1 Introduction

1.1 Elements of System Identification

Mathematical models of systems (either natural or man-made) play an essential
role in modern science and technology. Roughly speaking, a mathematical model
can be imagined as a mathematical law that links the system inputs (causes) with
the outputs (effects). The applications of mathematical models range from simula-
tion and prediction to control and diagnosis in heterogeneous fields. System identi-
fication is a widely used approach to build a mathematical model. It estimates the
model based on the observed data (usually with uncertainty and noise) from the
unknown system.

Many researchers try to provide an explicit definition for system identification.
In 1962, Zadeh gave a definition as follows [1]: “System identification is the deter-
mination, on the basis of observations of input and output, of a system within a
specified class of systems to which the system under test is equivalent.” It is almost
impossible to find out a model completely matching the physical plant. Actually,
the system input and output always include certain noises; the identification model
is therefore only an approximation of the practical plant. Eykhoff [2] pointed out
that the system identification tries to use a model to describe the essential charac-
teristic of an objective system (or a system under construction), and the model
should be expressed in a useful form. Clearly, Eykhoff did not expect to obtain an
exact mathematical description, but just to create a model suitable for applications.
In 1978, Ljung [3] proposed another definition: “The identification procedure is
based on three entities: the data, the set of models, and the criterion. Identification,
then, is to select the model in the model set that describes the data best, according
to the criterion.”

According to the definitions by Zadeh and Ljung, system identification consists
of three elements (see Figure 1.1): data, model, and equivalence criterion (equiva-
lence is often defined in terms of a criterion or a loss function). The three elements
directly govern the identification performance, including the identification accu-
racy, convergence rate, robustness, and computational complexity of the identifica-
tion algorithm [4]. How to optimally design or choose these elements is very
important in system identification.

The model selection is a crucial step in system identification. Over the past dec-
ades, a number of model structures have been suggested, ranging from the simple
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Figure 1.1 Three elements of system
System identification identification.

Data Model Criterion

linear structures [FIR (finite impulse response), AR (autoregressive), ARMA (auto-
regressive and moving average), etc.] to more general nonlinear structures [NAR
(nonlinear autoregressive), MLP (multilayer perceptron), RBF (radial basis func-
tion), etc.]. In general, model selection is a trade-off between the quality and the
complexity of the model. In most practical situations, some prior knowledge may
be available regarding the appropriate model structure or the designer may wish to
limit to a particular model structure that is tractable and meanwhile can make a
good approximation to the true system. Various model selection criteria have also
been introduced, such as the cross-validation (CV) criterion [5], Akaike’s informa-
tion criterion (AIC) [6,7], Bayesian information criterion (BIC) [8], and minimum
description length (MDL) criterion [9,10].

The data selection (the choice of the measured variables) and the optimal input
design (experiment design) are important issues. The goal of experiment design is
to adjust the experimental conditions so that maximal information is gained from
the experiment (such that the measured data contain the maximal information about
the unknown system). The optimality criterion for experiment design is usually
based on the information matrices [11]. For many nonlinear models (e.g., the
kernel-based model), the input selection can significantly help to reduce the net-
work size [12].

The choice of the equivalence criterion (or approximation criterion) is another
key issue in system identification. The approximation criterion measures the differ-
ence (or similarity) between the model and the actual system, and allows determi-
nation of how good the estimate of the system is. Different choices of the
approximation criterion will lead to different estimates. The task of parametric sys-
tem identification is to adjust the model parameters such that a predefined approxi-
mation criterion is minimized (or maximized). As a measure of accuracy, the
approximation criterion determines the performance surface, and has significant
influence on the optimal solutions and convergence behaviors. The development of
new identification approximation criteria is an important emerging research topic
and this will be the focus of this book.

It is worth noting that many machine learning methods also involve three ele-
ments: model, data, and optimization criterion. Actually, system identification can
be viewed, to some extent, as a special case of supervised machine learning. The
main terms in system identification and machine learning are reported in Table 1.1.
In this book, these terminologies are used interchangeably.
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Table 1.1 Main Terminologies in System Identification and Machine Learning

System Identification Machine Learning

Model, filter Learning machine, network
Parameters, coefficients Weights

Identify, estimate Learn, train

Observations, measurements Examples, training data
Overparametrization Overtraining, overfitting

1.2 Traditional Identification Criteria

Traditional identification (or estimation) criteria mainly include the least squares
(LS) criterion [13], minimum mean square error (MMSE) criterion [14], and the
maximum likelihood (ML) criterion [15,16]. The LS criterion, defined by minimiz-
ing the sum of squared errors (an error being the difference between an observed
value and the fitted value provided by a model), could at least dates back to Carl
Friedrich Gauss (1795). It corresponds to the ML criterion if the experimental
errors have a Gaussian distribution. Due to its simplicity and efficiency, the LS cri-
terion has been widely used in problems, such as estimation, regression, and system
identification. The LS criterion is mathematically tractable, and the linear LS prob-
lem has a closed form solution. In some contexts, a regularized version of the LS
solution may be preferable [17]. There are many identification algorithms devel-
oped with LS criterion. Typical examples are the recursive least squares (RLS) and
its variants [4]. In statistics and signal processing, the MMSE criterion is a com-
mon measure of estimation quality. An MMSE estimator minimizes the mean
square error (MSE) of the fitted values of a dependent variable. In system identifi-
cation, the MMSE criterion is often used as a criterion for stochastic approximation
methods, which are a family of iterative stochastic optimization algorithms that
attempt to find the extrema of functions which cannot be computed directly, but
only estimated via noisy observations. The well-known least mean square (LMS)
algorithm [18—20], invented in 1960 by Bernard Widrow and Ted Hoff, is a sto-
chastic gradient descent algorithm under MMSE criterion. The ML criterion is
recommended, analyzed, and popularized by R.A. Fisher [15]. Given a set of data
and underlying statistical model, the method of ML selects the model parameters
that maximize the likelihood function (which measures the degree of “agreement”
of the selected model with the observed data). The ML estimation provides a uni-
fied approach to estimation, which corresponds to many well-known estimation
methods in statistics. The ML parameter estimation possesses a number of attrac-
tive limiting properties, such as consistency, asymptotic normality, and efficiency.
The above identification criteria (LS, MMSE, ML) perform well in most practi-
cal situations, and so far are still the workhorses of system identification. However,
they have some limitations. For example, the LS and MMSE capture only the
second-order statistics in the data, and may be a poor approximation criterion,
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especially in nonlinear and non-Gaussian (e.g., heavy tail or finite range distribu-
tions) situations. The ML criterion requires the knowledge of the conditional distri-
bution (likelihood function) of the data given parameters, which is unavailable in
many practical problems. In some complicated problems, the ML estimators are
unsuitable or do not exist. Thus, selecting a new criterion beyond second-order sta-
tistics and likelihood function is attractive in problems of system identification.

In order to take into account higher order (or lower order) statistics and to select
an optimal criterion for system identification, many researchers studied the non-
MSE (nonquadratic) criteria. In an early work [21], Sherman first proposed the
non-MSE criteria, and showed that in the case of Gaussian processes, a large fam-
ily of non-MSE criteria yields the same predictor as the linear MMSE predictor of
Wiener. Later, Sherman’s results and several extensions were revisited by Brown
[22], Zakai [23], Hall and Wise [24], and others. In [25], Ljung and Soderstrom
discussed the possibility of a general error criterion for recursive parameter identifi-
cation, and found an optimal criterion by minimizing the asymptotic covariance
matrix of the parameter estimates. In [26,27], Walach and Widrow proposed a
method to select an optimal identification criterion from the least mean fourth
(LMF) family criteria. In their approach, the optimal choice is determined by mini-
mizing a cost function which depends on the moments of the interfering noise. In
[28], Douglas and Meng utilized the calculus of variations method to solve the opti-
mal criterion among a large family of general error criteria. In [29], Al-Naffouri
and Sayed optimized the error nonlinearity (derivative of the general error crite-
rion) by optimizing the steady state performance. In [30], Pei and Tseng investi-
gated the least mean p-power (LMP) criterion. The fractional lower order moments
(FLOMs) of the error have also been used in adaptive identification in the presence
of impulse alpha-stable noises [31,32]. Other non-MSE criteria include the M-
estimation criterion [33], mixed norm criterion [34—36], risk-sensitive criterion
[37,38], high-order cumulant (HOC) criterion [39—42], and so on.

1.3 Information Theoretic Criteria

Information theory is a branch of statistics and applied mathematics, which is
exactly created to help studying the theoretical issues of optimally encoding mes-
sages according to their statistical structure, selecting transmission rates according
to the noise levels in the channel, and evaluating the minimal distortion in mes-
sages [43]. Information theory was first developed by Claude E. Shannon to find
fundamental limits on signal processing operations like compressing data and on
reliably storing and communicating data [44]. After the pioneering work of
Shannon, information theory found applications in many scientific areas, including
physics, statistics, cryptography, biology, quantum computing, and so on.
Moreover, information theoretic measures (entropy, divergence, mutual informa-
tion, etc.) and principles (e.g., the principle of maximum entropy) were widely
used in engineering areas, such as signal processing, machine learning, and other
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forms of data analysis. For example, the maximum entropy spectral analysis
(MaxEnt spectral analysis) is a method of improving spectral estimation based on
the principle of maximum entropy [45—48]. MaxEnt spectral analysis is based on
choosing the spectrum which corresponds to the most random or the most
unpredictable time series whose autocorrelation function agrees with the known
values. This assumption, corresponding to the concept of maximum entropy as
used in both statistical mechanics and information theory, is maximally noncom-
mittal with respect to the unknown values of the autocorrelation function of the
time series. Another example is the Infomax principle, an optimization principle
for neural networks and other information processing systems, which prescribes
that a function that maps a set of input values to a set of output values should be
chosen or learned so as to maximize the average mutual information between input
and output [49—53]. Information theoretic methods (such as Infomax) were suc-
cessfully used in independent component analysis (ICA) [54—57] and blind source
separation (BSS) [58—61]. In recent years, Jose C. Principe and his coworkers stud-
ied systematically the application of information theory to adaptive signal proces-
sing and machine learning [62—68]. They proposed the concept of information
theoretic learning (ITL), which is achieved with information theoretic descriptors
of entropy and dissimilarity (divergence and mutual information) combined with
nonparametric density estimation. Their studies show that the ITL can bring robust-
ness and generality to the cost function and improve the learning performance. One
of the appealing features of ITL is that it can, with minor modifications, use the
conventional learning algorithms of adaptive filters, neural networks, and kernel
learning. The ITL links information theory, nonparametric estimators, and reprodu-
cing kernel Hilbert spaces (RKHS) in a simple and unconventional way [64]. A
unifying framework of ITL is presented in Appendix A, such that the readers can
easily understand it (for more details, see [64]).

Information theoretic methods have also been suggested by many authors for the
solution of the related problems of system identification. In an early work [69],
Zaborszky showed that information theory could provide a unifying viewpoint for
the general identification problem. According to [69], the unknown parameters that
need to be identified may represent the output of an information source which is
transmitted over a channel, a specific identification technique. The identified values
of the parameters are the output of the information channel represented by the iden-
tification technique. An identification technique can then be judged by its proper-
ties as an information channel transmitting the information contained in the
parameters to be identified. In system parameter identification, the inverse of the
Fisher information provides a lower bound (also known as the Cramér—Rao lower
bound) on the variance of the estimator [70—74]. The rate distortion function in
information theory can also be used to obtain the performance limitations in param-
eter estimation [75—79]. Many researchers also showed that there are elegant rela-
tionships between information theoretic measures (entropy, divergence, mutual
information, etc.) and classical identification criteria like the MSE [80—85]. More
importantly, many studies (especially those in ITL) suggest that information theo-
retic measures of entropy and divergence can be used as an identification criterion
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(referred to as the “information theoretic criterion,” or simply, the “information cri-
terion”), and can improve identification performance in many realistic scenarios.
The choice of information theoretic criteria is very natural and reasonable since
they capture higher order statistics and information content of signals rather than
simply their energy. The information theoretic criteria and related identification
algorithms are the main content of this book. Some of the content of this book had
appeared in the ITL book (by Jose C. Principe) published in 2010 [64].

In this book, we mainly consider three kinds of information criteria: the mini-
mum error entropy (MEE) criteria, the minimum information divergence criteria,
and the mutual information-based criteria. Below, we give a brief overview of the
three kinds of criteria.

1.3.1 MEE Criteria

Entropy is a central quantity in information theory, which quantifies the average
uncertainty involved in predicting the value of a random variable. As the entropy
measures the average uncertainty contained in a random variable, its minimization
makes the distribution more concentrated. In [79,86], Weidemann and Stear studied
the parameter estimation for nonlinear and non-Gaussian discrete-time systems by
using the error entropy as the criterion functional, and proved that the reduced error
entropy is upper bounded by the amount of information obtained by observation.
Later, Tomita et al. [87] and Kalata and Priemer [88] applied the MEE criterion to
study the optimal filtering and smoothing estimators, and provided a new interpre-
tation for the filtering and smoothing problems from an information theoretic view-
point. In [89], Minamide extended Weidemann and Stear’s results to the
continuous-time estimation models. The MEE estimation was reformulated by
Janzura et al. as a problem of finding the optimal locations of probability densities
in a given mixture such that the resulting entropy is minimized [90]. In [91], the
minimum entropy of a mixture of conditional symmetric and unimodal (CSUM)
distributions was studied. Some important properties of the MEE estimation were
also reported in [92—95].

In system identification, when the errors (or residuals) are not Gaussian distrib-
uted, a more appropriate approach would be to constrain the error entropy [64].
The evaluation of the error entropy, however, requires the knowledge of the data
distributions, which are usually unknown in practical applications. The nonpara-
metric kernel (Parzen window) density estimation [96—98] provides an efficient
way to estimate the error entropy directly from the error samples. This approach
has been successfully applied in ITL and has the added advantages of linking infor-
mation theory, adaptation, and kernel methods [64]. With kernel density estimation
(KDE), Renyi’s quadratic entropy can be easily calculated by a double sum over
error samples [64]. The argument of the log in quadratic Renyi entropy estimator is
named the quadratic information potential (QIP) estimator. The QIP is a central
criterion function in ITL [99—106]. The computationally simple, nonparametric
entropy estimators yield many well-behaved gradient algorithms to identify the sys-
tem parameters such that the error entropy is minimized [64]. It is worth noting
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that the MEE criterion can also be used to identify the system structure. In [107],
the Shannon’s entropy power reduction ratio (EPRR) was introduced to select the
terms in orthogonal forward regression (OFR) algorithms.

1.3.2 Minimum Information Divergence Criteria

An information divergence (say the Kullback—Leibler information divergence
[108]) measures the dissimilarity between two distributions, which is useful in the
analysis of parameter estimation and model identification techniques. A natural
way of system identification is to minimize the information divergence between the
actual (empirical) and model distributions of the data [109]. In an early work [7],
Akaike suggested the use of the Kullback—Leibler divergence (KL-divergence) cri-
terion via its sensitivity to parameter variations, showed its applicability to various
statistical model fitting problems, and related it to the ML criterion. The AIC and
its variants have been extensively studied and widely applied in problems of model
selection [110—114]. In [115], Baram and Sandell employed a version of KL-diver-
gence, which was shown to possess the property of being a metric on the parameter
set, to treat the identification and modeling of a dynamical system, where the
model set under consideration does not necessarily include the observed system.
The minimum information divergence criterion has also been applied to study the
simplification and reduction of a stochastic system model [116—119]. In [120], the
problem of parameter identifiability with KL-divergence criterion was studied. In
[121,122], several sequential (online) identification algorithms were developed to
minimize the KL-divergence and deal with the case of incomplete data. In
[123,124], Stoorvogel and Schuppen studied the identification of stationary
Gaussian processes, and proved that the optimal solution to an approximation prob-
lem for Gaussian systems with the divergence criterion is identical to the main step
of the subspace algorithm. In [125,126], motivated by the idea of shaping the prob-
ability density function (PDF), the divergence between the actual error distribution
and a reference (or target) distribution was used as an identification criterion. Some
extensions of the KL-divergence, such as the a-divergence or ¢-divergence, can
also be employed as a criterion function for system parameter estimation
[127—130].

1.3.3 Mutual Information-Based Criteria

Mutual information measures the statistical dependence between random variables.
There are close relationships between mutual information and MMSE estimation.
In [80], Duncan showed that for a continuous-time additive white Gaussian noise
channel, the minimum mean square filtering (causal estimation) error is twice the
input—output mutual information for any underlying signal distribution. Moreover,
in [81], Guo et al. showed that the derivative of the mutual information was equal
to half the MMSE in noncausal estimation. Like the entropy and information diver-
gence, the mutual information can also be employed as an identification criterion.
Weidemann and Stear [79], Janzura et al. [90], and Feng et al. [131] proved that
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minimizing the mutual information between estimation error and observations is
equivalent to minimizing the error entropy. In [124], Stoorvogel and Schuppen
showed that for a class of identification problems, the criterion of mutual informa-
tion rate is identical to the criterion of exponential-of-quadratic cost and to H
entropy (see [132] for the definition of H,, entropy). In [133], Yang and Sakai pro-
posed a novel identification algorithm using ICA, which was derived by minimiz-
ing the mutual information between the estimated additive noise and the input
signal. In [134], Durgaryan and Pashchenko proposed a consistent method of iden-
tification of systems by maximum mutual information (MaxMI) criterion and
proved the conditions for identifiability. The MaxMI criterion has been successfully
applied to identify the FIR and Wiener systems [135,136].

Besides the above-mentioned information criteria, there are many other
information-based identification criteria, such as the maximum correntropy crite-
rion (MCC) [137—139], minimization of error entropy with fiducial points (MEEF)
[140], and minimum Fisher information criterion [141]. In addition to the AIC cri-
terion, there are also many other information criteria for model selection, such as
BIC [8] and MDL [9].

1.4 Organization of This Book

Up to now, considerable work has been done on system identification with infor-
mation theoretic criteria, although the theory is still far from complete. So far there
have been several books on the model selection with information critera (e.g., see
[142—144]), but this book will provide a comprehensive treatment of system
parameter identification with information criteria, with emphasis on the nonpara-
metric cost functions and gradient-based identification algorithms. The rest of the
book is organized as follows.

Chapter 2 presents the definitions and properties of some important information
measures, including entropy, mutual information, information divergence, Fisher
information, etc. This is a foundational chapter for the readers to understand the
basic concepts that will be used in later chapters.

Chapter 3 reviews the information theoretic approaches for parameter estimation
(classical and Bayesian), such as the maximum entropy estimation, minimum diver-
gence estimation, and MEE estimation, and discusses the relationships between
information theoretic methods and conventional alternatives. At the end of this
chapter, a brief overview of several information criteria (AIC, BIC, MDL) for
model selection is also presented. This chapter is vital for readers to understand the
general theory of the information theoretic criteria.

Chapter 4 discusses extensively the system identification under MEE criteria.
This chapter covers a brief sketch of system parameter identification, empirical
error entropy criteria, several gradient-based identification algorithms, convergence
analysis, optimization of the MEE criteria, survival information potential, and the
A-entropy criterion. Many simulation examples are presented to illustrate the
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performance of the developed algorithms. This chapter ends with a brief discussion
of system identification under the MCC.

Chapter 5 focuses on the system identification under information divergence cri-
teria. The problem of parameter identifiability under mimimum KL-divergence cri-
terion is analyzed. Then, motivated by the idea of PDF shaping, we introduce the
minimum information divergence criterion with a reference PDF, and develop the
corresponding identification algorithms. This chapter ends with an adaptive infinite
impulsive response (IIR) filter with Euclidean distance criterion.

Chaper 6 changes the focus to the mutual information-based criteria: the mimi-
mum mutual information (MinMI) criterion and the MaxMI criterion. The system
identification under MinMI criterion can be converted to an ICA problem. In order
to uniquely determine an optimal solution under MaxMI criterion, we propose a
double-criterion identification method.

Appendix A: Unifying Framework of ITL

Figure A.l shows a unifying framework of ITL (supervised or unsupervised). In
Figure A.1, the cost C(Y,D) denotes generally an information measure (entropy,
divergence, or mutual information) between Y and D, where Y is the output of the
model (learning machine) and D depends on which position the switch is in. ITL is
then to adjust the parameters w such that the cost C(Y, D) is optimized (minimized
or maximized).

1. Switch in position 1
When the switch is in position 1, the cost involves the model output ¥ and an external
desired signal Z. Then the learning is supervised, and the goal is to make the output sig-
nal and the desired signal as “close” as possible. In this case, the learning can be catego-
rized into two categories: (a) filtering (or regression) and classification and (b) feature
extraction.
a. Filtering and classification
In traditional filtering and classification, the cost function is in general the MSE or
misclassification error rate (the 0—1 loss). In ITL framework, the problem can be

1
Desired signal

_ »O0
Z
2 \07
——————»0
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/ \i
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= Y=fX, ® 7
X I ) Output signal C¥D)
Y

Figure A.1 Unitying ITL framework.
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2.

formulated as minimizing the divergence or maximizing the mutual information

between output Y and the desired response Z, or minimizing the entropy of the error

between the output and the desired responses (i.e., MEE criterion).
b. Feature extraction

In machine learning, when the input data are too large and the dimensionality is
very high, it is necessary to transform nonlinearly the input data into a reduced repre-
sentation set of features. Feature extraction (or feature selection) involves reducing the
amount of resources required to describe a large set of data accurately. The feature set
will extract the relevant information from the input in order to perform the desired
task using the reduced representation instead of the full- size input. Suppose the
desired signal is the class label, then an intuitive cost for feature extraction should be
some measure of “relevance” between the projection outputs (features) and the labels.

In ITL, this problem can be solved by maximizing the mutual information between

the output Y and the label C.

Switch in position 2

When the switch is in position 2, the learning is in essence unsupervised because there
is no external signal besides the input and output signals. In this situation, the well-
known optimization principle is the Maximum Information Transfer, which aims to maxi-
mize the mutual information between the original input data and the output of the system.
This principle is also known as the principle of maximum information preservation
(Infomax). Another information optimization principle for unsupervised learning (cluster-
ing, principal curves, vector quantization, etc.) is the Principle of Relevant Information
(PRI) [64]. The basic idea of PRI is to minimize the data redundancy (entropy) while pre-
serving the similarity to the original data (divergence).

Switch in position 3

When the switch is in position 3, the only source of data is the model output, which in
this case is in general assumed multidimensional. Typical examples of this case include
ICA, clustering, output entropy optimization, and so on.

Independent component analysis: ICA is an unsupervised technique aiming to reduce
the redundancy between components of the system output. Given a nonlinear multiple-
input—multiple-output (MIMO) system y = f(x, w), the nonlinear ICA usually optimizes
the parameter vector w such that the mutual information between the components of y is
minimized.

Clustering: Clustering (or clustering analysis) is a common technique for statistical
data analysis used in machine learning, pattern recognition, bioinformatics, etc. The goal
of clustering is to divide the input data into groups (called clusters) so that the objects in
the same cluster are more “similar” to each other than to those in other clusters, and dif-
ferent clusters are defined as compactly and distinctly as possible. Information theoretic
measures, such as entropy and divergence, are frequently used as an optimization crite-
rion for clustering.

Output entropy optimization: If the switch is in position 3, one can also optimize (min-
imize or maximize) the entropy at system output (usually subject to some constraint on
the weight norm or nonlinear topology) so as to capture the underlying structure in high
dimensional data.

Switch simultaneously in positions 1 and 2

In Figure A.1, the switch can be simultaneously in positions 1 and 2. In this case, the
cost has access to input data X, output data Y, and the desired or reference data Z. A
well-known example is the Information Bottleneck (IB) method, introduced by Tishby
et al. [145]. Given a random variable X and an observed relevant variable Z, and
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assuming that the joint distribution between X and Z is known, the IB method aims to
compress X and try to find the best trade-off between (i) the minimization of mutual
information between X and its compressed version Y and (ii) the maximization of mutual
information between Y and the relevant variable Z. The basic idea in IB is to find a
reduced representation of X while preserving the information of X with respect to another
variable Z.



2 Information Measures

The concept of information is so rich that there exist various definitions of informa-
tion measures. Kolmogorov had proposed three methods for defining an information
measure: probabilistic method, combinatorial method, and computational method
[146]. Accordingly, information measures can be categorized into three categories:
probabilistic information (or statistical information), combinatory information, and
algorithmic information. This book focuses mainly on statistical information, which
was first conceptualized by Shannon [44]. As a branch of mathematical statistics,
the establishment of Shannon information theory lays down a mathematical frame-
work for designing optimal communication systems. The core issues in Shannon
information theory are how to measure the amount of information and how to
describe the information transmission. According to the feature of data transmission
in communication, Shannon proposed the use of entropy, which measures the
uncertainty contained in a probability distribution, as the definition of information
in the data source.

2.1 Entropy

Definition 2.1 Given a discrete random variable X with probability mass function
P{X =x;} =pr, k=1,...,n, Shannon’s (discrete) entropy is defined by [43]

n

H(X) = ZPkI(Pk) 2.1

k=1

where I(p;) = — log pi is Hartley’s amount of information associated with the dis-
crete value x; with probability p;.' This information measure was originally
devised by Claude Shannon in 1948 to study the amount of information in a trans-
mitted message. Shannon entropy measures the average information (or uncer-
tainty) contained in a probability distribution and can also be used to measure
many other concepts, such as diversity, similarity, disorder, and randomness.
However, as the discrete entropy depends only on the distribution P, and takes no
account of the values, it is independent of the dynamic range of the random vari-
able. The discrete entropy is unable to differentiate between two random variables
that have the same distribution but different dynamic ranges. Actually the discrete

" In this book, “log” always denotes the natural logarithm. The entropy will then be measured in nats.
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random variables with the same entropy may have arbitrarily small or large vari-
ance, a typical measure for value dispersion of a random variable.

Since system parameter identification deals, in general, with continuous random
variables, we are more interested in the entropy of a continuous random variable.

Definition 2.2 If X is a continuous random variable with PDF p(x), xeC,
Shannon’s differential entropy is defined as

H(X) = —Lp(x)log p()dx (22)

The differential entropy is a functional of the PDF p(x). For this reason, we also
denote it by H(p). The entropy definition in (2.2) can be extended to multiple ran-
dom variables. The joint entropy of two continuous random variables X and Y is

H(X,Y) = — “p(x, ylog p(, y)dx dy 23)

where p(x,y) denotes the joint PDF of (X, Y). Furthermore, one can define the con-
ditional entropy of X given Y as

HX|Y)=— ”p(x, y)log p(x|y)dx dy (2.4)

where p(x|y) is the conditional PDF of X given Y.

If X and Y are discrete random variables, the entropy definitions in (2.3) and
(2.4) only need to replace the PDFs with the probability mass functions and the
integral operation with the summation.

Theorem 2.1 Properties of the differential entropy” :

1. Differential entropy can be either positive or negative.
2. Differential entropy is not related to the mean value (shift invariant), i.e.,
H(X + c¢) = H(X), where ceR is an arbitrary constant.
. HX,Y)=HX)+ HY|X)=H(Y) + HX|Y).
. HX|Y)=H(X), HY|X)=H(Y).
5. Entropy has the concavity property: H(p) is a concave function of p, thatis, VO=A=1,
we have

-~ W

H(Apy + (1= Mp2) = AH(py) + (1 = MH(p2) 25)

2 Strictly speaking, we should use some subscripts to distinguish the PDFs p(x), p(x,y), and p(x|y). For
example, we can write them as px(x), pxy(x,y), px;y(x]y). In this book, for simplicity we often omit
these subscripts if no confusion arises.

3 The detailed proofs of these properties can be found in related information theory textbooks, such as
“Elements of Information Theory” written by Cover and Thomas [43].
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6. If random variables X and Y are mutually independent, then
H(X +Y)=max{H(X),H(Y)} (2.6)

that is, the entropy of the sum of two independent random variables is no smaller than
the entropy of each individual variable.

7. Entropy power inequality (EPI): If X and Y are mutually independent d-dimensional random
variables, we have

exp{%H(X + Y)} Eexp{gH(X)} + exp{%H(Y)} 2.7

with equality if and only if X and Y are Gaussian distributed and their covariance matri-
ces are in proportion to each other.

8. Assume X and Y are two d-dimensional random variables, ¥ = ¥/(X), ¥ denotes a smooth
bijective mapping defined over R, Jy, is the Jacobi matrix of v, then

HON = 10 + | ploogldens dx 8)

where det denotes the determinant.
9. Suppose X is a d-dimensional Gaussian random variable, X ~ .4 (i, X)), i.e.,

p(x) {—% =)' x - u)}, xeR4 (2.9)

1
= ——5>—F—=¢€xp
m)*?J/dets

Then the differential entropy of X is
d 1 d
HX)= 3 + E1og{(27r) detX)} (2.10)

Differential entropy measures the uncertainty and dispersion in a probability distribu-
tion. Intuitively, the larger the value of entropy, the more scattered the probability density
of a random variable or in other word, the smaller the value of entropy, the more concen-
trated the probability density. For a one-dimensional random variable, the differential
entropy is similar to the variance. For instance, the differential entropy of a one-
dimensional Gaussian random variable X is H(X) = (1/2) + (1/2)log(2w Var(X)), where
Var(X) denotes the variance of X. It is clear to see that in this case the differential entropy
increases monotonically with increasing variance. However, the entropy is in essence
quite different from the variance; it is a more comprehensive measure. The variance of
some random variable is infinite, while the entropy is still finite. For example, consider
the following Cauchy distribution® :

A1

—W, —o0 <x< o0, A>0 (211)
™ X

p(x) =

4 Cauchy distribution is a non-Gaussian a-stable distribution (see Appendix B).
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Its variance is infinite, while the differential entropy is log(4m)\) [147].

There is an important entropy optimization principle, that is, the maximum entropy
(MaxEnt) principle enunciated by Jaynes [148] and Kapur and Kesavan [149]. According
to MaxEnt, among all the distributions that satisfy certain constraints, one should choose
the distribution that maximizes the entropy, which is considered to be the most objective
and most impartial choice. MaxEnt is a powerful and widely accepted principle for statis-
tical inference with incomplete knowledge of the probability distribution.

The maximum entropy distribution under characteristic moment constraints can be
obtained by solving the following optimization problem:

max, H(p) = = [ p(x) log p(x)dx
ol Jep@dx =1 2.12)
N g @pdr =gy, k=1,2,...,K

where f?\p(x)deI is the natural constraint (the normalization constraint) and
I]ng(x)p(x)dx=uk (k=1,2,...,K) denote K (generalized) characteristic moment
constraints.

Theorem 2.2 (Maximum Entropy PDF) Satisfying the constraints in (2.12), the
maximum entropy PDF is given by

K
PMaxint(X) = exp (— = Akgk(x)> (2.13)
k=1
where the coefficients \;(i =0, 1,. . ., K) are the solution of the following equationss:

K
Jzexp (—ZAkgkoc)) dx = exp(Xo)
k=1

K
ngi(x)exp <—Z)\kgk(x)> dx (2.14)
= = His i=1,2,..,K

exp(Xo)

In statistical information theory, in addition to Shannon entropy, there are many
other definitions of entropy, such as Renyi entropy (named after Alfred Renyi) [152],
Havrda—Charvat entropy [153], Varma entropy [154], Arimoto entropy [155], and
(h, ¢)-entropy [156]. Among them, (%, ¢)-entropy is the most generalized definition of
entropy. (h, ¢)-entropy of a continuous random variable X is defined by [156]

oo =n( | o) @.15)

> On how to solve these equations, interested readers are referred to [150,151].
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where either ¢:[0, c0) — R is a concave function and #:R — R is a monotonously
increasing function or ¢:[0, ) — R is a convex function and Z:R — R is a
monotonously decreasing function. When h(x) =x, (h, ¢)-entropy becomes the

¢-entropy:

+

H(X) = j Gl 2.16)

where ¢:[0, 0) — R is a concave function. Similar to Shannon entropy,
(h, ¢)-entropy is also shift-invariant and satisfies (see Appendix C for the proof)

H))(X + Y) = max{H}\(X), H}(Y)} (2.17)
where X and Y are two mutually independent random variables. Some typical
examples of (h, ¢)-entropy are given in Table 2.1. As one can see, many entropy

definitions can be regarded as the special cases of (h, ¢)-entropy.
From Table 2.1, Renyi’s entropy of order-« is defined as

Ho(X) =

1 0
log J p%(x)dx
-« —w

(2.18)

logV,(X)
-«

where >0, a # 1, V(X)) £ f_xw p%(x)dx is called the order-« information poten-
tial (when a = 2, called the quadratic information potential, QIP) [64]. The Renyi
entropy is a generalization of Shannon entropy. In the limit o« — 1, it will converge
to Shannon entropy, i.e., lim,—1 H,(X) = HX).

Table 2.1 (4, ¢)-Entropies with Different & and ¢ Functions [130]

h(x) P(x) (h.¢)-entropy

X —xlog x Shannon (1948)

(1—a) " log x x* Renyi (1961) (>0, o # 1)

(m(m—r))""log x x/m Varma (1966) (0 <r<m, m=1)

x (1—s) "' —x) Havrda—Charvat (1967) (s # 1,
s>0)

D' =1 x/t Arimoto (1971) (r>0,7 # 1)

x (1—s) "' +(1—x)°* —1) Kapur (1972) (s # 1)

(1—5)""exp((s— 1)x)—1]  xlogx Sharma and Mittal (1975)
(s>0,s# 1)

(1+(1/M)og(1 + X) = (x/A) (1 + Av)log(l + Ax) Ferreri (1980) (> 0)




18 System Parameter Identification

The previous entropies are all defined based on the PDFs (for continuous ran-
dom variable case). Recently, some researchers also propose to define the entropy
measure using the distribution or survival functions [157,158]. For example, the
cumulative residual entropy (CRE) of a scalar random variable X is defined by
[157]

e(X) = —J’ Fx|(x) log Fx)(x)dx (2.19)

R+

where Fx|(x) = P(|X| >x) is the survival function of |X|. The CRE is just defined
by replacing the PDF with the survival function (of an absolute value transforma-
tion of X) in the original differential entropy (2.2). Further, the order-a (o > 0) sur-
vival information potential (SIP) is defined as [159]

$.00= | Py (220)

This new definition of information potential is valid for both discrete and con-
tinuous random variables.

In recent years, the concept of correntropy has also been applied successfully in
signal processing and machine learning [137]. The correntropy is not a true entropy
measure, but in this book it is still regarded as an information theoretic measure
since it is closely related to Renyi’s quadratic entropy (H-), that is, the negative
logarithm of the sample mean of correntropy (with Gaussian kernel) yields the
Parzen estimate of Renyi’s quadratic entropy [64]. Let X and Y be two random
variables with the same dimensions, the correntropy is defined by

VIX,Y)=E[rX,Y)]= Jm(x, y)dFxy(x,y) (2.21)

where E denotes the expectation operator, k(.,.) is a translation invariant Mercer
kernel®, and Fyy(x, y) denotes the joint distribution function of (X, ¥). According to
Mercer’s theorem, any Mercer kernel «(.,.) induces a nonlinear mapping (.) from
the input space (original domain) to a high (possibly infinite) dimensional feature
space F' (a vector space in which the input data are embedded), and the inner prod-
uct of two points ¢(X) and ¢(Y) in F can be implicitly computed by using the

®Let (7,%) be a measurable space and assume a real-valued function «(.,.) is defined on 2 X Z, i.e.,
K4 X Z — R. Then function k(.,.) is called a Mercer kernel if and only if it is a continuous, symmet-
ric, and positive-definite function. Here, & is said to be positive-definite if and only if

]n(x, Ddu()du(y) =0

where p denotes any finite signed Borel measure, p:2' — R. If the equality holds only for zero mea-
sure, then « is said to be strictly positive-definite (SPD).
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Mercer kernel (the so-called “kernel trick”) [160—162]. Then the correntropy
(2.21) can alternatively be expressed as

VX, Y) = E[{(¢(X), o(Y))F] (2.22)
where (.,.)r denotes the inner product in F. From (2.22), one can see that the cor-

rentropy is in essence a new measure of the similarity between two random vari-
ables, which generalizes the conventional correlation function to feature spaces.

2.2 Mutual Information

Definition 2.3 The mutual information between continuous random variables X
and Y is defined as

vy — p(x,y) _ pX,Y)

The conditional mutual information between X and Y, conditioned on random
variable Z, is given by

I(X: Y|2) ///p(x v Olog—LEYD 14y, (2.24)
pxl2)p(ylz)
For a random vect0r7X=[X|,X2,...,Xn]T (n=2), the mutual information

between components is

1X) = Z H(X;) — H(X) (2.25)

i=1

Theorem 2.3 Properties of the mutual information:

(o=

. Symmetry, i.e., I(X;Y) = I(Y; X).

2. Non-negative, i.e., I(X;Y)=0, with equality if and only if X and Y are mutually
independent.

3. Data processing inequality (DPI): If random variables X, Y, Z form a Markov chain

X - Y — Z, then I(X;Y) =I(X;Z). Especially, if Z is a function of Y, Z = 3(Y), where

B(.) is a measurable mapping from Y to Z, then I(X;Y) = I(X; 5(Y)), with equality if 3 is

invertible and 5! is also a measurable mapping.

7 Unless mentioned otherwise, in this book a vector refers to a column vector.
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4. The relationship between mutual information and entropy:
IX;Y)=HX)— HX|Y),IX;Y|Z)=H(X|Z) — HX|YZ) (2.26)

5. Chain rule: Let Y1,Y>,...,Y; be [ random variables. Then

l
IX: Y1, Y) = I + Y IGY| Y, Y (2.27)
i=2

6. If X, Y, (X,Y) are k, [, and k + I-dimension Gaussian random variables with, respectively,
covariance matrices A, B, and C, then the mutual information between X and Y is

1 det A det B
IX;Y)= zlog——— 2.2
X:¥) = Jlog— ¢ (2.28)
In particular, if k =/=1, we have
1
I(X;Y) = =5 log(l = p*(X, Y)) (2.29)

where p(X, Y) denotes the correlation coefficient between X and Y.

7. Relationship between mutual information and MSE: Assume X and Y are two Gaussian
random variables, satisfying Y = /snrX + N, where snr =0, N~./(0,1), N and X are
mutually independent. Then we have [81]

d 1
—I(X;Y) = —mmse(X|Y) (2.30)
dsnr 2

where mmse(X|Y) denotes the minimum MSE when estimating X based on Y.

Mutual information is a measure of the amount of information that one random variable
contains about another random variable. The stronger the dependence between two random
variables, the greater the mutual information is. If two random variables are mutually inde-
pendent, the mutual information between them achieves the minimum zero. The mutual
information has close relationship with the correlation coefficient. According to (2.29), for
two Gaussian random variables, the mutual information is a monotonically increasing
function of the correlation coefficient. However, the mutual information and the correla-
tion coefficient are different in nature. The mutual information being zero implies that the
random variables are mutually independent, thereby the correlation coefficient is also zero,
while the correlation coefficient being zero does not mean the mutual information is zero
(i.e., the mutual independence). In fact, the condition of independence is much stronger
than mere uncorrelation. Consider the following Pareto distributions [149]:

px(x) = abfx~ @)

py(y) = atlyy” ™V

—(a+2) (2.31)
a(a+1) LR
0,6, 0, 6

pxy(x,y) = —
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where a>1, x=0;, y=0,. One can calculate E[X]=af,/(a—1), E[Y]=ab,/(a — 1),
and E[XY]=a%0,6,/(a—1)?, and hence p(X,Y)=0 (X and Y are uncorrelated). In this
case, however, pxy(x,y) # px(x)py(y), that is, X and Y are not mutually independent (the
mutual information not being zero).

With mutual information, one can define the rate distortion function and the distortion
rate function. The rate distortion function R(D) of a random variable X with MSE distor-
tion is defined by

R(D) = inf{I(X; Y :E[(X - Y)* = D% (2.32)

At the same time, the distortion rate function is defined as
D(R) = inf {\/ E(X=Y)JIX;Y) =< R} (2.33)

Theorem 2.4 If X is a Gaussian random variable, X ~ .A"(j, o), then

1 2
R(D) = ~log{ max 1,0—2 , D=0
2 D (2.34)

D(R) = oexp(—R), R=0

2.3 Information Divergence

In statistics and information geometry, an information divergence measures the
“distance” of one probability distribution to the other. However, the divergence is a
much weaker notion than that of the distance in mathematics, in particular it need
not be symmetric and need not satisfy the triangle inequality.

Definition 2.4 Assume that X and Y are two random variables with PDFs p(x) and
q(y) with common support. The Kullback—Leibler information divergence (KLID)
between X and Y is defined by

D (X[ V) = D0 ) = jp(x)log% (2.35)

In the literature, the KL-divergence is also referred to as the discrimination
information, the cross entropy, the relative entropy, or the directed
divergence.
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Theorem 2.5 Properties of KL-divergence:

1. DKL(qu) =0, with equality if and only if p(x) = g(x).

2. Nonsymmetry: In general, we have Dxi.(p||q) # Dx1.(¢|p).

3. Dxi(p(x, y)H p(x)p(y)) =I(X;Y), that is, the mutual information between two random vari-
ables is actually the KL-divergence between the joint probability density and the product
of the marginal probability densities.

4. Convexity property: DKL(qu) is a convex function of (p, g), i.e., VO=A=1, we have

Dx(p||7) = ADxL(p1 || 1) + (1 — MDkL(p2 | 2) (2.36)

where p = A\p; + (1 — A)p2 and g = Agq; + (1 — N)gq».
5. Pinsker’s inequality: Pinsker inequality is an inequality that relates KL-divergence and
the total variation distance. It states that

1 2
Do = 5 [Io-awolas) .37)

6. Invariance under invertible transformation: Given random variables X and Y, and the
invertible transformation 7', the KL-divergence remains unchanged after the transforma-
tion, i.e., Dx.(X|Y) = Dk (T(X)||T(Y)). In particular, if T(X) =X + ¢, where c is a con-
stant, then the KL-divergence is shift-invariant:

Dy (X||Y) = Dg(X +¢c|Y +¢) (2.38)

7. If X and Y are two d-dimensional Gaussian random variables, X~ A"(p, X)),
Y ~ N (py, 25), then

det X,
det X}

Dy (X[ V)= %{log + Tr( 2 (2 = Z0) + (e — ) 55 (g — uz)} (2.39)

where Tr denotes the trace operator.

There are many other definitions of information divergence. Some quadratic diver-
gences are frequently used in machine learning, since they involve only a simple qua-
dratic form of PDFs. Among them, the Euclidean distance (ED) in probability spaces and
the Cauchy—Schwarz (CS)-divergence are popular, and are defined respectively as [64]

Den(p ) = [ (o) —qo)Px (2.40)

2
DCS(qu) = —log [ (fP(X)Q(X)dx) (2.41)

pr(x)dx [ g?(x)dx

Clearly, the ED in (2.40) can be expressed in terms of QIP:

Dep(p|q) = Va(p) + Va(q) — 2Va(p: ) (2.42)
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where Vs (p; q) £ | p(x)g(x)dx is named the cross information potential (CIP). Further, the
CS-divergence of (2.41) can also be rewritten in terms of Renyi’s quadratic entropy:

Dcs(p|q) = 2Ha(p: 9) — Ha(p) — Ha(q) (2.43)

where H,(p; ) = — log [ p(x)g(x)dx is called Renyi’s quadratic cross entropy.
Also, there is a much generalized definition of divergence, i.e., the ¢-divergence,
which is defined as [130]

*)
€3

where @* is a collection of convex functions, V ¢e®*, ¢(1)=0, qu(O/O) =0, and
09(p/0) = lim,, o, ¢(u)/u. When ¢(x) =xlogx (or ¢(x)=xlogx—x+ 1), the ¢-diver-
gence becomes the KL-divergence. It is easy to verify that the ¢-divergence satisfies the
properties (1), (4), and (6) in Theorem 2.5. Table 2.2 gives some typical examples of
¢-divergence.

Du(p]a) = Jq( )¢<P )dx, et (2.44)

2.4 Fisher Information

The most celebrated information measure in statistics is perhaps the one developed
by R.A. Fisher (1921) for the purpose of quantifying information in a distribution
about the parameter.

Definition 2.5 Given a parameterized PDF py(y,d), where yeR",
0=161,0,,...,04]" is a d-dimensional parameter vector, and assuming py(y, 6) is
continuously differentiable with respect to 6, then the Fisher information matrix
(FIM) with respect to 6 is

1

“mtbm@m

[%m@mH m@@} (2.45)

Table 2.2 ¢-Divergences with Different ¢-Functions [130]

@(x) ¢-Divergence

xlogx—x+1 Kullback—Leibler (1959)

(x — Dlog x J-Divergence

(x—1)*/2 Pearson (1900), Kagan (1963)
M —x=Ax— 1)/ + 1), A£0, —1 Power-divergence (1984)
(x—1)?/(x+1)? Balakrishnan and Sanghvi (1968)
1—x"* 0<a<l Matusita (1964)

[1—=x]% a=1 x-Divergence (1973)
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Clearly, the FIM Jg(6), also referred to as the Fisher information, is a d X d matrix.
If 6 is a location parameter, i.e., py(y, #) = p(y — 0), Fisher information will be

1
Je(Y) —J s [ayp@)] [ p(yﬂ (2.46)

The Fisher information of (2.45) can alternatively be written as

T
o
—logpy(y,0)| dy

0
5= pr6.0)| Glognr.0)| |5
. (2.47)

0 0
=Ey a@lngY(Y o) @logPY(Yﬁ)

where Ejy stands for the expectation with respect to py(y, #). From (2.47), one can
see that the Fisher information measures the “average sensitivity” of the logarithm
of PDF to the parameter 6§ or the “average influence” of the parameter 6 on the log-
arithm of PDF. The Fisher information is also a measure of the minimum error in
estimating the parameter of a distribution. This is illustrated in the following
theorem.

Theorem 2.6 (Cramer—Rao Inequality) Let py(y,0) be a parameterized PDF,
where yeRN ,0=101,0,,..., Gd]T is a d-dimensional parameter vector, and assume
that py(y, 0) is continuously differentiable with respect to ¢. Denote é(Y ) an unbi-
ased estimator of # based on Y, satisfying Ey [0 (Y)] = 6y, where 6 denotes the true
value of 6. Then

PLEL[(O(Y) — 00)(B(Y)—00)1= T (60) (2.48)

where P is the covariance matrix of é(Y ).

Cramer—Rao inequality shows that the inverse of the FIM provides a lower bound
on the error covariance matrix of the parameter estimator, which plays a significant
role in parameter estimation. A proof of the Theorem 2.6 is given in Appendix D.

2.5 Information Rate

The previous information measures, such as entropy, mutual information, and KL-
divergence, are all defined for random variables. These definitions can be further
extended to various information rates, which are defined for random processes.
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Definition 2.6 Let {X,eR™,reZ} and {Y,eR™, teZ} be two discrete-time stochastic
processes, and denote X" =[X7,XJ,.. X )", y"=[v!,¥7,...,¥"]". The entropy
rate of the stochastic process {X;} is defined as

A(X) = Tim LHX) (2.49)
The mutual information rate between {X,} and {Y;} is defined by

X ) = lim (X" ¥") (250
If m; = my, the KL-divergence rate between {X;} and {Y;} is

D (XA = Tim Dy (X"1¥") (251)

If the PDF of the stochastic process {X,} is dependent on and continuously dif-
ferentiable with respect to the parameter vector 6, then the Fisher information rate
matrix (FIRM) is

- 1 1 [o ., o 1",
Jr(0) = lim EJR"‘IX”M [@P(X ,9)} [@P(X ,9)} dx’ (2.52)

The information rates measure the average amount of information of stochastic
processes in unit time. The limitations in Definition 2.6 may not exist, however, if
the stochastic processes are stationary, these limitations in general exist. The fol-
lowing theorem gives the information rates for stationary Gaussian processes.

Theorem 2.7 Given two jointly Gaussian stationary processes {X;eR",reZ} and
{Y;eR™ teZ}, with power spectral densities Sx(w) and Sy(w), and
(Z,=[XT,Y"" eR"™™ teZ} with spectral density Sz(w), the entropy rate of the

to>0t
Gaussian process {X;} is

— 1 1 ("
H({X;}) = 510g(27re)" + 4—J log det Sy(w)dw (2.53)
™ -7
The mutual information rate between {X;} and {Y;} is

dw (2.54)

1 Jﬂ— 1 det SX(w)det Sy(w)

(X (Y = det Sz(w)
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If m = n, the KL-divergence rate between {X;} and {Y;} is

g { det Sy(w)
log———=

. 1
Dx (IX:}H{Y:)) = EJ det Sx(w)

+ Tr(Sy ' (W)(Sx(w) — Sy(w)))}dw
(2.55)

-

If the PDF of {X;} is dependent on and continuously differentiable with respect
to the parameter vector 6, then the FIRM (assuming n = 1) is [163]

N B aSx(w, 0)\ [0Sx(w, )\
JF(Q)‘EJWS%((%&)( 20 )( 20 )d“’ (256

Appendix B: o-Stable Distribution

a-stable distributions are a class of probability distributions satisfying the generalized
central limit theorem, which are extensions of the Gaussian distribution. The Gaussian,
inverse Gaussian, and Cauchy distributions are its special cases. Excepting the three
kinds of distributions, other «-stable distributions do not have PDF with analytical
expression. However, their characteristic functions can be written in the following form:

Wy (w) = E[exp(iwX)]

[ explipw — vylw|*(1 +iB sign(w)tan(rar/2))]  for a # 1 (B.1)
B { explipw — vy|w|*(1 + if sign(w)2log|w|/7)] for a=1

where 1 €R is the location parameter, v =0 is the dispersion parameter, 0 <=2
is the characteristic factor, —1 =3 =1 is the skewness factor. The parameter «
determines the trailing of distribution. The smaller the value of «, the heavier the
trail of the distribution is. The distribution is symmetric if 3 =0, called the sym-
metric a-stable (SaS) distribution. The Gaussian and Cauchy distributions are
a-stable distributions with o =2 and a = 1, respectively.

When o« <2, the tail attenuation of «-stable distribution is slower than that of
Gaussian distribution, which can be used to describe the outlier data or impulsive
noises. In this case the distribution has infinite second-order moment, while the
entropy is still finite.

Appendix C: Proof of (2.17)

Proof Assume ¢ is a concave function, and % is a monotonically increasing func-
tion. Denote 4! the inverse of function %, we have

+oo

Plpx+y(T)ldT (C.1)

W HYX +Y)) = J
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Since X and Y are independent, then

+ o0

pres= | putops(s (2)

— 0

According to Jensen’s inequality, we can derive

h*l(Hg(X +7Y)) o qb(Jﬂo py(Opx(T — t)dt) dr

— o0

v

(] prctostr = onar)ar

= [ no(] etoatr - o €

— 0
+ o0

=1 prG HYX)))dt

h~ Y (HAY(X))

As h is monotonically increasing, 7~ ' must also be monotonically increasing,
thus we have H)\(X + Y) = H(X). Similarly, H}(X + Y) = H)(Y). Therefore,

H))(X + Y) = max{H}\(X), H}(Y)} (C.4)

For the case in which ¢ is a convex function and 4 is monotonically decreasing,
the proof is similar (omitted).

Appendix D: Proof of Cramer—Rao Inequality

Proof First, one can derive the following two equalities:

T T
0 0
Ey | —1 Y, 6 = —1 6 to)d
" |26 og py(Y,6) J\N T og py(y,00) | pr(y,00)dy
T
- J o (v, 60) | d (D.1)
o 800pY > 00 Y :
T

0
— 0o)d =0
0o JRNPY(}’, h)dy
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T T
Eeo{é(Y) [a—iologpy(mo)] }ILNé@) (a—zologpy(y, 90)) Py 00)dy
T
=[50 | oo |
RN 06 ’

T
o[ =«
- (E [ 90)(1}’)

T T
o s o
= (6—%@0[9(1/)}) = (8—9090) =1

(D.2)
where [ is a dXd identity matrix. Denote a=é(Y)—90 and

B = (0/06p)logpy(Y, 0).
Then

T
Eg[aB"] = Eq, {(é (Y) = o) [% logpy (Y, Ho)} }
0

T T
" o 0
= Ey, {Q(Y) [590 logpy (Y, 90)} } — OoEp, [aeologPY(Y, 90)]

=1
(D.3)

So we obtain

alla]” _ [Eglaal] I _
Ef’f)[ﬂ”ﬂ] ‘[ I anwﬂTJ‘O (D4)

. . . . .. | A BJ. o
According to the matrix theory, if the symmetric matrix B | positive-
definite, then A — BC~'BT = 0. It follows that

Eg[aa’] = (E[85'D (D.5)

ie, P=J:'(0).



3 Information Theoretic Parameter
Estimation

Information theory is closely associated with the estimation theory. For example,
the maximum entropy (MaxEnt) principle has been widely used to deal with esti-
mation problems given incomplete knowledge or data. Another example is the
Fisher information, which is a central concept in statistical estimation theory. Its
inverse yields a fundamental lower bound on the variance of any unbiased estima-
tor, i.e., the well-known Cramer—Rao lower bound (CRLB). An interesting link
between information theory and estimation theory was also shown for the Gaussian
channel, which relates the derivative of the mutual information with the minimum
mean square error (MMSE) [81].

3.1 Traditional Methods for Parameter Estimation

Estimation theory is a branch of statistics and signal processing that deals with esti-
mating the unknown values of parameters based on measured (observed) empirical
data. Many estimation methods can be found in the literature. In general, the statis-
tical estimation can be divided into two main categories: point estimation and inter-
val estimation. The point estimation involves the use of empirical data to calculate
a single value of an unknown parameter, while the interval estimation is the use of
empirical data to calculate an interval of possible values of an unknown parameter.
In this book, we only discuss the point estimation. The most common approaches
to point estimation include the maximum likelihood (ML), method of moments
(MM), MMSE (also known as Bayes least squared error), maximum a posteriori
(MAP), and so on. These estimation methods also fall into two categories, namely,
classical estimation (ML, MM, etc.) and Bayes estimation (MMSE, MAP, etc.).

3.1.1 C(lassical Estimation

The general description of the classical estimation is as follows: let the distribution
function of population X be F(x,0), where 6 is an unknown (but deterministic)
parameter that needs to be estimated. Suppose X, X>, ..., X, are samples (usually
independent and identically distributed, i.i.d.) coming from F(x, 0) (x1,xz, ..., X, are
corresponding sample values). Then the goal of estimation is to construct an appro-
priate statistics 6(Xi,X»,...,X;,) that serves as an approximation of unknown
parameter 0. The statistics 9(X1,X2, ..., X,) is called an estimator of 6, and its

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00003-8
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sample value é(xl,xz, ..., Xy) is called the estimated value of #. Both the samples
{X;} and the parameter 6 can be vectors.
The ML estimation and the MM are two prevalent types of classical estimation.

3.1.1.1 ML Estimation

The ML method, proposed by the famous statistician R.A. Fisher, leads to many
well-known estimation methods in statistics. The basic idea of ML method is quite
simple: the event with greatest probability is most likely to occur. Thus, one should
choose the parameter that maximizes the probability of the observed sample data.
Assume that X is a continuous random variable with probability density function
(PDF) p(x,0), € ©, where 6 is an unknown parameter, © is the set of all possible
parameters. The ML estimate of parameter 6 is expressed as

0= arg max p(xy, Xz, . . ., X,; 0) 3.1
fe®

where p(xy,xz,...,X,;0) is the joint PDF of samples X;, X5, ..., X,. By considering
the sample values xj,xs,...,X, to be fixed “parameters,” this joint PDF is a func-
tion of the parameter 6, called the likelihood function, denoted by L(6). If samples

n

X1,Xs,...,X, are i.id., we have L(0)= np(xi,ﬂ). Then the ML estimate of 6
i=1

becomes

0 = arg max L(f) = arg max [ [ p(x;, 0) (3.2)
0e© 0cO =1

In practice, it is often more convenient to work with the logarithm of the likeli-
hood function (called the log-likelihood function). In this case, we have

0= arg max{log L(0)} = arg max {i log p(x;, 0)} (3.3)

fe® fe® i=1

An ML estimate is the same regardless of whether we maximize the likelihood
or log-likelihood function, since log is a monotone transformation.

In most cases, the ML estimate can be solved by setting the derivative of the
log-likelihood function to zero:

Olog L(0)
—— =0 34
20 (3.4)
For many models, however, there is no closed form solution of ML estimate,
and it has to be found numerically using optimization methods.
If the likelihood function involves latent variables in addition to unknown
parameter 6 and known data observations xj,x,,...,x,, one can use the
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expectation—maximization (EM) algorithm to find the ML solution [164,165] (see
Appendix E). Typically, the latent variables are included in a likelihood function
because either there are missing values among the data or the model can be formu-
lated more simply by assuming the existence of additional unobserved data points.

ML estimators possess a number of attractive properties especially when sample
size tends to infinity. In general, they have the following properties:

» Consistency: As the sample size increases, the estimator converges in probability to the
true value being estimated.

* Asymptotic normality: As the sample size increases, the distribution of the estimator
tends to the Gaussian distribution.

+ Efficiency: The estimator achieves the CRLB when the sample size tends to infinity.

3.1.1.2 Method of Moments

The MM uses the sample algebraic moments to approximate the population
algebraic moments, and then solves the parameters. Consider a continuous random
variable X, with PDF p(x, 6y, 6,,...,60), where 6,,6,,...,0;, are kK unknown para-

meters. By the law of large numbers, the /-order sample moment A; = (1/n) 3" X!

of X will converge in probability to the l-order population moment 1, = E(X'),
which is a function of (61, 65,...,6), i.e.,

Aln_—f—m>ﬂl(919921~~~39k) = 1929'°' (35)

The sample moment A; is a good approximation of the population moment g,
thus one can achieve an estimator of parameters 0; (i =1,2,...,k) by solving the
following equations:

A = py(01,00,...,00)
Ay = pp(61,6a,. . 60) (3.6)

Ak ': Mk(ela 925 .oy ek)

The solution of (3.6) is the MM estimator, denoted by 9i(A1,A2,...,Ak),
i=1,2,...,k.

3.1.2 Bayes Estimation

The basic viewpoint of Bayes statistics is that in any statistic reasoning problem, a
prior distribution must be prescribed as a basic factor in the reasoning process,
besides the availability of empirical data. Unlike classical estimation, the Bayes
estimation regards the unknown parameter as a random variable (or random vector)
with some prior distribution. In many situations, this prior distribution does not
need to be precise, which can be even improper (e.g., uniform distribution on the
whole space). Since the unknown parameter is a random variable, in the following
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we use X to denote the parameter to be estimated, and Y to denote the observation
data Y =[Y},Ys,..., Y]

Assume that both the parameter X and observation Y are continuous random
variables with joint PDF

p(x,y) = p(x).p(ylx) (3.7)

where p(x) is the marginal PDF of X (the prior PDF) and p(y|x) is the conditional
PDF of Y given X =x (also known as the likelihood function if considering x as
the function’s variable). By using the Bayes formula, one can obtain the posterior
PDF of X given Y =y:

p(y[X)p(x)

[ pGp)d (3.8)

plxly) =

Let X = g(¥) be an estimator of X (based on the observation Y), and let I(X, X)
be a loss function that measures the difference between random variables X and X.
The Bayes risk of X is defined as the expected loss (the expectation is taken over
the joint distribution of X and Y):

R(X, X) = E[I(X, X)]
= [l(x, R)p(x, y)dx dy
= [ (J llx, ®)p(xly)dx) p(y)dy (3.9)
= [ R(X, X|y)p(y)dy

where R(X, X|y) denotes the posterior expected loss (posterior Bayes risk). An esti-
mator is said to be a Bayes estimator if it minimizes the Bayes risk among all esti-
mators. Thus, the Bayes estimator can be obtained by solving the following
optimization problem:

¢* = arg min R(X, X) (3.10)
geCG

where G denotes all Borel measurable functions g : y — X. Obviously, the Bayes
estimator also minimizes the posterior Bayes risk for each y.

The loss function in Bayes risk is usually a function of the estimation error
¢ =X — X. The common loss functions used for Bayes estimation include:

1. squared error function: l(e) = €?;
2. absolute error function: I(e) = |e|;
3. 0—1 loss function: I(e) = 1 — §(¢), where 8(.) denotes the delta function.’

1, if x=0
0, if x#£0°
, satisfying | §(x)dx = 1.

! For a discrete variable x, 8(x) is defined by &(x) = { while for a continuous variable, it

o, if x=0

is defined as 6(x) = {0 if x#0
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The squared error loss corresponds to the MSE criterion, which is perhaps the
most prevalent risk function in use due to its simplicity and efficiency. With the
above loss functions, the Bayes estimates of the unknown parameter are, respec-
tively, the mean, median, and mode” of the posterior PDF p(x|y), i.e.,

(@ &= [xp(xly)dx=E(Xly)
®) ', pelyyde= [ pxly)dx (.11
(c) %= arg maxp(x[y)

The estimators (a) and (c¢) in (3.11) are known as the MMSE and MAP estima-
tors. A simple proof of the MMSE estimator is given in Appendix F. It should be
noted that if the posterior PDF is symmetric and unimodal (SUM, such as Gaussian
distribution), the three Bayes estimators are identical.

The MAP estimate is a mode of the posterior distribution. It is a limit of Bayes
estimation under 0—1 loss function. When the prior distribution is uniform (i.e., a
constant function), the MAP estimation coincides with the ML estimation.
Actually, in this case we have

Xmap = arg maxp(x|y)
X

— arg max POX)P()
v [ pGop()de

arg max p(y[x)p(x)

(3.12)

2 arg max p(y|x) = Xmr
X

where (a) comes from the fact that p(x) is a constant.

Besides the previous common risks, other Bayes risks can be conceived.
Important examples include the mean p-power error [30], Huber’s M-estimation
cost [33], and the risk-sensitive cost [38], etc. It has been shown in [24] that if the
posterior PDF is symmetric, the posterior mean is an optimal estimate for a large
family of Bayes risks, where the loss function is even and convex.

In general, a Bayes estimator is a nonlinear function of the observation.
However, if X and Y are jointly Gaussian, then the MMSE estimator is linear.
Suppose X eR™, Y eR", with jointly Gaussian PDF

T
plx,y) = (2m) " (det C)l/zexp{ _% B:ggﬂ c [; _ igﬂ }

(3.13)

2 The mode of a continuous probability distribution is the value at which its PDF attains its maximum
value.
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where C is the covariance matrix:

Cxx Cxy
C= 3.14
[CYX CYY:l G149

Then the posterior PDF p(x|y) is also Gaussian and has mean (the MMSE estimate)
E(Xly) = EQX) + CxyCyy (v = E(Y) (3.15)

which is, obviously, a linear function of y.

There are close relationships between estimation theory and information theory.
The concepts and principles in information theory can throw new light on estima-
tion problems and suggest new methods for parameter estimation. In the sequel, we
will discuss information theoretic approaches to parameter estimation.

3.2 Information Theoretic Approaches to Classical
Estimation

In the literature, there have been many reports on the use of information theory to
deal with classical estimation problems (e.g., see [149]). Here, we only give several
typical examples.

3.2.1 Entropy Matching Method

Similar to the MM, the entropy matching method obtains the parameter estimator
by using the sample entropy (entropy estimator) to approximate the population
entropy. Suppose the PDF of population X is p(x, #) (0 is an unknown parameter).
Then its differential entropy is

HO)=— Jp(x, 0)log p(x, f)dx (3.16)

At the same time, one can use the sample (X1, X, ..., X,) to calculate the sample
entropy H(X,X»,...,X,).> Thus, we can obtain an estimator of parameter 0
through solving the following equation:

H(e):ﬁ(XIaX2>--~9Xn) (317)

If there are several parameters, the above equation may have infinite number of
solutions, while a unique solution can be achieved by combining the MM. In [166],
the entropy matching method was used to estimate parameters of generalized

Gaussian distribution (GGD).

3 Several entropy estimation methods will be presented in Chapter 4.
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3.2.2 Maximum Entropy Method

The maximum entropy method applies the famous MaxEnt principle to parameter
estimation. The basic idea is that, subject to the information available, one should
choose the parameter 6 such that the entropy is as large as possible, or the distribu-
tion as nearly uniform as possible. Here, the maximum entropy method refers to a
general approach rather than a specific parameter estimation method. In the follow-
ing, we give three examples of maximum entropy method.

3.2.2.1 Parameter Estimation of Exponential Type Distribution
Assume that the PDF of population X is of the following form:

K
p(x,0) =exp <—90 -3 9kgk(x)> (3.18)

k=1
where gi(x), k=1,...,K, are K (generalized) characteristic moment functions,
0= (6y,0,,...,0k) is an unknown parameter vector to be estimated. Many known

probability distributions are special cases of this exponential type distribution. By
Theorem 2.2, p(x, ) is the maximum entropy distribution satisfying the following
constraints:

Jep(o)dx =1
{ Iﬁgk(X)p(x)w = w0, k=12,..,K (3.19)

where 1,(0) denotes the population characteristic moment:

1,(0) = L g (Ip(r, O)dx (3.20)

As 6 is unknown, the population characteristic moments cannot be calculated.
We can approximate them using the sample characteristic moments. And then, an
estimator of parameter 6 can be obtained by solving the following optimization
problem:

max H (p) = — [.p(x)log p(x)dx

4 { [p(dx =1 (.21
o J:ggk(x)[’(x)dx = :ak: k= 1’ 2’ e "K

where [1,, k=1,...,K, are K sample characteristic moments, i.e.,
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1 n
e = — X)), k=12,.. K 3.22
= 28X (322)

According to Theorem 2.2, the estimator of @ satisfies the equations:

K
Jzexp <— Zé kgk(x)> dx = exp(fo)
=1

K
Jrgi(x)exp < - Zé kgk(x)> dx (3.23)
=1 '

exp(fo)

If gx(x) = x*, the above estimation method will be equivalent to the MM.

3.2.2.2 Maximum Spacing Estimation

Suppose the distribution function of population X is F(x, ), and the true value of
the unknown parameter 6 is 6y, then the random variable X* = F(X, §) will be dis-
tributed over the interval [0, 1], which is a uniform distribution if 6 = §y. According
to the MaxEnt principle, if the distribution over a finite interval is uniform, the
entropy will achieve its maximum. Therefore, the entropy of random variable X*
will attain the maximum value if 0 =6,. So one can obtain an estimator of the
parameter f by maximizing the sample entropy of X*. Let a sample of population
X be (X1,X,...,X,), the sample of X* will be (F(Xi,0), F(X3,0), ..., F(X,,0)). Let
H(F(Xy,0),F(Xs,0),...,F(X,,0)) denote the sample entropy of X*, the estimator of
parameter 6 can be expressed as

0 = are max H(F(X1,0), F(X2,0), . .., F(X,, 0)) (3.24)
0

If the sample entropy is calculated by using the one-spacing estimation method
(see Chapter 4), then we have

n—1
0 = argmax » " 1og{F(X,+1,0) = F(X,,.0)} (3.25)
0 i=1

where (X, 1,Xn2,...,X,,) is the order statistics of (X, X5, ...,X,). Formula (3.25)
is called the maximum spacing estimation of parameter 6.

3.2.2.3 Maximum Equality Estimation

Suppose (X1,Xz,...,X,) is an i.i.d. sample of population X with PDF p(x, #). Let
Xp) =X,p= - =X,, be the order statistics of (X;,X>,...,X,). Then the random



Information Theoretic Parameter Estimation 37

sample divides the real axis into n+ 1 subintervals (X,;, X, ;+1), i=0,1,...,n,
where X,,0 = —o0 and X,,,+1 = +00. Each subinterval has the probability:

Xn,lH
P, = J plx,0)dx, i=0,1,...,n (3.26)

Xni

Since the sample is random and i.i.d., the most reasonable situation is that the
probabilities of n + 1 subinterval are equal. Hence, the parameter 6 should be cho-
sen in such a way as to maximize the entropy of distribution {P;} (or to make {P;}
as nearly uniform as possible), i.e.,

9=arg max{ — » P;log P;

n Xt Xon,i+1
=arg ;nax{ - Z (JXW plx, 9)dx> log <LM plx, 9)dx> }

i=0
The above estimation is called the maximum equality estimation of parameter 6.

It is worth noting that besides parameter estimation, the MaxEnt principle can
also be applied to spectral density estimation [48]. The general idea is that the max-
imum entropy rate stochastic process that satisfies the given constant autocorrela-
tion and variance constraints, is a linear Gauss—Markov process with i.i.d. zero-
mean, Gaussian input.

(3.27)

3.2.3 Minimum Divergence Estimation

Let (X1,X5,...,X,) be an i.i.d. random sample from a population X with PDF
p(x,0), 0€©. Let p,(x) be the estimated PDF based on the sample. Let 6 be an esti-
mator of 6. Then p(x, ) is also an estimator for p(x, §). Then the estimator 6 should
be chosen so that p(x, é) is as close as possible to p,(x). This can be achieved by
minimizing any measure of information divergence, say the KL-divergence

0 =arg emin DxL(p,(0)lIp(x,0))

Pu(x) (3.28)
o)™

= arg min | p,(x)log
0

or, alternatively,

A

0 = arg ;’l’lln DKL(p(xa 9)' |ﬁ;1(x))

pA(x’ 0) " (3.29)
Pa(x)

= arg min J p(x, O)log
6
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The estimate @ in (3.28) or (3.29) is called the minimum divergence (MD) esti-

mate of . In practice, we usually use (3.28) for parameter estimation, because it
can be simplified as

0 = arg max J 5, ()log p(x, 6)dx (3.30)
0

Depending on the estimated PDF p, (x), the MD estimator may take many differ-

ent forms. Next, we present three specific examples of MD estimator.

MD Estimator 1
Without loss of generality, we assume that the sample satisfies x; <xp < :-- <x,.
Then the distribution function can be estimated as

0 x<x;
R I/n x1=x<x,
Fox)=<2/n xx=x<x3 (3.31)

1 x=x,

Thus, we have

5
I

= arg max Jﬁn (x)log p(x, f)dx
)

= arg max J log p(x, )dF,(x)
/ (3.32)

1 n
arg max Zlog p(x;, )
¢ i=1

= arg max log L(0)
0

n
where L(0) = [ [p(x;,0) is the likelihood function. In this case, the MD estimation is
i=1
exactly the ML estimation.
MD Estimator 2
Suppose the population X is distributed over the interval [xo,x,+1], and the sample
satisfies x; <xp < --- <ux,. It is reasonable to assume that in each subinterval [x;, x;+1],
the probability is 1/(n + 1). And hence, the PDF of X can be estimated as

1

. i x=x<x (i=0.1,... :
D =) if x,=x<x;41 (=0 n) (3.33)

pa(x) =

Substituting (3.33) into (3.30) yields

N n Xit+1 1
o J ey log Pl O)dx
g0 'Z; x (D —x) g px. ) .

3.34

n "Xi+1
arg max 3 (it —x) ! j log p(x, O)dx
0 i=0

Xi
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If p(x, ) is a continuous function of x, then according to the mean value theorem of
integral calculus, we have

Xi

+1
(xip1 —x) ! J log p(x, 0)dx = log p(x;, 0) (3.35)

Xi
where X; €[x;, x;+1]. Hence, (3.34) can be written as

n

0 = arg max log p(x;, 0 3.36
er ; g p(x,0) (3.36)

The above parameter estimation is in form very similar to the ML estimation.
However, different from Fisher’s likelihood function, the values of the cost function in
(3.36) are taken at Xy, X, . . ., X,, which are determined by mean value theorem of integral
calculus.

+  MD Estimator 3

Assume population X is distributed over the interval [dy,d,+], and this interval is
divided into m + 1 subintervals [d;,di+1] (i=0,1,...,m) by m data d, <d, < --- <d,,.
The probability of each subinterval is determined by

d,+l
P = J plx,Hdx, i=0,1,...,m (3.37)
d;

If Qo, 01, ..., O are given proportions of the population that lie in the m + 1 subinter-

m
vals (3. Q; = 1), then parameter 6 should be chosen so as to make {P;} and {Q;} as close

i=0
as possible, i.e.,
0= arg min Dy (Q||P)
0
. m Ql
= Jog =
arggmm ;Q og P, (3.38)

m div1
arg max ZQilog J p(x, 0)dx
0 i=0 d;

This is a useful estimation approach, especially when the information available is on
proportions in the population, such as proportions of persons in different income intervals
or proportions of students in different score intervals.

In the previous MD estimations, the KL-divergence can be substituted by other defini-
tions of divergence. For instance, if using ¢-divergence, we have

6 = arg min Dy(p,(x)||p(x, 6)) (3.39)
0

or

6 = arg min Dy (p(x, 0)|1p, (x)) (3.40)
0

For details on the minimum ¢-divergence estimation, the readers can refer to [130].
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3.3 Information Theoretic Approaches to
Bayes Estimation

The Bayes estimation can also be embedded within the framework of information
theory. In particular, some information theoretic measures, such as the entropy and
correntropy, can be used instead of the traditional Bayes risks.

3.3.1 Minimum Error Entropy Estimation

In the scenario of Bayes estimation, the minimum error entropy (MEE) estimation
aims to minimize the entropy of the estimation error, and hence decrease the uncer-
tainty in estimation. Given two random variables: X eR™, an unknown parameter to
be estimated, and Y eR”", the observation (or measurement), the MEE (with
Shannon entropy) estimation of X based on Y can be formulated as

arg min H(e)
geCG

= arg min H(X — g(Y))
geG

EMEE

(3.41)

— arg min —J Pe(©)log pe(E)de
¢eG R

where e = X — g(Y) is the estimation error, g(Y) is an estimator of X based on Y, g
is a measurable function, G stands for the collection of all measurable functions
g:R" — R™, and p,(.) denotes the PDF of the estimation error. When (3.41) is com-
pared with (3.9) one concludes that the “loss function” in MEE is —log p.(.), which
is different from traditional Bayesian risks, like MSE. Indeed one does not need to
impose a risk functional in MEE, the risk is directly related to the error PDF.
Obviously, other entropy definitions (such as order-a Renyi entropy) can also be
used in MEE estimation. This feature is potentially beneficial because the risk is
matched to the error distribution.

The early work in MEE estimation can be traced back to the late 1960s when
Weidemann and Stear [86] studied the use of error entropy as a criterion function
(risk function) for analyzing the performance of sampled data estimation systems.
They proved that minimizing the error entropy is equivalent to minimizing the
mutual information between the error and the observation, and also proved that
the reduced error entropy is upper-bounded by the amount of information
obtained by the observation. Minamide [89] extended Weidemann and Stear’s
results to a continuous-time estimation system. Tomita et al. applied the MEE cri-
terion to linear Gaussian systems and studied state estimation (Kalman filtering),
smoothing, and predicting problems from the information theory viewpoint. In
recent years, the MEE became an important criterion in supervised machine
learning [64].
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In the following, we present some important properties of the MEE criterion,
and discuss its relationship to conventional Bayes risks. For simplicity, we assume
that the error e is a scalar (m = 1). The extension to arbitrary dimensions will be
straightforward.
3.3.1.1 Some Properties of MEE Criterion
Property 1: VceR, H(e +c¢) = H(e).

Proof: This is the shift invariance of the differential entropy. According to the defi-
nition of differential entropy, we have

H(e +¢)

pe+0(5)]0g pe+c(€)d§

= = | Pe(§ — O)log p(§ — c)d¢ (342)

= - pe(g)log pe(g)dg = H(E)

Remark: The MEE criterion is invariant with respect to error’s mean. In practice,
in order to meet the desire for small error values, the MEE estimate is usually
restricted to zero-mean (unbiased) error, which requires special user attention (i.e.,
mean removal). We should note that the unbiased MEE estimate can still be non-
unique (see Property 6).

Property 2: If ( is a random variable independent of the error e, then
H(e+ ¢)=H(e).

Proof: According to the properties of differential entropy and the independence
condition, we have

H(e + () =H(e + (|() = H(e|() = H(e) (3:43)

Remark: Property 2 implies that MEE criterion is robust to independent additive
noise. Specifically, if error e contains an independent additive noise (, i.e.,
e =er + (, where ey is the true error, then minimizing the contaminated error
entropy H(e) will constrain the true error entropy H(er)(H(ep) = H(e)).

Property 3: Minimizing the error entropy H(e) is equivalent to minimizing the
mutual information between error e and the observation Y, i.e.,
minH(e) < minl(e; Y).

geG geG

Proof: As I(e;Y) = H(e) — H(e]Y), we have
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H(e)=1I(e;Y)+ H(elY)
=1(e;Y)+ HX —g(Y)|Y) (3.44)
=1(e;Y)+ H(X|Y)

It follows easily that

min H(e) < min{l(e; Y) + H(X|Y)}
geG geG

@ (3.45)
<> minl(e;Y)
geG

where (a) comes from the fact that the conditional entropy H(X|Y) is not related to g.

Remark: The minimization of error entropy will minimize the mutual information
between the error and the observation. Hence, under MEE criterion, the observation
will be “fully utilized,” so that the error contains least information about the
observation.

Property 4: The error entropy H(e) is lower bounded by the conditional entropy
H(X|Y), and this lower bound is achieved if and only if error e is independent of
the observation Y.

Proof: By (3.44), we have
H(e)=1(e;Y)+ HX|Y)=H(X|Y) (3.46)

where the inequality follows from the fact that I(e; Y) = 0, with equality if and only
if error e and observation Y are independent.

Remark: The error entropy can never be smaller than the conditional entropy of
the parameter X given observation Y. This lower bound is achieved if and only if
the error contains no information about the observation.

For MEE estimation, there is no explicit expression for the optimal estimate
unless some constraints on the posterior PDF are imposed. The next property shows
that, if the posterior PDF is SUM, the MEE estimate will be equal to the condi-
tional mean (i.e., the MMSE estimate).

Property 5: If for any y, the posterior PDF p(x|y) is SUM, then the MEE estimate
equals the posterior mean, i.e., gmee(y) = E(X|Y = ).

Proof: This property is a direct consequence of Theorem 1 of [91] (Omitted).

Remark: Since the posterior PDF is SUM, in the above property the MEE estimate
also equals the posterior median or posterior mode. We point out that for order-a
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Table 3.1 Optimal Estimates for Several Bayes Estimation Methods

Bayes Estimation Risk Function Optimal Estimate

MMSE JoEpe(€)dE gumise = mean[p(.[y)]

Mean absolute Jal€lpe(©)dE gmap = median[p(.|y)]
deviation
(MAD)

MAP Jalo-1(©)pe(£)dE gmap = mode[p(.[y)]

General Bayes L‘l(g)pe(f)dé If I(.) is even and convex, and Vy, p(x|y) is
estimation symmetric in x, then ggpg(.) = mean[p(.|y)]
(GBE)

MEE — [.pe(©)log p(E)AE Tf ¥y, p(xly) is SUM, then gyie() = mean[p(.|y)]

Renyi entropy, this property still holds. One may be led to conclude that MEE has
no advantage over the MMSE, since they correspond to the same solution for SUM
case. However, the risk functional in MEE is still well defined for unimodal but
asymmetric distributions, although no general results are known for this class of
distributions. But we suspect that the practical advantages of MEE versus MSE
reported in the literature [64] are taking advantage of this case. In the context of
adaptive filtering, the two criteria may yield much different performance surfaces
even if they have the same optimal solution.

Table 3.1 gives a summary of the optimal estimates for several Bayes estimation
methods.

Property 6: The MEE estimate may be nonunique even if the error distribution is
restricted to zero mean (unbiased).

Proof: We prove this property by means of a simple example as follows [94]: sup-
pose Y is a discrete random variable with Bernoulli distribution:

Pr(Y = 0) =Pr(Y = 1) = 0.5 (3.47)

The posterior PDF of X given Y is (a > 0):

1
— if |x|=a

px|Y =0)=< 2a
0  other
1 1
— if |x|==za
pxlY=1)=1< a
0 other

Given an estimator X = g(Y), the error PDF will be



44 System Parameter Identification

pe() = 3 {p+ 8O =0)+ plx-+ gD} = 1) (3.48)

Let g be an unbiased estimator, then f_woo xpe(x)dx = 0, and hence g(0) = — g(1).
Assuming g(0) =0 (due to symmetry, one can obtain similar results for g(0) <0),
the error entropy can be calculated as

3 1
—Zlog(S) +log(4a), if 0=g(0)= 1°

1 1
H(e)= 2 3g_(0) log3)+ | = — @ log(2) +log(4a), if —a<g(0)= Ea
8 2a 4 a 4 4

1 3
—Elog(Z) +log(4a), if g(0)> 74

(3.49)

One can easily verify that the error entropy achieves its minimum value when
0=g(0)<a/4. Clearly, in this example there are infinitely many unbiased MEE
estimators.

Property 7 (Score Orthogonality [92]): Given an MEE estimator X= gmee(Y),

the error’s score v(e|gmeg) is orthogonal to any measurable function ¢(Y) of Y,
where ¥(e|gmeg) is defined as

Pelgwee) = = {log pelwee) (3.50)

where p(e|g) denotes the error PDF for estimator X = g(¥).

Proof: Given an MEE estimator gmee €G, V ¢€G and V veR, we have

H(elgmeg) = arg HGlin H(e) = H(e|gmee + v¥) = H(e — vo(Y)|gmEE) (3.51)
ge

For || small enough, vp(Y) will be a “small” random variable. According to
[167], we have

H(e — vo(Y)|gmee) — H(elgmer) = vE[V(elgmer)p(Y)] + o(vo(Y)) (3.52)

where o(.) denotes the higher order terms. Then the derivative of entropy
H(e — vp(Y)|gmeg) with respect to v at v =0 is

% {H(e = vo(Y)|gmee)} =0 = E[t(elgmer)p(Y)] (3.53)
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Combining (3.51) and (3.53) yields

E[Y(elgmee)p(Y)] =0, VeG (3.54)

Remark: If the error is zero-mean Gaussian distributed with variance o2, the score
function will be 1)(e|gmee) = — e/0>. In this case, the score orthogonality condition
reduces to E[ep(Y)] = 0. This is the well-known orthogonality condition for MMSE
estimation.

In MMSE estimation, the orthogonality condition is a necessary and sufficient
condition for optimality, and can be used to find the MMSE estimator. In MEE
estimation, however, the score orthogonality condition is just a necessary condition
for optimality but not a sufficient one. Next, we will present an example to demon-
strate that if an estimator satisfies the score orthogonality condition, it can be a
local minimum or even a local maximum of H(e) in a certain direction. Before pro-
ceeding, we give a definition.

Definition 3.1 Given an estimator ge G, g is said to be a local minimum (or maxi-
mum) of H(e) in the direction of peG, if and only if Je >0, such that V yeR,
|v] =€, we have

Hielg)'= Hielg + 1¢) (3.55)

Example 3.1 [92] Suppose the joint PDF of X and Y is the mix-Gaussian density
O=|p|<1):

— (% = 2py(x — p) + (x— )%

exp

)= e (356
Py = ——F— 3.56
myL= e — 07+ 20y + ) + (x4 p))
+ exp 21— )

The MMSE estimation of X based on Y can be computed as
gvmse = E(X]Y) = 0. It is easy to check that the estimator gyvsg satisfies the score
orthogonality condition.

Now we examine whether the MMSE estimator gymvsg 1S a local minimum or
maximum of the error entropy H(e) in a certain direction @€ G. We focus here on
the case where ¢(Y) =Y (linear function). In this case, we have

H(elgmmse(Y) + vo(Y)) = H(e|vY) (3.57)
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2.6

24} -

2.2

#=08 u=07 4=06

HelyY)

Figure 3.1 Error’s entropy H(e|vY) with respect to different v and p values.
Source: Adopted from [92].

For the case p=0.99, the error’s entropies H(e|vY) with respect to different -y
and p values are shown in Figure 3.1, from which we see that the MMSE esti-
mator (y=0) is a local minimum of the error entropy in the direction of
©(Y)=Y for 1 =0.5 and a local maximum for g > 0.5. In addition, for the case
1= 1.0, the error’s entropies H(e|yY) with respect to different v and p values are
depicted in Figure 3.2. It can be seen from Figure 3.2 that when p =< 0.6, gmmsE
is a global minimum of H(e|vY); while when p>0.6, it becomes a local
maximum.

The local minima or local maxima can also be judged using the second-order
derivative of error entropy with respect to «. For instance, if = 1, we can calcu-
late the following second-order derivative using results of [167]:

2
2 - 2 2e)—1
WH(6|7Y)|,Y:0—(1 —p )E{ {iﬁﬁfzgﬂ} }

[2(exp(2e)—1)*(e2 — 1)exp(2e)] — [exp(4e)—1+4e X exp(2e)]?

+0’E
p [exp(2e)+ 1]

~0.55—1.54p°
(3.58)
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Figure 3.2 Error’s entropy H(e|vY) with respect to different v and p values.
Source: Adopted from [92].

And hence

%H(ele)h:O >0 if [p|<0.6

, (3.59)
L H(elyY)|,=0 <0 if [p[>06

which implies that if |p| < 0.6, the MMSE estimator (v =0) will be a local mini-
mum of the error entropy in the direction of ¢(Y)=7Y, whereas if |p| > 0.6, it
becomes a local maximum.

As can be seen from Figure 3.2, if p=0.9, the error entropy H(e|vY) achieves
its global minima at v~ *0.74. Figure 3.3 depicts the error PDF for v=0
(MMSE estimator) and v = 0.74 (linear MEE estimator), where =1, p =0.9. We
can see that the MEE solution is in this case not unique but it is much more con-
centrated (with higher peak) than the MMSE solution, which potentially gives an
estimator with much smaller variance. We can also observe that the peaks of the
MMSE and MEE error distributions occur at two different error locations, which
means that the best parameter sets are different for each case.

3.3.1.2 Relationship to Conventional Bayes Risks

The loss function of MEE criterion is directly related to the error’s PDF, which is
much different from the loss functions in conventional Bayes risks, because the
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Figure 3.3 Error’s PDF p(e) for v =0 and v = 0.74.
Source: Adopted from [92].

user does not need to select the risk functional. To some extent, the error entropy
can be viewed as an “adaptive” Bayes risk, in which the loss function is varying
with the error distribution, that is, different error distributions correspond to differ-
ent loss functions. Figure 3.4 shows the loss functions (the lower subplots) of MEE
corresponding to three different error PDFs. Notice that the third case provides a
risk function that is nonconvex in the space of the errors. This is an unconventional
risk function because the role of the weight function is to privilege one solution
versus all others in the space of the errors.

There is an important relationship between the MEE criterion and the traditional
MSE criterion. The following theorem shows that the MSE is equivalent to the error
entropy plus the KL-divergence between the error PDF and any zero-mean Gaussian
density.

Theorem 3.1 ILet G,() denote a Gaussian density, G,(x)=
(1/v/2mo)exp(— x*/20?), where o > 0. Then we have

min E(¢*) < min{H(e) + Dxi(p.||Gy)} (3.60)
geCG geG
Proof: Since G,(x) = (1/+/2m0o)exp(— x*/20?%), we have

2=- 202{log(GU(x)) + log(\/Z—mr)}
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Figure 3.4 The loss functions of MEE corresponding to three different error PDFs.

And hence

E(&) = szpe(xmx

- 202{ - jaog Go()pe()dx — log (V7o }

=202 — J Ppe(x)log pe(x)dx + J pe() | Tog g 0((’3) dx — log (ma)

_ 202{H(e) + Dk (pe || G,) — log (ma) }
(3.61)

It follows easily that min E(e*) <>min {H(e) + Dx1(p. | G,)}.
geG geG

Remark: The above theorem suggests that the minimization of MSE minimizes
both the error entropy H(e) and the KL-divergence Dk (p.|G,). Then the MMSE
estimation will decrease the error entropy, and at the same time, make the error dis-
tribution close to zero-mean Gaussian distribution. In nonlinear and non-Gaussian
estimating systems, the desirable error distribution can be far from Gaussian, while
the MSE criterion still makes the error distribution close to zero-mean Gaussian
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distribution, which may lead to poor estimation performance. Thus, Theorem 3.1
also gives an explanation on why the performance of MMSE estimation may be
not good for non-Gaussian samples.

Suppose that the error is zero-mean Gaussian distributed. Then we have
D1 (pe||G,) =0, where 0 = E[¢*]. In this case, the MSE criterion is equivalent to
the MEE criterion.

From the derivation of Theorem 3.1, let o = \/f /2, we have

E(e®) = H(e) + Dk(pe |G 5,) — log(/T) (3.62)
Since DKL(peHGﬁ/z) = (), then
H(e) < E(e) + log (/) (3.63)
Inequality (3.63) suggests that, minimizing the MSE is equivalent to minimizing
an upper bound of error entropy.

There exists a similar relationship between MEE criterion and a large family of
Bayes risks [168]. To prove this fact, we need a lemma.

Lemma 3.1 Any Bayes risk E[l(¢)] corresponds to a PDF* as follows:

qi(x) = exp[ — vy — 11 1(x)] (3.64)

where v, and -y, satisfy

{ eXp(P)/O) = J’.Rexp[ M l(x)]dx (3 65)
Ell(e)lexp(yo) = [ l(x)exp[ — 7, 1(x)ldx '

Theorem 3.2 For any Bayes risk E[l(e)], if the loss function I(e) satisfies
lim I(e) =+ oo, then

le]—> + oo
min E[l(e)] < min{H(e) + Dxr(p. qu)} (3.66)
geCG geG

where ¢; is the PDF given in (3.64).

Proof: First, we show that in the PDF ¢;(x) = exp[ — v, — 7,{(x)], v, is a positive
number. Since ¢(.) satisfies ¢;(x) =0 and [,g;(x)dx =1, we have I |liI}rl qi(x) =0.
Then S

4 Here, () is actually the maximum entropy density that satisfies the constraint condition
Jea@)idx = E[I(e)].
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lim x)=0
i %Cll( )

= Jlim Tlog ¢/(x)] = — o
- X|—> 00

:I |lin+1 [—log ¢i(x)] =+ o0

(3.67)
= lim [y +7,(x)] =+ o0
|x|]— + oo
:%‘ llir}} I(x)=+ oo
g'yl >0
where (a) follows from | ‘liril l(x) =+ oo. Therefore,
min{H(e) + DxL(p. H‘II)}
geG
< min{ — j pe(x)log p.(x)dx + fpe(x)log Px)
geG ‘Il(x)
<> min () — 1o x)]dx
min{ [ pe(x)[ ~ log qi(x}dx} (3.68)

@;rgg{ I Pe@vo + 7 1(0)]dx }

@glgig{% + 7 E[l(e)]}
Y >

= min(Elie)}

which completes the proof.

Remark: The condition ‘ ‘lim l(e) =+ oo in the theorem is not very restrictive,
e|l— + w

because for most Bayes risks, the loss function increases rapidly when |e| goes to
infinity. But for instance, it does not apply to the maximum correntropy (MC) crite-
rion studied next.

3.3.2 MC Estimation

Correntropy is a novel measure of similarity between two random variables [64].
Let X and Y be two random variables with the same dimensions, the correntropy is

V(X,Y) = E[r(X, Y)] (3.69)
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where x(.,.) is a translation invariant Mercer kernel. The most popular kernel used
in correntropy is the Gaussian kernel:

o) = ¢2170 exp(— llx — yIP/20?) (3.70)

where o >0 denotes the kernel size (kernel width). Gaussian kernel k,(x,y) is a
translation invariant kernel that is a function of x —y, so it can be rewritten as
Ko'(x -y )

Compared with other similarity measures, such as the mean square error, corren-
tropy (with Gaussian kernel) has some nice properties: (i) it is always bounded
o<vx,n=1/ /270); (i) it contains all even-order moments of the difference
variable for the Gaussian kernel (using a series expansion); (iii) the weights of
higher order moments are controlled by kernel size; and (iv) it is a local similarity
measure, and is very robust to outliers.

The correntropy function can also be applied to Bayes estimation [169]. Let X
be an unknown parameter to be estimated and Y be the observation. We assume,
for simplification, that X is a scalar random variable (extension to the vector case
is straightforward), X eR, and Y is a random vector taking values in R”. The MC
estimation of X based on Y is to find a measurable function g:R™ — R such that
the correntropy between X and X = g(¥) is maximized, i.e.,

guc = arg max E[k(X, g(Y))] (3.71)
ge

With any translation invariant kernel such as the Gaussian kernel x,(x — y), the
MC estimator will be

gvc = arg max E[k,(e)] (3.72)
geG

where e = X — g(Y) is the estimation error. If ¥V yeR"™, X has posterior PDF p(x|y),
then the estimation error has PDF

P = pet gOIFO) (373

R

where F(y) denotes the distribution function of Y. In this case, we have

gmc = arg max E[r,(e)]

s . (3.74)
_ argmaXJ ng(x)J plx+ ()Y ()dx
geG -0 R™

The following theorem shows that the MC estimation is a smoothed MAP
estimation.
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Theorem 3.3 The MC estimator (3.74) can be expressed as

gmc(y) = arg max pxly,0), VyeR" (3.75)
XER

where p(x|y, o) = K (x) * p(x]y) (“x” denotes the convolution operator with respect
to x).

Proof: One can derive

Vo= | pxt goImarous

R

= Jon {J Ko(X)plx + g(y)ly)dx}dF(y)
" {J o (¥ = 8P [y)dx’ } dF(y)
o (3.76)
- L {J_ ) Ko (g(y) — X)p(x| y)dx/}dp(y)
= | {056() % pCIYDEONIF()

R

=1 Py, o)dF(y)
J RHX
where X’ = x + g(y) and (a) comes from the symmetry of x,(.). It follows easily that

guc = arg max L gl D)AF()
R™

8eG (3.77)

= gwmc(y) = arg max p(xly, o), VyeR"

xeR

This completes the proof.

Remark: The function p(x|y,o) can be viewed as a smoothed version (through
convolution) of the posterior PDF p(x|y). Thus according to Theorem 3.3, the MC
estimation is in essence a smoothed MAP estimation, which is the mode of the
smoothed posterior distribution. The kernel size o plays an important role in the
smoothing process by controlling the degree of smoothness. When o — 0+,
the Gaussian kernel will approach the Dirac delta function, and the function
p(xly, o) will reduce to the original posterior PDF. In this case, the MC estimation
is identical to the MAP estimation. On the other hand, when o — o0, the second-
order moment will dominate the correntropy, and the MC estimation will be equiv-
alent to the MMSE estimation [137].
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In the literature of global optimization, the convolution smoothing method
[170—172] has been proven very effective in searching the global minima (or max-
ima). Usually, one can use the convolution of a nonconvex cost function with a
suitable smooth function to eliminate local optima, and gradually decrease the
degree of smoothness to achieve global optimization. Therefore, we believe that by
properly annealing the kernel size, the MC estimation can be used to obtain the
global maxima of MAP estimation.

The optimal solution of MC estimation is the mode of the smoothed posterior
distribution, which is, obviously, not necessarily unique. The next theorem, how-
ever, shows that when kernel size is larger than a certain value, the MC estimation
will have a unique optimal solution that lies in a strictly concave region of the
smoothed PDF (see [169] for the proof).

Theorem 3.4 [169] Assume that function f,(y) = ffn p(x|y)dx converges uniformly
to 1 as n — oo. Then there exists an interval [ — M, M], M > 0, such that when ker-
nel size o is larger than a certain value, the smoothed PDF p(x|y, o) will be strictly
concave in [ — M, M], and has a unique global maximum lying in this interval for
any yeR™.

Remark: Theorem 3.4 suggests that in MC estimation, one can use a larger kernel
size to eliminate local optima by constructing a concave (in a certain interval) cost
function with a unique global optimal solution. This result also shows that the ini-
tial condition for convolution smoothing should be chosen in this range. The only
other parameter in the method that the user has to select is the annealing rate.

In the following, a simple example is presented to illustrate how the kernel size
affects the solution of MC estimation. Suppose the joint PDF of X and Y (X,Y eR)
is the mixture density (0=A=1) [169]:

pxy(x,y) =1 = Mpi(x,y) + Ap2(x,y) (3.78)

where p; denotes the “clean” PDF and p, denotes the contamination part corre-
sponding to “bad” data or outliers. Let A =0.03, and assume that p; and p, are
both jointly Gaussian:

2 2

pilx,y) = «/%WGXP<_)%> (3.79)
50 s

p2(x,y) = ?exp(_50[()€_3) +y*]) (3.80)

For the case y = 0.1, the smoothed posterior PDFs with different kernel sizes are
shown in Figure 3.5, from which we observe: (i) when kernel size is small, the
smoothed PDFs are nonconcave within the dominant region (say the interval
[—3,4]), and there may exist local optima or even nonunique optimal solutions; (ii)
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Figure 3.5 Smoothed conditional PDFs given Y =0.1.
Source: Adopted from [169]).
Table 3.2 Estimates of X Given Y =0.1
MAP estimation 3.0
MMSE estimation 0.4338
MC estimation c=0.1 3.0
c=02 —0.05
c=0.5 —0.05
oc=1.0 —0.0360
oc=2.0 0.2090
c=5.0 0.3990
o=20 0.4320

(adopted from [169])

when kernel size is larger, the smoothed PDFs become concave within the domi-
nant region, and there is a unique optimal solution. Several estimates of X given
Y =0.1 are listed in Table 3.2. It is evident that when the kernel size is very small,
the MC estimate is the same as the MAP estimate; while when the kernel size is
very large, the MC estimate is close to the MMSE estimate. In particular, for some
kernel sizes (say o =0.2 or 0.5), the MC estimate of X equals —0.05, which is
exactly the MMSE (or MAP) estimate of X based on the “clean” distribution p;.
This result confirms the fact that the MC estimation is much more robust (with

respect to outliers) than both MMSE and MAP estimations.



56 System Parameter Identification

3.4 Information Criteria for Model Selection

Information theoretic approaches have also been used to solve the model selection
problem. Consider the problem of estimating the parameter 6 of a family of models

M = {p(x,0)|0e O, cRY} (3.81)

where the parameter space dimension k is also unknown. This problem is actually a
model structure selection problem, and the value of k is the structure parameter.
There are many approaches to select the space dimension k. Here, we only discuss
several information criteria for selecting the most parsimonious correct model,
where the name indicates that they are closely related to or can be derived from
information theory.

1. Akaike’s information criterion
The Akaike’s information criterion (AIC) was first developed by Akaike [6,7]. AIC is
a measure of the relative goodness of fit of a statistical model. It describes the tradeoff
between bias and variance (or between accuracy and complexity) in model construction.
In the general case, AIC is defined as

AIC = — 2 10g Lunax + 2k (3.82)

where L.« 1s the maximized value of the likelihood function for the estimated model. To
apply AIC in practice, we start with a set of candidate models, and find the models’ cor-
responding AIC values, and then select the model with the minimum AIC value. Since
AIC includes a penalty term 2k, it can effectively avoid overfitting. However, the penalty
is constant regardless of the number of samples used in the fitting process.

The AIC criterion can be derived from the KL-divergence minimization principle or
the equivalent relative entropy maximization principle (see Appendix G for the
derivation).

2. Bayesian Information Criterion

The Bayesian information criterion (BIC), also known as the Schwarz criterion, was
independently developed by Akaike and by Schwarz in 1978, using Bayesian formalism.
Akaike’s version of BIC was often referred to as the ABIC (for “a BIC”) or more
casually, as Akaike’s Bayesian Information Criterion. BIC is based, in part, on the likeli-
hood function, and is closely related to AIC criterion. The formula for the BIC is

BIC = —21log L. + klogn (3.83)

where n denotes the number of the observed data (i.e., sample size). The BIC criterion
has a form very similar to AIC, and as one can see, the penalty term in BIC is in general
larger than in AIC, which means that generally it will provide smaller model sizes.
3. Minimum Description Length Criterion

The minimum description length (MDL) principle was introduced by Rissanen [9]. It
is an important principle in information and learning theories. The fundamental idea
behind the MDL principle is that any regularity in a given set of data can be used to com-
press the data, that is, to describe it using fewer symbols than needed to describe the data
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literally. According to MDL, the best model for a given set of data is the one that leads
to the best compression of the data. Because data compression is formally equivalent to a
form of probabilistic prediction, MDL methods can be interpreted as searching for a
model with good predictive performance on unseen data. The ideal MDL approach
requires the estimation of the Kolmogorov complexity, which is noncomputable in gen-
eral. However, there are nonideal, practical versions of MDL.

From a coding perspective, assume that both sender and receiver know which member
p(x, 0) of the parametric family .# generated a data string x" = {x{,x,, ..., X, }. Then from
a straightforward generalization of Shannon’s Source Coding Theorem to continuous ran-
dom variables, it follows that the best description length of x" (in an average sense) is
simply —log p(x", f), because on average the code length achieves the entropy lower
bound — [ p(x", f)log p(x", B)dx". Clearly, minimizing —log p(x", ) is equivalent to max-
imizing p(x", #). Thus the MDL coincides with the ML in parametric estimation problems.
In addition, we have to transmit 6, because the receiver did not know its value in advance.
Adding in this cost, we arrive at a code length for the data string x":

—log p(x", ) + (O (3.84)

where l(éML) denotes the number of bits for transmitting 9ML. If we assume that the
machine precision is 1/4/n for each component of 6. and 6y is transmitted with a uni-
form encoder, then the term /(6) is expressed as

1(6) = glog n (3.85)

In this case, the MDL takes the form of BIC. An alternative expression of /(6) is
Sy
1) = log — 3.86
() ;:1 e5, (3.86)

where ~ is a constant related to the number of bits in the exponent of the floating point
representation of §; and §; is the optimal precision of 6;.

Appendix E: EM Algorithm

An EM algorithm is an iterative method for finding the ML estimate of parameters
in statistical models, where the model depends on unobserved latent variables. The
EM iteration alternates between performing an expectation (E) step, which calcu-
lates the expectation of the log-likelihood evaluated using the current estimate for
the parameters, and a maximization (M) step, which computes parameters maxi-
mizing the expected log-likelihood found on the E step. These parameter estimates
are then used to determine the distribution of the latent variables in the next E step.

Let y be the observed data, z be the unobserved data, and 6 be a vector of
unknown parameters. Further, let L(f]y, z) be the likelihood function, L(6]y) be the
marginal likelihood function of the observed data, and p(z|y, 8¥’) be the conditional
density of z given y under the current estimate of the parameters 6*). The EM
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algorithm seeks to find the ML estimate of the marginal likelihood by iteratively
applying the following two steps

1. Expectation step (E step): Calculate the expected value of the log-likelihood function,
with respect to the conditional distribution of z given y under the current estimate R

00y, %) =E,, yollog L(6ly, 2)\y, ']

E.1
= [log L(Bly, 2)p(zly, 6M)dz =

2. Maximization step (M step): Find the next estimate 0%V of the parameters by maximiz-
ing this quantity:

00" Vly. 0) = max Q(0ly. o) E2)

The iteration %) — #**V continues until 10%*D — ® | is sufficiently small.

Appendix F: Minimum MSE Estimation

The MMSE estimate & of 6 is obtained by minimizing the following cost:

R(,0)= J J (0 —0)*p(0,x)d6 dx

(F.1)
= [ ([ @ - 07pomnas )pwrax
Since Vx, p(x) =0, one only needs to minimize f(@ —0)*p(0)x)d6. Let
O (. .2 _ A _
5% J(H 0)°p(O|x)do =2 J(& Op(flx)do =0 (F.2)

Then we get 6 = [ 6p(01x)de.

Appendix G: Derivation of AIC Criterion

The information theoretic KL-divergence plays a crucial role in the derivation of
AIC. Suppose that the data are generated from some distribution f. We consider
two candidate models (distributions) to represent f: g; and g,. If we know f, then
we could evaluate the information lost from using g; to represent f by calculating
the KL-divergence, Dy (flg); similarly, the information lost from using g, to rep-
resent f would be found by calculating Dy (f11g2). We would then choose the can-
didate model minimizing the information loss. If f is unknown, we can estimate,
via AIC, how much more (or less) information is lost by g; than by g,. The esti-
mate is, certainly, only valid asymptotically.
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Given a family of density models {ps(y)|fe©; =R¥}, where ©; denotes a
k-dimensional parameter space, k=1,2,...,K, and a sequence of independent and
identically distributed observations {y,y,, ..., ¥}, the AIC can be expressed as

AIC = — 2 log L(O ) + 2k (G.1)

where éML is the ML estimate of § = [0}, 05, .. ., 6k]:

Om = arg max L(6) = arg max [ | po(y:) (G.2)
0y 06 =1

Let 6y be the unknown true parameter vector. Then

Dxi(6010w1) = Dxi(py, 1p;,, ) = Eflog ps,(y)} — Eflog py ()} (G3)
where
{ E{log ps,(»)} = [~ %Pt (»)log pg,(v)dy (G4)
E{log py )} = ["., pe,(Mlog ps  (v)dy '

Taking the first term in a Taylor expansion of E{log p; ()}, we obtain

1 R
{log py,, O} = E{log pg,(»)} — 7 (Ow— 00)" Jr(00)(0 mL. — 6o) (G5)

where Jr(6y) is the k X k Fisher information matrix. Then we have

Dyr(001 ) ~ % (Om—00) Tr(B0) @i, — o) (G.6)
Suppose Jr(6y) can be decomposed into
Tr(60)=J"J (G.7)
where J is some nonsingular matrix. We can derive

20Dy (0010 w1) = [rJ (0 s —00)] [/ (B, — 60)] (G.8)

According to the statistical properties of the ML estimator, when sample number
n is large enough, we have

NG R A C)) (G.9)
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Combining (G.9) and (G.7) yields
VIO = 60)~ (0.1 (G.10)
where I is the k X k identity matrix. From (G.8) and (G.10), we obtain
2Dt (0010 ) ~ (k) (G.11)

That is, 2nDKL(90||§ML) is Chi-Squared distributed with k degree of freedom.
This implies

E{2nDgr(60110w1)} = k (G.12)

It follows that

2nE{log pg,(y)) — 2nE{log p; (1)} k (G.13)
And hence
2nE{log péML(y)} =252 log L(6p) — k (G.14)

It has been proved in [173] that

2[log L(O i) — log L(00)] ~ x*(k) (G.15)
Therefore
2 log L(0p) 77252 log L(O ) — k (G.16)

Combining (G.16) and (G.14), we have

2nE{log py,, ()} 7=2>2 log L) — 2k (G.17)

n— o0
To minimize the KL-divergence Dgi(6p||@mL), one need to maximize

E{log p(;ML(y)}, or equivalently, to minimize (in an asymptotical sense) the follow-
ing objective function

—2log L(O ) + 2k (G.18)

This is exactly the AIC criterion.



4 System Identification Under
Minimum Error Entropy Criteria

In previous chapter, we give an overview of information theoretic parameter esti-
mation. These estimation methods are, however, devoted to cases where a large
amount of statistical information on the unknown parameter is assumed to be avail-
able. For example, the minimum divergence estimation needs to know the likeli-
hood function of the parameter. Also, in Bayes estimation with minimum error
entropy (MEE) criterion, the joint distribution of unknown parameter and observa-
tion is assumed to be known. In this and later chapters, we will further investigate
information theoretic system identification. Our focus is mainly on system parame-
ter estimation (identification) where no statistical information on parameters exists
(i.e., only data samples are available). To develop the identification algorithms
under information theoretic criteria, one should evaluate the related information
measures. This requires the knowledge of the data distributions, which are, in gen-
eral, unknown to us. To address this issue, we can use the estimated (empirical)
information measures as the identification criteria.

4.1 Brief Sketch of System Parameter Identification

System identification involves fitting the experimental input—output data (training
data) into empirical model. In general, system identification includes the following
key steps:

» Experiment design: To obtain good experimental data. Usually, the input signals should
be designed such that it provides enough process excitation.

» Selection of model structure: To choose a suitable model structure based on the training
data or prior knowledge.

» Selection of the criterion: To choose a suitable criterion (cost) function that reflects how
well the model fits the experimental data.

«  Parameter identification: To obtain the model parameters' by optimizing (minimizing or
maximizing) the above criterion function.

*  Model validation: To test the model so as to reveal any inadequacies.

In this book, we focus mainly on the parameter identification part. Figure 4.1
shows a general scheme of discrete-time system identification, where x; and y;

"In the case of black-box identification, the model parameters are basically viewed as vehicles for
adjusting the fit to data and do not reflect any physical consideration in the system.

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00004-X
© 2013 Tsinghua University Press Ltd. Published by Elsevier Inc. All rights reserved.
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n, Figure 4.1 A general scheme of system
identification.
Unknown Yi
system Z,
XK f -
_ Model Yie
(W)

/| )
Criterion

denote the system input and output (clean output) at time k, n; is an additive noise
that accounts for the system uncertainty or measurement error, and z; is the mea-
sured output. Further, y, is the model output and ¢, denotes the identification error,
which is defined as the difference between the measured output and the model out-
put, i.e., ex = zx — Y. The goal of parameter identification is then to search the
model parameter vector (or weight vector) so as to minimize (or maximize) a cer-
tain criterion function (usually the model structure is predefined).

The implementation of system parameter identification involves model structure,
criterion function, and parameter search (identification) algorithm. In the following,
we will briefly discuss these three aspects.

4.1.1 Model Structure

Generally speaking, the model structure is a parameterized mapping from inputs’
to outputs. There are various mathematical descriptions of system model (linear or
nonlinear, static or dynamic, deterministic or stochastic, etc.). Many of them can be
expressed as the following linear-in-parameter model:

Zk :h,{W"r ek

A 4.1
Yk :hZW

where k. denotes the regression input vector and W denotes the weight vector (i.e.,
parameter vector). The simplest linear-in-parameter model is the adaptive linear
neuron (ADALINE). Let the input be an m-dimensional vector X; = [x;, .. .,xm,k]T.
The output of ADALINE model will be

Ve = Z WiXix + Wwo 4.2)
i=1

2 For a dynamic system, the input vector may contain past inputs and outputs.



System Identification Under Minimum Error Entropy Criteria 63

where wy is a bias (some constant). In this case, we have

T
hk = [17-x1,k3 .. '3xm,k]
r 4.3)
W = [wo, Wi, ..., Wn]
If the bias wy is zero, and the input vector is X = [xg, Xk—1, - - .,xkme]T, which

is formed by feeding the input signal to a tapped delay line, then the ADALINE
becomes a finite impulse response (FIR) filter.

The ARX (autoregressive with external input) dynamic model is another impor-
tant linear-in-parameter model:

Zk tarzg—1 t o T Ap,Zp—n, = bixg—1 + - + bnbxkf,,b + ey (44)
One can write Eq. (4.4) as z; = h,{W + ¢ if let
]T

4.5)

R =[=Zk—15 -+ oy ~Zh—ns Xk—15 - - > Xk—ny
_ T
W= [aly .. '7ana7b1> .. 'abl‘ll,]

The linear-in-parameter model also includes many nonlinear models as special
cases. For example, the n-order polynomial model can be expressed as

Ve=ao+ Y aixi=h{W (4.6)
i=1
where
h=[1,x,...,x""
k=1, xk & . @.7)
W:[a09als"'5an]

Other examples include: the discrete-time Volterra series with finite memory
and order, Hammerstein model, radial basis function (RBF) neural networks with
fixed centers, and so on.

In most cases, the system model is a nonlinear-in-parameter model, whose
output is not linearly related to the parameters. A typical example of nonlinear-in-
parameter model is the multilayer perceptron (MLP) [53]. The MLP, with one
hidden layer, can be generally expressed as follows:

= Wi ¢(W{ Xy + by) + by (4.8)
where X is the m X 1 input vector, W; is the m X n weight matrix connecting the

input layer with the hidden layer, ¢(.) is the activation function (usually a sigmoid
function), b is the n X 1 bias vector for the hidden neurons, W, is the n X 1 weight
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vector connecting the hidden layer to the output neuron, and b, is the bias for the
output neuron.

The model can also be created in kernel space. In kernel machine learning (e.g.
support vector machine, SVM), one often uses a reproducing kernel Hilbert space
(RKHS) 2 associated with a Mercer kernel x:Z X Z — R as the hypothesis
space [161, 162]. According to Moore-Aronszajn theorem [174, 175], every Mercer
kernel  induces a unique function space 5, namely the RKHS, whose reprodu-
cing kernel is k, satisfying: 1) V xeZ, the function x(x,.)e #, and 2) VxeZ,
and for every fe ', (f, x(x,.)) », =f(x), where {(.,.) 5, denotes the inner product
in A . If Mercer kernel « is strictly positive-definite, the induced RKHS 7, will
be universal (dense in the space of continuous functions over Z°). Assuming the
input signal x; € Z', the model in RKHS J#,; can be expressed as

Vi =f0a) = {f, k(i D), (4.9)

where fe ', is the unknown input—output mapping that needs to be estimated.
This model is a nonparametric function over input space #. However, one can
regard it as a “parameterized” model, where the parameter space is the RKHS 7.

The model (4.9) can alternatively be expressed in a feature space (a vector space in
which the training data are embedded). According to Mercer’s theorem, any Mercer
kernel « induces a mapping ¢ from the input space Z to a feature space F,..” In the
feature space, the inner products can be calculated using the kernel evaluation:

e p(x') = K(x, x') (4.10)

The feature space F,; is isometric-isomorphic to the RKHS 4. This can be eas-
ily understood by identifying p(x) = k(x,.) and f = €, where € denotes a vector in
feature space F,, satisfying ¥V xeZ, Q7 p(x) = (f, s(x,.)) #,- Therefore, in feature
space the model (4.9) becomes

e = Q" o) (@.11)

This is a linear model in feature space, with p(x;) as the input, and 2 as the
weight vector. It is worth noting that the model (4.11) is actually a nonlinear model

3 The Mercer theorem states that any reproducing kernel (x, x) can be expanded as follows [160]:
o0
RKEX) =) N (06,(x)
i=1
where ); and ¢; are the eigenvalues and the eigenfunctions, respectively. The eigenvalues are nonnega-

tive. Therefore, a mapping ¢ can be constructed as
p: X—-F,
T
P(x) = [VX61(0), VA (v), .. ]

By construction, the dimensionality of F,, is determined by the number of strictly positive eigenvalues,
which can be infinite (e.g., for the Gaussian kernel case).



System Identification Under Minimum Error Entropy Criteria 65

in input space, since the mapping ¢ is in general a nonlinear mapping. The key
principle behind kernel method is that, as long as a linear model (or algorithm) in
high-dimensional feature space can be formulated in terms of inner products, a non-
linear model (or algorithm) can be obtained by simply replacing the inner product
with a Mercer kernel. The model (4.11) can also be regarded as a “parameterized”
model in feature space, where the parameter is the weight vector QelF,.

4.1.2 Criterion Function

The criterion (risk or cost) function in system identification reflects how well the
model fits the experimental data. In most cases, the criterion is a functional of the
identification error ¢j, with the form

R = E[l(e;)] (4.12)

where [(.) is a loss function, which usually satisfies

Nonnegativity: /(e) = 0;

Symmetry: I(— e) = l(e);

Monotonicity: V |ej| > |e;|, l(e;) = I(ey);
Integrability: i.e., /(.) is an integrable function.

Typical examples of criterion (4.12) include the mean square error (MSE), mean
absolute deviation (MAD), mean p-power error (MPE), and so on. In practice, the
error distribution is in general unknown, and hence, we have to estimate the expec-
tation value in Eq. (4.12) using sample data. The estimated criterion function is
called the empirical criterion function (empirical risk). Given a loss function I(.),
the empirical criterion function R can be computed as follows:

a. Instantaneous criterion function: R = I(ey);
N
b. Average criterion function: R = % E I(ex);
N

c. Weighted average criterion functlon R ﬁ Z Y l(ex).

Note that for MSE criterion (I(e) =€), the average criterion function is the
well-known least-squares criterion function (sum of the squared errors).

Besides the criterion functions of form (4.12), there are many other criterion

functions for system identification. In this chapter, we will discuss system identifi-
cation under MEE criterion.

4.1.3 Identification Algorithm

Given a parameterized model, the identification error e; can be expressed as a
function of the parameters. For example, for the linear-in-parameter model (4.1),
we have

o0 =2 — KW (4.13)
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which is a linear function of W (assuming z; and h; are known). Similarly, the cri-
terion function R (or the empirical criterion function R) can also be expressed as a
function of the parameters, denoted by R(W) (or R(W)). Therefore, the identifica-
tion criterion represents a hyper-surface in the parameter space, which is called the
performance surface.

The parameter W can be identified through searching the optima (minima or
maxima) of the performance surface. There are two major ways to do this. One is
the batch mode and the other is the online (sequential) mode.

4.1.3.1 Batch Identification

In batch mode, the identification of parameters is done only after collecting a num-
ber of samples or even possibly the whole training data. When these data are avail-
able, one can calculate the empirical criterion function R(W) based on the model
structure. And then, the parameter W can be estimated by solving the following
optimization problem:

W = arg min R(W) (4.14)
WeQw

where )y denotes the set of all possible values of W. Sometimes, one can achieve
an analytical solution by setting the gradient® of R(W) to zero, i.e.,

a o) —
Sy ROV =0 (4.15)

For example, with the linear-in-parameter model (4.1) and under the least-
squares criterion (empirical MSE criterion), we have

R 1 &
k=1

1 N
= 52 @ h W)’ (4.16)
k=1

1
=5 —HyW)  (zy — HyW)

where zy = [z1, 22, - - .,zN]T and Hy = [hy, h,, .. .,hN]T. And hence,

0 _ T, _
W{(z’v HyW) (zy —HyW)} = (4.17)

= (HLHN)W = Hlzy

4 See Appendix H for the calculation of the gradient in vector or matrix form.
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If HyHy is a nonsingular matrix, we have
W = (HLHy) 'Hlzy (4.18)

In many situations, however, there is no analytical solution for W, and we have
to rely on nonlinear optimization techniques, such as gradient descent methods,
simulated annealing methods, and genetic algorithms (GAs).

The batch mode approach has some shortcomings: (i) it is not suitable for online
applications, since the identification is performed only after a number of data are
available and (ii) the memory and computational requirements will increase dra-
matically with the increasing amount of data.

4.1.3.2 Online Identification

The online mode identification is also referred to as the sequential or incremental
identification, or adaptive filtering. Compared with the batch mode identification,
the sequential identification has some desirable features: (i) the training data
(examples or observations) are sequentially (one by one) presented to the identifi-
cation procedure; (ii) at any time, only few (usually one) training data are used;
(iii) a training observation can be discarded as long as the identification procedure
for that particular observation is completed; and (iv) it is not necessary to know
how many total training observations will be presented. In this book, our focus is
primarily on the sequential identification.

The sequential identification is usually performed by means of iterative schemes
of the type

Wk = Wk*l + AWk (419)

where W) denotes the estimated parameter at k instant (iteration) and AW; denotes
the adjustment (correction) term. In the following, we present several simple online
identification (adaptive filtering) algorithms.

4.1.3.3 Recursive Least Squares Algorithm

Given a linear-in-parameter model, the Recursive Least Squares (RLS) algorithm
recursively finds the least-squares solution of Eq. (4.18). With a sequence of obser-
vations {h;, z,-}f: up to and including time k — 1, the least-squares solution is

Wiy = (H_ Hy—1) 'H]_ 24— (4.20)

When a new observation {hy,z;} becomes available, the parameter estimate
Wk is

Wi = (H H) 'H]z (4.21)



68 System Parameter Identification

One can derive the following relation between W, and W;_;:
Wi = Wi—1 + Grex (4.22)
where ¢, is the prediction error,
ek =2 — h Wi (4.23)

and Gy is the gain vector, computed as

Pi—1h
=k (4.24)
1+ hk Pkflhk
where the matrix P can be calculated recursively as follows:
Pk = Pkfl - GkhI];Pkfl (425)

Equations (4.22)—(4.25) constitute the RLS algorithm.

Compared to most of its competitors, the RLS exhibits very fast convergence.
However, this benefit is achieved at the cost of high computational complexity. If
the dimension of Ay is m, then the time and memory complexities of RLS are both
o(m?).

4.1.3.4 Least Mean Square Algorithm
The Least Mean Square (LMS) algorithm is much simpler than RLS, which is a

stochastic gradient descent algorithm under the instantaneous MSE cost J(k) = %
The weight update equation for LMS can be simply derived as follows:

= _plea
Wi =Wi—1 — 355
Wi—1
= Wi—1 — nex [ﬁ (2k _)A’k):| (4.26)

Wi—1

uy o)
k—1 Nek |:a’;‘k/
Wi—1

where 1> 0 is the step-size (adaptation gain, learning rate, etc.),’ and the term
0y,/OW is the instantaneous gradient of the model output with respect to the weight
vector, whose form depends on the model structure. For a FIR filter (or

5 The step-size is critical to the performance of the LMS. In general, the choice of step-size is a trade-off
between the convergence rate and the asymptotic EMSE [19,20].
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ADALINE), the instantaneous gradient will simply be the input vector Xj. In this
case, the LMS algorithm becomes®

Wi = Wi—1 + nexXi 4.27)

The computational complexity of the LMS (4.27) is just O(m), where m is the
input dimension.

If the model is an MLP network, the term 0y, /0W can be computed by back
propagation (BP), which is a common method of training artificial neural networks
so as to minimize the objective function [53].

There are many other stochastic gradient descent algorithms that are similar to
the LMS. Typical examples include the least absolute deviation (LAD) algorithm
[31] and the least mean fourth (LMF) algorithm [26]. The LMS, LAD, and LMF
algorithms are all special cases of the least mean p-power (LMP) algorithm [30].
The LMP algorithm aims to minimize the p-power of the error, which can be
derived as

Wi =W — 7 [m |ek|"}
Wi-1

= Wi—1 — prlexl”™" sign(er) [OLW (zx _ﬁk)} (4.28)
Wi

= W1 + pnlex””" sign(ex) [?—&]
Wi—1

For the cases p=1,2,4, the above algorithm corresponds to the LAD, LMS,
and LMF algorithms, respectively.

4.1.3.5 Kernel Adaptive Filtering Algorithms

The kernel adaptive filtering (KAF) algorithms are a family of nonlinear adaptive
filtering algorithms developed in kernel (or feature) space [12], by using the linear
structure and inner product of this space to implement the well-established linear
adaptive filtering algorithms (e.g., LMS, RLS, etc.) and to obtain nonlinear filters
in the original input space. They have several desirable features: (i) if choosing a
universal kernel (e.g., Gaussian kernel), they are universal approximators; (ii) under
MSE criterion, the performance surface is quadratic in feature space so gradient
descent learning does not suffer from local minima; and (iii) if pruning the redun-
dant features, they have moderate complexity in terms of computation and memory.
Typical KAF algorithms include the kernel recursive least squares (KRLS) [176],
kernel least mean square (KLMS) [177], kernel affine projection algorithms
(KAPA) [178], and so on. When the kernel is radial (such as the Gaussian kernel),
they naturally build a growing RBF network, where the weights are directly related

6 The LMS algorithm usually assumes an FIR model [19,20].
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to the errors at each sample. In the following, we only discuss the KLMS algo-
rithm. Interesting readers can refer to Ref. [12] for further information about KAF
algorithms.

Let X; be an m-dimensional input vector. We can transform X; into a high-
dimensional feature space [, (induced by kernel x) through a nonlinear mapping
@, i.e., @, = p(Xx). Suppose the model in feature space is given by Eq. (4.11).
Then using the LMS algorithm on the transformed observation sequence {¢;,z;}
yields [177]

Qo =0
€ =2k — Qk—lTSDk (4.29)
Q= Q-1 + nexpy

where €2 denotes the estimated weight vector (at iteration k) in feature space. The
KLMS (4.29) is very similar to the LMS algorithm, except for the dimensionality
(or richness) of the projection space. The learned mapping (model) at iteration k is
the composition of € and ¢, ie., fi = Q' (). If identifying o, = k(Xy,.), we
obtain the sequential learning rule in the original input space:

fo=0
er =z — fi-1(Xk) (4.30)
Jie = fi—1 + nexr(Xe, )

At iteration k, given an input X, the output of the filter is
k
X)) =0 er(X;. X) (4.31)
=1

From Eq. (4.31) we see that, if choosing a radial kernel, the KLMS produces a
growing RBF network by allocating a new kernel unit for every new example with
input X; as the center and ne; as the coefficient. The algorithm of KLMS is sum-
marized in Table 4.1, and the corresponding network topology is illustrated in
Figure 4.2.

Selecting a proper Mercer kernel is crucial for all kernel methods. In KLMS, the
kernel is usually chosen to be a normalized Gaussian kernel:

1
K(x,x') = eXp(—ﬁllx —x/||2) =exp(— Cllx —x'|%) (4.32)

where >0 is the kernel size (kernel width) and ¢ =1/20 is called the kernel
parameter. The kernel size in Gaussian kernel is an important parameter that con-
trols the degree of smoothing and consequently has significant influence on the
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Table 4.1 The KLMS Algorithm

Initialization:

Choosing Mercer kernel « and step-size n
a;p=nz, C)={X1}, fi=arXy,.)
Computation:

while{X}, z;} (k> 1) available do

k=1
1. Compute the filter output: fi—1(X) = Y 0o;r(X;, Xi)

1
2. Compute the prediction error: e; = 7 a fe—1(X)
3. Store the new center: C(k) = {C(k — 1), X;.}

4. Compute and store the coefficients: oy = ney
end while

Figure 4.2 Network topology of
KLMS at iteration k.

ay

D

<

learning performance. Usually, the kernel size can be set manually or estimated in
advance by Silverman’s rule [97]. The role of the step-size in KLMS remains in
principle the same as the step-size in traditional LMS algorithm. Specifically, it
controls the compromise between convergence speed and misadjustment. It has
also been shown in Ref. [177] that the step-size in KLMS plays a similar role as
the regularization parameter.

The main bottleneck of KLMS (as well as other KAF algorithms) is the linear
growing network with each new sample, which poses both computational and
memory issues especially for continuous adaptation scenarios. In order to curb the
network growth and to obtain a compact representation, a variety of sparsification
techniques can be applied, where only the important input data are accepted as the
centers. Typical sparsification criteria include the novelty criterion [179], approxi-
mate linear dependency (ALD) criterion [176], coherence criterion [180], surprise
criterion [181], and so on. The idea of quantization can also be used to yield a com-
pact network with desirable accuracy [182].
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4.2 MEE Identification Criterion

Most of the existing approaches to parameter identification utilized the MSE (or
equivalently, Gaussian likelihood) as the identification criterion function. The MSE
is mathematically tractable and under Gaussian assumption is an optimal criterion
for linear system. However, it is well known that MSE may be a poor descriptor of
optimality for nonlinear and non-Gaussian (e.g., multimodal, heavy-tail, or finite
range distributions) situations, since it constrains only the second-order statistics.
To address this issue, one can select some criterion beyond second-order statistics
that does not suffer from the limitation of Gaussian assumption and can improve
performance in many realistic scenarios. Information theoretic quantities (entropy,
divergence, mutual information, etc.) as identification criteria attract ever-
increasing attention to this end, since they can capture higher order statistics and
information content of signals rather than simply their energy [64]. In the follow-
ing, we discuss the MEE criterion for system identification.

Under MEE criterion, the parameter vector (weight vector) W can be identified
by solving the following optimization problem:

W = arg min H(ey)
WeQy

— arg min — j  pu(©log pu(©)de (4.33)

WEQW

arg min E,[ — log p.(ep)]
WeQy

where p,(.) denotes the probability density function (PDF) of error ¢; = zx — ;. If
using the order-a Renyi entropy (a >0, a # 1) of the error as the criterion func-
tion, the estimated parameter will be

A

W = arg min H,(ey)

WeQy
1 o0
= arg min logJ po(&d¢
weqy 1— —
= arg min log V. (ex) (4.34)
weQy 11—«

arg minV,(¢;) if a<l1
(i) WEQW

arg maxV,(e;) if a>1
WeQy

where (a) follows from the monotonicity of logarithm function, V,(e;) is the
order-a information potential (IP) of the error e;. If o <1, minimizing the order-a
Renyi entropy is equivalent to minimizing the order-a IP; while if a > 1, minimiz-
ing the order-a Renyi entropy is equivalent to maximizing the order-a IP. In
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practical application, we often use the order-a IP instead of the order-a Renyi
entropy as the criterion function for identification.
Further, if using the ¢-entropy of the error as the criterion function, we have

W = arg min Hy(ey)
WeQy

arg min {J qs[pe(s)]d&} 4.35)

WeQy — 0

arg min E [¢(p.(ex))]

WeQy

where (x) = ¢(x)/x. Note that the ¢-entropy criterion includes the Shannon
entropy (¢(x) = — x log x) and order-« information potential (¢(x) = sign(1 — a)x®)
as special cases.

The error entropy is a functional of error distribution. In practice, the error dis-
tribution is usually unknown to us, and so is the error entropy. And hence, we have
to estimate the error entropy from error samples, and use the estimated error
entropy (called the empirical error entropy) as a criterion to identify the system
parameter. In the following, we present several common approaches to estimating
the entropy from sample data.

4.2.1 Common Approaches to Entropy Estimation

A straight way to estimate the entropy is to estimate the underlying distribution
based on available samples, and plug the estimated distributions into the entropy
expression to obtain the entropy estimate (the so-called “plug-in approach”) [183].
Several plug-in estimates of the Shannon entropy (extension to other entropy defi-
nitions is straightforward) are presented as follows.

4.2.1.1 Integral Estimate

Denote py(x) the estimated PDF based on sample Sy = {xi,X2,...,xy}. Then the
integral estimate of entropy is of the form

Hy = —L Pr(@log py()dx (436)

where Ay is a set typically used to exclude the small or tail values of py(x). The evalu-
ation of Eq. (4.36) requires numerical integration and is not an easy task in general.

4.2.1.2 Resubstitution Estimate

The resubstitution estimate substitutes the estimated PDF into the sample mean
approximation of the entropy measure (approximating the expectation value by its
sample mean), which is of the form
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1 Y X
Hy = — N; log py(x:) (4.37)

This estimation method is considerably simpler than the integral estimate, since
it involves no numerical integration.

4.2.1.3 Splitting Data Estimate

Here, we decompose the sample Sy = {x|,xs,...,xy} into two sub samples:
Sp=1{x1,..,x}, Sy ={x],...,x};}, N=L+ M. Based on subsample S;, we obtain
a density estimate p; (x), and then, using this density estimate and the second sub-
sample Sy;, we estimate the entropy by

1 S * Y *
Hy = =2 Ilx; eArllog py(x) (4.38)

i=1

where I[.] is the indicator function and the set A, = {x : p;(x) =ar} (0<ap — 0).
The splitting data estimate is different from the resubstitution estimate in that
it uses different samples to estimate the density and to calculate the sample
mean.

4.2.1.4 Cross-validation Estimate

If ﬁN,,- denotes a density estimate based on sample Sy; = Sy — {x;} (i.e., leaving x;
out), then the cross-validation estimate of entropy is

1 .
Hy = =~ > Il Ay llog py(x) (4.39)

i=1

A key step in plug-in estimation is to estimate the PDF from sample data. In the
literature, there are mainly two approaches for estimating the PDF of a random var-
iable based on its sample data: parametric and nonparametric. Accordingly, there
are also parametric and nonparametric entropy estimations. The parametric density
estimation assumes a parametric model of the density and estimates the involved
parameters using classical estimation methods like the maximum likelihood (ML)
estimation. This approach needs to select a suitable parametric model of the den-
sity, which depends upon some prior knowledge. The nonparametric density esti-
mation, however, does not need to select a parametric model, and can estimate the
PDF of any distribution.

The histogram density estimation (HDE) and kernel density estimation (KDE)
are two popular nonparametric density estimation methods. Here we only discuss
the KDE method (also referred to as Parzen window method), which has been
widely used in nonparametric regression and pattern recognition. Given a set of
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independent and identically distributed (i.i.d.) samples7 {x1,...,xn} drawn from
p(x), the KDE for p(x) is given by [97]

. 1<
Pn) = ; Ky(x — x)) (4.40)

where Kj(.) denotes a kernel function® with width h, satisfying the following
conditions:

Kh(x) =0
TP K =1 (4.41)
Ky(x) = K(x/h)/h

where K(.) is the kernel function with width 1. To make the estimated PDF smooth,
the kernel function is usually selected to be a continuous and differentiable (and
preferably symmetric and unimodal) function. The most widely used kernel func-
tion in KDE is the Gaussian function:

2
Ki(x) = ﬁexp (—%) (4.42)

The kernel width of the Gaussian kernel can be optimized by the ML principle,
or selected according to rules-of-thumb, such as Silverman’s rule [97].
With a fixed kernel width &, we have

limy_, o py(x) = p(x) * Kj(x) (4.43)

where * denotes the convolution operator. Using a suitable annealing rate for
the kernel width, the KDE can be asymptotically unbiased and consistent.
Specifically, if limy_, . Ay =0 and limy_, o, Ny = oo, then limy_, , py(x) = p(x)
in probability [98].

In addition to the plug-in methods described previously, there are many other
methods for entropy estimation, such as the sample-spacing method and the nearest
neighbor method. In the following, we derive the sample-spacing estimate. First,
let us express the Shannon entropy as [184]

H(p) = J; log (% F"(P)) ap (4.40)

7 In practical applications, if the samples are not i.i.d., the KDE method can still be applied.
& The kernel function for density estimation is not necessarily a Mercer kernel. In this book, to make a
distinction between these two types of kernels, we denote them by K and , respectively.
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Where ~F(x) = p(x). Using the slope of the curve F~ !(P) to approximate the deriv-
ative, we have

EF ](P) (XNI‘Hﬂ -xN,i)

> TN (4.45)

where xy) <xyo<--<xyny is the order statistics of the sample
Sy ={x1,x2,..,xn}, and (xy;+m —xy;) 1is the m-order sample spacing
(1 =i<i+ m=N). Hence, the sample-spacing estimate of the entropy is

mN = 33 Z 103( (le+m XN,[)) (4.46)

If adding a correction term to compensate the asymptotic bias, we get

mN Z log( (XN i+m xN,i)> + ¢(m) + 10g m (447)

where 1(x) = (log T'(x))’ is the Digamma function (I'(.) is the Gamma function).

4.2.2 Empirical Error Entropies Based on KDE

To calculate the empirical error entropy, we usually adopt the resubstitution estima-
tion method with error PDF estimated by KDE. This approach has some attractive
features: (i) it is a nonparametric method, and hence requires no prior knowledge
on the error distribution; (ii) it is computationally simple, since no numerical inte-
gration is needed; and (iii) if choosing a smooth and differentiable kernel function,
the empirical error entropy (as a function of the error sample) is also smooth and
differentiable (this is very important for the calculation of the gradient).

Suppose now a set of error samples S, = {ej, ez, ..., ey} are available. By KDE,
the error density can be estimated as

N
Pl = =" Kife — e) (4.48)
i=1

Then by resubstitution estimation method, we obtain the following empirical
error entropies:

1. Empirical Shannon entropy

. 1 1 Y
Hie)= =5 log <N2Kh(e_,- - e,-)> (4.49)
j=1 i=1
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2. Empirical order-a Renyi entropy

Hole)=

log Va(e) =

N a—1
—log { 1 3 <1 ) Kh(ej_ei)> } (4.50)
j=1 i=1

where V,(e) is the empirical order-« IP, i.e.,

R 1 N 1 N a—1
Vale) = NFZI (N;Kh(ej—e,-)> 4.51)

3. Empirical ¢-entropy
. 1 & 1
Hy(e) = N; ¥ N; Ki(e; — e;) (4.52)

It is worth noting that for quadratic information potential (QIP) (a=2), if
choosing Gaussian kernel function, the resubstitution estimate will be identical to
the integral estimate but with kernel width /24 instead of h. Specifically, if K}, is
given by Eq. (4.42), we can derive

2

0 N

J (#Z Kn(e—e )) de
1) N

J (ZZKh(e —e))Kn(e — e,-)) de

%l—

- \j=1i=1

(4.53)

3=

JOO Ki(e — ¢))Ky(e — e;)de

3=

533
N N
ZZ vanlej ~€i)
j=1i=1

This result comes from the fact that the integral of the product of two Gaussian
functions can be exactly evaluated as the value of the Gaussian function computed
at the difference of the arguments and whose variance is the sum of the variances
of the two original Gaussian functions. From Eq. (4.53), we also see that the QIP
can be simply calculated by the double summation over error samples. Due to this
fact, when using order-a IP, we usually set o = 2.

In the following, we present some important properties of the empirical error

entropy, and our focus is mainly on the order-a Renyi entropy (or order-a IP)
[64,67].

Property 1: H,(¢e + ¢) = H,(e).
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Proof: Let ¢ = e + ¢, where ceR is an arbitrary constant, &; =¢; + ¢,i = 1,2,...,N,
then we have

. 1 1 &
Ha(é): 10g _}Z

| | N N a—1
—o log Na Z (;Kh((ej +c)—(e;+ c))) (4.54)

N a—1
(ZKh(ej _ei)>

Il
—_
| | —
o)

5}
02
Q|’_‘

=

Remark: Property 1 shows that the empirical error entropy is also shift-invariant.
In system identification with MEE criterion, we usually set a bias at the model out-
put to achieve a zero-mean error.

N N . N N
Property 2: limlHa(e) =H(e), where H(e)= — %> log (% > Ki(ej — e,»)> is the
a— j=1 i=1
empirical Shannon entropy.

Proof:

. 1 1
lim H =1 1 —
a1—>Inl a(e) oz1—>Inl 11—« o8 (N Z

lN
N

Jj=1

a—1 1 N N a—1
N Z <§, ZKh(ej —ei)>

j=1 i=1

i=1

N a—1 N
1
<Z{, ZKh(ej - e,-)) log N ZKh(e/ —e;)
i=1

—e) | =H(e)

I
|
=
7
@
==
(]
=
IS

(4.55)
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Property 3: Let’s denote I:I(}(e) =I:I(,,h(e) (h is the kernel width). Then V ceR,
¢ # 0, we have H, n(ce) = H, p(e) + log|c|.

Proof:

- 1 1
Ha,\c\h(ce) = 1—a IOg Z

N N a-l
(a) 1 1 1 Z 1 Z 1 K (ce-ce;)
= Og — —_= T A %
l-a Nj:I N i=1 . (4.56)

= H,n(e) + log|c|

where (a) is because that Vc¢>0, the Kkernel function Kj(x) satisfies
Kch(x) = Kh()C/C)/C.

Property 4: Nlim H,(e) = H,(é)=H,(e), where ¢ is a random variable with PDF
— 00

Pe * Kj, (x denotes the convolution operator).

Proof: According to the theory of KDE [97,98], we have

Jim By — pex K, (4.57)

Hence, Nlim H,(e) — H,(é). Since the PDF of the sum of two independent ran-
— 0

dom variables is equal to the convolution of their individual PDFs, é can be consid-
ered as the sum of the error e and another random variable that is independent of
the error and has PDF Kj,. And since the entropy of the sum of two independent
random variables is no less than the entropy of each individual variable, we have
H.(&) = Hu(e).

Remark: Property 4 implies that minimizing the empirical error entropy will mini-
mize an upper bound of the actual error entropy. In general, an identification algo-
rithm seeks extrema (either minimum or maximum) of the cost function,
independently to its actual value, so the dependence on estimation error is decreased.

Property 5: If K,(0)=maxKj(x), then I-L(e)Z —log K,(0), with equality if
e =er = =ey.



80 System Parameter Identification

Proof: Consider the case where o> 1 (o<1 is similar), we have

a—1

Ha(e) =

1 1 N N
1 — Ky(e;j—e;
- o og No 2 ; h(ej e;)

(4.58)

a—1
1 N
= 1 K;(0
LA 2(2 y >)
= —log K;(0)
If Vij,e—e=0,ie., ef =e, = = ey, the equality will hold.
Remark: Property 5 suggests that if the kernel function reaches its maximum value

at zero, then when all the error samples have the same value, the empirical error
entropy reaches minimum, and in this case the uncertainty of the error is minimum.

Property 6: If the kernel function Kj(.) is continuously differentiable, symmetric,

and unimodal, then the empirical error entropy is smooth at the global minimum of

Property 5, that is, H, has zero-gradient and positive semidefinite Hessian matrix
_ T _

ate=Jey,...,ey]" =0.

Proof:

oH, 1 V,/oe
8ek 1-— (6% \}a

PHo _ 1 (8*Va/deider) = (0Va/0e)(0V o /0er) (4.59)
Oej0ey, 11—« ‘}2

(e}
If e = 0, we can calculate

Vale=o =K 71(0)

v, o o
Bex (aN” VIV 0K 0) NGO 4(0)] =0
2y — — a—3 )

62 _(@-DKp0)

2 1!
m le=0 = N2 [( —2)K; (0) + 2K, (0)K}, (0)]
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Hence, the gradient vector (6H, /0e)|,=9 = 0, and the Hessian matrix is

*H, = { — (N = DK; 1 0)[(a — 2)K'X(0) + 2K, (0K (O)]/N?, 1=k
deider 0 L K; o 0)(a — 2)K'2(0) + 2Kx(0)K [ (0)] /N2, 14k
(4.61)

whose eigenvalue—eigenvector pairs are

{0,[1,...,1]"}, {aN,[1,—1,0,...,0]"}, ({aN,[1,0,—1,...,0]"},... (4.62)

where a=—K, “ ' (O)[(a— 2)1(2(0) +2K,(0)K}/(0)]/N>.  According to the
assumptions we have a = 0, therefore this Hessian matrix is positive semidefinite.

Property 7: With Gaussian kernel, the empirical QIP V() can be expressed as
the squared norm of the mean vector of the data in kernel space.

Proof: The Gaussian kernel is a Mercer kernel, and can be written as an inner
product in the kernel space (RKHS):

Ki(ei — €) = (p(ei), p(e))) ., (4.63)

where ¢(.) defines the nonlinear mapping between input space and kernel space
H k,. Hence the empirical QIP can also be expressed in terms of an inner product
in kernel space:

) | NN
Va(e) = N2 Zth(ej —ei)

i=1 j=1

1 N N
= <50(ei)a @(e)) K,
= ;; i), (4.64)

N N
,‘sto(e;),,‘VZso(e;)>
=l Hg,

i=1

T

=m’m = |m|*

=

where m = ©(e;) is the mean vector of the data in kernel space.

1
N

I
—

In addition to the previous properties, the literature [102] points out that the empiri-
cal error entropy has the dilation feature, that is, as the kernel width /4 increases, the
performance surface (surface of the empirical error entropy in parameter space) will
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Figure 4.3 Contour plots of a two-dimensional performance surface of ADALINE
parameter identification based on the order-« IP criterion
(adopted from Ref. [102]).

become more and more flat, thus leading to the local extrema reducing gradually and
even disappearing. Figure 4.3 illustrates the contour plots of a two-dimensional perfor-
mance surface of ADALINE parameter identification based on the order-a IP crite-
rion. It is clear to see that the IPs corresponding to different o values all have the
feature of dilation. The dilation feature implies that one can obtain desired perfor-
mance surface by means of proper selection of the kernel width.

4.3 Identification Algorithms Under MEE Criterion

4.3.1 Nonparametric Information Gradient Algorithms

In general, information gradient (IG) algorithms refer to the gradient-based identifi-
cation algorithms under MEE criterion (i.e., minimizing the empirical error
entropy), including the batch information gradient (BIG) algorithm, sliding infor-
mation gradient algorithm, forgetting recursive information gradient (FRIG) algo-
rithm, and stochastic information gradient (SIG) algorithm. If the empirical error
entropy is estimated by nonparametric approaches (like KDE), then they are called
the nonparametric IG algorithms. In the following, we present several nonparamet-
ric IG algorithms that are based on ¢-entropy and KDE.
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4.3.1.1 BIG Algorithm

With the empirical ¢-entropy as the criterion function, the BIG identification algo-
rithm is derived as follows:

o Hy(e)

Wi =W — ﬂﬁ

N

n 0 1 &
=Wt = 28N | =S Kale — e
Wi—1 N oW j:]iﬁ N2 n(ej — ei)

N

, 1 N , 8€j 6e,-
(0 N;Kh(ej_ei) ; K'n(ej — e) aw W

7

- N2«
J

N
= Wi
=

N

N N N A
_ n ’ 1 _ / _ ay] _ ayl
= Wit + m; Yy ;Kh(ej e) | Y| K'nlej— e W aw

i=1

(4.65)

where 7 is the step-size, N is the number of training data, ¢//(.) and K’j(.) denote,

respectively, the first-order derivatives of functions ¢(.) and Kj(.). The gradient

0y;/OW of the model output with respect to the parameter W depends on the spe-

cific model structure. For example, if the model is an ADALINE or FIR filter, we

have &y;/0W = X;. The reason for the algorithm named as the BIG algorithm is

because that the empirical error entropy is calculated based on all the training data.
Given a specific ¢ function, we obtain a specific algorithm:

1. ¢(x) = — xlog x (Shannon entropy)

) [y s % _
Wi =Wy — N E ( E Kh(ej_ei)) E (K/h(ej —e) (ﬁ - 6%1/)) (4.66)
= f i

i=1
2. ¢(x) = sign(1 — a)x® (Corresponding to order-« information potential)

n(a—1)
NQ’

v (/0 o2 5 o, (4.67)
X Ki(ej—e;) K'p(ej—e)| =% — =
S (Smemer) 3w 57~ 3

In above algorithms, if the kernel function is Gaussian function, the derivative
K/;,(ej - 6[) will be

Wi = Wy—1 +sign(1 — a)

L (e~ eDKnle; — e) (4.68)

K'y(ej —e;) = — 5
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The step-size 7 is a crucial parameter that controls the compromise between conver-
gence speed and misadjustment, and has significant influence on the learning (identifi-
cation) performance. In practical use, the selection of step-size should guarantees the
stability and convergence rate of the algorithm. To further improve the performance,
the step-size n can be designed as a variable step-size. In Ref. [105], a self-adjusting
step-size (SAS) was proposed to improve the performance of QIP criterion, i.e.,

e = 1(V2(0) = Vale) (4.69)

where VZA(O) = K;,(0) and Kj(.) is a symmetric and unimodal kernel function (hence
V2(0) = Va(e)).

The kernel width 4 is another important parameter that controls the smoothness of
the performance surface. In general, the kernel width can be set manually or deter-
mined in advance by Silverman’s rule. To make the algorithm converge to the global
solution, one can start the algorithm with a large kernel width and decrease this param-
eter slowly during the course of adaptation, just like in stochastic annealing. In Ref.
[185], an adaptive kernel width was proposed to improve the performance.

The BIG algorithm needs to acquire in advance all the training data, and hence
is not suitable for online identification. To address this issue, one can use the slid-
ing information gradient algorithm.

4.3.1.2 Sliding Information Gradient Algorithm

The sliding information gradient algorithm utilizes a set of recent error samples to
estimate the error entropy. Specifically, the error samples used to calculate the error
entropy at time k is as follows” :

{ex-r+1,- - ex—1, ek} (4.70)

where L denotes the sliding data length (L <N). Then the error entropy at time k
can be estimated as

k k
Aot =1 Y ¢G 3 Kh(e,»—e») @“.71)
j=k

j=k—L+1 i=k—L+1

And hence, the sliding information gradient algorithm can be derived as

a . k
Wi = Wi — an@k(e) =W + & >

L.
Lo . 5 o (4.72)
Y Vi
(= Ki(ej — ei) Kn(eg—e) | 55 — =0
L2 2 W oW

° It should be noted that the error samples at time k are not necessarily to be a tap delayed sequence. A
more general expression of the error samples can be {el,k, € s ey eL,k}.
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For the case ¢(x) = — x? (corresponding to QIP), the above algorithm becomes
k k 5 o
n % ayj ayl
Wie=Wio1 — = E E (K w(ej —ei) (— — (4.73)
sz:k—ul i=k—L+1 ow oW

4.3.1.3 FRIG Algorithm

In the sliding information gradient algorithm, the error entropy can be estimated by
a forgetting recursive method [64]. Assume at time k — 1 the estimated error PDF
is py_,(e), then the error PDF at time k can be estimated as

pile) = (1= Npr_i(e) + AK(e — er) (4.74)

where A is the forgetting factor. Therefore, we can calculate the empirical error
entropy as follows:

k
o@=1 > vihie)

j=k—L+1
(4.75)
1 & )
=7 D U= Vhii(e) + AKile; — €]
j=k—L+1
If ¢(x) = — x* (¢(x) = — x), there exists a recursive form [186]:
n N A k
Vai(e) = (1= NWVaxile) + 7 > Kile—ex) (4.76)
j=k—L+1

where Vz,k(e) is the QIP at time k. Thus, we have the following algorithm:

0
Wi =W + 5w Vax(e)

k

0 A 9y oy
= Wi + (1 — A)ﬁvlk—l(e) - TU > Kulej—ex) ﬁ - 8_)12[];
j=k—L+1

4.77)
namely the FRIG algorithm. Compared with the sliding information gradient algo-

rithm, the FRIG algorithm is computationally simpler and is more suitable for non-
stationary system identification.
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4.3.1.4 SIG Algorithm

In the empirical error entropy of (4.71), if dropping the outer averaging operator
(1/L Z]'; «—1+1(.)), one may obtain the instantaneous error entropy at time k:

k

Hyi(e) =1 (% > Kiler — 6i)> (4.78)

i=k—L+1

The instantaneous error entropy is similar to the instantaneous error cost
R = I(e;), as both are obtained by removing the expectation operator (or averaging
operator) from the original criterion function. The computational cost of the instan-
taneous error entropy (4.78) is 1/L of that of the empirical error entropy of
Eq. (4.71). The gradient identification algorithm based on the instantaneous error
entropy is called the SIG algorithm, which can be derived as

k

0 1
Wi =W —n==¢ | — Kp(ex — e)
o' \z, 22,
U ‘ ‘ o _
_ / _ . ! — )| 22X !
=Wt + 79 Zizz Ki(ee —e) | > | K'nlex —e) W aw

k—L+1 i=k—L+1

(4.79)

If ¢(x)=—xlogx, we obtain the SIG algorithm under Shannon entropy
criterion:

k -1 k n R
= n(l / Vi 0y
Wie=Wi-1 — I (Zi—z Kh(ek_ei)> i:Z (K nlex —e) (W — e

k—L+1 k—L+1

(4.80)

If ¢(x) = — x?, we get the SIG algorithm under QIP criterion:

k . .
/ 0 0 i
Wi =W — % > <K nlex — ei) (% - ﬁ)) (4.81)
i=k—L+1

The SIG algorithm (4.81) is actually the FRIG algorithm with A = 1.

4.3.2 Parametric IG Algorithms

In IG algorithms described above, the error distribution is estimated by non-
parametric KDE approach. With this approach, one is often confronted with the
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problem of how to choose a suitable value of the kernel width. An inappropri-
ate choice of width will significantly deteriorate the performance of the algo-
rithm. Though the effects of the kernel width on the shape of the performance
surface and the eigenvalues of the Hessian at and around the optimal solution
have been carefully investigated [102], at present the choice of the kernel width
is still a difficult task. Thus, a certain parameterized density estimation, which
does not involve the choice of kernel width, sometimes might be more practi-
cal. Especially, if some prior knowledge about the data distribution is available,
the parameterized density estimation may achieve a better accuracy than non-
parametric alternatives.

Next, we discuss the parametric IG algorithms that adopt parametric approaches
to estimate the error distribution. To simplify the discussion, we only present the
parametric SIG algorithm.

In general, the SIG algorithm can be expressed as

0

Wi = Wi — P

Y(plex)) (4.82)

where p(ey) is the value of the error PDF at ¢, estimated based on the error samples
{ex—r+1,-- -, €x—1,ex}. By KDE approach, we have

k
pen=+ > Kifex e (4.83)

Li=k7L+l

Now we use a parametric approach to estimate p(ey). Let’s consider the expo-
nential (maximum entropy) PDF form:

K
ple) =exp (— =Y A,g,(e)> (4.84)
r=1

where the parameters A, (r=0,1,...,K) can be estimated by some classical esti-
mation methods like the ML estimation. After obtaining the estimated parameter
values A,, one can calculate p(ey) as

K
pler) = GXP<—5\0 -3 i,g,(ek)) (4.85)
r=1

Substituting Eq. (4.85) into Eq. (4.82), we obtain the following parametric SIG
algorithm:

K
Wi = W1 — 77%1/) (exp <_ Ao — Z :\rgr(ek)>> (4.86)
r=1
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If adopting Shannon entropy (1(x) = — log(x)), the algorithm becomes
d R SN
Wi = Wi + na—log exp| — Ao — ;)\,g,(ek)
d Y
=Wisi+n=—=1| 20— ) Mg
k—1 U6W< 0 ; g(ek)>

8ek

. (4.87)
= Wk—l - WZ;\rg r(ek)_
r=1

K ~
N ayk
=W, +1n Mg r(en) =—

The selection of the PDF form is very important. Some typical PDF forms are
as follows [187—190]:

1. p(e) =exp(— Ay — Aje — e — A3 log(1 + €2) — )\ sin(e) — A5 cos(e))
2. ple) =exp(— Xy — Aie — Ape? — A3 log(1 + €2))
3. Generalized Gaussian density (GGD) model [191]:

ple) = =———7—exp(— (le—pl|/B)") (4.88)

2BF(I/ )

where 3=0+/I'(1/a)/I'(3/c), 0 >0 is the standard deviation, and I'(.) is the

Gamma function:

e}
r(z)=J ¥ le™dy, z>0 (4.89)
0

In the following, we present the SIG algorithm based on GGD model.

The GGD model has three parameters: location (mean) parameter p, shape
parameter «, and dispersion parameter 3. It has simple yet flexible functional forms
and could approximate a large number of statistical distributions, and is widely
used in image coding, speech recognition, and BSS, etc. The GGD densities
include Gaussian (o =2) and Laplace (aw=1) distributions as special cases.
Figure 4.4 shows the GGD distributions for several shape parameters with zero
mean and deviation 1.0. It is evident that smaller values of the shape parameter cor-
respond to heavier tails and therefore to sharper distributions. In the limiting cases,
as o — oo, the GGD becomes close to the uniform distribution, whereas as
«a — 0+, it approaches an impulse function (é-distribution).

Utilizing the GGD model to estimate the error distribution is actually to estimate
the parameters pu, o, and § based on the error samples. Up to now, there are many
methods on how to estimate the GGD parameters [192]. Here, we only discuss the
moment matching method (method of moments).
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The order-r absolute central moment of GGD distribution can be calculated as

+ o

me=E[X ~ )= |

Hence we have

m_ T(r+1/a)
Vmr \/T(2r + D/a)[(1]a)

= pl"p()dx = 8" 1((r + 1)/a)/I(1/ )

(4.90)

(4.91)

The right-hand side of Eq. (4.91) is a function of «, denoted by R,(«). Thus the

parameter « can be expressed as

o :Rr_l (mr/«/m_Zr)

(4.92)

where R !(.) is the inverse of function R,(.). Figure 4.5 shows the curves of the

inverse function y = R !(x) when r = 1,2.

According to Eq. (4.92), based on the moment matching method one can esti-

mate the parameters pu, o, and § as follows:

| &
e Zi:/;+]ei
& - 1
ar =R, I Z le; — 1yl -
i=k—L+1
. 1 & i T(1/é)
B = I Z (ei— k)2 F(3;A)
i=k—L+1 Ak

(4.93)
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where the subscript k represents that the values are estimated based on the error
samples {ex—r+1,...,e—1,er}. Thus p(e;) will be

. Qy lex — f|
= —* 4.94
P 20, I°(1/ &) =P ( B ) 499

Substituting Eq. (4.94) into Eq. (4.82) and letting (x) = —logx (Shannon
entropy), we obtain the SIG algorithm based on GGD model:

Wi =Wi—1 — —log pler) }

"aW {
(4.95)

Qulex — ﬂk|&k715ign(6k - ﬂk)@

B w

:Wk—l +7]

where [i;, &y, and ﬁk are calculated by Eq. (4.93).

To make a distinction, we denote “SIG-kernel” and “SIG-GGD” the SIG algo-
rithms based on kernel approach and GGD densities, respectively. Compared with
the SIG-kernel algorithm, the SIG-GGD just needs to estimate the three parameters
of GGD density, without resorting to the choice of kernel width and the calculation
of kernel function.

Comparing Egs. (4.95) and (4.28), we find that when i, ~ 0, the SIG-GGD
algorithm can be con51dered as an LMP algorithm with adaptive order &y and vari-
able step-size 7/ ﬂk In fact, under certain conditions, the SIG-GGD algorithm
will converge to a certain LMP algorithm with fixed order and step-size. Consider
the FIR system identification, in which the plant and the adaptive model are both
FIR filters with the same order, and the additive noise {n;} is zero mean, ergodic,
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and stationary. When the model weight vector W, converges to the neighborhood
of the plant weight vector W*, we have

e =~V = W/TXk + = m (4.96)

where Wk = W* — Wy is the weight error vector. In this case, the estimated values
of the parameters in SIG-GGD algorithm will be

A - 1 k ~ r 1 k ~ r
0 ~ R, ! i3 Z | — [ / I Z (”i_ﬂk)z 4.97)

k—L+1 i=k—L+1

A 1 k a2 F(l/dk)
B ~ zi:];H(ni )™ X ITGJaw

Since noise {n;} is an ergodic and stationary process, if L is large enough, the
estimated values of the three parameters will tend to some constants, and conse-
quently, the SIG-GGD algorithm will converge to a certain LMP algorithm with
fixed order and step-size. Clearly, if noise n; is Gaussian distributed, the SIG-GGD
algorithm will converge to the LMS algorithm (& & 2), and if n; is Laplacian dis-
tributed, the algorithm will converge to the LAD algorithm (& & 1). In Ref. [28],
it has been shown that under slow adaptation, the LMS and LAD algorithms are,
respectively, the optimum algorithms for the Gaussian and Laplace interfering
noises. We may therefore conclude that the SIG-GGD algorithm has the ability to
adjust its parameters so as to automatically switch to a certain optimum algorithm.

There are two points that deserve special mention concerning the implementa-
tion of the SIG-GGD algorithm: (i) since there is no analytical expression, the cal-
culation of the inverse function R;'(.) needs to use look-up table or some
interpolation method and (ii) in order to avoid too large gradient and ensure the sta-
bility of the algorithm, it is necessary to set an upper bound on the parameter .

4.3.3 Fixed-Point Minimum Error Entropy Algorithm

Given a mapping f : A — A, the fixed points are solutions of iterative equation
x = f(x), xeA. The fixed-point (FP) iteration is a numerical method of computing
fixed points of iterated functions. Given an initial point xp€A, the FP iteration
algorithm is

Xk+1 :f(xk)s k= 09 15 29 e (498)

where k is the iterative index. If f is a function defined on the real line with real
values, and is Lipschitz continuous with Lipschitz constant smaller than 1.0, then f
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has precisely one fixed point, and the FP iteration converges toward that fixed point
for any initial guess xy. This result can be generalized to any metric space.

The FP algorithm can be applied in parameter identification under MEE crite-
rion [64]. Let’s consider the QIP criterion:

N N
Va(e) = ZZ w(ej — e (4.99)

:1 i=1

under which the optimal parameter (weight vector) W* satisfies

iV(e)——iivij:K’ (e—en (i _ D ‘ =0 (4.100)
ow '’ e = CT A A '

If the model is an FIR filter, and the kernel function is the Gaussian function,
we have

N N
.~ 222 (e~ eKile ~ ey~ X) =0 (4.101)
j= =1

One can write Eq. (4.101) in an FP iterative form (utilizing
ek =z — Y =% — W Xp):
W* = f(W*)

= Ki(ej—e)(X;—X)(X;—X)"
,ZZ e en ! (4.102)

N2 Zth(eJ ez — z)(X; — X)

j=1i=
Then we have the following FP algorithm:
Wier = f(We) = Re(W) ™' Pe(Wi) (4.103)
where
Re(Wy) = ZZKh(eJ e)(X; — X)(X;—X)"

e (4.104)
Pe(Wi) = — ZZKh(e, ez — z)(X; = X;)

j=1i=
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The above algorithm is called the fixed-point minimum error entropy (FP-MEE)
algorithm. The FP-MEE algorithm can also be implemented by using the forgetting
recursive form [194], i.e.,

Wi =F(Wi) = Re(We) ™ Pe(Wi) (4.105)
where
— - -2 & T
Re(Wi1) = ARE(Wi) + —— > Kilewrt = e)Xert = X)(Xer1 —X;)
i=k—L+1
_ _ =2 ¢
Pp(Wir1) = APE(Wi) + —— > Kilerrr — e)(@ert — ) (X1 — Xi)
i=k—L+1
(4.106)

This is the recursive fixed-point minimum error entropy (RFP-MEE) algorithm.

In addition to the parameter search algorithms described above, there are many
other parameter search algorithms to minimize the error entropy. Several advanced
parameter search algorithms are presented in Ref. [104], including the conjugate
gradient (CG) algorithm, Levenberg—Marquardt (LM) algorithm, quasi-Newton
method, and others.

4.3.4 Kernel Minimum Error Entropy Algorithm

System identification algorithms under MEE criterion can also be derived in ker-
nel space. Existing KAF algorithms are mainly based on the MSE (or least
squares) criterion. MSE is not always a suitable criterion especially in nonlinear
and non-Gaussian situations. Hence, it is attractive to develop a new KAF algo-
rithm based on a non-MSE (nonquadratic) criterion. In Ref. [139], a KAF algo-
rithm under the maximum correntropy criterion (MCC), namely the kernel
maximum correntropy (KMC) algorithm, has been developed. Similar to the
KLMS, the KMC is also a stochastic gradient algorithm in RKHS. If the kernel
function used in correntropy, denoted by k., is the Gaussian kernel, the KMC
algorithm can be derived as [139]

Q= Q-1 + nrcler)ernsy (4.107)

where €2, denotes the estimated weight vector at iteration k in a high-dimensional
feature space F, induced by Mercer kernel « and ¢, is a feature vector obtained by
transforming the input vector X; into the feature space through a nonlinear mapping
. The KMC algorithm can be regarded as a KLMS algorithm with variable step-
size nkc(ex).

In the following, we will derive a KAF algorithm under the MEE criterion.
Since the ¢-entropy is a very general and flexible entropy definition, we use the
¢-entropy of the error as the adaptation criterion. In addition, for simplicity we
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adopt the instantaneous error entropy (4.78) as the cost function. Then, one can eas-
ily derive the following kernel minimum error entropy (KMEE) algorithm:

0
Q=1 — ﬂm(ﬂﬁ,k(@)
Q-1 oL S ke - e
=8k—-1 T N=45 - ner —é€;
Y Li=k—L+1
T NGk-1 T T ek — € ek —€i)| =5 ~ A
L Li=k—L+1 i=k—L+1 oKy o
7 | & k
=t g g D0 Kile—ed | > (Kl — el = @)
i=k—L+1 i=k—L+1
(4.108)

The KMEE algorithm (4.108) is actually the SIG algorithm in kernel space. By
selecting a certain ¢ function, we can obtain a specific KMEE algorithm. For
example, if setting ¢(x) = —x log x (i.e., ¥(x) = — log x), we get the KMEE under
Shannon entropy criterion:

k
> (Ky(ex — e — )
Q= @y — B (4.109)
> Kilex—e)

i=k—L+1

The weight update equation of Eq. (4.108) can be written in a compact form:
Qk = Qk—l + n‘I>kh¢(ek) (41 10)

_ T _ .
where ey = [ex—r+1,€k—r1+2,-- el s P =@ 11> Prr12>-- - Pi)s and hy(ey) is a
vector-valued function of e, expressed as

—K'n(ex — ex—r+1)

1,1 & :
hoe) =0 |+ > Kiler—e) | x| ~Knler—e) (4.111)
L™ \L = it
Z K'j(ex — e:)
i=k—L+1

The KMEE algorithm is similar to the KAPA [178], except that the error vector
e; in KMEE is nonlinearly transformed by the function k4(.). The learning rule of
the KMEE in the original input space can be written as (fy = 0)

Jie = fim1 + nKih(ex) (4.112)
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where Ky = [6(Xx—r+1, ), K(Xk-L+2, ), - - - 5(Xk, )]

The learned model by KMEE has the same structure as that learned by KLMS,
and can be represented as a linear combination of kernels centered in each data
points:

k
£O=D ar(X;,.) (4.113)
=1
where the coefficients (at iteration k) are updated as follows:
" | & k=1
zlﬂ/ Zi=/;+1Kh(ek —e) i=1;+1[(/h(ek —e), j=k
aj = n 1 k
aj =7V zi:kZLjﬁKh(ek —e) |Kulex—¢),  k—L<j<k
Q;j, I=j=k—-L

(4.114)

The pseudocode for KMEE is summarized in Table 4.2.

4.3.5 Simulation Examples

In the following, we present several simulation examples to demonstrate the perfor-
mance (accuracy, robustness, convergence rate, etc.) of the identification algo-
rithms under MEE criterion.

Table 4.2 The KMEE Algorithm

Initialization:

a. Assigning the ¢ function and the kernel functions s and Kj;

b. Choose the step-size 7, and the sliding data length L;

c. Initialize the center set C = {X;}, and the coefficient vector o = [1)z;]
d. Initialize the window of L errors: e = {0, .. .,0}.

Computation:

while{X}, z;} (k> 1) available do

T.

b}

1. Allocate a new unit: C = {C, X}, a =[a”,0]"
2. Update the window of errors:-

e(i)=e(i+1), for i=1,..,L—1
e(L):ek

-1
where ey =z — > (X, Xi)
=

3. Update the coefficient vector a = [ay, . . ., ozk]T using (4.114).
end while
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Example 4.1 [102] Assume that both the unknown system and the model are two-
dimensional ADALINEs, i.e.,

{ e = Wixig + wixoy + (4.115)

Vi = WiX g T WaXo g

where unknown weight vector is W* = [wT,wz]T =[1.0,2.0]", and n; is the inde-
pendent and zero-mean Gaussian noise. The goal is to identify the model para-
meters W = [wy, w,] under noises of different signal-to-noise ratios (SNRs). For
each noise energy, 100 independent Monte-Carlo simulations are performed with
N (N =10,20,50,100) training data that are chosen randomly. In the simulation,
the BIG algorithm under QIP criterion is used, and the kernel function Kj, is the
Gaussian function with bandwidth 4 = 1.0. Figure 4.6 shows the average distance
between actual and estimated optimal weight vector. For comparison purpose,
the figure also includes the identification results (by solving the Wiener-Hopf
equations) under MSE criterion. Simulation results indicate that, when SNR is
higher (SNR > 10dB), the MEE criterion achieves much better accuracy than
the MSE criterion (or requires less training data when achieving the same
accuracy).

10" ; . T T

Average distance between actual and
estimated optimal weight vector

SNR (dB)

Figure 4.6 Comparison of the performance of MEE against MSE
(adopted from Ref. [102]).
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Example 4.2 [100] Identify the following nonlinear dynamic system:

_ X1,k .
X1k+1 = T2 +1 ] .sin X2k
Xk
X%k +x§k Mi
Xok+1 = X24.COSXp T EXp| —— :
i ’ ’ 8 1+ u? +0.5 cos(xyx + x2x)
X1k X2k

Yk

- 1+05sinxy, 1+0.5sinx,

(4.116)

where xx and x, are the state variables and uy is the input signal. The identifica-
tion model is the time delay neural network (TDNN), where the network structure
is an MLP with multi-input, single hidden layer, and single output. The input vector
of the neural network contains the current input and output and their past values of
the nonlinear system, that is, the training data can be expressed as

([t k1, oy Uy Vi1 -+ s Vi, 5 k) (4.117)

In this example, n, and n, are set as n, =n, = 6. The number of hidden units is
set at 7, and the symmetric sigmoid function is selected as the activation function.
In addition, the number of training data is N = 100. We continue to compare the
performance of MEE (using the BIG algorithm under QIP criterion) to MSE. For
each criterion, the TDNN is trained starting from 50 different initial weight vectors,
and the best solution (the one with the highest QIP or lowest MSE) among the 50
candidates is selected to test the performance.'® Figure 4.7 illustrates the probabil-
ity densities of the error between system actual output and TDNN output with
10,000 testing data. One can see that the MEE criterion achieves a higher peak
around the zero error. Figure 4.8 shows the probability densities of system actual
output (desired output) and model output. Evidently, the output of the model
trained under MEE criterion matches the desired output better.

Example 4.3 [190] Compare the performances of SIG-kernel, SIG-GGD, and LMP
family algorithms (LAD, LMS, LMF, etc.). Assume that both the unknown system
and the model are FIR filters:

G*(z2)=0.1+03z"'405z2+03z3+0.1z7* @.118)
G()=wo+wiz h+waz 2+ wiz 2 +wyz? :

10 Since error entropy is shift-invariant, after training under MEE criterion the bias value of the output
PE was adjusted so as to yield zero-mean error over the training set.
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Figure 4.7 Probability densities of the error between system actual output and model output
(adopted from Ref. [100]).
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Figure 4.8 Probability densities of system actual output and model output
(adopted from Ref. [100]).
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where G*(z) and G(z) denote the transfer functions of the system and the model,
respectively. The initial weight vector of the model is set to be Wy =[0,0,0,0,0]",
and the input signal is white Gaussian noise with zero mean and unit power (vari-
ance). The kernel function in SIG-kernel algorithm is the Gaussian kernel with
bandwidth determined by Silverman rule. In SIG-GGD algorithm, we set r = 2, and
to avoid large gradient, we set the upper bound of oy at 4.0.

In the simulation, we consider four noise distributions (Laplace, Gaussian,
Uniform, MixNorm), as shown in Figure 4.9. For each noise distribution, the aver-
age convergence curves, over 100 independent Monte Carlo simulations, are illus-
trated in Figure 4.10, where WEP denotes the weight error power, defined as

WEP2E ||| Wi||*] = EDW, Wil (4.119)

where W, = W* — W, is the weight error vector (the difference between desired
and estimated weight vectors) and H WkH is the weight error norm. Table 4.3 lists
the average identification results (mean * deviation) of w,(wj = 0.5). Further, the
average evolution curves of a; in SIG-GGD are shown in Figure 4.11.

From the simulation results, we have the following observations:

i. The performances of LAD, LMS, and LMF depend crucially on the distribution of the
disturbance noise. These algorithms may achieve the smallest misadjustment for a cer-
tain noise distribution (e.g., the LMF performs best in uniform noise); however, for other
noise distributions, their performances may deteriorate dramatically (e.g., the LMF per-
forms worst in Laplace noise).

0.6 . : . - - - '
05} i
]
04} ! i
]
! —— Gaussian
- —— Laplace
= ]
A Y A U T Uniform
JEELEY B PR S O —-=—= MixNorm
02} i
041} i
0
_8 -6 —4 -2 0 4 6 8

Figure 4.9 Four PDFs of the additive noise
(adopted from Ref. [190]).
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Figure 4.10 Average convergence curves of several algorithms for different noise
distributions: (A) Laplace, (B) Gaussian, (C) Uniform, and (D) MixNorm
(adopted from Ref. [190]).

ii. Both SIG-GGD and SIG-Kernel are robust to noise distribution. In the case of symmetric
and unimodal noises (e.g., Laplace, Gaussian, Uniform), SIG-GGD may achieve a smal-
ler misadjustment than SIG-Kernel. Though in the case of nonsymmetric and nonunimo-
dal noises (e.g., MixNorm), SIG-GGD may be not as good as SIG-Kernel, it is still
better than most of the LMP algorithms.

iii. Near the convergence, the parameter «; in SIG-GGD converges approximately to 1, 2,
and 4 (note that oy is restricted to oy =4 artificially) when disturbed by, respectively,
Laplace, Gaussian, and Uniform noises. This confirms the fact that SIG-GGD has the
ability to adjust its parameters so as to switch to a certain optimum algorithm.

Example 4.4 [194] Apply the RFP-MEE algorithm to identify the following FIR
filter:

G*(2)=0.1+027"'+03z2+04z3+0577*

+04z5403276+0277+0.1z78 (4.120)
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Table 4.3 Average Identification Results of w, Over 100 Monte Carlo Simulations

SIG-Kernel SIG-GGD LAD LMS LMF

Laplace 0.5034 = 0.0419 0.5019 £0.0366 0.5011 =0.0352 0.5043 =0.0477 0.5066 * 0.0763
Gaussian 0.5035+0.0375 0.5026 = 0.0346 0.5038 £ 0.0402 0.5020 £0.0318 0.5055 = 0.0426
Uniform 0.4979 = 0.0323 0.4995+0.0311 0.5064 +0.0476 0.5035 *0.0357 0.4999 = 0.0263
MixGaussian 0.4997 = 0.0356 0.5014 =0.0449 0.4972 +0.0576 0.5021 =0.0463 0.5031 = 0.0523

(adopted from Ref. [190])

2.0

0 2000 4000 6000 8000
(©) Iteration

Figure 4.11 Evolution curves of «; over 100 Monte Carlo runs: (A) Laplace, (B) Gaussian,
and (C) Uniform
(adopted from Ref. [190]).

The adaptive model is also an FIR filter with equal order. The input to both the
plant and adaptive model is white Gaussian noise with unit power. The observation
noise is white Gaussian distributed with zero mean and variance 107!°. The main
objective is to investigate the effect of the forgetting factor on the convergence
speed and convergence accuracy (WEP after convergence) of the RFP-MEE algo-
rithm. Figure 4.12 shows the convergence curves of the RFP-MEE with different
forgetting factors. One can see that smaller forgetting factors result in faster con-
vergence speed and larger steady-state WEP. This result conforms to the well-
known general behavior of the forgetting factor in recursive estimates. Thus, select-
ing a proper forgetting factor for RFP-MEE must consider the intrinsic trade-off
between convergence speed and identification accuracy.
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Figure 4.12 Convergence curves of RFP-MEE algorithm with different forgetting factors
(adopted from Ref. [194]).

Example 4.5 This example aims to demonstrate the performance of KMEE (with
Shannon entropy or QIP criterion). For comparison purpose, we also show the per-
formances of several other KAF algorithms: KLMS, KMC, and KAPA. Let’s con-
sider the nonlinear system identification, where the nonlinear system is as follows
[195]:

i = (0.8 — 0.5 exp(— y7_))ye—1
— (0.3 +0.9exp(— y_ )2 (4.121)
+ 0.1 sin(3.1415926y,—1) + ny

The noise n; is of symmetric a-stable (SaS) distribution with characteristic
function

P(w) = exp(— v|w|”) (4.122)

where v=0.005, 0 <a=2.0. When a=2.0, the distribution is a zero-mean
Gaussian distribution with variance 0.01; while when o < 2.0, the distribution cor-
responds to an impulsive noise with infinite variance.

Figure 4.13 illustrates the average learning curves (over 200 Monte Carlo runs)
for different o values and Table 4.4 lists the testing MSE at final iteration. In the
simulation, 1000 samples are used for training and another 100 clean samples are
used for testing (the filter is fixed during the testing phase). Further, all the kernels
(kernel of RKHS, kernel of correntropy, and kernel for density estimation) are
selected to be the Gaussian kernel. The kernel parameter for RKHS is set at 0.2,
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Figure 4.13 Average learning curves for different o values: (A) a =2.0, (B) a=1.9,
C)a=1.8,(D) a=1.5.

Table 4.4 Testing MSE at Final Iteration for Different o Values

Algorithms Testing MSE

a=2.0 a=19 a=1.8 a=1.5
KLMS 0.0095 =0.0079 0.0134 £0.0647 0.0136 =0.1218 0.0203 = 0.3829
KMC 0.0103 =0.0082 0.0096 = 0.0089 0.0088 = 0.0086 0.0063 = 0.0064
KAPA 0.0067 =0.0015 0.0069 = 0.0055 0.0073 =0.0078 0.0072 = 0.0205
KMEE (Shannon) 0.0040 % 0.0027 0.0035 %= 0.0028 0.0035 % 0.0051 0.0041 *=0.0180
KMEE (QIP) 0.0035 = 0.0020 0.0034 = 0.0022 0.0036 = 0.0046 0.0048 = 0.0138

kernel size for correntropy is 0.4, and kernel bandwidth for density estimation is
1.0. The sliding data lengths for KMEE and KAPA are both set at L =10. The
step-sizes for KLMS, KMC, KAPA, KMEE (Shannon), and KMEE (QIP), are,
respectively, set at 0.8, 1.0, 0.05, 1.0, and 2.0. These parameters are experimentally
selected to achieve the desirable performance. From Figure 4.13 and Table 4.4, one
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can see that the KMEE algorithms outperform all other algorithms except for the
case of small o, the KMC algorithm may achieve a relatively smaller deviation in
testing MSE. Simulation results also show that the performances of KMEE
(Shannon) and KMEE (QIP) are very close.

4.4 Convergence Analysis

Next, we analyze the convergence properties of the parameter identification under
MEE criterion. For simplicity, we consider only the ADALINE model (which
includes the FIR filter as a special case). The convergence analysis of error entropy
minimization algorithms is, in general, rather complicated. This is mostly because

1. the objective function (the empirical error entropy) is not only related to the current error
but also concerned with the past error values;

2. the entropy function and the kernel function are nonlinear functions;

3. the shape of performance surface is very complex (nonquadratic and nonconvex).

There are two ways for the convergence analysis of such algorithms: (i) using
the Taylor series expansion near the optimal solution to obtain an approximate line-
arization algorithm, and then performing the convergence analysis for the lineariza-
tion algorithm and (ii) applying the energy conservation relation to analyze the
convergence behavior [106]. The first approach is relatively simple, but only the
approximate analysis results near the optimal solution can be achieved. With the
second approach it is possible to acquire rigorous analysis results of the conver-
gence, but usually more assumptions are needed. In the following, we first briefly
introduce the first analysis approach, and then focus on the second approach, per-
forming the mean square convergence analysis based on the energy conservation
relation. The following analysis is mainly aimed at the nonparametric IG algo-
rithms with KDE.

4.4.1 Convergence Analysis Based on Approximate Linearization

In Ref. [102], an approximate linearization approach has been used to analyze the
convergence of the gradient-based algorithm under order-a IP criterion. Consider
the ADALINE model:

m
F=X(W = wixy (4.123)

i=1
where X = [X14, %24 - - .,xm,k]T is the m-dimensional input vector,
W =[wi,wy,..., wm]T is the weight vector. The gradient based identification algo-

rithm under order-a (o > 1) information potential criterion can be expressed as

Wi = Wi +nVV, (4.124)
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where VV,, denotes the gradient of the empirical order-a IP with respect to the
weight vector, which can be calculated as

A

VVo=0V,/0W

(a—1) N N 2 N
T TN Z <2Kh(€j _ei)> Z(K’h(e_,- —&)(X; — Xi))
j=1 i=1 i=1

(4.125)
As the kernel function Kj(.) satisfies K (x) = K(x/h)/h, we have
K'j(x) = K'(x/h)/h* (4.126)
So, one can rewrite Eq. (4.125) as

a—2 N

N
VWe == haNa Z (;K(Aeﬁ)> ;(K’(Aeﬁ)(Xj—Xi)) (4.127)

where Aej; = (e; — e;)/h.

If the weight vector W lies in the neighborhood of the optimal solution W*, one
can obtain a linear approximation of the gradient VV,, using the first-order Taylor
expansion:

YV (W)~ VV (W) +HX (W —W*)=HX (W — W*) (4.128)

where H = 8VVZ(W*)/6W is the Hessian matrix, i.e.,

H= avVT(W*) /oW

o Z
(@-2) [ K (Aei(W)(X; — X))] (4.129)
X [ K (Ae(W))(Xi—X))']
+ [0 K(Qeji(WH)]
X [ K" (Aei(WH)(X; — X)(Xi— X)) |

-3

ZK(Aeﬂ(W*))

Substituting Eq. (4.128) into Eq. (4.124), and subtracting W* from both sides,
one obtains

Wit = Wy + nHW, (4.130)
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where W, = W* — W, is the weight error vector. The convergence analysis of the
above linear recursive algorithm is very simple. Actually, one can just borrow the
well-known convergence analysis results from the LMS convergence theory
[18—20]. Assume that the Hessian matrix H is a normal matrix and can be decom-
posed into the following normal form:

H=040 '=040" (4.131)

where Q is an m X m orthogonal matrix, A = diag[A,..., \,], A; is the eigenvalue
of H. Then, the linear recursion (4.130) can be expressed as

Wit = QU +n)Q™ "Wy (4.132)

Clearly, if the following conditions are satisfied, the weight error vector W will

converge to the zero vector (or equivalently, the weight vector Wy will converge to
the optimal solution):

L+gN <1, i=1,...m, (4.133)

Thus, a sufficient condition that ensures the convergence of the algorithm is

)\i<0,i: 1,...,m
(4.134)
0 <n<2/(max; |\])
Further, the approximate time constant corresponding to A; will be
-1 1
(4.135)

Ti = ~
log(1+nX\) I\l

In Ref. [102], it has also been proved that if the kernel width % increases, the
absolute values of the eigenvalues will decrease, and the time constants will
increase, that is, the convergence speed of the algorithm will become slower.

4.4.2 Energy Conservation Relation

Here, the energy conservation relation is not the well-known physical law of con-
servation of energy, but refers to a certain identical relation that exists among the
WEP, a priori error, and a posteriori error in adaptive filtering algorithms (such as
the LMS algorithm). This fundamental relation can be used to analyze the mean
square convergence behavior of an adaptive filtering algorithm [196].

Given an adaptive filtering algorithm with error nonlinearity [29]:

Wir1 = Wi + nf (ex)Xi (4.136)
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where f(.) is the error nonlinearity function (f(x) = x corresponds to the LMS algo-
rithm), the following energy conservation relation holds:

R (LR e
= (4.137)
%)’ 1] Ak

where E [HW,CHZ] is the WEP at instant k (or iteration k), ¢{ and e} are, respec-

E| [ Wit |*] +E

tively, the a priori error and a posteriori error:
SEWI X, AW, X (4.138)

One can show that the IG algorithms (assuming ADALINE model) also satisfy
the energy conservation relation similar to Eq. (4.137) [106]. Let us consider the
sliding information gradient algorithm (with ¢ entropy criterion):

0
Wi = Wi — Hok(e) (4.139)

Tow

where H »x(e) is the empirical error entropy at iteration k:

. 1. (1
Hyi(e) = Zzlw<221<h(ej,k - ei,k)> (4.140)
Jj= i=

where ¢(x) = ¢(x)/x, ei is the i th error sample used to calculate the empirical
error entropy at iteration k. Given the ¢-function and the kernel function Kj, the
empirical error entropy ﬁd)’k(e) will be a function of the error vector
e, =[e1k €2k - eL,k]T, which can be written as

Hyi(e) = Fyx,(ex) (4.141)

This function will be continuously differentiable with respect to e, provided
that both functions ¢ and K, are continuously differentiable.
In ADALINE system identification, the error ¢;; will be

ik =Zik — Vix = Zik — XigW (4.142)

where z;; is the i th measurement at iteration k, )71- = X;x W is the i th model output

(ORI 0] () 11

at iteration k, X;; = [x, T X g e mk] is the i th input vector = at iteration k, and

' Here the input vector is a row vector.
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W =[wi,wa,...,w,]" is the ADALINE weight vector. One can write Eq. (4.142)
in the form of block data, i.e.,

e =z — Y =z — LW (4.143)

T & P AT
where  zi = [214, 2245 - > 2Lk) > Vi = Dispo Yok - » Ikl > and 2y = [X{k,Xg,k, e
X7, 1" (L X m input matrix).
The block data {Z'k,z«,y;.€x} can be constructed in various manners. Two typi-
cal examples are

1. One time shift:

2= XX X

2k = [Zka Tk—1s- - .,Zk,LJrl]T
Ve =D D il (4.144)
yk - [yk’ykfl, .. '7yka+1]
e =lew, i1, er—r+1]”
2. L-time shift:
A= T
‘Zk - [XZL’XZL—]a .. "’XZ/;*I)LJrl]
% = (2 2ke1s - Z-1ee1]” -

s o_ra oo o T
Vi = Dits Irr—15 - - -»J’(k—l)LH]

_ T
e = [ew, er—1,- . ek—1yL+1]

Combining Eqgs. (4.139), (4.141), and (4.143), we can derive (assuming
ADALINE model)

OF e
Wit1 = Wi — 77—%1;‘/( 0
W, — dey OF 4 x, (ex) (4.146)
=W, — nok KK
ow 8ek
= Wi + 02 f(ex)

where f(ex) = [fi(ex), f>(ex), - . .. fr(ex)]”, in which

OF y k;,(€x)

4.147
86,»,1( ( )

filex) =
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With QIP criterion (¢(x) = — x?), the function f;(e;) can be calculated as (assum-
ing Kj, is a Gaussian kernel):

_ OFyux(e) _ o{ = Va(ew))
file) = =35 low=—» = T

{3
=—-= Ki(eix — €jx)
L2 6e,-,k =1 j=1

20 ¥ o
12 aei,k - h\€ik .k

) L
= om {Z(e'?" — e )Kn(eix — ej,k)}
j=1

(4.148)

The algorithm in Eq. (4.146) is in form very similar to the adaptive filtering
algorithm with error nonlinearity, as expressed in Eq. (4.136). In fact, Eq. (4.146)
can be regarded, to some extent, as a “block” version of Eq. (4.136). Thus, one
can study the mean square convergence behavior of the algorithm (4.146) by sim-
ilar approach as in mean square analysis of the algorithm (4.136). It should also
be noted that the objective function behind algorithm (4.146) is not limited to the
error entropy. Actually, the cost function F;k(e;) can be extended to any function
of ey, including the simple block mean square error (BMSE) criterion that is
given by [197]

1
BMSE = ze{ek (4.149)

We now derive the energy conservation relation for the algorithm (4.146).
Assume that the unknown system and the adaptive model are both ADALINE
structures with the same dimension of weights.'? Let the measured output (in the
form of block data) be

2w =T W* +v, (4.150)
where W* =[w*,wi,...,w:]" is the weight vector of unknown system and
Vi = [Vi Vas, - - o vL,k]T is the noise vector. In this case, the error vector e; can be

expressed as

ekZ%ka—irvk (4.151)

12 This configuration has been widely adopted due to its convenience for convergence analysis (e.g., see
Ref. [196]).
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where W, = W* — W, is the weight error vector. In addition, we define the a priori
and a posteriori error vectors €{ and e?:

{ €l =[ef 1 8sn- i = LW @152
"’i = [E’f,k:ei,k, s eﬁ,k]T =2 Wi
Clearly, ef and €} have the following relationship:

& =€ + XL (Wir1 — Wi) = €f — Li(Wie1 — W) (4.153)
Combining Eqgs. (4.146) and (4.153) yields

& =& — T2 Tf(e) = & — nif (er) (4.154)

where %, = . 4 ,{ is an L X L symmetric matrix with elements %#;(ij) = X ,',kaT,(.
Assume that the matrix % is invertible (i.e., det %) # 0). Then we have

ep_ek nZif (ex)
=, (€ —ef) = —nf(er)

:%’Z%'(e’i —ef) = —n2if(ex) 159
=ATR (& —el) = Wi 1 — Wy
And hence
Wier = Wi+ 252, '(&] — €)) (4.156)
Both sides of Eq. (4.156) should have the same energy, i.e.,
Wi Wiy =W+ 2T (& — D] X Wy + 27 %, (&) — e?)] (4.157)

From Eq. (4.157), after some simple manipulations, we obtain the following
energy conservation relation:

a2 X
J;‘:H

| Wi

(4.158)

Y R .
where HWkH =WIW,, HeZH[, =eT e, HepH[, —epT #,'é". Further, in
order to analyze the mean square convergence performance of the algorithm, we
take the expectations of both sides of (4.158) and write

] = {19 + 2]

E[HWHW] —I—E[

2
p j} (4.159)
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The energy conservation relation (4.159) shows how the energies (powers) of
the error quantities evolve in time, which is exact for any adaptive algorithm
described in Eq. (4.146), and is derived without any approximation and assumption
(except for the condition that %) is invertible). One can also observe that
Eq. (4.159) is a generalization of Eq. (4.137) in the sense that the a priori and a
posteriori error quantities are extended to vector case.

4.4.3 Mean Square Convergence Analysis Based on Energy Conservation
Relation

The energy conservation relation (4.159) characterizes the evolution behavior of the
weight error power (WEP). Substituting €} = e — nZf (ex) into (4.159), we obtain

E[[ Wi |*] = E[| Wel| —20Elet (e + PEF €0 Af )] (4.160)

To evaluate the expectations E[e¢f(e;)] and E[f"(ex)Z:f (er)], some assump-
tions are given below [106]:

» Al: The noise {v;} is independent, identically distributed, and independent of the input
{Xi}s

* A2: The a priori error vector ef is jointly Gaussian distributed,;

» A3: The input vectors {X;} are zero-mean independent, identically distributed;

* A4 Vi je{l,... L}, Z(ij) and {eix, ej} are independent.

Remark: Assumptions Al and A2 are popular and have been widely used in con-
vergence analysis for many adaptive filtering algorithms [196]. As pointed out in
[29], the assumption A2 is reasonable for longer weight vector by central limit the-
orem arguments. The assumption A3 restricts the input sequence {X;} to white
regression data, which is also a common practice in the literature (e.g., as in Refs.
[28,198,199]). The assumption A4 is somewhat similar to the uncorrelation
assumption in Ref. [29], but it is a little stronger. This assumption is reasonable
under assumptions Al and A3, and will become more realistic as the weight vector
gets longer (justified by the law of large numbers).

In the following, for tractability, we only consider the case in which the block
data are constructed by “L-time shift” approach (see Eq. (4.145)). In this case, the
assumption A3 implies: (i) the input matrices {2y} are zero-mean, independent,
identically distributed and (ii) 2 and W; are mutually independent. Combining
assumption A3 and the independence between 2 and Wj, one may easily con-
clude that the components of the a priori error vector ef are also zero-mean, inde-
pendent, identically distributed. Thus, by Gaussian assumption A2, the PDF of e}
can be expressed as

1\ (e)?
pes(€) = \/TT%% il:—[lexp "2y (4.161)
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where 77 = E[(eﬁk)z] is the a priori error power. Further, by assumption Al, the a
priori error vector e} and the noise vector v, are independent, and hence

Elef" f(ex)] = Elef" f(ef +vi)]
= [ercet + vopuGodmpgteter

(6?1()2

L
L
= <\/2LTEZ> Jpvk(vk)dvkjesz(eZ + ) Xiznlexp - 2%% def
(4.162)

where p,,(.) denotes the PDF of v;. The inner integral depends on e} through the
second moment 77 only, and so does E{e%"f(e;)}. Thus, given the noise distribution
Py (1), the expectation E{e’f(er)} can be expressed as a function of 7, which
enables us to define the following function'” :

ha(V) 2 Elef" f(en)]/; (4.163)

It follows that

Elef"f(e)] = viha(77) (4.164)

Next, we evaluate the expectation E[f’(ex)Zif(er)]. As Z(if) = X;, kX
= 2 W + v, by assumptions Al, A3, and A4, Z.(ij) and e, will be 1ndepen—
dent. Thus

E[f" (ex)Zf (ex)] = i(er)fi(er) 2 (if)]

i
i

th HM{\

(ex)fi(e)E[Z(i)]

L
DB
L
> > F
=t (4.165)

(,1

E[f (ex)E[Zx(iD)]

®

Ml\ HMKN

> £ enlE ||

13 Similar to [29], the subscript G in h¢ indicates that the Gaussian assumption A2 is the main assump-
tion leading to the defined expression (4.163). The subscript / for /;, which is defined later in (4.166),

however, suggests that the independence assumption A4 is the major assumption in evaluating the
expectation.
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where (a) and (b) follow from the assumption A3. Since e} is Gaussian and inde-
pendent of the noise vector v, the term E{f?(e;)} will also depend on e¢ through
~? only, and this prompts us to define the function A;:

hi(7) & i E[f} ()] (4.166)
Combining Eqs. (4.165) and (4.166) yields

Elf (e uf e = ODE| | X ] (4.167)
Substituting Eqs. (4.164) and (4.167) into Eq. (4.160), we obtain

E[|Weet ] = E[|We ] —2m3h0d) + PhiODE[|IX] tes)

Now, we use the recursion formula (4.168) to analyze the mean square conver-
gence behavior of the algorithm (4.146), following the similar derivations in Ref. [29].

4.4.3.1 Sufficient Condition for Mean Square Convergence

From Eq. (4.168), it is easy to observe

E[|Wet|P) =£[ W]

) 5 o ) (4.169)
= = 2pthe(rD) + PhODE[ |X:[*] =0
Therefore, if we choose the step-size 7 such that for all &
2 2h 2
Yiha(i) (4.170)

e[ |x) ]

then the sequence of WEP iE HWkH2 J will be monotonically decreasing (and
hence convergent). Thus, a sufficient condition for the mean square convergence of
the algorithm (4.146) would be

2 2
< i2nf 27;h6(v;) .
1 mODE %]

2 (72
@ inf § 26000 (4.171)

E[|x ] e | MO0

2
= ————= inf p(7})
E[| %] ie0
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where (a) comes from the assumption that the input vector is stationary,
p(x) = xhg(x)/hi(x), 2 denotes the set of all possible values of fy,% (k=0).

In general, the above upper bound of the step-size is conservative. However, if
p(x) is a monotonically increasing function over [0, o0), ie., Vx; >x =0,
p(x1) = p(x;), one can explicitly derive the maximum value (tight upper bound) of
the step-size that ensures the mean square convergence. Let’s come back to the
condition in Eq. (4.170) and write

= 2000

=
= x.7 Yk=0 (4.172)

Under this condition, the WEP will be monotonically decreasing. As the a priori
error power ~7 is proportional to the WEP E{HWkHz} (see Eq. (4.177)), in this

case, the a priori error power will also be monotonically decreasing, i.e.,
NENZ ZRZ N = (4.173)

where 73 is the initial a priori error power. So, the maximum step-size is

2p(77)
= N<n= =
TNmax = Max ¢ 7:0 <7 E[kauz],Vk 0
2008)  a_ » (4.174)
= O<n=s ——- = .
maxq 710 <1 E[IX; 12" 'k 70
@ 2p(75)
E[I1X;17]

where (a) follows from Eq. (4.173) and the monotonic property of p(x). This maxi-
mum step-size depends upon the initial a priori error power. When n=1n,,.., we
have

{E[Wﬂ]:E['Wo'ZL Vk=0 (4.175)

2.2
Ve = Yo
In this case, the learning is at the edge of convergence (WEP remains constant).

Remark If the step-size 7 is below the upper bound or smaller than the maximum
value 7., the WEP will be decreasing. However, this does not imply that the
WEP will converge to zero. There are two reasons for this. First, for a stochastic
gradient-based algorithm, there always exist some excess errors (misadjustments).
Second, the algorithm may converge to a local minimum (if any).
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4.4.3.2 Mean Square Convergence Curve
One can establish a more homogeneous form for the recursion formula (4.168).
First, it is easy to derive
7 = Elef})’] = El(XiWi)’]
~T ~

= E[W, (X[ X)) Wi]

( (4.176)

a) ~T ~
= E[W, (E[X',kxi,k])Wk]

12

= E[I1Wlig,]

where (a) follows from the independence between % and Wk, | Wy H%X = WZRX W,
Ry = E[XIT «Xix]- As the input data are assumed to be zero-mean, independent, identi-

cally distributed, we have Ry = 0)261 (Iis an m X m-dimensional unit matrix), and
hence

Vi = 2E[IW,17] (4.177)

Substituting Eq. (4.177) and E[IX;1%] = mo? into Eq. (4.168) yields the equa-
tion that governs the mean square convergence curve:

E[I W41 12] = E[IW12] = 200 2E[1 Wi 12 JhG (o 2E[I W I12]) + mu? o2 hy (o 2E[1I Wy 1%])
(4.178)

4.4.3.3 Mean Square Steady-State Performance

We can use Eq. (4.178) to evaluate the mean square steady-state performance.
Suppose the WEP reaches a steady-state value, i.e.,

lim E[I Wi 117]= lim E[IW;1?] (4.179)
k— o0 k— o0
Then the mean square convergence equation (4.178) becomes, in the limit
lim E[1W, 12 ho(E[IW12]) = tim =L hy(o2E[1W,12]) (4.180)
k— o0 k= 2

It follows that

. ) 2 o2l — M 2 9 &2
klirr;E[HWkH ]hG(kalgg)E[”Wk” h= 5 h,(axklirr;E[\\Wk\\ D (4.181)
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Denote Swep the steady-state WEP, i.e., Swgp = klim EJl Wk Hz], we have
— 0

_ mnhy(c:Swep)

N = 4.182
WEP 2hG(0}%SWEP) ( )

Therefore, if the adaptive algorithm (4.146) converges, the steady-state WEP
Swep Will be a positive solution of Eq. (4.182), or equivalently, Swgp will be a posi-
tive FP of the function (€)= mnhy(02€)/{2hc(c2€)}.

Further, denote Spvmsg the steady-state excess mean square error (EMSE), i.e.,
SeMse = limg_, o 7,%. By Eq. (4.177), we can easily evaluate Sgysg as

Sewse = lim 02| We|*] = o2Swee (4.183)
—> 00

The steady-state EMSE is in linear proportion to the steady-state WEP.

So far we have derived the mean square convergence performance for adaptive
algorithm (4.146), under the assumptions Al—A4. The derived results depend
mainly on two functions: hg(.), h;(.). In the following, we will derive the exact
expressions for the two functions for QIP criterion (¢(x) = — x?).

By Eq. (4.148), under QIP criterion we have

filex) = Lzhz{Z(m ej)Kn(eix — e,k)} (4.184)

Hence, the function hg(77) can be expressed as

ho(vp) = Ele}" f(en)]/ 7

L
22 Eleififen)]
i=1

»-N| -

2 L L
=———=> E|e}, > (eix —eji)Knleix — ejx)
V2L2h? ; l ”‘FZI ! ! (4.185)
@ 2 L “
= i 2 DE ek = 20Kilers — 200

= TE {eik(el,k —e2i)Kn(erx — ez,k)}

where (a) comes from the fact that the error pairs {(e]‘.”k,ej,k), j=1,...,L} are inde-
pendent, identically distributed. In addition, substituting (4.184) into (4.166) yields



System Identification Under Minimum Error Entropy Criteria 117

2
4 L L
hi(vp) = fZ! ZE <Z;(ei,k —ej)Kn(eir— ej,k))
i= j=

L

2
CEEIRN
:L4h4 ZE (Z(el,k_Ej,k)Kh(el,k—ej,k)> (4.186)
i=1

j=1

© 4 | (@L—DE[erx—ex)’Ki(ers —eap)] + (L — 1)L —2)E

Lkt [(e1x — exp)e1k — €3 )Kn(erx — e2)Kn(erx — e3x)]
where (b) and (c) follow from the fact that the error samples {e;r,j=1,...,L} are
independent, identically distributed.

In (4.185) and (4.186), the functions hg(7?) and h;(77) do not yet have the
explicit expressions in terms of the argument fy,%. In order to obtain the explicit
expressions, one has to calculate the involved expectations using the PDFs of the a
priori error and the noise. The calculation is rather complex and tedious. In the fol-
lowing, we only present the results for the Gaussian noise case.

Let the noise {v;} be a zero-mean white Gaussian process with variance 22,
Then the error ¢; will also be zero-mean Gaussian distributed with variance
C,% = 7,% + )2, In this case, one can derive

AL — D(yg + (N + 2072 + PN + k)

2\ —
hg(’Yk) Lx/ﬂ(% + hz)(C% 4 h2)(2C%+h2)3/2
AL - 1)
hi(2?) = R hg)m (4.187)

2(L— 1)L —2)CHACE + 16028 + 1Th* ¢ + ThOGE + 1)
D+ (CE+ 32 + B3¢ +an2 2+ )32

Substituting the explicit expressions in Eq. (4.187) into Eq. (4.178), one may
obtain the exact convergence curve of the WEP, which can be described by a non-
linear dynamic system:

E[|Weer |*] =n(E[ W] (4.188)

where the function A(§) = £ — 2no2hg(02€) + miP o2hy(02€).

In the following, a Monte Carlo simulation example is presented to verify the
previous theoretical analysis results [106]. Consider the case in which the input sig-
nal and additive noise are both white Gaussian processes with unit power. Assume
the unknown and adaptive systems are both ADALINE structures with weight
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Figure 4.14 Simulated and theoretical learning curves for different step-sizes (h = 1.0,
L =20).

vector of length 25. The initial weight vector of the adaptive system was obtained
by perturbing each coefficient of the ideal weight vector W* by a random variable
that is zero-mean Gaussian distributed with variance 0.04 (hence the initial WEP is
1.0 or 0 dB).

First, we examine the mean square convergence curves of the adaptive algo-
rithm. For different values of the step-size n, kernel width A, and sliding data length
L, the average convergence curves (solid) over 100 Monte Carlo runs and the corre-
sponding theoretical learning curves (dotted) are plotted in Figures 4.14—4.16.
Clearly, the experimental and theoretical results agree very well. Second, we verify
the steady-state performance. As shown in Figures 4.17—4.19, the steady-state
EMSEs generated by simulations match well with those calculated by theory.
These simulated and theoretical results also demonstrate how the step-size 7, kernel
width %, and sliding data length L affect the performance of the adaptation: (i) a
larger step-size produces a faster initial convergence, but results in a larger misad-
justment; (ii) a larger kernel width causes a slower initial convergence, but yields a
smaller misadjustment; (iii) a larger sliding data length achieves a faster initial con-
vergence and a smaller misadjustment.'

In addition, we verify the upper bound on step-sizes that guarantee the conver-
gence of the learning. For the case in which the kernel width 4 = 0.2, and the slid-
ing data length L =20, we plot in Figure 4.20 the curve of the function

' Increasing the sliding data length can improve both convergence speed and steady-state performance,
however, this will increase dramatically the computational burden (O(L?)).
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Figure 4.15 Simulated and theoretical learning curves for different kernel widths (= 0.03,
L =30).

Weight error power (dB)

0 500 1000 1500 2000 2500 3000 3500
Iteration

Figure 4.16 Simulated and theoretical learning curves for different sliding data lengths
(n=0.03, h=1.0).
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Figure 4.21 Simulated (solid) and theoretical (dotted) learning curves for step-sizes around

77max '

p(x) = xhg(x)/hy(x). Clearly, this function is monotonically increasing. Thus by
(4.174), we can calculate the maximum step-size 7),,, =~ 0.217. For step-sizes
around 7, (Mmaxs> Tmax = 0-1) the simulated and theoretical learning curves are
shown in Figure 4.21. As expected, when 7 =17,,.., the learning is at the edge of
convergence. If 7 is above (or below) the maximum step-size 7,,,,, the weight error
power will be increasing (or decreasing).

4.5 Optimization of ¢-Entropy Criterion

The ¢-entropy criterion is very flexible. In fact, many entropy definitions are spe-
cial cases of the ¢-entropy. This flexibility, however, also brings the problem of
how to select a good ¢ function to maximize the performance of the adaptation
algorithm [200].

The selection of the ¢ function is actually an optimization problem. Denote J a
quantitative performance index (convergence speed, steady-state accuracy, etc.) of
the algorithm that we would like to optimize. Then the optimal ¢ function will be

Gope = arg max.J (4.189)

PeD

where @ represents the set of all possible ¢ functions. Due to the fact that different
identification scenarios usually adopt different performance indexes, the above
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optimization problem must be further formulated in response to a specific identifi-
cation system. In the following, we will focus on the FIR system identification, and
assume for simplicity that the unknown system and the adaptive model are both
FIR filters of the same order.

Before proceeding, we briefly review the optimization of the general error crite-
rion E[l(e)]. In the adaptive filtering literature, there are mainly two approaches for
the optimization of the general (usually non-MSE) error criterion. One approach
regards the choice of the error criterion (or the / function) as a parameter search, in
which a suitable structure of the criterion is assumed [26,201]. Such a design
method usually leads to a suboptimal algorithm since the criterion is limited to a
restricted class of functions. Another approach is proposed by Douglas and Meng
[28], where the calculus of variations is used, and no prior information about the
structure of error criterion is assumed. According to Douglas’ method, in FIR sys-
tem identification one can use the following performance index to optimize the
error criterion:

J= — trE[Wis1 Wisi] (4.190)

where W4, is the weight error vector at k + 1 iteration. With the above perfor-
mance index, the optimization of the / function can be formulated as the following
optimization problem [28]:

st [7 7 2(6(e) = nM(E (@) + Ee)E" (e))pr(e)de = 1
where &£(e) = I'(e), pr(e) is the error PDF at k iteration, 7 is the step-size, and A is
the input signal power. By calculus of variations, one can obtain the optimal &
function [28]:

P'le)

LA 4.192
(@) + L) (*.152)

Eopt(€) = —

The optimal / function can thus be expressed in the form of indefinite integral:

P'ile)

(@) + o) (4.193)

lopi(€) = Jﬁopt(e)de = J -

which depends crucially on the error PDF py(e).

Next, we will utilize Eq. (4.193) to derive an optimal ¢-entropy criterion [200].
Assume that the error PDF p(.) is symmetric, continuously differentiable (up to
the second order), and unimodal with a peak at the origin. Then py(.) satisfies: (i)
invertible over interval [0, + c0) and (ii) p}/(.) is symmetric. Therefore, we have

pi(e) = pi(lel) = p (P ' [r(e)]) = B(pi(e)) (4.194)
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where p; '(.) denotes the inverse function of py(.) over [0, + c0) and 3 = p{op; '
So, we can rewrite Eq. (4.193) as

_ [ p'i(e)
l“P‘(e)‘J (@) + ABee) % (*4.195)

Let the optimal ¢-entropy criterion equal to the optimal error criterion E[lp(e)],
we have

Hop@= | fuplpi(@de = Ellop()]
= [ temitere
_ [~ B p'i(e) (4.196)
“ J (@) + (e ¢ (P
- - ! d d
| e e e
Hence
1
PonlPil )] = {J " i@ + i) "(6)}” e) (*.197)
Let pi(e) = x, we obtain
1
Popi(X) = {J - )W?de}x (4.198)

To achieve an explicit form of the function ¢, (x), we consider a special case in
which the error is zero-mean Gaussian distributed:

1 &2
= ———exp| ——= 4.199

Then we have

{(~1-2108y/2707 )pu()} — Cpu(elog pie))

pi(e) = Blp(e)] = p (4.200)
k
It follows that
{ (— 1-2 log\/27ra%>x} — {2x log x}
Blx) = 5 (4.201)

Ok
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Substituting Eq. (4.201) into Eq. (4.198) yields

-1 X
Popt(X) = {J—dX}x == 7—10g(71 + 7, log x) + cx
2

Y1X + Yx log x

(4.202)

where v, =1 — 77)\((1 + 210g\/27ra,%) /O’%), v, = —(2n\/0?), and ceR is a con-

stant. Thus, we obtain the following optimal ¢-entropy:
+ o0

H¢0m (e)= J

— o0

When ¢ = (1 +2 log\/27ror,%) /2, and  — 0, we have

lim ¢ (x) = lim - log(y; + v, log x) + cx
n—0 Y2

n—0

(—Vizp(e)log(v1 + y,log ple)) + cp(e)> de

—5-logx | +cx
o

2 1 + 2log\/2707
= limﬂlog 1_77)\M_
7]—>0277)\ O'k
1 +2logy/2m0; | 2\
)\—ogz Tk 4 —logx
i —x07 Tk Tk
= lim

=0 2\ | )\1 +2logy/2mo7  2nA
—9 a _
Ok

= Tx (1 + 2logy/2mo7 + 2log x) +cx

—-1
7 logx

(4.203)

(4.204)

That is, as 7 — 0 the derived optimal entropy will approach the Shannon
entropy. One may therefore conclude that, under slow adaptation condition (7 is
small enough), Shannon’s entropy is actually a suboptimal entropy -criterion.
Figure 4.22 shows the optimal ¢ functions for different step-sizes n (assume

A=o2=1).

One can easily derive the IG algorithms under the optimal ¢-entropy criterion.
For example, substituting Eq. (4.202) into Eq. (4.79), we have the following SIG

algorithm:

k

> {K/h(ek —e) (,%k/ - S;V)}

i=k—L+1
L(vip(ex) + vap(en)logpler))

Wi =Wi-1—1n

(4.205)
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X

Figure 4.22 Optimal ¢ functions for different step-sizes 7
(adopted from Ref. [200]).

It is worth noting that the above optimal ¢ entropy was derived as an example
for a restricted situation, in which the constraints include FIR identification, white
Gaussian input and noise, etc. For more general situations, such as nonlinear and
non-Gaussian cases, the derived ¢ function would no longer be an optimal one.

As pointed out in Ref. [28], the implementation of the optimal nonlinear error
adaptation algorithm requires the exact knowledge of the noise’s or error’s PDFs.
This is usually not the case in practice, since the characteristics of the noise or error
may only be partially known or time-varying. In the implementation of the algo-
rithm under the optimal ¢-entropy criterion, however, the required PDFs are esti-
mated by a nonparametric approach (say the KDE), and hence we don’t need such
a priori information. It must be noted that in Eq. (4.205), the parameters v, and v,
are both related to the error variance o7, which is always time-varying during the
adaptation. In practice, we should estimate this variance and update the two para-
meters online.

In the following, we present a simple numerical example to verify the theoretical
conclusions and illustrate the improvements that may be achieved by optimizing
the ¢ function. Consider the FIR system identification, where the transfer functions
of the plant and the adaptive filter are [200]

{ G*(2)=0.8 + O.5_zl_1 (4.206)
G(@)=wo +wiz

The input signal and the noise are white Gaussian processes with powers 1.0
and 0.64, respectively. The initial weight vector of adaptive filter was obtained by
perturbing each component of the optimal weight vector by a random variable that
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Figure 4.23 Convergence curves of three SIG algorithms with the same initial convergence
rate
(adopted from Ref. [200]).

is uniformly distributed in the interval [ — 0.6, 0.6]. In the simulation, the SIG algo-
rithms under three different entropy criteria (optimal entropy, Shannon entropy,
QIP) are compared. The Gaussian kernel is used and the kernel size is kept fixed at
o = 0.4 during the adaptation.

First, the step-size of the SIG algorithm under the optimal entropy criterion was
chosen to be 7 = 0.015. The step-sizes of the other two SIG algorithms are adjusted
such that the three algorithms converge at the same initial rate. Figure 4.23 shows
the average convergence curves over 300 simulation runs. Clearly, the optimal
entropy criterion achieves the smallest final misadjustment (steady-state WEP).
The step-sizes of the other two SIG algorithms can also be adjusted such that the
three algorithms yield the same final misadjustment. The corresponding results are
presented in Figure 4.24, which indicates that, beginning at the same initial WEP,
the algorithm under optimal entropy criterion converges faster to the optimal solu-
tion than the other two algorithms. Therefore, a noticeable performance improve-
ment can be achieved by optimizing the ¢ function.

Further, we consider the slow adaptation case in which the step-size for the opti-
mal entropy criterion was chosen to be 17 =0.003 (smaller than 0.015). It has been
proved that, if the step-size becomes smaller (tends to zero), the optimal entropy
will approach the Shannon entropy. Thus, in this case, the adaptation behavior of
the SIG algorithm under Shannon entropy criterion would be nearly equivalent to
that of the optimal entropy criterion. This theoretical prediction is confirmed by
Figure 4.25, which illustrates that the Shannon entropy criterion and the optimal
entropy criterion may produce almost the same convergence performance. In this
figure, the initial convergence rates of the three algorithms are set equal.
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Figure 4.24 Convergence curves of three SIG algorithms with the same final misadjustment
(adopted from Ref. [200]).
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4.6 Survival Information Potential Criterion

Traditional entropy measures, such as Shannon and Renyi’s entropies of a continu-
ous random variable, are defined based on the PDF. As argued by Rao et al. [157],
this kind of entropy definition has several drawbacks: (i) the definition will be ill-
suited for the case in which the PDF does not exist; (ii) the value can be negative;
and (iii) the approximation using empirical distribution is impossible in general. In
order to overcome these problems, Rao et al. proposed a new definition of entropy
based on the cumulative distribution function (or equivalently, the survival func-
tion) of a random variable, which they called the cumulative residual entropy
(CRE) [157]. Motivated by the definition of CRE, Zografos and Nadarajah pro-
posed two new broad classes of entropy measures based on the survival function,
that is, the survival exponential and generalized survival exponential entropies,
which include the CRE as a special case [158].

In the following, a new IP, namely the survival information potential (SIP)
[159] is defined in terms of the survival function instead of the density function.
The basic idea of this definition is to replace the density function with the sur-
vival function in the expression of the traditional IP. The SIP is, in fact, the argu-
ment of the power function in the survival exponential entropy. In a sense, this
parallels the relationship between the IP and the Renyi entropy. When used as an
adaptation criterion, the SIP has some advantages over the IP: (i) it has consistent
definition in the continuous and discrete domains; (ii) it is not shift-invariant (i.
e., its value will vary with the location of distribution); (iii) it can be easily com-
puted from sample data (without kernel computation and the choice of kernel
width), and the estimation asymptotically converges to the true value; and (iv) it
is a more robust measure since the distribution function is more regular than the
density function (note that the density function is computed as the derivative of
the distribution function).

4.6.1 Definition of SIP

Before proceeding, we review the definitions of the CRE and survival exponential
entropy.

Let X =(X1,X3,...,X,;) be a random vector in R™. Denote |X| the absolute
value transformed random vector of X, which is an m-dimensional random vector
with components |X;|, |Xz2|, ..., |Xu|- Then the CRE of X is defined by [157]

e(X)= —J Fix(x)log Fix(x)dx (4.207)

R+

where Fx(x) = P(|X|>x) = E[I(|X| >x)] is the multivariate survival function of
the random vector |X|, and R = {xeR":x = (x1,...,xn),x; =0,i =1,...,m}. Here
the notation |X| > x means that |X;| >x;, i =1,...,m, and I(.) denotes the indicator

function.
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Based on the same notations, the survival exponential entropy of order « is
defined as [158]

1/(1-a)
My(X) = (wagq(x)dx> (4.208)

From Eq. (4.208), we have

1

11—«

log Mo(X) =

1ogL Fly (x)dx (4.209)
R’}

It can be shown that the following limit holds [158]:

lim1 {logMa(X) - 1ogJ Fx(x)dx}J Fix(x)dx = e(X) (4.210)
a—> RT R™M

+

1—«a

The definition of the IP, along with the similarity between the survival exponen-
tial entropy and the Renyi entropy, motivates us to define the SIP.

Definition For a random vector X in R™, the SIP of order a(«x>0) is defined by
[159]

Sa(X) = JRmng(x)dx (4.211)

The SIP (4.211) is just defined by replacing the density function with the sur-
vival function (of an absolute value transformation of X) in the original IP. This
new definition seems more natural and reasonable, because the survival function
(or equivalently, the distribution function) is more regular and general than the
PDF. For the case a =2, we call the SIP the quadratic survival information poten-
tial (QSIP).

The SIP S,(X) can be interpreted as the a-power of the a-norm in the survival
functional space. When « <1, the survival exponential entropy M,(X) is a mono-
tonically increasing function of S,(X), and minimizing the SIP is equivalent to min-
imizing the survival exponential entropy; while when «>1, the survival
exponential entropy M,(X) is a monotonically decreasing function of S,(X), and in
this case, minimizing the SIP is equivalent to maximizing the survival exponential
entropy. We stress that when used as an approximation criterion in system identifi-
cation, no matter what value of o> 0, the SIP should be minimized to achieve
smaller errors. This is quite different from the IP criterion which should be maxi-
mized when o >1 [64]. The reason for this is that V o>0, the smaller SIP
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Figure 4.26 The SIP and IP for different ¢ and «
(adopted from Ref. [159]).

corresponds to more concentrated errors around the zero value. To demonstrate this
fact, we give a simple example below.

Assume that X is zero-mean Gaussian distributed, X ~ .47(0, 0%). For different
variance o2 and « values, we can calculate the SIP and IP, which are shown in
Figure 4.26. It is clear that the SIP is a monotonically increasing function of ¢ for
all the « values, while the IP is a monotonically increasing function only when
a<l.

4.6.2 Properties of the SIP

To further understand the SIP, we present in the following some important
properties.
Property 1: V a>0, S,(X) = S.(/X]).

Proof: This property is a direct consequence of the definition of SIP.

Property 2: S,(X) =0, with equality if and only if P(X =0) = 1.
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Proof: It is obvious that S,(X)=0. Now x* =0 if and only if x =0. Therefore,
So(X) =0 implies P(|X| > A) = 0 for almost all AeR", or in other word, for almost
all AeR%, P(|X| = A) =1, which implies P(X =0) = 1.

Remark: The global minimum value of the SIP is zero, and it corresponds to the §
distribution located at zero. This is a desirable property that fails to hold for conven-
tional MEE criteria whose global minimum corresponds to the ¢ distribution located
at any position (shift-invariant). Hence when using SIP as an approximation criterion
in system identification, we do not need to add a bias term at system output.

The next five properties (Properties 3—7) are direct consequences of Ref. [158],
and will, therefore, not be proved here (for detailed proofs, please refer to
Theorems 1—5 in Ref. [158]).

Property 3: If E[|X;]] < o0 and E[|X;|’]< o0 (i=1,2,...,m) for some p > (m/«),
then S, (X) < o0.

Property 4: Let X be an m-dimensional random vector, and let Y = (Y1, Y,,...,Y,)
with ¥; = ¢;X;, c;eR, i =1,...,m. Then So(Y) = ([, Icil) Sa(X).

Property 5 (Weak convergence): Let {X(n)} be a sequence of m-dimensional ran-
dom vectors converging in law to a random vector X. If {X(n)} are all bounded in
L7 for somep >m/a, then lim,_, o, S,(X(n)) = So(X).

Property 6: If the components of an m-dimensional random vector X are indepen-
dent with each other, then S,(X) = [ [/L,Sa (X))

Property 7: Let X and Y be nonnegative and independent random variables
(X,YeRy). Then S, (X + Y) = max(S,(X), So(Y)).

Property 8: Given two m-dimensional continuous random vectors X and Y with
PDFs px(x) and py(y), if px(x) is symmetric (rotation invariant for m > 1) and
unimodal around zero, and Y is independent of X, then S, (X + Y) = S,(X).

Proof: Since X and Y are independent,

Px+v(x) = J px(x = 7)py(T)dr (4.212)

RM



System Identification Under Minimum Error Entropy Criteria 133

It follows that V AeR”

Fixiy(N) =P(X +Y|>))

= | I(x]> Npx+y(x)dx
Jam

= [ 11> 20x|petr = pr(rrar

JR R’

- py(f)dTJ 11 > Mpx(x — T)dx
.

nm
AN

= py(T)dT<1 —J I(Jx] = Mpx(x — T)dx> (4.213)
1 —J pm)de I(1x + 71 = Dpx(dx

R"l Rm
2 —J pY(T)de 1(1x] = Npx()dx

= 1(xI> Npx(x)dx

= Fixi(\)

where (a) follows from the condition that py(x) is symmetric (rotation invariance
for m > 1) and unimodal around zero. Thus we get S,(X + Y = S, (X).

Property 9: For the case a=1, the SIP of XeR™ equals the expectation of

nzr‘n:l IXil.

Proof:

Sl(X): ‘ F|X|(T)d7'

= J E[I(|X| > 7)]dr
R

szz[ﬁlzm > n)} dr (4214)

JJ (ﬁl(|xi|>n)>dr]
e \i=1

|

=E

The above property can be generalized to the case where « is a natural number,
as stated in Property 10.
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Property 10: If ae. ', then S,(X)=E[[[.,1Zl]. where Z =
min(|X,-|, Y|, )Yi(”_l)D, {Y(")}j‘.fl1 are independent and identically distributed

(i.i.d.) random vectors which are independent of but have the same distribution
with X.

Proof: As random vectors {Y?)} are i.i.d., independent of but have the same distri-
bution with X, we can derive

Fiz(m) = E[I(1Z] > 7)]
= £|[ 11021 > Ti)}
Li=1

=F

.

Yl.(ail)D >Ti):|

)

> Tf))] (4.215)

m
nl(min(|X,~|,
i=1

m

a—1
=£|]] <I(|X,-| > [11(
j=1

y?

i=1

m

a—1l/ m
=E|[Jaaxi > (r[,’(

YY)
1

[ a—1
=E|1(X| >r)1j] (1(Jy?| >T))]
a—1
= E[I(X| >T)]H]E[1(IY@| >7)]
2

= TTEX1 > 7))
j=1

=Fy (1)
And hence
Sa(X) = J Fiy(r)dr = J F(rdr Y {1‘[ |zi|} (4.216)
R R i=1

The next property establishes a relationship between SIP and IP (which exists
when X has PDF). A similar relationship has been proved by Rao et al. for their
CRE (see Proposition 4 in [157]).

Property 11: Let X be a nonnegative random variable with continuous distribution.
Then there exists a function ¢ such that the a-order IP of Y = ¢(X) is related to
Sa(X) via
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Sa(X)

Vo) = Gy

4.217)

Proof: Let F(x) be the distribution function with density P(X >x)/E[X]. If we
choose ¢(x) = F~!(Fx(x)), where F~!(.) is defined as in the remarks preceding the
Proposition 4 in [157], then Y = ¢(X) has the distribution F(x). Therefore, we have

o0

VoY) = J (4.218)

powe= [ (P20 4o 520

— —w \ EIX]  (EX))"

Property 12: Let XeR™ and Y eR" be two continuous random vectors. Assuming
for every value Y =y, the conditional density pyy(x|y) is symmetric (rotation
invariant for m>1) and unimodal in x around u(y)= E[X ’Y =y], then
Sa(X — u(Y)) =S.(X — g(Y)), where g(.) is any mapping R" — R™ for which
So(X — g(Y)) exists.

Proof: Denote p'(x) and p3(x), respectively, the densities of X — u(Y) and
X —g(Y),1ie.,

{p"(X) = [enpxiy(x + pu(y)[y)dFy(y) (4.219)
() = [Lopxiy(x + g)y)dFy(y) '
Then for any xeR", we have
Flx—gn| (0 = EI(X — g(Y)| > x)]
=1—=E[(X — g(Y)| =x)]
=1—| I(7|=x)p*(r)dr
o

—1-[ 1 smmj Prr(r + gOIF ()

= 1| ar)|_10rI=0pn(r + 2 w220

= 1| 4R 107 = )1 = 9pyrivier

@ 1 —J dFy(y)J I(II7 — p(y) = x)pxy (tly)dr
R R™

=1 —J \m1(|’7'| =x)p'(T)dr

R

= F|X*;L(Y)| (x)
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where (b) comes from the condition that for every y, pxy(x|y) is symmetric (rota-
tion invariant for m > 1) and unimodal in x around p(y). Therefore

SuX =00 = | Pl 0= | e =S, —g(v)) - 4221

Remark: The above property suggests that under certain conditions, the condi-
tional mean p(Y), which minimizes the MSE, also minimizes the error’s SIP.

4.6.3 Empirical SIP

Next, we discuss the empirical SIP of X. Since S,(X) = S,(|X|) (see Property 1), we
assume without loss of generality that XeR”. Let X(1),X(2),...,X(N) be N ii.d.
samples of X with survival function Fy(x). The empirical survival function of X can
be estimated by putting 1/N at each of the sample points, i.e.,

N
Fy(x) = zlv > 1xX(k) > x) (4.222)
k=1

Consequently, the empirical SIP can be calculated as

5,00= [ Fawax=|

R™ R

N «
(%Z 1(X(k) >x)> dx (4.223)
k=1

According to Glivento—Cantelli theorem [202],

|Fn—Fx| . = sup|Fy(x) = Fx(x)| 522 0 (4.224)

Combining Eq. (4.224) and Property 5 yields the following proposition.

Proposition: For any random vector X in R, if X is bounded in I for some
P>m/a, then the empirical SIP (4.223) will converge to the true SIP of X, i.e.,

lim S,(X) = S.(X).
N— o

In the sequel, we will derive more explicit expressions for the empirical SIP
(4.223). Let x(1),x(2), . . .,x(N) be a realization of X(1), X(2), ..., X(N).

4.6.3.1 Scalar Data Case

First, we consider the scalar data case, i.e., m = 1. We assume, without loss of gen-
erality, that 0 =< x(1) =x(2) = --- = x(N). Then we derive
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[e%

o0 N
Sa(X) = J (»5 Zl(x(k)>x)> dx
k=1
x(j) N @
J (;, > I(x(k) >x)> dx (4.225)

x(G—1) k=1

jﬁlj(” ’“) ")~ 1)

where we assume x(0) = 0. One can rewrite Eq. (4.225) into a more simple form:

N
S =) (” ’“) (x() = x( = 1))

j=1

(=) Yoo () () e

(e} « o (4226)
()7 (e
N
= Ax()
=1
where
_ N_f“)a_ N-j\" (4.227)
J N N .

From Eq. (4.226), the empirical SIP for scalar data can be expressed as a
weighted sum of the ordered sample data 0 =x(1) =x(2) = --- = x(N), where the
weights \;,j = .,N depend on the sample size N and the « value, satisfying
A =0, ZN Aj —1 For the case N =10, the weights for different o values are
shown in Figure 4.27. One can observe: (i) when o = 1.0, all the weights are equal
(Aj=1/N), and in this case the empirical SIP is identical to the sample mean of X
and (i) when « # 1.0, the weights are not equal. Specifically, when a<1.0
(o> 1.0), the weight ); is a monotonically increasing (decreasing) function of the
order index j, that is, the larger weights are assigned to the larger (smaller) sample
data.

4.6.3.2 Multidimensional Data Case

Computing the empirical SIP for multidimensional data (m > 1) is, in general, not
an easy task. If « is a natural number, however, we can still obtain a simple explicit
expression. In this case, one can derive
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Figure 4.27 The weights for different « values
(adopted from Ref. [159]).

I(x(k) > x)) dx

T
M=

N
=g LD Gz ) > 0

N RM . ~_
1 Ja=1
1 N
- > J,,,(I(xol)N)x X I(x(ia) > D)
| e (4.228)
= Ne Z J (l_[l(mln(x,(n) »Xi(fa))>x[)>dx
Jisda=1BY
j— m
== > (HIJR I(min(x;(j1), . . -, Xi(ja)) >Xi)dxi)
Jiga= Ni= 1Ry
1 N
:N_ Z (Hmm(xl(ll) axi(i<1))>
Jisda=1

The empirical SIP in Eq. (4.228) can also be derived using Property 10. By
Property 10, we have SQ(X)ZE[H:":lmin(Xi, yi(l),_,.,Y;a_l))], where {Y?)} are

i.i.d. random vectors which are independent of but have the same distribution with
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X. It is now evident that the empirical SIP of Eq. (4.228) is actually the sample
mean estimate of E [H?;lmin X, YV, Yi(a*l))} .

Remark: Compared with the empirical IP (say the estimated IP by Parzen window
method), the empirical SIP is much simpler in computation (just an ordering of the
samples), since there is no kernel evaluation, the most time-consuming part in the cal-
culation of the empirical IP. In addition, there is no problem like kernel width choice.

4.6.4 Application to System Identification

Similar to the IP, the SIP can also be used as an optimality criterion in adaptive
system training. Under the SIP criterion, the unknown system parameter vector (or
weight vector) W can be estimated as

W = arg min S,(ex) = arg minJ fﬁkl(f)df (4.229)

WEQW WEQW

where F|., () is the survival function of the absolute value transformed error
lex| = |zt — i |- In practical application, the error distribution is usually unknown;
we have to use, instead of the theoretical SIP, the empirical SIP as the cost func-
tion. Given a sequence of error samples (ej, e, ..., ey), assuming, without loss of
generality, that |ej| =|e;| = --- =|ey|, the empirical SIP will be (assume scalar
error)

N
Sale) = Nlejl (4.230)
j=1

where ); is calculated by Eq. (4.227). The empirical cost (4.230) is a weighted sum
of the ordered absolute errors. One drawback of Eq. (4.230) is that it is not smooth
at ¢;=0. To address this problem, one can use the empirical SIP of the square
errors (e7,¢€3,. . .,e%) as an alternative adaptation cost, given by

N
Sa(e) =" Ne; (4.231)
j=1

The above cost is the weighted sum of the ordered square errors, which includes
the popular MSE cost as a special case (when a = 1). A more general cost can be
defined as the empirical SIP of any mapped errors (¢(ey), ¢(ez), . . ., p(en)), i.e.,

N
Sa(@(@) = D> N(e)) (4.232)
j=1
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where function ¢(.) usually satisfies

(i) positivity:  ¢(e) =0
(if) symmetry:  ¢(e) = ¢(—e) (4.233)
(iii) monotonicity: |e;| <|ez| = P(e;) = ¢(ez)

Based on the general cost (4.232), the weight update equation for system identi-
fication is

N
W1 =We =0y i (e))e; /oW (4.234)
j=1

The weight update can be performed online (i.e., over a short sliding window),
as described in Table 4.5.

In the following, we present two simulation examples to demonstrate the perfor-
mance of the SIP minimization criterion. In the simulations below, the empirical
cost (4.231) is adopted (¢(e) = €?).

Table 4.5 Online System Identification with SIP Criterion

Initialization
a. Initialize the weight vector of the adaptive system: W,
b. Choose the « value, step-size 7, and the sliding window length L
c. Compute the weights );,j=1,...,L, using Eq. (4.227)
d. Initialize the window of errors: (e(1),...,e(L)) = (0, ---,0)
Computation

while{x;, z;} available do

1. Compute the error: ex = zx — ¥y
2. Update the window of errors:

e(j)=e(j+1), for j=1,..,L—1
e(L) = e

3. Rearrange the errors in ascending order of magnitude:
le(DI=le(2)| = --- = le(L)]
4. Update the weight vector:

L
Weer = We —1'> ) N (e()ae() /oW
=1

J

end while
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4.6.4.1 FIR System Identification

First, we consider the simple FIR system identification. Let the unknown system be
a FIR filter given by [159]

H(z) =014027"+0372+04z>4057*+0.677 (4.235)
+0.527°+ 04777 + 03278+ 02277 +0.1771° '

The adaptive system is another FIR filter with the same order. The input x; is a
white Gaussian process with unit variance. Assume that the output of unknown sys-
tem is disturbed by an additive noise. Three different distributions are utilized to
generate the noise data:

(a) Symmetric a-stable (SasS): 1, ,(w) =exp(—y|w|”) withy=0.1,a=1.5
exp(—x?/20%) with 0> =0.2

1
V2mo
(¢)Binary: Pr(x=0.5)=0.5, Pr(x=-0.5)=0.5

(b) Gaussian: p(x)=

(4.236)

where ¢ ,(w) denotes the characteristic function of the SaS distribution. The
above three distributions have, respectively, heavy, medium, and light tails. The
noise signals are shown in Figure 4.28.

In the simulation, the sliding data length is set at 10. The step-sizes of each
algorithm are chosen such that the initial convergence rates are visually identical.
Figure 4.29 shows the average convergence curves over 100 Monte Carlo runs for
different « (0.5, 1.0,2.0). Notice that when « = 1.0, the algorithm is actually the
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Figure 4.28 Three different noises: (A) Sas, (B) Gaussian, and (C) Binary.
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Figure 4.29 Convergence curves averaged over 100 Monte Carlo runs: (A) SasS,
(B) Gaussian, and (C) Binary.

Table 4.6 WEPs at Final Iteration Over 100 Monte Carlo Runs

SasS Gaussian Binary
a=0.5 0.0989 = 0.1700 0.0127 = 0.0055 0.0010 = 0.0005
a=1.0 0.0204 £ 0.0294 0.0076 = 0.0029 0.0096 = 0.0039
a=2.0 0.0051 £ 0.0029 0.0112 £0.0043 0.0880 = 0.0133

LMS algorithm (strictly speaking, the block LMS algorithm). The WEPs at final
iteration are summarized in Table 4.6. From simulation results, one can observe:

i. For the case of SasS noise, the algorithms with larger « values (say o = 2.0) converge to
smaller WEP, and can even outperform the LAD algorithm (for comparison purpose, we
also plot in Figure 4.29(A) the convergence curve of LAD). It is well known that the
LAD algorithm performs well in a-stable noises [31].

ii. For the case of Gaussian noise, the algorithm with o =1.0 (the LMS algorithm) per-
forms better, which is to be expected, since MSE criterion is optimal for linear Gaussian
systems.

iii. For the case of binary noise, the algorithms with smaller o values (say o =0.5) obtain
better performance.

The basic reasons for these findings are as follows. As shown in Figure 4.27, the
larger the « value, the smaller the weights assigned to the larger errors. For the
case of heavy-tail noises (e.g., SaS noise), the larger errors are usually caused by
the impulsive noise. In this case, the larger « value will reduce the influence of the
outliers and improve the performance. On the other hand, for the case of light-tail
noises (e.g., binary noise), the larger errors are mainly caused by the system mis-
match, thus the smaller a value will decrease the larger mismatch more rapidly (as
the larger weights are assigned to the larger errors).

4.6.4.2 TDNN Training

The second simulation example is on the TDNNs training (in batch mode) with SIP
minimization criterion for one-step prediction of the Mackey—Glass (MG) chaotic
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Table 4.7 Testing Errors Over 4000 Test Samples in MG Time Series Prediction

SIP 1P
a=038 0.0016 =0.0276 a=1.05 0.0011 £0.0310
a=1.0 0.0011 =0.0214 a=15 0.0010 = 0.0206
a=15 0.0002 = 0.0180 a=2.0 0.0006 = 0.0195
a=20 —0.0019 = 0.0272 a=25 0.0009 = 0.0203
a=25 —0.0085 +0.0412 a=3.0 0.0010 = 0.0218

time series [203] with delay parameter 7 = 30 and sampling period 6 s. The TDNN
is built from MLPs that consist of six processing elements (PEs) in a hidden layer
with biases and tanh nonlinearities and a single linear output PE with an output
bias. The goal is to predict the value of the current sample x; using the previous
seven points Xy = {xx—1,...,Xx—7} (the size of the input delay line is consistent with
Taken’s embedding theorem [204]). In essence, the problem is to identify the
underlying mapping between the input vector X; and the desired output x;. For
comparison purpose, we also present simulation results of TDNN training with
a-order (v > 1) IP maximization criterion. Since IP is shift-invariant, after training
the bias value of the output PE was adjusted so as to yield zero-mean error over
the training set. The Gaussian kernel was used to evaluate the empirical IP and the
kernel size was experimentally set at 0.8. A segment of 200 samples is used as the
training data. To avoid local-optimal solutions, each TDNN is trained starting from
500 predetermined initial weights generated by zero-mean Gaussian distribution
with variance 0.01. The best solution (the one with the lowest SIP or the highest IP
after training) among the 500 candidates is selected to test the accuracy perfor-
mance. In each simulation, the training algorithms utilized BP with variable step-
sizes [205], and 1000 iterations were run to ensure the convergence. The trained
networks are tested on an independently generated test sequence of 4000 samples,
and the testing errors are listed in Table 4.7. One can see the TDNN trained using
SIP with o = 1.5 achieves the smallest testing error. Thus, if properly choosing the
order a, the SIP criterion is capable of outperforming the IP criterion. Figure 4.30
shows the computation time per iteration versus the number of training data.
Clearly, the SIP-based training is computationally much more efficient than the IP-
based training, especially for large data sets. The training time for both methods is
measured on a personal computer equipped with a 2.2 GHz Processor and 3 GB
memory.

4.7 A-Entropy Criterion

System identification usually handles continuous-valued random processes rather
than discrete-valued processes. In many practical situations, however, the input
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Figure 4.30 Execution time per iteration versus the number of training data.

and/or output of the unknown system may be discrete-valued for a variety of
reasons:

a.

b.

For many systems, especially in the field of digital communication, the input signals take
values only in finite alphabetical sets.

Coarsely quantized signals are commonly used when the data are obtained from an A/D
converter or from a communication channel. Typical contexts involving quantized data
include digital control systems (DCSs), networked control systems (NCSs), wireless sen-
sor networks (WSNs), etc.

. Binary-valued sensors occur frequently in practical systems. Some typical examples of

binary-valued sensors can be found in Ref. [206].

. Discrete-valued time series are common in practice. In recent years, the count or integer-

valued data time series have gained increasing attentions [207—210].

. Sometimes, due to computational consideration, even if the observed signals are continu-

ous-valued, one may classify the data into groups and obtain the discrete-valued data
[130, Chap. 5].

In these situations, one may apply the differential entropy (or IP) to implement

the MEE criterion, in spite of the fact that the random variables are indeed discrete.
When the discretization is coarse (i.e., few levels) the use of differential entropy
may carry a penalty in performance that is normally not quantified. Alternatively,
the MEE implemented with discrete entropy will become ill-suited since the mini-
mization fails to constrain the dispersion of the error value which should be pur-
sued because the error dynamic range decreases over iterations.
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In the following, we augment the MEE criterion choices by providing a new
entropy definition for discrete random variables, called the A-entropy, which com-
prises two terms: one is the discrete entropy and the other is the logarithm of the
average interval between two successive discrete values. This new entropy retains
important properties of the differential entropy and reduces to the traditional dis-
crete entropy for a special case. More importantly, the proposed entropy definition
can still be used to measure the value dispersion of a discrete random variable, and
hence can be used as an MEE optimality criterion in system identification with
discrete-valued data.

4.7.1 Definition of A-Entropy

Before giving the definition of A-entropy, let’s review a fundamental relationship
between the differential entropy and discrete entropy (for details, see also Ref. [43]).

Consider a continuous scalar random variable X with PDF f(x). One can produce
a quantized random variable X* (see Figure 4.31), given by

XA =5, if IASX<(+DA (4.237)

where s; is one of countable values, satisfying

(i+DA
IAN=s;<(@i+1)A, and f(s))A= J f(x)dx (4.238)
iA
The probability that X2 =s; is
pi = Pr(X® =s;) = f(s)A (4.239)
A Figure 4.31 Quantization of
A a continuous random variable.
f(x) Hl F

><"

A s (1A
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And hence, the discrete entropy H(X2) is calculated as

HO) == 3 prlogpi=— 3 Afsilog fs) — log A (4.240)

i=— w0 i=—w0

If the density function f(x) is Riemann integrable, the following limit holds
[e¢]
Jim (H(X®) +1log A) = — J F()log f(x)dx = h(X) (4.241)
- -

Here, to make a distinction between the discrete entropy and differential
entropy, we use A(X) instead of H(X) to denote the differential entropy of X. Thus,
if the quantization interval A is small enough, we have

h(X) ~ H(X®) +log A (4.242)

So, the differential entropy of a continuous random variable X is approximately
equal to the discrete entropy of the quantized variable X* plus the logarithm of the
quantization interval A. The above relationship explains why differential entropy is
sensitive to value dispersion. That is, compared with the discrete entropy, the dif-
ferential entropy “contains” the term log A, which measures the average interval
between two successive quantized values since

A= lim
N> 2N+ 1,

N
> Isivr = sil (4.243)
=-N

This important relationship also inspired us to seek a new entropy definition for
discrete random variables that will measure uncertainty as well as value dispersion
and is defined as follows.

Definition: Given a discrete random variable X with values S = (s1, 52, . .., 5y),
and the corresponding distribution P = (py,pa,...,pu), the A-entropy, denoted by
HA(X) or HA(S, P), is defined as [211]

M
HA(X)= =) pilog pi +log A(X) (4.244)
i=1

1

where A(X) (or A(S,P)) stands for the average interval (distance) between two
successive values.

The A-entropy contains two terms: the first term is identical to the traditional dis-
crete entropy and the second term equals the logarithm of the average interval between
two successive values. This new entropy can be used as an optimality criterion in esti-
mation or identification problems, because minimizing error’s A-entropy decreases
the average interval and automatically force the error values to concentrate.
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Next, we discuss how to calculate the average interval A(X). Assume without
loss of generality that the discrete values satisfy s; <s, < --- <sj;. Naturally, one
immediately thinks of the arithmetic and geometric means, i.e.,

| Mol . .

AX) = V=1 ;mﬂ —s;| for arithmetic mean

_ 1M1 (4.245)

AX) = < [T Isi+1 —si|> for geometric mean
i=1

Both arithmetic and geometric means take no account of the distribution. A
more reasonable approach is to calculate the average interval using a probability-
weighted method. For example, one can use the following formula:

AX) = Z Isie1 — p AL (4.246)
However, if (p; + py) >0, the sum of weights will be <1, because

M—1
PP 2”’“ - 21’M <1 (4.247)

To address this issue, we give another formula:

-1
i —~ +
DX = Y lsigy — s PPy B T P (4.249)

The second term of (4.248) equals the arithmetic mean multiplied by
(p1 + pm)/2, which normalizes the weight sum to one. Substituting (4.248) into
(4.244), we obtain

+ - +
Ha(X) = Zp’ 10gp,+10g<z Isisy — 5i| 2t Pz+1 4 s = silp PM)

M—1 2
(4.249)

The A-entropy can be immediately extended to the infinite value-set case, i.e.,

+piri .Sy —s—nIp-~ t DN
S B 3

(4.250)

In the following, we use Eq. (4.249) or (4.250) as the A-entropy expression.
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4.7.2 Some Properties of the A-Entropy

The A-entropy maintains a close connection to the differential entropy. It is clear
that the A-entropy and the differential entropy have the following relationship in
the limit:

Theorem 1 For any continuous random variable X with Riemann integrable PDF

f(x), we have lim HA(X?)=h(X), where quantized variable X* is given by
Eq. (4.237). 270

Proof: Combining Egs. (4.239) and (4.250), we have

Ha(X%) == " fs)Alog(f(s:)A)

i=— o0

- SHA + f(siv A o lsw = SN FG—m)A + F(sy)A
+log leiﬂ_si'f() 2f( +1) +A}H&|N2N NIf(s-n) 2f(N)

i=—w

__ iAf(s[)logf(s,-)ﬂog imﬂ o f )

i=— 0 i=— 0

As f(x) is Riemann integrable, it follows that
lim Ha(X%) = = [, f(0)log f(x)dx + log ([, f(x)dx)
= — |2, f(log f(x)dx = h(x)

This completes the proof.

Remark: The differential entropy of X is the limit of the A-entropy of X* as
A — 0. Thus, to some extent one can regard the A-entropy as a “quantized ver-
sion” of the differential entropy.

Theorem 2 log(max; = 12,...;r — 1|sj+1 — 5;]) = Ha(X) — H(X) = log(min;= 1 5,... ;1 1
’strl - Sj‘).

Proof: Omitted due to simplicity.

Remark: By Theorem 2, if the minimum interval between two successive values is

larger than 1, we have Ha(X)> H(X), whereas if the maximum interval between
two successive values is smaller than 1, we have Ha(X) < H(X).
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Theorem 3 If X is a discrete random variable with equally spaced values, and the
interval A = 1, then Ha(X) = H(X).

Proof: For equally spaced intervals, the difference between theA-entropy and the
discrete entropy equals log A. Hence, the statement follows directly.

Remark: The classification problem is, in general, a typical example of the error
variable distributed on equally spaced values {0, 1,2,3,...}. Thus in classification,
the error’s discrete entropy is equivalent to the A-entropy. This fact also gives an
interpretation for why the discrete entropy can be used in the test and classification
problems [212,213].

In information theory, it has been proved that the discrete entropy satisfies (see
Ref. [43], p. 489)

0<H(X)<110 2 o — (S ! 4251
= =3 g| 2me Zpiz lei +E (4.251)

i=1 i=1

Combining Eq. (4.251) and Theorem 2, we obtain a bound on A-entropy:

1 i i+1— ;| | =HAX
0g<j=1’2r{}}}}M1|s,+1 s,|) A(X)

1 M M 1 2
= Elog (27re <Zp,-i2 - <Z ipi> + E) (j=1?g%1 |Sj+1_Sj|> )
i=1 i=1 o

(4.252)

A lower bound of the A-entropy can also be expressed in terms of the variance
Var(X), as given in the following theorem:

Theorem 4 If pyi, = min{p;} >0, then Ha(X) = log(3/2m) + Llog(Var(X)).

Proof: It is easy to derive
M
Var(X) =) (s:—35)p;
i=1

2
syts
(Si_ M2 l) Di
1
2
syts
(sM_ M2 l) Pi

(su—s1)

IA
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1
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.Mg

1
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It follows that |sy; — 51| =24/ Var(X), and hence

Ha(X) = log lem P1+Pz+1 N |SAAZI:S11|Pl ‘;PM
=log Z|Sz+1 8ilPmin + %Pmm = log %Pmm
= log ZMM \_/alr(X) -
=log zﬁjylimiln + %log(Var(X))

The lower bound of Theorem 4 suggests that, under certain condition minimiz-
ing the A-entropy constrains the variance. This is a key difference between the
A-entropy and conventional discrete entropy.

Theorem 5 For any discrete random variable X, V ceR, HA(X + ¢) = HA(X).
Proof: Since H(X + ¢) = H(X) and A(X + ¢) = A(X), we haveHA(X + ¢) = HA(X).

Theorem 6 V aeR, o # 0, Ha(aX) = HA(X) + log|al.
Proof: Since H(aX)=H(X) and A(aX) = |a]AX), we have
Ha(aX) = Ha(X) + log|al.

Theorems 5 and 6 indicate that the A-entropy has the same shifting and scaling
properties as the differential entropy.

Theorem 7 The A-entropy is a concave function of P = (p1,pa2, .. .,pu)-

Proof: VP, Z(p(ll),p(zl),.. ,pﬁ})) P, =(p(12),p(22),.. ,pﬁ)) and VO=\=1, we
have

A(S, APy + (1 — N)P) = AA(SPy) + (1 — MA(SP,) (4.253)
By the concavity of the logarithm function,

1og(A(S, AP + (1 — M)P3)) = Mog(A(S,Py)) + (1 — Mlog(A(S,P3)) (4.254)
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It is well known that the discrete entropy H(P) is a concave function of the dis-
tribution P, i.e.,

HOAP,+(1—=NP)= ) H(P)+ (1 — NH(P,), VO=)A=1 (4.255)
Combining Egs. (4.254) and (4.255) yields
HA(S, APy + (1 — A)P2) = MHA(S,Py) + (1 — M)HA(S,P>) (4.256)

which implies A-entropy is a concave function of P.

The concavity of the A-entropy is a desirable property for the entropy optimiza-
tion problem. This property ensures that when a stationary value of the A-entropy
subject to linear constraints is found, it gives the global maximum value [149].

Next, we solve the maximum A-entropy distribution. Consider the following
constrained optimization problem:

mlngA(X)
{ M =1 (4.257)
S.t.
S pigs)=ar, k=1,2,...K

where a; is the expected value of the function gx(X). The Lagrangian is given by

M K M
L=Ha(X) = (Ao — 1)<Zpi - 1) > N (Zpigk(s,-) - ak> (4.258)
i=1 k=1 i=1

where Mg, Aj,..., Ax are the (K + 1) Lagrange multipliers corresponding to the
(K + 1) constraints. Here Ao — 1 is used as the first Lagrange multiplier instead of
Ao as a matter of convenience. Let OL/dp; = 0, we have

K
A(X) (_/\0 =) Megils)) — log p,»> =0, i=1,2,..,M, (4.259)
=1
where
lspg — st ls2 — s1] —1
2M—1) 2
[$iv1 = si-1] .
ci = fa l:27"'7M_1 (4260)
sy — st lsm — sm-1l
+ =M
2M—1) 2
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Solving Eq. (4.259), we obtain the following theorem:

Theorem 8 The distribution P that maximizes the A-entropy subject to the con-
straints of Eq. (4.257) is given by

K
c:
i=exp| —Xo — E Mege(s)+ ——1), i=1,2,...M (4.261
p P( 0 - «8k(si) A(X)) )

where Mg, A, ..., Ak are determined by substituting for p; from Eq. (4.261) into
the constraints of Eq. (4.257).
For the case in which the discrete values are equally spaced, we have

c1=cy;=--=cy=2A,and Eq. (4.261) becomes
K
pi = €exp (1 — Ao~ Z Aké’k(&)) (4.262)
k=1

In this case, the maximum A-entropy distribution is identical to the maximum
discrete entropy distribution [149].

4.7.3 Estimation of A-Entropy

In practical situations, the discrete values {s;} and probabilities {p;} are usually
unknown, and we must estimate them from sample data {x;, x,, ..., x,}. An immedi-
ate approach is to group the sample data into different values {s;} and calculate the
corresponding relative frequencies:

p,=ni/n, i=12,...M (4.263)

l

where n; denotes the number of these outcomes belonging to the value §; with

SiLyni=n.
Based on the estimated values {$;} and probabilities {p;}, a simple plug-in esti-
mate of A-entropy can be obtained as

- X . = . « Pit Dy | 1Sm = $11p1 + Py
HA(S.P) = — Zl’i log p; +log Z Si+1 — Sil > T M1 3
i=1 i=1
(4.264)

where § = (51,82, . . ., Sp) and P= P1sP2s -+ > Pyr)-
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As the sample size increases, the estimated value set S will approach the true

value set S with probability one, i.e., Pr(S =8)=1, as n — oo. In fact, assuming
{x1,x2,...,x,} is an i.i.d. sample from the distribution P, and p; >0, i=1,... .M,
we have

M
Pr(S #S) = ZPI(Si¢ {x1,%2, .. ., X))
i1

M

> (f[lPr(Xj # si)) (4.265)
2

i=1

(1-p)"'—>0 asn— o
1

1

We investigate in the following the asymptotic behavior of the A-entropy in
random sampling. We assume for tractability that the value set S is known (or has
been exactly estimated). Following a similar derivation of the asymptotic distribu-
tion for the ¢-entropy (see Ref. [130], Chap. 2), we denote the parameter vector
0=(0,,0,,..., 0M71)T =(p1,p2,.. .,prl)T, and rewrite Eq. (4.264) as

. M*lA A M*lA M*lA

HA(e):—Ze,-logai—<1— 9,>1og<1—29j>
i=1

~ Mﬁl/\

R )

+ 4.2
M—1 2 (4.266)
The first-order Taylor expansion of H A(é) around @ gives
M-I
A OHA(O) A .
Ha(0)=HA(0) + a )(9,- —0)+0(16 —01) (4.267)

= 0

where 16 — 61 = /(6 —6)"(0 — 6), and OHA(0)/36; is
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M—1
Sit1 = Si—1 — (Sm — Sm—1) lsp — s1l
—logh; +1 1—- 0| + — ,
©8 °g< ; f) 2A 2M— 1A
i#Z1,M—1
OHA(0) “ sy — 51— (S —sy-1) .
={ —logb; +1 1—- 0| + =1
ael Og 1 Og IZZI J 2A s 1
p SM—1 = SM—2 Isar — 51
_ L+ _ )+ - e
logfy—1 10g<1 IZ;Q,) A MDA’
i=M-—1
(4.268)
where
. M-1
R erl + 11— Hj
j=1
A= Z|s,+1 +|SM—SM 1 ) ]
. M-1,
0+ 11— 0;
sy — 81 Jj=1
+ 4.2
M-1 2 (4.269)
According to Ref. [130, Chap. 2], we have
V(6 — 0) —— 1(0,1:(8) ") (4.270)

where the inverse of the Fisher information matrix of 6 is given by
Ir(0) " = diag(@) — 60" Then /118 — 01 is bounded in probability, and

J(o(16 — 01)) =20 (4.271)

And hence, random variables /n(H(6) — Ha(6)) and /7 ZM laHA(g) ;-0
have the same asymptotic distribution, and we have the following theorem

Theorem 9 The estimate H(S,P), obtained by replacing the {p;} by their relative
frequencies {p;}, in a random sample of size n, satisfies

VA(HA(S,P) = HA(S,P)) 7=k A7(0, U"1x(6) ™' U) (4.272)
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provided UTI;(0) U >0, where 8 = (p1,pa,....pu—1)", I(0)"' = diag(6) — 06",
and

U = (0HA(6)/00,,0HA(0)/365, . .., 0HA(8) /00y —1)" (4.273)
where 0HA(0)/06; is calculated as (4.268).
The afore-discussed plug-in estimator of the A-entropy has close relationships

with certain estimators of the differential entropy.

4.7.3.1 Relation to KDE-based Differential Entropy Estimator

Suppose {x1,x3,...,x,} are samples from a discrete random variable X. We rewrite
the plug-in estimate (4.264) as

M
HAS.,P)= =Y pjlog p; +log A (4.274)

i=1
where A= ST S0 =SB + Pren)/2) + (8w = 11/ (M = DYy + i) /2.
Denote Apin = min;=g,... pr — 1 [§i+1 — 8|, and let 7= A/Ap;y, we construct another
set of samples:
(x1,x 0, LX) =X, 0, .., TX) (4.275)
which are samples from the discrete random variable 7X, and satisfy
VX # W= = A (4.276)

Now we consider {x'{,x5,...,x’,} as samples from a “continuous” random vari-
able X’. The PDF of X’ can be estimated by the KDE approach:

)= S KW =) @27)
i=1

The kernel function satisfies K =0 and fjw K(x)dx = 1. If the kernel function is
selected as the following uniform kernel:

KA(X):{I/A, xe[—A/2,A/2] @278)

0 otherwise

then Eq. (4.277) becomes
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N 1 - 7
p) = ;ZKA(X — X))
=

| M
== mK;(' =5

n;" A=) (4.279)
@ &, x/e{s’i—A/2,s’i+A/2}

0 otherwise

where (a) follows from p; =n;/n, and Vx'; # x'j, |x; — x/j] = A. The differential
entropy of X’ can then be estimated as

Ry = — j A(log H)dx

M
M

s/ i+A)2

-S| oo par

si—A)2

A 4.280

J ,+A/2pi1 pi , ( )
—log —dx

i—1 s’;*A/ZA A

i=1

M
- E p,-log Di + 10g A= HA(S,P)

i=1

As a result, the plug-in estimate of the A-entropy is identical to a uniform
kernel-based estimate of the differential entropy from the scaled samples (4.275).

4.7.3.2 Relation to Sample-Spacing Based Differential Entropy Estimator

The plug-in estimate of the A-entropy also has a close connection with the sample-
spacing based estimate of the differential entropy. Suppose the sample data are dif-
ferent from each other, and have been rearranged in an increasing order:
x; <xp < --- <Xx,, the m-spacing estimate is given by [214]

fon(X) = % z_: log (% (i — x,~)> (4.281)
=1

where meN and m <n. If m = 1, we obtain the one-spacing estimate:

n—1
hy(X) = % > log(n(xir — x) (4.282)
i=1
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On the other hand, based on the samples one can estimate the value set and cor-
responding probabilities:

S=(x 3 X2, e ey X))
{f’= (ll/n,zl/n,..., 1/n) (4.283)

Then the plug-in estimate of the A-entropy will be

R "1 1 2l X, —x1) 1
HA(S,P) = — Z log + log <Z(x,+1 )n + %;) (4.284)

i:1 i=1

It follows that

A "1 1 al 1 (x,—x)1
HA(S,P) = — Zﬁlogﬁ + log Z(xiﬂ —xi); + G = x) 1
i=1

— n—1 n
i=1

(b) 1 n
Zlogn+- Zlog(x,+1 x;) + log (x x‘)

n(xn —X])

11 1
— Zlog(n(xiﬂ —x;)) + —log
n< n n—1

n(xn _xl)

-1

A 1
hi(X) + - log (4.285)

where (b) comes from the concavity of the logarithm function. If {x;} is bounded,
we have

~ 1
lim HA(S P)> hm (hl(X) + —log
n

n— o0

L_lx‘)) = lim A (X) (4.286)
n— n— oo

In this case, the plug-in estimate of A-entropy provides an asymptotic upper
bound on the one-spacing entropy estimate.

4.7.4 Application to System Identification

The A-entropy can be used as an optimality criterion in system identification, espe-
cially when error signal is distributed on a countable value set (which is usually
unknown and varying with time) '>. A typical example is the system identification
with quantized input/output (I/O) data, as shown in Figure 4.32, where X; and Zj

'3 For the case in which the error distribution is continuous, one can still use the A-entropy as the opti-
mization criterion if classifying the errors into groups and obtaining the quantized data.
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Ny Figure 4.32 System identification with
X, ¢ z quantized I/O data.
k Unknown Yk C K
o system
A\

Q-

Q,[ ] f O[ ]
. Tyz
Model Yk
_ (W) _

represent the quantized I/O observations, obtained via I/O quantizers Q; and Q,.
With uniform quantization, X} and z; can be expressed as

X = xk/q,-+l/2 X q;
4.2
{Zk:Lk/QO‘FI/z X qo (4-287)

where g; and ¢, denote the quantization box-sizes, [x] gives the largest integer that
is less than or equal to x.

In practice, A-entropy cannot be, in general, analytically computed, since the
error’s values and corresponding probabilities are unknown. In this case, we need to
estimate the A-entropy by the plug-in method as discussed previously. Traditional
gradient-based methods, however, cannot be used to solve the A-entropy minimiza-
tion problem, since the objective function is usually not differentiable. Thus, we
have to resort to other methods, such as the estimation of distribution algorithms
(EDAs) [215], a new class of evolutionary algorithms (EAs), although they are usu-
ally more computationally complex. The EDAs use the probability model built
from the objective function to generate the promising search points instead of cross-
over and mutation as done in traditional GAs. Some theoretical results related to the
convergence and time complexity of EDAs can be found in Ref. [215]. Table 4.8
presents the EDA-based identification algorithm with A-entropy criterion.

Usually, we use a Gaussian model with diagonal covariance matrix (GM/DCM)
[215] to estimate the density function f,(W) of the gth generation. With GM/DCM
model, we have

70 = [T —==exp(— Gu =2/ P (4.288)

vy

where the means uj(-g) and the deviations oj(-g)

9 = (c—1)
¢ Z} Wsi 0)

. : (4.289)
( 1) (9)\2
¢ \/ Zl 1 WB&ZI )= 1)

can be estimated as
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Table 4.8 EDA Based Identification Algorithm with A-entropy Criterion

1. BEGIN

2. Generate R individuals Ay = {W(O), WEO), o W,(QO)} randomly from parameter space, g« 0

3. WHILE the final stopping criterion is not met DO

4. g—g+1

5. For each parameter vector in A, 1, estimate the error’s A-entropy using a training data
set

6. Select N(N = R) promising individuals B, = {Wg’zl_)]), Wg’zz_)l), . Wg;};)])} from A,
according to the truncation selection method (using A-entropy as the fitness function)
7. Estimate the PDF f,(W) based on the statistical information extracted from the selected
N individuals B,
8. Sample R individuals A, = (W, W), . W&} from f,(W)
9. END WHILE
10. Calculate the estimated parameter: W(g) = (1/N) ZQ’:, Wg’z;)l)
11. END

16

In the following, two simple examples are presented to demonstrate the performance
of the above algorithm. In all of the simulations below, we set R = 100 and N = 30.

First, we consider the system identification based on quantized I/O data, where
the unknown system and the parametric model are both two-tap FIR filters, i.e.,

{ %= Wik Wik (4.290)
Vi = WiXg T WoXe—1

The true weight vector of the unknown system is W* =[1.0,0.5]”, and the initial
weight vector of the model is Wy = [0,0]”. The input signal and the additive noise
are both white Gaussian processes with variances 1.0 and 0.04, respectively. The
number of the training data is 500. In addition, the quantization box-size ¢; and g,
are equal. We compare the performance among three entropy criteria: A-entropy,
differential entropy'’ and discrete entropy. For different quantization sizes, the aver-
age evolution curves of the weight error norm over 100 Monte Carlo runs are shown
in Figure 4.33. We can see the A-entropy criterion achieves the best performance,
and the discrete entropy criterion fails to converge (discrete entropy cannot constrain
the dispersion of the error value). When the quantization size becomes smaller, the
performance of the differential entropy approaches that of the A-entropy. This agrees
with the limiting relationship between the A-entropy and the differential entropy.

The second example illustrates that the A-entropy criterion may yield approxi-
mately an unbiased solution even if the input and output data are both corrupted by

16 The truncation selection is a widely used selection method in EDAs. In the truncation selection, indi-
viduals are sorted according to their objective function (or fitness function) values and only the best
individuals are selected.

17 Strictly speaking, the differential entropy criterion is invalid in this example, because the error is
discrete-valued. However, in the simulation one can still adopt the empirical differential entropy.
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Figure 4.33 Evolution curves of the weight error norm for different entropy criteria
(adopted from Ref. [211]).

noises. Consider again the identification of a two-tap FIR filter in which
G*(z) =wi +wiz ! = 1.0 + 0.5z '. We assume the input signal x;, input noise nx,
and the output noise n, are all zero-mean white Bernoulli processes with distribu-
tions below

Pr{x; =0,} =05, Pr{xy=—0,}=0.5
Prinix=0,}=05, Pr{nig=—-0,}=05 (4.291)
Pr{nyx = 04,1 =0.5, Pringy=—0,}=0.5

where oy, 0,,, and 0, denote, respectively, the standard deviations of xi, n 4, and
nyg. In the simulation we set o, = 1.0, and the number of training data is 500.
Simulation results over 100 Monte Carlo runs are listed in Tables 4.9 and 4.10. For
comparison purpose, we also present the results obtained using MSE criterion. As
one can see, the A-entropy criterion produces nearly unbiased estimates under vari-
ous SNR conditions, whereas the MSE criterion yields biased solution especially
when the input noise power increasing.
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Table 4.9 Simulation Results for Different o, (0, =0.1)
On, A-entropy MSE
wi wy wi wa
0.1 1.0000 = 0.0008 0.4999 = 0.0007 0.9896 = 0.0071 0.4952 = 0.0067
0.2 0.9997 = 0.0015 0.4995 = 0.0015 0.9609 £ 0.0098 0.4800 = 0.0097
0.3 0.9994 = 0.0016 0.4993 = 0.0017 0.9192 £0.0118 0.4617 = 0.0140
0.4 0.9991 = 0.0019 0.4991 £ 0.0019 0.8629 £ 0.0129 0.4316 = 0.0163
0.5 0.9980 = 0.0039 0.4972 = 0.0077 0.8015 £0.0146 0.4016 = 0.0200
(adopted from Ref. [211])
Table 4.10 Simulation Results for Different o, (0, = 0.1)
Op, A-entropy
wi w2 wi w2
0.1 1.0000 = 0.0008 0.4999 = 0.0007 0.9896 £ 0.0071 0.4952 = 0.0067
0.2 0.9999 = 0.0009 0.4999 = 0.0008 0.9887 = 0.0096 0.4949 * 0.0089
0.3 0.9999 = 0.0012 0.4998 = 0.0011 0.9908 £ 0.0139 0.4943 = 0.0142
0.4 0.9999 = 0.0020 0.4998 = 0.0017 0.9880 £0.0192 0.4948 = 0.0208
0.5 1.0001 £ 0.0039 0.4998 = 0.0024 0.9926 +0.0231 0.4946 * 0.0235

(adopted from Ref. [211])

4.8 System Identification with MCC

Correntropy is closely related to Renyi’s quadratic entropy. With Gaussian kernel,
correntropy is a localized similarity measure between two random variables: when
two points are close, the correntropy induced metric (CIM) behaves like an L2
norm; outside of the L2 zone CIM behaves like an L1 norm; as two points are fur-
ther apart, the metric approaches LO norm [137]. This property makes the MCC a
robust adaptation criterion in presence of non-Gaussian impulsive noise. At the end
of this chapter, we briefly discuss the application of the MCC criterion to system
identification.

Consider a general scheme of system identification as shown in Figure 4.1.
The objective of the identification is to optimize a criterion function (or cost
function) in such a way that the model output y, resembles as closely as possible
the measured output z;. Under the MCC criterion, the cost function that we want
to maximize is the correntropy between the measured output and the model out-
put, i.e.,
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J = E[ko (2, Y]

1 (% _}A’k)z
= Elexp| — — 5
vamo | 20 (4.292)
1 E e‘k2
= ex —_—
2mo P 202

In practical applications, one often uses the following empirical correntropy as
the cost function:
1

J= .
2mo

k 2
Y exp (— 2602> (4.293)

i=k—L+1

S~ =

Then a gradient-based identification algorithm can be easily derived as follows:

k 2 A
ej a i
We=Wi1 +1 E exp(——202> e; 8y (4.294)

i=k—L+1

When L =1, the above algorithm becomes a stochastic gradient-based (LMS-
like) algorithm:
w, P

Wi = Wi—1 +nexp (_M) ek W (4.295)

In the following, we present two simulation examples of FIR identification to
demonstrate the performance of MCC criterion, and compare it with the perfor-
mance of MSE and MEE.

In the first example, the weight vector of the plant is [138]

W*=10.1,0.2,0.3,0.4,0.5,0.4,0.3,0.2,0.1]" (4.296)

The input signal is a white Gaussian process with zero mean and unit variance.
The noise distribution is a mixture of Gaussian:

0.95.4°(0,10™*) + 0.05.4°(0, 10) (4.297)

In this distribution, the Gaussian density with variance 10 creates strong outliers.
The kernel sizes for the MCC and the MEE are set at 2.0. The step-sizes for the
three identification criteria are chosen such that when the observation noise is
Gaussian, their performance is similar in terms of the weight SNR (WSNR),

(4.298)

T yr7+
WSNR = 1010g10< W W )

(W* =W (W* — W)
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Figure 4.34 shows the performance in the presence of impulsive noise. One can
see the MCC criterion achieves a more robust performance.

In the second example, the plant has a time-varying transfer function, where the
weight vector is changing as follows [138]:

1000

P = +
Wi 2<1 1000

)u(lOOO — W* + (—1 + k) u(k — 1000)W*  (4.299)

where u(.) is the unit step function. The simulation results are shown in
Figure 4.35. Once again the MCC criterion performs better in impulsive noise
environment.
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Appendix H: Vector Gradient and Matrix Gradient
In many of system identification applications, we often encounter a cost function

that we want to maximize (or minimize) with respect to a vector or matrix. To
accomplish this optimization, we usually need to find a vector or matrix derivative.

Derivative of Scalar with Respect to Vector

If J is a scalar, 8 = [01 6, --- 6, ]T is an m X 1 vector, then
oJ ol ol ar 1T
a—gé[%’ 2,0 aem} (H.1)
or Lo o o]
pri lael * 36, 20, (H.2)
Derivative of Scalar with Respect to Matrix
If J is a scalar, M is an m X n matrix, M = [m;], then
r oJ oJ oJ
omy omys amln
oJ oJ oJ
aJ A 6m21 511122 6m2
YA n H.3
M : . : (H.3)
oJ oJ oJ
a’nml ammZ a’/nmn
Derivative of Vector with Respect to Vector
If « and @ are, respectively, n X 1 and m X 1 vectors, then
[Oa1 daz g
00, 00, 00,
5 5 5 ooy Oan ooy,
dal |0 daa Ol 1500 30, a0
0 | @ v we|=| " . (H4)
fay Gaz - oo
00,, 00, 00,
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[ Qau - Oau]
o0, 00, 0,
o L R
oo 5 Oy Oop o)t | p" g, a6, H3)
0T | 00 06° o0 . . . :
Ooa,, Oy oy,
o0, 00, 6,

Second Derivative (Hessian matrix) of Scalar with Respect to Vector

T & °J Gt
6201 00,00, 00,00,
) o4 ﬂ o*J
O p 0 (OI\_ 0 (0\_|a6,00, &%, 36200, (H.6)
00> 00" \o0 0\ 660" : : .
o4 4 4
00,,00, 6,,00, %0,

With the above definitions, there are some basic results:

1. cJi + chz = cl g T 9% where Jy and J, are scalars, ¢y, c, €R are constants.
69

06’
2. Shhl=%0h+1 % Wz

3508 = 4n% -0,

4. Sla"0|=5 [Bra} =, where o and 0 are both m X 1 vectors, and « and O are
independent.

5. 5[0"A] =A, 5[0"A6] =A6 + A", where A is a matrix independent of 6.

6. Let v and 6 be respectively n X 1 and m X 1 vectors, A and B be respectively n X m and
n X n constant matrices. Then

26

% {(a—A6)"B(oc — A0)} = — 24 B(c — A0)
7. If A is a m X m matrix with independent elements, then

0 det[A]
oA

=det[A[A']"



5 System Identification Under
Information Divergence Criteria

The fundamental contribution of information theory is to provide a unified
framework for dealing with the notion of information in a precise and technical
sense. Information, in a technical sense, can be quantified in a unified manner
by using the Kullback—Leibler information divergence (KLID). Two information
measures, Shannon’s entropy and mutual information are special cases of KL
divergence [43]. The use of probability in system identification is also shown to
be equivalent to measuring KL divergence between the actual and model distri-
butions. In parameter estimation, the KL divergence for inference is consistent
with common statistical approaches, such as the maximum likelihood (ML) esti-
mation. Based on the KL divergence, Akaike derived the well-known Akaike’s
information criterion (AIC), which is widely used in the area of model selection.
Another important model selection criterion, the minimum description length,
first proposed by Rissanen in 1978, is also closely related to the KL divergence.
In identification of stationary Gaussian processes, it has been shown that the
optimal solution to an approximation problem for Gaussian random variables
with the divergence criterion is identical to the main step of the subspace algo-
rithm [123].

There are many definitions of information divergence, but in this chapter our
focus is mainly on the KLID. In most cases, the extension to other definitions is
straightforward.

5.1 Parameter Identifiability Under KLID Criterion

The identifiability arises in the context of system identification, indicating whether
or not the unknown parameter can be uniquely identified from the observation of
the system. One would not select a model structure whose parameters cannot be
identified, so the problem of identifiability is crucial in the procedures of system
identification. There are many concepts of identifiability. Typical examples include
Fisher information—based identifiability [216], least squares (LS) identifiability
[217], consistency-in-probability identifiability [218], transfer function—based
identifiability [219], and spectral density—based identifiability [219]. In the follow-
ing, we discuss the fundamental problem of system parameter identifiability under
KLID criterion.

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00005-1
© 2013 Tsinghua University Press Ltd. Published by Elsevier Inc. All rights reserved.
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5.1.1 Definitions and Assumptions

Let {yx};2, x€R™) be a sequence of observations with joint probability density
functions (PDFs) fy(y"), n=1,2,..., where y" = (y7,...,y")" is a mn-dimensional
column vector, #€© is a d-dimensional parameter vector, and OcR? is the
parameter space. Let 6 be the true parameter. The KLID between fp,(y") and fp(y")
will be

Diy (66) = Drea (fs, ) [£o"™))

_ n f90 (y”)
- ero(y Nog 22

dy"
(5.1)

:E‘90 logf('?o(y )

So")

where Ej, denotes the expectation of the bracketed quantity taken with respect to
the actual parameter value ). Based on the KLID, a natural way of parameter iden-
tification is to look for a parameter € ©, such that the KLID of Eq. (5.1) is mini-
mized, that is,

9%{ = ar% r(r)lin Di, (8o H 0) (5.2)
-6

An important question that arises in the context of such identification problem is
whether or not the parameter € can be uniquely determined. This is the parameter
identifiability problem. Assume 6, lies in © (hence ming D, (6 H(‘)) =0). The
notion of identifiability under KLID criterion can then be defined as follows.

Definition 5.1 The parameter set O is said to be KLID-identifiable at §€©O, if and
only if IMeN, V ae®, DY (6| ) = 0 implies o = 6.

By the definition, if parameter set © is KLID-identifiable at 8 (we also say € is
KLID-identifiable), then for any a€ ©, a # 0, we have DII‘(”L(HHCM) # 0, and hence
fuOM) # fo(yM). Therefore, any change in the parameter yields changes in the out-
put density.

The identifiability can also be defined in terms of the information divergence
rate.

Definition 5.2 The parameter set © is said to be KLIDR-identifiable at 0O,
if and only if Vae®, the KL information divergence rate (KLIDR)
Dki(6] o) = nl_inO%D?(L(GHQ) exists, and Dx(0 a) = 0 implies o = 6.

Let B(0,c)2{x|x€O,|lx—0|| <&} be the e-neighborhood of 6, where HH
denotes the Euclidean norm. The local KLID (or local KLIDR)-identifiability is
defined as follows.
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Definition 5.3 The parameter set © is said to be locally KLID (or locally KLIDR)-
identifiable at #e©, if and only if there exists €>0, such that V aeB(0,¢),
D¥, (0] ) = 0 (or Dkr.(] v) = 0) implies o = 6.

Here, we give some assumptions that will be used later on.

Assumption 5.1 VMeN, V0,ae0, the KLID D¥, (| c) always exists.

Remark: Let (2, Z(£2), Py) be the probability space of the output sequence yM
with parameter §e©, where (£, %(2)) is the related measurable space, and
Py:A()) — R is the probability measure. Py is said to be absolutely continuous
with respect to P,, denoted by Py<P,, if Py(A) =0 for every Ae H(2) such that
P,(A)=0. Clearly, the existence of DY (9 Ha) implies Py<P,. Thus by
Assumption 5.1, V 0,a€©, we have Py<P,, P, <Py.

Assumption 5.2 The density function fy(y") is at least twice continuously differen-
tiable with respect to 8O, and V 0,a€0, the following interchanges between
integral (or limitation) and derivative are permissible:

0 0

oo [0 og £ = [0 5 frog £

2 2 (5.3)
= [ ioe 0™ = (767 2 (tog 0y

o 1. 1o

0 Jim ~ Dy, (0fla) = Tim ~=—Df; (0]a)

P | > (5.4)
o i, D6l = lim 5 5 Dl B

Remark: The interchange of differentiation and integration can be justified by
bounded convergence theorem for appropriately well-behaved PDF f,(y™). Similar
assumptions can be found in Ref. [220]. A sufficient condition for the permission
of interchange between differentiation and limitation is the uniform convergence of
the limitation in a.

5.1.2 Relations with Fisher Information

Fisher information is a classical criterion for parameter identifiability [216].
There are close relationships between KLID (KLIDR)-identifiability and Fisher
information.
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The Fisher information matrix (FIM) for the family of densities {fy(y"),
fe© cR%) is given by:

G 0
Jr(O) = Egq | z5108/60™) | | z5102/60™)

(5.5)
— a n
=—E aozlong(y )
As n — o0, the Fisher information rate matrix (FIRM) is:
_ 1
Jr(0) = lim ;Jﬁ(@) (5.6)

Theorem 5.1 Assume that © is an open subset of RY. Then, §e© will be locally
KLID-identifiable if the FIM J¥(6) is positive definite.

Proof: As © is an open subset, an obvious sufficient condition for € to be locally KLID-
identifiable is that ((6/6a)D’I¥L(9Ha))|a s =0, and ((6*/ da*)DY, (0‘|a))|a ¢ > 0. This
can be easily proved. By Assumption 5.2, we have

0
(%D%L(9| @)

A )

a=0 =0

—(%Jfo(y’”)logfa()/”)dy“)

a=0

dyM

a=0

%fa(yM) a
_J fe(yM)W M = _J (6_afa(yM)>
) a=0

(5.7)
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On the other hand, we can derive

& & fo™)
O [ e e |
62
- - @er(yM)logﬁl(yM)d)’M
" (5.8)
a=0
2
—) 0 loigg(yM) :Jﬁl;l(e) >0

Theorem 5.2 Assume that © is an open subset of R?. Then #e© will be locally
KLIDR-identifiable if the FIRM J(6) is positive definite.

Proof: By Theorem 5.1 and Assumption 5.2, we have

0 — 0 1
<%DKL(0’0‘)) (% Lim DKL(9|O‘)>

a=0 a=0 (59)
1ffe,
= nlini n %DKL(QHQ) =0
a=0
and
* o 1

a=0 a=0

(5.10)

a=0

1 f®
( oo

1 _
= lim —J%(0) = T(0) >0
n—own

Thus, 6 is locally KLIDR-identifiable.
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Suppose the observation sequence {y,};=, (x€R) is a stationary zero-mean
Gaussian process, with power spectral Sy(w). According to Theorem 2.7, the spec-
tral expressions of the KLIDR and FIRM are as follows:

_ . 1 L _ (" Sa(w) Sﬁ(w) _
D (0]|a) = nlirrgo;DKL(HHoz) - 4—J {log So(e) + 5.@) l}dw (5.11)
T T
Tr(®)= lim J"(e) 41 J_ SZE )(659(”)) (asg(gw)> dw (5.12)
In this case, we can easily verify that ((6/604)DKL(0H04))|Q 0= and

(Ga /6a2)DKL(9Ha))|a o =Jr(0). In fact, we have
5 — o, Suw S
(aaDKL(eya)) 029— o (J o {log o) 5w 1}0@) »

_ L[ Sa(w)—Sp(w)
() )

a=0

(5.13)
and

2
(; 2DKL(9|a)>

a=0

T
10 So(W)=Sp(w)
(L4 (5) (o) })
T
-1 ’ S XT +—— d
i | | {srsionteargs | 2 | | 250 | y

T
417J7 {Szz )(59 So( )) ( Se(w)) }dw=7p(9) (5.14)

2 T

where T(w, ) = S )( o(w )6 Sa(w) — (6S(w))<ag(w)) >
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Remark: Theorems 5.1 and 5.2 indicate that, under certain conditions, the positive
definiteness of the FIM (or FIRM) provides a sufficient condition for the local
KLID (or local KLIDR)-identifiability.

5.1.3 Gaussian Process Case

When the observation sequence {y;};2, is jointly Gaussian distributed, the KLID-
identifiability can be easily checked. Consider the following joint Gaussian PDF:

Jo") = —%(y" =N AH T - ?g)} (5.15)

1
—————————=€X
@m)™/%, /det Al P {

where 3} = Eg[y"] is the mean vector, and Aj = Eg[(y" — ¥,)(" —yg)T] is the
mn X mn-dimensional covariance matrix. Then we have

~n 1 T nN—lg=n _ —n
Digy (0] a) = Dy (8] ) + 5 0% =y (AN 5~ Vh) (5.16)
where Dy (0] ) is

~Nn 1
Dy (0] e) = = {log

A%

|25

5 +TrA(AD ™ = (A’;)‘l))} (5.17)

Clearly, for the Gaussian process {y;};2,, we have D¥ (6 «) =0 if and only if
Ay =AM and ) =M. Denote A} = ((Ag”)ij), i,j=1,2,...,mM, where (Ag”)ij is
the ith row and jth column element of Aj. The element (A} );; is said to be a reg-
ular element if and only if (6/69)(A§4)i]¢0, i.e., as a function of 0, (Aé”)ij is not a
constant. In a similar way, we define the regular element of the mean vector ¥}
Let Uy (0) be a column vector containing all the distinct regular elements from
Agf and %‘4 . We call ¥y (f) the regular characteristic vector (RCV) of the
Gaussian process {y;};=,- Then we have Uy(6)=UTy(a) if and only if
DY, (6] o) = 0. According to Definition 5.1, for the Gaussian process {y;};,, the
parameter set © is KLID-identifiable at #€©, if and only if AMeN, V aeO,
Wy (0) = Uy () implies o = 6.

Assume that © is an open subset of Rd.N By Lemma 1 of Ref. [219], the map
0— Wy (0) will be locally one to one at ¢ = 6 if the Jacobian of Wy,(¢) has full rank
d at 0 = 6. Therefore, a sufficient condition for € to be locally KLID-identifiable is
that

rank (% \I/M(9)> =d (5.18)
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Example 5.1 Consider the following second-order state-space model (m = 1,d =2)

[120]:
Xiger (01 0\ [ x1k 1 xi0\_ (0 2
()= )G (o) ()=(0) o=
Yk = X2k
(5.19)

where {wy;} is a zero-mean white Gaussian process with unit power. Then the output
sequence with M =4 is

Y1 0
y Wi
yt= 2= 0 (5.20)
y3 (01 + 02)wo + wy
Va (03 + 0,0, + 3w + (0) + 02)w; + wy

It is easy to obtain the RCV:

0, + 6,
07 + 0,0, + 03
Uy(6) = (0, +6,)* +1 (5.21)
(01 + 02)(0F + 0,0, + 03+ 1)
(P+0,0,+63)* + (0, +6,)* + 1

The Jacobian matrix can then be calculated as:

0
— (0
607‘ 4( )
1 1
20, + 0, 01 +20,
(5.22)
= 2(01 + 92) 2((91 + 92)
367 +40,0,+260% + 1 207 +40,0,+3603+1

20207 +36020, +360,03+ 03+ 0, +0,) 203 +3670, + 30,65 + 203+ 6, + 6,)

0
Clearly, we have rank((wlh(@)) =2 for all 8eR? with 6, # 6,. So this

parameterization is locally KLID-identifiable provided 6, # 6,. The identifiability
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can also be checked from the transfer function. The transfer function of the above
system is:

1
Gy(z) = m (5.23)

YV 0eR2, 0 # 0,, define £ =(1/2)|0; — 6>|. Then V a, 3eR?, we have a=f3
provided the following two conditions are met:

L |a—0||<e |B-0|<e
2. VzeC,z# 01,0:, Go(2) = Gs(2)

According to the Definition 1 of Ref. [219], this system is also locally identifi-
able from the transfer function provided 6, # 0,.

The KLID-identifiability also has connection with the LS-identifiability [217].
Consider the signal-plus-noise model:

z9(k) = yo(k) + vi,  yo(k)eR™ (5.24)
where {yg(k)} is a parameterized deterministic signal, {v;} is a zero-mean white

Gaussian noise, E[vivJ-T]Zléij (I is an m X m-dimensional identity matrix), and
{zg(k)} is the noisy observation. Then we have

Eg(zo(k)) = Eg(yo(k) + vi) = yo(k) (5.25)
Ey[(z0(i) — Eo(z0(D))(z0() — Eo(z0())' ] = Elviv]] = 165 .
By Eq. (5.16), we derive
DII?L(QHOL) :DKL(fa(ZM)an(ZM))
= DM )+ S OH =AM o = )
(5.26)

1 X 2
=52 ly@=ya(0)]
i=1

where AM =diag[l,1,...,1]. The above KLID is equivalent to the LS criterion of
the deterministic part. In this case, the KLID-identifiability reduces to the LS-
identifiability of the deterministic part.

Next, we show that for a stationary Gaussian process, the KLIDR-identifiability
is identical to the identifiability from the output spectral density [219].

Let {yy(k)eR™}2, (f€©) be a parameterized zero-mean stationary Gaussian
process with continuous spectral density Sp(w) (m X m-dimensional matrix).
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By Theorem 2.7, the KLIDR between {y4(k)};2, and {y,(k)};2, exists and is
given by:

— 1
Dua 0= Jim D 0])

(5.27)
1 J” det S, (w)
4 )_;

e
dotSyt) " T Salw)[S0(w) = Salw))) pdw

Theorem 5.3 Dy (6| o) = 0, with equality if and only if Sy(w) = Sp(w), VY weR.

Proof: V weR, the spectral density matrices Syp(w) and S,(w) are positive definite.
Let Xp(w) and X,(w) be two normally distributed m-dimensional vectors,
Xo(w) ~ A(0, Sy(w)) and X (w)~ A7(0, S,(w)), respectively. Then we have

1 det S, _
Dra () o) = 5 g G320 4 775,00 15) = S, |
(5.28)
Combining Egs. (5.28) and (5.27) yields
Dru®0)= - | Dia (o) | ) (529)

It follows easily that Dk (f|e)=0, with equality if and only if
Dy (Xp(w) HX(y(w)) =0 for almost every w (hence S,(w) = Sp(w), VweR).

By Theorem 5.3, we may conclude that for a stationary Gaussian process, 6 is
KLIDR-identifiable if and only if ¥V ae®, S (w)= Sy(w) implies o = 6. This is
exactly the identifiability from the output spectral density.

5.1.4 Markov Process Case

Now we focus on situations where the observation sequence is a parameterized
Markov process. First, let us define the minimum identifiable horizon (MIH).

Definition 5.4 Assume that §€ © is KLID-identifiable. Then the MIH is [120]:
MIH(A) = min My (5.30)

where My = {M|MeN, 0 is KLID-identifiable over[1, M]}.
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The MIH is the minimum length of the observation sequence from which
f can be uniquely identified. If the MIH is known, we could identify 6 with
the least observation data. In general, it is difficult to obtain the exact value
of MIH. In some special situations, however, one can derive an upper
bound on the MIH. For a parameterized Markov process, this upper bound
is straightforward. In the theorem below, we show that for a (p — 1)-order
strictly stationary Markov process, the number p provides an upper bound
on the MIH.

Theorem 5.4 If the observation sequence {yy4(k)};2, (0€®©) is a (p — 1)-order
strictly stationary Markov process (p=1), and the parameter set © is KLID-
identifiable at f€ ©, then we have MIH(0) < p.

Proof: As parameter set © is KLID-identifiable at #, by Definition 5.1, there exists
a number M eMy<N, such that ¥V ae®, DY (6|a) =0<a = 6. Let us consider
two cases, one for which p =1 and the other for which p > 1.

1. p=1: The zero-order strictly stationary Markov process refers to an independent and
. . o . ' M
identically distributed sequence. In this case, we have f(y") = H,':IJC&()’I‘), and

f@(y ) M
(yM)

DI (0] ) = Jﬁ ("log

M
er(y)

dyM (5.31)

-| [Tomlog

= _1jlfa<y,

M

= Z j fg(y,-)log;”(é"; dy; = MDy; (0] )
i=1 a\lVi

And hence, V a€e©®, we have D}(L(HHQ) 0< DY (QHQ) 0<>a = 0. It follows that
1 e My, and MIH(6) = minMy =1 <p.
2. p>1:1f p=M, then MIH(#) = minMy =M <p. If 1 <p <M, then

M
Foo™M =" D [T fGily™) (5:32)

i=p
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By Markovian and stationary properties, one can derive

M
Fo6™) =07 O TGy ™)

i=p

M
=f0()’p71)HfH(Yi|yla .. ~7yi*1)

i=p

M
:fﬁ(ypil)Hfﬁ(yilyiprrl, s Yie1) (5.33)

i=p

M
:fa(yp_l)Hfa@pWh oo Yp—1)

i=p

M
= 0" O oGyl

i=p

It follows that

M
Sl D Lt ™)
DY, O0) = [ og——— ay
' fa(ypil)nfa(ypbpil)
i=p

(5.34)
_ —1 fe(y”*l) -1 fﬂ(yp‘ypil)
e E e B
= D} (0] @) + MDx (o |y D) fa G [y )
where DKL(fg(y,,|y”’l)|| fo,(yp|y”’l)) is the conditional KLID. And hence,
D0y =0
DY (0]a)=0< KL
k@) { D (ol )£y 1)) = 0
- {fa(y"") =fa("")
fH(yp|ypil) :f(v(yp‘ypil)
<=/f0") = fuO)
< Dy (0] a) =0 (5.35)

Then V ae®, we have Di; (0] a) = 0« DY (0]|a) = 0<>a = 0. Thus, peMy, and it
follows that MIH(#) = minMy = p.
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Example 5.2 Consider the first-order AR model (d = 2) [120]:
Vi =01yk—1 + 0, 0<0, <1,0, #0 (5.36)
where {v,} is a zero-mean white Gaussian noise with unit power. Assume that the sys-

tem has reached steady state when the observations begin. The observation sequence
{v«} will be a first-order stationary Gaussian Markov process, with covariance matrix:

10 6 6 - o

6 1 6 6 . ¢

2 6 0 1 0, - 03
Al = 0 " ! ! ! (5.37)

1=01 & 0 6, 1 oot

A A A N S
VOeO (0<0, <1, 0, #0), we have
rank{illl (0)} =rank{i‘ll (9)} = .. =rank{i\lf (9)} =2=d (5.38)
o0" ° o0" ’ o0" " ‘

where W;(0) are the RCVs. And hence, MIH(6) =2 = p.
The following corollary is a direct consequence of Theorem 5.4.

Corollary 5.1 For a (p — 1)-order strictly stationary Markov process {yy(k)};Z,, the
parameter set © is KLID-identifiable at #€ © if and only if ¥V ae®, Di; (0] a)=0
implies a = 6.

From the theory of stochastic process, for a (p — 1)-order strictly stationary
Markov process {yy(k)};Z,, under certain conditions (see Ref. [221] for details),
the conditional density fg(yp|y1”1) will determine uniquely the joint density
foO). In this case, the KLID-identifiability and the KLIDR-identifiability are
equivalent.

Theorem 5.5 Assume that the observation sequence {y,(k)};=, is a (p — 1)-order
strictly stationary Markov process (p = 1), whose conditional density fg(y[,|y1’_1)
uniquely determines the joint density fy(y”). Then, V €O, 6 is KLID-identifiable
if and only if it is KLIDR-identifiable.

Proof: We only need to prove lim (1/n)D; (6] o) = 0« Dy (6] ) = 0.
n— oo

1. When p = 1, we have D}, (6| @) = nD; (6| ), and hence nlilg LDy (0] ) = Dy (0] ).
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2. When p>1, we have Dj (0]a) =D} (0] ) + nDxr(foy |y |fapy? 1), and it
follows that

.
Jim - Digy (0] )

Y Hfa0

n—

= lim { D0 @) + D (o

¥ ))}

= D (fop [y D fa [y~ (5.39)

Since fg(yp| y?~1) uniquely determines f5(y”), we can derive
lim D, (0] a) =0
n—wn
< DxL (0 " D | fa 0?1 =0
¢>f0(yp‘ypil) :fa(yp‘ypil)
<f7) =fa ()

<D (0]a)=0 (5.40)

This completes the proof.

5.1.5 Asymptotic KLID-Identifiability

In the previous discussions, we assume that the true density fy,(y) is known.
In most practical situations, however, the actual density, and hence the KLID,
needs to be estimated using random data drawn from the underlying density.
Let (y’("f),..., y’(‘I’S) be an independent and identically distributed (i.i.d.) sample
drawn from fy,(y"). The density estimator for fp,(y¥) will be a mapping
fLR™ 5 (RMMYE s R [98]:

{fL(yM) =fL0M Yy ) =0 (5.41)

J7.0MdyM =
The asymptotic KLID-identifiability is then defined as follows:

Definition 5.5 The parameter set O is said to be asymptotic KLID- 1dent1flab1e at
to €O, if there exists a sequence of density estimates {f1} . such that 0, =0,
(convergence in probablhty) where 6L is the minimum KLID estimator,

0, = argmingeo DY, (f, o).
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Theorem 5.6 Assume that the parameter space © is a compact subset, and the
density estimate sequence {f,};, satisfies D¥ (f, |fa,) 7=550. Then, 6y will be
asymptotic KLID-identifiable provided it is KLID-identifiable.

Proof: Since DY, (f LH fo,) =220, for £ >0 and 6 >0 arbitrarily small, there exists
an N(g,6) < oo such that for L > N(e, 6),

Pr(DY, (7 |fa) > 6} <e (5.42)

where Pr{D¥ (f,|fs,) > 6} is the probability of Borel set (O, - VDI
(1||f2,) > 6}. On the other hand, as  ;, = arg mingce DY, (, |f2), we have

KLVL HfgL) = mln KL(fLHf(J) = DKL LHf&g) (5.43)
Then the event {D’I?L(fLerL) > 8y {D¥ LHf;;O) > ¢}, and hence
Pr(DY, (f, HfgL) > 8} = Pr{D¥ (1| fa) > 6} <e (5.44)

By Pinsker’s inequality, we have

A 1,4
D (Follfa) = 5 [F =t}

A L (5.45)
DGelfy )= 5151

where H fL=1, Hl f V —Jp, ’dyM is the L;-distance (or the total variation). It fol-
lows that

Pr{|fu=fu |, > /26 } < PriD (1) > 8) <

(5.46)
Pe{f =1y, |, > V28 } < PrDY (F ], > 0) <<
In addition, the following inequality holds:
1, ~faoll, = | Fr—=tfa)=GF=£ ), = | ~ta | + IF=15, 1, (5.47)

Then we have

{13, ~full, >2v28} = ({Ifu=full, > v28} o {IF~, I, > V26})
(5.48)
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And hence

Pr{ |, ~fanll, > 2v/28}
=Pr({[f. sl >v25} o {3, ], > v28})

(5.49)
=pe{ [fu o, > V35 + Pe{ 1y, |, > /25
<2e
For any 7> 0, we define the set ©, = {a|oze®, a— 90” =T}, where H . H is

the Euclidean norm. As © is a compact subset in RY, ©, must be a compact set
too. Meanwhile, by Assumption 5.2, the function ¢(a) = |fa—fs, |, (€ ©) will be
a continuous mapping ¢:© — R. Thus, a minimum of ¢(a) over the set ©, must
exist. Denote v, = mingco, ||fa —f4,||,> it follows easily that

{

If 8y is KLID-identifiable, V a€®, « # 6, we have D%L(HHQ) # 0, or equiva-
lently, [ fa—fs, ||, # 0. It follows that v, = minace, |[fa=fa |, # 0. Let 6 = 4592 >0,
we have

0=to =7} = {lIfs, ~fal, =} (5:50)

Pr{[ 0 — 0o >} =Pr{||0, — 60| =7}
=Pr{|f;, ~fa |, =)

1 (5.51)
=Pes |Ify, —fa |, > 37

=Pe{ |fy, ~fu|l, >2v/26} <22

This implies |0, — 6| 20, and hence 8, 7L 6.

According to Theorem 5.6, if the density estimate f 1, 1s consistent in KLID in
probability (D’I‘(’IL(f LHf(.)U) 72-0), the KLID-identifiability will be a sufficient con-
dition for the asymptotic KLID-identifiability. The next theorem shows that, under
certain conditions, the KLID-identifiability will also be a necessary condition for
0y to be asymptotic KLID-identifiable.

Theorem 5.7 If 6, € © is asymptotic KLID-identifiable, then it is KLID-identifiable
provided

1. © is a compact subset in R,
2. Vaeo,if D%L(H()Ha) =0, then there exist ¢ >0 and an infinite set SN such that for
LeS,
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Pr{ min DKL(fLHf(;)< m(zn DY (Fe|f)y > e (5.52)

0eB(a,k)

where B(a, k) =

af =r}, k= 3]a—bl.

Proof: If 0, is asymptotic KLID-identifiable, then for ¢ >0 and § >0 arbitrarily
small, there exists an N(e, ) < oo such that for L > N(e, 6),

Pr([[6, — 6] > 6y <e (5.53)
Suppose 6y is not KLID-identifiable, then Jae®, « # 0y, such that

DY (0o Ha) =0.Let 6=r=(1/3) Ha ) H >(, we have (as O is a compact subset,
the minimum exists)

PI'{H@L - 90“ > /{} <€3PI‘{9L¢E(60,H)} <e
= Pr{arg I(I)lln DY, (f, Hfg) ¢ B0y, k)} <e

, : . A (5.54)
=Pr{ min Dy (f, Hfﬁ) = MmNy gg,.x) DY (f, Hfﬂ)} <e
0e {0 — B(0,x)}

:Pf{ min DY (f, |fo) = ming g o DG (/o)) <e

feB(a,k)

where (a) follows from B(c, k) = {© — B(y, x)}. The above result contradicts the
condition (2). Therefore, #; must be KLID-identifiable.

In the following, we consider several specific density estimation methods and
discuss the consistency problems of the related parameter estimators.

5.1.5.1 Maximum Likelihood Estimation

The maximum likelihood estimation (MLE) is a popular parameter estimation
method and is also an important parametric approach for the density estimation. By
MLE, the density estimator is

6™ =5, 0M (5.55)

where éML €0 is obtained by maximizing the likelihood function, that is,

A L
Oy = ar% néax nfg(y?f)) (5.56)
€0 =1
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Lemma 5.1 The MLE density estimate sequence ({f; OM)}2, satisfies
D, (Fy,,, W) 7520

A simple proof of this lemma can be found in Ref. [222]. Combining Theorem
5.6 and Lemma 5.1, we have the following corollary.

Corollary 5.2 Assume that © is a compact subset in RY and 6,€© is KLID-

identifiable. Then we have 6y = 0p.

According to Corollary 5.2, the KLID-identifiability is a sufficient condition to
guarantee the ML estimator to converge to the true value in probability one. This is
not surprising since the ML estimator is in essence a special case of the minimum
KLID estimator.

5.1.5.2 Histogram-Based Estimation

The histogram-based estimation is a common nonparametric method for density
estimation. Suppose the i.i.d. samples yé'/f),..., yéVL’) take values in a measurable
space M. Let 2, ={AL1,AL2,..,ALm )}, L=1,2,...,my, be a sequence of parti-
tions of 9K, with my; either finite or infinite, such that the o-measure
0<v(AL;) < oo for each i. Then the standard histogram density estimator with
respect to v and #;, is given by:

FrisO™) = 1 (AL /vALy), if Y eAr, (5.57)

where p; (Ar;) is the standard empirical measure of Ay, i.e.,

1 L
m(AL) = 7> 107 €AL) (5.58)

i=1

where I(-) is the indicator function.

According to Ref. [223], under certain conditions, the density estimator fhis will
converge in reversed order information divergence to the true underlying density
fo,» and the expected KLID

Jim E(D (Fr o)) = 0 (5.59)
Since D%_(fhis H f5,) = 0, by Markov’s inequality [224], for any 6 >0, we have

Pr{DY, (Fris fa,) = 6} =

w (5.60)
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It follows that V'6>0, lim Pr{D (Fuis |f2,) = 6} =0, and for any £>0 and
6 >0 arbitrarily small, there ex1sts an N(g,0) < oo such that for L> N(e, 6),

Pr{D, (fhls fa,) > 6} <e (5.61)

Thus we have DY (i |fs) 7250 By Theorem 5.6, the following corollary
holds.

Corollary 5.3 Assume that © is a compact subset in RY, and 6ye© is KLID-
identifiable. Let fms be the standard histogram dens1ty estimator satisfying
Eq. (5.59). Then we have 9h1> =26, where 9h1s = argmingco DKL(fhlq er)

5.1.5.3 Kernel-Based Estimation

The kernel-based estimation (or kernel density estimation, KDE) is another impor-
tant nonparametric approach for the density estimation. Given an i.i.d. sample
Ythys - - »¥(1)» the kernel density estimator is

M
fraO™) = ZKh(yM ) = hmM ZK ( ") (5.62)

where K is a kernel function satisfying K=0 and [K =1, h>0 is the kernel
width.
For the KDE, the following lemma holds (see chapter 9 in Ref. [98] for details).

Lemma 5.2 Assume that K is a fixed kernel, and the kernel width 4 depends on L
only. If h — 0 and k™ — o0 as L — oo, then lim E{|[fxe—/s, [} =0

From  lim E{|fxec—fa, ||} =0, one cannot derlve DY, (Fxer |fi) T=2520. And
— 0

L— oo

hence, Theorem 5.6 cannot be applied here. However, if the parameter is estimated
by minimizing the total variation (not the KLID), the following theorem holds.

Theorem 5.8 Assume that © is a compact subset in R?, f, € © is KLID-identifiable,
and the kernel width £ satisfies the condltlons in Lemma 5.2. Then we have
0 ker 725 0, Where 0 ke, = arg mingee ~fil ;-

Proof: As  lim E{|fxee—fa |} =0, by Markov's inequality, we have
— o0

H Ker— f90“1 72>0. Following a similar derivation as for Theorem 5.6, one can
easily reach the conclusion.
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The KLID and the total variation are both special cases of the family of ¢-diver-
gence [130]. The ¢-divergence between the PDFs fj, and fy, is

fo,(x)
0, (x)

where ®* is a class of convex functions. The minimum ¢-divergence estimator is
given by [130]:

Do0162) = D(f erz)=erz(x)¢ )dx, et (5.63)

0, = arg min Dy(f, | f3) (5.64)
0e©

Below we give a more general result, which includes Theorems 5.6 and 5.8 as
special cases.
Theorem 5.9 Assume that © is a compact subset in R?, 6, €O is KLID-identifiable,
and for a given ¢e®*, V0eO, Dy(f, |fs) = Ii(HfL ~fa| 1), where function x(-) is
strictly increasing over the interval [0, c0), and «(0) = 0. Then, if the density esti-

fo) £>0, we have 6 ; >0, where 0 4 is

mate sequence {f;};~, satisfies D4(f L\
the minimum ¢-divergence estimator.

Proof: Similar to the proof of Theorem 5.6 (omitted).

5.2 Minimum Information Divergence Identification
with Reference PDF

Information divergences have been suggested by many authors for the solution of
the related problems of system identification. The ML criterion and its extensions
(e.g., AIC) can be derived from the KL divergence approach. The information
divergence approach is a natural generalization of the LS view. Actually one can
think of a “distance” between the actual (empirical) and model distributions of the
data, without necessarily introducing the conceptually more demanding concepts of
likelihood or posterior. In the following, we introduce a novel system identification
approach based on the minimum information divergence criterion.

Apart from conventional methods, the new approach adopts the idea of PDF
shaping and uses the divergence between the actual error PDF and a reference (or
target) PDF (usually with zero mean and a narrow range) as the identification crite-
rion. As illustrated in Figure 5.1, in this scheme, the model parameters are adjusted
such that the error distribution tends to the reference distribution. With KLID, the
optimal parameters (or weights) of the model can be expressed as:

Pe(§)
pr(&)

W* = arg min Dgy (pe||p;) = arg minJ pe(&)log d¢ (5.65)
WeQy WeQy J-owo
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Figure 5.1 Scheme of system
identification with a reference PDF.

Unknown
system

!

Model
(W)

[

where p. and p, denote, respectively, the actual error PDF and the reference PDF.
Other information divergence measures such as ¢-divergence can also be used but
are not considered here.

The above method shapes the error distribution, and can be used to achieve the
desired variance or entropy of the error, provided the desired PDF of the error can
be achieved. This is expected to be useful in complex signal processing and learn-
ing systems. If we choose the § function as the reference PDF, the identification
error will be forced to concentrate around the zero with a sharper peak. This coin-
cides with commonsense predictions about system identification.

It is worth noting that the PDF shaping approaches can be found in other con-
texts. In the control literature, Karny et al. [225,226] proposed an alternative for-
mulation of stochastic control design problem: the joint distributions of closed-loop
variables should be forced to be as close as possible to their desired distributions.
This formulation is called the fully probabilistic control. Wang et al. [227—229]
designed new algorithms to control the shape of the output PDF of a stochastic
dynamic system. In adaptive signal processing literature, Sala-Alvarez et al. [230]
proposed a general criterion for the design of adaptive systems in digital communi-
cations, called the statistical reference criterion, which imposes a given PDF at the
output of an adaptive system.

It is important to remark that the minimum value of the KLID in Eq. (5.65) may
not be zero. In fact, all the possible PDFs of the error are, in general, restricted to a
certain set of functions Z.. If the reference PDF is not contained in the possible
PDF set, i.e., p; & 2., we have

WEEISIZIW D (pe Hpr) = p{:[éig/}c Dy (pe Hpr) #0 (5.66)

In this case, the optimal error PDF pj £ arg min Dy (p. H pr) # pr, and the
Pe€ZPe
reference distribution can never be realized. This is however not a problem of great

concern, since our goal is just to make the error distribution closer (not necessarily
identical) to the reference distribution.

In some special situations, this new identification method is equivalent to the
ML identification. Suppose that in Figure 5.1 the noise n; is independent of the
input x, and the unknown system can be exactly identified, i.e., the intrinsic error
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(&x = yx — J;) between the unknown system and the model can be zero. In addition,
we assume that the noise PDF p, is known. In this case, if setting p; = p,, we have

W* = arg minDKL(pern)
WeQy

(a) .
= arg min{Dgp (pe||pn) + H(pe))
WeQw

* pe(§)
J _ pe®loe| )

Jw (5.67)

a6~ | pu(ono putepae

arg min
WeQy

Pe(§log py(§)dE

— 0

arg min —
WeQy

= arg min E[ — log py(e)]
WeQy

N
~ arg max Y log (e
WeQy

= arg max log L(W)
WeQy

where (a) comes from the fact that the weight vector minimizing the KLID (when
Pe = Pr = py) also minimizes the error entropy, and L(W) = ng;l Pu(er) is the likeli-
hood function.

5.2.1 Some Properties

We present in the following some important properties of the minimum KLID crite-
rion with reference PDF (called the KLID criterion for short).

The KLID criterion is much different from the minimum error entropy (MEE)
criterion. The MEE criterion does not consider the mean of the error due to its
invariance to translation. Under MEE criterion, the estimator makes the error PDF
as sharp as possible, and neglects the PDF’s location. Under KLID criterion, how-
ever, the estimator makes the actual error PDF and reference PDF as close as possi-
ble (in both shape and location).

The KLID criterion is sensitive to the error mean. This can be easily verified: if
pe and p, are both Gaussian PDFs with zero mean and unit variance, we have
Dxu(pel|pr) = 0; while if the error mean becomes nonzero, E(e) = yu # 0, we have
Dxr(pe H pr) = 11?/2 # 0. The following theorem suggests that, under certain condi-
tions the mean value of the optimal error PDF under KLID criterion is equal to the
mean value of the reference PDF.

Theorem 5.10 Assume that p. and p; satisfy:

1. Vpe.ePe, pele +c)eP. (VceR);
2. Vp.ePe, q(e) = pe(e + p) is an even function, where p is the mean value of p.;
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3. g:(e) = p:(e + p,) is an even and strictly log-concave function, where i, is the mean value
of p;.

Then, the mean value of the optimal error PDF (p}) is p, = p,.

Proof: Using reduction to absurdity. Suppose u, # p,, and let 6, = p, — p, # 0.
Denote g*(e) =pi(e + p,) and gi(e) =pi(e + 6,). According to the assumptions,
q*,qi€?., and g*(e) is an even function. Then we have

Dxi(g5(e)||pe(e)) = Dxw(pi(e + 6,) | pi(e))

(@)
= DKL(p:(e + oy + 6#)”1%(6 + :ur))

= Dx(pi(e + )| prle + 1) = Dxi(g*(e)] ar(e))

— — H(g") —JRq*@)log gr(e)de

< —H(¢) —J]Pq*(e)log\/ gi(e + 6,)qi(e — 8,)de

1 1
- HG) J g(@)log gile + §,)de — 3 J g*(e)log gi(e — 6,)de

R

2 1)~ 5| @0z ate + b6~ 5| a(@Nog ae + 5,1
R 4

== H(q*) _qu*(e)l()g Qr(e + 6u)de = DKL(q*(e) HQr(e + 5u))

9 Dei(g*(e — 8,0 ar(€)) = Dew.(p(e + 1) | pile + 1,))
© D (p(0) | prle)) (5.68)

where (a), (d), and (e) follow from the shift-invariance of the KLID, () is because
q:(e) is strictly log-concave, and (c) is because g*(e) and g;(e) are even functions.
Therefore, 3¢} € Z., such that

Dxu(qi || po) < D% pr) (5.69)

This contradicts with Dxi(p?||ps) = miny, c», Di(pe||pr). And hence, p, = p,
holds.

On the other hand, the KLID criterion is also closely related to the MEE crite-

rion. The next theorem provides an upper bound on the error entropy under the
constraint that the KLID is bounded.
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Theorem 5.11 Let the reference PDF p; be a zero-mean Gaussian PDF with vari-
ance o”. If the error PDF p, satisfies

DxL(pel|pr) = ¢ (5.70)

where ¢ >0 is a positive constant, then the error entropy H(e) satisfies

H(e) = H(p,) + log /(1 + N/ (5.71)

where A > 0 is the solution of the following equation:
A 1
log (—) + e 2¢ (5.72)

Proof: Denote B(p;,c) the collection of all the error PDFs that satisfy
D1 (pe H pr) = c. Clearly, this is a convex set. V p.€B(p;, c), we have

+o
H(e)=< max H(p)= max — x)lo x)dx 5.73
©= max Hp) peﬂw{ Jmpu ¢ p(x) } (5.73)

In order to solve the error distribution that achieves the maximum entropy, we
create the Lagrangian:

L(p,0, \) = —Jﬂplogpdx—k@(l —Jﬂp dx) + )\(c—J plog(?)dx) (5.74)

R r

where 6 and A are the Lagrange multipliers. When A >0, L(p, 6, \) is a concave
function of peB(p:,c). If § is a function such that p +eGeB(p;,c) for e suffi-
ciently small, the Gateaux derivative of L with respect to p is given by:

Jim © {L(p +28,0,)) — L(p, 0, \)

e>0¢ (5.75)
= [{=0—(0+X)—(1+XNlogp+ Xlogp,}f dx
If it is zero for all 3, we have
0 A
| =—1—-— 4+ —1 .
ogp T x T T loep: (5.76)

Thus, if A>0 (such that L is a concave function of p), the error PDF that
achieves the maximum entropy exists and is given by

0 A
Po = exp <—1 17 >\> exp(1 n )\logpr> (5.77)
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According to the assumptions, p;(x) = (1/4/27c)exp(— x*/20?). It follows that

A
0 1 THX x2
= —1- X X - 5.78
meen(-1= )< () *on(5) 79

where o3 = (1 + A\/A)a?. Obviously, py is a Gaussian density, and we have

0 1\ 1
-1- X = — 5.79
P ( 1+ )\) (\/ 27m) V2mog (5.79)

So 6 can be determined as

6=—(1+\—(1 +A)xlog{,/%x (ma)_} (5.80)

In order to determine the value of )\, we use the Kuhn—Tucker condition:

Ae = Dxr(po|[pe)) =0 (5.81)

When A >0, we have Dy (po Hpr) = ¢, that is,

A
D) = [ ponoe (N Jax= e (1 27) + 1 f=e 68

Therefore, A is the solution of the Eq. (5.72).

Define the function @(\)=1log(A/(1 + X))+ (1/N). It is easy to verify that
©(A) is continuous and monotonically decreasing over interval (0, +o0). Since
)\l_i)I(I)l+ ©(\) =+o0, ABTOC ©(A) =0, and ¢ >0, the equation ©(\) =2c certainly has

a solution in (0, +o0).
From the previous derivations, one may easily obtain:

H(e)= max H(p)=H(po) = H(pr) + log\/(1 + N)/\ (5.83)

peB(pi,c

The above theorem indicates that, under the KLID constraint Dgy (pe H pr) =c, the
error entropy is upper bounded by the reference entropy plus a certain constant. In

particular, when ¢ — 0+, we have A\ — +o00 and r%a(px )H(p) — H(p:). Therefore,
peB(prc

if one chooses a reference PDF with small entropy, the error entropy will also be
confined within small values. In practice, the reference PDF is, in general, chosen as
a PDF with zero mean and small entropy (e.g., the § distribution at zero).

In most practical situations, the error PDF is unknown and needs to be estimated
from samples. There is always a bias in the density estimation; in order to offset the
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influence of the bias, one can use the same method to estimate the reference density

based on the samples drawn from the reference PDF. Let S. ={e; e, -+ ey}
and §; = {e(lr) e(Z’) ef\f) } be respectively the actual and reference error samples.

The KDEs of p. and p, will be

N |
pele) = NZ; Ky (e = ex)

| (5.84)
&)= > Kile=¢)

ei,") €S,

where h. and h, are corresponding kernel widths. Using the estimated PDFs, one
may obtain the empirical KLID criterion Dy (pe H pr) = DxL(P. ||Py)-

Theorem 5.12 The empirical KLID Dip (pe |p:) =0, with equality if and only if
Pe = Pr-

1
Proof: Vx>0, we have logx=1 ——, with equality if and only if x=1. And
hence o

B (e |pe) = [ puteog? Y ae
) pi(e)
= | p(e) 1—’?‘(6) de (5.85)
Pe(e)
= @e(e)_ﬁr(e))dEZO

with equality if and only if p, = p,.

Lemma 5.3 If two PDFs p;(x) and p,(x) are bounded, then [231]:

o0

Die(p1 |p2)= éj (P10 —pa())? dx (5.86)

— o0

where o = 2 max{sup p;(x), sup pa(x)}.
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1 _ 2
Theorem 5.13 If K,(-) is a Gaussian kernel function, Kj,(x) :—\/Thexp{—y; }7
T

then

M{min(hea hy)} JOC

D (pe||pr) = > (Pe(€)—prle))’de (5.87)

Proof: Since Gaussian kernel is bounded, and supKj(x) = (1/+/27h), the kernel-
based density estimates p, and p, will also be bounded, and

1 1
sup p.(e) = su — K, (e —e =
ppe( ) P. Nekze;e he( k) mhe
(5.88)
sup p,(e) = sup 1 Z Ki(e—e) b < L
r e Ne(r)es T k /27Thr
& T
By Lemma 5.3, we have
~ 1(* . . 2
DxL(pel|pr) = > (Pe(€)—pr(e))” de (5.89)
where
a = 2max{sup p., sup p,}
< Zmax ; #
N 27he’ 27h, (5.90)

2
 V2rx{(min(he, hy)}

Then we obtain Eq. (5.87).
The above theorem suggests that convergence in KLID ensures the convergence

in L, distance (\/ 2 ()= g(x))*dx).
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Before giving Theorem 5.14, we introduce some notations. By rearranging the
samples in S, and S;, one obtains the increasing sequences:

{ S,e = {ekl €k, 1 Cky } ( )
591
/ (r) (r) (r)
S;={e)) &) - ")
where ey, = - =ep, <eg, ., = =ep, <= ey, e,(fl) =...= 65‘:)1 ’E;)m =..
= e,(:) = e;(r) Denote S, = {ek,,l €k, ey}, and S, = {e(r) e,(;)z
egv)}

Theorem 5.14 If K, is a Gaussian kernel function, h,=h,=h, then
Dy (pe Hpr) =0 if and only if S, = S].
Proof: By Theorem 5.12, it suffices to prove that p.(e) =p.(e) if and only if
S.=8.

Sufficiency: If S, = S., we have

pele) = < Z Ki(e — ex)

ek ES
(5.92)
= — Z Ki(e —¢”) = p,(e)
e(k')eS,
Necessity: If p.(e) = p,(e), then we have
f(&)2V2mhN X (p(e) — pile))
= iexp —L(e—ek)2 — iexp —L(e e(r)) (5.93)
k=1 2 k=1 2
=0
LetS =8, uS,={¢& & ... &), where §<&(Vi<j),M=2N. Then,

M
f&1= 3" Neexp{ (e =0 (5949
=1
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where )\, = |S&F] — &), s = {et|ereS., e =&}, s = {egr) eY) eS’r,eY) =&}

Since VeeR, f(e) =0, we have f(&;) =0,

a2
| exp )
N2
exp 60 |
(Eu—&) (u=5)
Py T Mzh2l - M2h22

i=1,2,...,M. It follows that

_(51_5M)2
eXp 2/’12
E=&)” || | M
COXPYy T2 /\2
Yy
1

A

>
Il

o

(5.95)

As @ is a symmetric and positive definite matrix (det® # 0), we get X =0, that is

e = S| =8 =0, k=1,2,...M

Thus, [$(%| =[5, and

S:e: f]"'"51’527""52'“£M7'"9£M
N e N e e

EOTTI

=980 588 & Eys 8y
A e e

|S‘(_5M) | |S£52)

s |

This completes the proof.

(5.96)

(5.97)

Theorem 5.14 indicates that, under certain conditions the zero value of the
empirical KLID occurs only when the actual and reference sample sets are

identical.

Based on the sample sets S, and S, one can calculate the empirical distribution:

n
Fsg(e)Zﬁe, Fg(e)= N

(5.98)



196 System Parameter Identification

e eS¢l = e}|. According to the

, and ng) = ’{ey)

limit theorem in probability theory [224], we have

where n, = ‘{ek|ek €S, ex=e}

' —> Ie = i erT
{Fss(e) Fe(e)= [° pe(7) as N o oo (5.99)

Fg(e) > Fe)= [* pr)dr

If S.=8, and N is large enough, we have [ pe(r)dr~
Fg(e)=Fg(e) ~ jf , Pr(7)dT, and hence pc(e) = p;(e). Therefore, when the empir-
ical KLID approaches zero, the actual error PDF will be approximately identical
with the reference PDF.

5.2.2 Identification Algorithm

In the following, we derive a stochastic gradient—based identification algorithm
under the minimum KLID criterion with a reference PDF. Since the KLID is not
symmetric, we use the symmetric version of KLID (also referred to as the J-infor-
mation divergence):

J(pe Hpr) = Dgr(pe Hpr) + Dy (pr Hpe)

(5.100)
Pe(e) +E, |log pi(e)

pi(e) Pe(e)

=E. |log

By dropping off the expectation operators E. and E;, and plugging in the esti-
mated PDFs, one may obtain the estimated instantaneous value of J-information
divergence:

5 Ao ()
Jupe]po) = 10g ) 41067 f(ef,)) (5.101)
Prlex) Pele’)
where p.(-) and p,(-) are
L
pe(§) = i3 '72 K (€ —ei)
i=k—L+1
(5.102)

k

pO=1 Y Kie—e)

i=k—L+1
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Then a stochastic gradient—based algorithm can be readily derived as follows:

0
Wi = Wi — UaWJk(PeHPr)
a A a (r)
=Wi—n Wloglieéek; + mlogpr(e(r)
e
Pl pe(el”) (5.103)
0 o .
awheen  Fppled  Smpde)
=Wi—nd—= - = -
pe(ek) pr(ek) ﬁe(eg))
where
PP IS (PPN P
aWPe k L, 2 h €k — € aw)’k aW)’i
O pter=-11 3 K- et L (5.104)
—p.(e — ex—e; — .
ow L e oW
o) i o) 0
pelel’) = K, (¢’ —e) | 59
W Pe Ll k—L+1 aW

This algorithm is called the stochastic information divergence gradient (SIDG)
algorithm [125,126].

In order to achieve an error distribution with zero mean and small entropy, one
can choose the 6 function at zero as the reference PDF. It is, however, worth noting
that the ¢ function is not always the best choice. In many situations, the desired
error distribution may be far from the ¢ distribution. In practice, the desired error
distribution can be estimated from some prior knowledge or preliminary identifica-
tion results.

Remark: Strictly speaking, if one selects the 6 function as the reference distribu-
tion, the information divergence will be undefined (ill-posed). In practical applica-
tions, however, we often use the estimated information divergence as an alternative
cost function, where the actual and reference error distributions are both estimated
by KDE approach (usually with the same kernel width). It is easy to verify that, for
the & distribution, the estimated PDF is actually the kernel function. In this case,
the estimated divergence will always be valid.
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5.2.3 Simulation Examples
Example 5.3 Consider the FIR system identification [126]:

— k + * _
S Wok W e (5.105)
Vi = WoX + WiXg—1

where the true weight vector W* = [w§, w]” =[1.0,0.5]". The input signal {x;} is
assumed to be a zero-mean white Gaussian process with unit power.

We show that the optimal solution under information divergence criterion may
be not unique. Suppose the reference PDF p, is Gaussian PDF with zero mean and
variance 2. The J-information divergence between p. and p; can be calculated as:

[(wo—1)*+(w; —0.5)* = 2]
€2 X [(wo—1)* + (w; —0.5)*]

Je[lp) = 5 % (5.106)

Clearly, there are infinitely many weight pairs (wg, w) that satisfy J(pe H pr)=0.
In fact, any weight pair (wo, w;) that lies on the circle (wo—1)* + (w; —0.5)* = &2
will be an optimal solution. In this case, the system parameters are not identifiable.
However, when ¢ — 0 +, the circle will shrink to a point and all the solutions will
converge to a unique solution (1.0,0.5). For the case € =0.5, the 3D surface of
the J-information divergence is depicted in Figure 5.2. Figure 5.3 draws the conver-
gence trajectories of the weight pair (wp,w;) learned by the SIDG algorithm,

Divergence

Figure 5.2 3D surface of J-information divergence.
Source: Adapted from Ref. [126].
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starting from the initial point (2.0, —2.0). As expected, these trajectories converge
to the circles centered at (1.0,0.5). When ¢ =0.01, the weight pair (wo,w;) will
converge to (1.0047, 0.4888), which is very close to the true weight vector.

Example 5.4 Identification of the hybrid system (switch system) [125]:

2xp tup +re, if xx=0
=
U “1sg tum tr if p >0 (5.107)

Vi = X+ my

where x; is the state variable, u; is the input, ry is the process noise, and my is the
measurement noise. This system can be written in a parameterized form (r; merg-
ing into uy) [125]:

blx+alm=0 (5.108)

where M\, =1,2 is the mode index, x=[ug—1,Yi—1, —yk]T, m= [mk_l,mk]T,
b =[ci; a1, l]T, and a;=[—ay, l]T. In this example, b, =]1,2, 1]T and
b, =[1,—1.5,1]". Based on the parameterized form (Eq. (5.108)), one can establish
the noisy hybrid decoupling polynomial (NHDP) [125]. By expanding the NHDP
and ignoring the higher-order components of the noise, we obtain the first-order
approximation (FOA) model. In Ref. [125], the SIDG algorithm (based on the FOA
model) was applied to identify the above hybrid system. Figure 5.4 shows the

400 -7

300d--7

2004777

Divergence

1004---"7

-3 05

Figure 5.3 Convergence trajectories of weight pair (wo,w).
Source: Adapted from Ref. [126].
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Figure 5.4 Identification performance for different measurement noise powers.
Source: Adapted from Ref. [125].

identification performance for different measurement noise powers o2. For com-
parison purpose, we also draw the performance of the least mean square (LMS)
and algebraic geometric approach [232]. In Figure 5.4, the identification perfor-
mance A is defined as:

A = max minM (5.109)
P

In the simulation, the 6 function is selected as the reference PDF for SIDG algo-
rithm. Simulation results indicate that the SIDG algorithm can achieve a better
performance.

To further verify the performance of the SIDG algorithm, we consider the
case in which =0 and my is uniformly distributed in the range of
[-1, =05]u[0.5,1]. The reference samples are set to S;=[—2,
—1.6, — 1.6, —0.3, — 0.3, —0.3,0.3,0.3,2,2.2] according to some preliminary
identification results. Figure 5.5 shows the scatter graphs of the estimated parame-
ter vector b; (with 300 simulation runs), where (A) and (B) correspond, respec-
tively, to the LMS and SIDG algorithms. In each graph, there are two clusters.
Evidently, the clusters generated by SIDG are more compact than those generated
by LMS, and the centers of the former are closer to the true values than those of
the latter (the true values are {c;,a;}; ={1,2} and {c;,a;}, ={1, —1.5}). The



System Identification Under Information Divergence Criteria 201

4 4
3 3

2 2

1 1
&0 S0
1 1
2 2
3 -3

08 09 1 11 12 13 14 08 09 1 11 12 13 14
(A) G (B) G

0.35 T T T T T T T T T

§ = Desired PDF
03r A —— Reference PDF 1

0.25F

Figure 5.6 Comparison of the error PDFs.
Source: Adapted from Ref. [125].

involved error PDFs are illustrated in Figure 5.6. As one can see, the error distribu-
tion produced by SIDG is closer to the desired error distribution.

5.2.4 Adaptive Infinite Impulsive Response Filter with
Euclidean Distance Criterion

In Ref. [233], the Euclidean distance criterion (EDC), which can be regarded as a
special case of the information divergence criterion with a reference PDF, was suc-
cessfully applied to develop the global optimization algorithms for adaptive infinite
impulsive response (IIR) filters. In the following, we give a brief introduction of
this approach.
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The EDC for the adaptive IIR filters is defined as the Euclidean distance (or L,
distance) between the error PDF and 6 function [233]:

EDC = j (pe(©)— 8(©)de (5.110)

The above formula can be expanded as:

EDC = Jip PHEAE — 2p(0) + ¢ (5.111)

where ¢ stands for the parts of this Euclidean distance measure that do not depend
on the error distribution. By dropping ¢, the EDC can be simplified to

EDC = V»(e) — 2pe(0) (5.112)

where V,(e) = ff . p2(€)d¢ is the quadratic information potential of the error.
By substituting the kernel density estimator (usually with Gaussian kernel Gj,)
for the error PDF in the integral, one may obtain the empirical EDC:

EDC= | 50d¢ 20,0
2

[°e) k k
J % Z Gu(&—e;) dg—% Z Gn(0 —¢) (5.113)

- i=k—L+1 i=k—L+1

k

1 & k 2
BY Y daera g Y o
—L+ —L+

i=k—L+1

A gradient-based identification algorithm can then be derived as follows:

o0 —
Wk+1 = Wk - ’f]—EDC

ow
k k . .
U oy _ oy
=Wk =555 (ei = €)G 5,(ei —¢)) ~ A
2n Xk: e,Gule:) 9y
ey iYn\€i) 35,
e =, ow

(5.114)
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where the gradient (0y;/0W) depends on the model structure. Below we derive this
gradient for the IIR filters.
Let us consider the following IIR filter:

np Nq
=D b+ Y ai (5.115)
i=0 j=1

which can be written in the form

=@ W (5.116)
where @, = [Xk, « o Xk—nys Vi1 - - .,ﬁk_na]T, W =1bo,...,by,,ai,...,a,]". Then we
can derive

09i/OW = o(W' g,) [oW

= (W' JoW)g, + (D [OW)W

(5.117)
=@t Zaj(a);kfj/aw)
j=1
In Eq. (5.117), the parameter gradient is calculated in a recursive manner.
Example 5.5 Identifying the following unknown system [233]:
0.05 + 0.4z
G'(z)= 5.118
= T 1314+ 0252 G.118)
The adaptive model is chosen to be the reduced order IIR filter
b
G@)= —— (5.119)
1—az’!

The main goal is to determine the values of the coefficients (or weights) {a, b},
such that the EDC is minimized. Assume that the error is Gaussian distributed,
e~ N (e, ag). Then, the empirical EDC can be approximately calculated as [233]:

— 1 2 12 }
EDC =~ - exps ——————— 5.120
VAan(o2 +hY)  \/2n(02 + h?) p{ 2oz +1?) ( )

where £ is the kernel width. Figure 5.7 shows the contours of the EDC performance
surface in different A (the input signal is assumed to be a white Gaussian noise
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Figure 5.7 Contours of the EDC performance surface: (A) A2 = 0; (B) h* = 1; (C) h> =2;
and (D) 12 = 3.
Source: Adapted from Ref. [233].

Figure 5.8 Weight convergence
1.5 trajectory under EDC.
Source: Adapted from Ref. [233].
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with zero mean and unit variance). As one can see, the local minima of the perfor-
mance surface have disappeared with large kernel width. Thus, by carefully con-
trolling the kernel width, the algorithm can converge to the global minimum. The
convergence trajectory of the adaptation process with the weight approaching to
the global minimum is shown in Figure 5.8.



6 System Identification Based on
Mutual Information Criteria

As a central concept in communication theory, mutual information measures
the amount of information that one random variable contains about another. The
larger the mutual information between two random variables is, the more informa-
tion they share, and the better the estimation algorithm can be. Typically, there are
two mutual information-based identification criteria: the minimum mutual informa-
tion (MinMI) and the maximum mutual information (MaxMI) criteria. The MinMI
criterion tries to minimize the mutual information between the identification error
and the input signal such that the error signal contains as little as possible informa-
tion about the input,1 while the MaxMI criterion aims to maximize the mutual infor-
mation between the system output and the model output such that the model contains
as much as possible information about the system in their outputs. Although the
MinMI criterion is essentially equivalent to the minimum error entropy (MEE)
criterion, their physical meanings are different. The MaxMI criterion is somewhat
similar to the Infomax principle, an optimization principle for neural networks and
other information processing systems. They are, however, different in their concepts.
The Infomax states that a function that maps a set of input values I to a set of output
values O should be chosen (or learned) so as to maximize the mutual information
between I and O, subject to a set of specified constraints and/or noise processes.
In the following, we first discuss the MinMI criterion.

6.1 System Identification Under the MinMI Criterion

The basic idea behind the MinMI criterion is that the model parameters should be
determined such that the identification error contains as little as possible informa-
tion about the input signal. The scheme of this identification method is shown in
Figure 6.1. The objective function is the mutual information between the error and
the input, and the optimal parameter is solved as

Witiovr = al;‘g/; glinl(ek;Xk) (6.1)
Ellw

! The minimum mutual information rate criterion was also proposed in [124], which minimizes the mutual
information rate between the error signal and a certain white Gaussian process (see Appendix I).

System Parameter Identification. DOI: http://dx.doi.org/10.1016/B978-0-12-404574-3.00006-3
© 2013 Tsinghua University Press Ltd. Published by Elsevier Inc. All rights reserved.
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Figure 6.1 System identification under the MinMI criterion.

where ¢y is the identification error at k time (the difference between the measure-
ment z; and the model output ), X; is a vector consisting of all the inputs that
have influence on the model output y, (possibly an infinite dimensional vector),
Qw <R™ is the set of all possible m-dimensional parameter vectors.

For a general causal system, X; will be

X = [, X1, %2, - - 1" (6.2)

If the model output depends on finite input (e.g., the finite impulse response
(FIR) filter), then

Xi = [X> Xk—1s -+ o> Xkmmr1]” (6.3)

Assume the initial state of the model is known, the output ¥, will be a function
of Xi, i.e., , =f(Xy). In this case, the MinMI criterion is equivalent to the MEE
criterion. In fact, we can derive

* — 1 .
Witiomr = arg min I(eg; Xy)
WeQy

= arg min{H(e;) — H(ex|Xz)}
WeQwy

= arg min {H(ek) — H(zi — ¥ |Xk)}
WeQy

= arg min {H(ex) — H(zx — f(X)1X:) }
WeQy

= arg min{H(e;) — H(z¢|X})}
WeQw

(6.4)

@ ,
= arg min H(ey)
w EQW
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where (a) is because that the conditional entropy H(zx|X}) is not related to the param-
eter vector W. In Chapter 3, we have proved a similar property when discussing the
MEE Bayesian estimation. That is, minimizing the estimation error entropy is equiva-
lent to minimizing the mutual information between the error and the observation.

Although both are equivalent, the MinMI criterion and the MEE criterion are
much different in meaning. The former aims to decrease the statistical dependence
while the latter tries to reduce the uncertainty (scatter or dispersion).

6.1.1 Properties of MinMI Criterion

Let the model be an FIR filter. We discuss in the following the optimal solution of
the MinMI criterion and investigate the connection to the mean square error (MSE)
criterion [234].

Theorem 6.1 For system identification scheme of Figure 6.1, if the model is an FIR
filter (§, = W7 X;), z and X; are zero-mean and jointly Gaussian, and the input covari-
ance matrix Ry £ E[X,X[] satisfies det Ry # 0, then we have Wina = Wirse = Rx ' P,
and / (ek;xk)W=WK‘4mM1 =0, where P2 E[Xyzi], Wyjse denotes the optimal weight vector

under MSE criterion.

Proof: According to the mean square estimation theory [235], Wyisg = Ry ' P, thus
we only need to prove Wy v = Ry 'P. As 3, = WTX;, we have

Ele;] = E[(zx — W Xi) (@~ W'X0)']
= WTE[Xi X[ W — 2E[z X[ W + E[z}] (6.5)
=W'RxW = 2P"W + o7

where 07 = E [z7]. And then, we can derive the following gradient

0 0
Wl(ek;xk) = oW {H(ex) — H(ex| X))}
0
=W {H(er) — H(z — W Xi|Xi)}

0
= oy (H(eo) = H(zdXo)

@ & ®» 5 (66)
a 11
= __(H = —{ ~ + ~log(2nE|e;
aw H@) = 771 3 + 5losnE[4])
= lilog{WTR W —2PTW + 02}
20W X :

B RyW — P
WTRxW —2PTW + o2
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where (a) follows from the fact that the conditional entropy H(z;|X;) does not depend
on the weight vector W and (b) is because that e; is zero-mean Gaussian. Let this
gradient be zero, we obtain Wy i = Ry!P. Next we prove I(ex; Xi)y—w- = 0.
By (2.28), we have o

1 E[e?]det E(X XT
I(ek;Xk)W:W* = E]()g [ k] . ( k k)T
( Ele}]  E(eX] )>

E(eeXr) EXiX[) 67)

©1 oz Ele?]det E(X;XT)
2 Ely] 0
det
0  EXXD)

where (c) follows from E(exX]) = E[(zx — Wi \uXi)XF] = 0.

Theorem 6.1 indicates that with Gaussian assumption, the optimal FIR filter
under MinMI criterion will be equivalent to that under the MSE criterion (i.e., the
Wiener solution), and the MinMI between the error and the input will be zero.

=0

Theorem 6.2 If the unknown system and the model are both FIR filters with the
same order, and the noise signal {n;} is independent of the input sequence {x;}
(both can be of arbitrary distribution), then we have Wy g = Wo, where W,eR"™
denotes the weight vector of unknown system.

Proof: Without Gaussian assumption, Theorem 6.1 cannot be applied here. Let
W = W, — W be the weight error vector between the unknown system and the model.
We have e¢; = X/ W + n; and
I(ex; Xi) = ICX] W + ny; X))
= HX{W +ni) — HX] W + ni| Xp)
= HX] W + ny) — H(mi | Xp) (6.8)

(a)
= H(ny) — H(ng| Xi)
=1(me; Xx) =0
where (a) is due to the fact that the entropy of the sum of two independent random

variables is not less than the entropy of each individual variable. The equality in
(a) holds if and only if W =0, i.e., Wy v = Wo.
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Theorem 6.2 suggests that the MinMI criterion might be robust with respect to
the independent additive noise despite its distribution.

Theorem 6.3 Under the conditions of Theorem 6.2, and assuming that the input {x;}
and the noise {n;} are both unit-power white Gaussian processes, then

I(ex; Xi) = — %log(MMSE(H 14) (6.9)

~T .~

where  MMSE(|W|)2EW,(Xc—X0P,  Wo=W/|W|, [W]|&VW'W,

Xi = E[X;|ex].

Proof: Obviously, we have W = |W|W,, and
=T
ex = ||W||Wo Xy + i (6.10)
By the mean square estimation theory [235],

E[(Xy — X)X —X0)]

~ ~ ~ ~T ~ 771 o
= 1 WP 1+ WP
(6.11)
=2
a w . o
O L HN SWoWg
L+ W]
where (a) follows from Wg Wo=1,11isanm X m identity matrix. Therefore
MMSE(| W) = [ s 06~ X0
= WgE[(Xk - X)X —X0) W,
S O L i L (6.12)
— "o ) 0 0
L+ |w]
1

TR
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Figure 6.2 Mutual information (e;; X)) and the minimum MSE MMSE( H WH) versus
weight error norm.
Source: Adopted from [234].

On the other hand, by (2.28), the mutual information /(ey; X;) can be calculated as

1 s I w1
I(ex; Xi) = =logq (1+ |[W|[)det| _, o
2 W |W|T+1 6.13)

— tog(1+W]*)

Combining (6.12) and (6.13) yields the result.

The term MMSE(HWH) in Theorem 6.3 is actually the minimum MSE when
estimating Wng based on e;. Figure 6.2 shows the mutual information I(eg; Xy)
and the minimum MSE MMSE(|W||) versus different weight error norm ||W/|.
It can be seen that as HWH — 0 (or W — Wy), we have I(ex;X;) — 0 and
MMSE(|W|) em;xMMSE(HWH). This implies that when the model weight

vector W approaches the system weight vector Wy, the error e; contains less and
less information about the input vector X (or the information contained in the input
signal has been sufficiently utilized), and it becomes more and more difficult to
estimate the input based on the error signal (i.e., the minimum MSE MMSE( | 14}
attains gradually its maximum value).
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Figure 6.3 General configuration of the ICA.

6.1.2 Relationship with Independent Component Analysis

The parameter identification under MinMI criterion is actually a special case of
independent component analysis (ICA) [133]. A brief scheme of the ICA problem
is shown in Figure 6.3, where §, = [si(k), s2(k), ..., sy(k)]" is the N-dimensional
source vector, X, = [x1(k), x2(k), . . . Xp (k)] is the M-dimensional observation vector
that is related to the source vector through X, = As,, where A is the M X N mixing
matrix [236]. Assume that each component of the source signal §, is mutually inde-
pendent. There is no other prior knowledge about §, and the mixing matrix A.
The aim of the ICA is to search a N X M matrix B (i.e., the demixing matrix) such
that ¥, = BX, approaches as closely as possible §, up to scaling and permutation
ambiguities.

The ICA can be formulated as an optimization problem. To make each component
of ¥, as mutually independent as possible, one can solve the matrix B under a certain
objective function that measures the degree of dependence (or independence). Since
the mutual information measures the statistical dependence between random variables,
we may use the mutual information between components of ¥, as the optimization
criterion,” i.e.,

N
B* = arg;nin](ﬁk) = arg;nin ZH(y,-) - H(Vk)} (6.14)
i=1

To some extent, the system parameter identification can be regarded as an ICA
problem. Consider the FIR system identification:

{ZkZWng‘f'}’lk (6 15)

),}k = WTXk
where Xj = [xg, Xg—1, - . .,xk_m+1]T, Wy and W are m-dimensional weight vectors of

the unknown system and the model. If regarding the vectors [X!, n;]” and x7, )" as,
respectively, the source signal and the observation in ICA, we have

x,] [1 0][x
MR (6.16)

2 The mutual information minimization is a basic optimality criterion in ICA. Other ICA criteria, such as the
negentropy maximization, Infomax, likelihood maximization, and the higher order statistics, in general
conform with the mutual information minimization.
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1
where |:WOT 1

of the parameter identification is to make the model weight vector W approximate
the unknown weight vector W,, and hence make the identification error e;
(ex = zx — ¥,) approach the additive noise ny, or in other words, make the vector
[X7,er]” approach the ICA source vector [X/,n;]”. Therefore, the vector [X],e;]”
can be regarded as the demixing output vector, where the demixing matrix is

} is the mixing matrix and [ is the m X m identity matrix. The goal

B= {—évT ‘1)] 6.17)

Due to the scaling ambiguity of the demixing output, it is reasonable to introduce
a more general demixing matrix:

|1 0
B= {W’T a} (6.18)
where a # 0, W = —aW. In this case, the demixed output ¢; will be related to the

identification error via a proportional factor a.
According to (6.14), the optimal demixing matrix will be

B* = arg min I(eg; Xy)
B

~ (6.19)
= argBmln{H (ex) + H(Xy) — H(ex, X)}

After obtaining the optimal matrix B* = [ I 6?*], one may get the optimal

1xT
weight vector [133] W
wr=_W (6.20)
a*

Clearly, the above ICA formulation is actually the MinMI criterion-based
parameter identification.

6.1.3 ICA-Based Stochastic Gradient Identification Algorithm

The MinMI criterion is in essence equivalent to the MEE criterion. Thus, one can
utilize the various information gradient algorithms in Chapter 4 to implement the
MinMI criterion-based identification. In the following, we introduce an ICA-based
stochastic gradient identification algorithm [133].

According to the previous discussion, the MinMI criterion-based identification
can be regarded as an ICA problem, i.e.,

B* = argBmin {H(ex) + H(Xx) — H(ex, Xi) } (6.21)
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where the demixing matrix B = { ! 0} .

wT a
Since
Xe| _plXe| | 1 01| Xy
e o] =L S ©22)

by (2.8), we have
H(ey, X)) = H(zx, Xi) + loglal (6.23)
And hence

B*

argBmin{H(ek) + H(Xy) — [H(zx, Xi) + log|al]}

arg min{[H (er) — loglal] + [H(X¢) — H(z. X)) (6.24)

(@)
= arg min{H(e;) — log|al}
B

where (a) is due to the fact that the term [H(Xy) — H(zx, Xx)] is not related to the
matrix B. Denote the objective function J = H(e;) — log|a|. The instantaneous value
of J is

J = —log p.(ex) — loglal (6.25)
in which p.(.) is the PDF of ¢; (e, = WX, + azy).

In order to solve the demixing matrix B, one can resort to the natural gradient
(or relative gradient)-based method [133,237]:

Bii1 =B — B'B
k+1 k=1 2B, kD
i ] [0 0 1w T /
D0 e e | [T W
L Wl/cT ay i aWI/(T a_ak W,’cTak ai
- 1 [0 0
I 0 1 I+WWT W
= — T _
I W]’(T a | N SO(ek)Xk oler)zx a—k W]/CT a a,%
1 0] [ 0 0
= —n /
W a | | plenX] + (pleer — DWT (pler)er — Dax

(6.26)
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where @(ex) = —pl(ex)/pe(ex). As the PDF p,(.) is usually unknown, a certain
nonlinear function (e.g., the tanh function) will be used to approximate the ¢
function.’

If adopting different step-sizes for learning the parameters W’ and a, we have

{ Wi = Wi +ml(1 = ple)e) Wy — pler)Xi] 6.27)

a1 = ax + (1 = plen)er)ax
The above algorithm is referred to as the ICA-based stochastic gradient identifi-

cation algorithm (or simply the ICA algorithm). The model weight vector learned
by this method is

W/
W, =——k (6.28)
ag
If the parameter a is set to constant a = 1, the algorithm will reduce to
Wi = Wi — myplen)Xi (6.29)

6.1.4 Numerical Simulation Example

Figure 6.4 illustrates a general configuration of an acoustic echo canceller (AEC) [133].
xi is the far-end signal going to the loudspeaker, and y; is the echo signal entering
into the microphone that is produced by an undesirable acoustic coupling between the
loudspeaker and the microphone. n; is the near-end signal which is usually independent
of the far-end signal and the echo signal. z; is the signal received by the microphone
(zx = yx + ng). The aim of the echo cancelation is to remove the echo part in z; by
subtracting the output of an adaptive filter that is driven by the far-end signal. As shown
in Figure 6.4, the filter output y, is the synthetic echo signal, and the error signal ¢ is
the echo-canceled signal (or the estimate of the near-end signal). The key technique in

Far-end signal Figure 6.4 General configuration
of an AEC.
Xk
y )
¥ v Echo signal
Adaptive
filter Yk

nl i
+ Zy

+ .
Near-end signal
+

ny

3 One can also apply the kernel density estimation method to estimate p,(.), and then use the estimated
PDF to compute the ¢ function.
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AEC is to build an accurate model for the echo channel (or accurately identifying the
parameters of the synthetic filter).

One may use the previously discussed ICA algorithm to implement the adaptive
echo cancelation [133]. Suppose the echo channel is a 100 tap FIR filter, and
assume that the input (far-end) signal x; is uniformly distributed over the interval
[-4, 4], and the noise (near-end) signal n; is Cauchy distributed, i.e.,
ng ~Cauchy(location, scale). The performance of the algorithms is measured by the
echo return loss enhancement (ERLE) in dB:

2
ERLE£10 Ig (%) (6.30)
E[(yk—3)]

Simulation results are shown in Figures 6.5 and 6.6. In Figure 6.5, the perfor-
mances of the ICA algorithm, the normalized least mean square (NLMS), and the
recursive least squares (RLS) are compared, while in Figure 6.6, the performances
of the ICA algorithm and the algorithm (6.29) with @ =1 are compared. During the
simulation, the ¢ function in the ICA algorithm is chosen as

__ | tanh (x), |x| =40
o) = { 0 x| > 40 (631

It can be clearly seen that the ICA-based algorithm shows excellent performance
in echo cancelation.

25 T T
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\ peU T - g T TR
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ICA) cauchy (0.0.03) .
ICA) cauchy (0.0.05) \
NLMS) cauchy (0.0.01) y
- (NLMS) cauchy (0.0.03) _
- (NLMS) cauchy (0.0.05)
RLS) cauchy (0.0.01)
RLS) cauchy (0.0.03)
RLS) cauchy (0.0.05)

1
5000 10000 15000
Iteration
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v
—*
-0
-

Figure 6.5 Plots of the performance of three algorithms (ICA, NLMS, RLS) in Cauchy
noise environment.
Source: Adopted from [133].
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20 T T
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ERLE (dB)

0 5000 10,000 15,000
Ireration

Figure 6.6 Plots of the performance of the ICA algorithm and the algorithm (6.29) with
a =1 (n ~Cauchy(0,0.1)).
Source: Adopted from [133].

6.2 System Identification Under the MaxMI Criterion

Consider the system identification scheme shown in Figure 6.7, in which x; is the
common input to the unknown system and the model, y; is the intrinsic (noiseless)
output of the unknown system, n; is the additive noise, z; is the noisy output mea-
surement, and ¥, stands for the output of the model. Under the MaxMI criterion,
the identification procedure is to determine a model M such that the mutual infor-
mation between the noisy system output z; and the model output y, is maximized.
Thus the optimal model M,y is given by

Mopt = arg max I(Zk;y’\k)
MeM

_ A ) 632)
= ar]%[ Eril/[ax J (&, T)logpz P d¢ dr

where M denotes the model set (collection of all candidate models), p.(.), ps(.), and
Dz(.) denote, respectively, the PDFs of zx, ¥;, and (zx, ¥;).

The MaxMI criterion provides a fresh insight into system identification. Roughly
speaking, the noisy measurement z; represents the output of an information source
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y

Figure 6.7 Scheme of the system identification under the MaxMI criterion.

Model output y,

and is transmitted over an information channel, i.e., the identifier (including the
model set and search algorithm), and the model output y, represents the channel out-
put. Then the identification problem can be regarded as the information transmitting
problem, and the goal of identification is to maximize the channel capacity (mea-
sured by I(zx; ;) over all possible identifiers.

6.2.1 Properties of the MaxMI Criterion
In the following, we present some important properties of the MaxMI criterion

[135,136].

Property 6.1: Maximizing the mutual information /(z;y,) is equivalent to mini-
mizing the conditional error entropy H(ex|y;), where e; = z; — ;.

Proof: It is easy to derive
1(zi; 3y) = H(zie) — H(z| )
= H(z) = H(ze = %) (6.33)
= H(z) — H(exy;)

And hence
arg max1(z;; )
MeM
= arg max {H(z) — H(er|y
g m: {H(z) — H(exly)} (634)

(@) . A
= arg min H(ex|y;)
MeM
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where (a) is due to the fact that the model M has no effect on the entropy H(z;).
The second property states that under certain conditions, the MaxMI criterion
will be equivalent to maximizing the correlation coefficient.

Property 6.2: If z; and J, are jointly Gaussian, we have arg max I(zx;J;) =

MeM
arg max p(z,y;), where p(zx, y,) is the correlation coefficient between z; and y,.
MeM

Proof: Since z; and y, are jointly Gaussian, the mutual information /(z; y,) can be
calculated as

. 1 .
Iz 91) = = 3 log{1 = p*(z 1)} (6.35)
The log function is monotonically increasing, thus we have

arg max I(zx; y;) = arg max p(z, yi) (6.36)
MeM MeM

Property 6.3: Assume the noise n; is independent of the input signal x;. Then
maximizing the mutual information I(z;;y,) is equivalent to maximizing a lower
bound of the intrinsic (noiseless) mutual information I(yx; y;)-

Proof: Denote g the intrinsic error, i.e., & = yx — J;, we have

I(zx;3) = H(zi) — H(zi|9;)
= H(zx) — H(yr + melyy)
= H(z) = Hyx — 9 + ml3y)
= H(z) — H(ex + ml3;)
" ) (6.37)
= H(z) — H(exl3;)

={H(zx) — Hyx)} + {HOw) — H(erly,))
={H(zx) — Hyx)} + {HOw) — HOx — %90}
={H(z) — Hy)} + 1k 30)

where (b) follows from the independence condition and the fact that the entropy of
the sum of two independent random variables is not less than the entropy of each
individual variable. It follows easily that

1(i; i) = 1(zi; i) — {H(ze) — H(yi)} (6.38)

which completes the proof.
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In Figure 6.7, the measurement z; may be further distorted by a certain function.
Denote Zj the distorted measurement, we have

% = Blai] = By + mi] (6.39)

where ((.) is the distortion function. Such distortion widely exists in practical systems.
Typical examples include the saturation and the dead zone.

Property 6.4: Suppose the noisy measurement z; is distorted by a function 3(.).
Then maximizing the distorted mutual information, I(3(z;);y;) is equivalent to
maximizing a lower bound of the undistorted mutual information (z;; y;).

Proof: This property is a direct consequence of the data processing inequality (see
Theorem 2.3), which states that for any random variables X and Y, and any measurable
function G(.),

[(BX);Y)=IX;Y) (6.40)
In (6.40), if function §(.) is invertible, the equality will hold. In this case, we have

arg max I(B(z¢); i) = arg max I(zi; y;) (6.41)
MeM MeM

That is, the invertible distortion does not change the optimal solutions of MaxMI.

Property 6.5: If the measurement z; is Gaussian, then maximizing the mutual
information /(zx; y;) will be equivalent to minimizing a lower bound of the MSE.

Proof: According to Theorem 2.4, the rate distortion function for a Gaussian
source X ~ .4 (u, o) with MSE distortion is

0.2

1

where R(D) £ inf{I(X:Y) : E[(X - Y)* ] =D?}. Let X = z, we have

I(zi: $1) = infll(ze: V) El(a =) = El(w =501}

= R(E[(zx—$)*)
2

1
= _Jog———
2 El(zx _Yk)z]

(6.43)
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where Uf is the variance of z;. It follows easily that

Ele;] = E[(zc—9:)] (6.44)
= ofexp(—ZI(Zk; Vo) |

This completes the proof.
Consider now a special case where the model is represented by an FIR filter in
which the output y, is given by

Je=XIW (6.45)
where  Xi =[x, Xe—1, - - .,.xkfmﬁ»]]r is the input (regressor) vector and
W =[wo, Wi, ..., wmfl]T is the weight vector. Then we have the following results.

Property 6.6: For the case of the FIR model and under the assumption that z; and
Xy are jointly Gaussian, the optimal weight vector under the MaxMI criterion will be

Wopt = arg max I(zx; ) = 'yR;P (6.46)
WeR™

where Ry = E[(X; — EIX()(X, —E[Xc))"). P = E[(X; - E[Xi)(z — E[])]. 7yeR
(v # 0). and in particular, if = 1, the MSE E[e?] will attain the lower bound as
in (6.44), i.e.,

E[e;] = o2exp(—21(zi; 1)) (6.47)

Proof: Since z; and X; are jointly Gaussian, then z; and ¥, are also jointly
Gaussian. By Property 6.2, we have

Wope = arg max p(zx, ¥y)
Tenm

— ar E[O — EDiD(zx — E[z))]
g max

WERT o\ ELGk— EDW]

WP (6.48)
= arg max ——————
G o/ WTRYW)
© WTp
= arg max

werm A/ (WTRxW)
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where (c) is because that o, is not related to W. And then,

o WwWTp wTp WTRxW
— = P —RxyW 6.49
ow /WTRXW ((WTRXW)3/2> { ( wTp > X } ( )

Let the above gradient be zero, and denote v = (WTRxyW) /(W' P), we obtain the
optimal weight vector

Wopt = YRy ' P (6.50)

It can be easily verified that for any yeR, and v # 0, the optimal weight vector

(6.50) makes the gradient (6.49) zero. When v = 1, the optimal weight becomes the
Wiener solution Wy = R,}IP. In this case, the MSE is

E[ef] = W'RxW — 2P"W + o7

_ (6.51)
=0, —P'Ry'P
Further the mutual information /(zx; y;) is
. 1 2 A
(251 = =5 log{l = p™(zk, Y}
N A 2
= Lol (BG BB ED)
2 E[(3¢ —E[ﬁk])z]aﬁ
(6.52)
R O B U
2% WIRyWo2
1 PTR,'P
=——logd1——=%
2 %% o?

Combining (6.51) and (6.52), we obtain E[e;] = o7 exp(— 21(zx; $;))-

Property 6.6 indicates that with a FIR filter structure and under Gaussian
assumption, the MaxMI criterion yields a scaled Wiener solution which is not
unique. Thus it does not satisfy the identifiability condition.* The main reason for
this is that any invertible transformation does not change the mutual information.
In this property, v is restricted to nonzero. If v=0, we have Wy, =0, and the
mutual information (z; ¥,) = I(z; 0) will be undefined (ill-posed).

It is worth noting that the identifiability problem under the MaxMI criterion has been studied in [134],
wherein the “identifiability” does not means the uniqueness of the solution, but just means that the
mutual information between the system output and the model output is nonzero.
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A priori information usually has great value in system identification. For
example, if the structures of the system or the parameters are partially known,
we may use this information to impose some constraints on the structures or
parameters of the filter. For the case in which the desired responses are distorted,
the a priori information can help to improve the accuracy of the solution. In
particular, certain parameter constraints may yield a unique optimal solution
under the MaxMI criterion. Consider the optimal solution (6.50) under the follow-
ing parameter constraint:

C'W =« (6.53)
where C = [cy, c2, - . .,cm]TeRm, aeR. Let W= 'nglP, we have
C'W=~C'Ry'P =« (6.54)

If CTRy'P # 0, then ~y can be uniquely determined as v = (C"Ry'P) 'a.

6.2.2 Stochastic Mutual Information Gradient Identification Algorithm

The stochastic gradient identification algorithm under the MaxMI criterion can be
expressed as

Wis1 = Wi + 1V wl(zi; 5;) (6.55)

where @Wl(zk;fzk) denotes the instantaneous estimate of the gradient of mutual
information /(zx;¥,) evaluated at the current value of the weight vector and 7 is
the step-size. The key problem of the update equation (6.55) is how to calculate the
instantaneous gradient Vwl(zi; Vi)

Let us start with the calculation of the gradient (not the instantaneous gradient)

of I(zi; yp):

. 0 .
Vwl(z; 3,) = WI(Zk;Yk)

8 7A’(Zk5 )A)k)
= 2 Ellog| LB (6.56)
ow ) #\ p-opsGo)

0 R A
= WE{log P52k Vi) — log ps(9)}
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where p.(.), ps(.), and p;(.) denote the related PDFs at the instant k. Then the
instantaneous value of VyI(z:;y,) can be obtained by dropping the expectation
operator and plugging in the estimates of the PDFs, i.e.,

N . 0 . . A
Vw (zi;3) = W {log p_3(zk, i) — log p; ()}

(oo )stado ()it (©>7

ﬁzﬁ(zk: Vi) ﬁy@k)

where p_;(zk, yi) and p;(3y) are, respectively, the estimates of p.y(zk, V) and p;(¥y).
To estimate the density functions, one usually adopts the kernel density estimation
(KDE) method and uses the following Gaussian functions as the kernels [135]

2

1 X
K, (x) = NI exp T
(6.58)
X +y?

1
K, (x,y) = il
7]

202

where h; and h, denote the kernel widths.
Based on the above Gaussian kernels, the estimates of the PDFs and their gradients
can be calculated as follows:

A 1 & ()A’k_yAk—j)z
00 = 5t St (0
(6.59)
. Ay & (& 2t + G _)’}k—j)z
P(zk Vi) = mzexp 212
=0
iﬁA(}; = -1 & exp _[)A’k_);kfj]z T
oW oL} 21 /
(6.60)
0 (@5 = -1 & ox _[Zk_Zk—j]2+bA’k_}A’k—j]2 o
aw P eI = 5 £ 212 b
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where L is the sliding data length and 7 = (§ — Yi—;)(0;/OW — OFy_;/OW).
For FIR filter, we have

T = O = V=) (Xie = Xi—)) (6.61)

Combining (6.55), (6.57), (6.59), and (6.60), we obtain a stochastic gradient
identification algorithm under the MaxMI criterion, which is referred to as the
stochastic mutual information gradient (SMIG) algorithm [135].

The performances of the SMIG algorithm compared with the least mean square
(LMS) algorithm are demonstrated in the following by Monte Carlo simulations.
Consider the FIR system identification [135]:

G*(2)=0.8+02z"'+04z24+ 0623 +04z*+027°
(6.62)

G@)=wo+wiz '+ waz 2+ w3z > +waz * + wsz

where G*(z) and G(z) are, respectively, the transfer functions of the unknown
system and the model. Suppose the input signal {x;} and the additive noise {n;} are
both unit-power white Gaussian processes. To uniquely determine an optimal
solution under the MaxMI criterion, it is assumed that the first component of the
unknown weight vector is a priori known (which is assumed to be 0.8). Thus the
goal is to search the optimal solution of the other five weights. The initial weights
(except wy =0.8) for the adaptive FIR filter are zero-mean Gaussian distributed
with variance 0.01. Further, the following distortion functions are considered [135]:

1. Undistorted: B(x) =x, xeR
X xe[—1,1]

2. Saturation: B(x) =< 2—¢€'™  xe(l, + )
=2+ xe(—o0, —1)
0 xe[—0.4,0.4]

3. Dead zone: f(x) =< x— 04 xe(04, + x0)
x+04 xe(—o0, —04)

Pr{B(x) =0} =0.3

5. .
4. Data loss’ : B(X).{ Pr{A(x) = x} = 0.7

Figure 6.8 plots the distortion functions of the saturation and dead zone.
Figure 6.9 shows the desired response signal with data loss (the probability of data
loss is 0.3). In the simulation below, the Gaussian kernels are used and the kernel
sizes are kept fixed at h; = h, =0.4.

Figure 6.10 illustrates the average convergence curves over 50 Monte Carlo sim-
ulation runs. One can see that, without measurement distortions, the conventional
LMS algorithm has a better performance. However, in the case of measurement

5 N . . . .
Data loss means that there exists accidental loss of the measurement data due to certain failures in the
sensors or communication channels.
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Figure 6.8 Distortion functions of saturation and dead zone.
Source: Adopted from [135].
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Figure 6.9 Desired response signal with data loss.
Source: Adopted from [135].
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Figure 6.11 Wiener system.
X Uy ) Yi g Yy

distortions, it is evident the deterioration of the LMS algorithm whereas the SMIG
algorithm is little affected and achieves a much better performance. Simulation
results confirm that the MaxMI criterion is more robust to the measurement distor-
tion than traditional MSE criterion.

6.2.3 Double-Criterion Identification Method

The system identification scheme of Figure 6.7 does not, in general, satisfy the con-
dition of parameter identifiability (i.e., the uniqueness of the optimal solution). In
order to uniquely determine an optimal solution, some a priori information about
the parameters is required. However, such a priori information is not available for
many practical applications. To address this problem, we introduce in the following
the double-criterion identification method [136].

Consider the Wiener system shown in Figure 6.11, where the system has the cascade
structure and consists of a discrete-time linear filter H(z) followed by a zero-memory
nonlinearity f(.). Wiener systems are typical nonlinear systems and are widely used
for nonlinear modeling [238]. The double-criterion method mainly aims at the Wiener
system identification, but it also applies to many other systems. In fact, any system can
be regarded as a cascade system consisting of itself followed by f(x) = x.

First, we define the equivalence between two Wiener systems.

Definition 6.1 Two Wiener systems {H;(z),f1(.)} and {H»(z),f>(.)} are said to be
equivalent if and only if 3 # 0, such that

(6.63)

Hy(z) = vH\(2)
fr(x) =filx/7)

Although there is a scale factor v between two equivalent Wiener systems, they
have exactly the same input—output behavior.

The optimal solution of the system identification scheme of Figure 6.7 is usually
nonunique. For Wiener system, the nonuniqueness means the optimal solutions are
not all equivalent. According to the data processing inequality, we have

A

1(z; Y1) = 1z f (k) = I(zg; dig) (6.64)

where 7 and f(.) denote, respectively, the intermediate output (the output of the
linear part) and the zero-memory nonlinearity of the Wiener model. Then under the
MaxMI criterion, the optimal Wiener model will be

{ Wopt = arg max (zx; iix)
w

. . (6.65)
Soptef € Z 1 (zi; f (i) = I(z; k)
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Figure 6.12 Double-
criterion identification
scheme for Wiener system:
(1) linear filter part is
identified using MaxMI
criterion and (2) nonlinear
part is trained using MSE
criterion.

Xk

where W denotes the parameter vector of the linear subsystem and # denotes all
measurable mappings i, — J,. Evidently, the optimal solutions given by (6.65)
contain infinite nonequivalent Wiener models. Actually, we always have
I(z; f(ﬁk)) = I(zy; i) provided f is an invertible function.

In order to ensure that all the optimal Wiener models are equivalent, the identifi-
cation scheme of Figure 6.7 has to be modified. One can adopt the double-criterion
identification method [136]. As shown in Figure 6.12, the double-criterion method
utilizes both MaxMI and MSE criteria to identify the Wiener system. Specifically,
the linear filter part is identified by using the MaxMI criterion, and the zero-
memory nonlinear part is learned by the MSE criterion. In Figure 6.12, Hy+(z)
and f4+(.) denote, respectively, the linear and nonlinear subsystems of the unknown
Wiener system, where W* and A* are related parameter vectors. The adaptive
Wiener model {I:IWk(z), f 4,(1)} usually takes the form of “FIR + polynomial”, that
is, the linear subsystem Hy,(z) is an (m — 1)-order FIR filter, and the nonlinear sub-
system f 4.() is a (p — 1)-order polynomial. In this case, the intermediate output i
and the final output y, of the model are

{ﬁk:WkTXk

R N 6.66
A :fAk(ﬁk) = AZUk ( )
where W, and X; are m-dimensional FIR weight vector and input vector,
A = [ap(k), a;(k), . . .,apfl(k)]T is the p-dimensional polynomial coefficient vector,
and Uy = [1, dy, ﬁ,%, e ﬁ’,zfl]T is the polynomial basis vector.
It should be noted that similar two-gradient identification algorithms for the
Wiener system have been proposed in [239,240], wherein the linear and nonlinear
subsystems are both identified using the MSE criterion.

The optimal solution for the above double-criterion identification is

Wopt = arg max I(Zk; ﬁk)
WeR™
, . (6.67)
Aop = argmin  E[(zx—5)’]
AeRP, W =W,y
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For general case, it is hard to find the closed-form expressions for Wy and Agp.
The following theorem only considers the case in which the unknown Wiener
system has the same structure as the assumed Wiener model.

Theorem 6.4 For the Wiener system identification scheme shown in Figure 6.12, if

1. The unknown system and the model have the same structure, that is, Hy+(z) and Hy(2)
are both (m — 1)-order FIR filters, and fs+(.) and f 4(.) are both (p — 1)-order polynomials.

2. The nonlinear function fa:(.) is invertible.

3. The additive noise n; is independent of the input vector X.

Then the optimal solution of (6.67) will be
Wopt = YW*, Aopt = A*G;1 (6.68)

where veR, v # 0, and G, is expressed as

0 0
0 Lo :

G,= | 7 B (6.69)
0 0 4!

Proof: Since X; and n; are mutually independent, we have

I(zi; i) = H(zi) — H(zge|dty)

= H(zx) — H(yx + nglig)

@ (6.70)
= H(z) — H(ni|ix)

= H(z) — H(m)

where (d) follows from the fact that the entropy of the sum of two independent ran-
dom variables is not less than the entropy of each individual variable.

In (6.70), the equality holds if and only if conditioned on i, y; is a determin-
istic variable, that is, y; is a function of #;. This implies that the mutual informa-
tion I(zx; tix) will achieve its maximum value (H(z;) — H(n;)) if and only if there
exists a function (.) such that y, = (i), i.e.,

Vi =far- (W X) = pliie) = p(Wo Xe), ¥ X eR" (6.71)
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As the nonlinear function f4«(.) is assumed to be invertible, we have
WX, = fo (oW X)) = (WD Xp), ¥ Xje R (6.72)

where f3-~'(.) denotes the inverse function of fy(.) and ¥ 2 £« 0. It follows that

0] th _ X _ X m
w(l) 1/’( P Xk) (0 (Wopt ( T Xk)) w*t Xk) V X eR

opt opt ( opt

(6.73)

And hence
PWE X =WTX,  VXeeR” (6.74)

which implies (1)W2, = W*T. Let v =1/¢(1) # 0, we obtain the optimum FIR
weight Wop = yW*.
Now the optimal polynomial coefficients can be easily determined. By indepen-

dent assumption, we have

E[(ze =901 = El(x +me—3,)*1= Eln;] (6.75)

with equality if and only if y; — 3y, = 0. This means the MSE cost will attain its
minimum value (E[n}]) if and only if the intrinsic error (¢; = y; — §,) remains zero.
Therefore,

€k | W:W(prA:Aopl = (yk - yk) | W:W(prA:AopL

= f1-(W7TXp) onpt( othk)

= far (W Xe) = fan YW X)) (6.76)
= far(WTXp) = fama, (W X0)
=0

Then we get Ao Gy =A* = A =A* G|
completes the proof.

Theorem 6.4 indicates that for identification scheme of Figure 6.12, under cer-
tain conditions the optimal solution will match the true system exactly (i.e., with
zero intrinsic error). There is a free parameter v in the solution, however, its spe-
cific value has no substantial effect on the cascaded model. The literature [240]
gives a similar result about the optimal solution under the single MSE criterion. In
[240], the linear FIR subsystem is estimated up to a scaling factor which equals the
derivative of the nonlinear function around a bias point.

where G, is given by (6.69). This

vy o
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The double-criterion identification can be implemented in two manners. The
first is the sequential identification scheme, in which the MaxMI criterion is first
used to learn the linear FIR filter. At the end of the first adaptation phase, the tap
weights are frozen, and then the MSE criterion is used to estimate the polynomial
coefficients. The second adaptation scheme simultaneously trains both the linear
and nonlinear parts of the Wiener model. Obviously, the second scheme is more
suitable for online identification. In the following, we focus only on the simulta-
neous scheme.

In [136], a stochastic gradient-based double-criterion identification algorithm
was developed as follows:

Wit = Wi+, Vi I(zis i) (al)

W1 = W (a2)
H Wit H (6.77)
Apr1 = A+ nszUzk (a3)
Ul

where @Wl(zk;ﬁk) denotes the stochastic (instantaneous) gradient of the mutual
information I(zx; ;) with respect to the FIR weight vector W (see (6.57) for
the computation), H denotes the Euclidean norm, 7, and 7, are the step-sizes. The
update equation (al) is actually the SMIG algorithm developed in 6.2.2. The sec-
ond part (a2) of the algorithm (6.77) scales the FIR weight vector to a unit vector.
The purpose of scaling the weight vector is to constrain the output energy of
the FIR filter, and to avoid “very large values” of the scale factor v in the optimal
solution. As mutual information is scaling invariant,® the scaling (a2) does not
influence the search of the optimal solution. However, it certainly affects the value
of 7y in the optimal solution. In fact, if the algorithm converges to the optimal solution,
we have kl—l>nolo W =~W*, and

lim Wiy khm Zkﬂ H
—> 0 — 00 k+1
=~yW* = = sign(y) ——
W e O e ©79

= ysign(y) = 1/HW*H
=vy=x1/|w¥|

That is, the scale factor ~ equals either 1/|W*| or —1/|W*
ger a free parameter.

, which is no lon-

S For any random variables X and Y, the mutual information I(X;Y) satisfies I(X;Y)=I(aX;bY),
Va #0,b#0.
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The third part (a3) of the algorithm (6.77) is the NLMS algorithm, which mini-
mizes the MSE cost with step-size scaled by the energy of polynomial regression
signal Uy. The NLMS is more suitable for the nonlinear subsystem identification
than the standard LMS algorithm, because during the adaptation, the polynomial
regression signals are usually nonstationary. The algorithm (6.77) is referred to as
the SMIG-NLMS algorithm [136].

Next, Monte Carlo simulation results are presented to demonstrate the perfor-
mance of the SMIG-NLMS algorithm. For comparison purpose, simulation results
of the following two algorithms are also included.

(D
Wk+1 + i€y Xk
o (6.79)
A1 = A + 1,600y / | U
Wit = Wi — ) Vwﬁ(é’/((l)) (6.80)

Apr1 =Ar+ Hzek)Uk/HUkH

where (i, p,, pt), p, are step-sizes, eé)ézk WX, 65{2)£Zk fAA(Wka) and
VWH(eg)) denote the stochastic information gradient (SIG) under Shannon entropy
criterion, calculated as

k
K, (e(l) — egl))(Xk - Xi)
Vo Ei(e) _i:kZ;Jrl ok
wH(e, ") = (6.81)

ACED
i=k—L+1

where Kj(.) denotes the kernel function with bandwidth /4. The algorithms (6.79)
and (6.80) are referred to as the LMS-NLMS and SIG-NLMS algorithms [136],
respectively. Note that the LMS-NLMS algorithm is actually the normalized
version of the algorithm developed in [240].

Due to the “scaling” property of the linear and nonlinear portions, the expression
of Wiener system is not unique. In order to evaluate how close the estimated
Wiener model and the true system are, we introduce the following measures [136]:

1. Angle between W; and W*:
O(Wy, W*) = min{ L (Wy, W*), L (— Wi, W)} (6.82)

where £ (Wi, W*) = arc cos(W{W*)/ (|| Wi | [W*])).
2. Angle between A; and A*:

O(Ag, A*) = minf{ £ (A, A"), L (ArG-1,A™)} (6.83)
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where G- is

-° 0 0

! :
G = 0 (_ D : (6.84)

0

0 0 (=Y
3. Intrinsic error power (IEP)”:

IEP £ E[e;] = E[(i—Ju)’] (6.85)

Among the three performance measures, the angles O(W;, W*) and 60(A;,A*)
quantify the identification performance of the subsystems (linear FIR and nonlinear
polynomial), while the IEP quantifies the overall performance.

Let us consider the case in which the FIR weights and the polynomial coeffi-
cients of the unknown Wiener system are [136]

* — — —
{ W*=10.3,0.5, —0.6, —0.2,0.4,0.3,0.1] (6.56)
A*=10.2,1.0,0.5,0.1]

The common input {x;} is a white Gaussian process with unit variance and the distur-
bance noise {rn;} is another white Gaussian process with variance aﬁ = 0.01. The initial
FIR weight vector W, of the adaptive model is obtained by normalizing a zero-mean
Gaussian-distributed random vector (H Wo H = 1), and the initial polynomial coefficients
are zero-mean Gaussian distributed with variance 0.01. For the SMIG-NLMS and
SIG-NLMS algorithms, the sliding data length is set as L = 100 and the kernel widths
are chosen according to Silverman’s rule. The step-sizes involved in the algorithms are
experimentally selected so that the initial convergence rates are visually identical.

The average convergence curves of the angles 8(W;, W*) and 6(A,A*), over
1000 independent Monte Carlo simulation runs, are shown in Figures 6.13 and 6.14.
It is evident that the SMIG-NLMS algorithm achieves the smallest angles (mis-
matches) in both linear and nonlinear subsystems during the steady-state phase. More
detailed statistical results of the subsystems training are presented in Figures 6.15
and 6.16, in which the histograms of the angles O(W;, W*) and 6(A;, A*) at the final
iteration are plotted. The inset plots in Figures 6.15 and 6.16 give the summary of
the mean and spread of the histograms. One can observe again that the SMIG-NLMS
algorithm outperforms both the LMS-NLMS and SIG-NLMS algorithms in terms of
the angles between the estimated and true parameter vectors.

The overall identification performance can be measured by the IEP. Figure 6.17
illustrates the convergence curves of the IEP over 1000 Monte Carlo runs. It is clear
that the SMIG-NLMS algorithm achieves the smallest IEP during the steady-state
phase. Figure 6.18 shows the probability density functions of the steady-state

7 In practice, the IEP is evaluated using the sample mean instead of the expectation value.
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Figure 6.13 Average convergence curves of the angle 8(Wy, W*) over 1000 Monte Carlo

runs.
Source: Adopted from [136].
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Figure 6.14 Average convergence curves of the angle 6(A;, A*) over 1000 Monte

Carlo runs.
Source: Adopted from [136].
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Figure 6.15 Histogram plots of the angle (W, W*) at the final iteration over 1000 Monte

Carlo runs.
Source: Adopted from [136].
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Figure 6.16 Histogram plots of the angle 0(A;, A*) at the final iteration over 1000 Monte

Carlo runs.
Source: Adopted from [136].
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101 ‘ ‘ . Figure 6.17 Convergence curves
of the IEP over 1000 Monte
Carlo runs.

Source: Adopted from [136].
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intrinsic errors. As expected, the SMIG-NLMS algorithm yields the largest and most
concentrated peak centered at the zero intrinsic error, and hence achieves the best
accuracy in identification.

In the previous simulations, the unknown Wiener system has the same structure
as the assumed model. In order to show how the algorithm performs when the real
system is different from the assumed model (i.e., the unmatched case), another
simulation with the same setup is conducted. This time the linear and nonlinear
parts of the unknown system are assumed to be

1
&= G031
o (6.87)
f(x)zl exp(—x)

1 +exp(—x)
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Table 6.1 Mean *+ Deviation Results of the IEP at the Final
Iteration Over 1000 Monte Carlo Runs
1IEP
SMIG-NLMS 0.0011 £ 0.0065
LMS-NLMS 0.0028 £ 0.0074
SIG-NLMS 0.0033 = 0.0089
Source: Adopted from [136].
—o— Desired
— SMIG-NLMS
— = ~LMS-NLMS ||
. . . . . . L SIG-NLMS
900 910 920 930 940 950 960 970 980 990 1000
0.3F .
g o '
-0.3 .
900 910 920 930 940 950 960 970 980 990 1000
Samples

Figure 6.19 Desired output (the intrinsic output of the true system) and model outputs for

the test input data.
Source: Adopted from [136].

Table 6.1 lists the mean * deviation results of the IEP at final iteration over
1000 Monte Carlo runs. Clearly, the SMIG-NLMS algorithm produces the IEP
with both lower mean and smaller deviation. Figure 6.19 shows the desired output
(intrinsic output of the true system) and the model outputs (trained by different
algorithms) during the last 100 samples for the test input. The results indicate that
the identified model by the SMIG-NLMS algorithm describes the test data with the

best accuracy.
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Appendix I: MinMI Rate Criterion

The authors in [124] propose the MinMI rate criterion. Consider the linear Gaussian
system

{ Ot + 1) = 6(t) + v(r),  6(0) = b, (L)

(1) = ¢ (1) + (1)

where 6y ~ A" (my, Qp), v(t) ~ (0, Q,), w(t) ~ A (0, Q,,). One can adopt the following
linear recursive algorithm to estimate the parameters

0(t+1)=0(r) + K(D)y(1) — o) 6(1)], 6 (0) = myg (1.2)

The MinMI rate criterion is to search an optimal gain matrix K*() such that the
mutual information rate I({e(?)}; {z(f)}) between the error signal e(r) = 6(¢) — 0(¢)
and a unity-power white Gaussian noise z(¢) is minimized, where z(¢) = e(t) + r(¢),
r(t) is a certain Gaussian process independent of e(f). Clearly, the MinMI rate
criterion requires that the asymptotic power spectral R(z) of the error process {e(r)}
satisfies 0 =< R(z) =1 (otherwise r(¢) does not exist). It can be calculated that

He): (0N = 1 L) ~log detll ~ Rz
(13)

{1
- _J —log det[I — S(z")"S(z)]dz
47i Jp z

where S(z) is a spectral factor of R(z). Hence, under the MinMI rate criterion the
optimal gain matrix K* will be

—1( 1
K* = arg min—_J —log det [I - S(zil)TS(z)] dz (1.4)
K A7 DR
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Preface

System identification is a common method for building the mathematical model
of a physical plant, which is widely utilized in practical engineering situations. In
general, the system identification consists of three key elements, i.e., the data, the
model, and the criterion. The goal of identification is then to choose one from
a set of candidate models to fit the data best according to a certain criterion. The
criterion function is a key factor in system identification, which evaluates the con-
sistency of the model to the actual plant and is, in general, an objective function
for developing the identification algorithms. The identification performances, such
as the convergence speed, steady-state accuracy, robustness, and the computational
complexity, are directly related to the criterion function.

Well-known identification criteria mainly include the least squares (LS) crite-
rion, minimum mean square error (MMSE) criterion, and the maximum likelihood
(ML) criterion. These criteria provide successful engineering solutions to most
practical problems, and are still prevalent today in system identification. However,
they have some shortcomings that limit their general use. For example, the LS and
MMSE only consider the second-order moment of the error, and the identification
performance would become worse when data are non-Gaussian distributed (e.g., with
multimodal, heavy-tail, or finite range). The ML criterion requires the knowledge of
the conditional probability density function of the observed samples, which is not
available in many practical situations. In addition, the computational complexity
of the ML estimation is usually high. Thus, selecting a new criterion beyond
second-order statistics and likelihood function is attractive in problems of system
identification.

In recent years, criteria based on information theoretic descriptors of entropy
and dissimilarity (divergence, mutual information) have attracted lots of attentions
and become an emerging area of study in signal processing and machine learning
domains. Information theoretic criteria (or briefly, information criteria) can capture
higher order statistics and information content of signals rather than simply their
energy. Many studies suggest that information criteria do not suffer from the limita-
tion of Gaussian assumption and can improve performance in many realistic sce-
narios. Combined with nonparametric estimators of entropy and divergence, many
adaptive identification algorithms have been developed, including the practical
gradient-based batch or recursive algorithms, fixed-point algorithms (no step-size),
or other advanced search algorithms. Although many elegant results and techniques
have been developed over the past few years, till now there is no book devoted to
a systematic study of system identification under information theoretic criteria. The
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primary focus of this book is to provide an overview of these developments, with
emphasis on the nonparametric estimators of information criteria and gradient-based
identification algorithms. Most of the contents of this book originally appeared in the
recent papers of the authors.

The book is divided into six chapters: the first chapter is the introduction to
the information theoretic criteria and the state-of-the-art techniques; the second
chapter presents the definitions and properties of several important information
measures; the third chapter gives an overview of information theoretic approaches
to parameter estimation; the fourth chapter discusses system identification under
minimum error entropy criterion; the fifth chapter focuses on the minimum infor-
mation divergence criteria; and the sixth chapter changes the focus to the mutual
information-based criteria.

It is worth noting that the information criteria can be used not only for system
parameter identification but also for system structure identification (e.g., model
selection). The Akaike’s information criterion (AIC) and the minimum description
length (MDL) are two famous information criteria for model selection. There have
been several books on AIC and MDL, and in this book we don’t discuss them in
detail. Although most of the methods in this book are developed particularly for
system parameter identification, the basic principles behind them are universal.
Some of the methods with little modification can be applied to blind source sepa-
ration, independent component analysis, time series prediction, classification and
pattern recognition.

This book will be of interest to graduates, professionals, and researchers who
are interested in improving the performance of traditional identification algorithms
and in exploring new approaches to system identification, and also to those who
are interested in adaptive filtering, neural networks, kernel methods, and online
machine learning.

The authors are grateful to the National Natural Science Foundation of China
and the National Basic Research Program of China (973 Program), which have
funded this book. We are also grateful to the Elsevier for their patience with us
over the past year we worked on this book. We also acknowledge the support and
encouragement from our colleagues and friends.

Xi’an
P.R. China
March 2013



Symbols and Abbreviations

The main symbols and abbreviations used throughout the text are listed as follows.

[

I
(-5
VA
E[]
f(x)
f'x)
Vif(x)
sign(.)
()

absolute value of a real number

Euclidean norm of a vector

inner product

indicator function

expectation value of a random variable

first-order derivative of the function f(x)
second-order derivative of the function f(x)
gradient of the function f(x) with respect to x

sign function

Gamma function

vector or matrix transposition

identity matrix

inverse of matrix A

determinant of matrix A

trace of matrix A

rank of matrix A

natural logarithm function

unit delay operator

real number space

n-dimensional real Euclidean space

correlation coefficient between random variables X and Y
variance of random variable X

probability of event A

Gaussian distribution with mean vector y and covariance matrix %/
uniform distribution over interval [a, b]

chi-squared distribution with k degree of freedom
Shannon entropy of random variable X

¢-entropy of random variable X

a-order Renyi entropy of random variable X
a-order information potential of random variable X
survival information potential of random variable X
A-entropy of discrete random variable X

mutual information between random variables X and Y
KL-divergence between random variables X and Y
¢-divergence between random variables X and Y

Fisher information matrix
Fisher information rate matrix
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p() probability density function

k(.,.) Mercer kernel function

K() kernel function for density estimation
K;() kernel function with width &

Gp(.) Gaussian kernel function with width &

S reproducing kernel Hilbert space induced by Mercer kernel
F. feature space induced by Mercer kernel s

w weight vector

Q weight vector in feature space

w weight error vector

n
L

step size

sliding data length
MSE mean square error
LMS least mean square
NLMS normalized least mean square
LS least squares
RLS recursive least squares
MLE maximum likelihood estimation
EM expectation-maximization
FLOM fractional lower order moment
LMP least mean p-power
LAD least absolute deviation
LMF least mean fourth
FIR finite impulse response
IIR infinite impulse response
AR auto regressive
ADALINE adaptive linear neuron
MLP multilayer perceptron
RKHS reproducing kernel Hilbert space
KAF kernel adaptive filtering
KLMS kernel least mean square
KAPA kernel affine projection algorithm
KMEE kernel minimum error entropy
KMC kernel maximum correntropy
PDF probability density function
KDE kernel density estimation
GGD generalized Gaussian density
SasS symmetric c-stable
MEP maximum entropy principle
DPI data processing inequality
EPI entropy power inequality
MEE minimum error entropy
MCC maximum correntropy criterion
P information potential
QIpP quadratic information potential
CRE cumulative residual entropy
SIP survival information potential

QSIP survival quadratic information potential
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KLID
EDC
MinMI
MaxMI
AIC
BIC
MDL
FIM
FIRM
MIH
ITL
BIG
FRIG
SIG
SIDG
SMIG
FP
FP-MEE
RFP-MEE
EDA
SNR
WEP
EMSE
IEP
ICA
BSS
CRLB
AEC

Kullback—Leibler information divergence
Euclidean distance criterion

minimum mutual information

maximum mutual information

Akaike’s information criterion

Bayesian information criterion

minimum description length

Fisher information matrix

Fisher information rate matrix

minimum identifiable horizon
information theoretic learning

batch information gradient

forgetting recursive information gradient
stochastic information gradient

stochastic information divergence gradient
stochastic mutual information gradient
fixed point

fixed-point minimum error entropy
recursive fixed-point minimum error entropy
estimation of distribution algorithm
signal to noise ratio

weight error power

excess mean square error

intrinsic error power

independent component analysis

blind source separation

Cramer—Rao lower bound

acoustic echo canceller
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