
1 Introduction

1.1 Elements of System Identification

Mathematical models of systems (either natural or man-made) play an essential

role in modern science and technology. Roughly speaking, a mathematical model

can be imagined as a mathematical law that links the system inputs (causes) with

the outputs (effects). The applications of mathematical models range from simula-

tion and prediction to control and diagnosis in heterogeneous fields. System identi-

fication is a widely used approach to build a mathematical model. It estimates the

model based on the observed data (usually with uncertainty and noise) from the

unknown system.

Many researchers try to provide an explicit definition for system identification.

In 1962, Zadeh gave a definition as follows [1]: “System identification is the deter-

mination, on the basis of observations of input and output, of a system within a

specified class of systems to which the system under test is equivalent.” It is almost

impossible to find out a model completely matching the physical plant. Actually,

the system input and output always include certain noises; the identification model

is therefore only an approximation of the practical plant. Eykhoff [2] pointed out

that the system identification tries to use a model to describe the essential charac-

teristic of an objective system (or a system under construction), and the model

should be expressed in a useful form. Clearly, Eykhoff did not expect to obtain an

exact mathematical description, but just to create a model suitable for applications.

In 1978, Ljung [3] proposed another definition: “The identification procedure is

based on three entities: the data, the set of models, and the criterion. Identification,

then, is to select the model in the model set that describes the data best, according

to the criterion.”

According to the definitions by Zadeh and Ljung, system identification consists

of three elements (see Figure 1.1): data, model, and equivalence criterion (equiva-

lence is often defined in terms of a criterion or a loss function). The three elements

directly govern the identification performance, including the identification accu-

racy, convergence rate, robustness, and computational complexity of the identifica-

tion algorithm [4]. How to optimally design or choose these elements is very

important in system identification.

The model selection is a crucial step in system identification. Over the past dec-

ades, a number of model structures have been suggested, ranging from the simple
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linear structures [FIR (finite impulse response), AR (autoregressive), ARMA (auto-

regressive and moving average), etc.] to more general nonlinear structures [NAR

(nonlinear autoregressive), MLP (multilayer perceptron), RBF (radial basis func-

tion), etc.]. In general, model selection is a trade-off between the quality and the

complexity of the model. In most practical situations, some prior knowledge may

be available regarding the appropriate model structure or the designer may wish to

limit to a particular model structure that is tractable and meanwhile can make a

good approximation to the true system. Various model selection criteria have also

been introduced, such as the cross-validation (CV) criterion [5], Akaike’s informa-

tion criterion (AIC) [6,7], Bayesian information criterion (BIC) [8], and minimum

description length (MDL) criterion [9,10].

The data selection (the choice of the measured variables) and the optimal input

design (experiment design) are important issues. The goal of experiment design is

to adjust the experimental conditions so that maximal information is gained from

the experiment (such that the measured data contain the maximal information about

the unknown system). The optimality criterion for experiment design is usually

based on the information matrices [11]. For many nonlinear models (e.g., the

kernel-based model), the input selection can significantly help to reduce the net-

work size [12].

The choice of the equivalence criterion (or approximation criterion) is another

key issue in system identification. The approximation criterion measures the differ-

ence (or similarity) between the model and the actual system, and allows determi-

nation of how good the estimate of the system is. Different choices of the

approximation criterion will lead to different estimates. The task of parametric sys-

tem identification is to adjust the model parameters such that a predefined approxi-

mation criterion is minimized (or maximized). As a measure of accuracy, the

approximation criterion determines the performance surface, and has significant

influence on the optimal solutions and convergence behaviors. The development of

new identification approximation criteria is an important emerging research topic

and this will be the focus of this book.

It is worth noting that many machine learning methods also involve three ele-

ments: model, data, and optimization criterion. Actually, system identification can

be viewed, to some extent, as a special case of supervised machine learning. The

main terms in system identification and machine learning are reported in Table 1.1.

In this book, these terminologies are used interchangeably.

System identification

Data Model Criterion

Figure 1.1 Three elements of system

identification.

2 System Parameter Identification



1.2 Traditional Identification Criteria

Traditional identification (or estimation) criteria mainly include the least squares

(LS) criterion [13], minimum mean square error (MMSE) criterion [14], and the

maximum likelihood (ML) criterion [15,16]. The LS criterion, defined by minimiz-

ing the sum of squared errors (an error being the difference between an observed

value and the fitted value provided by a model), could at least dates back to Carl

Friedrich Gauss (1795). It corresponds to the ML criterion if the experimental

errors have a Gaussian distribution. Due to its simplicity and efficiency, the LS cri-

terion has been widely used in problems, such as estimation, regression, and system

identification. The LS criterion is mathematically tractable, and the linear LS prob-

lem has a closed form solution. In some contexts, a regularized version of the LS

solution may be preferable [17]. There are many identification algorithms devel-

oped with LS criterion. Typical examples are the recursive least squares (RLS) and

its variants [4]. In statistics and signal processing, the MMSE criterion is a com-

mon measure of estimation quality. An MMSE estimator minimizes the mean

square error (MSE) of the fitted values of a dependent variable. In system identifi-

cation, the MMSE criterion is often used as a criterion for stochastic approximation

methods, which are a family of iterative stochastic optimization algorithms that

attempt to find the extrema of functions which cannot be computed directly, but

only estimated via noisy observations. The well-known least mean square (LMS)

algorithm [18�20], invented in 1960 by Bernard Widrow and Ted Hoff, is a sto-

chastic gradient descent algorithm under MMSE criterion. The ML criterion is

recommended, analyzed, and popularized by R.A. Fisher [15]. Given a set of data

and underlying statistical model, the method of ML selects the model parameters

that maximize the likelihood function (which measures the degree of “agreement”

of the selected model with the observed data). The ML estimation provides a uni-

fied approach to estimation, which corresponds to many well-known estimation

methods in statistics. The ML parameter estimation possesses a number of attrac-

tive limiting properties, such as consistency, asymptotic normality, and efficiency.

The above identification criteria (LS, MMSE, ML) perform well in most practi-

cal situations, and so far are still the workhorses of system identification. However,

they have some limitations. For example, the LS and MMSE capture only the

second-order statistics in the data, and may be a poor approximation criterion,

Table 1.1 Main Terminologies in System Identification and Machine Learning

System Identification Machine Learning

Model, filter Learning machine, network

Parameters, coefficients Weights

Identify, estimate Learn, train

Observations, measurements Examples, training data

Overparametrization Overtraining, overfitting
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especially in nonlinear and non-Gaussian (e.g., heavy tail or finite range distribu-

tions) situations. The ML criterion requires the knowledge of the conditional distri-

bution (likelihood function) of the data given parameters, which is unavailable in

many practical problems. In some complicated problems, the ML estimators are

unsuitable or do not exist. Thus, selecting a new criterion beyond second-order sta-

tistics and likelihood function is attractive in problems of system identification.

In order to take into account higher order (or lower order) statistics and to select

an optimal criterion for system identification, many researchers studied the non-

MSE (nonquadratic) criteria. In an early work [21], Sherman first proposed the

non-MSE criteria, and showed that in the case of Gaussian processes, a large fam-

ily of non-MSE criteria yields the same predictor as the linear MMSE predictor of

Wiener. Later, Sherman’s results and several extensions were revisited by Brown

[22], Zakai [23], Hall and Wise [24], and others. In [25], Ljung and Soderstrom

discussed the possibility of a general error criterion for recursive parameter identifi-

cation, and found an optimal criterion by minimizing the asymptotic covariance

matrix of the parameter estimates. In [26,27], Walach and Widrow proposed a

method to select an optimal identification criterion from the least mean fourth

(LMF) family criteria. In their approach, the optimal choice is determined by mini-

mizing a cost function which depends on the moments of the interfering noise. In

[28], Douglas and Meng utilized the calculus of variations method to solve the opti-

mal criterion among a large family of general error criteria. In [29], Al-Naffouri

and Sayed optimized the error nonlinearity (derivative of the general error crite-

rion) by optimizing the steady state performance. In [30], Pei and Tseng investi-

gated the least mean p-power (LMP) criterion. The fractional lower order moments

(FLOMs) of the error have also been used in adaptive identification in the presence

of impulse alpha-stable noises [31,32]. Other non-MSE criteria include the M-

estimation criterion [33], mixed norm criterion [34�36], risk-sensitive criterion

[37,38], high-order cumulant (HOC) criterion [39�42], and so on.

1.3 Information Theoretic Criteria

Information theory is a branch of statistics and applied mathematics, which is

exactly created to help studying the theoretical issues of optimally encoding mes-

sages according to their statistical structure, selecting transmission rates according

to the noise levels in the channel, and evaluating the minimal distortion in mes-

sages [43]. Information theory was first developed by Claude E. Shannon to find

fundamental limits on signal processing operations like compressing data and on

reliably storing and communicating data [44]. After the pioneering work of

Shannon, information theory found applications in many scientific areas, including

physics, statistics, cryptography, biology, quantum computing, and so on.

Moreover, information theoretic measures (entropy, divergence, mutual informa-

tion, etc.) and principles (e.g., the principle of maximum entropy) were widely

used in engineering areas, such as signal processing, machine learning, and other
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forms of data analysis. For example, the maximum entropy spectral analysis

(MaxEnt spectral analysis) is a method of improving spectral estimation based on

the principle of maximum entropy [45�48]. MaxEnt spectral analysis is based on

choosing the spectrum which corresponds to the most random or the most

unpredictable time series whose autocorrelation function agrees with the known

values. This assumption, corresponding to the concept of maximum entropy as

used in both statistical mechanics and information theory, is maximally noncom-

mittal with respect to the unknown values of the autocorrelation function of the

time series. Another example is the Infomax principle, an optimization principle

for neural networks and other information processing systems, which prescribes

that a function that maps a set of input values to a set of output values should be

chosen or learned so as to maximize the average mutual information between input

and output [49�53]. Information theoretic methods (such as Infomax) were suc-

cessfully used in independent component analysis (ICA) [54�57] and blind source

separation (BSS) [58�61]. In recent years, Jose C. Principe and his coworkers stud-

ied systematically the application of information theory to adaptive signal proces-

sing and machine learning [62�68]. They proposed the concept of information

theoretic learning (ITL), which is achieved with information theoretic descriptors

of entropy and dissimilarity (divergence and mutual information) combined with

nonparametric density estimation. Their studies show that the ITL can bring robust-

ness and generality to the cost function and improve the learning performance. One

of the appealing features of ITL is that it can, with minor modifications, use the

conventional learning algorithms of adaptive filters, neural networks, and kernel

learning. The ITL links information theory, nonparametric estimators, and reprodu-

cing kernel Hilbert spaces (RKHS) in a simple and unconventional way [64]. A

unifying framework of ITL is presented in Appendix A, such that the readers can

easily understand it (for more details, see [64]).

Information theoretic methods have also been suggested by many authors for the

solution of the related problems of system identification. In an early work [69],

Zaborszky showed that information theory could provide a unifying viewpoint for

the general identification problem. According to [69], the unknown parameters that

need to be identified may represent the output of an information source which is

transmitted over a channel, a specific identification technique. The identified values

of the parameters are the output of the information channel represented by the iden-

tification technique. An identification technique can then be judged by its proper-

ties as an information channel transmitting the information contained in the

parameters to be identified. In system parameter identification, the inverse of the

Fisher information provides a lower bound (also known as the Cramér�Rao lower

bound) on the variance of the estimator [70�74]. The rate distortion function in

information theory can also be used to obtain the performance limitations in param-

eter estimation [75�79]. Many researchers also showed that there are elegant rela-

tionships between information theoretic measures (entropy, divergence, mutual

information, etc.) and classical identification criteria like the MSE [80�85]. More

importantly, many studies (especially those in ITL) suggest that information theo-

retic measures of entropy and divergence can be used as an identification criterion
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(referred to as the “information theoretic criterion,” or simply, the “information cri-

terion”), and can improve identification performance in many realistic scenarios.

The choice of information theoretic criteria is very natural and reasonable since

they capture higher order statistics and information content of signals rather than

simply their energy. The information theoretic criteria and related identification

algorithms are the main content of this book. Some of the content of this book had

appeared in the ITL book (by Jose C. Principe) published in 2010 [64].

In this book, we mainly consider three kinds of information criteria: the mini-

mum error entropy (MEE) criteria, the minimum information divergence criteria,

and the mutual information-based criteria. Below, we give a brief overview of the

three kinds of criteria.

1.3.1 MEE Criteria

Entropy is a central quantity in information theory, which quantifies the average

uncertainty involved in predicting the value of a random variable. As the entropy

measures the average uncertainty contained in a random variable, its minimization

makes the distribution more concentrated. In [79,86], Weidemann and Stear studied

the parameter estimation for nonlinear and non-Gaussian discrete-time systems by

using the error entropy as the criterion functional, and proved that the reduced error

entropy is upper bounded by the amount of information obtained by observation.

Later, Tomita et al. [87] and Kalata and Priemer [88] applied the MEE criterion to

study the optimal filtering and smoothing estimators, and provided a new interpre-

tation for the filtering and smoothing problems from an information theoretic view-

point. In [89], Minamide extended Weidemann and Stear’s results to the

continuous-time estimation models. The MEE estimation was reformulated by

Janzura et al. as a problem of finding the optimal locations of probability densities

in a given mixture such that the resulting entropy is minimized [90]. In [91], the

minimum entropy of a mixture of conditional symmetric and unimodal (CSUM)

distributions was studied. Some important properties of the MEE estimation were

also reported in [92�95].

In system identification, when the errors (or residuals) are not Gaussian distrib-

uted, a more appropriate approach would be to constrain the error entropy [64].

The evaluation of the error entropy, however, requires the knowledge of the data

distributions, which are usually unknown in practical applications. The nonpara-

metric kernel (Parzen window) density estimation [96�98] provides an efficient

way to estimate the error entropy directly from the error samples. This approach

has been successfully applied in ITL and has the added advantages of linking infor-

mation theory, adaptation, and kernel methods [64]. With kernel density estimation

(KDE), Renyi’s quadratic entropy can be easily calculated by a double sum over

error samples [64]. The argument of the log in quadratic Renyi entropy estimator is

named the quadratic information potential (QIP) estimator. The QIP is a central

criterion function in ITL [99�106]. The computationally simple, nonparametric

entropy estimators yield many well-behaved gradient algorithms to identify the sys-

tem parameters such that the error entropy is minimized [64]. It is worth noting
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that the MEE criterion can also be used to identify the system structure. In [107],

the Shannon’s entropy power reduction ratio (EPRR) was introduced to select the

terms in orthogonal forward regression (OFR) algorithms.

1.3.2 Minimum Information Divergence Criteria

An information divergence (say the Kullback�Leibler information divergence

[108]) measures the dissimilarity between two distributions, which is useful in the

analysis of parameter estimation and model identification techniques. A natural

way of system identification is to minimize the information divergence between the

actual (empirical) and model distributions of the data [109]. In an early work [7],

Akaike suggested the use of the Kullback�Leibler divergence (KL-divergence) cri-

terion via its sensitivity to parameter variations, showed its applicability to various

statistical model fitting problems, and related it to the ML criterion. The AIC and

its variants have been extensively studied and widely applied in problems of model

selection [110�114]. In [115], Baram and Sandell employed a version of KL-diver-

gence, which was shown to possess the property of being a metric on the parameter

set, to treat the identification and modeling of a dynamical system, where the

model set under consideration does not necessarily include the observed system.

The minimum information divergence criterion has also been applied to study the

simplification and reduction of a stochastic system model [116�119]. In [120], the

problem of parameter identifiability with KL-divergence criterion was studied. In

[121,122], several sequential (online) identification algorithms were developed to

minimize the KL-divergence and deal with the case of incomplete data. In

[123,124], Stoorvogel and Schuppen studied the identification of stationary

Gaussian processes, and proved that the optimal solution to an approximation prob-

lem for Gaussian systems with the divergence criterion is identical to the main step

of the subspace algorithm. In [125,126], motivated by the idea of shaping the prob-

ability density function (PDF), the divergence between the actual error distribution

and a reference (or target) distribution was used as an identification criterion. Some

extensions of the KL-divergence, such as the α-divergence or φ-divergence, can
also be employed as a criterion function for system parameter estimation

[127�130].

1.3.3 Mutual Information-Based Criteria

Mutual information measures the statistical dependence between random variables.

There are close relationships between mutual information and MMSE estimation.

In [80], Duncan showed that for a continuous-time additive white Gaussian noise

channel, the minimum mean square filtering (causal estimation) error is twice the

input�output mutual information for any underlying signal distribution. Moreover,

in [81], Guo et al. showed that the derivative of the mutual information was equal

to half the MMSE in noncausal estimation. Like the entropy and information diver-

gence, the mutual information can also be employed as an identification criterion.

Weidemann and Stear [79], Janzura et al. [90], and Feng et al. [131] proved that
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minimizing the mutual information between estimation error and observations is

equivalent to minimizing the error entropy. In [124], Stoorvogel and Schuppen

showed that for a class of identification problems, the criterion of mutual informa-

tion rate is identical to the criterion of exponential-of-quadratic cost and to HN

entropy (see [132] for the definition of HN entropy). In [133], Yang and Sakai pro-

posed a novel identification algorithm using ICA, which was derived by minimiz-

ing the mutual information between the estimated additive noise and the input

signal. In [134], Durgaryan and Pashchenko proposed a consistent method of iden-

tification of systems by maximum mutual information (MaxMI) criterion and

proved the conditions for identifiability. The MaxMI criterion has been successfully

applied to identify the FIR and Wiener systems [135,136].

Besides the above-mentioned information criteria, there are many other

information-based identification criteria, such as the maximum correntropy crite-

rion (MCC) [137�139], minimization of error entropy with fiducial points (MEEF)

[140], and minimum Fisher information criterion [141]. In addition to the AIC cri-

terion, there are also many other information criteria for model selection, such as

BIC [8] and MDL [9].

1.4 Organization of This Book

Up to now, considerable work has been done on system identification with infor-

mation theoretic criteria, although the theory is still far from complete. So far there

have been several books on the model selection with information critera (e.g., see

[142�144]), but this book will provide a comprehensive treatment of system

parameter identification with information criteria, with emphasis on the nonpara-

metric cost functions and gradient-based identification algorithms. The rest of the

book is organized as follows.

Chapter 2 presents the definitions and properties of some important information

measures, including entropy, mutual information, information divergence, Fisher

information, etc. This is a foundational chapter for the readers to understand the

basic concepts that will be used in later chapters.

Chapter 3 reviews the information theoretic approaches for parameter estimation

(classical and Bayesian), such as the maximum entropy estimation, minimum diver-

gence estimation, and MEE estimation, and discusses the relationships between

information theoretic methods and conventional alternatives. At the end of this

chapter, a brief overview of several information criteria (AIC, BIC, MDL) for

model selection is also presented. This chapter is vital for readers to understand the

general theory of the information theoretic criteria.

Chapter 4 discusses extensively the system identification under MEE criteria.

This chapter covers a brief sketch of system parameter identification, empirical

error entropy criteria, several gradient-based identification algorithms, convergence

analysis, optimization of the MEE criteria, survival information potential, and the

Δ-entropy criterion. Many simulation examples are presented to illustrate the
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performance of the developed algorithms. This chapter ends with a brief discussion

of system identification under the MCC.

Chapter 5 focuses on the system identification under information divergence cri-

teria. The problem of parameter identifiability under mimimum KL-divergence cri-

terion is analyzed. Then, motivated by the idea of PDF shaping, we introduce the

minimum information divergence criterion with a reference PDF, and develop the

corresponding identification algorithms. This chapter ends with an adaptive infinite

impulsive response (IIR) filter with Euclidean distance criterion.

Chaper 6 changes the focus to the mutual information-based criteria: the mimi-

mum mutual information (MinMI) criterion and the MaxMI criterion. The system

identification under MinMI criterion can be converted to an ICA problem. In order

to uniquely determine an optimal solution under MaxMI criterion, we propose a

double-criterion identification method.

Appendix A: Unifying Framework of ITL

Figure A.1 shows a unifying framework of ITL (supervised or unsupervised). In

Figure A.1, the cost CðY ;DÞ denotes generally an information measure (entropy,

divergence, or mutual information) between Y and D, where Y is the output of the

model (learning machine) and D depends on which position the switch is in. ITL is

then to adjust the parameters ω such that the cost CðY ;DÞ is optimized (minimized

or maximized).

1. Switch in position 1

When the switch is in position 1, the cost involves the model output Y and an external

desired signal Z. Then the learning is supervised, and the goal is to make the output sig-

nal and the desired signal as “close” as possible. In this case, the learning can be catego-

rized into two categories: (a) filtering (or regression) and classification and (b) feature

extraction.

a. Filtering and classification

In traditional filtering and classification, the cost function is in general the MSE or

misclassification error rate (the 0�1 loss). In ITL framework, the problem can be

1

2

3

X

Input signal

Z

Desired signal

Output signal
Y

Learning machine
Y = f (X, ω)

Information measure
C (Y, D)

Figure A.1 Unifying ITL framework.
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formulated as minimizing the divergence or maximizing the mutual information

between output Y and the desired response Z, or minimizing the entropy of the error

between the output and the desired responses (i.e., MEE criterion).

b. Feature extraction

In machine learning, when the input data are too large and the dimensionality is

very high, it is necessary to transform nonlinearly the input data into a reduced repre-

sentation set of features. Feature extraction (or feature selection) involves reducing the

amount of resources required to describe a large set of data accurately. The feature set

will extract the relevant information from the input in order to perform the desired

task using the reduced representation instead of the full- size input. Suppose the

desired signal is the class label, then an intuitive cost for feature extraction should be

some measure of “relevance” between the projection outputs (features) and the labels.

In ITL, this problem can be solved by maximizing the mutual information between

the output Y and the label C.

2. Switch in position 2

When the switch is in position 2, the learning is in essence unsupervised because there

is no external signal besides the input and output signals. In this situation, the well-

known optimization principle is the Maximum Information Transfer, which aims to maxi-

mize the mutual information between the original input data and the output of the system.

This principle is also known as the principle of maximum information preservation

(Infomax). Another information optimization principle for unsupervised learning (cluster-

ing, principal curves, vector quantization, etc.) is the Principle of Relevant Information

(PRI) [64]. The basic idea of PRI is to minimize the data redundancy (entropy) while pre-

serving the similarity to the original data (divergence).

3. Switch in position 3

When the switch is in position 3, the only source of data is the model output, which in

this case is in general assumed multidimensional. Typical examples of this case include

ICA, clustering, output entropy optimization, and so on.

Independent component analysis: ICA is an unsupervised technique aiming to reduce

the redundancy between components of the system output. Given a nonlinear multiple-

input�multiple-output (MIMO) system y5 f ðx;ωÞ, the nonlinear ICA usually optimizes

the parameter vector ω such that the mutual information between the components of y is

minimized.

Clustering: Clustering (or clustering analysis) is a common technique for statistical

data analysis used in machine learning, pattern recognition, bioinformatics, etc. The goal

of clustering is to divide the input data into groups (called clusters) so that the objects in

the same cluster are more “similar” to each other than to those in other clusters, and dif-

ferent clusters are defined as compactly and distinctly as possible. Information theoretic

measures, such as entropy and divergence, are frequently used as an optimization crite-

rion for clustering.

Output entropy optimization: If the switch is in position 3, one can also optimize (min-

imize or maximize) the entropy at system output (usually subject to some constraint on

the weight norm or nonlinear topology) so as to capture the underlying structure in high

dimensional data.

4. Switch simultaneously in positions 1 and 2

In Figure A.1, the switch can be simultaneously in positions 1 and 2. In this case, the

cost has access to input data X, output data Y , and the desired or reference data Z. A

well-known example is the Information Bottleneck (IB) method, introduced by Tishby

et al. [145]. Given a random variable X and an observed relevant variable Z, and
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assuming that the joint distribution between X and Z is known, the IB method aims to

compress X and try to find the best trade-off between (i) the minimization of mutual

information between X and its compressed version Y and (ii) the maximization of mutual

information between Y and the relevant variable Z. The basic idea in IB is to find a

reduced representation of X while preserving the information of X with respect to another

variable Z.
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2 Information Measures

The concept of information is so rich that there exist various definitions of informa-

tion measures. Kolmogorov had proposed three methods for defining an information

measure: probabilistic method, combinatorial method, and computational method

[146]. Accordingly, information measures can be categorized into three categories:

probabilistic information (or statistical information), combinatory information, and

algorithmic information. This book focuses mainly on statistical information, which

was first conceptualized by Shannon [44]. As a branch of mathematical statistics,

the establishment of Shannon information theory lays down a mathematical frame-

work for designing optimal communication systems. The core issues in Shannon

information theory are how to measure the amount of information and how to

describe the information transmission. According to the feature of data transmission

in communication, Shannon proposed the use of entropy, which measures the

uncertainty contained in a probability distribution, as the definition of information

in the data source.

2.1 Entropy

Definition 2.1 Given a discrete random variable X with probability mass function

PfX5 xkg5 pk, k5 1; . . .; n, Shannon’s (discrete) entropy is defined by [43]

HðXÞ5
Xn
k51

pkIðpkÞ ð2:1Þ

where IðpkÞ52 log pk is Hartley’s amount of information associated with the dis-

crete value xk with probability pk.
1 This information measure was originally

devised by Claude Shannon in 1948 to study the amount of information in a trans-

mitted message. Shannon entropy measures the average information (or uncer-

tainty) contained in a probability distribution and can also be used to measure

many other concepts, such as diversity, similarity, disorder, and randomness.

However, as the discrete entropy depends only on the distribution P, and takes no

account of the values, it is independent of the dynamic range of the random vari-

able. The discrete entropy is unable to differentiate between two random variables

that have the same distribution but different dynamic ranges. Actually the discrete

1 In this book, “log” always denotes the natural logarithm. The entropy will then be measured in nats.
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random variables with the same entropy may have arbitrarily small or large vari-

ance, a typical measure for value dispersion of a random variable.

Since system parameter identification deals, in general, with continuous random

variables, we are more interested in the entropy of a continuous random variable.

Definition 2.2 If X is a continuous random variable with PDF pðxÞ, xAC,

Shannon’s differential entropy is defined as

HðXÞ52

ð
C

pðxÞlog pðxÞdx ð2:2Þ

The differential entropy is a functional of the PDF pðxÞ. For this reason, we also

denote it by HðpÞ. The entropy definition in (2.2) can be extended to multiple ran-

dom variables. The joint entropy of two continuous random variables X and Y is

HðX; YÞ52

ð ð
pðx; yÞlog pðx; yÞdx dy ð2:3Þ

where pðx; yÞ denotes the joint PDF of ðX; YÞ. Furthermore, one can define the con-

ditional entropy of X given Y as

HðXjYÞ52

ð ð
pðx; yÞlog pðxjyÞdx dy ð2:4Þ

where pðxjyÞ is the conditional PDF of X given Y .2

If X and Y are discrete random variables, the entropy definitions in (2.3) and

(2.4) only need to replace the PDFs with the probability mass functions and the

integral operation with the summation.

Theorem 2.1 Properties of the differential entropy3 :

1. Differential entropy can be either positive or negative.

2. Differential entropy is not related to the mean value (shift invariant), i.e.,

HðX1 cÞ5HðXÞ, where cAℝ is an arbitrary constant.

3. HðX; YÞ5HðXÞ1HðYjXÞ5HðYÞ1HðXjYÞ:
4. HðXjYÞ#HðXÞ, HðYjXÞ#HðYÞ:
5. Entropy has the concavity property: HðpÞ is a concave function of p, that is, ’ 0#λ# 1,

we have

Hðλp1 1 ð12λÞp2Þ$λHðp1Þ1 ð12λÞHðp2Þ ð2:5Þ

2 Strictly speaking, we should use some subscripts to distinguish the PDFs pðxÞ, pðx; yÞ, and pðxjyÞ. For
example, we can write them as pXðxÞ, pXY ðx; yÞ, pXjY ðxjyÞ. In this book, for simplicity we often omit

these subscripts if no confusion arises.
3 The detailed proofs of these properties can be found in related information theory textbooks, such as

“Elements of Information Theory” written by Cover and Thomas [43].
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6. If random variables X and Y are mutually independent, then

HðX1 YÞ$maxfHðXÞ;HðYÞg ð2:6Þ

that is, the entropy of the sum of two independent random variables is no smaller than

the entropy of each individual variable.

7. Entropy power inequality (EPI): If X and Y are mutually independent d-dimensional random

variables, we have

exp
2

d
HðX1 YÞ

� �
$ exp

2

d
HðXÞ

� �
1 exp

2

d
HðYÞ

� �
ð2:7Þ

with equality if and only if X and Y are Gaussian distributed and their covariance matri-

ces are in proportion to each other.

8. Assume X and Y are two d-dimensional random variables, Y5ψðXÞ, ψ denotes a smooth

bijective mapping defined over ℝd , Jψ is the Jacobi matrix of ψ, then

HðYÞ5HðXÞ1
ð
ℝd

pðxÞlogjdetJψjdx ð2:8Þ

where det denotes the determinant.

9. Suppose X is a d-dimensional Gaussian random variable, XBNðμ;ΣÞ, i.e.,

pðxÞ5 1

ð2πÞd=2
ffiffiffiffiffiffiffiffiffiffi
detΣ

p exp 2
1

2
ðx2μÞTΣ21ðx2μÞ

� �
; xAℝd ð2:9Þ

Then the differential entropy of X is

HðXÞ5 d

2
1

1

2
log ð2πÞddetΣg� ð2:10Þ

Differential entropy measures the uncertainty and dispersion in a probability distribu-

tion. Intuitively, the larger the value of entropy, the more scattered the probability density

of a random variable or in other word, the smaller the value of entropy, the more concen-

trated the probability density. For a one-dimensional random variable, the differential

entropy is similar to the variance. For instance, the differential entropy of a one-

dimensional Gaussian random variable X is HðXÞ5 ð1=2Þ1 ð1=2Þlogð2π VarðXÞÞ, where
VarðXÞ denotes the variance of X. It is clear to see that in this case the differential entropy

increases monotonically with increasing variance. However, the entropy is in essence

quite different from the variance; it is a more comprehensive measure. The variance of

some random variable is infinite, while the entropy is still finite. For example, consider

the following Cauchy distribution4 :

pðxÞ5 λ
π

1

λ2 1 x2
; 2N, x,N; λ. 0 ð2:11Þ

4 Cauchy distribution is a non-Gaussian α-stable distribution (see Appendix B).
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Its variance is infinite, while the differential entropy is logð4πλÞ [147].
There is an important entropy optimization principle, that is, the maximum entropy

(MaxEnt) principle enunciated by Jaynes [148] and Kapur and Kesavan [149]. According

to MaxEnt, among all the distributions that satisfy certain constraints, one should choose

the distribution that maximizes the entropy, which is considered to be the most objective

and most impartial choice. MaxEnt is a powerful and widely accepted principle for statis-

tical inference with incomplete knowledge of the probability distribution.

The maximum entropy distribution under characteristic moment constraints can be

obtained by solving the following optimization problem:

maxp HðpÞ52
Ð
ℝpðxÞ log pðxÞdx

s:t:

Ð
ℝpðxÞdx5 1Ð
ℝgkðxÞpðxÞdx5μk; k5 1; 2; . . .;K

(
8>><
>>: ð2:12Þ

where
Ð
ℝpðxÞdx5 1 is the natural constraint (the normalization constraint) andÐ

ℝgkðxÞpðxÞdx5μk (k5 1; 2; . . .;K) denote K (generalized) characteristic moment

constraints.

Theorem 2.2 (Maximum Entropy PDF) Satisfying the constraints in (2.12), the

maximum entropy PDF is given by

pMaxEntðxÞ5 exp 2λ0 2
XK
k51

λkgkðxÞ
 !

ð2:13Þ

where the coefficients λiði5 0; 1; . . .;KÞ are the solution of the following equations5:

Ð
ℝexp 2

XK
k51

λkgkðxÞ
 !

dx5 expðλ0Þ

Ð
ℝgiðxÞexp 2

XK
k51

λkgkðxÞ
 !

dx

expðλ0Þ
5μi; i5 1; 2; . . .;K

8>>>>>>><
>>>>>>>:

ð2:14Þ

In statistical information theory, in addition to Shannon entropy, there are many

other definitions of entropy, such as Renyi entropy (named after Alfred Renyi) [152],

Havrda�Charvat entropy [153], Varma entropy [154], Arimoto entropy [155], and

ðh;φÞ-entropy [156]. Among them, ðh;φÞ-entropy is the most generalized definition of

entropy. ðh;φÞ-entropy of a continuous random variable X is defined by [156]

Hh
φðXÞ5 h

ð1N

2N
φ½pðxÞ�dx

� �
ð2:15Þ

5 On how to solve these equations, interested readers are referred to [150,151].
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where either φ:½0;NÞ ! ℝ is a concave function and h:ℝ ! ℝ is a monotonously

increasing function or φ:½0;NÞ ! ℝ is a convex function and h:ℝ ! ℝ is a

monotonously decreasing function. When hðxÞ5 x, ðh;φÞ-entropy becomes the

φ-entropy:

HφðXÞ5
ð1N

2N
φ½pðxÞ�dx ð2:16Þ

where φ:½0;NÞ ! ℝ is a concave function. Similar to Shannon entropy,

ðh;φÞ-entropy is also shift-invariant and satisfies (see Appendix C for the proof)

Hh
φðX1 YÞ$maxfHh

φðXÞ;Hh
φðYÞg ð2:17Þ

where X and Y are two mutually independent random variables. Some typical

examples of ðh;φÞ-entropy are given in Table 2.1. As one can see, many entropy

definitions can be regarded as the special cases of ðh;φÞ-entropy.
From Table 2.1, Renyi’s entropy of order-α is defined as

HαðXÞ5
1

12α
log

ðN
2N

pαðxÞdx

5
1

12α
logVαðXÞ

ð2:18Þ

where α. 0, α 6¼ 1, VαðXÞ9
ÐN
2N pαðxÞdx is called the order-α information poten-

tial (when α5 2, called the quadratic information potential, QIP) [64]. The Renyi

entropy is a generalization of Shannon entropy. In the limit α ! 1, it will converge

to Shannon entropy, i.e., limα!1 HαðXÞ5HðXÞ.

Table 2.1 ðh;φÞ-Entropies with Different h and φ Functions [130]

hðxÞ φðxÞ (h,φ)-entropy

x 2x log x Shannon (1948)

ð12αÞ21 log x xα Renyi (1961) (α. 0, α 6¼ 1)

ðmðm2rÞÞ21 log x xr=m Varma (1966) (0, r,m, m$ 1)

x ð12sÞ21ðxs 2 xÞ Havrda�Charvat (1967) (s 6¼ 1,

s. 0)

ðt21Þ21ðxt 2 1Þ x1=t Arimoto (1971) (t. 0; t 6¼ 1)

x ð12sÞ21ðxs 1 ð12xÞs 2 1Þ Kapur (1972) (s 6¼ 1)

ð12sÞ21½expððs2 1ÞxÞ2 1� x log x Sharma and Mittal (1975)

(s. 0; s 6¼ 1)

ð11 ð1=λÞÞlogð11λÞ2 ðx=λÞ ð11λxÞlogð11λxÞ Ferreri (1980) (λ. 0)
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The previous entropies are all defined based on the PDFs (for continuous ran-

dom variable case). Recently, some researchers also propose to define the entropy

measure using the distribution or survival functions [157,158]. For example, the

cumulative residual entropy (CRE) of a scalar random variable X is defined by

[157]

εðXÞ52

ð
ℝ1

F Xj jðxÞ log F Xj jðxÞdx ð2:19Þ

where F Xj jðxÞ5PðjXj. xÞ is the survival function of jXj. The CRE is just defined

by replacing the PDF with the survival function (of an absolute value transforma-

tion of X) in the original differential entropy (2.2). Further, the order-α (α. 0) sur-

vival information potential (SIP) is defined as [159]

SαðXÞ5
ð
ℝ1

F
α
Xj jðxÞdx ð2:20Þ

This new definition of information potential is valid for both discrete and con-

tinuous random variables.

In recent years, the concept of correntropy has also been applied successfully in

signal processing and machine learning [137]. The correntropy is not a true entropy

measure, but in this book it is still regarded as an information theoretic measure

since it is closely related to Renyi’s quadratic entropy (H2), that is, the negative

logarithm of the sample mean of correntropy (with Gaussian kernel) yields the

Parzen estimate of Renyi’s quadratic entropy [64]. Let X and Y be two random

variables with the same dimensions, the correntropy is defined by

VðX; YÞ5E½κðX;YÞ�5
ð
κðx; yÞdFXY ðx; yÞ ð2:21Þ

where E denotes the expectation operator, κð:; :Þ is a translation invariant Mercer

kernel6, and FXY ðx; yÞ denotes the joint distribution function of ðX;YÞ. According to

Mercer’s theorem, any Mercer kernel κð:; :Þ induces a nonlinear mapping ϕð:Þ from
the input space (original domain) to a high (possibly infinite) dimensional feature

space F (a vector space in which the input data are embedded), and the inner prod-

uct of two points ϕðXÞ and ϕðYÞ in F can be implicitly computed by using the

6 Let ðX;ΣÞ be a measurable space and assume a real-valued function κð:; :Þ is defined on X3X, i.e.,

κ:X3X ! ℝ. Then function κð:; :Þ is called a Mercer kernel if and only if it is a continuous, symmet-

ric, and positive-definite function. Here, κ is said to be positive-definite if and only ifðð
κ x; yð ÞdμðxÞdμðyÞ$ 0

where μ denotes any finite signed Borel measure, μ:Σ ! ℝ. If the equality holds only for zero mea-

sure, then κ is said to be strictly positive-definite (SPD).
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Mercer kernel (the so-called “kernel trick”) [160�162]. Then the correntropy

(2.21) can alternatively be expressed as

VðX; YÞ5E½hϕðXÞ;ϕðYÞiF � ð2:22Þ

where h:; :iF denotes the inner product in F. From (2.22), one can see that the cor-

rentropy is in essence a new measure of the similarity between two random vari-

ables, which generalizes the conventional correlation function to feature spaces.

2.2 Mutual Information

Definition 2.3 The mutual information between continuous random variables X

and Y is defined as

IðX; YÞ5
ð ð

pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dx dy5E log

pðX;YÞ
pðXÞpðYÞ

� �
ð2:23Þ

The conditional mutual information between X and Y , conditioned on random

variable Z, is given by

IðX; Y jZÞ5
ZZZ

pðx; y; zÞlog pðx; yjzÞ
pðxjzÞpðyjzÞ dx dy dz ð2:24Þ

For a random vector7X5 ½X1;X2; . . .;Xn�T (n$ 2), the mutual information

between components is

IðXÞ5
Xn
i51

HðXiÞ2HðXÞ ð2:25Þ

Theorem 2.3 Properties of the mutual information:

1. Symmetry, i.e., IðX; YÞ5 IðY ;XÞ.
2. Non-negative, i.e., IðX; YÞ$ 0, with equality if and only if X and Y are mutually

independent.

3. Data processing inequality (DPI): If random variables X, Y , Z form a Markov chain

X ! Y ! Z, then IðX; YÞ$ IðX; ZÞ. Especially, if Z is a function of Y , Z5βðYÞ, where
βð:Þ is a measurable mapping from Y to Z, then IðX; YÞ$ IðX;βðYÞÞ, with equality if β is

invertible and β21 is also a measurable mapping.

7 Unless mentioned otherwise, in this book a vector refers to a column vector.
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4. The relationship between mutual information and entropy:

IðX; YÞ5HðXÞ2HðXjYÞ; IðX; YjZÞ5HðXjZÞ2HðXjYZÞ ð2:26Þ

5. Chain rule: Let Y1; Y2; . . .; Yl be l random variables. Then

IðX; Y1; . . .; YlÞ5 IðX; Y1Þ1
Xl
i52

IðX; Yi Y1; . . .; Yi21Þ
�� ð2:27Þ

6. If X, Y , ðX; YÞ are k, l, and k1 l-dimension Gaussian random variables with, respectively,

covariance matrices A, B, and C, then the mutual information between X and Y is

IðX; YÞ5 1

2
log

det A det B

det C
ð2:28Þ

In particular, if k5 l5 1, we have

IðX; YÞ52
1

2
logð12 ρ2ðX; YÞÞ ð2:29Þ

where ρðX; YÞ denotes the correlation coefficient between X and Y .

7. Relationship between mutual information and MSE: Assume X and Y are two Gaussian

random variables, satisfying Y 5
ffiffiffiffiffiffi
snr

p
X1N, where snr$ 0, NBNð0; 1Þ, N and X are

mutually independent. Then we have [81]

d

dsnr
IðX; YÞ5 1

2
mmseðXjYÞ ð2:30Þ

where mmseðXjYÞ denotes the minimum MSE when estimating X based on Y .

Mutual information is a measure of the amount of information that one random variable

contains about another random variable. The stronger the dependence between two random

variables, the greater the mutual information is. If two random variables are mutually inde-

pendent, the mutual information between them achieves the minimum zero. The mutual

information has close relationship with the correlation coefficient. According to (2.29), for

two Gaussian random variables, the mutual information is a monotonically increasing

function of the correlation coefficient. However, the mutual information and the correla-

tion coefficient are different in nature. The mutual information being zero implies that the

random variables are mutually independent, thereby the correlation coefficient is also zero,

while the correlation coefficient being zero does not mean the mutual information is zero

(i.e., the mutual independence). In fact, the condition of independence is much stronger

than mere uncorrelation. Consider the following Pareto distributions [149]:

pXðxÞ5 aθa1x
2ða11Þ

pY ðyÞ5 aθa2y
2ða11Þ

pXY ðx; yÞ52
aða1 1Þ
θ1θ2

x

θ1
1

y

θ2
21

0
@

1
A
2ða12Þ

8>>>>>><
>>>>>>:

ð2:31Þ
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where α. 1, x$ θ1, y$ θ2. One can calculate E½X�5 aθ1=ða2 1Þ, E½Y �5 aθ2=ða2 1Þ,
and E½XY�5 a2θ1θ2=ða21Þ2, and hence ρðX; YÞ5 0 (X and Y are uncorrelated). In this

case, however, pXY ðx; yÞ 6¼ pXðxÞpY ðyÞ, that is, X and Y are not mutually independent (the

mutual information not being zero).

With mutual information, one can define the rate distortion function and the distortion

rate function. The rate distortion function RðDÞ of a random variable X with MSE distor-

tion is defined by

RðDÞ5 inf
Y
fIðX; YÞ:E½ðX2YÞ2�#D2g ð2:32Þ

At the same time, the distortion rate function is defined as

DðRÞ5 inf
Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX2YÞ2�

q
:IðX; YÞ#R

� �
ð2:33Þ

Theorem 2.4 If X is a Gaussian random variable, XBNðμ;σ2Þ, then

RðDÞ5 1

2
log max 1;

σ2

D2

0
@

1
A

8<
:

9=
;; D$ 0

DðRÞ5σexp 2Rð Þ; R$ 0

8>>><
>>>:

ð2:34Þ

2.3 Information Divergence

In statistics and information geometry, an information divergence measures the

“distance” of one probability distribution to the other. However, the divergence is a

much weaker notion than that of the distance in mathematics, in particular it need

not be symmetric and need not satisfy the triangle inequality.

Definition 2.4 Assume that X and Y are two random variables with PDFs pðxÞ and
qðyÞ with common support. The Kullback�Leibler information divergence (KLID)

between X and Y is defined by

DKLðX:YÞ5DKLðp:qÞ5
ð
pðxÞlog pðxÞ

qðxÞ dx ð2:35Þ

In the literature, the KL-divergence is also referred to as the discrimination

information, the cross entropy, the relative entropy, or the directed

divergence.
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Theorem 2.5 Properties of KL-divergence:

1. DKLðp:qÞ$ 0, with equality if and only if pðxÞ5 qðxÞ.
2. Nonsymmetry: In general, we have DKLðp:qÞ 6¼ DKLðq:pÞ.
3. DKLðpðx; yÞ:pðxÞpðyÞÞ5 IðX; YÞ, that is, the mutual information between two random vari-

ables is actually the KL-divergence between the joint probability density and the product

of the marginal probability densities.

4. Convexity property: DKLðp:qÞ is a convex function of ðp; qÞ, i.e., ’ 0#λ# 1, we have

DKLðp:qÞ#λDKLðp1:q1Þ1 ð12λÞDKLðp2:q2Þ ð2:36Þ

where p5λp1 1 ð12λÞp2 and q5λq1 1 ð12λÞq2.
5. Pinsker’s inequality: Pinsker inequality is an inequality that relates KL-divergence and

the total variation distance. It states that

DKLðp:qÞ$
1

2

ð
pðxÞ2qðxÞ
�� ��dx� �2

ð2:37Þ

6. Invariance under invertible transformation: Given random variables X and Y , and the

invertible transformation T , the KL-divergence remains unchanged after the transforma-

tion, i.e., DKLðX:YÞ5DKLðTðXÞ:TðYÞÞ. In particular, if TðXÞ5X1 c, where c is a con-

stant, then the KL-divergence is shift-invariant:

DKLðX:YÞ5DKLðX1 c:Y1 cÞ ð2:38Þ

7. If X and Y are two d-dimensional Gaussian random variables, XBNðμ1;Σ1Þ,
YBNðμ2;Σ2Þ, then

DKLðX:YÞ5
1

2
log

det Σ2

det Σ1

1 TrðΣ1ðΣ21
2 2Σ21

1 ÞÞ1 ðμ12μ2ÞTΣ21
2 ðμ1 2μ2Þ

� �
ð2:39Þ

where Tr denotes the trace operator.

There are many other definitions of information divergence. Some quadratic diver-

gences are frequently used in machine learning, since they involve only a simple qua-

dratic form of PDFs. Among them, the Euclidean distance (ED) in probability spaces and

the Cauchy�Schwarz (CS)-divergence are popular, and are defined respectively as [64]

DEDðp:qÞ5
ð
ðpðxÞ2qðxÞÞ2dx ð2:40Þ

DCSðp:qÞ52 log

Ð
pðxÞqðxÞdx	 
2Ð

p2ðxÞdx Ð q2ðxÞdx ð2:41Þ

Clearly, the ED in (2.40) can be expressed in terms of QIP:

DEDðp:qÞ5V2ðpÞ1V2ðqÞ2 2V2ðp; qÞ ð2:42Þ
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where V2ðp; qÞ9
Ð
pðxÞqðxÞdx is named the cross information potential (CIP). Further, the

CS-divergence of (2.41) can also be rewritten in terms of Renyi’s quadratic entropy:

DCSðp:qÞ5 2H2ðp; qÞ2H2ðpÞ2H2ðqÞ ð2:43Þ

where H2ðp; qÞ52 log
Ð
pðxÞqðxÞdx is called Renyi’s quadratic cross entropy.

Also, there is a much generalized definition of divergence, i.e., the φ-divergence,
which is defined as [130]

Dφðp:qÞ5
ð
qðxÞφ pðxÞ

qðxÞ

� �
dx; φAΦ� ð2:44Þ

where Φ� is a collection of convex functions, ’φAΦ�, φð1Þ5 0, 0φ 0=0
	 


5 0, and

0φðp=0Þ5 limu!N φðuÞ=u. When φðxÞ5 x log x (or φðxÞ5 x log x2 x1 1), the φ-diver-
gence becomes the KL-divergence. It is easy to verify that the φ-divergence satisfies the

properties (1), (4), and (6) in Theorem 2.5. Table 2.2 gives some typical examples of

φ-divergence.

2.4 Fisher Information

The most celebrated information measure in statistics is perhaps the one developed

by R.A. Fisher (1921) for the purpose of quantifying information in a distribution

about the parameter.

Definition 2.5 Given a parameterized PDF pY ðy; θÞ, where yAℝN ,

θ5 ½θ1; θ2; . . .; θd�T is a d-dimensional parameter vector, and assuming pY ðy; θÞ is

continuously differentiable with respect to θ, then the Fisher information matrix

(FIM) with respect to θ is

JFðθÞ5
ð
ℝN

1

pY ðy; θÞ
@

@θ
pY ðy; θÞ

� �
@

@θ
pY ðy; θÞ

� �T
dy ð2:45Þ

Table 2.2 φ-Divergences with Different φ-Functions [130]

φðxÞ φ-Divergence

x log x2 x1 1 Kullback�Leibler (1959)

ðx2 1Þlog x J-Divergence

ðx21Þ2=2 Pearson (1900), Kagan (1963)

ðxλ11 2 x2λðx2 1ÞÞ=ðλðλ1 1ÞÞ, λ 6¼ 0; 21 Power-divergence (1984)

ðx21Þ2=ðx11Þ2 Balakrishnan and Sanghvi (1968)

j12 xαj1=α, 0,α, 1 Matusita (1964)

j12 xjα, α$ 1 χ-Divergence (1973)
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Clearly, the FIM JFðθÞ, also referred to as the Fisher information, is a d3 d matrix.

If θ is a location parameter, i.e., pY ðy; θÞ5 pðy2 θÞ, Fisher information will be

JFðYÞ5
ð
ℝN

1

pðyÞ
@

@y
pðyÞ

� �
@

@y
pðyÞ

� �T
dy ð2:46Þ

The Fisher information of (2.45) can alternatively be written as

JFðθÞ5
ð
ℝN

pY ðy; θÞ
@

@θ
logpY ðy; θÞ

2
4

3
5 @

@θ
logpY ðy; θÞ

2
4

3
5
T

dy

5Eθ
@

@θ
logpY ðY ; θÞ

2
4

3
5 @

@θ
logpY ðY ; θÞ

2
4

3
5
T8<

:
9=
;

ð2:47Þ

where Eθ stands for the expectation with respect to pY ðy; θÞ. From (2.47), one can

see that the Fisher information measures the “average sensitivity” of the logarithm

of PDF to the parameter θ or the “average influence” of the parameter θ on the log-

arithm of PDF. The Fisher information is also a measure of the minimum error in

estimating the parameter of a distribution. This is illustrated in the following

theorem.

Theorem 2.6 (Cramer�Rao Inequality) Let pY ðy; θÞ be a parameterized PDF,

where yAℝN , θ5 ½θ1; θ2; . . .; θd�T is a d-dimensional parameter vector, and assume

that pY ðy; θÞ is continuously differentiable with respect to θ. Denote θ̂ ðYÞ an unbi-

ased estimator of θ based on Y , satisfying Eθ0 ½θ̂ ðYÞ�5 θ0, where θ0 denotes the true
value of θ. Then

P9Eθ0 ½ðθ̂ ðYÞ2 θ0Þðθ̂ ðYÞ2θ0ÞT �$ J21
F ðθ0Þ ð2:48Þ

where P is the covariance matrix of θ̂ ðYÞ.
Cramer�Rao inequality shows that the inverse of the FIM provides a lower bound

on the error covariance matrix of the parameter estimator, which plays a significant

role in parameter estimation. A proof of the Theorem 2.6 is given in Appendix D.

2.5 Information Rate

The previous information measures, such as entropy, mutual information, and KL-

divergence, are all defined for random variables. These definitions can be further

extended to various information rates, which are defined for random processes.
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Definition 2.6 Let fXtAℝm1 ; tAZg and fYtAℝm2 ; tAZg be two discrete-time stochastic

processes, and denote Xn 5 ½XT
1 ;X

T
2 ; . . .;X

T
n �T , Yn 5 ½YT

1 ;Y
T
2 ; . . .;Y

T
n �T . The entropy

rate of the stochastic process fXtg is defined as

H ðfXtgÞ5 lim
n!N

1

n
HðXnÞ ð2:49Þ

The mutual information rate between fXtg and fYtg is defined by

IðfXtg; fYtgÞ5 lim
n!N

1

n
IðXn; YnÞ ð2:50Þ

If m1 5m2, the KL-divergence rate between fXtg and fYtg is

DKLðfXtgjjfYtgÞ5 lim
n!N

1

n
DKLðXnjjYnÞ ð2:51Þ

If the PDF of the stochastic process fXtg is dependent on and continuously dif-

ferentiable with respect to the parameter vector θ, then the Fisher information rate

matrix (FIRM) is

JFðθÞ5 lim
n!N

1

n

ð
ℝm1 3 n

1

pðxn; θÞ
@

@θ
pðxn; θÞ

� �
@

@θ
pðxn; θÞ

� �T
dxn ð2:52Þ

The information rates measure the average amount of information of stochastic

processes in unit time. The limitations in Definition 2.6 may not exist, however, if

the stochastic processes are stationary, these limitations in general exist. The fol-

lowing theorem gives the information rates for stationary Gaussian processes.

Theorem 2.7 Given two jointly Gaussian stationary processes fXtAℝn; tAZg and

fYtAℝm; tAZg, with power spectral densities SXðωÞ and SY ðωÞ, and

fZt 5 ½XT
t ;Y

T
t �TAℝn1m; tAZg with spectral density SZðωÞ, the entropy rate of the

Gaussian process fXtg is

HðfXtgÞ5
1

2
logð2πeÞn 1 1

4π

ðπ
2π

log det SXðωÞdω ð2:53Þ

The mutual information rate between fXtg and fYtg is

IðfXtg; fYtgÞ5
1

4π

ðπ
2π

log
det SXðωÞdet SY ðωÞ

det SZðωÞ
dω ð2:54Þ
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If m5 n, the KL-divergence rate between fXtg and fYtg is

DKLðfXtgjjfYtgÞ5
1

4π

ðπ
2π

log
det SY ðωÞ
det SXðωÞ

1 TrðS21
Y ðωÞðSXðωÞ2 SY ðωÞÞÞ

� �
dω

ð2:55Þ

If the PDF of fXtg is dependent on and continuously differentiable with respect

to the parameter vector θ, then the FIRM (assuming n5 1) is [163]

JFðθÞ5 1

4π

ðπ
2π

1

S2Xðω; θÞ
@SXðω; θÞ

@θ

� �
@SXðω; θÞ

@θ

� �T

dω ð2:56Þ

Appendix B: α-Stable Distribution

α-stable distributions are a class of probability distributions satisfying the generalized

central limit theorem, which are extensions of the Gaussian distribution. The Gaussian,

inverse Gaussian, and Cauchy distributions are its special cases. Excepting the three

kinds of distributions, other α-stable distributions do not have PDF with analytical

expression. However, their characteristic functions can be written in the following form:

ΨXðωÞ5E½expðiωXÞ�

5
exp½iμω2 γjωjαð11 iβ signðωÞtanðπα=2ÞÞ� for α 6¼ 1

exp½iμω2 γjωjαð11 iβ signðωÞ2logjωj=πÞ� for α5 1

� ðB:1Þ

where μAℝ is the location parameter, γ$ 0 is the dispersion parameter, 0,α# 2

is the characteristic factor, 21#β# 1 is the skewness factor. The parameter α
determines the trailing of distribution. The smaller the value of α, the heavier the

trail of the distribution is. The distribution is symmetric if β5 0, called the sym-

metric α-stable (SαS) distribution. The Gaussian and Cauchy distributions are

α-stable distributions with α5 2 and α5 1, respectively.

When α, 2, the tail attenuation of α-stable distribution is slower than that of

Gaussian distribution, which can be used to describe the outlier data or impulsive

noises. In this case the distribution has infinite second-order moment, while the

entropy is still finite.

Appendix C: Proof of (2.17)

Proof Assume φ is a concave function, and h is a monotonically increasing func-

tion. Denote h21 the inverse of function h, we have

h21ðHh
φðX1 YÞÞ5

ð1N

2N
φ½pX1Y ðτÞ�dτ ðC:1Þ
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Since X and Y are independent, then

pX1Y ðτÞ5
ð1N

2N
pXðtÞpY ðτ2 tÞdt: ðC:2Þ

According to Jensen’s inequality, we can derive

h21ðHh
φðX1 YÞÞ5

ð1N

2N
φ
ð1N

2N
pY ðtÞpXðτ2 tÞdt

� �
dτ

$

ð1N

2N

ð1N

2N
pY ðtÞφ½pXðτ2 tÞ�dt

� �
dτ

5

ð1N

2N
pY ðtÞ

ð1N

2N
φ½pXðτ2 tÞ�dτ

� �
dt

5

ð1N

2N
pY ðtÞðh21ðHh

φðXÞÞÞdt

5 h21ðHh
φðXÞÞ

ðC:3Þ

As h is monotonically increasing, h21 must also be monotonically increasing,

thus we have Hh
φðX1 YÞ$Hh

φðXÞ. Similarly, Hh
φðX1 YÞ$Hh

φðYÞ. Therefore,
Hh

φðX1 YÞ$maxfHh
φðXÞ;Hh

φðYÞg ðC:4Þ

For the case in which φ is a convex function and h is monotonically decreasing,

the proof is similar (omitted).

Appendix D: Proof of Cramer�Rao Inequality

Proof First, one can derive the following two equalities:

Eθ0
@

@θ0
log pY ðY ; θ0Þ

2
4

3
5
T

5

ð
ℝN

@

@θ0
log pY y; θ0ð Þ

0
@

1
A

T

pY ðy; θ0Þdy

5

ð
ℝN

@

@θ0
pY ðy; θ0Þ

0
@

1
A

T

dy

5
@

@θ0

ð
ℝN

pY ðy; θ0Þdy
0
@

1
A

T

5 0

ðD:1Þ
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Eθ0 θ̂ ðYÞ @

@θ0
logpY ðY ; θ0Þ

2
4

3
5
T8<

:
9=
;5

ð
ℝN

θ̂ ðyÞ @

@θ0
logpY ðy; θ0Þ

0
@

1
A

T

pY ðy; θ0Þdy

5

ð
ℝN

θ̂ ðyÞ @

@θ0
pY ðy; θ0Þ

0
@

1
A

T

dy

5
@

@θ0

ð
ℝN

θ̂ ðyÞpY ðy; θ0Þdy
0
@

1
A

T

5
@

@θ0
Eθ0 θ̂ ðYÞ
h i0

@
1
A

T

5
@

@θ0
θ0

0
@

1
A

T

5 I

ðD:2Þ

where I is a d3 d identity matrix. Denote α5 θ̂ ðYÞ2 θ0 and

β5 ð@=@θ0ÞlogpY ðY ; θ0Þ.
Then

Eθ0 ½αβT �5Eθ0 ðθ̂ ðYÞ2 θ0Þ
@

@θ0
logpY ðY ; θ0Þ

2
4

3
5
T8<

:
9=
;

5Eθ0 θ̂ ðYÞ @

@θ0
logpY ðY ; θ0Þ

2
4

3
5
T8<

:
9=
;2 θ0Eθ0

@

@θ0
logpY ðY ; θ0Þ

2
4

3
5
T

5 I

ðD:3Þ

So we obtain

Eθ0
α
β

� �
α
β

� �T
5

Eθ0 ½ααT � I

I Eθ0 ½ββT �
� �

$ 0 ðD:4Þ

According to the matrix theory, if the symmetric matrix
A B

BT C

� �
is positive-

definite, then A2BC21BT $ 0. It follows that

Eθ0 ½ααT �$ ðEθ0 ½ββT �Þ21 ðD:5Þ

i.e., P$ J21
F ðθ0Þ.
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3 Information Theoretic Parameter
Estimation

Information theory is closely associated with the estimation theory. For example,

the maximum entropy (MaxEnt) principle has been widely used to deal with esti-

mation problems given incomplete knowledge or data. Another example is the

Fisher information, which is a central concept in statistical estimation theory. Its

inverse yields a fundamental lower bound on the variance of any unbiased estima-

tor, i.e., the well-known Cramer�Rao lower bound (CRLB). An interesting link

between information theory and estimation theory was also shown for the Gaussian

channel, which relates the derivative of the mutual information with the minimum

mean square error (MMSE) [81].

3.1 Traditional Methods for Parameter Estimation

Estimation theory is a branch of statistics and signal processing that deals with esti-

mating the unknown values of parameters based on measured (observed) empirical

data. Many estimation methods can be found in the literature. In general, the statis-

tical estimation can be divided into two main categories: point estimation and inter-

val estimation. The point estimation involves the use of empirical data to calculate

a single value of an unknown parameter, while the interval estimation is the use of

empirical data to calculate an interval of possible values of an unknown parameter.

In this book, we only discuss the point estimation. The most common approaches

to point estimation include the maximum likelihood (ML), method of moments

(MM), MMSE (also known as Bayes least squared error), maximum a posteriori

(MAP), and so on. These estimation methods also fall into two categories, namely,

classical estimation (ML, MM, etc.) and Bayes estimation (MMSE, MAP, etc.).

3.1.1 Classical Estimation

The general description of the classical estimation is as follows: let the distribution

function of population X be Fðx; θÞ, where θ is an unknown (but deterministic)

parameter that needs to be estimated. Suppose X1;X2; . . .;Xn are samples (usually

independent and identically distributed, i.i.d.) coming from Fðx; θÞ (x1; x2; . . .; xn are
corresponding sample values). Then the goal of estimation is to construct an appro-

priate statistics θ̂ ðX1;X2; . . .;XnÞ that serves as an approximation of unknown

parameter θ. The statistics θ̂ ðX1;X2; . . .;XnÞ is called an estimator of θ, and its

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00003-8
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sample value θ̂ ðx1; x2; . . .; xnÞ is called the estimated value of θ. Both the samples

fXig and the parameter θ can be vectors.

The ML estimation and the MM are two prevalent types of classical estimation.

3.1.1.1 ML Estimation

The ML method, proposed by the famous statistician R.A. Fisher, leads to many

well-known estimation methods in statistics. The basic idea of ML method is quite

simple: the event with greatest probability is most likely to occur. Thus, one should

choose the parameter that maximizes the probability of the observed sample data.

Assume that X is a continuous random variable with probability density function

(PDF) pðx; θÞ, θAΘ, where θ is an unknown parameter, Θ is the set of all possible

parameters. The ML estimate of parameter θ is expressed as

θ̂ 5 arg max
θAΘ

pðx1; x2; . . .; xn; θÞ ð3:1Þ

where pðx1; x2; . . .; xn; θÞ is the joint PDF of samples X1;X2; . . .;Xn. By considering

the sample values x1; x2; . . .; xn to be fixed “parameters,” this joint PDF is a func-

tion of the parameter θ, called the likelihood function, denoted by LðθÞ. If samples

X1;X2; . . .;Xn are i.i.d., we have LðθÞ5L
n

i51

pðxi; θÞ. Then the ML estimate of θ

becomes

θ̂ 5 arg max
θAΘ

LðθÞ5 arg max
θAΘ

L
n

i51

pðxi; θÞ ð3:2Þ

In practice, it is often more convenient to work with the logarithm of the likeli-

hood function (called the log-likelihood function). In this case, we have

θ̂ 5 arg max
θAΘ

flog LðθÞg5 arg max
θAΘ

Xn
i51

log pðxi; θÞ
( )

ð3:3Þ

An ML estimate is the same regardless of whether we maximize the likelihood

or log-likelihood function, since log is a monotone transformation.

In most cases, the ML estimate can be solved by setting the derivative of the

log-likelihood function to zero:

@log LðθÞ
@θ

5 0 ð3:4Þ

For many models, however, there is no closed form solution of ML estimate,

and it has to be found numerically using optimization methods.

If the likelihood function involves latent variables in addition to unknown

parameter θ and known data observations x1; x2; . . .; xn, one can use the
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expectation�maximization (EM) algorithm to find the ML solution [164,165] (see

Appendix E). Typically, the latent variables are included in a likelihood function

because either there are missing values among the data or the model can be formu-

lated more simply by assuming the existence of additional unobserved data points.

ML estimators possess a number of attractive properties especially when sample

size tends to infinity. In general, they have the following properties:

� Consistency: As the sample size increases, the estimator converges in probability to the

true value being estimated.
� Asymptotic normality: As the sample size increases, the distribution of the estimator

tends to the Gaussian distribution.
� Efficiency: The estimator achieves the CRLB when the sample size tends to infinity.

3.1.1.2 Method of Moments

The MM uses the sample algebraic moments to approximate the population

algebraic moments, and then solves the parameters. Consider a continuous random

variable X, with PDF pðx; θ1; θ2; . . .; θkÞ, where θ1; θ2; . . .; θk are k unknown para-

meters. By the law of large numbers, the l-order sample moment Al 5 ð1=nÞPn
i51

Xl
i

of X will converge in probability to the l-order population moment μl 5EðXlÞ,
which is a function of ðθ1; θ2; . . .; θkÞ, i.e.,

Al���!pn!N μlðθ1; θ2; . . .; θkÞ l5 1; 2; . . . ð3:5Þ

The sample moment Al is a good approximation of the population moment μl,

thus one can achieve an estimator of parameters θi (i5 1; 2; . . .; k) by solving the

following equations:

A1 5μ1ðθ1; θ2; . . .; θkÞ
A2 5μ2ðθ1; θ2; . . .; θkÞ

^
Ak 5μkðθ1; θ2; . . .; θkÞ

8>><
>>: ð3:6Þ

The solution of (3.6) is the MM estimator, denoted by θ̂ iðA1;A2; . . .;AkÞ,
i5 1; 2; . . .; k.

3.1.2 Bayes Estimation

The basic viewpoint of Bayes statistics is that in any statistic reasoning problem, a

prior distribution must be prescribed as a basic factor in the reasoning process,

besides the availability of empirical data. Unlike classical estimation, the Bayes

estimation regards the unknown parameter as a random variable (or random vector)

with some prior distribution. In many situations, this prior distribution does not

need to be precise, which can be even improper (e.g., uniform distribution on the

whole space). Since the unknown parameter is a random variable, in the following
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we use X to denote the parameter to be estimated, and Y to denote the observation

data Y 5 ½Y1;Y2; . . .;Yn�T .
Assume that both the parameter X and observation Y are continuous random

variables with joint PDF

pðx; yÞ5 pðxÞ:pðyjxÞ ð3:7Þ

where pðxÞ is the marginal PDF of X (the prior PDF) and pðyjxÞ is the conditional

PDF of Y given X5 x (also known as the likelihood function if considering x as

the function’s variable). By using the Bayes formula, one can obtain the posterior

PDF of X given Y 5 y:

pðxjyÞ5 pðyjxÞpðxÞÐ
pðyjxÞpðxÞdx ð3:8Þ

Let X̂5 gðYÞ be an estimator of X (based on the observation Y), and let lðX; X̂Þ
be a loss function that measures the difference between random variables X and X̂.

The Bayes risk of X̂ is defined as the expected loss (the expectation is taken over

the joint distribution of X and Y):

RðX; X̂Þ 5E½lðX; X̂Þ�
5
Ð
lðx; x̂Þpðx; yÞdx dy

5
Ð Ð

lðx; x̂ÞpðxjyÞdx� �
pðyÞdy

5
Ð
RðX; X̂jyÞpðyÞdy

ð3:9Þ

where RðX; X̂jyÞ denotes the posterior expected loss (posterior Bayes risk). An esti-

mator is said to be a Bayes estimator if it minimizes the Bayes risk among all esti-

mators. Thus, the Bayes estimator can be obtained by solving the following

optimization problem:

g� 5 arg min
gAG

RðX; X̂Þ ð3:10Þ

where G denotes all Borel measurable functions g : y/ x̂. Obviously, the Bayes

estimator also minimizes the posterior Bayes risk for each y.

The loss function in Bayes risk is usually a function of the estimation error

e5X2 X̂. The common loss functions used for Bayes estimation include:

1. squared error function: lðeÞ5 e2;

2. absolute error function: lðeÞ5 jej;
3. 0�1 loss function: lðeÞ5 12 δðeÞ, where δð:Þ denotes the delta function.1

1 For a discrete variable x, δðxÞ is defined by δðxÞ5 1; if x5 0

0; if x 6¼ 0

�
, while for a continuous variable, it

is defined as δðxÞ5 N; if x5 0

0; if x 6¼ 0

�
, satisfying

Ð
δðxÞdx5 1.
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The squared error loss corresponds to the MSE criterion, which is perhaps the

most prevalent risk function in use due to its simplicity and efficiency. With the

above loss functions, the Bayes estimates of the unknown parameter are, respec-

tively, the mean, median, and mode2 of the posterior PDF pðxjyÞ, i.e.,

ðaÞ x̂5
Ð
xpðxjyÞdx5EðXjyÞ

ðbÞ Ð x̂
2N pðxjyÞdx5 Ð1N

x̂
pðxjyÞdx

ðcÞ x̂5 arg max
x

pðxjyÞ

8>><
>>: ð3:11Þ

The estimators (a) and (c) in (3.11) are known as the MMSE and MAP estima-

tors. A simple proof of the MMSE estimator is given in Appendix F. It should be

noted that if the posterior PDF is symmetric and unimodal (SUM, such as Gaussian

distribution), the three Bayes estimators are identical.

The MAP estimate is a mode of the posterior distribution. It is a limit of Bayes

estimation under 0�1 loss function. When the prior distribution is uniform (i.e., a

constant function), the MAP estimation coincides with the ML estimation.

Actually, in this case we have

x̂MAP 5 arg max
x

pðx
��yÞ

5 arg max
x

pðyjxÞpðxÞÐ
pðyjxÞpðxÞdx

5 arg max
x

pðyjxÞpðxÞ

5
ðaÞ

arg max
x

pðyjxÞ5 x̂ML

ð3:12Þ

where (a) comes from the fact that pðxÞ is a constant.
Besides the previous common risks, other Bayes risks can be conceived.

Important examples include the mean p-power error [30], Huber’s M-estimation

cost [33], and the risk-sensitive cost [38], etc. It has been shown in [24] that if the

posterior PDF is symmetric, the posterior mean is an optimal estimate for a large

family of Bayes risks, where the loss function is even and convex.

In general, a Bayes estimator is a nonlinear function of the observation.

However, if X and Y are jointly Gaussian, then the MMSE estimator is linear.

Suppose XAℝm, YAℝn, with jointly Gaussian PDF

pðx; yÞ5 ð2πÞ2ðm1nÞ=2ðdet CÞ21=2exp 2
1

2

x2EðXÞ
y2EðYÞ
� �T

C21 x2EðXÞ
y2EðYÞ
� �( )

ð3:13Þ

2 The mode of a continuous probability distribution is the value at which its PDF attains its maximum

value.

33Information Theoretic Parameter Estimation



where C is the covariance matrix:

C5
CXX CXY

CYX CYY

� �
ð3:14Þ

Then the posterior PDF pðxjyÞ is also Gaussian and has mean (the MMSE estimate)

EðXjyÞ5EðXÞ1CXYC
21
YY ðy2EðYÞÞ ð3:15Þ

which is, obviously, a linear function of y.

There are close relationships between estimation theory and information theory.

The concepts and principles in information theory can throw new light on estima-

tion problems and suggest new methods for parameter estimation. In the sequel, we

will discuss information theoretic approaches to parameter estimation.

3.2 Information Theoretic Approaches to Classical
Estimation

In the literature, there have been many reports on the use of information theory to

deal with classical estimation problems (e.g., see [149]). Here, we only give several

typical examples.

3.2.1 Entropy Matching Method

Similar to the MM, the entropy matching method obtains the parameter estimator

by using the sample entropy (entropy estimator) to approximate the population

entropy. Suppose the PDF of population X is pðx; θÞ (θ is an unknown parameter).

Then its differential entropy is

HðθÞ52

ð
pðx; θÞlog pðx; θÞdx ð3:16Þ

At the same time, one can use the sample ðX1;X2; . . .;XnÞ to calculate the sample

entropy ĤðX1;X2; . . .;XnÞ.3 Thus, we can obtain an estimator of parameter θ
through solving the following equation:

HðθÞ5 ĤðX1;X2; . . .;XnÞ ð3:17Þ

If there are several parameters, the above equation may have infinite number of

solutions, while a unique solution can be achieved by combining the MM. In [166],

the entropy matching method was used to estimate parameters of generalized

Gaussian distribution (GGD).

3 Several entropy estimation methods will be presented in Chapter 4.
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3.2.2 Maximum Entropy Method

The maximum entropy method applies the famous MaxEnt principle to parameter

estimation. The basic idea is that, subject to the information available, one should

choose the parameter θ such that the entropy is as large as possible, or the distribu-

tion as nearly uniform as possible. Here, the maximum entropy method refers to a

general approach rather than a specific parameter estimation method. In the follow-

ing, we give three examples of maximum entropy method.

3.2.2.1 Parameter Estimation of Exponential Type Distribution

Assume that the PDF of population X is of the following form:

pðx; θÞ5 exp 2θ0 2
XK
k51

θkgkðxÞ
 !

ð3:18Þ

where gkðxÞ, k5 1; . . .;K, are K (generalized) characteristic moment functions,

θ5 ðθ0; θ1; . . .; θKÞ is an unknown parameter vector to be estimated. Many known

probability distributions are special cases of this exponential type distribution. By

Theorem 2.2, pðx; θÞ is the maximum entropy distribution satisfying the following

constraints:

Ð
ℝpðxÞdx5 1Ð
ℝgkðxÞpðxÞdx5μkðθÞ; k5 1; 2; . . .;K

�
ð3:19Þ

where μkðθÞ denotes the population characteristic moment:

μkðθÞ5
ð
ℝ
gkðxÞpðx; θÞdx ð3:20Þ

As θ is unknown, the population characteristic moments cannot be calculated.

We can approximate them using the sample characteristic moments. And then, an

estimator of parameter θ can be obtained by solving the following optimization

problem:

max
p

HðpÞ52
Ð
ℝpðxÞlog pðxÞdx

s:t:

Ð
ℝpðxÞdx5 1Ð
ℝgkðxÞpðxÞdx5 μ̂k; k5 1; 2; . . .;K

�
8><
>: ð3:21Þ

where μ̂k, k5 1; . . .;K, are K sample characteristic moments, i.e.,
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μ̂k 5
1

n

Xn
i51

gkðXiÞ; k5 1; 2; . . .;K ð3:22Þ

According to Theorem 2.2, the estimator of θ satisfies the equations:

Ð
ℝexp 2

XK
k51

θ̂ kgkðxÞ
 !

dx5 expðθ̂ 0Þ

Ð
ℝgiðxÞexp 2

XK
k51

θ̂ kgkðxÞ
 !

dx

expðθ̂ 0Þ
5 μ̂i; i5 1; 2; . . .;K

8>>>>>>><
>>>>>>>:

ð3:23Þ

If gkðxÞ5 xk, the above estimation method will be equivalent to the MM.

3.2.2.2 Maximum Spacing Estimation

Suppose the distribution function of population X is Fðx; θÞ, and the true value of

the unknown parameter θ is θ0, then the random variable X� 5FðX; θÞ will be dis-

tributed over the interval ½0; 1�, which is a uniform distribution if θ5 θ0. According
to the MaxEnt principle, if the distribution over a finite interval is uniform, the

entropy will achieve its maximum. Therefore, the entropy of random variable X�

will attain the maximum value if θ5 θ0. So one can obtain an estimator of the

parameter θ by maximizing the sample entropy of X�. Let a sample of population

X be ðX1;X2; . . .;XnÞ, the sample of X� will be ðFðX1; θÞ;FðX2; θÞ; . . .;FðXn; θÞÞ. Let
ĤðFðX1; θÞ;FðX2; θÞ; . . .;FðXn; θÞÞ denote the sample entropy of X�, the estimator of

parameter θ can be expressed as

θ̂ 5 arg max
θ

ĤðFðX1; θÞ;FðX2; θÞ; . . .;FðXn; θÞÞ ð3:24Þ

If the sample entropy is calculated by using the one-spacing estimation method

(see Chapter 4), then we have

θ̂ 5 arg max
θ

Xn21

i51

logfFðXn;i11; θÞ2FðXn;i; θÞg ð3:25Þ

where ðXn;1;Xn;2; . . .;Xn;nÞ is the order statistics of ðX1;X2; . . .;XnÞ. Formula (3.25)

is called the maximum spacing estimation of parameter θ.

3.2.2.3 Maximum Equality Estimation

Suppose ðX1;X2; . . .;XnÞ is an i.i.d. sample of population X with PDF pðx; θÞ. Let
Xn;1 #Xn;2 #?#Xn;n be the order statistics of ðX1;X2; . . .;XnÞ. Then the random
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sample divides the real axis into n1 1 subintervals ðXn;i;Xn;i11Þ, i5 0; 1; . . .; n,
where Xn;0 52N and Xn;n11 51N. Each subinterval has the probability:

Pi 5

ðXn;i11

Xn;i

pðx; θÞdx; i5 0; 1; . . .; n ð3:26Þ

Since the sample is random and i.i.d., the most reasonable situation is that the

probabilities of n1 1 subinterval are equal. Hence, the parameter θ should be cho-

sen in such a way as to maximize the entropy of distribution fPig (or to make fPig
as nearly uniform as possible), i.e.,

θ̂ 5 arg max
θ

2
Xn
i50

Pi log Pi

( )

5 arg max
θ

2
Xn
i50

ðXn;i11

Xn;i

pðx; θÞdx
 !

log

ðXn;i11

Xn;i

pðx; θÞdx
 !( ) ð3:27Þ

The above estimation is called the maximum equality estimation of parameter θ.
It is worth noting that besides parameter estimation, the MaxEnt principle can

also be applied to spectral density estimation [48]. The general idea is that the max-

imum entropy rate stochastic process that satisfies the given constant autocorrela-

tion and variance constraints, is a linear Gauss�Markov process with i.i.d. zero-

mean, Gaussian input.

3.2.3 Minimum Divergence Estimation

Let ðX1;X2; . . .;XnÞ be an i.i.d. random sample from a population X with PDF

pðx; θÞ, θAΘ. Let p̂nðxÞ be the estimated PDF based on the sample. Let θ̂ be an esti-

mator of θ. Then pðx; θ̂ Þ is also an estimator for pðx; θÞ. Then the estimator θ̂ should

be chosen so that pðx; θ̂ Þ is as close as possible to p̂nðxÞ. This can be achieved by

minimizing any measure of information divergence, say the KL-divergence

θ̂5 arg min
θ

DKLðp̂nðxÞjjpðx; θÞÞ

5 arg min
θ

Ð
p̂nðxÞlog

p̂nðxÞ
pðx; θÞ dx

ð3:28Þ

or, alternatively,

θ̂ 5 arg min
θ

DKLðpðx; θÞjjp̂nðxÞÞ

5 arg min
θ

ð
pðx; θÞlog pðx; θÞ

p̂nðxÞ
dx

ð3:29Þ
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The estimate θ̂ in (3.28) or (3.29) is called the minimum divergence (MD) esti-

mate of θ. In practice, we usually use (3.28) for parameter estimation, because it

can be simplified as

θ̂ 5 arg max
θ

ð
p̂nðxÞlog pðx; θÞdx ð3:30Þ

Depending on the estimated PDF p̂nðxÞ, the MD estimator may take many differ-

ent forms. Next, we present three specific examples of MD estimator.

� MD Estimator 1

Without loss of generality, we assume that the sample satisfies x1 , x2 ,?, xn.

Then the distribution function can be estimated as

F̂nðxÞ5

0 x, x1
1=n x1 # x, x2
2=n x2 # x, x3
^
1 x$ xn

8>>>><
>>>>:

ð3:31Þ

Thus, we have

θ̂ 5 arg max
θ

ð
p̂nðxÞlog pðx; θÞdx

5 arg max
θ

ð
log pðx; θÞdF̂nðxÞ

5 arg max
θ

1

n

Xn
i51

log pðxi; θÞ

5 arg max
θ

log LðθÞ

ð3:32Þ

where LðθÞ5L
n

i51

pðxi; θÞ is the likelihood function. In this case, the MD estimation is

exactly the ML estimation.
� MD Estimator 2

Suppose the population X is distributed over the interval ½x0; xn11�, and the sample

satisfies x1 , x2 ,?, xn. It is reasonable to assume that in each subinterval ½xi; xi11�,
the probability is 1=ðn1 1Þ. And hence, the PDF of X can be estimated as

p̂nðxÞ5
1

ðn1 1Þðxi11 2 xiÞ
if xi # x, xi11 ði5 0; 1; . . .; nÞ ð3:33Þ

Substituting (3.33) into (3.30) yields

θ̂ 5 arg max
θ

Xn
i50

ðxi11
xi

1

ðn1 1Þðxi11 2 xiÞ
log pðx; θÞdx

5 arg max
θ

Xn
i50

ðxi112xiÞ21

ðxi11
xi

log pðx; θÞdx
ð3:34Þ
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If pðx; θÞ is a continuous function of x, then according to the mean value theorem of

integral calculus, we have

ðxi112xiÞ21

ðxi11
xi

log pðx; θÞdx5 log pðxi; θÞ ð3:35Þ

where xiA½xi; xi11�. Hence, (3.34) can be written as

θ̂ 5 arg max
θ

Xn
i50

log pðxi; θÞ ð3:36Þ

The above parameter estimation is in form very similar to the ML estimation.

However, different from Fisher’s likelihood function, the values of the cost function in

(3.36) are taken at x0; x1; . . .; xn, which are determined by mean value theorem of integral

calculus.
� MD Estimator 3

Assume population X is distributed over the interval ½d0; dm11�, and this interval is

divided into m1 1 subintervals ½di; di11� (i5 0; 1; . . .;m) by m data d1 , d2 ,?, dn.

The probability of each subinterval is determined by

Pi 5

ðdi11
di

pðx; θÞdx; i5 0; 1; . . .;m ð3:37Þ

If Q0;Q1; . . .;Qm are given proportions of the population that lie in the m1 1 subinter-

vals (
Pm
i50

Qi 5 1), then parameter θ should be chosen so as to make fPig and fQig as close
as possible, i.e.,

θ̂ 5 arg min
θ

DKLðQjjPÞ

5 arg min
θ

Xm
i50

Qilog
Qi

Pi

5 arg max
θ

Xm
i50

Qilog

ðdi11
di

pðx; θÞdx

ð3:38Þ

This is a useful estimation approach, especially when the information available is on

proportions in the population, such as proportions of persons in different income intervals

or proportions of students in different score intervals.

In the previous MD estimations, the KL-divergence can be substituted by other defini-

tions of divergence. For instance, if using φ-divergence, we have

θ̂ 5 arg min
θ

Dφðp̂nðxÞjjpðx; θÞÞ ð3:39Þ

or

θ̂ 5 arg min
θ

Dφðpðx; θÞjjp̂nðxÞÞ ð3:40Þ

For details on the minimum φ-divergence estimation, the readers can refer to [130].
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3.3 Information Theoretic Approaches to
Bayes Estimation

The Bayes estimation can also be embedded within the framework of information

theory. In particular, some information theoretic measures, such as the entropy and

correntropy, can be used instead of the traditional Bayes risks.

3.3.1 Minimum Error Entropy Estimation

In the scenario of Bayes estimation, the minimum error entropy (MEE) estimation

aims to minimize the entropy of the estimation error, and hence decrease the uncer-

tainty in estimation. Given two random variables: XAℝm, an unknown parameter to

be estimated, and YAℝn, the observation (or measurement), the MEE (with

Shannon entropy) estimation of X based on Y can be formulated as

gMEE 5 arg min
gAG

HðeÞ

5 arg min
gAG

HðX2 gðYÞÞ

5 arg min
gAG

2

ð
ℝm

peðξÞlog peðξÞdξ

ð3:41Þ

where e5X2 gðYÞ is the estimation error, gðYÞ is an estimator of X based on Y , g

is a measurable function, G stands for the collection of all measurable functions

g:ℝn ! ℝm, and peð:Þ denotes the PDF of the estimation error. When (3.41) is com-

pared with (3.9) one concludes that the “loss function” in MEE is 2log peð:Þ, which
is different from traditional Bayesian risks, like MSE. Indeed one does not need to

impose a risk functional in MEE, the risk is directly related to the error PDF.

Obviously, other entropy definitions (such as order-α Renyi entropy) can also be

used in MEE estimation. This feature is potentially beneficial because the risk is

matched to the error distribution.

The early work in MEE estimation can be traced back to the late 1960s when

Weidemann and Stear [86] studied the use of error entropy as a criterion function

(risk function) for analyzing the performance of sampled data estimation systems.

They proved that minimizing the error entropy is equivalent to minimizing the

mutual information between the error and the observation, and also proved that

the reduced error entropy is upper-bounded by the amount of information

obtained by the observation. Minamide [89] extended Weidemann and Stear’s

results to a continuous-time estimation system. Tomita et al. applied the MEE cri-

terion to linear Gaussian systems and studied state estimation (Kalman filtering),

smoothing, and predicting problems from the information theory viewpoint. In

recent years, the MEE became an important criterion in supervised machine

learning [64].
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In the following, we present some important properties of the MEE criterion,

and discuss its relationship to conventional Bayes risks. For simplicity, we assume

that the error e is a scalar (m5 1). The extension to arbitrary dimensions will be

straightforward.

3.3.1.1 Some Properties of MEE Criterion

Property 1: ’ cAℝ, Hðe1 cÞ5HðeÞ:

Proof: This is the shift invariance of the differential entropy. According to the defi-

nition of differential entropy, we have

Hðe1 cÞ52

ð
pe1cðξÞlog pe1cðξÞdξ

52

ð
peðξ2 cÞlog peðξ2 cÞdξ

52

ð
peðξÞlog peðξÞdξ5HðeÞ

ð3:42Þ

Remark: The MEE criterion is invariant with respect to error’s mean. In practice,

in order to meet the desire for small error values, the MEE estimate is usually

restricted to zero-mean (unbiased) error, which requires special user attention (i.e.,

mean removal). We should note that the unbiased MEE estimate can still be non-

unique (see Property 6).

Property 2: If ζ is a random variable independent of the error e, then

Hðe1 ζÞ$HðeÞ.

Proof: According to the properties of differential entropy and the independence

condition, we have

Hðe1 ζÞ$Hðe1 ζjζÞ5HðejζÞ5HðeÞ ð3:43Þ

Remark: Property 2 implies that MEE criterion is robust to independent additive

noise. Specifically, if error e contains an independent additive noise ζ , i.e.,

e5 eT 1 ζ, where eT is the true error, then minimizing the contaminated error

entropy HðeÞ will constrain the true error entropy HðeT ÞðHðeT Þ#HðeÞÞ.

Property 3: Minimizing the error entropy HðeÞ is equivalent to minimizing the

mutual information between error e and the observation Y , i.e.,

min
gAG

HðeÞ3min
gAG

Iðe; YÞ.

Proof: As Iðe; YÞ5HðeÞ2HðejYÞ, we have
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HðeÞ5 Iðe; YÞ1HðejYÞ
5 Iðe; YÞ1HðX2 gðYÞjYÞ
5 Iðe; YÞ1HðXjYÞ

ð3:44Þ

It follows easily that

min
gAG

HðeÞ3min
gAG

fIðe; YÞ1HðXjYÞg

3
ðaÞ

min
gAG

Iðe; YÞ
ð3:45Þ

where (a) comes from the fact that the conditional entropy HðXjYÞ is not related to g.

Remark: The minimization of error entropy will minimize the mutual information

between the error and the observation. Hence, under MEE criterion, the observation

will be “fully utilized,” so that the error contains least information about the

observation.

Property 4: The error entropy HðeÞ is lower bounded by the conditional entropy

HðXjYÞ, and this lower bound is achieved if and only if error e is independent of

the observation Y .

Proof: By (3.44), we have

HðeÞ5 Iðe; YÞ1HðXjYÞ$HðXjYÞ ð3:46Þ

where the inequality follows from the fact that Iðe; YÞ$ 0, with equality if and only

if error e and observation Y are independent.

Remark: The error entropy can never be smaller than the conditional entropy of

the parameter X given observation Y . This lower bound is achieved if and only if

the error contains no information about the observation.

For MEE estimation, there is no explicit expression for the optimal estimate

unless some constraints on the posterior PDF are imposed. The next property shows

that, if the posterior PDF is SUM, the MEE estimate will be equal to the condi-

tional mean (i.e., the MMSE estimate).

Property 5: If for any y, the posterior PDF pðxjyÞ is SUM, then the MEE estimate

equals the posterior mean, i.e., gMEEðyÞ5EðXjY 5 yÞ.

Proof: This property is a direct consequence of Theorem 1 of [91] (Omitted).

Remark: Since the posterior PDF is SUM, in the above property the MEE estimate

also equals the posterior median or posterior mode. We point out that for order-α
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Renyi entropy, this property still holds. One may be led to conclude that MEE has

no advantage over the MMSE, since they correspond to the same solution for SUM

case. However, the risk functional in MEE is still well defined for unimodal but

asymmetric distributions, although no general results are known for this class of

distributions. But we suspect that the practical advantages of MEE versus MSE

reported in the literature [64] are taking advantage of this case. In the context of

adaptive filtering, the two criteria may yield much different performance surfaces

even if they have the same optimal solution.

Table 3.1 gives a summary of the optimal estimates for several Bayes estimation

methods.

Property 6: The MEE estimate may be nonunique even if the error distribution is

restricted to zero mean (unbiased).

Proof: We prove this property by means of a simple example as follows [94]: sup-

pose Y is a discrete random variable with Bernoulli distribution:

PrðY 5 0Þ5 PrðY 5 1Þ5 0:5 ð3:47Þ

The posterior PDF of X given Y is (a. 0):

pðxjY 5 0Þ5
1

2a
if jxj# a

0 other

8<
:

pðxjY 5 1Þ5
1

a
if jxj# 1

2
a

0 other

8<
:

Given an estimator X̂5 gðYÞ, the error PDF will be

Table 3.1 Optimal Estimates for Several Bayes Estimation Methods

Bayes Estimation Risk Function Optimal Estimate

MMSE
Ð
ℝξ

2peðξÞdξ gMMSE 5mean½pð:jyÞ�
Mean absolute

deviation

(MAD)

Ð
ℝjξjpeðξÞdξ gMAD 5median½pð:jyÞ�

MAP
Ð
ℝl021ðξÞpeðξÞdξ gMAP 5mode½pð:jyÞ�

General Bayes

estimation

(GBE)

Ð
ℝlðξÞpeðξÞdξ If lð:Þ is even and convex, and ’ y, pðxjyÞ is

symmetric in x, then gGBEð:Þ5mean½pð:jyÞ�

MEE 2
Ð
ℝpeðξÞlog peðξÞdξ If ’ y, pðxjyÞ is SUM, then gMEEð:Þ5mean½pð:jyÞ�
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peðxÞ5
1

2
pðx1 gð0ÞjY 5 0Þ1 pðx1 gð1ÞjY 5 1Þg� ð3:48Þ

Let g be an unbiased estimator, then
ÐN
2N xpeðxÞdx5 0, and hence gð0Þ52 gð1Þ.

Assuming gð0Þ$ 0 (due to symmetry, one can obtain similar results for gð0Þ, 0),

the error entropy can be calculated as

HðeÞ5

2
3

4
logð3Þ1logð4aÞ; if 0#gð0Þ#1

4
a

2
9

8
1
3gð0Þ
2a

0
@

1
Alogð3Þ1 1

4
2
gð0Þ
a

0
@

1
Alogð2Þ1logð4aÞ; if 1

4
a,gð0Þ#3

4
a

2
1

2
logð2Þ1logð4aÞ; if gð0Þ.3

4
a

8>>>>>>>>><
>>>>>>>>>:

ð3:49Þ
One can easily verify that the error entropy achieves its minimum value when

0# gð0Þ# a=4. Clearly, in this example there are infinitely many unbiased MEE

estimators.

Property 7 (Score Orthogonality [92]): Given an MEE estimator X̂5 gMEEðYÞ,
the error’s score ψðejgMEEÞ is orthogonal to any measurable function ϕðYÞ of Y ,

where ψðejgMEEÞ is defined as

ψðejgMEEÞ5
@

@e
log pðejgMEEÞg
� ð3:50Þ

where pðejgÞ denotes the error PDF for estimator X̂5 gðYÞ.

Proof: Given an MEE estimator gMEEAG, ’ϕAG and’ γAℝ, we have

HðejgMEEÞ5 arg min
gAG

HðeÞ#HðejgMEE 1 γϕÞ5Hðe2 γϕðYÞjgMEEÞ ð3:51Þ

For jγj small enough, γϕðYÞ will be a “small” random variable. According to

[167], we have

Hðe2 γϕðYÞjgMEEÞ2HðejgMEEÞ5 γE½ψðejgMEEÞϕðYÞ�1 oðγϕðYÞÞ ð3:52Þ

where o :ð Þ denotes the higher order terms. Then the derivative of entropy

Hðe2 γϕðYÞjgMEEÞ with respect to γ at γ5 0 is

@

@γ
Hðe2 γϕðYÞjgMEEÞgjγ50 5E ψðejgMEEÞϕðYÞ½ �� ð3:53Þ
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Combining (3.51) and (3.53) yields

E½ψðejgMEEÞϕðYÞ�5 0; ’ϕAG ð3:54Þ

Remark: If the error is zero-mean Gaussian distributed with variance σ2, the score

function will be ψðejgMEEÞ52 e=σ2. In this case, the score orthogonality condition

reduces to E½eϕðYÞ�5 0. This is the well-known orthogonality condition for MMSE

estimation.

In MMSE estimation, the orthogonality condition is a necessary and sufficient

condition for optimality, and can be used to find the MMSE estimator. In MEE

estimation, however, the score orthogonality condition is just a necessary condition

for optimality but not a sufficient one. Next, we will present an example to demon-

strate that if an estimator satisfies the score orthogonality condition, it can be a

local minimum or even a local maximum of HðeÞ in a certain direction. Before pro-

ceeding, we give a definition.

Definition 3.1 Given an estimator gAG, g is said to be a local minimum (or maxi-

mum) of HðeÞ in the direction of ϕAG, if and only if 'ε. 0, such that ’ γAℝ,
jγj# ε, we have

HðejgÞ #
$ð Þ

Hðejg1 γϕÞ ð3:55Þ

Example 3.1 [92] Suppose the joint PDF of X and Y is the mix-Gaussian density

(0# jρj, 1):

pðx; yÞ5 1

4π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
12 ρ2

p
exp

2 ðy2 2 2ρyðx2μÞ1 ðx2μÞ2Þ
2ð12 ρ2Þ

8<
:

9=
;

1 exp
2 ðy2 1 2ρyðx1μÞ1 ðx1μÞ2Þ

2ð12 ρ2Þ

8<
:

9=
;

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:56Þ

The MMSE estimation of X based on Y can be computed as

gMMSE 5EðXjYÞ5 0. It is easy to check that the estimator gMMSE satisfies the score

orthogonality condition.

Now we examine whether the MMSE estimator gMMSE is a local minimum or

maximum of the error entropy HðeÞ in a certain direction ϕAG. We focus here on

the case where ϕ Yð Þ5 Y (linear function). In this case, we have

HðejgMMSEðYÞ1 γϕðYÞÞ5HðejγYÞ ð3:57Þ
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For the case ρ5 0:99, the error’s entropies HðejγYÞ with respect to different γ
and μ values are shown in Figure 3.1, from which we see that the MMSE esti-

mator (γ5 0) is a local minimum of the error entropy in the direction of

ϕðYÞ5 Y for μ# 0:5 and a local maximum for μ. 0:5. In addition, for the case

μ5 1:0, the error’s entropies HðejγYÞ with respect to different γ and ρ values are

depicted in Figure 3.2. It can be seen from Figure 3.2 that when ρ# 0:6, gMMSE

is a global minimum of HðejγYÞ; while when ρ. 0:6, it becomes a local

maximum.

The local minima or local maxima can also be judged using the second-order

derivative of error entropy with respect to γ. For instance, if μ5 1, we can calcu-

late the following second-order derivative using results of [167]:

@2

@γ2Hðe
��γYÞ��γ505ð12ρ2ÞE expð2eÞ21

expð2eÞ11

� �2( )

1ρ2E
½2ðexpð2eÞ21Þ2ðe221Þexpð2eÞ�2 ½expð4eÞ2114e3expð2eÞ�2

½expð2eÞ11�4

8<
:

9=
;

�0:5521:54ρ2

ð3:58Þ
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Figure 3.1 Error’s entropy HðejγYÞ with respect to different γ and μ values.

Source: Adopted from [92].
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And hence

@2

@γ2 HðejγYÞ
��
γ50

. 0 if ρ
�� ��, 0:6

@2

@γ2 HðejγYÞ γ50 , 0 if ρ
�� ��. 0:6

��
8><
>: ð3:59Þ

which implies that if jρj, 0:6, the MMSE estimator (γ5 0) will be a local mini-

mum of the error entropy in the direction of ϕðYÞ5 Y , whereas if jρj. 0:6, it
becomes a local maximum.

As can be seen from Figure 3.2, if ρ5 0:9, the error entropy HðejγYÞ achieves
its global minima at γ � 6 0:74. Figure 3.3 depicts the error PDF for γ5 0

(MMSE estimator) and γ5 0:74 (linear MEE estimator), where μ5 1; ρ5 0:9. We

can see that the MEE solution is in this case not unique but it is much more con-

centrated (with higher peak) than the MMSE solution, which potentially gives an

estimator with much smaller variance. We can also observe that the peaks of the

MMSE and MEE error distributions occur at two different error locations, which

means that the best parameter sets are different for each case.

3.3.1.2 Relationship to Conventional Bayes Risks

The loss function of MEE criterion is directly related to the error’s PDF, which is

much different from the loss functions in conventional Bayes risks, because the

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
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2
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2.4
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γ

H
(e

|γ
Y

)

ρ = 0
ρ = 0.4

ρ = 0.6

ρ = 0.8

ρ = 0.9

ρ = 0.95

ρ = 0.99

Figure 3.2 Error’s entropy HðejγYÞ with respect to different γ and ρ values.

Source: Adopted from [92].
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user does not need to select the risk functional. To some extent, the error entropy

can be viewed as an “adaptive” Bayes risk, in which the loss function is varying

with the error distribution, that is, different error distributions correspond to differ-

ent loss functions. Figure 3.4 shows the loss functions (the lower subplots) of MEE

corresponding to three different error PDFs. Notice that the third case provides a

risk function that is nonconvex in the space of the errors. This is an unconventional

risk function because the role of the weight function is to privilege one solution

versus all others in the space of the errors.

There is an important relationship between the MEE criterion and the traditional

MSE criterion. The following theorem shows that the MSE is equivalent to the error

entropy plus the KL-divergence between the error PDF and any zero-mean Gaussian

density.

Theorem 3.1 Let Gσð:Þ denote a Gaussian density, GσðxÞ5
ð1= ffiffiffiffiffiffi

2π
p

σÞexpð2 x2=2σ2Þ, where σ. 0. Then we have

min
gAG

Eðe2Þ3min
gAG

fHðeÞ1DKLðpejjGσÞg ð3:60Þ

Proof: Since GσðxÞ5 ð1= ffiffiffiffiffiffi
2π

p
σÞexpð2 x2=2σ2Þ, we have

x2 52 2σ2 logðGσðxÞÞ1 logð
ffiffiffiffiffiffi
2π

p
σÞ

n o
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Figure 3.3 Error’s PDF pðeÞ for γ5 0 and γ5 0:74.
Source: Adopted from [92].
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And hence

Eðe2Þ5
ð
x2peðxÞdx

5 2σ2 2

ð
ðlog GσðxÞÞpeðxÞdx2 log

ffiffiffiffiffiffi
2π

p
σ


 �� �

5 2σ2 2

ð
peðxÞlog peðxÞdx1

ð
peðxÞ log

peðxÞ
GσðxÞ

0
@

1
Adx2 log

ffiffiffiffiffiffi
2π

p
σ


 �8<
:

9=
;

5 2σ2 HðeÞ1DKLðpe:GσÞ2 log
ffiffiffiffiffiffi
2π

p
σ


 �n o
ð3:61Þ

It follows easily that min
gAG

Eðe2Þ3min
gAG

fHðeÞ1DKLðpe:GσÞg.

Remark: The above theorem suggests that the minimization of MSE minimizes

both the error entropy HðeÞ and the KL-divergence DKLðpe:GσÞ. Then the MMSE

estimation will decrease the error entropy, and at the same time, make the error dis-

tribution close to zero-mean Gaussian distribution. In nonlinear and non-Gaussian

estimating systems, the desirable error distribution can be far from Gaussian, while

the MSE criterion still makes the error distribution close to zero-mean Gaussian
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Figure 3.4 The loss functions of MEE corresponding to three different error PDFs.
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distribution, which may lead to poor estimation performance. Thus, Theorem 3.1

also gives an explanation on why the performance of MMSE estimation may be

not good for non-Gaussian samples.

Suppose that the error is zero-mean Gaussian distributed. Then we have

DKLðpe:GσÞ5 0, where σ2 5E½e2�. In this case, the MSE criterion is equivalent to

the MEE criterion.

From the derivation of Theorem 3.1, let σ5
ffiffiffi
2

p
=2, we have

Eðe2Þ5HðeÞ1DKLðpe:G ffiffi
2

p
=2Þ2 logð ffiffiffi

π
p Þ ð3:62Þ

Since DKLðpejjG ffiffi
2

p
=2Þ$ 0, then

HðeÞ#Eðe2Þ1 log
ffiffiffi
π

p� � ð3:63Þ

Inequality (3.63) suggests that, minimizing the MSE is equivalent to minimizing

an upper bound of error entropy.

There exists a similar relationship between MEE criterion and a large family of

Bayes risks [168]. To prove this fact, we need a lemma.

Lemma 3.1 Any Bayes risk E½lðeÞ� corresponds to a PDF4 as follows:

qlðxÞ5 exp½2 γ0 2 γ1lðxÞ� ð3:64Þ

where γ0 and γ1 satisfy

expðγ0Þ5
Ð
ℝexp½2 γ1lðxÞ�dx

E½lðeÞ�expðγ0Þ5
Ð
ℝlðxÞexp½2 γ1lðxÞ�dx

�
ð3:65Þ

Theorem 3.2 For any Bayes risk E½lðeÞ�, if the loss function lðeÞ satisfies

lim
ej j!1N

lðeÞ51N, then

min
gAG

E½lðeÞ�3min
gAG

fHðeÞ1DKLðpe:qlÞg ð3:66Þ

where ql is the PDF given in (3.64).

Proof: First, we show that in the PDF qlðxÞ5 exp½2 γ0 2 γ1lðxÞ�, γ1 is a positive

number. Since qlð:Þ satisfies qlðxÞ$ 0 and
Ð
ℝqlðxÞdx5 1, we have lim

jxj!1N
qlðxÞ5 0.

Then

4 Here, qlð:Þ is actually the maximum entropy density that satisfies the constraint conditionÐ
ℝqðxÞlðxÞdx5E½lðeÞ�.
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lim
jxj!1N

qlðxÞ5 0

. lim
jxj!N

½log qlðxÞ�52N

. lim
jxj!1N

½2 log qlðxÞ�51N

. lim
jxj!1N

½γ0 1 γ1lðxÞ�51N

.γ1 lim
jxj!1N

lðxÞ51N

.
ðaÞ

γ1 . 0

ð3:67Þ

where (a) follows from lim
jxj!1N

lðxÞ51N. Therefore,

min
gAG

fHðeÞ1DKLðpe:qlÞg

3min
gAG

2
Ð
peðxÞlog peðxÞdx1

Ð
peðxÞlog

peðxÞ
qlðxÞ

0
@

1
Adx

8<
:

9=
;

3min
gAG

Ð
peðxÞ½2 log qlðxÞ�dx

� 

3min

gAG

Ð
peðxÞ½γ0 1 γ1lðxÞ�dx

� 

3min

gAG
fγ0 1 γ1E½lðeÞ�g

3
γ1 . 0

min
gAG

fE½lðeÞ�g

ð3:68Þ

which completes the proof.

Remark: The condition lim
jej!1N

lðeÞ51N in the theorem is not very restrictive,

because for most Bayes risks, the loss function increases rapidly when jej goes to

infinity. But for instance, it does not apply to the maximum correntropy (MC) crite-

rion studied next.

3.3.2 MC Estimation

Correntropy is a novel measure of similarity between two random variables [64].

Let X and Y be two random variables with the same dimensions, the correntropy is

VðX; YÞ5E½κðX;YÞ� ð3:69Þ
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where κð:; :Þ is a translation invariant Mercer kernel. The most popular kernel used

in correntropy is the Gaussian kernel:

κσðx; yÞ5
1ffiffiffiffiffiffi
2π

p
σ
expð2 jjx2 yjj2=2σ2Þ ð3:70Þ

where σ. 0 denotes the kernel size (kernel width). Gaussian kernel κσðx; yÞ is a

translation invariant kernel that is a function of x2 y, so it can be rewritten as

κσðx2 yÞ.
Compared with other similarity measures, such as the mean square error, corren-

tropy (with Gaussian kernel) has some nice properties: (i) it is always bounded

(0,VðX;YÞ# 1=
ffiffiffiffiffiffi
2π

p
σ); (ii) it contains all even-order moments of the difference

variable for the Gaussian kernel (using a series expansion); (iii) the weights of

higher order moments are controlled by kernel size; and (iv) it is a local similarity

measure, and is very robust to outliers.

The correntropy function can also be applied to Bayes estimation [169]. Let X

be an unknown parameter to be estimated and Y be the observation. We assume,

for simplification, that X is a scalar random variable (extension to the vector case

is straightforward), XAℝ, and Y is a random vector taking values in ℝm. The MC

estimation of X based on Y is to find a measurable function g:ℝm ! ℝ such that

the correntropy between X and X̂5 gðYÞ is maximized, i.e.,

gMC 5 arg max
gAG

E½κðX; gðYÞÞ� ð3:71Þ

With any translation invariant kernel such as the Gaussian kernel κσðx2 yÞ, the
MC estimator will be

gMC 5 arg max
gAG

E½κσðeÞ� ð3:72Þ

where e5X2 gðYÞ is the estimation error. If ’ yAℝm, X has posterior PDF pðxjyÞ,
then the estimation error has PDF

peðxÞ5
ð
ℝm

pðx1 gðyÞjyÞdFðyÞ ð3:73Þ

where FðyÞ denotes the distribution function of Y . In this case, we have

gMC 5 arg max
gAG

E½κσðeÞ�

5 argmax
gAG

ðN
2N

κσðxÞ
ð
ℝm

pðx1 gðyÞjyÞdFðyÞdx
ð3:74Þ

The following theorem shows that the MC estimation is a smoothed MAP

estimation.
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Theorem 3.3 The MC estimator (3.74) can be expressed as

gMCðyÞ5 arg max
xAℝ

ρðxjy;σÞ; ’ yAℝm ð3:75Þ

where ρðxjy;σÞ5κσðxÞ � pðxjyÞ (“�” denotes the convolution operator with respect

to x).

Proof: One can derive

VðeÞ5
ðN
2N

κσðxÞ
ð
ℝm

pðx1 gðyÞjyÞdFðyÞdx

5

ð
ℝm

ðN
2N

κσðxÞpðx1 gðyÞjyÞdx
� �

dFðyÞ

5

ð
ℝm

ðN
2N

κσðx0 2 gðyÞÞpðx0jyÞdx0
� �

dFðyÞ

5
ðaÞ
ð
ℝm

ðN
2N

κσðgðyÞ2 x0Þpðx0jyÞdx0
� �

dFðyÞ

5

ð
ℝm

fðκσð:Þ � pð:jyÞÞðgðyÞÞgdFðyÞ

5

ð
ℝm

ρðgðyÞjy;σÞdFðyÞ

ð3:76Þ

where x0 5 x1 gðyÞ and (a) comes from the symmetry of κσð:Þ. It follows easily that

gMC 5 arg max
gAG

ð
ℝm

ρðgðyÞjy;σÞdFðyÞ

.gMCðyÞ5 arg max
xAℝ

ρðxjy;σÞ; ’ yAℝm
ð3:77Þ

This completes the proof.

Remark: The function ρðxjy;σÞ can be viewed as a smoothed version (through

convolution) of the posterior PDF pðxjyÞ. Thus according to Theorem 3.3, the MC

estimation is in essence a smoothed MAP estimation, which is the mode of the

smoothed posterior distribution. The kernel size σ plays an important role in the

smoothing process by controlling the degree of smoothness. When σ ! 01 ,

the Gaussian kernel will approach the Dirac delta function, and the function

ρðxjy;σÞ will reduce to the original posterior PDF. In this case, the MC estimation

is identical to the MAP estimation. On the other hand, when σ ! N, the second-

order moment will dominate the correntropy, and the MC estimation will be equiv-

alent to the MMSE estimation [137].
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In the literature of global optimization, the convolution smoothing method

[170�172] has been proven very effective in searching the global minima (or max-

ima). Usually, one can use the convolution of a nonconvex cost function with a

suitable smooth function to eliminate local optima, and gradually decrease the

degree of smoothness to achieve global optimization. Therefore, we believe that by

properly annealing the kernel size, the MC estimation can be used to obtain the

global maxima of MAP estimation.

The optimal solution of MC estimation is the mode of the smoothed posterior

distribution, which is, obviously, not necessarily unique. The next theorem, how-

ever, shows that when kernel size is larger than a certain value, the MC estimation

will have a unique optimal solution that lies in a strictly concave region of the

smoothed PDF (see [169] for the proof).

Theorem 3.4 [169] Assume that function fnðyÞ5
Ð n
2n

pðxjyÞdx converges uniformly

to 1 as n ! N. Then there exists an interval ½2M;M�, M. 0, such that when ker-

nel size σ is larger than a certain value, the smoothed PDF ρðxjy;σÞ will be strictly

concave in ½2M;M�, and has a unique global maximum lying in this interval for

any yAℝm.

Remark: Theorem 3.4 suggests that in MC estimation, one can use a larger kernel

size to eliminate local optima by constructing a concave (in a certain interval) cost

function with a unique global optimal solution. This result also shows that the ini-

tial condition for convolution smoothing should be chosen in this range. The only

other parameter in the method that the user has to select is the annealing rate.

In the following, a simple example is presented to illustrate how the kernel size

affects the solution of MC estimation. Suppose the joint PDF of X and Y (X;YAℝ)
is the mixture density (0#λ# 1) [169]:

pXY ðx; yÞ5 ð12λÞp1ðx; yÞ1λp2ðx; yÞ ð3:78Þ

where p1 denotes the “clean” PDF and p2 denotes the contamination part corre-

sponding to “bad” data or outliers. Let λ5 0:03, and assume that p1 and p2 are

both jointly Gaussian:

p1ðx; yÞ5
1ffiffiffi
3

p
π
exp 2

x2 2 xy1 y2

1:5

� �
ð3:79Þ

p2ðx; yÞ5 50

π
expð2 50 ðx23Þ2 1 y2

� �Þ ð3:80Þ

For the case y5 0:1, the smoothed posterior PDFs with different kernel sizes are

shown in Figure 3.5, from which we observe: (i) when kernel size is small, the

smoothed PDFs are nonconcave within the dominant region (say the interval

½23; 4�), and there may exist local optima or even nonunique optimal solutions; (ii)
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when kernel size is larger, the smoothed PDFs become concave within the domi-

nant region, and there is a unique optimal solution. Several estimates of X given

Y 5 0:1 are listed in Table 3.2. It is evident that when the kernel size is very small,

the MC estimate is the same as the MAP estimate; while when the kernel size is

very large, the MC estimate is close to the MMSE estimate. In particular, for some

kernel sizes (say σ5 0:2 or 0:5), the MC estimate of X equals 20.05, which is

exactly the MMSE (or MAP) estimate of X based on the “clean” distribution p1.

This result confirms the fact that the MC estimation is much more robust (with

respect to outliers) than both MMSE and MAP estimations.
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Figure 3.5 Smoothed conditional PDFs given Y 5 0:1.
Source: Adopted from [169]).

Table 3.2 Estimates of X Given Y5 0:1

MAP estimation 3.0

MMSE estimation 0.4338

MC estimation σ5 0:1 3.0

σ5 0:2 2 0.05

σ5 0:5 2 0.05

σ5 1:0 2 0.0360

σ5 2:0 0.2090

σ5 5:0 0.3990

σ5 20 0.4320

(adopted from [169])
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3.4 Information Criteria for Model Selection

Information theoretic approaches have also been used to solve the model selection

problem. Consider the problem of estimating the parameter θ of a family of models

M5 fpðx; θÞjθAΘkCℝkg ð3:81Þ

where the parameter space dimension k is also unknown. This problem is actually a

model structure selection problem, and the value of k is the structure parameter.

There are many approaches to select the space dimension k. Here, we only discuss

several information criteria for selecting the most parsimonious correct model,

where the name indicates that they are closely related to or can be derived from

information theory.

1. Akaike’s information criterion

The Akaike’s information criterion (AIC) was first developed by Akaike [6,7]. AIC is

a measure of the relative goodness of fit of a statistical model. It describes the tradeoff

between bias and variance (or between accuracy and complexity) in model construction.

In the general case, AIC is defined as

AIC52 2 log Lmax 1 2k ð3:82Þ

where Lmax is the maximized value of the likelihood function for the estimated model. To

apply AIC in practice, we start with a set of candidate models, and find the models’ cor-

responding AIC values, and then select the model with the minimum AIC value. Since

AIC includes a penalty term 2k, it can effectively avoid overfitting. However, the penalty

is constant regardless of the number of samples used in the fitting process.

The AIC criterion can be derived from the KL-divergence minimization principle or

the equivalent relative entropy maximization principle (see Appendix G for the

derivation).

2. Bayesian Information Criterion

The Bayesian information criterion (BIC), also known as the Schwarz criterion, was

independently developed by Akaike and by Schwarz in 1978, using Bayesian formalism.

Akaike’s version of BIC was often referred to as the ABIC (for “a BIC”) or more

casually, as Akaike’s Bayesian Information Criterion. BIC is based, in part, on the likeli-

hood function, and is closely related to AIC criterion. The formula for the BIC is

BIC52 2 log Lmax 1 k log n ð3:83Þ

where n denotes the number of the observed data (i.e., sample size). The BIC criterion

has a form very similar to AIC, and as one can see, the penalty term in BIC is in general

larger than in AIC, which means that generally it will provide smaller model sizes.

3. Minimum Description Length Criterion

The minimum description length (MDL) principle was introduced by Rissanen [9]. It

is an important principle in information and learning theories. The fundamental idea

behind the MDL principle is that any regularity in a given set of data can be used to com-

press the data, that is, to describe it using fewer symbols than needed to describe the data
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literally. According to MDL, the best model for a given set of data is the one that leads

to the best compression of the data. Because data compression is formally equivalent to a

form of probabilistic prediction, MDL methods can be interpreted as searching for a

model with good predictive performance on unseen data. The ideal MDL approach

requires the estimation of the Kolmogorov complexity, which is noncomputable in gen-

eral. However, there are nonideal, practical versions of MDL.

From a coding perspective, assume that both sender and receiver know which member

pðx; θÞ of the parametric family M generated a data string xn 5 fx1; x2; . . .; xng. Then from

a straightforward generalization of Shannon’s Source Coding Theorem to continuous ran-

dom variables, it follows that the best description length of xn (in an average sense) is

simply 2log pðxn; θÞ, because on average the code length achieves the entropy lower

bound 2
Ð
pðxn; θÞlog pðxn; θÞdxn. Clearly, minimizing 2log pðxn; θÞ is equivalent to max-

imizing pðxn; θÞ. Thus the MDL coincides with the ML in parametric estimation problems.

In addition, we have to transmit θ, because the receiver did not know its value in advance.

Adding in this cost, we arrive at a code length for the data string xn:

2log pðxn; θ̂MLÞ1 lðθ̂MLÞ ð3:84Þ

where lðθ̂MLÞ denotes the number of bits for transmitting θ̂ML. If we assume that the

machine precision is 1=
ffiffiffi
n

p
for each component of θ̂ML and θ̂ML is transmitted with a uni-

form encoder, then the term lðθÞ is expressed as

lðθÞ5 k

2
log n ð3:85Þ

In this case, the MDL takes the form of BIC. An alternative expression of lðθÞ is

lðθÞ5
Xk
j51

log
γ
δj

ð3:86Þ

where γ is a constant related to the number of bits in the exponent of the floating point

representation of θj and δj is the optimal precision of θj.

Appendix E: EM Algorithm

An EM algorithm is an iterative method for finding the ML estimate of parameters

in statistical models, where the model depends on unobserved latent variables. The

EM iteration alternates between performing an expectation (E) step, which calcu-

lates the expectation of the log-likelihood evaluated using the current estimate for

the parameters, and a maximization (M) step, which computes parameters maxi-

mizing the expected log-likelihood found on the E step. These parameter estimates

are then used to determine the distribution of the latent variables in the next E step.

Let y be the observed data, z be the unobserved data, and θ be a vector of

unknown parameters. Further, let Lðθjy; zÞ be the likelihood function, LðθjyÞ be the

marginal likelihood function of the observed data, and pðzjy; θðkÞÞ be the conditional
density of z given y under the current estimate of the parameters θðkÞ. The EM
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algorithm seeks to find the ML estimate of the marginal likelihood by iteratively

applying the following two steps

1. Expectation step (E step): Calculate the expected value of the log-likelihood function,

with respect to the conditional distribution of z given y under the current estimate θðkÞ:

Qðθjy; θðkÞÞ 5Ezjy;θðkÞ ½log Lðθjy; zÞjy; θðkÞ�
5
Ð
log Lðθjy; zÞpðzjy; θðkÞÞdz ðE:1Þ

2. Maximization step (M step): Find the next estimate θðk11Þ of the parameters by maximiz-

ing this quantity:

Qðθðk11Þjy; θðkÞÞ5 max
θ

Qðθjy; θðkÞÞ ðE:2Þ

The iteration θðkÞ ! θðk11Þ continues until Oθðk11Þ 2 θðkÞO is sufficiently small.

Appendix F: Minimum MSE Estimation

The MMSE estimate θ̂ of θ is obtained by minimizing the following cost:

Rðθ; θ̂ Þ5
ð ð

ðθ̂2θÞ2pðθ; xÞdθ dx

5

ð ð
ðθ̂2θÞ2pðθjxÞdθ

� �
pðxÞdx

ðF:1Þ

Since ’ x, pðxÞ$ 0, one only needs to minimize
Ð ðθ̂2θÞ2pðθjxÞdθ. Let

@

@θ̂

ð
ðθ̂2θÞ2pðθjxÞdθ5 2

ð
ðθ̂ 2 θÞpðθjxÞdθ5 0 ðF:2Þ

Then we get θ̂ 5
Ð
θpðθjxÞdθ.

Appendix G: Derivation of AIC Criterion

The information theoretic KL-divergence plays a crucial role in the derivation of

AIC. Suppose that the data are generated from some distribution f . We consider

two candidate models (distributions) to represent f : g1 and g2. If we know f , then

we could evaluate the information lost from using g1 to represent f by calculating

the KL-divergence, DKLðfOg1Þ; similarly, the information lost from using g2 to rep-

resent f would be found by calculating DKLðfOg2Þ. We would then choose the can-

didate model minimizing the information loss. If f is unknown, we can estimate,

via AIC, how much more (or less) information is lost by g1 than by g2. The esti-

mate is, certainly, only valid asymptotically.

58 System Parameter Identification



Given a family of density models fpθðyÞjθAΘkCℝkg, where Θk denotes a

k-dimensional parameter space, k5 1; 2; . . .;K, and a sequence of independent and

identically distributed observations fy1; y2; . . .; yng, the AIC can be expressed as

AIC52 2 log Lðθ̂MLÞ1 2k ðG:1Þ

where θ̂ML is the ML estimate of θ5 ½θ1; θ2; . . .; θk�:

θ̂ML 5 arg max
θAΘk

LðθÞ5 arg max
θAΘk

L
n

i51

pθðyiÞ ðG:2Þ

Let θ0 be the unknown true parameter vector. Then

DKLðθ0Oθ̂MLÞ5DKLðpθ0Opθ̂ ML
Þ5Eflog pθ0 ðyÞg2Eflog pθ̂ ML

ðyÞg ðG:3Þ

where

Eflog pθ0 ðyÞg5
ÐN
2N pθ0 ðyÞlog pθ0 ðyÞdy

Eflog pθ̂ ML
ðyÞg5 ÐN2N pθ0ðyÞlog pθ̂ ML

ðyÞdy
�

ðG:4Þ

Taking the first term in a Taylor expansion of Eflog pθ̂ ML
ðyÞg, we obtain

flog pθ̂ ML
ðyÞg � Eflog pθ0 ðyÞg2

1

2
ðθ̂ML2θ0ÞTJFðθ0Þðθ̂ML 2 θ0Þ ðG:5Þ

where JFðθ0Þ is the k3 k Fisher information matrix. Then we have

DKLðθ0Oθ̂MLÞ � 1

2
ðθ̂ML2θ0ÞTJFðθ0Þðθ̂ML 2 θ0Þ ðG:6Þ

Suppose JFðθ0Þ can be decomposed into

JFðθ0Þ5 JTJ ðG:7Þ

where J is some nonsingular matrix. We can derive

2nDKLðθ0jjθ̂MLÞ � ½ ffiffiffi
n

p
Jðθ̂ML2θ0Þ�T ½

ffiffiffi
n

p
Jðθ̂ML 2 θ0Þ� ðG:8Þ

According to the statistical properties of the ML estimator, when sample number

n is large enough, we have

ffiffiffi
n

p ðθ̂ML 2 θ0ÞBNð0; J21
F ðθ0ÞÞ ðG:9Þ
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Combining (G.9) and (G.7) yields

ffiffiffi
n

p
Jðθ̂ML 2 θ0ÞBNð0; IÞ ðG:10Þ

where I is the k3 k identity matrix. From (G.8) and (G.10), we obtain

2nDKLðθ0jjθ̂MLÞBχ2ðkÞ ðG:11Þ

That is, 2nDKLðθ0jjθ̂MLÞ is Chi-Squared distributed with k degree of freedom.

This implies

Ef2nDKLðθ0jjθ̂MLÞg5 k ðG:12Þ

It follows that

2nEflog pθ0ðyÞg2 2nEflog pθ̂ ML
ðyÞg���!a:s:n!N k ðG:13Þ

And hence

2nEflog pθ̂ ML
ðyÞg���!a:s:n!N 2 log Lðθ0Þ2 k ðG:14Þ

It has been proved in [173] that

2½log Lðθ̂MLÞ2 log Lðθ0Þ�Bχ2ðkÞ ðG:15Þ

Therefore

2 log Lðθ0Þ ���!a:s:n!N 2 log Lðθ̂MLÞ2 k ðG:16Þ

Combining (G.16) and (G.14), we have

2nEflog pθ̂ ML
ðyÞg���!a:s:n!N 2 log Lðθ̂MLÞ2 2k ðG:17Þ

To minimize the KL-divergence DKLðθ0jjθ̂MLÞ, one need to maximize

Eflog pθ̂ ML
ðyÞg, or equivalently, to minimize (in an asymptotical sense) the follow-

ing objective function

22 log Lðθ̂MLÞ1 2k ðG:18Þ

This is exactly the AIC criterion.
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4 System Identification Under
Minimum Error Entropy Criteria

In previous chapter, we give an overview of information theoretic parameter esti-

mation. These estimation methods are, however, devoted to cases where a large

amount of statistical information on the unknown parameter is assumed to be avail-

able. For example, the minimum divergence estimation needs to know the likeli-

hood function of the parameter. Also, in Bayes estimation with minimum error

entropy (MEE) criterion, the joint distribution of unknown parameter and observa-

tion is assumed to be known. In this and later chapters, we will further investigate

information theoretic system identification. Our focus is mainly on system parame-

ter estimation (identification) where no statistical information on parameters exists

(i.e., only data samples are available). To develop the identification algorithms

under information theoretic criteria, one should evaluate the related information

measures. This requires the knowledge of the data distributions, which are, in gen-

eral, unknown to us. To address this issue, we can use the estimated (empirical)

information measures as the identification criteria.

4.1 Brief Sketch of System Parameter Identification

System identification involves fitting the experimental input�output data (training

data) into empirical model. In general, system identification includes the following

key steps:

� Experiment design: To obtain good experimental data. Usually, the input signals should

be designed such that it provides enough process excitation.
� Selection of model structure: To choose a suitable model structure based on the training

data or prior knowledge.
� Selection of the criterion: To choose a suitable criterion (cost) function that reflects how

well the model fits the experimental data.
� Parameter identification: To obtain the model parameters1 by optimizing (minimizing or

maximizing) the above criterion function.
� Model validation: To test the model so as to reveal any inadequacies.

In this book, we focus mainly on the parameter identification part. Figure 4.1

shows a general scheme of discrete-time system identification, where xk and yk

1 In the case of black-box identification, the model parameters are basically viewed as vehicles for

adjusting the fit to data and do not reflect any physical consideration in the system.
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denote the system input and output (clean output) at time k, nk is an additive noise

that accounts for the system uncertainty or measurement error, and zk is the mea-

sured output. Further, ŷk is the model output and ek denotes the identification error,

which is defined as the difference between the measured output and the model out-

put, i.e., ek 5 zk 2 ŷk. The goal of parameter identification is then to search the

model parameter vector (or weight vector) so as to minimize (or maximize) a cer-

tain criterion function (usually the model structure is predefined).

The implementation of system parameter identification involves model structure,

criterion function, and parameter search (identification) algorithm. In the following,

we will briefly discuss these three aspects.

4.1.1 Model Structure

Generally speaking, the model structure is a parameterized mapping from inputs2

to outputs. There are various mathematical descriptions of system model (linear or

nonlinear, static or dynamic, deterministic or stochastic, etc.). Many of them can be

expressed as the following linear-in-parameter model:

zk 5 hTk W 1 ek

ŷk 5 hTk W

(
ð4:1Þ

where hk denotes the regression input vector and W denotes the weight vector (i.e.,

parameter vector). The simplest linear-in-parameter model is the adaptive linear

neuron (ADALINE). Let the input be an m-dimensional vector Xk 5 ½x1;k; . . .; xm;k�T .
The output of ADALINE model will be

ŷk 5
Xm
i51

wixi;k 1w0 ð4:2Þ

Unknown
system

Σ

kx

kz

k̂y

Criterion

Σ

Model
(W)

ke

kn

ky

Figure 4.1 A general scheme of system

identification.

2 For a dynamic system, the input vector may contain past inputs and outputs.
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where w0 is a bias (some constant). In this case, we have

hk 5 ½1; x1;k; . . .; xm;k�T
W 5 ½w0;w1; . . .;wm�T

(
ð4:3Þ

If the bias w0 is zero, and the input vector is Xk 5 ½xk; xk21; . . .; xk2m11�T , which
is formed by feeding the input signal to a tapped delay line, then the ADALINE

becomes a finite impulse response (FIR) filter.

The ARX (autoregressive with external input) dynamic model is another impor-

tant linear-in-parameter model:

zk 1 a1zk21 1?1 anazk2na 5 b1xk21 1?1 bnbxk2nb 1 ek ð4:4Þ

One can write Eq. (4.4) as zk 5 hTk W 1 ek if let

hk 5 ½2zk21; . . .;2zk2na ; xk21; . . .; xk2nb �T
W 5 ½a1; . . .; ana ; b1; . . .; bnb �T

(
ð4:5Þ

The linear-in-parameter model also includes many nonlinear models as special

cases. For example, the n-order polynomial model can be expressed as

ŷk 5 a0 1
Xn
i51

aix
i
k 5 hTk W ð4:6Þ

where

hk 5 ½1; xk; . . .; xnk �T
W 5 ½a0; a1; . . .; an�T

(
ð4:7Þ

Other examples include: the discrete-time Volterra series with finite memory

and order, Hammerstein model, radial basis function (RBF) neural networks with

fixed centers, and so on.

In most cases, the system model is a nonlinear-in-parameter model, whose

output is not linearly related to the parameters. A typical example of nonlinear-in-

parameter model is the multilayer perceptron (MLP) [53]. The MLP, with one

hidden layer, can be generally expressed as follows:

ŷk 5WT
2 φðWT

1 Xk 1 b1Þ1 b2 ð4:8Þ

where Xk is the m3 1 input vector, W1 is the m3 n weight matrix connecting the

input layer with the hidden layer, φð:Þ is the activation function (usually a sigmoid

function), b1 is the n3 1 bias vector for the hidden neurons, W2 is the n3 1 weight
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vector connecting the hidden layer to the output neuron, and b2 is the bias for the

output neuron.

The model can also be created in kernel space. In kernel machine learning (e.g.

support vector machine, SVM), one often uses a reproducing kernel Hilbert space

(RKHS) Hk associated with a Mercer kernel κ:X3X ! ℝ as the hypothesis

space [161, 162]. According to Moore-Aronszajn theorem [174, 175], every Mercer

kernel κ induces a unique function space Hκ, namely the RKHS, whose reprodu-

cing kernel is κ, satisfying: 1) ’ xAX, the function κðx; :ÞAHκ, and 2) ’ xAX,

and for every fAHκ, hf ;κðx; :ÞiHκ
5 f ðxÞ, where h:; :iHκ

denotes the inner product

in Hκ. If Mercer kernel κ is strictly positive-definite, the induced RKHS Hκ will

be universal (dense in the space of continuous functions over X). Assuming the

input signal xkAX, the model in RKHS Hκ can be expressed as

ŷk 5 f ðxkÞ5 hf ;κðxk; :ÞiHκ
ð4:9Þ

where fAHκ is the unknown input�output mapping that needs to be estimated.

This model is a nonparametric function over input space X. However, one can

regard it as a “parameterized” model, where the parameter space is the RKHS Hκ.

The model (4.9) can alternatively be expressed in a feature space (a vector space in

which the training data are embedded). According to Mercer’s theorem, any Mercer

kernel κ induces a mapping ϕ from the input space X to a feature space Fκ.
3 In the

feature space, the inner products can be calculated using the kernel evaluation:

ϕðxÞTϕðx0Þ5κðx; x0Þ ð4:10Þ

The feature space Fκ is isometric-isomorphic to the RKHS Hk. This can be eas-

ily understood by identifying ϕðxÞ5κðx; :Þ and f 5Ω, where Ω denotes a vector in

feature space Fκ, satisfying ’ xAX, ΩTϕðxÞ5 hf ;κðx; :ÞiHk
. Therefore, in feature

space the model (4.9) becomes

ŷk 5ΩTϕðxkÞ ð4:11Þ

This is a linear model in feature space, with ϕðxkÞ as the input, and Ω as the

weight vector. It is worth noting that the model (4.11) is actually a nonlinear model

3 The Mercer theorem states that any reproducing kernel κðx; x0Þ can be expanded as follows [160]:

κ x; x0ð Þ5
XN
i51

λiφiðxÞφiðx0Þ

where λi and φi are the eigenvalues and the eigenfunctions, respectively. The eigenvalues are nonnega-

tive. Therefore, a mapping ϕ can be constructed as

ϕ : X/Fκ

ϕ xð Þ5 ffiffiffiffiffi
λ1

p
φ1ðxÞ;

ffiffiffiffiffi
λ2

p
φ2ðxÞ; . . .

� �T
By construction, the dimensionality of Fκ is determined by the number of strictly positive eigenvalues,

which can be infinite (e.g., for the Gaussian kernel case).
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in input space, since the mapping ϕ is in general a nonlinear mapping. The key

principle behind kernel method is that, as long as a linear model (or algorithm) in

high-dimensional feature space can be formulated in terms of inner products, a non-

linear model (or algorithm) can be obtained by simply replacing the inner product

with a Mercer kernel. The model (4.11) can also be regarded as a “parameterized”

model in feature space, where the parameter is the weight vector ΩAFκ.

4.1.2 Criterion Function

The criterion (risk or cost) function in system identification reflects how well the

model fits the experimental data. In most cases, the criterion is a functional of the

identification error ek, with the form

R5E½lðekÞ� ð4:12Þ

where lð:Þ is a loss function, which usually satisfies

Nonnegativity: lðeÞ$ 0;

Symmetry: lð2 eÞ5 lðeÞ;
Monotonicity: ’ je1j. je2j, lðe1Þ$ lðe2Þ;
Integrability: i.e., lð:Þ is an integrable function.

Typical examples of criterion (4.12) include the mean square error (MSE), mean

absolute deviation (MAD), mean p-power error (MPE), and so on. In practice, the

error distribution is in general unknown, and hence, we have to estimate the expec-

tation value in Eq. (4.12) using sample data. The estimated criterion function is

called the empirical criterion function (empirical risk). Given a loss function lð:Þ,
the empirical criterion function R̂ can be computed as follows:

a. Instantaneous criterion function: R̂5 lðekÞ;
b. Average criterion function: R̂5 1

N

PN
k51

lðekÞ;
c. Weighted average criterion function: R̂5 1

N

PN
k51

γklðekÞ.

Note that for MSE criterion (lðeÞ5 e2), the average criterion function is the

well-known least-squares criterion function (sum of the squared errors).

Besides the criterion functions of form (4.12), there are many other criterion

functions for system identification. In this chapter, we will discuss system identifi-

cation under MEE criterion.

4.1.3 Identification Algorithm

Given a parameterized model, the identification error ek can be expressed as a

function of the parameters. For example, for the linear-in-parameter model (4.1),

we have

ek 5 zk 2 hTk W ð4:13Þ
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which is a linear function of W (assuming zk and hk are known). Similarly, the cri-

terion function R (or the empirical criterion function R̂) can also be expressed as a

function of the parameters, denoted by RðWÞ (or R̂ðWÞ). Therefore, the identifica-

tion criterion represents a hyper-surface in the parameter space, which is called the

performance surface.

The parameter W can be identified through searching the optima (minima or

maxima) of the performance surface. There are two major ways to do this. One is

the batch mode and the other is the online (sequential) mode.

4.1.3.1 Batch Identification

In batch mode, the identification of parameters is done only after collecting a num-

ber of samples or even possibly the whole training data. When these data are avail-

able, one can calculate the empirical criterion function R̂ðWÞ based on the model

structure. And then, the parameter W can be estimated by solving the following

optimization problem:

Ŵ 5 arg min
WAΩW

R̂ðWÞ ð4:14Þ

where ΩW denotes the set of all possible values of W . Sometimes, one can achieve

an analytical solution by setting the gradient4 of R̂ðWÞ to zero, i.e.,

@

@W
R̂ðWÞ5 0 ð4:15Þ

For example, with the linear-in-parameter model (4.1) and under the least-

squares criterion (empirical MSE criterion), we have

R̂ðWÞ5 1

N

XN
k51

e2k

5
1

N

XN
k51

ðzk2hTk WÞ2

5
1

N
ðzN2HNWÞT ðzN 2HNWÞ

ð4:16Þ

where zN 5 ½z1; z2; . . .; zN �T and HN 5 ½h1;h2; . . .;hN �T . And hence,

@

@W
fðzN2HNWÞT ðzN 2HNWÞg 5 0

.ðHT
NHNÞW 5HT

NzN

ð4:17Þ

4 See Appendix H for the calculation of the gradient in vector or matrix form.
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If HT
NHN is a nonsingular matrix, we have

Ŵ 5 ðHT
NHNÞ21HT

NzN ð4:18Þ

In many situations, however, there is no analytical solution for Ŵ , and we have

to rely on nonlinear optimization techniques, such as gradient descent methods,

simulated annealing methods, and genetic algorithms (GAs).

The batch mode approach has some shortcomings: (i) it is not suitable for online

applications, since the identification is performed only after a number of data are

available and (ii) the memory and computational requirements will increase dra-

matically with the increasing amount of data.

4.1.3.2 Online Identification

The online mode identification is also referred to as the sequential or incremental

identification, or adaptive filtering. Compared with the batch mode identification,

the sequential identification has some desirable features: (i) the training data

(examples or observations) are sequentially (one by one) presented to the identifi-

cation procedure; (ii) at any time, only few (usually one) training data are used;

(iii) a training observation can be discarded as long as the identification procedure

for that particular observation is completed; and (iv) it is not necessary to know

how many total training observations will be presented. In this book, our focus is

primarily on the sequential identification.

The sequential identification is usually performed by means of iterative schemes

of the type

Wk 5Wk21 1ΔWk ð4:19Þ

where Wk denotes the estimated parameter at k instant (iteration) and ΔWk denotes

the adjustment (correction) term. In the following, we present several simple online

identification (adaptive filtering) algorithms.

4.1.3.3 Recursive Least Squares Algorithm

Given a linear-in-parameter model, the Recursive Least Squares (RLS) algorithm

recursively finds the least-squares solution of Eq. (4.18). With a sequence of obser-

vations fhi; zigk21
i51 up to and including time k2 1, the least-squares solution is

Wk21 5 ðHT
k21Hk21Þ21HT

k21zk21 ð4:20Þ

When a new observation fhk; zkg becomes available, the parameter estimate

Wk is

Wk 5 ðHT
kHkÞ21HT

k zk ð4:21Þ
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One can derive the following relation between Wk and Wk21:

Wk 5Wk21 1Gkek ð4:22Þ

where ek is the prediction error,

ek 5 zk 2 hTkWk21 ð4:23Þ

and Gk is the gain vector, computed as

Gk 5
Pk21hk

11 hTk Pk21hk
ð4:24Þ

where the matrix P can be calculated recursively as follows:

Pk 5Pk21 2Gkh
T
k Pk21 ð4:25Þ

Equations (4.22)�(4.25) constitute the RLS algorithm.

Compared to most of its competitors, the RLS exhibits very fast convergence.

However, this benefit is achieved at the cost of high computational complexity. If

the dimension of hk is m, then the time and memory complexities of RLS are both

Oðm2Þ.

4.1.3.4 Least Mean Square Algorithm

The Least Mean Square (LMS) algorithm is much simpler than RLS, which is a

stochastic gradient descent algorithm under the instantaneous MSE cost JðkÞ5 e2
k

2
.

The weight update equation for LMS can be simply derived as follows:

Wk 5Wk21 2 η @
@W

e2
k

2

� �
Wk21

5Wk21 2 ηek @
@W ðzk2ŷkÞ
� �

Wk21

5Wk21 1 ηek
@ŷk
@W

� �
Wk21

ð4:26Þ

where η. 0 is the step-size (adaptation gain, learning rate, etc.),5 and the term

@ŷk=@W is the instantaneous gradient of the model output with respect to the weight

vector, whose form depends on the model structure. For a FIR filter (or

5 The step-size is critical to the performance of the LMS. In general, the choice of step-size is a trade-off

between the convergence rate and the asymptotic EMSE [19,20].
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ADALINE), the instantaneous gradient will simply be the input vector Xk. In this

case, the LMS algorithm becomes6

Wk 5Wk21 1 ηekXk ð4:27Þ

The computational complexity of the LMS (4.27) is just OðmÞ, where m is the

input dimension.

If the model is an MLP network, the term @ŷk=@W can be computed by back

propagation (BP), which is a common method of training artificial neural networks

so as to minimize the objective function [53].

There are many other stochastic gradient descent algorithms that are similar to

the LMS. Typical examples include the least absolute deviation (LAD) algorithm

[31] and the least mean fourth (LMF) algorithm [26]. The LMS, LAD, and LMF

algorithms are all special cases of the least mean p-power (LMP) algorithm [30].

The LMP algorithm aims to minimize the p-power of the error, which can be

derived as

Wk 5Wk21 2 η @
@W jekjp
� �

Wk21

5Wk21 2 pηjekjp21 signðekÞ @
@W ðzk2ŷkÞ
� �

Wk21

5Wk21 1 pηjekjp21 signðekÞ @ŷk
@W

� �
Wk21

ð4:28Þ

For the cases p5 1; 2; 4, the above algorithm corresponds to the LAD, LMS,

and LMF algorithms, respectively.

4.1.3.5 Kernel Adaptive Filtering Algorithms

The kernel adaptive filtering (KAF) algorithms are a family of nonlinear adaptive

filtering algorithms developed in kernel (or feature) space [12], by using the linear

structure and inner product of this space to implement the well-established linear

adaptive filtering algorithms (e.g., LMS, RLS, etc.) and to obtain nonlinear filters

in the original input space. They have several desirable features: (i) if choosing a

universal kernel (e.g., Gaussian kernel), they are universal approximators; (ii) under

MSE criterion, the performance surface is quadratic in feature space so gradient

descent learning does not suffer from local minima; and (iii) if pruning the redun-

dant features, they have moderate complexity in terms of computation and memory.

Typical KAF algorithms include the kernel recursive least squares (KRLS) [176],

kernel least mean square (KLMS) [177], kernel affine projection algorithms

(KAPA) [178], and so on. When the kernel is radial (such as the Gaussian kernel),

they naturally build a growing RBF network, where the weights are directly related

6 The LMS algorithm usually assumes an FIR model [19,20].
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to the errors at each sample. In the following, we only discuss the KLMS algo-

rithm. Interesting readers can refer to Ref. [12] for further information about KAF

algorithms.

Let Xk be an m-dimensional input vector. We can transform Xk into a high-

dimensional feature space Fκ (induced by kernel κ) through a nonlinear mapping

ϕ, i.e., ϕk 5ϕðXkÞ. Suppose the model in feature space is given by Eq. (4.11).

Then using the LMS algorithm on the transformed observation sequence fϕk; zig
yields [177]

Ω0 5 0

ek 5 zk 2Ωk21
Tϕk

Ωk 5Ωk21 1 ηekϕk

8><
>: ð4:29Þ

where Ωk denotes the estimated weight vector (at iteration k) in feature space. The

KLMS (4.29) is very similar to the LMS algorithm, except for the dimensionality

(or richness) of the projection space. The learned mapping (model) at iteration k is

the composition of Ωk and ϕ, i.e., fk 5Ωk
Tϕð:Þ. If identifying ϕk 5κðXk; :Þ, we

obtain the sequential learning rule in the original input space:

f0 5 0

ek 5 zk 2 fk21ðXkÞ
fk 5 fk21 1 ηekκðXk; :Þ

8><
>: ð4:30Þ

At iteration k, given an input X, the output of the filter is

fkðXÞ5 η
Xk
j51

ejκðXj;XÞ ð4:31Þ

From Eq. (4.31) we see that, if choosing a radial kernel, the KLMS produces a

growing RBF network by allocating a new kernel unit for every new example with

input Xk as the center and ηek as the coefficient. The algorithm of KLMS is sum-

marized in Table 4.1, and the corresponding network topology is illustrated in

Figure 4.2.

Selecting a proper Mercer kernel is crucial for all kernel methods. In KLMS, the

kernel is usually chosen to be a normalized Gaussian kernel:

κðx; x0Þ5 exp 2
1

2σ2
jjx2 x0jj2

� �
5 expð2 ζjjx2 x0jj2Þ ð4:32Þ

where σ. 0 is the kernel size (kernel width) and ζ5 1=2σ2 is called the kernel

parameter. The kernel size in Gaussian kernel is an important parameter that con-

trols the degree of smoothing and consequently has significant influence on the
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learning performance. Usually, the kernel size can be set manually or estimated in

advance by Silverman’s rule [97]. The role of the step-size in KLMS remains in

principle the same as the step-size in traditional LMS algorithm. Specifically, it

controls the compromise between convergence speed and misadjustment. It has

also been shown in Ref. [177] that the step-size in KLMS plays a similar role as

the regularization parameter.

The main bottleneck of KLMS (as well as other KAF algorithms) is the linear

growing network with each new sample, which poses both computational and

memory issues especially for continuous adaptation scenarios. In order to curb the

network growth and to obtain a compact representation, a variety of sparsification

techniques can be applied, where only the important input data are accepted as the

centers. Typical sparsification criteria include the novelty criterion [179], approxi-

mate linear dependency (ALD) criterion [176], coherence criterion [180], surprise

criterion [181], and so on. The idea of quantization can also be used to yield a com-

pact network with desirable accuracy [182].

Table 4.1 The KLMS Algorithm

Initialization:

Choosing Mercer kernel κ and step-size η
α1 5 ηz1; Cð1Þ5 fX1g; f1 5α1κðX1; :Þ
Computation:

whilefXk; zkg (k. 1) available do

1. Compute the filter output: fk21ðXkÞ5
Pk21

j51

αjκðXj;XkÞ
2. Compute the prediction error: ek 5 zk 2 fk21ðXkÞ
3. Store the new center: CðkÞ5 fCðk2 1Þ;Xkg
4. Compute and store the coefficients: αk 5 ηek
end while

X

y

α1

α2

αk

Xk

X1

X2

Xk−1 αk–1

Figure 4.2 Network topology of

KLMS at iteration k.
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4.2 MEE Identification Criterion

Most of the existing approaches to parameter identification utilized the MSE (or

equivalently, Gaussian likelihood) as the identification criterion function. The MSE

is mathematically tractable and under Gaussian assumption is an optimal criterion

for linear system. However, it is well known that MSE may be a poor descriptor of

optimality for nonlinear and non-Gaussian (e.g., multimodal, heavy-tail, or finite

range distributions) situations, since it constrains only the second-order statistics.

To address this issue, one can select some criterion beyond second-order statistics

that does not suffer from the limitation of Gaussian assumption and can improve

performance in many realistic scenarios. Information theoretic quantities (entropy,

divergence, mutual information, etc.) as identification criteria attract ever-

increasing attention to this end, since they can capture higher order statistics and

information content of signals rather than simply their energy [64]. In the follow-

ing, we discuss the MEE criterion for system identification.

Under MEE criterion, the parameter vector (weight vector) W can be identified

by solving the following optimization problem:

Ŵ 5 arg min
WAΩW

HðekÞ

5 arg min
WAΩW

2

ðN
2N

peðξÞlog peðξÞdξ

5 arg min
WAΩW

Ee½2 log peðekÞ�

ð4:33Þ

where peð:Þ denotes the probability density function (PDF) of error ek 5 zk 2 ŷk. If

using the order-α Renyi entropy (α. 0, α 6¼ 1) of the error as the criterion func-

tion, the estimated parameter will be

Ŵ 5 arg min
WAΩW

HαðekÞ

5 arg min
WAΩW

1

12α
log

ðN
2N

pαe ðξÞdξ

5 arg min
WAΩW

1

12α
log VαðekÞ

5
ðaÞ

arg min
WAΩW

VαðekÞ if α, 1

arg max
WAΩW

VαðekÞ if α. 1

8><
>:

ð4:34Þ

where ðaÞ follows from the monotonicity of logarithm function, VαðekÞ is the

order-α information potential (IP) of the error ek. If α, 1, minimizing the order-α
Renyi entropy is equivalent to minimizing the order-α IP; while if α. 1, minimiz-

ing the order-α Renyi entropy is equivalent to maximizing the order-α IP. In
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practical application, we often use the order-α IP instead of the order-α Renyi

entropy as the criterion function for identification.

Further, if using the φ-entropy of the error as the criterion function, we have

Ŵ 5 arg min
WAΩW

HφðekÞ

5 arg min
WAΩW

ðN
2N

φ½peðξÞ�dξ
	 


5 arg min
WAΩW

Ee½ψðpeðekÞÞ�

ð4:35Þ

where ψðxÞ5φðxÞ=x. Note that the φ-entropy criterion includes the Shannon

entropy (φðxÞ52 x log x) and order-α information potential (φðxÞ5 signð12αÞxα)
as special cases.

The error entropy is a functional of error distribution. In practice, the error dis-

tribution is usually unknown to us, and so is the error entropy. And hence, we have

to estimate the error entropy from error samples, and use the estimated error

entropy (called the empirical error entropy) as a criterion to identify the system

parameter. In the following, we present several common approaches to estimating

the entropy from sample data.

4.2.1 Common Approaches to Entropy Estimation

A straight way to estimate the entropy is to estimate the underlying distribution

based on available samples, and plug the estimated distributions into the entropy

expression to obtain the entropy estimate (the so-called “plug-in approach”) [183].

Several plug-in estimates of the Shannon entropy (extension to other entropy defi-

nitions is straightforward) are presented as follows.

4.2.1.1 Integral Estimate

Denote p̂NðxÞ the estimated PDF based on sample SN 5 fx1; x2; . . .; xNg. Then the

integral estimate of entropy is of the form

HN 52

ð
AN

p̂NðxÞlog p̂NðxÞdx ð4:36Þ

where AN is a set typically used to exclude the small or tail values of p̂NðxÞ. The evalu-
ation of Eq. (4.36) requires numerical integration and is not an easy task in general.

4.2.1.2 Resubstitution Estimate

The resubstitution estimate substitutes the estimated PDF into the sample mean

approximation of the entropy measure (approximating the expectation value by its

sample mean), which is of the form
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HN 52
1

N

XN
i51

log p̂NðxiÞ ð4:37Þ

This estimation method is considerably simpler than the integral estimate, since

it involves no numerical integration.

4.2.1.3 Splitting Data Estimate

Here, we decompose the sample SN 5 fx1; x2; . . .; xNg into two sub samples:

SL 5 fx1; . . .; xLg, SM 5 fx�1; . . .; x�Mg, N5 L1M. Based on subsample SL, we obtain

a density estimate p̂LðxÞ, and then, using this density estimate and the second sub-

sample SM , we estimate the entropy by

HN 52
1

M

XM
i51

I½x�i AAL�log p̂Lðx�i Þ ð4:38Þ

where I½:� is the indicator function and the set AL 5 fx : p̂LðxÞ$ aLg (0, aL ! 0).

The splitting data estimate is different from the resubstitution estimate in that

it uses different samples to estimate the density and to calculate the sample

mean.

4.2.1.4 Cross-validation Estimate

If p̂N;i denotes a density estimate based on sample SN;i 5 SN 2 fxig (i.e., leaving xi
out), then the cross-validation estimate of entropy is

HN 52
1

N

XN
i51

I½xiAAN;i�log p̂N;iðxiÞ ð4:39Þ

A key step in plug-in estimation is to estimate the PDF from sample data. In the

literature, there are mainly two approaches for estimating the PDF of a random var-

iable based on its sample data: parametric and nonparametric. Accordingly, there

are also parametric and nonparametric entropy estimations. The parametric density

estimation assumes a parametric model of the density and estimates the involved

parameters using classical estimation methods like the maximum likelihood (ML)

estimation. This approach needs to select a suitable parametric model of the den-

sity, which depends upon some prior knowledge. The nonparametric density esti-

mation, however, does not need to select a parametric model, and can estimate the

PDF of any distribution.

The histogram density estimation (HDE) and kernel density estimation (KDE)

are two popular nonparametric density estimation methods. Here we only discuss

the KDE method (also referred to as Parzen window method), which has been

widely used in nonparametric regression and pattern recognition. Given a set of
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independent and identically distributed (i.i.d.) samples7 fx1; . . .; xNg drawn from

pðxÞ, the KDE for pðxÞ is given by [97]

p̂NðxÞ5
1

N

XN
i51

Khðx2 xiÞ ð4:40Þ

where Khð:Þ denotes a kernel function8 with width h, satisfying the following

conditions:

KhðxÞ$ 0Ð1N
2N KhðxÞ5 1

KhðxÞ5Kðx=hÞ=h

8>><
>>: ð4:41Þ

where Kð:Þ is the kernel function with width 1. To make the estimated PDF smooth,

the kernel function is usually selected to be a continuous and differentiable (and

preferably symmetric and unimodal) function. The most widely used kernel func-

tion in KDE is the Gaussian function:

KhðxÞ5
1ffiffiffiffiffiffi
2π

p
h
exp 2

x2

2h2

� �
ð4:42Þ

The kernel width of the Gaussian kernel can be optimized by the ML principle,

or selected according to rules-of-thumb, such as Silverman’s rule [97].

With a fixed kernel width h, we have

limN!N p̂NðxÞ5 pðxÞ � KhðxÞ ð4:43Þ

where � denotes the convolution operator. Using a suitable annealing rate for

the kernel width, the KDE can be asymptotically unbiased and consistent.

Specifically, if limN!N hN 5 0 and limN!N NhN 5N, then limN!N p̂NðxÞ5 pðxÞ
in probability [98].

In addition to the plug-in methods described previously, there are many other

methods for entropy estimation, such as the sample-spacing method and the nearest

neighbor method. In the following, we derive the sample-spacing estimate. First,

let us express the Shannon entropy as [184]

HðpÞ5
ð1
0

log
@

@P
F21ðPÞ

� �
dP ð4:44Þ

7 In practical applications, if the samples are not i.i.d., the KDE method can still be applied.
8 The kernel function for density estimation is not necessarily a Mercer kernel. In this book, to make a

distinction between these two types of kernels, we denote them by K and κ, respectively.
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where @
@x FðxÞ5 pðxÞ. Using the slope of the curve F21ðPÞ to approximate the deriv-

ative, we have

@

@P
F21ðPÞ � ðxN;i1m 2 xN;iÞ

m=N
ð4:45Þ

where xN;1 , xN;2 ,?, xN;N is the order statistics of the sample

SN 5 fx1; x2; . . .; xNg, and ðxN;i1m 2 xN;iÞ is the m-order sample spacing

(1# i, i1m#N). Hence, the sample-spacing estimate of the entropy is

Hm;N 5
1

N

XN2m

i51

log
N

m
ðxN;i1m 2 xN;iÞ

� �
ð4:46Þ

If adding a correction term to compensate the asymptotic bias, we get

Hm;N 5
1

N

XN2m

i51

log
N

m
ðxN;i1m 2 xN;iÞ

� �
1ψðmÞ1 log m ð4:47Þ

where ψðxÞ5 ðlog ΓðxÞÞ0 is the Digamma function (Γð:Þ is the Gamma function).

4.2.2 Empirical Error Entropies Based on KDE

To calculate the empirical error entropy, we usually adopt the resubstitution estima-

tion method with error PDF estimated by KDE. This approach has some attractive

features: (i) it is a nonparametric method, and hence requires no prior knowledge

on the error distribution; (ii) it is computationally simple, since no numerical inte-

gration is needed; and (iii) if choosing a smooth and differentiable kernel function,

the empirical error entropy (as a function of the error sample) is also smooth and

differentiable (this is very important for the calculation of the gradient).

Suppose now a set of error samples Se 5 fe1; e2; . . .; eNg are available. By KDE,

the error density can be estimated as

p̂NðeÞ5
1

N

XN
i51

Khðe2 eiÞ ð4:48Þ

Then by resubstitution estimation method, we obtain the following empirical

error entropies:

1. Empirical Shannon entropy

ĤðeÞ52
1

N

XN
j51

log
1

N

XN
i51

Khðej 2 eiÞ
 !

ð4:49Þ

76 System Parameter Identification



2. Empirical order-α Renyi entropy

ĤαðeÞ5
1

12α
log V̂αðeÞ5

1

12α
log

1

N

XN
j51

1

N

XN
i51

Khðej2eiÞ
 !α21

8<
:

9=
; ð4:50Þ

where V̂αðeÞ is the empirical order-α IP, i.e.,

V̂αðeÞ5
1

N

XN
j51

1

N

XN
i51

Khðej2eiÞ
 !α21

ð4:51Þ

3. Empirical φ-entropy

ĤφðeÞ5
1

N

XN
j51

ψ
1

N

XN
i51

Khðej 2 eiÞ
 !

ð4:52Þ

It is worth noting that for quadratic information potential (QIP) (α5 2), if

choosing Gaussian kernel function, the resubstitution estimate will be identical to

the integral estimate but with kernel width
ffiffiffi
2

p
h instead of h. Specifically, if Kh is

given by Eq. (4.42), we can derive

ðN
2N

1
N

XN
i51

Khðe2eiÞ
 !2

de

5
1

N2

ðN
2N

XN
j51

XN
i51

Khðe2 ejÞKhðe2 eiÞ
 !

de

5
1

N2

XN
j51

XN
i51

ðN
2N

Khðe2 ejÞKhðe2 eiÞde

5
1

N2

XN
j51

XN
i51

K ffiffi
2

p
hðej 2 eiÞ

ð4:53Þ

This result comes from the fact that the integral of the product of two Gaussian

functions can be exactly evaluated as the value of the Gaussian function computed

at the difference of the arguments and whose variance is the sum of the variances

of the two original Gaussian functions. From Eq. (4.53), we also see that the QIP

can be simply calculated by the double summation over error samples. Due to this

fact, when using order-α IP, we usually set α5 2.

In the following, we present some important properties of the empirical error

entropy, and our focus is mainly on the order-α Renyi entropy (or order-α IP)

[64,67].

Property 1: Ĥαðe1 cÞ5 ĤαðeÞ.
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Proof: Let ~e5 e1 c, where cAℝ is an arbitrary constant, ~ei 5 ei 1 c; i5 1; 2; . . .;N,
then we have

Ĥαð ~eÞ5
1

12α
log

1

Nα

XN
j51

XN
i51

Khð ~ej2 ~eiÞ
 !α21

8<
:

9=
;

5
1

12α
log

1

Nα

XN
j51

XN
i51

Khððej1cÞ2ðei1cÞÞ
 !α21

8<
:

9=
;

5
1

12α
log

1

Nα

XN
j51

XN
i51

Khðej2eiÞ
 !α21

8<
:

9=
;

5 ĤαðeÞ

ð4:54Þ

Remark: Property 1 shows that the empirical error entropy is also shift-invariant.

In system identification with MEE criterion, we usually set a bias at the model out-

put to achieve a zero-mean error.

Property 2: lim
α!1

ĤαðeÞ5 ĤðeÞ, where ĤðeÞ52 1
N

PN
j51

log 1
N

PN
i51

Khðej 2 eiÞ
� �

is the

empirical Shannon entropy.

Proof:

lim
α!1

ĤαðeÞ5 lim
α!1

1

12α
log

1

N

XN
j51

1
N

XN
i51

Khðej2eiÞ
 !α21

0
@

1
A

5

lim
α!1

@

@α
log

1

N

XN
j51

1
N

XN
i51

Khðej2eiÞ
 !α21

0
@

1
A

8<
:

9=
;

lim
α!1

2 1

52 lim
α!1

1

N

XN
j51

1
N

XN
i51

Khðej2eiÞ
 !α21

log
1

N

XN
i51

Khðej 2 eiÞ
0
@

1
A

0
@

1
A

1

N

XN
j51

1
N

XN
i51

Khðej2eiÞ
 !α21

0
@

1
A

52
1

N

XN
j51

log
1

N

XN
i51

Khðej 2 eiÞ
0
@

1
A5 ĤðeÞ

ð4:55Þ
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Property 3: Let’s denote ĤαðeÞ5 Ĥα;hðeÞ (h is the kernel width). Then ’ cAℝ,
c 6¼ 0, we have Ĥα;jcjhðceÞ5 Ĥα;hðeÞ1 logjcj.

Proof:

Ĥα;jcjhðceÞ5
1

12α
log

1

N

XN
j51

1
N

XN
i51

Kjcjhðcej2ceiÞ
 !α21

0
@

1
A

5
ðaÞ 1

12α
log

1

N

XN
j51

1
N

XN
i51

1
jcjKh

cej2cei
c

� � !α21
0
@

1
A

5
1

12α
log

1

Njcjα21

XN
j51

1
N

XN
i51

Khðej2eiÞ
 !α21

0
@

1
A

5 Ĥα;hðeÞ1 logjcj

ð4:56Þ

where (a) is because that ’ c. 0, the kernel function KhðxÞ satisfies

KchðxÞ5Khðx=cÞ=c.

Property 4: lim
N!N

ĤαðeÞ ! HαðêÞ$HαðeÞ, where ê is a random variable with PDF

pe � Kh (� denotes the convolution operator).

Proof: According to the theory of KDE [97,98], we have

lim
N!N

p̂N ! pe � Kh ð4:57Þ

Hence, lim
N!N

ĤαðeÞ ! HαðêÞ. Since the PDF of the sum of two independent ran-

dom variables is equal to the convolution of their individual PDFs, ê can be consid-

ered as the sum of the error e and another random variable that is independent of

the error and has PDF Kh. And since the entropy of the sum of two independent

random variables is no less than the entropy of each individual variable, we have

HαðêÞ$HαðeÞ.

Remark: Property 4 implies that minimizing the empirical error entropy will mini-

mize an upper bound of the actual error entropy. In general, an identification algo-

rithm seeks extrema (either minimum or maximum) of the cost function,

independently to its actual value, so the dependence on estimation error is decreased.

Property 5: If Khð0Þ5max
x

KhðxÞ, then ĤαðeÞ$ 2 log Khð0Þ, with equality if

e1 5 e2 5?5 eN .
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Proof: Consider the case where α. 1 (α, 1 is similar), we have

ĤαðeÞ5
1

12α
log

1

Nα

XN
j51

XN
i51

Khðej2eiÞ
 !α21

8<
:

9=
;

$
1

12α
log

1

Nα

XN
j51

XN
i51

Khð0Þ
 !α21

8<
:

9=
;

52 log Khð0Þ

ð4:58Þ

If ’ i; j, ej 2 ei 5 0, i.e., e1 5 e2 5?5 eN , the equality will hold.

Remark: Property 5 suggests that if the kernel function reaches its maximum value

at zero, then when all the error samples have the same value, the empirical error

entropy reaches minimum, and in this case the uncertainty of the error is minimum.

Property 6: If the kernel function Khð:Þ is continuously differentiable, symmetric,

and unimodal, then the empirical error entropy is smooth at the global minimum of

Property 5, that is, Ĥα has zero-gradient and positive semidefinite Hessian matrix

at e5 ½e1; . . .; eN �T 5 0.

Proof:

@Ĥα

@ek
5

1

12α
@V̂α=@ek

V̂α

@2Ĥα

@el@ek
5

1

12α
ð@2V̂α=@el@ekÞ2 ð@V̂α=@ekÞð@V̂α=@elÞ

V̂
2

α

8>>>>><
>>>>>:

ð4:59Þ

If e5 0, we can calculate

V̂αje50 5Kα21
h ð0Þ

@V̂α

@ek
je50 5

ðα2 1Þ
Nα Nα21Kα22

h ð0ÞK 0
hð0Þ2Nα21Kα22

h ð0ÞK 0
hð0Þ

� �
5 0

@2V̂α

@2ek
je50 5

ðα2 1ÞðN2 1ÞKα23
h ð0Þ

N2
ðα2 2ÞK 02

h ð0Þ1 2Khð0ÞK 00
h ð0Þ

� �
@2V̂α

@el@ek
je50 52

ðα2 1ÞKα23
h ð0Þ

N2
ðα2 2ÞK 02

h ð0Þ1 2Khð0ÞK 00
h ð0Þ

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:60Þ
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Hence, the gradient vector ð@Ĥα=@eÞje50 5 0, and the Hessian matrix is

@2Ĥα

@el@ek
je50 5

2 ðN2 1ÞK2α21
h ð0Þ½ðα2 2ÞK 02

hð0Þ1 2Khð0ÞK 00
h ð0Þ�=N2; l5 k

K2α21
h ð0Þ½ðα2 2ÞK 02

hð0Þ1 2Khð0ÞK 00
h ð0Þ�=N2; l 6¼ k

	
ð4:61Þ

whose eigenvalue�eigenvector pairs are

f0; ½1; . . .; 1�Tg; faN; ½1;21; 0; . . .; 0�Tg; faN; ½1; 0;21; . . .; 0�Tg; . . . ð4:62Þ

where a52K2α21
h ð0Þ½ðα2 2ÞK 02

hð0Þ1 2Khð0ÞK 00
h ð0Þ�=N2. According to the

assumptions we have a$ 0, therefore this Hessian matrix is positive semidefinite.

Property 7: With Gaussian kernel, the empirical QIP V̂2ðeÞ can be expressed as

the squared norm of the mean vector of the data in kernel space.

Proof: The Gaussian kernel is a Mercer kernel, and can be written as an inner

product in the kernel space (RKHS):

Khðei 2 ejÞ5 hϕðeiÞ;ϕðejÞiHKh
ð4:63Þ

where ϕð:Þ defines the nonlinear mapping between input space and kernel space

HKh
. Hence the empirical QIP can also be expressed in terms of an inner product

in kernel space:

V̂2ðeÞ5 1

N2

XN
i51

XN
j51

Khðej 2 eiÞ

5
1

N2

XN
i51

XN
j51

hϕðeiÞ;ϕðejÞiHKh

5 1
N

XN
i51

ϕðeiÞ; 1N
XN
i51

ϕðeiÞ
* +

HKh

5mTm5 :m:2

ð4:64Þ

where m5 1
N

PN
i51

ϕðeiÞ is the mean vector of the data in kernel space.

In addition to the previous properties, the literature [102] points out that the empiri-

cal error entropy has the dilation feature, that is, as the kernel width h increases, the

performance surface (surface of the empirical error entropy in parameter space) will
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become more and more flat, thus leading to the local extrema reducing gradually and

even disappearing. Figure 4.3 illustrates the contour plots of a two-dimensional perfor-

mance surface of ADALINE parameter identification based on the order-α IP crite-

rion. It is clear to see that the IPs corresponding to different α values all have the

feature of dilation. The dilation feature implies that one can obtain desired perfor-

mance surface by means of proper selection of the kernel width.

4.3 Identification Algorithms Under MEE Criterion

4.3.1 Nonparametric Information Gradient Algorithms

In general, information gradient (IG) algorithms refer to the gradient-based identifi-

cation algorithms under MEE criterion (i.e., minimizing the empirical error

entropy), including the batch information gradient (BIG) algorithm, sliding infor-

mation gradient algorithm, forgetting recursive information gradient (FRIG) algo-

rithm, and stochastic information gradient (SIG) algorithm. If the empirical error

entropy is estimated by nonparametric approaches (like KDE), then they are called

the nonparametric IG algorithms. In the following, we present several nonparamet-

ric IG algorithms that are based on φ-entropy and KDE.

h = 0.1, α = 1.5 h = 0.1, α = 2.0 h = 0.1, α = 3.0

h = 0.5, α = 1.5 h = 0.5, α = 2.0 h = 0.5, α = 3.0

h = 1.0, α = 1.5 h = 1.0, α = 2.0 h = 1.0, α = 3.0
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Figure 4.3 Contour plots of a two-dimensional performance surface of ADALINE

parameter identification based on the order-α IP criterion

(adopted from Ref. [102]).
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4.3.1.1 BIG Algorithm

With the empirical φ-entropy as the criterion function, the BIG identification algo-

rithm is derived as follows:

Wk 5Wk21 2 η
@

@W
ĤφðeÞ

5Wk21 2
η
N

@

@W

XN
j51

ψ
1

N

XN
i51

Khðej 2 eiÞ
0
@

1
A

8<
:

9=
;

5Wk21 2
η
N2

XN
j51

ψ0 1

N
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i51

Khðej 2 eiÞ
0
@

1
AXN

i51

K 0
hðej 2 eiÞ

@ej
@W

2
@ei
@W

0
@

1
A

0
@

1
A

8<
:

9=
;

5Wk21 1
η
N2

XN
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ψ0 1

N
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0
@

1
A

8<
:

9=
;

ð4:65Þ

where η is the step-size, N is the number of training data, ψ0ð:Þ and K 0
hð:Þ denote,

respectively, the first-order derivatives of functions ψð:Þ and Khð:Þ. The gradient

@ŷi=@W of the model output with respect to the parameter W depends on the spe-

cific model structure. For example, if the model is an ADALINE or FIR filter, we

have @ŷi=@W 5Xi. The reason for the algorithm named as the BIG algorithm is

because that the empirical error entropy is calculated based on all the training data.

Given a specific φ function, we obtain a specific algorithm:

1. φðxÞ52 x log x (Shannon entropy)

Wk 5Wk21 2
η
N

XN
j51

XN
i51

Khðej2eiÞ
 !21XN

i51

K 0
hðej 2 eiÞ

@ŷj
@W

2
@ŷi
@W

� �� �8<
:

9=
; ð4:66Þ

2. φðxÞ5 signð12αÞxα (Corresponding to order-α information potential)

Wk 5Wk21 1 signð12αÞ ηðα2 1Þ
Nα

3
XN
j51

XN
i51

Khðej2eiÞ
 !α22XN

i51

K 0
hðej 2 eiÞ
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@ŷi
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@

1
A
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:

9=
;

ð4:67Þ

In above algorithms, if the kernel function is Gaussian function, the derivative

K 0
hðej 2 eiÞ will be

K 0
hðej 2 eiÞ52

1

h2
ðej 2 eiÞKhðej 2 eiÞ ð4:68Þ
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The step-size η is a crucial parameter that controls the compromise between conver-

gence speed and misadjustment, and has significant influence on the learning (identifi-

cation) performance. In practical use, the selection of step-size should guarantees the

stability and convergence rate of the algorithm. To further improve the performance,

the step-size η can be designed as a variable step-size. In Ref. [105], a self-adjusting

step-size (SAS) was proposed to improve the performance of QIP criterion, i.e.,

ηk 5μðV̂2ð0Þ2 V̂2ðeÞÞ ð4:69Þ

where V̂2ð0Þ5Khð0Þ and Khð:Þ is a symmetric and unimodal kernel function (hence

V̂2ð0Þ$ V̂2ðeÞ).
The kernel width h is another important parameter that controls the smoothness of

the performance surface. In general, the kernel width can be set manually or deter-

mined in advance by Silverman’s rule. To make the algorithm converge to the global

solution, one can start the algorithm with a large kernel width and decrease this param-

eter slowly during the course of adaptation, just like in stochastic annealing. In Ref.

[185], an adaptive kernel width was proposed to improve the performance.

The BIG algorithm needs to acquire in advance all the training data, and hence

is not suitable for online identification. To address this issue, one can use the slid-

ing information gradient algorithm.

4.3.1.2 Sliding Information Gradient Algorithm

The sliding information gradient algorithm utilizes a set of recent error samples to

estimate the error entropy. Specifically, the error samples used to calculate the error

entropy at time k is as follows9 :

fek2L11; . . .; ek21; ekg ð4:70Þ

where L denotes the sliding data length (L,N). Then the error entropy at time k

can be estimated as

Ĥφ;kðeÞ5
1

L

Xk
j5k2L11

ψ
1

L

Xk
i5k2L11

Khðej 2 eiÞ
 !

ð4:71Þ

And hence, the sliding information gradient algorithm can be derived as

Wk 5Wk21 2 η
@

@W
Ĥφ;kðeÞ5Wk21 1

η
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Xk
j5k2L11

ψ0 1
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Khðej 2 eiÞ
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8<
:

9=
;

ð4:72Þ

9 It should be noted that the error samples at time k are not necessarily to be a tap delayed sequence. A

more general expression of the error samples can be e1;k ; e2;k; . . .; eL;k
� �

.
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For the case φðxÞ52 x2 (corresponding to QIP), the above algorithm becomes

Wk 5Wk21 2
η
L2

Xk
j5k2L11

Xk
i5k2L11

K 0
hðej 2 eiÞ

@ŷj
@W

2
@ŷi
@W

� �� �
ð4:73Þ

4.3.1.3 FRIG Algorithm

In the sliding information gradient algorithm, the error entropy can be estimated by

a forgetting recursive method [64]. Assume at time k2 1 the estimated error PDF

is p̂k21ðeÞ, then the error PDF at time k can be estimated as

p̂kðeÞ5 ð12λÞp̂k21ðeÞ1λKhðe2 ekÞ ð4:74Þ

where λ is the forgetting factor. Therefore, we can calculate the empirical error

entropy as follows:

Ĥφ;kðeÞ5
1

L

Xk
j5k2L11

ψðp̂kðejÞÞ

5
1

L

Xk
j5k2L11

ψ½ð12λÞp̂k21ðejÞ1λKhðej 2 ekÞ�
ð4:75Þ

If φðxÞ52 x2 (ψðxÞ52 x), there exists a recursive form [186]:

V̂2;kðeÞ5 ð12λÞV̂2;k21ðeÞ1
λ
L

Xk
j5k2L11

Khðej 2 ekÞ ð4:76Þ

where V̂2;kðeÞ is the QIP at time k. Thus, we have the following algorithm:

Wk 5Wk21 1 η
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@ŷj
@W

2
@ŷk
@W

0
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1
A
ð4:77Þ

namely the FRIG algorithm. Compared with the sliding information gradient algo-

rithm, the FRIG algorithm is computationally simpler and is more suitable for non-

stationary system identification.
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4.3.1.4 SIG Algorithm

In the empirical error entropy of (4.71), if dropping the outer averaging operator

(1=L
Pk

j5k2L11ð:Þ), one may obtain the instantaneous error entropy at time k:

Ĥφ;kðeÞ5ψ
1

L

Xk
i5k2L11

Khðek 2 eiÞ
 !

ð4:78Þ

The instantaneous error entropy is similar to the instantaneous error cost

R̂5 lðekÞ, as both are obtained by removing the expectation operator (or averaging

operator) from the original criterion function. The computational cost of the instan-

taneous error entropy (4.78) is 1=L of that of the empirical error entropy of

Eq. (4.71). The gradient identification algorithm based on the instantaneous error

entropy is called the SIG algorithm, which can be derived as
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ð4:79Þ

If φðxÞ52 x log x, we obtain the SIG algorithm under Shannon entropy

criterion:

Wk 5Wk21 2
η
L
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L

Xk
i5k2L11

Khðek2eiÞ
 !21 Xk
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ð4:80Þ

If φðxÞ52 x2, we get the SIG algorithm under QIP criterion:

Wk 5Wk21 2
η
L

Xk
i5k2L11

K 0
hðek 2 eiÞ

@ŷk
@W

2
@ŷi
@W

� �� �
ð4:81Þ

The SIG algorithm (4.81) is actually the FRIG algorithm with λ5 1.

4.3.2 Parametric IG Algorithms

In IG algorithms described above, the error distribution is estimated by non-

parametric KDE approach. With this approach, one is often confronted with the
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problem of how to choose a suitable value of the kernel width. An inappropri-

ate choice of width will significantly deteriorate the performance of the algo-

rithm. Though the effects of the kernel width on the shape of the performance

surface and the eigenvalues of the Hessian at and around the optimal solution

have been carefully investigated [102], at present the choice of the kernel width

is still a difficult task. Thus, a certain parameterized density estimation, which

does not involve the choice of kernel width, sometimes might be more practi-

cal. Especially, if some prior knowledge about the data distribution is available,

the parameterized density estimation may achieve a better accuracy than non-

parametric alternatives.

Next, we discuss the parametric IG algorithms that adopt parametric approaches

to estimate the error distribution. To simplify the discussion, we only present the

parametric SIG algorithm.

In general, the SIG algorithm can be expressed as

Wk 5Wk21 2 η
@

@W
ψðp̂ðekÞÞ ð4:82Þ

where p̂ðekÞ is the value of the error PDF at ek estimated based on the error samples

fek2L11; . . .; ek21; ekg. By KDE approach, we have

p̂ðekÞ5
1

L

Xk
i5k2L11

Khðek 2 eiÞ ð4:83Þ

Now we use a parametric approach to estimate p̂ðekÞ. Let’s consider the expo-

nential (maximum entropy) PDF form:

pðeÞ5 exp 2λ0 2
XK
r51

λrgrðeÞ
 !

ð4:84Þ

where the parameters λr (r5 0; 1; . . .;K) can be estimated by some classical esti-

mation methods like the ML estimation. After obtaining the estimated parameter

values λ̂r, one can calculate p̂ðekÞ as

p̂ðekÞ5 exp 2λ̂0 2
XK
r51

λ̂rgrðekÞ
 !

ð4:85Þ

Substituting Eq. (4.85) into Eq. (4.82), we obtain the following parametric SIG

algorithm:

Wk 5Wk21 2 η
@

@W
ψ exp 2λ̂0 2

XK
r51

λ̂rgrðekÞ
 ! !

ð4:86Þ
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If adopting Shannon entropy (ψðxÞ52 logðxÞ), the algorithm becomes

Wk 5Wk21 1 η
@

@W
log exp 2λ̂0 2

XK
r51

λ̂rgrðekÞ
 ! !

5Wk21 1 η
@
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2λ̂0 2

XK
r51

λ̂rgrðekÞ
 !

5Wk21 2 η
XK
r51

λ̂rg
0
rðekÞ @ek

@W

5Wk21 1 η
XK
r51

λ̂rg
0
rðekÞ

@ŷk
@W

ð4:87Þ

The selection of the PDF form is very important. Some typical PDF forms are

as follows [187�190]:

1. pðeÞ5 expð2λ0 2λ1e2λ2e
2 2λ3 logð11 e2Þ2λ4 sinðeÞ2λ5 cosðeÞÞ

2. pðeÞ5 expð2λ0 2λ1e2λ2e
2 2λ3 logð11 e2ÞÞ

3. Generalized Gaussian density (GGD) model [191]:

pðeÞ5 α
2βΓ ð1=αÞ expð2 ðje2μj=βÞαÞ ð4:88Þ

where β5σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ ð1=αÞ=Γ ð3=αÞ

p
, σ. 0 is the standard deviation, and Γ ð:Þ is the

Gamma function:

Γ ðzÞ5
ðN
0

xz21e2x dx; z. 0 ð4:89Þ

In the following, we present the SIG algorithm based on GGD model.

The GGD model has three parameters: location (mean) parameter μ, shape

parameter α, and dispersion parameter β. It has simple yet flexible functional forms

and could approximate a large number of statistical distributions, and is widely

used in image coding, speech recognition, and BSS, etc. The GGD densities

include Gaussian (α5 2) and Laplace (α5 1) distributions as special cases.

Figure 4.4 shows the GGD distributions for several shape parameters with zero

mean and deviation 1:0. It is evident that smaller values of the shape parameter cor-

respond to heavier tails and therefore to sharper distributions. In the limiting cases,

as α ! N, the GGD becomes close to the uniform distribution, whereas as

α ! 01 , it approaches an impulse function (δ-distribution).
Utilizing the GGD model to estimate the error distribution is actually to estimate

the parameters μ, α, and β based on the error samples. Up to now, there are many

methods on how to estimate the GGD parameters [192]. Here, we only discuss the

moment matching method (method of moments).
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The order-r absolute central moment of GGD distribution can be calculated as

mr 5E½jX2μjr�5
ð1N

2N
jx2μjrpðxÞdx5βrΓ ððr1 1Þ=αÞ=Γ ð1=αÞ ð4:90Þ

Hence we have

mrffiffiffiffiffiffiffi
m2r

p 5
Γ ððr1 1Þ=αÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ ðð2r1 1Þ=αÞΓ ð1=αÞ
p ð4:91Þ

The right-hand side of Eq. (4.91) is a function of α, denoted by RrðαÞ. Thus the
parameter α can be expressed as

α5R21
r mr=

ffiffiffiffiffiffiffi
m2r

p
 � ð4:92Þ

where R21
r ð:Þ is the inverse of function Rrð:Þ. Figure 4.5 shows the curves of the

inverse function y5R21
r ðxÞ when r5 1; 2.

According to Eq. (4.92), based on the moment matching method one can esti-

mate the parameters μ, α, and β as follows:
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@
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A

β̂k 5
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1

L

Xk
i5k2L11

ðei2μ̂kÞ2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s

8>>>>>>>>>>>><
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ð4:93Þ
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Figure 4.4 GGD distributions

for different shape parameters α
(μ5 0, σ5 1:0).
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where the subscript k represents that the values are estimated based on the error

samples fek2L11; . . .; ek21; ekg. Thus p̂ðekÞ will be

p̂ðekÞ5
α̂k

2β̂kΓ ð1=α̂kÞ
exp 2

jek2μ̂kj
β̂k

 !α̂k

0
@

1
A ð4:94Þ

Substituting Eq. (4.94) into Eq. (4.82) and letting ψðxÞ52 log x (Shannon

entropy), we obtain the SIG algorithm based on GGD model:

Wk 5Wk21 2 η
@

@W
2 log p̂ðekÞ
� �

5Wk21 1 η
α̂kjek 2 μ̂kjα̂k21signðek 2 μ̂kÞ

β̂k

α̂k

@ŷk
@W

ð4:95Þ

where μ̂k, α̂k, and β̂k are calculated by Eq. (4.93).

To make a distinction, we denote “SIG-kernel” and “SIG-GGD” the SIG algo-

rithms based on kernel approach and GGD densities, respectively. Compared with

the SIG-kernel algorithm, the SIG-GGD just needs to estimate the three parameters

of GGD density, without resorting to the choice of kernel width and the calculation

of kernel function.

Comparing Eqs. (4.95) and (4.28), we find that when μ̂k � 0, the SIG-GGD

algorithm can be considered as an LMP algorithm with adaptive order α̂k and vari-

able step-size η=β̂k

α̂k

. In fact, under certain conditions, the SIG-GGD algorithm

will converge to a certain LMP algorithm with fixed order and step-size. Consider

the FIR system identification, in which the plant and the adaptive model are both

FIR filters with the same order, and the additive noise fnkg is zero mean, ergodic,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

x

y

r = 1
r = 2

Figure 4.5 Inverse

functions y5R21
r ðxÞ

(r5 1; 2).
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and stationary. When the model weight vector Wk converges to the neighborhood

of the plant weight vector W�, we have

ek 5 zk 2 ŷk 5 ~W
T

k Xk 1 nk � nk ð4:96Þ

where ~Wk 5W� 2Wk is the weight error vector. In this case, the estimated values

of the parameters in SIG-GGD algorithm will be
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ð4:97Þ

Since noise fnkg is an ergodic and stationary process, if L is large enough, the

estimated values of the three parameters will tend to some constants, and conse-

quently, the SIG-GGD algorithm will converge to a certain LMP algorithm with

fixed order and step-size. Clearly, if noise nk is Gaussian distributed, the SIG-GGD

algorithm will converge to the LMS algorithm (α̂k � 2), and if nk is Laplacian dis-

tributed, the algorithm will converge to the LAD algorithm (α̂k � 1). In Ref. [28],

it has been shown that under slow adaptation, the LMS and LAD algorithms are,

respectively, the optimum algorithms for the Gaussian and Laplace interfering

noises. We may therefore conclude that the SIG-GGD algorithm has the ability to

adjust its parameters so as to automatically switch to a certain optimum algorithm.

There are two points that deserve special mention concerning the implementa-

tion of the SIG-GGD algorithm: (i) since there is no analytical expression, the cal-

culation of the inverse function R21
r ð:Þ needs to use look-up table or some

interpolation method and (ii) in order to avoid too large gradient and ensure the sta-

bility of the algorithm, it is necessary to set an upper bound on the parameter α̂k.

4.3.3 Fixed-Point Minimum Error Entropy Algorithm

Given a mapping f : A ! A, the fixed points are solutions of iterative equation

x5 f ðxÞ, xAA. The fixed-point (FP) iteration is a numerical method of computing

fixed points of iterated functions. Given an initial point x0AA, the FP iteration

algorithm is

xk11 5 f ðxkÞ; k5 0; 1; 2; . . . ð4:98Þ

where k is the iterative index. If f is a function defined on the real line with real

values, and is Lipschitz continuous with Lipschitz constant smaller than 1.0, then f
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has precisely one fixed point, and the FP iteration converges toward that fixed point

for any initial guess x0. This result can be generalized to any metric space.

The FP algorithm can be applied in parameter identification under MEE crite-

rion [64]. Let’s consider the QIP criterion:

V̂2ðeÞ5
1

N2

XN
j51

XN
i51

Khðej 2 eiÞ ð4:99Þ

under which the optimal parameter (weight vector) W� satisfies
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@ŷj
@W

2
@ŷi
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5 0 ð4:100Þ

If the model is an FIR filter, and the kernel function is the Gaussian function,

we have

1

N2h2

XN
j51

XN
i51

ðej 2 eiÞKhðej 2 eiÞðXj 2XiÞ5 0 ð4:101Þ

One can write Eq. (4.101) in an FP iterative form (utilizing

ek 5 zk 2 ŷk 5 zk 2WT
k Xk):

W� 5 f ðW�Þ
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ð4:102Þ

Then we have the following FP algorithm:

Wk11 5 f ðWkÞ5REðWkÞ21PEðWkÞ ð4:103Þ

where
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j51
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Khðej 2 eiÞðXj 2XiÞðXj2XiÞT
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8>>>><
>>>>:

ð4:104Þ
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The above algorithm is called the fixed-point minimum error entropy (FP-MEE)

algorithm. The FP-MEE algorithm can also be implemented by using the forgetting

recursive form [194], i.e.,

Wk11 5 f ðWkÞ5REðWkÞ21PEðWkÞ ð4:105Þ

where

REðWk11Þ5λREðWkÞ1 12λ
L

Xk
i5k2L11

Khðek11 2 eiÞðXk11 2XiÞðXk112XiÞT

PEðWk11Þ5λPEðWkÞ1
12λ
L

Xk
i5k2L11

Khðek11 2 eiÞðzk11 2 ziÞðXk11 2XiÞ

8>>>><
>>>>:

ð4:106Þ

This is the recursive fixed-point minimum error entropy (RFP-MEE) algorithm.

In addition to the parameter search algorithms described above, there are many

other parameter search algorithms to minimize the error entropy. Several advanced

parameter search algorithms are presented in Ref. [104], including the conjugate

gradient (CG) algorithm, Levenberg�Marquardt (LM) algorithm, quasi-Newton

method, and others.

4.3.4 Kernel Minimum Error Entropy Algorithm

System identification algorithms under MEE criterion can also be derived in ker-

nel space. Existing KAF algorithms are mainly based on the MSE (or least

squares) criterion. MSE is not always a suitable criterion especially in nonlinear

and non-Gaussian situations. Hence, it is attractive to develop a new KAF algo-

rithm based on a non-MSE (nonquadratic) criterion. In Ref. [139], a KAF algo-

rithm under the maximum correntropy criterion (MCC), namely the kernel

maximum correntropy (KMC) algorithm, has been developed. Similar to the

KLMS, the KMC is also a stochastic gradient algorithm in RKHS. If the kernel

function used in correntropy, denoted by κc, is the Gaussian kernel, the KMC

algorithm can be derived as [139]

Ωk 5Ωk21 1 ηκcðekÞekϕk ð4:107Þ

where Ωk denotes the estimated weight vector at iteration k in a high-dimensional

feature space Fκ induced by Mercer kernel κ and ϕk is a feature vector obtained by

transforming the input vector Xk into the feature space through a nonlinear mapping

ϕ. The KMC algorithm can be regarded as a KLMS algorithm with variable step-

size ηκcðekÞ.
In the following, we will derive a KAF algorithm under the MEE criterion.

Since the φ-entropy is a very general and flexible entropy definition, we use the

φ-entropy of the error as the adaptation criterion. In addition, for simplicity we
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adopt the instantaneous error entropy (4.78) as the cost function. Then, one can eas-

ily derive the following kernel minimum error entropy (KMEE) algorithm:
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ð4:108Þ
The KMEE algorithm (4.108) is actually the SIG algorithm in kernel space. By

selecting a certain φ function, we can obtain a specific KMEE algorithm. For

example, if setting φðxÞ52 x log x (i.e., ψðxÞ52 log x), we get the KMEE under

Shannon entropy criterion:

Ωk 5Ωk21 2 η
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i5k2L11

K
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i5k2L11

Khðek 2 eiÞ
ð4:109Þ

The weight update equation of Eq. (4.108) can be written in a compact form:

Ωk 5Ωk21 1 ηΦkhφðekÞ ð4:110Þ
where ek 5 ½ek2L11; ek2L12; . . .; ek�T , Φk 5 ½ϕk2L11;ϕk2L12; . . .;ϕk�, and hφðekÞ is a
vector-valued function of ek, expressed as
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The KMEE algorithm is similar to the KAPA [178], except that the error vector

ek in KMEE is nonlinearly transformed by the function hφð:Þ. The learning rule of

the KMEE in the original input space can be written as (f0 5 0)

fk 5 fk21 1 ηKkhφðekÞ ð4:112Þ
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where Kk 5 ½κðXk2L11; :Þ;κðXk2L12; :Þ; . . .;κðXk; :Þ�.
The learned model by KMEE has the same structure as that learned by KLMS,

and can be represented as a linear combination of kernels centered in each data

points:

fkð:Þ5
Xk
j51

αjκðXj; :Þ ð4:113Þ

where the coefficients (at iteration k) are updated as follows:

αj 5

η
L
ψ0 1

L

Xk
i5k2L11

Khðek 2 eiÞ
0
@

1
A Xk21

i5k2L11

K 0
hðek 2 eiÞ; j5 k

αj 2
η
L
ψ0 1

L

Xk
i5k2L11

Khðek 2 eiÞ
0
@

1
AK 0

hðek 2 ejÞ; k2 L, j, k

αj; 1# j# k2 L

8>>>>>>>><
>>>>>>>>:

ð4:114Þ
The pseudocode for KMEE is summarized in Table 4.2.

4.3.5 Simulation Examples

In the following, we present several simulation examples to demonstrate the perfor-

mance (accuracy, robustness, convergence rate, etc.) of the identification algo-

rithms under MEE criterion.

Table 4.2 The KMEE Algorithm

Initialization:

a. Assigning the φ function and the kernel functions κ and Kh;

b. Choose the step-size η, and the sliding data length L;

c. Initialize the center set C5 fX1g, and the coefficient vector α5 ½ηz1�T ;
d. Initialize the window of L errors: e5 f0; . . .; 0g.
Computation:

whilefXk; zkg (k. 1) available do

1. Allocate a new unit: C5 fC;Xkg, a5 ½aT ; 0�T
2. Update the window of errors:-

eðiÞ5 eði1 1Þ; for i5 1; . . .; L2 1

eðLÞ5 ek

	

where ek 5 zk 2
Pk21

j51

αjκðXj;XkÞ

3. Update the coefficient vector a5 ½α1; . . .;αk�T using (4.114).

end while
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Example 4.1 [102] Assume that both the unknown system and the model are two-

dimensional ADALINEs, i.e.,

zk 5w�
1x1;k 1w�

2x2;k 1 nk
ŷk 5w1x1;k 1w2x2;k

	
ð4:115Þ

where unknown weight vector is W� 5 ½w�
1;w

�
2�T 5 ½1:0; 2:0�T , and nk is the inde-

pendent and zero-mean Gaussian noise. The goal is to identify the model para-

meters W 5 ½w1;w2�Tunder noises of different signal-to-noise ratios (SNRs). For

each noise energy, 100 independent Monte-Carlo simulations are performed with

N (N5 10; 20; 50; 100) training data that are chosen randomly. In the simulation,

the BIG algorithm under QIP criterion is used, and the kernel function Kh is the

Gaussian function with bandwidth h5 1:0. Figure 4.6 shows the average distance

between actual and estimated optimal weight vector. For comparison purpose,

the figure also includes the identification results (by solving the Wiener-Hopf

equations) under MSE criterion. Simulation results indicate that, when SNR is

higher (SNR. 10 dB), the MEE criterion achieves much better accuracy than

the MSE criterion (or requires less training data when achieving the same

accuracy).
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Figure 4.6 Comparison of the performance of MEE against MSE

(adopted from Ref. [102]).
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Example 4.2 [100] Identify the following nonlinear dynamic system:

x1;k11 5
x1;k

11 x21;k
1 1

0
@

1
A:sin x2;k

x2;k11 5 x2;k:cos x2;k 1 exp 2
x21;k 1 x22;k

8

0
@

1
A1

u3k
11 u2k 1 0:5 cosðx1;k 1 x2;kÞ

yk 5
x1;k

11 0:5 sin x2;k
1

x2;k

11 0:5 sin x1;k

8>>>>>>>>>><
>>>>>>>>>>:

ð4:116Þ

where x1;k and x2;k are the state variables and uk is the input signal. The identifica-

tion model is the time delay neural network (TDNN), where the network structure

is an MLP with multi-input, single hidden layer, and single output. The input vector

of the neural network contains the current input and output and their past values of

the nonlinear system, that is, the training data can be expressed as

f½uk; uk21; . . .; uk2nu ; yk21; . . .; yk2ny �T ; ykg ð4:117Þ

In this example, nu and ny are set as nu 5 ny 5 6. The number of hidden units is

set at 7, and the symmetric sigmoid function is selected as the activation function.

In addition, the number of training data is N5 100. We continue to compare the

performance of MEE (using the BIG algorithm under QIP criterion) to MSE. For

each criterion, the TDNN is trained starting from 50 different initial weight vectors,

and the best solution (the one with the highest QIP or lowest MSE) among the 50

candidates is selected to test the performance.10 Figure 4.7 illustrates the probabil-

ity densities of the error between system actual output and TDNN output with

10,000 testing data. One can see that the MEE criterion achieves a higher peak

around the zero error. Figure 4.8 shows the probability densities of system actual

output (desired output) and model output. Evidently, the output of the model

trained under MEE criterion matches the desired output better.

Example 4.3 [190] Compare the performances of SIG-kernel, SIG-GGD, and LMP

family algorithms (LAD, LMS, LMF, etc.). Assume that both the unknown system

and the model are FIR filters:

G�ðzÞ5 0:11 0:3z21 1 0:5z22 1 0:3z23 1 0:1z24

GðzÞ5w0 1w1z
21 1w2z

22 1w3z
23 1w4z

24

	
ð4:118Þ

10 Since error entropy is shift-invariant, after training under MEE criterion the bias value of the output

PE was adjusted so as to yield zero-mean error over the training set.
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where G�ðzÞ and GðzÞ denote the transfer functions of the system and the model,

respectively. The initial weight vector of the model is set to be W0 5 ½0; 0; 0; 0; 0�T ,
and the input signal is white Gaussian noise with zero mean and unit power (vari-

ance). The kernel function in SIG-kernel algorithm is the Gaussian kernel with

bandwidth determined by Silverman rule. In SIG-GGD algorithm, we set r5 2, and

to avoid large gradient, we set the upper bound of αk at 4.0.

In the simulation, we consider four noise distributions (Laplace, Gaussian,

Uniform, MixNorm), as shown in Figure 4.9. For each noise distribution, the aver-

age convergence curves, over 100 independent Monte Carlo simulations, are illus-

trated in Figure 4.10, where WEP denotes the weight error power, defined as

WEP9E : ~Wk:
2

h i
5E½ ~WT

k
~Wk� ð4:119Þ

where ~Wk 5W� 2Wk is the weight error vector (the difference between desired

and estimated weight vectors) and : ~Wk: is the weight error norm. Table 4.3 lists

the average identification results (mean6 deviation) of w2(w
�
2 5 0:5). Further, the

average evolution curves of αk in SIG-GGD are shown in Figure 4.11.

From the simulation results, we have the following observations:

i. The performances of LAD, LMS, and LMF depend crucially on the distribution of the

disturbance noise. These algorithms may achieve the smallest misadjustment for a cer-

tain noise distribution (e.g., the LMF performs best in uniform noise); however, for other

noise distributions, their performances may deteriorate dramatically (e.g., the LMF per-

forms worst in Laplace noise).
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Figure 4.9 Four PDFs of the additive noise

(adopted from Ref. [190]).
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ii. Both SIG-GGD and SIG-Kernel are robust to noise distribution. In the case of symmetric

and unimodal noises (e.g., Laplace, Gaussian, Uniform), SIG-GGD may achieve a smal-

ler misadjustment than SIG-Kernel. Though in the case of nonsymmetric and nonunimo-

dal noises (e.g., MixNorm), SIG-GGD may be not as good as SIG-Kernel, it is still

better than most of the LMP algorithms.

iii. Near the convergence, the parameter αk in SIG-GGD converges approximately to 1, 2,

and 4 (note that αk is restricted to αk # 4 artificially) when disturbed by, respectively,

Laplace, Gaussian, and Uniform noises. This confirms the fact that SIG-GGD has the

ability to adjust its parameters so as to switch to a certain optimum algorithm.

Example 4.4 [194] Apply the RFP-MEE algorithm to identify the following FIR

filter:

G�ðzÞ5 0:11 0:2z21 1 0:3z22 1 0:4z23 1 0:5z24

1 0:4z25 1 0:3z26 1 0:2z27 1 0:1z28 ð4:120Þ
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The adaptive model is also an FIR filter with equal order. The input to both the

plant and adaptive model is white Gaussian noise with unit power. The observation

noise is white Gaussian distributed with zero mean and variance 10210. The main

objective is to investigate the effect of the forgetting factor on the convergence

speed and convergence accuracy (WEP after convergence) of the RFP-MEE algo-

rithm. Figure 4.12 shows the convergence curves of the RFP-MEE with different

forgetting factors. One can see that smaller forgetting factors result in faster con-

vergence speed and larger steady-state WEP. This result conforms to the well-

known general behavior of the forgetting factor in recursive estimates. Thus, select-

ing a proper forgetting factor for RFP-MEE must consider the intrinsic trade-off

between convergence speed and identification accuracy.

Table 4.3 Average Identification Results of w2 Over 100 Monte Carlo Simulations

SIG-Kernel SIG-GGD LAD LMS LMF

Laplace 0.50346 0.0419 0.50196 0.0366 0.50116 0.0352 0.50436 0.0477 0.50666 0.0763

Gaussian 0.50356 0.0375 0.50266 0.0346 0.50386 0.0402 0.50206 0.0318 0.50556 0.0426

Uniform 0.49796 0.0323 0.49956 0.0311 0.50646 0.0476 0.50356 0.0357 0.49996 0.0263

MixGaussian 0.49976 0.0356 0.50146 0.0449 0.49726 0.0576 0.50216 0.0463 0.50316 0.0523

(adopted from Ref. [190])
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Figure 4.11 Evolution curves of αk over 100 Monte Carlo runs: (A) Laplace, (B) Gaussian,

and (C) Uniform

(adopted from Ref. [190]).
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Example 4.5 This example aims to demonstrate the performance of KMEE (with

Shannon entropy or QIP criterion). For comparison purpose, we also show the per-

formances of several other KAF algorithms: KLMS, KMC, and KAPA. Let’s con-

sider the nonlinear system identification, where the nonlinear system is as follows

[195]:

yk 5 ð0:82 0:5 expð2 y2k21ÞÞyk21

2 ð0:31 0:9expð2 y2k21ÞÞyk22

1 0:1 sinð3:1415926yk21Þ1 nk

ð4:121Þ

The noise nk is of symmetric α-stable (SαS) distribution with characteristic

function

ψðωÞ5 expð2 γjωjαÞ ð4:122Þ

where γ5 0:005, 0,α# 2:0. When α5 2:0, the distribution is a zero-mean

Gaussian distribution with variance 0.01; while when α, 2:0, the distribution cor-

responds to an impulsive noise with infinite variance.

Figure 4.13 illustrates the average learning curves (over 200 Monte Carlo runs)

for different α values and Table 4.4 lists the testing MSE at final iteration. In the

simulation, 1000 samples are used for training and another 100 clean samples are

used for testing (the filter is fixed during the testing phase). Further, all the kernels

(kernel of RKHS, kernel of correntropy, and kernel for density estimation) are

selected to be the Gaussian kernel. The kernel parameter for RKHS is set at 0:2,
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kernel size for correntropy is 0:4, and kernel bandwidth for density estimation is

1:0. The sliding data lengths for KMEE and KAPA are both set at L5 10. The

step-sizes for KLMS, KMC, KAPA, KMEE (Shannon), and KMEE (QIP), are,

respectively, set at 0.8, 1.0, 0.05, 1.0, and 2.0. These parameters are experimentally

selected to achieve the desirable performance. From Figure 4.13 and Table 4.4, one
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Figure 4.13 Average learning curves for different α values: (A) α5 2:0, (B) α5 1:9,
(C) α5 1:8, (D) α5 1:5.

Table 4.4 Testing MSE at Final Iteration for Different α Values

Algorithms Testing MSE

α5 2:0 α5 1:9 α5 1:8 α5 1:5

KLMS 0.00956 0.0079 0.01346 0.0647 0.01366 0.1218 0.02036 0.3829

KMC 0.01036 0.0082 0.00966 0.0089 0.00886 0.0086 0.00636 0.0064

KAPA 0.00676 0.0015 0.00696 0.0055 0.00736 0.0078 0.00726 0.0205

KMEE (Shannon) 0.00406 0.0027 0.00356 0.0028 0.00356 0.0051 0.00416 0.0180

KMEE (QIP) 0.00356 0.0020 0.00346 0.0022 0.00366 0.0046 0.00486 0.0138
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can see that the KMEE algorithms outperform all other algorithms except for the

case of small α, the KMC algorithm may achieve a relatively smaller deviation in

testing MSE. Simulation results also show that the performances of KMEE

(Shannon) and KMEE (QIP) are very close.

4.4 Convergence Analysis

Next, we analyze the convergence properties of the parameter identification under

MEE criterion. For simplicity, we consider only the ADALINE model (which

includes the FIR filter as a special case). The convergence analysis of error entropy

minimization algorithms is, in general, rather complicated. This is mostly because

1. the objective function (the empirical error entropy) is not only related to the current error

but also concerned with the past error values;

2. the entropy function and the kernel function are nonlinear functions;

3. the shape of performance surface is very complex (nonquadratic and nonconvex).

There are two ways for the convergence analysis of such algorithms: (i) using

the Taylor series expansion near the optimal solution to obtain an approximate line-

arization algorithm, and then performing the convergence analysis for the lineariza-

tion algorithm and (ii) applying the energy conservation relation to analyze the

convergence behavior [106]. The first approach is relatively simple, but only the

approximate analysis results near the optimal solution can be achieved. With the

second approach it is possible to acquire rigorous analysis results of the conver-

gence, but usually more assumptions are needed. In the following, we first briefly

introduce the first analysis approach, and then focus on the second approach, per-

forming the mean square convergence analysis based on the energy conservation

relation. The following analysis is mainly aimed at the nonparametric IG algo-

rithms with KDE.

4.4.1 Convergence Analysis Based on Approximate Linearization

In Ref. [102], an approximate linearization approach has been used to analyze the

convergence of the gradient-based algorithm under order-α IP criterion. Consider

the ADALINE model:

ŷk 5XT
k W 5

Xm
i51

wixi;k ð4:123Þ

where Xk 5 ½x1;k; x2;k; . . .; xm;k�T is the m-dimensional input vector,

W 5 ½w1;w2; . . .;wm�T is the weight vector. The gradient based identification algo-

rithm under order-α (α. 1) information potential criterion can be expressed as

Wk11 5Wk 1 ηrV̂α ð4:124Þ

104 System Parameter Identification



where rV̂α denotes the gradient of the empirical order-α IP with respect to the

weight vector, which can be calculated as

rV̂α 5 @V̂α=@W

52
ðα2 1Þ
Nα

XN
j51

XN
i51

Khðej2eiÞ
 !α22XN

i51

ðK 0
hðej 2 eiÞðXj 2XiÞÞ

8<
:

9=
;
ð4:125Þ

As the kernel function Khð:Þ satisfies KhðxÞ5Kðx=hÞ=h, we have

K 0
hðxÞ5K 0ðx=hÞ=h2 ð4:126Þ

So, one can rewrite Eq. (4.125) as

rV̂α 52
ðα2 1Þ
hαNα

XN
j51

XN
i51

KðΔejiÞ
 !α22XN

i51

ðK 0ðΔejiÞðXj 2XiÞÞ
8<
:

9=
; ð4:127Þ

where Δeji 5 ðej 2 eiÞ=h.
If the weight vector W lies in the neighborhood of the optimal solution W�, one

can obtain a linear approximation of the gradient rV̂α using the first-order Taylor

expansion:

rV̂αðWÞ � rV̂αðW�Þ1H3 ðW 2W�Þ5H3 ðW 2W�Þ ð4:128Þ

where H5 @rV̂T

αðW�Þ=@W is the Hessian matrix, i.e.,

H5 @rV̂T

αðW�Þ=@W

5
ðα2 1Þ
hαNα

X
j

X
i

KðΔejiðW�ÞÞ
" #α23

3

ðα-2Þ Pi K
0ðΔejiðW�ÞÞðXi 2XjÞ

� �
3
P

i K
0ðΔejiðW�ÞÞðXi2XjÞT

� �
1
P

i KðΔejiðW�ÞÞ� �
3
P

i K
00ðΔejiðW�ÞÞðXi 2XjÞðXi2XjÞT

� �

8>>>><
>>>>:

9>>>>=
>>>>;

ð4:129Þ

Substituting Eq. (4.128) into Eq. (4.124), and subtracting W� from both sides,

one obtains

~Wk11 5 ~Wk 1 ηH ~Wk ð4:130Þ
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where ~Wk 5W� 2Wk is the weight error vector. The convergence analysis of the

above linear recursive algorithm is very simple. Actually, one can just borrow the

well-known convergence analysis results from the LMS convergence theory

[18�20]. Assume that the Hessian matrix H is a normal matrix and can be decom-

posed into the following normal form:

H5QΛQ21 5QΛQT ð4:131Þ

where Q is an m3m orthogonal matrix, Λ5 diag½λ1; . . .;λm�, λi is the eigenvalue

of H. Then, the linear recursion (4.130) can be expressed as

~Wk11 5QðI1 ηΛÞQ21 ~Wk ð4:132Þ

Clearly, if the following conditions are satisfied, the weight error vector ~Wk will

converge to the zero vector (or equivalently, the weight vector Wk will converge to

the optimal solution):

j11 ηλij, 1; i5 1; . . .;m; ð4:133Þ

Thus, a sufficient condition that ensures the convergence of the algorithm is

λi , 0; i5 1; . . .;m

0, η, 2=ðmaxi jλijÞ

(
ð4:134Þ

Further, the approximate time constant corresponding to λi will be

τi 5
21

logð11 ηλiÞ
� 1

ηjλij
ð4:135Þ

In Ref. [102], it has also been proved that if the kernel width h increases, the

absolute values of the eigenvalues will decrease, and the time constants will

increase, that is, the convergence speed of the algorithm will become slower.

4.4.2 Energy Conservation Relation

Here, the energy conservation relation is not the well-known physical law of con-

servation of energy, but refers to a certain identical relation that exists among the

WEP, a priori error, and a posteriori error in adaptive filtering algorithms (such as

the LMS algorithm). This fundamental relation can be used to analyze the mean

square convergence behavior of an adaptive filtering algorithm [196].

Given an adaptive filtering algorithm with error nonlinearity [29]:

Wk11 5Wk 1 ηf ðekÞXk ð4:136Þ
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where f ð:Þ is the error nonlinearity function (f ðxÞ5 x corresponds to the LMS algo-

rithm), the following energy conservation relation holds:

E : ~Wk11:
2

h i
1E

ðeakÞ2
:Xk:

2

" #
5E : ~Wk:

2
h i

1E
ðepkÞ2
:Xk:

2

" #
ð4:137Þ

where E : ~Wk:
2

h i
is the WEP at instant k (or iteration k), eak and e

p
k are, respec-

tively, the a priori error and a posteriori error:

eak9 ~W
T

k Xk; e
p
k9 ~W

T

k11Xk ð4:138Þ

One can show that the IG algorithms (assuming ADALINE model) also satisfy

the energy conservation relation similar to Eq. (4.137) [106]. Let us consider the

sliding information gradient algorithm (with φ entropy criterion):

Wk11 5Wk 2 η
@

@W
Ĥφ;kðeÞ ð4:139Þ

where Ĥφ;kðeÞ is the empirical error entropy at iteration k:

Ĥφ;kðeÞ5 1

L

XL
j51

ψ
1

L

XL
i51

Khðej;k 2 ei;kÞ
 !

ð4:140Þ

where ψðxÞ5φðxÞ=x, ei;k is the i th error sample used to calculate the empirical

error entropy at iteration k. Given the φ-function and the kernel function Kh, the

empirical error entropy Ĥφ;kðeÞ will be a function of the error vector

ek 5 ½e1;k; e2;k; . . .; eL;k�T , which can be written as

Ĥφ;kðeÞ5Fφ;Kh
ðekÞ ð4:141Þ

This function will be continuously differentiable with respect to ek, provided
that both functions φ and Kh are continuously differentiable.

In ADALINE system identification, the error ei;k will be

ei;k 5 zi;k 2 ŷi;k 5 zi;k 2Xi;kW ð4:142Þ

where zi;k is the i th measurement at iteration k, ŷi;k 5Xi;kW is the i th model output

at iteration k, Xi;k 5 ½xðiÞ1;k; xðiÞ2;k; . . .; xðiÞm;k� is the i th input vector11 at iteration k, and

11 Here the input vector is a row vector.

107System Identification Under Minimum Error Entropy Criteria



W 5 ½w1;w2; . . .;wm�T is the ADALINE weight vector. One can write Eq. (4.142)

in the form of block data, i.e.,

ek 5 zk 2 ŷk 5 zk 2XkW ð4:143Þ

where zk 5 ½z1;k; z2;k; . . .; zL;k�T , ŷk 5 ½ŷ1;k; ŷ2;k; . . .; ŷL;k�T , and Xk 5 ½XT
1;k;X

T
2;k; . . .;

XT
L;k�T (L3m input matrix).

The block data fXk; zk; ŷk;ekg can be constructed in various manners. Two typi-

cal examples are

1. One time shift:

Xk 5 ½XT
k ;X

T
k21; . . .;X

T
k2L11�T

zk 5 ½zk; zk21; . . .; zk2L11�T

ŷk 5 ½ŷk; ŷk21; . . .; ŷk2L11�T

ek 5 ½ek; ek21; . . .; ek2L11�T

8>>>>><
>>>>>:

ð4:144Þ

2. L-time shift:

Xk 5 ½XT
kL;X

T
kL21; . . .;X

T
ðk21ÞL11�T

zk 5 ½zkL; zkL21; . . .; zðk21ÞL11�T

ŷk 5 ½ŷkL; ŷkL21; . . .; ŷðk21ÞL11�T

ek 5 ½ekL; ekL21; . . .; eðk21ÞL11�T

8>>>>><
>>>>>:

ð4:145Þ

Combining Eqs. (4.139), (4.141), and (4.143), we can derive (assuming

ADALINE model)

Wk11 5Wk 2 η
@Fφ;Kh

ðekÞ
@W

5Wk 2 η
@eTk
@W

@Fφ;Kh
ðekÞ

@ek

5Wk 1 ηXT
k f ðekÞ

ð4:146Þ

where f ðekÞ5 ½f1ðekÞ; f2ðekÞ; . . .; fLðekÞ�T , in which

fiðekÞ5
@Fφ;Kh

ðekÞ
@ei;k

ð4:147Þ
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With QIP criterion (φðxÞ52 x2), the function fiðekÞ can be calculated as (assum-

ing Kh is a Gaussian kernel):

fiðekÞ5 @Fφ;Kh ðekÞ
@ei;k

jφðxÞ52x2 5
@f2 V̂2ðekÞg

@ei;k

52
1

L2
@

@ei;k

XL
i51

XL
j51

Khðei;k 2 ej;kÞ
( )

52
2

L2
@

@ei;k

XL
j51

Khðei;k 2 ej;kÞ
( )

5
2

L2h2

XL
j51

ðei;k 2 ej;kÞKhðei;k 2 ej;kÞ
( )

ð4:148Þ

The algorithm in Eq. (4.146) is in form very similar to the adaptive filtering

algorithm with error nonlinearity, as expressed in Eq. (4.136). In fact, Eq. (4.146)

can be regarded, to some extent, as a “block” version of Eq. (4.136). Thus, one

can study the mean square convergence behavior of the algorithm (4.146) by sim-

ilar approach as in mean square analysis of the algorithm (4.136). It should also

be noted that the objective function behind algorithm (4.146) is not limited to the

error entropy. Actually, the cost function Fφ;KðekÞ can be extended to any function

of ek, including the simple block mean square error (BMSE) criterion that is

given by [197]

BMSE5
1

L
eTk ek ð4:149Þ

We now derive the energy conservation relation for the algorithm (4.146).

Assume that the unknown system and the adaptive model are both ADALINE

structures with the same dimension of weights.12 Let the measured output (in the

form of block data) be

zk 5XkW
� 1 vk ð4:150Þ

where W� 5 ½w�
1;w

�
2; . . .;w

�
m�T is the weight vector of unknown system and

vk 5 ½v1;k; v2;k; . . .; vL;k�T is the noise vector. In this case, the error vector ek can be

expressed as

ek 5Xk
~Wk 1 vk ð4:151Þ

12 This configuration has been widely adopted due to its convenience for convergence analysis (e.g., see

Ref. [196]).
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where ~Wk 5W� 2Wk is the weight error vector. In addition, we define the a priori

and a posteriori error vectors eak and epk :

eak 5 ½ea1;k; ea2;k; . . .; eaL;k�T 5Xk
~Wk

epk 5 ½ep1;k; ep2;k;?; epL;k�T 5Xk
~Wk11

(
ð4:152Þ

Clearly, eak and epk have the following relationship:

epk 5 eak 1Xkð ~Wk11 2 ~WkÞ5 eak 2XkðWk11 2WkÞ ð4:153Þ

Combining Eqs. (4.146) and (4.153) yields

epk 5 eak 2 ηXkX
T
k f ðekÞ5 eak 2 ηRkf ðekÞ ð4:154Þ

where Rk 5XkX
T
k is an L3 L symmetric matrix with elements RkðijÞ5Xi;kX

T
j;k.

Assume that the matrix Rk is invertible (i.e., det Rk 6¼ 0). Then we have

epk 5 eak 2 ηRkf ðekÞ
.R21

k ðepk 2 eakÞ52 ηf ðekÞ
.XT

kR
21
k ðepk 2 eakÞ52 ηXT

k f ðekÞ
.XT

kR
21
k ðepk 2 eakÞ5 ~Wk112 ~Wk

ð4:155Þ

And hence

~Wk11 5 ~Wk 1XT
kR

21
k ðepk 2 eakÞ ð4:156Þ

Both sides of Eq. (4.156) should have the same energy, i.e.,

~WT
k11

~Wk11 5 ½ ~Wk1XT
kR

21
k ðepk2eakÞ�T 3 ½ ~Wk 1XT

kR
21
k ðepk 2 eakÞ� ð4:157Þ

From Eq. (4.157), after some simple manipulations, we obtain the following

energy conservation relation:

: ~Wk11:
2
1 :eak:

2

R21
k
5 : ~Wk:

2
1 :epk:

2

R21
k

ð4:158Þ

where : ~Wk:
2
5 ~WT

k
~Wk, :eak:

2

R21
k
5 eaTk R21

k eak , :epk:
2

R21
k
5 epTk R21

k epk . Further, in

order to analyze the mean square convergence performance of the algorithm, we

take the expectations of both sides of (4.158) and write

E : ~Wk11:
2

h i
1E :eak:

2

R21
k

h i
5E : ~Wk:

2
h i

1E :epk:
2

R21
k

h i
ð4:159Þ
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The energy conservation relation (4.159) shows how the energies (powers) of

the error quantities evolve in time, which is exact for any adaptive algorithm

described in Eq. (4.146), and is derived without any approximation and assumption

(except for the condition that Rk is invertible). One can also observe that

Eq. (4.159) is a generalization of Eq. (4.137) in the sense that the a priori and a

posteriori error quantities are extended to vector case.

4.4.3 Mean Square Convergence Analysis Based on Energy Conservation
Relation

The energy conservation relation (4.159) characterizes the evolution behavior of the

weight error power (WEP). Substituting epk 5 eak 2 ηRkf ðekÞ into (4.159), we obtain

E : ~Wk11:
2

h i
5E : ~Wk:

2
h i

2 2ηE½eaTk f ðekÞ�1 η2E½f T ðekÞRkf ðekÞ� ð4:160Þ

To evaluate the expectations E½eaTk f ðekÞ� and E½fT ðekÞRkf ðekÞ�, some assump-

tions are given below [106]:

� A1: The noise fvkg is independent, identically distributed, and independent of the input

fXkg;
� A2: The a priori error vector eak is jointly Gaussian distributed;
� A3: The input vectors fXkg are zero-mean independent, identically distributed;
� A4: ’ i; jAf1; . . .; Lg, RkðijÞ and fei;k; ej;kg are independent.

Remark: Assumptions A1 and A2 are popular and have been widely used in con-

vergence analysis for many adaptive filtering algorithms [196]. As pointed out in

[29], the assumption A2 is reasonable for longer weight vector by central limit the-

orem arguments. The assumption A3 restricts the input sequence fXkg to white

regression data, which is also a common practice in the literature (e.g., as in Refs.

[28,198,199]). The assumption A4 is somewhat similar to the uncorrelation

assumption in Ref. [29], but it is a little stronger. This assumption is reasonable

under assumptions A1 and A3, and will become more realistic as the weight vector

gets longer (justified by the law of large numbers).

In the following, for tractability, we only consider the case in which the block

data are constructed by “L-time shift” approach (see Eq. (4.145)). In this case, the

assumption A3 implies: (i) the input matrices fXkg are zero-mean, independent,

identically distributed and (ii) Xk and ~Wk are mutually independent. Combining

assumption A3 and the independence between Xk and ~Wk, one may easily con-

clude that the components of the a priori error vector eak are also zero-mean, inde-

pendent, identically distributed. Thus, by Gaussian assumption A2, the PDF of eak
can be expressed as

pea
k
ðeakÞ5

1ffiffiffiffiffiffiffiffiffiffi
2πγ2k

p
 !L

L
L

i51

exp 2
ðeai;kÞ2
2γ2k

 !
ð4:161Þ
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where γ2k 5E½ðeai;kÞ2� is the a priori error power. Further, by assumption A1, the a

priori error vector eak and the noise vector vk are independent, and hence

E½eaTk f ðekÞ�5E½eaTk f ðeak 1 vkÞ�

5

ð
eaTk f ðeak 1 vkÞpvk ðvkÞdvkpeak ðeakÞdeak

5 1ffiffiffiffiffiffiffi
2πγ2

k

p
 !L ð

pvk ðvkÞdvk
ð
eaTk f ðeak 1 vkÞ3L

L

i51

exp 2
ðeai;kÞ2
2γ2k

0
@

1
Adeak

ð4:162Þ

where pvk ð:Þ denotes the PDF of vk. The inner integral depends on eak through the

second moment γ2k only, and so does EfeaTk f ðekÞg. Thus, given the noise distribution

pvk ð:Þ, the expectation EfeaTk f ðekÞg can be expressed as a function of γ2k , which
enables us to define the following function13 :

hGðγ2kÞ9E½eaTk f ðekÞ�=γ2k ð4:163Þ

It follows that

E½eaTk f ðekÞ�5 γ2khGðγ2kÞ ð4:164Þ

Next, we evaluate the expectation E½f T ðekÞRkf ðekÞ�. As RkðijÞ5Xi;kX
T
j;k,

ek 5Xk
~Wk 1 vk, by assumptions A1, A3, and A4, RkðijÞ and ek will be indepen-

dent. Thus

E½fT ðekÞRkf ðekÞ�5
XL
i51

XL
j51

E½fiðekÞfjðekÞRkðijÞ�

5
XL
i51

XL
j51

E½fiðekÞfjðekÞ�E½RkðijÞ�

5
ðaÞ XL

i51

E½f 2i ðekÞ�E½RkðiiÞ�

5
ðbÞ XL

i51

E½f 2i ðekÞ�E :Xk:
2

h i

ð4:165Þ

13 Similar to [29], the subscript G in hG indicates that the Gaussian assumption A2 is the main assump-

tion leading to the defined expression (4.163). The subscript I for hI , which is defined later in (4.166),

however, suggests that the independence assumption A4 is the major assumption in evaluating the

expectation.
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where (a) and (b) follow from the assumption A3. Since eak is Gaussian and inde-

pendent of the noise vector vk, the term Eff 2i ðekÞg will also depend on eak through

γ2k only, and this prompts us to define the function hI :

hIðγ2kÞ9
XL
i51

E½f 2i ðekÞ� ð4:166Þ

Combining Eqs. (4.165) and (4.166) yields

E½f T ðekÞRkf ðekÞ�5 hIðγ2kÞE :Xk:
2

h i
ð4:167Þ

Substituting Eqs. (4.164) and (4.167) into Eq. (4.160), we obtain

E : ~Wk11:
2

h i
5E : ~Wk:

2
h i

2 2ηγ2khGðγ2kÞ1 η2hIðγ2kÞE :Xk:
2

h i
ð4:168Þ

Now, we use the recursion formula (4.168) to analyze the mean square conver-

gence behavior of the algorithm (4.146), following the similar derivations in Ref. [29].

4.4.3.1 Sufficient Condition for Mean Square Convergence

From Eq. (4.168), it is easy to observe

E : ~Wk11:
2

h i
#E : ~Wk:

2
h i

32 2ηγ2khGðγ2kÞ1 η2hIðγ2kÞE :Xk:
2

h i
# 0

ð4:169Þ

Therefore, if we choose the step-size η such that for all k

η#
2γ2khGðγ2kÞ

hIðγ2kÞE :Xk:
2

h i ð4:170Þ

then the sequence of WEP E : ~Wk:
2

h in o
will be monotonically decreasing (and

hence convergent). Thus, a sufficient condition for the mean square convergence of

the algorithm (4.146) would be

η# inf
γ2
k
AΩ

2γ2khGðγ2kÞ
hIðγ2kÞE :Xk:

2
h i

5
ðaÞ 2

E :Xk:
2

h i inf
γ2
k
AΩ

γ2khGðγ2kÞ
hIðγ2kÞ

8<
:

9=
;

5
2

E :Xk:
2

h i inf
γ2
k
AΩ

ρðγ2kÞ

ð4:171Þ
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where (a) comes from the assumption that the input vector is stationary,

ρðxÞ5 xhGðxÞ=hIðxÞ, Ω denotes the set of all possible values of γ2k (k$ 0).

In general, the above upper bound of the step-size is conservative. However, if

ρðxÞ is a monotonically increasing function over ½0;NÞ, i.e., ’ x1 . x2 $ 0,

ρðx1Þ$ ρðx2Þ, one can explicitly derive the maximum value (tight upper bound) of

the step-size that ensures the mean square convergence. Let’s come back to the

condition in Eq. (4.170) and write

η#
2ρðγ2kÞ
E½OXkO2�

; ’ k$ 0 ð4:172Þ

Under this condition, the WEP will be monotonically decreasing. As the a priori

error power γ2k is proportional to the WEP E : ~Wk:
2

h i
(see Eq. (4.177)), in this

case, the a priori error power will also be monotonically decreasing, i.e.,

γ20 $ γ21 $?$ γ2k $ γ2k11 $? ð4:173Þ

where γ20 is the initial a priori error power. So, the maximum step-size is

ηmax 5max η:0, η#
2ρðγ2kÞ
E½OXkO2�

; ’ k$ 0

8<
:

9=
;

5max η:0, η#
2ρðγ2kÞ
E½OXkO2�

; γ2k # γ20

8<
:

9=
;

5
ðaÞ 2ρðγ20Þ

E½OXkO2�

ð4:174Þ

where (a) follows from Eq. (4.173) and the monotonic property of ρðxÞ. This maxi-

mum step-size depends upon the initial a priori error power. When η5 ηmax, we

have

E½O ~WkO2�5E½O ~W0O2�; ’ k$ 0

γ2k 5 γ20

(
ð4:175Þ

In this case, the learning is at the edge of convergence (WEP remains constant).

Remark If the step-size η is below the upper bound or smaller than the maximum

value ηmax, the WEP will be decreasing. However, this does not imply that the

WEP will converge to zero. There are two reasons for this. First, for a stochastic

gradient-based algorithm, there always exist some excess errors (misadjustments).

Second, the algorithm may converge to a local minimum (if any).
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4.4.3.2 Mean Square Convergence Curve

One can establish a more homogeneous form for the recursion formula (4.168).

First, it is easy to derive

γ2k 5E½ðeai;kÞ2�5E½ðXi;k ~WkÞ2�

5E½ ~WT

k ðXT
i;kXi;kÞ ~Wk�

5
ðaÞ

E½ ~WT

k ðE½XT
i;kXi;k�Þ ~Wk�

5E½O ~WkO2RX
�

ð4:176Þ

where (a) follows from the independence between Xk and ~Wk, O ~WkO2RX
5 ~W

T

k RX
~Wk,

RX 5E½XT
i;kXi;k�. As the input data are assumed to be zero-mean, independent, identi-

cally distributed, we have RX 5σ2
xI (Iis an m3m-dimensional unit matrix), and

hence

γ2k 5 σ2
xE½O ~WkO2� ð4:177Þ

Substituting Eq. (4.177) and E½OXkO2�5mσ2
x into Eq. (4.168) yields the equa-

tion that governs the mean square convergence curve:

E½O ~Wk11O2�5E½O ~WkO2�2 2ησ2
xE½O ~WkO2�hGðσ2

xE½O ~WkO2�Þ1mη2σ2
xhIðσ2

xE½O ~WkO2�Þ
ð4:178Þ

4.4.3.3 Mean Square Steady-State Performance

We can use Eq. (4.178) to evaluate the mean square steady-state performance.

Suppose the WEP reaches a steady-state value, i.e.,

lim
k!N

E½O ~Wk11O2�5 lim
k!N

E½O ~WkO2� ð4:179Þ

Then the mean square convergence equation (4.178) becomes, in the limit

lim
k!N

E O ~WkO2
� �

hGðσ2
xE O ~WkO2
� �Þ5 lim

k!N

mη
2

hIðσ2
xE O ~WkO2
� �Þ ð4:180Þ

It follows that

lim
k!N

E O ~WkO2
� �

hGðσ2
x lim
k!N

E O ~WkO2
� �Þ5 mη

2
hIðσ2

x lim
k!N

E O ~WkO2
� �Þ ð4:181Þ
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Denote SWEP the steady-state WEP, i.e., SWEP 5 lim
k!N

E½O ~WkO2�, we have

SWEP 5
mηhIðσ2

xSWEPÞ
2hGðσ2

xSWEPÞ
ð4:182Þ

Therefore, if the adaptive algorithm (4.146) converges, the steady-state WEP

SWEP will be a positive solution of Eq. (4.182), or equivalently, SWEP will be a posi-

tive FP of the function ϕðξÞ5mηhIðσ2
xξÞ=f2hGðσ2

xξÞg.
Further, denote SEMSE the steady-state excess mean square error (EMSE), i.e.,

SEMSE 5 limk!N γ2k . By Eq. (4.177), we can easily evaluate SEMSE as

SEMSE 5 lim
k!N

σ2
xE : ~Wk:

2
h i

5 σ2
xSWEP ð4:183Þ

The steady-state EMSE is in linear proportion to the steady-state WEP.

So far we have derived the mean square convergence performance for adaptive

algorithm (4.146), under the assumptions A1�A4. The derived results depend

mainly on two functions: hGð:Þ, hIð:Þ. In the following, we will derive the exact

expressions for the two functions for QIP criterion (φðxÞ52 x2).

By Eq. (4.148), under QIP criterion we have

fiðekÞ5
2

L2h2

XL
j51

ðei;k 2 ej;kÞKhðei;k 2 ej;kÞ
( )

ð4:184Þ

Hence, the function hGðγ2kÞ can be expressed as

hGðγ2kÞ5E½eaTk f ðekÞ�=γ2k

5
1

γ2k

XL
i51

E½eai;kfiðekÞ�

5
2

γ2kL2h2
XL
i51

E eai;k

XL
j51

ðei;k 2 ej;kÞKhðei;k 2 ej;kÞ
" #

5
ðaÞ 2

γ2kL2h2
XL
i51

fðL2 1ÞE½ea1;kðe1;k 2 e2;kÞKhðe1;k 2 e2;kÞ�g

5
2ðL2 1Þ
γ2kLh2

E ea1;kðe1;k 2 e2;kÞKhðe1;k 2 e2;kÞ
h i

ð4:185Þ

where (a) comes from the fact that the error pairs fðeaj;k; ej;kÞ; j5 1; . . .;Lg are inde-

pendent, identically distributed. In addition, substituting (4.184) into (4.166) yields
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hIðγ2kÞ5
4

L4h4

XL
i51

E
XL
j51

ðei;k2ej;kÞKhðei;k2ej;kÞ
 !2
2
4

3
5

5
ðbÞ 4

L4h4

XL
i51

E
XL
j51

ðe1;k2ej;kÞKhðe1;k2ej;kÞ
 !2
2
4

3
5

5
ðcÞ 4

L3h4
ðL2 1ÞE½ðe1;k2e2;kÞ2K2

h ðe1;k 2 e2;kÞ�1 ðL2 1ÞðL2 2ÞE
½ðe1;k 2 e2;kÞðe1;k 2 e3;kÞKhðe1;k 2 e2;kÞKhðe1;k 2 e3;kÞ�

( )
ð4:186Þ

where (b) and (c) follow from the fact that the error samples fej;k; j5 1; . . .;Lg are
independent, identically distributed.

In (4.185) and (4.186), the functions hGðγ2kÞ and hIðγ2kÞ do not yet have the

explicit expressions in terms of the argument γ2k . In order to obtain the explicit

expressions, one has to calculate the involved expectations using the PDFs of the a

priori error and the noise. The calculation is rather complex and tedious. In the fol-

lowing, we only present the results for the Gaussian noise case.

Let the noise fvkg be a zero-mean white Gaussian process with variance λ2.

Then the error ek will also be zero-mean Gaussian distributed with variance

ζ2k 5 γ2k 1λ2. In this case, one can derive

hGðγ2kÞ5
2ðL2 1Þðγ4k 1 ðλ2 1 2h2Þγ2k 1 h2λ2 1 h4Þ
L
ffiffiffiffiffiffi
2π

p ðγ2k 1 h2Þðζ2k 1 h2Þð2ζ2k1h2Þ3=2

hIðγ2kÞ5
4ðL2 1Þζ2k

L3πh3ð4ζ2k1h2Þ3=2
1

2ðL2 1ÞðL2 2Þζ2kð4ζ8k 1 16h2ζ6k 1 17h4ζ4k 1 7h6ζ2k 1 h8Þ
L3πð2ζ2k1h2Þ2ðζ4k 1 3h2ζ2k 1 h4Þð3ζ4k14h2ζ2k1h4Þ3=2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4:187Þ

Substituting the explicit expressions in Eq. (4.187) into Eq. (4.178), one may

obtain the exact convergence curve of the WEP, which can be described by a non-

linear dynamic system:

E : ~Wk11:
2

h i
5 h E : ~Wk:

2
h i� �

ð4:188Þ

where the function hðξÞ5 ξ2 2ησ2
xξhGðσ2

xξÞ1mη2σ2
xhIðσ2

xξÞ.
In the following, a Monte Carlo simulation example is presented to verify the

previous theoretical analysis results [106]. Consider the case in which the input sig-

nal and additive noise are both white Gaussian processes with unit power. Assume

the unknown and adaptive systems are both ADALINE structures with weight
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vector of length 25. The initial weight vector of the adaptive system was obtained

by perturbing each coefficient of the ideal weight vector W� by a random variable

that is zero-mean Gaussian distributed with variance 0.04 (hence the initial WEP is

1.0 or 0 dB).

First, we examine the mean square convergence curves of the adaptive algo-

rithm. For different values of the step-size η, kernel width h, and sliding data length

L, the average convergence curves (solid) over 100 Monte Carlo runs and the corre-

sponding theoretical learning curves (dotted) are plotted in Figures 4.14�4.16.

Clearly, the experimental and theoretical results agree very well. Second, we verify

the steady-state performance. As shown in Figures 4.17�4.19, the steady-state

EMSEs generated by simulations match well with those calculated by theory.

These simulated and theoretical results also demonstrate how the step-size η, kernel
width h, and sliding data length L affect the performance of the adaptation: (i) a

larger step-size produces a faster initial convergence, but results in a larger misad-

justment; (ii) a larger kernel width causes a slower initial convergence, but yields a

smaller misadjustment; (iii) a larger sliding data length achieves a faster initial con-

vergence and a smaller misadjustment.14

In addition, we verify the upper bound on step-sizes that guarantee the conver-

gence of the learning. For the case in which the kernel width h5 0:2, and the slid-

ing data length L5 20, we plot in Figure 4.20 the curve of the function
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Figure 4.14 Simulated and theoretical learning curves for different step-sizes (h5 1:0,
L5 20).

14 Increasing the sliding data length can improve both convergence speed and steady-state performance,

however, this will increase dramatically the computational burden (OðL2Þ).
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ρðxÞ5 xhGðxÞ=hIðxÞ. Clearly, this function is monotonically increasing. Thus by

(4.174), we can calculate the maximum step-size ηmax � 0:217. For step-sizes

around ηmaxðηmax; ηmax 6 0:1Þ the simulated and theoretical learning curves are

shown in Figure 4.21. As expected, when η5 ηmax, the learning is at the edge of

convergence. If η is above (or below) the maximum step-size ηmax, the weight error

power will be increasing (or decreasing).

4.5 Optimization of φ-Entropy Criterion

The φ-entropy criterion is very flexible. In fact, many entropy definitions are spe-

cial cases of the φ-entropy. This flexibility, however, also brings the problem of

how to select a good φ function to maximize the performance of the adaptation

algorithm [200].

The selection of the φ function is actually an optimization problem. Denote J a

quantitative performance index (convergence speed, steady-state accuracy, etc.) of

the algorithm that we would like to optimize. Then the optimal φ function will be

φopt 5 arg max
φAΦ

J ð4:189Þ

where Φ represents the set of all possible φ functions. Due to the fact that different

identification scenarios usually adopt different performance indexes, the above
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optimization problem must be further formulated in response to a specific identifi-

cation system. In the following, we will focus on the FIR system identification, and

assume for simplicity that the unknown system and the adaptive model are both

FIR filters of the same order.

Before proceeding, we briefly review the optimization of the general error crite-

rion E½lðeÞ�. In the adaptive filtering literature, there are mainly two approaches for

the optimization of the general (usually non-MSE) error criterion. One approach

regards the choice of the error criterion (or the l function) as a parameter search, in

which a suitable structure of the criterion is assumed [26,201]. Such a design

method usually leads to a suboptimal algorithm since the criterion is limited to a

restricted class of functions. Another approach is proposed by Douglas and Meng

[28], where the calculus of variations is used, and no prior information about the

structure of error criterion is assumed. According to Douglas’ method, in FIR sys-

tem identification one can use the following performance index to optimize the

error criterion:

J52 trE½ ~Wk11
~W
T
k11� ð4:190Þ

where ~Wk11 is the weight error vector at k1 1 iteration. With the above perfor-

mance index, the optimization of the l function can be formulated as the following

optimization problem [28]:

minξ
Ð1N
2N ξ2ðeÞpkðeÞde

s:t:
Ð1N
2N 2ðξ0ðeÞ2 ηλfðξ0ðeÞÞ2 1 ξðeÞξ00ðeÞgÞpkðeÞde5 1

(
ð4:191Þ

where ξðeÞ5 l0ðeÞ, pkðeÞ is the error PDF at k iteration, η is the step-size, and λ is

the input signal power. By calculus of variations, one can obtain the optimal ξ
function [28]:

ξoptðeÞ52
p0kðeÞ

pkðeÞ1 ηλp00k ðeÞ
ð4:192Þ

The optimal l function can thus be expressed in the form of indefinite integral:

loptðeÞ5
ð
ξoptðeÞde5

ð
2

p0kðeÞ
pkðeÞ1 ηλp00k ðeÞ

de ð4:193Þ

which depends crucially on the error PDF pkðeÞ.
Next, we will utilize Eq. (4.193) to derive an optimal φ-entropy criterion [200].

Assume that the error PDF pkð:Þ is symmetric, continuously differentiable (up to

the second order), and unimodal with a peak at the origin. Then pkð:Þ satisfies: (i)
invertible over interval ½0; 1NÞ and (ii) p00k ð:Þ is symmetric. Therefore, we have

p00k ðeÞ5 p00k ðjejÞ5 p00k ðp21
k ½pkðeÞ�Þ5βðpkðeÞÞ ð4:194Þ

123System Identification Under Minimum Error Entropy Criteria



where p21
k ð:Þ denotes the inverse function of pkð:Þ over ½0; 1NÞ and β5 p00k 3p

21
k .

So, we can rewrite Eq. (4.193) as

loptðeÞ5
ð
2

p0kðeÞ
pkðeÞ1 ηλβðpkðeÞÞ

de ð4:195Þ

Let the optimal φ-entropy criterion equal to the optimal error criterion E½loptðeÞ�,
we have

Hφopt
ðeÞ5

ðN
2N

φopt½pkðeÞ�de5E½loptðeÞ�

5

ðN
2N

loptðeÞpkðeÞde

5

ðN
2N

ð
2

p0kðeÞ
pkðeÞ1 ηλβðpkðeÞÞ

de

8<
:

9=
;pkðeÞde

5

ðN
2N

ð
2

1

pkðeÞ1 ηλβðpkðeÞÞ
dpkðeÞ

8<
:

9=
;pkðeÞde

ð4:196Þ

Hence

φopt pkðeÞ½ �5
ð
2

1

pkðeÞ1 ηλβðpkðeÞÞ
dpkðeÞ

	 

pkðeÞ ð4:197Þ

Let pkðeÞ5 x, we obtain

φoptðxÞ5
ð
2

1

x1 ηλβðxÞ dx
	 


x ð4:198Þ

To achieve an explicit form of the function φoptðxÞ, we consider a special case in

which the error is zero-mean Gaussian distributed:

pkðeÞ5
1ffiffiffiffiffiffi
2π

p
σk

exp 2
e2

2σ2
k

� �
ð4:199Þ

Then we have

p00k ðeÞ5β pkðeÞ½ �5
212 2 log

ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p� �
pkðeÞ

n o
2 f2pkðeÞlog pkðeÞg

σ2
k

ð4:200Þ

It follows that

βðxÞ5
212 2 log

ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p� �
x

n o
2 f2x log xg

σ2
k

ð4:201Þ
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Substituting Eq. (4.201) into Eq. (4.198) yields

φoptðxÞ5
ð

21

γ1x1 γ2x log x
dx

	 

x52

x

γ2
logðγ1 1 γ2 log xÞ1 cx ð4:202Þ

where γ1 5 12 ηλ 11 2log
ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p� �
=σ2

k

� �
, γ2 52 ð2ηλ=σ2

kÞ, and cAℝ is a con-

stant. Thus, we obtain the following optimal φ-entropy:

Hφopt
ðeÞ5

ð1N

2N
2

1

γ2
pðeÞlogðγ1 1 γ2log pðeÞÞ1 cpðeÞ

� �
de ð4:203Þ

When c5 11 2 log
ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p� �
=2, and η ! 0, we have

lim
η!0

φoptðxÞ5 lim
η!0

2
x

γ2
logðγ1 1 γ2 log xÞ1 cx

0
@

1
A

5 lim
η!0

xσ2
k

2ηλ
log 12 ηλ

11 2log
ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p
σ2
k

2
2ηλ
σ2
k

log x

0
@

1
A1 cx

5 lim
η!0

2 xσ2
k

2λ

λ
11 2log

ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p
σ2
k

1
2λ
σ2
k

log x

12 ηλ
11 2log

ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

p
σ2
k

2
2ηλ
σ2
k

logx

1 cx

5
2 x

2
11 2log

ffiffiffiffiffiffiffiffiffiffi
2πσ2

k

q
1 2log x

� �
1 cx

52 x log x

ð4:204Þ

That is, as η ! 0 the derived optimal entropy will approach the Shannon

entropy. One may therefore conclude that, under slow adaptation condition (η is

small enough), Shannon’s entropy is actually a suboptimal entropy criterion.

Figure 4.22 shows the optimal φ functions for different step-sizes η (assume

λ5σ2
k 5 1).

One can easily derive the IG algorithms under the optimal φ-entropy criterion.

For example, substituting Eq. (4.202) into Eq. (4.79), we have the following SIG

algorithm:

Wk 5Wk21 2 η

Pk
i5k2L11

K 0
hðek 2 eiÞ @ŷk

@W 2 @ŷi
@W

� �n o
Lðγ1p̂ðekÞ1 γ2p̂ðekÞlogp̂ðekÞÞ

ð4:205Þ
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It is worth noting that the above optimal φ entropy was derived as an example

for a restricted situation, in which the constraints include FIR identification, white

Gaussian input and noise, etc. For more general situations, such as nonlinear and

non-Gaussian cases, the derived φ function would no longer be an optimal one.

As pointed out in Ref. [28], the implementation of the optimal nonlinear error

adaptation algorithm requires the exact knowledge of the noise’s or error’s PDFs.

This is usually not the case in practice, since the characteristics of the noise or error

may only be partially known or time-varying. In the implementation of the algo-

rithm under the optimal φ-entropy criterion, however, the required PDFs are esti-

mated by a nonparametric approach (say the KDE), and hence we don’t need such

a priori information. It must be noted that in Eq. (4.205), the parameters γ1 and γ2
are both related to the error variance σ2

k , which is always time-varying during the

adaptation. In practice, we should estimate this variance and update the two para-

meters online.

In the following, we present a simple numerical example to verify the theoretical

conclusions and illustrate the improvements that may be achieved by optimizing

the φ function. Consider the FIR system identification, where the transfer functions

of the plant and the adaptive filter are [200]

G� zð Þ5 0:81 0:5z21

G zð Þ5w0 1w1z
21

	
ð4:206Þ

The input signal and the noise are white Gaussian processes with powers 1.0

and 0.64, respectively. The initial weight vector of adaptive filter was obtained by

perturbing each component of the optimal weight vector by a random variable that
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Figure 4.22 Optimal φ functions for different step-sizes η
(adopted from Ref. [200]).
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is uniformly distributed in the interval ½2 0:6; 0:6�. In the simulation, the SIG algo-

rithms under three different entropy criteria (optimal entropy, Shannon entropy,

QIP) are compared. The Gaussian kernel is used and the kernel size is kept fixed at

σ5 0:4 during the adaptation.

First, the step-size of the SIG algorithm under the optimal entropy criterion was

chosen to be η5 0:015. The step-sizes of the other two SIG algorithms are adjusted

such that the three algorithms converge at the same initial rate. Figure 4.23 shows

the average convergence curves over 300 simulation runs. Clearly, the optimal

entropy criterion achieves the smallest final misadjustment (steady-state WEP).

The step-sizes of the other two SIG algorithms can also be adjusted such that the

three algorithms yield the same final misadjustment. The corresponding results are

presented in Figure 4.24, which indicates that, beginning at the same initial WEP,

the algorithm under optimal entropy criterion converges faster to the optimal solu-

tion than the other two algorithms. Therefore, a noticeable performance improve-

ment can be achieved by optimizing the φ function.

Further, we consider the slow adaptation case in which the step-size for the opti-

mal entropy criterion was chosen to be η5 0:003 (smaller than 0.015). It has been

proved that, if the step-size becomes smaller (tends to zero), the optimal entropy

will approach the Shannon entropy. Thus, in this case, the adaptation behavior of

the SIG algorithm under Shannon entropy criterion would be nearly equivalent to

that of the optimal entropy criterion. This theoretical prediction is confirmed by

Figure 4.25, which illustrates that the Shannon entropy criterion and the optimal

entropy criterion may produce almost the same convergence performance. In this

figure, the initial convergence rates of the three algorithms are set equal.
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Figure 4.23 Convergence curves of three SIG algorithms with the same initial convergence

rate

(adopted from Ref. [200]).
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Figure 4.24 Convergence curves of three SIG algorithms with the same final misadjustment

(adopted from Ref. [200]).
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(adopted from Ref. [200]).
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4.6 Survival Information Potential Criterion

Traditional entropy measures, such as Shannon and Renyi’s entropies of a continu-

ous random variable, are defined based on the PDF. As argued by Rao et al. [157],

this kind of entropy definition has several drawbacks: (i) the definition will be ill-

suited for the case in which the PDF does not exist; (ii) the value can be negative;

and (iii) the approximation using empirical distribution is impossible in general. In

order to overcome these problems, Rao et al. proposed a new definition of entropy

based on the cumulative distribution function (or equivalently, the survival func-

tion) of a random variable, which they called the cumulative residual entropy

(CRE) [157]. Motivated by the definition of CRE, Zografos and Nadarajah pro-

posed two new broad classes of entropy measures based on the survival function,

that is, the survival exponential and generalized survival exponential entropies,

which include the CRE as a special case [158].

In the following, a new IP, namely the survival information potential (SIP)

[159] is defined in terms of the survival function instead of the density function.

The basic idea of this definition is to replace the density function with the sur-

vival function in the expression of the traditional IP. The SIP is, in fact, the argu-

ment of the power function in the survival exponential entropy. In a sense, this

parallels the relationship between the IP and the Renyi entropy. When used as an

adaptation criterion, the SIP has some advantages over the IP: (i) it has consistent

definition in the continuous and discrete domains; (ii) it is not shift-invariant (i.

e., its value will vary with the location of distribution); (iii) it can be easily com-

puted from sample data (without kernel computation and the choice of kernel

width), and the estimation asymptotically converges to the true value; and (iv) it

is a more robust measure since the distribution function is more regular than the

density function (note that the density function is computed as the derivative of

the distribution function).

4.6.1 Definition of SIP

Before proceeding, we review the definitions of the CRE and survival exponential

entropy.

Let X5 ðX1;X2; . . .;XmÞ be a random vector in ℝm. Denote jXj the absolute

value transformed random vector of X, which is an m-dimensional random vector

with components jX1j; jX2j; . . .; jXmj. Then the CRE of X is defined by [157]

εðXÞ52

ð
ℝm
1

F Xj jðxÞlog F Xj jðxÞdx ð4:207Þ

where F Xj jðxÞ5PðjXj. xÞ5E½IðjXj. xÞ� is the multivariate survival function of

the random vector jXj, and ℝm
1 5 fxAℝm:x5 ðx1; . . .; xmÞ; xi $ 0; i5 1; . . .;mg. Here

the notation jXj. x means that jXij. xi, i5 1; . . .;m, and Ið:Þ denotes the indicator

function.
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Based on the same notations, the survival exponential entropy of order α is

defined as [158]

MαðXÞ5
ð
ℝm
1

F
α
Xj jðxÞdx

 !1=ð12αÞ

ð4:208Þ

From Eq. (4.208), we have

logMαðXÞ5
1

12α
log

ð
ℝm
1

F
α
Xj jðxÞdx ð4:209Þ

It can be shown that the following limit holds [158]:

lim
α!1

logMαðXÞ2
1

12α
log

ð
ℝm
1

F Xj jðxÞdx
( )ð

ℝm
1

F Xj jðxÞdx5 εðXÞ ð4:210Þ

The definition of the IP, along with the similarity between the survival exponen-

tial entropy and the Renyi entropy, motivates us to define the SIP.

Definition For a random vector X in ℝm, the SIP of order αðα. 0Þ is defined by

[159]

SαðXÞ5
ð
ℝm
1

F
α
Xj jðxÞdx ð4:211Þ

The SIP (4.211) is just defined by replacing the density function with the sur-

vival function (of an absolute value transformation of X) in the original IP. This

new definition seems more natural and reasonable, because the survival function

(or equivalently, the distribution function) is more regular and general than the

PDF. For the case α5 2, we call the SIP the quadratic survival information poten-

tial (QSIP).

The SIP SαðXÞ can be interpreted as the α-power of the α-norm in the survival

functional space. When α, 1, the survival exponential entropy MαðXÞ is a mono-

tonically increasing function of SαðXÞ, and minimizing the SIP is equivalent to min-

imizing the survival exponential entropy; while when α. 1, the survival

exponential entropy MαðXÞ is a monotonically decreasing function of SαðXÞ, and in

this case, minimizing the SIP is equivalent to maximizing the survival exponential

entropy. We stress that when used as an approximation criterion in system identifi-

cation, no matter what value of α. 0, the SIP should be minimized to achieve

smaller errors. This is quite different from the IP criterion which should be maxi-

mized when α. 1 [64]. The reason for this is that ’α. 0, the smaller SIP
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corresponds to more concentrated errors around the zero value. To demonstrate this

fact, we give a simple example below.

Assume that X is zero-mean Gaussian distributed, XBNð0;σ2Þ. For different

variance σ2 and α values, we can calculate the SIP and IP, which are shown in

Figure 4.26. It is clear that the SIP is a monotonically increasing function of σ2 for

all the α values, while the IP is a monotonically increasing function only when

α, 1.

4.6.2 Properties of the SIP

To further understand the SIP, we present in the following some important

properties.

Property 1: ’α. 0, SαðXÞ5 SαðjXjÞ.

Proof: This property is a direct consequence of the definition of SIP.

Property 2: SαðXÞ$ 0, with equality if and only if PðX5 0Þ5 1.
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Figure 4.26 The SIP and IP for different σ2 and α
(adopted from Ref. [159]).
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Proof: It is obvious that SαðXÞ$ 0. Now xα 5 0 if and only if x5 0. Therefore,

SαðXÞ5 0 implies PðjXj.λÞ5 0 for almost all λAℝm
1, or in other word, for almost

all λAℝm
1, PðjXj#λÞ5 1, which implies PðX5 0Þ5 1.

Remark: The global minimum value of the SIP is zero, and it corresponds to the δ
distribution located at zero. This is a desirable property that fails to hold for conven-

tional MEE criteria whose global minimum corresponds to the δ distribution located

at any position (shift-invariant). Hence when using SIP as an approximation criterion

in system identification, we do not need to add a bias term at system output.

The next five properties (Properties 3�7) are direct consequences of Ref. [158],

and will, therefore, not be proved here (for detailed proofs, please refer to

Theorems 1�5 in Ref. [158]).

Property 3: If E½jXij�,N and E½jXijp�,N (i5 1; 2; . . .;m) for some p. ðm=αÞ,
then SαðXÞ,N.

Property 4: Let X be an m-dimensional random vector, and let Y 5 ðY1; Y2; . . .;YmÞ
with Yi 5 ciXi, ciAℝ, i5 1; . . .;m. Then SαðYÞ5 Lm

i51
jcij


 �
SαðXÞ.

Property 5 (Weak convergence): Let fXðnÞg be a sequence of m-dimensional ran-

dom vectors converging in law to a random vector X. If fXðnÞg are all bounded in

Lp for somep.m=α, then limn!N SαðXðnÞÞ5 SαðXÞ.

Property 6: If the components of an m-dimensional random vector X are indepen-

dent with each other, then SαðXÞ5Lm

i51
SαðXiÞ.

Property 7: Let X and Y be nonnegative and independent random variables

(X; YAℝ1). Then SαðX1 YÞ$maxðSαðXÞ; SαðYÞÞ.

Property 8: Given two m-dimensional continuous random vectors X and Y with

PDFs pXðxÞ and pY ðyÞ, if pXðxÞ is symmetric (rotation invariant for m. 1) and

unimodal around zero, and Y is independent of X, then SαðX1 YÞ$ SαðXÞ.

Proof: Since X and Y are independent,

pX1Y ðxÞ5
ð
ℝm

pXðx2 τÞpY ðτÞdτ ð4:212Þ

132 System Parameter Identification



It follows that ’λAℝm
1

F X1Yj jðλÞ5PðjX1 Yj.λÞ

5

ð
ℝm

Iðjxj.λÞpX1Y ðxÞdx

5

ð
ℝm

Iðjxj.λÞdx
ð
ℝm

pXðx2 τÞpY ðτÞdτ

5

ð
ℝm

pY ðτÞdτ
ð
ℝm

Iðjxj.λÞpXðx2 τÞdx

5

ð
ℝm

pY ðτÞdτ 12

ð
ℝm

Iðjxj#λÞpXðx2 τÞdx
� �

5 12

ð
ℝm

pY ðτÞdτ
ð
ℝm

Iðjx1 τj#λÞpXðxÞdx

$
ðaÞ

12

ð
ℝm

pY ðτÞdτ
ð
ℝm

Iðjxj#λÞpXðxÞdx

5

ð
ℝm

Iðjxj.λÞpXðxÞdx

5F Xj jðλÞ

ð4:213Þ

where (a) follows from the condition that pXðxÞ is symmetric (rotation invariance

for m. 1) and unimodal around zero. Thus we get SαðX1 Y $ SαðXÞ.

Property 9: For the case α5 1, the SIP of XAℝm equals the expectation of

Lm

i51
jXij.

Proof:

S1ðXÞ5
ð
ℝm
1

F Xj jðτÞdτ

5

ð
ℝm
1

E½IðjXj. τÞ�dτ

5

ð
ℝm
1

E L
m

i51

I Xij j. τið Þ
� �

dτ

5E

ð
ℝm
1

L
m

i51

I Xij j. τið Þ
� �

dτ

" #

5E L
m

i51

Xij j
� �

ð4:214Þ

The above property can be generalized to the case where α is a natural number,

as stated in Property 10.
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Property 10: If αAN, then SαðXÞ5E Lm

i51
Zij j� �

, where Zi 5

min Xij j; Y ð1Þ
i

��� ���;?; Y ðα21Þ
i

��� ���� �
, fY ðjÞgα21

j51 are independent and identically distributed

(i.i.d.) random vectors which are independent of but have the same distribution

with X.

Proof: As random vectors fY ðjÞg are i.i.d., independent of but have the same distri-

bution with X, we can derive

F Zj jðτÞ5E I Zj j. τð Þ½ �

5E L
m

i51

I Zij j. τið Þ
� �

5E L
m

i51

I min Xij j; Y ð1Þ
i

��� ���;?; Y ðα21Þ
i

��� ���� �
. τi

� �� �

5E L
m

i51

I Xij j. τið ÞL
α21

j51

I Y
ðjÞ
i

��� ���. τi
� � !" #

5E L
m

i51

I Xij j. τið Þð ÞL
α21

j51

L
m

i51

I Y
ðjÞ
i

��� ���. τi
� �� �" #

5E I Xj j. τð ÞL
α21

j51

I Y ðjÞ�� ��. τ

 �
 �" #

5E I Xj j. τð Þ½ �L
α21

j51

E I Y ðjÞ�� ��. τ

 �� �

5L
α

j51

E I Xj j. τð Þ½ �

5F
α
Xj jðτÞ

ð4:215Þ

And hence

SαðXÞ5
ð
ℝm
1

F
α
Xj jðτÞdτ5

ð
ℝm
1

F Zj jðτÞdτ 5
Property 9

E L
m

i51

Zij j
� �

ð4:216Þ

The next property establishes a relationship between SIP and IP (which exists

when X has PDF). A similar relationship has been proved by Rao et al. for their

CRE (see Proposition 4 in [157]).

Property 11: Let X be a nonnegative random variable with continuous distribution.

Then there exists a function φ such that the α-order IP of Y 5φðXÞ is related to

SαðXÞ via
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VαðYÞ5
SαðXÞ
ðE½X�Þα ð4:217Þ

Proof: Let FðxÞ be the distribution function with density PðX. xÞ=E½X�. If we

choose φðxÞ5F21ðFXðxÞÞ, where F21ð:Þ is defined as in the remarks preceding the

Proposition 4 in [157], then Y 5φðXÞ has the distribution FðxÞ. Therefore, we have

VαðYÞ5
ðN
2N

pαY ðτÞdτ5
ðN
2N

PðX. τÞ
E½X�

� �α

dτ5
SαðXÞ
ðE½X�Þα ð4:218Þ

Property 12: Let XAℝm and YAℝn be two continuous random vectors. Assuming

for every value Y 5 y, the conditional density pXjY ðxjyÞ is symmetric (rotation

invariant for m. 1) and unimodal in x around μðyÞ5E½X Y 5 y�
�� , then

SαðX2μðYÞÞ# SαðX2 gðYÞÞ, where gð:Þ is any mapping ℝn ! ℝm for which

SαðX2 gðYÞÞ exists.

Proof: Denote pμðxÞ and pgðxÞ, respectively, the densities of X2μðYÞ and

X2 gðYÞ, i.e.,

pμðxÞ5 ÐℝnpXjY ðx1μðyÞjyÞdFY ðyÞ
pgðxÞ5 ÐℝnpXjY ðx1 gðyÞjyÞdFY ðyÞ

	
ð4:219Þ

Then for any xAℝm
1, we have

F X2gðYÞj jðxÞ5E½IðjX2 gðYÞj. xÞ�
5 12E½IðjX2 gðYÞj# xÞ�

5 12

ð
ℝm

Iðjτj# xÞpgðτÞdτ

5 12

ð
ℝm

Iðjτj# xÞdτ
ð
ℝn

pXjY ðτ1 gðyÞjyÞdFY ðyÞ

5 12

ð
ℝn

dFY ðyÞ
ð
ℝm

Iðjτj# xÞpXjY ðτ1 gðyÞjyÞdτ

5 12

ð
ℝn

dFY ðyÞ
ð
ℝm

Iðjτ2 gðyÞj# xÞpXjY ðτjyÞdτ

$
ðbÞ

12

ð
ℝn

dFY ðyÞ
ð
ℝm

Iðjjτ2μðyÞ# xÞpXjY ðτjyÞdτ

5 12

ð
ℝm

Iðjτj# xÞpμðτÞdτ

5F X2μðYÞj jðxÞ

ð4:220Þ
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where (b) comes from the condition that for every y, pXjY ðxjyÞ is symmetric (rota-

tion invariant for m. 1) and unimodal in x around μðyÞ. Therefore

SαðX2μðYÞÞ5
ð
ℝm
1

F
α
X2μðYÞj jðxÞdx#

ð
ℝm
1

F
α
X2gðYÞj jðxÞdx5 SαðX2 gðYÞÞ ð4:221Þ

Remark: The above property suggests that under certain conditions, the condi-

tional mean μðYÞ, which minimizes the MSE, also minimizes the error’s SIP.

4.6.3 Empirical SIP

Next, we discuss the empirical SIP of X. Since SαðXÞ5 SαðjXjÞ (see Property 1), we

assume without loss of generality that XAℝm
1. Let Xð1Þ;Xð2Þ; . . .;XðNÞ be N i.i.d.

samples of X with survival function FXðxÞ. The empirical survival function of X can

be estimated by putting 1/N at each of the sample points, i.e.,

FNðxÞ5
1

N

XN
k51

IðXðkÞ. xÞ ð4:222Þ

Consequently, the empirical SIP can be calculated as

ŜαðXÞ5
ð
ℝm
1

F
α
NðxÞdx5

ð
ℝm
1

1

N

XN
k51

IðXðkÞ. xÞ
 !α

dx ð4:223Þ

According to Glivento�Cantelli theorem [202],

:FN2FX:N 5 sup
x

FNðxÞ2FXðxÞ
�� �����!a:sN!N 0 ð4:224Þ

Combining Eq. (4.224) and Property 5 yields the following proposition.

Proposition: For any random vector X in ℝm
1, if X is bounded in Lp for some

P.m=α, then the empirical SIP (4.223) will converge to the true SIP of X, i.e.,

lim
N!N

ŜαðXÞ5 SαðXÞ.
In the sequel, we will derive more explicit expressions for the empirical SIP

(4.223). Let xð1Þ; xð2Þ; . . .; xðNÞ be a realization of Xð1Þ;Xð2Þ; . . .;XðNÞ.

4.6.3.1 Scalar Data Case

First, we consider the scalar data case, i.e., m5 1. We assume, without loss of gen-

erality, that 0# xð1Þ# xð2Þ#?# xðNÞ. Then we derive
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ŜαðXÞ5
ðN
0

1
N

XN
k51

IðxðkÞ. xÞ
 !α

dx

5
XN
j51

ðxðjÞ
xðj21Þ

1
N

XN
k51

IðxðkÞ. xÞ
 !α

dx

5
XN
j51

N2j11
N

� �α

ðxðjÞ2 xðj2 1ÞÞ

ð4:225Þ

where we assume xð0Þ5 0. One can rewrite Eq. (4.225) into a more simple form:

ŜαðXÞ5
XN
j51

N2j11
N

� �α

ðxðjÞ2 xðj2 1ÞÞ

5 12 N21
N

� �α� �
xð1Þ1 N21

N

� �α

2 N22
N

� �α� �
xð2Þ1?1

2
N

� �α

2 1
N

� �α� �
xðN2 1Þ1 1

N

� �α

xðNÞ

5
XN
j51

λjxðjÞ

ð4:226Þ

where

λj 5
N2j11

N

� �α

2
N2j

N

� �α

ð4:227Þ

From Eq. (4.226), the empirical SIP for scalar data can be expressed as a

weighted sum of the ordered sample data 0# xð1Þ# xð2Þ#?# xðNÞ, where the

weights λj; j5 1; 2; . . .;N depend on the sample size N and the α value, satisfying

λj $ 0,
PN

j51 λj 5 1. For the case N5 10, the weights for different α values are

shown in Figure 4.27. One can observe: (i) when α5 1:0, all the weights are equal

(λj 5 1=N), and in this case the empirical SIP is identical to the sample mean of X

and (ii) when α 6¼ 1:0, the weights are not equal. Specifically, when α, 1:0
(α. 1:0), the weight λj is a monotonically increasing (decreasing) function of the

order index j, that is, the larger weights are assigned to the larger (smaller) sample

data.

4.6.3.2 Multidimensional Data Case

Computing the empirical SIP for multidimensional data (m. 1) is, in general, not

an easy task. If α is a natural number, however, we can still obtain a simple explicit

expression. In this case, one can derive
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L
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� �

ð4:228Þ

The empirical SIP in Eq. (4.228) can also be derived using Property 10. By

Property 10, we have SαðXÞ5E Lm

i51
minðXi; Y

ð1Þ
i ; . . .;Y ðα21Þ

i Þ
h i

, where fY ðjÞg are

i.i.d. random vectors which are independent of but have the same distribution with
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Figure 4.27 The weights for different α values

(adopted from Ref. [159]).
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X. It is now evident that the empirical SIP of Eq. (4.228) is actually the sample

mean estimate of E Lm

i51
minðXi;Y

ð1Þ
i ; . . .; Y ðα21Þ

i Þ
h i

.

Remark: Compared with the empirical IP (say the estimated IP by Parzen window

method), the empirical SIP is much simpler in computation (just an ordering of the

samples), since there is no kernel evaluation, the most time-consuming part in the cal-

culation of the empirical IP. In addition, there is no problem like kernel width choice.

4.6.4 Application to System Identification

Similar to the IP, the SIP can also be used as an optimality criterion in adaptive

system training. Under the SIP criterion, the unknown system parameter vector (or

weight vector) W can be estimated as

Ŵ 5 arg min
WAΩW

SαðekÞ5 arg min
WAΩW

ð
ℝm
1

F
α
ekj jðξÞdξ ð4:229Þ

where F ekj jð:Þ is the survival function of the absolute value transformed error

jekj5 jzk 2 ŷkj. In practical application, the error distribution is usually unknown;

we have to use, instead of the theoretical SIP, the empirical SIP as the cost func-

tion. Given a sequence of error samples ðe1; e2; . . .; eNÞ, assuming, without loss of

generality, that je1j# je2j#?# jeN j, the empirical SIP will be (assume scalar

error)

ŜαðeÞ5
XN
j51

λjjejj ð4:230Þ

where λj is calculated by Eq. (4.227). The empirical cost (4.230) is a weighted sum

of the ordered absolute errors. One drawback of Eq. (4.230) is that it is not smooth

at ej 5 0. To address this problem, one can use the empirical SIP of the square

errors ðe21; e22; . . .; e2NÞ as an alternative adaptation cost, given by

Ŝαðe2Þ5
XN
j51

λje
2
j ð4:231Þ

The above cost is the weighted sum of the ordered square errors, which includes

the popular MSE cost as a special case (when α5 1). A more general cost can be

defined as the empirical SIP of any mapped errors ðφðe1Þ;φðe2Þ; . . .;φðeNÞÞ, i.e.,

ŜαðφðeÞÞ5
XN
j51

λjφðejÞ ð4:232Þ

139System Identification Under Minimum Error Entropy Criteria



where function φð:Þ usually satisfies

ðiÞ positivity: φðeÞ$ 0

ðiiÞ symmetry: φðeÞ5φð2 eÞ
ðiiiÞ monotonicity: je1j, je2j.φðe1Þ#φðe2Þ

8<
: ð4:233Þ

Based on the general cost (4.232), the weight update equation for system identi-

fication is

Wk11 5Wk 2 η
XN
j51

λjφ0ðejÞ@ej=@W ð4:234Þ

The weight update can be performed online (i.e., over a short sliding window),

as described in Table 4.5.

In the following, we present two simulation examples to demonstrate the perfor-

mance of the SIP minimization criterion. In the simulations below, the empirical

cost (4.231) is adopted (φðeÞ5 e2).

Table 4.5 Online System Identification with SIP Criterion

Initialization

a. Initialize the weight vector of the adaptive system: W0

b. Choose the α value, step-size η, and the sliding window length L

c. Compute the weights λj; j5 1; . . .; L, using Eq. (4.227)

d. Initialize the window of errors: ðeð1Þ; . . .; eðLÞÞ5 ð0;?; 0Þ
Computation

whilefxk; zkg available do
1. Compute the error: ek 5 zk 2 ŷk
2. Update the window of errors:

eð jÞ5 eð j1 1Þ; for j5 1; . . .; L2 1

eðLÞ5 ek

	

3. Rearrange the errors in ascending order of magnitude:

jeð1Þj# jeð2Þj#?# jeðLÞj

4. Update the weight vector:

Wk11 5Wk 2 η
XL
j51

λjφ0ðeðjÞÞ@eðjÞ=@W

end while
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4.6.4.1 FIR System Identification

First, we consider the simple FIR system identification. Let the unknown system be

a FIR filter given by [159]

HðzÞ 5 0:11 0:2z21 1 0:3z22 1 0:4z23 1 0:5z24 1 0:6z25

1 0:5z26 1 0:4z27 1 0:3z28 1 0:2z29 1 0:1z210 ð4:235Þ

The adaptive system is another FIR filter with the same order. The input xk is a

white Gaussian process with unit variance. Assume that the output of unknown sys-

tem is disturbed by an additive noise. Three different distributions are utilized to

generate the noise data:

ðaÞ Symmetricα-stable ðSαSÞ: ψγ;αðωÞ5expð2γjωjαÞwith γ50:1;α51:5

ðbÞGaussian: pðxÞ5 1ffiffiffiffiffiffi
2π

p
σ
expð2x2=2σ2Þwith σ250:2

ðcÞBinary: Prðx50:5Þ50:5; Prðx520:5Þ50:5

8>><
>>:

ð4:236Þ

where ψγ;αðωÞ denotes the characteristic function of the SαS distribution. The

above three distributions have, respectively, heavy, medium, and light tails. The

noise signals are shown in Figure 4.28.

In the simulation, the sliding data length is set at 10. The step-sizes of each

algorithm are chosen such that the initial convergence rates are visually identical.

Figure 4.29 shows the average convergence curves over 100 Monte Carlo runs for

different α ð0:5; 1:0; 2:0Þ. Notice that when α5 1:0, the algorithm is actually the
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Figure 4.28 Three different noises: (A) SαS, (B) Gaussian, and (C) Binary.
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LMS algorithm (strictly speaking, the block LMS algorithm). The WEPs at final

iteration are summarized in Table 4.6. From simulation results, one can observe:

i. For the case of SαS noise, the algorithms with larger α values (say α5 2:0) converge to

smaller WEP, and can even outperform the LAD algorithm (for comparison purpose, we

also plot in Figure 4.29(A) the convergence curve of LAD). It is well known that the

LAD algorithm performs well in α-stable noises [31].
ii. For the case of Gaussian noise, the algorithm with α5 1:0 (the LMS algorithm) per-

forms better, which is to be expected, since MSE criterion is optimal for linear Gaussian

systems.

iii. For the case of binary noise, the algorithms with smaller α values (say α5 0:5) obtain
better performance.

The basic reasons for these findings are as follows. As shown in Figure 4.27, the

larger the α value, the smaller the weights assigned to the larger errors. For the

case of heavy-tail noises (e.g., SαS noise), the larger errors are usually caused by

the impulsive noise. In this case, the larger α value will reduce the influence of the

outliers and improve the performance. On the other hand, for the case of light-tail

noises (e.g., binary noise), the larger errors are mainly caused by the system mis-

match, thus the smaller α value will decrease the larger mismatch more rapidly (as

the larger weights are assigned to the larger errors).

4.6.4.2 TDNN Training

The second simulation example is on the TDNNs training (in batch mode) with SIP

minimization criterion for one-step prediction of the Mackey�Glass (MG) chaotic
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Figure 4.29 Convergence curves averaged over 100 Monte Carlo runs: (A) SαS,
(B) Gaussian, and (C) Binary.

Table 4.6 WEPs at Final Iteration Over 100 Monte Carlo Runs

SαS Gaussian Binary

α5 0:5 0.09896 0.1700 0.01276 0.0055 0.00106 0.0005

α5 1:0 0.02046 0.0294 0.00766 0.0029 0.00966 0.0039

α5 2:0 0.00516 0.0029 0.01126 0.0043 0.08806 0.0133
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time series [203] with delay parameter τ5 30 and sampling period 6 s. The TDNN

is built from MLPs that consist of six processing elements (PEs) in a hidden layer

with biases and tanh nonlinearities and a single linear output PE with an output

bias. The goal is to predict the value of the current sample xk using the previous

seven points Xk 5 fxk21; . . .; xk27g (the size of the input delay line is consistent with

Taken’s embedding theorem [204]). In essence, the problem is to identify the

underlying mapping between the input vector Xk and the desired output xk. For

comparison purpose, we also present simulation results of TDNN training with

α-order (α. 1) IP maximization criterion. Since IP is shift-invariant, after training

the bias value of the output PE was adjusted so as to yield zero-mean error over

the training set. The Gaussian kernel was used to evaluate the empirical IP and the

kernel size was experimentally set at 0.8. A segment of 200 samples is used as the

training data. To avoid local-optimal solutions, each TDNN is trained starting from

500 predetermined initial weights generated by zero-mean Gaussian distribution

with variance 0.01. The best solution (the one with the lowest SIP or the highest IP

after training) among the 500 candidates is selected to test the accuracy perfor-

mance. In each simulation, the training algorithms utilized BP with variable step-

sizes [205], and 1000 iterations were run to ensure the convergence. The trained

networks are tested on an independently generated test sequence of 4000 samples,

and the testing errors are listed in Table 4.7. One can see the TDNN trained using

SIP with α5 1:5 achieves the smallest testing error. Thus, if properly choosing the

order α, the SIP criterion is capable of outperforming the IP criterion. Figure 4.30

shows the computation time per iteration versus the number of training data.

Clearly, the SIP-based training is computationally much more efficient than the IP-

based training, especially for large data sets. The training time for both methods is

measured on a personal computer equipped with a 2.2 GHz Processor and 3 GB

memory.

4.7 Δ-Entropy Criterion

System identification usually handles continuous-valued random processes rather

than discrete-valued processes. In many practical situations, however, the input

Table 4.7 Testing Errors Over 4000 Test Samples in MG Time Series Prediction

SIP IP

α5 0:8 0.00166 0.0276 α5 1:05 0.00116 0.0310

α5 1:0 0.00116 0.0214 α5 1:5 0.00106 0.0206

α5 1:5 0.00026 0.0180 α5 2:0 0.00066 0.0195

α5 2:0 2 0.00196 0.0272 α5 2:5 0.00096 0.0203

α5 2:5 2 0.00856 0.0412 α5 3:0 0.00106 0.0218
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and/or output of the unknown system may be discrete-valued for a variety of

reasons:

a. For many systems, especially in the field of digital communication, the input signals take

values only in finite alphabetical sets.

b. Coarsely quantized signals are commonly used when the data are obtained from an A/D

converter or from a communication channel. Typical contexts involving quantized data

include digital control systems (DCSs), networked control systems (NCSs), wireless sen-

sor networks (WSNs), etc.

c. Binary-valued sensors occur frequently in practical systems. Some typical examples of

binary-valued sensors can be found in Ref. [206].

d. Discrete-valued time series are common in practice. In recent years, the count or integer-

valued data time series have gained increasing attentions [207�210].

e. Sometimes, due to computational consideration, even if the observed signals are continu-

ous-valued, one may classify the data into groups and obtain the discrete-valued data

[130, Chap. 5].

In these situations, one may apply the differential entropy (or IP) to implement

the MEE criterion, in spite of the fact that the random variables are indeed discrete.

When the discretization is coarse (i.e., few levels) the use of differential entropy

may carry a penalty in performance that is normally not quantified. Alternatively,

the MEE implemented with discrete entropy will become ill-suited since the mini-

mization fails to constrain the dispersion of the error value which should be pur-

sued because the error dynamic range decreases over iterations.

200 400 600 800 1000
10–3

10–2

10–1

100

101

102

Number of training data

E
xe

cu
tio

n 
tim

e 
pe

r 
ite

ra
tio

n 
(s

)

SIP
IP

Figure 4.30 Execution time per iteration versus the number of training data.
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In the following, we augment the MEE criterion choices by providing a new

entropy definition for discrete random variables, called the Δ-entropy, which com-

prises two terms: one is the discrete entropy and the other is the logarithm of the

average interval between two successive discrete values. This new entropy retains

important properties of the differential entropy and reduces to the traditional dis-

crete entropy for a special case. More importantly, the proposed entropy definition

can still be used to measure the value dispersion of a discrete random variable, and

hence can be used as an MEE optimality criterion in system identification with

discrete-valued data.

4.7.1 Definition of Δ-Entropy

Before giving the definition of Δ-entropy, let’s review a fundamental relationship

between the differential entropy and discrete entropy (for details, see also Ref. [43]).

Consider a continuous scalar random variable X with PDF f ðxÞ. One can produce

a quantized random variable XΔ (see Figure 4.31), given by

XΔ 5 si; if iΔ#X, ði1 1ÞΔ ð4:237Þ

where si is one of countable values, satisfying

iΔ# si , ði1 1ÞΔ; and f ðsiÞΔ5

ðði11ÞΔ

iΔ
f ðxÞdx ð4:238Þ

The probability that XΔ 5 si is

pi 5 PrðXΔ 5 siÞ5 f ðsiÞΔ ð4:239Þ

iΔ (i + 1)Δ

Δ

x

f(x)

si

Figure 4.31 Quantization of

a continuous random variable.
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And hence, the discrete entropy HðXΔÞ is calculated as

HðXΔÞ52
XN
i52N

pi log pi 52
XN
i52N

Δf ðsiÞlog f ðsiÞ2 log Δ ð4:240Þ

If the density function f ðxÞ is Riemann integrable, the following limit holds

lim
Δ!0

ðHðXΔÞ1 logΔÞ52

ðN
2N

f ðxÞlog f ðxÞdx5 hðXÞ ð4:241Þ

Here, to make a distinction between the discrete entropy and differential

entropy, we use hðXÞ instead of HðXÞ to denote the differential entropy of X. Thus,

if the quantization interval Δ is small enough, we have

hðXÞ � HðXΔÞ1 logΔ ð4:242Þ

So, the differential entropy of a continuous random variable X is approximately

equal to the discrete entropy of the quantized variable XΔ plus the logarithm of the

quantization interval Δ. The above relationship explains why differential entropy is

sensitive to value dispersion. That is, compared with the discrete entropy, the dif-

ferential entropy “contains” the term log Δ, which measures the average interval

between two successive quantized values since

Δ5 lim
N!N

1

2N1 1

XN
i52N

jsi11 2 sij ð4:243Þ

This important relationship also inspired us to seek a new entropy definition for

discrete random variables that will measure uncertainty as well as value dispersion

and is defined as follows.

Definition: Given a discrete random variable X with values S5 ðs1; s2; . . .; sMÞ,
and the corresponding distribution P5 ðp1; p2; . . .; pMÞ, the Δ-entropy, denoted by

HΔðXÞ or HΔðS;PÞ, is defined as [211]

HΔðXÞ52
XM
i51

pi log pi 1 log ΔðXÞ ð4:244Þ

where ΔðXÞ (or ΔðS;PÞ) stands for the average interval (distance) between two

successive values.

The Δ-entropy contains two terms: the first term is identical to the traditional dis-

crete entropy and the second term equals the logarithm of the average interval between

two successive values. This new entropy can be used as an optimality criterion in esti-

mation or identification problems, because minimizing error’s Δ-entropy decreases

the average interval and automatically force the error values to concentrate.
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Next, we discuss how to calculate the average interval ΔðXÞ. Assume without

loss of generality that the discrete values satisfy s1 , s2 ,?, sM . Naturally, one

immediately thinks of the arithmetic and geometric means, i.e.,

ΔðXÞ5 1

M2 1

XM21

i51

si11 2 sij j for arithmetic mean

ΔðXÞ5 L
M21

i51

si112sij j
� �1= M21ð Þ

for geometric mean

8>>>><
>>>>:

ð4:245Þ

Both arithmetic and geometric means take no account of the distribution. A

more reasonable approach is to calculate the average interval using a probability-

weighted method. For example, one can use the following formula:

ΔðXÞ5
XM21

i51

si11 2 sij j pi 1 pi11

2
ð4:246Þ

However, if ðp1 1 pMÞ. 0, the sum of weights will be ,1, because

XM21

i51

pi 1 pi11

2
5 12

p1 1 pM

2
, 1 ð4:247Þ

To address this issue, we give another formula:

ΔðXÞ5
XM21

i51

si11 2 sij j pi 1 pi11

2
1

sM 2 s1j j
M2 1

p1 1 pM

2
ð4:248Þ

The second term of (4.248) equals the arithmetic mean multiplied by

ðp1 1 pMÞ=2, which normalizes the weight sum to one. Substituting (4.248) into

(4.244), we obtain

HΔðXÞ52
XM
i51

pi log pi 1 log
XM21

i51

si11 2 sij j pi 1 pi11

2
1

sM 2 s1j j
M2 1

p1 1 pM

2

 !

ð4:249Þ

The Δ-entropy can be immediately extended to the infinite value-set case, i.e.,

HΔðXÞ52
XN
i52N

pi log pi1 log
XN
i52N

si112sij jpi1pi11

2
1 lim

N!N

sN2s2Nj j
2N

p2N1pN

2

 !

ð4:250Þ

In the following, we use Eq. (4.249) or (4.250) as the Δ-entropy expression.
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4.7.2 Some Properties of the Δ-Entropy

The Δ-entropy maintains a close connection to the differential entropy. It is clear

that the Δ-entropy and the differential entropy have the following relationship in

the limit:

Theorem 1 For any continuous random variable X with Riemann integrable PDF

f ðxÞ, we have lim
Δ!0

HΔðXΔÞ5 hðXÞ, where quantized variable XΔ is given by

Eq. (4.237).

Proof: Combining Eqs. (4.239) and (4.250), we have

HΔ XΔ
 �
52

XN
i52N

f ðsiÞΔlogðf ðsiÞΔÞ

1 log
XN
i52N

si11 2 sij j f ðsiÞΔ1 f ðsi11ÞΔ
2

1 lim
N!N

sN 2 s2Nj j
2N

f ðs2NÞΔ1 f ðsNÞΔ
2

0
@

1
A

52
XN
i52N

Δf ðsiÞlog f ðsiÞ1 log
XN
i52N

si11 2 sij j f ðsiÞ1 f ðsi11Þ
2

0
@

1
A

As f ðxÞ is Riemann integrable, it follows that

lim
Δ!0

HΔðXΔÞ52
ÐN
2N f ðxÞlog f ðxÞdx1 log

ÐN
2N f ðxÞdx
 �

52
ÐN
2N f ðxÞlog f ðxÞdx5 hðxÞ

This completes the proof.

Remark: The differential entropy of X is the limit of the Δ-entropy of XΔ as

Δ ! 0. Thus, to some extent one can regard the Δ-entropy as a “quantized ver-

sion” of the differential entropy.

Theorem 2 log maxj5 1;2;?;M2 1 sj11 2 sj
�� ��
 �

$HΔðXÞ2HðXÞ$ log minj5 1;2;?;M2 1



sj11 2 sj
�� ��Þ.
Proof: Omitted due to simplicity.

Remark: By Theorem 2, if the minimum interval between two successive values is

larger than 1, we have HΔðXÞ.HðXÞ, whereas if the maximum interval between

two successive values is smaller than 1, we have HΔðXÞ,HðXÞ.
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Theorem 3 If X is a discrete random variable with equally spaced values, and the

interval Δ5 1, then HΔðXÞ5HðXÞ.

Proof: For equally spaced intervals, the difference between theΔ-entropy and the

discrete entropy equals logΔ. Hence, the statement follows directly.

Remark: The classification problem is, in general, a typical example of the error

variable distributed on equally spaced values f0; 1; 2; 3; . . .g. Thus in classification,

the error’s discrete entropy is equivalent to the Δ-entropy. This fact also gives an

interpretation for why the discrete entropy can be used in the test and classification

problems [212,213].

In information theory, it has been proved that the discrete entropy satisfies (see

Ref. [43], p. 489)

0#HðXÞ# 1

2
log 2πe

XM
i51

pii
2 2

XM
i51

ipi

 !
1

1

12

 ! !
ð4:251Þ

Combining Eq. (4.251) and Theorem 2, we obtain a bound on Δ-entropy:

log min
j5 1;2;?;M2 1

sj11 2 sj
�� ��� �

#HΔðXÞ

#
1

2
log 2πe

XM
i51

pii
2 2

XM
i51

ipi

 !
1

1

12

 !
max

j51;2;?;M21
sj112sj
�� ��� �2 !

ð4:252Þ

A lower bound of the Δ-entropy can also be expressed in terms of the variance

VarðXÞ, as given in the following theorem:

Theorem 4 If pmin 5minfpig. 0, then HΔðXÞ$ log 2Mpmin

M2 1


 �
1 1

2
logðVarðXÞÞ.

Proof: It is easy to derive

VarðXÞ5
XM
i51

ðsi2sÞ2pi

#
XM
i51

si2
sM1s1

2

� �2
pi

#
XM
i51

sM2
sM1s1

2

� �2
pi

5
1

4
ðsM2s1Þ2
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It follows that sM 2 s1j j$ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ

p
, and hence

HΔðXÞ$ log
XM21

i51

si11 2 sij j pi 1 pi11

2
1

sM 2 s1j j
M2 1

p1 1 pM

2

0
@

1
A

$ log
XM21

i51

si11 2 sij jpmin 1
sM 2 s1j j
M2 1

pmin

0
@

1
A5 log

M sM 2 s1j j
M2 1

pmin

0
@

1
A

$ log
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXÞ

p
M2 1

pmin

0
@

1
A

5 log
2Mpmin

M2 1

0
@

1
A1

1

2
logðVarðXÞÞ

The lower bound of Theorem 4 suggests that, under certain condition minimiz-

ing the Δ-entropy constrains the variance. This is a key difference between the

Δ-entropy and conventional discrete entropy.

Theorem 5 For any discrete random variable X, ’ cAℝ, HΔðX1 cÞ5HΔðXÞ.

Proof: Since HðX1 cÞ5HðXÞ and ΔðX1 cÞ5ΔðXÞ, we haveHΔðX1 cÞ5HΔðXÞ.

Theorem 6 ’αAℝ;α 6¼ 0, HΔðαXÞ5HΔðXÞ1 log αj j.

Proof: Since HðαXÞ5HðXÞ and ΔðαXÞ5 αj jΔðXÞ, we have

HΔðαXÞ5HΔðXÞ1 log αj j.
Theorems 5 and 6 indicate that the Δ-entropy has the same shifting and scaling

properties as the differential entropy.

Theorem 7 The Δ-entropy is a concave function of P5 ðp1; p2; . . .; pMÞ.

Proof: ’P1 5 ðpð1Þ1 ; pð1Þ2 ; . . .; pð1ÞM Þ;P2 5 ðpð2Þ1 ; pð2Þ2 ; . . .; pð2ÞM Þ, and ’ 0#λ# 1, we

have

ΔðS;λP1 1 ð12λÞP2Þ5λΔðS;P1Þ1 ð12λÞΔðS;P2Þ ð4:253Þ

By the concavity of the logarithm function,

logðΔðS;λP1 1 ð12λÞP2ÞÞ$λ logðΔðS;P1ÞÞ1 ð12λÞlogðΔðS;P2ÞÞ ð4:254Þ
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It is well known that the discrete entropy HðPÞ is a concave function of the dis-

tribution P, i.e.,

HðλP1 1 ð12λÞP2Þ$λHðP1Þ1 ð12λÞHðP2Þ; ’ 0#λ# 1 ð4:255Þ

Combining Eqs. (4.254) and (4.255) yields

HΔðS;λP1 1 ð12λÞP2Þ$λHΔðS;P1Þ1 ð12λÞHΔðS;P2Þ ð4:256Þ

which implies Δ-entropy is a concave function of P.
The concavity of the Δ-entropy is a desirable property for the entropy optimiza-

tion problem. This property ensures that when a stationary value of the Δ-entropy

subject to linear constraints is found, it gives the global maximum value [149].

Next, we solve the maximum Δ-entropy distribution. Consider the following

constrained optimization problem:

max
P

HΔðXÞ

s:t:

PM
i51 pi 5 1PM
i51 pigkðsiÞ5 ak; k5 1; 2; . . .;K

(
8>><
>>: ð4:257Þ

where ak is the expected value of the function gkðXÞ. The Lagrangian is given by

L5HΔðXÞ2 ðλ0 2 1Þ
XM
i51

pi 2 1

 !
2
XK
k51

λk

XM
i51

pigkðsiÞ2 ak

 !
ð4:258Þ

where λ0;λ1; . . .;λK are the ðK1 1Þ Lagrange multipliers corresponding to the

ðK1 1Þ constraints. Here λ0 2 1 is used as the first Lagrange multiplier instead of

λ0 as a matter of convenience. Let @L=@pi 5 0, we have

ΔðXÞ 2λ0 2
XK
k51

λkgkðsiÞ2 log pi

 !
1 ci 5 0; i5 1; 2; . . .;M; ð4:259Þ

where

ci 5

jsM 2 s1j
2ðM2 1Þ 1

js2 2 s1j
2

; i5 1

jsi11 2 si21j
2

; i5 2; . . .;M2 1

jsM 2 s1j
2ðM2 1Þ 1

jsM 2 sM21j
2

; i5M

8>>>>>>>><
>>>>>>>>:

ð4:260Þ
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Solving Eq. (4.259), we obtain the following theorem:

Theorem 8 The distribution P that maximizes the Δ-entropy subject to the con-

straints of Eq. (4.257) is given by

pi 5 exp 2λ0 2
XK
k51

λkgkðsiÞ1
ci

ΔðXÞ

 !
; i5 1; 2; . . .;M ð4:261Þ

where λ0;λ1; . . .;λK are determined by substituting for pi from Eq. (4.261) into

the constraints of Eq. (4.257).

For the case in which the discrete values are equally spaced, we have

c1 5 c2 5?5 cM 5Δ, and Eq. (4.261) becomes

pi 5 exp 12λ0 2
XK
k51

λkgkðsiÞ
 !

ð4:262Þ

In this case, the maximum Δ-entropy distribution is identical to the maximum

discrete entropy distribution [149].

4.7.3 Estimation of Δ-Entropy

In practical situations, the discrete values fsig and probabilities fpig are usually

unknown, and we must estimate them from sample data fx1; x2; . . .; xng. An immedi-

ate approach is to group the sample data into different values fŝig and calculate the

corresponding relative frequencies:

p̂i 5 ni=n; i5 1; 2; . . .;M ð4:263Þ

where ni denotes the number of these outcomes belonging to the value ŝi withPM
i51 ni 5 n.

Based on the estimated values fŝig and probabilities fp̂ig, a simple plug-in esti-

mate of Δ-entropy can be obtained as

HΔðŜ;P̂Þ52
XM
i51

p̂i log p̂i 1 log
XM21

i51

jŝi11 2 ŝij
p̂i 1 p̂i11

2
1

jŝM 2 ŝ1j
M2 1

p̂1 1 p̂M
2

 !

ð4:264Þ

where Ŝ5 ðŝ1;ŝ2; . . .; ŝMÞ and P̂5 ðp̂1;p̂2; . . .; p̂MÞ.
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As the sample size increases, the estimated value set Ŝ will approach the true

value set S with probability one, i.e., PrðŜ5 SÞ5 1, as n ! N. In fact, assuming

fx1; x2; . . .; xng is an i.i.d. sample from the distribution P, and pi . 0, i5 1; . . .;M,

we have

PrðŜ 6¼SÞ#
XM
i51

Prðsi =2 fx1; x2; . . .; xngÞ

5
XM
i51

L
n

j51

PrðXj 6¼ siÞ
 !

5
XM
i51

ð12piÞn ! 0 as n ! N

ð4:265Þ

We investigate in the following the asymptotic behavior of the Δ-entropy in

random sampling. We assume for tractability that the value set S is known (or has

been exactly estimated). Following a similar derivation of the asymptotic distribu-

tion for the φ-entropy (see Ref. [130], Chap. 2), we denote the parameter vector

θ5 ðθ1; θ2; . . .; θM21ÞT 5 ðp1; p2; . . .; pM21ÞT , and rewrite Eq. (4.264) as

HΔðθ̂ Þ52
XM21

i51

θ̂ ilog θ̂ i 2 12
XM21

j51

θ̂ j

 !
log 12

XM21

j51

θ̂ j

 !

1 log
XM22

i51

jsi11 2 sij θ̂ i 1 θ̂ i11

2
1 jsM 2 sM21j

θ̂M21 1 12
XM21

j51

θ̂ j

 !

2

0
BBBB@

1
jsM 2 s1j
M2 1

θ̂ 1 1 12
XM21

j51

θ̂ j

 !

2

1
CCCCA ð4:266Þ

The first-order Taylor expansion of HΔðθ̂ Þ around θ gives

HΔðθ̂ Þ5HΔðθÞ1
XM21

i51

@HΔðθÞ
@θi

ðθ̂ i 2 θiÞ1 oðOθ̂ 2θOÞ ð4:267Þ

where Oθ̂ 2 θO5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðθ̂2θÞT ðθ̂ 2 θÞ

q
, and @HΔðθÞ=@θi is
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@HΔðθÞ
@θi

5

2 logθi1 log 12
XM21

j51

θj

 !
1

si112 si212 ðsM 2 sM21Þ
2Δ

2
sM 2 s1j j

2ðM2 1ÞΔ ;

i 6¼ 1;M2 1

2 logθ11 log 12
XM21

j51

θj

 !
1

s22 s12 ðsM 2 sM21Þ
2Δ

; i5 1

2 logθM211 log 12
XM21

j51

θj

 !
1

sM212 sM22

2Δ
2

jsM 2 s1j
2ðM2 1ÞΔ ;

i5M2 1

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð4:268Þ

where

Δ5
XM22

i51

jsi11 2 sij
θ̂ i 1 θ̂ i11

2
1 jsM 2 sM21j

θ̂M21 1 12
PM21

j51

θ̂ j

 !

2

0
BBBB@

1
jsM 2 s1j
M2 1

θ̂ 1 1 12
PM21

j51

θ̂ j

 !

2

1
CCCCA ð4:269Þ

According to Ref. [130, Chap. 2], we have

ffiffiffi
n

p ðθ̂ 2θÞ ���!Ln!N Nð0; IFðθÞ21Þ ð4:270Þ

where the inverse of the Fisher information matrix of θ is given by

IFðθÞ21 5 diagðθÞ2θθT . Then
ffiffiffi
n

p
Oθ̂ 2θO is bounded in probability, and

ffiffiffi
n

p ðoðOθ̂ 2θOÞÞ���!pn!N 0 ð4:271Þ

And hence, random variables
ffiffiffi
n

p ðHΔðθ̂ Þ2HΔðθÞÞ and
ffiffiffi
n

p PM21
i51

@HΔðθÞ
@θi

ðθ̂ i 2 θiÞ
have the same asymptotic distribution, and we have the following theorem.

Theorem 9 The estimate HΔðS;P̂Þ, obtained by replacing the fpig by their relative

frequencies fp̂ig, in a random sample of size n, satisfies

ffiffiffi
n

p ðHΔðS;P̂Þ2HΔðS;PÞÞ ���!Ln!N Nð0;UTIFðθÞ21UÞ ð4:272Þ
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provided UTIFðθÞ21U. 0, where θ5 ðp1; p2; . . .; pM21ÞT , IFðθÞ21 5 diagðθÞ2 θθT ,

and

U5 ð@HΔðθÞ=@θ1; @HΔðθÞ=@θ2; . . .; @HΔðθÞ=@θM21ÞT ð4:273Þ

where @HΔðθÞ=@θi is calculated as (4.268).

The afore-discussed plug-in estimator of the Δ-entropy has close relationships

with certain estimators of the differential entropy.

4.7.3.1 Relation to KDE-based Differential Entropy Estimator

Suppose fx1; x2; . . .; xng are samples from a discrete random variable X. We rewrite

the plug-in estimate (4.264) as

HΔðŜ;P̂Þ52
XM
i51

p̂ilog p̂i 1 log Δ̂ ð4:274Þ

where Δ̂5
PM21

i51 jŝi11 2 ŝijððp̂i 1 p̂i11Þ=2Þ1 ðjŝM 2 ŝ1j=ðM2 1ÞÞððp̂1 1 p̂MÞ=2Þ.
Denote Δ̂min 5 mini5 1;?;M2 1 jŝi11 2 ŝij, and let τ5 Δ̂=Δmin, we construct another

set of samples:

fx01; x02; . . .; x0ng5 fτx1; τx2; . . .; τxng ð4:275Þ

which are samples from the discrete random variable τX, and satisfy

’ x0i 6¼ x0j; jx0i 2 x0jj$ Δ̂ ð4:276Þ

Now we consider fx01; x02; . . .; x0ng as samples from a “continuous” random vari-

able X0. The PDF of X0 can be estimated by the KDE approach:

p̂ðx0Þ5 1

n

Xn
i51

Kðx0 2 x0iÞ ð4:277Þ

The kernel function satisfies K$ 0 and
ÐN
2N KðxÞdx5 1. If the kernel function is

selected as the following uniform kernel:

KΔ̂ðxÞ5
1=Δ̂; xA½2 Δ̂=2; Δ̂=2�
0 otherwise

(
ð4:278Þ

then Eq. (4.277) becomes
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p̂ðx0Þ5 1

n

Xn
j51

KΔ̂ðx0 2 x0jÞ

5
1

n

XM
i51

niKΔ̂ðx0 2 s0iÞ

5
ðaÞ

pi

Δ̂
; x0A s0i 2 Δ̂=2; s0i 1 Δ̂=2

h i
0 otherwise

8><
>:

ð4:279Þ

where ðaÞ follows from p̂i 5 ni=n, and ’ x0i 6¼ x0j, jx0i 2 x0jj$ Δ̂. The differential

entropy of X0 can then be estimated as

ĥðX0Þ52

ðN
2N

p̂ðx0Þlog p̂ðx0Þdx0

52
XM
i51

ðs0 i1Δ̂=2

s0 i2Δ̂=2
p̂ðx0Þlog p̂ðx0Þdx0

52
XM
i51

ðs0 i1Δ̂=2

s0 i2Δ̂=2

pi

Δ̂
log

pi

Δ̂
dx0

52
XM
i51

pilog pi 1 log Δ̂5HΔðŜ;P̂Þ

ð4:280Þ

As a result, the plug-in estimate of the Δ-entropy is identical to a uniform

kernel-based estimate of the differential entropy from the scaled samples (4.275).

4.7.3.2 Relation to Sample-Spacing Based Differential Entropy Estimator

The plug-in estimate of the Δ-entropy also has a close connection with the sample-

spacing based estimate of the differential entropy. Suppose the sample data are dif-

ferent from each other, and have been rearranged in an increasing order:

x1 , x2 ,?, xn, the m-spacing estimate is given by [214]

ĥmðXÞ5
1

n

Xn2m

i51

log
n

m
ðxi1m 2 xiÞ

� �
ð4:281Þ

where mAN and m, n. If m5 1, we obtain the one-spacing estimate:

ĥ1ðXÞ5
1

n

Xn21

i51

logðnðxi11 2 xiÞÞ ð4:282Þ

156 System Parameter Identification



On the other hand, based on the samples one can estimate the value set and cor-

responding probabilities:

Ŝ5 ðx1; x2; . . .; xnÞ
P̂5 ð1=n; 1=n; . . .; 1=nÞ

	
ð4:283Þ

Then the plug-in estimate of the Δ-entropy will be

HΔðŜ;P̂Þ52
Xn
i51

1

n
log

1

n
1 log

Xn21

i51

ðxi11 2 xiÞ
1

n
1

ðxn 2 x1Þ
n2 1

1

n

 !
ð4:284Þ

It follows that

HΔðŜ;P̂Þ52
Xn
i51

1

n
log

1

n
1 log

Xn21

i51

ðxi11 2 xiÞ
1

n
1

ðxn 2 x1Þ
n2 1

1

n

0
@

1
A

$
ðbÞ 1

n

Xn
i51

log n1
1

n

Xn21

i51

logðxi11 2 xiÞ1 log
ðxn 2 x1Þ
n2 1

0
@

1
A

5
1

n

Xn21

i51

logðnðxi11 2 xiÞÞ1
1

n
log

nðxn 2 x1Þ
n2 1

5 ĥ1ðXÞ1
1

n
log

nðxn 2 x1Þ
n2 1

ð4:285Þ

where (b) comes from the concavity of the logarithm function. If fxig is bounded,
we have

lim
n!N

HΔðŜ;P̂Þ$ lim
n!N

ĥ1ðXÞ1 1

n
log

nðxn 2 x1Þ
n2 1

� �
5 lim

n!N
ĥ1ðXÞ ð4:286Þ

In this case, the plug-in estimate of Δ-entropy provides an asymptotic upper

bound on the one-spacing entropy estimate.

4.7.4 Application to System Identification

The Δ-entropy can be used as an optimality criterion in system identification, espe-

cially when error signal is distributed on a countable value set (which is usually

unknown and varying with time) 15. A typical example is the system identification

with quantized input/output (I/O) data, as shown in Figure 4.32, where xk and zk

15 For the case in which the error distribution is continuous, one can still use the Δ-entropy as the opti-

mization criterion if classifying the errors into groups and obtaining the quantized data.
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represent the quantized I/O observations, obtained via I/O quantizers Qi and Qo.

With uniform quantization, xk and zk can be expressed as

xk 5 xk=qi 1 1=2
� �

3 qi
zk 5 zk=qo 1 1=2

� �
3 qo

	
ð4:287Þ

where qi and qo denote the quantization box-sizes, xd e gives the largest integer that

is less than or equal to x.

In practice, Δ-entropy cannot be, in general, analytically computed, since the

error’s values and corresponding probabilities are unknown. In this case, we need to

estimate the Δ-entropy by the plug-in method as discussed previously. Traditional

gradient-based methods, however, cannot be used to solve the Δ-entropy minimiza-

tion problem, since the objective function is usually not differentiable. Thus, we

have to resort to other methods, such as the estimation of distribution algorithms

(EDAs) [215], a new class of evolutionary algorithms (EAs), although they are usu-

ally more computationally complex. The EDAs use the probability model built

from the objective function to generate the promising search points instead of cross-

over and mutation as done in traditional GAs. Some theoretical results related to the

convergence and time complexity of EDAs can be found in Ref. [215]. Table 4.8

presents the EDA-based identification algorithm with Δ-entropy criterion.

Usually, we use a Gaussian model with diagonal covariance matrix (GM/DCM)

[215] to estimate the density function fgðWÞ of the gth generation. With GM/DCM

model, we have

fgðWÞ5 L
m

j51

1ffiffiffiffiffiffi
2π

p
σðgÞ
j

expð2 ðwj2μðgÞ
j Þ2=ð2ðσðgÞ

j Þ2ÞÞ ð4:288Þ

where the means μðgÞ
j and the deviations σðgÞ

j can be estimated as

μðgÞ
j 5

1

N

XN

l51
W

ðg21Þ
BðlÞ ðjÞ

σðgÞ
j 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

l51
ðW ðg21Þ

BðlÞ ðjÞ2μðgÞ
j Þ2

s
8>>>><
>>>>:

ð4:289Þ
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Figure 4.32 System identification with

quantized I/O data.
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In the following, two simple examples are presented to demonstrate the performance

of the above algorithm. In all of the simulations below, we set R5 100 and N5 30.

First, we consider the system identification based on quantized I/O data, where

the unknown system and the parametric model are both two-tap FIR filters, i.e.,

zk 5w�
1xk 1w�

2xk21

yk 5w1xk 1w2xk21

	
ð4:290Þ

The true weight vector of the unknown system is W� 5 ½1:0; 0:5�T , and the initial

weight vector of the model is W0 5 ½0; 0�T . The input signal and the additive noise

are both white Gaussian processes with variances 1:0 and 0.04, respectively. The

number of the training data is 500. In addition, the quantization box-size qi and qo
are equal. We compare the performance among three entropy criteria: Δ-entropy,

differential entropy17 and discrete entropy. For different quantization sizes, the aver-

age evolution curves of the weight error norm over 100 Monte Carlo runs are shown

in Figure 4.33. We can see the Δ-entropy criterion achieves the best performance,

and the discrete entropy criterion fails to converge (discrete entropy cannot constrain

the dispersion of the error value). When the quantization size becomes smaller, the

performance of the differential entropy approaches that of the Δ-entropy. This agrees

with the limiting relationship between the Δ-entropy and the differential entropy.

The second example illustrates that the Δ-entropy criterion may yield approxi-

mately an unbiased solution even if the input and output data are both corrupted by

Table 4.8 EDA Based Identification Algorithm with Δ-entropy Criterion

1. BEGIN

2. Generate R individuals A0 5 fW ð0Þ
1 ;W ð0Þ

2 ; . . .;W ð0Þ
R g randomly from parameter space, g’0

3. WHILE the final stopping criterion is not met DO

4. g’g1 1

5. For each parameter vector in Ag21, estimate the error’s Δ-entropy using a training data

set

6. Select N(N#R) promising individuals Bg 5 fW ðg21Þ
Bð1Þ ;W ðg21Þ

Bð2Þ ; . . .;W ðg21Þ
BðNÞ g from Ag21

according to the truncation selection method (using Δ-entropy as the fitness function)16

7. Estimate the PDF fgðWÞ based on the statistical information extracted from the selected

N individuals Bg

8. Sample R individuals Ag 5 fW ðgÞ
1 ;W ðgÞ

2 ; . . .;W ðgÞ
R g from fgðWÞ

9. END WHILE

10. Calculate the estimated parameter: WðgÞ5 ð1=NÞPN
n51 W

ðg21Þ
BðnÞ

11. END

16 The truncation selection is a widely used selection method in EDAs. In the truncation selection, indi-

viduals are sorted according to their objective function (or fitness function) values and only the best

individuals are selected.
17 Strictly speaking, the differential entropy criterion is invalid in this example, because the error is

discrete-valued. However, in the simulation one can still adopt the empirical differential entropy.
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noises. Consider again the identification of a two-tap FIR filter in which

G�ðzÞ5w�
1 1w�

2z
21 5 1:01 0:5z21. We assume the input signal xk, input noise n1;k,

and the output noise n2;k are all zero-mean white Bernoulli processes with distribu-

tions below

Prfxk 5σxg5 0:5; Prfxk 52σxg5 0:5
Prfn1;k 5σn1g5 0:5; Prfn1;k 52σn1g5 0:5
Prfn2;k 5σn2g5 0:5; Prfn2;k 52σn2g5 0:5

8<
: ð4:291Þ

where σx, σn1 , and σn2 denote, respectively, the standard deviations of xk, n1;k, and

n2;k. In the simulation we set σx 5 1:0, and the number of training data is 500.

Simulation results over 100 Monte Carlo runs are listed in Tables 4.9 and 4.10. For

comparison purpose, we also present the results obtained using MSE criterion. As

one can see, the Δ-entropy criterion produces nearly unbiased estimates under vari-

ous SNR conditions, whereas the MSE criterion yields biased solution especially

when the input noise power increasing.
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Figure 4.33 Evolution curves of the weight error norm for different entropy criteria

(adopted from Ref. [211]).
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4.8 System Identification with MCC

Correntropy is closely related to Renyi’s quadratic entropy. With Gaussian kernel,

correntropy is a localized similarity measure between two random variables: when

two points are close, the correntropy induced metric (CIM) behaves like an L2

norm; outside of the L2 zone CIM behaves like an L1 norm; as two points are fur-

ther apart, the metric approaches L0 norm [137]. This property makes the MCC a

robust adaptation criterion in presence of non-Gaussian impulsive noise. At the end

of this chapter, we briefly discuss the application of the MCC criterion to system

identification.

Consider a general scheme of system identification as shown in Figure 4.1.

The objective of the identification is to optimize a criterion function (or cost

function) in such a way that the model output ŷk resembles as closely as possible

the measured output zk. Under the MCC criterion, the cost function that we want

to maximize is the correntropy between the measured output and the model out-

put, i.e.,

Table 4.9 Simulation Results for Different σn1 (σn2 5 0:1)

σn1 Δ-entropy MSE

w1 w2 w1 w2

0.1 1.00006 0.0008 0.49996 0.0007 0.98966 0.0071 0.49526 0.0067

0.2 0.99976 0.0015 0.49956 0.0015 0.96096 0.0098 0.48006 0.0097

0.3 0.99946 0.0016 0.49936 0.0017 0.91926 0.0118 0.46176 0.0140

0.4 0.99916 0.0019 0.49916 0.0019 0.86296 0.0129 0.43166 0.0163

0.5 0.99806 0.0039 0.49726 0.0077 0.80156 0.0146 0.40166 0.0200

(adopted from Ref. [211])

Table 4.10 Simulation Results for Different σn2 (σn1 5 0:1)

σn2 Δ-entropy MSE

w1 w2 w1 w2

0.1 1.00006 0.0008 0.49996 0.0007 0.98966 0.0071 0.49526 0.0067

0.2 0.99996 0.0009 0.49996 0.0008 0.98876 0.0096 0.49496 0.0089

0.3 0.99996 0.0012 0.49986 0.0011 0.99086 0.0139 0.49436 0.0142

0.4 0.99996 0.0020 0.49986 0.0017 0.98806 0.0192 0.49486 0.0208

0.5 1.00016 0.0039 0.49986 0.0024 0.99266 0.0231 0.49466 0.0235

(adopted from Ref. [211])
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In practical applications, one often uses the following empirical correntropy as

the cost function:

Ĵ5
1ffiffiffiffiffiffi
2π

p
σ
:
1

L

Xk
i5k2L11

exp 2
ei
2

2σ2

� �
ð4:293Þ

Then a gradient-based identification algorithm can be easily derived as follows:

Wk 5Wk21 1 η
Xk

i5k2L11

exp 2
ei
2

2σ2

� �
ei
@ŷi
@W

ð4:294Þ

When L5 1, the above algorithm becomes a stochastic gradient-based (LMS-

like) algorithm:

Wk 5Wk21 1 η exp 2
ek

2

2σ2

� �
ek

@ŷk
@W

ð4:295Þ

In the following, we present two simulation examples of FIR identification to

demonstrate the performance of MCC criterion, and compare it with the perfor-

mance of MSE and MEE.

In the first example, the weight vector of the plant is [138]

W� 5 ½0:1; 0:2; 0:3; 0:4; 0:5; 0:4; 0:3; 0:2; 0:1�T ð4:296Þ

The input signal is a white Gaussian process with zero mean and unit variance.

The noise distribution is a mixture of Gaussian:

0:95Nð0; 1024Þ1 0:05Nð0; 10Þ ð4:297Þ

In this distribution, the Gaussian density with variance 10 creates strong outliers.

The kernel sizes for the MCC and the MEE are set at 2.0. The step-sizes for the

three identification criteria are chosen such that when the observation noise is

Gaussian, their performance is similar in terms of the weight SNR (WSNR),

WSNR5 10 log10
W�TW�

ðW�2WkÞT ðW� 2WkÞ

� �
ð4:298Þ
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Figure 4.34 shows the performance in the presence of impulsive noise. One can

see the MCC criterion achieves a more robust performance.

In the second example, the plant has a time-varying transfer function, where the

weight vector is changing as follows [138]:

W�
k 5 2 11

k

1000

� �
uð10002 kÞW� 1 211

k

1000

� �
uðk2 1000ÞW� ð4:299Þ

where uð:Þ is the unit step function. The simulation results are shown in

Figure 4.35. Once again the MCC criterion performs better in impulsive noise

environment.
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Appendix H: Vector Gradient and Matrix Gradient

In many of system identification applications, we often encounter a cost function

that we want to maximize (or minimize) with respect to a vector or matrix. To

accomplish this optimization, we usually need to find a vector or matrix derivative.

Derivative of Scalar with Respect to Vector

If J is a scalar, θ5 θ1 θ2 ? θm �T�
is an m3 1 vector, then

@J

@θ
9

@J
@θ1

; @J
@θ2

; ? @J
@θm

h iT
ðH:1Þ
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@θT
9
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@J
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@J

@θm

" #
ðH:2Þ

Derivative of Scalar with Respect to Matrix

If J is a scalar, M is an m3 n matrix, M5 ½mij�, then
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Derivative of Vector with Respect to Vector

If α and θ are, respectively, n3 1 and m3 1 vectors, then
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Second Derivative (Hessian matrix) of Scalar with Respect to Vector
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With the above definitions, there are some basic results:

1. @
@θ c1J1 1 c2J2½ �5 c1

@J1
@θ 1 c2

@J2
@θ , where J1 and J2 are scalars, c1; c2Aℝ are constants.

2. @
@θ J1J2½ �5 @J1

@θ J2 1 J1
@J2
@θ .

3. @
@θ

J1
J2

h i
5 1

J2
2

J2
@J1
@θ 2 J1

@J2
@θ

� �
.

4. @
@θ αTθ
� �

5 @
@θ θTα
� �

5α, where α and θ are both m3 1 vectors, and α and θ are

independent.

5. @
@θ θTA
� �

5A, @
@θ θTAθ
� �

5Aθ1ATθ, where A is a matrix independent of θ.

6. Let α and θ be respectively n3 1 and m3 1 vectors, A and B be respectively n3m and

n3 n constant matrices. Then

@

@θ
ðα2AθÞTBðα2AθÞg52 2ATBðα2AθÞ�

7. If A is a m3m matrix with independent elements, then

@ det½A�
@A

5 det A½ �½A21�T
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5 System Identification Under
Information Divergence Criteria

The fundamental contribution of information theory is to provide a unified

framework for dealing with the notion of information in a precise and technical

sense. Information, in a technical sense, can be quantified in a unified manner

by using the Kullback�Leibler information divergence (KLID). Two information

measures, Shannon’s entropy and mutual information are special cases of KL

divergence [43]. The use of probability in system identification is also shown to

be equivalent to measuring KL divergence between the actual and model distri-

butions. In parameter estimation, the KL divergence for inference is consistent

with common statistical approaches, such as the maximum likelihood (ML) esti-

mation. Based on the KL divergence, Akaike derived the well-known Akaike’s

information criterion (AIC), which is widely used in the area of model selection.

Another important model selection criterion, the minimum description length,

first proposed by Rissanen in 1978, is also closely related to the KL divergence.

In identification of stationary Gaussian processes, it has been shown that the

optimal solution to an approximation problem for Gaussian random variables

with the divergence criterion is identical to the main step of the subspace algo-

rithm [123].

There are many definitions of information divergence, but in this chapter our

focus is mainly on the KLID. In most cases, the extension to other definitions is

straightforward.

5.1 Parameter Identifiability Under KLID Criterion

The identifiability arises in the context of system identification, indicating whether

or not the unknown parameter can be uniquely identified from the observation of

the system. One would not select a model structure whose parameters cannot be

identified, so the problem of identifiability is crucial in the procedures of system

identification. There are many concepts of identifiability. Typical examples include

Fisher information�based identifiability [216], least squares (LS) identifiability

[217], consistency-in-probability identifiability [218], transfer function�based

identifiability [219], and spectral density�based identifiability [219]. In the follow-

ing, we discuss the fundamental problem of system parameter identifiability under

KLID criterion.

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00005-1
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5.1.1 Definitions and Assumptions

Let fykgNk51 (ykAℝm) be a sequence of observations with joint probability density

functions (PDFs) fθðynÞ, n5 1; 2; . . ., where yn 5 ðyT1 ; . . .; yTn ÞT is a mn-dimensional

column vector, θAΘ is a d-dimensional parameter vector, and ΘCℝd is the

parameter space. Let θ0 be the true parameter. The KLID between fθ0ðynÞ and fθðynÞ
will be

Dn
KLðθ0:θÞ5DKLðfθ0 ðynÞ:fθðynÞÞ

5

ð
fθ0 ðynÞlog

fθ0 ðynÞ
fθðynÞ

dyn

5Eθ0 log
fθ0ðynÞ
fθðynÞ

0@ 1A
ð5:1Þ

where Eθ0 denotes the expectation of the bracketed quantity taken with respect to

the actual parameter value θ0. Based on the KLID, a natural way of parameter iden-

tification is to look for a parameter θAΘ, such that the KLID of Eq. (5.1) is mini-

mized, that is,

θðnÞKL 5 arg min
θAΘ

Dn
KLðθ0:θÞ ð5:2Þ

An important question that arises in the context of such identification problem is

whether or not the parameter θ can be uniquely determined. This is the parameter

identifiability problem. Assume θ0 lies in Θ (hence minθ D
n
KLðθ0:θÞ5 0). The

notion of identifiability under KLID criterion can then be defined as follows.

Definition 5.1 The parameter set Θ is said to be KLID-identifiable at θAΘ, if and

only if ∃MAℕ, ’αAΘ, DM
KLðθ:αÞ5 0 implies α5 θ.

By the definition, if parameter set Θ is KLID-identifiable at θ (we also say θ is

KLID-identifiable), then for any αAΘ, α 6¼ θ, we have DM
KLðθ:αÞ 6¼ 0, and hence

fαðyMÞ 6¼ fθðyMÞ. Therefore, any change in the parameter yields changes in the out-

put density.

The identifiability can also be defined in terms of the information divergence

rate.

Definition 5.2 The parameter set Θ is said to be KLIDR-identifiable at θAΘ,

if and only if ’αAΘ, the KL information divergence rate (KLIDR)

DKLðθ:αÞ5 lim
n!N

1
n
Dn

KLðθ:αÞ exists, and DKLðθ:αÞ5 0 implies α5 θ.

Let Bðθ; εÞ9fxjxAΘ; jjx2 θjj, εg be the ε-neighborhood of θ, where :�:
denotes the Euclidean norm. The local KLID (or local KLIDR)-identifiability is

defined as follows.
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Definition 5.3 The parameter set Θ is said to be locally KLID (or locally KLIDR)-

identifiable at θAΘ, if and only if there exists ε. 0, such that ’αABðθ; εÞ,
DM

KLðθ:αÞ5 0 (or DKLðθ:αÞ5 0) implies α5 θ.
Here, we give some assumptions that will be used later on.

Assumption 5.1 ’MAℕ, ’ θ;αAΘ, the KLID DM
KLðθ:αÞ always exists.

Remark: Let ðΩ;BðΩÞ;PθÞ be the probability space of the output sequence yM

with parameter θAΘ, where ðΩ;BðΩÞÞ is the related measurable space, and

Pθ:B Ωð Þ ! ℝ1 is the probability measure. Pθ is said to be absolutely continuous

with respect to Pα, denoted by Pθ!Pα, if PθðAÞ5 0 for every AABðΩÞ such that

PαðAÞ5 0. Clearly, the existence of DM
KLðθ:αÞ implies Pθ!Pα. Thus by

Assumption 5.1, ’ θ;αAΘ, we have Pθ!Pα, Pα!Pθ.

Assumption 5.2 The density function fθðyMÞ is at least twice continuously differen-

tiable with respect to θAΘ, and ’ θ;αAΘ, the following interchanges between

integral (or limitation) and derivative are permissible:

@

@α

ð
fθðyMÞlog fαðyMÞdyM 5

ð
fθðyMÞ

@

@α
log fαðyMÞ
� �

dyM

@2

@α2

ð
fθðyMÞlog fαðyMÞdyM 5

ð
fθðyMÞ

@2

@α2
log fαðyMÞ
� �

dyM

8>>>><>>>>: ð5:3Þ

@

@α
lim
n!N

1

n
Dn

KLðθ:αÞ5 lim
n!N

1

n

@

@α
Dn

KLðθ:αÞ

@2

@α2
lim
n!N

1

n
Dn

KLðθ:αÞ5 lim
n!N

1

n

@2

@α2
Dn

KLðθ:αÞ

8>>>><>>>>: ð5:4Þ

Remark: The interchange of differentiation and integration can be justified by

bounded convergence theorem for appropriately well-behaved PDF fαðyMÞ. Similar

assumptions can be found in Ref. [220]. A sufficient condition for the permission

of interchange between differentiation and limitation is the uniform convergence of

the limitation in α.

5.1.2 Relations with Fisher Information

Fisher information is a classical criterion for parameter identifiability [216].

There are close relationships between KLID (KLIDR)-identifiability and Fisher

information.
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The Fisher information matrix (FIM) for the family of densities ffθðynÞ;
θAΘCℝdg is given by:

JnFðθÞ5Eθ
@

@θ
log fθðynÞ

0@ 1A @

@θ
log fθðynÞ

0@ 1AT8<:
9=;

52Eθ
@2

@θ2
log fθðynÞ

8<:
9=;

ð5:5Þ

As n !N, the Fisher information rate matrix (FIRM) is:

JFðθÞ5 lim
n!N

1

n
JnFðθÞ ð5:6Þ

Theorem 5.1 Assume that Θ is an open subset of ℝd. Then, θAΘ will be locally

KLID-identifiable if the FIM JMF ðθÞ is positive definite.

Proof: AsΘ is an open subset, an obvious sufficient condition for θ to be locally KLID-
identifiable is that ðð@=@αÞDM

KLðθ:αÞÞjα5θ 5 0, and ðð@2=@α2ÞDM
KLðθ:αÞÞjα5θ . 0. This

can be easily proved. By Assumption 5.2, we have

@

@α
DM

KLðθ:αÞ
0@ 1A�����

α5θ

5
@

@α

ð
fθðyMÞlog fθðy

MÞ
fαðyMÞ

dyM

0@ 1A�����
α5θ

52
@

@α

ð
fθðyMÞlog fαðyMÞdyM

0@ 1A�����
α5θ

52

ð
fθðyMÞ

@

@α
fαðyMÞ

fαðyMÞ

0BBB@
1CCCA
�����
α5θ

dyM52

ð
@

@α
fαðyMÞ

0@ 1A�����
α5θ

dyM

52
@

@α

ð
fαðyMÞdyM

0@ 1A�����
α5θ

52
@

@α
1

0@ 1A�����
α5θ

50

ð5:7Þ
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On the other hand, we can derive

@2

@α2
DM

KLðθ:αÞ
0@ 1A�����

α5θ

5
@2

@α2

ð
fθðyMÞlog

fθðyMÞ
fαðyMÞ

dyM

0@ 1A�����
α5θ

52
@2

@α2

ð
fθðyMÞlog fαðyMÞdyM

0@ 1A�����
α5θ

52

ð
fθðyMÞ @

2log fαðyMÞ
@α2

dyM

0@ 1A�����
α5θ

52Eθ
@2log fθðyMÞ

@θ2

8<:
9=;5 JMF ðθÞ. 0

ð5:8Þ

Theorem 5.2 Assume that Θ is an open subset of ℝd. Then θAΘ will be locally

KLIDR-identifiable if the FIRM JFðθÞ is positive definite.

Proof: By Theorem 5.1 and Assumption 5.2, we have

@

@α
DKLðθ:αÞ

0@ 1A�����
α5θ

5
@

@α
lim
n!N

1

n
Dn

KLðθ:αÞ
0@ 1A�����

α5θ

5 lim
n!N

1

n

@

@α
Dn

KLðθ:αÞ
0@ 1A�����

α5θ

8<:
9=;5 0

ð5:9Þ

and

@2

@α2
DKLðθ:αÞ

0@ 1A�����
α5θ

5
@2

@α2
lim
n!N

1

n
Dn

KLðθ:αÞ
0@ 1A�����

α5θ

5 lim
n!N

1

n

@2

@α2
Dn

KLðθ:αÞ
0@ 1A�����

α5θ

8<:
9=;

5 lim
n!N

1

n
JnFðθÞ5 JFðθÞ. 0

ð5:10Þ

Thus, θ is locally KLIDR-identifiable.
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Suppose the observation sequence fykgNk51 (ykAℝ) is a stationary zero-mean

Gaussian process, with power spectral SθðωÞ. According to Theorem 2.7, the spec-

tral expressions of the KLIDR and FIRM are as follows:

DKL θ:α
� �

5 lim
n!N

1

n
Dn

KLðθ:αÞ5
1

4π

ðπ
2π

log
SαðωÞ
SθðωÞ

1
SθðωÞ
SαðωÞ

2 1

� �
dω ð5:11Þ

JFðθÞ5 lim
n!N

1

n
JnFðθÞ5

1

4π

ðπ
2π

1

S2θðωÞ
@SθðωÞ
@θ

	 

@SθðωÞ
@θ

	 
T

dω ð5:12Þ

In this case, we can easily verify that ðð@=@αÞDKLðθ:αÞÞjα5θ 5 0, and

ðð@2=@α2ÞDKLðθ:αÞÞjα5θ 5 JFðθÞ. In fact, we have

@

@α
DKLðθ:αÞ

0@ 1A�����
α5θ

5
1

4π

ðπ
2π

@

@α
log

SαðωÞ
SθðωÞ

1
SθðωÞ
SαðωÞ

21

8<:
9=;dω

0@ 1A�����
α5θ

5
1

4π

ðπ
2π

SαðωÞ2SθðωÞ
S2αðωÞ

0@ 1A @

@α
SαðωÞ

8<:
9=;dω

0@ 1A�����
α5θ

5 0

ð5:13Þ
and

@2

@α2
DKLðθ:αÞ

0@ 1A�����
α5θ

5
1

4π
@

@α

ðπ
2π

SαðωÞ2SθðωÞ
S2αðωÞ

0@ 1A @

@α
SαðωÞ

0@ 1AT8<:
9=;dω

0@ 1A�����
α5θ

5
1

4π

ðπ
2π

SαðωÞ2SθðωÞ½ �3Tðω;αÞ1 1

S2αðωÞ
@

@α
SαðωÞ

0@ 1A @

@α
SαðωÞ

0@ 1AT8<:
9=;dω

0@ 1A�����
α5θ

5
1

4π

ðπ
2π

1

S2θðωÞ
@

@θ
SθðωÞ

0@ 1A @

@θ
SθðωÞ

0@ 1AT8<:
9=;dω5JFðθÞ ð5:14Þ

where Tðω;αÞ5 1

S3αðωÞ
SαðωÞ

@2

@α2
SαðωÞ2 2

@

@α
SαðωÞ

	 

@

@α
SαðωÞ

	 
T
 !

.
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Remark: Theorems 5.1 and 5.2 indicate that, under certain conditions, the positive

definiteness of the FIM (or FIRM) provides a sufficient condition for the local

KLID (or local KLIDR)-identifiability.

5.1.3 Gaussian Process Case

When the observation sequence fykgNk51 is jointly Gaussian distributed, the KLID-

identifiability can be easily checked. Consider the following joint Gaussian PDF:

fθðynÞ5 1

ð2πÞmn=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Δn

θ

p exp 2
1

2
ðyn2ynθÞT ðΔn

θÞ21ðyn 2 ynθÞ
� �

ð5:15Þ

where ynθ 5Eθ½yn� is the mean vector, and Δn
θ 5Eθ½ðyn 2 ynθÞðyn2ynθÞT � is the

mn3mn-dimensional covariance matrix. Then we have

Dn
KLðθ:αÞ5 ~D

n

KLðθ:αÞ1
1

2
ðynθ2ynαÞT ðΔn

αÞ21ðynθ 2 ynαÞ ð5:16Þ

where ~D
n

KLðθ:αÞ is

~D
n

KLðθ:αÞ5
1

2
log

Δn
α

�� ��
Δn

θ

�� �� 1 TrðΔn
θððΔn

αÞ21 2 ðΔn
θÞ21ÞÞ

( )
ð5:17Þ

Clearly, for the Gaussian process fykgNk51, we have DM
KLðθ:αÞ5 0 if and only if

ΔM
θ 5ΔM

α and yMθ 5 yMα . Denote ΔM
θ 5 ððΔM

θ ÞijÞ, i; j5 1; 2; . . .;mM, where ðΔM
θ Þij is

the ith row and jth column element of ΔM
θ . The element ðΔM

θ Þij is said to be a reg-

ular element if and only if ð@=@θÞðΔM
θ Þijc0, i.e., as a function of θ, ðΔM

θ Þij is not a
constant. In a similar way, we define the regular element of the mean vector yMθ .

Let ΨMðθÞ be a column vector containing all the distinct regular elements from

ΔM
θ and yMθ . We call ΨMðθÞ the regular characteristic vector (RCV) of the

Gaussian process fykgNk51. Then we have ΨMðθÞ5ΨMðαÞ if and only if

DM
KLðθ:αÞ5 0. According to Definition 5.1, for the Gaussian process fykgNk51, the

parameter set Θ is KLID-identifiable at θAΘ, if and only if ∃MAℕ, ’αAΘ,

ΨMðθÞ5ΨMðαÞ implies α5 θ.
Assume that Θ is an open subset of ℝd. By Lemma 1 of Ref. [219], the map

θ/ΨMðθÞ will be locally one to one at θ5 ~θ if the Jacobian of ΨMðθÞ has full rank
d at θ5 ~θ . Therefore, a sufficient condition for θ to be locally KLID-identifiable is

that

rank
@

@θT
ΨMðθÞ

	 

5 d ð5:18Þ
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Example 5.1 Consider the following second-order state-space model (m5 1; d5 2)

[120]:

x1;k11

x2;k11

	 

5

θ1 0

1 θ2

	 

x1;k
x2;k

	 

1

1

0

	 

wk;

x1;0
x2;0

	 

5

0

0

	 

; θAℝ2

yk 5 x2;k

8><>:
ð5:19Þ

where fwkg is a zero-mean white Gaussian process with unit power. Then the output

sequence with M5 4 is

y4 5

y1

y2

y3

y4

0BBBBB@

1CCCCCA5

0

w0

ðθ1 1 θ2Þw0 1w1

ðθ21 1 θ1θ2 1 θ22Þw0 1 ðθ1 1 θ2Þw1 1w2

0BBBBB@

1CCCCCA ð5:20Þ

It is easy to obtain the RCV:

Ψ4ðθÞ5

θ1 1 θ2

θ21 1 θ1θ2 1 θ22

ðθ11θ2Þ2 1 1

ðθ1 1 θ2Þðθ21 1 θ1θ2 1 θ22 1 1Þ
ðθ211θ1θ21θ22Þ2 1 ðθ11θ2Þ2 1 1

0BBBBBBBB@

1CCCCCCCCA
ð5:21Þ

The Jacobian matrix can then be calculated as:

@

@θT
Ψ4ðθÞ

5

1 1

2θ11θ2 θ112θ2

2ðθ11θ2Þ 2ðθ11θ2Þ

3θ2114θ1θ212θ2211 2θ2114θ1θ213θ2211

2ð2θ3113θ21θ213θ1θ221θ321θ11θ2Þ 2ðθ3113θ21θ213θ1θ2212θ321θ11θ2Þ

0BBBBBBBBBB@

1CCCCCCCCCCA
ð5:22Þ

Clearly, we have rank
@

@θT
Ψ4ðθÞ

	 

5 2 for all θAℝ2 with θ1 6¼ θ2. So this

parameterization is locally KLID-identifiable provided θ1 6¼ θ2. The identifiability
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can also be checked from the transfer function. The transfer function of the above

system is:

GθðzÞ5
1

ðz2 θ1Þðz2 θ2Þ
ð5:23Þ

’ θAℝ2, θ1 6¼ θ2, define ε5 ð1=2Þjθ1 2 θ2j. Then ’α; βAℝ2, we have α5β
provided the following two conditions are met:

1. :α2 θ:, ε, :β2 θ:, ε
2. ’ zAℂ, z 6¼ θ1; θ2, GαðzÞ5GβðzÞ

According to the Definition 1 of Ref. [219], this system is also locally identifi-

able from the transfer function provided θ1 6¼ θ2.
The KLID-identifiability also has connection with the LS-identifiability [217].

Consider the signal-plus-noise model:

zθðkÞ5 yθðkÞ1 vk; yθðkÞAℝm ð5:24Þ

where fyθðkÞg is a parameterized deterministic signal, fvkg is a zero-mean white

Gaussian noise, E½vivTj �5 Iδij (I is an m3m-dimensional identity matrix), and

fzθðkÞg is the noisy observation. Then we have

EθðzθðkÞÞ5EθðyθðkÞ1 vkÞ5 yθðkÞ
Eθ½ðzθðiÞ2EθðzθðiÞÞÞðzθðjÞ2EθðzθðjÞÞÞT �5E½vivTj �5 Iδij

(
ð5:25Þ

By Eq. (5.16), we derive

DM
KLðθ:αÞ5DKLðfθðzMÞ:fαðzMÞÞ

5DM
KLðvM:vMÞ1

1

2
ðyMθ 2yMα ÞT ðΔMÞ21ðyMθ 2 yMα Þ

5
1

2

XM
i51

:yθðiÞ2yαðiÞ:2

ð5:26Þ

where ΔM 5 diag½I; I; . . .; I�. The above KLID is equivalent to the LS criterion of

the deterministic part. In this case, the KLID-identifiability reduces to the LS-

identifiability of the deterministic part.

Next, we show that for a stationary Gaussian process, the KLIDR-identifiability

is identical to the identifiability from the output spectral density [219].

Let fyθðkÞAℝmgNk51 (θAΘ) be a parameterized zero-mean stationary Gaussian

process with continuous spectral density SθðωÞ (m3m-dimensional matrix).
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By Theorem 2.7, the KLIDR between fyθðkÞgNk51 and fyαðkÞgNk51 exists and is

given by:

DKLðθ:αÞ5 lim
n!N

1

n
Dn

KLðθ:αÞ

5
1

4π

ðπ
2π

log
det SαðωÞ
det SθðωÞ

1TrðSαðωÞ21 SθðωÞ2SαðωÞ½ �Þ
8<:

9=;dω

ð5:27Þ

Theorem 5.3 DKLðθ:αÞ$ 0, with equality if and only if SαðωÞ5 SθðωÞ, ’ωAℝ.

Proof: ’ωAℝ, the spectral density matrices SθðωÞ and SαðωÞ are positive definite.

Let XθðωÞ and XαðωÞ be two normally distributed m-dimensional vectors,

XθðωÞBNð0; SθðωÞÞ and XαðωÞBNð0; SαðωÞÞ, respectively. Then we have

DKLðXθðωÞ:XαðωÞÞ5
1

2
log

det SαðωÞ
det SθðωÞ

1 TrðSαðωÞ21 SθðωÞ2 SαðωÞ½ �Þ
� �

ð5:28Þ

Combining Eqs. (5.28) and (5.27) yields

DKLðθ:αÞ5
1

2π

ðπ
2π

DKLðXθðωÞ:XαðωÞÞdω ð5:29Þ

It follows easily that DKLðθ:αÞ$ 0, with equality if and only if

DKLðXθðωÞ:XαðωÞÞ5 0 for almost every ω (hence SαðωÞ5 SθðωÞ, ’ωAℝ).
By Theorem 5.3, we may conclude that for a stationary Gaussian process, θ is

KLIDR-identifiable if and only if ’αAΘ, SαðωÞ5 SθðωÞ implies α5 θ. This is

exactly the identifiability from the output spectral density.

5.1.4 Markov Process Case

Now we focus on situations where the observation sequence is a parameterized

Markov process. First, let us define the minimum identifiable horizon (MIH).

Definition 5.4 Assume that θAΘ is KLID-identifiable. Then the MIH is [120]:

MIHðθÞ5min Μθ ð5:30Þ

where Μθ 5 fM MAℕ; θ is KLID-identifiable over½1;M�g
�� .
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The MIH is the minimum length of the observation sequence from which

θ can be uniquely identified. If the MIH is known, we could identify θ with

the least observation data. In general, it is difficult to obtain the exact value

of MIH. In some special situations, however, one can derive an upper

bound on the MIH. For a parameterized Markov process, this upper bound

is straightforward. In the theorem below, we show that for a ðp2 1Þ-order
strictly stationary Markov process, the number p provides an upper bound

on the MIH.

Theorem 5.4 If the observation sequence fyθðkÞgNk51 (θAΘ) is a ðp2 1Þ-order
strictly stationary Markov process (p$ 1), and the parameter set Θ is KLID-

identifiable at θAΘ, then we have MIHðθÞ# p.

Proof: As parameter set Θ is KLID-identifiable at θ, by Definition 5.1, there exists

a number MAΜθCℕ, such that ’αAΘ, DM
KLðθ:αÞ5 03α5 θ. Let us consider

two cases, one for which p5 1 and the other for which p. 1.

1. p5 1: The zero-order strictly stationary Markov process refers to an independent and

identically distributed sequence. In this case, we have fθðyMÞ5LM

i51
fθðyiÞ, and

DM
KLðθ:αÞ5

ð
fθðyMÞlog

fθðyMÞ
fαðyMÞ

dyM

5

ð
L
M

i51

fθðyiÞlog
L
M

i51

fθðyiÞ

L
M

i51

fαðyiÞ
dyM

5
XM
i51

ð
fθðyiÞlog

fθðyiÞ
fαðyiÞ

dyi 5MD1
KLðθ:αÞ

ð5:31Þ

And hence, ’αAΘ, we have D1
KLðθ:αÞ5 03DM

KLðθ:αÞ5 03α5 θ. It follows that
1AΜθ, and MIHðθÞ5minΜθ 5 1# p.

2. p. 1: If p$M, then MIHðθÞ5minΜθ #M# p. If 1, p,M, then

fθðyMÞ5 fθðyp21ÞL
M

i5p

fθðyijyi21Þ ð5:32Þ
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By Markovian and stationary properties, one can derive

fθðyMÞ5 fθðyp21ÞL
M

i5p

fθðyijyi21Þ

5 fθðyp21ÞL
M

i5p

fθðyijy1; . . .; yi21Þ

5 fθðyp21ÞL
M

i5p

fθðyijyi2p11; . . .; yi21Þ

5 fθðyp21ÞL
M

i5p

fθðypjy1; . . .; yp21Þ

5 fθðyp21ÞL
M

i5p

fθðypjyp21Þ

ð5:33Þ

It follows that

DM
KLðθ:αÞ5

ð
fθðyMÞlog

fθðyp21ÞL
M

i5p

fθðyp
��yp21Þ

fαðyp21ÞL
M

i5p

fαðyp
��yp21Þ

dyM

5

ð
fθðyp21Þlog fθðy

p21Þ
fαðyp21Þ dy

p21 1M

ð
fθðypÞlog

fθðyp
��yp21Þ

fαðyp
��yp21Þ dy

p

5D
p21
KL ðθ:αÞ1MDKLðfθðyp yp21Þ:fαðyp yp21ÞÞ

����

ð5:34Þ

where DKLðfθðypjyp21Þ:fαðyp yp21ÞÞ
�� is the conditional KLID. And hence,

DM
KLðθ:αÞ5 03

D
p21
KL ðθ:αÞ5 0

DKLðfθðypjyp21Þ:fαðypjyp21ÞÞ5 0

(

3
fθðyp21Þ5 fαðyp21Þ
fθðyp yp21Þ5 fαðyp yp21Þ

�����

3fθðypÞ5 fαðypÞ

3D
p
KLðθ:αÞ5 0 ð5:35Þ

Then ’αAΘ, we have D
p
KLðθ:αÞ5 03DM

KLðθ:αÞ5 03α5 θ. Thus, pAΜθ, and it

follows that MIHðθÞ5minΜθ # p.
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Example 5.2 Consider the first-order AR model (d5 2) [120]:

yk 5 θ1yk21 1 θ2νk; 0, θ1 , 1; θ2 6¼ 0 ð5:36Þ

where fvkg is a zero-mean white Gaussian noise with unit power. Assume that the sys-

tem has reached steady state when the observations begin. The observation sequence

fykg will be a first-order stationary Gaussian Markov process, with covariance matrix:

Δn
θ 5

θ22
12 θ21

1 θ1 θ21 θ31 ? θn21
1

θ1 1 θ1 θ21 ? θn22
1

θ21 θ1 1 θ1 ? θn23
1

θ31 θ21 θ1 1 ? θn24
1

^ ^ ^ ^ & ^

θn21
1 θn22

1 θn23
1 θn24

1 ? 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
n3 n

ð5:37Þ

’ θAΘ (0, θ1 , 1, θ2 6¼ 0), we have

rank
@

@θT
Ψ2ðθÞ

� �
5 rank

@

@θT
Ψ3ðθÞ

� �
5?5 rank

@

@θT
ΨnðθÞ

� �
5 25 d ð5:38Þ

where ΨiðθÞ are the RCVs. And hence, MIHðθÞ5 2# p.

The following corollary is a direct consequence of Theorem 5.4.

Corollary 5.1 For a ðp2 1Þ-order strictly stationary Markov process fyθðkÞgNk51, the

parameter set Θ is KLID-identifiable at θAΘ if and only if ’αAΘ, D
p
KLðθ:αÞ5 0

implies α5 θ.
From the theory of stochastic process, for a ðp2 1Þ-order strictly stationary

Markov process fyθðkÞgNk51, under certain conditions (see Ref. [221] for details),

the conditional density fθðyp yp21Þ
�� will determine uniquely the joint density

fθðypÞ. In this case, the KLID-identifiability and the KLIDR-identifiability are

equivalent.

Theorem 5.5 Assume that the observation sequence fyθðkÞgNk51 is a ðp2 1Þ-order
strictly stationary Markov process (p$ 1), whose conditional density fθðyp yp21Þ

��
uniquely determines the joint density fθðypÞ. Then, ’ θAΘ, θ is KLID-identifiable

if and only if it is KLIDR-identifiable.

Proof: We only need to prove lim
n!N

ð1=nÞDn
KLðθ:αÞ5 03D

p
KLðθ:αÞ5 0.

1. When p5 1, we have Dn
KLðθ:αÞ5 nD1

KLðθ:αÞ, and hence lim
n!N

1
n
Dn

KLðθ:αÞ5D1
KLðθ:αÞ.
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2. When p. 1, we have Dn
KLðθ:αÞ5D

p21
KL ðθ:αÞ1 nDKLðfθðyp yp21Þ:fαðyp yp21ÞÞ

���� , and it

follows that

lim
n!N

1

n
Dn

KLðθ:αÞ

5 lim
n!N

1

n
D

p21
KL ðθ:αÞ1DKLðfθðyp yp21Þ:fαðyp yp21ÞÞ

�����
)�����

8<:
5DKLðfθðyp yp21Þ:fαðyp yp21ÞÞ

���� ð5:39Þ

Since fθðyp yp21Þ
�� uniquely determines fθðypÞ, we can derive

lim
n!N

1

n
Dn

KLðθ:αÞ5 0

3DKLðfθðyp yp21Þ:fαðyp yp21ÞÞ5 0
����

3fθðyp yp21Þ5 fαðyp yp21Þ
����

3fθðypÞ5 fαðypÞ

3D
p
KLðθ:αÞ5 0 ð5:40Þ

This completes the proof.

5.1.5 Asymptotic KLID-Identifiability

In the previous discussions, we assume that the true density fθ0 ðyMÞ is known.

In most practical situations, however, the actual density, and hence the KLID,

needs to be estimated using random data drawn from the underlying density.

Let ðyMð1Þ; . . .; yMðLÞÞ be an independent and identically distributed (i.i.d.) sample

drawn from fθ0 ðyMÞ. The density estimator for fθ0 ðyMÞ will be a mapping

f̂ L:ℝ
mM 3 ðℝmMÞL ! ℝ [98]:

f̂ LðyMÞ5 f̂ LðyM; yMð1Þ; . . .; yMðLÞÞ$ 0Ð
f̂ LðyMÞdyM 5 1

(
ð5:41Þ

The asymptotic KLID-identifiability is then defined as follows:

Definition 5.5 The parameter set Θ is said to be asymptotic KLID-identifiable at

θ0AΘ, if there exists a sequence of density estimates ff̂ LgNL51, such that θ̂ L ���!pL!N θ0
(convergence in probability), where θ̂ L is the minimum KLID estimator,

θ̂ L 5 argminθAΘ DM
KLðf̂ L:fθÞ.

180 System Parameter Identification



Theorem 5.6 Assume that the parameter space Θ is a compact subset, and the

density estimate sequence ff̂ LgNL51 satisfies DM
KLðf̂ L:fθ0Þ ���!pL!N 0. Then, θ0 will be

asymptotic KLID-identifiable provided it is KLID-identifiable.

Proof: Since DM
KLðf̂ L:fθ0 Þ ���!pL!N 0, for ε. 0 and δ. 0 arbitrarily small, there exists

an Nðε; δÞ,N such that for L.Nðε; δÞ,

PrfDM
KLðf̂ L:fθ0 Þ. δg, ε ð5:42Þ

where PrfDM
KLðf̂ L:fθ0 Þ. δg is the probability of Borel set ffyMð1Þ; . . .; yMðLÞg DM

KL

��
ðf̂ L:fθ0 Þ. δg. On the other hand, as θ̂ L 5 argminθAΘ DM

KLðf̂ L:fθÞ, we have

DM
KLðf̂ L:fθ̂ L

Þ5 min
θAΘ

DM
KLðf̂ L:fθÞ#DM

KLðf̂ L:fθ0Þ ð5:43Þ

Then the event fDM
KLðf̂ L:fθ̂ L

Þ. δgCfDM
KLðf̂ L:fθ0 Þ. δg, and hence

PrfDM
KLðf̂ L:fθ̂ L

Þ. δg# PrfDM
KLðf̂ L:fθ0Þ. δg, ε ð5:44Þ

By Pinsker’s inequality, we have

DM
KLðf̂ L:fθ0Þ$

1

2
:f̂ L2fθ0:

2

1

DM
KLðf̂ L:fθ̂ L

Þ$ 1

2
:f̂ L2fθ̂ L

:2
1

8>>><>>>: ð5:45Þ

where :f̂ L2fθ̂ L
:
1
5
Ð
f̂ L 2 fθ̂ L

��� ���dyM is the L1-distance (or the total variation). It fol-

lows that

Pr :f̂ L2fθ0:1 .
ffiffiffiffiffi
2δ

pn o
# PrfDM

KLðf̂ L:fθ0Þ. δg, ε

Pr :f̂ L2fθ̂ L
:
1
.

ffiffiffiffiffi
2δ

pn o
# PrfDM

KLðf̂ L:fθ̂ L
Þ. δg, ε

8<: ð5:46Þ

In addition, the following inequality holds:

:fθ̂ L
2fθ0:1 5 :ðf̂ L2fθ0 Þ2ðf̂ L2fθ̂ L

Þ:
1
# :f̂ L2fθ0:1 1 :f̂ L2fθ̂ L

:
1

ð5:47Þ

Then we have

:fθ̂ L
2fθ0:1 . 2

ffiffiffiffiffi
2δ

pn o
C :f̂ L2fθ0:1 .

ffiffiffiffiffi
2δ

pn o
, :f̂ L2fθ̂ L

:
1
.

ffiffiffiffiffi
2δ

pn o� 

ð5:48Þ
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And hence

Pr :fθ̂ L
2fθ0:1 . 2

ffiffiffiffiffi
2δ

pn o
# Pr :f̂ L2fθ0:1 .

ffiffiffiffiffi
2δ

pn o
, :f̂ L2fθ̂ L

:
1
.

ffiffiffiffiffi
2δ

pn o� 

# Pr :f̂ L2fθ0:1 .

ffiffiffiffiffi
2δ

pn o
1 Pr :f̂ L2fθ̂ L

:
1
.

ffiffiffiffiffi
2δ

pn o
, 2ε

ð5:49Þ

For any τ. 0, we define the set Θτ 5 fα αAΘ; :α2 θ0:$ τg
�� , where : � : is

the Euclidean norm. As Θ is a compact subset in ℝd, Θτ must be a compact set

too. Meanwhile, by Assumption 5.2, the function ϕðαÞ5 :fα2fθ0:1 (αAΘ) will be

a continuous mapping ϕ:Θ ! ℝ. Thus, a minimum of ϕðαÞ over the set Θτ must

exist. Denote γτ 5 minαAΘτ :fα2fθ0:1, it follows easily that

:θ̂ L 2 θ0:$ τ
n o

C :fθ̂ L
2fθ0:1 $ γτ

n o
ð5:50Þ

If θ0 is KLID-identifiable, ’αAΘ, α 6¼ θ0, we have DM
KLðθ:αÞ 6¼ 0, or equiva-

lently, :fα2fθ0:1 6¼ 0. It follows that γτ 5 minαAΘτ :fα2fθ0:1 6¼ 0. Let δ5 1
32
γ2τ . 0,

we have

Prf:θ̂ L 2 θ0:. τg# Prf:θ̂ L 2 θ0:$ τg
# Prf:fθ̂ L

2fθ0:1 $ γτg

# Pr

(
:fθ̂ L

2fθ0:1 .
1

2
γτg

5 Pr :fθ̂ L
2fθ0:1 . 2

ffiffiffiffiffi
2δ

pn o
, 2ε

ð5:51Þ

This implies :θ̂ L 2 θ0:���!pL!N 0, and hence θ̂ L ���!pL!N θ0.
According to Theorem 5.6, if the density estimate f̂ L is consistent in KLID in

probability (DM
KLðf̂ L:fθ0Þ ���!pL!N 0), the KLID-identifiability will be a sufficient con-

dition for the asymptotic KLID-identifiability. The next theorem shows that, under

certain conditions, the KLID-identifiability will also be a necessary condition for

θ0 to be asymptotic KLID-identifiable.

Theorem 5.7 If θ0AΘ is asymptotic KLID-identifiable, then it is KLID-identifiable

provided

1. Θ is a compact subset in ℝd,

2. ’αAΘ, if DM
KLðθ0:αÞ5 0, then there exist ε. 0 and an infinite set SCℕ such that for

LAS,
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Prf min
θABðα;κÞ

DM
KLðf̂ L:fθÞ# min

θABðθ0 ;κÞ
DM

KLðf̂ L:fθÞg. ε ð5:52Þ

where Bðα;κÞ5 fx xAΘ; :x2α:#κg
�� , κ5 1

3
:α2 θ0:.

Proof: If θ0 is asymptotic KLID-identifiable, then for ε. 0 and δ. 0 arbitrarily

small, there exists an Nðε; δÞ,N such that for L.Nðε; δÞ,

Prf:θ̂ L 2 θ0:. δg, ε ð5:53Þ

Suppose θ0 is not KLID-identifiable, then ∃αAΘ, α 6¼ θ0, such that

DM
KLðθ0:αÞ5 0. Let δ5κ5 ð1=3Þ:α2 θ0:. 0, we have (as Θ is a compact subset,

the minimum exists)

Prf:θ̂ L 2 θ0:.κg, ε.Prfθ̂ L =2Bðθ0;κÞg, ε

.Prfarg min
θAΘ

DM
KLðf̂ L:fθÞ =2Bðθ0;κÞg, ε

.Prf min
θAfΘ2Bðθ0;κÞg

DM
KLðf̂ L:fθÞ# minθABðθ0;κÞ D

M
KLðf̂ L:fθÞg, ε

.
ðaÞ

Prf min
θABðα;κÞ

DM
KLðf̂ L:fθÞ# minθABðθ0;κÞ D

M
KLðf̂ L:fθÞg, ε

ð5:54Þ

where (a) follows from Bðα;κÞCfΘ2Bðθ0;κÞg. The above result contradicts the

condition (2). Therefore, θ0 must be KLID-identifiable.

In the following, we consider several specific density estimation methods and

discuss the consistency problems of the related parameter estimators.

5.1.5.1 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is a popular parameter estimation

method and is also an important parametric approach for the density estimation. By

MLE, the density estimator is

f̂ LðyMÞ5 fθ̂ ML
ðyMÞ ð5:55Þ

where θ̂MLAΘ is obtained by maximizing the likelihood function, that is,

θ̂ML 5 arg max
θAΘ

L
L

i51

fθðyMðiÞÞ ð5:56Þ
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Lemma 5.1 The MLE density estimate sequence ffθ̂ ML
ðyMÞgNL51 satisfies

DM
KLðfθ̂ ML

:fθ0Þ ���!pL!N 0.

A simple proof of this lemma can be found in Ref. [222]. Combining Theorem

5.6 and Lemma 5.1, we have the following corollary.

Corollary 5.2 Assume that Θ is a compact subset in ℝd, and θ0AΘ is KLID-

identifiable. Then we have θ̂ML ���!pL!N θ0.
According to Corollary 5.2, the KLID-identifiability is a sufficient condition to

guarantee the ML estimator to converge to the true value in probability one. This is

not surprising since the ML estimator is in essence a special case of the minimum

KLID estimator.

5.1.5.2 Histogram-Based Estimation

The histogram-based estimation is a common nonparametric method for density

estimation. Suppose the i.i.d. samples yMð1Þ; . . .; y
M
ðLÞ take values in a measurable

space M. Let PL 5 fAL;1;AL;2; . . .;AL;mL
g, L5 1; 2; . . .;mL, be a sequence of parti-

tions of M, with mL either finite or infinite, such that the σ-measure

0, vðAL;iÞ,N for each i. Then the standard histogram density estimator with

respect to v and PL is given by:

f̂ hisðyMÞ5μLðAL;iÞ=vðAL;iÞ; if yMAAL;i ð5:57Þ

where μLðAL;iÞ is the standard empirical measure of AL;i, i.e.,

μLðAL;iÞ5
1

L

XL
i51

IðyMðiÞAAL;iÞ ð5:58Þ

where Ið�Þ is the indicator function.
According to Ref. [223], under certain conditions, the density estimator f̂ his will

converge in reversed order information divergence to the true underlying density

fθ0 , and the expected KLID

lim
L!N

EfDM
KLðf̂ his:fθ0Þg5 0 ð5:59Þ

Since DM
KLðf̂ his:fθ0 Þ$ 0, by Markov’s inequality [224], for any δ. 0, we have

PrfDM
KLðf̂ his:fθ0 Þ$ δg# EfDM

KLðf̂ his:fθ0Þg
δ

ð5:60Þ

184 System Parameter Identification



It follows that ’ δ. 0, lim
L!N

PrfDM
KLðf̂ his:fθ0 Þ$ δg5 0, and for any ε. 0 and

δ. 0 arbitrarily small, there exists an Nðε; δÞ,N such that for L.Nðε; δÞ,

PrfDM
KLðf̂ his:fθ0 Þ. δg, ε ð5:61Þ

Thus we have DM
KLðf̂ his:fθ0 Þ ���!pL!N 0. By Theorem 5.6, the following corollary

holds.

Corollary 5.3 Assume that Θ is a compact subset in ℝd, and θ0AΘ is KLID-

identifiable. Let f̂ his be the standard histogram density estimator satisfying

Eq. (5.59). Then we have θ̂ his ���!pL!N θ0, where θ̂ his 5 argminθAΘ DM
KLðf̂ his:fθÞ.

5.1.5.3 Kernel-Based Estimation

The kernel-based estimation (or kernel density estimation, KDE) is another impor-

tant nonparametric approach for the density estimation. Given an i.i.d. sample

yMð1Þ; . . .; y
M
ðLÞ, the kernel density estimator is

f̂KerðyMÞ5
1

L

XL
i51

KhðyM 2 yMðiÞÞ5
1

LhmM

XL
i51

K
yM 2 yMðiÞ

h

 !
ð5:62Þ

where K is a kernel function satisfying K$ 0 and
Ð
K5 1, h. 0 is the kernel

width.

For the KDE, the following lemma holds (see chapter 9 in Ref. [98] for details).

Lemma 5.2 Assume that K is a fixed kernel, and the kernel width h depends on L

only. If h ! 0 and LhmM ! N as L ! N, then lim
L!N

Ef:f̂Ker2fθ0:1g5 0.

From lim
L!N

Ef:f̂Ker2fθ0:1g5 0, one cannot derive DM
KLðf̂Ker:fθ0Þ ���!pL!N 0. And

hence, Theorem 5.6 cannot be applied here. However, if the parameter is estimated

by minimizing the total variation (not the KLID), the following theorem holds.

Theorem 5.8 Assume that Θ is a compact subset in ℝd, θ0AΘ is KLID-identifiable,

and the kernel width h satisfies the conditions in Lemma 5.2. Then we have

θ̂ Ker ���!pL!N θ0, where θ̂ Ker5 argminθAΘ :f̂Ker2fθ:1.

Proof: As lim
L!N

Ef:f̂Ker2fθ0:1g5 0, by Markov’s inequality, we have

:f̂Ker2fθ0:1 ���!
p

L!N 0. Following a similar derivation as for Theorem 5.6, one can

easily reach the conclusion.
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The KLID and the total variation are both special cases of the family of φ-diver-
gence [130]. The φ-divergence between the PDFs fθ1 and fθ2 is

Dφðθ1:θ2Þ5Dφðfθ1:fθ2 Þ5
ð
fθ2 ðxÞφ

fθ1 ðxÞ
fθ2 ðxÞ

	 

dx; φAΦ� ð5:63Þ

where Φ� is a class of convex functions. The minimum φ-divergence estimator is

given by [130]:

θ̂ φ 5 arg min
θAΘ

Dφðf̂ L:fθÞ ð5:64Þ

Below we give a more general result, which includes Theorems 5.6 and 5.8 as

special cases.

Theorem 5.9 Assume that Θ is a compact subset in ℝd, θ0AΘ is KLID-identifiable,

and for a given φAΦ�, ’ θAΘ, Dφðf̂ L:fθÞ$κ :f̂ L2fθ:1
� 


, where function κð�Þ is
strictly increasing over the interval ½0;NÞ, and κð0Þ5 0. Then, if the density esti-

mate sequence ff̂ LgNL51 satisfies Dφðf̂ L:fθÞ ���!pL!N 0, we have θ̂ φ ���!pL!N θ0, where θ̂ φ is

the minimum φ-divergence estimator.

Proof: Similar to the proof of Theorem 5.6 (omitted).

5.2 Minimum Information Divergence Identification
with Reference PDF

Information divergences have been suggested by many authors for the solution of

the related problems of system identification. The ML criterion and its extensions

(e.g., AIC) can be derived from the KL divergence approach. The information

divergence approach is a natural generalization of the LS view. Actually one can

think of a “distance” between the actual (empirical) and model distributions of the

data, without necessarily introducing the conceptually more demanding concepts of

likelihood or posterior. In the following, we introduce a novel system identification

approach based on the minimum information divergence criterion.

Apart from conventional methods, the new approach adopts the idea of PDF

shaping and uses the divergence between the actual error PDF and a reference (or

target) PDF (usually with zero mean and a narrow range) as the identification crite-

rion. As illustrated in Figure 5.1, in this scheme, the model parameters are adjusted

such that the error distribution tends to the reference distribution. With KLID, the

optimal parameters (or weights) of the model can be expressed as:

W� 5 arg min
WAΩW

DKLðpe:prÞ5 arg min
WAΩW

ðN
2N

peðξÞlog peðξÞ
prðξÞ

dξ ð5:65Þ
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where pe and pr denote, respectively, the actual error PDF and the reference PDF.

Other information divergence measures such as φ-divergence can also be used but

are not considered here.

The above method shapes the error distribution, and can be used to achieve the

desired variance or entropy of the error, provided the desired PDF of the error can

be achieved. This is expected to be useful in complex signal processing and learn-

ing systems. If we choose the δ function as the reference PDF, the identification

error will be forced to concentrate around the zero with a sharper peak. This coin-

cides with commonsense predictions about system identification.

It is worth noting that the PDF shaping approaches can be found in other con-

texts. In the control literature, Karny et al. [225,226] proposed an alternative for-

mulation of stochastic control design problem: the joint distributions of closed-loop

variables should be forced to be as close as possible to their desired distributions.

This formulation is called the fully probabilistic control. Wang et al. [227�229]

designed new algorithms to control the shape of the output PDF of a stochastic

dynamic system. In adaptive signal processing literature, Sala-Alvarez et al. [230]

proposed a general criterion for the design of adaptive systems in digital communi-

cations, called the statistical reference criterion, which imposes a given PDF at the

output of an adaptive system.

It is important to remark that the minimum value of the KLID in Eq. (5.65) may

not be zero. In fact, all the possible PDFs of the error are, in general, restricted to a

certain set of functions Pe. If the reference PDF is not contained in the possible

PDF set, i.e., pr =2Pe, we have

min
WAΩW

DKLðpe:prÞ5 min
peAPe

DKLðpe:prÞ 6¼ 0 ð5:66Þ

In this case, the optimal error PDF p�e9arg min
peAPe

DKLðpe:prÞ 6¼ pr, and the

reference distribution can never be realized. This is however not a problem of great

concern, since our goal is just to make the error distribution closer (not necessarily

identical) to the reference distribution.

In some special situations, this new identification method is equivalent to the

ML identification. Suppose that in Figure 5.1 the noise nk is independent of the

input xk, and the unknown system can be exactly identified, i.e., the intrinsic error

Unknown
system

Σ

kx kz

ˆky

Σ

Model
(W)

kn

ky

Σ

rp

ep

−−

+ +

Figure 5.1 Scheme of system

identification with a reference PDF.
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(ek 5 yk 2 ŷk) between the unknown system and the model can be zero. In addition,

we assume that the noise PDF pn is known. In this case, if setting pr 5 pn, we have

W� 5 arg min
WAΩW

DKLðpe:pnÞ

5
ðaÞ

arg min
WAΩW

fDKLðpe:pnÞ1HðpeÞg

5 arg min
WAΩW

ðN
2N

peðξÞlog peðξÞ
pnðξÞ

0@ 1Adξ2
ðN
2N

peðξÞlog peðξÞdξ
8<:

9=;
5 arg min2

WAΩW

ðN
2N

peðξÞlog pnðξÞdξ

5 arg min
WAΩW

Ee½2 log pnðeÞ�

� arg max
WAΩW

XN

k51
log pnðekÞ

5 arg max
WAΩW

log LðWÞ

ð5:67Þ

where (a) comes from the fact that the weight vector minimizing the KLID (when

pe 5 pr 5 pn) also minimizes the error entropy, and LðWÞ5LN

k51
pnðekÞ is the likeli-

hood function.

5.2.1 Some Properties

We present in the following some important properties of the minimum KLID crite-

rion with reference PDF (called the KLID criterion for short).

The KLID criterion is much different from the minimum error entropy (MEE)

criterion. The MEE criterion does not consider the mean of the error due to its

invariance to translation. Under MEE criterion, the estimator makes the error PDF

as sharp as possible, and neglects the PDF’s location. Under KLID criterion, how-

ever, the estimator makes the actual error PDF and reference PDF as close as possi-

ble (in both shape and location).

The KLID criterion is sensitive to the error mean. This can be easily verified: if

pe and pr are both Gaussian PDFs with zero mean and unit variance, we have

DKLðpe:prÞ5 0; while if the error mean becomes nonzero, EðeÞ5μ 6¼ 0, we have

DKLðpe:prÞ5μ2=2 6¼ 0. The following theorem suggests that, under certain condi-

tions the mean value of the optimal error PDF under KLID criterion is equal to the

mean value of the reference PDF.

Theorem 5.10 Assume that pe and pr satisfy:

1. ’ peAPe, peðe1 cÞAPe (’ cAℝ);
2. ’ peAPe, qðeÞ5 peðe1μÞ is an even function, where μ is the mean value of pe;
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3. qrðeÞ5 prðe1μrÞ is an even and strictly log-concave function, where μr is the mean value

of pr.

Then, the mean value of the optimal error PDF (p�e ) is μ� 5μr.

Proof: Using reduction to absurdity. Suppose μ� 6¼ μr, and let δμ 5μ� 2μr 6¼ 0.

Denote q�ðeÞ5 p�e ðe1μ�Þ and q�δ ðeÞ5 p�e ðe1 δμÞ. According to the assumptions,

q�; q�δAPe, and q�ðeÞ is an even function. Then we have

DKLðq�δ ðeÞ:prðeÞÞ5DKLðp�e ðe1 δμÞ:prðeÞÞ

5
ðaÞ

DKLðp�e ðe1μr 1 δμÞ:prðe1μrÞÞ

5DKLðp�e ðe1μ�Þ:prðe1μrÞÞ5DKLðq�ðeÞ:qrðeÞÞ

52Hðq�Þ2
ð
ℝ
q�ðeÞlog qrðeÞde

,
ðbÞ

2Hðq�Þ2
ð
ℝ
q�ðeÞlog

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qrðe1 δμÞqrðe2 δμÞ

q
de

52Hðq�Þ2 1

2

ð
ℝ
q�ðeÞlog qrðe1 δμÞde2

1

2

ð
ℝ
q�ðeÞlog qrðe2 δμÞde

5
ðcÞ

2Hðq�Þ2 1

2

ð
ℝ
q�ðeÞlog qrðe1 δμÞde2

1

2

ð
ℝ
q�ðeÞlog qrðe1 δμÞde

52Hðq�Þ2
ð
ℝ
q�ðeÞlog qrðe1 δμÞde5DKLðq�ðeÞ:qrðe1 δμÞÞ

5
ðdÞ

DKLðq�ðe2 δμÞ:qrðeÞÞ5DKLðp�e ðe1μrÞ:prðe1μrÞÞ
5
ðeÞ

DKLðp�e ðeÞ:prðeÞÞ ð5:68Þ

where (a), (d), and (e) follow from the shift-invariance of the KLID, (b) is because

qrðeÞ is strictly log-concave, and (c) is because q�ðeÞ and qrðeÞ are even functions.

Therefore, ∃q�δAPe, such that

DKLðq�δ:prÞ,DKLðp�e:prÞ ð5:69Þ

This contradicts with DKLðp�e:prÞ5 minpeAPe
DKLðpe:prÞ. And hence, μ� 5μr

holds.

On the other hand, the KLID criterion is also closely related to the MEE crite-

rion. The next theorem provides an upper bound on the error entropy under the

constraint that the KLID is bounded.
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Theorem 5.11 Let the reference PDF pr be a zero-mean Gaussian PDF with vari-

ance σ2. If the error PDF pe satisfies

DKLðpe:prÞ# c ð5:70Þ

where c. 0 is a positive constant, then the error entropy HðeÞ satisfies

HðeÞ#HðprÞ1 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11λÞ=λ

p
ð5:71Þ

where λ. 0 is the solution of the following equation:

log
λ

11λ

	 

1

1

λ
5 2c ð5:72Þ

Proof: Denote ℬðpr; cÞ the collection of all the error PDFs that satisfy

DKLðpe:prÞ# c. Clearly, this is a convex set. ’ peAℬðpr; cÞ, we have

HðeÞ# max
pAℬðpr;cÞ

HðpÞ5 max
pAℬðpr;cÞ

2

ð1N

2N
pðxÞlog pðxÞdx

� �
ð5:73Þ

In order to solve the error distribution that achieves the maximum entropy, we

create the Lagrangian:

Lðp; θ;λÞ52

ð
ℝ
p log p dx1 θð12

ð
ℝ
p dxÞ1λ c2

ð
ℝ
p log

p

pr

	 

dx

	 

ð5:74Þ

where θ and λ are the Lagrange multipliers. When λ. 0, Lðp; θ;λÞ is a concave

function of pAℬðpr; cÞ. If β is a function such that p1 εβAℬðpr; cÞ for ε suffi-

ciently small, the Gateaux derivative of L with respect to p is given by:

lim
ε!0

1

ε

(
Lðp1 εβ; θ;λÞ2 Lðp; θ;λÞg

5
Ð
ℝf2 θ2 ð11λÞ2 ð11λÞlog p1λ log prgβ dx

ð5:75Þ

If it is zero for all β, we have

log p52 12
θ

11λ
1

λ
11λ

log pr ð5:76Þ

Thus, if λ. 0 (such that L is a concave function of p), the error PDF that

achieves the maximum entropy exists and is given by

p0 5 exp 212
θ

11λ

	 

exp

λ
11λ

log pr

	 

ð5:77Þ
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According to the assumptions, prðxÞ5 1=
ffiffiffiffiffiffi
2π

p
σ

� �
expð2 x2=2σ2Þ. It follows that

p0 5 exp 212
θ

11λ

	 

3

1ffiffiffiffiffiffi
2π

p
σ

	 
 λ
11λ

3 exp 2
x2

2σ2
0

	 

ð5:78Þ

where σ2
0 5 ð11λ=λÞσ2. Obviously, p0 is a Gaussian density, and we have

exp 212
θ

11λ

	 

3

1ffiffiffiffiffiffi
2π

p
σ

	 
 λ
11λ

5
1ffiffiffiffiffiffi
2π

p
σ0

ð5:79Þ

So θ can be determined as

θ52 ð11λÞ2 ð11λÞ3 log

ffiffiffiffiffiffiffiffiffiffiffi
λ

11λ

r
3

ffiffiffiffiffiffi
2π

p
σ

� 
21
11λ

( )
ð5:80Þ

In order to determine the value of λ, we use the Kuhn�Tucker condition:

λðc2DKLðp0:prÞÞ5 0 ð5:81Þ

When λ. 0, we have DKLðp0:prÞ5 c, that is,

DKLðp0:prÞ5
ð
ℝ
p0ðxÞlog

p0ðxÞ
prðxÞ

	 

dx5

1

2
log

λ
11λ

	 

1

1

λ

� �
5 c ð5:82Þ

Therefore, λ is the solution of the Eq. (5.72).

Define the function ϕðλÞ5 logðλ=ð11λÞÞ1 ð1=λÞ. It is easy to verify that

ϕðλÞ is continuous and monotonically decreasing over interval ð0; 1NÞ. Since

lim
λ!01

ϕðλÞ51N, lim
λ!1N

ϕðλÞ5 0, and c. 0, the equation ϕðλÞ5 2c certainly has

a solution in ð0; 1NÞ.
From the previous derivations, one may easily obtain:

HðeÞ# max
pAℬðpr;cÞ

HðpÞ5Hðp0Þ5HðprÞ1 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð11λÞ=λ

p
ð5:83Þ

The above theorem indicates that, under the KLID constraint DKLðpe:prÞ# c, the

error entropy is upper bounded by the reference entropy plus a certain constant. In

particular, when c ! 01, we have λ !1N and max
pAℬðpr;cÞ

HðpÞ ! HðprÞ. Therefore,
if one chooses a reference PDF with small entropy, the error entropy will also be

confined within small values. In practice, the reference PDF is, in general, chosen as

a PDF with zero mean and small entropy (e.g., the δ distribution at zero).

In most practical situations, the error PDF is unknown and needs to be estimated

from samples. There is always a bias in the density estimation; in order to offset the
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influence of the bias, one can use the same method to estimate the reference density

based on the samples drawn from the reference PDF. Let Se 5 f e1 e2 ? eN g
and Sr 5 f eðrÞ1 e

ðrÞ
2 ? e

ðrÞ
N
g be respectively the actual and reference error samples.

The KDEs of pe and pr will be

p̂eðeÞ5
1

N

X
ekASe

Khe ðe2 ekÞ

p̂rðeÞ5
1

N

X
e
ðrÞ
k
ASr

Khr ðe2 e
ðrÞ
k Þ

8>>>>><>>>>>:
ð5:84Þ

where he and hr are corresponding kernel widths. Using the estimated PDFs, one

may obtain the empirical KLID criterion D̂KLðpe:prÞ5DKLðp̂e:p̂rÞ.

Theorem 5.12 The empirical KLID D̂KLðpe:prÞ$ 0, with equality if and only if

p̂e 5 p̂r.

Proof: ’ x. 0, we have log x$ 12
1

x
, with equality if and only if x5 1. And

hence

D̂KLðpe:prÞ5
ð
p̂eðeÞlog

p̂eðeÞ
p̂rðeÞ

de

$

ð
p̂eðeÞ 12

p̂rðeÞ
p̂eðeÞ

0@ 1Ade

5

ð
ðp̂eðeÞ2 p̂rðeÞÞde5 0

ð5:85Þ

with equality if and only if p̂e 5 p̂r.

Lemma 5.3 If two PDFs p1ðxÞ and p2ðxÞ are bounded, then [231]:

DKLðp1:p2Þ$
1

α

ðN
2N

ðp1ðxÞ2p2ðxÞÞ2 dx ð5:86Þ

where α5 2 maxfsup p1ðxÞ; sup p2ðxÞg.

192 System Parameter Identification



Theorem 5.13 If Khð�Þ is a Gaussian kernel function, KhðxÞ5
1ffiffiffiffiffiffi
2π

p
h
exp

2x2

2h2

� �
,

then

D̂KLðpe:prÞ$
ffiffiffiffiffiffi
2π

p fminðhe; hrÞg
2

ðN
2N

ðp̂eðeÞ2p̂rðeÞÞ2de ð5:87Þ

Proof: Since Gaussian kernel is bounded, and supKhðxÞ5 ð1= ffiffiffiffiffiffi
2π

p
hÞ, the kernel-

based density estimates p̂e and p̂r will also be bounded, and

sup p̂eðeÞ5 supe
1

N

X
ekASe

Khe ðe2 ekÞ
8<:

9=;#
1ffiffiffiffiffiffi
2π

p
he

sup p̂rðeÞ5 supe
1

N

X
e
ðrÞ
k
ASr

Khr ðe2 e
ðrÞ
k Þ

8<:
9=;#

1ffiffiffiffiffiffi
2π

p
hr

8>>>>>>><>>>>>>>:
ð5:88Þ

By Lemma 5.3, we have

D̂KLðpe:prÞ$
1

α

ðN
2N

ðp̂eðeÞ2p̂rðeÞÞ2 de ð5:89Þ

where

α5 2maxfsup p̂e; sup p̂rg

# 2max
1ffiffiffiffiffiffi
2π

p
he

;
1ffiffiffiffiffiffi
2π

p
hr

8<:
9=;

5
2ffiffiffiffiffiffi

2π
p fminðhe; hrÞg

ð5:90Þ

Then we obtain Eq. (5.87).

The above theorem suggests that convergence in KLID ensures the convergence

in L2 distance (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐN
2N ðpðxÞ2qðxÞÞ2dx

q
).
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Before giving Theorem 5.14, we introduce some notations. By rearranging the

samples in Se and Sr, one obtains the increasing sequences:

S0e 5 fek1 ek2 ? ekN g
S0r 5 feðrÞk1 e

ðrÞ
k2

? e
ðrÞ
kN
g

(
ð5:91Þ

where ek1 5?5 ekp1 , ekp111 5?5 ekp2 ,?5 ekN , e
ðrÞ
k1
5?5 e

ðrÞ
kq1

, e
ðrÞ
kq111

5?

5 e
ðrÞ
kq2

,?5 e
ðrÞ
kN
. Denote S

_

e 5 ekp1 ekp2 ? ekN g
�

, and S
_

r 5 f eðrÞkq1 e
ðrÞ
kq2

?e
ðrÞ
kN
g.

Theorem 5.14 If Kh is a Gaussian kernel function, he 5 hr 5 h, then

D̂KLðpe:prÞ5 0 if and only if S0e 5 S0r.

Proof: By Theorem 5.12, it suffices to prove that p̂eðeÞ5 p̂rðeÞ if and only if

S0e 5 S0r.
Sufficiency: If S0e 5 S0r, we have

p̂eðeÞ5
1

N

X
ekASe

Khðe2 ekÞ

5
1

N

X
e
ðrÞ
k
ASr

Khðe2 e
ðrÞ
k Þ5 p̂rðeÞ

ð5:92Þ

Necessity: If p̂eðeÞ5 p̂rðeÞ, then we have

f ðeÞ9
ffiffiffiffiffiffi
2π

p
hN3 ðp̂eðeÞ2 p̂rðeÞÞ

5
XN
k51

exp 2
1

2h2
ðe2ekÞ2

8<:
9=;2

XN
k51

exp 2
1

2h2
ðe2e

ðrÞ
k Þ2

8<:
9=;

5 0

ð5:93Þ

Let S
_
5 S

_
e , S

_
r 5 ξ1 ξ2 . . . ξM g�

, where ξi , ξjð’ i, jÞ;M# 2N. Then,

f ðeÞ5
XM
k51

λkexp 2
1

2h2
ðe2ξkÞ2

� �
5 0 ð5:94Þ
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where λk 5 jSðξkÞe j2 jSðξkÞr j, S
ðξkÞ
e 5 fel elAS0e; el 5 ξkg

�� , S
ðξkÞ
r 5 feðrÞl e

ðrÞ
l AS0r; e

ðrÞ
l 5 ξkg

��� .

Since ’ eAℝ, f ðeÞ5 0, we have f ðξiÞ5 0; i5 1; 2; . . .;M. It follows that

1 exp 2
ðξ12ξ2Þ2

2h2

8<:
9=; ? exp 2

ðξ12ξMÞ2
2h2

8<:
9=;

exp 2
ðξ22ξ1Þ2

2h2

8<:
9=; 1 ? exp 2

ðξ22ξMÞ2
2h2

8<:
9=;

^ ^ & ^

exp 2
ðξM2ξ1Þ2

2h2

8<:
9=; exp 2

ðξM2ξ2Þ2
2h2

8<:
9=; ? 1

2666666666666666664

3777777777777777775

λ1

λ2

^
λM

2664
37755Φ~λ50

ð5:95Þ

As Φ is a symmetric and positive definite matrix (detΦ 6¼ 0), we get ~λ5 0, that is

λk 5 SðξkÞe

�� ��2 SðξkÞr

�� ��5 0; k5 1; 2; . . .;M ð5:96Þ

Thus, S
ðξkÞ
e

��� ���5 S
ðξkÞ
r

��� ���, and
S0e 5 ξ1; . . .; ξ1|fflfflfflfflffl{zfflfflfflfflffl}

S
ðξ1 Þ
e

�� �� ; ξ2; . . .; ξ2|fflfflfflfflffl{zfflfflfflfflffl}
S
ðξ2 Þ
e

�� �� ?ξM ; . . .; ξM|fflfflfflfflfflffl{zfflfflfflfflfflffl}
S
ðξM Þ
e

�� ��
8>>><>>>:

9>>>=>>>;
5 ξ1; . . .; ξ1|fflfflfflfflffl{zfflfflfflfflffl}

S
ðξM Þ
r

�� �� ; ξ2; . . .; ξ2|fflfflfflfflffl{zfflfflfflfflffl}
S
ðξ2Þ
r

�� �� ?ξM ; . . .; ξM|fflfflfflfflfflffl{zfflfflfflfflfflffl}
S
ðξM Þ
r

�� ��
8>>><>>>:

9>>>=>>>;5 S0r

ð5:97Þ

This completes the proof.

Theorem 5.14 indicates that, under certain conditions the zero value of the

empirical KLID occurs only when the actual and reference sample sets are

identical.

Based on the sample sets S0e and S0r, one can calculate the empirical distribution:

FS0e ðeÞ5
ne

N
; FS0r ðeÞ5

nðrÞe
N

ð5:98Þ
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where ne 5 fek ekAS0e; ek # eg
�� ���� , and nðrÞe 5 feðrÞk e

ðrÞ
k AS0r; e

ðrÞ
k # eg

��� ������ . According to the

limit theorem in probability theory [224], we have

FS0e ðeÞ ! FeðeÞ5
Ð e
2N peðτÞdτ

FS0r ðeÞ ! FrðeÞ5
Ð e
2N prðτÞdτ

as N ! N

(
ð5:99Þ

If S0e 5 S0r, and N is large enough, we have
Ð e
2N peðτÞdτ �

FS0e ðeÞ5FS0r ðeÞ �
Ð e
2N prðτÞdτ, and hence peðeÞ � prðeÞ. Therefore, when the empir-

ical KLID approaches zero, the actual error PDF will be approximately identical

with the reference PDF.

5.2.2 Identification Algorithm

In the following, we derive a stochastic gradient�based identification algorithm

under the minimum KLID criterion with a reference PDF. Since the KLID is not

symmetric, we use the symmetric version of KLID (also referred to as the J-infor-

mation divergence):

Jðpe:prÞ5DKLðpe:prÞ1DKLðpr:peÞ

5Ee log
peðeÞ
prðeÞ

0@ 1A24 351Er log
prðeÞ
peðeÞ

0@ 1A24 35 ð5:100Þ

By dropping off the expectation operators Ee and Er, and plugging in the esti-

mated PDFs, one may obtain the estimated instantaneous value of J-information

divergence:

Ĵkðpe:prÞ5 log
p̂eðekÞ
p̂rðekÞ

1 log
p̂rðeðrÞk Þ
p̂eðeðrÞk Þ

ð5:101Þ

where p̂eð�Þ and p̂rð�Þ are

p̂eðξÞ5
1

L

Xk
i5k2L11

Khe ðξ2 eiÞ

p̂rðξÞ5
1

L

Xk
i5k2L11

Khr ðξ2 e
ðrÞ
i Þ

8>>>>><>>>>>:
ð5:102Þ
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Then a stochastic gradient�based algorithm can be readily derived as follows:

Wk11 5Wk 2 η
@

@W
Ĵkðpe:prÞ

5Wk 2 η
@

@W
log

p̂eðekÞ
p̂rðekÞ

1
@

@W
log

p̂rðeðrÞk Þ
p̂eðeðrÞk Þ

8<:
9=;

5Wk 2 η

@

@W
p̂eðekÞ

p̂eðekÞ
2

@

@W
p̂rðekÞ

p̂rðekÞ
2

@

@W
p̂eðeðrÞk Þ

p̂eðeðrÞk Þ

8>>><>>>:
9>>>=>>>;

ð5:103Þ

where

@

@W
p̂eðekÞ52

1

L

Xk
i5k2L11

K 0
he
ðek 2 eiÞ

@

@W
ŷk 2

@

@W
ŷi

0@ 1A8<:
9=;

@

@W
p̂rðekÞ52

1

L

Xk
i5k2L11

K 0
hr
ðek 2 e

ðrÞ
i Þ

( )
@

@W
ŷk

0@ 1A
@

@W
p̂eðeðrÞk Þ5 1

L

Xk
i5k2L11

K 0
he
ðeðrÞk 2 eiÞ

@

@W
ŷi

0@ 1A8<:
9=;

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð5:104Þ

This algorithm is called the stochastic information divergence gradient (SIDG)

algorithm [125,126].

In order to achieve an error distribution with zero mean and small entropy, one

can choose the δ function at zero as the reference PDF. It is, however, worth noting

that the δ function is not always the best choice. In many situations, the desired

error distribution may be far from the δ distribution. In practice, the desired error

distribution can be estimated from some prior knowledge or preliminary identifica-

tion results.

Remark: Strictly speaking, if one selects the δ function as the reference distribu-

tion, the information divergence will be undefined (ill-posed). In practical applica-

tions, however, we often use the estimated information divergence as an alternative

cost function, where the actual and reference error distributions are both estimated

by KDE approach (usually with the same kernel width). It is easy to verify that, for

the δ distribution, the estimated PDF is actually the kernel function. In this case,

the estimated divergence will always be valid.
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5.2.3 Simulation Examples

Example 5.3 Consider the FIR system identification [126]:

zk 5w�
0xk 1w�

1xk21

ŷk 5w0xk 1w1xk21

�
ð5:105Þ

where the true weight vector W� 5 ½w�
0;w

�
1�T 5 ½1:0; 0:5�T . The input signal fxkg is

assumed to be a zero-mean white Gaussian process with unit power.

We show that the optimal solution under information divergence criterion may

be not unique. Suppose the reference PDF pr is Gaussian PDF with zero mean and

variance ε2. The J-information divergence between pe and pr can be calculated as:

Jðpe:prÞ5
1

2
3

½ðw021Þ21ðw120:5Þ22ε2�2
ε2 3 ½ðw021Þ2 1 ðw120:5Þ2� ð5:106Þ

Clearly, there are infinitely many weight pairs ðw0;w1Þ that satisfy Jðpe:prÞ5 0.

In fact, any weight pair ðw0;w1Þ that lies on the circle ðw021Þ2 1 ðw120:5Þ2 5 ε2

will be an optimal solution. In this case, the system parameters are not identifiable.

However, when ε ! 01 , the circle will shrink to a point and all the solutions will

converge to a unique solution ð1:0; 0:5Þ. For the case ε5 0:5, the 3D surface of

the J-information divergence is depicted in Figure 5.2. Figure 5.3 draws the conver-

gence trajectories of the weight pair ðw0;w1Þ learned by the SIDG algorithm,
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Figure 5.2 3D surface of J-information divergence.

Source: Adapted from Ref. [126].
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starting from the initial point ð2:0; 22:0Þ. As expected, these trajectories converge

to the circles centered at ð1:0; 0:5Þ. When ε5 0:01, the weight pair ðw0;w1Þ will

converge to (1.0047, 0.4888), which is very close to the true weight vector.

Example 5.4 Identification of the hybrid system (switch system) [125]:

xk11 5

(
2xk 1 uk 1 rk; if xk # 0

21:5xk 1 uk 1 rk; if xk . 0

yk 5 xk 1mk

8>><>>: ð5:107Þ

where xk is the state variable, uk is the input, rk is the process noise, and mk is the

measurement noise. This system can be written in a parameterized form (rk merg-

ing into uk) [125]:

bTλk
x1 aTλk

m5 0 ð5:108Þ

where λk 5 1; 2 is the mode index, x5 ½uk21; yk21;2yk�T , m5 ½mk21;mk�T ,
bi 5 ½c1;i; a1;i; 1�T , and ai 5 ½2a1;i; 1�T . In this example, b1 5 ½1; 2; 1�T and

b2 5 ½1;21:5; 1�T . Based on the parameterized form (Eq. (5.108)), one can establish

the noisy hybrid decoupling polynomial (NHDP) [125]. By expanding the NHDP

and ignoring the higher-order components of the noise, we obtain the first-order

approximation (FOA) model. In Ref. [125], the SIDG algorithm (based on the FOA

model) was applied to identify the above hybrid system. Figure 5.4 shows the
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Figure 5.3 Convergence trajectories of weight pair (w0,w1).
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identification performance for different measurement noise powers σ2
m. For com-

parison purpose, we also draw the performance of the least mean square (LMS)

and algebraic geometric approach [232]. In Figure 5.4, the identification perfor-

mance Δ is defined as:

Δ5 max
i5 1;2

min
j5 1;2

:b̂i 2 bj:
:bj:

 !
ð5:109Þ

In the simulation, the δ function is selected as the reference PDF for SIDG algo-

rithm. Simulation results indicate that the SIDG algorithm can achieve a better

performance.

To further verify the performance of the SIDG algorithm, we consider the

case in which rk 5 0 and mk is uniformly distributed in the range of

½21; 2 0:5�, ½0:5; 1�. The reference samples are set to Sr 5 ½2 2;
21:6; 2 1:6; 2 0:3; 2 0:3; 2 0:3; 0:3; 0:3; 2; 2:2� according to some preliminary

identification results. Figure 5.5 shows the scatter graphs of the estimated parame-

ter vector b̂i (with 300 simulation runs), where (A) and (B) correspond, respec-

tively, to the LMS and SIDG algorithms. In each graph, there are two clusters.

Evidently, the clusters generated by SIDG are more compact than those generated

by LMS, and the centers of the former are closer to the true values than those of

the latter (the true values are fc1; a1g1 5 f1; 2g and fc1; a1g2 5 f1; 2 1:5g). The
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Figure 5.4 Identification performance for different measurement noise powers.

Source: Adapted from Ref. [125].
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involved error PDFs are illustrated in Figure 5.6. As one can see, the error distribu-

tion produced by SIDG is closer to the desired error distribution.

5.2.4 Adaptive Infinite Impulsive Response Filter with
Euclidean Distance Criterion

In Ref. [233], the Euclidean distance criterion (EDC), which can be regarded as a

special case of the information divergence criterion with a reference PDF, was suc-

cessfully applied to develop the global optimization algorithms for adaptive infinite

impulsive response (IIR) filters. In the following, we give a brief introduction of

this approach.
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Figure 5.5 Scatter graphs of the estimated parameter vector b̂i: (A) LMS and (B) SIDG.
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Source: Adapted from Ref. [125].
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The EDC for the adaptive IIR filters is defined as the Euclidean distance (or L2
distance) between the error PDF and δ function [233]:

EDC5

ðN
2N

ðpeðξÞ2δðξÞÞ2dξ ð5:110Þ

The above formula can be expanded as:

EDC5

ðN
2N

p2eðξÞdξ2 2peð0Þ1 c ð5:111Þ

where c stands for the parts of this Euclidean distance measure that do not depend

on the error distribution. By dropping c, the EDC can be simplified to

EDC5V2ðeÞ2 2peð0Þ ð5:112Þ

where V2ðeÞ5
ÐN
2N p2eðξÞdξ is the quadratic information potential of the error.

By substituting the kernel density estimator (usually with Gaussian kernel Gh)

for the error PDF in the integral, one may obtain the empirical EDC:

dEDC 5

ðN
2N

p̂2eðξÞdξ2 2p̂eð0Þ

5

ðN
2N

1

L

Xk
i5k2L11

Ghðξ2eiÞ
0@ 1A2

dξ2
2

L

Xk
i5k2L11

Ghð02 eiÞ

5
1

L2

Xk
j5k2L11

Xk
i5k2L11

G ffiffi
2

p
hðei 2 ejÞ2

2

L

Xk
i5k2L11

GhðeiÞ

ð5:113Þ

A gradient-based identification algorithm can then be derived as follows:

Wk11 5Wk 2 η
@

@W
dEDC

5Wk 2
η

2L2h2

Xk
j5k2L11

Xk
i5k2L11

ðei 2 ejÞG ffiffi
2

p
hðei 2 ejÞ

@ŷi
@W

2
@ŷj
@W

0@ 1A8<:
9=;

1
2η
Lh2

Xk
i5k2L11

eiGhðeiÞ @ŷi
@W

8<:
9=;

ð5:114Þ
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where the gradient ð@ŷi=@WÞ depends on the model structure. Below we derive this

gradient for the IIR filters.

Let us consider the following IIR filter:

ŷk 5
Xnb
i50

bixk2i 1
Xna
j51

ajŷk2j ð5:115Þ

which can be written in the form

ŷk 5ϕT
k W ð5:116Þ

where ϕk 5 ½xk; . . .; xk2nb ; ŷk21; . . .; ŷk2na
�T , W 5 ½b0; . . .; bnb ; a1; . . .; ana �T . Then we

can derive

@ŷk=@W 5 @ðWTϕkÞ=@W

5 ð@WT=@WÞϕk 1 ð@ϕT
k =@WÞW

5ϕk 1
Xna
j51

ajð@ŷk2j=@WÞ

ð5:117Þ

In Eq. (5.117), the parameter gradient is calculated in a recursive manner.

Example 5.5 Identifying the following unknown system [233]:

G�ðzÞ5 0:051 0:4z21

12 1:1314z21 1 0:25z22
ð5:118Þ

The adaptive model is chosen to be the reduced order IIR filter

GðzÞ5 b

12 az21
ð5:119Þ

The main goal is to determine the values of the coefficients (or weights) fa; bg,
such that the EDC is minimized. Assume that the error is Gaussian distributed,

ekBNðμe;σ
2
eÞ. Then, the empirical EDC can be approximately calculated as [233]:

dEDC � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πðσ2

e 1 h2Þ
p 2

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2

e 1 h2Þ
p exp 2

μ2
e

2ðσ2
e 1 h2Þ

� �
ð5:120Þ

where h is the kernel width. Figure 5.7 shows the contours of the EDC performance

surface in different h (the input signal is assumed to be a white Gaussian noise
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with zero mean and unit variance). As one can see, the local minima of the perfor-

mance surface have disappeared with large kernel width. Thus, by carefully con-

trolling the kernel width, the algorithm can converge to the global minimum. The

convergence trajectory of the adaptation process with the weight approaching to

the global minimum is shown in Figure 5.8.
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Figure 5.7 Contours of the EDC performance surface: (A) h2 5 0; (B) h2 5 1; (C) h2 5 2;

and (D) h2 5 3.

Source: Adapted from Ref. [233].
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6 System Identification Based on
Mutual Information Criteria

As a central concept in communication theory, mutual information measures

the amount of information that one random variable contains about another. The

larger the mutual information between two random variables is, the more informa-

tion they share, and the better the estimation algorithm can be. Typically, there are

two mutual information-based identification criteria: the minimum mutual informa-

tion (MinMI) and the maximum mutual information (MaxMI) criteria. The MinMI

criterion tries to minimize the mutual information between the identification error

and the input signal such that the error signal contains as little as possible informa-

tion about the input,1 while the MaxMI criterion aims to maximize the mutual infor-

mation between the system output and the model output such that the model contains

as much as possible information about the system in their outputs. Although the

MinMI criterion is essentially equivalent to the minimum error entropy (MEE)

criterion, their physical meanings are different. The MaxMI criterion is somewhat

similar to the Infomax principle, an optimization principle for neural networks and

other information processing systems. They are, however, different in their concepts.

The Infomax states that a function that maps a set of input values I to a set of output

values O should be chosen (or learned) so as to maximize the mutual information

between I and O, subject to a set of specified constraints and/or noise processes.

In the following, we first discuss the MinMI criterion.

6.1 System Identification Under the MinMI Criterion

The basic idea behind the MinMI criterion is that the model parameters should be

determined such that the identification error contains as little as possible informa-

tion about the input signal. The scheme of this identification method is shown in

Figure 6.1. The objective function is the mutual information between the error and

the input, and the optimal parameter is solved as

W�
MinMI 5 arg min

WAΩW

Iðek;XkÞ ð6:1Þ

1 The minimum mutual information rate criterion was also proposed in [124], which minimizes the mutual

information rate between the error signal and a certain white Gaussian process (see Appendix I).
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where ek is the identification error at k time (the difference between the measure-

ment zk and the model output ŷk), Xk is a vector consisting of all the inputs that

have influence on the model output ŷk (possibly an infinite dimensional vector),

ΩWCℝm is the set of all possible m-dimensional parameter vectors.

For a general causal system, Xk will be

Xk 5 ½xk; xk21; xk22; . . .�T ð6:2Þ

If the model output depends on finite input (e.g., the finite impulse response

(FIR) filter), then

Xk 5 ½xk; xk21; . . .; xk2m11�T ð6:3Þ

Assume the initial state of the model is known, the output ŷk will be a function

of Xk, i.e., ŷk 5 f ðXkÞ. In this case, the MinMI criterion is equivalent to the MEE

criterion. In fact, we can derive

W�
MinMI 5 arg min

WAΩW

Iðek;XkÞ

5 arg min
WAΩW

fHðekÞ2HðekjXkÞg

5 arg min
WAΩW

HðekÞ2Hðzk 2 ŷkjXkÞ
� �

5 arg min
WAΩW

HðekÞ2Hðzk 2 f ðXkÞjXkÞ
� �

5 arg min
WAΩW

fHðekÞ2HðzkjXkÞg

5
ðaÞ

arg min
WAΩW

HðekÞ

ð6:4Þ
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Figure 6.1 System identification under the MinMI criterion.
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where (a) is because that the conditional entropy HðzkjXkÞ is not related to the param-

eter vector W . In Chapter 3, we have proved a similar property when discussing the

MEE Bayesian estimation. That is, minimizing the estimation error entropy is equiva-

lent to minimizing the mutual information between the error and the observation.

Although both are equivalent, the MinMI criterion and the MEE criterion are

much different in meaning. The former aims to decrease the statistical dependence

while the latter tries to reduce the uncertainty (scatter or dispersion).

6.1.1 Properties of MinMI Criterion

Let the model be an FIR filter. We discuss in the following the optimal solution of

the MinMI criterion and investigate the connection to the mean square error (MSE)

criterion [234].

Theorem 6.1 For system identification scheme of Figure 6.1, if the model is an FIR

filter (ŷk 5WTXk), zk and Xk are zero-mean and jointly Gaussian, and the input covari-

ance matrix RX9E½XkX
T
k � satisfies det RX 6¼ 0, then we have W�

MinMI 5W�
MSE 5R21

X P,

and Iðek;XkÞW5W�
MinMI

5 0, where P9E½Xkzk�, W�
MSE denotes the optimal weight vector

under MSE criterion.

Proof: According to the mean square estimation theory [235], W�
MSE 5R21

X P, thus

we only need to prove W�
MinMI 5R21

X P. As ŷk 5WTXk, we have

E½e2k �5E½ðzk 2WTXkÞðzk2WTXkÞT �
5WTE½XkX

T
k �W 2 2E½zkXT

k �W 1E½z2k �
5WTRXW 2 2PTW 1σ2

z

ð6:5Þ

where σ2
z 5E½z2k �. And then, we can derive the following gradient

@

@W
Iðek;XkÞ5

@

@W
fHðekÞ2HðekjXkÞg

5
@

@W
fHðekÞ2Hðzk 2WTXkjXkÞg

5
@

@W
fHðekÞ2HðzkjXkÞg

5
ðaÞ @

@W
fHðekÞg 5

ðbÞ @

@W

1

2
1

1

2
logð2πE e2k

� �Þ
8<
:

9=
;

5
1

2

@

@W
logfWTRXW 2 2PTW 1σ2

z g

5
RXW 2P

WTRXW 2 2PTW 1σ2
z

ð6:6Þ
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where (a) follows from the fact that the conditional entropy HðzkjXkÞ does not depend
on the weight vector W and (b) is because that ek is zero-mean Gaussian. Let this

gradient be zero, we obtain W�
MinMI5R21

X P. Next we prove I ek;Xkð ÞW5W�
MinMI

5 0.

By (2.28), we have

Iðek;XkÞW5W�
MinMI

5
1

2
log

E½e2k �det EðXkX
T
k Þ

det
E½e2k � EðekXT

k Þ
EðekXkÞ EðXkX

T
k Þ

 !
8>>>><
>>>>:

9>>>>=
>>>>;

5
ðcÞ 1

2
log

E½e2k �det EðXkX
T
k Þ

det
E½e2k � 0

0 EðXkX
T
k Þ

 !
8>>>><
>>>>:

9>>>>=
>>>>;

5 0

ð6:7Þ

where (c) follows from EðekXT
k Þ5E½ðzk 2W�T

MinMIXkÞXT
k �5 0.

Theorem 6.1 indicates that with Gaussian assumption, the optimal FIR filter

under MinMI criterion will be equivalent to that under the MSE criterion (i.e., the

Wiener solution), and the MinMI between the error and the input will be zero.

Theorem 6.2 If the unknown system and the model are both FIR filters with the

same order, and the noise signal fnkg is independent of the input sequence fxkg
(both can be of arbitrary distribution), then we have W�

MinMI 5W0, where W0Aℝm

denotes the weight vector of unknown system.

Proof: Without Gaussian assumption, Theorem 6.1 cannot be applied here. Let
~W 5W0 2W be the weight error vector between the unknown system and the model.

We have ek 5XT
k
~W 1 nk and

Iðek;XkÞ5 IðXT
k
~W 1 nk;XkÞ

5HðXT
k
~W 1 nkÞ2HðXT

k
~W 1 nkjXkÞ

5HðXT
k
~W 1 nkÞ2HðnkjXkÞ

$
ðaÞ

HðnkÞ2HðnkjXkÞ
5 Iðnk;XkÞ5 0

ð6:8Þ

where (a) is due to the fact that the entropy of the sum of two independent random

variables is not less than the entropy of each individual variable. The equality in

(a) holds if and only if ~W 5 0, i.e., W�
MinMI 5W0.
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Theorem 6.2 suggests that the MinMI criterion might be robust with respect to

the independent additive noise despite its distribution.

Theorem 6.3 Under the conditions of Theorem 6.2, and assuming that the input fxkg
and the noise fnkg are both unit-power white Gaussian processes, then

Iðek;XkÞ52
1

2
logðMMSEð: ~W:ÞÞ ð6:9Þ

where MMSEð: ~W:Þ9E½ ~WT

0 ðXk2X̂kÞ�2, ~W0 5 ~W=: ~W:, : ~W:9
ffiffiffiffiffiffiffiffiffiffiffiffi
~W
T ~W

p
,

X̂k 5E½Xkjek�.

Proof: Obviously, we have ~W 5 : ~W: ~W0, and

ek 5 : ~W: ~W
T

0Xk 1 nk ð6:10Þ

By the mean square estimation theory [235],

E½ðXk 2 X̂kÞðXk2X̂kÞT �

5 I2 : ~W:2 ~W0 11: ~W:2 ~W
T

0
~W0

h i21
~W
T

0

5
ðaÞ

I2
: ~W:2

11 : ~W:2
~W0

~W
T

0

ð6:11Þ

where (a) follows from ~W
T

0
~W0 5 1, I is an m3m identity matrix. Therefore

MMSE : ~W:
� �

5E : ~W
T

0 ðXk2X̂kÞ:2
h i

5 ~W
T

0E½ðXk 2 X̂kÞðXk2X̂kÞT � ~W0

5 ~W
T

0 I2
: ~W:2

11 : ~W:2
~W0

~W
T

0

8<
:

9=
; ~W0

5
1

11 : ~W:2

ð6:12Þ
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On the other hand, by (2.28), the mutual information Iðek;XkÞ can be calculated as

Iðek;XkÞ5
1

2
log ð11 : ~W:2Þdet

I ~W

~W
T

: ~W:211

" #21
8<
:

9=
;

5
1

2
log 11 : ~W:2
	 
 ð6:13Þ

Combining (6.12) and (6.13) yields the result.

The term MMSE : ~W:
� �

in Theorem 6.3 is actually the minimum MSE when

estimating ~W
T

0Xk based on ek. Figure 6.2 shows the mutual information Iðek;XkÞ
and the minimum MSE MMSE : ~W:

� �
versus different weight error norm : ~W:.

It can be seen that as : ~W: ! 0 (or W ! W0), we have Iðek;XkÞ ! 0 and

MMSE : ~W:
� �!max

~W
MMSE : ~W:

� �
. This implies that when the model weight

vector W approaches the system weight vector W0, the error ek contains less and

less information about the input vector Xk (or the information contained in the input

signal has been sufficiently utilized), and it becomes more and more difficult to

estimate the input based on the error signal (i.e., the minimum MSE MMSE : ~W:
� �

attains gradually its maximum value).
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Figure 6.2 Mutual information Iðek;XkÞ and the minimum MSE MMSE : ~W:
� �

versus

weight error norm.

Source: Adopted from [234].
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6.1.2 Relationship with Independent Component Analysis

The parameter identification under MinMI criterion is actually a special case of

independent component analysis (ICA) [133]. A brief scheme of the ICA problem

is shown in Figure 6.3, where ~sk 5 ½s1ðkÞ; s2ðkÞ; . . .; sNðkÞ�T is the N-dimensional

source vector, ~xk 5 ½x1ðkÞ; x2ðkÞ; . . .; xMðkÞ�T is the M-dimensional observation vector

that is related to the source vector through ~xk 5A~sk, where A is the M3N mixing

matrix [236]. Assume that each component of the source signal~sk is mutually inde-

pendent. There is no other prior knowledge about ~sk and the mixing matrix A.

The aim of the ICA is to search a N3M matrix B (i.e., the demixing matrix) such

that ~yk 5B~xk approaches as closely as possible ~sk up to scaling and permutation

ambiguities.

The ICA can be formulated as an optimization problem. To make each component

of~yk as mutually independent as possible, one can solve the matrix B under a certain

objective function that measures the degree of dependence (or independence). Since

the mutual information measures the statistical dependence between random variables,

we may use the mutual information between components of ~yk as the optimization

criterion,2 i.e.,

B� 5 arg min
B

Ið~ykÞ5 arg min
B

XN
i51

HðyiÞ2Hð~ykÞ
( )

ð6:14Þ

To some extent, the system parameter identification can be regarded as an ICA

problem. Consider the FIR system identification:

zk 5WT
0 Xk 1 nk

ŷk 5WTXk

(
ð6:15Þ

where Xk 5 ½xk; xk21; . . .; xk2m11�T , W0 and W are m-dimensional weight vectors of

the unknown system and the model. If regarding the vectors ½XT
k ; nk�T and ½XT

k ; zk�T as,

respectively, the source signal and the observation in ICA, we have

Xk

zk

� �
5

I 0

WT
0 1

� �
Xk

nk

� �
ð6:16Þ

Mixing matrix
A

Unmixing matrix
B

x(k) = As(k) y(k) = Bx(k)s(k)

Figure 6.3 General configuration of the ICA.

2 The mutual information minimization is a basic optimality criterion in ICA. Other ICA criteria, such as the

negentropy maximization, Infomax, likelihood maximization, and the higher order statistics, in general

conform with the mutual information minimization.
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where
I 0

WT
0 1

� �
is the mixing matrix and I is the m3m identity matrix. The goal

of the parameter identification is to make the model weight vector W approximate

the unknown weight vector W0, and hence make the identification error ek
(ek 5 zk 2 ŷk) approach the additive noise nk, or in other words, make the vector

½XT
k ; ek�T approach the ICA source vector ½XT

k ; nk�T . Therefore, the vector ½XT
k ; ek�T

can be regarded as the demixing output vector, where the demixing matrix is

B5
I 0

2WT 1

� �
ð6:17Þ

Due to the scaling ambiguity of the demixing output, it is reasonable to introduce

a more general demixing matrix:

B5
I 0

W 0T a

� �
ð6:18Þ

where a 6¼ 0, W 0 52aW . In this case, the demixed output ek will be related to the

identification error via a proportional factor a.

According to (6.14), the optimal demixing matrix will be

B� 5 arg min
B

Iðek;XkÞ

5 arg min
B

fHðekÞ1HðXkÞ2Hðek;XkÞg
ð6:19Þ

After obtaining the optimal matrix B� 5
I 0

W 0�T a�

� �
, one may get the optimal

weight vector [133]

W� 52
W 0�

a�
ð6:20Þ

Clearly, the above ICA formulation is actually the MinMI criterion-based

parameter identification.

6.1.3 ICA-Based Stochastic Gradient Identification Algorithm

The MinMI criterion is in essence equivalent to the MEE criterion. Thus, one can

utilize the various information gradient algorithms in Chapter 4 to implement the

MinMI criterion-based identification. In the following, we introduce an ICA-based

stochastic gradient identification algorithm [133].

According to the previous discussion, the MinMI criterion-based identification

can be regarded as an ICA problem, i.e.,

B� 5 arg min
B

HðekÞ1HðXkÞ2Hðek;XkÞ
� � ð6:21Þ
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where the demixing matrix B5
I 0

W 0T a

� �
.

Since

Xk

ek

� �
5B

Xk

zk

� �
5

I 0

W 0T a

� �
Xk

zk

� �
ð6:22Þ

by (2.8), we have

Hðek;XkÞ5Hðzk;XkÞ1 logjaj ð6:23Þ

And hence

B� 5 arg min
B

fHðekÞ1HðXkÞ2 ½Hðzk;XkÞ1 logjaj�g

5 arg min
B

f½HðekÞ2 logjaj�1 ½HðXkÞ2Hðzk;XkÞ�g

5
ðaÞ

arg min
B

fHðekÞ2 logjajg

ð6:24Þ

where (a) is due to the fact that the term ½HðXkÞ2Hðzk;XkÞ� is not related to the

matrix B. Denote the objective function J5HðekÞ2 logjaj. The instantaneous value
of J is

Ĵ52log peðekÞ2 logjaj ð6:25Þ

in which peð:Þ is the PDF of ek (ek 5W 0TXk 1 azk).

In order to solve the demixing matrix B, one can resort to the natural gradient

(or relative gradient)-based method [133,237]:

Bk11 5Bk 2 η
@Ĵ

@Bk

BT
k Bk

5
I 0

W 0T
k ak

" #
2 η

0 0

@Ĵ

@W 0T
k

@Ĵ

@ak

2
64

3
75 I1W 0

kW
0T
k W 0

kak

W 0T
k ak a2k

" #

5
I 0

W 0T
k ak

" #
2 η

0 0

ϕðekÞXT
k ϕðekÞzk 2 1

ak

2
64

3
75 I1W 0

kW
0T
k W 0

kak

W 0T
k ak a2k

" #

5
I 0

W 0T
k ak

" #
2 η

0 0

ϕðekÞXT
k 1 ϕðekÞek 2 1ð ÞW 0T

k ðϕðekÞek 2 1Þak

" #

ð6:26Þ
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where ϕðekÞ52p0eðekÞ=peðekÞ. As the PDF peð:Þ is usually unknown, a certain

nonlinear function (e.g., the tanh function) will be used to approximate the ϕ
function.3

If adopting different step-sizes for learning the parameters W 0 and a, we have

W 0
k11 5W 0

k 1 η1½ð12ϕðekÞekÞW 0
k 2ϕðekÞXk�

ak11 5 ak 1 η2ð12ϕðekÞekÞak

(
ð6:27Þ

The above algorithm is referred to as the ICA-based stochastic gradient identifi-

cation algorithm (or simply the ICA algorithm). The model weight vector learned

by this method is

Wk 52
W 0

k

ak
ð6:28Þ

If the parameter a is set to constant a5 1, the algorithm will reduce to

W 0
k11 5W 0

k 2 η1ϕðekÞXk ð6:29Þ

6.1.4 Numerical Simulation Example

Figure 6.4 illustrates a general configuration of an acoustic echo canceller (AEC) [133].

xk is the far-end signal going to the loudspeaker, and yk is the echo signal entering

into the microphone that is produced by an undesirable acoustic coupling between the

loudspeaker and the microphone. nk is the near-end signal which is usually independent

of the far-end signal and the echo signal. zk is the signal received by the microphone

(zk 5 yk 1 nk). The aim of the echo cancelation is to remove the echo part in zk by

subtracting the output of an adaptive filter that is driven by the far-end signal. As shown

in Figure 6.4, the filter output ŷk is the synthetic echo signal, and the error signal ek is

the echo-canceled signal (or the estimate of the near-end signal). The key technique in

Σ Σ

xk

yk

nk

zk

ŷkek

Far-end signal

Echo signal

Near-end signal

Adaptive
filter

−
+

+

+

Figure 6.4 General configuration

of an AEC.

3 One can also apply the kernel density estimation method to estimate peð:Þ, and then use the estimated

PDF to compute the ϕ function.
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AEC is to build an accurate model for the echo channel (or accurately identifying the

parameters of the synthetic filter).

One may use the previously discussed ICA algorithm to implement the adaptive

echo cancelation [133]. Suppose the echo channel is a 100 tap FIR filter, and

assume that the input (far-end) signal xk is uniformly distributed over the interval

[�4, 4], and the noise (near-end) signal nk is Cauchy distributed, i.e.,

nkBCauchyðlocation; scaleÞ. The performance of the algorithms is measured by the

echo return loss enhancement (ERLE) in dB:

ERLE910 lg
E½y2k �

E½ðyk2ŷkÞ2�


 �
ð6:30Þ

Simulation results are shown in Figures 6.5 and 6.6. In Figure 6.5, the perfor-

mances of the ICA algorithm, the normalized least mean square (NLMS), and the

recursive least squares (RLS) are compared, while in Figure 6.6, the performances

of the ICA algorithm and the algorithm (6.29) with a5 1 are compared. During the

simulation, the ϕ function in the ICA algorithm is chosen as

ϕðxÞ5 tanh ðxÞ; jxj# 40

0 jxj. 40

�
ð6:31Þ

It can be clearly seen that the ICA-based algorithm shows excellent performance

in echo cancelation.
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Figure 6.5 Plots of the performance of three algorithms (ICA, NLMS, RLS) in Cauchy

noise environment.

Source: Adopted from [133].
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6.2 System Identification Under the MaxMI Criterion

Consider the system identification scheme shown in Figure 6.7, in which xk is the

common input to the unknown system and the model, yk is the intrinsic (noiseless)

output of the unknown system, nk is the additive noise, zk is the noisy output mea-

surement, and ŷk stands for the output of the model. Under the MaxMI criterion,

the identification procedure is to determine a model M such that the mutual infor-

mation between the noisy system output zk and the model output ŷk is maximized.

Thus the optimal model Mopt is given by

Mopt 5 arg max
MAM

Iðzk; ŷkÞ

5 arg max
MAM

ð
pzŷðξ; τÞlog pzŷðξ; τÞ

pzðξÞpŷðτÞ
dξ dτ

8<
:

9=
;

ð6:32Þ

where M denotes the model set (collection of all candidate models), pzð:Þ, pŷð:Þ, and
pzŷð:Þ denote, respectively, the PDFs of zk, ŷk, and ðzk; ŷkÞ.

The MaxMI criterion provides a fresh insight into system identification. Roughly

speaking, the noisy measurement zk represents the output of an information source

20
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0
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Ireration
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15,000

Figure 6.6 Plots of the performance of the ICA algorithm and the algorithm (6.29) with

a5 1 (nkBCauchyð0; 0:1Þ).
Source: Adopted from [133].
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and is transmitted over an information channel, i.e., the identifier (including the

model set and search algorithm), and the model output ŷk represents the channel out-

put. Then the identification problem can be regarded as the information transmitting

problem, and the goal of identification is to maximize the channel capacity (mea-

sured by Iðzk; ŷkÞ) over all possible identifiers.

6.2.1 Properties of the MaxMI Criterion

In the following, we present some important properties of the MaxMI criterion

[135,136].

Property 6.1: Maximizing the mutual information Iðzk; ŷkÞ is equivalent to mini-

mizing the conditional error entropy HðekjŷkÞ, where ek 5 zk 2 ŷk.

Proof: It is easy to derive

Iðzk; ŷkÞ5HðzkÞ2HðzkjŷkÞ
5HðzkÞ2Hðzk 2 ŷkjŷkÞ
5HðzkÞ2HðekjŷkÞ

ð6:33Þ

And hence

arg max
MAM

Iðzk; ŷkÞ
5 arg max

MAM

fHðzkÞ2HðekjŷkÞg

5
ðaÞ

arg min
MAM

HðekjŷkÞ
ð6:34Þ

Unknown system

Model (M)

+

+
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yk

nk
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ˆ

ˆmax I (z ; y )k k

Model output

Noise

Input

Figure 6.7 Scheme of the system identification under the MaxMI criterion.
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where (a) is due to the fact that the model M has no effect on the entropy HðzkÞ.
The second property states that under certain conditions, the MaxMI criterion

will be equivalent to maximizing the correlation coefficient.

Property 6.2: If zk and ŷk are jointly Gaussian, we have arg max
MAM

Iðzk; ŷkÞ5
arg max

MAM

ρðzk; ŷkÞ, where ρðzk; ŷkÞ is the correlation coefficient between zk and ŷk.

Proof: Since zk and ŷk are jointly Gaussian, the mutual information Iðzk; ŷkÞ can be

calculated as

Iðzk; ŷkÞ52
1

2
logf12 ρ2ðzk; ŷkÞg ð6:35Þ

The log function is monotonically increasing, thus we have

arg max
MAM

Iðzk; ŷkÞ5 arg max
MAM

ρðzk; ŷkÞ ð6:36Þ

Property 6.3: Assume the noise nk is independent of the input signal xk. Then

maximizing the mutual information Iðzk; ŷkÞ is equivalent to maximizing a lower

bound of the intrinsic (noiseless) mutual information Iðyk; ŷkÞ.

Proof: Denote ek the intrinsic error, i.e., ek 5 yk 2 ŷk, we have

Iðzk; ŷkÞ5HðzkÞ2HðzkjŷkÞ
5HðzkÞ2Hðyk 1 nkjŷkÞ
5HðzkÞ2Hðyk 2 ŷk 1 nkjŷkÞ
5HðzkÞ2Hðek 1 nkjŷkÞ

#
ðbÞ

HðzkÞ2HðekjŷkÞ
5 fHðzkÞ2HðykÞg1 fHðykÞ2HðekjŷkÞg
5 fHðzkÞ2HðykÞg1 fHðykÞ2Hðyk 2 ŷkjŷkÞg
5 fHðzkÞ2HðykÞg1 Iðyk; ŷkÞ

ð6:37Þ

where (b) follows from the independence condition and the fact that the entropy of

the sum of two independent random variables is not less than the entropy of each

individual variable. It follows easily that

Iðyk; ŷkÞ$ Iðzk; ŷkÞ2 fHðzkÞ2HðykÞg ð6:38Þ

which completes the proof.
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In Figure 6.7, the measurement zk may be further distorted by a certain function.

Denote ~zk the distorted measurement, we have

~zk 5β½zk�5β½yk 1 nk� ð6:39Þ

where βð:Þ is the distortion function. Such distortion widely exists in practical systems.

Typical examples include the saturation and the dead zone.

Property 6.4: Suppose the noisy measurement zk is distorted by a function βð:Þ.
Then maximizing the distorted mutual information, IðβðzkÞ; ŷkÞ is equivalent to

maximizing a lower bound of the undistorted mutual information Iðzk; ŷkÞ.

Proof: This property is a direct consequence of the data processing inequality (see

Theorem 2.3), which states that for any random variables X and Y , and any measurable

function βð:Þ,

IðβðXÞ; YÞ# IðX; YÞ ð6:40Þ

In (6.40), if function βð:Þ is invertible, the equality will hold. In this case, we have

arg max
MAM

IðβðzkÞ; ŷkÞ5 arg max
MAM

Iðzk; ŷkÞ ð6:41Þ

That is, the invertible distortion does not change the optimal solutions of MaxMI.

Property 6.5: If the measurement zk is Gaussian, then maximizing the mutual

information Iðzk; ŷkÞ will be equivalent to minimizing a lower bound of the MSE.

Proof: According to Theorem 2.4, the rate distortion function for a Gaussian

source XBNðμ;σ2Þ with MSE distortion is

RðDÞ5 1

2
log

σ2

D2
; D$ 0 ð6:42Þ

where RðDÞ9inf
Y
fIðX; YÞ : E½ðX2YÞ2�#D2g. Let X5 zk, we have

Iðzk; ŷkÞ$ inf
Y
fIðzk; YÞ;E½ðzk2YÞ2�#E½ðzk2ŷkÞ2�g

5RðE½ðzk2ŷkÞ2�Þ

5
1

2
log

σ2
z

E½ðzk2ŷkÞ2�

ð6:43Þ
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where σ2
z is the variance of zk. It follows easily that

E½e2k �5E½ðzk2ŷkÞ2�

$σ2
z expð22Iðzk; ŷkÞÞ

ð6:44Þ

This completes the proof.

Consider now a special case where the model is represented by an FIR filter in

which the output ŷk is given by

ŷk 5XT
k W ð6:45Þ

where Xk 5 ½xk; xk21; . . .; xk2m11�T is the input (regressor) vector and

W 5 ½w0;w1; . . .;wm21�T is the weight vector. Then we have the following results.

Property 6.6: For the case of the FIR model and under the assumption that zk and

Xk are jointly Gaussian, the optimal weight vector under the MaxMI criterion will be

Wopt 5 arg max
WAℝm

Iðzk; ŷkÞ5 γR21
X P ð6:46Þ

where RX 5E½ðXk 2E½Xk�ÞðXk2E½Xk�ÞT �, P5E½ðXk 2E½Xk�Þðzk 2E½zk�Þ�, γAℝ
(γ 6¼ 0). and in particular, if γ5 1, the MSE E½e2k � will attain the lower bound as

in (6.44), i.e.,

E½e2k �5 σ2
zexpð22Iðzk; ŷkÞÞ ð6:47Þ

Proof: Since zk and Xk are jointly Gaussian, then zk and ŷk are also jointly

Gaussian. By Property 6.2, we have

Wopt 5 arg max
WAℝm

ρðzk; ŷkÞ

5 arg max
WAℝm

E½ðŷk 2E½ŷk�Þðzk 2E½zk�Þ�
σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðŷk2E½ŷk�Þ2�

q

5 arg max
WAℝm

WTP

σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWTRXWÞ

p

5
ðcÞ

arg max
WAℝm

WTPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWTRXWÞ

p

ð6:48Þ
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where (c) is because that σz is not related to W . And then,

@

@W

WTPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTRXW

p 5
WTP

ðWTRXWÞ3=2

 !
WTRXW

WTP


 �
P2RXW

� �
ð6:49Þ

Let the above gradient be zero, and denote γ5 ðWTRXWÞ=ðWTPÞ, we obtain the

optimal weight vector

Wopt 5 γR21
X P ð6:50Þ

It can be easily verified that for any γAℝ, and γ 6¼ 0, the optimal weight vector

(6.50) makes the gradient (6.49) zero. When γ5 1, the optimal weight becomes the

Wiener solution Wopt 5R21
X P. In this case, the MSE is

E½e2k �5WTRXW 2 2PTW 1σ2
z

5σ2
z 2PTR21

X P
ð6:51Þ

Further the mutual information Iðzk; ŷkÞ is

Iðzk; ŷkÞ52
1

2
logf12 ρ2ðzk; ŷkÞg

52
1

2
log 12

E½ðŷk2E½ŷk�Þðzk2E½zk�Þ�
� �2

E½ðŷk2E½ŷk�Þ2�σ2
z

8<
:

9=
;

52
1

2
log 12

ðWTPÞ2
WTRXWσ2

z

8<
:

9=
;

52
1

2
log 12

PTR21
X P

σ2
z

8<
:

9=
;

ð6:52Þ

Combining (6.51) and (6.52), we obtain E½e2k �5σ2
z expð2 2Iðzk; ŷkÞÞ.

Property 6.6 indicates that with a FIR filter structure and under Gaussian

assumption, the MaxMI criterion yields a scaled Wiener solution which is not

unique. Thus it does not satisfy the identifiability condition.4 The main reason for

this is that any invertible transformation does not change the mutual information.

In this property, γ is restricted to nonzero. If γ5 0, we have Wopt 5 0, and the

mutual information Iðzk; ŷkÞ5 Iðzk; 0Þ will be undefined (ill-posed).

4 It is worth noting that the identifiability problem under the MaxMI criterion has been studied in [134],

wherein the “identifiability” does not means the uniqueness of the solution, but just means that the

mutual information between the system output and the model output is nonzero.
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A priori information usually has great value in system identification. For

example, if the structures of the system or the parameters are partially known,

we may use this information to impose some constraints on the structures or

parameters of the filter. For the case in which the desired responses are distorted,

the a priori information can help to improve the accuracy of the solution. In

particular, certain parameter constraints may yield a unique optimal solution

under the MaxMI criterion. Consider the optimal solution (6.50) under the follow-

ing parameter constraint:

CTW 5α ð6:53Þ

where C5 ½c1; c2; . . .; cm�TAℝm, αAℝ. Let W 5 γR21
X P, we have

CTW 5 γCTR21
X P5α ð6:54Þ

If CTR21
X P 6¼ 0, then γ can be uniquely determined as γ5 ðCTR21

X PÞ21α.

6.2.2 Stochastic Mutual Information Gradient Identification Algorithm

The stochastic gradient identification algorithm under the MaxMI criterion can be

expressed as

Wk11 5Wk 1 ηr̂WIðzk; ŷkÞ ð6:55Þ

where r̂WIðzk; ŷkÞ denotes the instantaneous estimate of the gradient of mutual

information Iðzk; ŷkÞ evaluated at the current value of the weight vector and η is

the step-size. The key problem of the update equation (6.55) is how to calculate the

instantaneous gradient r̂WIðzk; ŷkÞ.
Let us start with the calculation of the gradient (not the instantaneous gradient)

of Iðzk; ŷkÞ:

rWIðzk; ŷkÞ5
@

@W
Iðzk; ŷkÞ

5
@

@W
E log

pzŷðzk; ŷkÞ
pzðzkÞpŷðŷkÞ

0
@

1
A

8<
:

9=
;

5
@

@W
Eflog pzŷðzk; ŷkÞ2 log pŷðŷkÞg

ð6:56Þ
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where pzð:Þ, pŷð:Þ, and pzŷð:Þ denote the related PDFs at the instant k. Then the

instantaneous value of rWIðzk; ŷkÞ can be obtained by dropping the expectation

operator and plugging in the estimates of the PDFs, i.e.,

r̂W Iðzk; ŷkÞ 5
@

@W
flog p̂zŷðzk; ŷkÞ2 log p̂ŷðŷkÞg

5



@

@W

�
p̂zŷðzk; ŷkÞ

p̂zŷðzk; ŷkÞ
2



@

@W

�
p̂ŷðŷkÞ

p̂ŷðŷkÞ

ð6:57Þ

where p̂zŷðzk; ŷkÞ and p̂ŷðŷkÞ are, respectively, the estimates of pzŷðzk; ŷkÞ and pŷðŷkÞ.
To estimate the density functions, one usually adopts the kernel density estimation

(KDE) method and uses the following Gaussian functions as the kernels [135]

Kh1ðxÞ5
1ffiffiffiffiffiffi
2π

p
h1

exp 2
x2

2h21

0
@

1
A

Kh2ðx; yÞ5
1

2πh22
exp 2

x2 1 y2

2h22

0
@

1
A

8>>>>>>>><
>>>>>>>>:

ð6:58Þ

where h1 and h2 denote the kernel widths.

Based on the above Gaussian kernels, the estimates of the PDFs and their gradients

can be calculated as follows:

p̂ŷðŷkÞ5
1ffiffiffiffiffiffi

2π
p

Lh1

XL21

j50

exp 2
ðŷk2ŷk2jÞ2

2h21

0
@

1
A

p̂zŷðzk; ŷkÞ5
1

2πLh22

XL21

j50

exp 2
ðzk2zk2jÞ2 1 ðŷk2ŷk2jÞ2

2h22

0
@

1
A

8>>>>>>>><
>>>>>>>>:

ð6:59Þ

@

@W
p̂ŷðŷkÞ5

21ffiffiffiffiffiffi
2π

p
Lh31

XL21

j50

exp 2
½ŷk2ŷk2j�2

2h21

0
@

1
Aπkj

8<
:

9=
;

@

@W
p̂zŷðzk; ŷkÞ5

21

2πLh42

XL21

j50

exp 2
½zk2zk2j�2 1 ½ŷk2ŷk2j�2

2h22

0
@

1
Aπkj

8<
:

9=
;

8>>>>>>>><
>>>>>>>>:

ð6:60Þ
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where L is the sliding data length and πkj 5 ðŷk 2 ŷk2jÞð@ŷk=@W 2 @ŷk2j=@WÞ.
For FIR filter, we have

πkj 5 ðŷk 2 ŷk2jÞðXk 2Xk2jÞ ð6:61Þ

Combining (6.55), (6.57), (6.59), and (6.60), we obtain a stochastic gradient

identification algorithm under the MaxMI criterion, which is referred to as the

stochastic mutual information gradient (SMIG) algorithm [135].

The performances of the SMIG algorithm compared with the least mean square

(LMS) algorithm are demonstrated in the following by Monte Carlo simulations.

Consider the FIR system identification [135]:

G�ðzÞ5 0:81 0:2z21 1 0:4z22 1 0:6z23 1 0:4z24 1 0:2z25

GðzÞ5w0 1w1z
21 1w2z

22 1w3z
23 1w4z

24 1w5z
25

(
ð6:62Þ

where G�ðzÞ and GðzÞ are, respectively, the transfer functions of the unknown

system and the model. Suppose the input signal fxkg and the additive noise fnkg are
both unit-power white Gaussian processes. To uniquely determine an optimal

solution under the MaxMI criterion, it is assumed that the first component of the

unknown weight vector is a priori known (which is assumed to be 0.8). Thus the

goal is to search the optimal solution of the other five weights. The initial weights

(except w0 5 0:8) for the adaptive FIR filter are zero-mean Gaussian distributed

with variance 0.01. Further, the following distortion functions are considered [135]:

1. Undistorted: βðxÞ5 x; xAℝ

2. Saturation: βðxÞ5
x xA½21; 1�
22 eð12xÞ xAð1; 1NÞ
221 eð11xÞ xAð2N; 21Þ

8><
>:

3. Dead zone: βðxÞ5
0 xA½20:4; 0:4�
x2 0:4 xAð0:4; 1NÞ
x1 0:4 xAð2N; 20:4Þ

8><
>:

4. Data loss5 : βðxÞ: PrfβðxÞ5 0g5 0:3

PrfβðxÞ5 xg5 0:7
xAℝ

(

Figure 6.8 plots the distortion functions of the saturation and dead zone.

Figure 6.9 shows the desired response signal with data loss (the probability of data

loss is 0.3). In the simulation below, the Gaussian kernels are used and the kernel

sizes are kept fixed at h1 5 h2 5 0:4.
Figure 6.10 illustrates the average convergence curves over 50 Monte Carlo sim-

ulation runs. One can see that, without measurement distortions, the conventional

LMS algorithm has a better performance. However, in the case of measurement

5 Data loss means that there exists accidental loss of the measurement data due to certain failures in the

sensors or communication channels.
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Figure 6.8 Distortion functions of saturation and dead zone.

Source: Adopted from [135].
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Figure 6.9 Desired response signal with data loss.

Source: Adopted from [135].
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Figure 6.10 Average convergence curves of SMIG and LMS algorithms: (A) undistorted, (B) saturation, (C) dead zone, and (D) data loss.

Source: Adopted from [135].



distortions, it is evident the deterioration of the LMS algorithm whereas the SMIG

algorithm is little affected and achieves a much better performance. Simulation

results confirm that the MaxMI criterion is more robust to the measurement distor-

tion than traditional MSE criterion.

6.2.3 Double-Criterion Identification Method

The system identification scheme of Figure 6.7 does not, in general, satisfy the con-

dition of parameter identifiability (i.e., the uniqueness of the optimal solution). In

order to uniquely determine an optimal solution, some a priori information about

the parameters is required. However, such a priori information is not available for

many practical applications. To address this problem, we introduce in the following

the double-criterion identification method [136].

Consider the Wiener system shown in Figure 6.11, where the system has the cascade

structure and consists of a discrete-time linear filter HðzÞ followed by a zero-memory

nonlinearity f ð:Þ. Wiener systems are typical nonlinear systems and are widely used

for nonlinear modeling [238]. The double-criterion method mainly aims at the Wiener

system identification, but it also applies to many other systems. In fact, any system can

be regarded as a cascade system consisting of itself followed by f ðxÞ5 x.

First, we define the equivalence between two Wiener systems.

Definition 6.1 Two Wiener systems fH1ðzÞ; f1ð:Þg and fH2ðzÞ; f2ð:Þg are said to be

equivalent if and only if 'γ 6¼ 0, such that

H2ðzÞ5 γH1ðzÞ
f2ðxÞ5 f1ðx=γÞ

(
ð6:63Þ

Although there is a scale factor γ between two equivalent Wiener systems, they

have exactly the same input�output behavior.

The optimal solution of the system identification scheme of Figure 6.7 is usually

nonunique. For Wiener system, the nonuniqueness means the optimal solutions are

not all equivalent. According to the data processing inequality, we have

Iðzk; ŷkÞ5 Iðzk; f̂ ðûkÞÞ# Iðzk; ûkÞ ð6:64Þ

where ûk and f̂ ð:Þ denote, respectively, the intermediate output (the output of the

linear part) and the zero-memory nonlinearity of the Wiener model. Then under the

MaxMI criterion, the optimal Wiener model will be

Wopt 5 arg max
W

Iðzk; ûkÞ
foptAff̂AFjIðzk; f̂ ðûkÞÞ5 Iðzk; ûkÞg

(
ð6:65Þ

H (z) f (.)kx kyku Figure 6.11 Wiener system.
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where W denotes the parameter vector of the linear subsystem and F denotes all

measurable mappings ûk ! ŷk. Evidently, the optimal solutions given by (6.65)

contain infinite nonequivalent Wiener models. Actually, we always have

Iðzk; f̂ ðûkÞÞ5 Iðzk; ûkÞ provided f̂ is an invertible function.

In order to ensure that all the optimal Wiener models are equivalent, the identifi-

cation scheme of Figure 6.7 has to be modified. One can adopt the double-criterion

identification method [136]. As shown in Figure 6.12, the double-criterion method

utilizes both MaxMI and MSE criteria to identify the Wiener system. Specifically,

the linear filter part is identified by using the MaxMI criterion, and the zero-

memory nonlinear part is learned by the MSE criterion. In Figure 6.12, HW� ðzÞ
and fA� ð:Þ denote, respectively, the linear and nonlinear subsystems of the unknown

Wiener system, where W� and A� are related parameter vectors. The adaptive

Wiener model fĤWk
ðzÞ; f̂ Ak

ð:Þg usually takes the form of “FIR 1 polynomial”, that

is, the linear subsystem ĤWk
ðzÞ is an ðm2 1Þ-order FIR filter, and the nonlinear sub-

system f̂ Ak
ð:Þ is a ðp2 1Þ-order polynomial. In this case, the intermediate output ûk

and the final output ŷk of the model are

ûk 5WT
k Xk

ŷk 5 f̂ Ak
ðûkÞ5AT

k Ûk

(
ð6:66Þ

where Wk and Xk are m-dimensional FIR weight vector and input vector,

Ak 5 ½a0ðkÞ; a1ðkÞ; . . .; ap21ðkÞ�T is the p-dimensional polynomial coefficient vector,

and Ûk 5 ½1; ûk; û2k ; . . .; ûp21
k �T is the polynomial basis vector.

It should be noted that similar two-gradient identification algorithms for the

Wiener system have been proposed in [239,240], wherein the linear and nonlinear

subsystems are both identified using the MSE criterion.

The optimal solution for the above double-criterion identification is

Wopt 5 arg max
WAℝm

Iðzk; ûkÞ

Aopt 5 arg min
AAℝp;W 5Wopt

E½ðzk2ŷkÞ2�

8><
>: ð6:67Þ

Σ
ke+

−

xk

ĤWk 
(z) fAk (.)

ˆku

ˆky

Unknown wiener system

MaxMI

kn
+

ΣHW* (z)
kz

ky
ku

+

1 2

fA* (.)

ˆ

Figure 6.12 Double-

criterion identification

scheme for Wiener system:

(1) linear filter part is

identified using MaxMI

criterion and (2) nonlinear

part is trained using MSE

criterion.
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For general case, it is hard to find the closed-form expressions for Wopt and Aopt.

The following theorem only considers the case in which the unknown Wiener

system has the same structure as the assumed Wiener model.

Theorem 6.4 For the Wiener system identification scheme shown in Figure 6.12, if

1. The unknown system and the model have the same structure, that is, HW� ðzÞ and ĤW ðzÞ
are both ðm2 1Þ-order FIR filters, and fA� ð:Þ and f̂ Að:Þ are both ðp2 1Þ-order polynomials.

2. The nonlinear function fA� ð:Þ is invertible.
3. The additive noise nk is independent of the input vector Xk.

Then the optimal solution of (6.67) will be

Wopt 5 γW�; Aopt 5A�G21
γ ð6:68Þ

where γAℝ, γ 6¼ 0, and Gγ is expressed as

Gγ 5

1 0 ? 0

0 γ1 & ^

^ & & 0

0 ? 0 γp21

2
66664

3
77775 ð6:69Þ

Proof: Since Xk and nk are mutually independent, we have

Iðzk; ûkÞ5HðzkÞ2HðzkjûkÞ
5HðzkÞ2Hðyk 1 nkjûkÞ

#
ðdÞ

HðzkÞ2HðnkjûkÞ
5HðzkÞ2HðnkÞ

ð6:70Þ

where ðdÞ follows from the fact that the entropy of the sum of two independent ran-

dom variables is not less than the entropy of each individual variable.

In (6.70), the equality holds if and only if conditioned on ûk, yk is a determin-

istic variable, that is, yk is a function of ûk. This implies that the mutual informa-

tion Iðzk; ûkÞ will achieve its maximum value (HðzkÞ2HðnkÞ) if and only if there

exists a function ϕð:Þ such that yk 5ϕðûkÞ, i.e.,

yk 5 fA� ðW�TXkÞ5ϕðûkÞ5ϕðWT
optXkÞ; ’XkAℝm ð6:71Þ
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As the nonlinear function fA� ð:Þ is assumed to be invertible, we have

W�TXk 5 fA�21ðϕðWT
optXkÞÞ5ψðWT

optXkÞ; ’XkAℝm ð6:72Þ

where fA�21ð:Þ denotes the inverse function of fA� ð:Þ and ψ9fA�213ϕ. It follows that

ψð1Þ5ψ
WT

optXk

WT
optXk

 !
5ψ WT

opt

Xk

ðWT
optXkÞ

 !
5W�T Xk

ðWT
optXkÞ

; ’XkAℝm

ð6:73Þ

And hence

ψð1ÞWT
optXk 5W�TXk; ’XkAℝm ð6:74Þ

which implies ψð1ÞWT
opt 5W�T . Let γ5 1=ψð1Þ 6¼ 0, we obtain the optimum FIR

weight Wopt 5 γW�.
Now the optimal polynomial coefficients can be easily determined. By indepen-

dent assumption, we have

E½ðzk2ŷkÞ2�5E½ðyk1nk2ŷkÞ2�$E½n2k � ð6:75Þ

with equality if and only if yk 2 ŷk � 0. This means the MSE cost will attain its

minimum value (E½n2k �) if and only if the intrinsic error (ek 5 yk 2 ŷk) remains zero.

Therefore,

ek
��
W5Wopt;A5Aopt

5 ðyk 2 ŷkÞ
��
W5Wopt;A5Aopt

5 fA� ðW�TXkÞ2 f̂ Aopt
ðWT

optXkÞ

5 fA� ðW�TXkÞ2 fAopt
ðγW�TXkÞ

5 fA� ðW�TXkÞ2 fAoptGγ ðW�TXkÞ
� 0

ð6:76Þ

Then we get AoptGγ 5A�.Aopt 5A�G21
γ , where Gγ is given by (6.69). This

completes the proof.

Theorem 6.4 indicates that for identification scheme of Figure 6.12, under cer-

tain conditions the optimal solution will match the true system exactly (i.e., with

zero intrinsic error). There is a free parameter γ in the solution, however, its spe-

cific value has no substantial effect on the cascaded model. The literature [240]

gives a similar result about the optimal solution under the single MSE criterion. In

[240], the linear FIR subsystem is estimated up to a scaling factor which equals the

derivative of the nonlinear function around a bias point.
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The double-criterion identification can be implemented in two manners. The

first is the sequential identification scheme, in which the MaxMI criterion is first

used to learn the linear FIR filter. At the end of the first adaptation phase, the tap

weights are frozen, and then the MSE criterion is used to estimate the polynomial

coefficients. The second adaptation scheme simultaneously trains both the linear

and nonlinear parts of the Wiener model. Obviously, the second scheme is more

suitable for online identification. In the following, we focus only on the simulta-

neous scheme.

In [136], a stochastic gradient-based double-criterion identification algorithm

was developed as follows:

Wk11 5Wk 1 η1r̂W Iðzk; ûkÞ ða1Þ
Wk11 5

Wk11

:Wk11:
ða2Þ

Ak11 5Ak 1
η2ekÛk

:Ûk:
2

ða3Þ

8>>>>>><
>>>>>>:

ð6:77Þ

where r̂WIðzk; ûkÞ denotes the stochastic (instantaneous) gradient of the mutual

information Iðzk; ûkÞ with respect to the FIR weight vector W (see (6.57) for

the computation), ::: denotes the Euclidean norm, η1 and η2 are the step-sizes. The
update equation (a1) is actually the SMIG algorithm developed in 6.2.2. The sec-

ond part (a2) of the algorithm (6.77) scales the FIR weight vector to a unit vector.

The purpose of scaling the weight vector is to constrain the output energy of

the FIR filter, and to avoid “very large values” of the scale factor γ in the optimal

solution. As mutual information is scaling invariant,6 the scaling (a2) does not

influence the search of the optimal solution. However, it certainly affects the value

of γ in the optimal solution. In fact, if the algorithm converges to the optimal solution,

we have lim
k!N

Wk 5 γW�, and

lim
k!N

Wk11 5 lim
k!N

Wk11

:Wk11:

.γW� 5
γW�

:γW�:
5 signðγÞ W�

:W�:

.γsignðγÞ5 1=:W�:

.γ561=:W�:

ð6:78Þ

That is, the scale factor γ equals either 1=:W�: or 21=:W�:, which is no lon-

ger a free parameter.

6 For any random variables X and Y , the mutual information IðX; YÞ satisfies IðX;YÞ5 IðaX; bYÞ,
’a 6¼ 0, b 6¼ 0.
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The third part (a3) of the algorithm (6.77) is the NLMS algorithm, which mini-

mizes the MSE cost with step-size scaled by the energy of polynomial regression

signal Ûk. The NLMS is more suitable for the nonlinear subsystem identification

than the standard LMS algorithm, because during the adaptation, the polynomial

regression signals are usually nonstationary. The algorithm (6.77) is referred to as

the SMIG-NLMS algorithm [136].

Next, Monte Carlo simulation results are presented to demonstrate the perfor-

mance of the SMIG-NLMS algorithm. For comparison purpose, simulation results

of the following two algorithms are also included.

Wk11 5Wk 1μ1e
ð1Þ
k Xk

Ak11 5Ak 1μ2e
ð2Þ
k Ûk=:Ûk:

2

8<
: ð6:79Þ

Wk11 5Wk 2μ0
1rWĤðeð1Þk Þ

Ak11 5Ak 1μ0
2e

ð2Þ
k Ûk=:Ûk:

2

8<
: ð6:80Þ

where μ1, μ2, μ
0
1, μ

0
2 are step-sizes, e

ð1Þ
k 9zk 2WT

k Xk, e
ð2Þ
k 9zk 2 f̂ Ak

ðWT
k XkÞ, and

rWĤðeð1Þk Þ denote the stochastic information gradient (SIG) under Shannon entropy

criterion, calculated as

rWĤðeð1Þk Þ5

Pk
i5k2L11

K 0
hðeð1Þk 2 e

ð1Þ
i ÞðXk 2XiÞ

Pk
i5k2L11

Kh e
ð1Þ
k 2 e

ð1Þ
i

	 
 ð6:81Þ

where Khð:Þ denotes the kernel function with bandwidth h. The algorithms (6.79)

and (6.80) are referred to as the LMS-NLMS and SIG-NLMS algorithms [136],

respectively. Note that the LMS-NLMS algorithm is actually the normalized

version of the algorithm developed in [240].

Due to the “scaling” property of the linear and nonlinear portions, the expression

of Wiener system is not unique. In order to evaluate how close the estimated

Wiener model and the true system are, we introduce the following measures [136]:

1. Angle between Wk and W�:

θðWk;W
�Þ5minf+ðWk;W

�Þ;+ð2Wk;W
�Þg ð6:82Þ

where +ðWk;W�Þ5 arc cos ðWT
k W

�Þ= :Wk::W�:
� �� �

.

2. Angle between Ak and A�:

θðAk;A
�Þ5minf+ðAk;A

�Þ;+ðAkG21;A
�Þg ð6:83Þ
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where G21 is

G21 5

ð21Þ0 0 ? 0

0 ð21Þ1 & ^
^ & & 0

0 ? 0 ð21Þp

2
6664

3
7775 ð6:84Þ

3. Intrinsic error power (IEP)7:

IEP9E½e2k �5E½ðyk2ŷkÞ2� ð6:85Þ

Among the three performance measures, the angles θðWk;W�Þ and θðAk;A�Þ
quantify the identification performance of the subsystems (linear FIR and nonlinear

polynomial), while the IEP quantifies the overall performance.

Let us consider the case in which the FIR weights and the polynomial coeffi-

cients of the unknown Wiener system are [136]

W� 5 ½0:3; 0:5;20:6;20:2; 0:4; 0:3; 0:1�
A� 5 ½0:2; 1:0; 0:5; 0:1�

�
ð6:86Þ

The common input fxkg is a white Gaussian process with unit variance and the distur-
bance noise fnkg is another white Gaussian process with variance σ2

n 5 0:01. The initial
FIR weight vector W0 of the adaptive model is obtained by normalizing a zero-mean

Gaussian-distributed random vector (:W0:5 1), and the initial polynomial coefficients

are zero-mean Gaussian distributed with variance 0.01. For the SMIG-NLMS and

SIG-NLMS algorithms, the sliding data length is set as L5 100 and the kernel widths

are chosen according to Silverman’s rule. The step-sizes involved in the algorithms are

experimentally selected so that the initial convergence rates are visually identical.

The average convergence curves of the angles θðWk;W�Þ and θðAk;A�Þ, over

1000 independent Monte Carlo simulation runs, are shown in Figures 6.13 and 6.14.

It is evident that the SMIG-NLMS algorithm achieves the smallest angles (mis-

matches) in both linear and nonlinear subsystems during the steady-state phase. More

detailed statistical results of the subsystems training are presented in Figures 6.15

and 6.16, in which the histograms of the angles θðWk;W�Þ and θðAk;A�Þ at the final

iteration are plotted. The inset plots in Figures 6.15 and 6.16 give the summary of

the mean and spread of the histograms. One can observe again that the SMIG-NLMS

algorithm outperforms both the LMS-NLMS and SIG-NLMS algorithms in terms of

the angles between the estimated and true parameter vectors.

The overall identification performance can be measured by the IEP. Figure 6.17

illustrates the convergence curves of the IEP over 1000 Monte Carlo runs. It is clear

that the SMIG-NLMS algorithm achieves the smallest IEP during the steady-state

phase. Figure 6.18 shows the probability density functions of the steady-state

7 In practice, the IEP is evaluated using the sample mean instead of the expectation value.
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Figure 6.14 Average convergence curves of the angle θðAk;A�Þ over 1000 Monte

Carlo runs.

Source: Adopted from [136].
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Figure 6.15 Histogram plots of the angle θðWk;W�Þ at the final iteration over 1000 Monte

Carlo runs.
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intrinsic errors. As expected, the SMIG-NLMS algorithm yields the largest and most

concentrated peak centered at the zero intrinsic error, and hence achieves the best

accuracy in identification.

In the previous simulations, the unknown Wiener system has the same structure

as the assumed model. In order to show how the algorithm performs when the real

system is different from the assumed model (i.e., the unmatched case), another

simulation with the same setup is conducted. This time the linear and nonlinear

parts of the unknown system are assumed to be

HðzÞ5 1

ð12 0:3z21Þ

f ðxÞ5 12 expð2xÞ
11 expð2xÞ

8>>>><
>>>>:

ð6:87Þ
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Figure 6.17 Convergence curves

of the IEP over 1000 Monte

Carlo runs.
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Table 6.1 lists the mean6 deviation results of the IEP at final iteration over

1000 Monte Carlo runs. Clearly, the SMIG-NLMS algorithm produces the IEP

with both lower mean and smaller deviation. Figure 6.19 shows the desired output

(intrinsic output of the true system) and the model outputs (trained by different

algorithms) during the last 100 samples for the test input. The results indicate that

the identified model by the SMIG-NLMS algorithm describes the test data with the

best accuracy.
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Figure 6.19 Desired output (the intrinsic output of the true system) and model outputs for

the test input data.

Source: Adopted from [136].

Table 6.1 Mean6Deviation Results of the IEP at the Final

Iteration Over 1000 Monte Carlo Runs

IEP

SMIG-NLMS 0.00116 0.0065

LMS-NLMS 0.00286 0.0074

SIG-NLMS 0.00336 0.0089

Source: Adopted from [136].
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Appendix I: MinMI Rate Criterion

The authors in [124] propose the MinMI rate criterion. Consider the linear Gaussian

system

θðt1 1Þ5 θðtÞ1 vðtÞ; θð0Þ5 θ0;

yðtÞ5φðtÞTθðtÞ1wðtÞ

(
ðI:1Þ

where θ0BNðm0;Q0Þ, vðtÞBNð0;QvÞ, wðtÞBNð0;QwÞ. One can adopt the following
linear recursive algorithm to estimate the parameters

θ̂ ðt1 1Þ5 θ̂ ðtÞ1KðtÞ½yðtÞ2φðtÞT θ̂ ðtÞ�; θ̂ ð0Þ5m0 ðI:2Þ

The MinMI rate criterion is to search an optimal gain matrix K�ðtÞ such that the

mutual information rate IðfeðtÞg; fzðtÞgÞ between the error signal eðtÞ5 θðtÞ2 θ̂ ðtÞ
and a unity-power white Gaussian noise zðtÞ is minimized, where zðtÞ5 eðtÞ1 rðtÞ,
rðtÞ is a certain Gaussian process independent of eðtÞ. Clearly, the MinMI rate

criterion requires that the asymptotic power spectral RðzÞ of the error process feðtÞg
satisfies 0#RðzÞ# I (otherwise rðtÞ does not exist). It can be calculated that

IðfeðtÞg; fzðtÞgÞ5 21

4πi

ð
D

1

z
log det I2RðzÞ½ �dz

5
21

4πi

ð
D

1

z
log det I2 Sðz21ÞTSðzÞ� �

dz

ðI:3Þ

where SðzÞ is a spectral factor of RðzÞ. Hence, under the MinMI rate criterion the

optimal gain matrix K� will be

K� 5 arg min
K

21

4πi

ð
D

1

z
log det I2 Sðz21ÞTSðzÞ� �

dz ðI:4Þ
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Preface

System identification is a common method for building the mathematical model

of a physical plant, which is widely utilized in practical engineering situations. In

general, the system identification consists of three key elements, i.e., the data, the

model, and the criterion. The goal of identification is then to choose one from

a set of candidate models to fit the data best according to a certain criterion. The

criterion function is a key factor in system identification, which evaluates the con-

sistency of the model to the actual plant and is, in general, an objective function

for developing the identification algorithms. The identification performances, such

as the convergence speed, steady-state accuracy, robustness, and the computational

complexity, are directly related to the criterion function.

Well-known identification criteria mainly include the least squares (LS) crite-

rion, minimum mean square error (MMSE) criterion, and the maximum likelihood

(ML) criterion. These criteria provide successful engineering solutions to most

practical problems, and are still prevalent today in system identification. However,

they have some shortcomings that limit their general use. For example, the LS and

MMSE only consider the second-order moment of the error, and the identification

performance would become worse when data are non-Gaussian distributed (e.g., with

multimodal, heavy-tail, or finite range). The ML criterion requires the knowledge of

the conditional probability density function of the observed samples, which is not

available in many practical situations. In addition, the computational complexity

of the ML estimation is usually high. Thus, selecting a new criterion beyond

second-order statistics and likelihood function is attractive in problems of system

identification.

In recent years, criteria based on information theoretic descriptors of entropy

and dissimilarity (divergence, mutual information) have attracted lots of attentions

and become an emerging area of study in signal processing and machine learning

domains. Information theoretic criteria (or briefly, information criteria) can capture

higher order statistics and information content of signals rather than simply their

energy. Many studies suggest that information criteria do not suffer from the limita-

tion of Gaussian assumption and can improve performance in many realistic sce-

narios. Combined with nonparametric estimators of entropy and divergence, many

adaptive identification algorithms have been developed, including the practical

gradient-based batch or recursive algorithms, fixed-point algorithms (no step-size),

or other advanced search algorithms. Although many elegant results and techniques

have been developed over the past few years, till now there is no book devoted to

a systematic study of system identification under information theoretic criteria. The



primary focus of this book is to provide an overview of these developments, with

emphasis on the nonparametric estimators of information criteria and gradient-based

identification algorithms. Most of the contents of this book originally appeared in the

recent papers of the authors.

The book is divided into six chapters: the first chapter is the introduction to

the information theoretic criteria and the state-of-the-art techniques; the second

chapter presents the definitions and properties of several important information

measures; the third chapter gives an overview of information theoretic approaches

to parameter estimation; the fourth chapter discusses system identification under

minimum error entropy criterion; the fifth chapter focuses on the minimum infor-

mation divergence criteria; and the sixth chapter changes the focus to the mutual

information-based criteria.

It is worth noting that the information criteria can be used not only for system

parameter identification but also for system structure identification (e.g., model

selection). The Akaike’s information criterion (AIC) and the minimum description

length (MDL) are two famous information criteria for model selection. There have

been several books on AIC and MDL, and in this book we don’t discuss them in

detail. Although most of the methods in this book are developed particularly for

system parameter identification, the basic principles behind them are universal.

Some of the methods with little modification can be applied to blind source sepa-

ration, independent component analysis, time series prediction, classification and

pattern recognition.

This book will be of interest to graduates, professionals, and researchers who

are interested in improving the performance of traditional identification algorithms

and in exploring new approaches to system identification, and also to those who

are interested in adaptive filtering, neural networks, kernel methods, and online

machine learning.

The authors are grateful to the National Natural Science Foundation of China

and the National Basic Research Program of China (973 Program), which have

funded this book. We are also grateful to the Elsevier for their patience with us

over the past year we worked on this book. We also acknowledge the support and

encouragement from our colleagues and friends.
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Symbols and Abbreviations

The main symbols and abbreviations used throughout the text are listed as follows.

:j j absolute value of a real number

::: Euclidean norm of a vector

:;:h i inner product

ð:Þ indicator function

E :½ � expectation value of a random variable

f 0ðxÞ first-order derivative of the function f ðxÞ
f 00ðxÞ second-order derivative of the function f ðxÞ
rxf ðxÞ gradient of the function f ðxÞ with respect to x

signð:Þ sign function

Γð:Þ Gamma function

ð:ÞT vector or matrix transposition

I identity matrix

A21 inverse of matrix A

det A determinant of matrix A

TrA trace of matrix A

rankA rank of matrix A

logð:Þ natural logarithm function

z21 unit delay operator

ℝ real number space

ℝn n-dimensional real Euclidean space

ρ X;Yð Þ correlation coefficient between random variables X and Y

Var X½ � variance of random variable X

Pr A½ � probability of event A

N μ;Σð Þ Gaussian distribution with mean vector μ and covariance matrix Σ
U a; b½ � uniform distribution over interval a; b½ �
χ2ðkÞ chi-squared distribution with k degree of freedom

HðXÞ Shannon entropy of random variable X

HφðXÞ φ-entropy of random variable X

HαðXÞ α-order Renyi entropy of random variable X

VαðXÞ α-order information potential of random variable X

Sα Xð Þ survival information potential of random variable X

HΔðXÞ Δ-entropy of discrete random variable X

IðX;YÞ mutual information between random variables X and Y

DKL X:Y
� �

KL-divergence between random variables X and Y

Dφ X:Y
� �

φ-divergence between random variables X and Y

JF Fisher information matrix

JF Fisher information rate matrix



pð:Þ probability density function

κð:;:Þ Mercer kernel function

Kð:Þ kernel function for density estimation

Khð:Þ kernel function with width h

Ghð:Þ Gaussian kernel function with width h

Hk reproducing kernel Hilbert space induced by Mercer kernel κ
Fκ feature space induced by Mercer kernel κ
W weight vector

Ω weight vector in feature space
~W weight error vector

η step size

L sliding data length

MSE mean square error

LMS least mean square

NLMS normalized least mean square

LS least squares

RLS recursive least squares

MLE maximum likelihood estimation

EM expectation-maximization

FLOM fractional lower order moment

LMP least mean p-power

LAD least absolute deviation

LMF least mean fourth

FIR finite impulse response

IIR infinite impulse response

AR auto regressive

ADALINE adaptive linear neuron

MLP multilayer perceptron

RKHS reproducing kernel Hilbert space

KAF kernel adaptive filtering

KLMS kernel least mean square

KAPA kernel affine projection algorithm

KMEE kernel minimum error entropy

KMC kernel maximum correntropy

PDF probability density function

KDE kernel density estimation

GGD generalized Gaussian density

SαS symmetric α-stable
MEP maximum entropy principle

DPI data processing inequality

EPI entropy power inequality

MEE minimum error entropy

MCC maximum correntropy criterion

IP information potential

QIP quadratic information potential

CRE cumulative residual entropy

SIP survival information potential

QSIP survival quadratic information potential
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KLID Kullback�Leibler information divergence

EDC Euclidean distance criterion

MinMI minimum mutual information

MaxMI maximum mutual information

AIC Akaike’s information criterion

BIC Bayesian information criterion

MDL minimum description length

FIM Fisher information matrix

FIRM Fisher information rate matrix

MIH minimum identifiable horizon

ITL information theoretic learning

BIG batch information gradient

FRIG forgetting recursive information gradient

SIG stochastic information gradient

SIDG stochastic information divergence gradient

SMIG stochastic mutual information gradient

FP fixed point

FP-MEE fixed-point minimum error entropy

RFP-MEE recursive fixed-point minimum error entropy

EDA estimation of distribution algorithm

SNR signal to noise ratio

WEP weight error power

EMSE excess mean square error

IEP intrinsic error power

ICA independent component analysis

BSS blind source separation

CRLB Cramer�Rao lower bound

AEC acoustic echo canceller
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