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Preface

Support vector machines (SVMs), which were introduced by Vapnik in the
early 1990s, have proven effective and promising techniques for data mining.
SVMs have recently made breakthroughs and advances in their theoretical
studies and implementations of algorithms. They have been successfully ap-
plied in many fields such as text categorization, speech recognition, remote
sensing image analysis, time series forecasting, information security, and so
forth.

SVMs, having their roots in Statistical Learning Theory (SLT) and opti-
mization methods, have become powerful tools to solve the problems of ma-
chine learning with finite training points and to overcome some traditional
difficulties such as the “curse of dimensionality”, “over-fitting”, and so forth.
Their theoretical foundation and implementation techniques have been estab-
lished and SVMs are gaining quick popularity due to their many attractive fea-
tures: nice mathematical representations, geometrical explanations, good gen-
eralization abilities, and promising empirical performance. Some SVM mono-
graphs, including more sophisticated ones such as Cristianini & Shawe-Taylor
[39] and Scholkopf & Smola [124], have been published.

We have published two books in Chinese about SVMs in Science Press of
China since 2004 [42, 43], which attracted widespread interest and received
favorable comments in China. After several years of research and teaching,
we decided to rewrite the books and add new research achievements. The
starting point and focus of the book is optimization theory, which is different
from other books on SVMs in this respect. Optimization is one of the pillars
on which SVMs are built, so it makes a lot of sense to consider them from this
point of view.

This book introduces SVMs systematically and comprehensively. We place
emphasis on the readability and the importance of perception on a sound un-
derstanding of SVMs. Prior to systematical and rigorous discourses, concepts
are introduced graphically, and the methods and conclusions are proposed by
direct inspection or with visual explanation. Particularly, for some important
concepts and algorithms we try our best to give clearly geometric interpreta-
tions that are not depicted in the literature, such as Crammer-Singer SVM
for multiclass classification problems.

We give details on classification problems and regression problems that
are the two main components of SVMs. We formated this book uniformly
by using the classification problem as the principal axis and converting the

xxiii
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regression problem to the classification problem. The book is organized as fol-
lows. In Chapter 1 the optimization fundamentals are introduced. The convex
programming encompassing traditional convex optimization (Sections 1.1–1.3)
and conic programming (Sections 1.4-1.5). Sections 1.1–1.3 are necessary back-
ground for the later chapters. For beginners, Sections 1.4 and 1.5 (marked with
an asterisk *) can be skipped since they are used only in Subsections 8.4.3 and
8.8.3 of Chapter 8, and are mainly served for further research. Support vector
machines begin from Chapter 2 starting from linear classification problems.
Based on the maximal margin principal, the basic linear support vector clas-
sification is derived visually in Chapter 2. Linear support vector regression is
established in Chapter 3. The kernel theory, which is the key of extension of
basic SVMs and the foundation for solving nonlinear problems, together with
the general classification and regression problems, are discussed in Chapter 4.
Starting with statistical interpretation of the maximal margin method, statis-
tical learning theory, which is the groundwork of SVMs, is studied in Chapter
5. The model construction problems, which are very useful in practical appli-
cations, are discussed in Chapter 6. The implementations of several prevailing
SVM’s algorithms are introduced in Chapter 7. Finally, the variations and ex-
tensions of SVMs including multiclass classification, semisupervised classifica-
tion, knowledge-based classification, Universum classification, privileged clas-
sification, robust classification, multi-instance classification, and multi-label
classification are covered in Chapter 8.

The contents of this book comprise our research achievements. A precise
and concise interpretation of statistical leaning theory for C-support vector
classification (C-SVC) is given in Chapter 5 which imbues the parameter C
with a new meaning. From our achievements the following results of SVMs are
also given: the regularized twin SVMs for binary classification problems, the
SVMs for solving multi-classification problems based on the idea of ordinal
regression, the SVMs for semisupervised problems by means of constructing
second order cone programming or semidefinite programming models, and the
SVMs for problems with perturbations.

Potential readers include those who are beginners in the SVM and those
who are interested in solving real-world problems by employing SVMs, and
those who will conduct more comprehensive study of SVMs.

We are indebted to all the people who have helped in various ways. We
would like to say special thanks to Dr. Hang Li, Chief Scientist of Noah’s Ark
Lab of Huawei Technologies, academicians Zhiming Ma and Yaxiang Yuan
of Chinese Academy of Sciences, Dr. Mingren Shi of University of Western
Australia, Prof. Changyu Wang and Prof. Yiju Wang of Qufu Normal Univer-
sity, Prof. Zunquan Xia and Liwei Zhang of Dalian University of Technology,
Prof. Naihua Xiu of Beijing Jiaotong University, Prof. Yanqin Bai of Shang-
hai University, and Prof. Ling Jing of China Agricultural University for their
valuable suggestions. Our gratitude goes also to Prof. Xiangsun Zhang and
Prof. Yong Shi of Chinese Academy of Sciences, and Prof. Shuzhong Zhang of
The Chinese University of Hong Kong for their great help and support. We
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appreciate assistance from the members of our workshop — Dr. Zhixia Yang,
Dr. Kun Zhao, Dr. Yongcui Wang, Dr. Xiaojian Shao, Dr. Ruxin Qin, Dr.
Yuanhai Shao, Dr. Junyan Tan, Ms. Yanmei Zhao, Ms. Tingting Gao, and
Ms. Yuxin Li.

Finally, we would like acknowledge a number of funding agencies that pro-
vided their generous support to our research activities on this book. They
are the Publishing Foundation of The Ministry of Science and Technology
of China, and the National Natural Science Foundation of China, including
the innovative group grant “Data Mining and Intelligent Knowledge Man-
agement” (♯70621001, ♯70921061); the general project “ Knowledge Driven
Support Vector Machines Theory, Algorithms and Applications” (♯ 11271361);
the general project “Models and Algorithms for Support Vector Machines with
Adaptive Norms” (♯ 11201480); the general project “The Optimization Meth-
ods in Multi-label Multi-instance Learning and its Applications” (♯10971223);
the general project “The Optimization Methods of Kernel Matrix Learning
and its Applications in Bioinformatics”(♯11071252); the CAS/SAFEA Interna-
tional Partnership Program for Creative Research Teams; the President Fund
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Chapter 1

Optimization

As the foundation of SVMs, the optimization fundamentals are introduced
in this chapter. It includes two parts: the basic part — Sections 1.1–1.3 and
the advanced part — Sections 1.4–1.5. Sections 1.1, 1.2 and Section 1.3 are
respectively concerned with the traditional convex optimization in Euclidian
space and Hilbert space. For the readers who are not interested in the strict
mathematical argument, Section 1.3 can be read quickly just by comparing the
corresponding conclusions in Hilbert space and the ones in Euclidian space,
and believing that the similar conclusions in Hilbert space are true. Sections
1.4–1.5 are mainly concerned with the conic programming and can be skipped
for those beginners since they are only used in the later subsections 8.4.3 and
8.8.4. In fact they are mainly served for further research. We believe that, for
the development of SVMs, many applications of conic programming are still
waiting to be discovered.

1.1 Optimization Problems in Euclidian Space

1.1.1 An example of optimization problems

Example 1.1.1 Suppose that there exist two closed line segments u1u2 and
v1v2 on the plane [x]1O[x]2 (see Figure 1.1). The distance between two points
u ∈ u1u2 and v ∈ v1v2 is denoted as d(u, v). Find the points u∗ and v∗

such that the distance d(u, v) is minimized at (u∗, v∗) under the restrictions
u ∈ u1u2 and v ∈ v1v2.

This problem can be formulated as an optimization problem. The points
u on the segment u1u2 and v on v1v2 can be represented as

u = αu1 + (1 − α)u2, α ∈ [0, 1] (1.1.1)

and
v = βv1 + (1 − β)v2, β ∈ [0, 1] (1.1.2)

respectively. Thus the distance between u and v is a function of (α, β)

f(α, β) = ‖u− v‖2 = a11α
2 − 2a12αβ + a22β

2 + b1α+ b2β + c, (1.1.3)

1
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FIGURE 1.1: Two line segments in R2.

where the coefficients are given by

a11 = ‖u1 − u2‖2, a12 = (u1 − u2)
T(v1 − v2), a22 = ‖v1 − v2‖2,

b1 = 2(u1 − u2)
T(u2 − v2), b2 = 2(v1 − v2)

T(v2 − u2), c = ‖u2 − v2‖2.
(1.1.4)

We should find (α∗, β∗) at which the function f(α, β) obtains its minimum.
Note that the variables α and β are restricted in the intervals α ∈ [0, 1], β ∈
[0, 1] respectively. Therefore the problem can be formulated as

min f(α, β) = a11α
2 − 2a12αβ + a22β

2 + b1α+ b2β + c, (1.1.5)

s.t. 0 6 α 6 1, (1.1.6)

0 6 β 6 1, (1.1.7)

where the coefficients aij , i, j = 1, 2, bi, i = 1, 2 and c are given by (1.1.4).
Here “min” stands for“minimize”, and “s.t.” stands for “subject to”. The
meaning of the problem is to find the minimizer (α∗, β∗) of the function f(α, β)
under restrictions (1.1.6) and (1.1.7). Having got (α∗, β∗), the points u∗ and
v∗ with nearest distance can be obtained by

u∗ = α∗u1 + (1− α∗)u2, v∗ = β∗v1 + (1 − β∗)v2. (1.1.8)

What we are concerned with now is the problem (1.1.5)∼(1.1.7). Introduc-
ing a two-dimensional vector x = ([x]1, [x]2)

T = (α, β)T, the problem can be
rewritten as

min f0(x) = a11[x]
2
1 − 2a12[x]1[x]2 + a22[x]

2
2 + b1[x]1 + b2[x]2 + c,

(1.1.9)

s.t. −[x]1 6 0, (1.1.10)

[x]1 − 1 6 0, (1.1.11)

−[x]2 6 0, (1.1.12)

[x]2 − 1 6 0, (1.1.13)
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where aij , i, j = 1, 2, bi, i = 1, 2 and c are given constants.

1.1.2 Optimization problems and their solutions

Extending the problem (1.1.9)∼(1.1.13) by changing the two-dimensional
vector x into the n-dimensional vector x, the function involved into the gen-
eral smooth function, 4 restrictive conditions with inequalities into m ones,
and adding p restrictive conditions with equalities, the general optimization
problem can be obtained as follows

min f0(x), x = ([x]1, · · · , [x]n)T ∈ Rn, (1.1.14)

s.t. fi(x) 6 0, i = 1, · · · ,m, (1.1.15)

hi(x) = 0, i = 1, · · · , p. (1.1.16)

Here the vector x is called the (optimization) variable of the problem, the
function f0 in (1.1.14) is called the objective function. Restrictions (1.1.15)
and (1.1.16) are called the constraints; the former the inequality constraints,
the latter the equality constraints. fi(x), i = 1, · · · ,m and hi(x), i = 1, · · · , p
are called the constraint functions. Problem (1.1.14)∼(1.1.16) is called an
unconstrained problem ifm+p = 0, i.e. there are no constraints; a constrained
problem otherwise.

Definition 1.1.2 (Feasible point and feasible region) A point satisfying all
the constraints is called a feasible point. The set of all such points constitutes
the feasible region D

D = {x|fi(x) 6 0, i = 1, · · · ,m ;hi(x) = 0 , i = 1, · · · , p ;x ∈ Rn}. (1.1.17)

Definition 1.1.3 (Optimal value) The optimal value p∗ of the problem
(1.1.14)∼(1.1.16) is defined as the infimum, i.e. the greatest lower bound, of
the objective function f0 in the feasible region D when D is not empty; and
p∗ is defined as infinity, otherwise:

p∗ =

{
inf{f0(x)|x ∈ D}, when D 6= φ,
∞, otherwise.

(1.1.18)

Definition 1.1.4 (Global solution and local solution) Consider the problem
(1.1.14)∼(1.1.16). The point x∗ is called a global solution if x∗ is a feasible
point and

f0(x
∗) = inf{f0(x)|x ∈ D } = p∗, (1.1.19)

where D is the feasible region. The point x∗ is called a local solution, or just
a solution, if x∗ is a feasible point and there exists an ε > 0 such that

f0(x
∗) = inf{f0(x)|x ∈ D ; ‖x− x∗‖ 6 ε}. (1.1.20)

The set of all global solutions and the set of all (local) solutions are called the
corresponding solution set respectively.
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Obviously, a (local) solution is a point at which the objective function
value is smaller than or equal to that at all other feasible points in its vicinity.
The best of all the (local) solutions is the global solution.

Problem (1.1.14)∼(1.1.16) is a minimization problem. However, it should
be pointed out that the choice of minimization does not represent a restriction
since the maximization problem can be converted to minimization ones by re-
versing the sign of the objective function f0. Similar consideration shows that a
great many restrictive conditions can be written in the form (1.1.15)∼(1.1.16).

1.1.3 Geometric interpretation of optimization problems

For the optimization problems in R2, the geometric interpretation is clear
and can be illustrated by the following example.

Example 1.1.5 Suppose that two line segments u1u2 and v1v2 are given by

u1 = (0, 0)T, u2 = (1, 0)T, v1 = (1, 1)T, v2 = (2, 2)T, (1.1.21)

(see Figure 1.2). Optimization problem (1.1.9)∼(1.1.13) becomes

min f0(x) = [x]21 − 2[x]1[x]2 + 2[x]22 + 2[x]1 − 6[x]2 + 5, (1.1.22)

s.t. f1(x) = −[x]1 6 0, (1.1.23)

f2(x) = [x]1 − 1 6 0, (1.1.24)

f3(x) = −[x]2 6 0, (1.1.25)

f4(x) = [x]2 − 1 6 0. (1.1.26)

Solve the above problem by graphical method.

FIGURE 1.2: Two line segments u1u2 and v1v2 given by (1.1.21).
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FIGURE 1.3: Graph of f0(x) given by (1.1.22).

The surface of the objective function is depicted in Figure 1.3. Its lowest
point lies just on the coordinate plane [x]1O[x]2 with the coordinates (1, 2)T =
x̃. This implies that x̃ is the global solution to the unconstrained problem

min f0(x), x ∈ R2. (1.1.27)

However x̃ is not a solution to our constrained problem since the feasible region
is the square ABOC with its boundary by constraints (1.1.23)∼(1.1.26) and
x̃ lies outside of it (see Figure 1.4), where the feasible square is shaded. Note
that the contours of the objective function f0, i.e. the set of points for which
f0 has a constant value, are a set of ellipses with center at x̃. So it can be
observed that the vertex x∗ = B = (0, 1)T of the feasible square is the global
solution of the constrained problem since the ellipse with f0 = 1 is tangent to
one side AB of the square at x∗.

In the optimization problem (1.1.14)∼(1.1.16), the objective function and
the constrained functions are allowed to be any functions, see [40, 41, 78, 100,
164, 172, 183, 6, 54, 91, 111, 112]. Due to the lack of the effective methods for
solving such general problems, we do not study it further and turn to some
special optimization problems below.

1.2 Convex Programming in Euclidean Space

Among the optimization problems introduced in the above section, the
convex optimization problems are important and closely related with the main
topic of this book. They can be solved efficiently (see [9, 10, 17] for further
reading).
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FIGURE 1.4: Illustration of the problem (1.1.22)∼(1.1.26).

1.2.1 Convex sets and convex functions

1.2.1.1 Convex sets

Let us introduce the convex set in Rn first.

Definition 1.2.1 (Convex set) A set S ⊂ Rn is called a convex set if the
straight line segment connecting any two points in S lies entirely in S, i.e. for
any x1, x2 ∈ S and any λ ∈ [0, 1], we have

λx1 + (1− λ)x2 ∈ S . (1.2.1)

Intuitively, in the two-dimensional space R2, the circle shaped set in Figure
1.5(a) is a convex set, while the kidney shaped set in Figure 1.5(b) is not
since the line segment connecting the two points in the set shown as dots is
not contained in this set. It is easy to prove the following conclusion, which

(a) (b)

FIGURE 1.5: (a) Convex set; (b) Non-convex set.
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shows that the convexity is preserved under intersection. This is illustrated in
Figure 1.6.

FIGURE 1.6: Intersection of two convex sets.

Theorem 1.2.2 If S1 and S2 are convex sets, then their intersection S1∩S2

is also a convex set.

1.2.1.2 Convex functions

Definition 1.2.3 (Convex function) Let f be a function defined on Rn.
The function f is called a convex function on Rn if for any two points
x1, x2 ∈ Rn, the graph of f lies below the straight line connecting (x1, f(x1))
and (x2, f(x2)). That is, for any λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) 6 λf(x1) + (1− λ)f(x2) . (1.2.2)

The function f is called a strictly convex function on Rn if strictly inequality
holds in (1.2.2) whenever x1 6= x2 and λ ∈ (0, 1).

Intuitively, when f is smooth as well as convex and the dimension n is 1 or
2, the graph of f is bowl-shaped, see Figures 1.7(a) and 1.8(a). The functions
shown in Figures 1.7(b), 1.8(b), and 1.8(c) are not convex functions.

The following theorem gives the characteristic of a convex function.

Theorem 1.2.4 (Sufficient and necessary condition) Let f be continuously
differentiable on Rn. Then f is a convex function if and only if for all x, x̄ ∈
Rn,

f(x) > f(x̄) +∇f(x̄)T(x− x̄). (1.2.3)

Similarly, f is a strictly convex function if and only if strict inequality holds
in (1.2.3) whenever x 6= x̄.
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FIGURE 1.7: Geometric illustration of convex and non-convex functions in
R: (a) convex; (b) non-convex.

Corollary 1.2.5 Consider the quadratic function in Rn

f(x) =
1

2
xTHx+ rTx+ δ , (1.2.4)

where H ∈ Rn×n, r ∈ Rn, δ ∈ R. If H is positive semidefinite, then f(x) is
a convex function in Rn. Similarly, if H is positive definite, then f(x) is a
strictly convex function in Rn.

Proof We only show the conclusion when H is positive semidefinite.
Noticing ∇2f(x) = H , we have

f(x) = f(x̄) +∇f(x̄)T(x− x̄) +
1

2
(x − x̄)TH(x− x̄) (1.2.5)

for all x, x̄ ∈ Rn. As the semidefiniteness of H implies that (x−x̄)TH(x−x̄) >
0, the above equality leads to

f(x) > f(x̄) +∇f(x̄)T(x− x̄), (1.2.6)

which proves that f(x) is a convex function by Theorem 1.2.4. �

1.2.2 Convex programming and their properties

1.2.2.1 Convex programming problems

Instead of the general optimization problem (1.1.14)∼(1.1.16), we shall
focus our attention on its special case: convex programming problems.
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FIGURE 1.8: Geometric illustration of convex and non-convex functions in
R2: (a) convex; (b)(c) non-convex.

Definition 1.2.6 (Convex programming problem) A convex programming
problem is an optimization problem in the form

min f0(x), x ∈ Rn, (1.2.7)

s.t. fi(x) 6 0 , i = 1, · · · ,m , (1.2.8)

hi(x) = aTi x− bi = 0 , i = 1, · · · , p, (1.2.9)

where f0(x) and fi(x), i = 1, · · · ,m are continuous convex functions on Rn,
and hi(x), i = 1, · · · , p are linear functions.

The following theorem can be obtained from Corollary 1.2.5.

Theorem 1.2.7 Consider the quadratic programming (QP) problem

min
1

2
xTHx+ rTx, x ∈ Rn, (1.2.10)

s.t. Āx− b̄ 6 0, (1.2.11)

Ax − b = 0, (1.2.12)

where H ∈ Rn×n, r ∈ Rn, Ā ∈ Rm×n, A ∈ Rp×n, b̄ ∈ Rm, b ∈ Rp. If H is
positive semidefinite, then the above problem is a convex programming, i.e. a
convex quadratic programming problem.

1.2.2.2 Basic properties

The following lemma leads to the property of the feasible region of a convex
programming problem.
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Lemma 1.2.8 If f(x) is a convex function on Rn, then for any c ∈ R, the
level set

S = {x|f(x) 6 c, x ∈ Rn} (1.2.13)

is convex.

Proof Suppose x1, x2 ∈ S. It is easy to see that f(x1) 6 c, f(x2) 6 c. Let
x = λx1 + (1 − λ)x2, where λ ∈ [0, 1]. Thus, the convexity of f(x) implies
that

f(x) = f(λx1 + (1− λ)x2) 6 λf(x1) + (1 − λ)f(x2) 6 λc+ (1− λ)c = c ,
(1.2.14)

and hence x ∈ S. Therefore S is convex. �

Lemma 1.2.8 and Theorem 1.2.2 lead to the following theorem.

Theorem 1.2.9 Consider problem (1.2.7)∼(1.2.9). Then both its feasible re-
gion and solution set are convex closed sets.

Thus solving a convex programming problem is just to find the minimal
value of a convex function on a convex set.

Theorem 1.2.10 Consider the problem (1.2.7)∼(1.2.9). If x∗ is its local so-
lution, then x∗ is also its global solution.

Proof Suppose that x∗ is a local solution, i.e. there exists an ε > 0 such that

f0(x
∗) = inf{f0(x)|x ∈ D, ‖x− x∗‖ 6 ε}, (1.2.15)

where D is the feasible field. Now we show x∗ is a global solution by con-
tradiction. If x∗ is not a global solution, there would be a x̄ ∈ D, such that
f0(x̄) < f0(x

∗) and ‖x̄ − x∗‖ > ε > 0 by (1.2.15). Now let us examine the
objective value f(z), where z is defined by

z = (1− θ)x∗ + θx̄, θ =
ε

2‖x̄− x∗‖ . (1.2.16)

On one hand, according to Theorem 1.2.9, the feasible field D is convex.
Therefore, the convexity of f0(x) implies that

f0(z) 6 (1− θ)f0(x
∗) + θf0(x̄) < f0(x

∗). (1.2.17)

On the other hand, noticing ‖z − x∗‖ =
ε

2
< ε, equality (1.2.15) yields

f0(x
∗) 6 f0(z). (1.2.18)

This is a contradiction with inequality (1.2.17), and the conclusion follows.�
Note that general optimization problems may have local solutions that are

not global solutions. However, the above theorem indicates that, for convex
programming, there is not any difference between local solutions and global
solutions. This is an important characteristic of convex programming because
what we are concerned with in applications is usually global solution and the
most efficient optimization algorithms seek only a local solution.
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Corollary 1.2.11 Consider the problem (1.2.10)∼ (1.2.12) where H is pos-
itive semidefinite. Then its local solution is its global solution.

Next theorem is concerned with the relationship between the uniqueness
of solution and the strict convexity of the objective function. It is a particular
case of Theorem 1.2.15 below.

Theorem 1.2.12 Consider the problem (1.2.7)∼(1.2.9), where the objec-
tive function f0(x) is strictly convex. Then its solution is unique when it has
solution.

Among the components of a solution x∗ to the problem (1.2.7)∼(1.2.9),
the main issue that concerns us may be only a part of them instead of all of
them sometimes. In this case, the n-dimensional vector x is partitioned into

x =

(
x1
x2

)
, where xi ∈ Rmi , i = 1, 2, m1 +m2 = n, (1.2.19)

and the following definition is introduced.

Definition 1.2.13 Consider the problem (1.2.7)∼(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). Vector x∗1 ∈ Rm1 is called its solu-
tion with respect to (w.r.t.) x1 if there exists a vector x∗2 ∈ Rm2 , such that
x∗ = (x∗1

T, x∗2
T)T is its solution. The set of all solutions w.r.t. x1 are called

the solution set w.r.t. x1.

For the convex programming with partitioned variable, we have the fol-
lowing theorems.

Theorem 1.2.14 Consider the problem (1.2.7)∼(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). Then its solution set w.r.t. x1 is a
convex closed set.

Proof The conclusion follows from Theorem 1.2.9 and Definition 1.2.13. �

Theorem 1.2.15 Consider the problem (1.2.7)∼(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). If

f0(x) = F1(x1) + F2(x2), (1.2.20)

where F1(x1) is a strictly convex function of the variable x1, then the solution
to the convex programming w.r.t. x1 is unique when it has a solution.

Proof It is sufficient to show by contradiction that if both x̄ = (x̄T1 , x̄
T
2 )

T

and ¯̄x = (¯̄x1
T, ¯̄x2

T)T are solutions, we have

x̄1 = x̄1. (1.2.21)
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In fact, if
x̄1 6= x̄2, (1.2.22)

construct the vector

x(t) = (1− t)x̄+ t¯̄x, t ∈ [0, 1]. (1.2.23)

Noticing that the solution set is convex and any local solution is a global
solution by Theorem 1.2.9 and Theorem 1.2.10, vector x(t) is always a global
solution for any t ∈ [0, 1], implying that

f0(x(t)) = constant, ∀t ∈ [0, 1]. (1.2.24)

However, according to (1.2.20) and (1.2.23), we have

f0(x(t)) = F1(x1(t)) + F2(x2(t)), (1.2.25)

where
x1(t) = (1− t)x̄1 + t¯̄x1, x2(t) = (1− t)x̄2 + t¯̄x2. (1.2.26)

Note that F1(x1(t)) is strictly convex by (1.2.22) and the strict convexity
of F1(x1). And F2(x2(t)) is convex since the convexity of f0(x) implies that
F2(x2) is convex. Therefore, according to (1.2.25), we conclude that f0(x(t))
is strictly convex. This is a contradiction with (1.2.24) and the conclusion is
obtained. �

1.2.3 Duality theory

1.2.3.1 Derivation of the dual problem

Consider the convex programming problem (1.2.7)∼(1.2.9)

min f0(x), x ∈ Rn, (1.2.27)

s.t fi(x) 6 0, i = 1, · · · ,m, (1.2.28)

hi(x) = aTi x− bi = 0, i = 1, · · · , p, (1.2.29)

where fi(x), i = 0, 1, · · · ,m are continuously differentiable and convex in Rn.
We start from estimating its optimal value p∗ defined by Definition 1.1.3

p∗ = inf{f0(x)|x ∈ D}, (1.2.30)

where

D = {x|fi(x) 6 0, i = 1, · · · ,m;hi(x) = 0, i = 1, · · · , p; x ∈ Rn}. (1.2.31)

Introduce the Lagrangian function

L(x, λ, ν) = f0(x) +
m∑

i=1

λifi(x) +

p∑

i=1

νihi(x), (1.2.32)



Optimization 13

where λ = (λ1, · · · , λm)T and ν = (ν1, · · · , νp)T are Lagrangian multipliers.
Obviously, when x ∈ D,λ > 0, we have

L(x, λ, ν) 6 f0(x), (1.2.33)

thus
inf
x∈Rn

L(x, λ, ν) 6 inf
x∈D

L(x, λ, ν) 6 inf
x∈D

f0(x) = p∗. (1.2.34)

Therefore, introducing the Lagrangian dual function

g(λ, ν) = inf
x∈Rn

L(x, λ, ν), (1.2.35)

yields
g(λ, ν) 6 p∗. (1.2.36)

The above inequality indicates that, for any λ > 0, g(λ, ν) is a lower bound of
p∗. Among these lower bounds, finding the best one leads to the optimization
problem

max g(λ, ν) = inf
x∈Rn

L(x, λ, ν), (1.2.37)

s.t. λ > 0, (1.2.38)

where L(x, λ, ν) is the Lagrangian function given by (1.2.32).

Definition 1.2.16 (Dual problem) Problem (1.2.37)∼(1.2.38) is called the
dual problem of the problem (1.2.27)∼(1.2.29). Correspondingly, problem
(1.2.27)∼(1.2.29) is called the primal problem.

It is easy to show the following conclusion.

Theorem 1.2.17 Dual problem (1.2.37)∼(1.2.38) is a convex programming
problem.

1.2.3.2 Duality theory

(1) Weak duality theorem
The optimal value of the dual problem (1.2.37)∼(1.2.38), which we denote

d∗

d∗ = sup{g(λ, ν)|λ > 0} (1.2.39)

is, by definition, the best lower bound on p∗ that can be obtained. In particular,
we have the following theorem.

Theorem 1.2.18 (Weak duality theorem) Let p∗ be the optimal value of the
primal problem (1.2.27)∼(1.2.29) and d∗ be the optimal value of the dual prob-
lem (1.2.37)∼(1.2.38). Then

p∗=inf{f0(x)|fi(x) 6 0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p; x ∈ Rn}
> sup{g(λ, ν)|λ > 0} = d∗. (1.2.40)
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Note that the inequality (1.2.40) still holds when p∗ and d∗ are infinite.
For example, if the primal problem is unbounded below, so that p∗ = −∞,
we must have d∗ = −∞, i.e. the dual problem is infeasible. Conversely, if the
dual problem is unbounded above, so that d∗ = ∞, we have p∗ = ∞, i.e. the
primal problem is infeasible.

The following corollary is a direct conclusion of the above theorem.

Corollary 1.2.19 Let x̃ be the feasible point of the problem (1.2.27)∼(1.2.29)
and (λ̃, ν̃) be the feasible point of the dual problem (1.2.37)∼(1.2.38). If
f0(x̃) = g(λ̃, ν̃), then x̃ and (λ̃, ν̃) are their solutions respectively.

(2) Strong duality theorem
Strong duality theorem concerns the case where the inequality in (1.2.40)

holds with equality. For convex programming, this equality holds under some
conditions. One of these conditions is Slater’s condition.

Definition 1.2.20 (Slater’s condition) Convex programming problem (1.2.27)∼
(1.2.29) is said to satisfy Slater’s condition if there exists a feasible point x
such that

fi(x) < 0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p. (1.2.41)

Or, when the first k inequality constraints are linear constraints, there exists
a feasible point x such that

fi(x) = āTi x− b̄i 6 0, i = 1, · · · , k; fi(x) < 0, i = k + 1, · · · ,m;

aTi x− bi = 0, i = 1, · · · , p. (1.2.42)

Theorem 1.2.21 (Strong duality theorem) Consider the convex programming
problem (1.2.27)∼(1.2.29) satisfying Slater’s condition. Let p∗ be the optimal
value of the primal problem (1.2.27)∼(1.2.29) and d∗ the optimal value of the
dual problem (1.2.37)∼(1.2.38). Then

p∗=inf{f0(x)|fi(x) 6 0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p; x ∈ Rn}
=sup{g(λ, ν)|λ > 0} = d∗. (1.2.43)

Furthermore, if p∗ is attained, i.e. there exists a solution x∗ to the primal
problem, then d∗ is also attained, i.e. there exists a global solution (λ∗, ν∗) to
the dual problem such that

p∗ = f0(x
∗) = g(λ∗, ν∗) = d∗ <∞. (1.2.44)

Proof See [17]. �
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1.2.4 Optimality conditions

First introduce the famous Karush-Kuhn-Tucker (KKT) conditions:

Definition 1.2.22 (KKT conditions) Consider the convex programming
problem (1.2.27)∼(1.2.29). Point x∗ is said to satisfy the KKT conditions
if there exist the multipliers λ∗ = (λ∗1, · · · , λ∗m)T and ν∗ = (ν∗1 , · · · , ν∗p)T cor-
responding to constraints (1.2.28) and (1.2.29) respectively, such that the La-
grangian function

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x) (1.2.45)

satisfies

fi(x
∗) 6 0, i = 1, · · · ,m, (1.2.46)

hi(x
∗) = 0, i = 1, · · · , p, (1.2.47)

λ∗i > 0, i = 1, · · · ,m, (1.2.48)

λ∗i fi(x
∗) = 0, i = 1, · · · ,m, (1.2.49)

∇xL(x
∗, λ∗, ν∗) = ∇f0(x∗) +

m∑

i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i∇hi(x∗) = 0.

(1.2.50)

It is not difficult to show from strong duality theorem that, for convex
programming, the KKT conditions are the necessary condition of its solution:

Theorem 1.2.23 Consider the convex programming problem (1.2.27)∼(1.2.29)
satisfying Slater’s condition. If x∗ is its solution, then x∗ satisfies the KKT
conditions.

Proof Noticing that x∗ is a solution to the primal problem (1.2.27)∼(1.2.29)
where Slater’s condition is satisfied, we conclude by strong duality theo-
rem that there exists (λ∗, ν∗) such that x∗ and (λ∗, ν∗) are the solutions to
the primal problem (1.2.27)∼ (1.2.29) and the solution to the dual problem
(1.2.37)∼(1.2.38) respectively, and their optimal values are equal. This means
that

f0(x
∗)= g(λ∗, ν∗)

= inf
x

(
f0(x) +

m∑

i=1

λ∗i fi(x) +

p∑

i=1

ν∗i hi(x)

)

6 f0(x
∗) +

m∑

i=1

λ∗i fi(x
∗) +

p∑

i=1

ν∗i hi(x
∗)

6 f0(x
∗). (1.2.51)
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The second line and the third line follow from the definitions. The last line
follows from λ∗i > 0, fi(x

∗) 6 0, i = 1, · · · ,m and hi(x
∗) = 0, i = 1, · · · , p. We

conclude that the two inequalities in this chain hold with equality. This yields

inf
x

(
f0(x) +

m∑

i=1

λ∗i fi(x) +

p∑

i=1

ν∗i hi(x)

)

= f0(x
∗) +

m∑

i=1

λ∗i fi(x
∗) +

p∑

i=1

ν∗i hi(x
∗) = f0(x

∗). (1.2.52)

Now we are in the position to prove the conclusions. First, equations
(1.2.46)∼(1.2.48) are obvious. Second, equality (1.2.49) follows from the sec-
ond equality in (1.2.52). At last, equality (1.2.50) is valid since x∗ is the
minimal point of the Lagrangian function L(x, λ∗, ν∗) by the first equality in
(1.2.52). �

The next theorem shows that, for a convex programming, the KKT con-
ditions are also a sufficient condition of its solution.

Theorem 1.2.24 Consider the convex programming problem (1.2.27)∼(1.2.29).
If x∗ satisfies the KKT conditions, then x∗ is its solution.

Proof Suppose that x∗ and (λ∗, ν∗) satisfy conditions (1.2.46)∼(1.2.50). Note
that the first two conditions (1.2.46)∼(1.2.47) state that x∗ is a feasible point
of the primal problem and condition (1.2.48) states that (λ∗, ν∗) is a feasible
point of the dual problem. Since λ∗i > 0, i = 1, · · · ,m, L(x, λ∗, ν∗) is convex
in x. Therefore, condition (1.2.50) states that x∗ minimizes L(x, λ∗, ν∗) over
x. From this we conclude that

g(λ∗, ν∗)= inf
x∈Rn

L(x, λ∗, ν∗) = L(x∗, λ∗, ν∗)

= f0(x
∗) +

m∑

i=1

λ∗i fi(x
∗) +

p∑

i=1

ν∗i hi(x
∗)

= f0(x
∗), (1.2.53)

where in the last line we use conditions (1.2.49) and (1.2.47). Therefore, x∗ is
a solution to the primal problem by (1.2.53) and Corollary 1.2.19. �

The above two theorems are summarized in the following theorem.

Theorem 1.2.25 Consider the convex programming problem (1.2.27)∼
(1.2.29) satisfying Slater’s condition. Then for its solution x∗, it is neces-
sary and sufficient condition that x∗ satisfies the KKT conditions given by
Definition 1.2.22.

1.2.5 Linear programming

Among the optimization problems, linear programming (LP) is the sim-
plest one. There are many excellent books on linear programming, including
[188, 111, 154]. Here it is introduced briefly.
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Linear programming in general form is

min cTx, x ∈ Rn, (1.2.54)

s.t. Āx− b̄ 6 0, (1.2.55)

Ax− b = 0, (1.2.56)

where c ∈ Rn, Ā ∈ Rm×n, A ∈ Rp×n, b̄ ∈ Rm, b ∈ Rp.
Because linear programming belongs to convex programming, the conclu-

sions concerning convex programming are also valid for linear programming.
But these conclusions usually have simpler representations.

For linear programming, the Lagrangian function is

L(x, λ, ν) = cTx+ λT(Āx− b̄) + νT(Ax− b) (1.2.57)

by (1.2.32). Thus, we have the following theorem.

Theorem 1.2.26 Optimization problem

max −b̄Tλ− bTν, (1.2.58)

s.t. ĀTλ+ATν + c = 0, (1.2.59)

λ > 0 (1.2.60)

is the dual problem of the linear programming (1.2.54)∼(1.2.56). Furthermore,
the optimal value p∗ of the primal problem is equal to the optimal value d∗ of
the dual problem.

Proof Since the linear programming (1.2.54)∼(1.2.56) is a convex pro-
gramming, its dual problem is

max g(λ, ν), (1.2.61)

s.t. λ > 0, (1.2.62)

by definition 1.2.16 and equality (1.2.57), where

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) = inf
x∈Rn

(cTx+ λT(Āx− b̄) + νT(Ax− b)).(1.2.63)

It is easy to see that

g(λ, ν)=−b̄Tλ− bTν + inf
x∈Rn

(c+ ĀTλ+ATν)Tx

=

{
−b̄Tλ− bTν, c+ ĀTλ+ATν = 0;
−∞, else,

(1.2.64)

and hence the problem (1.2.61)∼(1.2.62) is equivalent to the problem
(1.2.58)∼(1.2.60).

Note that Slater’s condition is always satisfied by linear programming.
Therefore, we conclude that the optimal values p∗ and d∗ are equal from
Theorem 1.2.21. �

There are several user-friendly software programs, such as LINDO and
LINGO [171], that can be used to solve linear programming. For small-scale
linear programming, MATLAB R© is also a good choice due to its simplicity
[20].
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1.3 Convex Programming in Hilbert Space

The variable x in the above optimization problems is an n-dimensional
vector in Euclidian space

x = ([x]1, · · · , [x]n)T. (1.3.1)

It is interesting to extend the vector from the finite dimensional space Rn into
an infinite dimensional space l2 where the variable x can be expressed as

x = ([x]1, [x]2, · · · )T (1.3.2)

with the convergence condition

∞∑

i=1

[x]2i <∞. (1.3.3)

Note that l2 space is a Hilbert space. So, corresponding to the optimization
problems in Euclidian space, we have also the optimization problems in Hilbert
space, where the variable x can be considered to have the expression (1.3.2).
The task of this section is to study the convex programming in Hilbert space.

It should be pointed out that the convex programming problems in Hilbert
space and in Euclidian space are very similar. In fact, almost all results for
the former can be obtained by copying the corresponding ones for the latter
given in the last section except their variables are different. Therefore, we only
describe its main conclusions briefly below; see [162, 15] for details.

1.3.1 Convex sets and Fréchet derivative

The definitions of convex set and convex map in Hilbert space H are sim-
ilar to the ones in Euclidian space Rn, and therefore are omitted here. The
derivative of a function in Rn is extended in the following definition.

Definition 1.3.1 (Fréchet derivative and differentiability) Let H and R be
Hilbert space and Real space respectively. A function f : H → R is called
Fréchet differentiable at x̄ ∈ H if there exists a bounded linear map A(h) =
(a · h), where a ∈ H, such that

f(x̄+ h)− f(x̄)− (a · h) = o(‖h‖). (1.3.4)

In this case, we call a in (1.3.4) the Fréchet derivative of f at x̄ and denote
∇f(x̄) = a. In addition, a function f which is Fréchet differentiable at any
point of H, and whose derivative is continuous, is said to be continuously
differentiable.
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1.3.2 Convex programming problems

The following definition is an extension of Definition 1.2.6.

Definition 1.3.2 (Convex programming problem in Hilbert space) A convex
programming problem is an optimization problem in the form

min f0(x), x ∈ H, (1.3.5)

s.t. fi(x) 6 0 , i = 1, · · · ,m , (1.3.6)

hi(x) = (ai · x)− bi = 0 , i = 1, · · · , p, (1.3.7)

where f0(x) : H → R and fi(x) : H → R, i = 1, · · · ,m are continuously
differentiable convex functions, and hi(x) : H → R, i = 1, · · · , p are bounded
linear maps shown in (1.3.7).

For the convex programming (1.3.5)∼(1.3.7), the conclusions correspond-
ing to Theorem 1.2.7∼ Corollary 1.2.12 are also valid. For example, The-
orem 1.2.7 can be extended as follows: Instead of the quadratic function
(x · Hx) : Rn → R, consider the quadratic map (x · Hx) : H → R, where
H : H → H is a bounded linear map. Here H is called positive semidefinite if
(x ·Hx) > 0 for any x ∈ H. Thus we have the following theorem:

Theorem 1.3.3 Consider the quadratic programming problem

min
1

2
(x ·Hx) + (r · x), x ∈ H, (1.3.8)

s.t. Āx− b̄ 6 0, (1.3.9)

Ax− b = 0, (1.3.10)

where H : H → H, Ā : H → Rm and A : H → Rp are bounded linear maps,
b̄ ∈ Rm, b ∈ Rp, r ∈ H. If H is positive semidefinite, then the above problem
is convex programming, i.e. a convex quadratic programming problem.

The following Theorem and Corollary correspond to Theorem 1.2.10 and
Corollary 1.2.11 respectively.

Theorem 1.3.4 Consider the problem (1.3.5)∼(1.3.7) in Hilbert space. If x∗

is its local solution, then x∗ is also its global solution.

Corollary 1.3.5 Consider the problem (1.3.8)∼(1.3.10) in Hilbert space,
where H is positive semidefinite. Then its local solution is its global solution.
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1.3.3 Duality theory

For the problem (1.3.5)∼(1.3.7), corresponding to (1.2.32), introduce the
Lagrangian function

L(x, λ, ν) = f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

νihi(x), (1.3.11)

where λ = (λ1, · · · , λm)T and ν = (ν1, · · · , νp)T are Lagrangian multiplier
vectors. Corresponding to Definition 1.2.16, the following definition is given.

Definition 1.3.6 (Dual problem) Problem

max g(λ, ν) = inf
x∈H

L(x, λ, ν), (1.3.12)

s.t. λ > 0 (1.3.13)

is called the dual problem of the problem (1.3.5)∼(1.3.7). Correspondingly,
problem (1.3.5)∼(1.3.7) is called the primal problem.

Here we also have the duality theory, including weak duality theorem and
strong duality theorem corresponding to Theorem 1.2.18 and Theorem 1.2.21
respectively, where Slater’s condition corresponding to Definition 1.2.20 is
defined as follows:

Definition 1.3.7 (Slater’s condition) Problem (1.3.5)∼(1.3.7) is said to sat-
isfy Slater’s condition if there exists a feasible point x such that

fi(x) < 0, i = 1, · · · ,m; (ai · x)− bi = 0, i = 1, · · · , p. (1.3.14)

1.3.4 Optimality conditions

Similarly, we have the theorems corresponding to Theorem 1.2.23∼ Theo-
rem 1.2.25:

Theorem 1.3.8 Consider the problem (1.3.5)∼(1.3.7) satisfying Slater’s con-
dition. If x∗ is its solution, then x∗ satisfies the KKT conditions:

fi(x
∗) 6 0, i = 1, · · · ,m, (1.3.15)

hi(x
∗) = 0, i = 1, · · · , p, (1.3.16)

λ∗i > 0, i = 1, · · · ,m, (1.3.17)

λ∗i fi(x
∗) = 0, i = 1, · · · ,m, (1.3.18)

∇xL(x
∗, λ∗, ν∗) = ∇f0(x∗) +

m∑

i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i∇hi(x∗) = 0.

(1.3.19)
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Theorem 1.3.9 Consider the problem (1.3.5)∼(1.3.7). If x∗ satisfies KKT
conditions (1.3.15)∼(1.3.19), then x∗ is its solution.

Theorem 1.3.10 Consider the problem (1.3.5)∼(1.3.7) satisfying Slater’s
condition. Then for its solution x∗, it is necessary and sufficient condition
that x∗ satisfies the KKT conditions (1.3.15)∼(1.3.19).

*1.4 Convex Programming with Generalized Inequality
Constraints in Euclidian Space

The convex programming given in Section 1.2 was extended from the case
in Euclidian space to the one in Hilbert space in Section 1.3. Now it will
be extended from the case with usual inequality constraints to the one with
generalized inequality constraints [17].

1.4.1 Convex programming with generalized inequality con-
straints

1.4.1.1 Cones

Definition 1.4.1 (Cone and convex cone) A set K in Rn is called a cone
if for every x ∈ K and λ > 0, λx ∈ K. A set K in Rn is called a convex
cone if it is a cone and a convex set, which means that for any u, v ∈ K and
λ1, λ2 > 0, λ1x1 + λ2x2 ∈ K.

Definition 1.4.2 (Proper cone) A set K in Rn is called a proper cone if it
satisfies:

(i) K is a convex cone;
(ii) K is closed;
(iii) K is solid, which means it has nonempty interior;
(iv) K is pointed, which means that it contains no line (or, equivalently,

x must be null (x = 0) if x ∈ K and −x ∈ K).

Example 1.4.3 The nonnegative orthant K = Rn+ in Rn

Rn+ = {u = (u1, · · · , un)T ∈ Rn | ui > 0, i = 1, · · · , n} (1.4.1)

is a proper cone.

1.4.1.2 Generalized inequalities

A proper cone can be used to define a generalized inequality.
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Definition 1.4.4 (Generalized inequality) Let K be a proper cone and u, v ∈
Rn. The generalized inequality u �K v or v �K u means that v − u ∈ K;
the strict generalized inequality u ≺K v or v ≻K u means that v − u ∈ intK,
where intK is the interior of the proper cone K.

Obviously, when K = Rn+, the generalized inequality u �Rn
+
v is reduced

to the usual inequality u 6 v, which means ui 6 vi, i = 1, · · · , n if u =
(u1, · · · , un)T, v = (v1, · · · , vn)T. Corresponding conclusion holds for the strict
generalized inequality.

The generalized inequalities have properties similar to the usual inequali-
ties:

Theorem 1.4.5 (Properties of the generalized inequality) A generalized in-
equality �K has the following properties:

(i) �K is preserved under addition: if u �K ũ, v �K ṽ, then u + v �K
ũ+ ṽ;

(ii) �K is transitive: if u �K v and v �K w, then u �K w;
(iii) �K is preserved under nonnegative scaling: if u �K v and α > 0,

then αu �K αv;
(iv) �K is reflexive: u �K u;
(v) �K is antisymmetric: if u �K v and v �K u, then u = v;
(vi) �K is preserved under limits: if ui �K vi, for i = 1, 2, · · · , ui →

u, vi → v as i→ ∞, then u �K v.

1.4.1.3 Convex programming with generalized inequality con-
straints

First, let us extend the convex function in Rn given by Definition 1.2.3.

Definition 1.4.6 (K-convex function) Let K ⊆ Rm be a proper cone. A
function f : Rn → Rm is called a K-convex function if for all x1, x2 ∈ Rn

and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) �K λf(x1) + (1 − λ)f(x2). (1.4.2)

The function is strictly K-convex function if for all x1, x2 ∈ Rn, x1 6= x2 and
λ ∈ (0, 1),

f(λx1 + (1− λ)x2) ≺K λf(x1) + (1 − λ)f(x2). (1.4.3)

Now we are in a position to define the convex programming with general-
ized inequalities.

Definition 1.4.7 (Convex programming with generalized inequality con-
straints) A convex programming with generalized inequality constraints is an
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optimization problem in the form

min f0(x), x ∈ Rn, (1.4.4)

s.t. fi(x) �Ki
0 , i = 1, · · · ,m , (1.4.5)

hi(x) = aTi x− bi = 0 , i = 1, · · · , p , (1.4.6)

where f0 : Rn → R is convex and continuously differentiable, Ki is a proper
cone in Rmi , i = 1, · · · ,m, fi(x) : R

n → Rmi is Ki-convex and continuously
differentiable, i = 1, · · · ,m, and hi(x) is the linear function, i = 1, · · · , p.

1.4.2 Duality theory

1.4.2.1 Dual cones

In order to derive the dual problem of the problem (1.4.4)∼(1.4.6), intro-
duce the dual cone first.

Definition 1.4.8 (Dual cone) Let K be a cone. The set

K∗ = {v ∈ Rm | (v · u) > 0, ∀u ∈ K}, (1.4.7)

is called the dual cone of K, where (·) is the inner product between two vectors.

As the name suggests,K∗ is a cone. It is not difficult to prove the following
conclusion.

Theorem 1.4.9 (Properties of a dual cone) If K is a proper cone, then its
dual cone K∗ is also a proper cone.

Example 1.4.10 Find the dual cone of the nonnegative orthant cone Rm+ in
Rm.

It is easy to see that
(Rm+ )∗ = Rm+ . (1.4.8)

i.e. the cone Rm+ is its own dual. We call such a cone self-dual.

1.4.2.2 Derivation of the dual problem

Now let us derive the dual problem of the problem (1.4.4)∼(1.4.6) from
estimating its optimal value p∗

p∗ = inf{f0(x)|x ∈ D}, (1.4.9)

where

D = {x|fi(x) �Ki
0, i = 1, · · · ,m; hi(x) = 0, i = 1, · · · , p; x ∈ Rn}.

(1.4.10)
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Introduce the Lagrangian function

L(x, λ, ν) = f0(x)+λ
T
1 f1(x)+· · ·+λTmfm(x)+ν1h1(x)+· · ·+νphp(x), (1.4.11)

where λ = (λT1 , · · · , λTm)T and ν = (ν1, · · · , νp)T are Lagrangian multiplier
vectors. When x ∈ D,λi ∈ K∗

i , we have

L(x, λ, ν) = f0(x) +

m∑

i=1

λTi fi(x) +

p∑

i=1

νihi(x) 6 f0(x), (1.4.12)

then
inf
x∈Rn

L(x, λ, ν) 6 inf
x∈D

L(x, λ, ν) 6 inf
x∈D

f0(x). (1.4.13)

Therefore, introducing the Lagrangian dual function

g(λ, ν) = inf
x∈Rn

L(x, λ, ν), (1.4.14)

yields
g(λ, ν) 6 p∗. (1.4.15)

Inequality (1.4.15) indicates that, for any λi ∈ K∗
i , i = 1, · · · ,m, ν ∈

Rp, g(λ, ν) is a lower bound of p∗. Among these lower bounds, finding the
best one leads to the optimization problem

max g(λ, ν) = inf
x∈Rn

L(x, λ, ν), (1.4.16)

s.t. λi �K∗

i
0, i = 1, · · · ,m, (1.4.17)

where L(x, λ, ν) is the Lagrangian function given by (1.4.11).

Definition 1.4.11 (Dual problem) Problem (1.4.16)∼(1.4.17) is called the
dual problem of the problem (1.4.4)∼(1.4.6). Correspondingly, problem
(1.4.4)∼(1.4.6) is called the primal problem.

It is easy to show the following conclusion.

Theorem 1.4.12 Dual problem (1.4.16)∼(1.4.17) is a convex programming
problem.

Example 1.4.13 Find the dual problem of the convex programming with gen-
eralized inequalities

min cTx, x ∈ Rn, (1.4.18)

s.t. Ax− b = 0, (1.4.19)

x �K 0, (1.4.20)

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, K is a proper cone in Rn.
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Proof The Lagrangian function of the problem is

L(x, λ, ν) = cTx− λTx+ νT(Ax− b), (1.4.21)

hence

g(λ, ν) = inf
x∈Rn

L(x, λ, ν) =

{
−bTν, if c+ATν − λ = 0;
−∞, otherwise.

(1.4.22)

Therefore, the dual problem is

max −bTν, (1.4.23)

s.t. c+ATν − λ = 0, (1.4.24)

λ �K∗ 0. (1.4.25)

�

1.4.2.3 Duality theory

(1) Weak duality theorem
According to the inequality (1.4.15), we have the following theorem.

Theorem 1.4.14 (Weak duality theorem) Let p∗ be the optimal value of the
primal problem (1.4.4)∼(1.4.6) and d∗ be the optimal value of the dual problem
(1.4.16)∼(1.4.17). Then

p∗=inf{f0(x)|fi(x) �Ki
0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p; x ∈ Rn}

> sup{g(λ, ν)|λi �K∗

i
0, i = 1, · · · ,m; ν ∈ Rp}

=d∗. (1.4.26)

Corollary 1.4.15 Let x̃ be the feasible point of the primal problem
(1.4.4)∼(1.4.6) and (λ̃, ν̃) be the feasible point of the dual problem
(1.4.16)∼(1.4.17). If f0(x̃) = g(λ̃, ν̃), then x̃ and (λ̃, ν̃) are their solutions
respectively.

(2) Strong duality theorem
Here strong duality is related with the following Slater’s condition.

Definition 1.4.16 (Slater’s condition) Problem (1.4.4)∼(1.4.6) is said to
satisfy Slater’s condition if there exists a feasible point x such that

fi(x) ≺Ki
0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p. (1.4.27)
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Theorem 1.4.17 (Strong duality theorem) Consider the problem (1.4.4)∼
(1.4.6) satisfying Slater’s condition. Let p∗ be the optimal value of the pri-
mal problem (1.4.4)∼(1.4.6) and d∗ be the optimal value of the dual problem
(1.4.16)∼(1.4.17). Then

p∗=inf{f0(x)|fi(x) �Ki
0, i = 1, · · · ,m; aTi x− bi = 0, i = 1, · · · , p; x ∈ Rn}

=sup{g(λ, ν)|λi �K∗

i
0, i = 1, · · · ,m; ν ∈ Rp}

=d∗. (1.4.28)

Furthermore, if p∗ is attained, i.e. there exists a solution x∗ to the primal
problem, then d∗ is also attained, i.e. there exists a global solution (λ∗, ν∗) to
the dual problem such that

p∗ = f0(x
∗) = g(λ∗, ν∗) = d∗ <∞. (1.4.29)

1.4.3 Optimality conditions

In order to describe the optimality conditions we need to generalize the
gradient of a scalar valued function.

Definition 1.4.18 (Jacobian matrix) Let F : Rn → Rm be a continuously
differentiable map: F (x) = (f1(x), · · · , fm(x))T, x = ([x]1, · · · , [x]n)T. The
Jacobian matrix of F at x is an m by n matrix and its element in the i-th row
and j-th column is defined by

Jf(x)ij =
∂fi(x)

∂[x]j
, i = 1, · · · ,m, j = 1, · · · , n. (1.4.30)

Definition 1.4.19 (KKT conditions) Consider the problem (1.4.4)∼(1.4.6).
The point x∗ is said to satisfy the KKT conditions if there exist the mul-
tiplier vectors λ∗ = (λ∗T1 , · · · , λ∗Tm )T and ν∗ = (ν∗1 , · · · , ν∗p)T, such that the
Lagrangian function

L(x, λ, ν) = f0(x) +

m∑

i=1

λTi fi(x) +

p∑

i=1

νi(a
T
i x− bi) (1.4.31)

satisfies

aTi x
∗ − bi = 0, i = 1, · · · , p, (1.4.32)

fi(x
∗) �Ki

0, i = 1, · · · ,m, (1.4.33)

λ∗i �K∗

i
0, i = 1, · · · ,m, (1.4.34)

λ∗Ti fi(x
∗) = 0, i = 1, · · · ,m, (1.4.35)

∇xL(x
∗, λ∗, ν∗) = ∇f0(x∗) +

m∑

i=1

Jfi(x
∗)Tλ∗i +

p∑

i=1

ν∗i ai = 0,

(1.4.36)

where Jfi(x
∗) is the Jacobian matrix of fi(x) at x∗.
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Corresponding to Theorem 1.2.23∼Theorem 1.2.25, we have the following
theorems:

Theorem 1.4.20 Consider the problem (1.4.4)∼(1.4.6) satisfying Slater’s
condition. If x∗ is its solution, then x∗ satisfies the KKT conditions given
by Definition 1.4.19.

Theorem 1.4.21 Consider the problem (1.4.4)∼(1.4.6). If x∗ satisfies the
KKT conditions given by Definition 1.4.19, then x∗ is its solution.

Theorem 1.4.22 Consider the problem (1.4.4)∼(1.4.6) satisfying Slater’s
condition. Then for its solution x∗, it is necessary and sufficient condition
that x∗ satisfies the KKT conditions given by Definition 1.4.19.

The cone programming is one of the simplest convex programmings with
generalized inequalities given by Definition 1.4.7.

Definition 1.4.23 The cone programming is a convex programming with gen-
eralized inequalities in the form

min cTx, x ∈ Rn, (1.4.37)

s.t. fi(x) = Fix+ gi �Ki
0, i = 1, · · · ,m, (1.4.38)

Ax = b, (1.4.39)

where c ∈ Rn, A ∈ R×n, b ∈ Rp, Fi ∈ Rmi×n, gi ∈ Rmi , and Ki, i = 1, · · · ,m
is a proper cone.

When K is the nonnegative orthant, the cone programming reduces to
the linear programming. The other two special cases, second-order cone pro-
gramming and semidefinite programming obtained by replacing K with other
cones, will be investigated in the following two subsections.

1.4.4 Second-order cone programming

Second-order cone programming is a special case of the cone programming
given by Definition 1.4.23. It is addressed here briefly, see [1] for a detailed
discussion.

1.4.4.1 Second-order cone programming and its dual problem

(1) Second-order cone programming

Definition 1.4.24 (Second-order cone) The cone K is called a second-order
cone in Rm if

K =

{
{u = u1 ∈ R|u1 > 0} , m = 1;{
u = (u1, u2, · · · , um)T ∈ Rm|u1 >

√
u22 + · · ·+ u2m

}
, m > 2.
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FIGURE 1.9: Boundary of a second-order cone: (a) in R2; (b) in R3.

Figure 1.9(a) and (b) show the second-order cone in R2 and R3 respectively.
Obviously, the second-order cone is a proper cone. Therefore, in the cone

programming (Definition 1.4.23), the proper cones can be specified as the
second-order cones. This leads to the following definition.

Definition 1.4.25 (Second-order cone programming) The second-order cone
programming is a cone programming given by Definition 1.4.23 in the form

min cTx, (1.4.40)

s.t. Āix− b̄i �Lmi 0, i = 1, 2, · · ·,m, (1.4.41)

Ax − b = 0, (1.4.42)

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, Āi ∈ Rmi×n, b̄i ∈ Rmi , i = 1, · · · ,m, and
Lmi is a second-order cone in Rmi , mi is a positive integer, i = 1, · · · ,m.

(2) Dual problem
In order to derive the dual problem of the second order cone programming

(1.4.40)∼(1.4.42), we need the following theorem.

Theorem 1.4.26 The second-order cone given by Definition 1.4.24 is self-
dual, i.e. Lm = Lm∗.

Proof For the case m = 1, the conclusion is obvious. So we need only
to show Lm = Lm∗ when m > 2. In fact, on one hand, taking any u =
(u1, ū

T)T ∈ Lm, for any v = (v1, v̄
T)T ∈ Lm, we have

(u · v) = u1v1 + (ū · v̄) > u1v1 − ‖ū‖‖v̄‖ > 0 (1.4.43)

by Cauchy-Schwarz inquality. Therefore u ∈ Lm∗, hence

Lm ⊆ Lm∗. (1.4.44)
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On the other hand, taking any u = (u1, ū
T)T ∈ Lm∗, for any v = (v1, v̄

T)T,
we have (u · v) > 0. Next we show that this leads to

u1 > ‖ū‖ (1.4.45)

by examining two different cases. If ū = 0, we have

(v · u) = u1v1 > 0, (1.4.46)

thus v1 > 0 since v ∈ Lm. Therefore u1 > 0 = ‖ū‖, i.e. inequality (1.4.45) is
true. If ū 6= 0, selecting v = (‖ū‖,−ūT)T ∈ Lm, we have

0 6 (v · u) = −‖ū‖2 + u1‖ū‖, (1.4.47)

which results in the inequality (1.4.45) and so Lm ⊇ Lm∗. Therefore, noting
inequality (1.4.44), the conclusion Lm = Lm∗ is proved. �

According to (1.4.11), the Lagrangian function should be

L(x, λ, ν) = cTx+
m∑

i=1

λTi (Āix− b̄i) + νT(Ax − b), (1.4.48)

where λ = (λT1 , · · · , λTm)T and ν = (ν1, · · · , νp)T are the multiplier vectors.
Thus we have the following theorem:

Theorem 1.4.27 Second-order cone programming

max −
m∑

i=1

b̄Ti λi − bTν, (1.4.49)

s.t.

m∑

i=1

ĀT
i λi +ATν + c = 0, (1.4.50)

λi �Lmi 0, i = 1, · · · ,m (1.4.51)

is the dual problem of the problem (1.4.40)∼(1.4.42).

Proof According to Definition 1.4.11, in order to get the dual problem of
the problem (1.4.40)∼(1.4.42), we need to compute g(λ, ν)

g(λ, ν) =





−
m∑

i=1

b̄Ti λi − bTν, if c+
∑m

i=1 Ā
T
i λi +ATν = 0;

−∞, otherwise,

(1.4.52)

where λi �Lmi 0. This leads to the dual problem (1.4.49)∼(1.4.51), which is
a second-order cone programming in the form (1.4.40)∼(1.4.42). �
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1.4.4.2 Software for second-order cone programming

(1) Software SeDuMi
Self-Dual-Minimization (SeDuMi) is a tool for solving optimization prob-

lems. It can be used to solve linear programming, second-order cone program-
ming and semidefinite programming introduced later, and is available at the
website http://sedumi.mcmaster.ca.

Both the solution to the general second-order cone programming (1.4.40)∼
(1.4.42) and the solution to the dual problem (1.4.49)∼(1.4.51) can be found
by calling the main function of SeDuMi

[y, x] = sedumi(p1, p2, p3, p4), (1.4.53)

where pi, i = 1, · · · , 4 are the input parameters given by

p1 = (AT, ĀT
1 , · · · , ĀT

m)T, (1.4.54)

p2 = −cT, (1.4.55)

p3 = (bT, bT1 , · · · , bTm)T, (1.4.56)

p4 = [p4.f , p4.q], (1.4.57)

where p4 is the structural variable: p4.f = p, p4.q = (m1,m2, · · · ,mm). The
outputs x and y are the solutions to the primal problem (1.4.40)∼(1.4.42) and
the dual problem (1.4.49)∼(1.4.51) respectively.

(2) An application

Example 1.4.28 Solve the problem

min cTx, x ∈ R3, (1.4.58)

s.t. Ax− b = 0, (1.4.59)

−āTi x+ bi > ε‖x‖, i = 1, · · · , 3, (1.4.60)

where c = (1, 1, 1)T, A = diag(0, 0, 1), b = (0, 0, 0)T, ā1 = (−1, 0, 1)T, b1 =

0, ā2 = (0,−1, 1)T, b2 = 0, ā3 = (1, 1, 1)T, b3 = 1, ε =
1

2
.

Select input parameters pi, i = 1, · · · , 4 as

p1 = (A,A1, A2, A3)
T, (1.4.61)

p2 = −cT, (1.4.62)

p3 = (bT, b̂T1 , b̂
T
2 , b̂

T
3 )

T, (1.4.63)

p4.f = 3, p4.q = (4, 4, 4), (1.4.64)

where Ai =

(
1

ε
āi,−I3×3

)
, b̂i =

(
1

ε
bi, 0, 0, 0

)T

, i = 1, 2, 3. I3×3 is the 3 × 3
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identity matrix. Call the main function (1.4.53) and get the solution

x = 10−10




0.3233
0.3233
−0.0027


 . (1.4.65)

1.4.5 Semidefinite programming

Semidefinite programming is another special case of cone programming
given by Definition 1.4.23, see [89] for a detailed discussion.

1.4.5.1 Semidefinite programming and its dual problem

(1) Semidefinite programming
As the name implies, semidefinite programming is a programming problem

concerning the positive semidefinite matrices. However, the cone programming
involves only the vectors, instead of the matrices. So we construct the map of
a matrix B = (bij) ∈ Rm×m to an m2-dimensional vector vec(·):

vec(B) = (b11, b21, · · · , bm1, b12, b22, · · · , bm2, b1m, b2m, · · · , bmm)T ∈ Rm
2

,
(1.4.66)

which forms a vector by stacking the matrix and the corresponding inverse
map is the map of a m2-dimensional vector b = (b11, b21, · · · , bm1, b12, b22, · · · ,
bm2, b13, b23, · · · , bmm)T ∈ Rm

2

to an m×m matrix mat(·):

mat(b) = B = (bij) ∈ Rm×m. (1.4.67)

Some properties of the above map are given below:

Theorem 1.4.29 Suppose that A = (aij) ∈ Rm×m, B = (bij) ∈ Rm×m, then

(vec(A) · vec(B)) = vec(A)Tvec(B) =

m∑

i,j=1

aijbij = tr(ABT), (1.4.68)

where (·) is the inner product of two vectors and tr(·) is the trace of a matrix.

Definition 1.4.30 The Frobenius norm of the matrix A = (aij) ∈ Rm×m is
defined as

‖A‖F =




m∑

i,j=1

a2ij





1
2

. (1.4.69)

The above theorem and definition lead to the following theorem:

Theorem 1.4.31 Suppose that A, B ∈ Rm×m, then

‖vec(A)− vec(B)‖ = ‖vec(A−B)‖ = ‖A−B‖F , (1.4.70)

where ‖·‖ is the 2-norm of a vector and ‖·‖F the Frobenius norm of a matrix.
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Theorem 1.4.32 Suppose that

Sm+ = {A|A is an m×m symmetric positive semidefinite matrix}. (1.4.71)

Then K(Sm+ ) is a proper cone, where K(Sm+ ) = {y|y = vec(A), A ∈ Sm+ } is the

set obtained by the map of Sm+ into the vector space Rm
2

via the relationship
(1.4.66).

Proof It is not difficult to show the conclusion by the following steps: (i)
K(Sm+ ) is a close set; (ii) K(Sm+ ) is pointed; (iii) int(K(Sm+ )) 6= ∅. The detail
is omitted. �

Now we are in a position to introduce the semidefinite programming prob-
lem from the cone programming given by Definition 1.4.23 by the following
way:

(i) Change the value representation of the constraint function fi in the
inequality constraints with n = m2

i from a m2
i -dimensional vector into a mi×

mi matrix via the corresponding relationship, i.e. fi : R
n → Rmi×mi is written

as

fi(x) =
n∑

j=1

[x]jA
i
j −Bi, (1.4.72)

where x = ([x]1, · · · , [x]n)T, Aij , Bi ∈ Smi , Smi is the set of symmetric mi ×
mi matrices. Here the mi × mi matrices should be understood as the m2

i -
dimensional vectors in our mind.

(ii) Specify the cones Ki, i = 1, · · · ,m. Corresponding to the value of the
constraint fi, Ki is specified as a matrix in the form K(smi

+ ) defined in the
above theorem, i.e. its inequality constraint can be represented as

vec




n∑

j=1

[x]jA
i
j −Bi


 �K(S

mi
+ ) 0. (1.4.73)

Next, we write these constraints in a more convenient form.

Definition 1.4.33 Suppose that the sets Sm+ and Sm++ are comprised of sym-
metric positive semidefinite matrices and positive definite matrices respec-
tively. The matrix inequality A �Sm

+
B or B �Sm

+
A is said to be valid if

B −A ∈ Sm+ ; the matrix strict inequality A ≺Sm
+
B or B ≻Sm

+
A is said to be

valid if B −A ∈ Sm++.

Therefore the vector inequality (1.4.73) can be written as the matrix in-
equality

n∑

j=1

[x]jA
i
j −Bi �Smi

+
0. (1.4.74)

Thus semidefinite programming can be defined as follows:
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Definition 1.4.34 (Semidefinite programming) A semidefinite programming
is an optimization problem in the form

min cTx, x ∈ Rn, (1.4.75)

s.t.
n∑

j=1

[x]jA
i
j −Bi �Smi

+
0, i = 1, · · · ,m, (1.4.76)

Ax − b = 0, (1.4.77)

where c ∈ Rn, Aij , B
i ∈ Smi , j = 1, · · · , n, i = 1, · · · ,m, A ∈ Rp×n, b ∈ Rp,

Smi and Smi

+ are the sets comprised of mi×mi symmetric and symmetric pos-
itive semidefinite matrices respectively. Here the notation “�Smi

+
” is usually

simplified as “�”.

It is obvious that the problem (1.4.75)∼(1.4.77) can also be transformed
equivalently to a problem with only a single linear matrix inequality constraint
shown by the following theorem.

Theorem 1.4.35 Semidefinite programming (1.4.75)∼(1.4.77) is equivalent
to the problem

min cTx, (1.4.78)

s.t.

n∑

j=1

[x]jĀj − B̄ � 0, (1.4.79)

Ax− b = 0, (1.4.80)

where c ∈ Rn, Āj = Diag(A1
j , · · · , Amj ), j = 1, · · · , n and B̄ =

Diag(B1, · · · , Bm), A ∈ Rp×n, b ∈ Rp.

The following theorem shows that semidefinite programming is wider than
second-order cone programming.

Theorem 1.4.36 A second-order cone programming problem can be written
as a semidefinite programming problem.

Proof See [17]. �

(2) Dual problem
In order to derive the dual problem of the semidefinite programming

(1.4.78)∼(1.4.80), we need the following theorem.

Theorem 1.4.37 The cone K(Sm+ ) given by Theorem 1.4.32 is self-dual, i.e.

K(Sm+ )∗ = K(Sm+ ). (1.4.81)
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Proof On one hand, suppose vec(A) ∈ K(Sm+ ), vec(B) ∈ K(Sm+ ). According
to Theorem 1.4.29 we have

(vec(A) · vec(B))=tr(A
1
2A

1
2B

1
2B

1
2 ) = tr(A

1
2B

1
2B

1
2A

1
2 )

=‖ A 1
2B

1
2 ‖2> 0. (1.4.82)

This implies
K(Sm+ )∗ ⊃ K(Sm+ ). (1.4.83)

On the other hand, suppose vec(A) ∈ K(Sm+ )∗. For any vec(B) ∈ K(Sm+ ), we
have (vec(A) · vec(B)) > 0. Therefore, for any x ∈ Rm and the corresponding
B = xxT, we have vec(B) = vec(xxT) ∈ K(Sm+ ) and

0 6 (vec(A) · vec(B)) = tr(AxxT) =
∑

i,j

Aij [x]i[x]j = xTAx. (1.4.84)

This implies that
vec(A) ∈ K(Sm+ ), (1.4.85)

and hence K(Sm+ )∗ ⊂ K(Sm+ ). The conclusion follows from (1.4.83) and
(1.4.85). �

Now let us derive the dual problem of the problem (1.4.78)∼(1.4.80). In-
troduce the Lagrangian function

L(x,Λ, ν) = cTx+ tr

((
n∑

i=1

[x]iĀi − B̄

)
Λ

)
+ νT(Ax − b),

= [x]1(c1 + νTa·1 + tr(Ā1Λ)) + · · ·+ [x]n(cn + νTa·n + tr(ĀnΛ))

−tr(B̄Λ)− νTb, (1.4.86)

where a·i is the i-th column of the matrix A, ν ∈ Rp is the multiplier vector
corresponding to the vector equality constraint (1.4.80), and Λ ∈ Rq×q is the
multiplier matrix corresponding to the matrix inequality constraint (1.4.79).
This leads to the following theorem.

Theorem 1.4.38 Denoting the i-th column of the matrix A as a·i, semidefi-
nite programming

max
Λ,ν

−tr(B̄Λ)− bTν, (1.4.87)

s.t. tr(ĀiΛ) + aT·iν + ci = 0, i = 1, · · · , n, (1.4.88)

Λ � 0 (1.4.89)

is the dual problem of the problem (1.4.78)∼(1.4.80).
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Proof Remember Definition 1.4.11, equality (1.4.86) where Λ �Sq

+
0 due to

Theorem 1.4.37. It is easy to see that

g(Λ, ν)= inf
x
L(x,Λ, ν)

=

{
−tr(B̄Λ)− bTν, if ci + aT·iν + tr(ĀiΛ) = 0, ∀i = 1, · · · , n;
−∞, otherwise.

(1.4.90)

Therefore, problem (1.4.87)∼(1.4.89) is the dual problem of the prob-
lem (1.4.78)∼(1.4.80). In addition, it can also be seen that the problem
(1.4.87)∼(1.4.89) is a semidefinite programming problem. �

1.4.5.2 Software for semidefinite programming

(1) Software SeDuMi for semidefinite programming
Semidefinite programming (1.4.78)∼(1.4.80) and its dual problem

(1.4.87)∼(1.4.89) can be solved by SeDuMi at the same time. Now we only
need to call the main function

[y, x] = sedumi(p1, p2, p3, p4), (1.4.91)

of SeDuMi, in which the parameters pi, i = 1, · · · , 4 are given by

p1 = (A; vec(Ā1), · · · , vec(Ān)), (1.4.92)

p2 = −cT, (1.4.93)

p3 = (bT, vec(B̄)T)T, (1.4.94)

p4 = [p4 · f, p4 · s] = [p, q], (1.4.95)

where p4 is the structural variable: p4 · f = p is the number of the linear
constraints, p4 · s = q is the order of the matrices in constraint (1.4.79).
The outputs x and y are the solutions to the problems (1.4.78)∼(1.4.80) and
(1.4.87)∼(1.4.89) respectively.

(2) An application

Example 1.4.39 Find the largest eigenvalue of the symmetric matrix

M =




2 −2 0
−2 1 −2
0 −2 0


 . (1.4.96)

The problem can be written as a semidefinite problem

min λ, (1.4.97)

s.t. −λI +M � 0, (1.4.98)

which can be solved by SeDuMi as follows:
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Select input parameters pi, i = 1, · · · , 4 as

p1 = −vec(I3×3), (1.4.99)

p2 = −1, (1.4.100)

p3 = −vec(M), (1.4.101)

p4 · s = 3, (1.4.102)

where I3×3 is the 3× 3 identity matrix. Call the main function (1.4.91) and
get the solution

λ = 4.0000. (1.4.103)

*1.5 Convex Programming with Generalized Inequality
Constraints in Hilbert Space

The usual convex programming in Euclidian space discussed in Section
1.2 has been extended in Section 1.3 and Section 1.4 respectively. Combining
these extensions, we study the convex programming with generalized inequal-
ity constraints in Hilbert space in this section.

1.5.1 K-convex function and Fréchet derivative

In order to study the corresponding dual theory and the optimality condi-
tions, we need to define the proper cone and K-convex map in Hilbert space.
First we need the definitions of which can be given from Definitions 1.4.2 and
1.4.6 by replacing Euclidian space by Hilbert space. In addition, we need to
extend Definition 1.3.1 as follows:

Definition 1.5.1 (Fréchet derivative and differentiability) Let both H1 and
H2 be Hilbert spaces. A map f : H1 → H2 is called Fréchet differentiable at
x̄ ∈ H1 if there exists a bounded linear map A such that

‖f(x̄+ h)− f(x̄)−A(h)‖ = o(‖h‖). (1.5.1)

In this case, we call A the Fréchet derivative of f at x̄ and denote ∇f(x̄) = A.
In addition, a map f which is Fréchet differentiable at any point of H1, and
whose derivative is continuous, is said to be Fréchet continuously differen-
tiable.

1.5.2 Convex programming

Now we are able to represent the problem with which we are concerned.
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Definition 1.5.2 (Convex programming problem with generalized inequality
constraints in Hilbert space) Let H,H1, · · · ,Hm be Hilbert spaces. A convex
programming problem with generalized inequality constraints in Hilbert space
is an optimization problem in the form

min f0(x), (1.5.2)

s.t. hi(x) = (ai · x)− bi = 0 , i = 1, · · · , p , (1.5.3)

fi(x) �Ki
0 , i = 1, · · · ,m , (1.5.4)

where f0(x) : H → R are Fréchet continuously differentiable convex function,
Ki is a proper cone in Hi, fi(x) : H → Hi is a Fréchet continuously differen-
tiable convex mapping, i = 1, · · · ,m, and hi(x) : H → R is a bounded linear
mapping shown in (1.5.3), i = 1, · · · , p.

1.5.3 Duality theory

Definition 1.5.3 (Dual problem) Introduce the Lagrangian of the problem
(1.5.2)∼(1.5.4)

L(x, λ1, · · · , λm, ν) = f0(x) +

m∑

i=1

(λi · fi(x)) +
p∑

i=1

νihi(x), (1.5.5)

where λi, i = 1, · · · ,m, and ν = (ν1, · · · , νp)T are the Lagrangian multipliers.
Problem

max g(λ1, · · · , λm, ν) = inf
x∈H

L(x, λ1, · · · , λm, ν), (1.5.6)

s.t. λi ∈ K∗
i , i = 1, · · · ,m (1.5.7)

is called the dual problem of the problem (1.5.2)∼(1.5.4). Correspondingly,
problem (1.5.2)∼(1.5.4) is called the primal problem.

Here we also have the corresponding duality theory:

Theorem 1.5.4 (Weak duality theorem) Let p∗ be the optimal value of the
primal problem (1.5.2)∼(1.5.4) and d∗ be the optimal value of the dual problem
(1.5.6)∼(1.5.7). Then

p∗ = inf{f0(x)|fi(x) �Ki
0, i = 1, · · · ,m;hi(x) = 0, i = 1, · · · , p; x ∈ H}

> sup{g(λ1, · · · , λm, ν)|λi �K∗

i
0, i = 1, · · · ,m; ν ∈ Rp}

= d∗. (1.5.8)

Corollary 1.5.5 Let x̃ be the feasible point of the primal problem
(1.5.2)∼(1.5.4) and (λ̃1, · · · , λ̃m, ν̃) be the feasible point of the dual problem
(1.5.6)∼(1.5.7). If f0(x̃) = g(λ̃1, · · · , λ̃m, ν̃), then x̃ and (λ̃1, · · · , λ̃m, ν̃) are
their solutions respectively.
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Definition 1.5.6 (Slater’s condition) Problem (1.5.2)∼(1.5.4) is said to sat-
isfy Slater’s condition if there exists a feasible point x such that

fi(x) ≺Ki
0, i = 1, · · · ,m; aTi x = bi, i = 1, · · · , p. (1.5.9)

Theorem 1.5.7 (Strong duality theorem) Consider the problem
(1.5.2)∼(1.5.4) satisfying Slater’s condition given by Definition 1.5.6. Let p∗ be
the optimal value of the primal problem (1.5.2)∼(1.5.4) and d∗ be the optimal
value of the dual problem (1.5.6)∼(1.5.7). Then

p∗ = inf{f0(x)|fi(x) �Ki
0, i = 1, · · · ,m;hi(x) = 0, i = 1, · · · , p; x ∈ H}

= sup{g(λ1, · · · , λm, ν)|λi �K∗

i
0, i = 1, · · · ,m; ν ∈ Rp}

= d∗. (1.5.10)

Furthermore, if p∗ is attained, i.e. there exists a solution x∗ to the primal
problem, then d∗ is also attained, i.e. there exists a solution (λ∗1, · · · , λ∗m, ν∗)
to the dual problem such that

p∗ = f0(x
∗) = g(λ∗1, · · · , λ∗m, ν∗) = d∗ <∞. (1.5.11)

1.5.4 Optimality conditions

Theorem 1.5.8 Consider the problem (1.5.2)∼(1.5.4) satisfying Slater’s con-
dition given by Definition 1.5.6. If x∗ is its solution, then x∗ satisfies the KKT
conditions

hi(x
∗) = 0, i = 1, · · · , p, (1.5.12)

fi(x
∗) �Ki

0, i = 1, · · · ,m, (1.5.13)

λ∗i �K∗

i
0, i = 1, · · · ,m, (1.5.14)

(λ∗i · fi(x∗)) = 0, i = 1, · · · ,m, (1.5.15)

∇xL(x
∗, λ∗1, · · · , λ∗m, ν∗) = ∇f0(x∗) +

m∑

i=1

∇fi(x∗)(∗)λ∗i (1.5.16)

+

p∑

i=1

ν∗i∇hi(x∗) = 0,

(1.5.17)

where ∇f0(x∗) and ∇hi(x∗) are respectively the Fréchet derivatives of f0(x)
and hi(x), i = 1, · · · , p at x∗, ∇fi(x∗)(∗) is the Fréchet derivative adjoint

operator of fi(x) at x
∗,i = 1, · · · ,m[162].

Theorem 1.5.9 Consider the problem (1.5.2)∼(1.5.4). If x∗ satisfies the
KKT conditions (1.5.12)∼(1.5.17), then x∗ is its solution.
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Theorem 1.5.10 Consider the problem (1.5.2)∼(1.5.4) satisfying Slater’s
condition given by Definition 1.5.6. Then for its solution, it is necessary and
sufficient condition that x∗ satisfies the KKT conditions (1.5.12)∼(1.5.17).
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Chapter 2

Linear Classification

We are now beginning to study support vector machines starting from the
linear classification problems. First, by investigating an example, we derive
the maximal margin principle intuitively. Then, using this principle, the linear
support vector classification is established.

2.1 Presentation of Classification Problems

2.1.1 A sample (diagnosis of heart disease)

Many researchers have done studies to develop intelligent medical decision
support systems using existing data sets for cardiac disease diagnosis. For ex-
ample, the data set provided by Cleveland Heart Disease Database (see [200]),
recorded 13 relevant features of heart disease in 303 patients: blood pressure,
cholesterol level, etc., and the 14th record having values 1,2,3,4 or not having
heart disease with degree value 0. These records help the researchers to dis-
tinguish presence from absence of heart disease for new patients according to
their recorded features. This kind of problem is referred to as classification or
pattern recognition. In Probability and Statistics this is called discrimination
analysis. Throughout this book, we use the terminology classification.

To make the classification problem easier to understand, we reduce the
above problem to the following toy example, where only 2 features and 2
cases in the 14th record (value nonzero and value 0) are considered.

Example 2.1.1 Assume that diastolic (blood) pressure and the level of choles-
terol are strong determinants of heart disease. Ten patients’ clinical records are
listed in Table 2.1. Here, yi = 1 indicates that the i-th patient belongs to posi-
tive class having cardiac disease; yj = −1 (not 0) indicates that the j-th patient
belongs to negative class having no cardiac disease. The clinic record for the
first patient is a two-dimensional vector x1 = ([x1]1, [x1]2)

T = (73, 150)T, and
y1 = −1, for the second patient is x2 = ([x2]1, [x2]2)

T = (85, 165)T, y2 = −1,
· · · and for the 10th patient is x10 = ([x10]1, [x10]2)

T = (110, 190)T, y10 = 1.
The i-th patient corresponds to (xi, yi), which is called a training point; the

41



42 Support Vector Machines

TABLE 2.1: Clinical records of 10 patients.

Diastolic Cholesterol Having heart
Patient pressure level disease

number ([x]1 mmHg) [x]2 mg/dL (y)
1 [x1]1 = 73 [x1]2 = 150 y1 = −1
2 [x2]1 = 85 [x2]2 = 165 y2 = −1
...

...
...

...
10 [x10]1 = 110 [x10]2 = 190 y10 = 1

ten training points consists of a training set T

T = {(x1, y1), · · · , (x10, y10)}. (2.1.1)

The problem is, given the diastolic pressure and the level of cholesterol
for a new patient (a two-dimensional vector x = ([x]1, [x]2)

T), how to deduce
whether the patient has heart disease or not (to deduce whether the correspond-
ing y is 1 or −1), based on the training set T .

This is a classification problem in two-dimensional space which can be
shown by Figure 2.1. Each patient is represented by a training point in the
coordinate plane. The i-th training point’s location corresponds to the i-th
two-dimensional vector xi, and if yi = 1, i.e. the patient has heart disease,
the point is represented as “+”, otherwise “◦”. The new patient corresponds

FIGURE 2.1: Data for heart disease.

to a new point in the plane and the problem is to deduce whether this point
belongs to the positive or negative class. In other words, we need to separate
the plane into two regions: region A and region B; if the point falls into region
A, it belongs to the positive class, otherwise to the negative class. The key is
how to separate the plane into two regions.
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We know that any straight line (w · x) + b = 0 (where (w · x) is the dot
product between w = ([w]1, [w]2)

T and x = (x1, x2)
T) will separate the plane

into two regions: (w ·x)+ b > 0 and (w ·x)+ b < 0. That is, we can determine
the value of the corresponding y of any point x by

y = f(x) = sgn((w · x) + b), (2.1.2)

where sgn(·) is a sign function defined by:

sgn(a) =

{
1, a > 0;
−1, a < 0.

(2.1.3)

A value of 1 indicates the positive class, and a value of −1 the negative class.
Instead of the linear function (w · x) + b, however, we can use nonlinear

functions with much flexibility.

2.1.2 Classification problems and classification machines

Example 2.1.1 is a two-dimensional classification problem which contains
two features, or x ∈ R2, and 10 training points. Generally, we can consider
the classification problem in n-dimensional space which contains n features,
i.e. x ∈ Rn, and l training points. Denote the collection of training points as
training set

T = {(x1, y1), · · · , (xl, yl)}, (2.1.4)

a general classification problem is that given a new input x, determine whether
its corresponding y is 1 or −1 according to the training set.

Let us formalize a classification problem mathematically as follows.
Classification problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (2.1.5)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l, find a real function g(x) in Rn,
to derive the value of y for any x by the decision function

f(x) = sgn(g(x)). (2.1.6)

Thus it can be seen that solving a classification problem is to find a criterion
to separate the Rn space into two regions according to the training set T .

The above problem is a binary (or two-class) classification problem. Anal-
ogously, there are multiclass classification problems (see Chapter 8). In what
follows it will be assumed, unless mentioned specifically, that all classification
problems are two-class problems.

Note that in the training set T , (xi, yi) ∈ Rn×Y is called training point or
positive (negative) training point if the corresponding yi = 1 (yi = −1). The
vector xi ∈ Rn is called input or positive (negative) input if the corresponding
yi = 1 (yi = −1), its components are called features, yi ∈ Y = {1,−1} is label
or output.
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According to the terminologies in the field of machine learning, we refer
to the method for solving the above classification problems as classification
machine or classification. Particularly, when g(x) is restricted to be a linear
function: g(x) = (w · x) + b, the corresponding method is referred to as a
linear classification machine or linear classification, where the hyperplane
(w · x) + b = 0 separates Rn space into two regions.

Intuitively speaking, simple linear classification machines can be used to
solve such problems as shown in Figure 2.2 and Figure 2.3. On the other
hand, for some other problems such as the one shown in Figure 2.4, general
classification machines must be used, where g(x) is allowed to be as a nonlinear
function; otherwise a big error will be produced. The aim in this chapter is to
establish linear classification machines.

FIGURE 2.2: Linearly separable problem.

FIGURE 2.3: Approximately linearly separable problem.



Linear Classification 45

FIGURE 2.4: Linearly nonseparable problem.

2.2 Support Vector Classification (SVC) for Linearly
Separable Problems

To construct linear classification machines, we consider linearly separable
problems first. Roughly speaking, a linearly separable problem is a problem
that the training set can be separated by a hyperplane correctly, such as the
problem shown in Figure 2.1. The definition is as follows.

Definition 2.2.1 (Linearly separable problem) Consider the training set T =
{(x1, y1), · · · , (xl, yl)} ∈ (Rn × Y)l, where xi ∈ Rn, yi ∈ Y = {1,−1}, i =
1, · · · , l. If there exist w ∈ Rn, b ∈ R and a positive number ε such that for
any subscripts i with yi = 1, we have (w · xi) + b > ε, and for any subscripts
i with yi = −1, we have (w · xi) + b 6 −ε, we say the training set and its
corresponding classification problem are linearly separable.

2.2.1 Maximal margin method

2.2.1.1 Derivation of the maximal margin method

Consider the separable problem in R2 shown in Figure 2.1 and try to find
a suitable straight line to separate the R2 space into two regions. Obviously,
it is natural to select the best separating straight line among the straight lines
which are able to separate all of the positive inputs “+” and the negative
inputs “◦” correctly.

First let us investigate the case where the normal vector w of the separating
straight line is given. In Figure 2.5 l1 is one of the straight lines with the given
w, separating all of the positive and negative inputs correctly. But such a line
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is not unique; any line obtained parallel moving l1 before approaching any
input is a candidate. The two lines l2 and l3 in the extreme cases are called
support lines. Among all the candidates the “middle one” between l2 and l3
should be the best. The above observation gives a method to construct the
best separating straight line when the normal vector is given.

FIGURE 2.5: Optimal separating line with fixed normal direction.

FIGURE 2.6: Separating line with maximal margin.

How to select the best normal direction w? It can be seen from the above
analysis that there are two support lines for a given normal direction. The
distance between the two support lines is called “margin”. It is reasonable
to select the normal direction which makes the margin maximal as shown in
Figure 2.6.

Now let us formulate the problem to find the separating line (w·x)+b = 0 as
an optimization problem for the variables of w and b. Suppose the separating
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line can be represented as (w̃ ·x)+ b̃ = 0. Note that the separating line should
be the middle line between two support lines; therefore the two support lines
can be expressed as (w̃ · x) + b̃ = k and (w̃ · x) + b̃ = −k respectively. Let

w =
w̃

k
, b =

b̃

k
, then the two support lines can equivalently be expressed as

(w · x) + b = 1 and (w · x) + b = −1. (2.2.1)

Accordingly, the expression of the separating line becomes

(w · x) + b = 0. (2.2.2)

It yields from direct calculation that the margin, or the distance between the

two support lines, is
2

‖w‖ . So the idea of maximal margin leads to the following

optimization problem for w and b:

max
w,b

2

‖w‖ , (2.2.3)

s.t. (w · x) + b > 1, ∀i : yi = 1, (2.2.4)

(w · x) + b 6 −1, ∀i : yi = −1, (2.2.5)

or

min
w,b

1

2
‖w‖2, (2.2.6)

s.t. yi((w · xi) + b) > 1, i = 1, · · · , 10. (2.2.7)

The above optimization problem is derived from maximizing the margin
between the two support lines in two-dimensional space R2. It is not difficult
to see that for solving classification problems in n-dimensional space Rn we
should maximize the margin between the two support hyperplanes. It is called
the principle of maximal margin. The optimization problem obtained from this
principle has the same form of the problem (2.2.6)∼(2.2.7). So we can establish
the following algorithm:

Algorithm 2.2.2 (Maximal margin method for linearly separable problems)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
Y = {1,−1}, i = 1, · · · , l;
(2) Construct and solve the optimization problem

min
w,b

1

2
‖w‖2 , (2.2.8)

s. t. yi((w · xi) + b) > 1 , i = 1, · · · , l , (2.2.9)

obtaining the solution (w∗, b∗);
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(3) Construct the separating hyperplane (w∗ · x) + b∗ = 0, and the decision
function f(x) = sgn((w∗ · x) + b∗).

The above algorithm is sometimes called linear hard margin support vector
classification since the constraint (2.2.9) implies that all inputs in the training
set are required to be classified completely correctly and not in the margin
tube −1 < (w · x) + b < 1.

2.2.1.2 Properties of the maximal margin method

Theorem 2.2.3 For a linearly separable problem, there exists a solution
(w∗, b∗) to the optimization problem (2.2.8)∼(2.2.9) and the solution satis-
fies:

(i) w∗ 6= 0;

(ii) there exists a j ∈ {i|yi = 1} such that

(w∗ · xj) + b∗ = 1; (2.2.10)

(iii) there exists a k ∈ {i|yi = −1} such that

(w∗ · xk) + b∗ = −1. (2.2.11)

Proof We prove the existence of solution first. Since the training set is
linearly separable, there is a feasible point (w̃, b̃) of the optimization problem
(2.2.8) ∼(2.2.9). Therefore the problem is equivalent to

min
w,b

1

2
‖w‖2 , (2.2.12)

s. t. yi((w · xi) + b) > 1 , i = 1, · · · , l , (2.2.13)

1

2
‖w‖2 6

1

2
‖w̃‖2. (2.2.14)

It is not difficult to see that the feasible region of the above problem is a
non-empty bounded close set. According to the fact that the minimal value of

a continuous function (
1

2
‖w‖2) is achieved in a non-empty bounded close set,

the solution to the optimization problem (2.2.8)∼(2.2.9) exits.
Now we turn to prove the properties (i)-(iii).
(i) We only need to prove (w∗, b∗) = (0, b∗) is not a solution by contra-

diction. If (w∗, b∗) = (0, b∗) is a solution, it should satisfy the constraints
(2.2.9), which leads to b∗ > −1 and b∗ 6 1 for positive and negative inputs
respectively. This contradiction proves the conclusion.

(ii) We also use the proof by contradiction. Assume that the conclusion
(ii) is not true, that is

(w∗ · xi) + b∗ > 1, ∀i ∈ {i|yi = 1}. (2.2.15)
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But since the solution (w∗, b∗) should satisfy the constraints, we have

(w∗ · xi) + b∗ 6 −1, ∀i ∈ {i|yi = −1}. (2.2.16)

Now it is sufficient to show that (w∗, b∗) is not a solution from (2.2.15) and
(2.2.16), then we have a contradiction. Let

w̃ = αw∗, b̃ = (b∗ + 1)α− 1. (2.2.17)

If α ∈ (0, 1), then (2.2.16) is equivalent to

(w̃ · xi) + b̃ 6 −1, ∀i ∈ {i|yi = −1}. (2.2.18)

On the other hand, for i ∈ {i|yi = 1} and from (2.2.15), we have

lim
α→1−0

[(w̃ · xi) + b̃] = lim
α→1−0

[(αw∗ · xi) + (b∗ + 1)α− 1] = (w∗ · xi) + b∗ > 1.

(2.2.19)
Hence there exists an α ∈ (0, 1) such that

(w̃ · xi) + b̃ > 1, ∀i ∈ {i|yi = 1}. (2.2.20)

Inequalities (2.2.18) and (2.2.20) indicate that (w̃, b̃) is a feasible point of the
optimization problem and the corresponding value of the objective function

is
1

2
‖w̃‖ = α2 1

2
‖w∗‖ < 1

2
‖w∗‖2, implying that (w∗, b∗) is not a solution. This

contradiction proves the conclusion.
(iii) Conclusion (iii) can be proved in a way similar to (ii). �

It should be noticed that the conclusion (i) shows that Algorithm 2.2.2
can always construct a hyperplane which is able to separate the inputs of two
classes in the training set correctly, and conclusions (ii) and (iii) indicate that
the two hyperplanes, (w∗ · x) + b = ±1, obtained using Algorithm 2.2.2 are
the two support hyperplanes.

The following theorem shows the uniqueness of the separating hyperplane
constructed by Algorithm 2.2.2.

Theorem 2.2.4 For a linearly separable problem, the solution to the opti-
mization problem (2.2.8)∼(2.2.9) is unique.

Proof Suppose the problem has two solutions (w∗
1 , b

∗
1) and (w∗

2 , b
∗
2). From

Theorem 1.2.15 in Chapter 1, the solution to the problem w.r.t. (with respect
to) w is unique, i.e.

w∗
1 = w∗

2 . (2.2.21)

Hence the two solutions (w∗
1 , b

∗
1) and (w∗

2 , b
∗
2) can respectively be rewritten as

(w∗, b∗1) and (w∗, b∗2). It yields from the conclusion (ii) of Theorem 2.2.3 that
there are j, j′ ∈ {1, · · · , l} such that yi = yj′ = 1, and

(w∗ · xj) + b∗1 = 1, (2.2.22)

(w∗ · xj′ ) + b∗1 ≥ 1, (2.2.23)

(w∗ · xj′ ) + b∗2 = 1, (2.2.24)

(w∗ · xj) + b∗2 ≥ 1. (2.2.25)
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Hence we have b∗1 > b∗2 and b∗2 > b∗1 from the above four expressions, then
b∗1 = b∗2. �

Remark 2.2.5 (Robustness of the maximal margin method) The margin is
maximized for the separating hyperplane obtained from the maximal margin
principle. This makes the corresponding decision function maintaining a good
performance under certain perturbations. It is not sensitive for certain per-
turbations to the input xi of the training point (xi, yi); it will still be classified
correctly. Also the decision function f(x) = sgn((w∗ · x) + b∗) itself is toler-
ant toward certain perturbations to w∗ and b∗; the decision function can still
classify both the positive and negative inputs correctly.

2.2.2 Linearly separable support vector classification

We now give another way to find the maximal margin hyperplane. That is,
rather than directly solve the optimization problem (2.2.8)∼(2.2.9), we solve
its dual problem.

2.2.2.1 Relationship between the primal and dual problems

To derive the dual problem of the primal problem (2.2.8)∼(2.2.9), we in-
troduce the Lagrange function:

L(w, b, α) =
1

2
‖w‖2 −

l∑

i=1

αi(yi((w · xi) + b)− 1) , (2.2.26)

where α = (α1, · · · , αl)T is the Lagrange multiplier vector. We have the
following theorems.

Theorem 2.2.6 Optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj +
l∑

j=1

αj , (2.2.27)

s. t.

l∑

i=1

yiαi = 0 , (2.2.28)

αi > 0, i = 1, · · · , l (2.2.29)

is the dual problem of the primal problem (2.2.8)∼(2.2.9).

Proof According to Definition 1.2.16 in Chapter 1, the dual problem
should have a form of

max g(α) = inf
w,b

L(w, b, α), (2.2.30)

s. t. α > 0. (2.2.31)
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As L(w, b, α) is a strictly convex quadratic function of w, its minimal value is
achieved at w satisfying

∇wL(w, b, α) = w −
l∑

i=1

yixiαi = 0, (2.2.32)

that is

w =

l∑

i=1

αiyixi. (2.2.33)

Substituting the above in (2.2.26) yields

inf
w
L(w, b, α) = −1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj+
l∑

j=1

αj−b
(

l∑

i=1

yiαi

)
. (2.2.34)

Therefore,

inf
w,b

L(w, b, α) =





−1

2

l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj) +
l∑

j=1

αj , if
l∑

i=1

yiαi = 0;

−∞, otherwise.
(2.2.35)

Hence the problem (2.2.30)∼(2.2.31) can be written as (2.2.27)∼(2.2.29). �

Theorem 2.2.7 For linear separable problems, the dual problem (2.2.27)∼
(2.2.29) has a solution.

Proof We use Theorem 1.2.21 in Chapter 1 (Strong duality theorem) to
prove the conclusion. In fact, the primal problem (2.2.8)∼(2.2.9) is a con-
vex programming and Theorem 2.2.3 has already proved the existence of its
solution. Furthermore, it satisfies the Slater’s condition since its constraints
contain linear inequalities only. Hence its dual problem (2.2.27)∼(2.2.29) has
a solution according to Theorem 1.2.21. �

The dual problem (2.2.27)∼(2.2.29) is a maximization problem. In the
optimization, a maximization problem is often replaced by its equivalent min-
imization problem. For the maximization problem (2.2.27)∼(2.2.29), its equiv-
alent minimization problem is:

min
α

1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj −
l∑

j=1

αj , (2.2.36)

s. t.

l∑

i=1

yiαi = 0 , (2.2.37)

αi > 0, i = 1, · · · , l . (2.2.38)

Note that the minimization problem (2.2.36)∼(2.2.38) has the same solu-
tion set as that to the maximization dual problem (2.2.27)∼(2.2.29) and is
often also called the dual problem of the problem (2.2.8)∼(2.2.9).
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Theorem 2.2.8 Optimization problem (2.2.36)∼(2.2.38) is a convex quadratic
programming.

Proof Let

H = (yiyj(xi · xj))l×l, e = (1, · · · , 1)T,
α = (α1, · · · , αl)T, y = (y1, · · · , yl)T, (2.2.39)

then the problem (2.2.36)∼(2.2.38) can be rewritten as

min
α

W (α) =
1

2
αTHα− eTα, (2.2.40)

s.t. αTy = 0, (2.2.41)

α ≥ 0. (2.2.42)

Let Q = (y1x1, · · · , ylxl). It is clear that H = QTQ and so H is positive
semidefinite. Hence the above problem is a convex programming by Theorem
1.2.7 in Chapter 1. �

Theorem 2.2.9 Consider the linearly separable problem. For any solution
to the dual problem (2.2.36)∼(2.2.38), α∗ = (α∗

1, · · · , α∗
l )

T, there must be a
nonzero component α∗

j . Furthermore, for any nonzero component α∗
j of α∗,

the unique solution to the primal problem (2.2.8)∼(2.2.9) can be obtained in
the following way:

w∗ =

l∑

i=1

α∗
i yixi , (2.2.43)

b∗ = yj −
l∑

i=1

α∗
i yi(xi · xj) . (2.2.44)

Proof Firstly we show that, for w∗ given by (2.2.43), there exists a b̃∗

such that (w∗, b̃∗) is the solution to the problem (2.2.8)∼(2.2.9). Theorem
2.2.8 shows that problem (2.2.36)∼(2.2.38) can be rewritten as the problem
(2.2.40)∼(2.2.42). So it is easy to see that problem (2.2.40)∼(2.2.42) sat-
isfies the Slater condition. Accordingly, if α∗ is a solution to the problem
(2.2.40)∼(2.2.42), it yields from Theorem 1.2.23 (in Chapter 1) that there
exists a multiplier b̃∗ and a multiplier vector s∗ such that

α∗Ty = 0, α∗ > 0 , (2.2.45)

s∗ > 0 , s∗Tα∗ = 0 , (2.2.46)

Hα∗ − e+ b̃∗y − s∗ = 0 . (2.2.47)

Therefore, from (2.2.46) and (2.2.47), we have

Hα∗ − e+ b̃∗y > 0. (2.2.48)
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From (2.2.43), that is equivalent to the following:

yi((w
∗ · xi) + b̃∗) > 1, i = 1, · · · , l, (2.2.49)

which implies that (w∗, b̃∗) is a feasible solution to the primal problem
(2.2.8)∼(2.2.9).

Furthermore, from (2.2.45)∼(2.2.47) we have

1

2
‖w∗‖2= 1

2
α∗THα∗

=
1

2
α∗THα∗ − α∗T(Hα∗ + b̃∗y − e− s∗)

=−1

2
α∗THα∗ − b̃∗α∗Ty + eTα∗ + s∗Tα∗

=−1

2
α∗THα∗ + eTα∗ . (2.2.50)

This shows that the objective function’s value of the primal problem at the
point (w∗, b̃∗) is equal to the optimum value of its dual problem and therefore
(w∗, b̃∗) is the solution to the primal problem (2.2.8)∼(2.2.9) according to
Corollary 1.2.19 in Chapter 1.

Secondly, we show that α∗ is nonzero. If it is not true, i.e. α∗ = 0, then
the w∗ defined by (2.2.43) is a zero vector, which contradicts the conclusion
(i) of Theorem 2.2.3, and so α∗ 6= 0.

Finally, we show that (w∗, b∗) obtained from (2.2.43)∼(2.2.44) is the
unique solution to the primal problem (2.2.8)∼(2.2.9). In fact, for the problem
(2.2.8)∼(2.2.9), the uniqueness of its solution can be derived immediately from
Theorem 2.2.4 and so it is sufficient to show that the multiplier b̃∗ has the
expression (2.2.44). Actually, note that α∗

j 6= 0 implies s∗j = 0 from (2.2.46).

It yields from (2.2.47) that the jth entry of Hα∗ − e+ b̃∗y is zero. Solving the
equation w.r.t. b̃∗ results in expression (2.2.44). �

2.2.2.2 Linearly separable support vector classification

Theorem 2.2.9 gives a way to construct the classification decision func-
tion: starting from an arbitrary solution α∗ = (α∗

1, · · · , α∗
l )

T to the problem
(2.2.36)∼(2.2.38), we can find the solution (w∗, b∗) to the primal problem
according to (2.2.43)∼(2.2.44). Thus, the following algorithm is established.

Algorithm 2.2.10 (Linearly separable support vector classification)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
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(2) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj −
l∑

j=1

αj , (2.2.51)

s. t.

l∑

i=1

yiαi = 0 , (2.2.52)

αi > 0, i = 1, · · · , l , (2.2.53)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(3) Compute w∗ =

l∑

i=1

α∗
i yixi. Choose a positive component of α∗, α∗

j , then

compute b∗

b∗ = yj −
l∑

i=1

α∗
i yi(xi · xj); (2.2.54)

(4) Construct the separating hyperplane (w∗ · x) + b∗ = 0, and its associated
decision function

f(x) = sgn(g(x)), (2.2.55)

where

g(x) = (w∗ · x) + b∗ =

l∑

i=1

yiα
∗
i (xi · x) + b∗ . (2.2.56)

2.2.3 Support vector

It is clear from step (3) and (4) of Algorithm 2.2.10 that the decision
function is fully specified by a subset of the training set; the subset consists of
the training points corresponding to the nonzero (positive) components of α∗.
Other training points play no part in determining the separating hyperplane
that is chosen. To pay more attention to these determinant training points,
we give the following definition.

Definition 2.2.11 (Support vector) Suppose that α∗ = (α∗
1, · · · , α∗

l )
T is a

solution to the dual problem obtained using Algorithm 2.2.10. The input xi,
associated with the training point (xi, yi), is said to be a support vector if the
corresponding component α∗

i of α∗ is nonzero and otherwise it is a nonsupport
vector.

It should be pointed out that the problem (2.2.51)∼(2.2.53) is convex but
not strictly convex. Hence its solutions may not be unique. Therefore, support
vectors are determined not fully by the training set, but also depend on which
solution is obtained from Algorithm 2.2.10.

Obviously, in Algorithm 2.2.10, the decision function is decided only by
the training points corresponding to support vectors. This is the reason why
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Algorithm 2.2.10 is referred to as support vector classification. The following
theorem characterizes the support vectors:

Theorem 2.2.12 Suppose that the linearly separable problems are solved us-
ing Algorithm 2.2.10 and that the g(x) is defined by (2.2.56). Then

(i) support vector xi satisfies yig(xi) = yi((w
∗ · xi) + b∗) = 1, i.e. all support

vectors are on the two support hyperplanes.

(ii) nonsupport vector xi satisfies yig(xi) = yi((w
∗ · xi) + b∗) > 1.

Proof Now observe (2.2.45)∼(2.2.47) again. From the fact that α∗ > 0
in (2.2.45) and (2.2.46), we have s∗iα

∗
i = 0, i = 1, · · · , l. Then from (2.2.47),

we obtain
s∗i = yi((w

∗
i · xi) + b∗)− 1, i = 1, · · · , l. (2.2.57)

Hence

s∗iα
∗
i = α∗

i (yi((w
∗
i · xi) + b∗)− 1) = 0, i = 1, · · · , l. (2.2.58)

The conclusion (i) is valid from (2.2.58) and the fact that α∗
i 6= 0 associated

with the support vector xi. The validity of the conclusion (ii) is derived from
(2.2.57) and (2.2.46). �

FIGURE 2.7: Geometric interpretation of Theorem 2.2.12.

The geometric interpretation of the above theorem is shown in Figure 2.7
where (w∗ · x) + b∗ = 0 is the separating straight line, (w∗ · x) + b∗ = 1 and
(w∗ · x) + b∗ = −1 are the two support lines. A nonsupport vector belonging
to the positive inputs lies on, or the aside of, the former support line and
nonsupport vector belonging to the negative inputs lies on, or the aside of,
the later. Moreover, support vectors are on either of the two support lines.
That is what the name “support vector” comes from.
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2.3 Linear C-Support Vector Classification

We discuss the linear separators for general classification problems. Sup-
pose the training set is

T = {(x1, y1), · · · , (xl, yl)}, (2.3.1)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l. It is still of form (2.1.5) but
now we do not restrict corresponding problems to be linearly separable ones.

2.3.1 Maximal margin method

2.3.1.1 Derivation of the maximal margin method

For a general classification problem, which may be a linearly nonseparable
problem, it is possible that any hyperplane is unable to separate all of the
positive and negative inputs correctly. If we still want to use a hyperplane as
a separator, we need to adopt the following two strategies: On one hand, in
order to relax the requirement to separate all of the inputs correctly, allow the
existence of training points that violate the constraints yi((w · xi) + b) > 1 by
introducing slack variables

ξi > 0 , i = 1, · · · , l , (2.3.2)

then yielding loose constraints

yi((w · xi) + b) > 1− ξi , i = 1, · · · , l . (2.3.3)

On the other hand, in order to make the above violation as little as possible,
avoid making ξi too large by superimposing a penalty upon them in the objec-

tive function. For instance, we can add a term
∑

i

ξi to the objective function

resulting in changing the primal problem (2.2.8)∼(2.2.9) into

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (2.3.4)

s. t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (2.3.5)

ξi > 0 , i = 1, · · · , l , (2.3.6)

where ξ = (ξ1, · · · , ξl)T, and C > 0 is a penalty parameter. The two terms
in the objective function (2.3.4) indicate that we not only minimize ‖w‖2

(maximize the margin), but also minimize

l∑

i=1

ξi, which is a measurement of

violation of the constraints yi((w · xi) + b) > 1, i = 1, · · · , l. The parameter C
determines the weighting between the two terms.
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Thus we obtain an algorithm with soft margin which is an improved version
of Algorithm 2.2.2 and can be described briefly as follows.

Algorithm 2.3.1 (Linear maximal margin method) Solve the primal problem
(2.3.4)∼(2.3.6), obtaining a solution (w∗, b∗, ξ∗). Then construct the separat-
ing hyperplane and the corresponding decision function f(x) = sgn(g(x)),
where g(x) = (w∗ · x) + b∗.

2.3.1.2 Properties of the maximal margin method

As the decision function is determined by the part (w∗, b∗) of the solution
(w∗, b∗, ξ∗) to the primal problem (2.3.4)∼(2.3.6), the main issue that concerns
us is this part. According to Definition 1.2.13 (in Chapter 1), consider the
solutions to the primal problem w.r.t. (w, b) and w.r.t. w and b.

Theorem 2.3.2 There exist solutions to the primal problem (2.3.4)∼(2.3.6)
w.r.t. (w, b).

Proof Similar to the proof of Theorem 2.2.3, take arbitrary w̃, b̃, and con-
struct ξ̃ = (ξ̃1, · · · , ξ̃l)T by

ξ̃i = max{1− yi((w̃ · xi) + b̃), 0}. (2.3.7)

It is easy to see that (w̃, b̃, ξ̃) is a feasible point of the primal problem. Fur-
thermore we can construct an optimization problem which is equivalent to the
primal problem (2.3.4)∼(2.3.6):

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (2.3.8)

s. t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (2.3.9)

ξi > 0 , i = 1, · · · , l , (2.3.10)

1

2
‖w‖2 + C

l∑

i=1

ξi 6
1

2
‖w̃‖2 + C

l∑

i=1

ξ̃i, (2.3.11)

and now it is easy to show the existence of its solutions. The details are omitted
here. �

Theorem 2.3.3 The solution w∗ of the primal problem (2.3.4)∼(2.3.6) w.r.t.
w is unique.

Proof The conclusion is true immediately from Theorem 1.2.15 in Chapter 1.
�

Remark 2.3.4 It is different from the situation for linearly separable prob-
lems and possible that the solution w∗ to the primal problem w.r.t. w may be
zero. So we may be unable to construct the separating hyperplane and decision
function in this way theoretically. However, in practical applications this pos-
sibility is nearly zero, which is why we would not go further. Readers who are
interested in the details can refer to [121].
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The following counterexample shows that the solution to primal problem
w.r.t. b may not be unique which is different from that of primal problem for
linearly separable problems.

Example 2.3.5 Consider a classification problem in R (one dimensional
space). Suppose the training set is

T = {(x1, y1), (x2, y2)} = {(−1,−1), (1, 1)} . (2.3.12)

Choose a penalty parameter C <
1

2
and the primal problem is

min
w,b,ξ

1

2
‖w‖2 + C(ξ1 + ξ2), (2.3.13)

s. t. w − b > 1− ξ1, (2.3.14)

w + b > 1− ξ2, (2.3.15)

ξ1, ξ2 > 0. (2.3.16)

Find the solutions of the above problem w.r.t. b.

Introduce the corresponding Lagrange function:

L(w, b, ξ, α, η)=
1

2
‖w‖2 + C(ξ1 + ξ2) + α1(1− ξ1 − w + b)

+α2(1− ξ2 − w − b)− η1ξ1 − η2ξ2. (2.3.17)

Then we find w, b, ξ = (ξ1, ξ2)
T and α = (α1, α2)

T, η = (η1, η2)
T satisfying

KKT conditions. The KKT conditions are as follows:

1− ξ1 − w + b 6 0, 1− ξ2 − w − b 6 0, −ξ1 6 0, −ξ2 6 0, (2.3.18)

α1 > 0, α2 > 0, η1 > 0, η2 > 0, (2.3.19)

α1(1 − ξ1 − w + b) = 0, α2(1− ξ2 − w − b) = 0, η1ξ1 = 0,

η2ξ2 = 0, (2.3.20)

∇wL = w − α1 − α2 = 0, ∇bL = α1 − α2 = 0, (2.3.21)

∇ξ1L = C − α1 − η1 = 0, ∇ξ2L = C − α2 − η2 = 0, (2.3.22)

Obviously, these conditions imply that

α1 = α2, η1 = η2. (2.3.23)

Hence what we need now is to find all the solutions that satisfy conditions
(2.3.18)∼(2.3.22) according to three different cases:

(i) Case of η1 = η2 6= 0, α1 = α2 6= 0. In this case, we immediately have

ξ1 = ξ2 = 0, b = 0, w = 1, α1 = α2 =
1

2
, η1 = C − 1

2
< 0. But the solution

dose not exist since the last expression contradicts (2.3.19).
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(ii) Case of η1 = η2 6= 0, α1 = α2 = 0. In this case, we have w = 0, η1 =
η2 = C, ξ1 = ξ2 = 0, 1 + b 6 0, 1 − b 6 0. The last two expressions are in
contradiction with each other and so we have still no solutions.

(iii) Case of η1 = η2 = 0. In this case, we have

w = 2C, α1 = α2 = C, η1 = η2 = 0, b ∈ [ b, b ],

ξ1 = 1− 2C + b, ξ2 = 1− 2C − b, (2.3.24)

where b = −1 + 2C, b = 1 − 2C. According to Theorem 1.2.9 in Chapter 1
we know that the set of solutions w.r.t. b is the close interval [b, b̄] = [−1 +
2C, 1− 2C].

Theorem 2.3.6 The solution set to the primal problem (2.3.4)∼(2.3.6) w.r.t.
b is a bounded close interval [ b, b ], where b 6 b.

Proof According to Theorem 2.3.2, we know that the solution set to the prob-
lem (2.3.4)∼(2.3.6) w.r.t. b is not empty. And Theorem 1.2.9 shows that the
solution set forms a convex set. This leads to the solution set being bounded
at close interval since the solutions w.r.t. b are bounded. �

2.3.2 Linear C-support vector classification

The basic idea of linear support vector classification is finding the solution
to the primal problem (2.3.4)∼(2.3.6) by means of solving its dual problem.

2.3.2.1 Relationship between the primal and dual problems

Firstly we introduce the dual problem. The Lagrange function correspond-
ing to the primal problem (2.3.4)∼(2.3.6) is:

L(w, b, ξ, α, β) =
1

2
‖w‖2+C

l∑

i=1

ξi−
l∑

i=1

αi(yi((w ·xi)+ b)− 1+ ξi)−
l∑

i=1

βiξi ,

(2.3.25)
where α = (α1, · · · , αl)T and β = (β1, · · · , βl)T are Lagrange multiplier vec-
tors. Then we have the following theorem.

Theorem 2.3.7 Optimization problem

max
α,β

−1

2

l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj) +
l∑

j=1

αj , (2.3.26)

s. t.

l∑

i=1

yiαi = 0 , (2.3.27)

C − αi − βi = 0, i = 1, · · · , l , (2.3.28)

αi > 0, i = 1, · · · , l , (2.3.29)

βi > 0, i = 1, · · · , l (2.3.30)

is the dual problem of the primal problem (2.3.4)∼(2.3.6).
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Proof It is similar to the proof of Theorem 2.2.6. Also it is a special case of
Theorem 4.1.1 in Chapter 4. The details are omitted here. �

Theorem 2.3.8 Dual problem (2.3.26)∼(2.3.30) has solutions.

Proof It is similar to the proof of Theorem 2.2.7 and the details are omitted
here. �

Dual problem (2.3.26)∼(2.3.30) can be simplified to a problem only for
a single variable α by eliminating the variable β and then rewritten as a
minimization problem:

min
α

1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj −
l∑

j=1

αj , (2.3.31)

s. t.

l∑

i=1

yiαi = 0 , (2.3.32)

0 6 αi 6 C, i = 1, · · · , l . (2.3.33)

Theorem 2.3.9 Suppose that α∗ = (α∗
1, · · · , α∗

l )
T is any solution to the con-

vex quadratic program (2.3.31)∼(2.3.33). If there exists a component of α∗,
α∗
j , such that α∗

j ∈ (0, C), then a solution (w∗, b∗) to the primal problem
(2.3.4)∼(2.3.6) w.r.t. (w, b) can be obtained by

w∗ =
l∑

i=1

α∗
i yixi , (2.3.34)

b∗ = yj −
l∑

i=1

α∗
i yi(xi · xj). (2.3.35)

Proof We omit the details as there is a special case of Theorem 4.1.3 later.
�

2.3.2.2 Linear C-support vector classification

Now we can establish an algorithm according to Theorem 2.3.9 as follows:

Algorithm 2.3.10 (Linear C-support vector classification, Linear C-SVC)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Choose an appropriate penalty parameter C > 0;
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(3) Construct and solve the convex quadratic program

min
α

1

2

l∑

i=1

l∑

j=1

yiyj(xi · xj)αiαj −
l∑

j=1

αj , (2.3.36)

s. t.

l∑

i=1

yiαi = 0 , (2.3.37)

0 6 αi 6 C, i = 1, · · · , l , (2.3.38)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b∗: choose a component of α∗, α∗
j ∈ (0, C) and compute

b∗ = yj −
l∑

i=1

yiα
∗
i (xi · xj); (2.3.39)

(5) Construct the decision function

f(x) = sgn(g(x)), (2.3.40)

where

g(x) =

l∑

i=1

yiα
∗
i (xi · x) + b∗. (2.3.41)

Algorithm 2.3.10 can be used for general classification problems including
linearly separable problems. So both Algorithm 2.3.10 and Algorithm 2.2.10
(linear separable support vector classification) are able to deal with linear
separable problems. Now for these kinds of problems, we compare their per-
formance. Theoretically, it is not difficult to see that when the parameter
C → ∞, the primal problem (2.3.4)∼(2.3.6) will be reduced to the primal
problem (2.2.8)∼(2.2.9) for linearly separable problems. In fact the advantage
of Algorithm 2.3.10 will be given from theoretical point of view in Section
5.6.3 in Chapter 5. In this case, the two algorithms can be deemed the same.
However, the primal problems associated with the two algorithms, problems
(2.3.4)∼(2.3.6) and (2.2.8)∼(2.2.9), are not usually the same. So that, gener-
ally speaking, the decision functions obtained from the two algorithms would
be different. The decision functions resulting in using Algorithm 2.2.10 are
not necessarily better although it is designed particularly for these kinds of
problems. One of the reasons is due to the case when the training set contains
a few “wild points” which may be marked wrongly and will affect the resulting
hyperplane seriously. But Algorithm 2.3.10 can overcome this shortcoming to
a certain extent.
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Chapter 3

Linear Regression

Now we turn to the linear regression problems. The linear support vector
regression is established by converting the linear regression problems to the
linear classification problems.

3.1 Regression Problems and Linear Regression Prob-
lems

Similar to classification problems, regression problems consist of finding
a real function, for a given training set T: T = {(x1, y1), · · · , (xl, yl)}, where
xi ∈ Rn is an input, and yi ∈ Y = R is an output, i = 1, · · · , l. Rather than
just Y = {−1, 1} in classification problems, Y is generalized to the real set
in regression problems. Correspondingly, the goal of regression problems is to
derive the real value of an output y for any input x, based on a training set
T.

A regression problem can be formalized as follows.
Regression problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (3.1.1)

where xi ∈ Rn, yi ∈ Y = R, i = 1, · · · , l, find a real function g(x) in Rn, to
derive the value of y for any x by the function y = g(x).

The above problem is defined in the n-dimensional space. In order to ex-
plain it graphically, Figure 3.1 shows an example in one-dimensional space,
where the training points are represented by “×”. Geometrically, our goal is
to find a curve y = g(x) that fits the given points.

Particularly, when the function g(x) is restricted to be a linear function

y = g(x) = (w · x) + b, (3.1.2)

the corresponding problem is defined as the linear regression problem.
Linear regression problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (3.1.3)

63
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FIGURE 3.1: A regression problem in R.

where xi ∈ Rn, yi ∈ Y = R, i = 1, · · · , l, find a real function g(x) = (w ·x) + b
in Rn, to derive the value of y for any x by the function y = g(x).

Geometrically, a linear regression problem in n-dimensional space corre-
sponds to find a hyperplane in (n+1)-dimensional space for a given set (3.1.3),
since a linear function defined in n-dimensional space is equivalent to a hyper-
plane in the Rn×R. Figure 3.2 shows a simple case in one-dimensional space.
Roughly speaking, for the given points (“×”), our goal is to find a straight
line with a small “deviation” from these points. This leads to the following
definition of hard ε̄-band hyperplane.

FIGURE 3.2: A linear regression problem in R.
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3.2 Hard ε̄-Band Hyperplane

3.2.1 Linear regression problem and hard ε̄-band hyperplane

In order to solve regression problems, firstly we introduce the definitions
of ε̄-band and hard ε̄-band hyperplane.

Definition 3.2.1 (ε̄-band of a hyperplane) For a given ε̄ > 0, the ε̄-band of a
hyperplane y = (w ·x)+ b is the set {(x, y)|(w ·x)+ b− ε̄ < y < (w ·x)+ b+ ε̄},
i.e. the region between two parallel hyperplanes: y = (w · x) + b − ε̄ and y =
(w · x) + b+ ε̄.

Notice that the region in the above definition is open, i.e. it does not
contain the points (x, y) satisfying

(w · x) + b− ε̄ = y and (w · x) + b+ ε̄ = y. (3.2.1)

Definition 3.2.2 (Hard ε̄-band hyperplane) For a given ε̄ > 0 and a training
set T defined by (3.1.3), we say that a hyperplane y = (w · x) + b is the hard
ε̄-band hyperplane for the training set T, if all the training points are inside
its ε̄-band, i.e. the hyperplane y = (w · x) + b satisfies that

−ε̄ < yi − ((w · xi) + b) < ε̄ , i = 1, · · · , l. (3.2.2)

Figure 3.3 shows an example of a hard ε̄-band hyperplane in a linear regres-
sion problem. “×” represents the training points, and the solid line represents
the hyperplane (straight line) y = (w · x) + b. The region between two dashed
lines is the ε̄-band of the hyperplane y = (w · x) + b. Obviously, all of train-
ing points are inside this tube, so the hyperplane is so-called a hard ε̄-band
hyperplane.

Now we consider the hard ε̄-band hyperplane for any training set (3.1.3).
When ε̄ is large enough, there always exists a hard ε̄-band hyperplane, since
the number of the training points is limited. And the value of ε̄ corresponding
to a hard ε̄-band hyperplane should not be so small, it should be larger than
the optimal value εinf of the following optimization problem:

min
w,b,ε̄

ε̄ , (3.2.3)

s.t. −ε̄ 6 yi − ((w · xi) + b) 6 ε̄ , i = 1, · · · , l . (3.2.4)

Obviously, there are two possibilities for a given ε̄ > 0: (i) if ε̄ > εinf , then the
hard ε̄-band hyperplanes exist, and not uniquely; (ii) if ε̄ ≤ εinf , then there
does not exist any hard ε̄-band hyperplane.

Roughly speaking, for a given training set T , when there exists a hard
ε̄-band hyperplane for a small ε̄, it is reasonable to choose this hyperplane as
the solution to the linear regression problem. Therefore our following work is
to construct a hard ε̄-band hyperplane.
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FIGURE 3.3: A hard ε̄-band hyperplane (line) in R.

3.2.2 Hard ε̄-band hyperplane and linear classification

In this section, we try to construct a hard ε̄-tube hyperplane using the
classification method. Figure 3.4 shows the idea of converting the construction
of a hard ε̄-band hyperplane to a classification problem. Consider a linear
regression problem in R. Suppose that the training set is {A1, A2, · · · , A7}
represented by “×”. For a given ε̄ > 0 and i = 1, · · · , 7, the following steps
can help us find a hard ε̄-band hyperplane. Firstly, we move the points Ai up
and down with the distance of ε̄, and obtain the points A+

i and A−
i . Secondly,

we join A+
i to A−

i , and obtain line segments A+
i A

−
i just as shown by the

dashed lines in Figure 3.4. These line segments are open. Lastly, any line that
passes through these open line segments is a hard ε̄-band hyperplane. This
implies that the line separating the two class points {A+

1 , A
+
2 , · · · , A+

7 } and
{A−

1 , A
−
2 , · · · , A−

7 } correctly is just what we want. So, we find the relationship
between constructing a hard ε̄-band hyperplane and linear classification.

According to the above discussion, we construct two classes based on the
training set (3.1.3) by adding and subtracting ε̄ to y of every training points,
and obtain two sets of the positive and negative points respectively:

D+= {(xTi , yi + ε̄)T, i = 1, · · · , l} , (3.2.5)

D−= {(xTi , yi − ε̄)T, i = 1, · · · , l} . (3.2.6)

Then, the training set for classification is

{((xT1 , y1 + ε̄)T, 1), · · · , ((xTl , yl + ε̄)T, 1), ((xT1 , y1 − ε̄)T,−1), · · · ,
((xTl , yl − ε̄)T,−1)}, (3.2.7)

where (xTi , yi + ε̄)T or (xTi , yi − ε̄)T represents the input, and the last com-
ponent, 1 or −1, represents the output. The problem of constructing a hard
ε̄-band hyperplane is equivalent to linearly separating the above training sets
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FIGURE 3.4: Demonstration of constructing a hard ε̄-band hyperplane
(line) in R.

(3.2.7). In fact, the following theorem depicts the relationship between these
two problems.

Theorem 3.2.3 For a given training set (3.1.3) and ε̄ > 0, a hyperplane
y = (w · x) + b is a hard ε̄-band hyperplane if and only if the sets D+ and D−

defined by (3.2.5)∼(3.2.6) locate on both sides of this hyperplane respectively,
and all of the points in D+ and D− do not touch this hyperplane.

Proof For a given ε̄ > 0, if a hyperplane y = (w · x) + b is a hard ε̄-band
hyperplane, then by Definition 3.2.2, we have

−ε̄ < yi − ((w · xi) + b) < ε̄ , i = 1, · · · , l. (3.2.8)

This implies

yi + ε̄ > (w · xi) + b > yi − ε̄, i = 1, · · · , l, (3.2.9)

so the sets D+ and D− locate on both sides of this hyperplane respectively,
and all of the points do not touch this hyperplane.

Conversely, if the sets D+ and D− locate on both sides of this hyperplane,
and all of the points do not touch it, then (3.2.9) holds. Furthermore, (3.2.9)
is equivalent to (3.2.8). So the hyperplane y = (w · x) + b is a hard ε̄-band
hyperplane. �

As discussed before, in order to solve a regression problem with the train-
ing set (3.1.3), it is reasonable to find a hard ε̄-band hyperplane. According to
Theorem 3.2.3, we know that constructing a hard ε̄-tube hyperplane is equiv-
alent to constructing a separating hyperplane for the training set (3.2.7). This
provides us a way of transforming a regression problem to a classification
problem.
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3.2.3 Optimization problem of constructing a hard ε-band
hyperplane

In this section, we consider how to construct a hard ε̄-band hyperplane.
It is easy to see that there exist a lot of hard ε̄-tube hyperplanes for the case
of ε̄ > εinf , where εinf is the optimal value of the problem (3.2.3)∼(3.2.4).
However, which one is the best? Theorem 3.2.3 shows that the better the hard
ε̄-band hyperplane, the better the separating hyperplane with the training set
(3.2.7). So, we can construct a hard ε̄-band hyperplane using the classification
method. Specifically, when ε̄ > εinf , we can derive the optimization problem
of constructing a hard ε̄-band hyperplane, according to the maximal margin
method for a linearly separable problem.

Note that the classification problem is in Rn+1. Assume that the hyper-
plane is (w · x) + ηy + b = 0, where the normal vector is (wT, η)T, w ∈ Rn

corresponds to x, and η ∈ R corresponds to y. Similar to the problem
(2.2.3)∼(2.2.5), we get the following quadratic programming problem w.r.t.
(w, η, b)

min
w,η,b

1

2

∥∥w
∥∥2 + 1

2
η2 , (3.2.10)

s.t. (w · xi) + η(yi + ε̄) + b > 1 , i = 1, · · · , l , (3.2.11)

(w · xi) + η(yi − ε̄) + b 6 −1 , i = 1, · · · , l . (3.2.12)

Then the separating hyperplane is

(w̄ · x) + η̄y + b̄ = 0, (3.2.13)

where (w̄, η̄, b̄) is the solution to the problem (3.2.10)∼(3.2.12). At last, the
regression function is

y = (w∗ · x) + b∗, (3.2.14)

where

w∗ = − w̄
η̄
, b∗ = − b̄

η̄
. (3.2.15)

The above discussion provides a way to find a linear regression func-
tion. Firstly, we construct the problem (3.2.10)∼(3.2.12) and get its solution
(w̄, η̄, b̄); Next, we compute (w∗, b∗) using (3.2.15). However, the following way
is more direct: construct an optimization problem that (w∗, b∗) should satisfy
and get its solution. The following theorem will tell us what this problem is,
when η̄ of the solution (w̄, η̄, b̄) to the problem (3.2.10)∼(3.2.12) is given.

Theorem 3.2.4 Suppose that (w̄, b̄, η̄) is the solution to the problem
(3.2.10)∼(3.2.12), then η̄ 6= 0. Furthermore, let

ε = ε̄− 1

η̄
, (3.2.16)

then
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(i) ε satisfies
εinf 6 ε < ε̄, (3.2.17)

where εinf is the optimal value of the problem (3.2.3)∼(3.2.4);

(ii) (w∗, b∗) =

(
− w̄
η̄
,− b̄

η̄

)
is the solution to the following problem:

min
w,b

1

2
‖w‖2 , (3.2.18)

s.t. (w · xi) + b− yi 6 ε , i = 1, · · · , l , (3.2.19)

yi − (w · xi)− b 6 ε , i = 1, · · · , l (3.2.20)

Proof Firstly, we prove η̄ 6= 0. In fact, if η̄ = 0, there does not exist (w̄, b̄)
such that (w̄, b̄, 0) satisfies the constraints of the problem (3.2.10)∼(3.2.12).

Secondly, we prove the conclusion (i). On one hand, since the solution
(w̄, b̄, η̄) satisfies the constraints (3.2.11) and (3.2.12), we have

(w̄ · xi) + η̄(yi + ε̄) + b̄ > 1 , (3.2.21)

(w̄ · xi) + η̄(yi − ε̄) + b̄ 6 −1. (3.2.22)

From the above two equations, we have η̄ >
1

ε̄
> 0. So, ε = ε̄− 1

η̄
< ε̄. On the

other hand, if ε < εinf , then (w∗, b∗) =

(
− w̄
η̄
,− b̄

η̄

)
satisfies the constraints

(3.2.19)∼(3.2.20), which contradicts the definition of εinf .
Lastly, we prove the conclusion (ii). Let the variable η in the problem

(3.2.10)∼(3.2.12) be η̄, then the problem with the variable (w̃, b̃) is derived

min
w̃,b̃

1

2

∥∥w̃
∥∥2 + 1

2
η̄2 , (3.2.23)

s.t. (w̃ · xi) + η̄(yi + ε̄) + b̃ > 1 , i = 1, · · · , l , (3.2.24)

(w̃ · xi) + η̄(yi − ε̄) + b̃ 6 −1 , i = 1, · · · , l . (3.2.25)

Obviously, (w̄, b̄) is the solution to this problem. Introducing the variables

w = − w̃
η̄
, b = − b̃

η̄
, the problem (3.2.23)∼(3.2.25) can be rewritten as

(3.2.18)∼(3.2.20). So, (w∗, b∗) =

(
− w̄
η̄
,− b̄

η̄

)
is the solution to the problem

(3.2.18)∼(3.2.20). �

According to the above theorem, in order to get a linear regression function,
we only need to solve the problem (3.2.18)∼(3.2.20) and do not need to solve
the problem (3.2.10)∼(3.2.12), where ε > 0 is a pre-selected parameter less
than ε̄. So, one reasonable way is: (i) choose the parameter ε, construct the
problem (3.2.18)∼(3.2.20); (ii) solve the problem (3.2.18)∼(3.2.20); (iii) find
the linear regression function: y = (w∗ · x) + b∗, where (w∗, b∗) is the solution
to the problem (3.2.18)∼(3.2.20).
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3.3 Linear Hard ε-band Support Vector Regression

The goal of this section is to find the linear hard ε-band support vector
regression machine for the training set (3.1.3).

3.3.1 Primal problem

The primal problem is the problem (3.2.18)∼(3.2.20) introduced in Section
3.2:

min
w,b

1

2
‖w‖2 , (3.3.1)

s.t. (w · xi) + b− yi 6 ε , i = 1, · · · , l , (3.3.2)

yi − (w · xi)− b 6 ε , i = 1, · · · , l . (3.3.3)

For the problem (3.3.1)∼(3.3.3), we have the following theorem:

Theorem 3.3.1 Suppose that εinf is the optimal value of the following prob-
lem:

min
w,b,ε

ε , (3.3.4)

s.t. −ε 6 yi − ((w · xi) + b) 6 ε , i = 1, · · · , l, (3.3.5)

if ε > εinf , then the primal problem (3.3.1)∼(3.3.3) has solutions, and the
solution w.r.t. w is unique.

Proof If ε > εinf , then the feasible set of the problem (3.3.1)∼(3.3.3) is
nonempty, bounded and closed. This problem has solutions since a continuous
function can attain its minimum in a nonempty, bounded and closed set. And
Theorem 1.2.15 shows that the solution w.r.t. w is unique. �

It is not necessarily true that the solution to the primal problem
(3.3.1)∼(3.3.3) w.r.t. b is unique. In fact, when ε is large enough, there exist
many b∗ with different values, such that (w∗, b∗) = (0, b∗) are the solutions.
This shows that the solution to the primal problem w.r.t. b is not unique.

3.3.2 Dual problem and relationship between the primal and
dual problems

In this section, we start by a derivation of the dual problem of the primal
problem (3.3.1)∼(3.3.3), followed by developing the relationship between these
two problems.
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In order to derive the dual problem, we introduce the Lagrange function

L(w, b, α(∗)) =
1

2
‖w‖2−

l∑

i=1

αi(ε+yi−(w ·xi)−b)−
l∑

i=1

α∗
i (ε−yi+(w ·xi)+b) ,

(3.3.6)
where α(∗) = (α1, α

∗
1, · · · , αl, α∗

l )
T ∈ R2l is the Lagrange multipliers vector,

and (∗) is a shorthand implying both the vector with and without asterisks.
We have the following theorems.

Theorem 3.3.2 Optimization problem

max
α(∗)∈R2l

−1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)− ε

l∑

i=1

(α∗
i + αi)

+

l∑

i=1

yi(α
∗
i − αi) , (3.3.7)

s.t.

l∑

i=1

(α∗
i − αi) = 0 , (3.3.8)

α
(∗)
i > 0, i = 1, · · · , l (3.3.9)

is the dual problem of the primal problem (3.3.1)∼(3.3.3)

Proof According to Definition 1.2.16 in Chapter 1, the dual problem
should have a form of

max g(α(∗)) = inf
w,b

L(w, b, α(∗)), (3.3.10)

s.t. α(∗) > 0. (3.3.11)

As L(w, b, α(∗)) is a strictly convex quadratic function of w, its minimal value
is achieved at w satisfying

∇wL(w, b, α
(∗)) = w −

l∑

i=1

(α∗
i − αi)xi = 0, (3.3.12)

that is

w =

l∑

i=1

(α∗
i − αi)xi. (3.3.13)

Substituting the above in (3.3.6) yields

inf
w
L(w, b, α(∗))=−1

2

l∑

i=1

l∑

j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)− ε

l∑

i=1

(α∗
i + αi)

+
l∑

i=1

yi(α
∗
i − αi)− b

(
l∑

i=1

(α∗
i − αi)

)
. (3.3.14)
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Therefore,

inf
w,b

L(w, b, α(∗)) =






−1

2

l∑

i=1

l∑

j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)

−ε
l∑

i=1

(α∗
i +αi)+

l∑

i=1

yi(α
∗
i −αi)

if

l∑

i=1

(α∗
i − αi) = 0;

−∞, otherwise.
(3.3.15)

Hence the problem (3.3.10)∼(3.3.11) can be written as (3.3.7)∼(3.3.9). �

Theorem 3.3.3 If ε > εinf , then the dual problem (3.3.7)∼(3.3.9) has a
solution, where εinf is the optimal value of the problem (3.3.4)∼(3.3.5).

Proof If ε > εinf , then the primal problem (3.3.1)∼(3.3.3) has a solution
by Theorem 3.3.1. Furthermore, note that the primal problem is a convex
programming and its constraints contain linear inequalities only, so it satisfies
the Slater’s condition. Hence its dual problem (3.3.7)∼(3.3.9) has a solution
according to Theorem 1.2.21 in Chapter 1. �

In this book, the problem (3.3.7)∼(3.3.9) is replaced by its equivalent
minimization problem:

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (3.3.16)

s.t.
l∑

i=1

(α∗
i − αi) = 0 , (3.3.17)

α
(∗)
i > 0, i = 1, · · · , l. (3.3.18)

Note that the minimization problem (3.3.16)∼(3.3.18) has the same solution
set as that to the maximization dual problem (3.3.7)∼(3.3.9) and is often also
called the dual problem of the problem (3.3.1)∼(3.3.3).

Theorem 3.3.4 Optimization problem (3.3.16)∼(3.3.18) is a convex quadratic
programming.

Proof It is similar to the proof of Theorem 2.2.8 in Chapter 2; the details
are omitted here. �
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Theorem 3.3.5 For any solution to the problem (3.3.16)∼(3.3.18), ᾱ(∗) =
(ᾱ1, ᾱ

∗
1, · · · , ᾱl, ᾱ∗

l )
T, if ᾱ(∗) 6= 0, the solution to the primal problem

(3.3.1)∼(3.3.3), (w̄, b̄), can be obtained in the following way

w̄ =

l∑

i=1

(ᾱ∗
i − ᾱi)xi , (3.3.19)

and for any nonzero component ᾱj > 0 of ᾱ(∗),

b̄ = yj − (w̄ · xj) + ε , (3.3.20)

or for any nonzero component ᾱ∗
k > 0 of ᾱ(∗),

b̄ = yk − (w̄ · xk)− ε . (3.3.21)

Proof Firstly we show that, for w̄ given by (3.3.19), there exists a b̃
such that (w̄, b̃) is the solution to the problem (3.3.1)∼(3.3.3). Let H = ((xi ·
xj))l×l, y = (y1, · · · , yl)T, e = (1, · · · , 1)T ∈ Rl, the problem (3.3.16)∼(3.3.18)
can be rewritten as

min
α(∗)∈R2l

1

2
(α∗ − α)TH(α∗ − α) + εeT(α∗ + α)− yT(α∗ − α) , (3.3.22)

s.t. eT(α∗ − α) = 0 , (3.3.23)

α(∗) > 0 . (3.3.24)

Using the above theorem, this problem is a convex programming. In addition,
it satisfies the Slater’s condition. Accordingly, if ᾱ(∗) is a solution to the prob-
lem (3.3.16)∼(3.3.18), it yields from Theorem 1.2.23 (in Chapter 1) that there
exists a multiplier b̃ and a multiplier vector s̄(∗) such that

eT(ᾱ∗ − ᾱ) = 0, ᾱ(∗) > 0, (3.3.25)

H(ᾱ∗ − ᾱ) + εe− y + b̃e− s̄∗ = 0, (3.3.26)

−H(ᾱ∗ − ᾱ) + εe+ y − b̃e− s̄ = 0, (3.3.27)

s̄(∗) > 0, s̄(∗)
T

ᾱ(∗) = 0. (3.3.28)

Therefore, from (3.3.26)∼(3.3.28), we have

H(ᾱ∗ − ᾱ)− y + b̃e > −εe, (3.3.29)

−H(ᾱ∗ − ᾱ) + y − b̃e > −εe. (3.3.30)

From (3.3.19), that is equivalent to the following:

((w̄ · xi) + b̃)− yi 6 ε , i = 1, · · · , l, (3.3.31)

yi − ((w̄ · xi) + b̃) 6 ε , i = 1, · · · , l (3.3.32)

which implies that (w̄, b̃) is a feasible solution to the primal problem
(3.3.1)∼(3.3.3).
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Furthermore, from (3.3.26)∼(3.3.28), we have

−1

2
‖w̄‖2=−1

2
‖w̄‖2 + ᾱ∗T(H(ᾱ∗ − ᾱ) + εe− y + b̃e− s̄∗)

+ᾱT(−H(ᾱ∗ − ᾱ) + εe+ y − b̃e− s̄) (3.3.33)

=
1

2
(ᾱ∗ − ᾱ)TH(ᾱ∗ − ᾱ) + εeT(ᾱ∗ + ᾱ)− yT(ᾱ∗ − ᾱ).(3.3.34)

This shows that the objective function’s value of the primal problem at the
point (w̄, b̃) is equal to the optimal value of its dual problem and therefore
(w̄, b̃) is the optimal solution to the primal problem (3.3.1)∼(3.3.3), according
to Corollary 1.2.19 in Chapter 1.

Finally, we show that (w̄, b̄) obtained by (3.3.19) and (3.3.20) or (3.3.21)
is the solution to the primal problem. It is sufficient to show b̄ = b̃. Actually,
ᾱ(∗) 6= 0 implies that there exists nonzero component ᾱj > 0 or ᾱ∗

k > 0. It
yields from (3.3.26)∼(3.3.28) that

b̃ = yj − (w̄ · xj) + ε ; (3.3.35)

or
b̃ = yk − (w̄ · xk)− ε . (3.3.36)

So b̄ = b̃. �

3.3.3 Linear hard ε-band support vector regression

Based on Theorem 3.3.5, the following algorithm is established.

Algorithm 3.3.6 (Linear hard ε-band support vector regression)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
R, i = 1, · · · , l;
(2) Choose the parameter ε > 0;

(3) Construct and solve the convex quadratic programming

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (3.3.37)

s.t.

l∑

i=1

(α∗
i − αi) = 0 , (3.3.38)

α
(∗)
i > 0, i = 1, · · · , l , (3.3.39)

obtaining a solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;
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(4) Compute w̄ =
l∑

i=1

(ᾱ∗
i−ᾱi)xi. Choose a positive component of ᾱ(∗), ᾱj > 0,

then compute
b̄ = yj − (w̄ · xj) + ε ; (3.3.40)

Or choose a positive component of ᾱ(∗), ᾱ∗
k > 0, then compute

b̄ = yk − (w̄ · xk)− ε ; (3.3.41)

(5) Construct the regression function y = g(x) = (w̄ ·x)+ b̄ =
l∑

i=1

(ᾱ∗
i − ᾱi)(xi ·

x) + b̄ .

The above algorithm is called linear hard ε-band support vector regression,
which corresponds to linear hard margin support vector classification (Algo-
rithm 2.2.2) in Chapter 2.

Definition 3.3.7 (Support vector) Suppose that ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T

is a solution to the dual problem (3.3.37)∼(3.3.39) obtained by Algorithm
3.3.6. The input (xi, yi) is said to be a support vector if the corresponding
component ᾱi or ᾱ

∗
i is nonzero, otherwise it is a nonsupport vector.

Support vectors are determined by the solutions to problem (3.3.37)∼(3.3.39).
The following theorem deals with the case where some components of the
solution are zero.

Theorem 3.3.8 Suppose that ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is the solution to

problem (3.3.37)∼(3.3.39), for i = 1, · · · , l, there exists only one nonzero com-
ponent between ᾱi and ᾱ

∗
i .

Proof By the KKT condition of the problem (3.3.37)∼(3.3.39), there exist
the Lagrange multipliers b̄ and s̄(∗) such that




l∑

j=1

(ᾱ∗
j − ᾱj)xj · xi



+ ε− yi + b̄− s̄∗i = 0, i = 1, · · · , l, (3.3.42)

−




l∑

j=1

(ᾱ∗
j − ᾱj)xj · xi


+ ε+ yi − b̄− s̄i = 0, i = 1, · · · , l, (3.3.43)

s̄
(∗)
i > 0, s̄

(∗)
i ᾱ

(∗)
i = 0, i = 1, · · · , l. (3.3.44)

Consider the case ᾱi > 0, let w̄ =
l∑

j=1

(ᾱ∗
j − ᾱj)xj , then by (3.3.43)∼(3.3.44),

we have

ᾱi(ε+ yi − (w̄ · xi)− b̄) = 0, (3.3.45)
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so yi − (w̄ · xi)− b̄ = −ε. Furthermore, (3.3.42) and (3.3.44) yields that

ᾱ∗
i (ε− yi + (w̄ · xi) + b̄) = 2ᾱ∗

i ε = 0. (3.3.46)

Therefore ᾱ∗
i = 0. Similarly, we can obtain that ᾱi = 0, when ᾱ∗

i > 0. �

The following theorem provides the new interpretation of support vectors
geometrically.

Theorem 3.3.9 Suppose that ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is a solution to

the problem (3.3.37)∼ (3.3.39) solved by Algorithm 3.3.6, and y = (w̄ · x) + b̄
is the regression function obtained by Algorithm 3.3.6. If ε > εinf, where εinf
is the optimal value of the problem (3.3.4)∼(3.3.5), then

(i) All support vectors are on the boundary of the ε-band of hyperplane
y = (w̄ · x) + b̄;

(ii) All nonsupport vectors are inside or on the boundary of the ε-band of
hyperplane y = (w̄ · x) + b̄.

Proof To prove our conclusion, we only need to prove:
(i) If ᾱi > 0, ᾱ∗

i = 0 or ᾱi = 0, ᾱ∗
i > 0, then the corresponding point

(xi, yi) is on the boundary of the ε-band of hyperplane y = (w̄ · x) + b̄;
(ii) If ᾱi = ᾱ∗

i = 0, then the corresponding point (xi, yi) is inside or on
the boundary of the ε-band of hyperplane y = (w̄ · x) + b̄.

In fact, by the KKT condition of the problem (3.3.37)∼(3.3.39), there exist
the Lagrange multipliers b̄, s̄(∗) such that

(w̄ · xi) + ε− yi + b̄− s̄i
∗ = 0, i = 1, · · · , l, (3.3.47)

−(w̄ · xi) + ε+ yi − b̄− s̄i = 0, i = 1, · · · , l, (3.3.48)

s̄
(∗)
i > 0, s̄

(∗)
i α

(∗)
i = 0, i = 1, · · · , l, (3.3.49)

where w̄ =
l∑

j=1

(ᾱ∗
j − ᾱj)xj . Hence,

ᾱi(ε+ yi − (w̄ · xi)− b̄) = 0, i = 1, · · · , l, (3.3.50)

ᾱ∗
i (ε− yi + (w̄ · xi) + b̄) = 0, i = 1, · · · , l. (3.3.51)

Then the conclusions (i) and (ii) are derived from (3.3.50) and (3.3.51). �

3.4 Linear ε-Support Vector Regression

3.4.1 Primal problem

Similar to support vector classification, by introducing the slack variable
ξ(∗) = (ξ1, ξ

∗
1 , · · · , ξl, ξ∗l )T and penalty parameter C, the primal problem of
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linear ε-support vector regression machine can be written as:

min
w,b,ξ(∗)

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ), (3.4.1)

s.t. ((w · xi) + b)− yi 6 ε+ ξi , i = 1, · · · , l, (3.4.2)

yi − ((w · xi) + b) 6 ε+ ξ∗i , i = 1, · · · , l, (3.4.3)

ξ
(∗)
i > 0 , i = 1, · · · , l, (3.4.4)

where (∗) is a shorthand implying both the vector with and without asterisks.
This problem is a convex quadratic programming.

After obtaining the solution to the primal problem (3.4.1)∼(3.4.4),
(w̄, b̄, ξ̄(∗)), we construct the regression function:

y = g(x) = (w̄ · x) + b̄. (3.4.5)

Note that ξ̄(∗) in the solution (w̄, b̄, ξ̄(∗)) does not exist in the regression func-
tion. So the main issues are the solutions to the primal problem (3.4.1)∼(3.4.4)
w.r.t. (w, b).

Theorem 3.4.1 There exist solutions to the primal problem (3.4.1)∼(3.4.4)
w.r.t. (w, b), and the solution w.r.t. w is unique.

Proof It is similar to the proof of Theorem 3.3.1. The details are omitted
here. �

Remark 3.4.2 The solutions to the primal problem (3.4.1)∼(3.4.4) w.r.t.
(w, b) are not unique. In fact, when ε is large enough, (w̄, b̄, ξ̄(∗)) = (0, b̄, 0)
are solutions, where b̄ can take different values. Therefore, (w̄, b̄) = (0, b̄) are
solutions w.r.t. (w, b).

3.4.2 Dual problem and relationship between the primal and
dual problems

In order to derive the dual problem of the primal problem (3.4.1)∼(3.4.4),
we introduce Lagrange function

L(w, b, ξ(∗), α(∗), η(∗))=
1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi + yi − (w · xi)− b)

−
l∑

i=1

α∗
i (ε+ ξ∗i − yi + (w · xi) + b) , (3.4.6)
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where α(∗) = (α1, α
∗
1, · · · , αl, α∗

l )
T, η(∗) = (η1, η

∗
1 , · · · , ηl, η∗l )T are Lagrange

multiplier vectors.
The proof of the following Theorem 3.4.3 and Theorem 3.4.4 are omitted

here as they are the special cases of Theorem 4.1.5 and Theorem 4.1.6 later.

Theorem 3.4.3 Optimization problem

max
α(∗),η(∗)∈R2l

−1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj)− ε

l∑

i=1

(α∗
i + αi)

+
l∑

i=1

yi(α
∗
i − αi) , (3.4.7)

s.t.

l∑

i=1

(α∗
i − αi) = 0 , (3.4.8)

C − α
(∗)
i − η

(∗)
i = 0, i = 1, · · · , l, (3.4.9)

α
(∗)
i > 0, η

(∗)
i > 0 , i = 1, · · · , l (3.4.10)

is the dual problem of the primal problem (3.4.1)∼(3.4.4).

Theorem 3.4.4 Dual problem (3.4.7)∼(3.4.10) has solutions.

Dual problem (3.4.7)∼(3.4.10) can be simplified to a problem only for a
single variable α(∗) by eliminating the variable η(∗) and then rewritten as a
minimization problem:

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (3.4.11)

s.t.

l∑

i=1

(α∗
i − αi) = 0 , (3.4.12)

0 6 α
(∗)
i 6 C , i = 1, · · · , l. (3.4.13)

This problem is called the dual problem of the problem (3.4.1)∼(3.4.4) in the
later. We have following two theorems. Their proofs are omitted here, since
the former is obvious, and the latter is a special case of Theorem 4.1.7.

Theorem 3.4.5 Optimization problem (3.4.11)∼(3.4.13) is a convex quadratic
programming problem.
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Theorem 3.4.6 Suppose that ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is any solution to

the problem (3.4.11)∼(3.4.13). If there exists a component of ᾱ(∗), ᾱj ∈ (0, C)
or ᾱ∗

k ∈ (0, C), then a solution (w̄, b̄) to the primal problem (3.4.1)∼ (3.4.4)
w.r.t. (w, b) can be obtained by

w̄ =
l∑

i=1

(ᾱ∗
i − ᾱi)xi, (3.4.14)

b̄ = yj −
l∑

i=1

(ᾱ∗
i − ᾱi)(xi · xj) + ε, (3.4.15)

or

b̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)(xi · xk)− ε. (3.4.16)

3.4.3 Linear ε-support vector regression

Now we can establish an algorithm according to Theorem 3.4.6 as follows:

Algorithm 3.4.7 (Linear ε-support vector regression, Linear ε-SVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
R, i = 1, · · · , l;
(2) Choose an appropriate parameter ε and the penalty parameter C > 0;

(3) Construct and solve the convex quadratic program:

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(xi · xj) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (3.4.17)

s.t.

l∑

i=1

(αi − α∗
i ) = 0 , (3.4.18)

0 6 α
(∗)
i 6 C , i = 1, · · · , l , (3.4.19)

obtaining a solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Compute b̄: choose a component of ᾱ(∗) in the internal (0, C). If the com-
ponent is ᾱj ∈ (0, C), compute

b̄ = yj −
l∑

i=1

(ᾱ∗
i − ᾱi)(xi · xj) + ε ; (3.4.20)
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If the component is ᾱ∗
k ∈ (0, C), compute

b̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)(xi · xk)− ε ; (3.4.21)

(5) Construct the decision function

y = g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)(xi · x) + b̄ . (3.4.22)



Chapter 4

Kernels and Support Vector Machines

In this chapter, we generalize the linear support vector machine described in
Chapter 2 and Chapter 3 to nonlinear support vector machines, in which the
key step is introducing kernels.

4.1 From Linear Classification to Nonlinear Classifica-
tion

Linear support vector classification described in Chapter 2 is based on
linear classification, and linear support vector regression in Chapter 3 is also
derived from linear classification; therefore the first step from linear support
vector machine to nonlinear support vector machine is to generalize the linear
classification to nonlinear classification.

4.1.1 An example of nonlinear classification

Linear classification is obviously not suitable for some classification prob-
lems at hand, such as the classification problem containing 20 training points
in R2 shown in Figure 4.1. In this figure, “+” and “◦” represent the positive in-
puts corresponding to label yi = +1 and the negative inputs corresponding to
yi = −1 respectively. We can see that the appropriate separating line for this
problem seems a curve like an ellipse centered on the origin in the ([x]1,O[x]2)
plane, i.e, a nonlinear classification instead of the linear classification. How-
ever, how to obtain the separating ellipse? Because we have already had the
method searching for separating straight line, it is natural to try to apply it
to get the separating ellipse. Here the sticking point is whether the “curve
(ellipse)” can be transformed to a “straight line”. Obviously, the answer is
positive. In fact, considering the map x = Φ(x) from the points in the plane
[x]1O[x]2 to the points ([x]1, [x]2) in the plane [x]1O[x]2:

Φ :
[x]1 = [x]21 ,
[x]2 = [x]22 ,

(4.1.1)

81
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FIGURE 4.1: A nonlinear classification problem (a) In x-space; (b) In x-
space.

which maps the ellipse α[x]21 + β[x]22 − r2 = 0 in the plane [x]1O[x]2 to the
straight line α[x]1 + β[x]2 − r2 = 0 in the plane [x]1O[x]2, see Figure 4.1(a),
(b). Therefore, we only need to apply (4.1.1) to map the inputs of the training
points in the plane [x]1O[x]2 into the plane [x]1O[x]2 separately, then perform
the linear support vector classification to get the separating straight line in
the plane [x]1O[x]2, at last transform the separating line back into the plane
[x]1O[x]2, so the separating curve (ellipse) and the decision function we are
searching for can be obtained.

4.1.2 Classification machine based on nonlinear separation

The above example shows that in order to generalize the “linear separa-
tion” to “nonlinear separation”, only an appropriate map Φ is needed. Note
that for the above two-dimensional problem, the map Φ transforms a two-
dimensional vector x into another two-dimensional vector x. For a general
n-dimensional problem, a map Φ is allowed to transform an n-dimensional
vector x into another m-dimensional vector x in Euclidian space Rm, or even
an infinite dimensional vector x in Hilbert space discussed in Chapter 1, Sec-
tion 1.3. Thus the map can be expressed as

Φ :
Rn → H ,
x = ([x]1, · · · , [x]n)T → x = ([x]1, [x]2, · · · )T = Φ(x) .

(4.1.2)

Suppose the original training set is given by

T = {(x1, y1), · · · , (xl, yl)}, (4.1.3)

where xi ∈ Rn, yi ∈ Y = {−1, 1} ,i = 1, · · · , l. Under the map (4.1.2), the
training set T is transformed to

TΦ = {(x1, y1), · · · , (xl, yl)}, (4.1.4)
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where xi = Φ(xi) ∈ H, yi ∈ Y = {−1, 1}, i = 1, · · · , l. Next step is to compute
the linear separating hyperplane (w∗ · x) + b∗ = 0 in this space, thus deduce
the separating hypersurface (w∗ · Φ(x)) + b∗ = 0 and the decision function
f(x) = sgn((w∗ · x) + b∗) = sgn((w∗ · Φ(x)) + b∗) in the original space Rn.

Note that in the Hilbert space the distance between the two hyperplanes

(w · x) + b = 1 and (w · x) + b = −1 (4.1.5)

can still be represented by
2

‖w‖ , so we can construct the primal problem

corresponding to the problem (2.3.4)∼(2.3.6) in Chapter 2

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (4.1.6)

s.t. yi((w · Φ(xi)) + b) > 1− ξi , i = 1, · · · , l , (4.1.7)

ξi > 0 , i = 1, · · · , l. (4.1.8)

According to Theorem 1.3.3 in Chapter 1, this primal problem is a convex
quadratic programming defined as Definition 1.3.2. The further discussion is
based on the content in Section 1.3. In fact, introduce the Lagrange function

L(w, b, ξ, α, β) =
1

2
‖w‖2+C

l∑

i=1

ξi−
l∑

i=1

αi(yi((w·Φ(xi))+b)−1+ξi)−
l∑

i=1

βiξi ,

(4.1.9)
where α = (α1, · · · , αl)T and β = (β1, · · · , βl)T are the Lagrange multiplier
vectors. We have the following theorems.

Theorem 4.1.1 Optimization problem

max
α,β

−1

2

l∑

i=1

l∑

j=1

yiyjαiαj(Φ(xi) · Φ(xj)) +
l∑

j=1

αj , (4.1.10)

s.t.
l∑

i=1

yiαi = 0 , (4.1.11)

C − αi − βi = 0, i = 1, · · · , l , (4.1.12)

αi > 0, i = 1, · · · , l , (4.1.13)

βi > 0, i = 1, · · · , l (4.1.14)

is the dual problem of the primal problem (4.1.6)∼(4.1.8).

Proof According to Definition 1.3.6 in Chapter 1, the dual problem of
the primal problem (4.1.6)∼(4.1.8) should be

max inf
w,b,ξ

L(w, b, ξ, α, β) (4.1.15)

s.t. α > 0, β > 0, (4.1.16)
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where L(w, b, ξ, α, β) is given by (4.1.9), of which minimal value w.r.t. w is
achieved by

∇wL(w, b, ξ, α, β) = 0, (4.1.17)

that is

w =

l∑

i=1

αiyiΦ(xi) . (4.1.18)

So

inf
w
L(w, b, ξ, α, β)=−1

2

l∑

i=1

l∑

j=1

yiyjαiαj(Φ(xi) · Φ(xj)) +
l∑

j=1

αj

+

(
l∑

i=1

yiαi

)
b+

l∑

i=1

(C − αi − βi)ξi. (4.1.19)

Note that, when

l∑

i=1

yiαi = 0 and C − αi − βi = 0, i = 1, · · · , l

are not valid at the same time, we always have inf
w,b,ξ

L (w, b, ξ, α, β) =

−∞. Therefore, the problem (4.1.15)∼(4.1.16) can be written as (4.1.10)∼
(4.1.14). �

Theorem 4.1.2 Dual problem (4.1.10)∼(4.1.14) has a solution α∗ =
(α∗

1, · · · , α∗
l )

T, β∗ = (β∗
1 , · · · , β∗

l )
T.

Proof Dual problem (4.1.10)∼(4.1.14) is an optimization problem in the
Euclidean space R2l, its objective function is continuous and the feasible do-
main is a nonempty bounded close set, so it must have a solution. �

Note that the dual problem (4.1.10)∼(4.1.14) has the same solution set
w.r.t.α as that to the following convex quadratic programming problem in the
Euclidean space Rl

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαj(Φ(xi) · Φ(xj))−
l∑

j=1

αj , (4.1.20)

s.t.

l∑

i=1

yiαi = 0 , (4.1.21)

0 6 αi 6 C, i = 1, · · · , l . (4.1.22)

Theorem 4.1.3 Suppose α∗ = (α∗
1, · · · , α∗

l )
T is a solution to the problem

(4.1.20)∼(4.1.22). If there exists a component of α∗, α∗
j ∈ (0, C), then the

solution (w∗, b∗) to the primal problem (4.1.6)∼(4.1.8) w.r.t. (w, b) can be
obtained in the following way:

w∗ =
l∑

i=1

α∗
i yixi (4.1.23)
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and

b∗ = yj −
l∑

i=1

yiα
∗
i (xi · xj). (4.1.24)

Proof Firstly we show that, for w∗ given by (4.1.23), there exists a b̃∗

such that (w∗, b̃∗) is the solution to the primal problem (4.1.6)∼(4.1.8). In
fact, Let H = (yiyj(xi · xj))l×l, e = (1, · · · , 1)T, y = (y1, · · · , yl)T, problem
(4.1.20)∼(4.1.22) can be rewritten as

min
α

W (α) =
1

2
αTHα− eTα , (4.1.25)

s.t. αTy = 0 , (4.1.26)

0 6 α 6 Ce. (4.1.27)

If α∗ = (α∗
1, · · · , α∗

l )
T is a solution to the problem (4.1.25)∼(4.1.27), it yields

from Theorem 1.2.23 (in Chapter 1) that there exist a multiplier b̃∗, multiplier
vectors s∗ and ξ∗ such that

0 6 α∗ 6 Ce, α∗Ty = 0, (4.1.28)

Hα∗ − e+ b̃∗y − s∗ + ξ∗ = 0, s∗ > 0, ξ∗ > 0, (4.1.29)

ξ∗T(α∗ − Ce) = 0, s∗Tα∗ = 0. (4.1.30)

Equation (4.1.29) means that

Hα∗ − e+ b̃∗y + ξ∗ > 0. (4.1.31)

Let w∗ =

l∑

i=1

α∗
i yixi, equation (4.1.31) is equivalent to

yi((w
∗ · xi) + b̃∗) > 1− ξ∗i , i = 1, · · · , l. (4.1.32)

Therefore, above equation and the third part of equation (4.1.29) imply that
(w∗, b̃∗, ξ∗) is a feasible solution to the primal problem (4.1.6)∼(4.1.8).

Furthermore, from (4.1.28)∼(4.1.30) we have

−1

2
‖w∗‖2 − C

l∑

i=1

ξ∗i =−1

2
α∗THα∗ − CeTξ∗

=−1

2
α∗THα∗ − CeTξ∗ + α∗T(Hα∗ + b̃∗y − e− s∗ + ξ∗)

=
1

2
α∗THα∗ − ξ∗T(Ce − α∗) + b̃∗α∗Ty − eTα∗ − s∗Tα∗

=
1

2
α∗THα∗ − eTα∗ . (4.1.33)

This shows that the objective function’s value of the primal prob-
lem (4.1.6)∼(4.1.8) is equal to the optimum value of its dual problem
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(4.1.10)∼(4.1.14), and therefore (w∗, b̃∗, ξ∗) is the optimal solution to the
primal problem according to the results corresponding to Corollary 1.2.19
mentioned in Section 1.3 in Chapter 1.

Therefore, in order to show that (w∗, b∗) obtained from (4.1.23)∼(4.1.24)
is the solution to the primal problem, we only need to show b∗ = b̃∗. In fact,
from KKT conditions (4.1.29)∼(4.1.30) we have

yi((w
∗ · xi) + b̃∗)− 1− s∗i + ξ∗i = 0 , i = 1, · · · , l , (4.1.34)

ξ∗i (α
∗
i − C) = 0 , i = 1, · · · , l , (4.1.35)

s∗iα
∗
i = 0 , i = 1, · · · , l . (4.1.36)

If there exists α∗
j ∈ (0, C), then s∗j = 0, ξ∗j = 0, and we have b∗ = b̃∗. �

Based on the above theorem, when the solution α∗ = (α∗
1, · · · , α∗

l )
T to the

problem (4.1.20)∼(4.1.22) is derived, the separating hyperplane in the space
H where x lies in can be constructed as

(w∗ · x) + b∗ = 0, (4.1.37)

where w∗ and b∗ are given by (4.1.23) and (4.1.24) respectively. Obviously the
hyperplane (4.1.37) corresponds to the following hypersurface in the space Rn

where x lies in
l∑

i=1

α∗
i yi(Φ(xi) · Φ(x)) + b∗ = 0,

where b∗ is given by (4.1.24). That is just the surface realizing nonlinear
separation we are searching for. So, the following algorithm is established:

Algorithm 4.1.4 (Classification machine based on nonlinear separation)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Choose an appropriate map Φ : x= Φ(x) from the space Rn to the Hilbert
space and a penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming problem

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαj(Φ(xi) · Φ(xj))−
l∑

j=1

αj , (4.1.38)

s.t.

l∑

i=1

yiαi = 0 , (4.1.39)

0 6 αi 6 C , i = 1, · · · , l , (4.1.40)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;



Kernels and Support Vector Machines 87

(4) Compute b∗: choose a component of α∗, α∗
j ∈ (0, C), and compute

b∗ = yj −
l∑

i=1

yiα
∗
i (Φ(xi) · Φ(xj)); (4.1.41)

(5) Construct the decision function

f(x) = sgn(g(x)), (4.1.42)

where

g(x) =
l∑

i=1

yiα
∗
i (Φ(xi) · Φ(x)) + b∗. (4.1.43)

It is easy to see that the only difference between the above algorithm and
Algorithm 2.3.10 is that: the former uses the inner product (Φ(xi) · Φ(xj))
and inner product (Φ(xi) · Φ(x)) to replace the inner product (xi · xj) and
(xi · x) of the latter respectively.

4.1.3 Regression machine based on nonlinear separation

Similar to the generalization of Algorithm 2.3.10 (Linear support vector
classification) to Algorithm 4.1.4 (Classification machine based on nonlinear
separation), we now generalize Algorithm 3.4.7 (Linear ε- support vector re-
gression). Remember that Algorithm 3.4.7 searches for the linear regression
function based on the linear separation since the regression problem is trans-
formed to a classification problem. So in order to get the nonlinear regression
function, we only need to use the nonlinear separation instead of the linear
separation. In other words, for the purpose of generalizing Algorithm 3.4.7,
we only need to introduce the map as (4.1.2):

Φ :
Rn → H ,
x→ x = Φ(x) ,

(4.1.44)

and solve the primal problem corresponding to the problem (3.4.1)∼(3.4.4)

min
w,b,ξ(∗)

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ), (4.1.45)

s.t. ((w · Φ(xi)) + b)− yi 6 ε+ ξi , i = 1, · · · , l, (4.1.46)

yi − ((w · Φ(xi)) + b) 6 ε+ ξ∗i , i = 1, · · · , l, (4.1.47)

ξ
(∗)
i > 0 , i = 1, · · · , l, (4.1.48)

where (∗) denotes two cases of a vector with ∗ and without ∗.
According to Theorem 1.3.3, primal problem (4.1.45)∼(4.1.48) is a convex

quadratic programming problem defined by Definition 1.3.2. Further discus-
sion should be based on the content in Section 1.3. In order to deduce its dual
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problem, introduce the Lagrange function

L(w, b, ξ(∗), α(∗), η(∗))=
1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i )−
l∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑

i=1

αi(ε+ ξi + yi − (w · Φ(xi))− b)

−
l∑

i=1

α∗
i (ε+ ξ∗i − yi + (w · Φ(xi)) + b) , (4.1.49)

where α(∗) = (α1, α
∗
1, · · · , αl, α∗

l )
T, η(∗) = (η1, η

∗
1 , · · · , ηl, η∗l )T are the La-

grange multiplier vectors. We have the following theorems:

Theorem 4.1.5 Optimization problem

max
α(∗),η(∗)∈R2l

−1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(Φ(xi) · Φ(xj))− ε

l∑

i=1

(α∗
i + αi)

+

l∑

i=1

yi(α
∗
i − αi) , (4.1.50)

s.t.

l∑

i=1

(α∗
i − αi) = 0 , (4.1.51)

C − α
(∗)
i − η

(∗)
i = 0, i = 1, · · · , l, (4.1.52)

α
(∗)
i > 0, η

(∗)
i > 0 , i = 1, · · · , l (4.1.53)

is the dual problem of the primal problem (4.1.45)∼(4.1.48).

Proof According to Definition 1.3.6 in Chapter 1, the dual problem of
the primal problem should be

max inf
w,b,ξ(∗)

L(w, b, ξ(∗), α(∗), η(∗)), (4.1.54)

s.t. α(∗) > 0, η(∗) > 0. (4.1.55)

Note that L(w, b, ξ(∗), α(∗), η(∗)) is a quadratic function of w, of which minimal
value w.r.t. w satisfying

∇wL(w, b, ξ
(∗), α(∗), η(∗)) = w −

l∑

i=1

(α∗
i − αi)Φ(xi) = 0, (4.1.56)

that is

w =
l∑

i=1

(α∗
i − αi)Φ(xi). (4.1.57)
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So substituting the above equation to (4.1.49), we have

inf
w
L(w, b, ξ(∗), α(∗), η(∗))=−1

2

l∑

i=1

l∑

j=1

(α∗
i − αi)(α

∗
j − αj)(Φ(xi) · Φ(xj))

−ε
l∑

i=1

(α∗
i + αi) +

l∑

i=1

yi(α
∗
i − αi)

−b
(

l∑

i=1

(α∗
i − αi)

)
+

l∑

i=1

(C − αi − ηi)ξi

+

l∑

i=1

(C − α∗
i − η∗i )ξ

∗
i , (4.1.58)

Note that when

l∑

i=1

(α∗
i − αi) = 0, C − αi − ηi = 0, i = 1, · · · , l and C −

α∗
i − η∗i = 0, i = 1, · · · , l are not valid at the same time, we always have
inf

w,b,ξ(∗)
L(w, b, ξ(∗), α(∗), η(∗)) = −∞. Therefore, the problem (4.1.54)∼(4.1.55)

can be written as (4.1.50)∼(4.1.53). �

Theorem 4.1.6 Dual problem (4.1.50)∼(4.1.53) has a solution ᾱ(∗) =
(ᾱ1, ᾱ

∗
1, · · · , ᾱl, ᾱ∗

l )
T, η̄(∗) = (η̄1, η̄

∗
1 , · · · , η̄l, η̄∗l )T.

Proof This is an optimization problem in the Euclidean space R2l. It is
easy to show that it has a solution. �

To simplify the dual problem (4.1.50)∼(4.1.53), we eliminate the variable
η(∗) by the equality constraint (4.1.52) to make it be a problem only with
variable α(∗), then rewrite this maximization problem to a convex quadratic
programming problem in the space R2l

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(Φ(xi) · Φ(xj)) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (4.1.59)

s.t.
l∑

i=1

(α∗
i − αi) = 0 , (4.1.60)

0 6 α
(∗)
i 6 C , i = 1, · · · , l. (4.1.61)

In the later sections, we replace the problem (4.1.50)∼(4.1.53) by the problem
(4.1.59)∼(4.1.61).
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Theorem 4.1.7 Suppose ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is a solution to the con-

vex quadratic programming problem (4.1.59)∼(4.1.61). If there exist compo-
nents of ᾱ(∗) of which value is in the interval (0, C), then the solution (w̄, b̄)
to the primal problem (4.1.45)∼(4.1.48) w.r.t. (w, b) can be obtained in the
following way: Let

w̄ =
l∑

i=1

(ᾱ∗
i − ᾱi)Φ(xi), (4.1.62)

and choose a component of ᾱ(∗), ᾱj ∈ (0, C), compute

b̄ = yj −
l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(xj)) + ε, (4.1.63)

or choose a component of ᾱ(∗), ᾱ∗
k ∈ (0, C), compute

b̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(xk))− ε. (4.1.64)

Proof Firstly we show that, for w̄ given by (4.1.62), there exists a b̃ such
that (w̄, b̃) is the solution to the primal problem (4.1.45)∼(4.1.48) w.r.t. (w, b).
In fact, let H = (Φ(xi) · Φ(xj))l×l, y = (y1, · · · , yl)T, e = (1, · · · , 1)T ∈ Rl,
problem (4.1.59)∼(4.1.61) can be rewritten as

min
α(∗)∈R2l

W (α(∗)) =
1

2
(α∗ − α)TH(α∗ − α)

+ εeT(α∗ + α)− yT(α∗ − α) , (4.1.65)

s.t. eT(α∗ − α) = 0 , (4.1.66)

0 6 α(∗) 6 Ce . (4.1.67)

It is easy to show that problem (4.1.65)∼(4.1.67) is a convex programming.
Furthermore, it also satisfies Slater condition, so if ᾱ(∗) is the solution to the
problem (4.1.65)∼(4.1.67), it yields from Theorem 1.2.23 in Chapter 1 that
there exist a multiplier b̃, multiplier vectors s̄(∗) and ξ̄(∗) such that

eT(ᾱ∗ − ᾱ) = 0, 0 6 ᾱ(∗) 6 Ce, (4.1.68)

H(ᾱ∗ − ᾱ) + εe− y + b̃e− s̄∗ + ξ̄∗ = 0, (4.1.69)

−H(ᾱ∗ − ᾱ) + εe+ y − b̃e− s̄+ ξ̄ = 0, (4.1.70)

s̄(∗) > 0, ξ̄(∗) > 0, (4.1.71)

s̄(∗)
T

ᾱ(∗) = 0, ξ̄(∗)
T

(Ce − ᾱ(∗)) = 0. (4.1.72)

Equations (4.1.69)∼(4.1.71) mean that

H(ᾱ∗ − ᾱ)− y + b̃e > −εe− ξ̄∗, (4.1.73)

−H(ᾱ∗ − ᾱ) + y − b̃e > −εe− ξ̄. (4.1.74)
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From (4.1.62), the above inequalities are equivalent to

((w̄ · Φ(xi)) + b̃)− yi 6 ε+ ξ̄i , i = 1, · · · , l, (4.1.75)

yi − ((w̄ · Φ(xi)) + b̃) 6 ε+ ξ̄∗i , i = 1, · · · , l. (4.1.76)

which imply that (w̄, b̃, ξ̄(∗)) is a feasible solution to the problem
(4.1.45)∼(4.1.48).

Furthermore, from (4.1.69)∼(4.1.72) we have

−1

2
‖w̄‖2 − C

l∑

i=1

(ξ̄i + ξ̄∗i )=−1

2
‖w̄‖2 − C

l∑

i=1

(ξ̄i + ξ̄∗i )

+ᾱ∗T(H(ᾱ∗ − ᾱ) + εe− y + b̃e− s̄∗ + ξ̄∗)

+ᾱT(−H(ᾱ∗ − ᾱ) + εe+ y − b̃e− s̄+ ξ̄)

=
1

2
(ᾱ∗ − ᾱ)TH(ᾱ∗ − ᾱ) + εeT(ᾱ∗ + ᾱ)

−yT(ᾱ∗ − ᾱ). (4.1.77)

This shows that the objective function value of the primal problem
(4.1.45)∼(4.1.48) is equal to the optimal value of its dual problem
(4.1.50)∼(4.1.53), therefore (w̄, b̃, ξ̄(∗)) is the optimal solution to the primal
problem (4.1.45)∼(4.1.48) according to the results corresponding to Corollary
1.2.19 mentioned in Section 1.3 in Chapter 1.

Therefore, in order to show that (w, b̄) obtained from (4.1.62) and (4.1.63)
or (4.1.64) is the solution to the primal problem w.r.t. (w, b), we only need to
show b̄ = b̃. In fact, suppose that there exists a component of ᾱ(∗), ᾱj ∈ (0, C),
KKT conditions (4.1.68)∼(4.1.72) imply that ξ̄j = s̄j = 0 and

(w̄ · Φ(xj)) + b̃− yj = ε, (4.1.78)

i.e. b̃ equals to the b̄ given by (4.1.63).
Similarly, suppose that there exists a component of ᾱ(∗), ᾱ∗

k ∈ (0, C), we

can also prove that b̃ equals to the b̄ given by (4.1.64). �

Based on the above theorem, when the solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T

to the problem (4.1.59)∼(4.1.61) is derived, the decision function in the space
H can be constructed as

y = (w̄ · x) + b̄, (4.1.79)

where w̄ and b̄ are given by (4.1.62)∼(4.1.64). Obviously, the decision function
in the space Rn can be written as

y = g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(x)) + b̄. (4.1.80)

So, the following algorithm for nonlinear regression function is established:
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Algorithm 4.1.8 (Regression machine based on nonlinear separation)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
R, i = 1, · · · , l;
(2) Choose an appropriate map Φ : x = Φ(x) from the space Rn to the Hilbert
space, and accuracy ε > 0 and a penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming problem

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)(Φ(xi) · Φ(xj)) + ε

l∑

i=1

(α∗
i + αi)

−
l∑

i=1

yi(α
∗
i − αi) , (4.1.81)

s.t.
l∑

i=1

(αi − α∗
i ) = 0 , (4.1.82)

0 6 α
(∗)
i 6 C , i = 1, · · · , l, (4.1.83)

obtaining a solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Compute b̄: choose a component of ᾱ(∗) of which value is in the interval
(0, C), ᾱj or ᾱ∗

k. If ᾱj is chosen, then

b̄ = yj −
l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(xj)) + ε ; (4.1.84)

else if ᾱ∗
k is chosen, then

b̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(xk))− ε ; (4.1.85)

(5) Construct the decision function

y = g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)(Φ(xi) · Φ(x)) + b̄. (4.1.86)

4.2 Kernels

Reviewing Algorithm 4.1.4 and Algorithm 4.1.8, we can see that the map
Φ implements its role totally through the inner products (Φ(xi) · Φ(xj)) and
(Φ(xi) · Φ(x)). In other words, the map Φ always appears in the form of the
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inner product (Φ(xi) ·Φ(xj)) or (Φ(xi) ·Φ(x)); it never appears independent.
This shows that the function

K(x, x′) = (Φ(x) · Φ(x′)) (4.2.1)

is very important. In fact, for Algorithms 4.1.4 and 4.1.8, if we choose the
function K instead of the Φ, and substitute the corresponding inner product
(Φ(·)·Φ(·)) by K(·, ·), we can still get the same decision function. The function
defined by (4.2.1) is called kernel function, or kernel briefly. In this section we
will analyze the function introduced by the inner product, and then deduce
the commonly used standard support vector machines.

4.2.1 Properties

Firstly we formalize the definition of the kernel.

Definition 4.2.1 (Kernel) A function K(x, x′) defined on Rn ×Rn is called
a kernel on Rn × Rn or kernel briefly if there exists a map Φ from the space
Rn to the Hilbert space

Φ :
Rn → H,
x 7→ Φ(x),

(4.2.2)

such that
K(x, x′) = (Φ(x) · Φ(x′)) , (4.2.3)

where ( · ) denotes the inner product of space H.

The next theorem describes the characteristic of the kernels by Gram ma-
trix defined as follows.

Definition 4.2.2 (Gram matrix) For a function K(x, x′) : Rn × Rn → R
and l points x1, · · · , xl ∈ Rn, the l × l matrix K, of which the i-th row j-th
column element is Kij = K(xi, xj), is called the Gram matrix of the function
K(x, x′) w.r.t. x1, · · · , xl.

Theorem 4.2.3 (Property of a kernel) A symmetric function K(x, x′) de-
fined on Rn×Rn is a kernel if and only if the Gram matrix of K(x, x′) w.r.t.
x1, · · · , xl is positive semidefinite for any l and any x1, · · · , xl ∈ Rn.

Proof See [42] or [124]. �

4.2.2 Construction of kernels

A natural question at this point is what kind of functions are kernels,
i.e., what is the coverage of the kernels. In accordance with the mathematical
approach dealing with such problem, we shall take the following three steps
to give an answer:
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(1) Find out the basic kernels;
(2) Find out the operations keeping kernels;
(3) From the basic kernels, construct the commonly used kernels by ap-

plying the operations keeping kernels.

4.2.2.1 Basic kernels

Theorem 4.2.4 The function K(x, x′) = (x · x′) defined on Rn × Rn is a
kernel.

Proof Let Φ(x) = x, then K(x, x′) can be expressed as

K(x, x′) = (x · x′) = (Φ(x) · Φ(x′)). (4.2.4)

According to Definition 4.2.1, we know that K(x, x′) = (x · x′) is a kernel. �

Theorem 4.2.5 If f(·) is a real-valued function defined on Rn, then
K(x, x′) = f(x)f(x′) is a kernel. Particularly, the function K(x, x′) ≡ a
where a is a nonnegative scalar, is a kernel.

Proof For any x1, · · · , xl ∈ Rn, consider the Gram matrix (K(xi, xj))l×l
of the function K(x, x′) = f(x)f(x′). For any vector α = (α1, · · · , αl)T ∈ Rl,
we have

αT(K(xi, xj))l×lα=

l∑

i=1

l∑

j=1

αiαjK(xi, xj) =

l∑

i=1

l∑

j=1

αiαjf(xi)f(xj)

=

l∑

i=1

αif(xi)

l∑

j=1

αjf(xj) =

(
l∑

i=1

αif(xi)

)2

> 0 .

(4.2.5)

So this Gram matrix is positive semidefinite. Therefore according to Theorem
4.2.3 we know that K(x, x′) is a kernel. Particularly, this conclusion is also
valid for f(x) ≡ √

a. �

4.2.2.2 Operations keeping kernels

Theorem 4.2.6 Suppose K1(x, x
′) and K2(x, x

′) are all kernels on Rn×Rn,
then their sum

K(x, x′) = K1(x, x
′) +K2(x, x

′) (4.2.6)

and product
K(x, x′) = K1(x, x

′)K2(x, x
′) (4.2.7)

are also kernels.

Proof According to Theorem 4.2.3, we only need to show that, for any set
of l points {x1, · · · , xl} in Rn, the Gram matrices of both K1(x, x

′)+K2(x, x
′)

and K1(x, x
′)K2(x, x

′) w.r.t. {x1, · · · , xl} are positive semidefinite.
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Firstly consider the function K1(x, x
′) +K2(x, x

′). Let K1 and K2 be the
corresponding Gram matrices of K1(x, x

′) and K2(x, x
′) w.r.t. to {x1, · · · , xl}

respectively. For any α ∈ Rl, we have

αT(K1 +K2)α = αTK1α+ αTK2α > 0 , (4.2.8)

and so K1 +K2 is positive semidefinite.
Furthermore, suppose K is the Gram matrix of K(x, x′) = K1(x, x

′)·
K2(x, x

′) w.r.t.{x1, · · · , xl}, it is easy to see that K is known as the Schur
product of the Gram matrix K1 of K1(x, x

′) and the Gram matrix K2 of
K2(x, x

′), i.e. the element of K is the product of the corresponding elements
of K1 and K2

K = K1 ◦K2 . (4.2.9)

Now prove K is positive semidefinite. Let K1 = CTC , K2 = DTD, hence for
any α ∈ Rl, we have

αT(K1 ◦K2)α=tr[(diag α)K1(diag α)KT
2 ]

= tr[(diag α)CTC(diag α)DTD]

= tr[D(diag α)CTC(diag α)DT]

= tr[[C(diag α)DT]TC(diag α)DT] > 0 . (4.2.10)

The third equal sign of the above equation is based on the equality trAB =
trBA. For any two matrices A and B, so (4.2.10) demonstrates that K is
positive semidefinite. �

Theorem 4.2.7 Suppose K3(θ, θ
′) is a kernel on Rm×Rm. If θ(x) is a map

from Rn to Rm, then K(x, x′) = K3(θ(x), θ(x
′)) is a kernel on Rn × Rn.

Particularly, if a n × n matrix B is positive semidefinite, then K(x, x′) =
xTBx′ is a kernel on Rn ×Rn.

Proof For any given x1, · · · , xl ∈ Rn, the corresponding Gram matrix of
K(x, x′) = K3(θ(x), θ(x

′)) is

(K(xi, xj))
l
i,j=1 = (K3(θ(xi), θ(xj)))

l
i,j=1 . (4.2.11)

Let θ(xt) = θt, t = 1, · · · , l, we have

(K(xi, xj))
l
i,j=1 = (K3(θi, θj))

l
i,j=1 . (4.2.12)

That K3(θ, θ
′) is a kernel indicates that the right matrix in the above equa-

tion is positive semidefinite, so the left matrix is positive semidefinite, hence
K(x, x′) is a kernel according to Theorem 4.2.3.

In particular, consider the positive semidefinite matrix B. Obviously it can
be decomposed into the form

B = V TΛV , (4.2.13)
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where V is an orthogonal matrix, Λ is a diagonal matrix containing the non-
negative eigenvalues of B. Defining a kernel K3(θ, θ

′) = (θ · θ′) on Rn × Rn,
and letting θ(x) =

√
ΛV x, we have by the just-proved conclusion

K(x, x′) = K3(θ(x), θ(x
′)) = θ(x)Tθ(x′) = xTV T

√
Λ
√
ΛV x′ = xTBx′

(4.2.14)
is a kernel. �

Theorem 4.2.8 If a sequence of kernels K1(x, x
′), K2(x, x

′), · · · on Rn×Rn
has a limit, i.e.

lim
i→∞

Ki(x, x
′) = K(x, x′), (4.2.15)

then the limit K(x, x′) is also a kernel.

Proof Theorem 4.2.3 can be directly used to prove this conclusion. �

4.2.2.3 Commonly used kernels

Now we are in a position to construct two commonly used kernels based
on the basic kernels proposed above by the operations keeping kernels.

(1) Polynomial kernel

Theorem 4.2.9 Suppose d is a positive integer, then d-order homogeneous
polynomial function

K(x, x′) = (x · x′)d (4.2.16)

and d-order non-homogeneous polynomial function

K(x, x′) = ((x · x′) + 1)d (4.2.17)

are all kernels.

Proof We can draw this conclusion directly from Theorems 4.2.4∼4.2.6.
�

(2) Gaussian radial basis function kernel

Theorem 4.2.10 Gaussian radial basis function with a parameter σ

K(x, x′) = exp(−‖x− x′‖2/σ2) (4.2.18)

is a kernel.

Proof (i) Firstly, we prove that if K1(x, x
′) is a kernel on Rn ×Rn, p(x)

is a polynomial with positive coefficients, then the function

p(K1(x, x
′)) (4.2.19)
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is a kernel. In fact, let the polynomial with positive coefficients be p(x) =
aqx

q + · · ·+ a1x+ a0, then

p(K1(x, x
′)) = aq[K1(x, x

′)]q + · · ·+ a1K1(x, x
′) + a0 . (4.2.20)

According to the conclusion about the particular case of Theorem 4.2.5 and
Theorem 4.2.6, all the terms ai[K1(x, x

′)]i, i = 0, 1, · · · , q are kernels. There-
fore the function described by (4.2.19) is a kernel according to Theorem 4.2.6.

(ii) Secondly, we prove that if K1(x, x
′) is a kernel on Rn × Rn, then the

function
exp (K1(x, x

′)) (4.2.21)

is a kernel. In fact, the exponential function exp(·) can be arbitrarily closely ap-
proximated by polynomials with positive coefficients, and hence exp(K1(x, x

′))
is a limit of kernels. Therefore, the function described by (4.2.21) is a kernel
according to Theorem 4.2.8 and conclusion (i).

(iii) At last, we prove that the Gaussian function (4.2.18) is a kernel. In
fact, it can be obviously decomposed into the form

exp(−‖x− x′‖2/σ2) = exp(−‖x‖2/σ2) · exp(−‖x′‖2/σ2) · exp(2(x · x′)/σ2) .
(4.2.22)

The first two factors together form a kernel by Theorem 4.2.5, while the
third factor is a kernel by conclusion (ii). Therefore, the function described
by (4.2.18) is a kernel according to Theorem 4.2.6. �

In addition to the polynomial kernel given by Theorem 4.2.9 and the Gaus-
sian radial basis function kernel given by Theorem 4.2.10, there exist B-Spline
kernel, Fourier kernel, etc., the interested reader can refer to the literature
[35, 73, 137].

4.2.2.4 Graph kernel

At first glance, Algorithms 4.1.4 and 4.1.8 need a training set T where
the n-dimensional vectors x1, · · · , xl stand for objects, and a kernel, i.e. for
any two n-dimensional vectors x and x′, an appropriate real value K(x, x′) is
given. However, on closer examination, we can see that it is not necessary to
represent objects by vectors in Rn. Instead, what it needs is only the classes
the objects x1, · · · , xl belong to, and a kernel, that is for any two objects x
and x′, an appropriate real value K(x, x′) is given.

In this case, the key point is to construct a suitable kernel for a concrete
problem. As an example, the simple graph classification problem is considered
here. Simple graph classification has been applied successfully to the protein
function prediction in the field of bio-informatics; see the literature [16]. Next
we intuitively introduce the method constructing kernels for it. Firstly we

introduce several basic concepts[46].

Definition 4.2.11 (Undirected graph) An undirected graph consists of two
parts: a nonempty finite set V and a set E of disordered pairs composed of
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several elements in V . Denote G = (V,E), where V is called the set of vertices
of the undirected graph G, each element of V is called a vertex; E is called the
set of edges of the undirected graph G, each element of E is called an edge,
denoted as {vi, vj} or {vj , vi}, where vi, vj ∈ V .

Definition 4.2.12 (Simple graph) If {vi, vj} ∈ E, then the edge {vi, vj} is
named connecting vi and vj, and the vertices vi and vj are called the endpoints
of the edge {vi, vj}. An edge is called a loop if its two endpoints coincide into
a vertex. An undirected graph is called a simple graph if there is neither a loop
nor two edges connecting the same pair of vertices in it.

Example 4.2.13 G in Figure 4.2 is a simple graph; it can be represented by
G = (V,E), where

V = {v1, v2, v3}, E = {{v1, v2}, {v2, v3}, {v3, v1}},

or

E = {{v2, v1}, {v1, v3}, {v3, v2}}. (4.2.23)

FIGURE 4.2: Simple graph.

Definition 4.2.14 (Path) In the simple graph G, an alternate sequence of
vertices and edges

(vi, {vi, vj}, vj, · · · , vp, {vp, vq}, vq) (4.2.24)

is called a path from vi to vq in the graph G. The number of the edges included
in the path is called its length.
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Now consider the quantification problem of a simple graph. We describe a
simple graph using the numbers of the path. Specifically, for a simple graph
G, denote the numbers of all the paths with length k in G as φk(G). In order
to describe G, we adopt the infinitely dimensional vector

φ(G) = (φ0(G), φ1(G), · · · , φn(G), · · · )T, (4.2.25)

or
Φ(G) = (Φ0(G),Φ1(G), · · · ,Φn(G), · · · )T, (4.2.26)

where
Φk(G) =

√
λkφk(G), k = 0, 1, 2, · · · , (4.2.27)

here λ is a weight factor between 0 and 1. Now we can define the kernel of
the simple graph.

Definition 4.2.15 (Graph kernel based on the path) Consider two simple
graphs G = (V,E), G′ = (V ′, E′), and the weight factor 0 < λ < 1 is given,
then the value of the graph kernel based on the path at G,G′ is

K(G,G′) = (Φ(G) · Φ(G′)) =

∞∑

k=0

λkφk(G)φk(G′), (4.2.28)

where Φ(·) is given by (4.2.26).

Now the issue that remains is to compute the value of the above equation
practically. To this end, introduce the concept of adjacent matrix.

Definition 4.2.16 (Adjacent matrix of the graph) A simple graph G = (V,E)
corresponds to a |V | × |V | matrix A = (aij), where |V | denotes the numbers
of the elements in the set V , while

aij =

{
1, if{vi, vj} ∈ E;
0, otherwise.

(4.2.29)

The matrix A is called the adjacent matrix of the graph G.

Theorem 4.2.17 Suppose the adjacent matrix of the simple graph G = (V,E)
is A = (aij), and note the k-th power of A as Ak = (akij). Then the value of

the element akij at the i-th row j-th column is exactly the numbers of the paths

with length k from the vertex vi to vj. Therefore the numbers φk(G) of the
paths with length k in G can be expressed as

φk(G) =

|V |∑

i,j=1

akij , (4.2.30)
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Example 4.2.18 For the simple graph in Figure 4.2, its adjacent matrix A
and its second power A2 are

A =




0 1 1
1 0 1
1 1 0



 , A2 =




2 1 1
1 2 1
1 1 2



 . (4.2.31)

respectively. The element 2 at the first row first column means that there are
two paths with length 2 from the vertex v1 to v1; the element 2 at the second
row the third column means that there is one path with length 2 from the vertex
v2 to v3. Furthermore, the numbers of all the paths with length 2 in G is the
sum of all the elements in A2, i.e. φ2(G) = 12.

In order to compute K(G,G′) defined as (4.2.28), we first give the defini-
tion of Kronecker product of the matrix.

Definition 4.2.19 The Kronecker product of matrix A = (aij) ∈ Rm×m and
matrix A′ = (a′ij) ∈ Rn×n is

A⊗A′ =




a11A
′ · · · a1mA

′

...
...

am1A
′ · · · ammA

′


 ∈ Rmn×mn. (4.2.32)

It is easy to verify that the Kronecker product of matrix A = (aij) ∈ Rm×m

and matrix A′ = (a′ij) ∈ Rn×n has the following property:

Theorem 4.2.20 The Kronecker product of matrix A and matrix A′ satisfies

mn∑

i,j=1

(A⊗A′)ij =




m∑

i,j=1

aij



 ·




n∑

i,j=1

a′ij



 (4.2.33)

(A⊗A′)k = Ak ⊗A′k, (4.2.34)

where (·)k and ·k are the k-order powers of the matrix.

Theorem 4.2.21 Consider the k-order powers Ak = (akij) and A′k = a′kij of

matrices, A and A′, and the k-order power Ak× = (ak×ij) of A× = A ⊗ A′ =
(a×ij), where ⊗ is the Kronecker product of the matrices; then

mn∑

i,j=1

ak×ij =
m∑

i,j=1

akij

n∑

i,j=1

a′kij . (4.2.35)

Now we can give one kind of quantitative representation of the graph kernel
based on the path.
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Theorem 4.2.22 Suppose the graphs G = (V,E), G′ = (V ′, E′) are given, of
which adjacent matrices are A and A′ respectively. Suppose the k-order power
of A× = A⊗ A′ = (a×ij) is Ak× = (ak×ij), and the weight factor 0 < λ < 1 is
given, then the above defined kernel about the graphs G,G′ can be expressed
as

K(G,G′) =

∞∑

k=0

λk
|V ||V ′|∑

i,j=1

ak×ij , (4.2.36)

where ⊗ is the Kronecker product of the matrices, |V | and |V ′| are the number
of the elements in the sets V and V ′. Furthermore, when λ is small enough,
the right term of (4.2.36) converges, and can be expressed as

K(G,G′) =

∞∑

k=0

(eTAk×e) = eT

(
∞∑

k=0

λkAk×

)
e = eT(I − λA×)

−1e, (4.2.37)

where e is a |V ||V ′|-dimensional vector of ones, I is a |V ||V ′|×|V ||V ′| identity
matrix.

The kernel given by the last equation (4.2.37) of the above theorem and some
simple graphs with class label 1 or −1 can be used in Algorithm 4.1.4, and
solve the classification problem [103].

4.3 Support Vector Machines and Their Properties

In this section we introduce the most commonly used standard support
vector machines.

4.3.1 Support vector classification

4.3.1.1 Algorithm

As we pointed out in the former section, in Algorithm 4.1.4 (Classification
machine based on nonlinear separation), we can choose a kernel K instead of
the map Φ, and replace the inner product (Φ(·)·Φ(·)) by the value of the kernel
K(·, ·). Hence the commonly used standard C-support vector classification is
established as follows.

Algorithm 4.3.1 (C-support vector classification, C-SVC)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Choose an appropriate kernel K(x, x′) and a penalty parameter C > 0;



102 Support Vector Machines

(3) Construct and solve the convex quadratic programming problem

min
α

1

2

l∑

i=1

l∑

j=1

yiyjK(xi, xj)αiαj −
l∑

j=1

αj , (4.3.1)

s.t.

l∑

i=1

yiαi = 0 , (4.3.2)

0 6 αi 6 C , i = 1, · · · , l , (4.3.3)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b∗: Choose a component of α∗, α∗
j ∈ (0, C), and compute

b∗ = yj −
l∑

i=1

yiα
∗
iK(xi, xj); (4.3.4)

(5) Construct the decision function

f(x) = sgn(g(x)), (4.3.5)

where

g(x) =

l∑

i=1

yiα
∗
iK(xi, x) + b∗. (4.3.6)

The above algorithm only considers the case where there exists a compo-
nent of α∗, α∗

j ∈ (0, C). Although almost all practical problems belong to this
case, theoretically there still exists the case that all the components of α∗ are
zero. It is not difficult to imagine that in this case the values of threshold b∗

compose a closed interval according to Theorem 2.3.6. Detailed discussion is
omitted here.

Remark 4.3.2 The decision function in the above algorithm can be rewritten
as:

f(x) =

{
1, g(x) ≥ 0;
−1, g(x) < 0;

This means that 0 is a cutoff value for distinguishing the positive and negative
classes. However, in some practical problems, a lower or higher cutoff value
may be more appropriate than 0. For example, in Example 2.1.1 (Diagnosis
of heart disease), we usually pay more attention to the positive class than the
negative class; in other words, we hope that no patients having heart disease
are misclassified. To deal with this case, a lower cutoff value is used. Hence
the decision function with a cutoff level is introduced:

f(x, cutoff) =

{
1, when g(x) > cutoff;
−1,

(4.3.7)

otherwise, where cutoff is a real number.
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4.3.1.2 Support vector

Now we introduce the concept of support vector for the above algorithm
(C-support vector classification) and discuss its properties.

Definition 4.3.3 (Support vector) Suppose α∗ = (α∗
1, · · · , α∗

l )
T is a solution

to the problem (4.3.1) ∼(4.3.3) obtained using Algorithm 4.3.1. The input xi,
associated with the training point (xi, yi), is said to be a support vector if the
corresponding component α∗

i of α∗ is nonzero and otherwise it is a nonsupport
vector.

The following theorem characterizes the support vectors:

Theorem 4.3.4 Suppose α∗ = (α∗
1, · · · , α∗

l )
T is a solution to the problem

(4.3.1) ∼(4.3.3) obtained using Algorithm 4.3.1. If g(x) is defined by (4.3.6),
then

(i) support vector xi corresponding to α∗
i ∈ (0, C) satisfies yig(xi) = 1;

(ii) support vector xi corresponding to α∗
i = C satisfies yig(xi) 6 1;

(iii) nonsupport vector xi satisfies yig(xi) > 1.

Proof Because α∗ = (α∗
1, · · · , α∗

l )
T is a solution to the problem (4.3.1)

∼(4.3.3) in Algorithm 4.3.1 and problem (4.3.1)∼(4.3.3) satisfies Slater con-
dition, according to Theorem 1.2.23 in Chapter 1, α∗ satisfies the KKT con-
ditions, i.e. there exist multipliers b∗, ξ∗i , s

∗
i , i = 1, · · · , l such that

yi




l∑

j=1

yjα
∗
jK(xj , xi) + b∗



+ ξ∗i − 1 = s∗i > 0, i = 1, · · · , l,

(4.3.8)

α∗
i s

∗
i = α∗

i (yig(xi) + ξ∗i − 1) = 0, i = 1, · · · , l, (4.3.9)

ξ∗i (C − α∗
i ) = 0, i = 1, · · · , l, (4.3.10)

ξ∗i > 0, i = 1, · · · , l, (4.3.11)
l∑

i=1

α∗
i yi = 0, 0 6 α∗

i 6 C, i = 1, · · · , l. (4.3.12)

Now we prove the conclusions respectively:
(i) For support vector xi corresponding to α∗

i ∈ (0, C), we have ξ∗i = 0
from (4.3.10), furthermore from (4.3.9) we have

yig(xi) = 1. (4.3.13)

(ii) For support vector xi corresponding to α
∗
i = C, we have yig(xi) = 1−ξ∗i

from (4.3.9) because α∗
i = C > 0. And because ξ∗i > 0, hence

yig(xi) 6 1. (4.3.14)
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(iii) For nonsupport vector xi, we have ξ
∗
i = 0 from (4.3.10) because α∗

i =
0. Furthermore from (4.3.8), we have

yig(xi) > 1. (4.3.15)

�

FIGURE 4.3: Geometric interpretation of Theorem 4.3.4.

The geometric interpretation of the above theorem with x ∈ R2 is shown
in Figure 4.3 where only the positive training points are considered and the
curve g(x) = 0 is the separating line, (a) shows that the positive support
vector corresponding to α∗

i ∈ (0, C) must lie on the curve g(x) = 1, i.e. it
is sufficiently classified correctly. (b) shows that the positive support vector
corresponding to α∗

i = C must lie in the shadow including g(x) = 1, i.e.
it is classified wrongly, or barely classified correctly. (c) shows that a non-
support vector belonging to the positive class must lie in the shadow including
the boundary g(x) = 1, i.e. it must be classified not only correctly but also
sufficiently classified correctly.

4.3.1.3 Properties

Algorithm 4.3.1 (C-support vector classification) reflects three characters
which support vector machines usually have.

(1) Conversion of the problem scale. Our goal is to find the decision
function f(x) from the training set (4.1.3), where x is an n-dimension vector.
The direct way is to solve the primal problem (4.1.6)∼(4.1.8) with the scale
depending on n. When n increases, computation cost will increase rapidly,
which is just the “curse of dimensionality” encountered to common methods.
However, the problem solved in support vector machines is the dual problem.
Note that the number of the variables of this dual problem is l (number of the
training points); in other words, the scale of the dual problem needed to be
solved has barely anything to do with the dimension of the input space. That
provides a way of conquering the curse of dimensionality.

(2) Employment of the kernel. Applying the kernelK(·, ·) instead of the
map Φ(·) realizes the transition elegantly from linear classification to nonlinear
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classification, i.e. we only need to choose a kernel K rather than a map Φ.
This can be not only more convenient but also simplify the computation,
because computing inner products in high-dimensional spaces costs much,
while computing kernels is very cheap.

(3) Sparsity. We can see from the decision function (4.3.6) that not all
the training points, but the training points corresponding to the nonzero com-
ponents α∗

i of the solution α
∗ to the dual problem (4.3.1)∼(4.3.3) make sense.

In other words, only the training points corresponding to the support vectors
contribute to the decision function, while the remaining training points corre-
sponding to the non-support vectors contribute nothing. Generally speaking,
when the training set is very large, the proportion of support vectors is small,
and most coefficients α∗

i is zero. This fact reflects the sparsity of support vector
classification, which is important to the computation of large scale problems.

4.3.1.4 Soft margin loss function

In establishing Algorithm 4.3.1 (C-support vector classification), we hope
that the decision function generates smaller deviations for each training point
(xi, yi) in the training set T = {(x1, y1), · · · , (xl, yl)}. Now consider how it
measures this deviation. Generally speaking, in order to measure the deviation,
a triplet function c(x, y, f(x)) is often introduced, where x is an input, y is an
observation corresponding to x, and f(x) is the value of the decision function f
at x, thus the value c(x, y, f(x)) denotes the deviation of the decision function
f at the input x. This triplet function is called a loss function. Now analyze
what the loss function used in C-support vector machine is. Reviewing the

primal problem (4.1.6)∼(4.1.8), it is obvious that minimizing

l∑

i=1

ξi of the

objective function aims at keeping the decision rule consistent with all training
points as much as possible, where ξi is used to measure the deviation of the
decision function at the training point (xi, yi)

ξi =

{
0, yi((w · Φ(xi)) + b) > 1;
1− yi((w · Φ(xi)) + b), yi((w · Φ(xi)) + b) < 1,

(4.3.16)

while the corresponding decision function is

f(x) = sgn(g(x)), where g(x) = (w · Φ(x)) + b. (4.3.17)

Hence from (4.3.16), for the decision function f(x) with the form (4.3.17), the
deviation is measured by the function

c(x, y, f(x)) = max{0, 1− yg(x)}. (4.3.18)

Figure 4.4 shows the function (4.3.18) evaluating deviation, which is often
named the soft margin loss function or the hinge loss function. Though strictly
speaking it does not satisfy the condition c(x, y, y) = 0 which the usual loss
function should have (refer to Chapter 5, Definition 5.1.5).
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FIGURE 4.4: Soft margin loss function.

It should be pointed out that the sparsity of Algorithm 4.3.1 (C-support
vector machine) is closely related to the soft margin loss function used. From
the intuitive explanation of the non-support vectors in Figure 4.2(c), we may
find that the positive training points in the shadow (excluding the boundary)
give no contribution to the decision function due to employing the soft margin
loss function.

4.3.1.5 Probabilistic outputs

Suppose the training set is T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
{1,−1}. Consider the decision function (4.3.5) obtained from Algorithm 4.3.1
(C-support vector machine)

f(x) = sgn(g(x)), (4.3.19)

where g(x) is given by (4.3.6), an input x is classified to the positive class
if g(x) ≥ 0. However we cannot guarantee that the deduction is absolutely
correct. So sometimes we hope to know how much confidence we have, i.e.
the probability of the input x belonging to the positive class. To answer this
question, investigate the information contained in g(x). It is not difficult to
imagine that the larger g(x) is, the larger the probability is. So the value
of g(x) can be used to estimate the probability P (y = 1|g(x)) of the input x
belonging to the positive class. In fact, we only need to establish an appropriate
monotonic function from (−∞,+∞) where g(x) takes value to the probability
values interval [0, 1], such as the S-type function

p(g) =
1

1 + exp(c1g + c2)
, (4.3.20)

where c1 < 0 and c2 are two parameters to be found. This function p(g) maps
g ∈ (−∞,+∞) monotonously to the interval p ∈ [0, 1], see Figure 4.5. Now
how to choose the optimal values c∗1 and c∗2 is under our consideration.
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FIGURE 4.5: S-type function.

To this end we construct an optimization problem of c∗1 and c∗2 following
the idea of maximum likelihood estimation. In fact, for each input xi of the
training set, gi = g(xi) can be computed by the g(x), then the probability
pi = pi(c1, c2) of it belonging to the positive class is computed from (4.3.20)

pi = pi(c1, c2) =
1

1 + exp(c1gi + c2)
, i = 1, · · · , l. (4.3.21)

Obviously we hope that the corresponding pi is as large as possible for all
positive inputs xi, while the corresponding pi is as small as possible for all
negative inputs xi, i.e. 1 − pi is as large as possible. Therefore we get the
unconstrained optimization problem with variables c1 and c2

max
∏

yi=1

pi
∏

yi=−1

(1− pi). (4.3.22)

The equivalent problem can be constructed by taking the negative log of the
objective function in the above problem

min−{
∑

yi=1

log pi +
∑

yi=−1

log(1− pi)}. (4.3.23)

Introduce the variable

ti =
yi + 1

2
=

{
1, yi = 1;
0, yi = −1,

(4.3.24)

we have

∑

yi=1

log pi =

l∑

i=1

ti log pi, (4.3.25)

∑

yi=−1

log(1 − pi) =

l∑

i=1

(1− ti) log(1− pi). (4.3.26)
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Hence the problem (4.3.23) can be written as

min−
l∑

i=1

[ti log pi + (1− ti) log(1− pi)], (4.3.27)

where pi = pi(c1, c2) is given by (4.3.21).
However the numerical experiments results are not ideal if we directly solve

the above problem because it tends to make the resulted S-type function p(g)
overly steep. So the optimization problem (4.3.22) is modified as

max
∏

yi=1

(pi)
1−ε+(1− pi)

ε+
∏

yi=−1

(1− pi)
1−ε−(pi)

ε− , (4.3.28)

where ε+ and ε− are small positive numbers. One interpretation of this mod-
ification is that in (4.3.22) the output of the positive input xi is believed as 1,
i.e. the probabilities of taking −1 and 1 is 1 and 0 respectively while in (4.3.28)
the probabilities are changed to 1−ε+ and ε+ respectively, and corresponding
change with ε− is similar. The values of ε+ and ε− are recommended to be

ε+ =
1

N+ + 2
, ε− =

1

N− + 2
, (4.3.29)

where N+ and N− are the numbers of the positive and negative points respec-
tively. Therefore the final optimization problem is obtained as

min−
l∑

i=1

{ti log pi(c1, c2) + (1− ti) log(1− pi(c1, c2))} , (4.3.30)

where

ti =

{
N++1
N++2 , yi = 1;

1
N−+2 , yi = −1,

(4.3.31)

here N+ and N− are the numbers of the positive and negative points respec-
tively.

Thus the classification algorithm with probabilistic output can be de-
scribed as follows:

Algorithm 4.3.5 (Support vector classification with probabilistic output)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Perform Algorithm 4.3.1, obtaining the g(x) given by (4.3.6);

(3) Solve the unconstrained optimization problem (4.3.30) with variables c1, c2,
where for i = 1, · · · , l, pi(c1, c2) is given by (4.3.21), in which gi = g(xi), ti
is given by (4.3.31), obtaining a solution (c∗1, c

∗
2);
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(4) Construct the decision function with probabilistic output

p̃(x) =
1

1 + exp(c∗1g(x) + c∗2)
, (4.3.32)

this value is just the probability of the output being 1 corresponding to the
input x.

4.3.2 Support vector regression

4.3.2.1 Algorithm

Using kernel Algorithm 4.1.8 (Regression machine based on nonlinear sep-
aration) can be rewritten as the following commonly used ε-support vector
regression. It can be regarded as the extension of Algorithm 3.4.7 (Linear
ε-support vector regression) from linear regression to nonlinear regression.

Algorithm 4.3.6 (ε-support vector regression, ε-SVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
R, i = 1, · · · , l;
(2) Choose an appropriate kernel K(x, x′), an appropriate accuracy ε > 0 and
the penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming problem

min
α(∗)∈R2l

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi, xj)

+ε

l∑

i=1

(α∗
i + αi)−

l∑

i=1

yi(α
∗
i − αi), (4.3.33)

s.t.
l∑

i=1

(αi − α∗
i ) = 0 , (4.3.34)

0 6 α
(∗)
i 6 C , i = 1, · · · , l, (4.3.35)

obtaining a solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Compute b̄: Choose a component of ᾱ(∗), ᾱj ∈ (0, C), or ᾱ∗
k ∈ (0, C). If

ᾱj is chosen, compute

b̄ = yj −
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xj) + ε ; (4.3.36)

if ᾱ∗
k is chosen, compute

b̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xk)− ε ; (4.3.37)
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(5) Construct the decision function

y = g(x) =
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄. (4.3.38)

4.3.2.2 Support vector

Now we introduce the concept of support vector for the above algorithm
4.3.6 (ε-support vector regression) and discuss its properties.

Definition 4.3.7 (Support vector) Suppose ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is

a solution to the problem (4.1.81)∼(4.3.35) obtained using Algorithm 4.3.6.
The training point (xi, yi) is said to be a support vector if the corresponding
component ᾱi or ᾱ

∗
i of ᾱ

(∗) is nonzero, and otherwise it is a nonsupport vector.

Theorem 4.3.8 Suppose ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is a solution to the con-

vex quadratic programming problem (4.1.81)∼(4.3.35), then for i = 1, · · · , l,
each pair of ᾱi and ᾱ

∗
i cannot be both simultaneously nonzero.

Theorem 4.3.9 Suppose ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is a solution to the

problem (4.1.81) ∼(4.3.35) obtained using Algorithm 4.3.6. If g(x) is defined
by (4.3.38), then

(i) support vector (xi, yi) corresponding to ᾱi ∈ (0, C), ᾱ∗
i = 0 or ᾱ∗

i ∈
(0, C), ᾱi = 0 satisfies yi = g(xi)− ε or yi = g(xi) + ε;

(ii) support vector (xi, yi) corresponding to ᾱi = C, ᾱ∗
i = 0 or ᾱ∗

i = C, ᾱi = 0
satisfies yi 6 g(xi)− ε or yi > g(xi) + ε;

(iii) nonsupport vector (xi, yi) satisfies g(xi)− ε 6 yi 6 g(xi) + ε.

Proof If ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is a solution to the problem

(4.1.81)∼(4.3.35), then ᾱ(∗) satisfies the KKT conditions, i.e. there exist mul-

tipliers b̄, s̄
(∗)
i , ξ̄

(∗)
i , i = 1, · · · , l such that

l∑

j=1

(ᾱ∗
j − ᾱj)K(xi, xj) + b̄− yi − ε− ξ̄i = −s̄i 6 0, i = 1, · · · , l, (4.3.39)

ᾱis̄i = 0, i = 1, · · · , l, (4.3.40)

yi −
l∑

j=1

(ᾱ∗
j − ᾱj)K(xi, xj)− b̄− ε− ξ̄∗i = −s̄∗i 6 0, i = 1, · · · , l, (4.3.41)

ᾱ∗
i s̄

∗
i = 0, i = 1, · · · , l, (4.3.42)

ξ̄i(C − ᾱi) = 0, i = 1, · · · , l, (4.3.43)

ξ̄∗i (C − ᾱ∗
i ) = 0, i = 1, · · · , l, (4.3.44)

l∑

i=1

(ᾱi − ᾱ∗
i ) = 0, 0 6 ᾱi, ᾱ

∗
i 6 C, i = 1, · · · , l. (4.3.45)
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Now we prove the conclusions separately:
(i) For support vector (xi, yi) corresponding to ᾱi ∈ (0, C), ᾱ∗

i = 0, we
have ξ̄i = 0 from (4.3.43), furthermore from (4.3.39)∼(4.3.40) we have

yi = g(xi)− ε− ξ̄i = g(xi)− ε. (4.3.46)

For support vector (xi, yi) corresponding to ᾱ∗
i ∈ (0, C), ᾱi = 0, we can draw

the conclusion from (4.3.39), (4.3.42), and (4.3.44).
(ii) For support vector (xi, yi) corresponding to ᾱi = C, ᾱ∗

i = 0, from
(4.3.39)∼(4.3.40) we have g(xi)− yi = ε+ ξ̄i. And because ξi > 0, so

yi 6 g(xi)− ε. (4.3.47)

For support vector (xi, yi) corresponding to ᾱ∗
i = C, ᾱi = 0, the conclusion

can be obtained by (4.3.41)∼(4.3.42).
(iii) For non-support vector (xi, yi), because ᾱi = ᾱ∗

i = 0; hence from

(4.3.43)∼(4.3.44) we have ξ̄
(∗)
i = 0. Furthermore, (4.3.39) and (4.3.41) lead to

g(xi)− ε 6 yi 6 g(xi) + ε. (4.3.48)

�

The geometric interpretation of the above theorem with x ∈ R2 is shown
in Figure 4.6, where the curve y = g(x) is the decision function. (a) shows that
support vector corresponding to ᾱi ∈ (0, C), ᾱ∗

i = 0 or ᾱ∗
i ∈ (0, C), ᾱi = 0

must lie on the curve y = g(x) − ε or y = g(x) + ε, i.e. its deviation to the
decision function is not large. (b) shows that support vector corresponding to
ᾱi = C, ᾱ∗

i = 0 or ᾱ∗
i = C, ᾱi = 0 must lie in the shadow region including the

boundaries y = g(x) + ε and y = g(x) − ε, i.e. its deviation to the decision
function may be larger. (c) shows that non-support vector must lie in the
shadow region including the boundaries y = g(x) + ε and y = g(x)− ε, i.e. its
deviation to the decision function is very small.

FIGURE 4.6: Geometric interpretation of Theorem 4.3.9.
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4.3.2.3 Properties

Algorithm 4.3.6 (ε-support vector regression) also possesses the 3 proper-
ties in Algorithm 4.3.1 (C-support vector classification) described in Section
4.3.1: Conversion of the problem scale, employment of the kernel and sparsity.
We will not repeat them here.

4.3.2.4 ε-Insensitive loss function

Consider the primal problem (4.1.45) ∼(4.1.48). Suppose its solution is
(w̄, b̄, ξ̄(∗)), and the corresponding function is g(x) = (w̄ · Φ(x)) + b̄, then the
sum of two components ξ̄i+ ξ̄

∗
i reflects the “deviation” or “loss” of the decision

function on the training point (Φ(xi), yi). It is easy to see that

ξi + ξ∗i =

{
0, |yi − ((w̄ · Φ(xi)) + b̄)| < ε;
|yi − ((w̄ · Φ(xi)) + b̄)| − ε, otherwise.

(4.3.49)
l∑

i=1

(ξi+ξ
∗
i ) contained in the objective function (4.1.45) of the primal problem

implies minimizing the sum of the loss at all the training points. This shows
the loss function used here is

c(x, y, g(x)) =

{
0, |y − g(x)| < ε;
|y − g(x)| − ε, otherwise,

(4.3.50)

where ε is a predetermined positive number. The loss function with the form
(4.3.50) is called the ε-insensitive loss function. The ε-insensitive loss function
is shown in Figure 4.7 and often written as

c(x, y, g(x)) = |y − g(x)|ε , (4.3.51)

where
|y − g(x)|ε = max{0, |y − g(x)| − ε} . (4.3.52)

The idea behind the ε-insensitive loss function is: when the deviation between
the observation y of x and the prediction g(x) does not exceed the given ε,
there is no loss of the prediction g(x) at this point, though the prediction g(x)
and the observation y may not be exactly equal.

It is easy to see that the ε-insensitive loss function has the following char-
acteristic: it does not always bring the loss when the value g(x) of the decision
function is different with y corresponding to x; instead it has a certain tol-
erance, i.e. the loss is regarded as zero when the difference between the two
above values is in a certain range. This characteristic is not available in many
other loss functions, e.g. the loss function

c(x, y, g(x)) = (y − g(x))2, (4.3.53)

traditionally used in the least square method in the curve fitting problem,
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FIGURE 4.7: ε-insensitive loss function with ε > 0.

which does not have such characteristic. Precisely because of adopting the
ε-insensitive loss function in Algorithm 4.3.6 both ᾱi and ᾱ

∗
i corresponding to

the training points (Φ(xi), yi) in the ε-band of the hyperplane y = (w̄·Φ(x))+b̄
is made to be zero, resulting in the valuable sparsity.

4.3.3 Flatness of support vector machines

For the support vector machines derived from the maximal margin princi-
ple, we give another intuitive interpretation in this section. For example, for
a regression problem with the training set (3.1.1)

T = {(x1, y1), · · · , (xl, yl)} ∈ (Rn × Y)l, (4.3.54)

where xi ∈ Rn, yi ∈ Y = R, i = 1, · · · , l, the primal problem in ε-SVR is

min
w,b,ξ(∗)

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ), (4.3.55)

s.t. ((w · Φ(xi)) + b)− yi 6 ε+ ξi , i = 1, · · · , l, (4.3.56)

yi − ((w · Φ(xi)) + b) 6 ε+ ξ∗i , i = 1, · · · , l, (4.3.57)

ξ
(∗)
i > 0 , i = 1, · · · , l, (4.3.58)

where two objectives are concerned:
(i) Minimize ‖w‖;
(ii) Minimize the “deviation” or “loss” of the decision function (w·Φ(x))+b

at all the training points (Φ(xi), yi), i = 1, · · · , l.
Intuitively speaking, the objective (ii) is natural. How to understand the

objective (i)?
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4.3.3.1 Runge phenomenon

The above question leads to an old problem: can we take minimizing the
deviation as the unique objective in regression?

Consider a simple one-dimensional regression problem. Suppose that there
is a function h(x) defined in the interval [−1, 1]. Let us find a regression
function g(x), taking the smallest deviation as the unique objective and using
the training set {(x1, y1), · · · , (x1, y1)}, where yi = h(xi), i = 1, · · · , l, and
examine if the regression function g(x) is able to approximate the original
function h(x). The following example will give some enlightenment.

Example 4.3.10 (Runge phenomenon) Consider the one-dimensional re-
gression problem in the interval [−1, 1] with the training set {(x1, y1), · · · ,
(xl, yl)}, where the inputs are equally-spaced points

xi = −1 + (i− 1)
2

l − 1
, i = 1, 2, · · · , l, (4.3.59)

and yi = h(xi), i = 1, · · · , l, defined by the Runge function

h(x) =
1

1 + 25x2
. (4.3.60)

In order to achieve the zero deviation, a natural way is to select the (l−1)th
order polynomial g(x) = P(l−1)(x) as our regression function, where g(xi) =
h(xi) = P(l−1)(xi), i = 1, · · · , l. It may be expected that larger l yields better
regression function. However, it is not the case, as shown in Figure 4.8, where
the Runge function and the polynomials with l = 5 and 9 are depicted. The red
curve is the Runge function. The blue curve is a 4th order polynomial. The
green curve is a 8th order polynomial. Note that at all of the input points, the
deviation between the Runge function and the regression polynomial is zero.
Between the input points (especially in the region close to the endpoints 1 and
−1), the deviation between the Runge function and the regression polynomial
gets worse for higher-order polynomials particularly at the edges of the interval
[−1, 1]. The problem of oscillation at the edges of the interval that occurs
when the regression functions are polynomials of high degree is called Runge’s
phenomenon. This is important because it shows that going to higher degrees
does not always improve accuracy. Even worse, it can even be proved that the
deviation tends toward infinity when l increases.

lim
l→∞

( max
−16x61

|h(x)− Pl−1(x)|) = ∞ (4.3.61)

One approach to mitigate this problem is to relax the deviation require-
ment and suppress the oscillation. More precisely, keep minimizing deviation
as one of the objectives and introduce the second objective: maximizing flat-
ness of the decision function.

Next we show in detail that this is just what support vector machines do.
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FIGURE 4.8: Runge phenomenon.

4.3.3.2 Flatness of ε-support vector regression

Now we show that ε-SVR can be considered to solve a problem with the
above two objectives. First it should be pointed out that the deviation of a
decision function w.r.t. the training set (3.1.1) is measured by the ε-insensitive
loss function. On the other hand, for a linear decision function g(x) = (w·x)+b,
its flatness is measured by the norm ‖w‖ of its gradient w, which is its greatest
rate of change; the smaller this term, the flatter the decision function.

(1) Linear hard ε-band support vector regression
For the training set (3.1.1), the linear decision function g(x) = (w · x) + b

is obtained from a solution of the primal problem

min
w,b

1

2
‖w‖2 , (4.3.62)

s.t. (w · xi) + b− yi 6 ε , i = 1, · · · , l , (4.3.63)

yi − (w · xi)− b 6 ε , i = 1, · · · , l . (4.3.64)

It is easy to see that, on one hand, for the decision function g(x) = (w·x)+b,
the constraints (4.3.63)∼(4.3.64) are equivalent to the zero deviation of the
decision function w.r.t. the training set (3.1.1) measured by the ε-insensitive
loss function. On the other hand, the flatness is measured by the quantity
‖w‖. Therefore the primal problem implies finding the flattest linear function
among the linear functions with zero deviation.

The geometric meaning of the flatness is very clear when we consider a
linear regression problem in the one-dimensional space R. In fact, suppose
that the training points are represented by “×” in Figure 4.9. Constraints
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(4.3.63)∼(4.3.64) require that all of the training points should be inside the
ε-band of the regression line, and the objective function means that this line
is the one with the smallest slope satisfying the above constraints. So, we can
find a regression line by the following way: (i) select a band that is closest to
the horizontal band from the bands with the length 2ε that contain all of the
training points; (ii) select the central line in the band as the regression line,
shown by Figure 4.9(a). Obviously, when ε is very large, the regression line
we choose is horizontal, shown by Figure 4.9(b).

(a) (b)

FIGURE 4.9: Geometric interpretation of the flatness in R: (a) sloping re-
gression line; (b) horizontal regression line.

It is interesting to see that for the case when all of the training points lie
in a line as shown in Figure 4.10, the regression line obtained is not this line,
but the central line among three parallel lines in the figure.

FIGURE 4.10: Flat regression line for the case where all of the training
points lie in a line.
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(2) Linear ε-support vector regression
Now for the training set (3.1.1), the linear decision function g(x) = (w ·

x) + b is obtained from a solution of the primal problem

min
w,b,ξ(∗)

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ), (4.3.65)

s.t. ((w · xi) + b)− yi 6 ε+ ξi , i = 1, · · · , l, (4.3.66)

yi − ((w · xi) + b) 6 ε+ ξ∗i , i = 1, · · · , l, (4.3.67)

ξ
(∗)
i > 0 , i = 1, · · · , l, (4.3.68)

The two terms in the objective function (4.3.65) indicate that we not only
maximize the flatness, but also minimize the deviation. The parameter C
determines the weighting between the two of them, smaller C will lead to more
flatter decision function. In other words, the final decision function should be
the flattest one among the linear functions whose deviations do not exceed a
certain level.

(3) ε-support vector regression
For the training set (3.1.1), introducing a transformation x = Φ(x) and

the kernel K(x, x′) = (Φ(x) ·Φ(x′)), the linear decision function (w · x) + b in
x-space is obtained from a solution of the primal problem

min
w,b,ξ(∗)

1

2
‖w‖2 + C

l∑

i=1

(ξi + ξ∗i ), (4.3.69)

s.t. ((w · Φ(xi)) + b)− yi 6 ε+ ξi , i = 1, · · · , l, (4.3.70)

yi − ((w · Φ(xi)) + b) 6 ε+ ξ∗i , i = 1, · · · , l, (4.3.71)

ξ
(∗)
i > 0 , i = 1, · · · , l, (4.3.72)

This is similar to the above linear ε-SVR and has two objectives: maximize
the flatness and minimize the deviation. The final decision function g(x) in
the input x-space is the counterpart of the above linear decision function in
x-space. It can be expected that the smaller C yields flatter decision function.

Example 4.3.11 Consider the one-dimensional regression problem in the
interval [−10, 10] with the training set {(x1, y1), · · · , (x100, y100)} r =
1, · · · 100, where the inputs are drawn uniformly from [−10, 10], and

yi =
sinxi
xi

+ υi, i = 1, · · · , 100, (4.3.73)

the noise υi were drawn from a Normal distribution with zero mean and vari-
ance σ2, here σ = 0.1. In other words, the training set is produced based on

a noisy sinc =
sinx

x
function. The training points are shown by “+” and the

sinc function is displayed by the red curve in Figure 4.11.
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We apply ε-SVR to solve this regression problem, in which the RBF kernel
is used, and the parameter ε is fixed to be 0.0625. If the parameter C varies,
we will get decision functions with different flatness; smaller C, more flat the
function, see Figure 4.11. We can see that the black curve corresponding to
the smallest C = 0.01 is the most flat curve among four curves.

FIGURE 4.11: Flat functions in the input space for a regression problem.

4.3.3.3 Flatness of C-support vector classification

Let us turn to C-SVC and show that it can also be considered to solve
a problem with the above two objectives: deviation and flatness, where
the deviation of a decision function w.r.t the training set (2.1.5) is mea-
sured by the soft margin loss function. Here for a linear decision function
f(x) = sgn(g(x)) = sgn((w ·x)+b), we consider the function g(x) = (w ·x)+b
and its flatness is also measured by the norm ‖w‖.

(1) Linear hard margin support vector classification
For the training set (2.1.5), the linear function g(x) = (w ·x)+b is obtained

from a solution of the primal problem

min
w,b

1

2
‖w‖2 , (4.3.74)

s. t. yi((w · xi) + b) > 1 , i = 1, · · · , l . (4.3.75)

On one hand, for the function f(x) = (w · x) + b, the constraints
(4.3.74)∼(4.3.75) are equivalent to the zero deviation of the decision func-
tion w.r.t. the training set (2.1.5) measured by the soft margin loss function.
On the other hand, the flatness is measured by the quantity ‖w‖. Therefore
the primal problem implies finding the flattest linear function among the lin-
ear functions with zero deviation. Remember that the above primal problem
is derived by maximizing margin. Now it is interpreted by maximizing flat-
ness. So it is interesting to show that “maximizing margin” and “maximizing
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flatness” are equivalent. Consider a two-dimensional classification from geo-
metric point of view. A function g(x) = (w · x) + b has zero deviation w.r.t.
the training set (2.1.5) if and only if the straight line (w · x) + b = 0 is able to
separate all inputs correctly and there is no any input between the straight
lines (w · x) + b = −1 and (w · x) + b = 1. Denoting the distance between
the straight lines (w · x) + b = −1 and (w · x) + b = 1 as d, moving the
distance d from a point in the straight line (w · x) + b = −1 to a point in
the line (w · x) + b = 1 yields the fixed increase 2 from −1 to 1. Obviously,
maximizing flatness requires finding the straight line (w · x) + b = 0 with the
largest d, which is just what maximizing margin required. So their equivalence
is observed.

FIGURE 4.12: Flat separating straight line in R2.

(2) Linear support vector classification
Now for the training set (2.1.5), the linear function g(x) = (w · x) + b is

obtained from a solution of the primal problem

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (4.3.76)

s. t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (4.3.77)

ξi > 0 , i = 1, · · · , l . (4.3.78)

The two terms in the objective function (4.3.76) indicate that we not only
maximize the flatness, but also minimize the deviation. The parameter C de-
termines the weighting between them. The smaller C yields the larger distance
between the line g(x) = (w · x) + b = 1 and the line g(x) = (w · x) + b = −1,
and therefore makes the function g(x) = (w · x) + b more flat.

(3) C-support vector classification
For the training set (2.1.5), introducing a transformation x = Φ(x) and

the kernel K(x, x′) = (Φ(x) · Φ(x′)), the linear function (w · x) + b in x-space
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is obtained from a solution of the primal problem

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (4.3.79)

s. t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (4.3.80)

ξi > 0 , i = 1, · · · , l , (4.3.81)

This is similar to the above linear C-SVC and has two objectives: maximize
flatness and minimize the deviation. The final decision function g(x) in the
input space is the counterpart of the above linear function. It can be imagined
that, if a function (w ·x)+b is flat in x-space, its counterpart g(x) in the input
x-space is also flat to some extent. So, roughly speaking, C-SVC also has two
objectives: maximize flatness in the input space and minimize the deviation.
The following example illustrates the flatness in the input space geometrically.

Example 4.3.12 The iris data set is an established data set used for demon-
strating the performance of classification algorithms which contains three
classes (Setosa, Versilcolor, Viginica) and four attributes for an iris [201],
and the goal is to classify the class of iris based on these four attributes. In
order to visualize the flatness discussed above, here we restrict ourselves to
the two classes (Versilcolor, Viginica), and the two features that contain the
most information about the class, namely the petal length and the petal width.
The distribution of the data is illustrated in Figure 4.13, where “◦”s and “+”s
represent classes Versilcolor and Viginica respectively.

We apply C-SVC to solve this classification problem, in which the RBF
kernel is used, and the parameter σ of RBF kernel is fixed to be 1.0. Suppose
that the decision function obtained is f(x) = sgn(g(x)), if the parameter C
varies, we will get different g(x); see Figure 4.13(a) with C = 100, Figure
4.13(b) with C = 10, Figure 4.13(c) with C = 1 and Figure 4.13(d) with
C = 0.1, where the separating curves g(x) = 0 are illustrated in various
colors, and the dotted curves are the corresponding curves g(x) = ±1. The
situation is somewhat similar to the case Linear support vector classification:
the smaller C yields the larger distance between the line g(x) = 1 and the line
g(x) = −1, and therefore makes the function g(x) = (w · x) + b more flat.

4.4 Meaning of Kernels

Remembering the classification problem, suppose the training set is

T = {(x1, y1), · · · , (xl, yl)} (4.4.1)
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(a) (b)

(c) (d)

FIGURE 4.13: Flat functions in the input space for a classification problem.

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l. Our task is to find out a
decision function, and deduce the corresponding output y of any new input x,
i.e. whether it belongs to the positive class or negative class. The starting point
of solving this problem is that similar inputs should have the same outputs.
So what we need to do is to measure whether the new input x is more similar
to those positive inputs or those negative inputs. If the new input x is more
similar to the positive inputs, its output y should be 1; otherwise, its output
should be −1. This involves the concept of “similarity”. The similarity between
two inputs is measured by their distance; the smaller the distance, the more
similar. It should be pointed out that there are many kinds of distances and
the distance used in Algorithm 4.3.1 and Algorithm 4.3.6 is directly decided
by the selected kernel

K(x, x′) = (Φ(x) · Φ(x′)). (4.4.2)

More precisely, the distance between two inputs x and x′ is defined by the
2-norm distance between the two vectors x and x′ in x-space, where x = Φ(x)
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and x′ = Φ(x′). Next we show by a toy problem that selecting different kernels
reflect different distances and similarity measures in detail.

Problem 4.4.1 Suppose the training set is given as

T = {(x1, y1), (x2, y2)} = {(x+, 1), (x−,−1)}, (4.4.3)

where x+ and x− are positive and negative inputs in R2 respectively, Y =
{−1, 1}, find the decision function deducing the ownership of any input x.

(i) Firstly, the similarity between two inputs is measured by their Euclidian
distance, i.e., the nearer the more similar. Solve Problem 4.4.1 using kernel

K(x, x′) = (x · x′). (4.4.4)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

min
1

2
(α1α1(x+ · x+)− 2α1α2(x+ · x−) + α2α2(x− · x−))

−α1 − α2, (4.4.5)

s.t. 0 6 α1 = α2 6 C. (4.4.6)

When the penalty parameter C is greater than 2/‖x+ − x−‖2, this problem
has a unique solution α1 = α2 = α∗ = 2/‖x+ − x−‖2. Noticing α∗ ∈ (0, C),
we have

w∗ = α∗(x+ − x−) = 2(x+ − x−)/‖x+ − x−‖2, (4.4.7)

b∗ = 1− α∗((x+ − x−) · x+) = (‖x−‖2 − ‖x+‖2)/‖x+ − x−‖2,
(4.4.8)

and the corresponding decision function is

y = sgn((w∗ · x) + b∗)

= sgn
(
(2(x+ · x)− 2(x− · x) + ‖x−‖2 − ‖x+‖2)/‖x+ − x−‖2

)
.

(4.4.9)

Now the separating line determined by the decision function is the vertical
bisector of the segment x+x− as shown in Figure 4.14. Note that kernel (4.4.4)
corresponds to the transformation x = Φ(x) = x, which implies that the
similarity between two inputs x′ and x′′ is measured by the Euclidian distance
between x′ = Φ(x′) and x′′ = Φ(x′′) in x-space; returning to the x-space,
the similarity is measured by the usual distance ‖x′ − x′′‖; the smaller, the
more similar. So the obtained decision function is: if x is nearer to x+, i.e.
‖x− x+‖ < ‖x− x−‖, x is deemed more similar to x+ and is decided to the
positive class; otherwise x is deemed more similar to x− and is decided to the
negative class, the separating line consists of the points.
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FIGURE 4.14: Case (i). The separating line when the similarity measure
between two inputs is defined by their Euclidian distance.

(ii) Secondly, the similarity between two inputs is measured by the differ-
ence between their length, i.e., the smaller, the more similar. Solve Problem
4.4.1 using kernel

K(x, x′) = ‖x‖‖x′‖. (4.4.10)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

min
1

2
(α1α1 ‖x+‖ ‖x+‖ − 2α1α2 ‖x+‖ ‖x−‖+ α2α2 ‖x−‖ ‖x−‖)

−α1 − α2, (4.4.11)

s.t. 0 6 α1 = α2 6 C. (4.4.12)

When the suitable penalty parameterC is greater than 2/(‖x+‖ − ‖x−‖)2, this
problem has a unique solution α1 = α2 = α∗ = 2/(‖x+‖ − ‖x−‖)2. Noticing
α∗ ∈ (0, C), we have

w∗ = α∗(‖x+‖ − ‖x−‖) = 2/(‖x+‖ − ‖x−‖), (4.4.13)

b∗ = 1− α∗‖x+‖(‖x+‖ − ‖x−‖) = 1− 2‖x+‖/(‖x+‖ − ‖x−‖).
(4.4.14)

and the corresponding decision function is

y = sgn(w∗‖x‖+ b∗) = sgn ((‖x‖ − (‖x+‖+ ‖x−‖)/2)/(‖x+‖ − ‖x−‖)) .
(4.4.15)

Now the separating line determined by the decision function is the circle
with the center at the origin and the radius (‖x+‖ + ‖x−‖)/2 as shown
in Figure 4.15. Note that kernel (4.4.10) corresponds to the transformation
x = Φ(x) = ‖x‖, which implies that the similarity between two inputs x′ and
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x′′ is measured by the Euclidian distance between x′ = ‖x′‖ and x′′ = ‖x′′‖
in x-space; returning to the x-space, the similarity is measured by the differ-
ence |‖x′‖−‖x′′‖| between their lengths; the smaller, the more similar. So the
obtained decision function is: if |‖x‖ − ‖x+‖| < |‖x‖ − ‖x−‖|, x is deemed
more similar to x+ and is decided to the positive class; otherwise x is deemed
more similar to x− and is decided to the negative class, the separating circle
consists of the points.

FIGURE 4.15: Case (ii). The separating line when the similarity measure
between two inputs is defined by the difference between their lengths.

(iii) Lastly, the similarity between the two inputs is measured by the dif-
ference between their arguments, i.e., the smaller, the more similar. Solve
Problem 4.4.1 using kernel

K (x, x′) =
(x · x′)
‖x‖ ‖x′‖ . (4.4.16)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

min
α1,α2

1

2

(
α1α1

(x+ · x+)
‖x+‖ ‖x+‖

− 2α1α2
(x+ · x−)
‖x+‖ ‖x−‖

+ α2α2
(x− · x−)
‖x−‖ ‖x−‖

)

−α1 − α2, (4.4.17)

s.t. 0 6 α1 = α2 6 C. (4.4.18)

when the suitable penalty parameterC is greater than 2

/(∥∥∥∥
x+
‖x+‖

− x−
‖x−‖

∥∥∥∥
2
)
,

this problem has a unique solution α1 = α2 = α∗ = 2
/(∥∥∥

x+
‖x+‖

− x−
‖x−‖

∥∥∥
2)

.
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Noticing α∗ ∈ (0, C), according to Algorithm 4.3.1 (C-support vector ma-
chine), we have

w∗ = α∗

(
x+
‖x+‖

− x−
‖x−‖

)
= 2

(
x+

‖x+‖
− x−

‖x−‖

)/(
‖ x+
‖x+‖

− x−
‖x−‖

‖2
)
,

(4.4.19)

b∗ = 1− 2

((
x+

‖x+‖
− x−

‖x−‖

)
· x+
‖x+‖

)/(
‖ x+
‖x+‖

− x−
‖x−‖

‖2
)
. (4.4.20)

The corresponding decision function is

y = sgn

((
w∗ · x

‖x‖

)
+ b∗

)
= sgn

((
x ·
(

x+
‖x+‖

− x−
‖x−‖

)))
. (4.4.21)

The separating line determined by the decision function is now the vertical

FIGURE 4.16: Case (iii). The separating line when the similarity measure
between two inputs is defined by the difference between their arguments.

bisector of the segment

[
x−
‖x−‖

,
x+

‖x+‖

]
, i.e. the bisector of the angle x+Ox−

as shown in Figure 4.16. Note that kernel (4.4.16) corresponds to the trans-
formation x = Φ(x) = x/‖x‖, which implies that the similarity between two
inputs x′ and x′′ is measured by the Euclidian distance between x′ = x′/‖x′‖
and x′′ = x′′/‖x′′‖ in x-space; returning to the x-space, the similarity is mea-
sured by the difference |x′/‖x′‖ − x′′/‖x′′‖| or the difference between their
arguments, angle x′Ox′′, the smaller, the more similar. So the obtained deci-
sion function is: if the angle between x and x+ is less than the angle between
x and x−, x is deemed more similar to x+ and is decided to the positive class;
otherwise x is deemed more similar to x− and is decided to the negative class,
the separating line consists of the points.
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Chapter 5

Basic Statistical Learning Theory of

C-Support Vector Classification

The main purpose of this chapter is to show the theoretical foundation of
C-support vector classification (C-SVC) by developing a relationship between
C-SVC and the statistical learning theory (SLT). We start by an overview
of SLT, followed by a description of the structural risk minimization (SRM)
principle. Lastly, we show a conclusion given by our paper [186] that the
decision function obtained by C-SVC is just one of the decision functions
obtained by solving the optimization problem derived directly from the SRM
principle.

5.1 Classification Problems on Statistical Learning The-
ory

In this section, we introduce some basic concepts that describe classifica-
tion problems in the framework of SLT.

5.1.1 Probability distribution

Consider a discrete random variable (x, y), where x ∈ Rn can take values
of x1, x2, · · · , or xm, and y ∈ Y = {−1, 1} can take values of y1 = −1 or
y2 = 1. Its probability distribution is described in Table 5.1, where pij is the
probability of (x, y) = (xi, yi), pi·and p·j are the marginal distribution of (x, y)
on x and y respectively, i.e.,

pi· =

2∑

j=1

pij = P (x = xi), i = 1, · · · ,m (5.1.1)

and

p·j =

m∑

i=1

pij = P (y = yj), j = 1, 2. (5.1.2)

Obviously, the probability pij , i = 1, · · · ,m, j = 1, 2 in Table 5.1 should
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TABLE 5.1: Probability distribution of a discrete random variable.

y\x x1 x2 · · · xm p·j
y1 = −1 p11 p21 · · · pm1 p·1
y2 = 1 p12 p22 · · · pm2 p·2
pi· p1· p2· · · · pm· 1

TABLE 5.2: Probability distribution of a mixed random variable.

y\x x
y1 = −1 p(x, y1) p·1
y2 = 1 p(x, y2) p·2

px(x) 1

satisfy

pij ≥ 0, i = 1, · · · ,m, j = 1, 2, (5.1.3)
m∑

i=1

2∑

j=1

pij = 1, (5.1.4)

which implies that
m∑

i=1

pi· = 1,
2∑

j=1

p·j = 1. (5.1.5)

Based on Table 5.1, we can calculate the conditional probabilities. For exam-
ple, the conditional probability of y = yj under the condition x = xi is:

P (y = yj |x = xi) =
pij

pi1 + pi2
=
pij
pi·
, i = 1, · · · ,m, j = 1, 2. (5.1.6)

Corresponding to the above discrete random variable, we turn to describe
a mixed random variable. Consider a random variable (x, y), where y can take
values of y1 = −1 or y2 = 1 like a discrete random variable, but the values
of x spread out over an interval in Rn like a continuous variable. Table 5.2
shows this situation, where p(x, yj) is the probability density function when
y = yj (j = 1, 2), px(x) and p·j are the marginal density function and marginal
distribution of (x, y) on x and y respectively, i.e.

px(x) = p(x, y1) + p(x, y2) (5.1.7)

and

p·j =

∫ +∞

−∞

p(x, yi)dx, j = 1, 2. (5.1.8)

For j = 1, 2, p(x, yj) should satisfy that

p(x, yj) ≥ 0, j = 1, 2, (5.1.9)
∫ +∞

−∞

[p(x, y1) + p(x, y2)]dx = 1. (5.1.10)
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TABLE 5.3: An example of a mixed random variable.

y\x x ∈ (−∞, 0) x ∈ (0, 12 ) x ∈ (12 , 1) x ∈ (1,+∞) P·j

y1 = −1 p(x, y1) = 0 p(x, y1) =
1
3 p(x, y1) =

3
4 p(x, y1) = 0 p·1 = 13

24

y2 = 1 p(x, y2) = 0 p(x, y2) =
2
3 p(x, y2) =

1
4 p(x, y2) = 0 p·2 = 11

24

Px(x) 0 1 1 0 1

This implies
∫ +∞

−∞

px(x) = 1,

2∑

j=1

p·j = 1. (5.1.11)

Based on Table 5.2, we can calculate the conditional probabilities. For exam-
ple, the conditional probability of y = yj under the condition x = x̄ is

P (y = yj |x = x̄) =
p(x̄, yj)

p(x̄, y1) + p(x̄, y2)
, j = 1, 2. (5.1.12)

Example 5.1.1 Find the marginal density function, marginal distribution,
and conditional probability of the mixed random variable given by Table 5.3.

FIGURE 5.1: Probability distribution given by Table 5.3.

The probability distribution in Table 5.3 can be described graphically by
Figure 5.1. The random variable (x, y) can only take values in the straight
lines y = −1 or y = 1, and its corresponding density function can take values
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in the size of the vertical direction. So the marginal density function on x is

px(x) =





0, x ∈ (−∞, 0);
1, x ∈ (0, 1);
0, x ∈ (1,+∞).

(5.1.13)

And the marginal distributions on y are respectively

p·1 =

∫ +∞

−∞

p(x, y1)dx =
13

24
, (5.1.14)

p·2 =

∫ +∞

−∞

p(x, y2)dx =
11

24
. (5.1.15)

The conditional probability of y = −1 under the condition x = x̄ is

p(y = −1|x = x̄) =





0, x̄ ∈ (−∞, 0);
1
3 , x̄ ∈ (0, 12 );
3
4 , x̄ ∈ (12 , 1);

0, x̄ ∈ (1,+∞).

(5.1.16)

In order to describe the above discrete and mixed random variables in a unified
form, the following probability distribution function is introduced.

Definition 5.1.2 (Probability distribution function) Suppose that (x, y) is a
random variable, where x = ([x]1, · · · , [x]n)T ∈ Rn, y ∈ Y = {−1, 1}. The
function P (x̄, ȳ) = P (x 6 x̄, y 6 ȳ) defined in Rn ×Y is called the probability
distribution function of (x, y), where P (x 6 x̄, y 6 ȳ) is the probability of the
event “x 6 x̄” and the event “y 6 ȳ” occurring together, and “x 6 x̄” means
that “[x]1 6 [x̄]1, · · · , [x]n 6 [x̄]n”. For simplicity, the probability distribution
function is sometimes called the probability distribution.

Based on the probability distribution given by Tables 5.1 and 5.2, the cor-
responding probability distribution function P (x̄, ȳ) can be calculated. For
example, for the case in Table 5.2, we have

P (x̄, ȳ) =





0, if ȳ < −1;∫ x̄
−∞ p(x, y1)dx, if− 1 ≤ ȳ < 1;∫ x̄
−∞[p(x, y1) + p(x, y2)]dx, if ȳ ≥ 1.

(5.1.17)

Example 5.1.3 Find the probability distribution function of (x̄, ȳ) given in
Example 5.1.1.

The probability distribution function P (x̄, ȳ) is

P (x̄, ȳ) =






0, if ȳ < −1;
p(x,−1), if− 1 ≤ ȳ < 1;
p(x, 1), if ȳ ≥ 1,

(5.1.18)
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where

P (x̄,−1) =





0, if x̄ ∈ (−∞, 0);
1
3 x̄, if x̄ ∈ (0, 12 );
3
4 x̄− 5

24 , if x̄ ∈ (12 , 1);
13
24 , if x̄ ∈ (1,+∞),

(5.1.19)

and

P (x̄, 1) =





0, if x̄ ∈ (−∞, 0);

x̄, if x̄ ∈ (0, 1);

1, if x̄ ∈ (1,+∞).

(5.1.20)

5.1.2 Description of classification problems

In Section 2.1.2 of Chapter 2, the definition of the classification problem
is given as follows: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (5.1.21)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l, find the possible output y for
any unseen input x. In other words, classification problem is to find a function
f : Rn → Y such that f(x) is a good approximation of the output y to an
arbitrary x. Obviously, in order to find such a function, it is necessary that
the already collected training points (xi, yi)(i = 1, · · · , l) have something in
common with the pair (x, y) of the unseen input and corresponding output.
In the framework of SLT, this is guaranteed by the following assumption.

Assumption 5.1.4 Assume that the training points (xi, yi), i = 1, · · · , l in
the training set and future point (x, y) are independent and identically dis-
tributed (i.i.d.), i.e., generated independently and identically (i.i.d.) according
to an unknown but fixed probability distribution P (x, y) on Rn × Y.

This is a standard assumption in SLT. Every pair (x̂, ŷ) can be considered
to be generated in two steps. First, the input x̂ is generated according to the
marginal distribution Px(x). Second, the output ŷ is generated according to
the conditional probability P (·|x̂) on Y given the input x̂. Note that assuming
the output y to a given input x is stochastically generated by P (·|x) accom-
modated the fact that in general the information contained in x may not be
sufficient to determine a single output response in a deterministic manner. So,
the goal of classification is to estimate the value of the random variable y.

We conclude that in SLT, classification problem can be described as fol-
lows: Given a training set generated i.i.d, its goal is to find a decision function
f : Rn → Y such that f(x) is a good approximation of the output y to an
arbitrary x. In order to find such a function, we need to propose a quantity
index to evaluate it; therefore the concept of loss function is introduced at
first.
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Definition 5.1.5 (Loss function) Denote by (x, y, f(x)) ∈ Rn × Y × Y the
triplet consisting of an input(observation) x, an output y and a prediction
f(x). Then the map c : Rn × Y × Y →[0,∞) with the property c(x, y, y) = 0
for all x ∈ Rn and y ∈ Y is called a loss function.

The most simple and natural loss function is the 0− 1 loss function.

Example 5.1.6 The 0− 1 loss function is defined by

c(x, y, f(x)) = ĉ(y − f(x)), (5.1.22)

where

ĉ(ξ) =

{
0, if ξ = 0;
1, otherwise.

(5.1.23)

Clearly, the value of a loss function c(x, y, f(x)) indicates the quality of the
decision function f(x) for a particular (x, y). In order to evaluate the quality
of the decision function f(x) itself, suppose that the pair (x, y) is generated
by a distribution on Rn × Y with the probability density functions p(x,−1)
and p(x, 1), then the average loss for unseen pairs is

∫

Rn

c(x,−1, f(x))p(x,−1)dx +

∫

Rn

c(x, 1, f(x))p(x, 1)dx.

(5.1.24)

Generally the following expected risk is used to assess the quality of a decision
function.

Definition 5.1.7 (Expected risk) Suppose that the training set (5.1.21) is
generated by P (x, y) on Rn × Y. Let f : Rn → Y = {−1, 1} be a decision
function and c(x, y, f(x)) be a loss function. The expected risk of f(x) is de-
fined by the Riemann-Stieltjes integration of c(x, y, f(x) on P (x, y), i.e.,

R[f ]
∆
=E[c(x, y, f(x))] =

∫

Rn×Y

c(x, y, f(x))dP (x, y)

=

∫

Rn

c(x,−1, f(x))dP (x,−1) +

∫

Rn

c(x, 1, f(x))dP (x, 1).(5.1.25)

Here, the integration is carried out with respect to the distribution P (x, y) and
the loss function c(x, y, f(x). In general, P (x, y) is unknown, but fixed, while
the choice of c(x, y, f(x) depends strongly on the specific application. The
expected risk can be interpreted as the “average” loss of f(x). For example,
in the case of the 0 − 1 loss function it reflects the “average” weights of
predictive errors.
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Example 5.1.8 Consider the probability distribution in Examples 5.1.1 and
5.1.3. Suppose that the decision function is

f(x) =

{
1, x ∈ [0, 1/2] ;

−1, x ∈ (1/2, 1]
(5.1.26)

Find its expected risk for the 0− 1 loss function.

Noticing that the expected risk can be expressed by (5.1.25) and using Table
5.3, the expected risk for any decision function f̃ can be written as:

R[f̃ ]=

∫ ∞

−∞

c(x, y1, f̃(x))p(x, y1)dx +

∫ ∞

−∞

c(x, y2, f̃(x))p(x, y2)dx

=
1

3

∫ 1/2

0

c(x,−1, f̃(x))dx +
3

4

∫ 1

1/2

c(x,−1, f̃(x))dx

+
2

3

∫ 1/2

0

c(x, 1, f̃(x))dx +
1

4

∫ 1

1/2

c(x, 1, f̃(x))dx. (5.1.27)

The definition of 0−1 loss function implies that ĉ(−1− f̃(x̄))+ ĉ(1− f̃(x̄)) = 1,
so the above equation is equivalent to:

R[f̃ ] =
1

3
× 1

2
+

1

3

∫ 1/2

0

ĉ(1− f̃(x̄))dx̄+
1

4
× 1

2
+

1

2

∫ 1

1/2

ĉ(−1− f̃(x̄))dx̄.

(5.1.28)

Clearly, when the decision function f̃(x) = f(x) defined by (5.1.26), the ex-

pected risk is
1

3
× 1

2
+

1

4
× 1

2
=

7

24
. In other words, the “average” error rate

is
7

24
.

The definition of the expected risk helps us formalize a classification prob-
lem from the statistical learning theory as follows:

Classification problem on SLT: Given the training set

T = {(x1, y1), · · · , (xl, yl)}, (5.1.29)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l. Suppose that the training
points (xi, yi), i = 1, · · · , l and future point (x, y) are generated i.i.d according
to an unknown distribution P (x, y) on Rn × Y. Let c(x, y, f(x)) be a loss
function. Find a decision function f(x) such that its expected risk R[f ] is
minimized.

The above formulation can be explained clearly by a simple example, where
the training set is generated from P (x, y) in Examples 5.1.1 and 5.1.3. Solv-
ing the classification problem implies to find a function that minimizes the
expected risk. By (5.1.28), it is easy to see that f(x) given by (5.1.26) is what
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we need. Furthermore, we can see that, as a solution, the decision function
(5.1.26) is only an estimation (prediction) for a random variable. For instance,
when the input x ∈ (0, 1/2), we are not able to conclude that the correspond-
ing output y must be the value f(x) = 1 given by the decision function because
it may be either 1 (with probability 1/3) or −1 (with probability 2/3). So the
value f(x) = 1 is just only a best estimation in some sense.

It should be pointed out that the above example only shows the implication
of the classification problem; it does not give any practical method because in
the classification problem, we do not know the distribution P (x, y), what we
do know is only the training set T . In other words, we only know that there
exists a distribution such that on which the training points (xi, yi), i = 1, · · · , l
and future point (x, y) are independently and identically generated, but we
do not know what this distribution is. So we can imagine that it is intractable
to find an exact function, like (5.1.26), with the minimal expected risk only
using the information in the training set. Therefore we are going to find an
approximation function whose risk is close to the minimal expected risk below.

5.2 Empirical Risk Minimization

Let us now recall that the classification problem on SLT is to find a deci-
sion function that (approximately) achieves the smallest expected risk. Since
the distribution generating the training set is unknown, the expected risk is
not computable, and consequently it is impossible to find the decision func-
tion via the expected risk directly. So we should find some computable and
approximate substitute to replace the expected risk. The following empirical
risk seems to be one of them.

Definition 5.2.1 (Empirical risk) Given the training set T = {(x1, y1), · · · ,
(xl, yl)} ∈ (Rn × Y)l, where xi ∈ Rn, y ∈ Y = {−1, 1}, i = 1, · · · , l. Sup-
pose that c(x, y, f(x)) is a loss function. Then the empirical risk of a decision
function f(x) is

Remp[f ] =
1

l

l∑

i=1

c(xi, yi, f(xi)). (5.2.1)

The empirical risk has the advantage that, given the training data, we
can readily compute it. At the same time, it seems to be a reasonable quality
measure for the decision function because the better decision function should
result in smaller empirical risk. It may appear that all that remains to be
done is to find the decision function by minimizing the empirical risk Remp[f ].
However, this strategy is not reliable as shown by the following example, where
an absurd result is induced.
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Example 5.2.2 Consider the training set T = {(x1, y1), · · · , (xl, yl)}, where
xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l, and all the inputs are different, i.e.
xi 6= xj ,for i 6= j, i, j = 1, · · · , l. Suppose that the 0 − 1 loss function is
considered. Then the decision function

f(x) =

{
yi, when x = xi, i = 1, · · · , l ;

1, otherwise
(5.2.2)

is clearly a minimizer of Remp[f ] with minimal value 0. Obviously this decision
function is of no use at all. But according to the above strategy it is our final
choice, whereas it is in general a very poor approximation of R[f ].

This example is an extreme form of a phenomenon called overfitting, in
which the learning method produces a function that models too closely the
output values in the training set and as a result, has poor performance on
future data. One common way to avoid overfitting is to choose a suitable class
of functions F and minimize Remp[f ] over F , instead of over all functions.
This leads to the following empirical risk minimization (ERM) principle.

Definition 5.2.3 (Empirical risk minimization principle) For the training
set

T = {(x1, y1), · · · , (xl, yl)}, (5.2.3)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l, select a loss function
c(x, y, f(x)) and a decision function candidate set F where f ∈ F , f : Rn →
Y = {−1, 1}. The empirical risk minimization principle says that, finding a
function which minimizes the empirical risk over F , take the function as the
decision function.

The above ERM principle has already appeared in the traditional statisti-
cal learning theory. For example, the least square regression is an implemen-
tation of this idea. The law of large numbers shows that the empirical risk
Remp[f ] is a good approximation of the expected risk R[f ] for each single f
when the number of training points is very large. However, when the number
is small, Remp[f ] does not in general lead to an approximation of R[f ]. How
to get a reasonably good approximation of R[f ] in this case will be studied in
the following section.

5.3 Vapnik Chervonenkis (VC) Dimension

The ERM principle tends to choose the decision function which minimizes
the empirical risk Remp[f ] over a decision function candidate set F . This
approach has a serious issue: how to select the set F . To resolve this issue, we
introduce the VC dimension to descibe the size of F (or the growth of F).
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Definition 5.3.1 (F shatters a set Zl) Suppose that F is a decision function
candidate set, and Zl = {x1, · · · , xl}, where xi ∈ Rn, i = 1, · · · , l. We say that
F shatters the set Zl or Zl is shattered by F if for any training set

T = {(x1, y1), · · · , (xl, yl)}, (5.3.1)

where xi ∈ Zl, yi = 1 or −1, i = 1, · · · , l, there exists a function f in F which
can separate the training set, i.e. f satisfies that

f(xi) = yi, i = 1, · · · , l. (5.3.2)

Example 5.3.2 Consider a classification problem in R2. Suppose that F is
a set of the decision functions used in linear support vector classification, i.e.,

F = {f(x) = sgn((w · x) + b)

= sgn(w1[x]1 + w2[x]2 + b) | w = (w1, w2)
T ∈ R2, b ∈ R}.

(5.3.3)

If Z3 = {x1, x2, x3} ⊂ R2, and x1, x2, x3 are not in a straight line, then Z3

can be shattered by F .
In fact, there exist 23 = 8 modes for the points x1, x2, x3 shown in Figure

5.2 where the points labeled 1 are represented by “+”, and the points labeled
−1 are represented by “◦”. It is easy to see that for every mode there exists
a straight line such that all “+” lie in one side and all “◦” in the other side
of the line. This implies that there exists f ∈ F such that f(xi) = yi for all
i = 1, 2, 3. Therefore Z3 is shattered by F .

FIGURE 5.2: Eight labels for three fixed points in R2 (a) four points are
in a line; (b) only three points are in a line; (c) any three points are not in
a line and these four points form a convex quadrilateral; (d) any three points
are not in a line and one point is inside of the triangle of other three points.
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It is easy to see that the larger the number of points that can be shattered by
F is, the richer the set F is.

Definition 5.3.3 (VC dimension) Suppose that F is a decision function can-
didate set. The VC dimension of F , denoted by VCdim(F), is defined as the
maximal number of points in Rn which can be shattered by F . More precisely,
the VC dimension of F is l if there exists a set with l points which can be
shattered by F , but any sets with l+ 1 points cannot be shattered by F . If the
maximum does not exist, the VC dimension is said to be ∞.

Example 5.3.4 For F defined in Example 5.3.2, compute its VC dimension
VCdim(F).

Example 5.3.2 has shown that VCdim(F) > 3. In order to prove VCdim(F)=3,
we only need to show that for any four points {x1, x2, x3, x4} in R2, there is
always a label mode such that they cannot be shattered by F . In fact, there
are four cases: (i) four points are in a line; (ii) only three points are in a
line; (iii) any three points are not in a line and these four points form a
convex quadrilateral; (iv) any three points are not in a line and one point
is inside of the triangle of other three points. Figure 5.3 (a)∼(d) correspond
to these four cases. For every case with the label mode shown in this figure,
there is no line such that all “+”s and all “◦”s lie separately in its two sides.
Therefore the corresponding 4 points cannot be shattered by F . Thus we have
VCdim(F) = 3.

FIGURE 5.3: Four cases for four points in R2.

The above conclusion in R2 can be extended to the one in Rn as shown
by the following theorem.
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Theorem 5.3.5 Consider classification problems in Rn. Suppose that F is
the set of decision functions in linear support vector classofication, i.e.

F =
{
f(x) = sgn ((w · x) + b) | w = (w1, · · · , wn)T ∈ Rn, b ∈ R

}
, (5.3.4)

then the VC dimension of F is n+ 1.

Proof See the details in [158]. �

5.4 Structural Risk Minimization

The goal of this section is to derive the structural risk minimization (SRM)
principle that is an improvement of the ERM principle.

Consider the training set

T = {(x1, y1), · · · , (xl, yl)}, (5.4.5)

where xi ∈ Rn, yi ∈ Y = {+1,−1}, i = 1, · · · , l, where T is generated i.i.d.
from an unknown distribution P (x, y). Suppose that F is a decision func-
tion candidate set and c(x, y, f(x)) is a loss function. Let us derive an upper
bound of the expected risk. Taking the empirical riskRemp[f ] as an approxima-
tion, the problem is transferred to estimate the difference. We have described
that our problem is to find a function which minimizes R[f ], then the ERM
principle tends to replace R[f ] by Remp[f ]. So, it is crucial to ensure that
Remp[f ] is a good approximation of R[f ]. In other words, we want to guar-
antee that the approximation error R[f ] − Remp[f ] is sufficiently small. The
following theorem provides an upper bound of the probability of the event
sup
f∈F

(R[f ]−Remp[f ]) > ε, where ε is a positive number.

Theorem 5.4.1 Denote the VC dimension of F by h. If l > h and lε2 > 2,
then

P
{
sup
f∈F

(R[f ]−Remp[f ]) > ε
}
6 4 exp

(
h

(
ln

2l

h
+ 1

)
− lε2

8

)
. (5.4.6)

Proof See the details in [42, 157, 158]. �

Set the right-hand side of (5.4.6) equal to some δ > 0, i.e.

4exp

(
h

(
ln

2l

h
+ 1

)
− lε2

8

)
= δ, (5.4.7)

and then solve for ε

ε =

√
8

l

(
h

(
ln

2l

h
+ 1

)
+ ln

4

δ

)
. (5.4.8)

By the above two equations, we get an upper bound of R[f ].
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Theorem 5.4.2 Denote the VC dimension of F by h. If

l > h, (5.4.9)

and

h

(
ln

2l

h
+ 1

)
+ ln

4

δ
>

1

4
, (5.4.10)

then for any distribution P (x, y), δ ∈ (0, 1] and f ∈ F , the following inequality
holds with a probability at least 1− δ

R[f ] 6 Remp[f ] + ϕ(h, l, δ), (5.4.11)

where

ϕ(h, l, δ) =

√
8

l

(
h

(
ln

2l

h
+ 1

)
+ ln

4

δ

)
. (5.4.12)

The right-hand side of (5.4.11) is called the structural risk, its first term
is the empirical risk, and the second term is called the confidential interval.
Theorem 5.4.2 shows that the structural risk is an upper bound of the expected
risk R[f ]. So we turn to minimize this bound. Its main contribution is, instead
of simply being employed to find a decision function, being employed as a
guideline to establish and justify some important conclusions.

It is interesting to estimate the impact of the size of F on the expected risk
by investigating the impact of the size of F on the empirical risk. It is easy to
see that the confidential interval (5.4.12) is a decreasing function about the
size of training set l and tends to 0 when l → ∞. Therefore, the expected
risk is close to the value of the empirical risk and the expected risk can be
replaced by the empirical risk simply. However, in general, the confidential
interval probably plays an important role and therefore the impact of the size
of F on both the empirical risk and the confidential interval in the expected
risk should be taken account.

Figure 5.4 shows the size t of F on the horizontal axis and the value on
the right-hand side of (5.4.11) on the vertical axis. On one hand, when the
set F is increasing, the candidate decision functions increase, resulting in the
decrease of the empirical risk; on the other hand, when the set F is increasing,
the VC dimension h increases, resulting in the increase of confidence interval
(5.4.12) because it is an increasing function of h. It can be expected that the
structural risk has a minimum at t̂ which should be selected. This leads to the
following structural risk minimization (SRM) principle.

Definition 5.4.3 (Structural risk minimization principle) For the training
set

T = {(x1, y1), · · · , (xl, yl)}, (5.4.13)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l, select a loss function
c(x, y, f(x)) and a decision function candidate set F(t) depending on a real
parameter t with the following property:

F(t1) ⊂ F(t2), ∀t1 < t2, (5.4.14)
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FIGURE 5.4: Structural risk minimization.

For every t, find a function f t in F(t) which minimizes the empirical risk.
Thus every pair (t, f t) corresponds to a value of the structural risk. The struc-
tural risk minimization principle says that, finding a t̂ which minimizes the
structural risk, take the function f t̂ as the decision function.

5.5 An Implementation of Structural Risk Minimization

An implementation of structural risk minimization was proposed in [12]
and improved from theoretical point of view in our paper [186].

5.5.1 Primal problem

Consider the classification problem with the training set

T = {(x1, y1), · · · , (x1, yl)}, (5.5.1)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l. First consider the linear sepa-
ration and select a decision function candidate set F(t) depending on a real
parameter t:

F(t) = {f(x) = sgn((w · x) + b) | ‖w‖ 6 t, t ∈ [0,∞)}. (5.5.2)

Then the set F(t) increases with t. Suppose that the loss function to be the
soft margin loss function defined by (4.3.18)

c(x, y, f(x)) = max{0, 1− yg(x)}, where g(x) = (w · x) + b. (5.5.3)
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Thus its empirical risk is

Remp[f ] =
1

l

l∑

i=1

c(xi, yi, f(xi)) =
1

l

l∑

i=1

max{0, 1− yig(xi)}. (5.5.4)

For different t, we need to find the minimizer of the empirical risk. This leads
to the optimization problem with the parameter t:

min Remp[f ] =
1

l

l∑

i=1

c(xi, yi, f(xi)), (5.5.5)

s.t. f ∈ F(t). (5.5.6)

More specially, the following theorem provides us an equivalent form of the
problem (5.5.5)∼(5.5.6).

Theorem 5.5.1 Suppose that the loss function is the soft margin loss func-
tion, and the decision function candidate set is defined by (5.5.2), then the
problem (5.5.5)∼(5.5.6) is equivalent to the following convex programming:

min
w,b,ξ

l∑

i=1

ξi, (5.5.7)

s.t. yi((w · x) + b) > 1− ξi, i = 1, · · · , l, (5.5.8)

ξi > 0, i = 1, · · · , l, (5.5.9)

‖w‖ 6 t. (5.5.10)

Proof Obviously, problem (5.5.7)∼(5.5.10) is a convex programming. Now
we turn to prove the problem (5.5.5)∼(5.5.6) is equivalent to the problem
(5.5.7)∼(5.5.10). By (5.5.3), the constraints (5.5.8)∼(5.5.9) mean that for i =
1, · · · , l,

ξi=

{
0, if yig(xi) > 1;
1− yig(xi), if yig(xi) < 1

=max{0, 1− yig(xi)}. (5.5.11)

By (5.5.3), we have
ξi = c(xi, yi, f(xi)). (5.5.12)

Therefore, the problem (5.5.7)∼(5.5.10) can be transformed to the problem
(5.5.5)∼(5.5.6). �

Here, problem (5.5.7)∼(5.5.10) is the primal problem.

5.5.2 Quasi-dual problem and relationship between quasi-
dual problem and primal problem

According to the standard approach, we need to establish the dual problem
of the primal problem (5.5.7)∼(5.5.10). It is declared in [12] that the following



142 Support Vector Machines

problem

min
α

t

√√√√
l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj)−
l∑

i=1

αi , (5.5.13)

s.t.
l∑

i=1

yiαi = 0 , (5.5.14)

0 6 αi 6 1, i = 1, · · · , l . (5.5.15)

is the dual problem. Unfortunately, the proof is not rigorous since their deriva-
tion is based on some hypotheses that may not be true. However, as pointed
in our paper [186], there still exists a similar relationship between the pri-
mal problem and the problem (5.5.13)∼(5.5.15). So, we call the problem
(5.5.13)∼(5.5.15) quasi-dual problem and have the following theorems.

Theorem 5.5.2 Quasi-dual problem (5.5.13)∼(5.5.15) is a convex program-
ming.

Proof To prove the problem (5.5.13)∼(5.5.15) is a convex programming,
we only need to prove the objective function is convex. Let H = (yiyj(xi ·
xj))l×l, α = (α1, · · · , αl)T, e = (1, · · · , 1)T, then the objective function is
rewritten as

f(α) = t
√
αTHα− eTα. (5.5.16)

We only need to show that for any ᾱ, α̃ ∈ Rl and λ ∈ [0, 1],

f(λᾱ+ (1− λ)α̃) 6 λf(ᾱ) + (1− λ)f(α̃), (5.5.17)

i.e.,

√
(λᾱ + (1− λ)α̃)

T
H(λᾱ+ (1 − λ)α̃) 6 λ

√
ᾱTHᾱ+ (1− λ)

√
α̃THα̃.

(5.5.18)
Based on the Cauchy-Schwarz inequality, we have

2λ(1− λ)ᾱTHα̃ 6 2λ(1− λ)
√
ᾱTHᾱα̃THα̃. (5.5.19)

Furthermore,

λ2ᾱTHᾱ+ 2λ(1− λ)ᾱTHα̃+ (1− λ)2α̃THα̃

6λ2ᾱTHᾱ+ 2λ(1− λ)
√
ᾱTHᾱα̃THα̃+ (1− λ)2α̃THα̃, (5.5.20)

i.e.,

(λᾱ+ (1 − λ)α̃)
T
H(λᾱ+ (1− λ)α̃) 6 (λ

√
ᾱTHᾱ+ (1− λ)

√
α̃THα̃)2.

(5.5.21)
This implies (5.5.18). �
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Theorem 5.5.3 Suppose αt∗ = (αt∗1 , · · · , αt∗l )T is a solution to the quasi-
dual problem (5.5.13)∼(5.5.15), where t > 0. If there exists a component,
αt∗j such that αt∗j ∈ (0, 1), then a solution (wt∗, bt∗) to the primal problem
(5.5.7)∼(5.5.10) w.r.t. (w, b) can be obtained by

wt∗ =
1

γ∗

l∑

i=1

αt∗i yixi, (5.5.22)

bt∗ = yj −
1

γ∗

l∑

i=1

yiα
t∗
i (xi · xj), (5.5.23)

where

γ∗ =

√
αt∗THαt∗

t
, H = (yiyj(xi · xj))l×l. (5.5.24)

Proof Since αt∗ is the solution to the problem (5.5.13)∼(5.5.15),
there exist Lagrange multiplier b̃t∗ and Lagrange multiplier vectors ξ̃∗ =
(ξ̃∗1 , · · · , ξ̃∗l )T, s̃∗ = (s̃∗1, · · · , s̃∗l )T satisfying the following KKT conditions:

t√
αt∗THαt∗

yi



xi ·
l∑

j=1

yjα
t∗
j xj



− 1

+yib̃
t∗ + ξ̃∗i − s̃∗i = 0, i = 1, · · · , l, (5.5.25)

ξ̃∗i (α
t∗
i − 1) = 0, i = 1, · · · , l, (5.5.26)

s̃∗iα
t∗
i = 0, i = 1, · · · , l, (5.5.27)

ξ̃∗i > 0, i = 1, · · · , l, (5.5.28)

s̃∗i > 0, i = 1, · · · , l, (5.5.29)

αt∗i 6 1, i = 1, · · · , l, (5.5.30)

αt∗i > 0, i = 1, · · · , l, (5.5.31)

l∑

i=1

yiα
t∗
i = 0. (5.5.32)

First of all, let us prove that wt∗ given by (5.5.22) and Lagrange multiplier
b̃t∗ are the solution to primal problem (5.5.7)∼(5.5.10) with respect to (w, b).
In fact, by Theorem 1.2.24, we just need to show that there exist ξt∗ and
Lagrange multiplier vectors α∗ = (α∗

1, · · · , α∗
l )

T, s∗ = (s∗1, · · · , s∗l )T, γ∗ that
satisfy KKT conditions. This just requires that when γ∗ is shown in (5.5.24),
and

ξt∗ = ξ̃∗, α∗ = αt∗, s∗ = s̃∗ = e− αt∗ (5.5.33)
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the following conditions hold:

−
l∑

i=1

αt∗i yixi + γ∗wt∗ = 0, (5.5.34)

l∑

i=1

αt∗i yi = 0, (5.5.35)

1− αt∗i − s̃∗i = 0, i = 1, · · · , l, (5.5.36)

αt∗i (yi((w
t∗ · xi) + b̃t∗)− 1 + ξ̃∗i ) = 0, i = 1, · · · , l, (5.5.37)

s̃∗i ξ̃
∗
i = 0, i = 1, · · · , l, (5.5.38)

γ∗(t2 − ‖wt∗‖2) = 0, (5.5.39)

αt∗i ≥ 0, i = 1, · · · , l, (5.5.40)

s̃∗i > 0, i = 1, · · · , l, (5.5.41)

γ∗ > 0, (5.5.42)

yi((w
t∗ · xi) + b̃t∗)− 1 + ξ̃∗i > 0, i = 1, · · · , l, (5.5.43)

ξ̃∗i > 0, i = 1, · · · , l, (5.5.44)

‖wt∗‖2 6 t2. (5.5.45)

It is easy to get (5.5.34)∼(5.5.45) by the above KKT conditions (5.5.25)∼
(5.5.32). Therefore, (wt∗, b̃t∗) is the solution to problem (5.5.7)∼(5.5.10) with
respect to (w, b).

Furthermore, to prove (wt∗, bt∗) is the solution to primal problem
(5.5.7)∼(5.5.10) with respect to (w, b), we only need to show b̃t∗ = bt∗. If
there exists a component αt∗j of the solution αt∗ such that αt∗j ∈ (0, 1), then

ξ̃∗j = 0, by (5.5.26); on the other hand, by (5.5.37),

yj((w
t∗ · xj) + b̃t∗)− 1 = 0. (5.5.46)

So, by comparing the above equation and (5.5.23), together with (5.5.24),
we can get b̃t∗ = bt∗, that is (wt∗, bt∗) is the solution to the primal problem
(5.5.7)∼(5.5.10) with respect to (w, b). �

5.5.3 Structural risk minimization classification

As an implementation of the SRM principle, we can establish the classi-
fication algorithm based on Theorem 5.5.3. Only the linear classification is
considered here. Please see references [12, 186] for the complete algorithm
with kernels.

Algorithm 5.5.4 (Linear structural risk minimization classification)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{−1, 1}, i = 1, · · · , l;
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(2) Choose an appropriate parameter t̂ > 0;

(3) Construct and solve the problem (5.5.13)∼(5.5.15), obtaning a solution
αt∗ = (αt∗1 , · · · , αt∗l )T;

(4) Construct the decision function f(x) = sgn((wt∗ · x) + bt∗) based on The-
orem 5.5.3.

5.6 Theoretical Foundation of C-Support Vector Classi-
fication on Statistical Learning Theory

Now let us turn to our main purpose of this chapter to show that support
vector machines are the implementation of the structural risk minimization
principle by taking the standard C-support vector classification as a represen-
tative.

5.6.1 Linear C-support vector classification

We recall that in linear C-SVC, the primal problem is

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi , (5.6.1)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (5.6.2)

ξi > 0 , i = 1, · · · , l (5.6.3)

and the dual problem is

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj)−
l∑

j=1

αj , (5.6.4)

s.t.

l∑

i=1

yiαi = 0 , (5.6.5)

0 6 αi 6 C, i = 1, · · · , l . (5.6.6)

Theorem 5.6.1 Suppose that wC∗ is a solution to the problem (5.6.1)∼(5.6.3)
with respect to w. Then the function ψ(C) = ‖wC∗‖, defined in the interval
(0,+∞), is well-defined.

Proof By Theorems 2.3.2 and 2.3.3 in Chapter 2, there exists a unique
solution wC∗ to primal problem (5.6.1)∼(5.6.3) with respect to w for any
C > 0. So, the function ψ(C) = ‖wC∗‖, defined in the interval (0,+∞), is
well-defined. �
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Theorem 5.6.2 The function ψ(C) introduced in Theorem 5.6.1 is nonde-
creasing in the interval (0,+∞).

Proof Without loss of generality, suppose that 0 < C̄ < C̃. To prove ψ(C)
is nondecreasing, it only needs to provide evidence that the solution wC̄∗ and

wC̃∗ to primal problem (5.6.1)∼(5.6.3) for C̄ and C̃ respectively satisfy

‖wC̄∗‖2 6 ‖wC̃∗‖2. (5.6.7)

In fact, suppose that (wC̄∗, bC̄
∗

, ξC̄∗) and (wC̃∗, bC̃∗, ξC̃∗) are solutions to the
primal problem (5.6.1)∼(5.6.3). Then their objective function values satisfy:

1

2
‖wC̄∗‖2 + C̄

l∑

i=1

ξC̄∗
i 6

1

2
‖wC̃∗‖2 + C̄

l∑

i=1

ξC̃∗
i , (5.6.8)

1

2
‖wC̄∗‖2 + C̃

l∑

i=1

ξC̄∗
i >

1

2
‖wC̃∗‖2 + C̃

l∑

i=1

ξC̃∗
i . (5.6.9)

The two equations listed above are equivalent to

1

C̄

1

2
‖wC̄∗‖2 +

l∑

i=1

ξC̄∗
i 6

1

C̄

1

2
‖wC̃∗‖2 +

l∑

i=1

ξC̃∗
i , (5.6.10)

1

C̃

1

2
‖wC̄∗‖2 +

l∑

i=1

ξC̄∗
i >

1

C̃

1

2
‖wC̃∗‖2 +

l∑

i=1

ξC̃∗
i . (5.6.11)

Using (5.6.10) minus (5.6.11), then

(
1

C̄
− 1

C̃

)
1

2
‖wC̄∗‖2 6

(
1

C̄
− 1

C̃

)
1

2
‖wC̃∗‖2. (5.6.12)

Therefore when C̄ < C̃, (5.6.7) stands. �

5.6.2 Relationship between dual problem and quasi-dual
problem

In order to show the relationship between C-SVC and the structural risk
minimization classification, we first consider the relationship between the dual
problem (5.6.4)∼(5.6.6) and the quasi-dual problem (5.5.13)∼(5.5.15).

Theorem 5.6.3 The function ψ(C) introduced in Theorem 5.6.1 satisfies that

when t = ψ(C) > 0, αt∗ =
αC∗

C
is a solution to the quasi-dual problem

(5.5.13)∼(5.5.15), where αC∗ is a solution to the dual problem (5.6.4)∼(5.6.6).
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Proof The Lagrange function of quasi-dual problem (5.5.13)∼(5.5.15) is

L(α, b̃, ξ̃, s̃) = t
√
αTHα−

l∑

i=1

αi+b̃

l∑

i=1

yiαi+

l∑

i=1

ξ̃i(αi−1)−
l∑

i=1

s̃iαi, (5.6.13)

where H = (yiyj(xi · xj))l×l. By Theorem 5.5.2, to prove our conclusion, it

is necessary to verify that when t = ψ(C), there exist Lagrange multiplier b̃
and Lagrange multiplier vectors ξ̃ = (ξ̃1, · · · , ξ̃l)T, s̃ = (s̃1, · · · , s̃l)T such that
αt∗, b̃, ξ̃, s̃ satisfy the following KKT conditions

t√
αt∗THαt∗

Hαt∗ − e+ b̃y + ξ̃ − s̃ = 0, (5.6.14)

ξ̃i(α
t∗
i − 1) = 0, i = 1, · · · , l, (5.6.15)

s̃iα
t∗
i = 0, i = 1, · · · , l, (5.6.16)

ξ̃i > 0, i = 1, · · · , l, (5.6.17)

s̃i > 0, i = 1, · · · , l, (5.6.18)

αt∗i 6 1, i = 1, · · · , l, (5.6.19)

αt∗i > 0, i = 1, · · · , l, (5.6.20)
l∑

i=1

yiα
t∗
i = 0. (5.6.21)

In fact, since αC∗ is the solution to dual problem (5.6.4)∼(5.6.6), there
exist Lagrange multiplier b̃∗ and Lagrange multiplier vectors ξ̃∗ =
(ξ̃∗1 , · · · , ξ̃∗l )T, s̃∗ = (s̃∗1, · · · , s̃∗l )T such that αC∗, b̃∗, ξ̃∗, s̃∗ satisfy the follow-
ing conditions

HαC∗ − e + b̃∗y + ξ̃∗ − s̃∗ = 0, (5.6.22)

ξ̃∗i (α
C∗
i − C) = 0, i = 1, · · · , l, (5.6.23)

s̃∗iα
C∗
i = 0, i = 1, · · · , l, (5.6.24)

ξ̃∗i > 0, i = 1, · · · , l, (5.6.25)

s̃∗i > 0, i = 1, · · · , l, (5.6.26)

αC∗
i 6 C, i = 1, · · · , l, (5.6.27)

αC∗
i > 0, i = 1, · · · , l, (5.6.28)

l∑

i=1

yiα
C∗
i = 0. (5.6.29)

To compare (5.6.14)∼(5.6.21) and (5.6.22)∼(5.6.29), it is suggested that when

t = ψ(C), which means t =
√
αC∗THαC∗. Let b̃ = b̃∗, ξ̃ = ξ̃∗, s̃ = s̃∗, then

αt∗, b̃, ξ̃, s̃ satisfy the KKT condition (5.6.14)∼(5.6.21). Therefore, our conclu-
sion is proved. �
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5.6.3 Interpretation of C-support vector classification

Theorem 5.6.4 The nondecreasing function ψ(C) introduced in Theorem
5.6.1 and discussed in Theorem 5.6.2 has the following property: If for some
C > 0, the solution αC∗ to the dual problem (5.6.4)∼(5.6.6) has a component
αC∗
j ∈ (0, C), then when t = ψ(C), (wC∗, bC∗) obtained by C-SVC is also a

solution to the primal problem (5.5.7)∼(5.5.10) with respect to (w, b).

Proof Let us prove the conclusion in two different situations.
(i) When t = ψ(C) = 0, wC∗ = 0 by the definition of ψ(C); on the other

hand, if t = 0, from the constraint (5.5.10), it can be known that wC∗ =
0 is the solution to the primal problem (5.5.7)∼(5.5.10) with respect to w;
furthermore, it is easy to verify that the solution bC∗ to linear C-SVC with
respect to b is the solution to the primal problem (5.5.7)∼(5.5.10) with respect
to b.

(ii) When t = ψ(C) > 0, if there exists a component αC∗ of a solution αC∗

to the dual problem (5.6.4)∼(5.6.6), such that αC∗
j ∈ (0, C), then by Theorem

5.6.3, the solution to linear C-SVC with (w, b) can be expressed as

wC∗ =

l∑

i=1

αC∗
i yixi = C

l∑

i=1

αt∗i yixi, (5.6.30)

bC∗ = yj −
l∑

i=1

yiα
C∗
i (xi · xj) = yj − C

l∑

i=1

yiα
t∗
i (xi · xj), (5.6.31)

where αt∗ =
αC∗

C
is the solution to the quasi-dual problem (5.5.13)∼(5.5.15).

So according to Theorem 5.5.3, to prove (wC∗, bC∗) is the solution to the

primal problem (5.5.7)∼(5.5.10), we only need to prove C =
1

γ∗
, where γ∗ is

given by (5.5.24). In fact, it can be obtained by (5.5.24), together with the
relationship between αt∗ and αC∗, that is

γ∗ =

√
αt∗THαt∗

t
=

√
αC∗THαC∗

C‖wC∗‖ =
1

C
. (5.6.32)

Therefore, (wC∗, bC∗) is the solution to the primal problem (5.5.7)∼(5.5.10)
with respect to (w, b). �

Remark 5.6.5 Note that for the above theorem, the conclusion is proved
under the extra condition that for some C > 0, the solution αC∗ to the dual
problem (5.6.4)∼(5.6.6) has a component αC∗

j ∈ (0, C). It should be pointed
out that the conclusion is also true when the above condition is not valid. In
addition, the conclusion can be extended to the general C-SVC with kernels.
Please see [186] for the details.
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Theorems 5.6.4 and Remark 5.6.5 provide the theoretical foundation of C-
SVC on SLT: the decision function obtained by C-SVC with suitable C is just
one of the decision functions obtained by Algorithm 5.5.4 (linear structural
risk minimization classification). Therefore, C-SVC with a suitable parameter
C is a direct implementation of the SRM principle. In addition, a very inter-
esting and important meaning of the parameter C is given by showing that
C corresponds to the size of the decision function candidate set in the SRM
principle: the larger the value of C, the larger the decision function candidate
set.

Along with the discussion in Chapter 2 and Chapter 4, C-SVC can be
summarized and understood from three points of view: (i) construct a deci-
sion function by selecting a proper size of the decision function candidate set
via adjusting the parameter C; (ii) construct a decision function by selecting
the weighting between the margin of the decision function and the deviation
of the decision function measured by the soft-margin loss function via ad-
justing the parameter C; (iii) construct a decision function by selecting the
weighting between flatness of the decision function and the deviation of the
decision function measured by the soft-margin loss function via adjusting the
parameter C.
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Chapter 6

Model Construction

This chapter investigates how to solve practical problems by SVMs. Only the
classification problems are considered here since the regression problems can
be dealt with in a similar way.

Roughly speaking, a practical classification problem can be described as
follows: Suppose that there is a kind of object that is divided into two classes,
positive class and negative class, and we know some of them belong to the
former and some to the latter. Our task is to establish a criterion and deduce
whether a new object belongs to the positive or negative class.

In order to solve a practical classification problem by SVC, a complete
model is usually constructed in the following steps:

(i) According to the objects with the known class labels, generate an initial
training set;

(ii) Construct the training set by preprocessing the initial training set;
(iii) Select an appropriate kernel and parameters in SVC;
(iv) Find the decision function by SVC on the training set;
(v) For the decision function obtained, give an explanation that can be

easily interpreted by humans.
This chapter will focus on the first three steps, and the last step in Sections

6.1, 6.2, 6.3 and Section 6.4, respectively.

6.1 Data Generation

When we apply SVC to solve practical classification problems, the first
step is to generate an initial training set. For doing this, we first describe the
objects to be classified in a vector form by extracting some features that are
relevant to objects and their labels, and developing a quantitative indicator
for every feature. So, an object is represented by an n-dimensional vector
x = ([x]1, · · · , [x]n)T, where n is the number of features and [x]i is the value
of the i-th feature, i = 1, · · · , n. Thus, suppose that we know l objects with
the label 1 or −1 representing that they belong to positive class or negative
class respectively, then an initial training set can be constructed as follows:

T = {(x1, y1), · · · , (xl, yl)}, (6.1.1)

151
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where (xi, yi) is a training point, xi = ([xi]1, · · · , [xi]n)T ∈ Rn and yi ∈ Y =
{−1, 1} are the i-th input and label respectively, i = 1, · · · , l.

In the above process, one of the key points is to represent the objects by
vectors. This work is trivial sometimes, e.g. for the problem in Example 2.1.1
(Diagnosis of heart disease), where a patient (an object) is represented by a
two-dimensional vector that consists of two features: diastolic pressure and
cholesterol level. However, this is not always the case. In fact, for most practi-
cal problems, excellent skills and professional knowledge are needed as shown
by the following classification problem concerned with post-translational mod-
ification sites in bioinformatics.

The prediction of post-translational modification sites can be formulated
as a binary classification problem, where the objects to be classified are ordinal
sequences formed from 20 amino acids and a dummy amino acid, i.e. character
strings that are composed of 21 characters in the set:

U = {A,C, · · · , Z,O} (6.1.2)

with certain length, where A,C, · · · , Z represent 20 amino acids respectively
and O represents the dummy amino acid. In order to apply SVC, the first is
to represent the above strings by vectors.

Instead of the above character string, let us consider the more general one

a = α[1]α[2] · · ·α[m] (6.1.3)

with length m, where α[i](i = 1, · · · ,m) is the i-th character of the string and
belongs to the set:

S = {α1, α2, · · · , αp}. (6.1.4)

The methods representing the string (6.1.3) by a vector are called encoding

schemes. Some of them are introduced below[142].

6.1.1 Orthogonal encoding

The basic idea of this orthogonal encoding scheme is to transform p char-

acters in S into p orthonormal vectors[88]; all of characters in S are ordered
from 1 to p, and the i-th character is transformed to the binary vector of p
components with the i-th component set to “1” and all others to “0”s, for
i = 1, 2, · · · , p, i.e.,

α1 −→ e1 = (1, 0, 0, · · · , 0)T ∈ Rp

α2 −→ e2 = (0, 1, 0, · · · , 0)T ∈ Rp

· · · (6.1.5)

αp −→ ep = (0, 0, 0, · · · , 1)T ∈ Rp.

Replacing the characters by the corresponding orthonormal vectors, the char-
acter string a with lengthm given by (6.1.3) is encoded in a p×m-dimensional
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vector. For example, for the character string

a = α1α3α2α1α3 (6.1.6)

with
S = {α1, α2, α3}, (6.1.7)

we have e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T. And this string
can be transformed into the 15-dimensional vector: (eT1 , e

T
3 , e

T
2 , e

T
1 , e

T
3 )

T =
(1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1)T.

6.1.2 Spectrum profile encoding[97, 103]

Let us first show the basic idea of spectrum profile encoding scheme by
the character string a defined by (6.1.6) and (6.1.7). Here we are interested in
the distribution of two adjacent characters of the string a such as α1α2, α1α3.
Clearly, there are 32 = 9 possible combinations of two contiguous characters
in (6.1.6) shown in the set:

S2 = {α1α1, α1α2, α1α3, α2α1, α2α2, α2α3, α3α1, α3α2, α3α3}. (6.1.8)

Now calculate the number of times that each element in S2 occurred in the
string a and consider this number as the score for each element of S2. Then
we can get the 9-dimensional vector:

(0, 0, 2, 1, 0, 0, 0, 1, 0)T, (6.1.9)

where each component is the number of times the corresponding two contigu-
ous subsequences of (6.1.8) occur in the string a. For example, the first and
second 0 in (6.1.9) mean that both α1α1 and α1α2 never occur in a, while the
third element 2 in (6.1.9) means that α1α3 occurs twice in a.

Now let us define a mapping based on the above idea to encode any string a
defined by (6.1.3). We consider the occurrence of k contiguous subsequences as
the extension of the two contiguous subsequences in the above example. Given
the set S defined by (6.1.4), there are pk possible combinations regarding k
contiguous subsequences, and we can get the following set indexed by all these
pk possible combinations with a specific order:

Sk = {a1, a2, · · · , apk}. (6.1.10)

Then we can encode the string a into a vector in Rp
k

space:

Φk(a) = (φa1 (a), φa2(a), · · · , φapk (a))
T, (6.1.11)

where φai(a), i = 1, 2, · · · , pk is the number of times the subsequence ai oc-
curred in a.
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The example in the beginning of this section is just a special case of the
above mapping. That is, (6.1.10) and (6.1.11) are equivalent to (6.1.8) and
(6.1.9) respectively when k = 2, the set S and the character string a are given
by (6.1.7) and (6.1.6) respectively.

It may be interesting to extend the above encoding approach for any possi-
ble combinations rather than only consider the contiguous subsequences. For
instance, given a sequence a defined by (6.1.6), the subsequence α1α3 appears
in a as the contiguous subsequences of the first character and the second char-
acter, and the fourth and the fifth characters, as well as the non-contiguous
combination of the first character and the fifth character if gaps allowed. For
detailed discussion, we refer the reader to [97].

6.1.3 Positional weighted matrix encoding[23, 135, 175]

For a classification problem when the objects are strings, it is necessary
to know several strings with class labels. This information can be represented
by the set

T = {(a1, y1), · · · , (al, yl)}, (6.1.12)

where ai is a character string that is composed of p characters in the set S
defined by (6.1.4) and yi ∈ {1,−1} (i = 1, · · · , l).

The positional weighted matrix encoding is based on the above set, and
its process consists of two parts: (i) Construct the positional weighted matrix
P = (Pij) , where Pij is the frequency of the i-th character in set S appearing
at the j-th position in all of the characters at in S with yt = 1(t = 1, · · · , l),
i = 1, 2, · · · , p, j = 1, 2, · · ·m. (ii) Encode the character string a defined by
(6.1.3) in a m-dimensional vector, and its j-th (j = 1, · · · ,m) component is
the corresponding value of Pkj , where k is defined in the following way: the
character appearing at the j-th position in a is the k-th character in set S.

Let us show this encoding method more clearly through the following ex-
ample. Given the set

{(a1, y1), (a2, y2), (a3, y3)}, (6.1.13)

where a1 = α10α10α2α9α1, y1 = 1, a2 = α7α4α2α6α1, y2 = 1, a3 =
α7α5α2α8α10, y3 = −1, S = {α1, α2, · · · , α10}, represent the strings
α10α10α2α9α1 and α2α4α1α6α9 by vectors.

The positional weighted matrix is shown in Table 6.1 and the strings re-
quired can be represented by 5-dimensional vectors.

α10α10α2α9α1 −→ (P10 1, P10 2, P2 3, P9 4, P1 5)
T = (0.5, 0.5, 1, 0.5, 1)T,

(6.1.14)

α2α4α1α6α9 −→ (P2 1, P4 2, P1 3, P6 4, P9 5)
T = (0, 0.5, 0, 0.5, 0)T.

(6.1.15)

An improvement of this approach is proposed in [175].
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TABLE 6.1: Positional weighted matrix.

1 2 3 4 5
α1 0 0 0 0 1
α2 0 0 1 0 0
α3 0 0 0 0 0
α4 0 0.5 0 0 0
α5 0 0 0 0 0
α6 0 0 0 0.5 0
α7 0.5 0 0 0 0
α8 0 0 0 0 0
α9 0 0 0 0.5 0
α10 0.5 0.5 0 0 0

6.2 Data Preprocessing

Applying C-SVC algorithm directly on the above initial training set (6.1.1)
often results in poor performance. Therefore, the data should be preprocessed
in order to improve the quality of the data. Some data preprocessing tech-
niques are introduced below.

6.2.1 Representation of nominal features

Consider the classification problem of some foods. For simplicity, we de-
scribe a food by only one feature — its taste. Suppose that there are three
different tastes: bitter, sweet, and salted, which can be represented by the
symbolic integers: 1, 2, and 3 in one-dimensional Euclidian space, respec-
tively. This feature is a nominal feature, whose feature values are completely
unordered. So, the above representation is not suitable for classification. In
order to describe the disorder, we embed the one-dimensional Euclidian space
R into three-dimensional Euclidian space R3, and transform the symbolic in-
tegers 1, 2, and 3 in R to the coordinate vectors: p1, p2, p3 in R3, see Figure
6.1. Thus the bitter, sweet, and salted foods can be represented as (1, 0, 0)T,
(0, 1, 0)T, and (0, 0, 1)T, respectively.

In the above example, the nominal feature takes values in three states.
It is easy to be extended to the case where the nominal feature takes values
in M states, which are represented by 1, 2, · · · , M in R. In fact, we only
need to embed the one-dimensional Euclidian space R into an M -dimensional
Euclidian space RM , and establish the transformation from 1, 2, · · · , M in R
to the coordinate vectors e1, · · · , eM in RM . Thus the nominal feature that
takes values in M states can be represented as (1, 0, · · · , 0)T, (0, 1, · · · , 0)T
and (0, · · · , 0, 1)T, respectively.

Please see references [147, 150] for further discussion of nominal features.
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FIGURE 6.1: Representation of nominal features.

6.2.2 Feature selection

In the initial training sets, an object to be classified is represented by an
input (vector x = ([x]1, · · · , [x]n)T with n features). Some of these features
may be irrelevant to the class. The goal of feature selection is to remove the
irrelevant features and maintain the features that are as close as possible to
the class. The benefit of feature selection is twofold. On one hand, feature
selection is meaningful since it can identify the features that contribute most
to classification. For example, in Example 2.1.1 (Diagnosis of heart disease),
there are 13 features in the initial training set. Feature selection can provide
us with the most important features that cause the heart disease. On the
other hand, feature selection is helpful for solving the classification problem
since it cannot only reduce the dimension of input space and speed up the
computation procedure, but can also improve the classification accuracy. The
problem of feature selection is described as follows.

Feature selection: Given an initial training set

T = {(xi, yi), · · · , (xl, yl)}, (6.2.1)

where xi = ([xi]1, · · · , [xi]n)T ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l, feature
selection is to remove the irrelevant features, and construct an appropriate
training set.

There exist numerous methods of feature selection in the literature [13,
110]. In the following, we introduce some of them.

6.2.2.1 F -score method

F -score is a simple and generally quite effective technique [27]. Given the
initial training set (6.2.1), the F -score of k-th feature is defined as

F (k)=
([x̄]

+
k − [x̄]k)

2 + ([x̄]
−
k − [x̄]k)

2

1

l+ − 1

∑

yi=1

([xi]k − [x̄]
+
k )

2 +
1

l− − 1

∑

yi=−1

([xi]k − [x̄]
−
k )

2
, k=1, · · · , n,

(6.2.2)
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where l+ and l− are the number of positive and negative points respectively,
and

[x̄]
+
k =

1

l+

∑

yi=1

[xi]k, k = 1, · · · , n, (6.2.3)

[x̄]
−
k =

1

l−

∑

yi=−1

[xi]k, k = 1, · · · , n, (6.2.4)

[x̄]k =
1

l

l∑

i=1

[xi]k, k = 1, · · · , n. (6.2.5)

The numerator of F (k) indicates the discrimination of k-th feature between
the positive and negative sets, and the denominator of F (k) indicates the one
within each of the two sets. The larger the F -score is, the more likely this
feature is more discriminative. Therefore, this score can be used as a feature
selection criterion. The algorithm is summarized below:

Algorithm 6.2.1 (F -score method)

(1) Input the training set T defined by (6.2.1) and the number of selected
features: d;

(2) According to (6.2.2), calculate the F -score of every feature: F (1), F (2), · · · ,
F (n);

(3) Array the F -scores in ascending order: F (k1), F (k2), · · · , F (kn), where

F (k1)>F (k2)> · · ·>F (kn). (6.2.6)

Select the features that correspond to the index k1, · · · , kd.

6.2.2.2 Recursive feature elimination method

Linear C-SVC (Algorithm 2.3.10) can be applied directly to feature selec-
tion: Given the initial training set (6.2.1), conduct Algorithm 2.3.10 on the
initial training set and obtain the normal vector of the separating hyperplane

w∗ = (w∗
1 , · · · , w∗

n)
T. (6.2.7)

If the j-th component w∗
j = 0, then we remove j-th feature [x]j , because the

decision function

f(x) = sgn

(
l∑

i=1

w∗
i [x]i + b∗

)
= sgn




∑

i6=j

w∗
i [x]i + b∗



 (6.2.8)

does not contain the j-th feature. Generally, some components of w∗ with the
small absolute value can also be removed, and feature selection is implemented.
In order to remove features more efficiently, the recursive feature elimination
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(RFE) method was proposed in [65]. Its basic idea is to apply Algorithm
2.3.10 and find the normal vector w∗ several times. Each time, remove only
one feature that corresponds to the component with the smallest absolute
value of w∗. The specific process is as follows:

Algorithm 6.2.2 (Recursive feature elimination method)

(1) Input the training set T defined by (6.2.1) and the number of selected
features: d; set k = 0, and construct the training set T0 = T ;

(2) Apply Algorithm 2.3.10 on the training set Tk, and compute the normal
vector w∗ of the separating hyperplane. Update the training set Tk+1 by elim-
inating the feature with the smallest absolute value of the components of w∗

in Tk.

(3) If k + 1 = n − d, then stop; the surviving features are the ones in Tk+1;
otherwise, set k = k + 1, and go to step (2).

6.2.2.3 Methods based on p-norm support vector classification (0 ≤
p ≤ 1)

It has been pointed out that in linear C-SVC, the j-th feature should be
removed if the corresponding j-th component w∗

j of the normal vector w∗

of the separating hyperplane is zero. In order to make w∗ have more zero
components, the primal problem (2.3.4)∼(2.3.6) is modified to the following
problem:

min
w,b,ξ

‖w‖pp + C

l∑

i=1

ξi , (6.2.9)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.10)

ξi > 0 , i = 1, · · · , l, (6.2.11)

where p is a nonnegative parameter. For the case of p = 0, ‖w‖0 represents
the number of nonzero components of w. For p > 0, ‖w‖pp is the p-th power of
‖w‖p, and

‖w‖p = (|w1|p + · · ·+ |wn|p)1/p. (6.2.12)

For the case of p ≥ 1, ‖w‖p is the p-norm of w. For example, when p = 2,
the above primal problem is reduced to the one in the standard linear SVC.
Strictly speaking, ‖w‖p is not a norm when p ∈ (0, 1), but we still follow this
term.

Now we show intuitively the relationship between the sparsity of the so-
lution w∗ w.r.t. w to the problem (6.2.9)∼(6.2.11) and the value p. Consider
the problem (6.2.9)∼(6.2.11) with n = 2 first, and denote its solution by
(w∗, b∗, ξ∗), the normal vector w∗ can be regarded as the solution to the prob-
lem

min
w∈R2

‖w‖p , (6.2.13)

s.t. yi((w · xi) + b∗) > 1− ξ∗i , i = 1, · · · , l . (6.2.14)
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Generally, the feasible region of this problem is a polyhedron without the
origin in Rn, and w∗ is the minimizer of ‖w‖p in this polyhedron. In order to
display the changes in the contour lines

‖w‖p = k (6.2.15)

with different p values, the corresponding counters with 2,1,0.5 and 0.01 are
plotted in Figure 6.2. When p = 2, the contour line is a smooth circle; When
p decreases from 2 to 1, the contour lines gradually change from a circle to a
prism and cusps appear. When p decreases further, the cusps become more and
more pointed. Note that the solution to the problem (6.2.13)∼(6.2.14) with a
fixed p can be obtained in the following way: start from one contour line with
a small k but not intersect with the feasible region; then increase the values
of k gradually until the corresponding contour line intersects with the feasible
region; thus, the crossing point is the solution w∗. Intuitively speaking, when
p = 2, the crossing point lies in anywhere of the contour line (circle) with
the same probability. When p < 1 , the smaller p, the more probability that
the contour lines intersect with the feasible region at the cusp, i.e. the more
probability that the solution w∗ has a zero component since a cusp solution
is the one with one zero component. We can imagine that a similar situation
is also true for the problems in Rn with n ≥ 3. Therefore, we can also get the
conclusion: the smaller p, the more spare w∗. Hence, selecting an appropriate
p can conduct feature selection. This observation leads to the following general
algorithm model.

FIGURE 6.2: Contour lines of ‖w‖p with different p.

Algorithm 6.2.3 (Feature selection based on p-norm SVC)
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(1) Input the training set

T = {(x1, y1), · · · , (xl, yl)}, (6.2.16)

where xi ∈ Rn, yi ∈ Y = {−1, 1}, i = 1, · · · , l;
(2) Choose the parameters p > 0 and C > 0; find the solution (w∗T, b∗, ξ∗) =
((w∗

1 , · · · , w∗
n)

T, ·, ·) to the problem (6.2.9)∼(6.2.11);

(3) Select the feature set {i|w∗
i 6= 0, i = 1, · · · , n}.

Next we give some specific implementations of the above general algorithm
model since there exist particular techniques for different p selected.

(1) Feature selection based on 1-norm SVC[197]

Selecting p = 1 in the above algorithm model (Algorithm 6.2.3) leads to
the primal problem:

min
w,b,ξ

‖w‖1 + C

l∑

i=1

ξi , (6.2.17)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.18)

ξi > 0 , i = 1, · · · , l. (6.2.19)

The objective function is not differentiable because of the absolute value in
the first term: ‖w‖1 = |w1| + · · · + |wn|. In order to eliminate the absolute
value, we consider the following problem with the variable η:

min η, (6.2.20)

s.t. −η 6 ζ 6 η, (6.2.21)

where ζ is a parameter. This problem can be rewritten as:

min η, (6.2.22)

s.t. η > ζ, η > −ζ. (6.2.23)

When ζ > 0, the optimal value of the above problem is η∗ = ζ; when ζ 6 0, its
optimal value is η∗ = −ζ. Therefore, its optimal value is η∗ = |ζ|. Furthermore,
the optimal value of problem (6.2.20)∼(6.2.21) is also η∗ = |ζ|. This implies
that problem (6.2.17)∼(6.2.19) can be transformed into the following linear
programming:

min
w,b,ξ,v

n∑

i=1

vi + C

l∑

i=1

ξi , (6.2.24)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.25)

ξi > 0 , i = 1, · · · , l, (6.2.26)

−v 6 w 6 v, (6.2.27)

where v = (v1, · · · , vn)T. The corresponding algorithm is summarized below.
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Algorithm 6.2.4 (Feature selection based on 1-norm SVC)
This algorithm is the same as Algorithm 6.2.3, except that step (2) is

replaced by the following steps:
(i) Choose the parameter C > 0;
(ii) Find the solution (w∗T, b∗, ξ∗, v∗) = ((w∗

1 , · · · , w∗
n)

T, ·, ·, ·) to the prob-
lem (6.2.24)∼(6.2.27).

(2) Feature selection based on p-norm SVC (0 < p < 1) [19, 26, 143, 149]

Consider the algorithm model (Algorithm 6.2.3) with p ∈ (0, 1). Using the
similar observation to problem (6.2.17)∼(6.2.19), the problem (6.2.9)∼(6.2.11)
can be written as

min
w,b,ξ,v

n∑

i=1

vpi + C

l∑

i=1

ξi , (6.2.28)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.29)

ξi > 0 , i = 1, · · · , l, (6.2.30)

−v 6 w 6 v. (6.2.31)

Introducing the first-order Taylor’s expansion as the approximation of the
nonlinear function:

vpi ≈ v̄pi + pv̄p−1
i vi, (6.2.32)

the problem can be solved by a successive linear approximation algorithm [19].
This leads to the algorithm below.

Algorithm 6.2.5 (Feature selection based on p-norm SVC (0 < p < 1) )
This algorithm is the same as Algorithm 6.2.3, except that step (2) is

replaced by the following steps:
(i) Choose the parameter p ∈ (0, 1), C > 0 and ε > 0;
(ii) Start with a random choice (w0, b0, ξ0, v0), and set k = 1;
(iii) Find the solution (wk, bk, ξk, vk) to the linear programming:

min
w,b,ξ,v

p(

n∑

i=1

(vk−1
i )p−1vi) + C

l∑

i=1

ξi , (6.2.33)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.34)

ξi > 0 , i = 1, · · · , l, (6.2.35)

−v 6 w 6 v. (6.2.36)

(iv) If |p
n∑

i=1

(vki )
p−1(vki −vk−1

i )+C

l∑

i=1

(ξki −ξk−1
i )| > ε, then set k = k+1,

and go to step (ii); otherwise stop, and set w∗ = wk.
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(3) Feature selection based on 0-norm SVC[18]

Considering the algorithm model (Algorithm 6.2.3) with p = 0, we need to
solve the problem (6.2.9)∼(6.2.11). In order to compute ‖w‖0, introduce two
transformations from Rn to Rn

| · | : w = (w1, · · · , wn)T → |w| = (|w1|, · · · , |wn|)T (6.2.37)

and

(·)∗ : w = (w1, · · · , wn)T → w∗ = (w∗1, · · · , w∗n)
T, (6.2.38)

where

w∗i =

{
1, when wi > 0;
0, otherwise.

(6.2.39)

Then, we have ‖w‖0 = eT|w|∗. Therefore, problem (6.2.9)∼(6.2.11) with p = 0
can be rewritten as

min
w,b,ξ

eT|w|∗ + C
l∑

i=1

ξi , (6.2.40)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.41)

ξi > 0 , i = 1, · · · , l. (6.2.42)

Eliminating the absolute value in the above problem using the similar obser-
vation to the problem (6.2.17)∼(6.2.19), we get the equivalent problem

min
w,b,ξ,v

eTv∗ + C
l∑

i=1

ξi , (6.2.43)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.44)

ξi > 0 , i = 1, · · · , l. (6.2.45)

−v 6 w 6 v, (6.2.46)

where v∗ = (v∗1, · · · , v∗n)T is the image of v = (v1, · · · , vn)T under the trans-
formation (6.2.38)∼(6.2.39), i.e., for i = 1, · · · , n,

v∗i =

{
1, when vi > 0;
0, otherwise.

(6.2.47)

Note that v∗i is still the non-smooth function of vi. So we introduce a smooth
function as the approximation of v∗i. Since the constraint (6.2.46) implies
vi > 0, we only need to consider the case vi ∈ [0,∞). It is easy to see that
when α is large enough, we have

v∗i ≈ t(vi, α) = 1− exp(−αvi), i = 1, · · · , n, (6.2.48)

see Figure 6.3, where the function t(vi, α) with different values of α are plotted.
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Replacing the corresponding component of v∗ in the objective function of the
problem (6.2.43)∼(6.2.46) by the right hand of (6.2.48), a smooth problem is
given as follows:

min
w,b,ξ,v

eT (e− exp(−αv)) + C

l∑

i=1

ξi, (6.2.49)

s.t. yi((w · xi) + b) > 1− ξi , i = 1, · · · , l , (6.2.50)

ξi > 0 , i = 1, · · · , l, (6.2.51)

−v 6 w 6 v, (6.2.52)

where
exp(−αv) = (exp(−αv1), · · · , exp(−αvn))T. (6.2.53)

It can be expected to find an approximate solution to the problem

FIGURE 6.3: Function t(vi, α) with different α.

(6.2.40)∼(6.2.42) by solving the problem (6.2.49)∼(6.2.53) when α is large
enough. This leads to the following algorithm.

Algorithm 6.2.6 (Feature selection based on 0-norm SVC)
This algorithm is the same as Algorithm 6.2.3, except that step (2) is

replaced by the following steps:
(i) Choose the parameter C > 0 and the large number α;
(ii) Find the solution (w∗T, b∗, ξ∗, v∗) = ((w∗

1 , · · · , w∗
n)

T, ·, ·, ·) to the prob-
lem (6.2.49)∼(6.2.53).

In the above Algorithm 6.2.4∼Algorithm 6.2.6, only a single p-norm ap-
pears. However a combination of different norms, such as the mixture of 0-
norm and 2-norm, is also a reasonable choice, see [167].
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6.2.3 Feature extraction

Feature selection is to reduce the dimension of input space by removing
some features. Feature extraction is also to reduce the dimension. However,
unlike feature selection, it is conducted by transforming the input space Rn

to a low dimensional space Rd. So, feature extraction can be regarded as an
extension of feature selection.

In the following, we introduce two types of feature extraction: linear di-
mensionality reduction and nonlinear dimensionality reduction.

6.2.3.1 Linear dimensionality reduction

Linear dimensionality reduction is to transform x in the input space Rn

into x̃ in the low dimensional space Rd by the linear transformation:

x̃ = V x+ u, (6.2.54)

where V is a d× n matrix. There are numerous algorithms for linear dimen-
sionality reduction including principle component analysis (PCA)[70], multi-
dimensional scaling (MDS)[23,49,74], linear discriminate analysis (LDA)[113],
independent component analysis (ICA)[23,47], nonnegative matrix factoriza-
tion (NMF)[75] and so forth.

In this subsection, we provide an intuitive introduction to the classical
method — PCA. Suppose we have an initial training set

T = {(x1, y1), · · · , (xl, yl)}, (6.2.55)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l and a new input x to be
classified. Construct the set

I = {x0, x1, · · · , xl}, (6.2.56)

where x0 = x. A geometric interpretation of PCA is given in Figure 6.4, where
the inputs in the set I are the two-dimensional vectors and shown by the points
in the plane [x]1O[x]2 in Figure 6.4(a). Clearly, most of these points are close
to a straight line l through the origin. This implies that if these points in
[x]1O[x]2 are projected onto the straight line l, then the projections can be an
approximate expression of the initial points. So, the two-dimensional inputs
in Figure 6.4(a) can be replaced by the one-dimensional inputs on the straight
line l in Figure 6.4(b), i.e. the dimension of the input space is reduced from 2
to 1.

Based on the above geometric interpretation, we can imagine that in order
to realize the dimension extraction, the inputs in Rn should be projected onto
a low-dimensional space Rd such that the variance among the inputs in the
subspace Rd is large and the variance among the inputs beyond this subspace
is small. This procedure is implemented as follows:
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FIGURE 6.4: Principal component analysis.

Algorithm 6.2.7 (Principle component analysis)

(1) Input the initial training set T defined by (6.2.55), a new input x, and the
required dimension after dimensionality reduction: d, where d < n;

(2) Construct the set I given by (6.2.56), and calculate its covariance matrix

∑
=

1

l + 1

l∑

i=0

(xi − x)(xi − x)T, (6.2.57)

where x =
1

l+ 1

l∑

i=0

xi;

(3) For the matrix
∑

, compute its d orthonormal eigenvectors v1, v2, · · · , vd
corresponding to d largest eigenvalues;

(4) Construct the projective matrix V = [v1, v2, · · · , vd];
(5) Computes

x̃i = V T(xi − x), i = 0, 1, · · · , l. (6.2.58)

The d-dimensional vectors x̃0 and x̃1, · · · , x̃l are the vectors after dimension-
ality reduction, corresponding to x and x1, · · · , xl respectively.

6.2.3.2 Nonlinear dimensionality reduction

The linear dimensionality reduction is limited to the linear or approxi-
mately linear structure of data. To deal with the nonlinear structure of data,
many popular methods for nonlinear dimensionality reduction have been pro-
posed, such as neural network, genetic algorithm, and manifold learning. Man-
ifold learning has attracted a great deal of attention of the researchers in recent
years [77, 7, 8, 67, 68, 123, 125, 145].

In the following, we provide a brief introduction to one of the manifold
learning methods — locally linear embedding (LLE) [123]. Same to PCA, the
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set I is constructed by the initial training set (6.2.55) and the input x to be
predicted, i.e.

I = {x0, x1, · · · , xl}, (6.2.59)

where x0 = x and the inputs in the above set I are vectors with high dimen-
sion. Suppose that these inputs lie on or close to a smooth nonlinear manifold
with low dimension and any input can approximately be represented by the
linear combination of inputs in its neighborhood. A toy example is given in
Figure 6.5, where most inputs expressed by dots in two-dimensional space
close to a one-dimensional curve, and any input, say x̄, can be represented by
the linear combination of three points in its neighborhood. LLE constructs a
mapping that can preserve the neighborhood relations. More precisely, this
mapping can not only map the original high-dimensional data into a global
coordinate system of low dimension, but also maintain the linear combination
as possible as it can. This adjacent properties is implemented through the
overlapping of the neighborhoods. The algorithm is summarized as follows.

Algorithm 6.2.8(Locally linear embedding)

(1) Input the training set T defined by (6.2.55), a new input x, and dimension
after dimensionality reduction: d, where d < n; Construct the set I defined by
(6.2.56);

(2) Assign the neighbor set Si to each input xi, i = 0, 1, · · · , l;
(3) For i = 0, 1, · · · , l, construct the problems

min
wi∈Rl+1

∥∥∥∥xi −
l∑

j=0

wijxj

∥∥∥∥
2

, (6.2.60)

s.t.

l∑

j=0

wij = 1, wii = 0, (6.2.61)

wij = 0, for xj /∈ Si, j = 0, 1, · · · , l, (6.2.62)

where wi = (wi0, · · · , wil)T; Find its solution w∗
i , and construct the (l + 1)×

(l + 1) matrix W ∗ = (w∗
0 , · · · , w∗

l );

(4) Construct the problem:

min
X̃

∥∥∥∥(I −W ∗T )X̃T

∥∥∥∥
2

, (6.2.63)

s.t.

l∑

i=0

x̃i = 0, (6.2.64)

1

l

l∑

i=0

x̃ix̃
T
i = Ĩ , (6.2.65)
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where X̃ = (x̃0, x̃1 · · · , x̃l) ∈ Rd×(l+1), I and Ĩ are (l+ 1)× (l+ 1) and d× d
identity matrix respectively, and ‖ · ‖ is the Frobenius norm; find its solution
(x̃∗0, x̃

∗
1, · · · , x̃∗l ). Then the d-dimensional vectors x̃∗0, x̃

∗
1, · · · , x̃∗l are the vectors

after dimensionality reduction, corresponding to x, x1, · · · , xl respectively.

FIGURE 6.5: Locally linear embedding.

Now we show some explanations for the above algorithm: the neighbor set
Si can be obtained, for example, by using K nearest neighbors to find the
K closest inputs to xi. Two optimization problems appeared in the above
algorithm. The variables wij(j = 0, 1, · · · , l) in the problem (6.2.60)∼(6.2.62)
summarize the contribution of the j-th input to the i-th reconstruction. The
constraint (6.2.62) requires that each input xi is reconstructed only from its
neighbors. Now we rewrite the objective function (6.2.60). Representing the

column vector xi−displaystyle
l∑

j=0

wijxj as the row vector and putting these

vectors as together from top to bottom, we have




xT0
...
xTl


−




wT
0
...
wT
l







xT0
...
xTl


 = (I −WT)XT, (6.2.66)

where I is the (l + 1)× (l + 1) identity matrix, and W = (w0, · · · , wl), X =
(x0, · · · , xl). Thus the objective functions (6.2.60) with i = 0, 1, · · · , l can be
summarized as:

min ‖(I −WT)XT‖2, (6.2.67)

where ‖ ·‖ is the Frobenius norm of matrix. It is easy to see that the objective
functions in (6.2.63) and (6.2.67) are very similar in form. Solving the problem
(6.2.60)∼(6.2.62) is to compute the weight matrix W ∗ from X = (x0, · · · , xl),
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while solving the problem (6.2.63)∼(6.2.65) is to compute the low-dimensional
embedding inputs X̃ = (x̃0, x̃1 · · · , x̃l) from the weight matrixW ∗. This is the
basic idea of LLE. The constraints (6.2.64) and (6.2.65) imply some restric-
tions on the inputs after dimensionality reduction. The former requires the
inputs to be centered to the origin, and the letter requires the inputs to be
stretched as far as possible in order to avoid the degenerate solutions.

Note that there are some differences between the feature extraction meth-
ods introduced here and the feature selection methods introduced in Section
6.2.2: (i) In feature selection, the inputs and outputs of training points are
used, whereas in feature extraction, only the inputs of training points are used;
(ii) in feature selection, only the training points are used, whereas; in feature
extraction, both of the inputs of training points x1, · · · , xl and the input x to
be predicted are used.

6.2.4 Data compression

When we are given too many amounts of points in an initial training set,
some techniques of data compression are required. One popular method is
clustering. We first introduce one of the formulations of clustering problem.

Clustering problem: Given the set X = {x1, · · · , xl} ⊂ Rn and an
integer K > 0, clustering is the task of assigning the points in X into K
groups (called clusters): S1, S2, · · · , SK , so that every point in X belongs in
one and only one class, and points in the same cluster are close to each other
but are far apart from points in other clusters.

There exists a large number of clustering algorithms in the literature
([13, 80]). We introduce only one popular method here — K-means clus-
tering. Its basic idea is as follows: Select K points as K cluster centers and
assign each point in X to one of the clusters S1, S2, · · · , SK based on the
distance between the point and the cluster center. Then update the cluster
centers by recalculating the mean value of each cluster. Relative to these new
centers, points are redistributed to the clusters. This process is iterated until
the following squared-error function is minimized:

E =

K∑

j=1

∑

xi∈Sj

||xi − zj||2, (6.2.68)

where zj is the center of cluster Sj.
The K-means clustering is summarized as follows.

Algorithm 6.2.9(K-means Clustering)

(1) Input the set X = {x1, · · · , xl} in Rn and the number of clusters: K.
Select ε > 0 and set m = 0. Arbitrarily choose K points from X as the initial
cluster centers: zm1 , · · · , zmK ; for example, select the points x1, · · · , xK as the
initial cluster centers;
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(2) Denote by Smj the set of the j-th cluster. For k = 1, · · · , l, we assign the
point xk to the cluster Smj based on the distance between xk and zmj , i.e. if
||xk − zmj || ≤ ||xk − zmi ||, i = 1, · · · , K, then assign xk to the cluster Smj ;

(3) Compute the new cluster centers:

zmj =
1

nj

∑

xi∈Sm
j

xi, j = 1, 2, · · · , K, (6.2.69)

where njis the number of points in the cluster Smj ;

(4) Compute the squared-error function:

Em =
K∑

j=1

∑

xi∈Sm
j

||xi − zmj ||2; (6.2.70)

(5) If m > 0 and |Em−1−Em| < ε, then set Sj = Smj , zj = zmj , j = 1, · · · , K,
and stop; otherwise, set m = m+ 1, and go to step (2).

Given a setX in Rn and the number of clusters:K, theK-means clustering
algorithm assigns the points in X into K clusters: S1, · · · , SK , and finds the
centers of these clusters: z1, · · · , zK .

Example 6.2.10 Consider a clustering problem in R2. Given the set com-
posed of the square points depicted in Figure 6.6(a). Group these points into
two clusters by K-means clustering.

Firstly, we arbitrarily choose two points as two initial cluster centers shown
in Figure 6.6(a). Secondly, each point is distributed to a cluster based on the
cluster center to which it is the nearest. Such a distribution forms silhouettes
encircled by curves. The cluster centers are updated, and marked by “∗”, as
shown in Figure 6.6(b). This process iterates for two times, leading to Figure
6.6(c) and (d).

Now let us return to the data compression of the initial training set by
K-means clustering algorithm [98, 176]. Suppose that there are l+ positive
inputs and l− negative inputs in the initial training set, respectively, and it is
required to reduce the numbers l+ and l− to K+ and K− respectively. Then
K-means clustering algorithm with the cluster numbers K+ and K− are used
in the l+ positive inputs and the l− negative inputs respectively, yielding K+

positive cluster centers and K− negative cluster centers. These cluster centers
with suitable labels would be the training points in the training set to be used
in the SVM framework. So the initial training set is compressed by clustering.

6.2.5 Data rebalancing

SVMs are limited in their performance when the difference between the
numbers of positive and negative training points is too large. So in order to
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FIGURE 6.6: Clustering of a set based on K-means method.

reduce the difference, many methods have been proposed [69]. We introduce
two of them below.

The first method is rebalancing the imbalanced training sets directly as
follows.

Algorithm 6.2.11 (Rebalancing method based on support vectors)

(1) Input the initial training set

T = T+ ∪ T−, (6.2.71)

where T+ and T− are positive set and negative set respectively, defined as

T+ = {(x1, y1), · · · , (xp, yp)}, (6.2.72)

T− = {(xp+1, yp+1), · · · , (xp+q , yp+q)}, (6.2.73)

where xi ∈ Rn, i = 1, · · · , p + q, y1 = · · · = yp = 1, yp+1 = · · · = yp+q = −1,
and q ≫ p, which implies that the negative class is the majority class, and the
positive class is the minority class. Set k = 1, Tk = T , g0 = 0, T−

0 to be the
empty set;

(2) For the training set Tk, solve the dual problem (4.3.1)∼(4.3.3) in Algorithm
4.3.1 (C-Support Vector Classification) and obtain its solution αk∗. Construct
the new negative set: T−

sυ = {(xi, yi)|xi is the support vector, yi = −1}. Set
T−
k = T−

k−1 ∪ T−
sυ;

(3) Set T̃k = T−
k ∪ T+. For the training set T̃k, use the Algorithm 4.3.1 (C-

Support Vector Classification), and obtain the decision function fk; calculate
the evaluation value gk of fk for the initial training set T ;

(4) If gk ≤ gk−1, then stop, and T̃k−1 is the balanced training set; otherwise,
let Tk+1 = Tk\T−

k , k = k + 1, go to step (2).
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In step (3), an evaluation value of the decision functions is needed. A
possible choice is the one of the accuracy measures given in next Section 6.3,
e.g. G-mean value defined by (6.3.10).

The above algorithm can not only find a balanced training set, but also
a decision function. In fact, if the algorithm is stopped at k-th iteration, the
decision dinction fk−1 is recommented for future classification.

The second method is based on ensemble [87, 163]. For the imbalanced
classification problem, we first construct several balanced training sets by
bootstrap, and then the corresponding decision functions are trained. At last,
these decision functions are aggregated to make the final decision function.
The corresponding algorithm is as follows:

Algorithm 6.2.12 (Ensemble method with bootstrap )

(1) Input the training set (6.2.71)∼(6.2.73);

(2) Choose an integer K: the number of training sets with balanced classes;

(3) Bootstrapping builds K replicate negative training sets: T−
1 , · · · , T−

k by
randomly re-sampling, but with replacement, from the initial training set
(6.2.71)∼(6.2.73) repeatedly;

(4) Construct K training sets Tk = T+ ∪ T−
k , k = 1, · · · , K.

(5) Apply C-SVC on the training sets Tk respectively, k = 1, · · · , K, obtaining
K decision functions, named basic decision functions.

(6) The final decision function is given by the combination of K basic decision
functions. More precisely, if the outputs of basic decision function are 1 or −1,
the output of the final decision function can be obtained by the majority voting;
if the outputs of basic decision functions are the probabilities, the output is the

mean of all probabilities[175].

6.3 Model Selection

The performance of C-SVC models strongly depends on a proper setting
of kernels and parameters. The main purpose of this section is to show a way
to select kernels and parameters. Evaluating the effectiveness of a kernel and
parameters is concerned with evaluating the accuracy of an algorithm.

6.3.1 Algorithm evaluation

In order to estimate the accuracy of an algorithm, we introduce some
evaluation measures for a decision function firstly.
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6.3.1.1 Some evaluation measures for a decision function

Suppose that we have a testing set:

T̃ = {(x̃1, ỹ1), · · · , (x̃l̃, ỹl̃)}, (6.3.1)

where (x̃i, ỹi) are testing points, x̃i ∈ Rn, ỹi ∈ Y = {−1, 1}, i = 1, · · · , l̃.
Suppose also that the 0-1 loss function is used and the decision function is in
the form

f(x) = sgn(g(x)), (6.3.2)

obtained by Algorithm 4.3.1 of Chapter 4, or in the form

f(x, cutoff) =

{
1, when g(x) > cutoff;
−1, otherwise,

(6.3.3)

considered in Remark 4.3.2 of Chapter 4, where g(x) is a given function. Thus
some evaluation measures can be proposed as follows.

(1) Accuracy rate Ac
For a decision function in the form (6.3.2), the accuracy rate Ac is the

percentage of testing points in testing set T̃ that are correctly classified by
f(x). We can also introduce the error rate, which is simply 1−Ac.

The accuracy rate and the error rate take values in [0, 1]. Usually, a high
accuracy rate or a low error rate may correspond to a good decision. However,
they are not enough to judge a decision function, especially for the imbalanced
testing sets. For example, suppose that the numbers of positive points and
negative points in testing set T̃ are 100 and 900 respectively, and the following
decision function

f(x) = −1 (6.3.4)

is examined. The accuracy rate is
900

100 + 900
= 90%. However, this decision

function is not acceptable. So, we also need other evaluation measures.

(2) MCC
For a decision function in the form (6.3.2), the Matthew Correlation Co-

efficient (MCC) is defined as:

MCC =
tp × tn − fn × fp

{(tp + fn)× (tn + fp)× (tp + fp)× (tn + fn)}1/2
, (6.3.5)

where tp, fn, fp, and tn are the number of true positives (the positive inputs
that are correctly classified by f(x)), false negatives (the positive inputs that
are incorrectly classified by f(x)), false positives (the negative inputs that are
incorrectly classified by f(x)), and true negatives (the negative inputs that
are correctly classified by f(x)) respectively.

Obviously, when all of testing points in testing set T̃ are incorrectly clas-
sified by the decision function, MCC is −1; MCC is 1 when all are correctly
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classified. So, the MCC takes values in [−1, 1], and the bigger the better.
Different from the accuracy rate Ac, MCC is an appropriate measure for im-
balanced sets. For example, for any testing sets and the decision function
shown by (6.3.4), the MCC always is zero because tp = fp = 0 even for the
heavily imbalanced testing sets.

(3) True positive rate rtp, false negative rate rfn, false positive
rate rfp, true negative rate rtn, and G-mean value

For the decision function in the form (6.3.2), using the four numbers
tp, fn, fp, and tn appeared in (6.3.5), we propose the following measures fur-
ther:

True positive rate rtp is the proportion of positive inputs that are correctly
classified, defined by

rtp = tp/(tp + fn), (6.3.6)

that is also referred to as the sensitivity.
False negative rate rfn is the proportion of positive inputs that are incor-

rectly classified, defined by

rfn = fn/(tp + fn); (6.3.7)

False positive rate rfp is the proportion of negative inputs that are incor-
rectly classified, defined by

rfp = fp/(fp + tn); (6.3.8)

True negative rate rtn is the proportion of negative inputs that are cor-
rectly classified, defined by

rtn = tn/(fp + tn), (6.3.9)

that is also referred to as the specificity.
Ideally, both the true positive rate rtp and true negative rate rtn should be

1, and the bigger the better; both the false negative rate rfn and false positive
rate rfp should be 0, and the smaller the better.

Note that it is not suitable to evaluate a decision function if only one
measure, say rfp, of the above four measures is used. However, a pair of them,
say (rfp, rtp) may be useful. In fact, for two decision functions f1 and f2, if
their rfp and rtp values satisfy that r1fp < r2fp and r

1
tp > r2tp, then f1 is superior

to f2. But it is true that if r1fp < r2fp and r1tp < r2tp, then we can say nothing.
So a reasonable way is to propose a new measure by combining rfp and rtp,
e.g. the G-mean value, which is the geometric mean of true positive rate rtp
and true negative rate rtn, i.e.

G−mean =
√
rtp · rtn. (6.3.10)

This measure was proposed in [144] for imbalanced testing sets.
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FIGURE 6.7: ROC curve.

(4) ROC curve and AUC
Now we are concerned with the decision function f(x, cutoff) with a pa-

rameter cutoff in the form (6.3.3). Consider the pair (rfp, rtp) defined by
(6.3.8) and (6.3.6) and describe it by a plot of rtp versus rfp. Clearly, the
point (rfp, rtp) depends on the cutoff level. When the cutoff level increases
from −∞ to +∞, the point (rfp, rtp) moves from (1, 1) to (0, 0). The receiver
operating characteristic (ROC) curve is constructed by connecting all points
obtained at all the possible cutoff levels (see Figure 6.7).

The ROC curve corresponds to a monotone nondecreasing function
through the points (0,0) and (1,1) and can be used to evaluate the perfor-
mance of a decision function f(x; cutoff). Suppose there are two decision
functions f1(x, cutoff) and f2(x, cutoff). We say that f1(x, cutoff) is bet-
ter than f2(x, cutoff) if the ROC curve of f1(x, cutoff) is above the ROC
curve of f2(x, cutoff) because this implies that the rtp value of f1(x, cutoff)
is greater than that of f2(x, cutoff) when their rfp values are the same. The
ideal ROC curve of f(x; cutoff) is the broken line from the point (0,0) to
(0,1) then (1,1)(the bold line shown in Figure 6.7).

The area under the ROC curve (AUC) is an important measure of the
accuracy of a decision function in the form (6.3.3). A decision function with
perfect accuracy will have an AUC of 1. The bigger the AUC, the more accu-
rate the decision function.
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6.3.1.2 Some evaluation measures for a concrete algorithm

Now we are concerned with a concrete classification algorithm — a com-
pletely determined algorithm, e.g. Algorithm 4.3.1 where the kernel and all
parameters have been selected. Our aim is to evaluate a concrete classifica-
tion algorithm and establish some evaluation measures. It is true that all
measures corresponding to the evaluation measures for a decision function
proposed above can be considered. However, to save the space, only the one
corresponding to the accuracy rate Ac is discussed here. Suppose that, for a
given concrete classification algorithm, we have a training set

T = {(x1, y1), · · · , (xl, yl)}, (6.3.11)

where xi ∈ Rn, yi ∈ Y = {1,−1}(i = 1, · · · , l). In order to establish an
evaluation measure, the most natural way may be the following approach:
first, using the set (6.3.11) as the training set, construct a decision function
by the concrete algorithm; then, using the set (6.3.11) again as the testing
set, calculate the accuracy rate Ac of the decision function obtained; last,
take the accuracy rate Ac obtained as the evaluation measure of the concrete
algorithm.

However, this approach suffers from a fatal flaw: the decision function de-
pends on the testing set. The following example shows that it is not reasonable
that the testing set is used when the decision function is constructed. Suppose
that the training set (6.3.11) is also taken as the testing set. If the set (6.3.11)
does not have the conflicting points, i.e., for i, j = 1, · · · , l, if xi = xj , then
yi = yj , then we are able to define directly a decision function:

f̄(x) =

{
yi, x = xi ;
1, x 6= xi.

(6.3.12)

Obviously, it can classify all the testing inputs correctly and the accuracy rate
Ac arrives at the optimal value 1. However, it is absolutely not a good decision
function since it is completely useless.

Note that, for a decision function f(x), what we are concerned with is
whether any other inputs x̄ instead of the inputs in the training set can be
correctly classified by f(x̄). So, a testing set should be independent from the
training set. In other words, in the process of constructing the decision func-
tion, we cannot use any information about the testing set. This consideration
leads to the following strategy when the training set (6.3.11) is given: instead
of using this set as the training set and testing set directly, we partition it
into two subsets: one as the training set and the other as the testing set.

k-fold cross-validation is an implementation of the above strategy. In k-
fold cross-validation, the training set is randomly partitioned into k mu-
tually exclusive subsets or “folds”, S1, S2, · · · , Sk, each of approximately
equal size. Training and testing are performed k iterations. In the i-th it-
eration, the i-th fold Si is reserved as the testing set, and the remaining folds
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S1, · · · , Si−1, Si+1, · · · , Sk collectively serve as the training set used to find a
decision function, which is tested on Si.

Now we turn to derive an evaluation measure of a concrete classification
algorithm. The combination of k-fold cross-validation and accuracy rate Ac
yields the following evaluation measure, called k-fold validation accuracy rate,
defined as follows:

Partition the training set (6.3.11) into k folds: S1, S2, · · · , Sk, denote by li
the number of inputs in the i-th fold Si correctly classified. After k iterations,

we have l1, · · · , lk. The overall number
k∑

i=1

li divided by the total number l of

the training points is
k∑

i=1

li
l
. (6.3.13)

We call it the k-fold cross-validation accuracy. This can be considered as an
estimator of the accuracy of a concrete classification algorithm. The corre-

sponding error rate 1 −
k∑

i=1

li
l
can also be used. That is the overall number

of inputs incorrectly classified, divided by the total number of the training
points. We call it the k-fold cross-validation error.

The above k-fold cross-validation errors with k = l or k = 10 are two
commonly used evaluation measures: l-fold cross-validation error and ten-fold
cross-validation error. In l-fold cross-validation, the training sets consists of l−
1 points by leaving one point out at a time for the testing set. This is commonly
referred to as the leave-one-out (LOO). The cross-validation accuracy defined
by (6.3.13) and the corresponding error are referred to as LOO accuracy and
LOO error respectively. The formal definition of LOO error is as follows:

Definition 6.3.1 (LOO error) Consider the training set

T = {(x1, y1), · · · , (xl, yl)}, (6.3.14)

where xi ∈ Rn, yi ∈ Y = {−1, 1}. Denote by fT i the decision function obtained
by a concrete classification algorithm, given the training set T i = T \{(xi, yi)}
i.e., remove the i-th point from T . Then the LOO error of the concrete clas-
sification algorithm on the training set T , or LOO error for short, is defined
as

RLOO(T ) =
1

l

l∑

i=1

c(xi, yi, fTi
(xi)) (6.3.15)

where c(x, y, f(x) is 0− 1 loss function.

The following theorem shows that the LOO error is very close to the ex-
pected risk.
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Theorem 6.3.2 Denote by P (x, y) a distribution over Rn×Y, and by Tl and
Tl−1 training sets of size l and l − 1 respectively, drawn i.i.d. from P (x, y).
Moreover, denote by R[fTl−1

] the expected risk of a decision function derived
from the training set Tl−1 by a concrete classification algorithm. Then, for this
concrete classification algorithm, the LOO error RLOO(Tl) and the expected
risk R[fTl−1

] satisfy:

ETl−1
[R[fTl−1

]] = ETl
[RLOO(Tl)], (6.3.16)

where ET is the mathematical expectation.

Theorem 6.3.2 shows that LOO error is an almost unbiased estimator of
the expected risk (The term “almost” refers to the fact that the LOO error
provides an estimate for training on sets Tl and Tl−1 rather than T ). Hence,
we should consider it as a reliable estimator of the expected risk. This theorem
provides us with the theoretical foundation of taking LOO error as one of the
evaluation measures.

When l is very large, the cost of computing LOO error is very expensive due
to running a concrete classification algorithm l times on the training sets sized
l−1. This brings us to another question: how to find an appropriate estimation
for the LOO error with cheap computation cost. The following theorems will
provide us with two simple bounds that are computed by running a concrete
classification algorithm only once on the original training set T of size l. Both
of them can be used as an evaluation measure for a concrete classification
algorithm.

Theorem 6.3.3 (Jaakkola-Haussler bound[79]) Running Algorithm 4.3.1 (C-
Support Vector Classification) with a fixed kernel and parameters on the train-
ing set (6.3.11) and using the 0− 1 loss function, the LOO error satisfies

RLOO(T ) 6
1

l

l∑

t=1

step(−ytg(xt) + 2α∗
tK(xt, xt)), (6.3.17)

where K is a kernel, α∗ = (α∗
1, · · · , α∗

l )
T and g(x) are the solution to the dual

problem (4.3.1)∼(4.3.3) and the function given by (4.3.6) respectively, step(·)
is an one-variable function

step(η) =

{
1, η > 0;
0, η < 0.

(6.3.18)

Theorem 6.3.4(Joachims bound [82]) Running Algorithm 4.3.1 (C-Support
Vector Classification) with a fixed kernel and parameters on the training set
(6.3.11) and using the 0− 1 loss function, the LOO error satisfies

RLOO(T ) 6
d

l
, (6.3.19)
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where d is the size of the set {i : 2α∗
iR

2 + ξ∗i > 1}, α∗ = (α∗
1, · · · , α∗

l )
T is

the solution to the dual problem (4.3.1)∼(4.3.3), R2 = max{K(xi, xj)| i, j =
1, · · · , l}, and ξ∗ = (ξ∗1 , · · · , ξ∗l )T is the solution to the primal problem
(4.1.6)∼(4.1.8) with respect to ξ that is obtained the following way:

ξ∗i = max



1− yi




l∑

j=1

yjα
∗
jK(xj , xi) + b∗


 , 0



 . (6.3.20)

In the above, we mainly discussed one evaluation measure — the k-fold
cross-validation accuracy rate, where the k-fold cross-validation is combined
with accuracy rate Ac. It should be pointed out that the other evaluation
measures from combinations of k-fold cross-validation and other evaluation
measures proposed above are also interesting. In addition, the corresponding
evaluation measures for regression algorithm are also useful; see e.g. [146, 177,
22, 180].

6.3.2 Selection of kernels and parameters

From the theoretical point of view, kernel selection contains feature selec-
tion since feature selection can be implemented by kernel selection. For sim-
plicity, we explain it by the linear kernelK(x, x′) = (x·x′). Suppose that there
are two features in the inputs of objects to be classified, i.e., x = ([x]1, [x]2)

T.
The corresponding linear kernel function is:

K(x, x′) = (x · x′) = [x]1[x
′]1 + [x]2[x

′]2. (6.3.21)

The result of applying Algorithm 4.3.1 with this kernel is the one without
feature selection. If we select the feature [x]1 and remove the feature [x]2, i.e.,
the input x becomes x̃ = [x]1, then the linear kernel function is changed into:

K̃(x, x′) = (x · x′) = [x]1[x
′]1, (6.3.22)

The result of applying Algorithm 4.3.1 with this kernel is the one after feature
selection. Examining the process of Algorithm 4.3.1, it is easy to see that the
above feature selection is equivalent to modify the kernel function (6.3.21) to
(6.3.22) by removing the second feature [x]2 and [x′]2 in the kernel function
(6.3.21). The modification of kernel function (6.3.21) can also be implemented
in the following way: first introduce the transformation

x = ([x]1, [x]2)
T → x̃ = ([x]1, 0)

T, (6.3.23)

and then replace the kernel function K(x, x′) by K̃(x, x′) = K(x̃, x̃′). So, fea-

ture selection of removing [x]2 is achieved by modifying K(x, x′) to K̃(x, x′).
Similar conclusion is also true for a general feature selection and kernel

function K(x, x′) with x belonging to Rn. We introduce the transformation

x = ([x]1, [x]2, · · · , [x]n)T → x̃ = σ ∗ x, (6.3.24)
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where σ ∗ x = (σ1[x]1, σ2[x]2, · · · , σn[x]n)T,σ = (σ1, σ2, · · · , σn)T,σi = 0 or

1, i = 1, · · · , n. The modification of K(x, x′) to K̃(x, x′) = K(x̃, x̃′) is equiv-
alent to feature selection. More precisely, feature selection is conducted by
choosing n parameters σ1, · · · , σn. For example, σi = 1 and σj = 0 means
that the i-th feature [x]i is maintained and the j-th feature [x]j is deleted,
respectively. Hence, feature selection is contained in kernel selection.

Similarly, feature extraction is also contained in kernel selection. So kernel
selection is very comprehensive.

Now let us turn to the main topic, kernel selection and parameter selection.
Supposing that there are several candidates in our mind; what we need to do
is to investigate the following three problems concerned with Algorithm 4.3.1:

(i) find the optimal kernel among several given kernels;
(ii) find the optimal parameters in a kernel among several given values;
(iii) find the optimal penalty parameter C among several given values.
The above problems can be solved from a comparative perspective. We

need only to find the best selection among different selections. Considering
Algorithm 4.3.1 with a fixed selection as a concrete classification algorithm,
this can be realized by comparing the evaluation measures of the concrete
classification algorithms introduced above, such as:

(i) ten-fold cross-validation error;
(ii) LOO error;
(iii) the upper bound of LOO error.
For a small classification problem, ten-fold cross validation error and LOO

error can be computed without any difficulty, and therefore can be used di-
rectly. Only for a large classification problem, the upper bound of LOO error
is recommended due to its large computation cost.

A popular implementation of the above approach is as follows:
(i) Choose the Gaussian kernel: K(x, x′) =exp(−‖x − x′‖2/σ2), where σ

is the parameter. The optimal combination of the parameter σ in the kernel
and the panelty parameter C is selected by a grid search method among the
corresponding concrete classification algorithms. A grid search is an iterative
process that starts with the pre-specified ranges for each parameter, e.g. the
ranges of parameters σ and C are assigned to be {2−5, 2−4, · · · , 215} and
{2−15, 2−14, · · · , 23} respectively. In each iteration, a fixed pair of (σ,C) in
their ranges is tried and some evaluation measure such as LOO error are
calculated. At last, the optimal parameters are picked with the best evaluation
measure.

(ii) Choose other kernel functions. Find the optimal kernel and parameters
in a way similar to the above process (i).

(iii) Comparing the above results obtained in (i) and (ii), the kernel and
parameters finally selected are the ones with the best evaluation measure.
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6.4 Rule Extraction

Support Vector Machines (SVMs) are popular methods for classification
problems in a variety of applications. These classifiers, however, are hard to
interpret by humans [47, 109, 113]. For instance, when an input is classified by
the linear classifier as positive or negative, the only explanation that can be
provided is that some linear weighted sum of the features of the input are lower
(higher) than some threshold; such an explanation is completely non-intuitive
to human experts. Humans are usually more comfortable dealing with rules
that can be expressed as a hypercube with axis-parallel edges in the input
space.

6.4.1 A toy example

Remember Example 2.1.1 in Chapter 2, where the data for heart disease
are given in a training set

T = {(x1, y1), · · · , (x10, y10)}, (6.4.1)

where xi ∈ R2, yi ∈ {−1, 1}, i = 1, · · · , 10, see Figure 2.1. Suppose that using
the linear SVC we have found the decision function

f(x) = sgn((w · x) + b), (6.4.2)

with
w1, w2 > 0, (6.4.3)

see Figure 6.8. Now the problem is to find some upright rectangles with axis-
parallel edges where the inputs are predicted as negative (without heart dis-
ease), such that an input is predicted as negative (without heart disease) by
the decision function when it falls into these upright rectangles. These upright
rectangles are called rule rectangles.

First, let us restrict the region of interest on a big upright rectangle C

C = {x ∈ R2|L1 6 [x]1 6 U1, L2 6 [x]2 6 U2}, (6.4.4)

where
Lj = min

i=1,··· ,10
[xi]j , Uj = max

i=1,··· ,10
[xi]j , j = 1, 2. (6.4.5)

Note that an upright rectangle can be described by its lower vertex with the
smallest components and its upper vertex with the largest components in
Figure 6.8. For example, the rectangle C can be described by its lower vertex
(L1, L2)

T and its upper vertex (U1, U2)
T

C = [(L1, L2)
T, (U1, U2)

T]; (6.4.6)
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FIGURE 6.8: Rule extraction in Example 2.1.1.

see Figure 6.8. Now the problem becomes to find some rectangles in the shadow
region. An interesting approach is based on the volume maximization criteria
proposed in [60]. Its basic idea is to find an upright rectangle with the largest
possible volume first, and then find as many upright rectangles as we require
to describe adequately the region of interest by an iterative procedure. The
union of these upright rectangles is our ultimate output.

In order to find the upright rectangle with the largest possible volume in
the shadow region in Figure 6.8, it is sufficient to find its upper vertex x∗ on
the line (w · x) + b = 0 because its lower vertex is obviously L = (L1, L2)

T.
According to the volume maximization criteria the upper vertex x∗ should be
the solution to the following optimization problem

max ([x]1 − L1)([x]2 − L2), (6.4.7)

s.t. (w · x) + b = 0, (6.4.8)

x ∈ C, (6.4.9)

where C is given by (6.4.4) or (6.4.6). Introducing the transformation T from
x to x̃:

x̃ = T (x) = A(x− L), (6.4.10)

where

L = (L1, L2)
T, A = diag(Ajj), Ajj =

1

Uj − Lj
, j = 1, 2, (6.4.11)
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the problem (6.4.7)∼(6.4.9) in x-space becomes the problem

max [x̃]1[x̃]2, (6.4.12)

s.t. (w̃ · x̃)− 1 = 0, (6.4.13)

x̃ ∈ C̃ = [(0, 0)T, (1, 1)T], (6.4.14)

or

max log[x̃]1 + log[x̃]2, (6.4.15)

s.t. (w̃ · x̃)− 1 = 0, (6.4.16)

x̃ ∈ C̃ = [(0, 0)T, (1, 1)T], (6.4.17)

in x̃-space, where

w̃ =
1

−((w · L) + b)

(
(U1 − L1)w1

(U2 − L2)w2

)
. (6.4.18)

After obtaining the solution x̃∗ to the problem (6.4.15)∼(6.4.17), we are able
to find the upright rectangle [(0, 0)T, x̃∗] in x̃-space, see Figure 6.9(a), and
furthermore the required rule rectangle [T−1(0), T−1(x̃∗)] = [T−1(0), x∗] in
x-space, where T−1 is the inverse of the transformation (6.4.10), see Figure
6.9(b).

If more rule rectangles in x-space are needed, first we go back to the x̃-
space and consider the remaining two rectangles

Ĩ1 : [([x̃∗]1, 0)
T, (1, 1)T], (6.4.19)

Ĩ2 : [(0, [x̃∗]2)
T, ([x̃∗]1, 1)

T], (6.4.20)

see Figure 6.9(a), and then construct their counterparts in x-space

I1 : [(L1 + (U1 − L1)[x̃
∗]1, L2)

T, (U1, U2)
T], (6.4.21)

I2 : [(L1, L2 + (U2 − L2)[x̃
∗]2)

T, (L1 + (U1 − L1)[x̃
∗]1, U2)

T]; (6.4.22)

see Figure 6.9(b). Next we should find rule rectangles in both rectangle I1 and
rectangle I2 by repeating the above procedure with replacing the big rectangle
C by I1 and I2 respectively, and so forth.

6.4.2 Rule extraction

The above Example 2.1.1 is a rule extraction problem in two-dimensional
space. Generally, there exists the rule extraction problem in the n-dimensional
space. In order to formalize the problem mathematically, we first give a defi-
nition as follows.

Definition 6.4.1 (Upright hypercube and Rule hypercube) A hypercube is
called an upright hypercube in the n-dimensional space if it is a hypercube
with axis-parallel edges. An upright hypercube is called a rule hypercube if the
class of an input can be predicted by the decision function when it falls into
this upright hypercube.



Model Construction 183

(a) (b)

FIGURE 6.9: Rule rectangle.

Obviously an upright hypercube can always be described by its upper ver-
tex with the largest components and its lower vertex with the smallest com-
ponents. Thus the upright hypercube corresponding to the big rectangle C
defined by (6.4.4) should be

C = [(L1, · · · , Ln)T, (U1, · · · , Un)T], (6.4.23)

where
Lj = min

i
[xi]j , Uj = max

i
[xi]j , j = 1, · · · , n. (6.4.24)

Now let us turn to rule extraction problems described below, which is only
concerned with the negative class since the positive class is similar.

Rule extraction problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (6.4.25)

where xi ∈ Rn, y ∈ {−1, 1}, i = 1, · · · , l, and a decision function

f(x) = sgn((w · x) + b), (6.4.26)

find a set of rule hypercubes such that this set is an approximation of the
region of interest, where the class of an input is predicted as negative by the
decision function when it falls into any hypercube in the set.

First consider the problem P (w, b, C) of finding a rule hypercube for the
region:

I = {x|(w · x) + b < 0, x ∈ C} (6.4.27)

where (w ·x)+b and C are given by the decision function and (6.4.23). Without
loss of generality, assume that the normal vector w in the decision function
satisfies

wj 6= 0, i = 1, · · · , n, (6.4.28)
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since the jth feature can be deleted if wj = 0. Now the transformation corre-
sponding to (6.4.10) with the condition (6.4.3) should be

x̃ = T (x) = T (x, C) = A(x− a), (6.4.29)

where

A = diag(Ajj), Ajj =
sgn(wj)

Uj − Lj
, j = 1, · · · , n, (6.4.30)

and

a = (a1, · · · , an)T, aj =
{
Lj, wj > 0;
Uj, otherwise,

j = 1, · · · , n. (6.4.31)

The above transformation transforms C into

C̃ = [(0, · · · , 0)T, (1, · · · , 1)T], (6.4.32)

thus the problem P (w, b, C) becomes the problem P (w̃, 1, C̃), where

w̃ = w̃(C) = 1

−((w · L) + b)




(U1 − L1)w1

...
(Un − Ln)wn


 (6.4.33)

satisfying
w̃j > 0, j = 1, · · · , n. (6.4.34)

And the optimization problem corresponding to (6.4.12)∼(6.4.14) should be

max [x̃]1[x̃]2 · · · [x̃]n, (6.4.35)

s.t. (w̃ · x̃)− 1 = 0, (6.4.36)

x̃ ∈ C̃ = [(0, · · · , 0)T, (1, · · · , 1)T], (6.4.37)

or

max

n∑

j=1

log[x̃]j , (6.4.38)

s.t. (w̃ · x̃)− 1 = 0, (6.4.39)

x̃ ∈ C̃ = [(0, · · · , 0)T, (1, · · · , 1)T]. (6.4.40)

After obtaining the solution x̃∗ = x̃∗(C) to the problem (6.4.38)∼(6.4.40), we
are able to find the rule hypercube

R = R(C) = [xmin, xmax], (6.4.41)

where

xmin = T−1(0, C), (6.4.42)

xmax = T−1(x̃∗, C), (6.4.43)

and T−1 is the inverse of the transformation (6.4.29).
The above procedure for solving the problem P (w, b, C) can be summarized

as the following algorithm:
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Algorithm 6.4.2

(1) Input the training set (6.4.25), the decision function (6.4.26) and construct
the big upright hypercube (6.4.23);

(2) Solve the problem (6.4.38)∼(6.4.40) where w̃(C) is given by (6.4.33), ob-
taining a solution x̃∗ = x̃∗(C);
(3) Construct a rule hypercube R = R(C) by (6.4.41).

If more rule hypercubes are needed, we should consider the remaining
volume in x-space after extracting the rule hypercube R(C) in the problem
P (w, b, C), which can be obtained from the corresponding remaining volume in
x̃-space for the transformed problem P (w̃, 1, C̃). In fact, in x̃-space extracting
the rule hypercube [0, x̃∗(C)] results in n upright hypercubes Ĩ1, · · · , Ĩn, where

Ĩj(C) = [x̃jmin(C), x̃jmax(C)], j = 1, · · · , n, (6.4.44)

and

x̃jmin(C) = (0, · · · , 0︸ ︷︷ ︸
j−1

, [x̃∗(C)]j , 1, · · · , 1)T, j = 1, · · · , n. (6.4.45)

x̃jmax(C) = ([x̃∗(C)]1, · · · , [x̃∗(C)]j−1︸ ︷︷ ︸
j−1

, 1, · · · , 1)T, j = 1, · · · , n.

(6.4.46)

Correspondingly, the counterparts of the above n upright hypercubes
Ĩ1, · · · , Ĩn in the x-space are I1, · · · , In, where

Ij(C) = [xjmin(C), xjmax(C)], j = 1, · · · , n, (6.4.47)

and

xjmin(C) = T−1(x̃imin(C)), xjmax(C) = T−1(x̃jmax(C)), j = 1, · · · , n. (6.4.48)

Thus an iterative procedure that extracts as many rule hypercubes as we
require to describe adequately the region of interest is implemented in the
following algorithm, where dmax is the maximum depth pre-specified, C is the
set of the upright hypercubes, and R is the set containing all the extracted
rule hypercubes.

Algorithm 6.4.3 (Rule extraction)

(1) Input the training set (6.4.25), the decision function (6.4.26) and the max-
imum depth dmax. Set d = 1, R = Φ;

(2) If d = 1, set C to be the big upright hypercube defined by (6.4.23);
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(3) Denote p be the number of the upright hypercubes belonging to the set
C and containing at least one input in the training set. Denote the set C by
C = {C1, · · · , Cp}. For i = 1, · · · , p, solve the problem P (w, b, Ci) by Algorithm
6.4.2, obtaining the solution x̃∗(Ci) and the rule hypercube R(Ci), construct
the set

Rnew =

p⋃

i=1

R(Ci). (6.4.49)

Update R by
R = R ∪Rnew; (6.4.50)

(4) If d = dmax, stop; otherwise, for i = 1, · · · , p, construct the next n upright
hypercubes I1(Ci), · · · , In(Ci) by (6.4.47)∼(6.4.48), construct the set

C =

p⋃

i=1

n⋃

j=1

Ij(Ci); (6.4.51)

(5) Set d = d+ 1 and go to step (3).



Chapter 7

Implementation

This chapter gives an overview of the implementation of Support Vector Ma-
chines. We take Algorithm 4.3.1 (C-support vector classification) as the rep-
resentative. Suppose the training set is given by

T = {(x1, y1), · · · , (xl, yl)}, (7.0.1)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l, now the convex quadratic
programming problem (4.3.1)∼(4.3.3) w.r.t. variable α = (α1, · · · , αl)T

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj)−
l∑

i=1

αi , (7.0.2)

s.t.

l∑

i=1

yiαi = 0 , (7.0.3)

0 6 αi 6 C , i = 1, · · · , l , (7.0.4)

needs to be solved. This problem can be expressed compactly as

min
α

d(α) =
1

2
αTHα− eTα , (7.0.5)

s.t. yTα = 0 , (7.0.6)

0 6 α 6 Ce , (7.0.7)

where H = (hij)l×l = (yiyjK(xi, xj))l×l, e = (1, · · · , 1)T, y = (y1, · · · , yl)T.
This chapter mainly introduces the methods for solving problem (7.0.5)∼
(7.0.7). Although in principle, general optimization algorithms can be applied
directly, they usually fail for real large scale problems due to the demands of
the cache and computation. In fact, these algorithms all need to cache the
kernel matrix corresponding to the training set, whereas the memory caching
the kernel matrix increases with the square of the training points number l.
When l becomes thousands, the memory needed tends to be considerable.
For example, if l is larger than 4000, 128M memory is needed to cache the
kernel matrix. In addition, these algorithms always involve amounts of matrix
computation, which consume long computation time.

We note that the optimization problems in support vector machines are
special; they have some very good features such as the convexity and the
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sparsity of the solution, which make it possible to construct less cache and
fast algorithms. The basic approach of these special algorithms is: decom-
pose the large scale original problem into a series of small scale sub-problems,
then solve these sub-problems constantly following some iteration strategy,
gradually increasing the accuracy of the approximate solution to the origi-
nal problem. Different selection of sub-problem and iteration strategy leads
to different methods. This chapter introduces the chunking method [155] and
the decomposing method [114, 184], and a particular case of the decomposing
method: sequential minimal optimization-SMO [118]. However, before intro-
ducing these methods, we first discuss the stopping criteria.

7.1 Stopping Criterion

Appropriate stopping criteria should be constructed when solving problem
(7.0.5)∼(7.0.7) by some iteration method. Next we introduce three stopping
criteria from different perspectives.

7.1.1 The first stopping criterion

The first stopping criterion is based on the following theorem:

Theorem 7.1.1 The feasible point α∗ = (α∗
1, · · · , α∗

l )
T is the solution of the

dual problem (7.0.5)∼(7.0.7) if and only if there exists b∗, such that

0 6 α∗
j 6 C, i = 1, · · · , l,

l∑

i=1

yiα
∗
i = 0, (7.1.1)

l∑

i=1

α∗
i hij + b∗yj





> 1, j ∈ {j|αj = 0};
= 1, j ∈ {j|0 < αj < C};
6 1, j ∈ {j|αj = C}.

(7.1.2)

Proof Quadratic programming problem (7.0.5)∼(7.0.7) is convex, and
satisfies Slater condition, so its KKT conditions are the solution’s necessary
and sufficient conditions. The KKT conditions at α∗ = (α∗

1, · · · , α∗
l )

T are:
there exist Lagrange multipliers b∗, s∗ and ξ∗ satisfying

0 6 α∗
6 Ce, α∗Ty = 0; (7.1.3)

Hα∗ − e+ b∗y − s∗ + ξ∗ = 0, s∗ > 0, ξ∗ > 0; (7.1.4)

ξ∗T(α∗ − Ce) = 0, s∗Tα∗ = 0. (7.1.5)
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For the case α∗
j = 0, from (7.1.4)∼(7.1.5) we know the j-th component of ξ∗

is zero, and the j-th component of Hα∗ − e+ b∗y is nonnegative, i.e.

l∑

i=1

α∗
i hij + b∗yj > 1. (7.1.6)

Similarly, for the case 0 < α∗
j < C, from (7.1.4)∼(7.1.5), we have

l∑

i=1

α∗
i hij + b∗yj = 1, (7.1.7)

and for the case α∗
j = C, from (7.1.4)∼(7.1.5), we have

l∑

i=1

α∗
i hij + b∗yj 6 1. (7.1.8)

Therefore, combining (7.1.6)∼(7.1.8) and (7.1.3), we know the solution α∗ of
problem (7.0.5)∼(7.0.7) should satisfy (7.1.1)∼(7.1.2). �

The following stopping criterion can be established based on the above
theorem.

Stopping criterion 7.1.2 Suppose the approximate solution α∗ = (α∗
1, · · · , α∗

l )
T

of problem (7.0.5)∼(7.0.7) is obtained. Algorithm accepts this solution and
stops iteration, if

(i) Approximate solution α∗ is feasible within a certain range of accuracy,
i.e. it satisfies (7.1.1) within a certain range of accuracy;

(ii) There exists b∗ such that α∗ satisfies (7.1.2) within a certain range of
accuracy.

7.1.2 The second stopping criterion

The second stopping criterion is based on the following theorem:

Theorem 7.1.3 The feasible point α∗ = (α∗
1, · · · , α∗

l )
T is the solution of op-

timization problem (7.0.5)∼(7.0.7) if and only if

m(α∗)−M(α∗) ≤ 0, (7.1.9)

where

m(α∗)=max{−yi[∇d(α∗)]i | i ∈ Iup(α
∗)}, (7.1.10)

M(α∗)=min{−yi[∇d(α∗)]i | i ∈ Ilow(α
∗)}, (7.1.11)

where [·]i denotes the i-th component of the vector in [], ∇d(α∗) = Hα∗ − e
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is the gradient of the objective function d(α) at α∗, Iup(α
∗) and Ilow(α

∗) are
the subsets of set{1, 2, · · · , l}

Iup(α
∗)={i|α∗

i < C, yi = 1 or α∗
i > 0, yi = −1}, (7.1.12)

Ilow(α
∗)={i|α∗

i < C, yi = −1 or α∗
i > 0, yi = 1}. (7.1.13)

Proof For the feasible point α∗, KKT conditions (7.1.3)∼(7.1.5) are
equivalent to

if α∗
i < C, [∇d(α∗)]i + byi > 0; (7.1.14)

if α∗
i > 0, [∇d(α∗)]i + byi 6 0. (7.1.15)

Based on (7.1.12) and (7.1.13), the above (7.1.14) and (7.1.15) can be written
as:

−yi[∇d(α∗)]i 6 b, ∀i ∈ Iup(α
∗),

−yi[∇d(α∗)]i > b, ∀i ∈ Ilow(α
∗).

Therefore, the feasible point α∗ is the solution of optimization problem
(7.0.5)∼(7.0.7) if and only if: m(α∗) and M(α∗) defined respectively by
(7.1.10) and (7.1.11) satisfy

m(α∗) 6M(α∗). (7.1.16)

�

The following stopping criterion can be established based on the above
theorem.

Stopping criterion 7.1.4 Suppose the approximate solution α∗ = (α∗
1,

· · · , α∗
l )

T of problem(7.0.5)∼(7.0.7) is obtained. Algorithm accepts this so-
lution and stops iteration, if

(i) Approximate solution α∗ is feasible within a certain range of accuracy,
i.e. it satisfies (7.1.1) within a certain range of accuracy;

(ii) Approximate solution α∗ satisfies (7.1.9) within a certain range of
accuracy. For example, select an appropriate ε > 0, such that

m(α∗)−M(α∗) 6 ε, (7.1.17)

where m(α∗) and M(α∗) are given by (7.1.10) and (7.1.11) respectively.

7.1.3 The third stopping criterion

The third stopping criterion is based on the following theorem.
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Theorem 7.1.5 The feasible point α∗ = (α∗
1, · · · , α∗

l )
T is the solution of op-

timization problem (7.0.5)∼(7.0.7) if and only if there exist ξ∗1 , · · · , ξ∗l , such
that

2d(α∗) +

l∑

i=1

α∗
i + C

l∑

i=1

ξ∗i

d(α∗) +

l∑

i=1

α∗
i + C

l∑

i=1

ξ∗i + 1

= 0. (7.1.18)

Proof We know that optimization problem (7.0.5)∼(7.0.7) is equivalent
to

max
α

−d(α) = eTα− 1

2
αTHα , (7.1.19)

s.t. yTα = 0 , (7.1.20)

0 6 α 6 Ce . (7.1.21)

while this problem is the dual problem of the primal problem

min
w,b,ξ

1

2

∥∥w
∥∥2 + C

l∑

i=1

ξi , (7.1.22)

s.t. yi((w · Φ(xi)) + b) > 1− ξi , i = 1, · · · , l , (7.1.23)

ξi > 0 , i = 1, · · · , l. (7.1.24)

The feasible point (w∗, b∗, ξ∗) of problem (7.1.22)∼(7.1.24) can be constructed
by the feasible point α∗ of the dual problem:

w∗=

l∑

i=1

α∗
i yiΦ(xi), (7.1.25)

ξ∗i =max



0, 1−




l∑

j=1

α∗
jhji + b∗yi







 , i = 1, · · · , l. (7.1.26)

Corollary 1.2.19 in Chapter 1 indicates that the feasible points α∗ and
(w∗, b∗, ξ∗) are the solutions of the dual problem and primal problem respec-
tively if and only if the corresponding objective function values are equal, i.e.

objective function value of the primal problem

=
1

2
‖w‖2 + C

l∑

i=1

ξi = −d(α∗)

= objective function value of the dual problem. (7.1.27)

However, from (7.1.25) it is easy to get

1

2
‖w‖2 =

1

2

l∑

i,j=1

yiα
∗
i yjα

∗
jK(xi, xj) = d(α∗) +

l∑

i=1

α∗
i , (7.1.28)
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hence, (7.1.27) is equivalent to

objective function value
(primal problem) − objective function value

(dual problem)

objective function value (primal problem) +1

=

2d(α∗) +

l∑

i=1

α∗
i + C

l∑

i=1

ξi

d(α∗) +

l∑

i=1

α∗
i + C

l∑

i=1

ξi + 1

= 0. (7.1.29)

Therefore (7.1.18) is the necessary and sufficient condition of α∗ being the
solution of problem (7.1.19)∼(7.1.21). �

The following stopping criterion can be established based on the above
theorem:

Stopping criterion 7.1.6 Suppose the approximate solution α∗ = (α∗
1,

· · · , α∗
l )

T of problem (7.0.5)∼(7.0.7) is obtained. Algorithm accepts this so-
lution and stops iteration, if

(i) Approximate solution α∗ is feasible within a certain range of accuracy,
i.e. it satisfies (7.1.1) within a certain range of accuracy;

(ii) Approximate solution α∗ satisfies (7.1.18) within a certain range of
accuracy. For example, select appropriate ε > 0, such that the left term of
(7.1.18) is less than ε.

It should be pointed out that the demand of stopping criterion testing
accuracy significantly influences the algorithm execution time. High demands
will be very time-consuming, but would not necessarily improve the decision
function. So in real applications, we should carefully select the stopping cri-
terion.

In addition, the above discussion of the stopping criteria will give us some
inspiration to improve algorithms and the efficiency of the algorithms. For
example, in the iterative process we can pay more attention to those training
points that violate the stopping criteria mostly. We give a detailed description
in the last sections.

7.2 Chunking

We have seen that in Algorithm 4.3.1 (C-support vector classification),
the solution to the optimization problem (7.0.5)∼(7.0.7) only depends on the
training points corresponding to the support vectors (please refer to the dis-
cussion of sparsity in Section 4.3.1). Therefore if we know which inputs are
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the support vectors, we can keep the corresponding training points and delete
other training points, and hence construct the corresponding optimization
problem based on the reduced training set and get the decision function. Ob-
viously it is very important for large scale real problems, since the problems
usually have fewer support vectors and only smaller scale optimization prob-
lems need to be solved. However we do not know beforehand which exactly
are the support vectors; generally the use of heuristic algorithms is required
to be adjusted repeatedly to get the support vectors.

The simplest heuristic method is chunking. “Chunk” here means the work-
ing set, which is a subset in the training set T . “Chunking” means excluding
the training points corresponding to the nonsupport vectors in the chunk by
some iterative approach step by step, and selecting the training points corre-
sponding to all support vectors into the chunk step by step. Specifically: start
with an arbitrary chunk of the training set, then apply the standard optimiza-
tion algorithm to solve the problem (7.0.5)∼(7.0.7), obtaining its solution α,
and adjust the current chunk for the new chunk in the following ways:

(i) Keep the training points corresponding to the nonzero components of
α in the current chunk, while discarding other training points in the chunk;

(ii) Add several training points being not in the current chunk which violate
the stopping criteria most seriously to the current chunk.

After getting the new chunk, solve the problem (7.0.5)∼(7.0.7) on it. Re-
peat the above process until satisfying one stopping criteria. More precisely,
the main steps of solving the problem (7.0.5)∼(7.0.7) corresponding to the
training set (7.0.1) can be described as follows:

Algorithm 7.2.1 (Chunking)

(1) Choose positive integer parameterM , accuracy demand ε, and initial point
α0 = (α0

1, · · · , α0
l )

T = 0, choose initial chunk (working set)W0 ⊂ T , denote
the subscripts set corresponding to the training set J0, let k = 0;

(2) Choose the components from the point αk whose subscript belongs to the
set Jk, construct the point αJk . Solve the convex quadratic programming sub-
problem

min
α

W (α) =
1

2

∑

i∈Jk

∑

j∈Jk

αiαjhij −
∑

i∈Jk

αi , (7.2.30)

s.t.
∑

i∈Jk

yiαi = 0 , (7.2.31)

0 ≤ αi 6 C , i ∈ Jk , (7.2.32)

obtaining the solution α̂Jk ;

(3) Construct αk+1 = (αk+1
1 , · · · , αk+1

l )T based on α̂Jk by the following ap-

proach: if j ∈ Jk, α
k+1
j takes the corresponding component of α̂Jk ; if j 6∈ Jk,
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αk+1
j = αkj , test whether α

k+1 satisfies some stopping criteria within the ac-

curacy ε; if so, get the approximate solution α∗ = αk+1 and stop; else go to
step (4);

(4) Construct the set Sk being composed of the training points corresponding
to the support vectors based on α̂Jk , and find out M training points violating
the stopping criteria most seriously from the set T \Sk, such as finding out M
training points violating the conditions

l∑

i=1

αk+1
i hij + byj






> 1, j ∈ {j|αk+1
j = 0};

= 1, j ∈ {j|0 < αk+1
j < C};

6 1, j ∈ {j|αk+1
j = C},

(7.2.33)

then construct the new chunk Wk+1 by the M points and the points in Sk,
denoting corresponding subscript set Jk+1;

(5) Set k = k + 1, goto step (2).

The advantage of chunking is that when the number of support vectors
is far less than the number of training points, the computing speed can be
greatly enhanced. However, if the number of support vectors increases, with
the increase in the number of algorithm iterations, the selected chunk will be
growing and the algorithm becomes very slow.

7.3 Decomposing

When solving the problem (7.0.5)∼(7.0.7), chunking needs to find out the
chunk being composed of the training points corresponding to all support
vectors, hence the kernel function matrix corresponding to all support vec-
tors needs to be cached as a final step. Thus, when there are many support
vectors, chunking will encounter the difficulty of the required excessive stor-
age. To overcome this difficulty, we use another technique ——“decomposing”.
Decomposing is characterized by updating several (a certain number of) com-
ponents of α each time and keeping other components unchanged. The set
of the training points corresponding to the updating components of α is the
current working set. Thus adding several new training points in the current
working set each time, the same number of training points should be dis-
carded from the current working set. In other words, only a part of “worst
case” points outside of the current working set exchange with the same num-
ber of the training points in the current working set in the iteration procedure;
the working set size is fixed. This method solves the problem (7.0.5)∼(7.0.7)
repeatedly in accordance with the changing working set and aims to adjust
the components of α.

We now give the specific formulation of the convex quadratic programming
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problem (7.0.5)∼(7.0.7) corresponding to the working set. Denote B the set
being composed of the subscripts of the training points in the working set,
appropriately exchange the order of the components of α, α can be rewritten
as

α =

(
αB
αN

)
, (7.3.34)

where N = {1, · · · , l} \B. Correspondingly, y and H can be formulated as

y =

(
yB
yN

)
, H =

(
HBB HBN

HNB HNN

)
. (7.3.35)

Here we need to adjust αB and fix αN . Since H is symmetric, i.e. HBN =
HT
NB, the problem (7.0.5)∼(7.0.7) should be rewritten as

min
αB

W (α) =
1

2
αT
BHBBαB +

1

2
αT
NHNNαN

−αT
Ne− αT

B(e−HBNαN ) , (7.3.36)

s.t. αT
ByB + αT

NyN = 0 , (7.3.37)

0 6 α 6 Ce . (7.3.38)

In the problem (7.3.36)∼(7.3.38), since αN is fixed, the term
1

2
αT
NHNNαN −

αT
Ne is constant, then the problem is equivalent to the following problem

min
αB

W (α) =
1

2
αT
BHBBαB − αT

B(e−HBNαN ), (7.3.39)

s.t. αT
ByB + αT

NyN = 0 , (7.3.40)

0 6 αB 6 Ce . (7.3.41)

The problem (7.3.39)∼(7.3.41) only needs to cache |B| rows of the l× l matrix
H (|B| is the size of the set B); usually |B| is chosen to be far less than l.

Next we focus on how to select the subscript set B. Here an even num-
ber should be chosen to be |B| in advance, and then choose the set B. Note
that we aim to adjust the components of the current α corresponding to B
to make it to approximate the solution of the convex quadratic programming
(7.0.5)∼(7.0.7); therefore this adjustment should make the objective function
d(α) given by (7.0.5) decrease as much as possible. Therefore, for simplicity,
we only need to find out an appropriate feasible direction d = (d1, d2, · · · , dl)T
from current α, then compose B by the subscripts of these nonzero compo-
nents of d. The direction d should better satisfy the following conditions (i)
along this direction, the objective function (7.0.5) decreases fast; (ii) along
this direction, a nonzero step can be achieved while not exceeding the feasible
domain of the problem (7.0.5)∼(7.0.7); (iii) it has exactly |B| nonzero com-
ponents. Therefore finding the direction d leads to solve the following linear
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programming problem:

min v(d) = (−e+Hαk)Td , (7.3.42)

s.t. yTd = 0 , (7.3.43)

di ≥ 0, i ∈ {i| αki = 0} , (7.3.44)

di ≤ 0, i ∈ {i| αki = C} , (7.3.45)

−1 6 di 6 1 , (7.3.46)

|{di| di 6= 0}| = |B|, (7.3.47)

where the objective function is dot product of d with the gradient of the
objective function (7.0.5)

v(d) = (−e+Hαk)Td =

l∑

i=1

gidi , (7.3.48)

where gi=

(
−1+

l∑

j=1

yiyjα
k
jK(xi, xj)

)
,v(d)states the rate of the descent of the

objective function (7.0.5) along the direction d, the previous three constraints
ensure that a nonzero step can be obtained along the direction d.

Note that solving the problem (7.3.42)∼(7.3.47) aims to find out a sub-
script set of the nonzero components of d, and let the set be the working
set B. Hence we do not need to solve it exactly or even get the approximate
solution d̄ of the problem (7.3.42)∼(7.3.47), while only providing a rule of de-
termining the subscripts (i.e. working set B) of the nonzero components of d,
and explain that the determined subscript has a corresponding approximate
solution d̄ satisfying all constraints and has a negative objective value. Next
we give the rule and then explain.

Algorithm 7.3.1 (Selecting working set B)

(1) Given the current αk = (αk1 , · · · , αkl )T;
(2) Choose the number |B| of the working set B, where |B| is an even number;

(3) Compute ϑi = yigi = yi

(
− 1 +

l∑

j=1

yiyjα
k
jK(xi , xj)

)
, i = 1, · · · , l. For

ϑ1, · · · , ϑl, rearrange them in decrease order to be ϑi1 , ϑi2 , · · · , ϑil such that

ϑi1 > ϑi2 ≥ · · · ≥ ϑil , (7.3.49)

correspondingly
αi1 , αi2 , · · · , αil ; (7.3.50)

(4) Successively pick the
|B|
2

elements from the top of the list (7.3.50), and

the elements satisfy: 0 < αij < C, or if αij = 0, yij = −1, or αij = C,
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yij = 1; then successively pick the
|B|
2

elements from the bottom of the list

(7.3.50), and the elements satisfy: 0 < αij < C, or if αij = 0, yij = 1, or
if αij = C, yij = −1. These subscripts corresponding to the |B| elements
variables compose the working set B.

In order to show the rationality of the selected B by Algorithm 7.3.1, we
only need to show that after restricting the components of d to be nonzero
only on the selected working set B, there still exists a feasible point d̄ of
the problem (7.3.42) ∼(7.3.47) which has a negative objective value. In fact,

we can construct d̄ by the following rule: corresponding to the former
|B|
2

subscripts i, let d̄i = −yi; corresponding to the latter
|B|
2

subscripts i, let

d̄i = yi, and other components are zero. It is easy to verity that d̄ satisfies all
constraints (7.3.43)∼(7.3.47), and its objective value is negative.

Now we conclude the decomposing method solving the problem
(7.0.5)∼(7.0.7) corresponding to the training set (7.0.1) as follows:

Algorithm 7.3.2 (Decomposing)

(1) Select the number |B| (even number) of the working set B and the accuracy

demand ε, choose the initial point α0 =

(
α0
B

α0
N

)
, set k = 0;

(2) Select the working set B by Algorithm 7.3.1 based on the current approx-
imate solution αk;

(3) Solve the convex quadratic programming subproblem (7.3.39)∼(7.3.41), ob-
taining the solution αk+1

B , update αk to be αk+1 =(
αk+1
B

αkN

)
;

(4) If αk+1 satisfies one stopping criteria within the accuracy ε, obtaining the
approximate solution α∗ = αk+1, and stop; else set k = k + 1, go to step (2).

7.4 Sequential Minimal Optimization

A special type of decomposition method is the sequential minimal op-
timization (SMO), which restricts the working set B to have only two ele-
ments, i.e. in each iteration only αi and αj corresponding to training points
(xi, yi) and (xj , yj) need to be adjusted. Now the optimization subproblem
(7.3.39)∼(7.3.41) has only two variables. In fact, the size of the working set is

the smallest, since the subproblem has the equality constraint

l∑

i=1

αiyi = 0. If
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one multiplier αi changes, then at least another multiplier should be adjusted
at the same time to keep the constraints valid.

The scale of the subproblem and the required number of iterations of the
whole algorithm is a contradiction. SMO reduces the size of the working set
to the smallest, while it increases the number of the iterations directly. How-
ever, the advantage of this method is: this simple two-variable problem can
be solved analytically without needing the iteration procedure of solving the
convex quadratic programming problem. Each iteration chooses two variables,
αi and αj , to be adjusted while other variables fixed. After getting the solu-
tion α∗

i and α∗
j of the two variables optimization problem, the corresponding

components of α are improved based on them. Compared with usual decom-
posing methods, though SMO needs more number of iterations, it often shows
rapid convergence because of the small amount of computation in each iter-
ation. Furthermore, this method has other important advantages, such as it
does not require storage of kernel matrix, has no matrix operations, is easy to
implement, and so on.

7.4.1 Main steps

The main steps of SMO solving the convex quadratic programming prob-
lem (7.0.5)∼(7.0.7) corresponding to the training set (7.0.1) are sketched in
the following algorithm:

Algorithm 7.4.1 (sequential minimal optimization, SMO)

(1) Choose accuracy demand ε, choose α0 = (α0
1, · · · , α0

l )
T = 0, set k = 0;

(2) Find a two-element working set B = {i, j} ⊂ {1, 2, · · · , l} based on the
current feasible approximate solution αk;

(3) Solve the optimization problem (7.3.39)∼(7.3.41) corresponding to the
working set B, getting the solution α∗

B = (αk+1
i , αk+1

j )T, then update the i-th

and the j-th components of αk to get the new feasible approximate solution
αk+1;

(4) If αk+1 satisfies one stopping criteria within the accuracy ε, then set the
approximate solution α∗ = αk+1, stop; otherwise, set k = k + 1, go to step
(2).

Two specific details implementing this algorithm are described below.

7.4.2 Selecting the working set

Suppose the current approximate solution αk = (αk1 , · · · , αkl )T. The ques-
tion now is which two components should be adjusted. Referring to Theorem
7.1.3 introducing the second stopping criteria, we naturally hope that the
adjustment can reduce the gap between m(α) and M(α), which induces the
following heuristic algorithm selecting working set B:
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Algorithm 7.4.2 (Selecting working set B)

(1) Suppose the current approximate solution of the problem (7.0.5)∼(7.0.7)

is αk; compute the gradient of the objective function d(α) =
1

2
αTHα − eTα

at αk

∇d(αk) = Hαk − e; (7.4.51)

(2) Compute

i = argmax
t

{−yt[▽d(αk)]t | t ∈ Iup(α
k)}, (7.4.52)

j = argmin
t

{−yt[▽d(αk)]t | t ∈ Ilow(α
k)}, (7.4.53)

where

Iup(α) ≡ {t|αt < C, yt = 1 or αt > 0, yt = −1},
Ilow(α) ≡ {t|αt < C, yt = −1 or αt > 0, yt = 1};

(3) Set B = {i, j}.

An interesting fact is that it can be proved that the above algorithm is
equivalent to the decomposing algorithm in which the working set is deter-
mined by solving the problem (7.3.42)∼(7.3.47) in the case of |B| = 2. Further-
more, the linear objective function of the problem (7.3.42)∼(7.3.47) is the first
order approximation of the objective function d(α) given by (7.0.5), therefore
Algorithm 7.4.2 uses the first order approximation. So an approach further
improving this algorithm is to use more accurate approximation; for exam-
ple, change the objective function of the problem (7.3.42)∼(7.3.47) to be the
quadratic objective function d(α) itself, or another approximating quadratic
function; details can be found in [52].

7.4.3 Analytical solution of the two-variables problem

Now what needs to be addressed is how to search for the solution of the
subproblem (7.3.39)∼(7.3.41) after selecting the working set B = {i, j} in the
k + 1-th iteration. Without loss of generality, suppose B = {1, 2}. Now the
subproblem (7.3.39)∼(7.3.41) can be written as an optimization problem of
two variables α1 and α2

min W (α1, α2) =
1

2
β11α

2
1 +

1

2
β22α

2
2 + y1y2β12α1α2

−(α1 + α2) + y1β1α1 + y2β2α2, (7.4.54)

s.t. α1y1 + α2y2 = −
l∑

i=3

yiαi, (7.4.55)

0 6 αi 6 C, i = 1, 2, · · · , l , (7.4.56)
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where

β11 = K(x1, x1), β22 = K(x2, x2), β12 = K(x1, x2),

β1 =

l∑

i=3

yiαiK(xi, x1), β2 =

l∑

i=3

yiαiK(xi, x2). (7.4.57)

Considering that we update the feasible approximate solution continuously in
the whole iteration procedure of this algorithm, there is already a feasible point
(αold

1 , αold
2 )T when the problem (7.4.4)∼(7.4.7) is to be solved. For example, in

the beginning of the k+1-th iteration, there is already a feasible approximate
solution αk = (αk1 , α

k
2 , · · · , αkl )T, so αold

1 and αold
2 can be chosen to be αk1 and

αk2 respectively, we can start from the feasible point (αold
1 , αold

2 )T to search for
the solution (αnew

1 , αnew
2 )T of this problem. Furthermore, in order to satisfy

the linear constraint

l∑

i=1

αiyi = 0, solution (αnew
1 , αnew

2 )T should satisfy

α1y1 + α2y2 = constant = αold
1 y1 + αold

2 y2 (7.4.58)

and
0 6 α1, α2 6 C. (7.4.59)

Hence the variables of the objective function are restricted on a segment of
(α1, α2) space. The two-variables optimization problem turns to be a single-
variable optimization problem on a finite interval, so it is easy to solve ana-
lytically. However, the derivation process is cumbersome and the details are
omitted here. We describe the steps in the following algorithm:

Algorithm 7.4.3 (Solving the two-variables optimization problem)

(1) Suppose the optimization problem (7.4.54)∼(7.4.57) is given, and the fea-
sible point (αold

1 , αold
2 )T is known;

(2) Compute

αnew,unc
2 = αold

2 +
y2E

κ
, (7.4.60)

where

E=β1 − β2 + αold
1 y1(β11 − β12) + αold

2 y2(β21 − β22)− y1 + y2,(7.4.61)

κ=β11 + β22 − 2β12; (7.4.62)

(3) Compute αnew
2 based on αnew,unc

2 :

αnew
2 =





V, if αnew,unc
2 > V ;

αnew,unc
2 , if U 6 αnew,unc

2 6 V ;
U, if αnew,unc

2 < U ,
(7.4.63)

where U and V are determined by the following way: when y1 6= y2,

U =max{0, αold
2 − αold

1 } , (7.4.64)

V =min{C,C − αold
1 + αold

2 } ; (7.4.65)
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when y1 = y2,

U =max{0, αold
1 + αold

2 − C} , (7.4.66)

V =min{C,αold
1 + αold

2 } ; (7.4.67)

(4) Compute αnew
1 based on αnew

2 :

αnew
1 = αold

1 + y1y2(α
old
2 − αnew

2 ) ; (7.4.68)

(5) Construct the solution (αnew
1 , αnew

2 ) of the problem (7.4.54)∼(7.4.57).

7.5 Software

There are a lot of software programs about support vector machines,
such as LIBSVM, LIBLINEAR[53], mySVM, SVMlight, etc. The free down-
load websites and brief introductions of most software can be obtained from
the website http://www.kernel-machines.org/software. Here we introduce the
software LIBSVM briefly.

LIBSVM, developed by professor Lin Chih-Jen et al. of National Taiwan
University, is a simple, easy-to-use, and efficient software for SVM classifi-
cation and regression. The current release (Version 3.1, April 2011) of LIB-
SVM can be obtained free by downloading the zip file or tar.gz file from
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/. The package includes the source
code of the library in C++ and Java, and a simple program for scaling train-
ing data. LIBSVM also provides a simple interface that users can easily link
with their own programs, such as Python, Java, R, MATLAB, Perl, Ruby,
LabVIEW, and C♯.net; these are not only convenient to use in the Windows
or UNIX platforms, but also to reform them according to their own need. LIB-
SVM also provides the executable files under the Windows operating system,
including the training file svmtrain.exe for training support vector machine,
the predicting file svmpredict.exe for predicting some dataset based on the
trained support vector machine model, and the scaling file svmscale.exe for
scaling both training set and testing set. All can be used directly in the DOS
environment.

LIBSVM is an integrated software for support vector classification, such as
Algorithm 4.3.1 (C-support vector classification), Algorithm 8.1.18 (ν-support
vector classification), and support vector regression, such as Algorithm 4.3.5
(ε-support vector regression), Algorithm 8.2.6 (ν-support vector regression).
Please refer to the website http://www.csie.ntu.edu.tw/∼cjlin/libsvm/ for
more details.
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Chapter 8

Variants and Extensions of Support

Vector Machines

The variants of classification and regression are proposed in this chapter. Some
related problems are also discussed here. To save space, only main conclusions
are given while almost all proofs of theorems are omitted.

8.1 Variants of Binary Support Vector Classification

Some variants of the standard C-SVC are introduced in this section. Re-
member the binary classification problem with the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.1.1)

where xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l. Our task is to find the decision
function

f(x) = sgn(g(x)), (8.1.2)

where g(x) is a real function in Rn.

8.1.1 Support vector classification with homogeneous deci-
sion function

Construct the linear classifier using a homogeneous hyperplane (w ·x) = 0
instead of a general hyperplane (w · x) + b = 0. In other words, the decision
function is in the form

f(x) = sgn((w · x)). (8.1.3)

Following the derivation of the standard C-SVC, we start from the linearly
separable problem in R2, where the positive and negative inputs can be sep-
arated correctly by a straight line (w · x) = 0 passing through the origin,
see Figure 8.1. The maximal margin principle leads to the following primal
problem

min
w

1

2
‖w‖2, (8.1.4)

s.t. yi(w · xi) > 1, i = 1, · · · , l. (8.1.5)

203
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FIGURE 8.1: Linearly separable problem with homogeneous decision func-
tion.

The above problem can be illustrated geometrically as follows: First, let
us suppose that the straight line (w ·x) = 0 separates the inputs correctly and
consider the above problem when the direction of w is fixed. Now the problem
is only searching for ‖w‖. Obviously, when ‖w‖ is very large, the field between
the two straight lines

l1 : (w · x) = 1 and l−1 : (w · x) = −1 (8.1.6)

does not cover any inputs and separates all positive and negative inputs cor-
rectly. However, when ‖w‖ becomes smaller, l1 and l−1 will move to opposite
sides parallelly. Denote the straight lines l1 and l−1 as l+ and l− respectively
when l1 and/or l−1 touch inputs the first time. Obviously, the vector w cor-
responding to l+ and l− is the solution to the problem (8.1.4)∼(8.1.5) with a
fixed direction of w.

Denoting the distance between the straight lines l+ and l− as d(w), the
aim of the problem (8.1.4)∼(8.1.5) is to find a vector w such that the distance
d(w) is maximized. So this problem also embodies the principle of maximal
margin, but with a different measure.

Now extend the above problem to Rn and introduce the slack variables ξ.
We will get the general primal problem

min
w,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.1.7)

s.t. yi(w · xi) > 1− ξi, i = 1, · · · , l, (8.1.8)

ξi > 0, i = 1, · · · , l. (8.1.9)

If mapping x = Φ(x) : Rn → H is introduced, then the primal problem turns
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out to be a convex quadratic programming in H

min
w,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.1.10)

s.t. yi(w · Φ(xi)) > 1− ξi, i = 1, · · · , l, (8.1.11)

ξi > 0, i = 1, · · · , l. (8.1.12)

Theorem 8.1.1 Optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

yiyjK(xi, xj)αiαj +
l∑

i=1

αi, (8.1.13)

s.t. 0 6 αi 6 C, i = 1, · · · , l (8.1.14)

is the dual problem of the primal problem (8.1.10)∼(8.1.12), where K(x, x′) =
(Φ(x) · Φ(x′)) is the kernel function.

Theorem 8.1.2 Support that α∗ = (α∗
1, · · · , α∗

l )
T is any solution to the

dual problem (8.1.13)∼(8.1.14); then the solution to the primal problem
(8.1.10)∼(8.1.12) w.r.t. w can be obtained by

w∗ =

l∑

i=1

α∗
i yiΦ(xi). (8.1.15)

Thus we can establish the following algorithm:

Algorithm 8.1.3 (Support vector machine with homogeneous decision func-
tion)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{−1, 1}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and a penalty parameter
C > 0;

(3) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

yiyjK(xi, xj)αiαj −
l∑

i=1

αi, (8.1.16)

s.t. 0 6 αi 6 C, i = 1, · · · , l, (8.1.17)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Construct the decision function f(x) = sgn

(
l∑

i=1

α∗
i yiK(x, xi)

)
.
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8.1.2 Bounded support vector classification

In the linear classifier of the above algorithm (Algorithm 8.1.3), the sepa-
rating hyperplane is restricted to pass through the origin. Usually this is not
reasonable, for instance for the two-dimensional problem with the training set

T = {(x1, y1), · · · , (x10, y10)} (8.1.18)

shown by Figure 8.2(a). Now we propose a modification and explain it by

(a) In x-space (b) In x-space

FIGURE 8.2: Example form x-space to x-space with x = (xT, 1)T.

taking the above problem as an example. Instead of dealing with the problem
in x-space R2 directly, introduce a transformation from x = ([x]1, [x]2)

T-space
R2 into x = ([x]1, [x]2, [x]3)

T-space R3

x = (xT, 1)T. (8.1.19)

Thus the training set T in (8.1.18) is transformed into a new training set

T1 = {(x1, y1), · · · , (x10, y10)} (8.1.20)

where
xi = (xTi , 1)

T, i = 1, · · · , 10, (8.1.21)

see Figure 8.2(b). Now the classification problem with training set T1 is a prob-
lem in x-space R3. Corresponding to the primal problem (8.1.10)∼(8.1.12), the
primal problem in x = (xT, 1)T-space is

min
w,ξ

1

2
‖w‖2 + C

10∑

i=1

ξi, (8.1.22)

s.t. yi(w · xi) > 1− ξi, i = 1, · · · , 10, (8.1.23)

ξi > 0, i = 1, · · · , 10. (8.1.24)
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This leads to the separating plane in R3

(w∗ · x) = w∗
1[x]1 +w∗

2[x]2 +w∗
3[x]3 = 0, (8.1.25)

where w∗ = (w∗
1 ,w

∗
2,w

∗
3)

T is the solution to the problem (8.1.22)∼(8.1.24)
w.r.t. w. So the separating straight line on the plane Π: [x]3 = 1 is

w∗
1[x]1 +w∗

2[x]2 +w∗
3 = 0, (8.1.26)

See Figure 8.2(b). Returning to the x-space R2, the corresponding separating
straight line should be

w∗
1[x]1 +w∗

2[x]2 +w∗
3 = 0. (8.1.27)

Replacing w = (w1,w2,w3)
T by (w1, w2, b)

T = (wT, b)T and noticing (8.1.19),
the problem (8.1.22)∼(8.1.24) and the separating straight line (8.1.25) be-
comes

min
w,b,ξ

1

2
‖w‖2 + 1

2
b2 + C

10∑

i=1

ξi, (8.1.28)

s.t. yi((w · xi) + b) > 1− ξi, i = 1, · · · , 10, (8.1.29)

ξi > 0, i = 1, · · · , 10. (8.1.30)

and
(w∗ · x) + b∗ = 0, (8.1.31)

respectively, where (w∗, b∗) is the solution to the problem (8.1.28)∼(8.1.30)
w.r.t. (w, b). This implies that a new variant of support vector classification
can be derived by considering the problem (8.1.28)∼(8.1.30) as the primal
problem. In fact, this is just what the Bounded SVC does, see [104].

Comparing with the standard C-support vector classification, linear
bounded support vector classification has also the decision function in the
form

f(x) = sgn((w · x) + b), (8.1.32)

and the only difference between their primal problems is that the term 1
2‖w‖2

is replaced by 1
2 (‖w‖2 + b2). This difference comes from the maximal princi-

ple in different spaces considered; in the objective function, the term 1
2‖w‖2

corresponds to x-space while the term 1
2 (‖w‖2 + b2) to the x = (xT, 1)T-

space. Introducing the transformation x = Φ(x) and the corresponding kernel
function K(x, x′) = (Φ(x) · Φ(x′)), the primal problem becomes the convex
quadratic programming

min
w,b,ξ

1

2
(‖w‖2 + b2) + C

l∑

i=1

ξi, (8.1.33)

s.t. yi((w · Φ(xi)) + b) > 1− ξi, i = 1, · · · , l, (8.1.34)

ξi > 0, i = 1, · · · , l. (8.1.35)
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Theorem 8.1.4 There exists a unique solution (w∗, b∗) to the primal problem
(8.1.33)∼(8.1.35).

Theorem 8.1.5 Optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

αiαjyiyj(K(xi, xj) + 1) +

l∑

i=1

αi, (8.1.36)

s.t. 0 6 αi 6 C, i = 1, · · · , l (8.1.37)

is the dual problem of the primal problem (8.1.33)∼(8.1.35).

Theorem 8.1.6 Suppose α∗ = (α∗
1, · · · , α∗

l )
T is the solution to the

dual problem (8.1.36)∼(8.1.37), then the solution to the primal problem
(8.1.33)∼(8.1.35) w.r.t. (w, b) can be obtained by

w∗ =

l∑

i=1

α∗
i yiΦ(xi), (8.1.38)

b∗ =

l∑

i=1

α∗
i yi. (8.1.39)

Thus we can establish the following algorithm.

Algorithm 8.1.7 (Bounded C-support vector classification)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{−1, 1}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and a penalty parameter
C > 0;

(3) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

αiαjyiyj(K(xi, xj) + 1)−
l∑

i=1

αi, (8.1.40)

s.t. 0 6 αi 6 C, i = 1, · · · , l, (8.1.41)

obtaining the solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Construct the decision function f(x) = sgn

(
l∑

i=1

α∗
i yi(K(x, xi) + 1)

)
.

Remark 8.1.8 (The relationship between Algorithm 8.1.7 and Algorithm
8.1.3) It can be found by comparing the problems (8.1.36)∼(8.1.37) and
(8.1.13)∼(8.1.14) that Algorithm 8.1.7 with the kernel K(x, x′) and Algorithm
8.1.3 with the kernel K(x, x′) + 1 are identical.
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8.1.3 Least squares support vector classification

Just like the standard C-support vector classification, the starting point of
least squares support vector classification (LSSVC)[141, 140] is also to find a
separating hyperplane (w ·x) + b = 0, but with a different primal problem. In
fact, introducing the transformation x = Φ(x) and the corresponding kernel
K(x, x′) = (Φ(x) · Φ(x′)), the primal problem becomes the convex quadratic
programming

min
w,η,b

1

2
‖w‖2 + C

2

l∑

i=1

η2i , (8.1.42)

s.t. yi((w · Φ(xi)) + b) = 1− ηi, i = 1, · · · , l. (8.1.43)

The geometric interpretation of the above problem with x ∈ R2 is shown

in Figure 8.3, where minimizing
1

2
‖w‖2 realizes the maximal margin between

the straight lines

(w · x) + b = 1 and (w · x) + b = −1, (8.1.44)

while minimizing

l∑

i=1

η2i implies making the two straight lines (8.1.44) proximal

to all inputs of positive points and negative points respectively.

FIGURE 8.3: An interpretation of two-dimensional classification problem.

Theorem 8.1.9 Denoting

δij =

{
1, i = j;
0, i 6= j,

(8.1.45)
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optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

αiαjyiyj

(
K(xi, xj) +

δij
C

)
+

l∑

i=1

αi, (8.1.46)

s.t.

l∑

i=1

αiyi = 0 (8.1.47)

is the dual problem of the primal problem (8.1.42)∼(8.1.43).

Theorem 8.1.10 Suppose α∗ = (α∗
1, · · · , α∗

l )
T is any solution to the dual

problem (8.1.46)∼(8.1.47). Then a solution (w∗, b∗) to the primal problem
(8.1.42)∼(8.1.43) w.r.t. (w, b) can be obtained by

w∗ =

l∑

i=1

α∗
i yiΦ(xi), (8.1.48)

b∗ = yi

(
1− α∗

i

C

)
−

l∑

j=1

α∗
jyjK(xj , xi), i ∈ {1, · · · , l}. (8.1.49)

Now we can establish the following algorithm according to above theorems:

Algorithm 8.1.11 (Least squares support vector classification, LSSVC)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and a penalty parameter
C > 0;

(3) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

αiαjyiyj

(
K(xi, xj) +

δij
C

)
−

l∑

i=1

αi, (8.1.50)

s.t.

l∑

i=1

αiyi = 0, (8.1.51)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b∗: Choose a subscript i(1 6 i 6 l), then compute

b∗ = yi

(
1− α∗

i

C

)
−

l∑

j=1

α∗
jyjK(xj , xi); (8.1.52)
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(5) Construct the decision function

f(x) = sgn(g(x)), (8.1.53)

where

g(x) =

l∑

i=1

yiα
∗
iK(xi, x) + b∗. (8.1.54)

Remark 8.1.12 There are two important differences between the above algo-
rithm and Algorithm 4.3.1 (C-SVC):

(i) In C-SVC, the error is measured by the soft margin loss function (4.3.18).
This leads to the fact that the decision function is decided only by the training
points corresponding to support vectors and is unrelated to the training points
corresponding to non-support vectors. However, in LSSVC, almost all training
points contribute to the decision function, which makes the solution of LSSVC
lose the sparseness.

(ii) The C-SVC needs to solve a quadratic programming with inequality con-
straints. However, LSSVC needs to solve a quadratic programming with only
equality constraints, or equivalently a linear system of equations. Therefore, it
is simpler and faster.

For more discussion about least squares support vector machines, see [32,
33, 75, 81, 84, 99, 139, 138, 148, 185].

8.1.4 Proximal support vector classification

Proximal support vector classification (PSVC)[55] is very similar to least
squares support vector classification. The only difference between their primal
problems is that the term 1

2‖w‖2 in the latter is replaced by 1
2 (‖w‖2 + b2) in

the former, which is used and interpreted in Section 8.1.2 This makes the
primal problem strictly convex quadratic programming

min
w,b,η

1

2
(‖w‖2 + b2) +

C

2

l∑

i=1

η2i , (8.1.55)

s.t. yi((w · Φ(xi)) + b) = 1− ηi, i = 1, · · · , l. (8.1.56)

Theorem 8.1.13 Unconstrained optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

αiαjyiyj(K(xi, xj) + 1)− 1

2C

l∑

i=1

α2
i +

l∑

i=1

αi

(8.1.57)

is the dual problem of the primal problem (8.1.55)∼(8.1.56).
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Theorem 8.1.14 Suppose that α∗ = (α∗
1, · · · , α∗

l )
T is the solution to the dual

problem (8.1.57). Then the unique solution (w∗, b∗, η∗) to the primal problem
(8.1.55)∼(8.1.56) can be expressed as

w∗=

l∑

i=1

α∗
i yiΦ(xi), (8.1.58)

b∗=

l∑

i=1

yiα
∗
i , (8.1.59)

η∗=α∗/C. (8.1.60)

Thus, the following algorithm is established.

Algorithm 8.1.15 (Proximal support vector classification, PSVC)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈ Y =
{1,−1}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and a penalty parameter
C > 0;

(3) Construct and solve the convex unconstrained optimization problem

min
α

1

2

l∑

i=1

l∑

j=1

αiαjyiyj(K(xi, xj) + 1) +
1

2C

l∑

i=1

α2
i −

l∑

i=1

αi,

(8.1.61)

obtaining the solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b∗:

b∗ =

l∑

i=1

yiα
∗
i ; (8.1.62)

(5) Construct the decision function

f(x) = sgn(g(x)), (8.1.63)

where

g(x) =

l∑

i=1

yiα
∗
iK(xi, x) + b∗. (8.1.64)

Proximal support vector classification has the properties similar to Algo-
rithm 8.1.11. In addition, another proximal support vector classification has
been proposed in [55]. More references can refer to [56, 106, 153].
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8.1.5 ν-Support vector classification

In the above support vector classifications, the penalty parameter C deter-
mines the tradeoff between two conflicting goals: maximizing the margin and
minimizing the training error. The value of C is qualitatively clear; the larger
C implies that more attention has been paid to minimizing the training error.
However, it is gravely lacking in quantitative meaning. In order to overcome
this drawback, the standard C-SVC is modified as ν-support vector classifi-
cation (ν-SVC), where the penalty parameter C is replaced by a parameter
ν.

8.1.5.1 ν-Support vector classification

Introducing the transformation x = Φ(x) and the corresponding kernel
function K(x, x′) = (Φ(x) ·Φ(x′)), the primal problem of ν-SVC is the convex
quadratic programming

min
w,b,ξ,ρ

1

2
‖w‖2 − νρ+

1

l

l∑

i=1

ξi , (8.1.65)

s.t. yi((w · Φ(xi)) + b) > ρ− ξi , i = 1, · · · , l, (8.1.66)

ξi > 0 , i = 1, · · · , l ; ρ > 0 , (8.1.67)

where ν ∈ (0, 1] is a preselected parameter.

Theorem 8.1.16 Optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj) , (8.1.68)

s.t.

l∑

i=1

yiαi = 0 , (8.1.69)

0 6 αi 6
1

l
, i = 1, · · · , l , (8.1.70)

l∑

i=1

αi > ν (8.1.71)

is the dual problem of the primal problem (8.1.65)∼(8.1.67).

Theorem 8.1.17 Suppose that α∗ = (α∗
1, · · · , α∗

l )
T is any solution to the

dual problem (8.1.68)∼(8.1.71). If there exist two components of α∗, α∗
j and

α∗
k, such that α∗

j ∈ {α∗
j |α∗

i ∈ (0, 1/l), yi = 1} and α∗
k ∈ {α∗

i |α∗
i ∈ (0, 1/l), yi =

−1}, then a solution (w∗, b∗, ρ∗) to the primal problem (8.1.65)∼(8.1.67) w.r.t.
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(w, b, ρ) can be obtained by

w∗ =

l∑

i=1

α∗
i yiΦ(xi), (8.1.72)

b∗ = −1

2

l∑

i=1

α∗
i yi(K(xi, xj) +K(xi, xk)). (8.1.73)

ρ∗ =

l∑

i=1

α∗
i yiK(xi, xj) + b∗ = −

l∑

i=1

α∗
i yiK(xi, xk)− b∗. (8.1.74)

Thus we can establish the following algorithm:

Algorithm 8.1.18 (ν-support vector classification, ν-SVC)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
Y = {1,−1}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and a parameter ν ∈ (0, 1];

(3) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj) , (8.1.75)

s.t.

l∑

i=1

yiαi = 0 , (8.1.76)

0 6 αi 6
1

l
, i = 1, · · · , l , (8.1.77)

l∑

i=1

αi > ν, (8.1.78)

obtaining the solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b∗: Choose two components of α∗, α∗
j ∈ {α∗

i |α∗
i ∈ (0, 1/l), yi =

1} and α∗
k ∈ {α∗

i |α∗
i ∈ (0, 1/l), yi = −1}, and compute

b∗ = −1

2

l∑

i=1

α∗
i yi(K(xi, xj) +K(xi, xk)); (8.1.79)

(5) Construct the decision function

f(x) = sgn (g(x)) , (8.1.80)

where

g(x) =

l∑

i=1

α∗
i yiK(x, xi) + b∗. (8.1.81)
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8.1.5.2 Relationship between ν-SVC and C-SVC

The following theorem shows that ν-SVC is equivalent to C-SVC.

Theorem 8.1.19 There exists a non-increasing function ν = ϕ(C) :
(0,∞) → (0, 1] such that, for any C > 0 and the corresponding ν = ϕ(C), the
decision functions obtained by ν-SVC with ν = ν and C-SVC with C = C are
identical if

(i) The same kernel function is chosen by both of them,
(ii) The decision functions can be computed by both of them, i.e. for ν-

SVC with ν = ν , two components α∗
j and α∗

k of α∗ can be chosen such that
α∗
j ∈ {α∗

i |α∗
i ∈ (0, 1/l), yi = 1} and α∗

k ∈ {α∗
i |α∗

i ∈ (0, 1/l), yi = −1}, and
for C-SVC with C = C, one component α∗

j of α∗ can be chosen such that
α∗
j ∈ (0, C).

8.1.5.3 Significance of the parameter ν

The significance of the parameter ν is concerned with the terms of “sup-
port vector” and “training point with margin error”. Suppose that α∗ =
(α∗

1, · · · , α∗
l )

T is the solution to the dual problem (8.1.68)∼(8.1.71) obtained
using Algorithm 8.1.18 (ν-SVC). The input xi associated with the training
point (xi, yi) is still called a support vector if the corresponding component
α∗
i of α

∗ is nonzero. The definition of training point with margin error is given
below.

Definition 8.1.20 (Training point with margin error) Suppose that α∗ is the
solution to the dual problem (8.1.68)∼(8.1.71), and the corresponding solution
to the primal problem (8.1.65)∼(8.1.67) is (w∗, b∗, ρ∗, ξ∗) = (·, ·, ρ∗, ·). The
training point (xi, yi) is called training point with margin error if the function
g(x) given by (8.1.81) satisfies

yig(xi) = yi




l∑

j=1

α∗
jyjK(xj , xi) + b∗


 < ρ∗. (8.1.82)

Roughly speaking, a training point is the one whose input is not separated
“sufficient” correctly.

The significance of ν is shown by the following theorem.

Theorem 8.1.21 Suppose that Algorithm 8.1.18 (ν-SVC) is performed on the
training set (8.1.1) and the value ρ∗ is also computed by (8.1.74). If ρ∗ > 0,
then

(i) Denoting the number of the training points with margin error as p, we
have ν > p/l, i.e. ν is an upper bound on the fraction of the training points
with margin error.

(ii) Denoting the number of support vectors as q, we have ν 6 q/l, i.e. ν
is a lower bound on the fraction of support vectors.
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In addition, it can also be shown under certain conditions that, with proba-
bility 1, both the fraction of training points with margin error and the fraction
of support vectors approach to ν when the number l of the training points
tends to infinity.

For detailed discussions of ν-support vector classification, we refer the
reader to [21] and [126].

8.1.6 Linear programming support vector classifications
(LPSVC)

In the above support vector classifications, quadratic programming prob-
lems need to be solved. However, it is also possible to formulate classification
problems in linear programming, replacing the quadratic objective function
by a linear function.

8.1.6.1 LPSVC corresponding to C-SVC

Remember the standard C-SVC. Introducing the transformation x = Φ(x)
and the corresponding kernel function K(x, x′) = (Φ(x) · Φ(x′)), the primal
problem is

min
w,b,ξ

1

2

∥∥w
∥∥2 + C

l∑

i=1

ξi, (8.1.83)

s.t. yi((w · Φ(xi)) + b) > 1− ξi , i = 1, · · · , l ,
(8.1.84)

ξi > 0, i = 1, · · · , l, (8.1.85)

and the corresponding dual problem is

max
α

l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj) , (8.1.86)

s.t.

l∑

i=1

yiαi = 0 , (8.1.87)

0 6 αi 6 C, i = 1, · · · , l. (8.1.88)

After having solved the above dual problem, we can find the solution to the
primal problem w.r.t. w

w∗ =

l∑

i=1

α∗
i yiΦ(xi), (8.1.89)

and furthermore, construct the decision function.
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It is well known that the optimal values of the primal problem and the dual
problem are equal, i.e. if (w∗, b∗, ξ∗) and α∗ = (α∗

1, · · · , α∗
l )

T are the solutions
to the primal problem (8.1.83)∼(8.1.85) and dual problem (8.1.86)∼(8.1.88)
respectively, then

1

2

∥∥w∗
∥∥2 + C

l∑

i=1

ξ∗i =

l∑

i=1

α∗
i −

1

2

l∑

i=1

l∑

j=1

yiyjα
∗
iα

∗
jK(xi, xj). (8.1.90)

On the other hand, equation (8.1.89) implies that

∥∥w∗
∥∥2 =

(
l∑

i=1

α∗
i yixi ·

l∑

i=1

α∗
i yixi

)
=

l∑

i=1

l∑

j=1

yiyjα
∗
iα

∗
jK(xi, xj). (8.1.91)

From (8.1.90) and (8.1.91), we get that

l∑

i=1

α∗
i = ‖w∗‖2 + C

l∑

i=1

ξ∗i . (8.1.92)

or
l∑

i=1

α∗
i + C

l∑

i=1

ξ∗i = 2

(
1

2
‖w∗‖2 + C

l∑

i=1

ξ∗i

)
. (8.1.93)

Now let us convert the problem (8.1.83)∼(8.1.85) into a linear program-
ming by a heuristic approach: first, looking at (8.1.93), replace the objective

function (8.1.83) by

l∑

i=1

αi + C

l∑

i=1

ξi; then substitute w in (8.1.89) into the

constraint (8.1.84); at last, add the constraint α > 0. This leads to the problem

min
α,b,ξ

l∑

i=1

αi + C
l∑

i=1

ξi , (8.1.94)

s.t. yi




l∑

j=1

αjyjK(xj , xi) + b



 > 1− ξi , i = 1, · · · , l, (8.1.95)

αi, ξi > 0, i = 1, · · · , l . (8.1.96)

After having solved the above problem and gotten its solution α∗ w.r.t. α,
the decision function can be constructed in the same way as C-SVC does.
Therefore, the corresponding algorithm can be established from Algorithm
4.3.1 (C-SVC) by replacing the convex quadratic programming (4.3.1)∼(4.3.3)
with the linear programming (8.1.94)∼(8.1.96).

Corresponding to the primal problem (8.1.83)∼(8.1.85), there is another
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linear programming

min
α,α∗,b,ξ

l∑

i=1

(αi + α∗
i ) + C

l∑

i=1

ξi , (8.1.97)

s.t. yi




l∑

j=1

(αj − α∗
j )K(xj , xi) + b


 > 1− ξi , i = 1, · · · , l,

(8.1.98)

αi, α
∗
i , ξi > 0, i = 1, · · · , l . (8.1.99)

See [124, 168] for details.

8.1.6.2 LPSVC corresponding to ν-SVC

In the linear programming support vector classification (LPSVC) corre-
sponding to ν-SVC, the linear programming is

min
α,α∗,ξ,b,ρ

1

l

l∑

i=1

ξi − νρ , (8.1.100)

s.t.
1

l

l∑

i=1

(αi + α∗
i ) = 1 , (8.1.101)

yi




l∑

j=1

(αj − α∗
j )K(xj , xi) + b


 > ρ− ξi , i = 1, · · · , l, (8.1.102)

αi, α
∗
i , ξi, i = 1, · · · , l, ρ > 0 . (8.1.103)

The corresponding algorithm can be established from Algorithm 8.1.18
(ν-SVC) by replacing the problem (8.1.68)∼(8.1.71) with the problem
(8.1.100)∼(8.1.103); see [124] for details.

8.1.7 Twin support vector classification

For convenience, rewrite the training set by putting the negative training
points after the positive training points as

T = {(x1, y1), ..., (xp, yp), (xp+1, yp+1), ..., (xp+q, yp+q)}, (8.1.104)

where y1 = ... = yp = 1, yp+1 = ... = yp+q = −1.
Let us introduce the linear twin classifier first. Remember least squares

SVC and Proximal SVC, their basic steps can be understood as follows: (i)
Find two parallel hyperplanes, a positive hyperplane and a negative hyper-
plane such that they are proximal to all positive inputs and all negative inputs
respectively as far as possible; (ii) construct the decision function from these
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two hyperplanes; an input x is assigned to the positive class if the positive
hyperplane is closer to the input x; the negative class otherwise.

The basic steps in linear twin SVC are similar to the above ones. The only
difference is that it allows the two hyperplanes are not parallel. This idea was
first proposed in [108], but the following approach comes from [86] and [129].

Suppose the two non-parallel hyperplanes are the positive hyperplane

(w+ · x) + b+ = 0, (8.1.105)

and the negative hyperplane

(w− · x) + b− = 0. (8.1.106)

The primal problems for finding these two hyperplanes are

min
w+,b+,ξ−

1

2
c1(‖w+‖2 + b2+) +

1

2

p∑

i=1

((w+ · xi) + b+)
2 + c2

p+q∑

j=p+1

ξj ,

(8.1.107)

s.t. (w+ · xj) + b+ ≤ −1 + ξj , j = p+ 1, ..., p+ q, (8.1.108)

ξj ≥ 0, j = p+ 1, ..., p+ q (8.1.109)

and

min
w−,b−,ξ+

1

2
c3(‖w−‖2 + b2−) +

1

2

p+q∑

i=p+1

((w− · xi) + b−)
2 + c4

p∑

j=1

ξj ,

(8.1.110)

s.t. (w− · xj) + b− ≥ 1− ξj , j = 1, ..., p, (8.1.111)

ξj ≥ 0, j = 1, ..., p (8.1.112)

respectively, where c1 > 0, c2 > 0, c3 > 0, c4 > 0 are parameters, ξ− =
(ξp+1, ..., ξp+q)

T, ξ+ = (ξ1, ..., ξp)
T.

For both of the above primal problems, an interpretation can be offered
in the same way, so only the former one is considered here. Among the three
terms in the objective function (8.1.107), the second term makes the positive
hyperplane proximal to all positive inputs, the third term with the constraints
(8.1.108) and (8.1.109) require the positive hyperplane to be at a distance from
the negative inputs by pushing the negative inputs to the other side of the
bounding hyperplane (w+ ·x) + b+ = −1, where a set ξ of variables is used to
measure the error whenever the positive hyperplane is close to the negative
inputs. The first term realizes the maximal margin between the positive hy-
perplane (w+ · x) + b+ = 0 and the bounding hyperplane (w+ · x) + b+ = −1.
However, similar to the discussion in bounded support vector classification
and proximal support vector classification, this margin is measured by the
distance d between these two hyperplanes in Rn+1 space

(w̄+ · x) = 0 and (w̄+ · x) = −1, (8.1.113)
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where w̄⊤
+ = (wT

+, b+)
T. Obviously, the distance d can be expressed as

1

‖w̄‖ =
1√

‖w+‖2 + b2+

. (8.1.114)

Therefore, the first term in (8.1.107) embodies the maximal margin principle.
Introducing the matrices

A = (x1, ..., xp)
T ∈ Rp×n, B = (xp+1, ..., xp+q)

T ∈ Rq×n, (8.1.115)

the problems (8.1.107)∼(8.1.109) and (8.1.110)∼(8.1.112) can be written as

min
w+,b+,ξ−

1

2
c1(‖w+‖2 + b2+) +

1

2
‖Aw+ + e1b+‖2 + c2e

T
2 ξ−,(8.1.116)

s.t. −(Bw+ + e2b+) + ξ− ≥ e2, ξ− ≥ 0, (8.1.117)

and

min
w−,b−,ξ+

1

2
c3(‖w−‖2 + b2−) +

1

2
‖Bw− + e2b−‖2 + c4e

T
1 ξ+,(8.1.118)

s.t. Aw− + e1b− + ξ+ ≥ e1, ξ+ ≥ 0, (8.1.119)

respectively, where e1 and e2 are vectors of ones of appropriate dimension.

Theorem 8.1.22 Optimization problems

max
α

eT2 α− 1

2
αTG(HTH + c1I)

−1GTα, (8.1.120)

s.t. 0 ≤ α ≤ c2 (8.1.121)

and

max
γ

eT1 γ − 1

2
γTH(GTG+ c3I)

−1HTγ, (8.1.122)

s.t. 0 ≤ γ ≤ c4 (8.1.123)

are the dual problems of the problems (8.1.107)∼(8.1.109) and (8.1.110)∼
(8.1.112) respectively, where H = [A e1], G = [B e2].

Theorem 8.1.23 Suppose that α∗ and γ∗ are the solutions to the dual prob-
lems (8.1.120)∼(8.1.121) and (8.1.122)∼(8.1.123) respectively, then the solu-
tions (w∗

+, b+) and (w∗
−, b

∗
−) to the primal problems w.r.t. (w+, b+) and (w−,

b−) can be obtained by

(w∗T
+ , b∗+)

T = −(HTH + c1I)
−1GTα∗, (8.1.124)

and

(w∗T
− , b∗−)

T = (GTG+ c3I)
−1HTγ∗, (8.1.125)

respectively.
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Once the positive hyperplane (w∗
+ ·x)+b∗+ = 0 and the negative hyperplane

(w∗
− ·x)+b∗− = 0 are obtained, the decision function can be easily constructed:

a new input is assigned to the positive class if the positive hyperplane is closer
to the new input; the negative class otherwise. Thus the following algorithm
is established.

Algorithm 8.1.24 (Linear twin support vector classification, LTSVC)

(1) Input the training set T = {(x1, y1), ..., (xp, yp), (xp+1, yp+1), ...,
(xp+q , yp+q)}, where xi ∈ Rn, i = 1, ..., p + q, y1 = ... = yp = 1, yp+1 =
... = yp+q = −1.

(2) Choose appropriate parameters c1 > 0, c2 > 0, c3 > 0, c4 > 0;

(3) Construct and solve the strictly convex quadratic programming problems

min
α

1

2
αTG(HTH + c1I)

−1GTα− eT2 α, (8.1.126)

s.t. 0 ≤ α ≤ c2 (8.1.127)

and

min
γ

1

2
γ⊤H(GTG+ c3I)

−1HTγ − eT1 γ, (8.1.128)

s.t. 0 ≤ γ ≤ c4 (8.1.129)

where H = [A e1], G = [B e2], A = [x1, ..., xp]
T, B = [xp+1, ..., xp+q]

T, e1
and e2 are vectors of ones of appropriate dimension, obtaining the solutions
α∗ = (α∗

1, · · · , α∗
q) and γ

∗ = (γ∗1 , · · · , γ∗p) respectively;
(4) Compute (w∗

+, b
∗
+) and (w∗

−, b
∗
−):

(
w∗

+

b∗+

)
= −(HTH + c1I)

−1GTα∗,

(
w∗

−

b∗−

)
= (GTG+ c3I)

−1HTγ∗.

(8.1.130)

(5) Construct the decision function

f(x) =

{
1, if

|(w∗

+·x)+b∗+|

‖w∗

+‖ ≤ |(w∗

−
·x)+b∗

−
|

‖w∗

−
‖ ;

−1 otherwise,
(8.1.131)

Corresponding to the above linear classifier, the nonlinear classifier can
also be established. Introducing the transformation x = Φ(x) : Rn → H and
the kernel function K(x, x′) = (Φ(x) ·Φ(x′)), we need to find the positive and
negative hyperplanes

(w+ · x) + b+ = 0 (8.1.132)
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and

(w− · x) + b− = 0. (8.1.133)

For the positive hyperplane (8.1.132), we should solve the primal problem

min
w+,b+,ξ−

1

2
c1(‖w+‖2 + b2+) +

1

2

p∑

i=1

((w+ · xi) + b+)
2 + c2

p+q∑

j=p+1

ξj ,

(8.1.134)

s.t. ((w+ · xj) + b+) ≤ −1 + ξj , j = p+ 1, ..., p+ q, (8.1.135)

ξj ≥ 0, j = p+ 1, ..., p+ q (8.1.136)

Thus, a natural approach is to derive the dual problem of the above primal
problem and obtain (w∗

+, b
∗
+) from the solution of the dual problem, as we did

for the problem (4.1.6)∼(4.1.8). Unfortunately, this approach does not work
here. In fact, it can be found that, in the dual problem (4.1.10)∼(4.1.14) of
the problem (4.1.6)∼(4.1.8), Φ appears always in the form of inner products
(Φ(xi) · Φ(xj)), instead of any single Φ. This is the reason that enables us to
express the dual problem by the kernel function K. However, the situation is
different for the problem (8.1.134)∼(8.1.136) where the single Φ appears in
its dual problem, and therefore this approach fails in this setting.

Due to the above difficulty in solving the problem (8.1.134)∼(8.1.136), we
introduce a general approach to find its approximate solution.

Suppose that w+ can be expressed as

w+ =

p+q∑

k=1

uk+Φ(xk), (8.1.137)

where xk, k = 1, ..., p + q are the inputs of the training points, u1+, ..., u
p+q
+

are the undetermined coefficients. This implies that w+ is restricted in the
subspace spanned by {Φ(x1), · · · ,Φ(xp+q)} although we should find w+ in
the whole space H. Thus the problem (8.1.134)∼(8.1.136) becomes

min
u+,b+,ξ−

1

2
c1(‖

p+q∑

k=1

uk+Φ(xk)‖2 + b2+)

+
1

2

p∑

i=1

(

p+q∑

k=1

uk+K(xi, xk) + b+)
2 + c2

p+q∑

j=p+1

ξj ,

(8.1.138)

s.t. −(

p+q∑

k=1

uk+K(xj , xk) + b+) + ξj ≥ 1, j = p+ 1, ..., p+ q,

(8.1.139)

ξj ≥ 0, j = p+ 1, ..., p+ q, (8.1.140)
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where u+ = (u1+, ..., u
p+q
+ )T and ξ− = (ξp+1, ..., ξp+q)

T. Introducing

Ã =




K(x1, x1) ... K(x1, xp+q)

... ... ...
K(xp, x1) ... K(xp, xp+q)



 ,

B̃ =




K(xp+1, x1) ... K(xp+1, xp+q)

... ... ...
K(xp+q, x1) ... K(xp+q, xp+q)



 (8.1.141)

and taking the approximation

‖
p+q∑

k=1

uk+Φ(xk)‖2 ≈ ‖u+‖2, (8.1.142)

the problem (8.1.138)∼(8.1.140) can be written as

min
w+,b+,ξ−

1

2
c1(‖u+‖2 + b2+) +

1

2
‖Ãu+ + e1b+‖2 + c2e

T
2 ξ−,(8.1.143)

s.t. −(B̃u+ + e2b+) + ξ− ≥ e2, (8.1.144)

ξ− ≥ 0. (8.1.145)

The form of the above problem is exactly the same as that of the problem
(8.1.116)∼(8.1.117) and can be solved in the same way, obtaining its solution
(u∗T+ , b∗+) = ((u∗1+ , ..., u

∗p+q
+ ), b∗+) w.r.t. (u+, b+) and the positive hyperplane

in Hilbert space H

(

p+q∑

k=1

u∗k+ Φ(xk) · x) + b∗+ = 0. (8.1.146)

Similarly, we can also obtain the negative hyperplane

(

p+q∑

k=1

u∗k− Φ(xk) · x) + b∗− = 0. (8.1.147)

Obviously, the above two hyperplanes formed the basis of the decision func-
tion: a new input is assigned to the positive class if the positive hyperplane is
closer; to the negative class otherwise. Thus the following algorithm is estab-
lished.

Algorithm 8.1.25 (Twin support vector classification, TSVC)

(1) Input the training set T = {(x1, y1), ..., (xp, yp), (xp+1, yp+1), ...,
(xp+q , yp+q)}, where xi ∈ Rn, i = 1, ..., p + q, y1 = ... = yp = 1, yp+1 =
... = yp+q = −1;

(2) Choose an appropriate kernel function K(x, x′) and parameters c1 > 0,
c2 > 0, c3 > 0, c4 > 0;
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(3) Construct and solve the strictly convex quadratic programming

max
α

eT2 α− 1

2
αTG̃(H̃H̃T + c1I)

−1G̃Tα, (8.1.148)

s.t. 0 ≤ α ≤ c2, (8.1.149)

and

max
γ

eT1 γ − 1

2
γTH̃(G̃G̃T + c3I)

−1H̃Tγ, (8.1.150)

s.t. 0 ≤ γ ≤ c4, (8.1.151)

where H̃ = [Ã, e1], G̃ = [B̃, e2], e1 and e2 are vectors of ones

of appropriate dimension, Ã =




K(x1, x1) ... K(x1, xp+q)
... ... ...

K(xp, x1) ... K(xp, xp+q)


, B̃ =




K(xp+1, x1) ... K(xp+1, xp+q)
... ... ...

K(xp+q, x1) ... K(xp+q, xp+q)


, obtaining the solutions α∗ =

(α∗
1, · · · , α∗

q), γ
∗ = (γ∗1 , · · · , γ∗p) respectively;

(4) Compute (u∗T+ , b∗+) = ((u∗1+ , ..., u
∗p+q
+ ), b∗+) and (u∗T− , b∗−) = ((u∗1− , ..., u

∗p+q
− ),

b∗−):
(
u∗+
b∗+

)
= −(H̃TH̃ + c1I)

−1G̃Tα∗,

(
u∗−
b∗−

)
= (G̃TG̃+ c3I)

−1H̃Tγ∗;

(8.1.152)

(5) Construct the decision function

f(x) =

{
1, if

∑p+q

k=1
u∗k
+ K(xk,x)+b

∗

+|√
u∗T
+ Cu∗

+

≤
∑p+q

k=1
u∗k
−
K(xk,x)+b

∗

−
|√

u∗T
−
Cu∗

−

;

−1, otherwise,
(8.1.153)

where C = [Ã, B̃]T.

Twin support vector machines have been studied extensively recently; see
references [85, 92, 93, 117, 119].

8.2 Variants of Support Vector Regression

Some variants of ε-SVR are introduced in this section. Remember the
regression problem with the training set

T = {(x1, y1), · · · , (xl, yl)} , (8.2.1)

where xi ∈ Rn, yi ∈ Y = R, i = 1, · · · , l, our task is to find a real function
g(x) in Rn, to derive the value of y for any input x by the function y = g(x).
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8.2.1 Least squares support vector regression

Just like ε-support vector regression, the starting point of least squares
support vector regression (LSSVR) [140]) is also to find a decision function
y = (w · x) + b, but with different primal problems. In fact, introducing the
transformation x = Φ(x) and the corresponding kernel K(x, x′) = (Φ(x) ·
Φ(x′)), the primal problem becomes the convex quadratic programming

min
w,b,η

1

2
‖w‖2 + C

2

l∑

i=1

η2i , (8.2.2)

s.t. yi − ((w · Φ(xi)) + b) = ηi , i = 1, · · · , l . (8.2.3)

Theorem 8.2.1 Denoting

δij =

{
1, i = j;
0, i 6= j,

(8.2.4)

optimization problem

max
α

−1

2

l∑

i=1

l∑

j=1

αiαj

(
K(xi, xj) +

δij
C

)
+

l∑

i=1

αiyi , (8.2.5)

s.t.
l∑

i=1

αi = 0 (8.2.6)

is the dual problem of the primal problem (8.2.2)∼(8.2.3).

Theorem 8.2.2 Suppose α∗ = (α∗
1, · · · , α∗

l )
Tis any solution to the dual

problem (8.2.5)∼(8.2.6). Then a solution (w̄, b̄) to the primal problem
(8.2.2)∼(8.2.3) w.r.t. (w, b) can be obtained by

w̄ =

l∑

i=1

α∗
iΦ(xi), (8.2.7)

b̄ = yi −
α∗
i

C
−

l∑

j=1

α∗
jK(xj , xi). (8.2.8)

Now we can establish the following algorithm according to above theorems.

Algorithm 8.2.3 (Least squares support vector regression, LSSVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
R, i = 1, · · · , l;
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(2) Choose an appropriate kernel function K(x, x′) and a penalty parameter
C > 0;

(3) Construct and solve the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

αiαj

(
K(xi, xj) +

δij
C

)
−

l∑

i=1

αiyi , (8.2.9)

s.t.

l∑

i=1

αi = 0 (8.2.10)

obtaining a solution α∗ = (α∗
1, · · · , α∗

l )
T;

(4) Compute b̄: Choose a subscript i(1 6 i 6 l), then compute

b̄ = yi −
α∗
i

C
−

l∑

j=1

α∗
jK(xj , xi) ; (8.2.11)

(5) Construct the decision function

g(x) =

l∑

i=1

α∗
iK(xi, x) + b̄. (8.2.12)

Remark 8.2.4 There are two important differences between the above algo-
rithm and Algorithm 4.3.6 (ε-SVR):

(i) In ε-SVR, the decision function is decided only by the training points corre-
sponding to support vectors and is unrelated to the training points correspond-
ing to non-support vectors. However, in LSSVR, almost all of the training
points contribute to the decision function. This leads to the fact that the solu-
tion of LSSVR loses the sparseness.

(ii) ε-SVR needs to solve a quadratic programming with inequality constraints.
However, LSSVR needs to solve a quadratic programming with only equality
constraints, or equivalently a linear system of equations. Therefore, it is sim-
pler and faster.

8.2.2 ν-Support vector regression

Compared with C-SVC, ν-SVC discussed in Section 8.1.5 proposes a pa-
rameter ν of the significance to replace the penalty parameter C. We can
deal with ε-SVR in the similar way. ε-SVR is modified as the equivalent ν-
support vector regression (ν-SVR) [88], where the parameter ε is replaced by
a meaningful parameter ν.
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8.2.2.1 ν-Support vector regression

Introducing the transformation x = Φ(x) and the corresponding kernel
K(x, x′) = (Φ(x) · Φ(x′)), the primal problem of ν-SVR is

min
w,b,ξ(∗),ε

1

2
‖w‖2 + C ·

(
νε+

1

l

l∑

i=1

(ξi + ξ∗i )

)
, (8.2.13)

s.t. ((w · Φ(xi)) + b)− yi 6 ε+ ξi , i = 1, · · · , l , (8.2.14)

yi − ((w · Φ(xi)) + b) 6 ε+ ξ∗i , i = 1, · · · , l , (8.2.15)

ξ
(∗)
i > 0 , i = 1, · · · , l , ε > 0 , (8.2.16)

where ξ(∗)=(ξ1, ξ
∗
1 , · · · , ξl, ξ∗l )T. Note that ε is a variable and its value is de-

cided by the solution to the above problem. This is different than the primal
problem (4.1.45)∼(4.1.48) of ε-SVR, where ε is a prespecified parameter.

Theorem 8.2.5 Optimization problem

max
α(∗)

−1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi, xj) +

l∑

i=1

(α∗
i − αi)yi ,

(8.2.17)

s.t.

l∑

i=1

(αi − α∗
i ) = 0 , (8.2.18)

0 6 α
(∗)
i 6 C/l , i = 1, · · · , l , (8.2.19)

l∑

i=1

(αi + α∗
i ) 6 Cν (8.2.20)

is the dual problem of the primal problem (8.2.13)∼(8.2.16).

Theorem 8.2.6 Suppose that ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T is any solution to

the dual problem (8.2.17)∼(8.2.20). If there exist two components of ᾱ(∗), ᾱj
and ᾱ∗

k, such that ᾱj ∈ (0, C/l) and ᾱ∗
k ∈ (0, C/l), then a solution (w̄, b̄) to

the primal problem (8.2.13)∼(8.2.16) w.r.t. (w, b) can be obtained by

w̄ =

l∑

i=1

(ᾱ∗
i − ᾱi)Φ(xi), (8.2.21)

b̄ =
1

2

[
yj + yk −

(
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xj) +

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xk)

)]
.

(8.2.22)

Thus we can establish the following algorithm:
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Algorithm 8.2.7 (ν-support vector regression, ν-SVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
R, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and two parameters C > 0
and ν ∈ (0, 1];

(3) Construct and solve the convex quadratic programming

min
α(∗)

1

2

l∑

i,j=1

(α∗
i − αi)(α

∗
j − αj)K(xi, xj)−

l∑

i=1

(α∗
i − αi)yi ,(8.2.23)

s.t.

l∑

i=1

(αi − α∗
i ) = 0 , (8.2.24)

0 6 α
(∗)
i 6 C/l , i = 1, · · · , l , (8.2.25)

l∑

i=1

(αi + α∗
i ) 6 Cν (8.2.26)

obtaining the solution ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Compute b̄: Choose two components of ᾱ(∗), ᾱj ∈ (0, C/l) and ᾱ∗
k ∈

(0, C/l), and compute

b̄ =
1

2

[
yj + yk −

(
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xj) +

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xk)

)]
;

(8.2.27)

(5) Construct the decision function

g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄ . (8.2.28)

Remark 8.2.8 A solution ε̄ to the primal problem (8.2.13)∼(8.2.16) w.r.t. ε
can be obtained by

ε̄ =

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xj) + b̄− yj , (8.2.29)

or

ε̄ = yk −
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, xk)− b̄ , (8.2.30)

where the indexes j and k are the same as the ones in (8.2.27).
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8.2.2.2 Relationship between ν-SVR and ε-SVR

There are two parameters ε and C in ε-SVR, while there are two param-
eters ν and C in ν-SVR. Roughly speaking, the relationship between ν-SVR
and ε-SVR is as follows: The decision functions obtained by two methods are
identical if the values of parameter C are same, and the parameter ε has a re-
lationship with the parameter ν. For a detailed discussion, we refer the reader
to [42].

8.2.2.3 The significance of the parameter ν

The significance of the parameter ν is concerned with “support vec-
tor” and “training point classified incorrectly”. Suppose that ᾱ(∗) =
(ᾱ1, ᾱ

∗
1, · · · , ᾱl, ᾱ∗

l )
T is the solution to the dual problem (8.2.17)∼(8.2.20) ob-

tained using Algorithm 8.2.7. The input xi associated with the training point
(xi, yi) is still called a support vector if the corresponding component ᾱi or
ᾱ∗
i , of α

(∗) is nonzero. The definition of training point classified incorrectly is
given below.

Definition 8.2.9 (Training point classified incorrectly) Suppose that ᾱ(∗) is
the solution to the dual problem (8.2.17)∼(8.2.20), and the corresponding so-
lution to the primal problem (8.2.13)∼(8.2.16) is (w̄, b̄, ε̄, ξ̄(∗)) = (·, ·, ε̄, ·).
The training point (xi, yi) is called a training point classified incorrectly if the
decision function g(x) obtained by Algorithm 8.2.7 satisfies

|g(xi)− yi| > ε̄. (8.2.31)

The significance of ν is shown by the following theorem.

Theorem 8.2.10 Suppose that Algorithm 8.2.7(ν-SVR) is performed on the
training set (8.2.1), and the value of ε̄ is also computed by (8.2.29) or (8.2.30).
If ν is nonzero, then

(i) Denoting the number of the training points classified incorrectly as q, we
have ν > q/l, i.e. ν is an upper bound on the fraction of the training points
classified incorrectly;

(ii) Denoting the number of the support vectors as p, we have ν 6 p/l, i.e. ν
is a lower bound on the fraction of the support vectors.

In addition, it can be shown under certain conditions that, with probability
1, both the fraction of the training points classified incorrectly and the fraction
of the support vectors approach to ν when the number l of the training points
tends to infinity.

8.2.2.4 Linear programming support vector regression (LPSVR)

In the above support vector regressions, quadratic programming problem
need to be solved. However, it is also possible to formulate regression problems
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in linear programming, replacing the quadratic objective function by a linear
function.

Remember the regression machine based on nonlinear classification dis-
cussed in Section 4.1.3. The relationship between the primal problem
(4.1.45)∼(4.1.48) and the dual problem (4.1.59)∼(4.1.61) is as follows: Sup-
pose that ᾱ(∗) = (ᾱ1, ᾱ

∗
1, · · · , ᾱl, ᾱ∗

l )
T is the solution to the latter, then the

solution to the former w.r.t. w can be obtained:

w̄ =

l∑

i=1

(ᾱ∗
i − ᾱi)Φ(xi). (8.2.32)

Based on the above results, we modify the objective function in the pri-

mal problem, replacing the term
1

2
‖w‖22 with l2-norm by the term ‖α(∗)‖ =

l∑

i=1

(|αi|+ |α∗
i |) with l1-norm. Note that the constraints of (4.1.59)∼(4.1.61)

αi, α
∗
i > 0, i = 1, · · · , l , (8.2.33)

so the above term with l1-norm is equivalent to

‖α(∗)‖1 =

l∑

i=1

(αi + α∗
i ) . (8.2.34)

Introducing the kernel K(x, x′) = (Φ(x),Φ(x′)), the linear programming is

min
α(∗),ξ(∗),b

l∑

i=1

(αi + α∗
i ) + C

l∑

i=1

(ξi + ξ∗i ) , (8.2.35)

s.t.

l∑

j=1

(α∗
j − αj)K(xj , xi) + b− yi 6 ε+ ξi , i = 1, · · · , l ,

(8.2.36)

yi −
l∑

j=1

(α∗
j − αj)K(xj , xi)− b 6 ε+ ξ∗i , i = 1, · · · , l ,

(8.2.37)

α
(∗)
i , ξ

(∗)
i > 0 , i = 1, · · · , l . (8.2.38)

After solving the above problem and getting its solution (ᾱ(∗), b̄) w.r.t.
(α(∗), b), the decision function can be constructed as follows:

g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄ . (8.2.39)

Thus we can establish the following algorithm.



Variants and Extensions of Support Vector Machines 231

Algorithm 8.2.11 (Linear programming ε-support vector regression, ε-
LPSVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
R, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and two parameters C > 0
and ε > 0;

(3) Construct and solve the linear programming (8.2.35)∼(8.2.38), obtaining
the solution (ᾱ(∗), b̄) w.r.t. (α(∗), b), where ᾱ(∗) = (ᾱ1, ᾱ

∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Construct the decision function

g(x) =
l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄ . (8.2.40)

ε-SVR can be modified to ν-SVR. The linear programming ε-SVR can also
be modified to linear programming ν-SVR in the similar way. The algorithm
is summarized as follows.

Algorithm 8.2.12 (Linear programming ν-support vector regression, ν-
LPSVR)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}, where xi ∈ Rn, yi ∈
R, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and two parameters C > 0
and ν ∈ (0, 1];

(3) Construct and solve the linear programming

min
α(∗),ξ(∗),ε,b

1

l

l∑

i=1

(αi + α∗
i ) +

C

l

l∑

i=1

(ξi + ξ∗i ) + Cνε , (8.2.41)

s.t.

l∑

j=1

(α∗
j − αj)K(xj , xi) + b− yi 6 ε+ ξi , i = 1, · · · , l , (8.2.42)

yi −
l∑

j=1

(α∗
j − αi)K(xj , xi)− b 6 ε+ ξ∗i , i = 1, · · · , l , (8.2.43)

α
(∗)
i , ξ

(∗)
i , i = 1, · · · , l , ε > 0 , (8.2.44)

obtaining the solution (ᾱ(∗), b̄) w.r.t. (α(∗), b), where ᾱ(∗) = (ᾱ1, ᾱ
∗
1, · · · , ᾱl, ᾱ∗

l )
T;

(4) Construct the decision function

g(x) =

l∑

i=1

(ᾱ∗
i − ᾱi)K(xi, x) + b̄ . (8.2.45)
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8.3 Multiclass Classification

A natural extension of the binary classification problem is the multiclass
classification problem, which is formulated mathematically as follows.

Multiclass classification problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.1)

where xi ∈ Rn, yi ∈ Y = {1, 2, · · · ,M}, i = 1, · · · , l. Find a decision function
f(x) in Rn, such that the class number y for any x can be predicted by
y = f(x).

Thus it can be seen that solving the above multiclass classification problem
is to find a criterion to separate the Rn space into M regions according to the
training set.

8.3.1 Approaches based on binary classifiers

Multiclass classification problems are typically solved using voting scheme
methods based on combining many binary classification decision functions.
Different collection of binary classification problems leads to different ap-
proach, see [76].

8.3.1.1 One versus one

Consider the multiclass classification problem with the training set (8.3.1).
For each pair (i, j) ∈ {(i, j)|i < j , i, j = 1, · · · ,M}, construct a binary
classification problem to separate the i-th class from the j-th class, resulting
a function gi−j(x) and the corresponding decision function

f i−j(x) =

{
i, gi−j(x) > 0 ;
j, otherwise.

(8.3.2)

There are M(M − 1)/2 decision functions for different i, j. These decision
functions are used to predict the class label y for any input x according to
which of the classes gets the highest number of votes; a vote for a given class
is defined as a decision function putting the input x into the class. Note that
when there are two or more than two classes with the same number of votes,
the input x is unclassified in this approach.

8.3.1.2 One versus the rest

For a multiclass classification problem with training set (8.3.1), “one versus
the rest” is another way to construct the set of binary classification problems.
The set consists of M binary problems. The j-th one separates the j-th class
from the rest, yielding the decision function f j(x) = sgn(gj(x)), j = 1, · · · ,M .
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The next step is doing multiclass classification according to g1(x), · · · , gM (x).
Obviously, if these decision functions are exactly correct, for any input x there
exists a unique value gJ(x) > 0 among theM values g1(x), · · · , gM (x) and the
input x can be predicted in class J . However, due to the errors in these decision
functions, it may happen that none are positive or there is more than one that
is positive. In order to deal with these cases, the input x should be predicted
in class J , where J is the superscript of the largest among g1(x), · · · , gM (x).
This leads to the following algorithm.

Algorithm 8.3.1 (One versus the rest classification)

(1) Input the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.3)

where xi ∈ Rn, yi ∈ Y = {1, · · · ,M}, i = 1, · · · , l;
(2) For j = 1, · · · ,M , construct the training set of the j-th binary problem
with the training set

T j = {(x1, yj1), · · · , (xl, yjl )}, (8.3.4)

where

yji =

{
1, if yi = j;
0, otherwise.

(8.3.5)

Find the corresponding decision function

f j(x) = sgn(gj(x)); (8.3.6)

(3) Construct the decision function

f(x) = argmaxj=1,··· ,Mg
j(x). (8.3.7)

A puzzle appears when the two largest gj(x) are equal. In fact, the difference
between the two largest gj(x) can be considered as a measure of confidence
in the classification of x; it would not be reliable to give any prediction when
the difference is very small. So a reasonable remedy is to assign an input x a
class when this difference is larger than a threshold otherwise refuse to give
any prediction.

Note that a difficulty in the above algorithm may come from the fact that
the datasets in the binary classification problems are imbalanced. For example,
for the ten-class digit recognition problem, we need to solve binary classifica-
tion problems which separate one digit (positive class) from the rest (negative
class), thus positive class would be the minority class and the negative class
would be majority class. The characteristic of class imbalance often leads
to unsatisfactory results from the standard SVC. A simple remedy to tackle
the imbalance problem is to select different penalty parameters for different
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classes; larger penalty for minority class and smaller penalty for majority class.
Thus the primal problem becomes

min
w,b,ξ

1

2

∥∥w
∥∥2 +

l∑

i=1

Ciξi , (8.3.8)

s.t. yi((w · Φ(xi)) + b) > 1− ξi , i = 1, · · · , l , (8.3.9)

ξi > 0 , i = 1, · · · , l, (8.3.10)

where Ci is selected according to the above principle. The corresponding dual
problem is

max
α

−1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj) +

l∑

j=1

αj , (8.3.11)

s.t.

l∑

i=1

yiαi = 0 , (8.3.12)

0 6 αi 6 Ci , i = 1, · · · , l . (8.3.13)

For more efficient approaches for the imbalance problem, see Section 6.2.5.

8.3.1.3 Error-correcting output coding

For anM -class classification problem, the above “one versus one” and “one
versus the rest” construct and use M(M − 1)/2 and M binary classification
problems respectively. Obviously, many more binary classification problems
can be considered. For example, include the class 1 and 2 in the positive class,
and include the rest M − 2 classes in the negative class, or include the classes
with odd label in the positive class and include the classes with even label
in the negative class. In most applications, the binary classification problems
have been chosen to be meaningful. For example, consider the ten-class digit
recognition problem. The first positive and negative class can be obtained by
examining whether the digit contains vertical line (vl); the digit containing
a vertical line is included in positive class. Thus the second column in Table
8.3.1 is obtained. The other five columns are obtained by examining if the
digit contains horizontal line (hl), diagonal line (dl), close curve (cc), curve
open to left (ol), and curve open to right (or). The 10× 6 binary numbers in

the right lower part form a 10× 6 matrix, called code matrix[48]. This matrix
can be used to construct 6 binary classification problems and predict the class
label for any input x by the corresponding 6 decision functions.

The above example can be extended to the general M -class classification
problem. Suppose the number of the binary classification problem is L; then
we will have a M × L code matrix S = (sij)M×L, where sij , the element in
the i-th row and the j-th column, is defined as follows: sij = 1 if the class i is
included in positive class of the j-th binary classification problem; sij = −1
otherwise.



Variants and Extensions of Support Vector Machines 235

TABLE 8.1: Binary classification problems in ten-class digit
recognition.

class vl hl dl cc ol or
0 −1 −1 −1 1 −1 −1
1 1 −1 −1 −1 −1 −1
2 −1 1 1 −1 1 −1
3 −1 −1 −1 −1 1 −1
4 1 1 −1 −1 −1 1
5 1 1 −1 −1 1 −1
6 −1 −1 1 1 −1 1
7 −1 1 1 −1 1 −1
8 −1 −1 1 1 −1 −1
9 −1 −1 1 1 1 −1

Once the code matrix S is constructed, we need to solve the L bi-
nary classification problems and find the corresponding decision functions
f j(j = 1, · · · , L). In order to predict the label for an input x, compute the

L-dimensional row vector f̂(x) = (f1(x), · · · , fL(x)) and compare it to each
of the rows in the code matrix S. It is not difficult to imagine that there
should exist one and only one row in S which is identical to the vector f̂(x)
if the code matrix is suitable and the decision functions f j(j = 1, · · · , L) are
correct exactly, and the input x should be assigned to the class corresponding
to that row in S. Generally, due to the possible computational error, the in-
put x should be assigned to the class corresponding to the row in S which is
closest to the vector f̂(x). In order to measure the proximity between two row
vectors u = (u1, · · · , uL) and v = (v1, · · · , vL) with components 1 and −1, we
can use Hamming distance d(u, v) defined by

d(u, v) = |{i|ui 6= vi}|, (8.3.14)

where | · | stands for the number of elements in the set.
For a practical problem, constructing a suitable code matrix is a technical

job. However, whenM is small, e.g when 3 6M 6 7, we can use the exhaustive
coding scheme by introducing all of the possible binary classification problems
with L = 2M−1−1. TheM×(2M−1 − 1) code matrix is constructed as follows.
Row 1 is all ones. Row 2 consists of 2M−2 minus ones followed by 2M−2 − 1
ones. In row i, there are alternating runs of 2M−i minus ones and ones. The
code matrix for a four-class problem is given by

S =




1 1 1 1 1 1 1
−1 −1 −1 −1 1 1 1
−1 −1 1 1 −1 −1 1
−1 1 −1 1 −1 1 −1


 . (8.3.15)

The algorithm using code matrix is given as follows.

Algorithm 8.3.2 (Error-correcting output coding classification)
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(1) Input the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.16)

where xi ∈ Rn, yi ∈ {1, · · · ,M}, i = 1, · · · , l;
(2) Construct a M × L code matrix S with elements ones or minus ones;

(3) For i = 1, · · · , L, construct the i-th binary classification problem according
to the i-th column of S as follows: Its positive inputs consist of the inputs of
the classes whose corresponding element in the i-th row is one and its negative
inputs consist of the inputs of the classes whose corresponding element in the
i-th row is minus one;

(4) For the above L binary classification problems, find the correspond-
ing decision functions f1(x), · · · , fL(x). Define a L-dimensional row vector

f̂(x) = (f1(x), · · · , fL(x));
(5) Construct the decision function

f(x) = argkmin d(f̂(x), sk), (8.3.17)

where sk is the row vector in the i-th row in the code matrix S and d(·, ·) is
the Hamming distance given by (8.3.14).

The name “error-correcting output coding” of the above algorithm comes
from the fact that it may be able to recover from errors. Consider the case
where the exhaustive code matrix S given by (8.3.15) is used. It is easy to see
that Hamming distance between any pair of the rows in S is 4. This implies
that the final prediction is still correct even if a single component error in the
row vector f̂(x) = (f1(x), · · · , f7(x)). Generally speaking, if the minimum
Hamming distance between any pair of the rows is d in S, then the algorithm

can correct at least [
d− 1

2
] single component errors, where [·] is the integer

part. Note that “the one versus the rest” strategy does not have the ability
to recover from any error. In fact, for a four-class problem, the code matrix is

S =




1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1


 (8.3.18)

and the Hamming distance between any pair of the rows in S is d = 2, resulting

[
d− 1

2
] = 0.

8.3.2 Approach based on ordinal regression machines

Ordinal regression machine is a method for solving a specialization of the
multiclass classification problem. Here it is emphasized for use in the con-
text of solving general multiclass classification problems although it has many

applications itself[72].
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8.3.2.1 Ordinal regression machine

(1) Ordinal regression problem
Ordinal regression problem is a special multiclass classification problem

when there exists an ordering among the inputs in Rn. More precisely, for the
problem withM classes, the inputs in class j adjoin only to the inputs in class
j−1 and class j+1, not to any others, j = 2, · · · ,M −1. In fact, what we are
considering is the following more particular case: Suppose that the inputs in
M classes can be or almost can be separated by M −1 parallel hyperplanes in
Rn; a geometric interpretation in R2 is given in Figure 8.4, where “◦”, “�”,
“•”, “�” and “+” stand for the inputs in different classes.

FIGURE 8.4: An ordinal regression problem in R2.

Essentially, the training set of the ordinal regression problem can be rep-
resented in the form (8.3.1) of the general multiclass classification problem;
however, for convenience, it is formulated as

T = {xji}
j=1,··· ,M
i=1,··· ,lj , (8.3.19)

where xji is an input of a training point, the superscript j = 1, · · · ,M denotes
the corresponding class number, i = 1, · · · , lj is the index within each class,
and lj is the number of the training points in class j.

Now let us formulate an ordinal regression problem mathematically as
follows.

Ordinal regression problem: Given a training set shown by (8.3.19),
find M − 1 parallel hyperplanes in Rn

(w · x)− br = 0, r = 1, · · · ,M − 1, (8.3.20)

where w ∈ Rn, b1 6 b2 6 · · · 6 bM−1, b0 = −∞, bM = +∞, such that the
class number for any x can be predicted by

f(x) = arg min
r=1,··· ,M

{(w · x)− br}. (8.3.21)
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It can be seen that the above M − 1 hyperplanes (8.3.20) separate the Rn

space into M ranked regions. The decision function (8.3.21) assigns the class
number r to the input x in the r-th region.

(2) Ordinal regression machine
Similar to the binary classification, we first consider the problem with

a training set where the inputs in different classes can be separated by the
parallel hyperplanes correctly, e.g. the problem shown in Figure 8.4. As an
extension of the principle of maximal margin in binary classification problem,
the margin to be maximized is associated with the two closest neighbor classes.
This leads to the primal problem

min
w,b

1

2
‖w‖2, (8.3.22)

s.t. (w · xji )− bj 6 −1, j = 1, · · · ,M, i = 1, · · · , lj, (8.3.23)

(w · xji )− bj−1 > 1, j = 1, · · · ,M, i = 1, · · · , lj , (8.3.24)

where b = (b1, · · · , bM−1)
T, b0 = −∞, bM = +∞.

For general training set, we should introduce slack variables ξ(∗) =
(ξ11 , · · · , ξ1l1 , · · · , ξM1 , · · · , ξMlM , ξ∗11 , · · · , ξ∗1l1 , · · · , ξ∗M1 , · · · , ξ∗MlM )T and a penalty
parameter C > 0, thus the primal problem becomes

min
w,b,ξ(∗)

1

2
‖w‖2 + C

M∑

j=1

lj∑

i=1

(ξji + ξ∗ji ), (8.3.25)

s.t. (w · xji )− bj 6 −1 + ξji , j = 1, · · · ,M, i = 1, · · · , lj, (8.3.26)
(w · xji )− bj−1 > 1− ξ∗ji , j = 1, · · · ,M, i = 1, · · · , lj,

(8.3.27)

ξji > 0, ξ∗ji > 0, j = 1, · · · ,M, i = 1, · · · , lj , (8.3.28)

where b = (b1, · · · , bM−1)
T, b0 = −∞, bM = +∞.

The dual problem of the above problem can be obtained by introducing
Lagrange function

L(w, b, ξ(∗), α(∗), η(∗))=
1

2
‖w‖2 + C

M∑

j=1

lj∑

i=1

(ξji + ξ∗ji )

+
∑

j,i

αji ((w · xji )− bj + 1− ξji )

−
∑

j,i

α∗j
i ((w · xji )− bj−1 − 1 + ξ∗ji )

−
∑

j,i

ηji ξ
j
i −

∑

j,i

η∗ji ξ
∗j
i , (8.3.29)

where α(∗) = (α1
1, · · · , α1

l1 , · · ·, αM1 , · · ·, αMlM , α∗1
1 , · · · , α∗1

l1 , · · · , α∗M
1 , · · · ,
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α∗M
lM )T, η(∗) = (η11 , · · · , η1l1 , · · ·, ηM1 , · · ·, ηMlM , η∗11 , · · · , η∗1l1 , · · · , η∗M1 , · · · ,
η∗MlM )T.

Theorem 8.3.3 Convex quadratic programming

min
α(∗)

1

2

∑

j,i

∑

j′,i′

(α∗j
i − αji )(α

∗j′

i′ − αj
′

i′ )(x
j
i · x

j′

i′ )−
∑

j,i

(αji + α∗j
i ),

(8.3.30)

s.t.
lj∑

i=1

αji =
lj+1∑

i=1

α∗j+1
i , j = 1, · · · ,M − 1, (8.3.31)

0 6 αji , α
∗j
i 6 C, j = 1, · · · ,M, i = 1, · · · , lj, (8.3.32)

α∗1
i = 0, i = 1, · · · , l1, (8.3.33)

αMi = 0, i = 1, · · · , lM (8.3.34)

is the dual problem of the primal problem (8.3.25)∼(8.3.28).

As expected, the solution to the primal problem (8.3.25)∼(8.3.28) can be
obtained by solving the dual problem (8.3.30)∼(8.3.34), and the following
algorithm is therefore established.

Algorithm 8.3.4 (Ordinal regression machine)

(1) Input the training set

T = {xji}
j=1,··· ,M
i=1,··· ,lj , (8.3.35)

where xji is an input of a training point, the supscript j = 1, · · · ,M denotes
the corresponding class number, i = 1, · · · , lj is the index within each class,
and lj is the number of the training points in class j;

(2) Choose an appropriate penalty parameter C > 0, construct and solve the
convex quadratic programming (8.3.30)∼(8.3.34), obtaining a solution ᾱ(∗) =
(ᾱ1

1, · · · , ᾱ1
l1 , · · · , ᾱM1 , · · · , ᾱMlM , ᾱ∗1

1 , · · · , ᾱ∗1
l1 , · · · , ᾱ∗M

1 , · · · , ᾱ∗M
lM )T;

(3) Compute

g0(x) =

M∑

j=1

lj∑

i=1

(ᾱ∗j
i − ᾱji )(x

j
i · x); (8.3.36)

(4) For j = 1, · · · ,M − 1:
(4.1) If there exists a component of ᾱ(∗), ᾱji ∈ (0, C), compute

b̄j = 1 +

M∑

j′=1

lj
′

∑

i′=1

(ᾱ∗j′

i′ − ᾱj
′

i′ )(x
j′

i′ · x
j
i ). (8.3.37)
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(4.2) If there exists a component of ᾱ(∗), ᾱ∗j+1
i ∈ (0, C), compute

b̄j =

M∑

j′=1

lj
′

∑

i′=1

(ᾱ∗j′

i′ − ᾱj
′

i′ )(x
j′

i′ · x
j+1
i )− 1. (8.3.38)

(4.3) Compute

b̄j =
1

2
(bdnj + bupj ), (8.3.39)

where

bdnj =max{max
i∈Ij1

(g(xji ) + 1),max
i∈Ij4

(g(xj+1
i )− 1)}, (8.3.40)

bupj =min{min
i∈Ij3

(g(xji ) + 1),min
i∈Ij2

(g(xj+1
i )− 1)}, (8.3.41)

with

Ij1 = {i ∈ {1, · · · , lj}|ᾱji = 0}, Ij2 = {i ∈ {1, · · · , lj+1}|ᾱ∗j+1
i = 0},

Ij3 = {i ∈ {1, · · · , lj}|ᾱji = C}, Ij4 = {i ∈ {1, · · · , lj+1}|ᾱ∗j+1
i = C};

(5) If there exists b̄j 6 b̄j−1, stop (Algorithm fails), or go to step (2) to try
again;

(6) Construct the decision function

f(x) = min
r∈{1,··· ,M}

{r : g0(x) − b̄r < 0}, (8.3.42)

where b̄M = +∞.

Obviously, ordinal regression machine reduces to the standard C-SVC
when the class number M = 2. For further information on ordinal regres-
sion machines, consult the literature [2, 30, 31, 72, 71, 74, 133].

8.3.2.2 Approach based on ordinal regression machines

Now we are in a position to show how to use ordinal regression machine
to solve multiclass classification problem.

(1) Ordinal regression machine with kernel
Note that the ordinal regression problem is a special multiclass classifi-

cation problem where there exists an ordering among the inputs. Therefore,
it may not be suitable to use ordinal regression machine directly for solving
a general multiclass classification problem due to the lack of ordering. How-
ever, if the inputs in the training set are transformed into a space with high
dimension, the probability of having an ordering would be increased. Let us
explain this fact by an intuitive example. Consider a one-dimensional three-
class classification problem with a training set given in Figure 8.5(a), where
“◦”, “�”, and “∗” represent the inputs of training points in class 1, class 2,
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and class 3 respectively. It is easy to see that the ordering condition in ordinal
regression problem is not satisfied since the input “�” (in class 2) does not
adjoin the input “◦” (in class 1). However, if the three inputs in R are trans-
formed into R2 by a suitable transformation, e.g. x = ([x]1, [x]2) = (x, x2)T,
the three inputs in R2 would satisfy the ordering condition, see Figure 8.5(b).
Therefore, it can be expected that ordinal regression machine can be modified
to solve general multiclass classification problem if a suitable transformation
Φ(x) and the corresponding kernel K(x, x′) = (Φ(x) · Φ(x′)) is introduced as
the following algorithm does.

FIGURE 8.5: An ordinal regression problem.

Algorithm 8.3.5 (Kernel ordinal regression machine) The same with Algo-
rithm 8.3.4 (Ordinal regression machine) except the inner project (x·x′) in the
x-space is replaced by the kernel function K(x, x′), where K(x, x′) is chosen
by the user.

(2) The approach based on ordinal regression machines
For solving a general multiclass classification problem, the performance

of the above kernel regression machine can be improved if it is used several
times instead of only once. Remind the approach based on binary classifiers
in Section 8.3.1, where the binary classifiers are used many times as a basic
classifier. Similarly, the kernel ordinal regression machine can also be used as
a basic classifier. Obviously there are many choices since any p-class kernel
ordinal regression machine with different order can be a candidate, where
p = 2, 3, · · · ,M . When p = 2, this approach reduces to the approach based
on binary classifiers.

Next, for simplicity, we only describe the strategy with p = 3 (based on
3-class kernel ordinal regression machines) restricting to the counterpart cor-

responding to “one versus the rest” — “one versus one versus the rest”[5, 179].
For a generalM -class classification problem with the training set (8.3.1), there
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are M(M − 1)/2 training sets:

T̃ (s1, t1), · · · , T̃ (sM(M−1)/2, tM(M−1)/2), (8.3.43)

where sm, tm ∈ {1, · · · ,M}, (sm, tm) means taking class sm and class tm as
the first class and the third class respectively, and taking the rest as the second
class, and

T̃m = T̃ (sm, tm), (8.3.44)

is the corresponding training set. For each training set (8.3.44), the 3-class
kernel ordinal regression machine yields a decision function fsm,tm(x). So there
areM(M −1)/2 decision functions. The final decision function to theM -class
classification problem can be obtained from these decision functions as shown
in the following algorithm.

Algorithm 8.3.6 (Multiclass classification based on 3-class kernel ordinal
regression machines)

(1) Input the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.45)

where xi ∈ Rn, yi ∈ Y = {1, 2, · · · ,M}, i = 1, · · · , l;
(2) Construct a set P containing M(M − 1)/2 pairs of the class labels

P ={(s1, t1), · · ·, (sM(M−1)/2, tM(M−1)/2)}={(s, t)|s<t; s, t ∈ {1, · · · ,M}},
(8.3.46)

set m = 1;

(3) Construct the training set (8.3.44) from the training set (8.3.45) and
rewrite the training set in the form (8.3.19)

T̃ = {x̃ji}
j=1,2,3
i=1,··· ,lj , (8.3.47)

where

{x̃1i , i = 1, · · · , l1} = {xi|yi = s},
{x̃2i , i = 1, · · · , l2} = {xi|yi ∈ Y\{s, t}},
{x̃3i , i = 1, · · · , l3} = {xi|yi = t};

(4) For the training set (8.3.47), execute Algorithm 8.3.5 with M = 3 and
obtain a decision function fsm,tm(x);

(5) If m 6=M(M − 1)/2, set m = m+ 1, go to step (2);

(6) The decision functions fsm,tm(x),m = 1, · · · ,M(M − 1)/2, are used to
predict the class label ȳ for any input x̄ according to which of the classes gets
the highest number of votes; a vote for class sm is defined as fsm,tm(x)(x̄) =
1, a vote for class tm is defined as fsm,tm(x̄) = 3, and a negative vote for
class sm and a negative vote for class tm are defined as fsm,tm(x̄) = 2,m =
1, · · · ,M(M − 1)/2.
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8.3.3 Crammer-Singer multiclass support vector classifica-
tion

8.3.3.1 Basic idea

Unlike previous approaches which decompose a multiclass problem into
multiple independent classification tasks, Crammer-Singer method is an all-
at-once support vector classification, see [37, 38]. For a M -class classifica-
tion problem with the training set (8.3.1), its basic idea is to find M vectors
w1, · · · , wM , and establish the decision function in the form

f(x) = argmax
r=1,···,M

(wr · x). (8.3.48)

Here the value of the inner product of wr with the input x is interchangeably
considered as the similarity score for the class r. Therefore the predicted label
is the subscript of wr attaining the highest similarity score with x. Geomet-
rically speaking, the decision function separates the Rn space into M regions
by C2

M =M(M − 1)/2 hyperplanes passing through the origin

(wi · x) = (wj · x), i, j = 1, · · · ,M, (8.3.49)

where the r-th region is an unbounded polyhedron defined by

(wr · x) > (wj · x), j ∈ {1, · · · ,M} \ {r}. (8.3.50)

The label for an input x will be assigned to class r if it falls into the r-th
region. So the key point is to find M vectors w1, · · · , wM .

8.3.3.2 Primal problem

For simplicity, let us start from a 3-class classification problem in the R2

space with the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.51)

where xi ∈ R2, yi ∈ {1, 2, 3}, i = 1, · · · , li. Now we should find three vectors
w1, w2, and w3 and the corresponding three regions according to the principle
of maximal margin, see Figure 8.6(a), where the first region corresponding
to w1 is the shaded part. Similar to the discussion for the linearly separable
binary problems in Section 2.2.2, we know that for the linearly separable case
there exist the vectors w1, w2, and w3 such that

(wyi · xi)− (wr · xi) > 1, ∀r ∈ {1, 2, 3} \ {yi}, (8.3.52)

or

(wyi · xi)− (wr · xi) > 1− δyir, i = 1, · · · , l; r = 1, 2, 3, (8.3.53)

where

δjk =

{
1, j = k;
0, otherwise,

(8.3.54)
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(a) The geometric interpretation (b) The three margins
of the decision function

FIGURE 8.6: Crammer-Singer method for a linearly separable three-class
problem in R2.

These inequalities imply that the inputs of the training points fall into the
corresponding region respectively; for example the input xi with yi = 1 falls
into the shaded region in Figure 8.6(b). Note that there exist three margins,
margin d12, d23, d31 between class 1 and class 2, class 2 and class 3, as well as
class 3 and class 1. Margin d12 is the distance between the straight line

(w1 · x)− (w2 · x) = 1 or ((w1 − w2) · x) = 1 (8.3.55)

and the straight line

(w2 · x)− (w1 · x) = 1 or ((w1 − w2) · x) = −1. (8.3.56)

It is not difficult to see that d12 = 2/‖w1 − w2‖. Similarly, we have d23 =
2/‖w2 − w3‖ and d31 = 2/‖w3 − w1‖. Accordingly, the total margin can be
measured by

D = ‖w1 − w2‖2 + ‖w2 − w3‖2 + ‖w3 − w1‖2 =
∑

r<s63

‖wr − ws‖2. (8.3.57)

Thus using (8.3.57) and (8.3.53), the principle of maximal margin leads to the
primal problem

min
w1,w2,w3

∑

r<s63

‖wr − ws‖2, (8.3.58)

s.t. (wyi · xi)− (wr · xi) > 1− δyir, i = 1, · · · , l; r = 1, 2, 3. (8.3.59)

It is easy to imagine that the above results for linearly separable three-
class classification problem can be extended to general M -class classification
problem by introducing slack variables and the total margin

D =
∑

r<s6M

‖wr − ws‖2, (8.3.60)
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and constructing the optimization problem

min
w1,··· ,wM ,ξ

∑

r<s6M

‖wr − ws‖2 + C̄

l∑

i=1

ξi, (8.3.61)

s.t. (wyi · xi)− (wr · xi) > 1− δyir − ξi,

i = 1, · · · , l; r = 1, · · · ,M, (8.3.62)

where C̄ is a penalty parameter. It can be seen that the constraints ξi > 0, i =
1, · · · , l are included in (8.3.62) when r = yi. Noting that

∑

r<s6M

‖wr − ws‖2 < M

M∑

r=1

‖wr‖2, (8.3.63)

optimization problem (8.3.61)∼(8.3.62) can be simplified approximately by
substituting its first term in the objective function by the upper bound as the
primal problem

min
w1,··· ,wM ,ξ

1

2

M∑

r=1

‖wr‖2 + C

l∑

i=1

ξi, (8.3.64)

s.t. (wyi · xi)− (wr · xi) > 1− δyir − ξi,

i = 1, · · · , l; r = 1, · · · ,M, (8.3.65)

where C is a penalty parameter.

8.3.3.3 Crammer-Singer support vector classification

The solution to the primal problem (8.3.64)∼(8.3.65) can also be obtained
by solving its dual problem. Introducing Lagrange function

L(w1, · · · , wM , ξ, η)=
1

2

M∑

r=1

‖wr‖2 + C

l∑

i=1

ξi

−
l∑

i=1

M∑

r=1

ηir [(wyi · xi)−(wr · xi)− 1+δyir+ξi], (8.3.66)

where η is the Lagrange multiplier matrix

η =




η11 · · · ηl1
...

...
η1M · · · ηlM


 . (8.3.67)

We can obtain the dual problem with variable η. Replacing the variable η by

α =




α1
1 · · · α1

l
...

...
αM1 · · · αMl


 , (8.3.68)
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where
αri = Cδyir − ηir , i = 1, · · · , l; r = 1, · · · ,M, (8.3.69)

the dual problem is written equivalently as the convex quadratic programming

min
α

1

2

l∑

i=1

l∑

j=1

(xi · xj)ᾱT
i ᾱj +

l∑

i=1

ᾱT
i ēi, (8.3.70)

s.t.

M∑

r=1

αri = 0, i = 1, · · ·, l, (8.3.71)

αri 6 0 if yi 6= r; αri 6 C, if yi = r,

i = 1, · · ·, l, r = 1, · · ·,M, (8.3.72)

where

ᾱi = [α1
i , · · ·, αMi ]T, (8.3.73)

ēi = [e1i , · · ·, eMi ]T, eri = 1− δyir, (8.3.74)

α = (ᾱ1, · · · , ᾱl) =




α1
1 · · · α1

l
...

...
αM1 · · · αMl


 . (8.3.75)

Theorem 8.3.7 Suppose that α∗ = (αr∗i )M×l is any solution to problem
(8.3.70)∼(8.3.75). Then a solution to the primal problem (8.3.64)∼(8.3.65)
w.r.t. w1, · · · , wM can be obtained by

wr =

l∑

i=1

αr∗i xi, r = 1, · · · ,M. (8.3.76)

This theorem is easily extended to the case with kernel K(x, x′) = (Φ(x) ·
Φ(x′)), yielding the following algorithm:

Algorithm 8.3.8 (Crammer-Singer multiclass support vector classification)

(1) Input the training set

T = {(x1, y1), · · · , (xl, yl)}, (8.3.77)

where xi ∈ Rn, yi ∈ Y = {1, · · · ,M}, i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x′) and penalty parameter
C > 0;

(3) Construct and solve convex quadratic programming problem (8.3.70)∼
(8.3.75), obtaining a solution

α∗ =




α1∗
1 · · ·α1∗

l
...

...
αM∗
1 · · ·αM∗

l


 ; (8.3.78)



Variants and Extensions of Support Vector Machines 247

(4) Construct the decision function

f(x) = argmax
r=1,···,M

l∑

i=1

αr∗i K(xi, x). (8.3.79)

8.4 Semisupervised Classification

8.4.1 PU classification problem

In the standard binary classification problem, the training set consists of
a collection of positive inputs and a collection of negative inputs. Now let
us consider a different case where the training set consists of a collection of
positive inputs and a collection of unlabeled inputs known to belong to one of
the two classes: PU binary classification problem (P and U stand for “positive”
and “unlabeled” respectively). It is formulated mathematically as follows:

PU classification problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)} ∪ {xl+1, · · · , xl+q}, (8.4.1)

where xi ∈ Rn, yi = 1, i.e. xi is a positive input, i = 1, · · · , l; xi ∈ Rn, i.e. xi is
an unlabeled input known to belong to one of the two classes, i = l+1, · · · , l+q,
find a real function g(x) in Rn such that the output y for any input x can be
predicted by

f(x) = sgn(g(x)). (8.4.2)

Obviously, different from the standard binary classification problem, there
are no labeled negative inputs for training, see [44, 45, 61, 96, 102]. So tradi-
tional support vector classifications are thus not directly applicable because
they all require both labeled positive and labeled negative inputs to build a
classifier.

8.4.2 Biased support vector classification[101]

8.4.2.1 Optimization problem

Let us consider a PU problem in R2 shown in Figure 8.7, where positive in-
puts are represented with “+”s, and unlabeled inputs with “◦”s. First, assume
that the positive inputs in the training set have no error, i.e. all positive inputs
are positive indeed. In order to find the best separating line (w · x) + b = 0,
consider three candidates l1, l2, and l3 in Figure 8.7. Every input on the top
right of each line will be labeled (classified) by the line as positive, and ev-
ery input on the down left will be labeled as negative. Line l1 is clearly not
suitable because it does not separate the positive inputs complete correctly.
Line l3 is poor too because there seems no reason to allow too many unlabeled
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FIGURE 8.7: A PU problem.

inputs labeled as positive. Therefore line l2 should be the optimal, where no
positive input is labeled negative, and the number of unlabeled inputs labeled
as positive is minimized. This intuitive observation leads to the following con-
clusion: minimizing the number of unlabeled inputs classified as positive while
constraining the positive inputs to be correctly classified. This conclusion has
also been shown in [101] from a theoretical point of view when the training
set is large enough. Following the conclusion with maximal margin principle,
we have the following primal optimization problem

min
w,b,ξ

1

2
‖w‖2 + C−

l+q∑

i=l+1

ξi, (8.4.3)

s.t. (w · xi) + b > 1, i = 1, · · · , l, (8.4.4)

−((w · xi) + b) > 1− ξi, i = l + 1, · · · , l+ q, (8.4.5)

ξi > 0, i = l + 1, · · · , l+ q, (8.4.6)

where ξ = (ξl+1, · · · , ξl+q). Note that this formulation is for the noiseless case:
There is no error in the positive inputs. Here we do not allow any mistake in
the positive inputs, which is the first constraint, but some unlabeled inputs
are allowed to be labeled as positive inputs, which is the second constraint.
Clearly, the formulation follows the above conclusion, minimizing the number
of unlabeled inputs classified as positive, exactly due to the second term in
the objective function. The subscript in the second term starts from l + 1,
which is the index of the first unlabeled input.

However, in practice, the positive inputs may also contain some errors.
Thus, if we allow noise (or error) in positive inputs, we have the following soft
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margin version which uses an extra parameter C+

min
w,b,ξ

1

2
‖w‖2 + C+

l∑

i=1

ξi + C−

l+q∑

i=l+l

ξi, (8.4.7)

s.t. yi((w · xi) + b) > 1− ξi, i = 1, · · · , l+ q, (8.4.8)

ξi > 0, i = 1, · · · , l + q, (8.4.9)

where yi = 1, i = 1, · · · , l, yi = −1, i = l + 1, · · · , l + q, ξ = (ξ1, · · · , ξl+q)T.
We can vary C+ and C− to achieve our objective. Intuitively, we give a bigger
value for C+ and a smaller value for C− because the unlabeled set, which is
assumed to be negative, contains positive inputs.

8.4.2.2 The selection of the parameters C+ and C−

When biased support vector classification is implemented in practice, there
exists a difficulty for selecting the parameters C+ and C−. Note that the
common approach is to try a range of values for both C+ and C−. The C+ and
C− values that give the optimal classification results are selected as the final
parameter values of them. The optimality usually depends on an evaluation
measure on a testing set. Unfortunately it is not clear how to estimate the
evaluation measure here. For example, try to calculate the evaluation measure
G-mean

G−mean =
√
rtp · rtn (8.4.10)

introduced by (6.3.10) in Chapter 6. Corresponding the training set (8.4.1),
on the testing set is in the form

T̃ = {(x̃1, ỹ1), · · · , (x̃l̃, ỹl̃)} ∪ {(x̃l̃+1, · · · , x̃l̃+q̃)}, (8.4.11)

where x̃i ∈ Rn, i = 1, · · · , l̃ + q̃, ỹi = 1, i = 1, · · · , l̃. For a decision function
f(x), the values of the true positive rate rtp and the true negative rate rtn
are needed. Note that the former factor rtp can be calculated directly by
considering the positive inputs in the testing set (8.4.11); but the latter one
rtn cannot be obtained directly since there are no labeled negative inputs.
So instead of using G-mean directly, we define a new combined evaluation
measure

rtp · p, (8.4.12)

where the factor rtn in G-mean is replaced by another evaluation measure p
defined by

p =
tp

tp + fp
, (8.4.13)

where tp and fp are respectively the number of true positives and false positives
defined in (6.3.5) in Chapter 6. Obviously, the larger the product rtp · p, the
better. Next we show that starting from this product we are able to obtain a
quantity which can be used to compare different decision functions when the
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testing set is large enough. In fact, when the testing set is large, we can write
rtp and p in terms of probability

rtp ≈ P (f(x) = 1|y = 1), p ≈ P (y = 1|f(x) = 1). (8.4.14)

It is easy to see that

P (y = 1|f(x) = 1) · P (f(x) = 1) = P (f(x) = 1|y = 1) · P (y = 1) (8.4.15)

since both sides of the equality are the probability of the case where f(x) = 1
and y = 1. Using (8.4.14), the above equality can approximately be written
as

p ≈ P (y = 1)
rtp

P (f(x) = 1)
, (8.4.16)

or
rtp · p ≈ P (y = 1) · L, (8.4.17)

where

L =
r2tp

P (f(x) = 1)
. (8.4.18)

Noting that P (y = 1) does not depend on the decision function, the quantity
L can be used to compare the performance of different decisions; the bigger,
the better. On the other hand, the quantity L can be estimated based on the
testing set (8.4.11) which contains both positive and unlabeled inputs since rtp
can be calculated using the positive inputs and P (f(x) = 1) can be estimated
approximately from the whole testing set. Therefore, an estimation of the L
is an evaluation measure in the sense that it can be used to compare the
performance of biased support vector classifications with different parameters
C+ and C− ; the larger the quantity L, the better. So, in this way the optimal
values of the parameters C+ and C− can be selected.

Additionally, it can be seen that the quantity L is large when rtp is large
and Pr(f(x) = 1) is small, which means that the number of unlabeled inputs
labeled as positive should be small. This is also a support to the conclusion
which is used to derive the primal problem of biased support vector classifi-
cation.

The above primal optimization problem is very similar to the one in the
standard support vector classification, and therefore it is easy to derive the
corresponding classification algorithm. The detail is omitted.

8.4.3 Classification problem with labeled and unlabeled in-
puts

Another semisupervised classification problem is formulated mathemati-
cally as follows.

Classification problem with labeled and unlabeled inputs: Given
a training set

T = {(x1, y1), · · · , (xl, yl)}
⋃{xl+1, · · · , xl+q}, (8.4.19)
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where xi ∈ Rn, yi ∈ {−1, 1}, i = 1, · · · , l, xi ∈ Rn, i = l+1, · · · , l+q, and the
set {xl+1, · · · , xl+q} is a collection of unlabeled inputs known to belong to one
of the two classes, predict the outputs yl+1, yl+2, · · · , yl+q for {xl+1, · · · , xl+q}
and find a real function g(x) in Rn such that the output y for any input x
can be predicted by

f(x) = sgn(g(x)). (8.4.20)

Here we have a labeled training set {(x1, y1), · · · , (xl, yl)} as well as an un-
labeled training set {xl+1, · · · , xl+q}. The goal is to combine the information in
these two data sets to produce a more accurate classifier; see [25, 196, 198, 199].

8.4.4 Support vector classification by semidefinite program-
ming

8.4.4.1 Optimization problem

It is obvious that there will be no essential difficulty to get the decision
function if the output vector

y = (yl+1, yl+2, · · · , yl+q)T (8.4.21)

is obtained. So next we investigate how to find this vector. To avoid the
complicated computation, only a clue is provided below.

Suppose that output vector (8.4.21) is given and consider a transforma-
tion x = Φ(x) with the kernel K(x, x′). Corresponding to the primal problem
(8.1.33)∼(8.1.35) and the dual problem (8.1.36)∼(8.1.37), we have the opti-
mization problem

min
w,b,ξ

h1(w, b, ξ) =
1

2
‖w‖2 + 1

2
b2 + C

l+q∑

i=1

ξi, (8.4.22)

s.t. yi((w · Φ(xi)) + b) > 1− ξi, i = 1, · · · , l+ q, (8.4.23)

ξi > 0, i = 1, · · · , l + q, (8.4.24)

and its dual problem

max
α

d1(α, y) =

l+q∑

i=1

αj −
1

2

l+q∑

i=1

l+q∑

j=1

yiyjαiαj(K(xi, xj) + 1),(8.4.25)

s.t. 0 6 αi 6 C, i = 1, · · · , l + q. (8.4.26)

Obviously, both their solutions (w̄, b̄, ξ̄) and ᾱ depend on y

w̄ = w̄(y), b̄ = b̄(y), ξ̄ = ξ̄(y), ᾱ = ᾱ(y). (8.4.27)

By the strong duality theorem mentioned in Section 1.3.3, we have

h1(w̄(y), b̄(y), ξ̄(y)) = d1(ᾱ(y), y). (8.4.28)
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Now we are in a position to establish the optimization problem to find
the output vector y. Noting that solving problem (8.4.22)∼(8.4.24) implies to
select w, b, ξ such that the objective function h1(w, b, ξ) is minimized. Here
the optimal value h1(w̄, b̄, ξ̄) is a function of y

h2(y) = h1(w̄(y), b̄(y), ξ̄(y)). (8.4.29)

Therefore, a natural idea is to select y, such that h2(y) is minimized. This
leads to the optimization problem

min
y

h2(y) = h1(w̄(y), b̄(y), ξ̄(y)), (8.4.30)

s.t. −ε 6
l+q∑

i=1

yi 6 ε, (8.4.31)

where (w̄(y), b̄(y), ξ̄(y)) is a solution to problem (8.4.22)∼(8.4.24) and ε is a
parameter. Looking at (8.4.28), the above problem can be written as

min
y

d2(y) = d1(ᾱ(y), y), (8.4.32)

s.t. −ε 6
l+q∑

i=1

yi 6 ε, (8.4.33)

where d1(·, ·) is given by (8.4.25) and ᾱ(y) is the solution to the problem
(8.4.25)∼(8.4.26). The desired output vector can be obtained by solving the
above optimization problem.

8.4.4.2 Approximate solution via semidefinite programming

In order to solve problem (8.4.32)∼(8.4.33), introduce the matrix

W = ỹỹT, (8.4.34)

where

ỹ = (y1, · · · , yl, yT)T, y = (yl+1, yl+2, · · · , yl+q)T, (8.4.35)

and define

A ◦B=(aij)n×n ◦ (bij)n×n = (aijbij)n×n, (8.4.36)

〈A,B〉= 〈(aij)n×n, (bij)n×n〉 =
∑

ij

aijbij . (8.4.37)

Thus the problem can be written as

min
ỹ,W

max
α

αTe− 1

2
〈(K + eeT) ◦W,ααT〉, (8.4.38)

s.t. 0 6 α 6 Ce, (8.4.39)

−εe 6We 6 εe, (8.4.40)

W − ỹỹT = 0. (8.4.41)
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Relaxing the constraint W − ỹỹT = 0 as

Wij = yiyj, i, j = 1, · · · , l, diag(W ) = e, W � 0, (8.4.42)

the above problem is expressed approximately as

min
W

h4(W ) = h3(W, ᾱ), (8.4.43)

s.t. −εe 6We 6 εe, (8.4.44)

W � 0,Wij = yiyj , i, j = 1, 2, · · · , l, (8.4.45)

diag(W ) = e, (8.4.46)

where

h3(W,α) = αTe − 1

2
〈(K + eeT) ◦W,ααT〉, (8.4.47)

and ᾱ is the solution to

max
α

h3(W,α), (8.4.48)

s.t. 0 6 α 6 Ce. (8.4.49)

The above problem is a min-max problem. In order to change it into a min-min
problem, replace problem (8.4.48)∼(8.4.49) by its dual problem

min
u,v

1

2
(e− u+ v)T((K + eeT) ◦W )†(e − u+ v) + uTCe, (8.4.50)

s.t. u > 0, v > 0, (8.4.51)

where (·)† stands for the Moore-Penrose inverse, and rewrite problem
(8.4.43)∼(8.4.49) as the following min-min problem

min
W

min
u,v

1

2
(e− u+ v)T((K + eeT) ◦W )†(e − u+ v) + uTCe,

(8.4.52)

s.t. −εe 6We 6 εe, (8.4.53)

W � 0, diag(W ) = e,Wij = yiyj, i, j = 1, · · · , l, (8.4.54)

u > 0, v > 0. (8.4.55)

This problem can be further transformed equivalently into a semidefinite pro-
gramming problem

min
W,δ,u,v

1

2
δ, (8.4.56)

s.t.

(
(K + eeT) ◦W (e− u+ v)
(e − u+ v)T δ − 2uTCe

)
� 0, (8.4.57)

−εe 6We 6 εe, (8.4.58)

W � 0, diag(W ) = e,Wij = yiyj , i, j = 1, 2, · · · , l, (8.4.59)
u > 0, v > 0. (8.4.60)
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To get the output vector y from a solution W∗ to the problem
(8.4.56)∼(8.4.60) w.r.t. W , the following conclusion is helpful.

Theorem 8.4.1 Suppose that the matrix W ∗ is a solution to the problem
(8.4.56) ∼(8.4.60), and the rank of W ∗ is one, i.e there exists a vector ỹ∗ =
(ỹ∗1 , · · · , ỹ∗l , ỹ∗l+1, · · · , ỹ∗l+q)T, such that W ∗ = ỹ∗ỹ∗T, then ỹ∗ is the solution
to the problem (8.4.30)∼(8.4.31).

Note that the matrix W ∗ has only one nonzero (positive) eigenvalue if
rank(W ∗)=1. So the above theorem can be understood to get the output
vector y from the eigenvector corresponding to the largest eigenvalue of W ∗.
Extending this rule to the general case even the rank of W ∗ is not 1, the
output vector y = (y∗l+1, · · · , y∗l+q) is reasonably defined by

y∗i = sgn(ν1i), i = l + 1, · · · , l + q, (8.4.61)

where ν1 = (ν11, · · · , ν1l, ν1,l+1, · · · , ν1,l+q)T is the eigenvector corresponding
to the largest eigenvalue.

8.4.4.3 Support vector classification by semidefinite programming

Once the output vector y is defined, the decision function f(x) =

sgn(

l+q∑

i=1

α∗
i yi(K(x, xi) + 1)) can be obtained by considering the prob-

lem as a standard binary classification problem with full outputs
y1, · · · , yl, yl+1, · · · , yl+q, and finding α∗ = (α∗

1, · · · , α∗
l+q) from the dual prob-

lem corresponding to the problem (8.1.36)∼(8.1.37) in bounded support vector
classification. However, in order to reduce the computational error, a better
technique is to find α∗ by solving the problem (8.4.48)∼(8.4.49) where W is
replaced by the solution W ∗ to the problem (8.4.56) ∼(8.4.60) w.r.t W :

α∗ = ((K + eeT) ◦W )†(e − u∗ + v∗). (8.4.62)

Thus we establish the following algorithm.

Algorithm 8.4.2 (Support vector classification by semidefinite program-
ming)

(1) Input the training set T = {(x1, y1), · · · , (xl, yl)}
⋃{xl+1, · · · , xl+q}, where

xi ∈ Rn, i = 1, · · · , l + q, yi ∈ {1,−1},i = 1, · · · , l;
(2) Choose an appropriate kernel function K(x, x

′

) and parameters C > 0
and ε > 0;
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(3) Construct and solve the semidefinite programming problem

min
W,δ,u,v

1

2
δ, (8.4.63)

s.t.

(
(K + eeT) ◦W (e− u+ v)
(e − u+ v)T δ − 2uTCe

)
� 0, (8.4.64)

−εe 6We 6 εe, (8.4.65)

W � 0, diag(W ) = e,Wij = yiyj , i, j = 1, 2, · · · , l, (8.4.66)
u > 0, v > 0, (8.4.67)

obtaining the solution W ∗,u∗,v∗ w.r.t (W,u, v);

(4) Let yi = sgn(ν1i), i = l + 1, · · · , l + q, where ν1 = (ν11, · · · , ν1(l+q))T is
the eigenvector corresponding to the largest eigenvalue of W ∗ ;

(5) Construct the decision function f(x) = sgn

(
l+q∑

i=1

α∗
i yi(K(x, xi) + 1)

)
,

where α∗ = ((K + eeT) ◦W ∗)†(e− u∗ + v∗).

The above algorithm based on bounded support vector classification comes
from [174]. The counterparts based on ν-support vector classification and La-

grange support vector classification are also interesting[190, 191]. In addition,
for multiclass classification problems and robust classification problem, the
corresponding topics have also been investigated, see [24, 173, 174, 189, 192].

8.5 Universum Classification

8.5.1 Universum classification problem

Universum classification problem: Given a training set

T = {(x1, y1), · · · , (xl, yl)}
⋃

{x∗1, · · · , x∗u}, (8.5.1)

where xi ∈ Rn, yi ∈ {−1, 1}, i = 1, · · · , l, x∗j ∈ Rn, j = 1, · · · , u, and the set

U = {x∗1, · · · , x∗u} (8.5.2)

is a collection of unlabeled inputs known not to belong to either class, find a
real function g(x) in Rn such that the value of y for any x can be predicted
by the decision function

f(x) = sgn(g(x)). (8.5.3)

Set (8.5.2) is called the Universum and is expected to represent meaningful
information related to the classification task at hand.
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Training set (8.5.1) is similar to training set (8.4.19) of the semisupervised
classification problem. However there is an important difference: the input xi
in (8.4.19) belongs to one of the two classes concerned, i = l + 1, · · · , l + q,
while x∗j in (8.5.1) does not, j = 1, · · · , u.

8.5.2 Primal problem and dual problem

Introducing the transformation, from Rn to Hilbert space H

Φ :
Rn → H ,
x 7→ x = Φ(x) ,

(8.5.4)

training set (8.5.1) is transformed into

T̃ = {(x1, y1), · · · , (xl, yl)}
⋃

{x∗1, · · · , x∗u}

= {(Φ(x1), y1), · · · , (Φ(xl), yl)}
⋃

{Φ(x∗1), · · · ,Φ(x∗u)} , (8.5.5)

According to [156], the goal is to find a separating hyperplane (w · x) + b = 0
such that, on one hand, it separates the inputs {x1, · · · , xl} with maximal
margin, and on the other hand, it approximates to the inputs {x∗1, · · · , x∗u}.
This leads to the primal problem

min
w,b,ξ,ψ(∗)

1

2
‖w‖22 + Ct

l∑

i=1

ξi + Cu

u∑

s=1

(ψs + ψ∗
s ), (8.5.6)

s.t. yi((w · xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , l, (8.5.7)

−ε− ψ∗
s ≤ (w · x∗s) + b ≤ ε+ ψs, s = 1, · · · , u, (8.5.8)

ψs, ψ
∗
s ≥ 0, s = 1, · · · , u, (8.5.9)

where ψ(∗) = (ψ1, ψ
∗
1 , · · · , ψu, ψ∗

u)
T and Ct, Cu ∈ [0,+∞) and ε ∈ [0,+∞) are

parameters.
Introduce the Lagrange function

L(w, b, ξ, ξ∗, α, µ, ν, γ, γ∗)=
1

2
‖w‖22 + Ct

l∑

i=1

ξi + Cu

u∑

s=1

(ψs + ψ∗
s )

−
l∑

i=1

αi[yi((w · xi) + b)− 1 + ξi]−
l∑

i=1

ηiξi

−
u∑

s=1

νs[ε+ ψs − (w · x∗s)− b]−
u∑

s=1

γsψs

−
u∑

s=1

µs[(w · x∗s) + b+ ε+ ψ∗
s ]−

u∑

s=1

γ∗sψ
∗
s ,(8.5.10)

where α = (α1, · · · , αl)T, µ = (µ1, · · · , µu)T, ν = (ν1, · · · , νu)T, η =
(η1, · · · , ηl)T, γ = (γ1, · · · , γu)T and γ∗ = (γ∗1 , · · · , γ∗u)T are multiplier vec-
tors, the following two theorems can be obtained.
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Theorem 8.5.1 Optimization problem

max
α,µ,ν,η,γ,γ∗

−1

2

l∑

i,j=1

αiαjyiyjK(xi, xj)−
1

2

u∑

s,t=1

(µs − νs)(µt − νt)K(x∗s , x
∗
t )

−
l∑

i=1

u∑

s=1

αiyi(µs − νs)K(xi, x
∗
s) +

l∑

i=1

αi − ε

u∑

s=1

(µs + νs),

(8.5.11)

s.t.
l∑

i=1

yiαi +
u∑

s=1

(µs − νs) = 0, (8.5.12)

Ct − αi − ηi = 0, i = 1, · · · , l , (8.5.13)

Cu − νs − γs = 0, s = 1, · · · , u , (8.5.14)

Cu − µs − γ∗s = 0, s = 1, · · · , u , (8.5.15)

αi ≥ 0, ηi ≥ 0, i = 1, · · · , l , (8.5.16)

νs ≥ 0, γs ≥ 0, s = 1, · · · , u , (8.5.17)

µs ≥ 0, γ∗s ≥ 0, s = 1, · · · , u (8.5.18)

is the dual problem of the primal problem (8.5.6)∼(8.5.9).

Theorem 8.5.2 Suppose α̂ = (α̂1, · · · , α̂l)T, µ̂ = (µ̂1, · · · , µ̂u)T, ν̂ =
(ν̂1, · · · , ν̂u)T is a solution to the dual problem (8.5.11)∼(8.5.18) w.r.t.
(α, µ, ν). If there exists a component α̂j ∈ (0, Ct) of α̂, or a component

µ̂m ∈ (0, Cu) of µ̂, or a component of ν̂t ∈ (0, Cu) of ν̂, then a solution (ŵ, b̂)
to the problem (8.5.6)∼(8.5.9) w.r.t. (w, b) can be obtained in the following
way

ŵ =

l∑

i=1

α̂iyiΦ(xi)−
u∑

s=1

(ν̂s − µ̂s)Φ(x
∗
s) (8.5.19)

and

b̂ = yj −
l∑

i=1

α̂iyiK(xi, xj) +
u∑

s=1

(ν̂s − µ̂s)K(x∗s , xj), (8.5.20)

or

b̂ = ε−
l∑

i=1

α̂iyiK(xi, x
∗
m) +

u∑

s=1

(ν̂s − µ̂s)K(x∗s, x
∗
m), (8.5.21)

or

b̂ = −ε−
l∑

i=1

α̂iyiK(xi, x
∗
t ) +

u∑

s=1

(ν̂s − µ̂s)K(x∗s , x
∗
t ). (8.5.22)
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8.5.2.1 Algorithm and its relationship with three-class classifica-
tion

According to the above theorem, we can establish the following algorithm.

Algorithm 8.5.3 (Universum support vector classification, USVC)

(1) Input the training set T
⋃
U = {(x1, y1), · · · , (xl, yl)}∪{x∗1, · · · , x∗u}, where

xi ∈ Rn, yi ∈ Y = {1,−1}, i = 1, · · · , l, x∗i ∈ Rn, i = 1, · · · , u;
(2) Choose an appropriate kernel function K(x, x′) and parameters Ct, Cu, ε >
0;

(3) Construct and solve the optimization problem (8.5.11)∼(8.5.18), obtain-
ing a solution w.r.t. (α, µ, ν): α̂ = (α̂1, · · · , α̂l)T, µ̂ = (µ̂1, · · · , µ̂u)T, ν̂ =
(ν̂1, · · · , ν̂u)T;
(4) Compute b̂: Choose a component of α̂, α̂j ∈ (0, Ct) , or a component of µ̂,

µ̂m ∈ (0, Cu), or a component of of ν̂, ν̂t ∈ (0, Cu), compute b̂ by (8.5.20) or
(8.5.21) or (8.5.22);

(5) Construct the decision function

f(x) = sgn(g(x)), (8.5.23)

where

g(x) =
l∑

i=1

α̂iyiK(xi, x)−
u∑

s=1

(ν̂s − µ̂s)K(x∗s, x) + b̂. (8.5.24)

Note that the inputs in Universum belong to neither positive class nor
negative class. So there are three classes. It is natural to consider the rela-
tionship between Universum support vector classification and some three-class
classifications. In fact, it can be shown that under some assumptions, Univer-

sum support vector classification is also equivalent to K-SVCR[4, 194], and is
equivalent to the ordinal regression machine with M = 3 described in Section
8.3.3 with slight modification. Please see [63] for details.

Universum support vector classification proposes an interesting way for
solving a binary classification problem by solving a three-class classification
problem.

8.5.2.2 Construction of Universum

In order to show that it may not be difficult to collect Universum in ap-
plications, we give a simple example in [168] as follows: Consider the binary
classification problem to separate digit “5” from digit “8”. The Universum can
be selected to be examples of the other digit (“0”,“1”,“2”,“3”,“4”,“6”,“7”, or
“9”). The preliminary experiments show an improvement of Universum sup-
port vector classification over the standard support vector classification, and
indicate that the digits “3” and “6” are the most useful. This seems to match
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our intuition as these digits seem somehow “in between” the digits “5” and
“8”. Another possible way to construct Universum is to create an artificial
image by first selecting a random “5” and a random “8” from the training
set, and then constructing the mean of these two digits. This trick can be ex-
tended to many practical problems. From a practical point, a good Universum
dataset needs to be carefully chosen, please refer to [136].

8.6 Privileged Classification

In many real-world problems, we are not only given the traditional training
set, but also provided with some prior information such as some additional
descriptions of the training points. In this section, we will focus on the al-
gorithms proposed in [159] for such scenario where prior knowledge is only
available for the training data but not available for the testing data. More
precisely, the problem is formulated mathematically as follows:

Privileged classification problem: Given a training set

T = {(x1, x∗1, y1), · · · , (xl, x∗l , yl)} (8.6.1)

where xi ∈ Rn,x∗i ∈ Rm,yi ∈ {−1, 1},i = 1, · · · , l, find a real valued function
g(x) in Rn, such that the value of y for any x can be predicted by the decision
function

f(x) = sgn(g(x)). (8.6.2)

Since the additional information x∗i ∈ Rm is included in the training input
(xi, x

∗
i ), but not in any testing input x, we call it privileged information.

8.6.1 Linear privileged support vector classification

Let us start from the standard C-SVC with the training set

T = {(x1, y1), · · · , (xl, yl)}. (8.6.3)

In order to show the basic idea of privileged support vector classification, we
first introduce the definition of Oracle function [159].

Definition 8.6.1 (Oracle function) Given a traditional classification prob-
lem, suppose there exists the best but unknown linear hyperplane:

(w0 · x) + b0 = 0. (8.6.4)

The oracle function ξ(x) of the input x is defined as follows:

ξ0 = ξ(x) = [1− y((w0 · x) + b0)]+, (8.6.5)
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where

[η]+ =

{
η, if η > 0;
0, otherwise.

(8.6.6)

If we could know the value of the oracle function on each training input xi
such as we know the triplets (xi, ξ

0
i , yi) with ξ0i = ξ(xi), i = 1, · · · , l, we can

get improved classifier. However, in reality, such a thing is impossible. Instead
we use a so-called correcting function to approximate the Oracle function. We
construct a simple linear function:

φ(x) = (w∗ · x) + b∗ (8.6.7)

as the correcting function. Replacing ξi(i = 1, · · · , l) by φ(x∗i ) in the primal
problem of C-SVC, we get the following primal problem:

min
w,w∗,b,b∗

1

2
‖w‖2 + C

l∑

i=1

[(w∗ · x∗i ) + b∗], (8.6.8)

s.t. yi[(w · xi) + b] ≥ 1− [(w∗ · x∗i ) + b∗], (8.6.9)

(w∗ · x∗i ) + b∗ ≥ 0, i = 1, · · · , l. (8.6.10)

Theorem 8.6.2 Optimization problem

max
α,β

l∑

j=1

αj −
1

2

l∑

i=1

l∑

j=1

yiyjαiαj(xi · xj), (8.6.11)

s.t.

l∑

i=1

αiyi = 0, (8.6.12)

l∑

i=1

(αi + βi − C) = 0, (8.6.13)

l∑

i=1

(αi + βi − C)x∗i = 0, (8.6.14)

αi ≥ 0, βi ≥ 0, i = 1, · · · , l (8.6.15)

is the dual problem of the problem (8.6.8) ∼ (8.6.10).

Theorem 8.6.3 Suppose that (α∗, β∗) is a solution to the dual problem
(8.6.11) ∼ (8.6.15). If there exist two positive components of α∗ and β∗, α∗

j

and β∗
j , then the solution (w̃, b̃) to the primal problem (8.6.8) ∼ (8.6.10) w.r.t.

(w, b) can be obtained by

w̃ =
l∑

i=1

α∗
i yixi, (8.6.16)
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b̃ = yj −
l∑

i=1

α∗
i yi(xi · xj). (8.6.17)

Once the optimal solution (w̃, b̃) is obtained, the decision function can be easily
constructed: a new input is assigned to the positive class if g(x) = (w̃ · x) + b̃
is greater than zero; the negative class otherwise. Thus the following linear
SVM+ algorithm is constructed.

Algorithm 8.6.4 (Linear privileged support vector classification)

(1) Input the training set given by (8.6.1);

(2) Choose an appropriate penalty parameters C > 0;

(3) Construct and solve the convex quadratic programming problem (8.6.11)∼
(8.6.15), obtaining a solution (α∗, β∗);

(4) Compute

w̃ =

l∑

i=1

α∗
i yixi; (8.6.18)

Choose two positive components of α∗ and β∗, α∗
j and β∗

j , then compute

b̃ = yj −
l∑

i=1

α∗
i yi(xi · xj); (8.6.19)

(5) Construct the decision function:

f(x) = sgn(g(x)), (8.6.20)

where

g(x) = (w̃ · x) + b̃. (8.6.21)

8.6.2 Nonlinear privileged support vector classification

Similar to nonlinear C-SVC, we can introduce kernel function to get non-
linear classifier.

Introducing two transformations: x = Φ(x) : Rn → H and x∗ = Φ∗(x∗) :
Rm → H∗, according to the problem (8.6.8)∼(8.6.10), the primal problem is
constructed as follows:

min
w,w∗,b,b∗

1

2
‖w‖2 + C

l∑

i=1

[(w∗ · Φ(x∗i )) + b∗], (8.6.22)

s.t. yi[(w · Φ(xi)) + b] ≥ 1− [(w∗ · Φ∗(x∗i )) + b∗], (8.6.23)

(w∗ · Φ∗(x∗i )) + b∗ ≥ 0, i = 1, · · · , l. (8.6.24)

Similarly, we can give its dual programming.
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Theorem 8.6.5 Optimization problem

min
α,β

1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj)−
l∑

j=1

αj , (8.6.25)

s.t.
l∑

i=1

αiyi = 0, (8.6.26)

l∑

i=1

(αi + βi − C) = 0, (8.6.27)

l∑

i=1

(αi + βi − C)Φ∗(x∗i ) = 0, (8.6.28)

αi ≥ 0, βi ≥ 0, i = 1, · · · , l. (8.6.29)

is the dual problem of the problem (8.6.22)∼(8.6.24), where K(xi, xj) =
(Φ(xi) · Φ(xj)).

In order to replace the single Φ∗ by the corresponding kernel K∗, we need
the following observation: Suppose zi ∈ H, i = 1, · · · , l, and z is a linear
combination of z1, · · · , zl

z =

l∑

i=1

rizi. (8.6.30)

Then z = 0 if and only if

(z · zj) = 0, j = 1, · · · , l. (8.6.31)

Using this observation, the constraint (8.6.28) can be written as

l∑

i=1

(αi + βi − C)K∗(x∗i , x
∗
j ) = 0, j = 1, · · · , l, (8.6.32)

where K∗(x∗i , x
∗
j ) = (Φ∗(x∗i ) · Φ∗(x∗j )).

Thus, replacing (8.6.28) by the above equations, the problem (8.6.25)∼
(8.6.29) becomes

min
α,β

1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj)−
l∑

j=1

αj , (8.6.33)

s.t.

l∑

i=1

αiyi = 0, (8.6.34)

l∑

i=1

(αi + βi − C) = 0, (8.6.35)

l∑

i=1

(αi + βi − C)K∗(x∗i , x
∗
j ) = 0, j = 1, · · · , l (8.6.36)
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αi ≥ 0, βi ≥ 0, i = 1, · · · , l. (8.6.37)

Theorem 8.6.6 Suppose that (α∗, β∗) is a solution to the dual problem
(8.6.25)∼(8.6.29). If there exist two positive components of α∗ and β∗, (α∗

j

and β∗
j ), then the solution (w̃, b̃) to the primal problem (8.6.22)∼(8.6.24) w.r.t

(w, b) can be obtained by

w̃ =

l∑

i=1

α∗
i yiΦ(xi), (8.6.38)

b̃ = yj −
l∑

i=1

α∗
i yiK(xi, xj). (8.6.39)

According to the above theorems, the general privileged support vector
classification called SVM+ is constructed.

Algorithm 8.6.7 (Privileged support vector classification)

(1) Input the training set T given by (8.6.1);

(2) Choose two appropriate kernels K(x, x′) and K∗(x∗, x∗
′

), and a parameter
C > 0;

(3) Construct and solve the convex quadratic programming problem (8.6.33)∼
(8.6.37), obtaining the solution (α∗, β∗);

(4) Choose two positive components of α∗ and β∗, α∗
j and β∗

j , compute

b̃ = yj −
l∑

i=1

α∗
i yiK(xi, xj), (8.6.40)

(5) Construct the decision function:

f(x) = sgn(g(x)), (8.6.41)

where

g(x) =

l∑

i=1

yiα
∗
iK(xi, x) + b̃. (8.6.42)

8.6.3 A variation

A variation, called SVMγ+, was proposed in [156] by introducing an extra

item
γ

2
||w∗||2 in the primal problem (8.6.22)∼(8.6.24), so it becomes:

min
w,w∗,b,b∗

1

2
(‖w‖2 + γ‖w∗‖2) + C

l∑

i=1

[(w∗ · Φ∗(x∗i )) + b∗], (8.6.43)

s.t. yi[(w · Φ(xi)) + b] ≥ 1− [(w∗ · Φ∗(x∗i )) + b∗], (8.6.44)

(w∗ · Φ∗(x∗i )) + b∗ ≥ 0, i = 1, · · · , l. (8.6.45)
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where C > 0 and γ > 0 are parameters. Its solution can be obtained by solving
its dual problem:

min
α,β

1

2

l∑

i=1

l∑

j=1

yiyjαiαjK(xi, xj)

+
1

2γ

l∑

i=1

l∑

j=1

(αi + βi − C)(αj + βj − C)K∗(x∗i , x
∗
j )−

l∑

j=1

αj ,

(8.6.46)

s.t.

l∑

i=1

αiyi = 0, (8.6.47)

l∑

i=1

(αi + βi − C) = 0, (8.6.48)

αi ≥ 0, βi ≥ 0, i = 1, · · · , l. (8.6.49)

This approach can be summarized as the following algorithm:

Algorithm 8.6.8 (Privileged support vector classification with γ-term)

(1) Input the training set T given by (8.6.1);

(2) Choose two appropriate kernels K(x, x′) and K∗(x∗, x∗′) and parameters
C > 0, γ > 0;

(3) Construct and solve the optimization problem (8.6.46)∼(8.6.49), obtaining
the solution α∗, β∗;

(4) Choose two positive components α∗ and β∗, α∗
j and β∗

j , then compute

b̃ =
1

γ

l∑

i=1

(α∗
i + β∗

i − C)K(x∗i , x
∗
j ) (8.6.50)

(5) Construct the decision function:

f(x) = sgn(g(x)), (8.6.51)

where

g(x) =

l∑

i=1

yiα
∗
iK(xi, x) + b̃. (8.6.52)

See [115, 116, 160] for more details about privileged support vector ma-
chines.
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8.7 Knowledge-based Classification

Similar to the previous section, we continuously consider the classification
problem by using prior information. The prior information considered here is
quite different from the previous one. There we used additional informative
features to describe the training data set while here we introduce some advised
classification rules as prior information. Now the problem can be considered
as an extension of the standard classification problem in the following way:
the single input points in the training points are extended to input sets, called
knowledge sets since they come from some special prior knowledge. Note that
the input sets are restricted to be polyhedrons. More precisely the problem is
formulated mathematically as follows:

Knowledge-based classification problem: Given a training set

T = {(X1, y1), · · · , (Xp, yp), (Xp+1, yp+1), · · · , (Xp+q, yp+q)}, (8.7.1)

where Xi is a polyhedron in Rn defined by

Xi = {x|Qix ≤ di},

where Qi ∈ Rli×n, di ∈ Rli , y1 = · · · = yp = 1, yp+1 = · · · = yp+q = −1, and
the label yi = 1 or yi = −1 corresponding to each Xi means all the points in
the set Xi belong to positive or negative class respectively, i = 1, ...p+ q. Find
a real valued function g(x) in Rn, such that the value of y for any x can be
predicted by the decision function

f(x) = sgn(g(x)). (8.7.2)

8.7.1 Knowledge-based linear support vector classification

We first consider the linearly separable problem where the input sets can be
separated by a hyperplane correctly, and try to find the separating hyperplane
(w · x) + b = 0. Corresponding to the problem (2.2.8)∼(2.2.9) in Chapter 2,
we can get the primal problem:

min
w,b

1

2

∥∥w
∥∥2, (8.7.3)

s.t. (w · x) + b ≥ 1, for x ∈ Xi, i = 1, · · · , p, (8.7.4)

(w · x) + b ≤ −1, for x ∈ Xi, i = p+ 1, · · · , p+ q. (8.7.5)

Obviously there are infinite constraints, leading the above problem to a semi-
infinite program which is hard to be solved. However, it will be shown that the
constraints (8.7.4)∼(8.7.5) can be converted into a set of limited constraints
and the problem becomes a quadratic programming ([57],[58],[107]).
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Theorem 8.7.1 Consider the polyhedron X = {x|Qx ≤ d} where Q ∈ Rl×n

and d ∈ Rl. If X is nonempty, then the polyhedron X = {x|Qx ≤ d} lies in
the half-space (w · x) + b ≥ 1 if and only if the system

QTu+ w = 0, (8.7.6)

dTu− b+ 1 ≤ 0, (8.7.7)

u ≥ 0 (8.7.8)

has a solution u ∈ Rl.

Proof The fact that the polyhedron X lies in the half-space (w ·x)+b ≥ 1
means that for each x in X = {Qx ≤ q}, we have (w · x) + b− 1 ≥ 0. This is
equivalent to that the linear programming

min
x

(w · x) + b− 1, (8.7.9)

s.t. Qx ≤ d (8.7.10)

has a solution and its optimal value is great than or equal to 0.
By Definition 1.2.16 in Chapter 1, the dual problem of the problem (8.7.9)

∼ (8.7.10) is

max
u

−(d · u) + b− 1, (8.7.11)

s.t. QTu+ w = 0, (8.7.12)

u ≥ 0. (8.7.13)

From the dual theorem, the primal problem (8.7.9)∼(8.7.10) and dual problem
(8.7.11)∼(8.7.13) have the same optimal values. Thus “the optimal value of
problem (8.7.9 )∼ (8.7.10) is great than or equal to 0” is equivalent to the fact
that “the optimal value of problem (8.7.11)∼(8.7.13) is greater than or equal
to 0”. Obviously, the latter is valid if and only if system (8.7.6)∼(8.7.8) has a
solution. So we get the conclusion. �

According to the above theorem, the constraint “(w · x) + b ≥ 1, for x ∈
X = {x|Qx ≤ d}” could be rewritten as follows:

QTu+ w = 0, (8.7.14)

dTu− b+ 1 ≤ 0, (8.7.15)

u ≥ 0, (8.7.16)

while the constraint “(w · x) + b ≤ −1, for x in X” could be rewritten as
follows:

QTu− w = 0, (8.7.17)

dTu+ b+ 1 ≤ 0, (8.7.18)

u ≥ 0. (8.7.19)
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Then finally we could reformulate the problem (8.7.4)∼(8.7.5) as

min
w,b,u

1

2

∥∥w
∥∥2, (8.7.20)

s.t. QT
i ui + w = 0, i = 1, · · · , p, (8.7.21)

dTi ui − b+ 1 ≤ 0, i = 1, · · · , p, (8.7.22)

QT
i ui − w = 0, i = p+ 1, · · · , p+ q, (8.7.23)

dTi ui + b+ 1 ≤ 0, i = p+ 1, · · · , p+ q, (8.7.24)

u = (uT1 , · · · , uTp+q)T ≥ 0. (8.7.25)

In order to deal with a more general case including the non-separable problem,
we introduce slack variables ξ and η, and modify the above formulation into
the following primal program with the variables w, b, ξ = (ξT1 , · · · , ξTp+q)T, ξi =
(ξi1 , · · · , ξin)T , η = (η1, · · · , ηp+q)T, and u = (uT1 , · · · , uTp+q)T with ui ∈
Rli , i = 1, · · · , p+ q:

min
w,b,u,ξ,η

1

2

∥∥w
∥∥2 + C

p+q∑

i=1

((

n∑

j=1

ξij ) + ηi), (8.7.26)

s.t. −ξi ≤ QT
i ui + w ≤ ξi, i = 1, · · · , p, (8.7.27)

dTi ui − b + 1 ≤ ηi, i = 1, · · · , p, (8.7.28)

−ξi ≤ QT
i ui − w ≤ ξi, i = p+ 1, · · · , p+ q, (8.7.29)

dTi ui + b + 1 ≤ ηi, i = p+ 1, · · · , p+ q, (8.7.30)

ξ, η, u ≥ 0. (8.7.31)

Theorem 8.7.2 Optimization problem

max
α,β,r

p+q∑

i=1

ri −
1

2

p+q∑

i=1

p+q∑

j=1

yiyj(αi − βi)
T(αj − βj), (8.7.32)

s.t.

p+q∑

i=1

yiri = 0, (8.7.33)

Qi(αi − βi) + ridi ≥ 0, i = 1, · · · , p+ q, (8.7.34)

0 ≤ αi + βi ≤ Ce, i = 1, · · · , p+ q, (8.7.35)

0 ≤ ri ≤ C, i = 1, · · · , p+ q, (8.7.36)

αi, βi ≥ 0, i = 1, · · · , p+ q, (8.7.37)

is the dual problem of the problem (8.7.26) ∼ (8.7.31), where r =
(r1, · · · , rp+q)T , α = (αT

1 , · · · , αT
p+q)

T, β = (βT
1 , · · · , βT

p+q)
T, αi, βi ∈ Rn, i =

1, · · · , p+ q and e is a vector of ones in Rn.
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Theorem 8.7.3 Suppose that (α∗, β∗, r∗) is the solution to the dual problem
(8.7.32)∼(8.7.37). If there exist three components α∗

i , β
∗
i and r∗i , such that

0 < α∗
i + β∗

i < C, 0 < r∗i < C, then the solution (w∗, b∗) to the primal
problem (8.7.26)∼(8.7.31) w.r.t. (w, b) can be obtained by

w∗ = −
p+q∑

j=1

yj(α
∗
j − β∗

j ), (8.7.38)

b∗ = yi(1 + dTi u
∗
i ), (8.7.39)

where u∗i can be obtained by solving QT
i ui + yiw

∗ = 0.

Once the optimal solution (w∗, b∗) is obtained, the separating hyperplane
g(x) = (w∗ · x) + b∗ = 0 can be easily constructed. Thus the following
knowledge-based linear algorithm is constructed.

Algorithm 8.7.4 (Knowledge-based linear Support Vector Classification)

(1) Input the training data set T = {(X1, y1), · · · , (Xp, yp), (Xp+1, yp+1), · · · ,
(Xp+q, yp+q)}, where y1 = · · · = yp = 1, yp+1 = · · · = yp+q = −1, and
Xi = {x|Qix ≤ di}, i = 1, 2, ..., p+ q;

(2) Choose an appropriate penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming problem (8.7.32)∼
(8.7.37), obtaining a solution α∗, β∗, r∗;

(4) Choose three components α∗
i , β

∗
i and r∗i , such that 0 < α∗

i + β∗
i < C,

0 < r∗i < C, then compute w∗ = −
p+q∑

j=1

yj(α
∗
j − β∗

j ) and b∗ = yi(1 + dTi u
∗
i ),

where u∗i is obtained by solving QT
i ui + yiw

∗ = 0.

(5) Construct the decision function

f(x) = sgn(g(x)), (8.7.40)

where g(x) = (w∗ · x) + b∗.

8.7.2 Knowledge-based nonlinear support vector classifica-
tion

Corresponding to the knowledge-based linear classifier, the nonlinear clas-
sifier can also be established by employing the “kernel trick”.

Introducing the transformation x = Φ(x) : Rn → H and the kernel function
K(x, x′) = (Φ(x) ·Φ(x′)), we need to find the separating hyperplane (w · x)+
b = 0.

Now the key point is to deal with the constraint in x-space H

(w · x) + b ≥ 1, for x ∈ X = {x = Φ(x)|x ∈ {x|Qx ≤ d, x ∈ Rn}}.
(8.7.41)
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First, a random sample set of input set {x1, x2, · · · , xm} are taken from the
knowledge sets X1, · · · ,Xl, and make the following two approximation as-
sumptions ([59]):

(i) Any x = Φ(x) in x-space H can be expressed as

Φ(x) = ÃTz (8.7.42)

where z = (z1, · · · , zm)T, and

Ã =




Φ(x1)
T

· · ·
Φ(xm)T


 . (8.7.43)

(ii) Any polyhedron X = {Φ(x)|x ∈ {x|Qx ≤ d, x ∈ Rn}} with

Q =




qT1
· · ·
qTl





in x-space H can be expressed as

X = {Φ(x)|Q̃Φ(x) ≤ d}, (8.7.44)

where

Q̃ =




Φ(q1)

T

· · ·
Φ(ql)

T



 .

The above assumption (i) is similar to the trick used in twin support vector
classification; see Section 8.1. Now, we try to explain the assumption (ii). If
the kernel function K(x, x′) = (x · x′), then

Q̃Φ(x) =




Φ(q1)
T

· · ·
Φ(ql)

T


Φ(x) =




K(q1, x)
· · ·

K(ql, x)


 = Qx.

So, the set X given by (8.7.44) is equivalent to the set X defined by (8.7.41),
when K(x, x′) = (x · x′). This implies that the assumption (ii) is true for
the case K(x, x′) = (x · x′). Furthermore, we consider the Gaussian kernel,

i.e., K(x, x′) =exp(−(‖x−x′‖)2

2σ2 . If σ2 → ∞ and C = C̃σ2 where C̃ is fixed
then the SVM classifier with the Gaussian kernel converges to the linear SVM
classifier with the parameter C̃. From this point of view, the assumption (ii)
is reasonable.

According to the above two assumptions, the set X can be written as

X = {Φ(x) = ÃTz|K̃z ≤ d}, (8.7.45)
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where

K̃ =




Φ(q1)
T

· · ·
Φ(ql)

T


 (Φ(x1), · · · ,Φ(xm)) =




K(q1, x1) · · · K(q1, xm)
· · · · · · · · ·

K(ql, x1) · · · K(ql, xm)


 .

(8.7.46)

Now let us return to the constraint (8.7.41). From (8.7.42), (8.7.43), and
(8.7.45), it can be written as the constraint in x-space H:

(w · x) + b ≥ 1, for x ∈ {Φ(x) = ÃTz|z ∈ {z|K̃z ≤ d}}, (8.7.47)

or the constraint in z-space:

(Ãw · z) + b ≥ 1, for z ∈ {z|K̃z ≤ d}, (8.7.48)

since (w · ÃTz) = (Ãw · z), where Ãw is considered as a vector in z-space, Ã
and K̃ are given by (8.7.43) and (8.7.46) respectively.

By Theorem 8.7.1 and the equivalence between (8.7.41) and (8.7.48), the
primal problem can be obtained from the problem (8.7.26)∼(8.7.31) by re-
placing w by w, Qi and w by K̃i and Ãw respectively.

min
w,b,u,ξ,η

1

2

∥∥w
∥∥2 + C

p+q∑

i=1

((
n∑

j=1

ξij ) + ηi), (8.7.49)

s.t. −ξi ≤ K̃T
i ui + Ãw ≤ ξi, i = 1, · · · , p, (8.7.50)

dTi ui − b+ 1 ≤ ηi, i = 1, · · · , p, (8.7.51)

−ξi ≤ K̃T
i ui − Ãw ≤ ξi, i = p+ 1, · · · , p+ q, (8.7.52)

dTi ui + b+ 1 ≤ ηi, i = p+ 1, · · · , p+ q, (8.7.53)

ξ, η, u ≥ 0, (8.7.54)

where Ã is given by (8.7.43) and K̃i is defined by

K̃i =




K(qi1, x1) · · · K(qi1, xm)

· · · · · · · · ·
K(qil , x1) · · · K(qil , xm)



 .

Theorem 8.7.5 Optimization problem

max
α,β,r

p+q∑

i=1

ri −
1

2

p+q∑

i=1

p+q∑

j=1

yiyj(αi − βi)
TH̃(αj − βj), (8.7.55)

s.t.

p∑

i=1

ri −
p+q∑

i=p+1

ri = 0, (8.7.56)

K̃i(αi − βi) + ridi ≥ 0, i = 1, · · · , p+ q, (8.7.57)

0 ≤ αi + βi ≤ Ce, i = 1, · · · , p+ q, (8.7.58)

0 ≤ ri ≤ C, i = 1, · · · , p+ q, (8.7.59)

αi, βi ≥ 0, i = 1, · · · , p+ q, (8.7.60)
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is the dual problem of the problem (8.7.49)∼(8.7.54), where r =
(r1, · · · , rp+q)T , α = (αT

1 , · · · , αT
p+q)

T, β = (βT
1 , · · · , βT

p+q)
T, αi, βi ∈ Rm, i =

1, · · · , p+ q, e is a vector of ones in Rm, and

H̃ =




K(x1, x1) · · · K(x1, xm)

· · · · · · · · ·
K(xm, x1) · · · K(xm, xm)



 .

Theorem 8.7.6 Suppose that (α∗, β∗, r∗) is the solution to the dual problem
(8.7.55)∼(8.7.60). Suppose there exist three components α∗

i , β
∗
i , and r

∗
i , such

that 0 < α∗
i + β∗

i < C, and 0 < r∗i < C, then the solution (w∗, b∗) to the
primal problem (8.7.49)∼(8.7.54) w.r.t. (w, b) can be obtained by

w∗ = −
p+q∑

j=1

yjÃ
T(α∗

j − β∗
j ), (8.7.61)

b∗ = yi(1 + dTi u
∗
i ), (8.7.62)

where u∗i can be obtained by solving K̃T
i ui + yiÃw

∗ = 0.

Once the optimal solution (w∗, b∗) is obtained, the separating hyperplane
g(x) = (w∗ · x) + b∗ = 0 can be easily constructed. Thus the following
knowledge-based nonlinear algorithm is constructed.

Algorithm 8.7.7 (Knowledge-based nonlinear Support Vector Classification)

(1) Given a training data set T = {(X1, y1), · · · , (Xp, yp), (Xp+1, yp+1), · · · ,
(Xp+q, yp+q)}, where y1 = · · · = yp = 1, yp+1 = · · · = yp+q = −1, and
Xi = {x|Qix ≤ di}, i = 1, 2, ..., p+ q.

(2) Choose an appropriate kernel and a parameter C > 0;

(3) Construct and solve the convex quadratic programming problem (8.7.55)∼
(8.7.60), obtaining the solution α∗, β∗, r∗.

(4) Choose three components α∗
i , β

∗
i and r∗i , such that 0 < α∗

i + β∗
i < C,

0 < r∗i < C, compute b∗ = yi(1 + dTi u
∗
i ), where u∗i is obtained by solving

K̃i
T
ui − yi

p+q∑

j=1

yjH̃(α∗
j − β∗

j ) = 0 .

(5) Construct the decision function

f(x) = sgn(g(x)), (8.7.63)

where g(x) = −
p+q∑

i=1

m∑

j=1

yi(α
∗
ij − β∗

ij)K(xj , x) + b∗.
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8.8 Robust Classification

8.8.1 Robust classification problem

Remember that the training set of the standard binary classification prob-
lem is given by

T = {(x1, y1), · · · , (xl, yl)}, (8.8.1)

where it is assumed that the inputs are precisely known, and therefore can
be described by points xi ∈ Rn, i = 1, · · · , l. However some uncertainty is
often present in many real-world problems. For example, when the inputs are
subjected to measurement errors, it would be better to describe the inputs
by uncertainty sets Xi ⊂ Rn, i = 1, · · · , l, since all we know is that the input
belongs to the set Xi. In this section we investigate two kinds of the uncertainty
sets. In the first one the set Xi is a polyhedron obtained from perturbation of
a point xi

Xi= {x | [x]j = [xi]j + [∆xi]j [zi]j , j = 1, · · · , n,
zi = ([zi]1, · · · , [zi]n)T, ||zi||1 6 Ω}, (8.8.2)

where xi is the nominal value, ∆xi = ([∆xi]1, · · · , [∆xi]n)T is a direction
of perturbation, Ω is the magnitude of perturbation, zi is the variation, and

‖ · ‖1 is the 1-norm, i.e. ‖zi‖1 =

n∑

j=1

|[zi]j |. In the second one, the set Xi is a

supersphere obtained from perturbation of a point xi

Xi = {x | ‖x− xi‖ 6 ri}, (8.8.3)

where xi is the nominal value and ri is the magnitude of perturbation.
Extending the input point xi into an input set Xi, the training set should

become

T = {(X1,Y1), · · · , (Xl,Yl)}. (8.8.4)

If the set Xi is defined by either (8.8.2) or (8.8.3) and the pair (xi, yi) is known
in advance, a reasonable consideration is to take Yi = yi, meaning that the
label of all input points in Xi is Yi = yi. This leads to the following problem.

Robust binary classification problem: Given a training set

T = {(X1,Y1), · · · , (Xl,Yl)}, (8.8.5)

where Xi is a set in Rn, Yi ∈ {−1, 1}. The pair (Xi,Yi) with Yi = 1 means
that Xi is a positive input set where every x in Xi belongs to the positive
class, and (Xi,Yi) with Yi = −1 means that Xi is a negative input set where
every x in Xi belongs to the negative class, i = 1, · · · , l. Find a real function
g(x) in Rn, such that the value of y for any x can be predicted by the decision
function

f(x) = sgn(g(x)). (8.8.6)
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8.8.2 The solution when the input sets are polyhedrons

Consider the robust binary classification problem with the training set
given by (8.8.5) and (8.8.2). It is easy to see that the equality (8.8.2) can be
expressed as

Xi = {x |
n∑

j=1

∣∣∣∣
[x]j − [xi]j
[∆xi]j

∣∣∣∣ 6 Ω}, i = 1, · · · , l. (8.8.7)

For the problem in Rn with n = 2, the set Xi is a diamond, whose horizontal
length and vertical length are 2|[∆xi]1|Ω and 2|[∆xi]2|Ω respectively. A toy
example in R2 is shown in Figure 8.8, where the diamonds with “+”and “◦”
are positive and negative input sets respectively.

FIGURE 8.8: A robust classification problem with polyhedron input sets in
R2.

8.8.2.1 Linear robust support vector classification

It is easy to see that the problem given in Figure 8.8 is linearly separable
since there exists a straight line such that it separates all input sets correctly:
all positive and negative diamonds lie in the upper right and the lower left
of the straight line respectively. Noticing the principle of maximal margin, its
separating line (w∗ · x) + b∗ = 0 should be obtained from the optimization
problem

min
w,b

1

2
‖w‖2, (8.8.8)

s.t. yi




2∑

j=1

wj([xi]j + [∆xi]j [zi]j) + b



 > 1, ∀ ||zi||1 6 Ω, i = 1, · · · , 5.

(8.8.9)
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As for the general problem in Rn without the assumption of linear separability,
we only need to introduce slack variables ξ and penalty parameter C, and then
get the optimization problem

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.8.10)

s.t. yi




n∑

j=1

wj([xi]j + [∆xi]j [zi]j) + b



 > 1− ξi, ∀||zi||1 6 Ω, i = 1, · · · , l,

(8.8.11)

ξi > 0, i = 1, · · · , l. (8.8.12)

where w = (w1, · · · , wn)T, ξ = (ξ1, · · · , ξl)T. This problem does not belong to
the problems discussed in Chapter 1. In fact, it is a semi-infinite programming
problem since the ∀||zi||1 6 Ω clause in the constraint (8.8.11) implies that
there are infinitely many constraints. However, following [11], the constraint
(8.8.11) can be rewritten as the one with only finitely many constraints as
shown in the following theorem.

Theorem 8.8.1 Constraint (8.8.11) is equivalent to

yi((w · xi) + b) + ξi − 1 > Ωti, i = 1, · · · , l, (8.8.13)

ti − yi[∆xi]jwj > 0, j = 1, · · · , n; i = 1, · · · , l, (8.8.14)

ti + yi[∆xi]jwj > 0, j = 1, · · · , n; i = 1, · · · , l, (8.8.15)

ti > 0, i = 1, · · · , l. (8.8.16)

Proof We only list the main steps of the proof as follows:
(i) Prove that the constraint (8.8.11) is equivalent to

min
ν,ω∈ϑ



yi(w · xi) + yib − 1 + ξi +

n∑

j=1

(yiwj [∆xi]jνj − yiwj [∆xi]jωj)



> 0,

(8.8.17)

where ϑ = {(ν, ω) ∈ Rn+ ×Rn+| ‖ν + ω‖1 6 Ω}.
(ii) Prove that the optimal values of the problems

max aTν + bTω, (8.8.18)

s.t. ‖ν + ω‖1 6 Ω, ν, ω > 0 (8.8.19)

and

max

n∑

j=1

max{aj, bj , 0}rj, (8.8.20)

s.t. ‖r‖1 6 Ω (8.8.21)
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are equal.
(iii) Prove that the constraint (8.8.17) is equivalent to

yi((w · xi) + b) + ξi − 1 > Ω‖s‖∗1, (8.8.22)

where ‖s‖∗1 = max‖r‖161 s
Tr, s = (s1, · · · , sn)T, sj = max{−yiwj [∆xi]j ,

yiwj [∆xi]j}, j = 1, · · · , n.
(iv) Prove that the constraint (8.8.22) is equivalent to

yi((w · xi) + b) + ξi − 1 > Ωη, (8.8.23)

−yiwj [∆xi]j + η > 0, j = 1, · · · , n, (8.8.24)

yiwj [∆xi]j + η > 0, j = 1, · · · , n, (8.8.25)

η > 0. (8.8.26)

(v) Prove the conclusion by the above (iii) and (iv).
Please see [11] for the detail. �

Using the above theorem the problem (8.8.10)∼(8.8.12) can be rewritten
as a convex quadratic programming

min
w,b,t,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.8.27)

s.t. yi((w · xi) + b) + ξi − 1 > Ωti, i = 1, · · · , l, (8.8.28)

ti − yi[∆xi]jwj > 0, j = 1, · · · , n; i = 1, · · · , l, (8.8.29)
ti + yi[∆xi]jwj > 0, j = 1, · · · , n; i = 1, · · · , l. (8.8.30)
ξi > 0, ti > 0, i = 1, · · · , l, (8.8.31)

or

min
w,b,t,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.8.32)

s.t. yi((w · xi) + b) + ξi − 1 > Ωti, i = 1, · · · , l, (8.8.33)

tie− yi∆iw > 0, i = 1, · · · , l, (8.8.34)

tie+ yi∆iw > 0, i = 1, · · · , l, (8.8.35)

ξi > 0, ti > 0, i = 1, · · · , l, (8.8.36)

where

∆i = diag([∆xi]1, [∆xi]2, · · · , [∆xi]n). (8.8.37)

This is the primal problem.
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Theorem 8.8.2 Optimization problem

max
α,β,β∗,γ,η

−1

2

{ l∑

i=1

l∑

j=1

αiαjyiyj(xi · xj) +
l∑

i=1

l∑

j=1

yiyj(β
∗
i − βi)

TAij(β∗
j − βj)

+2

l∑

i=1

l∑

j=1

yiyjαiB
ijT(β∗

j − βj)

}
+

l∑

i=1

αi , (8.8.38)

s.t.
l∑

i=1

αiyi = 0, (8.8.39)

Ωαi − βT
i e − β∗

i
Te− ηi = 0, i = 1, · · · , l, (8.8.40)

C − αi − γi = 0, i = 1, · · · , l, (8.8.41)

βi, β
∗
i > 0, i = 1, · · · , l, (8.8.42)

αi, γi, ηi > 0, i = 1, · · · , l (8.8.43)

is the dual problem of the problem (8.8.32)∼(8.8.36), where

(Aij)p,q = ((∆i)·,p · (∆j)·,q), p = 1, · · · , n; q = 1, · · · , n, (8.8.44)
(Bij)q = (xi · (∆j)·,q), q = 1, · · · , n, (8.8.45)

and (∆i)·,p is the vector obtained from the p-th column of the matrix ∆i.

It is easy to see that the solution set to the problem (8.8.38)∼(8.8.43)
w.r.t. α, β, β∗ is the same with the one of the problem

min
α,β,β∗

1

2

{ l∑

i=1

l∑

j=1

αiαjyiyj(xi · xj) +
l∑

i=1

l∑

j=1

yiyj(β
∗
i − βi)

TAij(β∗
j − βj)

+2

l∑

i=1

l∑

j=1

yiyjαiB
ijT(β∗

j − βj)

}
−

l∑

i=1

αi , (8.8.46)

s.t

l∑

i=1

αiyi = 0, (8.8.47)

βT
i e+ β∗

i
Te 6 Ωαi, i = 1, · · · , l, (8.8.48)

0 6 αi 6 C, i = 1, · · · , l, (8.8.49)

βi, β
∗
i > 0, i = 1, · · · , l, (8.8.50)

where Aij and Bij are given by (8.8.44)∼(8.8.45).

Theorem 8.8.3 Suppose that ᾱ = (ᾱ1, · · · , ᾱl)T, β̄(∗) = (β̄T
1 , · · · , β̄T

l , β̄
∗T
1 ,

· · · , β̄∗T
l )T is a solution to the problem (8.8.46)∼(8.8.50); if there exists a

subscript j ∈ {i|0 < ᾱi < C, β̄T
i e + β̄∗T

i e < Ωᾱi}, then a solution to the
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problem (8.8.32)∼(8.8.36) w.r.t. (w, b) can be obtained by

w̄=

l∑

i=1

ᾱiyixi +

l∑

i=1

yi∆i(β̄
∗
i − β̄i), (8.8.51)

b̄=yj − (w̄ · xj). (8.8.52)

Algorithm 8.8.4 (Linear robust support vector classification for polyhedron
perturbation)

(1) Input the training set given by (8.8.5) and (8.8.2);

(2) Choose an appropriate penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming (8.8.46)∼(8.8.50),
obtaining a solution ᾱ = (ᾱ1, · · · , ᾱl)T, β̄(∗) = (β̄T

1 , · · · , β̄T
l , β̄

∗T
1 , · · · , β̄∗T

l )T;

(4) Compute b̄: Choose a subscript j ∈ {i|0 < ᾱi < C, β̄T
i e + β̄∗T

i e < Ωᾱi},
compute b̄ by (8.8.51)∼(8.8.52);

(5) Construct the decision function

f(x) = sgn

(
l∑

i=1

αiyi(xi · x) +
l∑

i=1

yiB
iT(β̄∗

i − β̄i) + b̄

)
, (8.8.53)

where
(Bi)q = (x · (∆i)·,q), q = 1, · · · , n. (8.8.54)

8.8.2.2 Robust support vector classification

It is easy to extend Algorithm 8.8.4 to the nonlinear case.

Algorithm 8.8.5 We only need to introduce the kernel function K(x, x′),
and change the inner products ((∆i)·,p · (∆j)·,q), (xi · (∆j)·,q) and (x · (∆i)·,q)

to K((∆i)·,p, (∆j)·,q), K(xi, (∆j)·,q) and K(x, (∆i)·,q) respectively.

8.8.3 The solution when the input sets are superspheres

Consider the robust binary classification problem with the training set
given by (8.8.5) and (8.8.3). A toy example in R2 is shown in Figure 8.9, where
the circles with “+” and “◦” are positive and negative input sets respectively.

8.8.3.1 Linear robust support vector classification

First consider the linearly separable problems with the training set (8.8.5)
and (8.8.3), where all positive input sets and negative input sets can be sep-
arated by a hyperplane correctly, e.g. the problem shown in Figure 8.8. In
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FIGURE 8.9: Robust classification problem with circle input sets in R2.

order to find the optimal hyperplane (w∗ · x) + b∗ = 0, the principle of maxi-
mal margin leads to the optimization problem

min
w,b

1

2
‖w‖2, (8.8.55)

s.t. yi((w · (xi + riui)) + b) > 1, ∀ ‖ui‖ 6 1, i = 1, · · · , 7. (8.8.56)

Obviously for general robust classification without the linear separability,
the above optimization problem can be modified by introducing slack variables
as

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.8.57)

s.t. yi((w · (xi + riui)) + b) > 1− ξi, ∀ ‖ui‖ 6 1, i = 1, · · · , l,
(8.8.58)

ξi > 0, i = 1, · · · , l. (8.8.59)

Next two theorems convert the above problem into a second order cone
programming.

Theorem 8.8.6 The triple (w∗, b∗, ξ∗) is a solution to the problem
(8.8.57)∼(8.8.59) if and only if it is a solution to the second order cone pro-
gramming w.r.t. (w, b, ξ)

min
w,b,ξ,u,v,t

1

2
(u − v) + C

l∑

i=1

ξi, (8.8.60)

s.t. yi((w · xi) + b)− rit > 1− ξi, i = 1, · · · , l, (8.8.61)

ξi > 0, i = 1, · · · , l, (8.8.62)

u+ v = 1, (8.8.63)

(8.8.64)
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(
u
t
v

)
∈ L3, (8.8.65)

(
t
w

)
∈ Ln+1. (8.8.66)

Proof Since

min{yiri(w · ui), ‖ui‖ 6 1} = −ri‖w‖, (8.8.67)

the problem (8.8.57)∼(8.8.59) is equivalent to

min
w,b,ξ

1

2
‖w‖2 + C

l∑

i=1

ξi, (8.8.68)

s.t. yi((w · xi) + b)− ri‖w‖ > 1− ξi, i = 1, · · · , l, (8.8.69)

ξi > 0, i = 1, · · · , l. (8.8.70)

In order to convert the above problem into a second order cone programming,
introduce a variable t with ‖w‖ 6 t, and write it as

min
w,b,ξ,t

1

2
t2 + C

l∑

i=1

ξi, (8.8.71)

s.t. yi((w · xi) + b)− rit > 1− ξi, i = 1, · · · , l, (8.8.72)

ξi > 0, i = 1, · · · , l, (8.8.73)

‖w‖ 6 t. (8.8.74)

Furthermore, introduce two variables u and v with the constraints u+ v =
1 and

√
t2 + v2 6 u. Therefore, we have t2 = u2 − v2 = u − v. Problem

(8.8.60)∼(8.8.66) can be obtained from problem (8.8.71)∼(8.8.74) by replacing
t2 by u− v and rewriting the constraints. �

For the problem (8.8.60)∼(8.8.66), introducing the Lagrange function

L=
1

2
(u− v) + C

l∑

i=1

ξi −
l∑

i=1

αi(yi((w · xi) + b)− rit− 1 + ξi)−
l∑

i=1

ηiξi

−β(u+ v − 1)− zuu− zvv − γt− ztt− zTww, (8.8.75)

where α, η ∈ Rl, β, zu, zv, γ, zt ∈ R, zw ∈ Rn are the multiplier vectors, we
can get its dual problem. In fact, the problem (8.8.76)∼(8.8.82) in the next
theorem is an equivalent version of the dual problem. Furthermore, we have
the following theorem.

Theorem 8.8.7 Suppose that (α∗T, γ∗) = ((α∗
1, · · · , α∗

l ), γ
∗) is a solution to
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the following second order cone programming w.r.t. (α, γ)

max
α,β,γ,zu,zv

β +

l∑

i=1

αi, (8.8.76)

s.t. γ 6

l∑

i=1

riαi −

√√√√
l∑

i=1

l∑

j=1

αiαjyiyj(xi · xj), (8.8.77)

β + zu =
1

2
, (8.8.78)

β + zv = −1

2
, (8.8.79)

l∑

i=1

yiαi = 0, (8.8.80)

0 6 αi 6 C, i = 1, · · · , l, (8.8.81)
√
γ2 + z2v 6 zu. (8.8.82)

If there exists a component of α∗, α∗
j ∈ (0, C), then a solution (w∗, b∗) to the

problem (8.8.60)∼(8.8.66) w.r.t. (w, b) can be obtained by

w∗ =
γ∗(

γ∗ −∑l
i=1 riα

∗
i

)
l∑

i=1

α∗
i yixi, (8.8.83)

b∗ = yj −
γ∗(

γ∗ −∑l
i=1 riα

∗
i

)
l∑

i=1

α∗
i yi(xi · xj)− yjrjγ

∗. (8.8.84)

Thus we can establish the following algorithm.

Algorithm 8.8.8 (Linear robust support vector classification for supersphere
perturbation)

(1) Input the training set T given by (8.8.5) and (8.8.3);

(2) Choose an appropriate penalty parameter C > 0;

(3) Construct and solve second order cone programming (8.8.76)∼(8.8.82),
obtaining a solution (α∗, γ∗) w.r.t. (α, γ);

(4) Compute b∗: Choose a component of α∗, α∗
j ∈ (0, C), and compute

b∗ = yj −
γ∗(

γ∗ −
l∑
i=1

riα∗
i

)
l∑

i=1

α∗
i yi(xi · xj)− yjrjγ

∗; (8.8.85)

(5) Construct the decision function

f(x) = sgn

(
γ∗(

γ∗ −∑l
i=1 riα

∗
i

)
l∑

i=1

α∗
i yi(xi · x) + b∗

)
. (8.8.86)
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8.8.3.2 Robust support vector classification

The above linear classifier can be extended to a nonlinear classifier by
introducing the Gaussian kernel function

K(x, x′) = exp(−‖x− x′‖2/2σ2). (8.8.87)

Denote the corresponding transformation as

x = Φ(x), (8.8.88)

it is easy to see that if x̃ = Φ(x̃), x̂ = Φ(x̂) and ‖x̃− x̂‖ = r, then we have

‖x̃− x̂‖2 = ‖Φ(x̃)− Φ(x̂)‖2=((Φ(x̃)− Φ(x̂)) · (Φ(x̃)− Φ(x̂))

=K(x̃, x̃)− 2K(x̃, x̂) +K(x̂, x̂)

=2− 2 exp(−‖x̃− x̂‖2/2σ2)

= r2, (8.8.89)

where

r = (2 − 2 exp(−r2/2σ2))1/2. (8.8.90)

Therefore, under transformation (8.8.88) the hypersphere Xi in Rn becomes
the hypersphere in H,

Xi = {x̃| ‖x̃− Φ(xi)‖ 6 ri}. (8.8.91)

where

ri = (2− 2 exp(−r2i /2σ2))1/2. (8.8.92)

Using the above observation and considering the primal and dual prob-
lems, we arrive the counterparts of the problem (8.8.60)∼(8.8.66) and prob-
lem (8.8.76)∼(8.8.82), and furthermore construct the decision function; see
[64, 177] for details.

Algorithm 8.8.9 (Nonlinear robust support vector classification)
The same with Algorithm 8.8.8 except:
(i) Introduce the Gaussian kernel function K(x, x′) = exp(−‖x−x′‖2/2σ2)

in step (2), and replace the inner products (xi · xj) and (xi · x) by K(xi, xj)
and K(xi, x) respectively;

(ii) Replace ri in the problem (8.8.76)∼(8.8.82) by ri = (2 −
2 exp(−r2i /2σ2))1/2.
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8.9 Multi-instance Classification

8.9.1 Multi-instance classification problem

Similar to both the robust and knowledge-based classification problems,
the training set of the multi-instance classification problem is in the form

T = {(X1,Y1), · · · , (Xl,Yl)}, (8.9.1)

where Xi is a set containing a number of points in Rn, Xi =
{xi1, · · · , xili}, xij ∈ Rn, j = 1, · · · , li, Yi ∈ {−1, 1}, i = 1, · · · , l. Here a
point in Rn is called an instance and a set containing a number of points in
Rn is called a bag, so the problem is to classify the bags. Note that the label
of a bag is related with the labels of the instances in the bag and decided by
the following way: a bag is positive if and only if there is at least one instance
in the bag is positive; a bag is negative if and only if all instances in the bag
are negative.

Now we are in a position to formulate the problem as follows:
Multi-instance binary classification problem: Suppose that there is

a training set

T = {(X1,Y1), · · · , (Xl,Yl)}, (8.9.2)

where Xi = {xi1, · · · , xili}, xij ∈ Rn, j = 1, · · · , li, Yi ∈ {−1, 1}. The pair
(Xi,Yi) with Yi = 1 means that Xi is a positive bag where at least one instance
xij in Xi = {xi1, · · · , xili} belongs to positive class and (Xi,Yi) with Yi = −1
means that Xi is a negative bag where all instances xij in Xi = {xi1, · · · , xili}
belong to negative class, i = 1, · · · , l. Find a real function g(x) in Rn, such
that the label y for any instance x can be predicted by the decision function

f(x) = sgn(g(x)). (8.9.3)

Obviously, the above decision function can be used to predict the label of
any bag X̃ = {x̃1, · · · , x̃m}. In fact, the bag is assigned to the negative class
if the labels of all instances x̃1, · · · , x̃m predicted by (8.9.3) are −1; to the
positive class otherwise. That is the label Ỹ of X̃ is computed by

Ỹ = sgn
(

max
i=1,··· ,m

f(x̃i)
)
. (8.9.4)

The above multi-instance problem was proposed in the application domain

of drug activity prediction[49] and a toy example in R2 is shown in Figure 8.10,
where every enclosure stands for a bag; a bag with “+” is positive and a bag
with “◦” is negative, and both “+” and “◦” stand for instances. Multi-instance
learning has been found useful in diverse domains and attracted a great deal
of research such as [3, 28, 29, 105, 120, 127, 195].
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FIGURE 8.10: A multi-instance classification problem in R2.

8.9.2 Multi-instance linear support vector classification

Let us introduce an algorithm proposed in [178] based on [3, 105]. Reorder
training set (8.9.1) by putting the negative bags after the positive bags as

T = {(X1,Y1), · · · , (Xp,Yp), (Xp+1,Yp+1), · · · , (Xp+q ,Yp+q)}, (8.9.5)

where Y1 = · · · = Yp = 1, Yp+1 = · · · = Yp+q = −1. Denote all instances in
all positive bags X1, · · · ,Xp and all negative bags Xp+1, · · · ,Xp+q as the sets
S+ and S−

S+ = {x1, · · · , xr}, and S− = {xr+1, · · · , xr+s}, (8.9.6)

respectively, where r and s are respectively the number of the instances in all
positive bags and all negative bags. Introduce the subscript set I(i), such that

Xi = {xj |xj ∈ S+, j ∈ I(i)}, i = 1, · · · , p. (8.9.7)

Thus the training set can be equivalently written as

T = {(X1, y1), · · · , (Xp, yp), (xr+1, yr+1), · · · , (xr+s, yr+s)} (8.9.8)

with Xi = {xj |j ∈ I(i)}, where y1 = Y1 = · · · = yp = Yp = 1, yr+1 = · · · =
yr+s = −1, and the pair (Xi, yi) = (Xi, 1) means that there is at least one
positive instance xk in the bag Xi, i = 1, · · · , p, and the pair (xi, yi) = (xi,−1)
means that xi is a negative instance, i = r + 1, · · · , r + s.

8.9.2.1 Optimization problem

First consider the linearly separable problem described in the following
definition.
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Definition 8.9.1 (Linearly separable multi-instance classification problem)
We say the training set (8.9.8) and the corresponding classification problem
are linearly separable if there exist w ∈ Rn, b ∈ R and a positive number ε,
such that for any subscript i with yi = 1, the bag Xi includes at least one
instance xk satisfying (w · xk) + b ≥ ε; and for any subscript i with yi = −1,
xi satisfies (w · xi) + b ≤ −ε.

Intuitively, a linearly separable problem is such a problem whose training
set can be separated correctly by a hyperplane. A simple linearly separable
problem in R2 is shown in Figure 8.11 where any positive bag has at least
one instance lying in the upper right of the separating line, and any negative
instance lies in the lower left of the separating line.

FIGURE 8.11: A linearly separable multi-instance classification problem in
R2.

For the linearly separable problem, find a separating hyperplane

(w · x) + b = 0. (8.9.9)

Similar to the formulation of the optimization problem (2.2.8)∼(2.2.9), the
principle of maximal margin leads to the optimization problem

min
w,b

1

2
‖w‖2, (8.9.10)

s.t. max
j∈I(i)

(w · xj) + b ≥ 1, i = 1, · · · , p, (8.9.11)

(w · xi) + b ≤ −1, i = r + 1, · · · , r + s. (8.9.12)

The next step will be based on the simple observation that a positive bag
will be classified as being in the positive halfspace {x|(w · x) + b − 1 > 0}
by separating hyperplane (8.9.9) if and only if some convex combination of
the instances in the bag lies in the positive halfspace. This implies that, for
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i = 1, · · · , p, the inequality

max
j∈I(i)

(w · xj) + b ≥ 1 (8.9.13)

is equivalent to that there exists a set {vij|j ∈ I(i)}, such that

vij ≥ 0,
∑

j∈I(i)

vij = 1,

(
w ·

∑

j∈I(i)

vijxj

)
+ b ≥ 1. (8.9.14)

Thus problem (8.9.10)∼(8.9.12) is transformed into the problem

min
w,b,v

1

2
‖w‖2, (8.9.15)

s.t.

(
w ·

∑

j∈I(i)

vijxj

)
+ b ≥ 1, i = 1, · · · , p, (8.9.16)

(w · xi) + b ≤ −1, i = r + 1, · · · , r + s, (8.9.17)

vij ≥ 0, j ∈ I(i), i = 1, · · · , p, (8.9.18)
∑

j∈I(i)

vij = 1, i = 1, · · · , p, (8.9.19)

where
v = {vij|j ∈ I(i), i = 1, · · · , p}. (8.9.20)

As for the problem without the assumption of linear separability, we need
only to introduce slack variables ξ = (ξ1, · · · , ξp, ξr+1, · · · , ξr+s)T and penalty
parameters C1, C2, and then get the final optimization problem

min
w,b,v,ξ

1

2
‖w‖2 + C1

p∑

i=1

ξi + C2

r+s∑

i=r+1

ξi, (8.9.21)

s.t.

(
w ·

∑

j∈I(i)

vijxj

)
+ b ≥ 1− ξi, i = 1, · · · , p, (8.9.22)

(w · xi) + b ≤ −1 + ξi, i = r + 1, · · · , r + s, (8.9.23)

ξi ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s, (8.9.24)

vij ≥ 0, j ∈ I(i), i = 1, · · · , p, (8.9.25)
∑

j∈I(i)

vij = 1, i = 1, · · · , p. (8.9.26)

The decision function can be obtained from the solution (w∗, b∗) to the above
problem w.r.t. (w, b)

f(x) = sgn((w∗ · x) + b∗). (8.9.27)



286 Support Vector Machines

8.9.2.2 Linear support vector classification

Consider solving the problem (8.9.21)∼(8.9.26). It is easy to see that,
among its constraints, only the first one is nonlinear, and in fact is bilin-
ear. An obvious method of solution suggests itself as follows: Alternatively,
hold one set of variables which constitute the bilinear terms constant while
varying the other set. More precisely, it contains two steps:

(i) Update (w, b) as given v. For a given v, define the series
{x̄1, · · ·, x̄p, x̄r+1, · · · , x̄r+s}:

x̄i =
∑

j∈I(i)

vijxj , i = 1, · · · , p, (8.9.28)

x̄i = xi, i = r + 1, · · · , r + s, (8.9.29)

then the problem (8.9.21)∼(8.9.26) can be written as

min
w,b,ξ

1

2
‖w‖2 + C1

p∑

i=1

ξi + C2

r+s∑

i=r+1

ξi, (8.9.30)

s.t. yi((w · x̄i) + b) ≥ 1− ξi, i = 1, · · · , p, r + 1, · · · , r + s,(8.9.31)

ξi ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s. (8.9.32)

This problem corresponds to the problem (2.3.4)∼(2.3.6) in Chapter 2. Corre-
sponding to the problem (2.3.31)∼(2.3.33), it is easy to get the optimization
problem equivalent to the dual problem of problem (8.9.30)∼(8.9.32)

min
α

1

2

p∑

i=1

p∑

j=1

yiyj(x̄i · x̄j)αiαj +
1

2

p∑

i=1

r+s∑

j=r+1

yiyj(x̄i · x̄j)αiαj

[1mm] +
1

2

r+s∑

i=r+1

p∑

j=1

yiyj(x̄i · x̄j)αiαj +
1

2

r+s∑

i=r+1

r+s∑

j=r+1

yiyj(x̄i · x̄j)αiαj

−
p∑

i=1

αi −
r+s∑

i=r+1

αj , (8.9.33)

s.t.

p∑

i=1

yiαi +

r+s∑

i=r+1

yiαi = 0, (8.9.34)

0 ≤ αi ≤ C1, i = 1, · · · , p, (8.9.35)

0 ≤ αi ≤ C2, i = r + 1, · · · , r + s. (8.9.36)

According to the proof of Theorem 2.3.9, the solution (w̄, b̄) to the prob-
lem (8.9.30)∼(8.9.32) w.r.t. (w, b) can be obtained from the solution ᾱ =
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(ᾱ1, · · · , αp, αr+1, · · · , ᾱr+s)T to the problem (8.9.33)∼(8.9.36) by

w̄ =

p∑

i=1

ᾱiyix̄i +

r+s∑

i=r+1

ᾱiyix̄i, (8.9.37)

b̄ = yj −
p∑

i=1

ᾱiyi(x̄i · x̄j)−
r+s∑

i=r+1

ᾱiyi(x̄i · x̄j), (8.9.38)

if there exists a component ᾱj ∈ (0, C1) with 1 6 j 6 p or a component
ᾱj ∈ (0, C2) with r + 1 6 j 6 r + s. The pair (w̄, b̄) is used to update the old
value.

(ii) Update (v, b) as given w. For a given w, problem (8.9.21)∼(8.9.26)
becomes a linear programming

min
v,b,ξ

C1

p∑

i=1

ξi + C2

r+s∑

i=r+1

ξi, (8.9.39)

s.t.

(
w ·

∑

j∈I(i)

vijxj

)
+ b ≥ 1− ξi, i = 1, · · · , p, (8.9.40)

(w · xi) + b ≤ −1 + ξi, i = r + 1, · · · , r + s, (8.9.41)

ξi ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s, (8.9.42)

vij ≥ 0, j ∈ I(i), i = 1, · · · , p, (8.9.43)
∑

j∈I(i)

vij = 1, i = 1, · · · , p. (8.9.44)

Its solution (v̄, b̄) w.r.t. (v, b) enable us to update the old values.
Thus we can establish the following algorithm.

Algorithm 8.9.2 (Linear multi-instance support vector classification)

(1) Input the training set given by (8.9.8);

(2) Choose appropriate penalty parameters C1, C2 > 0.

(3) Choose an initial guess v(1) = {vij(1)|j ∈ I(i), i = 1, · · · , p}, e.g.

vij(1) =
1

|I(i)|, j ∈ I(i), i = 1, · · · , p, (8.9.45)

where |I(i)| stands for the number of the elements in the set I(i), i.e. the
number of the instances in the positive bag Xi. Set k = 1;

(4) For a fixed v(k) = {vij(k)}, compute w(k): First construct the series

x̄1, · · · , x̄p, x̄r+1, · · · , x̄r+s by (8.9.28)∼(8.9.29), where vij is replaced by vij(k).
Then solve the convex quadratic programming (8.9.33)∼(8.9.36), obtaining the
solution ᾱ = (ᾱ1, · · · , ᾱp, ᾱr+1, · · · , ᾱr+s)T. Last, compute w̄ from (8.9.37),
and set w(k) = w̄;
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(5) For fixed w(k), compute v(k + 1): Solve the linear programming
(8.9.39)∼(8.9.44) with the variables v = {vij} and b, ξ, obtaining the solu-

tion (v̄ = {v̄ij}, b̄) w.r.t. (v, b). Set v(k + 1) = {vij(k + 1)} = v̄ and b(k) = b̄;

(6) If the difference between v(k + 1) and v(k) is less than some desired tol-
erance, construct the decision function

f(x) = sgn((w∗ · x) + b∗), (8.9.46)

where w∗ = w(k), b∗ = b(k), stop; set k = k + 1, go to (4) otherwise.

8.9.3 Multi-instance support vector classification

The above linear classifiers can be extended to general classifier by intro-
ducing a transformation

Φ :
Rn → H,
x→ x = Φ(x).

(8.9.47)

Suppose that the separating hyperplane in Hilbert space H is

(w · x) + b = 0. (8.9.48)

Replacing xi and
∑

j∈I(i)

vijxj by Φ(xi) and
∑

j∈I(i)

vijΦ(xj) respectively, i =

1, · · · , p, problem (8.9.21)∼(8.9.26) becomes

min
w,b,v,ξ

1

2
‖w‖2 + C1

p∑

i=1

ξi + C2

r+s∑

i=r+1

ξi, (8.9.49)

s.t.

(
w ·

∑

j∈I(i)

vijΦ(xj)

)
+ b ≥ 1− ξi, i = 1, · · · , p, (8.9.50)

(w · Φ(xi)) + b ≤ −1 + ξi, i = r + 1, · · · , r + s, (8.9.51)

ξi ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s, (8.9.52)

vij ≥ 0, j ∈ I(i), i = 1, · · · , p, (8.9.53)
∑

j∈I(i)

vij = 1, i = 1, · · · , p. (8.9.54)

This problem can also be solved by using the following two steps alterna-
tively:

(i) Update (w, b) as given v. For a given v = {vij} = {vij |j ∈ I(i)},
problem (8.9.49)∼(8.9.54) reduces to a problem similar to the problem
(8.9.30)∼(8.9.32). Similar to the solution to the problem (8.9.30)∼(8.9.32)
via the problem (8.9.33)∼(8.9.36), the current problem can be solved via the
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problem

min
α

1

2

p∑

i=1

p∑

j=1

yiyjαiαj

( ∑

k∈I(i)

vikΦ(xk) ·
∑

l∈I(j)

vjl Φ(xl)

)

+
1

2

p∑

i=1

r+s∑

j=r+1

yiyjαiαj

( ∑

k∈I(i)

vikΦ(xk) · Φ(xj)
)

+
1

2

r+s∑

i=r+1

p∑

j=1

yiyjαiαj

(
Φ(xi) ·

∑

k∈I(j)

vjkΦ(xk)

)

+
1

2

r+s∑

i=r+1

r+s∑

j=r+1

yiyjαiαj(Φ(xi) · Φ(xj))

−
p∑

i=1

αi −
r+s∑

i=r+1

αi, (8.9.55)

s.t.

p∑

i=1

yiαi +

r+s∑

i=r+1

yiαi = 0, (8.9.56)

0 ≤ αi ≤ C1, i = 1, · · · , p, (8.9.57)

0 ≤ αi ≤ C2, i = r + 1, · · · , r + s. (8.9.58)

or

min
α

1

2

p∑

i=1

p∑

j=1

yiyjαiαj

( ∑

k∈I(i)

vik
∑

l∈I(j)

vjlK(xk, xl)

)

+
1

2

p∑

i=1

r+s∑

j=r+1

yiyjαiαj

( ∑

k∈I(i)

vikK(xk, xj)

)

+
1

2

r+s∑

i=r+1

p∑

j=1

yiyjαiαj

( ∑

k∈I(j)

vjkK(xi, xk)

)

+
1

2

r+s∑

i=r+1

r+s∑

j=r+1

yiyjαiαjK(xi, xj)

−
p∑

i=1

αi −
r+s∑

i=r+1

αi, (8.9.59)

s.t.

p∑

i=1

yiαi +

r+s∑

i=r+1

yiαi = 0, (8.9.60)

0 ≤ αi ≤ C1, i = 1, · · · , p, (8.9.61)

0 ≤ αi ≤ C2, i = r + 1, · · · , r + s. (8.9.62)

A solution (w̄, b̄) to the problem (8.9.49)∼(8.9.54) w.r.t. (w, b) can be ob-
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tained from the solution ᾱ = (ᾱ1, · · · , ᾱp, ᾱr+1, · · · , ᾱr+s)T to the problem
(8.9.59)∼(8.9.62) by computing

w̄ =

p∑

i=1

ᾱiyi

( ∑

j∈I(i)

vijΦ(xj)

)
+

r+s∑

i=r+1

ᾱiyiΦ(xi), (8.9.63)

and selecting a component of ᾱ, ᾱj ∈ (0, C1) with 1 6 j 6 p and computing

b̄ = yj−
p∑

i=1

yiᾱi

( ∑

k∈I(j)

vjkK(xi, xk)

)
−

r+s∑

i=r+1

yiᾱi

( ∑

l∈I(i)

vil
∑

k∈I(j)

vjkK(xl, xk)

)
;

(8.9.64)
or selecting a component of ᾱ, ᾱj ∈ (0, C2) with r + 1 6 j 6 r + s and
computing

b̄ = yj −
p∑

i=1

yiᾱiK(xi, xj)−
r+s∑

i=r+1

yiᾱi

( ∑

l∈I(i)

vilK(xl, xj)

)
. (8.9.65)

The pairs (w̄, b̄) obtained from (8.9.63) and (8.9.65) or (8.9.63) and (8.9.65)
are used to update the old ones.

(ii) Update (v, b) as given w in the form

w̄ =

p∑

i=1

ᾱiyi

( ∑

j∈I(i)

vijΦ(xj)

)
+

r+s∑

i=r+1

ᾱiyiΦ(xi). (8.9.66)

Substituting (8.9.66) into the problem (8.9.49)∼(8.9.54) yields the linear pro-
gramming

min
v,b,ξ

C1

p∑

i=1

ξi + C2

r+s∑

i=r+1

ξi, (8.9.67)

s.t.

p∑

j=1

yjᾱj

( ∑

k∈I(i)

vikK(xj , xk)

)

+

r+s∑

j=r+1

yjᾱj

( ∑

l∈I(j)

ṽjl

∑

k∈I(i)

vikK(xl, xk)

)
+b ≥ 1−ξi, i=1, · · · , p,

(8.9.68)
p∑

j=1

ᾱjyjK(xj , xi) +

r+s∑

j=r+1

ᾱjyj

( ∑

k∈I(j)

ṽjlK(xl, xi)

)
+ b ≤ −1 + ξi,

i = r + 1, · · · , r + s, (8.9.69)

ξi ≥ 0, i = 1, · · · , p, r + 1, · · · , r + s, (8.9.70)

vij ≥ 0, j ∈ I(i), i = 1, · · · , p, (8.9.71)
∑

j∈I(i)

vij = 1, i = 1, · · · , p, (8.9.72)
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where ᾱ = (ᾱ1, · · · , ᾱp, αr+1, · · · , ᾱr+s)T and ṽ = {ṽij |j ∈ I(i), i = 1, · · · , p}
are known. Its solution (v̄, b̄) w.r.t. (v, b) is used to update the old one.

At last corresponding to the separating hyperplane (8.9.48) in H, the sep-
arating hypersurface in Rn is given by

g(x) = 0, (8.9.73)

where

g(x) =

p∑

i=1

ᾱiyi

( ∑

j∈I(i)

vijK(xj , x)

)
+

r+s∑

i=r+1

ᾱiyiK(xi, x) + b̄. (8.9.74)

Thus the following algorithm is established.

Algorithm 8.9.3 (Multi-instance support vector classification)

(1) Input the training set given by (8.9.8);

(2) Choose an appropriate kernel function K(x, x′) and penalty parameters
C1, C2 > 0;

(3) Choose an initial guess v = {vij} = {vij |j ∈ I(i), i = 1, · · · , p}, e.g.

vij =
1

|I(i)|, j ∈ I(i), i = 1, · · · , p, (8.9.75)

where |I(i)| stands for the number of the elements in the set I(i), i.e. the
number of the instances in the positive bag Xi, i = 1, · · · , p;
(4) For a fixed v = {vij} compute ᾱ: Solve the convex quadratic programming

(8.9.59)∼(8.9.62), obtaining the solution ᾱ = (ᾱ1, · · · , ᾱp, ᾱr+1, · · · , ᾱr+s)T.
Set ṽ ≡ {ṽij} = {vij} ≡ v;

(5) For fixed ᾱ, ṽ, compute v̄ = {v̄ij}: Solve the linear programming

(8.9.67)∼(8.9.72) with the variables v = {vij}, b and ξ, obtaining the solu-

tion v̄ = {v̄ij} w.r.t. v = {vij};
(6) If the difference between v̄ = {v̄ij} and ṽ = {ṽij}, is less than some desired
tolerance, construct the decision function

f(x) = sgn(g(x)), (8.9.76)

where g(x) comes from (8.9.74) and (8.9.64) or (8.9.74) and (8.9.65), here
the last ᾱ and v = {vij} are used, stops; Set v ≡ {vij} = {v̄ij} ≡ v̄, go to (4)
otherwise.

Algorithm 8.9.3 is an extension of Algorithm 8.9.2, they get the same
decision function if the linear kernel is chosen in the former. However, when
the linear classifier is required, Algorithm 8.9.2 is recommended since it needs
a little less computation cost.
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8.10 Multi-label Classification

Multi-label classification was mainly motivated by the tasks of medical
diagnosis and text categorization. In medical diagnosis, a patient may be suf-
fering, for example, from diabetes and prostate cancer at the same time. Sim-
ilarly, text documents usually belong to more than one conceptual class. For
example, a document describing the politics involved in the sport of cricket
could be classified as Sports/Cricket, as well as Society/Politics. When a doc-
ument can belong to more than one class, it is called multi-labeled. Nowa-
days, multi-label classification methods are increasingly required by modern
applications, such as protein function classification, music categorization, and
semantic scene classification [128, 151]. Multi-label classification is a more dif-
ficult problem than just choosing one out of many classes. This problem can
be considered as an extension of the standard classification problem in the
following way: the single labels in the training points are extended to a set of
labels. More precisely, the problem is formulated mathematically as follows:

Multi-label classification problem Suppose that there is a training set

T = {(x1, Y1), . . . , (xl, Yl)} (8.10.1)

where the vector xi ∈ Rn, the set Yi ⊆ {1, 2, ...,M}, i = 1, · · · , l. Find a
decision function f(x) in Rn, such that the label set Y for any input x can be
predicted by the decision function.

The existing methods for multi-label classification problems can be
grouped into two main categories [151]: 1) problem transformation methods,
which transform the multi-label classification problem either into one or more
single-label classification or regression problems, for both of which there exists
a huge bibliography of learning algorithms; and 2) algorithm adaptation meth-
ods, which extend specific learning algorithms in order to handle multi-label
data directly.

8.10.1 Problem transformation methods

Here we briefly introduce two algorithms of this category [128]. The first
is the standard method which creates an ensemble of M numbers of yes/no
binary classifiers, one for each label. This method is called one-vs-others. For
each label, a binary classification problem is constructed, in which the positive
class includes all training points having this label as one of their labels and
the negative side includes all other training points. During application, this
method outputs a label set which is the union of the labels outputted by the
M classifiers for any x. Thus the following algorithm is established.

Algorithm 8.10.1 (Multi-label support vector classification based on problem

transformation[51])
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(1) Input the training set T given by (8.10.1), set k = 1;

(2) Construct the k-th training set Tk for the binary classification problem:
for xi, i = 1, · · · , l, if k ∈ Yi, set its corresponding output label y(k)i = 1,
otherwise y(k)i = −1. Let Tk = {(x(k)1, y(k)1), · · · , (x(k)l, y(k)l)}, where
x(k)i = xi ∈ Rn, y(k)i ∈ {−1,+1}, i = 1, · · · , l;
(3) For the training set Tk, apply standard binary support vector classification,
get the decision function fk(x) = sgn(gk(x)); if k < M , set k = k + 1, go to
step (2), otherwise go to step (4);

(4) Construct the decision function

f(x) = (f1(x), · · · , fM (x)), (8.10.2)

for any x, fi(x) = 1 means that x belongs to the class i, while fj(x) = −1
means that x does not belong to the class j.

Algorithm 8.10.1 does not take into account the correlation between labels.
However, multi-labeled data, by its very nature, consists of highly correlated
and overlapping classes. For instance, in the Reuters-21578 dataset, there
are classes like wheat-grain, crude-fuel, where one class is almost a parent
of the other class although this knowledge is not explicitly available to the
classifier. Therefore, as a remedial measure, Algorithm 8.10.1 was improved
by extending the original training set with M extra features containing the
predictions of each binary classifier since these predictions may imply some
correlation information between labels.

Algorithm 8.10.2 (Improved multi-label support vector classification)

(1) Input the training set T given by (8.10.1);

(2) Apply Algorithm 8.10.1 and get the decision function

f(x) = (f1(x), · · · , fM (x)); (8.10.3)

(3) Extend the training set T to be

T̃ = {(x̃1, Ỹ1), . . . , (x̃l, Ỹl)}, (8.10.4)

where x̃i = (xTi , f(xi))
T = (xTi , f1(xi), · · · , fM (xi))

T ∈ Rn+M , Ỹi = Yi ⊆
Y = {1, 2, ...,M}, i = 1, · · · , l;
(4) For the extended training set T̃ , apply Algorithm 8.10.1 again and get the
final decision function

f̃(x) = (f̃1(x̃), · · · , f̃M (x̃)). (8.10.5)

For any x, first extend it to x̃ by step (3) and f̃i(x̃) = 1 means that x belongs
to the class i, while f̃j(x̃) = −1 means that x does not belong to the class j.
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8.10.2 Algorithm adaptation methods

One of the algorithm adaptation methods is ranking support vector clas-
sification proposed in [51], which can be considered as a modification and
extension of Crammer-Singer support vector classification introduced in Sec-
tion 8.3.3.

8.10.2.1 A ranking system

Remember that for an M -class classification problem, linear Crammer-
Singer support vector classification find vectors w1, · · · , wM . And for any input
x, the corresponding output is obtained by comparing (w1 · x), · · · , (wM · x),
i.e.

f(x) = argmax
r=1,···,M

(wr · x). (8.10.6)

Intuitively speaking, this strategy can be understood that the larger the
value of (wr · x), the more possible the corresponding x will be in class
r. Similarly, for a multi-label classification problem with the training set
(8.10.1), linear ranking support vector classification find vectors w1, · · · , wM
and b1, · · · , bM . Corresponding to the values (w1 · x), · · · , (wM · x), the values
(w1 ·x)+b1, · · · , (wM ·x)+bM are compared; the larger the value of (wr ·x)+br ,
the more possible the corresponding x will be in class r.

For a system that ranks the values of (wr ·x)+b, the decision boundaries for
x are defined by the hyperplanes whose equations are (wr−wp, x)+br−bp = 0,
where r belongs to the label set of x and p does not. So, the margin of (x, Y )
can be expressed as

min
r∈Y,p∈Ȳ

(wr − wp, x) + br − bp
‖wr − wp‖

, (8.10.7)

where Ȳ is the complementary set of Y in {1, ...,M}. It represents the signed
2-norm distance of x to the boundaries. Assuming that the training set T is
linearly separable, we can normalize the parameters wr such that

(wr − wp, x) + br − bp > 1 (8.10.8)

with equality for some input xi of T , and (r, p) ∈ Y × Ȳ . So the maximal
margin on the whole training set leads to the following problem

max
wj ,bj ,j=1,··· ,M

min
(xi,Yi),i=1,··· ,l

min
r∈Yi,p∈Ȳi

1

‖wr − wp‖2
, (8.10.9)

s.t. (wr − wp, xi) + br − bp > 1, (r, p) ∈ Yi × Ȳi,

i = 1, · · · , l. (8.10.10)

In the case where the problem is not ill-conditioned (two labels are always co-

occurring), the objective function can be replaced by max
wj

min
r,p

1

‖wr − wp‖2
=



Variants and Extensions of Support Vector Machines 295

min
wj

max
r,p

‖wr − wp‖2. In order to get a simpler optimization problem we ap-

proximate this maximum by the sum and, after some calculations, obtain

max
wj ,bj ,j=1,··· ,M

1

2

M∑

k=1

‖wk‖2, (8.10.11)

s.t. (wr − wp, xi) + br − bp > 1, (r, p) ∈ Yi × Ȳi,

i = 1, · · · , l. (8.10.12)

To generalize this problem in the case where the training set may be linearly
nonseparable, we introduce the slack variables ξirp > 0 and get the primal
problem:

max
wj ,bj ,j=1,··· ,M

1

2

M∑

k=1

‖wk‖2 + C

l∑

i=1

1

|Yi||Ȳi|
∑

(r,p)∈Yi×Ȳi

ξirp (8.10.13)

s.t. (wr − wp, xi) + br − bp > 1− ξirp, (r, p) ∈ Yi × Ȳi,

i = 1, · · · , l, (8.10.14)

ξirp > 0, (r, p) ∈ (Yi × Ȳi), i = 1, · · · , l, (8.10.15)

where |Yi| and |Ȳi| are the numbers of the elements in Yi and Ȳi respectively,

the term
1

|Yi||Ȳi|
is used to normalize the sum of slack variables for each i.

The solution to the primal problem (8.10.13)∼(8.10.15) can also be ob-
tained by solving its dual problem. Introducing the Lagrange function

L =
1

2

M∑

k=1

‖wk‖2 + C

l∑

i=1

1

|Yi||Ȳi|
∑

(r,p)∈Yi×Ȳi

ξirp

−
l∑

i=1

∑

(r,p)∈Yi×Ȳi

αirp
(
(wr − wp, xi) + br − bp − 1 + ξirp

)

−
l∑

i=1

∑

(r,p)∈Yi×Ȳi

ηirpξirp, (8.10.16)

where α and η are the corresponding Lagrange multipliers, we get the dual
problem, which can be written equivalently as

max
α

W (α) =
1

2

M∑

k=1

l∑

i,j=1

βki(α)βkj(α)(xi · xj)−
l∑

i=1

∑

(r,p)∈Yi×Ȳi

αirp,

(8.10.17)

s.t.
l∑

i=1

∑

(r,p)∈Yi×Ȳi

cirpkαirp = 0, k = 1, · · · ,M, (8.10.18)

0 6 αirp 6 C/Ci, (r, p) ∈ Yi × Ȳi, i = 1, · · · , l, (8.10.19)
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where Ci = |Yi||Ȳi| and

βkq(α) =
∑

(r,p)∈Yi×Ȳi

cqrpkαqrp, k = 1, · · · ,M, q = 1, · · · , l,

(8.10.20)

cirpk =






0 if r 6= k and p 6= k,
+1 if r = k,
−1 if p = k.

(8.10.21)

Theorem 8.10.3 Suppose that α∗ is any solution to the problem (8.10.17)∼
(8.10.21). Then a solution (w∗

1 , · · · , w∗
M , b

∗
1, · · · , b∗M ) to the primal problem

(8.10.13)∼(8.10.15) w.r.t. (w, · · · , wM , b1, · · · , bM ) such that

(w∗
k · x) =

l∑

i=1

( ∑

(r,p)∈(Yi×Ȳi)

cirpkα
∗
irp

)
(xi · x), k = 1, · · · ,M, (8.10.22)

and if α∗
irp ∈ (0, C/Ci),

b∗k − b∗q = 1− ((w∗
k − w∗

q ) · xi), i = 1, · · · , l; k, q = 1, · · · ,M. (8.10.23)

This theorem can be used to establish the ranking system by comparing
any pair gk(x) = (w∗

k · x) + b∗k and gq(x) = (w∗
q · x) + b∗q . In addition, this

system is easily extended to the case with kernel K(x, x′) = (Φ(x) ·Φ(x′)) by
replacing (8.10.22) and (8.10.23) by

gk(x) =
l∑

i=1

( ∑

(r,p)∈Yi×Ȳi

cirpkα
∗
irp

)
K(xi, x) + b∗k, k = 1, · · · ,M, (8.10.24)

and

b∗k − b∗q = 1−
( l∑

i=1

( ∑

(r,p)∈Yi×Ȳi

cirpkα
∗
irp

)
K(xi, x)−

l∑

i=1

( ∑

(r,p)∈Yi×Ȳi

cirpqα
∗
irp

)
K(xi, x)

)
,

i = 1, · · · , l; k, q = 1, · · · ,M. (8.10.25)

8.10.2.2 Label set size prediction

So far we have only developed a ranking system. To obtain a complete algo-
rithm we need to design a label set size predictor s(x), the number of elements
in the label set for any input x. A natural way of doing this is to look for inspi-
ration from Algorithm 8.10.1, where the output is f(x) = {f1(x), · · · , fM (x)},
fk(x) = sgn(gk(x)), k = 1, · · · ,M . It can indeed be interpreted as a ranking
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system whose ranks are derived from the real values (g1(x), · · · , gM (x)). The
predictor of the label set size is then quite simple: s(x) = |{gk(x) > 0}|
is the number of gk greater than 0. The function s(x) is computed from
a threshold value that differentiates labels in the target set from others.
For the current ranking system we generalize this idea by designing a func-
tion s(x) = |gk(x) > t(x)|. The remaining problem now is to choose t(x)
which is done by solving a regression problem. The corresponding training set
Tr = {(x1, y1), · · · , (xl, yl)} can be obtained from the training set (8.10.1) and
the equations (8.10.24)∼(8.10.25):

yi = argmint|{k ∈ Y | gk(xi) 6 t}|+ |{k ∈ Ȳ | gk(xi) > t}|, i = 1, · · · , l.
(8.10.26)

When the minimum is not unique and the optimal values are a segment, we
choose the middle of this segment.

8.10.3 Algorithm

Combining the above ranking system and label set size prediction yields
the following algorithm.

Algorithm 8.10.4 (Ranking support vector classification)

(1) Input the training set T given by (8.10.1);

(2) Choose an appropriate penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming (8.10.17)∼(8.10.21),
obtaining a solution α∗;

(4) Construct M functions {g1(x), · · · , gM (x)} by (8.10.24) and (8.10.25);

(5) Construct the training set

Tr = {(x1, y1), · · · , (xl, yl)} (8.10.27)

where y1, · · · , yl are given by (8.10.26);

(6) Construct a decision function y = t(x) by a regression algorithm, e.g
Algorithm 4.3.6 from the training set Tr;

(7) For any input x, all integer k such that gk(x) > t(x) are considered to
belong to its label set.

An efficient implementation of the above algorithm is also proposed in [51].
In conclusion, multi-label classification problem is a rather difficult prob-

lem and has attracted significant attention from many researchers. Please see
[62, 122, 151, 152] and the references therein for further investigation.
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“This book provides a concise overview of SVMs, starting from the 
basics and connecting to many of their most significant extensions. 
Starting from an optimization perspective provides a new way of 
presenting the material, including many of the technical details that 
are hard to find in other texts. And since it includes a discussion 
of many practical issues important for the effective use of SVMs 
(e.g., feature construction), the book is valuable as a reference for 
researchers and practitioners alike.”
—Professor Thorsten Joachims, Cornell University

“One thing which makes the book very unique from other books 
is that the authors try to shed light on SVM from the viewpoint of 
optimization. I believe that the comprehensive and systematic 
explanation on the basic concepts, fundamental principles, 
algorithms, and theories of SVM will help readers have a really in-
depth understanding of the space. It is really a great book, which 
many researchers, students, and engineers in computer science 
and related fields will want to carefully read and routinely consult.”
—Dr. Hang Li, Noah’s Ark Lab, Huawei Technologies Co., Ltd

“This book comprehensively covers many topics of SVMs. In 
particular, it gives a nice connection between optimization theory 
and support vector machines. … The setting allows readers to easily 
learn how optimization techniques are used in a machine learning 
technique such as SVM.”
—Professor Chih-Jen Lin, National Taiwan University
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