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Preface

Support vector machines (SVMs), which were introduced by Vapnik in the
early 1990s, have proven effective and promising techniques for data mining.
SVMs have recently made breakthroughs and advances in their theoretical
studies and implementations of algorithms. They have been successfully ap-
plied in many fields such as text categorization, speech recognition, remote
sensing image analysis, time series forecasting, information security, and so
forth.

SVMs, having their roots in Statistical Learning Theory (SLT) and opti-
mization methods, have become powerful tools to solve the problems of ma-
chine learning with finite training points and to overcome some traditional
difficulties such as the “curse of dimensionality”, “over-fitting”, and so forth.
Their theoretical foundation and implementation techniques have been estab-
lished and SVMs are gaining quick popularity due to their many attractive fea-
tures: nice mathematical representations, geometrical explanations, good gen-
eralization abilities, and promising empirical performance. Some SVM mono-
graphs, including more sophisticated ones such as Cristianini & Shawe-Taylor
[39] and Scholkopf & Smola [124], have been published.

We have published two books in Chinese about SVMs in Science Press of
China since 2004 [42, 43], which attracted widespread interest and received
favorable comments in China. After several years of research and teaching,
we decided to rewrite the books and add new research achievements. The
starting point and focus of the book is optimization theory, which is different
from other books on SVMs in this respect. Optimization is one of the pillars
on which SVMSs are built, so it makes a lot of sense to consider them from this
point of view.

This book introduces SVMs systematically and comprehensively. We place
emphasis on the readability and the importance of perception on a sound un-
derstanding of SVMs. Prior to systematical and rigorous discourses, concepts
are introduced graphically, and the methods and conclusions are proposed by
direct inspection or with visual explanation. Particularly, for some important
concepts and algorithms we try our best to give clearly geometric interpreta-
tions that are not depicted in the literature, such as Crammer-Singer SVM
for multiclass classification problems.

We give details on classification problems and regression problems that
are the two main components of SVMs. We formated this book uniformly
by using the classification problem as the principal axis and converting the

xxiii
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regression problem to the classification problem. The book is organized as fol-
lows. In Chapter 1 the optimization fundamentals are introduced. The convex
programming encompassing traditional convex optimization (Sections 1.1-1.3)
and conic programming (Sections 1.4-1.5). Sections 1.1-1.3 are necessary back-
ground for the later chapters. For beginners, Sections 1.4 and 1.5 (marked with
an asterisk *) can be skipped since they are used only in Subsections 8.4.3 and
8.8.3 of Chapter 8, and are mainly served for further research. Support vector
machines begin from Chapter 2 starting from linear classification problems.
Based on the maximal margin principal, the basic linear support vector clas-
sification is derived visually in Chapter 2. Linear support vector regression is
established in Chapter 3. The kernel theory, which is the key of extension of
basic SVMs and the foundation for solving nonlinear problems, together with
the general classification and regression problems, are discussed in Chapter 4.
Starting with statistical interpretation of the maximal margin method, statis-
tical learning theory, which is the groundwork of SVMs, is studied in Chapter
5. The model construction problems, which are very useful in practical appli-
cations, are discussed in Chapter 6. The implementations of several prevailing
SVM’s algorithms are introduced in Chapter 7. Finally, the variations and ex-
tensions of SVMs including multiclass classification, semisupervised classifica-
tion, knowledge-based classification, Universum classification, privileged clas-
sification, robust classification, multi-instance classification, and multi-label
classification are covered in Chapter 8.

The contents of this book comprise our research achievements. A precise
and concise interpretation of statistical leaning theory for C-support vector
classification (C-SVC) is given in Chapter 5 which imbues the parameter C
with a new meaning. From our achievements the following results of SVMs are
also given: the regularized twin SVMs for binary classification problems, the
SVMs for solving multi-classification problems based on the idea of ordinal
regression, the SVMs for semisupervised problems by means of constructing
second order cone programming or semidefinite programming models, and the
SVMs for problems with perturbations.

Potential readers include those who are beginners in the SVM and those
who are interested in solving real-world problems by employing SVMs, and
those who will conduct more comprehensive study of SVMs.

We are indebted to all the people who have helped in various ways. We
would like to say special thanks to Dr. Hang Li, Chief Scientist of Noah’s Ark
Lab of Huawei Technologies, academicians Zhiming Ma and Yaxiang Yuan
of Chinese Academy of Sciences, Dr. Mingren Shi of University of Western
Australia, Prof. Changyu Wang and Prof. Yiju Wang of Qufu Normal Univer-
sity, Prof. Zunquan Xia and Liwei Zhang of Dalian University of Technology,
Prof. Naihua Xiu of Beijing Jiaotong University, Prof. Yanqin Bai of Shang-
hai University, and Prof. Ling Jing of China Agricultural University for their
valuable suggestions. Our gratitude goes also to Prof. Xiangsun Zhang and
Prof. Yong Shi of Chinese Academy of Sciences, and Prof. Shuzhong Zhang of
The Chinese University of Hong Kong for their great help and support. We
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appreciate assistance from the members of our workshop — Dr. Zhixia Yang,
Dr. Kun Zhao, Dr. Yongcui Wang, Dr. Xiaojian Shao, Dr. Ruxin Qin, Dr.
Yuanhai Shao, Dr. Junyan Tan, Ms. Yanmei Zhao, Ms. Tingting Gao, and
Ms. Yuxin Li.

Finally, we would like acknowledge a number of funding agencies that pro-
vided their generous support to our research activities on this book. They
are the Publishing Foundation of The Ministry of Science and Technology
of China, and the National Natural Science Foundation of China, including
the innovative group grant “Data Mining and Intelligent Knowledge Man-
agement” (#70621001, #70921061); the general project “ Knowledge Driven
Support Vector Machines Theory, Algorithms and Applications” (f 11271361);
the general project “Models and Algorithms for Support Vector Machines with
Adaptive Norms” (£ 11201480); the general project “The Optimization Meth-
ods in Multi-label Multi-instance Learning and its Applications” (§10971223);
the general project “The Optimization Methods of Kernel Matrix Learning
and its Applications in Bioinformatics” ($11071252); the CAS/SAFEA Interna-
tional Partnership Program for Creative Research Teams; the President Fund
of GUCAS; and the National Technology Support Program 2009BAH42B02.
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Chapter 1

Optimization

As the foundation of SVMs, the optimization fundamentals are introduced
in this chapter. It includes two parts: the basic part — Sections 1.1-1.3 and
the advanced part — Sections 1.4—-1.5. Sections 1.1, 1.2 and Section 1.3 are
respectively concerned with the traditional convex optimization in Euclidian
space and Hilbert space. For the readers who are not interested in the strict
mathematical argument, Section 1.3 can be read quickly just by comparing the
corresponding conclusions in Hilbert space and the ones in Euclidian space,
and believing that the similar conclusions in Hilbert space are true. Sections
1.4-1.5 are mainly concerned with the conic programming and can be skipped
for those beginners since they are only used in the later subsections 8.4.3 and
8.8.4. In fact they are mainly served for further research. We believe that, for
the development of SVMs, many applications of conic programming are still
waiting to be discovered.

1.1 Optimization Problems in Euclidian Space

1.1.1 An example of optimization problems

Example 1.1.1  Suppose that there exist two closed line segments uius and
v1vg on the plane [z]10]x]2 (see Figure 1.1). The distance between two points
u € ujuy and v € vivg is denoted as d(u,v). Find the points u* and v*
such that the distance d(u,v) is minimized at (u*,v*) under the restrictions
U € uiuy and v € v1V;3.

This problem can be formulated as an optimization problem. The points
u on the segment ujus and v on v1vy can be represented as

u=oau; + (1 —a)uz, «a€][0,1] (1.1.1)

and
v=_pvi+(1-Bv, B€0,1] (1.1.2)

respectively. Thus the distance between u and v is a function of («, 3)

fla, B) = [[u—v|]* = a110® — 241208 + ag2B8” + bra + b+ ¢, (1.1.3)
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[xLa o3,

o [x],

FIGURE 1.1: Two line segments in R2.
where the coefficients are given by
a1 = [luy — uo|?, a1z = (ur —uz) " (v —v2), age = |jv1 — v2?,
bl = 2(’[,&1 — ’LLQ)T(’LLQ — 1)2), bQ = 2(’01 — UQ)T('UQ — ’LLQ), C = ||U2 — 1)2”2.
(1.1.4)

We should find (o*, 8*) at which the function f(a, ) obtains its minimum.
Note that the variables « and § are restricted in the intervals « € [0,1],8 €
[0, 1] respectively. Therefore the problem can be formulated as

min flo, B) = ar11a® — 2a1208 + agef* + bia 4+ bof +¢, (1.1.5)
s.t. 0<a<l, (1.1.6)
0< A<, (1.1.7)

where the coefficients a;j, 4,5 = 1,2, b;, i = 1,2 and ¢ are given by (1.1.4).
Here “min” stands for“minimize”, and “s.t.” stands for “subject to”. The
meaning of the problem is to find the minimizer (a*, 8*) of the function f(«, 8)
under restrictions (1.1.6) and (1.1.7). Having got (a*, 5*), the points u* and
v* with nearest distance can be obtained by

' =a'ur + (1 —a®ug, v* =%+ (1—p5")va. (1.1.8)
What we are concerned with now is the problem (1.1.5)~(1.1.7). Introduc-

ing a two-dimensional vector z = ([z]1, [r]2)T = (o, 3)", the problem can be
rewritten as

min  fo(z) = anfz]] — 2aizfz]i [2]2 + ags[z]3 + bieh + bafz]e + ¢,
(1.1.9)
s.t. —[z]1 <0, (1.1.10)
[z, —1<0, (1.1.11)
—[z]2 <0, (1.1.12)
2] —1 <0, (1.1.13)
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where a;5, 1,5 = 1,2, b;, ¢ =1,2 and c are given constants.

1.1.2 Optimization problems and their solutions

Extending the problem (1.1.9)~(1.1.13) by changing the two-dimensional
vector x into the n-dimensional vector x, the function involved into the gen-
eral smooth function, 4 restrictive conditions with inequalities into m ones,
and adding p restrictive conditions with equalities, the general optimization
problem can be obtained as follows

min fo(z),z = ([x]1,- - ,[ 1.)" € R, (1.1.14)
st. file)<0,i=1,--,m, (1.1.15)
hi(z) =0, i=1,---,p. (1.1.16)

Here the vector x is called the (optimization) variable of the problem, the
function fy in (1.1.14) is called the objective function. Restrictions (1.1.15)
and (1.1.16) are called the constraints; the former the inequality constraints,
the latter the equality constraints. f;(x),i =1,--- ,m and h;(x),i =1,--- ,p
are called the constraint functions. Problem (1.1.14)~(1.1.16) is called an
unconstrained problem if m+p = 0, i.e. there are no constraints; a constrained
problem otherwise.

Definition 1.1.2 (Feasible point and feasible region) A point satisfying all
the constraints is called a feasible point. The set of all such points constitutes
the feasible region D

D= {z|fi(x) <0,i=1,--- ;m;hi(z)=0,i=1,--- ,p;z € R"}.(1.1.17)

Definition 1.1.3 (Optimal value) The optimal value p* of the problem
(1.1.14)~(1.1.16) is defined as the infimum, i.e. the greatest lower bound, of
the objective function fo in the feasible region D when D is not empty; and
p* is defined as infinity, otherwise:

ﬁ:{hﬂﬁmWeDLumnD¢¢

0, otherwise.

(1.1.18)

Definition 1.1.4 (Global solution and local solution) Consider the problem
(1.1.14)~(1.1.16). The point z* is called a global solution if x* is a feasible
point and

fola®) = mf{fo(x)|z € D } = p", (1.1.19)

where D s the feasible region. The point x* is called a local solution, or just
a solution, if ** is a feasible point and there exists an € > 0 such that

fo(z®) = inf{fo(z)|x € D ;||lx — z*| < e} (1.1.20)

The set of all global solutions and the set of all (local) solutions are called the
corresponding solution set respectively.
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Obviously, a (local) solution is a point at which the objective function
value is smaller than or equal to that at all other feasible points in its vicinity.
The best of all the (local) solutions is the global solution.

Problem (1.1.14)~(1.1.16) is a minimization problem. However, it should
be pointed out that the choice of minimization does not represent a restriction
since the maximization problem can be converted to minimization ones by re-
versing the sign of the objective function fy. Similar consideration shows that a
great many restrictive conditions can be written in the form (1.1.15)~(1.1.16).

1.1.3 Geometric interpretation of optimization problems

For the optimization problems in R2, the geometric interpretation is clear
and can be illustrated by the following example.

Example 1.1.5 Suppose that two line segments uius and vivy are given by

=(0,00T, wuy= (1,00, v =1, DT, v =(2,2)" (1.1.21)
(see Figure 1.2). Optimization problem (1.1.9)~(1.1.13) becomes
min fo(z) = [z]F — 2[x]1[x]2 + 2[z]3 + 2[x]); — 6[z]o + 5, (1.1.22)
st.  fi(z) = —[z) <0, (1.1.23)
fa(z) = [z =1 <0, (1.1.24)
f3(x) = —[z]2 <0, (1.1.25)
fa(z) = [z]2 =1 <0. (1.1.26)
Solve the above problem by graphical method.
[#]. A
2 F Uy
1t w'
e, t,
o 1 2 [«],

FIGURE 1.2: Two line segments ujuz and vivy given by (1.1.21).
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u = fo(x)

FIGURE 1.3: Graph of fo(z) given by (1.1.22).

The surface of the objective function is depicted in Figure 1.3. Its lowest
point lies just on the coordinate plane [z]; O[x]2 with the coordinates (1,2)" =
Z. This implies that 2 is the global solution to the unconstrained problem

min  fo(x),z € R (1.1.27)

However 7 is not a solution to our constrained problem since the feasible region
is the square ABOC' with its boundary by constraints (1.1.23)~(1.1.26) and
Z lies outside of it (see Figure 1.4), where the feasible square is shaded. Note
that the contours of the objective function fy, i.e. the set of points for which
fo has a constant value, are a set of ellipses with center at Z. So it can be
observed that the vertex z* = B = (0,1)" of the feasible square is the global
solution of the constrained problem since the ellipse with fo = 1 is tangent to
one side AB of the square at x*.

In the optimization problem (1.1.14)~(1.1.16), the objective function and
the constrained functions are allowed to be any functions, see [40, 41, 78, 100,
164, 172, 183, 6, 54, 91, 111, 112]. Due to the lack of the effective methods for
solving such general problems, we do not study it further and turn to some
special optimization problems below.

1.2 Convex Programming in Euclidean Space

Among the optimization problems introduced in the above section, the
convex optimization problems are important and closely related with the main
topic of this book. They can be solved efficiently (see [9, 10, 17] for further
reading).
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Jo()=1.25

FIGURE 1.4: Illustration of the problem (1.1.22)~(1.1.26).

1.2.1 Convex sets and convex functions
1.2.1.1 Convex sets
Let us introduce the convex set in R™ first.
Definition 1.2.1 (Convex set) A set S C R™ is called a convex set if the

straight line segment connecting any two points in S lies entirely in S, i.e. for
any x1,x2 € S and any X € [0, 1], we have

Axr1 + (1 — /\)IQ €s5. (121)

Intuitively, in the two-dimensional space RZ, the circle shaped set in Figure
1.5(a) is a convex set, while the kidney shaped set in Figure 1.5(b) is not
since the line segment connecting the two points in the set shown as dots is
not contained in this set. It is easy to prove the following conclusion, which

(a) (b)
FIGURE 1.5: (a) Convex set; (b) Non-convex set.
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shows that the convexity is preserved under intersection. This is illustrated in
Figure 1.6.

N\
S

N

FIGURE 1.6: Intersection of two convex sets.

Theorem 1.2.2 If Sy and Sy are convex sets, then their intersection S1MSo
s also a convex set.

1.2.1.2 Convex functions

Definition 1.2.3 (Convex function) Let f be a function defined on R™.
The function f is called a convex function on R™ if for any two points
x1,x2 € R™, the graph of f lies below the straight line connecting (x1, f(x1))
and (z2, f(x2)). That is, for any X\ € [0, 1],

FQOz1+ (1= Na2) < Af(z1) + (1= N f(w2) . (1.2.2)

The function f is called a strictly convex function on R™ if strictly inequality
holds in (1.2.2) whenever x1 # x2 and X € (0,1).

Intuitively, when f is smooth as well as convex and the dimension n is 1 or
2, the graph of f is bowl-shaped, see Figures 1.7(a) and 1.8(a). The functions
shown in Figures 1.7(b), 1.8(b), and 1.8(c) are not convex functions.

The following theorem gives the characteristic of a convex function.

Theorem 1.2.4 (Sufficient and necessary condition) Let f be continuously
differentiable on R™. Then f is a convex function if and only if for all x,T €
R™,

f@) = f(@) + V@) (@ - z). (1.2.3)

Stmilarly, f is a strictly convex function if and only if strict inequality holds
in (1.2.3) whenever x # Z.
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Ly

(a) (b)

FIGURE 1.7: Geometric illustration of convex and non-convex functions in
R: (a) convex; (b) non-convex.

Corollary 1.2.5 Consider the quadratic function in R™

f(z) = %ITHCC +rTe 44, (1.2.4)

where H € R™"™, r € R", § € R. If H is positive semidefinite, then f(z) is
a convex function in R™. Similarly, if H is positive definite, then f(x) is a
strictly convex function in R™.

Proof We only show the conclusion when H is positive semidefinite.
Noticing V2 f(x) = H, we have
1
f@)=f@) +Vi@) T (z—-7)+ 5(;10 —2)"H(z — 7) (1.2.5)

for all z,7 € R™. As the semidefiniteness of H implies that (z—2)"H(z—z) >
0, the above equality leads to

f@) = f(@)+ V(@) (@ - 2), (1.2.6)

which proves that f(z) is a convex function by Theorem 1.2.4. [ |

1.2.2 Convex programming and their properties
1.2.2.1 Convex programming problems

Instead of the general optimization problem (1.1.14)~(1.1.16), we shall
focus our attention on its special case: convex programming problems.
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) (],

(

FIGURE 1.8: Geometric illustration of convex and non-convex functions in
R2?: (a) convex; (b)(c) non-convex.

Definition 1.2.6 (Convex programming problem) A convexr programming
problem is an optimization problem in the form

min folz), x € R™, (1.2.7)

s.t. filz) <0,i=1,--- ,m, (1.2.8)

hi(z) =ajx—b;=0,i=1,---,p, (1.2.9)

where  fo(x) and fi(z),i=1,--- ,m are continuous convex functions on R",
and hi(x), i =1,--- ,p are linear functions.

The following theorem can be obtained from Corollary 1.2.5.

Theorem 1.2.7 Consider the quadratic programming (QP) problem

1
min ixTH:Z: +rTz, € R, (1.2.10)
st. Az —b<0, (1.2.11)
Az —b=0, (1.2.12)

where H € R™*", r € R", A€ R™", A€ RP*", b& R™,bc RP. If H is
positive semidefinite, then the above problem is a convex programming, i.e. a
conver quadratic programming problem.

1.2.2.2 Basic properties

The following lemma leads to the property of the feasible region of a convex
programming problem.
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Lemma 1.2.8 If f(z) is a convex function on R™, then for any c € R, the
level set
S ={z|f(x)<c, z€R"} (1.2.13)

1S convex.

Proof Suppose 21,22 € S. It is easy to see that f(z1) < ¢, f(x2) < c. Let
x = Ax1 + (1 — N)az, where X € [0,1]. Thus, the convexity of f(z) implies
that

f(@)=fz1 + (1= Nz2) < Af(21) + (1 = N f(22) < Ae+ (1= Ne=c,
(1.2.14)
and hence x € S. Therefore S is convex. |
Lemma 1.2.8 and Theorem 1.2.2 lead to the following theorem.

Theorem 1.2.9 Consider problem (1.2.7)~(1.2.9). Then both its feasible re-
gion and solution set are convex closed sets.

Thus solving a convex programming problem is just to find the minimal
value of a convex function on a convex set.

Theorem 1.2.10 Consider the problem (1.2.7)~(1.2.9). If x* is its local so-
lution, then x* s also its global solution.

Proof Suppose that z* is a local solution, i.e. there exists an € > 0 such that

fo(z®) = inf{fo(z)|x € D, ||lx — z*|| < €}, (1.2.15)

where D is the feasible field. Now we show z* is a global solution by con-
tradiction. If x* is not a global solution, there would be a T € D, such that
fo(@) < fo(z*) and ||z — 2*|| > € > 0 by (1.2.15). Now let us examine the
objective value f(z), where z is defined by

B €

2|z — 2|
On one hand, according to Theorem 1.2.9, the feasible field D is convex.
Therefore, the convexity of fy(z) implies that

fo(z) < (1 =0)fo(z") +0fo(z) < fo(z"). (1.2.17)

On the other hand, noticing ||z — z*| = g < g, equality (1.2.15) yields

fo(z") < fol2). (1.2.18)
This is a contradiction with inequality (1.2.17), and the conclusion follows.H
Note that general optimization problems may have local solutions that are
not global solutions. However, the above theorem indicates that, for convex
programming, there is not any difference between local solutions and global
solutions. This is an important characteristic of convex programming because
what we are concerned with in applications is usually global solution and the
most efficient optimization algorithms seek only a local solution.

z=(1-0)z" +0z, 0 (1.2.16)



Optimization 11

Corollary 1.2.11  Consider the problem (1.2.10)~ (1.2.12) where H is pos-
itive semidefinite. Then its local solution is its global solution.

Next theorem is concerned with the relationship between the uniqueness
of solution and the strict convexity of the objective function. It is a particular
case of Theorem 1.2.15 below.

Theorem 1.2.12  Consider the problem (1.2.7)~(1.2.9), where the objec-
tive function fo(x) is strictly convex. Then its solution is unique when it has
solution.

Among the components of a solution z* to the problem (1.2.7)~(1.2.9),
the main issue that concerns us may be only a part of them instead of all of
them sometimes. In this case, the n-dimensional vector x is partitioned into

T = < 1 ) , where z; € R™, i=1,2, m3+mg=n, (1.2.19)

and the following definition is introduced.

Definition 1.2.13 Consider the problem (1.2.7)~(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). Vector x7 € R™ is called its solu-
tion with respect to (w.r.t.) xy if there exists a vector x3 € R™2, such that
= (z3", 23T s its solution. The set of all solutions w.r.t. x; are called
the solution set w.r.t. x1.

For the convex programming with partitioned variable, we have the fol-
lowing theorems.

Theorem 1.2.14  Consider the problem (1.2.7)~(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). Then its solution set w.r.t. x1 is a
convez closed set.

Proof The conclusion follows from Theorem 1.2.9 and Definition 1.2.13. W

Theorem 1.2.15  Consider the problem (1.2.7)~(1.2.9) with variable x be-
ing partitioned into the form (1.2.19). If

fo(x) = Fi(z1) + Fa(x2), (1.2.20)

where F1(x1) is a strictly convex function of the variable x1, then the solution

to the convex programming w.r.t. x1 1s unique when it has a solution.
Proof It is sufficient to show by contradiction that if both # = (zT,z3)7T
and T = (Z,",Z»")T are solutions, we have

Ty = Iy (1.2.21)
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In fact, if
T, # o, (1222)

construct the vector
z(t)=(1-t)z+tz, te]|0,1]. (1.2.23)

Noticing that the solution set is convex and any local solution is a global
solution by Theorem 1.2.9 and Theorem 1.2.10, vector z(t) is always a global
solution for any ¢ € [0, 1], implying that

fo(x(t)) = constant, ¥t € [0, 1]. (1.2.24)
However, according to (1.2.20) and (1.2.23), we have

folx(t)) = Fi(z1(t)) + Fa(w2(t)), (1.2.25)

where
X1 (t) = (1 — t){fl + tfl, Ig(t) = (1 - t):fg + tfg. (1226)

Note that Fy(x1(t)) is strictly convex by (1.2.22) and the strict convexity
of Fi(x1). And Fy(z2(t)) is convex since the convexity of fo(z) implies that
F5(z2) is convex. Therefore, according to (1.2.25), we conclude that fo(x(t))
is strictly convex. This is a contradiction with (1.2.24) and the conclusion is
obtained. |

1.2.3 Duality theory
1.2.3.1 Derivation of the dual problem

Consider the convex programming problem (1.2.7)~(1.2.9)

min folx),x € R™, (1.2.27)

s.t filx) <0, i=1,--- ,m, (1.2.28)

hi(x) =alz —b;=0,i=1,--- ,p, (1.2.29)

where f;(x),i=0,1,---,m are continuously differentiable and convex in R™.

We start from estimating its optimal value p* defined by Definition 1.1.3
p* = inf{fo(x)|x € D}, (1.2.30)
where

D ={z|fi(x) <0,i=1,--- ;m;hi(x)=0,i=1,---,p; x € R"}. (1.2.31)

Introduce the Lagrangian function

L(x,\v) = fol@) + > Nifi(x) + > vihi(w), (1.2.32)
=1 i=1
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where A = (A1, ,A\p)T and v = (11, ,1,)T are Lagrangian multipliers.
Obviously, when € D, A > 0, we have

L(z,\v) < fo(x), (1.2.33)

thus

inf L < inf L(z, A\, v) < inf =p*. 1.2.34
L MO A S S HEAY) S Jaf fol) = (1234

Therefore, introducing the Lagrangian dual function

g\ v) = i€n]£n L(z,\v), (1.2.35)
yields
g\ v) < p*. (1.2.36)

The above inequality indicates that, for any A > 0, g(\, v) is a lower bound of
p*. Among these lower bounds, finding the best one leads to the optimization
problem

max g\ v) = inlg L(z, A\ v), (1.2.37)
TER™

st A=0, (1.2.38)

where L(z, A, v) is the Lagrangian function given by (1.2.32).

Definition 1.2.16 (Dual problem) Problem (1.2.37)~(1.2.38) is called the
dual problem of the problem (1.2.27)~(1.2.29). Correspondingly, problem
(1.2.27)~(1.2.29) s called the primal problem.

It is easy to show the following conclusion.

Theorem 1.2.17 Dual problem (1.2.37)~(1.2.38) is a convex programming
problem.

1.2.3.2 Duality theory

(1) Weak duality theorem
The optimal value of the dual problem (1.2.37)~(1.2.38), which we denote
d*
d* = sup{g(\, V)| > 0} (1.2.39)
is, by definition, the best lower bound on p* that can be obtained. In particular,
we have the following theorem.

Theorem 1.2.18 (Weak duality theorem) Let p* be the optimal value of the
primal problem (1.2.27)~(1.2.29) and d* be the optimal value of the dual prob-
lem (1.2.37)~(1.2.38). Then

p* =inf{fo(2)|fi(x) <0,i=1,--- ,m;alx —b;=0,i=1,--- ,p; x € R"}
>sup{g(\, V)| = 0} = d". (1.2.40)
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Note that the inequality (1.2.40) still holds when p* and d* are infinite.
For example, if the primal problem is unbounded below, so that p* = —o0,
we must have d* = —oo, i.e. the dual problem is infeasible. Conversely, if the
dual problem is unbounded above, so that d* = oo, we have p* = oo, i.e. the
primal problem is infeasible.

The following corollary is a direct conclusion of the above theorem.

Corollary 1.2.19 Let & be the feasible point of the problem (1.2.27)~(1.2.29)
and (X, 7) be the feasible point of the dual problem (1.2.37)~(1.2.38). If
fo(@) = g(\, D), then T and (N, D) are their solutions respectively.

(2) Strong duality theorem

Strong duality theorem concerns the case where the inequality in (1.2.40)
holds with equality. For convex programming, this equality holds under some
conditions. One of these conditions is Slater’s condition.

Definition 1.2.20 (Slater’s condition) Convex programming problem (1.2.27)~
(1.2.29) is said to satisfy Slater’s condition if there exists a feasible point x
such that

fi(z) <0,i=1,---,m; alz—b=0,i=1,---,p. (1.2.41)

Or, when the first k inequality constraints are linear constraints, there exists
a feasible point x such that

fi($):d?$—6i<0,i:1,--- 7k; fz(.’L')<O,Z:]€+1, , 1
aixr—b;=0,i=1,---,p. (1.2.42)

Theorem 1.2.21 (Strong duality theorem) Consider the convex programming
problem (1.2.27)~(1.2.29) satisfying Slater’s condition. Let p* be the optimal
value of the primal problem (1.2.27)~(1.2.29) and d* the optimal value of the
dual problem (1.2.37)~(1.2.38). Then

p" =inf{fo(z)|fi(x)
=sup{g(A, ¥)|A >

<0i=1,--- ,myajz—b;=0,i=1,---,p; x € R"}
0} = d*. (1.2.43)

Furthermore, if p* is attained, i.e. there exists a solution x* to the primal
problem, then d* is also attained, i.e. there exists a global solution (A\*,v*) to
the dual problem such that

p* = fo(z*) = g(\",v*) = d* < . (1.2.44)

Proof See [17]. |
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1.2.4 Optimality conditions
First introduce the famous Karush-Kuhn-Tucker (KKT) conditions:

Definition 1.2.22 (KKT conditions) Consider the convex programming
problem (1.2.27)~(1.2.29). Point x* is said to satisfy the KKT conditions
if there exist the multipliers X* = (X}, -+, X5,)T and v* = (vf, - ,v3)T
responding to constraints (1.2.28) and (1.2.29) respectively, such that the La-
grangian function

cor-

Lz, \v) +Z)\ fi(x +zp:yihi(x) (1.2.45)

satisfies
fila") <0, i=1,---,m, (1.2.46)
hi(z*) =0, i=1,---,p, (1.2.47)
A0, i=1,---,m, (1.2.48)
A fila™) = i=1,---,m, (1.2.49)
Vo L(z*, X, v*) = Vfo(z Z/\ Vfi(z Zu Vh(
(1.2.50)

It is not difficult to show from strong duality theorem that, for convex
programming, the KKT conditions are the necessary condition of its solution:

Theorem 1.2.23 Consider the convex programming problem (1.2.27)~(1.2.29)
satisfying Slater’s condition. If x* s its solution, then x* satisfies the KKT
conditions.

Proof Noticing that z* is a solution to the primal problem (1.2.27)~(1.2.29)
where Slater’s condition is satisfied, we conclude by strong duality theo-
rem that there exists (A*,rv*) such that z* and (A\*,v*) are the solutions to
the primal problem (1.2.27)~ (1.2.29) and the solution to the dual problem
(1.2.37)~(1.2.38) respectively, and their optimal values are equal. This means
that

fola®) =g(\",v7)

_1nf< -I—Z/\*fz Z v z(@)

=1

(") + Z A filz®) + Z v hi(x
=1 =1

< folz*). (1.2.51)
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The second line and the third line follow from the definitions. The last line
follows from Af > 0, fi(z*) <0,i=1,--- ;mand h;i(z*) =0,i=1,--- ,p. We
conclude that the two inequalities in this chain hold with equality. This yields

inf <fo(fr) + Z A fi(z) + Z thi($)>

= fola) + > _ N fila) + > vihi(z*) = fo(z®). (1.2.52)
=1 i=1

Now we are in the position to prove the conclusions. First, equations
(1.2.46)~(1.2.48) are obvious. Second, equality (1.2.49) follows from the sec-
ond equality in (1.2.52). At last, equality (1.2.50) is valid since z* is the
minimal point of the Lagrangian function L(xz, \*,v*) by the first equality in
(1.2.52). |

The next theorem shows that, for a convex programming, the KKT con-
ditions are also a sufficient condition of its solution.

Theorem 1.2.24 Consider the convex programming problem (1.2.27)~(1.2.29).
If x* satisfies the KKT conditions, then x* is its solution.

Proof Suppose that 2* and (\*, v*) satisfy conditions (1.2.46)~(1.2.50). Note
that the first two conditions (1.2.46)~(1.2.47) state that z* is a feasible point
of the primal problem and condition (1.2.48) states that (A*,v*) is a feasible
point of the dual problem. Since A} > 0,9 = 1,--- ,m, L(x, \*,v*) is convex
in x. Therefore, condition (1.2.50) states that z* minimizes L(z, \*,*) over
2. From this we conclude that

g\, )= inéf L(z,\*,v*) = L(z*, \*,v")
TER™

m P
= fola™) + SN fi(a®) + 3 v hi(a®)
i=1 i=1

= fo(z"), (1.2.53)
where in the last line we use conditions (1.2.49) and (1.2.47). Therefore, 2* is
a solution to the primal problem by (1.2.53) and Corollary 1.2.19. |

The above two theorems are summarized in the following theorem.

Theorem 1.2.25 Consider the conver programming problem (1.2.27)~
(1.2.29) satisfying Slater’s condition. Then for its solution x*, it is neces-
sary and sufficient condition that x* satisfies the KKT conditions given by
Definition 1.2.22.

1.2.5 Linear programming

Among the optimization problems, linear programming (LP) is the sim-
plest one. There are many excellent books on linear programming, including
[188, 111, 154]. Here it is introduced briefly.



Optimization 17

Linear programming in general form is

min 'z, » € R", (1.2.54)
st.  Ar—b<0, (1.2.55)
Az —b=0, (1.2.56)

where c € R, A€ R™*" A€ RP*" bec R™ b¢c RP.

Because linear programming belongs to convex programming, the conclu-
sions concerning convex programming are also valid for linear programming.
But these conclusions usually have simpler representations.

For linear programming, the Lagrangian function is

Lz, \v) = cTo + AT (Az — b) + v (Az — 1) (1.2.57)
by (1.2.32). Thus, we have the following theorem.

Theorem 1.2.26 Optimization problem

max  —b'A—bly, (1.2.58)
st. ATA+ATv 4+ c=0, (1.2.59)
A>0 (1.2.60)

is the dual problem of the linear programming (1.2.54)~(1.2.56). Furthermore,
the optimal value p* of the primal problem is equal to the optimal value d* of
the dual problem.

Proof Since the linear programming (1.2.54)~(1.2.56) is a convex pro-
gramming, its dual problem is

max  g(\v), (1.2.61)
st A0, (1.2.62)
by definition 1.2.16 and equality (1.2.57), where
g\ v) = in}% L(z,\v) = injg (cTx + \T(Az — b) + v (Az — 1)).(1.2.63)
z€R" TERN
It is easy to see that

g\ v)==b" A —bTv + ienlgn(c + AT A+ AT

(1.2.64)

—bTA by, c+ ATA+ ATy = 0;
{ —00, else,

and hence the problem (1.2.61)~(1.2.62) is equivalent to the problem
(1.2.58)~(1.2.60).

Note that Slater’s condition is always satisfied by linear programming.
Therefore, we conclude that the optimal values p* and d* are equal from
Theorem 1.2.21. |

There are several user-friendly software programs, such as LINDO and
LINGO [171], that can be used to solve linear programming. For small-scale

linear programming, MATLAB® is also a good choice due to its simplicity
[20].
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1.3 Convex Programming in Hilbert Space

The variable x in the above optimization problems is an n-dimensional
vector in Euclidian space

z=([z]1, -, [2].)T. (1.3.1)

It is interesting to extend the vector from the finite dimensional space R™ into
an infinite dimensional space lo where the variable z can be expressed as

z = (], [ale, )" (13.2)

with the convergence condition

> 2]} < 0. (1.3.3)

=1

Note that [, space is a Hilbert space. So, corresponding to the optimization
problems in Euclidian space, we have also the optimization problems in Hilbert
space, where the variable x can be considered to have the expression (1.3.2).
The task of this section is to study the convex programming in Hilbert space.

It should be pointed out that the convex programming problems in Hilbert
space and in Euclidian space are very similar. In fact, almost all results for
the former can be obtained by copying the corresponding ones for the latter
given in the last section except their variables are different. Therefore, we only
describe its main conclusions briefly below; see [162, 15] for details.

1.3.1 Convex sets and Fréchet derivative

The definitions of convex set and convex map in Hilbert space H are sim-
ilar to the ones in Euclidian space R", and therefore are omitted here. The
derivative of a function in R™ is extended in the following definition.

Definition 1.3.1 (Fréchet derivative and differentiability) Let H and R be
Hilbert space and Real space respectively. A function f : H — R is called
Fréchet differentiable at T € H if there exists a bounded linear map A(h) =
(a-h), where a € H, such that

f@+h) = f(@) = (a-h)=o(]|n]). (1.3.4)

In this case, we call a in (1.3.4) the Fréchet derivative of f at T and denote
Vi (Z) = a. In addition, a function f which is Fréchet differentiable at any
point of H, and whose derivative is continuous, is said to be continuously

differentiable.
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1.3.2 Convex programming problems

The following definition is an extension of Definition 1.2.6.

Definition 1.3.2 (Convex programming problem in Hilbert space) A convex
programming problem is an optimization problem in the form

min  fo(z), z€H, (1.3.5)
s.t. file) <0, i=1,---,m, (1.3.6)
where fo(x) : H — R and fi(x) : H — R,i = 1,---,m are continuously
differentiable convex functions, and hi(x) : H — R,i = 1,--- ,p are bounded

linear maps shown in (1.3.7).

For the convex programming (1.3.5)~(1.3.7), the conclusions correspond-
ing to Theorem 1.2.7~ Corollary 1.2.12 are also valid. For example, The-
orem 1.2.7 can be extended as follows: Instead of the quadratic function
(x - Hz) : R — R, consider the quadratic map (z - Hz) : H — R, where
H : H — H is a bounded linear map. Here H is called positive semidefinite if
(x - Hz) > 0 for any x € H. Thus we have the following theorem:

Theorem 1.3.3 Consider the quadratic programming problem

min %(xHx)—i— (r-z), zeH, (1.3.8)
st. Az —b<0, (1.3.9)
Az —b =0, (1.3.10)

where H : H — H, A:H — R™ and A : H — RP are bounded linear maps,
be R™ be RP.r € H. If H is positive semidefinite, then the above problem
1§ CONVET programming, i.e. a convex quadratic programming problem.

The following Theorem and Corollary correspond to Theorem 1.2.10 and
Corollary 1.2.11 respectively.

Theorem 1.3.4 Consider the problem (1.3.5)~(1.3.7) in Hilbert space. If x*
is its local solution, then x* s also its global solution.

Corollary 1.3.5 Consider the problem (1.3.8)~(1.3.10) in Hilbert space,
where H is positive semidefinite. Then its local solution is its global solution.
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1.3.3 Duality theory

For the problem (1.3.5)~(1.3.7), corresponding to (1.2.32), introduce the
Lagrangian function

p

L(z,\,v) +Z)\ fil) + Y vihi(@), (1.3.11)
i=1
where A = (A1,--- ,A\p)T and v = (v4,--+,1,)T are Lagrangian multiplier

vectors. Corresponding to Definition 1.2.16, the following definition is given.

Definition 1.3.6 (Dual problem) Problem
max  g(A\v) = ig;L(x,)\, v), (1.3.12)
st A0 (1.3.13)

is called the dual problem of the problem (1.3.5)~(1.3.7). Correspondingly,
problem (1.3.5)~(1.3.7) is called the primal problem.

Here we also have the duality theory, including weak duality theorem and
strong duality theorem corresponding to Theorem 1.2.18 and Theorem 1.2.21
respectively, where Slater’s condition corresponding to Definition 1.2.20 is
defined as follows:

Definition 1.3.7 (Slater’s condition) Problem (1.3.5)~(1.3.7) is said to sat-
isfy Slater’s condition if there exists a feasible point x such that

file) <0, i=1,--- ,m; (a;-2)—b;=0,i=1,--- p. (1.3.14)

1.3.4 Optimality conditions
Similarly, we have the theorems corresponding to Theorem 1.2.23~ Theo-
rem 1.2.25:

Theorem 1.3.8 Consider the problem (1.3.5)~(1.3.7) satisfying Slater’s con-
dition. If x* is its solution, then x* satisfies the KKT conditions:

fila") <0, i=1,---,m, (1.3.15)
hi(z") =0, i=1,---,p, (1.3.16)
A20, i=1,--,m, (1.3.17)
Aifie®) =0, i=1,--,m, (1.3.18)

Vo L(z*, X, v*) = Vo(x +Z)\Vf1 +Zth =0.
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Theorem 1.3.9 Consider the problem (1.3.5)~(1.3.7). If * satisfies KKT
conditions (1.3.15)~(1.3.19), then z* is its solution.

Theorem 1.3.10 Consider the problem (1.3.5)~(1.3.7) satisfying Slater’s
condition. Then for its solution x*, it is mecessary and sufficient condition
that =* satisfies the KKT conditions (1.3.15)~(1.3.19).

*1.4 Convex Programming with Generalized Inequality
Constraints in Euclidian Space

The convex programming given in Section 1.2 was extended from the case
in Fuclidian space to the one in Hilbert space in Section 1.3. Now it will
be extended from the case with usual inequality constraints to the one with
generalized inequality constraints [17].

1.4.1 Convex programming with generalized inequality con-
straints

1.4.1.1 Cones

Definition 1.4.1 (Cone and convex cone) A set K in R™ is called a cone
if for every x € K and A 2 0, \x € K. A set K in R" is called a convex
cone if it is a cone and a convex set, which means that for any u,v € K and
A, A2 20, \iz1 + Aoxs € K.

Definition 1.4.2 (Proper cone) A set K in R™ is called a proper cone if it
satisfies:

(i) K is a convex cone;

(ii) K is closed;

(iii) K is solid, which means it has nonempty interior;

(iv) K is pointed, which means that it contains no line (or, equivalently,
x must be null (x =0) ifz € K and —x € K ).

Example 1.4.3 The nonnegative orthant K = R in R"
Rt ={u= (w1, ,up)T € R" |u; 20,i=1,---,n} (1.4.1)
1S a proper cone.

1.4.1.2 Generalized inequalities

A proper cone can be used to define a generalized inequality.
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Definition 1.4.4 (Generalized inequality) Let K be a proper cone and u,v €
R™. The generalized inequality u =g v or v >k u means that v —u € K;
the strict generalized inequality u <x v or v >k u means that v —u € intK,
where int K is the interior of the proper cone K.

Obviously, when K = R, the generalized inequality u = R1 U is reduced
to the usual inequality v < v, which means u; < v;,e = 1,--- ,n if u =
(u1, -+ un)t,v = (v1,- -+ ,v,)T. Corresponding conclusion holds for the strict
generalized inequality.

The generalized inequalities have properties similar to the usual inequali-
ties:

Theorem 1.4.5 (Properties of the generalized inequality) A generalized in-
equality <x has the following properties:

(i) <k is preserved under addition: if w =g U, v <k U, then u +v <k
U+ Uy

(i) <k is transitive: if u <g v and v <k w, then u Sk w;

(ii) <k is preserved under nonnegative scaling: if u <g v and o > 0,
then au <k av;

(iv) <k is reflexive: u <k u;

(v) 2k is antisymmetric: if u Sk v and v Xk u, then u = v;

(vi) <k is preserved under limits: if u; <k v;, for i = 1,2,-++, u; —
u,v; = v as i — 0o, then u <g v.

1.4.1.3 Convex programming with generalized inequality con-
straints
First, let us extend the convex function in R™ given by Definition 1.2.3.
Definition 1.4.6 (K -convex function) Let K C R™ be a proper cone. A

function f : R™ — R™ is called a K-convex function if for all x1,22 € R™
and A € [0,1],

The function is strictly K -convex function if for all x1,x2 € R, x1 # x2 and
A€ (0,1),
FAz1 4+ (1 = Naxg) <x Af(z1) + (1 = A) f(z2). (1.4.3)

Now we are in a position to define the convex programming with general-
ized inequalities.

Definition 1.4.7 (Convex programming with generalized inequality con-
straints) A convex programming with generalized inequality constraints is an
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optimization problem in the form

min fo(z), z € R", (1.4.4)

s.t. filz) 2k, 0,i=1,---,m, (1.4.5)
where fo : R — R is convex and continuously differentiable, K; is a proper
cone in R™i i=1,--- m, fi(x): R - R™ is K;-convex and continuously
differentiable, i = 1,--- ,m, and h;(x) is the linear function, i =1,--- p.

1.4.2 Duality theory
1.4.2.1 Dual cones

In order to derive the dual problem of the problem (1.4.4)~(1.4.6), intro-
duce the dual cone first.

Definition 1.4.8 (Dual cone) Let K be a cone. The set
K'={veR"™|(v-u)20,Vuec K}, (14.7)
is called the dual cone of K, where (+) is the inner product between two vectors.

As the name suggests, K* is a cone. It is not difficult to prove the following
conclusion.

Theorem 1.4.9 (Properties of a dual cone) If K is a proper cone, then its
dual cone K* is also a proper cone.

Example 1.4.10 Find the dual cone of the nonnegative orthant cone R in
R™.

It is easy to see that
(RT)* = RT. (1.4.8)

i.e. the cone R is its own dual. We call such a cone self-dual.

1.4.2.2 Derivation of the dual problem

Now let us derive the dual problem of the problem (1.4.4)~(1.4.6) from
estimating its optimal value p*

p* = inf{fo(z)|z € D}, (1.4.9)
where

(1.4.10)
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Introduce the Lagrangian function
Lz, \v) = fo(@)+AT f1(@)+- - 4+ Ag fn (@) +v1h1 (@) +- - +vphy(a), (1.4.11)

where A = (AT, ,AL)T and v = (11, ,1,)T are Lagrangian multiplier
vectors. When z € D, \; € K, we have

m P
Lz, A\ v) = fo(x) + Z A fi(z) + Z vihi(z) < fo(z), (1.4.12)
i=1 i=1
then
i <i < i . 4.
zlenﬁfcn L(z,\v) < Ilg%L(CE,/\,U) < ;él%fo(x) (1.4.13)

Therefore, introducing the Lagrangian dual function

g\ v) = injg L(z,\v), (1.4.14)
TER™
yields
g\, v) < p*. (1.4.15)

Inequality (1.4.15) indicates that, for any A\, € Kf,i = 1,---,m,v €
RP, g(\,v) is a lower bound of p*. Among these lower bounds, finding the
best one leads to the optimization problem

max g\, v) = inﬁi; L(z, A\ v), (1.4.16)
we n
s.t. )\i EK: O, 1= 1, e, M, (1417)

where L(z, A, v) is the Lagrangian function given by (1.4.11).

Definition 1.4.11 (Dual problem) Problem (1.4.16)~(1.4.17) is called the
dual problem of the problem (1.4.4)~(1.4.6). Correspondingly, problem
(1.4.4)~(1.4.6) is called the primal problem.

It is easy to show the following conclusion.

Theorem 1.4.12 Dual problem (1.4.16)~(1.4.17) is a convex programming
problem.

Example 1.4.13 Find the dual problem of the convex programming with gen-
eralized inequalities

min c'x, x € R, (1.4.18)
s.t. Az —b=0, (1.4.19)
z 7Kg0, (1.4.20)

where c € R™, A € RP*" b € RP, K is a proper cone in R".



Optimization 25

Proof The Lagrangian function of the problem is

Lz, \v) = c'o = \To + v (Az — b), (1.4.21)
hence
. f =bTy, ife+ ATy —A=0;
9 v) = aclenlgn Lz, A v) = { —oo, otherwise. (1.4.22)
Therefore, the dual problem is
max  —bly, (1.4.23)
s.t. c+ATv — X =0, (1.4.24)
A=k 0. (1.4.25)
[

1.4.2.3 Duality theory

(1) Weak duality theorem
According to the inequality (1.4.15), we have the following theorem.

Theorem 1.4.14 (Weak duality theorem) Let p* be the optimal value of the
primal problem (1.4.4)~(1.4.6) and d* be the optimal value of the dual problem
(1.4.16)~(1.4.17). Then

p*=inf{fo(z)|fi(x) <k, 0,i=1,--- ,msa;x—b;=0,i=1,---,p; v € R"}

Zsup{g(\, V)|\i =g+ 0,i=1,--- ,m;v € RP}

—d". (1.4.26)
Corollary 1.4.15 Let & be the feasible point of the primal problem
(1.4.4)~(1.4.6) and (A7) be the feasible point of the dual problem
(1.4.16)~(1.4.17). If fo(Z) = g(\, D), then & and (N, D) are their solutions

respectively.

(2) Strong duality theorem
Here strong duality is related with the following Slater’s condition.

Definition 1.4.16 (Slater’s condition) Problem (1.4.4)~(1.4.6) is said to
satisfy Slater’s condition if there exists a feasible point x such that

filx) <k, 0,i=1,---,m; alx—b=0i=1,---,p. (1.4.27)
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Theorem 1.4.17 (Strong duality theorem) Consider the problem (1.4.4)~
(1.4.6) satisfying Slater’s condition. Let p* be the optimal value of the pri-
mal problem (1.4.4)~(1.4.6) and d* be the optimal value of the dual problem
(1.4.16)~(1.4.17). Then

p* =inf{fo(2)|fi(z) <k, 0,i=1,--- ,m;a;x—b;=0,i=1,---,p; = € R"}
=sup{g(\,v)|\i =k> 0,i=1,--- ,m;v € R"}
=d*. (1.4.28)
Furthermore, if p* is attained, i.e. there exists a solution x* to the primal

problem, then d* is also attained, i.e. there exists a global solution (A\*,v*) to
the dual problem such that

p* = fo(z*) = g(\",v*) = d* < . (1.4.29)

1.4.3 Optimality conditions

In order to describe the optimality conditions we need to generalize the
gradient of a scalar valued function.

Definition 1.4.18 (Jacobian matriz) Let F : R™ — R™ be a continuously
differentiable map: F(x) = (f1(z), -+, fm(x)T, 2 = ([#]1, -, [2]n)T. The
Jacobian matriz of F' at x is an m by n matriz and its element in the i-th row
and j-th column is defined by

s =,

i=1,---,m, j=1,--,n. (1.4.30)

Definition 1.4.19 (KKT conditions) Consider the problem (1.4.4)~(1.4.6).
The point x* is said to satisfy the KKT conditions if there exist the mul-
tiplier vectors X* = (A\{*,--- A0 T and v* = (vf,---,v5)", such that the
Lagrangian function

P
L(z,\v) )+ Z AT fi(x) + Z vi(alz — b)) (1.4.31)
i=1
satisfies
ajz* —b;=0, i=1,---,p, (1.4.32)
NTfi(@*) =0, i=1,---,m, (1.4.35)
P
Vo L(z*, X, v*) = Vfo(z ZJfZ VN Y vrai =0,
i=1

where J f;(x*) is the Jacobian matriz of fi(x) at x*.
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Corresponding to Theorem 1.2.23~Theorem 1.2.25, we have the following
theorems:

Theorem 1.4.20 Consider the problem (1.4.4)~(1.4.6) satisfying Slater’s
condition. If x* is its solution, then x* satisfies the KKT conditions given

by Definition 1.4.19.

Theorem 1.4.21 Consider the problem (1.4.4)~(1.4.6). If x* satisfies the
KKT conditions given by Definition 1.4.19, then x* is its solution.

Theorem 1.4.22 Consider the problem (1.4.4)~(1.4.6) satisfying Slater’s
condition. Then for its solution x*, it is mecessary and sufficient condition
that x=* satisfies the KKT conditions given by Definition 1.4.19.

The cone programming is one of the simplest convex programmings with
generalized inequalities given by Definition 1.4.7.

Definition 1.4.23 The cone programming is a convex programming with gen-
eralized inequalities in the form

min ¢z, x € R", (1.4.37)
s.t. filx) = Fx+¢; <k, 0,i=1,--- ,m, (1.4.38)
Az =b, (1.4.39)

wherec € R, A€ R*", be RP, F; € R™*" g, € R™, and K;,i=1,---,m
1S a proper cone.

When K is the nonnegative orthant, the cone programming reduces to
the linear programming. The other two special cases, second-order cone pro-
gramming and semidefinite programming obtained by replacing K with other
cones, will be investigated in the following two subsections.

1.4.4 Second-order cone programming

Second-order cone programming is a special case of the cone programming
given by Definition 1.4.23. It is addressed here briefly, see [1] for a detailed
discussion.

1.4.4.1 Second-order cone programming and its dual problem

(1) Second-order cone programming

Definition 1.4.24 (Second-order cone) The cone K is called a second-order
cone in R™ if

{u=wu1 € Rluy >0}, m
K = {u:(uhuQ,"',um)TeRm|u1> U§+"'+U3n}v m

1;
2.

WV
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FIGURE 1.9: Boundary of a second-order cone: (a) in R?; (b) in R3.

Figure 1.9(a) and (b) show the second-order cone in R? and R? respectively.

Obviously, the second-order cone is a proper cone. Therefore, in the cone
programming (Definition 1.4.23), the proper cones can be specified as the
second-order cones. This leads to the following definition.

Definition 1.4.25 (Second-order cone programming) The second-order cone
programming is a cone programming given by Definition 1.4.23 in the form

min clz, (1.4.40)

s.t. Az —b; <pmi 0,i=1,2,---,m, (1.4.41)

Ar —b=0, (1.4.42)

where ¢ € R, A € RP*" b€ RP, A; € R™*™ b; € R™ i =1,---,m, and
L™ is a second-order cone in R™, m; is a positive integer, 1 =1,--- ,m.

(2) Dual problem
In order to derive the dual problem of the second order cone programming
(1.4.40)~(1.4.42), we need the following theorem.

Theorem 1.4.26 The second-order cone given by Definition 1.4.24 is self-
dual, i.e. L™ = L™,

Proof For the case m = 1, the conclusion is obvious. So we need only
to show L™ = L™* when m > 2. In fact, on one hand, taking any u =
(uy,a™)T € L™, for any v = (vy,97)" € L™, we have

(u-v) =ugvy + (@-0) = wyvy — ||@ll||o]| = 0 (1.4.43)
by Cauchy-Schwarz inquality. Therefore v € L™, hence

L™ C L™, (1.4.44)
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On the other hand, taking any u = (uy,a)T € L™, for any v = (vy,0™)7T,
we have (u-v) > 0. Next we show that this leads to

uy > ||| (1.4.45)
by examining two different cases. If @ = 0, we have

(v-u)=uvy =0, (1.4.46)

thus v1 > 0 since v € L™. Therefore u; > 0 = ||@l|, i.e. inequality (1.4.45) is
true. If u # 0, selecting v = (||u|, —u™)" € L™, we have

0< (v-u)=—|al®+ uilal, (1.4.47)

which results in the inequality (1.4.45) and so L™ D L™*. Therefore, noting
inequality (1.4.44), the conclusion L™ = L™" is proved. |
According to (1.4.11), the Lagrangian function should be

L(w,\v) =c"z+ Y AN (A —b;) + v (Az - b), (1.4.48)
i=1

where A = (AT,--- ) A)T and v = (v1,--+,1,)T are the multiplier vectors.
Thus we have the following theorem:

Theorem 1.4.27 Second-order cone programming

max  —» biAi—b'y, (1.4.49)
=1
st Y AT+ ATv4e=0, (1.4.50)
=1
Ai mpmi 0, 0 =1,---,m (1.4.51)

is the dual problem of the problem (1.4.40)~(1.4.42).

Proof According to Definition 1.4.11, in order to get the dual problem of
the problem (1.4.40)~(1.4.42), we need to compute g(A,v)

=3 BN =0Ty, i e+ YT ATN + ATy = 0;
i=1

g\ v) = (1.4.52)

—00, otherwise,

where A; =pm; 0. This leads to the dual problem (1.4.49)~(1.4.51), which is
a second-order cone programming in the form (1.4.40)~(1.4.42). |
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1.4.4.2 Software for second-order cone programming

(1) Software SeDuMi

Self-Dual-Minimization (SeDuMi) is a tool for solving optimization prob-
lems. It can be used to solve linear programming, second-order cone program-
ming and semidefinite programming introduced later, and is available at the
website http://sedumi.mcmaster.ca.

Both the solution to the general second-order cone programming (1.4.40)~
(1.4.42) and the solution to the dual problem (1.4.49)~(1.4.51) can be found
by calling the main function of SeDuMi

[y,l'] = Sedumi(p17p27p37p4)u (1453)
where p;,i = 1,--- ,4 are the input parameters given by
pi= (AT AT, AT, (1.4.54)
p2 = —c, (1.4.55)
p3s = (bTubr]i[‘u"' 7b%)T7 (1456)
b4 = [p4'f7p4'q]7 (1457)
where py4 is the structural variable: ps.f = p, ps.q = (m1, M2, -+ ,myy,). The

outputs x and y are the solutions to the primal problem (1.4.40)~(1.4.42) and
the dual problem (1.4.49)~(1.4.51) respectively.

(2) An application

Example 1.4.28 Solve the problem

min cTz, € R3, (1.4.58)

s.t. Ax—b=0, (1.4.59)

—ajz+b >ellzl, i=1,--,3, (1.4.60)

where ¢ = (1,1,1)T, A = diag(0,0,1), b = (0,0,0)T, a; = (-1,0,1)T, b =
1
0,a2 = (0,—1,1)T, by =0,a3 = (1,1, )T, b3 =1, e = 5

Select input parameters p;,i =1,---,4 as

p1 = (A, A1, Ay, As)7, (1.4.61)

p2 = —c, (1.4.62)

ps = (b7, b7, b3, b5)", (1.4.63)

pa.f =3,paq = (4,4,4), (1.4.64)

T
1 ~ 1
where Az = (—C_Li, _I3><3>; bz = (—bi,(),(),()) ,i = 1,2,3. ngg is the 3 x 3
e £
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identity matriz. Call the main function (1.4.53) and get the solution

0.3233
r=10""1 03233 |. (1.4.65)
—0.0027

1.4.5 Semidefinite programming

Semidefinite programming is another special case of cone programming
given by Definition 1.4.23, see [89] for a detailed discussion.

1.4.5.1 Semidefinite programming and its dual problem

(1) Semidefinite programming

As the name implies, semidefinite programming is a programming problem
concerning the positive semidefinite matrices. However, the cone programming
involves only the vectors, instead of the matrices. So we construct the map of
a matrix B = (b;;) € R™*™ to an m*-dimensional vector vec(-):

vee(B) = (b11,b21, s b1, 012,622, + , bin2, bims bom -+ 4 b)) T € R™,
(1.4.66)
which forms a vector by stacking the matrix and the corresponding inverse
map is the map of a m?-dimensional vector b = (b11,b21, "+ ,bim1,b12, b2, - - |
b2, b13,023, 5 bym) T € R™ to an m x m matrix mat(-):

mat(b) =B= (b”) € Rmxm, (1467)
Some properties of the above map are given below:

Theorem 1.4.29 Suppose that A = (a;;) € R™*™, B = (b;;) € R™*™, then

(vec(A) - vec(B)) = vec(A)Tvec(B) = Z aijbij = tr(ABT), (1.4.68)

ij=1

where () is the inner product of two vectors and tr(-) is the trace of a matriz.

Definition 1.4.30 The Frobenius norm of the matriz A = (a;;) € R™*™ is
defined as

2

IAlr = | Y a | - (1.4.69)

ij=1
The above theorem and definition lead to the following theorem:
Theorem 1.4.31 Suppose that A, B € R™*™  then
|[vec(A) — vec(B)|| = ||vec(A — B)|| = ||A — B||r, (1.4.70)

where ||-|| is the 2-norm of a vector and ||-||p the Frobenius norm of a matriz.
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Theorem 1.4.32 Suppose that
ST = {A|A is an m x m symmetric positive semidefinite matriz}. (1.4.71)

Then K(ST') is a proper cone, where K(ST') = {yly = vec(A), A € ST'} is the
set obtained by the map of ST into the vector space R™ via the relationship
(1.4.66).

Proof It is not difficult to show the conclusion by the following steps: (i)
K(S™") is a close set; (i) K (S7") is pointed; (iii) int(K(ST')) # @. The detail
is omitted. |

Now we are in a position to introduce the semidefinite programming prob-
lem from the cone programming given by Definition 1.4.23 by the following
way:

(i) Change the value representation of the constraint function f; in the
inequality constraints with n = m? from a m?-dimensional vector into a m; x
m; matrix via the corresponding relationship, i.e. f; : R™ — R™i X" ig written
as

filz) = [2]; A% - B, (1.4.72)

j=1

where z = ([z]1,-- -, [2],)", A%, B € §™i, S™i is the set of symmetric m; x
m; matrices. Here the m; x m; matrices should be understood as the mf—
dimensional vectors in our mind.

(ii) Specify the cones K;,i = 1,--- ,m. Corresponding to the value of the
constraint f;, Kj is specified as a matrix in the form K (s''") defined in the
above theorem, i.e. its inequality constraint can be represented as

vee | Y [a]; A} — B' =k (sri 0. (1.4.73)

j=1

Next, we write these constraints in a more convenient form.

Definition 1.4.33 Suppose that the sets ST' and ST, are comprised of sym-
metric positive semidefinite matrices and positive definite matrices respec-
tively. The matriz inequality A Zsm B or B zgn A is said to be valid if
B — A € SV'; the matriz strict inequality A <sm B or B -gm A is said to be
valid if B— A e ST, .

Therefore the vector inequality (1.4.73) can be written as the matrix in-
equality

> [z]; A} - B <gmi 0. (1.4.74)
j=1
Thus semidefinite programming can be defined as follows:
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Definition 1.4.34 (Semidefinite programming) A semidefinite programming
is an optimization problem in the form

min 'z, x € R™, (1.4.75)
s.t. E:h%f%——BieriO,i:]q“'ﬂn, (1.4.76)
j=1
Az —b=0, (1.4.77)

where ¢ € R™, A;,Bi eS™, j=1,---,n,i=1,---,m, A€ RP*™ b e RP,
S™i and SI' are the sets comprised of m; x m; symmetric and symmetric pos-
itive semidefinite matrices respectively. Here the notation “< s 7 1s usually

simplified as “<7.

It is obvious that the problem (1.4.75)~(1.4.77) can also be transformed
equivalently to a problem with only a single linear matrix inequality constraint
shown by the following theorem.

Theorem 1.4.35 Semidefinite programming (1.4.75)~(1.4.77) is equivalent
to the problem

min clz, (1.4.78)
s.t. zn:[x]j[lj - B =0, (1.4.79)
=1
;x—b:O, (1.4.80)
where ¢ € R", A; = Diag(A},--- JAT), g = 1,---,n and B =

Diag(B',---,B™), A€ RP*" b € RP.

The following theorem shows that semidefinite programming is wider than
second-order cone programming.

Theorem 1.4.36 A second-order cone programming problem can be written
as a semidefinite programming problem.

Proof See [17]. |

(2) Dual problem
In order to derive the dual problem of the semidefinite programming
(1.4.78)~(1.4.80), we need the following theorem.

Theorem 1.4.37 The cone K(S') given by Theorem 1.4.32 is self-dual, i.e.

K(S™)" = K(ST). (1.4.81)
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Proof On one hand, suppose vec(A4) € K(ST"), vec(B) € K(S7"). According
to Theorem 1.4.29 we have

(vec(A) - vec(B)) =tr(A2 A2 B2 B2) = tr(A* B2 B2 A?)
=[| Az B3 ||> 0. (1.4.82)

This implies
K(ST)" D K(ST). (1.4.83)

On the other hand, suppose vec(A) € K(S7")*. For any vec(B) € K(SV"), we
have (vec(A) - vec(B)) > 0. Therefore, for any € R™ and the corresponding
B = 22", we have vec(B) = vec(zzT) € K(ST') and

0 < (vec(A) - vee(B)) = tr(AzaT ZAW x); =aTAx.  (1.4.84)

This implies that

vec(A) € K(ST'), (1.4.85)
and hence K(S7)* C K(SV'). The conclusion follows from (1.4.83) and
(1.4.85). n

Now let us derive the dual problem of the problem (1.4.78)~(1.4.80). In-
troduce the Lagrangian function

L(z, A, v)=c 2 + tr <<i[m]zfll - B) A) + v (Az —b),

i=1
=[z]i(c1 + v aq +tr(AA) + -+ [2]nlen + v a4+ tr(A,A))
—tr(BA) — vTh, (1.4.86)
where a.; is the i-th column of the matrix A, v € RP is the multiplier vector
corresponding to the vector equality constraint (1.4.80), and A € R7*7 is the

multiplier matrix corresponding to the matrix inequality constraint (1.4.79).
This leads to the following theorem.

Theorem 1.4.38 Denoting the i-th column of the matrix A as a.;, semidefi-
nite programmaing

max —tr(BA) — by, (1.4.87)
st. tr(AA) +atv+e=0i=1,---,n, (1.4.88)
A=0 (1.4.89)

is the dual problem of the problem (1.4.78)~(1.4.80).
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Proof Remember Definition 1.4.11, equality (1.4.86) where A =g 0 due to
Theorem 1.4.37. It is easy to see that

g(A,v)=inf L(z, A, v)

B {—tr(BA) —bTy, if e +atv+tr(A4A) =0,Vi=1,--- ,77(1 4.90)

—00, otherwise.

Therefore, problem (1.4.87)~(1.4.89) is the dual problem of the prob-
lem (1.4.78)~(1.4.80). In addition, it can also be seen that the problem
(1.4.87)~(1.4.89) is a semidefinite programming problem. [

1.4.5.2 Software for semidefinite programming

(1) Software SeDuMi for semidefinite programming

Semidefinite programming (1.4.78)~(1.4.80) and its dual problem
(1.4.87)~(1.4.89) can be solved by SeDuMi at the same time. Now we only
need to call the main function

[y, 2] = sedumi(p1, p2,p3, pa), (1.4.91)

of SeDuMi, in which the parameters p;,i = 1,--- ,4 are given by
p1 = (A;vec(Ay),--- ,vec(Ay)), ( )

po = —cT, (1.4.93)

ps = (b, vec(B)")T, ( )
pa=ps-fipa-s]=Ip.d], ( )

where p4 is the structural variable: ps - f = p is the number of the linear
constraints, ps - s = ¢ is the order of the matrices in constraint (1.4.79).
The outputs  and y are the solutions to the problems (1.4.78)~(1.4.80) and
(1.4.87)~(1.4.89) respectively.

(2) An application

Example 1.4.39 Find the largest eigenvalue of the symmetric matriz

2 -2 0
M= -2 1 =2 ]. (1.4.96)
0 -2 0

The problem can be written as a semidefinite problem

min A, (1.4.97)
st —A+M <0, (1.4.98)

which can be solved by SeDuMi as follows:
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Select input parameters p;,i =1,--- ,4 as
p1 = —vec(I3x3), (1.4.99)
p2 = —1, (1.4.100)
p3 = —vec(M), (1.4.101)

where I3xs is the 3 x 3 identity matriz. Call the main function (1.4.91) and
get the solution

A = 4.0000. (1.4.103)

*1.5 Convex Programming with Generalized Inequality
Constraints in Hilbert Space

The usual convex programming in Euclidian space discussed in Section
1.2 has been extended in Section 1.3 and Section 1.4 respectively. Combining
these extensions, we study the convex programming with generalized inequal-
ity constraints in Hilbert space in this section.

1.5.1 K-convex function and Fréchet derivative

In order to study the corresponding dual theory and the optimality condi-
tions, we need to define the proper cone and K-convex map in Hilbert space.
First we need the definitions of which can be given from Definitions 1.4.2 and
1.4.6 by replacing Euclidian space by Hilbert space. In addition, we need to
extend Definition 1.3.1 as follows:

Definition 1.5.1 (Fréchet derivative and differentiability) Let both Hi and
Ho be Hilbert spaces. A map [ : Hi — Ha is called Fréchet differentiable at
T € Hy if there exists a bounded linear map A such that

1@ +h) = f(@) = AR)I| = o[|]])- (1.5.1)

In this case, we call A the Fréchet derivative of f at T and denote V f(Z) = A.
In addition, a map f which is Fréchet differentiable at any point of Hy, and
whose derivative is continuous, is said to be Fréchet continuously differen-
tiable.

1.5.2 Convex programming

Now we are able to represent the problem with which we are concerned.
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Definition 1.5.2 (Convexr programming problem with generalized inequality
constraints in Hilbert space) Let H,H1,- -, Hn be Hilbert spaces. A convex
programming problem with generalized inequality constraints in Hilbert space
is an optimization problem in the form

min  fo(z), (1.5.2)
s.t. hi(z) =(a;-2)—=b;=0, i=1,---,p, (1.5.3)
fi(z) 2k, 0, i=1,---,m, (1.5.4)

where fo(x) : H — R are Fréchet continuously differentiable convex function,
K; is a proper cone in H;, fi(x) : H — H; is a Fréchet continuously differen-
tiable convexr mapping, i = 1,--+ ,m, and h;(x) : H — R is a bounded linear
mapping shown in (1.5.3),i=1,--- p.

1.5.3 Duality theory

Definition 1.5.3 (Dual problem) Introduce the Lagrangian of the problem
(1.5.2)~(1.5.4)

Lz, A1, s Ay v) = folz) + Z (i - filz —|—ZV1 ; (1.5.5)
=1
where \j,i =1,--- ,m, and v = (11, ,Vp)T are the Lagrangian multipliers.
Problem
max g\, A, V) = hel;-LL(x’)\l"” s Ams V), (1.5.6)
s.t. MNEK!, i=1,---,m (1.5.7)

is called the dual problem of the problem (1.5.2)~(1.5.4). Correspondingly,
problem (1.5.2)~(1.5.4) is called the primal problem.

Here we also have the corresponding duality theory:

Theorem 1.5.4 (Weak duality theorem) Let p* be the optimal value of the
primal problem (1.5.2)~(1.5.4) and d* be the optimal value of the dual problem
(1.5.6)~(1.5.7). Then

> sup{g(A1, -+ s A, V)N =k 0,4 =1, ,m;v € RP}

= d*. (1.5.8)
Corollary 1.5.5 Let & be the feasible point of the primal problem
(1.5.2)~(1.5.4) and (A1, , Am, ) be the feasible point of the dual problem
(1.5.6)~(1.5.7). If fo(Z) = (/\ D), then & and (i, -+, Am, D) are

their solutions respectively.
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Definition 1.5.6 (Slater’s condition) Problem (1.5.2)~(1.5.4) is said to sat-
isfy Slater’s condition if there exists a feasible point x such that

T

filz) <k, 0,i=1,--- ,m; a;xz=b,i=1,---,p. (1.5.9)

Theorem 1.5.7 (Strong  duality — theorem)  Consider the  problem
(1.5.2)~(1.5.4) satisfying Slater’s condition given by Definition 1.5.6. Let p* be
the optimal value of the primal problem (1.5.2)~(1.5.4) and d* be the optimal
value of the dual problem (1.5.6)~(1.5.7). Then

= Sup{g()‘h"' 7)\may)|Ai EK: 077’: 17 , MV € RP}
=d". (1.5.10)
Furthermore, if p* is attained, i.e. there exists a solution x* to the primal

problem, then d* is also attained, i.e. there exists a solution (N\},--- A& v*)
to the dual problem such that

p* = fo(z") = g(A], -+, A, V) = d" < o0 (1.5.11)

»Ymo

1.5.4 Optimality conditions

Theorem 1.5.8 Consider the problem (1.5.2)~(1.5.4) satisfying Slater’s con-
dition given by Definition 1.5.6. If x* is its solution, then x* satisfies the KKT
conditions

hi(z®) =0, i=1,---,p, (1.5.12)
file®) 2k, 0, i=1,---,m, (1.5.13)
Az 0, i=1,---,m, (1.5.14)

( )

A5 fi(z*) =0, i=1,---,m, 1.5.15

VaL(@®, A, Ay v) = Vio(a®) + Y Vfi(a®) WA (1.5.16)
=1

p
+> v Vhi(x*) =0,
=1
(1.5.17)

where V fo(z*) and Vh;(z*) are respectively the Fréchet derivatives of fo(x)
and hi(z),i = 1,---,p at x*, Vfi(z*)*) is the Fréchet derivative adjoint
operator of fi(x) at x*i=1,--- ,m[16a.

Theorem 1.5.9 Consider the problem (1.5.2)~(1.5.4). If x* satisfies the
KKT conditions (1.5.12)~(1.5.17), then x* is its solution.
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Theorem 1.5.10 Consider the problem (1.5.2)~(1.5.4) satisfying Slater’s
condition given by Definition 1.5.6. Then for its solution, it is necessary and
sufficient condition that ©* satisfies the KKT conditions (1.5.12)~(1.5.17).
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Chapter 2

Linear Classification

We are now beginning to study support vector machines starting from the
linear classification problems. First, by investigating an example, we derive
the maximal margin principle intuitively. Then, using this principle, the linear
support vector classification is established.

2.1 Presentation of Classification Problems
2.1.1 A sample (diagnosis of heart disease)

Many researchers have done studies to develop intelligent medical decision
support systems using existing data sets for cardiac disease diagnosis. For ex-
ample, the data set provided by Cleveland Heart Disease Database (see [200]),
recorded 13 relevant features of heart disease in 303 patients: blood pressure,
cholesterol level, etc., and the 14th record having values 1,2,3,4 or not having
heart disease with degree value 0. These records help the researchers to dis-
tinguish presence from absence of heart disease for new patients according to
their recorded features. This kind of problem is referred to as classification or
pattern recognition. In Probability and Statistics this is called discrimination
analysis. Throughout this book, we use the terminology classification.

To make the classification problem easier to understand, we reduce the
above problem to the following toy example, where only 2 features and 2
cases in the 14th record (value nonzero and value 0) are considered.

Example 2.1.1 Assume that diastolic (blood) pressure and the level of choles-
terol are strong determinants of heart disease. Ten patients’ clinical records are
listed in Table 2.1. Here, y; = 1 indicates that the i-th patient belongs to posi-
tive class having cardiac disease; y; = —1 (not 0) indicates that the j-th patient
belongs to negative class having no cardiac disease. The clinic record for the
first patient is a two-dimensional vector x1 = ([x1]1, [z1]2)T = (73,150)T, and
y1 = —1, for the second patient is xo = ([x2]1, [22]2)T = (85,165)T, 3o = —1,

and for the 10th patient is x19 = ([z10]1, [Z10]2)T = (110,190)T, 410 = 1.
The i-th patient corresponds to (x;,y;), which is called a training point; the

41
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TABLE 2.1: Clinical records of 10 patients.
Diastolic  Cholesterol Having heart

Patient pressure level disease
number ([z]; mmHg) [z]s mg/dL (y)
1 [Il]l = 73 [CCl]Q = 150 Yy = —1
2 [,Tg]l =85 [1‘2]2 =165 Yo = -1
10 [1'10]1 =110 [{Elo]g =190 Y10 = 1

ten training points consists of a training set T’

T = {(z1,91), -, (T10,Y10)}- (2.1.1)

The problem is, given the diastolic pressure and the level of cholesterol
for a new patient (a two-dimensional vector x = ([z]1,[z]2)T ), how to deduce
whether the patient has heart disease or not (to deduce whether the correspond-
ing y is 1 or —1), based on the training set T

This is a classification problem in two-dimensional space which can be
shown by Figure 2.1. Each patient is represented by a training point in the
coordinate plane. The i-th training point’s location corresponds to the i-th
two-dimensional vector z;, and if y; = 1, i.e. the patient has heart disease,

[Pk

the point is represented as “4”, otherwise “o”. The new patient corresponds

A [,
x,0(110,190)
190 F " +
+
165 | 0x,(85,165)
150 F Oz (73,150)
(@
(@
1 1 1 1 1 1 -
o 60 70 80 90 100 110 (=],

FIGURE 2.1: Data for heart disease.

to a new point in the plane and the problem is to deduce whether this point
belongs to the positive or negative class. In other words, we need to separate
the plane into two regions: region A and region B; if the point falls into region
A, it belongs to the positive class, otherwise to the negative class. The key is
how to separate the plane into two regions.
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We know that any straight line (w - z) + b = 0 (where (w - ) is the dot
product between w = ([w]1, [w]2)T and 2 = (x1,22)") will separate the plane
into two regions: (w-x)+b > 0 and (w-x)+b < 0. That is, we can determine
the value of the corresponding y of any point x by

y = f(z) =sgn((w - ) + b), (2.1.2)
where sgn(+) is a sign function defined by:

1, a>0;
sgn(a) = { 1 a<o (2.1.3)

A value of 1 indicates the positive class, and a value of —1 the negative class.
Instead of the linear function (w - x) 4+ b, however, we can use nonlinear
functions with much flexibility.

2.1.2 Classification problems and classification machines

Example 2.1.1 is a two-dimensional classification problem which contains
two features, or z € R?, and 10 training points. Generally, we can consider
the classification problem in n-dimensional space which contains n features,
i.e. x € R™, and [ training points. Denote the collection of training points as
training set

T:{(xluyl)v"' ,(.’L'l,yl)}, (2.1.4)

a general classification problem is that given a new input x, determine whether
its corresponding y is 1 or —1 according to the training set.
Let us formalize a classification problem mathematically as follows.
Classification problem: Given a training set

T:{(xlayl)v"' 7($l7yl)}, (215>

where z; € R",y; € Y ={1,-1},i=1,---,1, find a real function g(z) in R™,
to derive the value of y for any x by the decision function

f(x) = sgn(g(x)). (2.1.6)

Thus it can be seen that solving a classification problem is to find a criterion
to separate the R™ space into two regions according to the training set T'.

The above problem is a binary (or two-class) classification problem. Anal-
ogously, there are multiclass classification problems (see Chapter 8). In what
follows it will be assumed, unless mentioned specifically, that all classification
problems are two-class problems.

Note that in the training set T, (x;,y;) € R™ x Y is called training point or
positive (negative) training point if the corresponding y; = 1 (y; = —1). The
vector 2; € R™ is called input or positive (negative) input if the corresponding
y; = 1 (y; = —1), its components are called features, y; € Y = {1, —1} is label
or output.
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According to the terminologies in the field of machine learning, we refer
to the method for solving the above classification problems as classification
machine or classification. Particularly, when g(z) is restricted to be a linear
function: g(x) = (w - x) 4+ b, the corresponding method is referred to as a
linear classification machine or linear classification, where the hyperplane
(w-x) + b= 0 separates R™ space into two regions.

Intuitively speaking, simple linear classification machines can be used to
solve such problems as shown in Figure 2.2 and Figure 2.3. On the other
hand, for some other problems such as the one shown in Figure 2.4, general
classification machines must be used, where g(x) is allowed to be as a nonlinear
function; otherwise a big error will be produced. The aim in this chapter is to
establish linear classification machines.

A (=], -+

O
=Y

FIGURE 2.2: Linearly separable problem.

Az

o [z],

FIGURE 2.3: Approximately linearly separable problem.
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o

FIGURE 2.4: Linearly nonseparable problem.

2.2 Support Vector Classification (SVC) for Linearly
Separable Problems

To construct linear classification machines, we consider linearly separable
problems first. Roughly speaking, a linearly separable problem is a problem
that the training set can be separated by a hyperplane correctly, such as the
problem shown in Figure 2.1. The definition is as follows.

Definition 2.2.1 (Linearly separable problem) Consider the training set T =
{(z1,y1), 5 (@, )} € (R x V), where z; € Ry, € Y = {1,-1},i =
1,--- 1. If there exist w € R™, b € R and a positive number € such that for
any subscripts i with y; = 1, we have (w-x;) +b > €, and for any subscripts
1 with y; = —1, we have (w-x;) + b < —e, we say the training set and its
corresponding classification problem are linearly separable.

2.2.1 Maximal margin method
2.2.1.1 Derivation of the maximal margin method

Consider the separable problem in R? shown in Figure 2.1 and try to find
a suitable straight line to separate the R? space into two regions. Obviously,
it is natural to select the best separating straight line among the straight lines
which are able to separate all of the positive inputs “+” and the negative
inputs “o” correctly.

First let us investigate the case where the normal vector w of the separating
straight line is given. In Figure 2.5 [; is one of the straight lines with the given

w, separating all of the positive and negative inputs correctly. But such a line
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is not unique; any line obtained parallel moving [; before approaching any
input is a candidate. The two lines lo and I3 in the extreme cases are called
support lines. Among all the candidates the “middle one” between [y and I3
should be the best. The above observation gives a method to construct the
best separating straight line when the normal vector is given.

A[2]s

o (=]

0 (],
FIGURE 2.6: Separating line with maximal margin.

How to select the best normal direction w? It can be seen from the above
analysis that there are two support lines for a given normal direction. The
distance between the two support lines is called “margin”. It is reasonable
to select the normal direction which makes the margin maximal as shown in
Figure 2.6.

Now let us formulate the problem to find the separating line (w-z)+b = 0 as
an optimization problem for the variables of w and b. Suppose the separating
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line can be represented as (- x) +b = 0. Note that the separating line should
be the middle line between two support lines; therefore the two support lines
can be expressed as (@0 -z) +b =k and (@ - z) + b = —k respectively. Let

w b
w = 7 b= 7 then the two support lines can equivalently be expressed as

(w-z)+b=1 and (w-x)+b=-1. (2.2.1)

Accordingly, the expression of the separating line becomes

(w-x)+b=0. (2.2.2)

It yields from direct calculation that the margin, or the distance between the
2

two support lines, is W So the idea of maximal margin leads to the following
w

optimization problem for w and b:

2
max — (2.2.3)
wb [[w]

s.t (w-z)+b>21, Vi:y, =1, (2.2.4)
(w-z)+b< -1, Vi:y;=-1, (2.2.5)
or
n 2w (2.2.6)
e 2 -
st yi((w-z)+b) =1, i=1,---,10. (2.2.7)

The above optimization problem is derived from maximizing the margin
between the two support lines in two-dimensional space R2. It is not difficult
to see that for solving classification problems in n-dimensional space R"™ we
should maximize the margin between the two support hyperplanes. It is called
the principle of maximal margin. The optimization problem obtained from this
principle has the same form of the problem (2.2.6)~(2.2.7). So we can establish
the following algorithm:

Algorithm 2.2.2 (Mazimal margin method for linearly separable problems)
(1) Input the training set T = {(x1,y1), - , (@1, y1)}, where x; € R™, y; €

y: {17_1}7Z: 17 al;
(2) Construct and solve the optimization problem

LTITE
mi = 2.2.
nin ol (2.2.8)

s. t. yi((w-z;))+b) =21,i=1,---,1, (2.2.9)

obtaining the solution (w*,b*);



48 Support Vector Machines
(8) Construct the separating hyperplane (w* - x) + b* = 0, and the decision
function f(z) = sgn((w* - x) + b*).

The above algorithm is sometimes called linear hard margin support vector
classification since the constraint (2.2.9) implies that all inputs in the training
set are required to be classified completely correctly and not in the margin
tube —1 < (w-x) +b < 1.

2.2.1.2 Properties of the maximal margin method

Theorem 2.2.3 For a linearly separable problem, there exists a solution
(w*,b*) to the optimization problem (2.2.8)~(2.2.9) and the solution satis-

fies:
(i) w* £0;
(i) there exists a j € {ily; = 1} such that
(w* - z;) + 0" =1; (2.2.10)
(iii) there exists a k € {ily; = —1} such that
(w* - xp) + b = —1. (2.2.11)

Proof We prove the existence of solution first. Since the training set is
linearly separable, there is a feasible point (w, b) of the optimization problem
(2.2.8) ~(2.2.9). Therefore the problem is equivalent to

. 1, o
min Sl (2:2.12)
st yi((weoa) +b)=1,i=1,--- 1, (2.2.13)
1 1
Sllwl® < llal*. (2.2.14)

It is not difficult to see that the feasible region of the above problem is a
non-empty bounded close set. According to the fact that the minimal value of

1
a continuous function (=||w||?) is achieved in a non-empty bounded close set,

the solution to the optimization problem (2.2.8)~(2.2.9) exits.

Now we turn to prove the properties (i)-(iii).

(i) We only need to prove (w*,b*) = (0,b*) is not a solution by contra-
diction. If (w*,b*) = (0,b*) is a solution, it should satisfy the constraints
(2.2.9), which leads to b* > —1 and b* < 1 for positive and negative inputs
respectively. This contradiction proves the conclusion.

(ii) We also use the proof by contradiction. Assume that the conclusion
(ii) is not true, that is

(w* - 2;) +b* > 1, Vie{ily =1} (2.2.15)
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But since the solution (w*,b*) should satisfy the constraints, we have
(w* - @) + 0" < =1, Vie{iy=-1}. (2.2.16)

Now it is sufficient to show that (w*,b*) is not a solution from (2.2.15) and
(2.2.16), then we have a contradiction. Let

W= ow*, b= (b*+1)a —1. (2.2.17)
If & € (0,1), then (2.2.16) is equivalent to
(0-x)+b< -1, Vie{iyi=—1}. (2.2.18)

On the other hand, for i € {i|y; = 1} and from (2.2.15), we have
lim [(’[D . xi) + (N)] = hrln 0[(0&(}* . ,Ti) + (b* + 1)0( - 1] = (w* ',Ti) +b* > 1.
a—1—

a—1-0
(2.2.19)
Hence there exists an « € (0, 1) such that

(W-x)+b>1, Viel{ily;=1}. (2.2.20)

Inequalities (2.2.18) and (2.2.20) indicate that (w0, ) is a feasible point of the
optimization problem and the corresponding value of the objective function
is 5”&;” = 042%||w*|| < %Hw*HQ, implying that (w*,b*) is not a solution. This
contradiction proves the conclusion.

(iii) Conclusion (iii) can be proved in a way similar to (ii). [

It should be noticed that the conclusion (i) shows that Algorithm 2.2.2
can always construct a hyperplane which is able to separate the inputs of two
classes in the training set correctly, and conclusions (ii) and (iii) indicate that
the two hyperplanes, (w* - z) + b = +1, obtained using Algorithm 2.2.2 are
the two support hyperplanes.

The following theorem shows the uniqueness of the separating hyperplane
constructed by Algorithm 2.2.2.

Theorem 2.2.4 For a linearly separable problem, the solution to the opti-
mization problem (2.2.8)~(2.2.9) is unique.

Proof Suppose the problem has two solutions (wf,b}) and (w3, b3). From
Theorem 1.2.15 in Chapter 1, the solution to the problem w.r.t. (with respect
to) w is unique, i.e.

w = w;. (2.2.21)
Hence the two solutions (w7, b}) and (w3, b5) can respectively be rewritten as
(w*,b}) and (w*, b}). It yields from the conclusion (ii) of Theorem 2.2.3 that
there are j,j’ € {1,---,1} such that y; = y;» =1, and

(w* - zj) + b =1, (2.2.22)
(w* ',Tj/) + b; >1, (2223)
(w* - xj)+b5 =1, (2.2.24)
(w* -zj)+ b5 > 1. (2.2.25)
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Hence we have b} > b4 and b5 > b} from the above four expressions, then
by = b3. u

Remark 2.2.5 (Robustness of the mazimal margin method) The margin is
maximized for the separating hyperplane obtained from the maximal margin
principle. This makes the corresponding decision function maintaining a good
performance under certain perturbations. It is mot sensitive for certain per-
turbations to the input x; of the training point (x;, yl) it will still be classified
correctly. Also the decision function f(x) = sgn((w* - x) + b*) idtself is toler-
ant toward certain perturbations to w* and b*; the decision function can still
classify both the positive and negative inputs correctly.

2.2.2 Linearly separable support vector classification

We now give another way to find the maximal margin hyperplane. That is,
rather than directly solve the optimization problem (2.2.8)~(2.2.9), we solve
its dual problem.

2.2.2.1 Relationship between the primal and dual problems

To derive the dual problem of the primal problem (2.2.8)~(2.2.9), we in-
troduce the Lagrange function:

1
L(w,b,a) = %Hw||2 =S il w) +8) — 1) (2.2.26)
=1

where o = (aq,---,q;)T is the Lagrange multiplier vector. We have the
following theorems.

Theorem 2.2.6 Optimization problem

l

1o
1
max —3 ZZ yiy;(zi -z oy + ZI% , (2.2.27)
=1 j=1 J
s.t. }:%%:n, (2.2.28)

>0, i=1,--,1 (2.2.29)
is the dual problem of the primal problem (2.2.8)~(2.2.9).

Proof According to Definition 1.2.16 in Chapter 1, the dual problem
should have a form of

max  g(a) = inlf)L(w, b, o), (2.2.30)

st ax0. (2.2.31)
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As L(w, b, o) is a strictly convex quadratic function of w, its minimal value is
achieved at w satisfying

l

VuL(w,b,a) =w =Y yiwia; =0, (2.2.32)
1=1
that is
w = Z YTy (2.2.33)

Substituting the above in (2.2.26) yields

o1

1
me(w b, a) 522 yiy;(zi - )y Zaj—b <Z yzaz> . (2.2.34)
Therefore,

l

inf L(w, b, a) = z;zlylyjalaj Tirdy +ZO‘J’ if 2%% -
w, i=1j i=

—00, otherwise.

(2.2.35)
Hence the problem (2.2.30)~(2.2.31) can be written as (2.2.27)~(2.2.29). R

Theorem 2.2.7 For linear separable problems, the dual problem (2.2.27)~
(2.2.29) has a solution.

Proof We use Theorem 1.2.21 in Chapter 1 (Strong duality theorem) to
prove the conclusion. In fact, the primal problem (2.2.8)~(2.2.9) is a con-
vex programming and Theorem 2.2.3 has already proved the existence of its
solution. Furthermore, it satisfies the Slater’s condition since its constraints
contain linear inequalities only. Hence its dual problem (2.2.27)~(2.2.29) has
a solution according to Theorem 1.2.21. |

The dual problem (2.2.27)~(2.2.29) is a maximization problem. In the
optimization, a maximization problem is often replaced by its equivalent min-
imization problem. For the maximization problem (2.2.27)~(2.2.29), its equiv-
alent minimization problem is:

l

l l
m(in % Z Z yiyi(z; - z5)os05 — Z (2.2.36)
i=1 j=1 j=1
5. t. > yiai =0, (2.2.37)

a; =0, i=1,--,1. (2.2.38)

Note that the minimization problem (2.2.36)~(2.2.38) has the same solu-
tion set as that to the maximization dual problem (2.2.27)~(2.2.29) and is
often also called the dual problem of the problem (2.2.8)~(2.2.9).
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Theorem 2.2.8 Optimization problem (2.2.36)~(2.2.38) is a convex quadratic
programming.

Proof Let

H:(yly](xzx]))lxlu 62(17"' 71)T7
a=(ay,- ), y= ()", (2.2.39)

then the problem (2.2.36)~(2.2.38) can be rewritten as

1
min W(a) = gozTHa —eTa, (2.2.40)
st. a'y=0, (2.2.41)
a>0. (2.2.42)

Let Q = (y121,- -+ ,yxy). It is clear that H = QTQ and so H is positive
semidefinite. Hence the above problem is a convex programming by Theorem
1.2.7 in Chapter 1. |

Theorem 2.2.9 Consider the linearly separable problem. For any solution
to the dual problem (2.2.56)~(2.2.58), o* = (af, -+ ,a;)T, there must be a
nonzero component o. Furthermore, for any nonzero component o of o,
the unique solution to the primal problem (2.2.8)~(2.2.9) can be obtained in

the following way:

l
w* =Y ajym (2.2.43)
=1
l
b=y — Y afyili e ay) . (2.2.44)
=1

Proof Firstly we show that, for w* given by (2.2.43), there exists a b*
such that (w*,b*) is the solution to the problem (2.2.8)~(2.2.9). Theorem
2.2.8 shows that problem (2.2.36)~(2.2.38) can be rewritten as the problem
(2.2.40)~(2.2.42). So it is easy to see that problem (2.2.40)~(2.2.42) sat-
isfies the Slater condition. Accordingly, if o* is a solution to the problem
(2.2.40)~(2.2.42), it yields from Theorem 1.2.23 (in Chapter 1) that there
exists a multiplier b* and a multiplier vector s* such that

o Ty=0, a*>0, (2.2.45)
>0, sTa*=0, (2.2.46)
Ho* —e+b'y—s"=0. (2.2.47)

Therefore, from (2.2.46) and (2.2.47), we have

Ho* —e+b*y > 0. (2.2.48)
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From (2.2.43), that is equivalent to the following:
yi((w* - z) +0%) =1, i=1,---,1, (2.2.49)

which implies that (w*,l;*) is a feasible solution to the primal problem
(2.2.8)~(2.2.9).
Furthermore, from (2.2.45)~(2.2.47) we have

1 1
5”’[1}*”2 _ §a*THa*

1 -
= §a*THo<* — o (Ha* + by — e — 5%)

1 -
:—EOZ*THOZ* _ b*O[*Ty—F eToz* + S*TO[*
1
:—Ea*THoz* +eTar . (2.2.50)

This shows that the objective function’s value of the primal problem at the
point (w*, I;*) is equal to the optimum value of its dual problem and therefore
(w*,b*) is the solution to the primal problem (2.2.8)~(2.2.9) according to
Corollary 1.2.19 in Chapter 1.

Secondly, we show that a* is nonzero. If it is not true, i.e. * = 0, then
the w* defined by (2.2.43) is a zero vector, which contradicts the conclusion
(i) of Theorem 2.2.3, and so a* # 0.

Finally, we show that (w*,b*) obtained from (2.2.43)~(2.2.44) is the
unique solution to the primal problem (2.2.8)~(2.2.9). In fact, for the problem
(2.2.8)~(2.2.9), the uniqueness of its solution can be derived immediately from
Theorem 2.2.4 and so it is sufficient to show that the multiplier b* has the
expression (2.2.44). Actually, note that o # 0 implies s} = 0 from (2.2.46).

It yields from (2.2.47) that the jth entry of Ha* —e+ b*y is zero. Solving the
equation w.r.t. b* results in expression (2.2.44). [

2.2.2.2 Linearly separable support vector classification

Theorem 2.2.9 gives a way to construct the classification decision func-
tion: starting from an arbitrary solution a* = (af, -, ;)T to the problem
(2.2.36)~(2.2.38), we can find the solution (w*,b*) to the primal problem
according to (2.2.43)~(2.2.44). Thus, the following algorithm is established.

Algorithm 2.2.10 (Linearly separable support vector classification)

(1) Input the training set T = {(z1,v1), - , (1, y1)}, where x; € R™,y; € Y =
{15_1}57’:15 717‘
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(2) Construct and solve the conver quadratic programming

1ol !
moitn % ZZyZyJ(xZ Ty 0g — Zaj , (2.2.51)
i=1 j=1 j=1
s.t. > yiai =0, (2.2.52)
a:->0, i=1,- 1, (2.2.53)
obtaining a solution o* = (af, -+ ,af)T;

1
(8) Compute w* = Za;‘yixi. Choose a positive component of o, o, then
i=1
compute b*

!
- Z a;yi(z; - xj); (2.2.54)
i=1

(4) Construct the separating hyperplane (w* - x) + b* = 0, and its associated
decision function

f(x) = sgn(g(x)), (2.2.55)

where

g(z) = (w*-2) +b" = Zy )+ b (2.2.56)

2.2.3 Support vector

It is clear from step (3) and (4) of Algorithm 2.2.10 that the decision
function is fully specified by a subset of the training set; the subset consists of
the training points corresponding to the nonzero (positive) components of o*.
Other training points play no part in determining the separating hyperplane
that is chosen. To pay more attention to these determinant training points,
we give the following definition.

Definition 2.2.11 (Support vector) Suppose that o = (af,---,a;)T is a
solution to the dual problem obtained using Algorithm 2.2.10. The input x;,
associated with the training point (x;,y;), is said to be a support vector if the
corresponding component o of a* is nonzero and otherwise it is a nonsupport

vector.

It should be pointed out that the problem (2.2.51)~(2.2.53) is convex but
not strictly convex. Hence its solutions may not be unique. Therefore, support
vectors are determined not fully by the training set, but also depend on which
solution is obtained from Algorithm 2.2.10.

Obviously, in Algorithm 2.2.10, the decision function is decided only by
the training points corresponding to support vectors. This is the reason why
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Algorithm 2.2.10 is referred to as support vector classification. The following
theorem characterizes the support vectors:

Theorem 2.2.12 Suppose that the linearly separable problems are solved us-
ing Algorithm 2.2.10 and that the g(x) is defined by (2.2.56). Then

(i) support vector x; satisfies yig(x;) = y;((w* - ;) + b*) = 1, i.e. all support
vectors are on the two support hyperplanes.
(i) nonsupport vector x; satisfies y;g(x;) = y;((w* - ;) +b*) > 1.

Proof Now observe (2.2.45)~(2.2.47) again. From the fact that o™ > 0

in (2.2.45) and (2.2.46), we have sfaf = 0,i = 1,---,1. Then from (2.2.47),
we obtain

st =yi((wf - x;))+b)—1,i=1,--- . (2.2.57)
Hence
staf = of (yi((wf - x;))+0*)—1)=0,i=1,--- 1L (2.2.58)

The conclusion (i) is valid from (2.2.58) and the fact that o # 0 associated
with the support vector z;. The validity of the conclusion (ii) is derived from
(2.2.57) and (2.2.46). n

A 7] (w¥-2)+b*=1

(w* x)+b*=0

o [z],

FIGURE 2.7: Geometric interpretation of Theorem 2.2.12.

The geometric interpretation of the above theorem is shown in Figure 2.7
where (w* - z) + b* = 0 is the separating straight line, (w* - z) + b* = 1 and
(w* - x) + b* = —1 are the two support lines. A nonsupport vector belonging
to the positive inputs lies on, or the aside of, the former support line and
nonsupport vector belonging to the negative inputs lies on, or the aside of,
the later. Moreover, support vectors are on either of the two support lines.
That is what the name “support vector” comes from.
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2.3 Linear C-Support Vector Classification

We discuss the linear separators for general classification problems. Sup-
pose the training set is

T:{(xlayl)v"' 7($lvyl)}a (231)

where z; € R, y; € Y = {1,—1},i = 1,--- 1. It is still of form (2.1.5) but
now we do not restrict corresponding problems to be linearly separable ones.

2.3.1 Maximal margin method
2.3.1.1 Derivation of the maximal margin method

For a general classification problem, which may be a linearly nonseparable
problem, it is possible that any hyperplane is unable to separate all of the
positive and negative inputs correctly. If we still want to use a hyperplane as
a separator, we need to adopt the following two strategies: On one hand, in
order to relax the requirement to separate all of the inputs correctly, allow the
existence of training points that violate the constraints y;((w - x;) +b) > 1 by
introducing slack variables

&E>0, i=1,---,1, (2.3.2)
then yielding loose constraints

On the other hand, in order to make the above violation as little as possible,

avoid making &; too large by superimposing a penalty upon them in the objec-

tive function. For instance, we can add a term Z & to the objective function
i

resulting in changing the primal problem (2.2.8)~(2.2.9) into

1
. 1, 2
min S +C;§z, (2.3.4)
s. t. yillw-z;)+b) =21-& ,i=1,---,1, (2.3.5)
&E>20,0=1,---,1,
where & = (&1,---,&)T, and C > 0 is a penalty parameter. The two terms

in the objective function (2.3.4) indicate that we not only minimize |w||?
!

(maximize the margin), but also minimize Zfi, which is a measurement of
i=1

violation of the constraints y;((w - x;) +b) > 1,i =1,--- ,l. The parameter C

determines the weighting between the two terms.
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Thus we obtain an algorithm with soft margin which is an improved version
of Algorithm 2.2.2 and can be described briefly as follows.

Algorithm 2.3.1 (Linear mazimal margin method) Solve the primal problem
(2.3.4)~(2.3.6), obtaining a solution (w*,b*,&*). Then construct the separat-
ing hyperplane and the corresponding decision function f(x) = sgn(g(z)),
where g(x) = (w* - x) + b*.

2.3.1.2 Properties of the maximal margin method

As the decision function is determined by the part (w*,b*) of the solution
(w*, b*, £*) to the primal problem (2.3.4)~(2.3.6), the main issue that concerns
us is this part. According to Definition 1.2.13 (in Chapter 1), consider the
solutions to the primal problem w.r.t. (w,b) and w.r.t. w and b.

Theorem 2.3.2 There exist solutions to the primal problem (2.3.4)~(2.3.6)
w.r.t. (w,b).
Proof Similar to the proof of Theorem 2.2.3, take arbitrary w, b, and con-
struct & = (&1,---,&)7T by

& = max{1 — y;((@ - ;) + b), 0}. (2.3.7)
It is easy to see that (w, b, é) is a feasible point of the primal problem. Fur-

thermore we can construct an optimization problem which is equivalent to the
primal problem (2.3.4)~(2.3.6):

l
min 3l N (2.3.8)
5. t. yi((w-x) +b)=>1-&,i=1,---,1, (2.3.9)
&20,i=1,---,1, (2.3.10)
1 ! 1 L
gl\w||2+02& < 5H®||2+OZ&, (2.3.11)
=1 =1

and now it is easy to show the existence of its solutions. The details are omitted
here. |

Theorem 2.3.3 The solution w* of the primal problem (2.3.4)~(2.3.6) w.r.t.
W 1S UNIqUE.

Proof The conclusion is true immediately from Theorem 1.2.15 in Chapter 1.
|

Remark 2.3.4 It is different from the situation for linearly separable prob-
lems and possible that the solution w* to the primal problem w.r.t. w may be
zero. So we may be unable to construct the separating hyperplane and decision
function in this way theoretically. However, in practical applications this pos-
sibility is nearly zero, which is why we would not go further. Readers who are
interested in the details can refer to [121].
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The following counterexample shows that the solution to primal problem
w.r.t. b may not be unique which is different from that of primal problem for
linearly separable problems.

Example 2.3.5 Consider a classification problem in R (one dimensional
space). Suppose the training set is

T ={(z1,11), (x2,92)} = {(-1,-1),(1,1)}. (2.3.12)

1
Choose a penalty parameter C' < 3 and the primal problem is

. 1
min - Sllwl*+C6 + &), (2.3.13)
s. t. w—>b>1-—¢, (2.3.14)
w+b>=1-E, (2.3.15)
£, 20 (2.3.16)
Find the solutions of the above problem w.r.t. b.
Introduce the corresponding Lagrange function:
1
L(w,b,€,0m) = 5[wl* + C(& + &) + aa(l = & —w+b)
+az(l — & —w —b) — mé& — e (2.3.17)

Then we find w, b, £ = (£1,&2)" and @ = (a1, a2)",n = (m1,72)" satisfying
KKT conditions. The KKT conditions are as follows:

1—6 —wtb<0, 1—-E—w-b<0, —£&<0, —£&<0, (23.18)
a1 20, ax>=0, m =0, =0, (2.3.19)

a1(l=& —w+b)=0, ax(l1—-&—-w-0b)=0, m& =0,
n2ée =0, (2.3.20)
Vel =w—0a1—as =0, VeL=0a3—a3=0, (2.3.21)
Ve e L=C—-a1—m =0, VgL=C—-as—1n2=0, (2.3.22)

<
2

Obviously, these conditions imply that
a1 = g, N1 =12. (2.3.23)

Hence what we need now is to find all the solutions that satisfy conditions
(2.3.18)~(2.3.22) according to three different cases:
(i) Case of 1 = 12 # 0,1 = a2 # 0. In this case, we immediately have
1 1
§&1=86=0,0=0, w=10 2042:5, m = C — = < 0. But the solution

dose not exist since the last expression contradicts (2.3.19).
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(ii) Case of 71 =12 # 0, a1 = as = 0. In this case, we have w =0, 71 =
ne=0C, & =& =0, 1+b<0, 1—0<0. The last two expressions are in
contradiction with each other and so we have still no solutions.

(iii) Case of 1 = n2 = 0. In this case, we have

’LUZZC, 011204220, 771:77220, bE[Q,E],

f=1-20+b, &=1-2C—b, (2.3.24)
where b = —1 4+ 2C, b = 1 — 2C. According to Theorem 1.2.9 in Chapter 1
we know that the set of solutions w.r.t. b is the close interval [b,b] = [—1 +

20,1 - 2C].

Theorem 2.3.6 The solution set to the primal problem (2.3.4)~(2.3.6) w.r.t.
b is a bounded close interval [ b,b ], where b < b.

Proof According to Theorem 2.3.2, we know that the solution set to the prob-
lem (2.3.4)~(2.3.6) w.r.t. b is not empty. And Theorem 1.2.9 shows that the
solution set forms a convex set. This leads to the solution set being bounded
at close interval since the solutions w.r.t. b are bounded. |

2.3.2 Linear C-support vector classification

The basic idea of linear support vector classification is finding the solution
to the primal problem (2.3.4)~(2.3.6) by means of solving its dual problem.
2.3.2.1 Relationship between the primal and dual problems

Firstly we introduce the dual problem. The Lagrange function correspond-
ing to the primal problem (2.3.4)~(2.3.6) is

L(w,b,ﬁ, «, ) |wH2+CZ§1 Zaz yz w - Iz)"'b _1"'51 Zﬂzfzv

=1 =1
(2 3.25)
where a = (ay,--- ,;) and B = (B1,---,5)T are Lagrange multiplier vec-
tors. Then we have the following theorem.
Theorem 2.3.7 Optimization problem
l

1ol
max —% ZZy yiogog (g - x5) + ZO‘J : (2.3.26)

b i=1 j=1 j=1
l

s.t. > yiai =0, (2.3.27)
=1
C—oa;—Bi=0,i=1,---,1, (2.3.28)
@ >0, i=1,---,1, (2.3.29)
Bi=0, i=1,---,1 (2.3.30)

is the dual problem of the primal problem (2.8.4)~(2.5.6).
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Proof It is similar to the proof of Theorem 2.2.6. Also it is a special case of
Theorem 4.1.1 in Chapter 4. The details are omitted here. |

Theorem 2.3.8 Dual problem (2.3.26)~(2.3.30) has solutions.

Proof It is similar to the proof of Theorem 2.2.7 and the details are omitted
here. |

Dual problem (2.3.26)~(2.3.30) can be simplified to a problem only for
a single variable « by eliminating the variable § and then rewritten as a
minimization problem:

l l l
. 1
min 3 Z Z yiyi(z; - zj)ohay — Z o, (2.3.31)
i=1 j=1 j=1
1
s. t. > yiai =0, (2.3.32)
i=1
0<a;i<C, i=1,---,1. (2.3.33)
Theorem 2.3.9 Suppose that o = (af,--- ,a;)T is any solution to the con-

ver quadratic program (2.3.31)~(2.3.33). If there exists a component of a*,
o, such that o € (0,C), then a solution (w*,b*) to the primal problem
(2.8.4)~(2.3.6) w.r.t. (w,b) can be obtained by

l
wt =" iy (2.3.34)
=1
l
b* = y; — Z o yi(zi - xj). (2.3.35)
=1

Proof We omit the details as there is a special case of Theorem 4.1.3 later.
|

2.3.2.2 Linear C-support vector classification

Now we can establish an algorithm according to Theorem 2.3.9 as follows:

Algorithm 2.3.10 (Linear C-support vector classification, Linear C-SVC)

(1) Input the training set T = {(z1,v1),- - , (1, y1)}, where x; € R™,y; € Y =
{15_1}57’:15 717‘

(2) Choose an appropriate penalty parameter C > 0;
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(8) Construct and solve the convex quadratic program

1ol !
1
min B ZZ yiy;(zi - xj) ooy — Zaj , (2.3.36)
=1 j=1 j=1
st Y i =0, (2.3.37)
0<a;<C, i=1,---,1, (2.3.38)
obtaining a solution o* = (af,- -+ ,af)T;

(4) Compute b*: choose a component of a*, aj € (0,C) and compute

l
=y (i - xj); (2.3.39)
=1

(5) Construct the decision function

f(x) = sgn(g(x)), (2.3.40)

where

Zyl )+ b*. (2.3.41)

Algorithm 2.3.10 can be used for general classification problems including
linearly separable problems. So both Algorithm 2.3.10 and Algorithm 2.2.10
(linear separable support vector classification) are able to deal with linear
separable problems. Now for these kinds of problems, we compare their per-
formance. Theoretically, it is not difficult to see that when the parameter
C' — oo, the primal problem (2.3.4)~(2.3.6) will be reduced to the primal
problem (2.2.8)~(2.2.9) for linearly separable problems. In fact the advantage
of Algorithm 2.3.10 will be given from theoretical point of view in Section
5.6.3 in Chapter 5. In this case, the two algorithms can be deemed the same.
However, the primal problems associated with the two algorithms, problems
(2.3.4)~(2.3.6) and (2.2.8)~(2.2.9), are not usually the same. So that, gener-
ally speaking, the decision functions obtained from the two algorithms would
be different. The decision functions resulting in using Algorithm 2.2.10 are
not necessarily better although it is designed particularly for these kinds of
problems. One of the reasons is due to the case when the training set contains
a few “wild points” which may be marked wrongly and will affect the resulting
hyperplane seriously. But Algorithm 2.3.10 can overcome this shortcoming to
a certain extent.
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Chapter 3

Linear Regression

Now we turn to the linear regression problems. The linear support vector
regression is established by converting the linear regression problems to the
linear classification problems.

3.1 Regression Problems and Linear Regression Prob-

lems
Similar to classification problems, regression problems consist of finding
a real function, for a given training set T: T = {(z1,y1),-- -, (1, y1)}, where
x; € R" is an input, and y; € Y = R is an output, ¢ = 1,--- ;[. Rather than

just Y = {—1,1} in classification problems, ) is generalized to the real set
in regression problems. Correspondingly, the goal of regression problems is to
derive the real value of an output y for any input z, based on a training set
T.

A regression problem can be formalized as follows.

Regression problem: Given a training set

T:{(xlayl)v'" 7(xl7yl)}a (311)

where x; € R",y; € Y = R,i = 1,--- I, find a real function g(z) in R", to
derive the value of y for any x by the function y = g(z).

The above problem is defined in the n-dimensional space. In order to ex-
plain it graphically, Figure 3.1 shows an example in one-dimensional space,
where the training points are represented by “x”. Geometrically, our goal is
to find a curve y = g(z) that fits the given points.

Particularly, when the function g(x) is restricted to be a linear function

y=g(z) =(w-x)+b, (3.1.2)

the corresponding problem is defined as the linear regression problem.
Linear regression problem: Given a training set

T:{(‘Tlayl)v"' ,(.’L'l,yl)}, (3.1.3)

63
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oY

FIGURE 3.1: A regression problem in R.

where z; € R",y; € Y = R,i=1,---,1, find a real function g(z) = (w-x)+b
in R™, to derive the value of y for any x by the function y = g(z).

Geometrically, a linear regression problem in n-dimensional space corre-
sponds to find a hyperplane in (n+1)-dimensional space for a given set (3.1.3),
since a linear function defined in n-dimensional space is equivalent to a hyper-
plane in the R™ x R. Figure 3.2 shows a simple case in one-dimensional space.
Roughly speaking, for the given points (“x”), our goal is to find a straight
line with a small “deviation” from these points. This leads to the following
definition of hard &-band hyperplane.

Y A

y=(w - x)+b

FIGURE 3.2: A linear regression problem in R.
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3.2 Hard é&-Band Hyperplane
3.2.1 Linear regression problem and hard z-band hyperplane

In order to solve regression problems, firstly we introduce the definitions
of &-band and hard &-band hyperplane.

Definition 3.2.1 (2-band of a hyperplane) For a given € > 0, the &-band of a
hyperplane y = (w-x) +b is the set {(z,y)|(w-z)+b—E <y < (w-x)+b+E},
i.e. the region between two parallel hyperplanes: y = (w-x) +b—¢& and y =
(w-z)+b+E.

Notice that the region in the above definition is open, i.e. it does not
contain the points (x,y) satisfying

(w-z)+b—=yand (w-z)+b+c=y. (3.2.1)

Definition 3.2.2 (Hard -band hyperplane) For a given & > 0 and a training
set T defined by (3.1.3), we say that a hyperplane y = (w - x) + b is the hard
g-band hyperplane for the training set T, if all the training points are inside
its £-band, i.e. the hyperplane y = (w - x) + b satisfies that

—Ee<y;—((w-z))+b) <&, i=1--- 1l (3.2.2)

Figure 3.3 shows an example of a hard &-band hyperplane in a linear regres-
sion problem. “x” represents the training points, and the solid line represents
the hyperplane (straight line) y = (w - ) + b. The region between two dashed
lines is the &-band of the hyperplane y = (w - ) + b. Obviously, all of train-
ing points are inside this tube, so the hyperplane is so-called a hard &-band
hyperplane.

Now we consider the hard &-band hyperplane for any training set (3.1.3).
When ¢ is large enough, there always exists a hard &-band hyperplane, since
the number of the training points is limited. And the value of € corresponding
to a hard &-band hyperplane should not be so small, it should be larger than
the optimal value €j,¢ of the following optimization problem:

min £, (3.2.3)
w,b,&
s.t. —e<y;i—((w-x;))+b)<e,i=1,---,1. (3.2.4)

Obviously, there are two possibilities for a given & > 0: (i) if £ > &j,¢, then the
hard &-band hyperplanes exist, and not uniquely; (ii) if £ < ej,¢, then there
does not exist any hard &-band hyperplane.

Roughly speaking, for a given training set T, when there exists a hard
&-band hyperplane for a small £, it is reasonable to choose this hyperplane as
the solution to the linear regression problem. Therefore our following work is
to construct a hard &-band hyperplane.
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o\ - x

FIGURE 3.3: A hard &-band hyperplane (line) in R.

3.2.2 Hard &-band hyperplane and linear classification

In this section, we try to construct a hard &-tube hyperplane using the
classification method. Figure 3.4 shows the idea of converting the construction
of a hard &band hyperplane to a classification problem. Consider a linear
regression problem in R. Suppose that the training set is {A1, Aa, -+, A7}
represented by “x”. For a given € > 0 and 7 = 1,---,7, the following steps
can help us find a hard &-band hyperplane. Firstly, we move the points A; up
and down with the distance of £, and obtain the points A} and A; . Secondly,
we join Af to A;, and obtain line segments A A just as shown by the
dashed lines in Figure 3.4. These line segments are open. Lastly, any line that
passes through these open line segments is a hard &-band hyperplane. This
implies that the line separating the two class points {A], A7 ,---, AT} and
{AT, A5, -+, A7} correctly is just what we want. So, we find the relationship
between constructing a hard &-band hyperplane and linear classification.

According to the above discussion, we construct two classes based on the
training set (3.1.3) by adding and subtracting & to y of every training points,
and obtain two sets of the positive and negative points respectively:

Dt ={(a],yi+e)"i=1,-- 1}, (3.2.5)
D™ ={(af,yi—e)"i=1,--1}. (3.2.6)
Then, the training set for classification is
{((x?7y1 + E)Ta 1)7 ) ((f?vyl + g)Ta 1)7 ((x?7y1 - g)Ta _1)5 T
((‘/L.rlrvyl _§)T7_1)}’ (327)

where (z,y; +&)T or (xF,y; — &)T represents the input, and the last com-
ponent, 1 or —1, represents the output. The problem of constructing a hard
&-band hyperplane is equivalent to linearly separating the above training sets
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s Y

o

FIGURE 3.4: Demonstration of constructing a hard &-band hyperplane
(line) in R.

(3.2.7). In fact, the following theorem depicts the relationship between these
two problems.

Theorem 3.2.3 For a given training set (3.1.3) and € > 0, a hyperplane
y = (w-z)+b is a hard £-band hyperplane if and only if the sets DV and D~
defined by (8.2.5)~(3.2.6) locate on both sides of this hyperplane respectively,
and all of the points in DV and D~ do not touch this hyperplane.

Proof For a given £ > 0, if a hyperplane y = (w - ) + b is a hard &-band
hyperplane, then by Definition 3.2.2, we have

—e<yi—((w-z)+b)<é, i=1,---,L (3.2.8)
This implies
yi+eE>(w-z)+b>y; —&, i=1,---,1, (3.2.9)

so the sets DT and D~ locate on both sides of this hyperplane respectively,
and all of the points do not touch this hyperplane.

Conversely, if the sets D™ and D~ locate on both sides of this hyperplane,
and all of the points do not touch it, then (3.2.9) holds. Furthermore, (3.2.9)
is equivalent to (3.2.8). So the hyperplane y = (w - x) + b is a hard &-band
hyperplane. |

As discussed before, in order to solve a regression problem with the train-
ing set (3.1.3), it is reasonable to find a hard &-band hyperplane. According to
Theorem 3.2.3, we know that constructing a hard &-tube hyperplane is equiv-
alent to constructing a separating hyperplane for the training set (3.2.7). This
provides us a way of transforming a regression problem to a classification
problem.



68 Support Vector Machines

3.2.3 Optimization problem of constructing a hard s-band
hyperplane

In this section, we consider how to construct a hard &-band hyperplane.
It is easy to see that there exist a lot of hard &-tube hyperplanes for the case
of & > einr, where gi¢ is the optimal value of the problem (3.2.3)~(3.2.4).
However, which one is the best? Theorem 3.2.3 shows that the better the hard
é-band hyperplane, the better the separating hyperplane with the training set
(3.2.7). So, we can construct a hard &-band hyperplane using the classification
method. Specifically, when & > €,¢, we can derive the optimization problem
of constructing a hard &-band hyperplane, according to the maximal margin
method for a linearly separable problem.

Note that the classification problem is in R"*'. Assume that the hyper-
plane is (w - z) + ny + b = 0, where the normal vector is (w™,n)T, w € R"
corresponds to x, and 1 € R corresponds to y. Similar to the problem
(2.2.3)~(2.2.5), we get the following quadratic programming problem w.r.t.

(w,n,b)

. 1 2 1,
- Z 3.2.10
mn o gl (3.2.10)
s.t. (w-z;)+nly; +&)+b=1, i=1,---,1, (3.2.11)
(w-z))+nly;—&)+b< -1, i=1,---,1. (3.2.12)

Then the separating hyperplane is
(W-z)+17y+b=0, (3.2.13)

where (w,7,b) is the solution to the problem (3.2.10)~(3.2.12). At last, the
regression function is

y=(w"-z)+ b, (3.2.14)

where - .
w =L p =2, (3.2.15)

n n

The above discussion provides a way to find a linear regression func-
tion. Firstly, we construct the problem (3.2.10)~(3.2.12) and get its solution
(w,,b); Next, we compute (w*, b*) using (3.2.15). However, the following way
is more direct: construct an optimization problem that (w*,b*) should satisfy
and get its solution. The following theorem will tell us what this problem is,

when 7 of the solution (w, 7, b) to the problem (3.2.10)~(3.2.12) is given.

Theorem 3.2.4 Suppose that (w,b,) is the solution to the problem
(8.2.10)~(3.2.12), then 7j # 0. Furthermore, let

1
e=¢— -, (3.2.16)

n
then
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(i) € satisfies
Eint < € < &, (3.2.17)
where eing is the optimal value of the problem (3.2.3)~(3.2.4);

b
(i) (w*,b*) = <—E, ——> is the solution to the following problem:
non

. 1.2
min S lwll”, (3.2.18)
s.t. (w-z;)+b—y; ,i=1,- 1, (3.2.19)

el (3.2.20)

Proof Firstly, we prove 77 # 0. In fact, if 7 = 0, there does not exist (w, b)
such that (w0, b, 0) satisfies the constraints of the problem (3.2.10)~(3.2.12).

Secondly, we prove the conclusion (i). On one hand, since the solution
(w, b, 7) satisfies the constraints (3.2.11) and (3.2.12), we have

(w-a;) + iy + &) +b>1, (3.2.21)
(@ @) +7(ys — ) +b <~ (3.2.22)
1 1
From the above two equations, we have 7 > — > 0. So, ¢ =& — — < &. On the
€ n
w

b
other hand, if £ < gy, then (w*,b*) = (—T, —j) satisfies the constraints
n n

(3.2.19)~(3.2.20), which contradicts the definition of &y.
Lastly, we prove the conclusion (ii). Let the variable n in the problem
(3.2.10)~(3.2.12) be 7, then the problem with the variable (w, b) is derived

. 1 ~ 112 172
Iglil 5”111” + 3T (3.2.23)
st (Wex) Ay e Fb=1, i=1,-- 1, (3.2.24)

(W-az3)+7(ys —&)+b< -1, i=1,---,1. (3.2.25)

Obviously, (w,b) is the solution to this problem. Introducing the variables
b
w o= i b = ——, the problem (3.2.23)~(3.2.25) can be rewritten as
n n _
v b
(3.2.18)~(3.2.20). So, (w*,b*) = (—i, —j) is the solution to the problem
non

(3.2.18)~(3.2.20).

According to the above theorem, in order to get a linear regression function,
we only need to solve the problem (3.2.18)~(3.2.20) and do not need to solve
the problem (3.2.10)~(3.2.12), where € > 0 is a pre-selected parameter less
than &. So, one reasonable way is: (i) choose the parameter e, construct the
problem (3.2.18)~(3.2.20); (ii) solve the problem (3.2.18)~(3.2.20); (iii) find
the linear regression function: y = (w* - ) + b*, where (w*, b*) is the solution
to the problem (3.2.18)~(3.2.20).
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3.3 Linear Hard s-band Support Vector Regression

The goal of this section is to find the linear hard e-band support vector
regression machine for the training set (3.1.3).

3.3.1 Primal problem

The primal problem is the problem (3.2.18)~(3.2.20) introduced in Section
3.2:

. Lo
min lwll®, (3.3.1)
s.t. (w$1)+b_yz<€77/ 17' '717 )
yi—(w-x;))—b<e,i=1,---,1 )

For the problem (3.3.1)~(3.3.3), we have the following theorem:

Theorem 3.3.1 Suppose that eis is the optimal value of the following prob-
lem:

min e, (3.3.4)
w,b,e
s.t. —e<yi—((w-z)+b)<e,i=1,--- 1, (3.3.5)

if € > €int, then the primal problem (3.3.1)~(3.3.3) has solutions, and the
solution w.r.t. w is unique.

Proof If € > ey, then the feasible set of the problem (3.3.1)~(3.3.3) is
nonempty, bounded and closed. This problem has solutions since a continuous
function can attain its minimum in a nonempty, bounded and closed set. And
Theorem 1.2.15 shows that the solution w.r.t. w is unique. |

It is not necessarily true that the solution to the primal problem
(3.3.1)~(3.3.3) w.r.t. b is unique. In fact, when ¢ is large enough, there exist
many b* with different values, such that (w*,b*) = (0,b*) are the solutions.
This shows that the solution to the primal problem w.r.t. b is not unique.

3.3.2 Dual problem and relationship between the primal and
dual problems

In this section, we start by a derivation of the dual problem of the primal
problem (3.3.1)~(3.3.3), followed by developing the relationship between these
two problems.
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In order to derive the dual problem, we introduce the Lagrange function

1
L(w,b,a™) = Hw||2 Zal ety — w-xi)—b)—Za;‘(s—yi—i—(w-xi)—i—b),
i=1

(3.3.6)
where o*) = (aq, 0, -+, ay, af)T € R% is the Lagrange multipliers vector,
and (x) is a shorthand implying both the vector with and without asterisks.
We have the following theorems.

Theorem 3.3.2 Optimization problem

! I
max D) (0f —ai)(aj — aj)(z; 'xj)_EZ(af + o)

() e R2! 2
aER ij=1 i=1

+ Zyl(ar — ), (3.3.7)

=1
l
s.t. Z(af —a;) =0, (3.3.8)
=1
a0 i=1,-,1 (3.3.9)

is the dual problem of the primal problem (3.3.1)~(3.3.3)

Proof According to Definition 1.2.16 in Chapter 1, the dual problem
should have a form of

max  g(a™) = inlf)L(w, b, a™)), (3.3.10)
st. a®>o. (3.3.11)

As L(w, b, o)) is a strictly convex quadratic function of w, its minimal value
is achieved at w satisfying

l
YV L(w,b,a™) =w = "(af — a;)a; =0, (3.3.12)
=1

that is

w = Z(a;‘ — ;). (3.3.13)
i=1
Substituting the above in (3.3.6) yields

l

l 1
—5 DD (0 =)@ — o) ay) —e Y (af + )

i=1 j=1 i=1

+Zyza — —b<Za —041). (3.3.14)

mf L(w, b, a*

l\3|’—‘
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Therefore,
1L
5 2 2 (af —an)(ef - ag)(i )
=1 _]:1
inf L(w,b,a™)) = _EZ(af+ai)+Zyi(af—ai)
wyb i=1 i=1
1
if Z(O&“ — ;) =0;
i=1
—%% otherwise.

(3.3.15)
Hence the problem (3.3.10)~(3.3.11) can be written as (3.3.7)~(3.3.9). [

Theorem 3.3.3 If ¢ > iy, then the dual problem (3.8.7)~(3.3.9) has a
solution, where eine is the optimal value of the problem (3.3.4)~(3.3.5).

Proof If € > iy, then the primal problem (3.3.1)~(3.3.3) has a solution
by Theorem 3.3.1. Furthermore, note that the primal problem is a convex
programming and its constraints contain linear inequalities only, so it satisfies
the Slater’s condition. Hence its dual problem (3.3.7)~(3.3.9) has a solution
according to Theorem 1.2.21 in Chapter 1. |

In this book, the problem (3.3.7)~(3.3.9) is replaced by its equivalent
minimization problem:

! l
. 1 .
oz<£1>1érll%2l 2 Zl aj — O‘Z)(Oﬁ —aj)(zi-x5) + € ;(ai + ;)
1,7 =
l
— 2 vilai -, (3.3.16)
=1

s.t. (af —a;) =0, (3.3.17)

-

1
D>0,i=1,-

3

SO~

Q

L. (3.3.18)

Note that the minimization problem (3.3.16)~(3.3.18) has the same solution
set as that to the maximization dual problem (3.3.7)~(3.3.9) and is often also
called the dual problem of the problem (3.3.1)~(3.3.3).

Theorem 3.3.4 Optimization problem (3.3.16)~(3.3.18) is a convex quadratic
programming.

Proof It is similar to the proof of Theorem 2.2.8 in Chapter 2; the details
are omitted here. |
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Theorem 3.3.5 For any solution to the problem (3.3.16)~(3.3.18), a®*) =
(ag,ad,--- ,dl,df)T,_ if @a*) # 0, the solution to the primal problem
(3.3.1)~(8.3.3), (w,b), can be obtained in the following way

l
W= (a — &), (3.3.19)
=1

and for any nonzero component &; > 0 of at),

b=y; — (w-x;)+¢, (3.3.20)
or for any nonzero component &j, > 0 of at),

b=yr— (0-zx) —¢. (3.3.21)

Proof Firstly we show that, for w given by (3.3.19), there exists a b
such that (w0, b) is the solution to the problem (3.3.1)~(3.3.3). Let H = ((z; -
i) )ixi, ¥y = (Y1, )Y, e=(1,---,1)T € R, the problem (3.3.16)~(3.3.18)

can be rewritten as

1
min —(a* —a)TH(a* —a) +ee(a* +a) —yT(a* — ), (3.3.22)
at)eR2 2
s.t. eT(a* —a)=0, (3.3.23)

o >0. (3.3.24)

Using the above theorem, this problem is a convex programming. In addition,
it satisfies the Slater’s condition. Accordingly, if @*) is a solution to the prob-
lem (3.3.16)~(3.3.18), it yields from Theorem 1.2.23 (in Chapter 1) that there
exists a multiplier b and a multiplier vector 5*) such that
ef(@a* —a)=0, a® >o, ( )

H(@" —a)+ee—y+be—5 =0, ( )

—H(@* —a)+ee4+y—be—5=0, (3.3.27)

5(*) >0, g(*)T@(*) = 0. ( )

Therefore, from (3.3.26)~(3.3.28), we have

From (3.3.19), that is equivalent to the following:
(-z)+b)—y; <e, i=1,---,1, (3.3.31)
yi — ((0-2)+b)<e, i=1,---,1 (3.3.32)

which implies that (u’),i)) is a feasible solution to the primal problem
(3.3.1)~(3.3.3).
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Furthermore, from (3.3.26)~(3.3.28), we have

— 1 — — % — % — T —%
——|| H2——§Hw||2+ozT(H(a —a)+ee—y+be—35")
+al(—H(a" —a)+ee+y —be —3) (3.3.33)
1
:5@*—@ﬂ?ﬂ@*—@}+wT@*+a)—yT@*—ax333®

This shows that the objective function’s value of the primal problem at the
point (w, l;) is equal to the optimal value of its dual problem and therefore
(w,b) is the optimal solution to the primal problem (3.3.1)~(3.3.3), according
to Corollary 1.2.19 in Chapter 1.

Finally, we show that (w,b) obtained by (3.3.19) and (3.3.20) or (3.3.21)
is the solution to the primal problem. It is sufficient to show b = b. Actually,
a®) = 0 implies that there exists nonzero component a; > 0orap >0 It
yields from (3.3.26)~(3.3.28) that

b=vy; — (0-xj)+¢; (3.3.35)
or B

b=y, — (0 -x) — €. (3.3.36)
So b =b. |

3.3.3 Linear hard e-band support vector regression

Based on Theorem 3.3.5, the following algorithm is established.

Algorithm 3.3.6 (Linear hard e-band support vector regression)

(1) Input the training set T = {(x1,y1), - , (a1, y1)}, wherex; € R™,y; € Y =
Ri=1,---,I;

(2) Choose the parameter € > 0;

(3) Construct and solve the convex quadratic programming

l
, 1
l
= yila] — i), (3.3.37)
1=1
l
s.t. > (0 —ai) =0, (3.3.38)
=1
al” >0 i=1,-,1, (3.3.39)

obtaining a solution &) = (ay, &%, - &, an)’t;
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l
(4) Compute w = Z(éz;‘—@i)xi. Choose a positive component of &™), a; >0,
i=1
then compute

b=y; — (w-x;)+¢; (3.3.40)

Or choose a positive component of a&*), ag > 0, then compute

b

yp — (W-xk) — € (3.3.41)

!
(5) Construct the regression function y = g(z) = (0-z)+b = Z(ézf —a;) (g
z)+b.

The above algorithm is called linear hard e-band support vector regression,
which corresponds to linear hard margin support vector classification (Algo-
rithm 2.2.2) in Chapter 2.

Definition 3.3.7 (Support vector) Suppose that &™) = (ay,af, - - cag,ap)T
is a solution to the dual problem (3.3.37)~(3.3.39) obtained by Algorithm
3.8.6. The input (x;,y;) is said to be a support vector if the corresponding
component &y or & is nonzero, otherwise it is a nonsupport vector.

Support vectors are determined by the solutions to problem (3.3.37)~(3.3.39).
The following theorem deals with the case where some components of the
solution are zero.

Theorem 3.3.8 Suppose that a*) = (ay,as, - yar, @) is the solution to
problem (3.3.37)~(3.3.39), fori=1,--- |1, there exists only one nonzero com-
ponent between & and & .

Proof By the KKT condition of the problem (3.3.37)~(3.3.39), there exist
the Lagrange multipliers b and 5*) such that

l

(@ —aj)a;ai | +e—yi+b—5 =0, i=1---,1, (3.342)

j=1
l

— Z(a;—dj)xj-:ci +e+yi—b—5=0, i=1,---,I, (3.3.43)
j=1

=0, i=1,---,1. (3.3.44)

Consider the case a; > 0, let w = Z(&; — &;)z;, then by (3.3.43)~(3.3.44),
j=1
we have

ai(e+yi — (w-x;) —b) =0, (3.3.45)
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so y; — (0 - ;) — b = —¢. Furthermore, (3.3.42) and (3.3.44) yields that
a;j(e —yi+ (- x;) +b) = 2aje = 0. (3.3.46)

Therefore &} = 0. Similarly, we can obtain that &; = 0, when &} > 0. |
The following theorem provides the new interpretation of support vectors
geometrically.

Theorem 3.3.9  Suppose that a™*) = (ag,ad,--- ,dl,dZ‘)T 18 a solution to
the problem (3.3.37)~ (3.3.39) solved by Algorithm 38.3.6, and y = (w - ) + b
is the regression function obtained by Algorithm 3.3.6. If € > eins, where eint
is the optimal value of the problem (3.3.4)~(3.3.5), then

(i) All support vectors are on the boundary of the e-band of hyperplane
y=(w-x)+b;

(i) All nonsupport vectors are inside or on the boundary of the e-band of
hyperplane y = (w0 - x) + b.

Proof To prove our conclusion, we only need to prove:

(i) If a; > 0,af = 0 or & = 0,& > 0, then the corresponding point
(x4,;) is on the boundary of the e-band of hyperplane y = (w - x) + b;

(ii) If &; = af = 0, then the corresponding point (x;,y;) is inside or on
the boundary of the e-band of hyperplane y = (w - 2) + b.

In fact, by the KKT condition of the problem (3.3.37)~(3.3.39), there exist
the Lagrange multipliers b, 5*) such that

(W-z;)+e—yi+b—85 =0, i=1---,1, (3.3.47)
—(w-x)tet+yi—b—5=0, i=1,--1, (3.3.48)
s >0, sWaM =0, i=1,.-,1, (3.3.49)
l
where Z &j — @;)x;. Hence,
aile+yi—(0-x2;)—b) =0, i=1,---,1, (3.3.50)
afe—yi+(w-z)+0b) =0, i=1,---,1I (3.3.51)

Then the conclusions (i) and (ii) are derived from (3.3.50) and (3.3.51). W

3.4 Linear e-Support Vector Regression
3.4.1 Primal problem

Similar to support vector classification, by introducing the slack variable
€0 = (&,€5, - ,&,&)T and penalty parameter C, the primal problem of
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linear e-support vector regression machine can be written as:

l

. 1 .
min Sl +CY (G+E), (3.4.1)
W0 i=1
s.t. (w-z;))+b)—y; <e+&,i=1,--- 1, (3.4.2)
yi — ((w-z;)+b) <e+& ,i=1,---,1, (3.4.3)
>0, i=1,-,1, (3.4.4)

where (%) is a shorthand implying both the vector with and without asterisks.
This problem is a convex quadratic programming.

After obtaining the solution to the primal problem (3.4.1)~(3.4.4),
(w,b, ™)), we construct the regression function:

y=g(x)=(w-z)+b. (3.4.5)

Note that £*) in the solution (w,b, & (*)) does not exist in the regression func-
tion. So the main issues are the solutions to the primal problem (3.4.1)~(3.4.4)
w.r.t. (w,b).

Theorem 3.4.1 There exist solutions to the primal problem (3.4.1)~(3.4.4)
w.r.t. (w,b), and the solution w.r.t. w is unique.

Proof It is similar to the proof of Theorem 3.3.1. The details are omitted
here. ]

Remark 3.4.2 The solutions to the primal problem (3.4. 1)N(34 4) w.r.t.
(w,b) are not unique. In fact, when € is large enough, (w,b,£*)) = (0,b,0)
are solutions, where b can take different values. Therefore, (w,b) = (0,b) are
solutions w.r.t. (w,b).

3.4.2 Dual problem and relationship between the primal and
dual problems

In order to derive the dual problem of the primal problem (3.4.1)~(3.4.4),
we introduce Lagrange function

—~

l
L(w, b, %), n)) = ||w|\2+02<5i+5 = ik +n7E)

i=1 =1

l
—Zai(s—i—&—f—yi—(w-xi)—b)

i=1

“Y 0l HE it wom) +h) . (346)
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where a(*) = (aluaslﬁa T 7041704?)T7n(*) = (nlunra T 777l7n2k)T are Lagrange

multiplier vectors.
The proof of the following Theorem 3.4.3 and Theorem 3.4.4 are omitted
here as they are the special cases of Theorem 4.1.5 and Theorem 4.1.6 later.

Theorem 3.4.3 Optimization problem

l

l
LS (0t — (e — ) ) — e 307 +a)

max
() () e R2l
atnteR ii=1 i=1

!
+ Zyi(af —a;), (3.4.7)
i=1

l

s.t. > (e —a) =0, (3.4.8)

=1
C’—ozl(-*) _mg*) =0,i=1,---,1, (3.4.9)

is the dual problem of the primal problem (3.4.1)~(3.4.4).

Theorem 3.4.4  Dual problem (3.4.7)~(3.4.10) has solutions.

Dual problem (3.4.7)~(3.4.10) can be simplified to a problem only for a
single variable o) by eliminating the variable n*) and then rewritten as a
minimization problem:

!
min % Z (o —aq)(af — aj) (@i - x5) + EZ(af + ;)

a(*) e R2l

1,j=1 =1
l
-y yilaf — o), (3.4.11)
1=1
l
5.t > (o —ai) =0, (3.4.12)
=1
o<, i=1,-,L (3.4.13)

This problem is called the dual problem of the problem (3.4.1)~(3.4.4) in the
later. We have following two theorems. Their proofs are omitted here, since
the former is obvious, and the latter is a special case of Theorem 4.1.7.

Theorem 3.4.5 Optimization problem (3.4.11)~(3.4.13) is a convex quadratic
programming problem.
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Theorem 3.4.6  Suppose that &) = (ay,af,- -, ay, a;)" is any solution to
the problem (3.4.11)~(3.4.13). If there exists a component of &), a; € (0,C)
or & € (0,0), then a solution (w,b) to the primal problem (3.4.1)~ (3.4.4)
w.r.t. (w,b) can be obtained by

l
w=> (a; — )i, (3.4.14)
=1

l
b=y; — Y (& —ai)(@iz)) +e, (3.4.15)
=1
or l
b=yk — Z(@f —a;) (i - wp) — €. (3.4.16)
=1

3.4.3 Linear e-support vector regression

Now we can establish an algorithm according to Theorem 3.4.6 as follows:

Algorithm 3.4.7 (Linear e-support vector regression, Linear e-SVR)

(1) Input the training set T = {(x1,y1), -+ , (a1, y1)}, wherex; € R™,y; € Y =
Ri=1,---,I;

(2) Choose an appropriate parameter € and the penalty parameter C > 0;

(8) Construct and solve the convex quadratic program:

1 l
. 1 N
min o Zl o} — a;)(0] — ) (i - ;) +s§;<ai + )
1,7 1=
l
=D _vila] — i), (3.4.17)
1

l
s.t. Z(ai —a)=0, (3.4.18)

i=1
o< <C,i=1,- 1, (3.4.19)
obtaining a solution &™) = (ay,af,--- ,a, an)’t;

(4) Compute b: choose a component of @*) in the internal (0,C). If the com-
ponent is &; € (0,C), compute

l
= Za —a)(zi-x5) +e; (3.4.20)
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If the component is &, € (0,C), compute

SH
H

l
Z af — )z - xp) — e (3.4.21)
(5) Construct the decision function

y=g(z) = Z(a; —a;)(z;-x)+b. (3.4.22)



Chapter 4

Kernels and Support Vector Machines

In this chapter, we generalize the linear support vector machine described in
Chapter 2 and Chapter 3 to nonlinear support vector machines, in which the
key step is introducing kernels.

4.1 From Linear Classification to Nonlinear Classifica-
tion

Linear support vector classification described in Chapter 2 is based on
linear classification, and linear support vector regression in Chapter 3 is also
derived from linear classification; therefore the first step from linear support
vector machine to nonlinear support vector machine is to generalize the linear
classification to nonlinear classification.

4.1.1 An example of nonlinear classification

Linear classification is obviously not suitable for some classification prob-
lems at hand, such as the classification problem containing 20 training points
in R? shown in Figure 4.1. In this figure, “+” and “o” represent the positive in-
puts corresponding to label y; = 41 and the negative inputs corresponding to
y; = —1 respectively. We can see that the appropriate separating line for this
problem seems a curve like an ellipse centered on the origin in the ([x]1, O[x]2)
plane, i.e, a nonlinear classification instead of the linear classification. How-
ever, how to obtain the separating ellipse? Because we have already had the
method searching for separating straight line, it is natural to try to apply it
to get the separating ellipse. Here the sticking point is whether the “curve
(ellipse)” can be transformed to a “straight line”. Obviously, the answer is
positive. In fact, considering the map x = ®(z) from the points in the plane
[2]10[z]2 to the points ([x]1, [x]2) in the plane [x];O[x]s:

P [x]

Xl
[x], = [2]

2
1 (4.1.1)
2

81
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[x], [x], 1

[+]
5 © = 0 \ o
+ + o
+ + .
o ++ +O T o+ [xli
[¢]
e o ¢} 3
0 [x];
(a) ()]

FIGURE 4.1: A nonlinear classification problem (a) In z-space; (b) In x-
space.

which maps the ellipse a[z]? + B[z]2 — r* = 0 in the plane [z];O[x]2 to the
straight line a[x], + B[x], — r* = 0 in the plane [x];O[x]2, see Figure 4.1(a),
(b). Therefore, we only need to apply (4.1.1) to map the inputs of the training
points in the plane [2]; O[z]s into the plane [x];O[x]2 separately, then perform
the linear support vector classification to get the separating straight line in
the plane [x]10[x]2, at last transform the separating line back into the plane
[2]10]z]2, so the separating curve (ellipse) and the decision function we are
searching for can be obtained.

4.1.2 Classification machine based on nonlinear separation

The above example shows that in order to generalize the “linear separa-
tion” to “nonlinear separation”, only an appropriate map @ is needed. Note
that for the above two-dimensional problem, the map ® transforms a two-
dimensional vector x into another two-dimensional vector x. For a general
n-dimensional problem, a map ® is allowed to transform an n-dimensional
vector z into another m-dimensional vector x in Euclidian space R™, or even
an infinite dimensional vector x in Hilbert space discussed in Chapter 1, Sec-
tion 1.3. Thus the map can be expressed as

R" =M,
T = ([‘T]lv 7[‘T]n)T —X= ([X]17 [X]Qv"')T = @(m) :

Suppose the original training set is given by
T:{(xlayl)v"' 7($l7yl)}; (413)

where z; € R",y; € Y={-1,1} ;i = 1,---,l. Under the map (4.1.2), the
training set T is transformed to

T(P:{(Xluyl)a"' 7(Xl7yl)}7 (414)

> : (4.1.2)
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where x; = ®(z;) € H,y; € Y ={-1,1},i=1,--- 1. Next step is to compute
the linear separating hyperplane (w* - x) 4+ b* = 0 in this space, thus deduce
the separating hypersurface (w* - ®(z)) + b* = 0 and the decision function
f(z) =sgn((w* - x) + b*) = sgn((w* - ®(z)) + b*) in the original space R™.
Note that in the Hilbert space the distance between the two hyperplanes

(w-x)+b=1and (w-x)+b=-1 (4.1.5)

can still be represented by so we can construct the primal problem

2
Iwl”
corresponding to the problem (2.3.4)~(2.3.6) in Chapter 2

l
: Lo
min - Sw] +C§€i, (4.1.6)
st yil((w-®(x)+b)=>1—-&,i=1,---,1, (4.1.7)

51'2071':17"'71'

According to Theorem 1.3.3 in Chapter 1, this primal problem is a convex
quadratic programming defined as Definition 1.3.2. The further discussion is
based on the content in Section 1.3. In fact, introduce the Lagrange function

L(w,b,&, 0, 8) = |\w||2+czgz Zaz yi((w-®(z;))+b)—1+&) Zﬁz&,

=1
(4.1.9)

where a = (a1,--+,07)T and 8 = (B1,---,3)T are the Lagrange multiplier
vectors. We have the following theorems.

Theorem 4.1.1 Optimization problem

l l l
1
max  —g DO yiyseney (@) - ®(xy)) + > ay,  (4.1.10)
., pt

i=1 j=1

l
5.t Zyiai =0, (4.1.11)

C—a;=pi=0, i=1--,1, (4.1.12)
@ 20, i=1,--.1, (4.1.13)
Bi=0, i=1,---,1 (4.1.14)

is the dual problem of the primal problem (4.1.6)~(4.1.8).

Proof According to Definition 1.3.6 in Chapter 1, the dual problem of
the primal problem (4.1.6)~(4.1.8) should be

max 1nf L(w,b,&, a, B) (4.1.15)

W7)

s.t. >0, >0, (4.1.16)
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where L(w,b,&, a, ) is given by (4.1.9), of which minimal value w.r.t. w is
achieved by

VwL(w,b,¢ a,8) =0, (4.1.17)
that is l
i=1
So

l l

l
1nfL(W b, ¢, a, ﬁ 7—_Zzyzy3azoﬁ '®(Ij))+zaj
Jj=1

=1 j=1

+<Zylaz>b+z —a; — Bi)&i. (4.1.19)

[N

1
Note that, when Zyiai = 0and C —a; — 8; = 0, ¢+ = 1,---,1

i=1
are not valid at the same time, we always have mf L (w,b,¢,,8) =
—o00. Therefore, the problem (4.1.15)~(4.1.16) can be ;vrltten as (4.1.10)~
(4.1.14). n

Theorem 4.1.2 Dual problem (4.1.10)~(4.1.14) has a solution o* =
(Offa"' 7azk)T7 ﬂ* = (ﬂfv ) ﬂl*)T

Proof Dual problem (4.1.10)~(4.1.14) is an optimization problem in the
Euclidean space R?, its objective function is continuous and the feasible do-
main is a nonempty bounded close set, so it must have a solution. |

Note that the dual problem (4.1.10)~(4.1.14) has the same solution set
w.r.t.a as that to the following convex quadratic programming problem in the
Euclidean space R

1ol 1
) 1
min B Z Z yiyjaion (P ) - @(z5)) — Z aj , (4.1.20)
i=1 j=1 j=1
5.t > g =0, (4.1.21)

0<a; <C, i=1,--,1. (4.1.22)

Theorem 4.1.3 Suppose o* = (af,---,a;)T is a solution to the problem
(4.1.20)~(4.1.22). If there exists a component of o*, aj € (0,C), then the
solution (w*,b*) to the primal problem (4.1.6)~(4.1.8) w.r.t. (w,b) can be

obtained in the following way:

l
W= oty (4.1.23)
i=1
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and

l
b=y — > yiog (% - x;). (4.1.24)
1=1

Proof Firstly we show that, for w* given by (4.1.23), there exists a b*
such that (w* b*) is the solution to the primal problem (4.1.6)~(4.1.8). In
fact, Let H = (yiy;(xi - %;))ixt, € = (1,---, )T, y = (y1,---, w)T, problem
(4.1.20)~(4.1.22) can be rewritten as

1
min W(a) = §aTHa —eTa, (4.1.25)
s.t. aTy=0, (4.1.26)
0<a<gCe (4.1.27)

If a* = (af,- -+ ,af)T is a solution to the problem (4.1.25)~(4.1.27), it yields
from Theorem 1.2.23 (in Chapter 1) that there exist a multiplier b*, multiplier
vectors s* and £* such that

0<a*<Ce, oTy=0, (4.1.28)
Ho* —e+b'y—s "+ =0, s>0, &>0, (4.1.29)
&Ta*=Ce)=0, s*Ta*=0. (4.1.30)

Equation (4.1.29) means that

Ho* —e+ by + £ >0. (4.1.31)

I
Let w* = Z o yiX;, equation (4.1.31) is equivalent to

=1
(W x)+0) >1-¢, i=1,---,1 (4.1.32)

Therefore, above equation and the third part of equation (4.1.29) imply that
(w*,b*, &%) is a feasible solution to the primal problem (4.1.6)~(4.1.8).
Furthermore, from (4.1.28)~(4.1.30) we have

l
1 1
S = O3 g = =50 Ha — T
=1

1 -
:——a*THa*—CeTf*—i-a*T(Ha*—i—b*y—e—s*—i—f*)

2
1 -
— 504*THCY* _ g*T(CG _ O(*) + b*a*Ty _ eTa* _ S*Ta*
1
= 5oﬁTHoﬁ —eTar. (4.1.33)

This shows that the objective function’s value of the primal prob-
lem (4.1.6)~(4.1.8) is equal to the optimum value of its dual problem
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(4.1.10)~(4.1.14), and therefore (w*,b*,£*) is the optimal solution to the
primal problem according to the results corresponding to Corollary 1.2.19
mentioned in Section 1.3 in Chapter 1.

Therefore, in order to show that (w*,b*) obtained from (4.1.23)~(4.1.24)
is the solution to the primal problem, we only need to show b* = b*. In fact,
from KKT conditions (4.1.29)~(4.1.30) we have

yi((w* - z) + b)) —1—si+& =0, i=1,---,1, (41.34)

E(a; —C)=0, i=1,---,1, (4.1.35)

sia =0, i=1,---,1. (4.1.36)

If there exists af € (0,C), then s} = 0,7 = 0, and we have b* = b*. |
Based on the above theorem, when the solution a* = (af,- -+ ,a;)T to the

problem (4.1.20)~(4.1.22) is derived, the separating hyperplane in the space
‘H where x lies in can be constructed as

(Ww*-x)+b" =0, (4.1.37)

where w* and b* are given by (4.1.23) and (4.1.24) respectively. Obviously the
hyperplane (4.1.37) corresponds to the following hypersurface in the space R™
where z lies in

!
3" ary(@(ai) - () +b* =0,
1=1

where b* is given by (4.1.24). That is just the surface realizing nonlinear
separation we are searching for. So, the following algorithm is established:

Algorithm 4.1.4 (Classification machine based on nonlinear separation)

(1) Input the training set T = {(x1,y1), -, (z1,y1)}, wherez; € R, y; € Y =
{17_1}71217 71;

(2) Choose an appropriate map @ : x= ®(x) from the space R™ to the Hilbert
space and a penalty parameter C' > 0;

(3) Construct and solve the convex quadratic programming problem

I !
. 1
min 3 Z Z Yy (@(z;) - ®(xy)) — Z o, (4.1.38)
i=1 j=1 j=1
!
st Y i =0, (4.1.39)
i=1

0<a<C,i=1,-,1, (4.1.40)

obtaining a solution o* = (af,- -+ ,af)T;
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(4) Compute b*: choose a component of a*, «aj € (0,C), and compute

l
b =y — D yiad (B(x) - B(xy)); (4.1.41)
i=1

(5) Construct the decision function

f(x) = sgn(g(x)), (4.1.42)
where l
g(z) = Zym;‘(@(zi) - B(z)) + b (4.1.43)

It is easy to see that the only difference between the above algorithm and
Algorithm 2.3.10 is that: the former uses the inner product (®(z;) - ®(x;))
and inner product (®(z;) - ®(x)) to replace the inner product (z; - z;) and
(x; - ) of the latter respectively.

4.1.3 Regression machine based on nonlinear separation

Similar to the generalization of Algorithm 2.3.10 (Linear support vector
classification) to Algorithm 4.1.4 (Classification machine based on nonlinear
separation), we now generalize Algorithm 3.4.7 (Linear - support vector re-
gression). Remember that Algorithm 3.4.7 searches for the linear regression
function based on the linear separation since the regression problem is trans-
formed to a classification problem. So in order to get the nonlinear regression
function, we only need to use the nonlinear separation instead of the linear
separation. In other words, for the purpose of generalizing Algorithm 3.4.7,
we only need to introduce the map as (4.1.2):

R" —H,

: r—x=90(z),

(4.1.44)

and solve the primal problem corresponding to the problem (3.4.1)~(3.4.4)

l
. 1 .
min SIwll?+C Y (& +£), (4.1.45)
w0 i=1

st (WD) +b)—y; <et+&,i=1,-,1, (41.46)
yi— (W ®(z)) +b) <e+& ,i=1,--,1, (4.147)
€9>0,i=1,---,1, (4.1.48)

where () denotes two cases of a vector with % and without *.

According to Theorem 1.3.3, primal problem (4.1.45)~(4.1.48) is a convex
quadratic programming problem defined by Definition 1.3.2. Further discus-
sion should be based on the content in Section 1.3. In order to deduce its dual
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problem, introduce the Lagrange function

l

l
* * * 1
L(Wvbaf( )7a( )777( )):§”WH2+CZ(€Z+€ Z 771514'771 z

i=1 i=1

!
—Zai(a+§i+yi —(w-®(z;)) = b)

—Za;f(a + & —yi+ (W D(x) +b) , (4.1.49)

where o) = (ay,af, -+ ,a1,0f)", 0™ = (gi,m%, -+ ,m,n;)" are the La-
grange multiplier vectors. We have the following theorems:

Theorem 4.1.5 Optimization problem

1 * *
a(*)g]l(?)XeRzz _51']‘21(% — ai)(aj — o) (®(xi) - ©(;)) — EZ ai + o)
l
+> wila) —ai) (4.1.50)
=1
l
s.t. > (0] —a;) =0, (4.1.51)
1=1
020, 4™ 20, i=1,- 1 (4.1.53)

is the dual problem of the primal problem (4.1.45)~(4.1.48).

Proof According to Definition 1.3.6 in Chapter 1, the dual problem of
the primal problem should be

max 1nf( )L(w b, &) o) p))y, (4.1.54)
w,b,&(*
st a® >0 9% >o0. (4.1.55)

Note that L(w, b, £*), o) n(*)) is a quadratic function of w, of which minimal
value w.r.t. w satisfying

l
VoL(w, b6, 0™ n) = w =Y “(a] — a;)®(z;) =0, (4.1.56)
1=1
that is l
w= Z(aZ — ;) D(xy) (4.1.57)
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So substituting the above equation to (4.1.49), we have
1
L 6,000,1)= =5 3 (e — (e - )@ - 0(a5)
Z CY +az +Zyz CY _az
! !
(Za _az>+z - QG — 771
+Z(C_ai —n;)& (4.1.58)

Note that when Z(a;‘—ai) =0,C—-a;—1m,=0,49=1,---,l and C —

i=1

of —nf =0, ¢ =1,---,1 are not valid at the same time, we always have
1nf( )L(w, b, o) n*)) = —co. Therefore, the problem (4.1.54)~(4.1.55)

w,b,&(*

can be written as (4.1.50)~(4.1.53). ]

Theorem 4.1.6 Dual problem (4.1.50)~(4.1.58) has a solution a®*) =
(dhd:{a e 7dl7072k)T7 ﬁ(*) = (ﬁlaﬁrﬂ e 7ﬁl7ﬁl*)T

Proof This is an optimization problem in the Euclidean space R?. It is
easy to show that it has a solution. |

To simplify the dual problem (4.1.50)~(4.1.53), we eliminate the variable
n™) by the equality constraint (4.1.52) to make it be a problem only with
variable o®), then rewrite this maximization problem to a convex quadratic
programming problem in the space R?

l l
7 %]Z_:l a; — ai)(aj — a;)(P(z:) - (x5)) +€;(OJ + o)
l
= yila] — ), (4.1.59)
=1
l
s.t. > (e —ai) =0, (4.1.60)

1
gag*)gcvlzla

.
Il

o

. (4.1.61)

In the later sections, we replace the problem (4.1.50)~(4.1.53) by the problem
(4.1.59)~(4.1.61).
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Theorem 4.1.7 Suppose a'*) = (ay,af, -, ay, a;)T is a solution to the con-
ver quadratic programming problem (4.1.59)~(4.1.61). If there exist compo-
nents of @) of which value is in the interval (0,C), then the solution (%,Db)
to the primal problem (4.1.45)~(4.1.48) w.r.t. (w,b) can be obtained in the
following way: Let

(af — a;)P(x), (4.1.62)

W =

-

QI»U-

K3

and choose a component of &™), a; € (0,C), compute

-

Il
-

b=y; — > (@ —@)(P(x;) - D(x5)) +e¢, (4.1.63)

K2

or choose a component of a*), a; € (0,C), compute

-

Il
-

b=yr— Y (af —a)(®(x;)- P(xp)) —e. (4.1.64)

Proof Firstly we show that, for W given by (4.1.62), there exists a b such
that (W, b) is the solution to the primal problem (4.1.45)~(4.1.48) w.r.t. (w,b).
In fact, let H = (®(z;) - ®(z;))ixt,y = (y1,- )T, e = (1,---,1)T € R,
problem (4.1.59)~(4.1.61) can be rewritten as

1
min W ™) =Z(a" —a)TH(a* — )
a(*)eR2l 2
+eeT(@* +a) —yT(a* —a), (4.1.65)
s.t. efla* —a)=0, (4.1.66)

0<a™ < Ce. (4.1.67)

It is easy to show that problem (4.1.65)~(4.1.67) is a convex programming.
Furthermore, it also satisfies Slater condition, so if @™ is the solution to the
problem (4.1.65)~(4.1.67), it yields from Theorem 1.2.23 in Chapter 1 that
there exist a multiplier b, multiplier vectors §*) and €% such that

ef(@ —a)=0, 0<a™ <Ce, ( )
H(&* —a)4ece—y+be—5 +E& =0, ( )
—H(@* —a)+ee+y—be—5+E=0, (4.1.70)
s =0, £9>o, (4.1.71)

( )

s®at =0, €97 (Ce—a™)=0.
Equations (4.1.69)~(4.1.71) mean that

H(a&* —a) —y+be > —ce — & (4.1.73)
—H(@* —a)+y—be> —ee—E. (4.1.74)
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From (4.1.62), the above inequalities are equivalent to

(W-®(2;)) +b) —ys <e+&, i=1,---1, (4.1.75)
Yi — ((v‘v Dla;))+b)<e+&, i=1,--,L (4.1.76)

which imply that (w,b,™*)) is a feasible solution to the problem
(4.1.45)~(4.1.48).
Furthermore, from (4.1.69)~(4.1.72) we have

L 1 L
5152 = O+ &) =—5lIw I - O Y (G + &)
=1 =1

+a*T(H(@* —a) + ce —y +be — 5 + &)

+a " (~H(&@" —a)+ee+y—be —5+E)
1
= 5(@* —a)TH(@" —a)+eeT(a* +a)

—yT(a* —a). (4.1.77)

This shows that the objective function value of the primal problem
(4.1.45)~(4.1.48) is equal to the optimal value of its dual problem
(4.1.50)~(4.1.53), therefore (W,b,£™)) is the optimal solution to the primal
problem (4.1.45)~(4.1.48) according to the results corresponding to Corollary
1.2.19 mentioned in Section 1.3 in Chapter 1.

Therefore, in order to show that (w, b) obtained from (4.1.62) and (4.1.63)
or (4.1.64) is the solution to the primal problem w.r.t. (w,b), we only need to
show b = b. In fact, suppose that there exists a component of at) ,a; € (0,0,
KKT conditions (4 1.68)~(4.1.72) imply that & = 5, = 0 and

(W-®(x;) +b—y; =, (4.1.78)

i.e. b equals to the b given by (4.1.63).

Similarly, suppose that there exists a component of a*), ay € (0,C), we
can also prove that b equals to the b given by (4.1.64). |

Based on the above theorem, when the solution a*) = (ay,a%, -, &, an)T
to the problem (4.1.59)~(4.1.61) is derived, the decision function in the space
‘H can be constructed as

y=(W-x)+b, (4.1.79)

where w and b are given by (4.1.62)~(4.1.64). Obviously, the decision function
in the space R™ can be written as

l

y=9(@) = 3_(a} @) () @) + . (4.1.80)

So, the following algorithm for nonlinear regression function is established:
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Algorithm 4.1.8 (Regression machine based on nonlinear separation)

(1) Input the training set T = {(x1,y1), -+ , (a1, y1)}, wherex; € R™,y; € Y =
Ryi=1,---,1;

(2) Choose an appropriate map ® : x = ®(x) from the space R™ to the Hilbert
space, and accuracy € > 0 and a penalty parameter C > 0;

(8) Construct and solve the convex quadratic programming problem

: l
i 5 3 (af — (e — ) (@) - Ble) + Y (0f +a)
=1

!
- _Zyi(og-k - ), (4.1.81)

st Y (ai—aj)=0, (4.1.82)

=1
o<V <C, i=1,-- 1, (4.1.83)
obtaining a solution &™) = (ay,al,--- , &, an)t;

(4) Compute b: choose a component of &*) of which value is in the interval
(0,C), &; or &;. If a; is chosen, then

b=y — > (@ —a;)(P(z;) - ©(z)) + €5 (4.1.84)

-

i=1

else if aj is chosen, then

l
b=ye— > (6] — ) (®(x;) - Dlax)) — € ; (4.1.85)

i=1

(5) Construct the decision function

y=g(e) =Y (@7 - a)(®(a:) - D)) +D. (4.1.86)

4.2 Kernels

Reviewing Algorithm 4.1.4 and Algorithm 4.1.8, we can see that the map
® implements its role totally through the inner products (®(z;) - ®(x;)) and
(®(x;) - ©(x)). In other words, the map ® always appears in the form of the
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inner product (®(x;) - ®(x;)) or (®(x;) - (x)); it never appears independent.
This shows that the function

K(z,2') = (®(x) - ®(2")) (4.2.1)

is very important. In fact, for Algorithms 4.1.4 and 4.1.8, if we choose the
function K instead of the ®, and substitute the corresponding inner product
(®(-)-®(+)) by K(-,-), we can still get the same decision function. The function
defined by (4.2.1) is called kernel function, or kernel briefly. In this section we
will analyze the function introduced by the inner product, and then deduce
the commonly used standard support vector machines.

4.2.1 Properties
Firstly we formalize the definition of the kernel.
Definition 4.2.1 (Kernel) A function K (z,x") defined on R™ x R™ is called

a kernel on R™ x R™ or kernel briefly if there exists a map ® from the space
R™ to the Hilbert space

3 f:j;zi) (4.2.2)
such that
K(z,2') = (®(x) - ®(2)) , (4.2.3)

where (- ) denotes the inner product of space H.

The next theorem describes the characteristic of the kernels by Gram ma-
trix defined as follows.

Definition 4.2.2 (Gram matriz) For a function K(z,z') : R® x R — R
and l points x1,--- ,x; € R™, the | x | matrix K, of which the i-th row j-th
column element is K;j = K(x;,x;), is called the Gram matriz of the function
K(z,2') wrt x1, -, 2.

Theorem 4.2.3 (Property of a kernel) A symmetric function K(z,z') de-
fined on R™ x R™ is a kernel if and only if the Gram matriz of K (z,z') w.r.t.
T1,- -, 27 1S positive semidefinite for any l and any x1,--- ,z; € R™.

Proof See [42] or [124]. [ |

4.2.2 Construction of kernels

A natural question at this point is what kind of functions are kernels,
i.e., what is the coverage of the kernels. In accordance with the mathematical
approach dealing with such problem, we shall take the following three steps
to give an answer:
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(1) Find out the basic kernels;

(2) Find out the operations keeping kernels;

(3) From the basic kernels, construct the commonly used kernels by ap-
plying the operations keeping kernels.
4.2.2.1 Basic kernels

Theorem 4.2.4 The function K(z,2') = (x - 2') defined on R™ X R™ is a

kernel.
Proof Let ®(x) =z, then K (z,2’) can be expressed as
K(z,2') = (z-2') = (®(x) - D(z")). (4.2.4)
According to Definition 4.2.1, we know that K (z,2’) = (z - 2’) is a kernel. B

Theorem 4.2.5 If f(-) is a real-valued function defined on R"™, then
K(z,2') = f(x)f(a’) is a kernel. Particularly, the function K(z,z') = a
where a is a nonnegative scalar, is a kernel.

Proof For any z1,---,x; € R™, consider the Gram matrix (K (z;, ;))ix:
of the function K (z,2') = f(x)f(«’). For any vector a = (aq,--- , )T € R,
we have
11 o1
(K (zi,25))ixia = Z Z a0 K (g, z5) = Z Z a5 f () f(z5)
i=1 j=1 i=1 j=1
. 2
:Zazfxl Zajij (Zazfxl) >0.
i=1 -
(4.2.5)

So this Gram matrix is positive semidefinite. Therefore according to Theorem
4.2.3 we know that K (x,2’) is a kernel. Particularly, this conclusion is also

valid for f(z) = +/a. |

4.2.2.2 Operations keeping kernels

Theorem 4.2.6 Suppose Ki(x,2') and Ko(z,z') are all kernels on R™ x R™,
then their sum

K(z,2') = Ki(z,2") + Ka(z, ") (4.2.6)
and product
K(z,2') = Ki(z,2")Ka(z, 2") (4.2.7)

are also kernels.

Proof According to Theorem 4.2.3, we only need to show that, for any set
of I points {z1,- - ,z;} in R", the Gram matrices of both K (x,2’)+ Ka(z, 2")
and Ki(x,2')Ks(x, ') wr.t. {z1, - ,2;} are positive semidefinite.
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Firstly consider the function Kj(x,2’) + Ka(x,2'). Let K7 and Ka be the
corresponding Gram matrices of K (z,2') and Ka(z,z') w.r.t. to {z1, -+ , 21}
respectively. For any a € R!, we have

oV (K + Ky)a=a " Kia+a"Kya >0, (4.2.8)

and so K1 + K5 is positive semidefinite.

Furthermore, suppose K is the Gram matrix of K(z,2’) = Kj(x,2')
Ky(z,2') wrt{z1, - ,21}, it is easy to see that K is known as the Schur
product of the Gram matrix K; of Kj(x,2’) and the Gram matrix Ky of
Ky(x,x'), i.e. the element of K is the product of the corresponding elements
of K7 and K>

K == Kl (e] K2 . (429)

Now prove K is positive semidefinite. Let K; = CTC, Ky = DTD, hence for
any o € R', we have

oI (K o Ky)a=tr[(diag o)K;(diag a)K]]
=tr[(diag a)CTC(diag a)DT D]
=tr[D(diag «)CTC(diag a)D"]

=tr[[C(diag o)DT]TC(diag «)DT]>0. (4.2.10)

The third equal sign of the above equation is based on the equality trAB =
trBA. For any two matrices A and B, so (4.2.10) demonstrates that K is
positive semidefinite. |

Theorem 4.2.7 Suppose K5(0,0") is a kernel on R™ x R™. If 0(x) is a map
from R™ to R™, then K(z,z') = K3(0(x),0(z")) is a kernel on R™ x R™.
Particularly, if a n x n matriz B is positive semidefinite, then K(x,a’) =
xT Bx' is a kernel on R™ x R".

Proof For any given x1,--- ,2; € R", the corresponding Gram matrix of
K(z,2') = K3(0(x),0(z")) is
(K (i, 25))i jo1 = (K5(8(x:), 0(25))); j—1 - (4.2.11)

Let 0(xy) = 04, t =1,--- 1, we have

(K (2, 25))t j=1 = (K3(05,65)); j—1 - (4.2.12)
That K3(6,0") is a kernel indicates that the right matrix in the above equa-
tion is positive semidefinite, so the left matrix is positive semidefinite, hence
K(z,2') is a kernel according to Theorem 4.2.3.
In particular, consider the positive semidefinite matrix B. Obviously it can
be decomposed into the form

B=vTAV, (4.2.13)
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where V is an orthogonal matrix, A is a diagonal matrix containing the non-
negative eigenvalues of B. Defining a kernel K3(6,0') = (6 -¢’) on R™ x R™,
and letting 6(x) = v/ AV, we have by the just-proved conclusion

K(z,2') = K3(0(x),0(z")) = 0(x)"0(2") = 2" VIVAVAV 2 = 2T Ba'
(4.2.14)
is a kernel. |

Theorem 4.2.8 If a sequence of kernels K1 (x,z"), Ko(x,2'), -+ on R™ X R"
has a limit, i.e.
lim K;(z,2') = K(z,2'), (4.2.15)
11— 00

then the limit K(z, ") is also a kernel.

Proof Theorem 4.2.3 can be directly used to prove this conclusion. B

4.2.2.3 Commonly used kernels

Now we are in a position to construct two commonly used kernels based
on the basic kernels proposed above by the operations keeping kernels.
(1) Polynomial kernel

Theorem 4.2.9 Suppose d is a positive integer, then d-order homogeneous
polynomial function
K(z,2') = (z-2")¢ (4.2.16)

and d-order non-homogeneous polynomial function
K(z,2') = ((z-2") +1)¢ (4.2.17)
are all kernels.

Proof We can draw this conclusion directly from Theorems 4.2.4~4.2.6.

|
(2) Gaussian radial basis function kernel
Theorem 4.2.10 Gaussian radial basis function with a parameter o
K(z,2') = exp(—|z — 2||*/c?) (4.2.18)

is a kernel.

Proof (i) Firstly, we prove that if K;(x,2’) is a kernel on R™ x R™, p(z)
is a polynomial with positive coefficients, then the function

p(Ki(x,2")) (4.2.19)
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is a kernel. In fact, let the polynomial with positive coefficients be p(z) =
aqgx? + -+ a1 + ap, then

p(Ki(z,2")) = ag[Ki(z,2)]9+ -+ a1 Ky (z,2") + ap . (4.2.20)

According to the conclusion about the particular case of Theorem 4.2.5 and
Theorem 4.2.6, all the terms a;[K;(z,2')]’,i = 0,1,--- ,q are kernels. There-
fore the function described by (4.2.19) is a kernel according to Theorem 4.2.6.
(ii) Secondly, we prove that if Kj(x, ') is a kernel on R™ x R™, then the

function
exp (Ki(x,2")) (4.2.21)

is a kernel. In fact, the exponential function exp(-) can be arbitrarily closely ap-
proximated by polynomials with positive coefficients, and hence exp(K(x, 2'))
is a limit of kernels. Therefore, the function described by (4.2.21) is a kernel
according to Theorem 4.2.8 and conclusion (i).

(iii) At last, we prove that the Gaussian function (4.2.18) is a kernel. In
fact, it can be obviously decomposed into the form

exp(— |l — a'[[2 /o) = exp(—||z]2/0?) - exp(~ /|| /02) - exp(2(x - 2') /)
(4.2.22)

The first two factors together form a kernel by Theorem 4.2.5, while the
third factor is a kernel by conclusion (ii). Therefore, the function described
by (4.2.18) is a kernel according to Theorem 4.2.6. |
In addition to the polynomial kernel given by Theorem 4.2.9 and the Gaus-
sian radial basis function kernel given by Theorem 4.2.10, there exist B-Spline
kernel, Fourier kernel, etc., the interested reader can refer to the literature

35, 73, 137].

4.2.2.4 Graph kernel

At first glance, Algorithms 4.1.4 and 4.1.8 need a training set 7" where
the n-dimensional vectors 1, - ,z; stand for objects, and a kernel, i.e. for
any two n-dimensional vectors x and ', an appropriate real value K (z,z’) is
given. However, on closer examination, we can see that it is not necessary to
represent objects by vectors in R™. Instead, what it needs is only the classes
the objects x1,--- ,x; belong to, and a kernel, that is for any two objects x
and 2/, an appropriate real value K (z,z') is given.

In this case, the key point is to construct a suitable kernel for a concrete
problem. As an example, the simple graph classification problem is considered
here. Simple graph classification has been applied successfully to the protein
function prediction in the field of bio-informatics; see the literature [16]. Next
we intuitively introduce the method constructing kernels for it. Firstly we

introduce several basic concepts[46].

Definition 4.2.11 (Undirected graph) An undirected graph consists of two
parts: a nonempty finite set V and a set E of disordered pairs composed of
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several elements in V. Denote G = (V, E), where V is called the set of vertices
of the undirected graph G, each element of V' is called a vertex; E is called the
set of edges of the undirected graph G, each element of E is called an edge,
denoted as {v;,v;} or {v;,v;}, where v;,v; € V.

Definition 4.2.12 (Simple graph) If {v;,v;} € E, then the edge {v;,v;} is
named connecting v; and vj, and the vertices v; and v; are called the endpoints
of the edge {v;,v;}. An edge is called a loop if its two endpoints coincide into
a vertex. An undirected graph is called a simple graph if there is neither a loop
nor two edges connecting the same pair of vertices in it.

Example 4.2.13 G in Figure 4.2 is a simple graph; it can be represented by
G = (V, E), where

V = {’1}1,’1}2,1)3}, E = {{’1}1,’1}2}, {’1}2,’1}3}, {’1}3,’1}1}},

or

E = {{’Ug,’1)1},{’()1,’1}3},{’03,’1}2}}. (4223)

(5]

() G Uy
FIGURE 4.2: Simple graph.

Definition 4.2.14 (Path) In the simple graph G, an alternate sequence of
vertices and edges

(i, {vis v}, 05, Up, {Up, Vg }, Ug) (4.2.24)

is called a path from v; to vg in the graph G. The number of the edges included
in the path is called its length.
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Now consider the quantification problem of a simple graph. We describe a
simple graph using the numbers of the path. Specifically, for a simple graph
G, denote the numbers of all the paths with length &k in G as ¢*(G). In order
to describe G, we adopt the infinitely dimensional vector

¢(G) = (¢O(G)=¢I(G)7 =¢H(G)7"')T7 (4'2'25)

" d(G) = (¥°(@), 21 (G),--- ,2"(Q),-- )T, (4.2.26)
where

*(G) = VARQH(G), k=0,1,2,--, (4.2.27)

here A is a weight factor between 0 and 1. Now we can define the kernel of
the simple graph.

Definition 4.2.15 (Graph kernel based on the path) Consider two simple
graphs G = (V, E),G' = (V', E"), and the weight factor 0 < X\ < 1 is given,
then the value of the graph kernel based on the path at G, G’ is

K(G,G) = (2(G)-2(G") = iAkqﬁk(G)d)k(G’), (4.2.28)
k=0

where ®(-) is given by (4.2.26).

Now the issue that remains is to compute the value of the above equation
practically. To this end, introduce the concept of adjacent matrix.

Definition 4.2.16 (Adjacent matrixz of the graph) A simple graph G = (V, E)
corresponds to a |V| x |V| matrizc A = (a;j), where |V| denotes the numbers
of the elements in the set V, while

_ L if{vi v} € By
i = { 0, otherwise. (4.2.29)

The matriz A is called the adjacent matriz of the graph G.

Theorem 4.2.17 Suppose the adjacent matriz of the simple graph G = (V, E)
is A = (aij), and note the k-th power of A as A* = (af;). Then the value of
the element afj at the i-th row j-th column is exactly the numbers of the paths

with length k from the vertex v; to vj. Therefore the numbers ¢*(G) of the
paths with length k in G can be expressed as

V]

¢ (G) =Y aly, (4.2.30)

ij=1
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Example 4.2.18 For the simple graph in Figure 4.2, its adjacent matriz A
and its second power A% are

01 1 2 1 1
A= 1 0 1], A=|1 2 1 |. (4.2.31)
110 11 2

respectively. The element 2 at the first row first column means that there are
two paths with length 2 from the vertex vy to vi; the element 2 at the second
row the third column means that there is one path with length 2 from the vertex
v to vs. Furthermore, the numbers of all the paths with length 2 in G is the
sum of all the elements in A%, i.e. $*(G) = 12.

In order to compute K(G,G’) defined as (4.2.28), we first give the defini-
tion of Kronecker product of the matrix.

Definition 4.2.19 The Kronecker product of matriz A = (a;;) € R™*™ and
matriz A" = (a;;) € R™*" is

CLllA/ e CleA/
AR A = : : € Rmnxmn, (4.2.32)
ami A" o ammA’

It is easy to verify that the Kronecker product of matrix A = (a;;) € R™*™
and matrix A’ = (aj;) € R™*™ has the following property:

Theorem 4.2.20 The Kronecker product of matriz A and matriz A’ satisfies

Saed);= Y a ]| Y (4.2.33)
ij=1 ij—=1 ij=1

(A Ak = Ak @ A, (4.2.34)
where (-)¥ and -* are the k-order powers of the matriz.

Theorem 4.2.21 Consider the k-order powers A¥ = (af;) and A™* = alf of
matrices, A and A', and the k-order power A% = (a%,;) of Ax = A® A" =
(axij), where @ is the Kronecker product of the matrices; then

mn m n
koo k 1k
E asj = E a;; E aj;. (4.2.35)
ij=1 ij=1  dj=1

Now we can give one kind of quantitative representation of the graph kernel
based on the path.
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Theorem 4.2.22 Suppose the graphs G = (V, E),G' = (V' E') are given, of
which adjacent matrices are A and A’ respectively. Suppose the k-order power
of Ax = A® A" = (axij) is A¥ = (a Xw)’ and the weight factor 0 < A <1 is
given, then the above defined kernel about the graphs G,G' can be expressed
as

co VIV
Z/\k > dhiy, (4.2.36)
7,j=1

where ® is the Kronecker product of the matrices, |V| and |V'| are the number
of the elements in the sets V and V'. Furthermore, when X\ is small enough,
the right term of (4.2.36) converges, and can be expressed as

oo

K(G,G) =) (eTAk,) = (Z /\kAk> = eT(I —NAyx) e, (4.2.37)

k=0

where e is a |V||V'|-dimensional vector of ones, I is a |V||V'|x|V||V'| identity
matriz.

The kernel given by the last equation (4.2.37) of the above theorem and some
simple graphs with class label 1 or —1 can be used in Algorithm 4.1.4, and
solve the classification problem [103],

4.3 Support Vector Machines and Their Properties

In this section we introduce the most commonly used standard support
vector machines.

4.3.1 Support vector classification
4.3.1.1 Algorithm

As we pointed out in the former section, in Algorithm 4.1.4 (Classification
machine based on nonlinear separation), we can choose a kernel K instead of
the map @, and replace the inner product (®(-)-®(-)) by the value of the kernel
K(-,-). Hence the commonly used standard C-support vector classification is
established as follows.

Algorithm 4.3.1 (C-support vector classification, C-SVC)

(1) Input the tmmmg setT ={(x1,y1), -+, (x1,y1)}, wherex; € R™,y; € Y =
(1,-1},i=1,---,1;

(2) Choose an appropriate kernel K(x,2') and a penalty parameter C' > 0;
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(8) Construct and solve the convex quadratic programming problem

(e

l l 1
. 1
R B} DO vy (i w)aiay — Y ay (4.3.1)
: Z

st Yy =0, (4.3.2)

i=1
0<a; <C,i=1,---,1, (4.3.3)
obtaining a solution o = (af,--- ,af)T;

(4) Compute b*: Choose a component of o, aj € (0,C), and compute

l

bt =y, — ZyiafK(fﬂiafcj); (4.3.4)
im1

(5) Construct the decision function

f(z) = sgn(g(x)), (4.3.5)
where l
9(x) = 3 i K (v, ) + 0. (4.3.6)

The above algorithm only considers the case where there exists a compo-
nent of a*, a7 € (0, (). Although almost all practical problems belong to this
case, theoretically there still exists the case that all the components of o* are
zero. It is not difficult to imagine that in this case the values of threshold b*
compose a closed interval according to Theorem 2.3.6. Detailed discussion is
omitted here.

Remark 4.3.2 The decision function in the above algorithm can be rewritten

as: (@)
_J L oglx) =0

fla) = { ~1, glx) <0;
This means that 0 is a cutoff value for distinguishing the positive and negative
classes. However, in some practical problems, a lower or higher cutoff value
may be more appropriate than 0. For example, in Example 2.1.1 (Diagnosis
of heart disease), we usually pay more attention to the positive class than the
negative class; in other words, we hope that no patients having heart disease
are misclassified. To deal with this case, a lower cutoff value is used. Hence
the decision function with a cutoff level is introduced:

1,  when g(x) > cutoff;

flz,cutof f) = { 1, (4.3.7)

otherwise, where cutoff is a real number.
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4.3.1.2 Support vector

Now we introduce the concept of support vector for the above algorithm
(C-support vector classification) and discuss its properties.
Definition 4.3.3 (Support vector) Suppose o* = (af,- -, af)T is a solution
to the problem (4.3.1) ~(4.3.3) obtained using Algorithm 4.3.1. The input x;,
associated with the training point (x;,y;), is said to be a support vector if the
corresponding component o of a* is nonzero and otherwise it is a nonsupport
vector.

The following theorem characterizes the support vectors:

Theorem 4.3.4 Suppose o* = (af,---,a;) is a solution to the problem

(4.8.1) ~(4.8.8) obtained using Algorithm 4.3.1. If g(x) is defined by (4.5.6),
then

(i) support vector x; corresponding to o € (0,C) satisfies y;g(x;) = 1;

(i) support vector x; corresponding to of = C satisfies y;g(x;) < 1;

(#ii) nonsupport vector x; satisfies y;g(x;) > 1.

Proof Because o = (af, - ,af)T is a solution to the problem (4.3.1)

~(4.3.3) in Algorithm 4.3.1 and problem (4.3.1)~(4.3.3) satisfies Slater con-
dition, according to Theorem 1.2.23 in Chapter 1, o™ satisfies the KKT con-
ditions, i.e. there exist multipliers b*,¢/, s, =1,---, such that

l
Yi Zyja;K(;Epwi)—i-b* +& —1=520 i=1,---,1,

j=1
(4.3.8)
afs; = o (yig(xi)+ & —1)=0, i=1,---,1, (4.3.9)
GC—aj)=0, i=1,---,] (4.3.10)
=20, i=1,-,1, (4.3.11)
l
Y aiy=0, 0<a;<C i=1,---,1 (4.3.12)

Now we prove the conclusions respectively:
(i) For support vector z; corresponding to af € (0,C'), we have £ = 0
from (4.3.10), furthermore from (4.3.9) we have

yig(xi) = 1. (4.3.13)

(ii) For support vector x; corresponding to of = C, we have y;g(x;) = 1-&F
from (4.3.9) because af = C > 0. And because & > 0, hence

yig(z;) < 1. (4.3.14)
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(iii) For nonsupport vector z;, we have £ = 0 from (4.3.10) because of =
0. Furthermore from (4.3.8), we have

yig(z;) = 1. (4.3.15)
]

(L [x} - [k

k : \\““‘-———gmzl Y T r—gln=1 \“"———rc.;l.ruzl

\.'. \'\-\. {v}=
N ——glx}=1 S ——glx)=0 ——glx)=0

T—gi1}=-1 [=} 2(x)=-1 [} 0 ——glx)=-1 )

(b}
FIGURE 4.3: Geometric interpretation of Theorem 4.3.4.

The geometric interpretation of the above theorem with z € R? is shown
in Figure 4.3 where only the positive training points are considered and the
curve g(x) = 0 is the separating line, (a) shows that the positive support
vector corresponding to «f € (0,C) must lie on the curve g(z) = 1, i.e. it
is sufficiently classified correctly. (b) shows that the positive support vector
corresponding to «f = C must lie in the shadow including g(z) = 1, i.e.
it is classified wrongly, or barely classified correctly. (c¢) shows that a non-
support vector belonging to the positive class must lie in the shadow including
the boundary g(x) = 1, i.e. it must be classified not only correctly but also
sufficiently classified correctly.

4.3.1.3 Properties

Algorithm 4.3.1 (C-support vector classification) reflects three characters
which support vector machines usually have.

(1) Conversion of the problem scale. Our goal is to find the decision
function f(z) from the training set (4.1.3), where z is an n-dimension vector.
The direct way is to solve the primal problem (4.1.6)~(4.1.8) with the scale
depending on n. When n increases, computation cost will increase rapidly,
which is just the “curse of dimensionality” encountered to common methods.
However, the problem solved in support vector machines is the dual problem.
Note that the number of the variables of this dual problem is [ (number of the
training points); in other words, the scale of the dual problem needed to be
solved has barely anything to do with the dimension of the input space. That
provides a way of conquering the curse of dimensionality.

(2) Employment of the kernel. Applying the kernel K (-, -) instead of the
map ®(-) realizes the transition elegantly from linear classification to nonlinear
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classification, i.e. we only need to choose a kernel K rather than a map .
This can be not only more convenient but also simplify the computation,
because computing inner products in high-dimensional spaces costs much,
while computing kernels is very cheap.

(3) Sparsity. We can see from the decision function (4.3.6) that not all
the training points, but the training points corresponding to the nonzero com-
ponents o of the solution a* to the dual problem (4.3.1)~(4.3.3) make sense.
In other words, only the training points corresponding to the support vectors
contribute to the decision function, while the remaining training points corre-
sponding to the non-support vectors contribute nothing. Generally speaking,
when the training set is very large, the proportion of support vectors is small,
and most coefficients o is zero. This fact reflects the sparsity of support vector
classification, which is important to the computation of large scale problems.

4.3.1.4 Soft margin loss function

In establishing Algorithm 4.3.1 (C-support vector classification), we hope
that the decision function generates smaller deviations for each training point
(2;,y;) in the training set T = {(z1,y1), -, (21, 5)}. Now consider how it
measures this deviation. Generally speaking, in order to measure the deviation,
a triplet function c¢(z,y, f(x)) is often introduced, where x is an input, y is an
observation corresponding to z, and f(z) is the value of the decision function f
at z, thus the value ¢(x,y, f(z)) denotes the deviation of the decision function
f at the input x. This triplet function is called a loss function. Now analyze

what the loss function used in C-support vector machine is. Reviewing the
l

primal problem (4.1.6)~(4.1.8), it is obvious that minimizing Zfi of the

i=1
objective function aims at keeping the decision rule consistent with all training
points as much as possible, where ¢; is used to measure the deviation of the
decision function at the training point (z;, y;)

=10 yi((w- ®(z)) +b) > 1;
“= { 1 —yi((w-®(z)) +b), wil(w-®(x;)) +b) < 1, (4.3.16)

while the corresponding decision function is
f(xz) =sgn(g(z)), where g(z)=(w-®(z))+b. (4.3.17)

Hence from (4.3.16), for the decision function f(x) with the form (4.3.17), the
deviation is measured by the function

c(z,y, f(z)) = max{0,1 — yg(z)}. (4.3.18)

Figure 4.4 shows the function (4.3.18) evaluating deviation, which is often
named the soft margin loss function or the hinge loss function. Though strictly
speaking it does not satisfy the condition ¢(z,y,y) = 0 which the usual loss
function should have (refer to Chapter 5, Definition 5.1.5).
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O 1 ye(x)

FIGURE 4.4: Soft margin loss function.

It should be pointed out that the sparsity of Algorithm 4.3.1 (C-support
vector machine) is closely related to the soft margin loss function used. From
the intuitive explanation of the non-support vectors in Figure 4.2(c), we may
find that the positive training points in the shadow (excluding the boundary)
give no contribution to the decision function due to employing the soft margin
loss function.

4.3.1.5 Probabilistic outputs

Suppose the training set is T' = {(x1,y1), -, (1, y1)}, where x; € R",y; €
{1, —1}. Consider the decision function (4.3.5) obtained from Algorithm 4.3.1
(C-support vector machine)

f(x) = sgn(g(x)), (4.3.19)

where g(z) is given by (4.3.6), an input x is classified to the positive class
if g(z) > 0. However we cannot guarantee that the deduction is absolutely
correct. So sometimes we hope to know how much confidence we have, i.e.
the probability of the input x belonging to the positive class. To answer this
question, investigate the information contained in g(z). It is not difficult to
imagine that the larger g(z) is, the larger the probability is. So the value
of g(z) can be used to estimate the probability P(y = 1|g(x)) of the input z
belonging to the positive class. In fact, we only need to establish an appropriate
monotonic function from (—oo, +00) where g(x) takes value to the probability
values interval [0, 1], such as the S-type function

1
T 14 exp(c1g + c2)’

p(9) (4.3.20)

where ¢; < 0 and ¢y are two parameters to be found. This function p(g) maps
g € (—00,400) monotonously to the interval p € [0,1], see Figure 4.5. Now
how to choose the optimal values ¢} and c3 is under our consideration.
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FIGURE 4.5: S-type function.

To this end we construct an optimization problem of ¢} and c5 following
the idea of maximum likelihood estimation. In fact, for each input x; of the
training set, g; = g(x;) can be computed by the g(z), then the probability
p; = pi(c1, c2) of it belonging to the positive class is computed from (4.3.20)

1

i = pilci, = ,i=1,---,1. 4.3.21
p p(Cl c2) 1+ exp(cigi + ¢2) Q ( )

Obviously we hope that the corresponding p; is as large as possible for all
positive inputs x;, while the corresponding p; is as small as possible for all
negative inputs x;, i.e. 1 — p; is as large as possible. Therefore we get the
unconstrained optimization problem with variables ¢; and ¢y

max H Di H (1 —pi). (4.3.22)
yi=1 y;=—1

The equivalent problem can be constructed by taking the negative log of the
objective function in the above problem

min —{ Z logp; + Z log(1 —p;)}. (4.3.23)

yi=1 yi=—1
Introduce the variable
Yyt 1 y=1
t; = 5 = { 0, yi=-1, (4.3.24)

we have

1
Zlogpi = Ztilogpi, (4.3.25)
i=1

yi=1
l

D log(l—pi) = > (1—t;)log(l—p). (4.3.26)

yizfl =1
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Hence the problem (4.3.23) can be written as

l

min — Z[tl logp; + (1 — t;)log(1 — p;)], (4.3.27)
i=1

where p; = p;(c1,c2) is given by (4.3.21).

However the numerical experiments results are not ideal if we directly solve
the above problem because it tends to make the resulted S-type function p(g)
overly steep. So the optimization problem (4.3.22) is modified as

max [ (i)' "=+ (1 —po)™ J] (1—pi)' = ()", (4.3.28)
yi=1

yi=—1

where €4 and €_ are small positive numbers. One interpretation of this mod-
ification is that in (4.3.22) the output of the positive input z; is believed as 1,
i.e. the probabilities of taking —1 and 1 is 1 and 0 respectively while in (4.3.28)
the probabilities are changed to 1 —e and e respectively, and corresponding
change with e_ is similar. The values of £ and _ are recommended to be

1 1

- = 4.3.29
TN +2 TN 12 (4.3.29)

where N and N_ are the numbers of the positive and negative points respec-
tively. Therefore the final optimization problem is obtained as

l

min— Y {t;logpi(cr, c2) + (1 — ;) log(1 — pi(er, c2))} (4.3.30)
i=1
where
Ni+1 e
=4 N2 VT E (4.3.31)
N2 Y= -1,

here N, and N_ are the numbers of the positive and negative points respec-
tively.

Thus the classification algorithm with probabilistic output can be de-
scribed as follows:

Algorithm 4.3.5 (Support vector classification with probabilistic output)

(1) Input the training set T = {(x1,y1), -, (z1,y)}, where x; € Ry, € Y =
{17_1}712 17 71;

(2) Perform Algorithm 4.3.1, obtaining the g(x) given by (4.3.6);

(8) Solve the unconstrained optimization problem (4.3.30) with variables c1, ca,
where for i =1,--- .1, pi(c1,c2) is given by (4.3.21), in which g; = g(x;), t;
is given by (4.3.31), obtaining a solution (cf,ch);
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(4) Construct the decision function with probabilistic output

B(z) !

_ , 4.3.32
1+ exp(cig(z) +¢3) ( )

this value is just the probability of the output being 1 corresponding to the
mput x.

4.3.2 Support vector regression
4.3.2.1 Algorithm

Using kernel Algorithm 4.1.8 (Regression machine based on nonlinear sep-
aration) can be rewritten as the following commonly used e-support vector
regression. It can be regarded as the extension of Algorithm 3.4.7 (Linear
g-support vector regression) from linear regression to nonlinear regression.

Algorithm 4.3.6 (c-support vector regression, e-SVR)

(1) Input the training set T = {(x1,y1), -, (z1,y1)}, wherez; € R, y; € Y =
Rui:]w"' 71;

(2) Choose an appropriate kernel K (xz,x'), an appropriate accuracy € > 0 and
the penalty parameter C > 0;

(3) Construct and solve the convex quadratic programming problem

l
. 1 . .
a(glé%ﬂ 5 ijgl(ai - Oéi)(Oéj — OAJ)K(.IZ, .IJ)
l l
e (af +ai) = > yilo] — ay), (4.3.33)
i=1 i=1
l
s.t. Z(ai —al)=0, (4.3.34)
=1
o<al¥<C,i=1, 1, (4.3.35)
obtaining a solution a*) = (q1,a5,- -, ay, aZ‘)T;

(4) Compute b: Choose a component of &™), a; € (0,0), or ai € (0,C). If
& is chosen, compute

I
b=y; — Y (@] — @)K (z;,2;) + ¢ ; (4.3.36)

l
b=y — Z(@;k — ;) K(zi, ) — € (4.3.37)
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(5) Construct the decision function

l
Z af —a;)K(zi, ) +b. (4.3.38)
i=1

4.3.2.2 Support vector

Now we introduce the concept of support vector for the above algorithm
4.3.6 (e-support vector regression) and discuss its properties.

Definition 4.3.7 (Support vector) Suppose a*) = (ay,af,--- yag,an)T s
a solution to the problem (4.1.81)~(4.58.85) obtained using Algorithm 4.3.6.
The training point (x;,y;) s said to be a support vector if the corresponding
component &; or & of a™) is nonzero, and otherwise it is a nonsupport vector.

Theorem 4.3.8 Suppose a'*) = (ay,af,-- -, ay, a;)t is a solution to the con-
vex quadratic programming problem (4.1.81)~(4.3.35), then for i = 1,--- 1,
each pair of &y; and & cannot be both simultaneously nonzero.

Theorem 4.3.9 Suppose a*) = (ag,ad,--- ,dl,df)T is a solution to the
problem (4.1.81) ~(4.3.35) obtained using Algorithm 4.3.6. If g(x) is defined
by (4.3.38), then

(i) support vector (xz;,y;) corresponding to &; € (0,C),af = 0 or af €
(0,0), @i = 0 satisfies yi = g(x:) — € or yi = g(z:) +&;

(#) support vector (x;,y;) corresponding to a; = C,af =0 oraf =C,a; =0
satisfies y; < g(x;) —e ory; = gla;) +¢;

(#i) nonsupport vector (z;,y;) satisfies g(x;) —e < y; < g(z;) + €.

Proof If a® = (aq,af,--,ay, df)T is a solution to the problem
(4.1.81)~(4.3.35), then a*) satisfies the KKT conditions, i.e. there exist mul-
tipliers b, 55*), f_i(*),i =1,---,[ such that

l
Y (@) —a)K(wiz) +b—yi—e—&=—5<0i=1,-,l, (43.39)
j=1
@5 =0,i=1,---,1, (4.3.40)

l
yi— Y (@ —a)K (v, ;) —b—e— & = —5; <0,i=1,--- 1, (4.3.41)

j=1
ars =0i=1,--,1, (4.3.42)
gi(C_&i):Oai:]w"' 717 (4343)
G(C—ap)=0i=1,---,1, (4.3.44)
l
S(@-aj)=0 0<aa<C i=1--,L (4.3.45)
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Now we prove the conclusions separately:
(i) For support vector (x;,y;) corresponding to a; € (0,C),a; = 0, we
have & = 0 from (4.3.43), furthermore from (4.3.39)~(4.3.40) we have

yi =g(x;) —e—& = g(z;) —e. (4.3.46)

For support vector (z;,y;) corresponding to a; € (0,C),&; = 0, we can draw
the conclusion from (4.3.39), (4.3.42), and (4.3.44).

(ii) For support vector (z;,y;) corresponding to &; = C,af = 0, from
(4.3.39)~(4.3.40) we have g(x;) — y; = € + &. And because & > 0, so

i < g(z;) —e. (4.3.47)

For support vector (z;,y;) corresponding to & = C,a; = 0, the conclusion
can be obtained by (4.3.41)~(4.3.42).
(iii) For non-support vector (z;,y;), because &; = & = 0; hence from

(4.3.43)~(4.3.44) we have £ = 0. Furthermore, (4.3.39) and (4.3.41) lead to
9(xi) —e <y < g(x) +e (4.3.48)

|
The geometric interpretation of the above theorem with z € R? is shown
in Figure 4.6, where the curve y = g(x) is the decision function. (a) shows that
support vector corresponding to a; € (0,C),af = 0 or af € (0,C),a; =0
must lie on the curve y = g(z) — e or y = g(x) + &, i.e. its deviation to the
decision function is not large. (b) shows that support vector corresponding to
a; =C,af =0or af = C,&; =0 must lie in the shadow region including the
boundaries y = g(z) + € and y = g(x) — ¢, i.e. its deviation to the decision
function may be larger. (¢) shows that non-support vector must lie in the
shadow region including the boundaries y = g(z) + ¢ and y = g(z) — &, i.e. its
deviation to the decision function is very small.

FIGURE 4.6: Geometric interpretation of Theorem 4.3.9.
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4.3.2.3 Properties

Algorithm 4.3.6 (e-support vector regression) also possesses the 3 proper-
ties in Algorithm 4.3.1 (C-support vector classification) described in Section
4.3.1: Conversion of the problem scale, employment of the kernel and sparsity.
We will not repeat them here.

4.3.2.4 e-Insensitive loss function

Consider the primal problem (4.1.45) ~(4.1.48). Suppose its solution is
(w,b,£%)), and the corresponding function is g(x) = (W - ®(z)) + b, then the
sum of two components &; +&; reflects the “deviation” or “loss” of the decision
function on the training point (®(z;),y;). It is easy to see that

(e [0 = (w0 D) <=
e lys — ((W- ®(z;)) + b)| —e, otherwise.
(4.3.49)
1
Z(& +¢) contained in the objective function (4.1.45) of the primal problem
i=1
implies minimizing the sum of the loss at all the training points. This shows
the loss function used here is

_10o ly —g(z)] <&
C(xvyag(x)) — { |y o g(:c)| — e, otherwise, (4350)

where ¢ is a predetermined positive number. The loss function with the form
(4.3.50) is called the e-insensitive loss function. The e-insensitive loss function
is shown in Figure 4.7 and often written as

c(z,y,9(z)) =y — g(@)|e , (4.3.51)

where
ly — g9(2)]e = max{0, |y — g(z)| — €} . (4.3.52)

The idea behind the e-insensitive loss function is: when the deviation between
the observation y of 2 and the prediction g(z) does not exceed the given ¢,
there is no loss of the prediction g(z) at this point, though the prediction g(z)
and the observation y may not be exactly equal.

It is easy to see that the e-insensitive loss function has the following char-
acteristic: it does not always bring the loss when the value g(z) of the decision
function is different with y corresponding to z; instead it has a certain tol-
erance, i.e. the loss is regarded as zero when the difference between the two
above values is in a certain range. This characteristic is not available in many
other loss functions, e.g. the loss function

c(z,y,9(x)) = (y — g(x))?, (4.3.53)

traditionally used in the least square method in the curve fitting problem,
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¢

- 0 + P gfx,
FIGURE 4.7: e-insensitive loss function with € > 0.

which does not have such characteristic. Precisely because of adopting the
e-insensitive loss function in Algorithm 4.3.6 both &; and & corresponding to
the training points (®(x;),y;) in the e-band of the hyperplane y = (W-®(x))-+b
is made to be zero, resulting in the valuable sparsity.

4.3.3 Flatness of support vector machines

For the support vector machines derived from the maximal margin princi-
ple, we give another intuitive interpretation in this section. For example, for
a regression problem with the training set (3.1.1)

T ={(z1,91), -, (@, )} € (R" x V), (4.3.54)

where z; € R™,y; € Y = R,i=1,--- [, the primal problem in e-SVR is

!
. 1 2 *
Jmin o Sfwl +C;(§i +€), (4.3.55)
st (W B(@) +b) — g <edb,i=1,--.01, (43.56)

€9>0,i=1,---,1, (4.3.58)

where two objectives are concerned:

(i) Minimize ||w||;

(ii) Minimize the “deviation” or “loss” of the decision function (w-®(x))+b
at all the training points (®(z;),v:), ¢ =1, -+, 1.

Intuitively speaking, the objective (ii) is natural. How to understand the
objective (i)?
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4.3.3.1 Runge phenomenon

The above question leads to an old problem: can we take minimizing the
deviation as the unique objective in regression?

Consider a simple one-dimensional regression problem. Suppose that there
is a function h(z) defined in the interval [—1,1]. Let us find a regression
function g(z), taking the smallest deviation as the unique objective and using
the training set {(z1,y1), -, (x1,91)}, where y; = h(z;),i = 1,---,1, and
examine if the regression function g(z) is able to approximate the original
function h(z). The following example will give some enlightenment.

Example 4.3.10 (Runge phenomenon) Consider the one-dimensional re-
gression problem in the interval [—1,1] with the training set {(x1,y1), - ,
(z1,y1)}, where the inputs are equally-spaced points

2

and y; = h(x;),i =1,--- 1, defined by the Runge function

1

In order to achieve the zero deviation, a natural way is to select the (I—1)th
order polynomial g(x) = Py_1)(x) as our regression function, where g(x;) =
h(z;) = Py—1y(w;),i = 1,--- 1. It may be expected that larger | yields better
regression function. However, it is not the case, as shown in Figure 4.8, where
the Runge function and the polynomials with | =5 and 9 are depicted. The red
curve is the Runge function. The blue curve is a 4th order polynomial. The
green curve is a 8th order polynomial. Note that at all of the input points, the
deviation between the Runge function and the regression polynomial is zero.
Between the input points (especially in the region close to the endpoints 1 and
—1), the deviation between the Runge function and the regression polynomial
gets worse for higher-order polynomials particularly at the edges of the interval
[-1,1]. The problem of oscillation at the edges of the interval that occurs
when the regression functions are polynomials of high degree is called Runge’s
phenomenon. This is important because it shows that going to higher degrees
does not always improve accuracy. Even worse, it can even be proved that the
deviation tends toward infinity when [ increases.

Jim (_max |h(z) - Pro1(2)]) = o0 (4.3.61)

One approach to mitigate this problem is to relax the deviation require-

ment and suppress the oscillation. More precisely, keep minimizing deviation

as one of the objectives and introduce the second objective: maximizing flat-
ness of the decision function.

Next we show in detail that this is just what support vector machines do.
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FIGURE 4.8: Runge phenomenon.

4.3.3.2 Flatness of c-support vector regression

Now we show that e-SVR can be considered to solve a problem with the
above two objectives. First it should be pointed out that the deviation of a
decision function w.r.t. the training set (3.1.1) is measured by the e-insensitive
loss function. On the other hand, for a linear decision function g(z) = (w-z)+b,
its flatness is measured by the norm ||w|| of its gradient w, which is its greatest
rate of change; the smaller this term, the flatter the decision function.

(1) Linear hard e-band support vector regression

For the training set (3.1.1), the linear decision function g(z) = (w-xz) +b
is obtained from a solution of the primal problem

: Lo
min Sl (4.3.62)
s.t. (w-z))+b—y;<e,i=1,---,1, (4.3.63)
yi—(w-a;))—b<e,i=1,---,1. (4.3.64)

It is easy to see that, on one hand, for the decision function g(x) = (w-z)+b,
the constraints (4.3.63)~(4.3.64) are equivalent to the zero deviation of the
decision function w.r.t. the training set (3.1.1) measured by the e-insensitive
loss function. On the other hand, the flatness is measured by the quantity
|lw]]. Therefore the primal problem implies finding the flattest linear function
among the linear functions with zero deviation.

The geometric meaning of the flatness is very clear when we consider a
linear regression problem in the one-dimensional space R. In fact, suppose
that the training points are represented by “x” in Figure 4.9. Constraints
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(4.3.63)~(4.3.64) require that all of the training points should be inside the
e-band of the regression line, and the objective function means that this line
is the one with the smallest slope satisfying the above constraints. So, we can
find a regression line by the following way: (i) select a band that is closest to
the horizontal band from the bands with the length 2¢ that contain all of the
training points; (ii) select the central line in the band as the regression line,
shown by Figure 4.9(a). Obviously, when ¢ is very large, the regression line
we choose is horizontal, shown by Figure 4.9(b).

) U

y={w-x)+b +&

c y=(w z}+h

- y=(w z)+b —c

(a) (b)

FIGURE 4.9: Geometric interpretation of the flatness in R: (a) sloping re-
gression line; (b) horizontal regression line.

It is interesting to see that for the case when all of the training points lie
in a line as shown in Figure 4.10, the regression line obtained is not this line,
but the central line among three parallel lines in the figure.

Y A " E
(w-2)+b +¢
y=(wz)+b
(w'2)+b"—¢

FIGURE 4.10: Flat regression line for the case where all of the training
points lie in a line.
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(2) Linear e-support vector regression
Now for the training set (3.1.1), the linear decision function g(x) = (w -
x) + b is obtained from a solution of the primal problem

l

i el 06+, (4.3.65)
s.t. (w-x;)+b)—yi<e+&,i=1,---,1, (4.3.66)
yi— (w-z)+b) <e+&,i=1,--- 1, (4.3.67)

€20, i=1,- 1, (4.3.68)

The two terms in the objective function (4.3.65) indicate that we not only
maximize the flatness, but also minimize the deviation. The parameter C
determines the weighting between the two of them, smaller C' will lead to more
flatter decision function. In other words, the final decision function should be
the flattest one among the linear functions whose deviations do not exceed a
certain level.

(3) e-support vector regression

For the training set (3.1.1), introducing a transformation x = ®(z) and
the kernel K (z,z') = (®(x) - ®(2')), the linear decision function (w-x)+ b in
x-space is obtained from a solution of the primal problem

l
. 1 .
min SIwll?+C Y (& + &), (4.3.69)
w0 i=1

s.t. (w-®(x;))+b)—y; <e+&,i=1,---,1, (4.3.70)
i — ((w-®(zy))+b) <e+& ,i=1,---,1, (4.3.71)
>0, 0=1,-- 1, (4.3.72)

3

NN

This is similar to the above linear e-SVR and has two objectives: maximize
the flatness and minimize the deviation. The final decision function g(z) in
the input z-space is the counterpart of the above linear decision function in
x-space. It can be expected that the smaller C yields flatter decision function.

Example 4.3.11 Consider the one-dimensional regression problem in the
interval [—10,10] with the training set {(z1,y1), -, (Z100,Y100)} 7 =
1,---100, where the inputs are drawn uniformly from [—10,10], and

sin x;

Ti

the noise v; were drawn from a Normal distribution with zero mean and vari-
ance 02, here o = 0.1. In other words, the training set is produced based on

sinx
a noisy sinc = —— function. The training points are shown by “+” and the

sinc function is displayed by the red curve in Figure 4.11.
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We apply e-SVR to solve this regression problem, in which the RBF kernel
is used, and the parameter € is fized to be 0.0625. If the parameter C' varies,
we will get decision functions with different flatness; smaller C, more flat the
function, see Figure 4.11. We can see that the black curve corresponding to
the smallest C' = 0.01 is the most flat curve among four curves.

+ MNoise data
Sinc
—C=0.01
—=—=C=01
—C=1

C=100

FIGURE 4.11: Flat functions in the input space for a regression problem.

4.3.3.3 Flatness of C-support vector classification

Let us turn to C-SVC and show that it can also be considered to solve
a problem with the above two objectives: deviation and flatness, where
the deviation of a decision function w.r.t the training set (2.1.5) is mea-
sured by the soft margin loss function. Here for a linear decision function
f(z) =sgn(g(x)) = sgn((w-x)+b), we consider the function g(z) = (w-x)+b
and its flatness is also measured by the norm |w].

(1) Linear hard margin support vector classification

For the training set (2.1.5), the linear function g(z) = (w-x)+b is obtained
from a solution of the primal problem

. |
min ol (4.3.74)
S. t. yil(w-z;))+b)=21,i=1,---,1. (4.3.75)
On one hand, for the function f(z) = (w - z) + b, the constraints

(4.3.74)~(4.3.75) are equivalent to the zero deviation of the decision func-
tion w.r.t. the training set (2.1.5) measured by the soft margin loss function.
On the other hand, the flatness is measured by the quantity ||w]||. Therefore
the primal problem implies finding the flattest linear function among the lin-
ear functions with zero deviation. Remember that the above primal problem
is derived by maximizing margin. Now it is interpreted by maximizing flat-
ness. So it is interesting to show that “maximizing margin” and “maximizing
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flatness” are equivalent. Consider a two-dimensional classification from geo-
metric point of view. A function g(z) = (w - z) + b has zero deviation w.r.t.
the training set (2.1.5) if and only if the straight line (w-z) +b = 0 is able to
separate all inputs correctly and there is no any input between the straight
lines (w-z) +b = —1 and (w-z) +b = 1. Denoting the distance between
the straight lines (w-z) +b = —1 and (w-2) +b = 1 as d, moving the
distance d from a point in the straight line (w - z) + b = —1 to a point in
the line (w - ) +b = 1 yields the fixed increase 2 from —1 to 1. Obviously,
maximizing flatness requires finding the straight line (w - ) + b = 0 with the
largest d, which is just what maximizing margin required. So their equivalence
is observed.

o
(wx)+h=—1

FIGURE 4.12: Flat separating straight line in R2.

(2) Linear support vector classification
Now for the training set (2.1.5), the linear function g(z) = (w - z) + b is
obtained from a solution of the primal problem

l
: 1o
min Sl +C;€i, (4.3.76)
st yi((w-z)+0)=>1—&,i=1,---,1, (4.3.77)
&>0,i=1,-,1. (4.3.78)

The two terms in the objective function (4.3.76) indicate that we not only
maximize the flatness, but also minimize the deviation. The parameter C' de-
termines the weighting between them. The smaller C' yields the larger distance
between the line g(z) = (w-x) + b =1 and the line g(z) = (w-z) + b = —1,
and therefore makes the function g(z) = (w - z) + b more flat.

(3) C-support vector classification

For the training set (2.1.5), introducing a transformation x = ®(z) and
the kernel K (z,2') = (®(x) - ®(z')), the linear function (w - x) + b in x-space
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is obtained from a solution of the primal problem

l
. Lo o
min - Sw] +C;§i, (4.3.79)
st y((wex)+b)=1—¢&,i=1,---,1, (4.3.80)

&>0,i=1,--,1, (4.3.81)

This is similar to the above linear C-SVC and has two objectives: maximize
flatness and minimize the deviation. The final decision function g(z) in the
input space is the counterpart of the above linear function. It can be imagined
that, if a function (w-x)+b is flat in x-space, its counterpart g(«) in the input
z-space is also flat to some extent. So, roughly speaking, C-SVC also has two
objectives: maximize flatness in the input space and minimize the deviation.
The following example illustrates the flatness in the input space geometrically.

Example 4.3.12 The iris data set is an established data set used for demon-
strating the performance of classification algorithms which contains three
classes (Setosa, Versilcolor, Viginica) and four attributes for an iris [201],
and the goal is to classify the class of iris based on these four attributes. In
order to visualize the flatness discussed above, here we restrict ourselves to
the two classes (Versilcolor, Viginica), and the two features that contain the
most information about the class, namely the petal length and the petal width.
The distribution of the data is illustrated in Figure 4.13, where “o”s and “+7s
represent classes Versilcolor and Viginica respectively.

We apply C-SVC to solve this classification problem, in which the RBF
kernel is used, and the parameter o of RBF kernel is fized to be 1.0. Suppose
that the decision function obtained is f(x) = sgn(g(x)), if the parameter C
varies, we will get different g(x); see Figure 4.13(a) with C = 100, Figure
4.13(b) with C = 10, Figure 4.13(c) with C = 1 and Figure 4.13(d) with
C = 0.1, where the separating curves g(x) = 0 are illustrated in various
colors, and the dotted curves are the corresponding curves g(x) = +1. The
situation is somewhat similar to the case Linear support vector classification:
the smaller C yields the larger distance between the line g(x) = 1 and the line
g(x) = —1, and therefore makes the function g(x) = (w - x) + b more flat.

4.4 Meaning of Kernels

Remembering the classification problem, suppose the training set is

T =A{(z1,p1),- 5 (@, 0)} (4.4.1)
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FIGURE 4.13: Flat functions in the input space for a classification problem.

where z; € R",y; € Y = {1,—-1},i = 1,---,1. Our task is to find out a
decision function, and deduce the corresponding output y of any new input z,
i.e. whether it belongs to the positive class or negative class. The starting point
of solving this problem is that similar inputs should have the same outputs.
So what we need to do is to measure whether the new input z is more similar
to those positive inputs or those negative inputs. If the new input x is more
similar to the positive inputs, its output y should be 1; otherwise, its output
should be —1. This involves the concept of “similarity”. The similarity between
two inputs is measured by their distance; the smaller the distance, the more
similar. It should be pointed out that there are many kinds of distances and
the distance used in Algorithm 4.3.1 and Algorithm 4.3.6 is directly decided
by the selected kernel

K(z,2') = (®(x) - ®(2)). (4.4.2)

More precisely, the distance between two inputs z and z’ is defined by the
2-norm distance between the two vectors x and x’ in x-space, where x = ®(z)
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and x’ = ®(a’). Next we show by a toy problem that selecting different kernels
reflect different distances and similarity measures in detail.

Problem 4.4.1 Suppose the training set is given as

T= {(Ilvyl)a (IQ, y2)} = {(era 1)7 (ZE,, _1)}a (443>

where x4 and x_ are positive and negative inputs in R% respectively, Y =
{—1,1}, find the decision function deducing the ownership of any input x.

(i) Firstly, the similarity between two inputs is measured by their Euclidian
distance, i.e., the nearer the more similar. Solve Problem 4.4.1 using kernel

K(z,2') = (z-2'). (4.4.4)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

min 5(041041(514 cxy) —20qaa(zy o) + agan(z— - x_))
—Q] — g, (445)
s.t. 0<a;=ay <C. (4.4.6)

When the penalty parameter C is greater than 2/, — 2_||?, this problem
has a unique solution oy = as = a* = 2/|lz4+ — z_||?. Noticing o* € (0,C),
we have

wh=at(zy —ao) = 2(ey —ao) /|y — 2%, (4.4.7)
b =1—a (g —2-) ay) = (Ja—|® = o |?)/Nas — 2%,
(4.4.8)
and the corresponding decision function is
y = sgn((w"-x)+b")
= sgn (a4 @) = 2@ - @) + [lz— | = o 1) /llos — 2—|%) -
(4.4.9)

Now the separating line determined by the decision function is the vertical
bisector of the segment x4 x_ as shown in Figure 4.14. Note that kernel (4.4.4)
corresponds to the transformation x = ®(x) = =z, which implies that the
similarity between two inputs 2’ and 2" is measured by the Euclidian distance
between x’ = ®(2’) and x” = ®(z”) in x-space; returning to the z-space,
the similarity is measured by the usual distance ||z’ — z”||; the smaller, the
more similar. So the obtained decision function is: if x is nearer to x4, i.e.
|z — 24| < |Jx —2_||, = is deemed more similar to x4 and is decided to the
positive class; otherwise x is deemed more similar to z_ and is decided to the
negative class, the separating line consists of the points.
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[x], X

X

\ "

o

[x],

FIGURE 4.14: Case (i). The separating line when the similarity measure
between two inputs is defined by their Euclidian distance.

(ii) Secondly, the similarity between two inputs is measured by the differ-
ence between their length, i.e., the smaller, the more similar. Solve Problem
4.4.1 using kernel

K(z,2') = ||=|[|"]. (4.4.10)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

. 1
min 5(041041 |24+ I |2+l = 20002 |z 4| ([ || + 2oz [z || [[z—-])
—a1 — 0, (4.4.11)
s.t. 0<a;=ay <C. (4.4.12)

When the suitable penalty parameter C is greater than 2/(||z || — ||z—||)?, this
problem has a unique solution a1 = as = a* = 2/(||z4|| — |z_||)?. Noticing
a* € (0,C), we have

wh = (les |~ lle—l) = 2/(la+ | - -], (1.4.13)
b* = 1—alles | (les ] - lle—l) = 1 - 2lasl/(las | - ).
(4.4.14)

and the corresponding decision function is

y = sgn(w[|lz]| +0%) = sgn (=l — (lz+ | + llz—11)/2)/ (x4 ]| = [lz-1])) -
(4.4.15)
Now the separating line determined by the decision function is the circle

with the center at the origin and the radius (||z|| + ||z—]|)/2 as shown
in Figure 4.15. Note that kernel (4.4.10) corresponds to the transformation
x = ®(x) = ||z||, which implies that the similarity between two inputs z’ and
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2 is measured by the Euclidian distance between x’ = ||2/|| and x” = ||z

in x-space; returning to the z-space, the similarity is measured by the differ-
ence |||2’|| — ||z"'||| between their lengths; the smaller, the more similar. So the
obtained decision function is: if |||z|| — ||z+||| < |llz|| = [Jz=|||, = is deemed
more similar to z and is decided to the positive class; otherwise x is deemed
more similar to z_ and is decided to the negative class, the separating circle
consists of the points.

I/||

[

FIGURE 4.15: Case (ii). The separating line when the similarity measure
between two inputs is defined by the difference between their lengths.

(iii) Lastly, the similarity between the two inputs is measured by the dif-
ference between their arguments, i.e., the smaller, the more similar. Solve
Problem 4.4.1 using kernel

K (z,2') = % (4.4.16)

After selecting this kernel, Algorithm 4.3.1 (C-support vector machine) con-
structs and solves the dual problem

1 . _ T
min — <a1a1M — 2010 ———— (4 -2) + g ———— (z-2) >
avaz 2 24 |z B4 +|| || -l [l [z
—] — (g, (4417)
s.t. 0<a; =0y <C. (4.4.18)
x x 2
when the suitable penalty parameter C'is greater than 2 / <‘ ”—+” — ﬁ ) ,
Ty Xr_—

this problem has a unique solution a3 = as = /(H i ” i 7” H )
T4 xXr_
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Noticing a* € (0,C), according to Algorithm 4.3.1 (C-support vector ma-

chine), we have
* * Ty L— Ty T— 2
wmar (- ) 2y /(1 ).
<||£E+|| |$—||> <|$+|| ||£E—|> sl Tla—]
(4.4.19)

=12 () )/ U ) o

The corresponding decision function is

v=sn((wogip) o) = (o (5 - 1og))) - a2y

The separating line determined by the decision function is now the vertical

[a]. A

FIGURE 4.16: Case (iii). The separating line when the similarity measure
between two inputs is defined by the difference between their arguments.

bisector of the segment [| Tk ”I ”, i.e. the bisector of the angle x Ox_
—1 X+

as shown in Figure 4.16. Note that kernel (4.4.16) corresponds to the trans-
formation x = ®(x) = x/||z||, which implies that the similarity between two
inputs 2’ and z” is measured by the Euclidian distance between x’ = z’/||2/||
and x” = 2’ /||2”|| in x-space; returning to the z-space, the similarity is mea-
sured by the difference |2'/||z'|| — 2" /||z”||| or the difference between their
arguments, angle 2'Oz”, the smaller, the more similar. So the obtained deci-
sion function is: if the angle between x and x4 is less than the angle between
z and z_, x is deemed more similar to x4 and is decided to the positive class;
otherwise x is deemed more similar to z_ and is decided to the negative class,
the separating line consists of the points.
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Chapter 5

Basic Statistical Learning Theory of
C-Support Vector Classification

The main purpose of this chapter is to show the theoretical foundation of
C-support vector classification (C-SVC) by developing a relationship between
C-SVC and the statistical learning theory (SLT). We start by an overview
of SLT, followed by a description of the structural risk minimization (SRM)
principle. Lastly, we show a conclusion given by our paper [186] that the
decision function obtained by C-SVC is just one of the decision functions
obtained by solving the optimization problem derived directly from the SRM
principle.

5.1 Classification Problems on Statistical Learning The-
ory

In this section, we introduce some basic concepts that describe classifica-
tion problems in the framework of SLT.

5.1.1 Probability distribution

Consider a discrete random variable (x,y), where © € R™ can take values
of x1,x9, -+, Or Ty, and y € Y ={—1,1} can take values of y; = —1 or
y2 = 1. Its probability distribution is described in Table 5.1, where p;; is the
probability of (z,y) = (xi,y:), pi.and p.; are the marginal distribution of (z,y)
on x and y respectively, i.e.,

2
pi.:Zpij:P(:c::ri),izl,-n ,m (5.1.1)
j=1
and .
pj= Zpij =Ply=vy;),j =12 (5.1.2)
i=1

Obviously, the probability p;j,7 = 1,---,m,j = 1,2 in Table 5.1 should

127
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TABLE 5.1: Probability distribution of a discrete random variable.

y\x 1 2o . T D
Yy = —1 P11 D21 ce D1 D1
y2 =1 P12 D22 e Dm2 D2
Di. D1 D2 e Dm. 1

TABLE 5.2: Probability distribution of a mixed random variable.

y\z T
yr=-1 p(x,y1) 1
y2 =1 p(T, y2) P2
pz(x) 1
satisty
pijZO,iZL---,m,j:l,Q, (513)
m 2
S pi=1, (5.1.4)
i=1 j=1

which implies that

2
dpi=1, > p;=1 (5.1.5)
i=1 j=1
Based on Table 5.1, we can calculate the conditional probabilities. For exam-
ple, the conditional probability of y = y; under the condition = = x; is:
Pij Pij . .
Ply=yjlx=2;)=———=—, i=1,--- ,m,j=1,2. 5.1.6
=yl i) Pi1+ P2 Di J ( )
Corresponding to the above discrete random variable, we turn to describe
a mixed random variable. Consider a random variable (z,y), where y can take
values of y; = —1 or yo = 1 like a discrete random variable, but the values
of x spread out over an interval in R™ like a continuous variable. Table 5.2
shows this situation, where p(z,y;) is the probability density function when
y=1y; (j =1,2), po(z) and p.; are the marginal density function and marginal
distribution of (x,y) on x and y respectively, i.e.

pa(x) = pla, y1) + (2, y2) (5.1.7)
and
+oo
p-j=/ p(z,y;)dx, j=1,2. (5.1.8)

For j = 1,2, p(x,y;) should satisfy that
p(z,y;) > 0,5 =1,2, (5.1.9)

+oo
/_ [p(z,y1) + p(z, y2)|dx = 1. (5.1.10)
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TABLE 5.3: An example of a mixed random variable.
yY\v x€(-00,00 z€(0,1) ze(3,1) ze(l,+) P,

yi=—1 pl@,y1) =0 plz,y1)=3 plx,y1)=3 pl@,y)=0 p1=1
y2=1 plx,y2) =0 p(x,y2) =3 pla,y2) =7 pl,y2) =0 p2=3
P, (2) 0 T T 0 T

This implies

— 00

+o0 2
/ pae(z) =1, Y p,=1 (5.1.11)
j=1

Based on Table 5.2, we can calculate the conditional probabilities. For exam-

ple, the conditional probability of y = y; under the condition z = Z is
p(z,y;)

p(‘i.u yl) +p(‘i.7 y?)7

Example 5.1.1 Find the marginal density function, marginal distribution,
and conditional probability of the mized random variable given by Table 5.3.

A

-1
FIGURE 5.1: Probability distribution given by Table 5.3.
The probability distribution in Table 5.3 can be described graphically by

Figure 5.1. The random wvariable (x,y) can only take values in the straight
lines y = —1 ory =1, and its corresponding density function can take values
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in the size of the vertical direction. So the marginal density function on x is

0, x € (—00,0);
pe(x) =< 1, z € (0,1); (5.1.13)
0, x € (1, 400).

And the marginal distributions on y are respectively

e 13
p1= p(x,y1)de = o, (5.1.14)
oo 24
e 11
p2= p(x,y2)dr = . (5.1.15)
oo 24
The conditional probability of y = —1 under the condition x = T is
07 zTe (—OO, O)a
3 2€(0,3);
ply=-1llz=2)=1¢ 3 2 (5.1.16)
L Te(z)
0, z € (1,+00).

In order to describe the above discrete and mixed random variables in a unified
form, the following probability distribution function is introduced.

Definition 5.1.2 (Probability distribution function) Suppose that (x,y) is a
random variable, where x = ([z]1, -+ ,[z],)T € R,y € Y ={-1,1}. The
function P(Z,y) = P(x < T,y < §) defined in R™ x Y is called the probability
distribution function of (x,y), where P(x < T,y < §) is the probability of the
event “c < =7 and the event “y < y” occurring together, and “x < T”7 means
that “[z]1 < [Z]1, -, [z]n < [Z)n 7. For simplicity, the probability distribution
function is sometimes called the probability distribution.

Based on the probability distribution given by Tables 5.1 and 5.2, the cor-
responding probability distribution function P(Z, %) can be calculated. For
example, for the case in Table 5.2, we have

0, if g < —1;

P(z,9) =14 [ . p(z,y)de, if-1<y<l; (5.1.17)

Jo P, y1) +pl@, yo)lde,  if g > 1.

Example 5.1.3 Find the probability distribution function of (Z,y) given in
Ezxample 5.1.1.

The probability distribution function P(Z,g) is
0, ifg < —1;

p(z,1), ify>1,
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where

PR

i = =
S]]
M M M M

P(z,—1) = ; (5.1.19)

oo W= O
N
Rlon

N
sle g g
|

and

<o
=
8
m
n
3
=

P(z,1) =

&

if 7 € (0,1); (5.1.20)
if z € (1, 400).

—_

5.1.2 Description of classification problems

In Section 2.1.2 of Chapter 2, the definition of the classification problem
is given as follows: Given a training set

T:{(‘Tluyl)v"' ,(.’L'l,yl)}, (5'1'21)

where x; € R",y, € Y = {-1,1},i=1,--- I, find the possible output y for
any unseen input x. In other words, classification problem is to find a function
f: R™ — Y such that f(z) is a good approximation of the output y to an
arbitrary x. Obviously, in order to find such a function, it is necessary that
the already collected training points (x;,y;)(¢ = 1,---,1) have something in
common with the pair (z,y) of the unseen input and corresponding output.
In the framework of SLT, this is guaranteed by the following assumption.

Assumption 5.1.4 Assume that the training points (z;,y;),s = 1,---,1 in
the training set and future point (x,y) are independent and identically dis-
tributed (i.i.d.), i.e., generated independently and identically (i.i.d.) according
to an unknown but fived probability distribution P(x,y) on R™ X ).

This is a standard assumption in SLT. Every pair (&, ) can be considered
to be generated in two steps. First, the input Z is generated according to the
marginal distribution P,(x). Second, the output § is generated according to
the conditional probability P(:|Z) on Y given the input . Note that assuming
the output y to a given input x is stochastically generated by P(:|z) accom-
modated the fact that in general the information contained in x may not be
sufficient to determine a single output response in a deterministic manner. So,
the goal of classification is to estimate the value of the random variable y.

We conclude that in SLT, classification problem can be described as fol-
lows: Given a training set generated i.i.d, its goal is to find a decision function
f: R™ — Y such that f(x) is a good approximation of the output y to an
arbitrary z. In order to find such a function, we need to propose a quantity
index to evaluate it; therefore the concept of loss function is introduced at
first.
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Definition 5.1.5 (Loss function) Denote by (z,y, f(z)) € R* X Y x Y the
triplet consisting of an input(observation) x, an oulpult y and a prediction
f(z). Then the map ¢ : R™ x Y x Y —[0,00) with the property c(x,y,y) =0
for allz € R" andy € Y is called a loss function.

The most simple and natural loss function is the 0 — 1 loss function.

Example 5.1.6 The 0 — 1 loss function is defined by

c(z,y, f(z)) = ey — f(x)), (5.1.22)
where ‘
o(€) = { (1): Zojclfié;e;w(;;e. (5.1.23)

Clearly, the value of a loss function ¢(x, y, f(z)) indicates the quality of the
decision function f(z) for a particular (z,y). In order to evaluate the quality
of the decision function f(z) itself, suppose that the pair (x,y) is generated
by a distribution on R™ x ) with the probability density functions p(x, —1)
and p(z, 1), then the average loss for unseen pairs is

n

/n c(x, -1, f(x)p(z,—1)dz + / c(z, 1, f(z))p(z, 1)da.
(5.1.24)

Generally the following expected risk is used to assess the quality of a decision
function.

Definition 5.1.7 (Ezpected risk) Suppose that the training set (5.1.21) is
generated by P(x,y) on R* x Y. Let f : R™ — Y = {—1,1} be a decision
function and c(z,y, f(z)) be a loss function. The expected risk of f(x) is de-
fined by the Riemann-Stieltjes integration of c¢(xz,y, f(x) on P(x,y), i.e.,

RIf]2 Ele(z,y, f(x))] = / (. f(2))dP(z,y)

R™xY

:/ c(x, =1, f(x))dP(z,—1) —i—/ c(x, 1, f(z))dP(x,1)(5.1.25)
Here, the integration is carried out with respect to the distribution P(z,y) and
the loss function ¢(z,y, f(x). In general, P(z,y) is unknown, but fixed, while
the choice of ¢(x,y, f(x) depends strongly on the specific application. The
expected risk can be interpreted as the “average” loss of f(x). For example,
in the case of the 0 — 1 loss function it reflects the “average” weights of
predictive errors.
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Example 5.1.8 Consider the probability distribution in Examples 5.1.1 and
5.1.8. Suppose that the decision function is

1, =z€]0,1/2];

flz) = (5.1.26)
-1, z€(1/2,1]

Find its expected risk for the 0 — 1 loss function.

Noticing that the expected risk can be expressed by (5.1.25) and using Table
5.3, the expected risk for any decision function f can be written as:

mif= | " (e, F@)pl ) + / " (w2, F(@)p(a, ya)da

— 00 — 00

1

Lo ; 3 )
25/0 o(@, =1 f(@)de + 4 /1 oL f@)da
1/2 . 1 )
+§/O C(:c,l,f(w))dx—i—%/I/QC(x,l,f(:c))dx. (5.1.27)

The definition of 0—1 loss function implies that ¢(—1— f(Z))+é(1— f(z)) =1,
so the above equation is equivalent to:

1/2 B 1
B =gx gy [ e fents g [ dc- fan
(5.1.28)

Clearly, when the decision function f(z) = f(z) defined by (5.1.26), the ex-
1

1
pected risk is 3 X 3 + 1 X 3= o1 In other words, the “average” error rate
.7
is —.

The definition of the expected risk helps us formalize a classification prob-
lem from the statistical learning theory as follows:

Classification problem on SLT: Given the training set

T:{(xlayl)v"' 7(xlvyl)}a (5129)
where z; € R"y; € Y = {-1,1},i = 1,---,l. Suppose that the training
points (x;,y;),4 = 1,--- ,1 and future point (z,y) are generated i.i.d according

to an unknown distribution P(z,y) on R™ x ). Let ¢(z,y, f(x)) be a loss
function. Find a decision function f(z) such that its expected risk R[f] is
minimized.

The above formulation can be explained clearly by a simple example, where
the training set is generated from P(x,y) in Examples 5.1.1 and 5.1.3. Solv-
ing the classification problem implies to find a function that minimizes the
expected risk. By (5.1.28), it is easy to see that f(x) given by (5.1.26) is what
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we need. Furthermore, we can see that, as a solution, the decision function
(5.1.26) is only an estimation (prediction) for a random variable. For instance,
when the input z € (0,1/2), we are not able to conclude that the correspond-
ing output y must be the value f(z) = 1 given by the decision function because
it may be either 1 (with probability 1/3) or —1 (with probability 2/3). So the
value f(z) =1 is just only a best estimation in some sense.

It should be pointed out that the above example only shows the implication
of the classification problem; it does not give any practical method because in
the classification problem, we do not know the distribution P(z,y), what we
do know is only the training set T'. In other words, we only know that there
exists a distribution such that on which the training points (z;,y;),i = 1,--- ,1
and future point (z,y) are independently and identically generated, but we
do not know what this distribution is. So we can imagine that it is intractable
to find an exact function, like (5.1.26), with the minimal expected risk only
using the information in the training set. Therefore we are going to find an
approximation function whose risk is close to the minimal expected risk below.

5.2 Empirical Risk Minimization

Let us now recall that the classification problem on SLT is to find a deci-
sion function that (approximately) achieves the smallest expected risk. Since
the distribution generating the training set is unknown, the expected risk is
not computable, and consequently it is impossible to find the decision func-
tion via the expected risk directly. So we should find some computable and
approximate substitute to replace the expected risk. The following empirical
risk seems to be one of them.

Definition 5.2.1 (Empirical risk) Given the training set T = {(x1,y1), - ,
(z1,y1)} € (R™ x V), where z; € R*,y € Y = {-1,1},i = 1,--- 1. Sup-
pose that c(x,y, f(x)) is a loss function. Then the empirical risk of a decision

function f(x) is l
1
emp = 7 Z xzayzu z)) (521)

The empirical risk has the advantage that, given the training data, we
can readily compute it. At the same time, it seems to be a reasonable quality
measure for the decision function because the better decision function should
result in smaller empirical risk. It may appear that all that remains to be
done is to find the decision function by minimizing the empirical risk Remp[f].
However, this strategy is not reliable as shown by the following example, where
an absurd result is induced.
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Example 5.2.2 Consider the training set T = {(x1,vy1), -+, (z1,y1)}, where
x; € RMy, € Y ={-1,1}i=1,---,1, and all the inputs are different, i.e.
x; # xjfor i # j, 4,5 = 1,---,1. Suppose that the 0 — 1 loss function is
considered. Then the decision function

Yyi, whenx=wz;,1=1,---,1;

flz) = { (5.2.2)

1, otherwise

is clearly a minimizer of Remp|f] with minimal value 0. Obviously this decision
function is of no use at all. But according to the above strategy it is our final
choice, whereas it is in general a very poor approximation of R[f].

This example is an extreme form of a phenomenon called overfitting, in
which the learning method produces a function that models too closely the
output values in the training set and as a result, has poor performance on
future data. One common way to avoid overfitting is to choose a suitable class
of functions F and minimize Remp[f] over F, instead of over all functions.
This leads to the following empirical risk minimization (ERM) principle.

Definition 5.2.3 (Empirical risk minimization principle) For the training
set

T= {(xlayl)v"' 7($l7yl>}, (523>
where x; € R"y;, € Y = {-1,1},i = 1,---,1, select a loss function
c(z,y, f(z)) and a decision function candidate set F where f € F,f: R" —
Y = {-1,1}. The empirical risk minimization principle says that, finding a
function which minimizes the empirical risk over F, take the function as the
decision function.

The above ERM principle has already appeared in the traditional statisti-
cal learning theory. For example, the least square regression is an implemen-
tation of this idea. The law of large numbers shows that the empirical risk
Remp[f] is a good approximation of the expected risk R[f] for each single f
when the number of training points is very large. However, when the number
is small, Remp[f] does not in general lead to an approximation of R[f]. How
to get a reasonably good approximation of R[f] in this case will be studied in
the following section.

5.3 Vapnik Chervonenkis (VC) Dimension

The ERM principle tends to choose the decision function which minimizes
the empirical risk Remp[f] over a decision function candidate set F. This
approach has a serious issue: how to select the set F. To resolve this issue, we
introduce the VC dimension to descibe the size of F (or the growth of F).
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Definition 5.3.1 (F shatters a set Z;) Suppose that F is a decision function
candidate set, and Z; = {x1,--- ,2;}, where x; € R™i =1,--- 1. We say that
F shatters the set Z; or Z; is shattered by F if for any training set

T:{(xluyl)a"' ,($l,yl)}7 (5.3.1)

where x; € Z1,y; =1 or =1, 1 =1,--- |1, there exists a function f in F which
can separate the training set, i.e. f satisfies that

flxi) =y, i=1,---,1 (5.3.2)

Example 5.3.2 Consider a classification problem in R?. Suppose that F is
a set of the decision functions used in linear support vector classification, i.e.,

F={f(z) = sgn((w-x)+0)
= sgn(wi[z]; +walz]s +b) | w = (w1, w2)T € R, be R}.
(5.3.3)

If Zs = {1, 22,73} C R?, and x1,22,73 are not in a straight line, then Z3
can be shattered by F.

In fact, there exist 23 = 8 modes for the points x1, T2, x3 shown in Figure
5.2 where the points labeled 1 are represented by “+”, and the points labeled
—1 are represented by “”. It is easy to see that for every mode there ezists
a straight line such that all “+7 lie in one side and all “o” in the other side
of the line. This implies that there exists f € F such that f(x;) = y; for all
1=1,2,3. Therefore Z3 is shattered by F.

FIGURE 5.2: Eight labels for three fixed points in R? (a) four points are
in a line; (b) only three points are in a line; (c¢) any three points are not in
a line and these four points form a convex quadrilateral; (d) any three points
are not in a line and one point is inside of the triangle of other three points.
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It is easy to see that the larger the number of points that can be shattered by
F is, the richer the set F is.

Definition 5.3.3 (VC dimension) Suppose that F is a decision function can-
didate set. The VC dimension of F, denoted by VCdim(F), is defined as the
maximal number of points in R™ which can be shattered by F. More precisely,
the VC dimension of F is | if there exists a set with | points which can be
shattered by F, but any sets with I + 1 points cannot be shattered by F. If the
mazimum does not exist, the VC dimension is said to be co.

Example 5.3.4 For F defined in Example 5.5.2, compute its VC dimension
VCdim(F).

Example 5.3.2 has shown that VCdim(F) > 3. In order to prove VCdim(F)=3,
we only need to show that for any four points {x1,x2,z3,24} in R?, there is
always a label mode such that they cannot be shattered by F. In fact, there
are four cases: (i) four points are in a line; (ii) only three points are in a
line; (iii) any three points are not in a line and these four points form a
convex quadrilateral; (iv) any three points are not in a line and one point
is inside of the triangle of other three points. Figure 5.3 (a)~(d) correspond
to these four cases. For every case with the label mode shown in this figure,
there is no line such that all “4+”s and all “o”s lie separately in its two sides.
Therefore the corresponding 4 points cannot be shattered by F. Thus we have
VCdim(F) = 3.

(a) (b)

(c) (d)
FIGURE 5.3: Four cases for four points in R2.

The above conclusion in R? can be extended to the one in R™ as shown
by the following theorem.
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Theorem 5.3.5 Consider classification problems in R™. Suppose that F is
the set of decision functions in linear support vector classofication, i.e.

F={f(z)=sgn((w-z)+b) | w=(wy, - ,w,)" €R", bE R}, (5.3.4)
then the VC dimension of F isn + 1.
Proof See the details in [158]. |

5.4 Structural Risk Minimization

The goal of this section is to derive the structural risk minimization (SRM)
principle that is an improvement of the ERM principle.
Consider the training set

T= {(Ilvyl)a"' a(Ilayl)}v (545>

where z; € R*y; € Y = {+1,—1},i = 1,---,l, where T is generated i.i.d.
from an unknown distribution P(z,y). Suppose that F is a decision func-
tion candidate set and ¢(z,y, f(x)) is a loss function. Let us derive an upper
bound of the expected risk. Taking the empirical risk Remp[f] as an approxima-
tion, the problem is transferred to estimate the difference. We have described
that our problem is to find a function which minimizes R[f], then the ERM
principle tends to replace R[f] by Remp[f]. So, it is crucial to ensure that
Renmp[f] is a good approximation of R[f]. In other words, we want to guar-
antee that the approximation error R[f] — Remp|f] is sufficiently small. The
following theorem provides an upper bound of the probability of the event
sup (R[f] — Remp[f]) > €, where ¢ is a positive number.

fer

Theorem 5.4.1 Denote the VC dimension of F by h. If | > h and le% > 2,
then

P{ sup(R[f] — Remplf]) > g} <dexp (h (m%l + 1) - %) . (5.4.6)

feF

Proof See the details in [42, 157, 158]. |
Set the right-hand side of (5.4.6) equal to some ¢ > 0, i.e.

2 I
dexp (h (m -+ 1) - %) =3, (5.4.7)

= 3 (02 1) s ). 549

By the above two equations, we get an upper bound of R[f].

and then solve for ¢
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Theorem 5.4.2 Denote the VC dimension of F by h. If
> h, (5.4.9)

and

1

- 5.4.10
bl (5.4.10)
then for any distribution P(z,y), 6 € (0,1] and f € F, the following inequality
holds with a probability at least 1 — §

R[f] < Remp[f] + ¢(h,1,0), (5.4.11)

o(h,1,6) = \/§ (h <1n%l 4 1) +ln %) (5.4.12)

The right-hand side of (5.4.11) is called the structural risk, its first term
is the empirical risk, and the second term is called the confidential interval.
Theorem 5.4.2 shows that the structural risk is an upper bound of the expected
risk R[f]. So we turn to minimize this bound. Its main contribution is, instead
of simply being employed to find a decision function, being employed as a
guideline to establish and justify some important conclusions.

It is interesting to estimate the impact of the size of F on the expected risk
by investigating the impact of the size of F on the empirical risk. It is easy to
see that the confidential interval (5.4.12) is a decreasing function about the
size of training set ! and tends to 0 when | — oo. Therefore, the expected
risk is close to the value of the empirical risk and the expected risk can be
replaced by the empirical risk simply. However, in general, the confidential
interval probably plays an important role and therefore the impact of the size
of F on both the empirical risk and the confidential interval in the expected
risk should be taken account.

Figure 5.4 shows the size t of F on the horizontal axis and the value on
the right-hand side of (5.4.11) on the vertical axis. On one hand, when the
set F is increasing, the candidate decision functions increase, resulting in the
decrease of the empirical risk; on the other hand, when the set F is increasing,
the VC dimension h increases, resulting in the increase of confidence interval
(5.4.12) because it is an increasing function of h. It can be expected that the
structural risk has a minimum at ¢ which should be selected. This leads to the
following structural risk minimization (SRM) principle.

h(ln%l—i—l)—i—lné}

where

Definition 5.4.3 (Structural risk minimization principle) For the training
set

T={(z1,y1), -, (@, 9)}, (5.4.13)
where z; € Ry, € ¥ = {-1,1},¢+ = 1,---,1, select a loss function
c(x,y, f(z)) and a decision function candidate set F(t) depending on a real
parameter t with the following property:

F(t1) C Fltz), Vi <ta, (5.4.14)
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\ HAil= Rm[f]+mhfd>
\u,//”/

/” (,ah.l )

FIGURE 5.4: Structural risk minimization.

For every t, find a function f* in F(t) which minimizes the empirical risk.
Thus every pair (t, f*) corresponds to a value of the structural risk. The struc-
tural risk minimization principle says that, finding a t which minimizes the
structural risk, take the function ft as the decision function.

5.5 An Implementation of Structural Risk Minimization

An implementation of structural risk minimization was proposed in [12]
and improved from theoretical point of view in our paper [186].

5.5.1 Primal problem

Consider the classification problem with the training set

T:{(xluyl)v"' 7(x17yl)}7 (5.5.1)

where z; € R*,y; € ¥ = {—1,1},i = 1,--- ,l. First consider the linear sepa-
ration and select a decision function candidate set F(t) depending on a real
parameter t:

F(t) = {f(@) =sgn((w-2) +0) [ Jwl| <t, te[o,00}  (5.52)

Then the set F(¢) increases with ¢. Suppose that the loss function to be the
soft margin loss function defined by (4.3.18)

c(z,y, f(x)) = max{0,1 — yg(x)}, where g(z) = (w-z)+b. (5.5.3)
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Thus its empirical risk is
1<
Remplf] = 72 Ty Yis | Zmax{() 1—yig(x;)}. (5.5.4)

For different ¢, we need to find the minimizer of the empirical risk. This leads
to the optimization problem with the parameter ¢:

N|;_A

l
Z 2oy, f(2)), (5.5.5)

st. feF®). (5.5.6)

min cmp

More specially, the following theorem provides us an equivalent form of the
problem (5.5.5)~(5.5.6).

Theorem 5.5.1 Suppose that the loss function is the soft margin loss func-
tion, and the decision function candidate set is defined by (5.5.2), then the
problem (5.5.5)~(5.5.6) is equivalent to the following convex programming:

l
i}nll)ré ;@-, (5.5.7)
s.t. yi((w-z)+b)=>1-&, i=1,---,1, (5.5.8)
&>0,i=1,---,1, (5.5.9)
w]| <t (5.5.10)

Proof Obviously, problem (5.5.7)~(5.5.10) is a convex programming. Now
we turn to prove the problem (5.5.5)~(5.5.6) is equivalent to the problem
(5.5.7)~(5.5.10). By (5.5.3), the constraints (5.5.8)~(5.5.9) mean that for i =

1,1,
5,_{ 0, if yig(wi) 2 1;
ol Lo, ifyig(a) <1
=max{0,1 — y;g9(z;)}. (5.5.11)
By (5.5.3), we have
& = c(@i, i, f(24)). (5.5.12)
Therefore, the problem (5.5.7)~(5.5.10) can be transformed to the problem
(5.5.5)~(5.5.6). ]

Here, problem (5.5.7)~(5.5.10) is the primal problem.

5.5.2 Quasi-dual problem and relationship between quasi-
dual problem and primal problem

According to the standard approach, we need to establish the dual problem
of the primal problem (5.5.7)~(5.5.10). It is declared in [12] that the following
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problem

l

l l
In(in t Z Zy yjoi0(; - ;) — Z oy, (5.5.13)

i=1 j=1 i=1
s.t. Zylal =0, (5.5.14)
g o<1, i=1,- 1. (5.5.15)

is the dual problem. Unfortunately, the proof is not rigorous since their deriva-
tion is based on some hypotheses that may not be true. However, as pointed
in our paper [186], there still exists a similar relationship between the pri-
mal problem and the problem (5.5.13)~(5.5.15). So, we call the problem
(5.5.13)~(5.5.15) quasi-dual problem and have the following theorems.

Theorem 5.5.2 Quasi-dual problem (5.5.13)~(5.5.15) is a convex program-
ming.

Proof To prove the problem (5.5.13)~(5.5.15) is a convex programming,
we only need to prove the objective function is convex. Let H = (y;y;(z; -
z))ixt, & = (a1, , )T, e = (1,---,1)T, then the objective function is

rewritten as
fla) =tVaTHa —eTa. (5.5.16)

We only need to show that for any a,a& € R' and A € [0, 1],

FOa+ (1= Na) <A@ + (1= N f(@), (5.5.17)

i.e.

\/()\& +(1-Na)"HMa+ (1-Na) < WaTHa+ (1 -\ VaTHa.

(5.5.18)
Based on the Cauchy-Schwarz inequality, we have
201 = NatHa < 2)\(1 — \)VaTHaaTHa. (5.5.19)

Furthermore,
MaTHa+ 201 - NaTHa + (1 - N2a"Ha
<ANaTHa+ 201 - \VaTHaaTHa + (1 — \)?*aTHa,  (5.5.20)
ie.,

Aa+(1—-Na) " HOa+ (1 -Na) < (WaTHa+ (1 - \)VaTHa)?.
(5.5.21)
This implies (5.5.18). [
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Theorem 5.5.3 Suppose a* = (af*, -+, al*)T is a solution to the quasi-
dual problem (5.5.13)~(5.5.15), where t > 0. If there exists a component,
aé—* such that aé—* € (0,1), then a solution (w**,b**) to the primal problem

(5.5.7)~(5.5.10) w.r.t. (w,b) can be obtained by

* 1 l *
t:$;¢%m (5.5.22)
1
b = Yi — ? z;yia?(fl?i - Tj), (5.5.23)
where .
7= M’ H = (yiyj(xi - x5))ixi- (5.5.24)

Proof Since o™ is the solution to the problem (5.5.13)~(5.5.15),
there exist Lagrange multlpher b and Lagrange multiplier vectors £* =
(&, ,§l )Y, 5 = (57, ,5)7T satisfying the following KKT conditions:

t
—F—VYi | T~ Zy]a Lj

\/ Ozt*THOzt*

Hyb G =5 =0, i=1,-- 1 (5.5.25)
ol —1)=0, i=1,-,1, (5.5.26)
Slal* =0, i=1,---,1, (5.5.27)
&>0, i=1,---,1, (5.5.28)
§>0, i=1,-- 1, (5.5.29)
al* <1, i=1,--- 1, (5.5.30)
al*>0, i=1,---,1, (5.5.31)
l
> il =0. (5.5.32)
=1

First of all, let us prove that w'* given by (5.5.22) and Lagrange multiplier
b** are the solution to primal problem (5.5.7)~(5.5.10) with respect to (w, b).
In fact, by Theorem 1.2.24, we just need to show that there exist £* and
Lagrange multiplier vectors a* = (af,---,af),s* = (s}, -+ ,s;)T,7* that
satisfy KKT conditions. This just requires that when «* is shown in (5.5.24),
and

r=¢, af=a, =5 =e—a (5.5.33)
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the following conditions hold:

l

= altyimi 4t w'™ =0, (5.5.34)
i=1 l
Za‘;*yi =0, (5.5.35)
l—a*—5=0, i=1,---,1, (5.5.36)
o (g (W ) + D) =14+ €) =0, i=1,---,1, (5.5.37)
556 =0, i=1,---,1, (5.5.38)
7t - Ith*HQ) 0, (5.5.39)
a*>0, i=1,---,1, (5.5.40)
5520, i=1,---,1, (5.5.41)
>0, (5.5.42)
yi((wh ) +0%) =146 >0, i=1,---,1, (5.5.43)
>0, i=1,---,1, (5.5.44)
|\wt*|\2 < 12 (5.5.45)

It is easy to get (5.5.34)~(5.5.45) by the above KKT conditions (5.5.25)~
(5.5.32). Therefore, (w'*, b™*) is the solution to problem (5.5.7)~(5.5.10) with
respect to (w, b).

Furthermore, to prove (w'*,b™) is the solution to primal problem
(5.5.7)~(5.5.10) with respect to (w,b), we only need to show b** = bt*. If
there exists a component a%* of the solution a** such that of* € (0,1), then

fj* =0, by (5.5.26); on the other hand, by (5.5.37),
Y ('™ - a;) +b) =1 =0. (5.5.46)

So, by comparing the above equation and (5.5.23), together with (5.5.24),
we can get b'* = b'* that is (w'*,b™*) is the solution to the primal problem
(5.5.7)~(5.5.10) with respect to (w,b). [ ]

5.5.3 Structural risk minimization classification

As an implementation of the SRM principle, we can establish the classi-
fication algorithm based on Theorem 5.5.3. Only the linear classification is
considered here. Please see references [12, 186] for the complete algorithm
with kernels.

Algorithm 5.5.4 (Linear structural risk minimization classification)

(1) Input the training set T = {(x1,y1), -, (z1,y1)}, wherez; € R, y; € Y =
{_171}71217 71;
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(2) Choose an appropriate parameter t>0;

(3) Construct and solve the problem (5.5.13)~(5.5.15), obtaning a solution

at* = (Oé’i*, e aaf*)T;

(4) Construct the decision function f(z) = sgn((w™ - x) + b**) based on The-
orem 5.5.3.

5.6 Theoretical Foundation of C'-Support Vector Classi-
fication on Statistical Learning Theory

Now let us turn to our main purpose of this chapter to show that support
vector machines are the implementation of the structural risk minimization
principle by taking the standard C-support vector classification as a represen-
tative.

5.6.1 Linear C-support vector classification

We recall that in linear C-SVC, the primal problem is

l
. 1 2
min S +O;&, (5.6.1)
s.t. yillw-z;)+b) =21-& ,i=1,---,1, (5.6.2)
§&=20,i=1,-,1 (5.6.3)

and the dual problem is

l l l
, 1
min 7 Z Z yayjeicy (i - ) — Z aj (5.6.4)
=1 j=1 j=1
l
s.t. > yiai =0, (5.6.5)
i=1

0< <O, i=1,--,1. (5.6.6)

Theorem 5.6.1 Suppose that w®* is a solution to the problem (5.6.1)~(5.6.3)
with respect to w. Then the function ¢(C) = |[w®*||, defined in the interval
(0, +00), is well-defined.

Proof By Theorems 2.3.2 and 2.3.3 in Chapter 2, there exists a unique
solution w®* to primal problem (5.6.1)~(5.6.3) with respect to w for any
C > 0. So, the function 1(C) = ||w*||, defined in the interval (0, +o00), is
well-defined. |
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Theorem 5.6.2 The function ¢(C) introduced in Theorem 5.6.1 is nonde-
creasing in the interval (0, +00).

Proof Without loss of generality, suppose that 0 < C' < C. To prove ¥ (C)
is nondecreasing, it only needs to provide evidence that the solution w®* and

wC* to primal problem (5.6.1)~(5.6.3) for C' and C respectively satisfy

w2 < flwC|J2. (5.6.7)

In fact, suppose that (wC*,b°",£9*) and (w O pCx, fé*) are solutions to the
primal problem (5.6.1)~ ( 6.3). Then their objective function values satisfy:

H C*II2+CZ§C* C*||2+CZ§C* (5.6.8)
=1
l
1 o) ~ o 1 o A o
S v ||2+CZ§? > Sl P +C Y e (5.6.9)
=1 i=1

The two equations listed above are equivalent to

11 Cx 2 C* 11 Cx2 C*
- __ 6.1
e’ +;s < Lol +;s (5.6.10)
11, & L e L1
Cx2 C* Cx (12
=3l +;§i 55 wC | +Z§ . (5.6.11)
Using (5.6.10) minus (5.6.11), then
1 1 1 Cx 2 < 1 1 1 Cx (12
= — = =— == . 5.6.12
(5-2) 3P < (5-3) 5l (5:6.12)
Therefore when C < C, (5.6.7) stands. |

5.6.2 Relationship between dual problem and quasi-dual
problem

In order to show the relationship between C-SVC and the structural risk
minimization classification, we first consider the relationship between the dual
problem (5.6.4)~(5.6.6) and the quasi-dual problem (5.5.13)~(5.5.15).

Theorem 5.6.3 The function ¢(C) introduced in Theorem 5.6.1 satisfies that

Cx

when t = P(C) > 0, ot = aO is a solution to the quasi-dual problem
(5.5.13)~(5.5.15), where a“* is a solution to the dual problem (5.6.4)~(5.6.6).
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Proof The Lagrange function of quasi-dual problem (5.5.13)~(5.5.15) is

~

L(a,b,€,5) = tVaTH E:aﬁ$§:y¢m+§jéz ai—1)=Y 0, (5.6.13)

=1 =1 1=1
where H = (y;y;(2; - ©j))ixi. By Theorem 5.5.2, to prove our conclusion, it

is necessary to verify that when t = 1(C), th~ere exist Lagrange multiplier b
and Lagrange multiplier vectors £= (&1, ,&)T, 5= (51,---,5)" such that
at* b, &, § satisfy the following KKT conditions

LGl —1) =0, i=1,---,1, (5.6.15)
5o =0, i=1,---,1, (5.6.16)
>0, i=1,---,1, (5.6.17)
5 >0, i=1,---,1, (5.6.18)
a* <1, i=1,---,1, (5.6.19)
a*>0, i=1,---,1, (5.6.20)
l

> yialt =0 (5.6.21)

=1

In fact, since a®* is the solution to dual problem (5.6.4)~(5.6.6), there
exist Lagrange multiplier b* and Lagrange multiplier vectors é* =
(&, €07, 5 = (57,--+,57)T such that oC* b* £, 5* satisfy the follow-
ing conditions

Ha® —e+b'y+& -5 =0, (5.6.22)
§laf*=0)=0, i=1,--,1, (5.6.23)
S*aC* —O, 7= 17... 717 (5624)
>0, di=1 1 (5.6.25)
5720, i=1,---,1, (5.6.26)
af*<C, i=1, 1, (5.6.27)
af* >0, i=1,--1, (5.6.28)
l

> yiaft =o. (5.6.20)

=1

To compare (5.6.14)~(5.6.21) and (5.6.22)~(5.6.29), it is suggested that when

t = ¢(C), which means t = VaC*THaC*. Let b = b, = €*,5 = §*, then
at*, b, €, § satisfy the KKT condition (5.6.14)~(5.6.21). Therefore, our conclu-
sion is proved. |
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5.6.3 Interpretation of C-support vector classification

Theorem 5.6.4 The nondecreasing function ¥ (C) introduced in Theorem
5.6.1 and discussed in Theorem 5.6.2 has the following property: If for some
C > 0, the solution a®* to the dual problem (5.6.4)~(5.6.6) has a component
€ (0,0), then when t = ¥(C), (w*,b°*) obtained by C-SVC is also a
solutzon to the primal problem (5.5.7)~(5.5.10) with respect to (w,b).

Proof Let us prove the conclusion in two different situations.

(i) When t = ¥(C) = 0, w®* = 0 by the definition of ¥(C); on the other
hand, if £ = 0, from the constraint (5.5.10), it can be known that w®* =
0 is the solution to the primal problem (5.5.7)~(5.5.10) with respect to w;
furthermore, it is easy to verify that the solution b“* to linear C-SVC with
respect to b is the solution to the primal problem (5.5.7)~(5.5.10) with respect
to b.

(i) When t = 1(C) > 0, if there exists a component a“* of a solution «
to the dual problem (5.6.4)~(5.6.6), such that a§* € (0,C), then by Theorem
5.6.3, the solution to linear C-SVC with (w, b) can be expressed as

Cx*

l l
=Y oy = CY oy, (5.6.30)
i=1 i=1

Zyl (@i - 2j) = yj — Ozyz it T5),s (5.6.31)

=1
C'x

a
C
So according to Theorem 5.5.3, to prove (w®*,b%*) is the solution to the

where o'* = is the solution to the quasi-dual problem (5.5.13)~(5.5.15).

1
primal problem (5.5.7)~(5.5.10), we only need to prove C'= —, where v* is
Y

given by (5.5.24). In fact, it can be obtained by (5.5.24), together with the
relationship between at* and o©*, that is

. \/Oét*THO(t* B \/OéC*THCYC* B i (5 632)
v = ¢ T O’ O -

Therefore, (w®*,b%*) is the solution to the primal problem (5.5.7)~(5.5.10)
with respect to (w, b). |

Remark 5.6.5 Note that for the above theorem, the conclusion is proved
under the extra condition that for some C' > 0, the solution a“* to the dual
problem (5.6.4)~(5.6.6) has a component onC* € (0,C). It should be pointed
out that the conclusion is also true when the above condition is not valid. In
addition, the conclusion can be extended to the general C-SVC with kernels.
Please see [186] for the details.
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Theorems 5.6.4 and Remark 5.6.5 provide the theoretical foundation of C-
SVC on SLT: the decision function obtained by C-SVC with suitable C' is just
one of the decision functions obtained by Algorithm 5.5.4 (linear structural
risk minimization classification). Therefore, C-SVC with a suitable parameter
C'is a direct implementation of the SRM principle. In addition, a very inter-
esting and important meaning of the parameter C is given by showing that
C corresponds to the size of the decision function candidate set in the SRM
principle: the larger the value of C', the larger the decision function candidate
set.

Along with the discussion in Chapter 2 and Chapter 4, C-SVC can be
summarized and understood from three points of view: (i) construct a deci-
sion function by selecting a proper size of the decision function candidate set
via adjusting the parameter C; (ii) construct a decision function by selecting
the weighting between the margin of the decision function and the deviation
of the decision function measured by the soft-margin loss function via ad-
justing the parameter C; (iii) construct a decision function by selecting the
weighting between flatness of the decision function and the deviation of the
decision function measured by the soft-margin loss function via adjusting the
parameter C.
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Chapter 6

Model Construction

This chapter investigates how to solve practical problems by SVMs. Only the
classification problems are considered here since the regression problems can
be dealt with in a similar way.

Roughly speaking, a practical classification problem can be described as
follows: Suppose that there is a kind of object that is divided into two classes,
positive class and negative class, and we know some of them belong to the
former and some to the latter. Our task is to establish a criterion and deduce
whether a new object belongs to the positive or negative class.

In order to solve a practical classification problem by SVC, a complete
model is usually constructed in the following steps:

(i) According to the objects with the known class labels, generate an initial
training set;

(ii) Construct the training set by preprocessing the initial training set;

(iil) Select an appropriate kernel and parameters in SVC;

(iv) Find the decision function by SVC on the training set;

(v) For the decision function obtained, give an explanation that can be
easily interpreted by humans.

This chapter will focus on the first three steps, and the last step in Sections
6.1, 6.2, 6.3 and Section 6.4, respectively.

6.1 Data Generation

When we apply SVC to solve practical classification problems, the first
step is to generate an initial training set. For doing this, we first describe the
objects to be classified in a vector form by extracting some features that are
relevant to objects and their labels, and developing a quantitative indicator
for every feature. So, an object is represented by an n-dimensional vector
x = ([x]1, -+, [z],)T, where n is the number of features and [z]; is the value
of the i-th feature, i = 1,--- ,n. Thus, suppose that we know [ objects with
the label 1 or —1 representing that they belong to positive class or negative
class respectively, then an initial training set can be constructed as follows:

T:{(xluyl)v"' ,(.’L'l,yl)}, (6.1.1)

151
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where (z;,y;) is a training point, z; = ([z;]1,- -+, [zi]n)T € R" and y; € Y =
{—1,1} are the i-th input and label respectively, i = 1,--- ,I.

In the above process, one of the key points is to represent the objects by
vectors. This work is trivial sometimes, e.g. for the problem in Example 2.1.1
(Diagnosis of heart disease), where a patient (an object) is represented by a
two-dimensional vector that consists of two features: diastolic pressure and
cholesterol level. However, this is not always the case. In fact, for most practi-
cal problems, excellent skills and professional knowledge are needed as shown
by the following classification problem concerned with post-translational mod-
ification sites in bioinformatics.

The prediction of post-translational modification sites can be formulated
as a binary classification problem, where the objects to be classified are ordinal
sequences formed from 20 amino acids and a dummy amino acid, i.e. character
strings that are composed of 21 characters in the set:

U={AC,--,Z,0} (6.1.2)

with certain length, where A, C,--- , Z represent 20 amino acids respectively
and O represents the dummy amino acid. In order to apply SVC, the first is
to represent the above strings by vectors.

Instead of the above character string, let us consider the more general one

a = a[l]a[g] . -a[m] (6.1.3)
with length m, where af;)(i = 1,--- ,m) is the i-th character of the string and
belongs to the set:

S={o1,as, -, 0} (6.1.4)

The methods representing the string (6.1.3) by a vector are called encoding

schemes. Some of them are introduced below[142].

6.1.1 Orthogonal encoding

The basic idea of this orthogonal encoding scheme is to transform p char-
acters in S into p orthonormal VeCtOYS[SS]; all of characters in S are ordered
from 1 to p, and the i-th character is transformed to the binary vector of p
components with the i-th component set to “1” and all others to “0”s, for
i=1,2,---,p, ie.,

a; — e =(1,0,0,---,0)T € RP
as — ey =(0,1,0,---,0)T € RP

(6.1.5)
ap — €, =1(0,0,0,---,1)T € RP.

Replacing the characters by the corresponding orthonormal vectors, the char-
acter string a with length m given by (6.1.3) is encoded in a p X m-dimensional
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vector. For example, for the character string

a = 13003 (6.1.6)
with

S = {041,062,063}, (617)
we have e; = (1,0,0)T,e2 = (0,1,0)T,e3 = (0,0,1)T. And this string

can be transformed into the 15-dimensional vector: (e],el, el el ed)T =

(1,0,0,0,0,1,0,1,0,1,0,0,0,0,1)".

6.1.2 Spectrum profile encoding[97’ 103]

Let us first show the basic idea of spectrum profile encoding scheme by
the character string a defined by (6.1.6) and (6.1.7). Here we are interested in
the distribution of two adjacent characters of the string a such as ajaq, ajas.
Clearly, there are 32 = 9 possible combinations of two contiguous characters
in (6.1.6) shown in the set:

2
S% ={aa1, a100, a1as, aoon, a0, apas, a3, a3aiz, 303} (6.1.8)

Now calculate the number of times that each element in S? occurred in the
string @ and consider this number as the score for each element of S2. Then
we can get the 9-dimensional vector:

(0,0,2,1,0,0,0,1,0)T, (6.1.9)

where each component is the number of times the corresponding two contigu-
ous subsequences of (6.1.8) occur in the string a. For example, the first and
second 0 in (6.1.9) mean that both aya; and ajas never occur in a, while the
third element 2 in (6.1.9) means that a;jas occurs twice in a.

Now let us define a mapping based on the above idea to encode any string a
defined by (6.1.3). We consider the occurrence of k contiguous subsequences as
the extension of the two contiguous subsequences in the above example. Given
the set S defined by (6.1.4), there are p* possible combinations regarding k
contiguous subsequences, and we can get the following set indexed by all these
p" possible combinations with a specific order:

SF ={ar,az, - ,ap}. (6.1.10)
Then we can encode the string @ into a vector in R space:
(I)k(a) = (¢a1 (CL), ¢¢l2 (CL), Tt ¢apk (CL))Ta (6111)

where ¢4, (a),i = 1,2,--- ,p* is the number of times the subsequence a; oc-
curred in a.
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The example in the beginning of this section is just a special case of the
above mapping. That is, (6.1.10) and (6.1.11) are equivalent to (6.1.8) and
(6.1.9) respectively when k = 2, the set S and the character string a are given
by (6.1.7) and (6.1.6) respectively.

It may be interesting to extend the above encoding approach for any possi-
ble combinations rather than only consider the contiguous subsequences. For
instance, given a sequence a defined by (6.1.6), the subsequence ;a3 appears
in @ as the contiguous subsequences of the first character and the second char-
acter, and the fourth and the fifth characters, as well as the non-contiguous
combination of the first character and the fifth character if gaps allowed. For
detailed discussion, we refer the reader to [97].

6.1.3 Positional weighted matrix encodingl23: 135, 175]

For a classification problem when the objects are strings, it is necessary
to know several strings with class labels. This information can be represented
by the set

T:{(aluyl)v"' 7(al7yl)}7 (6'1'12)

where a; is a character string that is composed of p characters in the set S
defined by (6.1.4) and y; € {1,-1} (i=1,---,1).

The positional weighted matrix encoding is based on the above set, and
its process consists of two parts: (i) Construct the positional weighted matrix
P = (P;;) , where P;; is the frequency of the i-th character in set S appearing
at the j-th position in all of the characters a; in S with y, = 1(t =1,---,1),
1=1,2,---,p,j = 1,2,---m. (ii) Encode the character string a defined by
(6.1.3) in a m-dimensional vector, and its j-th (j = 1,--- ,m) component is
the corresponding value of Py;, where k is defined in the following way: the
character appearing at the j-th position in a is the k-th character in set S.

Let us show this encoding method more clearly through the following ex-
ample. Given the set

{(a1,91), (a2,92), (a3, ys)}, (6.1.13)
where a1 = appaiooeagar,yr = 1, a2 = aragosasar,yz = 1, az =
arasasagarg,ys = —1, S = {ai,a9, - ,a10}, represent the strings

1001002091 and aoaya gy by vectors.
The positional weighted matrix is shown in Table 6.1 and the strings re-
quired can be represented by 5-dimensional vectors.

arpaioaagay — (Prg 1, Pro 2, P2 3, Py 4, Py 5)" = (0.5,0.5,1,0.5, 1),
(6.1.14)

Qo041 g Qg — (PQ 1,P4 Q,Pl 3,P6 4,P9 5)T = (0,05,0,05,0)T
(6.1.15)

An improvement of this approach is proposed in [175].
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TABLE 6.1: Positional weighted matrix.

1 2 3 4 )
o 0 0 0 0 1
o9 0 0 1 0 0
o3 0 0 0 0 0
oy 0 0.5 0 0 0
os 0 0 0 0 0
o6 0 0 0 0.5 0
oy 0.5 0 0 0 0
o 0 0 0 0 0
a7 0 0 0 0.5 0
10 0.5 0.5 0 0 0

6.2 Data Preprocessing

Applying C-SVC algorithm directly on the above initial training set (6.1.1)
often results in poor performance. Therefore, the data should be preprocessed
in order to improve the quality of the data. Some data preprocessing tech-
niques are introduced below.

6.2.1 Representation of nominal features

Consider the classification problem of some foods. For simplicity, we de-
scribe a food by only one feature — its taste. Suppose that there are three
different tastes: bitter, sweet, and salted, which can be represented by the
symbolic integers: 1, 2, and 3 in one-dimensional Euclidian space, respec-
tively. This feature is a nominal feature, whose feature values are completely
unordered. So, the above representation is not suitable for classification. In
order to describe the disorder, we embed the one-dimensional Euclidian space
R into three-dimensional Euclidian space R3, and transform the symbolic in-
tegers 1, 2, and 3 in R to the coordinate vectors: p1, pa, p3 in R, see Figure
6.1. Thus the bitter, sweet, and salted foods can be represented as (1,0, O)T7
(0,1,0)T, and (0,0,1)7, respectively.

In the above example, the nominal feature takes values in three states.
It is easy to be extended to the case where the nominal feature takes values
in M states, which are represented by 1, 2, ---, M in R. In fact, we only
need to embed the one-dimensional Euclidian space R into an M-dimensional
Euclidian space RM, and establish the transformation from 1, 2, ---, M in R
to the coordinate vectors e, ---, ey in RM. Thus the nominal feature that
takes values in M states can be represented as (1,0,---,0)T, (0,1,---,0)T
and (0,---,0,1)T, respectively.

Please see references [147, 150] for further discussion of nominal features.
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FIGURE 6.1: Representation of nominal features.
6.2.2 Feature selection

In the initial training sets, an object to be classified is represented by an
input (vector x = ([x]1,--- ,[z],)T with n features). Some of these features
may be irrelevant to the class. The goal of feature selection is to remove the
irrelevant features and maintain the features that are as close as possible to
the class. The benefit of feature selection is twofold. On one hand, feature
selection is meaningful since it can identify the features that contribute most
to classification. For example, in Example 2.1.1 (Diagnosis of heart disease),
there are 13 features in the initial training set. Feature selection can provide
us with the most important features that cause the heart disease. On the
other hand, feature selection is helpful for solving the classification problem
since it cannot only reduce the dimension of input space and speed up the
computation procedure, but can also improve the classification accuracy. The
problem of feature selection is described as follows.

Feature selection: Given an initial training set

T= {(Ilayl)v 7($l7yl)}, (621>

where z; = ([z;]1,- -, [zi]n)T € Ry, € Y = {1,-1},i = 1,--- 1, feature
selection is to remove the irrelevant features, and construct an appropriate
training set.

There exist numerous methods of feature selection in the literature [13,
110]. In the following, we introduce some of them.

6.2.2.1 F-score method

F-score is a simple and generally quite effective technique [27]. Given the
initial training set (6.2.1), the F-score of k-th feature is defined as

. (a1t = (52 + (el — (2], o
o S - B g D (- )°

yi=1 yi=—1
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where [, and [_ are the number of positive and negative points respectively,
and

1
[#)y = N > lwile, k=1, .m, (6.2.3)
yi=1
_1
@l =7 D bl k=1, (6.2.4)
T yi=—1
1 l
[, = 7 ) _[wile, k=1 n. (6.2.5)
=1

The numerator of F'(k) indicates the discrimination of k-th feature between
the positive and negative sets, and the denominator of F'(k) indicates the one
within each of the two sets. The larger the F-score is, the more likely this
feature is more discriminative. Therefore, this score can be used as a feature
selection criterion. The algorithm is summarized below:

Algorithm 6.2.1 (F'-score method)

(1) Input the training set T defined by (6.2.1) and the number of selected
features: d;

(2) According to (6.2.2), calculate the F-score of every feature: F(1), F(2),---,
F(n);

(3) Array the F-scores in ascending order: F(k1), F(ke), -, F(ky), where
Fll)2F (k)= - 2F (k). (6.2.6)
Select the features that correspond to the index ki,- -+ , kq.

6.2.2.2 Recursive feature elimination method

Linear C-SVC (Algorithm 2.3.10) can be applied directly to feature selec-
tion: Given the initial training set (6.2.1), conduct Algorithm 2.3.10 on the
initial training set and obtain the normal vector of the separating hyperplane

w* = (wi,-- wh)T. (6.2.7)

If the j-th component w; = 0, then we remove j-th feature [z];, because the
decision function

1
f(z) =sgn (Z wy[z]; + b*) = sgn wa [x]; + b (6.2.8)
i=1 i#j
does not contain the j-th feature. Generally, some components of w* with the

small absolute value can also be removed, and feature selection is implemented.
In order to remove features more efficiently, the recursive feature elimination
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(RFE) method was proposed in [65]. Its basic idea is to apply Algorithm
2.3.10 and find the normal vector w* several times. Each time, remove only
one feature that corresponds to the component with the smallest absolute
value of w*. The specific process is as follows:

Algorithm 6.2.2 (Recursive feature elimination method)

(1) Input the training set T defined by (6.2.1) and the number of selected
features: d; set k =0, and construct the training set To = T';

(2) Apply Algorithm 2.3.10 on the training set Ty, and compute the normal
vector w* of the separating hyperplane. Update the training set Tyy1 by elim-
inating the feature with the smallest absolute value of the components of w*
m Tk.

(3) If k+1 = n —d, then stop; the surviving features are the ones in Tyy1;
otherwise, set k =k + 1, and go to step (2).

6.2.2.3 Methods based on p-norm support vector classification (0 <
p<1)

It has been pointed out that in linear C-SVC, the j-th feature should be
removed if the corresponding j-th component wj of the normal vector w*
of the separating hyperplane is zero. In order to make w* have more zero
components, the primal problem (2.3.4)~(2.3.6) is modified to the following
problem:

!
~ P .
min lelp+O;& : (6.2.9)
s.t. yillw-z;)+b) =21-& ,i=1,---,1, (6.2.10)
&>0,i=1,--,1, (6.2.11)

where p is a nonnegative parameter. For the case of p = 0, ||wl||op represents
the number of nonzero components of w. For p > 0, |[w||? is the p-th power of
[[wl|p, and

[wllp = (Jwr[? + - -~ + Jwa )7 (6.2.12)
For the case of p > 1, |Jw||, is the p-norm of w. For example, when p = 2,
the above primal problem is reduced to the one in the standard linear SVC.
Strictly speaking, ||w]||, is not a norm when p € (0, 1), but we still follow this
term.

Now we show intuitively the relationship between the sparsity of the so-
lution w* w.r.t. w to the problem (6.2.9)~(6.2.11) and the value p. Consider
the problem (6.2.9)~(6.2.11) with n = 2 first, and denote its solution by
(w*,b*,£*), the normal vector w* can be regarded as the solution to the prob-
lem

nin lwllp (6.2.13)
st yil(w-z)+0)=1—¢&i=1,---,1. (6.2.14)



Model Construction 159

Generally, the feasible region of this problem is a polyhedron without the
origin in R™, and w* is the minimizer of ||w||, in this polyhedron. In order to
display the changes in the contour lines

wll, = & (6.2.15)

with different p values, the corresponding counters with 2,1,0.5 and 0.01 are
plotted in Figure 6.2. When p = 2, the contour line is a smooth circle; When
p decreases from 2 to 1, the contour lines gradually change from a circle to a
prism and cusps appear. When p decreases further, the cusps become mo