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Preface

Progress is impossible without change,
and those who cannot change their minds

cannot change anything.
George Bernard Shaw (1856–1950)

Any sufficiently advanced technology is
indistinguishable from magic.

Arthur C. Clarke (1917– )

This book introduces the new realm of superrecursive algorithms and the develop-
ment of mathematical models for them. Although many still believe that only re-
cursive algorithms exist and that only some of them are realizable, there are many
situations in which people actually work with superrecursive algorithms. Examples
of models for superrecursive algorithms are abstract automata like inductive Turing
machines as well as computational schemes like limiting recursive functions.

The newly emerging field of the theory of superrecursive algorithms belongs to
both mathematics and computer science. It gives a glimpse into the future of comput-
ers, networks (such as the Internet), and other devices for information interchange,
processing, and production. In addition, superrecursive algorithms provide more ad-
equate models for modern computers, the Internet, and embedded systems. Conse-
quently, we hope (and expect) that this theory of superrecursive algorithms will, in
the end, provide new insight and different perspectives on the utilization of comput-
ers, software, and the Internet.

The first goal of this book is to explain how superrecursive algorithms open
new kinds of possibilities for information technology. This is an urgent task. As Pa-
padopoulos (2002) writes, “If we don’t rethink the way we design computers, if we
don’t find new ways of reasoning about distributed systems, we may find ourselves
eating sand when the next wave hits.” We believe that a theory of superrecursive al-
gorithms makes it possible to introduce a new paradigm for computation, one that
yields better insight into future functioning of computers and networks. This form of
computation will eclipse the more familiar kinds and will be commercially available
before exotic technologies such as DNA and quantum computing arrive.

Another goal of this book is to explain how mathematics has explicated and eval-
uated computational possibilities and its role in extending the boundaries of compu-
tation. As we do this, we will present the theory of algorithms and computation in a
new, more organized structure.

It is necessary to remark that there is an ongoing synthesis of computation and
communication into a unified process of information processing. Practical and the-
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oretical advances are aimed at this synthesis and also use it as a tool for further
development. Thus, we use the word computation in the sense of information pro-
cessing as a whole. Better theoretical understanding of computers, networks, and
other information processing systems will allow us to develop such systems to a
higher level. As Terry Winograd (1997) writes, “The biggest advances will come
not from doing more and bigger and faster of what we are already doing, but from
finding new metaphors, new starting points.” In this book, we attempt to show that
such new metaphors already exist and that we need only to learn how to use them to
extend the world of computers in ways previously unimaginable.

Algorithms and their theory are the basis of information technology. Algorithms
have been used by people since the beginning of time. Algorithms rule computers.
Algorithms are so important for computers that even the mistakes of computers result
mostly from mistakes of algorithms in the form of software. Consequently, the term
“algorithm” has become a general scientific and technological concept used in a
variety of areas. The huge diversity of algorithms and their mathematical models
builds a specific “algorithmic universe”. However, the science that studies algorithms
emerged only in the twentieth century.

Since the emergence of the theory of algorithms, mathematicians and computer
scientists learned a lot. They have built mathematical models for algorithms and,
by means of these models, discovered a principal law of the algorithmic universe,
the Church–Turing thesis, and it governs the algorithmic universe just as Newton’s
laws govern our physical universe. However, as we know, Newton’s laws are not
universal. They are true for processes that involve only ordinary bodies. Einstein,
Bohr, Dirac, and other great physicists of the twentieth century discovered more fun-
damental laws in the microworld that go beyond the scope of Newton’s laws. In a
similar way, new laws for the algorithmic universe have been discovered that go be-
yond the Church–Turing thesis. The Church–Turing thesis encompasses only a small
part of the algorithmic universe, including recursive algorithms. This book demon-
strates that superrecursive algorithms are more powerful, efficient, and tractable than
recursive algorithms, and it introduces the reader to this new, expanded algorithmic
universe.

Consider the famous Gödel theorem on the incompleteness of formal arithmetic.
In the context of recursive algorithms, this theorem has absolute and ultimate mean-
ing, vitally restricting the abilities of mathematicians and mathematics. In the context
of superrecursive algorithms, the Gödel theorem becomes relative, stating only dif-
ferences in abilities based on superrecursive and recursive algorithms. That is, the
theory articulates that, for sufficiently rich mathematical theories, such as arithmetic,
superrecursive algorithms allow one to prove much more than conventional methods
of formal deduction, which are based on recursive algorithms (Burgin, 1987). When
Gödel proved his theorem, it was a surprise to most mathematicians. However, from
the superrecursive perspective, the Gödel theorem is a natural result that simply re-
flects the higher computational and deductive power of superrecursive algorithms.

Although the main concern of this book is superrecursive algorithms and hyper-
computation, a variety of other problems are also analyzed. They include general
problems such as: What is an algorithm? What is a description of an algorithm?
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How do we measure computational power, computational efficiency, computational
equivalency for computers, networks, and embedded systems and their mathematical
models? What are the structures, types, and functioning of information processing
systems? Can we provide a systematization of mathematical models of computa-
tional processes and their algorithmic representations? How do they affect computer,
network, and information-processing architectures?

The organization of this book

This book begins with models of conventional, recursive algorithms, with an over-
view of the theory of recursive algorithms given in Chapter 2. We then present even
less powerful, but more tractable and feasible, subrecursive algorithms, giving an
overview of their theory in Chapter 3. We consider some classes of subrecursive
algorithms that are determined by restrictions in construction; for instance, finite au-
tomata. Subrecursive algorithms defined by restrictions on the resources used, e.g.,
Turing machines with polynomial time of computation, are mentioned only tangen-
tially.

Our approach has a three-fold aim. The first aim is to prepare a base for super-
recursive algorithms; an exposition of conventional algorithms helps to understand
better the properties and advantages of new and more powerful algorithmic patterns,
superrecursive algorithms.

The second aim of our approach is to give a general perspective on the theory of
algorithms. Computer scientists and mathematicians have elaborated a huge diversity
of models. Here we try to systematize these models from a practical perspective of
computers and other information processing systems. As far as we know, this is the
first attempt of its kind.

The third aim of our approach is to achieve completeness, making the book self-
contained. This allows a reader to understand the theory of algorithms and computa-
tion as a whole without going to other sources. Of course, other sources may be used
for further studies of separate topics. For instance, Rogers (1967) has more mate-
rial about recursive algorithms, and Hopcroft, Motwani, and Ullman (2001) contains
more material about finite automata and context-free grammars.

But this book allows a reader to better comprehend other theories in computer
science by systematizing them, extending their scope, and developing a more ad-
vanced perspective based on superrecursive algorithms.

After considering conventional models of algorithms, we introduce models of
superrecursive algorithms. In Chapter 4 we consider the computational power of su-
perrecursive algorithms. In Chapter 5 we consider the efficiency of superrecursive
algorithms, which is represented in the theory by a kind of complexity measure. The
book culminates in a positive reevaluation of the future development of communica-
tion and information processing systems.

The exposition is aimed at different groups of readers. Those who want to know
more about the history of computer science and get a general perspective of the
current situation in the theory of algorithms and its relations to information technol-
ogy can skip proofs and even many results that are given in the strict mathematical
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form. At the same time, those who have a sufficient mathematical training and are
interested mostly in computer and information science or mathematics can skip pre-
liminary deliberations and go directly to the exposition of superrecursive algorithms
and automata. Thus, a variety of readers will be able to find interesting and useful
issues in this book.

It is necessary to remark that the research in this area is so active that it is im-
possible to include all ideas, issues, and references, for which we ask the reader’s
forbearance.

Theories that study information technology belong to three disciplines: informa-
tion sciences, computer science, and communication science. All such theories have
a mathematical foundation, so it is no surprise that mathematics has its theories of
computers and computations. The main theory is the theory of algorithms, abstract
automata, and computation, or simply, the theory of algorithms. It explains in a log-
ical way how computers function and how computations are organized. It provides
means for evaluation and development of computers, nets, and other computational
systems and processes. For example, a search for new kinds of computing resulted in
molecular (in particular, DNA) and quantum computing, which are the most widely
discussed. At this point, however, both of these paradigms appear to be restricted to
specialized domains (molecular for large combinatorial searches, quantum for cryp-
tography) and there are no working prototypes of either. The theory of algorithms
finds a correct place for them in a wide range of different computational schemes.
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Introduction

Nisi credideritis, non intelligitis.
(Unless you believe, you will not understand.)

Saint Augustine, 354–430

People live in a very complex world. They devote their intelligence to understanding
and accommodating this complex environment. To cope with complexity, people
inevitably create more and more complex mechanisms and technologies. According
to one of the basic principles of cybernetics suggested by Ashby (1964), to achieve
complete (relevant) adaptation/control, the complexity/variety of a system must be
of the same order as the complexity/variety of its environment.

This implies that we need more powerful computers as technical devices for in-
formation processing, as well as more powerful theories as abstract devices for in-
tellectual activity. In the process of achieving more power, computers are becoming
more and more complex. However, in spite of the exponential growth of computing,
storage, and communication power, scientists demand more.

The following examples by Ian Foster (2002) vividly illustrate the situation. A
personal computer in 2001 is as fast as a supercomputer of 1990. But 10 years ago,
biologists were happy to be able to compute a single molecular structure. Now, they
want to calculate the structures of complex assemblies of macromolecules and screen
thousands of drug candidates. Personal computers now ship with up to 100 gigabytes
(GB) of storage, as much as an entire 1990 supercomputer center. But by 2006,
several physics projects, CERN’s Large Hadron Collider (LHC) among them, will
produce multiple petabytes (1015 byte) of data per year. Some wide area networks
(WANs) now operate at 155 megabits per second (Mbps), three orders of magnitude
faster than the state-of-the-art 56 kilobits per second (Kbps) that connected US su-
percomputer centers in 1985. To work with colleagues across the world on petabyte
data sets, scientists demand communication at the level of tens of gigabits per second
(Gbps).

The world of information processing is very complex and sophisticated. It in-
volves interaction of many issues: social and individual, biological and psycholog-
ical, technical, organizational, economical, political. The complexity of the world
of modern technology is reflected in a study of Gartner Group’s TechRepublic unit
(Silverman, 2000). According to this study, approximately 40% of all internal IT
projects are canceled or unsuccessful. Overall, an average of 10% of a company’s
IT department produces no valuable work each year. An average canceled project is
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terminated after 14 weeks, when 52% of the work has already been done. In addition,
the study states that companies spend an average of almost $1 million of their $4.3
million annual budgets on failed projects.

Companies may be able to minimize the chances of cancellation if they have
relevant evaluation theory and consult people who know how to apply this theory. All
developed theories have a mathematical basis, so it is no surprise that mathematics
helps science and technology in many ways.

To advance the field of information processing, we have to use existing theories
and develop new ones to reflect the complexity of existing systems and guide our
search for more powerful ones. As stressed in the Preface, the theory of algorithms is
basic for this search. This theory explains in a logical way how computers, networks,
and different software systems function and how they are organized. This book de-
scribes recent achievements of the theory of algorithms, helping to better understand
the field of information processing and to find new directions for its development.

Algorithms were used long before computers came on the scene and in a formal-
ized form came from mathematics. That is why theory of algorithms was developed
in mathematics. With the advent of computers, the theory of algorithms changed its
emphasis. It became a theory of the computer realm. This computer realm is the
main perspective for this book. We analyze how different mathematical models of
algorithms represent properties of computers and networks, how models reflect pro-
gramming technique, and how they provide new paradigms for computation. We
hope also to expand our understanding of how different systems function in an orga-
nized and consistent way.

1.1 Information processing systems (IPS)

There was no “One, two, three, and away!”,
but they began running when they liked,

and left off when they liked,
so that was not easy to know when the race was over.

Lewis Carroll, 1832–1898

The computer realm consists of not only of computers but many other systems. The
unifying feature of the systems models of which we consider in this book is that they
all process information, so they are information processing systems. For simplicity,
we call them IPS. Initially, the theory of algorithm dealt with the von Neumann
computer, a one-processor computer with memory. Over the years, with the advent
of parallelism and then the internet, the theory grew to encompass them. Now, even
that is not enough. A modern theory of algorithm has to deal with supercomputa-
tion based on clusters of computers and grid computation. Moreover, Bell and Gray
(1997) predict that stand-alone computers will evolve to become parts of everything.
However, they will still be IPS. IPS will continue to expand and evolve as long as
civilization exists.

Because of the complexity of IPS, we need to explicate its main types, to describe
its principal components and how they relate to each other. Types of information
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processing imply a typology of IPS and explain what is possible to be done with the
information being processed or, in other words, what information operations exist.
To have an organized structure, we consider information operations on several levels.
The most basic is the microlevel. It contains the most fundamental operations that
allow one to build other operations on higher levels. Basic information operations
are determined by actions that involve information. There are three main actions:

1. Changing the place of information in the physical world.
2. Changing information itself or its representation.
3. Doing nothing with information (and protecting it from any change).

These actions correspond to three basic information micro-operations:

1. Information transition.
2. Information transformation.
3. Information preservation.

There are three main forms of each operation:

1. Information transition.
a) Transition outside from inside of a system is called emission.
b) Transition inside a system from outside is called reception.
c) Transition between two similar points/systems is called pure transition or

equitransition.
2. Information transformation.

a) Substance transformation is a change of information itself in a direct way.
b) Form transformation is a change of information representation.
c) External transformation is a change of the context of information.

Definition 1.1.1. The context of information is the knowledge system to which this
information is related.

According to the general theory of information (cf. (Burgin, 1997)), changing the
context of information, we change information itself in an indirect way.

3. Information preservation.
a) Information storage.
b) Information storage with protection from change/damage.
c) Information storage with protection from change/damage and restoration of

damaged portions.

Actually storage is never pure because it always includes, at least, data transi-
tion to special storage places, which are traditionally called memory. In some cases,
storage includes information transformation. An example is the dynamic storage in
neural networks (see Section 2.4). On the macro level, we have much more informa-
tion operations. The most popular and important of them are:

♦ Computation, which includes many transformations, transitions, and preserva-
tions.
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♦ Communication, which also includes many transformations, transitions, and
preservations.

Examples of other information operations are information acquisition, informa-
tion selection, information search, information production, and information dissemi-
nation. Now computers perform all of them and computer power is usually estimated
with respect to these operations.

There are important relationships between these operations. For instance, it is
possible to compute through communication. This is the essence of the connection-
ist paradigm for which the main operation is transmission of signals, while their
transformation is an auxiliary operation. The most explicit realization of the connec-
tionist paradigm is the neural network. Any conventional computation, for example,
computation on a PC, also demands information transmission, but in this case trans-
mission is an auxiliary operation. However, the Internet has both connectionist and
transmission capabilities, and computations like grid computation will combine both
paradigms.

The storage of data has been always a basic function of conventional computers,
and hierarchical systems of memory have been developed over time. However, an IPS
can memorize data even without a separate component for this function. It is possible
to store information by computation or communication. Such dynamic storage is
described for artificial neural networks in Section 2.4.

IPS have two structures — static and dynamic. The static structure reflects the
mechanisms and devices that realize information processing, while the dynamic
structure shows how this processing goes on and how these mechanisms and devices
function and interact. We now discuss the static structure, which has two forms: syn-
thetic and systemic, or analytic.

1.1.1 Static synthetic structure

Any IPS, we denote it by W, consists of three components:

♦ Hardware, which consists of physical devices of the IPS.
♦ Software, which contain programs that regulate the IPS functioning.
♦ Infware, which represents information processed by the IPS.

In turn, the hardware of an IPS has its three main parts: the input device(s), in-
formation processor(s), and output device(s), which are presented in Figure 1.1 and
give the first level approximation to the structure of IPS.

Figure 1.1. Triadic structure of IPS
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The theory of algorithms has traditionally concentrated on the central component
of IPS, paying more attention to the problem of how abstract automata and algo-
rithms work rather than what is the result of this work. However, the triadic structure
of an IPS implies that all three components are important. Neglecting any one of
them may cause us to have inadequate understanding of IPS, which can hinder the
development of IPS.

To elaborate on this, consider the following. Initially, computers were able only
to print results. Contemporary computers can display their results on a printer, a
monitor, and even different audio devices. Computers and embedded devices send
their signals to control a diversity of mechanisms and machines. Contemporary ma-
chines now have not only a keyboard and a mouse but also trackballs, joysticks, light
pens, touch-sensitive screens, digitizers, scanners, and more. The theory must take
this into account.

It is interesting to remark that while information processing in quantum comput-
ers has been well elaborated, researchers have found that input and especially output
appear to be much more complicated issues. Reading the obtained result of a com-
putation is a crucial problem for building future quantum computers. This problem
remains unsolved (cf. Hogg, 1999).

Awareness of criticality of input and output components has resulted in the de-
velopment of the practical area of human-computer interaction (HCI). People began
to comprehend the interactive role of computers (in particular) and IPS (in general):
a substantial amount of computers are built for working with and for people. Interac-
tion becomes crucial not only in utilization of computers and their software, but also
for computer and software design (Vizard, 2001).

The same understanding in the theoretical area resulted in inductive, limit, and
interactive directions in the theory of algorithms. The first two directions advanced
computational potential by developing output techniques (Burgin, 1983, 1999, 2001;
Gasarch and Smith, 1997; Hintikka and Mutanen, 1998), while the latter approach
achieved similar results by making the principal emphasis on input and output com-
ponents as the basis for interaction between IPS (Hoare, 1984; Goldin and Wegner,
1988; Milner, 1989; Wegner, 1998; van Leeuwen and Wiedermann, 2001). This ex-
tends computing power of algorithms and provides mathematical models, which are
more adequate for representing modern computers than classical models such as Tur-
ing machines or cellular automata.

We have been discussing the input and output components of an IPS. We now
turn to the processor component. The processor component is itself traditionally par-
titioned into three components: control device(s), operational device(s), and memory.
On the one hand, there are IPS in which all three devices are separate and connected
by information channels. Abstract devices of this type are Turing machines, push-
down automata, and random access machines. In many cases, this involves a so-
phisticated architecture. On the other hand, it is possible that two or even all three
components coincide. Abstract devices of this type are neural networks, finite au-
tomata, and formal grammars. The latter possess only an operating mechanism in
the form of transformation rules.
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The structure of an IPS allows us to classify three main types of IPS according to
their computer architecture: the centralized computer architecture (CCA), controlled
distributed computer architecture (CDCA), and autonomous distributed computer
architecture (ADCA).

Remark 1.1.1. There is a distinction between computer architecture and computing
architecture. The computer architecture of an IPS (computer) reflects organization
of the IPS devices and their functioning. The computing architecture of informa-
tion processing represents the organization of processes in the IPS. One computer
architecture allows one to realize, as a rule, several computing architectures.

Definition 1.1.2. The CCA is a structure of an IPS with one control and one opera-
tional device.

The classical Turing machine with one tape and one head embodies the central-
ized computer architecture and realizes the sequential paradigm of computation.

Remark 1.1.2. Usage of a single operational device implies that operations are per-
formed sequentially. However, this does not preclude parallel processing. Indeed, it
is possible that a single portion of data consists of many parts. For example, it may be
a vector, matrix, or multidimensional array. Vector and array machines (Pratt, Rabin,
and Stockmeyer, 1974; Leeuwen and Wiedermann, 1985) are mathematical models
for such parallel information processing by an IPS with CAA. Computation of such
machines is explicitly sequential and implicitly parallel.

A complement for centralized computation is distributed computation, which
is substantiated by distributed computer architecture. It has two types: CDCA and
ADCA.

Definition 1.1.3. The CDCA is an IPS structure with one control and many opera-
tional devices.

The Turing machine with many heads is an example of a controlled distributed
computing architecture, and realizes the parallel paradigm of computation.

Remark 1.1.3. The control device in an IPS with CDCA organizes the work of all op-
erational devices. It can work in two modes. In one, called SIMD (single instruction
multiple data), the control device gives one and the same instruction to all opera-
tional devices. In the other mode, called MIMD (multiple instruction multiple data),
the control device processes separate control information for each operational device
or their clusters.

Definition 1.1.4. The ADCA is an IPS structure with many control and many opera-
tional devices.

The neural network demonstrates the autonomous distributed computing archi-
tecture and realizes the concurrent paradigm of computation.
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Remark 1.1.4. There are different ways for an IPS with ADCA to organize relations
between control and operational devices. The simplest way is when one control de-
vice and one operational device are combined into a single block. In a more elabo-
rated IPS, one control device is connected to a cluster of operational devices. Another
case exists for when there are no restrictions on connections. Moreover, the system
of connections between control and operational devices may be hierarchical with a
sophisticated structure.

1.1.2 Static systemic structure

The system approach (Bertalanffy, 1976) explains that a system consists of elements
and connections between the elements. Taking into account that any system is con-
nected to other systems, we come to the structural classification, suggested by Bell
and Gray (1997) for cyberspace. Accordingly, any IPS W consists of three parts:

♦ Autonomous IPS that belong to W (such as computers, local networks, etc.).
♦ Networking technology of W, which connects autonomous IPS from W and al-

lows them to communicate with each another.
♦ Interface (transducer) technology of W, which connects W to people and other

systems from the environment of W.

In turn, each of these parts has hardware, software, and infware. All of them
give specific directions of the IPS development. For example, we may discuss the
progress of computer (IPS) hardware or innovations for interface software.

The dynamic structure of an IPS also has two forms: hierarchical and temporal.

1.1.3 Hierarchical dynamic structure

The static structure of IPS influences their dynamic structure. Consequently, we have
the following hierarchical structure:

♦ Processes in autonomous IPS.
♦ Processes of interaction of autonomous IPS.
♦ Interface processes with external systems.

We make a distinction between computational or information processing archi-
tecture and computer or IPS architecture. The former represents organization of a
computational process. The latter defines computer/IPS components and the connec-
tions between them. The same computer architecture may be used for organization
and realization of different computational architectures. For example, a computer
with the parallel architecture can realize sequential computation. At the same time,
some types of computational architectures can be realized only by a specific kind of
computer architecture. For example, we need a computer with the parallel architec-
ture for performing parallel computation.
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1.1.4 Temporal dynamic structure or temporal organization

Usually, we consider only devices (abstract or real) that function in a discrete time,
that is, step by step. At the same time, there are theoretical models of computation
in continuous time and it is also assumed that analogous computers perform their
continuous operations in continuous time.

Problems of time become especially critical when there are many interacting de-
vices and/or we take into account human-computer interaction. Devices in distributed
computer architecture have three modes of functioning:

♦ Synchronous, when all devices make their step at the same time.
♦ Synchronized, when there is a sequence ST of temporal points such that at each

point all devices finish some step of computation and/or begin the next step.
♦ Asynchronous, when different devices function in their own system time.

Usually it is assumed that there is only one physical time, in which everything
functions. However, according to the system theory of time (Burgin, 1997b; Burgin,
Liu and Karplus, 2001), each system has its own time. We can easily see this when we
take abstract devices. For example, if there are two Turing machines, then their time
unit is a step of computation and, as a rule, the steps for different machines are not
related to each other. To reduce their functioning to one time, we need to synchronize
their operations. Temporal organization of IPS functioning can essentially alter the
obtained results (Matherat and Jaekel, 2001).

Thus, we have classified the multitude of existing IPS, although these classifica-
tions give only a basis for their further study. Some think that typology and classifica-
tion of IPS, their models, and other systems are something artificial that has nothing
to do with either practice or “real” theory. However, classifications that reflect essen-
tial properties of studied systems in cognitive aspects help to compress information,
help predict properties of these systems, and are special kinds of scientific laws (Bur-
gin and Kuznetsov, 1994). For example, such classification as the periodic table of
chemical elements helped to discover new elements. In the practical sphere, classi-
fications lead to unification and standardization aimed at increasing efficiency and
productivity.

1.2 What theory tells us about new directions
in information technology

She generally gave herself very good advice
(though she very seldom followed it) . . . .

Lewis Carroll, 1832–1898

With the advent of computers, information technology has been developing and
growing very fast. However, the paradox is that it never had enough power.

As Ty Rabe, director of high-performance technical computing solutions at
Hewlett-Packard, said, “There are areas in science where the computational power
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has not reached the stage where it has met the needs. Biology is a good example
of that. Biologists couldn’t imagine having enough computational power to do what
they needed until recently.” (cf. Gill, 2002).

This paradoxical situation is the result of the great amount of data and informa-
tion that scientists have to process to get new knowledge in their area. Numbers that
reflect this amount are extremely big. There is an essential difference between small
and big numbers.

For example, one of the outstanding mathematicians of the twentieth century,
Kolmogorov (1961), suggested that in solving practical problems we have to separate
small, medium, large, and superlarge numbers.

A number A is called small if it is possible in practice to process and work with
all combinations and systems that are built from A elements each of which has two
inlets and two outlets.

A number B is called medium if it is possible to process and work with this B
but it is impossible to work with all combinations and systems that are built from B
elements each of which has two or more inlets and two or more outlets.

A number C is called large if it is impossible to go through a set of size C but it
is possible to elaborate a system of denotations for these elements.

If even this is impossible, then a number is called superlarge.
According to this classification, 3, 4, and 5 are small numbers, 100, 120, and 200

are medium numbers, while the number of visible stars is a large number. Inviting 4
people for a dinner, we can consider all their possible positions at a dinner table. If
we come to some place where there are 100 people, we can shake everyone’s hands,
although it might take too much time. We cannot count the visible stars. However, a
catalog of visible stars exists, and we can use it to find information about any one of
them.

In a similar way to what has been done by Kolmogorov, the outstanding British
mathematician Littlewood (1953) separated all natural numbers into an infinite hi-
erarchy of classes. These classifications of numbers are based on people’s counting
abilities.

Computers change the borders between classes, but even the most powerful com-
puters cannot erase such distinctions. As a result, we will encounter more and more
complex problems that demand working with larger and larger numbers. Thus, we
will always need more powerful computers.

To increase the power of computers, we have to understand what we have now
and what new directions are suggested for the development of information technol-
ogy. The results of this book make it possible to evaluate computing power of the
new computing schemes. Now, there are several approaches to increasing the power
of computers and networks. We may distinguish between chemical, physical, and
mathematical directions. The first two are applied to hardware and have an indirect
influence software and infware, while the mathematical approach transforms all three
components of computers and networks.

The first approach, called molecular computing, has as its most popular branch
DNA computing (Cho, 2000). Its main idea is to design molecules that perform com-
puting operations. Engineers and researchers are investigating the field of molecular
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electronics as a source of new technologies (Overton, 2000). Computers with indi-
vidual molecules acting as switches could consume far less power. Recent accom-
plishments by Hewlett-Packard, IBM, ZettaCore, and Molecular Electronics could
guide future applications of molecular electronics.

Ari Aviram and Mark Ratner of IBM began the field of molecular electronics
by manipulating individual atoms into structures, while Jim Tour and Mark Reed
proved that individual molecules can display simple electronic properties. Tour and
Reed have since established the startup Molecular Electronics, where Tour is striv-
ing to create nanocells, or self-assembled molecules that can be programmed for
specific functions. Scientists from UC-Riverside and North Carolina State Univer-
sity are jointly working with porphyrin molecules at their startup, ZettaCore. Por-
phyrins can store more than 2 bits of data in each molecule and pave the way for
faster, more powerful computer devices, claims UC chemist David Bocian. Mean-
while, researchers at Hewlett-Packard Labs have teamed up with UCLA chemists
Fraser Stoddart and Jim Heath, who are exploring the possibilities of logic gate-like
mechanisms assembled from catenane molecules.

The second direction, quantum computing, is even more popular than the first
(cf., for example, Deutsch, 2000; or Seife, 2001). The main idea is to perform com-
putation on the level of atoms and even atomic nuclei, as suggested by Feynman
(1982; 1986) and Beniof (1982). Experts write that useful quantum computers are
still at least years away. Currently, the most advanced working model can barely fac-
tor the number 15. However, if quantum computers can ever be built, they would
crack the codes that safeguard the Internet, search databases with incredible speed,
and breeze through hosts of other tasks beyond the ken of contemporary computing
(Seife, 2001).

Many physical problems have to be solved to make quantum computers a reality.
For example, the main feature of quantum objects that makes the quantum computer
incredibly powerful is entanglement. However, in 1999, Carlton Caves of the Univer-
sity of New Mexico showed that under the room-temperature conditions large-scale
entanglement of atoms is impossible. Last year, MIT physicist Seth Lloyd showed
that for some algorithms it is possible to achieve the same results of speedup without
entanglement. However, in this case, any quantum computer would need exponen-
tially growing resources (cf. Seife, 2001).

The third direction, the theory of superrecursive algorithms, is based on a new
paradigm for computation that changes computational procedure and is closely re-
lated to grid computation. Superrecursive algorithms generate and control hypercom-
putations, that is, computations that cannot be realized by recursive algorithms such
as Turing machines, partial recursive functions, and cellular automata. Super-recur-
sive algorithms and their relation to IPS are considered in Chapter 4.

The theory of algorithms shows that both first types of computing, molecular and
quantum, can do no more than conventional Turing machines theoretically can do.
For example, a quantum computer is only a kind of nondeterministic Turing machine,
while a Turing machine with many tapes and heads models DNA and other molecular
computers. The theory states that nondeterministic and many-tape Turing machines
have the same computing power as the simplest deterministic Turing machine (see
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Chapter 2). Thus, DNA and quantum computers will be (when they will be realized)
eventually only more efficient.

Superrecursive algorithms (in general) and inductive Turing machines (in partic-
ular) go much further, as is demonstrated in Chapters 4 and 5. They surpass con-
ventional computational structures both in computing power and efficiency. Super-
recursive algorithms are structural and informational means for the description and
realization of hypercomputation.

In business and industry, the main criterion is enterprise efficiency, usually called
productivity in economics. Consequently, computers are important not because they
make computations with more speed than before but because they can increase pro-
ductivity. Reaching higher productivity depends on improved procedures. Without
proper procedures and necessary skills of the performers, technical devices can even
lower productivity. Consequently, methods that develop computer procedures are
more important than improvement of hardware or software.

Along the same lines, Minsky in his interview (1998) stated that for the cre-
ation of artificial intelligence, software organization is a clue point. Implicitly this
contributes to differences between new approaches to computation. From the effi-
ciency perspective, DNA computing is metaphorically like a new model of a car.
Quantum computations are like planes at the stage when people did not have them.
Super-recursive computations are like rockets, which can take people beyond the
“Church–Turing Earth”.

These rockets might take us to the moon and other planets if we know how to
navigate them. However, we will need new physical ideas for realization of super-re-
cursive algorithms to a full extent. Using our metaphor, we may say that spaceships
that will take us to stars are now only in perspective.

If we take grid computation, its real computational power arises from its super-
recursive properties. Consequently, this type of computation can overcome limita-
tions imposed on molecular and quantum computers by Turing machines.

Here, it is worth mentioning such new computational model as reflexive Turing
machines (Burgin, 1992a). Informally, they are machines that can change their pro-
grams by themselves. Genetic algorithms give an example of such an algorithm that
can change its program while functioning. In his lecture at the International Congress
of Mathematicians (Edinburgh, 1958), Kleene proposed a conjecture that a proce-
dure that can change its program while functioning would be able to go beyond the
Church–Turing thesis. However, it was proved that such algorithms have the same
computing power as deterministic Turing machines. At the same time, reflexive Tur-
ing machines can essentially improve efficiency. Besides, such machines illustrate
creative processes facilitated by machines, which is very much on many people’s
minds. It is noteworthy that Hofstadter (2001) is surprised that a music creation ma-
chine can do so well because this violates his own understanding that machines only
follow rules and that creativity cannot be described as rule-following.
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1.3 The structure of this book

“See, boys!” he cried.
“Twenty doors on a side! What a symmetry!

Each side divided into twenty-one equal parts! It’s delicious!”

A Tangled Tale, Lewis Carroll, 1832–1898

This book’s topic is the future of information technology stemming from a new
emerging field in computer science, the theory of superrecursive algorithms, which
go beyond the Church–Turing thesis. The majority of computer scientists stand very
firmly inside the boundaries imposed by the Church–Turing thesis. Some of them re-
ject any possibility of overcoming the barrier, while others treat superrecursive algo-
rithms as purely abstract constructions that represent a theoretical leap from practical
reality.

The attitude of the first group is perfectly explained by a physicist at the Georgia
Institute of Technology, Joseph Ford, who quoted Tolstoy:

I know that most men, including those at ease with problems of greatest complexity,
can seldom accept even the simplest and most obvious truth if it be such as would
oblige them to admit the falsity of conclusions which they have delighted in explain-
ing to colleagues, which they have proudly taught to others, and which they have
woven, thread by thread into the fabric of their life.

With regard to the second group, history of science gives many examples of un-
derestimation of the creative potential of people. One of the brightest cases in this
respect was the situation with the great British physicist Rutherford. He made crucial
contributions in the discovery of atomic structure, radioactivity of elements, and ther-
monuclear synthesis. At the same time, when one reporter asked Rutherford when
his outstanding discoveries of atom structure and regularities would be used in prac-
tice, Rutherford answered, “Never.” This opinion of Rutherford was also expressed
by his student Kapitsa (cf. Kedrov, 1980).

In a similar way, those who disregard superrecursive algorithms now cannot see
that even contemporary computers and networks implicitly possess superrecursivity,
opening unimaginable perspectives for future IPS. There is much evidence of the
great potential of superrecursive automata and algorithms: they reflect real properties
of modern computers and networks better than recursive automata and algorithms,
they are can solve many more problems, they are more efficient, and they can bet-
ter explain many features of the brain and its functioning. All this is explained and
proved in Chapter 4. Moreover, in some aspects modern computers possess super-
recursive properties even now, while such directions as pervasive computation and
grid computing advance these properties and are essentially based on principles of
superrecursivity.

The author tried to write this book in a form tentatively interesting to at least
three distinct groups of readers. Intelligent laymen can find here an explanation of
information processing system functioning, how they are related to algorithms, how
they are modeled by mathematical structures, and how these models are used to better
understand computers, the Internet, and computation.
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Experts in information technology can learn about the models that computer sci-
ence and mathematics suggest to help them in their work: in designing software,
building computers, and developing global and local networks.

Theoretical computer scientists and mathematicians can obtain an introduction
to a new branch of both computer science and mathematics, the theory of superre-
cursive algorithms. These readers will find strict definitions, exact statements, and
mathematical proofs.

However, to achieve their personal goal, any reader has to make an intelligent
choice of what sections and subsections are relevant to their individual interests,
skipping other part or postponing their reading.

The principal goals of Chapter 2 are to systematize conventional models of al-
gorithms, computations, and IPS; to draw a distinction between algorithms and their
descriptions; and to show how different types of computations and computer archi-
tectures are represented in the theory. Here we consider only algorithms that work
with finite words.

Chapter 2 begins with a brief description of the theory of algorithms. We inves-
tigate in Section 1 the origin of the term “algorithm” and the development of its
meaning in our time. Researchers elaborated many formal and informal definitions
of algorithm. Nevertheless, the question “What is an algorithm?” is still open. The
works of other researchers and the results of this book indicate that the concept of
algorithm is relative with respect to the means and resources of information process-
ing. In this book, algorithms are considered as a kind of procedure and are directly
related to IPS as the tool for their investigation and development. However, it is
necessary to understand that algorithms and procedures can practically describe the
functioning of any system.

The term “algorithm” may be also considered as a linguistic variable in the sense
of Zadeh (1973). But to build a theory, it is insufficient to have simply a definition;
one needs mathematical models of algorithms. In addition, it is necessary to make a
distinction between the informal notion of algorithm and its mathematical models,
which help to transform an informal notion into a scientific concept. The informal
notion is used in everyday life, in the reasoning of experts, and in methodology and
philosophy of computer science, mathematics, and artificial intelligence. At the same
time, mathematical models constitute the core of the theory of algorithms.

A brief description of the origin of this theory is given in Section 2.2. Section 2.2
further discusses the Church–Turing thesis, which divides all mathematical models
of algorithms into three groups:

♦ Recursive algorithms, which are equivalent to Turing machines with respect to
their computing power

♦ Subrecursive algorithms, which are weaker than Turing machines with respect to
their computing power

♦ Superrecursive algorithms, which have more computing power than Turing ma-
chines

Sections 2.3 and 2.4 discuss two of the most popular models of recursive al-
gorithms, Turing machines and neural networks, as representatives of distinct ap-
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proaches to computation and computer architecture. Turing machines model central-
ized computation, while neural networks simulate distributed computation. Finally,
Section 2.5 gives some application of general mathematical models of algorithms.

Chapter 3 contains a brief exposition and systematization of the theory of subre-
cursive algorithms. Section 3.1 explains why we need such weaker models. Section
3.2 considers mathematical models of subrecursive algorithms in general, while Sec-
tions 3.3 and 3.4 look at two of them in detail: finite automata and recursive func-
tions. Finite automata embody the procedural paradigm, while recursive functions
reflect descriptive and functional paradigms in programming.

The principal goal of Chapter 4 is to systematize and evaluate nonconventional
models of algorithms, computations, and IPS. The main problem is that there are
several approaches in this area, but without a sound mathematical basis, even experts
in computer science cannot make distinctions for different new models of algorithms
and computations. It is important not only to go beyond the Church–Turing thesis
but to do it realistically and to provide possible interpretations and applications. For
example, Turing machines with oracles take computations far beyond the Church–
Turing thesis, but without adequate restrictions on the oracle, they do this beyond
any reason.

The most important superrecursive models (listed in the chronological order) are:
analogue, or continuous time, computation, fuzzy computation, inductive computa-
tion, computation with real numbers, interactive and concurrent computation, topo-
logical computation, and neural networks with real number parameters, infinite time
computation, and dynamical system computation.

Inability to make distinctions implies misunderstanding and many misconcep-
tions: everything seems the same, although some models are unreasonable and un-
realizable, while others can be realized right now if those who build computers and
develop software begin to understand theoretical achievements. The situation is sim-
ilar to one when people do not and cannot make distinctions between works of Zi-
olkowsky where theory of space flights was developed and novels of Jules Verne who
suggested to use cannon for space flights.

An analysis of the different models of superrecursive algorithms brings us to the
conclusion that there are good reasons to emphasize inductive Turing machines in
this book. From the theoretical perspective, we have the following reasons to do this:

First, inductive Turing machines are the most natural extension of recursive al-
gorithms and namely, of the most popular model — Turing machine.

Second, the computing and decision power of inductive Turing machines ranges
from the most powerful Turing machines with oracles to the simplest finite automata
(cf. Sections 4.2 and 4.3).

Third, inductive Turing machines have much higher efficiency than recursive al-
gorithms (cf. Chapter 5).

From the practical perspective, we have the following reasons for emphasizing
inductive Turing machines:

First, inductive Turing machines give more adequate models for modern comput-
ers in comparison with other superrecursive algorithms (cf. Chapter 4), as well as for
a lot of natural and social processes (cf. Burgin, 1993).
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Second, inductive Turing machines provide new constructive structures for the
development of computers, networks, and other IPS.

Third, inductive Turing machines explain and allow one to reflect different men-
tal and cognitive phenomena, thus, paving way to artificial intelligence. Pervasive
mental processes related to unconscious, associative dynamic processes in memory,
and concurrent information processing give examples of such phenomena. Cognition
in science and mathematics goes on according to the principles of information pro-
cessing that are embodied in inductive Turing machines. While cognitive processes
on the first level are extensively studied in such area as inductive inference, inductive
Turing machines allow one to model, explain, and develop cognitive processes on
higher levels, which are relevant to the level of human thinking.

Chapter 4 begins with a brief description of the theory of superrecursive algo-
rithms, which turns out to serve as a base for the development of a new paradigm of
computations and provides models for cluster computers and grid computations. We
investigate in Section 4.1 the origin of superrecursive algorithms. It is explained that
while recursive algorithms gave a correct theoretical representation of computers at
the beginning of the “computer era”, superrecursive algorithms are more adequate
as mathematical models for modern computers. Consequently, superrecursive algo-
rithms serve as a base for the development of a new paradigm of computations. In
addition to this, superrecursive algorithms provide for a better theoretical frame for
the functioning of huge and dynamic knowledge and databases as well as for com-
puting methods in numerical analysis.

To measure the computing power of inductive Turing machines, which forms the
central topic of Chapter 4, we use mathematical constructions like Kleene’s arith-
metical hierarchy of sets. In this hierarchy, each level is a small part of the next
higher level. Conventional Turing machines compute the two first levels of this in-
finite hierarchy. What is computed by trial-and-error predicates, limit recursive and
limit partial recursive functions and obtained by inductive inference is included in
the fourth level of the hierarchy. The same is true for the trial-and-error machines
recently introduced by Hintikka and Mutanen (1998). At the same time, we prove
that it is possible to build a hierarchy of inductive Turing machines that compute the
whole arithmetical hierarchy.

Superrecursive algorithms in Chapter 4, as well as recursive algorithms in Chap-
ter 2 and subrecursive algorithms in Chapter 3, are studied from the perspective of
three essential aspects of IPS: computability, acceptability, and decidability. These
properties describe what computers and their networks can do in principle. However,
it is important to know about the efficiency of their functioning. Efficiency, being
important per se, also determines what is possible to do in practice. For example, if it
is known that the best computer demands hundred years for solving some problem,
nobody will use a computer to perform these computations. As a result, this problem
will be considered practically unsolvable. Mathematical models of computational ef-
ficiency are called measures of complexity of algorithms and computation. Restric-
tions on complexity imply mathematical formalization for the notion of tractability
of problems.
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In the concluding section of Chapter 4, a new model for computers and networks
is developed and studied. The model consists of a grid array and grid automata. Grid
arrays are aimed at computer/network design, description, verification, adaptation,
maintenance, and reusability. Grid automata are aimed at the development of a theo-
retical technique for computer/network studies. In addition to the unification of vari-
ous models developed for simulation of concurrent processes, the new model allows
one to study by mathematical methods and to simulate new kinds of computation,
for example, grid computation, and advanced form of IPS like cluster computers.

Chapter 5 contains a study of efficiency of superrecursive algorithms. It is
demonstrated that superrecursive algorithms are not only more powerful, solving
problems unsolvable for recursive algorithms, but can be much more efficient than
recursive algorithms in solving conventional problems. Superrecursive automata al-
low one to write shorter programs and to use less time to receive the same results as
recursive devices.

1.3.1 Some remarks about the theory of algorithms and computation

Although algorithms, both conventional and superrecursive, describe functioning of
various types of systems, the central concern of the theory of algorithms is informa-
tion processing systems (IPS) because information processing has become the most
important activity. We are interested in the structure of IPS, their functioning, in-
teraction, utilization, and design. We want not only to know how modern IPS are
built and work but to look into the future of these systems, how we can improve and
develop them.

No science can function properly without evaluation of its results. To understand
better the meaning of results presented in this book, we have to evaluate them ac-
cording to scientific criteria. There are different kinds of evaluation, but one of the
most important explains to scientists and society as a whole what is more significant
and what is less significant. A quantity of criteria are used for such evaluation, but
all of them can be grouped into three classes:

1. Evaluation directed to the past. For example, the more time it took the commu-
nity to solve a problem makes that problem seem more important.

From this point of view, if no one previously tried to solve problem, then its
solution is worth almost nothing.

The history of science teaches us that this is not correct. Scientists did outstand-
ing discoveries beginning with their own problem or even without one. For instance,
many subatomic particles (positrons, bosons, quarks) were discovered in such a way.
Sometimes a discovery shows that the original problem does not have a solution.
One of the most important results of the nineteenth century was the construction of
non-Euclidean geometries. In particular, this discovery solved the problem that the
best mathematicians tried to solve for thousands of years. It demonstrated that it is
impossible to prove the fifth postulate of Euclid. However, the initial problem was
to prove the fifth postulate. Thus, we can see that in many cases the direction to the
past does not give correct estimates of scientific results.
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2. Evaluation directed to the present. For example, the longer the proof of a math-
ematical result, the more important the result is considered. Another criterion
asserts that the more unexpected some result is, the higher value it has. The
latter approach is supported by the statistical information theory of Shannon
(1948) that affirms that unexpected results contain much more information than
expected ones.

From this point of view, if everybody expects some result, then the result is worth
almost nothing.

The history of science teaches us that this is not correct. For example, in 1930s,
mathematicians expected that a general model of algorithms would be constructed. It
was done. This result is one of the most important achievements of mathematicians
in the twentieth century. So, we can see that in many cases the direction to the present
also does not give correct estimates of scientific results.

3. Evaluation directed to the future. Here the criteria are what influence a given
result has on the corresponding field of science (an inner criterion), on science
in general (an intermediate criterion), or on the practical life of people, their
mentality, nature, etc. (an external criterion). This approach is supported by the
general theory of information (Burgin, 1997; 2001), which affirms that the quan-
tity of information and even its value is estimated by its influence. This means
that criteria directed into the future are the most efficient and appropriate for
science and society, accelerating their development.

At the same time, criteria directed into the future are the most difficult to apply
because no one, really, has a clear vision of the future. Nevertheless, to evaluate
this book from the point of view of the future will be the most correct one for a
reader, since only this approach gives some indication of the future for information
technology and computer science. One of the central aims of the author is to facilitate
such comprehension of the presented material.

1.4 Notation and basic definitions

Some mathematical concepts, in spite of being basic and extensively used, have dif-
ferent interpretations in different books. In a similar way, different authors use dis-
similar notation for the same things, as well as the same notation for distinct things.
For this reason, we give here some definitions and notation that is used in this book
for basic mathematical concepts.

N is the set of all natural numbers 1, 2, . . . , n, . . . .

N0 is the set of all whole numbers 0, 1, 2, . . . , n, . . . .

Z is the set of all integer numbers.

Q is the set of all rational numbers.

R is the set of all real numbers.
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R+ is the set of all nonnegative real numbers.

R++ is the set of all positive real numbers.

R∞ = R ∪ {∞, −∞}.
ω is the sequence of all natural numbers.

∅ is the empty set.

r ∈ X means that r belongs to X or r is a member of X .

Y ⊆ X means that Y is a subset of X , that is, Y is a set such that all elements of
Y belong to X .

The union Y ∪ X of two sets Y and X is the set that consists of all elements from
Y and from X .

The intersection Y ∩ X of two sets Y and X is the set that consists of all elements
that belong both to Y and to X .

If X is a set, then 2X is the power set of X , which consists of all subsets of X .

If X and Y are sets, then X × Y = {(x, y); x ∈ X , y ∈ Y } is the direct or
Cartesian product of X and Y ; in other words, X × Y is the set of all pairs (x, y), in
which x belongs to X and y belongs to Y .

Y X is the set of all mappings from X into Y .

Xn = X × X × . . . X × X︸ ︷︷ ︸
n

;

Relations f (x) � g(x) and g(x) � f (x) means that there is a number c such
that f (x) + c ≥ g(x) for all x .

A fundamental structure of mathematics is function. However, functions are spe-
cial kinds of binary relations between two sets.

A binary relation T between sets X and Y is a subset of the direct product X ×Y .
The set X is called the domain of T ( X = D(T ) ) and Y is called the codomain of
T ( Y = CD(T ) ). The range of the relation T is R(T ) = {y; ∃x ∈ X ((x, y) ∈ T )}.
The domain of definition of the relation T is SD(T ) = {x ; ∃y ∈ Y ((x, y) ∈ T )}.

A function or total function from X to Y is a binary relation between sets X and
Y in which there are no elements from X that are corresponded to more than one
element from Y and to any element from X is corresponded some element from Y .
Often total functions are also called everywhere defined functions.

A partial function f from X to Y is a binary relation in which there are no
elements from X which are corresponded to more than one element from Y .

For a partial function f , its domain of definition SD( f ) is the set of all elements
for which f is defined.

A function f : X → Y is increasing if a < b implies f (a) ≤ f (b) for all a and
b from X .

A function f : X → Y is decreasing on X if a < b implies f (a) ≥ f (b) for all
a and b from X .

A function f : X → Y is strictly increasing on X if a < b implies f (a) < f (b)

for all a and b from X .
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A function f : X → Y is strictly decreasing on X if a < b implies f (a) > f (b)

for all a and b from X .

If A is an algorithm that takes input values from a set X and gives output values
from a set Y , then f A : X → Y is a partial function defined by A, that is, f A(x) =
A(x) when A(x) is defined, otherwise, f A(x) is not defined.

If A is a multiple valued algorithm that takes input values from a set X and gives
output values from a set Y , then rA : X → Y is a binary relation defined by A, that
is, rA(x) = {A(x); x ∈ X} when A(x) is defined, otherwise, f A(x) is not defined.

A function f : X → Y is computable when there is a Turing machine T that
computes f , that is, f (x) = fT (x).

A function f : X → Y is inductively computable when there is an inductive
Turing machine M that computes f , that is, f (x) = fM (x).

In what follows, functions range over numbers and/or words and take numerical
and/or word values. Special kinds of general functions are functionals, which take
numerical and/or word values and have any number of numerical and/or word and/or
function variables. Thus, a numerical/word function is a special case of a functional,
while a functional is a special case of a general function.

For any set, S, χS(x) is its characteristic function, that is, χS(x) is equal to 1
when x ∈ S and is equal to 0 when x �∈ S, and CS(x) is its partial characteristic
function, that is, CS(x) is equal to 1 when x ∈ S and is undefined when x �∈ S.

A multiset is similar to a set, but can contain indiscernible elements or different
copies of the same elements.

A topology in a set X is a system O(X) of subsets of X that are called open
subsets and satisfy the following axioms:

T1. X ∈ O(X) and ∅ ∈ O(X).

T2. For all A, B, if A, B ∈ O(X), then A ∩ B ∈ O(X).

T3. For all Ai , i ∈ I , if all Ai ∈ O(X), then
⋃

i∈I Ai ∈ O(X).

A set X with a topology in it is called a topological space.

In many interesting cases, topology is defined by a metric.

A metric in a set X is a mapping d : X × X → R+ that satisfies the following
axioms:

M1. d(x, y) = 0 if and only if x = y.

M2. d(x, y) = d(y, x) for all x, y ∈ X .

M3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

A set X with a metric d is called a metric space. The number d(x, y) is called
the distance between x and y in the metric space X .
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An alphabet or vocabulary A of a formal language is a set consisting of some
symbols or letters. Vocabulary is an alphabet on a higher level of hierarchy because
words of a vocabulary play the same role for building sentences as symbols in an
alphabet for building words. Traditionally an alphabet is a set. However, a more
consistent point of view is that an alphabet is a multiset (Knuth, 1981), containing
an unbounded number of identical copies of each symbol.

A string or word is a sequence of elements from the alphabet. A∗ denotes the set
of all finite words in the alphabet A. Usually there is no difference between strings
and words. However, having a language, we speak about words of this language and
not about its strings.

A formal language L is any subset of A∗.

If L and M are formal languages, then their concatenation is the language L M =
{uw; u ∈ L and w ∈ M}.

The length l(w) of a word w is the number of letters in a word.

ε is the empty word.

� is the empty symbol.

If n and a are natural numbers and a > 1, then lna(n) is the length of the rep-
resentation of n in the number system with the base a. For example, when a = 2,
then n is represented as finite sequence of 1s and 0s and ln2(n) is the length of this
sequence.

The logical symbol ∀ means “for any”.

The logical symbol ∃ means “there exists”.

If X is a set, then “for almost all element from X” means “for all but for a finite
number of them.” The logical symbol ∀∀ is used to denote “for almost all”. For
example, if A = ω, then almost all elements of A are bigger than 10.

If P and Q are two statements, then P → Q means that P implies Q.
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Recursive Algorithms

“That’s not a regular rule:
you invented it just now.”

“It’s the oldest rule in the book,”
said the King.

Lewis Carroll, 1832–1898

In this chapter, we consider the following problems:

♦ What is the general situation with algorithms, their origin, and problems of their
representation? Analysis of this situation shows the need for having mathemat-
ical models for algorithms and for developing an efficient theory of algorithms
(Section 1).

♦ What is the general situation with mathematical models of algorithms, their ori-
gin, and existence of the absolute and universal model stated in the Church–
Turing thesis (Section 2)?

♦ What is a Turing machine, which is the most popular mathematical model of
algorithms? How does this model represent a centralized computer architecture,
embodying a symbolic approach to computation, and why is it the main candidate
for being an absolute and universal model (Section 3)?

♦ What is a neural network as a complementary mathematical model of algorithms,
representing distributed computer architecture? How does it embody a connec-
tionist approach to computation, and become the main candidate for being the
model for emergent information processing (Section 4)?

♦ What is useful to know about applications of mathematical models and the the-
ory of algorithms? How does this theory determine our knowledge of programs,
computers, and computation (Section 5)?

2.1 What algorithms are and why we need them

“Why,” said Dodo,
“the best way to explain it is to do it.”

Lewis Carroll, 1832–1898

People use algorithms all the time, without even knowing it. In many cases, peo-
ple work, travel, cook, and do many other things according to algorithms. For exam-
ple, we may speak about algorithms for counting, algorithms for going from New
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York to Göttingen or to some other place, algorithms for chip production or for
buying some goods, products or food. Algorithms are very important in daily life.
Consequently, they have become the main objects of scientific research in such areas
as the theory of algorithms.

In addition, all computers, networks, and embedded devices function under the
control of algorithms. Our work becomes more and more computerized. We are more
and more networked. Embedded devices are integral parts of our daily life and some-
times of ourselves. As a result, our lives becomes entwined in a vast diversity of
algorithms. Not to be lost in this diversity, we need to know more about algorithms.

2.1.1 Historical remarks

The word algorithm has an interesting historical origin. It derives from the Latin
form of the name of the famous medieval mathematician Muhammad ibn Musa al-
Khowarizmi. He was born sometime before 800 AD and lived at least until 847. His
last name suggests that his birthplace was in Middle Asia, somewhere in the terri-
tory of modern Uzbekistan. He was working as a scholar at the House of Wisdom in
Baghdad when around the year 825, he wrote his main work Al-jabr wa’l muqabala
(from which our modern word algebra is derived) and a treatise on Hindu-Arabic
numerals. The Arabic text of the latter book was lost but its Latin translation, Algo-
ritmi de numero Indorum, which means in English Al-Khowarizmi on the Hindu Art
of Reckoning, introduced to the European mathematics the Hindu place-value system
of numerals based on the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. The first introduction to
the Europeans in the use of zero as a place holder in a positional base notation was
probably also due to al-Khowarizmi in this work. Various methods for arithmeti-
cal calculation in a place-value system of numerals were given in this book. In the
twelfth century his works were translated from Arabic into Latin. Methods described
by al-Khowarizmi were the first to be called algorithms following the title of the
book, which begins with the name of the author. For a long time algorithms meant
the rules for people to use in making calculations. Moreover, the term computer was
also associated with a human being. As Parsons and Oja (1994) write, “if you look
in a dictionary printed anytime before 1940, you might be surprised to find a com-
puter defined as a person who performs calculations. Although machines performed
calculations too, these machines were related to as calculators, not computers.”

This helps us to understand the words from the famous work of Turing (1936).
Explaining first how his fundamental model, which was later called a Turing ma-
chine, works, Turing writes: “We may now construct a machine to do the work of
this computer.” Here a computer is a person and not a machine.

Even in a recently published book (Rees, 1997), we can read, “On a chi-chhou
day in the fifth month of the first year of the Chih-Ho reign period (July AD 1054),
Yang Wei-Te, the Chief Computer of the Calendar – the ancient Chinese counterpart,
perhaps, of the English Astronomer Royal – addressed his Emperor . . . ” It does not
mean that the Emperor had an electronic device for calendar computation. A special
person, who is called Computer by the author of that book, performed necessary
computations.
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Through extensive usage in mathematics, algorithms encompassed many other
mathematical rules and action in various fields. For example, the table-filling algo-
rithm is used for minimization of finite automata (Hopcroft, Motwani, and Ullman,
2001). When electronic computers emerged, it was discovered that algorithms de-
termine everything that computers can do. In such a way, the name Al-Khowarizmi
became imprinted into the very heart of information technology, computer science,
and mathematics.

Over time, the meaning of the word algorithm has extended more and more (cf.,
for example, Barbin et al., 1994). Originating in arithmetic, it was explained as the
practice of algebra in the eighteenth century. In the nineteenth century, the term came
to mean any process of systematic calculation. In the twentieth century, Encyclopae-
dia Britannica described algorithm as a systematic mathematical procedure that pro-
duces – in a finite number of steps – the answer to a question or the solution of a
problem.

Now the notion of algorithm has become one of the central concepts of mathe-
matics. It is a cornerstone of the foundations of mathematics, as well as of the whole
computational mathematics. All calculations are performed according to algorithms
that control and direct those calculations. All computers, simple and programmable
calculators function according to algorithms because all computing and calculating
programs are algorithms that utilize programming languages for their representation.

Moreover, being an object of mathematical and computer science studies, algo-
rithms are not confined neither to computation nor to mathematics. They are ev-
erywhere. Consequently, the term “algorithm” has become a general scientific and
technological concept used in a variety of areas. There are algorithms of communi-
cation, of production and marketing, of elections and decision making, of writing an
essay and organizing a conference. People even speak about algorithms for invention
(Altshuller, 1999).

2.1.2 A diversity of definitions

There are different approaches to a defining algorithm. Being informal, the notion of
algorithm allows a variety of interpretations. Let us consider some of them.

A popular-mathematics point of view on algorithm is presented by Rogers
(1987): Algorithm is a clerical (that is, deterministic, bookkeeping) procedure which
can be applied to any of a certain class of symbolic inputs and which will eventually
yield, for each such input, a corresponding output. Here procedure is interpreted as
a system of rules that are arranged in a logical order, and each rule describes a spe-
cific action. In general, an algorithm is a kind of procedure. Clerical or bookkeeping
means that it is possible to perform according to these rules in a mechanical way, so
that a device is actually able to carry out these actions.

Donald Knuth (1971), a well-known computer scientist, defines algorithm as fol-
lows: An algorithm is a finite, definite, effective procedure, with some output. Here
finite means that it has a finite description and there must be an end to the work of
an algorithm within a reasonable time. Definite means that it is precisely definable in
clearly understood terms, no “pinch of salt”–type vagaries, or possible ambiguities.
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Effective means that some device is actually able to carry out our actions prescribed
by an algorithm. Some interpret the condition to give output so that algorithm always
gives a result. However, computing practice and theory come with a broader under-
standing. Accordingly, algorithms are aimed at producing results, but in some cases
cannot do this.

More generally, an algorithm is treated as a specific kind of exactly formulated
and tractable recipe, method, or technique for doing something. Barbin et al. in their
History of Algorithms (1999) define algorithm as a set of step-by-step instructions, to
be carried out quite mechanically, so as to achieve some desired result. It is not clear
from this definition whether algorithm has to be aimed at achieving some result or it
has to achieve such a result. In the first case, this definition includes superrecursive
algorithms, which are studied in the third and fourth chapters. In the second case, the
definition does not include many conventional algorithms because not all of them
can always give a result.

According to Schneider and Gersting (1995), an algorithm is a well-ordered col-
lection of unambiguous and effectively computable operations that when executed
produces a result and halts in a finite amount of time. This definition demands to
give results in all cases and consequently, reduces the concept of algorithm to the
concept of computation, which we consider later.

For some people, an algorithm is a detailed sequence of actions to perform to
accomplish some task or as a precise sequence of instructions.

In the Free Online Dictionary of Computing
(http://foldoc.doc.ic.ac.uk/) algorithm is defined as a detailed se-
quence of actions to perform to accomplish some task.

According to Woodhouse, Johnstone, and McDougall (1984), an algorithm is “a
set of instructions for solving a problem.” They illustrate this definition with a recipe,
directions to a friend’s house, and instructions for changing the oil in a car engine.
However, according to the general understanding of algorithm in computer science
(cf., for example, the definitions of Rogers and of Knuth), this is not, in general, an
algorithm but only a procedure.

In a recently published book of Cormen et al. (2001), after asking the ques-
tion “What are algorithms?” the authors write that “informally, algorithm is a well-
defined computational procedure that takes some value, or set of values, as input and
produces some value, or set of values, as output. An algorithm is thus a sequence of
computational steps that transform the input into the output.”

If the first part of this definition represents algorithms as a procedure type by a
relevant, although vague term well-defined, the second part presents some computa-
tional process instead of algorithm.

We synthesize the above approaches in the following informal definition:

Definition 2.1.1. An algorithm is an unambiguous (definite) and adequately simple
to follow (effective) prescription (organized set of instructions/rules) for deriving
necessary results from given inputs (initial conditions).

Here adequately means that a performer (a device or person) can adequately
achieve these instructions on performing operations or actions. In other words, the
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performer must have knowledge (may be, implicit) and ability to perform these in-
structions. This implies that the notion of algorithm and computability is relative. In
a similar way, Copeland (1999) writes that computability is a relative notion because
it is resource dependent. For example, information sufficient for one performer may
be essentially insufficient for another one even from the same class of systems or
persons. In such a way, an algorithm for utilization of a word processor is good for a
computer with such processor, but it is not an algorithm for a calculator. Algorithms
of finding the inverse matrix are simple for the majority of mathematicians, but they
are in no way algorithms for the majority of population. For them, these algorithms
are some mystic procedures invented by “abstruse” mathematicians.

Definition 2.1.1, like most others, implicitly implies that any algorithm uniquely
determines some process. Computer science has contributed nondeterministic algo-
rithms, including fuzzy algorithms (Zadeh, 1969) and probabilistic algorithms, in
which execution of an operation/action is not determined uniquely but has some
probability. As examples, we can take nondeterministic and probabilistic Turing ma-
chines and finite automata. Here nondeterminism means that there is a definite choice
in application of a rule or in execution of an action, allowing an arbitrary choice of
input data or/and output result. However, these forms of nondeterminism can be re-
duced to the choice of a rule or action. In its turn, such a choice is in practice sub-
jugated to deterministic conditions. For instance, when selecting instructions from a
list, a heuristic rule is taken, such as “take the first that you find appropriate.”

It is possible to find an extensive analysis of the concept of algorithm in (Turing,
1936; Markov, 1951; Kolmogorov, 1953; Knuth, 1971).

Existence of a diversity of definitions for algorithm demonstrates absence of a
general agreement on the meaning of the term, and theory experts continue to debate
what models of algorithms are adequate. However, experience shows that a diversity
of different models is necessary. Some of them are relevant to modern computers,
some will be good for tomorrow’s computers, while others always will be only math-
ematical abstractions. However, before we build a model, it is necessary to find out
what properties are essential and how to incorporate them.

2.1.3 Properties of algorithms and types of computation

Thus, majority of definitions of algorithm imply that algorithms consist of rules or
instructions. As a rule, each instruction is performed in one step. This suggests that
algorithms have three features:

1. Algorithms function in a discrete time.
2. All instructions are sufficiently simple.
3. Relations between operational steps of algorithm determine topology of compu-

tation.

However, while these properties look very natural, some researchers introduce
models of computation with continuous time. An example is given by real number
computations in the sense of Shannon (1941) and Moore (1996). In these models
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instructions look rather simple, while their realization may be very complex. For
example, an addition with infinite precision of two transcendental numbers in nu-
merical form is, as a rule, impossible, even though its description in an algebraic
form is really simple.

Algorithms for computers generate a diversity of computations with different
characteristics. Among the most important of them is the computation topology. This
topology separates three classes of processes and corresponding computing architec-
ture are:

1. Sequential computation.
2. Parallel or synchronous computation.
3. Concurrent or asynchronous computation.

In turn, each type has the following subtypes:

1. Sequential computation may be
a) Acyclic, with no cycles;
b) Cyclic, organizing computation in one cycle;
c) Incyclic, containing not one but several cycles.

2. Parallel computation may be
a) Branching, referring to parallel processing of different data from one pack-

age of data;
b) Pipeline, referring to synchronous coprocessing of similar elements from

different packages of data (Kogge, 1981);
c) Extending pipeline, which combines properties both of branching and pipe-

line computations (Burgin, Liu, and Karplus, 2001a).
3. According to the control system for computation, concurrent computation may

be
a) Instruction controlled, referring to parallel processing of different data from

one package of data;
b) Data controlled, referring to synchronous processing of similar elements

from different packages of data;
c) Agent controlled, which means that another program controls computation.

While the first two approaches are well known, the third type exists but is not
considered to be a separate approach. However, even now the third approach is often
used implicitly for organization of computation. One example of agent-controlled
computation is the utilization of an interpreter that, taking instructions of the pro-
gram, transforms them into machine code, and then this code is executed by the
computer. An interpreter is the agent controlling the process. A universal Turing ma-
chine (cf. Section 2.3) is a theoretical example of agent-controlled computation. The
program of this machine is the agent controlling the process. We expect the role of
agent-controlled computation to grow in the near future.

Usually, it is assumed that algorithms satisfy specific conditions of nonambiguity,
simplicity, and effectiveness of separate operations to be organized for automatic
performance. Thus, each operation in an algorithm must be sufficiently clear so that it
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does not need to be simplified for its performance. Since an algorithm is a collection
of rules or instructions, we must know the correct sequence in which to execute the
instructions. If the sequence is unclear, we may perform the wrong instruction or we
may be uncertain as to which instruction should be performed next. This is especially
important for computers. A computer can only execute an algorithm if it knows the
exact sequence of steps to perform.

Thus, it is traditionally assumed that algorithm have the following primary char-
acteristics (properties):

1. An algorithm consists of a finite number of rules.
2. The rules constituting an algorithm are unambiguous (definite), simple to follow

(effective), and have simple finite description (are constructive).
3. An algorithm is applied to some collection of input data and aimed at a solution

of some problem.

This minimal set of properties allows one to consider algorithms from a more
general perspective: those that work with real numbers or even with continuous ob-
jects, those that do not need to stop to produce a result, and those that use infinite
and even continuous time for computation.

2.1.4 Algorithms and their descriptions

Programmers and computer scientists well know that the same algorithm can be rep-
resented in a variety of ways. Algorithms are usually represented by texts and can be
expressed practically in any language, from natural languages like English or French
to programming languages like C++. For example, addition of binary numbers can
be represented in many ways: by a Turing machine, by a formal grammar, by a pro-
gram in C++, in Pascal or in Fortran, by a neural network, or by a finite automaton.
Besides, an algorithm can be represented by software or hardware. That is why, as it
is stressed by Shore (in Buss et al., 2001), it is essential to understand that algorithm
is different from its representation and to make a distinction between algorithms and
their descriptions.

In the same way, Cleland (2001) emphasizes that “it is important to distinguish
instruction-expressions from instructions.” The same instruction may be expressed in
many different ways, including in different languages and in different terminology in
the same language. Also, some instruction are communicated with other instructions
nonverbally, that is, when one computer sends a program to another computer.

This is also true for numbers and their representations. For example, the same
rational number may be represented by the following fractions: 1/2, 2/4 , 3/6, as
well as by the decimal 0.5. Number five is represented by the Arab (or more exactly,
Hindu) numeral 5 in the decimal system, the sequence 101 in the binary number
system, and by the symbol V in the Roman number system. There are, at least, three
natural ways for separating algorithms from their descriptions such as programs or
systems of instructions.

In the first way, which we call the model approach, we chose some type D of
descriptions (for example, Turing machines) as a model description, in which there



28 2 Recursive Algorithms

is a one-to-one correspondence between algorithms and their descriptions. Then we
introduce an equivalence relation R between different descriptions of algorithms.
This relation has to satisfy two axioms:

DA1 Any description of an algorithm is equivalent to some element from the model
class D.

DA2 Any two elements from the model class D belong to different equivalence
classes.

This approach is used by Moschovakis, who considers the problem of unique rep-
resentation for algorithms in his paper “What is an Algorithm?” (2001). He makes
interesting observations and persuasively demonstrates that machine models of algo-
rithms are only models but not algorithms themselves. His main argument is that
there are many models for one and the same algorithm. To remedy this, he de-
fines algorithms as systems of mappings, thus building a new model for algorithms.
Moschovakis calls such systems of mappings defined by recursive equations recur-
sors. While this indicates progress in mathematically modeling algorithms, it this
does not solve the problem of separating algorithms as something invariant from
their representations. This type of representation is on a higher level of abstraction
than the traditional ones, such as Turing machines or partial recursive functions. Nev-
ertheless, a recursor (in the sense of Moschovakis) is only a model for algorithm but
not an algorithm itself.

The second way to separate algorithms and their descriptions is called the rela-
tional approach and is based on an equivalence relation R between different descrip-
tions of algorithms. Having such relation, we define algorithm as a class of equivalent
descriptions. Equivalence of descriptions can be determined by some natural axioms,
describing, for example, the properties of operations:

Composition Axiom. Composition (sequential, parallel, etc.) of descriptions
represents the corresponding composition of algorithms.
Decomposition Axiom. If a description H defines a sequential composition of
algorithms A and B, a description K defines a sequential composition of algo-
rithms C and B, and A = C , then H is equivalent to K .

At the same time, the equivalence relation R between descriptions can be formed
on the base of computational processes. Namely, two descriptions define the same al-
gorithm if these descriptions generate the same sets of computational processes. This
definition of description equivalence depends on our understanding of the processes
– different and equal. For example, in some cases it is natural to consider processes
on different devices as different, while in other cases it might be better to treat some
processes on different devices as equal.

In particular, we have the rule as suggested by Cleland (2001) for instructions:

Different instruction-expressions, that is, representations of instructions, express
the same instruction only if they prescribe the same type of action.

Such a structural definition of algorithm depends on the organization of computa-
tional processes. For example, let us consider some Turing machines T and Q. The
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only difference between T and Q is that Q contains all instructions of T and plus
instructions that are never used in computations of the machine Q. Then it is pos-
sible to assume that this additional instruction has no influence on computational
processes and thus, T and Q define one and the same algorithm. On the other hand,
if a Turing machine in a course of computation always go through all instructions to
choose the one to be performed, then the processes are different and consequently, T
and Q define different algorithms.

The third way to separate algorithms and their descriptions is the structural ap-
proach because a specific invariant (structure) is extracted from descriptions. We call
this structure an algorithm. Here we understand structures in the sense of (Burgin,
1997). Thus, we come to the following understanding, which separates an algorithm
from its descriptions:

Definition 2.1.2. An algorithm is a (finite) structure that contains for some performer
(class of performers) exact information (instructions) that allows this performer(s) to
pursue a definite goal.

Consequently, algorithms are compressed constructive (that is, giving enough in-
formation for realization) representations of processes. In particular, they represent
intrinsic structures of computer programs. Hence, an algorithm is an essence that
is independent of how it happens to be represented and is similar to mathematical
objects. Once the concept of algorithm is so rendered, its broader connotations vir-
tually spell themselves out. As a result, an algorithm appears as to consist of three
components: structure, representation (linguistic, mechanical, electronic, and so on),
and interpretation.

It is important to understand that not all systems of rules represent algorithms.
For example, you want to give a book to your friend John, who often comes to your
office. So you decide to take the book to your office (the first rule) and to give it to
John when he comes to your office (the second rule). While these simple rules are fine
for you, they are much too ambiguous for a computer. In order for a system of rules
to be applicable to a computer, it must have certain characteristics. We will specify
these characteristics later on in formal definitions of an algorithm. Now we only state
that formalized functioning of complex systems (such as people) is mostly described
and controlled by more general systems of rules than algorithmic structures. They
are called procedures.

Definition 2.1.3. A procedure is a compressed operational representation of a pro-
cess.

For example, you have a set of instructions for planting a garden where the first
step instructs you to remove all large stones from the soil. This instruction may not
be effective if there is a ten-ton rock buried just below ground level. So, this is not an
algorithm, but only a procedure. However, if you have means to annihilate this rock,
this system of rules becomes an algorithm.

It is necessary to remark that the above given definition describes procedure in the
theoretical sense. There is also a notion of procedure in the sense of programming.
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A procedure in a program, or subroutine, is a specifically organized sequence of
instructions for performing a separate task. This allows the subroutine code to be
called from multiple places of the program, even from within itself, in which case
the form of computation is called recursive. Most programming languages allow pro-
grammers to define subroutines. Subroutines, or procedures in this sense, are specific
representations of algorithms by means of programming languages.

Representation for algorithms and procedures fall into three classes.

Automaton representations. Turing machines and finite automata give the most
known examples of such representations.
Instruction representations. Formal grammars, rules for inference, and Post pro-
ductions give the most known examples of such representations.
Equation representations. Here is an example of a well-known recursive equa-
tion:

Fact(n) =
{

1 when n = 1,

n · Fact(n − 1) when n > 1.

The fixed point of this recursive equation defines a program for computation of
the factorial n!.

Algorithms are connected to procedures in a general sense, being special cases
of procedures. If we consider algorithms as rigid procedures, then there are also soft
procedures, which have recently become very popular in the field of soft computing.

To discern algorithms from procedures, it is assumed that algorithms satisfy spe-
cific conditions:

1. Operational decomposition means that there is a system of effective basic oper-
ations that are performed in a simple way with some basic constructive objects,
while all other operations can be reduced to the basic operations.

2. Purposefulness means that execution of algorithms is aimed at some purpose.
3. Discreteness means that operations are performed in a discrete time, that is, step

by step with each step separated from the others.

Some experts demand additional conditions that are not always satisfied both in
the theory of algorithms and practice of computation:

4. Substantial finiteness means that all objects of the algorithm operation and the
number of objects involved in that operation at each step are finite.

5. Operational finiteness means that the number of algorithm operations and oper-
ations themselves are finite.

6. Temporal finiteness means that the result of the algorithm functioning/execution
is obtained in a finite time.

7. Demonstrativeness means that the algorithm provides explicit information when
it obtains the necessary result.

8. Definability means that given a relevant input, the algorithm always obtains the
result.
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Like algorithms, procedures (in a general sense) are also different from their
descriptions.

Definition 2.1.4. A representation or description of a procedure or algorithm is a
symbolic materialization of this procedure/algorithm as a structure.

According to this definition, algorithms and procedures are similar to mathemat-
ical objects because, as it is demonstrated in Burgin (1998), all mathematical objects
are structures. This explains why algorithms in a strict sense appeared in mathemat-
ics, were named after a mathematician, and have been developed into a powerful and
advanced mathematical theory – the theory of algorithms and computation. How-
ever, in this theory there is no distinction between algorithms and their descriptions.
In what follows, we follow this tradition to make comprehension easier.

Processes represented by algorithms vary, implying the corresponding classifica-
tion of algorithms.

Transformation algorithms describe how to transform some input into a definite
output, for example, how to calculate 123 + 321.

Performance algorithms describe some activity or functioning, for example, al-
gorithms of how a car engine functions or algorithms of human–computer commu-
nication. Performance algorithms also describe how mental activity is organized.

Construction algorithms describe how to build objects.
Decision algorithms are specific cases of construction algorithms describing

decision-making.
Algorithms are also grouped by objects that are involved in the processes they

describe. We have

1. Material algorithms, which work with material objects (for example, algorithm
of a vending machine or algorithms of pay phone functioning);

2. Symbolic algorithms, which work with symbols (for example, computational al-
gorithms are symbolic algorithms that control computing processes); and

3. Mixed algorithms, which work both with material and symbolic objects (for ex-
ample, algorithms that control production processes or algorithms of robot func-
tioning).

All mathematical models of algorithms are symbolic algorithms. Thus, in com-
puter science and mathematics, only symbolic algorithms, that is, algorithms with
symbolic input and output, are studied. Computer algorithms, that is, such algorithms
that are or may be performed by computers, form an important class, contributing to
the concept of computation in two ways. According to an engineer, computation is
any thing computer can do. On the one hand, this restricts computation to comput-
ers that exist at a given time. Each new program extends the scope of computation.
On the other hand, not everything that computers do is computation. For example,
interaction with users or with other computers, sending e-mails, and connecting to
the Internet are not computations. Mathematical approach reduces dependence on
computers. According to a mathematician, computation is a sequence of symbolic
transformations that are performed according to some algorithm. From the mathe-
matical point of view, computers function under the control of algorithms, which are



32 2 Recursive Algorithms

embodied in computer programs. So, to understand and explore the possibilities of
computers and their boundaries, we have to study algorithms.

2.2 Mathematical models of algorithms and why we need them:
History and methodology

Of course the first thing to do
was to make a grand survey of the country

she was going to travel through.

Lewis Carroll, 1832–1898

We begin this section with an informal overview of formal mathematical models of
algorithms. With a diversity of such models, we need to understand this “algorith-
mic universe” from a general perspective of the whole picture. In their aggregate
and latitude, models of algorithms constitute a whole world of ideas and techniques.
However, many do not make a distinction between algorithms and their mathematical
models, resulting in misunderstanding and misconceptions, especially, when profes-
sionals in computer technology consider computer science. That is why we give here
an explanation of relations between algorithms and their mathematical models.

The main difference is that given some relevant input an algorithm determines a
computational process. At the same time, a mathematical model needs some further
specification to become an algorithm. Only after such specification is given, it is
possible to provide some relevant input and begin computation.

For instance, in a Turing machine (cf. Section 2.3) as a model for algorithms and
computation, the alphabet has the form {a1, . . . , an} and the rules of functioning are

qhai → a j qk,

qhai → Ra j qk,

qhai → La j qk .

In a Turing machine as a particular algorithm that checks if some input x is
an even or odd number, the alphabet is {1, 0, B} and the rules of functioning are
(Minsky, 1967):

q00 → R0q0,

q01 → R0q1,

q0B → 0q0,

q10 → R0q1,

q11 → R0q0,

q1B → 1q0.
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2.2.1 Methodological considerations

In the previous Section 2.1, we have considered algorithms informally, deriving
their basic properties. We see that an informal notion of algorithms is comparatively
vague, flexible, and easy to treat. Consequently, it is insufficient for exact studies. In
contrast, mathematical models are precise, rigid, and formal. As a result, they cap-
ture, as a rule, only some features of informal notions, but are suitable for theoretical
investigation. This is why we need mathematical models for algorithms. Such sit-
uation has always emerged when mathematics acquired its basic notions from the
real world. For example, the notion of number was turned into an exact concept and
has been developing through the ages: from natural numbers to rational and integer
numbers to real to complex numbers to hypernumbers and transfinite numbers. This
notion gave birth to a series of mathematical concepts: groups and algebras, fields
and topological spaces, order relations and measures. The same is true for the no-
tion of algorithm. An exact concept of algorithm has been introduced in a form of a
mathematical model of algorithm.

Being rather practical, the theory of algorithms is a typical mathematical the-
ory with a quantity of theorems and proofs. However, the main achievement of this
theory has been elaboration of an exact mathematical model of algorithm. The first
models were constructed in mathematics less than seventy years ago – in thirties of
the twentieth century – in connection with its intrinsic dilemmas of finding solutions
to some mathematical problems. Some of the first models of algorithms also included
a formal device (abstract automaton) for realization of algorithmic scheme. Exam-
ples of such models are Turing machines and neural networks, which are considered
later in this chapter. These constructions give also more or less relevant models for
computers. Other models of algorithms gave only a description of rules for computa-
tion. Examples of such models are recursive functions and formal grammars, which
are considered in the next chapter.

Some think that mathematical models of algorithms and abstract automata were
constructed prior to the advent of digital computers. This is not true. The first digital
computer was designed by the British scientist Babbage in the nineteenth century.
However, his computer was a mechanical device. Electronic computers really ap-
peared after their mathematical models had been designed. Consequently, computer
science did not exist at that time, but its foundations inevitably emerged before the
first electronic computers were built.

Creation of mathematical models of algorithms was caused by the following sit-
uation. Many algorithms had been elaborated and used in mathematics and beyond.
Each field of mathematics has its specific algorithms. For example, we have algo-
rithms of adding and subtracting integer numbers and fractions in arithmetic. Many
algorithms have been developed in geometry for comparison of different geometrical
figures, such as triangles and segments. For instance, we know how to find whether
two triangles are congruent or when one segment is larger than another segment.
However, mathematicians were not able to find algorithms for solving some impor-
tant mathematical problems and suggested a hypothesis that it is impossible to find
such algorithms. To make a mathematical statement out of a hypothesis, it is neces-
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sary to prove it. But to prove, mathematicians need mathematical structures because
informal notions are not relevant for this purpose. Consequently, necessity in mathe-
matical models of algorithms became very urgent.

2.2.2 A beautiful diversity of mathematical models

Aiming at solving different problems, mathematicians have suggested a diversity
of exact mathematical models for a general notion of algorithm. The first models
that were recursive functions introduced by Gödel (1934), ordinary Turing machines
constructed by Turing (1936) and in a less explicit form by Post (1936), recursive
functions (Church, 1936), partial recursive functions Kleene, 1936), and λ-calculus
built by Church (1932/33). Creating λ-calculus, Church was developing a logical
theory of functions and suggested a formalization of the notion of computability by
means of λ-definability. Later Kleene (1936a) demonstrated how λ-definability is
related to the concept of recursive function and Turing (1937) showed how λ-defina-
bility is related to the concept of Turing machine. It is interesting to know that the
theory of Frege (1893) actually contains λ-calculus. So there were chances to develop
a theory of algorithms and computability in the nineteenth century. However, at that
time the mathematical community did not feel a need in such a theory and probably,
would not accept it if somebody created it.

In his 1934 Princeton lectures, Gödel proposed a precise characterization, based
on an idea of Herbrand, of the notion of recursive function. This construction is
equivalent to the current notion of general recursive function (cf., for example, Davis,
1982).

As stated in (Barbin et al., 1999), the concept of recursive function is based on
double recursion. A function defined by double recursion appeared in the works of
Ackermann in 1920. Hilbert presented this function in 1925 in a lecture, so as to
prove the continuum hypothesis (Guillame, 1978), and Ackermann studied it in 1928
(Heijenoort, 1967).

Gödel suspected that all effectively computable functions are general recursive,
but was not convinced of this (nor of the first version of the Church’s thesis of 1934
that stated that effective computability is equivalent to λ-computability) until he read
Turing’s 1936 paper. The most influential in this area paper of Alan Turing (1936)
was aimed at investigating the famous Hilbert’s Entscheidungsproblem. The Ent-
scheidungsproblem (posed in 1922), or ‘decision problem’, is to find a constructive
procedure by which, in a finite number of steps, it can be tested whether any given
formal expression can be deduced from a given system of axioms. Turing examined
the intuitive idea of computation and argued in a convincing manner that, if irrele-
vant aspects are omitted, we are led to what is now called Turing machine and Turing
computability. Then he applied Turing machine to prove that the Entscheidungsprob-
lem had no solution. Less well known is the fact that Post, in his 1936 paper, carried
out an analysis, analogous to Turing’s but much less elaborate, which reduced the in-
tuitive idea of computability to a precise mathematical form (later proved equivalent
to Turing computability).
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Then other mathematical models of algorithms were suggested. They include a
variety of Turing machines: multihead, multitape Turing machines, Turing machines
with n-dimensional tapes, nondeterministic, probabilistic (Leeuw, Moore, Shannon,
and Shapiro, 1956), alternating (Chandra and Stockmeyer, 1976; Kozen, 1976),
reflexive (Burgin, 1992a) Turing machines, Turing machines with oracles (Turing,
1939), Las Vegas Turing machines (Hopcroft et al., 2001), etc.).

Other popular mathematical models of algorithms are

♦ Neural networks, the simplest case of which appeared in the work of McCulloch
and Pitts (1943) and which, like Turing machines, have several types – fixed-
weights, unsupervised, supervised, feedforward, and recurrent neural networks;

♦ Von Neumann automata (von Neumann, 1949) and general cellular automata;
♦ Kolmogorov algorithms (Kolmogorov, 1953);
♦ Finite automata (in the simplest form usually attributed to McCulloch and Pitts

(1943), while in the developed form as a formal construction introduced by
Mealy (1953), Kleene (1956), and Moore (1956)), which, like Turing machines,
have several forms – automata without memory, autonomous automata, automata
without output or accepting automata, deterministic, nondeterministic (Rabin
and Scott, 1959), probabilistic automata, etc.;

♦ Minsky machines (Minsky, 1967);
♦ Storage-modification machines or simply, Shönhage machines (Shönhage, 1980);
♦ Random Access Machines (RAM), which were introduced by Shepherdson and

Sturgis (1963) and also have modifications – Random Access Machines with the
Stored Program (RASP) introduced by Elgot and Robinson (1964); Parallel Ran-
dom Access Machines (PRAM);

♦ Petri nets introduced by Petri (1962), which like Turing machines have several
forms – ordinary and ordinary with restrictions (Hack, 1975), regular, free, col-
ored (Zervos, 1977), self-modifying (Valk, 1978) Petri nets, etc.;

♦ Vector machines introduced by Pratt, Rabin, and Stockmeyer (1974);
♦ Array machines introduced by Leeuwen and Wiedermann (1985);
♦ Multidimensional structured model of computation and computing systems de-

veloped by Burgin and Karasik (1975; 1976; 1980; 1982);
♦ Systolic arrays (Kung and Leiserson, 1978);
♦ Hardware modification machines introduced by Dymond and Cook (1989);
♦ Post productions (Post, 1943);
♦ Normal Markov algorithms (Markov, 1954);
♦ Formal grammars, which, like Turing machines, have many forms – regular,

context-free, context-sensitive, phrase-structure, etc. (Chomsky, 1956; Bakus,
1959; Naur, 1960).

We see that an important peculiarity of the exact concept of algorithm, or a model
of algorithm, is that it exists in various forms. In addition, we come to a situation
when we distinguish algorithms, their descriptions, and their models. The following
example demonstrates differences between these objects. Turing machine as a mathe-
matical structure is a model of algorithm. A specific Turing machine T , for example,
a Turing machine that adds two numbers, is a description of an algorithm, in our case,
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of an algorithm of addition. Finally, an algorithm of addition is a corresponding to
the machine T structure. Taking an algorithm of addition with a description in the
form of a Turing machine T , we can give other descriptions of the same algorithm:
by programs in Lisp, in C+ or in Pascal, by a formal grammar, by a random access
machine, and by a neural network.

Each model of algorithm defines a class of algorithms. For example, a model
as a Turing machine corresponds to the class of all Turing machines. This class
contains many subclasses: deterministic, nondeterministic, alternating, reflexive, and
other Turing machines. In turn, classes of deterministic, nondeterministic Turing ma-
chines contain subclasses of Turing machines with one linear tape and one head, with
one linear tape and two heads, with two linear tapes and two heads, with one two-
dimensional tape and one head and so on. In its turn, each of these classes contain
subclasses of Turing machines with the alphabet {1, 0}, with the alphabet {a, b}, with
the alphabet {a1, . . . , ai } and so on. Turing machines from these classes solve dif-
ferent problems: comparing and transforming words; adding, subtracting, and multi-
plying numbers; building or accepting languages, etc.

Realization of an algorithm is a computational process. Consequently, mathe-
matical models of algorithms give formalize the concepts of computation and com-
putable function. Some of these models (such as recursive functions or Post pro-
ductions) give only rules for computing. Others (such as Turing machines or finite
automata) also present a description of an abstract computing device or abstract
automaton, which functions according to given rules and computes what is predeter-
mined.

2.2.3 Algorithms and abstract automata

To form an algorithm, a system of rules must have a description how these rules are
applied. This description consists of metarules for an algorithm, given in a form of
some abstract machine. For this reason, metarules often have the form of an abstract
automaton.

Definition 2.2.1. An abstract automaton is an abstract information processing sys-
tem (IPS).

Abstract automata and algorithms work with symbols, words, and other sym-
bolic configurations, transforming them into other configurations of the same type.
For example, words are transformed into words. While words and strings are linear
configurations, there are many useful abstract automata and algorithms work with
such configurations as graphs, vectors, arrays etc. (cf., for example, Kolmogorov,
1953; Rabin, 1969; Pratt, Rabin, and Stockmeyer, 1974; Leeuwen and Wiedermann,
1985; Burgin and Karasik, 1975; 1982).

As an IPS, an abstract automaton consists of an abstract information process-
ing device (abstract hardware), an algorithm/program of its functioning (abstract
software), and description/specification of information which is processed (abstract
infware).
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In a general case, the hardware of an abstract automaton, as well as of any other
IPS, consists of three main parts: abstract input device, abstract information proces-
sor, and abstract output device, which are presented in Figure 2.1. For example, Tur-
ing machines (cf. Section 2.3) can have special input and output tapes, or the same
tape works as an input/output device and a part of the processor. Neural networks
(cf. Section 2.4) also contain these parts: the input device that comprises all input
neurons, the output device that consists of all output neurons, and the information
processor that includes all hidden neurons. In some cases, input and output neurons
are combined into one group of visible neurons.

Figure 2.1. The structure of an abstract automaton.

Accordingly, we have a structural classification of automata (Fisher, 1965):

1. Abstract automata without input devices. They are called generators.
2. Abstract automata without output devices. They are called acceptors.
3. Abstract automata with both input and output devices. They are called transduc-

ers.

A finite state transducer, for example, is a finite state machine with a read-only
input and a write-only output. The input and output cannot be reread or changed.
Decision tables (Humby, 1973) represent the simplest case of transducers that have
no memory. Basically any abstract automaton can be considered as a transducer.

At the same time, any transducer can work in the mode of an acceptor or gen-
erator. For example, very often Turing machines are considered as acceptors (cf.
Hopcroft et al., 2001), although they produce some output, which is written in their
tapes at the time when they stop.

Even such abstract automata as neural networks have the same triadic structure
presented in Figure 2.1. The input device consists of input neurons; output neurons
form the output device; and hidden neurons form the processor of such IPS (cf. Sec-
tion 2.4). However, it is more relevant to consider that all neurons constitute the
processor, while input and output devices are built into this processor.

The general idea of an abstract automaton implies three main modes of process-
ing input data by an abstract or real IPS as follows:

1. The computing mode occurs when an automaton produces (computes or outputs)
some words (its output or configuration) as a result of its activity.

2. The deciding mode occurs when an automaton, given a word/configuration u
and a set X of words/configurations, indicates (decides) whether this word/con-
figuration belongs to X or not.
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3. The accepting mode occurs when an automaton, given a word/configuration u,
either accepts this word/configuration or rejects it.

In addition, we have two partial deciding modes:

4. The positive deciding mode occurs when an automaton, given a word/configu-
ration u and a set X of words/configurations, indicates (decides) whether this
word/configuration belongs to X .

5. The deciding mode occurs when an automaton, given a word/configuration u
and a set X of words/configurations, indicates (decides) whether this word/con-
figuration does not belong to X .

Sometimes (cf. Section 4.2), the positive deciding mode is called semidecidable.
These types not only reflect the principal modes of computer functioning, but

also define the main utilization modes for algorithms and programs. We have several
kinds of each mode. For example, there is acceptance by a state and acceptance by
a result.

Definition 2.2.2. An automaton A accepts a word u by a result if A gives some result,
or gives a definite result (e.g., the symbol 1 or the word yes), when u is its input.

For example, a Turing machine T accepts a word u if and only if: T gives some
output when u is its input, and after producing the output T halts. At the same time,
it is possible to demand that a Turing machine T accepts a word u if and only if the
produced result is equal to 1. It is possible to show that both ways of acceptance are
equivalent.

To define acceptance by a state, we need to choose some states of the automaton
as final or accepting.

Definition 2.2.3. An automaton A accepts a word u by a state if A comes to a final
or accepting state when u is its input.

Remark 2.2.1. For finite automata (Trahtenbrot and Barzdin, 1970) and for push-
down automata (Hopcroft et al., 2001), it is proved that acceptance by a result is
functionally equivalent to acceptance by a state.

Remark 2.2.2. For many classes of algorithms or abstract automata, acceptance of a
word u means that the automaton/algorithm that works with the input u comes to an
inner state that is an accepting state for this algorithm or automaton. Finite automata
give an example of such a class. However, for such algorithms that produce output,
the acceptance assumption means that whenever an algorithm comes to an inner
accepting state it produces some chosen result (e.g., the number 1) as its output. In
such a way, this algorithm informs that it has reached an inner accepting state.

Another way of defining an accepting state is to consider a state of some com-
ponent of an abstract automaton. For example, pushdown automata accept words not
only by an accepting inner state, but also by an empty stack, that is, by a definite
state of their stack, which is an external state for these automata.
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Definition 2.2.4. An automaton A accepts a word u by a component state if a chosen
component of A comes to a final or accepting state when u is the input of A.

For a Turing machine, such accepting component is its control device (cf. Section
2.3), while for push down automaton such accepting component is either its stack or
its control device (Hopcroft et al., 2001).

All these forms of acceptance are static. At the same time, there are such forms
that depend on the behavior of the automaton. For instance, a finite automaton A
accepts infinite strings when A comes to an accepting state infinitely many times.
Such automata are called Büchi automata (Büchi, 1960). Another example is induc-
tive Turing machine (cf. Chapter 4). It produces a result or accepts a word when its
output stabilizes.

The first abstract automaton was Turing machine created by Turing (1936). A
general concept of an abstract automaton was introduced by von Nemann (1951).
Finite automata were formalized, modified and studied by Mealy (1953), Kleene
(1956), and Moore (1956). Potentially infinite automata were formalized, modified
and studied by Church (1957).

An important distinction exists between deterministic and nondeterministic al-
gorithms. At first, such condition as complete determination of each step of an algo-
rithm was considered as necessary for a general model of algorithm. For a long time,
all models were strictly deterministic. However, necessity to reflect real situations
and model computational processes influenced introduction of nondeterministic al-
gorithms (Rabin and Scott, 1959).

Thus, we may have an impression that the extensive diversity of models results
in a similar diversity for the concepts of algorithm, computation and computable
function. Nevertheless, mathematicians and computer scientists found that the algo-
rithmic reality is well organized. They have found a unification law for this reality,
which was called the Church–Turing thesis. It is considered in Section 2.2.5 because
to give a mathematically correct formulation of this thesis, we need some additional
concepts.

2.2.4 Computational power of algorithms: comparison and evaluation

Having such a diversity of models for algorithms, we need to compare them. To
do this, we introduce special concepts: computing power, accepting power, decision
power, and equivalence of algorithms and their classes.

Definition 2.2.5. The computing power of an algorithm A is less than or equal to
(is weaker than or equivalent to) the computing power of an algorithm B when the
algorithm B can compute everything that A can compute. Naturally, the algorithm
B is stronger than or equivalent to (has more than or the same computing power)
the algorithm A.

Let us take as an example algorithms that solve some algorithmic problem P for
a class of algorithms A. We assume that any result of such an algorithm is a solution
to P . Such problem P may be: to define whether a given algorithm from A gives the
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result for some data; to define whether a given algorithm from A gives the result for
all possible data; or to define whether a given algorithm from A has more computing
power than another given algorithm from A.

Proposition 2.2.1. If an algorithm A solves the problem P strictly for the class A1,
an algorithm B solves the problem P strictly for the class A2, and A1 ⊂ A2, then
the computing power of B is larger than the computing power of A.

Definition 2.2.6. Two algorithms A and B are functionally equivalent (or simply,
equivalent) if the algorithm B can compute everything that A can compute and the
algorithm A can compute everything that B can compute.

Taking into account different modes of algorithm functioning, we come to a more
general concept.

Definition 2.2.7. Two algorithms are called functionally equivalent with respect to
computability (acceptability, positive decidability, negative decidability or decidabil-
ity) if they define in the corresponding mode the same function f A or relation rA.

Example 2.2.1. In the theory of finite automata, functional equivalence means that
two finite automata accept the same language (Hopcroft et al., 2001). This relation is
used frequently to obtain different properties of finite automata. The same is true for
the theory of pushdown automata.

Algorithms that work with finite words in some alphabet X are the most popular
in the theory of algorithms. As a rule, only finite alphabets are utilized. For example,
natural numbers in the decimal form are represented by words in the alphabet X =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, while in binary form they are represented by words in
the alphabet X = {0, 1}. The words in X may represent natural numbers or other
entities, but we have a natural procedure to enumerate all such words. This makes
it possible, when it is necessary, to assume that algorithms can work with natural
numbers. In such a way, through enumeration of words, any algorithm A defines a
partial function f A : N → N (cf., (Burgin, 1985)). However, there are many reasons
to consider algorithms that work with infinite words (Vardi and Wolper, 1994) or
with such infinite objects as real numbers (Blum et al., 1998).

Remark 2.2.3. Many algorithms (cf., for example, Krinitsky, 1977 or Burgin, 1985)
work with more general entities than words. As an example, it is possible to consider
as input, working, and output data such configurations that were utilized by Kol-
mogorov (1953) in his analysis of the concept of algorithm and construction of the
most general definition. Configurations are sets of symbols connected by relations
and may be treated as multidimensional words or hypertexts. Hypertext technology
is now very important in information processing both for people and computers (Bar-
rett, 1988; Nielsen, 1990; Landow, 1992). Other configuration examples are discrete
graphs.

While in practice we usually compare individual algorithms, for theory it is even
more important that we compare power of different classes of algorithms.
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Definition 2.2.8. A class of algorithms A has less or equal computing power than
(is weaker than or equivalent to) a class of algorithms B when algorithms from B
can compute everything that algorithms from A can compute. Naturally, the class of
algorithms B is stronger than or equivalent to (has more or equal computing power
than) the class of algorithms A.

Remark 2.2.4. Any mathematical or programming model of algorithms defines some
class of algorithms. Thus, when we compare classes corresponding to models, we
can compare power of these models.

For example, the class of all finite automata is weaker than the class of all Turing
machines. It means that Turing machines can compute everything that can compute
finite automata, and in addition, certain functions that finite automata cannot com-
pute.

Remark 2.2.5. Definitions 2.2.5, 2.2.6, and 2.2.8 are not exact because they contain
such a term as everything, which is very imprecise. To develop a mathematical theory
of algorithms and automata, we need completely formal constructions. Formalization
is achieved in two different ways. The first one is to relate to an algorithm the func-
tion that it computes. Such formalization is done in Definitions 2.2.7, 2.2.10, and
2.2.11. The second approach is based on introduction of sets or languages defined
by an automaton/algorithm and consideration of three modes of automaton function-
ing: computation, acceptance, and decision. Such formalization is done in Definition
2.2.9.

As it is known, any set of words form a formal language. This allows us to
consider as a formal language full output of algorithms, that is, the set L A of all
words that an algorithm A computes, accepts or decides.

Given an automaton/algorithm A, we say that A:

computes a set X A (a formal language L A) if X A (correspondingly, L A) consists
of all outputs of A;
accepts a set X A (a formal language L A) if X A (correspondingly, L A) consists
of all elements (words) accepted by A;
decides a set X A (a formal language L A) if A, given a word/configuration u,
indicates (decides) whether this word/configuration belongs to X A (to L A) or
not.

This set L A is called the computation (acceptance or decision) language of the
algorithm/automaton A.

Remark 2.2.6. Usually, when the mode of computation is fixed, L A is called simply
the language of the automaton/algorithm A. For example, in (Hopcroft et al., 2001)
only the accepting mode is treated. This makes possible to speak about languages of
finite automata, push down automata and Turing machines.

This allows us to compare computing, accepting, and deciding power of algo-
rithms.
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Definition 2.2.9. A class of algorithms A has less or equal computing (accepting or
decision) power than (is weaker than or equivalent to) a class of algorithms B when
algorithms from B can compute (accept or decide, correspondingly) any language
that algorithms from A can compute (accept or decide). Naturally, the class of algo-
rithms B is stronger than or equivalent to (has more or equal computing (accepting
or decision) power than) the class of algorithms A.

Instead of using sets or languages, it is possible to use functions for comparison
of computing power.

Definition 2.2.10. A class of algorithms A has less or equal functional computing
power than (is functionally weaker than or equivalent to) a class of algorithms B
when algorithms from B can compute any function that algorithms from A can com-
pute.

Definition 2.2.11. Two classes of algorithms are functionally equivalent (or simply,
equivalent) if they compute the same class of functions, or relations for nondeter-
ministic algorithms.

Remark 2.2.7. Equivalence of algorithms is stronger than functional equivalence be-
cause more algorithms are glued together by equivalence than by functional equiv-
alence. Really, when two algorithms compute the same function, then they compute
the same language. However, it is possible to compute the same language by comput-
ing different functions. For example, let us take the alphabet {a, b} and two automata
A and B. The first one gives as its output the word that is its input. It computes the
identity function f (x) = x . The automaton B gives the following outputs: B(ε) = ε,
B(a) = b, and B(b) = a. As a result, A and B are equivalent, but not functionally
equivalent.

2.2.5 The Church–Turing thesis

Our engraved knowledge may bite into our thinking
certain errors that become well-nigh ineradicable.

Rogers MacVeagh and Thomas Costain, Joshua

In spite of all differences, there is a unity in the system of algorithms. While new
models of algorithm appeared, it was proved that any of them could not compute
more functions than the simplest Turing machine with one one-dimensional tape.
Consequently, the class of each of the mathematical models of algorithm is either
functionally weaker or equivalent to the class of all Turing machines (or equivalently,
to the class of all partial recursive functions).

This situation influenced the emergence of the famous Church–Turing thesis, or
better called the Church–Turing conjecture, in different forms. Here we consider a
Turing’s version that states that the informal notion of algorithm is equivalent to the
concept of a Turing machine and a Church’s version that asserts that any computable
function is a partial recursive function. In other words, an algorithmic form of the
Church–Turing thesis states:
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Any problem that can be solved by an algorithm can be solved by some
Turing machine and any algorithmic computation can be done by some
Turing machine.

Saying that a problem can be solved by an algorithm, we assume potentially infi-
nite, or unbounded, computability and skip, as it is traditionally done in the Church–
Turing thesis, the problem of efficiency because conventional Turing machines, be-
ing very simple, are very inefficient. Consequently, we consider problems of com-
putability in general and tractability or practical computability separately, making at
first emphasis on computability and computing power.

All models of algorithms that are functionally equivalent to the class of all Turing
machines are called recursive algorithms, while classes of such algorithms are called
Turing complete.

Those kinds of algorithms that are functionally weaker than Turing machines are
called subrecursive algorithms. Finite and stack automata with one stack, recursive
and primitive recursive functions give examples of subrecursive algorithms.

It is possible to give other forms of the Church–Turing thesis.
An automata form of the thesis states:

Any computation performed by an abstract automaton can be per-
formed by some Turing machine.

A prescription form of the thesis states:

Any computation performed according to some algorithmic/construc-
tive rules can be performed by some Turing machine.

A (physical) machine form of the thesis states:

Any computation performed by a computing machine (by a computer)
can be performed by some Turing machine.

For many years all attempts to find mathematical models of algorithms that were
stronger than Turing machines have been fruitless. For example, Kolmogorov al-
gorithms were developed aiming directly at this goal but appeared to be equivalent
to the class of all Turing machines (Kolmogorov and Uspensky, 1958). The same
equivalence has been proved for many other models of algorithms. That is why the
majority of mathematicians and computer scientists believe that the Church–Turing
thesis is true. More accurate researchers consider this conjecture as a law of the the-
ory of algorithms and complexity theory, as well as in the methodological context of
computer science. It is similar to the laws of nature that might be supported by more
and more new evidence or refuted by a counter-example but cannot be proved. At
the same time, many logicians assume that the thesis is an axiom that does not need
any proof. Few believe that it is possible to prove this thesis utilizing some evident
axioms.

The Church–Turing thesis is extensively utilized in the theory of algorithms, as
well as in the methodological context of computer science. It has become almost
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an axiom. However, it has always been only a plausible conjecture like any law of
physics or biology. It is impossible to prove such a conjecture completely.

As Nelson writes (1987), “Although Church–Turing thesis has been central to
the theory of effective decidability for fifty years, the question of its epistemological
status is still an open one.” Nelson’s view, is prompted by a naturalistic attitude
toward such questions in mathematics, is that the thesis is an empirical statement of
cognitive science, which is open to confirmation, amendment, or discard, and which,
on the current evidence, appears to be true.

Thus, we can only add some supportive evidence to the thesis or refute it. At
the same time, inside mathematics, we can prove or refute this conjecture as some
statement about properties of mathematical models of algorithms if we choose an
adequate context. This possibility is considered below.

The Church–Turing thesis is central in computer science and is implicitly one
of the cornerstones of mathematics as it separates provable propositions from those
that are not provable. So, it not a surprise that there is an extensive literature on
the Church–Turing thesis. The domineering opinion is that the thesis is true. It is
supported by numerous arguments and examples (cf., Turing, 1936; Kolmogorov
and Uspensky, 1958; Rogers, 1987). Many developments in artificial intelligence
and cognitive psychology provide strong empirical support for the Church–Turing
thesis.

At the same time, there are researchers who suggest arguments against validity
of the Church–Turing thesis. For example, Kalmar (1959) raised intuitionistic ob-
jections, while Lucas and Benacerraf discussed objections to mechanism based on
theorems of Gödel that indirectly threaten the Church–Turing thesis.

Another aspect of discussion related to the Church–Turing thesis is its ontologi-
cal status. The traditional and most popular opinion is that validity of the thesis can
be settled only empirically. Nevertheless, some mathematicians support the opposite
point of view. For example, Shoenfield (1967) suggests that Church’s thesis might be
proved from evidently true axioms about the notion of effective computability. Stahl
(1981) considers the prospects for proving Church’s thesis from a formal definition of
effective computability, and argues that this possibility cannot be excluded automat-
ically. Mendelson (1990) challenges the standard conception of the Church–Turing
thesis as an unprovable thesis. To support his point of view, he asserts that Turing’s
justification for his definition of Turing machine (1936) is as clear a proof as he have
seen in mathematics, and it is a proof in spite of the fact that it involves the intuitive
notion of effective computability. At the same time, Thomas (1971) discusses the ar-
guments which Kleene, Turing and Church have written in favor of Church’s thesis,
demonstrating that these arguments are not convincing. This discussion shows that
the concept of mathematical proof is still vague and is not the same as the concept of
a formal proof.

There are methodological arguments in support of the idea that the thesis can-
not be proved by conventional logical technique from evidently true and decidable
axioms about the notion of effective computability. Rigorous mathematical proofs
are done in formal mathematical systems. As it is demonstrated (cf., for example,
Smullian, 1962), such systems are equivalent to Turing machines as they are built by
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means of Post productions (Post, 1943). Thus, as Turing machines can model proofs
in formal systems, it is possible to assume that proofs are performed by Turing ma-
chines.

As a result, we come to a circle in argumentation because we have to prove a
statement about Turing machines by means of Turing machines. However, it is pos-
sible to overcome this limitation. If we use a sufficiently general context or more
powerful methods of deduction such as provided by superrecursive algorithms, we
can prove some versions of the Church–Turing thesis. For example, in (Burgin and
Borodyanskii, 1991) a very general computational scheme is defined. Then it is
proved that a natural axiom determines the class of all inductive Turing machines
(cf. Chapter 4). Addition of the axiom of computability in a finite number of steps
characterizes the class of all Turing machines. In a similar way, it is possible to find
general computational schemes that definitely include algorithms. Then axioms can
separate recursive algorithms in this class.

Different modifications of the Church–Turing thesis have been suggested. For
example, Gandy (1980) presents a new version of the thesis:

Whatever can be calculated by a (discrete deterministic) machine is com-
putable.

Here a machine is taken to consist of a (possibly infinite) set S of states and a
transition function “→” that satisfies four rather complicated principles. States are
hereditarily (finite and nonempty) sets built up from an infinite collection of labels.
Each of the four principles implies that some aspect of the machine is finite.

Yao (2003) considers the Extended, or Polynomial Time, Church–Turing thesis:

Any function computable by a computing machine (hardware device) in time
T (n) for input of size n can be computed by some Turing machine in time(
T (n)

)k
for some fixed k.

Tucker and Zukker (2002) introduce a Generalized Church–Turing thesis:

Computability of functions on many-sorted algebras can be formalized by
the theory of partial recursive functions on many-sorted algebras.

Copeland, in the Stanford Encyclopedia of Philosophy, gives a detailed exposi-
tion of the history, meaning, and role of the Church–Turing thesis.

Thus, for a long time, Turing machines and other equivalent computational struc-
tures were treated as the absolute boundary for algorithmic computations. Discovery
of new more powerful constructions extended possibilities of algorithms. As a result,
treating computational power of algorithms, we separate three main classes: recur-
sive, subrecursive, and superrecursive automata and algorithms. Each type of recur-
sive automata or algorithms form a class in which it is possible to compute exactly the
same functions that are computable by Turing machines. Examples of recursive algo-
rithms are partial recursive functions, RAM, von Neumann automata, Kolmogorov
machines, and Minsky machines. Each type of subrecursive automata or algorithms
forms a class that has less computational power than all Turing machines. Examples
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of subrecursive algorithms are finite automata, primitive recursive functions and re-
cursive functions. Each type of superrecursive automata or algorithms forms a class
that has more computational power than all Turing machines. Examples of super-
recursive algorithms are inductive and limit Turing machines, limit partial recursive
functions and limit recursive functions.

In addition to everything that is written and said concerning the Church–Turing
thesis, it is necessary to understand that all mathematical constructions embodying
the informal notion of algorithm are only models of algorithm. Consequently, what
is proved for these models has to be verified for real computers. In our case, we
need: (1) to test whether recursive algorithms give an adequate representation for
modern computers and networks, and (2) to find whether it is possible to build such
computers that go beyond the recursive schema. We will see in Chapter 4 that the
answer to the first question is negative, while the second problem has a positive
solution.

This brings us a new vision of the Church–Turing thesis. While in general this
thesis has been disproved by invention of different classes of superrecursive algo-
rithms, under definite reasonable conditions that restrict computational processes, it
would be possible to prove validity of the thesis.

2.3 Centralized computation: Turing machines

“Begin at the beginning,”
the King said gravely,

“and go on until you come to the end; then stop.”

Lewis Carroll, 1832–1898

A Turing machine is an ideal device, which is in many aspects similar to a modern
computer. At first, we consider the structure and then describe functioning of Turing
machine. To make the reader’s understanding easier, we consider, at first the simplest
Turing machine with one tape.

2.3.1 A simple Turing machine

The structure of Turing machine, as an automaton, consists of three main compo-
nents, which we can call hardware, software, and infware. We begin with the in-
fware, that is, with description and specification of information that is processed by
Turing machine. Infware of a computer consists of information, or more exactly, of
data that are processed by the computer. A Turing machine T is an abstract automa-
ton, which works with symbolic information. Consequently, formal languages with
which T works constitute its infware. Usually, these languages are divided into three
categories: input, output, and working language(s). In contrast to the languages that
we use in our everyday life (such as English, German or French), Turing machines
use formal languages.
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A formal language L consists of three parts: the alphabet A of L, which is a finite
set of symbols; the set A∗ of all words in A, which are finite strings of symbols; and
of the subset L of the set A∗. Elements from L are called the words of the language
L. The set A∗ is often represented by generating rules R. Because a formal language
is an arbitrary subset of A∗, it is possible to consider the languages of the Turing
machine T as one language L(T ), which consists of three parts:

L = (
LI, LW, LO

)
where LI is the input language, LW is the working language,

and LO is the output language of T. Each of them has the following structure LX =(
AX, RX, LX

)
where AX is the alphabet, RX is the set of generating rules, and LX is

the set of all words of LX. Usually the generating rules for formal languages consist
of one operation, which is called concatenation and combines two words into one.
For example, if x and y are words, then xy is the concatenation of x and y. Taking
the alphabet A = {1, 0} with two words x = 1001 and y = 001 in this alphabet,
we have 1001001 as the result of concatenation. A∗ is also a formal language and it
includes the empty word ε that contains no symbols.

Now let us look at the hardware or device of Turing machine. What is the hard-
ware of a computer? It consists of all devices (processor, system of memory, display,
keyboard, etc.) that constitute the computer. In a similar way, a Turing machine T
has three abstract devices: a finite automaton A, which we may the controller of T
and which controls performance of the Turing machine T ; a processor or operat-
ing device h, which is traditionally called the head of the Turing machine T ; and
the memory L , which is traditionally called the tape or tapes of the Turing machine
T . These devices are presented in Figures 2.2–2.4, which give the structure of the
simplest kind of a Turing machine.

The tape L is divided into different but uniform cells. Each cell can contain
a symbol from an alphabet of the Turing machine T or be empty. Each cell from
a linear two-sided tape has two neighbors left and right. In a one-sided tape, the
beginning cell has only one neighbor.

The head h performs information processing in T . However, in comparison to
computers, this operational device perform very simple operations. There are three
types of such operations:

1. Reading a symbol from the cell, in which the head is situated.
2. Writing a symbol to the cell, in which the head is situated.
3. Going to the next cell.

In the theory of algorithms and computation, these operations are usually con-
sidered as elementary, that is, indivisible entities. However, more detailed analysis
displays their inner structure. For instance, the operation reading a symbol consists
of three stages: at first, the head begins to recognize or identify the symbol, proceeds
to make a decision whether to accept or reject this symbol, and then performs the
corresponding action (acceptance or rejection). The operation writing a symbol also
consists of three stages: at first, the head begins to check whether the cell is empty
or not, proceeds to choose the necessary symbol for writing in the first case and sub-
stitution in the second case, and then performs the corresponding action (writing or
rewriting). The operation going to the next cell depends on the metarules that explain
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Figure 2.2.

Figure 2.3.
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Figure 2.4.

where the head can go. When T has a linear tape, then the head has two options: go
to the right or to the left cell. When T has a two-dimensional tape, the head tradition-
ally has four options: to go to the right, up, down or to the left. With n-dimensional
tape the number of option becomes 2n , where n is any natural number.

The control automaton A has the state configuration or space S = (q0, Q, F)

where Q is the set of states or the state space of both A and T , q0 is an element from
Q that is called the start or initial state, and F is a subset of Q that is called the set
of final (in some cases, accepting) states of T . The automaton A regulates the state
of T , performing specific operations. Such operations are grouped into three types:

1. Input operations, the first of which is the operation of starting the Turing ma-
chine T .

2. Output operations that include stopping the Turing machine T .
3. Computational operations that change the full state of the Turing machine T .

This full state includes the state of A, the symbol that is written in the cell where
the head is situated, and the position of the head.

For each operation, there are specific rules. Some of them are written explicitly in
the program of the Turing machine T , while others are given implicitly as metarules.
An example of the first kind is given by the rules of changing the state of T . An
example of the second kind is given by the rules of starting or stopping the Turing
machine T .

Connections between the automaton A and the head h may be organized in a dif-
ferent way. The head h may be rigidly connected to A. In this case, the tape L moves
when it is necessary to observe the next cell. This structure is presented in Figure 2.2.
The connection between A and h may be flexible, allowing h to move from one cell
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to another. This structure is presented in Figure 2.3. One more option is that h exists
autonomously from A, only sending to A the information about the content of cells
and receiving from A the instructions of what to do next. This structure is presented
in Figure 2.4.

In such a way, the control device A regulates behavior of the operating device h
and the tape. When h is a static agent (Figure 2.2), A sends a direct command to h if
it is necessary to change a symbol in the observed cell and to the tape if it is necessary
to move to the adjacent cell. When h is a dynamic agent (Figure 2.3), A also sends a
direct command to h if it is necessary to change a symbol in the observed cell and/or
to move to the adjacent cell. When h is an autonomous agent (Figure 2.4), A sends
information on the current state to the head h and in turn h decides what to do using
the rules of T .

As we know, different programs constitute software on a computer. Programs tell
our computer what to do and what not to do. Software of a Turing machine is a single
program in a form of simple rules. Using traditional notation, we present these rules
in the following form:

qhai → a j qk,

qhai → Rqk,

qhai → Lqk .

Each rule directs one step of computation of the corresponding Turing machine.
The first rule means that if the state of the Turing machine is qh and the head h
observes in the cell the symbol ai, then the state of the Turing machine becomes qk
and the head h writes the symbol aj in the cell where it is situated. The second rule
means that if the state of the Turing machine is qh and the head h observes in the
cell the symbol ai, then the state of the Turing machine becomes qh and the head h
moves to the next cell to the right from the cell where it is situated. The third rule
means that if the state of the Turing machine is qh and the head h observes in the
cell the symbol ai, then the state of the Turing machine becomes qh and the head h
moves to the next cell to the left from the cell where it is situated.

Other representations of rules allow Turing machine to rewrite a symbol on the
tape and to make a move in one step.

Besides, it is possible to define functioning of Turing machine not by rules, but
by a transition function δ, which is defined by the corresponding rules (Hopcroft et
al., 2001).

δ(qh, ai ) = (qk, a j , D).

For a linear tape, the direction D is either R, which means a move to the right, or
L, which means a move to the left, or S, which means no move.

Thus, rules of a Turing machine T define the transition function δ of T and
describe changes of A, h, and L . In particular, they determine the transition function
δA of the automaton A.

An important concept for Turing machine is its instantaneous description (ID). ID
reflects a given Turing machine T between two consecutive steps of computation. ID
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includes: the state of the control device A, the position of the head, and the word(s)
written on the tape(s) of the Turing machine T .

2.3.2 Types and basic properties of Turing machines

Turing machines come in different types and kinds.

Definition 2.3.1. A Turing machine is called deterministic if it has no two or more
rules with the same left part. Otherwise, a Turing machine is called nondeterministic.

In other words, a deterministic Turing machine has at most one rule for contin-
uation at each step of computation, while a nondeterministic Turing machine allows
in some cases many successions.

Let us consider functioning of deterministic and nondeterministic Turing ma-
chines in more detail.

A deterministic Turing machine T with one tape begins its functioning from the
start position, where the control device A of T is in the state q0, the head h is in a
cell of the tape, and a word, which may be empty, is written onto the tape. Usually it
is assumed that the head h observes the first symbol of the word written in the tape,
but this does not restrict the computing and accepting power of Turing machines. At
the beginning, the control device A finds the rule the left part of which corresponds
to the start position, that is, the left part of the rule must be equal to q0ai if the
head h observes the symbol ai . Then the machine T performs actions according
to this rule, going to a new position. Then A finds the rule the left part of which
corresponds to the new position, that is, the left part of the rule must be equal to
qka j if the head h observes the symbol ai and A is in the state qk . Then T performs
actions according to this rule, coming into a new position and so on. Because each
time there is no more than one rule with the necessary left part, each action of the
machine T is determined uniquely. If T comes to a position which is not final and
for which there is no corresponding rule for continuation, T halts without giving a
result in the computing mode and does not accept the initial word in the accepting
mode.

If T comes to a position in which the state of A is final, T halts. In the computing
mode, T gives the word that is written in the tape as its result. In the accepting mode,
T accepts the word that was written in the tape at the beginning of its functioning. If
T never halts, then it gives no result in the computing mode and does not accept the
initial word in the accepting mode.

For a nondeterministic Turing machine T , it is possible that at some positions,
there is more than one rule with the necessary left part. In this case, it is assumed that
T performs all possible actions. Thus, rules generate several processes in T . If one
of these processes brings T to a final state, then in the accepting mode, T accepts the
word that was written in the tape at the beginning of its functioning. In all other cases,
T does not accept the initial word. From a different perspective, a nondeterministic
accepting Turing machine T ‘guesses’ what choice to make at any step. So, the input
is accepted if T can choose the right path from the start.
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In the computing mode of T , there are four options for defining its result. One
option is to take as the result all final words in the tapes for all processes that termi-
nate in a final state. Another option is to order all processes in T and to take as the
result the final word in the tapes for the least process that terminates in a final state.
One more possibility is to take as the result all final words in the tapes for all shortest
processes that terminate in a final state.

The third option is to define a result of computation for a nondeterministic Tur-
ing machine T by considering this machine as a set-valued algorithm in the sense of
(Burgin, 1984). That is, nondeterminism of T results in a possibility for T sometimes
to choose what will be the next step of computation and go along several (occasion-
ally infinitely many) paths of computation. In this case, the result of the computation
is the set of all words that may be written in the tapes of T if T does not have output
tapes or in the output tapes of if T has output tapes when T stops after performing
computation along one of the possible paths.

The fourth option is to take as the result all final words in the tapes for all shortest
processes that terminate in a final state. In this case, T also defines a set-valued
algorithm.

However, it is necessary to remark that accepting modes are, as a rule, studied
for nondeterministic Turing machines. This is justified by the two following results.

Theorem 2.3.1. A set X is acceptable by a deterministic Turing machine if and only
if X is computable by some deterministic Turing machine.

Theorem 2.3.2. For every nondeterministic Turing machine, there is a deterministic
Turing machine that accepts exactly the same set of words.

It is possible to find a proof of this result in (Hopcroft et al., 2001).
Theorem 2.3.2 shows that classes of all deterministic and all nondeterministic

Turing machines have the same accepting power.
Turing machine can have multiple tapes and heads. The structure of a Turing

machine with three tapes and three heads is given in the picture 4.1. However, the
quantity of tapes does not add to the computing and accepting power of Turing ma-
chines.

Theorem 2.3.3. For every Turing machine with m tapes and n heads, there is a Tur-
ing machine with one tape and one head that computes (accepts) exactly the same
function (the same set of words).

For accepting Turing machines, it is possible to find a proof of this result in
(Hopcroft et al., 2001). For computing Turing machines, the proof is similar.

Theorem 2.3.3 shows that the class of all Turing machines with multiple tapes
and heads has the same computing and accepting power as the class of all Turing
machines with one tape and one head.

Even more, it is possible to prove a similar result for Turing machines with an
infinite number of tapes that are enumerated by natural numbers.
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Theorem 2.3.4. For every Turing machine with the countable quantity of tapes
and/or heads, there is a Turing machine with one tape and one head that computes
(accepts) exactly the same function (the same set).

The proof is similar to the proof of Theorem 2.3.2 because there are only finite
number of finite parts of tapes at any given moment of computation.

All tapes that are considered above are one-dimensional. However, Turing ma-
chine can have multidimensional tapes. This can cause changes in several possible
moves of the head. For example, the head can move in four directions (left, right, up,
and down) in a two-dimensional tape (cf. Figure 2.5).

Figure 2.5. Two-dimensional tape with a head and directions for possible moves.

Theorem 2.3.5. For every Turing machine with a multidimensional tape, there is a
Turing machine with one linear tape that computes/accepts exactly the same func-
tion.

It is possible to find a proof of this result in (Hartmanis and Stearns, 1965).
Theorem 2.3.5 shows that the class of all Turing machines with multidimen-

sional tapes has the same computing and accepting power as the class of all Turing
machines with one linear tape and one head. At the same time, it is proved that many
tapes or multidimensional tapes increase efficiency of Turing machines, for example
by reducing the time for different computations.

2.3.3 Universal Turing machines and operations with Turing machines

As written in (Blum et al., 1997), “A pillar of the classical theory of computation is
the existence of a universal Turing machine, a machine that can compute any (recur-
sively, M.B.) computable function. This theoretical construct foretold and provides
a foundation for the modern general-purpose computer.”

As our aim is to go beyond recursive computations, we begin with a definition of
an automaton or algorithm that is universal in some class K of automata/algorithms
that work with inputs from a set X . As before, we assume that X is the set of all words
in some alphabet. It is useful to build and study universal automata and algorithms in
different classes. The construction process begins with some description c : K → X
of all automata or algorithms in K.
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Definition 2.3.2. An automaton or algorithm U is universal for the class K if given
a description c(A) of an automaton or algorithm A from K and some input data x for
it, U simulates A, working with the same input x , and gives the same result as A.

Definition 2.3.3. If U is universal for the class K and belongs to K, then U is called
a universal automaton or algorithm in K.

For instance, a universal Turing machine is any Turing machine that is universal
for the class of all Turing machines.

A description c(T ) of a Turing machine T given to a universal Turing machine U
plays the role of a program for a computer. Thus, each stored program in a computer
that executes this program is, in this sense, a separate automaton.

To build a universal Turing machine, we need, at first, to codify all Turing ma-
chines. Theorems 2.3.1–2.3.3 show that it is sufficient to consider only Turing ma-
chines with one linear tape. That is, we construct a function c : T → �+ where T the
class of all Turing machines with an alphabet � and �+ is the set of all nonempty
words in this alphabet. Because any alphabet can be coded in words of the two ele-
ment alphabet {1, 0}, we take from the beginning that � = {1, 0}.

At first, we enumerate all binary strings so that each string corresponds to one
integer, and each integer corresponds to one string. The most natural way to do this,
at first, to order all words by length, and then to lexicographically ordered words of
equal length. A lexicographical order means that two words u and v are compared
symbol by symbol from the left to the right. The first time they have different sym-
bols determines their order. If these symbols are 1 in u and 0 in v, then u is larger
than v. After all words are ordered, a natural number is corresponded to each word,
preserving this order. In such a way, ( becomes the first word, 0 becomes the second,
1 becomes the third, 00 becomes the fourth, 01 becomes the fifth, and so on.

Now we can codify Turing machines, building a function c : T → �+. To rep-
resent a Turing machine T as a binary string, we at first assign integers to the states,
tape symbols, and directions L, R, and S. If T has the states q1, q2, . . . , qk for some
number k, then the start state is always q1 and we correspond to each qi the string 0i .
To the tape symbols 0, 1, and the blank symbol B, which denotes an empty cell, we
correspond 0, 00, and 000, respectively. Then we denote the direction L as D1, di-
rection R as D2, and direction S, which means no move at all, as D3, and correspond
D1, D2, and D3 words 0, 00, and 000, respectively.

Once we have established an integer to represent each state, symbol, and direc-
tion, we can encode the transition rules or, equivalently, the transition function δ.
When we have a transition rule qi , a j → qk, al , Dm, for some natural numbers i ,
j , k, l, and m, we code this rule using the string 0i l0 j l0kl0l10m . As each number i ,
j , k, l, and m is greater than or equal to one, there are no occurrences of two or more
consecutive l’s within the code for one transition rule. Having codes for all transi-
tion rules, we write them as one word in which they are separated by couples of l’s.
For example, we have the code 0i l0 j l0kl0l10m110hl0t l0r l0q10p for two transition
rules qi , a j → qk, al , Dm and qh, at → qr , aq , D p. As a Turing machine is
completely described by its states, initial state, tape symbols, and transition rules, in
such a way, we obtain a complete coding c(T ) of T by a binary word. This coding
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is used for many purposes. For example, the coding c of a Turing machine allows
us to give the instantaneous description (ID) of T . An instantaneous description of
a Turing machine T represents the complete state of T after some step of computa-
tion. This description includes the word(s) written in the tape of T , the state of the
control device of T , and the position of the head H of T . In its turn, the coding and
instantaneous descriptions are used for building a universal Turing machine.

Since for each Turing machine, it is possible to assign natural numbers to its
states and tape symbols in many different orders, there exist more than one encoding
of the typical Turing machine. Nevertheless, any such encoding may be used by
a universal Turing machine for simulating one and the same Turing machine. The
only difference may be in efficiency of simulation, as some encodings give better
efficiency in comparison with others.

Taking a function c : T → �+, we obtain the following result.

Theorem 2.3.6. For any class T of all Turing machines with the same working al-
phabet � and alphabet Q of states, there exists a universal Turing machine.

It is possible to find a proof of this result, for example, in (Minsky, 1967). In
addition, this theorem is a corollary of Theorem [4.3.11.],which is proved in Section
4.3 for universal inductive Turing machines.

Building computers, networks, and software systems, we often combine differ-
ent devices and programs. For instance, to develop software systems subprograms
are frequently used and now the component-based software development becomes
more and more popular. Such combination of devices and programs is represented in
the theory by operations with automata and algorithms. Studying properties of such
operations, we learn better how to build more advanced computers, networks, and
their software.

In this section, we consider operations with Turing machines.
Any operations with Turing machines that are performed by other Turing ma-

chines do not allow one to go beyond the space TM of all Turing machines. This is
the consequence of the famous Church–Turing thesis. Let us consider exact defini-
tions and results.

Definition 2.3.4. An n-place algorithmic operation on a space AL of algorithms is
an algorithm H that gives rules for combining any system of algorithms A1, . . . , An

from AL into an algorithm H(A1, . . . , An) from AL.

As an external operation on the space of all Turing machines, the algorithm H
works in the following manner. Given some input x0, the algorithm H selects some
Turing machine Ai after which this input is sent and the machine Ai begins to process
x0. The algorithm H controls this processing, utilizing its rules/criteria. When the
state and/or the memory content of Ai satisfy these criteria, H selects another Turing
machine A j , takes a definite part x1 of the memory content of Ai , and sends this x1 to
A j as its input. Then A j begins to process x1 under the control of H and the process
continues until one of the Ai or the algorithm H comes to a final state.

As an internal operation, the algorithm H can change the state of any of the
Turing machines Ai , as well as direct the head of this machine to a definite cell.
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Let us consider algorithmic operations in the space of recursive algorithms, that
is, algorithms that are functionally equivalent to Turing machines.

Theorem 2.3.7. If an algorithmic operation H with Turing machines Ti is performed
by a Turing machine, then the algorithm H(T1, . . . , Tn) is a equivalent to a Turing
machine.

To prove this statement, we use induction on the number of rules in the algorithm
H , demonstrating that a specially built Turing machine can model the whole func-
tioning process of the algorithm H(T1, . . . , Tn) functioning. This machine works in
a similar way to the universal Turing machine.

Thus, we see that application of recursive algorithms to recursive algorithms does
not extend the class of algorithms although it is a nonlinear operation on the space
of all recursive algorithms. It shows that in computability spaces of all recursive
algorithms the nonlinear phenomena do not appear.

Remark 2.3.1. There are algorithmic operations on Turing machines transforming
them in superrecursive algorithms. For instance, a simple algorithmic operation can
make an inductive Turing machine out of a conventional Turing machine.

2.4 Distributed computation: Neural networks and cellular
automata

“Ah well! It means much the same thing,”
said the Duchess, “and the moral of that is –

‘Take care of the sense,
And the sounds will take care of themselves.’ ”

Lewis Carroll, 1832–1898

Turing machines, due to their variety, can model several computing architectures
and realize many computational paradigms. However they do not encompass the
whole diversity of computing strategies. The reason is that their creation was based
on analysis of the behavior of a person who performs some computations (Turing,
1936), that is, Turing machine is a behavioristic model of intellectual aspects of
people.

Another way to achieve the same goal of creating a machine that assists people
in their intellectual activity is to model the structure of the human mechanism for
such activity. This mechanism is the brain. Copying its structure, we get another
model of abstract automata – abstract neural networks. They were introduced by
McCulloch and Pitts (1943) to model the most important features of the brain. Thus,
three kinds of neural networks are studied: natural, such as the brain, and artificial,
which are subdivided into abstract and physical artificial neural networks. As the
brain is treated as the mechanism for intelligence, the artificial neural network is a
structural model of intellectual aspects of people.
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Consequently, an artificial neural network is an interconnected assembly of sim-
ple processing elements, which are called units, nodes or neurons and whose func-
tionality is based on a similarity to the biological neuron. That is why we begin this
section with a description of the human brain and its comparison to the main theoret-
ical computational model, Turing machine. Then we describe the structure, proper-
ties and functions of artificial neuron and neural networks. Artificial neural networks
represent computer architecture complimentary to Turing machines. They embody
distributed computation. And like Turing machines, artificial neural networks have
many types.

There are also other models of distributed computing architecture: cellular au-
tomata, which has become very popular; systolic arrays; iterated arrays; Petri nets;
and grid automata. The first three models are considered in this section, while grid
automata are studied in Chapter 4.

2.4.1 The brain and the Turing machine

We are not going to discuss here the whole structure of the brain. It is possible to find
it in more or less detail in many books. Our goal is to demonstrate what features of
the brain gave birth to such model of algorithms and computation as abstract neural
networks.

It is known that the brain contains many billions of very special kinds of cells,
which are called nerve cells or biological neurons. An estimation is that there are
1011±1 neurons in the human brain. This number is approximately equal to the num-
ber of stars in our galaxy. Brain neurons are wired up in the 3-dimensional space
into a very complicated intercommunicating network. Real brains are also orders of
magnitude more complex than any artificial neural network so far considered.

Typically each neuron is physically connected to tens of thousands of others,
from which it receives and/or to which it sends information by specific signals. Sig-
nals are of two kinds – electrical and chemical. Electrical signals transmit informa-
tion inside neurons, while communication between neurons is realized by chemical
signals. These connections are not merely on or off – the connections have varying
strength which allows the influence of a given neuron on one of its neighbors to be
either very strong, very weak (perhaps even no influence) or anything in between.
Furthermore, many aspects of brain function, particularly the learning process, are
closely associated with the adjustment of these connection strengths. Brain activity
is then represented by particular patterns of firing activity amongst this network of
neurons. It is supposed that this simultaneous cooperative behavior of very many
simple processing units is at the root of the enormous sophistication and computa-
tional power of the brain.

It is interesting to know that some researchers reject the role of neurons in the
brain that is ascribed to them by standard theories. For example, Pribram explains
that according to the latest experimental data information processing in the brain is
performed not by neurons but by dendrites; that is, dendrites perform those opera-
tions that are traditionally related to neurons (cf. Pribram, 2002).
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According to Pribram’s holographic theory of the brain, both time and spectral
information are simultaneously stored in the brain. However, similar to the Heisen-
berg’s uncertainty principle, there is a limit with which both spectral and time values
can be concurrently determined in any measurement (Pribram, 1991). This uncer-
tainty describes a fundamental minimum defined in 1946 by Gabor (the inventor of
the hologram) as a quantum of information. Dendritic microprocessing is conceived
(by Pribram) to take advantage of the existing uncertainty relation to achieve optimal
information processing. The brain, as a whole, operates as a “dissipative structure”
that continually self-organizes to minimize its uncertainty.

Although neurons in the brain have different forms, they have the same structure.
A biological neuron consists of three parts:

♦ The cell body, the central part, contains the nucleus.
♦ The axon, which is a fiber (often very long), carries impulses from the cell body

to other neurons.
♦ The dendrites, shorter fibers, receive impulses and carry them toward the cell

body.

An important role in information processing in the brain belongs to the gap be-
tween the dendrite of one neuron and the axon of the next. Such a gap is called a
synapse. A neural signal crosses the synapse by means of neurotransmitters. Namely,
the electrical propagation along the transmitting neuron releases neurotransmitters,
which diffuse across the gap and trigger receptors on the next, accepting neuron,
inducing a new electrical signal.

A nerve is a bundle of elongated axons belonging to hundreds or thousands of
neurons.

Signal transmission between neurons begins with electrical pulses (action-po-
tentials or “spike” trains), traveling along the axon. These pulses come to synaptic
terminals of the axon, where they initiate the release of a small amount of chemical
substance or neurotransmitter. This substance travels across the synaptic cleft and is
then received at post-synaptic receptor sites of the dendrites, situated on the other
side of the synapse. This initiates a change in the dendritic membrane potential.
Such post-synaptic-potential (PSP) change may serve to increase (hyperpolarize) or
decrease (depolarize) the polarization of the post-synaptic membrane. In the former
case, the PSP tends to inhibit generation of pulses in the receiving neuron, while
in the latter, it tends to excite the generation of pulses. The size and type of PSP
produced depends on various factors such as the geometry of the synapse and the
type of neurotransmitter. Over 50 different synapses have been identified. Each PSP
will travel along its dendrite and spread over the cell body. The receiving neuron
sums or integrates the effects of thousands of input PSPs over its dendritic tree and
over time. The integrated potential eventually reaches the base of the axon (axon-
hillock) and if it exceeds a threshold, the cell ‘fires’ and generates an action potential
or spike, which starts to travel along its axon. This then initiates the whole sequence
of events again in neurons contained in its pathway. As complicated as the biological
neuron is, it can be simulated in computer science with a simplified model of artificial
neuron.
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In spite of having a huge diversity of forms, there are three types of biological
neurons (Atkinson et al., 1990). The sensory neurons transmit impulses from the
sense organs (receptors), such as eyes, ears, and skin. The motor neurons send signals
from the central nervous system to the effectors, which are the muscles and glands
of the body, enabling us to make movements. The connector neurons or interneurons
receive signals from the sensory neurons and send impulses to other interneurons or
to motor neurons.

It is necessary to remark that besides neurons the brain contains other con-
stituents, including glia cells and blood vessels that bring physical resources for
functioning of the brain. It is assumed that the brain is the mechanism for human
intelligence. At the same time, artificial means of simulating intelligence are based
on algorithms and automata developed by people. The basic model for algorithms
is Turing machine. As we can see the brain and Turing machine have very different
structures. The brain is a very complicated network of relatively simple processing
units with a high degree of interconnection. In contrast to this, Turing machine usu-
ally consists of three parts: the control device, the operating device (the head), and
a uniform memory. Functioning of these devices is organized by (eventually a very
sophisticated) program in the form of simple instructions.

Turing machines model human behavior, ignoring imitation of the structure of
the human control organ, the brain. As the majority of computers are organized in
the same fashion as Turing machines, we can compare the situation with aviation. At
first, people, in their attempts to fly, tried to imitate birds. When this did not give pos-
itive results, people invented other flying schemes: planes, balloons, and rockets. All
are built in a dissimilar way in comparison with birds, although some structural sim-
ilarities exist; for example, planes and birds have wings and tail. Parallel to this, the
brain, Turing machines, and traditional computers have similar components: memory
and input/output devices.

However, people still have not abandoned their efforts to create mechanisms that
fly like the birds do. In the field of artificial intelligence, people also try to create
artificial means that imitate the brain in its structure and functioning. Such means
are called artificial neuron networks and neurons.

2.4.2 A model of a neuron

An artificial neuron, a building block of an artificial neural network, is rather loosely
based on the brain’s nerve cell, or natural neuron. Simple forms of an artificial neu-
ron are called the Threshold Logic Unit (TLU). Artificial neurons may be realized as
a program on a computer, as some electronic device or to be a formal construction,
which is called abstract neuron. The simplest form of abstract neurons, Boolean neu-
rons, was originally proposed by McCulloch and Pitts (1943). It was the first math-
ematical model of brain neurons. Boolean neurons have only two options for input
and output: 1 and 0.

Later much more complicated models of neurons have been considered. They
can work with arbitrary natural, rational, and even real numbers (Siegelman, 1999),
realizing a variety of arithmetical and logical functions.
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The contemporary structure of an artificial neuron is presented in Figure 2.6.

Figure 2.6. a) Artificial neuron as an elementary unit; b) artificial neuron with the inner struc-
ture.

Neurons receive inputs via weighted links from other neurons. In Figure 2.6, all
left arrows show input connections, or inlets, of the neuron, the right arrow repre-
sent the output connection, or outlet of the neuron. The neuron inputs are processed
according to the neuron activation function. Signals are then passed on to other neu-
rons if the neuron receives a sufficiently strong input signal from the other neurons
to which it is connected.

In Figure 2.6b, {xi ; i = 1, 2, . . . , m} is a set of m inputs, and {w j ; j =
1, 2, . . . , n} is the set of n internal parameters, weights of the neuron. As a rule,
n = m. The activation a is a function of the inputs and parameters, a = f (xi , wi ).
Usually, f (xi , wi ) has the form of a linear combination f (xi , wi ) = x1w1 + . . . +
xmwm = ∑m

i=1 xiwi . The output y is a function of the activation, y = g(a). It is
usually defined by the activation-output relation by means of a threshold parameter
θ . In this case, we have:

g(x) =
{

1 when a ≥ θ ,

0 when a < θ .

The threshold function g(x) is sometimes called a step-function or hard-limiter.
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We can take y = h(xi , wi ) for some function h, eliminating a from the descrip-
tion. However, splitting the neuron functionality can assist the understanding of what
‘ingredients’ have been used in the artificial neuron make-up, how the neuron func-
tions, and how to build necessary neurons. In addition, the function f (xi , wi ) models
the integrating process in the body of a biological neuron, while the function g(x)

represents functioning of synaptic terminals of the axon of this neuron. Artificial or
more exactly, abstract neuron is a finite automaton (cf. Section 3.3) without inner
states, that is, it has the input-output or action-reaction type.

However, being realized as a physical device, an artificial neuron functions in
the physical space-time manifold. Taking time into consideration, we come to the
conclusion that it is more reasonable to define four inner states of a neuron. In one
state, the neuron gives no output and does not accept information. In the second
state, it gives no output but accepts information. In the third state, it does not accept
information, but gives an output, or as say experts, it fires. In the fourth state, it
accepts information and gives an output. Usually it is assumed that a neuron always
accepts information. This results in a possibility to consider only two states of a
neuron: firing and silent.

Usually the following inner criteria for classification of artificial neurons are
considered:

♦ According to the type of the processed information, there are:

– Boolean neurons, processing binary data;
– rational number analogue neurons, used with rational numbers;
– real number analogue neurons, working with real numbers.

♦ According to the form of the function f (xi , wi ), there are:

– linear neurons,
– quadratic neurons,
– cubic neurons,
– sigma-pi neurons, and so on.

♦ According to the form of the activation-output relation, there are:

– activation linear neurons,
– hard-limiter neurons,
– sigmoidal neurons.

♦ According to the form of the dynamics of the node, there are:

– deterministic neurons,
– stochastic neurons,
– nondeterministic neurons.

In addition to this, the role of a neuron in the network to which it belongs implies
the network criterion. According to this criterion, there are three different types:

♦ Input neurons receive encoded information from the external environment.
♦ Output neurons send signals out to the external environment in the form of an

encoded answer to the problem presented in the input.
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♦ Hidden neurons, which may not be accessible by the environment, allow inter-
mediate calculation between input and output neurons.

There is a natural correspondence between artificial and biological neurons. In-
put neurons correspond to sensory biological neurons. Output neurons correspond to
motor biological neurons. Hidden neurons correspond to connector biological neu-
rons.

In some nets, the same neurons can send and receive signals from the exter-
nal environment. Then all neurons in such a net are divided into visible and hidden
neurons. Visible neurons are connected to the external environment, while hidden
neurons may not be accessible by the environment.

2.4.3 Artificial neural networks

An artificial neural network is an interconnected assembly of artificial neurons.
The processing ability of the network is stored in the connections between differ-
ent neurons, as well as in the activation function and inter-unit connection strengths,
or weights. Neural network is a form of multiprocessor computer system. In many
cases, it has the following properties:

♦ relatively simple processing units;
♦ a high degree of interconnection;
♦ a relatively simple form of information exchange;
♦ adaptive interaction between elements.

Neural networks represent the connectionist approach to computation when the
process is based mostly on transmission of data. The connectionist approach is con-
sidered as complementary, or sometimes, as contrasting to the symbolic computation
based on transformation of symbols.

Neuron does not have memory. However, neural networks allow one to orga-
nize some kind of memory, being capable of storing and retrieving data from this
memory. There are two formats for saving data. Permanent information is usually
designed into the weights of the neurons. These weights play the role of the long-
term memory of people or secondary memory of computers: magnetic disks and
tapes. Experience of a network written into the weights of neurons is obtained by a
process of adaptation to, or learning from, a set of training patterns. This is a static
storage by the structure and/or properties of a system.

Dynamic storage is utilized for temporary data. In this case, a part of a network
is used only for preserving information. If we take a neuron, which can be in two
states: firing and silent, then it is possible to interpret a silent neuron as containing the
symbol ‘0’, while a firing neuron is considered as containing the symbol ‘1’. When
a neuron can fire several kinds of output, for example any rational number, then we
can store in it more than two symbols. To preserve the firing state, a neuron can be
initiated to go into a loop, until it is stopped. Since the output of the neuron feeds
back to itself, there is a self-sustaining loop that keeps the neuron firing even when
the top input is no longer active. Activating the lower input suppresses the looped
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input, and the node stops firing. The stored binary bit is continuously accessible
by looking at the output. This configuration is called a latch. The corresponding
schemes are presented in Figure 2.7. A unit of memory in Figure 2.7a consists of one
neuron N with two weights w1 = w2 = 1 and the output function g(a) = 1 when
a = xw1 + vw2 = 1 and g(a) = 0 when a = xw1 + vw2 is equal to 0 or to 2.
The input x is used to change the state of N , while the output x is used to read the
stored symbol. A unit of memory in Figure 2.7b consists of two neurons: N1 and N2.
The neuron N1 is almost the same as the neuron N in Figure 2.7a, that is, it has the
same weights and the same output function. The difference is that the second neuron
N2 is used for reading the stored data: when the input z = 1, the neuron N2 fires
its output y. Having another neuron only for reading information, makes possible to
retrieve information without exerting any influence on the storing neuron N2. This is
especially important when computing occurs on the molecular or quantum level.

Figure 2.7. a) Artificial neuron N as an element of a short-term memory; b) A two-neuron
unit of a short-term memory.

The part of a network that used only for dynamical storage plays the role of
the short-term memory of people or primary memory of computers: random access
memory (RAM) and read-only memory (ROM).

While dynamic memory works perfectly in this model, a biological neuron would
not behave quite this way. The difference is in temporal characteristics. After firing,
a biological neuron has to rest for a thousandth of a second before it can fire again.
To get around this limitation, it is possible to link several neurons together in a duty-
cycle chain that substitutes separate neurons in the Figure 2.4.2 and achieves the
same result in storing data. Existence of such memory is supported by the experi-
mental evidence that some patterns in the brain are preserved in a dynamical fashion
(Suppes and Han, 2000; Suppes, Han, Epelboim and Lu, 1999; 1999a).

2.4.4 Types and basic properties of neural networks

Neural networks can solve many problems. At the beginning of formal treatment of
artificial neural networks, McCulloch and Pitts (1943) considered simple networks
with Boolean neurons that transformed binary symbols and had fixed thresholds. For
example, a Boolean neuron that realizes the function x ∨ y has two inlets and two
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weights w1 = w2 = 1. Its output function g(x) gives the following results: g(a) = 0
when a = xw1 + yw2 = 0 and g(a) = 1 when a = xw1 + vw2 is equal to 1 or to 2.
McCulloch and Pitts (1943) obtained the following result.

Theorem 2.4.1. Neural networks with Boolean neurons can realize any Boolean
function.

Later learning potential of neural networks was considered by Hebb (1949). He
described a tentative mechanism for learning in real brains. Namely, to learn, neuron
weights in a form of synaptic strengths change so as to reinforce any simultaneous
reciprocity of activity levels between the pre-synaptic and post-synaptic neurons. In
artificial neural networks, this means augmenting the weights of a node so that they
can reflect the correlation between the input and output. Networks that learn from
their experience in a training environment are based on this “Hebb rule.”

One of the most popular type of neural networks was introduced by Rosenblatt
(1958) and called perceptron. It can learn to connect or associate a given input to
a random output unit. Rosenblatt proved that given a linearly separable problem,
a simple training procedure for the perceptron would converge if a solution to the
problem existed.

The perceptron is a feedforward network with three layers, in which the middle
layer is called the association layer. Feedforward networks contain no feedback loops
in their inter-node connection paths. The simplest forbidden case may be formally
described in the following way: there does not exist a set of three nodes A, B and
C , such that C receives input from B, B receives input from A, and A receives
input from C . As a result, a general feedforward net is separated into a series of
distinct layers (cf. Figure 2.8), which consist of three types of neurons: input nodes
or neurons, which have no inlets; output nodes or neurons that does not have outlets;
and hidden neurons or nodes that have both inlets and outlets.

Figure 2.8. A feedforward network.

Layered networks are naturally represented by such graphs as trees or forests
(Berge, 1973) and by chains of named sets (Burgin, 1997, Ch. 9).
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The dynamics of feedforward networks is naturally straightforward. That is, at
the beginning, the input neurons get their inputs from the environment. Then input
neurons produce their output that goes to the next level. In the same way, subsequent
layers evaluate the outputs of the previous layers and give their results to the next
layer until the output layer is reached. In a more general case, it is necessary to
ensure that all the inputs to a given node are valid before its evaluation. This whole
process is referred to as a forward pass.

In 60s neural networks became very popular. Some researchers claimed that very
soon neural networks would be able to perform the majority of intelligent actions
and imitate intelligent behavior of people. However, enthusiasm for neural networks
was dampened to some extent by the results of Minsky and Papert (1969). They
demonstrated that perceptrons cannot solve many interesting problems (those that
are not linearly separable), and they held out little hope for the training of multilayer
systems that might deal successfully with some of these. However, in the same book
the authors discussed a new more powerful scheme for neural network functioning.
Thus, implicitly it was a beginning of the next stage in the neural network theory
development.

Later, it was shown that it was possible to find exact solutions for problems that
are not linearly separable by means of nonrecurrent (feedforward) networks. Namely,
Werbos in 1974 elaborated algorithm for the credit assignment problem. This algo-
rithm realized the method called “back error propagation” or simply backpropaga-
tion. But in spite of all interest to these problems, several years passed before this
approach was popularized. The result was that back-propagation networks were re-
discovered by Parker in 1982. Then discovered again and made popular by Rumel-
hart, Hinton and Williams (1986). In essence, a back-propagation neural network is
an advanced perceptron with multiple layers, a different threshold function in the ar-
tificial neuron, and a more robust and capable learning rule. Today back-propagation
networks are, probably, the best known and widely applied class of the neural net-
works.

It is necessary to mention other paradigms and directions for neural networks.
Amari (A. Shun-Ichi) established a mathematical theory for a learning basis (error-
correction method) dealing with adaptive pattern classification (1967). Klopf (1972)
developed a basis for learning in artificial neurons based on a biological principle for
neuronal learning called heterostasis. Fukushima (F. Kunihiko) developed (1975) a
stepwise trained multilayered neural network, called the Cognitron, for interpretation
of handwritten characters. Kohonen (1982; 1984) investigated nets that used topolog-
ical feature maps. Grossberg developed Adaptive Resonance Theory (ART) (1987;
1988) and founded a school of thought that explores resonating algorithms.

More sophisticated and thus, more powerful than feedforward networks are re-
current networks. They have feedback loops in their inter-node connection paths. As
a result, the distinction between input and output nodes becomes superficial and a
new classification of neurons is introduced. There is a set of visible nodes, which
interact with the environment, and, as in the feedforward case, a number of hidden
nodes, which do not (cf. Figure 2.9).
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Figure 2.9. A recurrent network.

Recurrent networks have two fundamental modes of operation – synchronous or
parallel update, and asynchronous update. In the former, all the nodes evaluate their
new output together, and the net is globally synchronized. In the latter case, at each
step a node is selected at random to be updated. Both synchronous and asynchronous
modes can be thought of as extreme instances of the more general case where there
is a probability p that any node gets updated. In the case of synchronous dynamics
and with deterministic nodes, the network is a deterministic finite automaton with a
characteristic state space, where the state of the network is just the vector of node
outputs.

Comparison of abstract neural networks with other models of automata and com-
putation gives us the following results.

Theorem 2.4.2. (Minsky, 1967). Neural networks with Boolean neurons can simu-
late any finite automaton.

Recently, much more powerful abstract neural networks have been constructed.

Theorem 2.4.3. (Siegelman and Sontag, 1991). Neural networks with rational num-
ber neurons are equivalent to, that is, have the same computing power as, Turing
machines.

However, realized as physical devices, neural networks, like conventional com-
puters, can work only with a finite subset of rational numbers. Moreover, now as a
rule, the majority of artificial neural networks are simulated on conventional comput-
ers. However, the result of Theorem 2.4.3 is true for conventional neural networks.

Theorem 2.4.4. (Hyotyniemi, 1996). Neural networks can simulate arbitrary Turing
machines.

To prove this result, the author uses recurrent neural networks of the second or-
der. They are called perceptron networks because their elements are not neurons but
perceptrons, which, as we know, consist of neurons.

The main applications of neural networks are pattern recognition (recognition
of speakers in communications; three-dimensional object recognition; handwritten
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word recognition; and facial recognition), diagnosis and analysis (diagnosis of hep-
atitis; texture analysis; customer research; industrial process control; recovery of
telecommunications from faulty software; data validation; undersea mine detection;
interpretation of Chinese words with multiple meaning); and prediction or forecast-
ing (sales forecasting, risk management, target marketing).

All these tasks are performed better when neural networks learn how to do it.
Learning is an essential potential of neural networks. They learn by adaptively up-
dating the weights of their nodes. The weights are updated according to the informa-
tion extracted from new training patterns. Usually, the optimal weights are obtained
by optimizing (minimizing or maximizing) certain “energy” functions. For exam-
ple, a popular criterion in supervised learning is to minimize the least-squares-error
between the teacher value and the actual output value.

According to their learning modes, neural networks are commonly categorized
in terms of their corresponding training algorithms: fixed-weights networks, unsuper-
vised networks, and supervised networks. There is no learning mode for the fixed-
weight networks. Supervised learning networks have been the mainstream of neural
model development. Their training data consist of pairs of input/output training pat-
terns, which supervise learning and teach the network. For unsupervised learning
networks, the training set consists of input training patterns only. The network learns
to adapt based on the experiences collected through the previous training patterns.

There are three ways of how a neural network receives information from the
environment. One is to clamp a subset of the visible units and keep the clamp on for
the entire test, while the net reaches equilibrium. The clamp can be freely reselected
at each trial from the entire collection of visible units. Alternatively, it is possible
to initialize the state of the net from an input vector, and then let the net operate
completely freely, with all nodes partaking in the update process. The third way is
to give the net new input data from time to time. This approach actually includes
two others as the first methods can be simulated by repetition of the same input data,
while the second mode only reduces the sequence of inputs to the only one input.

Neural information processing is usually separated into two phases: the learning
or training phase and the retrieving or working phase. In the training phase, a training
data set is used to determine the weight parameters that define the resulting neural
network. This trained neural network is used later in the working phase to process
real test patterns and yield the network output, for instance, classification results.

A more comprehensive scheme includes the third phase, which is called the eval-
uating phase. In the evaluating phase, the network gets a feedback from the environ-
ment (in particular, from a user). This feedback informs the network on the quality
of the output. The low quality may result in the repetition of the first phase.

There is many misconceptions related to neural networks. One of them is the
belief that Turing machines and other similar models (for example, RAM or PRAM)
work with symbols, while neural networks process signals. Turing computations as
symbolic are contrasted with neural net computations as subsymbolic.

In reality, even the simplest abstract neural networks (cf., for example, (McCul-
loch and Pitts, 1943)) simulate logical functions. It means that they work with sym-



68 2 Recursive Algorithms

bols 1 and 0. Modern abstract neural networks work even with more advanced sym-
bols that represent rational and real numbers (cf., for example, (Siegelman, 1999)).

At the same time, Turing machines can compute everything that they are able
to compute, using only two symbols: 1 and 0 (Theorem 2.3.4). That is why now
the majority of neural networks are simulated on conventional computers. When a
Turing machine, realized as a physical device or a conventional computer works with
these symbols, they are usually represented by the corresponding physical states:
existence of a signal means 1 and absence of a signal means 0. Such interpretation
makes computation of Turing machine or of a conventional computer equivalent to a
process that only changes signals. It means that, in some sense, Turing machines and
computers also works only with signals.

Besides, there is a claim that neural networks do not have set of rules or programs,
while their complex behavior emerges from interconnections. First, the weights wi

together with the activation function a = f (xi , wi ) and the output function g(a) of
each neuron constitute a program for the neuron functioning. Second, as Machlin and
Stout (1991) demonstrate, even a simple Turing machine can realize very complex
and unpredictable, chaotic behavior. Learning is not a privilege of neural networks.
Reflexive Turing machines can learn from their experience in problem solving and
modify their programs (Burgin, 1992).

2.4.5 Related models of autonomous distributed computation

There are other models of autonomous distributed computation, which are closely
related to neural networks: cellular automata, systolic arrays, Petri nets, and grid
automata.

The idea and construction of cellular automata and systolic arrays stems from
the works of von Neumann in automata theory (1951; 1966). Von Neumann in the
late 1940s and early 1950s attempted to design such a system that could construct
any automaton from a proper set of encoded instructions, so that it would make a
copy of itself as a special case. It was assumed that such machine would operate
in a very simplified environment, giving a chance to see just what was involved
in reproduction. For the building blocks of this automaton, von Neumann decided
on identical chips placed in a rigid two-dimensional array and connected to their
four nearest neighbors. The chips in this array, which was later called a systolic
array, changed states synchronously in discrete time-steps. The state of each chip
for the next time-step was determined from its own current state and those of its four
neighbors, using a set of transition rules specified by the automaton rules. In practice,
this automaton was simulated by a single large computer that modeled the work of
the many small chips.

It is necessary to remark that when von Neumann introduced his automata, they
were considered as constructing devices in contrast to Turing machines as computing
devices. However, as this construction always takes place in a symbolic domain, von
Neumann automata are devices that actually perform symbolic computations.

Later cellular automata became very popular. Some of them are even named after
von Neumann. Thus, an infinite string of finite automata, which is a one-dimen-
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sional cellular automaton, is called a Neumann automaton (Trahtenbrot, 1974). Von
Neumann’s self-reproducing automata have been greatly simplified. For example,
Codd (1968) reduced the number of states needed for each chip from 29 to 8.

Definition 2.4.1. A cellular automaton CA is a system of identical finite automata,
or cells, which form a net and interact with one another.

Figure 2.10. A one-dimensional cellular automaton.

A cellular automaton CA is described by the following net characteristics:

1. The space organization of the cells. Most often the system of the CA is organized
as a simple rectangular grid (mostly it is a one-dimensional string of cells and
a two- or three-dimensional grid of cells), but other arrangements, such as a
honeycomb or Fibonacci trees, are sometimes used.

2. The topology of the CA, which is determined by the type of the cell neighbor-
hood. Such neighborhood of a cell is the set of other cells that this cell interacts
with. In a grid, these are normally the cells physically closest to the cell in ques-
tion.
For example, if each cell has only two neighbors (right and left), it defines linear
topology. Such cellular automata are called linear or one-dimensional. It is pos-
sible to consider linear automata with the neighborhood of some radius r > 1
(cf. Crutchfield and Mitchell, 1995). When there are four cells (upper, below,
right, and left), the CA has two-dimensional rectangular topology. Such cellular
automata are called linear or one-dimensional.

3. The dynamics of a cellular automaton, which determines by what rules cells
exchange information with each other.

A separate cell in CA is a finite automaton, which is described in detail in Section
3.3. It is usually assumed that all automata in CA are the same.

Traditionally, only rectangular organization of the cells and their neighborhoods
has been considered for cellular automata. Recently, researchers have begun studies
of cellular automata in the hyperbolic plane or on a Fibonacci tree (Margenstern,
2000; Margenstern and Morita, 2001; Margenstern, 2003). It is proved that such
automata are more efficient than traditional cellular automata in the Euclidean plane.
This higher efficiency is a result of a better topology in cellular automata in the
hyperbolic plane.

Now cellular automata are so popular that they are used as models almost in
every imaginable field. Some researchers suggest that the whole world is a kind of a
cellular automaton (cf., for example, (Talbot, 2001) or (Wolfram, 2002)).
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Nobili and Pesavento (1994) introduce and study generalized cellular automata,
which can change not only the state of its neighbors, but also the program (the tran-
sition function) of these neighbors. The authors give a description of a planar cel-
lular automaton, which is called a universal constructor and which, if properly pro-
grammed, generates any sort of a planar cellular automaton.

One more model of distributed computation is Petri net, or place-transition net.
They were introduced by Petri in 1962 as a tool for studies of concurrency, syn-
chronization, forking, blocking, and interaction of components in different systems.
They provide a convenient framework for correctly and faithfully describing systems
with many interacting parts. At the same time, Petri nets serve in many cases as a
convenient simulation model.

Definition 2.4.2. A Petri net A is a system (P , T , in, out) that consists of two
sets: the set of places P = {p1, p2, p3, . . . , pn} and the set of transitions T =
{t1, t2, t3, . . . , . . . tm}, for which P ∪ T �= ∅, P ∩ T = ∅; as well as of two func-
tions: the input function in: (P × T ) → N0 that defines directed arcs from places
to transitions; and the output function out: (P × T ) → N0 that defines directed arcs
from transitions to places, where N0 is the set of all whole numbers (nonnegative
integers).

Figure 2.11. The graph of a Petri net, where © is a place and
∣
∣ is a transition.

Graphically, places are represented by circles and transitions are indicated by
horizontal or vertical bars. If in(pi , t j ) = k, where k > 1 is an integer, a directed
arc from place pi to transition t j is drawn with the label k. This number can be also
interpreted as the number of arcs connecting the pair (pi , t j ). If k = 1, we include
an unlabeled arc, and if k = 0, then no arc is drawn. Petri nets are bipartite directed
graphs, whose nodes are divided into two disjoint sets called places and transitions.
Directed arcs in the graph connect places to transitions (called input arcs, which go
from input places) and transitions to places (called output arcs, which go to output
places). Places usually represent states or resources in the system, while transitions
model the activities of the system. In such a way, Petri nets provide an efficient and
mathematically rigorous modeling framework for discrete event concurrent dynami-
cally systems.

Formally functioning of a net begins with an initial marking of the net. Any mark-
ing is a state of a Petri net and is represented by the number of tokens in places. Tra-
ditionally tokens are represented by black dots. Movement of tokens between places
changes marking and describes the evolution of the system and is accomplished by
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the firing of the enabled transitions. Each change occurs through transition firings.
A firing of a transition is an atomic action in which one or more tokens are removed
from the input place of the transition and one or more tokens are added to each of
the output place of the transition

As in other models of algorithms, time is absent in the initial definition of Petri
net. Real systems, including IPS, that are modeled by Petri nets are functioning in
time. So, the concept of time needs to be incorporated in the definition. A convenient
way to do this is to correspond time intervals to states (markings) of the net, assuming
that the net or, at least, a separate place preserves its state for some time. Events when
time is changing are transaction firings. In such a way, timed Petri nets are usually
built. However, it is possible to relate time intervals to firings and time shifts to states.
In both cases, we have a system time of a Petri net in the sense of (Burgin, 2002a).

Another related model is systolic array (Kung and Leiserson, 1978).

Definition 2.4.3. A systolic array is an arrangement of processors in an array (often
rectangular) where data flows synchronously across the array between neighbors,
usually with different data flowing in different directions.

Systolic array is called so by analogy with the regular pumping of blood by the
heart. For example, it can function in the following manner. Each processor at each
step takes in data from one or more neighbors (e.g., from the left and up processors),
processes it and, in the next step, outputs results in the opposite direction (to the right
and down processors). Systolic arrays realize systolic algorithms. An example of a
systolic algorithm might be matrix multiplication. One matrix is fed in a row at a
time from the top of the array and is passed down the array, the other matrix is fed in
a column at a time from the left hand side of the array and passes from left to right.
Dummy values are then passed in until each processor has seen an entire row and an
entire column. At this point, the result of the multiplication is stored in the array and
can now be given as the output a row or a column at a time, flowing down or across
the array.

One more model of distributed computation is iterative array (Hennie, 1961).

Definition 2.4.4. An n-dimensional iterative array is a system that consists of iden-
tical finite automata indexed by n-tuples of the nonnegative integers, which interact
with their neighbors.

Two automata are considered neighbors if their indices are identical in all but
one component and differ by one in that position. Inputs and outputs for the array
are given to and taken from the machine indexed by (0, 0, . . . , 0). Except for the
machine at the origin, the state of any machine in the array at time t + 1 depends
only upon the states of it and its neighbors at time t , and its state at time 0 is a
particular quiescent state.

All constructions of neural networks, Petri nets, systolic arrays, iterative arrays,
and cellular automata are synthesized in the concept of grid automaton (Section 4.4).
This new model for computation and communication allows us to combine in one
structure centralized and distributed computer architecture.
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2.5 Applications

She generally gave herself very good advice
(though she very seldom followed it). . . .

Lewis Carroll, 1832–1898

There are so many applications of the theory of recursive algorithms that it will take
many volumes to describe all of them. For example, Turing machines are used to
evaluate what computers can do and what they can’t do, to develop complexity theory
for computations, to study problems of computational efficiency and so on. Some
researchers even use Turing machines and their generalizations to build a theory of
everything (cf., for example, (Schmidhuber, 2000)).

Neural networks are used for pattern recognition (recognition of speakers in com-
munications; three-dimensional object recognition; handwritten word recognition;
and facial recognition), diagnosis and analysis (diagnosis of hepatitis; texture anal-
ysis; customer research; industrial process control; recovery of telecommunications
from faulty software; data validation; undersea mine detection; interpretation of Chi-
nese words that have multiple meaning), prediction or forecasting (sales forecasting,
risk management, target marketing).

Examples of systolic array applications are: solving linear systems of equations,
sorting and searching, and matrix multiplication. Systolic arrays have high efficiency
for these operations. For example, a systolic array processor requires only about n
time units to multiply n × n matrices. On such a machine, the time complexity for
matrix multiplication is thus linear rather than cubic as for sequential machines.

Cellular automata are used as models in a variety of imaginable fields. Some
researchers suggest that the whole world is a kind of a cellular automaton. This
approach is inspired by the so-called game of Life, which is usually attributed to
John Conway. In its turn, the game of Life led Langton (1989) to creation of a new
discipline known as Artificial Life (cf. Talbot, 2001).

The game of Life is realized by a two-dimensional cellular automaton in which
each cell can have only two states: bright or dark, on or off, “alive” or “dead,” and
has eight neighbors. There are three rules for functioning of this automaton:

1. If exactly two of a cell’s neighbors are alive at the clock tick ending one interval,
the cell will remain in its current state (alive or dead) during the next interval of
time;

2. If exactly three of a cell’s neighbors are alive, the cell will be alive during the
next interval of time regardless of its current state; and

3. In all other cases, that is, if less than two or more than three of the neighbors are
alive, the cell will be dead during the next interval of time.

The game starts with some initial configuration of bright cells and then, with each
tick of the clock, the configuration changes as the rules are applied.

As suggested by Peter Cochrane, head of research at British Telecom, “It may
turn out that it is sufficient to regard all of life as no more than patterns of order that
can replicate and reproduce” (cf. Talbot, 2001). Langton is even more decisive, “Life
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isn’t just like a computation, in the sense of being a property of the organization
rather than the molecules. Life literally is a computation” (cf. Waldrop, 1992).

Here we consider in more detail some applications of Turing machines that help
us to compare recursive and superrecursive algorithms and are related to the study
of computer programs. This is very important as there are many problems with com-
puter programs. Alan Cooper, widely considered the “father” of Visual Basic and
now the head of Cooper Interaction Design, says the main problem with much of the
software available currently is that it is poorly thought out because its programmers
did not take into account what users really want; programs may be more and more
powerful, but they frustrate users to no end (Vizard, 2001). The theory of algorithms
can help us to evaluate needs of users and to design better software.

At first, let us consider the problem of program correctness. We all want to use
correct programs. However, as states the proverb, to err is human. Thus, the vast
majority of written programs contain errors. So, we need to get rid of these errors.
Practitioners and researchers suggested three main approaches to this problem:

1) Find all errors by testing the program on a computer and correct them.
2) Find all errors in the process of proving the program’s correctness and correct

them.
3) Build a software system that finds all errors in the process of proving the pro-

gram’s correctness and corrects them.

The first approach is good only for small, simple programs. For complex pro-
grams, the number of computational processes that these programs generate is so big
that it possible to test only a small part of them.

Thus, we come to the second and third approaches and ask the question whether
it is possible to find a procedure or to write a program that allows us to debug all
computer programs. The theory of algorithms gives a negative answer to this question
under the assumption of the Church–Turing thesis. This thesis, in particular, equates
programs with Turing machines and allows us to reduce all questions concerning
computer programs to questions related to Turing machines.

From this perspective, one kind of program mistake is that the program never
halts because according to the Church–Turing thesis to give a result at all, not to
speak of the correct result, the program has to halt. So, we may ask if we can write
a program that, at least, determines whether a given program halts after it begins
calculations with a given input.

Moreover, it is possible to consider only such programs that do not give a result
only if they do not halt. Really, let us consider a program P that stops in some state q
but does not give a result. Such q is called a dead state for P . Then we can transform
this program so that the new program Q gives the same results as P but coming to
the state q, it never stops. To get such a program Q from P , we need to add an infinite
cycle that begins from the state q . After we do the same transformation for all dead
states of P , we get the program R that does not give a result only if it does not halt.

The reduction of computer programs to the class of all Turing machines converts
this question to the question whether there is a Turing machine D that determines
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whether a given Turing machine T halts after T begins calculations with a given
input. This is the famous halting problem.

Let us consider the class T of all Turing machines that work with words in an
alphabet A. The set of all such words is denoted by A∗.

Theorem 2.5.1. The halting problem is undecidable in the class T, that is, there is
no such Turing machine D that determines whether a given Turing machine T halts
after T begins calculations with a given input.

Proof. At the beginning, we code all Turing machines by words in A. There are
standard methods for building such coding function c : T → A∗. Such coding is
described in Sections 2.3 and 4.3. The value of this function c(T ) is the “code” or
“description” of a Turing machine T .

Let us assume that such a Turing machine D exists. Applied to a pair (c(T ), w),
it gives 1 as the result when T gives a result for the input w, and D gives 0 as
the result when T does not give a result for the input w. Then we take two simple
Turing machines C and AC . Here C is a checking Turing machine such that it checks
whether a given word w is equal to c(T ) for some Turing machine T and then if this
is true it converts w to the pair (c(T ), w). The Turing machine AC gives the result 1
for the input 0 and gives no results for all other possible inputs. It is easy to build such
Turing machines by standard methods (cf., for example, (Rogers, 1987) or (Minsky,
1967)).

Taking these two Turing machines and an arbitrary Turing machine T , we build
a new Turing machine M as the sequential composition M = C ◦ D ◦ AC . Sequential
composition means that the output of each Turing machine in the composition goes
as input to each next Turing machine. It is easy to build such composition of Turing
machines by standard methods (cf., for example, (Rogers, 1987) or (Minsky, 1967)).
The structure of M is presented in the Figure 2.12.

Figure 2.12. The structure of M = C ◦ D ◦ AC . Here u is some output of D.

Now let us find what happens when the Turing machine M receives the word
w = c(M) as its input. This word goes first to the Turing machine C , which produces
the pair (c(M), w). This pair goes to the Turing machine D as its input. Now we have
two options for M : M halts for the input w or does not. In the first case, the output
of D is 1, which goes to AC as an input. According to its rules, AC does not halt,
which means that M does not halt for w as its input. This contradicts our assumption
that M halts. So, M does not halt for w and the output of D is 0, which goes to AC

as input. According to its rules, AC halts and produces 1 as its output. Consequently,
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this means that M also halts for w as its input. This contradicts our assumption that
M does not halt and shows that whatever case we assume for M , we come to a
contradiction. This contradiction shows that the Turing machine D cannot exist, and
thus, Theorem 2.5.1 is proved, stating that the halting problem is undecidable. ��

In spite of the undecidability of the halting problem for Turing machines and
programs, we can ask other questions about programs. For instance, we can if a
given program produce any result or if all its result belong to some given set X .
The theory of algorithms shows that all such general questions about programs are
undecidable. This follows directly from the, so-called, Rice theorem (Rice, 1951).
Here for completeness, we prove informally one version of this theorem.

We assume, as before, that programs and Turing machines are equivalent and
call a property of programs or Turing machines functional if it separates all Turing
machines into two classes according to the following rule. If two Turing machines
T and Q are equivalent, meaning that they produce the same output language, then
T and Q belong to the same class. This means that functional properties of Tur-
ing machines correspond to properties of languages accepted or computed by these
machines.

Remark 2.5.1. There are properties of programs or Turing machines that are not func-
tional.

Example 2.5.1. Let D be a description of a Turing machine and B be a text in a
programming language. A Turing machine T has the property PD if its descrip-
tion coincides with D. A program p has the property PB if its description coincides
with B.

Example 2.5.2. Let a be a symbol. A Turing machine T (program p) has the property
Pa if its description (the program p) begins with a.

Example 2.5.3. A Turing machine T (program p) has the property Pa if its descrip-
tion (the program p) contains a.

Definition 2.5.1. A property of Turing machines is called nontrivial if some Turing
machines have this property and other Turing machines do not have it.

Definition 2.5.2. A property P of Turing machines is called functional if for any two
Turing machines A and B, A f = B f implies P(A) = P(B).

Theorem 2.5.2. Any nontrivial functional property P of Turing machines is unde-
cidable in the class T, that is, there is no such Turing machine D that determines
whether a given Turing machine T has property P or not.

Proof. For the property P in question we have two options: Turing machines that
give no output have this property or do not have it. As P is a functional property, all
Turing machines that give no output either have this property or they do not have it.
At first, we consider the case when all Turing machines that give no output have the
property P .
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As the property P is nontrivial, there is a Turing machine M that does not have
the property P .

Let us assume that there is such Turing machine D that determines whether a
given Turing machine T has the property P or not.

To prove Theorem 2.5.2, we reduce the initial problem to the halting problem.
The goal of problem reduction is to use knowledge about one problem to infer some-
thing about a different problem. If you have a problem P that you know is undecid-
able and you want to show that a problem Q is undecidable, then it is sufficient to
demonstrate that being able to solve the problem Q allows you to solve the problem
P .

For such reduction, we build a system { AT,w; where T is some Turing machine
from T and w is an arbitrary word in A } of Turing machines AT,w. The machine
AT,w consists of copies of the machines T and M and a finite automaton G with
two inputs. One input come from the outside, while the second is the output of T .
The automaton G can be in two states: closed and open. Initially G is closed until
it received some input from T , which makes it open. When G is closed, it gives no
output. When G is open, it gives as its output the word that comes to G from M as
its output. The structure of the machine AT,w is presented in the Figure 2.13.

Figure 2.13. The structure of the Turing machine AT,w .

Functioning of the machine AT,w is determined by the following rules. At the
beginning the word w is given as the input for T . Then an arbitrary word u is given
as the input of the whole AT,w. Consequently, AT,w gives no result when the Turing
machine T does not halt after T begins calculations with the input w. Otherwise,
the output of T coincides with the output of M . Thus, if we know whether AT,w has
property P or not, we also know whether AT,w gives some result or not because when
T halts the machine AT,w is equivalent to the machine M , while P is a functional
property. At the same time, if we know whether AT,w gives some result or not, we
also know whether the machine T halts after it begins calculations with the input w.
Because the latter problem is undecidable, the initial problem is also undecidable.

To complete the proof, we need to consider the second case when all Turing
machines that give no output do not have the property P .
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However, not to have the property P is also some property Q. As P is a functional
property, so is Q. As P is a nontrivial property, so is Q. Besides, P is decidable if
and only if Q is decidable. All Turing machines that give no output have the property
Q. As it is demonstrated the property Q is undecidable. Thus, the property P is also
undecidable.

Theorem 2.5.2 is proved. ��
This result shows that the majority of algorithm or program properties that are

defined by their output are undecidable for recursive algorithms. This implies that
the majority of program properties related to their output are undecidable by means
of modern computers when they work in the recursive mode. We cannot write a
program that debugs all other programs or discerns those programs that give some
necessary result x or some dangerous result y. Similar results concerning limits of
software estimation are considered by Lewis (2001), using the theory of algorithmic
complexity.

As we will see later, superrecursive algorithms can solve many of such problems
for ordinary programs and contemporary computers.

At the same time, it is necessary to remark that there are nontrivial properties
of programs that are decidable by conventional Turing machines and even by finite
automata. For instance, all properties from Examples 2.5.2 and 2.5.3 are decidable in
the class of all finite automata, while the property from Example 2.5.1 is decidable
in the class of Turing machines.

The proof of Theorem 2.5.2 gives us another interesting result that places the
halting problem in the hierarchy of all problems related to Turing machines.

Definition 2.5.3. The measure of undecidability of a problem X is less than the mea-
sure of undecidability of a problem Y if undecidability of the problem X implies
undecidability of the problem Y .

In other words, a problem X has lower measure of undecidability than a problem
Y if X is reducible (in a given class of algorithms) to Y . There are different types
of reducibility: Turing or T-reducibility, tt-reducibility, m-reducibility, and 1-reduc-
ibility (Rogers, 1987). Here we consider Turing reducibility, that is, reducibility by
means of arbitrary Turing machines.

Theorem 2.5.3. The halting problem has minimal measure of undecidability in the
class of all problems of determining nontrivial functional properties P of Turing
machines.
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Subrecursive Algorithms

“What’s one and one and one and one
and one and one and one and

one and one and one?,”
“I don’t know,” said Alice. “I lost count.”

“She can’t do addition,” said the Red Queen.

Lewis Carroll, 1832–1898

As many believe, the class of recursive algorithms appears to be a natural class, inde-
pendent of any specific model of computation. As a result, computer scientists look
into it for an answer to the basic question of decidability and computability about
their dependence on formalism. The Church–Turing thesis is an assertion of belief
that the classical formalisms completely capture our intuitive notion of computable
function, giving one a great deal of confidence in the theoretical foundations of com-
puter science. Nevertheless, much weaker than recursive algorithms are subrecursive
algorithms, which are studied in the theory of algorithms and computation. They are
successfully used in practice of computer industry and programming.

In this chapter, we consider the following problems:

♦ What is the general situation with subrecursive algorithms (Section 1)?
♦ What mathematical models are used for subrecursive algorithms (Section 2)?
♦ What is a finite automaton (the most popular procedural model of subrecursive

algorithms)? What kinds of finite automata have been studied and what properties
do they have (Section 3)?

♦ What are recursive and partial recursive functions (the most popular functional
models of subrecursive algorithms) and what properties do they have (Section 4)?

3.1 What subrecursive algorithms are and why we need them

Every device to its function.

A proverb

Taking a class R of recursive algorithms, such as classes of all Turing machines, all
formal grammars or all RAM, researchers often consider some specific subclasses
of these classes. For example, they study Turing machines that perform only polyno-
mial in time computations or finite automata as the simplest model of algorithms. In
general, those algorithms that belong to a proper subclass of R are called subrecur-
sive.
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Having a developed theory of recursive algorithms, we ask: Why do we need
to consider weaker algorithms if recursive algorithms can simulate any subrecursive
algorithm? Our experience gives us at least three reasons for doing this.

First, many programs and computing devices do not have the full power of recur-
sive algorithms. For example, any adder in a computer or programs for multiplica-
tion and division belong to much smaller classes of automata and algorithms than the
class of all recursive algorithms. Using Turing machines for modeling these devices
is unreasonable and even misleading. A model of a system has to be as simple as
possible. To achieve this goal, researchers introduced the concept of finite automa-
ton.

Moreover, in some cases computations demand so much computer time that no-
body will perform such computations as it will be unreasonable or even impossible
to do this when, for example, computations demand billions of years. To reflect such
situations in theory, researchers claimed that realistic computations are only those
that demand polynomial (in the length of the input) time for computation. In such
cases, subrecursive algorithms provide more adequate models of real computing de-
vices and programs.

Second, in general, we can know more about relevant classes of subrecursive
algorithms than about a class of all recursive algorithms. It is possible to formulate
the following property:

Thesis of Cognitive Complementarity. The more powerful a model of algorithms
is taken, the less knowledge we can get about this model.

For example, for finite automata, almost all algorithmic problems (such as: “Is
the language of a given automaton empty?” or “Is a given word w accepted by a given
automaton A?”) are decidable. For pushdown automata with one stack or context free
grammars, which are more powerful than finite automata, the quantity of decidable
problems becomes much less. For Turing machines, which provide the most tractable
model for recursive algorithms, almost all algorithmic problems are undecidable.

Third, in addition to better decidability of algorithmic problems, subrecursive
algorithms possess other good properties. In particular, they are simpler when you
work with them (build automata, transform them, test them, etc.). For example, build-
ing a compiler with a context free grammar instead of a general phrase-structure
grammars allows one to avoid many complications.

Besides, as Cleland (2001) writes, from a preanalytic, intuitive standpoint, a pro-
cedure is effective if correctly following it reliably yields a definite output. The Eu-
clidean algorithm, for example, is ordinarily thought to be effective for computing
the greatest common divisor of two integers because correctly applying it to two in-
tegers invariably yields their greatest common divisor. Recursive algorithms do not
give a definite output for all inputs. So, we need to restrict recursive algorithms to
achieve a total computability for a given domain.

Historically, subrecursive algorithms were introduced in the following situation.
Researchers first tried to design a formal mathematical model that completely en-
compassed all kinds of computations as phenomena. As a result, they created differ-
ent models of recursive algorithms. Then they discovered that lots of systems have
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algorithmic nature or, at least, express some algorithmic properties. Examples of
systems of the first kind are various automata like vending machines used by people.
The brain gives an example of the system of the second kind. An attempt to apply
to such system general recursive models did not give positive results. In compar-
ison with models, such systems were either much simpler or had a very different
structure. Consequently, general models of recursive algorithms provided too inex-
act and weakly tractable approximation to real systems. This brought researchers to
creation of new models. Neural networks, finite automata, context free grammars
and other models appeared. Investigation of model properties demonstrated that they
are subrecursive algorithms, giving new supportive evidence to the validity of the
Church–Turing thesis.

Subrecursive algorithms are built in different ways. However, with respect to
recursive algorithms, there are three approaches to the construction of subrecursive
algorithms:

♦ by excluding some components of a recursive model, for example, finite automata
do not have memory;

♦ by restricting resources that are used in operation, for example, polynomial time
computations allow only such Turing machines that run in an amount of time
that is polynomial in the size of the input (Cobham, 1964) or memory of push
down automata (cf., for example, Hopcroft, Motwani, and Ullman, 2001) is more
restricted than memory of Turing machines;

♦ by restricting rules for operation, for example, primitive recursive functions and
general recursive functions cannot use minimization operation (cf., Section 2.4);
or context free grammars have only transformation rules in which the head of the
rule is a variable (cf., for example, Hopcroft, Motwani, and Ullman, 2001).

However, originally many classes of subrecursive algorithms appeared without
any reference to recursive algorithms and only later they have been related to the
general structure. Independently of recursive algorithms, McCulloch and Pitts (1943)
built artificial neural networks or Petri (1962) constructed Petri nets, another class of
subrecursive algorithms.

3.2 Mathematical models of subrecursive algorithms
and why we need them

When schemes are laid in advance,
it is surprising how often the circumstances

fit in with them.

William Osler, 1849–1919

Subrecursive algorithms like recursive algorithms have many different models and
types. We consider them from this perspective.
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3.2.1 A variety of mathematical models for subrecursive algorithms

The first models of subrecursive algorithms were primitive recursive functions and
recursive functions introduced by Gödel in 1931 and 1934, respectively. The latter
concept is equivalent to the current notion of general recursive function. However,
when these functions were built, the goal was to develop the most general model of
algorithms. So soon in 1936 recursive algorithms appeared: Kleene described partial
recursive functions, while Turing built Turing machines. Thus, the first mathematical
models for recursive algorithms (Turing machines and partial recursive functions)
had been introduced before the actual development of the theory of subrecursive
algorithms began.

The next type of subrecursive algorithms were artificial neurons and their net-
works built by McCulloch and Pitts (1943). However, active development of the
theory of subrecursive algorithms began in the fifties of the twentieth century when
the formal construction of finite automaton was introduced and studied by Mealy
(1953), Kleene (1956), and Moore (1956)),

The most popular of mathematical models of subrecursive algorithms are:

♦ logic circuits, also called combinatorial machines, which are systems of logic
elements each of which realizes a Boolean function (their origin can be traced to
the works of Shannon (1938; 1949) and Riordan and Shannon (1942));

♦ finite automata, also called sequential machines (in the simplest form they are
usually attributed to McCulloch and Pitts (1943), and, while in the developed
form as a formal construction, they were introduced by Mealy (1953), Kleene
(1956), and Moore (1956)). Like Turing machines, finite automata have several
forms: automata without memory, autonomous automata, automata without out-
put or accepting automata or simply, acceptors, automata without input or gen-
erators, deterministic, nondeterministic (Rabin and Scott, 1959), probabilistic
automata, etc.;

♦ iterative arrays (Hennie, 1961);
♦ neural networks with Boolean neurons (McCulloch and Pitts, 1943) and with

integer number neurons;
♦ a variety of Petri nets (Petri, 1962);
♦ various formal grammars: regular, context-free, context-sensitive, etc. (Chomsky,

1956; Backus, 1959; Naur, 1960);
♦ pushdown automata with one stack: general (Oettinger, 1961) and deterministic

(Fisher, 1963; Schutzenberger, 1963);
♦ recursive functions (Gödel, 1934);
♦ primitive recursive functions (Gödel, 1931);
♦ n-tape one-way acceptors (Rabin and Scott, 1959), which recognize sets of n-

tuples of strings via computations in which at each step one of the n input tapes
is advanced one square and a new machine state is entered; they can be determin-
istic and nondeterministic;

♦ counter machines which can be deterministic and nondeterministic (Evey, 1963;
Fischer, 1963)
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♦ generalized sequential machines (Ginsburg, 1962);
♦ hardware modification machines (Dymod and Cook, 1980; 1989), which may be

considered as variably connected sequential machines
♦ multi-tape finite-state transducers (Ginsburg and Spanier, 1964);
♦ deterministic n-tape automata with tapes that are blank except for a single end

symbol (Elgot and Rutledge, 1964);
♦ aggregates (Dymod and Cook, 1980; 1989), which may be considered as combi-

natorial machines with cycles;
♦ linear-bounded automata (Myhill, 1960), which are one-tape Turing machines

given only enough tape to hold the input string, what is equivalent to saying that
the amount of information storage permitted is a linear function of the length of
the input;

♦ output restricted Turing machines: 1) monotone Turing machines, which have the
same structure as ordinary Turing machines with an output tape, but monotone
Turing machines can only write into this tape without a possibility to change
what is written (an important direction in the theory of Kolmogorov complexity
and inductive inference is based on monotone Turing machines, cf., for example,
(Li and Vitanyi, 1997)); 2) enumerable output machines (Schmidhuber, 2000),
which have the same structure as monotone Turing machines, but enumerable
output machines, in contrast to monotone Turing machines, can edit their previ-
ous output without decreasing it lexicographically (as a result, the computational
power of enumerable output machines lies in between those of monotone Turing
machines and ordinary Turing machines).

♦ resource-restricted Turing machines: Turing machines that perform only time-
bounded or space-bounded computations, with a bounded number of head re-
versions and so on; taking different classes of functions as boundaries for
computations, many different classes of subrecursive algorithms are studied;
the most popular of them are: logarithmic time or space computations (LOG-
TIME, NLOG-TIME, LOG-SPACE, and NLOG-SPACE), deterministic polyno-
mial time or space computations (P or P-TIME and P-SPACE), nondeterministic
polynomial time or space computations (NP or NP-TIME and NP-SPACE), and
exponential time or space computations (E-TIME and E-SPACE).

According to (Fischer, 1965), the first person to consider time-restricted Tur-
ing machines was Yamada (1960; 1962). He was especially interested in a class of
strictly increasing functions from the nonnegative integers into the nonnegative inte-
ger which were, in his terminology, real-time computable. Myhill (1960) is consid-
ered as the first researcher who studied tape-restricted Turing machines.

According to (Aho, Hopcroft, and Ullman, 1976), general classes of functions
and corresponding classes of Turing machines restricted by the time of computa-
tion were first studied by Hartmanis and Stearns (1965). However, nine years earlier,
there was a paper of Trahtenbrot (1956), which was unknown to Western readers and
in which time and space complexity and their corresponding classes of Turing ma-
chines were already studied. Independently, Zeitin studied time complexity, making
a presentation on this topic in 1956 (cf. Yanovskaya, 1959).
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3.2.2 Why we need both recursive and subrecursive algorithms as
mathematical models for computation

Subrecursive algorithms have proved themselves useful in many aspects. For exam-
ple, finite automata are used for description and modeling many computing devices
and parts of a computer. Moreover, resources that people can use for computation are
always limited. So, any computer is in a definite sense a finite automaton. Only it is
not an abstract but a material automaton. Being finite, any computer can be modeled
by some abstract finite automaton. As a result, we come to a natural question: Why
do we need more powerful algorithmic structures, for example, Turing machines, if
in practice we have nothing more than finite automata?

There are, at least, three reasons for considering such classes as Turing machines.
The first reason is perfectly explained by Hopcroft, Motwani, and Ullman

(2001). They write:
“In fact one could argue that a computer with 128 megabytes of main memory

and 30 gigabyte disk, has “only” 25630 128 000 000 states, and is thus a finite automa-
ton.

However, treating computers as finite automata (or treating brains as finite au-
tomata, which is where the finite automata idea originated), is unproductive. The
number of states involved is so large, and the limits are so unclear, that you don’t
draw any useful conclusions. In fact, there is every reason to believe that, if we
wanted to, we could expand the set of states of a computer arbitrarily.”

In a similar manner, we can always extend the time of computation.
Thus, we come to the conclusion that the first reason for utilization of Turing

machines and other potentially infinite models is indeterminacy of possible time of
computation and memory utilization in computers. One would like to suggest that it
might be feasible to take some very big numbers and consider them as boundaries for
time and memory. Natural arguments show that such boundaries exist. For example,
it is possible to find limits to the state expansion because according to contemporary
physics, the whole universe consists of a finite number, say N , of subatomic particles.
Consequently, no computer can have more than N elements. Consequently, if these
elements can have only two states, the numbers of states of the whole computer will
be not larger than 2N . Even if these elements can have k states, the numbers of states
of the whole computer will be not larger than k N . It means that that the number of
states is always bounded. However, given any particular computer, we can always
extend its memory and thus the number of states.

However, having these boundaries does not solve the problem of modeling com-
puters exclusively by finite automata. It is due to the fact that these models become
overcomplicated and consequently, intractable when the number of their elements
grows above some limit. Thus, the second reason to use Turing machines is that they
can reduce complexity of modeling in many times. It looks strange that an infinite,
at least, potentially infinite, model can be simpler than a finite model. But it will not
be a surprise if we understand that finite automata may have a very irregular struc-
ture, while in a Turing machine such irregularity is reduced only to a small control
device, while the memory of the machine is a uniform tape or several tapes. Uniform
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structures are essentially less complex in comparison with nonuniform structures. It
is possible to see this from the everyday experience, to derive it as a consequence of
the theory of Kolmogorov complexity (Li and Vitanyi, 1997), or explicate it from the
principle of asymptotic homogeneity (Bratalsky and Burgin, 1986).

The third reason why Turing machines are so good for theoretical studies is the
fact that there is a universal Turing machine (cf. Section 2.3). It is such a machine that
can simulate any other Turing machine. In some sense, it is the most powerful Tur-
ing machine that serves as milestone for many problems. For example, existence of a
universal Turing machine provides a base for the development of such important field
as the theory of algorithmic complexity (cf. Chapter 5 and (Li and Vitaniy, 1997))
and duality of complexity measures of algorithms and automata (Burgin, 1982). At
the same time, in the class of finite automata and in many other classes of subrecur-
sive algorithms the most powerful or universal automaton does not exist. For other
classes where universal algorithms exist this fact can be deduced from the existence
of universal Turing machines. Thus, Turing machines give a universal framework for
an investigating subrecursive algorithms. For example, as the authors of neural net-
works, McCulloch and Pitts, stated, their model was essentially influenced by Turing
machine.

3.3 Procedural programming as know-how:
Finite automata and finite-state machines

“It’s too late to correct it,” said the Red Queen;
“when you have once said a thing,

that fixes it, and you must take the consequences.”

Lewis Carroll, 1832–1898

3.3.1 Structure of a finite automaton

According to the traditional approach (cf., for example, Hopcroft, et al., 2001), there
are three forms of representation of finite automata or, what is the same, sequential
machines (Savage, 1976): analytical, dynamic, and table. We begin with the analyt-
ical form.

A finite automaton A consists of three structures, that is, A = (L, S, δ):

♦ The linguistic structure L = (�, Q, 	) where � is a finite set of input symbols, Q
is a finite set of states, and 	 is a finite set of output symbols of the automaton A;

♦ The state structure S = (Q, q0, F) where q0 is an element from Q that is called
the initial or start state and F is a subset of Q that is called the set of final (in
some cases, accepting) states of the automaton A;

♦ The action structure, which is traditionally called the transition function, or more
exactly, transition relation of the automaton A

δ : � × Q → Q × 	.
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The state structure is realized by the memory unit M and the action structure is
realized by the logic unit L of the automaton A. The scheme of the automaton A is
given in Figure 3.1.

Figure 3.1. The structure of a sequential machine or finite automaton A.

Remark 3.3.1. Sometimes the initial state and final states are not included in the def-
inition of finite automaton (cf., for example, Savage, 1976). In this case, automata
with the initial state and final states form a special subclass of all automata and are
called adjusted finite automata (Trahtenbrot and Barzdin, 1970).

Remark 3.3.2. Sometimes instead of one initial state, the set of initial states is in-
cluded in the definition of finite automaton (Balcazar, Diaz and Gabarro, 1988). This
model is closer to real automata. However, it is possible to prove that from the theo-
retical point of view finite automata with several initial states, as well as several final
states are equivalent to finite automata with one initial and one final states. In other
words, both classes generate or accept the same class of languages, namely, regular
languages.

The dynamic form of representation of a finite automaton A is different from its
analytic form only in its transition function representation. The function or relation
δ is given in the form of a transition diagram.

The table form of representation of a finite automaton A is also different from its
analytic form only in its transition function representation. The function or relation
δ is given in the form of a table.

Example 3.3.1. A = (L, S, δ) is an automaton without output. The linguistic struc-
ture L consists of the set � = {1, 0} of input symbols and the set Q = {q0, q1, q2}
of states. The state structure S consists of the set Q, the start state q0 and the set
F = {q2} of accepting states.

The action structure or transition function δ : � × Q → Q in analytical form is
given by a formula or by the set of triples:

δ = {
(q0, 1; q1), (q0, 0; q0), (q1, 1; q2), (q2, 1; q0), (q1, 0; q1), (q2, 0; q2)

}
or
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Figure 3.2. The transition diagram of the automaton A from Example 3.3.1. Here circles are
states and arrows are transitions marked by the corresponding input symbols.

Figure 3.3. The table for the transition function of the automaton A from Example 3.3.1.

δ(qi , k) = q j where k ∈ {1, 0}, i, j ∈ {0, 1, 2} and j = i + k (mod 2).

The dynamic form of representation of the automaton A is given in Figure 3.2,
while the table form of representation of the automaton A is given in Figure 3.3.

When the automaton A works, some word w (for example, w = abc) is given to
A letter by letter. When the automaton A consumes some letter (for example, a), its
state and the output change according to the transition function or relation δ.

However, when we model real systems, we must not forget about time. Taking
time into consideration, we see that the transition relation δ(q, a), even when it is a
function, does not define uniquely functioning of the automaton A. There are three
conventional ways to define information processing in a timed automaton.

Let a word a(1)a(2) . . . a(n) be given to A as its input. Then the rules of the first
type are defined (Trahtenbrot and Barzdin, 1970) by the following formulas:

q(1) = q0,

q(t + 1) = δ1(q(t), a(t)),

b(t) = δ2(q(t), a(t)).

Here δ(q(t), a(t)) = (
δ1(q(t), a(t)), δ2(q(t), a(t))

)
, while a(t) belongs to �,

q(t) belongs to Q, and b(t) belongs to 	.
The rules of the second type are defined (Mealy, 1955) by the following formulas:
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q(1) = q0,

q(t + 1) = δ1(q(t), a(t + 1)),

b(t + 1) = δ2(q(t), a(t + 1)).

Many authors call an automaton A with the rules of the second type a Mealy
automaton.

The rules of the third type (Moore, 1956) are defined by the following formulas:

q(1) = q0,

q(t + 1) = δ1(q(t), a(t)),

b(t) = δ2(q(t)).

In this case, the output depends only on the inner state, while the automaton A
with the rules of the third type is called a Moore automaton.

As in the case of Turing machines, it is traditionally assumed that finite automata
work with finite words.

In this case, the result of computation of A is defined in the following way. When
a word w is given to A as its input, all letters are consumed, and A eventually comes
to a state in F , producing a word u, this word is taken as the output. If A does not
come to the state in F , then A gives no output.

The result of acceptance of A is defined in the following way. When a word w is
given to A as its input, all letters are consumed, and A eventually comes to a state in
F , the word w is accepted. If A does not come to the state in F , then the word w is
rejected.

There are other approaches to the definition of the result of automaton function-
ing. Some are considered in the next section.

It is worth knowing that finite automata that work with infinite words were con-
sidered very early (Burks and Wright, 1953). The reason is explained by Vardi and
Volper (1994), who write that when we deal with concurrent or nonterminating pro-
cesses (like those that are supported by operating systems) there is a need to reason
about infinite computations. Thus, instead of considering the first and the last states
of a program that realizes finite computations, we need to deal with infinite sequences
of states that the program, such as operating system, goes through.

Finite automata do not have inner structure or, at least, this structure is implicit.
There are different ways of realization of such a structure. One of them is utilization
of Boolean circuits (cf. Figure 5.3.1). As it is proved, Boolean circuits can model
arbitrary finite automata (Minsky, 1967). Consequently, it is possible to consider
Boolean circuits as the inner structure of finite automata. Moreover, Boolean cir-
cuits can simulate functioning of a Turing machine (cf., for example, Balcazar, et al.,
1988).

For some time, Boolean circuits were very popular due to their usage as mod-
els for computer circuits and components. If computer is built on transistors, then
Boolean elements are good models of these transistors. Minimization of Boolean
functions related to Boolean circuits was utilized for optimization of computer hard-
ware.
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However, implementation of LSI and VLSI as the base for computer hardware
changed the situation. Although it is possible to represent VLSI by a Boolean cir-
cuit, such representation would be inefficient as it would contain a huge amount of
Boolean elements. As a result, Boolean circuits became inept as models of computer
hardware.

Now Boolean circuits are used mostly in the theory of computational complex-
ity estimating the size of algorithms and for investigation of different complexity
classes.

3.3.2 Types and basic properties of finite automata

Traditionally, three types of finite automata (FA) are considered: deterministic, non-
deterministic, and nondeterministic finite automata with ε-transitions.

Definition 3.3.1. A deterministic finite automaton (DFA) A is a finite automaton in
which both components δ1(q, a) and δ2(q, a) of the transition relation δ(q, a) are
functions, that is, each is defined for all pairs (q, a) with q from Q and a from �.

This means that A performs a transition from a state q to a state p if and only if
it is in the state q and it is given the input a from � for which δ1(q, a) = p. This
transition is uniquely determined by the input and state of A. In addition, A gives
output b when δ2(q, a) = b.

Definition 3.3.2. A nondeterministic finite automaton (NFA) is a finite automaton in
which the δ(q, a) is not necessarily a function but can be an arbitrary binary relation
between the Cartesian products Q × � and Q × 	.

This means that A does not necessarily work for some inputs from � and its
transition and output are not always uniquely determined by the input and state of A
that is, it can be possible to make several transitions and give different outputs for
the same pair (q, a).

Definition 3.3.3. A nondeterministic finite automaton with ε-transitions (ε-NFA) is
a finite automaton in which the δ(q, a) is an arbitrary binary relation between the
Cartesian product Q × �ε and Q × 	 where ε is a symbol of the empty word and
�ε = � ∪ {ε}.

However, theoretical studies mostly involve more restricted types of finite au-
tomata.

Definition 3.3.4. A finite automaton A is called an automaton without output if it
gives no output, that is, the set 	 is empty and its transition relation has the form
δ : � × Q → Q.

Such automata can work only in the accepting mode. Many popular textbooks
restrict their exposition to automata without output (cf., for example, (Hopcroft et
al., 2001) or (Davis and Weyuker, 1983)).

As in the general case, three types of automata without output are considered.
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Definition 3.3.5. A deterministic finite automaton without output (usually it is de-
noted by the abbreviation DFA) A is a finite automaton in which the transition rela-
tion δ(q, a) is a function, that is, it is defined for all pairs (q, a) with q from Q and
a from �.

This means that A performs a transition from a state q to a state p if and only
if it is in the state q and it is given the input a from � for which δ(q, a) = p. This
transition is uniquely determined by the input and state of A.

Definition 3.3.6. A nondeterministic finite automaton without output (usually it is
denoted by the abbreviation NFA) is a finite automaton in which the δ(q, a) is not
necessarily a function but can be an arbitrary binary relation between the Cartesian
products Q × � and the set Q.

This means that A does not necessarily work for some inputs from � and its
transition is not always uniquely determined by the input and state of A, that is, it
can be possible to make several transitions for the same pair (q, a).

Definition 3.3.7. A nondeterministic finite automaton with ε-transitions and without
output (usually it is denoted by the abbreviation ε-NFA) is a finite automaton in
which δ(q, a) is an arbitrary binary relation between the Cartesian product Q × �ε

and Q where ε is a symbol of the empty word and �ε = � ∪ {ε}.
In addition to the features of a nondeterministic finite automaton, ε-transitions

allow such an automaton to make transitions even without input.
A deterministic finite automaton works in a strictly sequential mode. At the same

time, a nondeterministic finite automaton works in an independent branching mode.
It means that functioning of such automaton may be considered either as emergence
at each point of indeterminacy and existence of independent processes in one au-
tomaton or as appearance new identical automata at each point of indeterminacy,
which continue to function independently of all others. An intermediate mode of
functioning is realized by Petri nets (Petri, 1962; Hack, 1975). These nets are con-
sidered as a generalization of finite automata, to allow for the occurrence of several
actions (state transitions) autonomously. Petri nets and their generalizations are ex-
tensively used for modeling different asynchronous processes, including computa-
tional processes. It is proved (Peterson, 1981) that all languages of ordinary Petri
nets are context sensitive. This implies that these nets are subrecursive algorithms.
However, simple generalizations of Petri nets allow one to model arbitrary Turing
machines and thus, to achieve the recursive level (Agerwala, 1974).

As nondeterministic finite automata work differently in comparison with deter-
ministic finite automata, we need to define the result of their computation and accep-
tance.

The result of computation of a nondeterministic finite automaton A is defined in
the following way. When a word w is given to A as its input, all letters are consumed,
and A eventually comes to some state in F , producing a word u, this word is taken
as one from the complete output of A. Usually one input defines several paths of
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computation. Thus, in a general case, the result of A is a set of words and A is a
multivalued algorithm in the sense of (Burgin, 1993a). If beginning with the input
word w, A does not come to any state in F , then A gives no output.

The result of acceptance of a nondeterministic finite automaton A is traditionally
defined in the following way (cf. Hopcroft et al., 2001). When a word w is given to
A as its input, all letters are consumed, and there is such a path that A comes to some
state in F , the word w is accepted. If A does not come to any state in F , then the
word w is rejected.

A variety of other rules for acceptance for a nondeterministic finite automaton
A are considered by Peichl and Vollmer (2001). While any input defines a path of
transition for a deterministic automaton, in a nondeterministic case, we have several
paths, which form a tree. The terminal nodes of these trees are called leaves. Each
such node is a state of the automaton A. This allows us to attach symbols 1 and 0 to
these leaves. When the leaf is a final state of A, then we correspond 1 to this leaf.
Otherwise, we correspond 0 to the leaf.

In such a way, any tree generated by A, generates in its turn some set of 0’s and
1’s. When the paths that belong to this tree are generated in specific order, then we
correspond to the tree a word in binary symbols 1 and 0. This allows us to take some
class T of sets in the first case and of words in the second case and to make this class
accepting. That is, a word w is accepted by A if and only if the set (the word) that
is corresponded to the leaves of the tree generated by w belongs to T . For example,
the class T consists of all sets of binary symbols that have even number of 1’s. For
the standard rule of acceptance of a nondeterministic finite automaton A, the class T
consists of all sets or words of binary symbols that contain, at least, one symbol 1.

Finite automata with such acceptance rule are called (Peichl and Vollmer, 2001)
leaf automata. As it is proved (cf. Theorem 3.3.5), the acceptance power of leaf
automata is much higher than the acceptance power of standard nondeterministic
automata. However, our main interest here is standard deterministic and nondeter-
ministic automata.

Theorem 3.3.1. (Rabin and Scott, 1959). Both classes of nondeterministic finite au-
tomata with the standard rule for acceptance and deterministic finite automata have
the same accepting power.

Theorem 3.3.2. Both classes nondeterministic finite automata and nondeterministic
finite automata with ε-transitions have the same accepting power.

It is possible to find a proof of this result in (Hopcroft et al., 2001).

Theorem 3.3.3. The class of all finite automata without output is equivalent to the
class of all finite automata with output, that is, they generate the same class of formal
languages.

It is possible to find a proof of this result in (Trahtenbrot and Barzdin, 1970).
There are also other types of finite automata.

Definition 3.3.8. A finite automaton A is called an automaton without memory if it
has no inner states Q.
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Logic elements or, in another terminology, Boolean neurons, each of which real-
izes a Boolean function, are automata without memory.

Theorem 3.3.4. (Minsky, 1967). For any deterministic finite automaton, there is an
equivalent logical circuit with logical elements that realize Boolean functions (not
x) and (x ∧ y) or an equivalent neural network with Boolean neurons.

Definition 3.3.9. A finite automaton A is called an autonomous automaton or au-
tomaton without input if it has no input, that is, the set � is empty and its transition
relation has the form δ : Q → Q × 	.

In conventional automata models, time is either ignored or is present implicitly
in form of a system time, which is determined by steps of computation. However,
real systems are functioning in physical time. To have more exact models of real sys-
tems than give conventional automata, it is necessary to introduce time into the rules
of automaton functioning. This problem is considered in many works. Alur and Dill
(1994) distinguish qualitative and quantitative temporal reasoning. The first type has
been studied in great detail. It is based on the assumption that any functioning of a
system can be completely modeled as a sequence of states or system events, called
an execution trace (or just trace). The behavior of the system is a set of such execu-
tion sequences. When the systems do not have too big a number of different states,
as many have, conventional finite automata give an appropriate model, leading to
effective constructions and decision procedures for automatically manipulating and
analyzing system behavior. In particular, the universal acceptance of finite automata
as the canonical model of finite-state computation can be attributed to the robustness
of the model and the appeal of its developed theory.

Although such abstraction away from quantitative time has had many advantages,
it is ultimately counterproductive when reasoning about systems that interact with
physical processes. The correct functioning of the control system of airplanes, cars
and toasters depends crucially upon real-time considerations. To reflect these prop-
erties, finite automata are modified for this task and a theory of timed finite automata
is developed (Alur and Dill, 1994).

There are three ways to represent time in automata models. One alternative,
which leads to the discrete-time model, requires the time sequence to be a mono-
tonically increasing sequence of integers. This model is appropriate for certain kinds
of synchronous digital circuits, where signal changes are considered to have changed
exactly when a clock signal arrives. One of the advantages of this model is that it can
be transformed easily into an ordinary formal language. Each timed execution trace
can be expanded into a trace where time increases by exactly one unit at each step, by
inserting a special silent event as many times as it is necessary between events in the
original execution trace. Once this transformation has been performed, the time of
each event is the same as its position, so the time sequence can be discarded, leaving
an ordinary string. Hence, discrete time behaviors can be manipulated using ordi-
nary finite automata. Of course, in physical processes events do not always happen
at integer-valued moments of time. The discrete-time model requires that continuous
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time is approximated by taking some fixed quantum of time a priori, which limits
the accuracy with which physical systems can be modeled.

The fictitious-clock model is similar to the discrete time model, except that it
only requires the sequence of integer moments of time to be nondecreasing. The
interpretation of a timed execution trace in this model is that events occur in the
specified order at real-valued moments of time, but only the (integer) readings of the
actual moments of time with respect to a digital clock are recorded in the trace. This
model is also easily transformed into a conventional formal language (Alur and Dill,
1994). It is conceptually simple to manipulate these behaviors using finite automata,
but the compensating disadvantage is that it represents time only in an approximate
sense.

The third approach is a dense-time model, which is developed by Alur and Dill
(1994) and in which time is a dense set, because it is a more natural model for physi-
cal processes, which are functioning in continuous time. In this model, the moments
of time of events are real numbers, which increase monotonically without bound.
Moreover, it is presupposed that an automaton can have several clocks, registering
times with different scales. This correlates with the system theory of time (Burgin,
1997b; 2002a), according to which one system can have several times. Dealing with
dense time in a finite-automata framework is more difficult than the other two cases,
because it is not obvious how to transform a set of dense-time traces into an ordinary
formal language.

In addition, timed automata provide an efficient model for human-computer inter-
action, in which time is often a critical parameter (Burgin, Liu, and Karplus, 2001).

3.3.3 Languages and automata

Finite automata are usually compared by and utilized for producing, that is, accept-
ing, deciding or computing, some languages.

Definition 3.3.10. A formal language L is any set of words in some alphabet A.

There are three main ways to build a formal language L. The first two forms give
dynamic representation of languages, while the third form provides a static language
description. A formal language may be defined:

1. By an automaton: for example, a language can be built by finite automata,
pushdown automata or Turing machines in the mode of computation or acceptance.
In the first case, L consists of all words that are computed and in the second case,
accepted by the corresponding automaton. This is a system representation of a
language.

2. By a system of rules: for example, a language can be built using formal gram-
mars or Post productions. This is a linguistic representation.

3. By a formula: for example, a language can be defined by regular expressions.
This is an analytic representation.

Regular expressions over an alphabet A are defined by induction:
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The base of induction:

1. ∅ is a regular expression
2. ε is also a regular expression
3. For any single letter a from A, a is a regular expression

The step of induction: If U and V are regular expressions, then:

4. U + V is regular expression, which is called the union of the expressions U
and V ;

5. U V is regular expression, which is called the concatenation of the expressions
U and V ;

6. U∗ is regular expression, which is called the Kleene closure of U ;
7. (U ) is regular expression, assuming that parenthesis are not allowed to be in A.

Example 3.3.2. If � = {a, b, 1}, then a, a + b, 1a, 1∗, (a + b)∗, and (1a) are all
regular expressions.

Regular expressions over an alphabet A define languages in the alphabet A. This
is an analytic representation of languages.

Definition 3.3.11. A regular language L is any set of all words in some alphabet A
that are obtained by the following inductive rules:

The base of induction:

1. The regular expression ∅ defines the empty language L(∅) = ∅.
2. The regular expression ε defines the empty language L(ε) = {ε}, which consists

of the empty word.
3. The regular expression a defines the empty language L(a) = {a}, which consists

of the single word a.

The step of induction: If U and V are regular expressions define languages L(U )

and L(V ), correspondingly, then:

4. U + V defines the union of languages of languages L(U ) and L(V ) by the
formula L(U + V ) = L(U ) ∪ L(V );

5. U V defines the concatenation of languages L(U ) and L(V ) by the formula
L(U V ) = L(U )L(V );

6. U∗ defines the Kleene closure of the language L(U ) by the formula L(U )∗ =⋃∗
n=1 L(U )n where L(U )n = L(U ) . . . L(U );

7. (U ) defines the same language as U .

Theorem 3.3.5 (Kleene, 1956). a) All languages that correspond to regular ex-
pressions (which are called regular languages) are languages of finite automata.

b) Finite automata accept only regular languages.
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So, the class of regular languages is the same as the classes of languages accepted
by finite automata. This theorem shows equivalence between system and analytic
representations for the given class of languages.

There are many languages that are not regular. For example, the language
L = {ww; w is an arbitrary word} is not regular. Theorem 3.3.5 states that finite au-
tomata, both deterministic and nondeterministic, can accept only regular languages.
At the same time, leaf automata, that is, nondeterministic finite automata with a leaf
acceptance condition (cf. Section 3.3.2), have much higher acceptance power.

Theorem 3.3.5. For any formal language L, there is a leaf automaton A that ac-
cepts L.

Proof . For simplicity, we give a proof only for the alphabet {1, 0}. A general case
is considered in similar way. It only demands more space.

Let us consider the nondeterministic finite automaton A with the following rules:
δ(q0, 1) = q0, δ(q0, 0) = q0, δ(q0, 1) = q1, δ(q0, 0) = q2, δ(q1, 1) = q1,
δ(q1, 0) = q1, δ(q2, 1) = q2, δ(q2, 0) = q2 where q0 is the initial state, q1 is a
terminal (accepting) state and q2 is a nonterminal (nonaccepting) state. According to
these rules, when A comes to the state q1 or q2, it does not change it, consuming all
other symbols from the input word. At the same time, the first two rules allow the au-
tomaton A to consume any number of symbols from the beginning of the input word.
Thus, any path in the tree of processing an input word terminates in q1 to which 1
is corresponded or in q2 to which 0 is corresponded. As each path generated by an
input word w corresponds to a definite symbol in w, we order all paths according to
the order of symbols in the word w.

If we take as the acceptance leaf language (cf. Section 3.3.2) an arbitrary formal
language L , then we see that A accepts exactly this language.

Theorem 3.3.5 is proved.

As it is explained above, modeling of many computer systems involves process-
ing infinite strings or words. It implies an extension of the concept of a formal lan-
guage.

Definition 3.3.12. A formal ω-language L is any set of infinite words in some alpha-
bet A.

Now there is a developed theory of finite automata working with infinite words
(cf., for example, (Vardi and Volper, 1994) and Section 3.3.2).

3.3.4 Finite automata and finite-state machines

Finite automata, Turing machines, neural networks, and cellular automata, when they
are considered without output, that is, only in the accepting mode, are special cases
of state machines.

Definition 3.3.13. A model of computation consisting of a set of states, an input
alphabet, and a transition function that maps input symbols and current states to a
next state is called a state machine.
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It is usually assumed that algorithms are such state machines when they function
in the accepting mode. Some include machines that work in the computing mode
into the scope of state machines if those machines go from a state to another state in
the process of computation. We call such machines extended state machines, having
in mind that they while changing their states, also produce some output. Even those
systems that work in continuous time changing their states (cf., for example, (Moore,
1996) or (Alur and Dill, 1994)) are such extended state machines.

Definition 3.3.14. A state machine that has a finite set of states is called a finite-state
machine.

Some think that an infinite-state machine can be conceived but is not practical. As
it is explained in Section 3.2, this is not true. Besides, there is an opinion that a finite-
state machine is the same as a finite automaton. This is not completely true because a
finite-state machine can use (as an external component) some (potentially or actually)
infinite memory, while a finite automaton is restricted to its own constituents, which
cannot be infinite.

In other sources, finite-state machines that give no output are called finite au-
tomata (cf., for example, (Rosen, 1999)). This shows that terminology in the field of
finite-state machines is not stable.

Definition 3.3.15. A state machine that has fixed start and final states is called an
adjusted finite-state machine.

According to a more general understanding, a state machine is any device that
stores its status or state at a given time and can operate on input to change the state
and/or cause an action or give output. Formally, a state machine consists of: (1) a set
of possible input events; (2) a set of possible states; (3) a set of possible actions or
output events; (4) a function that maps states and input to a new state and output.

Consequently, any automaton is a state machine and any finite automaton is a
finite-state machine. When a finite-state machine accepts only symbolic input and
gives only symbolic output, it is a finite automaton.

It is necessary to make a distinction between states of the whole machine and
states of its elements and parts as partial states of the whole. For example, a state of
the tape of a Turing machine T is a partial state of T . A conventional finite automaton
does not have parts. So, it does not have partial states.

A computer is basically a finite automaton and each machine instruction is an
input that changes one or more states and may cause other actions to take place.
Each computer’s data register stores a state. The read-only memory from which a
boot program is loaded stores a state (the boot program itself is an initial state). The
operating system is itself a state and each application that runs begins with some
initial state that may change as it begins to handle input.
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3.4 Functional programming as know-what: Recursive functions

“Isn’t that rather like one of the Rules in Algebra?”
my Lady inquired.

Lewis Carroll, 1832–1898

Recursive functions and finite automata represent two important paradigms in pro-
gramming. Recursive functions are related to functional programming, while finite
automata correspond to procedural programming. Other paradigms are: descriptive,
object-oriented, and structured programming. Procedural, functional and descriptive
paradigms are representational types of programming systems, while object-oriented
and structured programming are organizational types. By its properties, functional
programming lies between procedural and descriptive or declarative programming.

Functional programming is a style of programming that emphasizes the evalua-
tion of functions, rather than execution of commands (Rabhi and Lapalme, 1999). A
functional programming language is a language that supports and encourages func-
tional programming. Mathematical models that correspond to direct effective opera-
tion with functions are called recursive functions.

As software becomes more and more complex, it is more and more important to
structure it well. When a programming language provides better structuring, it be-
comes easier to write programs. Well-structured software is also easy to debug. It is
usually a collection of connected modules that can be re-used to reduce future pro-
gramming costs. Conventional programming languages place conceptual limits on
the way problems can be modularized. Functional programming languages push in
a natural way those limits back. Two features of functional programming languages
in particular, higher-order functions and lazy evaluation, can contribute greatly to
modularity (Hughes, 1989).

Functions in functional languages have the form of expressions that are built
from some collection of basic functions. This technique exactly models structures
developed in such approach to computability and algorithm modeling as the the-
ory of recursive functions. This theory emerged from the ideas of Ackermann and
was initiated and developed by Gödel, Church, and Kleene (cf. Section 2.2). Usually
functions from the set N0 of all whole numbers into N0 or from the direct power Nk

0
into N0 are considered and different restrictions are provided in such a way that these
functions become in some sense computable. It is not specified who performs com-
putations. However, this approach is oriented mostly at a person and only partially at
a device (cf., for example, (Siegelman, 1999)).

The principal technique of this approach consists of three main steps:

1. Choice of some simple functions of whole numbers and assumption that they are
computable. They form a basic set for the construction of computable functions.
Such functions have, as a rule, very simple rules for calculations. Examples of
such functions are functions 0(x) = 0 for all x and S(x) = x + 1.

2. Choice of operations that transform functions and are considered computable or
constructive.
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3. Formation of the smallest class that is built from the set of chosen functions by
means of the chosen operations.

The constructed class is called the class of computable functions. Together with
implicit rules for calculations of their values, these functions provide a mathematical
model of algorithm.

When it is assumed that these operations are finite and are applied a finite num-
ber of times for building a new function, we get a class of subrecursive algorithms
(subrecursive computable functions). Only such infinite operation as minimization
allows one to get recursive algorithms, while limit operations bring us to superrecur-
sive algorithms.

The main operations that are used for building computable functions belong to
several classes.

Functional operations:

1. Sequential composition or simply, composition: For two given functions f (x)

and g(x) with one variables x , their sequential composition is determined by the
formula ( f ◦ g)(x) = f (g(x)). For n + 1 given functions g1(z), . . . , gn(z)
each with m variables z = (z1, . . . , zm) and f (x) with n variables x =
(x1, . . . , xn), their sequential composition is determined by the formula ( f ◦
g)(z) = f (g1(z), . . . , gn(z)).

2. Parallel composition or definition by cases: For two given functions f (x) and
g(x) with the one variables x , their parallel composition with respect to a func-
tions h(x) and a number a is determined by the formula ( f ∨h,a g)(x) = f (x)

when h(x) = a and ( f ∨h,a g)(x) = g(x) otherwise.
3. Primitive recursion or simply, recursion: For two given functions f (x) and g(x)

with the same vector of variables x = (x1, . . . , xn), their primitive recursion,
which gives the function h(x, y), is defined by the following steps: h(x, 0) =
f (x) and h(x, y + 1) = g(x, y, h(x, y)).

3a. Bounded recursion: For three given functions f (x), g(x) and b(x, y) with the
same vector of variables x = (x1, . . . , xn), the function h(x, y) is defined as in
primitive recursion with the additional condition h(x, y) ≤ b(x, y). When this
condition is not satisfied, h is not defined. Thus, h is only allowed to grow as
fast as another function already in the class that is built with this operation.

4. Partial projection: For a given function f (x1, . . . , xn), its partial projection
h(x1, . . . , xm) is defined as h(x1, . . . , xm) = f (u1, . . . , un) where each u j is
either a number or some variable xi .

Arithmetical operations:

5. Bounded sum: For a given function f (x, y), its bounded sum, which gives the
function h(x, y), is defined as h(x, y) = ∑

z<y f (x, z).
6. Bounded product: For a given function f (x, y), its bounded product, which gives

the function h(x, y), is defined as h(x, y) = ∏
z<y f (x, z).

7. Cut-off subtraction: For two given functions f (x) and g(x), their cut-off sub-
traction, which gives the function h(x), is defined by the following rule: h(x) is
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denoted by f (x) −. g(x) and is equal to f (x) − g(x) if f (x) ≥ g(x) and to 0 if
f (x) < g(x).

Order operations:

8. Minimization: For a given function f (x, y) with two variables, its minimization
h(x) is defined as h(x) = min{y; f (x, y) = 0}, that is, h(x) is equal to the
smallest y such that f (x, y) = 0 provided that f (x, z) is defined for all z ≤ y.
If no such y exists, h(x) is undefined.

8a. Bounded minimization: For a given function f (x, y), its bounded minimization
h(x, ymax) is defined as h(x, ymax) = min{y; f (x, y) = 0 and y < ymax}, that
is, h(x, ymax) is equal to the smallest number y < ymax such that f (x, y) = 0
and h(x, ymax) = ymax if no such y exists.

Topological operations:

9. Discrete limit: For a given function f (x, y) with two variables, its discrete limit
is defined by the following formula: h(x) = limy→∞ f (x, y), where the limit
limy→∞ f (x, y) is taken in the discrete topology of natural numbers, that is,
the limit limy→∞ f (x, y) is defined if there is y0 such that f (x, y) = f (x, z),
provided that y0 ≤ y ≤ z. If no such y0 exists, h(x) is undefined.

Usually algorithms work with words or whole numbers, which are traditionally
considered in a discrete topology. However, it is possible that the domain of algo-
rithms and their range have nondiscrete topologies.

Let us consider, for instance, some topology τ on the set N0 of all whole numbers
(Kelly, 1957). It is not necessarily discrete topology. For example, there is one-to-one
correspondence between N0 and the set Q of all rational numbers. This correspon-
dence induces on N0 the natural topology of Q.

10. Limit: For a given function f (x, y) with two variables, its limit is defined by the
following formula: h(x) = limy→∞ f (x, y), where the limit limy→∞ f (x, y) is
taken in the topology τ . If such limit does not exist, h(x) is undefined.

Remark 3.4.1. Operations 1–5 and 6a generate subrecursive algorithms. Minimiza-
tion extends the class of computable functions to recursive algorithms. Limits take
computable functions beyond the class of recursive algorithms. Limit operations al-
low one to define arbitrary sums and products of functions.

At the same time, only order and topological operations can create a partial func-
tion. All the others yield total functions when applied to total functions.

By starting with various basic sets and demanding closure under various proper-
ties and operations, researchers have defined various natural classes of subrecursive
computable functions. The smallest class of computable functions that have been
popular consists of elementary functions, which were introduced by Kalmar (1943).

Definition 3.4.1. An elementary function (in the sense of Kalmar) is a function that
can be generated from the constant zero function 0(x) = 0, the successor function
S(x) = x+1, addition, cut-off subtraction and projections Pi (x1, . . . , xn) = xi using
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any finite number of compositions and the operations of forming bounded sums and
bounded products.

In what follows, we call functions from the class E simply elementary.
It is possible to show that usual arithmetical operations belong to the class E. For

example, multiplication and exponentiation over N0 are both in E, since they can be
written as bounded sums and products respectively: xy = ∑

z<y x and x y = ∏
z<y x .

Since E is closed under composition, for each m the m-times iterated exponential
function exp[m](x) is in E, where exp[m+1](x) = 2exp[m](x) and exp[0](x) = x .

Although analogue computations are considered in Chapter 4, here we note their
relation to elementary functions. One of the approaches to analogue computations
(Moore, 1996) is based on a version of Shannon’s general purpose analog computer
(Shannon, 1941). Such analog computer can integrate real functions and differential
equations. It is proved in (Campagnolo, Moore, and Costa, 2000) that if the analog
computer is allowed to solve only linear differential equations and to treat inequali-
ties in a differentiable way, then it computes exactly the elementary functions.

It is possible to give another characterization of the class E.

Theorem 3.4.1. (Grzegorczyk, 1953). An elementary function is a function that can
be generated from the successor function S(x) and the function x y using any finite
number of partial projections and limited recursions.

Elementary functions have strict bounds on their growth and time of computation
as the following results show (Cutland, 1980; Rose, 1984; Rogers, 1987).

Theorem 3.4.2. If f ∈ E, then there is a number m such that, for all x, f (x) ≤
exp[m](‖x‖), where ‖x‖ = max{xi ; x = (x1, . . . , xn) and i = 1, . . . , n}, that is, f
cannot grow faster than exp[m](x) for some fixed m.

Theorem 3.4.3. f ∈ E if and only if f is computable in elementary time.

In spite of these restrictions, the class E is very large, containing the most us-
able computable functions. It includes, for instance, the connectives of propositional
calculus, arithmetical operations, and functions for coding and decoding various se-
quences of natural numbers such as the prime numbers, as well as factorizations, and
many useful number-theoretic and metamathematical functions.

The class E is not the smallest class of computable functions. It contains the class
SE of elementary functions in the sense of Scolem (1962).

Definition 3.4.2. An elementary function in the sense of Scolem is a function that
can be generated from the constant zero function 0(x) = 0, the successor function
S(x) = x + 1, addition, cut-off subtraction, and projections Pi (x1, . . . , xn) = xi

using any finite number of compositions and the operations of forming bounded
sums.

Remark 3.4.1. It is possible instead of S(x) to take the constant one function 1(x) =
1 for generating elementary functions in the sense of Kalmar and Scolem (cf. Malcev,
1965).
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Proposition 3.4.1. (Scolem, 1962). If f ∈ SE, then there is a number m such that,
for all x1, . . . , xn, f (x) ≤ (2 + x1, . . . , xn)m .

Proposition 3.4.2. (Scolem, 1962). SE is a proper subclass of E.

Indeed, SE ⊆ E and elementary in the sense of Kalmar function 2x does not
belong to SE by Proposition 3.4.1.

Remark 3.4.2. Malcev (1965) also introduces functions elementary with respect to a
given system of functions.

In spite of being large, E is smaller than the majority of classes of computable
functions that is studied in the classical theory of recursive functions. A much more
extended class comprises primitive recursive functions.

Definition 3.4.3. A primitive recursive function is a function that can be generated
from the constant zero function 0(x) = 0, successor function S(x), and projections
Pi (x1, . . . , xn) using any finite number of compositions and primitive recursions.

A bridge between elementary functions and primitive recursive functions is
formed by the Grzegorczyk hierarchy (Grzegorczyk, 1953).

Let us consider the system of functions q0(x, y) = x + y, q1(x) = x2 + 2, and
qn+1(0) = 2, qn+1(x) = qn

(
qn+1(x − 1)

) = q[x]
n (2) for all n = 1, 2, . . . .

Definition 3.4.4. The Grzegorczyk hierarchy:

a. E0 is the class of functions that can be generated from the constant zero function
0(x) = 0, successor function S(x), and projections Pi (x1, . . . , xn) by applying
any number of compositions and bounded recursion.

b. for n > 0, En is the class of functions that can be generated from the constant
zero function 0(x) = 0, successor function S(x), projections Pi (x1, . . . , xn),
and functions q0(x, y), . . . , qn−1(0) by applying any number of compositions
and bounded recursion.

Theorem 3.4.4. E3 = E.

Let PR be the class of all primitive recursive functions.

Theorem 3.4.5. PR = ⋃∞
n=0 En.

The Grzegorczyk hierarchy is also studied in the context of real number compu-
tations (Gakwaya, 1996; 1997).

Although the class of primitive recursive functions is much bigger than the class
of elementary functions, the former class is much smaller than the class of general
recursive functions.

Definition 3.4.5. A general recursive function is a function that can be generated
from the constant zero function 0(x) = 0, successor function S(x) = x + 1, and
projections Pi (x1, . . . , xn) = xi using any finite number of compositions, primitive
recursions, and bounded minimizations.
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Lemma 3.4.1. Any general recursive function is defined for all whole numbers.

It is possible to give another characterization of general recursive functions with
one variable.

Theorem 3.4.6. (Robinson, 1950). Any general recursive function with one variable
can be generated from the constant zero function 0(x) = 0, successor function S(x),

and the function q(x) = x − [√
x
]2

, using any finite number of compositions and
limited recursion.

Here we also encounter another meaning for the word subrecursive function,
which is related to time of computation (Rose, 1984).

Definition 3.4.6. A subrecursive (in the sense of Rose) function f is a function that
can be so computed that the number of steps of computation is a less computationally
complex function of the input than the function f itself.

Theorem 3.4.7. All functions in the Grzegorczyk hierarchy are subrecursive in the
sense of Rose.

The most extended conventional class of computable functions is formed by par-
tial recursive functions.

Definition 3.4.7. A partial recursive function is a function that can be generated
from the constant zero function 0(x) = 0, successor function S(x) = x + 1, and
projections Pi (x1, . . . , xn) = xi using any finite number of compositions, primitive
recursions, and minimizations.

According to the Church–Turing thesis in the form of Church, computable func-
tions are exactly partial recursive functions.

Partial recursive functions were initially considered as numerical functions from
N to N or from N0 to N0. However, there is a natural correspondence between
numerical functions and alphabetical functions, which map words into words.

Really, each natural number is represented by some word when it is used. Dif-
ferent alphabets are used for such representations. For instance, the binary number
system, which is used by computers, has the alphabet {1, 0}. The ternary number
system, which is the most optimal for arithmetical calculations, has the alphabet
{0, 1, 2}. The decimal number system, which is used by people, has the alphabet {0,
1, 2, 3, 4, 5, 6, 7, 8, 9}. Computers use the binary number system, while people prefer
the decimal number system.

A representation of numbers by words c : N → A∗ allows one to correspond to
each numerical function f : N → N the alphabetical function g : A∗ → A∗. This
correspondence is presented by the diagram a) from Figure 3.4 where g = c f c−1.

On the other hand, it is possible to enumerate by natural numbers all words in any
finite alphabet A. For example, taking all words in the alphabet {1, 0}, we correspond
1 to the empty word ε and define e(w) for a nonempty word w equal to the number
for which 1w is its binary representation. Thus, e(00) = 1002 = 4 or e(101) =
11012 = 25.
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Figure 3.4. Correspondences between numerical and alphabetical functions.

An enumeration e : A∗ → N allows one to correspond to each alphabetical func-
tion g : A∗ → A∗ a numerical function f : N → N . This correspondence is pre-
sented by the diagram b) from Figure 3.4 where f = ege−1.

The established correspondence can be restricted to the class of all computable
functions. As a result, we may assume that Turing machines work not only with
words but also with natural or whole numbers and consider recursive and partial
recursive functions not only for numbers but also for words.

Theorem 3.4.8. (Turing, 1936). A function f is partial recursive if and only if f is
computable by some Turing machine.

Corollary 3.4.1. Partial recursive functions are equivalent to (that is, have the same
computing power as) Turing machines.

Definition 3.4.8. A partial recursive function that is everywhere defined is called a
recursive function.

Theorem 3.4.9. (Kleene, 1936). A partial recursive function is everywhere defined
if and only if it is a general recursive function.

This result is based on the following property of partial recursive functions.

Theorem 3.4.10. (Kleene, 1936). For any partial recursive function f (x) there are
such general recursive functions p(x) and g(x, t) such that f (x) has the form (the
Kleene normal form):

f (x) = p
(
min{t; g(x, t) = 0}).

There is an interesting class of partial recursive functions, which are called prefix
functions and are used in the theory of Kolmogorov complexity (cf. Section 5.3).

Definition 3.4.9. A partial recursive function f (x) is called a prefix function if for
any for any elements x and z from the definability domain of f , x ⊂ z implies
f (x) = f (z).

For two words x and y, x ⊂ z means that the word x is a beginning of the word
z, for example, 101 ⊂ 1010101111 or ab ⊂ abcbad.



104 3 Subrecursive Algorithms

Although superrecursive algorithms are treated in the next Chapter, here we con-
sider some functions computed by superrecursive algorithms. These functions are
obtained from general and partial recursive functions by application of limit oper-
ations. Gold and Putnam introduced in 1965 concepts of limit recursive and limit
partial recursive functions.

Definition 3.4.10. A limit partial recursive function is a function that is the discrete
limit of a sequence of partial recursive functions.

Definition 3.4.11. A limit recursive function is a function that is the discrete limit of
a sequence of recursive functions.

Any partial recursive function is the discrete limit of a sequence of recursive func-
tions, and thus, it is a limit recursive function. However, the class of limit recursive
functions is much larger than the class of partial recursive functions. Besides, there
are more limit partial recursive functions than limit recursive functions (Gold, 1965;
Putnam, 1965). If we use a general limit operation for constructing new functions,
we can obtain much more (Burgin, 1992).

In classical recursive function theory, more general than functions objects are
defined. They are called functionals and are mappings of the form 2N0 → N0 or
(2N0)k × N t

0 → N0. In similar way to functions, it is possible to define elementary,
primitive recursive, general recursive, and partial recursive functionals when we use
different operations discussed in this section. Recursive and partial recursive func-
tionals, as well as limit recursive and limit partial recursive functions allow one to
increase expressive power and efficiency of functional programming.

Now functional programming, which is based on the theory of recursive func-
tions, is rather popular. There is even a special Journal of Functional Programming.
There are many functional programming languages. LISP is the most popular of them
(Allen, 2001). It is the main language for artificial intelligence. LISP is based on the
use of expressions that represent functions. It is possible to compare functional lan-
guages with more popular programming languages. Thus, Pascal, C++, or Fortran
are classified as procedural or operational or imperative programming languages.
These languages are instruction-oriented, the programs consisting of a sequence of
instructions. LISP programs, as originally defined, were specified entirely as expres-
sions. Recursion is the central tool for LISP programming. Due to their regular, re-
cursive structure, LISP programs tend to be short and elegant. At the same time,
to be able to program effectively in LISP, a different kind of thinking is required, in
particular, one must learn to think recursively. This is very different from instruction-
oriented thinking required for procedural languages such as Pascal, C++, or Fortran.
However, absence of procedures in LISP restricted essentially programming possi-
bilities, making it less flexible. To improve the language, current implementations
of LISP have extensions that allow LISP programs to be more instruction-oriented.
Thus, programming experience with different languages shows that it is necessary to
combine in a universal language different forms of function process representation.
To achieve this goal, we need to go from programming languages to more abstract
than they programming metalanguages. Vast opportunities for utilization of different
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programming languages in one program are provided by such programming meta-
language as the block-scheme language (Burgin, 1996).



4

Superrecursive Algorithms:
Problems of Computability

Shallow ideas can be assimilated;
ideas that require people to reorganize

their picture of the world provoke hostility.
James Gleick, Chaos

Recent development of the theory of algorithms allowed researchers to overcome
limitations of the Church–Turing thesis, discovering superrecursive algorithms and
explicating hypercomputation. New mathematical models for algorithms and compu-
tation emerged that are more powerful than models for recursive algorithms such as
Turing machines, partial recursive functions, λ-calculus or cellular automata. Higher
computing power means that superrecursive algorithms can solve such problems that
no recursive algorithms, even such efficient as quantum algorithms, can solve in prin-
ciple. There are several directions in the area of superrecursive computation. The
most important of them (listed in the chronological order) are: inductive computa-
tion, computation with real numbers, interactive and concurrent computation, fixed
point models, topological computation, neural networks with real number parame-
ters, infinite-time computation, and dynamical system computation. New models of
algorithms and computation gave birth to new logics of computation. In addition
to greater computational power, some of superrecursive models provide for higher
speed and efficiency of computation, decreasing at the same time computational
complexity.

In this chapter, we consider the following problems:

♦ What is the general situation with superrecursive algorithms, their origin, and
problems of their representation? The general situation shows necessity to have
mathematical models for superrecursive algorithms and to develop an efficient
theory of superrecursive algorithms (Section 1).

♦ What is the general situation with mathematical models of superrecursive al-
gorithms, their origin, relations to conventional models, and computing power?
Different directions in the theory of superrecursive algorithms and hypercompu-
tation are considered (Section 2).

♦ What is and what can do the closest to conventional algorithms superrecursive
model, which is called inductive Turing machine? The most general inductive
Turing machines have the computing power of Turing machines with oracles,
that is, they can compute any function for finite words and decide any formal
language; more constructive inductive Turing machines represent functioning of



108 4 Superrecursive Algorithms: Problems of Computability

modern and future computers and networks; hierarchies of such machines al-
low one to build the arithmetical hierarchy and to prove all true sentences in
the formal first order arithmetic in contrast to the famous Gödel incompleteness
theorem, which states impossibility to obtain such proofs by conventional math-
ematical methods (Section 3).

♦ How are local and global networks, cluster computers, and the emerging GRID
to be modeled? Achieving this goal, a new computational model called grid au-
tomaton is developed and studied. Grid automata allow one to synthesize in one
model computation and communication, providing for representation and study
of the natural synergy of humans and computers (Section 4).

4.1 What superrecursive algorithms are and why we need them

In practice, bravery accumulates gradually
during the process of solving problems

that seem unsolvable.

G. Altshuller, The Innovation Algorithm

Most of what we understand about algorithms and their limitations is based on our
understanding of Turing machines and other conventional models of algorithms. The
famous Church–Turing thesis claims that Turing machines give a full understanding
of computer possibilities. However, in spite of this Thesis, conventional models of
algorithms, such as Turing machines, do not provide a relevant representation for
the notion of algorithm. That is why several extensions of conventional models have
been developed. These new models have different levels of constructivity or realiz-
ability. The model, or more exactly, the class of models, that does not involve actual
infinity or nonconstructive operations is based on the following observation. One
of the basic stereotypes for algorithms states that an algorithm has to stop when it
gives a result. This is the main restriction hindering the development of computers.
When we understand that computation can go on, but we can get what we need, we
then go beyond our prejudices and immensely extend computing power, introducing
superrecursive algorithms.

Definition 4.1.1. Any class of algorithms that is more powerful than the class of
recursive algorithms (such as Turing machines) is called a class of superrecursive
algorithms.

Superrecursive algorithms define and control hypercomputations.

Definition 4.1.2. Hypercomputation is a computational process (including processes
of input and output) that cannot be realized by recursive algorithms.

There are three kinds of reasons for the development of superrecursive algorithms
and their theory. Theoretical reasons emphasize problems that exist with definitions
of computability, algorithms, and constructivity in general, as well as provability
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and truth in mathematics. Methodological reasons attract attention of researchers to
existence of many processes that are in some or another sense algorithmic, but cannot
be represented by recursive algorithms. Practical reasons are dealing with problems
of adequate and efficient modeling existing computers, networks and other IPS, as
well as with finding new ways for their development. Let us consider some of these
reasons.

We begin with a practical question whether recursive algorithms provide an ad-
equate model of modern computers. To our surprise, we find that people do not see
correctly how computers are functioning. An analysis demonstrates that while re-
cursive algorithms gave a correct theoretical representation for computers at the be-
ginning of “computer era”, superrecursive algorithms are more adequate for modern
computers.

To understand the situation, let us look at conventional models of algorithm. We
can see that in comparison with the informal notion, an extra condition appears in
formal definitions of algorithm, that is, after giving a result algorithm stops (cf., for
example, (Harel, 2000)). This condition looks rather natural. Indeed, what you have
to do more after you have what you wanted. However, if we analyze thoroughly what
is going on with real computers, we have to change our mind.

At the beginning, when computers appeared and were utilized for some time, it
was necessary to print out data produced by computer to get a result. After printing,
computer stopped functioning or began to solve another problem. Now people are
working with displays. A computer produces its results on the screen of a monitor.
Those results on the screen exist there only if computer functions. If computer stops,
then the result on its screen disappears. This is the contrast to the condition on ordi-
nary (recursive) algorithms that demands to stop to give a result. At the same time,
it is exactly the case of such superrecursive algorithms as inductive Turing machines
(cf. Sections 4.2.2 and 4.3) because their results are obtained, as a rule, without stop-
ping. A possibility to print some results and switch off the computer only shows that
recursive algorithms can be modeled by inductive Turing machine.

This feature of modern computers that results exist (on the screen) only when
computer continues to work has been developed further in building nonstop comput-
ers (Gray, 1985; Flavin, 1991). The aim of such computers is to achieve high reliabil-
ity and high availability for cost-effective computer systems. Large applications in-
volving database transactions such as automated teller machines (ATM), credit card
transactions, and securities transactions demand distributed computer systems that
have mean time failures measured in years. In response to these needs, Nonstop Tan-
dem computer systems have been created. Working in this nonstop, superrecursive
mode, Tandem computers have achieved mean time to failures measured in tens of
years.

Such misunderstanding of modern computers that restricts them to the conditions
of the Church–Turing thesis is not unique and similar “blindness” is not new in so-
ciety. Thus, people thought for thousands of years that the Sun rotated around the
Earth and only in the 16th century Copernicus proved different.

It is necessary to remark that in some cases recursive algorithms are sufficient.
For example, working with a printer, we reduce superrecursive algorithms to recur-
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sive algorithms. It demonstrates that recursive algorithms are relevant for modeling
those computers and programs that display their final results by means of a printer.
This situation was true for all computers many years ago but it does not correspond
to reality now. Users who consider only intermediate results and treat them as final
results, in fact, reduce superrecursive algorithms to recursive ones.

To show other shortcomings of the classical model of algorithms, let us consider
some examples of contemporary computer utilization. One of the important applica-
tions of computers is simulation used for prediction. However, no single computer
run or computer output can be considered to be a definitive forecast of what will
happen (Karplus, 1992). It is necessary to have many simulations resulting in the
form of stacks of computer outputs in order to make more or less valid prediction.
Consequently, in the sequence of these simulations, there is no, as a rule, such a mo-
ment when the researcher who carries out these simulations can stop computer and
say, “Here is the final result.” Even when some conclusions are made basing on the
output data of simulation, it is possible that after some time the researcher repeats
simulation procedure one or several times more. The goal of such repetitions is, as a
rule, to obtain more exact or adequate results, to achieve better understanding, or to
test some other hypothesis. This situation evidently demonstrates that a conventional
algorithm can adequately represent and direct only one run of computer simulation,
while the whole process has a very different nature, which demands superrecursive
algorithms.

Such big networks as the Internet give another important example of a situation
in which conventional algorithms are not adequate. Algorithms embodied in a mul-
tiplicity of different programs organize network functioning. It is generally assumed
that any computer program is a conventional, that is, recursive algorithm. However,
a recursive algorithm has to stop to give a result, but if a network shuts down, then
something is wrong and it gives no results. Consequently, recursive algorithms turn
out to be too weak for the network representation, modeling and study.

Even more, no computer works without an operating system. Any operating sys-
tem is a program and any computer program is an algorithm according to the general
understanding. But while a recursive algorithm has to stop to give a result, we cannot
say that a result of functioning of operating system is obtained when computer stops
functioning. On the contrary, when computer is out of service, its operating system
does not give an expected result. Moreover, any operating system does not produce
a result in a form of some word, while this is an essential condition for any recur-
sive algorithm. Although, from time to time, operating system sends some messages
(strings of words) to a user, the result of operating system is reliable functioning of
the computer. Stopping computer is only a particular result. Consequently, the real
result of the operating system functioning is obtained only when computer does not
stop (at least, potentially). Different authors have noticed it. For example, Vardi and
Volper (1994) write that dealing with concurrent or nonterminating processes (like
those that are supported by operating systems) there is a need to reason about infinite
computations. Thus, we come to a conclusion that it is not necessary for algorithm
to halt to produce a result.
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Recently, Sloman (2002) explained why recursive models of algorithms, such as
Turing machines, are irrelevant for artificial intelligence.

These examples and many others vividly demonstrate why a problem of advanc-
ing conventional models of algorithm has been so essential for a long period of time.
The solution was given by elaborating superrecursive algorithms.

From a methodological perspective, there are rules for calculation that are natu-
rally considered algorithms but do not satisfy the termination or halting condition of
recursive algorithms (cf. Section 2.5). The Wallis’ algorithm for computing π pro-
vides a good example. It may be used to calculate successive and exact values of
the decimal representation of π , but it cannot specify a final step terminating in the
full decimal representation of π . The same is actually true for computations of any
irrational real number, either an algebraic one such as

√
2, or a transcendental one

such as e.
In general, methods used in numerical analysis are superrecursive algorithms that

are only approximated by recursive algorithms. Such constructions have been used in
the definition of constructive real numbers (Rice 1951; Mostowski 1957). Numerical
methods form a class of superrecursive algorithms distinct from inductive Turing
machines because they are working in a domain with a continuous topology. These
algorithms are limit Turing machines (Burgin, 1992; 2001b) that work with a domain
with a topology, for instance, the topology of the field of real numbers.

A biological population gives another example, where superrecursive algorithms
are important as a tool of investigation. Simulation of their functioning essentially
involves infinite processes though contemporary methods of modeling in biology
and ecology ignore this fact. Consequently, utilization of superrecursive algorithms
provides new powerful facilities for simulation of such processes.

The same is true for investigation, evaluation, and simulation of social processes
(Burgin 1993) or for social, political, and/or ecological monitoring. Many optimiza-
tion problems, which are solved with or without an aid of a computer, demand su-
perrecursive representation (Burgin and Shmidskii 1996).

Kelly and Schulte (1997; 1997a) demonstrate necessity of superrecursive algo-
rithms, such as inductive inference, and hypercomputation for modeling cognitive
processes and solve problem related to learning and cognition in general.

Another methodological argument for superrecursive algorithms stems from
comparison of informal and formal definitions of algorithms. For example, Prasse
and Rittgen (1998) write that in computer science, an algorithm is understood as a
procedure which precisely describes in a finite form the transformation of given in-
put data into defined output data where the result is fully determined by the input.
This also covers probabilistic and nondeterministic algorithms as long as the output
is still uniquely determined. Then Prasse and Rittgen state that thus, an algorithm is
a ‘recipe’ for computation which satisfies three conditions:

(1) only a finite number of steps (instructions) may be specified;
(2) the first and last instruction can be uniquely identified; the effect of every step is

defined, and so is its successor;
(3) every instruction can be carried out in the given context.
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However, the informal definition does not imply either of these conditions. As
we will see later, it is possible that a result is fully determined by the input, finite de-
scription does not mean finite number of steps, the last instruction in the description
of algorithm always exist, while the last instruction that is executed may not exist,
and definitely, not every instruction even of a Turing machine can be carried out in
the given context. For instance, in a deterministic case each context allows, at most,
one instruction to be carried out.

Thus, we come to a conclusion that formalizations of informal definitions of
algorithm can contain many superfluous conditions. Elimination of such conditions,
as a rule, results in new classes of superrecursive algorithms.

Theoretical necessity for extending recursive algorithms to more powerful ones
was considered by different authors.

Kalmar (1959) was, may be, the first of those who, aiming at disproving the
plausibility of the Church–Turing thesis, pointed at some unnecessary limitations
of recursive algorithms. To achieve his goal, Kalmar considers Kleene’s instance
(Kleene, 1936) of a function defined by the following formula:

ψ(x) = µy(ϕ(x, y)) = 0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

the least natural number y for which
ϕ(x, y) = 0 if there is such a y,

0 if there is no natural number y
such that ϕ(x, y) = 0

With an appropriate general recursive function ϕ of two arguments, this function
is not general recursive. By the Church–Turing thesis, ϕ is not effectively calcula-
ble. Kalmar shows that this fact implies consequences that are incompatible with a
general intuition.

Indeed, as Kalmar writes, on the one hand, for any natural number p for which
a natural number y with ϕ(p, y) = 0 exists, an obvious method for the calculation
of the least such y, that is, of ψ(p), can be given: calculate in succession the values
ϕ(p, 0), ϕ(p, 1), ϕ(p, 2), . . . (each of which can be calculated, on account of the
general recursivity of ϕ, in a finite number of steps), until we obtain a natural number
q for which we have ϕ(p, y) = 0 and take this q . On the other hand, for any natural
number p for which we can prove, not in the frame of some fixed postulate system
but by means of arbitrary — of course, correct — arguments that no natural number
y with ϕ(p, y) = 0 exists, we have also a method to calculate the value ψ(p) in
a finite number of steps: prove that no natural number y with ϕ(p, y) = 0 exists,
which requires in any case but a finite number of steps, and gives immediately the
value ψ(p) = 0. Hence, supposing that ψ is not effectively calculable and applying
the tertium non datur — which has been utilized already in the definition of the
function ψ — we infer the existence of a natural number p for which, on the one
hand, there is no natural number y such that ϕ(p, y) = 0, on the other hand, this
fact cannot be proved by any correct means — a consequence of Church’s thesis
which seems very unplausible.

The problem here is with the principle tertium non datur, which is essentially
nonconstructive in many cases. However, the argument of Kalmar shows that re-
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cursive functions (and algorithms) are too restrictive for encompassing the general
notion of computability. In turn, this implicitly implies necessity for superrecursive
algorithms.

Greenleaf (1995) gives an example of another function, the, so-called, busy
beaver function, noncomputability of which looks unnatural. His suggestion to make
this function computable leads to inductively constructive data and the idea of com-
putation in the limit.

Recently Yao (2003) has demonstrated that there is fundamental tension between
the Extended Church–Turing thesis (cf. Section 2.2) and the existence of numerous
seemingly intractable computational problems arising from classical physics.

From a different perspective Minsky in his classic textbook on computer science
(1967) considered the same problem. Explaining the termination or halting condition
of recursive algorithms, he writes that our concern regarding algorithmic processes
is not with the question of whether a process terminates with a correct answer, or
even ever halts.

Minsky does not stop, however, with correctly noting that our concept of effec-
tiveness needs to include nonterminating procedures. He further stipulates that the
effectiveness of a procedure has to be construed in terms of “whether the next step
is always clearly determined in advance.” In other words, as Cleland (2001) stresses,
the effectiveness of a procedure depends on how well its instructions specify the
actions they prescribe. This amounts to an emphasis on the condition that the rules
constituting an algorithm are unambiguous (definite), simple to follow (effective),
and have simple finite description (are constructive), while excluding from the con-
ditions for algorithm to be terminating. According to Cleland (2001), it is important
to keep in mind that Minsky does not view himself as introducing a new proposal for
understanding the concept of an algorithm as an effective procedure; he sees him-
self as explicating the received view among computer scientists. Nevertheless, his
remarks lead directly to many models of superrecursive algorithms, such as infinite-
time computations, recursion with real numbers, and, especially, limiting recursive
functions and inductive Turing machines (cf., Section 4.2). The latter give results in
a finite time even without termination their processes.

Thus, when Cleland (2001) writes that from a preanalytic, intuitive standpoint,
a procedure is effective, or is an algorithm, if correctly followed, it reliably yields
a definite outcome, this interpretation justifies inductive Turing machines as algo-
rithms. Although, in many cases these machines give results for such data that no
conventional Turing machine is able to process.

It is necessary to remark that the term algorithm is also used as a name for any
sequence of efficient actions, which may or may not terminate. This essentially ex-
tends the concept of algorithm, including into its scope algorithmic schemes such as
transrecursive operators studied in (Burgin and Borodyanskii, 1991; 1993; 1994).
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4.2 Mathematical models of superrecursive algorithms
and why we need them

Everything’s got a moral, if only you can find it.

Lewis Carroll, 1832–1898

Although superrecursive algorithms existed and were utilized before the first math-
ematical models of superrecursive algorithms were created, they were not differen-
tiated from the recursive algorithms and as a result, their utilization was inefficient.
In turn, it has resulted in the loss of many possibilities of computers and of the In-
ternet when it was created. Only mathematical models of superrecursive algorithms
provide for efficient utilization of modern computers, networks, and their software.

4.2.1 Historical remarks

Truth is stranger than fiction.

A proverb

It is interesting that Turing was the first who went beyond the “Turing” computa-
tion that is bounded by the Church–Turing thesis. In his 1938 doctoral dissertation
“Systems of logic based on ordinals,” Turing introduced the concept of a Turing
machine with an “oracle”. This, work was subsequently published in 1939. Turing
called these enhanced Turing machines “O-machines”. Some think that “oracles”
are logical black boxes for carrying out noncomputable tasks (Cleland, 2001). How-
ever, according to the definition, an oracle is a system (a device, black box, person,
whatsoever) that contains knowledge about the values of some, computable or non-
computable, function f (n). If a Turing machine T has an oracle for f (n), than T has
an operation of supplying the oracle with an arbitrary number n and receiving from
the oracle the value f (n). Having an oracle for an noncomputable function f (n), the
Turing machine T , as a rule, “computes” a noncomputable function. An oracle for
a computable function does not extend boundaries of computability, can be useful
for speeding up the computational process. Formal definitions and the legitimacy of
Turing machines with an oracle are considered later.

Another approach that went beyond the Turing-Church Thesis was developed
by Shannon (1941), who introduced the differential analyzer, a device that was able
to perform continuous operations with real numbers, and namely, such as operation
differentiation. As we will see in Section 4.2.8, even simple operations with real
numbers allow an abstract automaton to compute any function on natural numbers.

However, mathematical community did not accept operations with real numbers
as tractable because irrational numbers do not have finite numerical representations.
Besides, as it is proved in Section 4.2, when algorithms are allowed to work with real
numbers, such algorithms can compute any function f : N → N . Consequently,
the majority of mathematicians and later scientists have not considered Shannon’s
differential analyzer as an algorithmic device.
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In 1957, Grzegorczyk introduced a number of equivalent definitions of com-
putable real functions. In one of them, for instance, a real number is computable
if it can be effectively represented by a rational sequence. A continuous function is
computable if it preserves sequential computability and it is effectively uniformly
continuous.

Three of Grzegorczyk’s constructions have been extended and elaborated inde-
pendently to superrecursive approaches to computation: the, so-called, “domain ap-
proach” (cf. Abramsky and Jung, 1994; Edalat, 1997), “type 2 theory of effectivity”
or “type 2 recursion theory” (cf. Ko, 1991; Weihrauch, 2000), and the “polynomial
approximation approach” (Pour-El and Richards, 1989; Pour-El, 1999).

In the approach of Pour-El and Richards (1989), classical mathematics is ac-
cepted. The point is to see how computable objects and operators look like in ordi-
nary mathematics. As a result, they develop functional scheme, that is, a function is
regarded as computable if it can be effectively approximated by rational coefficient
polynomials with respect to the norm of a function space, such as a Banach space or
a Frechet space.

In 1963, Scarpellini introduced the class M1 of functions that are built with the
help of five operations. The first three are elementary: substitutions, sums and prod-
ucts of functions. At the same time, two other operations are performed with real
numbers. They are integrals over finite intervals and taking solutions of Fredholm
integral equations of the second kind. The initial set of functions M0 consists of
functions P

(
eiα1, . . . , eiαs

)
Q−1

(
eiα1, . . . , eiαs

)
, where P and Q are polynomials

with real coefficients, Q �= 0. Starting from the Davis normal form for recursively
enumerable predicates, Scarpellini demonstrated that every recursively enumerable
predicate is represented by a function in M1. As in the case with the differential an-
alyzer, functions from M1 went far beyond partial recursive functions and were not
considered as algorithms, even superrecursive.

In 1967 Zadeh introduced fuzzy algorithms. Later Wiedermann (2000) built a
mathematical model for fuzzy algorithms, which is called fuzzy Turing machine, and
proved that fuzzy computations are more powerful than conventional computations.

In all these constructions suggested by Turing, Shannon, Zadeh and Scarpellini,
the model of computation can go beyond the Church–Turing thesis and conventional
Turing machines only because they have some very powerful and questionably con-
structive (or efficient) operations. This invalidates these algorithmic schemes as ac-
tual algorithms. Thus, the problem of building more powerful algorithms that had
been so important to various practical, methodological, and theoretical issues of al-
gorithms and computers remained unsolved. At the same time, it became clear that
the conventional halting restriction on algorithms is not reasonable and it is not nec-
essary for an algorithm to stop after getting a result.

So far, so good, but how do we determine a result when the algorithm does not
stop functioning?

Mathematicians found an answer to this question. Moreover, a result of non-
stopping computation may be defined in different ways. One of them is inductive
computation, which is analyzed in Sections 4.2.2 and 4.3. It is the closest kind to the
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conventional recursive computation because it works with constructive objects and
the result is obtained in a finite time.

In addition, they use the most direct way to determine a result when the algorithm
does not stop functioning. Namely, a computational process gives as a result some
output (word) w if there exists such a number n that after n steps of computation
this process gives the same output w at each step. This output w is the result of the
functioning of the algorithm.

Two other approaches are the theory of limit computations based on limit Tur-
ing machines (Burgin, 1991; 2001) and theory of infinite-time computations, which
has four main branches: infinite-time computation realized by infinite-time Turing
machines (Hamkins, 2000; Hamkins and Lewis, 2000; Welch, 2000; Davies, 2001),
continuous time computation realized by general dynamical systems (da Costa and
Doria, 1996; Bournez, 1999; Stewart, 1991), continuous time computation realized
by hybrid systems (Gupta et al., 1999), and continuous time computation realized by
special computing devices, such as the differential analyzer (Shannon, 1941; Moore,
1990; 1996).

From this perspective, the first genuine superrecursive algorithms were intro-
duced in 1965. Two American mathematicians Mark Gold and Hillary Putnam
brought in concepts of limiting recursive, limiting partial recursive functions, and
trial-and-error predicates. Their papers were published in the same issue of the Jour-
nal of Symbolic Logic, although Gold had written about these ideas before. It is
worth mentioning that constructions of Gold and Putnam were rooted in the ideas of
nonstandard analysis originated by Abraham Robinson (1966) and inductive defini-
tion of sets (Spector, 1959). As a matter of fact, Gold was a student of Robinson.

In 1967, Gold produced a new version of limiting recursion, also called called
inductive inference, and applied it to problems of learning. Ideas of Gold and Putnam
gave birth to a direction of active research that is called inductive inference (cf., for
example, Gasarch and Smith, 1997) and is a fruitful direction in machine learning
and artificial intelligence (cf., for example, Angluin, 1992; Luna, 1996).

Schubert (1974), developing ideas of Gold, introduced the concept of iterated
limiting recursion and applied it to the program minimization problem. The main
constructions of Schubert are k-limiting recursive predicates and functionals. They
are defined by repeated application of Gold’s limit operator, which is formalized by
a discrete limit operation in Section 2.4. Gold regarded limiting function identifi-
cation (more generally, “black box” identification) as a model of inductive thought.
Intuitively, iterated limiting identification might be regarded as higher-order induc-
tive inference performed collectively by an ever-growing community of lower order
inductive inference machines.

Limiting recursive, limiting partial recursive functions and methods of inductive
inference are superrecursive algorithms and as such can solve such problems that are
unsolvable by Turing machines. Although, being in a descriptive and not constructive
form, they were not accepted as algorithms for a long time. Even introduction of a
device that was able to compute such functions (Freyvald, 1974) did not change the
situation. Consequently, this was an implicit period of the development of theory of
superrecursive algorithms.
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It is interesting that a direct embodiment of the trial-and-error predicates of Put-
nam (1965) into a model of automaton were done much later than for limiting recur-
sive functions: in 1998 Hintikka and Mutanen built their trial-and-error machines.

Theory of recursive algorithms demonstrates that for the most programs the min-
imization problem is not recursively solvable and even not inductively solvable, us-
ing inductive inference. At the same time, as proved by Schubert, the program min-
imization problem is limiting recursively solvable for finite input-output lists and
2-limiting recursively solvable for infinite input-output lists, with weak assumptions
about the measure of program size. In a way, 2-limiting recursion allows one to get
such results that cannot be achieved by simple, first order inductive inference or lim-
iting recursion.

It is necessary to remark that inductive Turing machines of order k, which are
considered in Section 4.3, can realize k-limiting recursion, as well as to compute
k-limiting recursive predicates and functions.

In 1983 Burgin, independently of inductive inference and limiting recursion in-
troduced inductive Turing machines with structured memory that included all previ-
ous models of inductive computation and inference. The main goal was to develop
algorithms for computation of some important functions, such as the Kolmogorov
complexity (cf. Section 5.3). Only later Burgin discovered that inductive computa-
tions realized by inductive Turing machines on the lowest level of inductive hierar-
chy (cf. Section 4.3) were studied in the theory of inductive inference and limiting
recursion.

From the beginning, inductive Turing machines were treated as algorithms. Thus,
it was not by chance that their implications for the Church–Turing thesis and the
famous Gödel incompleteness theorem were considered (Burgin, 1987) refuting the
Thesis and changing understanding of the theorem. This was the beginning of the
explicit stage for theory of superrecursive algorithms.

Approximately at the same time, Wolfram (1983; 1984) studied limiting behav-
ior of cellular automata. He found three classes of cellular automaton behavior that
were analogous to three classes of behavior found in the solutions to differential
equations (continuous dynamical systems). Automata in these classes exhibit behav-
ior analogous to limit points, limit cycles and chaotic attractors. For some differential
equations, the solutions obtained with any initial conditions approach a fixed point at
large intervals of time. This behavior is analogous to the first class cellular automaton
behavior. In a second class of differential equations, the limiting solution at large in-
tervals of time is a cycle in which the parameters vary periodically with time. These
equations are analogous to the second class cellular automata. Finally, some differ-
ential equations have been found to exhibit complicated, apparently chaotic behavior
depending in detail on their initial conditions. With the initial conditions specified by
decimals, the solutions to these differential equations depend on progressively higher
and higher order digits in the initial conditions. This phenomenon is analogous to the
dependence of a particular site value on progressively more distant initial site values
in the evolution of a cellular automaton from the third class. Later (1984) the fourth
class was discovered, which was probably capable of universal computation and had
undecidable properties of its infinite-time behavior.
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Although Wolfram did not relate his results to hypercomputation and superrecur-
sive algorithms, these patterns of limiting behavior can be used to define correspond-
ing types of topological computations, some types of which are considered in (Bur-
gin, 2001). For example, the first class of cellular automata, which exhibit behavior
analogous to limit points, defines inductive computation.

In addition to this, the concept of computation has been, as a rule, considered in
a much broader sense. Related at first only to arithmetical operations with numbers,
this concept drastically extended its scope. Researchers can take as computation any
process that transforms some information entities. The cause of such changes in un-
derstanding the term computation is the unimaginable advancement of computers.
Being initially invented to speed-up arithmetical operations, computers expanded
their function to an unbelievable degree. Naturally, computation has been perceived
as actions that computers have been doing or have been able to do. Computers solve
such a diversity of problems that almost any kind of information processing may
be considered as computation. Now computation and communication, that is, infor-
mation exchange, become combined in a common process. This is considered as an
outstanding achievement of modern technology, although backward analysis shows
that any computation, even the simplest, includes communication, while any com-
munication includes computation, for example coding and decoding messages.

Algebraic or abstract categories form a universal tool in mathematics. So, it is
not by chance that categories were used for building models of computations and
automata for a long time beginning from sixtieth (Riguet, 1965). However, active re-
search in this area was postponed until seventieth when the development of the theory
of automata and computation in categories became very intensive. Many construc-
tions from the traditional theory of automata and computation were adapted to cate-
gories and many properties of these constructions were obtained (cf. Adamék, 1974;
1975; Arbib and Manes, 1974; 1975; 1975a; Trnková, 1974; Budach and Hoehnke,
1975). For some time, categories as the context and constructive tools for the devel-
opment of models for computation and different kind of automata have become very
popular (cf., for example, (Rydeheard, 1988), (Rosolini, 1987) or (Adámek, J. and
Trnková, 1990)).

Another approach in the theory of algorithms, automata and computation is based
on general system theory and dynamical systems (Mesarovic and Takahara, 1975).
Dynamical systems theory views a process as a sequence of state transformations
that are controlled by equations of motion in the state space. In this framework,
any automaton is a dynamical system and the main idea of the dynamical system
approach to computation is to represent computational process by some dynamical
system, which is usually more general than traditional models of algorithms. For
example, the idea of quantum computation (Feynman, 1982; 1986) is to use quantum
dynamical systems as such models and to realize these theoretical models by means
of physical quantum systems.

Field computation, which was suggested by MacLennan (1990; 1999; 2001), is
close to dynamical system computation. In this model, data are represented by fields,
a mathematical model of which is a continuous function over a bounded domain, and
information processing is performed by field transformations.
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In addition, several theories of computation over abstract structures have been
developed. See, for example, (Friedman, 1971; Moschovakis, 1974; Skordev, 1974;
1976; 1982; 1992; Tiuryn, 1979; Ivanov, 1986; Engeler, 1993). These general ap-
proaches both exploit and explore the logical properties of procedures. But, as it is
written in (Blum et al., 1998), when applied to specific structures such as the real
numbers, they do not yield the concrete mathematical results.

Tucker and Zukker (1988; 1992; 2002) suggested and developed another ap-
proach, building the theory of computable (partial recursive) functions and rela-
tions over many-sorted algebras. They obtained many mathematical models of al-
gorithms and computation, including computations by finite-dimensional and gen-
eral machines of Blum, Shub, and Smale (1989), as well as Type 2 Turing machines
(Weihrauch, 2000) as special instances of computations over many-sorted topologi-
cal partial algebras.

Definition 4.2.1. A many-sorted algebra U with a system of operations � and a col-
lection of sorts I is a set U (the support of U) which is a union ∪ {Ai ; i ∈ I } of sets
Ai and each operation is a mapping having the form f : Ai1 × Ai2 × . . .× Aik → Ai .

From the algebraic perspective, a deterministic finite automaton A is a many-
sorted algebra, which has the support {�, Q, 	}, two binary operations δ : �× Q →
Q, and σ : � × Q → 	, and several unary operations σ0, σ1, . . . , σk on the set
Q : σ0 = q0, σ1 = q1, . . . , σk = qk with q1, . . . , qk ∈ F . We will denote this
algebra by Al(A).

In addition, another many-sorted algebra is corresponded to a deterministic finite
automaton A. It has the support {�∗, Q, 	∗}, two binary operations δ∗ : �∗ × Q →
Q, and σ ∗ : �∗ × Q → 	∗, and several unary operations σ0, σ1, . . . , σk on the set
Q : σ0 = q0, σ1 = q1, . . . , σk = qk with q1, . . . , qk ∈ F . We will denote this algebra
by EAl(A).

Other examples of many-sorted algebras are linear spaces, linear algebras, mod-
ules, and polygons (that is, sets on which monoids act), polyadic or Halmos algebras
(Halmos, 1962), nonhomogeneous polyadic algebras (Leblanc, 1962), relational al-
gebras, and state machines.

Many-sorted algebras were studied by several authors under different names. To
mention only some of them, it is necessary to name algebras with a scheme of op-
erators introduced by Higgins (1963; 1973), heterogeneous algebra in the sense of
(Birkhoff and Lipson, 1970) and (Mathienssen, 1978), multibase universal algebras
(Glushkov et al., 1974; Shaposhnikov, 1999; Karpunin and Shaposhnikov, 2000),
and many-sorted algebras studied by Plotkin (1991). The term “heterogeneous alge-
bras” is used more often than other related terms. Heterogeneous (multibase or many-
sorted) algebras represent the next level of the development of algebra. Namely, in
ordinary (or homogeneous) universal algebras operations are defined on a set, while
in heterogeneous algebras operations are defined on a named set (Burgin, 1990). This
makes possible to develop more adequate models for many processes and systems.
For example, many-sorted algebras are extensively used for mathematical model-
ing information processing by computers. (Tucker and Zukker, 1988; 1992; 2002;
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Gurevich, 1995). In addition, relational algebras are extensively used for modeling
relational databases (Plotkin, 1991).

It is necessary to remark that transition from a set to a named set (Burgin, 1990;
1997) as a basic structure (a carrier for other structures) for the development of dif-
ferent fields in mathematics is peculiar not only for algebra but for other fields. Thus,
in many cases fibers which are special cases of topological named sets, replace topo-
logical spaces in topology. Multivalued and multisorted logics are becoming more
and more popular in logic. Manifolds are used instead of Euclidean spaces in mathe-
matical analysis. Modern combinatorics is built not on sets but on multisets (Knuth,
1981), which are special cases of named sets (Burgin, 1990).

Such broad understanding of computation resulted in that many abstract pro-
cesses described only theoretically has been called computations. Many new direc-
tions appeared. The most important of those that go beyond the Church–Turing thesis
(listed in the chronological order) are: analogue, or continuous time, computation,
fuzzy computation, inductive computation, computation with real numbers, interac-
tive and concurrent computation, topological computation, and neural networks with
real number parameters. The main advantage of inductive Turing machines is that
they work with finite objects and obtain the results in a finite period of time. Other
models either work with infinite objects (for example, Turing machines, neural net-
works, and topological algorithms working with real numbers) or need infinite time
to produce results which are beyond the Church–Turing thesis (for example, infinite-
time Turing machines and, persistent Turing machines).

Although by the discovery of superrecursive algorithms the Church–Turing the-
sis was refuted as an absolute and universal principle, it is reasonable to search in
what conditions the Thesis is valid. In the same way, scientists look for conditions
of validity for natural laws. Such validation of the Thesis has to go into three di-
rections: test it for actual computers, verify it for theoretical computing schemes,
and examine its consistency for axiomatic theories. For example, this Thesis may be
proved in some axiomatic contexts and disproved in others. A relevant context for
such studies of the Thesis might be provided by some theory of formal computations
like the axiomatic theory of algorithms (Burgin, 1985) or theory of computations on
abstract structures (Moschovakis, 1974). For example, choosing appropriate axioms,
it is possible to prove the Church–Turing thesis in the theory of transrecursive op-
erators (Burgin and Borodyanskii, 1991). One of these axioms states that the result
of a computation is obtained after a finite sequence of steps and we know when it
happens. Without this axiom, we come to the class of all inductive Turing machines
with recursive memory. In some sense, these machines are such superrecursive algo-
rithms that are the closest to the recursive algorithms. More exactly, it is possible to
say that inductive Turing machines are the most powerful among those superrecur-
sive algorithms, which lie one step from conventional models of algorithm, and are
the most realistic among the most powerful superrecursive algorithms.

Thus, superrecursive algorithms appeared when the theory of recursive algo-
rithms was actively developing and producing new and new models of algorithms.
As a result, superrecursive algorithms were built by modification of recursive al-
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gorithms. Researchers used three principal ways to build superrecursive algorithms
enhancing some computational scheme of recursive algorithms:

1. Modification of hardware or addition of new components to machines (abstract
automata). In such a way, Turing machines with oracles, Turing machines with
advice, inductive Turing machines with structured memory, and interactive Tur-
ing machines have been constructed.

2. Modification of software or computational rules. In such a way, Turing machines
and neural networks operating with real numbers, Turing machines with inte-
gration operation, Turing machines with advice, inductive Turing machines with
structured memory, and interactive Turing machines have been constructed.

3. Modification of metarules for input and/or output (by extending output possibil-
ities, limiting recursive and limiting partial recursive functions, inductive Turing
machines, and limit Turing machines have been constructed).

There are three main ways of extending capabilities of algorithms without chang-
ing the computational scheme:

1. Extending the computational process of machines (abstract automata). In such a
way, infinite-time Turing machines and recursion on ordinal numbers have been
built.

2. Extending the input and/or output process of machines (abstract automata). In
such a way, finite automata, Turing machines and other recursive automata work-
ing with infinite words have been developed.

3. Inclusion of interaction in the process of machine functioning. In such a way,
persistent Turing machines and other Turing machines that interact with the en-
vironment (Goldin and Wegner, 1988; Van Leeuwen and Wiedermann, 2001)
have been constructed.

Table 4.1 reflects different directions of the theory of superrecursive algorithms
related to three types of mathematical models: algorithmic, semialgorithmic, and
abstract.

4.2.2 Limiting recursive functions and inductive computation

“Now, here, you see,
it takes all the running you can do,

to keep to the same place.”

Lewis Carroll, 1832–1898

It is possible to separate three forms of inductive algorithms:

♦ Limiting recursive functions;
♦ Inductive centralized computations;
♦ Inductive net computations.
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Directions in the superrecursive theory of computability

A. Algorithmic Models
1. Limiting recursive functions (Gold, 1965; Putnam, 1965)
2. Inductive inference (Gold, 1967; Blum, and Blum, 1975)
3. Inductive centralized computations (Freuvald, 1974; Burgin, 1983;

Burgin, 1987; Burgin, 1999)
4. Inductive net computations (Garson and Franklin, 1989;

Garson, Franklin, Bagget, Boyd, and Dickerson, 1992)
5. Topological computations (Burgin, 1983; 1992; Pour-El and Richards, 1989)
6. Fuzzy computations (Zadeh, 1969; Wiedermann, 2000)
7. Interactive and concurrent computations (Milner, 1973; 1980;

Milne, 1985; Hoare, 1985; Wegner, 1995)

B. Semialgorithmic Models
1. Computations with an oracle (Turing, 1939)
2. Infinite precision net computations (Pollack, 1987; Hartley and Szu, 1987;

Siegelman and Sontag, 1991)
3. Recursion theory on real numbers (Abramson, 1971; Blum, Shub,

and Smale, 1989; Moore, 1996)
4. Analogue computations (Shannon, 1941; Scarpellini, 1963; Moore, 1996)
5. Infinite time Turing machines (Hamkins and Lewis, 2000; Welch, 2000)
6. Trans-recursive operators (Burgin and Borodyanskii, 1992)
7. Dynamical system and field computations (Mesarovic and Takahara, 1975;

MacLennan, 1990; da Costa and Doria, 1996; Bournez, 1999)
8. Fixed point models (Scott, 1971; Manna and Vuillemin, 1972;

Abramsky and Jung, 1994; Edalat, 1997; Edalat and Sünderhauf, 1998)

C. Abstract Models
1. α-recursion or recursion on ordinals (Takeuti, 1960; Machover, 1961;

Levy, 1963)
2. Generalized computability (Moschovakis, 1969; Skordev, 1976;

Tucker and Zukker, 1988; 2002)
3. Recursion in higher types (Kleene, 1959; Kleene, 1963)
4. Induction in abstract structures (Moschovakis, 1974)
5. Computations in categories (Riguet, 1965; Adamék, 1974;

Arbib and Manes, 1974; Trnková, 1974)

Table 4.1. Directions and areas in the superrecursive theory of computability.

In the beginning, limiting recursive functions (Gold, 1965) and their version,
trial-and-error predicates (Putnam, 1965) were introduced. We provide the following
definitions as the first forms of inductive algorithms.

Definition 4.2.2. A partial function f (x) is called limiting recursive if there is a total
recursive function g(x, n) such that

f (x) = lim
n→∞ g(x, n) (1)
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Definition 4.2.3. A partial function f (x) is called limiting primitive (partial) recur-
sive if g(x, n) in (1) is primitive (partial) recursive.

Definition 4.2.4. A predicate P(x1, x2, x3, . . . , xn) is called trial-and-error predi-
cate if there is a general recursive function g(x1, x2, x3, . . . , xn, y) such that

P(x1, x2, x3, . . . , xn) = lim
y→∞ g(x1, x2, x3, . . . , xn, y).

As in the theory of recursive functions and algorithms, a class of algorithms
(functions) defines sets that are decidable (enumerable) with respect to this class.

Definition 4.2.5. A set X is called limiting recursive (limiting recursively enumer-
able) if its characteristic function χS(x) (its partial characteristic function CS(x)) is
limiting recursive.

Definition 4.2.6. A set X is called limiting primitive (partial) recursive (limiting
primitive (partial) recursively enumerable) if its characteristic function χS(x) (its
partial characteristic function CS(x)) is limiting primitive (partial) recursive.

Following results that relate the limiting recursion to the arithmetical hierarchy
levels (cf. Section 4.3.4) were proved by Gold (1965).

Theorem 4.2.1. The following statements are equivalent:

(1) S is limiting recursive (LRS).
(2) S is limiting primitive recursive (LPRS.
(3) S is limiting partial recursive (LGRS).
(4) S belongs to the level �2 ∩ �2 of the arithmetical hierarchy.

Theorem 4.2.2. The following statements are equivalent:

(1) S is limiting recursively enumerable (LRES).
(2) S is limiting primitive recursively enumerable (LPRES).
(3) S belongs to the level �2 of the arithmetical hierarchy.

Theorem 4.2.3. The class of limiting partial recursively enumerable sets (LPRES) is
contained in �3, contains �2 ∪ �2, and is not closed under complementation.

The exact location of the class of limiting partial recursively enumerable sets in
the arithmetical hierarchy was not defined by Gold.

Taking the classes LRS, LPRS, LGRS, LRES, LPRES, and LGRES of all
limiting recursive, limiting primitive recursive, limiting partial recursive, limiting
recursively enumerable, limiting primitive recursively enumerable, and limiting par-
tial recursively enumerable sets, correspondingly, we have the following inclusions
according to the properties of recursive, primitive recursive, and partial recursive
functions (cf. Section 3.4):

LPRS ⊆ LRS ⊆ LGRS and LPRES ⊆ LRES ⊆ LGRES.
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However, some of these inclusions are not strict. Namely, we have

LPRS = LRS = LGRS (cf. Theorem 4.2.1) and LPRES = LRES (cf. Theo-
rem 4.2.2).

Ausiello and Protasi (1990) and Ausiello, Protasi, and Angelaccio (1991) studied
limiting polynomial approximation of complexity classes, obtaining a representation
of polynomial space and subexponential time complexity classes as limiting polyno-
mially decidable sets. The development of this direction brought researchers to the
following concept (cf., for example, (Apsı̈tis et al., 1999)).

Definition 4.2.7. An inductive inference machine (IIM) M is a generating procedure
that requests inputs from time to time. It produces some words as its partial output
also from time to time. These words produced by the machine after receiving each
portion of data are called conjectures. The final result of the inductive inference
machine M is the word w to which the computational process of M converges.

Definition 4.2.8. If u(n) denotes the conjecture produced by an inductive inference
machine M after receiving the portion of input data with the number n, then the com-
putational process of the inductive inference machine M stabilizes (or converges) to
a word w if there exists a number n0 ∈ N such that u(n) equals w for any n > n0.

Here procedure means some algorithmic scheme such as Turing machine that is
described by effective operations, but for which it is not specified how the result is
obtained. This means that an inductive inference machine is a superrecursive algo-
rithm.

In (Apsı̈tis et al., 1999), inductive inference machines are used for algorithmic
generation of recursive real valued functions, or more exactly, algorithms that com-
pute such functions.

Definition 4.2.8. An inductive inference machine for real functions (IIMrf) is a pro-
cedure that requests inputs from time to time and produces, as conjectures, algo-
rithms that compute recursive real-valued functions from time to time.

In a similar way, general Turing machines are defined to model programs that
never halt and to study Turing machines that do not need halt instructions (Schmid-
huber, 2000). The definition is given for both finite and infinite words and is based
on a concept of convergence.

If x is an infinite word or string, then l(x) = ∞. For any word w, (w)n denotes
the prefix (initial part) of w that has length equal to n.

Definition 4.2.9. A general Turing machine has the structure of a conventional Tur-
ing machine with one output tape and at least two work tapes (sufficient to compute
everything traditionally regarded as computable). After each step (with number n),
some word wn is written in the output tape. The output stabilizes and converges to-
wards the finite or infinite word x if for each n satisfying 0 ≤ n ≤ l(x) there is a
natural number tn such that for all t ≥ tn , we have (wt )n = (x)n and l(wt ) ≤ l(x).
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All these approaches and constructions are synthesized in the concept of induc-
tive Turing machine. At first, we consider simple inductive Turing machines. They
realize inductive computation of the first level. The goal is to demonstrate one of their
principal distinctions from Turing machines. Much more powerful inductive Turing
machines with structured memory are treated in Section 4.3.

The simplest realistic inductive Turing machine has the same structure as a con-
ventional Turing machine with three tapes and three heads: input, working, and out-
put (cf. Figure 4.1).

Figure 4.1. The structure of a simple inductive Turing machine.

This structure is much closer to the architecture of modern computer than the
structure of a Turing machine with one tape. In a generalized form, the architecture
of modern computer is presented in Figure 4.2.

Both inductive and ordinary Turing machines make similar steps of computa-
tions. Their differences lie in how they determine their outputs. We know (cf. Section
2.3) that a conventional Turing machine produces a result only when it halts. We as-
sume that this result is a word written on the output tape. A simple inductive Turing
machine also produces words as its results. In some cases, it stops at its final state
and gives a result like a conventional Turing machine. The difference begins when
the machine does not stop. An inductive Turing machine can give a result without
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Figure 4.2. The generalized architecture of a modern computer.

stopping. To show this, we consider the output tape and assume that the result has to
be written on it.

It is possible that in the sequence of computations, the word that is written on the
output tape after some step is not changing although the machine continues to work.
Then the last reached (unchanging) word, is taken as the result of this computation.
Thus, an inductive Turing machine does not halt but it still produces a definite result
after a finite number of computing operations. It explains the name “inductive.” In
induction we also proceed step by step checking if some statement P is true for an
unlimited sequence of cases. When it is found that P is true for each case whatever
number of cases is considered, we conclude that P is true for all cases.

While working without halting, an inductive Turing machine can occasionally
change its output. However, people are not put off by machine that occasionally
change outputs. They can be satisfied that the result just printed is good enough,
even if another (possibly better) result may arrive in the future. And if you con-
tinue computing, it will eventually come. Another example is a program that outputs
successively better approximations to a number. Once a few digits of accuracy are
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attained, the user can use the output generated even if the machine is not “done”.
All these properties essentially extend the possibilities and indicate uses of inductive
Turing machines, as well as of related limit Turing machines (cf. Section 4.2.5).

Theorem 4.2.4. For any Turing machine T , there is an inductive Turing machine M
such that M computes the same function as T , that is, M and T are functionally
equivalent.

Indeed, if we have a Turing machine T , it is possible to assume that it has one tape
and one head (Hopcroft et al., 2001). We use this tape in M and add to the memory
of M a new output tape LM . We use all states of T as the states of the control device
A of M , adding to them duplicates of all final states of T , which become final states
of M . We also use all rules of T as the rules of M , changing them so as to achieve
the following functioning of M . For simplicity, we assume that T works with the
alphabet {1, 0}.

At the beginning, M writes 0 in the first cell of the tape LM . Then it begins
to imitate T . When T makes a step, M makes the same step and then changes the
symbol in the first cell of the tape LM . If it was 0, it becomes 1. If it was 1, it becomes
0. When T stops in a state that is not final, then M also stops in the same state and
consequently, both T an M give no result.

When T stops in a final state, then M rewrites the word from the tape of T into
LM and also stops in a final state. The construction of M implies that for any input
both T an M give the same result.

Theorem 4.2.4 is proved.
Theorem 4.2.4 demonstrates that Turing machine is, in some sense, a particular

case of inductive Turing machine.
To show that inductive Turing machines are more powerful than ordinary Turing

machines, we need to find a problem that no ordinary Turing machine can solve and
to explain how some inductive Turing machine solves this problem. To do this, let
us take the problem, which was found one the first to be unsolvable and now is one
of the most popular in the theory of algorithms. This is the halting problem for an
arbitrary Turing machine with a given input. Turing proved that no Turing machine
can solve this problem for all Turing machines (cf. Section 2.5).

However, there is an inductive Turing machine M that solves this problem. This
machine M contains a universal Turing machine U as a subroutine. Given a word u
and description D(T) of a Turing machine T, machine M uses machine U to simulate
T with the input u. While U simulates T, machine M produces 0 on the output tape. If
machine U stops, and this means that T halts being applied to u, machine M produces
1 on the output tape. According to the definition, the result of M is equal to 1 when
T halts and the result of M is equal to 0 when T never halts. In such a way, M solves
the halting problem.

So, even the simplest inductive Turing machines can be more powerful than con-
ventional Turing machines. At the same time, the development of their structure
allowed inductive Turing machines to achieve much higher computing power than
the simplest inductive Turing machines described above. This is in contrast to such a
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property of a conventional Turing machine that by changing its structure, we cannot
get greater computing power.

Now after we learned a little bit about limiting recursion and inductive Turing
machines, it is possible to give examples of superrecursive algorithms that are right
now actually used on our computers.

Example 4.2.1. Program performance checker PCH.

Let P be some program. Then PCH works in the following manner:

1. After each step of computer functioning, PCH checks whether the program P
performs some instruction at this step.

2. PCH produces (prints, displays, and so on) 0 if the program P did not perform
any instruction at that step, then PCH goes to its stage 1; otherwise PCH starts
producing (printing, displaying, and so on) 1.

In such a way, PCH checks if the program P has been used. As it is possible that
the program is never used, PCH is a superrecursive algorithm, which is defined for
all inputs admissible by a software that includes the program P .

Example 4.2.2. Current user interference checker UNCH.

Let P and Q be some programs that always produce a result. Then UNCH works
in the following manner:

1. UNCH checks whether there is an instruction from the user A;
2. If there is such an instruction, UNCH starts the program P and gets its result.

Then UNCH displays the output of the program P and goes to step 1;
3. If there no instruction from A, UNCH starts the program Q and gets its result.

Then UNCH display the output of the program Q and goes to step 1.

As any user can give only a finite number of instructions, UNCH is a superrecur-
sive algorithm, which always displays the result of the program Q.

Example 4.2.3. Complete user interference checker UCCH.

Let P and Q be some programs that always produce a result. Then UCCH works
in the following manner:

1. UCCH checks whether there has been an instruction to the computer from the
user A;

2. If there is such an instruction, UNCH starts the program P and gets its result.
Then UNCH displays the output of the program P and continues to do this
without stopping.

3. If there no instruction from A, UNCH starts the program Q and gets its result.
Then UNCH display the output of the program Q and goes to step 1.
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As any user either gives some instruction to the computer or not, UCCH is a
superrecursive algorithm.

We can see that these algorithms solve definite problems, are useful in many
situations, especially, in those related to security issues, may be programmed for a
contemporary computer, and then performed by this computer.

To conclude with the first level of inductive algorithms, we describe relations
between different models of such algorithms.

Theorem 4.2.5. The following classes of algorithms have the same computing power
for finite words, that is, they can compute the same classes of functions on sets of
finite words:

(a) limiting partial recursive functions;
(b) general Turing machines;
(c) simple inductive Turing machines;
(d) inductive Turing machines of the first order (cf. Section 4.3);
(e) trial-and-error machines (Hintikka and Mutanen, 1998);
(f) inductive inference machines with a recursive generating procedure.

An extensive philosophical analysis of relations between recursive and inductive
computations of the first level in the form of inductive inference is given by Kelly
and Schulte (1997).

4.2.3 Infinite-time computation and supertasks

“One sees certain objections to it,” she said.
“But how did you work with the Metropolitan trains?

None of them go infinitely fast, I believe.”

Lewis Carroll, 1832–1898

Various philosophers and physicists have investigated such concept as supertask (cf.,
for example, Thomson, 1954 or Benacerraf, 1970).

Definition 4.2.10. A supertask is a task that demands infinite time for its execution.

Physicists analyzing supertasks have constructed theoretical models in which su-
pertasks can apparently be carried out (Pitowsky, 1990; Xia, 1992; Hogarth, 1992;
1994; Earman, 1995; Earman and Norton, 1996). For example, Erman (1995) ana-
lyzes possibility of infinite-time computations. He writes that if the strongest form
of cosmic censorship (that is the requirement of global hyperbolicity) fails, it is of-
ten possible for a point to contain in its past a future-directed half curve of infinite
proper length. This suggests the possibility that a task that takes infinite time (for ex-
ample, checking the truth of the Goldbach conjecture for all possible integers) could
be carried out by some observer, and the result be observed by another within a fi-
nite amount of his lifetime. The ramifications of this property and the physicality
of such processes are discussed, the conclusion being that it is probably not physi-
cally possible to take advantage of the global structure to carry out such supertasks.
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Thus, no realistic solution has been suggested. However, like real numbers can be
a good model for huge quantities of rational numbers (cf. Section 4.2.4), supertasks
their solutions might give a reasonable approximation to modern superfast computers
whose speed seems to be increasing without bound. From this perspective, a prob-
lem of developing a computational theory of supertasks that involves infinite-time
computations and ideal infinitely fast computers becomes rather sensible. Follow-
ing Thomson (1954), it is possible to consider a supertask as an infinite sequence of
tasks.

A theoretical foundation on which to treat this problem is provided by the
model for infinite-time computation suggested by Kidder and Hamkins in 1989 (cf.
(Hamkins and Lewis, 2000)). The goal of the theory of infinite-time Turing machines
is not so much finding what is physically possible to compute in a supertask as what
is mathematically possible. Though the physicists may explain how it is possible or
impossible to carry out a supertask in a finite amount of time, Hamkins and Lewis
(2000), being focused on the algorithm, regard computations with infinitely many
steps and extend the conventional Turing machine concept into transfinite ordinal
time.

Thus, it is assumed that such machines perform infinitely many steps of compu-
tation, and can go on to more computation after that. The number of performed steps
may be equal to the smallest infinite ordinal number ω, which corresponds to the set
of all natural numbers, or any other ordinal number.

For simplicity, we consider only such infinite-time Turing machines that work
with the alphabet {1, 0}. As a device, an infinite-time Turing machine has the usual
Turing machine hardware, including the same uniform infinite tape that consists of
separate cells and a head. This head moves mechanically back and forth reading and
writing 0’s and 1’s on a tape according to a finite algorithm (set of rules) p. As in
the case of inductive Turing machines, an infinite-time Turing machine has three
separate tapes, one for input, one (or more) for scratch work, and one for output.
What is new is the definition of the machine behavior at limit ordinal moments of
time.

The infinite-time machine starts, like some forms of Turing machines, with the
head resting in anticipation in the first cell, while the control device is at the begin-
ning in a special state called the start state. The input is written on the input tape, and
the scratch tape and the output tape contain only empty cells. At each step of com-
putation, the head reads the cell values, reflects on its state, consults the program p
of the machine about what should be done in an encountered situation and then car-
ries out the instructions: it writes 0 or 1 in any cell from any of the tapes and moves
left or right, while the control device switches to a new state accordingly. Thus, an
infinite-time Turing machine performs each operation just like a conventional Turing
machine. This procedure determines the machine configuration at stage α + 1, given
the configuration at stage α, for any ordinal number α.

A limit of these computations is taken to identify the configuration of the machine
at stage ω and, more generally, at limit ordinal stages in the supertask computation.
To set up such a limit ordinal configuration, the head is plucked from wherever it
might have been racing towards, and placed in the first cell, while the control device
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is placed in a special distinguished limit state. Taking a limit of the cell values on the
tape is done cell by cell according to the following rule: if the values appearing in a
cell have stabilized, that is, if they are either eventually 0 or eventually 1 before the
limit stage, then the cell preserves this value at the limit stage. Otherwise, in the case
that the cell values have alternated from 0 to 1 and back again unboundedly often, the
limit cell value is determined as 1. This is equivalent to making the limit cell value
the lim sup of the cell values before the limit. Such a process completely describes
the machine configuration at any limit ordinal stage β, and the machine can go on
computing to β + 1, β + 2, and so on, eventually taking another limit at β + ω and
so on through the ordinals. If at any stage the machine finds itself in the special halt
state, then computation ceases, and whatever is written on the output tape becomes
the official output. Otherwise, the infinite-time machine will compute endlessly as
the ordinals fall one after another through the transfinite hourglass.

In this way, for every infinite-time Turing machine program p determines a par-
tial function. If the machine with program p takes an input x , begins functioning,
and, eventually, halts, there will be some output, which is denoted by Outp(x). The
domain of Outp is simply the collection of x which lead to a halting computation.
The natural input for these machines is an infinite binary string, or sequence, x that
belongs to the set 2ω of all infinite sequences. Thus, the infinite-time computable
functions are partial functions on Cantor space. It is possible to consider the ele-
ments of Cantor space 2ω as real numbers, and think of the computable functions
as functions on the real numbers. In particular, the set 2ω is denoted by R, although
the set of all real numbers is obtained by factorization of the set. For example, the
sequences 1 and 0.99999 . . . denote the same real number. Adding extra input tapes,
allows one to have functions of more than one argument.

Definition 4.2.11. A partial function f (x) is infinite-time computable when there is
an infinite-time Turing machine that computes f .

Definition 4.2.12. A set of real numbers A is infinite-time decidable when the char-
acteristic function of A is infinite-time computable.

Definition 4.2.13. A set of real numbers A is infinite-time semidecidable when the
function which gives the affirmative values, the function with the domain A and
constant value 1, is infinite-time computable.

Thus, a set is semidecidable exactly when it is the domain of a computable func-
tion, since it is a simple matter to modify a program to change the output to the
constant 1. It is possible to stratify the computable sets according to how long the
computations goes. A set X is α-decidable for an ordinal number α. when the char-
acteristic function of this set is computable by a machine that on any input takes
fewer than α steps. Thus, restricting to the case of finite input and time, a function
f : 2ω → 2ω is ω-computable exactly when it is computable in the Turing machine
sense.

It is proved (Hamkins and Lewis, 2000) that for infinite-time computations, it is
possible to consider only countable ordinals.
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Theorem 4.2.6. Every halting infinite-time computation demands only countable
number of steps.

This result correlates with the Skolem-Lowenheim theorem that states existence
of a countable model for formal theories with countable languages (cf. Shoenfield,
1967).

The computability theory of the infinite-time Turing machines leads to a notion of
computation on the real numbers, concepts of decidability and semidecidability for
sets of real numbers, as well as individual real numbers, two kinds of jump-operator,
and a notion of relative computability using oracles. This gives a rich degree structure
on both the collection of real numbers and the collection of sets of real numbers.

In comparison with the theory of infinite-time Turing machines, Davies (2001)
treats constructions of infinite-time machines as some idealizations. As we know,
mathematicians build their systems without any appeal to reality. However, in many
cases, these systems have appeared very useful for modeling real systems and pro-
cesses. It is possible to apply similar arguments to computer science, developing
some of its mathematical parts without attempts to find direct links to computers.

Consequently, as infinity now has exact mathematical models, we can use these
models to build models for infinite computations. When an algorithm performs in-
finitely many steps, informally the computations begins with first step and goes to
infinity. The most appropriate mathematical theory for such ideal processes and pro-
cedure is the theory of ordinal numbers, which was originated by Cantor (1895).
In addition, it is reasonable to assume that there is an enumeration of the compu-
tation steps. It means that the steps correspond to the sequence of natural numbers
1, 2, 3, . . . . Thus, ω steps are made. At the same time, as Cantor (1895) found and
contemporary set theory states, there are many kinds of infinities that may be used
for step counting and ω is only the smallest one. Thus, we come to algorithms that
are able to make α steps where α is some infinite ordinal number. This kind of algo-
rithms, or more precisely, algorithmic schemes were studied in the theory of recur-
sion under the name of α-recursion (Takeuti, 1960; Machover, 1961; Levy, 1963).

As we never find infinity in the physical world, α-recursion and recursion on
higher types (Kleene, 1959; 1963; Platek, 1966; Harrington, 1973) is a far reaching
idealization of recursion on natural numbers, which gives a relevant model for many
types of computation. However, many properties of ordinal numbers are similar to
properties of some non-Diophantine arithmetics (Burgin, 1997a). Non-Diophantine
arithmetics reflect properties of physical, social, and economical systems. So, it
seems interesting to develop a recursion theory in which numbers from such arith-
metics are taken for counting steps of computation instead of natural numbers, which
are elements of the conventional, or Diophantine, arithmetic.
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4.2.4 Computations with real numbers and analogue computation

You never know what you can do till you try.

A proverb

There are three main approaches to computations with infinite precision real num-
bers: the theory of computing machines over the field of real numbers and other
integral domains (Blum, Shub, and Smale, 1989; Blum, Cucker, Shub, and Smale,
1998; Boldi and Vigna, 1998; Weihrauch, 2000), the theory of real recursive func-
tions (Moore, 1990; 1996; Campagnolo, Moore, and Costa, 2000), and the theory of
infinite precision net computations (Pollack, 1987; Hartley and Szu, 1987; Siegelman
and Sontag, 1994; 1995; Siegelman, 1995; 1999).

We begin with the first direction. It comprises two complementary approaches: in
one approach a conventional Turing machine is taken and extended by allowing input
and output tape to contain (infinite) representations of real numbers (Weihrauch,
2000), while in the other approach, real numbers are taken as basic atomic entities,
on which exact computations and tests are permitted (Blum, Shub, and Smale, 1989).

The second approach is developed even in a more general situation. Let R be a
field or an ordered integral domain, that is, a commutative ring without zero divisors
with unit and Rn be the module of n-tuples (x1, x2, x3, . . . , xn) of elements xi of
R. When R is the space R of all real numbers, Rn is an n-dimensional vector space
over R.

Definition 4.2.14. A finite-dimensional machine M over R has the structure of a
finite directed connected graph or flow-chart with which several spaces and mappings
are associated. The graph of M has four types of nodes: input, computation, branch,
and output. The unique input node has no incoming edges and only one outgoing
edge. All other nodes have possibly several incoming edges. Computation nodes have
only one outgoing edge, branch nodes exactly two, Yes and No, and output nodes
none. In the case of a flow-chart, nodes are boxes, which may contain operations of
four types: input, computation, branch, and output.

In addition, the machine M has three associated spaces: the input space IM , state
space SM , and output space OM of the form Rn , Rm , and Rl , respectively, where
n, m, and l are positive integers. Associated with each node of M are maps of these
spaces and next node assignments. These assignments correspond one next node to
each input and computation node, two next nodes to each branch node, and absence
of the next nodes to all output nodes.

1. Associated with the input node is a linear map I : IM ′ → SM and unique next
node aq .

2. Each computation node q has an associated computation map, a polynomial (or
rational) map gq : SM → SM , and unique next node aq . If R is a field, gq , can
be a rational map.

3. Each branch node r has an associated branching function, a nonzero polynomial
function hr : SM → R. The next node along the Yes outgoing edge, a+

q , is
associated with the condition hr (z) ≥ 0 and the next node along the No outgoing
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edge, a−
q , with hr (z) < 0. In some cases, a+

q is associated with the condition
hr (z) = 0 and a−

q with hr (z) �= 0.
4. Finally, each output node p has an associated linear map Op : SM → OM and

no next node.

The computational model of a finite-dimensional machine was first introduced
by Blum, Shub, and Smale (1989). In some sense, it is a real number version of a
random access machine (Shepherdson and Sturgis, 1963).

A polynomial (or rational) map g : Rm → Rm is given by m polynomials (or
rational functions) g j : Rm → R, j = 1, . . . , m. If g is a rational map associated
with a computation node (in the case R is a field), we assume that each function g j

is given by a fixed pair of polynomials (p j , q j ), where g j (x) = (p j (x))/(q j (x)).
To a finite-dimensional machine M , one can attach a function from a subset of

the input space to the output space. This function �M is called the input-output map.
A computation of M is a sequence of mappings that are associated with the se-

quential nodes of M beginning with the input node. A computation halts if the last
mapping is associated with the output node.

However, the construction of a finite-dimensional machine M over R has its lim-
itations. That is why, to be able to build universal machines over R, a more general
definition is introduced by Blum et al. (1997). In contrast to a finite-dimensional
machine M , which works with finite-dimensional vectors of a fixed dimension, a
general machine H over R can process vectors of arbitrary length.

Definition 4.2.15. A general machine H over R has the structure of a finite directed
connected graph or flow-chart with which several spaces and mappings are associ-
ated. The graph of H has five types of nodes: input, computation, branch, shift, and
output. The associated spaces are: the input space IM , state space SM , and output
space OM of the form R∞, R∞, and R∞, respectively, where R∞ is the disjoint
union of all spaces Rm , m = 1, 2, 3, . . . and R∞ consists of all elements of the form
x = (. . . , x−2, x−1, x0 , x1, x2, . . . ), xi ∈ R, i ∈ Z . Shift operations map R∞ onto
itself. There are two shift operations: one, the right shift, changes all indices i in the
element x to i + 1, while another, the left shift, changes all indices i in the element
x to i − 1, with i ∈ Z.

This allows the machine H to work with vectors of finite but unbounded length.
Coordinates for such vectors are taken from a ring or field.

This approach is a particular case of the computable functions theory and rela-
tions over many-sorted algebras built by Tucker and Zukker (1988; 1992; 2002).

Meer (1992; 1993) considers such flow-chart machines in which linear or trigono-
metric functions are used for computation instead of polynomial and rational map-
pings.

Another construction of machines that work with real numbers is chosen by
Wehrauch (2000), who introduces Type 2 Turing machine, from which he devel-
ops for them a Type 2 Theory of Effectivity (TTE). The structure of a Type 2 Turing
machine looks very similar to the structure of an ordinary Turing machine.
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Definition 4.2.16. A deterministic Type 2 Turing machine consists of the following
parts:

1. The control device.
2. One or several heads.
3. A finite number of read-only one-way input tapes (possibly none), each con-

taining at start an infinite word (string) in the alphabet {1, 0, 1, ·}; these words
represent real numbers from R in a signed binary form.

4. A finite number of write-only one-way output tapes (possibly none), on which
the machine is supposed to write representations of elements of R;

5. One or several working tapes, which are initially empty.

This structure is very similar to the structure of an ordinary Turing machine. The
only but essential difference with a standard Turing machine is the possibility of
filling completely the input and output tapes.

Every Type 2 machine is a nonstopping machine that gives elements of R as its
output. It computes a function, which is defined for all inputs which are binary rep-
resentations of real numbers and for which all cells of the output tapes are eventually
written.

Freund (1983) extended the notion of a Type 2 Turing machine by introducing
weak Type 2 Turing machine. This machine is defined by making the output tape two-
way and demanding that in every computation the content of an output tape cell is
changed a finite number of times, so every finite prefix of the output tape eventually
stabilizes. It is demonstrated (Freund, 1983) that weak Type 2 Turing machines are
more powerful than standard Type 2 Turing machines.

In contrast to Type 2 Turing machines, finite-dimensional and general machines
that work with real numbers, Moore (1996) develops computational theory for real
numbers as an extension of the concept of recursive function considered in Section
2.4. His main idea is that integration is the closest continuous analog to primitive
recursion and it is possible to build functions using this operation.

In analogy with the conventional recursive functions on natural numbers N (cf.
Section 2.4), it is possible to define recursion for real numbers. At first, we define
R-recursive functions of the form f : Rn → R.

Operations that are used for building R-recursive functions are:

1. Composition: h(x) = f (g(x))

2. Differential recursion or simply integration for a function h(x, y) with two ar-
guments x ∈ Rn and y ∈ R is defined by the following rules:

h(x, 0) = f (x), ∂yh(x, y) = g(x, y, h(x, y)).

In other words, let h = f at y = 0, and then let the derivative of h with respect
to y depend on h(y), y, and x . Then

h(x, y) = f (x) +
∫ y

0
g(x, u, h(x, u)) du

or, in a short form, h = f + ∫
g .
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3. Minimization or µ-Recursion: For a given function f (x, y) with two variables,
its minimization h(x) is defined as h(x) = µ, y f (x, y) = inf{y; f (x, y) = 0}.

Here the operation infinum chooses the number y with smallest absolute value when
such number is unique, and (by convention) the negative one if there are two or more
numbers y satisfying the condition and having the same absolute value. If no such y
exists, the value h(x) is undefined.

Remark 4.2.1. Here composition is the same as in the case of recursive functions.
Minimization is an extension of minimization for recursive functions (cf. Section
2.4), while integration defines a transition from local description of a mapping (in a
form of derivatives) to the global unified description (in a form of a general law).

Definition 4.2.17. An R-recursive function f : Rn → R is a function that can be
generated from the constant zero function 0(x) = 0 and the constant one function
1(x) = 1 using any finite number of compositions, differential recursions, and mini-
mizations.

Vector-valued R-recursive functions f : Rn → Rm of one argument and h(x, y)

with two arguments x ∈ Rn and y ∈ Rk are determined by defining their compo-
nents.

However, there is a problem with differential recursion. First, a solution to the dif-
ferential equation need not be unique. For example, the boundary problem f (0) = 0,
d f (x)/dx = 2 f (x) is solved by f (x) = ax2 for any real number a. Second, the
function obtained by integration can diverge, such as g(0) = 0, dg/dx = g2 + 1, for
which g = tan x is only defined on the interval (−π/2, π/2). To eliminate these in-
consistencies, Moore (1996) demands that the function h(x, y) is only defined where
a finite and unique solution that includes the point h(x, 0) = f (x) exists.

It is possible to develop theory of real number computation based on some mod-
ifications of Turing machines. The great flexibility of Turing machines allows us to
define those machines that work with real numbers.

Let us take some class P of mappings of R into R or Rm into Rm .

Example 4.2.4. P consists of all polynomials with one variable.

Example 4.2.5. P consists of all polynomials with one variable that have degree not
larger than n.

Example 4.2.6. P consists of all rational functions with one variable.

Example 4.2.7. P consists of arithmetical operations and all trigonometric functions.

Example 4.2.8. P consists of all arithmetical operations and integrals of the form∫ y
0 g(x, u, h(x, u)) du.
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Definition 4.2.18. A real-number Turing machine T over P is a Turing machine
that in addition to its regular components has: 1) one or more tapes that can store
real numbers, and 2) rules that have the form

qhai → qk g(aj)D

where ai is a denotation for an arbitrary real number (real vector) from a class B ⊆ R
(B ⊆ Rm) and g(a j ) is a denotation of some mapping that belongs to P and D is a
direction for moving the corresponding head of T .

Thus, ai may be a real number, real variable, or real variable with a given range.
Type 2 Turing machines are special cases of real-number Turing machines.

Utilization of different operations for data transformation makes real-number
Turing machines closer to real computers. Besides, when we take high level pro-
gramming languages, we see that their instructions may demand many operations
in a computer. Those instructions may be even subprograms, that is, programs of
any reasonable length. As a result, corresponding steps of computation become ar-
bitrarily complex. This contradicts to the definitions of an algorithm that demand
simplicity (at least, relative) of separate instructions. Most mathematical models of
algorithm, such as Turing machines, finite automata or generative grammars, em-
body this demand in their structure. They are useful for theoretical research, but
makes these models less relevant to computers and networks. Real number Turing
machines allow one to overcome this shortcoming and provide reasonable flexibil-
ity for choosing operations for the set P to suit better specific problems related to
computers and networks.

It is necessary to remark that all considered models of algorithms for real num-
bers can be naturally extended to algorithms models for complex numbers. As a
result, we have an extended theory of real and complex number computation, which
works with numbers with infinite precision.

However, from the physical perspective, infinite precision computations seem
unrealistic. For example, any real measurement does not provide precise results but
only approximate values. It is possible to speculate that in future we will be able
to build infinite precision measuring devices, but this hypothesis contradicts some
physical laws, in particular, the uncertainty principle.

So, we come to a conclusion that, in general, procedures that operate with infinite
precision real numbers are only algorithmic schemes or ideal algorithms. However,
such models can be useful and in some cases even necessary for relevant reflection,
adequate modeling, and efficient study of real computations.

Blum et al. (1997) give their arguments for introducing algorithms that work with
real numbers. They write:

“Recursive algorithms have given a firm foundation to computer science as a
subject in its own right. Use of Turing machines yields a unifying concept of the
algorithm well formalized. Thus this subject has been able to develop a complexity
theory that permits discussion of lower bounds of all algorithms without ambiguity.

Scientific computation is the domain of computation that is based mainly on the
equations of physics. For example, from the equations of fluid mechanics, scientific
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computation helps to better design of airplanes, or assists in weather prediction. The
main tool here is numerical analysis.

The situation in numerical analysis is quite the opposite. Algorithms are primar-
ily a means to solve practical problems. There is not even a formal definition of
algorithm in the subject.”

Thus, algorithms that work with real numbers give tentative models for numer-
ical analysis. The reason is that the modern digital computer operates with a finite
set of rational numbers, but they fill up a bounded set of real numbers (for example,
between −1000 and 1000) sufficiently densely that viewing the computer as manip-
ulating real numbers is a reasonable idealization, at least, in a number of contexts.

In addition, such model better describes graphical output of computer such as
Mandelbrot or Julia sets with their apparently fractal boundaries. For a wide variety
of scientific computations, the continuous mathematics that a machine is simulating
is a sufficient vehicle for analyzing the operation of the machine itself.

Of course a great many issues such as round-off error must be dealt with. It is
possible, as we discuss below, to treat effectively some of these issues if instead of
classical mathematics with its completely exact objects and operations, such new
fields as interval analysis or neoclassical analysis are utilized.

Here are some other examples when algorithms that work with real numbers
might be useful.

There are situations when computers work with such real numbers such as
√

2,√
3,

√
5, π , e, and some other irrational numbers. If computers multiply

√
2 by

√
2,

they get 4 as the exact answer, or adding π to π , they also get exact answer 2π . So,
in this operation, computers and even many calculators achieve infinite precision.

In other situations a fixed boundary for approximation of real numbers in com-
puter operations does not exist. Thus, in place of imprecise approximations, theo-
retical computation models can better work with ideal real numbers having infinite
precision. Real numbers become adequate models of their rational approximations.

If such processes of useful real number operations exist, we need to know their
regularities and thus, model and study them. Real number algorithms provide an
adequate technique for these studies.

The same is true for analogue computations. According to physical laws, they
cannot be completely precise. When we measure something, we can achieve only
finite precision. The problem is only for what processes, analogue or digital, this
precision is better and/or the results are computed faster. The development of digital
technology shows its advantages. However, theoretical studies of analogue compu-
tations can prompt new direction in the development and utilization of IPS.

At the same time, it is possible to develop models of real number computation,
including possible imprecision. To solve this problem, we consider various existing
and conceivable approaches to this problem. One way is to take approximate values
of real numbers and perform approximate operations with them. Thus, Boldi and
Vigna (1998) introduce a version of the finite-dimensional machine over R, called
a δ-uniform finite-dimensional machine over R. In this machine, exact tests are not
allowed, and the test for equality with 0 is replaced with a test for membership in an
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arbitrary ball around 0. The condition of δ-uniformity reduces the full power of the
finite-dimensional machine nearly to the level of Turing machines.

Approximate computations studied by Boldi and Vigna (1998) involve new types
of real functions: pointwise δ-approximable, uniform δ-approximable, and com-
putable δ-approximable. These functions are closely related to Type 2 computable
functions of Wehrauch (2000) and to weakly Type 2 computable functions of Freund
(1983).

Theorem 4.2.7. (Meyssonnier et al., 2001). The class of all Type 2 computable func-
tions coincides with the class of all computably δ-approximable functions.

Theorem 4.2.8. (Meyssonnier et al., 2001). The class of all weakly Type 2 com-
putable functions coincides with the class of all pointwise δ-approximable functions.

Another way of developing imprecise computations with real numbers is to uti-
lize those theories that implant imprecision in the classical real number arithmetic
and calculus to reflect inexactness existing in the real world. One of these approaches
is interval analysis (Moore, 1966; Alefeld and Herberger, 1983). In it computations
and analytical operations are performed with number intervals instead of just num-
bers. These intervals reflect imprecision of measurement and inaccuracy of data pro-
cessing.

The second approach utilizes constructions and technique of neoclassical anal-
ysis (Burgin, 1995; 2001e). Neoclassical analysis is aimed at making the power of
classical calculus applicable to inexactness and imprecision of computation and mea-
surement. In it, ordinary structures of analysis, that is, functions, sequences, series,
and operators, are studied by means of fuzzy concepts: fuzzy limits, fuzzy continu-
ity, and fuzzy derivatives. For example, continuous functions studied in the classical
analysis become a part of the set of fuzzy continuous functions studied in neoclassi-
cal analysis.

In addition to better represent computational structures, neoclassical analysis
makes it possible to extend and, in some cases, even to complete many basic results
of the classical calculus. This provides us with deeper insight and a better under-
standing of the classical theory.

Real number computation is closely related to continuous-time computation.
As Campagnolo, Moore, and Costa (2000) write, “while a few efforts have been
made in the direction of studying computation by continuous-time dynamical sys-
tems (Moore, 1990; 1996, Orponen, 1997; 1997a; Siegelmann and Fishman, 1998,
Bournez, 1999), no particular set of definitions has become widely accepted, and the
various models do not seem to be equivalent to each other. Thus, analogue compu-
tation has not yet experienced the unification that digital computation did through
Turing’s work in 1936.”
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4.2.5 Topological computations

The proof of the pudding is in the eating.

A proverb

All constructions of models for topological computations are based on some topology
on the set of all outputs (output words) of a given class of algorithms (cf. Burgin,
1992; 2001b). Here we do not go into detail and give only a definition of a limit
Turing machine and some examples of its applications.

A limit Turing machine T has exactly the same structure as inductive Turing
machine, either simple or with a structured memory (cf. Section 3.3). Although ma-
chines of both types work exactly in the same way, they differ in how the result of
computation is defined.

Definition 4.2.19. (Burgin, 1992). If a1, a2, a3, . . . is the sequence of words that are
written in succession in the output tape when a limit Turing machine T is working
after taking an input x , then a limit a of this sequence is a result of computations of
the machine T with the input x .

When the limit Turing machine T is deterministic and the topology on the set of
all outputs (output words) is Hausdorff (cf. Kelly, 1957), then the result of computa-
tion is unique. Otherwise, the machine T represents a multivalued algorithm (Burgin,
1984) with multiple results.

Inductive Turing machines are topological Turing machines that have discrete
topology on the set of all outputs.

There are other topological algorithms related to a non-discrete topology. For
instance, we consider algorithms that work with rational numbers. We know that
it is possible to code each rational number by a finite word. However, the natural
topology in this set is not discrete. For another instance, we take algorithms to work
withp-adic numbers (cf. Van der Waerden, 1971), which also have a nondiscrete
topology.

Different properties of limit Turing machines are considered by Burgin (1992;
2001b).

Discontinuous topologies (Burgin, 2001f) and fuzzy limits (Burgin, 2001e) allow
us to extend topological algorithms, defining fuzzy limit Turing machines.

A fuzzy limit Turing machine T has exactly the same structure as limit Turing
machine, either simple or with a structured memory (cf. Section 4.3). Although ma-
chines of both types work exactly in the same way, they differ in how the result of
computation is defined.

Definition 4.2.20. If a1, a2, a3, . . . is the sequence of words that are written in suc-
cession in the output tape when a fuzzy limit Turing machine T takes an input x , then
a fuzzy limit a of this sequence is a result of computations by the machine T with
the input x .
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While limit Turing machines are only useful idealizations of computers as com-
puters cannot go to the limit value and compute with absolute exactness, fuzzy limit
Turing machines describe many kinds of numerical computations of modern com-
puters as they demand only relative exactness (Burgin and Westman, 2000).

Other models of topological computations are developed in a series of papers
(Hotz, Schieffer, and Vierke, 1995; Chadzelek and Hotz, 1997; 1999; Chadzelek,
1998). The most general model is called mathematical machine.

A mathematical machine is a structure M = (A, K , Ka, Ke, Kz, tr, in, out)
where A is the alphabet of M , which is not confined to a finite set; K is the set
of configurations or states of M ; Ka, Ke, K ⊆ K are the initial, final, and target
configurations; tr : K → K , in : A∗ → Ka , and out : Ka → A∗ are the transition,
input, and output functions of M with tr equal to the identity function on Ke.

A sequence b = (ki )
∞
i=0 of states is called a computation applied to ki if ki+1 =

tr (ki ) for all I = 0, 1, . . . , n, . . . . A computation b is called finite if there is a number
n such that b becomes stationary for all i larger than n. The result of this computation
is equal to out (kn+1). We call this result the output configuration.

It is possible to define a finite computation relative to an output, or some other
type, of machine configurations. Namely, a computation b is called finite relative to
an output configuration if there is a number n such that out (ki ) becomes stationary
for all i larger than n.

According to this definition, an inductive Turing machine gives a result if and
only if its computation is finite relative to the output configuration.

However, when A∗ is a metric space, the authors define results not only for fi-
nite computations but also for infinite convergent computations. Namely, if a sub-
sequence a = (hi )

∞
i=0 of all target configurations in b is infinite, then the result

of this computation is equal to limi→∞out (hi ). Computations that have such re-
sults are called infinite convergent computations. Limit Turing machines (Burgin,
1991) are particular cases of mathematical machines with infinite convergent compu-
tations when target configurations are those configurations of a limit Turing machine
at which they give a new result into the output register.

Taking mathematical machine as the basic construction and some ring R, which
is later reduced to only two cases of the fields Q of rational and R of real numbers, the
authors define some kind of register machines, called R-machines. These machines
are equivalent to the model of Blum et al. (1998) in the case of finite computability.

One more model introduced in (Chadzelek and Hotz, 1999) is δ–Q-machine,
which takes in real numbers as inputs and use infinite converging computations on
more and more precise rational roundings of their inputs. It is demonstrated that
infinite converging computations with rational numbers can simulate finite compu-
tations with real numbers. In addition, such problems as computability of solutions
of ordinary differential equations (ODE) and decidability of stability problems for
dynamical systems defined by ODEs.

It is possible to show that constructions and methods of Chadzelek and Hotz
(1999) can be extended for computations with hypernumbers (Burgin, 2002d) by
means of corresponding H-machines where H is a set of hypernumbers.
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Computational model of Boldi and Vigna (1998) is also based on topological
constructions of pointwise δ-approximation, uniform δ-approximation, and com-
putable δ-approximation.

A logical approach to a kind of topological computation, called convergent infi-
nite computation, is developed by Li et al. (2001). Infinite computations in the sense
of Li et al. (2001) correspond to non-terminating or very long time running processes.
The main characteristics of convergent infinite computations are that they constantly
access some huge sets of external data during the run time, and the infinite sequences
of running states, which they go through, are convergent to some certain limits as the
time goes to the infinity. Computations with finite words can be expressed by first
order theories. This allows the authors to express infinite computations by sequences
of first order theories and their limits in the sense of (Li, 1992). Logical varieties
(Burgin, 1995a) provide a natural context to consider theories and their limits.

4.2.6 Computations with an oracle

It is the province of knowledge to speak and
it is the province of wisdom to listen.

Oliver Wendell Holmes, 1809–1894

As we know, the first computation model that was more powerful than Turing ma-
chines was Turing machine with an oracle introduced by Turing in 1939. Let us
consider computational power of this model. To do this, we need exact definitions.

Definition 4.2.21. An function oracle is a system (a device, black box, person, what-
soever) that contains knowledge about the values of some function f (n).

Definition 4.2.22. A Turing machine T with an oracle for a function f (n) is a con-
ventional Turing machine with additional operation of access to the oracle. During
this access, the machine T supplies the oracle with an arbitrary number n and re-
ceives from the oracle the value f (n).

It does not mean that having an oracle for a noncomputable function f (n), the
Turing machine T always “computes” a noncomputable function. For example, the
instructions of a Turing machine with an oracle perform the operation of changing
any input word w into the output word ww. However, an oracle for a noncomputable
function f (n) allows Turing machine to “compute” a variety of noncomputable func-
tions, which are called (cf. Rogers, 1987) functions computable relative to f (n). In
such a way, theory of relative computations is built.

Usually, oracles are considered not for functions but for sets (cf. Rogers, 1987).

Definition 4.2.23. A set oracle is a system (a device, black box, person, whatsoever)
that contains knowledge about the membership in some set X .

Definition 4.2.24. A Turing machine T with an oracle for a set X is a conventional
Turing machine with additional operation of access to the oracle. During this access,
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the machine T supplies the oracle with a description of an arbitrary element x (it may
be a word, a number etc.) and receives from the oracle the value 1 when x belongs
to X and 0 when x does not belong to X .

In general, the legitimacy of unrestricted Turing machines with an oracle as phys-
ical devices is rather questionable. Some think (cf., for example, Cleland, 2001) that
it would be a mistake to conclude that oracles are of only theoretical interest because
we could never confirm that a proposed physical candidate produced something gen-
uinely noncomputable by conventional Turing machines.

It is possible to realize an oracle by using different constructions. One of them is
called advice-taking Turing machine (Balcazar, Diaz, and Gabarro, 1988; Schöning,
1988).

Definition 4.2.25. An advice function f (x) is some function, the values of which
depend only on the length of x and are written on a special tape of a Turing machine.

Hence, advice functions provide external information to the machines, just as do
oracles, but the information provided by an oracle may depend on the actual input,
whereas the information provided by an advice function does not. Indeed, only the
length of the input matters. Consequently, advice-taking Turing machines form a
subclass of Turing machines with oracles.

Advice-taking Turing machines are important in complexity theory because def-
initions and results are often based on special Turing machines that can determine
the result of an oracle “for free”, that is, in constant time.

Definition 4.2.26. An advice-taking Turing machine is a Turing machine enhanced
with the possibility to access the tape with the advice in constant time and read from
it the value of its advice f (x) also in constant time.

The fact that the value of the advice f (x) can be determined in constant time
(while f (x) can be an intractable or even undecidable function) essentially increases
the power and efficiency of an advice-taking Turing machine in comparison with a
regular Turing machine. For example, an advice-taking Turing machine can calculate
in polynomial time many functions that a regular Turing machine cannot (including
some intractable ones).

Computations performed by Turing machines with oracles and Turing machines
with advice are nonuniform because a different advice string may be defined for
every different length of input.

Analyzing the situation with oracles for automata, we come to conclusion that
in general, Turing machines and other automata with unbounded oracles are only
algorithmic schemes or ideal algorithms. However, such models can be useful and in
some cases are even necessary for adequate and efficient reflection of real situations.
Here are some examples.

Example 4.2.9. One case is when an oracle is used to model more powerful computer.
Few people need supercomputers. They work with ordinary PC or other similar de-
vices. However, sometimes they might need much more computational power. So,
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their computer T accesses a supercomputer M that solves some problem for the user
of T . As result, M plays the role of an oracle for T . Consequently, Turing machine
with oracle is a good model for this case.

Example 4.2.10. Another case is when the computer T has access to some database.
Then an oracle can model that database. In addition, different types of oracles can
model: experimental devices that give to the computer T results of their experiments;
utilization in calculations data from some physical system; or testing some hypothe-
sis elaborated by a researcher by providing to T some hypothetical data.

Example 4.2.11. Oracles are useful in the theory of algorithms and computation,
where there is a developed theory of relative algorithms and computation (cf., for
example, Rogers, 1987). All this shows that Turing machines and other automata
with oracles can be very useful if they are used adequately.

Example 4.2.12. Oracle can also simulate a situation in which computer receives data
from some source about which it is unknown whether its output may be defined
algorithmically or not.

4.2.7 Interactive computation and concurrency

There are two sides to every problem.

A proverb

Interaction takes the theory of automata, algorithms, and computation to the next
level of information processing systems. Namely, we consider their processes as
components of other automata, algorithms, and computational processes. The pur-
pose of an interactive system is usually not to compute some final result but to react
to or interact with the environment in which the system is placed and with other sys-
tems. An interactive automaton or algorithm also maintains a well-defined action-
reaction behavior. Interactive systems are usually operating on unbounded strings of
symbols. Consequently, it is natural to model them by using automata with infinite
strings, for which inputs are not specified from the beginning and may depend on
intermediate outputs and external sources.

This shows that there is a misconception that algorithms do not interact with
their environment. For example, Wegner (1997) writes that interactive tasks, like
driving home from work or reserving a seat on an airline, cannot be realized through
algorithms.

This is not correct. Even accepting finite automata, which represent one of the
simplest forms of algorithms, interact with their environment accepting or rejecting
some input from this environment. Automata, as a rule, do not supply themselves
with input. A more realistic model of a general finite automaton does not only accept
data from the environment, but also gives some output into this environment. So, we
have a two-way interaction.

Turing machines are more powerful and flexible in comparison with finite au-
tomata. So, there are Turing machines that in contrast to computers do not give out-
put (cf., for example, (Hopcroft et al., 2001). Some theoreticians even study Turing
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machines that start computation on an empty tape, generate one by one all numbers
from N , and compute all values of some function f : N → N . However, these mod-
els are nonrealistic and can confuse some readers, bringing them to a conclusion that
algorithm models have nothing to do with real computers and programs. Thus, if
we do not forget about reality, the models we use always have input and output (cf.
Section 1.2 and Section 2.2.3).

Another misconception is that some think that an algorithm receives the whole
input before it starts functioning. This is a possible interpretation, but only one of
different options for an algorithm. However, this restriction became so prevalent that
many attach it to the very definition of algorithm. This is not correct because there
are other acceptable interpretations of the input. For example, the standard definition
of finite automaton (cf. Section 2.3) assumes that letters of the input word are given
to the automaton one by one. The automaton reacts separately to each letter. It is
difficult even to imagine that the automaton provides these input letters by itself. So,
it is natural to suppose that these letters come from the environment individually and
in groups.

Also, the word that is written in the input tape of a Turing machine may be writ-
ten in parts. Completely fixed input is good, as a rule, only for computing functions.
However, most algorithms are constructed for other purposes. Algorithms regulate
traffic, optimize production, play chess and checkers, translate texts from one lan-
guage to another and do many other useful things besides function computation.

When some people restrict algorithms to some of their applications, it does not
mean that another application changes algorithm into something different. To do so
is similar to saying that a wheel used in a car or truck for moving is a wheel, but
a steering wheel in the same car or in a plane or a wheel in a clock is not a wheel.
We may use additional words like “a sprocket,” but this is still a wheel with some
additions. In a similar way, it is more relevant to the social practice to call a variety of
definite models of algorithms by the name “Turing machine.” So, even an inductive
Turing machine is, in some sense, an unconventional kind of Turing machines.

In theory, it is possible to interpret the process of automata functioning as con-
struction of a mapping, but this is only a posteriori formalization. So, conventional
finite automata and algorithms equivalent to Turing machines can be interpreted and
used as interactive devices in a multitude of situations.

However, what is really true is that these interactive features of classical models
of algorithms have not been studied explicitly and those researchers who do it now
contribute to the general development of the theory of algorithms. Moreover, new
models that explicitly include interaction are necessary to reflect better interactive
peculiarities of contemporary computation and functioning of automatic devices in
general.

Several such models have been suggested. Wegner (1997) defines interaction
machines as Turing machines with input and output. This notion is formalized in
(Goldin and Wegner, 1988) by persistent Turing machine.

Definition 4.2.27. A persistent Turing machine is a Turing machine with input and
output tapes (cf. Figure 4.1) that receives from time to time some input (from the
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environment), but does not begin to process the next input until it finishes to work
with the previous input coming to a final state.

Thus, in contrast to conventional Turing machines, a persistent Turing machine
does not halt coming to a final state, but instead it begins to process a new portion
of information. This is the interactive persistent mode of functioning of a Turing
machine. It is possible to define and find the advantages of the interactive persistent
mode of functioning for an inductive Turing machine in comparison with those of a
persistent Turing machine.

Remark 4.2.2. Researchers considered separate input and output tapes not only for
persistent Turing machine but also for different kinds of abstract automata (cf., for
example, (Burgin, 1983; 1988; Stockmeyer, 1987)).

Other interactive modes of functioning include:

Interactive functioning with priorities when a task with a higher priority inter-
rupts execution of the task with a lower priority, occupying all computational re-
sources.

Interactive functioning with control points at which priorities of tasks are checked
and changes in task execution are made. It is possible to have control points in time.
For instance, each second a check is done and necessary changes are performed.
It is possible to have control points in the process structure. For instance, at each
branching operator a check is done and necessary changes are performed.

Interactive functioning with a queue when a task with a higher priority interrupts
execution of a task with a lower priority and shifts the latter to the queue.

Interactive functioning with a background mode when a task with a higher prior-
ity is executed in the foreground mode, while tasks with lower priorities are executed
in the background mode.

There are different models of interactive automata. Van Leeuwen and Wieder-
mann (2000) suggest a simple model of interactive computing that consists of a
computing component C and environment E interacting with one another by us-
ing single streams of input and output signals. This pair satisfies the condition that C
is guaranteed to give some meaningful output within finite time any moment of time
after receiving a meaningful input from E and vice versa. It is assumed that C is a
program with unbounded memory in which the memory contents is building up over
time and never erased (unless the component explicitly does so).

Van Leeuwen and Wiedermann (2000a) describe another model of interactive
computing as a global Turing machine (or Internet machine). It is finite. However,
it consists of time-varying set of communicating site machines that can compute
ad infinitum. It reflects the situation when a global computer may be evolving over
time without limit. In this context, site machines are defined, by augmenting Turing
machines with a communication facility.

Grid automaton (cf. Section 4.4) is a formal model for such interactive systems.
Internet machines of van Leeuwen and Wiedermann are grid automata in which all
nodes are Turing machines.
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Another kind of interactive computational model computation on the Web is sug-
gested by Abiteboul and Vianu (2000). It is called a Web machine.

A Web machine has the structure of a Turing machine with three linear tapes:
input, output, and working tapes. The first two are infinite only in one direction, while
the third is infinite in both directions. Initially, the input tape contains an infinite word
that represents an encoding of the Web instance, while the working and output tapes
are empty. The input tape head is positioned at the first cell. The moves are standard
for a Turing machine, except that the output tape head can only move to the right (so
nothing can be erased once it is written on the output tape). Thus, a Web machine
works much like a Turing machine, but takes as input an infinite string and may
produce an infinite answer. The Web is represented as an infinite database over the
fixed relational schema. All infinite structures in this model are countable.

Based on the Web machine, Abiteboul and Vianu (2000) define the notions of
computability and eventual computability of queries. The latter notion arises from the
fact that infinite answers to queries are allowed. A query is computable if its answer
is always finite and computable by a halting Web machine. A query is eventually
computable if there is a Web machine, possibly nonterminating, which eventually
outputs each object in the answer to the query.

The Web machine captures a very general form of computation on the Web.
However, two particular modes of computation on the Web are prevalent in prac-
tice: browsing and searching. To represent these modes, Abiteboul and Vianu (2000)
define two more machine models: a browser machine, which models browsing and
browse/search machine, which models browsing and searching combined, allowing
searching in the style of search engines.

Similar interactive computational model for querying the Web is suggested by
Spielmann, Tyszkiewicz, and Van den Bussche, (2002). It is called a Web automaton.
Formally, a Web automaton is a variant of a register automaton equipped with an
additional communication component.

An interesting approach to understanding interaction is suggested by Prasse and
Rittgen (1998). They write that interaction machines are not algorithms according
to the conventional computability theory, which is concerned with computations of
functions, but, instead, are components of interactive systems. These systems (proto-
cols), and not the interaction machines themselves, define a computation model with
respect to certain interaction behaviors and accepting rules.

Consequently, we come to a conclusion that it is correct to say that conventional
models of algorithms focus only on the processor of information processing systems
(cf. Figure 1.1), while a complete model must include input and output components
with a description of their functioning. As result, we obtain an interactive model of
algorithms and computation that give more complete algorithmic representation of
various processes (Wegner, 1998). Grid automata (see Section 4.4) give the most
general and comprehensive model for interactive computation.
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4.2.8 Computational power of superrecursive algorithms and algorithmic
schemes

What is now proved was once only imagined.

William Blake, 1757–1827

Let X be some alphabet and X∗ be the set of all words in X .

Theorem 4.2.9. For any function f : X∗ → X∗ ( f : N → N), there exists an ad-
vice-taking Turing machine M that computes f .

Proof. To construct the advice-taking Turing machine T , we use two conventional
Turing machines, TX,1 and T1,X , and an advice-taking Turing machine T1. The ma-
chine TX,1 enumerates words from the set X∗, establishing one-to-one correspon-
dence between X∗ and N and representing each number in the alphabet with one
symbol 1. Let gX,1 : X∗ → N be the function that is computed by the machine TX,1.
Then it has the inverse function g−1

X,1 : N → X∗ and we take h = (gX,1) f (g−1
X,1):

N → N as the advice function of T1. It is possible to do so because the function h
satisfies the condition that all words of the same length have the same advice value.
We also take a machine T1,X that computes the function g−1

X,1.
Now we explain how the machine T works. When the input of T is equal to x ,

then x is transmitted to TX,1, which transforms x into a word in the alphabet {1}. The
result n of this transformation goes to the machine T1, which assigns to n the value
h(n) using the oracle. Then this value is transmitted to T1,X , which transforms h(n)

into a word z in the alphabet X . The output z of T1,X is taken as the output of the
whole T . By definition of corresponding machines, we have

z = g−1
X,1(h(n)) = g−1

X,1

(
h(gX,1(x))

) = g−1
X,1

(
(gX,1) f (g−1

X,1)(gX,1(x))
) = f (x).

So, the value computed by T is equal to f (x). As x is taken arbitrarily, the machine
T computes the function f . The theorem is proved. ��
Corollary 4.2.1. For any set Z ⊆ X∗, there is an advice-taking Turing machine that
accepts Z.

Corollary 4.2.2. For any set Z ⊆ X∗, there is an advice-taking Turing machine that
decides Z.

As advice-taking Turing machines form a subclass of Turing machines with ora-
cles, we have the following result.

Theorem 4.2.10. For any function f : X∗ → X∗ ( f : N → N), there exists a Turing
machine M with an oracle that computes f.

Corollary 4.2.3. For any set Z ⊆ X∗, there is a Turing machine with an oracle that
accepts Z.

Corollary 4.2.4. For any set Z ⊆ X∗, there is a Turing machine with an oracle that
decides Z.
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Theorem 4.2.11. For any function f : X∗ → X∗ ( f : N → N), there exists a system
of two randomly interacting Turing machines that computes f .

Let us consider a class K of algorithms or abstract automata that work with real
numbers. In addition, we assume that K is closed under subprogram compositions
of its algorithms, that is, any algorithm or automaton from K may be included into
another algorithm or automaton from K as a subprogram of the program or as a
part of the automaton. We assume that the class K contains algorithms or automata
that multiply real numbers by 10, subtract natural numbers from real numbers, count
numbers of digits, and compare real numbers with integers.

Lemma 4.2.1. Any function f : N → N ( f : X∗ → X∗) is computable in K.

Proof. At first, we codify an arbitrary function f : N → N as a real number a f .
It has the following structure: f (1) zero’s, then 1; then f (2) zero’s, then 1; then
f (3) zero’s, then 1 and so on. For example, if f (n) is a constant function identically
equal to 3, then a f = 0.0001 0001 0001 . . . is a periodic real number. We call a f the
number of f (n).

To prove Lemma 4.2.1, we consider two cases in which an arbitrary real number
can be:

(1) an arbitrary real number can be given as an input;
(2) an arbitrary real number can be implemented as an active parameter of the hard-

ware.

An example of the latter is given by neuron networks that include neurons with
real weights. Another example is an oracle of a Turing machine that has a real number
as its parameter.

In the first case, the class K contains: an automaton or algorithm M that is called a
multiplier and can accept and multiply any real number in the decimal representation
by 10; an automaton or algorithm S that is called a subtractor and can subtract 1
from any real number; an automaton or algorithm C that is called a comparator and
compares real numbers with natural numbers; an automaton or algorithm D that is
called an adder, stores its results, and adds 1 to a given or previously stored natural
number.

To build an automaton or algorithm A that computes the function f (n), we com-
bine the following into one scheme (cf. Figure 4.3): one multiplier M , one subtractor
S, one comparator C , and two adders D1 and D2.

There are two options: (a) input of A contains two or more real numbers; (b) input
of A consists of a single real number. At first, we consider the first situation, that is,
the input of the automaton or algorithm A consists of two or more real numbers. To
find the value f (n) by means of A, we take a f as the first input and n as the second
input of A.

The number a f goes to the automaton M , which multiplies a f by 10. The result
u1 goes to the automaton C , which checks whether u1 > 1 or not. When u1 > 1,
C sends 1 to D1, which adds 1 to its initial stored value, which is equal to 0, and
stores the result. Then the automaton C checks whether the result of D1 is equal to
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Figure 4.3. The structure of the machine A.

n or not. If it is equal, then the automaton A gives 0 as its final output and stops. The
definition of a f implies that f (1) = 0 and A gives this result. If the result of D1 is
not equal to n, then C sends u1 to S and 0 to M and to D2. At the same time, the
automaton S subtracts 1 from the number u1 and M multiplies the difference by 10,
getting a number u2; while the automaton D2 makes its own stored value equal to 0.

When u1 < 1, C sends 0 to M and 1 to D2. The automaton D2 adds 1 to the initial
value, which is equal to 0, and stores the new result. The automaton M multiplies u1
by 10, getting u2.

In the case when u1 > 1, the result u2 goes to the automaton C , which checks
whether u2 > 1 or not. When u2 > 1, C sends 1 to D1, which adds 1 to its stored
value and stores this result. Then the automaton C checks whether the result of D1
is equal to n or not. If it is equal to n, then C sends the special symbol of output to
D2 and the automaton A gives as its output the stored value of D2, which is equal to
0 at this moment, and stops. The definition of a f implies that f (2) = 0 and A gives
this result. If the result of D1 is not equal to n, then C sends u2 to M and 1 to D2.
The automaton M multiplies u2 by 10, getting u3. The automaton D2 adds 1 to its
initial stored value, which is equal to 0, and stores the new result.

In the case when u1 < 1, the result u2 goes to the automaton C , which checks
whether u2 > 1 or not. When u2 > 1, C sends u2 to M and 1 to D2. At the same
time, the automaton D2 adds 1 to its stored value and stores this result; while the
automaton M multiplies u2 by 10, getting u3 and sending it to C for comparison
with 1. This cycle is repeated until C finds that uk > 1 for some k.

When we have uk > 1, C sends 1 to D1, which adds 1 to its stored value and
stores the result. Then the automaton C checks whether the result of D1 is equal
to n or not. If it is equal, then C sends the special symbol of output to D2 and A
gives as its output the stored value of D2 and stops. The definition of a f implies that
f (1) = k − 1 and the automaton A gives this result. If the result of D1 is not equal
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to n, then C sends uk to S and 0 to M and to D2. At the same time, the automaton
S subtracts 1 from number uk and M multiplies the difference by 10, getting uk+1;
while the automaton D2 makes its stored value equal to 0.

If the stored value of D1 is not equal to n, we continue this process until the
stored value of D1 becomes equal to n. Then the automaton A gives the result of D2
as its final output and stops. The definition of a f implies that A computes the value
f (n). By induction, we prove this for all numbers n, that is, that A computes the
value f (n).

The situation when input of the automaton A consists of a single number is re-
duced to the previous case by sending n and a f one after another and storing the first
input.

Now let us consider the case when an arbitrary real number can be implemented
as an active parameter of the hardware of the automata from the class K. Then to get
an automaton A that computes the function f (n), we take the number a f as a pa-
rameter of hardware that makes it possible to use this parameter in computations and
build an automaton presented in Figure 4.3. We may assume that a f is a parameter
of the multiplier M . Then we give n as the input to A and repeat the whole procedure
described above. The same arguments show that that A computes the value f (n).

Lemma 4.2.1 is proved. ��
Lemma 4.2.1 implies corresponding results for several models of real number

computations.

Theorem 4.2.12. For any function f : N → N ( f : X∗ → X∗), there exists a finite-
dimensional machine M over the set R of all real numbers that computes f .

Corollary 4.2.5. For any set Z ⊆ N (Z ⊆ X∗), there exists a finite-dimensional
machine over R that accepts Z.

Corollary 4.2.6. For any set Z ⊆ N (Z ⊆ X∗), there exists a finite-dimensional
machine over R that decides Z.

Theorem 4.2.13. For any function f : N → N ( f : X∗ → X∗), there exists a real-
number Turing machine M that computes f .

Corollary 4.2.7. For any set Z ⊆ N (Z ⊆ X∗), there exists a real-number Turing
machine that accepts Z.

Corollary 4.2.8. For any set Z ⊆ N (Z ⊆ X∗), there exists a real-number Turing
machine that decides Z.

It is possible to obtain similar results for Type 2 Turing machines.

Theorem 4.2.14. For any function f : N → N ( f : X∗ → X∗), there exists a real
number neural network that computes f .

Corollary 4.2.9. For any set Z ⊆ N (Z ⊆ X∗), there exists a real number neural
network that accepts Z.
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Corollary 4.2.10. For any set Z ⊆ N (Z ⊆ X∗), there exists a real number neural
network that decides Z.

Theorem 4.2.15. For any function f : N → N , there exists a real number recursive
function in the sense of Moore (1996) that is equal to f .

Corollary 4.2.11. For any set Z ⊆ N , there exists a real-number Turing machine
that accepts Z.

Corollary 4.2.12. For any set Z ⊆ N , there exists a real-number Turing machine
that decides Z.

These results show that models working with real numbers are omnipotent for
computing functions on finite words, that is, they can compute any such function.
In some cases when we want to extend the scope of computability, this feature is
good. In other cases, it does not allow one to discern computable functions from
noncomputable and decidable sets from undecidable in the realm of finite words.

However, for infinite words and for objects that are represented by infinite words
(such as real and complex numbers) these models provide essential opportunities
to study algorithmic and computational properties of such domains. Existence of
different algorithmic and computational models that work with inherently infinite
objects reflects the diversity of situations when these models may be useful.

4.3 Emerging computation, inductive Turing machines,
and their computational power

“Oh, you’re sure to do that,” said the Cat,
“if you only walk long enough.”

Lewis Carroll, 1832–1898

Recursive, inductive, and infinite-time computational processes represent three forms
of computations:

♦ Recursive computations are accomplished processes as they terminate giving the
result.

♦ Inductive computations are emerging processes as they produce the result without
stopping, that is, the final result emerges through a sequence of intermediate
results.

♦ Infinite-time computations are potential processes as it is possible to have the
result they produce only after an infinite number of steps.

Our main interest here is in emerging processes. In Section 4.2.2, we got ac-
quainted with the lowest level of inductive computations: limiting recursion, induc-
tive inference, general Turing machines, and simple inductive Turing machines. The
most powerful model for inductive computations is an advanced inductive Turing
machine, as covered in this section.
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There are different types and kinds of advanced inductive Turing machines: with
a structured memory, structured program or rules (or control device), and structured
head (operating device) (Burgin, 2001a). The main emphasis here is made on induc-
tive Turing machines with a structured memory.

4.3.1 The structure of inductive Turing machine with a structured memory

– but there’s one great advantage in it,
that one’s memory works both ways.

Lewis Carroll, 1832–1898

As we already know, the structure of inductive Turing machine in its simplest form is
similar to the structure of Turing machine. However, such simple forms of inductive
Turing machines do not allow us to compute much more than conventional Turing
machines. That is why we develop here an advanced form that is called inductive
Turing machine with a structured memory. In what follows, the term “inductive Tur-
ing machine” always means “inductive Turing machine with a structured memory”.
Simple inductive Turing machines are considered as inductive Turing machine with
a rather primitive structured memory, consisting of three linear tapes.

Similar to Turing machine, any kind of inductive Turing machine is an abstract
automaton, which is similar in many aspects to a modern computer. We first describe
the structure of an inductive Turing machine with a structured memory and then we
explain how it functions.

The structure of any inductive Turing machine, as an abstract automaton, consists
of three components: hardware, software, and infware. We begin with the infware,
that is, with a description and specification of information processed by an inductive
Turing machine. Computer infware consists of information, or more exactly, data
processed by the computer. An inductive Turing machine M is an abstract automa-
ton, which works with symbolic information in a form of words of formal languages.
Consequently, formal languages with which M works constitute its infware. Usu-
ally, these languages are divided into three categories: input, output, and working
language(s). In contrast to the languages of everyday life (such as English, German
or French), inductive Turing machines use formal languages.

A formal language L consists of three parts: the alphabet A of L, which is a finite
set of symbols; the set A∗ of all words in A, which are finite strings of symbols; and
the subset L of the set A∗. Elements from L are called the words of the language
L. The set L is often represented by generating rules RG , that is, the rules that build
words from L , or by selection rules RS , that is, the rules that separate words that
belong to L from all other words in A∗.

The language L of an inductive Turing machine consists of three parts L =
(LI, LW, LO) where LI is the input language, LW is the working language, and
LO is the output language of M . Each of them has the following structure LX =
(AX, RX, LX) where AX is the alphabet, RX is the set of generating rules, and LX
is the set of all words of the language LX where X is one of the symbols I, O or W.
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Usually the generating rules for formal languages as a whole consist of one opera-
tion, which is called concatenation and combines two words into one. For example,
if x and y are words, then xy is the concatenation of x and y. Taking the alphabet
AX = {1, 0} with two words x = 1001 and y = 001 in this alphabet, we have
1001001 as the result of concatenation. The set A∗ of all finite strings in the alphabet
A is also a formal language; it includes the empty word ε that contains no symbols.
Because a formal language is an arbitrary subset of A∗, it is possible to consider the
languages of an inductive Turing machine M as one language L(M), which consists
of three parts: LI, LW, and LO.

Now let us look at the hardware or device D of the inductive Turing machine M
with a structured memory. What is hardware of a computer? It consists of all devices
(the processor, system of memory, display, keyboard, etc.) that constitute the com-
puter. In a similar way, the inductive Turing machine M has three abstract devices:
a control device A, which is a finite automaton and controls performance of the ma-
chine M ; a processor or operating device H , which corresponds to one or several
heads of a conventional Turing machine; and the memory E , which corresponds to
the tape or tapes of a conventional Turing machine. These devices are presented in
Figure 4.1, which gives the structure of the simplest kind of an inductive Turing ma-
chine, in which the memory consists of three linear tapes, and the operating device
consists of three heads, each of which is the same as the head of a Turing machine
and works with the corresponding tape.

The control device A has the state structure or configuration S = (q0, Q, F)

where Q is the set of states or the state space of A and of M , q0 is an element from
Q that is called the start or initial state, and F is a subset of Q that is called the set of
final (in some cases, accepting) states of M . It is possible to consider a system Q0 of
start symbols from Q, but this does not change the computing power of an inductive
Turing machine. The automaton A regulates the state of the whole machine M , the
processing of information by H , and the storage of information in the memory E .

The memory E is divided into different but, as a rule, uniform cells. It is struc-
tured by a system of relations that provide connections or ties between cells. Each
cell can contain a symbol from an alphabet of the languages of the inductive Turing
machine M or it can be empty. Formally, E = (P, W , K ) where P is the set of
all cells from E , W is the set of connection types, and K ⊆ P × P is the binary
relation on P that provides connections between cells. In such a way, K structures
the memory E . Each of the sets P and K is also structured. The set P is enumerated,
that is, a one-to-one mapping ν of P into the set N of all natural numbers is given.
A type is assigned to each connection from K by the mapping τ : K → W .

In a general case, cells from the set P also may be of different types. This strat-
ification is represented by the mapping ι : P → V where V is the set of cell types.
Different types of cells may be used for storing different kinds of symbols. For exam-
ple, binary cells, which have type B, store bits of information represented by symbols
1 and 0. Byte cells, which have type BT, store bytes of information represented by
strings of eight binary digits. Symbol cells, which have type SB, store symbols of
the alphabet(s) of the machine M . Conventional cells in Turing machines have this
type. Natural number cells, which have type NN, are used in random access ma-
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chines (Aho et al., 1976). Cells in the memory of quantum computers, which have
type QB, store q-bits or quantum bits. When different kind of devices are combined
into one, this new device has several types of memory cells. This is just the case of
grid automata, which are considered in Section 4.4. In addition, different types of
cells facilitate modeling of the brain with its sophisticated structure of neurons by
inductive Turing machines.

Likewise, the set of cells P is divided into three disjoint parts P I, PW, and PO,
where P I consists of the input registers, PW is the working memory, and PO consists
of the output registers of M . Correspondingly, K is divided into three parts K I, K W,
and K O which define connections between the cells from P I, PW, and PO. Usually,
input registers are used only for reading, while output registers are used only for
writing. For simplicity, we consider P I as one register and PO as one register, which
are, as a rule, one-dimensional tapes. Besides, it is possible to consider only such
inductive Turing machines that have the read-only input register or tape because
such machines are functionally equivalent to the general case of inductive Turing
machines.

At the same time, to model a modern computer with its advanced hierarchical
memory, the set P has to be subdivided into more than three components.

Each cell from a linear two-sided tape has two neighbors left and right. The first
cell in a one-sided tape has only one neighbor. The structure of a linear tape, which is
standard for Turing machines, is realized by the relation Lin with connections of two
types: R and L . Each cell with the number i is connected to the cell with the number
i + 1 with the connection R, and each cell with the number i + 1 is connected by
the connection L to the cell with the number i (i = 1, 2, 3, . . . ). To get a two-sided
linear tape, we re-enumerate the corresponding part of P by integer numbers and use
the similar connections. To get a two-dimensional tape, we can use ties of four types
W = {R, L , U and D}. Enumeration of cells by natural numbers is transformed to
labeling the cells by pairs of integer numbers. Then each cell (i, j) is connected to
four of its neighbors: to (i +1, j) by the connection R, to (i −1, j) by the connection
L , to (i, j + 1) by the connection U , and to (i, j − 1) by the connection D.

It is possible to realize an arbitrary structured memory of an inductive Turing
machine, using only one linear one-sided tape L . To do this, the cells of L are enu-
merated in the natural order from the first one to infinity. Then L is decomposed into
three parts according to the parts P I, PW, and PO of the structured memory. After
this nonlinear connections between cells are installed according to the relation K
and the mapping τ : K → W . When an inductive Turing machine with this memory
works, the head (processor) is not moving to the right or to the left cell from a given
cell, but uses the installed nonlinear connections.

Such realization of the structured memory allows us to consider an inductive
Turing machine with a structured memory as an inductive Turing machine with con-
ventional tapes in which additional connections are established. This approach has
many advantages. One of advantages is that inductive Turing machines with a struc-
tured memory can be treated as multitape automata that have additional structure on
their tapes. Then it is conceivable to study different ways to construct this structure.



156 4 Superrecursive Algorithms: Problems of Computability

In addition, this representation of memory allows us to consider any configura-
tion in the structured memory E as a word written on this unstructured tape.

In a similar way, it is feasible to build, study and utilize Turing machines with
a structured memory. They have almost the same hardware (they do not necessarily
need the output tape, but always have final states) and the same software as induc-
tive Turing machines with a structured memory. But in contrast to inductive Turing
machines, Turing machines have to stop to produce a computation result.

Some authors consider a random-access deterministic Turing machine (Tourlakis,
2000). It adds random access machines (RAM) to the family of Turing machines and
makes possible to move the head from any cell to any other cell. A relevant structured
memory allows a Turing machine to perform even more complex access activities.

If we look at other devices of the inductive Turing machine M , we can see that
the processor H performs information processing in M . However, in comparison to
computers, this operational device performs very simple operations. When H con-
sists of one unit, it can change a symbol in the cell that is observed by H , and go
from this cell to another using a connection from K . This is exactly what the head of
a Turing machine does.

It is possible that the processor H consists of several processing units similar to
heads of a multihead Turing machine. This allows in a natural way one to model
various real and abstract computing systems by inductive Turing machines. Exam-
ples of such systems are: multiprocessor computers; Turing machines with several
tapes; networks, grids and clusters of computers; cellular automata; neural networks;
and systolic arrays. However, such representation of information processing systems
is not always efficient. This is why, other models of IPS have been constructed and
utilized.

Connections between the control device A and the processor H may be organized
in different way:

1) The processor H may be rigidly connected to A. In this case, the memory E or
its part moves when it is necessary to observe the next cell (compare to Figure
2.2). This is similar to the way we use a floppy disk or CD.

2) The connection between A and H may be flexible, allowing H or its parts to
move from one cell to another under the control of A (compare to Figure 2.3).
This structure is virtually realized when data from the RAM of a computer are
transferred to registers of arithmetic units in the same computer.

3) The processor H or its parts function autonomously from A, only sending to
A information about the content of cells (compare to Figure 2.4). In this case,
H or its parts contain those instructions from the software to operate H or its
parts. This operation mode models the intelligent agent approach to computation.
There an agent moves to the location of data and performs its operation at this
new site.

As we know, different programs constitute computer software. Programs tell the
system what to do (and what to not do). The software R of the inductive Turing ma-
chine M is also a program in the form of simple rules. The traditional representation
assumes that the processor H functions as one unit. The rules for functioning have
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the following form:
qhai → ajqk, (1)

qhai → Cqk (2)

It is also possible to use only rules of one form:

qhai → ajqkc (3)

Here qh and qk are states of A; and ai and a j are symbols of the alphabet of M ,
while c is a type of connection from K .

Each rule directs the inductive Turing machine M to perform one step of com-
putation. For instance, the rule (1) means that if the state of the control device A of
M is qh and the processor H observes in the cell the symbol ai in the cell, then the
state of A becomes qk and the processor H writes the symbol a j in the cell where
it is situated. The processor H then moves to the next cell using a connection of the
type c.

Like Turing machines, inductive Turing machines can be both deterministic and
nondeterministic. For a deterministic inductive Turing machine, there exists at most
one connection of any type from any cell. In a nondeterministic inductive Turing
machine, several connections of the same type may originate in the same cell, con-
necting it with (different) other cells. If there is no connection of this type going
from the cell to be observed by H , then H stays in the same cell. There may be
connections of a cell with itself. Then H also stays in the same cell. It is possible
that H observes an empty cell. To represent this situation, we use the symbol �.
Thus, it is possible that some elements ai and/or a j are equal to � in the rules from
R. Such rules describe situations when H observes an empty cell and/or when H
simply erases the symbol from some cell, writing nothing in it.

The rules allow an inductive Turing machine to rewrite a symbol in a cell and
to make a move in one step. Other representations of rules treat such operations as
separate steps. Rules of inductive Turing machine define the transition function of
M and describe changes in A, H , and E . Consequently, they also determine the
transition functions of A, H , and E .

When the processor H consists of several processing units or heads, we have
several functioning modes:

Uniform synchronized processing (processor units function synchronously): At
each step of M each unit performs one operation; they all are controlled by the same
system of rules.

Uniform concurrent processing (processor units function concurrently): Units
perform operations independently of one another, but all of them are controlled by
the same system of rules.

Specialized synchronized processing: Each processor unit has its own system of
rules, but all of them function synchronously, that is, at each step of M each unit
performs one operation.

Specialized concurrent processing: Each processor unit has its own system of
rules and they perform operations independently of one another.
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In what follows, we consider for simplicity only the case when processor H
consists of one unit and M always starts functioning in the same state. Thus, the
functioning of the inductive Turing machine M begins when the control device A is
in the start state q0, the working and output memories are empty, and the processor
H observes such a cell in the input register P I that this cell contains some symbol
and has the least number of all nonempty cells in the input register. It is possible that
nothing is written in the input register P I. In this case, H observes an arbitrary cell.
When H observes an empty cell, we denote the content of this cell by the symbol �.

A general step of the machine M has the following form. At the beginning of any
step, the processor H observes some cell with a symbol ai in some cell (for an empty
cell the symbol is �) and the control device A is in some state qh.

Then the control device A and/or the processor H choose from the system R
of rules the rule r to make with the left part equal to qhai and then perform the
prescribed operation. If that rule in R with a corresponding left part, the machine M
stops functioning. If there are several rules with the same left part does not exist, M
works as a nondeterministic Turing machine (cf., for example, (Hopcroft, Motwani,
and Ullman, 2001)) performing a range of possible operations. When A comes a final
state from F , the machine M also stops functioning. In all other cases, it continues
operation without stopping.

For an abstract automaton, as well as for a computer, we consider two important
things. Specifically, not only how it functions, but also how it obtains its results.
In contrast to Turing machines, inductive Turing machines obtain results even in
the case when their operation is not terminated. This results in an increase in the
performance of systems of algorithms.

The result of computation performed by the inductive Turing machine M is the
word written in the output register PO of M . We have two options for this: when M
halts, after its control device A is in some final state from F , or when M never stops
but at some step the content of the output register PO becomes fixed and does not
change although the machine M continues to function. In all other cases, M gives no
result.

Theorem 4.3.1. Any (inductive) Turing machine T with a recursive memory can be
simulated by a (inductive) Turing machine D with one conventional tape, that is, the
machine D computes the same function as T , imitating all moves of T .

Proof. This is similar to that for the equivalence of different classes of Turing ma-
chines. It is done by using the standard procedure in which D writes on a special tape
consequent instantaneous descriptions of the machine T (cf., for example, Hopcroft
et al., 2001). ��

Some mathematicians and computer scientists object that, in contrast to Turing
machines, inductive Turing machines does not always inform a user that a result was
obtained. This is the cost that we have to pay for its essentially higher computational
power. However, mathematicians and computer scientists encountered similar situ-
ation with Turing machines. Having the class of all Turing machines or any other
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class of recursive algorithms, one never knows whether the given machine will pro-
duce the necessary result or not. In contrast to this, the condition that an algorithm
always gives a result is often demanded (cf. Section 2.1). Trying to limit ourselves
to recursive algorithms that always give a result brings us to the following situations:
either we have a sufficiently powerful class but one cannot distinct algorithms from
this class from others or we can build all such algorithms but they have insufficient
computational and decision power. Thus, we have to make a choice: either to use
more powerful algorithms or to know more about algorithms that are used. From
this perspective, inductive Turing machine is the next step in the ever-going trade off
between knowledge and power.

4.3.2 Inductive Turing machine versus Turing machine

Forewarned is forearmed.

A proverb

We have seen that inductive Turing machines give results either with or without
halting. The question is whether it is really necessary for an inductive Turing machine
sometimes to stop to give a result. We can see that this not the case.

Lemma 4.3.1. For any inductive Turing machine M, there is an inductive Turing
machine G such that G never stops and computes the same function as M, that is,
M and G are functionally equivalent.

Proof. The machine G has the alphabet and the same set of states as M .
To eliminate termination in finite states, we do the following transformations:

(1) We make the system of terminating states of G empty, and then
(2) for each symbol q from F of the final states of M and each symbol ai from

the alphabets of M (including the symbol ε), we add the rule qai → aiq to the
system RM of rules of the machine M .

In such a way, we obtain a new inductive Turing machine V . By the definition
of the functioning of an inductive Turing machine, if M obtains some result w by
terminating in a final state, then V obtains the same result without termination. As
a result of the change, the machine V stops only when there is no rule in RM for
continuation. This means that for some pairs (qk, ai) there are no rules in RM with
such left part. To eliminate this termination, for each such pair, we do the following
transformations:

(1) we define connections X of all cells to some cell in the output register PO,
(2) for each symbol qk from Q, we add the symbol pk to the set Q of all states of A,
(3) we add two new symbols b and c to the alphabet of the machine M ,
(4) for each such pair (qk, ai) that there are no rules in RM with such left part, we

add the rules qkai → Xpk, ai pk → bpk, bpk → cpk, and cpk → bpk to the
system RV of rules for the machine V ; and each time one of the symbols is
written in the working tape, the same symbol is written in the output tape.
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In such a way, we obtain a new inductive Turing machine G. As a result of this
change, the machine G never stops and gives exactly the same results as M .

Lemma 4.3.1 is proved. ��
All mathematical models of algorithms, which existed before appearance of

superrecursive algorithms, demanded to stop functioning to give a result. As we see,
this is different for inductive Turing machines. They can continue to work and give a
result without stopping. The new definition of the result of a computation is based on
the intrinsic property of emergence. To explain this, let us consider the conventional
approach to emergent computation, description of which is given by Forrest (1991).
She writes that the result of emergent computations are difficult or even impossible
to predict. The whole process is performed by a collection of agents, each following
explicit instructions. Interactions among agents form implicit global patterns that are
not predetermined by the algorithm of this computation and there is no one address
where one can read out the result of computation.

However, when we analyze this description, we encounter essential problems. In-
deed, if we assume that computation is emergent when it displays some pattern that is
not predetermined by the algorithm of this computation, then only nondeterministic
computational models can produce emergent computation. Thus, almost all models
that are included in the scope of emergent computation (connectionist models, clas-
sifier systems, cellular automata, deterministic biological models, and artificial-life
models) are deterministic and do not satisfy this condition. For example, the result
of any complex network of deterministic artificial neurons with deterministic inter-
actions is predetermined by the structure of the neurons and network, including rules
for interaction, and by the input. At the same time, nondeterministic Turing machines
satisfy the condition from the description of emergent computation and thus, their
computations have to be considered as emergent. Moreover, as it is demonstrated
by Machlin and Stout (1991) even simple Turing machines, which are usually con-
trasted to neural networks, can have very complex behavior, which satisfies the above
definition of emergent computation.

To eliminate this discrepancy, we introduce a slightly different definition of emer-
gent computation.

Definition 4.3.1. A computation is emergent when it is a complex process and to
predict the pattern (result) that is generated by this computation is as complex as to
perform the whole computation itself.

Taking inductive Turing machines, we see that although in some cases the re-
sults are predictable, in general the result emerges only in the corresponding com-
putational process. There are situations when the result is already obtained but the
inductive Turing machine cannot stop functioning. As a consequence, the process of
emergence becomes in some sense infinite, although the result is always computed
in a finite time.

Inductive Turing machines present a transition from terminating computation to
intrinsically emerging computation, making a leap from the “being” mode of recur-
sive algorithms to the “becoming” mode of superrecursive algorithms. All kinds of
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computations considered in (Emergent Computation, 1991) become really emergent
only when the machine does not need to stop.

Inductive Turing machine introduces a new type of infinity into mathematics. In
contrast to contemporary mathematics and philosophy, philosophers of the ancient
Greece considered three types of infinity: actual infinity, which already exists as an
infinity; potential infinity, which can or may exist as an infinity; and becoming or
emerging infinity, which is in a process of transition from finite to infinite. After the
Golden Age of the Greek intellectual achievements, only two concepts of infinity
(actual and potential) survived and were formalized in mathematics. The third type
(emerging infinity) disappeared even from philosophy, to say nothing about mathe-
matics. Synergetics brought back interest of scientists to becoming systems (cf., for
example, (Prigogine, 1980)). Super-recursive algorithms give a mathematical model
for the concept of becoming infinity.

Any advice function, which is described in Section 4.2, can be codified by con-
nections in the structured memory and then decoded. Thus, a relevant structured
memory can realize any kind of an oracle or advice. Namely, the following result is
true.

Theorem 4.3.2. For any Turing machine T with an advice, there exists a Turing
machine M with a structured memory that computes the same function as T .

The same is true for machines with arbitrary oracles.

Theorem 4.3.3. For any subset X of N and any Turing machine T with the oracle
Or(X), there is an inductive Turing machine M with a structured memory such that
M computes the same function as T , that is, M and T are functionally equivalent.

Corollary 4.3.1. For any Turing machine T with an oracle (with an advice), there
exists an inductive Turing machine M with a structured memory that computes the
same function as T .

Corollary 4.3.2. For any function f : X∗ → X∗ ( f : N → N), there exists a Turing
machine T with a structured memory that computes f .

Theorems 4.3.2 and 4.2.5 imply the following result, which was originally
demonstrated by A.N. Kolmogorov in 1983.

Theorem 4.3.4. For any function f : X∗ → X∗ ( f : N → N), there exists an in-
ductive Turing machine M with a structured memory that computes f .

Such high computing power of inductive Turing machines with an arbitrary struc-
tured memory makes it reasonable to introduce inductive Turing machines with rea-
sonable constructive restrictions on the memory. This is done in the following sec-
tions of this Chapter. The choice of restrictions for the machine memory makes these
machines much closer to conventional algorithms than arbitrary inductive Turing
machines with a structured memory.
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4.3.3 Arithmetical hierarchy and definability of sets

The different branches of Arithmetic —
Ambition, Distraction, Uglification, and Derision.

Lewis Carroll, 1832–1898

To measure decision and computing power of inductive Turing machines, we use
the arithmetical hierarchy. To use this hierarchy, we need its properties. According
to the conventional construction, the arithmetical hierarchy consists of sets of natu-
ral numbers that are defined as relations of definite form. The hierarchy is usually
developed with the universal ∀ and existential ∃ quantifiers restricted to the natural
numbers because this hierarchy was built to study the arithmetic of natural numbers.
However, the arithmetical hierarchy can be defined using other types of quantifiers.

Elements of the arithmetical hierarchy are relations of natural numbers.

Definition 4.3.2. An (m + n)-ary relation R(x1, . . . , xn , z1, . . . , zm) or a relation
with n variables on the set N of all natural numbers is any set elements of which are
vectors or strings that have the form (a1, . . . , an , b1, . . . , bm) where all a1, . . . , an ,
b1, . . . , bm are natural numbers.

The set of all recursive relations is taken as the base for building the arithmetical
hierarchy.

Definition 4.3.3. (Rogers, 1987). A relation R(x1, . . . , xn) is called recursive if it
possesses a recursive characteristic function, that is to say, R(x1, . . . , xn) is recursive
if and only if there exists a recursive function f such that f (x1, . . . , xn) = 1 if the
string (x1, . . . , xn) belongs to R(x1, . . . , xn) and f (x1, . . . , xn) = 0 if the string
(x1, . . . , xn) does not belong to R(x1, . . . , xn).

For example, relations =, <, and > are recursive on the set N of all natural
numbers. However, they are not recursive on the set of all real numbers.

Levels in the arithmetical hierarchy are labeled as �n if they consist of all re-
lations ∃x1 ∀x2 ∃x3 . . . f orallxn−2 ∃xn−1 ∀xn R(x1, . . . , xn , z1, . . . , zm) limited
to n − 1 pairs of alternating quantifiers starting with ∃ and recursive R(x1, . . . , xn ,
z1, . . . , zm). Similarly the class of all relations ∀x1 ∃x2 ∀x3 . . . ∃xn−1 ∀xn R(x1,
. . . , xn , z1, . . . , zm) that start with ∀ and have n − 1 alternations of quantifiers is
labeled as �n and recursive R(x1, . . . , xn , z1, . . . , zm).

Only alternating pairs of quantifiers are counted because two quantifiers of the
same type occurring together are equivalent to a single quantifier. Indeed, there is
a one-to-one mapping r : N2 → N from all pairs of natural numbers onto all nat-
ural numbers (Rogers, 1987; §5.3). Such mapping r may be given by the formula
r(n, m) = 2n(2m + 1) − 1. Using this mapping r , one can convert a representation
with two quantifiers ∀x ∀y R(x , y, z1, . . . , zm) to the representation with one quan-
tifier ∀z R(z = r(x, y), z1, . . . , zm). Both expressions represent the same relation,
while the second one has less universal quantifiers ∀. In such a way, we can elim-
inate all repetitions of the quantifier ∀. The same technique applies to two or more
consecutive existential quantifiers ∃.
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As the result, the classes �0 and �0 are defined as having no quantifiers, consist
of all recursive relations and thus, are equivalent. The classes �1 and �1 are defined
as having a single quantifier: relations from �1 have the form ∃x R(x, y) and rela-
tions from �1 have the form ∀x R(x, y) where R(x, y) is a recursive relation and
y is an arbitrary vector of natural numbers. The classes �2 and �2 are defined as
having two quantifiers: relations from �2 have the form ∃x ∀y R(x, y, z) and rela-
tions from �2 have the form ∀x ∃y R(x, y, z) where R(x, y, z) is a recursive relation
and z is an arbitrary vector of natural numbers. By the definition, we have inclusions
�m ⊆ �n ∩ �n and �m ⊆ �n ∩ �n any n > 1 and any m < n.

Theorem 4.3.5. (The Hierarchy Theorem.) (Kleene, 1955). For any number n > 1,
there is a relation R that belongs to �n and does not belong to �n and thus, belongs
neither to �m nor �m for all m < n. There is also a relation Q that belongs to �n
and does not belong to �n and thus, belongs neither to �m nor �m for all m < n.

Mathematical logic studies formal theories, the majority of which are taken from
mathematics, although there are results concerning formalizations of some physical
theories. Arithmetic is one of the basic mathematical theories. A formalization of
arithmetic by means of logic is called Peano arithmetic or elementary arithmetic Ar.
Formulas of elementary arithmetic are built from the following symbols: +, ×, 0, 1,
2, 3, . . . , =, variable symbols (such as x , y, z), sentential connectives (→ (implies),
∧ (and), ∨ (or), and � (not) ) and two quantifier symbols ∃ and ∀.

For instance, we have formulas ∃x R(x, z), ∃x P(x), ∃x ∀z R(x, z), ∀x ∃y
∀z Q(x, y, z), ∃x1 ∀x2 ∃x3 . . . ∀xn−2 ∃xn−1 ∀xn T (x1, . . . , xn, z), and ∀x1 ∃x2
∀x3 . . . ∃xn−1 ∀xn T (x1, . . . , xn, z) where R(x, z) = (x < z), P(x) = (x = 5),
Q(x, y, z) = (x < y∧y < z), and T (x1, . . . , xn, z) = (x1+−x2+x3+. . .+xn = z).

Definition 4.3.4. Formulas in which all variables are related to quantifiers are called
closed. Other formulas are called open.

For instance, formulas ∃x P(x), ∃x ∀z R(x, z), and ∀x ∃y ∀z Q(x, y, z) are
closed, while formulas ∃x R(x, z), ∃x1 ∀x2 ∃x3 . . . ∀xn−2 ∃xn−1 ∀xn T (x1, . . . ,

xn, z), and ∀x1 ∃x2 ∀x3 . . . ∃xn−1 ∀xn T (x1, . . . , xn, z) are open.
Open formulas define sets and relations. For instance, the formula ∃x (x < z ∧ x ,

z ∈ N), defines the set of all natural numbers for which a smaller number exists, that
is, the set 2, 3, . . . , n, . . . .

Definition 4.3.5. A set X is definable in a formal theory T if there is a formula in T
that defines X .

Each formal theory has its own symbols and uses logical symbols. For example,
arithmetic has symbols of order relations ≤, ≥, < and >, as well as symbols of
arithmetical operations +, −, × or ÷, etc. Formulas of a given theory T use only
symbols of this theory and logical symbols.

It is necessary to remark that there are different logical theories that use different
logical symbols. For example, in addition to conventional logical symbols, modal
logics (cf. Feys, 1965) use additional symbols � (necessity) and � (possibility), while
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Figure 4.4. The Arithmetical Hierarchy.
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the intuitionistic B-logic of Gödel (1933) contains additional symbol B. Existence of
different logics results in a possibility to build different formalizations of a given
mathematical theory.

The following result explains why the considered hierarchy of sets is called the
arithmetical hierarchy.

Theorem 4.3.6. (Arithmetical Representation Theorem.) (Rogers, 1987). For any
relation R, R is in the arithmetical hierarchy if and only if R is arithmetical, that is,
definable in the elementary arithmetic.

It is possible to take a more general base for the arithmetical hierarchy construc-
tion. We fix some set X and take as the base all relations that are recursive relative
to X . By the definition (Rogers, 1987), a relation R on the set of natural numbers is
recursive relative to X if given information about membership in X , the characteris-
tic function of R becomes computable by a Turing machine. Such Turing machine
is called a Turing machine with the oracle X (cf. Section 4.2) and the corresponding
construction in which recursive relative to X sets are taken as the base is called the
arithmetical hierarchy in X . The ordinary, or absolute arithmetical hierarchy, which
is considered above, is a particular case when X is the empty set.

Theorem 4.3.7. (Relative Arithmetical Representation Theorem. (Rogers, 1987).
For any set X ⊆ N and any relation R, R is in the arithmetical hierarchy in X if and
only if R is arithmetical in X, that is, definable in elementary arithmetic augmented
by X.

It is necessary to remark that the arithmetical hierarchy is interesting and impor-
tant in its own way. First, it is closely related to an important mathematical field such
as arithmetic. Second, it displays an explicit model of exact definitions in mathemat-
ics. There are two main ways in mathematics to define formal structures: descriptive
and constructive. According to the first approach, a mathematical object is defined
by some formula (expression of a mathematical theory). It may be a logical formula
(for example, ∃x ∀y (y ∈ N ⇒ x > y) or a formula of calculus (for example,
x = limi→∞ai ) or of any other mathematical theory. According to the second ap-
proach, a mathematical object is defined by an algorithm that allows one to construct
this object. Relations between the arithmetical hierarchy and systems of algorithms
reflect the place of these constructions in mathematics.

What we are concerned about is the first aspect of the arithmetical hierarchy
importance. Namely, it is generally accepted that: 1) arithmetic of natural numbers
is one of the main intellectual means of human civilization; 2) formal arithmetic is
the basic mathematical theory; and 3) arithmetical hierarchy contains all sets that
are definable in this theory by conventional logical means. Thus, it is important to
understand how sets are described in arithmetic and to compare their descriptions
to the means of their construction and validation. For example, the famous Gödel
undecidability theorem (Gödel, 1931) states that it is impossible to validate truth
for all true statements about arithmetical objects. This is a consequence of the fact
(Turing, 1936) that it is impossible build all sets from the arithmetical hierarchy by
Turing machines.
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It is possible to interpret formulas that define sets in the arithmetical hierarchy
as questions about algorithms or programs. Let TA(x) be the time (number of steps
of A) of computation of an algorithm or automaton A with the input x . Then the set
of all programs or algorithms that terminate in time TA(x) = n with the input x is
recursive, that is, it belongs to �0. Thus, the question “Will a computer program halt
in fixed time?” can be answered in �0. The question “Will a computer program ever
halt?” is more complex. The set of all programs or algorithms that ever terminate,
that is, TA(x) is finite, with the input x is recursively enumerable, that is, it belongs
to S1. So, we can to answer the question “Will a computer program never halt?” in
�1. In a similar way, the question “Will a computer program have at most a finite
number of outputs?” can be answered in �2, the question “Will a computer program
have an infinite number of outputs?” is answered in �2 and so on.

4.3.4 Hierarchies of inductive Turing machines

All in good time.

A proverb

As we have seen in Section 4.3.2, inductive Turing machines with an arbitrary struc-
tured memory have unrestricted computing power. However, the problem is how to
build such structure of the memory that solves all problems and computes all func-
tions. It is impossible (at least, now). So, we need some reasonable conditions on
the memory to be able to realize it. For example, when all connection between the
cells in the memory and naming relations for these cells are built by some Turing
machine, it natural to treat such memory as constructible. We extend this approach
building the inductive hierarchy of inductive Turing machines.

Definition 4.3.6. The memory E is called recursive if the relation K ⊆ P × P that
provides connections between cells and all mappings ν : P → N , τ : K → W , and
ι : P → V are recursive.

Here recursive means, as before, that there are some Turing machines that decides
all naming mappings and relations in the structured memory.

As the lowest level of a hierarchy of inductive Turing machines, we take ma-
chines with recursive memory. They are called inductive Turing machines of the first
order. Their memory is constructed by Turing machines.

When we have inductive Turing machines of the first order, it is possible to use
them for constructing memory for other inductive Turing machines. In such a way,
we define 1-inductive memory. Inductive Turing machines with such memory have
the second order. If we continue this process, we come to the following constructions.

Definition 4.3.7. The memory E is called n-inductive if the relation K ⊆ P × P
that provides connections between cells and all mappings ν : P → N , τ : K → W ,
and ι : P → V are defined by some inductive Turing machines of order n.

This means that there are inductive Turing machines of order n that build and
decide all naming mappings and relations in the structured memory.
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Definition 4.3.8. An inductive Turing machine M has order n when it has the mem-
ory E that is (n − 1)-inductive.

In such a way, using inductive Turing machines of the first order, we build in-
ductive Turing machines of the second order. Then using inductive Turing machines
of the second order, we build inductive Turing machines of the third order and so
on. Note that if an inductive Turing machine has order n, then it has order m for all
m > n. As a result of this process, we obtain the infinite inductive hierarchy IM of
inductive Turing machines with the inductively defined memory:

ITM1 ⊆ ITM2 ⊆ . . . ⊆ ITMn−1 ⊆ ITMn ⊆ ITMn+1 ⊆ . . .

where ITMn is the class of all inductive Turing machines of order n.
We call it the inductive hierarchy because each level is built from a previous

one by an inductive process. Any finite part of this hierarchy is called a recursive
hierarchy of inductive Turing machines because each step in the process of building
this hierarchy is recursive.

Thus, only finite parts are recursive, while the whole hierarchy is inductive like
natural numbers or arithmetical hierarchy.

In the next section, we show that all inclusions in the inductive hierarchy are
proper.

By the definition, we have the following result.

Lemma 4.3.2. If we change the memory E of an inductive Turing machine M that
has order n by means of a Turing machine, then the new machine has the same order.

For simplicity in what follows, we consider a substantially uniform memory E ,
in which all cells are the same. In other words, P is a multiset (Knuth, 1997) with
indistinguishable cells.

In addition, we suppose that: 1) any cell c from the set P is represented by its
number ν(c); 2) the partition P = P I ∪ PW ∪ PO is always recursive, that is, given
a cell i , it is possible to say to what part it belongs; 3) all parts K I, K W, and K O of
K are defined separately.

Turing machines with oracles, which are considered in Section 4.2, are related
to relative arithmetical hierarchies. In a similar way, we introduce an inductive Tur-
ing machine with an oracle. Given a set X , the oracle Or(X) answers the question
whether an arbitrary element a belongs to X or not.

If X is a subset of N , we add to a given inductive Turing machine the oracle
Or(X) and receive in such a way an inductive Turing machine with the oracle Or(X).
Technically, we can realize such an oracle by adding to the memory E of an inductive
Turing machine M a new tape LX in which all numbers from N are written. In
addition to this tape, we build special connections of the new type tX . They connect
each element from X with a cell in which 1 is written and each element that do not
belong to X with a cell in which 0 is written. When M performs its computation
and has to ask the oracle about some number n, whether it belongs to X or not, the
processor H of M goes to the cell from the tape LX that contains n. After this the
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head performs a transition along the connection of the type tX , coming in such a way
to a cell containing either 1 or 0. In such a way, H finds the answer to the question
about the number n in this cell, to which the head comes after this transition.

Let IM(X) denotes the class of all machines that are obtained from the machines
from the hierarchy IM, by augmenting them with the oracle Or(X). This gives us a
relative hierarchy of inductive Turing machines with oracles:

ITM1(X) ⊆ ITM2(X) ⊆ . . . ⊆ ITMn−1(X) ⊆ ITMn(X) ⊆ ITMn+1(X) ⊆ . . .

In contrast to the absolute hierarchy IM, it is possible that in the relative hierarchy
IM(X) not all inclusions are proper. For example, if X is a universal set for the level
n, then all levels ITMi(X) with i < n coincide.

When the structured memory E of an inductive Turing machine T is constructed
by some algorithm (another inductive Turing machine) TE , then it is natural to con-
sider how this algorithm TE functions and interacts with the functioning of T . It is
possible to assume that TE determines functioning of the memory E . Taking into
account modes of the structured memory functioning, we obtain two memory types:

Fixed or static memory, in which all connections are fixed in the hardware and
are not changing at all, and active or dynamic memory, in which connections are
built by a convenient automaton AE that realizes algorithm TE .

Active memory of the inductive Turing machine T can function in three modes:

1. Preprocessing when all connections are established before the machine T begins
its computation.

Preprocessing of information, similar to the preprocessing in the memory of an
inductive Turing machine, is often used in biological systems, making them more
efficient. For example, we see this in organization of human vision. It is known that
information from visual receptors (rods and cones) does not go directly to the brain
for processing. At first, this information is preprocessed by three kinds of neurons
(bipolar cells, horizontal cells, and amacrine cells) in the retina. Then it is prepro-
cessed by ganglion cells, which transmit the resulting information to the brain (Gray,
1994).

In a similar way, data preprocessing is used in computation. By the definition,
data preprocessing is any type of computational process that is performed on raw
data to prepare these data for another processing procedure. Data preprocessing soft-
ware performs data selection, cleaning, integration, and merging, format conversion
and filtering, verifying data quality and other operations before higher level analysis.
For example, in data mining practice, data preprocessing transforms the data into a
format that will be more easily and effectively processed for the purpose of the user,
for example in a neural network. There are a number of different tools and meth-
ods used for preprocessing. They include: sampling, which selects a representative
subset from a large population of data; transformation, which manipulates raw data
to produce a single input; filtering, which removes noise from data; normalization,
which organizes data for more efficient access; and feature extraction, which pulls
out specified data that are significant in some particular context.



4.3 Emerging computation 169

2. The synchronous mode when connections are built on a request which is sent by
the computational process through the control device of the machine T .

The synchronous mode of memory functioning reflects definite aspects of infor-
mation processing by the brain, as well as the work contemporary computers and
networks, in which connections to the necessary elements of the computer memory
or of the network are established on a request.

3. The concurrent mode when the automaton AE and the mainframe BT of the
machine T work concurrently. When some demanded by BT connection is not
established and BT needs it for continuation, T stops functioning and waits until
the necessary connection is constructed by AE , or halts forever if AE does not
build the connection. In the latter case, T does not give a result of the computa-
tion.

The concurrent mode of memory functioning reflects the principles of the modern
search engines, in which the index form such an active structured memory of the
engine and this memory works in the concurrent mode. Theoretical investigation of
properties of this functioning mode might help to create much better search engines.

Having inductive Turing machines, we extend the concepts of recursive com-
putability, acceptability, and decidability.

Definition 4.3.9. A function f is inductively (n-inductively) computable if there is
an inductive Turing machine (of order n) that computes this function.

Definition 4.3.10. A set X is inductively (n-inductively) acceptable if there is an
inductive Turing machine (of order n) that accepts this set.

Definition 4.3.11. A set X is inductively (n-inductively) decidable if there is an in-
ductive Turing machine (of order n) that decides this set, or in other words, when the
characteristic function of X is inductively (n-inductively) computable.

Definition 4.3.12. A set X is inductively (n-inductively) semidecidable if there is an
inductive Turing machine (of order n) that semidecides this set, or in other words,
when the function which gives the affirmative values, the function with the domain
X and constant value 1, is inductively (n-inductively) computable.

4.3.5 Spaces of inductive Turing machines and their computational power

Truth lies at the bottom of a well.

A proverb

Let us get some properties of inductive Turing machines. We need these properties to
find computing and deciding power of different classes of inductive Turing machines.

Lemma 4.3.3. Given m inductive Turing machines M1, . . . , Mm of order n, it is
possible to build an inductive Turing machine of order n such that it has an in-
finite sequence of independent tapes (structured memories) with enumerated cells
and models all machines M1, . . . , Mm .
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Proof. Let us take at first two inductive Turing machines M1 and M2 of order n and
build an inductive Turing machine M of order n that simulates common functioning
of M1 and M2. For simplicity, we suppose that each of the machines M1 and M2
has a one-sided tape L with sequentially enumerated cells as its memory. At first, we
show that it is possible to restructure L into two tapes L1 and L2 with sequentially
enumerated cells. Indeed, we relate all cells with odd numbers to L1 and all cells
with even numbers to L2. The set Q of all states is divided into two groups Q1 = {qi;
i = 1, . . . , k} and Q2 = {pj; j = 1, . . . , m}. When the head is in the first tape, the
state of the control device of M belongs to the first set, that is, it is some qi. When the
head is in the second tape, the state of the control device of M belongs to the second
set, that is, it is some pj. Then we add to each set Qk duplicates of all states: Q1 = {qi;
i = 1, . . . , k; q ′

i ; i = 1, . . . , k} and Q2 = {pj; j = 1, . . . , m; p′
j ; j = 1, . . . , m}.

In addition, if the set of rules R1 of the machine Q1 has a rule qhai → Cqk, in
which C is either R (right) or L (left), then we change this rule for the following
rules qhai → Cq ′

h and q ′
haj → Cqk for all aj from the alphabet of the machine Q2.

In a similar way, we change the rules R2 for the machine Q2. If the set of rules R2
for the machine Q2 has a rule phai → Cpk, in which C is either R or L, then we
change this rule for the following rules phai → Cp′

h and p′
haj → Cpk for all aj from

the alphabet of the machine Q1. These changes provide for the following feature of
M : performing the rules of Q1, the processors works only with cells that have odd
numbers, while performing the rules of Q2, the processors works only with cells that
have even numbers. As a result, the new inductive Turing machine M models both
machines M1 and M2 and has by Lemma 4.3.2 the same order as these machines
because the new partition of the memory L is defined by a finite automaton and thus,
is recursive.

If we have more than two inductive Turing machines M1, . . . , Mm, then we use
for the first machine M1 the cells from L that have odd numbers. For the second
machine M2, we use the cells from L that have numbers of the form 2(2n + 1).
For the third machine M3, we use the cells from L that have numbers of the form
4(2n + 1) and so on. Each time we repeat the procedure that we have done with the
initial tape L. Then we change the rules so that the new machine models each Mi,
utilizing the corresponding tape Li. As a result, the new inductive Turing machine M
models all machines M1, . . . , Mm and has by Lemma 4.3.2 the same order as these
machines because the new partition of the memory L is defined by a finite automaton
and thus, is recursive.

To conclude the proof, it is sufficient to remark that in the described way we
have formed infinitely many tapes for a new machine, which can model any amount
of other inductive Turing machines due to the fact that each tape may be structured
independently into an (n − 1)-inductive memory.

Lemma 4.3.3 is proved. ��
Lemma 4.3.4. For any inductive Turing machine M of order n, there is an inductive
Turing machine T of order n that perform all operations of M and in addition,
accepts and performs instructions of the form “go to the cell with number i .”
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Proof. For an inductive Turing machine M with an arbitrary structured memory
E , the solution is simple. We add to the system of connections of M , a new set of
connections (i, j), which connect any two cells i and j from the set P . Each pair
(i, j) is labeled by the type C( j). In this setting, the rule

qlai → C( j)qh (4)

means that the processor H has to go to the cell that is connected to the given cell
by the connection C( j). This is exactly the cell with number j . So, the rule (4) is
equivalent to the instruction “go to the cell with number i .”

The situation is different when the structure memory E is locally bounded (that
is, the number of connections that go from any cell is bounded by some number k)
or locally finite (that is, the number of connections that go from any cell is finite). In
these cases, we cannot tie to each cell infinitely many connections as before. Thus,
we utilize Lemma 4.3.3 and organize in E several additional tapes. One of them L1
is used for storage of the address i for the transition of H . Another tape L2 is used
as a counter for the number of steps that the processor H makes in the memory. To
perform the instruction of the form “go to the cell with number i ,” where i is stored
in L1, the processor H goes, at first, to cell with number 1. Then H starts moving
from the cell 1 to the cell 2 to the cell 3 and so on. With each step, the counter of
steps adds 1 to the number stored in L2 and compares the result with the number i
stored in L1. All operations are recursive and do not change the order of the inductive
Turing machine. When both numbers become equal, the processor H is situated in
the cell with number i .

Lemma 4.3.4 is proved. ��
Random access machines or RAM form an important class of mathematical mod-

els of algorithms (Aho, Hopcroft, and Ullman, 1976). Lemma 4.3.4 implies the fol-
lowing property of Turing machines and inductive Turing machines, demonstrating
how they are related to RAM.

Corollary 4.3.3. It is possible to completely model any RAM (with an oracle Or(X))
by a Turing machine (with an oracle Or(X)) and thus, by an inductive Turing ma-
chine (with an oracle Or(X)).

The following result shows that, in contrast to Turing machines, application of
an inductive Turing machine to organization of the memory another inductive Tur-
ing machine causes increase in computing power of machines. In some sense, the
first inductive Turing machine performs preprocessing of information for the second
inductive Turing machine. This is a nonlinear composition of inductive Turing ma-
chines, which extends the computability space from one order to another many times.
The result of this process is a hierarchy of inductive Turing machines isomorphic as
a computability space to the arithmetical hierarchy.

Lemmas 4.3.3 and 4.3.4 are used to prove this result.

Theorem 4.3.8. (Superrecursive Representation) a) For any arithmetical relation
Y , there exists an inductive Turing machine M such that it computes the character-
istic function of Y .
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b) If Y belongs to the level n of the arithmetical hierarchy, that is, Y ∈ �n ∪ �n,
then there is an inductive Turing machine M of order n such that it decides Y .

Proof. As we are going to compare results of computations of inductive Turing ma-
chines with the arithmetic hierarchy, we assume that inductive Turing machines and
Turing machines work with natural numbers. Initially they work with strings of sym-
bols, but it is possible to codify natural numbers by strings consisting of symbols 1
and 0. We may use, for example, the conventional binary coding. In it, the string 101
means or denotes the decimal number 5 and the string 1011 means or denotes the
decimal number 11.

Arithmetical hierarchy consists of relations with arbitrary number of variables.
However, we can recursively reduce any decision problem for a relation Q(x1, . . . ,

xn) with n variables to a decision problem for a relation with one variable.
Indeed, there is a recursive one-to-one mapping rn : Nn → N from all n-vectors

of natural numbers onto the set N of all natural numbers (Rogers, 1987; §5.3). It is
possible to build this mapping rn by iteration of the one-to-one mapping r : N2 → N
that is described in Section 4.3.3. Then a vector (x1, . . . , xn) belongs to a relation
Q(x1, . . . , xn) if and only if the number rn(x1, . . . , xn) belongs to the set rnQ =
{z ∈ N; ∃(x1, . . . , xn) ∈ Q(x1, . . . , xn) (rn(x1, . . . , xn) = z)}. As rn is a recursive
mapping, a Turing machine can decide whether (x1, . . . , xn) ∈ Q(x1, . . . , xn) if
and only if (may be another) Turing machine can decide whether rn(x1, . . . , xn) ∈
rnQ. The same is true for inductive Turing machines of any fixed order. Namely, an
inductive Turing machine can decide whether (x1, . . . , xn) ∈ Q(x1, . . . , xn) is true
or not if and only if (may be another) inductive Turing machine of the same order
can decide whether rn(x1, . . . , xn) ∈ rnQ is true or not.

Thus, it is sufficient to prove the theorem only for relations with one free variable,
which have the form ∃x1 ∀x2 ∃x3 . . . ∀xn−2 ∃xn−1 ∀xn R(x1, . . . , xn, z) or ∀x1 ∃x2
∀x3 . . . ∃xn−1 ∀xn R(x1, . . . , xn, z). Actually, relations with one free variable are
some sets of natural numbers.

For the proof, we use induction on the level n of the arithmetical hierarchy, that
is, we show that for arbitrary natural number n and any relation that belongs either
to �n or to �n, there is an inductive Turing machine that computes the characteristic
function of this relation.

1. As the base for induction, we take sets �1 and �1. Let us consider an arbitrary
relation Q(z) that belongs to �1. It means that Q(z) = ∃x R(x, z) where R(x, z)
is a recursive relation. Thus, there is a Turing machine TR such that given a pair
(a, b) of natural numbers, it produces 1 when (a, b) ∈ R(x, z) and produces 0 when
(a, b) �∈ R(x, z).

To build an inductive Turing machine MQ that computes the characteristic func-
tion of the relation Q(z), we use a finite automaton TN with feedback that generates
consecutively all natural numbers. Receiving the first symbol 0, TN generates 1 and
sends it to itself as input. Receiving 1, TN generates 2 and sends it to itself as input.
In such a way, it generates all natural numbers.

The inductive Turing machine MQ contains as its parts a pairing automaton AP,
a Turing machine T 1

R , which is an isomorphic copy of the Turing machine TR, and
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a finite automaton T 1
N, which is an isomorphic copy of the finite automaton TN. Iso-

morphic machines perform the same operations and give the same results. They com-
pletely model one another and are functionally equivalent. A pairing automaton AP
has two inputs and one output. Given natural numbers a for one input and b for
another, AP combines them into the pair (a, b). All parts of the machine MQ are
realized as subroutines. A technique for realization of subroutines that are presented
by Turing machines in another Turing machine is described in (Hopcroft, Motwani,
and Ullman, 2001), (Davis and Weyuker, 1983), and (Ebbinghaus et al., 1970). The
same technique works for inductive Turing machines because the structure of induc-
tive Turing machine is similar to, but at the same time, richer than the structure of
Turing machine.

The structure of the machine MQ is presented in the Figure 4.5.

Figure 4.5. The structure of the inductive Turing machine MQ.

Given a number a as an input, the machine MQ works in the following manner.
The element a is sent to the automaton AP and 0 is sent to T 1

N. The automaton T 1
N

produces number 1, which is sent to AP. The automaton AP combines a and 1 into the
pair (1, a) and sends it to the machine T 1

R . The machine T 1
R checks whether (1, a) ∈

R(x, z). When (1, a) ∈ R(x, z), T 1
R gives 1 as its result, and when (1, a) �∈ R(x, z),

T 1
R gives 0 as its result. The result of T 1

R goes to the output tape of MQ. If this result
is 1, then either MQ stops functioning, informing that it has the final result, or, when
we want to have an inductive Turing machine that always works without stopping,
the machine MQ continues to function without stopping, but writes nothing else on
its output tape.

If the result of T 1
R is 0, then T 1

N begins the next cycle of the machine MQ. The
automaton T 1

N produces number 2, which is sent to AP. The automaton AP combines
a and 2 into the pair (2, a) and sends it to the machine T 1

R . The machine T 1
R checks

whether (2, a) ∈ R(x, z). When (2, a) ∈ R(x, z), T 1
R gives 1 as its result, and when

(a, b) �∈ R(x, z), T 1
R gives 0 as its result. The result of T 1

R goes to the output tape
of MQ. If this result is 1, then either MQ stops, informing that it has the final result,
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or MQ continues to function without stopping, but writes nothing else on its output
tape. If the result of T 1

R is 0, then T 1
N begins the next cycle of the machine MQ.

This process continues and in all possible cases the machine MQ gives some
result. By the definition of the functioning of the machine MQ, the result that it
produces for a is 1 when there is some number x for which the pair (x, a) belongs
to R(x, z) and the result is 0 when such number x does not exist. In other words,
as a is any natural number, the machine MQ computes the characteristic function
of the relation Q(z) = ∃x R(x, z). The relation Q(z) is arbitrary in the class �1,
and MQ is an inductive Turing machine of the first order because AP and T 1

N are
finite automata, while T 1

R is a conventional Turing machine that decides the relation
R(x, z). Consequently, we have demonstrated that any relation from the class �1 is
decidable by some inductive Turing machine of the first order.

The same is true for the class �1. Indeed, if a relation P(z) from this class is
given, we know from the definition that P(z) = ∀x R(x, z) where R(x, z) is a re-
cursive relation. This allows us to build an inductive Turing machine MP of the first
order that computes the characteristic function of the relation P(z). This machine has
the same structure as the machine MQ, which is considered above. The only slight
difference is in functioning. As in the case of MQ, the result of T 1

R goes to the output
tape of MP. If this result is 0, then either MP stops functioning, informing that it has
the final result, or, when we want to have an inductive Turing machine that always
works without stopping, the machine MP continues to function without stopping, but
writes nothing else on its output tape. If the result of T 1

R is 1, then T 1
N begins the next

cycle of the machine MP.
This definition of functioning of MP allows us to show that the machine MP

computes the characteristic function of the relation P(z) = ∀x R(x, z). The relation
P(z) is arbitrary in the class �1 and MP is an inductive Turing machine of the first
order. Consequently, we have demonstrated that any relation from the class �1 is
decidable by some inductive Turing machine of the first order.

This completes the first step of our induction.

2. Now we have to make a general inductive step, building inductive Turing ma-
chines for classes �n and �n. At the beginning, we assume that for any relation from
the class �n−1 or the class �n−1, there is an inductive Turing machine of order n −1
that builds the characteristic function of this relation. Let Q(z) be an arbitrary rela-
tion that belongs to the class �n. It means that Q(z) = ∃x1 ∀x2 ∃x3 . . . ∀xn−2 ∃xn−1
∀xn R(x1, . . . , xn, z), where R(x1, . . . , xn, z), is a recursive relation. Then, by the
definition, the relation K(x1, z) = ∀x2 ∃x3 . . . ∀xn−2 ∃xn−1 ∀xn R(x1, . . . , xn, z)
belongs to the class �n−1.

To make an inductive step, we need for an arbitrary relation Q(z) that belongs to
�n such an inductive Turing machine MQ that computes the characteristic function
of Q(z) and an arbitrary relation P(z) that belongs to �n such an inductive Turing
machine MP that computes the characteristic function of P(z). We begin with the
relation Q(z) from �n. By the definition, Q(z) = ∃x1 K(x1, z) where the relation
K(x1, z) belongs to the class �n−1. By the inductive assumption, there is an induc-
tive Turing machine MK of order n − 1 such that given a pair (a, b) of natural num-
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bers, MK produces 1 when (a, b) ∈ K(x1, z) and produces 0 when (a, b) �∈ K(x1, z).
This machine MK is used to build ties in the inner memory of the machine MQ.

By Lemma 4.3.3, it is possible to assume that MQ has infinitely many working
tapes L1 , L2, . . . , Lt, . . . . We use the tape L1 for keeping 1 in the first cell and 0 in
the second cell. The inductive Turing machine MK computes the following relation
for memory connections: the cell with a number m in the tape L2 is connected to the
first cell of the tape L1 if m = r(a, b) and (a, b) ∈ K(x1, z) and connected to the
second cell of the tape L1 if m = r(a, b) and (a, b) ∈ K(x1, z). Here r : N2 → N
is a one-to-one recursive mapping from all pairs of natural numbers onto all natural
numbers (cf. Section 4.3.3). We label all these connections of cells from L2 to cells
from L1 by the letter C . Other tapes L3 , L4, . . . , Lt, . . . are used for counters and
organization of access of the head of MQ to any cell by its address in its tape.

In addition to tapes, the inductive Turing machine MQ contains, as its parts, the
pairing automaton AP, a Turing machine Tr , which given a pair (a, b) converts it into
the number r(a, b), and the finite automaton T 1

N , which is an isomorphic copy of the
finite automaton TN . All parts of the machine MQ are realized as subroutines.

The structure of the machine MQ is presented in the Figure 4.6.

Figure 4.6. The structure of the machine MQ.

Now we can describe functioning of the machine MQ.
Given a number a as an input, the machine MQ works in the following manner.

The element a is sent to T 1
N and to the automaton AP. The automaton T 1

N produces
number 1, which is sent to AP. The automaton AP combines a and 1 into the pair
(1, a) and sends it to the machine Tr . The machine Tr transforms the pair (1, a) into
the number r(1, a). Then the processor H of the machine MQ goes to the cell of
L2 that has number r(1, a) and goes from this cell by the connection C . According
to the structuring of the memory of MQ, after going by the connection C , the head
comes to the first cell of the tape L1 when (1, a) belongs to the relation K(x1, z) and
to the second cell of the tape L1 when (1, a) does not belong to the relation K(x1, z).
After this the processor H writes the content of the cell to which it has come into the
output tape of MQ.
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If this result is 1, then either MQ stops functioning, informing that it has the final
result, or, when we want to have an inductive Turing machine that always works
without stopping, the machine MQ continues to function without stopping, but writes
nothing else on its output tape.

If the result written in the output tape is 0, then T 1
N begins the next cycle of

the machine MQ. The automaton T 1
N produces number 1, which is sent to AP. The

automaton AP combines a and 2 into the pair (2, a) and sends it to the machine
Tr . The machine Tr transforms the pair (2, a) into the number r(2, a). Then the
processor H of the machine MQ goes to the cell of L2 that has number r(2, a) and
goes from this cell by the connection C . According to the structuring of the memory
of MQ, after going by the connection C , the processor H comes to the first cell of
the tape L1 when (2, a) belongs to the relation K(x1, z) and to the second cell of the
tape L1 when (2, a) does not belong to the relation K(x1, z). After this MQ writes
the content of the cell to which the processor H has come into the output tape.

If this result is 1, then either MQ stops functioning, informing that it has the final
result, or, when we want to have an inductive Turing machine that always works
without stopping, the machine MQ continues to function without stopping, but writes
nothing else on its output tape. If the result written in the output tape is 0, then T 1

N
begins the next cycle of the machine MQ.

This process continues and in all possible cases the machine MQ gives some
result. By the definition of the functioning of the machine MQ, the result that it
produces for a is 1 when there is some number x for which the pair (x, a) belongs
to K(x1, z) and the result is 0 when such number x does not exist. In other words, as
a is arbitrary natural number, the machine MQ computes the characteristic function
of the relation Q(z) = ∃x1 K(x1, z). Relation Q(z) is also arbitrary in the class �n
and MQ is an inductive Turing machine of order n because its memory is structured
by the inductive Turing machine MH of order n − 1, AP is a finite automaton, while
T 1

R and T 1
N are conventional Turing machines. Consequently, we have demonstrated

that any relation from the class �n is decidable by some inductive Turing machine
of order n.

The same is true for the class �n. Indeed, given a relation P(z) from this class,
we know from the definition that P(z) = ∀x K(x, z) where the relation K(x1, z)
belongs to the class �n−1. By the inductive assumption, there is an inductive Turing
machine MK of the order n − 1 such that given a pair (a, b) of natural numbers, MK
produces 1 when (a, b) ∈ K(x1, z) and produces 0 when (a, b) �∈ K(x1, z). This
allows us to build an inductive Turing machine MP of the first order that computes
the characteristic function of the relation P(z). This machine has the same structure
as the machine MQ, which is considered above. The only difference is in functioning.
As in the case of MQ, the result of T 1

R goes to the output tape of MP. If this result is
0, then either MP stops functioning, informing that it has the final result, or, when we
want to have an inductive Turing machine that always works without stopping, the
machine MP continues to function without stopping, but writes nothing else on its
output tape. If the result of T 1

R is 1, then T 1
N begins the next cycle of the machine MP.

This definition of functioning of MP allows us to show that the machine MP
computes the characteristic function of the relation P(z) = ∀x K(x, z). Relation
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P(z) is also arbitrary in the class �n, and MP is an inductive Turing machine of
order n. Consequently, we have demonstrated that any relation from the class �n is
decidable by some inductive Turing machine of order n.

The theorem is proved. ��
To find the computing power of inductive Turing machines, we use the following

result.

Theorem 4.3.9. If a set X is decidable by some inductive Turing machine, then there
is an inductive Turing machine of the same order that computes X.

The proof is similar to the proof of the statement that all recursively decidable
sets are recursively computable or enumerable (cf., for example, (Hopcroft, Mot-
wani, and Ullman, 2001) or (Rogers, 1987)).

Theorems 4.3.8 and 4.3.9 imply the following result.

Corollary 4.3.4. (Superrecursive Computation Theorem). a) For any arithmetical
relation Y , there exists an inductive Turing machine M such that it computes Y .

b) If Y belongs to the level n of the arithmetical hierarchy, that is Y ∈ �n ∪ �n,
then there is an inductive Turing machine M of order n such that it computes Y .

Corollary 4.3.5. Any arithmetical relation is decidable in the class of all inductive
Turing machines with inductive memory.

Corollary 4.3.6. There is an inductive Turing machine that computes all sentences
that have n quantifiers or less and is true in elementary arithmetic.

Corollary 4.3.7. There is an inductive Turing machine that determines (decides) if
an arbitrary sentence with n quantifiers or less is true in elementary arithmetic or
not.

From the Hierarchy Theorem of Kleene (1955), which states that all inclusions
in the arithmetical hierarchy are proper, we deduce the following result.

Corollary 4.3.8. The hierarchy IM of inductive Turing machines with the inductively
defined memory is strictly increasing, that is, all inclusions ITMn ⊂ ITMn+1 are
proper.

It is possible to give a direct proof of this result based on Theorem 4.3.7.
This means that inductively structured memory extends the computability space

of inductive Turing machines. In contrast to inductive Turing machines, this nonlin-
ear phenomena of the space extension does not appear in the computability space of
Turing machines because a Turing machine with a structured memory that is built by
another Turing machine is still equivalent to an ordinary Turing machine. Although
as we will see in Chapter 5, such Turing machine can be much more efficient than
any Turing machine with the conventional memory in the form of tapes.

Such sets that can be decided by some inductive Turing machine are called in-
ductively decidable.
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Corollary 4.3.9. Any recursively enumerable or computable or acceptable set in in-
ductively decidable.

In particular, there is an inductive Turing machine that for any Turing machine T
and any input symbol decides whether T gives a result or not. There is also an induc-
tive Turing machine that for any Turing machine T decides whether the language of
T is empty or not.

It is possible to extend the proof of the Superrecursive Representation Theorem
to the arithmetical hierarchy in an arbitrary countable set X and to build inductive
Turing machines with the oracles that decide and compute sets from this relative
hierarchy.

Let X be some subset of N .

Theorem 4.3.10. (Relative Superrecursive Representation). a) For any arithmeti-
cal in X relation Y , there exists an inductive Turing machine M with the oracle O(X)

such that it computes the characteristic function of Y .
b) If Y belong to the level n of the arithmetical hierarchy in X, that is Y ∈

�n(X) ∪ �n(X), then there is an inductive Turing machine M of order n with the
oracle O(X) such that it decides Y .

Theorems 4.3.7 and 4.3.10 imply the following result.

Corollary 4.3.10. (Relative Superrecursive Computation Theorem). a) For any
arithmetical in X relation Y , there exists an inductive Turing machine M with the
oracle O(X) such that it computes Y .

b) If Y belongs to the level n of the arithmetical hierarchy in X, that is, Y ∈
�n(X) ∪ �n(X), then there is an inductive Turing machine M of order n with the
oracle O(X) such that it computes Y .

Corollary 4.3.11. Any relation arithmetical in X is superrecursively decidable.

All these results show that the computing power of superrecursive algorithms is
infinitely larger than the computing power of recursive algorithms. The latter can
only compute the first level of the arithmetical hierarchy, while the former can build
the whole infinite hierarchy. The same is true for the deciding power of both types of
algorithms.

4.3.6 Inductively computable functions

Alice was not much surprised at this,
she was getting so well used to queer things happening.

Lewis Carroll, 1832–1898

It is possible to build an inductively computable function that grows almost every-
where much faster than any recursively computable function. This also shows that
inductive Turing machines are more powerful than Turing machines.
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Theorem 4.3.11. For any recursive function h(x, z), there is an inductively com-
putable function f : N → N such that for any partial recursive function g : N → N
and for almost all n from N for which g(n) is defined, we have

f (n) > h(n, g(n)).

Proof. To prove the theorem, we use a Gödel enumeration T1, T2, . . . , Tn, . . . of all
Turing machines (cf. (Rogers, 1987)) and build an inductive Turing machine M such
that M computes the necessary function f : N → X . This machine M contains a
copy of a universal Turing machine U , a copy of a Turing machine that computes
the function h and a finite automaton C that given a pair, triple, or n-tuple of words,
compare is they are equal or not, that is, C gives 1 when all input words are equal
and gives 0 otherwise. We define functioning of M and prove that M has necessary
properties defining how M works for an arbitrary input n.

Given input n, M simulates the machines T1, T2, . . . , Tn with the same input n
for all of them. Before any of these n Turing machines stops, giving its result, the
machine M writes onto its output tape 1 after each odd step of computation and
writes onto its output tape 0 after each even step of computation. After the first of
these Turing machines stops, giving its result k, the machine M , using a copy of a
Turing machine that computes the function h, computes the value h(n, k) + 1 and
writes it into its output tape. Then M continues writing the same result until the
next of these n Turing machines stops, giving its result p. Then the machine M ,
using copy of a Turing machine that computes the function h, computes the value
h(n, p) + 1, compares it with the value h(n, k) + 1 and writes the larger of the two
into its output tape. Then M continues writing the same result until the third of these
n Turing machines stops, giving its result q , and so on. In such a way, the machine
M computes the function

f (n) = max
{
h(n, gi (n)) + 1; i = 1, 2, . . . , n

}
where gi (x) is the function computed by the Turing machine Ti and the operation
max is defined when, at least, one of the values h(n, gi (n)) is defined.

If a Turing machine T is given, then T = Tr for some r . As a result, f (n) >

h(n, gr (n)) for all n > r for which gr (n) is defined.
The theorem is proved. ��
This result shows that inductive Turing machines can compute functions that

grow very fast, much faster than any partial recursive function. At the same time,
Corollary 5.3.4 and Theorems 5.3.8 and 5.3.9 demonstrate that inductive Turing ma-
chines can compute functions that grow very slowly, slower than any partial recursive
function. This explains how inductive computation can extend possibilities of con-
ventional recursive computation.
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4.3.7 Universal inductive Turing machines

“You see,” the Knight went on after a pause,
“it’s as well to be provided for everything.”

Lewis Carroll, 1832–1898

Universal Turing machines play a very important role in the theory of recursive al-
gorithms. For example, any universal Turing machine determines what is recursively
computable, acceptable or decidable. In addition, the whole theory of Kolmogorov
complexity (cf. Section 5.3) is based on the concept of universal Turing machine.
Moreover, universal Turing machines influenced computer technology. The structure
of a universal Turing machine served as a model for the famous von Neumann ar-
chitecture for a general-purpose computer (cf. Burgin, 2001). This architecture has
determined for decades how computers have been built.

In a similar way, we need universal Turing machines to develop a theory of re-
cursive algorithms and especially, a theory of superrecursive algorithmic complexity
(cf. Section 5.3).

Taking a function c : T → �+, we obtain the following result.

Theorem 4.3.12. For any class ITn of all inductive Turing machines of order n with
the same working alphabet S and alphabet Q of states, there exists a universal in-
ductive Turing machine U of order n.

Proof. Before beginning the construction of the machine U , let us make some pre-
liminary remarks. First, we remind that a universal inductive Turing machine U of
the nth order has to able to simulate any inductive Turing machine T of the nth order
with its arbitrary input. That is why we begin the construction of a universal induc-
tive Turing machine U of the nth order with enumeration of all inductive Turing
machines of the nth order.

Second, properties of the structured memory allows us to assume that the mem-
ory of T is realized in one linear tape and the processor of T contains only one head,
while the memory of U contains as many linear tapes and processor of U has as
many heads as we need. As it is explained in Section 4.3.1, it is possible to consider
any configuration in the structured memory ET as a single word.

Any inductive Turing machine T of order n can be decomposed into two compo-
nents: the mainframe BT of T , which consists of the control automaton A, the pro-
gram (set of rules) R, and the operating device (head) H , and the structured memory
ET of the inductive Turing machine T . The mainframe BT of T is almost the same
as the mainframe of any conventional Turing machine. Only the rules can contain
description of arbitrary moves specified by ties in the memory. It is possible to con-
sider the mainframe BT as a machine that has everything that has the machine T but
the memory of BT is a conventional linear tape, which lacks additional structure.
This structure is built by machine TE , which organizes connections in the memory
ET of T .

Codification of T is constructed by an inductive process. According to the struc-
ture of an inductive Turing machine with a structured memory, it is natural to build a
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code of an inductive Turing machine T of the nth order separated into two parts. The
first part is the code of the mainframe BT of T and the second part is the code of the
structured memory ET of the machine T . These parts are separated by n +5 symbols
“1”. The code of the mainframe of T is similar to the code of a conventional Tur-
ing machine that is built in Section 2.3. We consider this coding below. As we have
seen, for a Turing machine, it is necessary to code only its rules, which constitute the
dynamic part of the control device of a Turing machine.

What we are concerned about the structured memory ET of T is that it may be
considered as a linear tape with additional relations. These relations are generated by
some Turing machine TE of order n − 1. So, to codify the structure of ET , we need
only to codify the machine TE . When n = 1, TE is a Turing machine and its code
c(T ) is described in Section 2.3. When n > 1, we assume that we have the code of
TE . And combine it with the code of the mainframe of T as it is described above.

To apply induction, we note that an inductive Turing machine T of the nth order
is stratified into n levels. The first level is the mainframe BT of T . The second level
is the mainframe BTE of the machine TE , which has order n − 1. The third level is
the mainframe BT2E of the machine T2E that builds connections in the memory of
TE and has order n − 2. The fourth level is the mainframe BT3E of the machine T3E

that builds connections in the memory of T3E and has order n−3 and so on. Thus, the
code of T consists of codes of all these mainframes where the code of the mainframe
with a number i is separated from the code of the mainframe with a number i − 1 by
by i + 5 symbols “1”.

Now let us codify all inductive Turing machines with a binary alphabet � =
{1, 0}. To do this, we build a function c : IT → �+ where IT is the set of all inductive
Turing machines with the alphabet �. To represent an inductive Turing machine T as
a binary string, we at first assign integers to the states, tape symbols, and directions
L, R, and S. If T has the states ql , q2, . . . , qk for some number k, then the start state
is always ql and we correspond to each qi the string 0i . To the tape symbols 0, 1, and
the empty symbol �, which denotes an empty cell, we correspond 0, 00, and 000,
respectively. If the connection types in the memory ET of T are cl , c2, . . . , ct for
some natural number t , then we correspond to each ci the string 0i .

Once we have established an integer to represent each state, symbol, and direc-
tion, we can encode the transition rules or, equivalently, function transition of the
transition. When we have a transition rule qi , a j → qk , al , cm , for some natural
numbers i , j , k, l, and m, we code this rule by the string 0i l0 j l0kl0l10m . As all of i ,
j , k, l, and m, are at least one, there are no occurrences of two or more consecutive
l’s within the code for one transition rule. Having codes for all transition rules, we
write them as one word in which they are separated by couples of l’s. For exam-
ple, we have the code 0i l0 j l0kl0l10m110hl0t l0r l0q10p for two transition rules qi ,
a j → qk , al , cm and qh , at → qr , aq , cp.

To simulate input and output operations of the machine T and functioning of the
mainframe BT of T , the machine U has several tapes: L I, LO, L1, L2, L3, L4, and
L5. As usually, L I and LO are input and output tapes of U , correspondingly. The
first tape L1 is used for storing the word that represents the input w of T . The second
tape L2 is used for storing the word that represents the current state of the control
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automaton A of T . The third tape L3 is used for storing the rules for operation of T .
The fourth tape L4 is used for storing the current word that is written in the tape of
T . The fifth tape L5 is used for auxiliary operations of U .

Additional tapes are used for simulating in the active mode the structured mem-
ory ET of the machine T . The structured memory ET of the machine T is simulated
by the structured memory EU of the machine U . If the machine T. has order n, then
its memory ET is (n − 1)-inductive, that is, all relation in ET are constructed by an
inductive Turing machine TE of order n − 1. Thus, the machine U has two parts:
the first simulates its mainframe BT of T and the second simulates the structured
memory of T . Simulation of the mainframe BT of T does not depend on the order
of T .

To simulate input and output operations of the machine T and functioning of the
mainframe of T , the machine U has several heads hc, ho, h1, h2, h3, h4, and h5. The
head hc reads the input of U from its input tape, while the head ho writes the output
of U to its output tape. The first head h1 is used for reading when it is necessary the
input word w of T , which is stored in the first tape L1. The second head h2 is used
for changing the word that represents the current state of the control automaton A of
T . The third head h3 is used for searching the rules for operation of T . The fourth
head h4 is used for simulating the work of the working head of the machine T , which
is changing the word on the tape L1 that reflects the changing memory content of T .
The fifth head h5 is used for auxiliary operations of U . In addition to this, U has a
part that simulates the machine TE that builds connections in the memory ET of T .

When n = 1, T has recursive memory and it is necessary to simulate only the
mainframe BT of T . This is done in the same way as for the mainframe of an induc-
tive Turing machine of arbitrary order. Thus, we consider simulation of T , assuming
that its memory is already constructed by the machine U .

Given a word r(c(T ), w) where r : N2 → N is one-to-one function that is de-
scribed in Section 4.3.3, the machine U simulates the machine T working with the
word w. Simulation of the machine T is performed in several cycles.

The first cycle:
The machine U examines whether the input ν has the form r(c(T ), w), finding,

in particular, if the first component of the pair r−1(ν) is a legitimate code c(T ) for
some inductive Turing machine T . This is possible to do by standard methods in a
finite number of steps (cf., for example, (Hopcroft, Motwani, and Ullman, 2001) or
(Ebbinghaus et al., 1970). If the answer is yes, that is, the input ν passes the test, U
goes to the second cycle of simulation. If the answer is no, U gives no result. It can
stop without generating an output or go into an infinite resultless cycle.

The second cycle:
The machine U :

1. rewrites the word w on the first working tape L1;
2. rewrites the word w to the fourth working tape L4,
3. writes the initial state q0 of T on the second working tape of U ; and
4. puts its head h4 into the cell that contains the first symbol a1 of the word w.
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According to the chosen encoding of words, the word 10 is written on the second
tape for each 0 of w, and the word 100 is written there for each 1 of w. Note that
the empty cells of the simulated tape of M, which are represented by 1000, do not
actually appear on the second tape because all cells beyond those used for w hold the
empty cell of U . However, U is programmed so that when it looks for a simulated
symbol of T and finds its own empty cell, it replaces that blank cell by the sequence
1000 to simulate the empty cell of T .

Then U goes to the third cycle.

The third cycle:
The machine U reads the symbol in the cell where the head h1 is situated. At the

beginning, it is the first symbol a1 of the word w. If a1 = 0, then U finds the first
rule r with one 0 after 1 and one 0 after 11. If a1 = 1, then U finds the first rule r
with one 0 after 1 and two 0’s after 11.

Then U goes to the fourth cycle.

The fourth cycle:
If the operations for h1 are prescribed in the rule r that is found in the third cycle,

then the machine U performs these operations. They can include:

1. reading with the head h1 from the first tape L1;
2. writing with the head ho the description of an output symbol x of T to the output

tape Lo when the rule r prescribes T to write x to its output tape;
3. changing with the head h2 the content of the second working tape to the number

of 0’s that go after 11111 in the right part of the rule r ;
4. changing with the head h4 the content of that cell in the fourth working tape: the

new content is 0 if there is one 0 that goes after 11 in the right part of the rule r
and the new content is 1 if there is two 0’s that go after 11 in the right part of the
rule r ; and

5. moving the head h4 according to the connection in the corresponding rule; this
move simulates in a definite way the corresponding move of the head of T .

The connections between the cells of the tape L4 are installed by the part of U
that simulates the machine TE . When T has a recursive memory, TE is a conventional
Turing machine, for which there is a universal Turing machine, which performs the
same actions.

After executing the prescribed operations, U goes back to the third cycle.
If the machine T has no transition that matches the simulated state and tape

symbol, then no transition will be found by U . Thus, the machine T halts in the
simulated configuration, and the machine U does likewise.

In such a way, U simulates each step of the machine T , and because the word
written in the output tape of T when it works with input word w coincides on each
step with the word written in the output tape of T when it works with the input word
(c(T ), w), For this reason, U gives the same result as T when T gives a result. In
addition, U gives no result when T gives no result. Consequently, U completely
simulates functioning of T .
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According to its construction, the inductive Turing machine T of nth order is
stratified into n levels. Each level has its mainframe, which can be simulated in a
similar way as the mainframe of T . As simulation of one mainframe requires seven
tapes and heads, the machine U can perform its functions with 7n tapes and 7n heads.

As T is an arbitrary inductive Turing machine of nth order, Theorem 4.3.12 is
proved. ��

This result shows that while the existence of a universal Turing machine, a ma-
chine that can compute any recursively computable function, is a pillar of the clas-
sical theory of computation, a similar pillar for the theory of inductive computation
exists in form of a universal inductive Turing machine, a machine that can compute
any inductively computable function. Thus, only universal inductive Turing machine
foretold and provides a foundation for the modern general-purpose computer because
conventional Turing machines do not offer sufficiently adequate models for modern
computers (cf. Section 4.1 and (Burgin, 2001)).

In addition, universal inductive Turing machines allow one to develop invariant
theory of algorithmic (Kolmogorov) complexity for inductive computations.

4.4 Grid automata: Interaction and computation

Alice was puzzled. “In our country,”
she remarked, “there’s only one day at a time.”

The Red Queen said, “That’s a poor thin way of doing things.
Now here, we mostly have days and nights

two or three at a time, and sometimes
in the winter we take as many as

five nights together — for warmth, you know.”

Lewis Carroll, 1832–1898

At the end of the twentieth century, computer technology has come to a level when
computation and communication are combined into a single process of information
processing. We still call this process computation because computation, in some
sense, lies at the bottom of communication. For example, communication, as a rule,
includes coding and decoding of messages.

New features of information processing are due to the very fast development of
information technology, and we need models that reflect these advances and allow us
to go further. Now a new approach in information technology appeared. It is called
cluster computation. In it computers are combined together as clusters that work
as a single system, which is called a cluster computer. The demands of the high
performance computing market are causing an outward expansion from localized
clusters of computers to clusters of clusters shared between different departments and
even between remote sites within the organization. But clusters are relatively limited
systems. They tend to have homogenous hardware and software platforms, existing
at a single site and having one specific function that they were built to accomplish
(Lumb, 2002).
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A more advanced level of this approach is grid computing, which, on the other
hand, is a natural evolution of the Internet. Grid computing is realized by grid infor-
mation processing systems or grid arrays. Such system is the organization of com-
puters into interlinked hierarchical networks that can be tapped for processing and
communication power (Foster, 2002; Waldrop, 2002). According to California Insti-
tute for Telecommunications and Information Technology director Larry Smarr, grid
computing has even more growth potential than the Internet explosion of the 1990s.
Smarr expects that grid computing will provide an infrastructure to support the entire
economy. He foretells a future that features interconnected grids of all sizes, running
the gamut from supercomputer clusters to mid-sized nodes of desktops and laptops
to PC-based “micronodes.” Grid computing projects are initially being established to
provide data-crunching power for scientific and academic research, but Ian Foster of
Argonne National Laboratory believes that they will also serve as testbeds for com-
mercial applications (Waldrop, 2002). At this time, Grid computing is still a work in
progress.

However, as Lumb (2002) writes, grid computing is not a matter of some distant
future. It is presently helping many organizations dynamically integrate their dis-
parate, heterogeneous compute resources. Organizations that do not want to wait to
reap the benefits of the global Grid have already built their own enterprise grids and
partner grids. While classical scheme of computing emphasizes information transfor-
mation, grid computing shifts the emphasis, making communication and interaction
as important as information transformation.

Thus, we need an efficient model to represent modern computers, networks, and
other computing devices that combine in various processes computation and com-
munication. And we have such models: abstract neural networks, cellular automata,
Petri nets, iterative arrays, persistent Turing machines and some other models com-
municate and compute. The advent of the Internet intensified research in this direc-
tion. But neither of these models has the unifying property that provides a general
context for studies of the huge diversity of contemporary information processing sys-
tems. Each particular model represents only some kind of interacting and commu-
nicating systems. Abstract neural networks, Petri nets, and cellular automata allow
one to study inner interaction in a network of neurons or finite automata, but tell
us very little about interaction with the environment. In addition, these models, as
well as Internet machines (cf. Section 4.2.7) contain all elements of the same kind.
Neural networks are built exclusively of similar neurons. Cellular automata form a
network of copies of some finite automaton. Internet machines include only Turing
machines as their primitive elements. Petri nets have only identical places and transi-
tions as nodes. Colored Petri nets allow more diversity in element’s choice, but their
elements are the same places and transitions, only having different names (colors).

Other models of interaction either pay the whole attention to the interaction with
the environment, as do persistent Turing machines (Goldin and Wegner, 1988), or
as theories of interactive processes (cf. (Milner, 1993), (Hoar, 1978)) focus their
attention on local description of interaction, while the global description does not
come into the picture.
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In contrast to this, global networks, such as the Internet or the future GRID (Fos-
ter, 2002; Lumb, 2002; Waldrop, 2002), include a huge diversity of interacting de-
vices. These devices interact not only with one another, but also with a lot of other
systems, the main of which are users of computers and staff that provides mainte-
nance of computers, workstations, servers, imbedded devices, and other elements of
the network. All this shows that we need a more developed model for modeling,
study, and development of such systems and processes. Such model has to be able
to represent not only contemporary systems, but provide a theoretical base for study
and simulation of future computing systems. A solution to this problem is given by
grid arrays and grid automata.

In particular, both approaches of cluster computers and grid computing are syn-
thesized in the concept of grid array. Grid arrays embody the autonomous distributed
computing architecture and realize the concurrent paradigm of computation in the
most complete form. Grid automaton is a theoretical model of an arbitrary grid ar-
ray. This model allows one to study properties of grid arrays related to their de-
sign, functioning, maintenance, and utilization. Flexibility of grid automata makes
them an appropriate mathematical model for colonies and other systems of intelli-
gent agents. Grid automata allows one naturally to model and embody swarm intelli-
gence (Kennedy and Eberhart, 2001). To do all this, it is necessary to enhance nodes
of a grid automaton with such properties as autonomous functioning, coordination
with other nodes, mobility, intelligence, and so on.

4.4.1 Grid computation and grid arrays

The next moment soldiers came running through the wood
at first in twos and threes, then ten or twenty together, and

at last in such crowds that they seemed to fill the whole forest.

Lewis Carroll, 1832–1898

To achieve a better representation of modern information processing systems, we
introduce the following concept.

Definition 4.4.1. A grid array is a system of information processing systems (com-
puters, networks, imbedded systems, etc.), which are situated in a grid, called nodes,
are optionally connected and interact with one another.

The concept of grid array is very general, allowing one to include into the grid
people and even nonliving (natural and artificial) systems when they are considered
as information processing systems. One grid array can be a node of another grid
array. However, the most direct application of the grid approach is to computers and
their conglomerates as it is stated above.

Grid arrays, as a rule, have distinct layers. This implies several types of strat-
ification for grid arrays. Physical or hardware stratifications are created trough the
hierarchy of physical devices. At the foundation of a grid array of a global network,
there are tangible resources to be shared: servers, desktops, network channels, soft-
ware, storage, software licenses, data, and so on. On the next level of the physical
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hierarchy, these elements are combined into more complex systems: computers are
considered with all their software and databases, local networks and clusters of com-
puters become elements of the new level and so on.

At the same time, in the emerging nomenclature of grid computing, physical re-
sources are treated in terms of the services that they can add to the grid’s capabilities.
This generates a virtual hierarchy of grid services. In this virtual hierarchy, users and
applications get transparent access to the grid services.

Synthesizing these forms of grid arrays, we come to three principal physical lay-
ers of a grid array:

1. Hardware layer consists of physical elements, components and/or devices, which
may be considered with or without their software;

2. Software layer consists of program elements (instructions, operators, and so on),
components, separate programs, and systems of programs together with those
devices that these components and programs utilize in their functioning;

3. Infware layer consists of data elements (bits, symbols, and so on), groups of data
elements, data bytes, and program data together with those programs that process
these data and those devices that these program utilize in their functioning.

Definition 4.4.2. A data byte is any standard portion or group of data elements.
For example, the conventional byte is the group of eight bits, where a bit is a

binary symbol.

Definition 4.4.2. Program data of some program P are all data that are given to
this program for processing (input program data), produced by the program (inner
program data), and given as the output (output program data).

Input program data may be given to the program as one portion. This is a classical
model of computation such, for example, as a Turing machine. In contrast to this,
program data may be given to the program as several portions. There are three modes
of such data supply:

1. The atemporal mode when portions are given in a sequence without any relation
to time. This is also a classical model of computation such as finite automaton.

2. The deterministic temporal mode when portions are given at predetermined in-
tervals or moments of time. An example of such model is given by timed au-
tomata (Alur and Dill, 1994).

3. The nondeterministic or random temporal mode when portions are given at ran-
dom intervals or moments of time. An example of such model is given by inter-
active automata, such as persistent Turing machines (Goldin and Wegner, 1988)
or global Turing machines (van Leeuwen and Wiedermann, 2000a).

It is natural to separate grid arrays into three types:

1. An actual grid array, constituting a unified organized system of collaborating
information processing systems as nodes.

2. A virtual grid array, a set of connected information processing systems as nodes.



188 4 Superrecursive Algorithms: Problems of Computability

3. A potential grid array, a set of information processing systems that are con-
nected or have a potency to be connected.

Example 4.4.1. A cluster computer is an actual grid array.

Example 4.4.2. The Internet is a virtual grid array.

Example 4.4.3. All computers in the world form a potential grid array. It shows what
a high potential that may be achieved through a synthesis of all computers into one
grid array.

Example 4.4.4. Electronic systems of planes, ships, and cars are becoming increas-
ingly complex. Consequently, planes, ships, and cars have extensive networks of
electronic devices. For instance, electronic devices control many functions in the car,
from anti-lock braking systems (ABS) and fuel injection to the volume control of
entertainment systems. Car networks are usually divided into body and power train
control branches, and telematics and multimedia subnetworks. Any car or plane net-
work is an actual grid array, which contains several subarrays.

One more characteristic of grid arrays depends on properties of their nodes and
connections. According to these properties, we discern four types of grid arrays:

1. A static grid array is an array in which devices are nodes of the array and con-
nections between those devices are fixed from the beginning and do not change
during functioning.

2. A grid array with dynamic connections is an array in which connections between
the nodes are eventually changing during functioning.

3. A grid array with dynamic nodes is an array in which nodes are eventually
changing during functioning.

4. A grid array with dynamic nodes and connections is an array in which nodes
and connections between the nodes are eventually changing during functioning.

Example 4.4.5. The Internet is a grid array with dynamic nodes and connections.

Example 4.4.6. A computer network with fixed connections in which computers and
their software are updated and/or upgraded from time to time is a grid array with
dynamic nodes.

Example 4.4.7. A computer is a grid array with dynamic connections as connections
between CPU and RAM cells are constantly changing.

4.4.2 Grid automata

The parts transfer their own significance to the larger group.

Georg Simmel, Quantitative Aspects of the Group, 1858–1918

Grid arrays are modeled by grid automata.



4.4 Grid automata 189

Figure 4.7. GA is a grid automaton; Tm is a Turing machine; RAM is a random access
machine; S is a server; m is a modem; NN is a neural network; FA is a finite automaton; CA
is a cellular automaton.

Definition 4.4.3. A grid automaton is a system of automata, which are situated in a
grid, are called nodes, are optionally connected and interact with one another.

A grid automaton, one node of which is also a grid automaton similar to the
initial is presented in Figure 4.7.

Thus, the difference is that a grid array consists of real (physical) information
processing systems and connections between them, while a grid automaton consists
of abstract automata as its nodes. Nodes in a grid automaton can be finite automata,
Turing machines, vector machines, array machines, random access machines, induc-



190 4 Superrecursive Algorithms: Problems of Computability

tive Turing machines, and so on. Even more, some of the nodes can be also grid
automata.

We group connections in grid arrays and grid automata into three main types:

1. Simple connections that are not changing deliberately transmitted data and them-
selves when the automaton or array is functioning.

2. Transformable connections that may be changed when the automaton or array is
functioning.

3. Processing connections that can transform transmitted data.

If we take a global network of computers and represent it as a grid array, connec-
tions between the nodes will be processing connections as these connections include
different IPS: modems, servers, etc.

Transformable connections are the base of any reconfigurable computer (Cas-
selman, 1993; Thornburg and Casselman, 1994). Reconfigurable computer provides
means to change their hardware architecture by the software to suit the application at
hand. The main idea is to place algorithm in hardware and to do this on a function by
function basis as the application executes. Reconfigurable computers take advantage
of parallelism while reducing overhead of load/store, branch operations, and instruc-
tion decoding. Reconfigurable devices can also be used either as attached processors
or coprocessors. The idea of a reconfigurable computer was suggested by Estrin (cf.,
(Estrin and Viswanathan, 1962)).

A reconfigurable computer is a potential grid array that: a) contains many virtual
grid arrays, and b) is an actual grid array at each computing step.

Grid automata can give many representations of the same grid array. There are
three main types of such representations of a grid array G by a grid automaton A:

Hardware representation corresponds nodes of the automaton A to the devices
and/or their groups in the array G, where a device may be a separate computer with all
its software and infware (for example, databases) or the whole network of computers,
servers and other IPS with their resources.

Software representation corresponds nodes of the automaton A to the programs
and/or their systems in the array G, where programs are taken with their resources:
devices and data that are used by a program.

Infware representation corresponds nodes of the automaton A to the services that
are provided by the array G and/or their systems, where services are taken with their
resources: devices, programs, and data that are used by a service.

There are different levels of such representations. For example, hardware repre-
sentation of a grid array G can be on the level of logical elements or gates and on the
level of IPS (computers and networks).

A grid automaton G is described by three grid characteristics and three node
characteristics.

The grid characteristics are:

1. The space organization or structure of the grid automaton G.

This space structure may be in the physical space, reflecting where the corre-
sponding information processing systems (nodes) are situated, it may be the system
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structure defined by connections between the nodes, or it may be a mathematical
structure defined by the geometry of node relations. System structure is so important
in grid arrays that in contemporary computers connections between the main com-
ponents are organized as a specific device, which is called the computer bus. In a
computer or on a network, a bus is a transmission path in form of a device or system
of devices on which signals are dropped off or picked up at every device attached to
the line.

There are three kinds of space organization of a grid automaton: static structure
that is always the same; persistent dynamic structure that eventually changes be-
tween different cycles of computation; and flexible dynamic structure that eventually
changes at any time of computation.

Persistent Turing machines (Goldin and Wegner, 1988) have persistent dynamic
structure, while reflexive Turing machines (Burgin, 1992) have flexible dynamic
structure.

2. The topology of G is determined by the type of the node neighborhood and is
usually dependent on the system structure of G.

A natural way to define a neighborhood of a node is to take the set of those nodes
with which this node directly interacts. In a grid, these are often, but not always, the
nodes that are physically the closest to the node in question.

For example, if each node has only two neighbors (right and left), it defines linear
topology in G. When there are four nodes (upper, below, right, and left), the G has
two-dimensional rectangular topology.

However, it is possible to have other neighborhoods. For instance, Crutchfield
and Mitchell (1995) consider linear cellular automata in which the neighborhood of
each cell has the radius r > 1. It means that r cells from each side of a given cell
directly influence functioning of this cell.

Topology of a grid automaton is very important. For example, changing two-di-
mensional rectangular topology, which is induced by the structure of the Euclidean
plane, to a non-Euclidean topology, which is induced by the structure of the hy-
perbolic plane, makes possible for cellular automata to achieve much higher effi-
ciency. For example, NP problems are tractable in the space of cellular automata in
the hyperbolic plane (Margenstern and Morita, 2001) or polynomial-time cellular
automata in the hyperbolic plane accept all PSPACE languages (Iwamoto, Margen-
stern, Morita, and Worsch, 2002).

3. The dynamics of G determines by what rules its nodes exchange information
with each other and with the environment of G.

For example, when the interaction of Turing machines in a grid automaton G
is determined by a Turing machine, then G is equivalent to a Turing machine (cf.
Theorem 4.4.5). At the same time, when the interaction of Turing machines in a grid
automaton G is random, then G is much more powerful than any Turing machine
(cf. Theorem 4.4.3).

Interaction with the environment separates two classes of grid automata and ar-
rays: open grid automata or arrays interact with the environment through definite
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connections, while closed grid automata and arrays have no interaction with the en-
vironment. For example, Turing machines are usually considered as closed automata
because they begin functioning from some start state and tape configuration, finish
functioning in some final state and tape configuration, and do not have any interac-
tions with their environment.

The node characteristics are:

1. The structure of the node. For example, one structure determines a finite au-
tomaton, while another structure is a Turing machine.

2. The external dynamics of the node determines interactions of this node.

According to this characteristic there are three types of nodes: accepting nodes
that only accept or reject their input; generating nodes that only produce some input;
and transducing nodes that both accept some input and produce some input. Note
that nodes with the same external dynamics can work in grids with various dynamics
(for example, compare Theorems 4.4.3 and 4.4.4).

3. The internal dynamics of the node determines what processes go inside this
node.

For example, the internal dynamics of a finite automaton is defined by its transi-
tion function, while the internal dynamics of a Turing machine is defined by its rules.
Differences in internal dynamics of nodes are very important because a change in
producing the output allows us to go from conventional Turing machines to much
more powerful inductive Turing machines of the first order (Burgin, 1983).

Cellular automata, neural networks, systolic arrays, iterative arrays, hardware
modification machines of Dymod and Cook (1980; 1989), and Petri nets are special
kinds of grid automata (cf., for instance, Figure 4.7). In comparison with cellular au-
tomata, a grid automaton can contain different kinds of automata as its nodes. For ex-
ample, finite automata, Turing machines and inductive Turing machines can belong
to one and the same grid. In comparison with systolic arrays, connections between
different nodes in a grid automaton can be arbitrary like connections in neural net-
works. In comparison with neural networks and Petri nets, a grid automaton contains,
as its nodes, more powerful machines than finite automata. However, grid automata
represent much more information processing systems and computational schemes.
Thus, an important property of grid automata is a possibility to realize hierarchical
structures, that is, a node can be also a grid automaton. In grid automata, interaction
and communication becomes as important as computation. This peculiarity results in
a variety of types of automata, their functioning modes, and space organization.

Grid automata allow one to represent not only distributed computing systems and
schemes (neural networks, cellular automata, systolic arrays, Internet machines, and
Petri nets), but also other types of automata and algorithms. Let us consider some
examples.

Example 4.4.8. Turing machine representation.
A grid automaton that represents a Turing machine T on the highest level has

following nodes:
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Figure 4.8. A Petri net as a grid automaton with nodes of two types: places © and
transitions

∣
∣.

♦ A finite automaton A performing control operations in T ;
♦ A finite automaton h (the head) performing transformation of symbols in T ;
♦ A storage automaton c (a cell of the tape of T ) performing storage of symbols in

the memory (tape) of T .

To build the next layer of a Turing machine representation, we assume that au-
tomata in the previous layer are logical circuits, which are built of Boolean elements
(cf. Section 2.3). Consequently, the nodes in the grid automaton of the second level
representation are logical circuits, while the nodes in the grid automaton of the third
level representation are Boolean elements.

This sequence of grid automata forms a physical stratification for a Turing ma-
chine T .

Remark 4.4.1. An important property of grid automata is their uniformity. The extent
of uniformity is represented by the coefficient of uniformity introduced in (Bratal-
sky and Burgin, 1986). Cellular automata, systolic and iterative arrays are uniform
grid automata. Neural networks are uniform only in nodes as they allow nonregular
structure of connections. Petri nets are not completely uniform in nodes as they have
two types of nodes: places and transitions. However, their uniformity converges to
1 as the number of elements grows. The same is true for grid automata that repre-
sent Turing machines. When the length of the tape of a Turing machine grows, the
uniformity of the Turing machine and the uniformity of the representing grid au-
tomaton converge to 1. This gives additional supportive evidence to the principle of
asymptotic uniformity (Bratalsky and Burgin, 1986), which states:

When the number of elements of an information processing system grows,
its uniformity converges to 1, that is, the system becomes more and more
uniform.

Example 4.4.9. Partial recursive function representation.
A partial recursive function is a function that can be generated from the con-

stant zero 0(x) = 0, the successor function S(x) = x + 1, and projections
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Pi (x1, . . . , xn) = xi using any finite number of compositions, primitive recursion,
and minimization (cf. Section 3.4). To build grid automata that represent and com-
pute partial recursive functions, we consider such automata S, Z , Pi , B, R, and M
that compute correspondingly functions S(x), 0(x), Pi (x1, . . . , xn) and perform op-
erations of compositions, primitive recursion, and minimization. In addition, we also
take an automaton C that given a number n subtracts 1 from it and checks whether
the result is equal to 0. When the result is equal to 0, C opens the gate V1. When the
result is not equal to 0, C opens the gate V2. If f (x1, . . . , xn) is a partial recursive
function, then we correspond to it a grid automaton G( f ) in which the type of all in-
put nodes belongs to the set {S, Z , Pi ; i = 1, 2, . . . , n} and the type of all other nodes
belong to the set {C, R, M}. Namely, to each function S(x), 0(x), Pi (x1, . . . , xn) that
belong to a recursive description of f (x1, . . . , xn), a corresponding automaton S, Z ,
or Pi is related in G( f ). These automata are connected to those nodes C , R, and M
of the automaton G( f ) that perform operations with the functions in the description
of f (x1, . . . , xn). Continuing this process, we build the automaton G( f ). Simple
induction shows that G( f ) computes f . The automaton C counts the number of
iterations in G( f ).

For instance, let us take the function f (x) that is given by the following scheme
of recursion:

f (1) = 0, f (2) = 1, f (n) = P2
(
S( f (n − 2)), S(S( f (n − 1)))

)
, n = 3, 4, . . . .

Then f (x) is represented by the following grid automaton A:

Figure 4.9. The structure of a grid automaton that realizes functional programming mode.

Example 4.4.10. Persistent Turing machine (cf. Section 4.2.7) representation:
On the highest level, the grid automaton that represents a persistent Turing ma-

chine consists of two nodes: a Turing machine and the environment. All subsequent
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levels are the same as for a Turing machine in Example 4.4.4 plus the nodes of a grid
automaton that represent the environment in more detail. The environment of a per-
sistent Turing machine can be always represented by one node. For example, there is
one user of the machine and we do not give more detailed model of this user. In other
cases, the environment can be a complex system that consists of many subsystems
and we represent it by an extensive grid automaton. For example, environment can
include many users, embedded devices, external computers and networks.

4.4.3 Properties of grid automata

Safe bind, safe find.

A proverb

While functioning of neural networks, cellular automata, iterative arrays, and systolic
arrays is completely synchronous, a grid arrays or automaton has three modes of
functioning that represent the dynamics of this array or automaton:

1. The synchronous mode when all nodes or automata execute each step of their
computation at the same time.

2. The synchronized mode when there is a sequence ST of temporal points such
that at each point all nodes or automata finish some step of computation and/or
begin the next step. The sequence ST is called the synchronization sequence for
the process.

3. The asynchronous mode when different nodes or automata function in their own
time.

Proposition 4.4.1. Any subsequence of a synchronization sequence is a synchroniza-
tion sequence.

Lemma 4.4.1. If X and Y are some sets of nodes of a grid automaton G each of
which functions in the synchronous (synchronized) mode and X ∩ Y �= ∅, then the
subgrid X ∪ Y of the grid G also functions in the synchronous (synchronized) mode.

Lemma 4.4.2. The relations of synchronous and synchronized functioning are equiv-
alence relation for sets of nodes in a grid automaton.

Temporal modes of functioning can overlap with one another due to the type of
their organization. There are three types of spatial organization of temporal modes.

1. Local organization when in some neighborhood of each node all nodes function
in the same mode (for example, all nodes are synchronized).

2. Cluster organization when all nodes from the grid are divided into groups and
all nodes in the same group function in the same mode (for example, all of them
are synchronized).

3. Global organization when all nodes in the grid function in the same mode (for
example, the work of all nodes is synchronous).
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In a similar way, it is possible to systematize other characteristics of a grid au-
tomaton. For example, we have three types of the accepting states:

1. Local accepting state of a grid automaton G is a state of one of its nodes.
2. Cluster accepting state of a grid automaton G is a set of states of the nodes from

a group of nodes from G.
3. Global accepting state of a grid automaton G is a set of states of all nodes from

G.

Very often a covering of a topological space by a system {Ui ; i ∈ I } of open
neighborhoods has the following property (C):

Any two neighborhoods Ui and U j from the system {Ui ; i ∈ I } have the nonvoid
intersection or may be connected by a finite chain U0, U1, . . . , Uk of neighborhoods
from {Ui ; i ∈ I } such that U0 = Ui , Uk = U j and Ut ∩ Ut+1 �= ∅ for all t =
1, . . . , k − 1.

For grid automata, this property has important implications.

Theorem 4.4.1. In any grid automaton G, a locally (cluster) synchronous function-
ing with respect to a system of neighborhoods (groups) with the property (C) is
globally synchronous.

Proof. Let G be a grid automaton and U be the set of all nodes (automata) in the
system G. By the assumption of Theorem 4.4.1, there is a system E = {Ui ; i ∈ I }
of neighborhoods in G such that all nodes in each Ui function synchronously and
∪ Ui = U . As the functioning of G is locally synchronous, then the set V of all
subsets V of U such that V functions synchronously is not empty because all Ui .
Elements from the set V are ordered by inclusion of sets.

By the Zorn lemma (cf., for example, (Cohn, 1965) or (Kurosh, 1974)), the set V
contains, at least, one maximal element W . If W = U , then the theorem is proved.

When W �= U , then there is a node d that belongs to W , but does not belong to
U . As ∪ Ui = U , there is some neighborhood Ui that contains d. Let us take some
neighborhood U j that is a subset of W . Then by the condition (C) the neighborhoods
Ui and U j from {Ui ; i ∈ I } either have the nonvoid intersection or may be connected
by a finite chain U0, U1, . . . , Uk of neighborhoods from {Ui ; i ∈ I } such that U0 =
Ui , Uk = U j and Ut ∩ Ut+1 �= ∅ for all t = 1, . . . , k − 1. In the first case, the
functioning of d is synchronized with the functioning of W by Lemma 4.4.1. In the
second case, we can use Lemma 4.4.1 several times and prove by induction in the
length of the chain that connects Ui and U j that the functioning of d is synchronized
with the functioning of W because by Lemma 4.4.2 synchronous functioning implies
a transitive relation on the sets of nodes. Consequently, it is possible to add the node
d to the set W and the new system Z will be larger than W . This contradicts our
assumption that the system W is maximal in V . Thus, W = U and the theorem is
proved in the case of local synchronous functioning of G. ��

In the case of cluster synchronous functioning of G the proof is similar as all
groups of nodes with the synchronous functioning satisfy the condition (C).
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Remark 4.4.2. For synchronized functioning of a grid automaton G, the assertion
similar to the statement of Theorem 4.4.1 is not true as the following example demon-
strates.

Example 4.4.11. Let us consider a grid automaton G with the following system U
of devices or nodes {d0; din ; i = 1, . . . , n; n = 1, 2, 3, . . . } in the system G. The
set E = {U0n ; Uin , i = 1, . . . , n; n = 1, 2, 3, . . . } with U0n = {d0, d1n} and
Ui,n = {din, di+1,n} for all i = 1, . . . , n − 1; n = 1, 2, 3, . . . form the system of
neighborhoods in G. Here each set U0n and Ui,n is a neighborhood of all its points.
The node d0 performs each operation in a unit of time, that is, d0 functions in the time
T = {1, 2, 3, . . . }. The node din (i = 1, . . . , n) performs each operation in 2n units
of time T , that is, nodes din functions in the time T = {2n , 2 · 2n , 3 · 2n, . . . }. Thus,
the functioning of the grid G is locally synchronized, but a global synchronization
sequence for the whole process in G does not exist.

However, additional conditions allow us to prove the assertion similar to the state-
ment of Theorem 4.4.1 for synchronized functioning of grid automata.

Theorem 4.4.2. In any grid automaton G, a locally (cluster) synchronized function-
ing with respect to a finite system of neighborhoods (groups) with the property (C)

is globally synchronized.

Proof is similar to the proof of Theorem 4.4.1.

Remark 4.4.3. Theorem 4.4.1 is proved for arbitrary systems, while all real informa-
tion processing systems are finite. The question is why we need to consider infinite
systems. We need to do this because many real grid arrays, being finite, are perma-
nently growing and consequently, do not have the exact number of elements (nodes).
This prevents us for building synchronization sequences for the whole functioning
of such grid arrays. To consider them as potentially infinite, allows us to ignore their
changes. In addition when the number of nodes becomes too large, we encounter
phenomena that are peculiar for infinite entities (Kolmogorov, 1961; Burgin, 1997).
So, it is reasonable to consider both finite and infinite grid arrays and automata.

When we do not restrict interaction of the nodes in grid automata, these automata
become computationally very powerful. For instance, a simple grid automaton that
consists of two finite automata with a common or shared infinite tape, similar to
the tape of Turing machine, can compute any numerical function f : N → N or
word function h : A∗ → A∗. We prove this for word functions because numbers are
usually represented by words.

Let the grid automaton G consists of two finite automata B and C that work
with words in the alphabet {1, 0} and a common infinite tape L . They function in the
following way. After receiving an arbitrary input, the automaton B produces some
number of symbols 1 and then stops. The number of 1’s is random. After receiving
an arbitrary input, the automaton C produces some number of symbols 0 and then
stops. The number of 0’s is also random. In addition, each of these finite automata at
random moments of time writes the obtained symbols in the tape L. Thus, given any
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word w in the alphabet {1, 0}, the output in the tape L may be an arbitrary word in
the alphabet {1, 0}. Consequently, any word mapping can be realized by this system.

We have proved the following result.

Theorem 4.4.3. For any function h : A∗ → A∗ or f : N → N , there is a grid
automaton G with two finite automata nodes that computes this function.

Corollary 4.4.1. For any function h : A∗ → A∗ or f : N → N , there is a grid
automaton G with two Turing machine nodes that computes this function.

Thus, even simple grid automata can go much further than conventional Turing
machines and the Church–Turing thesis. However, this contingency has a catch-up.
As usually in life, if you get something, it is necessary to pay for it. In this case, much
greater computational power of a random grid automaton in comparison with Turing
machines results in our inability to direct it and even to choose a necessary process
or function for realization. The results of such computation would be scarcely in-
telligible. When we want to compute what we intend, we inevitably come either to
traditional recursive algorithms such as Turing machines or to novel superrecursive
algorithms such as inductive Turing machines.

In some cases when the nodes of a grid automaton and their interactions are
restricted to some class of automata, it is possible to reduce the whole grid to one
automaton from this class.

Theorem 4.4.4. If all nodes of a grid automaton G with the static structure and finite
number of nodes are finite automata, then G is equivalent to a finite automaton.

Theorem 4.4.5. If all nodes of a grid automaton G with the static or persistent dy-
namic structure are recursive automata or algorithms and their interaction is con-
trolled by a recursive automaton or algorithm, then G is a recursive automaton.

This result means that it is possible to simulate such a grid automaton G by
a Turing machine or conventional computer. Only efficiency of simulation will be
very low.

Remark 4.4.4. Properties of inductive Turing machines show that for them similar
reductions are impossible (Burgin, 2001). This is caused by nonlinear effects in ex-
tensions of inductive Turing machines.

4.4.4 Subroutines, autonomous agents, and virtual machines in grid arrays

There is safety in numbers.

A proverb

Grid automata as the most advanced abstract information processing systems have
different categories of resources: memory, interface (input and output) devices, con-
trol devices, operating devices, software, data or knowledge bases.

Modes of resource utilization yield interdependence classification of automata in
a grid:
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1. Autonomous automata with independent resources.
2. Automata with shared resources, in which some resource, such as memory, be-

longs to one node, but some other nodes from the grid can also use it.
3. Automata with common resources, for example, common memory or a database,

which belong to two or more nodes from the grid.

Each type of automata implies specific styles of exchange in the grid. For exam-
ple, there are three levels of exchange for autonomous automata:

1. Data and program exchange (distributed storage of information).
2. Task and workspace exchange (distributed computation and intelligent agent sys-

tems).
3. System exchange (data, knowledge, tasks, programs, agents are specific systems

in such exchange).

Definition 4.4.4. A resource of a node is called open when it is accessible for uti-
lization by other nodes.

Example of such resources are: time for execution of its own program; time for
execution of some other program; some space in memory (for information storage,
for utilization during computation and so on); some software; some device.

Open resources may be used in three modes: for free, for rent, and for lease.
There are three techniques to use open resources: to send a task(s) for execution, to
send an autonomous agent(s) for work with the resource, and to get direct access
to the resource. Each of these techniques has its advantages and shortcomings. The
first two techniques are less time and energy consuming for a user, but they are not
interactive, that is, they do not allow the user of the resource to make changes in the
process of computation until some task is completed. As a result, interaction goes
in quanta of actions. A mathematical model for such style of computation is given
by persistent Turing machines (Goldin and Wegner, 1988). Agent technology allows
interference, but it is mediated as changes are executed only by the agent performing
the task.

Access to an open resource can be given in three forms: autonomous access when
the resource is given exclusively to one user; shared access when several users, in-
cluding the resource owner, can use the same resource; free access when anybody
can use this resource.

Problems with open resources are numerous. Now many hackers, spammers and
others break into people’s unprotected computers and use their resources without
permission. They can even damage resources — local and remote.

Damaging resources happened for centuries — since the times of the first hu-
man society when brute force ruled. However, this state of affairs demonstrated
many shortcomings and proved to be an obstacle to progress. Consequently, the rules
changed and now society more or less protects its members from damage. Similar
situation will come to the world of computers and networks. This means people’s as-
sets — computers and networks, software and databases — will be better protected
around the world. People will be able to decide for themselves how to use their com-
puting resources, that is, making them open to others or not, and when making them
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open, people will chose how they open a resource (for free, for rent or for lease).
Thus, it will be necessary to be able not only to open resources, but also close defi-
nite resources and to regulate access to them.

The open resource technology allows us to change and to extend the concept of a
subroutine. Now a subroutine is a specifically organized sequence of instructions in a
program for performing a separate task. This allows the subroutine code to be called
from multiple places of the program, even from within itself, in which case the form
of computation is called recursive. In a grid array or automaton, it is not necessary
to have a subroutine as a part of a program P . A virtual subroutine may be a part of
a different program, which in turn may be at a different computer or node than the
program P that uses this subroutine.

Using agent technology, we can aggregate computers that use different devices
and programs from the grid into one virtual computer system. This approach ex-
tends the concept of reconfigurable computer, synthesizing it with the idea of cluster
computer. In turn, virtual computers may be combined into a virtual network or grid.

Grid automata are sufficiently powerful to model different algorithmic structures.
It is evident when a grid automaton contains such structure as a node. However,
even with much weaker nodes grid automata are able to simulate advanced types of
algorithms. For example, results of (Minsky, 1967) imply the following theorem.

Theorem 4.4.6. For any finite automaton A, there is a grid automaton G that has
only Boolean elements as nodes and simulates A.

Results of Siegelman and Sontag (1995) imply the following theorem.

Theorem 4.4.7. For any Turing machine T , there is a grid automaton G that has
only neurons with rational weights as nodes and simulates T .

Theorem 4.4.6 and results from (Trahtenbrot, 1974) imply the following theorem.

Theorem 4.4.8. For any Turing machine T , there is a grid automaton G that has
only Boolean elements as nodes and simulates T .

The difference between the grid automata from Theorems 4.4.7 and 4.4.8 is that
that automaton in the first theorem may have finite number of nodes, while the au-
tomaton from the second theorem is potentially infinite.

Definition 4.4.5. A grid automaton or array G has output exchange if its nodes can
exchange their final outputs.

This condition is not trivial because there are different cases when grid arrays do
not satisfy it. For example, due to time limitations, it becomes impossible for a node
to send its final result to other nodes. Namely, it is possible that some cluster of com-
puters is set up to solve some very complex problem for a definite period of time,
say, for ten days. Each of the computers from the cluster has its own subproblem.
Because these subproblems have different complexity, it is likely that some comput-
ers from the cluster would not be able to finish their work in ten days, obtaining the
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final result. As a consequence, they will not be able to send their final results to other
computers from the cluster. So, the grid array that corresponds to this cluster lacks
the property of output exchange.

Let us consider a network of computers, servers, gadgets, embedded and other
electronic devices that is monitoring environment in some region, producing ecolog-
ical information. This network is a grid array. However, its nodes get, as a rule, only
intermediate or partial results. Even if the monitoring period is limited, the nodes
cannot exchange their final results because when they obtain these results the net-
work stops functioning. Besides, there are networks that are organized so that the
final result of their nodes can go only outside the network. As a result, they do not
satisfy the condition from Definition 4.4.4.

Nevertheless, there are many grid arrays and grid automata that model them in
the form of networks or clusters that have the output exchange. Actually, all classi-
cal models of distributed computation (artificial neural networks, cellular automata,
iterative arrays, and Petri nets) have this property. For grid automata with output
exchange, we have the following result.

Theorem 4.4.9. For any inductive Turing machine M of order n, there is a grid
automaton G with output exchange that has only inductive Turing machines of the
first order as nodes and simulates T .

All mathematical models of distributed computation, including such popular
structures as neural networks, Petri nets, systolic arrays, iterative arrays, and cellular
automata, are synthesized in the concept of grid automaton.

In comparison with cellular automata and iterative arrays, a grid automaton can
contain different kinds of automata. For example, finite automata, Turing machines
and inductive Turing machines can belong to one and the same grid. In comparison
with systolic arrays, connections between different nodes in a grid automaton can be
arbitrary like connections in neural networks. In comparison with neural networks, a
grid automaton contains, as its nodes, more powerful machines than finite automata.
Consequently, neural networks, cellular automata, and systolic arrays are kinds of
grid automata. While functioning of cellular automata and systolic arrays is com-
pletely synchronous, grid arrays have different modes of functioning. Petri nets are
grid automata in which there are nodes of two kinds: nodes of the first type only store
information (places), while nodes of the second type only transmit and/or produce
information (transactions).

It is possible to consider extended grid arrays in which there are nodes that are
not technical devices. For example, it is possible to include people that work with
the terminals of the grid as nodes of such a generalized grid array. Other dynamical
systems may be also nodes in a generalized grid array. For example, the atmosphere
of the Earth may be a node of the weather forecasting grid. Moreover, the whole
environment of some grid array may be considered as a node in the extended grid
array. This is an example of a closed extended grid array. Grid arrays and automata
can have a hierarchical structure, containing nodes that are also grid automata or
arrays.
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As any separate computer or, in more generality, any information processing sys-
tem can be treated as a degenerate grid array, all previous considerations allow us to
formulate the following conjecture.

Any information processing system can be modeled by an extended grid au-
tomaton.

As experts predict (Wladawsky-Berger, 2002), the Grid with its universal con-
nectivity and reach, will bring together the qualities of service that people are used
to in computing, networking, communication and the qualities of service that we all
have gotten used to in utilities like electricity, telephone, our transportation system,
all of which tend to be up all the time. The theory of grid automata is aimed at ac-
quiring knowledge on the Grid and using this knowledge for Grid development and
advanced safe utilization.
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Superrecursive Algorithms: Problems of Efficiency

[Alice] went on. “Would you tell me, please,
which way I have to go from here?”

“That depends a deal on
where you want to get to,” said the Cat.

Lewis Carroll, 1832–1898

Efficiency is a clue problem and a pivotal characteristic of any activity. Inefficient
systems are ousted by more efficient systems. Consequently, problems of efficiency
are vital to any society and any individual. Many great societies, Roman empire,
British empire and others perished because they had become inefficient. However,
there are many different criteria of efficiency, and to understand this important and,
at the same time, complex phenomenon, it is necessary to use mathematical methods.

Although a high level approach is suggested for mathematical modeling of ef-
ficiency and complexity, the aim of this chapter is not a general development of
the theory of complexity and its applications to measuring efficiency, but a study of
complexity of superrecursive algorithms, mostly, inductive Turing machines, demon-
strating that they are essentially more efficient than recursive algorithms.

In this chapter, we consider the following problems:

♦ What are the relations between efficiency and complexity of algorithms (Sec-
tion 1)?

♦ What is complexity of algorithms and why it is so important (Section 1)?
♦ What is the general situation with mathematical models of complexity, their ori-

gin, and problems of classification of measures of complexity (Section 1)?
♦ What resources are necessary for functioning of a given algorithm or program

(Section 2)?
♦ How are the minimal resources that are necessary for solving a given problem to

be found (Section 3)?
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5.1 Measures of computer efficiency, program complexity,
and their mathematical models

“While you are refreshing yourself,” said the Queen.
“I’ll just take the measurements.”

Lewis Carroll, 1832–1898

The mathematical model of efficiency for algorithms and computation is called com-
plexity. However, the term complexity has a wider meaning. Today complexity has
become one of the most popular and important notions in science and society. It is a
frequent word in present day’s scientific literature, in various fields and with diverse
meanings, appearing in some contexts as a precise concept, while being a vague idea
in others texts. The reason is that people study and create more and more complex
systems.

As Wakefield (2001) writes,

Many companies are increasing profits and efficiency by implementing
software based on complexity science, a broad field that includes chaos
theory. . . .
Complexity researchers use genetic algorithms, artificial neural networks,
and other tools to create models of real world systems ranging from steel
production to immune system. A variety of companies such as Bios Group,
i2 Technologies, Prediction, and Artificial Life are developing complexity
applications for the business world.

This directly refers to computers and computer programming. As stated by the
ironic Seventh Law of Computer Programming, program complexity grows until it
exceeds the capabilities of the programmer who must maintain it. To cope with such
situations, we need a developed theory of complexity, which explains why and how
complexity emerges and how to solve problems that involve very complex systems.
This is especially true for computers, networks, and their software.

At the same time, there is no generally accepted, formalized, and unique def-
inition of complexity. Complexity has proved to be an elusive concept. Different
researchers in different fields are bringing new philosophical and theoretical tools to
deal with complex phenomena in complex systems. “What is complexity?” is a basic
question of Gell-Mann (1994; 1995; 1996). However, after many elaborate consid-
erations and creative insights, he comes to a conclusion that “a variety of different
measures would be required to capture all our intuitive ideas about what is meant by
complexity and by its opposite, simplicity.”

Mathematics develops its own approach to this concept by elaboration of differ-
ent mathematical structures for measuring complexity and studies these structures
by exact methods. Here we are mostly interested in mathematical measures of com-
plexity.
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5.1.1 Tractability, efficiency, and complexity

Freedom is the right to do
whatever the laws permit.

Charles Montesquieu, 1689–1755

Problems of algorithmic efficiency were formulated as being among the most im-
portant issues from the very beginning of the theory of algorithms and computation.
In their seminal works, founders of computer science Gödel (1931; 1934), Church
(1936; 1941), Turing (1936), and Post (1936; 1946) discussed what could be ef-
fectively solved by algorithms, or more exactly, by those mathematical models of
algorithms that they had suggested? In fact, some of them went beyond that.

In his Hixon Symposium lecture, von Neumann (1951) voiced the need for a
study of computation complexity:

Throughout all modern logic, the only thing that is important is whether a
result can be achieved in a finite number of elementary steps or not. The size
of the number of steps that are required, on the other hand, is hardly ever a
concern of formal logic. Any finite sequence of correct steps is, as a matter
of principle, as good as any other. It is a matter of no consequence whether
the number is small or large, or even so large that it couldn’t possibly be
carried out in a lifetime, or in the presumptive lifetime of the stellar universe
as we know it. . . . [On the other hand] in the case of an automaton the thing
which matters is not only whether it can reach a certain result in a finite
number of steps at all but also how many such steps are needed.

There is evidence that von Neumann discussed these problems with other re-
searchers. For example, (cf. Hemaspaandra and Ogihara, 1998), in a rediscovered
1956 letter to von Neumann, Gödel focused not only on the importance of the num-
ber of steps a Turing machine may need to perform a certain task (deciding whether
a formula has a proof of a given length), but also used two particular polynomial
bounds (linear and quadratic) as examples of efficient computation, in contrast with
exhaustive search. However, there is no evidence that Gödel or somebody else at that
time ever followed up on the issues that Gödel had raised.

One kind of efficiency is related to the number of problems solved by an al-
gorithm. This characteristic is related to the power of algorithm considered in Sec-
tion 2.2.

Definition 5.1.1. The more problems can be solved by an algorithm, the more poten-
tially efficient is this algorithm.

However, it is important not only to know that it is possible to solve some prob-
lem P in principle, but also to be able to find a relevant solution in practice. Such
problems for which the latter is possible are called tractable. Tractability of a prob-
lem is a relative property, being dependent on the algorithms that are used for solu-
tion. This gives us a definition for pragmatic efficiency of algorithms.
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Definition 5.1.2. The more problems are tractable for an algorithm, the more prag-
matically or functionally efficient is this algorithm.

Thus, pragmatic efficiency of an algorithm depends on two parameters: power of
the algorithm (cf. Section 2.2) and resources that are used in the process of solution.
If an algorithm does not have necessary resources, it cannot solve the problem under
consideration. Thus, we come to the concept of resource efficiency of algorithms.

Definition 5.1.3. The fewer resources an algorithm uses for solution of a problem (of
problems from some class), the more resource efficient is this algorithm with respect
to this problem (class of problems).

One more kind of efficiency is related to the quality of solution.

Definition 5.1.4. The better solution for problems gives an algorithm, the more mis-
sion efficient is this algorithm.

Reliability, exactness, and relevancy are examples of mission efficiency.
Although Definitions 5.1.1–5.1.4 introduce precise concepts, they do not provide

mathematical models to study efficiency by mathematical means, which are more
powerful than empirical. Thus, we need a mathematical model for efficiency and
such model is given by the mathematical concept of complexity of algorithms. Com-
plexity is a mirror reflection of efficiency: the more efficient is an algorithm A for
a problem P (problems from K ), the less complex is P (are problems from K ) for
A. Mathematical models of complexity allow one to measure efficiency of various
algorithms.

From a general perspective, it seems that complexity is not connected to effi-
ciency. However, if we analyze what does it mean when we say that some system
or process is complex, we come to conclusion that it is complex to do something
with this system or process: to study it, to describe it, to build it, to control it, and
so on. Thus, complexity is always complexity of doing something. Being related to
activity and functioning, complexity allows one to represent efficiency in a natural
way: when a process has high efficiency, it is simple and when a process has low
efficiency, it is complex. For example, we can take time as a measure of efficiency:
what is possible to do in one hour is efficient, while what is impossible to do even in
a year is inefficient. There is a corresponding measure of computational complexity
that estimates time of computation or any other algorithmic process.

These considerations allow us to give an informal definition of complexity. For-
mal definitions for different kinds of complexity measures of algorithms are studied
in Sections 5.2 and 5.3.

Definition 5.1.5. Complexity of a system R is the amount of resources necessary for
(used by) a process P involving R.

There are different kinds of involvement.
P may be a process in the system R. For example, R is a computer, P is an

electrical process in R, and the resource is energy.
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P may be a process that is realized by the system R. For example, R is a com-
puter, P is a computational process in R, and the resource is memory.

P may be a process controlled by the system R. For example, R is a program, P
is a computational process controlled by R, and the resource is time.

P may be a process that builds the system R. For example, R is a software sys-
tem, P is the process of its design, and the resource is programmers.

P may be a process that transforms, utilizes, models, and/or predicts behavior of
the system R.

In cognitive processes complexity is closely related to information, representing
specific kind of information measures.

Processes use different kinds of resources:
Natural resources consumed by a process P: time, space, information, energy,

power, minerals, and so on.
Social resources consumed by a process P: people involved, their time, efforts,

expertise, knowledge, and so on.
Artificial resources consumed by a process P: system time, system space, data,

knowledge, memory, system units, system actions, and so on.
If it is impossible to solve a problem with given resources, we assume that it

has infinite complexity. The halting problem (cf. Section 2.5), being restricted to
recursive algorithms, may be an example of a problem with infinite complexity since
we know that it has no solution.

Pager (1970) defines efficiency of computation as the value that is inversely pro-
portional to complexity of the same computation.

Definition 5.1.5 implies that complexity is always complexity of doing something
and although complexity is attributed to a system, it is an essential characteristic
of a process and of an algorithm if the process is determined by an algorithm. As
we study algorithms here, only measures of algorithm complexity are considered.
However, it is possible to extend the constructions of such measures to complexity
of arbitrary processes and through processes to arbitrary systems. For instance, if we
take some nonalgorithmic process, such as cognition, then it is possible to measure
its complexity by the amount of resources this process needs.

It is necessary to have different complexity measures to estimate complexity of
different processes, and even one process or system may be characterized by several
complexity measures. For example (Gell-Mann, 1995), complexity of working with a
model depends on the coarse graining (level of detail) of the description of the entity,
on the previous knowledge and understanding of the world that is assumed, on the
language employed, on the coding method used for conversion from that language
into a string of bits, and on the particular ideal computer chosen as a standard. It is
possible to consider these characteristics separately or to build an integral measure.

Some justly assume that the complexity of a problem is a subjective matter. For
instance, we can consider a problem related to some system R: to build R, to test
R, to increase power of R and so on. Two people having different models or views
of the system, different algorithms for dealing with such systems, and even different
will to solve the problem in question will have different ideas of the complexity of
solving this problem. Waxman (1996) gives the following example. A problem with
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a car not starting might be very complex for a high-qualified mathematician, but not
for the corner mechanic. On the other hand, solving a system of five linear equations
with five variables will be simple for the mathematician and very complex for the
corner mechanic.

As Grassberger (1990) writes, “effective complexity and total information em-
phasize the subjective nature of complexity as a relationship between natural phe-
nomena and an interested observer. Complexity is more in the way that phenomena
are observed (that is, the model used) than in complicate elaborations made after
the model has been imposed.”

Relativity of complexity is perfectly demonstrated by the following joke.
A Mathematician (M) and an Engineer (E) attend a lecture by a Physicist. The

topic concerns Kaluza–Klein theories involving physical processes that occur in
spaces with dimensions of 11, 12 and even higher. The M is sitting, clearly enjoying
the lecture, while the E is frowning and looking generally confused and puzzled.
By the end the E has a terrible headache. At the end, the M comments about the
wonderful lecture.

E says, “How do you understand this stuff?”
M: “I just visualize the process.”
E: “How can you POSSIBLY visualize something that occurs in 11-dimensional

space?”
M: “Easy, you first visualize it in an n-dimensional space, then let n go to 11.”
Mathematics makes subjective complexity objective introducing various criteria

for complexity. For instance, a problem A is complex because its solution demands
a huge amount of memory, while a problem B is complex because its solution in-
volves performance of a huge amount of operations. Consequently, the problem A
is complex for a computer with small memory, but it is simple for a computer with
big memory. At the same time, the problem B is simple for a high performance
computer, but is complex for an ordinary computer.

Definitions 5.1.3 and 5.1.5 imply that higher complexity corresponds to lower
efficiency and lower complexity corresponds to higher efficiency. This implication
looks somewhat inconsistent with our everyday experience. We can see that in many
cases complex systems are more efficient than simple systems. For instance, com-
puters becoming more complex work with higher efficiency: they can solve more
problems, do this in a better way and in less time, as a rule.

However, this is only an imaginary inconsistency because when we estimate
complexity and efficiency of computers, we compare computers by different cri-
teria. Thus, becoming more complex in structure, computers become simpler in in-
teraction, problem solving and decision making. This shows that to model efficiency
using complexity measures, we need many different complexity measures and have
to choose such measure to correctly reflect the kind of efficiency we want to mea-
sure. Efficiency of computation influences what is possible to do in practice from
theoretical or ideal processes.

Many properties of systems are related to and depend on complexity. For ex-
ample, Carlson and Doyle (2002) investigate relations between complexity and ro-
bustness in biological, social, economical, and engineering systems. They show a
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nontrivial interplay of these important properties. Manin (1991) suggests that the
development of mathematics, and we would like to add, of science is directed by
complexity issues. The reason is that simpler systems are more feasible for cogni-
tion. So, cognition goes from simple things to more and more complex ones. In the
past, mankind has learned to understand reality mostly through simplification and
analysis, ignoring a huge number of factors and details. That is why, for example,
physics is more developed than biology: biological systems are much more complex
than physical systems.

5.1.2 Structures of algorithmic complexity measures

All opinions, properly so called,
are stages on the road to truth.

Robert Louis Stevenson, 1850–1894

To systematize complexity measures, we consider three types, three classes, and
three kinds of complexity measures.

There are three types of complexity measures: static, dynamic, and processual
complexity measures.

Definition 5.1.6. Static complexity measures depend only on an algorithm or pro-
gram that is measured.

As examples, we can take such measures as the length of an algorithm, which is
equal to the number of symbols in its description (Li and Vitanyi, 1996) or numbers
of instructions in a program as all computer programs are algorithms.

As it is mentioned above, complexity of software grows with a very high rate.
To cope with this situation, the theory of programs has been introduced (Halstead,
1977). The core of this theory is program measurement by means of software metrics
(Zuze, 1999). Software metrics are designed and used to evaluate software, software
development resources, and/or the software development process.

Software metrics give much more examples of static complexity measures. Let
us consider some of them.

Example 5.1.1. The Lines of Code:
In 1974 Wolverton made one of the earliest attempts to formally measure pro-

grammer productivity using lines of code (LOC). Studies have shown that the count
of the number of lines of code can indicate an estimate of the complexity of under-
standing of a program (Harrison et al., 1982; Park, 1992; Debnath et al., 2002). The
LOC metric is discussed and used till today. It may be computed by counting the
number of executable source code lines in a program.

A code line may be considered as an elementary unit of a program or in other
words, formally programs are words in the alphabet consisting of code lines. From
this perspective, LOC is such a very popular static complexity measure as the length
l(P) of a program.
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Example 5.1.2. The Length of Program:
In his book Elements of Software Science (1977), Halstead considers several soft-

ware metrics. The first of them is the length of the program N(P). In Software Sci-
ence, a computer program is considered to be a sequence of tokens, which are di-
vided into groups of operators and operands. The basic metrics in software science
are functions of the counts n1 of the unique operators and n2 of the unique operands,
as well as the total occurrences of operators N1 and of operands N2. The simplest of
such function is the length of the program N(P) which is defined as

N(P) = N1 + N2.

This metrics can also indicate an estimate of the complexity of writing and stor-
ing a program (Halstead, 1977; Christensen et al., 1982).

Example 5.1.3. The Volume of Program:
Another software metrics suggested by Halstead is the volume of the program

V(P). It is defined by the formula

V(P) = (N1 + N2) · log(n1 + n2).

Example 5.1.4. The Cyclomatic Number:
The complexity measure that was proposed based on the control flow graph

(CFG) model of a program P (McCabe, 1976) is called the cyclomatic number V(P)

of a program P and is defined by the formula

V(P) = e − n + 2,

where e is the number of edges and n is the number of nodes in the CFG of a pro-
gram P .

Definition 5.1.7. Dynamic complexity measures depend both on an algorithm or pro-
gram that is measured and on the input.

As examples, we can take such measures as the time of processing some given
data or the volume of memory that is demanded by this algorithm or program.

Definition 5.1.8. Processual complexity measures depend on an algorithm or pro-
gram, its realization, and on the input.

As examples, we can take such measures as the time of processing some given
data or the volume of memory that is demanded by this processing.

Proposition 5.1.1. For deterministic algorithm or program the dynamic and proces-
sual complexities coincide.

However, in nondeterministic cases, one algorithm or program can define differ-
ent processes, which demand different time or/and memory volume for realization.
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Proposition 5.1.2. Any static complexity measure generates a dynamic complexity
measure that is constant for all inputs of a given algorithm and any dynamic com-
plexity measure generates a processual complexity measure that is constant for all
realizations of a given algorithm.

Three classes of complexity measures are: axiomatic, semi-axiomatic, and con-
structive complexity measures. Constructive complexity measures are defined by
some construction that allows one to measure consumed resources. Examples are the
time of processing, which for an abstract algorithm is taken as the number of steps
of this algorithm, or the volume of memory, which for a Turing machine is taken as
the number of the cells in its tape that are used in a given computation. Axiomatic
complexity measures functions, which are defined by axioms, while semi-axiomatic
complexity measures involve both axioms and concrete constructions. In this setting,
the machine-independent computational complexity (Blum, 1967a) and the size of
machine (Blum, 1967), that are presented in Section 5.2, are semi-axiomatic com-
plexity measures because they involve definite constructions of models of algorithms
(such as Turing machines or partial recursive functions. At the same time, complex-
ity measures from (Burgin, 1982) are axiomatic because they are defined for classes
of algorithms specified by axioms (cf. Sections 5.2 and 5.3).

There are three kinds of complexity measures: direct, dual, and mixed complex-
ity measures.

Computational complexities, time, space and others, are direct complexity mea-
sures. Kolmogorov, communication, and prefix complexities are dual complexity
measures.

The effective measure of complexity as suggested by Grassberger (1990) is an
example of a mixed complexity measure. The value of the effective measure of com-
plexity of a sequence of symbols is defined as the relative memory required to cal-
culate the probability distribution of for the next symbol of the sequence. This value
represents the “average usable part of the information about the past which has to be
remembered at any time if one wants to be able to reconstruct the sequence X from
its shortest encoding.”

Another example of a mixed complexity measure is the logical depth introduced
by Bennet (1985). The logical depth of a string is defined as the computational com-
plexity of the shortest program that produces it. For example if we take time as the
computational complexity, then instead of estimating the time taken by the fastest
algorithm, first the shortest program has to be found and later its time calculated.
The principle of Occam’s razor justifies this notion. Really, for a finite sequence of
symbols found in nature, it is most likely that it has been produced by the simplest
program, and for practical purposes, we can just assume that that is the case (Funes,
1996).

There is an interesting trade-off between different kinds of complexity. For ex-
ample, in computation, it is possible in some cases to use more memory for program
execution, decreasing the time of execution, or to use less memory, paying for with
more time. Highly optimized tolerance (HOT) is one recent attempt, in long history
of efforts, to develop a general framework for studying complexity in such fields as
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biology and engineering (Carlson and Doyle, 2002). The main idea of HOT is that
higher structural complexity of a system (more complex for construction, modeling
or understanding) is aimed at decreasing behavioral or functioning complexity of a
system (simpler maintenance, less changes under external influence and so on). This
shows how a trade-off between structural and behavioral complexity can inspire the
development of systems.

However, here we are not going to develop much further the general theory of
complexity. Our goal is to use the general approach developed in (Burgin, 1983;
1985a; 1990; 1992b) for building a theory of complexity for superrecursive algo-
rithms with the main emphasis on inductive Turing machines. This allows us to
demonstrate that inductive Turing machines are essentially more efficient than con-
ventional Turing machines and other recursive algorithms.

5.2 Computational complexity: Axiomatic approach
and specific measures

Any given program costs more and takes longer.

The First Law of Computer Programming

As Goldreich (2001) writes, computational complexity (also known by the name
Complexity Theory) is a central field of computer science with a remarkable list
of celebrated achievements as well as a very vibrant research activity. The field is
concerned with the study of the intrinsic complexity of computational tasks, and this
study tends to aim at generality: it focuses on natural computational resources, and
considers the effect of limiting these resources on the class of problems that can be
solved.

The first known to the Western reader papers on computational complexity were
(Rabin, 1959; 1960; 1963a) and (Hartmanis and Stearns, 1964; 1965). However, ear-
lier Trahtenbrot (1956) and Zeitin studied computational complexity in Russia (cf.
Yanovskaya, 1959).

The (half-century) history of computational complexity, although it has become
only a part of the Complexity Theory, has witnessed two main research efforts (or
directions). The first direction is aimed towards actually establishing concrete lower
bounds on the complexity of problems, via an analysis of the evolution (or effect) of
the process of computation. Goldreich calls this direction is a “low-level” analysis of
computation. Most research in circuit complexity, analysis of computational opera-
tions, such as number and matrix multiplication or division, and in proof complexity
falls within this category. In contrast, the goal of the second research effort is explo-
ration of the connections among computational problems and constructions, with an
interest to individual problems being related only when such problems represent the
corresponding class.
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5.2.1 Axiomatic complexity measures

Thinking is the desire to get reality by means of ideas.

Jose Ortega Y Gasset, 1883–1955

The first person to introduce an axiomatic approach to complexity measures was
Blum (1967; 1967a). He defined static complexity measures in the form of the size
of machine (1967) and dynamic complexity measures the form of computational
complexity (1967a). These measures are defined by natural axioms for classes of
algorithms that are determined by some construction. Far reaching development of
these constructions is given in (Burgin, 1982) where both complexity measures and
classes of algorithms are defined by axioms.

Let A = {Ai ; i ∈ I } and B = {B j ; j ∈ J } be some classes of algorithms.
Algorithms can be presented in the form of machines or automata or in the form
of programs (sets of instructions or arbitrary words as in the case with Turing ma-
chines).

Definition 5.2.1. A function Sc : I → N is called an axiomatic static complexity
measure of algorithms from A (with respect to B) if the following conditions are
satisfied:

Totality Axiom (TA). Sc(i) is a computable in A (in B) total function.

Inverse Constructibility Axiom (IBA). For all i ∈ I , the value of the inverse func-
tion Sc−1(i) is a finite set with an effective procedure (in B) that builds all its ele-
ments.

An effective procedure here means an algorithm. Such an algorithm may be re-
cursive, subrecursive or superrecursive. It gives three types of static complexity mea-
sures. The most restricted are the classes of axiomatic static complexity measures
that allow to use only subrecursive algorithms for reconstruction of the inverse func-
tion Sc−1(i). When we can use recursive algorithms, the scope of static complexity
measures is extended. Superrecursive algorithms extend static complexity measures
even more.

For the class A = B = R of all recursive algorithms, the axiomatic static com-
plexity measure of algorithms is the size of machines as introduced by Blum (1967).

Defining size of machines (static complexity measure) for the class R of all re-
cursive algorithms, Hartmanis and Hopcroft (1971) instead of axiom (IBA) use the
following axiom:

Finite Computability Axiom (FCA). There is a recursive function that calculates
the number of elements for each set Sc−1(i).

When the set A is recursively computable and effective procedure means a recur-
sive algorithm, then FCA is equivalent to IBA.

Example 5.2.1. Let A consists of algorithms generated by a Turing machine W with
two input tapes. One tape is used for data, while the content of the second tape is
considered as a program for computation. Each program for W is an algorithm from
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A. Then the length l(p) of this program p is a static complexity measure for Turing
machines from A.

Example 5.2.2. Let A consists of all Turing machines. Each Turing machine T has
a description c(T ). Then the length l(c(T )) of this description c(T ) is a static com-
plexity measure for Turing machines.

Example 5.2.3. Let A consists of all programs, which are written in some program-
ming language (e.g., Java or FORTRAN). Then the length l(p) of a program p as the
number of letters (or as the number of words) in p is a very popular static complexity
measure.

Such axiomatization of static measures works well for the theory of algorithms.
However, applications of complexity theory in such fields as software engineering
(Burgin, 1985a; Fenton, 1991), demand more general axioms. Thus, we introduce
a more extended classes of reconstructible and computable static measures, which
satisfy axioms TA and IGA or ICA instead of IBA.

Inverse Generability Axiom (IGA). For all i ∈ I , there is an algorithm in A (in B)
that builds all elements from Sc−1(i).

Computability Axiom (ICA). For Sc−1(i) is a computable in A (in B) total function.

All measures defined by Definition 5.2.1 will be called finite reconstructible
static measures.

Remark 5.2.1. A static measure Sc(i) may be finite, that is, for all i ∈ N , Sc−1(i) is
a finite set, but it can be noncomputable even in such powerful class as the class R of
recursive algorithms, in particular, the class of all Turing machines. However, Sc(i)
can be inductively computable (Burgin, 1983).

Software metrics (cf. Section 5.1.2) give different examples of axiomatic static
measures of complexity.

Example 5.2.4. When the length of a line is bounded (and this is true for all program-
ming languages as compilers demand this restriction), then the software metrics LOC
is a finite reconstructible static complexity measure as it satisfies axioms (a) and (b)
from Definition 5.2.1.

Example 5.2.5. Describing a program formally as a sequence of operators and oper-
ands, we see that the length of program N(P) (Halstead, 1977) is also a static com-
plexity measure, namely, the length l(P) of a program. For a programming language
in which the numbers n1 of the unique operators and n2 of the unique operands are
finite, N(P) is a finite reconstructible static complexity measure as it satisfies axioms
(a) and (b) from Definition 5.2.1. However, some languages (at least, potentially) op-
erate with infinite alphabets of operands, for example, with all real numbers. There
are also theoretical models in which there are infinitely many unique operators. In
such cases, N(P) is not a finite complexity measure. If the sets of operands and
operators are computable, then this measure is also computable.
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Example 5.2.6. When it is defined, the volume of the program V(P) (Halstead, 1977)
is always a finite reconstructible static complexity measure.

Example 5.2.7. Representing a program formally as a structure of operators and
operands, we can demonstrate that the cyclomatic number V(P) (McCabe, 1976)
is a static direct complexity measure.

Let A = {Ai ; i ∈ I } be a class of algorithms with the domain DA . Usually, DA
is the set X∗ of all words in some alphabet X . Each algorithm Ai from A determines
a function fi such that Ai (x) = fi (x) for any x from the domain DA. In particular,
fi (x) is defined if and only if Ai (x) is defined.

Definition 5.2.2. A function Fc : DA × I → N is called an axiomatic computational
complexity of algorithms from A (with respect to B) if the following conditions are
satisfied:

(a) Fc(x, i) is a computable in A (in B) function;
(b) for any x from the domain DA and any i ∈ I , Fc(x, i) is defined if and only if

fi (x) is defined.

Examples are given by such popular measures of computational complexity as T
(time) and S (space).

Definition 5.2.3. Time complexity T(x, i), or T(x, T i), of the computation of a Tur-
ing machine Ti with the input x is equal to the number of steps that Ti makes until it
halts and gives a result.

Remark 5.2.2. This function T(x, i) gives an efficient model for Turing machines,
but in order to be applied adequately to real information processing systems, it need
to be either enhanced or based on a correct interpretation. An enhancement exam-
ple is a correspondence between model or system time, in which all operations take
the same unit of time (e.g., nanosecond) for execution, and physical time, in which
different operations take different time units for execution. Taking this into account,
each type of operation is assigned its own realization time. An example of a correct
interpretation is given by a relevant class of functions (for example, functions that
are bounded by polynomials) that allows one to stay inside this class for arbitrary
transformations of the system time into the physical time.

Definition 5.2.4. Space complexity S(x, i), or S(x, Ti ), of a Turing machine Ti is
equal to the number of cells used in the computation of Ti with the input x until it
halts and gives a result.

When algorithms work with words in some alphabets, the resources for compu-
tation are usually estimated not for separate words, but for sets of words that have
the same length n. For example, the most popular definition of time complexity is
the following.



216 5 Superrecursive Algorithms: Problems of Efficiency

Definition 5.2.5. Time complexity T(n, i), or T(n, Ti ), of the computation of a Tur-
ing machine Ti is equal to t if whenever Ti is given an input x of length n the number
of steps that Ti makes until it halts and gives a result is equal to t , or in other words,
T(n, Ti ) is equal to the maximal time that Ti needs to process words of the length n.

In a similar way, space complexity S(n, Ti ) is defined.

Definition 5.2.6. Space complexity S(n, i), or S(x, Ti ) of the computation of a Tur-
ing machine Ti is equal to the maximal space (number of cells) that Ti needs pro-
cessing words of the length n.

This are the, so-called, worst-case time and space complexity measures.
Sometimes instead of the worst case, the average case is considered.

Definition 5.2.7. Average time complexity AT(n, i), or AT(n, Ti ), of the computa-
tion of a Turing machine Ti is equal to the average number of steps t that Ti makes
until it halts and gives a result is equal to t with respect to all inputs x of length n.

Prager (1970) introduces a space-time complexity that combines time and space
complexities in one unified measure of complexity. The space-time complexity mea-
sure is defined as some increasing recursive function from time and space complexity
measures.

To give a general definition of dynamic computational complexity, we consider
some finite integral operation W (Burgin and Karasik, 1976).

Definition 5.2.8. An integral operation W on the set R of real numbers is a mapping
that corresponds a number from R to a subset of R, and for any x ∈ R, W ({x}) = x .

Definition 5.2.9. A finite integral operation W on the set R of real numbers is a
mapping that corresponds a number from R to a finite subset of R, and for any
x ∈ R, W ({x}) = x .

As a rule, integral operations are partial. That is, they correspond numbers only
to some subsets of R.

Examples of integral operation include finite sums, products, minimums, maxi-
mums, infinums, supremums, integrals, taking the first element from a given subset,
taking the sum of the first and second elements from a given subset, and so on.

Examples of finite integral operation are: sums, products, minimums, maximums,
average, weighted average, taking the first element from a given subset, and so on.

Let W be a finite integral operation.

Definition 5.2.10. A function Fc : DA × I → R+ is called an axiomatic compu-
tational W -complexity of algorithms from A (with respect to B) if the following
conditions are satisfied:

Fc(n, i) = W {Fc(x, i); l(x) = n; i ∈ I }
where Fc(x, i) is an axiomatic computational complexity of algorithms from A.
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Taking the operation maximum as W , we get a worst-case complexity. Taking the
operation average as W , we get an average complexity.

Starting in the 1960s, computer scientists, unaware of von Neumann’s lecture
and Gödel’s letter and their musings in this direction (cf. Hemaspaandra and Ogi-
hara, 1998; and Section 5.1.1), began to investigate which problems can be efficiently
solved by computers. The theory of P and NPand indeed complexity theory itself,
sprang from this search for a better understanding of the limits of feasible computa-
tion. The notion that polynomial time deterministic algorithms form the right class
to represent feasible computation was suggested by Cobham (1964) and Edmonds
(1965). One of the main reasons for this was theoretical advantages of the class of
all polynomials P . Namely, the growth of polynomials is relatively slow. In addition,
the class of all polynomials P is closed under composition (thus allowing subrou-
tine calls in the sense that a polynomial-time machine making subroutine calls to
polynomial-time subroutines yields an overall polynomial-time procedure), addition,
and multiplication. These features support the claim that P is a reasonable resource
bound. The view that P loosely characterizes “feasibility” is now widely accepted.

However, one might argue that an algorithm that runs for 101010
n1010

steps on
inputs of size n is not practical. There are problems for which it is proved that they
require high-degree polynomial algorithms. Some of them are artificial like cat-and-
mouse games and pebbling problems (Adachi, Iwata, and Kasai, 1984), while others
are quite natural like membership problem for permutation groups (Furst, Hopcroft,
and Luks, 1980) or robotics configuration space problems (Schwartz and Sharir,
1983). Besides, many natural problems are known to have superpolynomial lower
bounds. For example, Meyer and Stockmeyer (1972) and Fischer and Rabin (1974)
show, respectively, problems that require exponential space and double exponential
nondeterministic time.

It is possible to consider polynomial-time computations in different classes of
algorithms. For instance, taking as the base the set of all deterministic Turing ma-
chines, we come to the popular class P of all problems that have a deterministic poly-
nomial time solution. This class is widely thought to embody the power of reasonable
computation. Taking as the base the set of all nondeterministic Turing machines, we
come to another popular class NP of all problems that have a nondeterministic poly-
nomial time solution.

Nondeterministic algorithms are more efficient, in principle, than deterministic
algorithms as nondeterminism allows parallel processing (cf. Section 2.3). Conse-
quently, we have P ⊆ NP. However, one of the most illustrious problems at the turn
of twenty-first century is whether P = NP. Formally, it is denoted by “P = NP?”.

For the relative case, that is, for computations with an oracle (cf. Section 4.2),
we have a similar problem P f = NP f ? where P f the class of all problems that have
a polynomial time solution by a deterministic Turing machine with the advice f and
NP f the class of all problems that have a polynomial time solution by a nondetermin-
istic Turing machine with the advice f . This problem is solved. Namely, it is proved
(Baker, Gill, and Solovey, 1975) that there is an advice f such that P f = NP f and
there is an advice g such that Pg �= NPg . So, both possibilities can be true.
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Researchers have not been able to solve the problem “P = NP ?” for a definite
period of time (approximately, for thirty years). Besides, the solution is important for
Internet and computer security. Consequently, it has attracted attention of many re-
searchers. However, there is little understanding for this and other problems on com-
putational complexity that complexity of a problem depends on data representation
for this problem. As an example, we can take the satisfiability problem. It inquires
whether for a given Boolean function f (x) where x is a vector of Boolean variables
there is a binary vector a such that the value f (a) is equal to 1. Cook (1971) proved
that this problem is NP-complete. It means (cf. Definitions 5.2.15–5.2.18) that if it
might be possible to solve this problem in a polynomial time, then P = NP.

At the same time, the theory of Boolean functions implies that if a Boolean func-
tion f (x) has a normal disjunctive form, then the satisfiability problem is solved by
a deterministic Turing machine time that is linear in number of symbols in f (x). It
means that in this case, the satisfiability problem is solved in the lowest nontrivial
polynomial time.

However, the main goal here is not to solve separate problems but to build a
theory that allows one to efficiently solve a large portion of such problems. This is
a more effective way of developing science. For example, after Newton and Leib-
niz created differential and integral calculus, students began to solve such problems
that were previously difficult even for the best mathematicians. So, we proceed to
construct and systematize computational complexity measures.

Let us consider the following predicate

M(r, i, j, x) =
{

1, when Fc(x, i, j) = r;

0, when Fc(x, i, j) �= r.

Definition 5.2.11. A functional complexity measure Fc of algorithms from A is
called decidable in B if the predicate M(r, i, j, x) is decidable in B.

When A is the class T of all deterministic Turing machines, then a decidable in
T functional complexity measure Fc is an axiomatic computational complexity � =
{�i (n); i ∈ N} in the sense of Blum (1967a). It contains constructive computational
complexity measures such as time or space. When A is the class T of all deterministic
Turing machines, then Fc is an axiomatic computational complexity in the sense of
Burgin (1982).

This axiomatization works well for the theory of algorithms. However, to en-
compass other useful complexity measures, we need more general axioms. Thus, all
measures defined by Definition 5.2.2, will be called computable and we introduce
two other classes.

Definition 5.2.12. A function Fc : DA × I → N is called an axiomatic subcomputa-
tional (up-computational) complexity of algorithms from A (with respect to B) if the
following conditions are satisfied:

Computability Axiom (CA). Fc(x, i) is a computable in A (in B) function.
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Definability Axiom (CA). For any x from the domain DA and any i ∈ I, if Fc(x, i)
is defined, then fi(x) is also defined (if fi(x) is also defined, then Fc(x, i) is also
defined).

An example of a useful subcomputational complexity is the number rT (x) of
reversions made by the head of a one-tape Turing machine T in the process of com-
putation with the input x (Trahtenbrot, 1974). Really, if the Turing machine T gives
a result for the input x , then rT (x) is defined. However, it is possible that rT (x) is
defined, for instance, equal to zero, the machine T never stops and thus, gives no
result.

Let A = {Ai; i ∈ I} be a class of algorithms having the set X∗ of all words in an
alphabet X as their domain DU, J = ⋃

i∈I Ii, and PA = {pij; j ∈ Ii, i ∈ I} be the class
of processes determined by algorithms from A.

Definition 5.2.13. A function Pc: X∗ × I× J → N is called an axiomatic processual
complexity measure of algorithms from U if the following conditions are satisfied:

Computability Axiom (CA). Pc(x, i, j) is a computable in U function;

Definability Axiom (CA). For any x from the domain DU, any i ∈ I and any j ∈ Ii,
Pc(x, i, j) is defined if and only if the process pij(x) gives a result.

Proposition 5.1.2 cannot be proved for axiomatic computational complexity be-
cause the dynamic measure induced by a static one is always defined, while the
axiomatic computational complexity is not defined for those data for which the al-
gorithm give no result. A similar obstacle for axiomatic processual complexity mea-
sures does not allow extension of the second part of Proposition 5.1.2. However, we
can prove two slightly weaker results.

Proposition 5.2.1. a) If all algorithms from U give results for all inputs, then any ax-
iomatic static complexity measure generates an axiomatic dynamic complexity mea-
sure that is constant for all inputs of a given algorithm.

b) If all algorithms from U are deterministic, then any dynamic complexity mea-
sure generates a processual complexity measure that is constant for all realizations
of a given algorithm.

Proposition 5.2.2. a) Any static complexity measure generates a dynamic complexity
measure that is constant for all inputs of a given algorithm when this algorithm gives
a result.

b) Any dynamic complexity measure generates a processual complexity measure
that is constant for all realizations of a given algorithm when this realization gives a
result.

Remark 5.2.3. In some cases, it is more realistic to consider complexity measures
with values not only in integer numbers but in the whole domain of real numbers.
Average complexity (time, space, and so on) is an example when we need real num-
bers, or at least, rational numbers, to reflect properties of real computers and compu-
tations.
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If Gc is a computational complexity measure, K is a class of algorithmic prob-
lems, and Q is a class of algorithms, complete and hard problems for the class K
relative to the class Q are naturally introduced.

Definition 5.2.14. A problem p is called hard for the class K relative to the class Q
if any problem from K can be reduced to the problem p by some algorithms from Q.

Definition 5.2.15. A problem p that is hard for the class K relative to the same class
K is called K-hard.

It is possible to define the class Q as a complexity class. For example, Q is the
class of all algorithms the dynamic complexity measure Gc of which is bounded by a
function f or by some function from a class of functions F. It gives us the following
concept.

Definition 5.2.16. A problem p is called hard for the class K with respect to the
function f (to the class F) and the measure Gc if any problem from K can be reduced
to the problem p with complexity Fc less than or equal to f (to some function from
F).

Definition 5.2.17. A problem p from the class K is called complete for the class K
relative to the class Q if any problem from K can be reduced to the problem p by
some algorithms from Q.

In other words, complete problems for a class are hard problems that belong to
the same class.

Definition 5.2.18. A problem p that is complete for the class K relative to the same
class K is called K-complete.

Definition 5.2.19. A problem p is called complete for the class K with respect to the
function f (to the class F) and the measure Gc if any problem from K can be reduced
to the problem p with complexity Fc less than or equal to f (to some function from
F).

It is possible to find many examples of hard and complete problems, for example,
in (Balcazar et al., 1988) or (Hopcroft et al., 2001).

Some argue (cf., for example, Edmonds, 1999) that axiomatic complexity mea-
sures are too general to exact description of complexity, as they include many other
functions that are only formally related to algorithms. To eliminate this discrepancy,
we subdivide axiomatic complexity measures into three groups: abstract, general,
and proper.

Definition 5.2.20. Abstract complexity measures are abstract properties that reflect
essential features of resource estimation.

For example, axiomatic computational complexity measures reflect common fea-
tures of such popular measures as T (time) and S (space). These features allow one
to obtain many properties of complexity measures in an axiomatic setting and then
to apply these properties to a variety of proper, semi-axiomatic, and constructive
measures.
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Definition 5.2.21. General complexity measures are abstract properties that reflect
common features of resource estimation.

For example, we can chose some computational resource R (time, number of
steps, volume of memory, number of changes in the computation direction, number
of interactions and so on). Then the amount V i(R) of the consumed resource R is de-
termined for each step i of computation. Choosing an appropriate integral operation
I (Burgin and Karasik, 1976), we define the dynamic complexity measure cR related
to the resource R by the formula cR(A, x) = I(Vi (R); i = 1, . . . , r and A makes r
steps of computation being applied to x).

Here Vi (R) is the amount of the consumed resource R at the step i for all steps
of the computation of the algorithm A with the input data x .

Thus, cR(A, x) is a general dynamic complexity measure, allowing to obtain a
common structure for many popular complexity measures. For example, a natural
integral operation that gives relevant results for such measures as time (the measure
TA(x)) or interaction with external sources is summation, while a natural integral
operation for such measures as the memory size (the measure SA(x)) or number of
computers (computational cells) involved in performing one step of computation is
the operation max.

The concept of a computational resource can be also axiomatized by the follow-
ing construction.

Definition 5.2.22. Proper complexity measures are properties of resource estimation.

The most popular examples of proper complexity measures are the length l(P)

of a program, computation time TA(x) with input data x and memory space SA(x)

utilized by the computation.
Proper complexity measures are obtained from axiomatic complexity measures.

An axiomatic complexity becomes a proper complexity through some interpretation
of an axiomatic measure when this interpretation allows one to use it for resource
estimation. We consider interpretations related to resources of three types:

1. Resources of the mathematical model (such as time as the number of steps, mem-
ory as the number of tape cells and so on).

2. Resources of the modeled system (such as physical time, computer memory, the
number of utilized devices and so on).

3. External resources (such as cost of the computation, the number of personnel
used to organize computation, the number of programmers to write a program
and so on).

Specifications of axiomatic complexity measures are extensively used in soft-
ware engineering in a form of software metrics (Pressman, 1994). To find complex-
ity of a computer program, it is natural to use direct measures of complexity, which
determine resources used by this program. These measures applied to the realiza-
tional complexity of a program estimate on computational resources such as time for
computation, memory for program storage, memory for program functioning, num-
ber and types of computers, number and types of input/output devices, number and
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types of processors, and so on. Because there are many such measures, it is efficient
to study their properties in the axiomatic context. Direct complexity measures allow
one to assess functioning of different kind of software, for example, expert systems
(Burgin, 1991).

Direct complexity measures applied to the design complexity of a program esti-
mate on computational resources such as time for program development, cost of this
process, number and qualification of designers or/and programmers, number of ex-
ternal interfaces, number of encountered problems and other factors of software pro-
duction. These resources reflect parameters of the process of program development
that are evaluated by means of repository software metrics such as cost, schedule,
staffing, size, requirements, risk and others (Hefner and Mann, 2002).

Importance of the organizational complexity of a program is underestimated and
consequently, such measures are not studied. Utilization of corresponding resources
is partially reflected in software metrics such as cost and staffing.

5.2.2 Computational complexity of Turing machines
and inductive Turing machines

What memory has in common with art is
the knack for selection, the taste for detail . . . .

Joseph Brodsky, 1940–1996

In Section 4.3, inductive Turing machines with a structured memory were introduced.
Now let us consider what advantages can be obtained by utilization of a structured
memory for conventional Turing machines.

Theorem 5.2.1. For any recursively computable function f , there is a Turing ma-
chine T with a recursive memory that computes f within a space that is linear in
input and output, that is, if n is an arbitrary number, then S(n, T ) = c1 ·n +c2 · f (n)

for some constants c1 and c2 and all input values of x.

Proof . According to the condition of the theorem, there is a Turing machine D that
computes the function f , that is, f = fD . To prove the theorem, we build such
Turing machine T that computes the function f , using only c1 · n + c2 · m cells
for some constants c1 and c2 and an arbitrary input n where m is the value f (n).
According to the results of the theory of Turing machines (cf. Section 2.3), it is
possible to assume that T has infinitely many tapes Li that are enumerated by natural
numbers and all cells in each tape are also enumerated. As it is always in the theory
of Turing machines, this infinity of tapes is only potential, that is, there are only finite
number of finite parts of tapes at any given moment of computation. But it is possible
to extend these parts and to add as many new tapes as we need.

However, this is only a conventional Turing machine. Addition of a structured
memory allows us to enhance this machine with new abilities. Namely, a struc-
tured memory provides a possibility to establish various connections between cells
in all tapes of the machine. In addition to conventional connections between conse-
cutive/adjacent cells, three other types b, c, and r of connections are constructed.
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The memory of T is defined by the connection relation R that is built by another
Turing machine M , and thus, R is a recursive relation. Before the machine T begins
to work, the machine M builds all necessary connections in the memory of T .

At first, all connections c are installed, connecting first cells in the tapes. Namely,
the first cell of the tape Li is connected by the link c with the first cell in the tape
Li+1 for each i = 1, 2, . . . .

Then all connections b are set up, each of which goes b goes from the cell with
the number n + 1 to the cell with the number n. These connections are built for all
tapes Li and for all n = 1, 2, . . . .

For building connections of the type r , the machine M contains a copy D0 of
the machine D, which is realized as a subprogram. The standard technique for real-
ization of a Turing machine as a subprogram (component or submachine) of another
Turing machine is given, for example, by Hopcroft et al. (2001) and Ebbinghaus et
al. (1970).

The machine T also contains several submachines, which are realized as subpro-
grams. It has a subprogram C that performs the following actions: if the head H of
T is situated in the cell with a number k in some tape Li of T , the machine C finds
or computes k and gives it as the output. To find k, C moves the head to the initial
cell of this tape, using connections of the type b, and counts the number of steps.

In addition, T has a subprogram Q that given an input n, brings the head H of T
from the first cell in the first tape L1 of T to the first cell in the nth tape Ln of T . To
do this, a counter and connections of the type c are used.

The machine M works in the following manner. When a number n is given to
M as its input, D0 computes the value f (n) if it is defined. Then having the value
f (n), the machine M determines the connection r from the first cell of the nth tape
Ln of T to cell that has number f (n) in the same tape. This is done for all numbers
n = 1, 2, . . . . Then the subprogram C computes the number f (n) and gives it as the
output of T .

When f (n) is not defined, the machine T gives no output. In a general case, it is
possible to realize this situation as a cycle in which T accesses M for a connection
for the next move of the head H . Receiving no answer, T continues to perform this
access operation all the time and thus, gives no output because a Turing machine has
to stop to give a result.

When a number n is given to T as its input, Q brings the head H of T to the
first cell in the nth tape Ln of T . Then when f (n) is defined, the head H uses the
connection r to go directly to the cell with the number f (n). The first cell of Ln

has exactly one such connection r . After this subprogram C works, giving an output
which is also the output of the machine T .

Now let us find how many cells from the memory of the machine T are used
by the main program of T and its subprograms. The machine T uses n cells for
accepting the input for processing. Then it uses at most n cells for moving the head
H from the first cell in the first tape L1 of T to the first cell in the nth tape Ln of
T . Then it uses at most f (n) cells for finding f (n). In addition, the subprogram
Q that moves the head H of T uses k · n cells where k is a fixed number for all
n = 1, 2, . . . . Besides the counter C uses t · f (n) cells where t is a fixed number for
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all n = 1, 2, . . . . Thus, we come to the conclusion that the number of cells used in
the memory of T is bounded by a linear function c · n + c2 · f (n) for some constants
c1 and c2.

Theorem is proved.

It is possible to improve this result, achieving linearity not in n and f (n), but in
the lengths l(n) and l( f (n)) of numbers in the binary or any other code.

Theorem 5.2.2. For any recursively computable function f , there is a Turing ma-
chine T with a recursive memory that computes f within a space that is linear in
input and output, that is, if n is an arbitrary number, then S(n, T ) = c1 · l(n) + c2 ·
l( f (n)) for some constants c1 and c2 and all input values n.

The proof is similar to the proof of Theorem 5.2.1, but the head moves at the
beginning not to the tape Ln , but to the tape Ll(n), and instead of one connection r ,
there are many connections rt where the index t takes values in the set of all numbers
having the length f (n)) in the binary code.

As the space taken by computation in a Turing machine is always less then time
(Aho, Hopcroft, and Ullman, 1976). Theorem 5.2.2 implies the following result.

Corollary 5.2.1. For any recursively computable function f , there is a Turing ma-
chine T with a recursive memory that needs linear in input time to compute f , that
is, T(x, T ) = c1l(x) + c2l( f (x)) for some constants c1 and c2 and all input values
of x.

Both values l(x) and l( f (x)) are essential to validate of the results in Theorems
5.2.1, 5.2.2 and Corollary 5.2.1 in Theorems 5.2.1, 5.2.2 and Corollary 5.2.1. Really,
there are such functions f , for which l(x) grows to infinity, while f takes only two
values 1 and 0 (as in deciding algorithms). In this case, l(1) = l(0) = 1. Thus, l(x)

plays the main role.
In other cases, f (x) grows much faster than x (e.g., f (x) = xx ), implying that

the sum c1l(x) + c2l( f (x)) depends mostly on l( f (x)).
However, in many important cases the process of computation can be much

faster, depending only on input.

Theorem 5.2.3. If all possible results of computation have bounded length, then for
any recursively computable function f , there is a Turing machine T with a recursive
memory that needs linear in input time to compute f .

For conventional Turing machines, the situation is opposite as the following re-
sult shows.

Theorem 5.2.4. For any strictly increasing recursive function f , there is a recursive
function g taking values in the set {1, 0} such that any computation of g by a Turing
machine has time complexity larger than f , that is, T(x, T ) > f (x) for all Turing
machines T and all x.

This result is a direct consequence of the Theorem 11.1 from (Aho, Hopcroft,
and Ullman, 1976).
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Theorem 5.2.5. If all possible results of computation have bounded length, then for
any recursively computable function f , there is a Turing machine T with a recursive
memory such that it needs linear in input time to compute f without reading the
result or converting it to a conventional form.

In a similar way, we can consider complexity of inductive computations. For in-
ductive Turing machines, it is natural to introduce measures of computational com-
plexity resembling those that are used for Turing machines.

Definition 5.2.23. Time complexity T(x, M) of the computation of an inductive Tur-
ing machine M with the input x is equal to the number of steps that M makes till its
output tape stops changing.

Thus, similar to Turing machines, time of computation of an inductive Turing
machine M indicates what time is necessary for M to obtain a result in the output
tape.

A technique that is similar to the one used in the proof of Theorem 5.2.1 makes
it possible to obtain the following result.

Theorem 5.2.6. For any function f computable by an inductive Turing machine of
order n, there is an inductive Turing machine M of order n + 1 that computes f
within a space that is linear in input and output, that is, if n is an arbitrary number,
then T(n, M) = c1 · n + c2 · f (n) for some constants c1 and c2 and all input values
of x.

Corollary 5.2.2 (Burgin, 1999). For any recursively computable function f , there is
an inductive Turing machine M of the first order that computes f within a space that
is linear in input and output, that is, if n is an arbitrary number, then T(n, M) =
c1 · n + c2 · f (n) for some constants c1 and c2 and all input values of x.

Corollary 5.2.3. For any function f computable by an inductive Turing machine of
the first order, there is an inductive Turing machine M of the second order that needs
linear in input time to compute f , that is, T(x, M) = c1l(x) + c2l( f (x)) for some
constants c1 and c2 and all input values of x.

Theorem 5.2.3 implies the following result.

Corollary 5.2.4. If all possible results of computation have bounded length, then for
any recursively computable function f , there is an inductive Turing machine M of
the first order that needs linear in input time to compute f .

It is possible to define space complexity in the same way, but inductive Turing
machine does not stop after it gets its final output. This a posteriori functioning may
demand a lot of cells in the working tapes. As a result, we come to several versions
of space complexity.

Definition 5.2.24. Minimal space complexity mS(x, M) of an inductive Turing ma-
chine M is equal to the number of cells used in the computation of M with the input
x until its output tape stops changing.
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A technique that is similar to the one used in the proof of Theorem 5.2.1 makes
it possible to obtain the following result.

Theorem 5.2.7. For any function f computable by an inductive Turing machine of
order n, there is an inductive Turing machine M of order n + 1 that computes f
within a space that is linear in input and output, that is, if n is an arbitrary number,
then mS(n, M) = c1 ·n + c2 · f (n) for some constants c1 and c2 and all input values
of x.

Corollary 5.2.5. For any recursively computable function f , there is an inductive
Turing machine M of the first order that computes f within a minimal space that
is linear in input and output, that is, if n is an arbitrary number, then mS(n, M) =
c1 · n + c2 · f (n) for some constants c1 and c2 and all input values of x.

Definition 5.2.25. Maximal space complexity MS(x, M) of an inductive Turing ma-
chine M is equal to the number of cells used in the computation of M with the input
x .

It is possible that M works without stopping but uses only a finite number of
cells. For example, this is the case when an inductive Turing machine simulates a
conventional Turing machine.

To use a new cell, it is necessary for an inductive Turing machine to perform, at
least, one operation. Thus, as in the case of Turing machines, we have the following
result.

Proposition 5.2.3. For any inductive Turing machine M, the following inequalities
are true:

T(x, M) ≤ mS(x, M) ≤ MS(x, M).

Maximal space complexity MS(x, M) is, as a rule, larger than minimal space
complexity mS(x, M). It is even possible that mS(x, M) is finite, while MS(x, M) is
infinite. However, we have the following result.

Theorem 5.2.8. For any recursively computable function f , there is an inductive
Turing machine M of the first order that computes f within a space that is linear in
input and output, that is, if n is an arbitrary number, then mS(n, M) = c1 · l(n) +
c2 · l( f (n)) for some constants c1 and c2 and all input values n.

These results show that structural memory allows one to essentially increase
speed of computations both for Turing machines and inductive Turing machines.
It is possible to ask whether an inductive Turing machine of the first order with or-
dinary memory can speed-up computations in comparison with conventional Turing
machines.

There are no general results in this direction. The situation is similar to applica-
tions of parallel computations and their comparison to sequential computations. As
we know, there are cases when parallel computations are more efficient than sequen-
tial computations and there are cases when parallel computations give no advantage.
It is possible to show that there are important classes of problems for which inductive
computations can essentially improve productivity.
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5.3 Dual complexity measures: Axiomatic approach and
Kolmogorov complexity

There are two sides to every problem.

A proverb

While computational complexity based on direct complexity measures tells us what
resources will take a given algorithm or machine or program to do some computa-
tion, dual complexity measures reflect the minimal necessity in the corresponding
resources for solving some problem. Usually, the problem that is considered for al-
gorithms is building (computing) some word or making a decision whether a given
element belongs to a given set. Additionally, it is assumed that it is possible to choose
the means for the necessary computation (construction) from some set of algorithms
or machines or programs. There was an attempt to build a universal dual complexity
measure, which does depend on a specific class of algorithms. However, this goal
has not been achieved. One reason was that it turned out that the original definition
was not sufficient for solving some mathematical and practical problems. For ex-
ample, such universal measure was not appropriate for formalizing the concept of
randomness and for developing algorithmic probability theory and information the-
ory. The second reason for constructing relative dual measures was the discovery of
superrecursive algorithms. Prior to the discovery, all believed that Turing machines
or other models of recursive algorithms give an absolute class for algorithms and
computation. Since the discovery, the situation has changed. The third reason was
that computer scientists have already used several distinct dual measures. As a re-
sult, the universal approach was discarded and dual measures have been introduced
and studied for some specific classes of algorithms. Later an axiomatic approach to
dual complexity measures has been elaborated.

The first developed form of dual complexity measures was the so-called Kol-
mogorov or constructive or algorithmic complexity.

5.3.1 Kolmogorov complexity: A general perspective

It is quite a three-pipe problem. . . .

The Adventures of Sherlock Holmes,
Arthur Conan Doyle, 1859–1930

Traditionally the theory of Kolmogorov complexity has been developed top down:
from larger classes to smaller classes of algorithms that were more relevant to com-
putational problems. At first, as the history tells us, Kolmogorov complexity C(x)

was defined and studied independently for the class of all recursive algorithms by
three mathematicians: Solomonoff (1964), Kolmogorov (1965), and Chaitin (1966).
However, some authors (cf., for example, Uspensky and Semenov, 1993) do not con-
sider Chaitin an author of Kolmogorov complexity, although, as Chaitin wrote, he
submitted his paper was for publication before the paper of Kolmogorov was pub-
lished.
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Another controversy is related to the term Kolmogorov complexity. Although the
majority of researchers use Kolmogorov complexity for this measure, other authors
prefer a different name. For example, Gell-Mann (1994) trying to avoid the con-
flicting word “complexity” calls it simply algorithmic information content. Some
call it algorithmic complexity or algorithmic entropy. Chaitin seems more comfort-
able calling this concept by the name randomness. Lewis (2001) calls this measure
algorithmic (AC) or KCS (Kolmogorov-Chaitin-Solomonoff) complexity. In the fun-
damental treatise An Introduction to Kolmogorov Complexity and its Applications (Li
and Vitanyi, 1997), both names, Kolmogorov and algorithmic complexity, are used.

The name algorithmic complexity looks more neutral, but it may be related to
a much broader context. As we have discussed earlier, any complexity measure is
connected to algorithms. The name constructive complexity better reflects this type of
complexity because it is the complexity of computing or constructing a given word.
Nevertheless, here we use both names Kolmogorov and algorithmic complexity due
to the existing tradition in this area (cf. (Li and Vitanyi, 1997)).

It is also necessary to remark that it might be reasonable to use different names for
the function C(x) relevant to its applications. When we want to know how difficult
it might be in computing or constructing some object with recursive algorithms, we
consider Kolmogorov or constructive complexity as an appropriate name for C(x)

will be Kolmogorov or constructive complexity. When the question is how much
information we need to build or compute x with recursive algorithms, we consider
information (or more exactly, recursive information) content of x as a better name
for C(x).

The original Kolmogorov complexity of a word x is taken to be equal to the size
of the shortest program (in number of symbols) for a universal Turing machine U
that without additional data, computes the string and terminates. To formalize this,
we define Kolmogorov complexity for a class R of recursive algorithms such that
R has a universal algorithm. For example, in the class of all Turing machines, a
universal Turing machine is a universal algorithm.

Definition 5.3.1. The Kolmogorov complexity C(x) of an object (word) x is defined
as

C(x) = min{l(p); U (p) = x}
where l(p) is the length of the word p and U is a universal algorithm in the class R.

This measure is called absolute Kolmogorov complexity because Kolmogorov
complexity has one more form, which called relative.

Definition 5.3.2. The relative to a given word y Kolmogorov complexity C(x | y) of
an object (word) x is defined as

C(x | y) = min{l(p); U (p, y) = x}
where l(p) is the length of the word p and U is a universal algorithm in the class R.
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Kolmogorov complexity C(x) of a word x in some sources is denoted by K(x),
while C(x | y) is denoted by K(x | y).

Absolute Kolmogorov complexity is a particular case of relative Kolmogorov
complexity, namely:

K(x) = K(x | �) = min{l(p); U (p, �) = x}.
The aim of introduction of Kolmogorov complexity was to ground probability

theory and information theory, creating the new approach based on algorithms. This
goal was achieved. The new theories became very popular, although they did not
substitute either the classical probability theory, which was grounded before by the
same Kolmogorov (1950) on the base of measure theory, or Shannon’s information
theory.

However, an attempt to define in this setting an appropriate concept of random-
ness was unsuccessful. It turned out that the original definition of Kolmogorov com-
plexity was not relevant for that goal. To get a correct definition of a random infinite
sequence, it was necessary to restrict the class of utilized algorithms. That is why
Kolmogorov complexity was defined and studied for various classes of subrecur-
sive algorithms. For example, researchers discussed different reasons for restricting
power of the device used for computation when when estimating the minimal com-
plexity is estimated.

When Kolmogorov complexity is defined for the class of Turing machines that
compute symbols of a word x , we obtain uniform complexity KR(x) studied by
Loveland (1969).

When Kolmogorov complexity is defined for the class of prefix functions (see
Section 3.4), we obtain prefix complexity K(x) studied by Gasc (1974), Levin
(1974), and Chaitin (1975).

When Kolmogorov complexity is defined for the class of monotonous Turing
machines, we obtain monotone complexity Km(x) studied by Levin (1973).

When Kolmogorov complexity is defined for the class of Turing machines that
have some extra initial information, we obtain conditional Kolmogorov complexity
CD(x) studied by Sipser (1983).

Let t (n) and s(n) be some functions of natural number variables.
When Kolmogorov complexity is defined for the class of recursive automata that

perform computations with time bounded by some function of a natural variable
t (n), we obtain time-bounded Kolmogorov complexity Ct(x) studied by Kolmogorov
(1965) and Barzdin (1968).

When Kolmogorov complexity is defined for the class of recursive automata that
perform computations with space (that is, the number of used tape cells) bounded
by some functions of a natural variable s(n), we obtain space-bounded Kolmogorov
complexity Cs(x) studied by Hartmanis (1983).

When Kolmogorov complexity is defined for the class of multitape Turing ma-
chines that perform computations with time bounded by some function t (n) and
space bounded by some function s(n), we obtain resource-bounded Kolmogorov
complexity Ct,s(x) studied by Daley (1973).
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To deal with this variety of algorithmic complexity measures, we need a much
more general approach to Kolmogorov complexity in order to include in this ap-
proach complexity of constructive objects represented or constructed by more pow-
erful superrecursive algorithms. It is done on the basis of axiomatic dual complexity
measures and utilization of abstract classes of algorithms. These constructions follow
and develop in such a way the approach from (Burgin, 1982; 1990; 1991; 1992b).

5.3.2 General dual complexity measures

All intellectual improvement arises from leisure.

Samuel Johnson, 1709–1784

Dual complexity measures are properties of objects that are constructed and pro-
cessed by algorithms. On the other hand, it is possible to interpret these measures
as properties of classes of algorithms. Here we consider only static dual complexity
measures for algorithms.

Let P = {Ai ; i ∈ I} be a class of algorithms, A be an algorithm that works with
elements from I as inputs and Sc: I → N be a static complexity measure of algo-
rithms from a class P. Elements of I are usually treated as programs for the algorithm
A. In addition, developing the theory of Kolmogorov complexity, researchers assume
for simplicity that I consists of natural numbers in a form of binary sequences. These
numbers can be only indices enumerating algorithms from P or codes of these algo-
rithms (cf., for example, Section 2.3 for algorithm coding).

Definition 5.3.3. The dual to Sc complexity measure Sco
A of an object (word) x with

respect to the algorithm A is the function from the codomain (the set of all outputs)
Y of A that is defined as

Sco
A(x) = min{Sc(p); p ∈ I and A(p) = x}.

Naturally when there is no such p that A(p) = x , the value of Sco
A at x is

undefined.
When Sc(x) measures information in the word or text x , the dual complexity

measure Sco
A(x) estimates minimal information necessary to compute or build x by

the algorithm A.
If Lo

A(x) is the dual to the length l(p) of program or algorithm description p
complexity measure with respect to a algorithm A, then

Lo
A(x) = min{l(p); p ∈ I and A(p) = x}.

Let M and T be some algorithms.

Proposition 5.3.1. If M(x) > T (x) for almost all x and the function fM (x) defined
by M is increasing, then Lo

T (x) > Lo
M (x) for almost all x for which both Lo

M (x) and
Lo

T (x) are defined.
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The most interesting case is when A is a universal algorithm V for the class P.
Let c : P → X∗ be some coding of algorithms from P.

Definition 5.3.4. An algorithm V is called universal for the class P if for any A ∈ P
and any x given the pair (c(A), x) as its input, the result of V is equal to the result of
A applied to x .

Examples of universal algorithms are a universal Turing machine (Section 2.3)
and a universal inductive Turing machine (Section 4.3).

The dual complexity measure that corresponds to a universal algorithm gives an
invariant characteristic of the whole class P.

Definition 5.3.5. The dual to Sc complexity measure Sco
P of an object (word) x with

respect to the class P is defined as

Sco
P(x) = min{Sc(p); p ∈ I and V (p) = x}.

Naturally when there is no such p that A(p) = x , the value of Sco
P at x is unde-

fined. Because algorithm V is universal for the class P, this condition is equivalent
to the condition that there is no such algorithm A from P and such p that A(p) = x .

In other words, Sco
P(x) = Sco

V (x) for a universal algorithm V for the class P.
However, it is possible that has several universal algorithms. In such a case, the func-
tion of Sco

P(x) is defined not in unique way. Nevertheless, Theorem 5.3.2 shows, the
definition of Sco

P(x) is invariant with respect to certain transformations.
When Sc(x) measures information in the word or text x , the dual complexity

measure Sco
P(x) estimates minimal information necessary to compute or build x by

algorithms from the class P.

Remark 5.3.1. If we can chose different algorithms from P to build the element x ,
the dual measure with respect to the class P is defined in a different way.

Definition 5.3.6. The dual to Sc complexity measure Sco
P of an object (word) x with

respect to the class P with selection is defined as

Sco
SP(x) = min{Sc(p); p ∈ I, A ∈ P, and A(p) = x}.

Naturally when there is no such algorithm A from P and such p that A(p) = x ,
the value of Sco

SP at x is undefined.

Lemma 5.3.1. Sco
SP(x) ≤ Sco

P(x) ≤ Sc(x).

In general, both functions Sco
SP(x) and Sco

P(x) are defined for all elements x from
the domain

⋃
A∈P(A). In particular, when all algorithms from P have a common do-

main X , then both functions Sco
SP(x) and Sco

P(x) are defined for all elements x from
X . For example, when P is the set of all partial recursive functions, both functions
Sco

SP(x) and Sco
P(x) are defined for all natural numbers. This is a consequence of the

following more general result, which is true for the most interesting cases.
Let us assume that the class P contains the identical algorithm E(x) = x .



232 5 Superrecursive Algorithms: Problems of Efficiency

Theorem 5.3.1. Sco
A(x) is a total function on N+ (on the set of all words in some

alphabet).

Dual complexity measures are usually interpreted as complexity of problem so-
lution with the help of algorithms from P. More exactly, the problem under the con-
sideration is construction or computation of a word x by means of algorithms from P.

The complexity of a problem often differs from the complexity of its solution.
Simple problems, that is, problems that have short descriptions, may have only com-
plex solutions, that is, they demand long proofs or a lot of computations. Moreover,
as it is proved by Juedes and Lutz (1992) many important problems that have hard
solutions (those that are P-complete for ESPACE) have low problem complexity, that
is, their Kolmogorov complexity or algorithmic information is rather low.

In the theory of algorithms, a lot of dual complexity measures are studied: Kol-
mogorov complexity (Solomonoff, 1964; Kolmogorov, 1965; Chaitin, 1969), uni-
form complexity (Loveland, 1969), prefix complexity (Gasc, 1974; Levin, 1974;
Chaitin, 1975), monotone complexity (Levin, 1973), process complexity (Schnorr,
1973), conditional Kolmogorov complexity (Sipser,1983), time-bounded Kolmogo-
rov complexity (Kolmogorov,1965; Barzdin,1968), resource-bounded Kolmogorov
complexity (Daley,1973), generalized Kolmogorov complexity (Burgin, 1982) and
so on.

However, there are other dual complexity measures. As an example of another
kind of a dual complexity measure, we can take Boolean circuit complexity, which
is also a nonuniform complexity measure (Savage, 1976; Balcazar et al., 1988).

Basic for this measure are Boolean elements or gates. Each Boolean element is
a source (of a Boolean variable or a Boolean constant, 1 or 0) or performs a basic
Boolean operation: 0-ary operations — “true” and “false” (which are sometimes also
denoted by 1 and 0); the unary operation of negation, denoted by −−; and the binary
operations — “and”, denoted by ∧ and “or”, denoted by ∨.

Definition 5.3.7. A Boolean circuit (cf. Figure 5.1), also called a combinational ma-
chine or just a circuit, is an acyclic graph which nodes are Boolean elements (gates).

There are two direct and two dual complexity measures for Boolean circuits.

Definition 5.3.8. The cost or size c(A) of a Boolean circuit A is the number of gates
it has.

This is a direct static complexity measure of Boolean circuits.
Let f be a Boolean function.

Definition 5.3.9. The Boolean cost c( f ) of f is the size of the smallest circuit com-
puting f :

c( f ) = min{c(A); A defines the function equal to f }.
This is a dual complexity measure.

Definition 5.3.10. The depth of a circuit is the length of the longest path in the graph
of the circuit.
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Figure 5.1. A Boolean circuit

This is a direct static reconstructible complexity measure of Boolean circuits.

Definition 5.3.11. The Boolean depth d( f ) of f is the depth of the minimal depth
circuit computing f :

d( f ) = min{d(A); A defines the function equal to f }.
This is a dual complexity measure. Thus, we see that not all dual complexity mea-

sures are Kolmogorov complexity or something of its kind. There are other examples
of dual complexity measures.

Now due to its applications to problems of cryptography and network security,
communication complexity has become one of the most popular types of complexity
measures (cf. Hromkovic, 1997; Kushilevitz and Nisan, 1997)). There are different
kinds of communication complexity: deterministic, nondeterministic, probabilistic,
quantum, one-way, two-way, and so on. The first introduction of communication
complexity is attributed to Yao (1979). Communication complexity measures impor-
tant characteristics of distributed data processing.

Usually communication complexity is considered for the following situation.
Two computers (persons) C1 and C2 are working together and solving the same
problem (cf. Hromkovic, 1997; Kushilevitz and Nisan, 1997)). The problem taken
for this purpose is computation of some finite function f : X1 × X2 → Y . As a rule,
f is a Boolean function with m variables. At the beginning of the process, the input
from X1 is given to C1 and the input from X2 is given to C2.

These computations, which include communication, are performed by (according
to) algorithms Pi that are called communication protocols and describe a distributed
computational processes of two computers C1 and C2. The goal is for one of them
to compute f (x1, x2) with the least amount of communication between them. In
contrast to computational complexity, here we are not concerned about the number
of computational steps or the size of the computer memory used. Communication
complexity tries to quantify the amount of communication required for distributed
computations.
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It is supposed that both computers have unlimited computational resources and
thus, they can, for example, always succeed by having C1 send its whole n-bit string
to C2, allowing C2 to compute the function, but we are interested in finding better
ways of calculating f with less than n bits of communication.

This problem has applications in in many areas. One of them is VLSI circuit
design, where it is necessary to minimize energy use by decreasing the amount of
electric signals required between the different components during a distributed com-
putation. Communication complexity is used to prove lower bounds for area com-
plexity of general three-dimensional, and multilective VLSI. Another application
area comprises Boolean circuits and formulas. The problem is also relevant in the
study of data and knowledge bases, in the development of human-computer interac-
tion, and in the optimization of computer networks, reflecting complexity trade-offs
for interconnection networks with different topologies. In addition, communication
complexity has been useful in proving lower bounds for size of finite automata, time
and space complexity of Turing machines, and size of linear programs.

Definition 5.3.12. The communication complexity cc(P) of a communication proto-
col P is defined as the length of communicated word or, in other words, the maximal
number of bits exchanged during the computational processes defined by Pi for all
pairs of inputs. Inputs are taken from some finite sets X1 and X2.

This is a direct static complexity measure.

Definition 5.3.13. The communication complexity cc( f ) of a function or problem f
is defined as:

cc( f ) = min{cc(P); P computes the function f }.
It is possible to represent any finite function by a table and then to represent

this table as a word. In this context, the communication complexity cc( f ) is a dual
complexity measure on the set AP of all protocols.

As the class of all protocols is too broad and vague, it is reasonable to consider
a definite class P of protocols and consider communication complexity with respect
to this class. For instance, it is possible to consider the class Q of quantum protocols
or the class A of conventional protocols.

Definition 5.3.14. The communication complexity cc( f ) of a function f with respect
to the class P is defined as

cc( f ) = min{cc(P) ; P computes the function f and belongs to P}.
The communication complexity of a function f is a particular case of the follow-

ing concept.

Definition 5.3.15. The communication complexity ccP(q) of a problem q with re-
spect to the class P is defined as

ccP(q) = min{cc(P) ; P solves the problem q and belongs to P}.
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For a long time, communication complexity has been studied only for one prob-
lem — computing a function. Recently, Ambainis, et al. (2003) considered com-
munication complexity for two more kinds of problems – generating a function and
sampling. Communication sampling complexity is considered for two classes P: con-
ventional and quantum algorithms. There are many other important theoretical and
practical collaborative problems for which it might be useful to apply communication
complexity.

There are also other approaches leading to dual complexity measures. For exam-
ple, Gell-Mann (1994) introduced the concept of crude complexity of a system.

Definition 5.3.16. The crude complexity of a system R is the length of the shortest
message that will describe R, employing language, knowledge, and understanding
that both parties, the sender and recipient, share.

This is a complexity measure, which is dual to such direct measure as the length
of description and which depends on algorithms of language utilization, understand-
ing and explanation.

Crude complexity looks similar to Kolmogorov complexity, but it is not defined
as an exact mathematical structure. However, its vagueness is an advantage as it
leads to a much broader concept of dual superrecursive complexity. Really, people
use superrecursive algorithms in their everyday life. An example is language learn-
ing because as demonstrated Gold (1967), this is a kind of inductive inference or
computation. Utilization of superrecursive algorithms implies that the class P in the
definition 5.3.3 cannot be reduced to recursive algorithms and it is necessary to study
and use dual superrecursive complexity measures. In particular, crude complexity is
a kind of dual superrecursive complexity measures.

Let Sco
P(x) and Sco

R(x) be dual to Sc complexity measures with respect to classes
P and R, respectively. If P ⊆ R, then any algorithm universal for R is also universal
for P. This implies the following results.

Theorem 5.3.2. If P ⊆ R and Sco
P(x) is defined for x, then Sco

R(x) is defined for x
and Sco

R(x) ≤ Sco
P(x).

Corollary 5.3.1. If P ⊆ R and Sco
P(x) is defined for all x, then Sco

R(x) is defined for
all x and Sco

R(x) ≤ Sco
P(x).

Dual complexity measures with respect to the class P, that is, determined by a
universal algorithm, have invariance properties, defining minimal resources that are
necessary in P to build or compute objects from Y . The set Y contains such objects
that can be computed by algorithms from P.

Let H and G be two sets of functions.

Definition 5.3.17. A function f (n) is called (asymptotically) H-optimal in G if there
is such h ∈ H that f (n) ≤ h(g(n)) for any g ∈ G and (almost) all n ∈ N .
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If there is such h ∈ H that f (n) ≤ h(g(n)) for almost all n ∈ N , we denote this
relation by f (x) �H g(x). In the case, when H consists of such functions that add
some constant to the argument, for example, h(g(n)) = g(n) + c, we write simply
g(x) � f (x) or f (x) � g(x). This relation is basic for the theory of Kolmogorov
complexity (Li and Vitanyi, 1997).

Lemma 5.3.2. Relations g(x) � f (x) and f (x) � g(x) mean that there is a number
c such that f (x) ≤ g(x) + c for all x.

Lemma 5.3.3. If q(x) ≤ f (x) and g(x) ≤ h(x) for almost all x and f (x) � g(x),
then q(x) � h(x).

Let H(h) = {hk(n) = h(h(n) + k), k ∈ N} and P be an enumerable in itself set
of algorithms that has a universal algorithm U .

Theorem 5.3.3. (Burgin, 1982). For any axiomatic static complexity measure Sc(p)

on P and for some recursively computable function h(n), there is an H(h)-optimal
dual measure Sco(x).

Definition 5.3.18. f (n) �T(h) g(n) ( f (n) �a
H(h) g(n)) if there is such h ∈ H that

f (n) ≤ h(g(n)) for all n ∈ N (almost all n ∈ N).

Definition 5.3.19. Functions f (n) and g(n) are called (asymptotically) T(h)-equi-
valent if f (n) �T(h) g(n) and g(n) �T(h) f (n) ( f (n) �a

T(h) g(n) and g(n) �a
T(h)

f (n)).

Theorem 5.3.4. (Burgin, 1982). Any two (asymptotically) H(h)-optimal functions
are (asymptotically) H(h)-equivalent.

This means that optimal dual measures are in some sense invariant.
Theorems 5.3.3 and 5.3.4 imply existence and uniqueness of optimal or in-

variant measures for many dual complexity measures (Li and Vitanyi, 1997): Kol-
mogorov complexity, uniform complexity, prefix complexity, monotone complex-
ity, process complexity, conditional Kolmogorov complexity, time-bounded Kol-
mogorov complexity, space-bounded Kolmogorov complexity, conditional resource-
bounded Kolmogorov complexity, time-bounded prefix complexity, resource-bound-
ed Kolmogorov complexity, and so on. We do not need to prove these theorems for
each case separately because it is sufficient only to check conditions from theorems
5.3.3 and 5.3.4 and then to apply these theorems.

However, not all properties of optimal dual measures are good. For example, it is
proved that Kolmogorov complexity, which is an optimal dual measure for all recur-
sive algorithms, is itself not a recursive function (Li and Vitanyi, 1997), although it
can be computed by an inductive Turing machine (Burgin, 1983).
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5.3.3 Algorithmic complexity of recursive algorithms

Custom reconciles us to everything.

Edmund Burke, 1729–1797

In the study of dual complexity measures, it is possible to make the following reduc-
tions. Algorithms work with words in some alphabet X . We can codify all symbols
from X by finite strings consisting of two symbols 1 and 0. This allows us to con-
sider only algorithms that work with words in the alphabet {1, 0}. In addition, it is
practical in some cases interpret such binary words as representations of nonnegative
integer numbers and assume that algorithms work with such numbers.

At first, we find some properties of complexity measures Lo
P(x) dual to the length

l(p) of program or algorithm description p with respect to a general class P of algo-
rithms that work with words or natural numbers. We assume that P has a universal
algorithm V . Then we have

Lo
P(x) = min{l(p); p ∈ I and V (p) = x}.

Theorem 5.3.1 implies following results.

Corollary 5.3.2. Lo
P(x) is a total function on N+ (on the set of all words in some

alphabet).

The dual to the length of program or algorithm description complexity measure
CR(x) with respect to a class R of recursive algorithms (Turing machines, partial
recursive functions, and so on) is called Kolmogorov complexity (Li and Vitanyi,
1996). For simplicity, we consider only such class R as the class T of all Turing
machines and denote CR(x) by C(x).

Corollary 5.3.3 (Kolmogorov, 1965). C(x) is a total function on N+ (on the set of
all words in some alphabet).

Let us suppose that the class P is infinite and contains only such algorithms that
give as the result only one word or one number. In addition, we assume, without loss
of generality, that all algorithms from P are working with natural numbers that are
represented by words in the alphabet {1, 0}.
Lemma 5.3.4. For any number n there is such number z that for all elements x that
are larger than some element z, the values Lo

P(x) are larger than n.

Proof . The number of those elements x for which Lo
P(x) is less than or equal to a

given number n is less than 2n+1 because there are at most 2n+1 programs having
the length less than or equal to n and the universal inductive Turing machine W
computes only one word with one program. Consequently, for all elements y that are
larger than some element z, the values Lo

P(y) are larger than n − 1.

Definition 5.3.20. A partial function f : X∗ → N+ tends to infinity (we denote it
by f (x) → ∞, or f (x) → ∞ when l(x) → ∞) if for any number m from N+
there is a number k such that f (x) > m when l(x) > k.
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Definition 5.3.21. A partial function f : X∗ → X∗ tends to infinity (we denote it by
f (x) → ∞) if the partial function l( f (x)) tends to infinity.

Lemma 5.3.4 implies the following result.

Theorem 5.3.5. Lo
P(x) → ∞ when l(x) → ∞.

Proof . Since the number of elements x for which Lo
P(x) is less than or equal to a

given number n is finite by Lemma 5.3.3, so as n tends to infinity, the function Lo
P(x)

does the same.

Corollary 5.3.4 (Kolmogorov). C(x) → ∞ when l(x) → ∞.

Remark 5.3.2. Theorem 5.3.1 implies that Corollary 5.3.3 is also a direct corollary
of Theorem 5.3.9.

Let P be an enumerable class of recursive or subrecursive algorithms that con-
tains a universal algorithm.

Theorem 5.3.6. Lo
P(x) is an inductively computable function, namely, it is com-

putable by some inductive Turing machine of the first order.

It is known (cf. (Li and Vitaniy, 1997)) that the function C(x) is not recursively
computable. At the same time, we have the following result implied by Theorem
5.3.6 that shows one more time the advantages of inductive Turing machines.

Corollary 5.3.5 (Burgin, 1982). C(x) is an inductively computable function, namely,
it is computable by some inductive Turing machine of the first order.

This result also follows from Theorem 4.2.5 and the theorem of Kolmogorov that
states that C(x) is a limiting recursive function (cf. Zvonkin and Levin, 1970).

Traditionally (cf., for example, (Li and Vitaniy, 1997)), researchers in Kol-
mogorov complexity also consider the function mC(x) = min{C(y); y ≥ x}, which
bounds C(x) from below. It has the following properties. It has the following prop-
erties.

Theorem 5.3.7. (Kolmogorov). a) mC(x) is a total increasing function;
b) mC(x) is not recursively computable;
c) mC(x) is inductively computable;
d) mC(x) → ∞ when l(x) → ∞.

Proof. a) Since C(x) is a total function, mC(x) is also a total function. By its defini-
tion, mC(x) is increasing. Parts b) and d) are proved in (Li and Vitaniy, 1997). The
part c) follows from Corollaries 5.3.3 and 5.3.4. ��
Corollary 5.3.1. (Kolmogorov, 1965). C(x) is not a recursively computable function.

Moreover, it is possible to prove a stronger result.
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Theorem 5.3.8. (Zvonkin and Levin, 1970). If h is an increasing computable func-
tion that is defined in a decidable set V and tends to infinity when l(x) → ∞, then
for infinitely many elements x from V , we have h(x) > C(x).

Noncomputability of Kolmogorov complexity allows one to prove noncom-
putability of communication complexity cc( f ).

Theorem 5.3.9. (Gupta, 2002). cc( f ) is not a recursively computable function in a
general case.

To prove this result, we consider two computers (persons) C1 and C2 that are
solving a problem f and are represented by universal Turing machines. The problem
taken for this purpose is computation of x . Thus, we denote the problem by x .

At the beginning of the process, x is given as input to C1 and nothing is given to
C2, while it is C2, which has to compute x . That is why the value cc(x) determines
the minimal number of bits that allow C2 to compute x . By the definition, this number
is equal to C(x).

As C(x) is not recursively computable function, cc( f ), which in this case coin-
cides with C(x) is also not recursively computable function.

However, inductive computations realized by inductive Turing machines allow
one to compute communication complexity in many interesting cases.

Let us assume that any problem f under consideration can be solved by some
recursive algorithm (Turing machine) A and all communication protocols form a
recursively enumerable or computable set.

Theorem 5.3.10. cc( f ) is an inductively computable function, namely, it is com-
putable by some inductive Turing machine of the first order.

Proof utilizes the Church–Turing thesis and is based on the assumption, which is
usually made in studies of communication complexity, that all protocols are recursive
algorithms.

Remark 5.3.3. For some classes of distributed computation problems, cc( f ) is a re-
cursively computable function. For example, let us consider two computers (persons)
C1 and C2 that are solving the problem f and are represented by universal Turing
machines. The problem taken for this purpose is computation of x . However, in con-
trast to the situation in theorem 5.3.9, x is given as input to C2 and C2 has to compute
x . In this case, cc(x) is identically equal to 0.

Remark 5.3.4. It is interesting to study computability of the communication com-
plexity cc( f ) in the case when protocols are inductive or other superrecursive algo-
rithms.
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5.3.4 Algorithmic complexity of superrecursive algorithms

Constant dropping wears away a stone.

A proverb

The dual to the length of program or algorithm description complexity measure C(x)

with respect to a class SR of superrecursive algorithms (inductive Turing machines,
limit partial recursive functions, grid automata and so on) is called superrecursive
Kolmogorov complexity (Burgin, 2000). Here is an explicit definition.

Definition 5.3.22. The superrecursive Kolmogorov complexity SRC(x) of an object
or word x is defined as

SRC(x) = min{l(p); U (p) = x}
where l(p) is the length of word p and U is a universal algorithm in the class SR.

For simplicity, we consider only such class SR as the class IT of all inductive
Turing machines of the first order.

Definition 5.3.23. The inductive Kolmogorov complexity IC(x) of an object (word)
x is defined as

IC(x) = min{l(p); U (p) = x}
where l(p) is the length of the word p and U is a universal inductive Turing machine
of the first order.

Here we assume, without loss of generality, that all considered inductive Turing
machines are working with natural numbers that are represented by words in the
alphabet {1, 0}.

Let T be an inductive Turing machine of the first order.

Definition 5.3.24. The inductive Kolmogorov complexity ICT (x) of an object or
word x with respect to the machine T is defined as

ICT (x) = min{l(p); T (p) = x}.
Theorems 5.3.1 and 5.3.4 imply the following result.

Proposition 5.3.2. SRC(x) is a total function on N (on the set of all words in some
alphabet).

Corollary 5.3.2. (Burgin, 1990). IC(x) is a total function on N (on the set of all
words in some alphabet).

As we will see the function IC(x) is essentially smaller than the function C(x).
However, IC(x) also tends to infinity as Theorem 5.3.5 implies the following result.

Proposition 5.3.3. IC(x) → ∞ when l(x) → ∞.
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However, IC(x) grows slower than any total increasing inductively computable
function.

Theorem 5.3.11. If f is a total strictly increasing inductively computable function,
then for infinitely many elements x, we have f (x) > IC(x).

Proof. Let us assume that there is some element z such that for all elements y that
are larger than z, we have f (x) ≤ IC(x). Because f (x) an inductively computable
function, there is an inductive Turing machine T that computes f (x). It is done in
the following way. Given a number x , the machine T makes the first step, producing
f1(x) on its output tape. Making the second step, the machine T producing f2(x) on
its output tape. After n steps, T has fn(x) on its output tape. Since the function is
inductively computable, this process stabilizes on some value fn(x) = f (x), which
is the result of computation with the input x . Taking the function h(m) = min{x ;
f (x) ≥ m}, we construct an inductive Turing machine M that computes the function
h(x).

The inductive Turing machine M contains a copy of the machine T . Utilizing
this copy, M finds one after another the values f1(1), f1(2), . . . , f1(m + 1) and
compares these values to m. Then M writes into the output tape the least x for which
the value f1(x) is larger than or equal to m. Then M finds one after another the values
f2(1), f2(2), . . . , f2(m + 1) and compares these values to m. Then M writes into
the output tape the least x for which the value f2(x) is larger than or equal to m. This
process continues until the output value of M stabilizes. It happens for any number
m due to the following reasons. First, f (x) is a total function, so all values fi (1),
fi (2), . . . , fi (m +1) after some step i = t become equal to f (1), f (2), . . . , f (m +
1). Second, f (x) is a strictly increasing function, that is, fi (m + 1) > m. In such a
way, the machine M computes h(m). Since m is an arbitrary number, the machine
M computes the function h(x).

Since for all elements y that are larger than z, we have f (y) ≤ IC(y), there is an
element m such that IC(h(m)) ≥ f (h(m)) and f (h(m)) ≥ m as f (x) is a strictly
increasing function and h(m) = min{x ; f (x) ≥ m}. By the definition, ICT (h(m)) =
min{l(x); T (x) = h(m)}. As T (m) = h(m), we have ICT (h(m)) ≥ l(m). Thus,
l(m) ≥ ICT (h(m)) ≥ IC(h(m)) ≥ m. However, it is impossible that l(m) ≥ m. This
contradiction concludes the proof of the theorem. ��

We can prove a stronger statement than Theorem 5.3.11. To do this, we assume
for simplicity that inductive Turing machines are working with words in some finite
alphabet and that all these words are well ordered, that is, any set of words contains
the least element. It is possible to find such orderings, for example, in (Li and Vitaniy,
1997).

Theorem 5.3.12. If h is an increasing inductively computable function that is defined
in an inductively decidable set V and tends to infinity when l(x) → ∞, then for
infinitely many elements x from V , we have h(x) > IC(x).

Proof. Let us assume that there is some element z such that for all elements x that
are larger than z, we have h(x) ≤ IC(x). Because h(x) an inductively computable
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function, there is an inductive Turing machine T that computes h(x). Taking the
function g(m) = min{x ; h(x) ≥ m and x ∈ V }, we construct an inductive Turing
machine M that computes the function g(x).

As V is an inductively decidable set, there is an inductive Turing machine H that
given an input x , produces 1 when x ∈ V , and produces 0 when x �= V . It means
that H computes the characteristic function cV (x) of the set V .

The inductive Turing machine M contains a copy of the machine H and a copy
of the machine T . Utilizing this copy of T , the machine M computes the value h1(1)

and compares it to m. Utilizing this copy of H , the machine M computes the value
cV 1(1). If h1(1) is larger than m and cV 1(1) = 1, then M writes 1 into the output
tape. Otherwise, M writes nothing into the output tape. After this, M finds the values
h2(1) and h2(2) and compares these values to m. Concurrently, M finds the values
cV 2(1) and cV 2(2). Then M writes into the output tape the least x for which the
value h1(x) is larger than or equal to m and at the same time, cV 2(x) = 1. This
process continues. Making cycle i of the computation, M computes the values hi (1),
hi (2), . . . , hi (i) and compares these values to m. We remind here that hi ( j) is the
result of i steps of computation of T with the input j . Concurrently, M computes the
values cV i (1), cV i (2), . . . , cV i (i). Then M writes into the output tape the least x for
which the value hi (x) is larger than or equal to m and at the same time, cV i (x) = 1.
Such cycle is repeated until the output value of M stabilizes.

Each value cV i (x) stabilizes at some step t because cV (x) is a total inductively
computable function. In a similar way, each value hi (x) stabilizes at some step q
because h(x) is an inductively computable function defined for all x ∈ V . Thus,
after this step p = max{q, t}, the value hi (x) becomes equal to the value h(x). In
addition, there is such a step t when a number n is found for which h(n) ≥ m. After
this step, only such numbers x can go to the output tape of M that belong to V and
are less than or equal to n.

This happens for any given number m due to the following reasons. First,
h(x) is defined for all elements from V total function, so those values hi (1),
hi (2), . . . , hi (m + 1) for which the argument of hi belongs to V after some step
i = r become equal to h(1), h(2), . . . , h(m). Second, h(x) is an increasing function
that tends to infinity.

This shows that the whole process stabilizes and by the definition of inductive
computability, the machine M computes g(m). Since m is an arbitrary number, the
machine M computes the function g(x).

To conclude the proof, we repeat the reasoning from the proof of Theorem 5.3.11.
Since for all elements y that are larger than z, we have f (x) ≤ IC(x), there is an
element m such that IC(g(m)) ≥ h(g(m)) and h(g(m)) ≥ m as h(x) is an in-
creasing function and g(m) = min{x ; h(x) ≥ m}. By the definition, ICT (g(m)) =
min{l(x); T (x) = g(m)}. As T (m) = g(m), we have ICT (g(m)) ≤ l(m). Thus,
l(m) ≥ ICT (h(m)) ≥ IC(h(m)) ≥ m. However, it is impossible that l(m) ≥ m. This
contradiction concludes the proof of the theorem. ��
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Remark 5.3.5. Although Theorem 5.3.11 can be deduced from Theorem 5.3.12, we
give an independent proof because it demonstrates another technique, which displays
essential features of inductive Turing machines.

Corollary 5.3.3. If h is a total increasing inductively computable function that tends
to infinity when l(x) → ∞, then for infinitely many elements x, we have h(x) >

IC(x).

Corollary 5.3.4. If h is an increasing inductively computable function that is defined
in an recursive set V and tends to infinity when l(x) → ∞, then for infinitely many
elements x from V , we have h(x) > IC(x).

Since the composition of two increasing functions is an increasing function and
the composition of a recursive function and an inductively computable function is an
inductively computable function, we have the following result.

Corollary 5.3.5. If h(x) and g(x) are increasing functions, h(x) is inductively com-
putable and defined in an inductively decidable set V , g(x) is a recursive function,
and they both tend to infinity when l(x) → ∞, then for infinitely many elements x
from V , we have g(h(x)) > IC(x).

Corollary 5.3.6. The function IC(x) is not inductively computable. Moreover, no in-
ductively computable function f (x) defined for an infinite inductively decidable set
of numbers can coincide with IC(x) in the whole of its domain of definition.

In addition to the function IC(x), we also introduce the function mIC(x) =
min{IC(y); l(y) ≥ l(x)}. It has the following properties.

Theorem 5.3.13. (a) mIC(x) is a total increasing function;
(b) mIC(x) is not inductively computable;

((c) mIC(x) → ∞ when l(x) → ∞.

Proof. (a) Since IC(x) is a total function, mIC(x) is also a total function. By defini-
tion, mC(x) is increasing.

(b) If mIC(x) is an inductively computable function, then by Theorem 5.3.12, for
infinitely many elements x , we have mIC(x) > IC(x). However, by the definition of
mIC(x), we have mIC(x) ≤ IC(x) everywhere. This contradiction completes the
proof of the part (b) is proved.

Part (c) follows from Lemma 5.3.1.
Theorem 5.3.13 is proved. ��
Theorems 5.3.6 and 5.3.12 imply the following result.

Theorem 5.3.14. For any increasing recursive function h(x) that tends to infinity
when l(x) → ∞ and any inductively decidable set V , there are infinitely many
elements x from V for which h(C(x)) > IC(x).

Corollary 5.3.12. In any inductively decidable set V , there are infinitely many ele-
ments x for which C(x) > IC(x).
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Corollary 5.5.13. In any recursive set V , there are infinitely many elements x for
which C(x) > IC(x).

Corollary 5.5.14. In any inductively decidable (recursive) set V , there are infinitely
many elements x for which ln2(C(x)) > IC(x).

If ln2(C(x)) > IC(x), then C(x) > 2IC(x). At the same time, for any natural
number k, the inequality 2n > k · n is true almost everywhere. This and Corollary
5.5.6 imply the following result.

Corollary 5.5.15. For any natural number k and in any inductively decidable
(recursive) set V , there are infinitely many elements x for which C(x) > k · IC(x).

Corollary 5.5.16. There are infinitely many elements x for which C(x) > IC(x).

Corollary 5.5.17. For any natural number a, there are infinitely many elements x for
which lna(C(x)) > IC(x).

Corollary 5.5.16. There are infinitely many elements x for which ln2(C(x)) > IC(x).

All these results show that, with respect to a natural extension of the Kolmogorov
or algorithmic complexity, inductive Turing machines are much more efficient than
any kind of recursive algorithms. Informally, it means that in comparison with recur-
sive algorithms, superrecursive programs for solving the same problem are shorter,
have lower branching (that is, less instructions of the form IF A THEN B ELSE C),
make less reversions and unrestricted transitions (that is, less instructions of the form
GO TO X ) for infinitely many problems solvable by recursive algorithms.

In addition, connections between communication complexity and Kolmogorov
complexity explicated in Section 5.3.3 and results of Theorem 5.3.12 and its corol-
laries imply that it is possible to decrease communication complexity for many prob-
lems if we use inductive computations instead of recursive computations.

Another proof of higher efficiency of inductive Turing machines in comparison
with conventional Turing machines and other recursive algorithms is given by their
ability to solve such problems that cannot be solved by conventional Turing ma-
chines. For instance, Lewis (2001) demonstrates limits of software estimation, using
boundaries set by the theory of algorithmic complexity. Inductive Turing machines
are able to make many estimations that are inaccessible for conventional Turing ma-
chines. It is possible only because inductive Turing machines have lower algorithmic
complexity for those problems than conventional Turing machines.
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Conclusion: Problems of Information Technology
and Computer Science Development

One never notices what has been done;
one can only see what remains to be done. . . .

Marie Curie, 1867–1934

Thus, a new definition of algorithms has been introduced that provides a clear
distinction between algorithms and their representations. However, for brevity, it is
possible to use the name algorithm for symbolic representations of algorithms. We
consider two main types of representations: physical representation (for example, in
the form of electrical charges, currents and so on) and symbolic representations (for
instance, in the form of recursive functions, Turing machines, finite automata, flow
charts and so on).

The new definition of algorithms has been used as a base for the study of mathe-
matical models of algorithms, representing different modes of:

1) computation: centralized, controlled distributed, and autonomous distributed
computation;

2) programming: procedural, functional, and descriptive programming;
3) intelligence modeling: behavioral and structural approaches.

Three types of algorithms and their models have been studied: recursive, sub-
recursive, and superrecursive. All conventional algorithms and their models are in-
cluded in recursive and subrecursive types. There are several models/classes of su-
perrecursive algorithms. The emphasis is on inductive Turing machines, which are
closer to conventional algorithms and thus, are more feasible for realization. In ad-
dition, superrecursive algorithms allow us to explain many peculiarities of computer
and network functioning, as well as human thinking and behavior. It has been demon-
strated that inductive Turing machines are more powerful (Chapter 4) and more effi-
cient (Chapter 5) than conventional algorithms and their models.

Inductive Turing machines represent a new higher level of mathematical models
of algorithms, realizing a transition from terminating computation to intrinsically
emerging computation. These properties result in nonlinear growth of computability
spaces.

It has many consequences not only for algorithms themselves, but also for sci-
entific study of nature and society. Science, as any other human cognition, builds
models of studied phenomena. We can discern three types of models for natural
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and social processes: qualitative, analytical quantitative, and algorithmic or compu-
tational models. However, in many cases, the first two types of models do not give
particular results such as numerical values without applying algorithms and perform-
ing computation. As a result, investigation of complex phenomena always involves
algorithmic/computational models.

Inductive Turing machine as a model for cognitive processes opens new per-
spectives for cognitive studies and artificial intelligence. They are not only more
powerful, but also more efficient for problems of artificial intelligence than Turing
machines. Being more relevant for description of human cognition, inductive Turing
machines also give more appropriate theoretical representation of modern comput-
ers. While Turing machines gave a correct abstract portrayal of computers at the
beginning of the “computer era”, inductive Turing machines are more adequate as
mathematical models for contemporary computers. Really, at the beginning, to ob-
tain a result from a computer, it was necessary to print this result. So, after the result
was obtained, it was possible to print it and to shut down the computer. This cor-
responds to the work of Turing machine and any recursive algorithm, which halts
when the result is obtained. Now when a result of computation is displayed on the
screen of the monitor, this result exists only when the computer is functioning. If
computer stops, the result disappears. This corresponds to the work of inductive Tur-
ing machine, which works without stopping to give a result. Only in some cases, it is
possible to print the final result and have it as a hard copy. However, this mode is also
included in the functioning of inductive Turing machine. Consequently, the recursive
model does not represent many cases of real computations, while inductive Turing
machines provide such representation. The same is true for many embedded sys-
tems, the primary function of which is to interact with ever functioning environment
(Heath, 1997). Popular now pervasive computation, which gives people convenient
access to relevant information stored on powerful networks and is more efficient in
work, is the first step in a practical realization of the computational mode of induc-
tive Turing machine and implementation of the new computing paradigm (Burgin,
1999a; 2000).

Inductive Turing machines and other superrecursive algorithms have many other
advantages, providing for a better theoretical frame for functioning of huge and dy-
namic knowledge- and databases, for computing methods in numerical analysis, for
search engines and so on. This type of algorithms is also better suited for model-
ing different dynamical systems, for which it is usually assumed that they function
without stopping.

The results presented in previous chapters allow us to make here several con-
clusions that might be useful for further development of computer and information
science, as well as for accelerating the growth of information technology. We discuss
here the following topics:

1. What is the system organization of models of algorithms and automata?
2. How does this system organization of models influence information processing

systems?
3. How do information processing systems evolve?
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4. What are future trends in the development of computer and information science?

6.1 A systemology for models of algorithms and
information processing systems

It takes all sorts to make a world.

A proverb

There is a multitude of different formal computational schemes or mathematical
models that are called algorithms or considered as generalizations of algorithms. The
problem is how to make an organized system of all these models and approaches. In
this way, some try to make a rigid border between algorithms and non-algorithms.
From this perspective, experts bounded the scope of algorithms only by such com-
putational schemes that can be modeled by Turing machines. These boundaries are
deduced from the Church–Turing thesis. However, some specialists accept as algo-
rithms exclusively such computational schemes that produce only total functions. For
others, only finite automata give the correct models of a computer. With introduction
of polynomial time computations, many computer scientists use the name algorithm
only for such computational schemes that give the final result in the polynomial time
with respect to the length of their input.

On the other hand, as it is demonstrated in Chapter 4, it is reasonable and even
necessary for future development to consider and to use inductive and other super-
recursive algorithms that are more powerful than Turing machines. In contrast to
the opinion of Teuscher and Sipper (2002), even contemporary computers are able
to perform hyper-computations (see Examples 4.2.1–4.2.3 from Section 4.2), which
can do much more than computations controlled by recursive algorithms. Thus, any
approach to algorithms that tries to restrict algorithms to some mathematical model
is not efficient enough for study, design, and utilization of algorithms.

That is why in contrast to restrictions, it is more productive to sanction utilization
of different kinds of algorithms and their models, but to organize and systematize
them through relevant classifications. In one of such classifications, which is basic
for this book, the class of all deterministic Turing machines is taken as the base,
and all models of algorithms that are equivalent to this class are called recursive
algorithms. Consequently, the diversity of different models of algorithms is divided
into three categories:

subrecursive algorithms, which have less computing or accepting power than
recursive algorithms;

recursive algorithms, and
superrecursive algorithms, which have more computing or accepting power than

recursive algorithms.
In addition to algorithms in this classification scheme, we also consider algorith-

mic schemes.
Savage (1976) introduces another classification, which contains three levels of

models for IPS and computation:



248 6 Problems of Information Technology

1. Logic circuits or combinatorial machines.
2. Finite automata or sequential machines.
3. Turing machines.

In this section, we build additional classification that connects algorithms with
their environment and IPS that they model. It is based on the structural relativistic
approach to the concept of algorithm, as suggested in Chapter 2. Accordingly, the
standard question “What is algorithm?” has a fallacy. Namely, it presupposes that
there is an absolute concept of algorithm. More relevant is to speak about algorithms
relative to some given conditions. We call them classification conditions because
they allow us to classify and distinct algorithms.

For example, algorithm involves mechanical or cleric operations. However, what
is a simple mechanical operation for one IPS, can be a very complex operation for
another IPS. Such operation as face recognition is simple for people, but is hard even
for the best computers. At the same time, to add 13579 to 8642 is a simple operation
even for calculators, but is a complex operation for many people, who cannot do
it without a calculator. Because computers can do much more than calculators, an
algorithm for a computer is not, as a rule, an algorithm for a calculator.

Classification conditions for algorithms include:

1. a class P of information processing systems (IPS), which realize algorithms and
may be abstract or real;

2. actual resources R for functioning or computations of systems from P;
3. potential resources ER for functioning or computations of systems from P.

Actual and potential resources may be different in theory and in practice. For
example, if we take a resource such as time for a Turing machine, then potential
time for a computation is arbitrary, while actual time, according to the contemporary
approach, has to be polynomially bounded. For real computers, we have distinctly
different conditions. One hour or less is an actual resource for computation, while
1010 hours is only a potential resource for computation.

Actual and potential resources separate solvability and tractability of problems.

Definition 6.1.1. A problem is called solvable in P if it can be solved by some system
from P given potential resources.

Definition 6.1.2. A problem is called tractable in P if it can be solved by some sys-
tem from P given actual resources.

Distinction between resources separates not only problems, but also all algorith-
mic schemes into three classes: actual, potential and ideal algorithms with respect to
these conditions.

Definition 6.1.3. Actual algorithm is a structure that, given resources from R, it al-
lows one to organize in an exact way the functioning of some IPS from P.

Definition 6.1.4. Potential algorithm is a structure that, given resources from ER, it
allows one to organize in an exact way the functioning of some IPS from P.
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If even resources from ER do not allow one to organize the functioning of some
IPS from P, but the scheme describes an abstract information process, then this
scheme is an ideal algorithm or algorithmic scheme.

For example, as no physical device can work with real numbers with infinite
precision whatever resources we are given, recursion with real numbers represents
ideal algorithms. As no physical device can do infinite numbers of separate steps
whatever resources we are given, infinite time Turing machines are ideal algorithms.

Let us consider some examples. We assume that resources from R contain only
finite tapes the length of which is bounded by some number n, while resources from
ER have infinite tapes for Turing machines. The class P consists of devices that have
the structure of Turing machines. Then all Turing machines are only potential algo-
rithms. Those Turing machines that use the tape with the length less than n are actual
algorithms. Such Turing machines are equivalent to finite automata. So, actual algo-
rithms are only finite automata. Inductive Turing machines with a recursive memory
are also potential algorithms, while inductive Turing machines of the second order
are ideal algorithms.

Another situation is when we have infinite tapes for Turing machines but do
not have oracles. In this case, all Turing machines are only actual algorithms, while
all Turing machines with oracles for recursively noncomputable functions are ideal
algorithms. All algorithmic schemes that work with arbitrary real numbers are also
only ideal algorithms.

If we imagine an Algorithmic Universe (cf. Fig. 6.1), we see that its recursive
region is a closed system, which entangles depressing incompleteness results, such
as Gödel incompleteness theorems. In contrast to this, superrecursive region of the
Algorithmic Universe is open. It implies development, creativity, and puts no limits
on human endeavor.

An important problem is relation between algorithms and computation. Some
reduce computation only to those processes that are realized by some general con-
ventional model, such as Turing machine. This is the mathematical point of view on
computation. Engineering approach treats computation as everything that computers
can do. Others take such a general view on computation that almost all processes
become computations. For example, computation is loosely described in (Goldreich,
2001) as “a process that modifies an environment via repeated applications of a pre-
determined rule that depends and affects only a (small) portion of the environment,
called the active zone.” An extreme position of such broad understanding results in,
the so-called, algorithmic theories of everything (cf., for example, (Schmidhuber,
2000)).

All this brings us to the important problem of a scientific definition of com-
putation. Suggested by different authors definitions do not solve this problem. For
instance, if we take the engineering definition, which looks so natural, we encounter
a problem what computer is. Is a human being a computer or not?

Results of this book show that our understanding of computation depends on
what kinds of algorithms and their models we consider. In particular, it is necessary
to discern actual computations that are realized now from potential computations that
only may be realized and from ideal computations that are now only theoretically
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Figure 6.1. Algorithmic universe.

described. Thus, the majority of quantum algorithms and computations described
in literature are now only ideal entities. At the same time, many kinds of inductive
computations are actual or potential. Building computers and other IPS that realize
new kinds of superrecursive algorithms allows one to shift the border between ideal
and actual computations.
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6.2 Development of information processing systems (IPS)

Nothing ventured, nothing gained.

A proverb

It is reasonable to consider the development of IPS from three aspects: what kind of
technical devices they will be, what problems they will be able to solve, and what
their role will be as they are placed in society and life of people in general. The latter
perspective is well described by Papadopoulos (2002) as three waves. He writes:

The first wave was a network of computers that swelled to encompass
hundreds of millions of systems, all connected, all continually exchanging
data.

The second wave, the one we’re riding now, could be described as a
network of things that embed computers. It’s made up of wireless phones,
two-way pagers and other handsets, game players, teller machines, and au-
tomobiles. In short, billions of potential connections.

The third wave is on the way, and even as we create it, we need to prepare
ourselves; it’s shaping up to be a regular tsunami. I call it a network of
things. Trillions of things. Things you’d hardly think of as computers. So-
called subIP (Internet Protocol) devices such as light bulbs, environmental
sensors and radio-frequency identification tags.

We need to know how all this will influence our lives. The development of tech-
nology changes even the meaning of words. According to Parsons and Oja (1994),
before 1940 the term computer was referred to a person who performed calculations.
Although machines that performed calculations had existed from the 17th century
when Blais Pascal (1623–1662) had built first machines for calculation, these ma-
chines were called calculators, not computers. The reason was that calculators were
able to perform essentially fewer operations than people did. Only the electronic
devices with essentially larger abilities in comparison with calculators acquired the
name computer.

Now computer technology is everywhere: in engineering and design, in bank-
ing and accounting, in industrial production and entertainment, at the stock market
and universities, and so on and so forth. Many fields of human activities cannot go
on without computers and specialized software. Computers have changed and are
continuing to change the process of writing and publishing a book or an article. Con-
temporary communication involves so many IPS that it is difficult even to imagine.
IPS help to drive a car and to navigate and control a plane.

However, in future people will become as dependent on computers and other IPS
as now they are dependent on their own organism. Embedded IPS will be everywhere
and therefore it is so important and even vital to know, understand and foresee how
IPS are developing, what they are doing and what they will be capable to do. It is
also urgent to be able to utilize this knowledge. Theoretical tools help us to achieve
these goals.



252 6 Problems of Information Technology

To understand the main trends in the development of IPS, we consider three main
modes of computation, or in general, of information processing:

♦ recursive mode in which an IPS has potentially unbounded (undefined) resources
but has to complete computation in finite time;

♦ subrecursive mode in which all resources of an IPS are exactly circumscribed;
♦ superrecursive mode in which an IPS can have potentially unbounded (unre-

stricted) resources, including time.

As it we already know, IPS have three layers: hardware, software, and infware.
Each of them has static and dynamic characteristics. Consequently, the development
of IPS goes along all these lines. Engineers construct more and more efficient hard-
ware based on technological innovations (such as transistors, chips, DNA and so on).
Programmers design more and more sophisticated software that can work with more
and more advanced information. The advancement of computational and communi-
cation processes goes on concurrently with this design. Computer scientists develop
new methods and techniques aimed at IPS. Better organization of computations con-
tributes to enhancement of processes, improving their dynamical characteristics.

Natural science, material technology, and mathematics contribute to the develop-
ment of hardware. Innovations for IPS software come mostly from software technol-
ogy, computing linguistics and mathematics. Knowledge engineering, information
and computer sciences, and mathematics play the leading role for infware enhance-
ment. For instance, an urgent problem is to teach computers to work not only with
data, but also with knowledge.

All layers of IPS are interconnected. The development of one of them influences
other components. More complex hardware demands highly developed software in
the form of an operating system. More sophisticated software is efficient only with
a sufficiently advanced hardware. A variety of forms of information representation
demand more advanced hardware and software and so on.

IPS are important only because they perform information processing. Informa-
tion processing is directed by computer and network programs, while each program
is an embodiment of some algorithm. Consequently, the theory of algorithms, au-
tomata and computation is one of the cornerstones for the development of IPS be-
cause any original approach to organization of information processing changes all
components and parts of IPS often resulting in a new paradigm for computation as a
whole.

It is necessary to admit that now we have much less knowledge about infware
than about two other layers of IPS. Being able to build very advanced and sophis-
ticated IPS (computers, local and global networks), people do not understand what
information is. Even the best experts on computers do not make correct (if any)
distinctions between knowledge and information. Thus, we encounter, for example,
statements that “by 2047 almost all information will be in cyberspace — including
a large percentage of knowledge and creative works.” Actually, as it is demonstrated
in the general theory of information (Burgin, 1994; 2002), information, knowledge,
and texts are essentially different essences. Texts contain knowledge and both texts
and knowledge are carriers of information. In contrast to knowledge, information is
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an active essence. It relates to knowledge and data as energy relates to substance. The
existing misconception demonstrates that the development and correct application of
information theory is urgent for a sound advancement of information processing, IPS
and their utilization.

Now there are several perspective approaches how to increase the power of com-
puters. We may find distinctions in biological, chemical, physical, and mathematical
directions. Three first are applied to hardware only influencing software and infware,
while the mathematical approach transforms all three components of IPS. A popular
area in the first, biological approach is membrane computing, which identifies a new
computing model, called P-system, from the natural way biological cells live and
function (Berry and Boudol, 1990; Paun, 2002). A P-system is built as a structure
of nested compartments surrounded by porous membranes. Initially each membrane
contains a number of possible repeated information objects (symbols), which form a
certain multiset (cf., for example, (Knuth, 1981)). Once functioning of such system
starts, the compartments exchange objects according to specific rules for interaction
with other membranes. Each compartment has a number of multiset processing rules.
In the simplest case, these processing rules are just multiset rewriting rules. The ac-
tivity stops when no such rule can be applied any more. The result of such computa-
tion equals to the number of objects that reside in a designated compartment called
the output membrane. This allows P-systems to achieve high parallelism. There are
different kinds of P-systems. In general, P-systems have many similar to Petri nets
features and are specific biologically oriented kinds of grid automata.

The second approach is very popular. It is called the molecular computing, the
most popular branch of which is the DNA computing (Cho, 2000). Its main idea is
to design such molecules that solve computing problems. The third direction is even
more popular than the first. It is quantum computing (Deutsch, 2000). Its main idea,
which is attributed to Feynman (1982; 1986) and Beniof (1982), is to perform com-
putation on the level of atoms and subatomic particles utilizing a theoretical ability to
manufacture, manipulate, and measure quantum states. As there are different quan-
tum process and various models in quantum physics, several approaches to quan-
tum computation have been developed: a quantum Turing machine (Deutsch, 1985;
2000), quantum circuits (Feynman, 1986; Deutsch, 1989), modular functors that rep-
resent topological quantum computation (Freedman, 2001; Freedman, Larsen, and
Wang, 2002; Freedman, Kitaev, Larsen, and Wang, 2002), and quantum adiabatic
computation (Farhi et al., 2000; Kieu, 2002; 2002a; 2003).

It is necessary to remark that some researchers criticize the quantum approach
from the theoretical perspective and doubt that quantum computers will work (cf.,
for example, Schmidhuber, 2002; Levin, 2003).

The most developed mathematical direction that extends the boundaries of con-
temporary computers is the theory of superrecursive algorithms. It is based on a new
paradigm for computation that changes computational procedure. However, it might
be interesting to know that analyzing Turing’s analysis of the concept of algorithm,
Gödel predicts, in a remark published after his death, a necessity of recursive algo-
rithms that realize inductive and topological computations (cf., Blass and Gurevich,
2003). Gödel pointed that Turing disregarded completely the fact that mind, in its
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use, is not static, but constantly developing, i.e., that we understand abstract terms
more and more precisely as we go on using them, and that more and more abstract
terms enter the sphere of our understanding. As we know now, this brings us to al-
gorithms that can compute more than the conventional Turing machines.

At the same time, it is known that biologically, chemically and physically based
types of computing that are in the process of realization, for example, molecular or
standard quantum computation, can do no more than conventional Turing machines
theoretically can do. For instance, standard quantum computers are only some kinds
of nondeterministic Turing machines (Deutsch, 1985; 2000), while a Turing ma-
chine with many tapes and heads model DNA and other molecular computers. DNA
and quantum computers will be (when they will be realized) eventually only more
efficient. In practical computations, they can solve more real-world problems than
Turing machines. However, any modern computer can also solve more real-world
problems than Turing machines because these abstract devices are very inefficient.
At the same time, superrecursive algorithms can compute what is now considered as
noncomputable, both theoretically and practically (cf. Chapter 4). In addition, super-
recursive algorithms are more efficient (cf. Chapter 5). Consequently, these mathe-
matical ideas are much more advanced and go much further than physical and chem-
ical innovations.

This situation might be explained by the following metaphor.
Let us imagine time when people have many different cars, but no planes. DNA

and quantum computing is like a suggestion to build cars that will have ten times
higher speed than any existing car. In contrast to this, theory of superrecursive algo-
rithms suggests building and flying planes.

To see how to go from virtual perspectives to actual reality, we need to consider
three questions: how modern computers and networks are related to superrecursive
algorithms, what new possibilities open superrecursive computations, and how it is
possible to realize technologically these computations.The first two problems are
considered in Chapters 4 and 5. To achieve the last but not the least goal, we need, in
our case, to develop a new paradigm for computation or, more generally, for informa-
tion processing. The conventional paradigm is based on our image of computer uti-
lization, which consists of the following stages: 1) formalizing a problem; 2) writing
a computer program; 3) obtaining a solution to the problem by program execution.
In many cases, the necessary computer program exists and we need only the third
stage. After this, we either leave our computer to do something else or you begin to
solve another problem.

This process is similar to using a car. We use car to go to some place, then possi-
bly to another and so on. However, at some moment, we park the car we were driving
at some place, stop its functioning, and for a definite time do not use it. This is the
Car Paradigm when some object is utilized only periodically for achieving some
goal, but after this it does not function (at least for some time). In particular, this
gives us a definite paradigm for computation.

In a very different manner, people use clocks. After buying, they start the clock,
and then the clock is functioning until it breaks. People look at the clock from time
to time to find what time it is. This is the Clock Paradigm when some object is
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functioning all the time without stopping, while those who utilize it get some results
from it from time to time. Recursive algorithms imply that modern computers are
utilized according to the Car Paradigm, while superrecursive algorithms suggest for
computation and computer utilization the new Clock Paradigm.

It is also assumed that contemporary computers and their software are utilized
according to the Car Paradigm. This justifies validity of the Church–Turing thesis
for the computer realm. However, an interesting peculiarity of modern computers
is that in many cases their computations are organized according to the potential
Clock Paradigm when obtained results are considered only as intermediate and it is
supposed that to get better results it is necessary to make more computational cycles.

Thus, it is possible to ask why the Clock Paradigm is new. Really, analysis of
the up-to-date utilization of computers shows that even when researchers understand
necessity to repeat a cycle of computation, they assume that computation is a finite
process. Consequently, computation is represented by recursive algorithms. At the
same time, conscious application of the new approach provides for several important
benefits. First, it First, it gives a better understanding of the results of a separate part
of the whole computational process. Second, it shows how to utilize computers in
a better way. Third, it makes possible to use more adequate theoretical models for
investigation and development of computation. For example, simulation and mon-
itoring of many processes in industry is better modeled when these processes are
treated as potentially infinite.

The Clock Paradigm, which was represented by such theoretical model as in-
ductive Turing machine almost thirty years ago, finds its partial realization now in
a form of pervasive computing. Pervasive computing encompasses the dramatically
expanding sphere of computers embedded within and intrinsically part of larger de-
vices (Kara, 2000). Pervasive computing provides convenient access to relevant in-
formation and applications through a new and powerful class of ubiquitous, intel-
ligent appliances that have the ability to easily function when and where needed.
Special networks enable these pervasive computing devices by providing transparent
access to e-business and other services. Pervasive computing is useful to business
users because it supports global (anywhere), sustainable, and persistent (anytime)
environment, improves customer service (loyalty, competition, and differentiation),
increases revenue (new channels, markets, and transactions), and decreases costs (ef-
ficiency competition, and cycle time).

At the same time, while the pervasive approach is simple, elegant, and mathe-
matically grounded, the implementations are incredibly complex, with critical inter-
dependencies in abundance. To solve these problems in an efficient and reliable way,
we need to investigate properties of pervasive computing in the context of induc-
tive computation model. Conventional recursive models may be very misleading for
pervasive computing.

The Car and Clock Paradigms represent two mainstreams in the development of
information processing technology. The first one corresponds to the past and present,
while the second paradigm is directed into the future. However, this binary classifi-
cation of paradigms constitutes a part of a more developed paradigmatic system.
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Actually, when computers appeared, they have been utilized by many users with
the help of programmers and operators. Consequently, computer functioning resem-
bled not an arbitrary car but a taxi. Thus, computation at that time corresponded to
the Taxi Paradigm.

Elaboration of personal computers changed the situation giving birth to the One-
Person-Car Paradigm.

At the same time, big computers and, especially, supercomputers are working
in the time sharing mode. For example, one computer may be used for running on
it several computational processes. It makes possible to share one computer system
providing in such a way concurrent facilities to several researchers. This corresponds
not to the Car but to the Bus Paradigm for computation when one IPS is used by
many users.

Time sharing on a personal computer corresponds to the Car Paradigm in its
complete form when a car carries not only a driver, but also some passengers.

Recently, such approach as pervasive computation has been coined to reflect new
facilities hidden in the Internet (Ark and Selker, 1999; Kara, 2000). Besides, differ-
ent embedded systems are spreading very rapidly. Both these issues in connection
with the superrecursive model for computation imply one more paradigm for com-
putation. It is called the Watch Paradigm. According to this paradigm, computations
are going on continuously, while computing device is not fixed at one place as in the
Clock Paradigm, but moves together with the host system. Such host system may be
a user, car, plane, and so on.

Normal functioning of modern computers presupposes that they work without
stopping. However, many of them are switched off from time to time. In any case,
these devices eventually end computations. At the same time, development of com-
puter technology gave birth to systems that include as their hardware many comput-
ers and other electronic devices. As an example, we can take the contemporary World
Wide Web. These systems possess many new properties. For instance, who can imag-
ine now that the World Wide Web will stop its functioning even for a short period
of time? Thus, the World Wide Web is a system that works according to the Clock
Paradigm. Consequently, only superrecursive algorithms such as inductive Turing
machines can correctly model such systems.

Embedded computing devices that employ superrecursive schema have to work
in the Clock Paradigm if the process in their host system is continuous and the system
is stationary. For example, embedded systems that regulate temperature in a building
will have this feature. At the same time, embedded computing devices that employ
superrecursive schema will be working in the Watch Paradigm if their host system
moves.

The same is true for ubiquitous computing. According to its main idea, compu-
tations are going on continuously, but computing device is not fixed at one place as
in the Clock Paradigm, It moves together with its owner. Recently, such approach as
ubiquitous or nomadic computations has been coined to reflect new facilities hidden
in the Internet. Computers will be connected to Internet all the time and will work
without stopping. It does not mean that they will function in the same mode all the
time, but the whole process will correspond to the Watch Paradigm.
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Even Internet computing will be on the lines of the Clock Paradigm because
Internet works without stopping and users enter it like people who look at a clock
to know time. Only in this case, it will take more efforts to “look” but it will be
possible to get much more information. To transform the contemporary Internet into
an actual Cyberspace with the Grid as the base for it, we have to provide that it
functions without stopping like a clock or nature. Can you imagine that the universe
stops functioning? That was not by chance that the great Newton compared nature to
a clock. Computers can really transit from a part of our World into our environment
only when the new paradigm will be used.

In addition to this, many problems that are now considered undecidable will be
repeatedly solved by future computing systems. Those will include such practically
important problems as program debugging, software optimization and many others.

According to (Alt, 1997), future methodology for solution of hard problems as
such weather forecast and medical control and diagnosis implies that computers that
will solve them have to work in the Clock Paradigm. In addition to this, new ap-
proach to computation will enable usage of better numerical methods. Consequently,
weather forecast and medical control and diagnosis will achieve much higher level
of reliability than they have now.

It is worth mentioning that this novel approach of the Clock Paradigm is possible
to implement even with the existent hardware, software, and infware. Although, it
will be realized only in a partial form. Current situation is reflected in the following
metaphor. People have some primitive planes, but do not know how to use them for
flying. A new theory explains how to fly on these planes and how to build much
more advanced planes. This implies that people will need new skills because flying
is different from driving even the best car.

It is necessary to remark that it is claimed that some theoretical models of quan-
tum computation can go beyond the Church–Turing thesis (cf., for example, Kieu,
2002; 2003). At the same time, the corresponding physical model suggests that the
halting of a quantum universal Turing machine (computer) is highly problematic.
This brings us to necessity of modeling quantum computers with superrecursive al-
gorithms, such as inductive and limit Turing machines.

However advantages of superrecursive algorithms do not imply that they will
completely substitute recursive algorithms in future. Where recursive and subrecur-
sive algorithms efficiently solve problems, they will still be used in future. Only in the
cases where recursive algorithms are impotent either in principle (as for the halting
problem) or due to inefficiency (as for multidimensional optimization), superrecur-
sive algorithms will take their place. We can compare the situation with utilization
of calculators (recursive algorithms) and computers (superrecursive algorithms). To
add three numbers each of which is less than 1000, we don’t need a computer, al-
though it is possible to use a computer as a calculator. Like computers in comparison
to calculators, superrecursive algorithms are able to bring new power to people.

For example such important component of e-commerce as customer relation-
ship management and customer analysis is inefficient in the recursive mode. Only
the superrecursive mode in form of a topological computation (Burgin, 2001b) can
provide necessary efficiency. As Pan and Lee (2003) write, the customer analysis ap-
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plication measures, predicts, and interprets customer behaviors, enabling companies
to understand the effectiveness of e-CRM efforts across both unbound and outbound
channels. The integrated customer information is used to build a business campaign
strategy and assess results. It also builds predictive models to identify the customers
most likely to perform a particular activity such as purchase an upgrade from the
company. It is necessary to carry on customer analysis constantly or, at least, reg-
ularly, working in the Clock Paradigm. Otherwise, a company can miss important
changes in the customer behavior. This often results in essential losses to the com-
pany.

However, being more advanced and powerful than recursive algorithms and de-
vices, superrecursive algorithms and devices demand more skills and knowledge
from their users in the same way as do computers in comparison to calculators. For
instance, we may call superrecursive algorithms that direct inductive computations
by the name algorithms for intelligent users.

To realize the new paradigm to a full extent, we need innovative hardware based
on different physical principles (Stewart, 1991), original software implementing su-
perrecursive principles of information processing, and even nonpareil organization
of infware.

Being more advanced than recursive algorithms, superrecursive algorithms and
devices demand more knowledge and skills from their users. In a similar way, com-
puters demand more knowledge and skills than calculators. Thus, we may call su-
perrecursive algorithms, which direct hyper-computations, algorithms for intelligent
users.

Now we come to the problem of application of the new paradigm. To utilize its
higher possibilities and thus to go beyond the Church–Turing thesis, people and the
whole society have to use their creativity. Even more, it will have to be the creativity
of special kind that may be called grounded or intelligent creativity. Humans and
computers have to be cooperating systems (Norman, 1997). Consequently, creativity
will continue to be a clue to the highest achievements, but superrecursive compu-
tations will increase these heights to unimaginable extent. Thus, people’s creativity
multiplied by computing power of superrecursive devices and algorithms will cause
the real revolution in information technology and life of people.

At the same time, some aspects of creativity might be programmed (Burgin
and Povyakel, 1988). Then programmed creativity times superrecursive computing
power will give birth to Artificial Intelligence that will really be on the same or even
on the higher level than human intellect.

6.3 From algorithms to programs to technology

All’s well that ends well.

A proverb

Laws of the science development, which are discovered in methodology of science
(Burgin and Kuznetsov, 1994), show three models for the theory development: exten-
sion/unification, intensification, and harmonization/simplification. The first approach
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is directed to extension of the scope of the theory. This goal is achieved by gener-
alization and abstraction. In mathematics in general and in the theory of algorithms
and computation, in particular, the standard methodology for doing this is axioma-
tization. In mathematics, this approach originated such gemstones as Euclidean ge-
ometry, mathematical logic, and topology. In the theory of algorithms, it resulted in
creation of the axiomatic theory of programs (Hoare, 1969) and the axiomatic theory
of algorithms (Burgin, 1985).

The second direction of the development of a theory is aimed at getting better
approximation to reality that the initial theory models. In astronomy, this resulted in
the transition from the Ptolemaic celestial system to the Copernicus’ celestial system
to the Newton’s celestial dynamics. In computer science, the development in this
direction goes from the theory of algorithms to the theory of programs (Hoare, 1969;
Halstead, 1977) to the mathematical theory of technology (Burgin, 1997c; 2002).

To understand this trend better it is important to see how different is functioning
of a real computer or network from what any mathematical model in general and a
Turing machine (as an abstract, logical device), in particular, reputedly does when
it follows instructions. In comparison with instructions of a Turing machine, pro-
gramming languages provide a diversity of operations for a programmer. Operations
involve various devices of computer and demand their interaction. In addition, there
are several types of data. As a result, computer programs have to give more instruc-
tions to computer and to specify more details than instructions of a Turing machine.
The same is true for other models of computation. For example, when a finite au-
tomaton represents a computer program, only some aspects of the program are re-
flected. That is why computer programs give more specified description of computer
functioning, and this description is adapted to the needs of computer. Consequently,
programs demand a specific theory of programs, which is different from the theory
of algorithms and automata.

At the same time, as observes Cleland (2001), instructions of a Turing machine
logically predetermine everything that is done by the machine — nothing is left open.
As a consequence, there is no distinction between what an abstract machine does and
how it does it. This is possible because Turing machine has a simple structure what is
surprising for such a powerful device. In contrast to Turing machine instructions, no
computer program (considered just per se) provides a complete specification of the
behavior of the machine implementing it. Even the lowest level programs (machine
language programs) depend upon a complicated encoding scheme called the “ma-
chine code format” to fix the physical states the machine actually passes through.
This gap between the hardware and the software of a concrete computer and even a
greater gap between pure functioning of the computer and its utilization by a user de-
mands description of many other operations that lie beyond the scope of a computer
program, but might be represented by a technology of computer functioning and uti-
lization. This brings us to necessity of a specific theory of information processing
technology.

The theory of programs, which is different from the theory of algorithms and
computation and from the theory of programming, is at the very beginning of its de-
velopment, although it was introduced as a separate discipline by Halstead (1977) 25
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years ago. This theory studies programs, their design, development, maintenance,
and usability. As such it contains the theory of programming as its part. Conse-
quently, different areas of the theory of programs appeared before the name for this
theory was coined. As an example, we can take the axiomatic theory of programs ini-
tiated by Hoare (1969). As Hoare writes, “computer programming is an exact science
in that all the properties of a program and all the consequences of executing it can,
in principle, be found out from the text of the program itself by means of purely de-
ductive reasoning.” These assumptions allow Hoare to write down axioms and rules
of reasoning about computer programs. The choice of axioms naturally depends on
the choice of programming language.

This, looking so practical, but naive approach is, in general, invalid like the
Hilbert’s belief in possibility to prove consistency of the whole mathematics. As
it is demonstrated in Section 2.5, in contrast to this assumption, almost all properties
of programs, according to Rice Theorem, are undecidable and thus, cannot be found
out from the text of the program itself by means of purely deductive reasoning. Here
we see one more time how theory helps practice to understand the real situation.

However, this does not invalidate the axiomatic approach to programming like
the Gödel incompleteness theorem does not refute the axiomatic approach in math-
ematics. It might be useful if properly applied. Although according to the Gödel
Theorem (Gödel, 1931), it is impossible to prove by classical inference methods all
theorems in mathematics, mathematicians have proved and continue to prove many
interesting and useful theorems. In a similar way, although it is impossible to find
all properties of programs by standard logical reasoning, axiomatic methods might
be useful on different stages of programming, especially, for program verification by
means of proving program correctness. A lot of research has been done in this area
and different technique has been suggested. At the same time, this formal approach
to programming resulted in open controversy in the field of computing (Glass, 2002).
On one hand, mathematical approaches to developing software were flourishing in
academia. On the other hand, practitioners rarely (if ever) used them, while some of
them, as well as some members of academic community challenged utility of logical
methods for programming. Now, as Glass (2002) admits, there is a healthier outlet
for this disagreement. Academics have toned down their rhetoric, admitting reasons
why practitioners avoid the approaches. Practitioners concede the value of the theory,
while they continue to challenge its workableness in practice.

Superrecursive algorithms in general and inductive computations, in particular,
open new perspectives for formal methods in programming. Namely, it is possible to
develop formal logical calculi based not on standard deduction but on inductive infer-
ence (Burgin, 1987). Theoretical results (cf. Chapter 4) show that such calculi will be
much more powerful than the conventional logic because inductive Turing machines
are more powerful than classical deduction. Consequently, these new methods and
structures will allow researcher and practitioners to achieve better program design
and verification by logical procedures.

The theory of technology is a much younger discipline even in comparison with
the theory of programs. Although creation of a theory of technology has been urgent
for a long time due to the situation that mankind is developing in the technological
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direction — more and more technologies are used by people. Technologies become
more and more sophisticated and complex. Technology is not only various technical
devices, but mostly knowledge about these devices. However, only at the end of the
twentieth century, the development of technological knowledge and mathematical
achievements made it possible to elaborate mathematical theory of technology. Its
starting point is an exact, however, informal definition of technology as a system
of knowledge. Basing on this definition, two classes of technologies (the general
and specific technologies) are introduced to reflect the situation existing in industry
and engineering. Technology represents in an exact form all stages of system life: the
analysis of a problem of system development, system analysis, system design, system
development, system implementation, system utilization, and system maintenance.
This provides for the construction of a general mathematical model of a specific
technology as well as for the development of a relevant mathematical apparatus and
exact methods for an investigation and design of various technologies (in industry,
management, information processing and so on).

The mathematical theory of technology (Burgin, 1997c; 2002) utilizes new math-
ematical disciplines such as theory of named sets, fuzzy set theory, and theory of
structured multidimensional models of systems and processes as well as traditional
fields such as algebra, theory of probabilities, and theory of algorithms.

In the mathematical theory of technology, such problems as reliability, equiva-
lence, stability, constructibility, and realizability of technologies are studied. The aim
is the development of efficient methods and algorithms of the computer aided design
of technologies.

Thus, both theories, the theory of programs and theory of technology are aimed
not only at knowledge acquisition, but also at solving practical problems.

Some claim that practice leaves theory behind and theory has only to explain
what practice has already gained. It is not so with theory of algorithms. Now chemists
are designing only the simplest computational units on the molecular level, while the-
ory of parallel computations, comprising molecular computing, has many advanced
results. Physicists are only approaching quantum computers, while theory of quan-
tum computations has many results, demonstrating that it will be much more efficient
that contemporary computers. The same even to a greater extent is true for super-
recursive algorithms. Now practice has to catch up with the theory and it is urgent to
know how to bridge the existing gap. This gives a positive answer to the question of
Dijkstra’s paper “The end of Computing Science?” (2001). On the contrary, science
is even more alive than before. Only many professionals don’t know about it.

To conclude, it is worth mentioning that theory of superrecursive computing has
an important message for society and not only for technology. It only looks smart to
stop and to enjoy after you get something. Theory of superrecursive computing says
that it is better to continue to be active. This is the truth of life.
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for Data Translation and Integration, IEEE Data Eng. Bull., v. 22, no. 1, pp. 3–8.

2. Abiteboul, S., Papadimitriou, C.H. and Vianu, V. (1994). The Power of Reflective Rela-
tional Machines, LICS, pp. 230–240.

3. Abiteboul, S., Vardi, M.Y., and Vianu, V. (1992). Fixpoint Logics, Relational Machines,
and Computational Complexity. Structure in Complexity Theory Conference, pp. 156–
168.

4. Abiteboul, S., Vardi, M.Y., and Vianu, V. (1992). Computing with Infinitary Logic.
ICDT, pp. 113–123.

5. Abiteboul, S., Vardi, M.Y., and Vianu, V. (1995). Computing with Infinitary Logic,
Theor. Comput. Sci., v. 149, no. 1, pp. 101–128.

6. Abiteboul, S., Vardi, M.Y., and Vianu, V. (1997). Fixpoint logics, relational machines,
and computational complexity. Journal ACM, v. 44, no. 1, pp. 30–56.

7. Abiteboul, S., and Vianu, V. (1993). Computing on Structures, in Automata, Languages
and Programming, Proceedings of the Second International Colloquium, ICALP93 (Lec-
ture Notes in Computer Science, v. 700, Springer) pp. 606–620.

8. Abiteboul, S. and Vianu, V. (1997). Queries and computation on the web, in Database
Theory - ICDT ’97, 6th International Conference (Lecture Notes in Computer Science,
v. 1186, Springer) pp. 262–275.

9. Abiteboul, S., and Vianu, V. (2000). Queries and computation on the web. Theor. Com-
put. Sci., v. 239, no. 2, pp. 231–255.

10. Abrams, M., Page, E.H., and Nance, R.E. (1991). Linking Simulation Model Specifica-
tion And Parallel Execution Through Unity, Proceedings of the 1991 Winter Simulation
Conference, Phoenix, Arizona, pp. 223–232.

11. Abramsky, S. and Jung, A. (1994). Domain Theory, in Handbook of Logic in Computer
Science, v. 3, Clarendon Press.

12. Abramson, F.G. (1971). Effective Computation over the Real Numbers, Twelfth Annual
Symposium on Switching and Automata Theory, Northridge, Calif.: Institute of Electrical
and Electronics Engineers.
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