding interior points) 
or whether we are restricted to adding chords between two existing vertices. The former may 
result in a smaller number of pieces, at the cost of more complicated algorithms and perhaps 
messier results.   

The Hertel-Mehlhorn heuristic for convex decomposition using diagonals is simple, efficient, and always 
produces no more than four times the minimum number of convex pieces. It starts with an arbitrary 
triangulation of the polygon and then deletes a chord that leaves only convex pieces. The decision of 
whether a chord deletion will create a nonconvex piece can be made locally from the chords and edges 
surrounding the chord, in constant time. A vertex in a polygon is reflex if the internal angle is greater 
than 180 degrees. We can delete any chord that does not create a reflex vertex.    

I recommend using this heuristic unless it is critical for you to absolutely minimize the number of pieces. 
By experimenting with different triangulations and various deletion orders, you may be able to obtain 
somewhat better decompositions.   

Dynamic programming may be used to minimize the number of diagonals used in the decomposition. 
The simplest implementation, which maintains the number of pieces for all  subpolygons split by a 

chord, runs in  . Faster algorithms use fancier data structures, running in  time, where r is 

the number of reflex vertices. An  algorithm that further reduces the number of pieces by adding 
interior vertices is cited below, although it is complex and presumably difficult to implement. 

Implementations: Many triangulation codes start by finding a trapezoidal or monotone decomposition of 
polygons. Further, a triangulation is a simple form of convex decomposition. Check out the codes in 

Section  as a starting point for most any decomposition problem.     

A triangulation code of particular relevance here is GEOMPACK, a suite of Fortran 77 codes by Barry 
Joe, for 2- and 3-dimensional triangulation and convex decomposition problems. In particular, it does 
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both Delaunay triangulation and convex decompositions of polygonal and polyhedral regions, as well as 
arbitrary-dimensional Delaunay triangulations.    

Notes: Keil and Sack [KS85] given an excellent survey on what is known about partitioning and 
covering polygons. Expositions on the Hertel-Mehlhorn heuristic [HM83] include [O'R94]. The 

 dynamic programming algorithm for minimum convex decomposition using diagonals is due 

to Keil [Kei85]. The  algorithm minimizing the number of convex pieces with Steiner points 
appears in [CD85]. Feng and Pavlidis [FP75b] give a heuristic algorithm for polygon decomposition and 
apply it to optical character recognition.   

Art gallery problems are an interesting topic related to polygon covering, where we seek to position the 
minimum number of guards in a given polygon such that every point in the interior of the polygon is 
watched by at least one guard. This corresponds to covering the polygon with a minimum number of star-
shaped polygons. O'Rourke [O'R87] is a beautiful book which presents the art gallery problem and its 
many variations.      

Related Problems: Triangulation (see page ), set cover (see page ).     
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Simplifying Polygons

   

   

Input description: A polygon or polyhedron p, with n vertices. 

Problem description: Find a polygon or polyhedron p' with n' vertices, where the shape of p' is close to 
p and n' < n. 

Discussion: Polygon simplification has two primary applications. The first is in cleaning up a noisy 
representation of a polygon, perhaps obtained by scanning a picture of an object. By processing it, we 
hope to remove the noise and reconstruct the original object. The second is in data compression, where 
given a large and complicated object, we seek to simplify it by reducing detail. Ideally, we obtain a 
polygon with far fewer vertices that looks essentially the same. This can be a big win in computer 
graphics, where replacing a large model with a smaller model might have little visual impact but be 
significantly faster to render.       

Several issues arise in shape simplification: 

●     Do you want the convex hull? - The simplest way to simplify a polygon is to take the convex hull 

of its vertices (see Section ). The convex hull removes all internal concavities from the 
polygon. If you were simplifying a robot model for motion planning, this is a good thing, because 
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you are unlikely to be able to take advantage of the concavities in finding paths. If you were 
building an OCR system, the convex hull would be disastrous, because the concavities of 
characters provide most of the interesting features. An `X' would be identical to an `I', since both 
hulls are boxes. Another problem is that if the polygon is already convex, taking the convex hull 
will do nothing to simplify it further.    

●     Am I allowed to insert or just delete points? - What is typically needed is a way to represent the 
object as well as possible using only a given number of vertices. The simplest approaches employ 
local modifications to the boundary of the polygon, in order to reduce the vertex count. For 
example, if three consecutive vertices form a small-area triangle or define an extremely large 
angle, the center vertex can be deleted and replaced with an edge without severely distorting the 
polygon. 

Methods that only delete vertices quickly melt the shape into unrecognizability, however. More 
robust heuristics move vertices around to cover up the gaps that are created by deletions. Such 
``split-and-merge'' heuristics can do a decent job, although nothing is guaranteed. Better results 
are likely by using the Douglas-Peucker algorithm, described below.  

●     Must the resulting polygon be intersection-free? - A serious drawback of such incremental 
procedures is that they fail to ensure simple polygons, those without self-intersections. Thus the 
``simplified'' polygon may have artifacts that look ugly and that may cause problems for 
subsequent routines working on the polygon. If simplicity is important, you should test all the line 

segments of your polygon for any pairwise intersections, as discussed in Section .    

An approach to polygon simplification that guarantees a simple approximation involves 
computing minimum-link paths. The link distance of a path between points and t is the number of 
straight segments on the path. An as-the-crow-flies path has a link distance of one. In general, the 
link distance is one more than the number of turns. The link distance between points and t in a 
scene with obstacles is defined by the minimum link distance over all paths from to t.   

The link distance approach ``fattens'' the boundary of the polygon by some acceptable error 

window  (see Section ) in order to construct a channel around the polygon and then constructs 
the minimum-link path through this channel.   The minimum-link cycle in this channel represents 
the simplest polygon that never deviates from the original boundary by more than  . It constructs 
a globally optimal simplification that will not self-intersect, at the cost of implementation and 
time complexity.

●     Are you given an image to clean up instead of a polygon to simplify? - The conventional, 
nongeometric approach to cleaning up noise from a digital image is to take the Fourier transform 
of the image, filter out the high-frequency elements, and then take the inverse transform to 

recreate the image. See Section  for details on the fast Fourier transform.    

  The Douglas-Plucker algorithm for shape simplification starts with a simple approximation and then 
refines it, instead of starting with a complicated polygon and trying to simplify it. Start by selecting two 
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vertices  and  of polygon P, and propose the degenerate polygon  as a simple approximation 
P'. Scan through each of the vertices of P, and select the one that is farthest from the corresponding edge 
of the polygon P'. Inserting this vertex adds the triangle to P' so as to minimize the maximum deviation 
from P. Points can be inserted until satisfactory results are achieved. This takes O(kn) to insert k points 
when |P|=n. 

Simplification becomes considerably more difficult in three dimensions. For example, it is NP-complete 
to find the minimum-size surface separating two polyhedra. Higher-dimensional analogies of the planar 
algorithms discussed here can be used to heuristically simplify polyhedra. See the references below.   

Implementations: A program for automatically generating level-of-detail hierarchies for polygonal 
models is available from http://www.cs.unc.edu/  geom/envelope.html and is free for noncommercial 
use. The user specifies a single error tolerance, and the maximum surface deviation of the simplified 
model from the original model, and a new, simplified model is generated. This code preserves holes and 
prevents self-intersection.   

Yet another approach to polygonal simplification is based on simplifying and expanding the medial-axis 

transform of the polygon. The medial-axis transform (see Section ) produces a skeleton of the 
polygon, which can be trimmed before inverting the transform to yield a simpler polygon. MAT [Ogn93] 
is a medial-axis transform code designed for 2D skeletonization and inversion of binary images, written 
by Robert Ogniewicz and available from http://hrl.harvard.edu/people/postdocs/rlo/rlo.dir/rlo-soft.html.   
   

Notes: See [HG95] for a thorough survey of algorithms for shape simplification. It is also available from 
http://www.cs.cmu.edu/afs/cs/user/ph/www/heckbert.html, along with implementations. 

The Douglas-Peucker incremental refinement algorithm [DP73] is the basis for most shape simplification 
schemes, with a faster implementation due to Hershberger and Snoeyink [HS94]. The link distance 
approach to polygon simplification is presented in [GHMS93]. Shape simplification problems become 
considerably more complex in three dimensions. Even finding the minimum-vertex convex polyhedron 
lying between two nested convex polyhedra is NP-complete [DJ92], although approximation algorithms 
are known [MS95b]. 

Testing whether a polygon is simple can be performed in linear time, at least in theory, as a consequence 
of Chazelle's linear-time triangulation algorithm [Cha91].   

Related Problems: Fourier transform (see page ), convex hull (see page ).     
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Shape Similarity

   

   

Input description: Two polygonal shapes,  and  . 

Problem description: How similar are  and  ? 

Discussion: Shape similarity is a problem that underlies much of pattern recognition. Consider a system 
for optical character recognition (OCR). We have a known library of shape models representing letters 
and the unknown shapes we obtain by scanning a page. We seek to identify an unknown shape by 
matching it to the most similar shape model.      

The problem of shape similarity is inherently ill-defined, because what ``similar'' means is application 
dependent. Thus no single algorithmic approach can solve all shape matching problems. Whichever 
method you select, expect to spend a large chunk of time tweaking it so as to achieve maximum 
performance. Don't kid yourself - this is a difficult problem. 

Among your possible approaches are: 

●     Hamming Distance - Assume that your two polygons have been overlaid one on top of the other. 
The Hamming distance measures the area of symmetric difference between the two polygons, in 
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other words, the area of the regions lying within one of the two polygons but not both of them. If 
the two polygons are identical, and properly aligned, the Hamming distance will be zero. If the 
polygons differ only in a little noise at the boundary, then the Hamming distance will be small if 
the polygons are properly aligned. If the two polygons are completely disjoint, then the Hamming 
distance is the sum of the areas of the two polygons.    

Computing the area of the symmetric difference reduces to finding the intersection or union of 

two polygons, as discussed in Section , and then computing areas, as discussed in . The 
difficult part of computing Hamming distance is finding the right alignment, or overlay, of the 
two polygons. For certain applications, such as OCR, the overlay problem is simplified because 
the characters are inherently aligned with the page and thus not free to rotate. Hamming distance 
is particularly simple and efficient to compute on bit-mapped images, since after alignment all we 
do is sum the differences of the corresponding pixels.       

Although Hamming distance makes sense conceptually and can be simple to implement, it 
captures only a crude notion of shape and is likely to be ineffective in most applications.

●     Hausdorff distance - An alternative distance metric is Hausdorff distance, which identifies the 
point on  that is the maximum distance from  and returns this distance. The Hausdorff distance 
is not symmetrical, for the distance from  to  is not necessarily the distance from  to  . 
Note the difference between Hamming and Hausdorff distance. A large but thin protrusion from 
one of the models will have a large effect on the Hausdorff distance but little on the Hamming 
distance. However, a fattening of the entire boundary of one of the models (as is liable to happen 
with boundary noise) by a small amount will increase the Hamming distance yet have little effect 
on the Hausdorff distance.    

Which is better, Hamming or Hausdorff? It depends upon your application. As with Hamming 
distance, computing the right alignment between the polygons can be difficult and time-
consuming. Again, Hausdorff distance captures only a crude notion of shape.

●     Comparing Skeletons - A more powerful approach to shape similarity uses thinning (see Section 

) to extract a tree-like skeleton for each object. This skeleton captures many aspects of the 
original shape. The problem now reduces to comparing the shape of two such skeletons, using 
such features as the topology of the tree and the lengths/slopes of the edges. This comparison can 

be modeled as a form of subgraph isomorphism (see Section ), with edges allowed to match 
whenever their lengths and slopes are sufficiently similar.   

●     Neural Networks - A final method for shape comparison uses neural networks, which are 

discussed in Section . Neural nets prove a reasonable approach to recognition problems when 
you have a lot of data to experiment with and no particular ideas of what to do with it. First, you 
must identify a set of easily computed features of the shape, such as area, number of sides, and 
number of holes. Based on these features, a black-box program (the neural network training 
algorithm) takes your training data and produces a classification function. This classification 
function accepts as input the values of these features and returns a measure of what the shape is, 
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or how close it is to a particular shape.     

How good are the resulting classifiers? It depends upon the application. Like any ad hoc method, 
neural networks usually take a fair amount of tweaking and tuning to realize their full potential. 

One caveat. Because your classifier was developed by a black box, you never really know why 
your classifier is making its decisions, so you can't know when it will fail. An interesting case was 
a system built for the military to distinguish between images of cars and tanks. It performed very 
well on test images but disastrously in the field. Eventually, someone realized that the car images 
had been filmed on a sunnier day than the tanks, and the program was classifying solely on the 
presence of clouds in the background of the image!     

Implementations: The Stuttgart Neural Network Simulator supports many types of networks and 
training algorithms, as well as sophisticated graphical visualization tools under X11. It has been ported to 
many flavors of UNIX. It is available for ftp from ftp.informatik.uni-stuttgart.de [129.69.211.2] in 
directory /pub/SNNS as SNNSv4.1.tar.gz (1.4 MB, Source code) and SNNSv4.1.Manual.ps.gz (1 MB, 
Documentation). It may be best to first have a look at the file SNNSv4.1.Readme. More information can 
be found in the WWW under http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/snns.html    

An alternate distance metric between polygons can be based on its angle turning function [ACH  91]. 
An implementation in C of this turning function metric by Eugene K. Ressler is provided on the 
algorithm repository http://www.cs.sunysb.edu/  algorith. 

Notes: General books on pattern classification algorithms include [DH73, JD88]. A wide variety of 
computational geometry approaches to shape similarity testing have been proposed, including 
[AMWW88, ACH  91, Ata84, AE83, BM89, OW85]. 

A linear-time algorithm for computing the Hausdorff distance between two convex polygons is given in 
[Ata83], with algorithms for the general case reported in [HK90]. 

Related Problems: Graph isomorphism (see page ), thinning (see page ).     
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Motion Planning 

   

   

Input description: A polygonal-shaped robot in a given starting position in a room containing polygonal 
obstacles, with a desired ending position t. 

Problem description: Find the shortest path in the room taking to t without intersecting any of the 
obstacles. 

Discussion: The difficulty of motion planning will be obvious to anyone who has ever had to move a 
large piece of furniture into a small apartment. The problem of motion planning also arises in systems for 
molecular docking. Many drugs are small molecules that act by binding to a given target model. The 
problem of identifying which binding sites are accessible to a candidate drug is clearly an instance of 
motion planning. Plotting paths for mobile robots is another canonical motion-planning application.        

Motion planning also provides a tool for computer animation. Given a set of object models that appear in 
two different scenes  and  , a motion planning algorithm can construct a short sequence of 
intermediate motions to transform  to  . These motions can serve to fill in the intermediate scenes 
between  and  , with such scene interpolation greatly reducing the amount of work the animator has to 
do.    
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There is a wide range in the complexity of motion planning problems, with many factors to consider: 

●     Is your robot a point? - When the robot is a point, the problem becomes finding the shortest path 
from to t around the obstacles, also known as geometric shortest path. The most readily 
implementable approach constructs the visibility graph of the polygonal obstacles, plus the points 
and t. This visibility graph has a vertex for each obstacle vertex and an edge between two obstacle 
vertices if they ``see'' each other without being blocked by some obstacle edge.     

A brute-force algorithm to construct the visibility graph tests each candidate edge against the  
obstacle edges for a total time of  time. By weighting each edge of the visibility graph with 

its length and using Dijkstra's shortest-path algorithm (see Section ) on this graph, we can find 
the shortest path from to t in time bounded by the time to construct the graph.

●     How is your robot free to move? - Motion planning becomes considerably more difficult when the 
robot becomes a polygon instead of a point. Now we must make sure that all of the corridors we 
use are wide enough to permit the robot to pass through. The complexity depends upon the 
number of degrees of freedom the robot has to move. Is it free to rotate as well as to translate? 
Does the robot have links that are free to bend or to rotate independently, as in an arm with a 
hand? Each degree of freedom corresponds to a dimension in the search space. Therefore, the 
more freedom, the harder it is to compute a path between two locations, although it becomes more 
likely that such a path exists.    

●     Can you simplify the shape of your robot? - Motion planning algorithms tend to be complex and 
time-consuming. Anything you can do to simplify your environment would be a win. In 
particular, consider replacing your robot by an enclosing disk. If there is a path for the disk, there 
will be a path for whatever is inside of it. Further, since any orientation of a disk is equivalent to 
any other orientation, rotation provides no help in finding a path Therefore, all movements are 
limited to translation only.   

●     Are motions limited to translation only? - When rotation is not allowed, the expanded obstacles 
approach can be used to reduce the problem to that of motion planning for a point robot, which is 
simply the shortest path in a graph. Pick a reference point on the robot, and replace each obstacle 

by the Minkowski sum of the object and the robot (see Section ). This creates a larger obstacle, 
defined as the robot walks a loop around the obstacle while maintaining contact with it. Finding a 
path from the initial position of the reference point to the goal point amidst these fattened 
obstacles defines a legal path for the polygonal robot.   

●     Are the obstacles known in advance? - Thus far we have assumed that the robot starts out with a 
map of its environment. This is not always true, or even possible, in applications where the 
obstacles move. There are two approaches to solving motion planning problems without a map. 
The first approach explores the environment, building a map of what has been seen, and then uses 
this map to plan a path to the goal. A simpler strategy, which will fail in environments of 
sufficient complexity, proceeds like a sightless man with a compass. Walk in the direction 
towards the goal until progress is blocked by an obstacle, and then trace a path along the obstacle 
until the robot is again free to proceed directly towards the goal.    
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The most practical approach to motion planning involves randomly sampling the configuration space of 
the robot. The configuration space defines the set of legal positions for the robot and has one dimension 
for each degree of freedom. For a planar robot capable of translation and rotation, the degrees of freedom 
are the x- and y-coordinates of a reference point on the robot and the angle  relative to this point. Certain 
points in this space represent legal positions, while others intersect obstacles.    

Construct a set of legal configuration-space points by random sampling. For each pair of points  and  , 
decide whether there exists a direct, nonintersecting path between them. Construct a graph with vertices 
for each legal point and edges for each such traversable pair. The problem of finding a motion between 
two arbitrary positions reduces to seeing if there is a direct path from the initial/final position to some 
vertex in the graph, and then solving a shortest-path problem in the graph. 

There are lots of ways to enhance this basic technique for specific applications, such as adding additional 
vertices to regions of particular interest. This is a nice, clean approach for solving problems that would 
get very messy otherwise. 

Implementations: An implementation of collision detection (not really motion planning) is the 
I_COLLIDE collision detection library. For more information, check out the I_COLLIDE WWW page: 
http://www.cs.unc.edu/  geom/I_COLLIDE.html.   

O'Rourke [O'R94] gives a toy implementation of an algorithm to plot motion for a two-jointed robot arm 

in the plane. See Section .   

Notes: Motion planning was originally studied by Schwartz and Sharir as the ``piano mover's problem.'' 
Their solution constructs the complete free space of robot positions which do not intersect obstacles, and 
then finds the shortest path within the proper connected component. These free space descriptions are 
very complicated, involving arrangements of higher-degree algebraic surfaces. The fundamental papers 
on the piano mover's problem appear in [HSS87], with [SS90] being a survey of current results. The best 
general result for this free space approach to motion planning is due to Canny [Can87], who showed that 

any problem with d degrees of freedom can be solved in  , although faster algorithms exist for 
special cases of the general motion planning problem.    

Latombe's book [Lat91] describes practical approaches to motion planning, including the random 
sampling method described above. The expanded obstacle approach to motion planning is due to Lozano-
Perez and Wesley [LPW79]. The heuristic, sightless man's approach to motion planning discussed above 
has been studied by Lumelski [LS87]. 

The time complexity of algorithms based on the free-space approach to motion planning depends 
intimately on the combinatorial complexity of the arrangement of surfaces defining the free space. 

Algorithms for maintaining arrangements are presented in Section . Davenport-Schintzl sequences 
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often arise in the analysis of such arrangements. Sharir and Agarwal [SA95] provide a comprehensive 
treatment of Davenport-Schintzl sequences and their relevance to motion planning.    

Kedem and Sharir [KS90] give an  time algorithm to find a path (not necessarily shortest) to 

translate a convex k-gon from to t. Vegter [Veg90] gives an optimal  algorithm for moving a line 
segment (often called a ladder) in the plane with both translation and rotation. 

Related Problems: Shortest path (see page ), Minkowski sum (see page ).     
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Maintaining Line Arrangements

   

   

Input description: A set of lines and line segments  . 

Problem description: What is the decomposition of the plane defined by  ? 

Discussion: One of the most fundamental problems in computational geometry is constructing 
arrangements of lines, that is, explicitly building the regions formed by the intersections of a set of n 
lines. Algorithms for a surprising number of problems are based on constructing and analyzing the 
arrangement of a specific set of lines:      

●     Degeneracy testing - Given a set of n lines in the plane, do any three of them pass through the 
same point? Brute-force testing of all triples takes  time. Instead, we can construct the 
arrangement of the lines and then walk over each vertex and explicitly count its degree, all in 
quadratic time.  

●     Satisfying the maximum number of linear constraints - Suppose that we are given a set of n linear 
constraints, each of the form  . Which point in the plane satisfies the largest number of 
them? Construct the arrangement of the lines. All points in any region or cell of this arrangement 
satisfy exactly the same set of constraints, so we need to test only one point per cell in order to 
find the global maximum.   
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Thinking of geometric problems in terms of the appropriate features in an arrangement can be very useful 
in formulating algorithms. Unfortunately, it must be admitted that arrangements are not as popular in 
practice as might be supposed. First, a certain depth of understanding is required to apply them correctly. 
Second, there have been few available implementations of the fundamental algorithms, a situation that is 
partially addressed below. 

●     What do you want to do with the arrangement? - Given an arrangement and a query point, we are 
often interested in identifying which cell of the arrangement contains the point. This is the 

problem of point location, discussed in Section . Given an arrangement of lines or line 
segments, we are often interested in computing all points of intersection of the lines. The problem 

of intersection detection is discussed in Section .
●     How big will your arrangement be? - Algorithms for constructing arrangements are incremental. 

Beginning with an arrangement of one or two lines, subsequent lines are inserted into the 
arrangement one at a time, building larger and larger arrangements. To insert a new line, we start 
on the leftmost cell containing the line and walk over the arrangement to the right, moving from 
cell to neighboring cell and splitting into two pieces those cells that contain the new line.   

A geometric fact called the zone theorem implies that the kth line inserted cuts through k cells of 
the arrangement, and further that O(k) total edges form the boundary of these cells. This means 
that we can scan through each edge of every cell we encounter on our insertion walk, confident 
that linear total work will be performed while inserting the line into the arrangement. Therefore, 
the total time to insert all n lines in constructing the full arrangement is  .   

●     Does your input consist of points instead of lines? - Although lines and points seem to be different 
geometric objects, such appearances can be misleading. Through the use of duality 
transformations, we can turn line L into point p and vice versa: 

 

Duality is important because we can now apply line arrangements to point problems, often with 
surprising results.    

For example, suppose we are given a set of n points, and we want to know whether any three of 
them all lie on the same line. This sounds similar to the degeneracy testing problem discussed 
above. Not only is it similar, it is exactly the same, with only the role of points and lines 
exchanged. The answer follows from taking our points, dualizing them into lines as above, 
constructing the arrangement as above, and then searching for a vertex with three lines passing 
through it. The dual of this vertex gives the line on which the three initial vertices lie.   

Once we have constructed an arrangement through incremental methods, it often becomes useful to 
traverse each face of the arrangement exactly once. Such traversals are called sweepline algorithms and 
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are discussed in some detail in Section . The basic procedure is to sort the intersection points by x-
coordinate and then walk from left to right while keeping track of all we have seen.   

Implementations: Arrange is a package written in C by Michael Goldwasser for maintaining 
arrangements of polygons in either the plane or on the sphere. Polygons may be degenerate and hence 
represent arrangements of lines. A randomized incremental construction algorithm is used and efficient 
point location on the arrangement supported. Polygons may be inserted but not deleted from the 
arrangement, and arrangements of several thousand vertices and edges can be constructed in a few 
seconds. Arrange is available from http://theory.stanford.edu/people/wass/wass.html.    

LEDA (see Section ) provides a function that constructs an embedded planar graph from a set of line 
segments, essentially constructing their arrangement.   

Notes: Edelsbrunner [Ede87] provides a comprehensive treatment of the combinatorial theory of 
arrangements, plus algorithms on arrangements with applications. It is an essential reference for anyone 
seriously interested in the subject. Good expositions on constructing arrangements include [O'R94]. 

Arrangements generalize naturally beyond two dimensions. Instead of lines, the space decomposition is 
defined by planes (or beyond 3-dimensions, hyperplanes). In general dimensions, the zone theorem states 
that any arrangement of n d-dimensional hyperplanes has total complexity  , and any single 

hyperplane intersects cells of complexity  . This provides the justification for the incremental 
construction algorithm for arrangements. Walking around the boundary of each cell to find the next cell 
that the hyperplane intersects takes time proportional to the number of cells created by inserting the 
hyperplane.   

The history of the zone theorem has become somewhat muddled, because the original proofs were later 
found to be in error in higher dimensions. See [ESS93] for a discussion and a correct proof. The theory 
of Davenport-Schintzl sequences is intimately tied into the study of arrangements. It is presented in 
[SA95].    

The naive algorithm for sweeping an arrangement of lines sorts the  intersection points by x-coordinate 
and hence requires  time. The topological sweep [EG89, EG91] eliminates the need to sort, and 
it traverses the arrangement in quadratic time. This algorithm is readily implementable and can be 
applied to speed up many sweepline algorithms.   

Related Problems: Intersection detection (see page ), point location (see page ).     
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Minkowski Sum

   

   

Input description: Point sets or polygons A and B, with n and m vertices, respectively. 

Problem description: What is the convolution of A and B, i.e. the Minkowski sum 
 ? 

Discussion: Minkowski sums are useful geometric operations that can be used to fatten objects in 
appropriate ways. For example, a popular approach to motion planning for polygonal robots in a room 

with polygonal obstacles (see Section ) fattens each of the obstacles by taking the Minkowski sum of 
them with the shape of the robot. This reduces the problem to moving a point from the start to the goal 

using a standard shortest-path algorithm. Another application is in shape simplification (see Section ), 
where we fatten the boundary of an object to create a channel and then define as the shape the minimum 
link path lying within this channel. Similarly, convolving an irregular object with a small circle will help 
smooth out the boundaries by eliminating minor nicks and cuts.       

The definition of Minkowski sum assumes that the polygons A and B have been positioned on a 
coordinate system: 
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where x+y is the vector sum of two points. Thinking of this in terms of translation, the Minkowski sum is 
the union of all translations of A by a point defined within B. Issues arising in computing Minkowski 
sums include:   

●     Are your objects rasterized images or explicit polygons? - The definition of Minkowski 
summation suggests a simple algorithm if A and B are rasterized images, and thus contain a 
number of pixels proportional to their area. Initialize a sufficiently large matrix of pixels by 
determining the size of the convolution of the bounding boxes of A and B. For each pair of points 
in A and B, sum up their coordinates and darken the appropriate pixel. These algorithms get 
somewhat more complicated if an explicit polygonal representation of the Minkowski sum is 
needed.   

●     Are your objects convex or nonconvex? - The complexity of computing Minkowski sum depends 
in a serious way on the shape of the polygons. If both A and B are convex, the Minkowski sum 
can be found in O(n+m) time by tracing the boundary of one polygon with another. If one of them 
is nonconvex, the size of the sum alone can be as large as  . Even worse is when both A and 
B are nonconvex, in which case the size of the sum can be as large as  . Be aware that the 
Minkowski sum of nonconvex polygons can have a certain ugliness to it. For example, holes can 
be either created or destroyed.   

Although more efficient algorithms exist, a straightforward approach to computing the Minkowski sum is 
based on triangulation and union. First, triangulate both polygons, then compute the Minkowski sum of 
each triangle of A against each triangle of B. The sum of a triangle against another triangle is easy to 
compute and is a special case of convex polygons, discussed below. The union of these O(n m) convex 
polygons will be A+B. Algorithms for computing the union of polygons are based on plane sweep, as 

discussed in Section .    

Computing the Minkowski sum of two convex polygons is easier than the general case, because the sum 
will always be convex. For convex polygons, it is easiest to slide A along the boundary of B and compute 
the sum edge by edge. This is the best approach for triangles against triangles as well. 

Implementations: To date, we have not uncovered a suitable Minkowski sum code. When we do, it will 
be made available on http://www.cs.sunysb.edu/  algorith, the Algorithm Repository site. 

Notes: Good expositions on algorithms for Minkowski sums include [O'R94]. The fastest algorithms for 
various cases of Minkowski sums include [KOS91, Sha87]. Kedem and Sharir [KS90] present an 
efficient algorithm for translational motion planning for polygonal robots, based on Minkowski sums. 

Related Problems: Thinning (see page ), motion planning (see page ), simplifying polygons (see 
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page ).       
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Set and String Problems
  

Sets and strings both represent collections of objects. The primary difference is whether order matters. 
Sets are collections of symbols whose order is assumed to carry no significance, while the arrangement 
of symbols is exactly what defines a string.    

The assumption of a canonical order makes it possible to solve string problems much more efficiently 
than set problems, through techniques such as dynamic programming and advanced data structures like 
suffix trees. The interest in and importance of string processing algorithms have been increasing, largely 
due to biological and text-processing applications. A product of this interest are three recent books on 
string algorithms:   

●     Crochemore and Rytter [CR94] - A comprehensive book on advanced string algorithms, but 
somewhat formal and fairly difficult to follow.

●     Stephen [Ste94] - A reasonably gentle introduction to basic string algorithmics. Possibly the best 
available book for the beginner.

●     Gusfield [Gus97] - This is now the most comprehesive introduction to string algorithms. It 
contains a thorough discussion on suffix trees, with new, clear formulations of classical exact 
string-matching algorithms. 

●     Set Cover 
●     Set Packing 
●     String Matching 
●     Approximate String Matching 
●     Text Compression 
●     Cryptography 
●     Finite State Machine Minimization 
●     Longest Common Substring 
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●     Shortest Common Superstring 
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Next: Set Packing Up: Set and String Problems Previous: Set and String Problems 

Set Cover

   

   

Input description: A set of subsets  of the universal set  . 

Problem description: What is the smallest subset T of S such that  ? 

Discussion: Set cover arises when you try to efficiently acquire or represent items that have been 
packaged in a fixed set of lots. You want to obtain all the items, while buying as few lots as possible. 
Finding a cover is easy, because you can always buy one of each lot. However, by finding a small set 
cover you can do the same job for less money.    

An interesting application of set cover is Boolean logic minimization. We are given a particular Boolean 
function of k variables, which for each of the  possible input vectors describes whether the desired 
output is 0 or 1. We seek the simplest circuit that exactly implements this function. One approach is to 
find a disjunctive normal form (DNF) formula on the variables and their complements, such as 

 . We could build one ``and'' term for each input vector and then ``or'' them all together, but 
we might save considerably by factoring out common subsets of variables. Given a set of feasible ``and'' 
terms, each of which covers a subset of the vectors we need, we seek to ``or'' together the smallest 
number of terms that realize the function. This is exactly the set cover problem.      
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There are several variations of set cover problems to be aware of: 

●     Are you allowed to cover any element more than once? - The distinction here is between set 

covering and set packing, the latter of which is discussed in Section . If we are allowed to 
cover elements more than once, as in the logic minimization problem above, we should take 
advantage of this freedom, as it usually results in a smaller covering.  

●     Are your sets derived from the edges or vertices of a graph? - Set cover is a very general problem, 
and it includes several useful graph problems as special cases. Suppose instead that you seek the 
smallest set of edges in a graph that covers each vertex at least once. The solution is to find a 

maximum matching in the graph (see Section ), and then add arbitrary edges to cover the 
remaining vertices. Suppose you seek the smallest set of vertices in a graph that covers each edge 

at least once. This is the vertex cover problem, discussed in Section .    

It is instructive to model vertex cover as an instance of set cover. Let the universal set U be the set 
of edges  . Construct n subsets, with  consisting of the edges incident on vertex  . 
Although vertex cover is just a set cover problem in disguise, you should take advantage of the 
fact that better algorithms exist for vertex cover.

●     Do your subsets contain only two elements each? - When all of your subsets have at most two 
elements each, you are in luck. This is about the only special case that you can solve efficiently to 
optimality, by using the matching technique described above. Unfortunately, as soon as your 
subsets get to have three elements each, the problem becomes NP-complete.  

●     Do you want to cover elements with sets, or sets with elements? - In the hitting set problem, we 
seek a small number of items that together represent an entire population. Formally, we are given 
a set of subsets  of the universal set  , and we seek the smallest 

subset  such that each subset  contains at least one element of T. Thus  for all 

 . Suppose we desire a small Congress with at least one representative of each ethnic 
group. If each ethnic group is represented as a subset of people, the minimum hitting set is the 

smallest possible politically correct Congress. Hitting set is illustrated in Figure .      
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Figure: Hitting set is dual to set cover  

Hitting set is, in fact, dual to set cover, meaning it is exactly the same problem in disguise. 
Replace each element of U by a set of the names of the subsets that contain it. Now S and U have 
exchanged roles, for we seek a set of subsets from U to cover all the elements of S. This is is 
exactly the set cover problem. Thus we can use any of the set cover codes below to solve hitting 
set after performing this simple translation. 

Since the vertex cover problem is NP-complete, the set cover problem must be at least as hard. In fact, it 
is somewhat harder. Approximation algorithms do no worse than twice optimal for vertex cover, but only 
a  times optimal approximation algorithm exists for set cover. 

The greedy heuristic is the right approach for set cover. Begin by placing the largest subset in the set 
cover, and then mark all its elements as covered. We will repeatedly add the subset containing the largest 
number of uncovered elements, until all elements are covered. This heuristic always gives a set cover 
using at most  times as many sets as optimal, and in practice it usually does a lot better.   

The simplest implementation of the greedy heuristic sweeps through the entire input instance of m 
subsets for each greedy step. However, by using such data structures as linked lists and a bounded-height 

priority queue (see Section ), the greedy heuristic can be implemented in O(S) time, where  

is the size of the input representation.   

It pays to check whether there are certain elements that exist in only a few subsets, ideally only one. If 
so, we should select the biggest subsets containing these elements at the very beginning. We will have to 
take them eventually, and they carry with them extra elements that we might have to pay to cover by 
waiting until later. 

Simulated annealing is likely to produce somewhat better set covers than these simple heuristics, if that is 
important for your application. Backtracking can be used to guarantee you an optimal solution, but 
typically it is not worth the computational expense.    

Implementations: Pascal implementations of an exhaustive search algorithm for set packing, as well as 

heuristics for set cover, appear in [SDK83]. See Section .   

Notes: Survey articles on set cover include [BP76]. See [CK75] for a computational study of set cover 
algorithms. An excellent exposition on algorithms and reduction rules for set cover is presented in 
[SDK83].   

Good expositions of the greedy heuristic for set cover include [CLR90]. An example demonstrating that 
the greedy heuristic for set cover can be as bad as  is presented in [Joh74, PS82]. This is not a defect 
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of the heuristic. Indeed, it is provably hard to approximate set cover to within an approximation factor 
better than  [LY93].   

Related Problems: Matching (see page ), vertex cover (see page ), set packing (see page ).       
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Next: String Matching Up: Set and String Problems Previous: Set Cover 

Set Packing

   

   

Input description: A set of subsets  of the universal set  . 

Problem description: What is the largest number of mutually disjoint subsets from S? 

Discussion: Set packing problems arise in partitioning applications, where we need to partition elements 
under strong constraints on what is an allowable partition. The key feature of packing problems is that no 
elements are permitted to be covered by more than one set. Consider the problem of finding the 

maximum independent set in a graph G, discussed in Section . We seek a large subset of vertices such 
that each edge is adjacent to at most one of the selected vertices. To model this as set packing, let the 
universal set consist of all edges of G, and subset  consist of all edges incident on vertex  . Any set 
packing corresponds to a set of vertices with no edge in common, in other words, an independent set.    

Scheduling airline flight crews to airplanes is another application of set packing. Each airplane in the 
fleet needs to have a crew assigned to it, consisting of a pilot, copilot, and navigator. There are 
constraints on the composition of possible crews, based on their training to fly different types of aircraft, 
as well as any personality conflicts. Given all possible crew and plane combinations, each represented by 
a subset of items, we need an assignment such that each plane and each person is in exactly one chosen 
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combination. After all, the same person cannot be on two different planes, and every plane needs a crew. 
We need a perfect packing given the subset constraints.      

Set packing is used here to represent a bunch of problems on sets, all of which are NP-complete and all 
of which are quite similar:   

●     Must every element from the universal set appear in one selected subset? - In the exact cover 
problem, we seek some collection of subsets such that each element is covered exactly once. The 
airplane scheduling problem above has the flavor of exact covering, since every plane and crew 
has to be employed.    

Unfortunately, exact cover is similar to that of Hamiltonian cycle in graphs. If we really must 
cover all the elements exactly once, and this existential problem is NP-complete, then all we can 
do is exponential search. This will be prohibitive unless there are so many solutions that we will 
stumble upon one quickly.   

Things will be far better if we can be content with a partial solution, say by adding each element 
of U as a singleton subset of S. Thus we can expand any set packing into an exact cover by 
mopping up the unpacked elements of U with singleton sets. Now our problem is reduced to 
finding a minimum-cardinality set packing, which can be attacked via heuristics, as discussed 
below.

●     What is the penalty for covering elements twice? - In set cover (see Section ), there is no 
penalty for elements existing in many selected subsets. In pure set packing, any such violation is 
forbidden. For many such problems, the truth lies somewhere in between. Such problems can be 
approached by charging the greedy heuristic more to select a subset that contains previously 
covered elements than one that does not. 

The right heuristics for set packing are greedy, and similar to those of set cover (see Section ). If we 
seek a packing with many sets, then we repeatedly select the smallest subset, delete all subsets from S 
that clash with it, and repeat. If we seek a packing with few subsets, we do the same but always pick the 
largest possible subset. As usual, augmenting this approach with some exhaustive search or 
randomization (in the form of simulated annealing) is likely to yield better packings at the cost of 
additional computation.    

Implementations: Since set cover is a more popular and more tractable problem than set packing, it 
might be easier to find an appropriate implementation to solve the cover problem. Many such 
implementations should be readily modifiable to support certain packing constraints. 

Pascal implementations of an exhaustive search algorithm for set packing, as well as heuristics for set 

cover, appear in [SDK83]. See Section  for details on ftp-ing these codes.   
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Notes: An excellent exposition on algorithms and reduction rules for set packing is presented in 
[SDK83], including the airplane scheduling application discussed above. Survey articles on set packing 
include [BP76]. 

Related Problems: Independent set (see page ), set cover (see page ).     
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String Matching

   

   

Input description: A text string t of length n. A pattern string p of length m. 

Problem description: Find the first (or all) instances of the pattern in the text. 

Discussion: String matching is fundamental to database and text processing applications. Every text 
editor must contain a mechanism to search the current document for arbitrary strings. Pattern matching 
programming languages such as Perl and Awk derive much of their power from their built-in string 
matching primitives, making it easy to fashion programs that filter and modify text. Spelling checkers 
scan an input text for words in the dictionary and reject any strings that do not match.        

Several issues arise in identifying the right string matching algorithm for the job: 

●     Are your search patterns and/or texts short? - If your strings are sufficiently short and your 
queries sufficiently infrequent, the brute-force O(m n)-time search algorithm will likely suffice. 
For each possible starting position  , it tests whether the m characters starting 
from the ith position of the text are identical to the pattern. 

For very short patterns, say  , you can't hope to beat brute force by much, if at all, and you 
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shouldn't try. Further, since we can reject the possibility of a match at a given starting position the 
instant we observe a text/pattern mismatch, we expect much better than O(mn) behavior for 
typical strings. Indeed, the trivial algorithm usually runs in linear time. But the worst case 
certainly can occur, as with pattern  and text  .

●     What about longer texts and patterns? - By being more clever, string matching can be performed 
in worst-case linear time. Observe that we need not begin the search from scratch on finding a 
character mismatch between the pattern and text. We know something about the subsequent 
characters of the string as a result of the partial match from the previous position. Given a long 
partial match from position i, we can jump ahead to the first character position in the pattern/text 
that will provide new information about the text starting from position i+1. The Knuth-Moris-
Pratt algorithm preprocesses the search pattern to construct such a jump table efficiently. The 
details are tricky to get correct, but the resulting implementations yield short, simple programs.    

Even better in practice is the Boyer-Moore algorithm, although it offers similar worst-case 
performance. Boyer-Moore matches the pattern against the text from right to left, in order to avoid 
looking at large chunks of text on a mismatch. Suppose the pattern is abracadabra, and the 
eleventh character of the text is x. This pattern cannot match in any of the first eleven starting 
positions of the text, and so the next necessary position to test is the 22nd character. If we get very 
lucky, only n/m characters need ever be tested. The Boyer-Moore algorithm involves two sets of 
jump tables in the case of a mismatch: one based on pattern matched so far, the other on the text 
character seen in the mismatch. Although somewhat more complicated than Knuth-Morris-Pratt, it 
is worth it in practice for patterns of length m > 5.  

●     Will you perform multiple queries on the same text? - Suppose you were building a program to 
repeatedly search a particular text database, such as the Bible. Since the text remains fixed, it pays 
build a data structure to speed up search queries. The suffix tree and suffix array data structures, 

discussed in Section , are the right tools for the job.      
●     Will you search many texts using the same patterns? - Suppose you were building a program to 

screen out dirty words from a text stream. Here, the set of patterns remains stable, while the 
search texts are free to change. In such applications, we may need to find all occurrences of each 
of k different patterns, where k can be quite large. 

Performing a linear-time search for each of these patterns yields an O(k (m+n)) algorithm. If k is 
large, a better solution builds a single finite automaton that recognizes each of these patterns and 
returns to the appropriate start state on any character mismatch. The Aho-Corasick algorithm 
builds such an automaton in linear time. Space savings can be achieved by optimizing the pattern 

recognition automaton, as discussed in Section . This algorithm was used in the original 
version of fgrep.       

Sometimes multiple patterns are specified not as a list of strings, but concisely as a regular 
expression. For example, the regular expression  matches any string on (a,b,c) 
that begins and ends with an a, including a itself. The best way to test whether input strings are 
described by a given regular expression R is to construct the finite automaton equivalent to R and 
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then simulate the machine on the string. Again, see Section  for details on constructing 
automata from regular expressions.   

When the patterns are specified by context-free grammars instead of regular expressions, the 
problem becomes one of parsing, discussed in books on compilers and programming languages.   

●     What if our text or pattern contains a spelling error? - Finally, observe that the algorithms 
discussed here work only for exact string matching. If you must allow some tolerance for spelling 

errors, your problem is approximate string matching, which is throughly discussed in Section . 
   

Implementations: SPARE Parts is a string pattern recognition toolkit, written in C++ by Bruce Watson. 
It provides production-quality implementations of all major variants of the classical string matching 
algorithms for single patterns (both Knuth-Morris-Pratt and Boyer-Moore) and multiple patterns (both 
Aho-Corasick and Commentz-Walter). SPARE Parts is available by anonymous ftp from ftp.win.tue.nl in 
/pub/techreports/pi/watson.phd/. A greatly improved commercial version is available from 
www.RibbitSoft.com.     

XTango (see Section ) provides animations for both the Boyer-Moore and Knuth-Morris-Pratt 
algorithms. The C source code for each animation is included.    

Implementations in C and Pascal of several algorithms for exact and approximate string matching appear 
in [GBY91]. Sedgewick provides similar implementations of Knuth-Morris-Pratt, Rabin-Karp, and 

Boyer-Moore in C++. See Section  for details on both codes.   

Implementations in C of the Boyer-Moore, Aho-Corasick, and regular expression matching algorithms 
appear in [BR95]. The code for these algorithms is printed in the text and available on disk for a modest 
fee. 

Notes: All books on string algorithms contain thorough discussions of exact string matching, including 
[CR94, Ste94, Gus97]. Good expositions on the Boyer-Moore [BM77] and Knuth-Morris-Pratt 
algorithms [KMP77] include [Baa88, CLR90, Man89]. 

Aho [Aho90] provides a good survey on algorithms for pattern matching in strings, particularly where 
the patterns are regular expressions instead of strings, and for the Aho-Corasick algorithm for multiple 
patterns [AC75]. An algorithm merging Aho-Corasick and Boyer-Moore can be faster for small numbers 
of patterns [CW79], but the window where it wins is apparently fairly narrow. 

Empirical comparisons of string matching algorithms include [DB86, Hor80, dVS82]. Which algorithm 
performs best depends upon the properties of the strings and the size of the alphabet. For long patterns 
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and texts, I recommend that you use the best implementation of Boyer-Moore that you can find.   

An interesting classical problem is determining the minimum number of comparisons needed to perform 
exact string matching. A version of Boyer-Moore never makes more than 2n comparisons independent of 
the number of occurrences of the pattern in the text [AG86]. More recent results are very technical, 
depending upon the details of the model and the alphabet size. There is a lower bound of n-m+1 text 
characters that any algorithm must be examine in the worst case [Riv77]. The history of string matching 
algorithms is somewhat checkered because several published proofs were incorrect or incomplete 
[Gus97]. 

The Karp-Rabin algorithm [KR87] uses a hash function to perform string matching in linear expected 
time. Its worst-case time remains quadratic, and its performance in practice appears somewhat worse 
than the character comparison methods described above.   

Related Problems: Suffix trees (see page ), approximate string matching (see page ).     
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Input description: A text string t and a pattern string p. An edit cost bound k. 

Problem description: Can we transform t to p using at most k insertions, deletions, and substitutions? 

Discussion: Approximate string matching is fundamental to text processing, because we live in an error-
prone world. Any spelling correction program must be able to identify the closest match for any text 
string not found in a dictionary. Genbank has become a fundamental tool for molecular biology by 
supporting homology (similarity) searches on DNA sequences. Suppose you were to sequence a new 
gene in man, and you discovered that it is similar to the hemoglobin gene in rats. It is likely that this new 
gene also produces hemoglobin, and any differences are the result of genetic mutations during evolution. 
      

I once encountered approximate string matching in evaluating the performance of an optical character 
recognition system that we built. After scanning and recognizing a test document, we needed to compare 
the correct answers with those produced by our system. To improve our system, it was important to count 
how often each pair of letters were getting confused and to identify gibberish when the program was 
trying to make out letters where none existed. The solution was to do an alignment between the two texts. 
Insertions and deletions corresponded to gibberish, while substitutions signaled errors in our recognizers. 
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This same principle is used in file difference programs, which identify the lines that have changed 
between two versions of a file.          

When no errors are permitted, the problem becomes that of exact string matching, which is presented in 

Section . Here, we restrict our discussion to dealing with errors.    

Dynamic programming provides the basic approach to approximate string matching, as discussed in 

Section . Let D[i,j] denote the cost of editing the first i characters of the text string t into the first j 
characters of the pattern string p. The recurrence follows because we must have done something with  
and  . The only options are matching them, substituting one for the other, deleting  , or inserting a 
match for  . Thus D[i,j] is the minimum of the costs of these possibilities: 

1.  If  then D[i-1,j-1] else D[i-1,j-1] + substitution cost.
2.  D[i-1,j] + deletion cost of  .
3.  D[i,j-1] + deletion cost of  . 

Several issues remain before we can make full use of this recurrence: 

●     Do I want to match the pattern against the full text, or against a substring? - Appropriately 
initializing the boundary conditions of the recurrence distinguishes between the algorithms for 
string matching and substring matching. Suppose we want to align the full text against the full 
pattern. Then the cost of D[i,0] must be that of deleting the first i characters of the text, so D[i,0] 
= i. Similarly, D[0,j] = j.    

Now suppose that the pattern may occur anywhere within the text. The proper cost of D[i,0] is 
now 0, since there should be no penalty for starting the alignment in the ith position. The cost of 
D[0,j] remains j, however, since the only way to match the first j pattern characters with nothing 
is to delete all of them. The cost of the best pattern match against the text will be given by 

 .

●     How should I select the substitution and insertion/deletion costs? - The basic algorithm can be 
easily modified to use different costs for insertion, deletion, and the substitutions of specific pairs 
of characters. Which costs you use depends upon what you are planning to do with the alignment. 
  

The most common cost assignment charges the same for insertion, deletion, or substitution. 
Charging a substitution cost of more than insertion + deletion is a good way to ensure that 
substitutions never get performed, since it will be cheaper to edit both characters out of the string. 
With just insertion and deletion to work with, the problem reduces to longest common 

subsequence, discussed in Section . Often, it pays to tweak the edit distance costs and study 
the resulting alignments until you find a set that does the job.
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●     How do I get the actual alignment of the strings, instead of just the cost? - To obtain the transcript 
of the editing operations performed in achieving the minimum cost alignment, we can work 
backwards from the complete cost matrix D. To get to cell D[n,m], we had to come from one of 
D[n-1,m] (insertion), D[n,m-1] (deletion), or D[n-1,m-1] (substitution/match). Which of the three 
options was chosen can be reconstructed given these costs and the characters  and  . By 
continuing to work backwards from the previous cell, we can trace the entire path and thus 
reconstruct the alignment.

●     What if the two strings are very similar to each other? - The dynamic programming algorithm can 
be thought of as finding a shortest path across an  grid, where the cost of each edge depends 
upon which operation it represents. If we seek an alignment involving a combination of at most d 
insertions, deletions, and substitutions, we need only traverse the band of O(d n) cells within a 
distance d of the central diagonal. If no such low-cost alignment exists within this band, then no 
low-cost alignment can exist in the full cost matrix.

●     How can I minimize the required storage? - Dynamic programming takes both quadratic time and 
space. For many applications, the space required to store the dynamic programming table is a 
much more serious problem. Observe that only  space is needed to compute D[m,n], 
since we need only maintain two active rows (or columns) of the matrix in order to compute the 
final value. The entire matrix is required only if we need to reconstruct the actual sequence 
alignment.   

To save space, we can use Hirschberg's clever recursive algorithm. During one pass of the linear-
space algorithm above to compute D[m,n], we maintain all the values for the (m/2)nd column and 
identify which middle-element cell D[m/2,x] was used to optimize D[m,n]. This reduces our 
problem to finding the best paths from D[1,1] to D[m/2,x] and from D[m/2,x] to D[m/2,n], both of 
which can be solved recursively. Each time we throw away half of the matrix elements from 
consideration, and so the total time remains O(mn). This linear-space algorithm proves to be a big 
win in practice on long strings, although it is somewhat more difficult to program.  

●     Does string similarity mean that the strings sound alike? - Other models of approximate pattern 
matching become more appropriate than edit distance in certain applications. Particularly 
interesting is Soundex, a hashing scheme that attempts to pair up English words that sound alike. 
This can be useful in testing whether two names that have been spelled differently are likely to be 
the same. For example, my last name is often spelled ``Skina'', ``Skinnia'', ``Schiena'', and 
occasionally ``Skiena''. All of these hash to the same Soundex code, S25.     

The algorithm works by dropping vowels and silent letters, removing doubled letters, and then 
assigning the remaining letters numbers from the following classes: BFPV gets a 1, CGJKQSXZ 
gets a 2, DT gets a 3, L gets a 4, MN gets a 5, and R gets a 6. The code starts with the first letter 
and contains at most three digits. Although this all sounds very hokey, experience shows that it 
works reasonably well. Experience indeed: Soundex has been used since the 1920's. 

Implementations: The best available software tools for approximate pattern matching are glimpse and 
agrep [WM92a, WM92b], developed by Manber and Wu at the University of Arizona and available from 
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http://glimpse.cs.arizona.edu/. Glimpse is a tool for building and using an index to search through file 
systems, while agrep (approximate general regular expression pattern matcher) is a tool supporting text 
search with spelling errors.    Both programs are widely used and respected. 

ht://Dig is an alternative WWW text search engine from Andrew Scherpbier, which contains 
implementations of Soundex and Metaphone. It is available from http://htdig.sdsu.edu/ and is released 
under the GNU general public license.   

Implementations in C of the Soundex and dynamic programming edit-distance algorithms appear in 
[BR95]. The code for these algorithms is printed in the text and is available on disk for a modest fee.    

Bare bones implementations in C and Pascal of several algorithms for exact and approximate string 

matching appear in [GBY91]. See Section  for further details. 

Notes: The wide range of applications for approximate string matching was made apparent in Sankoff 
and Kruskal's book [SK83], which remains a useful historical reference for the problem. Surveys on 
approximate pattern matching include [HD80]. The basic dynamic programming alignment algorithm is 
attributed to [WF74], although it is apparently folklore. The edit distance between two strings is 
sometimes referred to as the Levenshtein distance. Expositions of dynamic programming to compute 
Levenshtein distance include [Baa88, CLR90, Man89]. Expositions of Hirschberg's linear-space 
algorithm [Hir75] include [CR94, Gus97]. 

Masek and Paterson [MP80] compute the edit distance between m- and n-length strings in time 

 for constant-sized alphabets, using ideas from the four Russians algorithm for 
Boolean matrix multiplication [ADKF70].   The shortest path formulation leads to a variety of algorithms 

that are good when the edit distance is small, including an  algorithm due to Myers [Mye86]. 
Longest increasing subsequence can be done in  time [HS77], as presented in [Man89].   

Soundex was invented and patented by M. K. Odell and R. C. Russell. Expositions on Soundex include 
[BR95, Knu73b]. Metaphone is a recent attempt to improve on Soundex [BR95, Par90].    

Related Problems: String matching (see page ), longest common substring (see page ).     
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Input description: A text string S. 

Problem description: A shorter text string S' such that S can be correctly reconstructed from S'. 

Discussion: Secondary storage devices fill up quickly on every computer system, even though their 
capacity doubles each year. Decreasing storage prices have only increased interest in data compression, 
since there is now more data to compress than ever before. Data compression is the algorithmic problem 
of finding alternative, space-efficient encodings for a given data file. With the rise of computer networks, 
a new mission for data compression has arisen, that of increasing the effective bandwidth of networks by 
reducing the number of bits before transmission.         

Data compression is a problem for which practical people like to invent ad hoc methods, designed for 
their particular applications. Sometimes these outperform general methods, but often they do not. The 
following issues arise in selecting the right data compression algorithm: 

●     Must we exactly reconstruct the input text after compression? - A primary issue in data 
compression algorithms is the question of lossy versus lossless encodings. Text applications 
typically demand lossless encodings, because users become disturbed whenever their data files 
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have been corrupted. However, fidelity is not such an issue in image or video compression, where 
the presence of small artifacts will be imperceptible to the viewer. Significantly greater 
compression ratios can be obtained using lossy compression, which is why all image/video/audio 
compression algorithms take advantage of this freedom.      

●     Can I simplify my data before I compress it? - The most effective way to free up space on a disk is 
to delete files you don't need. Likewise, any preprocessing you can do to a file to reduce its 
information content before compression will pay off later in better performance. For example, is it 
possible to eliminate extra blank spaces or lines from the file? Can the document be converted 
entirely to uppercase characters or have formatting information removed?

●     Does it matter whether the algorithm is patented? - One concern is that many data compression 
algorithms are patented, in particular the LZW variation of the Lempel-Ziv algorithm discussed 
below. Further, Unisys, the owner of the patent, makes periodic attempts to collect. My personal 
(although not legal) recommendation is to ignore them, unless you are in the business of selling 
text compression software. If this makes you uncomfortable, note that there are other variations 
on the Lempel-Ziv algorithm that are not under patent protection and perform about as well. See 
the notes and implementations below.    

●     How do I compress image data - Run-length coding is the simplest lossless compression 
algorithm for image data, where we replace runs of identical pixel values with one instance of the 
pixel and an integer giving the length of the run. This works well on binary images with large 
regions of similar pixels (like scanned text) and terribly on images with many quantization levels 
and a little noise. It can also be applied to text with many fields that have been padded by blanks. 
Issues like how many bits to allocate to the count field and the traversal order converting the two-
dimensional image to a stream of pixels can have a surprisingly large impact on the compression 
ratio.        

For serious image and video compression applications, I recommend that you use a lossy coding 
method and not fool around with implementing it yourself. JPEG is the standard high-
performance image compression method, while MPEG is designed to exploit the frame-to-frame 
coherence of video. Encoders and decoders for both are provided in the implementation section.

●     Must compression and decompression both run in real time? - For many applications, fast 
decompression is more important than fast compression, and algorithms such as JPEG exist to 
take advantage of this. While compressing video for a CD-ROM, the compression will be done 
only once, while decompression will be necessary anytime anyone plays it. In contrast, operating 
systems that increase the effective capacity of disks by automatically compressing each file will 
need a symmetric algorithm with fast compression times as well. 

Although there are literally dozens of text compression algorithms available, they are characterized by 
two basic approaches. In static algorithms, such as Huffman codes, a single coding table is built by 
analyzing the entire document. In adaptive algorithms, such as Lempel-Ziv, a coding table is built on the 
fly and adapts to the local character distribution of the document. An adaptive algorithm will likely prove 
to be the correct answer:   

●     Huffman codes - Huffman codes work by replacing each alphabet symbol by a variable-length 

file:///E|/BOOK/BOOK5/NODE205.HTM (2 of 4) [19/1/2003 1:32:11]



Text Compression 

code string. ASCII uses eight bits per symbol in English text, which is wasteful, since certain 
characters (such as `e') occur far more often than others (such as `q'). Huffman codes compress 
text by assigning `e' a short code word and `q' a longer one.      

Optimal Huffman codes can be constructed using an efficient greedy algorithm. Sort the symbols 
in increasing order by frequency. We will merge the two least frequently used symbols x and y 
into a new symbol m, whose frequency is the sum of the frequencies of its two child symbols. By 
replacing x and y by m, we now have a smaller set of symbols, and we can repeat this operation n-
1 times until all symbols have been merged. Each merging operation defines a node in a binary 
tree, and the left or right choices on the path from root-to-leaf define the bit of the binary code 
word for each symbol. Maintaining the list of symbols sorted by frequency can be done using 
priority queues, which yields an  -time Huffman code construction algorithm. 

Although they are widely used, Huffman codes have three primary disadvantages. First, you must 
make two passes over the document on encoding, the first to gather statistics and build the coding 
table and the second to actually encode the document. Second, you must explicitly store the 
coding table with the document in order to reconstruct it, which eats into your space savings on 
short documents. Finally, Huffman codes exploit only nonuniformity in symbol distribution, 
while adaptive algorithms can recognize the higher-order redundancy in strings such as 
0101010101....

●     Lempel-Ziv algorithms - Lempel-Ziv algorithms, including the popular LZW variant, compress 
text by building the coding table on the fly as we read the document. The coding table available 
for compression changes at each position in the text. A clever protocol between the encoding 
program and the decoding program ensures that both sides of the channel are always working with 
the exact same code table, so no information can be lost.    

Lempel-Ziv algorithms build coding tables of recently-used text strings, which can get arbitrarily 
long. Thus it can exploit frequently-used syllables, words, and even phrases to build better 
encodings. Further, since the coding table alters with position, it adapts to local changes in the text 
distribution, which is important because most documents exhibit significant locality of reference. 

The truly amazing thing about the Lempel-Ziv algorithm is how robust it is on different types of 
files. Even when you know that the text you are compressing comes from a special restricted 
vocabulary or is all lowercase, it is very difficult to beat Lempel-Ziv by using an application-
specific algorithm. My recommendation is not to try. If there are obvious application-specific 
redundancies that can safely be eliminated with a simple preprocessing step, go ahead and do it. 
But don't waste much time fooling around. No matter how hard you work, you are unlikely to get 
significantly better text compression than with gzip or compress, and you might well do worse.    

Implementations: A complete list of available compression programs is provided in the 
comp.compression FAQ (frequently asked questions) file, discussed below. This FAQ will likely point 
you to what you are looking for, if you don't find it in this section.   
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The best general-purpose program for text compression is gzip, which implements a public domain 
variation of the Lempel-Ziv algorithm. It is distributed under the GNU software licence and can by 
obtained from ftp://prep.ai.mit.edu/pub/gnu/gzip-1.2.4.tar. Unix compress is another popular 
compression program based on the patented LZW algorithm. It is available from 
ftp://wuarchive.wustl.edu/packages/compression/compress-4.1.tar.    

A JPEG implementation is available from ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v6a.tar.gz. MPEG can be 
found at ftp://havefun.stanford.edu/pub/mpeg/MPEGv1.2.2.tar.Z.    

Algorithm 673 [Vit89] of the Collected Algorithms of the ACM is a Pascal implementation of dynamic 

Huffman codes, which is a one-pass, adaptive text compression algorithm. See Section  for details on 
fetching this program.    

Notes: Many books on data compression are available, but we highly recoomend Bell, Cleary, and 
Witten [BCW90] and Storer [Sto88]. Another good source of information is the USENET newsgroup 
comp.compression. Check out its particularly comprehensive FAQ (frequently asked questions) 
compendium at location ftp://rtfm.mit.edu/pub/usenet/news.answers/compression-faq. 

Good expositions on Huffman codes [Huf52] include [AHU83, BR95, CLR90, Eve79a, Man89]. 
Expositions on the LZW [Wel84, ZL78] algorithm include [BR95]. 

There is an annual IEEE Data Compression Conference, the proceedings of which should be studied 
seriously before attempting to develop a new data compression algorithm. On reading the proceedings, it 
will become apparent that this is a mature technical area, where much of the current work (especially for 
text compression) is shooting for fairly marginal improvements on special applications. On a more 
encouraging note, we remark that this conference is held annually at a world-class ski resort in Utah.     

Related Problems: Shortest common superstring (see page ), cryptography (see page ).     
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Input description: A plaintext message T or encrypted text E, and a key k. 

Problem description: Encode T using k giving E, or decode E using k back to T. 

Discussion: Cryptography has grown substantially in importance in recent years, as computer networks 
have made confidential documents more vulnerable to prying eyes.       Cryptography is a way to increase 
security by making messages difficult to read if they fall into the wrong hands. Although the discipline of 
cryptography is at least two thousand years old, its algorithmic and mathematical foundations have 
recently solidified to the point where there can now be talk of provably secure cryptosystems. 

There are three classes of cryptosystems everyone should be aware of: 

●     Caesar shifts -       The oldest ciphers involve mapping each character of the alphabet to a 
different letter. The weakest such ciphers rotate the alphabet by some fixed number of characters 
(often 13), and thus have only 26 possible keys. Better is to use an arbitrary permutation of the 
letters, so there are 26! possible keys. Even so, such systems can be easily attacked by counting 
the frequency of each symbol and exploiting the fact that `e' occurs more often than `z'. While 
there are variants that will make this more difficult to break, none will be as secure as DES or 
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RSA.
●     Data Encryption Standard (DES) - This algorithm is based on repeatedly       shuffling the bits of 

your text as governed by the key. The standard key length for DES (56 bits) is now considered too 
  short for applications requiring the highest level of security. However, a simple variant called 
triple DES permits an effective key length of 112 bits by using three rounds of DES with two 56-
bit keys.   In particular, first encrypt with key1, then decrypt with key2, before finally encrypting 
with key1. There is a mathematical reason for using three rounds instead of two, and the encrypt-
decrypt-encrypt pattern is used so that the scheme is equivalent to single DES when key1 = key2.

●     Rivest-Shamir-Adelman (RSA) - RSA is a public key cryptosystem,       meaning that different 
keys are used to encode and decode messages. Since the encoding key is of no help in decoding, it 
can be made public at no risk to security. The security of RSA is based on the difference in the 

computational complexity of factoring and primality testing (see Section ).    Encoding is 
(relatively) fast because it relies on primality testing to construct the key, while the hardness of 
decryption follows from that of factoring. Still, RSA is slow relative to other cryptosystems, 
roughly 100 to 1,000 times slower than DES. 

The key issue in selecting a cryptosystem is identifying your paranoia level, i.e. deciding how much 
security you need.   Who are you trying to stop from reading your stuff: your grandmother, local thieves, 
the Mafia, or the NSA?     If you can use an accepted implementation of RSA, such as PGP discussed 
below, you should feel safe against just about anybody. 

If there is an implementation of DES on your machine, that will likely be good enough for most 
applications. For example, I use DES to encrypt my final exam each semester, and it proved more than 
sufficient the time an ambitious student broke into my office looking for it.   If the NSA had been 
breaking in, the story might have been different, although even here it is important to understand that the 
most serious security holes are human, not algorithmic.   Making sure your password is long enough, 
hard to guess, and not written down is far more important than obsessing about the encryption algorithm. 

Simple ciphers like the Caesar shift are fun and easy to program. For this reason, it is perhaps healthy to 
use them for applications needing only a casual level of security (such as hiding the punchlines of jokes). 
Since they are easy to break, they should never be used for serious security applications. 

One thing that you should never do is mess around with developing your own novel cryptosystem. The 
security of DES and RSA is accepted largely because these systems have both survived over twenty 
years of public scrutiny. Over this period, many other cryptosystems have been proposed, proven 
vulnerable to attack, and then abandoned. This is not a field for amateurs. If you are charged with 
implementing a cryptosystem, carefully study a respected program such as PGP (discussed below) to see 
how its author, Philip Zimmermann, skillfully handled such issues as key selection and key distribution.   
A cryptosystem is as strong as its weakest link. 

There are several problems related to cryptography that arise often in practice: 
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●     How can I validate the integrity of data against corruption? -     In any communications 
application, there is need to validate that the transmitted data is identical to that which has been 
received. One solution is for the received to transmit the data back to the source and have the 
original sender confirm that the two texts are identical. This fails when the exact inverse of an 
error is made in the retransmission, but a more serious problem is that your available bandwidth is 
cut in half with such a scheme. 

A more efficient if less reliable method is to use a checksum, a   simple mathematical function that 
hashes a long text down to a simple number or digit, and then transmit the checksum along with 
the text. The checksum can be recomputed on the receiving end and bells set off if the computed 
checksum is not identical to what was received. Perhaps the simplest checksum scheme just adds 
up the byte or character values and takes the sum modulo some constant, say  . 
Unfortunately, an error transposing two or more characters would go undetected under such a 
scheme, since addition is commutative. 

Cyclic-redundancy check (CRC)     provides a more powerful method for computing checksums 
and is used in most communications systems and internally in computers to validate disk drive 
transfers.   These codes compute the remainder in the ratio of two polynomials, the numerator of 
which is a function of the input text. The design of these polynomials involves considerable 
mathematical sophistication and ensures that all reasonable errors are detected. The details of 
efficient computation are complicated enough that we recommend that you start from an existing 
implementation, described below.

●     How can I prove that a file has not been changed? - If I send you a contract in electronic form, 
what is to stop you from editing the file and then claiming that your version was what we had 
really agreed to? I need a way to prove that any modification to a document is fraudulent.   Digital 
signatures are a cryptographic way for me to stamp my document as genuine. 

Given a file, I can compute a checksum for it, and then encrypt this checksum using my own 
private key. I send you the file and the encrypted checksum. You can now edit the file, but to fool 
the judge you must also edit the encrypted checksum such that it can be decrypted to the correct 
checksum. With a suitably good checksum function, designing a file that yields the same 
checksum becomes an insurmountable problem.

●     How can I prove that I am me? - Authentication is the process of one party convincing another 
that they are who they say they are. The historical solutions have involved passwords or keys, so I 
prove that I am who I say I am because I know my credit card number or carry an ID card.   The 
problem with such schemes is that anyone who eavesdrops on this conversation or who steals my 
physical key can now successfully impersonate me. 

What we need is some way for me to convince you that I know my key, without actually telling 
you the key. One such method to do so is for you to send me a random number or text, and I use 
my key to encrypt your text and send it back to you. If you then decrypt this text and compare it to 
the message you sent me, you gain confidence that I am who I say I am. We can repeat this 
exercise on several random texts until sufficient authentication has been agreed upon. If we use a 
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secure enough cryptosystem, we can be confident that an eavesdropper will not be able to deduce 
my key even given several plain and encrypted texts. 

Such authentication protocols of back-and-forth messages often involve the use of randomness to 
frustrate eavesdroppers.       Different protocols satisfy particular needs and constraints about who 
has to know what. It is important to do some reading before attempting to design your own 
protocols. References are provided below. 

Implementations: The USENET FAQ (frequently asked questions) file on cryptography provides a 
wealth of information, including pointers   to implementations. Check it out at 
ftp://rtfm.mit.edu/pub/usenet/news.answers/cryptography-faq/. 

Distributing cryptographic software is complicated by United States export restrictions, which make it 
illegal to export encryption software. PGP (Pretty Good Privacy) is such a good implementation of RSA 
that its author Philip Zimmerman was charged with export violations by federal authorities.   PGP may 
be obtained from the Electronic Frontier Foundation (EFF) at 
http://www.eff.org/pub/Net_info/Tools/Crypto/PGP/.     

A good discussion on checksums and cyclic-redundancy codes, with implementations in C, appear in 
[BR95]. The code for these algorithms is printed in the text and is available on disk for a modest fee. 

The Stanford Graphbase (see Section ) uses checksums to ensure that data files remain unmodified 
from the original distribution.     Algorithm 536 [Kno79] of the Collected Algorithms of the ACM is an 

encryption function for passwords, written in Fortran. See Section  for further information. 

Notes: Kahn [Kah67] presents the fascinating history of cryptography from ancient times to 1967 and is 
particularly noteworthy in light of the secretive nature of the subject.   More recent and more technical 
works on cryptography include Denning [Den82] and Schneier [Sch94], the latter of which provides a 
through overview of different cryptographic algorithms, including implementations for sale. Rawlins 
[Raw92] provides a good introduction to cryptographic algorithms, from Caesar shift to public key to 
zero-knowledge proofs.   An algorithm for breaking simple substitution ciphers appears in [PR79]. 

Expositions on the RSA algorithm [RSA78] include [CLR90]. The RSA Laboratories home page 
http://www.rsa.com/rsalabs/ is very informative. See [Sta95] for an excellent guide to PGP and its 
underlying algorithms. 

The history of DES is well presented in [Sch94]. Particularly controversial was the decision by the NSA 
to limit key length to 56 bits, presumably short enough to be cracked by special-purpose computers 
costing on the order of several million dollars.   Despite some theoretical progress in breaking DES 
analytically [BS93], the most significant threat remains special-purpose hardware. 
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MD5 [Riv92] is the secure hashing function used by PGP to compute digital signatures.     Expositions 
include [Sch94, Sta95]. 

Related Problems: Factoring and primality testing (see page ), Text compression (see page )).     
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Finite State Machine Minimization 

   

   

Input description: A deterministic finite automaton M. 

Problem description: The smallest deterministic finite automaton M' such that M' behaves identically to 
M. 

Discussion: Problems associated with constructing and minimizing finite state machines arise repeatedly 
in software and hardware design applications. Finite state machines are best thought of as pattern 
recognizers, and minimum-size machines correspond to recognizers that require less time and space. 
Complicated control systems and compilers are often built using finite state machines to encode the 
current state and associated actions, as well as the set of possible transitions to other states. Minimizing 
the size of this machine minimizes its cost.          

Finite state machines are best thought of as edge-labeled directed graphs, where each vertex represents 
one of n states and each edge a transition from one state to the other on receipt of the alphabet symbol 
that labels the edge. The automaton above analyzes a given sequence of coin tosses, with the dark states 
signifying that an even number of heads have been observed. Automata can be represented using any 

graph data structure (see Section ), or by using an  transition matrix, where  is the size of the 
alphabet.       
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Finite state machines are often used to specify search patterns in the guise of regular expressions, which 
are patterns formed by and-ing, or-ing, and looping over smaller regular expressions. For example, the 
regular expression  matches any string on (a,b,c) that begins and ends with an a 
(including a itself). The best way to test whether a string is described by a given regular expression 
(especially if many strings will be tested) is to construct the equivalent finite automaton and then 

simulate the machine on the string. See Section  for alternative approaches to string matching.    

We consider three different problems on finite automata: 

●     Minimizing deterministic finite state machines - Transition matrices for finite automata quickly 
become prohibitively large for sophisticated machines, thus fueling the need for tighter encodings. 
The most direct approach is to eliminate redundant states in the automaton. As the example above 
illustrates, automata of widely varying sizes can compute the same function.    

Algorithms for minimizing the number of states in a deterministic finite automaton (DFA) appear 
in any book on automata theory. The basic approach works by partitioning the states into gross 
equivalence classes and then refining the partition. Initially, the states are partitioned into 
accepting, rejecting, and other classes. The transitions from each node branch to a given class on a 
given symbol. Whenever two states , t in the same class C branch to elements of different classes, 
the class C must be partitioned into two subclasses, one containing , the other containing t.   

This algorithm makes a sweep though all the classes looking for a new partition, and repeating the 
process from scratch if it finds one. This yields an  algorithm, since at most n-1 sweeps need 
ever be performed. The final equivalence classes correspond to the states in the minimum 
automaton. In fact, a more efficient,  algorithm is known with available implementations 
discussed below.  

●     Constructing deterministic machines from nondeterministic machines - DFAs are simple to 
understand and work with, because the machine is always in exactly one state at any given time. 
Nondeterministic automata (NFAs) can be in more than one state at a time, so its current ``state'' 
represents a subset of all possible machine states.   

In fact, any NFA can be mechanically converted to an equivalent DFA, which can then be 
minimized as above. However, converting an NFA to a DFA can cause an exponential blowup in 
the number of states, which perversely might later be eliminated in the minimization. This 
exponential blowup makes automaton minimization problems NP-hard whenever you do not start 
with a DFA.   

The proofs of equivalence between NFAs, DFAs, and regular expressions are elementary enough 
to be covered in undergraduate automata theory classes. However, they are surprisingly nasty to 
implement, for reasons including but not limited to the exponential blowup of states. 
Implementations are discussed below.
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●     Constructing machines from regular expressions - There are two approaches to converting a 
regular expression to an equivalent finite automaton, the difference being whether the output 
automaton is to be a nondeterministic or deterministic machine. The former is easier to construct 
but less efficient to simulate.    

The nondeterministic construction uses  -moves, which are optional transitions that require no 
input to fire. On reaching a state with an  -move, we must assume that the machine can be in 
either state. Using such  -moves, it is straightforward to construct an automaton from a depth-first 
traversal of the parse tree of the regular expression. This machine will have O(m) states, if m is 
the length of the regular expression. Further, simulating this machine on a string of length n takes 
O(m n) time, since we need consider each state/prefix pair only once. 

The deterministic construction starts with the parse tree for the regular expression, observing that 
each leaf represents one of the alphabet symbols in the pattern. After recognizing a prefix of the 
text, we can be left in some subset of these possible positions, which would correspond to a state 
in the finite automaton. The derivatives method builds up this automaton state by state as it is 
needed. Even so, some regular expressions of length m require  states in any DFA 
implementing them, such as  . There is no way to avoid this 
exponential blowup in the space required. Note, however, that it takes linear time to simulate an 
input string on any automaton, regardless of the size of the automaton.   

Implementations: FIRE Engine is a finite automaton toolkit, written in C++ by Bruce Watson.    It 
provides production-quality implementations of finite automata and regular expression algorithms. 
Several finite automaton minimization algorithms have been implemented, including Hopcroft's  
algorithm. Both deterministic and nondeterministic automata are supported. FIRE Engine has been used 
for compiler construction, hardware modeling, and computational biology applications. It is strictly a 
computing engine and does not provide a graphical user interface. FIRE Engine is available by 
anonymous ftp from ftp.win.tue.nl in the directory /pub/techreports/pi/watson.phd/. A greatly improved 
commercial version is available from www.RibbitSoft.com. 

Grail is a C++ package for symbolic computation with finite automata and regular expressions, from 
Darrell Raymond and Derrick Wood. Grail enables one to convert between different machine 
representations and to minimize automata. It can handle machines with 100,000 states and dictionaries of 
20,000 words. All code and documentation are accessible from the WWW site 
http://www.csd.uwo.ca/research/grail, as well as pointers to a variety of other automaton packages. 
Commercial use of Grail is not allowed without approval, although it is freely available to students and 
educators.   

An implementation in C of a regular-expression matching algorithm appears in [BR95]. The source code 
for this program is printed in the text and is available on disk for a modest fee. A bare bones 
implementation in C of a regular-expression pattern matching algorithm appears in [GBY91]. See 
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Section .   

XTango (see Section ) includes a simulation of a DFA. Many of the other animations (but not this 
one) are interesting and quite informative to watch.   

FLAP (Formal Languages and Automata Package) is a tool by Susan Rodger for drawing and simulating 
finite automata, pushdown automata, and Turing machines. Using FLAP, one can draw a graphical 
representation (transition diagram) of an automaton, edit it, and simulate the automaton on some input. 
FLAP was developed in C++ for X-Windows. See http://www.cs.duke.edu:80/  rodger/tools/tools.html. 
  

Notes: Aho [Aho90] provides a good survey on algorithms for pattern matching, and a particularly clear 
exposition for the case where the patterns are regular expressions. The technique for regular expression 
pattern matching with  -moves is due to Thompson [Tho68]. Other expositions on finite automaton 
pattern matching include [AHU74].   

Hopcroft [Hop71] gave an optimal  algorithm for minimizing the number of states in DFAs. The 
derivatives method of constructing a finite state machine from a regular expression is due to Brzozowski 
[Brz64] and has been expanded upon in [BS86]. Expositions on the derivatives method includes Conway 
[]. Testing the equivalence of two nondeterministic finite state machines is PSPACE-complete [SM73]. 

Related Problems: Satisfiability (see page ). string matching (see page ).     
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Input description: A set S of strings  . 

Problem description: What is the longest string S' such that for each  ,  , the characters of S 
appear as a subsequence of  ? 

Discussion: The problem of longest common subsequence arises whenever we search for similarities 
across multiple texts. A particularly important application is in finding a consensus among DNA 
sequences. The genes for building particular proteins evolve with time, but the functional regions must 
remain consistent in order to work correctly. By finding the longest common subsequence of the same 
gene in different species, we learn what has been conserved over time.      

The longest common substring problem is a special case of edit distance (see Section ), when 
substitutions are forbidden and only exact character match, insert, and delete are allowable edit 
operations. Under these conditions, the edit distance between p and t is n+m-2 |lcs(p,t)|, since we can 
delete the missing characters from p to the lcs(p,t) and insert the missing characters from t to transform p 
to t. This is particularly interesting because the longest common subsequence can be faster to compute 
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than edit distance.    

Issues arising include: 

●     Are you looking for a common substring or scattered subsequence? - In detecting plagiarism or 
attempting to identify the authors of anonymous works, we might need to find the longest phrases 
shared between several documents. Since phrases are strings of consecutive characters, we need 
the longest common substring between the texts.      

The longest common substring of a set of strings can be identified in linear time using suffix trees, 

discussed in Section . The trick is to build a suffix tree containing all the strings, label each 
leaf with the set of strings that contain it, and then do a depth-first traversal to identify the deepest 
node that has descendents from each input string.    

For the rest of this discussion, we will restrict attention to finding common scattered 
subsequences. Dynamic programming can be used to find the longest common subsequence of 
two strings, S and T, of n and m characters each. This algorithm is a special case of the edit-

distance computation of Section . Let M[i,j] denote the number of characters in the longest 
common substring of  and  . In general, if  , there is no way the 

last pair of characters could match, so  . If S[i] = T[j], we have 
the option to select this character for our substring, so 

 . This gives a recurrence that computes M, 
and thus finds the length of the longest common subsequence in O(nm) time. We can reconstruct 
the actual common substring by walking backward from M[n,m] and establishing which 
characters were actually matched along the way.

●     What if there are relatively few sets of matching characters? - For strings that do not contain too 
many copies of the same character, there is a faster algorithm. Let r be the number of pairs of 
positions (i,j) such that  . Thus r can be as large as mn if both strings consist entirely of the 
same character, but r = n if the two strings are permutations of  . This technique treats the 
pairs of r as defining points in the plane.   

The complete set of r such points can be found in O(n + m + r) time by bucketing techniques. For 
each string, we create a bucket for each letter of the alphabet and then partition all of its characters 
into the appropriate buckets. For each letter c of the alphabet, create a point (,t) from every pair 

 and  , where  and  are buckets for c. 

A common substring represents a path through these points that moves only up and to the right, 
never down or to the left. Given these points, the longest such path can be found in  
time. We will sort the points in order of increasing x-coordinate (breaking ties in favor of 
increasing y-coordinate. We will insert these points one by one in this order, and for each k, 
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 , maintain the minimum y-coordinate of any path going through exactly k points. 

Inserting a new point will change exactly one of these paths by reducing the y-coordinate of the 
path whose last point is barely greater than the new point.  

●     What if the strings are permutations? - If the strings are permutations, then there are exactly n 
pairs of matching characters, and the above algorithm runs in  time. A particularly 
important case of this occurs in finding the longest increasing subsequence of a sequence of 
numbers. Sorting this sequence and then replacing each number by its rank in the total order gives 
us a permutation p. The longest common subsequence of p and  gives the longest 
increasing subsequence.  

●     What if we have more than two strings to align? - The basic dynamic programming algorithm can 
be generalized to k strings, taking  time, where n is the length of the longest string. This 
algorithm is exponential in the number of strings k, and so it will likely be too expensive for more 
than 3 to 4 strings. Further, the problem is NP-complete, so no better exact algorithm is destined 
to come along.   

This problem of multiple sequence alignment has received considerable attention, and numerous 
heuristics have been proposed. Many heuristics begin by computing the pairwise alignment 

between each of the  pairs of strings, and then work to merge these alignments. One approach is 

to build a graph with a vertex for each character of each string. There will be an edge between  
and  if the corresponding characters are matched in the alignment between S and T. Any k-

clique (see Section ) in this graph describes a commonly aligned character, and all such cliques 
can be found efficiently because of the sparse structure of this graph.   

Although these cliques will define a common subsequence, there is no reason to believe that it 
will be the longest such substring. Appropriately weakening the clique requirement provides a 
way to increase it, but still there can be no promises. 

Implementations: MAP (Multiple Alignment Program) [Hua94] by Xiaoqiu Huang is a C language 
program that computes a global multiple alignment of sequences using an iterative pairwise method. 
Certain parameters will need to be tweaked to make it accommodate non-DNA data. It is available by 
anonymous ftp from cs.mtu.edu in the pub/huang directory. 

Combinatorica [Ski90] provides a Mathematica implementation of an algorithm to construct the longest 
increasing subsequence of a permutation, which is a special case of longest common subsequence. This 

algorithm is based on Young tableaux rather than dynamic programming. See Section .     

Notes: Good expositions on longest common subsequence include [AHU83, CLR90]. A survey of 
algorithmic results appears in [GBY91]. The algorithm for the case where all the characters in each 
sequence are distinct or infrequent is due to Hunt and Szymanski [HS77]. Expositions of this algorithm 
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include [Aho90, Man89]. Multiple sequence alignment for computational biology is treated in [Wat95]. 

Certain problems on strings become easier when we assume a constant-sized alphabet. Masek and 
Paterson [MP80] solve longest common subsequence in  for constant-sized 
alphabets, using the four Russians technique.   

Related Problems: Approximate string matching (see page ), shortest common superstring (see page 

).     
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Shortest Common Superstring

   

   

Input description: A set of strings  . 

Problem description: Find the shortest string S' that contains each element of S as a substring. 

Discussion: Shortest common superstring arises in a variety of applications, including sparse matrix 
compression. Suppose we have an  matrix with most of the elements being zero. We can partition 
each row into m/k runs of k elements each and construct the shortest common superstring S' of these runs. 
We now have reduced the problem to storing the superstring, plus an  array of pointers into the 
superstring denoting where each of the runs starts. Accessing a particular element M[i,j] still takes 
constant time, but there is a space savings when |S| << mn.      

Another application arises in DNA sequencing. It happens to be easy to sequence small fragments of 
DNA, say up to about 500 base pairs or characters. However, the real interest is in sequencing large 
molecules. The standard approach to large-scale, ``shotgun'' sequencing clones many copies of the target 
molecule, breaks them randomly into small fragments, sequences the fragments, and then proposes the 
shortest superstring of the fragments as the correct sequence. While it is an article of faith that the 
shortest superstring will be the most likely sequence, this seems to work reasonably well in practice.    
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Finding a superstring of all the substrings is not difficult, as we can simply concatenate them all together. 
It is finding the shortest such string that is problematic. Indeed, shortest common superstring remains NP-
complete under all reasonable classes of strings.    

The problem of finding the shortest common superstring can easily be reduced to that of the traveling 

salesman problem (see Section ). Create an overlap graph G where vertex  represents string  . Edge 
 will have weight equal to the length of  minus the overlap of  with  . The path visiting all the 

vertices of minimum total weight defines the shortest common superstring. The edge weights of this 
graph are not symmetric, after all, the overlap of  and  is not the same as the overlap of  
and  .   Thus only programs capable of solving asymmetric TSPs can be applied to this problem. 

The greedy heuristic is the standard approach to approximating the shortest common superstring. Find the 
pair of strings with the maximum number of characters of overlap. Replace them by the merged string, 
and repeat until only one string remains. Given the overlap graph above, this heuristic can be efficiently 

implemented by inserting all of the edge weights into a heap (see Section ) and then merging if the 
appropriate ends of the two strings have not yet be used, which can be maintained with an array of 
Boolean flags.     

The potentially time-consuming part of this heuristic is in building the overlap graph. The brute-force 

approach to finding the maximum overlap of two length-l strings takes  , which must be repeated  

times. Faster times are possible by appropriately using suffix trees (see Section ). Build a tree 
containing all suffixes of all reversed strings of S. String  overlaps with  if a suffix of  matches a 
suffix of the reverse of  . The longest overlap for each fragment can be found in time linear in its 
length.      

How well does the greedy heuristic perform? If we are unlucky with the input, the greedy heuristic can be 
fooled into creating a superstring that is at least twice as long as optimal. Usually, it will be a lot better in 
practice. It is known that the resulting superstring can never be more than 2.75 times optimal. 

Building superstrings becomes more difficult with positive and negative substrings, where negative 
substrings cannot be substrings of the superstring. The problem of deciding whether any such consistent 
substring exists is NP-complete, unless you are allowed to add an extra character to the alphabet to use as 
a spacer.   

Implementations: CAP (Contig Assembly Program) [Hua92] by Xiaoqiu Huang is a C language 
program supporting DNA shotgun sequencing by finding the shortest common superstring of a set of 
fragments. As to performance, CAP took 4 hours to assemble 1,015 fragments of a total of 252,000 
characters on a Sun SPARCstation SLC. Certain parameters will need to be tweaked to make it 
accommodate non-DNA data. It is available by anonymous ftp from cs.mtu.edu in the pub/huang 
directory.     
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Notes: The shortest common superstring problem and its application to DNA shotgun assembly is ably 
surveyed in [Wat95]. Kececioglu and Myers [KM95] report on an algorithm for the more general version 
of shortest common superstring, where the strings may have errors. Their paper is recommended reading 
to anyone interested in fragment assembly. 

Blum et al. [BJL  91] gave the first constant-factor approximation algorithms for shortest common 
superstring, with a variation of the greedy heuristic. More recent research has beaten the constant down 
to 2.75, progress towards the expected factor-two result. 

Related Problems: Suffix trees (see page ), text compression (see page ).     
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Software systems
  

In this section, we describe several particularly comprehensive implementations of combinatorial 
algorithms, all of which are available over the Internet. Although these codes are discussed in the 
relevant sections of the catalog, they are substantial enough to warrant further attention. 

A good algorithm designer does not reinvent the wheel, and a good programmer does not rewrite code 
that other people have written. Picasso put it best: ``Good artists borrow. Great artists steal.''    

However, a word of caution about stealing. Many of the codes described below (and throughout this 
book) have been made available for research or educational use, although commercial use requires a 
licensing arrangement with the author. I urge you to respect this. Licensing terms from academic 
institutions are usually surprisingly modest. The recognition that industry is using a particular code is 
important to the authors, often more important than the money involved. This can lead to enhanced 
support or future releases of the software. Do the right thing and get a license. Information about terms or 
whom to contact is usually available embedded within the documentation, or available at the source 
ftp/WWW site.     

Although the bulk of the systems we describe here are available by accessing our algorithm repository, 
http://www.cs.sunysb.edu/  algorith  (as well as on the enclosed CD-ROM), we encourage you to get 
them from the original sites instead of Stony Brook. There are three reasons. First, the version on the 
original site is much more likely to be maintained. Second, there are often supporting files and 
documentation that we for whatever reason did not download, and which may be of interest to you. 
Finally, by ftp-ing from the original sites, you will keep traffic down at the algorithm repository site, 
which will minimize the complaints from our system staff that I anticipate if this service becomes very 
popular.   

●     LEDA 
●     Netlib 
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❍     Collected Algorithms of the ACM 
●     The Stanford GraphBase 
●     Combinatorica 
●     Algorithm Animations with XTango 
●     Programs from Books 

❍     Discrete Optimization Algorithms in Pascal 
❍     Handbook of Data Structures and Algorithms 
❍     Combinatorial Algorithms for Computers and Calculators 
❍     Algorithms from P to NP 
❍     Computational Geometry in C 
❍     Algorithms in C++ 

       

 
Next: LEDA Up: Algorithmic Resources Previous: Algorithmic Resources 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK5/NODE211.HTM (2 of 2) [19/1/2003 1:32:20]



LEDA

       

 
Next: Netlib Up: Software systems Previous: Software systems 

LEDA

  

LEDA, for Library of Efficient Data types and Algorithms, is perhaps the best single resource available 
to support combinatorial computing. It has been under development since 1988 by a group at Max-
Planck-Instutut in Saarbrücken, Germany, including Kurt Mehlhorn, Stefan Näher, Stefan Schirra, 
Christian Uhrig, and Christoph Burnikel. LEDA is unique because of (1) the algorithmic sophistication 
of its developers and (2) the level of continuity and resources invested in the project.    

LEDA is implemented in C++ using templates, and it should compile on most new compilers, but not 
some old ones. LEDA is available by anonymous ftp from ftp.mpi-sb.mpg.de in directory /pub/LEDA, or 
at http://www.mpi-sb.mpg.de/LEDA/leda.html. The distribution contains all sources, installation 
instructions, and a substantial users manual [NU95]. An active Usenet newsgroup comp.lang.c++.leda is 
inhabited by users of LEDA. A good article on LEDA is available [MN95], and a book is promised soon. 
LEDA is not in the public domain, but it can be used freely for research and teaching. Commerical 
licenses are also available. 

What LEDA offers is a complete collection of well-implemented data structures and types. Particularly 
useful is the graph type, which supports all the basic operations one needs in an intelligent way, although 
this generality comes at some cost in size and speed over handcrafted implementations. A small but 
useful library of graph algorithms is included, which illustrates how cleanly and concisely these 
algorithms can be implemented using the LEDA data types. Good implementations of the most important 
data structures supporting such common data types as dictionaries and priority queues are provided. 
There are also algorithms and data structures for computational geometry in the plane, including some 
support for X-windows.     

LEDA Implementation 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Netlib

  

Netlib is an on-line repository of mathematical software that contains a large number of interesting 
codes, tables, and papers. Netlib is a compilation of resources from a variety of places, with fairly 
detailed indices and search mechanisms to help you find what is there. Netlib is important because of its 
breadth and ease of access. Whenever you need a specialized piece of mathematical software, you should 
look here first.    

There are three ways to access netlib: by e-mail, ftp, or WWW: 

●     E-mail - Netlib provides an email server to send indices and sources on demand. To get an index, 
send e-mail to netlib@netlib.org with the words send index on its own line in the message. The 
index will provide a list of other files you can send for. The e-mail server and netlib in general are 
discussed in [DG87].

●     FTP - Connect by ftp to ftp.netlib.org. Log in as anonymous and use your e-mail address as 
password. Use ``ls'' to see the contents of a directory, ``cd'' to move to a different directory, and 
``get'' to fetch the desired file. Type ``binary'' before ``get'' in order to ensure uncorrupted 
transmission, and ``quit'' to quit. Obtaining an index first can make it easier to move around.  

●     WWW - With your favorite browser, open the URL address http://www.netlib.org/ and prowl 
around to your heart's content. There is a forms index that permits searching based on keywords. 

GAMS, the Guide to Available Mathematical Software, is an indexing service for Netlib and other 
related software repositories that can help you find what you want. Check it out at http://gams.nist.gov. 
GAMS is a service of the National Institute of Standards and Technology (NIST).    

Netlib pointers 

●     Collected Algorithms of the ACM 
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Collected Algorithms of the ACM

An early mechanism for the distribution of useful algorithm implementations was CALGO, the Collected 
Algorithms of the ACM. It first appeared in Communications of the ACM in 1960, covering such famous 
algorithms as Floyd's linear-time build heap algorithm. More recently, it has been the province of the 
ACM Transactions on Mathematical Software. Each algorithm/implementation is described in a brief 
journal article, with the implementation validated and collected. These implementations are maintained at 
http://www.acm.org/calgo/ and at Netlib.   

Over 750 algorithms have appeared to date. Most of the codes are in Fortran and are relevant to 
numerical computing, although several interesting combinatorial algorithms have slithered their way into 
CALGO. Since the implementations have been refereed, they are presumably more reliable than most 
readily available software.    

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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The Stanford GraphBase

  

The Stanford GraphBase is an interesting program for several reasons. First, it was composed as a 
``literate program'', meaning that it was written to be read. If anybody's programs deserve to be read, it is 
Knuth's, and [Knu94] contains the full source code of the system. The programming 
language/environment is CWEB, which permits the mixing of text and code in particularly expressive 
ways. 

The GraphBase contains implementations of several important combinatorial algorithms, including 
matching, minimum spanning trees, and Voronoi diagrams, as well as specialized topics like constructing 
expander graphs and generating combinatorial objects. Finally, it contains programs for several 
recreational problems, including constructing word ladders (flour-floor-flood-blood-brood-broad-bread) 
and establishing dominance relations among football teams.         

Although the GraphBase is more fun to play with than LEDA, it is not really suited for building general 
applications on top of. The GraphBase is perhaps most useful as an instance generator for constructing a 
wide variety of graphs to serve as test data. It incorporates graphs derived from interactions of characters 
in famous novels, Roget's thesaurus, the Mona Lisa, and the economy of the United States. Further, 
because of its machine-independent random number generators, the GraphBase provides a way to 
construct random graphs that can be reconstructed elsewhere, making them perfect for experimental 
comparisons of algorithms.      

The Stanford GraphBase can be obtained by anonymous ftp from labrea.stanford.edu in the directory 
pub/sgb. It may be used freely, but the files may not be modified. Installing the GraphBase requires 
CWEB, which can be obtained by anonymous ftp from labrea.stanford.edu in the directory pub/cweb. 

GraphBase Implementation 
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Combinatorica

  

Combinatorica [Ski90] is a collection of over 230 algorithms for combinatorics and graph theory written 
in Mathematica. These routines have been designed to work together, enabling one to experiment with 
discrete structures and build prototype applications. Combinatorica has been widely used for both 
research and education.       

Although (in my totally unbiased opinion) Combinatorica is more comprehensive and better integrated 
than other libraries of combinatorial algorithms, it is also the slowest such system available. Credit for all 
of these properties is largely due to Mathematica, which provides a very high-level, functional, 
interpreted, and thus inefficient programming language. Combinatorica is best for finding quick solutions 
to small problems, and (if you can read Mathematica code) as a terse exposition of algorithms for 
translation into other languages. 

Combinatorica is included with the standard Mathematica distribution in the directory 
Packages/DiscreteMath/Combinatorica.m . It can also be obtained by anonymous ftp from 
ftp.cs.sunysb.edu in the pub/Combinatorica directory. Included on this site are certain extensions to 
Combinatorica and data sources such as the graphs of Graffiti.   

Combinatorica Implementation 
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Algorithm Animations with XTango

  

XTango [Sta90] is a general-purpose algorithm animation system, developed by John Stasko of Georgia 
Tech, that helps programmers develop color, real-time animations of their own algorithms and programs. 
Creating animations of your own implementations is useful both for pedagogical and debugging 
purposes.     

Included with the XTango distribution is a large collection of animations, several of which are quite 
interesting and enlightening to watch. The C language source for each animation is included. My 
favorites include animations of: 

●     Data structures - including AVL/red-black trees, and binary/Fibonacci heaps.  
●     Sorting algorithms - including bubblesort, radixsort, quicksort, and shellsort.  
●     Backtracking - including graph coloring, and both the eight-queens and knight's tour problems.  
●     Geometric algorithms - including bin packing heuristics and the Graham scan/Jarvis march 

convex hull algorithms.  
●     Graph algorithms - including minimum spanning trees and shortest paths.  
●     String algorithms - including the Knuth-Morris-Pratt and Boyer-Moore algorithms.   

Anybody studying these algorithms might well profit from playing with the animations. The source code 
for the animations contains C language implementations of these algorithms, although of uncertain 
quality. 

XTango is implemented on top of UNIX and X-windows. It is available via anonymous ftp from 
ftp.cc.gatech.edu in directory pub/people/stasko. Also available there is Polka, a C++ algorithm 
animation system that is particularly suited to animating parallel computations. POLKA provides its own 
high-level abstractions to make the creation of animations easier and faster than with many other 
systems. POLKA also includes an interactive front end called SAMBA that can be used to generate 
animations from any type of program that can generate ASCII.    

XTango Implementation 
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Programs from Books

Several books on algorithms include working implementations of the algorithms in a real programming 
language. Although these implementations are intended primarily for exposition, they can also be useful 
for computation. Since they are typically small and clean, they can prove the right foundation for simple 
applications.   

The most useful codes of this genre are described below. All are available from the algorithm repository, 
http://www.cs.sunysb.edu/  algorith. 

●     Discrete Optimization Algorithms in Pascal 
●     Handbook of Data Structures and Algorithms 
●     Combinatorial Algorithms for Computers and Calculators 
●     Algorithms from P to NP 
●     Computational Geometry in C 
●     Algorithms in C++ 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK5/NODE218.HTM [19/1/2003 1:32:24]



Discrete Optimization Algorithms in Pascal

       

 
Next: Handbook of Data Structures Up: Programs from Books Previous: Programs from Books 

Discrete Optimization Algorithms in Pascal

  

This is a collection of 28 programs for solving discrete optimization problems, appearing in the book by 
Syslo, Deo, and Kowalik [SDK83]. The package includes programs for integer and linear programming, 
the knapsack and set cover problems, traveling salesman, vertex coloring, and scheduling as well as 
standard network optimization problems. They have been made available from the algorithm repository 
WWW site, http://www.cs.sunysb.edu/  algorith. 

This package is noteworthy for the operations-research flavor of the problems and algorithms selected. 
The algorithms have been selected to solve problems, as opposed to for purely expository purposes. In 
[SDK83], a description of each algorithm and extensive set of references for each problem is provided, as 
well as execution times for each program on several instances on an early 1980s mainframe, an Amdahl 
470 V/6.   

Implementations 
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Handbook of Data Structures and Algorithms

  

The Handbook of Data Structures and Algorithms, by Gonnet and Baeza-Yates [GBY91], provides a 
comprehensive reference on fundamental data structures for searching and priority queues, and 
algorithms for sorting and text searching. The book covers this relatively small number of topics 
comprehensively, presenting most of the major and minor variations that appear in the literature. 
Perusing the book makes one aware of the tremendous range of data structures that have been developed 
and the intense level of analysis many of them have been subjected to. 

For each data structure or algorithm, a brief description is provided along with its asymptotic complexity 
and an extensive set of references. More distinctively, an implementation in C and/or Pascal is usually 
provided, along with experimental results comparing the performance of these implementations. The 
programs in [GBY91] are available at a very slick WWW site, http://www.dcc.uchile.cl/  
rbaeza/handbook/hbook.html.    

Since many of the elementary data structures and sorting algorithms can be implemented concisely, most 
of the programs are very short. They are perhaps most useful as models, or as part of an experimental 
study to compare the performance on different data structures for a particular application. 

Handbook Implementations 
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Combinatorial Algorithms for Computers and Calculators

  

Nijenhuis and Wilf [NW78] specializes in algorithms for constructing basic combinatorial objects such 
as permutations, subsets, and partitions. Such algorithms are often very short, but they are hard to locate 
and usually surprisingly subtle. Fortran programs for all of the algorithms are provided, as well as a 
discussion of the theory behind each of them. The programs are usually short enough that it is reasonable 
to translate them directly into a more modern programming language, as I did in writing Combinatorica 

(see Section ). Both random and sequential generation algorithms are provided. Descriptions of more 
recent algorithms for several problems, without code, are provided in [Wil89].    

These programs are now available from our algorithm repository WWW site. We tracked them down 
from Neil Sloane, who had them on a magnetic tape, while the original authors did not! In [NW78], 
Nijenhuis and Wilf set the proper standard of statistically testing the output distribution of each of the 
random generators to establish that they really appear uniform. We encourage you to do the same before 
using these programs, to verify that nothing has been lost in transit.   

Programs 
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Algorithms from P to NP

  

This algorithms text [MS91] distinguishes itself by including Pascal implementations of many 
algorithms, with careful experimental comparisons of different algorithms for such problems as sorting 
and minimum spanning tree, and heuristics for the traveling salesman problem. It provides a useful 
model for how to properly do empirical algorithm analysis.    

The programs themselves are probably best used as models. Interesting implementations include the 
eight-queens problem, plus fundamental graph and geometric algorithms. The programs in [MS91] have 
been made available by anonymous ftp from cs.unm.edu in directory /pub/moret_shapiro. 

Programs 
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Next: Algorithms in C++ Up: Programs from Books Previous: Algorithms from P to 

Computational Geometry in C

  

O'Rourke [O'R94] is perhaps the best practical introduction to computational geometry available, 
because of its careful and correct C language implementations of the fundamental algorithms of 
computational geometry. Fundamental geometric primitives, convex hulls, triangulations, Voronoi 
diagrams, and motion planning are all included. Although they were implemented primarily for 
exposition rather than production use, they should be quite reliable. The codes are available from 
http://grendel.csc.smith.edu/  orourke/. 

Programs 
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Algorithms in C++

  

Sedgewick's popular algorithms text [Sed92] comes in several different language editions, including C, 
C++, and Modula-3. This book distinguishes itself through its use of algorithm animation and in its broad 
topic coverage, including numerical, string, and geometric algorithms.    

The language-specific parts of the text consist of many small code fragments, instead of full programs or 
subroutines. Thus they are best thought of as models, instead of working implementations. Still, the 
program fragments from the C++ edition have been made available from http://heg-
school.aw.com/cseng/authors/sedgewick/algo-in-c++/algo-in-c++.html 
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Data Sources
It is often important to have interesting data to feed your algorithms, to serve as test data to ensure 
correctness or to compare different algorithms for raw speed. 

Finding good test data can be surprisingly difficult. Here are some pointers: 

●     Combinatorica graphs - A modest collection of graphs is available from the Combinatorica ftp 
site. Particularly interesting are the 190 graphs of Graffiti [Faj87], a program that formulated 

conjectures in graph theory by studying the properties of these graphs. See Section  for more 
information on Combinatorica.  

●     TSPLIB - This well-respected library of test instances for the traveling salesman problem is 

available from Netlib (see Section ) and by anonymous ftp from softlib.cs.rice.edu. TSPLIB 
instances are large, real-world graphs, derived from applications such as circuit boards and 
networks.  

●     Stanford GraphBase - Discussed in Section , this suite of programs by Knuth provides 
portable generators for a wide variety of graphs. These include graphs arising from distance 
matrices, arts, and literature, as well as graphs of more theoretical interest.

●     DIMACS Challenge data - A series of DIMACS Challenge workshops have focused on evaluating 
algorithm implementations of graph, logic, and data structure problems. Instance generators for 
each problem have been developed, with the focus on constructing difficult or representative test 
data. The products of the DIMACS Challenges are available from http://dimacs.rutgers.edu/.  

●     Algorithm Repository - The Algorithm Repository WWW site, http://www.cs.sunysb.edu/  
algorith  (and enclosed CD-ROM) contain data sources for a few of the implementation challenge 
exercises. In particular, we provide an airline routes data set, and a collection of names labeled by 
ethnicity. 
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Textbooks
There have emerged a number of excellent textbooks in the design and analysis of combinatorial 
algorithms. Below we point out several of our favorites. In this book, we have shied away from giving a 
detailed exposition or analysis of many algorithms, for our primary mission is to help the reader identify 
their problem and point them to solutions. The reader is encouraged to turn to these sources for more 
detail once they have found the name of what they are looking for.   

Only general algorithm books are discussed here. Books on specific subareas of algorithms are reviewed 
at the head of the relevant catalog chapter. 

●     Cormen, Leiserson, and Rivest [CLR90] - This is the one (other) book on algorithms you must 
own, with its comprehensive treatment of most of the problems we discuss here, including data 
structures, graph algorithms, and seminumerical algorithms.

●     Baase [Baa88] - This book is more accessible than [CLR90] for those without a strong 
mathematical background. It covers standard sorting, string, and graph algorithms, NP-
completeness, and more exotically, an introduction to parallel algorithms.

●     Manber [Man89] - Built around the unconventional notion that induction is the fundamental 
paradigm of algorithm design, this book is especially good at teaching techniques for designing 
algorithms and has an outstanding collection of problems. Highly recommended.  

●     van Leeuwen [vL90b] - Not a textbook, but a collection of in-depth surveys on the state of the art 
in algorithms and computational complexity. Although the emphasis is on theoretical results, this 
book is perhaps the best single reference to point you to what is known about any given problem.

●     Syslo, Deo, and Kowalik [SDK83] - This book includes printed Pascal implementations of 28 
algorithms for discrete optimization problems, including mathematical programming, network 
optimization, and traditional operations research problems such as knapsack and TSP. Each 
algorithm is described in the book, and experimental timings (on a 1980s vintage machine) are 

provided. These codes are now available by ftp, as discussed in Section . Despite its age, this 
remains a useful reference, particularly with the programs now available on-line.  

●     Moret and Shapiro [MS91] - This algorithms text distinguishes itself by including Pascal 
implementations of all algorithms and by its careful experimental comparisons of different 
algorithms for such problems as sorting and minimum spanning tree. It provides a useful model for 
how to properly do empirical algorithm analysis. These programs are available by ftp - see Section 

 for details.
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Textbooks

●     Knuth [Knu94] - This book presents the implementation of the Stanford GraphBase, a collection of 

programs for constructing different graphs and working with them. See Section  for details. It is 
very intriguing to browse.

●     Aho, Hopcroft, and Ullman [AHU74] - This was the first modern algorithms book, and it has had 
an enormous influence on how algorithms should be taught. Although it is now dated, it remains a 
useful guide to certain topics in vogue in the early 1970s, such as matrix multiplication, the fast 
Fourier transform, and arithmetic algorithms. A more elementary edition, focusing on data 
structures, is [AHU83].

●     Rawlins [Raw92] - This may well be the best self-study book available on algorithms. It is fun and 
inspiring, with built-in pauses so the reader can make sure they understand what is going on. The 
only drawback is a somewhat idiosyncratic set of topics, so you will miss certain important topics. 
But you can get that from here. Rawlins's book can teach you the proper mindset to think about 
algorithms.  

●     Papadimitriou and Steiglitz [PS82] - This book has more of an operations research emphasis than 
most algorithms texts, with a good coverage of mathematical programming, network flow, and 
combinatorial search.

●     Lawler [Law76] - Particularly useful for its coverage of matroid theory, this book also provides a 
thorough treatment of the network flow, matching, and shortest path algorithms known by the mid-
1970s.

●     Binstock and Rex [BR95] - Although not a textbook, it includes C language implementations of an 
idiosyncratic variety of algorithms for programmers. Disks containing the code are available for a 
modest fee. The most interesting implementations are string and pattern matching algorithms, time 
and date routines, an arbitrary-precision calculator, and a nice section on checksums and cyclic-
redundancy checks. 
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On-Line Resources
The Internet has proven to be a fantastic resource for people interested in algorithms, as it has for many 
other subjects. What follows is a highly selective list of the resources that I use most often, partitioned 
into references to literature, people, and software. All of these should be in the tool chest of every 
algorist.    

●     Literature 
●     People 
●     Software 
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Literature

There are many bibliographic sources available on the WWW, but the following I find indispensable.   

●     Computer Science Bibliographies - This is a collection of over 700,000 references to papers and 
technical reports in Computer Science, beneath a sophisticated search engine. While there is much 
duplication, this is my first stop whenever I need to look something up. The primary site is 
http://liinwww.ira.uka.de/bibliography/index.html, although several mirror sites are in operation 
around the world. All references are provided in bibtex format.

●     Joel Seiferas' paper.lst - References to over 55,000 papers and technical reports (at last count), 
mostly on algorithms and related areas of theoretical computer science. Each paper is reduced to a 
one-line format, which I find easy to grep through. It is available by anonymous ftp from 
ftp.cs.rochester.edu in /pub/u/joel, and a copy is included on the enclosed CD-ROM. Strongly 
recommended.

●     Geom.bib - The complete bibliography on anything related to computational geometry, it 
references over 8,000 books, papers, and reports and includes detailed abstracts for many of them. 
Grep-ing through geom.bib is an amazingly efficient way to find out about previous work without 
leaving your office. It is available via anonymous ftp from ftp.cs.usask.ca, in file 
pub/geometry/geombib.tar.Z, and a copy is included on the enclosed CD-ROM.  

●     Usenet FAQ files - The straightest, most accurate dope about any topic is likely to be had in a 
USENET frequently asked questions (FAQ) file. Dedicated volunteers maintain FAQ files for 
many USENET newsgroups, many of which are quite detailed, and which always emphasize other 
on-line resources. Excellent FAQ files on algorithm-related topics such as cryptography, linear 
programming, and data compression are currently available. A collection of current FAQ files is 
maintained at ftp://rtfm.mit.edu/pub/usenet/news.answers.   
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People

The easiest way to find the answer to any question is to ask someone who knows. Below, I describe some 
useful resources of contact information for experts in algorithms. E-mail and the WWW make it very 
easy to track down experts. In fact, maybe too easy. Please use this information responsibly, for many of 
them are my friends! Limit your queries to short, specific questions; and contact them only after you 
have checked the standard textbooks and references described in this section. 

●     comp.theory - The USENET newsgroup comp.theory is the proper forum for on-line discussions 
on algorithms and related topics. Other appropriate newsgroups include comp.graphics.algorithms 
and sci.math.      

●     TCS Virtual Address Book - This WWW-page address book is particularly useful to track down 
the whereabouts of researchers in the design and analysis of algorithms. It is maintained by Ian 
Parbery and is available from the ACM SIGACT WWW page http://sigact.acm.org/sigact/. An 
excellent way to learn of recent progress on a particular problem is to ask a researcher who has 
previously published on the problem, or at least check out their WWW page.   

●     Algorithm Courses - A comprehensive page of pointers to algorithm courses on the WWW is 
maintained at http://www.cs.pitt.edu/  kirk/algorithmcourses/index.html. Lecture notes, 
problems, and solutions are typically available, with some of the material being amazingly 
thorough. Software associated with course projects is available from some of the sites.   
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Software

There are many high-quality implementations of algorithms available on the WWW, if you know where 
to look. We have placed as many of them as we could on the CD-ROM enclosed with this book. My 
favorite on-line resources are: 

●     The Stony Brook Algorithm Repository - This is the source of the software on the enclosed CD-
ROM, organized according to the problem structure of this book. Local copies of most 
implementations are maintained at http://www.cs.sunysb.edu/  algorith, along with pointers to 
the latest version available from the original distribution site.   

●     Netlib - This is the standard resource on mathematical software, primarily numerical computation. 

An enormous amount of material is available. See Section  for details.
●     Directory of Computational Geometry Software - Maintained by Nina Amenta, this is the source 

for anything geometric. See http://www.geom.umn.edu/software/cglist/.
●     Combinatorial Optimization codes - A very nice list of implementations of combinatorial 

algorithms is maintained by Jiefeng Xu at http://ucsu.colorado.edu/ xu/software.html. With an 
emphasis on operations research, there is a lot of useful stuff here. 
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Professional Consulting Services
  

Algorist Technologies is a small consulting firm that provides its clients with short-term, expert help in 
algorithm design and implementation. Typically, an Algorist consultant is called in for 1 to 3 days worth 
of intensive, on-site discussion and analysis with the client's own development staff. Algorist has built an 
impressive record of performance improvements with several companies and applications. They provide 
longer-term consulting and contracting services as well.    

Call 212-580-9009 or email info@algorist.com for more information on services provided by Algorist 
Technologies. 

Algorist Technologies 312 West 92nd St. Suite 1A New York, NY 10025 http://www.algorist.com 
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Index

This index provides fast access to important keywords and topics in the on-line Lecture Notes The menu 
below partitions the index entries by the first letter of the alphabet, for ease of access. A full document 
index is also provided.

Be aware that the index pointer typically resides at the end of the relevant paragraph in the document, so 
we recommend scrolling once towards the front of the document before reading.

A similar index has been provided for the book, which may also be of interest. 

A B C D E F G H

I K L M N O P Q

R S T U V W

Complete Index 

(note: the complete index is large; it will take a bit of time to load)
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B-tree ,  ,  ,  
backpacker 
backsubstitution 

backtracking ,  ,  ,  ,  ,  ,  ,  ,  ,  
backtracking - animations 

backtracking - applications ,  
backtracking - bandwidth problem 

balanced search tree ,  ,  

banded systems ,  
bandersnatch problem 

bandwidth ,  
bandwidth - matrix 
Bandwidth Reduction 
bandwidth reduction - backtracking 
bandwidth reduction - related problems 
bar codes 
base - arithmetic 
base - conversion 
base of logarithm 

Bellman-Ford algorithm ,  
Berge's theorem 
best-case complexity 
Bible - searching the 
bibliographic databases 
biconnected components 

biconnected graphs ,  ,  
big Oh notation 
bijection 
binary heap 
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binary representation - subsets 

binary search ,  ,  

binary search - applications ,  

binary search - one-sided ,  

binary search tree ,  ,  ,  
binary search tree - applications 
binary search tree - computational experience 
Bin Packing 

bin packing - applications ,  
bin packing - knapsack problem 

bin packing - related problems ,  
biocomputing 
biology 
bipartite graph 
bipartite graph recognition 
bipartite incidence structures 

bipartite matching ,  ,  ,  

bipartite matching - applications ,  
bit-mapped images 
bit representation of graphs 

bit vector ,  ,  ,  

bit vector - applications ,  
blind man's algorithm 
block - set partition 
blossoms 
board evaluation function 
bookshelves 

Boolean logic minimization ,  
Boolean matrix multiplication 
borrowing 
Boruvka's algorithm 
boss's delight 
boundaries 
bounded height priority queue 
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bounding boxes 
Boyer-Moore algorithm 
brainstorming 

branch-and-bound search ,  ,  

breadth-first search ,  ,  ,  
breadth-first search - applications 
bridge 
bridges of Königsberg 
Brook's theorem 
Brooks, Mel 
brush fire 
brute-force search 

bubblesort ,  

bucketing techniques ,  ,  
bucketing techniques - graphics 
bucket sort 
budget, fixed 
built-in random number generator 
buying fixed lots 
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C++ ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
C++ templates 
cache 
Caesar shifts 
calculator, arithmetic 
Calendrical Calculations 

call graph ,  
canonically-labeled graphs 

canonical order ,  ,  
CAP 
Carmichael numbers 
cars and tanks 
cartoons 
casino analysis 
casino poker 
catalog WWW site 
Catch-22 situation 
caveat 

CD-ROM ,  ,  ,  
cdd 

center vertex ,  ,  
CGAL 
chain of matrices 
characters 
checksum 
chessboard coverage 

chess program ,  
Chinese calendar 
Chinese postman problem 
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Chinese remainder theorem 
Christofides heuristic 
chromatic index 
chromatic number 
chromatic polynomials 
cipher 
circle 
circuit analysis 
circuit board assembly 
circuit board placement - simulated annealing 
circuit layout 
circuit schematic diagrams 
circuit testing 
circular embeddings 

C language ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
classification 
classification - nearest-neighbor 
classifiers - neural networks 
clauses 
clipping 
Clique 

clique - applications ,  
clique - definition 
clique - hardness proof 
clique - related problems 
clock 
closest pair heuristic 

closest pair problem ,  
closest point 
closure 
clothing - manufacturing 
cloudy days 
cluster 
clustered access 

cluster identification ,  ,  
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clustering ,  ,  
co-NP 
coding theory 
coefficients 
cofactor method 
coin flip 
collapsing dense subgraphs 

Collected Algorithms of the ACM ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  ,  
collection 
coloring graphs 
color interchange 
combinatorial generation algorithms 
combinatorial geometry 

combinatorial problems ,  

Combinatorica ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

,  ,  ,  ,  ,  ,  ,  ,  ,  
Commentz-Walter algorithm 
commercial implementations 
committee 
committee - congressional 
Common Lisp 
common substrings 
communication in circuits 

communications networks ,  
comp.graphics.algorithms 
comp.theory 
compaction 
comparisons - minimizing 
compiler 
compiler construction 

compiler optimization ,  
compiler optimization - performance 
complement 
complement graph 
completion time - minimum 
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complexity classes 
composite integer 

compress ,  
compression 
compression - image 
computational biology 
computational complexity 
computational geometry 

computational number theory ,  

computer algebra system ,  
computer chess 
computer graphics 

computer graphics - applications ,  
computer graphics - rendering 
computer vision 
concatenation - string 
concavities 
concavity elimination 
configurations 
configuration space 
conjugate gradient methods 
conjunctive normal form (CNF) 

connected components ,  ,  ,  

connected components - related problems ,  
connected graph 

connectivity ,  ,  
consensus sequences 
consistent schedule 
Constrained and Unconstrained Optimization 
constrained and unconstrained optimization - related problems 
constrained Delaunay triangulation 
constrained optimization 
constrained optimization - related problems 
constraint elimination 
constraint satisfaction 
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consulting services ,  

container ,  
context-free grammars 
Contig Assembly Program 
control systems - minimization 

convex decomposition ,  

convex hull ,  
Convex Hull 

convex hull - related problems ,  
convex polygons 
convex polygons - intersection 
convex region 
convolution - polygon 
convolution - sequences 
cookbook 
cooling schedules 
coordinate transformations 
coplanar points 
copying a graph 
corporate ladder 
correctness - algorithm 
correlation function 
counterexample construction 
counting edges and vertices 
counting Eulerian cycles 
counting integer partitions 
counting linear extensions 
counting matchings 

counting paths ,  
counting spanning trees 
courses, lecture notes 
covering polygons with convex pieces 
covering set elements 
CPLEX 
Cramer's rule 
CRC 
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critical path method 
crossing number 
crossings 
Cryptography 
cryptography - keys 

cryptography - related problems ,  ,  
CS 
CSA 
cubic regions 
currency speculation 
curve fitting 
Cuthill-McKee algorithm 

cut set ,  

cutting plane methods ,  
cutting stock problem 
CWEB 
cycle - shortest 
cycle breaking 

cycle detection ,  
cycle length 
cycle notation 
cycle structure of permutations 
cyclic-redundancy check (CRC) 
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DAG 
DAG - longest path in 
DAG - shortest path in 
data abstraction 
database algorithms 
database application 
database query optimization 
data compression 
Data Encryption Standard 
data filtering 
data records 

data structures ,  
data structures - animations 
data transmission 
data validation 

Davenport-Schintzl sequences ,  ,  

Davis-Putnam procedure ,  
day of the week calculation 
deadlock 

de Bruijn sequence ,  
debugging graph algorithms 
debugging parallel programs 
debugging randomized algorithms 
debugging time 
debugging tools 
decimal arithmetic 
decompose space 
decomposing polygons 
deconvolution 
decrease-key 
decryption 
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Deep Blue 
defenestrate 
degeneracy 
degeneracy testing 
degenerate configuration 
degenerate system of equations 

degree, vertex ,  
degree sequence 
degrees of freedom 

Delaunay triangulation ,  ,  
Delaunay triangulation - applications 
deletion from binary search tree 
deletions - text 
deliveries and pickups 
delivery routing 
Democrat/Republican identification 
De Morgan's laws 

dense graphs ,  ,  
densest sphere packing 
dense subgraph 

depth-first search ,  ,  ,  ,  ,  ,  ,  ,  

depth-first search - applications ,  ,  ,  ,  ,  
depth-first search - backtracking 
derangement 
derivatives - automata 
derivatives - calculus 
DES 
descendent 
design process 
design rule checking 
determinant 
determinant - related problems 
Determinants and Permanents 
deterministic finite automata 
DFA 
diameter of a graph 
diameter of a point set 

file:///E|/BOOK/BOOK6/INDEX_D.HTM (2 of 5) [19/1/2003 1:32:43]



Index D

Dictionaries 

dictionaries - related problems ,  

dictionary ,  ,  
dictionary - applications 
dictionary - related problems 
dictionary - searching 
DIEHARD 
diff - how it works 
digital geometry 
digital signatures 

Dijkstra's algorithm ,  ,  

DIMACS ,  ,  
DIMACS Challenge data 

DIMACS Implementation Challenge ,  ,  ,  ,  ,  
Dinic's algorithm 

directed acyclic graph ,  ,  ,  
directed cycle 
directed graph 
directed graphs - automata 
directory file structures 
disclaimer 

discrete event simulation ,  

Discrete Fourier Transform ,  
discrete mathematics software 
discussion section 
disjoint paths 
disjoint set union 
disjoint subsets 
disjunctive networks 

disjunctive normal form ,  
disk access 

disk drives ,  

dispatching emergency vehicles ,  
dispersion problems 
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distance graph 
distance metrics 
distinguishable elements 
distributed computation 

distribution sort ,  

divide and conquer ,  ,  ,  ,  

division ,  
DNA 
DNA sequence comparisons 

DNA sequencing ,  ,  

dominance orderings ,  
DOS file names 

double-precision arithmetic ,  ,  
Douglas-Plucker algorithm 
drawing graphs - related problems 
Drawing Graphs Nicely 
drawing puzzles 
Drawing Trees 

drawing trees - related problems ,  
driving time minimization 
drug discovery 
DSATUR 

dual graph ,  

duality ,  
duality transformations 
duplicate elimination 
duplicate elimination - graphs 
duplicate elimination - permutations 
duplicate keys 
dynamic convex hulls 

dynamic data structures ,  
dynamic graph algorithms 
dynamic Huffman codes 

dynamic programming ,  ,  ,  ,  ,  ,  ,  
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dynamic programming - shortest paths 
dynamic programming - space efficiency 
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eavesdropper 
eccentricity of a graph 
economics - applications to 

edge/vertex connectivity - related problems ,  ,  
Edge and Vertex Connectivity 
edge chromatic number 

edge coloring ,  
edge coloring - applications 

edge coloring - related problems ,  

edge cover ,  ,  
edge disjoint paths 
edge flipping operation 
edge labeled graphs 
edge length 
edge tour 

edit distance ,  
Edmond's algorithm 
efficiency of algorithms 
eight-queens problem 
electrical engineers 
electronic circuit analysis 
electronic circuits 
Electronic Frontier Foundation 

element uniqueness problem ,  
elimination ordering 
ellipsoid algorithm 
elliptic-curve method 
embeddings - planar 
Emde Boas priority queue 

empirical results ,  ,  
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empirical results - heuristics 
empirical results - how to do 
empirical results - string matching 
employees to jobs - matching 
empty circle - largest 
empty rectangle 
enclosing boxes 
enclosing disk 
enclosing rectangle 
encryption 
energy function 

energy minimization ,  

English language ,  
English to French 
enumeration of spanning trees 
epsilon-moves 
equilateral triangle 
equivalence classes 
equivalence classes - automata states 
Erd•s-Gallai conditions 
error 
estimating closure sizes 
ethnic groups in Congress 
Euclid's algorithm 
Euclidean minimum spanning tree 
Euclidean traveling salesman 
Euler's formula 
Eulerian cycle - applications 
Eulerian cycle - line graphs 

Eulerian cycle - related problems ,  
Eulerian Cycle / Chinese Postman 
Eulerian path 
evaluation function 
even-degree vertices 
even-length cycles 
event queue 
evolutionary tree 
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exact cover problem 
exact string matching 
exam scheduling 

exercises ,  ,  ,  ,  ,  

exhaustive search ,  
exhaustive search - application 
exhaustive search - empirical results 
exhaustive search - subsets 
expanded obstacles approach 
expander graphs 
expected-time, linear 
experimental analysis - set cover 
experimental graph theory 

exponential-time algorithms ,  
exponential distribution 

exponentiation ,  
export restrictions 

external-memory sorting ,  
external memory 
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Index: F

facets 

facility location ,  ,  
Factoring and Primality Testing 
factoring and primality testing - related problems 
factoring integers - related problems 
factory location 

family tree ,  
fan out minimization for networks 

FAQ file ,  ,  ,  
farthest point Voronoi diagrams 
Fary's theorem 
faster computers 
fast Fourier transform 
fat cells 
fattening polygons 
feature sets 
Federal Sentencing Guidelines 
feedback edge set 
Feedback Edge/Vertex Set 
feedback edge/vertex set - related problems 
Fermat 
Fermat's theorem 
Ferrer's diagram 

FFT ,  
FFTPACK 
fgrep 

Fibonacci heap ,  ,  ,  
Fibonacci numbers 
FIFO 
file difference comparison 
file directory trees 
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file layout 
filtering outlying elements 
filtering signals 
final examination 
financial constraints 
find operation 
finite automata 
finite automata minimization 
finite element analysis 
Finite State Machine Minimization 
FIRE Engine 
firehouse 
first-fit - decreasing 
first in, first out 
fixed degree sequence graphs 
FLAP 
flat-earth model 
Fleury's algorithm 
flight crew scheduling 
floating-point arithmetic 

Floyd's algorithm ,  ,  ,  
football program 
football scheduling 

Fortran ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
Fortune's algorithm 

four-color problem ,  
Fourier transform - applications 
Fourier transform - multiplication 
Fourier transform - related problems 

four Russians algorithm ,  ,  
fragment ordering 
fraud - tax 
freedom to hang yourself 
free space 
free trees 
frequency distribution 
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frequency domain 
friend-or-foe identification 

friendship graph ,  
ftp - instructions 
function interpolation 
furniture moving 
furthest-point insertion heuristic 
furthest-site diagrams 
furthest-site Voronoi vertices 
future events 
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Index: G

game-tree search 
game-tree search - parallel 
games directory 

GAMS ,  
gaps between primes 
garbage trucks 
Garey and Johnson 
Gates, William 

Gaussian distribution ,  

Gaussian elimination ,  
Genbank searching 
Generating Graphs 
Generating Partitions 

generating partitions - related problems ,  ,  ,  
Generating Permutations 

generating permutations - related problems ,  ,  ,  ,  
Generating Subsets 
generating subsets - applications 

generating subsets - related problems ,  ,  ,  

genetic algorithms ,  ,  ,  
Genocop 
geographic information systems 
Geolab 

geom.bib ,  
geometric algorithms - animations 
geometric data structure 
geometric degeneracy 
geometric graphs 
geometric primitives - related problems 
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geometric shortest path ,  
geometric spanning tree 
geometric Steiner tree 
geometric traveling salesman problem 
geometric TSP 

GEOMPACK ,  
Gettysburg Address 
Gibbs-Poole-Stockmeyer algorithm 
gift-wrapping algorithm 
Gilbert and Pollak conjecture 
Gingrich, Newt 

girth ,  
glimpse 
global optimization 
Graffiti 

Graffiti - graphs of ,  
Graham scan 
Grail 

graph algorithms ,  
graph algorithms - animations 
graph algorithms - bandwidth problem 

GraphBase ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
graph complement 

graph data structures ,  
graph data structures - applications 

graph data structures - LEDA ,  
graph density 
graph drawings - clutter 

GraphEd ,  ,  ,  
graph embedding 
graphical enumeration 
graphic partitions 
Graphics Gems 
graphics plotter 

graph isomorphism ,  ,  

file:///E|/BOOK/BOOK6/INDEX_G.HTM (2 of 3) [19/1/2003 1:32:48]



Index G

graph isomorphism - related problems ,  

graph partition ,  
Graph Partition 

graph partition - related problems ,  ,  
graph products 
graphs 
graph theory 
graph theory packages 
graph traversal 
GraphViz 

Gray code ,  
greatest common divisor 

greedy heuristic ,  ,  ,  ,  ,  ,  
greedy heuristic - Huffman codes 
greedy heuristic - minimum spanning trees 
greedy heuristic - superstrings 
Gregorian calendar 
grid embeddings 

grid file ,  
group - automorphism 
growth rates 
guarantees - importance of 
guarding art galleries 
Guide to Available Mathematical Software 

gzip ,  
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Index: H

had-sex-with graph ,  
half-space intersection 
Hamiltionian cycle - hypercube 

Hamiltonian cycle ,  ,  ,  
Hamiltonian Cycle 
Hamiltonian cycle - applications 
Hamiltonian cycle - counting 
Hamiltonian cycle - hardness proof 
Hamiltonian cycle - line graphs 

Hamiltonian cycle - related problems ,  
Hamiltonian path 
Hamiltonian path - applications 
Hamming distance 
hardness of approximation 
hardware arithmetic 
hardware design applications 
hardware implementation 
hash function 
hash tables 
hash tables - computational experience 
hash tables - size 
Hausdorff distance 
heap 

heapsort ,  ,  ,  
heard-of graph 
heart-lung machine 
heating ducts 
Hebrew calendar 
Hertel-Mehlhorn heuristic 

heuristics ,  ,  
heuristics - empirical results 
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hidden-surface elimination ,  

hierarchical decomposition ,  
hierarchical drawings 

hierarchical graph structures ,  
hierarchy 
high-precision arithmetic - need for 

high-precision arithmetic - related problems ,  
higher-dimensional data structures 

higher-dimensional geometry ,  ,  
high school algebra 
high school cliques 
hill climbing 
historical objects 

history ,  
history - cryptography 
history - graph theory 
hitting set 
HIV virus 
homeomorphism 
homophones 
horizon 

Horner's rule ,  
How to Solve It 
ht://Dig 
hub site 
Huffman codes 
Hull 
Human Genome Initiative 
Hungarian algorithm 

hypercube ,  

hypergraph ,  ,  
hyperlinks, WWW 
hyperplanes 
hypertext layout 
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Index: I

I_COLLIDE 
identical graphs 
IEEE Data Compression Conference 

image compression ,  ,  ,  
image data 
image features 
image filtering 
image processing 
image segmentation 
image simplification 

implementation challenge, DIMACS ,  

implementation challenges ,  ,  ,  ,  ,  
implementation complexity 
implementations, caveats 
implementation wanted 
implicit binary tree 
impress your friends algorithms 
in-circle test 
incidence matrices 
inconsistent linear equations 
increasing subsequences 
incremental algorithms 
incremental change methods 
incremental insertion algorithm 
incremental insertion algorithms - arrangements 
incremental insertion algorithms - coloring 
incremental insertion algorithms - graph drawing 
incremental insertion algorithms - sorting 
incremental insertion algorithms - suffix trees 
incremental insertion algorithms - TSP 

independent set ,  
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independent set - alternate formulations 
independent set - hardness proof 

independent set - related problems ,  ,  ,  
independent set - simulated annealing 
index - how to use 

induced subgraph ,  
induced subgraph isomorphism 
induction for algorithm design 
inequivalence of programs with assignments 
information retrieval 
information theory 
input/output graphics 
insertion into binary search tree 
insertions - text 

insertion sort ,  ,  ,  
inside/outside polygon 
instance - definition 
instance generator 
integer arithmetic 

integer factorization ,  

integer partition ,  ,  ,  
integer programming 

integer programming - applications ,  
Integer programming - hardness proof 
integer programming - related problems 
integrality constraints 
interfering tasks 
interior-point methods 
Internal Revenue Service (IRS) 

Internet ,  ,  
interpolation search 
intersection - halfspaces 
intersection - set 
Intersection Detection 
intersection detection - applications 

file:///E|/BOOK/BOOK6/INDEX_I.HTM (2 of 3) [19/1/2003 1:32:51]



Index I

intersection detection - related problems ,  
intersection point 
interview scheduling 
invariant - graph 
inverse Ackerman function 
inverse Fourier transform 

inverse matrix ,  
inverse operations 
inversions 
Islamic calendar 
isolated vertex 
isomorphism 
isomorphism - graph 
isomorphism-complete 
iterative methods - linear systems 
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jigsaw puzzle 
job-shop scheduling 
job matching 
Job Scheduling 
Journal of Algorithms 

JPEG ,  
Julian calendar 
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Königsberg 
k-subset - applications 
k-subsets 
Karatsuba's algorithm 
Karazanov's algorithm 
Karmarkar's algorithm 
Karp-Rabin algorithm 

Kd-Trees ,  
kd-trees - applications 

kd-trees - related problems ,  ,  
Kepler conjecture 

Kernighan-Lin heuristic ,  

key length ,  
key search 
Kirchhoff's laws 
knapsack 
knapsack problem 
Knapsack Problem 
knapsack problem - applications 
knapsack problem - related problems 
knight's tour problem 
Knuth-Morris-Pratt algorithm 
Kolmogorov complexity 

Kruskal's algorithm ,  ,  ,  ,  
kth-order Voronoi diagrams 
kth-shortest path 
Kuratowski's theorem 
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labeled graphs ,  
labeling maps 
label placement 
labels 
language pattern matching 

LAPACK ,  
large graphs - representation 
largest element 
last in, first out 
layered printed circuit boards 
Lazy adjacency matrix 
LCA - least common ancestor 
leap year 
least-squares curve fitting 
least common ancestor 
leaves - tree 

LEDA ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  
left-right test 
left-to-right ordering 

Lempel-Ziv algorithms ,  
Lenstra's elliptic curve method 

lexicographic order ,  ,  ,  
libraries 
licensing arrangements 
LIFO 
lifting-map construction 
line-point duality 
linear-time graph algorithms 

linear algebra ,  
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linear congruential generator 
linear constraint satisfaction 
linear extension 
linear interpolation search 
linear partitioning 
linear programming 
Linear Programming 
linear programming - models 

linear programming - related problems ,  
linear programming - relaxation 
linear programming - special cases 
line arrangements 

line graph ,  

line intersection ,  
line segment intersection 
line segment Voronoi diagram 

LINK ,  

link distance ,  

linked lists vs. arrays ,  

LINPACK ,  ,  
LISP 
list searching 
literate program 

locality of reference ,  
local optima 
locations 

logarithms ,  
logic minimization 
logic problems 
logic programming 
long division 
longest common prefix 

longest common substring ,  

longest common substring - related problems ,  
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longest cycle ,  

longest increasing subsequence ,  

longest path ,  
longest path - DAG 
long keys 

loop ,  
lossless encodings 
lossy encodings 
lottery problems 
Lotto problem 

low-degree spanning tree ,  
low-dimensional linear programming 

lower bound ,  ,  ,  
lower bound - range searching 
lower bound - sorting 
lower triangular matrix 
lp_solve 

LU-decomposition ,  
lunar calendar 

LZW algorithm ,  
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Maintaining Line Arrangements 
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manufacturing applications ,  
map labeling 
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matching - applications 
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Mathematica ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  ,  ,  ,  
mathematical notation 

mathematical programming ,  
mathematical software - netlib 
matrix-tree theorem 
matrix bandwidth 
matrix compression 

file:///E|/BOOK/BOOK6/INDEX_M.HTM (1 of 4) [19/1/2003 1:32:57]



Index M

matrix inversion ,  
matrix multiplication 
Matrix Multiplication 
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max-flow, min-cut theorem 
maxima 
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maze ,  
McDonald's restaurants 
MD5 
mean 
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median - application 
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Minkowski sum - applications 

Minkowski sum - related problems ,  
MIX assembly language 
mixed-integer programming 
mixed graphs 

mode ,  
mode-switching 
modeling 
modeling algorithm problems 
modeling graph problems 
models of computation 
Modula-3 
modular arithmetic 
molecular docking 
molecular sequence data 

Mona Lisa ,  
monotone decomposition 
monotone polygons 

Monte Carlo techniques ,  

file:///E|/BOOK/BOOK6/INDEX_M.HTM (3 of 4) [19/1/2003 1:32:57]



Index M

month and year 
morphing 
motion planning 
Motion Planning 

motion planning - related problems ,  ,  
motion planning - shape simplification 
mountain climbing 

move to front rule ,  
moving furniture 

MPEG ,  
multicommodity flow 
multigraph 
multiple knapsacks 
multiple precision arithmetic 
multiple sequence alignment 

multiplication ,  
multiplication, matrix 
multiplication algorithms 

multiset ,  
musical scales 

Algorithms 
Tue Jun 3 11:59:42 EDT 1997 

file:///E|/BOOK/BOOK6/INDEX_M.HTM (4 of 4) [19/1/2003 1:32:57]



Index N

Up: Index - All

Index: N

name variations, recognizing 
naming concepts 
nanosecond 
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Network Flow 

network flow - applications ,  
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network reliability ,  
neural networks 
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O-notation 
objective function 
obstacle-filled rooms 
OCR 
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off-line problem 
oligonucleotide arrays 
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on-line problem 
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packaging applications 
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parallel algorithms ,  
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patented algorithms 
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pilots 
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programming time ,  
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proof of correctness 
propagating consequences 
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queue - applications 
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quicksort - applications 
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radial embeddings 
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radix sort ,  
RAM 
RAM model of computation 
Random Access Machine (RAM) 
random generation - testing 

random graph theory ,  
random graphs - generation 
randomization 
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randomized search - applications 

random number generation ,  ,  
random number generation - related problems 
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rational arithmetic 
ray shooting 
reachability problems 
rebalancing 
recommendations, caveat 
rectangle 
rectilinear Steiner tree 
recurrence relations 
recurrence relations - evaluation 
recursion - applications 
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reduction ,  
reduction - direction of 
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register allocation 

regular expressions ,  
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repeated vertices 
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s-t connectivity 
safe cracker sequence 

satisfiability ,  

satisfiability - related problems ,  
satisfying constraints 
sato 

scaling ,  
scanner, OCR 
scattered subsequences 
scene interpolation 

scheduling ,  
scheduling - precedence constraints 

scheduling - related problems ,  ,  
scheduling problems 

Scheme ,  
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sci.math 
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Searching 

searching - related problems ,  
search space 
search time minimization - magnetic media 

search tree ,  
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secure hashing function 

security ,  
seed 
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sentence structure 
separation problems 
separator theorems 
sequence 
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set cover - applications 
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shape simplification - applications ,  
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Shifflett 
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shipping applications 
shipping problems 
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shortest common superstring - related problems ,  
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shortest path ,  ,  ,  
Shortest Path 

shortest path - applications ,  
shortest path - definition 
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Strassen's algorithm ,  ,  ,  ,  
strategy 
strength of a graph 
string 
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tape drive 
tax fraud 
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telephone dialing 

terrorist ,  
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thinning - applications 
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topological sorting - applications ,  
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traveling salesman - applications ,  
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Triangulation 
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unconstrained optimization ,  ,  
unconstrained optimization - related problems 
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variable length encodings 
vector quantification 
vector sums 
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vertex cover - approximation algorithm 

vertex cover - hardness proof ,  
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Vizing's theorem ,  
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3-SAT, 
k-optimal tours

 metric

 

 

 -moves

above-below test, 
abracadabra
abstract data types
abstract graph type
academic institutions - licensing
acceptance-rejection method
Ackerman function
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Ada
adaptive compression algorithms
Adaptive Simulated Annealing (ASA)
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address book, TCS
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algorithmic resources
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approximate string matching, , , 

approximate string matching - related problems, 
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approximation algorithms, 

approximation scheme, 
arbitrage
Arbitrary-Precision Arithmetic
arbitrary-precision arithmetic - geometry
arbitrary-precision arithmetic - related problems
architectural models
area computations - applications
area computations - triangles
area minimization
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arm, robot
around the world game

Arrange, 

arrangement, , 
arrangement of objects
arrangements of lines
array
array searching
art gallery problems

articulation vertex, 
artists steal
ASA
ASCII
aspect ratio

assembly language, 
assignment problem
associative operation
asymmetric longest path problem

asymmetric TSPs, 
asymptotic analysis
atom smashing
attitude of the algorithm designer
attribute
attribute - graph
augmenting path
augmenting path methods
authentication protocol
automorphisms
average
average-case analysis
average-case complexity
AVL tree
Avogadro's number
awk
Axiom

axis-oriented rectangles, 
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axis-parallel planes

B-tree, , , 
backpacker
backsubstitution

backtracking, , , , , , , , , 
backtracking - animations

backtracking - applications, 
backtracking - bandwidth problem

balanced search tree, , 

banded systems, 
bandersnatch problem

bandwidth, 
bandwidth - matrix
Bandwidth Reduction
bandwidth reduction - backtracking
bandwidth reduction - related problems
bar codes
base - arithmetic
base - conversion
base of logarithm

Bellman-Ford algorithm, 
Berge's theorem
best-case complexity
Bible - searching the
bibliographic databases
biconnected components

biconnected graphs, , 
big Oh notation
bijection
binary heap
binary representation - subsets

binary search, , 

binary search - applications, 

binary search - one-sided, 
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binary search tree, , , 
binary search tree - applications
binary search tree - computational experience
Bin Packing

bin packing - applications, 
bin packing - knapsack problem

bin packing - related problems, 
biocomputing
biology
bipartite graph
bipartite graph recognition
bipartite incidence structures

bipartite matching, , , 

bipartite matching - applications, 
bit-mapped images
bit representation of graphs

bit vector, , , 

bit vector - applications, 
blind man's algorithm
block - set partition
blossoms
board evaluation function
bookshelves

Boolean logic minimization, 
Boolean matrix multiplication
borrowing
Boruvka's algorithm
boss's delight
boundaries
bounded height priority queue
bounding boxes
Boyer-Moore algorithm
brainstorming

branch-and-bound search, , 

breadth-first search, , , 
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breadth-first search - applications
bridge
bridges of Königsberg
Brook's theorem
Brooks, Mel
brush fire
brute-force search

bubblesort, 

bucketing techniques, , 
bucketing techniques - graphics
bucket sort
budget, fixed
built-in random number generator
buying fixed lots

C++, , , , , , , , , , , , , , , , , , , , , , 

, , , , , , , , , , 
C++ templates
cache
Caesar shifts
calculator, arithmetic
Calendrical Calculations

call graph, 
canonically-labeled graphs

canonical order, , 
CAP
Carmichael numbers
cars and tanks
cartoons
casino analysis
casino poker
catalog WWW site
Catch-22 situation
caveat

CD-ROM, , , 
cdd
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center vertex, , 
CGAL
chain of matrices
characters
checksum
chessboard coverage

chess program, 
Chinese calendar
Chinese postman problem
Chinese remainder theorem
Christofides heuristic
chromatic index
chromatic number
chromatic polynomials
cipher
circle
circuit analysis
circuit board assembly
circuit board placement - simulated annealing
circuit layout
circuit schematic diagrams
circuit testing
circular embeddings

C language, , , , , , , , , , , , , , , , , , , , , 

, , , , , , , , , , , , , , , , 
classification
classification - nearest-neighbor
classifiers - neural networks
clauses
clipping
Clique

clique - applications, 
clique - definition
clique - hardness proof
clique - related problems
clock
closest pair heuristic
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closest pair problem, 
closest point
closure
clothing - manufacturing
cloudy days
cluster
clustered access

cluster identification, , 

clustering, , 
co-NP
coding theory
coefficients
cofactor method
coin flip
collapsing dense subgraphs

Collected Algorithms of the ACM, , , , , , , , , , , , , , , 

, , , , , , 
collection
coloring graphs
color interchange
combinatorial generation algorithms
combinatorial geometry

combinatorial problems, 

Combinatorica, , , , , , , , , , , , , , , , , , , , 

, , , , , , 
Commentz-Walter algorithm
commercial implementations
committee
committee - congressional
Common Lisp
common substrings
communication in circuits

communications networks, 
comp.graphics.algorithms
comp.theory
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compaction
comparisons - minimizing
compiler
compiler construction

compiler optimization, 
compiler optimization - performance
complement
complement graph
completion time - minimum
complexity classes
composite integer

compress, 
compression
compression - image
computational biology
computational complexity
computational geometry

computational number theory, 

computer algebra system, 
computer chess
computer graphics

computer graphics - applications, 
computer graphics - rendering
computer vision
concatenation - string
concavities
concavity elimination
configurations
configuration space
conjugate gradient methods
conjunctive normal form (CNF)

connected components, , , 

connected components - related problems, 
connected graph

connectivity, , 
consensus sequences
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Index (complete)

consistent schedule
Constrained and Unconstrained Optimization
constrained and unconstrained optimization - related problems
constrained Delaunay triangulation
constrained optimization
constrained optimization - related problems
constraint elimination
constraint satisfaction

consulting services, 

container, 
context-free grammars
Contig Assembly Program
control systems - minimization

convex decomposition, 

convex hull, 
Convex Hull

convex hull - related problems, 
convex polygons
convex polygons - intersection
convex region
convolution - polygon
convolution - sequences
cookbook
cooling schedules
coordinate transformations
coplanar points
copying a graph
corporate ladder
correctness - algorithm
correlation function
counterexample construction
counting edges and vertices
counting Eulerian cycles
counting integer partitions
counting linear extensions
counting matchings
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counting paths, 
counting spanning trees
courses, lecture notes
covering polygons with convex pieces
covering set elements
CPLEX
Cramer's rule
CRC
critical path method
crossing number
crossings
Cryptography
cryptography - keys

cryptography - related problems, , 
CS
CSA
cubic regions
currency speculation
curve fitting
Cuthill-McKee algorithm

cut set, 

cutting plane methods, 
cutting stock problem
CWEB
cycle - shortest
cycle breaking

cycle detection, 
cycle length
cycle notation
cycle structure of permutations
cyclic-redundancy check (CRC)
DAG
DAG - longest path in
DAG - shortest path in
data abstraction
database algorithms
database application
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database query optimization
data compression
Data Encryption Standard
data filtering
data records

data structures, 
data structures - animations
data transmission
data validation

Davenport-Schintzl sequences, , 

Davis-Putnam procedure, 
day of the week calculation
deadlock

de Bruijn sequence, 
debugging graph algorithms
debugging parallel programs
debugging randomized algorithms
debugging time
debugging tools
decimal arithmetic
decompose space
decomposing polygons
deconvolution
decrease-key
decryption
Deep Blue
defenestrate
degeneracy
degeneracy testing
degenerate configuration
degenerate system of equations

degree, vertex, 
degree sequence
degrees of freedom

Delaunay triangulation, , 
Delaunay triangulation - applications
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deletion from binary search tree
deletions - text
deliveries and pickups
delivery routing
Democrat/Republican identification
De Morgan's laws

dense graphs, , 
densest sphere packing
dense subgraph

depth-first search, , , , , , , , 

depth-first search - applications, , , , , 
depth-first search - backtracking
derangement
derivatives - automata
derivatives - calculus
DES
descendent
design process
design rule checking
determinant
determinant - related problems
Determinants and Permanents
deterministic finite automata
DFA
diameter of a graph
diameter of a point set
Dictionaries

dictionaries - related problems, 

dictionary, , 
dictionary - applications
dictionary - related problems
dictionary - searching
DIEHARD
diff - how it works
digital geometry
digital signatures
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Dijkstra's algorithm, , 

DIMACS, , 
DIMACS Challenge data

DIMACS Implementation Challenge, , , , , 
Dinic's algorithm

directed acyclic graph, , , 
directed cycle
directed graph
directed graphs - automata
directory file structures
disclaimer

discrete event simulation, 

Discrete Fourier Transform, 
discrete mathematics software
discussion section
disjoint paths
disjoint set union
disjoint subsets
disjunctive networks

disjunctive normal form, 
disk access

disk drives, 

dispatching emergency vehicles, 
dispersion problems
distance graph
distance metrics
distinguishable elements
distributed computation

distribution sort, 

divide and conquer, , , , 

division, 
DNA
DNA sequence comparisons

DNA sequencing, , 
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dominance orderings, 
DOS file names

double-precision arithmetic, , 
Douglas-Plucker algorithm
drawing graphs - related problems
Drawing Graphs Nicely
drawing puzzles
Drawing Trees

drawing trees - related problems, 
driving time minimization
drug discovery
DSATUR

dual graph, 

duality, 
duality transformations
duplicate elimination
duplicate elimination - graphs
duplicate elimination - permutations
duplicate keys
dynamic convex hulls

dynamic data structures, 
dynamic graph algorithms
dynamic Huffman codes

dynamic programming, , , , , , , 

dynamic programming - applications, , 
dynamic programming - initialization
dynamic programming - shortest paths
dynamic programming - space efficiency
eavesdropper
eccentricity of a graph
economics - applications to

edge/vertex connectivity - related problems, , 
Edge and Vertex Connectivity
edge chromatic number

edge coloring, 
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edge coloring - applications

edge coloring - related problems, 

edge cover, , 
edge disjoint paths
edge flipping operation
edge labeled graphs
edge length
edge tour

edit distance, 
Edmond's algorithm
efficiency of algorithms
eight-queens problem
electrical engineers
electronic circuit analysis
electronic circuits
Electronic Frontier Foundation

element uniqueness problem, 
elimination ordering
ellipsoid algorithm
elliptic-curve method
embeddings - planar
Emde Boas priority queue

empirical results, , 
empirical results - heuristics
empirical results - how to do
empirical results - string matching
employees to jobs - matching
empty circle - largest
empty rectangle
enclosing boxes
enclosing disk
enclosing rectangle
encryption
energy function

energy minimization, 

English language, 
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English to French
enumeration of spanning trees
epsilon-moves
equilateral triangle
equivalence classes
equivalence classes - automata states
Erd•s-Gallai conditions
error
estimating closure sizes
ethnic groups in Congress
Euclid's algorithm
Euclidean minimum spanning tree
Euclidean traveling salesman
Euler's formula
Eulerian cycle - applications
Eulerian cycle - line graphs

Eulerian cycle - related problems, 
Eulerian Cycle / Chinese Postman
Eulerian path
evaluation function
even-degree vertices
even-length cycles
event queue
evolutionary tree
exact cover problem
exact string matching
exam scheduling

exercises, , , , , 

exhaustive search, 
exhaustive search - application
exhaustive search - empirical results
exhaustive search - subsets
expanded obstacles approach
expander graphs
expected-time, linear
experimental analysis - set cover
experimental graph theory
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exponential-time algorithms, 
exponential distribution

exponentiation, 
export restrictions

external-memory sorting, 
external memory
facets

facility location, , 
Factoring and Primality Testing
factoring and primality testing - related problems
factoring integers - related problems
factory location

family tree, 
fan out minimization for networks

FAQ file, , , 
farthest point Voronoi diagrams
Fary's theorem
faster computers
fast Fourier transform
fat cells
fattening polygons
feature sets
Federal Sentencing Guidelines
feedback edge set
Feedback Edge/Vertex Set
feedback edge/vertex set - related problems
Fermat
Fermat's theorem
Ferrer's diagram

FFT, 
FFTPACK
fgrep

Fibonacci heap, , , 
Fibonacci numbers
FIFO
file difference comparison
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file directory trees
file layout
filtering outlying elements
filtering signals
final examination
financial constraints
find operation
finite automata
finite automata minimization
finite element analysis
Finite State Machine Minimization
FIRE Engine
firehouse
first-fit - decreasing
first in, first out
fixed degree sequence graphs
FLAP
flat-earth model
Fleury's algorithm
flight crew scheduling
floating-point arithmetic

Floyd's algorithm, , , 
football program
football scheduling

Fortran, , , , , , , , , , , , , , , , , , , , , 

, , , , , , , , , , 
Fortune's algorithm

four-color problem, 
Fourier transform - applications
Fourier transform - multiplication
Fourier transform - related problems

four Russians algorithm, , 
fragment ordering
fraud - tax
freedom to hang yourself
free space
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free trees
frequency distribution
frequency domain
friend-or-foe identification

friendship graph, 
ftp - instructions
function interpolation
furniture moving
furthest-point insertion heuristic
furthest-site diagrams
furthest-site Voronoi vertices
future events
game-tree search
game-tree search - parallel
games directory

GAMS, 
gaps between primes
garbage trucks
Garey and Johnson
Gates, William

Gaussian distribution, 

Gaussian elimination, 
Genbank searching
Generating Graphs
Generating Partitions

generating partitions - related problems, , , 
Generating Permutations

generating permutations - related problems, , , , 
Generating Subsets
generating subsets - applications

generating subsets - related problems, , , 

genetic algorithms, , , 
Genocop
geographic information systems
Geolab
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geom.bib, 
geometric algorithms - animations
geometric data structure
geometric degeneracy
geometric graphs
geometric primitives - related problems

geometric shortest path, 
geometric spanning tree
geometric Steiner tree
geometric traveling salesman problem
geometric TSP

GEOMPACK, 
Gettysburg Address
Gibbs-Poole-Stockmeyer algorithm
gift-wrapping algorithm
Gilbert and Pollak conjecture
Gingrich, Newt

girth, 
glimpse
global optimization
Graffiti

Graffiti - graphs of, 
Graham scan
Grail

graph algorithms, 
graph algorithms - animations
graph algorithms - bandwidth problem

GraphBase, , , , , , , , , , , , , 
graph complement

graph data structures, 
graph data structures - applications

graph data structures - LEDA, 
graph density
graph drawings - clutter

GraphEd, , , 
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graph embedding
graphical enumeration
graphic partitions
Graphics Gems
graphics plotter

graph isomorphism, , 

graph isomorphism - related problems, 

graph partition, 
Graph Partition

graph partition - related problems, , 
graph products
graphs
graph theory
graph theory packages
graph traversal
GraphViz

Gray code, 
greatest common divisor

greedy heuristic, , , , , , 
greedy heuristic - Huffman codes
greedy heuristic - minimum spanning trees
greedy heuristic - superstrings
Gregorian calendar
grid embeddings

grid file, 
group - automorphism
growth rates
guarantees - importance of
guarding art galleries
Guide to Available Mathematical Software

gzip, 

had-sex-with graph, 
half-space intersection
Hamiltionian cycle - hypercube

Hamiltonian cycle, , , 
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Hamiltonian Cycle
Hamiltonian cycle - applications
Hamiltonian cycle - counting
Hamiltonian cycle - hardness proof
Hamiltonian cycle - line graphs

Hamiltonian cycle - related problems, 
Hamiltonian path
Hamiltonian path - applications
Hamming distance
hardness of approximation
hardware arithmetic
hardware design applications
hardware implementation
hash function
hash tables
hash tables - computational experience
hash tables - size
Hausdorff distance
heap

heapsort, , , 
heard-of graph
heart-lung machine
heating ducts
Hebrew calendar
Hertel-Mehlhorn heuristic

heuristics, , 
heuristics - empirical results

hidden-surface elimination, 

hierarchical decomposition, 
hierarchical drawings

hierarchical graph structures, 
hierarchy
high-precision arithmetic - need for

high-precision arithmetic - related problems, 
higher-dimensional data structures
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higher-dimensional geometry, , 
high school algebra
high school cliques
hill climbing
historical objects

history, 
history - cryptography
history - graph theory
hitting set
HIV virus
homeomorphism
homophones
horizon

Horner's rule, 
How to Solve It
ht://Dig
hub site
Huffman codes
Hull
Human Genome Initiative
Hungarian algorithm

hypercube, 

hypergraph, , 
hyperlinks, WWW
hyperplanes
hypertext layout
I_COLLIDE
identical graphs
IEEE Data Compression Conference

image compression, , , 
image data
image features
image filtering
image processing
image segmentation
image simplification
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implementation challenge, DIMACS, 

implementation challenges, , , , , 
implementation complexity
implementations, caveats
implementation wanted
implicit binary tree
impress your friends algorithms
in-circle test
incidence matrices
inconsistent linear equations
increasing subsequences
incremental algorithms
incremental change methods
incremental insertion algorithm
incremental insertion algorithms - arrangements
incremental insertion algorithms - coloring
incremental insertion algorithms - graph drawing
incremental insertion algorithms - sorting
incremental insertion algorithms - suffix trees
incremental insertion algorithms - TSP

independent set, 
independent set - alternate formulations
independent set - hardness proof

independent set - related problems, , , 
independent set - simulated annealing
index - how to use

induced subgraph, 
induced subgraph isomorphism
induction for algorithm design
inequivalence of programs with assignments
information retrieval
information theory
input/output graphics
insertion into binary search tree
insertions - text

insertion sort, , , 
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inside/outside polygon
instance - definition
instance generator
integer arithmetic

integer factorization, 

integer partition, , , 
integer programming

integer programming - applications, 
Integer programming - hardness proof
integer programming - related problems
integrality constraints
interfering tasks
interior-point methods
Internal Revenue Service (IRS)

Internet, , 
interpolation search
intersection - halfspaces
intersection - set
Intersection Detection
intersection detection - applications

intersection detection - related problems, 
intersection point
interview scheduling
invariant - graph
inverse Ackerman function
inverse Fourier transform

inverse matrix, 
inverse operations
inversions
Islamic calendar
isolated vertex
isomorphism
isomorphism - graph
isomorphism-complete
iterative methods - linear systems
jigsaw puzzle
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job-shop scheduling
job matching
Job Scheduling
Journal of Algorithms

JPEG, 
Julian calendar
Königsberg
k-subset - applications
k-subsets
Karatsuba's algorithm
Karazanov's algorithm
Karmarkar's algorithm
Karp-Rabin algorithm

Kd-Trees, 
kd-trees - applications

kd-trees - related problems, , 
Kepler conjecture

Kernighan-Lin heuristic, 

key length, 
key search
Kirchhoff's laws
knapsack
knapsack problem
Knapsack Problem
knapsack problem - applications
knapsack problem - related problems
knight's tour problem
Knuth-Morris-Pratt algorithm
Kolmogorov complexity

Kruskal's algorithm, , , , 
kth-order Voronoi diagrams
kth-shortest path
Kuratowski's theorem

labeled graphs, 
labeling maps
label placement
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labels
language pattern matching

LAPACK, 
large graphs - representation
largest element
last in, first out
layered printed circuit boards
Lazy adjacency matrix
LCA - least common ancestor
leap year
least-squares curve fitting
least common ancestor
leaves - tree

LEDA, , , , , , , , , , , , , , , , , , , , , , 

, , , , , , , 
left-right test
left-to-right ordering

Lempel-Ziv algorithms, 
Lenstra's elliptic curve method

lexicographic order, , , 
libraries
licensing arrangements
LIFO
lifting-map construction
line-point duality
linear-time graph algorithms

linear algebra, 
linear congruential generator
linear constraint satisfaction
linear extension
linear interpolation search
linear partitioning
linear programming
Linear Programming
linear programming - models

linear programming - related problems, 
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linear programming - relaxation
linear programming - special cases
line arrangements

line graph, 

line intersection, 
line segment intersection
line segment Voronoi diagram

LINK, 

link distance, 

linked lists vs. arrays, 

LINPACK, , 
LISP
list searching
literate program

locality of reference, 
local optima
locations

logarithms, 
logic minimization
logic problems
logic programming
long division
longest common prefix

longest common substring, 

longest common substring - related problems, 

longest cycle, 

longest increasing subsequence, 

longest path, 
longest path - DAG
long keys

loop, 
lossless encodings
lossy encodings
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lottery problems
Lotto problem

low-degree spanning tree, 
low-dimensional linear programming

lower bound, , , 
lower bound - range searching
lower bound - sorting
lower triangular matrix
lp_solve

LU-decomposition, 
lunar calendar

LZW algorithm, 
machine-independent random number generator
machine clock
Macsyma
mafia
magnetic tape
mail routing

maintaining arrangements - related problems, 
Maintaining Line Arrangements
makeg

manufacturing applications, 
map labeling
Maple
map making
marriage problems

MAT, 

matching, 
matching - applications
matching - dual to
matching - number of perfect

matching - related problems, , , , 
matching shapes

Mathematica, , , , , , , , , , , , , , , , , , , , 
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, , , , , , , 
mathematical notation

mathematical programming, 
mathematical software - netlib
matrix-tree theorem
matrix bandwidth
matrix compression

matrix inversion, 
matrix multiplication
Matrix Multiplication
matrix multiplication - applications
matrix multiplication - related problems
matroids
max-cut
max-flow, min-cut theorem
maxima
maximal clique
maximal matching
maximum-cardinality matchings
maximum acyclic subgraph
maximum cut - simulated annealing

maze, 
McDonald's restaurants
MD5
mean
Mechanical computers
mechanical truss analysis

medial-axis transform, 
Medial-Axis Transformation
median - application
Median and Selection
medical residents to hospitals - matching
memory accesses
mems
Menger's theorem

mergesort, , , 
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merging subsets
merging tapes

mesh generation, 
Metaphone
Metropolis algorithm
middle square method
millennium bug
Miller-Rabin algorithm
mindset
minima
minimax search
minimizing automata
minimum-change order
minimum change order - subsets
minimum cut
minimum equivalent digraph

minimum spanning tree, , , , 
Minimum Spanning Tree

minimum spanning tree - applications, 
minimum spanning tree - drawing

minimum spanning tree - related problems, , 
minimum weight triangulation
Minkowski metric

Minkowski sum, 
Minkowski sum - applications

Minkowski sum - related problems, 
MIX assembly language
mixed-integer programming
mixed graphs

mode, 
mode-switching
modeling
modeling algorithm problems
modeling graph problems
models of computation
Modula-3
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modular arithmetic
molecular docking
molecular sequence data

Mona Lisa, 
monotone decomposition
monotone polygons

Monte Carlo techniques, 
month and year
morphing
motion planning
Motion Planning

motion planning - related problems, , 
motion planning - shape simplification
mountain climbing

move to front rule, 
moving furniture

MPEG, 
multicommodity flow
multigraph
multiple knapsacks
multiple precision arithmetic
multiple sequence alignment

multiplication, 
multiplication, matrix
multiplication algorithms

multiset, 
musical scales
name variations, recognizing
naming concepts
nanosecond
national debt
National Football League (NFL)
National Security Agency (NSA)

nauty, 
NC - Nick's class
nearest-neighbor heuristic
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nearest neighbor - related problems

nearest neighbor graph, 

nearest neighbor search, , 

nearest neighbor search - related problems, 
negation
negative-cost cycle
negative cost edges

NEOS, 

Netlib, , , , , , , , , , , 
network
Network-Enabled Optimization System

network design, , 
network design - minimum spanning tree

network flow, 
Network Flow

network flow - applications, 

network flow - related problems, , , , 

network reliability, 
neural networks
neural networks - classification

neural networks - coloring, 
newsgroups
next subset

Nobel Prize, 
noisy channels

noisy images, 
nonapproximability results
noncrossing drawing
nondeterministic automata
nonEuclidean distance metrics
nonnumerical problems
nonorthogonal kd-tree
nonself intersecting polygons
nonuniform access
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normal distribution
notorious NP-complete problem

NP, 
NP-completeness
NP-completeness - definition of
NP-completeness - proving
NP-completeness - theory of

NP-complete problem, , , 
NP-complete problem - bandwidth
NP-complete problem - crossing number
NP-complete problem - NFA minimization
NP-complete problem - satisfiability
NP-complete problem - set packing
NP-complete problem - superstrings
NP-complete problem - tetrahedralization
NP-complete problem - tree drawing
NP-complete problem - trie minimization
NP-hard problems
nuclear fission
number field sieve

number theory, 
numerical analysis
numerical precision

Numerical Recipes, 
numerical root finding

numerical stability, 
O-notation
objective function
obstacle-filled rooms
OCR
octtree
odd-degree vertices

odd-length cycles, 
off-line problem
oligonucleotide arrays
on-line algorithm resources
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on-line problem

one-sided binary search, 
OpenGL graphics library

operations research, 

optical character recognition, , , 
optical character recognition - system testing
optimal binary search trees
optimization problems
ordered set

ordering, 
order statistics
organic graphs
organ transplant
orthogonal planes
orthogonal polyline drawings

orthogonal range query, 
outerplanar graphs
outlying elements
output-sensitive algorithms
overdetermined linear systems
overlap graph
overpasses - highway
Oxford English Dictionary
P
P-completeness
p-tree
packaging
packaging applications
packing vs. covering

paging, 
pagoda

pairing heap, 
palindrome
paradigms of algorithms design

parallel algorithms, 
parallel algorithms - graphs
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parallel algorithms - visualization
parallel lines
parallel processor scheduling
paranoia level
parenthesization

PARI, 
parse trees
parsing
partial key search

partial order, 
partitioning automata states
partitioning point sets
partitioning polygons into convex pieces
partitioning problems
partition problem
party affiliations

Pascal, , , , , , , , , , , , , , , , , , , , , , 

, , , , , , , 

password, 
patented algorithms
path
path generation - backtracking
path planning

paths - counting, 
Patricia trie

pattern matching, , , 

pattern recognition, 
pattern recognition - automata
patterns
Pat tree
PDF-417
penalty functions
perfect hashing
perfect matching
performance bottlenecks
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performance guarantee
performance in practice
period
periodicities
perl
permanent

permutation, 
permutation comparisons
permutation generation
permutation generation - backtracking
perpendicular bisector
personality conflicts - avoiding
PERT/CPM
Petersen graph

PGP, , 
phone company
PHYLIP

phylogenic tree, 
piano mover's problem

Picasso, P., 
pieces of a graph
pilots
pink panther

pivoting rules, 

pixel geometry, 
pLab

planar drawings, 
planar drawings - related problems

planar graph, 
planar graph - clique
planar graph - coloring
planar graph - instances
planar graph - isomorphism
Planarity Detection and Embedding
planarity testing - related problems
planar separators
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planar subdivisions
planar sweep algorithms
plumbing
point-spread function
point distributions
pointer manipulation
point in polygon

point location, 

point location - related problems, , , 
point robots
points
point set clusters
Poisson distribution
Polka
polygonal data structure
Polygon Partitioning
polygon partitioning - related problems
polygons
polygon triangulation
polyhedral simplification
polyline graph drawings
polynomial-time approximation scheme
polynomial-time problems
polynomial evaluation
polynomial multiplication
poor thin people
popular keys
porting code
POSIT
positions
position tree
potential function
power diagrams
power set
powers of graphs

Prüfer codes, 
precedence-constrainted scheduling

file:///E|/BOOK/BOOK5/INDEX_AL.HTM (39 of 56) [19/1/2003 1:33:44]



Index (complete)

precedence constraints, 
precision
preemptive scheduling
prefix - string
preflow-push methods
preprocessing - graph algorithms
presortedness measures
Pretty Good Privacy
previous subset
PRF
price-per-pound

Prim's algorithm, 

primality testing, 
prime number
prime number theorem
principle of optimality

printed circuit boards, 
printing a graph

priority queues, 

priority queues - applications, , , , 
priority queues - arithmetic model
priority queues - related problems
problem - definition
problem-specific algorithms
problem descriptions
problem instance

problem solving techniques, 
procedure call overhead
producer/consumer sectors
profit maximization
Program Evaluation and Review Technique
program libraries
programming languages

programming time, 
program structure
Prolog
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proof of correctness
propagating consequences
propositional logic
protocol

pruning - backtracking, , 
pseudocode
pseudorandom numbers
psychic lotto prediction

public key cryptography, , 

Qhull, , , 
quadratic-sieve method
quadratic programming
quadtree
quality triangulations
questions

queue, 
queue - applications

quicksort, , , 
quicksort - applications
rabbits
radial embeddings
radio stations
radius of a graph

radix sort, 
RAM
RAM model of computation
Random Access Machine (RAM)
random generation - testing

random graph theory, 
random graphs - generation
randomization

randomized algorithms, , , , 
randomized data structures

randomized incremental algorithms, , , 
randomized quicksort
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randomized search - applications

random number generation, , 
random number generation - related problems

random permutations, 
random perturbations
random sampling - applications
random search tree
random subset

Ranger, , 

range search, , 

range search - related problems, 
ranked embedding

ranking and unranking operations, , 
ranking combinatorial objects
ranking permutations
ranking subsets
RAPID
rasterized images
rational arithmetic
ray shooting
reachability problems
rebalancing
recommendations, caveat
rectangle
rectilinear Steiner tree
recurrence relations
recurrence relations - evaluation
recursion - applications
red-black tree

reduction, 
reduction - direction of
reflex vertices
region of influence
regions
regions formed by lines
register allocation
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regular expressions, 
relationship
reliability, network
repeated vertices
representative selection
Republican sex offenders

resource allocation, 
resources - algorithm
restricted growth function

retrieval, 
reverse-search algorithms
Right Stuff, The
riots ensuing
Rivest-Shamir-Adelman

road network, , 

robot assembly, 

robot motion planning, , 
robust geometric computations
Robust Geometric Primitives

Roget's Thesaurus, 

rooted tree, 

root finding algorithms, , 
rotating-calipers method
rotation
rotation - polygon
roulette wheels
round-off error
round-off errors
RSA-129

RSA algorithm, , 
rules of algorithm design
run-length coding
s-t connectivity
safe cracker sequence

file:///E|/BOOK/BOOK5/INDEX_AL.HTM (43 of 56) [19/1/2003 1:33:44]



Index (complete)

satisfiability, 

satisfiability - related problems, 
satisfying constraints
sato

scaling, 
scanner, OCR
scattered subsequences
scene interpolation

scheduling, 
scheduling - precedence constraints

scheduling - related problems, , 
scheduling problems

Scheme, 
schoolhouse method
sci.math

scientific computing, , 
Searching

searching - related problems, 
search space
search time minimization - magnetic media

search tree, 
secondary key
secondary storage devices
secure hashing function

security, 
seed

segmentation, 
segment intersection

selection, , 
selection - subsets

selection sort, 
self-intersecting polygons

self-organizing list, 

file:///E|/BOOK/BOOK5/INDEX_AL.HTM (44 of 56) [19/1/2003 1:33:44]



Index (complete)

self-organizing tree, 
self-study textbook
semi-exhaustive greedy algorithm
semidefinite programming
sentence structure
separation problems
separator theorems
sequence
sequencing by hybridization
sequencing permutations

sequential search, 
set
set algorithms

Set Cover, , 
set cover - applications
set cover - exact

set cover - related problems, , , 

Set Data Structures, 
set data structures - applications
set data structures - related problems

Set Packing, 

set packing - related problems, 

set partition, 
sex offenders, Republican
shape of a point set
shape representation
shapes
Shape Similarity
shape simplification

shape simplification - applications, 

shellsort, 
Shifflett
shift-register sequences
shipping applications
shipping problems
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Shortest Common Superstring

shortest common superstring - related problems, 
shortest cycle

shortest path, , , 
Shortest Path

shortest path - applications, 
shortest path - definition

shortest path - geometric, 

shortest path - related problems, , , , , , 
shortest path matrix
shotgun sequencing
shuffling
sieving devices - mechanical
SIGACT
sign - determinant
sign - permutation
signal processing
signal propagation minimization

Sim++, 

SimPack, 
simple cycle
simple graph
simple polygon - construction
simple polygons
simplex method
simplicial complex
simplicity testing
simplification envelopes
Simplifying Polygons
simplifying polygons - related problems

simulated annealing, , , , , , , , , , , 
simulated annealing - satisfiability
simulated annealing - theory
simulations
simulations - accuracy
sin, state of
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sine functions

single-precision numbers, 
single-source shortest path

singular matrix, 
sinks - multiple
sink vertex
sites
size of graph

skeleton, 
skewed distribution

Skiena, Len, 
skiing
skinny triangles
skip list
slab method
slack variables
small edge weights
smallest element
smallest enclosing circle problem
Smith Society

smoothing, 
smoothness
SNNS
snow plows
soap films
software engineering
software tools
solar year
Solving Linear Equations

solving linear equations - related problems, , 

sorted array, 

sorted linked list, 

sorting, , 
sorting - applications
sorting - animations
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sorting - applications, 
sorting - cost of
sorting - rationales for

sorting - related problems, , , , , 
sorting - strings
sound-alike strings

Soundex, 
sources - multiple
source vertex
space-efficient encodings
space decomposition
space minimization - digraphs
space minimization - string matching
spanning tree
SPARE Parts

sparse graph, , 
sparse matrices
sparse matrices - compression
sparse subset
sparse systems
sparsification
spatial data structure
special-purpose hardware
speech recognition
speedup - parallel

spelling correction, , 
sphere packing
spikes
Spinout puzzle
spiral polygon

splay tree, 
SPLIB
splicing cycles
splines
split-and-merge algorithm
spreadsheet updates
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spring embedding heuristics, 

square of a graph, 
square root of a graph
square roots

stable marriages, 
stable sorting

stack, 
stack - applications
stack size
standard form

Stanford GraphBase, , , 
star-shaped polygon decomposition
state elimination, automata
static tables
statistical significance
statistics
steepest descent methods
Steiner points
Steiner ratio
Steiner Tree
Steiner tree - related problems
Steiner vertices
stock exchange
stock picking
Stony Brook Algorithm Repository

Stony Brook class projects, 

straight-line graph drawings, 

Strassen's algorithm, , , , 
strategy
strength of a graph
string
string algorithms
string algorithms - animations

string data structures, , 

String Matching, 
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string matching - related problems, , , 
string overlaps
strings
strings - combinatorial
strings - generating
strongly-connected graphs
strongly connected components

strongly connected graphs, 
Stuttgart Neural Network Simulator
subgraph isomorphism
subgraph isomorphism - applications

subroutine call overhead, 
subset
subset generation
subset generation - backtracking
subset sum problem
substitution cipher
substitutions, text

substring matching, 
subtraction
suffix array

suffix trees, , 

suffix trees - applications, 
suffix trees - computational experience

suffix trees - related problems, 
Suffix Trees and Arrays
sunny days
supercomputer
superstrings - shortest common
surface interpolation
surface structures
swap elements
swapping

sweepline algorithms, , 
symbolic computation
symbolic set representation
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Symbol Technologies
symmetric difference
symmetry detection
symmetry removal
tables
tabu search
tactics
tail recursion
take home lessons
tape drive
tax fraud
taxonomy
technical skills

telephone books, , 
telephone dialing

terrorist, 
test data
testing planarity
test pilots
tetrahedralization
text

textbooks, 

text compression, 
Text Compression

text compression - related problems, , 

text data structures, 
text processing algorithms
text searching with errors
thermodynamics
thinning
thinning - applications

thinning - related problems, 
three-points-on-a-line
tight bound
time-series analysis
time slot scheduling

file:///E|/BOOK/BOOK5/INDEX_AL.HTM (51 of 56) [19/1/2003 1:33:45]



Index (complete)

Toeplitz matrices
tool path optimization

topological sorting, 

topological sorting - applications, 

topological sorting - related problems, , , 
topological sweep
tour
traffic light scheduling
transition matrix
transitive closure
Transitive Closure and Reduction
transitive reduction
translation - polygon
transmitter power

transportation problems, , 
transposition
trapezoidal decomposition

traveling salesman, , 

traveling salesman - applications, 
traveling salesman - approximation algorithms
traveling salesman - decision problem
traveling salesman - dynamic programming

traveling salesman - related problems, , 
traveling salesman - simulated annealing
Traveling Salesman Problem
treap
tree identification

trees, 
trees - acyclic graphs
trees - detection
trees - drawings
trees - generation
trees - hard problem in
trees - independent set
trees - matching
trees - partition
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trial division
Triangle

triangle inequality, 
triangle refinement method

triangle strips, 
triangulated surfaces
Triangulation

triangulation - applications, , , 
triangulation - minimum weight

triangulation - related problems, 
triconnected components

trie, 
trigram statistics
TSP
tsp_solve

TSPLIB, 
turnpike reconstruction problem
twenty questions
two-coloring

unbounded search, 

unconstrained optimization, , 
unconstrained optimization - related problems
undirected graph

uniform distribution, , 
union, set
union-find data structure
union-find data structure - applications
union of polygons
union of polygons - applications
unit cube
unit sphere
universal set
unknown data structures

unlabeled graphs, 
unranking combinatorial objects

file:///E|/BOOK/BOOK5/INDEX_AL.HTM (53 of 56) [19/1/2003 1:33:45]



Index (complete)

unranking permutations
unranking subsets
unsorted array
unsorted list
unweighted graphs - spanning trees
upper bound
upper triangular matrix
Utah
validation
Vancouver Stock Exchange
Vandermonde matrices
vantage point tree
variable elimination
variable length encodings
vector quantification
vector sums

Vertex Coloring, , , 
vertex coloring - applications
vertex coloring - bipartite graphs

vertex coloring - related problems, , 

vertex cover, 
vertex cover - approximation algorithm

vertex cover - hardness proof, 

vertex cover - related problems, , 

vertex degree, 
vertex disjoint paths
video - algorithm animation

video compression, 

virtual memory, , 
virtual memory - algorithms
virtual memory - performance
virtual reality applications

visibility graphs, 
Viterbi algorithm

Vizing's theorem, 
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VLSI circuit layout, 
VLSI design problems

volume computations, 
von Emde Boas queue
von Neumann, J.
Voronoi diagram
Voronoi Diagrams
Voronoi diagrams - nearest neighbor search

Voronoi diagrams - related problems, , , , 
walk-through

Waring's problem, 
Warshall's algorithm

war story, , , , , , , , , 
water pipes
wavelets

weakly-connected graphs, 
web
weighted graphs, applications
Winograd's algorithm
wire length minimization
wiring layout problems

word ladders, 
worker assignment - scheduling
world's record TSP
worst-case complexity
WWW site
X-windows
Xerox machines - scheduling
XRLF

XTango, , , , , , , , , , , , , , , , , , , 
Young tableaux
zero-knowledge proofs
Zipf's law

zone theorem, 
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1.4.4 Shortest Path 

1.4.4 Shortest Path 

   

INPUT                    OUTPUT

Input Description: An edge-weighted graph G , with start vertex and end vertex t . 

Problem: Find the shortest path from to t in G . 

Implementations 

●     Goldberg's Network Optimization Codes (C) (rating 9) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Discrete Optimization Methods (Pascal) (rating 5) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     The Stanford GraphBase (C) (rating 3) 
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1.4.4 Shortest Path 

Related Problems 

●     Connected Components 
●     Graph Isomorphism 
●     Matrix Multiplication 
●     Motion Planning 
●     Network Flow 
●     Priority Queues 
●     Steiner Tree 
●     Transitive Closure and Reduction 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.5 Constrained and Unconstrained Optimization 

1.2.5 Constrained and Unconstrained Optimization 

   

INPUT                    OUTPUT

Input Description: A function f(x_1,...,x_n) . 

Problem: What point p = (p_z,...,p_n) maximizes (or equivallently minimizes) the function f ? 

Implementations 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 8) 
●     Adaptive Simulated Annealing (C) (rating 6) 
●     Genocop -- Optimization via Genetic Algorithms (C) (rating 5) 

Related Problems 

●     Linear Programming 
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1.2.5 Constrained and Unconstrained Optimization 

●     Random Number Generation 
●     Satisfiability 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.4 Voronoi Diagrams 

1.6.4 Voronoi Diagrams 

   

INPUT                    OUTPUT

Input Description: A set S of points p_1,...,p_n . 

Problem: Decompose the space into regions around each point, such that all the points in the region 
around p_i are closer to p_i than any other point in S . 

Implementations 

●     Fortune's 2D Voronoi diagram code (C) (rating 9) 
●     Qhull - higher dimensional convex hull program (C) (rating 7) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 4) 
●     The Stanford GraphBase (C) (rating 3) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 
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1.6.4 Voronoi Diagrams 

Related Problems 

●     Convex Hull 
●     Nearest Neighbor Search 
●     Point Location 
●     Medial-Axis Transformation 
●     Triangulation 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4.7 Eulerian Cycle / Chinese Postman 

1.4.7 Eulerian Cycle / Chinese Postman 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . Problem: Find the shortest tour of G visiting each edge at least 
once. 

Implementations 

●     Combinatorica (Mathematica) (rating 3) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 3) 

Related Problems 

●     Hamiltonian Cycle 
●     Matching 
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Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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Online Bibliographies 

Online Bibliographies 

There are many bibliographic sources available on the WWW, but the following I find indispensable: 

●     Computer Science Bibliographies -- This is a collection of over 700,000 references to papers and 
technical reports in Computer Science, beneath a sophisticated search engine. While there is much 
duplication, this is my first stop whenever I need to look something up. The primary site is 
http://liinwww.ira.uka.de/bibliography/index.html , although several mirror sites are in operation 
around the world. All references are provided in bibtex format. 

●     Joel Seiferas' paper.lst -- References to over 55,000 papers and technical reports (at last count), 
mostly on algorithms and related areas of theoretical computer science. Each paper is reduced to a 
one-line format, which I find easy to grep through. It is available by anonymous ftp from 
ftp://ftp.cs.rochester.edu/pub/u/joel , but a local copy is also available. Strongly recommended. 

●     Geom.bib -- The complete bibliography on anything related to computational geometry, it 
references over 8,000 books, papers, and reports and includes detailed abstracts for many of them. 
It is available via anonymous ftp from ftp://ftp.cs.usask.ca/pub/geometry/geombib.tar.Z and a 
local copy is included. Grep-ing through geom.bib is an amazingly efficient way to find out about 
previous work without leaving your office. 

●     Compendium of Approximation Algorithms -- This compendium of approximation algorithms by 
Pierluigi Crescenzi and Viggo Kann of NP-hard optimization problems is available at 
http://www.nada.kth.se/nada/theory/problemlist.html, but a local copy is included. It is the place 
to look to find what is known about provably good heuristics for any given problem. 

About the Book 
Send us Mail 
Go to Main Page 
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About the Book -- The Algorithm Design Manual 

About the Book 

 

Most professional programmers are not well equipped to tackle algorithm design problems. The 
Algorithm Design Manual,written by Steven S. Skiena and published by Telos/Springer-Verlag is 
uniquely designed to provide access to combinatorial algorithms technology for computer professionals 
and students. This book is considerably different than other books on algorithms. Why? 

●     We reduce the design process to a sequence of questions to ask about the problem at hand. This 
provides a concrete path to take the non-expert from an initial problem statement to a reasonable 
solution. 

●     To provide a better perspective on how algorithm problems arise in the real world, we include a 
collection of `war stories', tales from our experience on real problems. The moral of these stories 
is that algorithm design and analysis is not just theory, but an important tool to be pulled out and 
used as needed. 

●     Since the practical person is usually looking for a program more than an algorithm, we provide 
pointers to solid implementations whenever they are available. We have collected these 
implementations on an enclosed CD-ROM and at the book WWW site, 
http://www.cs.sunysb.edu/~algorith for easy retrieval. With these implementations available, the 
critical aspect in algorithm design becomes properly modeling your application, instead of 
becoming intimate with the details of the actual algorithm. This focus permeates the entire book. 

●     Since finding out what is known about an algorithmic problem can be a difficult task, we provide 
a catalog of the 75 most important algorithmic problems as a major component of this book. By 
browsing through this catalog, the reader can quickly identify what their problem called, what is 
known about it, and how they should proceed to solve it. As an aid in problem identification, we 
include a pair of `before' and `after' pictures for each problem, illustrating the required input and 
output specifications. 

●     The algorithm catalog spans numerical problems and data structures as well as graph, string, and 
geometric algorithms. For each problem in the catalog, we provide an honest and convincing 
motivation showing how it arises in applications. If we could not find such an application, then the 

file:///E|/ABOUTBK.HTM (1 of 3) [19/1/2003 1:34:00]

http://www.telospub.com/


About the Book -- The Algorithm Design Manual 

problem doesn't appear in this book. 

Equally important is what we do not do in this book. We do not stress the mathematical analysis of 
algorithms, leaving most of the analysis as informal arguments. You will not find a single theorem 
anywhere in this book. 

But what is a manual without software? This book comes with a substantial electronic supplement, a ISO-
9660 compatible, multiplatform CD-ROM, which can be viewed using Netscape, Microsoft Explorer, or 
any other WWW browser. This CD-ROM contains: 

●     A complete hypertext version of the full printed book. Indeed, the extensive cross-references 
within the text are best followed using the hypertext version. 

●     The source code and URLs for all cited implementations, mirroring the Algorithm Repository 
WWW site. Programs in C, C++, Fortran, and Pascal are included, providing an average of four 
different implementations for each algorithmic problem. 

●     Over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to 
on-line lecture notes. Following these lectures provides another approach to learning algorithm 
design techniques. 

Together, this book covers material sufficient for a standard Introduction to Algorithms course. Its 
assumes the reader has completed the equivalent of a second programming course, typically titled Data 
Structures or Computer Science II . Special textbook oriented-features include: 

●     In addition to standard pen-and-paper exercises, this book includes ``implementation challenges'' 
suitable for teams or individual students. These projects and the applied focus of the text can be 
used to provide a new laboratory focus to the traditional algorithms course. 

●     ``Take-home lessons'' at the beginning of each chapter emphasize the concepts to be gained from 
the chapter. 

●     This book stresses design over analysis. It is suitable for both traditional lecture courses, and the 
new ``active learning'' method, where the professor does not lecture instead guides student groups 
to solve real problems. The ``war stories'' provide a great introduction to the active learning 
method. 

●     A full set of lecture slides for teaching this course is available on the CD-ROM, keyed to unique 
on-line audio lectures covering a full semester algorithm course. 

``I have not doubt that it will become a classic the day it is published. It has all the right ingredients: rich 
contents, friendly, personal language, subtle humor, the right references, and a plethora of pointers to 
resources.'' 
-- P. Takis Metaxas, Wellesley College. 

``A major theme that runs through the book is that the most important technique to solve an algorithmic 
problem from the real world is to learn how to model the problem well. I did not believe this before; the 
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book did an admirable job of convincing me that there is considerable truth in it.'' 
-- Giri Narasimhan, The University of Memphis. 

``The questions on problem solving are good enough that they ought to be talked about in every 
programming class in the undergraduate curriculum.'' 
-- Ron Danielson, Santa Clara University. 

Check out the preface and table of contents for more information. You may order this book, and are 
encouraged to do so. You might also be interested in my previous book, Implementing Discrete 
Mathematics . 

Please leave your name and address to receive additional information about the book and notification of 
significant upgrades to this site when they occur. 

If your WWW client does not support forms, please send an e-mail to algorith@cs.sunysb.edu 
with your name, e-mail address, and mailing address for further information. 

First Name:  

Last Name :  

E-mail :  

Company Name :  

Number and Street:  

City :  

State :  

Zip :  

Phone :  

  
Return to the home page 

If you have problems with this page, please send E-mail to: 
algorith@cs.sunysb.edu 
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Copyright and Disclaimers 

Copyright Notice 

This electronic component package is protected by federal copyright law and international treaty. The 
copyright holder retains title to and ownership of the package. U.S. copyright law prohibits you from 
making any copy of the CD-ROM for any reason, without the written permission of Springer-Verlag, 
except that you may download and copy the contents of this CD-ROM disc for your own research, 
teaching, and communications use. Springer-Verlag or its designee has the right to audit your computer 
and electronic component usage to determine whether any unauthorized copies of this package have been 
made. 

For those programs and data contained on this CD-ROM and WWW site whereby the rights are owned 
by the original creators and source, any request for permission to use their software for commercial 
purposes must be directed to them. 

The printed book with which this electronic component is packaged may not be translated or copied in 
whole or in part without the written permission of Springer-Verlag except for brief excerpts in 
connection with reviews or scholarly analysis. Use in connection with any form of information storage 
and retrieval, electronic adaptation, computer software or by similar or dissimilar methodology now 
known or hereafter developed is forbidden. 

Springer-Verlag or the author makes no warranty of representation, either express or implied, with 
respect to this CD-ROM, WWW site, or book, including their quality, merchantability, or fitness for a 
particular purpose. In no event will Springer-Verlag, or the author be liable for direct, indirect, special, 
incidental, or consequential damages arising out of the use or inability to use the disc, WWW site, or 
book, even if Springer-Verlag or the author has been advised of the possibility of such damages. 

About the Book 
Send us Mail 
Go to Main Page 
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CD-ROM Installation

Installation and Users Guide

How do I start the CD-ROM?

Load the CD-ROM into your drive. Viewing the contents of the CD-ROM requires you to have a 
properly installed WWW browser, such as the Netscape Navigator or Internet Explorer. A more detailed 
list of supported browsers is provided below. Open up the INDEX.HTM file on the CD-ROM with your 
browser, and then explore to your heart's content. The entire contents of the CD-ROM are accessible 
from this page. 

How do I listen to the lectures?

If you haven't already, you'll need to install the Shockwave for Director plug-in. Currently, Shockwave is 
supported only on Windows and Macintosh platforms, but keep checking Macromedia's website at 
www.macromedia.com for updated information about other platforms. Make sure that after installing the 
plug-in you restart your browser, or the plug-in will not be recognized. Copies of these plug-ins have 
been included on the CD-ROM. Click here to select the plug-in appropriate for your system.

What hardware and software do I need for this plug-
in?

For Windows: Any modern PC computer will do, but a Pentium is recommended because of its floating-
point unit. Supported browsers include the Netscape Navigator 2.02 and 3.01, Internet Explorer 3.0 and 
3.01 Final Releases, (note: Internet Explorer for Windows can use the Shockwave plugins or the 
Shockwave ActiveX control, which can be automatically installed at http://www.macromedia.com), 
Attachmate's Emissary, Netmanage's WebSurfer, and America Online version 3.0 (note: no plug-in 
installation should be necessary for the AOL browser for Windows.) 

For Macintosh: Any PowerMac will do, but 68k Macs will require a hardware floating-point unit (math 
co-processor). Supported browsers include Netscape Navigator 2.02 and 3.01, Microsoft Internet 
Explorer 3.0 and 3.0a, Attachmate's Emissary, Netmanage's WebSurfer, and America Online version 3.0. 

Commercial versions of Netscape Navigator 3.x and Microsoft Internet Explorer may come with the 
appropriate plug-ins already installed. If not, copies of these plug-ins have been included on the CD-
ROM. Click here to select the plug-in appropriate for your system. 

To use the CD-ROM under Unix
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This CD-ROM is written as an ISO-9660 file system without Rock Ridge extensions. All filenames are 
written in upper case, and unless the file system is mounted correctly the HTML links will not be found. 
Unfortunately, different mount commands seem to be required for different flavors of Unix. Read your 
manual page and experiment. You must first create a mount point /cdrom. Let "sr0" be the SCSI ID for 
your CD-ROM drive (typically sr0 = "cdrom"). Possible mount commands which have worked on 
different systems include: 

mount -rt hsfs /dev/sr0 /cdrom 

mount -o norock,check=relaxed -r -t iso9660 /dev/sr0 /cdrom 

Once the CD-ROM is mounted, open /cdrom/index.html with your favorite browser. The entire contents 
of the CD-ROM are accessible from this page. Unfortunately, the audio lecture notes are not supported 
on Unix platforms. 

About the Images

Your browser likely has the option to automatically display or suppress in-line images. The mathematical 
symbols in the lecture notes and the textbook are represented by bit-mapped images, which might load 
slowly on certain systems. If so, disabling the automatic loading of images will result in better 
performance, although less readable text. 

To enable/disable viewing of these images when using Netscape Navigator, choose "Options" from the 
menu bar, and select "Auto Load Images". To view images on one page only, or to load images which 
were not properly loaded, click the "Images" button on the graphical toolbar. 

About the Sound

Sound files on this CD-ROM are recorded in Shockwave file format, and have the extension "SWA". 
Thus, the file "LEC19-2.SWA" contains sounds related to the second portion of lecture 19 in the lecture 
notes. Playing the audio requires a plug-in from Macromedia, which unfortunately is not available on 
Unix platforms.

Click here to select the plug-in appropriate for your system.

To listen to the sounds linked to the lecture notes you must: 

●     Have an installed sound device configured for use on your system. If you have ever heard sound 
coming from your machine, this likely has already been done. If not, you will have to acquire and 
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CD-ROM Installation

install a sound device, such as Sound Blaster for PCs or the Macintosh standard sound system. 
Consult your sound device manual and the documentation for your operating system. 

●     Configure your browser to recognize sound files in an HTML document. In particular, the 
Netscape Navigator will have to launch an application to play the sound files. If Netscape 
attempts to save the audio file when you click on a sound link, this means that your sound 
application has not be properly installed.

About the Postscript Lecture Notes

All the Lecture Notes are provided in Postscript format as well. To view Postscript files on Unix, use 
ghostview.

Macintosh users: use the program DropPS 1.1.4, by Barebones Software.

Windows users: use the program RoPS 32
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Thanks! 

Thanks! 
Four Stony Brook students made essential contributions to the production of this CD-ROM/WWW site. 
I'd like to thank them for their contributions by including their images for posterity. Thanks again, guys. 

 

Ricky Bradley 
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Thanks! 

 

Frank Ruscica 
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Thanks! 

 

Dario Vlah 
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Thanks! 

 

Zhong Li 

Thanks also to Filip Bujanic, David Gerstl, Jim Klosowski, Kostis Sagonas, Kirsten Starcher, and Lei 
Zhao, who all made contributions at various stages of the project. 

Finally, I am grateful to acknowledge support from the Office of Naval Research and the National 
Science Foundation, which contributed towards this research. 
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Installation and Users Guide

How do I start the CD-ROM?

Load the CD-ROM into your drive. Viewing the contents of the CD-ROM requires you to have a 
properly installed WWW browser, such as the Netscape Navigator or Internet Explorer. A more detailed 
list of supported browsers is provided below. Open up the INDEX.HTM file on the CD-ROM with your 
browser, and then explore to your heart's content. The entire contents of the CD-ROM are accessible 
from this page. 

How do I listen to the lectures?

If you haven't already, you'll need to install the Shockwave for Director plug-in. Currently, Shockwave is 
supported only on Windows and Macintosh platforms, but keep checking Macromedia's website at 
www.macromedia.com for updated information about other platforms. Make sure that after installing the 
plug-in you restart your browser, or the plug-in will not be recognized. Copies of these plug-ins have 
been included on the CD-ROM. Click here to select the plug-in appropriate for your system.

What hardware and software do I need for this plug-
in?

For Windows: Any PC equipped with a floating-point unit will do, but a Pentium is recommended, 
especially since modern processors include a floating-point unit. Supported browsers include the 
Netscape Navigator 2.02 and 3.01, Internet Explorer 3.0 and 3.01 Final Releases, (note: Internet Explorer 
for Windows can use the Shockwave plugins or the Shockwave ActiveX control, which can be 
automatically installed at http://www.macromedia.com), Attachmate's Emissary, Netmanage's 
WebSurfer, and America Online version 3.0 (note: no plug-in installation should be necessary for the 
AOL browser for Windows.) 

For Macintosh: Any PowerMac will do, but 68k Macs will require a hardware floating-point unit (math 
co-processor). Supported browsers include Netscape Navigator 2.02 and 3.01, Microsoft Internet 
Explorer 3.0 and 3.0a, Attachmate's Emissary, Netmanage's WebSurfer, and America Online version 3.0. 

Commercial versions of Netscape Navigator 3.x and Microsoft Internet Explorer may come with the 
appropriate plug-ins already installed. If not, copies of these plug-ins have been included on the CD-
ROM. Click here to select the plug-in appropriate for your system. 
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To use the CD-ROM under Unix

This CD-ROM is written as an ISO-9660 file system without Rock Ridge extensions. All filenames are 
written in upper case, and unless the file system is mounted correctly the HTML links will not be found. 
Unfortunately, different mount commands seem to be required for different flavors of Unix. Read your 
manual page. You must first create a mount point /cdrom. Let "sr0" be the SCSI ID for your CD-ROM 
drive (typically sr0 = "cdrom"). Possible mount commands which have worked on different systems 
include: 

mount -rt hsfs /dev/sr0 /cdrom 

mount -o norock,check=relaxed -r -t iso9660 /dev/sr0 /cdrom 

Once the CD-ROM is mounted, open /cdrom/index.html with your favorite browser. The entire contents 
of the CD-ROM are accessible from this page. Unfortunately, the audio lecture notes are not supported 
on Unix platforms. 

About the Images

Your browser likely has the option to automatically display or suppress in-line images. The mathematical 
symbols in the lecture notes and the textbook are represented by bit-mapped images, which might load 
slowly on certain systems. If so, disabling the automatic loading of images will result in better 
performance, although less readable text. 

To enable/disable viewing of these images when using Netscape Navigator, choose "Options" from the 
menu bar, and select "Auto Load Images". To view images on one page only, or to load images which 
were not properly loaded, click the "Images" button on the graphical toolbar. 

About the Sound

Sound files on this CD-ROM are recorded in Shockwave file format, and have the extension "SWA". 
Thus, the file "LEC19-2.SWA" contains sounds related to the second portion of lecture 19 in the lecture 
notes. Playing the audio requires a plug-in from Macromedia, which unfortunately is not available on 
Unix platforms.

Click here to select the plug-in appropriate for your system.

To listen to the sounds linked to the lecture notes you must: 
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●     Have an installed sound device configured for use on your system. If you have ever heard sound 
coming from your machine, this likely has already been done. If not, you will have to acquire and 
install a sound device, such as Sound Blaster for PCs or the Macintosh standard sound system. 
Consult your sound device manual and the documentation for your operating system. 

●     Configure your browser to recognize sound files in an HTML document. In particular, the 
Netscape Navigator will have to launch an application to play the sound files. If Netscape 
attempts to save the audio file when you click on a sound link, this means that your sound 
application has not be properly installed.

About the Postscript Lecture Notes

All the Lecture Notes are provided in Postscript format as well. To view Postscript files on Unix, use 
ghostview.

Macintosh users: use the program DropPS 1.1.4, by Barebones Software.

Windows-95 and NT users: use the program RoPS 32
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Binary Search in Action 

Binary Search in Action 
Binary search is a fast algorithm for searching in a sorted array of keys. To look up a name in a telephone 
book with n names, you start by comparing the name that you want with the middle or (n/2) nd name, say 
onroe, Marilyn . Regardless of whether what you are looking someone before this middle name ( Dean, 
James ) or after it ( Presley, Elvis ), after this first comparison you can forever disregard one half of all 
the names in the book. The number of steps the algorithm takes equals the number of times we can halve 
n until only one name is left. Thus twenty comparisons suffice to find any name in the million-name 
Manhattan phone book! The power of binary search and logarithms is one of the most fundamental idea 
in the analysis of algorithms. This power becomes apparent if we imagine living in a world with only 
unsorted telephone books. 

The following animation of the first two stages of binary search is provided for your amusement. The full 
video tapes are also available. 
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About the Video Lectures 

For Further Information 
In Spring 1996, my course on the Design and Analysis of Algorithms was offered as part of the EngiNet 
distance learning program at Stony Brook. As a result, all of my lectures were professionally video taped 
in a television studio. The picture and sound quality are excellent, certainly as good as possible given that 
they were recording me. 

EngiNet and the College of Engineering and Applied Science at Stony Brook have tentatively agreed to 
make these videotapes available to all interested parties, at a price of $20 per lecture, or $500 for the 
complete set of 25 lectures. Full lecture notes and audio sampled from the video tapes are available on 
line . 

To obtain the video tapes, please send e-mail to algorith@cs.sunysb.edu with the names of the desired 
lectures, your name, e-mail address, and mailing address. 
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Postscript version of the lecture notes 

Lecture notes in Postscript format: 
These files contain postscript versions of the full lecture notes, formatted so that they are suitable for use 
as transparencies. Each page of the notes corresponds to an audio clip for the HTML versions of the 
notes. 

An index to these notes appears in the 300+ page file ALL. However, this file is not formatted as nicely 
as the individual lectures. 

All Lecture 1 Lecture 2 Lecture 3 Lecture 4 

Lecture 5 Lecture 6 Lecture 7 Lecture 8 Lecture 9 

Lecture 10 Lecture 11 Lecture 12 Lecture 13 Lecture 14 

Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 

Lecture 20 Lecture 21 Lecture 22 Lecture 23 

To view Postscript files, Windows-95 and NT users should use the program RoPS 32. Macintosh users 
should use the program DropPS 1.1.4, by Barebones Software. On Unix, use the popular previewer 
ghostview.
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Algorithm Repository -- Algorithms Courses 

Algorithms Courses 

Instructors for combinatorial algorithms courses around the world are putting lecture notes and other 
interesting material on the WWW for their classes, but there is no reason the rest of the world shouldn't 
benefit as well. Below are the best course sites we have found to date. A similar collection of algorithm 
courses is being maintained by Kirk Pruhs at Univ. of Pittsburgh. 

●     Gordon Royle -- Topics covered include graph algorithms, network flow, P=NP, travelling 
salesman, string processing, greedy algorithm, cryptography, and combinatorial search. On-line 
lecture notes are included. 

●     Steven Skiena -- Topic covered include sorting and searching, combinatorial search, dynamic 
programming, graph algorithms, and intractibility. On-line lecture notes are included. 

●     Guy Blelloch -- Parallel algorithms and programming. Included are animations of parallel 
algorithms, and information about the NESL parallel programming language they are written in. 

●     Algorithms in the Real World (CMU) -- An interesting collection of pointers and descriptive 
material on applications of algorithms in practice. 

Feel free to look around. If you find something useful, then drop us a line to let us know what we did 
right. If you're looking for something that's not here yet, drop us a line and tell us that too. We're looking 
for as many good implementations as we can find -- so if you have an implementation for a specific 
problem, or know where one can be found, let us know and we'll see if we can't get it attached to the site. 

This algorithms repository is part of the ongoing algorithms-related research conducted here in the 
Department of Computer Science at the State University of New York at Stony Brook. 

About the Book 
Send us Mail 
Go to Main Page 
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Next: Lecture 2 - asymptotic Up: No Title Previous: No Title 

Lecture 1 - analyzing algorithms
Listen To Part 1-7 

Lecture Schedule

subject topics reading 

Preliminaries Analyzing algorithms 1-32

" Asymptotic notation 32-37 

" Recurrence relations 53-64

Sorting Heapsort 140-150

" Quicksort 153-167 

" Linear Sorting 172-182

Searching Data structures 200-215

" Binary search trees 244-245

" Red-Black trees:insertion 262-272 

`` Red-Black trees:deletion 272-277

MIDTERM 1 

Comb. Search Backtracking 

" Elements of dynamic programming 301-314 

" Examples of dynamic programming 314-323 

Graph Algorithms Data structures 465-477

for graphs 

" Breadth/depth-first search 477-483

" Topological Sort/Connectivity 485-493

" Minimum Spanning Trees 498-510

" Single-source shortest paths 514-532

" All-pairs shortest paths 550-563

MIDTERM 2 

Intractability P and NP 916-928 

" NP-completeness 929-939

" NP-completeness proofs 939-951
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" Further reductions 951-960 

" Approximation algorithms 964-974

" Set cover / knapsack heuristics 974-983

FINAL EXAM 

Listen To Part 1-8 

What Is An Algorithm?

Algorithms are the ideas behind computer programs.   

An algorithm is the thing which stays the same whether the program is in Pascal running on a Cray in New York or is 
in BASIC running on a Macintosh in Kathmandu! 

To be interesting, an algorithm has to solve a general, specified problem. An algorithmic problem is specified by 
describing the set of instances it must work on and what desired properties the output must have.   

Example: Sorting

Input: A sequence of N numbers  

Output: the permutation (reordering) of the input sequence such as  . 

We seek algorithms which are correct and efficient. 

Correctness

For any algorithm, we must prove that it always returns the desired output for all legal instances of the problem.   

For sorting, this means even if (1) the input is already sorted, or (2) it contains repeated elements. 

Correctness is Not Obvious!

The following problem arises often in manufacturing and transportation testing applications. 

Suppose you have a robot arm equipped with a tool, say a soldering iron. To enable the robot arm to do a soldering 
job, we must construct an ordering of the contact points, so the robot visits (and solders) the first contact point, then 
visits the second point, third, and so forth until the job is done.    

Since robots are expensive, we need to find the order which minimizes the time (ie. travel distance) it takes to 
assemble the circuit board. 
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You are given the job to program the robot arm. Give me an algorithm to find the best tour! 

Listen To Part 1-10 

Nearest Neighbor Tour

A very popular solution starts at some point  and then walks to its nearest neighbor  first, then repeats from  , 
etc. until done.   

Pick and visit an initial point   

  

i = 0

While there are still unvisited points

                 i = i+1

                 Let    be the closest unvisited point to   

                 Visit   

Return to    from   

This algorithm is simple to understand and implement and very efficient. However, it is not correct! 
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Always starting from the leftmost point or any other point will not fix the problem. 

Listen To Part 1-11 

Closest Pair Tour

Always walking to the closest point is too restrictive, since that point might trap us into making moves we don't want. 
  

Another idea would be to repeatedly connect the closest pair of points whose connection will not cause a cycle or a 
three-way branch to be formed, until we have a single chain with all the points in it. 

Let n be the number of points in the set

  

For i=1 to n-1 do

                 For each pair of endpoints (x,y) of partial paths

                                 If    then

                                                   ,   , d = dist(x,y)

                 Connect    by an edge

Connect the two endpoints by an edge.

Although it works correctly on the previous example, other data causes trouble: 
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This algorithm is not correct! 

Listen To Part 1-12 

A Correct Algorithm

We could try all possible orderings of the points, then select the ordering which minimizes the total length:   

  

For each of the n! permutations    of the n points

                 If    then

                                    and   

Return   

Since all possible orderings are considered, we are guaranteed to end up with the shortest possible tour. 

Because it trys all n! permutations, it is extremely slow, much too slow to use when there are more than 10-20 points. 
  

No efficient, correct algorithm exists for the traveling salesman problem, as we will see later. 

Listen To Part 1-13 

Efficiency

"Why not just use a supercomputer?" 

Supercomputers are for people too rich and too stupid to design efficient algorithms!   

A faster algorithm running on a slower computer will always win for sufficiently large instances, as we shall see. 
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Usually, problems don't have to get that large before the faster algorithm wins. 

Expressing Algorithms

We need some way to express the sequence of steps comprising an algorithm. 

In order of increasing precision, we have English, pseudocode, and real programming languages. Unfortunately, ease 
of expression moves in the reverse order. 

I prefer to describe the ideas of an algorithm in English, moving to pseudocode to clarify sufficiently tricky details of 
the algorithm.   

Listen To Part 1-14 

The RAM Model

Algorithms are the only important, durable, and original part of computer science because they can be studied in a 
machine and language independent way. 

The reason is that we will do all our design and analysis for the RAM model of computation:    

●     Each "simple" operation (+, -, =, if, call) takes exactly 1 step.
●     Loops and subroutine calls are not simple operations, but depend upon the size of the data and the contents of 

a subroutine. We do not want ``sort'' to be a single step operation.
●     Each memory access takes exactly 1 step. 

We measure the run time of an algorithm by counting the number of steps. 

This model is useful and accurate in the same sense as the flat-earth model (which is useful)!   

Listen To Part 1-15 

Best, Worst, and Average-Case

The worst case complexity of the algorithm is the function defined by the maximum number of steps taken on any 
instance of size n.   
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The best case complexity of the algorithm is the function defined by the minimum number of steps taken on any 
instance of size n.   

The average-case complexity of the algorithm is the function defined by an average number of steps taken on any 
instance of size n.   

Each of these complexities defines a numerical function - time vs. size! 

Insertion Sort

One way to sort an array of n elements is to start with  empty list, then successively insert new elements in the 
proper position:   

 

At each stage, the inserted element leaves a sorted list, and after n insertions contains exactly the right elements. Thus 
the algorithm must be correct. 

But how efficient is it? 

Note that the run time changes with the permutation instance! (even for a fixed size problem) 

How does insertion sort do on sorted permutations? 

How about unsorted permutations? 

Exact Analysis of Insertion Sort

Count the number of times each line of pseudocode will be executed. 
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Line InsertionSort(A) #Inst. #Exec.

1 for j:=2 to len. of A do c1 n

2 key:=A[j] c2 n-1

3 /* put A[j] into A[1..j-1] */ c3=0 / 

4 i:=j-1 c4 n-1

5 while  do c5 tj

6 A[i+1]:= A[i] c6 

7 i := i-1 c7 

8 A[i+1]:=key c8 n-1

The for statement is executed (n-1)+1 times (why?) 

Within the for statement, "key:=A[j]" is executed n-1 times. 

Steps 5, 6, 7 are harder to count. 

Let  the number of elements that have to be slide right to insert the jth item. 

Step 5 is executed  times. 

Step 6 is  . 

Add up the executed instructions for all pseudocode lines to get the run-time of the algorithm: 

    

What are the  ? They depend on the particular input. 

Best Case

If it's already sorted, all  's are 1. 

Hence, the best case time is 

 

where C and D are constants. 

Worst Case

If the input is sorted in descending order, we will have to slide all of the already-sorted elements, so  , and step 5 
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is executed 

 

       
Next: Lecture 2 - asymptotic Up: No Title Previous: No Title 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 3 - recurrence Up: No Title Previous: Lecture 1 - analyzing 

Lecture 2 - asymptotic notation
Listen To Part 2-1 

Problem 1.2-6:   How can we modify almost any algorithm to have a good best-case running time? 

To improve the best case, all we have to do it to be able to solve one instance of each size efficiently. We 
could modify our algorithm to first test whether the input is the special instance we know how to solve, 
and then output the canned answer. 

For sorting, we can check if the values are already ordered, and if so output them. For the traveling 
salesman, we can check if the points lie on a line, and if so output the points in that order. 

The supercomputer people pull this trick on the linpack benchmarks! 

Because it is so easy to cheat with the best case running time, we usually don't rely too much about it. 

Because it is usually very hard to compute the average running time, since we must somehow average 
over all the instances, we usually strive to analyze the worst case running time. 

The worst case is usually fairly easy to analyze and often close to the average or real running time. 

Listen To Part 2-2 

Exact Analysis is Hard!

We have agreed that the best, worst, and average case complexity of an algorithm is a numerical function 
of the size of the instances. 
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However, it is difficult to work with exactly because it is typically very complicated! 

Thus it is usually cleaner and easier to talk about upper and lower bounds of the function.    

This is where the dreaded big O notation comes in!   

Since running our algorithm on a machine which is twice as fast will effect the running times by a 
multiplicative constant of 2 - we are going to have to ignore constant factors anyway. 

Listen To Part 2-3 

Names of Bounding Functions

Now that we have clearly defined the complexity functions we are talking about, we can talk about upper 
and lower bounds on it:    

●     g(n) = O(f(n)) means  is an upper bound on g(n).
●      means  is a lower bound on g(n).
●      means  is an upper bound on g(n) and  is a lower bound on g(n). 

Got it? C,  , and  are all constants independent of n. 

All of these definitions imply a constant  beyond which they are satisfied. We do not care about small 
values of n. 

Listen To Part 2-4 

O,  , and  
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The value of  shown is the minimum possible value; any greater value would also work. 

(a)  if there exist positive constants  ,  , and  such that to the right of  , the value of 
f(n) always lies between  and  inclusive. 

(b) f(n) = O(g(n)) if there are positive constants  and c such that to the right of  , the value of f(n) 
always lies on or below  . 

(c)  if there are positive constants  and c such that to the right of  , the value of f(n) 
always lies on or above  . 

Asymptotic notation  are as well as we can practically deal with complexity functions. 

Listen To Part 2-5 

What does all this mean?

 

 

 

Think of the equality as meaning in the set of functions. 
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Note that time complexity is every bit as well defined a function as  or you bank account as a 
function of time. 

Listen To Part 2-6 

Testing Dominance

f(n) dominates g(n) if  , which is the same as saying g(n)=o(f(n)).   

Note the little-oh - it means ``grows strictly slower than''. 

Knowing the dominance relation between common functions is important because we want algorithms 
whose time complexity is as low as possible in the hierarchy. If f(n) dominates g(n), f is much larger (ie. 
slower) than g. 

●      dominates  if a > b since 

 

●      doesn't dominate  since 

 

Complexity 10 20 30 40 50 60 

n 0.00001 sec 0.00002 sec 0.00003 sec 0.00004 sec 0.00005 sec 0.00006 sec 

 0.0001 sec 0.0004 sec 0.0009 sec 0.016 sec 0.025 sec 0.036 sec 

 0.001 sec 0.008 sec 0.027 sec 0.064 sec 0.125 sec 0.216 sec 

 0.1 sec 3.2 sec 24.3 sec 1.7 min 5.2 min 13.0 min 

 0.001 sec 1.0 sec 17.9 min 12.7 days 35.7 years 366 cent 

 0.59 sec 58 min 6.5 years 3855 cent  cent  cent 

Listen To Part 2-7 

Logarithms

It is important to understand deep in your bones what logarithms are and where they come from.    
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A logarithm is simply an inverse exponential function. Saying  is equivalent to saying that 
 . 

Exponential functions, like the amount owed on a n year mortgage at an interest rate of  per year, are 

functions which grow distressingly fast, as anyone who has tried to pay off a mortgage knows. 

Thus inverse exponential functions, ie. logarithms, grow refreshingly slowly.   

Binary search is an example of an  algorithm. After each comparison, we can throw away half the 
possible number of keys. Thus twenty comparisons suffice to find any name in the million-name 
Manhattan phone book! 

If you have an algorithm which runs in  time, take it, because this is blindingly fast even on very 
large instances. 

Listen To Part 2-8 

Properties of Logarithms

Recall the definition,  . 

Asymptotically, the base of the log does not matter:

  

 

Thus,  , and note that  is just a constant. 

Asymptotically, any polynomial function of n does not matter:

Note that 

 

since  , and  . 

Any exponential dominates every polynomial. This is why we will seek to avoid exponential time 
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algorithms. 

Listen To Part 2-9 

Federal Sentencing Guidelines

2F1.1. Fraud and Deceit; Forgery; Offenses Involving Altered or Counterfeit Instruments other than 
Counterfeit Bearer Obligations of the United States.   

(a) Base offense Level: 6 

(b) Specific offense Characteristics 

(1) If the loss exceeded $2,000, increase the offense level as follows: 

Loss(Apply the Greatest) Increase in Level

(A) $2,000 or less no increase

(B) More than $2,000 add 1

(C) More than $5,000 add 2

(D) More than $10,000 add 3

(E) More than $20,000 add 4

(F) More than $40,000 add 5

(G) More than $70,000 add 6

(H) More than $120,000 add 7

(I) More than $200,000 add 8

(J) More than $350,000 add 9

(K) More than $500,000 add 10

(L) More than $800,000 add 11

(M) More than $1,500,000 add 12

(N) More than $2,500,000 add 13

(O) More than $5,000,000 add 14

(P) More than $10,000,000 add 15

(Q) More than $20,000,000 add 16

(R) More than $40,000,000 add 17
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(Q) More than $80,000,000 add 18

Listen To Part 2-10 

The federal sentencing guidelines are designed to help judges be consistent in assigning punishment. The 
time-to-serve is a roughly linear function of the total level. 

However, notice that the increase in level as a function of the amount of money you steal grows 
logarithmically in the amount of money stolen.   

This very slow growth means it pays to commit one crime stealing a lot of money, rather than many 
small crimes adding up to the same amount of money, because the time to serve if you get caught is 
much less. 

The Moral: ``if you are gonna do the crime, make it worth the time!'' 

Listen To Part 2-11 

Working with the Asymptotic Notation

Suppose  and  .   

What do we know about g'(n) = f(n)+g(n)? Adding the bounding constants shows  . 

What do we know about g''(n) = f(n)-g(n)? Since the bounding constants don't necessary cancel, 
 

We know nothing about the lower bounds on g'+g'' because we know nothing about lower bounds on f, g. 

Suppose  and  . 

What do we know about g'(n) = f(n)+g(n)? Adding the lower bounding constants shows  . 

What do we know about g''(n) = f(n)-g(n)? We know nothing about the lower bound of this! 

Listen To Part 2-12 

The Complexity of Songs
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Suppose we want to sing a song which lasts for n units of time. Since n can be large, we want to 
memorize songs which require only a small amount of brain space, i.e. memory.     

Let S(n) be the space complexity of a song which lasts for n units of time. 

The amount of space we need to store a song can be measured in either the words or characters needed to 
memorize it. Note that the number of characters is  since every word in a song is at most 34 
letters long - Supercalifragilisticexpialidocious! 

What bounds can we establish on S(n)? 

●     S(n) = O(n), since in the worst case we must explicitly memorize every word we sing - ``The Star-
Spangled Banner''

●      , since we must know something about our song to sing it. 

Listen To Part 2-13 

The Refrain

Most popular songs have a refrain, which is a block of text which gets repeated after each stanza in the 
song:   

Bye, bye Miss American pie 
Drove my chevy to the levy but the levy was dry 
Them good old boys were drinking whiskey and rye 
Singing this will be the day that I die. 

Refrains made a song easier to remember, since you memorize it once yet sing it O(n) times. But do they 
reduce the space complexity? 

Not according to the big oh. If 

 

Then the space complexity is still O(n) since it is only halved (if the verse-size = refrain-size): 

 

Listen To Part 2-14 
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The k Days of Christmas

To reduce S(n), we must structure the song differently. 

Consider ``The k Days of Christmas''. All one must memorize is: 

On the kth Day of Christmas, my true love gave to me,  
 
On the First Day of Christmas, my true love gave to me, a partridge in a pear tree 

But the time it takes to sing it is 

 

If  , then  , so  . 

Listen To Part 2-15 

100 Bottles of Beer

What do kids sing on really long car trips? 

n bottles of beer on the wall, 
n bottles of beer. 
You take one down and pass it around 
n-1 bottles of beer on the ball. 

All you must remember in this song is this template of size  , and the current value of n. The storage 
size for n depends on its value, but  bits suffice. 

This for this song,  . 

Is there a song which eliminates even the need to count? 

That's the way, uh-huh, uh-huh 
I like it, uh-huh, huh 

Reference: D. Knuth, `The Complexity of Songs', Comm. ACM, April 1984, pp.18-24 
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Next: Lecture 3 - recurrence Up: No Title Previous: Lecture 1 - analyzing 
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Next: Lecture 4 - heapsort Up: No Title Previous: Lecture 2 - asymptotic 

Lecture 3 - recurrence relations
Listen To Part 3-1 

Problem 2.1-2: Show that for any real constants a and b, b > 0,   

 

To show  , we must show O and  . Go back to the definition! 

●     Big O - Must show that  for all  . When is this true? If  , this is true for 

all n > |a| since n+a < 2n, and raise both sides to the b.
●     Big  - Must show that  for all  . When is this true? If  , this is true 

for all n > 3|a|/2 since n+a > n/2, and raise both sides to the b. 

Note the need for absolute values. 

Listen To Part 3-2 

Problem 2.1-4: 

(a) Is  ? 

(b) Is  ? 

(a) Is  ? 

Is  ? 

Yes, if  for all n 

(b) Is  
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Is  ? 

note  

Is  ? 

Is  ? 

No! Certainly for any constant c we can find an n such that this is not true. 

Listen To Part 3-3 

Recurrence Relations

Many algorithms, particularly divide and conquer algorithms, have time complexities which are naturally 
modeled by recurrence relations.   

A recurrence relation is an equation which is defined in terms of itself. 

Why are recurrences good things? 

1.  Many natural functions are easily expressed as recurrences: 

 

 

 

2.  It is often easy to find a recurrence as the solution of a counting problem. Solving the recurrence 
can be done for many special cases as we will see, although it is somewhat of an art. 

Listen To Part 3-4 

Recursion is Mathematical Induction!

In both, we have general and boundary conditions, with the general condition breaking the problem into 
smaller and smaller pieces.    
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The initial or boundary condition terminate the recursion.   

As we will see, induction provides a useful tool to solve recurrences - guess a solution and prove it by 
induction. 

 

n 0 1 2 3 4 5 6 7 

 0 1 3 7 15 31 63 127 

Guess what the solution is? 

Prove  by induction: 

1.  Show that the basis is true:  .

2.  Now assume true for  .
3.  Using this assumption show: 

 

Listen To Part 3-5 

Solving Recurrences

No general procedure for solving recurrence relations is known, which is why it is an art. My approach 
is:   

Realize that linear, finite history, constant coefficient recurrences always can be 
solved

Check out any combinatorics or differential equations book for a procedure. 

Consider  ,  ,  

It has history = 2, degree = 1, and coefficients of 2 and 1. Thus it can be solved mechanically! Proceed: 

●     Find the characteristic equation, eg. 
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●     Solve to get roots, which appear in the exponents.
●     Take care of repeated roots and inhomogeneous parts.
●     Find the constants to finish the job. 

 

Systems like Mathematica and Maple have packages for doing this.    

Listen To Part 3-6 

Guess a solution and prove by induction

To guess the solution, play around with small values for insight. 

Note that you can do inductive proofs with the big-O's notations - just be sure you use it right.   

Example:  . 

Show that  for large enough c and n. Assume that it is true for n/2, then 

 

Starting with basis cases T(2)=4, T(3)=5, lets us complete the proof for  . 

Listen To Part 3-7 

Try backsubstituting until you know what is going on

Also known as the iteration method. Plug the recurrence back into itself until you see a pattern.   

Example:  . 

Try backsubstituting: 
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The  term should now be obvious. 

Although there are only  terms before we get to T(1), it doesn't hurt to sum them all since this is a 
fast growing geometric series: 

 

 

Listen To Part 3-8 

Recursion Trees

Drawing a picture of the backsubstitution process gives you a idea of what is going on.   

We must keep track of two things - (1) the size of the remaining argument to the recurrence, and (2) the 
additive stuff to be accumulated during this call. 

Example:  

  
The remaining arguments are on the left, the additive terms on the right. 

Although this tree has height  , the total sum at each level decreases geometrically, so: 

 

The recursion tree framework made this much easier to see than with algebraic backsubstitution. 
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Listen To Part 3-9 

See if you can use the Master theorem to provide an instant asymptotic solution

The Master Theorem:   Let  and b>1 be constants, let f(n) be a function, and let T(n) be defined on 
the nonnegative integers by the recurrence 

 

where we interpret n/b as  or  . Then T(n) can be bounded asymptotically as follows: 

1.  If  for some constant  , then  .

2.  If  , then  .

3.  If  for some constant  , and if  for some constant c<1, and all 
sufficiently large n, then  . 

Listen To Part 3-10 

Examples of the Master Theorem

Which case of the Master Theorem applies? 

●     T(n) = 4 T(n/2) + n 

Reading from the equation, a=4, b=2, and f(n) = n. 

Is  ? 

Yes, so case 1 applies and  .
●      

Reading from the equation, a=4, b=2, and  . 

Is  ? 

No, if  , but it is true if  , so case 2 applies and  .
●      
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Reading from the equation, a=4, b=2, and  . 

Is  ? 

Yes, for  , so case 3 might apply. 

Is  ? 

Yes, for  , so there exists a c < 1 to satisfy the regularity condition, so case 3 applies and 
 . 

Listen To Part 3-11 

Why should the Master Theorem be true?

Consider T(n) = a T(n/b) + f(n). 

Suppose f(n) is small enough

Say f(n)=0, ie. T(n) = a T(n/b). 

Then we have a recursion tree where the only contribution is at the leaves.   

There will be  levels, with  leaves at level l. 

 

 
so long as f(n) is small enough that it is dwarfed by this, we have case 1 of the Master Theorem! 

Listen To Part 3-12 
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Suppose f(n) is large enough

If we draw the recursion tree for T(n) = a T(n/b) + f(n). 

 
If f(n) is a big enough function, the one top call can be bigger than the sum of all the little calls. 

Example:  . In fact this holds unless  ! 

In case 3 of the Master Theorem, the additive term dominates. 

In case 2, both parts contribute equally, which is why the log pops up. It is (usually) what we want to 
have happen in a divide and conquer algorithm. 

Listen To Part 3-13 

Famous Algorithms and their Recurrence

Matrix Multiplication

The standard matrix multiplication algorithm for two  matrices is  .     

  
Strassen discovered a divide-and-conquer algorithm which takes  time. 

Since  dwarfs  , case 1 of the master theorem applies and  . 

This has been ``improved'' by more and more complicated recurrences until the current best in  . 

Listen To Part 3-14 
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Polygon Triangulation

Given a polygon in the plane, add diagonals so that each face is a triangle None of the diagonals are 
allowed to cross.    

  
Triangulation is an important first step in many geometric algorithms. 

The simplest algorithm might be to try each pair of points and check if they see each other. If so, add the 
diagonal and recur on both halves, for a total of  . 

However, Chazelle gave an algorithm which runs in  time. Since  

, by case 1 of the Master Theorem, Chazelle's algorithm is linear, ie. T(n) = O(n). 

Sorting

The classic divide and conquer recurrence is Mergesort's T(n) = 2 T(n/2) + O(n), which divides the data 
into equal-sized halves and spends linear time merging the halves after they are sorted.   

Since  but not  , Case 2 of the Master Theorem applies and 
 . 

In case 2, the divide and merge steps balance out perfectly, as we usually hope for from a divide-and-
conquer algorithm. 

Mergesort Animations

Approaches to Algorithms Design

Incremental

Job is partly done - do a little more, repeat until done.   
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A good example of this approach is insertion sort 

Divide-and-Conquer

A recursive technique   

●     Divide problem into sub-problems of the same kind.
●     For subproblems that are really small (trivial), solve them directly. Else solve them recursively. 

(conquer)
●     Combine subproblem solutions to solve the whole thing (combine) 

A good example of this approach is Mergesort. 

       
Next: Lecture 4 - heapsort Up: No Title Previous: Lecture 2 - asymptotic 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 5 - quicksort Up: No Title Previous: Lecture 3 - recurrence 

Lecture 4 - heapsort
Listen To Part 4-1 

4.2-2 Argue the solution to 

 

is  by appealing to the recursion tree.   

Draw the recursion tree. 

  
How many levels does the tree have? This is equal to the longest path from the root to a leaf. 

The shortest path to a leaf occurs when we take the heavy branch each time. The height k is given by 
 , meaning  or  . 

The longest path to a leaf occurs when we take the light branch each time. The height k is given by 
 , meaning  or  . 

The problem asks to show that  , meaning we are looking for a lower bound 

On any full level, the additive terms sums to n. There are  full levels. Thus  

Listen To Part 4-2 

4.2-4 Use iteration to solve T(n) = T(n-a) + T(a) + n, where  is a constant. 
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Note iteration is backsubstitution.   

 

Listen To Part 4-3 

Why don't CS profs ever stop talking about sorting?!

1.  Computers spend more time sorting than anything else, historically 25% on mainframes.    
2.  Sorting is the best studied problem in computer science, with a variety of different algorithms 

known.
3.  Most of the interesting ideas we will encounter in the course can be taught in the context of 

sorting, such as divide-and-conquer, randomized algorithms, and lower bounds. 

You should have seen most of the algorithms - we will concentrate on the analysis. 

Listen To Part 4-4 

Applications of Sorting

One reason why sorting is so important is that once a set of items is sorted, many other problems become 
easy.   

Searching

Binary search lets you test whether an item is in a dictionary in  time.   

Speeding up searching is perhaps the most important application of sorting. 
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Closest pair

Given n numbers, find the pair which are closest to each other.   

Once the numbers are sorted, the closest pair will be next to each other in sorted order, so an O(n) linear 
scan completes the job. 

Listen To Part 4-5 

Element uniqueness

Given a set of n items, are they all unique or are there any duplicates?     

Sort them and do a linear scan to check all adjacent pairs. 

This is a special case of closest pair above. 

Frequency distribution - Mode

Given a set of n items, which element occurs the largest number of times?    

Sort them and do a linear scan to measure the length of all adjacent runs. 

Median and Selection

What is the kth largest item in the set?    

Once the keys are placed in sorted order in an array, the kth largest can be found in constant time by 
simply looking in the kth position of the array. 

Listen To Part 4-6 

Convex hulls

Given n points in two dimensions, find the smallest area polygon which contains them all.   
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The convex hull is like a rubber band stretched over the points. 

Convex hulls are the most important building block for more sophisticated geometric algorithms.   

Once you have the points sorted by x-coordinate, they can be inserted from left to right into the hull, 
since the rightmost point is always on the boundary. 

Without sorting the points, we would have to check whether the point is inside or outside the current hull. 

Adding a new rightmost point might cause others to be deleted. 

Huffman codes

If you are trying to minimize the amount of space a text file is taking up, it is silly to assign each letter 
the same length (ie. one byte) code.    

Example: e is more common than q, a is more common than z. 

If we were storing English text, we would want a and e to have shorter codes than q and z. 

To design the best possible code, the first and most important step is to sort the characters in order of 
frequency of use. 

Character Frequency Code 

f 5 1100

e 9 1101

c 12 100

b 13 101

d 16 111

a 45 0
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Listen To Part 4-8 

Selection Sort

A simple  sorting algorithm is selection sort.   

Sweep through all the elements to find the smallest item, then the smallest remaining item, etc. until the 
array is sorted. 

Selection-sort(A)

                 for i = 1 to n

                                 for j = i+1 to n

                                                 if (A[j] < A[i]) then 
swap(A[i],A[j])

It is clear this algorithm must be correct from an inductive argument, since the ith element is in its correct 
position. 

It is clear that this algorithm takes  time. 

It is clear that the analysis of this algorithm cannot be improved because there will be n/2 iterations 
which will require at least n/2 comparisons each, so at least  comparisons will be made. More careful 
analysis doubles this. 

Thus selection sort runs in  time. 

Listen To Part 4-9 

Binary Heaps

A binary heap is defined to be a binary tree with a key in each node such that:   
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1.  All leaves are on, at most, two adjacent levels.
2.  All leaves on the lowest level occur to the left, and all levels except the lowest one are completely 

filled.
3.  The key in root is  all its children, and the left and right subtrees are again binary heaps. 

Conditions 1 and 2 specify shape of the tree, and condition 3 the labeling of the tree. 

 
Listen To Part 4-10 

The ancestor relation in a heap defines a partial order on its elements, which means it is reflexive, anti-
symmetric, and transitive.   

1.  Reflexive: x is an ancestor of itself.
2.  Anti-symmetric: if x is an ancestor of y and y is an ancestor of x, then x=y.
3.  Transitive: if x is an ancestor of y and y is an ancestor of z, x is an ancestor of z. 

Partial orders can be used to model heirarchies with incomplete information or equal-valued elements. 
One of my favorite games with my parents is fleshing out the partial order of ``big'' old-time movie stars. 
  

The partial order defined by the heap structure is weaker than that of the total order, which explains 

1.  Why it is easier to build.
2.  Why it is less useful than sorting (but still very important). 

Listen To Part 4-11 

Constructing Heaps

Heaps can be constructed incrementally, by inserting new elements into the left-most open spot in the 
array.   
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If the new element is greater than its parent, swap their positions and recur. 

Since at each step, we replace the root of a subtree by a larger one, we preserve the heap order. 

Since all but the last level is always filled, the height h of an n element heap is bounded because: 

 

so  . 

Doing n such insertions takes  , since the last n/2 insertions require  time each. 

Listen To Part 4-12 

Heapify

The bottom up insertion algorithm gives a good way to build a heap, but Robert Floyd found a better 
way, using a merge procedure called heapify.   

Given two heaps and a fresh element, they can be merged into one by making the new one the root and 
trickling down. 

Build-heap(A)

                 n = |A|

                 For    do

                                 Heapify(A,i)

Heapify(A,i)
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                 left = 2i

                 right = 2i+1

                 if    then

                                 max = left

                                 else max = i

                 if    and (A(right] > A[max]) then

                                 max = right

                 if    then

                                 swap(A[i],A[max])

                                 Heapify(A,max)

Rough Analysis of Heapify

Heapify on a subtree containing n nodes takes 

 

The 2/3 comes from merging heaps whose levels differ by one. The last row could be exactly half filled. 
Besides, the asymptotic answer won't change so long the fraction is less than one.   

Solve the recurrence using the Master Theorem. 
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Let a = 1, b= 3/2 and f(n) = 1. 

Note that  , since  . 

Thus Case 2 of the Master theorem applies. 

The Master Theorem: Let  and b>1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative 

integers by the recurrence 

 

where we interpret n/b to mean either  or  . Then T(n) can be bounded asymptotically as follows: 

1.  If  for some constant  , then  .

2.  If  , then  .

3.  If  for some constant  , and if  for some constant c<1, and all 

sufficiently large n, then  . 

Listen To Part 4-14 

Exact Analysis of Heapify

In fact, Heapify performs better than  , because most of the heaps we merge are extremely 
small. 

 
In a full binary tree on n nodes, there are n/2 nodes which are leaves (i.e. height 0), n/4 nodes which are 
height 1, n/8 nodes which are height 2, ... 

In general, there are at most  nodes of height h, so the cost of building a heap is: 
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Since this sum is not quite a geometric series, we can't apply the usual identity to get the sum. But it 
should be clear that the series converges. 

Listen To Part 4-15 

Proof of Convergence

Series convergence is the ``free lunch'' of algorithm analysis.     

The identify for the sum of a geometric series is 

 

If we take the derivative of both sides, ... 

 

Multiplying both sides of the equation by x gives the identity we need: 

 

Substituting x = 1/2 gives a sum of 2, so Build-heap uses at most 2n comparisons and thus linear time. 

Listen To Part 4-16 

The Lessons of Heapsort, I

"Are we doing a careful analysis? Might our algorithm be faster than it seems?" 

Typically in our analysis, we will say that since we are doing at most x operations of at most y time each, 
the total time is O(x y). 

However, if we overestimate too much, our bound may not be as tight as it should be! 
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Listen To Part 4-17 

Heapsort

Heapify can be used to construct a heap, using the observation that an isolated element forms a heap of 
size 1.   

Heapsort(A)

                 Build-heap(A)

                 for i = n to 1 do

                                 swap(A[1],A[i])

                                 n = n - 1

                                 Heapify(A,1)

If we construct our heap from bottom to top using Heapify, we do not have to do anything with the last 
n/2 elements. 

With the implicit tree defined by array positions, (i.e. the ith position is the parent of the 2ith and (2i+1)st 
positions) the leaves start out as heaps. 

Exchanging the maximum element with the last element and calling heapify repeatedly gives an  
sorting algorithm, named Heapsort. 

Heapsort Animations

The Lessons of Heapsort, II

Always ask yourself, ``Can we use a different data structure?'' 
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Selection sort scans throught the entire array, repeatedly finding the smallest remaining element.   

For i = 1 to n

A:               Find the smallest of the first n-i+1 items.

B:               Pull it out of the array and put it first.

Using arrays or unsorted linked lists as the data structure, operation A takes O(n) time and operation B 
takes O(1). 

Using heaps, both of these operations can be done within  time, balancing the work and achieving 
a better tradeoff. 

Listen To Part 4-19 

Priority Queues

A priority queue is a data structure on sets of keys supporting the following operations:   

●     Insert(S, x) - insert x into set S
●     Maximum(S) - return the largest key in S
●     ExtractMax(S) - return and remove the largest key in S 

These operations can be easily supported using a heap. 

●     Insert - use the trickle up insertion in  .
●     Maximum - read the first element in the array in O(1).
●     Extract-Max - delete first element, replace it with the last, decrement the element counter, then 

heapify in  . 

Listen To Part 4-20 

Applications of Priority Queues
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Heaps as stacks or queues

   

●     In a stack, push inserts a new item and pop removes the most recently pushed item.
●     In a queue, enqueue inserts a new item and dequeue removes the least recently enqueued item. 

Both stacks and queues can be simulated by using a heap, when we add a new time field to each item and 
order the heap according it this time field. 

●     To simulate the stack, increment the time with each insertion and put the maximum on top of the 
heap.

●     To simulate the queue, decrement the time with each insertion and put the maximum on top of the 
heap (or increment times and keep the minimum on top) 

This simulation is not as efficient as a normal stack/queue implementation, but it is a cute demonstration 
of the flexibility of a priority queue. 

Discrete Event Simulations

In simulations of airports, parking lots, and jai-alai - priority queues can be used to maintain who goes 
next.    

The stack and queue orders are just special cases of orderings. In real life, certain people cut in line. 

Sweepline Algorithms in Computational Geometry

    

 
In the priority queue, we will store the points we have not yet encountered, ordered by x coordinate. and 
push the line forward one stop at a time. 

Listen To Part 4-22 
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Greedy Algorithms

In greedy algorithms, we always pick the next thing which locally maximizes our score. By placing all 
the things in a priority queue and pulling them off in order, we can improve performance over linear 
search or sorting, particularly if the weights change.   

Example: Sequential strips in triangulations. 

Danny Heep
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file:///E|/LEC/LECTUR17/NODE4.HTM (14 of 14) [19/1/2003 1:34:31]



Lecture 5 - quicksort
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Lecture 5 - quicksort
Listen To Part 5-1 

4-2 Find the missing integer from 0 to n using O(n) ``is bit[j] in A[i]'' queries. 

Note - there are a total of  bits, so we are not allowed to read the entire input!   

Also note, the problem is asking us to minimize the number of bits we read. We can spend as much time as we 
want doing other things provided we don't look at extra bits. 

How can we find the last bit of the missing integer? 

Ask all the n integers what their last bit is and see whether 0 or 1 is the bit which occurs less often than it is 
supposed to. That is the last bit of the missing integer! 

How can we determine the second-to-last bit? 

Ask the  numbers which ended with the correct last bit! By analyzing the bit patterns of the numbers from 0 
to n which end with this bit.   

By recurring on the remaining candidate numbers, we get the answer in T(n) = T(n/2) + n =O(n), by the Master 
Theorem. 

Listen To Part 5-2 

Quicksort

Although mergesort is  , it is quite inconvenient for implementation with arrays, since we need space to 
merge.   

In practice, the fastest sorting algorithm is Quicksort, which uses partitioning as its main idea.   

Example: Pivot about 10. 

17 12 6 19 23 8 5 10 - before 

6 8 5 10 23 19 12 17 - after 
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Partitioning places all the elements less than the pivot in the left part of the array, and all elements greater than the 
pivot in the right part of the array. The pivot fits in the slot between them.   

Note that the pivot element ends up in the correct place in the total order! 

Listen To Part 5-3 

Partitioning the elements

Once we have selected a pivot element, we can partition the array in one linear scan, by maintaining three sections 
of the array: < pivot, > pivot, and unexplored. 

Example: pivot about 10 

| 17 12 6 19 23 8 5 | 10 

| 5 12 6 19 23 8 | 17 

5 | 12 6 19 23 8 | 17 

5 | 8 6 19 23 | 12 17 

5 8 | 6 19 23 | 12 17 

5 8 6 | 19 23 | 12 17 

5 8 6 | 23 | 19 12 17 

5 8 6 ||23 19 12 17 

5 8 6 10 19 12 17 23 

As we scan from left to right, we move the left bound to the right when the element is less than the pivot, otherwise 
we swap it with the rightmost unexplored element and move the right bound one step closer to the left. 

Listen To Part 5-4 

Since the partitioning step consists of at most n swaps, takes time linear in the number of keys. But what does it 
buy us? 

1.  The pivot element ends up in the position it retains in the final sorted order.
2.  After a partitioning, no element flops to the other side of the pivot in the final sorted order. 
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Thus we can sort the elements to the left of the pivot and the right of the pivot independently! 

This gives us a recursive sorting algorithm, since we can use the partitioning approach to sort each subproblem. 

Listen To Part 5-5 

Quicksort Animations

Listen To Part 5-6 

Pseudocode

Sort(A)

                 Quicksort(A,1,n)

Quicksort(A, low, high)

                 if (low < high)

                                 pivot-location = Partition(A,low,high)

                                 Quicksort(A,low, pivot-location - 1)

                                 Quicksort(A, pivot-location+1, high)

Partition(A,low,high)

                 pivot = A[low]

                 leftwall = low
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                 for i = low+1 to high

                                  if (A[i] < pivot) then

                                                        leftwall = leftwall+1

                                                  swap(A[i],A[leftwall])

                 swap(A[low],A[leftwall])

Listen To Part 5-7 

Best Case for Quicksort

Since each element ultimately ends up in the correct position, the algorithm correctly sorts. But how long does it 
take?   

The best case for divide-and-conquer algorithms comes when we split the input as evenly as possible. Thus in the 
best case, each subproblem is of size n/2. 

The partition step on each subproblem is linear in its size. Thus the total effort in partitioning the  problems of 
size  is O(n). 

The recursion tree for the best case looks like this: 

 
The total partitioning on each level is O(n), and it take  levels of perfect partitions to get to single element 
subproblems. When we are down to single elements, the problems are sorted. Thus the total time in the best case is 

 . 

Listen To Part 5-8 
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Worst Case for Quicksort

Suppose instead our pivot element splits the array as unequally as possible. Thus instead of n/2 elements in the 
smaller half, we get zero, meaning that the pivot element is the biggest or smallest element in the array. 

 
Now we have n-1 levels, instead of  , for a worst case time of  , since the first n/2 levels each have  
elements to partition. 

Thus the worst case time for Quicksort is worse than Heapsort or Mergesort. 

To justify its name, Quicksort had better be good in the average case. Showing this requires some fairly intricate 
analysis. 

The divide and conquer principle applies to real life. If you will break a job into pieces, it is best to make the pieces 
of equal size! 

Listen To Part 5-9 

Intuition: The Average Case for Quicksort

Suppose we pick the pivot element at random in an array of n keys. 

 
Half the time, the pivot element will be from the center half of the sorted array. 

Whenever the pivot element is from positions n/4 to 3n/4, the larger remaining subarray contains at most 3n/4 
elements. 

If we assume that the pivot element is always in this range, what is the maximum number of partitions we need to 
get from n elements down to 1 element? 
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Listen To Part 5-10 

What have we shown?

At most  levels of decent partitions suffices to sort an array of n elements.   

But how often when we pick an arbitrary element as pivot will it generate a decent partition? 

Since any number ranked between n/4 and 3n/4 would make a decent pivot, we get one half the time on average. 

If we need  levels of decent partitions to finish the job, and half of random partitions are decent, then on 
average the recursion tree to quicksort the array has  levels. 

 
Since O(n) work is done partitioning on each level, the average time is  . 

More careful analysis shows that the expected number of comparisons is  . 

Listen To Part 5-11 

Average-Case Analysis of Quicksort

To do a precise average-case analysis of quicksort, we formulate a recurrence given the exact expected time T(n): 

 

Each possible pivot p is selected with equal probability. The number of comparisons needed to do the partition is n-
1.   
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We will need one useful fact about the Harmonic numbers  , namely 

 

It is important to understand (1) where the recurrence relation comes from and (2) how the log comes out from the 
summation. The rest is just messy algebra. 

Listen To Part 5-12 

 

 

 

 

 

rearranging the terms give us: 

 

substituting  gives 

 

 

We are really interested in A(n), so 

 

Listen To Part 5-13 

What is the Worst Case?
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The worst case for Quicksort depends upon how we select our partition or pivot element. If we always select either 
the first or last element of the subarray, the worst-case occurs when the input is already sorted! 

A B D F H J K 

B D F H J K 

D F H J K 

F H J K 

H J K 

J K 

K 

Having the worst case occur when they are sorted or almost sorted is very bad, since that is likely to be the case in 
certain applications. 

To eliminate this problem, pick a better pivot: 

1.  Use the middle element of the subarray as pivot.
2.  Use a random element of the array as the pivot.
3.  Perhaps best of all, take the median of three elements (first, last, middle) as the pivot. Why should we use 

median instead of the mean? 

Whichever of these three rules we use, the worst case remains  . However, because the worst case is no longer 
a natural order it is much more difficult to occur. 

Listen To Part 5-14 

Is Quicksort really faster than Heapsort?

Since Heapsort is  and selection sort is  , there is no debate about which will be better for decent-sized 
files.   

But how can we compare two  algorithms to see which is faster? Using the RAM model and the big Oh 
notation, we can't! 

When Quicksort is implemented well, it is typically 2-3 times faster than mergesort or heapsort. The primary 
reason is that the operations in the innermost loop are simpler. The best way to see this is to implement both and 
experiment with different inputs. 
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Since the difference between the two programs will be limited to a multiplicative constant factor, the details of 
how you program each algorithm will make a big difference. 

If you don't want to believe me when I say Quicksort is faster, I won't argue with you. It is a question whose 
solution lies outside the tools we are using. 

Listen To Part 5-15 

Randomization

Suppose you are writing a sorting program, to run on data given to you by your worst enemy. Quicksort is good on 
average, but bad on certain worst-case instances.   

If you used Quicksort, what kind of data would your enemy give you to run it on? Exactly the worst-case instance, 
to make you look bad. 

But instead of picking the median of three or the first element as pivot, suppose you picked the pivot element at 
random. 

Now your enemy cannot design a worst-case instance to give to you, because no matter which data they give you, 
you would have the same probability of picking a good pivot! 

Randomization is a very important and useful idea. By either picking a random pivot or scrambling the 
permutation before sorting it, we can say: 

``With high probability, randomized quicksort runs in  time.'' 

Where before, all we could say is: 

``If you give me random input data, quicksort runs in expected  time.'' 

Since the time bound how does not depend upon your input distribution, this means that unless we are extremely 
unlucky (as opposed to ill prepared or unpopular) we will certainly get good performance. 

Randomization is a general tool to improve algorithms with bad worst-case but good average-case complexity. 

The worst-case is still there, but we almost certainly won't see it. 
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Lecture 6 - linear sorting
Listen To Part 6-1 

7.1-2: Show that an n-element heap has height  . 

Since it is balanced binary tree, the height of a heap is clearly  , but the problem asks for an exact 
answer.   

The height is defined as the number of edges in the longest simple path from the root. 

 
The number of nodes in a complete balanced binary tree of height h is  . 

Thus the height increases only when  , or in other words when  is an integer. 

Listen To Part 6-2 

7.1-5 Is a reverse sorted array a heap? 

In a heap, each element is greater than or equal to each of its descendants. 

In the array representation of a heap, the descendants of the ith element are the 2ith and (2i+1)th 
elements. 

If A is sorted in reverse order, then  implies that  . 

file:///E|/LEC/LECTUR17/NODE6.HTM (1 of 7) [19/1/2003 1:34:38]



Lecture 6 - linear sorting

Since 2i > i and 2i+1 > i then  and  . 

Thus by definition A is a heap! 

Listen To Part 6-3 

Can we sort in better than  ?

Any comparison-based sorting program can be thought of as defining a decision tree of possible 
executions.   

Running the same program twice on the same permutation causes it to do exactly the same thing, but 
running it on different permutations of the same data causes a different sequence of comparisons to be 
made on each. 

 
Claim: the height of this decision tree is the worst-case complexity of sorting.   

Listen To Part 6-4 

Once you believe this, a lower bound on the time complexity of sorting follows easily.   

Since any two different permutations of n elements requires a different sequence of steps to sort, there 
must be at least n! different paths from the root to leaves in the decision tree, ie. at least n! different 
leaves in the tree. 

Since only binary comparisons (less than or greater than) are used, the decision tree is a binary tree. 

Since a binary tree of height h has at most  leaves, we know  , or  . 

By inspection  , since the last n/2 terms of the product are each greater than n/2. By 

Sterling's approximation, a better bound is  where e=2.718. 
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Listen To Part 6-5 

Non-Comparison-Based Sorting

All the sorting algorithms we have seen assume binary comparisons as the basic primative, questions of 
the form ``is x before y?''.   

Suppose you were given a deck of playing cards to sort. Most likely you would set up 13 piles and put all 
cards with the same number in one pile. 

A 2 3 4 5 6 7 8 9 10 J Q K 

A 2 3 4 5 6 7 8 9 10 J Q K 

A 2 3 4 5 6 7 8 9 10 J Q K 

A 2 3 4 5 6 7 8 9 10 J Q K 

With only a constant number of cards left in each pile, you can use insertion sort to order by suite and 
concatenate everything together. 

If we could find the correct pile for each card in constant time, and each pile gets O(1) cards, this 
algorithm takes O(n) time. 

Listen To Part 6-6 

Bucketsort

Suppose we are sorting n numbers from 1 to m, where we know the numbers are approximately 
uniformly distributed.   

We can set up n buckets, each responsible for an interval of m/n numbers from 1 to m 

 
Given an input number x, it belongs in bucket number  . 

If we use an array of buckets, each item gets mapped to the right bucket in O(1) time. 
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With uniformly distributed keys, the expected number of items per bucket is 1. Thus sorting each bucket 
takes O(1) time! 

The total effort of bucketing, sorting buckets, and concatenating the sorted buckets together is O(n). 

What happened to our  lower bound! 

Listen To Part 6-7 

We can use bucketsort effectively whenever we understand the distribution of the data. 

However, bad things happen when we assume the wrong distribution. 

Suppose in the previous example all the keys happened to be 1. After the bucketing phase, we have: 

 
We spent linear time distributing our items into buckets and learned nothing. Perhaps we could split the 
big bucket recursively, but it is not certain that we will ever win unless we understand the distribution. 

Problems like this are why we worry about the worst-case performance of algorithms! 

Such distribution techniques can be used on strings instead of just numbers. The buckets will correspond 
to letter ranges instead of just number ranges. 

The worst case ``shouldn't'' happen if we understand the distribution of our data. 

Listen To Part 6-8 

Real World Distributions

Consider the distribution of names in a telephone book.   

●     Will there be a lot of Skiena's?
●     Will there be a lot of Smith's?
●     Will there be a lot of Shifflett's? 

Either make sure you understand your data, or use a good worst-case or randomized algorithm! 
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The Shifflett's of Charlottesville

For comparison, note that there are seven Shifflett's (of various spellings) in the 1000 page Manhattan 
telephone directory.   

 
Listen To Part 6-10 

Rules for Algorithm Design

The secret to successful algorithm design, and problem solving in general, is to make sure you ask the 
right questions. Below, I give a possible series of questions for you to ask yourself as you try to solve 
difficult algorithm design problems:     

1.  Do I really understand the problem? 

1.  What exactly does the input consist of?
2.  What exactly are the desired results or output?
3.  Can I construct some examples small enough to solve by hand? What happens when I 

solve them?
4.  Are you trying to solve a numerical problem? A graph algorithm problem? A geometric 

problem? A string problem? A set problem? Might your problem be formulated in more 
than one way? Which formulation seems easiest? 

2.  Can I find a simple algorithm for the problem? 

1.  Can I find the solve my problem exactly by searching all subsets or arrangements and 
picking the best one? 

1.  If so, why am I sure that this algorithm always gives the correct answer?
2.  How do I measure the quality of a solution once I construct it? 
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Listen To Part 6-11
3.  Does this simple, slow solution run in polynomial or exponential time?
4.  If I can't find a slow, guaranteed correct algorithm, am I sure that my problem is 

well defined enough to permit a solution? 
2.  Can I solve my problem by repeatedly trying some heuristic rule, like picking the biggest 

item first? The smallest item first? A random item first? 
1.  If so, on what types of inputs does this heuristic rule work well? Do these 

correspond to the types of inputs that might arise in the application?
2.  On what types of inputs does this heuristic rule work badly? If no such examples 

can be found, can I show that in fact it always works well?
3.  How fast does my heuristic rule come up with an answer? 

3.  Are there special cases of this problem I know how to solve exactly? 

1.  Can I solve it efficiently when I ignore some of the input parameters?
2.  What happens when I set some of the input parameters to trivial values, such as 0 or 1? 

Listen To Part 6-12
3.  Can I simplify the problem to create a problem I can solve efficiently? How simple do I 

have to make it?
4.  If I can solve a certain special case, why can't this be generalized to a wider class of 

inputs? 

4.  Which of the standard algorithm design paradigms seem most relevant to the problem? 

1.  Is there a set of items which can be sorted by size or some key? Does this sorted order 
make it easier to find what might be the answer?

2.  Is there a way to split the problem in two smaller problems, perhaps by doing a binary 
search, or a partition of the elements into big and small, or left and right? If so, does this 
suggest a divide-and-conquer algorithm?

3.  Are there certain operations being repeatedly done on the same data, such as searching it 
for some element, or finding the largest/smallest remaining element? If so, can I use a data 
structure of speed up these queries, like hash tables or a heap/priority queue? 

5.  Am I still stumped? 

1.  Why don't I go back to the beginning of the list and work through the questions again? Do 
any of my answers from the first trip change on the second? 
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Next: Lecture 8 - binary Up: No Title Previous: Lecture 6 - linear 

Lecture 7 - elementary data structures
Listen To Part 7-1 

8.2-3 Argue that insertion sort is better than Quicksort for sorting checks 

In the best case, Quicksort takes  . Although using median-of-three turns the sorted permutation into the 
best case, we lose if insertion sort is better on the given data.    

In insertion sort, the cost of each insertion is the number of items which we have to jump over. In the check 
example, the expected number of moves per items is small, say c. We win if  . 

Listen To Part 7-2 

8.3-1 Why do we analyze the average-case performance of a randomized algorithm, instead of the worst-case? 

In a randomized algorithm, the worst case is not a matter of the input but only of luck. Thus we want to know what 
kind of luck to expect. Every input we see is drawn from the uniform distribution.   

Listen To Part 7-3 

8.3-2 How many calls are made to Random in randomized quicksort in the best and worst cases? 

Each call to random occurs once in each call to partition. 

The number of partitions is  in any run of quicksort!! 

 
There is some potential variation depending upon what you do with intervals of size 1 - do you call partition on 
intervals of size one? However, there is no asymptotic difference between best and worst case. 
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The reason - any binary tree with n leaves has n-1 internal nodes, each of which corresponds to a call to partition in 
the quicksort recursion tree. 

Listen To Part 7-4 

Elementary Data Structures

``Mankind's progress is measured by the number of things we can do without thinking.'' 

Elementary data structures such as stacks, queues, lists, and heaps will be the ``of-the-shelf'' components we build 
our algorithm from. There are two aspects to any data structure:   

●     The abstract operations which it supports.
●     The implementation of these operations. 

The fact that we can describe the behavior of our data structures in terms of abstract operations explains why we 
can use them without thinking, while the fact that we have different implementation of the same abstract 
operations enables us to optimize performance.   

Listen To Part 7-5 

Stacks and Queues

Sometimes, the order in which we retrieve data is independent of its content, being only a function of when it 
arrived.     

A stack supports last-in, first-out operations: push and pop. 

A queue supports first-in, first-out operations: enqueue and dequeue. 

A deque is a double ended queue and supports all four operations: push, pop, enqueue, dequeue. 

Lines in banks are based on queues, while food in my refrigerator is treated as a stack.   

Both can be used to traverse a tree, but the order is completely different. 
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Which order is better for WWW crawler robots? 

Listen To Part 7-6 

Stack Implementation

Although this implementation uses an array, a linked list would eliminate the need to declare the array size in 
advance. 

STACK-EMPTY(S)

                 if top[S] = 0

                                    then return TRUE

                                    else return FALSE

PUSH(S, x)

                   

                   

POP(S)
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                 if STACK-EMPTY(S)

                                    then error ``underflow''

                                    else   

                                                         return S[top[S] + 1]

 
All are O(1) time operations. 

Listen To Part 7-7 

Queue Implementation

A circular queue implementation requires pointers to the head and tail elements, and wraps around to reuse array 
elements. 

ENQUEUE(Q, x)

                 Q[tail[Q]]    x

                 if tail[Q] = length[Q]

                                    then tail[Q]    1

                                    else tail[Q]    tail[Q] + 1
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DEQUEUE(Q)

                 x = Q[head[Q]]

                 if head[Q] =  length[Q]

                                    then head[Q] = 1

                                    else head[Q] = head[Q] + 1

                 return x

A list-based implementation would eliminate the possibility of overflow. 

All are O(1) time operations. 

Listen To Part 7-8 

Dynamic Set Operations

Perhaps the most important class of data structures maintain a set of items, indexed by keys.    

There are a variety of implementations of these dictionary operations, each of which yield different time bounds 
for various operations. 

●     Search(S,k) - A query that, given a set S and a key value k, returns a pointer x to an element in S such that 
key[x] = k, or nil if no such element belongs to S.

●     Insert(S,x) - A modifying operation that augments the set S with the element x.
●     Delete(S,x) - Given a pointer x to an element in the set S, remove x from S. Observe we are given a pointer 

to an element x, not a key value.
●     Min(S), Max(S) - Returns the element of the totally ordered set S which has the smallest (largest) key.
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●     Next(S,x), Previous(S,x) - Given an element x whose key is from a totally ordered set S, returns the next 
largest (smallest) element in S, or NIL if x is the maximum (minimum) element. 

Listen To Part 7-9 

Pointer Based Implementation

We can maintain a dictionary in either a singly or doubly linked list.    

 
We gain extra flexibility on predecessor queries at a cost of doubling the number of pointers by using doubly-
linked lists. 

Since the extra big-Oh costs of doubly-linkly lists is zero, we will usually assume they are, although it might not be 
necessary. 

Singly linked to doubly-linked list is as a Conga line is to a Can-Can line. 

Array Based Sets

Unsorted Arrays 

●     Search(S,k) - sequential search, O(n)
●     Insert(S,x) - place in first empty spot, O(1)
●     Delete(S,x) - copy nth item to the xth spot, O(1)
●     Min(S,x), Max(S,x) - sequential search, O(n)
●     Successor(S,x), Predecessor(S,x) - sequential search, O(n)

Listen To Part 7-10 

Sorted Arrays 

●     Search(S,k) - binary search,  
●     Insert(S,x) - search, then move to make space, O(n)
●     Delete(S,x) - move to fill up the hole, O(n)
●     Min(S,x), Max(S,x) - first or last element, O(1)
●     Successor(S,x), Predecessor(S,x) - Add or subtract 1 from pointer, O(1)

What are the costs for a heap? 
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Listen To Part 7-11 

Unsorted List Implementation

LIST-SEARCH(L, k)

                 x = head[L]

                 while x <> NIL and key[x] <> k

                                         do x = next[x]

                 return x

Note: the while loop might require two lines in some programming languages. 

 

LIST-INSERT(L, x)

                 next[x] = head[L]

                 if head[L] <> NIL

                                   then prev[head[L]] = x

                 head[L] = x
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                 prev[x] = NIL

LIST-DELETE(L, x)

                 if prev[x] <> NIL

                                    then next[prev[x]] = next[x]

                                    else head[L] = next[x]

                 if next[x] <> NIL

                                   then prev[next[x]] = prev[x]

Sentinels

Boundary conditions can be eliminated using a sentinel element which doesn't go away.    

 

LIST-SEARCH'(L, k)

                 x = next[nil[L]]

                 while x <> NIL[L] and key[x] <> k

                                         do x = next[x]
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                 return x

LIST-INSERT'(L, x)

                 next[x] = next[nil[L]]

                 prev[next[nil[L]]] = x

                 next[nil[L]] = x

                 prev[x] = NIL[L]

LIST-DELETE'(L, x)

                 next[prev[x]] <> next[x]

                 next[prev[x]] = prev[x]

Listen To Part 7-13 

Hash Tables

Hash tables are a very practical way to maintain a dictionary. As with bucket sort, it assumes we know that the 
distribution of keys is fairly well-behaved.   

The idea is simply that looking an item up in an array is  once you have its index. A hash function is a 
mathematical function which maps keys to integers. 

In bucket sort, our hash function mapped the key to a bucket based on the first letters of the key. ``Collisions'' were 
the set of keys mapped to the same bucket. 
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If the keys were uniformly distributed, then each bucket contains very few keys! 

The resulting short lists were easily sorted, and could just as easily be searched! 

 
Listen To Part 7-14 

Hash Functions

It is the job of the hash function to map keys to integers. A good hash function:   

1.  Is cheap to evaluate
2.  Tends to use all positions from  with uniform frequency.
3.  Tends to put similar keys in different parts of the tables (Remember the Shifletts!!) 

The first step is usually to map the key to a big integer, for example 

 

This large number must be reduced to an integer whose size is between 1 and the size of our hash table. 

One way is by  , where M is best a large prime not too close to  , which would just mask off 
the high bits. 

This works on the same principle as a roulette wheel! 

Listen To Part 7-15 

Good and Bad Hash functions

The first three digits of the Social Security Number   
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The last three digits of the Social Security Number 

 
Listen To Part 7-16 

The Birthday Paradox

No matter how good our hash function is, we had better be prepared for collisions, because of the birthday 
paradox.   

 
The probability of there being no collisions after n insertions into an m-element table is 

 

When m = 366, this probability sinks below 1/2 when N = 23 and to almost 0 when  . 
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Listen To Part 7-17 

Collision Resolution by Chaining

The easiest approach is to let each element in the hash table be a pointer to a list of keys.   

 
Insertion, deletion, and query reduce to the problem in linked lists. If the n keys are distributed uniformly in a table 
of size m/n, each operation takes O(m/n) time. 

Chaining is easy, but devotes a considerable amount of memory to pointers, which could be used to make the table 
larger. Still, it is my preferred method. 

Listen To Part 7-18 

Open Addressing

We can dispense with all these pointers by using an implicit reference derived from a simple function:   

 
If the space we want to use is filled, we can examine the remaining locations: 

1.  Sequentially  

2.  Quadratically  

3.  Linearly  

The reason for using a more complicated science is to avoid long runs from similarly hashed keys. 

Deletion in an open addressing scheme is ugly, since removing one element can break a chain of insertions, 
making some elements inaccessible. 

Listen To Part 7-19 

Performance on Set Operations

With either chaining or open addressing: 
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●     Search - O(1) expected, O(n) worst case
●     Insert - O(1) expected, O(n) worst case
●     Delete - O(1) expected, O(n) worst case
●     Min, Max and Predecessor, Successor  expected and worst case 

Pragmatically, a hash table is often the best data structure to maintain a dictionary. However, we will not use it 
much in proving the efficiency of our algorithms, since the worst-case time is unpredictable. 

The best worst-case bounds come from balanced binary trees, such as red-black trees. 

       
Next: Lecture 8 - binary Up: No Title Previous: Lecture 6 - linear 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 9 - catch Up: No Title Previous: Lecture 7 - elementary 

Lecture 8 - binary trees
Listen To Part 8-1 

9.1-3 Show that there is no sorting algorithm which sorts at least  instances in O(n) time. 

Think of the decision tree which can do this.    What is the shortest tree with  leaves? 

 

 

Moral: there cannot be too many good cases for any sorting algorithm! 

Listen To Part 8-2 

9.1-4 Show that the  lower bound for sorting still holds with ternary comparisons. 

 
The maximum number of leaves in a tree of height h is  , 

 

So it goes for any constant base. 

Listen To Part 8-3 

Binary Search Trees

``I think that I shall never see
a poem as lovely as a tree Poem's
are wrote by fools like me but only
G-d can make a tree ``
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- Joyce Kilmer

Binary search trees provide a data structure which efficiently supports all six dictionary operations.    

A binary tree is a rooted tree where each node contains at most two children. 

Each child can be identified as either a left or right child. 

 
A binary tree can be implemented where each node has left and right pointer fields, an (optional) parent pointer, and a data 
field. 

Listen To Part 8-4 

Binary Search Trees

A binary search tree labels each node in a binary tree with a single key such that for any node x, and nodes in the left subtree 
of x have keys  and all nodes in the right subtree of x have key's  . 

  
Left: A binary search tree. Right: A heap but not a binary search tree. 

The search tree labeling enables us to find where any key is. Start at the root - if that is not the one we want, search either left 
or right depending upon whether what we want is  or  then the root. 

Listen To Part 8-5 

Searching in a Binary Tree

Dictionary search operations are easy in binary trees ... 

TREE-SEARCH(x, k)
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                 if (x = NIL) and (k = key[x])

                                    then return x

                 if (k < key[x])

                                    then return TREE-SEARCH(left[x],k)

                                   else return TREE-SEARCH(right[x],k)

The algorithm works because both the left and right subtrees of a binary search tree are binary search trees - recursive 
structure, recursive algorithm. 

This takes time proportional to the height of the tree, O(h). 

Listen To Part 8-6 

Maximum and Minimum

Where are the maximum and minimum elements in a binary tree?   

 

TREE-MAXIMUM(X)

                 while   

                                     do x = right[x]
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                 return x

TREE-MINIMUM(x)

                 while   

                                      do x = left[x]

                 return x

Both take time proportional to the height of the tree, O(h). 

Listen To Part 8-7 

Where is the predecessor?

Where is the predecessor of a node in a tree, assuming all keys are distinct?    

 
If X has two children, its predecessor is the maximum value in its left subtree and its successor the minimum value in its right 
subtree. 

Listen To Part 8-8 

What if a node doesn't have children?
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If it does not have a left child, a node's predecessor is its first left ancestor. 

The proof of correctness comes from looking at the in-order traversal of the tree. 

Tree-Successor(x)

                 if   

                                 then return Tree-Minimum(right[x])

                                   

                 while    and (x = right[y])

                                 do   

                                        

                 return y

Tree predecessor/successor both run in time proportional to the height of the tree. 

Listen To Part 8-9 

In-Order Traversal
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Inorder-Tree-walk(x)

                 if (x <> NIL)

                  then Inorder-Tree-Walk(left[x])

                                       print key[x]

                                       Inorder-Tree-walk(right[x])

A-B-C-D-E-F-G-H 

Listen To Part 8-10 

Tree Insertion

Do a binary search to find where it should be, then replace the termination NIL pointer with the new item.   
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Tree-insert(T,z)

                 y = NIL

                 x = root[T]

                 while   

                                 do y = x

                                                      if key[z] < key[x]

                                                                       then x = 
left[x]

                                                                       else x = 
right[x]

                   

                 if y = NIL

                                  then   

                                  else if key[z] < key[y]

                                                       then   

                                                       else   

y is maintained as the parent of x, since x eventually becomes NIL. 

The final test establishes whether the NIL was a left or right turn from y. 

Insertion takes time proportional to the height of the tree, O(h). 
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Listen To Part 8-12 

Tree Deletion

Deletion is somewhat more tricky than insertion, because the node to die may not be a leaf, and thus effect other nodes.   

Case (a), where the node is a leaf, is simple - just NIL out the parents child pointer. 

Case (b), where a node has one chld, the doomed node can just be cut out. 

Case (c), relabel the node as its successor (which has at most one child when z has two children!) and delete the successor! 

This implementation of deletion assumes parent pointers to make the code nicer, but if you had to save space they could be 
dispensed with by keeping the pointers on the search path stored in a stack. 

Tree-Delete(T,z)

                 if (left[z] = NIL) or (right[z] = NIL)

                                  then   

                                  else    Tree-Successor(z)

                 if   

                                  then   

                                  else   

                 if   

                                  then   

                 if p[y] = NIL

                                  then   

                                  else if (y = left[p[y]])

file:///E|/LEC/LECTUR17/NODE8.HTM (8 of 13) [19/1/2003 1:34:46]



Lecture 8 - binary trees

                                                        then   

                                                        else   

                  if (y <> z)

                                  then   

                                                 /* If y has other fields, copy them, 
too. */

                 return y

Lines 1-3 determine which node y is physically removed. 

Lines 4-6 identify x as the non-nil decendant, if any. 

Lines 7-8 give x a new parent. 

Lines 9-10 modify the root node, if necessary 

Lines 11-13 reattach the subtree, if necessary. 

Lines 14-16 if the removed node is deleted, copy. 

Conclusion: deletion takes time proportional to the height of the tree. Listen To Part 8-13 

Balanced Search Trees

All six of our dictionary operations, when implemented with binary search trees, take O(h), where h is the height of the tree.   

The best height we could hope to get is  , if the tree was perfectly balanced, since 

 

But if we get unlucky with our order of insertion or deletion, we could get linear height! 

insert(a)
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insert(b)

insert(c)

insert(d)

   

 
In fact, random search trees on average have  height, but we are worried about worst case height. 

We can't easily use randomization - Why? 

Listen To Part 8-14 

Perfectly Balanced Trees

Perfectly balanced trees require a lot of work to maintain: 

 
If we insert the key 1, we must move every single node in the tree to rebalance it, taking  time. 

Therefore, when we talk about "balanced" trees, we mean trees whose height is  , so all dictionary operations (insert, 
delete, search, min/max, successor/predecessor) take  time. 

Red-Black trees are binary search trees where each node is assigned a color, where the coloring scheme helps us maintain the 
height as  . 

Listen To Part 8-15 
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Red-Black Tree Definition

Red-black trees have the following properties:   

1.  Every node is colored either red or black.
2.  Every leaf (NIL pointer) is black.
3.  If a node is red then both its children are black.
4.  Every single path from a node to a decendant leaf contains the same number of black nodes. 

Listen To Part 8-16 

What does this mean?

If the root of a red-black tree is black can we just color it red? 

No! For one of its children might be red. 

If an arbitrary node is red can we color it black? 

No! Because now all nodes may not have the same black height. 

 

What tree maximizes the number of nodes in a tree of black height h? 

 
Listen To Part 8-17 

What does a red-black tree with two real nodes look like? 
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Not (1) - consecutive reds Not (2), (4) - Non-Uniform black height 

Listen To Part 8-18 

Red-Black Tree Height

Lemma: A red-black tree with n internal nodes has height at most  . 

Proof: Our strategy; first we bound the number of nodes in any subtree, then we bound the height of any subtree. 

We claim that any subtree rooted at x has at least  - 1 internal nodes, where bh(x) is the black height of node x. 

Proof, by induction: 

 

Now assume it is true for all tree with black height < bh(x). 

If x is black, both subtrees have black height bh(x)-1. If x is red, the subtrees have black height bh(x). 

Therefore, the number of internal nodes in any subtree is 

 

Listen To Part 8-19 

Now, let h be the height of our red-black tree. At least half the nodes on any single path from root to leaf must be black if we 
ignore the root. 

Thus  and  , so  . 

This implies that  ,so  . height6pt width4pt

Therefore red-black trees have height at most twice optimal. We have a balanced search tree if we can maintain the red-black 
tree structure under insertion and deletion. 

       
Next: Lecture 9 - catch Up: No Title Previous: Lecture 7 - elementary 
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Next: Lecture 10 - tree Up: No Title Previous: Lecture 8 - binary 

Lecture 9 - catch up
Listen To Part 9-1 

11-1 For each of the four types of linked lists in the following table, what is the asymptotic worst-case 
running time for each dynamic-set operation listed?   

singly singly doubly doubly 

unsorted sorted unsorted sorted 

Search(L, k) O(N) O(N) O(N) O(N)- 

Insert(L, x) O(1) O(N) O(1) O(N)- 

Delete(L, x) O(N)* O(N)* O(1) O(1) 

Successor(L, x) O(N) O(1) O(N) O(1) 

Predecessor(L, x) O(N) O(N) O(N) O(1) 

Minimum(L) O(N) O(1) O(N) O(1) 

Maximum(L) O(N) O(1)+ O(N) O(1)+ 

●     I need a pointer to the predecessor! (*)
●     I need a pointer to the tail! (+)
●     Only bottlenecks in otherwise perfect dictionary! (-) 

       
Next: Lecture 10 - tree Up: No Title Previous: Lecture 8 - binary 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Lecture 10 - tree restructuring

       
Next: Lecture 11 - backtracking Up: No Title Previous: Lecture 9 - catch 

Lecture 10 - tree restructuring
Listen To Part 10-1 

14.1-5 Describe a Red-Black tree with the largest and smallest ratio of red nodes. 

To minimize the ratio of red-black nodes, make all black   (possible for  ) 

 
To maximize the ratio of red nodes, interleave with red nodes as real leaves 

 

 

 

 

Listen To Part 10-2 

Rotations

The basic restructuring step for binary search trees are left and right rotation:   
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Lecture 10 - tree restructuring

  

1.  Rotation is a local operation changing O(1) pointers.
2.  An in-order search tree before a rotation stays an in-order search tree.
3.  In a rotation, one subtree gets one level closer to the root and one subtree one level further from the root. 

LEFT-ROTATE(T,x)

                             (* Set y*)

                     (* Turn y's left into x's right*)

                if left[y]= NIL

                                 then   

                         (* Link x's parent to y *)

                 if p[x] = NIL

                                         then   

                                         else if x= left[p[x]]

                                                                  then   

                                                                  else   
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Lecture 10 - tree restructuring

Note the in-order property is preserved. 

Listen To Part 10-3 

 
Listen To Part 10-4 

14.2-5 Show that any n-node tree can be transformed to any other using O(n) rotations (hint: convert to a right going 
chain). 

I will start by showing weaker bounds - that  and  rotations suffice - because that is how I proceeded when I 
first saw the problem. 

First, observe that creating a right-going, for  path from  < and reversing the same construction gives a path from  to 
 . 

Note that it will take at most n rotations to make the lowest valued key the root. Once it is root, all keys are to the right of 
it, so no more rotations need go through it to create a right-going chain. Repeating with the second lowest key, third, etc. 
gives that  rotations suffice. 

Now that if we try to create a completely balanced tree instead. To get the n/2 key to the root takes at most n rotations. 
Now each subtree has half the nodes and we can recur... 

file:///E|/LEC/LECTUR16/NODE10.HTM (3 of 9) [19/1/2003 1:34:50]



Lecture 10 - tree restructuring

 

Listen To Part 10-5 

To get a linear algorithm, we must beware of trees like: 

 
The correct answer is that n-1 rotations suffice to get to a rightmost chain. 

By picking the lowest node on the rightmost chain which has a left ancestor, we can add one node per rotation to the right 
most chain! 

 
Initially, the rightmost chain contained at least 1 node, so after 1 rotations it contains all n. Slick! 

Listen To Part 10-6 

Red-Black Insertion
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Lecture 10 - tree restructuring

Since red-black trees have  height, if we can preserve all properties of such trees under insertion/deletion, we have 
a balanced tree!   

Suppose we just did a regular insertion. Under what conditions does it stay a red-black tree? 

Since every insertion take places at a leaf, we will change a black NIL pointer to a node with two black NIL pointers. 

 
To preserve the black height of the tree, the new node must be red. If its new parent is black, we can stop, otherwise we 
must restructure! 

Listen To Part 10-7 

How can we fix two reds in a row?

It depends upon our uncle's color: 

 
If our uncle is red, reversing our relatives' color either solves the problem or pushes it higher! 
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Lecture 10 - tree restructuring

 

Note that after the recoloring: 

1.  The black height is unchanged.
2.  The shape of the tree is unchanged.
3.  We are done if our great-grandparent is black. 

If we get all the way to the root, recall we can always color a red-black tree's root black. We always will, so initially it 
was black, and so this process terminates. 

Listen To Part 10-8 

The Case of the Black Uncle

If our uncle was black, observe that all the nodes around us have to be black: 

 
Solution - rotate right about B: 
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Lecture 10 - tree restructuring

 
Since the root of the subtree is now black with the same black-height as before, we have restored the colors and can stop! 

Listen To Part 10-9 

A double rotation can be required to set things up depending upon the left-right turn sequence, but the principle is the 
same. 

DOUBLE ROTATION ILLUSTRATION 

Listen To Part 10-10 

Pseudocode and Figures

Listen To Part 10-11 

Deletion from Red-Black Trees

Recall the three cases for deletion from a binary tree:   

Case (a) The node to be deleted was a leaf; 

 
Case (b) The node to be deleted had one child; 
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Lecture 10 - tree restructuring

 
Case (c) relabel to node as its successor and delete the successor. 

 
Listen To Part 10-12 

Deletion Color Cases

Suppose the node we remove was red, do we still have a red-black tree? 

Yes! No two reds will be together, and the black height for each leaf stays the same. 

However, if the dead node y was black, we must give each of its decendants another black ancestor. If an appropriate 
node is red, we can simply color it black otherwise we must restructure. 

Case (a) black NIL becomes ``double black''; 

Case (b) red  becomes black and black  becomes ``double black''; 

Case (c) red  becomes black and black  becomes ``double black''. 

Our goal will be to recolor and restructure the tree so as to get rid of the ``double black'' node. 

Listen To Part 10-13 

In setting up any case analysis, we must be sure that: 

1.  All possible cases are covered.
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2.  No case is covered twice. 

In the case analysis for red-black trees, the breakdown is: 

Case 1: The double black node x has a red brother. 

Case 2: x has a black brother and two black nephews. 

Case 3: x has a black brother, and its left nephew is red and its right nephew is black. 

Case 4: x has a black brother, and its right nephew is red (left nephew can be any color). 

Listen To Part 10-14 

Conclusion

Red-Black trees let us implement all dictionary operations in  . Further, in no case are more than 3 rotations done 
to rebalance. Certain very advanced data structures have data stored at nodes which requires a lot of work to adjust after a 
rotation -- red-black trees ensure it won't happen often. 

Example: Each node represents the endpoint of a line, and is augmented with a list of segments in its subtree which it 
intersects. 

We will not study such complicated structures, however. 

       
Next: Lecture 11 - backtracking Up: No Title Previous: Lecture 9 - catch 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Lecture 11 - backtracking

       
Next: Lecture 12 - introduction Up: No Title Previous: Lecture 10 - tree 

Lecture 11 - backtracking
Parallel Bubblesort

In order for me to give back your midterms, please form a line and sort yourselves in alphabetical order, from A to Z.   

There is traditionally a strong correlation between the midterm grades and the number of daily problems attempted: 

daily: 0, sum: 134, count: 3, avg: 44.67 

daily: 1, sum: 0, count: 2, avg: 0.00 

daily: 2, sum: 63, count: 1, avg: 63.00 

daily: 3, sum: 194, count: 3, avg: 64.67 

daily: 4, sum: 335, count: 5, avg: 67.00 

daily: 5, sum: 489, count: 8, avg: 61.12 

daily: 6, sum: 381, count: 6, avg: 63.50 

daily: 7, sum: 432, count: 6, avg: 72.00 

daily: 8, sum: 217, count: 3, avg: 72.33 

daily: 9, sum: 293, count: 4, avg: 73.25 

Listen To Part 11-2 

Combinatorial Search

We have seen how clever algorithms can reduce sorting from  to  . However, the stakes are even higher for 
combinatorially explosive problems:   

The Traveling Salesman Problem

Given a weighted graph, find the shortest cycle which visits each vertex once.   
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Lecture 11 - backtracking

 
Applications include minimizing plotter movement, printed-circuit board wiring, transportation problems, etc. 

There is no known polynomial time algorithm (ie.  for some fixed k) for this problem, so search-based algorithms 
are the only way to go if you need an optional solution. 

Listen To Part 11-3 

But I want to use a Supercomputer

Moving to a faster computer can only buy you a relatively small improvement:   

●     Hardware clock rates on the fastest computers only improved by a factor of 6 from 1976 to 1989, from 12ns to 
2ns.

●     Moving to a machine with 100 processors can only give you a factor of 100 speedup, even if your job can be 
perfectly parallelized (but of course it can't).

●     The fast Fourier algorithm (FFT) reduced computation from  to  . This is a speedup of 340 times on 
n=4096 and revolutionized the field of image processing.  

●     The fast multipole method for n-particle interaction reduced the computation from  to O(n). This is a speedup 
of 4000 times on n=4096. 

Listen To Part 11-4 

Can Eight Pieces Cover a Chess Board?

Consider the 8 main pieces in chess (king, queen, two rooks, two bishops, two knights). Can they be positioned on a 
chessboard so every square is threatened?   

file:///E|/LEC/LECTUR16/NODE11.HTM (2 of 8) [19/1/2003 1:34:54]



Lecture 11 - backtracking

 
Only 63 square are threatened in this configuration. Since 1849, no one had been able to find an arrangement with 
bishops on different colors to cover all squares. 

Of course, this is not an important problem, but we will use it as an example of how to attack a combinatorial search 
problem. 

Listen To Part 11-5 

How many positions to test?

Picking a square for each piece gives us the bound: 

 

Anything much larger than  is unreasonable to search on a modest computer in a modest amount of time.   

However, we can exploit symmetry to save work. With reflections along horizontal, vertical, and diagonal axis, the queen 
can go in only 10 non-equivallent positions. 

Even better, we can restrict the white bishop to 16 spots and the queen to 16, while being certain that we get all distinct 
configurations. 

 

 

Listen To Part 11-6 
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Lecture 11 - backtracking

Backtracking

Backtracking is a systematic way to go through all the possible configurations of a search space.   

In the general case, we assume our solution is a vector  where each element  is selected from a finite 
ordered set  , 

We build from a partial solution of length k  and try to extend it by adding another element. After 
extending it, we will test whether what we have so far is still possible as a partial solution. 

If it is still a candidate solution, great. If not, we delete  and try the next element from  : 

Compute   , the set of candidate first elements of v.

k = 1

While k > 0 do

                 While    do  (*advance*)

                                    = an element in   

                                   

                                 if (  ) is solution, print!

                                 k = k + 1

                                 compute   , the candidate kth elements given v.

                 k = k - 1  (*backtrack*)

Listen To Part 11-7 

Recursive Backtracking
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Lecture 11 - backtracking

Recursion can be used for elegant and easy implementation of backtracking.   

Backtrack(a, k)

if a is a solution, print(a)

else {

                 k = k +1

                 compute   

                 while    do

                                    = an element in   

                                    =   

                                 Backtrack(a, k)

}

Backtracking can easily be used to iterate through all subsets or permutations of a set. 

Backtracking ensures correctness by enumerating all possibilities. 

For backtracking to be efficient, we must prune the search space. 

Listen To Part 11-8 

Constructing all Subsets

How many subsets are there of an n-element set?   

To construct all  subsets, set up an array/vector of n cells, where the value of  is either true or false, signifying 
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Lecture 11 - backtracking

whether the ith item is or is not in the subset. 

To use the notation of the general backtrack algorithm,  , and v is a solution whenever  . 

What order will this generate the subsets of  ? 

 

 

 

 

 

 

Listen To Part 11-9 

Constructing all Permutations

How many permutations are there of an n-element set?   

To construct all n! permutations, set up an array/vector of n cells, where the value of  is an integer from 1 to n which 
has not appeared thus far in the vector, corresponding to the ith element of the permutation. 

To use the notation of the general backtrack algorithm,  , and v is a solution whenever  . 

 

The n-Queens Problem

The first use of pruning to deal with the combinatorial explosion was by the king who rewarded the fellow who 
discovered chess!   

In the eight Queens, we prune whenever one queen threatens another. Listen To Part 11-11 

Covering the Chess Board

In covering the chess board, we prune whenever we find there is a square which we cannot cover given the initial 
configuration! 
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Lecture 11 - backtracking

Specifically, each piece can threaten a certain maximum number of squares (queen 27, king 8, rook 14, etc.) Whenever 
the number of unthreated squares exceeds the sum of the maximum number of coverage remaining in unplaced squares, 
we can prune. 

As implemented by a graduate student project, this backtrack search eliminates  of the search space, when the pieces 

are ordered by decreasing mobility. 

With precomputing the list of possible moves, this program could search 1,000 positions per second. But this is too slow! 

 

Although we might further speed the program by an order of magnitude, we need to prune more nodes! 

By using a more clever algorithm, we eventually were able to prove no solution existed, in less than one day's worth of 
computing. 

You too can fight the combinatorial explosion! 

Listen To Part 11-12 

The Backtracking Contest: Bandwidth

The bandwidth problem takes as input a graph G, with n vertices and m edges (ie. pairs of vertices). The goal is to find a 
permutation of the vertices on the line which minimizes the maximum length of any edge.     

  
The bandwidth problem has a variety of applications, including circuit layout, linear algebra, and optimizing memory 
usage in hypertext documents. 

The problem is NP-complete, meaning that it is exceedingly unlikely that you will be able to find an algorithm with 
polynomial worst-case running time. It remains NP-complete even for restricted classes of trees. 

Since the goal of the problem is to find a permutation, a backtracking program which iterates through all the n! possible 
permutations and computes the length of the longest edge for each gives an easy  algorithm. But the goal of this 
assignment is to find as practically good an algorithm as possible. 

Listen To Part 12-4 

Rules of the Game
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1.  Everyone must do this assignment separately. Just this once, you are not allowed to work with your partner. The 
idea is to think about the problem from scratch.

2.  If you do not completely understand what the bandwidth of a graph is, you don't have the slightest chance of 
producing a working program. Don't be afraid to ask for a clarification or explanation!!!!!

3.  There will be a variety of different data files of different sizes. Test on the smaller files first. Do not be afraid to 
create your own test files to help debug your program.

4.  The data files are available via the course WWW page.
5.  You will be graded on how fast and clever your program is, not on style. No credit will be given for incorrect 

programs.
6.  The programs are to run on the whatever computer you have access to, although it must be vanilla enough that I 

can run the program on something I have access to.
7.  You are to turn in a listing of your program, along with a brief description of your algorithm and any interesting 

optimizations, sample runs, and the time it takes on sample data files. Report the largest test file your program 
could handle in one minute or less of wall clock time.

8.  The top five self-reported times / largest sizes will be collected and tested by me to determine the winner. 

Listen To Part 12-5 

Producing Efficient Programs

1.  Don't optimize prematurely: Worrying about recursion vs. iteration is counter-productive until you have worked 
out the best way to prune the tree. That is where the money is.  

2.  Choose your data structures for a reason: What operations will you be doing? Is case of insertion/deletion more 
crucial than fast retrieval? 

When in doubt, keep it simple, stupid (KISS).
3.  Let the profiler determine where to do final tuning: Your program is probably spending time where you don't 

expect. 

       
Next: Lecture 12 - introduction Up: No Title Previous: Lecture 10 - tree 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Lecture 12 - introduction to dynamic programming

       
Next: Lecture 13 - dynamic Up: No Title Previous: Lecture 11 - backtracking 

Lecture 12 - introduction to dynamic 
programming
Listen To Part 12-1 

15.1-5 Given an element x in an n-node order-statistic binary tree and a natural number i, how can the 
ith successor of x be determined in  time.   

This problem can be solved if our data structure supports two operations: 

●     Rank(x) - what is the position of x in the total order of keys?
●     Get(i) - what is the key in the ith position of the total order of keys? 

What we are interested in is Get(Rank(x)+i). 

In an order statistic tree, each node x is labeled with the number of nodes contained in the subtree rooted 
in x. 

 
Implementing both operations involves keeping track of how many nodes lie to the left of our path. 

Listen To Part 12-6 

Optimization Problems

In the algorithms we have studied so far, correctness tended to be easier than efficiency. In optimization 
problems, we are interested in finding a thing which maximizes or minimizes some function.   
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In designing algorithms for optimization problem - we must prove that the algorithm in fact gives the 
best possible solution. 

Greedy algorithms, which makes the best local decision at each step, occasionally produce a global 
optimum - but you need a proof!   

Dynamic Programming

Dynamic Programming is a technique for computing recurrence relations efficiently by sorting partial 
results.   

Listen To Part 12-9 

Computing Fibonacci Numbers

 

 

Implementing it as a recursive procedure is easy but slow!   

We keep calculating the same value over and over! 

 

How slow is slow?

 

Thus  , and since our recursion tree has 0 and 1 as leaves, means we have  calls! 
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Listen To Part 12-10 

What about Dynamic Programming?

We can calculate  in linear time by storing small values: 

  

  

For i=1 to n

                    

Moral: we traded space for time. 

Dynamic programming is a technique for efficiently computing recurrences by storing partial results. 

Once you understand dynamic programming, it is usually easier to reinvent certain algorithms than try to 
look them up! 

Dynamic programming is best understood by looking at a bunch of different examples. 

I have found dynamic programming to be one of the most useful algorithmic techniques in practice: 

●     Morphing in Computer Graphics
●     Data Compression for High Density Bar Codes
●     Utilizing Grammatical Constraints for Telephone Keypads 

Listen To Part 12-11 

Multiplying a Sequence of Matrices

Suppose we want to multiply a long sequence of matrices  .   
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Multiplying an  matrix by a  matrix (using the common algorithm) takes  
multiplications. 

  
We would like to avoid big intermediate matrices, and since matrix multiplication is associative, we can 
parenthesise however we want. 

Matrix multiplication is not communitive, so we cannot permute the order of the matrices without 
changing the result. 

Listen To Part 12-12 

Example

Consider  , where A is  , B is  , C is  , and D is  . 

There are three possible parenthesizations: 

 

 

 

The order makes a big difference in real computation. How do we find the best order? 

Let M(i,j) be the minimum number of multiplications necessary to compute  . 

The key observations are 

●     The outermost parentheses partition the chain of matricies (i,j) at some k.
●     The optimal parenthesization order has optimal ordering on either side of k.   

Listen To Part 12-13 

A recurrence for this is: 
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Lecture 12 - introduction to dynamic programming

 

If there are n matrices, there are n+1 dimensions. 

A direct recursive implementation of this will be exponential, since there is a lot of duplicated work as in 
the Fibonacci recurrence. 

Divide-and-conquer is seems efficient because there is no overlap, but ... 

There are only  substrings between 1 and n. Thus it requires only  space to store the optimal cost 

for each of them. 

We can represent all the possibilities in a triangle matrix. We can also store the value of k in another 
triangle matrix to reconstruct to order of the optimal parenthesisation. 

The diagonal moves up to the right as the computation progresses. On each element of the kth diagonal |j-
i| = k. 

For the previous example: 

Listen To Part 13-3 

Procedure MatrixOrder

for i=1 to n do M[i, j]=0

for diagonal=1 to n-1

                 for i=1 to n-diagonal do

                                 j=i+diagonal
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                                 faster(i,j)=k

return [m(1, n)]

Procedure ShowOrder(i, j)

if (i=j) write (  )

else

                      k=factor(i, j)

                      write ``(''

                     ShowOrder(i, k)

                    write ``*''

                   ShowOrder (k+1, j)

                  write ``)''

Listen To Part 13-4 

A dynamic programming solution has three components:
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1.  Formulate the answer as a recurrence relation or recursive algorithm.
2.  Show that the number of different instances of your recurrence is bounded by a polynomial.
3.  Specify an order of evaluation for the recurrence so you always have what you need. 

Listen To Part 13-5 

Approximate String Matching

A common task in text editing is string matching - finding all occurrences of a word in a text.      

Unfortunately, many words are mispelled. How can we search for the string closest to the pattern? 

Let p be a pattern string and T a text string over the same alphabet. 

A k-approximate match between P and T is a substring of T with at most k differences. 

Differences may be: 

1.  the corresponding characters may differ: KAT  CAT
2.  P is missing a character from T: CAAT  CAT
3.  T is missing a character from P: CT  CAT 

Approximate Matching is important in genetics as well as spell checking. 

Listen To Part 13-6 

A 3-Approximate Match

A match with one of each of three edit operations is: 

P = unescessaraly 

T = unnecessarily 

Finding such a matching seems like a hard problem because we must figure out where you add blanks, 
but we can solve it with dynamic programming. 

D[i, j] = the minimum number of differences between  and the segment of T ending at j. 

file:///E|/LEC/LECTUR16/NODE12.HTM (7 of 9) [19/1/2003 1:34:58]



Lecture 12 - introduction to dynamic programming

D[i, j] is the minimum of the three possible ways to extend smaller strings: 

1.  If  then D[i-1, j-1] else D[i-1, j-1]+1 (corresponding characters do or do not match)
2.  D[i-1, j]+1 (extra character in text - we do not advance the pattern pointer).
3.  D[i, j-1]+1 (character in pattern which is not in text). 

Once you accept the recurrence it is easy. 

To fill each cell, we need only consider three other cells, not O(n) as in other examples. This means we 
need only store two rows of the table. The total time is O(mn). 

Listen To Part 13-10 

Boundary conditions for string matching

What should the value of D[0,i] be, corresponding to the cost of matching the first i characters of the text 
with none of the pattern?   

It depends. Are we doing string matching in the text or substring matching? 

●     If you want to match all of the pattern against all of the text, this meant that would have to delete 
the first i characters of the pattern, so D[0,i] = i to pay the cost of the deletions.

●     if we want to find the place in the text where the pattern occurs? We do not want to pay more of a 
cost if the pattern occurs far into the text than near the front, so it is important that starting cost be 
equal for all positions. In this case, D[0,i] = 0, since we pay no cost for deleting the first i 
characters of the text. 

In both cases, D[i,0] = i, since we cannot excuse deleting the first i characters of the pattern without cost. 

Listen To Part 13-9 

What do we return?

If we want the cost of comparing all of the pattern against all of the text, such as comparing the spelling 
of two words, all we are interested in is D[n,m]. 

But what if we want the cheapest match between the pattern anywhere in the text? Assuming the 
initialization for substring matching, we seek the cheapest matching of the full pattern ending anywhere 
in the text. This means the cost equals  . 
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This only gives the cost of the optimal matching. The actual alignment - what got matched, substituted, 
and deleted - can be reconstructed from the pattern/text and table without an auxiliary storage, once we 
have identified the cell with the lowest cost. 

Listen To Part 13-11 

How much space do we need?

  

Do we need to keep all O(mn) cells, since if we evaluate the recurrence filling in the columns of the 
matrix from left to right, we will never need more than two columns of cells to do what we need. Thus 
O(m) space is sufficient to evaluate the recurrence without changing the time complexity at all. 

Unfortunately, because we won't have the full matrix we cannot reconstruct the alignment, as above. 

Saving space in dynamic programming is very important. Since memory on any computer is limited, 
O(nm) space is more of a bottleneck than O(nm) time. 

Fortunately, there is a clever divide-and-conquer algorithm which computes the actual alignment in 
O(nm) time and O(m) space. 

       
Next: Lecture 13 - dynamic Up: No Title Previous: Lecture 11 - backtracking 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 14 - data Up: No Title Previous: Lecture 12 - introduction 

Lecture 13 - dynamic programming 
applications
Listen To Part 13-1 

16.3-5 Give an  algorithm to find the longest montonically increasing sequence in a sequence of n 
numbers.    

Build an example first: (5, 2, 8, 7, 1, 6, 4) 

Ask yourself what would you like to know about the first n-1 elements to tell you the answer for the 
entire sequence? 

1.  The length of the longest sequence in  . (seems obvious)
2.  The length of the longest sequence  will extend! (not as obvious - this is the idea!) 

Let  be the length of the longest sequence ending with the ith character: 

sequence 5 2 8 7 3 1 6 4 

 1 1 2 2 2 1 3 3 

How do we compute i? 

 

 

To find the longest sequence - we know it ends somewhere, so Length =  

Listen To Part 14-5 

The Principle of Optimality
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To use dynamic programming, the problem must observe the principle of optimality, that whatever the 
initial state is, remaining decisions must be optimal with regard the state following from the first 
decision.   

Combinatorial problems may have this property but may use too much memory/time to be efficient. 

Example: The Traveling Salesman Problem

Let  be the cost of the optimal tour for i to 1 that goes thru each of the other cities once   

 

 

Here there can be any subset of  instead of any subinterval - hence exponential. 

Still, with other ideas (some type of pruning or best-first search) it can be effective for combinatorial 
search. 

Listen To Part 14-6 

When can you use Dynamic Programming?

Dynamic programming computes recurrences efficiently by storing partial results. Thus dynamic 
programming can only be efficient when there are not too many partial results to compute!   

There are n! permutations of an n-element set - we cannot use dynamic programming to store the best 
solution for each subpermutation. There are  subsets of an n-element set - we cannot use dynamic 
programming to store the best solution for each. 

However, there are only n(n-1)/2 continguous substrings of a string, each described by a starting and 
ending point, so we can use it for string problems. 

There are only n(n-1)/2 possible subtrees of a binary search tree, each described by a maximum and 
minimum key, so we can use it for optimizing binary search trees. 

Dynamic programming works best on objects which are linearly ordered and cannot be rearranged - 
characters in a string, matrices in a chain, points around the boundary of a polygon, the left-to-right 
order of leaves in a search tree. 
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Whenever your objects are ordered in a left-to-right way, you should smell dynamic programming! 

Listen To Part 14-7 

Minimum Length Triangulation

A triangulation of a polygon is a set of non-intersecting diagonals which partitions the polygon into 
diagonals.   

 
The length of a triangulation is the sum of the diagonal lengths. 

We seek to find the minimum length triangulation. For a convex polygon, or part thereof: 

 
Once we identify the correct connecting vertex, the polygon is partitioned into two smaller pieces, both 
of which must be triangulated optimally! 

 

Evaluation proceeds as in the matrix multiplication example -  values of t, each of which takes O(j-i) 

time if we evaluate the sections in order of increasing size. 
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What if there are points in the interior of the polygon? 

Listen To Part 14-8 

Dynamic Programming and High Density Bar Codes

Symbol Technology has developed a new design for bar codes, PDF-417 that has a capacity of several 
hundred bytes. What is the best way to encode text for this design?   

 
They developed a complicated mode-switching data compression scheme. 
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Latch commands permanently put you in a different mode. Shift commands temporarily put you in a 
different mode. 

Listen To Part 14-9 

Originally, Symbol used a greedy algorithm to encode a string, making local decisions only. We realized 
that for any prefix, you want an optimal encoding which might leave you in every possible mode. 

 
 the cost of encoding the ith character and ending up in node j). 

Our simple dynamic programming algorithm improved to capacity of PDF-417 by an average of  ! 

Listen To Part 14-10 

Dynamic Programming and Morphing

Morphing is the problem of creating a smooth series of intermediate images given a starting and ending 
image.    
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The key problem is establishing a correspondence between features in the two images. You want to 
morph an eye to an eye, not an ear to an ear. 

We can do this matching on a line-by-line basis: 

 
This should sound like string matching, but with a different set of operations: 

●     Full run match: We may match run i on top to run j on bottom for a cost which is a function of the 
difference in the lengths of the two runs and their positions.

●     Merging runs: We may match a string of consecutive runs on top to a run on bottom. The cost 
will be a function of the number of runs, their relative positions, and lengths. 

Listen To Part 14-11
●     Splitting runs: We may match a big run on top to a string of consecutive runs on the bottom. This 

is just the converse of the merge. Again, the cost will be a function of the number of runs, their 
relative positions, and lengths. 

This algorithm was incorported into a morphing system, with the following results: 
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Next: Lecture 14 - data Up: No Title Previous: Lecture 12 - introduction 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 15 - DFS Up: No Title Previous: Lecture 13 - dynamic 

Lecture 14 - data structures for graphs
Listen To Part 14-1 

Problem Solving Techniques

Most important: make sure you understand exactly what the question is asking - if not, you have no hope 
of answer it!!   

Never be afraid to ask for another explanation of a problem until it is clear. 

Play around with the problem by constructing examples to get insight into it. 

Ask yourself questions. Does the first idea which comes into my head work? If not, why not? 

Am I using all information that I am given about the problem? 

Read Polya's book How to Solve it. 

Listen To Part 14-2 

16-1: The Euclidean traveling-salesman problem is the problem of determining the shortest closed tour 
that connects a given set of n points in the plane.     

Bentley suggested simplifying the problem by restricting attention to bitonic tours, that is tours which 
start at the leftmost point, go strictly left to right to the rightmost point, and then go strictly right back to 
the starting point. 

file:///E|/LEC/LECTUR16/NODE14.HTM (1 of 12) [19/1/2003 1:35:05]



Lecture 14 - data structures for graphs

 
Describe an  algorithm for finding the optimal bitonic tour. You may assume that no two points 
have the same x-coordinate. (Hint: scan left to right, maintaining optimal possibilities for the two parts 
of the tour.) 

Make sure you understand what a bitonic tour is, or else it is hopeless. 

First of all, play with the problem. Why isn't it trivial? 

Listen To Part 14-3 

 
Am I using all the information? 

Why will they let us assume that no two x-coordinates are the same? What does the hint mean? What 
happens if I scan from left to right? 

If we scan from left to right, we get an open tour which uses all points to the left of our scan line.   
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In the optimal tour, the kth point is connected to exactly one point to the left of k.  Once I decide 
which point that is, say x. I need the optimal partial tour where the two endpoints are x and k-1, because 
if it isn't optimal I could come up with a better one. 

Listen To Part 14-4 

Hey, I have got a recurrence! And look, the two parameters which describe my optimal tour are the two 
endpoints. 

Let c[k,n] be the optimal cost partial tour where the two endpoints are k<n. 

 (when k < n-1) 

 

c[0, 1]=d[0, 1] 

 
c[n-1, n] takes O(n) to update, c[k, n] k<n-1 takes O(1) to update. Total time is  . 

But this doesn't quite give the tour, but just an open tour. We simply must figure where the last edge to n 
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must go. 

 

Listen To Part 15-1 

Graphs

A graph G consists of a set of vertices V together with a set E of vertex pairs or edges.     

Graphs are important because any binary relation is a graph, so graphs can be used to represent 
essentially any relationship. 

Example: A network of roads, with cities as vertices and roads between cities as edges. 

 
Example: An electronic circuit, with junctions as vertices as components as edges. 

 
To understand many problems, we must think of them in terms of graphs! 

Listen To Part 15-2 

The Friendship Graph

Consider a graph where the vertices are people, and there is an edge between two people if and only if 
they are friends.   
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This graph is well-defined on any set of people: SUNY SB, New York, or the world. 

What questions might we ask about the friendship graph? 

●     If I am your friend, does that mean you are my friend? 

A graph is undirected if (x,y) implies (y,x). Otherwise the graph is directed. The ``heard-of'' graph 
is directed since countless famous people have never heard of me! The ``had-sex-with'' graph is 
presumably undirected, since it requires a partner.   

●     Am I my own friend?    

An edge of the form (x,x) is said to be a loop. If x is y's friend several times over, that could be 
modeled using multiedges, multiple edges between the same pair of vertices. A graph is said to be 
simple if it contains no loops and multiple edges. 

Listen To Part 15-3
●     Am I linked by some chain of friends to the President? 

A path is a sequence of edges connecting two vertices. Since Mel Brooks is my father's-sister's-
husband's cousin, there is a path between me and him!    

 
●     How close is my link to the President? 

If I were trying to impress you with how tight I am with Mel Brooks, I would be much better off 
saying that Uncle Lenny knows him than to go into the details of how connected I am to Uncle 
Lenny. Thus we are often interested in the shortest path between two nodes.  

●     Is there a path of friends between any two people? 

A graph is connected if there is a path between any two vertices. A directed graph is strongly 
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connected if there is a directed path between any two vertices.   
●     Who has the most friends? 

The degree of a vertex is the number of edges adjacent to it.   

Listen To Part 15-4 

●     What is the largest clique?   

A social clique is a group of mutual friends who all hang around together. A graph theoretic 
clique is a complete subgraph, where each vertex pair has an edge between them. Cliques are the 
densest possible subgraphs. Within the friendship graph, we would expect that large cliques 
correspond to workplaces, neighborhoods, religious organizations, schools, and the like.

●     How long will it take for my gossip to get back to me? 

A cycle is a path where the last vertex is adjacent to the first. A cycle in which no vertex repeats 
(such as 1-2-3-1 verus 1-2-3-2-1) is said to be simple. The shortest cycle in the graph defines its 
girth, while a simple cycle which passes through each vertex is said to be a Hamiltonian cycle.      

Listen To Part 15-5 

Data Structures for Graphs

There are two main data structures used to represent graphs. 

Adjacency Matrices

An adjacency matrix is an  matrix, where M[i,j] = 0 iff there is no edge from vertex i to vertex j   

 
It takes  time to test if (i,j) is in a graph represented by an adjacency matrix. 

Can we save space if (1) the graph is undirected? (2) if the graph is sparse? 
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Listen To Part 15-6 

Adjacency Lists

An adjacency list consists of a  array of pointers, where the ith element points to a linked list of the 
edges incident on vertex i.   

  
To test if edge (i,j) is in the graph, we search the ith list for j, which takes  , where  is the degree of 
the ith vertex. 

Note that  can be much less than n when the graph is sparse. If necessary, the two copies of each edge 
can be linked by a pointer to facilitate deletions. 

Listen To Part 15-7 

Tradeoffs Between Adjacency Lists and Adjacency Matrices

Comparison Winner 

Faster to test if (x, y) exists? matrices

Faster to find vertex degree? lists

Less memory on small graphs? lists (m+n) vs.  

Less memory on big graphs? matrices (small win) 

Edge insertion or deletion? matrices O(1) 

Faster to traverse the graph? lists m+n vs.  

Better for most problems? lists 

Both representations are very useful and have different properties, although adjacency lists are probably 
better for most problems. 

Listen To Part 16-2 
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Traversing a Graph

One of the most fundamental graph problems is to traverse every edge and vertex in a graph. 
Applications include:   

●     Printing out the contents of each edge and vertex.
●     Counting the number of edges.
●     Identifying connected components of a graph. 

For efficiency, we must make sure we visit each edge at most twice. 

For correctness, we must do the traversal in a systematic way so that we don't miss anything. 

Since a maze is just a graph, such an algorithm must be powerful enough to enable us to get out of an 
arbitrary maze.   

Listen To Part 16-3 

Marking Vertices

The idea in graph traversal is that we must mark each vertex when we first visit it, and keep track of what 
have not yet completely explored. 

For each vertex, we can maintain two flags: 

●     discovered - have we ever encountered this vertex before?
●     completely-explored - have we finished exploring this vertex yet? 

We must also maintain a structure containing all the vertices we have discovered but not yet completely 
explored. 

Initially, only a single start vertex is considered to be discovered. 

To completely explore a vertex, we look at each edge going out of it. For each edge which goes to an 
undiscovered vertex, we mark it discovered and add it to the list of work to do. 

Note that regardless of what order we fetch the next vertex to explore, each edge is considered exactly 
twice, when each of its endpoints are explored. 

Listen To Part 16-4 
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Correctness of Graph Traversal

Every edge and vertex in the connected component is eventually visited. 

Suppose not, ie. there exists a vertex which was unvisited whose neighbor was visited. This neighbor will 
eventually be explored so we would visit it: 

 
Listen To Part 16-5 

Traversal Orders

The order we explore the vertices depends upon what kind of data structure is used: 

●     Queue - by storing the vertices in a first-in, first out (FIFO) queue, we explore the oldest 
unexplored vertices first. Thus our explorations radiate out slowly from the starting vertex, 
defining a so-called breadth-first search.   

●     Stack - by storing the vertices in a last-in, first-out (LIFO) stack, we explore the vertices by 
lurching along a path, constantly visiting a new neighbor if one is available, and backing up only 
if we are surrounded by previously discovered vertices. Thus our explorations quickly wander 
away from our starting point, defining a so-called depth-first search.    

The three possible colors of each node reflect if it is unvisited (white), visited but unexplored (grey) or 
completely explored (black). 

Listen To Part 16-6 

Breadth-First Search

  

BFS(G,s)

for each vertex    do
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                 color[u] = white

                   , ie. the distance from 

                 p[u] = NIL, ie. the parent in the BFS tree

color[u] = grey

d[] = 0

p[] = NIL

  

while    do

                 u = head[Q]

                 for each    do

                                 if color[v] = white then

                                                 color[v] = gray

                                                 d[v] = d[u] + 1

                                                 p[v] = u
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                                                 enqueue[Q,v]

                                 dequeue[Q]

                                 color[u] = black 

Listen To Part 16-8 

Depth-First Search

DFS has a neat recursive implementation which eliminates the need to explicitly use a stack.   

Discovery and final times are sometimes a convenience to maintain. 

DFS(G)

for each vertex    do

                 color[u] = white

                 parent[u] = nil

time = 0

for each vertex    do

                 if color[u] = white then DFS-VISIT[u]

Initialize each vertex in the main routine, then do a search from each connected component. BFS must 
also start from a vertex in each component to completely visit the graph.   
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DFS-VISIT[u]

color[u] = grey (*u had been white/undiscovered*)

discover[u] = time

time = time+1

for each    do

                 if color[v] = white then

                                 parent[v] = u

                                 DFS-VISIT(v)

color[u] = black (*now finished with u*)

finish[u] = time

time = time+1

       
Next: Lecture 15 - DFS Up: No Title Previous: Lecture 13 - dynamic 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 16 - applications Up: No Title Previous: Lecture 14 - data 

Lecture 15 - DFS and BFS
Listen To Part 15-8 

23.1-5 - The square of a directed graph G=(V,E) is the graph  such that  iff for 

some  , both  and  ; ie. there is a path of exactly two edges.   

Give efficient algorithms for both adjacency lists and matricies. 

Given an adjacency matrix, we can check in constant time whether a given edge exists. To discover 
whether there is an edge  , for each possible intermediate vertex v we can check whether (u,v) 
and (v,w) exist in O(1). 

Since there are at most n intermediate vertices to check, and  pairs of vertices to ask about, this takes 
 time. 

With adjacency lists, we have a list of all the edges in the graph. For a given edge (u,v), we can run 
through all the edges from v in O(n) time, and fill the results into an adjacency matrix of  , which is 
initially empty. 

It takes O(mn) to construct the edges, and  to initialize and read the adjacency matrix, a total of 
O((n+m)n). Since  unless the graph is disconnected, this is usually simplified to O(mn), and is 
faster than the previous algorithm on sparse graphs.   

Why is it called the square of a graph? Because the square of the adjacency matrix is the adjacency 
matrix of the square! This provides a theoretically faster algorithm. 

Listen To Part 16-10 

BFS Trees

If BFS is performed on a connected, undirected graph, a tree is defined by the edges involved with the 
discovery of new nodes:   
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This tree defines a shortest path from the root to every other node in the tree. 

The proof is by induction on the length of the shortest path from the root: 

●     Length = 1 First step of BFS explores all neighbors of the root. In an unweighted graph one edge 
must be the shortest path to any node.

●     Length = s Assume the BFS tree has the shortest paths up to length s-1. Any node at a distance of 
will first be discovered by expanding a distance s-1 node. 

Listen To Part 16-11 

The key idea about DFS

A depth-first search of a graph organizes the edges of the graph in a precise way.   

In a DFS of an undirected graph, we assign a direction to each edge, from the vertex which discover it: 

 
In a DFS of a directed graph, every edge is either a tree edge or a black edge. 

file:///E|/LEC/LECTUR16/NODE15.HTM (2 of 8) [19/1/2003 1:35:08]



Lecture 15 - DFS and BFS

In a DFS of a directed graph, no cross edge goes to a higher numbered or rightward vertex. Thus, no 
edge from 4 to 5 is possible: 

 
Listen To Part 16-12 

Edge Classification for DFS

What about the other edges in the graph? Where can they go on a search? 

Every edge is either: 

 
On any particular DFS or BFS of a directed or undirected graph, each edge gets classified as one of the 
above. 

Listen To Part 17-3 

DFS Trees

The reason DFS is so important is that it defines a very nice ordering to the edges of the graph. 
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In a DFS of an undirected graph, every edge is either a tree edge or a back edge.   

Why? Suppose we have a forward edge. We would have encountered (4,1) when expanding 4, so this is a 
back edge.   

 
Suppose we have a cross-edge   

 

Paths in search trees

Where is the shortest path in a DFS? 
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It could use multiple back and tree edges, where BFS only uses tree edges. 

DFS gives a better approximation of the longest path than BFS. 

 
Listen To Part 17-4 

Topological Sorting

A directed, acyclic graph is a directed graph with no directed cycles.     
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A topological sort of a graph is an ordering on the vertices so that all edges go from left to right. 

Only a DAG can have a topological sort. 

 
Any DAG has (at least one) topological sort. 

Listen To Part 17-5 

Applications of Topological Sorting

Topological sorting is often useful in scheduling jobs in their proper sequence. In general, we can use it 
to order things given constraints, such as a set of left-right constraints on the positions of objects. 

Example: Dressing schedule from CLR. 

Example: Identifying errors in DNA fragment assembly.   

Certain fragments are constrained to be to the left or right of other fragments, unless there are errors. 

  
Solution - build a DAG representing all the left-right constraints. Any topological sort of this DAG is a 
consistant ordering. If there are cycles, there must be errors. 

A DFS can test if a graph is a DAG (it is iff there are no back edges - forward edges are allowed for DFS 
on directed graph). 

Listen To Part 17-6 
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Algorithm

Theorem: Arranging vertices in decreasing order of DFS finishing time gives a topological sort of a 
DAG. 

Proof: Consider any directed edge u,v, when we encounter it during the exploration of vertex u: 

●     If v is white - we then start a DFS of v before we continue with u.
●     If v is grey - then u, v is a back edge, which cannot happen in a DAG.
●     If v is black - we have already finished with v, so f[v]<f[u]. 

Thus we can do topological sorting in O(n+m) time. 

Listen To Part 17-8 

Articulation Vertices

Suppose you are a terrorist, seeking to disrupt the telephone network. Which station do you blow up?     

 
An articulation vertex is a vertex of a connected graph whose deletion disconnects the graph. 

Clearly connectivity is an important concern in the design of any network.   

Articulation vertices can be found in O(n(m+n)) - just delete each vertex to do a DFS on the remaining 
graph to see if it is connected. 

Listen To Part 17-9 

A Faster O(n+m) DFS Algorithm

Theorem: In a DFS tree, a vertex v (other than the root) is an articulation vertex iff v is not a leaf and 
some subtree of v has no back edge incident until a proper ancestor of v. 
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Proof: (1) v is an articulation vertex  v cannot be a leaf. 

Why? Deleting v must seperate a pair of vertices x and y. Because of the other tree edges, this cannot 
happen unless y is a decendant of v. 

Listen To Part 17-10 

 
v separating x,y implies there is no back edge in the subtree of y to a proper ancestor of v. 

(2) Conditions  v is a non-root articulation vertex. v separates any ancestor of v from any decendant in 
the appropriate subtree. 

Actually implementing this test in O(n+m) is tricky - but believable once you accept this theorem. 

       
Next: Lecture 16 - applications Up: No Title Previous: Lecture 14 - data 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 17 - minimum Up: No Title Previous: Lecture 15 - DFS 

Lecture 16 - applications of DFS and BFS
Listen To Part 16-1 

23.2-6 Give an efficient algorithm to test if a graph is bipartite. 

Bipartite means the vertices can be colored red or black such that no edge links vertices of the same 
color.    

 
Suppose we color a vertex red - what color must its neighbors be? black! 

We can augment either BFS or DFS when we first discover a new vertex, color it opposited its parents, 
and for each other edge, check it doesn't link two vertices of the same color. The first vertex in any 
connected component can be red or black! 

Bipartite graphs arise in many situations, and special algorithms are often available for them. What is the 
interpretation of a bipartite ``had-sex-with'' graph? 

How would you break people into two groups such that no group contains a pair of people who hate each 
other? 

Listen To Part 17-1 

23.4-3 Give an O(n) algorithm to test whether an undirected graph contains a cycle.   
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If you do a DFS, you have a cycle iff you have a back edge. This gives an O(n+m) algorithm. But where 
does the m go? If the graph contains more than n-1 edges, it must contain a cycle! Thus we never need 
look at more than n edges if we are given an adjacency list representation! 

Listen To Part 17-7 

23.4-5 Show that you can topologically sort in O(n+m) by repeatedly deleting vertices of degree 0.   

The correctness of this algorithm follows since in a DAG there must always be a vertex of indegree 0, 
and such a vertex can be first in topological sort. Suppose each vertex is initialized with its indegree (do 
DFS on G to get this). Deleting a vertex takes O(degree v). Reduce the indegree of each efficient vertex - 
and keep a list of degree-0 vertices to delete next. 

Time:  

Listen To Part 17-12 

Strongly Connected Components

A directed graph is strongly connected iff there is a directed path between any two vertices.   

The strongly connected components of a graph is a partition of the vertices into subsets (maximal) such 
that each subset is strongly connected. 

 
Observe that no vertex can be in two maximal components, so it is a partition. 
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There is an amazingly elegant, linear time algorithm to find the strongly connected components of a 
directed graph, using DFS. 

Listen To Part 17-13 

●     Call DFS(  ) to compute finishing times for each vertex.
●     Compute the transpose graph  (reverse all edges in G)
●     Call DFS(  ), but order the vertices in decreasing order of finish time.
●     The vertices of each DFS tree in the forest of DFS(  ) is a strongly connected component. 

This algorithm takes O(n+m), but why does it compute strongly connected components? 

Lemma: If two vertices are in the same strong component, no path between them ever leaves the 
component. 

 
Lemma: In any DFS forest, all vertices in the same strongly connected component are in the same tree. 

Proof: Consider the first vertex v in the component to be discovered. Everything in the component is 
reachable from it, so we will traverse it before finishing with v. 

Listen To Part 17-14 

What does DFS(  , v) Do?

It tells you what vertices have directed paths to v, while DFS(  ,v) tells what vertices have directed paths 
from v. But why must any vertex in the search tree of DFS(  , v) also have a path from u? 
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Because there is no edge from any previous DFS tree into the last tree!! Because we ordered the vertices 
by decreasing order of finish time, we can peel off the strongly connected components from right to left 
just be doing a DFS(  ). 

Listen To Part 17-16 

Example of Strong Components Algorithm

 
9, 10, 11, 12 can reach 9, oldest remaining finished is 5. 

5, 6, 8 can reach 5, oldest remaining is 7. 

7 can reach 7, oldest remaining is 1. 

1, 2, 3 can reach 1, oldest remaining is 4. 

4 can reach 4. 
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Next: Lecture 18 - shortest Up: No Title Previous: Lecture 16 - applications 

Lecture 17 - minimum spanning trees
Listen To Part 19-4 

24.2-6 Describe an efficent algorithm that, given an undirected graph G, determines a spanning tree G 
whose largest edge weight is minimum over all spanning trees of G.   

First, make sure you understand the question 

 
``Hey, doesn't Kruskal's algorithm do something like this.''   

Certainly! Since Krushal's algorithm considers the edges in order of increasing weight, and stops the 
moment these edges form a connected graph, the tree it gives must minimize the edge weight. 

``Hey, but then why doesn't Prim's algorithm also work?'' 

It gives the same thing as Kruskal's algorithm, so it must be true that any minimum spanning tree 
minimizes the maximum edge weight! 

Proof: Give me a MST and consider the largest edge weight, 

Listen To Part 19-5 
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Deleting it disconnects the MST. If there was a lower edge connects the two subtrees, I didn't have a 
MST! 

Listen To Part 18-2 

Minimum Spanning Trees

A tree is a connected graph with no cycles. A spanning tree is a subgraph of G which has the same set of 
vertices of G and is a tree.   

A minimum spanning tree of a weighted graph G is the spanning tree of G whose edges sum to minimum 
weight.   

There can be more than one minimum spanning tree in a graph  consider a graph with identical weight 
edges. 

The minimum spanning tree problem has a long history - the first algorithm dates back at least to 1926!. 

Minimum spanning tree is always taught in algorithm courses since (1) it arises in many applications, (2) 
it is an important example where greedy algorithms always give the optimal answer, and (3) Clever data 
structures are necessary to make it work. 

In greedy algorithms, we make the decision of what next to do by selecting the best local option from all 
available choices - without regard to the global structure. 

Listen To Part 18-3 

Applications of Minimum Spanning Trees

Minimum spanning trees are useful in constructing networks, by describing the way to connect a set of 
sites using the smallest total amount of wire. Much of the work on minimum spanning (and related 
Steiner) trees has been conducted by the phone company.   

Minimum spanning trees provide a reasonable way for clustering points in space into natural groups.   

When the cities are points in the Euclidean plane, the minimum spanning tree provides a good heuristic 
for traveling salesman problems. The optimum traveling salesman tour is at most twice the length of the 
minimum spanning tree.   

file:///E|/LEC/LECTUR16/NODE17.HTM (2 of 11) [19/1/2003 1:35:14]



Lecture 17 - minimum spanning trees

 
Listen To Part 18-4 

Prim's Algorithm

If G is connected, every vertex will appear in the minimum spanning tree. If not, we can talk about a 
minimum spanning forest.   

Prim's algorithm starts from one vertex and grows the rest of the tree an edge at a time. 

As a greedy algorithm, which edge should we pick? The cheapest edge with which can grow the tree by 
one vertex without creating a cycle. 

During execution we will label each vertex as either in the tree, fringe - meaning there exists an edge 
from a tree vertex, or unseen - meaning the vertex is more than one edge away. 

Select an arbitrary vertex to start.

While (there are fringe vertices)

                 select minimum weight edge between tree and fringe

                 add the selected edge and vertex to the tree

Clearly this creates a spanning tree, since no cycle can be introduced via edges between tree and fringe 
vertices, but is it minimum? 
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Listen To Part 18-5 

Why is Prim's algorithm correct?

Don't be scared by the proof - the reason is really quite basic: 

Theorem: Let G be a connected, weighted graph and let  be a subset of the edges in a MST 
 . Let V' be the vertices incident with edges in E'. If (x,y) is an edge of minimum weight such 

that  and y is not in V', then  is a subset of a minimum spanning tree. 

Proof: If the edge is in T, this is trivial. 

Suppose (x,y) is not in T Then there must be a path in T from x to y since T is connected. If (v,w) is the 
first edge on this path with one edge in V', if we delete it and replace it with (x, y) we get a spanning tree. 

This tree must have smaller weight than T, since W(v,w)>W(x,y). Thus T could not have been the MST. 

 
Prim's Algorithm is correct! 

Thus we cannot go wrong with the greedy strategy the way we could with the traveling salesman 
problem. 

Listen To Part 18-6 

But how fast is Prim's?

That depends on what data structures are used. In the simplest implementation, we can simply mark each 
vertex as tree and non-tree and search always from scratch: 
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Select an arbitrary vertex to start.

While (there are non-tree vertices)

                 select minimum weight edge between tree and fringe

                 add the selected edge and vertex to the tree

This can be done in O(n m) time, by doing a DFS or BFS to loop through all edges, with a constant time 
test per edge, and a total of n iterations. 

Can we do faster? If so, we need to be able to identify fringe vertices and the minimum cost edge 
associated with it, fast. We will augment an adjacency list with fields maintaining fringe information. 

Vertex: 

fringelink pointer to next vertex in fringe list. 
fringe weight cheapest edge linking v to l. 
parent other vertex with v having fringeweight. 
status intree, fringe, unseen. 
adjacency list the list of edges. 

Listen To Part 18-8 

Finding the minimum weight fringe-edge takes O(n) time - just bump through fringe list. 

After adding a vertex to the tree, running through its adjacency list to update the cost of adding fringe 
vertices (there may be a cheaper way through the new vertex) can be done in O(n) time. 

Total time is  . 

Listen To Part 18-9 

Kruskal's Algorithm
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Since an easy lower bound argument shows that every edge must be looked at to find the minimum 
spanning tree, and the number of edges  , Prim's algorithm is optimal in the worst case. Is that 
all she wrote?   

The complexity of Prim's algorithm is independent of the number of edges. Can we do better with sparse 
graphs? Yes!   

Kruskal's algorithm is also greedy. It repeatedly adds the smallest edge to the spanning tree that does not 
create a cycle. Obviously, this gives a spanning tree, but is it minimal? 

Listen To Part 18-10 

Why is Kruskal's algorithm correct?

Theorem: Let G be a weighted graph and let  . If E' is contained in a MST T and e is the smallest 

edge in E-E' which does not create a cycle,  . 

Proof: As before, suppose e is not in T. Adding e to T makes a cycle. Deleting another edge from this 
cycle leaves a connected graph, and if it is one from E-E' the cost of this tree goes down. Since such an 
edge exists, T could not be a MST. 

 
Listen To Part 18-11 

How fast is Kruskal's algorithm?

What is the simplest implementation? 

●     Sort the m edges in  time.
●     For each edge in order, test whether it creates a cycle the forest we have thus far built - if so 

discard, else add to forest. With a BFS/DFS, this can be done in O(n) time (since the tree has at 
most n edges). 
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The total time is O(mn), but can we do better? 

Kruskal's algorithm builds up connected components. Any edge where both vertices are in the same 
connected component create a cycle. Thus if we can maintain which vertices are in which component 
fast, we do not have test for cycles! 

Put the edges in a heap

count=0

while (count < n-1) do

                 get next edge (v,w)

                 if (component (v)    component(w))

                                 add to T

                                 component (v)=component(w)

If we can test components in  , we can find the MST in  ! 

Question: Is  better than  ? 

Listen To Part 19-6 

Union-Find Programs

Our analysis that Kruskal's MST algorithm is  requires a fast way to test whether an edge links 
two vertices in the same connected component.   

Thus we need a data structure for maintaining sets which can test if two elements are in the same and 
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merge two sets together. These can be implemented by UNION and FIND operations: 

Is   

                 t= Find  

                 u= Find  

                 Return (Is t=u?)

Make   

                   

                   

                 Union(t, u)

Find returns the name of the set and Union sets the members of t to have the same name as u. 

We are interested in minimizing the time it takes to execute any sequence of unions and finds. 

A simple implementation is to represent each set as a tree, with pointers from a node to its parent. Each 
element is contained in a node, and the name of the set is the key at the root: 

Listen To Part 19-7 
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In the worst case, these structures can be very unbalanced: 

For i = 1 to n/2 do

                 UNION(i,i+1)

For i = 1 to n/2 do

                 FIND(1)

We want the limit the height of our trees which are effected by UNIONs. When we union, we can make 
the tree with fewer nodes the child. 

Since the number of nodes is related to the height, the height of the final tree will increase only if both 
subtrees are of equal height! 

Lemma: If Union(t,v) attaches the root of v as a subtree of t iff the number of nodes in t is greater than or 
equal to the number in v, after any sequence of unions, any tree with h/4 nodes has height at most  . 

Listen To Part 19-8 

Proof: By induction on the number of nodes k, k=1 has height 0. 
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Assume true to k-1 nodes. Let  be the height of the tree  

 
If  then  

If  , then  . 

 

Listen To Part 19-9 

Can we do better?

We can do unions and finds in  , good enough for Kruskal's algorithm. But can we do better? 

The ideal Union-Find tree has depth 1: 

 
On a find, if we are going down a path anyway, why not change the pointers to point to the root? 

 
This path compression will let us do better than  for n union-finds.   
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O(n)? Not quite ... Difficult analysis shows that it takes  time, where  is the inverse 
Ackerman function and  number of atoms in the universe)=5. 

       
Next: Lecture 18 - shortest Up: No Title Previous: Lecture 16 - applications 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Lecture 18 - shortest path algorthms
Listen To Part 20-7 

25.1-1 Give two more shortest path trees for the following graph: 

 

Run through Dijkstra's algorithm, and see where there are ties which can be arbitrarily selected.   

There are two choices for how to get to the third vertex x, both of which cost 5. 

There are two choices for how to get to vertex v, both of which cost 9. 

Listen To Part 19-1 

Lessons from the Backtracking contest

●     As predicted, the speed difference between the fastest programs and average program dwarfed the 
difference between a supercomputer and a microcomputer. Algorithms have a bigger impact on 
performance than hardware!  

●     Different algorithms perform differently on different data. Thus even hard problems may be 
tractable on the kind of data you might be interested in.

●     None of the programs could efficiently handle all instances for  . We will find out why after 
the midterm, when we discuss NP-completeness.

●     Many of the fastest programs were very short and simple (KISS). My bet is that many of the 
enhancements students built into them actually showed them down! This is where profiling can 
come in handy.
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●     The fast programs were often recursive. 

Listen To Part 19-3 

Winning Optimizations

●     Finding a good initial solution via randomization or heuristic improvement helped by establishing 
a good upper bound, to constrict search.  

●     Using half the largest vertex degree as a lower bound similarly constricted search.
●     Pruning a partial permutation the instant an edge was  the target made the difference in going 

from (say) 8 to 18.
●     Positioning the partial permutation vertices separated by b instead of 1 meant significantly earlier 

cutoffs, since any edge does the job.
●     Mirror symmetry can only save a factor of 2, but perhaps more could follow from partitioning the 

vertices into equivalence classes by the same neighborhood. 

Listen To Part 19-10 

Shortest Paths

Finding the shortest path between two nodes in a graph arises in many different applications:   

●     Transportation problems - finding the cheapest way to travel between two locations.  
●     Motion planning - what is the most natural way for a cartoon character to move about a simulated 

environment.  
●     Communications problems - how look will it take for a message to get between two places? 

Which two locations are furthest apart, ie. what is the diameter of the network.    

Listen To Part 20-1 

Shortest Paths and Sentence Disambiguation

In our work on reconstructing text typed on an (overloaded) telephone keypad, we had to select which of 
many possible interpretations was most likely.    
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We constructed a graph where the vertices were the possible words/positions in the sentence, with an 
edge between possible neighboring words. 

Listen To Part 20-2 
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The weight of each edge is a function of the probability that these two words will be next to each other in 
a sentence. `hive me' would be less than `give me', for example. 

The final system worked extremely well - identifying over 99% of characters correctly based on 
grammatical and statistical constraints. 

Dynamic programming (the Viterbi algorithm) can be used on the sentences to obtain the same results, 
by finding the shortest paths in the underlying DAG.   

Listen To Part 20-3 

Finding Shortest Paths

In an unweighted graph, the cost of a path is just the number of edges on the shortest path, which can be 
found in O(n+m) time via breadth-first search.   

In a weighted graph, the weight of a path between two vertices is the sum of the weights of the edges on 
a path. 

BFS will not work on weighted graphs because sometimes visiting more edges can lead to shorter 
distance, ie. 1+1+1+1+1+1+1 < 10. 

Note that there can be an exponential number of shortest paths between two nodes - so we cannot report 
all shortest paths efficiently. 

Note that negative cost cycles render the problem of finding the shortest path meaningless, since you can 
always loop around the negative cost cycle more to reduce the cost of the path. 
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Thus in our discussions, we will assume that all edge weights are positive. Other algorithms deal 
correctly with negative cost edges. 

Minimum spanning trees are uneffected by negative cost edges. 

Listen To Part 20-4 

Dijkstra's Algorithm

We can use Dijkstra's algorithm to find the shortest path between any two vertices and t in G.   

The principle behind Dijkstra's algorithm is that if  is the shortest path from to t, then  
had better be the shortest path from to x. 

This suggests a dynamic programming-like strategy, where we store the distance from to all nearby 
nodes, and use them to find the shortest path to more distant nodes. 

The shortest path from to , d(,)=0. If all edge weights are positive, the smallest edge incident to , say (,x), 
defines d(,x). 

We can use an array to store the length of the shortest path to each node. Initialize each to  to start. 

Soon as we establish the shortest path from to a new node x, we go through each of its incident edges to 
see if there is a better way from to other nodes thru x. 

Listen To Part 20-5 

  

for i=1 to n,   

for each edge (,v), dist[v]=d(,v)

last=

while (  )
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                 select v such that   

                 for each (v,x),   

                 last=v

                   

Complexity   if we use adjacency lists and a Boolean array to mark what is known. 

This is essentially the same as Prim's algorithm. 

An  implementation of Dijkstra's algorithm would be faster for sparse graphs, and comes from 
using a heap of the vertices (ordered by distance), and updating the distance to each vertex (if necessary) 
in  time for each edge out from freshly known vertices. 

Even better,  follows from using Fibonacci heaps, since they permit one to do a decrease-key 
operation in O(1) amortized time. 

Listen To Part 20-8 

All-Pairs Shortest Path

Notice that finding the shortest path between a pair of vertices (,t) in worst case requires first finding the 
shortest path from to all other vertices in the graph.   

Many applications, such as finding the center or diameter of a graph, require finding the shortest path 
between all pairs of vertices. 

We can run Dijkstra's algorithm n times (once from each possible start vertex) to solve all-pairs shortest 
path problem in  . Can we do better? 

Improving the complexity is an open question but there is a super-slick dynamic programming algorithm 
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which also runs in  . 

Listen To Part 20-9 

Dynamic Programming and Shortest Paths

The four-step approach to dynamic programming is: 

1.  Characterize the structure of an optimal solution.
2.  Recursively define the value of an optimal solution.
3.  Compute this recurrence in a bottom-up fashion.
4.  Extract the optimal solution from computed information. 

From the adjacency matrix, we can construct the following matrix: 

  , if    and    is not in E

D[i,j] = w(i,j),   if   

D[i,j] = 0, if i=j 

This tells us the shortest path going through no intermediate nodes. 

There are several ways to characterize the shortest path between two nodes in a graph. Note that the 
shortest path from i to j,  , using at most M edges consists of the shortest path from i to k using at 
most M-1 edges + W(k, j) for some k. 

Listen To Part 20-10 

This suggests that we can compute all-pair shortest path with an induction based on the number of edges 
in the optimal path. 

Let  be the length of the shortest path from i to j using at most m edges. 

What is  ? 
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What if we know  for all i,j? 

 

since w[k, k]=0 

This gives us a recurrence, which we can evaluate in a bottom up fashion: 

for i=1 to n

                 for j=1 to n

                   

                 for k=1 to n

                                   =Min(   ,    )

This is an  algorithm just like matrix multiplication, but it only goes from m to m+1 edges. 

Listen To Part 20-11 

Since the shortest path between any two nodes must use at most n edges (unless we have negative cost 
cycles), we must repeat that procedure n times (m=1 to n) for an  algorithm. 

We can improve this to  with the observation that any path using at most 2m edges is the 
function of paths using at most m edges each. This is just like computing  . So a 
logarithmic number of multiplications suffice for exponentiation. 
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Although this is slick, observe that even  is slower than running Dijkstra's algorithm starting 
from each vertex! 

Listen To Part 20-12 

The Floyd-Warshall Algorithm

  

An alternate recurrence yields a more efficient dynamic programming formulation. Number the vertices 
from 1 to n. 

Let  be the shortest path from i to j using only vertices from 1, 2,..., k as possible intermediate 
vertices. 

What is  ? With no intermediate vertices, any path consists of at most one edge, so  . 

In general, adding a new vertex k+1 helps iff a path goes through it, so 

 

Although this looks similar to the previous recurrence, it isn't. The following algorithm implements it: 

  

for k=1 to n

                 for i=1 to n

                                 for j=1 to n
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This obviously runs in  time, which asymptotically is no better than a calls to Dijkstra's algorithm. 
However, the loops are so tight and it is so short and simple that it runs better in practice by a constant 
factor. 

       
Next: Lecture 19 - satisfiability Up: No Title Previous: Lecture 17 - minimum 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Lecture 19 - satisfiability
Listen To Part 21-7 

The Theory of NP-Completeness

Several times this semester we have encountered problems for which we couldn't find efficient algorithms, 
such as the traveling salesman problem. We also couldn't prove an exponential time lower bound for the 
problem.   

By the early 1970s, literally hundreds of problems were stuck in this limbo. The theory of NP-Compleness, 
developed by Stephen Cook and Richard Karp, provided the tools to show that all of these problems were 
really the same problem. 

Listen To Part 21-8 

Polynomial vs. Exponential Time

   

n f(n) = n   f(n) = n! 

10 0.01  s 0.1  s 1  s 3.63 ms 

20 0.02  s 0.4  s 1 ms 77.1 years 

30 0.03  s 0.9  s 1 sec  years 

40 0.04  s 1.6  s 18.3 min 

50 0.05  s 2.5  s 13 days 

100 0.1  s 10  s  years 

1,000 1.00  s 1 ms 

Listen To Part 21-9 

The Main Idea

Suppose I gave you the following algorithm to solve the bandersnatch problem:    
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Bandersnatch(G)

                 Convert G to an instance of the Bo-billy problem Y.

                 Call the subroutine Bo-billy on Y to solve this instance.

                 Return the answer of Bo-billy(Y) as the answer to G.

Such a translation from instances of one type of problem to instances of another type such that answers are 
preserved is called a reduction.   

Now suppose my reduction translates G to Y in O(P(n)): 

1.  If my Bo-billy subroutine ran in O(P'(n)) I can solve the Bandersnatch problem in O(P(n)+P'(n))
2.  If I know that  is a lower-bound to compute Bandersnatch, then  must be a 

lower-bound to compute Bo-billy. 

The second argument is the idea we use to prove problems hard! 

Listen To Part 21-10 

Convex Hull and Sorting

A nice example of a reduction goes from sorting numbers to the convex hull problem:    

 
We must translate each number to a point. We can map x to  . 
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Why? That means each integer is mapped to a point on the parabola  . 

Listen To Part 21-11 

Since this parabola is convex, every point is on the convex hull. Further since neighboring points on the 
convex hull have neighboring x values, the convex hull returns the points sorted by x-coordinate, ie. the 
original numbers. 

Sort(S)

                 For each   , create point   .

                 Call subroutine convex-hull on this point set.

                 From the leftmost point in the hull,

                                 read off the points from left to right.

Creating and reading off the points takes O(n) time. 

What does this mean? Recall the sorting lower bound of  . If we could do convex hull in better than 
 , we could sort faster than  - which violates our lower bound. 

Thus convex hull must take  as well!!! 

Observe that any  convex hull algorithm also gives us a complicated but correct  sorting 
algorithm as well. 
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Listen To Part 22-2 

What is a problem?

A problem is a general question, with parameters for the input and conditions on what is a satisfactory answer 
or solution.    

An instance is a problem with the input parameters specified. 

Example: The Traveling Salesman 

Problem: Given a weighted graph G, what tour  minimizes  . 

Instance:  ,  ,  ,  ,  ,  

 
Solution:  cost= 27 

A problem with answers restricted to yes and no is called a decision problem. Most interesting optimization 
problems can be phrased as decision problems which capture the essence of the computation.   

Listen To Part 22-3 

Example: The Traveling Salesman Decision Problem.   

Given a weighted graph G and integer k, does there exist a traveling salesman tour with cost  k? 

Using binary search and the decision version of the problem we can find the optimal TSP solution. 

For convenience, from now on we will talk only about decision problems. 

Note that there are many possible ways to encode the input graph: adjacency matrices, edge lists, etc. All 
reasonable encodings will be within polynomial size of each other. 

The fact that we can ignore minor differences in encoding is important. We are concerned with the difference 
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between algorithms which are polynomial and exponential in the size of the input. 

Listen To Part 22-4 

Satisfiability

Consider the following logic problem:    

Instance: A set V of variables and a set of clauses C over V. 

Question: Does there exist a satisfying truth assignment for C? 

Example 1:  and  

A clause is satisfied when at least one literal in it is TRUE. C is satisfied when  TRUE. 

Example 2:  , 

 

Although you try, and you try, and you try and you try, you can get no satisfaction.   

There is no satisfying assigment since  must be FALSE (third clause), so  must be FALSE (second clause), 
but then the first clause is unsatisfiable! 

For various reasons, it is known that satisfiability is a hard problem. Every top-notch algorithm expert in the 
world (and countless other, lesser lights) have tried to come up with a fast algorithm to test whether a given set 
of clauses is satisfiable, but all have failed. 

Listen To Part 22-5 

Further, many strange and impossible-to-believe things have been shown to be true if someone in fact did find 
a fast satisfiability algorithm. 

Clearly, Satisfiability is in NP, since we can guess an assignment of TRUE, FALSE to the literals and check it 
in polynomial time. 

Listen To Part 22-10 

P versus NP

The precise distinction between whether a problem is in P or NP is somewhat technical, requiring formal 
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language theory and Turing machines to state correctly.   

However, intuitively a problem is in P, (ie. polynomial) if it can be solved in time polynomial in the size of the 
input. 

A problem is in NP if, given the answer, it is possible to verify that the answer is correct within time 
polynomial in the size of the input.   

Example P - Is there a path from to t in G of length less than k. 

Example NP - Is there a TSP tour in G of length less than k. Given the tour, it is easy to add up the costs and 
convince me it is correct. 

Example not NP - How many TSP tours are there in G of length less than k. Since there can be an exponential 
number of them, we cannot count them all in polynomial time. 

Don't let this issue confuse you - the important idea here is of reductions as a way of proving hardness. 

Listen To Part 22-7 

3-Satisfiability

Instance: A collection of clause C where each clause contains exactly 3 literals, boolean variable v.   

Question: Is there a truth assignment to v so that each clause is satisfied? 

Note that this is a more restricted problem than SAT. If 3-SAT is NP-complete, it implies SAT is NP-complete 
but not visa-versa, perhaps long clauses are what makes SAT difficult?! 

After all, 1-Sat is trivial! 

Theorem: 3-SAT is NP-Complete 

Proof: 3-SAT is NP - given an assignment, just check that each clause is covered. To prove it is complete, a 
reduction from  must be provided. We will transform each clause independantly based on its 
length. 

Suppose the clause  contains k literals. 

●     If k=1, meaning  , create two new variables  and four new 3-literal clauses: 

 ,  ,  ,  . 
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Note that the only way all four of these can be satisfied is if z is TRUE. 

Listen To Part 22-8

●     If k=2, meaning  , create one new variable  and two new clauses:  ,  

●     If k=3, meaning  , copy into the 3-SAT instance as it is.

●     If k>3, meaning  , create n-3 new variables and n-2 new clauses in a chain:  , ... 

If none of the original variables in a clause are TRUE, there is no way to satisfy all of them using the 
additional variable: 

 

But if any literal is TRUE, we have n-3 free variables and n-3 remaining 3-clauses, so we can satisfy each of 
them.  

Since any SAT solution will also satisfy the 3-SAT instance and any 3-SAT solution sets variables giving a 
SAT solution - the problems are equivallent. If there were n clauses and m total literals in the SAT instance, 
this transform takes O(m) time, so SAT and 3-SAT. 

Note that a slight modification to this construction would prove 4-SAT, or 5-SAT,... also NP-complete. 
However, it breaks down when we try to use it for 2-SAT, since there is no way to stuff anything into the 
chain of clauses. It turns out that resolution gives a polynomial time algorithm for 2-SAT. 

Listen To Part 22-9 

Having at least 3-literals per clause is what makes the problem difficult. Now that we have shown 3-SAT is 
NP-complete, we may use it for further reductions. Since the set of 3-SAT instances is smaller and more 
regular than the SAT instances, it will be easier to use 3-SAT for future reductions. Remember the direction to 
reduction! 

 

       
Next: Lecture 20 - integer Up: No Title Previous: Lecture 18 - shortest 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 21 - vertex Up: No Title Previous: Lecture 19 - satisfiability 

Lecture 20 - integer programming
Listen To Part 22-6 

36.4-5 Give a polynomial-time algorithm to satisfy Boolean formulas in disjunctive normal form.   

Satisfying one clause in DFS satisfied the whole formula. One clause can always be satisfied iff it does 
not contain both a variable and its complement. 

Why not use this reduction to give a polynomial-time algorithm for 3-SAT? The DNF formula can 
become exponentially large and hence the reduction cannot be done in polynomial time. 

Listen To Part 24-2 

A Perpetual Point of Confusion

Note carefully the direction of the reduction.   

We must transform every instance of a known NP-complete problem to an instance of the problem we 
are interested in. If we do the reduction the other way, all we get is a slow way to solve x, by using a 
subroutine which probably will take exponential time. 

This always is confusing at first - it seems bass-ackwards. Make sure you understand the direction of 
reduction now - and think back to this when you get confused. 

Listen To Part 24-3 

Integer Programming

Instance: A set v of integer variables, a set of inequalities over these variables, a function f(v) to 
maximize, and integer B.   

Question: Does there exist an assignment of integers to v such that all inequalities are true and  ? 
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Example: 

 

 

 

A solution to this is  ,  . 

Example: 

 

 

 

Since the maximum value of f(v) given the constraints is  , there is no solution. 

Theorem: Integer Programming is NP-Hard 

Proof: By reduction from Satisfiability 

Any set instance has boolean variables and clauses. Our Integer programming problem will have twice as 
many variables as the SAT instance, one for each variable and its compliment, as well as the following 
inequalities: 

Listen To Part 24-4 

For each variable  in the set problem, we will add the following constraints: 

●      and  

Both IP variables are restricted to values of 0 or 1, which makes them equivalent to boolean 
variables restricted to true/false.

●      

Exactly one of the IP variables associated with a given sat variable is 1. This means that exactly 
one of  and  are true!
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●     for each clause  in the sat instance, construct a constraint: 

 

Thus at least one IP variable must be one in each clause! Thus satisfying the constraint is 
equivalent to satisfying the clause! 

Our maximization function and bound are relatively unimportant:  B=0. 

Clearly this reduction can be done in polynomial time. 

Listen To Part 24-5 

We must show: 

1.  Any SAT solution gives a solution to the IP problem. 

In any SAT solution, a TRUE literal corresponds to a 1 in the IP, since if the expression is 
SATISFIED, at least one literal per clause in TRUE, so the sum in the inequality is  1.

2.  Any IP solution gives a SAT solution. 

Given a solution to this IP instance, all variables will be 0 or 1. Set the literals correspondly to 1 
variable TRUE and the 0 to FALSE. No boolean variable and its complement will both be true, so 
it is a legal assignment with also must satisfy the clauses. 

Neat, sweet, and NP-complete! 

Listen To Part 24-6 

Things to Notice

1.  The reduction preserved the structure of the problem. Note that the reduction did not solve the 
problem - it just put it in a different format.

2.  The possible IP instances which result are a small subset of the possible IP instances, but since 
some of them are hard, the problem in general must be hard.

3.  The transformation captures the essence of why IP is hard - it has nothing to do with big 
coefficients or big ranges on variables; for restricting to 0/1 is enough. A careful study of what 
properties we do need for our reduction tells us a lot about the problem.

4.  It is not obvious that IP  NP, since the numbers assigned to the variables may be too large to 
write in polynomial time - don't be too hasty! 
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Next: Lecture 21 - vertex Up: No Title Previous: Lecture 19 - satisfiability 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Lecture 22 - techniques Up: No Title Previous: Lecture 20 - integer 

Lecture 21 - vertex cover
Listen To Part 24-7 

36.5-2 - Given an integer  matrix A, and in integer m-vector b, the 0-1 integer programming 
problem asks whether there is an integer n-vector x with elements in the set (0,1) such that  . 

Prove that 0-1 integer programming is NP-hard (hint: reduce from 3-SAT).   

This is really the exact same problem as the previous integer programming problem, slightly concealed 
by: 

●     The linear algebra notation - each row is one constraint.
●     All inequalities are  - multiply both sides by -1 to reverse the constraint from  to  if necessary. 

Listen To Part 24-8 

Vertex Cover

Instance: A graph G=(V, E), and integer    

Question: Is there a subset of at most k vertices such that every  has at least one vertex in the subset? 

 
Here, four of the eight vertices are enough to cover. It is trivial to find a vertex cover of a graph - just 
take all the vertices. The tricky part is to cover with as small a set as possible. 

Theorem: Vertex cover is NP-complete.   
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Proof: VC in in NP - guess a subset of vertices, count them, and show that each edge is covered. 

To prove completeness, we show 3-SAT and VC. From a 3-SAT instance with n variables and C clauses, 
we construct a graph with 2N+3C vertices. 

Listen To Part 24-9 

For each variable, we create two vertices connected by an edge: 

 
To cover each of these edges, at least n vertices must be in the cover, one for each pair. For each clause, 
we create three new vertices, one for each literal in each clause. Connect these in a triangle. 

At least two vertices per triangle must be in the cover to take care of edges in the triangle, for a total of at 
least 2C vertices. 

Finally, we will connect each literal in the flat structure to the corresponding vertices in the triangles 
which share the same literal. 

 
Listen To Part 24-10 

Claim: This graph will have a vertex cover of size N+2C if and only if the expression is satisfiable. 

By the earlier analysis, any cover must have at least N+2C vertices. To show that our reduction is 
correct, we must show that: 

1.  Every satisfying truth assignment gives a cover. 

Select the N vertices cooresponding to the TRUE literals to be in the cover. Since it is a satisfying 
truth assignment, at least one of the three cross edges associated with each clause must already be 
covered - pick the other two vertices to complete the cover.

2.  Every vertex cover gives a satisfying truth assignment. 
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Every vertex cover must contain n first stage vertices and 2C second stage vertices. Let the first 
stage vertices define the truth assignment. 

To give the cover, at least one cross-edge must be covered, so the truth assignment satisfies. 

For a cover to have N+2C vertices, all the cross edges must be incident on a selected vertex. 

Let the N selected vertices from the first stage coorespond to TRUE literals. If there is a satisfying truth 
assignment, that means at least one of the three cross edges from each triangle is incident on a TRUE 
vertex. 

By adding the other two vertices to the cover, we cover all edges associated with the clause. 

Every SAT defines a cover and Every Cover Truth values for the SAT! 

Example:  ,  . 

 
Listen To Part 25-1 

Starting from the Right Problem

As you can see, the reductions can be very clever and very complicated. While theoretically any NP-
complete problem can be reduced to any other one, choosing the correct one makes finding a reduction 
much easier. 

 

As you can see, the reductions can be very clever and complicated. While theoretically any NP-complete 
problem will do, choosing the correct one can make it much easier. 

Maximum Clique

Instance: A graph G=(V,E) and integer  .   
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Question: Does the graph contain a clique of j vertices, ie. is there a subset of v of size j such that every 
pair of vertices in the subset defines an edge of G? 

Example: this graph contains a clique of size 5. 

 
Listen To Part 25-2 

When talking about graph problems, it is most natural to work from a graph problem - the only NP-
complete one we have is vertex cover! 

Theorem: Clique is NP-complete 

Proof: If you take a graph and find its vertex cover, the remaining vertices form an independent set, 
meaning there are no edges between any two vertices in the independent set, for if there were such an 
edge the rest of the vertices could not be a vertex cover.   

 
Clearly the smallest vertex cover gives the biggest independent set, and so the problems are equivallent - 
Delete the subset of vertices in one from the total set of vertices to get the order! 

Thus finding the maximum independent set must be NP-complete! 

Listen To Part 25-3 

In an independent set, there are no edges between two vertices. In a clique, there are always between two 
vertices. Thus if we complement a graph (have an edge iff there was no edge in the original graph), a 
clique becomes an independent set and an independent set becomes a Clique! 
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Thus finding the largest clique is NP-complete: 

If VC is a vertex cover in G, then V-VC is a clique in G'. If C is a clique in G, V-C is a vertex cover in G'. 

Listen To Part 25-4 

36.5-1 Prove that subgraph isomorphism is NP-complete.   

1.  Guessing a subgraph of G and proving it is isomorphism to h takes  time, so it is in NP.
2.  Clique and subgraph isomorphism. We must transform all instances of clique into some instances 

of subgraph isomorphism. Clique is a special case of subgraph isomorphism! 

Thus the following reduction suffices. Let G=G' and  , the complete subgraph on k nodes. 

Listen To Part 25-5 

Integer Partition (Subset Sum)

Instance: A set of integers S and a target integer t.    

Problem: Is there a subset of S which adds up exactly to t? 

Example:  and T=3754 

Answer: 1+16+64+256+1040+1093+1284 = T 

Observe that integer partition is a number problem, as opposed to the graph and logic problems we have 
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seen to date. 

Theorem: Integer Partition is NP-complete. 

Proof: First, we note that integer partition is in NP. Guess a subset of the input number and simply add 
them up. 

To prove completeness, we show that vertex cover  integer partition. We use a data structure called an 
incidence matrix to represent the graph G. 

 
Listen To Part 25-6 

How many 1's are there in each column? Exactly two. 

How many 1's in a particular row? Depends on the vertex degree. 

The reduction from vertex cover will create n+m numbers from G. 

The numbers from the vertices will be a base-4 realization of rows from the incidence matrix, plus a high 
order digit: 

 

ie.  becomes  . 

The numbers from the edges will be  . 

The target integer will be 
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Why? Each column (digit) represents an edge. We want a subset of vertices which covers each edge. We 
can only use k x vertex/numbers, because of the high order digit of the target. 

   

Listen To Part 25-7 

We might get only one instance of each edge in a cover - but we are free to take extra edge/numbers to 
grab an extra 1 per column. 

VC in G  Integer Partition in S

Given k vertices covering G, pick the k cooresponding vertex/numbers. Each edge in G is incident on one 
or two cover vertices. If it is one, includes the cooresponding edge/number to give two per column. 

Integer Partition in S  VC in G

Any solution to S must contain exactly k vertex/numbers. Why? It cannot be more because the target in 
that digit is k and it cannot be less because, with at most 3 1's per edge/digit-column, no sum of these can 
carry over into the next column. (This is why base-4 number were chosen). 

This subset of k vertex/numbers must contain at least one edge-list per column, since if not there is no 
way to account for the two in each column of the target integer, given that we can pick up at most one 
edge-list using the edge number. (Again, the prevention of carrys across digits prevents any other 
possibilites). 

Neat, sweet, and NP-complete! 

Notice that this reduction could not be performed in polynomial time if the number were written in unary 
5=11111. Big numbers is what makes integer partition hard! 

       
Next: Lecture 22 - techniques Up: No Title Previous: Lecture 20 - integer 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 

file:///E|/LEC/LECTUR16/NODE21.HTM (7 of 7) [19/1/2003 1:35:28]



Lecture 22 - techniques for proving hardness
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Lecture 22 - techniques for proving 
hardness

Hamiltonian Cycle

Instance: A graph G   

Question: Does the graph contains a HC, i.e. an ordered of the vertices  ? 

This problem is intimately relates to the Traveling Salesman. 

Question: Is there an ordering of the vertices of a weighted graph such that  ? 

Clearly,  . Assign each edge in G weight 1, any edge not in G weight 2. This new graph has a 
Traveling Salesman tour of cost n iff the graph is Hamiltonian. Thus TSP is NP-complete if we can show 
HC is NP-complete. 

Theorem: Hamiltonian Circuit is NP-complete 

Proof: Clearly HC is in NP-guess a permutation and check it out. To show it is complete, we use vertex 
cover. A vertex cover instance consists of a graph and a constant k, the minimum size of an acceptable 
cover. We must construct another graph. Each edge in the initial graph will be represented by the 
following component: 

 
All further connections to this gadget will be through vertices  ,  ,  and  . The key observation 
about this gadget is that there are only three ways to traverse all the vertices:   
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Note that in each case, we exit out the same side we entered. Each side of each edge gadget is associated 
with a vertex. Assuming some arbitrary order to the edges incident on a particular vertex, we can link 
successive gadgets by edges forming a chain of gadgets. Doing this for all vertices in the original graph 
creates n intertwined chains with n entry points and n exits. 

 
Thus we have encoded the information about the initial graph. What about k? We set up k additional 
vertices and connect each of these to the n start points and n end points of each chain. 

 
Total size of new graph: GE+K vertices and 12E+2kN+2E edges  construction is polynomial in size 
and time. 

We claim this graph has a HC iff G has a VC of size k. 

1.  Suppose  is a HC. 

Assume it starts at one of the k selector vertices. It must then go through one of the chains of 
gadgets until it reaches a different selector vertex. 

Since the tour is a HC, all gadgets are traversed. The k chains correspond to the vertices in the 
cover. 

Note that if both vertices associated with an edge are in the cover, the gadget will be traversal in 
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two pieces - otherwise one chain suffices. 

To avoid visiting a vertex more than once, each chain is associated with a selector vertex.
2.  Now suppose we have a vertex cover of size  . 

We can always add more vertices to the cover to bring it up to size k. 

For each vertex in the cover, start traversing the chain. At each entry point to a gadget, check if 
the other vertex is in the cover and traverse the gadget accordingly. 

Select the selector edges to complete the circuit. 

Neat, sweet, and NP-complete. 

To show that Longest Path or Hamiltonian Path is NP-complete, add start and stop vertices and 
distinguish the first and last selector vertices.   

 
This has a Hamiltonian path from start to stop iff the original graph has a vertex cover of size k. 

Listen To Part 26-2 

Other NP-complete Problems

●     Partition - can you partition n integers into two subsets so that the sums of the subset are equal?
●     Bin Packing - how many bins of a given size do you need to hold n items of variable size?  
●     Chromatic Number - how many colors do you need to color a graph?  
●      checkers - does black have a forced win from a given position?  
●     Scheduling, Code Optimization, Permanent Evaluation, Quadratic Programming, etc. 

Open: Graph Isomorphism, Composite Number, Minimum Length Triangulation. 

Listen To Part 26-3 

Polynomial or Exponential?
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Just changing a problem a little can make the difference between it being in P or NP-complete: 

P NP-complete 

Shortest Path Longest Path 

Eulerian Circuit Hamiltonian Circuit 

Edge Cover Vertex Cover 

The first thing you should do when you suspect a problem might be NP-complete is look in Garey and 
Johnson, Computers and Intractability. It contains a list of several hundred problems known to be NP-
complete. Either what you are looking for will be there or you might find a closely related problem to use 
in a reduction.   

Listen To Part 26-4 

Techniques for Proving NP-completeness

1.  Restriction - Show that a special case of the problem you are interested in is NP-complete. For 
example, the problem of finding a path of length k is really Hamiltonian Path.  

2.  Local Replacement - Make local changes to the structure. An example is the reduction 
 . Another example is showing isomorphism is no easier for bipartite graphs:   

 
For any graph, replacing an edge with makes it bipartite.

3.  Component Design - These are the ugly, elaborate constructions   

Listen To Part 26-5 

The Art of Proving Hardness

Proving that problems are hard is an skill. Once you get the hang of it, it is surprisingly straightforward 
and pleasurable to do. Indeed, the dirty little secret of NP-completeness proofs is that they are usually 
easier to recreate than explain, in the same way that it is usually easier to rewrite old code than the try to 
understand it. 
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I offer the following advice to those needing to prove the hardness of a given problem: 

●     Make your source problem as simple (i.e. restricted) as possible. 

Never use the general traveling salesman problem (TSP) as a target problem. Instead, use TSP on 
instances restricted to the triangle inequality. Better, use Hamiltonian cycle, i.e. where all the 
weights are 1 or  . Even better, use Hamiltonian path instead of cycle. Best of all, use 
Hamiltonian path on directed, planar graphs where each vertex has total degree 3. All of these 
problems are equally hard, and the more you can restrict the problem you are reducing, the less 
work your reduction has to do.

●     Make your target problem as hard as possible. 

Don't be afraid to add extra constraints or freedoms in order to make your problem more general 
(at least temporarily). 

Listen To Part 26-6
●     Select the right source problem for the right reason. 

Selecting the right source problem makes a big difference is how difficult it is to prove a problem 
hard. This is the first and easiest place to go wrong. 

I usually consider four and only four problems as candidates for my hard source problem. 
Limiting them to four means that I know a lot about these problems - which variants of these 
problems are hard and which are soft. My favorites are: 

❍     3-Sat - that old reliable... When none of the three problems below seem appropriate, I go 
back to the source.  

❍     Integer partition - the one and only choice for problems whose hardness seems to require 
using large numbers.

❍     Vertex cover - for any graph problems whose hardness depends upon selection. Chromatic 
number, clique, and independent set all involve trying to select the correct subset of 
vertices or edges.  

❍     Hamiltonian path - for any graph problems whose hardness depends upon ordering. If you 
are trying to route or schedule something, this is likely your lever.   

Listen To Part 26-7 

●     Amplify the penalties for making the undesired transition. 

You are trying to translate one problem into another, while making them stay the same as much as 
possible. The easiest way to do this is to be bold with your penalties, to punish anyone trying to 
deviate from your proposed solution. ``If you pick this, then you have to pick up this huge set 
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which dooms you to lose.'' The sharper the consequences for doing what is undesired, the easier it 
is to prove if and only if.

●     Think strategically at a high level, then build gadgets to enforce tactics. 

You should be asking these kinds of questions. ``How can I force that either A or B but not both 
are chosen?'' ``How can I force that A is taken before B?'' ``How can I clean up the things I did 
not select?''

●     Alternate between looking for an algorithm or a reduction if you get stuck. 

Sometimes the reason you cannot prove hardness is that there is an efficient algorithm to solve 
your problem! When you can't prove hardness, it likely pays to change your thinking at least for a 
little while to keep you honest. 

Listen To Part 26-8 

Now watch me try it!

To demonstrate how one goes about proving a problem hard, I accept the challenge of showing how a 
proof can be built on the fly. 

I need a volunteer to pick a random problem from the 400+ hard problems in the back of Garey and 
Johnson. 

Listen To Part 27-2 

Dealing with NP-complete Problems

  

Option 1: Algorithm fast in the Average case

Examples are Branch-and-bound for the Traveling Salesman Problem, backtracking algorithms, etc. 

Option 2: Heuristics

Heuristics are rules of thumb; fast methods to find a solution with no requirement that it be the best one. 

Note that the theory of NP-completeness does not stipulate that it is hard to get close to the answer, only 
that it is hard to get the optimal answer. 

file:///E|/LEC/LECTUR16/NODE22.HTM (6 of 7) [19/1/2003 1:35:31]



Lecture 22 - techniques for proving hardness

Often, we can prove performance bounds on heuristics, that the resulting answer is within C times that of 
the optimal one. 

       
Next: Lecture 23 - approximation Up: No Title Previous: Lecture 21 - vertex 

Algorithms 
Mon Jun 2 09:21:39 EDT 1997 
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Next: Index Up: No Title Previous: Lecture 22 - techniques 

Lecture 23 - approximation algorithms 
and Cook's theorem
Listen To Part 26-1 

36.5-5 Prove that Hamiltonian Path is NP-complete. 

This is not a special case of Hamiltonian cycle! (G may have a HP but not cycle)   

The easiest argument says that G contains a HP but no HC iff (x,y) in G such that adding edge (x, y) to G 
causes to have a HC, so  calls to a HC function solves HP. 

The cleanest proof modifies the VC and HC reduction from the book: 

 

Listen To Part 27-3 

Approximating Vertex Cover

As we have seen, finding the minimum vertex cover is NP-complete. However, a very simple strategy 
(heuristic) can get us a cover at most twice that of the optimal.    

While the graph has edges

                 pick an arbitrary edge v, u
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                 add both u and v to the cover

                 delete all edges incident on either u and v

If the graph is represented by an adjacency list this can be implemented in O(m+n) time. 

This heuristic must always produce cover, since an edge is only deleted when it is adjacent to a cover 
vertex. 

Further, any cover uses at least half as many vertices as the greedy cover. 

 
Why? Delete all edges from the graph except the edges we selected. 

No two of these edges share a vertex. Therefore, any cover of just these edges must include one vertex per 
edge, or half the greedy cover! 

Listen To Part 27-4 

Things to Notice

●     Although the heuristic is simple, it is not stupid. Many other seemingly smarter ones can give a far 
worse performance in the worst case.   

Example: Pick one of the two vertices instead of both (after all, the middle edge is already 
covered) The optimal cover is one vertex, the greedy heuristic is two vertices, while the new/bad 
heuristic can be as bad as n-1. 
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●     Proving a lower bound on the optimal solution is the key to getting an approximation result.
●     Making a heuristic more complicated does not necessarily make it better. It just makes it more 

difficult to analyze.
●     A post-processing clean-up step (delete any unecessessary vertex) can only improve things in 

practice, but might not help the bound. 

Listen To Part 27-5 

The Euclidean Traveling Salesman

In the traditional version of TSP - a salesman wants to plan a drive to visit all his customers exactly once 
and get back home.   

Euclidean geometry satisfies the triangle inequality,  . 

TSP remains hard even when the distances are Euclidean distances in the plane. 

 
Note that the cost of airfares is an example of a distance function which violates the triangle inequality. 

However, we can approximate the optimal Euclidean TSP tour using minimum spanning trees. 

Claim: the cost of a MST is a lower bound on the cost of a TSP tour. 

Why? Deleting any edge from a TSP tour leaves a path, which is a tree of weight at least that of the MST! 

Listen To Part 27-6 

If we were allowed to visit cities more than once, doing a depth-first traversal of a MST, and then walking 
out the tour specified is at most twice the cost of MST. Why? We will be using each edge exactly twice. 

file:///E|/LEC/LECTUR16/NODE23.HTM (3 of 11) [19/1/2003 1:35:35]



Lecture 23 - approximation algorithms and Cook's theorem

 
Every edge is used exactly twice in the DFS tour: 1. 

However, how can we avoid revisiting cities? 

We can take a shortest path to the next unvisited vertex. The improved tour is 1-2-3-5-8-9-6-4-7-10-11-1. 
Because we replaced a chain of edges by the edge, the triangle inequality ensures the tour only gets 
shorter. Thus this is still within twice optimal! 

Listen To Part 27-1 

37.1-3 Give an efficient greedy algorithm that finds an optimal vertex cover of a tree in linear time.   

In a vertex cover we need to have at least one vertex for each edge. 

Every tree has at least two leaves, meaning that there is always an edge which is adjacent to a leaf. Which 
vertex can we never go wrong picking? The non-leaf, since it is the only one which can also cover other 
edges! 

After trimming off the covered edges, we have a smaller tree. We can repeat the process until the tree as 0 
or 1 edges. When the tree consists only of an isolated edge, pick either vertex. 

All leaves can be identified and trimmed in O(n) time during a DFS. 

Formal Languages and the Theory of NP-completeness

The theory of NP-completeness is based on formal languages and Turing machines, and so we will must 
work on a more abstract level than usual. 

For a given alphabet of symbols  0, 1, &, we can form an infinite set of strings or words by arranging 
them in any order: `&10', `111111',`&&&', and `&'. 
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A subset of the set of strings over some alphabet is a formal language.   

Formal language theory concerns the study of how powerful a machine you need to recognize whether a 
string is from a particular language. 

Example: Is the string a binary representation of a even number? A simple finite machine can check if the 
last symbol is zero: 

 
No memory is required, except for the current state. 

Observe that solving decision problems can be thought of as formal language recognition. The problem 
instances are encoded as strings and strings in the language if and only if the answer to the decision 
problem is YES!   

What kind of machine is necessary to recognize this language? A Turing Machine!   

A Turing machine has a finite-state-control (its program), a two way infinite tape (its memory) and a read-
write head (its program counter) 

 

So, where are we?

Each instance of an optimization or decision problem can be encoded as string on some alphabet. The set 
of all instances which return True for some problem define a language. 

Hence, any problem which solves this problem is equivalent to a machine which recognizes whether an 
instance is in the language! 

The goal of all this is going to be a formal way to talk about the set of problems which can be solved in 
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polynomial time, and the set that cannot be. 

Non-deterministic Turing Machines

Suppose we buy a guessing module peripherial for our Turing machine, which looks at a Turing machine 
program and problem instance and in polynomial time writes something it says is an answer. To convince 
ourselves it really is an answer, we can run another program to check it.    

Ex: The Traveling Salesman Problem 

The guessing module can easily write a permutation of the vertices in polynomial time. We can check if it 
is correct by summing up the weights of the special edges in the permutation and see that it is less than k. 

 
The class of languages which we can recognize in time polynomial in the size of the string or a 
deterministic Turing Machine (without guessing module) is called P. 

The class of languages we can recognize in time polynomial in the length of the string or a non-
deterministic Turing Machine is called NP. 

Clearly,  , since for any DTM program we can run it on a non-deterministic machine, ignore what 
the guessing module is doing, and it will just as fast. 

P ?= NP

Observe that any NDTM program which takes time P(n) can simulated in  time on a 

deterministic machine, by running the checking program  times, once on each possible guessed string. 
  

The $10,000 question is whether a polynomial time simulation exists, or in other words whether P=NP?. 
Do there exist languages which can be verified in polynomial time and still take exponential time on 
deterministic machines? 

This is the most important question in computer science. Since proving an exponential time lower bound 
for a problem in NP would make us famous, we assume that we cannot do it. 
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What we can do is prove that it is at least as hard as any problem in NP. A problem in NP for which a 
polynomial time algorithm would imply all languages in NP are in P is called NP-complete. 

Turing Machines and Cook's Theorem

Cook's Theorem proves that satisfiability is NP-complete by reducing all non-deterministic Turing 
machines to SAT.   

Each Turing machine has access to a two-way infinite tape (read/write) and a finite state control, which 
serves as the program. 

 
A program for a non-deterministic TM is: 

1.  Space on the tape for guessing a solution and certificate to permit verification.
2.  A finite set of tape symbols
3.  A finite set of states  for the machine, including the start state  and final states  
4.  A transition function, which takes the current machine state, and current tape symbol and returns 

the new state, symbol, and head position. 

We know a problem is in NP if we have a NDTM program to solve it in worst-case time p[n], where p is a 
polynomial and n is the size of the input. 

Cook's Theorem - Satisfiability is NP-complete!

Proof: We must show that any problem in NP is at least as hard as SAT. Any problem in NP has a non-
deterministic TM program which solves it in polynomial time, specifically P(n).   

We will take this program and create from it an instance of satisfiability such that it is satisfiable if and 
only if the input string was in the language. 
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If a polynomial time transform exists, then SAT must be NP-complete, since a polynomial solution to 
SAT gives a polynomial time algorithm to anything in NP. 

Our transformation will use boolean variables to maintain the state of the TM: 

Variable Range Intended meaning 

Q[i, j]  At time i, M is in 

 state  

H[i,j]  At time i, the read-write head 

 is scanning tape square j 

S[i,j,k]  At time i, the contents of 

 tape square j is symbol  

 

Note that there are  literals, a polynomial number if p(n) is polynomial. 

We will now have to add clauses to ensure that these variables takes or the values as in the TM 
computation. 

The group 6 clauses enforce the transition function of the machine. If the read-write head is not on tape 
square j at time i, it doesn't change .... 

There are  literals and  clauses in all, so the transformation is done in polynomial time! 

Polynomial Time Reductions

A decision problem is NP-hard if the time complexity on a deterministic machine is within a polynomial 
factor of the complexity of any problem in NP.   
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A problem is NP-complete if it is NP-hard and in NP. Cook's theorem proved SATISFIABILITY was NP-
hard by using a polynomial time reduction translating each problem in NP into an instance of SAT: 

 
Since a polynomial time algorithm for SAT would imply a polynomial time algorithm for everything in 
NP, SAT is NP-hard. Since we can guess a solution to SAT, it is in NP and thus NP-complete. 

The proof of Cook's Theorem, while quite clever, was certainly difficult and complicated. We had to 
show that all problems in NP could be reduced to SAT to make sure we didn't miss a hard one. 

But now that we have a known NP-complete problem in SAT. For any other problem, we can prove it NP-
hard by polynomially transforming SAT to it! 

 
Since the composition of two polynomial time reductions can be done in polynomial time, all we need 
show is that SAT, ie. any instance of SAT can be translated to an instance of x in polynomial time. 

Listen To Part 27-7 

Finding the Optimal Spouse

  

1.  There are up to n possible candidates we will see over our lifetime, one at a time.
2.  We seek to maximize our probability of getting the single best possible spouse.
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3.  Our assessment of each candidate is relative to what we have seen before.
4.  We must decided either to marry or reject each candidate as we see them. There is no going back 

once we reject someone.
5.  Each candidate is ranked from 1 to n, and all permutations are equally likely. 

Listen To Part 27-8 

For example, if the input permutation is 

 

we see (3,1,2) after three candidates. 

Picking the first or last candidate gives us a probability of 1/n of getting the best. 

Since we seek maximize our chances of getting the best, it never pays to pick someone who is not the best 
we have seen. 

The optimal strategy is clearly to sample some fraction of the candidates, then pick the first one who is 
better than the best we have seen. 

But what is the fraction? 

Listen To Part 27-9 

For a given fraction 1/f, what is the probability of finding the best? 

Suppose i+1 is the highest ranked person in the first n/f candidates. We win whenever the best candidate 
occurs before any number from 2 to i in the last n (1- 1/f) / f candidates. 

There is a 1/i probability of that, so, 

 

In fact, the optimal is obtained by sampling the first n/e candidates. 
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1.1.6 Kd-Trees 

1.1.6 Kd-Trees 

   

INPUT                    OUTPUT

Input Description: A set S of n points in k -dimensions. 

Problem: Construct a tree which partitions the space by half-planes such that each point is contained in 
it is own region. 

Implementations 

●     Ranger - Nearest Neighbor Search in Higher Dimensions (C) (rating 8) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 3) 
●     DIMACS Implementation Challenges (FORTRAN) (rating 1) 

Related Problems 

●     Nearest Neighbor Search 
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●     Point Location 
●     Range Search 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.1.3 Suffix Trees and Arrays 

1.1.3 Suffix Trees and Arrays 

   

INPUT                    OUTPUT

Implementations 

●     Stony Brook Project Implementations (C++) (rating 6) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 2) 

Related Problems 

●     Longest Common Substring 
●     Shortest Common Superstring 
●     String Matching 

Go to the corresponding chapter in the book 
About the Book 
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Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.5.1 Clique 

1.5.1 Clique 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . 

Problem: What is the largest S \subset V such that for all x,y \in S , (x,y) \in E ? 

Implementations 

●     DIMACS Implementation Challenges (FORTRAN) (rating 9) 
●     Neural-Networks for Cliques and Coloring (C) (rating 6) 
●     Combinatorica (Mathematica) (rating 1) 

Related Problems 

●     Independent Set 
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●     Vertex Cover 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.2 Convex Hull 

   

INPUT                    OUTPUT

Input Description: A set S of n points in d -dimensional space. 

Problem: Find the smallest convex polygon containing all the points of S . 

Implementations 

●     Qhull - higher dimensional convex hull program (C) (rating 10) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Clarkson's higher dimensional convex hull code (C) (rating 6) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 6) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 
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Related Problems 

●     Simplifying Polygons 
●     Sorting 
●     Traveling Salesman Problem 
●     Voronoi Diagrams 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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Tools and Utilities 

Tools and Utilities 

●     Pascal to C translator 
●     Download g-zip sources from MIT gnu archive 
●     Guide to uncompressing ZIP files on Unix systems 
●     Unzip for Unix sources (tar format) 

About the Book 
Send us Mail 
Go to Main Page 
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Interesting Data Files 

Interesting Data Files 

Below we point to several interesting data files. These files can be used as test data for several of the 
Implementation Challenges given in The Algorithm Design Manual , but are also likely to be of 
independent interest. 

●     Airplane routes and schedules (from Roberto Tamassia -- local copy) 
●     Name-ethnicity data; over 3000 names from several nations (local copy) 

About the Book 
Send us Mail 
Go to Main Page 
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About the Ratings 

About the Ratings 
Our implementations are classified by the problems they solve. For each problem, we rate all the 
implementations according to usefulness on a 1 to 10 scale, with 10 meaning the most useful and 1 least 
useful. The usefulness of an implementation is supposed to reflect how likely it is that someone looking 
for code will be happy with what they find. Our ratings are completely subjective and reflect our 
judgement. Please feel free to send corrections and feedback based on your experiences. Please note that 
many of these implementations with low usefulness ratings were produced primarily for expository 
purposes, and can serve as excellent models to study or emulate if not as ready-to-run code. 

Go to Main Page 
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1.1 Data Structures 

1.1 Data Structures 

Specific Algorithms 

●     1.1.1 Dictionaries 
●     1.1.2 Priority Queues 
●     1.1.3 Suffix Trees and Arrays 
●     1.1.4 Graph Data Structures 
●     1.1.5 Set Data Structures 
●     1.1.6 Kd-Trees 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2 Numerical Problems 

1.2 Numerical Problems 

Specific Algorithms 

●     1.2.1 Solving Linear Equations 
●     1.2.2 Bandwidth Reduction 
●     1.2.3 Matrix Multiplication 
●     1.2.4 Determinants and Permanents 
●     1.2.5 Constrained and Unconstrained Optimization 
●     1.2.6 Linear Programming 
●     1.2.7 Random Number Generation 
●     1.2.8 Factoring and Primality Testing 
●     1.2.9 Arbitrary Precision Arithmetic 
●     1.2.10 Knapsack Problem 
●     1.2.11 Discrete Fourier Transform 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3 Combinatorial Problems 

1.3 Combinatorial Problems 

Specific Algorithms 

●     1.3.1 Sorting 
●     1.3.2 Searching 
●     1.3.3 Median and Selection 
●     1.3.4 Generating Permutations 
●     1.3.5 Generating Subsets 
●     1.3.6 Generating Partitions 
●     1.3.7 Generating Graphs 
●     1.3.8 Calendrical Calculations 
●     1.3.9 Job Scheduling 
●     1.3.10 Satisfiability 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4 Graph Problems -- polynomial-time problems 

1.4 Graph Problems -- polynomial-time problems 

Specific Algorithms 

●     1.4.1 Connected Components 
●     1.4.2 Topological Sorting 
●     1.4.3 Minimum Spanning Tree 
●     1.4.4 Shortest Path 
●     1.4.5 Transitive Closure and Reduction 
●     1.4.6 Matching 
●     1.4.7 Eulerian Cycle / Chinese Postman 
●     1.4.8 Edge and Vertex Connectivity 
●     1.4.9 Network Flow 
●     1.4.10 Drawing Graphs Nicely 
●     1.4.11 Drawing Trees 
●     1.4.12 Planarity Detection and Embedding 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.5 Graph Problems -- hard problems 

1.5 Graph Problems -- hard problems 

Specific Algorithms 

●     1.5.1 Clique 
●     1.5.2 Independent Set 
●     1.5.3 Vertex Cover 
●     1.5.4 Traveling Salesman Problem 
●     1.5.5 Hamiltonian Cycle 
●     1.5.6 Graph Partition 
●     1.5.7 Vertex Coloring 
●     1.5.8 Edge Coloring 
●     1.5.9 Graph Isomorphism 
●     1.5.10 Steiner Tree 
●     1.5.11 Feedback Edge/Vertex Set 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6 Computational Geometry 

1.6 Computational Geometry 

Specific Algorithms 

●     1.6.1 Robust Geometric Primitives 
●     1.6.2 Convex Hull 
●     1.6.3 Triangulation 
●     1.6.4 Voronoi Diagrams 
●     1.6.5 Nearest Neighbor Search 
●     1.6.6 Range Search 
●     1.6.7 Point Location 
●     1.6.8 Intersection Detection 
●     1.6.9 Bin Packing 
●     1.6.10 Medial-Axis Transformation 
●     1.6.11 Polygon Partitioning 
●     1.6.12 Simplifying Polygons 
●     1.6.13 Shape Similarity 
●     1.6.14 Motion Planning 
●     1.6.15 Maintaining Line Arrangements 
●     1.6.16 Minkowski Sum 
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1.7 Set and String Problems 

1.7 Set and String Problems 

Specific Algorithms 

●     1.7.1 Set Cover 
●     1.7.2 Set Packing 
●     1.7.3 String Matching 
●     1.7.4 Approximate String Matching 
●     1.7.5 Text Compression 
●     1.7.6 Cryptography 
●     1.7.7 Finite State Machine Minimization 
●     1.7.8 Longest Common Substring 
●     1.7.9 Shortest Common Superstring 
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C++ Language Implementations 

Algorithm Implementations in C++ 

●     LEDA - A Library of Efficient Data Types and Algorithms 
●     SimPack/Sim++ Simulation Toolkit 
●     Fire-Engine and Spare-Parts String and Language Algorithms 
●     Xtango and Polka Algorithm Animation Systems 
●     Algorithms in C++ -- Sedgewick 
●     Geolab -- Computational Geometry System 
●     Grail: finite automata and regular expressions 
●     Calendrical Calculations 
●     Stony Brook Project Implementations 
●     LINK -- Programming and Visualization Environment for Hypergraphs 
●     David Eppstein's Knuth-Morris-Pratt Algorithm and Minkowski sum code 
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C Language Implementations 

Algorithm Implementations in C 

●     Adaptive Simulated Annealing 
●     Joseph O'Rourke's Computational Geometry 
●     The Stanford GraphBase 
●     GraphViz -- graph layout programs 
●     Handbook of Algorithms and Data Structures 
●     Mike Trick's Graph Coloring Resources 
●     Joe Culberson's Graph Coloring Resources 
●     DIMACS Implementation Challenges 
●     Fire-Engine and Spare-Parts String and Language Algorithms 
●     Ranger - Nearest Neighbor Search in Higher Dimensions 
●     Xtango and Polka Algorithm Animation Systems 
●     Frank Ruskey's Combinatorial Generation Resources 
●     Goldberg's Network Optimization Codes 
●     Qhull - higher dimensional convex hull program 
●     Clarkson's higher dimensional convex hull code 
●     Fortune's 2D Voronoi diagram code 
●     Triangle: A Two-Dimensional Quality Mesh Generator 
●     Arrange - maintainance of arrangements with point location 
●     Linprog -- low dimensional linear programming 
●     LP_SOLVE: Linear Programming Code 
●     PARI - Package for Number Theory 
●     GraphEd -- Graph Editor and Layout Program 
●     Genocop -- Optimization via Genetic Algorithms 
●     TSP solvers 
●     FFTPACK -- Fourier Transform Library 
●     Neural-Networks for Cliques and Coloring 
●     PHYLIP -- inferring phylogenic trees 
●     Salowe's Rectilinear Steiner trees 
●     Skeletonization Software (2-D) 
●     SNNS - Stuttgart Neural Network Simulator 
●     agrep - Approximate General Regular Expression Pattern Matcher 
●     HT/DIG -- image compression codes 
●     CAP -- Contig Assembly Program 
●     Shape similarity testing via turning functions 
●     NAUTY -- Graph Isomorphism 
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C Language Implementations 

●     POSIT - Propositional Satisfiability Testbed 
●     BIPM -- Bipartite Matching Codes 
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Pascal Language Implementations 

Algorithm Implementations in Pascal 

●     Discrete Optimization Methods 
●     Handbook of Algorithms and Data Structures 
●     Moret and Shapiro's Algorithms P to NP 
●     Frank Ruskey's Combinatorial Generation Resources 
●     PHYLIP -- inferring phylogenic trees 
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FORTRAN Language Implementations 

Algorithm Implementations in FORTRAN 

●     Nijenhuis and Wilf: Combinatorial Algorithms 
●     DIMACS Implementation Challenges 
●     Netlib / TOMS -- Collected Algorithms of the ACM 
●     GEOMPACK - triangulation and convex decomposition codes 
●     FFTPACK -- Fourier Transform Library 
●     LAPACK and LINPACK -- Linear Algebra PACKages 
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Mathematica Language Implementations 

Algorithm Implementations in Mathematica 

●     Combinatorica 
●     Mathematica -- Assorted Routines 
●     Neural-Networks for Cliques and Coloring 
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Lisp Language Implementations 

Algorithm Implementations in Lisp 

●     Calendrical Calculations 
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Algorithm Repository -- Most Wanted List 

Most Wanted List 

Below are a list of problems for which we do not feel that we have identified adequate codes for the 
algorithm repository, and thus we would be particularly excited to hear of any programs you might know 
about. In many cases, the algorithms involved are not that difficult to implement, so this is also in 
invitation for students and faculty to select them for class projects and send us the resulting code. 

Our most wanted list includes: 

●     Knapsack and Integer Partition -- We would like to see an implementation of the dynamic 
programming algorithm for the knapsack, with scaling. Associated with this would be an 
implementation of the primary bin-packing algorithms. 

●     Thinning or the Medial-Axis Transform -- Codes working on binary images and polygons are both 
wanted. I have already received more than one request for such a code. 

●     Chinese Postman Tour -- Such an algorithm should not be too complicated to implement, 
especially by using matching codes already available on this site. 

●     Graph Partition and Maxcut -- A flexible simulated annealing code for both problems would be 
greatly appreciated. 

●     Feedback arc/vertex sets -- It would be good to get an implementation of the (fairly simple) 
heuristics for feedback sets and see how well they do. 

●     Minkowski Sum -- I have already received more than one request for such a code. 
●     Set Cover -- I'd like to get more codes with heuristics for set cover and packing. 

This algorithms repository is part of the ongoing algorithms-related research conducted here in the 
Department of Computer Science at the State University of New York at Stony Brook. 
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Algorithm Repository -- Citations 

Citations 

Citations of the Stony Brook Algorithms Repository include: 
●     PC Webopaedia 
The algorithms repository is part of the ongoing algorithms-related research conducted here in the 
Department of Computer Science at the State University of New York at Stony Brook. 
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Practical Algorithm Design -- User Feedback 

User Feedback 
This page allows users to comment on issues related to the Practical Algorithm Design website. 
Comments on the website, the upcoming book, implementations, and problems are all welcome, and will 
be posted on a separate page for access by other users of this site. 

To view comments left by other users, select: 

●     User Comments 

To leave a comment of your own, please fill out the following form: 

E-mail address: 

 

Subject:  

Enter your comments below: 

 

  
Return to the home page 

If you have problems with this page, please send E-mail to: 
algorith@cs.sunysb.edu 
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Goldberg's Network Optimization Codes 

Goldberg's Network Optimization Codes 

The highest performance codes available for such network optimization problems as matching, shortest 
paths, and network flow have been developed by Andrew Goldberg and his collaborators. All are written 
in C. Their codes are available by ftp for non-commercial use, although a license is required for 
commercial use. For information on obtaining the codes, check out Andrew Goldberg's WWW page, 
http://www.neci.nj.nec.com/homepages/avg.html 

Their implementations of both Dijkstra and Bellman-Ford's algorithms for finding shortest paths in 
graphs is SPLIB, developed by Cherkassky, Goldberg, and Radzik. They report solving instances with 
over one million vertices in under two minutes on a Sun Sparc-10 workstation. 

Their code for finding a maximum cardinality bipartite matching of maximum weight shortest paths in 
graphs is CSA, developed by Goldberg and Kennedy. This code is based on a cost-scaling network flow 
algorithms. Their running times depend upon the density of the networks and weight distributions, but 
they report solving instances with over 30,000 vertices in a few minutes on a Sun Sparc-2 workstation. 

Their code for solving maximum-flow in graphs is PRF, developed by Cherkassky and Goldberg. They 
report solving instances with over 250,000 vertices in under two minutes on a Sun Sparc-10 workstation. 
For minimum-cost max-flow, the higher performance code available is CS, capable of solving instances 
of over 30,000 vertices in a few minutes on Sun Sparc-2 workstations. 

●     Andrew Goldberg's home page 

Problem Links 

●     Network Flow (10) 
●     Matching (9) 
●     Shortest Path (9) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 23, 1997. 

file:///E|/WEBSITE/IMPLEMEN/GOLDBERG/IMPLEMEN.HTM [19/1/2003 1:36:37]

http://www.neci.nj.nec.com/homepages/avg.html
mailto:algorith@cs.sunysb.edu


LEDA - A Library of Efficient Data Types and Algorithms 

LEDA - A Library of Efficient Data Types and 
Algorithms 

LEDA ("Library of Efficient Data types and Algorithms") has been developing since 1988 under the 
efforts of a group at the Max Planck Institut in Saarbrucken Germany (including Kurt Melhorn, Stefan 
Naher, Stefan Schirra, Christian Uhrig, and Christoph Burnikel). The success of LEDA has been a direct 
result of a continuous resource investment on the part of its algorithmically sophisticated development 
team. 

Implemented in C++ using templates, LEDA may be compiled on a wide range of systems (older 
compilers may not support templates, but most new C++ compilers provide facilities to implement this 
feature). The standard distribution contains source code, installation information, and a complete user's 
manual. Please note that LEDA is not in the public domain , but may be used freely for research and 
teaching. Commercial licenses are availabe through the LEDA home page. 

LEDA comprises an extensive collection of data structures and types. Libraries of algorithms using these 
data types are provided, with examples illustrating the ease with which algorithmic tasks may be 
accomplished given the LEDA data types. 

●     Download LEDA Files (German site) 
●     Download LEDA files (local site) 
●     Go to LEDA Home Page 

Problem Links 

●     Dictionaries (10) 
●     Graph Data Structures (10) 
●     Priority Queues (9) 
●     Connected Components (8) 
●     Robust Geometric Primitives (8) 
●     Intersection Detection (7) 
●     Maintaining Line Arrangements (7) 
●     Matching (7) 
●     Planarity Detection and Embedding (7) 
●     Point Location (7) 
●     Range Search (7) 
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LEDA - A Library of Efficient Data Types and Algorithms 

●     Searching (7) 
●     Shortest Path (7) 
●     Topological Sorting (7) 
●     Convex Hull (6) 
●     Minimum Spanning Tree (6) 
●     Nearest Neighbor Search (6) 
●     Transitive Closure and Reduction (6) 
●     Triangulation (6) 
●     Voronoi Diagrams (6) 
●     Generating Graphs (5) 
●     Arbitrary Precision Arithmetic (5) 
●     Network Flow (5) 
●     Set Data Structures (5) 
●     Graph Partition (4) 
●     Matrix Multiplication (4) 
●     Random Number Generation (4) 
●     Solving Linear Equations (3) 
●     Determinants and Permanents (2) 
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Discrete Optimization Methods 

Discrete Optimization Methods 

The Pascal procedures available in this archive are taken with permission from Discrete Optimization 
Algorithms with Pascal Programs by Maciej M. Syslo, Narsingh Deo, and Janusz S. Kowalik. This text 
was published in 1983 by Prentice-Hall, Inc., Englewood Cliffs, NJ. To our knowledge these programs 
are available nowhere else on the Internet. 

The field of discrete optimization (as viewed by the authors of the text above) consists of the areas of 
linear and integer programming, cover problems, knapsack problems, graph theory, network-flow 
problems, and scheduling. Their text covers these areas, using Pascal programs to elucidate methods of 
attacking discrete optimization problems. Those programs are downloadable from this site (see the 
previous page). 

Some notes on the programs themselves 

The methods used in the programs tend to speak for themselves, however for in-depth coverage of the 
problems and algorithms it is advised that a copy of the text be obtained. Many of the data types 
(particularly array data types) used in the Pascal procedures are assumed to be declared elsewhere (these 
are more "procedures" than complete programs), and are explicitly named only in the text. As a general 
rule, however, a naming convention is followed which should clear up most ambiguities. 

An array of integers which has indices ranging from 1 through N, which would be declared 
ARRAY[1..N] OF INTEGER , will be denoted by the data-type ARRN . Similarly, a two-dimensional 
array of integers which would be declared in Pascal as ARRAY[1..N, 1..M] OF INTEGER will be 
denoted by the data-type ARRNM in the procedures given. 

●     Download files (local site) 
●     Files with driver programs and datafiles (local site) 
●     Index of files in this distribution 

Problem Links 

●     Set Cover (5) 
●     Set Packing (5) 
●     Shortest Path (5) 
●     Traveling Salesman Problem (5) 
●     Knapsack Problem (4) 
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Discrete Optimization Methods 

●     Network Flow (4) 
●     Job Scheduling (4) 
●     Vertex Coloring (4) 
●     Linear Programming (3) 
●     Matching (3) 
●     Minimum Spanning Tree (3) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 28, 1997. 

file:///E|/WEBSITE/IMPLEMEN/SYSLO/IMPLEMNT.HTM (2 of 2) [19/1/2003 1:36:39]

mailto:algorith@cs.sunysb.edu


Netlib / TOMS -- Collected Algorithms of the ACM 

Netlib / TOMS -- Collected Algorithms of the ACM 

Netlib/TOMS -- Collected Algorithms of the ACM 

An early mechanism for the distribution of useful implementations of algorithms was CALGO , the 
Collected Algorithms of the ACM. It first appeared in Communications of the ACM in 1960, covering 
such famous algorithms as Floyd's linear-time build heap algorithm. More recently, it has been the 
province of ACM Transactions on Mathematical Software. Each algorithm/implementation is described 
in a brief journal article, with the implementation validated and collected. 

A total of 750 algorithms have appeared to date. Most of the codes are in Fortran, and of interest in 
numerical computing, although several interesting combinatorial algorithms have slithered into CALGO. 
Since the implementations have been refereed, presumably they are more reliable than most freely 
available software. All the implementations below are available by ftp or WWW from Netlib. Algorithms 
of combinatorial interest include: 

●     Bandwidth -- 508 509 529 582 
●     Convex Hull -- 523 
●     Cryptography -- 536 
●     Decision Trees -- 606 
●     Fourier Transforms -- 545 
●     Generating Partitions -- 403 
●     Generating Subsets -- 515 
●     Geometric Primitives -- 550 
●     Hamiltonian Cycle -- 595 
●     High Precision Arithmetic -- 693 
●     Knapsack -- 632 
●     Linear Programming -- 551 552 559 
●     Matching -- 548 575 
●     Matrix Inversion -- 645 
●     Minimum Cut (facility location) -- 558 
●     Minimum Spanning Trees -- 479 613 
●     Priority Queues -- 561 
●     Random Numbers -- 488 599 712 
●     Scheduling -- 520 
●     Shortest Path -- 562 
●     Solving Linear Equations -- 533 576 578 
●     Sorting -- 410 505 
●     Sparse Matrix -- 601 
●     Text Compression - 673 
●     Traveling Salesman Problem -- 608 750 
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Netlib / TOMS -- Collected Algorithms of the ACM 

●     Triangulation -- 624 
●     Unconstrained Optimization -- 500 566 611 630 702 734 739 744 

A bibliography and keywords appear in Algorithm 620. 

●     Collected Algorithms of the ACM 
●     Link to TOMS distribution 
●     Link to Netlib 

Problem Links 

●     Bandwidth Reduction (9) 
●     Constrained and Unconstrained Optimization (8) 
●     Solving Linear Equations (7) 
●     Discrete Fourier Transform (6) 
●     Generating Partitions (6) 
●     Hamiltonian Cycle (6) 
●     Knapsack Problem (6) 
●     Matrix Multiplication (6) 
●     Random Number Generation (6) 
●     Traveling Salesman Problem (6) 
●     Arbitrary Precision Arithmetic (5) 
●     Minimum Spanning Tree (5) 
●     Text Compression (5) 
●     Linear Programming (4) 
●     Job Scheduling (4) 
●     Shortest Path (4) 
●     Sorting (4) 
●     Triangulation (4) 
●     Convex Hull (3) 
●     Cryptography (3) 
●     Generating Subsets (3) 
●     Matching (3) 
●     Priority Queues (3) 
●     Voronoi Diagrams (3) 
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Netlib / TOMS -- Collected Algorithms of the ACM 
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Xtango and Polka Algorithm Animation Systems 

Xtango and Polka Algorithm Animation Systems 

XTANGO is a general purpose algorithm animation system, developed by John Stasko of Georgia Tech, 
that supports programmers developing color, real-time, 2 & 1/2 dimensional, smooth animations of their 
own algorithms and programs. The focus of the system is on ease-of-use. XTANGO utilizes the path-
transition animation paradigm which helps move animation design to an abstract, high level. 
Programmers need not be graphics experts to develop their own animations. 

XTANGO is implemented on top of UNIX and the X11 Window System. It can be run on either color or 
black-and-white monitors. XTANGO is available for use via anonymous ftp from ftp.cc.gatech.edu in 
directory pub/people/stasko. 

Included with the XTANGO distribution is a large collection of animations. Several of which are quite 
fun to watch. My favorites include: 

●     AVL trees (avl) 
●     Binomial heaps (binoheap) 
●     Boyer-Moore string matching (boyer) 
●     Bin Packing (bpack) 
●     Bubble sort (bsort) 
●     Convex Hull (conhull) 
●     Fast Fourier Transform (fft) 
●     Fibonacci heaps (fiboheap) 
●     Heapsort (heap) 
●     Knight's tour (knight) 
●     K-selection (ksel) 
●     Eight Queens (queens) 
●     Quicksort (quicksort) 
●     Radix sort (radix) 
●     Treaps (treap) 

The basic process of animation consists of implementing the algorithm in C (another language can be 
used, but it must just produce a trace file which is read by a C program driver) and then deciding on the 
important events to be portrayed during the execution of the algorithm. These events then activate 
animation routines implemented in a separate file using the XTANGO animation package to create and 
manipulate objects (circles, squares, lines, and so on). Transitions on objects include movement, color 
change, resizing, and filling, as well as others. For example, the animation for binary search consists of a 
series of rectangles, each representaing one of the elements being searched. A bouncing circle hits the 
current dividing element, which changes color. The ball then bounces to the next dividing element and 
continues to do this until the desired element has been found. To learn more about XTANGO, see the 
September 1990 issue of IEEE Computer which has an article about the TANGO system, a ancestor of 
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Xtango and Polka Algorithm Animation Systems 

XTANGO. 

POLKA is a general purpose animation system that is particularly well-suited to building animations of 
programs, algorithms and computations, especially parallel computations. POLKA supports color, real-
time, 2 & 1/2 dimensional, smooth animations. The focus of the system is on a balance of power and ease-
of-use. POLKA provides its own high-level abstractions to make the creation of animations easier and 
faster than with many other systems. Programmers need not be graphics experts to develop their own 
animations. POLKA also includes a hot new interactive front-end called SAMBA that can be used to 
generate animations from any type of program that can generate ASCII. 

POLKA is implemented in C++ on top of UNIX and the X11 Window System, and it requires the Motif 
or Athena widget set. (Because it supports Athena widgets, if you're running Linux, you should be able to 
get Polka to build there.) It can be run on either color (much better) or black-and-white monitors. POLKA 
is available for use via anonymous ftp from ftp.cc.gatech.edu under pub/people/stasko. 

●     Link to Xtango distribution 
●     Download Files (local site) 

Problem Links 

●     Sorting (6) 
●     Dictionaries (5) 
●     Convex Hull (4) 
●     Median and Selection (4) 
●     Minimum Spanning Tree (4) 
●     Priority Queues (4) 
●     Shortest Path (4) 
●     Vertex Coloring (4) 
●     Bin Packing (3) 
●     Discrete Fourier Transform (3) 
●     Hamiltonian Cycle (3) 
●     Random Number Generation (3) 
●     String Matching (3) 
●     Traveling Salesman Problem (3) 
●     Connected Components (2) 
●     Matrix Multiplication (2) 
●     Topological Sorting (2) 
●     Finite State Machine Minimization (1) 
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Xtango and Polka Algorithm Animation Systems 

●     Intersection Detection (1) 
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Combinatorica 

Combinatorica 

Combinatorica is a collection of over 230 algorithms for discrete mathematics and graph theory written 
in Mathematica. These routines have been designed to work together, enabling one to experiment with 
discrete structures and build prototype applications. Combinatorica has been widely used for both 
research and education. 

Although (in my totally unbiased opinion) Combinatorica is more comprehensive and better integrated 
than other libraries of combinatorial algorithms, it is also the slowest such system available. Credit for all 
of these properties is largely due to Mathematica, which provides a very high-level, functional, 
interpreted, and thus inefficient programming language. Combinatorica is best for finding quick solutions 
to small problems, and (if you can read Mathematica code) as a terse exposition of algorithms for 
translation into other languages. 

Combinatorica is best described in my book: 

Steven S. Skiena, Implementing Discrete Mathematics: Combinatorics and Graph Theory in 
Mathematica , Advanced Book Division, Addison-Wesley, Redwood City CA, June 1990. ISBN number 
0-201-50943-1. Japanese translation published by Toppan, Tokyo, July 1992. 

Combinatorica is included with the standard Mathematica distribution in the directory 
Packages/DiscreteMath/Combinatorica.m . It can also be obtained by anonymous ftp from 
ftp.cs.sunysb.edu in the directory pub/Combinatorica. For this FTP site with the latest version of 
Combinatorica, databases of interesting graphs, and related programs, click here 

●     Link to Combinatorica distribution 
●     Implementing Discrete Mathematics 
●     Download Files (local site) 

Problem Links 

●     Generating Graphs (8) 
●     Generating Partitions (7) 
●     Generating Permutations (7) 
●     Generating Subsets (7) 
●     Drawing Graphs Nicely (6) 
●     Drawing Trees (6) 
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Combinatorica 

●     Graph Data Structures (6) 
●     Determinants and Permanents (4) 
●     Edge Coloring (4) 
●     Edge and Vertex Connectivity (4) 
●     Transitive Closure and Reduction (4) 
●     Vertex Cover (4) 
●     Connected Components (3) 
●     Eulerian Cycle / Chinese Postman (3) 
●     Graph Isomorphism (3) 
●     Hamiltonian Cycle (3) 
●     Matching (3) 
●     Minimum Spanning Tree (3) 
●     Network Flow (3) 
●     Shortest Path (3) 
●     Topological Sorting (3) 
●     Traveling Salesman Problem (3) 
●     Vertex Coloring (3) 
●     Longest Common Substring (2) 
●     Planarity Detection and Embedding (2) 
●     Sorting (2) 
●     Clique (1) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Dec 20, 1996. 
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The Stanford GraphBase 

The Stanford GraphBase is a collection of programs and datasets which generate and manipulate graphs 
and networks. This package is the work of Donald Knuth at Stanford University, and the most recent 
version of this software is always available by anonymous ftp from the Computer Science Department at 
Stanford (see previous page for link information). 

The programs themselves are written in CWEB , which is a mix of the C programming language and 
Knuth's TEX typesetting language. To install and use this package, therefore, it is necessary to first 
download and install CWEB on your system. We have made CWEB and the GraphBase available on 
this site, as well as providing links to the original sites. 

Files in GraphBase which have the .dat extension are data files, including dictionary-type data, map 
distance data, data for reconstructing the painting of the Mona Lisa, football score data, and so on. Much 
of the emphasis in the example GraphBase programs is on novel uses for graphs (for instance 
constructing word ladders: "flour - floor - flood - blood - brood - broad - bread"), while implementing 
efficient algorithmic methods to manipulate graphs and networks in general. 

The text The Stanford GraphBase: A Platform for Combinatorial Computing is available from Addison-
Wesley Publishing Company (ISBN 0-201-54275-7), and is a helpful overview of the system. This book 
shows the recreational approach of the author to the field of algorithms while providing a useful 
GraphBase reference. 

●     Download GraphBase Files (Stanford site) 
●     Download CWEB Files (Stanford site) 
●     Download GraphBase and CWEB files (local site) 
●     Go to Stanford Computer Science Home Page 

Problem Links 

●     Generating Graphs (10) 
●     Graph Data Structures (6) 
●     Random Number Generation (6) 
●     Generating Partitions (5) 
●     Generating Permutations (5) 
●     Connected Components (4) 
●     Edge and Vertex Connectivity (4) 

file:///E|/WEBSITE/IMPLEMEN/GRAPHBAS/IMPLEMNT.HTM (1 of 2) [19/1/2003 1:36:43]
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●     Feedback Edge/Vertex Set (4) 
●     Hamiltonian Cycle (4) 
●     Matching (4) 
●     Minimum Spanning Tree (4) 
●     Cryptography (3) 
●     Shortest Path (3) 
●     Topological Sorting (3) 
●     Voronoi Diagrams (3) 
●     Priority Queues (2) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 23, 1996. 
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1.4.1 Connected Components 

1.4.1 Connected Components 

   

INPUT                    OUTPUT

Input Description: A directed or undirected graph G . A start vertex . 

Problem: Traverse each edge and vertex of the connected component containing . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 8) 
●     The Stanford GraphBase (C) (rating 4) 
●     GraphEd -- Graph Editor and Layout Program (C) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 2) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 2) 

file:///E|/WEBSITE/FILES/DFS_BFS4.HTM (1 of 2) [19/1/2003 1:36:43]



1.4.1 Connected Components 

Related Problems 

●     Edge and Vertex Connectivity 
●     Shortest Path 
●     Transitive Closure and Reduction 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 

file:///E|/WEBSITE/FILES/DFS_BFS4.HTM (2 of 2) [19/1/2003 1:36:43]

mailto:algorith@cs.sunysb.edu


1.5.9 Graph Isomorphism 

1.5.9 Graph Isomorphism 

   

INPUT                    OUTPUT

Input Description: Two graphs, g and h .} Problem: Find a (all) mappings f of the vertices of g to the 
vertices of h such that g and h are identical, ie. (x,y) is an edge of g iff (f(x),f(y)) is an edge of h . 

Implementations 

●     NAUTY -- Graph Isomorphism (C) (rating 10) 
●     Combinatorica (Mathematica) (rating 3) 

Related Problems 

●     Generating Graphs 
●     Shape Similarity 
●     Shortest Path 
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1.5.9 Graph Isomorphism 

●     String Matching 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.3 Matrix Multiplication 

1.2.3 Matrix Multiplication 

   

INPUT                    OUTPUT

Input Description: An x x y matrix A , and an y x z matrix B . 

Problem: The x x z matrix A x B . 

Implementations 

●     () (rating 7) 
●     Mathematica -- Assorted Routines (Mathematica) (rating 6) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 2) 

Related Problems 
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1.2.3 Matrix Multiplication 

●     Solving Linear Equations 
●     Shortest Path 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.14 Motion Planning 

1.6.14 Motion Planning 

   

INPUT                    OUTPUT

Input Description: A polygonal-shaped robot in a given starting position in a room containing 
polygonal obstacles, with a desired ending position t . 

Problem: Find the shortest path in the room taking to t without going through any of the obstacles. 

Implementations 

●     Joseph O'Rourke's Computational Geometry (C) (rating 3) 

Related Problems 

●     Intersection Detection 
●     Minkowski Sum 
●     Shortest Path 
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1.6.14 Motion Planning 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4.9 Network Flow 

1.4.9 Network Flow 

   

INPUT                    OUTPUT

Input Description: A graph G , where each edge (i,j) has a capacity c_{i,j} . A source node and sink 
node t . 

Problem: What is the maximum flow you can route from to t while respecting the capacity of each edge. 

Implementations 

●     Goldberg's Network Optimization Codes (C) (rating 10) 
●     DIMACS Implementation Challenges (FORTRAN) (rating 8) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 5) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 
●     Discrete Optimization Methods (Pascal) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     GraphEd -- Graph Editor and Layout Program (C) (rating 3) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 3) 
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1.4.9 Network Flow 

Related Problems 

●     Edge and Vertex Connectivity 
●     Graph Partition 
●     Linear Programming 
●     Matching 
●     Shortest Path 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.1.2 Priority Queues 

1.1.2 Priority Queues 

   

INPUT                    OUTPUT

Input Description: A set of records with numerical or otherwise totally ordered keys. 

Problem: Build and maintain a data structures for quickly inserting and deleting records, while 
maintaining quick access to the smallest or largest key in the set. 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 9) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 7) 
●     SimPack/Sim++ Simulation Toolkit (C++) (rating 7) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 
●     The Stanford GraphBase (C) (rating 2) 
●     DIMACS Implementation Challenges (FORTRAN) (rating 1) 
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1.1.2 Priority Queues 

Related Problems 

●     Dictionaries 
●     Median and Selection 
●     Shortest Path 
●     Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.5.10 Steiner Tree 

1.5.10 Steiner Tree 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . A subset of vertices T \in V . 

Problem: Find the smallest tree connecting all the vertices of T . 

Implementations 

●     Salowe's Rectilinear Steiner trees (C) (rating 8) 
●     PHYLIP -- inferring phylogenic trees (Pascal) (rating 7) 

Related Problems 

●     Minimum Spanning Tree 
●     Shortest Path 
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1.5.10 Steiner Tree 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4.5 Transitive Closure and Reduction 

1.4.5 Transitive Closure and Reduction 

   

INPUT                    OUTPUT

Input Description: A directed graph G=(V,E) . 

Problem: For transitive closure, construct a graph G'=(V,E') with edge (i,j) \in E' iff there is a directed 
path from i to j in G . For transitive reduction, construct a small graph G'=(V,E') with a directed path 
from i to j in G' iff (i,j) \in E . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Combinatorica (Mathematica) (rating 4) 

Related Problems 

●     Connected Components 
●     Shortest Path 
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1.4.5 Transitive Closure and Reduction 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 

file:///E|/WEBSITE/FILES/TRANSURE.HTM (2 of 2) [19/1/2003 1:36:47]

mailto:algorith@cs.sunysb.edu


About the Book -- The Algorithm Design Manual 

About the Book 

 

Most professional programmers are not well equipped to tackle algorithm design problems. The 
Algorithm Design Manual, written by Steven S. Skiena and published by Telos/Springer-Verlag is 
uniquely designed to provide access to combinatorial algorithms technology for computer professionals 
and students. This book is considerably different than other books on algorithms. Why? 

●     We reduce the design process to a sequence of questions to ask about the problem at hand. This 
provides a concrete path to take the non-expert from an initial problem statement to a reasonable 
solution. 

●     To provide a better perspective on how algorithm problems arise in the real world, we include a 
collection of `war stories', tales from our experience on real problems. The moral of these stories 
is that algorithm design and analysis is not just theory, but an important tool to be pulled out and 
used as needed. 

●     Since the practical person is usually looking for a program more than an algorithm, we provide 
pointers to solid implementations whenever they are available. We have collected these 
implementations on an enclosed CD-ROM and at the book WWW site, 
http://www.cs.sunysb.edu/~algorith for easy retrieval. With these implementations available, the 
critical aspect in algorithm design becomes properly modeling your application, instead of 
becoming intimate with the details of the actual algorithm. This focus permeates the entire book. 

●     Since finding out what is known about an algorithmic problem can be a difficult task, we provide 
a catalog of the 75 most important algorithmic problems as a major component of this book. By 
browsing through this catalog, the reader can quickly identify what their problem called, what is 
known about it, and how they should proceed to solve it. As an aid in problem identification, we 
include a pair of `before' and `after' pictures for each problem, illustrating the required input and 
output specifications. 

●     The algorithm catalog spans numerical problems and data structures as well as graph, string, and 
geometric algorithms. For each problem in the catalog, we provide an honest and convincing 
motivation showing how it arises in applications. If we could not find such an application, then the 
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About the Book -- The Algorithm Design Manual 

problem doesn't appear in this book. 

Equally important is what we do not do in this book. We do not stress the mathematical analysis of 
algorithms, leaving most of the analysis as informal arguments. You will not find a single theorem 
anywhere in this book. 

But what is a manual without software? This book comes with a substantial electronic supplement, a ISO-
9660 compatible, multiplatform CD-ROM, which can be viewed using Netscape, Microsoft Explorer, or 
any other WWW browser. This CD-ROM contains: 

●     A complete hypertext version of the full printed book. Indeed, the extensive cross-references 
within the text are best followed using the hypertext version. 

●     The source code and URLs for all cited implementations, mirroring the Algorithm Repository 
WWW site. Programs in C, C++, Fortran, and Pascal are included, providing an average of four 
different implementations for each algorithmic problem. 

●     Over 30 hours of audio lectures on the design and analysis of algorithms are provided, all keyed to 
on-line lecture notes. Following these lectures provides another approach to learning algorithm 
design techniques. 

Together, this book covers material sufficient for a standard Introduction to Algorithms course. Its 
assumes the reader has completed the equivalent of a second programming course, typically titled Data 
Structures or Computer Science II . Special textbook oriented-features include: 

●     In addition to standard pen-and-paper exercises, this book includes ``implementation challenges'' 
suitable for teams or individual students. These projects and the applied focus of the text can be 
used to provide a new laboratory focus to the traditional algorithms course. 

●     ``Take-home lessons'' at the beginning of each chapter emphasize the concepts to be gained from 
the chapter. 

●     This book stresses design over analysis. It is suitable for both traditional lecture courses, and the 
new ``active learning'' method, where the professor does not lecture instead guides student groups 
to solve real problems. The ``war stories'' provide a great introduction to the active learning 
method. 

●     A full set of lecture slides for teaching this course is available on the CD-ROM, keyed to unique 
on-line audio lectures covering a full semester algorithm course. 

``I have no doubt that it will become a classic the day it is published. It has all the right ingredients: rich 
contents, friendly, personal language, subtle humor, the right references, and a plethora of pointers to 
resources.'' 
-- P. Takis Metaxas, Wellesley College. 

``A major theme that runs through the book is that the most important technique to solve an algorithmic 
problem from the real world is to learn how to model the problem well. I did not believe this before; the 
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About the Book -- The Algorithm Design Manual 

book did an admirable job of convincing me that there is considerable truth in it.'' 
-- Giri Narasimhan, The University of Memphis. 

``The questions on problem solving are good enough that they ought to be talked about in every 
programming class in the undergraduate curriculum.'' 
-- Ron Danielson, Santa Clara University. 

Check out the preface and table of contents for more information. You may order this book, and are 
encouraged to do so. You might also be interested in my previous book, Implementing Discrete 
Mathematics . 

Please leave your name and address to receive additional information about the book and notification of 
significant upgrades to this site when they occur. 

If your WWW client does not support forms, please send an e-mail to algorith@cs.sunysb.edu 
with your name, e-mail address, and mailing address for further information. 

First Name:  

Last Name :  

E-mail :  

Company Name :  

Number and Street :  

City :  

State :  

Zip :  

Phone :  

  
Return to the home page 

If you have problems with this page, please send E-mail to: 
algorith@cs.sunysb.edu 
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Adaptive Simulated Annealing 

Adaptive Simulated Annealing 

Adaptive Simulated Annealing (ASA) is a C language package which provides the framework and 
mechanisms for optimization of complex systems using simulated annealing. Users may incorporate 
these routines into existing C programs, or build applications from the sample ASA applications. Most 
parameters are user-definable -- allowing for highly customizable optimization algorithms. 

The code is maintained by Lester Ingber . 

●     Download ASA files (ingber.com) 
●     Link to Lester Ingber's ASA page 
●     Download Files (local site) 

Problem Links 

●     Constrained and Unconstrained Optimization (6) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Mar 11, 1996. 
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Genocop -- Optimization via Genetic Algorithms 

Genocop -- Optimization via Genetic Algorithms 

Genocop, by Zbigniew Michalewicz, is a genetic algorithm-based program for constrained and 
unconstrained optimization, written in C. The Genocop system aims at finding a global optimum 
(minimum or maximum: this is one of the input parameters) of a function; additional linear constraints 
(equations and inequalities) can be specified as well. 

The current version of Genocop should run without changes on any BSD-UN*X system (preferably on a 
Sun SPARC machine). This program can also be run on a DOS system. 

This software is copyright by Zbigniew Michalewicz. Permission is granted to copy and use the software 
for scientific, noncommercial purposes only. The software is provided "as is", i.e., without any 
warranties. 

●     Original FTP site 
●     Download Files (local site) 

Problem Links 

●     Constrained and Unconstrained Optimization (5) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Aug 9, 1996. 
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1.2.6 Linear Programming 

1.2.6 Linear Programming 

   

INPUT                    OUTPUT

Input Description: A set of linear inequalities, a linear objective function. 

Problem: Find the assignment to the variables maximizing the objective function while satisfying all 
inequalities. 

Implementations 

●     LP_SOLVE: Linear Programming Code (C) (rating 9) 
●     Linprog -- low dimensional linear programming (C) (rating 4) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 4) 
●     Discrete Optimization Methods (Pascal) (rating 3) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 2) 

Related Problems 

file:///E|/WEBSITE/FILES/LINEMING.HTM (1 of 2) [19/1/2003 1:36:50]



1.2.6 Linear Programming 

●     Knapsack Problem 
●     Network Flow 
●     Constrained and Unconstrained Optimization 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.7 Random Number Generation 

1.2.7 Random Number Generation 

   

INPUT                    OUTPUT

Input Description: Nothing, or perhaps a seed. 

Problem: Generate a sequence of random integers. 

Implementations 

●     SimPack/Sim++ Simulation Toolkit (C++) (rating 7) 
●     The Stanford GraphBase (C) (rating 6) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 4) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 3) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 

Related Problems 
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1.2.7 Random Number Generation 

●     Generating Partitions 
●     Generating Permutations 
●     Generating Subsets 
●     Constrained and Unconstrained Optimization 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.10 Satisfiability 

1.3.10 Satisfiability 

   

INPUT                    OUTPUT

Input Description: A set of clauses in conjunctive normal form. 

Problem: Is there a truth assignment to the boolean variables such that every clause is satisfied? 

Implementations 

●     DIMACS Implementation Challenges (FORTRAN) (rating 8) 
●     POSIT - Propositional Satisfiability Testbed (C) (rating 8) 

Related Problems 

●     Finite State Machine Minimization 
●     Traveling Salesman Problem 
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1.3.10 Satisfiability 

●     Constrained and Unconstrained Optimization 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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Fortune's 2D Voronoi diagram code 

Fortune's 2D Voronoi diagram code 

This is a fairly widely-used 2D code for Voronoi diagrams and Delauney triangulations, written in C by 
Steve Fortune of Bell Laboratories. It is based on Fortune's sweepline algorithm for Voronoi diagrams, 
and is likely to be the right code to try first. 

●     Netlib Voronoi source directory 
●     Steve Fortune's home page 
●     Download Files (local site) 

Problem Links 

●     Voronoi Diagrams (9) 
●     Triangulation (7) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 23, 1996. 
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Qhull - higher dimensional convex hull program 

Qhull - higher dimensional convex hull program 

Qhull is a general dimension code for computing convex hulls, Delaunay triangulations, Voronoi 
vertices, furthest-site Voronoi vertices, and halfspace intersections. It appears to be the choice for higher-
dimensional convex hull applications. 

Qhull is written in C, and implements the divide-and-conquer Quickhull algorithm. It is fast and round-
off errors from floating point arithmetic. Qhull has been widely used in scientific applications and has a 
well-maintained 

●     home page . 

●     Qhull home page 
●     Latest news 
●     Download Files (local site) 

Problem Links 

●     Convex Hull (10) 
●     Voronoi Diagrams (7) 
●     Triangulation (6) 
●     Intersection Detection (5) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 8, 1997. 
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Joseph O'Rourke's Computational Geometry 

Joseph O'Rourke's Computational Geometry 

Joseph O'Rourke is Olin Professor of Computer Science at Smith College in Northampton, 
Massachusetts. His text Computational Geometry in C has become one of the definitive computational 
geometry resources. The programs coded in the text have been made freely available by anonymous ftp 
from Smith College and have been included at this site as well. 

In this distribution are standard C language routines for simple computational geometric methods 
(determining whether a point lies inside a polygon, for instance) as well as robust implementations of 
complex computational geometry algorithms. Addressed are problems in motion planning, nearest 
neighbor determination (through the use of Delaunay triangulations and Voronoi diagrams), polygon 
intersection, convex hull computation, and polygon triangulation. 

●     Download Files (Smith College) 
●     Download Files (local site) 
●     Go to Joseph O'Rourke 's Home Page 

Problem Links 

●     Convex Hull (6) 
●     Robust Geometric Primitives (6) 
●     Intersection Detection (5) 
●     Nearest Neighbor Search (5) 
●     Voronoi Diagrams (4) 
●     Motion Planning (3) 
●     Point Location (3) 
●     Triangulation (3) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 23, 1996. 
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1.6.5 Nearest Neighbor Search 

1.6.5 Nearest Neighbor Search 

   

INPUT                    OUTPUT

Input Description: A set S of n points in d dimensions; a query point q . 

Problem: Which point in S is closest to q ? 

Implementations 

●     Ranger - Nearest Neighbor Search in Higher Dimensions (C) (rating 7) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 5) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 

Related Problems 

file:///E|/WEBSITE/FILES2/NEARHBOR.HTM (1 of 2) [19/1/2003 1:36:53]



1.6.5 Nearest Neighbor Search 

●     Kd-Trees 
●     Point Location 
●     Range Search 
●     Voronoi Diagrams 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.7 Point Location 

1.6.7 Point Location 

   

INPUT                    OUTPUT

Input Description: A decomposition of the plane into polygonal regions, and a query point q . 

Problem: Which region contains the query point q ? 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Arrange - maintainance of arrangements with point location (C) (rating 6) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 3) 

Related Problems 
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1.6.7 Point Location 

●     Kd-Trees 
●     Maintaining Line Arrangements 
●     Nearest Neighbor Search 
●     Range Search 
●     Voronoi Diagrams 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.10 Medial-Axis Transformation 

1.6.10 Medial-Axis Transformation 

   

INPUT                    OUTPUT

Input Description: A polygon or polyhedron P . 

Problem: What is the set of points within P which have more than one closest point on the boundary of 
P ? 

Implementations 

●     Skeletonization Software (2-D) (C) (rating 9) 

Related Problems 

●     Minkowski Sum 
●     Shape Similarity 
●     Voronoi Diagrams 
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1.6.10 Medial-Axis Transformation 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.3 Triangulation 

1.6.3 Triangulation 

   

INPUT                    OUTPUT

Input Description: A set of points, or a polyhedron 

Problem: Partition the interior of the point set or polyhedron into triangles. 

Implementations 

●     Triangle: A Two-Dimensional Quality Mesh Generator (C) (rating 9) 
●     GEOMPACK - triangulation and convex decomposition codes (FORTRAN) (rating 8) 
●     Fortune's 2D Voronoi diagram code (C) (rating 7) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Qhull - higher dimensional convex hull program (C) (rating 6) 
●     GraphEd -- Graph Editor and Layout Program (C) (rating 4) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 4) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 3) 
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1.6.3 Triangulation 

Related Problems 

●     Polygon Partitioning 
●     Voronoi Diagrams 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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Nijenhuis and Wilf: Combinatorial Algorithms 

Nijenhuis and Wilf: Combinatorial Algorithms 

Nijenhuis and Wilf's Combinatorial Algorithms , published by Academic Press in 1978, specializes in 
algorithms for constructing basic combinatorial objects such as permutations, subsets, and partitions; 
both randomly and sequentially. Such algorithms are often very short but hard to locate and usually are 
surprisingly subtle. Fortran programs for all of the algorithms are provided, as well as a discussion of the 
theory behind each of them. The programs are usually short enough that it is reasonable to translate 
directly into a more modern programming language, as I did with many of them in writing 
Combinatorica . Descriptions of more recent algorithms for several problems, without code, are provided 
in Wilf's Combinatorial Algorithms, an update , published by SIAM in 1989. 

These programs are now available here on our algorithm repository WWW site. We tracked them down 
from Neil Sloane, who had them on a magnetic tape where the authors did not! In their book, Nijenhuis 
and Wilf set the proper standard of statistically testing the output distribution of each of the random 
generators to establish that they really appear uniform. We encourage you to do the same before using 
these programs to verify that nothing has been lost in transit. 

●     Link to Wilf's Home Page -- many interesting things 
●     Download Files (local site) 
●     Files with driver programs and test data (local site) 

Problem Links 

●     Generating Partitions (8) 
●     Generating Permutations (8) 
●     Generating Subsets (8) 
●     Hamiltonian Cycle (5) 
●     Determinants and Permanents (4) 
●     Generating Graphs (4) 
●     Eulerian Cycle / Chinese Postman (3) 
●     Minimum Spanning Tree (3) 
●     Network Flow (3) 
●     Sorting (3) 
●     Vertex Coloring (3) 
●     Connected Components (2) 

file:///E|/WEBSITE/IMPLEMEN/WILF/IMPLEMEN.HTM (1 of 2) [19/1/2003 1:36:55]
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Nijenhuis and Wilf: Combinatorial Algorithms 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 28, 1997. 
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1.5.5 Hamiltonian Cycle 

1.5.5 Hamiltonian Cycle 

   

INPUT                    OUTPUT

Input Description: A graph G = (V,E) . 

Problem: Find an ordering of the vertices such that each vertex is visited exactly once. 

Implementations 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 5) 
●     The Stanford GraphBase (C) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 

Related Problems 
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1.5.5 Hamiltonian Cycle 

●     Eulerian Cycle / Chinese Postman 
●     Traveling Salesman Problem 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4.6 Matching 

1.4.6 Matching 

   

INPUT                    OUTPUT

Input Description: A (weighted) graph G=(V,E) . 

Problem: Find the largest size set of edges S \in E such that each vertex in V is incident to at most one 
edge of S . 

Implementations 

●     DIMACS Implementation Challenges (FORTRAN) (rating 9) 
●     Goldberg's Network Optimization Codes (C) (rating 9) 
●     BIPM -- Bipartite Matching Codes (C) (rating 8) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     The Stanford GraphBase (C) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     Discrete Optimization Methods (Pascal) (rating 3) 
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1.4.6 Matching 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 2) 

Related Problems 

●     Determinants and Permanents 
●     Eulerian Cycle / Chinese Postman 
●     Network Flow 
●     Job Scheduling 
●     Set Cover 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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A compendium of NP optimization problems 

   

A compendium of NP optimization 
problems 
Pierluigi Crescenzi , piluc@dsi.uniroma1.it and Viggo Kann , viggo@nada.kth.se 

This is a preliminary version (April 1997) of the catalog of NP optimization problems. Please send any 
comment or suggestion to one of the two authors. A printed version of the compendium will appear in: 

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti Spaccamela, A., and Protasi, M., 
Approximate solution of NP-hard optimization problems. Springer-Verlag, 1997/1998 

The latest version of the compendium is available on WWW at 
http://www.nada.kth.se/theory/compendium/ . There you will also find WWW forms to report new 
problems, new results on existing problems and errors. 

Abstract: 

Due to the fact that no NP-complete problem can be solved in polynomial time (unless P=NP), many 
approximability results (both positive and negative) of NP-hard optimization problems have appeared in 
the technical literature. In this compendium, we collect a large number of these results. 

  
●     Introduction 

❍     NPO Problems: Definitions and Preliminaries 
❍     Approximate Algorithms and Approximation Classes 
❍     Completeness in Approximation Classes 
❍     A list of NPO problems 
❍     Improving the compendium 

●     Graph Theory 
❍     Covering and Partitioning 
❍     Subgraphs and Supergraphs 
❍     Vertex Ordering 
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A compendium of NP optimization problems 

❍     Iso- and Other Morphisms 
❍     Miscellaneous 

●     Network Design 
❍     Spanning Trees 
❍     Cuts and Connectivity 
❍     Routing Problems 
❍     Flow Problems 
❍     Miscellaneous 

●     Sets and Partitions 
❍     Covering, Hitting, and Splitting 
❍     Weighted Set Problems 

●     Storage and Retrieval 
❍     Data Storage 
❍     Compression and Representation 
❍     Miscellaneous 

●     Sequencing and Scheduling 
❍     Sequencing on One Processor 
❍     Multiprocessor Scheduling 
❍     Shop Scheduling 
❍     Miscellaneous 

●     Mathematical Programming 
●     Algebra and Number Theory 
●     Games and Puzzles 
●     Logic 
●     Program Optimization 
●     Miscellaneous 
●     References 
●     Index 
●     About this document ... 

Viggo Kann 
Mon Apr 21 13:07:14 MET DST 1997 
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1.6.9 Bin Packing 

1.6.9 Bin Packing 

   

INPUT                    OUTPUT

Input Description: A set of n items with sizes d_1,...,d_n . A set of m bins with capacity c_1,...,c_m . 

Problem: How do you store the set of items using the fewest number of bins? 

Implementations 

●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 

Related Problems 

●     Knapsack Problem 
●     Job Scheduling 
●     Set Packing 

file:///E|/WEBSITE/FILES2/BIN_KING.HTM (1 of 2) [19/1/2003 1:36:58]



1.6.9 Bin Packing 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.12 Simplifying Polygons 

1.6.12 Simplifying Polygons 

   

INPUT                    OUTPUT

Input Description: A polygon or polyhedron p , with n vertices. 

Problem: Find a polygon or polyhedron p' with n' vertices, where the shape of p' is close to p while n' 
<< n . 

Implementations 

●     Skeletonization Software (2-D) (C) (rating 5) 

Related Problems 

●     Convex Hull 
●     Discrete Fourier Transform 
●     Minkowski Sum 
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1.6.12 Simplifying Polygons 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.13 Shape Similarity 

1.6.13 Shape Similarity 

   

INPUT                    OUTPUT

Input Description: Two polygonal shapes, P_1 and P_2 . 

Problem: How similar are P_1 and P_2 ? 

Implementations 

●     SNNS - Stuttgart Neural Network Simulator (C) (rating 7) 
●     Shape similarity testing via turning functions (C) (rating 6) 

Related Problems 

●     Graph Isomorphism 
●     Medial-Axis Transformation 

file:///E|/WEBSITE/FILES2/SHAPRITY.HTM (1 of 2) [19/1/2003 1:36:59]



1.6.13 Shape Similarity 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.11 Polygon Partitioning 

1.6.11 Polygon Partitioning 

   

INPUT                    OUTPUT

Input Description: A polygon or polyhedron P . 

Problem: How can P be partitioned into a small number of simple (typically convex) pieces? 

Implementations 

●     GEOMPACK - triangulation and convex decomposition codes (FORTRAN) (rating 8) 

Related Problems 

●     Set Cover 
●     Triangulation 
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1.6.11 Polygon Partitioning 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.4.3 Minimum Spanning Tree 

1.4.3 Minimum Spanning Tree 

   

INPUT                    OUTPUT

Input Description: A graph G = (V,E) with weighted edges. 

Problem: The subset of E of G of minimum weight which forms a tree on V . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 6) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 5) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 5) 
●     The Stanford GraphBase (C) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 3) 
●     Discrete Optimization Methods (Pascal) (rating 3) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 3) 
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1.4.3 Minimum Spanning Tree 

Related Problems 

●     Set Data Structures 
●     Steiner Tree 
●     Traveling Salesman Problem 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.6.15 Maintaining Line Arrangements 

1.6.15 Maintaining Line Arrangements 

   

INPUT                    OUTPUT

Input Description: A set of lines and line segments l_1,...,\l_n . 

Problem: What is the decomposition of the plane defined by l_1,...,\l_n ? 

Implementations 

●     Arrange - maintainance of arrangements with point location (C) (rating 9) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 

Related Problems 

●     Robust Geometric Primitives 
●     Intersection Detection 
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1.6.15 Maintaining Line Arrangements 

●     Point Location 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.7 Generating Graphs 

1.3.7 Generating Graphs 

   

INPUT                    OUTPUT

Input Description: Parameters describing the desired graph, such as the number of vertices n , the 
number of edges m , or the edge probability p . 

Problem: Generate (1) all, or (2) a random, or (3) the next graph satisfying the parameters. 

Implementations 

●     The Stanford GraphBase (C) (rating 10) 
●     Combinatorica (Mathematica) (rating 8) 
●     Frank Ruskey's Combinatorial Generation Resources (Pascal) (rating 7) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 5) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 4) 

Related Problems 
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1.3.7 Generating Graphs 

●     Generating Permutations 
●     Graph Isomorphism 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.11 Discrete Fourier Transform 

1.2.11 Discrete Fourier Transform 

   

INPUT                    OUTPUT

Input Description: A sequence of n real or complex values h_i , 0 \leq i \leq n-1 , sampled at uniform 
intervals from a function h . 

Problem: The discrete Fourier transform H of h , H_m = \sum_{k=0}^{n-1} h_k e^{2 \pi i k m / n} , 0 
\leq m \leq n-1 . 

Implementations 

●     FFTPACK -- Fourier Transform Library (C) (rating 10) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 2) 
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1.2.11 Discrete Fourier Transform 

Related Problems 

●     Arbitrary Precision Arithmetic 
●     Simplifying Polygons 
●     Text Compression 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.5.8 Edge Coloring 

1.5.8 Edge Coloring 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . 

Problem: What is the smallest set of colors needed to color the edges of E such that no two edges with 
the same color share a vertex in common? 

Implementations 

●     Stony Brook Project Implementations (C++) (rating 6) 
●     Combinatorica (Mathematica) (rating 4) 
●     Joe Culberson's Graph Coloring Resources (C) (rating 4) 
●     Mike Trick's Graph Coloring Resources (C) (rating 4) 

Related Problems 
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1.5.8 Edge Coloring 

●     Job Scheduling 
●     Vertex Coloring 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.3 Median and Selection 

1.3.3 Median and Selection 

   

INPUT                    OUTPUT

Input Description: A set of n numbers or keys. 

Problem: Find the item which is smaller than half of the items and bigger than half the items. 

Implementations 

●     Handbook of Algorithms and Data Structures (Pascal) (rating 6) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 

Related Problems 

●     Priority Queues 
●     Sorting 

file:///E|/WEBSITE/FILES/MEDIAN03.HTM (1 of 2) [19/1/2003 1:37:03]



1.3.3 Median and Selection 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.1 Sorting 

1.3.1 Sorting 

   

INPUT                    OUTPUT

Input Description: A set of n items. 

Problem: Arrange the items in increasing order. 

Implementations 

●     Handbook of Algorithms and Data Structures (Pascal) (rating 7) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 7) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 6) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 5) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 4) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 3) 
●     Combinatorica (Mathematica) (rating 2) 

file:///E|/WEBSITE/FILES/SORTING2.HTM (1 of 2) [19/1/2003 1:37:03]



1.3.1 Sorting 

Related Problems 

●     Convex Hull 
●     Dictionaries 
●     Median and Selection 
●     Priority Queues 
●     Searching 
●     Topological Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 

file:///E|/WEBSITE/FILES/SORTING2.HTM (2 of 2) [19/1/2003 1:37:03]

mailto:algorith@cs.sunysb.edu


Plugins for use with the CDROM 

Plug-Ins Available On This CD-ROM: 
One of these plug-ins is required to play the audio files provided with the Lecture Notes on the CD. Click 
on the appropriate plug-in on the list below, save it onto your local hard drive, and run it! The instalation 
program should plug it into your browser. 

●     Shockwave Player Plug-In, Win95/NT 

●     Shockwave Player Plug-In, Windows 3.11 

●     Shockwave Player Plug-In, Mac 68k 

●     Shockwave Player Plug-In, Mac PowerPC 

 

file:///E|/INSTALL/PLUGINS.HTM [19/1/2003 1:37:04]

file:///E|/INSTALL/SHOCKW95.EXE
file:///E|/INSTALL/SHOCKWAV.EXE
file:///E|/INSTALL/SHOCK68K.HQX
file:///E|/INSTALL/SHOCKPPC.HQX
http://www.macromedia.com/


Footnotes
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Implementation Challenges

       

 
Next: Data Structures and Sorting Up: Introduction to Algorithms Previous: Exercises 

Implementation Challenges
  

1.  (*) Implement the two TSP heuristics of Section . Which of them gives better-quality solutions 
in practice? Can you devise a heuristic that works better than both of them?

2.  (*) Describe exactly how to test whether a given set of tickets proves minimum coverage in the 

Lotto problem of Section . Write a program to find good ticket sets. 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Implementation Challenges

       

 
Next: Breaking Problems Down Up: Data Structures and Sorting Previous: Exercises 

Implementation Challenges
  

1.  Implement versions of several different dictionary data structures, such as linked lists, binary 
trees, balanced binary search trees, and hash tables. Conduct experiments to assess the relative 
performance of these data structures in a simple application that reads a large text file and reports 
exactly one instance of each word that appears within it. This application can be efficiently 
implemented by maintaining a dictionary of all distinct words that have appeared thus far in the 
text and inserting/reporting each word that is not found. Write a brief report with your 
conclusions.

2.  Implement versions of several different sorting algorithms, such as selection sort, insertion sort, 
heapsort, mergesort, and quicksort. Conduct experiments to assess the relative performance of 
these algorithms in a simple application that reads a large text file and reports exactly one instance 
of each word that appears within it. This application can be efficiently implemented by sorting all 
the words that occur in the text and then passing through the sorted sequence to identify one 
instance of each distinct word. Write a brief report with your conclusions. 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Implementation Challenges

       

 
Next: Graph Algorithms Up: Breaking Problems Down Previous: Exercises 

Implementation Challenges
  

1.  (*) Many types of products sold appeal more to members of one ethnic group than another. 
Perhaps Greeks eat more pasta per capita than Russians do, while Japanese find baseball more 
appealing than do Italians. A market researcher might be interested in having a program scan the 
names on a mailing list to select the ones most likely to be, say, Greek to target for a given 
mailing. 

Develop a program that makes reasonable mappings between pairs of first/ last names and 
ethnicities. One approach would be to compute the edit distance between query names and a 
family of names of known ethnicity. Feel free to experiment with other approaches.

2.  (*) In the game of Battleship, the first player hides a collection of, say, three  ships on a 
 grid. The second player guesses a series of grid positions and is informed whether they hit 

or miss a battleship. The second player continues to query until each of the  battleship 
positions has been probed. While the second player must succeed after making 100 different 
probes, we seek a strategy to use as few probes as possible to achieve the goal. 

Develop a program that tries to efficiently sink all the battleships. One reasonable algorithmic 
approach would be based on divide-and-conquer or binary search.

3.  (*) A Caesar shift (see Section ) is a very simple class of ciphers for secret messages. 
Unfortunately, they can be broken using statistical properties of English. Develop a program 
capable of decrypting Caesar shifts of sufficiently long texts. 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Implementation Challenges

       

 
Next: Combinatorial Search and Heuristic Up: Graph Algorithms Previous: Exercises 

Implementation Challenges
  

1.  Airline flight schedules define a natural graph, where the vertices are the airports and there is an 
edge between any two airports with direct flights between them whose weight is proportional to 
the distance between them. An extensive airplane data set due to Roberto Tammasia is available 
from the Algorithm Repository WWW/CD-ROM. Write a program that explicitly constructs the 
airport graph from this data set.

2.  This problem is a follow-up to the exercise above. Changing planes repeatedly on connecting 
flights can be a hassle. Develop and implement an algorithm that finds the fewest flights needed 
to get from airport A to B, regardless of waiting time.

3.  (*) This problem is a follow-up to the exercise above. Develop and implement an algorithm that 
finds the flight plan from airport A to B that minimizes the total distance traveled.

4.  (*) This problem is a follow-up to the exercise above. Suppose that we must arrive at airport B at 
time T for an important scheduled meeting. Develop and implement an algorithm that finds the 
latest time one can leave airport A in time to make the meeting.

5.  (*) This problem is a follow-up to the exercise above. In order to take advantage of a frequent 
flyer program, we might want to fly only on a particular airline. How can we modify the above 
solutions so as to accommodate such queries?

6.  (**) This problem is a follow-up to the exercise above. A really devout frequent flyer might want 
to find the longest flight plan between airports A and B, so as to maximize the number of miles 
they get credit for. Develop and implement an algorithm to find the longest such route. 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Implementation Challenges

       

 
Next: Intractable Problems and Approximations Up: Combinatorial Search and Heuristic Previous: 
Exercises 

Implementation Challenges
  

1.  (*) Anagrams are rearrangements of the letters of a word or phrase into a different word or phrase. 
Sometimes the results are quite striking. For example, ``MANY VOTED BUSH RETIRED'' is an 
anagram of ``TUESDAY NOVEMBER THIRD,'' which correctly predicted the outcome of the 
1992 U.S. presidential election. Design and implement an algorithm for finding anagrams using 
combinatorial search and a dictionary.

2.  (*) For any of the exercises above, design and implement a simulated annealing heuristic to get 
reasonable solutions. How well does your program perform in practice?

3.  (**) Design and implement a parallel sorting algorithm that distributes data across several 
processors. An appropriate variation of mergesort is a likely candidate. Measure the speedup of 
this algorithm as the number of processors increases. Later, compare the execution time to that of 
a purely sequential mergesort implementation. What are your experiences? 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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Implementation Challenges

       

 
Next: How to Design Algorithms Up: Intractable Problems and Approximations Previous: Exercises 

Implementation Challenges
  

1.  Implement a translator that translates satisfiability instances into equivallent 3-SAT instances.
2.  (*) Design and implement a backtracking algorithm to test whether a set of formulae are 

satisfiable. What criteria can you use to prune this search?
3.  (*) Implement the vertex cover to satisfiability reduction, and run the resulting clauses through a 

satisfiability testing code. Does this seem like a practical way to compute things? 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 

file:///E|/BOOK/BOOK3/NODE123.HTM [19/1/2003 1:37:12]



Caveats

       

 
Next: Data Structures Up: A Catalog of Algorithmic Previous: A Catalog of Algorithmic 

Caveats

This is a catalog of algorithmic problems. It is not a cookbook. It cannot be because there are too many 
possible recipes and too many possible variations on what those want to eat.   My goal is to aim you in 
the right direction so that you can solve your own problems. I point out the issues you are likely to 
encounter along the way, problems that you are going to have to work out for yourself. In particular: 

●     For each problem, I suggest algorithms and directions to attack it. These recommendations are 
based on my experiences and study and aimed towards what I see as typical applications. I felt it 
was more important to make concrete recommendations for the masses rather than to try to cover 
all possible situations. If you don't want to follow my advice, don't follow my advice. But before 
you ignore me, make sure you understand the reasoning behind my recommendations and can 
articulate a reason why your application violates my assumptions.    

●       The implementations I recommend are not necessarily complete solutions to your problem. I 
point to an implementation whenever I feel it might be more useful to someone than just a 
textbook description of the algorithm. Some programs are useful only as models for you to write 
your own codes. Others are embedded in large systems and so might be too painful to extract and 
run on their own. Assume that all of them contain bugs. Many are quite serious, so beware.

●     Please respect the licensing conditions for any implementations you use commercially. Many of 

these codes are not in the public domain and have restrictions. See Section  for a further 
discussion of this issue.

●     I would be interested in hearing about your experiences with my recommendations, both positive 
and negative. I would be especially interested in learning about any other implementations that 
you know about. Feel free to drop me a line at algorith@cs.sunysb.edu. 

       

 
Next: Data Structures Up: A Catalog of Algorithmic Previous: A Catalog of Algorithmic 

Algorithms 
Mon Jun 2 23:33:50 EDT 1997 
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1.1.1 Dictionaries 

1.1.1 Dictionaries 

   

INPUT                    OUTPUT

Input Description: A set of n records, each identified by one or more key fields. 

Problem: Build and maintain a data structure to efficiently locate, insert, or delete the record associated 
with any query key q . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 10) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 8) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 5) 
●     DIMACS Implementation Challenges (FORTRAN) (rating 1) 

Related Problems 
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1.1.1 Dictionaries 

●     Priority Queues 
●     Searching 
●     Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.1.4 Graph Data Structures 

1.1.4 Graph Data Structures 

   

INPUT                    OUTPUT

Input Description: A graph G . 

Problem: Give an efficient, flexible data structure to represent G . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 10) 
●     GraphEd -- Graph Editor and Layout Program (C) (rating 8) 
●     Combinatorica (Mathematica) (rating 6) 
●     The Stanford GraphBase (C) (rating 6) 
●     LINK -- Programming and Visualization Environment for Hypergraphs (C++) (rating 6) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 

Related Problems 
file:///E|/WEBSITE/FILES/GRAPURES.HTM (1 of 2) [19/1/2003 1:37:14]



1.1.4 Graph Data Structures 

●     Graph Partition 
●     Set Data Structures 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.1.5 Set Data Structures 

1.1.5 Set Data Structures 

   

INPUT                    OUTPUT

Input Description: A universe of objects U = \{ u_1,...,u_n\} , and a collection of subsets S_1,...,S_m , 
S_i \subset U . 

Problem: Represent each subset so as to efficiently (1) test whether u_i \in S_j , (2) find the union or 
intersection of S_i and S_j , (3) insert or delete members of S_i . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 5) 
●     LINK -- Programming and Visualization Environment for Hypergraphs (C++) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 

Related Problems 

file:///E|/WEBSITE/FILES/SET_URES.HTM (1 of 2) [19/1/2003 1:37:14]



1.1.5 Set Data Structures 

●     Generating Partitions 
●     Generating Subsets 
●     Graph Data Structures 
●     Minimum Spanning Tree 
●     Set Cover 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.1 Solving Linear Equations 

1.2.1 Solving Linear Equations 

   

INPUT                    OUTPUT

Input Description: An m x n matrix A , and an m x 1 vector b , representing m linear equations with n 
variables. 

Problem: What is the vector x such that A \cdot x = b ? 

Implementations 

●     LAPACK and LINPACK -- Linear Algebra PACKages (FORTRAN) (rating 10) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 7) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 3) 

Related Problems 

●     Bandwidth Reduction 

file:///E|/WEBSITE/FILES/LINEIONS.HTM (1 of 2) [19/1/2003 1:37:15]



1.2.1 Solving Linear Equations 

●     Determinants and Permanents 
●     Matrix Multiplication 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.2 Bandwidth Reduction 

1.2.2 Bandwidth Reduction 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) , representing an n x n matrix M of zero and non-zero elements. 

Problem: Which permutation p of the vertices of V minimizes \max_{(i,j) \in E} |p(i) - p(j)| , or 
equivalently the length of the longest edge when the vertices are ordered on a line. 

Implementations 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 9) 
●     Stony Brook Project Implementations (C++) (rating 6) 

Related Problems 

●     Feedback Edge/Vertex Set 
●     Solving Linear Equations 
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1.2.2 Bandwidth Reduction 

●     Topological Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.4 Determinants and Permanents 

1.2.4 Determinants and Permanents 

   

INPUT                    OUTPUT

Input Description: An n x n matrix M . 

Problem: What is the determinant |M| or the permanent Perm(M) for matrix m ? 

Implementations 

●     Combinatorica (Mathematica) (rating 4) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 4) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 2) 

Related Problems 

●     Robust Geometric Primitives 
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1.2.4 Determinants and Permanents 

●     Solving Linear Equations 
●     Matching 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.8 Factoring and Primality Testing 

1.2.8 Factoring and Primality Testing 

   

INPUT                    OUTPUT

Input Description: An integer n . 

Problem: Is n a prime number, and if not what are the factors of n ? 

Implementations 

●     PARI - Package for Number Theory (C) (rating 9) 

Related Problems 

●     Cryptography 
●     Arbitrary Precision Arithmetic 
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1.2.8 Factoring and Primality Testing 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.9 Arbitrary Precision Arithmetic 

1.2.9 Arbitrary Precision Arithmetic 

   

INPUT                    OUTPUT

Input Description: Two very large integers, x and y . 

Problem: What is x+y , x-y , x x y and x / y ? 

Implementations 

●     PARI - Package for Number Theory (C) (rating 9) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 6) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 5) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 5) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 3) 

Related Problems 

●     Calendrical Calculations 
●     Cryptography 
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1.2.9 Arbitrary Precision Arithmetic 

●     Factoring and Primality Testing 
●     Discrete Fourier Transform 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.2.10 Knapsack Problem 

1.2.10 Knapsack Problem 

   

INPUT                    OUTPUT

Input Description: A set of items S=\{1,...,n\} , where item i has size s_i and value v_i . A knapsack 
capacity C . 

Problem: Find the subset S' \subset S which maximizes the value of \sum_{i \in S'} v_i given that 
\sum_{i \in S'} s_i \leq C , ie. fits in a knapsack of size C . 

Implementations 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     Discrete Optimization Methods (Pascal) (rating 4) 

Related Problems 

●     Bin Packing 
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1.2.10 Knapsack Problem 

●     Linear Programming 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.2 Searching 

1.3.2 Searching 

   

INPUT                    OUTPUT

Input Description: A set S of n keys, a query key q . 

Problem: Where is q in S ? 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 7) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 

Related Problems 

●     Dictionaries 
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1.3.2 Searching 

●     Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.4 Generating Permutations 

1.3.4 Generating Permutations 

   

INPUT                    OUTPUT

Input Description: An integer n . 

Problem: Generate (1) all, or (2) a random, or (3) the next permutation of length n . 

Implementations 

●     Frank Ruskey's Combinatorial Generation Resources (Pascal) (rating 8) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 8) 
●     Combinatorica (Mathematica) (rating 7) 
●     The Stanford GraphBase (C) (rating 5) 

Related Problems 
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1.3.4 Generating Permutations 

●     Calendrical Calculations 
●     Generating Graphs 
●     Generating Partitions 
●     Generating Subsets 
●     Random Number Generation 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.5 Generating Subsets 

1.3.5 Generating Subsets 

   

INPUT                    OUTPUT

Input Description: An integer n . 

Problem: Generate (1) all, or (2) a random, or (3) the next subset of the integers 1 to n . 

Implementations 

●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 8) 
●     Combinatorica (Mathematica) (rating 7) 
●     Frank Ruskey's Combinatorial Generation Resources (Pascal) (rating 7) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 

Related Problems 
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1.3.5 Generating Subsets 

●     Generating Partitions 
●     Generating Permutations 
●     Random Number Generation 
●     Set Data Structures 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.6 Generating Partitions 

1.3.6 Generating Partitions 

   

INPUT                    OUTPUT

Input Description: An integer n . 

Problem: Generate (1) all, or (2) a random, or (3) the next integer or set partitions of length n . 

Implementations 

●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 8) 
●     Combinatorica (Mathematica) (rating 7) 
●     Frank Ruskey's Combinatorial Generation Resources (Pascal) (rating 7) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     The Stanford GraphBase (C) (rating 5) 

Related Problems 
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1.3.6 Generating Partitions 

●     Generating Permutations 
●     Generating Subsets 
●     Random Number Generation 
●     Set Data Structures 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 
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1.3.8 Calendrical Calculations 

1.3.8 Calendrical Calculations 

   

INPUT                    OUTPUT

Input Description: A particular calendar date d , specified by month, day and year. 

Problem: Which day of the week did d fall on in the given calendar system? 

Implementations 

●     Calendrical Calculations (C++) (rating 10) 

Related Problems 

●     Generating Permutations 
●     Arbitrary Precision Arithmetic 
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1.3.8 Calendrical Calculations 

Go to the corresponding chapter in the book 
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1.3.9 Job Scheduling 

1.3.9 Job Scheduling 

   

INPUT                    OUTPUT

Input Description: A directed acyclic graph G=(V,E) , where the vertices represent jobs and the the 
edge (u,v) that task u must be completed before task v . 

Problem: What schedule of tasks to completes the job using the minimum amount of time or processors? 

Implementations 

●     Discrete Optimization Methods (Pascal) (rating 4) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 4) 

Related Problems 

●     Bin Packing 
●     Edge Coloring 
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1.3.9 Job Scheduling 

●     Feedback Edge/Vertex Set 
●     Matching 
●     Topological Sorting 
●     Vertex Coloring 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 
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1.4.2 Topological Sorting 

1.4.2 Topological Sorting 

   

INPUT                    OUTPUT

Input Description: A directed, acyclic graph G=(V,E) (also known as a partial order or poset). 

Problem: Find a linear ordering of the vertices of V such that for each edge (i,j) \in E , vertex i is to the 
left of vertex j . 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Combinatorica (Mathematica) (rating 3) 
●     The Stanford GraphBase (C) (rating 3) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 3) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 2) 
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1.4.2 Topological Sorting 

Related Problems 

●     Bandwidth Reduction 
●     Feedback Edge/Vertex Set 
●     Job Scheduling 
●     Sorting 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 
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1.4.8 Edge and Vertex Connectivity 

1.4.8 Edge and Vertex Connectivity 

   

INPUT                    OUTPUT

Input Description: A graph G . Optionally, a pair of vertices and t . 

Problem: What is the smallest subset of vertices (edges) whose deletion will disconnect G ? Alternately, 
what is the smallest subset of vertices (edges) which will separate from t ? 

Implementations 

●     Combinatorica (Mathematica) (rating 4) 
●     The Stanford GraphBase (C) (rating 4) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 

Related Problems 

●     Connected Components 
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1.4.8 Edge and Vertex Connectivity 

●     Graph Partition 
●     Network Flow 

Go to the corresponding chapter in the book 
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1.4.10 Drawing Graphs Nicely 

1.4.10 Drawing Graphs Nicely 

   

INPUT                    OUTPUT

Input Description: A graph G . 

Problem: Give a drawing of graph G which accurately reflects its structure. 

Implementations 

●     GraphEd -- Graph Editor and Layout Program (C) (rating 9) 
●     GraphViz -- graph layout programs (C) (rating 7) 
●     Combinatorica (Mathematica) (rating 6) 

Related Problems 

●     Drawing Trees 
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1.4.10 Drawing Graphs Nicely 

●     Planarity Detection and Embedding 
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1.4.11 Drawing Trees 

1.4.11 Drawing Trees 

   

INPUT                    OUTPUT

Input Description: A tree (ie. graph without any cycles) T . 

Problem: A nice drawing of the tree T . 

Implementations 

●     GraphEd -- Graph Editor and Layout Program (C) (rating 9) 
●     GraphViz -- graph layout programs (C) (rating 7) 
●     Combinatorica (Mathematica) (rating 6) 

Related Problems 

●     Drawing Graphs Nicely 

file:///E|/WEBSITE/FILES/DRATREES.HTM (1 of 2) [19/1/2003 1:37:23]



1.4.11 Drawing Trees 

●     Planarity Detection and Embedding 

Go to the corresponding chapter in the book 
About the Book 
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Go to Main Page 
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1.4.12 Planarity Detection and Embedding 

1.4.12 Planarity Detection and Embedding 

   

INPUT                    OUTPUT

Input Description: A graph G . 

Problem: Can G be drawn in the plane such that no two edges cross? If so, produce such a drawing. 

Implementations 

●     GraphEd -- Graph Editor and Layout Program (C) (rating 8) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Combinatorica (Mathematica) (rating 2) 

Related Problems 

●     Drawing Graphs Nicely 
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1.4.12 Planarity Detection and Embedding 

●     Drawing Trees 
●     Graph Partition 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 
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1.5.2 Independent Set 

1.5.2 Independent Set 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . 

Problem: What is the largest subset of vertices of V such that no pair of vertices defines an edge of E ? 

Implementations 

●     DIMACS Implementation Challenges (FORTRAN) (rating 7) 
●     Neural-Networks for Cliques and Coloring (C) (rating 5) 

Related Problems 

●     Clique 
●     Set Packing 
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1.5.2 Independent Set 

●     Vertex Coloring 
●     Vertex Cover 
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1.5.3 Vertex Cover 

1.5.3 Vertex Cover 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . 

Problem: What is the smallest subset S \subset V such that each e \in E contains at least one vertex of S ? 

Implementations 

●     Neural-Networks for Cliques and Coloring (C) (rating 6) 
●     DIMACS Implementation Challenges (FORTRAN) (rating 5) 
●     Combinatorica (Mathematica) (rating 4) 

Related Problems 

●     Clique 
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1.5.3 Vertex Cover 

●     Independent Set 
●     Set Cover 

Go to the corresponding chapter in the book 
About the Book 
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Go to Main Page 
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1.5.4 Traveling Salesman Problem 

1.5.4 Traveling Salesman Problem 

   

INPUT                    OUTPUT

Input Description: A weighted graph G . 

Problem: Find the cycle of minimum cost visiting all of the vertices of G exactly once. 

Implementations 

●     TSP solvers (C) (rating 8) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 6) 
●     Discrete Optimization Methods (Pascal) (rating 5) 
●     Combinatorica (Mathematica) (rating 3) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 

Related Problems 
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1.5.4 Traveling Salesman Problem 

●     Convex Hull 
●     Hamiltonian Cycle 
●     Minimum Spanning Tree 
●     Satisfiability 

Go to the corresponding chapter in the book 
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1.5.6 Graph Partition 

1.5.6 Graph Partition 

   

INPUT                    OUTPUT

Input Description: A (weighted) graph G=(V,E) . Integers j , k , and m . 

Problem: Partition the vertices into m subsets such that each subset has size at most j , while the cost of 
the edges spanning subsets is bounded by k . 

Implementations 

●     LINK -- Programming and Visualization Environment for Hypergraphs (C++) (rating 8) 
●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 4) 

Related Problems 

●     Edge and Vertex Connectivity 
●     Graph Data Structures 
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1.5.6 Graph Partition 

●     Network Flow 
●     Planarity Detection and Embedding 

Go to the corresponding chapter in the book 
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1.5.7 Vertex Coloring 

1.5.7 Vertex Coloring 

   

INPUT                    OUTPUT

Input Description: A graph G=(V,E) . 

Problem: Color the vertices of V with the minimum number of colors such that for each edge (i,j) \in E , 
vertices i and j have different colors. 

Implementations 

●     DIMACS Implementation Challenges (FORTRAN) (rating 7) 
●     Mike Trick's Graph Coloring Resources (C) (rating 7) 
●     Neural-Networks for Cliques and Coloring (C) (rating 6) 
●     Joe Culberson's Graph Coloring Resources (C) (rating 6) 
●     Discrete Optimization Methods (Pascal) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 4) 
●     Combinatorica (Mathematica) (rating 3) 
●     Nijenhuis and Wilf: Combinatorial Algorithms (FORTRAN) (rating 3) 
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1.5.7 Vertex Coloring 

Related Problems 

●     Edge Coloring 
●     Independent Set 
●     Job Scheduling 

Go to the corresponding chapter in the book 
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1.5.11 Feedback Edge/Vertex Set 

1.5.11 Feedback Edge/Vertex Set 

   

INPUT                    OUTPUT

Input Description: A (directed) graph G=(V,E) . 

Problem: What is the smallest set of edges E' or vertices V' whose deletion leaves an acyclic graph? 

Implementations 

●     The Stanford GraphBase (C) (rating 4) 

Related Problems 

●     Bandwidth Reduction 
●     Job Scheduling 
●     Topological Sorting 
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1.5.11 Feedback Edge/Vertex Set 
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1.6.1 Robust Geometric Primitives 

1.6.1 Robust Geometric Primitives 

   

INPUT                    OUTPUT

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 8) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 6) 
●     Geolab -- Computational Geometry System (C++) (rating 5) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 4) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 4) 

Related Problems 

●     Determinants and Permanents 
●     Intersection Detection 
●     Maintaining Line Arrangements 
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1.6.1 Robust Geometric Primitives 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 

file:///E|/WEBSITE/FILES2/GEOMIVES.HTM (2 of 2) [19/1/2003 1:37:29]

mailto:algorith@cs.sunysb.edu


1.6.6 Range Search 

1.6.6 Range Search 

   

INPUT                    OUTPUT

Input Description: A set S of n points in E^d , and a query polygon Q . 

Problem: Which points from S lie within Q ? 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Ranger - Nearest Neighbor Search in Higher Dimensions (C) (rating 6) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 4) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 2) 

Related Problems 
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1.6.6 Range Search 

●     Kd-Trees 
●     Nearest Neighbor Search 
●     Point Location 
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1.6.8 Intersection Detection 

1.6.8 Intersection Detection 

   

INPUT                    OUTPUT

Input Description: A set S of lines and line segments l_1,...,l_n , or a pair of polygons or polyhedra P_1 
and P_2 . 

Problem: Which pairs of line segments intersect each other? What is the intersection of P_1 and P_2 ? 

Implementations 

●     LEDA - A Library of Efficient Data Types and Algorithms (C++) (rating 7) 
●     Joseph O'Rourke's Computational Geometry (C) (rating 5) 
●     Qhull - higher dimensional convex hull program (C) (rating 5) 
●     Moret and Shapiro's Algorithms P to NP (Pascal) (rating 3) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 1) 

Related Problems 
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1.6.8 Intersection Detection 

●     Robust Geometric Primitives 
●     Maintaining Line Arrangements 
●     Motion Planning 

Go to the corresponding chapter in the book 
About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Tue Jun 03, 1997 . 

file:///E|/WEBSITE/FILES2/INTETION.HTM (2 of 2) [19/1/2003 1:37:30]

mailto:algorith@cs.sunysb.edu


1.6.16 Minkowski Sum 

1.6.16 Minkowski Sum 

   

INPUT                    OUTPUT

Input Description: Point sets or polygons A and B , with n and m vertices, respectively. 

Problem: What is the convolution of A and B , ie. the Minkowski sum A+B = \{x+y| x\in A, y \in B\} ? 

Implementations 

●     David Eppstein's Knuth-Morris-Pratt Algorithm and Minkowski sum code (C++) (rating 4) 

Related Problems 

●     Motion Planning 
●     Simplifying Polygons 
●     Medial-Axis Transformation 
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1.6.16 Minkowski Sum 
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1.7.1 Set Cover 

1.7.1 Set Cover 

   

INPUT                    OUTPUT

Input Description: A set of subsets S_1, ..., S_m of the universal set U = \{1,...,n\} . 

Problem: What is the smallest subset of subsets T \subset S such that \cup_{t_i \in T} t_i = U ? 

Implementations 

●     Discrete Optimization Methods (Pascal) (rating 5) 

Related Problems 

●     Matching 
●     Polygon Partitioning 
●     Set Data Structures 
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1.7.1 Set Cover 

●     Set Packing 
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1.7.2 Set Packing 

1.7.2 Set Packing 

   

INPUT                    OUTPUT

Input Description: A set of subsets S = S_1, ..., S_m of the universal set U = \{1,...,n\} . 

Problem: What is the largest number of mutually disjoint subsets from S ? 

Implementations 

●     Discrete Optimization Methods (Pascal) (rating 5) 

Related Problems 

●     Bin Packing 
●     Independent Set 
●     Set Cover 
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1.7.2 Set Packing 
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1.7.3 String Matching 

1.7.3 String Matching 

   

INPUT                    OUTPUT

Input Description: A text string t of length n . A patterns string p of length m . 

Problem: Find the first (or all) instances of the pattern in the text. 

Implementations 

●     Fire-Engine and Spare-Parts String and Language Algorithms (C++) (rating 7) 
●     David Eppstein's Knuth-Morris-Pratt Algorithm and Minkowski sum code (C++) (rating 4) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 4) 
●     Algorithms in C++ -- Sedgewick (C++) (rating 4) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 3) 

Related Problems 
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1.7.3 String Matching 

●     Approximate String Matching 
●     Finite State Machine Minimization 
●     Graph Isomorphism 
●     Suffix Trees and Arrays 
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1.7.4 Approximate String Matching 

1.7.4 Approximate String Matching 

   

INPUT                    OUTPUT

Input Description: A text string t and a pattern string p . An edit cost bound k . 

Problem: Does there exist an alignment between t and p with edit cost at most k , ie. can we transform 
part of t to p using at most k additions, deletions, and substitutions. 

Implementations 

●     agrep - Approximate General Regular Expression Pattern Matcher (C) (rating 10) 
●     HT/DIG -- image compression codes (C) (rating 7) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 2) 

Related Problems 

●     Longest Common Substring 

file:///E|/WEBSITE/FILES2/APPRHING.HTM (1 of 2) [19/1/2003 1:37:33]



1.7.4 Approximate String Matching 

●     String Matching 
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1.7.5 Text Compression 

1.7.5 Text Compression 

   

INPUT                    OUTPUT

Input Description: A text string S . 

Problem: A shortest text string S' such that S can be reconstructed from S' . 

Implementations 

●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 5) 

Related Problems 

●     Cryptography 
●     Discrete Fourier Transform 
●     Shortest Common Superstring 
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1.7.5 Text Compression 
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1.7.6 Cryptography 

1.7.6 Cryptography 

   

INPUT                    OUTPUT

Input Description: A plaintext message T or encrypted text E , and a key k . 

Problem: Encode T using k giving E , or decode E using k back to T . 

Implementations 

●     () (rating 10) 
●     The Stanford GraphBase (C) (rating 3) 
●     Netlib / TOMS -- Collected Algorithms of the ACM (FORTRAN) (rating 3) 

Related Problems 

●     Factoring and Primality Testing 
●     Arbitrary Precision Arithmetic 
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1.7.6 Cryptography 

●     Text Compression 

Go to the corresponding chapter in the book 
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1.7.7 Finite State Machine Minimization 

1.7.7 Finite State Machine Minimization 

   

INPUT                    OUTPUT

Input Description: A deterministic finite automata M . 

Problem: The smallest deterministic finite automata M' such that M' behaves identically to M' 

Implementations 

●     Grail: finite automata and regular expressions (C++) (rating 9) 
●     Fire-Engine and Spare-Parts String and Language Algorithms (C++) (rating 8) 
●     Handbook of Algorithms and Data Structures (Pascal) (rating 5) 
●     Xtango and Polka Algorithm Animation Systems (C++) (rating 1) 

Related Problems 
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1.7.7 Finite State Machine Minimization 
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1.7.8 Longest Common Substring 

1.7.8 Longest Common Substring 

   

INPUT                    OUTPUT

Input Description: A set S of strings S_1,...,S_n . 

Problem: What is the longest string c such that for each S_i , 1 \leq i \leq n , the characters of c appear as 
a scattered subsequence of S_i ? 

Implementations 

●     CAP -- Contig Assembly Program (C) (rating 8) 
●     Combinatorica (Mathematica) (rating 2) 

Related Problems 

●     Approximate String Matching 
●     Shortest Common Superstring 
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1.7.8 Longest Common Substring 
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1.7.9 Shortest Common Superstring 

1.7.9 Shortest Common Superstring 

   

INPUT                    OUTPUT

Input Description: A set of strings s_1, ..., s_m . 

Problem: Find the shortest string S which contains each s_i as a substring of S . 

Implementations 

●     CAP -- Contig Assembly Program (C) (rating 8) 

Related Problems 

●     Longest Common Substring 
●     Suffix Trees and Arrays 
●     Text Compression 
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Handbook of Algorithms and Data Structures 

The Handbook of Data Structures and Algorithms , by Gonnet and Baeza-Yates, provides a 
comprehensive reference on fundamental data structures for searching and priority queues, and 
algorithms for sorting and text searching. The book covers these relatively small number of topics 
comprehensively, presenting most of the major and minor variations which appear in the literature. 
Perusing the book makes one aware of the tremendous range of data structures which have been 
developed, and the intense level of analysis many of them have been subjected to. 

For each data structure or algorithm, a brief description is provided along with its asymptotic complexity 
and an extensive set of references. More distinctively, an implementation in C and/or Pascal is usually 
provided, along with experimental results comparing the performance of these implementations on a 
variety of distributions. 

The authors have created a very slick WWW site for the book, 
http://www.dcc.uchile.cl/~rbaeza/handbook/hbook.html , containing all the source code as well as the 
index and table of contents. This entire site has been replicated in the local distribution site , although this 
copy still contains ftp links to Chile for the algorithm implementations. However, all of these files are 
also available locally . These files are all copyrighted © Addison-Wesley Publishing Co. Inc. Since many 
of the elementary data structures and sorting algorithms can be implemented concisely, most of the 
programs are very short. They are perhaps most useful as models, or as part of an experimental study to 
compare the performance on different data structures for a particular application. 

●     Link to Handbook of Algorithms and Data Structures 
●     Local copies of all the algorithm implementations 
●     Local copy of original site, but with FTP calls to Chile for certain algorithm implementations 

Problem Links 

●     Dictionaries (8) 
●     Priority Queues (7) 
●     Searching (7) 
●     Sorting (7) 
●     Arbitrary Precision Arithmetic (6) 
●     Median and Selection (6) 
●     Finite State Machine Minimization (5) 
●     String Matching (4) 
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Handbook of Algorithms and Data Structures 

●     Kd-Trees (3) 
●     Approximate String Matching (2) 
●     Range Search (2) 
●     Suffix Trees and Arrays (2) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on May 21, 1997. 
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Moret and Shapiro's Algorithms P to NP 

This algorithms text distinguishes itself by including Pascal implementations of many algorithms, with 
careful experimental comparisons of different algorithms for such problems as sorting and minimum 
spanning tree, and heuristics for the traveling salesman problem. It provides a useful model for how to 
properly do empirical algorithm analysis. 

The programs themselves are probably best used as models. Interesting implementations include the 
eight-queens problem, fundamental graph and geometric algorithms. 

The programs in the book have been made available by anonymous ftp from cs.unm.edu in directory 
/pub/moret_shapiro. 

●     Link to Moret's Home Page - files under publications 
●     Download Files (local site) 

Problem Links 

●     Sorting (7) 
●     Minimum Spanning Tree (5) 
●     Connected Components (4) 
●     Edge and Vertex Connectivity (4) 
●     Discrete Fourier Transform (4) 
●     Robust Geometric Primitives (4) 
●     Graph Data Structures (4) 
●     Matching (4) 
●     Network Flow (4) 
●     Set Data Structures (4) 
●     Convex Hull (3) 
●     Intersection Detection (3) 
●     Nearest Neighbor Search (3) 
●     Point Location (3) 
●     Priority Queues (3) 
●     Searching (3) 
●     Topological Sorting (3) 
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backtracking 
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file:///E|/SOUNDS/LEC2_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_8.HTM [19/1/2003 1:38:11]



file:///E|/SOUNDS/LEC2_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_9.HTM [19/1/2003 1:38:11]



file:///E|/SOUNDS/LEC2_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_10.HTM [19/1/2003 1:38:11]



file:///E|/SOUNDS/LEC2_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_11.HTM [19/1/2003 1:38:12]



file:///E|/SOUNDS/LEC2_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_12.HTM [19/1/2003 1:38:12]



file:///E|/SOUNDS/LEC2_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_13.HTM [19/1/2003 1:38:12]



file:///E|/SOUNDS/LEC2_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_14.HTM [19/1/2003 1:38:12]



file:///E|/SOUNDS/LEC2_15.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC2_15.HTM [19/1/2003 1:38:13]



file:///E|/SOUNDS/LEC3_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_1.HTM [19/1/2003 1:38:13]



file:///E|/SOUNDS/LEC3_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_2.HTM [19/1/2003 1:38:13]



file:///E|/SOUNDS/LEC3_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_3.HTM [19/1/2003 1:38:14]



file:///E|/SOUNDS/LEC3_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_4.HTM [19/1/2003 1:38:14]



file:///E|/SOUNDS/LEC3_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_5.HTM [19/1/2003 1:38:15]



file:///E|/SOUNDS/LEC3_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_6.HTM [19/1/2003 1:38:15]



file:///E|/SOUNDS/LEC3_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_7.HTM [19/1/2003 1:38:15]



file:///E|/SOUNDS/LEC3_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_8.HTM [19/1/2003 1:38:16]



file:///E|/SOUNDS/LEC3_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_9.HTM [19/1/2003 1:38:16]



file:///E|/SOUNDS/LEC3_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_10.HTM [19/1/2003 1:38:16]



file:///E|/SOUNDS/LEC3_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_11.HTM [19/1/2003 1:38:16]



file:///E|/SOUNDS/LEC3_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_12.HTM [19/1/2003 1:38:17]



file:///E|/SOUNDS/LEC3_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_13.HTM [19/1/2003 1:38:17]



file:///E|/SOUNDS/LEC3_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC3_14.HTM [19/1/2003 1:38:17]



file:///E|/SOUNDS/LEC4_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_1.HTM [19/1/2003 1:38:18]



file:///E|/SOUNDS/LEC4_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_2.HTM [19/1/2003 1:38:18]



file:///E|/SOUNDS/LEC4_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_3.HTM [19/1/2003 1:38:18]



file:///E|/SOUNDS/LEC4_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_4.HTM [19/1/2003 1:38:19]



file:///E|/SOUNDS/LEC4_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_5.HTM [19/1/2003 1:38:19]



file:///E|/SOUNDS/LEC4_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_6.HTM [19/1/2003 1:38:19]



file:///E|/SOUNDS/LEC4_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_8.HTM [19/1/2003 1:38:20]



file:///E|/SOUNDS/LEC4_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_9.HTM [19/1/2003 1:38:20]



file:///E|/SOUNDS/LEC4_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_10.HTM [19/1/2003 1:38:21]



file:///E|/SOUNDS/LEC4_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_11.HTM [19/1/2003 1:38:21]



file:///E|/SOUNDS/LEC4_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_12.HTM [19/1/2003 1:38:21]



file:///E|/SOUNDS/LEC4_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_14.HTM [19/1/2003 1:38:21]



file:///E|/SOUNDS/LEC4_15.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_15.HTM [19/1/2003 1:38:22]



file:///E|/SOUNDS/LEC4_16.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_16.HTM [19/1/2003 1:38:22]



file:///E|/SOUNDS/LEC4_17.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_17.HTM [19/1/2003 1:38:22]



file:///E|/SOUNDS/LEC4_19.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_19.HTM [19/1/2003 1:38:23]



file:///E|/SOUNDS/LEC4_20.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_20.HTM [19/1/2003 1:38:23]



file:///E|/SOUNDS/LEC4_22.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC4_22.HTM [19/1/2003 1:38:23]



file:///E|/SOUNDS/LEC5_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_1.HTM [19/1/2003 1:38:24]



file:///E|/SOUNDS/LEC5_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_2.HTM [19/1/2003 1:38:24]



file:///E|/SOUNDS/LEC5_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_3.HTM [19/1/2003 1:38:25]



file:///E|/SOUNDS/LEC5_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_4.HTM [19/1/2003 1:38:25]



file:///E|/SOUNDS/LEC5_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_5.HTM [19/1/2003 1:38:25]



file:///E|/SOUNDS/LEC5_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_6.HTM [19/1/2003 1:38:25]



file:///E|/SOUNDS/LEC5_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_7.HTM [19/1/2003 1:38:26]



file:///E|/SOUNDS/LEC5_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_8.HTM [19/1/2003 1:38:26]



file:///E|/SOUNDS/LEC5_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_9.HTM [19/1/2003 1:38:26]



file:///E|/SOUNDS/LEC5_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_10.HTM [19/1/2003 1:38:27]



file:///E|/SOUNDS/LEC5_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_11.HTM [19/1/2003 1:38:27]



file:///E|/SOUNDS/LEC5_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_12.HTM [19/1/2003 1:38:27]



file:///E|/SOUNDS/LEC5_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_13.HTM [19/1/2003 1:38:28]



file:///E|/SOUNDS/LEC5_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_14.HTM [19/1/2003 1:38:28]



file:///E|/SOUNDS/LEC5_15.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC5_15.HTM [19/1/2003 1:38:28]



file:///E|/SOUNDS/LEC6_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_1.HTM [19/1/2003 1:38:29]



file:///E|/SOUNDS/LEC6_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_2.HTM [19/1/2003 1:38:29]



file:///E|/SOUNDS/LEC6_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_3.HTM [19/1/2003 1:38:29]



file:///E|/SOUNDS/LEC6_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_4.HTM [19/1/2003 1:38:30]



file:///E|/SOUNDS/LEC6_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_5.HTM [19/1/2003 1:38:30]



file:///E|/SOUNDS/LEC6_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_6.HTM [19/1/2003 1:38:30]



file:///E|/SOUNDS/LEC6_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_7.HTM [19/1/2003 1:38:31]



file:///E|/SOUNDS/LEC6_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_8.HTM [19/1/2003 1:38:31]



file:///E|/SOUNDS/LEC6_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_10.HTM [19/1/2003 1:38:31]



file:///E|/SOUNDS/LEC6_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_11.HTM [19/1/2003 1:38:32]



file:///E|/SOUNDS/LEC6_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC6_12.HTM [19/1/2003 1:38:32]



file:///E|/SOUNDS/LEC7_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_1.HTM [19/1/2003 1:38:32]



file:///E|/SOUNDS/LEC7_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_2.HTM [19/1/2003 1:38:33]



file:///E|/SOUNDS/LEC7_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_3.HTM [19/1/2003 1:38:33]



file:///E|/SOUNDS/LEC7_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_4.HTM [19/1/2003 1:38:33]



file:///E|/SOUNDS/LEC7_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_5.HTM [19/1/2003 1:38:33]



file:///E|/SOUNDS/LEC7_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_6.HTM [19/1/2003 1:38:34]



file:///E|/SOUNDS/LEC7_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_7.HTM [19/1/2003 1:38:34]



file:///E|/SOUNDS/LEC7_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_8.HTM [19/1/2003 1:38:34]



file:///E|/SOUNDS/LEC7_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_9.HTM [19/1/2003 1:38:35]



file:///E|/SOUNDS/LEC7_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_10.HTM [19/1/2003 1:38:35]



file:///E|/SOUNDS/LEC7_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_11.HTM [19/1/2003 1:38:35]



file:///E|/SOUNDS/LEC7_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_13.HTM [19/1/2003 1:38:36]



file:///E|/SOUNDS/LEC7_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_14.HTM [19/1/2003 1:38:37]



file:///E|/SOUNDS/LEC7_15.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_15.HTM [19/1/2003 1:38:37]



file:///E|/SOUNDS/LEC7_16.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_16.HTM [19/1/2003 1:38:37]



file:///E|/SOUNDS/LEC7_17.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_17.HTM [19/1/2003 1:38:37]



file:///E|/SOUNDS/LEC7_18.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_18.HTM [19/1/2003 1:38:38]



file:///E|/SOUNDS/LEC7_19.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC7_19.HTM [19/1/2003 1:38:38]



file:///E|/SOUNDS/LEC8_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_1.HTM [19/1/2003 1:38:38]



file:///E|/SOUNDS/LEC8_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_2.HTM [19/1/2003 1:38:39]



file:///E|/SOUNDS/LEC8_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_3.HTM [19/1/2003 1:38:39]



file:///E|/SOUNDS/LEC8_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_4.HTM [19/1/2003 1:38:39]



file:///E|/SOUNDS/LEC8_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_5.HTM [19/1/2003 1:38:40]



file:///E|/SOUNDS/LEC8_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_6.HTM [19/1/2003 1:38:40]



file:///E|/SOUNDS/LEC8_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_7.HTM [19/1/2003 1:38:40]



file:///E|/SOUNDS/LEC8_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_8.HTM [19/1/2003 1:38:40]



file:///E|/SOUNDS/LEC8_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_9.HTM [19/1/2003 1:38:41]



file:///E|/SOUNDS/LEC8_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_10.HTM [19/1/2003 1:38:41]



file:///E|/SOUNDS/LEC8_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_12.HTM [19/1/2003 1:38:42]



file:///E|/SOUNDS/LEC8_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_13.HTM [19/1/2003 1:38:42]



file:///E|/SOUNDS/LEC8_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_14.HTM [19/1/2003 1:38:42]



file:///E|/SOUNDS/LEC8_15.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_15.HTM [19/1/2003 1:38:43]



file:///E|/SOUNDS/LEC8_16.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_16.HTM [19/1/2003 1:38:43]



file:///E|/SOUNDS/LEC8_17.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_17.HTM [19/1/2003 1:38:43]



file:///E|/SOUNDS/LEC8_18.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_18.HTM [19/1/2003 1:38:43]



file:///E|/SOUNDS/LEC8_19.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC8_19.HTM [19/1/2003 1:38:44]



file:///E|/SOUNDS/LEC9_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC9_1.HTM [19/1/2003 1:38:44]



file:///E|/SOUNDS/LEC10_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_1.HTM [19/1/2003 1:38:45]



file:///E|/SOUNDS/LEC10_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_2.HTM [19/1/2003 1:38:45]



file:///E|/SOUNDS/LEC10_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_3.HTM [19/1/2003 1:38:46]



file:///E|/SOUNDS/LEC10_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_4.HTM [19/1/2003 1:38:46]



file:///E|/SOUNDS/LEC10_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_5.HTM [19/1/2003 1:38:46]



file:///E|/SOUNDS/LEC10_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_6.HTM [19/1/2003 1:38:46]



file:///E|/SOUNDS/LEC10_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_7.HTM [19/1/2003 1:38:47]



file:///E|/SOUNDS/LEC10_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_8.HTM [19/1/2003 1:38:47]



file:///E|/SOUNDS/LEC10_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_9.HTM [19/1/2003 1:38:47]



file:///E|/SOUNDS/LEC10_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_10.HTM [19/1/2003 1:38:48]



file:///E|/SOUNDS/LEC10_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_11.HTM [19/1/2003 1:38:48]



file:///E|/SOUNDS/LEC10_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_12.HTM [19/1/2003 1:38:49]



file:///E|/SOUNDS/LEC10_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_13.HTM [19/1/2003 1:38:49]



file:///E|/SOUNDS/LEC10_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC10_14.HTM [19/1/2003 1:38:49]



file:///E|/SOUNDS/LEC11_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_2.HTM [19/1/2003 1:38:50]



file:///E|/SOUNDS/LEC11_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_3.HTM [19/1/2003 1:38:50]



file:///E|/SOUNDS/LEC11_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_4.HTM [19/1/2003 1:38:50]



file:///E|/SOUNDS/LEC11_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_5.HTM [19/1/2003 1:38:51]



file:///E|/SOUNDS/LEC11_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_6.HTM [19/1/2003 1:38:51]



file:///E|/SOUNDS/LEC11_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_7.HTM [19/1/2003 1:38:51]



file:///E|/SOUNDS/LEC11_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_8.HTM [19/1/2003 1:38:51]



file:///E|/SOUNDS/LEC11_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_9.HTM [19/1/2003 1:38:52]



file:///E|/SOUNDS/LEC11_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_11.HTM [19/1/2003 1:38:52]



file:///E|/SOUNDS/LEC11_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC11_12.HTM [19/1/2003 1:38:52]



file:///E|/SOUNDS/LEC12_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_4.HTM [19/1/2003 1:38:53]



file:///E|/SOUNDS/LEC12_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_5.HTM [19/1/2003 1:38:53]



file:///E|/SOUNDS/LEC12_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_1.HTM [19/1/2003 1:38:54]



file:///E|/SOUNDS/LEC12_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_6.HTM [19/1/2003 1:38:54]



file:///E|/SOUNDS/LEC12_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_9.HTM [19/1/2003 1:38:54]



file:///E|/SOUNDS/LEC12_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_10.HTM [19/1/2003 1:38:55]



file:///E|/SOUNDS/LEC12_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_11.HTM [19/1/2003 1:38:55]



file:///E|/SOUNDS/LEC12_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_12.HTM [19/1/2003 1:38:55]



file:///E|/SOUNDS/LEC12_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC12_13.HTM [19/1/2003 1:38:55]



file:///E|/SOUNDS/LEC13_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_3.HTM [19/1/2003 1:38:56]



file:///E|/SOUNDS/LEC13_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_4.HTM [19/1/2003 1:38:56]



file:///E|/SOUNDS/LEC13_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_5.HTM [19/1/2003 1:38:57]



file:///E|/SOUNDS/LEC13_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_6.HTM [19/1/2003 1:38:57]



file:///E|/SOUNDS/LEC13_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_10.HTM [19/1/2003 1:38:57]



file:///E|/SOUNDS/LEC13_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_9.HTM [19/1/2003 1:38:58]



file:///E|/SOUNDS/LEC13_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_11.HTM [19/1/2003 1:38:58]



file:///E|/SOUNDS/LEC13_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC13_1.HTM [19/1/2003 1:38:58]



file:///E|/SOUNDS/LEC14_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_5.HTM [19/1/2003 1:38:59]



file:///E|/SOUNDS/LEC14_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_6.HTM [19/1/2003 1:38:59]



file:///E|/SOUNDS/LEC14_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_7.HTM [19/1/2003 1:38:59]



file:///E|/SOUNDS/LEC14_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_8.HTM [19/1/2003 1:39:00]



file:///E|/SOUNDS/LEC14_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_9.HTM [19/1/2003 1:39:00]



file:///E|/SOUNDS/LEC14_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_10.HTM [19/1/2003 1:39:00]



file:///E|/SOUNDS/LEC14_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_11.HTM [19/1/2003 1:39:01]



file:///E|/SOUNDS/LEC14_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_1.HTM [19/1/2003 1:39:01]



file:///E|/SOUNDS/LEC14_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_2.HTM [19/1/2003 1:39:02]



file:///E|/SOUNDS/LEC14_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_3.HTM [19/1/2003 1:39:02]



file:///E|/SOUNDS/LEC14_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC14_4.HTM [19/1/2003 1:39:02]



file:///E|/SOUNDS/LEC15_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_1.HTM [19/1/2003 1:39:03]



file:///E|/SOUNDS/LEC15_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_2.HTM [19/1/2003 1:39:03]



file:///E|/SOUNDS/LEC15_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_3.HTM [19/1/2003 1:39:03]



file:///E|/SOUNDS/LEC15_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_4.HTM [19/1/2003 1:39:03]



file:///E|/SOUNDS/LEC15_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_5.HTM [19/1/2003 1:39:04]



file:///E|/SOUNDS/LEC15_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_6.HTM [19/1/2003 1:39:04]



file:///E|/SOUNDS/LEC15_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_7.HTM [19/1/2003 1:39:04]



file:///E|/SOUNDS/LEC16_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_2.HTM [19/1/2003 1:39:05]



file:///E|/SOUNDS/LEC16_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_3.HTM [19/1/2003 1:39:05]



file:///E|/SOUNDS/LEC16_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_4.HTM [19/1/2003 1:39:06]



file:///E|/SOUNDS/LEC16_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_5.HTM [19/1/2003 1:39:06]



file:///E|/SOUNDS/LEC16_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_6.HTM [19/1/2003 1:39:06]



file:///E|/SOUNDS/LEC16_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_8.HTM [19/1/2003 1:39:07]



file:///E|/SOUNDS/LEC15_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC15_8.HTM [19/1/2003 1:39:07]



file:///E|/SOUNDS/LEC16_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_10.HTM [19/1/2003 1:39:07]



file:///E|/SOUNDS/LEC16_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_11.HTM [19/1/2003 1:39:08]



file:///E|/SOUNDS/LEC16_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_12.HTM [19/1/2003 1:39:08]



file:///E|/SOUNDS/LEC17_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_3.HTM [19/1/2003 1:39:08]



file:///E|/SOUNDS/LEC17_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_4.HTM [19/1/2003 1:39:09]



file:///E|/SOUNDS/LEC17_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_5.HTM [19/1/2003 1:39:09]



file:///E|/SOUNDS/LEC17_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_6.HTM [19/1/2003 1:39:10]



file:///E|/SOUNDS/LEC17_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_8.HTM [19/1/2003 1:39:10]



file:///E|/SOUNDS/LEC17_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_9.HTM [19/1/2003 1:39:10]



file:///E|/SOUNDS/LEC17_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_10.HTM [19/1/2003 1:39:11]



file:///E|/SOUNDS/LEC16_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC16_1.HTM [19/1/2003 1:39:11]



file:///E|/SOUNDS/LEC17_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_1.HTM [19/1/2003 1:39:12]



file:///E|/SOUNDS/LEC17_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_7.HTM [19/1/2003 1:39:12]



file:///E|/SOUNDS/LEC17_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_12.HTM [19/1/2003 1:39:12]



file:///E|/SOUNDS/LEC17_13.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_13.HTM [19/1/2003 1:39:13]



file:///E|/SOUNDS/LEC17_14.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_14.HTM [19/1/2003 1:39:13]



file:///E|/SOUNDS/LEC17_16.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC17_16.HTM [19/1/2003 1:39:14]



file:///E|/SOUNDS/LEC19_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_4.HTM [19/1/2003 1:39:15]



file:///E|/SOUNDS/LEC19_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_5.HTM [19/1/2003 1:39:15]



file:///E|/SOUNDS/LEC18_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_2.HTM [19/1/2003 1:39:16]



file:///E|/SOUNDS/LEC18_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_3.HTM [19/1/2003 1:39:16]



file:///E|/SOUNDS/LEC18_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_4.HTM [19/1/2003 1:39:16]



file:///E|/SOUNDS/LEC18_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_5.HTM [19/1/2003 1:39:16]



file:///E|/SOUNDS/LEC18_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_6.HTM [19/1/2003 1:39:17]



file:///E|/SOUNDS/LEC18_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_8.HTM [19/1/2003 1:39:17]



file:///E|/SOUNDS/LEC18_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_9.HTM [19/1/2003 1:39:17]



file:///E|/SOUNDS/LEC18_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_10.HTM [19/1/2003 1:39:18]



file:///E|/SOUNDS/LEC18_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC18_11.HTM [19/1/2003 1:39:18]



file:///E|/SOUNDS/LEC19_6.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_6.HTM [19/1/2003 1:39:19]



file:///E|/SOUNDS/LEC19_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_7.HTM [19/1/2003 1:39:19]



file:///E|/SOUNDS/LEC19_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_8.HTM [19/1/2003 1:39:19]



file:///E|/SOUNDS/LEC19_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_9.HTM [19/1/2003 1:39:20]



file:///E|/SOUNDS/LEC20_7.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_7.HTM [19/1/2003 1:39:20]



file:///E|/SOUNDS/LEC19_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_1.HTM [19/1/2003 1:39:20]



file:///E|/SOUNDS/LEC19_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_3.HTM [19/1/2003 1:39:21]



file:///E|/SOUNDS/LEC19_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC19_10.HTM [19/1/2003 1:39:21]



file:///E|/SOUNDS/LEC20_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_1.HTM [19/1/2003 1:39:21]



file:///E|/SOUNDS/LEC20_2.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_2.HTM [19/1/2003 1:39:22]



file:///E|/SOUNDS/LEC20_3.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_3.HTM [19/1/2003 1:39:22]



file:///E|/SOUNDS/LEC20_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_4.HTM [19/1/2003 1:39:22]



file:///E|/SOUNDS/LEC20_5.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_5.HTM [19/1/2003 1:39:22]



file:///E|/SOUNDS/LEC20_8.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_8.HTM [19/1/2003 1:39:23]



file:///E|/SOUNDS/LEC20_9.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_9.HTM [19/1/2003 1:39:23]



file:///E|/SOUNDS/LEC20_10.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_10.HTM [19/1/2003 1:39:24]



file:///E|/SOUNDS/LEC20_11.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC20_11.HTM [19/1/2003 1:39:24]



file:///E|/SOUNDS/LEC20_12.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC24_3.HTM [19/1/2003 1:39:31]



file:///E|/SOUNDS/LEC24_4.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.

file:///E|/SOUNDS/LEC27_2.HTM [19/1/2003 1:39:40]



file:///E|/SOUNDS/LEC26_1.HTM

 

Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Using the controls:
- To pause or resume playing, click the arrow-shaped Play button.
- To stop the sound, click the square-shaped Stop button.
- To adjust the volume, click on the Up/Down buttons on the right side of the panel.
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Ranger - Nearest Neighbor Search in Higher Dimensions 

Ranger - Nearest Neighbor Search in Higher 
Dimensions 

Ranger is a tool for visualizing and experimenting with nearest neighbor and orthogonal range queries in 
high-dimensional data sets, using multidimensional search trees. It was developed by Michael Murphy as 
his masters project under Steven Skiena at Stony Brook. Four different search data structures are 
supported by Ranger: 

●     Naive k-d -- the original kd-tree defined by Bentley, "Multidimensional Binary Search Trees Used 
for Associative Searching" ACM Sept. 1975 Vol. 18. No. 9 

●     Median k-d -- A refined kd-tree, using median cuts and bucketing, discussed in J.H. Friedman, 
J.L. Bentley, R.A. Finkel "An Algorithm for Finding Best Matches in Logarithmic Expected 
Time" ACM Transactions of Mathematical Software Vol 3 No. 3 Sept. 1977 pp. 209-226 

●     Sproull k-d -- Sproull's variant of the $kd$-tree. The choice of partition plane is not orthogonal, 
rather, it is selected by the principal eigenvector of the covariance matrix of the points. R.F. 
Sproull "Refinements to Nearest-Neighbor Searching in k-Dimensional Trees" J. Algorithmica 
1990. pp. 579-589 

●     VP-tree - The vantage point tree is a data structure that chooses vantage points to perform a 
spherical decomposition of the search space. Yianilos claims this method is suited for non-
Minkowski metrics (unlike kd-trees) and for lower dimensional objects embedded in a higher 
dimensional space. P.N. Yianilos "Data Structures and Algorithms for Nearest Neighbor Search in 
General Metric Spaces" SODA '93 

Ranger supports queries in up to 25 dimensions for all data structures, under any Minkowski metric. 

Each of these data structures can be applied each of several different applications, including $k$-nearest 
neighbor graphs and orthogonal range queries. Timing data and algorithm animations can be used to 
study the performance of these data structures. 

Because kd-trees are heuristic data structures, their performance can be dramatically effected by the 
distribution of the data. {\em Ranger} includes generators for a variety of distributions in arbitrary 
dimensions, including several degenerate distributions Bentley has noted tend to frustrate heuristic data 
structures. 

Ranger provides a number of features to aid in visualizing multi-dimensional data. Arbitrary two- or 
three-dimensional projections of a higher dimensional data set can be viewed. To identify the most 
appropriate projection at a glance, Ranger provides a d*d matrix of all two-dimensional projections of 
the data set. In any three-dimensional projections, rotation along arbitrary axes can be used to facilitate 
understanding. 
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Ranger - Nearest Neighbor Search in Higher Dimensions 

For each of the four search data structures, a graphic representation of the space division is provided. 
This provides considerable insight into the appropriateness of a data structure for a particular 
distribution. Ideally, the search space is decomposed into fat, regularly-sized regions, but this is often not 
possible with degenerate distributions. Further, Ranger can animate a nearest-neighbor search, by 
highlighting each region as it is visited, for any two- or three-dimensional projection. 

Ranger is written in C, using Motif. It runs on Silicon Graphics and HP workstations. 

●     Link to Michael Murphy's home page 
●     Download Files (local site) 

Problem Links 

●     Kd-Trees (8) 
●     Nearest Neighbor Search (7) 
●     Range Search (6) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 25, 1996. 
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DIMACS Implementation Challenges 

DIMACS Implementation Challenges 

DIMACS is the NSF Science and Technology center for Discrete Mathematics and Theoretical 
Computer Science, based at Rutgers University. Each year they sponsor an implementation challenge 
workshop to stimulate research in empirical algorithms research. Each year has a different theme, 
resulting in implementations for a different class of problems. Proceedings volumes for each workshop 
are published in the DIMACS series by the American Mathematical Society (AMS). 

The First DIMACS Implementation Challenge on Network Flows and Matching in October 1991 
\cite{JM-92}. Several implementations for maximum weight and maximum cardinality matching were 
collected and can be obtained by anonymous ftp from dimacs.rutgers.edu in the directory 
pub/netflow/matching. These include: 

●     A maximum cardinality matching solver in Fortran 77 by R. Bruce Mattingly 
%(FR132601@ysub.ysu.edu) and Nathan P. Ritchey (nate@macs.ysu.edu) of the Youngstown 
State University, which seems capable of solving instances of 5,000 nodes and 60,000 edges in 
under 30 seconds. 

●     A maximum cardinality matching solver in C by Edward Rothberg (rothberg@sgi.com) of Silicon 
Graphics, which implements Gabow's \cite{Gabow-76} $O(n^3)$ algorithm. 

●     A maximum weighted matching solver in C by Edward Rothberg. This is slower than his 
unweighted solver described above, but obviously more general. For example, it took over 30 
seconds on a weighted graph with 500 nodes and 4,000 edges. 

●     A preflow-push network flow implementation in C language by Edward Rothberg of Silicon 
Graphics (rothberg@sgi.com). It took under a second on a test graph of 500 nodes and 4,000 
edges, but over an hour with 5,000 nodes and 40,000 edges. 

●     An implementation of 11 network flow variants in C, including the older Dinic and Karzanov 
algorithms by Richard Anderson (anderson@cs.washington.edu) and Joao Setubal of the 
University of Washington. On an instance of 8,000 vertices and 12,000 edges, all options finished 
within two seconds. 

Programs for the closely related problems of finding cliques, chromatic number, and independent sets 
were also sought for the second DIMACS challenge. The programs and data from the challenge are 
available by anonymous ftp from dimacs.rutgers.edu. Source codes are available under 
pub/challenge/graph and test data under pub/djs. In particular, two C language programs by David S. 
Johnson and David L. Applegate are available: 

●     The dfmax.c implements a simple-minded branch-and-bound algorithm very similar to that of 
Carraghan and Paradalos. for cliques which should perform well on sparse graphs. 

●     The dmclique.c is a variant on the simple `semi-exhaustive greedy' scheme for finding large 
independent sets used in the graph coloring algorithm XRLF. nmclique.c is a new version of 
dmclique.c that prints out the best clique found. 
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DIMACS Implementation Challenges 

Performance data on both programs is available in files results.dfmax and results.dmclique within the 
directories /pub/challenge/graph/benchmarks/clique and /pub/challenge/graph/benchmarks/volume. 

Also included in the Second DIMACS Implementation Challenge was satisfiablity. Programs and data 
from the challenge are available by anonymous ftp from dimacs.rutgers.edu in the directory 
/pub/challenge/sat. In particular, there is random formula generator named mwff.c for constructing hard 
satisfiability instances in C by Bart Selman . 

The Third DIMACS challenge, held in 1994, focused on parallel algorithms for graphs and game-tree 
search. 

The Fourth DIMACS challenge, held in 1995, focused on two problems in computational biology; 
fragment assembly and sorting with reversals. 

The Fifth DIMACS implementation challenge in 1996 will focus on elementary data structures like 
dictionaries. The world's best available dictionary implementations are likely to be identified in the 
course of the challenge. 

●     Link to the DIMACS home page 
●     Challenge 1 - network flow and matching 
●     Challenge 2 - clique, coloring, and satisfiability 
●     Challenge 3 - parallel algorithms 
●     Challenge 4 - computational biology; sequence assembly and genome rearrangements 
●     Challenge 5 - priority queues, dictionaries, and multi-dimensional point sets. 
●     Download Files (local site) 

Problem Links 

●     Clique (9) 
●     Matching (9) 
●     Network Flow (8) 
●     Satisfiability (8) 
●     Independent Set (7) 
●     Vertex Coloring (7) 
●     Vertex Cover (5) 
●     Dictionaries (1) 
●     Kd-Trees (1) 
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DIMACS Implementation Challenges 

●     Priority Queues (1) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 23, 1996. 
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Stony Brook Project Implementations 

Stony Brook Project Implementations 

These files represent implementations produced by my students at Stony Brook in the course of research 
or course projects. They were not intended for distribution, often have not been tested extensively, and 
hence should be viewed even more suspiciously than other codes available on this WWW site. However, 
they are likely to be useful at least (if only) as models, in particular for those problems where I have been 
unable to identify alternative codes. 

●     Edge Coloring -- Yan Dong's implementation of Vizing's theorem in C++ provides an edge 
coloring of any graph using at most one more color than required. Check out the distib/Vizing 
directory. 

●     Suffix Trees (1) -- Dimitris Margaritis' implementation of suffix trees was used in our experiments 
with interactive sequencing by hybridization. Check out the distrib/dmarg directory. 

●     Suffix Trees (2) -- Ting Chen's implementation of suffix trees was used in a fragment assembler 
for shotgun DNA sequencing. Check out the distrib/tichen directory. 

●     Bandwidth (1), (2) -- These are programs for exact solution of the bandwidth of a graph by 
Ingmar Bitter, and Dario Vlah, as class assignments. Ingmar's is likely the best but also the 
bulkiest. Check out the distrib/bandwidth directory. 

●     Download Files (local site) 

Problem Links 

●     Bandwidth Reduction (6) 
●     Edge Coloring (6) 
●     Suffix Trees and Arrays (6) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Aug 5, 1996. 
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Neural-Networks for Cliques and Coloring 

Neural-Networks for Cliques and Coloring 

This directory contains codes by Arun Jagota (jagota@ICSI.Berkeley.EDU) and Laura Sanchis 
(laura@CS.COLGATE.EDU) exploring neural-network approaches to approximate the solution of max-
clique and vertex coloring. Implementations in both C and Mathematica are provided, along with 
associated journal references. 

●     Download Files (local site) 

Problem Links 

●     Clique (6) 
●     Vertex Coloring (6) 
●     Vertex Cover (6) 
●     Independent Set (5) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Aug 26, 1996. 
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Clarkson's higher dimensional convex hull code 

Clarkson's higher dimensional convex hull code 

Hull is an ANSI C program by Ken Clarkson of Bell Laboratories that computes the convex hull of a 
point set in general (but small!) dimension. The input is a list of points, and the output is a list of facets of 
the convex hull of the points, each facet presented as a list of its vertices. (The facets are assumed to be 
simplices, such as triangles in 3d; this is enforced by tiebreaking, giving a triangulation of a facet by 
"placing".) The program can also compute Delaunay triangulations and alpha shapes, and volumes of 
Voronoi regions. The program uses exact arithmetic when possible, with a moderate speed penalty. 
(Typically a factor of 2 or 3 for Delaunay triangulation, less for convex hulls). Output in postscript and 
OFF format for geomview is supported. 

●     Ken Clarkson's home page 
●     Download Files (local site) 

Problem Links 

●     Convex Hull (6) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Jun 2, 1997. 
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From rt@cs.brown.edu Wed Apr  2 17:03:32 1997
Received: from cs.brown.edu (cs.brown.edu [128.148.128.2]) by cs.sunysb.edu (8.6.12/8.6.9) with 
ESMTP id RAA07268 for <skiena@cs.sunysb.edu>; Wed, 2 Apr 1997 17:02:50 -0500
Received: from dumba.cs.brown.edu (dumba.cs.brown.edu [128.148.38.84]) by cs.brown.edu 
(8.8.5/8.7.1) with ESMTP id QAA20853 for <skiena@cs.sunysb.edu>; Wed, 2 Apr 1997 16:52:50 -0500 
(EST)
Received: (rt@localhost) by dumba.cs.brown.edu (8.8.3/BrownCS1.0) id QAA14003; Wed, 2 Apr 1997 
16:52:48 -0500 (EST)
Date: Wed, 2 Apr 1997 16:52:48 -0500 (EST)
Message-Id: <199704022152.QAA14003@dumba.cs.brown.edu>
From: Roberto Tamassia <rt@cs.brown.edu>
To: Steve Skiena <skiena@cs.sunysb.edu>
Subject: airplane data
References: <33404594.41C67EA6@cs.sunysb.edu>
Status: RO
X-Status: 

Hi Steve,

I'm enclosing a database of flights between US cities that I collected
with EasySABRE in 1992.

I have several variations of a programming assignment that uses the
data.  I'm enclosing in the next messages the tex and dvi files of the
'95 version of the assignment.  I am preparing a Java version for this
semester's class.  It should be ready in about one week.  It will be
available from the course Web page at
http://www.cs.brown.edu/courses/cs016/

I hope this is useful.

-- 
Roberto

#Airport information - USA
#
#Fields:
# 3 - Airport abbreviation
# 1 - <padding>
# 5 - Time Zone (offset from GMT)
# 1 - <padding>
# 3 - X coordinate on map
# 1 - <padding>
# 3 - Y coordinate on map
# 1 - <padding>
# remainder - Name of City/Airport
#
# Route information
# Starts after the '!' delimiter
#
# Fields:
#  3 - Source
#  1 - <padding>
#  3 - Destination
#
ABQ -0800 195 275 Albuquerque, New Mexico
ATL -0600 470 280 Atlanta, Georgia
BNA -0700 430 240 Nashville, Tennessee
BOS -0600 590 100 Boston, Massachusetts
DCA -0600 540 180 Washington D.C. (National)
DEN -0800 215 205 Denver, Colorado
DFW -0700 310 305 Dallas/Fort Worth, Texas
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DTW -0600 445 140 Detroit, Michigan
HOU -0700 330 355 Houston, Texas (Hobby)
JFK -0600 565 130 New York (Kennedy)
LAX -0900  55 270 Los Angeles, California
MIA -0600 535 390 Miami, Florida
MSP -0700 340 115 Minneapolis/St Paul, Minnesota
MSY -0700 405 345 New Orleans, Louisiana
ORD -0700 410 155 Chicago, Illinois
PHL -0600 550 155 Philadelphia, Pennsilvania/Wilmington, Delaware
PHX -0800 120 290 Phoenix, Arizona
PVD -0600 595 122 Providence/Newport, Rhode Island
RDU -0600 530 230 Raleigh/Durham, North Carolina
SEA -0900  55  45 Seattle/Tacoma, Washington
SFO -0900  10 190 San Francisco, California
STL -0700 380 210 St Louis, Missouri
TPA -0600 500 360 Tampa, Florida
!
ABQ DEN
ABQ DFW
ABQ LAX
ABQ PHX
ATL BNA
ATL MSY
ATL RDU
BNA ORD
BNA STL
BOS JFK
DCA JFK
DCA RDU
DEN DFW
DEN LAX
DEN ORD
DFW HOU
DFW STL
DTW ORD
HOU MIA
JFK PHL
LAX PHX
LAX SFO
MIA TPA
MSP ORD
MSY DFW
MSY HOU
MSY TPA
ORD STL
PVD MIA
PHX SFO
SEA SFO

#Airline Flight Schedule - USA
#
#Fields:
# 2 - Airline
# 4 - Flight
# 2 - <padding>
# 3 - Origin Airport
# 1 - <padding>
# 5 - Departure Time
# 2 - <padding>
# 3 - Destination Airport
# 1 - <padding>
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# 5 - Arrival Time
# 2 - <padding>
# 2 - Meals (S=snack,L=lunch,D=dinner,B=breakfast,#=depends on class)
# 4 - <padding>
# 1 - Stops during flight
# 4 - <padding>
# 3 - Aircraft type
# 12 - <padding>
# remainder - Booking Classes
#
AA 748  ABQ  257P  ATL 1047P  S     1    S80            F  Y  M  Q  B
TW 410  ABQ  628A  DCA  132P  #     1    M80            F  Y  B  Q  M
DL 660  ABQ  125P  DCA  845P  LD    1    757            F  Y  B  M  Q
UA 785  ABQ  645A  DEN  757A  S     0    733            F  Y  B  M  Q
YV  11  ABQ  715A  DEN  920A        1    BE1            Y  Q  L  H  M
YV 221  ABQ  820A  DEN 1010A        1    BE1            Y  Q  L  H  M
UA 982  ABQ  829A  DEN  939A  S     0    72S            F  Y  B  M  Q
CO1594  ABQ  830A  DEN  944A  S     0    73S            F  A  Y  Q  H
UA 718  ABQ 1020A  DEN 1132A        0    72S            F  C  Y  B  M
CO1708  ABQ 1026A  DEN 1139A        0    733            F  A  Y  Q  H
YV 687  ABQ 1045A  DEN 1235P        1    BE1            Y  Q  L  H  M
UA 470  ABQ  114P  DEN  224P        0    72S            F  Y  B  M  Q
CO1660  ABQ  210P  DEN  322P        0    733            A  Y  Q  H  K
YV 237  ABQ  300P  DEN  455P        1    BE1            Y  Q  L  H  M
UA 671  ABQ  325P  DEN  437P        0    733            F  Y  B  M  Q
UA 716  ABQ  449P  DEN  604P        0    733            F  Y  B  M  Q
YV 607  ABQ  500P  DEN  650P        1    BE1            Y  Q  L  H  M
CO1184  ABQ  525P  DEN  639P  #     0    73S            A  Y  Q  H  K
AA 202  ABQ  450A  DFW  721A        0    72S           FN YN  B  M  H
DL1042  ABQ  630A  DFW  901A  #     0    72S           FN YN BN MN QN
AA 880  ABQ  915A  DFW 1151A  V     0    72S            F  Y  B  M  H
DL 768  ABQ  945A  DFW 1223P  S     0    M80            F  Y  B  M  Q
AA1050  ABQ 1053A  DFW  134P  L     0    72S            F  Y  B  M  H
CO 829  ABQ 1120A  DFW  358P  L     1    73S            A  Y  Q  H  K
DL 660  ABQ  125P  DFW  403P  L     0    757            F  Y  B  M  Q
AA1480  ABQ  140P  DFW  418P        0    S80            F  Y  B  M  H
YV  84  ABQ  200P  DFW  637P        2    BE1            Y  Q  L  H  M
AA 592  ABQ  409P  DFW  701P  D     0    S80            F  Y  B  M  H
DL1048  ABQ  455P  DFW  730P  D     0    72S            F  Y  B  M  Q
AA1044  ABQ  600P  DFW  832P  D     0    72S            F  Y  B  M  H
DL1096  ABQ  825P  DFW 1054P        0    M80           FN YN BN MN QN
WN 515  ABQ  610A  HOU  905A        0    733            Y  K  L  B  Q
WN  29  ABQ 1005A  HOU  225P        2    733            Y  K  L  B  Q
WN  31  ABQ 1050A  HOU  255P        1    73S            Y  K  L  B  Q
WN 803  ABQ 1105A  HOU  330P        2    73S            Y  K  L  B  Q
WN 539  ABQ  845P  HOU 1135P        0    73S            Y  K  L  B  Q
WN 530  ABQ  700A  LAX  750A        0    73S            Y  K  L  B  Q
WN 532  ABQ  950A  LAX 1045A        0    73S            Y  K  L  B  Q
WN 343  ABQ 1125A  LAX 1225P        0    73S            Y  K  L  B  Q
WN 994  ABQ  100P  LAX  250P        1    73S            Y  K  L  B  Q
WN 430  ABQ  410P  LAX  505P        0    73S            Y  K  L  B  Q
WN 931  ABQ  510P  LAX  700P        1    73S            Y  K  L  B  Q
WN 362  ABQ  620P  LAX  715P        0    733            Y  K  L  B  Q
WN 590  ABQ  730P  LAX  825P        0    733            Y  K  L  B  Q
AA 880  ABQ  915A  MIA  439P  VL    1    72S            F  Y  M  Q  B
UA 982  ABQ  829A  MSP  124P  SL    1    72S            F  Y  B  M  Q
DL1042  ABQ  630A  MSY 1105A  #     1    72S           F@ Y@ B@ M@ Q@
WN  41  ABQ  250P  MSY  700P        1    73S            Y  K  L  B  Q
AA1186  ABQ  845A  ORD 1227P  B     0    S80            F  Y  B  H  M
AA 134  ABQ 1154A  ORD  339P  L     0    S80            F  Y  B  H  M
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AA 748  ABQ  257P  ORD  645P  S     0    S80            F  Y  B  H  M
TW  88  ABQ  328P  ORD  856P  #     1    M80            F  Y  B  Q  M
AA1044  ABQ  600P  ORD 1204A  D     1    72S            F  Y  M  Q  B
WN 706  ABQ  650A  PHX  805A        0    733            Y  K  L  B  Q
HP 650  ABQ  700A  PHX  814A        0    733            Y  B  H  K  Q
WN 600  ABQ  745A  PHX  855A        0    73S            Y  K  L  B  Q
WN 483  ABQ  830A  PHX  940A        0    733            Y  K  L  B  Q
HP 653  ABQ 1000A  PHX 1115A        0    733            F  Y  B  H  K
WN 386  ABQ 1100A  PHX 1210P        0    73S            Y  K  L  B  Q
WN 866  ABQ 1145A  PHX  100P        0    733            Y  K  L  B  Q
HP 836  ABQ 1230P  PHX  145P        0    733            Y  B  H  K  Q
WN 994  ABQ  100P  PHX  210P        0    73S            Y  K  L  B  Q
WN 552  ABQ  235P  PHX  345P        0    73S            Y  K  L  B  Q
HP 845  ABQ  255P  PHX  410P        0    73S            Y  B  H  Q  V
WN1745  ABQ  410P  PHX  520P        0    733            Y  K  L  B  Q
WN 931  ABQ  510P  PHX  625P        0    73S            Y  K  L  B  Q
HP 647  ABQ  530P  PHX  645P        0    733            F  Y  B  H  Q
WN 563  ABQ  620P  PHX  730P        0    733            Y  K  L  B  Q
WN 812  ABQ  725P  PHX  835P        0    733            Y  K  L  B  Q
HP1221  ABQ  745P  PHX  859P        0    733            F  Y  B  H  K
WN 814  ABQ  910P  PHX 1015P        0    733            Y  K  L  B  Q
WN 416  ABQ 1000P  PHX 1105P        0    73S            Y  K  L  B  Q
HP 845  ABQ  255P  SEA  718P  S     1    73S            Y  B  H  Q  V
WN 592  ABQ  820A  SFO  950A        0    733            Y  K  L  B  Q
WN 965  ABQ  205P  SFO  325P        0    73S            Y  K  L  B  Q
WN 971  ABQ  510P  SFO  635P        0    733            Y  K  L  B  Q
WN 515  ABQ  610A  STL 1120A        1    733            Y  K  L  B  Q
TW 410  ABQ  628A  STL  950A  B     0    M80            F  Y  B  Q  M
TW 844  ABQ  844A  STL 1203P  B     0    L10            F  C  Y  B  Q
WN 535  ABQ 1115A  STL  220P        0    73S            Y  K  L  B  Q
TW 290  ABQ 1244P  STL  403P  #     0    72S            F  Y  B  Q  M
UA 470  ABQ  114P  STL  601P  S     1    72S            F  Y  B  M  Q
TW  88  ABQ  328P  STL  651P  D     0    M80            F  Y  B  Q  M
DL 545  ATL 1144A  ABQ  405P  L     2    72S            F  Y  B  M  Q
AA1271  ATL  440P  ABQ  826P  D     1    72S            F  Y  H  B  M
DL1166  ATL  632A  BNA  625A  #     0    73S           FN YN BN MN QN
DL1247  ATL 1000A  BNA 1000A        0    D9S            F  Y  B  M  Q
DL1045  ATL 1154A  BNA 1150A        0    D9S            F  Y  B  M  Q
DL1709  ATL  327P  BNA  330P        0    757            F  Y  B  M  Q
DL 376  ATL  507P  BNA  510P        0    M80            F  Y  B  M  Q
DL 657  ATL  708P  BNA  710P        0    M80            F  Y  B  M  Q
DL 735  ATL 1147P  BNA 1140P        0    D9S           FN YN BN MN QN
DL 850  ATL  624A  BOS  845A  B     0    767           FN YN BN MN QN
DL 202  ATL  636A  BOS 1004A  B     1    72S           F@ Y@ B@ M@ Q@
NW1856  ATL  750A  BOS 1121A  BS    1    D9S            F  Y  B  M  H
DL 350  ATL  902A  BOS 1125A  B     0    72S            F  Y  B  M  Q
DL 410  ATL 1003A  BOS 1220P  B     0    757            F  Y  B  M  Q
UA1032  ATL 1003A  BOS  137P  S     1    72S            F  Y  B  M  Q
NW1866  ATL 1240P  BOS  426P  LS    1    D9S            F  Y  B  M  H
DL1610  ATL  119P  BOS  350P  L     0    763            F  Y  B  M  Q
DL 378  ATL  319P  BOS  655P  S     1    72S            F  Y  B  M  Q
DL 356  ATL  330P  BOS  552P  S     0    72S            F  Y  B  M  Q
DL1420  ATL  510P  BOS  740P  D     0    L10            F  Y  B  M  Q
DL 326  ATL  705P  BOS  935P  D     0    757            F  Y  B  M  Q
DL1406  ATL  859P  BOS 1125P  #     0    757            F  Y  B  M  Q
DL1258  ATL 1157P  BOS  210A        0    763           FN YN BN MN QN
DL 314  ATL  625A  DCA  755A  B     0    757           FN YN BN MN QN
US1642  ATL  650A  DCA 1059A  S     2    D9S           FN YN BN HN QN
NW1856  ATL  750A  DCA  924A  B     0    D9S           FN YN BN  M  H
DL 710  ATL  819A  DCA  951A  B     0    757            F  Y  B  M  Q
DL1436  ATL 1000A  DCA 1140A  S     0    757            F  Y  B  M  Q
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DL 464  ATL 1145A  DCA  125P  L     0    757            F  Y  B  M  Q
NW1866  ATL 1240P  DCA  216P  L     0    D9S            F  Y  B  M  H
DL 402  ATL  120P  DCA  259P  L     0    757            F  Y  B  M  Q
DL 378  ATL  319P  DCA  455P        0    72S            F  Y  B  M  Q
DL 280  ATL  449P  DCA  630P  D     0    757            F  Y  B  M  Q
NW1878  ATL  545P  DCA  731P  D     0    D9S            F  Y  B  M  H
DL 178  ATL  658P  DCA  835P  D     0    757            F  Y  B  M  Q
DL 394  ATL  846P  DCA 1025P        0    M80            F  Y  B  M  Q
UA 717  ATL  640A  DEN  804A  B     0    737            F  Y  B  M  Q
CO 275  ATL  650A  DEN  810A  B     0    733            Y  Q  H  K  B
DL 445  ATL  857A  DEN 1005A  B     0    757            F  Y  B  M  Q
DL 257  ATL 1159A  DEN  105P  L     0    72S            F  Y  B  M  Q
UA 373  ATL  310P  DEN  429P  S     0    737            F  Y  B  M  Q
DL1668  ATL  312P  DEN  415P  S     0    72S            F  Y  B  M  Q
CO1759  ATL  400P  DEN  520P  D     0    733            A  Y  Q  H  K
DL1055  ATL  652P  DEN 1130P  D     2    M80           F@ Y@ B@ M@ Q@
DL 675  ATL  709P  DEN  830P  D     0    757            F  Y  B  M  Q
DL 785  ATL  625A  DFW  735A  B     0    757           FN YN BN MN QN
AA 837  ATL  725A  DFW  835A  B     0    72S           FN YN  B  H  M
DL 793  ATL  819A  DFW 1055A  #     1    763            F  Y  B  M  Q
DL 444  ATL  819A  DFW 1109A  S     2    72S            Y  B  M  Q  H
DL 551  ATL  819A  DFW 1110A  S     2    M80            F  Y  B  M  Q
DL 409  ATL  820A  DFW 1108A  #     2    M80            F  Y  B  M  Q
DL 671  ATL  822A  DFW  927A  B     0    72S            F  Y  B  M  Q
DL 803  ATL  825A  DFW 1055A  S     1    73S            F  Y  B  M  Q
DL 357  ATL  826A  DFW 1108A  B     1    M80            F  Y  B  M  Q
DL 239  ATL  833A  DFW 1105A  S     1    72S            F  Y  B  M  Q
DL 775  ATL  838A  DFW 1108A  S     1    73S            F  Y  B  M  Q
AA1683  ATL  840A  DFW 1002A  B     0    S80            F  Y  B  H  M
DL 873  ATL  907A  DFW 1108A        1    M80            F  Y  B  M  Q
DL  17  ATL 1006A  DFW 1110A  S     0    L15            F  Y  B  M  Q
DL1101  ATL 1144A  DFW 1253P  L     0    M80            F  Y  B  M  Q
DL 307  ATL 1144A  DFW  227P  S     1    767            F  Y  B  M  H
DL 545  ATL 1144A  DFW  230P  L     1    72S            F  Y  B  M  Q
DL 323  ATL 1144A  DFW  230P        2    M80            F  Y  B  M  Q
DL 125  ATL 1147A  DFW  225P  L     1    73S            F  Y  B  M  Q
DL1428  ATL 1149A  DFW  222P  L     1    72S            F  Y  B  M  Q
DL1137  ATL 1154A  DFW  225P  L     1    M80            F  Y  B  M  Q
DL1045  ATL 1154A  DFW  204P  L     1    D9S            F  Y  B  M  Q
DL1457  ATL 1155A  DFW  217P  L     1    D9S            F  Y  B  M  Q
DL 946  ATL 1157A  DFW  217P  S     1    D9S            F  Y  B  M  Q
DL 299  ATL 1159A  DFW  215P  S     1    73S            F  Y  B  M  Q
DL 837  ATL 1203P  DFW  217P  S     1    M80            F  Y  B  M  Q
AA 139  ATL 1225P  DFW  143P  L     0    72S            F  Y  B  H  M
DL 758  ATL  122P  DFW  414P  S     2    M80            F  Y  B  M  Q
DL 179  ATL  124P  DFW  230P  L     0    L10            F  Y  B  M  Q
TW 621  ATL  139P  DFW  501P        1    D9S            F  Y  B  Q  M
AA 425  ATL  156P  DFW  311P        0    S80            F  Y  B  H  M
DL 145  ATL  310P  DFW  422P  S     0    767            F  Y  B  M  Q
DL 719  ATL  310P  DFW  606P  S     1    M80            F  Y  B  M  Q
DL1033  ATL  310P  DFW  610P  S     2    M80            F  Y  B  M  Q
DL 557  ATL  312P  DFW  611P  S     2    757            F  Y  B  M  Q
DL 139  ATL  314P  DFW  553P        1    757            F  Y  B  M  H
DL 847  ATL  323P  DFW  555P        1    M80            F  Y  B  M  Q
DL 691  ATL  325P  DFW  611P        2    72S            F  Y  B  M  Q
DL1709  ATL  327P  DFW  601P  S     1    757            F  Y  B  M  Q
DL 845  ATL  327P  DFW  552P        1    73S            F  Y  B  M  Q
AA 385  ATL  430P  DFW  547P  S     0    S80            F  Y  B  H  M
DL 195  ATL  449P  DFW  605P  D     0    L10            F  Y  B  M  Q
DL1023  ATL  455P  DFW  742P  D     1    M80            F  Y  B  M  Q
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DL 405  ATL  641P  DFW  755P  D     0    M80            F  Y  B  M
DL1153  ATL  641P  DFW  840P  S     1    D9S           F@ Y@ B@ M@ Q@
DL 817  ATL  642P  DFW  940P        2    M80           F@ Y@ B@ M@ Q@
DL 397  ATL  649P  DFW  936P  D     1    M80           F@ Y@ B@ M@ Q@
DL1055  ATL  652P  DFW  937P  D     1    M80           F@ Y@ B@ M@ Q@
DL1002  ATL  653P  DFW  937P  #     2    M80           F@ Y@ B@ M@ Q@
DL1081  ATL  656P  DFW  923P  D     1    D9S           F@ Y@ B@ M@ Q@
DL 883  ATL  656P  DFW  925P  D     1    73S           F@ Y@ B@ M@ Q@
AA 701  ATL  700P  DFW  832P  D     0    S80            F YN  B  H  M
DL1507  ATL  702P  DFW  946P  S     1    757            F  Y  B  M  Q
DL 593  ATL  703P  DFW  917P  S     1    D9S           F@ Y@ B@ M@ Q@
DL 657  ATL  708P  DFW  937P  S     1    M80            F  Y  B  M  Q
DL 970  ATL  743P  DFW  939P        1    73S           F@ Y@ B@ M@ Q@
DL 227  ATL  835P  DFW  948P        0    763           FN YN BN MN QN
DL 585  ATL 1015P  DFW 1117P        0    M80           FN YN BN MN QN
DL 955  ATL 1145P  DFW 1245A        0    72S           FN YN BN MN QN
NW 492  ATL  640A  DTW  829A  B     0    DC9           FN YN BN  M  H
DL 868  ATL  826A  DTW 1010A  B     0    72S            F  Y  B  M  Q
NW 494  ATL  950A  DTW 1133A        0    72S           FN YN BN  M  H
DL 964  ATL 1004A  DTW 1150A        0    M80            F  Y  B  M  Q
NW 496  ATL 1250P  DTW  234P  L     0    D9S            F  Y  B  M  H
DL1044  ATL  127P  DTW  315P  L     0    M80            F  Y  B  M  Q
NW 490  ATL  400P  DTW  549P  S     0    D9S            F  Y  B  M  H
DL 412  ATL  448P  DTW  955P  S     2    757            F  Y  B  M  Q
DL 766  ATL  505P  DTW  655P  D     0    757            F  Y  B
NW 498  ATL  555P  DTW  745P  D     0    D9S            F  Y  B  M  H
DL 256  ATL  859P  DTW 1050P        0    763            F  Y  B  M  Q
DL 714  ATL 1147P  DTW  125A        0    M80           FN YN BN MN QN
NW 823  ATL  820A  HOU 1057A  S     1    D9S            F  Y  B  M  H
DL1050  ATL  958A  HOU 1100A  S     0    D9S            F  Y  B  M  Q
DL 946  ATL 1157A  HOU  403P  S     2    D9S            F  Y  B  M  Q
DL1170  ATL  119P  HOU  225P  L     0    M80            F  Y  B  M  Q
DL1023  ATL  455P  HOU  605P  D     0    M80            F  Y  B  M  Q
DL  30  ATL 1230P  JFK  238P  L     0    L15            F  C  Y  B  M
DL1916  ATL  145P  JFK  353P  L     0    310            F  C  Y  B  M
TW 816  ATL  234P  JFK  450P  S     0    72S            F  C  Y  B  Q
HP  44  ATL  815A  LAX 1125A  B     1    320            F  Y  B  H  K
DL1565  ATL  823A  LAX  955A  B     0    L10            F  Y  B  M  Q
DL 369  ATL  828A  LAX 1130A  BS    1    757            F  Y  B  M  Q
DL 269  ATL 1200N  LAX  130P  L     0    L10            F  Y  B  M  Q
DL 179  ATL  124P  LAX  440P  LS    1    L10            F  Y  B  M  Q
DL 139  ATL  314P  LAX  920P  D     3    757            F  Y  B  M  H
DL 157  ATL  329P  LAX  455P  D     0    L10            F  Y  B  M  Q
DL1049  ATL  457P  LAX  630P  D     0    L10            F  Y  B  M  Q
DL 187  ATL  707P  LAX  855P  D     0    767            F  Y  B  M  Q
DL 446  ATL  851P  LAX 1040P  S     0    757            F  Y  B  M  Q
DL 143  ATL 1035P  LAX 1210A  S     0    757           FN YN BN MN QN
DL 339  ATL  632A  MIA  810A  B     0    757           FN YN BN MN QN
DL 321  ATL  819A  MIA 1000A  B     0    757            F  Y  B  M
AA 709  ATL  828A  MIA 1015A  B     0    727            F  Y  B  M  H
PA 425  ATL  835A  MIA 1019A  #     0    72S            F  Y  B  M  Q
DL1155  ATL 1001A  MIA 1145A        0    763            F  Y  B  M  H
AA1555  ATL 1100A  MIA 1243P        0    72S            F  Y  B  M  H
DL 449  ATL 1144A  MIA  125P  L     0    763            F  Y
AA 825  ATL  135P  MIA  333P        0    72S            F  Y  B  M  H
DL 395  ATL  139P  MIA  325P  S     0    72S            F  Y  B  M  H
DL 472  ATL  326P  MIA  515P        0    757            F  Y  B  M  H
DL 491  ATL  659P  MIA  845P  D     0    767            F  Y  B  M  Q
AA 471  ATL  730P  MIA  926P  D     0    72S            F  Y  B  M  H
DL 325  ATL  857P  MIA 1035P        0    72S            F  Y  B  M  Q
DL 469  ATL 1022P  MIA 1156P        0    72S           FN YN BN MN QN
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NW 673  ATL  710A  MSP  843A  B     0    DC9           FN YN BN  M  H
DL 954  ATL  833A  MSP 1010A  B     0    M80            F  Y  B  M  Q
NW 759  ATL  900A  MSP 1032A  B     0    D9S           FN YN BN  M  H
NW 763  ATL 1200N  MSP  135P  L     0    D9S            F  Y  B  M  H
DL1085  ATL 1202P  MSP  145P  L     0    73S            F  Y  B  M  Q
DL1855  ATL  448P  MSP  615P  D     0    72S            F  Y  B  M  Q
NW1027  ATL  510P  MSP  650P  D     0    M80            F  Y  B  M  H
DL 700  ATL  702P  MSP  840P  D     0    73S            F  Y  B  M  Q
DL 793  ATL  819A  MSY  850A  #     0    763            F  Y  B  M  Q
DL 307  ATL 1144A  MSY 1216P  S     0    767            F  Y  B  M  Q
DL 139  ATL  314P  MSY  345P        0    757            F  Y  B  M  Q
DL1199  ATL  457P  MSY  525P  S     0    M80            Y  B
DL1507  ATL  702P  MSY  735P  S     0    757            F  Y  B  M  Q
DL 577  ATL  856P  MSY  930P        0    767            F  Y  B  M  Q
DL 991  ATL 1032P  MSY 1050P        0    72S           FN YN BN MN QN
DL 596  ATL  626A  ORD  715A  B     0    72S           FN YN BN MN QN
AA 833  ATL  715A  ORD  804A  B     0    S80            F  Y  B  M  H
UA 507  ATL  755A  ORD  852A  B     0    73S            F  Y  B  M  Q
DL1064  ATL  821A  ORD  920A  B     0    72S            F  Y  B  M  Q
AA1221  ATL 1010A  ORD 1100A        0    727            F  Y  B  M  H
DL 820  ATL 1014A  ORD 1105A        0    72S            F  Y  B  M  Q
UA 721  ATL 1120A  ORD 1213P  S     0    72S            F  Y  B  M  Q
DL 598  ATL 1147A  ORD 1235P  L     0    72S            F  Y  B  M  Q
AA 357  ATL  105P  ORD  155P  #     0    S80            F  Y  B  M  H
DL 142  ATL  121P  ORD  220P  L     0    757            F  Y  B  M  Q
UA 631  ATL  140P  ORD  234P  L     0    72S            F  Y  B  M  Q
DL1124  ATL  333P  ORD  430P  #     0    72S            F  Y  B  M  Q
UA 944  ATL  359P  ORD  815P  #     2    733            F  Y  B  M  Q
AA1271  ATL  440P  ORD  534P  D     0    72S            F  Y  B  M  H
DL 692  ATL  446P  ORD  550P  D     0    767            F  Y  B  M  Q
CO 235  ATL  500P  ORD  815P  #     1    737            A  Y  Q  H  K
UA 415  ATL  512P  ORD  614P  D     0    72S            F  Y  B  M  H
DL 335  ATL  656P  ORD  750P  D     0    72S            F  Y  B  M  Q
AA 673  ATL  757P  ORD  845P        0    S80            F  Y  B  M  H
UA 633  ATL  827P  ORD  921P  #     0    72S            F  Y  B  M  Q
DL 298  ATL  837P  ORD  940P  #     0    757            F  Y  B  M  Q
DL 574  ATL 1145P  ORD 1230A        0    72S           FN YN BN MN QN
DL 202  ATL  636A  PHL  825A  B     0    72S           FN YN BN MN QN
US1238  ATL  715A  PHL  906A  B     0    73S           FN YN BN HN QN
DL 726  ATL 1018A  PHL 1215P        0    M80            F  Y  B  M  Q
US1714  ATL 1110A  PHL 1258P  S     0    D9S            F  Y  B  H  Q
DL 686  ATL  119P  PHL  315P  L     0    757            F  Y  B  M  Q
UA1236  ATL  125P  PHL  455P  #     1    73S            F  Y  B  M  Q
DL 860  ATL  447P  PHL  640P  D     0    763            F  Y  B  M  Q
US 274  ATL  450P  PHL  638P  S     0    D9S            Y  B
DL 842  ATL  701P  PHL  858P  D     0    M80            F  Y  B  M  Q
US 836  ATL  830P  PHL 1030P  S     0    100            F  Y  B  H  Q
DL1118  ATL  844P  PHL 1040P        0    M80            F  Y  B  M  Q
CO 543  ATL  730A  PHX 1100A  B     1    72S            Y  Q  H  K  B
DL 444  ATL  819A  PHX  110P  SL    3    72S            Y  B  M  Q  H
DL 369  ATL  828A  PHX 1025A  B     0    757            F  Y  B  M  Q
HP 838  ATL  900A  PHX 1110A  S     0    733            Y  B  H  K  Q
DL 295  ATL 1146A  PHX  135P  L     0    757            F  Y  B  M  Q
DL1855  ATL  448P  PHX 1050P  D     2    72S           F@ Y@ B@ M@ Q@
HP3003  ATL  455P  PHX  655P  D     0    320            F  Y  B  H  K
DL 901  ATL  657P  PHX  900P  D     0    757            F  Y  B  M  Q
US1238  ATL  715A  PVD 1057A  B     1    73S           FN YN BN HN QN
UA1456  ATL  730A  PVD 1100A  B     1    73S            F  Y  B  M  Q
US1202  ATL  925A  PVD 1259P  S     1    733            F  Y  B  H  Q
CO1016  ATL  130P  PVD  531P  S     1    737            A  Y  Q  H  K
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US1518  ATL  140P  PVD  508P  S     1    D9S            F  Y  B  H  Q
DL1458  ATL  149P  PVD  410P  S     0    M80            F  Y  B  M  Q
NW 498  ATL  555P  PVD  959P  D     1    D9S            F  Y  B  M  H
DL 470  ATL  645P  PVD  900P  D     0    M80            F  Y  B  M  Q
DL 806  ATL  630A  RDU  740A  #     0    72S           FN YN BN MN QN
US1642  ATL  650A  RDU  926A  S     1    D9S           FN YN BN HN QN
AA 190  ATL  702A  RDU  815A        0    727            F  Y  B  H  M
DL1100  ATL 1011A  RDU 1130A        0    73S            F  Y  B  M  Q
AA1006  ATL  115P  RDU  226P  S     0    727            F  Y  B  H  M
DL 548  ATL  144P  RDU  300P        0    72S            F  Y  B  M  Q
US1633  ATL  215P  RDU  438P        1    D9S            F  Y  B  H  M
DL 412  ATL  448P  RDU  600P  S     0    757            F  Y  B  M  Q
AA 868  ATL  540P  RDU  657P  S     0    S80            F  Y  B  H  M
DL 724  ATL  658P  RDU  815P  S     0    73S            F  Y  B  M  Q
DL1136  ATL  847P  RDU 1010P        0    72S            F  Y  B  M  Q
DL1202  ATL 1143P  RDU 1255A        0    73S           FN YN BN MN QN
DL 835  ATL  926A  SEA 1130A  B     0    L10            F  Y  B  M  Q
DL1709  ATL  327P  SEA  900P  SD    2    757            F  Y  B  M  Q
DL 197  ATL  646P  SEA  905P  D     0    763            F  Y  B  M  Q
AA 673  ATL  757P  SEA 1207A  #     1    S80            F  Y  H  B  M
DL 625  ATL 1031P  SEA  130A  S     1    72S           FN YN BN MN QN
DL 270  ATL  841A  SFO 1045A  B     0    767            F  Y  B  M  Q
DL 307  ATL 1144A  SFO  450P  S     2    767            F  Y  B  M  H
DL 977  ATL 1209P  SFO  215P  L     0    757            Y  B  M  Q  H
DL 382  ATL  321P  SFO  530P  D     0    763            F  Y  B  M  Q
DL 691  ATL  325P  SFO  855P  D     3    72S            F  Y  B  M  Q
DL1411  ATL  719P  SFO  920P  D     0    L10            F  Y  B  M  Q
DL 143  ATL 1035P  SFO  159A  S     1    757           FN YN BN MN QN
TW  73  ATL  742A  STL  827A  B     0    D9S            F  Y  B  Q  M
DL 696  ATL 1016A  STL 1050A        0    D9S            F  Y  B  M  Q
TW 659  ATL 1039A  STL 1127A        0    D9S            F  Y  B  Q  M
DL1260  ATL  137P  STL  220P        0    73S            F  Y  B  M  Q
TW 621  ATL  139P  STL  224P        0    D9S            F  Y  B  Q  M
TW 599  ATL  439P  STL  527P  #     0    D9S            F  Y  B  Q  M
DL1435  ATL  505P  STL  540P  #     0    72S            F  Y  B  M  Q
DL 878  ATL  701P  STL  740P  #     0    D9S            F  Y  B  M  Q
TW 609  ATL  756P  STL  840P  S     0    D9S            F  Y  B  Q  M
DL1057  ATL 1026P  STL 1055P        0    D9S           FN YN BN MN QN
DL 273  ATL  659A  TPA  815A  #     0    763           FN YN BN MN QN
DL1175  ATL  833A  TPA 1000A  #     0    72S            F  Y  B  M  Q
DL 539  ATL 1154A  TPA  120P  S     0    757            F  Y  B  M  Q
DL 790  ATL  141P  TPA  305P        0    763            F  Y  B  M  Q
DL1597  ATL  330P  TPA  450P        0    72S            F  Y  B  M  Q
DL 317  ATL  457P  TPA  620P  S     0    757            F  Y  B
DL1003  ATL  702P  TPA  830P  S     0    763            F  Y  B  M  Q
DL 765  ATL  859P  TPA 1027P        0    757            F  Y  B  M  Q
DL 389  ATL 1027P  TPA 1145P        0    763           FN YN BN MN QN
DL 474  ATL 1155P  TPA  110A        0    767           FN YN BN MN QN
DL 885  BNA  535A  ATL  732A  #     0    D9S           FN YN BN MN QN
DL1154  BNA  710A  ATL  908A  #     0    73S            F  Y  B  M  Q
DL 947  BNA 1040A  ATL 1237P        0    D9S            F  Y  B  M  Q
DL 784  BNA 1230P  ATL  228P        0    M80            F  Y  B  M  Q
DL 511  BNA  350P  ATL  544P        0    72S            F  Y  B  M  Q
DL1167  BNA  725P  ATL  920P        0    D9S            F  Y  B  M  Q
AA 132  BNA  830A  BOS 1147A  B     0    S80            F  Y  B  H  M
AA 566  BNA  155P  BOS  519P  S     0    S80            F  Y  B  H  M
AA 530  BNA  735P  BOS 1054P  D     0    S80            F  Y  B  H  M
AA 350  BNA  910A  DCA 1146A        0    757            F  Y  B  H  M
AA1574  BNA  215P  DCA  456P        0    72S            F  Y  B  H  M
US1082  BNA  705P  DCA 1047P  #     1    100            F  Y  B  H  Q
AA1334  BNA  730P  DCA 1002P  D     0    S80            F  Y  B  H  M

file:///E|/WEBSITE/BIBLIO/TESTDATA/AIRPLANE (8 of 67) [19/1/2003 1:40:22]



file:///E|/WEBSITE/BIBLIO/TESTDATA/AIRPLANE

AA1615  BNA 1000A  DEN 1145A  S     0    S80            F  Y  B  H  M
AA1543  BNA  854P  DEN 1034P        0    S80            F  Y  B  H  M
AA1339  BNA  640A  DFW  838A  B     0    757            F  Y  B  M  H
AA 199  BNA  810A  DFW 1008A  B     0    757            F  Y  B  M  H
DL1087  BNA  855A  DFW 1045A  S     0    72S            F  Y  B  M  Q
AA1319  BNA 1000A  DFW  249P        2    727            F  Y  M  B  Q
DL1045  BNA 1220P  DFW  204P  L     0    D9S            F  Y  B  M  Q
AA1337  BNA  100P  DFW  308P  L     0    S80            F  Y  B  M  H
AA 557  BNA  210P  DFW  423P        0    S80            F  Y  B  M  H
AA1227  BNA  335P  DFW  544P        0    S80            F  Y  B  M  H
DL1709  BNA  405P  DFW  601P  S     0    757            F  Y  B  M  Q
AA 521  BNA  701P  DFW  908P  D     0    S80            F  Y  B  M  H
DL 657  BNA  745P  DFW  937P  S     0    M80            F  Y  B  M  Q
AA1621  BNA  844P  DFW 1037P        0    72S            F  Y  B  M  H
NW1102  BNA  710A  DTW  937A  S     0    D9S           FN YN BN  M  H
WN 436  BNA  730A  DTW 1115A        1    73S            Y  K  L  B  Q
AA1212  BNA  840A  DTW 1105A  V     0    S80            F  Y  B  H  M
NW1444  BNA 1015A  DTW 1243P  S     0    D9S            F  Y  B  M  H
NW1524  BNA  130P  DTW  401P        0    D9S            F  Y  B  M  H
AA 604  BNA  200P  DTW  430P        0    S80            F  Y  B  H  M
NW1150  BNA  500P  DTW  729P  S     0    D9S            F  Y  B  M  H
WN1615  BNA  605P  DTW  935P        1    733            Y  K  L  B  Q
AA 860  BNA  727P  DTW  955P  D     0    S80            F  Y  B  H  M
NW1582  BNA  750P  DTW 1016P        0    DC9           FN YN BN  M  H
WN 443  BNA  725A  HOU 1045A        2    733            Y  K  L  B  Q
WN 741  BNA  825A  HOU 1020A        0    735            Y  K  L  B  Q
WN 485  BNA 1235P  HOU  230P        0    73S            Y  K  L  B  Q
WN 413  BNA  500P  HOU  655P        0    73S            Y  K  L  B  Q
WN 758  BNA  720P  HOU 1035P        2    73S            Y  K  L  B  Q
WN 455  BNA  955P  HOU 1140P        0    733            Y  K  L  B  Q
TW 792  BNA 1221P  JFK  450P  S     1    72S            F  Y  B  Q  M
WN 440  BNA  840A  LAX 1200N        1    733            Y  K  L  B  Q
AA1045  BNA  950A  LAX 1216P  L     0    757            F  Y  B  H  M
AA1661  BNA  315P  LAX  541P  D     0    757            F  Y  B  H  M
AA1517  BNA  904P  LAX 1136P  S     0    757           FN YN  B  H  M
AA1651  BNA  840A  MIA 1148A  B     0    72S            F  Y  B  H  M
AA 687  BNA  205P  MIA  525P        0    72S            F  Y  B  H  M
AA 663  BNA  740P  MIA 1051P  D     0    72S            F  Y  B  H  M
NW1051  BNA  835A  MSP 1049A  #     0    D9S            F  Y  B  M  H
NW 709  BNA  420P  MSP  634P  S     0    D9S            F  Y  B  M  H
WN 443  BNA  725A  MSY  925A        1    733            Y  K  L  B  Q
AA1125  BNA  945A  MSY 1113A        0    S80            F  Y  B  M  H
AA 881  BNA  320P  MSY  448P        0    72S            F  Y  B  M  H
WN 758  BNA  720P  MSY  920P        1    73S            Y  K  L  B  Q
AA1501  BNA  904P  MSY 1035P        0    S80           FN  Y  B  M  H
AA 811  BNA  643A  ORD  821A  V     0    100           FN YN  B  M  H
UA1269  BNA  728A  ORD  858A  S     0    72S            F  Y  B  M  Q
AA 188  BNA  830A  ORD 1005A  V     0    100            F  Y  B  M  H
AA1285  BNA  947A  ORD 1115A        0    S80            F  Y  B  M  H
UA 511  BNA 1010A  ORD 1139A        0    72S            F  Y  B  M  Q
AA 628  BNA  157P  ORD  334P        0    S80            F  Y  B  M  H
AA1475  BNA  308P  ORD  444P        0    72S            F  Y  B  M  H
UA 365  BNA  420P  ORD  600P        0    73S            F  Y  B  M  Q
AA 593  BNA  530P  ORD  716P  D     0    S80            F  Y  B  M  H
AA 283  BNA  738P  ORD  916P  D     0    S80            F  Y  B  M  H
AA1041  BNA  854P  ORD 1035P        0    100            F  Y  B  M  H
US 138  BNA  630A  PHL  915A  B     0    D9S           FN YN BN HN QN
AA1330  BNA  840A  PHL 1126A  B     0    S80            F  Y  B  H  M
AA 780  BNA  205P  PHL  456P        0    S80            F  Y  B  H  M
US 843  BNA  400P  PHL  645P  S     0    D9S            F  Y  B  H  Q
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AA1222  BNA  740P  PHL 1032P  D     0    S80            F  Y  B  H  M
WN 440  BNA  840A  PHX 1120A        0    733            Y  K  L  B  Q
AA 651  BNA  950A  PHX 1230P  L     0    S80            F  Y  H  B  M
AA1691  BNA  320P  PHX  602P  D     0    S80            F  Y  H  B  M
WN 394  BNA  335P  PHX  605P        0    733            Y  K  L  B  Q
NW1444  BNA 1015A  PVD  309P  S     1    D9S            F  Y  B  M  H
AA1128  BNA  830A  RDU 1053A  B     0    S80            F  Y  B  M  H
AA1358  BNA  205P  RDU  440P        0    S80            F  Y  B  M  H
AA1068  BNA  740P  RDU 1006P  S     0    727            F  Y  B  M  H
AA1339  BNA  640A  SEA 1146A  BR    1    757            F  Y  B  H  M
DL1709  BNA  405P  SEA  900P  SD    1    757            F  Y  B  M  Q
AA1663  BNA  955A  SFO 1250P  L     0    S80            F  Y  B  H  M
AA1287  BNA  310P  SFO  559P  D     0    S80            F  Y  B  H  M
TW 628  BNA  700A  STL  810A  #     0    D9S            F  Y  B  Q  M
AA1357  BNA  950A  STL 1102A        0    72S            F  Y  B  H  M
TW 529  BNA 1009A  STL 1122A        0    727            F  Y  B  Q  M
AA1323  BNA  310P  STL  414P        0    72S            F  Y  B  H  M
TW  78  BNA  341P  STL  451P        0    D9S            F  Y  B  Q  M
TW 717  BNA  732P  STL  840P        0    M80            F  Y  B  Q  M
AA1655  BNA  859P  STL 1007P        0    727            F  Y  B  H  M
AA1643  BNA  840A  TPA 1122A  B     0    72S            F  Y  B  M  H
AA1645  BNA  205P  TPA  455P        0    72S            F  Y  B  M  H
AA 315  BNA  740P  TPA 1024P  D     0    72S            F  Y  B  M  H
US 599  BOS  310P  ABQ  751P  SD    1    733            F  Y  B  H  Q
DL 225  BOS  630A  ATL  907A  B     0    757            F  Y  B  M  Q
DL 655  BOS  820A  ATL 1059A  B     0    L10            F  Y  B  M  Q
DL 205  BOS  945A  ATL 1223P  B     0    767            F  Y  B  M  Q
DL 755  BOS 1145A  ATL  226P  L     0    757            F  Y  B  M  Q
NW1863  BOS  100P  ATL  500P  L     1    D9S            F  Y  B  M  H
DL1149  BOS  110P  ATL  345P  L     0    M80            F  Y  B  M  Q
DL 867  BOS  325P  ATL  605P  S     0    763            F  Y  B  M  Q
DL 701  BOS  345P  ATL  748P  D     1    757            F  Y  B
DL 263  BOS  645P  ATL  927P  D     0    72S            F  Y  B  M  Q
DL 599  BOS  830P  ATL 1105P  S     0    763           FN YN BN MN QN
AA1125  BOS  705A  BNA  905A  B     0    S80            F  Y  B  M  H
AA1691  BOS 1240P  BNA  236P  L     0    S80            F  Y  B  M  H
US1141  BOS  140P  BNA  446P  S     1    D9S            F  Y  B  H  Q
AA 749  BOS  617P  BNA  812P  D     0    S80            F  Y  B  M  H
NW1807  BOS  700A  DCA  834A  B     0    D9S           FN YN BN  M  H
US1507  BOS  700A  DCA  841A  B     0    733           FN YN BN HN QN
US1429  BOS  800A  DCA  937A  B     0    D9S            F  Y  B  H  Q
NW1853  BOS  800A  DCA  946A  B     0    M80            F  Y  B  M  H
DL 535  BOS  820A  DCA 1000A  B     0    72S            F  Y  B  M  Q
CO 309  BOS  830A  DCA 1212P  S     1    M80            F  A  Y  Q  H
US 890  BOS  900A  DCA 1039A  B     0    733            F  Y  B  H  Q
NW1855  BOS  900A  DCA 1047A  B     0    757            F  Y  B  M  H
TW 391  BOS  920A  DCA 1230P        1    M80            F  Y  B  Q  M
US 768  BOS 1000A  DCA 1137A  S     0    73S            F  Y  B  H  Q
NW1857  BOS 1000A  DCA 1142A  S     0    D9S            F  Y  B  M  H
US 779  BOS 1100A  DCA 1237P  S     0    D9S            F  Y  B  H  Q
NW1859  BOS 1100A  DCA 1240P  L     0    72S            F  Y  B  M  H
NW1805  BOS 1200N  DCA  141P  L     0    D9S            F  Y  B  M  H
US 187  BOS 1200N  DCA  139P  L     0    734            F  Y  B  H  Q
DL1861  BOS 1240P  DCA  215P  L     0    72S            F  Y  B  M  Q
NW1863  BOS  100P  DCA  244P  L     0    D9S            F  Y  B  M  H
US 363  BOS  100P  DCA  237P  L     0    D9S            F  Y  B  H  Q
CO 319  BOS  130P  DCA  459P        1    733            A  Y  Q  H  K
NW1865  BOS  200P  DCA  344P  S     0    M80            F  Y  B  M  H
US1635  BOS  200P  DCA  339P  S     0    733            F  Y  B  H  Q
NW1867  BOS  300P  DCA  444P  S     0    320            F  Y  B  M  H
US 143  BOS  300P  DCA  439P  S     0    733            F  Y  B  H  Q
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DL 701  BOS  345P  DCA  516P        0    757            F  Y  B  M  Q
NW1869  BOS  400P  DCA  549P  S     0    D9S            F  Y  B  M  H
US1159  BOS  400P  DCA  537P  S     0    D9S            F  Y  B  H  Q
US1612  BOS  500P  DCA  637P  D     0    73S            F  Y  B  H  Q
NW1871  BOS  500P  DCA  648P  D     0    D9S            F  Y  B  M  H
NW1873  BOS  600P  DCA  745P  D     0    320            F  Y  B  M  H
US1610  BOS  600P  DCA  739P  D     0    734            F  Y  B  H  Q
NW1875  BOS  700P  DCA  842P  S     0    D9S            F  Y  B  M  H
US1621  BOS  700P  DCA  839P  D     0    733            F  Y  B  H  Q
NW1877  BOS  800P  DCA  940P  S     0    M80            F  Y  B  M  H
US1227  BOS  800P  DCA  939P  S     0    733           FN YN BN HN QN
DL 663  BOS  845P  DCA 1017P        0    M80            F  Y  B  M  Q
AA 379  BOS  615A  DEN 1037A  BR    1    757            F  Y  B  H  M
US1402  BOS  720A  DEN 1146A  BL    1    72S            F  Y  B  M
UA 661  BOS  810A  DEN 1054A  B     0    757            F  Y  B  M  Q
CO1239  BOS  830A  DEN 1120A  B     0    M80            A  Y  Q  H  K
UA 699  BOS  225P  DEN  755P  D     2    733            F  Y  B  M  Q
CO1603  BOS  245P  DEN  530P  S     0    M80            A  Y  Q  H  K
TW 743  BOS  335P  DEN  839P  D     1    M80            F  Y  B  Q  M
UA 243  BOS  340P  DEN  744P  SD    1    D10            F  Y  B  M  Q
CO 261  BOS  445P  DEN  846P  SD    1    72S            Y  H  K  B  V
CO 497  BOS  500P  DEN  750P  D     0    M80            A  Y  Q  H  K
UA 861  BOS  516P  DEN  755P  D     0    757            F  Y  B  M  Q
AA 333  BOS  644A  DFW  959A  B     0    D10            F  Y  B  H  M
DL1283  BOS  815A  DFW 1110A  B     0    757            F  Y  B  M  Q
AA1371  BOS  830A  DFW 1201P  B     0    S80            F  Y  B  H  M
DL 169  BOS 1105A  DFW  159P  L     0    757            F  Y  B  M  Q
AA 565  BOS 1148A  DFW  315P  L     0    S80            F  Y  B  H  M
AA 607  BOS  210P  DFW  546P  S     0    S80            F  Y  B  H  M
DL 841  BOS  300P  DFW  608P  S     0    M80            F  Y  B  M  Q
AA 287  BOS  535P  DFW  854P  D     0    D10            F  Y  B  H  M
DL 487  BOS  650P  DFW  938P  D     0    757            F  Y  B  M  Q
NW 575  BOS  625A  DTW  835A  B     0    757           FN YN BN  M  H
NW 383  BOS  725A  DTW  938A  B     0    D9S           FN YN BN  M  H
NW 745  BOS  910A  DTW 1127A  #     0    D10            F  Y  B  M  H
NW 583  BOS 1215P  DTW  230P  S     0    757            F  Y  B  M  H
UA 699  BOS  225P  DTW  609P        1    733            F  Y  B  M  Q
NW  49  BOS  330P  DTW  550P  #     0    D10            F  C  Y  B  M
NW 486  BOS  525P  DTW  742P  #     0    72S            F  Y  B  M  H
NW1197  BOS  640P  DTW  855P  #     0    72S            F  Y  B  M  H
TW  15  BOS  617A  JFK  725A        0    L10            F  C  Y  B  Q
TW 391  BOS  920A  JFK 1035A        0    M80            F  Y  B  Q  M
DL1865  BOS  245P  JFK  413P        0    72S            F  Y  B  M  Q
TW 743  BOS  335P  JFK  448P        0    M80            F  Y  B  Q  M
NW  35  BOS  400P  JFK  517P        0    D9S            F  C  Y  B  M
TW 223  BOS  600A  LAX  130P  B     2    M80            F  Y  B  Q  M
CO 459  BOS  640A  LAX 1135A  #     1    733            A  Y  Q  H  K
AA 333  BOS  644A  LAX 1219P  BL    1    D10            F  Y  B  H  M
UA 101  BOS  700A  LAX 1222P  BL    1    D10            F  Y  B  M  Q
UA 897  BOS  805A  LAX 1133A  BS    0    767            F  C  Y  B  M
NW 303  BOS  815A  LAX  128P  BL    1    D10            F  Y  B  M  H
AA  11  BOS  900A  LAX 1218P  R     0    D10            P  Y  B  H  M
US 890  BOS  900A  LAX  316P  BL    2    733            F  Y  B  M
TW  31  BOS  904A  LAX  217P  BL    1    L10            F  C  Y  B  Q
DL 891  BOS  940A  LAX  155P  SL    1    757            F  Y  B  M  Q
US 187  BOS 1200N  LAX  608P  LD    2    734            F  Y  B  H  Q
NW  43  BOS  500P  LAX  833P  DS    0    757            F  Y  B  M  H
AA 103  BOS  515P  LAX  832P  D     0    D10            F  Y  B  H  M
QF 308  BOS  515P  LAX  832P  D     0    D10            F  J  Y
UA 133  BOS  535P  LAX  904P  D     0    767            F  Y  B  M  Q
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AA1245  BOS  700A  MIA 1016A  R     0    AB3            F  Y  B  H  M
PA 435  BOS  700A  MIA 1025A  B     0    72S            F  Y  B  M  Q
US 433  BOS  740A  MIA 1241P  SB    1    734            F  Y  B  H  Q
DL 433  BOS  825A  MIA 1136A  B     0    72S            F  Y  B  M  Q
US 781  BOS  920A  MIA  216P  #     1    733            F  Y  B  M
US 768  BOS 1000A  MIA  425P  SL    2    73S            F  Y  B  H  Q
US 724  BOS 1140A  MIA  446P  LS    1    734            F  Y  B  H  Q
AA1461  BOS 1220P  MIA  341P  L     0    72S            F  Y  B  H  M
PA 429  BOS  220P  MIA  544P  S     0    72S            F  Y  B  M  Q
DL 367  BOS  220P  MIA  920P  D     2    72S            F  Y  B  M  Q
NW 779  BOS  430P  MIA  917P  D     1    72S            F  Y  B  M  H
US1588  BOS  500P  MIA 1000P  D     1    734            F  Y  B  H  Q
DL 247  BOS  510P  MIA  822P  D     0    72S            F  Y  B  M  Q
AA1577  BOS  610P  MIA  930P  D     0    72S            F  Y  B  H  M
CO 381  BOS  630P  MIA 1215A  #     2    733            A  Y  Q  H  K
NW 193  BOS  635A  MSP  850A  B     0    320           FN YN BN  M  H
NW 303  BOS  815A  MSP 1028A  B     0    D10            F  Y  B  M  H
NW 745  BOS  910A  MSP  133P  #     1    D10            F  Y  B  M  H
NW 723  BOS 1125A  MSP  135P  L     0    757            F  Y  B  M  H
NW 725  BOS  250P  MSP  508P  S     0    757            F  Y  B  M  H
NW  47  BOS  425P  MSP  645P  D     0    D10            F  C  Y  B  M
NW 985  BOS  430P  MSP  825P  D     1    72S            F  Y  B  M  H
NW 361  BOS  725P  MSP  939P  #     0    757            F  Y  B  M  H
US 233  BOS  700A  MSY 1122A  SB    1    73S            F  Y  B  M
AA1125  BOS  705A  MSY 1113A  B     1    S80            F  Y  B  H  M
UA 781  BOS  600A  ORD  743A  B     0    733            F  Y  B  M  Q
AA 379  BOS  615A  ORD  754A  B     0    757            F  Y  B  H  M
UA 101  BOS  700A  ORD  844A  B     0    D10            F  Y  B  M  Q
AA 525  BOS  742A  ORD  923A  B     0    S80            F  Y  B  H  M
UA 437  BOS  840A  ORD 1028A  B     0    733            F  Y  B  M  Q
NW   3  BOS  900A  ORD 1053A  B     0    D9S            F  Y  B  M  H
AA 829  BOS  910A  ORD 1043A  B     0    757            F  Y  B  H  M
UA 745  BOS 1003A  ORD 1145A  S     0    757            F  Y  B  M  Q
AA 275  BOS 1205P  ORD  146P  L     0    D10            F  Y  B  H  M
UA 155  BOS 1240P  ORD  217P  L     0    D10            F  Y  B  M  Q
UA 345  BOS  243P  ORD  415P  S     0    72S            F  Y  B  M  Q
AA 149  BOS  250P  ORD  434P        0    S80            F  Y  B  H  M
CO 393  BOS  330P  ORD  714P  D     1    72S            A  Y  Q  H  K
UA 243  BOS  340P  ORD  515P  S     0    D10            F  Y  B  M  Q
AA 267  BOS  340P  ORD  529P  S     0    S80            F  Y  B  H  M
NW 985  BOS  430P  ORD  625P  D     0    72S            F  Y  B  M  H
UA 215  BOS  638P  ORD  818P  D     0    D10            F  Y  B  M  Q
AA1361  BOS  645P  ORD  835P  D     0    S80           FN YN  B  H  M
UA 309  BOS  752P  ORD  931P  S     0    72S           FN YN  B  M  Q
US1723  BOS  620A  PHL  741A  S     0    734            F  Y  B  H  Q
US 233  BOS  700A  PHL  823A  S     0    73S            F  Y  B  H  Q
US 433  BOS  740A  PHL  901A  S     0    734            F  Y  B  H  Q
DL1195  BOS  820A  PHL  940A  #     0    M80            F  Y  B  M  Q
US 749  BOS  850A  PHL 1012A  S     0    D9S            F  Y  B  H  Q
US 595  BOS 1005A  PHL 1125A        0    D9S            F  Y  B  H  Q
US 472  BOS 1140A  PHL  100P  #     0    733            F  Y  B  H  Q
US 500  BOS 1245P  PHL  206P  #     0    733            F  Y  B  H  Q
US1141  BOS  140P  PHL  300P        0    D9S            F  Y  B  H  Q
DL 367  BOS  220P  PHL  337P        0    72S            F  Y  B  M  Q
US1631  BOS  355P  PHL  516P        0    734            F  Y  B  H  M
US1616  BOS  510P  PHL  631P        0    734            F  Y  B  H  Q
US1639  BOS  640P  PHL  805P  #     0    733            F  Y  B  H  Q
US 373  BOS  815P  PHL  936P        0    733            F  Y  B  H  Q
HP  82  BOS  735A  PHX 1129A  B     0    757            F  Y  B  H  K
AA1691  BOS 1240P  PHX  602P  LD    1    S80            F  Y  B  H  M
HP  76  BOS  500P  PHX  858P  D     0    757            F  Y  B  H  K
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AA 563  BOS  704A  RDU  916A  B     0    D10            F  Y  B  H  M
US 323  BOS 1115A  RDU  313P  S     1    100            F  Y  B  H  Q
AA 223  BOS 1124A  RDU  130P  L     0    S80            F  Y  B  H  M
US 500  BOS 1245P  RDU  421P  #     1    733            F  Y  B  H  Q
US1591  BOS  415P  RDU  610P  S     0    D9S            F  Y  B  H  Q
AA 691  BOS  600P  RDU  813P  D     0    S80            F  Y  B  H  M
NW 575  BOS  625A  SEA 1126A  B     1    757            F  Y  B  M  H
DL1283  BOS  815A  SEA  335P  BL    2    757            F  Y  B  M  Q
CO1239  BOS  830A  SEA  205P  BL    1    M80            A  Y  Q  H  K
TW  53  BOS 1203P  SEA  557P  #     1    M80            F  Y  B  Q  M
NW 583  BOS 1215P  SEA  514P  SD    1    757            F  Y  B  M  H
UA 155  BOS 1240P  SEA  551P  LD    1    D10            F  Y  B  M  Q
NW  47  BOS  425P  SEA  925P  D     1    D10            F  C  Y  B  M
DL1775  BOS  510P  SEA 1025P  D     1    757           F@ Y@ B@ M@ Q@
TW 223  BOS  600A  SFO 1139A  B     1    M80            F  Y  B  Q  M
DL 347  BOS  600A  SFO 1110A  B     1    757            F  Y  B  M  Q
NW1229  BOS  700A  SFO 1151A  B     1    72S            F  Y  B  M  H
UA  53  BOS  800A  SFO 1127A  BS    0    D10            F  Y  B  M  Q
US 890  BOS  900A  SFO  513P  BL    3    733            F  Y  B  M
US 187  BOS 1200N  SFO  816P  LD    3    734            F  Y  B  H  Q
TW  71  BOS  320P  SFO  846P  SD    1    L10            F  C  Y  B  Q
DL 957  BOS  335P  SFO  845P  SD    1    757            F  Y  B  M  Q
UA 861  BOS  516P  SFO 1022P  #     1    757            F  Y  B  M  Q
UA  93  BOS  530P  SFO  914P  D     0    757            F  Y  B  M  Q
NW 187  BOS  530P  SFO  857P  DS    0    757            F  Y  B  M  H
TW  61  BOS  630P  SFO 1010P  D     0    767            F  C  Y  B  Q
DL 487  BOS  650P  SFO 1159P  DS    1    757           F@ Y@ B@ M@ Q@
NW 361  BOS  725P  SFO 1227A  #     1    757            F  Y  B  M  H
TW 223  BOS  600A  STL  822A  B     0    M80            F  Y  B  Q  M
TW  31  BOS  904A  STL 1117A  B     0    L10            F  C  Y  B  Q
TW 391  BOS  920A  STL  237P  #     2    M80            F  Y  B  Q  M
TW  53  BOS 1203P  STL  223P  #     0    M80            F  Y  B  Q  M
TW  71  BOS  320P  STL  534P  S     0    L10            F  C  Y  B  Q
TW 255  BOS  602P  STL  818P  D     0    72S            F  Y  B  Q  M
DL 175  BOS  800A  TPA 1208P  B     1    72S            F  Y  B  M  Q
NW1297  BOS  830A  TPA 1155A  B     0    M80           FN YN BN  M  H
US1041  BOS  845A  TPA 1210P  B     0    73S            F  Y  B  H  Q
US 768  BOS 1000A  TPA  242P  SL    1    73S            F  Y  B  H  Q
DL 863  BOS 1215P  TPA  318P  L     0    72S            F  Y  B  M  Q
DL 603  BOS  325P  TPA  639P  S     0    M80            F  Y  B  M  Q
US1588  BOS  500P  TPA  823P  D     0    734            F  Y  B  H  Q
NW 486  BOS  525P  TPA 1128P  #     1    72S            F  Y  B  M  H
DL 527  DCA  850A  ABQ 1230P  BL    1    757            F  Y  B  M  Q
TW 123  DCA  943A  ABQ  140P  #     1    M80            F  Y  B  Q  M
DL 989  DCA  730A  ATL  915A  B     0    M80            F  Y  B  M  Q
NW1887  DCA  900A  ATL 1043A  B     0    D9S           FN YN BN  M  H
DL 539  DCA  905A  ATL 1055A  S     0    757            F  Y  B  M  Q
DL1169  DCA 1050A  ATL 1235P        0    757            F  Y  B  M  Q
DL 139  DCA 1240P  ATL  228P  L     0    757            F  Y  B  M  Q
DL 915  DCA  220P  ATL  410P        0    757            F  Y  B  M
NW1863  DCA  315P  ATL  500P        0    D9S            F  Y  B  M  H
DL 463  DCA  400P  ATL  546P        0    757            F  Y  B  M
DL 701  DCA  559P  ATL  748P  D     0    757            F  Y  B
NW1883  DCA  725P  ATL  907P  D     0    D9S            F  Y  B  M  H
DL 991  DCA  755P  ATL  937P  #     0    72S            F  Y  B  M  Q
DL1243  DCA  925P  ATL 1100P        0    757           FN YN BN MN QN
AA 839  DCA  808A  BNA  910A  B     0    S80            F  Y  B  H  M
AA1661  DCA  129P  BNA  227P  #     0    757            F  Y  B  H  M
AA1105  DCA  714P  BNA  813P  D     0    S80            F  Y  B  H  M
DL 528  DCA  650A  BOS  809A  B     0    M80           FN YN BN MN QN
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US1553  DCA  700A  BOS  826A  B     0    100           FN YN BN HN QN
NW1850  DCA  700A  BOS  820A  B     0    D9S           FN YN BN  M  H
US 758  DCA  800A  BOS  929A  B     0    D9S            F  Y  B  H  Q
NW1852  DCA  800A  BOS  920A  B     0    D9S            F  Y  B  M  H
US 658  DCA  900A  BOS 1027A  B     0    734            F  Y  B  H  Q
NW1854  DCA  900A  BOS 1026A  B     0    757            F  Y  B  M  H
US 698  DCA 1000A  BOS 1123A  S     0    D9S            F  Y  B  H  Q
NW1856  DCA 1000A  BOS 1121A  S     0    D9S            F  Y  B  M  H
US 674  DCA 1100A  BOS 1225P  S     0    D9S            F  Y  B  H  Q
NW1858  DCA 1100A  BOS 1221P  L     0    M80            F  Y  B  M  H
US 726  DCA 1200N  BOS  125P  L     0    733            F  Y  B  H  Q
NW1860  DCA 1200N  BOS  125P  L     0    757            F  Y  B  M  H
NW1862  DCA  100P  BOS  223P  L     0    D9S            F  Y  B  M  H
US1682  DCA  100P  BOS  229P  L     0    100            F  Y  B  H  Q
US1615  DCA  200P  BOS  325P  S     0    D9S            F  Y  B  H  M
NW1864  DCA  200P  BOS  321P  S     0    72S            F  Y  B  M  H
US1222  DCA  300P  BOS  427P  S     0    734            F  Y  B  H  Q
NW1866  DCA  300P  BOS  426P  S     0    D9S            F  Y  B  M  H
NW1828  DCA  400P  BOS  526P  S     0    D9S            F  Y  B  M  H
US1608  DCA  400P  BOS  526P  S     0    100            F  Y  B  H  Q
US1118  DCA  500P  BOS  627P  D     0    733            F  Y  B  H  Q
NW1870  DCA  500P  BOS  624P  D     0    M80            F  Y  B  M  H
DL 378  DCA  535P  BOS  655P  S     0    72S            F  Y  B  M  Q
US1226  DCA  600P  BOS  726P  D     0    100            Y  B  H  M  K
NW1872  DCA  600P  BOS  725P  D     0    320            F  Y  B  M  H
NW1874  DCA  700P  BOS  824P  D     0    M80            F  Y  B  M  H
US1971  DCA  700P  BOS  827P  D     0    734           FN YN BN HN QN
DL1862  DCA  755P  BOS  915P  S     0    72S            F  Y  B  M  Q
NW1838  DCA  800P  BOS  924P  S     0    D9S            F  Y  B  M  H
US 442  DCA  800P  BOS  927P  S     0    733           FN YN BN HN QN
NW 563  DCA  910A  DEN 1245P  BS    1    M80            F  Y  B  M  H
AA1115  DCA 1000A  DEN  111P  #     1    S80            F  Y  B  M  Q
CO1515  DCA 1044A  DEN  207P  L     1    733            A  Y  Q  H  K
AA 705  DCA 1245P  DEN  430P  LS    1    S80            F  Y  B  M  Q
US 110  DCA  630P  DEN 1000P  S     1    72S            F  Y  B  M
AA 417  DCA  620A  DFW  830A  B     0    757            F  Y  B  H  M
AA 537  DCA  740A  DFW  955A  B     0    757            F  Y  B  H  M
DL 527  DCA  850A  DFW 1052A  B     0    757            F  Y  B  M  Q
US1665  DCA 1050A  DFW  300P  L     1    M80            F  Y  B  H  Q
AA 209  DCA 1118A  DFW  144P  L     0    S80            F  Y  B  H  M
AA 473  DCA 1236P  DFW  301P  L     0    757            F  Y  B  H  M
DL 139  DCA 1240P  DFW  553P  L     2    757            F  Y  B  M  H
AA1679  DCA  159P  DFW  428P  S     0    S80            F  Y  B  H  M
DL 277  DCA  205P  DFW  415P  S     0    M80            F  Y  B  M  Q
AA 885  DCA  259P  DFW  534P  G     0    S80            F  Y  B  H  M
DL 209  DCA  335P  DFW  551P  S     0    M80            F  Y  B  M  Q
AA 609  DCA  459P  DFW  718P  D     0    S80            F  Y  B  H  M
DL 415  DCA  545P  DFW  753P  D     0    M80            F  Y  B  M  Q
AA 177  DCA  559P  DFW  824P  D     0    757            F  Y  B  H  M
DL 571  DCA  730P  DFW  932P  D     0    757            F  Y  B  M  Q
NW 285  DCA  650A  DTW  826A  B     0    320           FN YN BN  M  H
NW 231  DCA  800A  DTW  938A  B     0    320           FN YN BN  M  H
NW  11  DCA  945A  DTW 1122A        0    757            F  C  Y  B  M
NW 233  DCA 1100A  DTW 1239P  #     0    D9S            F  Y  B  M  H
NW 337  DCA  100P  DTW  235P  #     0    320            F  Y  B  M  H
US  95  DCA  255P  DTW  555P        1    D9S            Y  B  H  Q  M
NW 347  DCA  420P  DTW  605P        0    757            F  Y  B  M  H
NW 239  DCA  545P  DTW  728P  #     0    320            F  Y  B  M  H
NW 339  DCA  715P  DTW  858P        0    320            F  Y  B  M  H
AA1679  DCA  159P  HOU  631P  S     1    S80            F  Y  B  M  H
TW 744  DCA  221P  JFK  331P        0    M80            F  C  Y  B  Q
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DL1864  DCA  305P  JFK  440P        0    72S            F  Y  B  M  Q
TW 700  DCA  459P  JFK  617P        0    72S            F  Y  B  Q  M
TW  10  DCA  833P  JFK  938P        0    72S            F  Y  B  Q  M
CO 131  DCA  645A  LAX  144P  BL    2    M80            A  Y  Q  H  K
US 485  DCA  700A  LAX 1101A  B     1    733            F  Y  B  H  Q
NW 551  DCA  705A  LAX 1135A  B     1    757            F  Y  B  M  H
US 890  DCA 1115A  LAX  316P  SL    1    733            F  Y  B  M
DL 139  DCA 1240P  LAX  920P  LD    4    757            F  Y  B  M  H
NW 337  DCA  100P  LAX  527P  #     1    320            F  Y  B  M  H
AA1661  DCA  129P  LAX  541P  #     1    757            F  Y  B  H  Q
US 187  DCA  215P  LAX  608P  D     1    734            F  Y  B  H  Q
US1157  DCA  435P  LAX  848P  #     1    733            F  Y  B  H  Q
AA 615  DCA  629P  LAX 1053P  DS    1    S80            F  Y  B  H  Q
NW 339  DCA  715P  LAX 1148P  S     1    320            F  Y  B  M  H
NW 311  DCA  815P  LAX 1228A  S     1    320           FN YN BN  M  H
US 809  DCA  715A  MIA 1201P  SB    2    734            F  Y  B  H  Q
AA 925  DCA  723A  MIA  959A  B     0    72S            F  Y  B  M  H
PA 977  DCA  745A  MIA 1020A  #     0    72S            F  Y  B
NW1825  DCA  859A  MIA 1134A  B     0    D9S            F  Y  B  M  H
PA 495  DCA 1045A  MIA  120P  #     0    72S            F  Y  B  M  Q
US 768  DCA 1220P  MIA  425P  L     1    73S            F  Y  B  H  Q
AA 741  DCA 1259P  MIA  342P  L     0    72S            F  Y  B  M  H
AA 433  DCA  329P  MIA  607P  S     0    727            F  Y  B  M  H
PA 423  DCA  330P  MIA  605P  S     0    72S            F  Y  B  M  Q
AA 897  DCA  554P  MIA  831P  D     0    72S            F  Y  B  M  H
PA2441  DCA  630P  MIA  905P  D     0    72S            F  Y  B  M  Q
NW 111  DCA  700A  MSP  845A  B     0    320            F  Y  B  M  H
NW 563  DCA  910A  MSP 1054A  B     0    M80            F  Y  B  M  H
NW 319  DCA 1200N  MSP  144P  L     0    320            F  Y  B  M  H
NW 321  DCA  335P  MSP  522P  S     0    M80            F  Y  B  M  H
NW 711  DCA  515P  MSP  655P  D     0    757            F  Y  B  M  H
UA 625  DCA  600P  MSP  908P  D     1    72S            F  Y  B  M  Q
NW 323  DCA  630P  MSP  815P  D     0    D9S            F  Y  B  M  H
NW 311  DCA  815P  MSP  950P  #     0    320           FN YN BN  M  H
DL 139  DCA 1240P  MSY  345P  L     1    757            F  Y  B  M  Q
DL 991  DCA  755P  MSY 1050P  #     1    72S           F@ Y@ B@ M@ Q@
AA 273  DCA  643A  ORD  744A  B     0    757            F  Y  B  M  H
UA 601  DCA  700A  ORD  807A  B     0    757            F  Y  B  M  Q
UA 603  DCA  800A  ORD  900A  B     0    72S            F  Y  B  M  Q
UA 605  DCA  900A  ORD 1002A  B     0    72S            F  Y  B  M  Q
AA1115  DCA 1000A  ORD 1102A  #     0    S80            F  Y  B  M  H
UA 607  DCA 1000A  ORD 1059A  #     0    72S            F  Y  B  M  Q
UA 609  DCA 1100A  ORD 1159A  S     0    72S            F  Y  B  M  Q
UA 611  DCA 1200N  ORD 1259P  L     0    72S            F  Y  B  M  Q
AA1701  DCA 1200N  ORD 1257P  L     0    S80            F  Y  B  M  H
AA 705  DCA 1245P  ORD  152P  L     0    S80            F  Y  B  M  H
UA 615  DCA  100P  ORD  201P  L     0    72S            F  Y  B  M  Q
UA 617  DCA  200P  ORD  259P  S     0    72S            F  Y  B  M  Q
UA 619  DCA  300P  ORD  358P  S     0    72S            F  Y  B  M  Q
AA 319  DCA  359P  ORD  510P  S     0    S80            F  Y  B  M  H
UA 621  DCA  400P  ORD  501P  S     0    72S            F  Y  B  M  Q
UA 623  DCA  500P  ORD  608P  D     0    757            F  Y  B  M  Q
UA 625  DCA  600P  ORD  708P  D     0    72S            F  Y  B  M  Q
AA 615  DCA  629P  ORD  740P  D     0    S80            F  Y  B  M  H
UA 627  DCA  700P  ORD  815P  D     0    72S            F  Y  B  M  Q
AA 823  DCA  738P  ORD  848P  #     0    S80            F  Y  B  M  H
UA 629  DCA  800P  ORD  858P  #     0    72S            F  Y  B  M  Q
AA1703  DCA  900P  ORD 1010P        0    S80           FN  Y  B  M  H
US  93  DCA  700A  PHX 1120A  B     1    733            F  Y  B  H  Q
NW1269  DCA  745A  PHX 1210P  B     1    72S            F  Y  B  M  H
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HP  91  DCA  800A  PHX 1215P  S     1    733            F  Y  B  H  K
US 350  DCA  340P  PHX  805P  SD    1    734            F  Y  B  M
US1211  DCA  350P  PHX  840P  #     1    733            F  Y  B  H  Q
HP 864  DCA  440P  PHX  859P  S     1    733            Y  B  H  K  Q
US1691  DCA  835A  PVD  950A  S     0    100            F  Y  B  H  Q
US1519  DCA 1055A  PVD 1206P        0    73S            F  Y  B  H  Q
US 452  DCA  400P  PVD  510P        0    M80            F  Y  B  H  Q
US1004  DCA  900P  PVD 1013P        0    73S            F  Y  B  H  Q
US1289  DCA  650A  RDU  758A  S     0    100            F  Y  B  H  Q
AA1083  DCA  759A  RDU  917A  V     0    S80            F  Y  B  H  M
AA 721  DCA 1159A  RDU  109P        0    S80            F  Y  B  H  M
US1755  DCA  100P  RDU  212P  #     0    D9S            Y  B  H  Q  M
AA 363  DCA  643P  RDU  800P        0    72S            F  Y  B  H  M
US1726  DCA  655P  RDU  800P  #     0    734            F  Y  B  H  Q
DL 523  DCA 1045A  SEA  230P  L     1    72S            F  Y  B  M  Q
CO 891  DCA  230P  SEA  820P  SD    1    M80            A  Y  Q  H  K
AA 273  DCA  643A  SFO 1140A  BR    1    757            F  Y  B  H  M
US 890  DCA 1115A  SFO  513P  SL    2    733            F  Y  B  M
CO 215  DCA 1200N  SFO  524P  #     1    M80            A  Y  H  K  B
US 187  DCA  215P  SFO  816P  DS    2    734            F  Y  B  H  Q
NW 347  DCA  420P  SFO  905P  D     1    757            F  Y  B  M  H
US1157  DCA  435P  SFO 1113P  #     2    733            F  Y  B  H  Q
US  67  DCA  520P  SFO  938P  SD    1    733            F  Y  B  H  Q
CO 629  DCA  540P  SFO 1012P  D     1    733            Y  Q  H  K  B
TW 185  DCA  700A  STL  831A  B     0    M80            F  Y  B  Q  M
TW 447  DCA  812A  STL  945A  B     0    M80            F  Y  B  Q  M
TW 123  DCA  943A  STL 1112A  S     0    M80            F  Y  B  Q  M
US 127  DCA 1150A  STL  226P  #     1    100            Y  B  H  Q  M
TW  99  DCA 1210P  STL  137P  L     0    M80            F  C  Y  B  Q
TW 391  DCA  107P  STL  237P  #     0    M80            F  Y  B  Q  M
TW  55  DCA  359P  STL  527P  S     0    72S            F  Y  B  Q  M
TW 199  DCA  422P  STL  550P  D     0    72S            F  Y  B  Q  M
TW 537  DCA  529P  STL  702P  D     0    D9S            F  Y  B  Q  M
TW 703  DCA  659P  STL  827P  D     0    M80            F  Y  B  Q  M
US 291  DCA  830A  TPA 1045A  B     0    M80            F  Y  B  H  Q
NW1841  DCA  905A  TPA 1126A  B     0    D9S           FN YN BN  M  H
DL 539  DCA  905A  TPA  120P  S     1    757            F  Y  B  M  Q
US 768  DCA 1220P  TPA  242P  L     0    73S            F  Y  B  H  Q
NW1845  DCA  210P  TPA  432P  S     0    D9S            F  Y  B  M  H
US1158  DCA  620P  TPA  837P  D     0    733            F  Y  B  H  Q
UA 691  DEN  835A  ABQ  949A  S     0    72S            F  Y  B  M  Q
YV 236  DEN  840A  ABQ 1030A        1    BE1            Y  Q  L  H  M
CO1655  DEN  845A  ABQ 1002A  S     0    733            A  Y  Q  H  K
YV  12  DEN 1000A  ABQ 1155A        1    BE1            Y  Q  L  H  M
UA 672  DEN 1040A  ABQ 1150A        0    72S            F  Y  B  M  Q
CO1707  DEN 1157A  ABQ  123P  #     0    733            F  A  Y  Q  H
UA 509  DEN 1212P  ABQ  134P  #     0    733            F  Y  B  M  Q
YV 688  DEN 1240P  ABQ  230P        1    BE1            Y  Q  L  H  M
CO 195  DEN  251P  ABQ  410P        0    73S            F  A  Y  Q  H
UA 466  DEN  300P  ABQ  414P        0    733            F  Y  B  M  Q
YV 226  DEN  530P  ABQ  720P        1    BE1            Y
UA 245  DEN  535P  ABQ  644P  #     0    72S            F  Y  B  M  Q
CO1267  DEN  604P  ABQ  733P  #     0    73S            A  Y  Q  H  K
YV 608  DEN  715P  ABQ  910P        1    BE1            Y  Q  L  H  M
UA 867  DEN  836P  ABQ  947P        0    733            F  Y  B  M  Q
DL 402  DEN  745A  ATL 1226P  B     0    757            F  Y  B  M  Q
NW 562  DEN  930A  ATL  430P  SL    1    M80            F  Y  B  M  H
CO1532  DEN 1020A  ATL  317P  L     0    733            A  Y  Q  H  K
UA 408  DEN 1024A  ATL  319P  L     0    733            F  Y  B  M  Q
DL 317  DEN 1100A  ATL  400P  L     0    757            F  Y  B  M  Q
DL1136  DEN  245P  ATL  731P  D     0    72S            F  Y  B  M  Q
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CO 742  DEN  414P  ATL  909P  D     0    733            F  A  Y  Q  H
DL1644  DEN  615P  ATL 1051P  D     0    72S            F  Y  B  M  Q
UA 740  DEN  633P  ATL 1123P  D     0    737            F  Y  B  M  Q
AA1260  DEN  935A  BNA  109P  R     0    S80            F  Y  B  H  M
NW 802  DEN 1000A  BNA  242P  S     1    D9S            F  Y  B  M  H
AA 796  DEN  307P  BNA  647P  D     0    S80            F  Y  B  H  M
DL1278  DEN  615A  BOS  210P  B     1    M80           F@ Y@ B@ M@ Q@
AA1012  DEN  619A  BOS  133P  BL    1    S80            F  Y  H  B  M
US 884  DEN  805A  BOS  322P  BS    1    72S            F  Y  B  H  Q
UA 352  DEN 1029A  BOS  420P  L     0    757            F  Y  B  M  Q
CO1234  DEN 1035A  BOS  444P  L     0    M80            A  Y  Q  H  K
CO 786  DEN  104P  BOS  701P  L     0    M80            F  A  Y  Q  H
UA 354  DEN  335P  BOS  918P  D     0    757            F  Y  B  M  Q
CO 578  DEN  401P  BOS 1057P  D     1    733            Y  H  K  B  V
CO1182  DEN  729P  BOS  123A  D     0    733            A  Y  Q  H  K
DL 402  DEN  745A  DCA  259P  BL    1    757            F  Y  B  M  Q
NW 560  DEN  755A  DCA  249P  SL    1    M80            F  Y  B  M  H
CO1156  DEN  855A  DCA  341P  B     1    M80            A  Y  Q  H  K
US1520  DEN 1055A  DCA  544P  L     1    72S            F  Y  B  H  Q
TW 240  DEN  419P  DCA 1108P  #     1    M80            F  Y  B  Q  M
AA 820  DEN  435A  DFW  728A        0    S80           FN YN  B  Q  M
DL1278  DEN  615A  DFW  900A  B     0    M80           FN YN BN MN QN
UA 216  DEN  645A  DFW  933A  B     0    735            F  Y  B  M  Q
AA1166  DEN  704A  DFW 1001A  B     0    S80            F  Y  B  Q  M
AA1498  DEN  845A  DFW 1152A  B     0    S80            F  Y  B  Q  M
DL 544  DEN  940A  DFW 1224P  S     0    72S            F  Y  B  M  Q
AA1274  DEN 1023A  DFW  127P  L     0    S80            F  Y  B  Q  M
CO 840  DEN 1025A  DFW  120P  #     0    73S            F  A  Y  Q  H
UA 794  DEN 1031A  DFW  115P  L     0    72S            F  Y  B  M  Q
AA 730  DEN 1150A  DFW  256P  L     0    S80            F  Y  B  Q  M
DL 605  DEN  120P  DFW  415P  L     0    M80            Y  B  M  Q  H
AA  50  DEN  120P  DFW  424P  #     0    S80            F  Y  B  Q  M
CO 280  DEN  120P  DFW  407P  S     0    M80            F  A  Y  Q  H
UA 450  DEN  309P  DFW  606P  #     0    737            F  Y  B  M  Q
CO 496  DEN  405P  DFW  659P  #     0    733            A  Y  Q  H  K
AA1326  DEN  405P  DFW  716P  D     0    S80            F  Y  B  Q  M
DL 742  DEN  505P  DFW  750P  D     0    72S            F  Y  B  M  Q
AA1195  DEN  605P  DFW  858P  D     0    S80            F  Y  B  Q  M
UA 664  DEN  633P  DFW  924P  D     0    72S            F  Y  B  M  Q
CO1760  DEN  733P  DFW 1025P  S     0    D9S            A  Y  Q  H  K
DL 661  DEN  750P  DFW 1034P  S     0    72S           FN YN BN MN QN
AA1698  DEN  845P  DFW 1138P        0    S80            F YN  B  Q  M
NW1224  DEN  810A  DTW 1251P  B     0    D9S            F  Y  B  M  H
YX 522  DEN  940A  DTW  340P  BS    1    DC9            Y  H  M  B  K
UA 680  DEN 1029A  DTW  310P  L     0    733            F  Y  B  M  Q
CO1704  DEN 1034A  DTW  327P  L     0    72S            F  A  Y  Q  H
NW1226  DEN 1115A  DTW  404P  L     0    72S            F  Y  B  M  H
NW 564  DEN  130P  DTW  744P  S     1    M80            F  Y  B  M  H
NW1228  DEN  250P  DTW  739P  D     0    72S            F  Y  B  M  H
UA 458  DEN  307P  DTW  744P  D     0    72S            F  Y  B  M  Q
UA 496  DEN  645P  DTW 1128P  D     0    733            F  Y  B  M  Q
CO1650  DEN  728P  DTW 1216A  D     0    72S            F  A  Y  Q  H
UA 514  DEN 1044A  HOU  207P  L     0    737            F  Y  B  M  Q
UA 908  DEN  639P  HOU 1002P  D     0    737            F  Y  B  M  Q
TW 870  DEN  948A  JFK  325P  L     0    M80            F  Y  B  Q  M
UA 263  DEN  645A  LAX  809A  B     0    735            F  Y  B  M  Q
UA 193  DEN  845A  LAX 1011A  B     0    D10            F  Y  B  M  Q
CO1245  DEN  849A  LAX 1021A  B     0    M80            A  Y  Q  H  K
CO 479  DEN 1200N  LAX  129P  L     0    AB3            F  A  Y  Q  H
UA 169  DEN 1215P  LAX  136P  L     0    D10            F  Y  B  M  Q
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CO 347  DEN  244P  LAX  410P  S     0    M80            A  Y  Q  H  K
UA 497  DEN  252P  LAX  414P  S     0    733            F  Y  B  M  Q
DL 309  DEN  425P  LAX  710P  SD    1    757            F  Y  B  M  Q
UA 857  DEN  545P  LAX  700P  D     0    D10            F  Y  B  M  Q
CO1629  DEN  600P  LAX  724P  D     0    AB3            A  Y  Q  H  K
HP  38  DEN  603P  LAX  830P  S     1    733            Y  B  H  K  Q
UA 539  DEN  615P  LAX  737P  D     0    737            F  Y  B  M  H
UA 239  DEN  826P  LAX  945P  #     0    757            F  Y  B  M  Q
CO 211  DEN  826P  LAX  947P        0    733            F  A  Y  Q  H
UA 230  DEN  921A  MIA  604P  LS    1    733            F
UA 382  DEN  310P  MIA 1011P  D     1    72S            F  Y  B  M  Q
CO1212  DEN  403P  MIA 1102P  D     1    733            Y  H  K  B  V
UA 986  DEN  700A  MSP  945A  B     0    737            F  Y  B  M  Q
NW 560  DEN  755A  MSP 1045A  S     0    M80           FN YN BN  M  H
NW 562  DEN  930A  MSP 1220P  S     0    M80            F  Y  B  M  H
UA 982  DEN 1033A  MSP  124P  L     0    72S            F  Y  B  M  Q
CO1722  DEN 1034A  MSP  135P  L     0    M80            F  A  Y  Q  H
NW 568  DEN 1100A  MSP  145P  S     0    D9S            F  Y  B  M  H
NW 564  DEN  130P  MSP  418P  S     0    M80            F  Y  B  M  H
UA 636  DEN  307P  MSP  602P  S     0    737            F  Y  B  M  Q
CO1674  DEN  402P  MSP  703P  S     0    72S            F  A  Y  Q  H
NW 566  DEN  505P  MSP  755P  S     0    72S            F  Y  B  M  H
UA 572  DEN  643P  MSP  938P  D     0    733            F  Y  B  M  Q
CO1754  DEN  719P  MSP 1014P  #     0    73S            A  Y  Q  H  K
UA 956  DEN 1033A  MSY  212P  L     0    735            F  Y  B  M  H
CO1568  DEN 1035A  MSY  216P  L     0    733            A  Y  Q  H  K
CO1212  DEN  403P  MSY  739P  D     0    733            Y  H  K  B  V
CO 530  DEN  409P  MSY 1151P        3    72S            A  Y  Q  H  K
UA 434  DEN  635P  MSY 1016P  D     0    737            F  Y  B  M  H
AA1012  DEN  619A  ORD  945A  B     0    S80            F  Y  B  H  M
UA 220  DEN  705A  ORD 1017A  B     0    D10            F  Y  B  M  Q
ZK  76  DEN  845A  ORD  315P        5    BE1            Y  M  H  Q  V
AA1276  DEN  909A  ORD 1245P  R     0    S80            F  Y  B  H  M
UA 226  DEN  920A  ORD 1238P  L     0    72S            F  Y  B  M  Q
UA 230  DEN  921A  ORD 1245P  L     0    733            F  Y  B  M  Q
CO1514  DEN 1034A  ORD  152P  L     0    M80            F  A  Y  Q  H
UA 228  DEN 1050A  ORD  210P  L     0    D10            F  Y  B  M  Q
ZK 403  DEN 1120A  ORD  520P        4    BE1            Y  M  H  Q  V
AA 768  DEN 1141A  ORD  309P  L     0    757            F  Y  B  H  M
UA 940  DEN 1153A  ORD  309P  L     0    D10            F  C  Y  B  M
UA 730  DEN 1231P  ORD  350P  L     0    757            F  Y  B  M  Q
CO 806  DEN  115P  ORD  432P  L     0    M80            F  A  Y  Q  H
UA 234  DEN  315P  ORD  626P  D     0    D10            F  Y  B  M  Q
AA1362  DEN  330P  ORD  717P  D     0    S80            F  Y  B  H  M
UA 246  DEN  345P  ORD  703P  D     0    D10            F  Y  B  M  Q
CO 136  DEN  412P  ORD  739P  D     0    72S            F  A  Y  Q  H
NW 566  DEN  505P  ORD  947P  S     1    72S            F  Y  B  M  H
AA 388  DEN  545P  ORD  915P  D     0    S80            F  Y  B  H  M
UA 238  DEN  655P  ORD 1004P  D     0    D10            F  Y  B  M  Q
CO 598  DEN  732P  ORD 1046P  S     0    M80            F  A  Y  Q  H
UA 242  DEN  850P  ORD 1157P  #     0    72S            F  Y  B  M  Q
UA 270  DEN 1038A  PHL  356P  L     0    D10            F  Y  B  M  Q
CO1602  DEN 1040A  PHL  416P  L     0    M80            A  Y  Q  H  K
AA 768  DEN 1141A  PHL  726P  LD    1    757            F  Y  H  B  M
UA 494  DEN  330P  PHL  850P  D     0    757            F  Y  B  M  Q
CO 780  DEN  401P  PHL  940P  D     0    M80            F  A  Y  Q  H
HP 844  DEN  645A  PHX  842A        0    733            Y  B  H  K  Q
UA 847  DEN  835A  PHX 1036A  B     0    733            F  Y  B  M  Q
CO 735  DEN  855A  PHX 1100A  #     0    M80            A  Y  Q  H  K
HP 854  DEN 1140A  PHX  141P  S     0    73S            Y  B  H  K  Q
UA 419  DEN 1155A  PHX  144P  L     0    72S            F  Y  B  M  Q
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CO1247  DEN 1207P  PHX  200P  #     0    72S            F  A  Y  Q  H
CO 201  DEN  245P  PHX  436P  S     0    733            A  Y  Q  H  K
HP1523  DEN  320P  PHX  519P  #     0    733            F  Y  B  H  K
HP  97  DEN  450P  PHX  649P        0    733            Y  B  H  K  Q
UA 439  DEN  519P  PHX  707P  D     0    72S            F  Y  B  M  Q
CO 249  DEN  605P  PHX  810P  #     0    72S            F  A  Y  Q  H
HP 840  DEN  655P  PHX  854P  S     0    73S            Y  B  H  K  Q
UA 695  DEN  824P  PHX 1008P        0    72S            F  Y  B  M  Q
CO 467  DEN  825P  PHX 1020P        0    M80            F  A  Y  Q  H
AA1362  DEN  330P  PVD 1058P  #     1    S80            F  Y  H  B  M
DL1136  DEN  245P  RDU 1010P  D     1    72S            F  Y  B  M  Q
AA1326  DEN  405P  RDU 1139P  D     1    S80            F  Y  H  B  M
HP 844  DEN  645A  SEA 1157A  S     1    733            Y  B  H  K  Q
UA 293  DEN  835A  SEA 1027A  B     0    D10            F  Y  B  M  Q
CO1257  DEN  858A  SEA 1102A  B     0    72S            F  A  Y  Q  H
UA 319  DEN  930A  SEA 1128A  B     0    735            F  Y  B  M  Q
UA 455  DEN 1157A  SEA  144P  L     0    D10            F  Y  B  M  Q
CO1239  DEN 1209P  SEA  205P  L     0    M80            F  A  Y  Q  H
CO1259  DEN  247P  SEA  443P  S     0    72S            A  Y  Q  H  K
UA 427  DEN  325P  SEA  520P  D     0    733            F  Y  B  M  Q
UA1547  DEN  543P  SEA  728P  D     0    D10            F  Y  B  M  Q
CO 171  DEN  630P  SEA  829P  D     0    AB3            F  A  Y  Q  H
HP 840  DEN  655P  SEA 1158P  S     1    73S            Y  B  H  K  Q
CO 255  DEN  828P  SEA 1014P        0    M80            F  A  Y  Q  H
UA 227  DEN  842P  SEA 1032P  #     0    757            F  Y  B  M  Q
UA 681  DEN  640A  SFO  820A  B     0    733            F  Y  B  M  Q
UA 819  DEN  837A  SFO 1016A  B     0    D10            F  Y  B  M  Q
CO 395  DEN  850A  SFO 1028A  B     0    72S            F  A  Y  Q  H
UA 315  DEN  930A  SFO 1116A  B     0    737            Y  B  M  Q  H
UA 343  DEN 1149A  SFO  130P  L     0    757            F  Y  B  M  Q
CO 445  DEN 1205P  SFO  157P  L     0    AB3            F  A  Y  Q  H
HP 603  DEN  105P  SFO  440P        1    733            Y  B  H  K  Q
UA 247  DEN  150P  SFO  316P  S     0    72S            F  Y  B  M  Q
UA 347  DEN  430P  SFO  609P  S     0    735            F  Y  B  M  H
UA 207  DEN  519P  SFO  830P  D     1    735            F  Y  B  M  Q
UA1727  DEN  530P  SFO  703P  D     0    757            F  Y  B  M  H
CO 173  DEN  635P  SFO  813P  D     0    AB3            A  Y  Q  H  K
CO1765  DEN  831P  SFO 1010P  #     0    733            F  A  Y  Q  H
UA 861  DEN  851P  SFO 1022P  #     0    757            F  Y  B  M  Q
TW 402  DEN  700A  STL 1000A  B     0    72S            F  Y  B  Q  M
TW 450  DEN  855A  STL 1203P  B     0    72S            F  Y  B  Q  M
UA 854  DEN 1046A  STL  146P  L     0    733            F  Y  B  M  Q
TW 118  DEN  100P  STL  404P  #     0    72S            F  Y  B  Q  M
UA 470  DEN  305P  STL  601P  S     0    72S            F  Y  B  M  Q
TW 240  DEN  419P  STL  727P  D     0    M80            F  Y  B  Q  M
UA 476  DEN  637P  STL  933P  D     0    72S            F  Y  B  M  Q
CO1568  DEN 1035A  TPA  519P  L     1    733            A  Y  Q  H  K
DL 317  DEN 1100A  TPA  620P  LS    1    757            F  Y  B
US 529  DEN  115P  TPA  838P  LD    1    72S            F  Y  B  H  Q
DL 581  DFW  812A  ABQ  905A  #     0    M80            F  Y  B  M  Q
AA1067  DFW  921A  ABQ 1003A  V     0    72S            F  Y  B  M  H
YV  81  DFW 1030A  ABQ  120P        2    BE1            Y  Q  L  H  M
AA1257  DFW 1118A  ABQ 1207P  L     0    S80            F  Y  B  M  H
DL 527  DFW 1147A  ABQ 1230P  L     0    757            F  Y  B  M  Q
AA 329  DFW  227P  ABQ  315P        0    S80            F  Y  B  M  H
DL 545  DFW  321P  ABQ  405P        0    72S            F  Y  B  M  Q
AA 305  DFW  358P  ABQ  446P        0    72S            F  Y  B  M  H
AA 163  DFW  633P  ABQ  724P  D     0    S80            F  Y  B  M  H
DL 441  DFW  642P  ABQ  740P  D     0    M80            F  Y  B  M  Q
AA1111  DFW 1000P  ABQ 1043P        0    72S           FN YN  B  M  H
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DL 333  DFW 1028P  ABQ 1110P        0    72S           FN YN BN MN QN
DL  16  DFW  615A  ATL  918A  B     0    L15            F  Y  B  M  Q
DL 500  DFW  615A  ATL 1055A  #     2    M80            F  Y  B  M  H
DL 636  DFW  615A  ATL 1100A  #     2    M80           F@ Y@ B@ M@ Q@
DL1198  DFW  640A  ATL 1233P  #     3    M80           F@ Y@ B@ M@ Q@
DL 542  DFW  641A  ATL 1051A  B     1    M80           F@ Y@ B@ M@ Q@
AA 864  DFW  656A  ATL  953A  B     0    S80           FN YN  B  H  M
DL1190  DFW  805A  ATL 1105A  B     0    757            F  Y  B  M  Q
DL 408  DFW  806A  ATL 1235P  S     1    M80            Y  B  M  Q  H
DL 353  DFW  809A  ATL 1237P  #     1    M80            F  Y  B  M  Q
AA 752  DFW  816A  ATL 1124A  B     0    72S           FN YN  B  H  M
DL 790  DFW  940A  ATL 1242P  S     0    763            F  Y  B  M  Q
DL 784  DFW 1020A  ATL  228P        1    M80            F  Y  B  M  Q
DL 508  DFW 1041A  ATL  227P  S     1    D9S            F  Y  B  M  Q
DL1007  DFW 1125A  ATL  410P  L     1    M80            F  Y  B  M  Q
DL1046  DFW 1125A  ATL  409P        2    M80            F  Y  B  M  Q
DL 472  DFW 1138A  ATL  235P  L     0    757            F  Y  B  M  Q
DL1028  DFW 1140A  ATL  401P  L     1    M80            F  Y  B  M  Q
DL 904  DFW 1143A  ATL  355P  L     1    73S            F  Y  B  M  Q
DL 833  DFW 1144A  ATL  406P  L     1    73S            F  Y  B  M  Q
DL 941  DFW 1145A  ATL  405P  L     1    M80            F  Y  B  M  Q
DL1094  DFW 1201P  ATL  359P  S     1    M80            F  Y  B  M  Q
AA 504  DFW 1245P  ATL  340P  L     0    S80            F  Y  B  H  M
DL1066  DFW  100P  ATL  410P  L     0    L10            F  Y  B  M  Q
DL 756  DFW  100P  ATL  559P  S     2    72S            F  Y  B  M  Q
DL 335  DFW  106P  ATL  556P  S     2    72S            F  Y  B  M  Q
DL1074  DFW  108P  ATL  556P        2    M80            F  Y  B  M  Q
DL 618  DFW  115P  ATL  554P  S     1    757            F  Y  B  M  Q
DL1264  DFW  122P  ATL  549P  L     1    M80            F  Y  B  M  Q
DL 783  DFW  141P  ATL  548P  S     1    M80            F  Y  B  M  Q
AA 482  DFW  238P  ATL  538P  S     0    S80            F  Y  B  H  M
DL 688  DFW  300P  ATL  600P  S     0    L10            F  Y  B  M  Q
DL1544  DFW  304P  ATL  730P  D     1    D9S            F  Y  B  M  Q
DL 394  DFW  305P  ATL  755P  D     1    M80            F  Y  B  M  Q
DL 940  DFW  314P  ATL  738P  D     1    73S            F  Y  B  M  Q
DL 722  DFW  450P  ATL  744P  D     0    L10            F  Y  B  M  Q
DL 556  DFW  453P  ATL  935P  S     2    73S           F@ Y@ B@ M@ Q@
AA 222  DFW  516P  ATL  817P  D     0    727            F  Y  B  H  M
DL1061  DFW  557P  ATL 1033P        2    73S           F@ Y@ B@ M@ Q@
DL 592  DFW  557P  ATL 1039P  S     2    73S           F@ Y@ B@ M@ Q@
DL 260  DFW  558P  ATL 1054P  S     2    M80           F@ Y@ B@ M@ Q@
DL 908  DFW  641P  ATL 1101P        1    D9S           F@ Y@ B@ M@ Q@
DL 832  DFW  645P  ATL  942P  D     0    M80            F  Y  B  M  Q
AA 496  DFW  804P  ATL 1102P  #     0    727           FN YN  B  H  M
DL 154  DFW  808P  ATL 1105P  #     0    767           FN YN BN MN QN
DL1008  DFW 1027P  ATL  115A        0    D9S           FN YN BN MN QN
DL1080  DFW 1138P  ATL  223A        0    M80           FN YN BN MN QN
AA1144  DFW  645A  BNA  826A  B     0    S80            F  Y  B  M  H
AA1280  DFW  807A  BNA  958A  B     0    S80            F  Y  B  M  H
AA 410  DFW  814A  BNA 1245P        2    727            F  Y  M  B  H
DL 784  DFW 1020A  BNA 1200N        0    M80            F  Y  B  M  Q
AA1444  DFW 1102A  BNA 1246P  S     0    S80            F  Y  B  M  H
AA1086  DFW 1251P  BNA  240P  L     0    S80            F  Y  B  M  H
DL1192  DFW  110P  BNA  302P  L     0    72S            F  Y  B  M  Q
AA1406  DFW  239P  BNA  423P        0    S80            F  Y  B  M  H
DL1078  DFW  453P  BNA  635P  D     0    73S            F  Y  B  M  Q
AA 352  DFW  520P  BNA  722P  D     0    757            F  Y  B  M  H
AA 440  DFW  803P  BNA  956P        0    757            F  Y  B  M  H
DL 478  DFW  831P  BNA 1015P        0    72S            F  Y  B  M  Q
DL 996  DFW  610A  BOS 1146A  B     1    72S            F  Y  B  M  Q
AA 728  DFW  635A  BOS 1058A  B     0    S80            F  Y  B  H  M
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AA1364  DFW  813A  BOS 1253P  B     0    S80            F  Y  B  H  M
DL1278  DFW  941A  BOS  210P  B     0    M80            F  Y  B  M  Q
AA 108  DFW  103P  BOS  525P  #     0    D10            F  Y  B  H  M
DL 358  DFW  107P  BOS  555P  L     0    757            F  Y  B  M  Q
US1473  DFW  140P  BOS  757P  SD    1    733            F  Y  B  H  Q
AA 634  DFW  223P  BOS  644P  G     0    757            F  Y  B  H  M
DL1620  DFW  507P  BOS  944P  D     0    M80            F  Y  B  M  Q
AA 154  DFW  519P  BOS  948P  D     0    D10            F  Y  B  H  M
AA 568  DFW  656A  DCA 1033A  B     0    S80            F  Y  B  H  M
DL 874  DFW  820A  DCA 1205P  B     0    72S            F  Y  B  M  Q
AA 804  DFW  827A  DCA 1214P  B     0    757            F  Y  B  H  M
AA1284  DFW  924A  DCA  105P  R     0    S80            F  Y  B  H  M
US 349  DFW  925A  DCA  255P  B     1    M80            F  Y  B  H  Q
DL 400  DFW  955A  DCA  140P  B     0    M80            F  Y  B  M  Q
AA 236  DFW 1051A  DCA  231P  L     0    S80            F  Y  B  H  M
DL1040  DFW  100P  DCA  705P  S     2    72S            F  Y  B  M  Q
DL 522  DFW  102P  DCA  459P  L     0    M80            F  Y  B  M  Q
AA1256  DFW  106P  DCA  447P  #     0    757            F  Y  B  H  M
AA1322  DFW  243P  DCA  628P  S     0    S80            F  Y  B  H  M
DL 394  DFW  305P  DCA 1025P  D     2    M80            F  Y  B  M  Q
DL 660  DFW  500P  DCA  845P  D     0    757            F  Y  B  M  Q
AA 846  DFW  516P  DCA  904P  D     0    757            F  Y  B  H  M
AA 834  DFW  800P  DCA 1136P  S     0    757            F  Y  B  H  M
DL 462  DFW  824P  DCA 1205A  S     0    M80            F  Y  B  M  Q
UA1483  DFW  700A  DEN  802A  B     0    733            F  Y  B  M  Q
AA1697  DFW  700A  DEN  810A  B     0    S80            F  Y  B  Q  M
CO 277  DFW  700A  DEN  805A  S     0    733            A  Y  Q  H  K
DL 888  DFW  807A  DEN  900A  B     0    72S           FN YN BN MN QN
AA 861  DFW  811A  DEN  913A  B     0    S80            F  Y  B  Q  M
AA1281  DFW  934A  DEN 1036A        0    S80            F  Y  B  Q  M
CO1219  DFW 1010A  DEN 1104A  S     0    D9S            A  Y  Q  H  K
UA 985  DFW 1014A  DEN 1113A  S     0    735            F  Y  B  M  Q
AA 419  DFW 1108A  DEN 1207P  S     0    S80            F  Y  B  Q  M
DL 233  DFW 1140A  DEN 1237P  L     0    M80            F  Y  B  M  Q
AA 527  DFW  222P  DEN  320P        0    S80            F  Y  B  Q  M
DL 309  DFW  301P  DEN  355P        0    757            F  Y  B  M  Q
UA 851  DFW  340P  DEN  437P  #     0    733            F  Y  B  M  Q
AA  51  DFW  355P  DEN  455P        0    S80            F  Y  B  Q  M
CO 885  DFW  432P  DEN  525P  #     0    73S            A  Y  Q  H  K
AA 193  DFW  635P  DEN  740P  D     0    S80            F  Y  B  Q  M
CO 233  DFW  645P  DEN  734P  #     0    733            A  Y  Q  H  K
UA 577  DFW  646P  DEN  748P  D     0    737            F  Y  B  M  Q
DL 509  DFW  656P  DEN  755P  D     0    72S           FN YN BN MN QN
AA1631  DFW  803P  DEN  904P        0    S80            F YN  B  Q  M
AA 313  DFW  953P  DEN 1049P        0    S80           FN YN  B  Q  M
DL1055  DFW 1033P  DEN 1130P        0    M80           FN YN BN MN QN
AA 198  DFW  700A  DTW 1019A  B     0    72S            F  Y  B  H  M
NW 690  DFW  800A  DTW 1118A  B     0    D9S           FN YN BN  M  H
NW1560  DFW  915A  DTW 1236P  B     0    D9S           FN YN BN  M  H
AA 382  DFW  940A  DTW  107P  R     0    S80            F  Y  B  H  M
DL 672  DFW  949A  DTW  120P  B     0    73S            F  Y  B  M  Q
NW 692  DFW 1220P  DTW  350P  L     0    D9S            F  Y  B  M  H
DL 262  DFW  116P  DTW  455P  L     0    M80            F  Y  B  M  Q
UA 446  DFW  206P  DTW  708P  #     1    72S            F  Y  B  M  Q
AA1132  DFW  232P  DTW  559P  S     0    S80            F  Y  B  H  M
NW 696  DFW  400P  DTW  728P  D     0    D9S            F  Y  B  M  H
DL 588  DFW  501P  DTW  830P  D     0    72S            F  Y  B  M  Q
NW 694  DFW  505P  DTW  847P  D     0    D9S           FN YN BN  M  H
AA1168  DFW  515P  DTW  849P  D     0    S80            F  Y  B  H  M
AA 212  DFW  521P  DTW 1040P  D     1    D10            F  Y  B  M  H
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AA 158  DFW  757P  DTW 1111P  #     0    72S            F  Y  B  H  M
DL1177  DFW  617A  HOU  715A  S     0    D9S           FN YN BN MN QN
AA   8  DFW  652A  HOU  756A  #     0    S80            F  Y  B  M  H
DL 408  DFW  806A  HOU  910A  S     0    M80            F  Y  B  M  Q
AA 371  DFW  810A  HOU  918A  #     0    72S            F  Y  B  M  H
AA 803  DFW 1050A  HOU 1157A        0    S80            F  Y  B  M  H
TW 130  DFW 1100A  HOU 1200N        0    72S            F  Y  B  Q  M
DL 877  DFW 1152A  HOU 1255P        0    D9S            F  Y  B  M  Q
AA1344  DFW 1251P  HOU  159P        0    S80            F  Y  B  M  H
AA 856  DFW  230P  HOU  339P        0    S80            F  Y  B  M  H
DL 946  DFW  301P  HOU  403P        0    D9S            F  Y  B  M  Q
AA1179  DFW  354P  HOU  458P        0    72S            F  Y  B  M  H
AA1679  DFW  514P  HOU  631P        0    S80            F  Y  B  M  H
AA1509  DFW  630P  HOU  738P        0    S80            F  Y  B  M  H
DL 853  DFW  651P  HOU  755P        0    73S            F  Y  B  M  Q
AA 401  DFW  951P  HOU 1057P        0    S80           FN YN  B  M  H
DL1228  DFW 1027P  HOU 1125P        0    73S           FN YN BN MN QN
AA 926  DFW 1116P  HOU 1215A        0    72S           FN YN  B  M  H
TW 130  DFW 1100A  JFK  450P  L     1    72S            F  Y  B  Q  M
DL1870  DFW 1155A  JFK  440P  L     0    72S            F  Y  B  M  Q
AA 862  DFW 1249P  JFK  525P  L     0    72S            F  Y  B  H  M
AA1165  DFW  700A  LAX  811A  R     0    S80            F  Y  B  H  M
AA 509  DFW  805A  LAX  921A  R     0    S80            F  Y  B  H  M
DL 131  DFW  806A  LAX  920A  B     0    L10            F  Y  B  M  Q
DL 859  DFW  812A  LAX 1019A  BS    1    72S            F  Y  B  M  Q
DL1715  DFW  812A  LAX 1016A  B     1    72S            F  Y  B  M  Q
AA 227  DFW  924A  LAX 1017A  R     0    D10            F  Y  B  H  M
AA 333  DFW 1120A  LAX 1219P  L     0    D10            F  Y  B  H  M
DL 285  DFW 1151A  LAX  100P  L     0    763            F  Y  B  M  Q
AA 625  DFW 1253P  LAX  200P  L     0    S80            F  Y  B  H  M
AA 281  DFW  239P  LAX  337P  S     0    D10            F  Y  B  H  M
DL 819  DFW  300P  LAX  508P  S     1    72S            F  Y  B  M  Q
DL 309  DFW  301P  LAX  710P  SD    2    757            F  Y  B  M  Q
DL 179  DFW  340P  LAX  440P  S     0    L10            F  Y  B  M  Q
AA  49  DFW  400P  LAX  504P  D     0    D10            F  Y  B  H  M
AA 603  DFW  514P  LAX  625P  D     0    S80            F  Y  B  H  M
AA 389  DFW  642P  LAX  746P  D     0    D10            F  Y  B  H  M
DL1215  DFW  650P  LAX  909P  D     1    72S            F  Y  B
DL 139  DFW  652P  LAX  920P  D     1    757            F  Y  B  M  Q
DL 161  DFW  710P  LAX  820P  D     0    L10            F  Y  B  M  Q
AA 717  DFW  800P  LAX  907P  S     0    S80            F  Y  B  H  M
AA1261  DFW  959P  LAX 1056P  S     0    D10           FN YN  B  H  M
DL 279  DFW 1050P  LAX 1158P  S     0    763           FN YN BN MN QN
DL1700  DFW  640A  MIA 1010A  B     0    72S            F  Y  B  M  Q
AA 857  DFW  645A  MIA 1007A  B     0    757            F  Y  B  H  M
AA 614  DFW  815A  MIA 1151A  B     0    D10            F  Y  B  H  M
DL 546  DFW  940A  MIA  110P  B     0    72S            F  Y  B  M  Q
AA1614  DFW 1100A  MIA  235P  L     0    72S            F  Y  B  H  M
DL 472  DFW 1138A  MIA  515P  L     1    757            F  Y  B  M  H
AA 880  DFW 1257P  MIA  439P  L     0    72S            F  Y  B  H  M
DL 174  DFW  107P  MIA  445P  L     0    72S            F  Y
AA 498  DFW  225P  MIA  604P  S     0    72S            F  Y  B  H  M
PA 737  DFW  515P  MIA  901P  D     0    72S            F  Y  B  M  Q
AA 734  DFW  519P  MIA  902P  D     0    757            F  Y  B  H  M
AA1328  DFW  805P  MIA 1136P  #     0    757            F  Y  B  H  M
DL 558  DFW  846P  MIA 1215A  #     0    L10            F  Y  B  M  Q
NW 516  DFW  630A  MSP  836A  B     0    D9S            F  Y  B  M  H
AA 832  DFW  809A  MSP 1029A  B     0    S80            F  Y  B  M  H
NW 400  DFW  830A  MSP 1038A  B     0    D9S            F  Y  B  M  H
AA 629  DFW 1055A  MSP  109P  L     0    S80            F  Y  B  M  H
NW 402  DFW 1115A  MSP  130P  L     0    D9S           FN YN BN  M  H
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AA 438  DFW 1251P  MSP  305P  L     0    S80            F  Y  B  M  H
AA 760  DFW  236P  MSP  459P        0    S80            F  Y  B  M  H
NW 404  DFW  425P  MSP  637P  D     0    D9S            F  Y  B  M  H
NW 406  DFW  550P  MSP  759P  D     0    D9S            F  Y  B  M  H
AA 822  DFW  756P  MSP 1009P  #     0    S80            F  Y  B  M  H
DL 824  DFW  617A  MSY  735A  #     0    M80           FN YN BN MN QN
AA 548  DFW  635A  MSY  751A  #     0    72S            F  Y  B  M  H
AA1342  DFW  812A  MSY  945A  #     0    S80            F  Y  B  M  H
DL1042  DFW  942A  MSY 1105A        0    72S            F  Y  B  M  Q
AA 616  DFW  102P  MSY  232P        0    S80            F  Y  B  M
DL 618  DFW  115P  MSY  250P  S     0    757            F  Y  B  M  Q
DL1716  DFW  448P  MSY  605P  S     0    757            F  Y  B  M  Q
AA 374  DFW  514P  MSY  643P  S     0    S80            F  Y  B  M
AA 654  DFW  806P  MSY  933P        0    S80            F  Y  B  M
DL1720  DFW  824P  MSY  950P        0    757            F  Y  B  M  Q
AA1542  DFW 1111P  MSY 1233A        0    S80            F YN  B  M  H
DL 694  DFW 1149P  MSY  105A        0    757           FN YN BN MN QN
AA 580  DFW  700A  ORD  915A  B     0    757            F  Y  B  M  H
UA 224  DFW  805A  ORD 1013A  B     0    72S            F  Y  B  M  Q
AA 470  DFW  811A  ORD 1019A  B     0    D10            F  Y  B  M  H
DL 310  DFW  820A  ORD 1040A  B     0    72S            F  Y  B  M  Q
AA 360  DFW  925A  ORD 1131A  V     0    S80            F  Y  B  M  H
AA 784  DFW 1054A  ORD 1256P  L     0    757            F  Y  B  M  H
UA 252  DFW 1057A  ORD  101P  L     0    72S            F  Y  B  M  Q
DL 124  DFW  100P  ORD  314P  L     0    72S            F  Y  B  M  Q
DL 335  DFW  106P  ORD  750P  SD    3    72S            F  Y  B  M  Q
AA1554  DFW  108P  ORD  315P  #     0    D10            F  Y  B  M  H
UA 446  DFW  206P  ORD  406P  #     0    72S            F  Y  B  M  Q
AA1502  DFW  233P  ORD  434P  #     0    D10            F  Y  B  M  H
DL 721  DFW  311P  ORD  520P  S     0    72S            F  Y  B  M  Q
AA 224  DFW  352P  ORD  606P  S     0    757            F  Y  B  M  H
DL1240  DFW  450P  ORD  705P  D     0    D9S            F  Y  B  M  Q
UA 280  DFW  508P  ORD  725P  D     0    733            F  Y  B  M  Q
AA 212  DFW  521P  ORD  741P  D     0    D10            F  Y  B  M  H
AA 476  DFW  645P  ORD  915P  D     0    72S            F  Y  B  M  H
UA 776  DFW  700P  ORD  912P  D     0    733            F  Y  B  M  Q
AA 150  DFW  808P  ORD 1015P  #     0    D10            F  Y  B  M  H
AA1044  DFW 1000P  ORD 1204A        0    72S           FN YN  B  M  H
AA 456  DFW 1110P  ORD  114A        0    S80           FN YN  B  M  H
AA 124  DFW  657A  PHL 1049A  B     0    S80            F  Y  B  H  M
AA 360  DFW  925A  PHL  303P  VL    1    S80            F  Y  M  H  B
DL1006  DFW 1003A  PHL  210P  B     0    73S            F  Y  B  M  Q
YX 305  DFW 1050A  PHL  430P  L     1    DC9            Y  H  M  B
US  96  DFW 1220P  PHL  546P  L     1    734            F  Y  B  H  Q
AA1010  DFW 1257P  PHL  459P  L     0    S80            F  Y  B  H  M
DL1295  DFW  112P  PHL  530P  L     0    M80            F  Y  B  M  Q
AA1388  DFW  232P  PHL  628P  S     0    S80            F  Y  B  H  M
AA 586  DFW  513P  PHL  913P  D     0    S80            F  Y  B  H  M
AA1074  DFW  755P  PHL 1141P  #     0    S80            F  Y  B  H  M
DL 252  DFW  845P  PHL 1245A  S     0    757           FN YN BN MN QN
HP 622  DFW  705A  PHX  836A  S     0    73S            Y  B  H  K  Q
AA1349  DFW  805A  PHX  935A  B     0    S80            F  Y  B  H  M
DL 995  DFW  814A  PHX  945A  B     0    72S            F  Y  B  M  Q
AA 475  DFW  930A  PHX 1100A  V     0    S80            F  Y  B  H  M
AA1447  DFW 1112A  PHX 1244P  L     0    S80            F  Y  B  H  M
DL 444  DFW 1153A  PHX  110P  L     0    72S            F  Y  B  M  Q
HP 834  DFW  240P  PHX  412P  S     0    733            F  Y  B  H  K
DL1019  DFW  317P  PHX  440P  S     0    72S            F  Y  B  M  Q
AA1441  DFW  356P  PHX  517P  S     0    D10            F  Y  B  H  M
HP 862  DFW  514P  PHX  646P  S     0    733            F  Y  B  H  K
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AA  25  DFW  637P  PHX  801P  D     0    D10            F  Y  B  H  M
DL 219  DFW  651P  PHX  820P  D     0    72S            F  Y  B  M  Q
HP 636  DFW  734P  PHX  903P  S     0    733            Y  B  H  K  Q
AA 503  DFW  957P  PHX 1116P        0    72S           FN YN  B  H  M
DL1705  DFW 1022P  PHX 1140P  #     0    72S           FN YN BN MN QN
UA1098  DFW  145P  PVD  722P  LS    1    733            F  Y  B  M  Q
US 794  DFW  420P  PVD 1025P  S     1    M80            F  Y  B  H  Q
AA1254  DFW  814A  RDU 1149A  B     0    72S            F  Y  B  M  H
AA 320  DFW  930A  RDU  109P  R     0    S80            F  Y  B  M  H
DL1114  DFW  946A  RDU  126P  B     0    73S            F  Y  B  M  Q
AA 840  DFW 1057A  RDU  231P  L     0    S80            F  Y  B  M  H
AA 810  DFW 1251P  RDU  418P  L     0    72S            F  Y  B  M  H
AA 844  DFW  241P  RDU  612P  D     0    S80            F  Y  B  M  H
AA 852  DFW  517P  RDU  904P  D     0    S80            F  Y  B  M  H
AA1326  DFW  810P  RDU 1139P        0    S80            F  Y  B  M  H
DL 926  DFW  823P  RDU 1155P  #     0    M80            F  Y  B  M  Q
DL1717  DFW  808A  SEA 1120A  B     1    72S            F  Y  B  M  Q
HP 847  DFW  845A  SEA  111P  S     1    73S            Y  B  H  K  Q
AA1339  DFW  928A  SEA 1146A  R     0    757            F  Y  B  H  M
AA 395  DFW 1055A  SEA  104P  L     0    72S            F  Y  B  H  M
DL 703  DFW 1143A  SEA  140P  L     0    72S            F  Y  B  M  Q
DL1283  DFW 1203P  SEA  335P  L     1    757            F  Y  B  M  Q
DL 887  DFW  314P  SEA  510P  D     0    72S            F  Y  B  M  Q
DL1735  DFW  345P  SEA  710P  SD    1    757            F  Y  B  M  Q
AA 251  DFW  403P  SEA  625P  D     0    S80            F  Y  B  H  M
HP 843  DFW  415P  SEA  852P  S     1    73S            Y  B  H  K  Q
AA 217  DFW  634P  SEA  858P  D     0    S80            F  Y  B  H  M
DL1709  DFW  650P  SEA  900P  D     0    757            F  Y  B  M  Q
AA 583  DFW  953P  SEA 1208A        0    S80           FN YN  B  H  M
AA 203  DFW  810A  SFO  947A  B     0    757            F  Y  B  H  M
DL 825  DFW  811A  SFO  955A  B     0    767            F  Y  B  M  Q
UA 397  DFW  840A  SFO 1018A  B     0    72S            F  Y  B  M  Q
AA 125  DFW  934A  SFO 1125A  R     0    S80            F  Y  B  H  M
AA1143  DFW 1055A  SFO 1225P  L     0    D10            F  Y  B  H  M
DL 669  DFW 1148A  SFO  125P  L     0    763            Y  B  M  Q  H
DL 307  DFW  314P  SFO  450P  S     0    767            F  Y  B  M  Q
AA  71  DFW  402P  SFO  543P  D     0    757            F  Y  B  H  M
AA1119  DFW  509P  SFO  705P  D     0    S80            F  Y  B  H  M
AA  79  DFW  638P  SFO  830P  D     0    767            F  Y  B  H  M
DL 691  DFW  704P  SFO  855P  D     0    72S            F  Y  B  M  Q
AA1191  DFW  958P  SFO 1143P  S     0    S80           FN YN  B  H  M
DL 487  DFW 1024P  SFO 1159P  S     0    757           FN YN BN MN QN
TW 563  DFW  641A  STL  827A  B     0    D9S            F  Y  B  Q  M
TW 522  DFW  801A  STL  945A  B     0    DC9            F  Y  B  Q  M
AA1640  DFW  812A  STL 1006A  B     0    S80            F  Y  B  M  H
AD1215  DFW  935A  STL  120P        3    SWM            Y  K  Q  V  H
TW 278  DFW 1025A  STL 1207P        0    D9S            F  Y  B  Q  M
TW 695  DFW 1235P  STL  215P  #     0    D9S            F  Y  B  Q  M
AA 344  DFW 1252P  STL  229P  L     0    S80            F  Y  B  M  H
AD1274  DFW  225P  STL  610P        3    SWM            Y  K  Q  V  H
TW 674  DFW  230P  STL  413P        0    D9S            F  Y  B  Q  M
AA 464  DFW  239P  STL  420P        0    S80            F  Y  B  M  H
TW 487  DFW  354P  STL  537P        0    D9S            F  Y  B  Q  M
AA 216  DFW  515P  STL  704P  S     0    S80            F  Y  B  M  H
TW 664  DFW  537P  STL  722P  D     0    D9S            F  Y  B  Q  M
AA 328  DFW  759P  STL  934P        0    S80            F  Y  B  M  H
AA1474  DFW 1115P  STL 1251A        0    72S           FN YN  B  M  H
DL 276  DFW  624A  TPA  930A  B     0    72S            F  Y  B  M  Q
AA1378  DFW  658A  TPA 1009A  B     0    72S            F  Y  B  M  H
DL 790  DFW  940A  TPA  305P  S     1    763            F  Y  B  M  Q
AA 206  DFW 1106A  TPA  218P  L     0    72S            F  Y  B  M  H

file:///E|/WEBSITE/BIBLIO/TESTDATA/AIRPLANE (24 of 67) [19/1/2003 1:40:22]



file:///E|/WEBSITE/BIBLIO/TESTDATA/AIRPLANE

DL 584  DFW  116P  TPA  440P  L     0    757            F  Y  B  M  Q
AA1100  DFW  235P  TPA  551P  #     0    72S            F  Y  B  M  H
AA 178  DFW  518P  TPA  838P  D     0    72S            F  Y  B  M  H
DL 364  DFW  524P  TPA  840P  D     0    767            F  Y  B  M  Q
AA 618  DFW  755P  TPA 1101P  #     0    72S            F  Y  B  M  H
DL1158  DFW  835P  TPA 1155P  S     0    763            F  Y  B  M  Q
AA 305  DTW  105P  ABQ  446P  #     1    72S            F  Y  H  B  M
DL 201  DTW  550A  ATL  737A  B     0    72S           FN YN BN MN QN
NW 491  DTW  715A  ATL  915A  B     0    72S           FN YN BN  M  H
DL 821  DTW  845A  ATL 1029A  S     0    757            F  Y  B  M  Q
NW 495  DTW 1030A  ATL 1229P        0    DC9            F  Y  B  M  H
NW 799  DTW 1225P  ATL  223P  L     0    D9S           FN YN BN  M  H
DL 501  DTW 1240P  ATL  235P  L     0    M80            F  Y  B  M  Q
DL 817  DTW  405P  ATL  554P        0    M80            F  Y  B  M  Q
NW 499  DTW  440P  ATL  636P        0    D9S            F  Y  B  M  H
DL 951  DTW  545P  ATL  733P  D     0    M80            F  Y  B  M  Q
NW 795  DTW  645P  ATL  841P  D     0    DC9            F
DL 818  DTW  750P  ATL  937P        0    757            F  Y  B  M  Q
NW1565  DTW  720A  BNA  800A  S     0    D9S           FN YN BN  M  H
AA1663  DTW  840A  BNA  912A  #     0    S80            F  Y  B  H  M
NW1567  DTW  935A  BNA 1019A  S     0    D9S           FN YN BN  M  H
NW1569  DTW 1210P  BNA 1249P        0    D9S           FN YN BN  M  H
AA1057  DTW  203P  BNA  233P        0    S80            F  Y  B  H  M
WN 413  DTW  300P  BNA  440P        1    73S            Y  K  L  B  Q
NW1523  DTW  500P  BNA  540P        0    D9S            F  Y  B  M  H
NW1497  DTW  640P  BNA  720P        0    DC9            F  Y  B  M  H
AA1543  DTW  730P  BNA  806P  S     0    S80            F  Y  B  H  M
US 852  DTW  700A  BOS 1017A  BS    1    D9S           FN YN BN HN QN
NW 380  DTW  730A  BOS  918A  B     0    72S            F  Y  B  M  H
NW 932  DTW 1025A  BOS 1215P  S     0    320            F  Y  B  M  H
NW 386  DTW  140P  BOS  330P        0    757            F  Y  B  M  H
NW 330  DTW  310P  BOS  503P        0    320            F  Y  B  M  H
NW  48  DTW  455P  BOS  649P  #     0    D10            F  C  Y  B  M
NW 390  DTW  655P  BOS  850P  S     0    72S            F  Y  B  M  H
NW 394  DTW  845P  BOS 1037P        0    D10           FN YN BN  M  H
NW 338  DTW  720A  DCA  846A  B     0    757           FN YN BN  M  H
NW 232  DTW 1025A  DCA 1151A        0    320            F  Y  B  M  H
NW1109  DTW 1215P  DCA  140P  #     0    D9S            F  Y  B  M  H
NW 234  DTW  135P  DCA  259P        0    757            F  Y  B  M  H
NW 236  DTW  315P  DCA  440P        0    D9S            F  Y  B  M  H
NW  12  DTW  440P  DCA  607P        0    M80            F  Y  B  M  H
NW 286  DTW  500P  DCA  626P  #     0    320            F  Y  B  M  H
NW 417  DTW  655P  DCA  821P  #     0    757            F  Y  B  M  H
NW 250  DTW  835P  DCA  959P        0    320            F  Y  B  M  H
UA 307  DTW  657A  DEN  810A  B     0    733            F  Y  B  M  Q
CO 395  DTW  700A  DEN  810A  B     0    72S            F  A  Y  Q  H
NW1223  DTW  915A  DEN 1031A  B     0    72S            F  Y  B  M  H
UA 701  DTW  945A  DEN 1058A  L     0    733            F  Y  B  M  Q
NW1219  DTW 1230P  DEN  143P  L     0    72S            F  Y  B  M
CO 249  DTW  418P  DEN  516P  S     0    72S            A  Y  Q  H  K
UA 699  DTW  646P  DEN  755P  D     0    733            F  Y  B  M  Q
NW1225  DTW  650P  DEN  810P  D     0    D9S            F  Y
AA1543  DTW  730P  DEN 1034P  S     1    S80            F  Y  H  B  M
AA1433  DTW  655A  DFW  836A  B     0    S80            F  Y  B  M  H
AA1541  DTW  810A  DFW  954A  B     0    72S            F  Y  B  M  H
DL1271  DTW  900A  DFW 1033A  B     0    M80            F  Y  B  M  Q
NW 691  DTW  930A  DFW 1137A  B     0    D9S           FN YN BN  M  H
DL 940  DTW 1220P  DFW  203P  L     0    73S            F  Y  B  M  Q
NW 693  DTW 1230P  DFW  238P  L     0    D9S           FN YN BN  M  H
AA 305  DTW  105P  DFW  250P  #     0    72S            F  Y  B  M  H
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NW1185  DTW  310P  DFW  515P        0    D9S           FN YN BN  M  H
AA1509  DTW  350P  DFW  540P  S     0    S80            F  Y  B  M  H
DL 645  DTW  400P  DFW  550P  S     0    73S            F  Y  B  M  Q
DL 817  DTW  405P  DFW  940P        3    M80           F@ Y@ B@ M@ Q@
AA1699  DTW  645P  DFW  838P  D     0    S80            F  Y  B  M  H
NW 695  DTW  655P  DFW  903P  D     0    D9S            F
NW 697  DTW  940P  DFW 1142P        0    D9S            F  Y  B  M  H
WN 531  DTW  700A  HOU 1040A        2    733            Y  K  L  B  Q
NW 271  DTW  930A  HOU 1146A  B     0    D9S           FN YN BN  M  H
NW 273  DTW 1225P  HOU  244P  L     0    D9S           FN YN BN  M  H
WN 413  DTW  300P  HOU  655P        2    73S            Y  K  L  B  Q
AA1509  DTW  350P  HOU  738P  S     1    S80            F  Y  H  B  M
WN 505  DTW  440P  HOU  910P        3    733            Y  K  L  B  Q
NW 275  DTW  650P  HOU  910P  D     0    D9S            F  Y  B  M  H
TW 766  DTW  300P  JFK  449P        0    72S            F  Y  B  Q  M
NW 333  DTW  925A  LAX 1130A  B     0    D10            F  Y  B  M  H
NW 335  DTW 1225P  LAX  235P  L     0    757            F  Y  B  M  H
NW 337  DTW  315P  LAX  527P  S     0    320            F  Y  B  M  H
NW  51  DTW  700P  LAX  900P  D     0    D10            F  C  Y  B  M
AA 435  DTW  815P  LAX 1129P  S     1    D10            F YN  H  B  M
NW 339  DTW  940P  LAX 1148P  S     0    320           FN YN BN  M  H
PA 437  DTW  715A  MIA 1016A  B     0    72S            F  Y  B  M  Q
AA1551  DTW  755A  MIA 1205P  B     1    72S            F  Y  B  M  H
NW 995  DTW  910A  MIA 1215P  B     0    D9S            F  Y  B  M  H
NW 993  DTW 1030A  MIA  135P  L     0    D9S            F  B  M  H
NW 997  DTW 1210P  MIA  311P  L     0    72S           FN YN BN  M  H
US 169  DTW  225P  MIA  645P  S     1    733            F  Y  B  H  Q
PA 421  DTW  235P  MIA  536P  S     0    72S            F  Y  B  M  Q
US 537  DTW  525P  MIA 1038P  S     1    73S            F  Y  B  H  Q
NW 999  DTW  640P  MIA  942P  D     0    D9S            B
NW 123  DTW  700A  MSP  920A  S     1    320            F  Y  B  M  H
NW 101  DTW  730A  MSP  827A  S     0    D10            F  Y  B  M  H
NW 115  DTW  800A  MSP 1027A  S     1    320            F  Y  B  M  H
NW 165  DTW  910A  MSP 1127A        1    72S            F  Y  B  M  H
NW 743  DTW  925A  MSP 1021A        0    757            F  Y  B  M  H
NW 745  DTW 1235P  MSP  133P  S     0    D10            F  Y  B  M  H
UA 567  DTW  202P  MSP  417P        1    72S            F  Y  B  M  H
NW 747  DTW  310P  MSP  358P        0    72S            F  Y  B  M  H
NW1073  DTW  430P  MSP  635P  S     1    DC9            F  Y
NW 751  DTW  540P  MSP  638P  S     0    744            F  Y  B  M  H
NW 753  DTW  700P  MSP  804P  S     0    D10            F  Y  B  M  H
NW 755  DTW  850P  MSP  942P        0    M80           FN YN BN  M  H
NW 757  DTW 1000P  MSP 1052P        0    D10           FN YN BN  M  H
NW1473  DTW  935A  MSY 1119A  B     0    D9S            F  Y  B  M  H
NW 297  DTW  650P  MSY  947P  D     1    72S            F  Y  B  M  H
NW 123  DTW  700A  ORD  714A  S     0    320            F  Y  B  M  H
UA 223  DTW  710A  ORD  722A  S     0    D10            F  Y  B  M  Q
AA  73  DTW  745A  ORD  801A  #     0    D10            F  Y  B  M  V
NW 115  DTW  800A  ORD  816A  S     0    320            F  Y  B  M  H
UA 723  DTW  830A  ORD  839A  S     0    72S            F  Y  B  M  Q
NW 165  DTW  910A  ORD  920A        0    72S            F  Y  B  M  H
AA 117  DTW 1035A  ORD 1051A        0    767            F  Y  B  M  V
UA 461  DTW 1110A  ORD 1120A        0    D10            F  Y  B  M  Q
NW 479  DTW 1215P  ORD 1235P        0    72S            F  Y  B  M  H
AA 847  DTW  138P  ORD  145P        0    S80            F  Y  B  M  V
UA 567  DTW  202P  ORD  215P        0    72S            F  Y  B  M  H
NW 205  DTW  310P  ORD  325P        0    72S            F  Y  B  M  H
NW 171  DTW  435P  ORD  450P        0    72S            F  Y  B  M  H
AA 835  DTW  500P  ORD  513P        0    757            F  Y  B  M  V
UA 135  DTW  520P  ORD  550P        0    D10            F  Y  B  M  Q
NW 173  DTW  645P  ORD  703P        0    72S            F  Y  B  M  H
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AA 435  DTW  815P  ORD  828P        0    D10            F  Y  B  M  V
UA 871  DTW  830P  ORD  846P        0    72S            F  Y  B  M  Q
NW 175  DTW  835P  ORD  854P        0    D9S            F  Y  B  M  H
NW1151  DTW  940P  ORD  952P        0    D9S            F  Y  B  M  H
US 100  DTW  700A  PHL  828A  B     0    73S           FN YN BN HN QN
NW1194  DTW  715A  PHL  843A  S     0    72S           FN YN BN  M  H
NW 200  DTW 1025A  PHL 1152A        0    72S            F  Y  B  M  H
US1664  DTW 1120A  PHL 1235P  S     0    100            F  Y  B  H  Q
NW 202  DTW  135P  PHL  301P  S     0    72S            F  Y  B  M  H
NW 204  DTW  320P  PHL  447P        0    D9S            F  Y  B  M  H
NW 340  DTW  440P  PHL  615P        0    D10            F  Y  B  M  H
US 537  DTW  525P  PHL  653P  S     0    73S            F  Y  B  H  Q
NW 210  DTW  840P  PHL 1008P        0    757            F  Y  B  M  H
NW 101  DTW  730A  PHX 1156A  SB    1    D10            F  Y  B  M  H
TW 169  DTW  735A  PHX 1123A  B     1    72S            F  Y  B  Q  M
NW 247  DTW  920A  PHX 1146A  B     0    320            F  Y  B  M  H
NW 249  DTW 1230P  PHX  254P  L     0    320            F  Y  B  M  H
CO 249  DTW  418P  PHX  810P  #     1    72S            A  Y  Q  H  K
DL 647  DTW  450P  PHX  835P  D     1    72S            F  Y  B  M  Q
NW 391  DTW  700P  PHX  923P  D     0    72S            F  Y  B  M  H
NW 253  DTW  945P  PHX 1202A  S     0    72S           FN YN BN  M  H
NW1440  DTW  715A  PVD  854A  S     0    D9S            F  Y  B  M  H
NW1444  DTW  130P  PVD  309P        0    D9S            F  Y  B  M  H
NW1476  DTW  435P  PVD  616P        0    D9S            F  Y  B  M  H
NW 498  DTW  825P  PVD  959P        0    D9S            F  Y  B  M  H
US 100  DTW  700A  RDU 1028A  BS    1    73S           FN YN BN HN QN
AA1551  DTW  755A  RDU  925A  B     0    72S            F  Y  B  H  M
AA1353  DTW 1150A  RDU  119P  L     0    72S            F  Y  B  H  M
AA1529  DTW  640P  RDU  816P  D     0    72S            F  Y  B  H  M
US 376  DTW  700P  RDU 1025P  D     1    734            F  Y  B  H  Q
NW 575  DTW  925A  SEA 1126A  B     0    757            F  Y  B  M  H
UA 461  DTW 1110A  SEA  233P  L     1    D10            F  Y  B  M  Q
NW 839  DTW 1210P  SEA  210P  L     0    72S            F  Y  B  M  H
NW 583  DTW  320P  SEA  514P  D     0    757            F  Y  B  M  H
NW 581  DTW  700P  SEA  856P  D     0    757            F  Y  B  M  H
CO 395  DTW  700A  SFO 1028A  B     1    72S            F  A  Y  Q  H
AA1663  DTW  840A  SFO 1250P  #     1    S80            F  Y  H  B  M
NW 929  DTW  930A  SFO 1142A  B     0    D10            F  Y  B  M  H
AA 117  DTW 1035A  SFO  227P  L     1    767            F  Y  H  B  M
NW 343  DTW 1220P  SFO  233P  L     0    757            F  Y  B  M  H
NW 345  DTW  320P  SFO  533P  S     0    320            F  Y  B  M  H
UA 135  DTW  520P  SFO  928P  D     1    D10            F  Y  B  M  Q
NW 347  DTW  655P  SFO  905P  D     0    757            F  Y  B  M  H
NW 349  DTW  945P  SFO 1151P  S     0    757           FN YN BN  M  H
WN 531  DTW  700A  STL  830A        1    733            Y  K  L  B  Q
TW 169  DTW  735A  STL  812A  B     0    72S            F  Y  B  Q  M
NW 461  DTW  920A  STL 1005A        0    D9S            F  Y  B  M  H
TW 337  DTW 1042A  STL 1127A        0    72S            F  Y  B  Q  M
NW 463  DTW 1215P  STL 1257P  S     0    D9S            F  Y  B  M  H
TW  91  DTW  145P  STL  228P        0    72S            F  Y  B  Q  M
NW 367  DTW  320P  STL  404P        0    D9S            F  Y  B  M  H
TW 395  DTW  456P  STL  542P        0    M80            F  Y  B  Q  M
NW1559  DTW  640P  STL  728P  #     0    D9S            F  Y  B  M  H
WN1735  DTW  740P  STL  910P        1    73S            Y  K  L  B  Q
TW 345  DTW  807P  STL  845P        0    72S            F  Y  B  Q  M
NW 484  DTW  800A  TPA 1037A  B     0    72S           FN YN BN  M  H
NW 476  DTW  920A  TPA 1200N  B     0    72S            F  Y  B  M  H
NW 480  DTW 1230P  TPA  312P  L     0    72S            F  Y  B  M  H
CO 441  DTW  535P  TPA 1055P  S     1    73S            A  Y  Q  H  K
NW 482  DTW  655P  TPA  934P  D     0    72S            F  Y  B  M  H
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NW 486  DTW  845P  TPA 1128P        0    72S            F  Y  B  M  H
WN 592  HOU  650A  ABQ  750A        0    733            Y  K  L  B  Q
WN 866  HOU  910A  ABQ 1130A        2    733            Y  K  L  B  Q
WN  30  HOU  130P  ABQ  355P        2    73S            Y  K  L  B  Q
WN 432  HOU  450P  ABQ  630P        1    73S            Y  K  L  B  Q
WN 590  HOU  605P  ABQ  705P        0    733            Y  K  L  B  Q
DL 408  HOU  940A  ATL 1235P  S     0    M80            Y  B  M  Q  H
DL 566  HOU 1140A  ATL  233P  L     0    D9S            F  Y  B  M  Q
DL 842  HOU  305P  ATL  602P        0    M80            F  Y  B  M  Q
WN 214  HOU  755A  BNA  940A        0    733            Y  K  L  B  Q
WN 103  HOU  845A  BNA 1155A        2    733            Y  K  L  B  Q
WN 767  HOU 1145A  BNA  135P        0    73S            Y  K  L  B  Q
WN1615  HOU  230P  BNA  550P        2    733            Y  K  L  B  Q
WN 649  HOU  540P  BNA  730P        0    733            Y  K  L  B  Q
WN 185  HOU  700P  BNA  840P        0    73S            Y  K  L  B  Q
UA 317  HOU  639A  DEN  810A  B     0    737            F  Y  B  M  Q
UA 787  HOU  250P  DEN  417P  S     0    737            F  Y  B  M  Q
AA 193  HOU  434P  DEN  740P  D     1    S80            F  Y  B  M  H
AA1412  HOU  615A  DFW  718A  #     0    S80            F  Y  B  H  M
DL 390  HOU  615A  DFW  724A  S     0    73S            F  Y  B  M  Q
AA 272  HOU  725A  DFW  837A  #     0    S80            F  Y  B  H  M
DL 629  HOU  800A  DFW  903A  S     0    D9S            F  Y  B  M  Q
AA1423  HOU  855A  DFW 1007A        0    S80            F  Y  B  H  M
AA1570  HOU 1100A  DFW 1207P        0    72S            F  Y  B  H  M
DL1404  HOU 1120A  DFW 1225P        0    73S            F  Y  B  M  Q
AA1233  HOU 1242P  DFW  151P        0    S80            F  Y  B  H  M
DL 998  HOU  255P  DFW  355P        0    D9S            F  Y  B  M  Q
AA1234  HOU  310P  DFW  423P        0    S80            F  Y  B  H
AA 193  HOU  434P  DFW  550P        0    S80            F  Y  B  H
AA1275  HOU  600P  DFW  712P        0    72S            F  Y  B  H  M
DL1023  HOU  640P  DFW  742P        0    M80            F  Y  B  M  Q
AA 340  HOU  718P  DFW  825P        0    S80            F  Y  B  H  M
DL1246  HOU  840P  DFW  944P        0    73S           FN YN BN MN QN
AA1080  HOU  935P  DFW 1036P        0    72S           FN YN  B  H  M
TW 805  HOU  955P  DFW 1055P        0    72S           FN YN  B  Q  M
WN 682  HOU  825A  DTW  235P        3    73S            Y  K  L  B  Q
NW 270  HOU  910A  DTW 1243P  B     0    D9S           FN YN BN  M  H
WN 304  HOU 1005A  DTW  425P        3    733            Y  K  L  B  Q
NW 272  HOU 1225P  DTW  400P  L     0    D9S           FN YN BN  M  H
WN1615  HOU  230P  DTW  935P        4    733            Y  K  L  B  Q
NW 274  HOU  415P  DTW  751P  D     0    D9S            F  Y  B  M  H
TW 130  HOU 1230P  JFK  450P  L     0    72S            F  Y  B  Q  M
WN 631  HOU  740A  LAX 1015A        2    73S            Y  K  L  B  Q
WN 659  HOU  305P  LAX  510P        1    735            Y  K  L  B  Q
WN 709  HOU  410P  LAX  625P        1    73S            Y  K  L  B  Q
WN 590  HOU  605P  LAX  825P        1    733            Y  K  L  B  Q
WN 453  HOU  840P  LAX 1045P        1    73S            Y  K  L  B  Q
AA1047  HOU  700A  MIA 1030A  B     0    72S            F  Y  B  H  M
AA 386  HOU 1155A  MIA  328P  L     0    72S            F  Y  B  H  M
AA 979  HOU  545P  MIA  917P  D     0    72S            F  Y  B  H  M
NW1029  HOU  800A  MSP 1042A  B     0    D9S            F  Y  B  M  H
NW 472  HOU 1140A  MSP  529P  S     2    D9S            F  Y  B  M  H
NW1023  HOU  330P  MSP  616P  S     0    D9S            F  Y  B  M  H
WN 475  HOU  630A  MSY  730A        0    735            Y  K  L  B  Q
WN 435  HOU  650A  MSY  745A        0    73S            Y  K  L  B  Q
4X 371  HOU  835A  MSY 1030A        1    BEC            Y  B  Q  M
WN 103  HOU  845A  MSY  940A        0    733            Y  K  L  B  Q
4X 214  HOU  900A  MSY 1240P        3    BEC            Y  B  Q  M
WN   7  HOU  940A  MSY 1040A        0    73S            Y  K  L  B  Q
WN 567  HOU 1030A  MSY 1125A        0    73S            Y  K  L  B  Q
WN 609  HOU 1105A  MSY 1205P        0    733            Y  K  L  B  Q
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WN 123  HOU 1155A  MSY 1255P        0    73S            Y  K  L  B  Q
WN  21  HOU 1240P  MSY  140P        0    73S            Y  K  L  B  Q
4X 373  HOU  115P  MSY  310P        1    BEC            Y  B  Q  M
WN 308  HOU  120P  MSY  220P        0    73S            Y  K  L  B  Q
WN1615  HOU  230P  MSY  330P        0    733            Y  K  L  B  Q
4X 216  HOU  230P  MSY  610P        3    BEC            Y  B  Q
WN 625  HOU  340P  MSY  440P        0    73S            Y  K  L  B  Q
WN  37  HOU  455P  MSY  600P        0    735            Y  K  L  B  Q
WN 462  HOU  615P  MSY  715P        0    73S            Y  K  L  B  Q
4X 375  HOU  620P  MSY  815P        1    BEC            Y  B  Q  M
WN  49  HOU  740P  MSY  840P        0    733            Y  K  L  B  Q
WN  53  HOU  845P  MSY  945P        0    73S            Y  K  L  B  Q
WN  57  HOU  940P  MSY 1035P        0    733            Y  K  L  B  Q
UA1242  HOU  800A  ORD 1024A  B     0    73S            F  Y  B  M  Q
NW 472  HOU 1140A  ORD  320P  S     1    D9S            F  Y  B  M  H
UA1482  HOU  142P  ORD  415P  S     0    733            F  Y  B  M  Q
UA1440  HOU  440P  ORD  715P  D     0    737            F  Y  B  M  Q
DL 690  HOU  450P  ORD  914P  D     1    D9S            F  Y  B  M  Q
TW 344  HOU  754A  PHL  151P  BS    1    72S            F  Y  B  Q  M
DL 842  HOU  305P  PHL  858P  D     1    M80            F  Y  B  M  Q
WN 760  HOU  600A  PHX  915A        3    735            Y  K  L  B  Q
WN 949  HOU  805A  PHX  940A        0    733            Y  K  L  B  Q
WN 588  HOU  845A  PHX 1020A        0    733            Y  K  L  B  Q
WN 866  HOU  910A  PHX  100P        3    733            Y  K  L  B  Q
WN1741  HOU 1045A  PHX  100P        1    735            Y  K  L  B  Q
WN 736  HOU 1110A  PHX  205P        2    733            Y  K  L  B  Q
WN 911  HOU 1200N  PHX  250P        2    73S            Y  K  L  B  Q
WN 421  HOU 1215P  PHX  200P        0    73S            Y  K  L  B  Q
WN 721  HOU  235P  PHX  455P        1    73S            Y  K  L  B  Q
WN 709  HOU  410P  PHX  545P        0    73S            Y  K  L  B  Q
WN1595  HOU  500P  PHX  720P        1    733            Y  K  L  B  Q
WN 453  HOU  840P  PHX 1015P        0    73S            Y  K  L  B  Q
TW 598  HOU 1030A  RDU  406P  #     1    D9S            F  Y  Q  V  K
WN 592  HOU  650A  SFO  950A        1    733            Y  K  L  B  Q
WN 588  HOU  845A  SFO 1145A        1    733            Y  K  L  B  Q
WN 653  HOU 1230P  SFO  320P        1    735            Y  K  L  B  Q
WN 721  HOU  235P  SFO  715P        3    73S            Y  K  L  B  Q
WN 353  HOU  855P  SFO 1130P        1    73S            Y  K  L  B  Q
WN 761  HOU  650A  STL  845A        0    735            Y  K  L  B  Q
TW 344  HOU  754A  STL  948A  B     0    72S            F  Y  B  Q  M
WN 770  HOU  835A  STL 1030A        0    73S            Y  K  L  B  Q
WN 515  HOU  925A  STL 1120A        0    733            Y  K  L  B  Q
TW 598  HOU 1030A  STL 1230P  S     0    D9S            F  Y  Q  V  K
WN 619  HOU 1145A  STL  135P        0    73S            Y  K  L  B  Q
TW 306  HOU  225P  STL  419P        0    72S            F  Y  B  Q  M
WN1633  HOU  405P  STL  600P        0    733            Y  K  L  B  Q
TW 512  HOU  528P  STL  727P  D     0    D9S            F  Y  B  Q  M
WN 942  HOU  630P  STL  825P        0    735            Y  K  L  B  Q
WN 728  HOU  915P  STL 1105P        0    73S            Y  K  L  B  Q
TW 845  JFK  335P  ABQ  825P  SD    1    L10            F  C  Y  B  Q
DL1917  JFK  455P  ATL  716P  D     0    310            F  C  Y  B  M
AA 715  JFK  615P  ATL 1028P  D     1    72S            F  Y  M  B  H
TW 831  JFK  730P  ATL 1012P  D     0    72S            F  C  Y  B  Q
TW 717  JFK  420P  BNA  707P  S     1    M80            F  Y  B  Q  M
TW  44  JFK  650A  BOS  754A        0    L10            F  C  Y  B  Q
TW 712  JFK  405P  BOS  517P        0    72S            F  Y  B  Q  M
DL1866  JFK  525P  BOS  647P        0    72S            F  Y  B  M  Q
NW  34  JFK  600P  BOS  719P        0    D9S            F  Y  B  M  H
TW 634  JFK  905P  BOS 1009P        0    M80            F  Y  B  Q  M
TW 391  JFK 1114A  DCA 1230P        0    M80            F  Y  B  Q  M
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TW 703  JFK  430P  DCA  554P        0    M80            F  Y  B  Q  M
DL1863  JFK  530P  DCA  659P  S     0    72S            F  Y  B  M  Q
TW 873  JFK  535P  DCA  703P        0    M80            F  Y  B  Q  M
TW 743  JFK  550P  DEN  839P  D     0    M80            F  Y  B  Q  M
DL1871  JFK  545P  DFW  843P  D     0    72S            F  Y  B  M  Q
AA1387  JFK  559P  DFW  912P  D     0    72S            F  Y  B  H  M
TW 805  JFK  615P  DFW 1055P  D     1    72S            Y  B  Q  M  V
TW 817  JFK  559P  DTW  809P  D     0    72S            F  Y  B  Q  M
TW 805  JFK  615P  HOU  929P  D     0    72S            Y  B  Q  M  V
UA   7  JFK  800A  LAX 1049A  BS    0    D10            F  Y  B  M  Q
TW  15  JFK  855A  LAX 1149A  B     0    L10            F  C  Y  B  Q
AA   1  JFK  900A  LAX 1139A  R     0    D10            F  C  Y  B  H
UA  17  JFK 1000A  LAX  117P  L     0    767            F  Y  B  M  Q
AA  19  JFK 1030A  LAX  114P  L     0    D10            F  Y  B  H  M
MG 300  JFK 1030A  LAX  120P  L     0    D8S            F  Y  C  B  M
UA   5  JFK 1150A  LAX  254P  L     0    767            F  Y  B  M  Q
AA   3  JFK 1200N  LAX  232P  L     0    D10            P  C  Y  B  H
TW 815  JFK  415P  LAX  722P  D     0    747            F  C  Y  B  Q
AA   9  JFK  430P  LAX  722P  D     0    D10            P  Y  B  H  M
DL  35  JFK  535P  LAX  843P  D     0    310            C  Y  B  M  Q
AA  21  JFK  600P  LAX  855P  D     0    D10            P  C  Y  B  H
QF 302  JFK  600P  LAX  855P  D     0    D10            F  J  Y
TW 849  JFK  600P  LAX  911P  D     0    L10            F  C  Y  B  Q
UA  15  JFK  620P  LAX  938P  D     0    763            F  C  Y  B  M
MG 500  JFK  640P  LAX  940P  D     0    D8S            F  Y  C  B  M
AA  29  JFK  730P  LAX 1021P  D     0    D10            F  Y  B  H  M
TW   3  JFK  759P  LAX 1112P  D     0    L10            F  C  Y  B  Q
PA 403  JFK  715A  MIA 1020A  B     0    72S            F  Y  B  M  Q
AA1291  JFK  715A  MIA 1005A  R     0    AB3            F  Y  H  B  M
AA 903  JFK 1229P  MIA  327P  L     0    AB3            F  Y  H  B  M
PA 427  JFK  245P  MIA  557P  S     0    72S            F  Y  B  M  Q
AA  99  JFK  544P  MIA  900P  D     0    AB3            F  Y  H  B  M
PA2453  JFK  545P  MIA  906P  D     0    AB3            F  Y  B  M  Q
DL1883  JFK  545P  MIA  858P  D     0    72S            F  Y  B  M  Q
TW   5  JFK  630P  MIA  941P  D     0    72S            F  Y  M  T
FF  37  JFK  845P  MIA 1140P        0    747            C  Q
TW 401  JFK  625P  MSP 1004P  D     1    72S            F  Y  B  Q  M
TW 881  JFK  550P  MSY  822P  D     0    72S            F  Y  B  Q  M
TW 829  JFK  615P  ORD  810P  D     0    72S            F  C  Y  B  Q
UA 903  JFK  725P  ORD  903P  D     0    727            F  C  Y  B  M
TW  97  JFK  214P  PHL  304P        0    767            F  C  Y  B  Q
TW 711  JFK  550P  PHL  654P        0    72S            F  Y  B  Q  M
HP 705  JFK  505A  PHX  842A  B     0    320           FN YN BN  H KN
HP   9  JFK  950A  PHX  128P  L     0    757            F  Y  B  H  K
HP   7  JFK  520P  PHX  857P  D     0    757            F  Y  B  H  K
TW 731  JFK  615P  PHX  947P  D     0    L10            F  C  Y  B  Q
HP 711  JFK  855P  PHX  230A  S     1    757           FN YN BN  H KN
AA1161  JFK  740A  RDU  921A  B     0    72S            F  Y  B  M  H
US1651  JFK  600P  RDU  858P  #     1    734            F  Y  B  H  Q
AA 715  JFK  615P  RDU  814P  D     0    72S            F  Y  B  M  H
UA  37  JFK  900A  SEA 1209P  BS    0    767            Y  B  M  Q  H
TW 701  JFK  610P  SEA  920P  D     0    L10            F  C  Y  B  Q
AA  59  JFK  800A  SFO 1133A  R     0    767            F  Y  B  H  M
UA  23  JFK  815A  SFO 1140A  BS    0    767            F  Y  B  M  Q
TW  45  JFK  850A  SFO 1208P  B     0    L10            F  C  Y  B  Q
UA  25  JFK 1000A  SFO  127P  L     0    767            F  Y  B  M  Q
AA  17  JFK 1200N  SFO  321P  L     0    767            F  Y  B  H  M
DL 111  JFK  540P  SFO  852P  D     0    310            F  C  Y  B  M
AA  65  JFK  545P  SFO  920P  D     0    767            F  C  Y  B  H
UA  29  JFK  545P  SFO  902P  D     0    D10            F  Y  B  M  Q
TW 843  JFK  620P  SFO  948P  D     0    L10            F  C  Y  B  Q
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AA  15  JFK  915P  SFO 1225A  S     0    D10           FN  Y  B  H  M
TW 203  JFK  627A  STL  817A  B     0    M80            F  Y  B  Q  M
TW  25  JFK 1105A  STL  217P  #     1    72S            F  Y  B  Q  M
TW 391  JFK 1114A  STL  237P  #     1    M80            F  Y  B  Q  M
TW  97  JFK  214P  STL  529P  S     1    767            F  C  Y  B  Q
TW 845  JFK  335P  STL  527P  S     0    L10            F  C  Y  B  Q
TW 717  JFK  420P  STL  840P  S     2    M80            F  Y  B  Q  M
TW 703  JFK  430P  STL  827P  D     1    M80            F  Y  B  Q  M
TW 711  JFK  550P  STL  845P  D     1    72S            F  Y  B  Q  M
TW  77  JFK  559P  STL  759P  D     0    72S            Y  B  Q  M  V
TW 305  JFK  550P  TPA  852P  D     0    72S            F  Y  B  Q  M
WN 535  LAX  810A  ABQ 1055A        0    73S            Y  K  L  B  Q
WN 533  LAX 1110A  ABQ  150P        0    73S            Y  K  L  B  Q
WN 537  LAX  215P  ABQ  455P        0    73S            Y  K  L  B  Q
WN 539  LAX  535P  ABQ  820P        0    73S            Y  K  L  B  Q
WN 801  LAX  755P  ABQ 1130P        1    73S            Y  K  L  B  Q
WN1476  LAX  800P  ABQ 1045P        0    733            Y  K  L  B  Q
DL 182  LAX 1205A  ATL  709A  S     0    763           FN YN BN MN QN
DL 264  LAX  700A  ATL  216P  B     0    767            F  Y  B  M  Q
DL1434  LAX  835A  ATL  726P  #     2    72S            F  Y  B  M  Q
DL1420  LAX  845A  ATL  356P  B     0    L10            F  Y  B  M  Q
DL 178  LAX 1040A  ATL  548P  L     0    757            F  Y  B  M  Q
HP3008  LAX 1205P  ATL  841P  L     1    320            F  Y  B  H  K
DL 146  LAX 1235P  ATL  750P  L     0    763            F  Y  B  M  Q
AA 380  LAX  311P  ATL 1234A  D     1    S80            F  Y  B  H  M
DL 130  LAX  315P  ATL 1009P  D     0    L10            F  Y  B  M  Q
DL 188  LAX 1055P  ATL  547A  S     0    L10           FN YN BN MN QN
AA 350  LAX  150A  BNA  749A  S     0    757           FN YN  B  M  H
AA1192  LAX  700A  BNA  100P  R     0    757            F YN  B  M  H
WN 603  LAX  700A  BNA  155P        1    733            Y  K  L  B  Q
AA1138  LAX 1235P  BNA  641P  L     0    757            F  Y  B  M  H
WN 520  LAX  200P  BNA  850P        1    733            Y  K  L  B  Q
DL 996  LAX 1230A  BOS 1146A  B     2    72S            F  Y  B  M  Q
NW 932  LAX  215A  BOS 1215P  S     1    320            F  Y  B  M  H
DL1776  LAX  600A  BOS  405P  BL    1    757            F  Y  B  M  Q
UA 100  LAX  700A  BOS  520P  BS    1    D10            F  Y  B  M  Q
NW 330  LAX  710A  BOS  503P  B     1    320            F  Y  B  M  H
AA  94  LAX  800A  BOS  425P  R     0    D10            F  Y  B  H  M
UA 174  LAX  800A  BOS  421P  BS    0    767            F  Y  B  M  Q
DL1420  LAX  845A  BOS  740P  BD    1    L10            F  Y  B  M  Q
NW  42  LAX 1035A  BOS  703P  LS    0    757            F  C  Y  B  M
UA 354  LAX 1122A  BOS  918P  LD    1    757            Y  B  M  Q  H
NW 554  LAX  100P  BOS 1107P  L     1    757            F  Y  B  M  H
TW 184  LAX  120P  BOS 1125P  LS    1    L10            F  C  Y  B  Q
QF 307  LAX  200P  BOS 1016P  L     0    D10            F  J  Y
AA  12  LAX  200P  BOS 1016P  L     0    D10            F  Y  B  H  M
UA 890  LAX  210P  BOS 1029P  L     0    767            F  C  Y  B  M
US 608  LAX  855P  BOS  817A  S     2    733           YN BN HN QN MN
DL1026  LAX 1100P  BOS  845A  SB    1    757           F@ Y@ B@ M@ Q@
AA 350  LAX  150A  DCA 1146A  S     1    757           FN YN  B  H  Q
NW 302  LAX  700A  DCA  425P  BL    1    757            F  Y  B  M  H
AA 184  LAX  745A  DCA  533P  #     1    S80            F  Y  B  H  Q
US1492  LAX  845A  DCA  546P  B     1    733            F  Y  B  H  Q
DL 178  LAX 1040A  DCA  835P  LD    1    757            F  Y  B  M  Q
US  34  LAX 1145A  DCA  900P  LD    1    734            F  Y  B  H  Q
NW1210  LAX 1225P  DCA  935P  LD    1    72S            F  Y  B  M  H
US 626  LAX 1045P  DCA  809A  S     1    734           FN YN BN HN QN
NW 338  LAX 1100P  DCA  846A  SB    1    757            F  Y  B  M  H
CO1218  LAX  620A  DEN  943A  B     0    AB3            A  Y  Q  H  K
DL1522  LAX  620A  DEN  140P  S     3    72S            F  Y  B  M  Q
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UA 270  LAX  630A  DEN  940A  B     0    D10            F  Y  B  M  Q
UA 422  LAX  805A  DEN 1131A  B     0    737            F  Y  B  M  Q
CO1040  LAX  840A  DEN 1204P  B     0    AB3            A  Y  Q  H  K
UA 354  LAX 1122A  DEN  235P  L     0    757            Y  B  M  Q  H
CO 272  LAX 1215P  DEN  330P  L     0    733            Y  Q  H  K  B
UA 238  LAX  240P  DEN  552P  S     0    D10            F  Y  B  M  Q
CO 598  LAX  330P  DEN  645P  S     0    M80            A  Y  Q  H  K
CO 202  LAX  450P  DEN  800P  D     0    M80            A  Y  Q  H  K
UA 242  LAX  505P  DEN  810P  D     0    72S            F  Y  B  M  Q
UA 646  LAX  605P  DEN  919P  D     0    72S            F  Y  B  M  Q
UA 526  LAX  722P  DEN 1034P  D     0    735            F  Y  B  M  Q
DL 996  LAX 1230A  DFW  514A        0    72S            F  Y  B  M  Q
AA 814  LAX 1240A  DFW  535A        0    D10           FN YN  B  H  M
AA 556  LAX  210A  DFW  708A        0    S80           FN YN  B  H  M
DL1566  LAX  700A  DFW 1154A  B     0    L10            F  Y  B  M  Q
AA 606  LAX  700A  DFW 1157A  R     0    D10            F  Y  B  H  M
AA1502  LAX  825A  DFW  127P  R     0    D10            F  Y  B  H  M
AA1562  LAX  950A  DFW  251P  L     0    S80            F  Y  B  H  M
DL1684  LAX  955A  DFW  354P  SL    1    73S            F  Y  B  M  Q
DL 748  LAX 1040A  DFW  328P  L     0    L10            F  Y  B  M  Q
AA  48  LAX 1116A  DFW  417P  L     0    D10            F  Y  B  H  M
AA 480  LAX 1235P  DFW  540P  L     0    S80            F  Y  B  H  M
DL 252  LAX  135P  DFW  748P  D     1    757            F  Y  B  M  Q
AA 720  LAX  145P  DFW  653P  L     0    D10            F  Y  B  H  M
DL 720  LAX  145P  DFW  734P  D     1    72S            F  Y  B  M  Q
DL 476  LAX  215P  DFW  718P  L     0    763            F  Y  B  M  Q
AA 428  LAX  340P  DFW  835P  D     0    D10            F  Y  B  H  M
DL1442  LAX  340P  DFW  946P  D     1    733            F  Y  B  M  Q
AA 306  LAX  525P  DFW 1016P  D     0    D10            F  Y  B  H  M
DL 138  LAX  555P  DFW 1040P  D     0    L10            F  Y  B  M  Q
AA1226  LAX  750P  DFW 1240A  #     0    S80            F  Y  B  H  M
NW 932  LAX  215A  DTW  936A  S     0    320            F  Y  B  M  H
NW 330  LAX  710A  DTW  228P  B     0    320           FN YN BN  M  H
NW 332  LAX  820A  DTW  340P  B     0    D10            F  Y  B  M  H
NW  50  LAX 1230P  DTW  745P  L     0    D10            F  C  Y  B  M
NW 308  LAX  230P  DTW 1129P  D     1    D10            F  Y  B  M  H
NW 338  LAX 1100P  DTW  610A  S     0    757            F  Y  B  M  H
WN 123  LAX  530A  HOU 1135A        1    73S            Y  K  L  B  Q
WN 845  LAX  735A  HOU  200P        2    73S            Y  K  L  B  Q
WN 611  LAX  800A  HOU  210P        1    733            Y  K  L  B  Q
WN 410  LAX 1205P  HOU  645P        2    733            Y  K  L  B  Q
WN 967  LAX  125P  HOU  715P        1    733            Y  K  L  B  Q
WN 863  LAX  430P  HOU 1015P        1    733            Y  K  L  B  Q
WN 539  LAX  535P  HOU 1135P        1    73S            Y  K  L  B  Q
TW 840  LAX  800A  JFK  414P  B     0    747            F  C  Y  B  Q
DL  34  LAX  805A  JFK  359P  B     0    310            C  Y  B  M  Q
AA   2  LAX  830A  JFK  446P  R     0    D10            F  C  Y  B  H
UA   6  LAX  840A  JFK  457P  BS    0    763            F  C  Y  B  M
MG 200  LAX  845A  JFK  500P  B     0    D8S            F  Y  C  B  M
TW 814  LAX  930A  JFK  542P  B     0    L10            F  C  Y  B  Q
AA  40  LAX 1000A  JFK  601P  L     0    D10            F  Y  B  H  M
AA   4  LAX 1200N  JFK  759P  L     0    D10            P  Y  B  H  M
UA   8  LAX 1230P  JFK  839P  L     0    767            F  Y  B  M  Q
QF 301  LAX  100P  JFK  900P  L     0    D10            F  J  Y
AA  32  LAX  100P  JFK  900P  L     0    D10            P  C  Y  B  H
UA  58  LAX  300P  JFK 1106P  D     0    767            F  Y  B  M  Q
MG 600  LAX  330P  JFK 1145P  D     0    D8S            F  Y  C  B  M
AA  22  LAX  330P  JFK 1123P  D     0    D10            P  C  Y  B  H
TW   8  LAX  400P  JFK 1155P  D     0    L10            F  C  Y  B  Q
UA  28  LAX  955P  JFK  549A  S     0    D10            F  Y  B  M  Q
TW 702  LAX 1000P  JFK  600A  S     0    L10            F  C  Y  B  Q
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AA  10  LAX 1000P  JFK  556A  S     0    D10            F  Y  B  H  M
AA 400  LAX  730A  MIA  330P  R     0    757            Y  B  H  M  Q
PA 445  LAX  915A  MIA  519P  B     0    AB3            F  Y  B  M  Q
PA 441  LAX 1230P  MIA  806P  L     0    747            F  C  Y  B  M
AA1440  LAX  110P  MIA  915P  L     0    757            Y  B  H  M  Q
AA 200  LAX 1040P  MIA  625A  S     0    D10           FN YN  B  H
PA 447  LAX 1045P  MIA  631A  S     0    AB3            F  Y  B  M  Q
NW 300  LAX  130A  MSP  655A  S     0    D10           FN YN BN  M  H
NW 302  LAX  700A  MSP 1225P  B     0    757            F  Y  B  M  H
NW 304  LAX  810A  MSP  139P  B     0    72S            F  Y  B  M  H
NW  44  LAX 1125A  MSP  456P  L     0    D10            C  Y  B  M  H
NW 308  LAX  230P  MSP  750P  D     0    D10            F  Y  B  M  H
NW 310  LAX  415P  MSP  936P  D     0    757           FN YN BN  M  H
WN 123  LAX  530A  MSY 1255P        2    73S            Y  K  L  B  Q
CO 230  LAX  715A  MSY  227P  B     1    AB3            A  Y  Q  H  K
DL 170  LAX 1215P  MSY  553P  L     0    72S            F  Y  B  M  Q
UA 334  LAX  140P  MSY  709P  L     0    72S            F  Y  B  M  Q
AA1456  LAX  630A  ORD 1220P  #     0    D10            F  Y  B  H  M
UA 100  LAX  700A  ORD 1257P  B     0    D10            F  Y  B  M  Q
AA 184  LAX  745A  ORD  147P  #     0    S80            F  Y  B  H  M
UA 708  LAX  800A  ORD  201P  B     0    767            F  Y  B  M  Q
AA1502  LAX  825A  ORD  434P  #     1    D10            F  Y  B  H  M
CO 174  LAX  850A  ORD  522P  BS    1    733            Y  H  K  B  V
UA 106  LAX  900A  ORD  259P  B     0    763            F  C  Y  B  M
AA  84  LAX  930A  ORD  320P  R     0    D10            F  Y  B  H  M
UA 942  LAX 1000A  ORD  353P  L     0    D10            F  C  Y  B  M
AA1200  LAX 1009A  ORD  414P  L     0    S80            F  Y  B  H  M
UA 816  LAX 1100A  ORD  450P  L     0    72S            F  C  Y  B  M
UA 152  LAX 1200N  ORD  556P  L     0    72S            F  Y  B  M  Q
QF 305  LAX 1245P  ORD  642P  L     0    D10            F  J  Y
AA  88  LAX 1245P  ORD  642P  L     0    D10            F  Y  B  H  M
UA 842  LAX  100P  ORD  700P  L     0    D10            F  Y  B  M  Q
UA 120  LAX  200P  ORD  752P  D     0    72S            F  Y  B  M  Q
UA 238  LAX  240P  ORD 1004P  SD    1    D10            F  Y  B  M  Q
UA 104  LAX  300P  ORD  847P  D     0    72S            F  Y  B  M  Q
AA 380  LAX  311P  ORD  915P  D     0    S80            F  Y  B  H  M
CO 598  LAX  330P  ORD 1046P  S     1    M80            A  Y  Q  H  K
AA1292  LAX  400P  ORD  957P  D     0    S80            F  Y  B  H  M
UA 502  LAX  400P  ORD  941P  D     0    72S            F  Y  B  M  Q
UA 848  LAX  500P  ORD 1041P  D     0    D10            F  Y  B  M  Q
UA 242  LAX  505P  ORD 1157P  #     1    72S            F  Y  B  M  Q
UA 202  LAX  600P  ORD 1144P  D     0    757            F  Y  B  M  Q
UA 118  LAX 1130P  ORD  508A  #     0    D10           FN YN  B  M  Q
AA 112  LAX 1144P  ORD  533A  S     0    D10            F  Y  B  H  M
UA 270  LAX  630A  PHL  356P  BL    1    D10            F  Y  B  M  Q
US1060  LAX  745A  PHL  331P  B     0    767            F  Y  B  H  Q
UA  48  LAX  745A  PHL  339P  BS    0    757            F  Y  B  M  Q
CO1502  LAX 1005A  PHL  734P  #     1    733            Y  Q  H  K  B
DL 252  LAX  135P  PHL 1245A  DS    2    757           F@ Y@ B@ M@ Q@
UA  98  LAX 1045P  PHL  632A  S     0    757           FN YN  B  M  Q
WN 123  LAX  530A  PHX  740A        0    73S            Y  K  L  B  Q
HP1404  LAX  600A  PHX  813A        0    733            Y  B  H  K  Q
WN 603  LAX  700A  PHX  910A        0    733            Y  K  L  B  Q
DL1196  LAX  705A  PHX  917A  #     0    73S            F  Y  B  M  Q
HP 252  LAX  735A  PHX  950A        0    73S            Y  B  H  K  Q
WN 611  LAX  800A  PHX 1015A        0    733            Y  K  L  B  Q
WN 623  LAX  825A  PHX 1040A        0    733            Y  K  L  B  Q
HP1208  LAX  850A  PHX 1105A        0    73S            Y  B  H  K  Q
WN 617  LAX  905A  PHX 1115A        0    733            Y  K  L  B  Q
WN 924  LAX 1015A  PHX 1225P        0    733            Y  K  L  B  Q
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HP 425  LAX 1015A  PHX 1230P        0    73S            Y  B  H  K  Q
WN 952  LAX 1115A  PHX  125P        0    73S            Y  K  L  B  Q
HP1207  LAX 1125A  PHX  140P        0    320            F  Y  B  H  K
WN 410  LAX 1205P  PHX  215P        0    733            Y  K  L  B  Q
HP 223  LAX 1250P  PHX  305P        0    73S            Y  B  H  Q  V
WN 504  LAX 1255P  PHX  310P        0    73S            Y  K  L  B  Q
DL 252  LAX  135P  PHX  353P        0    757            F  Y  B  M  Q
WN 520  LAX  200P  PHX  410P        0    733            Y  K  L  B  Q
WN 360  LAX  230P  PHX  430P        0    735            Y  K  L  B  Q
WN 871  LAX  310P  PHX  520P        0    73S            Y  K  L  B  Q
HP 892  LAX  320P  PHX  535P        0    73S            Y  H  Q
WN 752  LAX  440P  PHX  650P        0    73S            Y  K  L  B  Q
WN 719  LAX  530P  PHX  740P        0    735            Y  K  L  B  Q
DL1710  LAX  545P  PHX  756P  S     0    72S            F  Y  B  M  Q
HP 220  LAX  545P  PHX  800P        0    73S            Y  H  Q
WN 661  LAX  550P  PHX  800P        0    735            Y  K  L  B  Q
WN 725  LAX  615P  PHX  825P        0    73S            Y  K  L  B  Q
WN 970  LAX  645P  PHX  855P        0    73S            Y  K  L  B  Q
WN 797  LAX  720P  PHX  930P        0    73S            Y  K  L  B  Q
WN 801  LAX  755P  PHX 1005P        0    73S            Y  K  L  B  Q
HP 458  LAX  820P  PHX 1035P        0    73S            Y  H  Q  V
WN 217  LAX  825P  PHX 1035P        0    733            Y  K  L  B  Q
WN 252  LAX  855P  PHX 1100P        0    733            Y  K  L  B  Q
WN 305  LAX  945P  PHX 1155P        0    73S            Y  K  L  B  Q
DL1612  LAX  959P  PHX 1219A        0    72S           FN YN BN MN QN
WN 300  LAX 1010P  PHX 1215A        0    73S            Y  K  L  B  Q
WN 306  LAX 1030P  PHX 1250A        0    733            Y  K  L  B  Q
DL1719  LAX  610A  SEA  841A  B     0    757            F  Y  B  M  Q
UA1902  LAX  645A  SEA  928A  B     0    735            F  Y  B  M  Q
AS  91  LAX  700A  SEA  935A  B     0    72S            F  Y  B  M  H
NW1282  LAX  740A  SEA 1020A  B     0    72S            F  Y  B  M  H
AS 261  LAX  800A  SEA 1040A  B     0    M80            F  Y  B  M  H
UA1906  LAX  845A  SEA 1137A  B     0    735            F  Y  B  M  Q
DL1443  LAX  855A  SEA 1137A  B     0    72S            F  Y  B  M  Q
AS 203  LAX  915A  SEA 1150A  B     0    M80            F  Y  B  M  H
UA1908  LAX  945A  SEA 1218P  S     0    735            F  Y  B  M  Q
UA1108  LAX 1100A  SEA  336P  S     1    735            F  Y  B  M  Q
UA1912  LAX 1145A  SEA  228P  L     0    735            F  Y  B  M  Q
AS 223  LAX 1200N  SEA  240P  L     0    M80            F  Y  B  M  H
UA1764  LAX 1245P  SEA  325P  L     0    735            F  Y  B  M  Q
AS 213  LAX  220P  SEA  455P  L     0    M80            F  Y  B  M  H
NW 190  LAX  300P  SEA  540P  S     0    72S            F  Y  B  M  H
UA1716  LAX  330P  SEA  732P  SD    1    73S            F  Y  B  M  Q
UA1922  LAX  345P  SEA  626P  D     0    735            F  Y  B  M  Q
AS 239  LAX  410P  SEA  640P  D     0    72S            F  Y  B  M  H
DL 173  LAX  455P  SEA  723P  D     0    72S            F  Y  B  M  Q
AS 263  LAX  520P  SEA  800P  D     0    M80            F  Y  B  M  H
UA1926  LAX  545P  SEA  828P  D     0    735            F  Y  B  M  Q
DL1578  LAX  555P  SEA  821P  D     0    L10            F  Y  B  M  Q
AS  25  LAX  600P  SEA  840P  D     0    M80            F  Y  B  M  H
NW1283  LAX  615P  SEA  854P  D     0    320            F  Y  B  M  H
UA1500  LAX  715P  SEA  958P  D     0    735            F  Y  B  M  Q
AS  27  LAX  810P  SEA 1050P  S     0    M80            F  Y  B  M  H
HP 347  LAX  900P  SEA  150A        1    733           YN BN  H KN QN
DL 171  LAX  959P  SEA 1232A  #     0    757            F  Y  B  M  Q
DL 143  LAX 1250A  SFO  159A        0    757           FN YN BN MN QN
DL 644  LAX  600A  SFO  706A  S     0    73S            F  Y  B  M  Q
UA1730  LAX  630A  SFO  747A  S     0    737            F  Y  B  M  Q
UA1100  LAX  700A  SFO  825A  S     0    72S            F  Y  B  M  Q
US2246  LAX  700A  SFO  813A  S     0    733            F  Y  B  H  Q
DL 744  LAX  700A  SFO  817A  S     0    73S            F  Y  B  M  Q
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UA1700  LAX  730A  SFO  857A  S     0    73S            F  Y  B  M  Q
TW 492  LAX  745A  SFO  907A        0    L10            F  C  Y  B  Q
UA1102  LAX  800A  SFO  927A  S     0    D10            F  Y  B  M  Q
US 392  LAX  800A  SFO  913A  S     0    733            F
DL 856  LAX  800A  SFO  917A  S     0    73S            F  Y  B  M  Q
UA1702  LAX  830A  SFO  955A  S     0    72S            F  Y  B  M  Q
UA1104  LAX  900A  SFO 1027A  S     0    73S            F  Y  B  M  Q
US 342  LAX  900A  SFO 1013A  S     0    733            F  Y  B  H  M
DL 944  LAX  900A  SFO 1018A  S     0    73S            F  Y  B  M  Q
UA 809  LAX  930A  SFO 1057A  S     0    737            Y  B  M  Q  H
UA 845  LAX 1000A  SFO 1127A  S     0    735            Y  B  M  Q  H
DL1000  LAX 1000A  SFO 1114A  S     0    73S            F  Y  B  M  Q
US 262  LAX 1000A  SFO 1118A  #     0    733            F  Y  B  H  Q
UA 805  LAX 1030A  SFO 1155A  S     0    73S            Y  B  M  Q  H
US 203  LAX 1100A  SFO 1213P  S     0    733            F  Y  B  H  M
DL1801  LAX 1100A  SFO 1218P  S     0    73S            F  Y  B  M  Q
UA1108  LAX 1100A  SFO 1225P  S     0    735            F  Y  B  M  Q
UA1708  LAX 1130A  SFO  100P  S     0    73S            F  Y  B  M  Q
DL1216  LAX 1200N  SFO  115P  S     0    73S            F  Y  B  M  Q
US 144  LAX 1200N  SFO  116P  S     0    733            F  Y  B  H  Q
UA1110  LAX 1200N  SFO  130P  S     0    73S            F  Y  B  M  Q
UA1710  LAX 1230P  SFO  155P  S     0    73S            F  Y  B  M  Q
US  53  LAX  100P  SFO  213P  S     0    734            F  Y  B  H  Q
DL1020  LAX  100P  SFO  217P  S     0    73S            F  Y  B  M  Q
UA1112  LAX  100P  SFO  225P  S     0    73S            F  Y  B  M  Q
UA1712  LAX  130P  SFO  252P  S     0    733            F  Y  B  M  Q
US 199  LAX  200P  SFO  313P  S     0    733            F  Y  B  H  M
DL 274  LAX  200P  SFO  315P  S     0    73S            F  Y  B  M  Q
UA1114  LAX  200P  SFO  322P  S     0    733            F  Y  B  M  Q
UA1714  LAX  230P  SFO  352P  S     0    73S            F  Y  B  M  Q
DL 684  LAX  300P  SFO  411P  S     0    73S            F  Y  B  M  Q
US2198  LAX  300P  SFO  413P  S     0    733            F  Y  B  H  Q
UA 937  LAX  300P  SFO  422P  S     0    735            F  Y  B  M  Q
UA1716  LAX  330P  SFO  449P  S     0    73S            F  Y  B  M  Q
DL 442  LAX  400P  SFO  512P  S     0    73S            F  Y  B  M  Q
US 890  LAX  400P  SFO  513P  S     0    733            F  Y  B  H  Q
UA1118  LAX  400P  SFO  519P  S     0    73S            Y  B  M  Q  H
UA1718  LAX  430P  SFO  552P  S     0    735            F  Y  B  M  Q
DL 550  LAX  500P  SFO  612P  S     0    73S            F  Y  B  M  Q
US2136  LAX  500P  SFO  616P  S     0    734            F  Y  B  H  Q
UA1120  LAX  500P  SFO  622P  S     0    733            F  Y  B  M  Q
PA 442  LAX  515P  SFO  640P        0    AB3            F  Y  B  M  Q
UA1720  LAX  530P  SFO  652P  S     0    733            F  Y  B  M  Q
UA1122  LAX  600P  SFO  722P  S     0    735            F  Y  B  M  Q
DL 638  LAX  600P  SFO  715P  S     0    73S            F  Y  B  M  Q
PA 482  LAX  600P  SFO  717P        0    72S            F  Y  B  M  Q
US1014  LAX  600P  SFO  716P  S     0    733            F  Y  B  H  Q
UA1722  LAX  630P  SFO  752P  S     0    737            F  Y  B  M  Q
US 187  LAX  700P  SFO  816P  S     0    734            F  Y  B  H  Q
UA1124  LAX  700P  SFO  824P  S     0    73S            F  Y  B  M  Q
DL 772  LAX  700P  SFO  815P  S     0    73S            F  Y  B  M  H
DL1470  LAX  800P  SFO  917P        0    73S            F  Y  B  M  Q
UA1126  LAX  800P  SFO  924P        0    73S            F  Y  B  M  Q
US1273  LAX  800P  SFO  916P  #     0    733            F  Y  B  H  Q
DL 141  LAX  900P  SFO 1017P        0    757           FN YN BN MN QN
UA1130  LAX  900P  SFO 1016P        0    72S            F  Y  B  M  Q
US1810  LAX  900P  SFO 1016P        0    733           FN YN BN HN QN
PA 448  LAX  930P  SFO 1048P        0    AB3            F  Y  B  M  Q
US1157  LAX 1000P  SFO 1113P        0    733           FN YN BN HN QN
US2141  LAX 1100P  SFO 1213A        0    733           FN YN BN HN QN
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TW  72  LAX 1250A  STL  610A  S     0    L10           FN CN YN  B  Q
HP1404  LAX  600A  STL  108P  S     1    733            Y  B  H  K  Q
TW 756  LAX  700A  STL 1233P  B     0    767            F  C  Y  B  Q
TW 492  LAX  745A  STL  349P  L     1    L10            F  C  Y  B  Q
WN 535  LAX  810A  STL  220P        1    73S            Y  K  L  B  Q
TW  90  LAX  835A  STL  207P  B     0    L10            F  C  Y  B  Q
DL1434  LAX  835A  STL  412P  SL    1    72S            F  Y  B  M  Q
TW 720  LAX 1000A  STL  327P  L     0    747            F  C  Y  B  Q
WN 504  LAX 1255P  STL  815P        2    73S            Y  K  L  B  Q
TW 184  LAX  120P  STL  653P  L     0    L10            F  C  Y  B  Q
TW  30  LAX  220P  STL  802P  L     0    M80          
DL 808  LAX  800A  TPA  337P  B     0    757            F  Y  B
DL 170  LAX 1215P  TPA  843P  LS    1    72S            F  Y  B  M  Q
US 268  LAX 1255P  TPA  824P  L     0    733            F  Y  B  H  Q
US 610  LAX 1120P  TPA  650A  S     0    733           FN YN BN HN QN
CO1707  MIA  745A  ABQ  123P  B     2    733            Y  Q  H  K  B
DL 167  MIA  600A  ATL  741A  B     0    L10           FN YN BN MN QN
DL 194  MIA  715A  ATL  858A  B     0    767            F  Y  B  M  Q
AA 416  MIA  810A  ATL 1012A  B     0    72S            F  Y  B  H  M
DL 464  MIA  910A  ATL 1058A  S     0    757            F  Y  B  M  Q
DL 340  MIA 1050A  ATL 1241P  L     0    757            F  Y  B  M  Q
DL 986  MIA 1245P  ATL  233P  L     0    763            F  Y  B
AA 466  MIA  145P  ATL  350P        0    72S            F  Y  B  H  M
DL 834  MIA  215P  ATL  410P  S     0    763            F
DL1596  MIA  355P  ATL  543P        0    72S            F  Y  B  M
AA1556  MIA  440P  ATL  635P  D     0    72S            F  Y  B  H  M
PA 426  MIA  555P  ATL  758P  D     0    72S            F  Y  B  M  Q
DL 148  MIA  600P  ATL  754P  D     0    757            F  Y  B  M  H
AA 954  MIA  701P  ATL  911P  D     0    727            F  Y  B  H  M
DL 574  MIA  910P  ATL 1051P        0    72S           FN YN BN MN QN
AA1638  MIA  739A  BNA  858A  B     0    72S            F  Y  B  H  M
AA 397  MIA  110P  BNA  229P  #     0    72S            F  Y  B  H
AA 675  MIA  649P  BNA  815P  D     0    72S            F  Y  B  H  M
US1586  MIA  700A  BOS 1123A  #     1    M80            F  Y  B  H  Q
AA1576  MIA  755A  BOS 1111A  R     0    72S            F  Y  B  H  M
CO 356  MIA 1100A  BOS  346P  L     1    72S            A  Y  Q  H  K
NW1828  MIA 1220P  BOS  526P  LS    1    D9S            F  Y  B  M  H
DL 258  MIA 1225P  BOS  325P  L     0    72S            F  Y  B  M  Q
PA 430  MIA  125P  BOS  439P  #     0    72S            F  Y  B  M  Q
US1971  MIA  135P  BOS  827P  SD    3    734            F  Y  B  H  Q
AA1482  MIA  150P  BOS  507P  S     0    72S            F  Y  B  H  M
NW 776  MIA  200P  BOS  635P  D     1    72S            F  Y  B  M  H
DL 492  MIA  430P  BOS  728P  D     0    72S            F  Y  B  M  Q
PA 436  MIA  535P  BOS  856P  D     0    72S            F  Y  B  M  Q
AA 672  MIA  709P  BOS 1025P  D     0    AB3            F  Y  B  H  M
PA2440  MIA  735A  DCA 1000A  #     0    72S            F  Y  B  M  Q
AA 920  MIA  844A  DCA 1106A  B     0    72S            F  Y  B  H  M
DL 464  MIA  910A  DCA  125P  SL    1    757            F  Y  B  M  Q
AA 414  MIA 1125A  DCA  157P  L     0    727            F  Y  B  H  M
PA 492  MIA 1215P  DCA  244P  #     0    72S            F  Y  B  M  Q
NW1828  MIA 1220P  DCA  235P  L     0    D9S            F  Y  B  M  H
PA 424  MIA  135P  DCA  404P  S     0    72S            F  Y  B  M  Q
US1971  MIA  135P  DCA  618P  S     2    734            F  Y  B  H  Q
AA 448  MIA  140P  DCA  411P        0    72S            F  Y  B  H  M
PA 978  MIA  540P  DCA  815P  D     0    72S            F  Y  B  M  Q
AA 942  MIA  659P  DCA  931P  D     0    72S            F  Y  B  H
UA 255  MIA  725A  DEN 1101A  B     1    72S            F  Y  B  M  Q
CO1707  MIA  745A  DEN 1115A  B     1    733            Y  Q  H  K  B
DL 509  MIA  410P  DEN  755P  SD    1    72S           Y@ B@ M@ Q@ H@
AA 147  MIA  630A  DFW  830A  B     0    757            F  Y  B  H  M
AA 523  MIA  745A  DFW  951A  B     0    757            F  Y  B  H  M
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DL 703  MIA  900A  DFW 1055A  B     0    72S            F  Y  B  M  Q
DL1197  MIA 1215P  DFW  220P  L     0    72S            F  Y
AA1441  MIA 1255P  DFW  300P  L     0    D10            F  Y  B  H  M
AA1599  MIA  205P  DFW  423P  S     0    72S            F  Y  B  H  M
PA 422  MIA  205P  DFW  427P  S     0    72S            F  Y  B  M  Q
AA1359  MIA  323P  DFW  533P  S     0    72S            F  Y  B  H  M
DL 509  MIA  410P  DFW  608P  S     0    72S            Y  B  M  Q  H
AA 745  MIA  448P  DFW  705P  D     0    72S            F  Y  B  H  M
AA 910  MIA  655P  DFW  901P  D     0    757            Y  B  H  M  Q
AA1080  MIA  659P  DFW 1036P  D     1    72S            F  Y  H  B  M
AA 926  MIA  703P  DFW 1033P  D     1    72S            F  Y  H  B  M
DL 587  MIA  730P  DFW  928P  D     0    72S            F  Y  B  M  Q
US1264  MIA  820A  DTW 1250P  BS    1    733            F  Y  B  H  Q
NW 992  MIA  830A  DTW 1136A  B     0    D9S            F  Y  B  M  H
PA 710  MIA  830A  DTW 1150A  B     0    72S            F  Y  B  M  Q
NW 996  MIA 1230P  DTW  333P  L     0    D9S            F  Y  B  M  H
NW 994  MIA  250P  DTW  548P  S     0    D9S            F  Y  B
PA 438  MIA  545P  DTW  905P  D     0    72S            F  Y  B  M  Q
NW 998  MIA  610P  DTW  910P  D     0    72S           FN YN BN
US 784  MIA  620P  DTW 1046P  D     1    73S            F  Y  B  H  Q
AA1422  MIA  805A  HOU  957A  B     0    72S            F  Y  B  H  M
AA 738  MIA  140P  HOU  330P  S     0    72S            F  Y  B  H  M
AA1080  MIA  659P  HOU  854P  D     0    72S            F  Y  B  H  M
AA 926  MIA  703P  HOU 1215A  D     2    72S            F  Y  H  B  M
AA 918  MIA  745A  JFK 1028A  R     0    AB3            F  Y  H  B  M
PA2454  MIA  800A  JFK 1048A  B     0    72S            F  Y  B  M  Q
PA 428  MIA  120P  JFK  435P  L     0    AB3            F  Y  B  M  Q
DL1882  MIA  120P  JFK  424P  L     0    72S            F  Y  B  M  Q
TW   4  MIA  130P  JFK  437P  #     0    M80            F  Y  B  Q  M
AA 902  MIA  145P  JFK  444P  L     0    AB3            Y  H  B  M  Q
PA 402  MIA  545P  JFK  844P  D     0    72S            F  Y  B  M  Q
AA 424  MIA  700P  JFK  951P  D     0    AB3            F  Y  H  B  M
AA1449  MIA  800A  LAX 1046A  R     0    757            Y  B  H  M  Q
PA 440  MIA  800A  LAX 1040A  B     0    747            F  C  Y  B  M
US 199  MIA  815A  LAX 1251P  #     1    733            F  Y  B  H  Q
PA 442  MIA  130P  LAX  431P  L     0    AB3            F  Y  B  M  Q
AA 411  MIA  155P  LAX  420P  L     0    D10            F  Y  B  H  M
CO 105  MIA  320P  LAX  718P  #     1    AB3            A  Y  Q  H  K
PA 448  MIA  545P  LAX  846P  D     0    AB3            F  Y  B  M  Q
AA1550  MIA  705P  LAX  955P  D     0    757            F  Y  B  H  M
NW   5  MIA  800A  MSP 1045A  B     0    72S            F  Y  B  M  H
NW 573  MIA  400P  MSP  650P  D     0    72S            F  Y  B  M
UA 267  MIA  654P  MSP 1115P  D     1    733            F  Y  B  M  H
DL 739  MIA  630A  MSY  855A  #     1    72S            F  Y  B  M  Q
CO1707  MIA  745A  MSY  834A  B     0    733            Y  Q  H  K  B
AA 978  MIA  810A  MSY  924A  B     0    72S            F  Y  B  M  H
PA 434  MIA  120P  MSY  232P  #     0    72S            F  Y  B  M  Q
AA1296  MIA  200P  MSY  318P        0    72S            F  Y  B  M  H
PA 418  MIA  550P  MSY  702P  D     0    72S            F  Y  B  M  Q
AA 926  MIA  703P  MSY  817P  D     0    72S            F  Y  B  M  H
UA 395  MIA  700A  ORD  901A  B     0    72S            F  Y  B  M  H
AA1522  MIA  750A  ORD 1009A  B     0    AB3            F  Y  B  H  M
PA 700  MIA  900A  ORD 1103A  B     0    72S            F  Y  B  M  Q
DL 370  MIA 1125A  ORD  255P  L     1    72S            F  Y  B  M  Q
CO 514  MIA 1225P  ORD  426P  L     1    72S            F  A  Y  Q  H
UA 303  MIA 1230P  ORD  245P  L     0    757            F  Y  B  M  H
NW 941  MIA 1255P  ORD  437P  S     1    D9S            F  Y  B  M  H
AA 976  MIA  140P  ORD  355P  S     0    AB3            F  Y  B  H  M
PA 484  MIA  140P  ORD  343P  S     0    72S            F  Y  B  M  Q
AA 384  MIA  324P  ORD  533P  S     0    72S            F  Y  B  H  M
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AA1354  MIA  453P  ORD  717P  D     0    72S            F  Y  B  H  M
UA 267  MIA  654P  ORD  923P  D     0    733            F  Y  B  M  H
AA 960  MIA  707P  ORD  933P  D     0    AB3            F  Y  B  H  M
DL 574  MIA  910P  ORD 1230A        1    72S           FN YN BN MN QN
US 660  MIA  630A  PHL  909A  B     0    M80            F  Y  B  H  Q
AA 668  MIA  815A  PHL 1058A  B     0    72S            F  Y  B  M  H
US1941  MIA 1255P  PHL  341P  L     0    734            F  Y  B  H  Q
AA 692  MIA  205P  PHL  450P  S     0    72S            F  Y  B  M  H
US1272  MIA  310P  PHL  732P  SD    1    734            F  Y  B  H  M
DL1120  MIA  540P  PHL  927P  D     1    72S            F  Y  B  M  Q
AA 992  MIA  707P  PHL  953P  D     0    72S            F  Y  B  M  H
US 541  MIA  740P  PHL 1022P  S     0    733            F  Y  B  H  Q
AA1441  MIA 1255P  PHX  517P  LS    1    D10            F  Y  H  B  M
US1550  MIA  700A  PVD 1121A  B     1    734            F  Y  B  H  Q
AA1382  MIA  610A  RDU  819A  B     0    72S            F  Y  B  M  H
AA1116  MIA 1235P  RDU  242P  L     0    72S            F  Y  B  M  H
AA  34  MIA  443P  RDU  700P  D     0    72S            F  Y  B  M  H
AA  27  MIA  800A  SEA 1127A  R     0    757            F  Y  H  B  M
DL 703  MIA  900A  SEA  140P  BL    1    72S            F  Y  B  M  Q
UA 379  MIA  710A  SFO 1027A  BS    0    757            Y  B  M  Q  H
US 199  MIA  815A  SFO  313P  #     2    733            F  Y  B  H  M
PA 442  MIA  130P  SFO  640P  L     1    AB3            F  Y  B  M  Q
AA1539  MIA  215P  SFO  522P  D     0    767            F  C  Y  H  B
PA 448  MIA  545P  SFO 1048P  D     1    AB3            F  Y  B  M  Q
TW 245  MIA  720A  STL 1118A  B     2    M80            F  Y  B  M
TW 633  MIA  918A  STL 1112A  B     0    M80            F  Y  B  Q  V
TW 469  MIA 1220P  STL  212P  #     0    L10            F  C  Y  Q  M
TW 471  MIA  255P  STL  447P  S     0    72S            F  Y  B  Q  M
TW 157  MIA  630P  STL  824P  D     0    M80            F  Y  B  Q  M
DL 892  MIA  610A  TPA  700A  #     0    72S            F  Y  B  M  Q
US1586  MIA  700A  TPA  756A  #     0    M80            F  Y  B  H  Q
TW 245  MIA  720A  TPA  917A        1    M80            F  Y  B  M
PA 300  MIA  725A  TPA  830A        0    72S            F  Y  B  M  Q
US 898  MIA  840A  TPA  936A  #     0    M80            F  Y  B  H  Q
US1078  MIA 1030A  TPA 1125A        0    F28            F  Y  B  H  Q
US 180  MIA 1255P  TPA  154P  #     0    73S            F  Y  B  H  Q
AA1656  MIA  140P  TPA  239P        0    72S            F  Y  M  B  Q
PA 464  MIA  145P  TPA  250P        0    72S            F  Y  B  M  Q
US1930  MIA  200P  TPA  300P        0    733            F  Y  B  H  Q
US 761  MIA  320P  TPA  415P        0    F28            F  Y  B  H  Q
US1031  MIA  510P  TPA  605P        0    73S            F  Y  B  H  M
PA 986  MIA  555P  TPA  700P        0    72S            F  Y  B  M  Q
US1206  MIA  855P  TPA  950P        0    73S            F  Y  B  H  Q
DL 939  MSP  600A  ATL  922A  B     0    73S           FN YN BN MN QN
DL 945  MSP  735A  ATL 1048A  B     0    72S            F  Y  B  M  Q
NW 760  MSP  745A  ATL 1113A  B     0    D9S           FN YN BN  M  H
DL 320  MSP 1055A  ATL  211P  L     0    M80            F  Y  B  M  Q
NW 562  MSP  100P  ATL  430P  L     0    M80            F  Y  B  M  H
DL1856  MSP  115P  ATL  559P  LS    1    72S            F  Y  B  M  Q
DL1239  MSP  300P  ATL  852P        2    73S            F  Y  B  M  Q
DL1854  MSP  415P  ATL  729P  D     0    72S            F  Y  B  M  Q
NW 764  MSP  610P  ATL  938P  D     0    D9S            F  Y  B  M  H
NW 616  MSP  840P  ATL 1159P        0    D9S           FN YN BN  M  H
TW 552  MSP 1107A  BNA  250P  S     1    D9S            F  K
AA1369  MSP 1110A  BNA  245P  S     1    S80            F  Y  B  H  M
UA 256  MSP 1200N  BNA  330P  S     1    73S            F  Y  B  M  Q
NW 706  MSP  120P  BNA  319P  S     0    D9S            F  Y  B  M  H
NW1472  MSP  605P  BNA  806P  S     0    D9S           FN YN  B  M  H
NW 720  MSP  750A  BOS 1122A  B     0    757            F  Y  B  M  H
NW 722  MSP 1140A  BOS  314P  L     0    D9S            F  Y  B  M  H
NW  46  MSP  115P  BOS  453P  S     0    D10            F  C  Y  B  M
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NW 352  MSP  240P  BOS  612P  #     0    757            F  Y  B  M  H
NW 326  MSP  600P  BOS  935P  D     0    D10            F  Y  B  M  H
NW 356  MSP  845P  BOS 1212A        0    757           FN YN BN  M  H
NW 312  MSP  700A  DCA 1013A  B     0    D9S           FN YN BN  M  H
NW 320  MSP  755A  DCA 1111A  B     0    320            F  Y  B  M  H
AA 870  MSP  828A  DCA  109P  VS    1    S80            F  Y  B  H  Q
NW 560  MSP 1135A  DCA  249P  L     0    M80            F  Y  B  M  H
NW 302  MSP  115P  DCA  425P  L     0    757            F  Y  B  M  H
NW 324  MSP  230P  DCA  542P  S     0    320            F  Y  B  M  H
NW 322  MSP  605P  DCA  921P  D     0    757            F  Y  B  M  H
NW 106  MSP  830P  DCA 1139P        0    320           FN YN BN  M  H
UA 389  MSP  650A  DEN  757A  B     0    733            F  Y  B  M  Q
CO1147  MSP  708A  DEN  819A  B     0    72S            F  A  Y  Q  H
NW 559  MSP  745A  DEN  850A  S     0    M80           FN YN BN  M  H
NW 561  MSP  920A  DEN 1020A  S     0    D9S            F  Y  B  M  H
CO 627  MSP 1010A  DEN 1117A  S     0    73S            F  A  Y  Q  H
UA 529  MSP 1020A  DEN 1123A  L     0    737            F  Y  B  M  Q
NW 563  MSP 1140A  DEN 1245P  S     0    M80           FN YN BN  M  H
NW 565  MSP  225P  DEN  326P        0    D9S            F  Y  B
UA 865  MSP  335P  DEN  426P  S     0    72S            F  Y  B  M  Q
CO 589  MSP  415P  DEN  516P  S     0    M80            F  A  Y  Q  H
AA 313  MSP  625P  DEN 1049P  D     1    S80            F  Y  B  H  M
UA 403  MSP  645P  DEN  746P  D     0    737            F  Y  B  M  Q
NW 567  MSP  735P  DEN  840P  S     0    M80            F  Y  B  M
TW 525  MSP  653A  DFW 1123A  #     1    D9S            F  Y  B  Q  M
AA 189  MSP  735A  DFW  952A  B     0    S80            F  Y  B  M  H
NW 401  MSP  750A  DFW 1018A  B     0    D9S            F
AA1685  MSP 1125A  DFW  141P  L     0    S80            F  Y  B  M  H
NW 403  MSP  105P  DFW  336P  S     0    D9S           FN YN BN  M  H
AA 374  MSP  202P  DFW  420P        0    S80            F  Y  B  M  H
NW 405  MSP  225P  DFW  450P        0    D9S            F  Y  B  M  H
AA 717  MSP  440P  DFW  703P  D     0    S80            F  Y  B  M  H
NW 407  MSP  600P  DFW  831P  D     0    D9S            F  Y  B  M
AA 313  MSP  625P  DFW  842P  D     0    S80            F  Y  B  M  H
NW 409  MSP  740P  DFW 1008P  S     0    D9S            F  Y  B  M  H
NW 740  MSP  600A  DTW  838A  B     0    320           FN YN BN  M  H
NW 742  MSP  700A  DTW  938A  B     0    72S            F  Y  B  M  H
NW 744  MSP  820A  DTW 1058A  B     0    744            F  Y  B  M  H
NW 746  MSP 1000A  DTW 1240P  S     0    757            F  Y  B  M  H
NW 750  MSP  100P  DTW  348P  S     0    D10            F  Y  B  M  H
NW 374  MSP  115P  DTW  359P  S     0    757            F  Y  B  M  H
NW 752  MSP  300P  DTW  541P        0    320            F  Y  B  M  H
NW1070  MSP  400P  DTW  754P        1    D9S            F  Y  B  M  H
NW 564  MSP  500P  DTW  744P  S     0    M80            F  Y  B  M  H
NW 140  MSP  500P  DTW  915P  S     1    D9S            F  Y  B  M  H
NW 756  MSP  605P  DTW  855P  S     0    D10            F  Y  B  M  H
NW 308  MSP  850P  DTW 1129P        0    D10            F  Y  B  M  H
NW1020  MSP  110P  HOU  335P  L     0    D9S            F  Y  B  M  H
TW 639  MSP  349P  HOU  846P  D     1    D9S            F  Y  B  Q  M
NW1022  MSP  615P  HOU  845P  D     0    D9S            F  Y  B  M  H
TW 202  MSP 1137A  JFK  450P  #     1    72S            F  Y  B  Q  M
NW 933  MSP  930A  LAX 1120A  B     0    D10            Y  B  M
NW 303  MSP 1135A  LAX  128P  L     0    D10            F  Y  B  M  H
NW 305  MSP  235P  LAX  429P  S     0    757            F  Y  B  M  H
AA 717  MSP  440P  LAX  907P  DS    1    S80            F  Y  B  H  M
NW  45  MSP  615P  LAX  811P  D     0    320            F  C  Y  B  M
NW 309  MSP  745P  LAX  940P  D     0    D10            F  Y  B  M  H
NW 311  MSP 1030P  LAX 1228A  S     0    320           FN YN BN  M  H
NW 570  MSP  755A  MIA 1230P  B     0    72S            F  Y  B  M
TW 496  MSP  805A  MIA  209P  #     1    72S            F  Y  B  Q  M
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NW   6  MSP  100P  MIA  530P  L     0    72S            F  Y  B  M  H
NW 453  MSP 1200N  MSY  405P  S     1    72S            F  Y  B  M  H
AA 374  MSP  202P  MSY  643P  S     1    S80            F  Y  B  H  M
UA 868  MSP  600A  ORD  709A  #     0    72S            F  Y  B  M  Q
AA1578  MSP  700A  ORD  816A  V     0    S80            F YN  B  M  H
NW 158  MSP  700A  ORD  814A  S     0    757           FN YN  B  M  H
UA 768  MSP  700A  ORD  811A  #     0    733            F  Y  B  M  Q
UA 486  MSP  800A  ORD  912A  #     0    73S            F  Y  B  M  Q
NW 122  MSP  800A  ORD  920A  S     0    747            F  Y  B  M  H
AA 870  MSP  828A  ORD  945A  V     0    S80            F  Y  B  M  H
UA  70  MSP  900A  ORD 1007A  #     0    727            F  Y  B  M  Q
NW 124  MSP  900A  ORD 1009A  S     0    DC9            F  Y  B  M  H
UA 266  MSP 1000A  ORD 1109A        0    733            F  Y  B  M  Q
NW 126  MSP 1000A  ORD 1115A        0    320            F  Y  B  M  H
ZK  34  MSP 1010A  ORD 1254P        2    BE1            Y
UA 765  MSP 1100A  ORD 1207P  S     0    72S            F  Y  B  M  Q
NW 128  MSP 1100A  ORD 1215P  S     0    D9S            F  Y  B  M  H
AA1369  MSP 1110A  ORD 1217P        0    S80            F  Y  B  M  H
UA 256  MSP 1200N  ORD  122P  S     0    73S            F  Y  B  M  Q
NW 130  MSP 1200N  ORD  114P  S     0    D9S            F  Y  B  M  H
NW 112  MSP  100P  ORD  216P  S     0    320            F  Y  B  M  H
NW 134  MSP  200P  ORD  315P        0    M80            F  Y  B  M  H
UA 420  MSP  200P  ORD  312P        0    733            F  Y  B  M  Q
AA  80  MSP  225P  ORD  337P        0    S80            F  Y  B  M  H
UA 992  MSP  300P  ORD  421P        0    72S            F  Y  B  M  Q
NW 136  MSP  300P  ORD  419P        0    D9S            F  Y  B  M  H
NW 138  MSP  400P  ORD  510P        0    D9S            F  Y  B  M  H
UA 590  MSP  400P  ORD  509P        0    73S            F  Y  B  M  Q
ZK  38  MSP  420P  ORD  705P        2    BE1            Y  M  H  Q  V
UA  86  MSP  500P  ORD  612P  S     0    72S            F  Y  B  M  Q
NW 140  MSP  500P  ORD  615P  S     0    D9S            F  Y  B  M  H
AA 824  MSP  545P  ORD  718P  S     0    S80            F  Y  B  M  H
NW 142  MSP  600P  ORD  724P  S     0    72S            F  Y  B  M  H
UA 554  MSP  600P  ORD  732P  S     0    733            F  Y  B  M  Q
UA 338  MSP  700P  ORD  815P  S     0    733            F  Y  B  M  Q
NW 144  MSP  700P  ORD  815P  S     0    DC9            F  Y  B  M  H
AA1085  MSP  705P  ORD  822P  S     0    S80            F  Y  B  M  H
UA 350  MSP  800P  ORD  911P        0    73S           FN YN  B  M  Q
NW 566  MSP  835P  ORD  947P        0    72S            F  Y  B  M  H
NW 680  MSP  740A  PHL 1101A  B     0    D9S            F  Y  B  M  H
NW 710  MSP  100P  PHL  420P  S     0    757            F  Y  B  M  H
NW 684  MSP  235P  PHL  556P  S     0    D9S            F  Y  B  M  H
NW   8  MSP  600P  PHL  920P  D     0    757            F  C  Y  B  M
NW 196  MSP  830P  PHL 1146P        0    72S           FN YN BN  M  H
NW  99  MSP  745A  PHX 1006A  B     0    72S            F  Y  B  M  H
HP 606  MSP  845A  PHX 1107A  B     0    320            F  Y  B  H  K
NW 101  MSP  930A  PHX 1156A  B     0    D10            F  Y  B  M  H
NW 103  MSP 1140A  PHX  200P  L     0    72S            F  Y  B  M  H
NW 105  MSP  235P  PHX  452P  S     0    757            F  Y  B  M  H
HP1258  MSP  415P  PHX  643P  S     0    733            Y  B  H  K  Q
DL1855  MSP  655P  PHX 1050P  D     1    72S           F@ Y@ B@ M@ Q@
NW 107  MSP  725P  PHX  949P  D     0    757            F  Y  B  M  H
NW 109  MSP 1030P  PHX 1247A  S     0    72S           FN YN BN  M  H
CO 834  MSP  300P  PVD  807P        1    737            A  Y  Q  H  K
NW   7  MSP  925A  SEA 1100A  B     0    747            F  C  Y  B  M
NW 151  MSP 1145A  SEA  123P  L     0    D10            F  Y  B  M  H
NW 153  MSP  230P  SEA  405P  S     0    757            F  Y  B  M  H
NW  47  MSP  745P  SEA  925P  D     0    D10            F  C  Y  B  M
NW 157  MSP 1030P  SEA 1202A  S     0    757           FN YN BN  M  H
HP 606  MSP  845A  SFO  107P  BS    1    320            F  Y  B  H  K
NW 351  MSP  920A  SFO 1124A  B     0    757            F  Y  B  M  H
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NW 353  MSP 1130A  SFO  134P  L     0    757            F  Y  B  M  H
NW 355  MSP  235P  SFO  436P  S     0    D10            F  Y  B  M  H
NW 359  MSP  740P  SFO  941P  D     0    D10            F  Y  B  M  H
NW 361  MSP 1030P  SFO 1227A  S     0    757            F  Y  B  M  H
TW 525  MSP  653A  STL  832A  #     0    D9S            F  Y  B  Q  M
NW 591  MSP  735A  STL  905A  S     0    72S           FN YN BN  M  H
TW 496  MSP  805A  STL  940A  #     0    72S            F  Y  B  Q  M
TW 552  MSP 1107A  STL 1245P  S     0    D9S            F  K
NW 593  MSP  105P  STL  237P        0    D9S            F  Y  B  M  H
TW 227  MSP  215P  STL  347P        0    D9S            F  Y  B  Q  M
NW 595  MSP  245P  STL  420P        0    D9S            F  Y  B  M  H
TW 639  MSP  349P  STL  524P        0    D9S            F  Y  B  Q  M
TW 570  MSP  536P  STL  722P  #     0    D9S            F  Y  B  Q  M
NW 597  MSP  610P  STL  741P  S     0    D9S            F  Y  B  M  H
NW 599  MSP  900P  STL 1025P        0    DC9            F  Y  B  M  H
NW 478  MSP  750A  TPA 1158A  B     0    72S            F  Y  B  M  H
DL 583  MSP  900A  TPA  235P  SL    1    M80            F  Y  B  M  Q
NW 446  MSP  115P  TPA  521P  L     0    72S            F  Y  B  M  H
NW 448  MSP  605P  TPA 1005P  D     0    72S            F  Y  B  M  H
CO1707  MSY  920A  ABQ  123P  #     1    733            Y  Q  H  K  B
WN  30  MSY 1210P  ABQ  355P        3    73S            Y  K  L  B  Q
WN 590  MSY  440P  ABQ  705P        1    733            Y  K  L  B  Q
DL 448  MSY  645A  ATL  912A  #     0    767            F  Y  B  M  Q
DL 432  MSY  825A  ATL 1042A  #     0    757            F  Y  B  M  Q
DL 662  MSY 1005A  ATL 1221P        0    72S            F  Y  B  M  Q
DL 300  MSY  135P  ATL  356P  S     0    M80            F  Y  B  M  Q
DL 618  MSY  335P  ATL  554P        0    757            F  Y  B  M  Q
DL 480  MSY  535P  ATL  755P  S     0    72S            F  Y  B
DL1229  MSY  845P  ATL 1059P        0    73S            F  Y  B  M  Q
AA1424  MSY  630A  BNA  755A  #     0    S80            F  Y  B  H  M
WN 103  MSY  955A  BNA 1155A        1    733            Y  K  L  B  Q
AA 756  MSY 1158A  BNA  120P  S     0    S80            F  Y  B  H  M
WN1615  MSY  345P  BNA  550P        1    733            Y  K  L  B  Q
AA 828  MSY  510P  BNA  637P        0    72S            F  Y  B  H  M
CO 546  MSY  830A  BOS  241P  B     1    72S            A  Y  Q  H  K
CO1072  MSY  925A  BOS  353P  L     1    M80            F  A  Y  Q  H
CO1646  MSY  220P  BOS  758P  S     1    733            A  Y  Q  H  K
CO1639  MSY  730A  DEN 1114A  S     1    AB3            A  Y  Q  H  K
UA 425  MSY  915A  DEN 1112A  S     0    737            F  Y  B  M  Q
CO1707  MSY  920A  DEN 1115A  B     0    733            Y  Q  H  K  B
UA 207  MSY  250P  DEN  441P  L     0    735            F  Y  B  M  H
CO 119  MSY  330P  DEN  525P  S     0    733            A  Y  Q  H  K
DL 651  MSY  600A  DFW  731A  #     0    757            F  Y  B  M  Q
AA 382  MSY  700A  DFW  824A  #     0    S80            F  Y  B  M  H
AA1455  MSY  841A  DFW 1014A  #     0    72S            F  Y  B  M  H
DL 793  MSY  930A  DFW 1055A        0    763            F  Y  B  M  Q
DL 307  MSY  100P  DFW  227P  S     0    767            F  Y  B  M  H
AA1331  MSY  135P  DFW  305P        0    S80            F  Y  B  M
AA 121  MSY  405P  DFW  541P        0    S80            F  Y  B  M  H
DL 139  MSY  425P  DFW  553P        0    757            F  Y  B  M  H
AA 765  MSY  731P  DFW  902P        0    S80            F  Y  B  M
DL1507  MSY  815P  DFW  946P        0    757            F  Y  B  M  Q
AA 926  MSY  905P  DFW 1033P        0    72S            F YN  B  M  H
AA 382  MSY  700A  DTW  107P  #     1    S80            F  Y  M  B  H
WN 304  MSY  840A  DTW  425P        4    733            Y  K  L  B  Q
NW 294  MSY 1135A  DTW  430P  S     1    D9S            F  Y  B  M  H
NW1476  MSY 1215P  DTW  337P  S     0    D9S            F  Y  B  M  H
WN1615  MSY  345P  DTW  935P        3    733            Y  K  L  B  Q
4X 370  MSY  615A  HOU  810A        1    BEC            Y  B  Q  M
WN 397  MSY  620A  HOU  725A        0    733            Y  K  L  B  Q
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WN 979  MSY  645A  HOU  750A        0    73S            Y  K  L  B  Q
WN 711  MSY  755A  HOU  900A        0    735            Y  K  L  B  Q
4X 201  MSY  835A  HOU 1220P        2    BEC            Y
WN 304  MSY  840A  HOU  950A        0    733            Y  K  L  B  Q
WN 443  MSY  940A  HOU 1045A        0    733            Y  K  L  B  Q
WN 380  MSY 1040A  HOU 1145A        0    73S            Y  K  L  B  Q
4X 372  MSY 1100A  HOU 1255P        1    BEC            Y  B  Q  M
WN 843  MSY 1115A  HOU 1215P        0    73S            Y  K  L  B  Q
WN  30  MSY 1210P  HOU  115P        0    73S            Y  K  L  B  Q
WN  34  MSY  110P  HOU  215P        0    73S            Y  K  L  B  Q
WN 837  MSY  200P  HOU  305P        0    73S            Y  K  L  B  Q
4X 213  MSY  200P  HOU  540P        3    BEC            Y  B  M
WN 909  MSY  255P  HOU  400P        0    733            Y  K  L  B  Q
4X 374  MSY  400P  HOU  555P        1    BEC            Y  B  Q  M
WN 590  MSY  440P  HOU  545P        0    733            Y  K  L  B  Q
WN 210  MSY  535P  HOU  640P        0    733            Y  K  L  B  Q
WN 453  MSY  715P  HOU  815P        0    73S            Y  K  L  B  Q
WN 359  MSY  745P  HOU  850P        0    73S            Y  K  L  B  Q
WN 758  MSY  935P  HOU 1035P        0    73S            Y  K  L  B  Q
TW 880  MSY 1214P  JFK  404P  #     0    72S            F  Y  B  Q  M
UA1477  MSY  814A  LAX 1017A  B     0    72S            F  Y  B  M  Q
DL 477  MSY  900A  LAX 1059A  B     0    763            F  Y  B  M  Q
DL 139  MSY  425P  LAX  920P  D     2    757            F  Y  B  M  H
WN 590  MSY  440P  LAX  825P        2    733            Y  K  L  B  Q
WN 453  MSY  715P  LAX 1045P        2    73S            Y  K  L  B  Q
AA 485  MSY  720A  MIA  959A  B     0    72S            F  Y  B  M  H
PA 417  MSY  730A  MIA 1015A  #     0    72S            F  Y  B  M  Q
AA 735  MSY 1230P  MIA  320P  L     0    72S            F  Y  B  M  H
PA 433  MSY  320P  MIA  605P  S     0    72S            F  Y  B  M  Q
AA 787  MSY  634P  MIA  919P  D     0    72S            F  Y  B  M  H
CO1212  MSY  815P  MIA 1102P        0    733            A  Y  Q  H  K
NW 397  MSY  635A  MSP 1031A  #     1    72S            F  Y  B  M  H
AA1052  MSY  100P  MSP  608P  L     1    S80            F  Y  B  H  M
US1068  MSY  445P  MSP 1025P  S     1    73S            F  Y  B  H  Q
NW 454  MSY  530P  MSP  940P  S     1    72S            F  Y  B  M  H
AA 174  MSY  731A  ORD  945A  B     0    S80            F  Y  B  M  H
UA 480  MSY  800A  ORD 1017A  B     0    73S            F  Y  B  M  Q
UA  76  MSY 1047A  ORD  101P  L     0    72S            F  Y  B  M  Q
AA1052  MSY  100P  ORD  317P  L     0    S80            F  Y  B  M  H
TW 574  MSY  227P  ORD  626P  #     1    M80            F  Y  B  Q  M
UA 275  MSY  350P  ORD  603P  S     0    72S            F  Y  B  M  H
UA 576  MSY  655P  ORD  914P  D     0    73S            F  Y  B  M  Q
AA 248  MSY  657P  ORD  915P  D     0    72S            F  Y  B  M  H
DL 864  MSY  635A  PHL 1150A  B     1    72S            F  Y  B  M  Q
UA1214  MSY  827A  PHL  112P  B     1    73S            F  Y  B  M  Q
US1454  MSY  845A  PHL  145P  #     1    73S            F  Y  B  H  M
US 184  MSY 1210P  PHL  343P  L     0    73S            F  Y  B  H  Q
US1188  MSY  315P  PHL  650P  D     0    100            F  Y  B  H  Q
WN 453  MSY  715P  PHX 1015P        1    73S            Y  K  L  B  Q
NW1476  MSY 1215P  PVD  616P  S     1    D9S            F  Y  B  M  H
TW 608  MSY  536P  RDU 1114P  D     1    D9S            F  Y  B  Q  M
UA 363  MSY  734A  SFO 1029A  S     0    733            Y  B  M  Q  H
DL 307  MSY  100P  SFO  450P  S     1    767            F  Y  B  M  H
UA 207  MSY  250P  SFO  830P  LD    2    735            F  Y  B  M  H
CO 485  MSY  330P  SFO  756P  D     1    AB3            A  Y  Q  H  K
NW 862  MSY  730A  STL 1047A  S     1    D9S            F  Y  B  M  H
TW 556  MSY  804A  STL  950A  B     0    D9S            F  Y  B  Q  M
TW 338  MSY 1048A  STL 1240P  #     0    D9S            F  Y  B  Q  M
TW 574  MSY  227P  STL  415P        0    M80            F  Y  B  Q  M
TW 608  MSY  536P  STL  727P  D     0    D9S            F  Y  B  Q  M
CO1568  MSY  250P  TPA  519P        0    733            F  A  Y  Q  H
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DL 170  MSY  625P  TPA  843P  S     0    72S            F  Y  B  M  Q
AA 359  ORD  905A  ABQ 1102A  R     0    S80            F  Y  B  H  M
AA 297  ORD 1155A  ABQ  153P  L     0    S80            F  Y  B  H  M
AA1271  ORD  630P  ABQ  826P  D     0    72S            F  Y  B  H  M
DL 401  ORD  600A  ATL 1108A  #     2    72S           F@ Y@ B@ M@ Q@
DL 579  ORD  620A  ATL  903A  B     0    72S            F  Y  B  M  Q
UA 996  ORD  630A  ATL  920A  B     0    72S            F  Y  B  M  Q
AA 262  ORD  700A  ATL  947A  B     0    72S            F  Y  B  M  H
UA 416  ORD  810A  ATL 1108A  B     0    73S            F  Y  B  M  Q
DL 635  ORD  810A  ATL 1101A  B     0    757            F  Y  B  M  Q
DL 375  ORD  955A  ATL 1242P  S     0    72S            F  Y  B  M  Q
AA 180  ORD 1014A  ATL  104P  L     0    S80            F  Y  B  M  H
UA 860  ORD 1107A  ATL  155P  L     0    737            F  Y  B  M  Q
DL1235  ORD 1130A  ATL  214P  L     0    72S            F  Y  B  M  Q
UA1027  ORD 1214P  ATL  631P  D     2    73S            Y  B  M  Q  H
DL 575  ORD  120P  ATL  407P  L     0    72S            F  Y  B  M  H
UA 410  ORD  130P  ATL  422P  S     0    72S            F  Y  B  M  Q
DL1507  ORD  310P  ATL  600P  S     0    757            Y  B  M  Q  H
AA 142  ORD  414P  ATL  710P  D     0    S80            F  Y  B  M  H
UA 954  ORD  450P  ATL  743P  D     0    72S            F  Y  B  M  Q
DL 704  ORD  450P  ATL  744P  D     0    757            F  Y  B  M  H
DL 177  ORD  650P  ATL  939P  D     0    767            F  Y  B  M  Q
DL 981  ORD  755P  ATL 1036P  #     0    D9S           FN YN BN MN QN
AA 748  ORD  755P  ATL 1047P  #     0    S80           FN YN  B  M  H
UA 542  ORD  755P  ATL 1046P  #     0    73S           FN YN  B  M  Q
AA 380  ORD  950P  ATL 1234A        0    S80           FN YN  B  M  H
AA1488  ORD  630A  BNA  757A  V     0    S80           FN YN  B  H  M
AA1401  ORD  733A  BNA  907A  V     0    100            F  Y  B  H  M
UA 692  ORD  805A  BNA  929A  S     0    72S            F  Y  B  M  Q
AA 879  ORD 1144A  BNA  107P  S     0    S80            F  Y  B  H  M
AA1369  ORD  115P  BNA  245P  S     0    S80            F  Y  B  H  M
UA 256  ORD  200P  BNA  330P  S     0    73S            F  Y  B  M  Q
AA 460  ORD  250P  BNA  412P        0    S80            F  Y  B  H  M
AA 315  ORD  530P  BNA  654P  S     0    72S            F  Y  B  H
AA 353  ORD  630P  BNA  809P  S     0    100            F  Y  B  H  M
AA1544  ORD  750P  BNA  928P        0    100            F  Y  B  H  M
UA 584  ORD  755P  BNA  916P        0    72S            F  Y  B  M  Q
UA 284  ORD  600A  BOS  912A  B     0    757            F  Y  B  M  Q
AA 112  ORD  655A  BOS 1001A  B     0    D10            F  Y  B  H  M
UA 340  ORD  755A  BOS 1105A  B     0    D10            F  Y  B  M  Q
AA 354  ORD  910A  BOS 1224P  V     0    S80            F  Y  B  H  M
CO 390  ORD  915A  BOS  211P  S     1    M80            A  Y  Q  H  K
UA 764  ORD 1000A  BOS  117P  L     0    733            F  Y  B  M  Q
AA1012  ORD 1025A  BOS  133P  L     0    S80            F  Y  B  H  M
NW 386  ORD 1025A  BOS  330P        1    757            F  Y  B  M  H
CO 358  ORD 1045A  BOS  446P  L     1    733            Y  Q  H  K  B
UA 758  ORD 1114A  BOS  222P  L     0    D10            F  Y  B  M  Q
CO 620  ORD 1135A  BOS  402P        1    72S            A  Y  Q  H  K
AA 166  ORD  120P  BOS  425P  #     0    S80            F  Y  B  H  M
UA 100  ORD  200P  BOS  520P  S     0    D10            F  Y  B  M  Q
UA 294  ORD  345P  BOS  659P  D     0    72S            F  Y  B  M  Q
US 745  ORD  345P  BOS  758P  #     1    100            F  Y  B  H  Q
NW   4  ORD  400P  BOS  709P  D     0    M80            F  Y  B  M  H
NW 390  ORD  400P  BOS  850P  S     1    72S            F  Y  B  M
AA 278  ORD  430P  BOS  747P  D     0    S80            F  Y  B  H  M
UA 132  ORD  500P  BOS  819P  D     0    D10            F  Y  B  M  Q
AA 848  ORD  530P  BOS  850P  D     0    S80            F  Y  B  H  M
UA 678  ORD  630P  BOS  947P  D     0    733            F  Y  B  M  Q
AA1566  ORD  800P  BOS 1108P  #     0    757            F YN  B  H  M
UA 790  ORD  800P  BOS 1111P  #     0    733            F  Y  B  M  Q
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UA 600  ORD  620A  DCA  900A  B     0    72S            F  Y  B  M  Q
UA 602  ORD  720A  DCA 1000A  B     0    72S            F  Y  B  M  Q
AA 246  ORD  730A  DCA 1011A  B     0    S80            F  Y  B  M  H
UA 604  ORD  820A  DCA 1102A  B     0    72S            F  Y  B  M  Q
AA1646  ORD  830A  DCA 1107A  B     0    S80            F  Y  B  M  H
UA 606  ORD  920A  DCA 1156A  S     0    72S            F  Y  B  M  Q
UA 608  ORD 1020A  DCA 1259P  L     0    72S            F  Y  B  M  Q
AA 870  ORD 1025A  DCA  109P  S     0    S80            F  Y  B  M  H
UA 610  ORD 1120A  DCA  159P  L     0    72S            F  Y  B  M  Q
UA 612  ORD 1220P  DCA  256P  L     0    72S            F  Y  B  M  Q
AA1112  ORD  115P  DCA  359P  #     0    S80            F  Y  B  M  H
UA 614  ORD  120P  DCA  402P  S     0    757            F  Y  B  M  Q
UA 616  ORD  220P  DCA  503P  S     0    72S            F  Y  B  M  Q
AA 184  ORD  250P  DCA  533P  S     0    S80            F  Y  B  M  H
UA 618  ORD  320P  DCA  559P  S     0    72S            F  Y  B  M  Q
AA 562  ORD  414P  DCA  658P  D     0    S80            F  Y  B  M  H
UA 620  ORD  420P  DCA  659P  D     0    72S            F  Y  B  M  Q
UA 622  ORD  520P  DCA  808P  D     0    757            F  Y  B  M  Q
AA1666  ORD  530P  DCA  813P  D     0    S80            F  Y  B  M  H
CO 482  ORD  544P  DCA 1029P        1    M80            Y  Q  H  K  B
UA 624  ORD  620P  DCA  900P  D     0    72S            F  Y  B  M  Q
UA 626  ORD  720P  DCA  956P  S     0    72S            F  Y  B  M  Q
AA 266  ORD  815P  DCA 1102P        0    757            F  Y  B  M  H
UA 293  ORD  612A  DEN  743A  B     0    D10            F  Y  B  M  Q
CO 821  ORD  640A  DEN  815A  B     0    73S            F  A  Y  Q  H
ZK 402  ORD  705A  DEN 1055A        3    BE1            Y  M  H  Q  V
UA 219  ORD  820A  DEN  959A  B     0    733            F  Y  B  M  Q
AA 379  ORD  900A  DEN 1037A  R     0    757            F  Y  B  M  H
CO1735  ORD  927A  DEN 1111A  S     0    733            A  Y  Q  H  K
UA 169  ORD  930A  DEN 1111A  S     0    D10            F  Y  B  M  Q
UA  89  ORD  931A  DEN 1111A  S     0    72S            F  Y  B  M  Q
AA1115  ORD 1144A  DEN  111P  L     0    S80            F  Y  B  M  H
UA 231  ORD 1230P  DEN  201P  L     0    D10            F  Y  B  M  Q
UA 435  ORD 1231P  DEN  211P  L     0    733            F  Y  B  M  Q
ZK 406  ORD  100P  DEN  525P        4    BE1            Y  M  H  Q  V
AA 705  ORD  255P  DEN  430P  S     0    S80            F  Y  B  M  H
UA 941  ORD  314P  DEN  446P  S     0    D10            F  C  Y  B  M
UA 205  ORD  315P  DEN  452P  S     0    757            F  Y  B  M  Q
CO 831  ORD  344P  DEN  515P  S     0    M80            A  Y  Q  H  K
AA 455  ORD  614P  DEN  749P  D     0    S80            F  Y  B  M  H
CO1765  ORD  615P  DEN  750P  D     0    733            A  Y  Q  H  K
UA 243  ORD  615P  DEN  744P  D     0    D10            F  Y  B  M  Q
UA 487  ORD  715P  DEN  847P  D     0    D10            F  Y  B  M  Q
AA1199  ORD  925P  DEN 1057P        0    S80            F  Y  B  M  H
UA 229  ORD 1000P  DEN 1136P  #     0    733            F  Y  B  M  Q
AA 348  ORD  615A  DFW  836A  B     0    S80            F  Y  B  M  H
AA 299  ORD  644A  DFW  901A  B     0    D10            F  Y  B  M  H
AA 535  ORD  730A  DFW  958A  B     0    72S            F  Y  B  M  H
UA 399  ORD  753A  DFW 1015A  B     0    72S            F  Y  B  M  Q
DL 877  ORD  830A  DFW 1044A  B     0    D9S            F  Y  B  M  Q
AA 205  ORD  915A  DFW 1136A  V     0    D10            F  Y  B  M  H
UA 359  ORD  952A  DFW 1226P  S     0    733            F  Y  B  M  Q
CO 642  ORD 1010A  DFW  251P  S     1    72S            A  Y  Q  H  K
DL1125  ORD 1014A  DFW 1227P  B     0    72S            F  Y  B  M  Q
AA 281  ORD 1115A  DFW  135P  L     0    D10            F  Y  B  M  H
DL 819  ORD 1155A  DFW  205P  L     0    72S            F  Y  B  M  Q
AA1561  ORD 1220P  DFW  246P  L     0    757            F  Y  B  M  H
UA 523  ORD 1224P  DFW  255P  L     0    733            F  Y  B  M  Q
AA 347  ORD  150P  DFW  418P        0    757            F  Y  B  M  H
AA 389  ORD  305P  DFW  533P        0    D10            F  Y  B  M  H
DL1507  ORD  310P  DFW  946P  S     2    757            Y  B  M  Q  H
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DL 521  ORD  345P  DFW  600P  S     0    72S            F  Y  B  M  Q
AA 577  ORD  425P  DFW  653P  D     0    D10            F  Y  B  M  H
AA1243  ORD  620P  DFW  851P  D     0    72S            F  Y  B  M  H
AA 579  ORD  645P  DFW  913P  D     0    D10            F  Y  B  M  H
UA 877  ORD  655P  DFW  921P  D     0    72S            F  Y  B  M  Q
DL 505  ORD  659P  DFW  918P  D     0    D9S            F  Y  B  M  Q
AA1037  ORD  805P  DFW 1033P        0    757            F  Y  B  M  H
AA 153  ORD  930P  DFW 1149P        0    S80           FN YN  B  M  H
NW 161  ORD  610A  DTW  823A  S     0    DC9            F  Y  B  M  H
UA 998  ORD  630A  DTW  844A  S     0    733            F  Y  B  M  Q
AA  72  ORD  645A  DTW  907A  V     0    767            F  Y  B  M  V
NW 200  ORD  725A  DTW  941A  S     0    72S           FN YN BN  M  H
UA 568  ORD  810A  DTW 1020A  S     0    D10            F  Y  B  M  Q
NW1132  ORD  900A  DTW 1115A        0    D9S            F  Y  B  M  H
NW 386  ORD 1025A  DTW 1245P        0    757           FN YN BN  M  H
AA 300  ORD 1030A  DTW 1241P        0    S80            F  Y  B  M  V
UA 484  ORD 1105A  DTW  112P        0    72S            F  Y  B  M  Q
NW 532  ORD 1200N  DTW  215P        0    D9S            F  Y  B  M  H
NW 170  ORD  130P  DTW  346P        0    72S            F  Y  B  M  H
AA 520  ORD  130P  DTW  351P        0    757            F  Y  B  M  V
UA 994  ORD  148P  DTW  406P        0    D10            F  Y  B  M  Q
NW 390  ORD  400P  DTW  610P        0    72S            F  Y  B  M
AA 830  ORD  440P  DTW  655P        0    D10            F  Y  B  M  V
UA 446  ORD  452P  DTW  708P        0    72S            F  Y  B  M  Q
NW 174  ORD  530P  DTW  747P        0    72S            F  Y  B  M  H
NW 140  ORD  700P  DTW  915P        0    D9S            F  Y  B  M  H
UA 108  ORD  800P  DTW 1010P        0    D10            F  C  Y  B  M
AA 212  ORD  830P  DTW 1040P        0    D10            F  Y  B  M  V
DL 877  ORD  830A  HOU 1255P  B     1    D9S            F  Y  B  M  Q
UA 971  ORD  947A  HOU 1234P  L     0    733            F  Y  B  M  Q
UA 311  ORD 1214P  HOU  302P  L     0    737            F  Y  B  M  Q
UA 739  ORD  657P  HOU  947P  D     0    73S            F  Y  B  M  Q
TW 746  ORD 1230P  JFK  339P  #     0    M80            F  Y  B  Q  M
UA 150  ORD  314P  JFK  622P  S     0    727            F  Y  B  M  Q
UA 635  ORD  700A  LAX  914A  B     0    72S            F  Y  B  M  Q
UA  39  ORD  815A  LAX 1032A  B     0    D10            F  Y  B  M  Q
AA 181  ORD  915A  LAX 1110A  R     0    D10            F  Y  B  H  M
UA 169  ORD  930A  LAX  136P  SL    1    D10            F  Y  B  M  Q
UA 101  ORD 1000A  LAX 1222P  L     0    D10            F  Y  B  M  Q
UA 305  ORD 1001A  LAX 1222P  L     0    72S            F  Y  B  M  Q
AA1375  ORD 1025A  LAX 1252P  L     0    S80            F  Y  B  H  M
AA 281  ORD 1115A  LAX  337P  LS    1    D10            F  Y  B  Q  M
DL 819  ORD 1155A  LAX  508P  LS    2    72S            F  Y  B  M  Q
UA 111  ORD 1200N  LAX  214P  L     0    72S            F  Y  B  M  Q
AA 409  ORD 1200N  LAX  158P  L     0    D10            F  Y  B  H  M
UA 107  ORD 1230P  LAX  250P  L     0    D10            F  Y  B  M  Q
UA  69  ORD  100P  LAX  320P  L     0    72S            F  Y  B  M  Q
UA 259  ORD  200P  LAX  420P  L     0    72S            F  Y  B  M  Q
UA 115  ORD  300P  LAX  516P  D     0    72S            F  Y  B  M  Q
AA  83  ORD  300P  LAX  504P  D     0    D10            F  Y  B  H  M
AA 389  ORD  305P  LAX  746P  D     1    D10            F  Y  B  Q
DL1483  ORD  310P  LAX  906P  S     3    72S            F  Y  B  M  Q
UA 943  ORD  400P  LAX  616P  D     0    D10            F  C  Y  B  M
AA 889  ORD  430P  LAX  704P  D     0    S80            F  Y  B  H  M
UA 103  ORD  500P  LAX  727P  D     0    767            F  C  Y  B  M
UA 815  ORD  600P  LAX  821P  D     0    763            F  C  Y  B  M
AA  89  ORD  630P  LAX  835P  D     0    D10            F  Y  B  H  M
QF 306  ORD  630P  LAX  835P  D     0    D10            F  J  Y
UA 109  ORD  700P  LAX  922P  D     0    D10            F  Y  B  M  Q
AA 615  ORD  820P  LAX 1053P  S     0    S80            F  Y  B  H  M
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AA 435  ORD  930P  LAX 1129P  S     0    D10            F  Y  B  H  M
UA 117  ORD 1000P  LAX 1227A  S     0    757           FN YN  B  M  Q
DL 561  ORD  530A  MIA 1045A  SB    1    72S           F@
AA 671  ORD  630A  MIA 1025A  B     0    AB3            F  Y  B  H  M
UA 394  ORD  744A  MIA 1142A  B     0    757            Y  B  M  H
AA1363  ORD  855A  MIA 1248P  B     0    72S            F  Y  B  H  M
AA 469  ORD 1020A  MIA  217P  L     0    72S            F  Y  B  H  M
AA 915  ORD 1140A  MIA  335P  L     0    AB3            F  Y  B  H  M
UA 230  ORD  200P  MIA  604P  S     0    733            F
PA 483  ORD  210P  MIA  603P  S     0    72S            F  Y  B  M  Q
UA 390  ORD  444P  MIA  839P  D     0    72S            F  Y  B  M  H
PA 701  ORD  510P  MIA  903P  D     0    72S            F  Y  B  M  Q
AA1293  ORD  530P  MIA  933P  D     0    AB3            Y  B  H  M  V
NW 119  ORD  600A  MSP  715A  S     0    72S           FN YN BN  M  H
UA 799  ORD  655A  MSP  817A  #     0    727            F  Y  B  M  Q
NW 121  ORD  700A  MSP  827A  S     0    D9S            F  Y  B  M  H
ZK  31  ORD  700A  MSP  955A        2    BE1            Y  M  H  Q  V
UA 353  ORD  755A  MSP  919A  #     0    733            F  Y  B  M  Q
NW 123  ORD  800A  MSP  920A  S     0    320           FN YN BN  M  H
UA 221  ORD  855A  MSP 1019A  #     0    72S            F  Y  B  M  Q
AA 241  ORD  855A  MSP 1017A  V     0    S80            F  Y  B  M  H
NW 115  ORD  900A  MSP 1027A  S     0    320            F  Y  B  M  H
UA 599  ORD  955A  MSP 1122A        0    73S            F  Y  B  M  Q
NW 165  ORD 1000A  MSP 1127A        0    72S            F  Y  B  M  H
NW 129  ORD 1100A  MSP 1225P        0    DC9            F  Y  B  M  H
AA1333  ORD 1155A  MSP  123P  S     0    S80            F  Y  B  M  H
UA 501  ORD 1155A  MSP  121P  S     0    733            F  Y  B  M  Q
NW 131  ORD 1200N  MSP  130P  S     0    320            F  Y  B  M  H
UA1453  ORD 1255P  MSP  214P  S     0    72S            F  Y  B  M  Q
NW 133  ORD  100P  MSP  220P        0    D9S            F  Y  B  M  H
ZK  35  ORD  114P  MSP  410P        2    BE1            Y  M  H  Q  V
UA 859  ORD  155P  MSP  319P        0    73S            F  Y  B  M  Q
NW 135  ORD  200P  MSP  320P        0    D9S            F  Y  B  M  H
AA  81  ORD  255P  MSP  423P        0    S80            F  Y  B  M  H
UA 567  ORD  255P  MSP  417P        0    72S            F  Y  B  M  Q
NW 137  ORD  300P  MSP  420P        0    320            F  Y  B  M  H
UA 285  ORD  355P  MSP  525P        0    733            F  Y  B  M  Q
NW 472  ORD  400P  MSP  529P        0    D9S            F  Y  B  M  H
AA1052  ORD  435P  MSP  608P        0    S80            F  Y  B  M  H
UA1503  ORD  455P  MSP  626P  S     0    733            F  Y  B  M  Q
NW 141  ORD  500P  MSP  635P  S     0    747            F  Y  B  M  H
UA 217  ORD  555P  MSP  717P  S     0    73S            F  Y  B  M  Q
NW 143  ORD  600P  MSP  731P  S     0    D9S            F  Y  B  M  H
AA 783  ORD  625P  MSP  756P  S     0    S80            F  Y  B  M  H
UA 663  ORD  655P  MSP  825P  S     0    73S            F  Y  B  M  Q
NW 985  ORD  700P  MSP  825P        0    72S            F  Y  B  M  H
UA 625  ORD  755P  MSP  908P        0    72S            F  Y  B  M  Q
NW 109  ORD  800P  MSP  929P        0    72S           FN YN BN  M  H
AA1295  ORD  925P  MSP 1048P        0    S80           FN YN  B  M  H
UA 267  ORD 1000P  MSP 1115P        0    733           FN YN  B  M  Q
UA 463  ORD  745A  MSY 1002A  B     0    72S            F  Y  B  M  H
AA1015  ORD  915A  MSY 1127A  R     0    S80            F  Y  B  M  H
UA 731  ORD 1245P  MSY  302P  L     0    72S            F  Y  B  M  Q
AA1223  ORD  300P  MSY  514P        0    72S            F  Y  B  M  H
DL1507  ORD  310P  MSY  735P  S     1    757            Y  B  M  Q  H
UA 287  ORD  325P  MSY  545P  S     0    73S            F  Y  B  M  H
NW 475  ORD  500P  MSY  846P  S     1    D9S            F  Y  B  M  H
AA1027  ORD  614P  MSY  826P  D     0    72S            F  Y  B  M  H
UA 519  ORD  652P  MSY  916P  D     0    73S            F  Y  B  M  H
CO 478  ORD  540A  PHL  945A  S     1    737            A  Y  Q  H  K
UA 176  ORD  635A  PHL  928A  B     0    D10            F  Y  B  M  Q
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AA 160  ORD  705A  PHL  958A  B     0    72S            F  Y  B  M  H
NW 200  ORD  725A  PHL 1152A  S     1    72S            F  Y  B  M  H
UA 456  ORD  805A  PHL 1057A  B     0    757            F  Y  B  M  Q
AA 128  ORD 1025A  PHL  113P  S     0    S80            F  Y  B  M  H
UA 288  ORD 1110A  PHL  159P  L     0    72S            F  Y  B  M  Q
AA 360  ORD 1215P  PHL  303P  L     0    S80            F  Y  B  M  H
AA 394  ORD  120P  PHL  405P  #     0    72S            F  Y  B  M  H
AS 394  ORD  120P  PHL  405P  LS    0    72S            K
UA 236  ORD  144P  PHL  443P  S     0    757            F  Y  B  M  H
UA 858  ORD  325P  PHL  615P  S     0    727            F  Y  B  M  H
AA 768  ORD  430P  PHL  726P  D     0    757            F  Y  B  M  H
UA 114  ORD  505P  PHL  802P  D     0    D10            F  Y  B  M  Q
UA 274  ORD  810P  PHL 1058P  #     0    72S            F  Y  B  M  Q
AA 898  ORD  815P  PHL 1116P        0    757            F  Y  B  M  H
HP 111  ORD  315A  PHX  610A        0    733           YN BN  H KN QN
HP   1  ORD  605A  PHX  853A  B     0    320            F  Y  B  H  K
UA 321  ORD  828A  PHX 1114A  B     0    757            F  Y  B  M  Q
AA 407  ORD  910A  PHX 1153A  R     0    72S            F  Y  B  M  H
UA 925  ORD  930A  PHX 1213P  L     0    72S            F  Y  B  M  Q
AA 235  ORD 1155A  PHX  234P  L     0    S80            F  Y  B  M  H
UA 965  ORD 1225P  PHX  318P  L     0    733            F  Y  B  M  Q
HP   6  ORD  110P  PHX  403P  L     0    320            F  Y  B  H  K
AA 321  ORD  305P  PHX  544P  G     0    72S            F  Y  B  M  H
HP  10  ORD  340P  PHX  630P  D     0    757            F  Y  B  H  K
AA 179  ORD  630P  PHX  912P  D     0    72S            F  Y  B  M  H
UA 515  ORD  659P  PHX  940P  D     0    72S            F  Y  B  M  Q
NW 109  ORD  800P  PHX 1247A  S     1    72S           FN YN BN  M  H
AA 157  ORD  925P  PHX 1205A        0    S80           FN YN  B  M  H
UA 308  ORD  620A  PVD  927A  B     0    733            F  Y  B  M  Q
AA 208  ORD  645A  PVD  946A  B     0    727            F  Y  B  M  H
UA 686  ORD 1145A  PVD  249P  L     0    733            F  Y  B  M  Q
AA 326  ORD  115P  PVD  417P  #     0    727            F  Y  B  M  H
AA 716  ORD  430P  PVD  741P  D     0    S80            F  Y  B  M  H
UA 140  ORD  450P  PVD  802P  D     0    733            F  Y  B  M  Q
UA 374  ORD  755P  PVD 1107P  #     0    733            F  Y  B  M  Q
AA1362  ORD  755P  PVD 1058P  #     0    S80            F  Y  B  M  H
AA1273  ORD  626A  RDU  921A  B     0    72S            F  Y  B  M  Q
UA 442  ORD  635A  RDU  925A  B     0    73S            F  Y  B  M  Q
AA1288  ORD 1025A  RDU  117P  L     0    S80            F  Y  B  M  Q
UA 404  ORD  134P  RDU  423P  #     0    72S            F  Y  B  M  Q
AA 826  ORD  414P  RDU  707P  D     0    S80            F  Y  B  M  Q
UA 488  ORD  444P  RDU  738P  D     0    733            F  Y  B  M  Q
AA1460  ORD  520P  RDU  812P  D     0    72S            F  Y  B  M  Q
AA 170  ORD  755P  RDU 1044P        0    S80            F  Y  B  M  Q
UA 293  ORD  612A  SEA 1027A  B     1    D10            F  Y  B  M  Q
UA 755  ORD  815A  SEA 1035A  B     0    72S            F  Y  B  M  Q
AA 239  ORD  910A  SEA 1141A  R     0    757            F  Y  B  H  M
UA 863  ORD  944A  SEA 1213P  L     0    D10            F  C  Y  B  M
AA1343  ORD 1144A  SEA  221P  L     0    S80            F  Y  B  H  M
UA 461  ORD 1217P  SEA  233P  L     0    D10            F  Y  B  M  Q
AA 391  ORD  255P  SEA  522P  L     0    72S            F  Y  B  H  M
UA 155  ORD  330P  SEA  551P  D     0    D10            F  Y  B  M  Q
UA 177  ORD  331P  SEA  551P  D     0    72S            F  Y  B  M  Q
UA 457  ORD  530P  SEA  750P  D     0    72S            F  Y  B  M  Q
AA 127  ORD  625P  SEA  858P  D     0    S80            F  Y  B  H  M
UA 159  ORD  705P  SEA  925P  D     0    D10            F  Y  B  M  Q
AA 673  ORD  930P  SEA 1207A  #     0    S80           FN  Y  B  H  M
UA 657  ORD 1000P  SEA 1234A  S     0    733           FN YN  B  M  Q
UA 187  ORD  812A  SFO 1045A  B     0    D10            F  Y  B  M  Q
AA 273  ORD  900A  SFO 1140A  R     0    757            F  Y  B  M  H
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UA 807  ORD  935A  SFO 1210P  L     0    747            C  Y  B  M  Q
UA 669  ORD  945A  SFO 1220P  L     0    72S            F  Y  B  M  Q
AA 117  ORD 1155A  SFO  227P  L     0    767            F  Y  B  M  H
UA 189  ORD 1245P  SFO  310P  L     0    D10            F  Y  B  M  Q
UA 121  ORD 1246P  SFO  321P  L     0    757            F  Y  B  M  Q
AA 575  ORD  300P  SFO  539P  G     0    767            F  Y  B  M  H
UA 817  ORD  320P  SFO  548P  D     0    747            F  C  Y  B  M
UA 141  ORD  455P  SFO  732P  D     0    757            F  Y  B  M  Q
AA1525  ORD  530P  SFO  807P  D     0    767            F  Y  B  M  H
UA 517  ORD  550P  SFO  815P  D     0    72S            F  Y  B  M  Q
CO1765  ORD  615P  SFO 1010P  #     1    733            A  Y  Q  H  K
AA  41  ORD  645P  SFO  931P  D     0    767            F  Y  B  M  H
UA 135  ORD  655P  SFO  928P  D     0    D10            F  Y  B  M  Q
AA 325  ORD  820P  SFO 1114P  S     0    S80            F  Y  B  M  H
AA 457  ORD  930P  SFO 1156P  S     0    757            F  Y  B  M  H
UA 719  ORD 1000P  SFO 1243A  S     0    733           FN YN  B  M  Q
UA1171  ORD  700A  STL  816A  S     0    72S            F  Y  B  M  Q
TW 679  ORD  704A  STL  820A  #     0    D9S            F  Y  B  Q  M
UA 991  ORD  812A  STL  928A  S     0    72S            F  Y  B  M  Q
TW 654  ORD  827A  STL  943A  #     0    M80            F  Y  B  Q  M
AA1063  ORD  855A  STL 1012A        0    S80            F  Y  M  H  B
UA 909  ORD  942A  STL 1100A        0    72S            F  Y  B  M  Q
TW 155  ORD  955A  STL 1112A  #     0    727            F  Y  B  Q  M
AA1011  ORD 1200N  STL  113P  #     0    S80            F  Y  M  H  B
UA 715  ORD 1214P  STL  129P  #     0    737            F  Y  B  M  Q
TW 519  ORD  117P  STL  234P  #     0    D9S            F  Y  B  Q  M
AA1365  ORD  244P  STL  354P        0    S80            F  Y  M  H  B
UA1007  ORD  327P  STL  442P        0    733            F  Y  B  M  Q
TW 339  ORD  405P  STL  519P  #     0    M80            F  Y  B  Q  M
TW 367  ORD  600P  STL  720P  #     0    72S            F  Y  B  Q  M
AA1413  ORD  615P  STL  733P  #     0    727            F  Y  M  H  B
UA 779  ORD  700P  STL  824P  #     0    72S            F  Y  B  M  Q
TW 121  ORD  715P  STL  829P  #     0    M80            F  Y  B  Q  M
AA 445  ORD  925P  STL 1039P        0    S80           FN  Y  M  H  B
UA 304  ORD  744A  TPA 1119A  B     0    72S            F  Y  B  M  H
UA 974  ORD  314P  TPA  649P  S     0    757            F  Y  B  M  Q
AA 315  ORD  530P  TPA 1024P  SD    1    72S            F  Y  B
UA 642  ORD  810P  TPA 1143P  S     0    757            F  Y  B  M  Q
DL 919  PHL  535A  ATL  730A  B     0    M80           FN YN BN MN QN
US1243  PHL  630A  ATL  841A  B     0    733            F  Y  B  H  Q
DL1433  PHL  845A  ATL 1047A  S     0    757            F  Y  B  M  Q
UA1235  PHL  935A  ATL 1249P  L     1    72S            F  Y  B  M  Q
US 771  PHL  950A  ATL 1207P  S     0    D9S            F  Y  B  H  Q
DL1473  PHL 1230P  ATL  232P  L     0    72S            F  Y  B  M  Q
DL1199  PHL  140P  ATL  350P  S     0    M80            F  Y  B  M  Q
DL 223  PHL  400P  ATL  605P  S     0    757            F  Y  B  M  Q
US 667  PHL  440P  ATL  655P  S     0    73S            F  Y  B  H  Q
DL1444  PHL  540P  ATL  746P  D     0    M80            F  Y  B  M  Q
DL 389  PHL  735P  ATL  937P  D     0    763            F  Y  B  M  Q
US 277  PHL  845P  ATL 1101P  S     0    73S           FN YN BN HN QN
AA 601  PHL  800A  BNA  910A  B     0    S80            F  Y  B  H  M
US 535  PHL  840A  BNA  957A  B     0    D9S            F  Y  B  H  Q
AA 249  PHL  125P  BNA  237P  #     0    S80            F  Y  B  H  M
US1141  PHL  335P  BNA  446P  S     0    D9S            F  Y  B  H  Q
AA1507  PHL  704P  BNA  817P  D     0    S80            F  Y  B  H  M
US 404  PHL  700A  BOS  814A  S     0    733            F  Y  B  H  Q
US 804  PHL  800A  BOS  913A  S     0    M80            F  Y  B  H  Q
DL 202  PHL  855A  BOS 1004A        0    72S            F  Y  B  M  Q
US1620  PHL  945A  BOS 1059A        0    733            F  Y  B  H  Q
US1650  PHL 1050A  BOS 1203P        0    D9S            F  Y  B  H  Q
US1432  PHL 1200N  BOS  113P  #     0    D9S            F  Y  B  H  Q
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US1617  PHL  150P  BOS  309P        0    734            F  Y  B  H  Q
TW 712  PHL  236P  BOS  517P        1    72S            F  Y  B  Q  M
US1624  PHL  340P  BOS  455P        0    73S            F  Y  B  H  Q
US1630  PHL  430P  BOS  543P        0    D9S            Y  B  H  Q  M
US 176  PHL  505P  BOS  619P        0    733            F  Y  B  H  Q
US1808  PHL  640P  BOS  754P  #     0    734            F  Y  B  H  Q
US 665  PHL  740P  BOS  850P        0    72S            F  Y  B  H  Q
US1576  PHL  855P  BOS 1013P        0    73S            F  Y  B  H  Q
AA1281  PHL  610A  DEN 1036A  B     1    S80            F  Y  B  H  Q
UA 147  PHL  850A  DEN 1058A  B     0    D10            F  Y  B  M  Q
CO1795  PHL  855A  DEN 1114A  B     0    M80            F  A  Y  Q  H
NW1219  PHL  940A  DEN  143P  L     1    72S            F  Y  B  M
US1626  PHL 1050A  DEN  236P  L     1    733            F
UA 205  PHL  105P  DEN  452P  S     1    757            F  Y  B  M  Q
UA 487  PHL  500P  DEN  847P  SD    1    D10            F  Y  B  M  Q
UA 239  PHL  530P  DEN  739P  D     0    757            F  Y  B  M  Q
CO 467  PHL  540P  DEN  745P  D     0    M80            A  Y  Q  H  K
AA1281  PHL  610A  DFW  833A  B     0    S80            F  Y  B  H  M
AA 201  PHL  724A  DFW 1000A  B     0    S80            F  Y  B  H  M
DL 217  PHL  825A  DFW 1043A  B     0    M80            F  Y  B  M  Q
AA1203  PHL 1225P  DFW  303P  L     0    S80            F  Y  B  H  M
DL1061  PHL  255P  DFW  519P  S     0    73S            F  Y  B  M  Q
AA1483  PHL  259P  DFW  537P  S     0    S80            F  Y  B  H  M
US 275  PHL  400P  DFW  800P  D     1    M80            F  Y  B  H  Q
DL1495  PHL  505P  DFW  721P  D     0    72S            F  Y  B  M  Q
AA 258  PHL  605P  DFW  841P  D     0    S80            F  Y  B  H  M
NW1191  PHL  645A  DTW  830A  S     0    757            F  Y  B  M  H
US1058  PHL  835A  DTW 1019A  S     0    D9S            F  Y  B  H  Q
NW1219  PHL  940A  DTW 1125A        0    72S            F  Y  B  M  H
NW 205  PHL 1245P  DTW  230P  S     0    72S            F  Y  B  M  H
US1674  PHL  255P  DTW  440P  S     0    73S            F  Y  B  H  Q
NW 482  PHL  415P  DTW  603P        0    72S            F  Y  B  M  H
NW 209  PHL  545P  DTW  733P  S     0    D9S            F  Y  B  M  H
US1599  PHL  600P  DTW  748P  D     0    733            F  Y  B  H  Q
NW 211  PHL  710P  DTW  900P        0    D10           FN YN BN  M  H
TW 712  PHL  236P  JFK  326P        0    72S            F  Y  B  Q  M
TW 738  PHL  540P  JFK  639P        0    L10            F  C  Y  B  Q
UA  39  PHL  610A  LAX 1032A  B     1    D10            F  Y  B  M  Q
UA  99  PHL  730A  LAX 1022A  BS    0    757            F  Y  B  M  Q
AA1375  PHL  833A  LAX 1252P  BL    1    S80            F  Y  B  H  M
US 695  PHL  850A  LAX 1146A  B     0    767            F  Y  B  M
UA 239  PHL  530P  LAX  945P  #     1    757            F  Y  B  M  Q
UA  41  PHL  550P  LAX  847P  D     0    757            F  Y  B  M  Q
US1149  PHL  600P  LAX 1035P  D     1    767            F  Y  B  H  Q
US 435  PHL  710A  MIA 1006A  B     0    734            F  Y  B  H  Q
AA 969  PHL  714A  MIA  956A  B     0    72S            F  Y  B  M  H
US 433  PHL  945A  MIA 1241P  B     0    734            F  Y  B  H  Q
AA1377  PHL  104P  MIA  344P  #     0    72S            F  Y  B  M  H
DL 367  PHL  410P  MIA  920P  D     1    72S            F  Y  B  M  Q
AA 921  PHL  630P  MIA  915P  D     0    72S            F  Y  B  M  H
US 537  PHL  740P  MIA 1038P  S     0    73S            F  Y  B  H  Q
NW   7  PHL  700A  MSP  845A  B     0    72S           FN  C YN BN  M
NW 777  PHL  900A  MSP 1052A  B     0    757            F  Y  B  M  H
NW 685  PHL 1145A  MSP  136P  L     0    D9S            F  Y  B  M  H
NW 379  PHL  505P  MSP  655P  D     0    757            F  Y  B  M  H
NW 689  PHL  750P  MSP  942P        0    D9S            F  Y  B  M  H
US 233  PHL  900A  MSY 1122A  B     0    73S            F  Y  B  M
DL1199  PHL  140P  MSY  525P  S     1    M80            Y  B
US 553  PHL  255P  MSY  500P  L     0    734            F  Y  B  H  Q
UA  39  PHL  610A  ORD  719A  B     0    D10            F  Y  B  M  Q
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AA 271  PHL  703A  ORD  815A  B     0    757            F  Y  B  M  H
CO 279  PHL  725A  ORD  956A  S     1    733            F  A  Y  Q  H
UA 409  PHL  742A  ORD  856A  B     0    757            F  Y  B  M  Q
AA1375  PHL  833A  ORD  945A  B     0    S80            F  Y  B  M  H
AA 229  PHL  940A  ORD 1046A  V     0    757            F  Y  B  M  H
UA 189  PHL 1030A  ORD 1140A  S     0    D10            F  Y  B  M  Q
AA 391  PHL 1245P  ORD  154P  L     0    72S            F  Y  B  M  H
NW 205  PHL 1245P  ORD  325P  S     1    72S            F  Y  B  M  H
UA 205  PHL  105P  ORD  218P  S     0    757            F  Y  B  M  Q
UA1017  PHL  255P  ORD  402P  S     0    72S            F  Y  B  M  Q
AA 331  PHL  410P  ORD  523P  S     0    S80            F  Y  B  M  H
UA 487  PHL  500P  ORD  612P  S     0    D10            F  Y  B  M  Q
UA 369  PHL  725P  ORD  840P  #     0    727            F  Y  B  M  Q
AA1453  PHL  729P  ORD  845P  D     0    72S            F  Y  B  M  H
US 353  PHL  830A  PHX 1156A  B     0    733            F  Y  B  H  Q
CO 467  PHL  540P  PHX 1020P  D     1    M80            A  Y  Q  H  K
US 289  PHL  555P  PHX  923P  D     0    733            F  Y  B  H  Q
US1238  PHL  955A  PVD 1057A        0    73S            F  Y  B  H  Q
US 153  PHL  145P  PVD  241P        0    M80            F  Y  B  H  Q
US 540  PHL  440P  PVD  538P        0    D9S            Y  B  H  Q  M
US 431  PHL  740P  PVD  838P        0    733            F  Y  B  H  Q
AA 649  PHL  805A  RDU  928A  V     0    72S            F  Y  B  H  M
US 100  PHL  900A  RDU 1028A  S     0    73S            F  Y  B  H  Q
AA 529  PHL 1159A  RDU  127P        0    72S            F  Y  B  H  M
US 500  PHL  300P  RDU  421P  #     0    733            F  Y  B  H  Q
US 163  PHL  550P  RDU  714P  S     0    D9S            Y  B  H  Q  M
AA 441  PHL  650P  RDU  813P  S     0    S80            F  Y  B  H  M
US 351  PHL  855P  RDU 1021P        0    100            F  Y  B  H  Q
AA 391  PHL 1245P  SEA  522P  L     1    72S            F  Y  B  H  M
UA 183  PHL  830A  SFO 1129A  BS    0    D10            F  Y  B  M  Q
UA 189  PHL 1030A  SFO  310P  SL    1    D10            F  Y  B  M  Q
US2461  PHL  550P  SFO  900P  D     0    767            F  Y  B  H  Q
US  49  PHL  550P  SFO  900P  D     0    767            F  Y  B  H  Q
TW 217  PHL  700A  STL  832A  B     0    72S            F  Y  B  Q  M
US 491  PHL  830A  STL 1002A  B     0    73S            F  Y  B  H  Q
TW 419  PHL  937A  STL 1107A  S     0    72S            F  Y  B  Q  M
NW1159  PHL 1220P  STL  347P  L     1    D9S            F  Y  B  M  H
TW 281  PHL 1248P  STL  220P  #     0    72S            F  Y  B  Q  M
US 449  PHL  300P  STL  438P  S     0    100            F  Y  B  H  Q
TW  97  PHL  359P  STL  529P  S     0    767            F  C  Y  B  Q
US1603  PHL  600P  STL  734P  D     0    73S            F  Y  B  H  Q
TW 711  PHL  719P  STL  845P  D     0    72S            F  Y  B  Q  M
US 801  PHL  700A  TPA  940A  B     0    734            F  Y  B  H  Q
AA 649  PHL  805A  TPA 1158A  V     1    72S            F  Y  B  H  Q
US 744  PHL  830A  TPA 1102A  B     0    M80            F  Y  B  H  Q
US1701  PHL 1000A  TPA 1242P  L     0    733            F  Y  B  H  Q
US 714  PHL 1225P  TPA  422P  LS    1    733            F  Y  B  H  Q
NW 482  PHL  415P  TPA  934P  D     1    72S            F  Y  B  M  H
US 855  PHL  430P  TPA  710P  D     0    734            F  Y  B  H  Q
DL 389  PHL  735P  TPA 1145P  D     1    763           F@ Y@ B@ M@ Q@
US 657  PHL  850P  TPA 1133P  S     0    734            F  Y  B  H  Q
WN 664  PHX  700A  ABQ  805A        0    733            Y  K  L  B  Q
HP 200  PHX  810A  ABQ  920A        0    733            F  Y  B  H  K
WN 806  PHX  825A  ABQ  935A        0    73S            Y  K  L  B  Q
WN 702  PHX  925A  ABQ 1030A        0    73S            Y  K  L  B  Q
HP 202  PHX 1034A  ABQ 1144A        0    733            Y  B  H  K  Q
WN 968  PHX 1035A  ABQ 1145A        0    73S            Y  K  L  B  Q
WN 393  PHX 1135A  ABQ 1240P        0    73S            Y  K  L  B  Q
HP 207  PHX  107P  ABQ  215P        0    73S            Y  B  H  K  Q
WN 963  PHX  150P  ABQ  255P        0    733            Y  K  L  B  Q
WN 521  PHX  230P  ABQ  335P        0    733            Y  K  L  B  Q
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WN 668  PHX  330P  ABQ  435P        0    733            Y  K  L  B  Q
HP 205  PHX  345P  ABQ  454P        0    733            F  Y  B  H  K
WN 466  PHX  405P  ABQ  510P        0    733            Y  K  L  B  Q
HP 208  PHX  606P  ABQ  713P        0    733            F  Y  B  H  Q
WN 998  PHX  625P  ABQ  730P        0    735            Y  K  L  B  Q
WN 497  PHX  820P  ABQ  925P        0    73S            Y  K  L  B  Q
HP 212  PHX  847P  ABQ  958P        0    733            Y  B  H  K  Q
WN 938  PHX 1010P  ABQ 1115P        0    733            Y  K  L  B  Q
WN 801  PHX 1030P  ABQ 1130P        0    73S            Y  K  L  B  Q
DL 314  PHX 1210A  ATL  529A  S     0    757           FN YN BN MN QN
UA 410  PHX  835A  ATL  422P  BS    1    72S            F  Y  B  M  H
HP3002  PHX 1024A  ATL  408P  L     0    320            F  Y  B  H  K
DL 222  PHX 1030A  ATL  410P  L     0    72S            F  Y  B  M  Q
DL1898  PHX  200P  ATL 1042P  D     2    72S            F  Y  B  M  Q
DL 296  PHX  225P  ATL  753P  D     0    757            F  Y  B  M  Q
CO 846  PHX  235P  ATL  946P  #     1    72S            A  Y  Q  H  K
HP3004  PHX  615P  ATL 1202A  D     0    320            F  Y  B  H  K
AA 162  PHX  910A  BNA  100P  R     0    S80            F  Y  H  B  M
WN 603  PHX  935A  BNA  155P        0    733            Y  K  L  B  Q
AA1222  PHX  245P  BNA  638P  D     0    S80            F  Y  H  B  M
WN 520  PHX  430P  BNA  850P        0    733            Y  K  L  B  Q
HP 826  PHX  910A  BOS  357P  L     0    757            F  Y  B  H  K
NW1268  PHX 1115A  BOS  711P  LD    1    72S            F  Y  B  M  H
AA 848  PHX 1225P  BOS  850P  LD    1    S80            F  Y  B  M  Q
HP 820  PHX  103P  BOS  748P  L     0    757            F  Y  B  H  K
DL 360  PHX  225P  BOS 1040P  #     1    72S            F  Y  B  M  Q
US   4  PHX  235P  BOS 1127P  #     1    734            F  Y  B  H  Q
CO1182  PHX  510P  BOS  123A  SD    1    733            Y  Q  H  K  B
HP 182  PHX 1010P  BOS  648A  #     1    757           FN YN BN  H KN
DL 314  PHX 1210A  DCA  755A  SB    1    757           FN YN BN MN QN
US 632  PHX 1225A  DCA  806A  S     1    733           FN YN BN HN QN
US 356  PHX  825A  DCA  403P  BS    1    734            F  Y  B  H  Q
HP 264  PHX  840A  DCA  358P  S     1    733            Y  B  H  K  Q
AA 562  PHX 1045A  DCA  658P  LD    1    S80            F  Y  B  M  Q
UA 622  PHX 1202P  DCA  808P  LD    1    757            F  Y  B  M  Q
NW 250  PHX  150P  DCA  959P  L     1    320            F  Y  B  M  H
HP 268  PHX  233P  DCA  951P  S     1    733            F  Y  B  H  K
NW 106  PHX  345P  DCA 1139P  D     1    320            F  Y  B  M  H
UA 396  PHX  800A  DEN  940A  B     0    72S            F  Y  B  M  Q
CO 562  PHX  800A  DEN  944A  #     0    72S            A  Y  Q  H  K
HP 497  PHX  855A  DEN 1041A        0    73S            Y  B  H  K  Q
HP 490  PHX 1040A  DEN 1229P        0    733            Y  B  H  K  Q
CO 280  PHX 1050A  DEN 1233P  S     0    M80            A  Y  Q  H  K
HP 499  PHX 1200N  DEN  338P  S     1    733            Y  B  H  Q
UA 164  PHX  101P  DEN  240P  S     0    72S            F  Y  B  M  Q
HP 492  PHX  104P  DEN  248P  #     0    733            F  Y  B  H  K
CO1170  PHX  140P  DEN  319P  S     0    72S            Y  Q  H  K  B
HP 496  PHX  349P  DEN  533P        0    733            Y  B  H  K  Q
UA 706  PHX  415P  DEN  559P  #     0    733            F  Y  B  M  H
CO1182  PHX  510P  DEN  649P  S     0    733            Y  Q  H  K  B
HP 491  PHX  611P  DEN  758P  S     0    73S            Y  B  H  K  Q
CO1672  PHX  755P  DEN  932P        0    73S            A  Y  Q  H  K
HP 493  PHX  834P  DEN 1020P        0    733            Y  B  H  K  Q
AA 534  PHX  235A  DFW  538A        0    72S           FN YN  B  H  M
DL 286  PHX  600A  DFW  908A  B     0    72S           FN YN BN MN QN
AA 316  PHX  835A  DFW 1148A  B     0    D10            F  Y  B  H  M
DL1112  PHX  900A  DFW 1217P  B     0    72S            F  Y  B  M  Q
AA 570  PHX 1010A  DFW  129P  L     0    D10            F  Y  B  H  M
HP 546  PHX 1033A  DFW  200P  S     0    733            F  Y  B  H  K
CO 280  PHX 1050A  DFW  407P  S     1    M80            A  Y  Q  H  K
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AA 740  PHX 1250P  DFW  417P  L     0    72S            F  Y  B  H  M
DL 588  PHX 1255P  DFW  415P  L     0    72S            F  Y  B  M  Q
HP 540  PHX  113P  DFW  439P  S     0    733            F  Y  B  H  K
HP 547  PHX  337P  DFW  701P  S     0    733            Y  B  H  K  Q
AA1074  PHX  340P  DFW  657P  D     0    S80            F  Y  B  H  M
DL 252  PHX  435P  DFW  748P  D     0    757            F  Y  B  M  Q
HP 548  PHX  617P  DFW  945P  S     0    73S            Y  B  H  K  Q
AA1530  PHX  705P  DFW 1016P  D     0    72S            F  Y  B  H  M
NW 256  PHX 1240A  DTW  617A  S     0    72S           FN YN BN  M  H
NW 248  PHX 1000A  DTW  337P  L     0    72S            F  Y  B  M  H
DL 588  PHX 1255P  DTW  830P  LD    1    72S            F  Y  B  M  Q
NW 250  PHX  150P  DTW  733P  L     0    320            F  Y  B  M  H
NW 252  PHX  300P  DTW  851P  D     0    72S            F  Y  B  M  H
WN 559  PHX  700A  HOU 1145A        2    73S            Y  K  L  B  Q
WN 123  PHX  755A  HOU 1135A        0    73S            Y  K  L  B  Q
WN 308  PHX  845A  HOU  100P        1    73S            Y  K  L  B  Q
WN 611  PHX 1030A  HOU  210P        0    733            Y  K  L  B  Q
WN 920  PHX 1100A  HOU  435P        3    733            Y  K  L  B  Q
WN 361  PHX  100P  HOU  440P        0    735            Y  K  L  B  Q
WN 410  PHX  230P  HOU  645P        1    733            Y  K  L  B  Q
WN 882  PHX  350P  HOU  800P        1    733            Y  K  L  B  Q
WN 728  PHX  530P  HOU  900P        0    73S            Y  K  L  B  Q
WN 560  PHX  635P  HOU 1045P        1    73S            Y  K  L  B  Q
WN 674  PHX  650P  HOU 1100P        1    73S            Y  K  L  B  Q
WN 997  PHX  750P  HOU 1120P        0    735            Y  K  L  B  Q
WN 781  PHX  850P  HOU 1220A        0    733            Y  K  L  B  Q
HP 290  PHX  900A  JFK  340P  B     0    757            F  Y  B  H  K
TW 730  PHX  930A  JFK  405P  L     0    L10            F  C  Y  B  Q
HP 292  PHX  120P  JFK  800P  L     0    757            F  Y  B  H  K
HP 790  PHX  845P  JFK  325A  D     0    320           FN YN BN  H KN
WN 291  PHX  630A  LAX  640A        0    733            Y  K  L  B  Q
HP  14  PHX  650A  LAX  706A        0    73S            Y  B  H  K  Q
DL1467  PHX  650A  LAX  703A  #     0    72S            F  Y  B  M  Q
WN 596  PHX  700A  LAX  715A        0    73S            Y  K  L  B  Q
WN1403  PHX  725A  LAX  740A        0    733            Y  K  L  B  Q
WN1602  PHX  750A  LAX  810A        0    733            Y  K  L  B  Q
HP  15  PHX  800A  LAX  820A        0    73S            Y  B  H  K  Q
WN 921  PHX  830A  LAX  845A        0    733            Y  K  L  B  Q
HP  17  PHX  925A  LAX  945A        0    73S            Y  B  H  K  Q
WN 602  PHX  930A  LAX  945A        0    733            Y  K  L  B  Q
HP  18  PHX 1025A  LAX 1045A        0    320            F  Y  B  H  K
WN 665  PHX 1030A  LAX 1050A        0    73S            Y  K  L  B  Q
DL 369  PHX 1105A  LAX 1130A  S     0    757            F  Y  B  M  Q
WN 440  PHX 1140A  LAX 1200N        0    733            Y  K  L  B  Q
HP  20  PHX 1200N  LAX 1220P        0    73S            Y  B  H  K  Q
WN1496  PHX 1245P  LAX  105P        0    733            Y  K  L  B  Q
WN 426  PHX  120P  LAX  140P        0    733            Y  K  L  B  Q
WN 778  PHX  200P  LAX  220P        0    735            Y  K  L  B  Q
WN 994  PHX  230P  LAX  250P        0    73S            Y  K  L  B  Q
HP  24  PHX  230P  LAX  250P        0    73S            Y  B  H  K  Q
WN 947  PHX  400P  LAX  420P        0    73S            Y  K  L  B  Q
WN 707  PHX  435P  LAX  455P        0    73S            Y  K  L  B  Q
WN 344  PHX  455P  LAX  515P        0    735            Y  K  L  B  Q
HP  29  PHX  455P  LAX  515P        0    73S            Y  H
WN 923  PHX  535P  LAX  555P        0    73S            Y  K  L  B  Q
WN 709  PHX  605P  LAX  625P        0    73S            Y  K  L  B  Q
DL1793  PHX  640P  LAX  649P  S     0    73S            F  Y  B  M  Q
WN 931  PHX  640P  LAX  700P        0    73S            Y  K  L  B  Q
WN1545  PHX  710P  LAX  730P        0    73S            Y  K  L  B  Q
HP  31  PHX  730P  LAX  750P        0    73S            Y  B  H  K  Q
WN 212  PHX  740P  LAX  800P        0    733            Y  K  L  B  Q
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WN 757  PHX  845P  LAX  905P        0    73S            Y  K  L  B  Q
DL1797  PHX  850P  LAX  903P        0    72S            F  Y  B  M  Q
WN1950  PHX  900P  LAX  925P        0    733            Y  K  L  B  Q
WN 274  PHX  935P  LAX  950P        0    73S            Y  K  L  B  Q
HP  35  PHX  955P  LAX 1015P        0    733            Y  B  H  K  Q
WN 453  PHX 1030P  LAX 1045P        0    73S            Y  K  L  B  Q
NW 100  PHX  815A  MSP 1218P  B     0    757            F  Y  B  M  H
NW 110  PHX  930A  MSP  131P  B     0    72S            F  Y  B  M  H
HP 580  PHX 1035A  MSP  245P  S     0    733            Y  B  H  K  Q
NW 102  PHX  105P  MSP  503P  L     0    D10            F  Y  B  M  H
NW 104  PHX  230P  MSP  625P  L     0    72S            F  Y  B  M  H
NW 106  PHX  345P  MSP  741P  D     0    320            F  Y  B  M  H
NW 108  PHX  600P  MSP  951P  D     0    757           FN YN BN  M  H
HP 586  PHX  613P  MSP 1017P  S     0    733            Y  B  H  K  Q
WN 123  PHX  755A  MSY 1255P        1    73S            Y  K  L  B  Q
WN 308  PHX  845A  MSY  220P        2    73S            Y  K  L  B  Q
UA1276  PHX 1255A  ORD  503A  #     0    733           FN YN  B  M  Q
AA 890  PHX  140A  ORD  555A        0    S80           FN YN  B  M  H
HP   2  PHX  800A  ORD 1220P  B     0    320            F  Y  B  H  K
AA 148  PHX  810A  ORD 1221P  B     0    72S            F  Y  B  M  H
UA 410  PHX  835A  ORD 1245P  B     0    72S            F  Y  B  M  H
HP   4  PHX 1030A  ORD  244P  L     0    757            F  Y  B  H  K
AA 562  PHX 1045A  ORD  310P  L     0    S80            F  Y  B  M  H
UA 622  PHX 1202P  ORD  415P  L     0    757            F  Y  B  M  Q
AA 848  PHX 1225P  ORD  443P  L     0    S80            F  Y  B  M  H
AA 204  PHX  219P  ORD  647P  D     0    S80            F  Y  B  M  H
UA 762  PHX  310P  ORD  720P  D     0    72S            F  Y  B  M
HP   8  PHX  605P  ORD 1022P  D     0    320            F  Y  B  H  K
HP 333  PHX  850P  ORD  118A  S     0    733           YN BN  H KN QN
DL 648  PHX  830A  PHL  415P  B     1    72S            F  Y  B  M  Q
US 796  PHX  920A  PHL  336P  B     0    733            F  Y  B  H  Q
US 431  PHX 1245P  PHL  700P  L     0    733            F  Y  B  H  Q
AA1222  PHX  245P  PHL 1032P  D     1    S80            F  Y  B  M  Q
AA1074  PHX  340P  PHL 1141P  #     1    S80            F  Y  B  M  Q
DL 252  PHX  435P  PHL 1245A  DS    1    757           F@ Y@ B@ M@ Q@
US 431  PHX 1245P  PVD  838P  L     1    733            F  Y  B  H  Q
HP 523  PHX  715A  SEA 1130A        2    733            Y  B  H  K  Q
NW1233  PHX  745A  SEA 1125A  SB    1    320           FN YN BN  M  H
AS 603  PHX  810A  SEA 1000A  B     0    72S            F  Y  B  M  H
HP 844  PHX  932A  SEA 1157A  S     0    733            Y  B  H  K  Q
AS 613  PHX 1110A  SEA  110P  L     0    M80            F  Y  B  M  H
HP 841  PHX 1210P  SEA  316P  S     1    733            Y  B  H  K  Q
AS 605  PHX  105P  SEA  305P  L     0    M80            F  Y  B  M  H
AS 608  PHX  235P  SEA  535P  L     1    72S            F  Y  B  M  H
UA1770  PHX  235P  SEA  628P  S     1    72S            F  Y  B  M  Q
HP 845  PHX  457P  SEA  718P  S     0    73S            Y  B  H  K  Q
AS 611  PHX  530P  SEA  720P  D     0    72S            F  Y  B  M  H
AS 607  PHX  605P  SEA  855P  D     1    72S            F  Y  B  M  H
HP 840  PHX  940P  SEA 1158P  S     0    73S            Y  B  H  K  Q
UA1444  PHX  710A  SFO  810A  B     0    72S            F  Y  B  M  Q
HP 600  PHX  740A  SFO  839A  #     0    320            F  Y  B  H  K
WN 640  PHX  810A  SFO  905A        0    73S            Y  K  L  B  Q
HP 604  PHX  947A  SFO 1050A  #     0    320            F  Y  B  H  K
WN 588  PHX 1045A  SFO 1145A        0    733            Y  K  L  B  Q
UA1040  PHX 1121A  SFO 1230P  L     0    733            F  Y  B  M  Q
HP 606  PHX 1205P  SFO  107P  S     0    320            F  Y  B  H  K
UA1770  PHX  235P  SFO  335P  #     0    72S            F  Y  B  M  Q
WN 487  PHX  440P  SFO  540P        0    73S            Y  K  L  B  Q
HP 605  PHX  500P  SFO  602P  S     0    733            F  Y  B  H  K
UA1432  PHX  505P  SFO  605P  S     0    72S            F  Y  B  M  Q
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WN 721  PHX  520P  SFO  715P        1    73S            Y  K  L  B  Q
WN 753  PHX  715P  SFO  805P        0    73S            Y  K  L  B  Q
HP 602  PHX  745P  SFO  849P        0    73S            Y  B  H  K  Q
UA1091  PHX  748P  SFO  847P  D     0    72S            F  Y  B  M  Q
WN 417  PHX  915P  SFO 1010P        0    73S            Y  K  L  B  Q
HP 301  PHX 1120P  SFO  140A        1    733           FN YN BN  H KN
TW 146  PHX  255A  STL  646A  #     0    72S           FN YN  B  Q  M
WN 696  PHX  815A  STL  100P        1    733            Y  K  L  B  Q
TW 284  PHX  831A  STL 1225P  B     0    72S            F  Y  B  Q  M
HP1404  PHX  905A  STL  108P  S     0    733            Y  B  H  K  Q
TW 824  PHX  941A  STL  135P  B     0    72S            F  Y  B  Q  M
WN 689  PHX 1000A  STL  240P        1    73S            Y  K  L  B  Q
TW 316  PHX 1218P  STL  415P  L     0    72S            F  Y  B  Q  M
WN 510  PHX 1220P  STL  425P        0    733            Y  K  L  B  Q
HP1408  PHX  117P  STL  524P  S     0    733            Y  B  H  K  Q
WN 966  PHX  155P  STL  640P        1    73S            Y  K  L  B  Q
TW 260  PHX  310P  STL  709P  D     0    72S            F  Y  B  Q  M
WN 504  PHX  335P  STL  815P        1    73S            Y  K  L  B  Q
WN 728  PHX  530P  STL 1105P        1    73S            Y  K  L  B  Q
HP1406  PHX  614P  STL 1011P  D     0    320            F  Y  B  H  K
CO1002  PHX  910A  TPA  441P  BS    1    M80            A  Y  Q  H  K
CO1619  PVD  630A  ATL 1113A  B     1    73S            F  A  Y  Q  H
AA 637  PVD  735A  ATL 1138A  B     1    727            F  Y  B  M  H
DL 929  PVD  830A  ATL 1104A  B     0    M80            F  Y  B  M  Q
NW 799  PVD  930A  ATL  223P  L     1    D9S            F  Y  B  M  H
DL 679  PVD  505P  ATL  736P  D     0    M80            F  Y  B  M  Q
US1162  PVD  550P  ATL  940P  S     1    D9S            F  Y  B  H  Q
US 291  PVD  630A  DCA  752A  S     0    M80            F  Y  B  H  Q
US1755  PVD 1100A  DCA 1222P        0    D9S            F  Y  B  H  Q
US1109  PVD  140P  DCA  304P        0    733            F  Y  B  H  Q
US 696  PVD  635P  DCA  800P  #     0    D9S            F  Y  B  H  Q
UA 523  PVD 1005A  DFW  255P  L     1    733            F  Y  B  M  Q
NW 695  PVD  355P  DFW  903P  D     1    D9S            F
NW1003  PVD  630A  DTW  840A  S     0    D9S            F  Y  B  M  H
NW 799  PVD  930A  DTW 1139A        0    D9S            F  Y  B  M  H
NW 695  PVD  355P  DTW  603P        0    D9S            F  Y  B  M  H
NW1449  PVD  655P  DTW  902P        0    D9S           FN YN BN  M  H
UA1545  PVD  640A  MIA 1143A  SB    1    733            F  Y  B  M  Q
UA1185  PVD 1155A  MSY  352P  S     1    73S            F  Y  B  M  H
AA 133  PVD  625A  ORD  753A  B     0    S80            F  Y  B  M  H
UA 433  PVD  715A  ORD  858A  B     0    733            F  Y  B  M  Q
AA 669  PVD  915A  ORD 1043A  V     0    S80            F  Y  B  M  H
UA 523  PVD 1005A  ORD 1143A  L     0    733            F  Y  B  M  Q
AA 793  PVD 1230P  ORD  203P  L     0    727            F  Y  B  M  H
UA 643  PVD  400P  ORD  548P  S     0    733            F  Y  B  M  Q
AA 381  PVD  712P  ORD  849P  D     0    727            F  Y  B  M  H
UA1763  PVD  755P  ORD  931P  #     0    733            F  Y  B  M  Q
US2385  PVD  640A  PHL  751A  S     0    733            F  Y  B  H  Q
US 531  PVD 1255P  PHL  203P  #     0    73S            F  Y  B  H  Q
US 173  PVD  400P  PHL  508P        0    73S            F  Y  B  H  Q
US 221  PVD  655P  PHL  803P  #     0    M80            F  Y  B  H  Q
AA 637  PVD  735A  RDU  925A  B     0    727            F  Y  B  H  M
US1755  PVD 1100A  RDU  212P  #     1    D9S            Y  B  H  Q  M
AA 769  PVD 1130A  RDU  122P  L     0    72S            F  Y  B  H  M
AA1559  PVD  616P  RDU  807P  D     0    S80            F  Y  B  H  M
US 697  PVD  730A  SEA 1232P  B     1    733            F  Y  B  H  Q
US 291  PVD  630A  TPA 1045A  SB    1    M80            F  Y  B  H  Q
DL 553  PVD  750A  TPA 1205P  B     1    M80            F  Y  B  M  Q
US 430  PVD  600P  TPA 1047P  DS    1    M80            F  Y  B  H  Q
DL1175  RDU  615A  ATL  740A  #     0    72S           FN YN BN MN QN
DL1143  RDU  800A  ATL  915A  #     0    73S            F  Y  B  M  Q
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DL 495  RDU  940A  ATL 1104A        0    M80            F  Y  B  M  Q
AA 637  RDU 1010A  ATL 1138A        0    727            F  Y  B  H  M
DL 297  RDU  105P  ATL  227P  S     0    M80            F  Y  B  M  Q
AA 467  RDU  200P  ATL  328P        0    S80            F  Y  B  H  M
DL1059  RDU  430P  ATL  550P  S     0    72S            F  Y  B  M  Q
US1636  RDU  815P  ATL 1054P        1    D9S            Y  B  H  Q  M
DL 359  RDU  825P  ATL  939P        0    D9S            F  Y  B  M  Q
AA 715  RDU  900P  ATL 1028P        0    72S           FN  Y  B  H  M
AA1159  RDU  820A  BNA  856A  B     0    S80            F  Y  B  M  H
US 303  RDU  115P  BNA  313P        1    D9S            Y  B  H  Q  M
AA1571  RDU  200P  BNA  242P        0    727            F  Y  B  M  H
AA 483  RDU  740P  BNA  818P        0    72S            F  Y  B  M  H
US1072  RDU  845A  BOS 1023A  B     0    100            F  Y  B  H  Q
AA1194  RDU  850A  BOS 1035A  B     0    S80            F  Y  B  H  M
US1630  RDU  245P  BOS  543P  #     1    D9S            Y  B  H  Q  M
AA 736  RDU  320P  BOS  507P        0    S80            F  Y  B  H  M
AA1170  RDU  750P  BOS  957P        0    D10            F  Y  B  H  M
US1691  RDU  710A  DCA  804A  S     0    100            Y  B  H  Q  M
AA 766  RDU  850A  DCA 1000A        0    S80            F  Y  B  H  M
US1642  RDU 1005A  DCA 1059A        0    D9S            F  Y  B  H  Q
AA 298  RDU  320P  DCA  414P        0    S80            F  Y  B  H  M
US1004  RDU  725P  DCA  821P  #     0    73S            F  Y  B  H  Q
AA1610  RDU  745P  DCA  850P        0    S80            F  Y  B  H  M
AA 429  RDU  635A  DFW  829A  B     0    727            F  Y  B  H  M
AA1373  RDU  810A  DFW 1003A  B     0    S80            F  Y  B  H  M
DL 427  RDU  855A  DFW 1051A  B     0    M80            F  Y  B  M  Q
AA1277  RDU 1005A  DFW 1200N  S     0    S80            F  Y  B  H  M
AA 383  RDU  100P  DFW  300P  L     0    S80            F  Y  B  H  M
AA1497  RDU  325P  DFW  535P  S     0    S80            F  Y  B  H  M
DL1193  RDU  410P  DFW  611P  S     0    73S            F  Y  B  M  Q
AA1243  RDU  420P  DFW  851P  SD    1    72S            F  Y  H  M  Q
AA1089  RDU  504P  DFW  713P  D     0    72S            F  Y  B  H  M
AA1527  RDU  655P  DFW  903P  D     0    S80            F  Y  B  H  M
AA 596  RDU  900A  DTW 1043A  B     0    72S            F  Y  B  H  M
AA1062  RDU  325P  DTW  514P        0    72S            F  Y  B  H  M
DL 412  RDU  640P  DTW  955P  S     1    757            F  Y  B  M  Q
AA1046  RDU  740P  DTW  921P        0    72S            F  Y  B  H  M
AA 542  RDU  330P  JFK  510P        0    72S            Y  B  M  Q  H
US1100  RDU  420P  JFK  733P  D     1    73S            Y  B  H  Q  M
AA1160  RDU  740P  JFK  913P        0    72S            F  Y  B  M  Q
AA1551  RDU 1005A  MIA 1205P        0    72S            F  Y  B  H  M
AA  35  RDU  210P  MIA  421P        0    72S            F  Y  B  H  M
AA1635  RDU  900P  MIA 1103P        0    72S           FN  Y  B  H  M
AA1219  RDU  701A  ORD  808A  B     0    S80            F  Y  H  B  M
UA1079  RDU  735A  ORD  843A  B     0    733            F  Y  B  M  Q
AA 887  RDU  855A  ORD 1007A  B     0    72S            F  Y  H  B  M
UA1479  RDU 1035A  ORD 1145A  S     0    73S            F  Y  B  M  Q
AA1207  RDU 1258P  ORD  202P  L     0    S80            F  Y  H  B  M
AA1302  RDU  320P  ORD  430P        0    S80            F  Y  H  B  M
AA1243  RDU  420P  ORD  525P  S     0    72S            F  Y  H  B  M
UA 423  RDU  508P  ORD  614P  D     0    72S            F  Y  B  M  Q
US 205  RDU  625P  ORD  855P  S     1    D9S            F  Y  B  H  Q
AA1312  RDU  740P  ORD  845P        0    S80            F  Y  H  B  M
US 270  RDU  750A  PHL  900A  S     0    733            F  Y  B  H  Q
AA 710  RDU  900A  PHL 1022A  V     0    72S            F  Y  B  H  M
US1708  RDU 1130A  PHL 1242P  S     0    73S            F  Y  B  H  Q
US1630  RDU  245P  PHL  358P  #     0    D9S            F  Y  B  H  Q
AA 358  RDU  320P  PHL  437P        0    S80            F  Y  B  H  M
US  64  RDU  530P  PHL  643P  S     0    D9S            F  Y  B  H  Q
AA1258  RDU  745P  PHL  904P        0    72S            F  Y  B  H  M
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US1691  RDU  710A  PVD  950A  S     1    100            Y  B  H  Q  M
AA 334  RDU  900A  PVD 1040A  B     0    72S            F  Y  B  H  M
AA1340  RDU  330P  PVD  513P        0    S80            F  Y  B  H  M
US1004  RDU  725P  PVD 1013P  #     1    73S            F  Y  B  H  Q
AA 750  RDU  745P  PVD  922P        0    727            F  Y  B  H  M
TW 321  RDU  701A  STL  814A  B     0    D9S            F  Y  B  Q  M
TW 577  RDU  117P  STL  236P  #     0    D9S            F  Y  B  Q  M
TW 505  RDU  434P  STL  554P  D     0    D9S            F  Y  B  Q  M
DL1175  RDU  615A  TPA 1000A  #     1    72S           F@ Y@ B@ M@ Q@
US1170  RDU  815A  TPA 1122A  S     1    734            F  Y  B  H  Q
AA 649  RDU 1010A  TPA 1158A        0    72S            F  Y  B  H  M
AA1403  RDU  210P  TPA  403P        0    72S            F  Y  B  H  M
AA1005  RDU  900P  TPA 1048P        0    72S           FN  Y  B  H  M
UA 509  SEA  800A  ABQ  134P  #     1    733            F  Y  B  M  Q
DL 706  SEA  830A  ATL  349P  B     0    L10            F  Y  B  M  H
DL 830  SEA  325P  ATL 1048P  D     0    72S            F  Y  B  M  Q
DL 304  SEA 1025P  ATL  543A  S     0    763           FN YN BN MN QN
AA1406  SEA  750A  BNA  423P  B     1    S80            F  Y  B  H  M
AA 440  SEA  119P  BNA  956P  L     1    757            F  Y  B  H  M
NW  46  SEA  700A  BOS  453P  BS    1    D10            F  C  Y  B  M
US1438  SEA  815A  BOS  614P  BS    1    733            Y  B  H  Q  M
TW 150  SEA 1004A  BOS  846P  LD    1    M80            F  Y  B  Q  M
UA  56  SEA  100P  BOS 1100P  L     1    757            F  Y  B  M  Q
TW  80  SEA  112A  DCA 1040A  SB    1    M80           FN YN  B  Q  M
CO 758  SEA  635A  DCA  522P  BS    1    M80            A  Y  Q  H  K
NW 986  SEA  705A  DCA  453P  #     1    320            F  Y  B  M  H
UA 620  SEA  955A  DCA  659P  LD    1    72S            F  Y  B  M  Q
DL 166  SEA 1230P  DCA  945P  L     1    72S            F  Y  B  M  Q
AA 266  SEA  115P  DCA 1102P  L     1    757            F  Y  B  M  H
CO1232  SEA  620A  DEN  947A  B     0    AB3            F  A  Y  Q  H
UA 228  SEA  620A  DEN  944A  B     0    D10            F  Y  B  M  Q
UA 509  SEA  800A  DEN 1129A  B     0    733            F  Y  B  M  Q
CO1272  SEA  900A  DEN 1226P  B     0    M80            A  Y  Q  H  K
UA 246  SEA 1117A  DEN  240P  L     0    D10            F  Y  B  M  Q
CO 136  SEA 1150A  DEN  319P  L     0    72S            A  Y  Q  H  K
UA 700  SEA 1222P  DEN  352P  L     0    735            F  Y  B  M  Q
UA 146  SEA  243P  DEN  604P  S     0    D10            F  Y  B  M  Q
CO1262  SEA  300P  DEN  629P  S     0    M80            A  Y  Q  H  K
UA 362  SEA  425P  DEN  752P  D     0    735            F  Y  B  M  Q
CO1214  SEA  525P  DEN  841P  D     0    72S            A  Y  Q  H  K
AA 396  SEA 1212A  DFW  545A        0    72S           FN YN  B  H  M
AA1202  SEA  619A  DFW 1203P  B     0    S80            F  Y  B  H  M
DL 174  SEA  630A  DFW 1207P  B     0    72S            F  Y  B  M  Q
AA1406  SEA  750A  DFW  137P  B     0    S80            F  Y  B  H  M
DL 994  SEA  825A  DFW  340P  BL    1    757            F  Y  B  M  Q
AA1096  SEA 1036A  DFW  417P  L     0    S80            F  Y  B  H  M
DL1720  SEA 1145A  DFW  713P  L     1    757            F  Y  B  M  Q
AA1016  SEA 1155A  DFW  654P  L     1    S80            F  Y  B  M  Q
DL 558  SEA 1235P  DFW  743P  LD    1    L10            F  Y  B  M  Q
AA 440  SEA  119P  DFW  714P  L     0    757            F  Y  B  H  M
DL 198  SEA  145P  DFW  727P  L     0    757            F  Y  B  M  Q
AA1442  SEA  815P  DFW  547A        2    S80            F  Y  B  M  Q
NW 578  SEA  845A  DTW  353P  B     0    757            F  Y  B  M  H
NW 282  SEA 1230P  DTW  736P  L     0    757            F  Y  B  M  H
NW 580  SEA  155P  DTW  901P  D     0    72S            F  Y  B  M  H
NW 582  SEA 1130P  DTW  627A  S     0    320            F  Y  B  M  H
TW 708  SEA  850A  JFK  450P  B     0    L10            F  C  Y  B  Q
UA  34  SEA  120P  JFK  921P  L     0    767            F  Y  B  M  Q
DL 620  SEA  650A  LAX  911A  B     0    757            F  Y  B  M  Q
AS  22  SEA  700A  LAX  940A  B     0    M80            F  Y  B  M  H
NW1280  SEA  700A  LAX  931A  B     0    757            F  Y  B  M  H
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UA1901  SEA  700A  LAX  930A  B     0    735            F  Y  B  M  Q
AS 210  SEA  800A  LAX 1035A  B     0    M80            F  Y  B  M  H
DL 170  SEA  830A  LAX 1052A  B     0    72S            F  Y  B  M  Q
UA 112  SEA  830A  LAX 1100A  B     0    735            F  Y  B  M  Q
AS 214  SEA 1015A  LAX 1250P  L     0    M80            F  Y  B  M  H
AS 228  SEA 1100A  LAX  135P  L     0    M80            F  Y  B  M  H
UA1909  SEA 1130A  LAX  157P  L     0    735            F  Y  B  M  Q
NW 189  SEA 1130A  LAX  158P  L     0    72S            F  Y  B  M  H
AS 234  SEA 1200N  LAX  235P  L     0    M80            F  Y  B  M  H
DL1708  SEA 1235P  LAX  252P  L     0    72S            F  Y  B  M  Q
AS 238  SEA  100P  LAX  330P  L     0    72S            F  Y  B  M  H
UA1915  SEA  100P  LAX  327P  L     0    735            F  Y  B  M  Q
UA1919  SEA  230P  LAX  456P  S     0    735            F  Y  B  M  Q
DL1710  SEA  230P  LAX  448P  S     0    72S            F  Y  B  M  Q
UA1247  SEA  300P  LAX  714P  S     1    735            F  Y  B  M  H
AS 226  SEA  345P  LAX  615P  D     0    M80            F  Y  B  M  H
UA1921  SEA  400P  LAX  627P  D     0    735            F  Y  B  M  Q
DL 192  SEA  425P  LAX  843P  S     1    757            F  Y  B  M  Q
AS  96  SEA  500P  LAX  730P  D     0    72S            F  Y  B  M  H
UA1925  SEA  530P  LAX  758P  D     0    735            F  Y  B  M  Q
DL 887  SEA  545P  LAX  909P  D     1    72S            F  Y  B  M  Q
AS 202  SEA  630P  LAX  905P  D     0    M80            F  Y  B  M  H
NW 191  SEA  630P  LAX  900P  D     0    72S            F  Y  B  M  H
UA1929  SEA  700P  LAX  932P  D     0    735            F  Y  B  M  Q
DL1714  SEA  755P  LAX 1016P  D     0    757            F  Y  B  M  Q
DL 174  SEA  630A  MIA  445P  BL    1    72S            F  Y
DL 558  SEA 1235P  MIA 1215A  LD    2    L10            F  Y  B  M  Q
AA  26  SEA 1255P  MIA  930P  L     0    757            F  Y  M  Q  B
NW 158  SEA  100A  MSP  605A  S     0    757            F  Y  B  M  H
NW  46  SEA  700A  MSP 1210P  B     0    D10            F  C  Y  B  M
NW   8  SEA 1140A  MSP  446P  L     0    747            F  C  Y  B  M
NW 156  SEA  235P  MSP  740P  D     0    D10            F  Y  B  M  H
NW 154  SEA  455P  MSP 1000P  D     0    757           FN YN BN  M  H
DL 170  SEA  830A  MSY  553P  BL    1    72S            F  Y  B  M  Q
DL1720  SEA 1145A  MSY  950P  L     2    757            F  Y  B  M  Q
AA 632  SEA 1201A  ORD  541A        0    S80           FN  Y  B  H  M
NW 158  SEA  100A  ORD  814A  S     1    757            F  Y  B  M  H
UA 228  SEA  620A  ORD  210P  BL    1    D10            F  Y  B  M  Q
TW 326  SEA  644A  ORD  248P  #     1    M80            F  Y  B  Q  M
AS 394  SEA  650A  ORD 1228P  B     0    72S            F  M  V  K
AA 394  SEA  650A  ORD 1228P  B     0    72S            F  Y  B  H  M
UA 154  SEA  705A  ORD 1245P  B     0    D10            F  Y  B  M  Q
UA 880  SEA  706A  ORD 1245P  B     0    72S            F  Y  B  M  Q
AA 716  SEA  940A  ORD  320P  L     0    S80            F  Y  B  H  M
UA 240  SEA  954A  ORD  331P  L     0    D10            F  Y  B  M  Q
UA 620  SEA  955A  ORD  331P  L     0    72S            F  Y  B  M  Q
UA 246  SEA 1117A  ORD  703P  LD    1    D10            F  Y  B  M  Q
CO 136  SEA 1150A  ORD  739P  LD    1    72S            A  Y  Q  H  K
AA 266  SEA  115P  ORD  717P  L     0    757            F  Y  B  H  M
UA 862  SEA  135P  ORD  718P  L     0    D10            F  C  Y  B  M
AA1692  SEA  335P  ORD  915P  D     0    S80            F  Y  B  H  M
UA 156  SEA  630P  ORD 1213A  D     0    733            F  Y  B  M  Q
UA 148  SEA 1135P  ORD  508A  #     0    757           FN YN  B  M  Q
AS 394  SEA  650A  PHL  405P  BL    1    72S            Y  B  H  Q  K
AA 394  SEA  650A  PHL  405P  #     1    72S            F  Y  B  M  Q
AS 602  SEA  645A  PHX 1030A  B     0    M80            F  Y  B  M  H
HP1492  SEA  715A  PHX 1105A  S     0    733            Y  B  H  K  Q
AS 612  SEA 1015A  PHX  155P  L     0    72S            F  Y  B  M  H
HP1299  SEA 1220P  PHX  412P  S     0    733            Y  B  H  K  Q
AS 610  SEA  140P  PHX  525P  L     0    72S            F  Y  B  M  H
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HP1235  SEA  147P  PHX  700P  S     1    73S            Y  B  H  K  Q
DL1710  SEA  230P  PHX  756P  S     1    72S            F  Y  B  M  Q
HP 518  SEA  400P  PHX  750P  S     0    733            Y  B  H  K  Q
UA1557  SEA  430P  PHX  949P  D     1    72S            F  Y  B  M  Q
NW1238  SEA  510P  PHX 1021P  D     1    320           FN YN BN  M  H
AS 608  SEA  615P  PHX  955P  D     0    72S            F  Y  B  M  H
AA 716  SEA  940A  PVD  741P  LD    1    S80            F  Y  B  M  H
UA1065  SEA  625A  SFO  829A  B     0    733            F  Y  B  M  Q
AS  30  SEA  700A  SFO  905A  B     0    M80            F  Y  B  M  H
US2164  SEA  710A  SFO  909A  B     0    733            F  Y  B  H  Q
UA1415  SEA  730A  SFO  927A  B     0    72S            F  Y  B  M  Q
AS 146  SEA  745A  SFO  940A  B     0    727            F  Y  B  M  H
UA1751  SEA  830A  SFO 1034A  B     0    733            F  Y  B  M  Q
UA1149  SEA  930A  SFO 1133A  S     0    733            F  Y  B  M  Q
AS 150  SEA  940A  SFO 1145A  S     0    M80            F  Y  B  M  H
UA 839  SEA 1030A  SFO 1233P  L     0    735            F  Y  B  M  Q
UA1145  SEA 1130A  SFO  129P  L     0    72S            F  Y  B  M  Q
AS 188  SEA 1145A  SFO  150P  L     0    72S            F  Y  B  M  H
UA1759  SEA 1230P  SFO  230P  L     0    73S            F  Y  B  M  Q
UA1761  SEA  130P  SFO  332P  S     0    73S            F  Y  B  M  Q
UA1071  SEA  230P  SFO  428P  S     0    733            F  Y  B  M  Q
AS  88  SEA  250P  SFO  450P  L     0    72S            F  Y  B  M  H
UA1709  SEA  330P  SFO  522P  S     0    D10            F  Y  B  M  Q
US2168  SEA  425P  SFO  621P  S     0    733            F  Y  B  H  Q
UA1557  SEA  430P  SFO  622P  D     0    72S            F  Y  B  M  Q
AS 176  SEA  435P  SFO  635P  D     0    72S            F  Y  B  M  H
AS 196  SEA  520P  SFO  725P  D     0    M80            F  Y  B  M  H
UA1785  SEA  530P  SFO  729P  D     0    733            F  Y  B  M  Q
UA1779  SEA  630P  SFO  830P  D     0    73S            F  Y  B  M  Q
US 603  SEA  655P  SFO  851P  D     0    733            F  Y  B  H  Q
AS  94  SEA  659P  SFO  900P  D     0    72S            F  Y  B  M  H
UA1405  SEA  730P  SFO  921P  #     0    72S            F  Y  B  M  Q
UA1781  SEA  830P  SFO 1026P  #     0    73S            F  Y  B  M  Q
TW  80  SEA  112A  STL  657A  S     0    M80           FN YN  B  Q  M
TW 326  SEA  644A  STL 1239P  B     0    M80            F  Y  B  Q  M
TW 150  SEA 1004A  STL  357P  L     0    M80            F  Y  B  Q  M
TW 100  SEA  115P  STL  715P  L     0    M80            F  Y  B  Q  M
DL 170  SEA  830A  TPA  843P  BL    2    72S            F  Y  B  M  Q
WN 968  SFO  635A  ABQ 1145A        2    73S            Y  K  L  B  Q
HP 215  SFO  810A  ABQ 1243P        1    73S            Y  B  H  K  Q
WN 962  SFO 1020A  ABQ  135P        0    73S            Y  K  L  B  Q
WN 466  SFO 1205P  ABQ  510P        2    733            Y  K  L  B  Q
WN 964  SFO  600P  ABQ  915P        0    73S            Y  K  L  B  Q
DL 152  SFO  530A  ATL  225P  B     1    L10           F@ Y@ B@ M@ Q@
DL 618  SFO  700A  ATL  554P  BS    2    757            F  Y  B  M  Q
DL 331  SFO  830A  ATL  348P  B     0    L10            F  Y  B  M  Q
DL 643  SFO 1205P  ATL  736P  L     0    767            F  Y  B  M  Q
DL 134  SFO  330P  ATL 1047P  D     0    757            F  Y  B  M  Q
DL 156  SFO 1020P  ATL  539A  S     0    763           FN YN BN MN QN
AA 566  SFO  700A  BNA  112P  R     0    S80            F  Y  B  H  M
AA 530  SFO 1222P  BNA  638P  L     0    S80            F  Y  B  H  M
AA 566  SFO  700A  BOS  519P  RS    1    S80            F  Y  B  H  M
US1118  SFO  705A  BOS  627P  LD    2    733            F  Y  B  H  Q
UA  92  SFO  800A  BOS  429P  BS    0    757            F  Y  B  M  Q
NW 182  SFO  800A  BOS  433P  BS    0    757            F  Y  B  M  H
NW 352  SFO  820A  BOS  612P  #     1    757            F  Y  B  M  H
TW 754  SFO  825A  BOS  450P  B     0    767            F  C  Y  B  Q
UA 132  SFO 1000A  BOS  819P  LD    1    D10            F  Y  B  M  Q
NW 326  SFO 1125A  BOS  935P  LD    1    D10            F  Y  B  M  H
AA 530  SFO 1222P  BOS 1054P  LD    1    S80            F  Y  B  H  M
UA  20  SFO 1235P  BOS  855P  L     0    D10            F  Y  B  M  Q
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NW 356  SFO  230P  BOS 1212A  D     1    757            F  Y  B  M  H
TW  44  SFO 1000P  BOS  754A  S     1    L10            F  C  Y  B  Q
CO 256  SFO 1155P  BOS 1000A  #     1    733            A  Y  Q  H  K
AA1256  SFO  640A  DCA  447P  #     1    757            F  Y  B  H  M
US1492  SFO  700A  DCA  546P  SB    2    733            F  Y  B  H  Q
US1118  SFO  705A  DCA  418P  BL    1    733            F  Y  B  H  Q
CO 454  SFO 1222P  DCA 1059P  LD    1    M80            A  Y  Q  H  K
US 626  SFO  800P  DCA  809A  S     2    734           FN YN BN HN QN
UA 654  SFO  630A  DEN  952A  B     0    72S            F  Y  B  M  Q
CO 196  SFO  630A  DEN  952A  B     0    M80            A  Y  Q  H  K
CO 818  SFO  855A  DEN 1225P  B     0    733            Y  Q  H  K  B
UA 970  SFO  902A  DEN 1224P  B     0    72S            F  Y  B  M  Q
UA 920  SFO 1118A  DEN  238P  L     0    D10            F  Y  B  M  Q
CO 838  SFO 1200N  DEN  318P  L     0    AB3            F  A  Y  Q  H
UA 748  SFO  230P  DEN  551P  S     0    72S            F  Y  B  M  Q
UA 222  SFO  231P  DEN  556P  S     0    757            F  Y  B  M  Q
CO1632  SFO  310P  DEN  632P  S     0    AB3            F  A  Y  Q  H
UA 506  SFO  420P  DEN  743P  S     0    735            F  Y  B  M  Q
UA 490  SFO  705P  DEN 1029P  D     0    733            F  Y  B  M  Q
UA 582  SFO  855P  DEN 1216A  #     0    733            Y  B  M  Q  H
DL 374  SFO 1220A  DFW  523A  S     0    757           FN YN BN MN QN
AA 580  SFO 1225A  DFW  541A        0    757           FN YN  B  H  M
AA1256  SFO  640A  DFW 1156A  B     0    757            F  Y  B  H  M
DL 618  SFO  700A  DFW 1222P  B     0    757            F  Y  B  M  Q
AA  70  SFO  808A  DFW  131P  B     0    767            F  Y  B  H  M
AA 786  SFO  945A  DFW  301P  L     0    767            F  Y  B  H  M
DL1014  SFO 1055A  DFW  415P  L     0    767            F  Y  B  M  Q
AA 963  SFO 1102A  DFW  417P  L     0    757            F  Y  B  H  M
UA 478  SFO 1243P  DFW  615P  L     0    733            Y  B  M  Q  H
AA 240  SFO  125P  DFW  653P  L     0    D10            F  Y  B  H  M
DL 180  SFO  230P  DFW  748P  L     0    763            F  Y  B  M  Q
AA 254  SFO  500P  DFW 1013P  D     0    767            F  Y  B  H  M
DL 852  SFO  555P  DFW 1102P  D     0    767            F  Y  B  M  Q
NW 340  SFO  810A  DTW  335P  B     0    D10            F  Y  B  M  H
NW 342  SFO 1220P  DTW  749P  L     0    757            F  Y  B  M  H
NW 344  SFO  140P  DTW  904P  L     0    72S            F  Y  B  M  H
NW 346  SFO 1100P  DTW  616A  S     0    757           FN YN BN  M  H
WN 955  SFO  815A  HOU  245P        1    733            Y  K  L  B  Q
WN 969  SFO  930A  HOU  435P        2    73S            Y  K  L  B  Q
WN 957  SFO 1015A  HOU  540P        2    733            Y  K  L  B  Q
AA  64  SFO  800A  JFK  423P  R     0    767            F  C  Y  B  H
UA  26  SFO  800A  JFK  418P  BS    0    D10            F  Y  B  M  Q
DL 110  SFO  800A  JFK  413P  B     0    310            F  C  Y  B  M
TW 842  SFO  800A  JFK  420P  B     0    L10            F  C  Y  B  Q
AA  16  SFO 1230P  JFK  846P  L     0    767            F  Y  B  H  M
DL1426  SFO 1255P  JFK 1045P  LD    1    757            F  Y  B  M  Q
UA  18  SFO  120P  JFK  942P  L     0    767            F  Y  B  M  Q
AA  20  SFO  330P  JFK 1132P  D     0    767            F  Y  B  H  M
TW  44  SFO 1000P  JFK  600A  S     0    L10            F  C  Y  B  Q
UA  24  SFO 1010P  JFK  622A  S     0    767           FN YN  B  M  Q
AA  18  SFO 1015P  JFK  610A  S     0    D10           FN  Y  B  H  M
DL 808  SFO  600A  LAX  704A  S     0    757            F  Y  B  M  Q
UA1731  SFO  630A  LAX  748A  S     0    72S            F  Y  B  M  Q
US1492  SFO  700A  LAX  810A  S     0    733            F  Y  B  H  Q
DL 987  SFO  700A  LAX  807A  S     0    73S            F  Y  B  M  Q
PA 445  SFO  700A  LAX  826A  S     0    AB3            F  Y  B  M  Q
UA1101  SFO  700A  LAX  820A  S     0    D10            F  Y  B  M  Q
UA1701  SFO  730A  LAX  850A  S     0    737            F  Y  B  M  Q
DL 823  SFO  800A  LAX  915A  S     0    73S            F  Y  B  M  Q
US2167  SFO  800A  LAX  910A  S     0    733            F  Y  B  H  Q
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PA 481  SFO  800A  LAX  924A        0    72S            F  Y  B  M  Q
UA1103  SFO  800A  LAX  923A  S     0    735            F  Y  B  M  Q
UA1703  SFO  830A  LAX  953A  S     0    73S            F  Y  B  M  Q
US2249  SFO  900A  LAX 1015A  S     0    733            F  Y  B  H  Q
DL 933  SFO  900A  LAX 1016A  S     0    73S            F  Y  B  M  Q
UA 936  SFO  900A  LAX 1020A  S     0    735            F  Y  B  M  Q
UA1705  SFO  930A  LAX 1050A  S     0    73S            F  Y  B  M  Q
DL1025  SFO 1000A  LAX 1112A  S     0    73S            F  Y  B  M  Q
US 206  SFO 1000A  LAX 1116A  #     0    733            F  Y  B  H  Q
UA1107  SFO 1000A  LAX 1118A  S     0    72S            F  Y  B  M  Q
UA1707  SFO 1030A  LAX 1150A  S     0    73S            Y  B  M  Q  H
DL1107  SFO 1100A  LAX 1210P  S     0    73S            F  Y  B  M  Q
UA 844  SFO 1100A  LAX 1220P  S     0    73S            Y  B  M  Q  H
US 268  SFO 1100A  LAX 1216P  S     0    733            F  Y  B  H  Q
UA 806  SFO 1130A  LAX 1246P  S     0    733            Y  B  M  Q  H
US 264  SFO 1200N  LAX  110P  S     0    733            F  Y  B  H  Q
DL1223  SFO 1200N  LAX  111P  S     0    73S            F  Y  B  M  Q
UA1111  SFO 1200N  LAX  116P  S     0    737            F  Y  B  M  Q
TW 223  SFO 1214P  LAX  130P        0    M80            F  Y  B  Q  M
UA 810  SFO 1230P  LAX  151P  S     0    73S            F  C  Y  B  M
DL 163  SFO  100P  LAX  215P  S     0    73S            F  Y  B  M  Q
US2170  SFO  100P  LAX  218P  S     0    733            F  Y  B  H  Q
UA1115  SFO  100P  LAX  221P  S     0    735            F  Y  B  M  Q
UA1715  SFO  130P  LAX  247P  S     0    73S            F  Y  B  M  Q
US2121  SFO  200P  LAX  310P  S     0    733            F
UA1117  SFO  200P  LAX  317P  S     0    73S            F  Y  B  M  Q
DL 275  SFO  200P  LAX  312P  S     0    73S            F  Y  B  M  Q
UA1717  SFO  230P  LAX  346P  S     0    73S            F  Y  B  M  Q
UA1119  SFO  300P  LAX  416P  S     0    73S            F  Y  B  M  Q
US2393  SFO  300P  LAX  410P  S     0    734            F  Y  B  H  Q
DL 387  SFO  300P  LAX  411P  S     0    73S            F  Y  B  M  Q
TW 177  SFO  310P  LAX  423P        0    L10            F  C  Y  B  Q
UA1719  SFO  330P  LAX  449P  S     0    733            F  Y  B  M  Q
DL1400  SFO  330P  LAX  441P  S     0    72S            F  Y  B  M  Q
DL 453  SFO  400P  LAX  511P  S     0    73S            F  Y  B  M  Q
US 390  SFO  400P  LAX  510P  S     0    733            F  Y  B  H  Q
UA1121  SFO  400P  LAX  519P  S     0    73S            F  Y  B  M  Q
UA1721  SFO  430P  LAX  547P  S     0    737            F  Y  B  M  Q
US2192  SFO  500P  LAX  610P  S     0    733            F  Y  B  H  Q
DL 569  SFO  500P  LAX  610P  S     0    73S            F  Y  B  M  Q
UA1123  SFO  500P  LAX  617P  S     0    73S            F  Y  B  M  Q
UA1723  SFO  530P  LAX  647P  S     0    735            F  Y  B  M  Q
US2188  SFO  600P  LAX  710P  S     0    733            F  Y  B  H  Q
DL 642  SFO  600P  LAX  711P  S     0    73S            F  Y  B  M  Q
UA1125  SFO  600P  LAX  717P  S     0    73S            Y  B  M  Q  H
UA1725  SFO  630P  LAX  749P  S     0    73S            F  Y  B  M  Q
DL 979  SFO  700P  LAX  812P  S     0    73S            F  Y  B  M  Q
US2399  SFO  700P  LAX  810P  S     0    733            F  Y  B  H  Q
UA1127  SFO  700P  LAX  819P  S     0    737            Y  B  M  Q  H
DL 805  SFO  800P  LAX  915P        0    73S            F  Y  B  M  H
US 626  SFO  800P  LAX  910P  #     0    734           FN YN BN HN QN
UA1129  SFO  800P  LAX  919P        0    735            F  Y  B  M  Q
PA 447  SFO  830P  LAX  956P        0    AB3            F  Y  B  M  Q
DL 963  SFO  900P  LAX 1006P        0    73S           FN YN BN MN QN
US 610  SFO  900P  LAX 1010P        0    733           FN YN BN HN QN
UA1131  SFO  900P  LAX 1017P        0    72S            F  Y  B  M  Q
US2389  SFO 1000P  LAX 1116P        0    734           FN YN BN HN QN
US2397  SFO 1100P  LAX 1210A        0    733           FN YN BN HN QN
PA 445  SFO  700A  MIA  519P  SB    1    AB3            F  Y  B  M  Q
AA1540  SFO  730A  MIA  345P  R     0    767            F  C  Y  B  M
TW 492  SFO 1010A  MIA  838P  LD    1    L10            F  C  Y  B  Q
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UA 378  SFO  145P  MIA 1009P  D     0    757            F  Y  B  M  Q
PA 447  SFO  830P  MIA  631A  S     1    AB3            F  Y  B  M  Q
NW 928  SFO  130A  MSP  700A  S     0    757            F  Y  B  M  H
NW 350  SFO  700A  MSP 1230P  B     0    D10           FN YN BN  M  H
NW 352  SFO  820A  MSP  144P  B     0    757            F  Y  B  M  H
NW 326  SFO 1125A  MSP  450P  L     0    D10            F  Y  B  M  H
NW 356  SFO  230P  MSP  755P  D     0    757            F  Y  B  M  H
NW 358  SFO  415P  MSP  939P  D     0    757           FN YN BN  M  H
DL 618  SFO  700A  MSY  250P  BS    1    757            F  Y  B  M  Q
UA 372  SFO  130P  MSY  744P  L     0    733            F  Y  B  M  Q
AA 580  SFO 1225A  ORD  915A  B     1    757            F YN  B  M  Q
AA 778  SFO  620A  ORD 1233P  B     0    S80            F  Y  B  M  H
UA 134  SFO  650A  ORD 1251P  B     0    747            F  Y  B  M  Q
AA1148  SFO  749A  ORD  200P  B     0    S80            F  Y  B  M  H
UA 974  SFO  805A  ORD  215P  B     0    757            F  Y  B  M  Q
UA 438  SFO  820A  ORD  415P  L     1    72S            F  Y  B  M  Q
AA1098  SFO  845A  ORD  235P  R     0    767            F  Y  B  M  H
AA  42  SFO  930A  ORD  320P  L     0    767            F  Y  B  M  H
UA 132  SFO 1000A  ORD  356P  L     0    D10            F  Y  B  M  Q
UA 126  SFO 1015A  ORD  412P  L     0    D10            F  Y  B  M  Q
UA 122  SFO 1100A  ORD  453P  L     0    72S            Y  B  M  Q  H
AA 220  SFO 1245P  ORD  716P  L     0    757            F  Y  B  M  H
UA 808  SFO  110P  ORD  715P  L     0    747            F  C  Y  B  M
UA 130  SFO  111P  ORD  715P  L     0    72S            F  Y  B  M  Q
AA 838  SFO  303P  ORD  915P  D     0    S80            F  Y  B  M  H
UA 194  SFO  420P  ORD 1021P  D     0    757            F  Y  B  M  Q
UA 818  SFO  630P  ORD 1229A  D     0    757            F  C  Y  B  M
UA 136  SFO 1121P  ORD  506A  #     0    D10           FN YN  B  M  Q
UA 128  SFO 1122P  ORD  516A  #     0    757           FN YN  B  M  H
AA 484  SFO 1140P  ORD  551A  #     0    S80            F  Y  B  M  H
US1776  SFO  745A  PHL  341P  B     0    767            F  Y  B  H  Q
NW 340  SFO  810A  PHL  615P  B     1    D10            F  Y  B  M  H
DL 336  SFO 1215P  PHL 1005P  L     1    757            F  Y  B  M  Q
US  30  SFO  125P  PHL 1056P  L     1    767            F  Y  B  H  Q
UA  94  SFO  150P  PHL  943P  L     0    D10            F  Y  B  M  Q
US 624  SFO 1140P  PHL 1002A  S     1    733           FN YN BN HN QN
WN 456  SFO  620A  PHX  910A        0    73S            Y  K  L  B  Q
WN 968  SFO  635A  PHX 1020A        1    73S            Y  K  L  B  Q
HP 897  SFO  655A  PHX  950A  #     0    733            F  Y  B  H  K
HP1530  SFO  930A  PHX 1221P  #     0    320            F  Y  B  H  K
UA1285  SFO 1100A  PHX  150P  L     0    72S            F  Y  B  M  Q
HP 594  SFO 1153A  PHX  244P  S     0    320            F  Y  B  H  K
WN 466  SFO 1205P  PHX  345P        1    733            Y  K  L  B  Q
WN 658  SFO 1230P  PHX  330P        0    735            Y  K  L  B  Q
UA1243  SFO  125P  PHX  418P  #     0    72S            F  Y  B  M  Q
HP1406  SFO  225P  PHX  516P  #     0    320            F  Y  B  H  K
WN1660  SFO  400P  PHX  650P        0    73S            Y  K  L  B  Q
HP1236  SFO  520P  PHX  926P        1    733            Y  B  H  K  Q
WN 791  SFO  615P  PHX  915P        0    733            Y  K  L  B  Q
HP1260  SFO  632P  PHX  925P  S     0    733            F  Y  B  H  K
UA1557  SFO  700P  PHX  949P  D     0    72S            F  Y  B  M  Q
WN 429  SFO  830P  PHX 1125P        0    73S            Y  K  L  B  Q
UA1575  SFO  905P  PHX 1157P  #     0    733            F  Y  B  M  Q
UA1750  SFO  630A  SEA  831A  B     0    73S            F  Y  B  M  Q
AS 143  SFO  730A  SEA  930A  B     0    M80            F  Y  B  M  H
UA1468  SFO  730A  SEA  933A  B     0    73S            F  Y  B  M  Q
UA1250  SFO  830A  SEA 1035A  B     0    737            F  Y  B  M  Q
US2106  SFO  905A  SEA 1110A  S     0    733            F  Y  B  H  Q
AS  93  SFO  915A  SEA 1115A  B     0    72S            F  Y  B  M  H
UA1430  SFO  930A  SEA 1136A  S     0    733            F  Y  B  M  Q
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AS 147  SFO 1025A  SEA 1220P  L     0    727            F  Y  B  M  H
UA1552  SFO 1030A  SEA 1232P  L     0    72S            F  Y  B  M  Q
UA1760  SFO 1130A  SEA  136P  L     0    733            F  Y  B  M  Q
UA 838  SFO 1230P  SEA  240P  L     0    735            F  Y  B  M  Q
UA1108  SFO  130P  SEA  336P  S     0    735            F  Y  B  M  Q
AS  87  SFO  225P  SEA  420P  L     0    72S            F  Y  B  M  H
UA1706  SFO  230P  SEA  432P  S     0    737            F  Y  B  M  Q
UA1776  SFO  330P  SEA  532P  S     0    73S            F  Y  B  M  Q
US2173  SFO  410P  SEA  610P  S     0    733            F  Y  B  H  Q
AS 195  SFO  425P  SEA  620P  D     0    M80            Y  B  M  H  Q
UA1770  SFO  430P  SEA  628P  S     0    72S            F  Y  B  M  Q
AS 157  SFO  530P  SEA  725P  D     0    72S            F  Y  B  M  H
UA1716  SFO  530P  SEA  732P  D     0    73S            F  Y  B  M  Q
UA1170  SFO  630P  SEA  832P  D     0    733            F  Y  B  M  Q
US2171  SFO  755P  SEA  955P  S     0    733            F  Y  B  H  Q
AS  31  SFO  825P  SEA 1020P  S     0    M80            F  Y  B  M  H
UA1774  SFO  920P  SEA 1122P  #     0    733            F  Y  B  M  Q
TW 324  SFO  110A  STL  652A  S     0    M80           FN YN  B  Q  M
TW 152  SFO  640A  STL 1218P  B     0    L10            F  C  Y  B  Q
TW 492  SFO 1010A  STL  349P  L     0    L10            F  C  Y  B  Q
TW 180  SFO  120P  STL  705P  L     0    L10            F  C  Y  B  Q
HP1406  SFO  225P  STL 1011P  #     1    320            F  Y  B  H  K
DL 808  SFO  600A  TPA  337P  SB    1    757            F  Y  B
UA 974  SFO  805A  TPA  649P  BS    1    757            F  Y  B  M  Q
US 268  SFO 1100A  TPA  824P  SL    1    733            F  Y  B  H  Q
NW  28  SFO 1245P  TPA 1025P  L     1    72S            Y  B  M  H  Q
US 610  SFO  900P  TPA  650A  S     1    733           FN YN BN HN QN
TW 297  STL  917A  ABQ 1102A  S     0    72S            F  Y  B  Q  M
WN 343  STL  940A  ABQ 1110A        0    73S            Y  K  L  B  Q
TW 123  STL 1157A  ABQ  140P  #     0    M80            F  Y  B  Q  M
TW 845  STL  640P  ABQ  825P  D     0    L10            F  C  Y  B  Q
TW  89  STL  924P  ABQ 1111P        0    M80           FN YN  B  Q  M
DL 828  STL  630A  ATL  858A  #     0    D9S            F  Y  B  M  Q
TW 646  STL  739A  ATL 1012A  #     0    D9S            F  Y  B  Q  M
DL 967  STL 1010A  ATL 1235P        0    M80            F  Y  B  M  Q
TW 518  STL 1030A  ATL  106P        0    D9S            F  Y  B  Q  M
TW 360  STL  115P  ATL  357P  S     0    D9S            F  Y  B  Q  M
DL1430  STL  115P  ATL  352P  #     0    72S            F  Y  B  M  Q
TW 534  STL  449P  ATL  726P  #     0    D9S            F  Y  B  Q  M
DL1434  STL  500P  ATL  726P  #     0    72S            F  Y  B  M  Q
DL 611  STL  759P  ATL 1023P        0    D9S           FN YN BN MN QN
TW 572  STL  812P  ATL 1054P        0    D9S            F  Y  B  Q  M
AA1628  STL  631A  BNA  731A  #     0    727            F  Y  B  H  M
TW 696  STL  821A  BNA  929A  #     0    727            F  Y  B  Q  M
TW 594  STL 1030A  BNA 1136A        0    72S            F  Y  B  Q  M
AA 687  STL 1202P  BNA  105P        0    72S            F  Y  B  H  M
TW 552  STL  133P  BNA  250P        0    D9S            F  Y  B  Q  M
AA 584  STL  535P  BNA  637P        0    72S            F  Y  B  H  M
TW 686  STL  802P  BNA  918P        0    D9S            F  Y  B  Q  M
TW 196  STL  741A  BOS 1109A  B     0    M80            F  Y  B  Q  M
TW 436  STL 1036A  BOS  210P  #     0    M80            F  Y  B  Q  M
TW 810  STL  136P  BOS  510P  S     0    L10            F  C  Y  B  Q
AA 278  STL  220P  BOS  747P  D     1    S80            F  Y  B  H  M
TW 634  STL  449P  BOS 1009P  D     1    M80            F  Y  B  Q  M
TW 150  STL  503P  BOS  846P  D     0    M80            F  Y  B  Q  M
TW 184  STL  800P  BOS 1125P  S     0    L10            F  C  Y  B  Q
TW  80  STL  749A  DCA 1040A  B     0    M80            F  Y  B  Q  M
TW 410  STL 1035A  DCA  132P  #     0    M80            F  Y  B  Q  M
TW 358  STL 1149A  DCA  241P  #     0    72S            F  Y  B  Q  M
TW 262  STL 1233P  DCA  332P  #     0    72S            F  Y  B  Q  M
TW 700  STL  125P  DCA  428P  #     0    72S            F  Y  B  Q  M
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TW 440  STL  137P  DCA  442P  #     0    D9S            F  Y  B  Q  M
TW  10  STL  505P  DCA  800P  D     0    72S            F  Y  B  Q  M
TW 280  STL  604P  DCA  900P  D     0    M80            F  Y  B  Q  M
TW 240  STL  812P  DCA 1108P  #     0    M80            F  Y  B  Q  M
UA 679  STL  640A  DEN  757A  B     0    72S            F  Y  B  M  Q
TW 457  STL  917A  DEN 1050A  S     0    72S            F  Y  B  Q  M
UA 165  STL 1001A  DEN 1123A  S     0    72S            F  Y  B  M  Q
TW 399  STL 1158A  DEN  128P  #     0    M80            Y  B  Q  M  V
UA1233  STL  320P  DEN  448P  S     0    737            F  Y  B  M  Q
TW 263  STL  324P  DEN  500P  S     0    72S            F  Y  B  Q  M
UA 339  STL  635P  DEN  753P  D     0    72S            F  Y  B  M  Q
TW  19  STL  636P  DEN  807P  D     0    72S            F  Y  B  Q  M
TW 703  STL  930P  DEN 1055P        0    72S           FN YN  B  Q  M
AA 801  STL  655A  DFW  844A  B     0    727            F  Y  B  H  M
TW 531  STL  743A  DFW  939A  B     0    D9S            F  Y  B  Q  M
AA 891  STL  755A  DFW  946A  B     0    S80            F  Y  B  H  M
TW 525  STL  922A  DFW 1123A        0    D9S            F  Y  B  Q  M
AD1271  STL 1000A  DFW  140P        3    SWM            Y  K  Q  V  H
TW 551  STL 1157A  DFW  152P  #     0    D9S            F  Y  B  Q  M
AA 501  STL  105P  DFW  251P  #     0    S80            F  Y  B  H  M
TW 579  STL  116P  DFW  313P  #     0    D9S            F  Y  B  Q  M
AD1218  STL  205P  DFW  545P        3    SWM            Y  K  Q  V  H
TW 621  STL  309P  DFW  501P        0    D9S            F  Y  B  Q  M
AA 217  STL  350P  DFW  546P        0    S80            F  Y  B  H  M
TW 657  STL  628P  DFW  827P  D     0    D9S            F  Y  B  Q  M
AA 559  STL  650P  DFW  849P  D     0    S80            F  Y  B  H  M
AA1405  STL  840P  DFW 1021P        0    S80            F YN  B  H  M
TW 445  STL  921P  DFW 1115P        0    DC9           FN YN  B  Q  M
NW 460  STL  720A  DTW  948A  S     0    DC9            F  Y  B  M  H
TW 432  STL  739A  DTW 1005A  #     0    72S            F  Y  B  Q  M
NW 462  STL  935A  DTW 1205P        0    72S            F  Y  B  M  H
TW 648  STL 1030A  DTW 1259P  S     0    72S            F  Y  B  Q  M
TW 224  STL  130P  DTW  408P  S     0    M80            F  Y  B  Q  M
NW 466  STL  135P  DTW  403P        0    D9S            F  Y  B  M  H
WN 356  STL  345P  DTW  705P        1    73S            Y  K  L  B  Q
TW 220  STL  450P  DTW  731P  S     0    72S            F  Y  B  Q  M
NW 464  STL  450P  DTW  719P  S     0    D9S            F  Y  B  M  H
TW 320  STL  845P  DTW 1114P        0    72S            F  Y  B  Q  M
WN 531  STL  845A  HOU 1040A        0    733            Y  K  L  B  Q
TW 605  STL  912A  HOU 1124A  S     0    72S            F  Y  B  Q  M
WN 653  STL 1015A  HOU 1210P        0    735            Y  K  L  B  Q
WN 469  STL 1115A  HOU  210P        1    733            Y  K  L  B  Q
WN 345  STL 1140A  HOU  140P        0    73S            Y  K  L  B  Q
TW 309  STL 1209P  HOU  231P  #     0    D9S            F  Y  B  Q  M
WN 589  STL  130P  HOU  335P        0    73S            Y  K  L  B  Q
WN 759  STL  400P  HOU  545P        0    73S            Y  K  L  B  Q
TW 343  STL  411P  HOU  624P  S     0    72S            F  Y  B  Q  M
WN 351  STL  540P  HOU  740P        0    73S            Y  K  L  B  Q
TW 639  STL  624P  HOU  846P  D     0    D9S            F  Y  B  Q  M
WN 663  STL  920P  HOU 1115P        0    733            Y  K  L  B  Q
TW 405  STL  925P  HOU 1134P        0    72S           FN YN  B  Q  M
TW 844  STL  118P  JFK  450P  #     0    767            F  C  Y  B  Q
TW 700  STL  125P  JFK  617P  #     1    72S            F  Y  B  Q  M
TW  60  STL  146P  JFK  520P  S     0    72S            F  Y  B  Q  M
TW 634  STL  449P  JFK  821P  D     0    M80            F  Y  B  Q  M
TW  10  STL  505P  JFK  938P  D     1    72S            F  Y  B  Q  M
TW 443  STL  902A  LAX 1109A  B     0    72S            F  Y  B  Q  M
TW 223  STL  907A  LAX  130P  B     1    M80            F  Y  B  Q  M
WN 343  STL  940A  LAX 1225P        1    73S            Y  K  L  B  Q
TW 177  STL 1210P  LAX  423P  L     1    L10            F  C  Y  B  Q
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TW  31  STL 1220P  LAX  217P  L     0    L10            F  C  Y  B  Q
TW 403  STL  327P  LAX  527P  D     0    L10            F  C  Y  B  Q
TW 721  STL  650P  LAX  854P  D     0    747            F  C  Y  B  Q
TW 171  STL  927P  LAX 1129P  S     0    L10           FN CN YN  B  Q
AA1363  STL  710A  MIA 1248P  #     1    72S            F  Y  B  M  H
TW 412  STL  848A  MIA 1231P  B     0    M80            F  Y  B  Q  M
TW 496  STL 1030A  MIA  209P  #     0    72S            F  Y  B  Q  M
AA 687  STL 1202P  MIA  525P        1    72S            F  Y  B  M  H
TW 246  STL  130P  MIA  513P  #     0    M80            F  K
TW 204  STL  449P  MIA 1034P  D     2    M80            F  Y  B  Q  M
TW 492  STL  458P  MIA  838P  D     0    L10            F  C  Y  B  Q
NW 940  STL  550P  MIA 1055P        1    D9S            F  Y  B  M  H
TW 336  STL  808P  MIA 1247A        1    M80            F  Y  B  Q  M
NW 707  STL  700A  MSP  830A  S     0    D9S           FN YN BN  M  H
TW 591  STL  902A  MSP 1037A        0    D9S            F  Y  B  Q  M
NW 592  STL 1045A  MSP 1218P        0    D9S            F  Y  B  M  H
TW 507  STL 1200N  MSP  136P  S     0    D9S            F  Y  B  Q  M
TW 516  STL  121P  MSP  301P  S     0    D9S            F  Y  B  Q  M
TW 693  STL  317P  MSP  457P        0    D9S            F  Y  B  Q  M
NW 594  STL  330P  MSP  509P        0    D9S            F  Y  B  M  H
NW 598  STL  520P  MSP  655P        0    D9S            F  Y  B  M  H
TW 331  STL  639P  MSP  815P  S     0    72S            F  Y  B  Q  M
NW 596  STL  800P  MSP  931P        0    D9S            F YN BN  M  H
TW 473  STL  917P  MSP 1049P        0    D9S           FN YN  B  Q  M
TW 539  STL  817A  MSY 1009A  B     0    D9S            F  Y  B  Q  M
TW 633  STL 1157A  MSY  149P  #     0    M80            F  Y  B  Q  M
TW 651  STL  307P  MSY  459P        0    D9S            F  Y  B  Q  M
TW 385  STL  702P  MSY  901P  D     0    D9S            F  Y  B  Q  M
UA 984  STL  611A  ORD  715A  S     0    72S            F  Y  B  M  Q
AA1363  STL  710A  ORD  818A  #     0    72S            F  Y  M  H  B
TW 378  STL  803A  ORD  915A  #     0    727            F  Y  B  Q  M
AA 324  STL  830A  ORD  945A  #     0    S80            F  Y  M  H  B
UA 288  STL  910A  ORD 1024A  S     0    72S            F  Y  B  M  Q
AA 528  STL 1128A  ORD 1232P  #     0    S80            F  Y  M  H  B
TW 670  STL 1134A  ORD 1245P  #     0    D9S            F  Y  B  Q  M
UA 840  STL 1145A  ORD 1254P  #     0    72S            F  Y  B  M  Q
TW 326  STL  132P  ORD  248P  #     0    M80            F  Y  B  Q  M
AA 278  STL  220P  ORD  333P        0    S80            F  Y  M  H  B
UA 196  STL  303P  ORD  415P        0    733            F  Y  B  M  Q
TW 234  STL  321P  ORD  435P  #     0    72S            F  Y  B  Q  M
TW 574  STL  509P  ORD  626P  #     0    M80            F  Y  B  Q  M
UA 728  STL  551P  ORD  715P  #     0    733            F  Y  B  M  Q
AA 402  STL  555P  ORD  720P  #     0    S80            F  Y  M  H  B
TW  88  STL  738P  ORD  856P  #     0    M80            F  Y  B  Q  M
TW 542  STL  803P  ORD  921P  #     0    D9S            F  Y  B  Q  M
US 272  STL  615A  PHL  908A  B     0    100            F  Y  B  H  Q
TW 430  STL  745A  PHL 1044A  B     0    72S            F  Y  B  Q  M
UA 288  STL  910A  PHL  159P  SL    1    72S            F  Y  B  M  Q
US 881  STL 1015A  PHL  108P  S     0    100            F  Y  B  H  Q
TW 344  STL 1042A  PHL  151P  S     0    72S            F  Y  B  Q  M
TW 756  STL  125P  PHL  433P  #     0    L10            F  C  Y  B  Q
US 522  STL  305P  PHL  558P  S     0    100            F  Y  B  H  Q
TW 108  STL  532P  PHL  846P  D     0    72S            F  Y  B  Q  M
TW 446  STL  806P  PHL 1114P        0    72S            F  Y  B  Q  M
HP 851  STL  630A  PHX  845A  B     0    320            F  Y  B  H  K
WN 517  STL  800A  PHX 1105A        1    73S            Y  K  L  B  Q
TW 169  STL  902A  PHX 1123A  B     0    72S            F  Y  B  Q  M
WN 496  STL 1015A  PHX 1230P        0    733            Y  K  L  B  Q
TW  59  STL 1157A  PHX  220P  L     0    72S            F  Y  B  Q  M
WN 487  STL  120P  PHX  425P        1    73S            Y  K  L  B  Q
HP 480  STL  148P  PHX  410P  S     0    733            Y  B  H  K  Q
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WN 540  STL  255P  PHX  550P        1    733            Y  K  L  B  Q
TW  75  STL  312P  PHX  537P  S     0    72S            F  Y  B  Q  M
WN 545  STL  425P  PHX  640P        0    733            Y  K  L  B  Q
HP 832  STL  610P  PHX  837P  S     0    733            Y  B  H  K  Q
TW  57  STL  638P  PHX  901P  D     0    72S            F  Y  B  Q  M
TW 161  STL  926P  PHX 1148P  S     0    72S           FN YN  B  Q  M
TW 694  STL  739A  RDU 1029A  B     0    D9S            F  Y  B  Q  M
TW 598  STL  115P  RDU  406P  #     0    D9S            F  Y  B  Q  M
TW 608  STL  817P  RDU 1114P        0    D9S            F  Y  B  Q  M
TW  29  STL  917A  SEA 1200N  B     0    M80            F  Y  B  Q  M
TW  53  STL  316P  SEA  557P  D     0    M80            F  Y  B  Q  M
AA 217  STL  350P  SEA  858P  D     1    S80            F  Y  M  B  H
TW 375  STL  624P  SEA  901P  D     0    M80            F  Y  B  Q  M
TW  23  STL  918P  SEA 1150P  S     0    M80           FN YN  B  Q  M
TW 223  STL  907A  SFO 1139A  B     0    M80            F  Y  B  Q  M
WN 653  STL 1015A  SFO  320P        2    735            Y  K  L  B  Q
TW 177  STL 1210P  SFO  225P  L     0    L10            F  C  Y  B  Q
WN 487  STL  120P  SFO  540P        2    73S            Y  K  L  B  Q
TW 183  STL  325P  SFO  536P  D     0    L10            F  C  Y  B  Q
HP 607  STL  402P  SFO  743P  S     1    73S            Y  B  H  K  Q
TW  71  STL  630P  SFO  846P  D     0    L10            F  C  Y  B  Q
TW  67  STL  924P  SFO 1154P  S     0    M80           FN YN  B  Q  M
TW 222  STL  839A  TPA 1159A  B     0    72S            F  Y  B  Q  M
TW 226  STL 1100A  TPA  221P  #     0    72S            F  Y  B  Q  M
NW 880  STL 1155A  TPA  425P  S     1    D9S            F  Y  B  M  H
TW 456  STL  125P  TPA  451P  #     0    D9S            F  Y  B  Q  M
TW 204  STL  449P  TPA  810P  D     0    M80            F  Y  B  Q  M
TW 336  STL  808P  TPA 1128P        0    M80            F  Y  B  Q  M
DL 581  TPA  600A  ABQ  905A  #     1    M80           F@ Y@ B@ M@ Q@
AA1111  TPA  717P  ABQ 1043P  D     1    72S            F  Y  H  B  M
DL 868  TPA  610A  ATL  730A  #     0    72S           FN YN BN MN QN
DL 422  TPA  725A  ATL  856A  #     0    763            F  Y  B  M  Q
DL 436  TPA  935A  ATL 1102A        0    M80            F  Y  B  M  Q
DL 578  TPA 1115A  ATL 1244P  S     0    72S            F  Y  B  M  Q
DL 990  TPA 1255P  ATL  222P  S     0    72S            F  Y  B  M  Q
DL 412  TPA  220P  ATL  342P        0    757            F  Y  B
DL 197  TPA  410P  ATL  537P        0    763            F  Y  B  M  Q
DL 552  TPA  610P  ATL  729P  S     0    72S            F  Y  B
DL1128  TPA  750P  ATL  910P        0    72S            F  Y  B  M  Q
DL 582  TPA  930P  ATL 1047P        0    763           FN YN BN MN QN
AA1357  TPA  815A  BNA  907A  B     0    72S            F  Y  B  M  H
AA1475  TPA  140P  BNA  230P  #     0    72S            F  Y  B  M  H
AA 483  TPA  520P  BNA  818P  D     1    72S            F  Y  H  B  M
AA1162  TPA  725P  BNA  817P  D     0    72S            F  Y  B  M  H
US1586  TPA  835A  BOS 1123A  B     0    M80            F  Y  B  H  Q
US1617  TPA 1035A  BOS  309P  L     1    734            F  Y  B  H  Q
DL 208  TPA 1140A  BOS  224P  L     0    757            F  Y  B  M  Q
NW1298  TPA 1200N  BOS  250P  L     0    72S            F  Y  B  M  H
US 718  TPA 1225P  BOS  318P  L     0    73S            F  Y  B  H  Q
US1296  TPA  135P  BOS  556P  S     1    734            F  Y  B  H  Q
US 442  TPA  515P  BOS  927P  S     1    733            F  Y  B  H  Q
DL 514  TPA  710P  BOS  954P  D     0    757            F  Y  B  M  Q
US 728  TPA  830A  DCA 1033A  B     0    734            F  Y  B  H  Q
NW1842  TPA 1220P  DCA  229P  L     0    D9S           FN YN BN  M  H
US1248  TPA  100P  DCA  258P  L     0    73S           FN YN BN HN QN
US 442  TPA  515P  DCA  718P  S     0    733            F  Y  B  H  Q
NW1844  TPA  520P  DCA  728P  D     0    D9S            F  Y  B  M  H
TW 457  TPA  700A  DEN 1050A  BS    1    72S            F  Y  B  Q  M
CO 119  TPA  220P  DEN  525P  S     1    733            A  Y  Q  H  K
DL 581  TPA  600A  DFW  733A  B     0    M80           FN YN BN MN QN
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AA 311  TPA  700A  DFW  834A  B     0    72S            F  Y  B  H  M
AA 443  TPA  825A  DFW 1000A  B     0    72S            F  Y  B  H  M
DL 149  TPA  920A  DFW 1052A  B     0    763            F  Y  B  M  Q
DL1285  TPA 1255P  DFW  228P  L     0    M80            F  Y  B  M  Q
AA 719  TPA  120P  DFW  256P  #     0    72S            F  Y  B  H  M
AA 476  TPA  400P  DFW  542P  S     0    72S            F  Y  B  H  M
DL 219  TPA  415P  DFW  556P  S     0    72S            F  Y  B  M  Q
AA1111  TPA  717P  DFW  846P  D     0    72S            F  Y  B  H  M
DL 868  TPA  610A  DTW 1010A  #     1    72S           F@ Y@ B@ M@ Q@
NW 879  TPA  745A  DTW 1237P  S     1    72S            F  Y  B  M  H
NW 479  TPA  855A  DTW 1134A  B     0    72S           FN YN BN  M  H
NW 481  TPA 1000A  DTW 1249P  L     0    72S            F  Y  B  M  H
NW 483  TPA  115P  DTW  355P  L     0    M80            F  Y  B  M  H
DL 412  TPA  220P  DTW  955P  S     3    757            F  Y  B
NW 487  TPA  510P  DTW  751P  D     0    D9S            F  Y  B  M  H
NW 485  TPA  630P  DTW  906P  D     0    72S            F  Y  B  M  H
US1644  TPA  110P  JFK  522P  L     1    734            F  Y  B  H  Q
TW 304  TPA  206P  JFK  450P  S     0    72S            F  Y  B  Q  M
DL 477  TPA  745A  LAX 1059A  B     1    763            F  Y  B  M  Q
US 144  TPA  835A  LAX 1102A  B     0    733            Y  B  H  Q  M
CO1093  TPA  300P  LAX  615P  #     1    733            Y  H  K  B  V
US1810  TPA  535P  LAX  802P  D     0    733            F  Y  B  H  Q
DL 141  TPA  555P  LAX  753P  D     0    757            Y  B  M  Q  H
US1416  TPA  645A  MIA  739A  #     0    733            F  Y  B  H  Q
US1533  TPA  840A  MIA  935A  #     0    F28            F  Y  B  H  M
PA 985  TPA  915A  MIA 1013A        0    72S            F  Y  B  M  Q
US1081  TPA 1125A  MIA 1220P        0    73S            F  Y  B  H  Q
US 785  TPA  150P  MIA  245P        0    F28            F  Y  B  H  M
AA1657  TPA  252P  MIA  350P        0    72S            F  Y  M  B  Q
US 768  TPA  330P  MIA  425P        0    73S            F  Y  B  H  Q
PA 499  TPA  430P  MIA  528P        0    72S            F  Y  B  M  Q
US1199  TPA  440P  MIA  535P        0    73S            F  Y  B  H  Q
US 738  TPA  705P  MIA  800P  #     0    F28            Y  B  H  Q  M
PA 319  TPA  800P  MIA  858P        0    72S            F  Y  B  M  Q
TW 204  TPA  845P  MIA 1034P        1    M80            F  Y  B  Q  M
US1588  TPA  905P  MIA 1000P        0    734            F  Y  B  H  Q
TW 336  TPA 1159P  MIA 1247A        0    M80           FN YN  B  Q  M
NW 447  TPA  835A  MSP 1050A  B     0    72S            F  Y  B  M  H
NW 449  TPA  425P  MSP  646P  D     0    72S            F  Y  B  M  H
DL 324  TPA  545P  MSP  932P  D     1    M80            F  Y  B  M  Q
NW 489  TPA  715P  MSP  934P  D     0    72S            F  Y  B  M  H
DL 477  TPA  745A  MSY  812A  B     0    763            F  Y  B  M  Q
CO 119  TPA  220P  MSY  254P        0    733            A  Y  Q  H  K
UA 733  TPA  710A  ORD  855A  B     0    757            F  Y  B  M  Q
NW 479  TPA  855A  ORD 1235P  B     1    72S            F  Y  B  M  H
TW 234  TPA 1254P  ORD  435P  #     1    72S            F  Y  B  Q  M
UA 177  TPA 1255P  ORD  231P  L     0    72S            F  Y  B  M  Q
AA1475  TPA  140P  ORD  444P  #     1    72S            F  Y  B  H
AA 476  TPA  400P  ORD  915P  SD    1    72S            F  Y  B
UA 769  TPA  749P  ORD  931P  S     0    757            F  Y  B  M  Q
US 524  TPA  645A  PHL  859A  B     0    M80            F  Y  B  H  Q
DL 276  TPA 1000A  PHL  140P  L     1    72S            F  Y  B  M  Q
US1617  TPA 1035A  PHL 1259P  L     0    734            F  Y  B  H  Q
US 673  TPA 1155A  PHL  209P  L     0    M80            F  Y  B  H  Q
US  15  TPA  235P  PHL  449P  L     0    M80            F  Y  B  H  Q
US  62  TPA  605P  PHL  949P  DS    1    733            F  Y  B  H  M
US 854  TPA  755P  PHL 1019P  S     0    734            F  Y  B  H  Q
DL 219  TPA  415P  PHX  820P  SD    1    72S            F  Y  B  M  Q
AA1630  TPA  636A  RDU  816A  B     0    72S            F  Y  B  H  M
AA 702  TPA  100P  RDU  235P  L     0    72S            F  Y  B  H  M
DL 412  TPA  220P  RDU  600P  S     1    757            F  Y  B
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AA 483  TPA  520P  RDU  701P  D     0    72S            F  Y  B  H  M
DL1063  TPA  635A  SEA 1235P  BL    2    757            F  Y  B  M  Q
UA 177  TPA 1255P  SEA  551P  LD    1    72S            F  Y  B  M  Q
US1260  TPA  335P  SEA 1007P  SD    2    733            F  Y  B  H  Q
DL 197  TPA  410P  SEA  905P  D     1    763            F  Y  B  M  Q
US 144  TPA  835A  SFO  116P  BS    1    733            Y  B  H  Q  M
US1810  TPA  535P  SFO 1016P  D     1    733            F  Y  B  H  Q
DL 141  TPA  555P  SFO 1017P  D     1    757            Y  B  M  Q  H
TW 457  TPA  700A  STL  831A  B     0    72S            F  Y  B  Q  M
AA1357  TPA  815A  STL 1102A  B     1    72S            F  Y  H  B  M
TW 245  TPA  945A  STL 1118A  B     0    M80            F  Y  B  Q  M
TW 234  TPA 1254P  STL  221P  #     0    72S            F  Y  B  Q  M
TW 377  TPA  426P  STL  554P  D     0    72S            F  Y  B  Q  M
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----------
CHINESE
An, Ven F
Cai, Shanghe
Cai, Sui L
Cai, Tian X
Cao, Chongguang
Cao, Jia-Ding
Cao, Xi-hua
Chen, Caoyu
Chen, Dayue
Chen, De H
Chen, Gong-ning
Chen, Han-lin
Chen, Jiecheng
Chen, Lan S
Chen, Min
Chen, Ming K
Chen, Mu-Fa
Chen, P D
Chen, Peixin
Chen, Rong S
Chen, Shao Z
Chen, Shuping
Chen, Shuxing
Chen, Sui Y
Chen, Wende
Chen, William Y
Chen, Yi X
Chen, Yong G
Chen, Yubo
Chen, Zengrong
Chen, Zhi J
Chen, Zhi-Min
Chen, Zhihua
Chen, Zhonghu
Chen, Zuchi
Cheng, An S
Cheng, Fuchang
Chengye, You
Chung, Si-Kit
Ding, Hua
Ding, Ren
Ding, Tong-Ren
Ding, Wei Y
Ding, Xie P
Dong, Yu X
Dong, Zhen X
Duan, Guang-Ren
Erxiong, Jiang
Fang, Ai N
Fang, Hongjin
Fang, Jin X
Fang, Nengwen
Feng, Bei Y
Feng, Minfu
Feng, Yu Y
Fu, Changlin
Fu, Chu L
Fu, Dong X
Fu, Shusheng
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Gao, Chunyi
Gao, Guo Z
Gao, Shi-an
Gao, Zhanhai
Geng, Xianguo
Gong, Guang L
Gong, Sheng
Gong, Weibang
Guan, Ping
Guo, Dajun
Guo, Shun S
Guo, Xiao F
Guo, Xin K
Hai, Ding
Haibao, Duan
Han, Tian X
Han, Zheng Z
He, Daichuan
He, Sheng W
He, Xiao L
Hong, Jia X
Hong, Yuan
Hou, Chengjun
Hou, Jin C
Hou, Zi-Xin
Hsiao, L
Hu, Xiao D
Hu, Zejun
Hua, Xin-Hou
Huang, Cheng-Gui
Huang, Jian H
Huang, Lin
Huang, Yongnian
Huang, Zhi Y
Hui, Zheng R
Ji, Xinhua
Jian, Renyi
Jiang, Boju
Jiang, Guo Y
Jiang, Ji-Fa
Jiang, Li S
Kang, Lishan
Kang, Qing D
Kim, Kwangsoo
Laiyi, Zhu
Le, Mao Hua
Lei, YingGuo
Li, An-Min
Li, Bingxi
Li, Boyu
Li, Fang
Li, Feng W
Li, Guiban
Li, Hai Z
Li, Hong X
Li, Ji B
Li, Jin
Li, Kezheng
Li, Li
Li, Mengru
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Li, Qiao
Li, Shaokuan
Li, Shoufu
Li, Shujie
Li, Wantong
Li, Wen R
Li, XiaoMei
Li, Xingmin
Li, Xue L
Li, Zhong
Li-Shan, Liu
Liang, Hua
Liang, Jin
Liang, Xi T
Liao, Gong F
Lin, Jin K
Lin, Junmin
Lin, Xi
Lin, Yiping
Lin, Yixun
Lin, Yizhong
Lin, Zheng-Yan
Ma, Jiang H
Ma, Li
Ma, Tian
Ma, Zhi-Ming
Ma, Zhong-Qi
Mao, Jing Z
Nie, Yi-Yong
Ouyang, Caiheng
Pan, Hung-Ming
Pan, Shizhong
Peng, Liangang
Peng, Lizhong
Qi, Min Y
Qian, Min
Qian, Min P
Qiao, Li
Qin, Meng Z
Qin, Tie H
Qin, Zeng-fu
Qingping, Cheng
Qiu, Jing-Hui
Qiu, Sen
Ren, Ding
Ren, Fu-Yao
Ren, Jian H
Tang, Gaohua
Tang, Jian-er
Teng, Zhen-huan
Tian, Jinghuang
Tong, Dao-Rong
Wan, Zhe-Xian
Wang, Bing H
Wang, Bo-Ying
Wang, Cheng-Shu
Wang, Cun Z
Wang, Daoliu
Wang, De R
Wang, Duo
Wang, Guorong
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Wang, Hong
Wang, Jia-gang
Wang, Jian-pan
Wang, Lian
Wang, Long
Wang, Mingyi
Wang, Pengtao
Wang, Pin C
Wang, Shangzhi
Wang, Sheng W
Wang, Shi-kun
Wang, Shi-Tau
Wang, Shicheng
Wang, Si-Lei
Wang, Song-Gui
Wang, Ting F
Wang, Wei
Wang, Xue-Kuan
Wang, Yan M
Wang, Yuanming
Wang, Yuanshi
Wang, Zhen-Peng
Wei, Jun J
Wei, Musheng
Wu, Bao Qiang
Wu, Cheng X
Wu, Cong
Wu, Jingbo
Wu, Shenjian
Wu, Zhuo Q
Wu, Zong M
Wujie, Shi
Xia, Ning-Mao
Xia, Zun Q
Xiang, Li
Xiao, Er J
Xiao, Shutie
Xiao, Ti J
Xie, Zheng H
Xin, Y L
Xiong, Zhen X
Xu, Daoyi
Xu, Fei
Xu, Jinghua
Xu, Ming Y
Xu, Xiaoquan
Xu, Yichao
Xu, Yuan-Tong
Xu, Zeng K
Xuan, Ti Z
Xue, Weimin
Yan, Jia-An
Yan, Jing-hai
Yan, Jurang
Yan, Shi-Jian
Yan, Zikun
Yan, Ziqian
Yang, Jin-Gen
Yang, Lo
Yang, Mingzhu
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Yang, Run S
Yang, Shixin
Yang, Shu L
Yang, Weiqi
Yang, Weisheng
Yang, Ying C
Yang, Zhong H
Yanlin, Yu
Yao, Bi Y
Yao, Zong Y
Ye, Jia-Chen
Ye, Mao D
Ye, Qi-Xiao
Yi, Hong-Xun
Yin, Jingxue
Yin, Weiping
Ying, Jiangang
Ying, Long A
You, Hong
Yu, Jia-Rong
Yu, Wenci
Yu, Wenhuan
Yu, Xijun
Yuan, Ya-Xiang
Yun, Tian Q
Zeng, Guangxing
Zeng, Yun B
Zhang, Binggen
Zhang, Dian Z
Zhang, Fang
Zhang, Fu J
Zhang, Gong Q
Zhang, Guan Q
Zhang, Guang-Lu
Zhang, Ji P
Zhang, Jin H
Zhang, Ke M
Zhang, Shi Q
Zhang, Shi S
Zhang, Shouchuan
Zhang, Shu-Guo
Zhang, Shunian
Zhang, Wei N
Zhang, Weijiang
Zhang, Xianke
Zhang, Xue S
Zhang, Zhao Z
Zhang, Zhenxiang
Zhang, Zhenyue
Zhang, Zhi R
Zhang, Zhongfu
Zhangjian, Hu
Zhao, Jin X
Zhao, Shen Q
Zheng, Dao S
Zheng, Sining
Zheng, Songmu
Zhong, Tongde
Zhou, Chaoshun
Zhou, Hong X
Zhou, Mei K
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Zhou, Zuo L
Zhu, Jun
Zhu, Yao C
Zhuang, Wan
Zou, Cheng Zu
----------
JAPANESE
Aihara, Shin I
Aikawa, Hiroaki
Akiyama, Kazuo
Ando, Kenichi
Ando, Shiro
Ando, Tsuyoshi
Ano, Katsunori
Aoyagi, Nobuo
Arai, Hitoshi
Arai, Masaharu
Araki, Huzihiro
Arima, Satoshi
Arisaka, Nakaaki
Asano, Kouhei
Asano, Shigemoto
Asano, Takao
Asano, Tetsuo
Asashiba, Hideto
Ashino, Ryuichi
Asoo, Yasuhiro
Atsuji, Masahiko
Aye, Pyi
Baba, Kiyoshi
Bannai, Eiichi
Byongmun, Kim
Campbell, Mark T
Chen, Yun-Gang
Chikuse, Yasuko
Cho, Koji
Deguchi, Tetsuo
Doi, Yukio
Dokeh, Kotaro
Doku, Isamu
Doszpoly Sj, Ivan
Enomoto, Kazuyuki
Fasol, Gerhard
Foong, See K
Frankl, Peter
Fuji-Hara, Ryoh
Fujii, Nobuhiko
Fujimagari, Tetsuo
Fujioka, Hiroko
Fujisaki, Rieko
Fujishige, Satoru
Fujita, Masayuki
Fujiwara, Daisuke
Fujiwara, Hidenori
Fujiwara, Koji
Fujiwara, Masahiko
Fukuda, Koji
Fukushima, Masatoshi
Fukushima, Mitsuo
Fukuta, Jiro
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Funabashi, Shoichi
Furuta, Katsuhisa
Furuta, Takayuki
Furutani, Kenro
Giga, Yoshikazu
Goto, Hideo
Goto, Kazuo
Goto, Midori S
Goto, Shiro
Grotowski, Joseph F
Hamada, Noboru
Hamana, Masamichi
Hamaya, Yoshihiro
Hara, Shinji
Hara, Takashi
Harada, Shigeharu
Haruki, Shigeru
Hasegawa, Hidehiko
Hasegawa, Keizo
Hasegawa, Takayuki
Hasegawa, Takemitsu
Hashimoto, Kazuo A
Hashimoto, Ki-ichiro
Hashimoto, Takashi
Hasumi, Morisuke
Hatada, Kazuyuki
Hatori, Osamu
Hattori, Akio
Hattori, Yasunao
Hayami, Ken
Hayashi, Kazumichi
Hayashi, Mikihiro
Hayashi, Nakao
Hayashi, Takao
Hayashi, Yoshio
Hayashida, Tsuyoshi
Hiai, Fumio
Hicks, Craig P
Hida, Takeyuki
Higuchi, Yasunari
Hinohara, Yukitoshi
Hirabayashi, Mikihito
Hirano, Norimichi
Hirano, Yasuyuki
Hirashita, Yukio
Hirose, Hideo
Hitotsuyanagi, Nobuo
Fuji-Hara, Ryoh
Hamada, Noboru
Hamana, Masamichi
Hamaya, Yoshihiro
Hara, Shinji
Hara, Takashi
Harada, Shigeharu
Haruki, Shigeru
Hasegawa, Hidehiko
Hasegawa, Keizo
Hasegawa, Takayuki
Hasegawa, Takemitsu
Hashimoto, Kazuo A
Hashimoto, Ki-ichiro
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Hashimoto, Takashi
Hasumi, Morisuke
Hatada, Kazuyuki
Hatori, Osamu
Hattori, Akio
Hattori, Yasunao
Hayami, Ken
Hayashi, Kazumichi
Hayashi, Mikihiro
Hayashi, Nakao
Hayashi, Takao
Hayashi, Yoshio
Hayashida, Tsuyoshi
Hiai, Fumio
Jimbo, Shuichi
Kadota, Noriya
Kaino, Keimei
Kajiwara, Joji
Kakiichi, Yoshiaki
Kalbag, Anuroopa
Kamada, Seiichi
Kambayashi, Tac
Kameda, Masumi
Kamejima, Kohji
Kamishima, Yoshinobu
Kamiya, Shigeyasu
Kan-on, Yukio
Kanai, Masahiko
Kanda, Mamoru
Kaneda, Masaharu
Kaneko, Akira
Kaneko, Jyoichi
Kaneko, Masanobu
Kaneko, Tetsuo
Kanemitsu, Shigeru
Kanenobu, Taizo
Kaneyuki, Soji
Kanjin, Yuichi
Kanno, Tsuneo
Kano, Takeshi
Karamatsu, Yoshikazu
Kashihara, Kenji
Kashiwagi, Yoshimi
Kato, Akio
Kato, Gosei
Kato, Hisao
Kato, Masakimi
Kato, Shin-ichi
Kato, Takao
Katsuda, Atsushi
Katsura, Toshiyuki
Kawachi, Tsuneyoshi
Kawahigashi, Yasuyuki
Kawai, Takahiro
Kawamoto, Naoki
Kawamoto, Shunji
Kawamura, Kazuhiro
Kawasaki, Tetsuro
Kawauchi, Akio
Kida, Teruhiko
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Kido, Kazuo
Kigami, Jun
Kiho, Y
Kijima, Masaaki
Kikuchi, Kazunori
Kikuchi, Koji
Kim, Tong Ho
Kimura, Shun-ichi
Kimura, Tatsuo
Kinukawa, Masakiti
Kishi, Masanori
Kita, Hiroo
Kitada, Hitoshi
Kitada, Yasuhiko
Kiyohara, Mineo
Kiyooka, Kuninori
Lay, Steven R
Li, Lei
Maeda, Fumi-Yuki
Maeda, Hironobu
Maeda, Michie
Maeda, Yoshiaki
Maehara, Kazuhisa
Maekawa, Taichi
Maitani, Fumio
Makino, Tetu
Marumoto, Yoshihiko
Maruo, Osamu
Maruyama, Toru
Masuda, Kyuya
Masumoto, Makoto
Masutomi, Fumio
Matsuda, Shigeo
Matsui, Kiyoshi
Matsui, Shouichi
Matsumoto, Yukihiro
Matsumoto, Yukio
Matsunobu, Seiro
Matsuo, Takami
Matsuoka, Yasushi
Matsushita, Yasuo
Matsuyama, Hiroshi
Matsuyama, Yoshio
Matsuzawa, Jun-ichi
Matsuzawa, Tadato
Matumoto, Hisayosi
Matumoto, Takao
Nagahara, Takasi
Nagai, Osamu
Nagano, Tadashi
Naganuma, Daisuke
Nagao, Hirosi
Nagasaka, Kenji
Nagase, Michihiro
Nagase, Noriaki
Nagata, Jun-Iti
Nagata, Masatsugu
Nagayama, Misao
Naito, Koichiro
Naitoh, Hiroo
Nakada, Yutaka
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Nakagawa, Kiyokazu
Nakagawa, Yoko
Nakai, Mitsuru
Nakajima, Haruhisa
Nakajima, Kengo
Nakajima, Norihiro
Nakajima, Shoichi
Nakajo, Yuichi
Nakaki, Tatsuyuki
Nakamitsu, Kuniaki
Nakamura, Hiroaki
Nakamura, Masahiro
Nakamura, Masataka
Nakamura, Riichiro
Nakamura, Tokushi
Nakamura, Yoshimasa
Nakamura, Yoshio
Nakanishi, Yasutaka
Nakao, Zensho
Nakashima, Masaharu
Nakata, Masaomi
Nakata, Mie
Nakatsuka, Harunori
Nakauchi, Hiroshi
Nakauchi, Nobumitsu
Nakayama, Akira
Nakazi, Takahiko
Namba, Kanji
Namba, Makoto
Namba, Toshiyuki
Namikawa, Yukihiko
Nanbu, Tokumori
Naoe, Hidenori
Narita, Kiyomasa
Naruse, Hiroshi
Narushima, Hiroshi
Nehaniv, Chrystopher L
Nemoto, Hiroaki
Ninomiya, Hirokazu
Nishida, Akira
Nishida, Takaaki
Nishikawa, Seiki
Nishimura, Hirokazu
Nishimura, Yasuichiro
Nishiura, Yasumasa
Nishiyama, Kyo
Nodera, Takashi
Noguchi, Hiroshi
Noguchi, Junjiro
Noguchi, Mitsunori
Noguchi, Rutsu
Nogura, Tsugunori
Noiri, Takashi
Nono, Takayuki
Noriaki, Kamiya
Notestine, Ronald D
Kan-on, Yukio
Obata, Morio
Ochiai, Mitsuyuki
Oda, Tadao
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Odani, Kenzi
Ogawa, Hidemitsu
Ogawa, Sotaro
Ogawa, Toshiyuki
Ogiue, Koichi
Oguchi, Kunio
Ogura, Yukio
Ohara, Atsumi
Ohguchi, Takeshi
Ohno, Shuichi
Ohshika, Kenichi
Ohsumi, Akira
Ohta, Haruto
Ohta, Yoshito
Ohtagaki, Hirokazu
Ohtsuka, Makoto
Ohwaki, Shin-Ichi
Oka, Mutsuo
Oka, Shinpei
Okada, Ikutaro
Okada, Masami
Okada, Satio
Okada, Soichi
Okai, Takayuki
Okamoto, Hisashi
Okamoto, Kiyosato
Okamoto, Toshiaki
Okayasu, Takateru
Okazaki, Ryotaro
Okumura, Haruhiko
Okumura, Susumu
Okuyama, Akihiro
Omatu, Sigeru
Omori, Hideki
Ono, Yoshie
Onose, Hiroshi
Oodaira, Hiroshi
Osada, Naoki
Osawa, Shingo
Oshima, Kunio
Ota, Schoichi
Otani, Yoshihiko
Otsu, Yukio
Otsuka, Naohisa
Otsuki, Nobukazu
Owa, Shigeyoshi
Oyabu, Takashi
Ozawa, Kazufumi
Ozeki, Michio
Rao, Sasipalli V
Reisewitz, Tammo M
Sagara, Nobuko
Saigo, Megumi
Saigusa, Youichi
Saito, Akira
Saito, Kazuyuki
Saito, Kichi-Suke
Saito, Kimiaki
Saito, Shiroshi
Saito, Yasuyuki
Saitoh, Saburou
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Sakaguchi, Shigeru
Sakai, Katsuro
Sakai, Kazuhiro
Sakai, Makoto
Sakai, Shoichiro
Sakai, Takashi
Sakamoto, Kunimochi
Sakamoto, Kunio
Sakuma, Motoyoshi
Sano, Shigeru
Sano, Takashi
Sasaki, Hiroki
Sasaki, Katsumi
Sasaki, Takeshi
Sasano, Kazuhiro
Satake, Ichiro
Sato, Hideo
Sato, Hiroki
Sato, Hiroshi
Sato, Ken-iti
Sato, Shizuka
Sato, Shuichi
Satoh, Takakazu
Sawada, Hideki
Sawami, Hideo
Tachikawa, Atsushi
Tada, Toshimasa
Tagawa, Masa-Yoshi
Taira, Kazuaki
Takagi, Izumi
Takahashi, Chihiro
Takahashi, Joji
Takahashi, Masako
Takahashi, Reiji
Takahashi, Shuichi
Takahashi, Tetsuya
Takahashi, Wataru
Takahashi, Yuji
Takano, Kyoichi
Takayama, Nobuki
Takeda, Ziro
Takemoto, Hideo
Takenaka, Shigeo
Takeuchi, Hiroshi
Takeuchi, Kisao
Takeuchi, Masaru
Takizawa, Kiyoshi
Tamaki, Dai
Tanabe, Hiroki
Tanaka, Hisao
Tanaka, Jun-Ichi
Tanaka, Kazuyuki
Tanaka, Minoru
Tanaka, Shohei
Tanaka, Taiyo
Tanaka, Tamaki
Tanaka, Yasuhiko
Tanaka, Yoshihiro
Tanamachi, Yoshihiro
Tanigchi, Masaharu
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Tanikawa, Takao
Tanno, Shukichi
Tao, Yoko
Tashiro, Yoshihiro
Tazawa, Shinsei
Teramoto, Yoshiaki
Terasawa, Jun
Titani, Satoko
Tjoa, Iauw-Bhieng F
Toda, Nobushige
Tomari, Masataka
Tomita, Yoshihito
Tomiyama, Jun
Tone, Kaoru
Toyoizumi, Masao
Uchino, Atsuko
Uchiyama, Akihito
Uchiyama, Saburo
Ue, Masaaki
Ueno, Kazushige
Ueno, Kenji
Ueno, Shuichi
Ueno, Yoshiaki
Ukegawa, Takasaburo
Umeda, Tomio
Umegaki, Hisaharu
Umetani, Shin-ichi
Umezawa, Toshio
Unai, Yasushi U
Uno, Katsuhiro
Wada, Hidekazu
Wada, Junzo
Wada, Masaaki
Wada, Toshimasa
Wajima, Masayuki
Wakabayashi, Nobuo
Wakae, Masami
Wakana, Kaoru
Wakayama, Masato
Wakimoto, Minoru
Watabe, Mutsuo
Watanabe, Hisao
Watanabe, Masaji
Watanabe, Nobuya
Watanabe, Shoji
Watanabe, Tadashi
Watanabe, Tetsuro
Watanabe, Toshihiro
Watatani, Yasuo
Yabe, Hiroshi
Yagasaki, Kazuyuki
Yagi, Shin-Ichi
Yajima, Kenji
Yamada, Hirofumi
Yamada, Hiromichi
Yamada, Katsuhiro
Yamada, Kotaro
Yamada, Miyuki
Yamada, Naoki
Yamada, Osanobu
Yamada, Shinichi
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Yamada, Takeo
Yamada, Toshihiko
Yamada, Yoshio
Yamagata, Shuji
Yamagishi, Kikumichi
Yamaguchi, Hiroshi
Yamaguchi, Itaru
Yamaguchi, Keizo
Yamaguchi, Kohhei
Yamaguchi, Seiichi
Yamaguchi, Takao
Yamaguchi, Yasushi
Yamaguti, Kiyosi
Yamaji, Minatsu
Yamaki, Hiroyoshi
Yamamoto, Masahiro
Yamamoto, Tetsuro
Yamamoto, Yoshiharu
Yamano, Gosuke
Yamanoshita, Tsuneyo
Yamasaki, Masayuki
Yamashita, Hiroshi
Yamashita, Michinori
Yamauchi, Manami
Yamawaki, Noriaki
Yamazaki, Masao
Yanagawa, Minoru
Yanaghiya, Akira
Yanagi, Kenjiro
Yanai, Hiromichi
Yasuda, Toshihiko
Yasue, Kunio
Yasugi, Mariko
Yenne, James W
Yoda, Kiyoshi
Yokoi, Hideo
Yokonuma, Takeo
Yokota, Hisashi
Yokoyama, Etsuro
Yokura, Shoji
Yoneda, Kaoru
Yoshida, Masaaki
Yoshihara, Ken-Ichi
Yoshikawa, Atsushi
Yoshikawa, Katsuyuki
Yoshimoto, Takeshi
Yoshinaga, Takao
Yoshino, Ken-ichi
Yoshino, Masafumi
Yoshino, Takashi
Yoshioka, Akira
Yoshise, Akiko
Yoshizawa, Taro
----------
KOREAN
Ahn, Byung M
Ahn, Inkyung
Ahn, Jae M
Ahn, Jung H
Ahn, Sun Shin
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Ahn, Sung H
Bae, Jong S
Bae, Soon-Sook
Bae, Sunghan
Bae, Yongju
Bahk, S K
Baik, Young G
Bang, Hyunsoo
Bang, Keumseong
Bang, Seung-Jin
Bok, Lee H
Byun, Chang Ho
Byun, Yanghyun
Cha, Hyung K
Chae, Dongho
Chang, Joo S
Chang, Kun S
Chang, Kun S
Chang, Shin
Chang, Sung K
Chang, Yu-Sung
Cheon, Gi-Sang
Cheul, Lim H
Chi, Dong P
Cho, Chong-Man
Cho, Gyeong-Mi
Cho, Han-Hyuk
Cho, Hwan G
Cho, In-Ho
Cho, Jung R
Cho, Kwon
Cho, Min-Hyung
Cho, Myung Hyun
Cho, Nak Eun
Cho, Nam Z
Cho, Nhansook
Cho, Sang-Hyun
Cho, Sung J
Cho, Tae-Geun
Cho, Yeol J
Cho, Yong S
Cho, Yong-Kum
Cho, Young Hyun
Choa, Jun S
Choe, Boo R
Choe, Geon H
Choe, Jaigyoung
Choe, Young H
Choi, Bong D
Choi, Byoung K
Choi, Hyeong I
Choi, Jeong Y
Choi, Kyu H
Choi, Q-Heung
Choi, Sang-Il
Choi, Seungil
Choi, Suhyoung
Choi, Sung K
Choi, Sungwoo
Choi, U J
Choi, Un H
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Choi, Younggi
Choi, Youngsoo
Choi, Yuncherl
Choie, Youngju
Chu, Chinku
Chun, Joohwan
Chun, Sook-Hee
Chung, Dong M
Chung, Kyung T
Chung, Sang K
Chung, Seiyoung
Chung, Soon-Yeong
Chung, Taehun
Chung, Youngbok
Eun, Gwang S
Goh, Seung-Cheol
Gu, Cho I
Ha, Ki S
Ha, Seung Y
Ha, Soon-Dock
Ha, Young-Hwa
Hahn, Sang-Geun
Han, Chi-Geun
Han, Chong-Kyu
Han, Chul-Soon
Han, Hyuk
Han, Juncheol
Her, Min
Hong, Bum I
Hong, Chan Y
Hong, Dug Hun
Hong, Seung Pyo
Hong, Sung S
Hong, Sungbok
Hong, Bum I
Hong, Chan Y
Hong, Dug Hun
Hong, Seung Pyo
Hong, Sung S
Hong, Sungbok
Hong, Sungpyo
Hong, Young H
Im, Bokhee
Im, Geun B
Jang, Sun Y
Jeon, Tae I
Jeon, Youngmok
Jeong, Ja A
Jeong, Moonja
Jeong, Myung-Hwa
Jin, Gyo Taek
Jin, Lee J
Jo, Young S
Ju, Hyeong-Kwan
Jun, Young B
Jung, Hyung C
Jung, I H
Jung, Il B
Jyoo, Yeong-Heum
Kang, Byung G

file:///E|/WEBSITE/BIBLIO/TESTDATA/PEOPLE_N (16 of 64) [19/1/2003 1:40:36]



file:///E|/WEBSITE/BIBLIO/TESTDATA/PEOPLE_N

Kang, Eunju
Kang, Hyeonbae
Kang, Jeongheung
Kang, Joo H
Kang, Nam-Gyu
Kang, Pyung-Lyun
Kang, Seong J
Kang, Shin W
Kang, Sungkwon
Kang, Wan
Keem, Changho
Keum, Jong Hae
Ki, U-Hang
Kim, Agnes B
Kim, Ann C
Kim, Byung C
Kim, Chang H
Kim, Chul
Kim, Dae S
Kim, Dae Sig
Kim, Dai-Gyoung
Kim, Do S
Kim, Dohan
Kim, Dong-Soo
Kim, Donggyun
Kim, Dongsu
Kim, Eden P
Kim, Eung T
Kim, Goansu
Kim, Hae R
Kim, Hee S
Kim, Hong G
Kim, Hong J
Kim, Hong O
Kim, Hong-Chul
Kim, Hongchul
Kim, Hoonjoo
Kim, Hyang Sook
Kim, Hyong-Jin
Kim, Hyoung J
Kim, Hyoungsoon
Kim, Hyuk
Kim, Hyun-Jung
Kim, Hyung K
Kim, Ihn Sue
Kim, Jae-Gyeom
Kim, Jehpill
Kim, Jeong G
Kim, Jeongook
Kim, Jin H
Kim, Jin-Soo
Kim, Jintae
Kim, Jong K
Kim, Jong-Chul
Kim, Jonglak
Kim, Jongsu
Kim, Keehwan
Kim, Kwang I
Kim, Kyung H
Kim, Kyunghee
Kim, Mee-Kyoung
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Kim, Myoung-Nyoun
Kim, Myung-Hwan
Kim, Pan S
Kim, Sang M
Kim, Sang Dong
Kim, Sang-Bae
Kim, Seok-Woo
Kim, Seokchan
Kim, Seon-Bu
Kim, Seong-A
Kim, Seung I
Kim, Seunghwan
Kim, Seyong
Kim, Sunah
Kim, Sung S
Kim, Sung-Ock
Kim, SungSoo
Kim, Tae-Gun
Kim, Tae-Hwa
Kim, Wan S
Kim, Wansoon
Kim, Won K
Kim, Yangkon
Kim, Yong I
Kim, Yong S
Kim, Yonggu
Kim, Young H
Kim, Young W
Kim, Young-Key
Kim, Young-Kuk
Kimn, H-J
Lau, Jeung-Hark
Lee, Chang H
Lee, Chang K
Lee, Chang Ock
Lee, Chung N
Lee, Daeshik
Lee, Do H
Lee, Dong W
Lee, Dong-Soo
Lee, Dongwoo
Lee, Doobum
Lee, Gyou-Bong
Lee, Hei-Sook
Lee, Hyun Y
Lee, In-Sok
Lee, Insoo
Lee, Jeh G
Lee, Jinoo
Lee, Jong C
Lee, Jong P
Lee, Jong Y
Lee, Jong-Bum
Lee, Jong-Hyeon
Lee, Joo Sung
Lee, Joonyoung
Lee, Jun Y
Lee, Jung-Jo
Lee, Jungseob
Lee, Ke-Seung
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Lee, Kee Y
Lee, Kwang-Bok
Lee, Man H
Lee, Mankeun
Lee, Nam S
Lee, Nyoungi
Lee, Sa-Ge
Lee, Sang-Gu
Lee, Sang-Moon
Lee, Seung-Hwan
Lee, So-young
Lee, Sung Chul
Lee, Sungho
Lee, Sungjin
Lee, Sungyun
Lee, Tae-Keug
Lee, Woo Y
Lee, Wook J
Lee, Yang H
Lee, Yong-ha
Lee, Yongsoo
Lee, Yongsoo
Lee, Young W
Lim, Jong In
Lin, Hyun-Chon
Ma, In-Sook
Ma, Sangback
Nam, Kwanghee
Noh, Sunsook
Oh, Byeong K
Oh, Chang H
Oh, Hi-Jun
Oh, Phillial
Oh, Sei-Qwon
Oh, Seung J
Oh, Seyoung
Ohm, MiRay
Pahk, Dae H
Pak, Jin Suk
Park, Bae H
Park, Chan B
Park, Chan-Young
Park, Chin-Hong
Park, Dae Y
Park, Eunsoon
Park, Hong-Suh
Park, Hwasin
Park, Hyungbin
Park, Jae K
Park, Jeong H
Park, Jong A
Park, Jong Y
Park, Joong S
Park, Joonsang
Park, Ju-Hyun
Park, Jun S
Park, Kwang S
Park, Kyewon
Park, Kyoo-Hong
Park, Myungkark
Park, Nam S
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Park, Pil S
Park, Sang-Ho
Park, Sehie
Park, Seungkyung
Park, Sung H
Park, Sung H
Park, Sung J
Park, SungKi
Park, Sungsoo
Park, Taehoon
Park, Yong M
Park, Young H
Park, Young S
Park, Young-hoon
Rhee, Jung S
Rhie, Gil S
Ung Gi, Min
Wee, In-Suk
Won, Dae Y
Woo, Moo H
Woo, Sung-Sik
Woon, Oh J
Yang, Chun-Woo
Yang, Hyunsuk
Yang, Jae-Hyun
Yang, Seung K
Yim, Jin-Whan
Yoo, Hyeong S
Yoo, Ki-Jo
Yoon, Byung J
Yoon, Joung-Hahn
Yoon, Ju H
Yoon, Yeon S
Youn, Sung-Kie
Yu, Dong W
Yu, Mija
Yum, Bong-Jin
Yum, Sangsup
Yun, Gabjin
Yun, Jae H
----------
ITALIAN
Abatangelo, L M
Abate, Marco
Abram, Mario R
Accascina, Giuseppe
Acciaro, Vincenzo
Acunzo, Andrew
Albano, Alberto
Alessandrini, Giovanni
Alliney, Stefano
Altomare, Francesco
Ambrosetti, Antonio
Amodio, Pierluigi
Ancona, Fabio
Andreatta, Giovanni
Anile, Angelo M
Antoniazzi, Stefano
Arena, Orazio
Arina, Renzo
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Arioli, Gianni
Arioli, Mario
Arri, Paolo
Arzarello, Ferdinando
Aversa, Vincenzo L
Avesani, Renzo
Bacciotti, Andrea
Baldi, Paolo
Barbieri, Francesco
Bardaro, Carlo
Barlotti, Adriano
Barozzi, Elisabetta
Basile, Achille
Bauer, Ingrid C
Beghi, Luigi
Bellen, Alfredo
Beretta, Edoardo
Bertero, Mario
Berti, Patrizia
Betori, Walter
Bianchi, Gabriele
Biroli, Marco
Blasi, Alessandro
Boffi, Giandomenico
Bonomi, Ernesto
Boratynski, M
Boretti, Alberto A
Bottazzini, Umberto
Bove, Antonio
Branciari, Alberto
Breitung, Karl W
Brenti, Francesco
Brieger, Leesa M
Brienza, Antonio
Brugnano, Luigi
Buoncristiano, Sandro
Buzano, Ernesto
Caccianotti, Luciano
Caddeo, Renzo I
Calogero, Francesco
Campanino, Massimo
Campiti, Michele
Cannarsa, Piermarco
Cantoni, Vittorio
Capasso, Vincenzo
Capelli, Giovanni
Capelo, Antonio-Candido
Capozzi, Alberto
Capparelli, Stefano
Capria, Carlo M
Capriz, Gianfranco
Caranti, A E
Carfora, Mauro
Caricato, Gaetano
Carini, Luisa
Carlucci, Maurizio
Casati, Paolo
Castagnola, Ercole
Castagnoli, Erio A
Catanese, Fabrizio M
Cavallini, Fabio
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Cavicchioli, Alberto
Cazzaniga, Franco
Cerruti, Umberto
Chareyron, Jacques
Chiarenza, Filippo
Chiarolla, Maria
Chicco, Maurizio
Cirina, Marco
Coen, Salvatore
Colaneri, Patrizio
Collino, Alberto
Conforti, Domenico
Conte, Giuseppe
Contessa, Maria
Conti, Roberto
Contro, Filippo
Corsi Tani, Gabriella
Coti Zelati, Vittorio
Cotta-Ramusino, Paolo F
Crosta, Giovanni F
D'Alessandro, Paolo
D'Ambra, Pasqua
D'Alessandro, Paolo
D'Ambra, Pasqua
D'Amore, Luisa
D'Aprile, Margherita
D'Aquino, Paola
D'Auria, Catello
Dagnino, Catterina
Damiani, Ernesto
de Bartolomeis, Paolo
De Leone, Renato
De Luca, Aldo
de Lucia, Paolo
De Mari, Filippo
De Pascale, Espedito
De Sena, Silvestro F
de-Michele, Leonede
DeAngelis, Pasquale L
Del Fra, Alberto
Dell'Antonio, Gianfausto
Detofoli, Rino
Di Maio, Giuseppe
Di Martino, Lino
Di Pillo, Gianni
Di Serafino, Daniela
Dominici, Paolo
Lanza de Cristoforis, M
Van Der Mee, Cornelis V
Ebagezio, Valter
Elia, Michele
Emmanuele, Giovanni
Emmer, Michele
Evangelista, Elio
Del Fra, Alberto
Facchinei, Francisco
Facchini, Alberto
Faina, Giorgio
Falcone, Maurizio
Famularo, Domenico
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Fania, Maria L
Farranti, Matteo
Fasano, Antonio
Ferragina, Paolo
Ferrari, Carlo
Ferrari, Luca
Ferri, Massimo
Ferro, Ruggero
Figa-Talamanca, Alessandro
Figari, Rodolfo
Filippone, Salvatore
Filipponi, Piero
Floreanini, Roberto
Fontana, Marco
Forni, Giovanni
Francaviglia, Mauro
Franchi, Bruno
Frittelli, Marco
Frosali, Giovanni
Frosini, Patrizio
Moseneder-Frajria, Pierluigi
Paveri-Fontana, Stefano L
Gaivoronski, Alexei A
Galbiati, Margherita
Gargano, Luisa
Garrisi, Daniele
Gastaldi, Tommaso
Gatteschi, Luigi
Gaudioso, Manlio
Gaviano, Marco
Gentile, Antonio
Gentili, Graziano
Geronazzo, Lucio
Ghinelli-Smit, Dina
Giambruno, Antonino
Giaquinta, Mariano
Gimigliano, Alessandro
Giorgi, Giorgio
Girone, Giovanni
Giuli, Eraldo
Giunta, Giulio
Glielmo, Luigi
Van Geemen, Bert
Iannelli, Mimmo
Invernizzi, Sergio
Iozzi, Fabrizio
Kisel, Ema
De Leone, Renato
Laccetti, Giuliano
Laeng, Enrico
Lammens, Johan M
Landucci, Mario
Lanteri, Antonio
Lanza de Cristoforis, M
Laurence, Peter M
Lauria, Francesco E
Leoni, Giovanni
Licalzi, Marco
De Mari, Filippo
Di Maio, Giuseppe
Di Martino, Lino
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Maffioli, Francesco
Magenes, Enrico
Magri, Franco
Maj, Mercede
Majer, Pietro E
Malvenuto, Claudia
Malvestuto, Francesco M
Manca, Vincenzo
Mangiarotti, Luigi
Marchetti, Federico
Marchiafava, Stefano
Marcja, Annalisa
Marcone, Alberto G
Marconi, Carla
Marino, Marina
Maroscia, Paolo
Martucci, Giovanni
Mauceri, G C
Mazzia, Francesca
Mazzocca, Francesco
Nacinovich, Mauro
Naldi, Giovanni
Naldi, Maurizio
Nanni, Umberto
Nannicini, Antonella
Napoletani, Domenico
Nardelli, Enrico
Navarra, Antonio
Nistri, Paolo
Notarnicola, Filippo
Nucci, Maria-Clara
Nugari, Rita
Oberto, Paolo M
Oliverio, Paolo A
Olla, Stefano
Ornaghi, Giuseppe
Orsenigo, Marta
De Pascale, Espedito
Di Pillo, Gianni
Pacati, Claudio
Pacella, Filomena
Paclet, Philippe
Palagi, Laura
Pallara, Diego M
Pandolfi, Luciano
Paoluzzi, Fabrizio
Pappalardi, Francesco
Parmeggiani, Alberto
Pasini, Antonio
Pasquali, Aldo
Pata, Vittorino
Patrizio, Giorgio
Pavani, Raffaella
Pavarino, Luca
Paveri-Fontana, Stefano L
Peccati, Lorenzo
Peloso, Marco M
Pensavalle, Carlo A
Pepperdine, Andrew H
Perelli, Alberto
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Perrone, Antonio L
Petronio, Carlo
Piacentini Cattaneo, Giulia M
Piazzi, Aurelio
Picardello, Massimo A
Picca, Domenico
Piccarolo, Stefano
Piccinini, Renzo A
Piccinni, Paolo
Piciulin, Antonio
Pierantoni, Margherita
Pirone, Florindo
Quarteroni, Alfio M
Cotta-Ramusino, Paolo F
Racca, Ezio
Ragaini, Enrico
Rao, Salvatore
Rapisarda, Paolo
Regazzini, Eugenio
Ricci, Fulvio
Rigo, Pietro
Rivara, Luigi M
Rodino, Luigi
Sabatini, Marco
Sabatino, Pietro
Sacerdote, Laura
Saliani, Sandra
Salinelli, Ernesto
Salvadori, Anna
Salvadori, Gianfausto
Salvi, Zagaglia N
Santarelli, Ulderico
Santi, Elisabetta
Sartoretto, Flavio
Sbordone, Carlo
Scafati Tallini, Maria
Scarpi, Giambattista
Scarsini, Marco
Schaerf, M
Scheinine, Alan
Schiano, Pasquale
Schoof, Rene
Scolozzi, Donato
Scoppola, Carlo M
Scotti, Antonio
Seatzu, Sebastiano
Siena, Carlo
Corsi Tani, Gabriella
Figa-Talamanca, Alessandro
Scafati Tallini, Maria
Talenti, Giorgio G
Tamanini, Italo
Tanasi, Corrado
Tancredi, Alessandro
Tarantello, Gabriella
Tardella, Fabio
Teolis, Antonio G
Tesei, Alberto
Testa, Giuliano
Tironi, Gino
Toffalori, Carlo
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Togliatti, E G
Tonet, Davide
Tortorici, Adele
Tozzi, Anna
Travaglini, Giancarlo
Trigiante, Donato
Trimarco, Carmine
Troi, Giancarlo
Ursini, Aldo
Valla, Giuseppe
Van Der Mee, Cornelis V
Van Geemen, Bert
Ventriglia, Francesco
Verhoeff, Eric F
Vesentini, Edoardo
Vianello, Marco
Vigna, Sebastiano
Vincenzi, Antonio
Vinti, Calogero
Viola, Carlo
Volcic, A
Coti Zelati, Vittorio
Zacher, Giovanni G
Zanco, Clemente A
Zanolin, Fabio
Zavatta, Giuseppe
Zirilli, Francesco
Zsido, Laszlo
----------
HISPANIC
Abellanas, Manuel
Abellanas, Pedro
Abia, Luis
Aguirre, Julian
Ahlburg, Hayo
Alabert, Aureli
Aldaz, Jesus M
Alegre, Ignacio D
Alfaro, Manuel
Almeida, Angel
Alonso, Agustin
Alonso, Javier
Alseda i Soler, Lluis
Alsina, Claudi
Alvarez, Manuel
Amengual, Miguel
Amoros, Jaume
Ancochea, German
Ansemil, Jose M
Anton, Jose M
Antonino, Jose A
Ara, Pere
Archilla, Bosco G
Arias, Arturo F
Arias-de-Reyna, Juan
Arino, Miguel A
Artal-Bartolo, Enrique
Asensio Mayor, Jose
Ayala-Gomez, Rafael
Baeyens, Enrique
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Bagaria, Joan
Balbuena, Luis
Balibrea, Francisco
Ballesta, Pascual N
Banderas, Antonio
Barcelo, Bartolome
Barja, Jose M
Barlabe, Antoni
Barquin, Julian
Barrera-Rosillo, Domingo
Barrio, Roberto G
Bartoll, Salud
Bastero, Jesus
Bayer, Pilar
Bayod, Jose M
Bellot, Francisco
Belzunce Torregrosa, Felix L
Benitez, Carlos
Benito Munoz, Manuel
Bermudez, Alfredo
Bernis, Francisco
Blasco, Fernando
Bonet, Jose
Bonilla, Luis L
Branquinho, Amilcar
Bravo De La Parra, Rafael
Bru, Rafael
Brunat, Josep M
Bujalance, Emilio
Burgos Gil, Jose I
Busque, Claudi
Cabrera, Antonio
Cabrera-Garcia, Miguel
Caceres, Jose
Cachafeira, Alicia
Calvino, Santiago
Calvo, Manuel
Camarena Badia, Vicente
Campos, Javier
Canadas-Pinedo, Maria A
Candela, Vicente F
Canto, Rafael
Carro, Maria J
Casacuberta, Carles
Casas, Eduardo
Castella Arteta, Ignacio
Castellet, Manuel
Castillo, Jesus M
Cerda, Joan
Ceron, Gaston
Cifuentes, Patricio
Climent Coloma, Joan J
Comellas, Francesc
Companys, R
Conde, Juan M
Contreras, Lucia
Cordero, Luis A
Corona, Carlos M
Costa-Castello, Ramon
Crespo, Teresa
Crossley, Martin D
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Curbera, Guillermo P
De La Fuente, Jose L
de las Obras, Carmen
de Leon, Manuel
Dehesa, Jesus S
del Bano, Sebastian
del Rio, Roberto R
Del Val, Pablo
Delgado, Felix
DeMiguel, Luis M
Diaz, J I
Aboites, Vicente
Aceff-Sanchea, Flor d
Acosta-Abreu, Roberto
Aguilar, Marcelo A
Alarcon, Hugo R
Alberto, Lorandi M
Aldama, Alvaro A
Alonso, Alberto
Arizmendi, Hugo P
Arroyo, Maria-Jose
Avila-Murillo, Fernando
Avila-Vales, Eric J
Betancourt, Carlos M
Bosch, Carlos
Brady, Wray G
Bromberg, Shirley
Caballero, Maria-Emilia
Cadenillas, Abel
Cambray-Nunez, Rodrigo
Campos, Rafael G
Campuzano, Gabriel
Canavati, Jose A
Cano-Garc/'es, Agust/i n J
Carrillo, Humberto
Carrillo Maria Melina, Becerra
Casillas Macias, Andrea
Castano, Victor M
Cavero, Veronica
Cervantes, Salvador
Clapp, Monica
Comer-Barragan, Enrique
Corona-Corona, Gulmaro
Cruz-Sampedro, Jaime
de los Cobos Silva, Sergio
Del Riego de Del Castillo, L
Del Rio, Rafael R
Diaz Gomez, Jose Luis
Eckertson, Fred W
Elizondo, E J
Escarela Cornejo, Samuel
Esparza, Sergio O
Esquela, Chico
Esquivel-Avila, Jorge A
Esteva, Lourdes
Estrada, Luis
Eudave-Munoz, Mario
Falconi-Magana, Manuel
Fetter, Hans L
Fuente-Florencia, Maria C
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Galaz-Fontes, Fernando
Galeana-Sanchez, Hortensia
Garcia, Gerardo E
Garcia, Jesus E
Garcia Almeida, Gerardo E
Garcia Corte, Julio C
Garcia-Moreno, Enrique E
Garciadiego, Alejandro R
Garibay, Fernando
Garza-Garcia, Jose L
Glazman, Mary
Gomez, Campos G
Gomez, Guillermo L
Gomez, Javier A
Gomez, Luis E
Gomez, Susana
Gonzalez, Hernan
Gonzalez, Jesus
Gonzalez, Raul E
Gonzalez-Barrios, Jose M
Gordienko, Evgueni I
Gorostiza, Luis G
Guillermo, Fernandez A
Hector, Lara-Chavez
Hennart, Jean P
Hernandez-Garcia, Constancio
Hernandez-Lerma, Onesimo
Herrera, Ismael
Hidalgo de Ita, Pedro
Hinojosa-Berrones, J A
Huerta, Jose 4
Idalia, Flores d
Imaz, Carlos
Ize, Jorge A
Jazcilevich, Aron D
Juan-Pineda, Daniel
Kalicanin, Ivica
Kravchenko, Vladislav V
Lacomba, Ernesto A
Lara-Aparicio, Miguel
Lascurain Orive, Antonio
Lizarraga, Carlos C
Lluis, Emilio R
Lluis-Puebla, Emilio
Lopez-Mimbela, Jose f
Lopez-Yanez, Alejandro
Lugo-Goytia, Jose i
Luque, Fernando V
Madrid, Humberto
Madrid Nunez, Bertha A
Malo, Salvador
Martinez-Morales, Manuel
Arias-de-Reyna, Juan
Bravo De La Parra, Rafael
De La Fuente, Jose L
de las Obras, Carmen
de Leon, Manuel
Dehesa, Jesus S
del Bano, Sebastian
del Rio, Roberto R
Del Val, Pablo
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Delgado, Felix
DeMiguel, Luis M
Diaz, J I
Diaz, Josep
Diaz-Miranda, Antonio
Diaz-Quinones, Miguel A
Dominguez, Jesus M
Donat, Rosa
Gonzalez-Diez, Gabino
Martin de Diego, David
Palencia de Lara, Cesar
Perez de Vargas, Alberto
Quintanilla de Latorre, Ramon
Sanchez Dehesa, Jesus
Echeverria, Javier
Elduque, Alberto
Elias, Juan
Escauriaza, Luis
Escoriza-Lopez, Jose
Escriba, Lourdes B
Escudero, Laureano F
Esteban, Juan R
Rodriguez-Exposito, Jose
Facenda Aguirre, Jose A
Falco, Antonio
Farre, Rafel
Fernandez, Jose L
Fernandez Moral, Emilio
Fernandez Perez, Carlos
Fernandez-Rodriguez, Marisa
Ferrer, Jesus
Floria, Luis
Font, Josep M
Freire, Emilio
Martinez Finkelshtein, Andrei
Ayala-Gomez, Rafael
Burgos Gil, Jose I
Cabrera-Garcia, Miguel
Gadea, Pedro M
Gadella, Manuel
Gaeta, Federico
Gago, Felipe
Galacho, Cristobal R
Gale, Jose E
Galindo, Alberto T
Gallego, Eduardo
Galvez, Javier F
Gandarias, Maria
Garay, Oscar J
Garcia, Domingo
Garcia, Jose L
Garcia-Alvarez, Victor O
Garcia-Cuerva, Jose
Garrido, Isabel
Garriga, Ana J
Gasca, Mariano
Gil-Medrano, Olga
Gimenez, Domingo
Giraldo, Antonio
Girela, Daniel
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Gomez, Joan V
Gomez Pardo, Jose L
Gomez-Ruiz, Francisco
Gomis, Salvador S
Gonzalez, Benito J
Gonzalez, Manuel
Gonzalez-Diez, Gabino
Gonzalez-Lopez, Artemio
Gonzalez-Vega, Laureano
Gonzalo, Jesus
Hernandez Gomez, Joaquin
Martinez-Garcia, Vincente
Pascual-Gainza, Pere
Perez Gonzalez, Fernando
Sanchez-Giralda, Tomas
Santos-Garcia, Gustavo
Haefner, Jeremy A
Hayek, Nacere
Herbera, Dolors
Hermida-Alonso, Jose A
Hernandez, Eugenio
Hernandez, Fernandez T
Hernandez, Jesus
Hernandez, Rafael
Hernandez, Salvador
Hernandez, Vicente
Hernandez Gomez, Joaquin
Hernandez Ruiperez, Daniel
Hernandez-Guerra, Juan M
Hernandez-Penalver, Gregorio
Herrero, Miguel A
Herrero Ruiz, Francisco
Hervas, Antonio
Martinez Hernandez, Juan
Alseda i Soler, Lluis
Ibort, Luis A
Ibort-Latre, Luis A
Inforzato, Nelson F
Rios-Insua, David
Jara Martinez, Pascual
Jimenez, Javier
Jimenez, Jose M
Jorba, Angel
Kazarian, Kazaros S
Bravo De La Parra, Rafael
De La Fuente, Jose L
de las Obras, Carmen
de Leon, Manuel
Ibort-Latre, Luis A
Larrazabal, J M
Larriba-Pey, Josep L
Munoz-Lecanda, Miguel-C
Palencia de Lara, Cesar
Quintanilla de Latorre, Ramon
Asensio Mayor, Jose
Jara Martinez, Pascual
Lopez-Marcos, Juan C
Macias-Virgos, Enrique
Maestre, Manuel
Majadas, Javier
Mancebo, Francisco J
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Manlleu, Josep G
Marcellan, Francisco
Marcos, J E
Marhuenda, Francisco
Marin Malave, Santiago
Marin-Munoz, Leandro
Marin-Solano, Jesus
Marques, Francisco
Marquez, Juan-Bosco R
Marquez-Perez, Alberto
Marquina, Antonio
Martel, Antonio F
Martin de Diego, David
Martin-Guzman, Pilar M
Martin-Reyes, Francisco J
Martinez, Jose J
Martinez Finkelshtein, Andrei
Martinez Hernandez, Juan
Martinez-Amores, Pedro
Martinez-Garcia, Vincente
Martinon, Antonio
Mas Mari, Jose
Massaguer, Josep M
Mazon, Jose M
Munoz Masque, Jaime
Oriol Marti, Josep M
Carrillo Maria Melina, Becerra
Casillas Macias, Andrea
Falconi-Magana, Manuel
Madrid, Humberto
Madrid Nunez, Bertha A
Malo, Salvador
Martinez-Morales, Manuel
Martinez-Sanchez, Jorge
Martinez-Villa, Roberto
Renteria Marquez, Carlos
Navarro, Gabriel
Navarro, Joaquin P
Navarro Sandalinas, Joaquim
Naveira, Antonio M
Nicolas, Jose A
Nieto, Juan J
Nitchiporenko, Alexandre I
Noy, Marc
Nualart, David
Nunez, Marina
Nunez, Pascual B
Cambray-Nunez, Rodrigo
Madrid Nunez, Bertha A
Nunez-Doval, Ramon M
de las Obras, Carmen
Oleaga, Gerardo E
Oriol Marti, Josep M
Ortega-Cerda, Joaquim
Otal, Javier
Otero, Jesus
Otero, Maria C
Oubina, Jose A
Lascurain Orive, Antonio
Ojeda-Pena, Eduardo M
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Olive, Victor M
Bravo De La Parra, Rafael
Canadas-Pinedo, Maria A
Fernandez Perez, Carlos
Gomez Pardo, Jose L
Hernandez-Penalver, Gregorio
Hueso-Pagoaga, Jose L
Larriba-Pey, Josep L
Marquez-Perez, Alberto
Mendez-Perez, Jose M
Pacheco-Castelao, Jose M
Palanques-Mestre, August
Palencia de Lara, Cesar
Pallares, Antonio J
Pardo, Enrique
Parra, Ignacio E
Pascual, Griselda
Pascual-Gainza, Pere
Pascuas, Daniel
Paul, Pedro J
Paya, Rafael
Penades, Jose
Peral, Ireneo A
Perez Carreras, Pedro
Perez de Vargas, Alberto
Perez Gonzalez, Fernando
Pericas, Jordi
Sanchez-Pedreno, Salvador
Torres-Peral, Francisco J
Trias Pairo, Joan
Juan-Pineda, Daniel
Morales-Perez, Jose L
Ojeda-Pena, Eduardo M
Pastor, Guilleimo
Perez Romero, Jose J
Perez-Chavela, Ernesto
Perez-Rojas, Carlos
Diaz-Quinones, Miguel A
Quijada, Antonio
Quintanilla de Latorre, Ramon
Quintero, Antonio
Quiros, Adolfo
Quiroga, Raul
Arias-de-Reyna, Juan
del Rio, Roberto R
Fernandez-Rodriguez, Marisa
Martin-Reyes, Francisco J
Mumbru Rodriguez, Pere
Rafael, Lopez C
Ramos, Juan I
Ras, Antoni
Reguera, Ana J
Reyes, Miguel
Riaza, Roman
Rios-Insua, David
Rodriguez, Fernando F
Rodriguez, Gerardo
Rodriguez, Sanjurjo J
Rodriguez-Exposito, Jose
Roig, Agusti
Rojo, Jesus
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Sanchez-Reyes, Javier
Viano Rey, Juan M
Del Riego de Del Castillo, L
Del Rio, Rafael R
Mendoza Reyes, Miguel A
Mendoza Rivera, Jose C
Perez-Rojas, Carlos
Raggi, Francisco F
Ramos, Luis
Recillas-Pishmish, Sevin
Renteria Marquez, Carlos
Rivera, Antonio F
Rivera, Jose A
Tapia-Recillas, Horacio
Lopez-Sanchez, Jose M
Montesinos Santalucia, Vicente
Navarro Sandalinas, Joaquim
Sabadell, Javier
Saludes, Jordi
San Miguel, Angel
Sanchez, Juan M
Sanchez Dehesa, Jesus
Sanchez-Calle, Antonio
Sanchez-Giralda, Tomas
Sanchez-Pedreno, Salvador
Sanchez-Reyes, Javier
Sanchez-Umbria, Juan J
Sansigre, Gabriela
Santos, Francisco
Santos-Garcia, Gustavo
Sanz, Miguel A
Sanz-Serna, J M
Sanz-Sole, Marta
Urbano-Salvador, Ana M
Aceff-Sanchea, Flor d
Cruz-Sampedro, Jaime
Galeana-Sanchez, Hortensia
Martinez-Sanchez, Jorge
Mercado Sanchez, Gema A
Saavedra, Patricia B
Sabina, Federico J
Salazar-Leyva, Enrique
Sanchez, Hector F
Sanchez-Garduno, Faustino
Sanchez-Valenzuela, Oscar A
Sautto Vallejo, Jose M
Tovar S, Luis M
Belzunce Torregrosa, Felix L
Tarres, Joan
Tena, Juan
Torrecillas, Blas
Torregrosa, Joan
Torrens, Antoni
Torres, M
Torres-Peral, Francisco J
Trias Capella, Rosa M
Trias Pairo, Joan
Trillas, Enric
Tapia-Recillas, Horacio
Tkachuk, Vladimir V
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Tornell, Jessica F
Torres-Falcon, Yolanda
Tovar S, Luis M
Ulloa-Azpeitia, Ricardo
Urias, Jesus
Sanchez-Umbria, Juan J
Udina, Frederic
Urbano-Salvador, Ana M
Avila-Vales, Eric J
Martinez-Villa, Roberto
Moreno-Valle, Javier F
Sanchez-Valenzuela, Oscar A
Sautto Vallejo, Jose M
Valencia, Marco A
Vallejo, Ernesto
Vargas, Cristobal
Vasilevski, N L
Velasco-Hernandez, Jorge X
Verde Star, Luis
Vila-Freyer, Ricardo F
Villarreal, Rafael H
Villasana, Jose A
Villegas-Silva, Luis M
Walias, Magdalena
Wecker, Segarra
Welters, Gerald E
Lopez-Yanez, Alejandro
Yebra, Jose L
Yguacel, Eugenio J
Zaldivar, Felipe
Zavadskij, Alexander G
Zhevandrov, Peter N
Zoreda-Lozano, Juan J
----------
FRENCH
Abadie, Jean M
Airault, Helene
Akbar-Zadeh, Hassan
Akian, Jean-Luc
Akian, Marianne
Al Assaad, Al Ayham A
Alain, Guimier
Alarcon, Guy
Albugues, Alain V
Alinhac, Serge J
Almeida, Luis N
Amrouche, Denise
Anantharaman-Delaroche, Claire
Andler, Martin J
Angeniol, Bernard
Anker, Jean-Philippe
Apkarian, Pierre
Aribaud, F
Arino, Ovide H
Arnold, V I
Arnoux, Pierre
Artola, Michel
Artzrouni, Marc
Ashwin, Peter B
Atrops, Sylvain
Aubin, Thierry E
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Audin, Michele M
Avez, Andrew
Azzedine, Mohamed M
Bacher, Roland
Baillon, Jean-Bernard
Baker, Mark D
Balinski, Michel L
Ball, Derek
Balsalobre, Francois
Bamberger, Alain
Bardos, Claude W
Barre, Raymond C
Barriot, Jean Pierre
Barsky, Daniel
Bataille, Michel
Batard, Eric
Bauer, Max
Bayer-Fluckiger, Eva
Bayle, Lionel
Beauville, Arnaud
Becker, Jean-Marie
Becker, Richard E
Beedassy, Lekraj
Bekka, Karim
Bekka, Mohammed E
Beliveau, Jean
Bellissard, Jean V
Arous, Gerard n
Benoist, Yves
Bensoussan, Alain
Benzi, Michele
Berger, Marcel
Bermond, Jean C
Bernadou, Michel
Bernard, Alain
Bernardi, Christine
Berry, Gerard
Bertrand, Daniel A
Bertrand, Francois
Bertrandias, Jean-Paul
Bessis, Daniel J
Besson, Gerard
Bethery, Jean
Bineau, Michel J
Boeckle, Gebhard
Bohnke, G C
Bonami, Aline G
Bonavero, Laurent
Borgnet, Eric N
Bossavit, Alain
Bost, Jean-Benoit
Bouleau, Nicolas
Bourgeat, Alain P
Bourguignon, Jean-Pierre
Bourion, Georges
Bourquin, Frederic L
Boutillon, Jacques
Boutot, Jean F
Brasselet, Jean-Paul
Breen, Lawrence
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Brenier, Yann
Bretto, Alain
Breuil, Christophe O
Brezinski, Claude
Brezis, Haim
Briend, Jean-Yves
Brisebois, Patrick
Brodeur, Martin
Broise, Michel J
Broue, Michel
Brown, Richard H
Bruter, Claude P
Bryant, John G
Burnol, Jean-Francois H
Cabane, Robert
Caboz, Regis
Cabre, Xavier
Cabane, Robert
Caboz, Regis
Cabre, Xavier
Cahen, Paul-Jean
Caloz, Gabriel
Camion, Paul F
Carraro, Laurent
Carrieu, Herve
Cartan, Henri
Cartier, Pierre
Cathelineau, Jean-Louis
Cauty, Robert
Cegielski, Patrick
Chabert, J L
Chaperon, Marc
Chapuis, O
Charpentier, Marie R
Charpin, Pascale
Chasse, Guy
Chatelin-Chaitin, Francoise H
Chatelon, Jacques A
Chauvin, Andre
Chavent, Guy
Chenciner, Alain
Chipot, Michel
Chone, Jacques
Choquet, Gustave
Choulli, Mourad
Ciarlet, Philippe G
Cibils, Claude
Le Calvez, Patrice
Anantharaman-Delaroche, Claire
Dabaghi, Zakia B
Damlamian, Alain
Damphousse, Vincent
Daniel, Marc
Danset, Renaud
Daouda, Sangare
de Branges, Louis
de Mesnard, Louis
De Roeck, Yann H
Deguenon, Charles
Deheuvels, Paul
Deheuvels, Rene
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del Solar-Petit, Emilio
Delange, Hubert
Dellacherie, Claude
Delporte, Jean
Demers, Jacques
Derriennic, Yves
Desarmenien, Jacques
Deshouillers, Jean-Marc
Desolneux-Moulis, Nicole
Detraz, Jacqueline
Detrez, Eric L
Dia Boun, Oumar
Diarra, Bertin
Dias, Frederic
Dichi, Henri
Diener, Marc
Dierieck, Claude L
Digne, Francois G
Dincbas, Mehmet
Dolbeault, Jean
Dolbeault, Pierre E
Gasqui De St-Joachim, Jacques
Pham Dinh, Tao
Van den Reysen, Joseph M
Edixhoven, Sebastian J
Ekeland, Ivar
Ekong, Samuel
El Jai, Abdelhaq
El Kacimi Alaoui, Aziz
Elbaz-Vincent, Philippe
Elhadad, Jimmy
Emamirad, Hassan
Emery, Michel
Epstein, Henri
Escassut, Alain
Esteban, Maria J
Estivalezes, Jeanluc
Euler, Reinhardt
Eytan, Michael
Bayer-Fluckiger, Eva
Faille, Isabelle
Faraut, Jacques
Farina, Bruno
Fathi, Albert
Faure, Robert
Faurre, Pierre L
Fellah, Dominique
Feray Beaumont, Margarida P
Ferrif, Bernard
Flajolet, Philippe
Flato, Moshe
Fliess, Michel
Foata, Dominique
Foulon, Patrick
Fouque, Jean-Pierre
Fraysse, Valerie
Fresneau, Alain R
Gabay, Jacques
Gallardo, Luis
Garcin, Jean-Louis
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Gasqui De St-Joachim, Jacques
Gaudier, Henri
Gauduchon, Paul
Gaudy, Bruno
Geoffrion, Bernard
Genet, Jean R
Gerard, Patrick
Gerardin, Paul
Gergondey, Robert A
Germain, Emmanuel C
Germain, Paul
Gilbert, Jean-Charles
Gilewicz, Jacek
Gillard, Roland D
Gilquin, Herve
Ginestet, Jean-Paul
Giraud, Luc
Giraudet, Michele
Godefroy, Gilles B
Goffinet, Daniel
Goichot, Francois
Golse, Francois J
Gondard-Cozette, Danielle J
Gonnord, Michel
Verger-Gaugry, Jean-Louis
Habegger, Nathan
Haddad, Labib S
Hebey, Emmanuel
Hedou, Veronique
Heintz, Bruno
Helein, Frederic
Hellegouarch, Yves
Hemard, Denis
Henrot, Antoine
Herman, Michael
Herr, Laurent
Indjoudjian, M D
Iochum, Bruno
Ivol, Bernard
El Jai, Abdelhaq
Gasqui De St-Joachim, Jacques
Jaffard, Stephane P
Jakubowicz, Daniel
Jami, Adrien C
Jouanolou, Jean-Pierre
Juditsky, Anatolii B
Lejeune-Jalabert, Monique
Moser-Jauslin, Lucy
El Kacimi Alaoui, Aziz
Kahane, Jean-Pierre
Kahn, Bruno
Kaplan, Pierre
Karoubi, Max
Kassel, Christian
Keller, Bernhard M
Kern, Michel E
Mokhtar Kharroubi, Mustapha
La Shelle, Arthur G
Labesse, J P
Labrousse, Jean-Philippe
Lacaze, B
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Lachaud, Gilles
Lafitte, Olivier D
Lafleur, Guy
Lafon, Jean P
Lafontaine, Jacques
Lapeyre, Bernard
Lascaux, Patrick M
Lasry, J M
Lassere, Patrice
Laudenbach, Francois
Laugier, Jean-Christophe
Laumon, Gerard
Laurencot, Philippe
Laurent, Trilling
Lazarus, Michel
Le Calvez, Patrice
Le Vey, Georges
Leborgne, Daniel
Lebourg, Gerard
Lebret, Herve
Leca, Pierre
Leclerc, Bernard
Lecomte, Pierre C
Lecot, Christian
Lefebvre, Jean E
LeFloch, Philippe G
LeGland, Francois
Lehning, Herve
Lehobey, Frederic
Lejeune-Jalabert, Monique
Lelievre, Gilbert
Lelong, P J
Lemaire, Jean-Michel
Lemarechal, Claude
Lemarie-Rieusset, Pierre-Gilles
LeMehaute, Alain
Lemieux, Claude
Lentin, Andre
Leray, Jean
Lerner, Nicolas
Leroide, Raymond
Leroy, Andre G
Lescot, Jack
Lescot, Paul
Lesieur, Leonce
Letac, Gerard
LeTallec, Patrick
Levine, Harold I
Levitt, Gilbert
Libermann, Paulette L
Lichnerowicz, Andre
Ligozat, Gerard Y
Magnin, Louis
Mahey, Philippe
Malliavin, Marie-Paule
Marchand, Bernard
Mardin, Arif
Marichal, Gilles
Marion, Jean A
Marle, Charles M
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Martel, Philippe C
Matet, Pierre
Mattei, Jean-Francois
Maugin, Gerard A
Maynadier-Averous, Genevieve
Mitterand, Francois
Hogbe-Nlend, Henri
Nadiras, Francois
Nataf, Frederic
Neveu, Jacques
Nguyen, Thanh V
Nicolas, Jean-Louis
Nikolskii, N K
Nitrosso, Bruno A
Noot, Rutger
Nuss, Philippe
Ofman, Salomon
Oliver, Robert A
Olivier, Grange
Olivier, Jean-Pierre
Ollivry, Jean Pascal
Orieux, Karine
del Solar-Petit, Emilio
Pajitnov, Andrei V
Papasoglu, Panagiotis T
Pardoux, Etienne C
Paris, Luis
Paszkiewicz, Pascault
Patin, Jean-Marc
Patra, Francois
Paulin, Frederic
Pavel, Monique L
Pelletier, Jean-Jacques
Penot, J P
Periaux, Jacques
Perrin, Dominique
Perrine, Serge
Perthame, Benoit
Peters, Chris A
Peyre, Emmanuel R
Peyriere, Jacques
Pham, Tuan D
Pham Dinh, Tao
Philippe, Bernard
Picavet, Gabriel
Piger, Camille
Piger, Jean
De Roeck, Yann H
Lemarie-Rieusset, Pierre-Gilles
Rabah, Rabah
Rahbar-Rochandel, Hamid
Rambavilas, C D
Raoult, Anne
Rav, Yehuda
Reese, Roy C
Regalia, Phillip A
Reisz, Daniel
Renault, Jean N
Reversat, Marc
Revuz, Daniel R
Reznikoff, Iegor
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Richard, Maurice
Richer, Stephane
Riedi, Rudolf H
Ritter, James
Roberts, Jean E
Roche, Claude
Rofman, Edmundo
Roger, Claude
Roland-Prillecart, Marianne
Roy, Patrick
Kosmann-Schwarzbach, Yvette
Sabatier, Pierre C
Sabbagh, Gabriel
Sabbah, Claude
Sablonniere, Paul
Saint-Loup, Bernard
Saladin, Yves
Salinier, Alain
Salles, Maurice
Saloff-Coste, Laurent
Samuel, Pierre
Sanderson, Yasmine B
Saralegi-Aranguren, Martin E
Saumont, Remi L
Saut, Jean C
Schafke, R
Schapira, Pierre B
Schatzman, Michelle
Schiffmann, Gerard M
Schloss, Jean-Baptiste H
Schmitt, Jacques
Schneiders, Jean-Pierre
Colliot-Thelene, J L
Teissier, Bernard
Teller, Patrick
Temam, Roger
Tenenbaum, Gerald
Terpolilli, Peppino
Thera, Michel A
Theuveny, Bertrand C
Thibault, Jocelyn
Thibon, Jean-Yves
Thien, Noel
Thom, Rene
Thomas, Jean-Claude
Thomas, Jean-Marie
Thomas, Pascal J
Tilouine, Jacques
Tits, Jacques L
Tortelier, Patrick
Tougne, Pierre
Tran, Huy Q
Treibich, Armando
Tronel, Gerard
Trotman, David J
Trubuil, Alain
Ugalde, Edgardo
Ulmer, Felix A
Dubois-Violette, Michel
Elbaz-Vincent, Philippe
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Le Vey, Georges
Van den Reysen, Joseph M
Vandeur, Jean-Luc
Vaquie, Michel
Varouchas, Jean
Vauthier, Jacques J
Vercken, Christine
Verger-Gaugry, Jean-Louis
Verjovsky, Alberto S
Veron, Laurent
Villalongue, Pierre
Vilotte, Jean-Pierre
Vuillermot, Pierre A
Vuillon, Laurent
Wagneur, Edouard
Waldschmidt, Michel
Walker, Martin
Wang, Dongming M
Weissler, Frederic B
Williamson, Francis U
Willien, Francois
Wolfmann, Jacques
Wurzbacher, Tilmann
Yebbou, Johan
YueChiming, Roger Y
Akbar-Zadeh, Hassan
Zaleski, Stephane
Zanotti, Jean-Pierre
Zara, Francois
Zizi, Khelifa
Zocca, Valentino
----------
GERMAN
Abels, Herbert
Adelman, Dave
Albeverio, Sergio A
Albrecht, Ernst
Albrecht, Gerald W
Albrecht, Raphael
Albright, Louis
Aldinger, Juergen P
Alefeld, Gotz E
Aleis, Hans P
Aleman, Alexandru
Altmann, Klaus
Amberg, Bernhard
Ambos-Spies, Klaus
an der Heiden, Uwe
Andras, Varga
Anger, Gottfried
Apel, Thomas
Armbrust, Manfred K
Arnold, Ludwig
Ast, Markus
Aumann, Gunter
Bach, Gunter
Bachem, Achim
Bader, Ralf
Baer, Christian
Bandt, Christoph
Barakat, Aliaa
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Barakat, Mohamed
Barner, Klaus
Barner, Martin
Bartsch, Thomas J
Bartz, Dirk
Batt, Jurgen O
Bauer, Heinz
Bauer, Stefan A
Baumeister, Werner F
Baumgarten, Jennifer
Baur, Walter
Becker, Eberhard
Becker, Thomas
Beekmann, Wolfgang
Behncke, Horst
Behrendt, Frank
Bell, Wolfgang
Bemelmans, Josef
Benner, Peter
Benz, Walter A
Berding, Christoph F
Berens, Hubert
Berger, Robert W
Bergmann, Arthur
Bergweiler, Walter
Bernert, Jan
Berntzen, Detlef
Berntzen, Rainer
Bessenrodt, Christine
Beth, Thomas
Betsch, Gerhard
Beutelspacher, Albrecht F
Bieri, Robert
Bierstedt, Klaus D
Bitter, Ingmar
Blum, Heribert
Bock, Hans G
Boehm, Michael
Boehmer, Klaus W
Boettcher, Albrecht
Bohner, Martin J
Boltje, Robert
Bonk, Mario
Boos, Johann
Borchers, Hans W
Borchers, Hans-Jurgen
Borchert, Bernd H
Borges, Rudolf
Born, Jens
Bornemann, Folkmar A
Brandenburg, Harald
Braun, Manfred
Braun, Rudiger W
Brieskorn, Egbert
Brinkmann, Hans-Berndt
Brokate, Martin
Brommundt, Eberhard W
Brosowski, Bruno H
Bruck, Rainer
Brueggemann, Wolfgang
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Bruening, Jochen
Bruns, Winfried
Brussee, Rogier
Buchanan, Thomas
Buhl, Hans-Jurgen
Buhring, Wolfgang
Bulirsch, Roland Z
Bunse-Gerstner, Angelika
Byrne, Catriona M
Cabos, Christian E
Calmet, Jacques
Carlsson, Renate
Carstensen, Carsten
Chokoe, K F
Christopeit, Norbert
Cabos, Christian E
Calmet, Jacques
Carlsson, Renate
Carstensen, Carsten
Chokoe, K F
Christopeit, Norbert
Chudej, Kurt H
an der Heiden, Uwe
de Vries, Sven
Decker, Eva
Deimling, K
Dellnitz, Michael
Delvos, Franz J
Dempe, Stephan
Deninger, C
Denzler, Jochen
Deuflhard, Peter J
Dick, Rainer
Diener, Karl-Heinz
Dietmair, Thomas
Dietsch, Karl
Dipper, Richard T
Doering, Boro
Doktorskii, Ruwel Y
Dold, Albrecht E
Donnell, William A
Eggers, Bleicke
Ehrich, Sven
Eichhorn, Jurgen
Eiermann, Michael
Elsner, Ludwig
Elstrodt, J
Emmrich, Claudio
Emmrich, Etienne
Engel, Arthur
Enss, Volker
Entenmann, Walter
Epkenhans, Martin
Eppel, Dieter P
Erber, Friedrich M
Erle, Dieter H
Erne, Marcel
Ernst, Oliver G
Eschenbach, Dieter
Grosse-Erdmann, Karl-Goswin
Nour Eldin, Hassan
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Faltings, Kai
Fassbender, Heike
Fekete, Otto
Fekete, Sandor P
Feldvoss, Jorg
Felscher, Walter
Felshtyn, Alexandr L
Fenske, Christian
Ferber, Thomas
Ferebee, Ann S
Fichter, Michael
Files, Steven T
Fischer, Bernd
Fischer, Gerd O
Fischer, H
Fleishman, Charles
Fleishman, Helen
Floret, Klaus
Forster, Klaus-Jurgen
Frank, Detlef
Frank, Michael
Franken, Uwe
Frauendiener, Jorg T
Frick, Hans
Friedrichs, Bernd
Fritsch, Rudolf
Frommer, Andreas
Fuchssteiner, Benno
Jeltsch-Fricker, Rita
Bunse-Gerstner, Angelika
Gackstatter, Fritz
Gaertner, Ralf
Gaier, Dieter
Gamst, Jens
Gaschutz, Wolfgang
Gasser, Ingenuin
Gekeler, Ernst-Ulrich
Gentzsch, Wolfgang G
Gerhardt, C
Gerisch, Wolfgang
Getzler, Ezra
Ghanaat, Patrick H
Giebermann, Klaus
Glaeske, Hans J
Gneiting, Tilmann J
Gobel, Rudiger G
Goes, Gunther W
Gonska, Heinz H
Goodman, Oliver A
an der Heiden, Uwe
Habetha, Klaus
Hachenberger, Dirk
Haemmerlin, Guenther
Haffner, Tobias
Hagen, Hans
Hagen, Thomas
Hahn, Joerg M
Hamenstadt, Ursula
Hanke, Martin
Happel, Dieter
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Happle, Wolfgang
Harborth, Heiko
Harmand, Peter
Harms, Torsten
Hartl, Johann
Hartler, Gisela R
Harzheim, Egbert
Hasenjaeger, Gisbert F
Haussmann, Werner
Hayer, Mattias P
Heck, Matthias K
Heil, Erhard
Heilmann, Margareta
Heiming, Helmut
Heineken, Hermann
Heinlein, Gerd
Heintze, Ernst
Heinze, Joachim
Helm, Martin
Helmer, Dietrich
Helmke, Uwe R
Helwig, Karl-Heinz
Henk, Martin
Henn, Hans-Werner
Henney, Dagmar R
Hermann, Martin
Herrmann, Carsten H
Herrmann, Norbert
Herwig, Bernhard
Herzberger, Juergen P
Herzog, Gerd
Herzog, Ivo
Hettich, R
Heusener, Michael
Heuser, Harro G
Heyer, Herbert K
Hoffman, Roald
Ihringer, Thomas
Jacob, Niels
Jaeger, Arno
Jahn, Johannes
Jahnke, Thomas
Jainta, Paul
Jannsen, U
Jarre, Florian
Jeggle, Hansgeorg
Jeltsch-Fricker, Rita
Jongen, Hubertus T
Jost, Juergen K
Junek, Heinz J
Jungnickel, Dieter
Kadison, Lars
Kairies, Hans H
Kalhoff, Franz B
Kalmbach, Gudrun
Kaniuth, Eberhard
Kanold, Hans-Joachim
Kanzow, Christian
Karbe, Manfred J
Karcher, Hermann
Karpinski, Marek
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Kaul, Helmut
Kauftail, Larry
Kawohl, Bernhard
Kegel, Otto H
Keil, Detlef
Keil, Karl-Heinz
Keller, Wilfrid
Keller, Wolfgang
Kellerer, H G
Kellerhals, Ruth
Kemnitz, Arnfried
Kerber, Adalbert
Kerby, William E
Kerner, Otto
Kerns, Richard B
Ketterl, Rudolf
Kidwaii, Hariss
Kiechle, Hubert
Kimmerle, Wolfgang O
Kings, Guido
Kirchgassner, Klaus W
Kirsch, Andreas
Kiyek, K
Krieger, Heindrich
Landes, Hermann
Lang, Bruno
Langbein, Frank C
Lange, Horst R
Lanzinger, Hartmut X
Laska, Michael
Lass, Bodo
Lasser, Rupert
Latting, Charles R
Laufmann, Charles
Laufmann, Claire
Laugwitz, Detlef
Lauterbach, Reiner
Leeb, Klaus
Lefmann, Hanno
Leinen, Felix
Lempken, Wolfgang
Lenk, Ursula
Leptin, Horst A
Leugering, Gunter R
Liebers, Annegret C
Liebers, Thorsten
Lindemann, Willi
Maennel, Hartmut
Malkowsky, Eberhard
Maltese, George J
Mann, Matthias
Manolache, Nicolae
Marquardt, Wolfgang
Marten, Wolfgang
Martensson, Bengt K
Martin, Reiner
Marz, Roswitha
Mathieu, Martin
Matthies, Hermann G
Mattner, Lutz
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Matzat, B H
Maurer, Helmut
Mayer, Dieter H
Mayer, Guenter A
Mayer, Karl H
Mayr, Ernst W
Mbaeyi, Peter N
Nabben, Reinhard
Nagel, Rainer
Nastold, Hans-Joachim
Neeb, Karl-Hermann
Nelius, Christian-Frieder
Nemethi, Csaba
Neubrand, Michael
Neunzert, Helmut
Niessen, Heinz D
Niethammer, Wilhelm
Niggemann, Michael
Noelle, Sebastian W
Nolte, Nikolaus G
Nonnenmacher, Dirk J
Nour Eldin, Hassan
Novak, Erich
Nuessler, Thomas K
O'Brien, Eamonn A
Oberschelp, Walter
Oeljeklaus, E
Opfer, Gerhard H
Ottmann, Thomas A
Pallaschke, Diethard
Pareigis, Bodo
Pavlik, Norbert R
Pawelke, Siegfried H
Peisch, Heinz
Peitgen, Heinz O
Penzel, Frank
Perisic, Vesna
Peters, Alexander
Peters, Meinhard H
Petersen, Johannes A
Petersson, H P
Peyerimhoff, Alexander
Pfau, Matthias
Pfeiffer, Helmut
Pflaum, Christoph
Pflaum, Markus J
Pflug, Peter
Philip, Davaraj
Picard, Rainer H
Piepmeyer, Lothar
Pier-Ribbert, Erwin
Schulze-Pillot, R
Quapp, Wolfgang
Pier-Ribbert, Erwin
Rack, Heinz-Joachim
Rademacher, Hans-Bert
Rannacher, Rolf C
Ratschek, Helmut
Rehmann, Ulf
Reinschke, K J
Reischuk, Rudiger K
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Reissel, Martin
Reiszig, Gunther
Remus, Dieter
Rendall, Alan
Render, Hermann
Renner, Gerhard
Reuding, Thomas
Richert, Walter R
Richter, Frank
Richter, Guenther E
Richter, Michael M
Riede, Adolf
Rieder, Andreas
Rieger, Georg J
Riemenschneider, Oswald
Rigger, Ralf O
Ringel, Claus M
Roch, Steffen
Roggenkamp, Klaus W
Rohlfs, Jurgen
Rohmfeld, Rainer F
Van den Reysen, Joseph M
Vasanta Ram, Venkatesa I
Sachs, Ekkehard W
Salzmann, Helmut R
Sampson, Scott M
Sander, Jurgen W
Sandor, Viktor
Sarangarajan, Aravamuthan
Sarnes, Klaus-Dieter
Sauvigny, Friedrich
Schaal, Werner G
Scharffenberger, Ulrich
Scharlau, Rudolf M
Schauenburg, Peter C
Scheffler, Hans-Peter
Scheiderer, Claus
Schempp, Walter
Schendel, Udo
Schenzel, Peter
Scheurle, Jurgen K
Schiegl, Magda
Schilling, Rene L
Schimming, Rainer
Schleicher, Dierk
Schlichenmaier, Martin
Schlichting, Gunter
Schliep, Alexander
Schluechtermann, Georg D
Schmale, Wiland
Schmalz, Gerd
Schmekel, Maik
Schmid, Peter P
Schmidt, Roland
Schmitz-Tewes, Axel F
Schmudgen, Konrad
Schneider, Gerhard J
Schneider, Gunter
Schneider, Manfred F
Schneider, Rolf
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Schneiders, Robert J
Schoemig, Ewald
Schoenwaelder, Ulrich F
Scholz, E
Schomburg, Bernd
Schon, Rolf
Schottenloher, R M
Schraegle, Horst
Schrage, Georg
Schrauf, Geza H
Schroder, Johann
Schroder, Johann
Schroeder, Manfred R
Schuch, Rudolf
Schueller, George W
Schuett, Werner
Schuetze, Torsten
Schultz, Rudiger
Schulz, Friedmar J
Schulz, Volker H
Schulze-Pillot, R
Schumann, Rainer
Schutt, Ingo
Schwachhoefer, Lorenz J
Schwaenzl, Roland
Schwaller, Thomas E
Schwartz, Niels C
Schwarz, Fritz
Schwarz, Gunter
Schwarz, Willi
Schwermer, Joachim
Schwetlick, Hubert
Schwichtenberg, Helmut
Scriba, Carl-Heinz
Scriba, Christoph J
Skinner, Seymour
Westphal-Schmidt, U
Schmitz-Tewes, Axel F
Tabachnikov, Serge
Takac, Peter
Targonski, Gyorgy I
Tasche, Manfred
Tegtmeyer, Thomas K
Teschl, Gerald
Thalmaier, Anton
Thedy, Armin
Thiele, Ernst-Jochen
Thieler, Peter
Thoma, Elmar H
Thoma, Manfred H
Thorbergsson, Gudlaugur
Tichatschke, Rainer
Tillmann, Heinz G
Tjiok, Mouw-Ching
Tobiska, Lutz
Topper, Jurgen
Trautmann, G
Trebels, Walter
Trenkler, Goetz
Troll, Gunter
Ullrich, Peter

file:///E|/WEBSITE/BIBLIO/TESTDATA/PEOPLE_N (51 of 64) [19/1/2003 1:40:37]



file:///E|/WEBSITE/BIBLIO/TESTDATA/PEOPLE_N

Ulmet, Dan E
Ulrich, Klaus
Unger, Luise
Upmeier, Harald
Urbas, John
de Vries, Sven
van Hemmen, J L
Van Trung, Tran
Varnhorn, Werner
Varsamis, Apostolos
Vasanta Ram, Venkatesa I
Veith, Christian P
Velte, Waldemar
Vetter, Udo
Vogt, Dietmar
Vogt, Elmar
Voigt, Bernd
Voit, Michael P
Volkmann, Bodo
Vollath, Hermann W
Vollmers, Carsten
von Grudzinski, Olaf
Voss, Heinrich
Waack, Stephen C
Wagner, Dorothea
Walcher, Sebastian
Walter, Rolf W
Walter, Wolfgang L
Walter, Wolfgang V
Walther, Hans-Otto
Warnecke, Gerald
Weck, Norbert
Wefelmeyer, Wolfgang
Wefelscheid, Heinrich
Wegert, Elias
Wehrhahn, Rodolfo
Weidmann, Joachim
Weidner, Jens
Weidner, Peter
Weiher, Jochen
Weimar, Joerg R
Weinert, Hanns J
Welker, Volkmar
Wells, Raymond O
Wendland, Wolfgang L
Wermuth, Edgar M
Werner, Dirk
Werner, Peter
Werner, Wend
Westphal-Schmidt, U
Wette, E W
Wiegmann, Klaus W
Wielandt, Helmut W
Wiesend, Gotz E
Wild, Marcel
Wildeshaus, Joerg W
Winckler, Michael J
Winkelmann, Joerg H
Winkler, Jorg H
Winter, Hermann
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Wisbauer, Robert
Wissmann, Johannes W
Wissner, Heinz-Wolfgang
Witsch, Kristian
Wolf, Hans-Diether
Wolff, Manfred P
Wolff, Roland
Wuebbeling, Frank
Wulff, Gerhard
Yserentant, Harry
Zamfirescu, Tudor
Zapf, Hermann
Zeidler, Eberhard
Zeller, Karl
Zeuner, Hansmartin
Ziegler, Guenter M
Ziegler, Martin
Ziehms, Harald G
Zillober, Christian
Zimmer, Horst G
Zimmermann, Alexander
Zimmermann, Bernd
Zimmermann, Irene A
Zimmermann, Uwe T
Zink, Ernst-Wilhelm
Zink, Thomas F
Zoerner, Thorsten H
Zwick, Daniel S
----------
GREEK
Achilleas, Sinefakopoulos
Akrivis, Georgios
Alexopoulos, Vaggelis I
Anagnostopoulou, Niki M
Andreadakis, Stylianos
Antoniadis, Jannis A
Artemiadis, Nicolas
Arvanitopoulos, George
Arvanitoyeorgos, Andreas T
Athanassopoulos, Konstantin
Athanassoulis, Gerassimos
Atherton, Stephen W
Avgerinos, Evgenios P
Axtsalotidis, Christoforos
Bolis, Theodore S
Boudouvis, Andreas G
Bozonis, Petros
Bredimas, Antoine P
Camouzis, Elias
Charalambous, Michael G
Charalampos, S T
Chryssakis, Thanassis
Coletsos, Ioannis T
Cotsakis, Spiros
Cotsiolis, Athanase A
Daras, Nicholas J
Dassios, George
Delistathis, George
Demetriou, Ioannes C
Diamantakis, Michail T
Dimitracopoulos, Constantinos
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Dionysiou, Demetrios
Djoganopolous, Christatos
Dougalis, Vassilios A
Drossos, Constantinos A
Economou, Antonis
Evagelopoulos, George
Evangelatos, Dionyssis S
Famelis, Ioannis T
Famelis, T I
Farmaki, Vasiliki A
Fellouris, Anargyros G
Flytzanis, E
Fragoulopoulou, Maria
Fragulis, George F
Gallopoulos, Efstratios
Georghiou, Constantinos
Georgiou, D A
Georgiou, Dimitris
Georgiou, John C
Gerontidis, Ioannis I
Giannaros, Sakis G
Gidiotis, Grigorios
Grapsa, Theodoula N
Gryllakis, Constantinos
Hadjinicolaou, Maria E
Hadjisavvas, Nicolas
Hadjiloucas, Vasilis
Haralampidou, M M
Hartonas, Chrysafis
Hatzinikolakis, Emmanuil
Johnson, K G
Kalfa, Kornilia S
Kalogerakis, Giannis
Kalpazidou, Sofia
Karampetaxis, Nicholas P
Karanasios, Sotirios
Karanikas, Constantinos
Karydas, Nicholas G
Katavolos, Aristides
Katsaounis, Theodoros
Katsoprinakis, Emmanuel
Kechagias, Nondas E
Kehayopulu, Niovi
Kioustelidis, John
Kiriakie, Kiriaki
Kirousis, Lefteris M
Klaudatos, Nicos S
Kobotis, Apostolos
Koumboulis, Fotis N
Kourouniotis, Christos
Koutsopoulos, Constantine J
Kouvidakis, Alexandros E
Kravvaritis, Dimitrios C
Krikelis, Peter
Kydoniefs, Anastasios
Kyriazis, Athanasios
Lagos, Gerasimos
Lambrinos, Panos T
Leoussis, Paul C
Louiza, Paschon
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Loukakis, Emmanuel
Louridas, Sotiris
Lyberopoulos, Athanasios N
Makrakis, George N
Maragkakis, Manolis G
Markopoulou, Maria
Marmaridis, Nikolaos P
Mattheos, Adamantios S
Mavrommatis, Kostas
Melas, Antonios D
Meletiou, Gerasimos
Makrakis, George N
Maragkakis, Manolis G
Markopoulou, Maria
Marmaridis, Nikolaos P
Mattheos, Adamantios S
Mavrommatis, Kostas
Notaris, Sotirios
Olum, Paul
Panagiotopoulos, Pan D
Pantelelis, Nikos G
Pantelias, Anastasia
Pantelidis, Georgios
Papadaki, Malvina M
Papadakis, Manos
Papadimitrakis, Michael
Papadopoulos, Basil K
Papadopoulos, Panagiotis
Papageorgiou, Nikolaos S
Papakostas, Sotirios N
Papaschinopoulos, Garyfalos
Papathanassiou, George
Papistas, Athanassios
Paradis, Nikolas
Pavlopoulos, Harry
Perros, George
Petalas, Chrysostom
Petridis, Stacey
Pheidas, Thanases C
Phili, Christine M
Philos, Christos G
Poulas, Maria
Rassias, Themistocles M
Sakkalis, Takis P
Sarantopoulos, Ioannis C
Sarantopoulos, Yannis C
Schinas, John
Tertikas, Achilles
Terzakis, Dimitris
Thanos, Demosthenis A
Theodoridis, Marinos G
Theohari-Apostolidi, Theodora
Thoma, Apostolos
Valougeorgis, Dimitris
Vardulakis, Antonis
Varverakis, Andreas E
Vassiliou, Efstathios
Vetsis, Costas G
Vlachakis, Ioannis S
Voreadou, Rodiani
Vougiouklis, Thomas N
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Vrahatis, Michael N
Xenos, Philippos J
Yeyios, Apostolos K
Zahariades, Michael
----------
INDIAN
Adhikari, Sukumar D
Agarwal, Girdhar G
Aggarwal, Ravinder K
Aggarwal, Satish K
Agnihotri, Shripad G
Agrawal, Bhagwan D
Ahuja, Gopi
Ajmal, Naseem
Akerkar, Rajendra A
Alphonse, A M
Anandani, P V
Arora, S K
Athavale, Ameer
Bahuguna, Dhirendra
Bala, Shashi
Balachandaran, Vadekke K
Balachandran, K
Balakrishnan, Rangaswami
Banerji, Pradeep K
Barua, Rana
Basu, Adhir K
Bhanu Murthy, T S
Bhargava, S
Bhaskara Rao, K P S
Bhatia, Rajendra
Bhattacharjee, Guru P
Bhattacharya, Tilak
Bhattacharyya, Pulin K
Biswas, Dipankar
Borkar, Vivek S
Bose, Arup
Bose, Ramendra K
Bose, Sujit K
Chakravarti, Nilotpal
Chakravarti, R S
Chandra, Peeyush
Charak, Kuldeep S
Chaudhary, B D
Chhabra, Harmeet K
Choudum, Sheshayya A
Dani, S G
Das, Shawpawn K
Datta, Sunil
Deo, Sadashiv G
Deo, Satya
Deshpande, Vishwanath L
Dhar, Joydip
Dutta, Mahadev
Dwivedi, Shankar H
Fakhruddin, Syed M
Fernandes, Olga J
Gadam, Sudhasree
Gautam, Vishvajit Vikram S
Gebermedhen, Kifle
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Ghorpade, Sudhir R
Ghosh, Parimal K
Goyal, Krishan C
Gupta, Dharma P
Gupta, Kailash C
Gupta, Manjul
Gupta, Ram K
Gupta, Ram N
Gupta, Renu
Gupta, S P
Gupta, Satya N
Gupta, Subhash C
Gupta, Vijaya P
Hans-Gill, Rajinder J
Hanumanthachari, Juturu
Harinath, K S
Hegde, S M
Hussain, T
Jagadeeshan, Shashidhar
Jain, Jainendra K
Jaiswal, U C
Janakiraman, S
Jayanthan, A J
Jayaram, S R
Joshi, Chandra M
Kadalbajoo, Mohan K
Kalpakam, S
Kandaswamy, P
Kannan, V
Kanta, Ravi
Kapoor, Om P
Karia, Dinesh J
Kesavan, Srinivasan
Keskar, Pradipkumar H
Khanda, Mahati
Konnully, Augustine J
Krishna, J G
Krishnamurthy, Visvanatha
Kulkarni, Sudhir H
Kumar, Ashish
Kumar, Ashok
Kumar, Naveen
Kumar, Vinod
Kumartyagi, Vinod
Kumbhat, R K
Kundu, Subiman
Lahiri, B K
Laipubam, Gopal S
Lahiri, B K
Laipubam, Gopal S
Lakshmanan, Muthusamy
Lal, Shiva N
Limaye, Balmohan V
Mahanti, Anirban
Mukerjee, Indranil
Nag, Debashis
Nag, Subhashis
Naidu, K B
Nair, M T
Nambooripad, K S
Nanda, Vinod C
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Nandakumaran, A K
Narendra, Nayak N
Narendran, G M
Natarajan, Ponnammal
Nath, Vishwa
Nirmaljeet, Kaur
Pachpatte, Baburao G
Pachpatte, Deepak B
Pagey, Subhash S
Pandeya, Bashishth M
Pani, Amiya K
Paramhans, S A
Parhi, Narahari
Parida, Jayaram
Parimala, Raman
Parthasarathy, Kalyanpuram R
Parthasarathy, Krishnan
Parthasarathy, Panamalai R
Parvatham, Rajagopalan
Passi, Inder B
Pati, Vishwambhar
Patidar, Prakash C
Patnaik, Surendra-Nath
Bhaskara Rao, K P S
Raghavendra, V
Rai, Kabindra N
Rai, Lajpat
Raina, Ravinder K
Raj, C P
Rajan, B S
Rama-Murthy, Kavi
Ramakrishna, H
Ramakrishnan, B
Ramasubramanian, Sundareswaran
Rana, Inder K
Ransal, Ashok
Rao, B L
Rao, Gandikota L
Rao, K C
Rao, Taduri S
Rathie, A K
Reddy, G L
Reddy, N G
Sahadevan, Ramajayam
Saksenan, Krishna M
Salaria, Devi Singh
Sarkhel, D N
Sastry, K R
Saxena, Ram K
Tamizhmani, K M
Tewari, Udai B
Thakare, Nimba K
Thandapani, E
Thangaraj, V
Thangavelu, Sundaram
Thothathri, Venugopal
Thrivikraman, T
Tiwari, Ram N
Tripathi, Amitabha
Tripathi, Mukut M
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Vanninathan, Muthusamy
Vasavada, Hema
Vasavada, Mahavirendra H
Vasudevan, T C
Venkataraman, S
Venkatesh, T
Venkateswaran, S
Verma, J K
Verma, Meenu
Verma, Rakesh
Vermani, Lekh R
Vidyasaqar, Mathukumalli
Vijayakumar, Ambat
Yadav, Sarjoo P
Zacharias, Cecily
----------
RUSSIAN
Abakumov, Alexander I
Adrianova, L Y
Adukov, Victor M
Agrachev, Andrei A
Agranovich, M S
Airapetyan, Ruben G
Akhiezer, D N
Akhmetiev, Peter M
Aksentev, L A
Aleksandrov, Aleksandr G
Aleksandrov, Alexei B
Alenitsyn, Alexander
Aleshkov, Yuri Z
Alexeevski, Andrei
Alferov, Gennady V
Aminova, A V
Anan'ev, Boris I
Andronov, Ivan V
Anikonov, Yuri
Anisov, Sergey S
Antonets, Mikhail A
Antropov, Alexander A
Arslanov, Marat M
Artamonov, V A
Asekritova, Irina U
Askhabov, Sultan N
Avdonin, S A
Avkhadiev, Farit G
Azizov, T Y
Bacurov, Vadim G
Bagaev, Gennadiy N
Bahturin, Yuri A
Bakushinskii, Anatolii B
Baranov, A S
Basin, Michael V
Baskakov, A G
Baskakov, V A
Batukhtin, Valentin D
Bauer, Svetlana M
Bazhenov, Maxim V
Bekker, Boris
Belegradek, Oleg V
Belonogov, V A
Belov, Evgenii G
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Belyankov, A Y
Berezhnoi, Eugeniy I
Berezin, Sergey A
Berezovskaya, Faina
Berkovich, Lev M
Bessonov, Vladimir A
Bibikov, Yuri N
Bilgildeyeva, Tatiana Y
Bilopolska, Ya I
Blizorukov, Michail G
Bloshanskii, Igor L
Blyumin, Sam L
Boguslavskii, L B
Boikov, Ilja V
Bokut, Leonid A
Bolibrukh, Andrey
Borisov, Igor S
Borisovich, Yu G
Borodin, Oleg V
Botchev, Mikhail
Bratus, Alexander S
Bruno, Alexander D
Brutyan, Murad A
Brykalov, Sergei A
Buchbinder, Ioseph L
Buchstaber, Victor M
Budkin, Alexander I
Bugaenko, Vadim O
Bukharaev, Rais G
Bukhvalov, A V
Bulgakov, Alexsander I
Burd, Vladimir S
Bure, Valeri
Burnashev, Marat V
Burov, Alexander
Chebotarev, Alexander
Chebotarev, Vladimir I
Chentsov, Alexander
Cherednichenko, Victor G
Chernousko, Felix L
Chistjakov, Sergei V
Chistyakov, Vyacheslav V
Danilaev, Peter G
Danilov, Vladimir G
Dekhtyar, Michael I
Demidenko, Gennadii V
Demidov, Sergei S
Demidovitch, Vassili B
Demyanov, Vladimir F
Dmitrieva, L A
Dmitruk, Andrei V
Dobrokhotov, Serguei Y
Dol'nikov, Vladimir L
Dubinin, Vladimir N
Dubovskii, Pavel
Dubrovskii, V V
Duzhin, Sergei V
Edelstein, Sergej L
Egorov, Alexandr A
Egorychev, Georgy P
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Eiderman, Vladimir Y
Elizarov, Alexander M
Elizarov, Paul M
Elkin, V I
Eremin, Yu A
Ermakov, Sergey M
Ermolaev, Juri B
Ershov, Eugene K
Faminskii, A V
Fedoryaev, Sergey T
Federov, Sergei
Fetisov, Slavi
Filimonov, Andrey M
Filippova, T F
Fomin, V N
Fonarev, Anatolii A
Galiullin, Iljas A
Galkin, Valery A
Galkin, Vladimir M
Gaposhkin, Vladimir F
Gelfand, Mikhail S
Gizatullin, Marat K
Glavatsky, Sergei T
Glazyzin, Vasiliy V
Gliklikh, Yu E
Glushenkov, V D
Gokhman, Alexei O
Goltjapin, Victor V
Golubeva, Valentina A
Golubov, Boris I
Golubyatnikov, Vladimir
Gomonov, Sergej A
Helemskii, Alexander Y
Igoshin, Vladimir A
Ilyashenko, Yulij S
Islamov, Galimzian G
Ivanov, Evgeny A
Ivanov, Sergei A
Ivochkina, N M
Izrailevich, Yakov A
Juriev, Denis V
Kabanov, Sergey N
Kabanov, V V
Kachurovskii, Alexander G
Kalaidzidis, Yannie L
Kalashnikov, Vladimir Y
Kalyabin, Gennadiy A
Kamenskii, Georgii A
Karapetyants, Nicolai K
Karasev, Mikhail
Karol, Andrew
Karpov, Yu G
Karzanov, Alexander V
Kasparitis, Darius
Kasyanov, Victor N
Katanova, Anna
Kazarin, Lew S
Kelzon, Andrei A
Kerimov, Alexander K
Kharshiladze, Alexander F
Khavinson, Semen Y
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Khonkin, Alexander D
Kireeva, Alexandra V
Kirjanen, Alexander
Koslov, A
Kovalev, Alexei
Labsker, L G
Ladyzhenskaya, O A
Landis, Eugenii M
Larin, Alexander A
Latkin, Eugene I
Lavrentiev, Mikhail M
Lebedev, Leonid P
Leontovitch, Andrey M
Lesokhin, M M
Levchuk, Vladimir M
Levendorskii, Sergei Z
Levenshtam, Veleriy
Lifanov, Ivan K
Lifshits, Mikhail A
Maergoiz, Lev S
Magnitskii, Nicolay A
Makhnev, Alexander A
Makienko, Peter M
Maksimov, Vladimir P
Malishevski, Andrey V
Malakhov, Vladimir
Maloshevskii, S G
Maryukov, Michael N
Maslov, Leo A
Matasov, Alexander I
Matiyasevich, Yuri
Matveev, Sergej V
Matvejchuk, Marjan S
Mazurov, V D
Nagaev, S V
Nakhman, Alexander D
Napalkov, Valentin
Nasyrov, Samyon R
Nazaikinskii, Vladimir E
Nepomnyashchikh, Yuri V
Nesterov, A V
Netsvetaev, Nikita Y
Nezhmetdinov, I R
Nikitina, Tatyana
Nikolaevich, Kasyanov V
Nikulin, Viacheslav V
Noskov, Gennady
Novikov, Igor Y
Novikov, Sergei Y
Novitskii, Igor M
Nuzhin, Ja N
Obrezanova, Olga A
Obukhov, Valery V
Obukhovskii, Valerii V
Odinokov, O V
Ohezin, Sergei P
Oleinik, Olga A
Onishchik, A L
Osilenker, Boris P
Osipenko, K Y
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Osipov, Edward P
Ostapenko, Vladimir V
Ovchinnikov, Peter G
Ovseevich, Alexandre J
Pakshin, Pavel V
Pakuliak, Stanislav Z
Palamodov, Victor
Panov, Aleksandr N
Panteleev, Andrei V
Pantyukhina, Marina N
Parinov, Ivan A
Pasashkov, Sergei A
Pavlenko, Vyacheslav N
Persits, David B
Pestov, G G
Petrogradsky, Victor M
Petrosjan, Leon A
Petrov, Nikolai N
Petukhov, Alexander
Pevnyi, A B
Pilidi, Vladimir S
Pilyugin, Sergei Y
Popovic, Peter
Rabinovich, V S
Raikher, Yurii
Rapoport, Lev B
Rappoport, Juri M
Razzhevaikin, Valery N
Remeslennikov, Vladimir N
Rucinsky, Martin
Sabinin, Lev V
Salii, Viacheslav N
Samokhin, Alexey V
Samokhin, Mikhail V
Sapozhenko, A A
Sbitneva, Larissa
Krasichkov-Ternovskii, Igor F
Taimanov, Iskander A
Taitslin, Mikhail A
Tarasenko, Felix P
Tarassenko, Felix P
Terentiev, Alexej G
Tersenov, S A
Timofeev, Alexei Y
Timofeev, Nikolai M
Timofeev, Vladimir G
Tkhai, Valentin N
Tolstykh, Andrei I
Tolstykh, Vladimir A
Tovstik, Petr E
Trofimov, Valerii V
Trofimov, Vladimir I
Uglanov, Alexei V
Uspensky, Vladimir A
Vakulenko, Alexander V
Vakulenko, Sergei A
Vasilchik, M Y
Vasilev, Alexander
Vasilev, Valery A
Vassilevich, Dmitri V
Vassiliev, Victor A
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Vdovin, Viktor V
Vedernikov, Valery K
Venets, Ekaterina V
Venets, Vladimir I
Veretennikov, Alexander Y
Verevkin, Andrew B
Vershik, A M
Vinberg, Ernest B
Vishik, Mark
Vishnevskii, Mikhail P
Vladimirov, Andrey V
Vodopyanov, S K
Volodarskii, Alexander I
Volodin, I N
Vorobev, Oleg Y
Voronin, Serguei M
Voronov, Theodore T
Voskresenskii, Valentin E
Yagola, Anatoly
Yakubov, Askhab Y
Yaroshchuk, Igor O
Yasnitsky, Leonid
Yudin, Alexsandr A
Yukalov, Vyacheslav I
Yurinsky, Vadim
Yurko, Vjacheslav A
Zadorozhnii, Vladimir G
Zak, Fyodor L
Zakalyukin, Vladimir M
Zaslavsky, Boris G
Zelikin, M I
Zharinov, Victor V
Zhidkov, Peter E
Zhislin, Grigorii M
Zhitomirskiy, Grigoriy I
Zhubr, Alexei V
Zhukov, Igor B
Zhuravlev, Vladimir G
Zilber, Boris I
Ziza, O A
Zolotykh, Andrej A
Zubov, Sergey V
Zudin, Andrey N
Zuev, Yuri A
Zupnik, Boris M
Zvonilov, Victor I
##########
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SimPack/Sim++ Simulation Toolkit 

SimPack/Sim++ Simulation Toolkit 

SimPack is a collection of C++ tools (routines and programs) for computer simulation. The purpose of 
SimPack is to provide people with a "starting point" for simulating a system. The intention is that people 
will view what exists as a template (or "seed") and then "grow a simulation program." SimPack tools 
have been used for six years of teaching computer simulation at the under- graduate (senior) and graduate 
levels. Also, many people have taken the basic tools and created more complex research applications 
with lots of options specific to a particular area. 

Sim++ is a library of routines for implementing discrete event simulations, built by Robert Cubert and 
Paul Fishwick of the University of Florida. Priority queues are integral to such simulations, and Sim++ 
contains implementations of linked, binary, leftist, and calendar heaps. If you need a priority queue to 
control a simulation, check out ftp://bikini.cis.ufl.edu/oub/simdigest/tools . It also contains random 
number generators for a variety of different distributions, including uniform, exponential, and normal. 
Fishwick's book Simulation Model Design & Execution: Building Digital Worlds describes model design 
using SimPack. 

●     Link to SimPack/Sim++ 
●     Download Files (local site) 

Problem Links 

●     Priority Queues (7) 
●     Random Number Generation (7) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 10, 1997. 

file:///E|/WEBSITE/IMPLEMEN/SIMPACK/IMPLEMEN.HTM [19/1/2003 1:40:39]

http://www.cise.ufl.edu/~fishwick/simpack/simpack.html
file:///E|/WEBSITE/IMPLEMEN/SIMPACK/DISTRIB
mailto:algorith@cs.sunysb.edu


Fire-Engine and Spare-Parts String and Language Algorithms 

Fire-Engine and Spare-Parts String and Language 
Algorithms 

Fire Engine and Spare Parts -- Regular Language Algorithms 

FIRE Engine is a finite automata toolkit, written in C++ by Bruce Watson. It provides production quality 
implementations of finite automata and regular expression algorithms, specifically the construction of 
finite Several finite automata minimization algorithms have been implemented, including Hopcroft's O(n 
lg n) algorithm. Both deterministic and non-deterministic automata are supported, and it has been used 
for compiler construction, hardware modeling, and computational biology applications. It is strictly a 
computing engine, and does not provide a graphical user-interface. 

SPARE Parts is a string pattern recognition toolkit, written in C++ by Bruce Watson. It provides 
production quality implementations of all major variants of the classical string matching algorithms for 
single patterns (both Knuth-Morris-Pratt and Boyer-Moore) and multiple patterns (both Aho-Corasick 
and Commentz-Walter). 

Greatly improved commercial versions of both codes are available from www.RibbitSoft.com, with older 
versions available from www.RibbitSoft.com/research/watson/ and available by anonymous FTP from 
ftp.win.tue.nl in the directory /pub/techreports/pi/watson.phd/. Neither version in the public domain, and 
neither is copy-left. They are both freely available for noncommercial use (research, experimentation, 
etc., but not even shareware). They must not be redistributed, but people can simply tell their friends 
where to get their own copy. 

●     Ribbit Software Systems (commercial versions) 
●     Bruce Watson's WWW Page" 
●     FTP to Original distribution 
●     HTML Distribution 
●     Email to Bruce Watson 
●     Download Files (local site) 

Problem Links 

●     Finite State Machine Minimization (8) 
●     String Matching (7) 
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Algorithms in C++ -- Sedgewick 

Algorithms in C++ -- Sedgewick 

Sedgewick's popular algorithms text Algorithms in C++ comes in several different language editions, 
including C, C++, and Modula-3. It distinguishes itself through the use of algorithm animation, and in its 
broad topic coverage, including numerical, string, and geometric algorithms. 

The language specific parts of the text consist of many small code fragments, instead of full programs or 
subroutines. Thus they are best used as models rather than full implementations. 

The program fragments from the C++ edition have been made available from http://heg-
school.aw.com/cseng/authors/sedgewick/algo-in-c++/algo-in-c++.html 

●     Book homepage with algorithm fragments 
●     Sedgewick's own Algorithms and Data Structures Course 

Problem Links 

●     Sorting (5) 
●     Robust Geometric Primitives (4) 
●     Range Search (4) 
●     String Matching (4) 
●     Arbitrary Precision Arithmetic (3) 
●     Minimum Spanning Tree (3) 
●     Random Number Generation (3) 
●     Topological Sorting (3) 
●     Discrete Fourier Transform (2) 
●     Linear Programming (2) 
●     Matching (2) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 10, 1996. 
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Geolab -- Computational Geometry System 

Geolab -- Computational Geometry System 

Geolab is a library of 2-D geometric algorithms and data structures, with a visualization environment, 
written by Pedro J. de Rezende, Welson R. Jacometti, Cesar N. Gon, and Laerte F. Morgado, 
Universidade Estadual de Campinas, Brazil. Geolab is written in C++ and requires the SUN C++ 
compiler, but a Sparc binary is included along with all source code. 

Geolab appears to be primarily for the brave, since it contains relatively little documentation, but it does 
contain 40 algorithms, including all the computational geometry classics plus some other interesting 
things like: 

●     Farthest point Voronoi diagram 
●     Nearest neighbors 
●     Ray shooting 

The Geolab distribution is available for ftp at the Univ. of Minnesota Geometry Center. 

●     Geolab mirror distribution at the Geometry Center 
●     Download Files (local site) 

Problem Links 

●     Robust Geometric Primitives (5) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 23, 1996. 
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Grail: finite automata and regular expressions 

Grail: finite automata and regular expressions 

Grail, by Darrell Raymond and Derick Wood, is a symbolic computation environment for finite-state 
machines, regular expressions, and other formal language theory objects. Using Grail, one can input 
machines or expressions, convert them from one form to the other, minimize, make deterministic, 
complement, and perform many other operations. Grail is intended for use in teaching, for research into 
the properties of machines, and for efficient computation with machines. 

Grail is written in C++. It can be accessed either through a process library or through a C++ class library. 
It can handle machines with 100,000 states and dictionaries of 20,000 words. All code and 
documentation is accessible from the WWW site http://www.csd.uwo.ca/research/grail. 

Version 2.5 of Grail enables you to manipulate parameterizable finite-state machines, parameterizable 
regular expressions, and parameterizable finite languages. By `parameterizable', they mean that the 
alphabet is not restricted to the usual twenty-six letters and ten digits. Instead, all algorithms are written 
in a type-independent manner, so that any valid C++ base type and any user-defined type or class can 
define the alphabet of a finite-state machine or regular expression. 

●     GRAIL home page 
●     Download Files (local site) 

Problem Links 

●     Finite State Machine Minimization (9) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 29, 1996. 
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Calendrical Calculations 

Calendrical Calculations 

In two papers, N. Dershowitz and E. Reingold of the University of Illinois provide a uniform algorithmic 
presentation of a variety of different calendars systems, including the Gregorian, ISO, Julian, Islamic, 
and Hebrew calendars, as well as other calendars of historical interest. They provide Common Lisp and 
C++ routines to convert dates between calendars, day of the week computations, and the determination of 
secular and religious holidays. 

The implementations of these calendars and the papers describing them are available on our local 
distribution site. 

●     Reingold's Calendar Page 
●     Download Files (local site) 

Problem Links 

●     Calendrical Calculations (10) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on May 8, 1996. 
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LINK -- Programming and Visualization Environment for Hypergraphs 

LINK -- Programming and Visualization 
Environment for Hypergraphs 

LINK is a software system designed to be a general-purpose, extendible computing environment in 
which discrete mathematical objects representing real world problems can be easily manipulated and 
visualized. The system (which is still under development) features a full Scheme interpreter with access 
to the Tk graphics toolkit (STk), a flexible GUI, and a rich variety of important Collection and Graph 
objects which are grouped into C++ libraries. Link is designed to be useful as an educational tool, as a 
research tool, and as a prototyping tool for industry. 

The primary investigators of LINK are: Nathaniel Dean of Lucent / Bell Laboratories, Mark Goldberg of 
Rensselaer Polytechnic Institute, Greg Shannon of Spanning Tree Technologies, and Steven Skiena of 
SUNY Stony Brook. The project is currently coordinated by Jonathan Berry, a postdoctoral fellow at 
DIMACS at Rutgers University and one of LINK's primary designers. The LINK system is freely 
available for teaching and research. 

Also within the distribution directory is Jon Berry's implementations of several graph partitioning 
heuristics, including Kernighan-Lin, Simulated Annealing, and Path Optimization. 

●     Download Files (local site) 
●     LINK distribution site at DIMACS 
●     Jon Berry's graph partitioning heuristics, original site 

Problem Links 

●     Graph Partition (8) 
●     Graph Data Structures (6) 
●     Set Data Structures (4) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Dec 18, 1996. 
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David Eppstein's Knuth-Morris-Pratt Algorithm and Minkowski sum code 

David Eppstein's Knuth-Morris-Pratt Algorithm and 
Minkowski sum code 

David Eppstein's WWW page http://www.ics.uci.edu/~eppstein/161/kmp/ contains an implementation of 
the Knuth-Morris-Pratt string matching algorithm in C++. It exists as a teaching example from his 
algorithms course notes. 

He also provides a Mathematica code for the Minkowski sum problem in 
http://www.ics.uci.edu/~eppstein/junkyard/ukraine/ , which computes Minkowski sums of line segments 
(aka zonotopes). This problem is also closely related to maintaining line arrangements. The program 
works in any dimension, but doesn't do Minkowski sums of more complicated shapes. 

●     Link to EPPSTEIN's Knuth-Morris-Pratt Algorithm 
●     Link to EPPSTEIN's Minkowski sums code in Mathematica 
●     Download Files (local site) 

Problem Links 

●     Minkowski Sum (4) 
●     String Matching (4) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 17, 1997. 
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GraphViz -- graph layout programs 

GraphViz -- graph layout programs 

GraphViz is a program yielding polyline drawings of graphs. An email graph-drawing server is also 
available, if you would like to experiment with the program without downloading it. 

●     Link to GraphViz 
●     Instructions for Email graph server. 
●     Overview paper on GraphViz 

Problem Links 

●     Drawing Graphs Nicely (7) 
●     Drawing Trees (7) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 10, 1997. 
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Mike Trick's Graph Coloring Resources 

Mike Trick's Graph Coloring Resources 

Michael Trick's WWW page on graph coloring, http://mat.gsia.cmu.edu/COLOR/color.html, provides a 
nice overview of applications of graph coloring, an annotated bibliography, and a collection of over 70 
graph coloring instances arising in applications such as register allocation and printed circuit board 
testing. Finally, it contains a C langauge implementation of an exact coloring algorithm, DSATUR. 

●     Link to Trick's Graph Coloring WWW page 
●     Link to Trick's Operations Research WWW page 
●     Download Files (local site) 

Problem Links 

●     Vertex Coloring (7) 
●     Edge Coloring (4) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 23, 1996. 
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Joe Culberson's Graph Coloring Resources 

Joe Culberson's Graph Coloring Resources 

Joseph C. Culberson's WWW page on graph coloring, http://web.cs.ualberta.ca/~joe/Coloring/, provides 
an extensive bibliography and a collection of programs to generate hard graph coloring instances. 

●     Link to Culberson's Graph Coloring WWW page 
●     Link to Culberson's home page 
●     Download Files (local site) 

Problem Links 

●     Vertex Coloring (6) 
●     Edge Coloring (4) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 23, 1996. 
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Frank Ruskey's Combinatorial Generation Resources 

Frank Ruskey's Combinatorial Generation 
Resources 

An exciting WWW site developed by Frank Ruskey of the University of Victoria contains a wealth of 
material on generating combinatorial objects of different types, including permutations, subsets, 
partitions, and certain graphs. Specifically, there is an interactive interface which lets you specify which 
type of objects you would like to construct, and quickly returns the objects to you. For certain types of 
objects, programs which generate them are available by ftp. It is well worth checking this out at 
http://www-csc.uvic.ca/home/fruskey/cgi-bin/html/main.html 

His home page contains pointers to other useful material on generating combinatorial objects, along with 
interesting graphics. 

●     Link to Ruskey's Combinatorial Generation WWW page 
●     Link to Ruskey's home page -- interesting! 

Problem Links 

●     Generating Permutations (8) 
●     Generating Graphs (7) 
●     Generating Partitions (7) 
●     Generating Subsets (7) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Feb 10, 1997. 
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Triangle: A Two-Dimensional Quality Mesh Generator 

Triangle: A Two-Dimensional Quality Mesh 
Generator 

Triangle, by Jonathan Shewchuk of Carnegie-Mellon University, is a C language code which generates 
Delaunay triangulations, constrained Delaunay triangulations (forced to have certain edges), and quality 
conforming Delaunay triangulations (which avoid small angles by inserting extra points). It has been 
widely used for finite element analysis and other applications, and is fast and robust. Triangle would be 
the first thing I would try if I was looking for two-dimensional triangulation code. Although Triangle is 
available at http://www.cs.cmu.edu/~quake/triangle.html, it is copyrighted by the author and may not be 
sold or included in commercial products without a license. Also included is a package by Shewchuk for 
robust computation of geometric predicates using exact arithmetic. 

●     Triangle home page 
●     Netlib source directory 
●     Robust Geometric Primatives 
●     Download Files (local site) 

Problem Links 

●     Triangulation (9) 

About the Book 
Send us Mail 
Go to Main Page 
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Arrange - maintainance of arrangements with point location 

Arrange - maintainance of arrangements with point 
location 

Arrange is a package written in C by Michael Goldwasser of Stanford University for maintaining 
arrangements of polygons in either the plane or on the sphere. Polygons may be degenerate, and hence 
represent arrangements of lines. A randomized incremental construction algorithm is used, and efficient 
point location on the arrangement supported. Polygons may be inserted but not deleted from the 
arrangement, and arrangements of several thousand vertices and edges can be constructed in a few 
seconds. Arrange is available from ftp://flamingo.stanford.edu/pub/wass/arrangement. 

●     Arrange ftp source directory 
●     Michael Goldwasser's home page 
●     Download Files (local site) 

Problem Links 

●     Maintaining Line Arrangements (9) 
●     Point Location (6) 

About the Book 
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Linprog -- low dimensional linear programming 

Linprog -- low dimensional linear programming 

For low-dimensional linear programming problems, computational geometry flavored algorithms can 
outperform more general LP codes. An implementation of Seidel's randomized incremental LP algorithm 
in C by Mike Hohmeyer at ftp://icemcfd.com/pub/linprog.a. This program also handles rational objective 
functions, so with some cleverness you can get polytope separation distance, linear programming on a 
sphere, etc. 

●     Original FTP site 
●     Linear programming FAQ . 
●     Download Files (local site) 

Problem Links 

●     Linear Programming (4) 

About the Book 
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LP_SOLVE: Linear Programming Code 

LP_SOLVE: Linear Programming Code 

The non-commercial linear programming code of choice appears to be lp_solve , written in ANSI C by 
Michel Berkelaar, who claims to have solved problems as large as 30,000 variables and 50,000 
constraints. Lp_solve can also handle (smaller) integer and mixed-integer problems. It is available by 
anonymous ftp from ftp://ftp.es.ele.tue.nl/pub/lp_solve, but is not in the public domain. A user 
community for lp_solve exists, which has ported it to a variety of different platforms. 

●     FTP site for lp_solve 
●     Mail to author Michel Berkelaar 
●     Linear Programming FAQ 
●     Download Files (local site) 

Problem Links 

●     Linear Programming (9) 

About the Book 
Send us Mail 
Go to Main Page 

This page last modified on Apr 29, 1996. 

file:///E|/WEBSITE/IMPLEMEN/LPSOLVE/IMPLEMEN.HTM [19/1/2003 1:40:50]

ftp://ftp.es.ele.tue.nl/pub/lp_solve
mailto: michel@es.ele.tue.nl
http://www.skypoint.com/~ashbury/linear-programming-faq.html
file:///E|/WEBSITE/IMPLEMEN/LPSOLVE/DISTRIB
mailto:algorith@cs.sunysb.edu


PARI - Package for Number Theory 

PARI - Package for Number Theory 

PARI is a system capable of handling complex number-theoretic and algebraic problems. The predefined 
types are integers (up to 300000 decimal digits), reals (same for the relative precision), elements of Z/nZ, 
rational numbers, complex numbers, p-adic numbers, quadratic numbers, polynomials, power series, 
algebraic extensions, rational functions, binary quadratic forms, vectors, matrices. 

More than 200 special predefined functions, arithmetic or transcendental, are implemented, in addition to 
the usual arithmetic operations, which can be used without paying attention to the type of the object. The 
source uses more than 32000 lines of code, mainly in C. 

PARI can be used as a library, but possesses also a powerful calculator mode which gives instant access 
to all the types and functions. In this mode, one can write programs with a simple syntax a little similar to 
C, but taking also LISP-like constructs. 

The main advantage of PARI is its speed. On a Unix platform, it is between 5 to 100 times faster than 
Maple or Mathematica, depending on the applications. Also it is specially tailored for use by number 
theorists, hence contains a large number of predefined number-theoretical functions not found in other 
systems. It can of course profitably be used by other people as well. Finally, it is free. 

Currently, PARI is available for PC, Amiga, Macintosh, and most Unix platforms by anonymous ftp at 
megrez.ceremab.u-bordeaux.fr in the directory pub/pari . The current version of PARI is 1.39 (Jan. 
1995). 

The email address of the PARI group is pari@ceremab.u-bordeaux.fr . 

●     PARI description 
●     Original FTP site in Bordeaux 
●     Download Files (local site) 

Problem Links 

●     Factoring and Primality Testing (9) 
●     Arbitrary Precision Arithmetic (9) 
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GraphEd -- Graph Editor and Layout Program 

GraphEd is a graph editor by Michael Himsolt, which provides graph layout algorithms and an interface 
for application modules. It provides a wide variety of graph drawing algorithms -- including spring 
embeddings and special algorithms for drawing trees, DAGs, and planar graphs. GraphEd is probably the 
best place to start if you are looking for graph drawing software or algorithms. GraphEd is written in 
ANSI C, for UNIX systems running X-windows. 

GraphEd is available for non-commercial use via anonymous ftp from `ftp.uni-passau.de' (132.231.1.10) 
in `/pub/local/graphed' or from our local site. In our experience, it does crash from time to time, but it is a 
large and sophisticated piece of software which has been fairly widely and successfully used. 

●     Original FTP site 
●     Graphlet WWW page (successor system to GraphEd) 
●     Graph Drawing Tools Page 
●     Download Files (local site) 

Problem Links 

●     Drawing Graphs Nicely (9) 
●     Drawing Trees (9) 
●     Graph Data Structures (8) 
●     Planarity Detection and Embedding (8) 
●     Connected Components (4) 
●     Triangulation (4) 
●     Network Flow (3) 
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TSP solvers 

TSP solvers 

tsp-solve is a C++ code by Chad Hurwitz and Robert Craig with and provides both heuristic and optimal 
solutions. Geometric problems of size up to 100 points are managable. It is available by emailing Chad 
Hurwitz at churritz@crash.cts.com, and below on the algorithm repository. A heuristic Euclidean TSP 
solver in C due to Lionnel Maugis is available from http://www.cenaath.cena.dgac.fr/~maugis/tsp.shar . 

●     Lionnel Maugis's TSP_heu 
●     Download Files (local site) 

Problem Links 

●     Traveling Salesman Problem (8) 
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FFTPACK -- Fourier Transform Library 

FFTPACK -- Fourier Transform Library 

FFTPACK is a package of Fortran subprograms for the fast Fourier transform of periodic and other 
symmetric sequences, written by P. Swarztrauber. It includes complex, real, sine, cosine, and quarter-
wave transforms. A C language translation of the main routines is also provided. 

●     Original distribution from Netlib 
●     Download Files (local site) 

Problem Links 

●     Discrete Fourier Transform (10) 
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PHYLIP -- inferring phylogenic trees 

PHYLIP -- inferring phylogenic trees 

PHYLIP is an extensive and widely-used package of programs for inferring phylogenies. It contains over 
thirty different algorithms for constructing phylogenic trees. Although many of them are designed to 
work with molecular sequence data, several general methods accept arbitrary distance matrices as input. 
With versions written in C and Pascal, and binaries for Windows, DOS, Macintosh, and PowerMac, it is 
available on the WWW from http://evolution.genetics.washington.edu/phylip.html. 

●     PHYLIP distribution site 

Problem Links 

●     Steiner Tree (7) 
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Salowe's Rectilinear Steiner trees 

Salowe's Rectilinear Steiner trees 

Salowe and Warme developed a program for computing exact rectilinear Steiner minimal trees, which 
should be capable of handling up to 30 points routinely. It is available by anonymous ftp from 
ftp.cs.virginia.edu in pub/french/salowe/newsteiner.tar.Z. The program is described in the paper "Thirty-
Five-Point Rectilinear Steiner Minimal Trees in a Day", in Networks: An International Journal , volume 
25, 1995. 

Also available is another Steiner tree program from Virgina, by Gabriel Robins and Tong-Tong Zhang. 
This one produces a good heuristic solution. 

●     Original FTP site 
●     Send Jeff Salowe mail 
●     Download Files (local site) 

Problem Links 

●     Steiner Tree (8) 
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Skeletonization Software (2-D) 

Skeletonization Software (2-D) 

MAT is a medial-axis transform code designed for 2-D skeletonization of binary images, written by 
Robert Ogniewicz and available from http://hrl.harvard.edu/people/postdocs/rlo/rlo.dir/rlo-soft.html. 
MAT accepts a variety of different input formats, including polygonal representations. This seem to be a 
solidly built program, and should be your first stop on seeking a routine for thinning. 

●     Skeletonation WWW page 
●     Send mail to R. Ogniewicz 
●     Download Files (local site) 

Problem Links 

●     Medial-Axis Transformation (9) 
●     Simplifying Polygons (5) 
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SNNS - Stuttgart Neural Network Simulator 

SNNS - Stuttgart Neural Network Simulator 

The "Stuttgart Neural Network Simulator" from the University of Stuttgart, Germany supports many 
types of networks and training algorithms, as well as sophisticated graphical visualization tools under 
X11. It has been ported to many flavors of UNIX. It is available for ftp from ftp.informatik.uni-
stuttgart.de [129.69.211.2] in directory /pub/SNNS as SNNSv4.1.tar.gz (1.4 MB, Source code) and 
SNNSv4.1.Manual.ps.gz (1 MB, Documentation). It may be best to first have a look at the file 
SNNSv4.1.Readme. More information can be found in the WWW under http://www.informatik.uni-
stuttgart.de/ipvr/bv/projekte/snns/snns.html 

●     Original distribution site 
●     Neural Networks FAQ, with pointers to other software 
●     Download Files (local site) 

Problem Links 

●     Shape Similarity (7) 
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agrep - Approximate General Regular Expression Pattern Matcher 

agrep - Approximate General Regular Expression 
Pattern Matcher 

The best available tools for approximate pattern matching are glimpse and agrep, developed by Manber 
and Wu at the University of Arizona, and available from http://glimpse.cs.arizona.edu/. Glimpse is a tool 
for building and using an index for searching through file systems, while agrep (approximate general 
regular expression pattern matcher) is a tool supporting text search with spelling errors. Both programs 
are widely used and respected. 

●     Official Glimpse and agrep distribution 
●     Download Files (local site) 

Problem Links 

●     Approximate String Matching (10) 
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HT/DIG -- image compression codes 

HT/DIG -- image compression codes 

An alternate WWW text search engine is {\em ht://Dig} from Andrew Scherpbier, which also contains 
implementations of Soundex and Metaphone. It is available from http://htdig.sdsu.edu/, and released 
under the GNU general public licence. 

●     Source ht://dig distribution 
●     Download Files (local site) 

Problem Links 

●     Approximate String Matching (7) 
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CAP -- Contig Assembly Program 

CAP -- Contig Assembly Program 

CAP (Contig Assembly Program) by Xiaoqiu Huang is a C language program supporting DNA shotgun 
sequencing, by finding the shortest common superstring of a set of fragments. As to performance, CAP 
took 4 hours to assemble 1015 fragments of a total of 252,000 characters on a Sun SPARCstation SLC. 
Certain parameters will need to be tweaked to make it accommodate non-DNA data. It is available by 
anonymous ftp from cs.mtu.edu in the pub/huang directory. MAP (Multiple Alignment Program) also by 
Xiaoqiu Huang is a C language program computes a multiple global alignment of sequences using an 
iterative pairwise method. It is also available by anonymous ftp from cs.mtu.edu in the pub/huang 
directory. 

●     Download Files (local site) 
●     Author's homepage with original sources 

Problem Links 

●     Longest Common Substring (8) 
●     Shortest Common Superstring (8) 
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Shape similarity testing via turning functions 

Shape similarity testing via turning functions 

This is an implementation in C by Eugene K. Ressler of the turning function metric for comparing 
polygonal shapes developed by Arkin, Chew, Huttenlocher, Kedem, and Mitchell. It expands a little on 
the cited reference to achieve O(n) space and O(mn log n) run time. This source may be freely distributed 
and used for non-commercial purposes, so long as this comment is attached to any code copied or 
derived from it. 

●     Download Files (local site) 

Problem Links 

●     Shape Similarity (6) 
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NAUTY -- Graph Isomorphism 

NAUTY -- Graph Isomorphism 

The world's fastest isomorphism testing program is Nauty, by Brendan D. McKay. Nauty (No 
AUTomorphisms, Yes?) is a set of very efficient C language procedures for determining the 
automorphism group of a vertex-colored graph. It provides this information in the form of a set of 
generators, the size of group, and the orbits of the group. Nauty is also able to produce a canonically-
labeled isomorph of the graph, to assist in isomorphism testing. It was the basis of the first program to 
generate all the 11-vertex graphs without isomorphs, and can test most graphs of less than 100 vertices in 
well under a second. Nauty has been successfully ported to a variety of operating systems and C 
compilers. It may be obtained from http://cs.anu.edu.au/people/bdm/. It is free for educational and 
research applications, but for commercial use contact the author at bdm@cs.anu.edu.au. 

●     

●     Download Files (local site) 

Problem Links 

●     Graph Isomorphism (10) 
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POSIT - Propositional Satisfiability Testbed 

POSIT - Propositional Satisfiability Testbed 

The propositional satisfiability tester POSIT, by Jon W. Freeman, is based on a highly optimized version 
of the Davis-Putnum procedure. It is available by anonymous ftp from ftp.cis.upenn.edu in 
/pub/freeman/posit-1.0.tar.Z. 

●     POSIT (primary FTP site) 
●     Download Files (local site) 

Problem Links 

●     Satisfiability (8) 
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BIPM -- Bipartite Matching Codes 

BIPM -- Bipartite Matching Codes 

This directory contains several programs that implement algorithms for bipartite matching in unweighted 
graphs. Except where noted, all programs were written by Joao Carlos Setubal 
(setubal@dcc.unicamp.br), who also wrote this documentation. You can use and modify the codes freely, 
but please acknowledge authorship. If a bibliographic reference is needed, use the following: 

J. C. Setubal, Sequential and Parallel Experimental Results with Bipartite Matching Algorithms. 
Technical Report IC-96-09, Institute of Computing, State University of Campinas (Brazil), 1996. 

A postscript file containing this tech report is in directory techreport, compressed with gzip. It will be 
easier to understand what each code does if you read the tech report first. 

●     Original distribution 
●     Download Files (local site) 

Problem Links 

●     Matching (8) 
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GEOMPACK - triangulation and convex decomposition codes 

GEOMPACK - triangulation and convex 
decomposition codes 

GEOMPACK is a suite of Fortran 77 codes by Barry Joe of the University of Alberta, for 2- and 3-
dimensional triangulation and convex decomposition problems. In particular, it does both Delaunay 
triangulation and convex decompositions of polygonal and polyhedral regions, as well as arbitrary 
dimensional Delaunay triangulations. These codes are well respected, and worth checking out. They can 
be obtained from ftp://ftp.cs.ualberta.ca/pub/geompack. 

Papers describing the algorithms used for each program are available at the ftp site. 

The GEOMPACK software package is copyrighted and made available here for noncommercial use only. 
If you want to include any GEOMPACK routines in a commercial software product, please contact Barry 
Joe about obtaining a license. 

●     FTP site for GEOMPACK 
●     Barry Joe's home page 
●     Download Files (local site) 

Problem Links 

●     Polygon Partitioning (8) 
●     Triangulation (8) 
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LAPACK and LINPACK -- Linear Algebra PACKages 

LAPACK and LINPACK -- Linear Algebra PACKages 

LAPACK provides routines for solving systems of simultaneous linear equations, least-squares solutions 
of linear systems of equations, eigenvalue problems, and singular value problems. The associated matrix 
factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are also provided, as are related 
computations such as reordering of the Schur factorizations and estimating condition numbers. Dense 
and banded matrices are handled, but not general sparse matrices. In all areas, similar functionality is 
provided for real and complex matrices, in both single and double precision. 

LINPACK, also provided in the distrib directory, is an older linear algebra package, of which LAPACK 
is its successor. We have included LINPACK because it more obviously solves determinants than 
LAPACK. 

●     Source LAPACK distribution 
●     Source LINPACK distribution 
●     Download Files (local site) 

Problem Links 

●     Solving Linear Equations (10) 
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Mathematica -- Assorted Routines 

Mathematica -- Assorted Routines 

These files contain implementations of interesting algorithms in the Mathematica programming 
language. A large collection of Mathematica programs is MathSource, maintained by Wolfram Research 
at http://www.wri.com/mathsource/. Many of the files below are from MathSource, while others were 
obtained directly from the authors. 

●     Strassen's Matrix Multiplication Algorithm -- An implementation offered ``without comment or 
promise of efficiency'', by Stan Wagon of Macalester College, wagon@macalstr.edu . in 
distrib/strassen.m 

Combinatorica, a library of 230 algorithms for combinatorics and graph theory written in Mathematica, 
has a separate entry in this algorithm repository. 

●     Download Files (local site) 
●     MathSource at Wolfram Research 

Problem Links 

●     Matrix Multiplication (6) 
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User Comments 

User Comments Archive 

●     (algorith@cs.sunysb.edu):Welcome to the User Comments Archive 
●     (skiena@cs.sunysb.edu):Test of user comments 
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The Algorithm Design Manual

Most professional programmers are not well equipped to tackle algorithm design problems. 
"The Algorithm Design Manual" by Steve Skiena of SUNY Stony Brook, is uniquely 
designed to provide access to combinatorial algorithms technology for computer 
professionals and students. Skiena has taken some of the "mystery" out of finding the right 
algorithm for the job, by drawing heavily on the author's own real-world experiences. Thus 
the work takes on a very practical character, as reflected in its title: "Manual". The Book is 
divided into two parts, the first being a general guide to techniques for the design and 
analysis of computer algorithms. The second is a reference section, comprising the catalog 
of algorithmic resources, implementations, and an extensive bibliography. 

The primary audience for this book/CD-ROM combination is the working professional 
who uses algorithms on a regular or occasional basis and has need for a handy reference. A 
major feature of this book is the inclusion of a complete "catalog" of important algorithmic 
problems. By browsing this catalog, readers can quickly identify what the problem they 
have encountered is called, what is known about it, and how they should proceed if they 
need to solve it. Nothing like this catalog exists in the computing literature for general 
computer algorithms. 

This work can also readily be used as a textbook or course supplement in standard courses 
on algorithm design. Pedagogic features include pen-and paper exercises, "team projects", 
independent student projects, "take home" lessons (goals) at the beginning of chapters. 
Other teaching and learning aids reside on the accompanying CD-ROM. The multi-
platiform CD-ROM contains a full hypertext version of the book, with a comprehensive on-
line index, and all of the code/algorithms residing on the author's web site at Stony Brook 
in the "Algorithm Repository" there: www.cs.sunysb.edu/~algorith/. URLs for all cited 
implementations mirroring the Stony Brook web site and algorthim repository are 
included. Also included on the CD-ROM are 10 hours of audio lectures presented by the 
author, and series of slides which instructors can use to help teach their courses. There is 
additional useful information and updates which are available through accessing the 
author's web site.
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