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Editorial

Welcome to the Book Series Structures and Infrastructures.
Our knowledge to model, analyze, design, maintain, manage and predict the life-

cycle performance of structures and infrastructures is continually growing. However,
the complexity of these systems continues to increase and an integrated approach
is necessary to understand the effect of technological, environmental, economical,
social and political interactions on the life-cycle performance of engineering structures
and infrastructures. In order to accomplish this, methods have to be developed to
systematically analyze structure and infrastructure systems, and models have to be
formulated for evaluating and comparing the risks and benefits associated with various
alternatives. We must maximize the life-cycle benefits of these systems to serve the needs
of our society by selecting the best balance of the safety, economy and sustainability
requirements despite imperfect information and knowledge.

In recognition of the need for such methods and models, the aim of this Book Series
is to present research, developments, and applications written by experts on the most
advanced technologies for analyzing, predicting and optimizing the performance of
structures and infrastructures such as buildings, bridges, dams, underground con-
struction, offshore platforms, pipelines, naval vessels, ocean structures, nuclear power
plants, and also airplanes, aerospace and automotive structures.

The scope of this Book Series covers the entire spectrum of structures and infrastruc-
tures. Thus it includes, but is not restricted to, mathematical modeling, computer and
experimental methods, practical applications in the areas of assessment and evalua-
tion, construction and design for durability, decision making, deterioration modeling
and aging, failure analysis, field testing, structural health monitoring, financial plan-
ning, inspection and diagnostics, life-cycle analysis and prediction, loads, maintenance
strategies, management systems, nondestructive testing, optimization of maintenance
and management, specifications and codes, structural safety and reliability, system
analysis, time-dependent performance, rehabilitation, repair, replacement, reliability
and risk management, service life prediction, strengthening and whole life costing.

This Book Series is intended for an audience of researchers, practitioners, and
students world-wide with a background in civil, aerospace, mechanical, marine and
automotive engineering, as well as people working in infrastructure maintenance,
monitoring, management and cost analysis of structures and infrastructures. Some vol-
umes are monographs defining the current state of the art and/or practice in the field,
and some are textbooks to be used in undergraduate (mostly seniors), graduate and
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postgraduate courses. This Book Series is affiliated to Structure and Infrastructure
Engineering (http://www.informaworld.com/sie), an international peer-reviewed jour-
nal which is included in the Science Citation Index.

It is now up to you, authors, editors, and readers, to make Structures and
Infrastructures a success.

Dan M. Frangopol
Book Series Editor
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Preface

Structural health monitoring has become a growing R&D area, as witnessed by the
increasing number of relevant journal and conference papers. Rapid advances in instru-
mentation and computational capabilities have led to a new generation of sensors, data
communication devices and signal processing software for structural health monitor-
ing. To this end, a crucial challenge is the development of robust and efficient structural
identification methods that can be used to identify key parameters and hence, cause
change of structural state. There are currently many competing methods of structural
identification, both classical and non-classical. Based on our resarch efforts for over
more than a decade, the genetic algorithms (GA) have been found to possess many
desired characteristics and offer a very promosing way to tackle real systems. It is
the intention of this book, believed to be the first on this topic, to provide readers
with the background and recent developments on GA-based methods for parameter
identification, model updating and damage detection of structural dynamic systems.

Of significance, a novel identification strategy is developed which contains many
advantageous features compared to previous studies. The application of the strategy
focuses on structural identification problems with limited and noise contaminated
measurements. Identification of systems with known mass is first presented to provide
physical insight into the effects of various numerical parameters on the identification
accuracy. Generalisation is then made to systems with unknown mass, stiffness and
damping properties – a much tougher problem rarely considered in many other identi-
fication methods, due to the limitation of formulation in separating the effects of mass
and stiffness properties.

The GA identification strategy is extended to structural damage detection whereby
the undamaged state of the structure is first identified and used to direct the search for
parameters of the damaged structure. Furthermore, another rarely studied problem of
structural identification without measurement of input forces, i.e. output-only identifi-
cation, is addressed which will be useful in cases where force measurement is difficult or
impossible. It is our strong belief that any research attempt on structural identification
and damage detection should be tested not only numerically but also experimentally,
and hence a relatively long chapter on experimental study to validate the GA-based
identification strategy. Finally, a practical divide-and-conquer approach of substructur-
ing is presented to tackle large structural systems and also to illustrate the power and
versatility of the GA-based strategy. The findings presented signify a quantum leap
forward from research and practical viewpoints, and this book should therefore be
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useful to researchers, engineers and graduate students with interests in model updates,
parameter identification and damage detection of structural and mechanical systems.

The authors wish to thank the staff of the Structural Engineering Laboratory of
the Department of Civil Engineering at the National University of Singapore for
their invaluable assistance in making the experimental study a success. The finanical
support, including research scholarship for graduate students (including the second
author) from the National University of Singapore is most appreciated. Many former
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book in one way or another are also gratefully acknowledged. Special thanks go to
Mr. Zhang Zhen and Mr. Trinh Ngoc Thanh for their great contributions and many
insightful discussions.
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Chapter 1

Introduction

Buildings, bridges, offshore platforms, dams and other civil infrastructures may experi-
ence damage during their service life due to natural and man-made actions. Significant
damage in a structure is often manifested through changes in physical properties, such
as decrease in structural stiffness and a corresponding shift of natural frequencies.
If not monitored and rectified early, damage would compromise the performance of
structure, increase maintenance cost and, in the unfortunate event, result in structural
failure. From the viewpoint of functionality and safety, it is therefore essential and ben-
eficial to have means of early detection of structural damage. To this end, structural
damage identification has now become a vital component of an emerging engineering
discipline known as Structural Health Monitoring (SHM). Applicable to civil infras-
tructures as well as mechanical, aerospace and other types of structures, SHM involves
the observation of structures by measurement to determine the “health’’ or “fitness’’
of structures under gradual or sudden changes to their state. Some of the recent note-
worthy efforts in SHM are reported in special issues in journals such as Journal of
Engineering Mechanics, ASCE (Ghanem and Sture, 2000; Bernal and Beck, 2004),
Computer-Aided Civil and Infrastructure Engineering (Adeli, 2001), Smart Materi-
als and Structures (Wu and Fujino, 2006), Structure and Infrastructure Engineering
(Chang, 2007), and Philosophical Transactions of the Royal Society A (Farrar and
Worden, 2007).

The rapidly growing interest in SHM can be partly attributed to technological
advances in sensors, data acquisition and processing, wireless communication, etc,
and partly attributed to the rising awareness of its long-term benefits by the owners,
operators and authorities. Tangible benefits of SHM to the users include better per-
formance prediction, lower life-cycle cost and more reliable evaluation of structural
safety (see, for example, Frangopol and Messervey, 2009; Liu et al., 2009a and b).
With increasing acceptance of response monitoring, the need for more efficient and
robust algorithms to extract useful information from the enormous data collected is
more than ever. For the purpose of structural identification and damage detection, the
use of dynamic response is usually preferred over static response as dynamic signals
offer more information and avoid the possible non-uniqueness problem. For static
methods to overcome the non-uniqueness problem, force application at multiple loca-
tions is usually required (Sanayei and Onipede, 1991; Hjelmstad and Shin, 1997)
or additional information such as modal frequencies are needed (Wang et al., 2001).
Noise effect in dynamic measurement can normally be filtered out by low-pass filters
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Known or assumed
system

Known or assumed
loading

Simulated
response

(a)

(b)

System with parameters
to be identified

Measured or
unknown loading

Measured
response

Figure 1.1 (a) Direct analysis (simulation); (b) inverse analysis (identification).

unlike in static measurement. Furthermore, it is easier to carry out dynamic measure-
ment via accelerometers than static measurement. Static measurement requires a fixed
reference for the displacement sensors or incurs numerical error if integrated twice
from accelerometer signals. For these practical reasons, most of research works on
structural identification and damage detection have been based on dynamic measure-
ment, in which case the methods may be referred to as vibration-based identification
or vibration-based damage detection. This normally involves inverse analysis which is
more difficult to do than forward analysis. In forward analysis, the aim is predict the
response (output) for given excitation (input) and known system parameters. Inverse
analysis dealing with identification of system parameters based on given input and
output (I/O) information (Fig. 1.1) is known as system identification. If only output
information is needed, this is known as output-only system identification.

1.1 Modelling and Simulation of Dynamic Systems

System identification, in a broad sense, can be described as the identification of the
conditions and properties of mathematical models that aspire to represent real phe-
nomena in an adequate manner. Originally used in electrical and control engineering
and subsequently extended to the fields of mechanical, aerospace and civil engineering,
system identification typically involves the following two key aspects:

• Choosing a mathematical model that is characterized by a finite set of key
parameters

• Identifying these parameters based on measurement signals

The success of damage identification hinges on, to a large extent, realistic modelling
of the structural system as well as efficient numerical simulation to obtain the dynamic
response. While it is appealing to adopt a detailed structural model, for example, by
means of the finite element method, the resulting number of degrees of freedom (DOFs)
for a real structure would usually be very large. This would translate into higher
computational cost and, if the number of unknowns is also large, greater difficulty in
system identification. Hence, special attention is needed to keep the size of structural
model sufficiently representative of the main features of the real structure and at the
same time keep the computational effort at an affordable level. Often, what is needed
for damage detection is to detect changes of key structural parameters, for instance, the
storey stiffness values for which a shear building model or even a lumped mass model
may suffice. In this regard, the concept of substructural identification is very attractive
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In troduct ion 3

because it reduces the system size so that parameter identification is executed with a
manageable number of unknowns. This will be illustrated in Chapter 8 of the book.

In a broader sense, modelling error includes error arising from the numerical scheme,
if required, in “integrating’’ the equations of motion. This error source can be reduced
by using a higher-order numerical scheme or a small time step, either of which would
entail higher computational cost. Hence the issue of duration of time signals considered
is important for the efficiency of the identification strategy. Depending on the algorithm
used, it may not be worthwhile to use a long duration of time signals in the early stage
of identification; this will be addressed in Chapter 3.

Recognizing the fact that modelling error exists no matter how refined the numerical
model (including integration scheme) is used, a preferred strategy is to focus on damage
detection by comparing the changes of the monitored state and the reference state.
The reference state is usually the undamaged state, i.e. when the structure is new or
deemed to be free of any significant damage. By including the undamaged state in
the system identification and using its results as the benchmark, the model error can
be reduced – provided that the model is sufficiently accurate. This forms the basis of
structural damage detection as discussed in Chapter 6.

1.2 Structural Identification and Damage Detection

The identification of stiffness, mass and/or damping of a structural system is referred
to herein as “structural identification’’ in short. Structural identification can be used
to update or calibrate structural models so as to better predict response and achieve
more cost-effective designs. More importantly, by tracking changes of key parameters,
structural identification can be used for non-destructive assessment due to damaging
events such as earthquakes and also for deterioration monitoring of ageing structures
over time. There are three important components to damage detection, in the order
of difficulty, as follows: (1) damage alarming, i.e. to indicate whether there is dam-
age; (2) damage localization, i.e., to identify the location of damage; and (3) damage
quantification, i.e. to quantify the extent of damage.

From a computational point of view, identification of a dynamic system can be
a daunting task, particularly when the system involves a large number of unknown
parameters. The effectiveness of an identification strategy can be measured in terms
of accuracy, efficiency and robustness. Robustness in this context refers to the high
success rate of finding the solution with as little requirements as possible in terms of,
for instance, initial guess and gradient information.

1.3 Overview of Structural Identification Methods

Many different methods have been developed for structural identification; they are too
numerous to be given a thorough review here. Recent literature reviews of structural
identification from different perspectives can be found in Chang et al. (2003), Carden
and Fanning (2004), Hsieh et al. (2006), Humar et al. (2006) and Friswell (2007).

When system identification is treated as an optimization problem in terms of min-
imizing the errors between the measured and predicted signals, the methods can be
categorized as classical and non-classical methods. Classical methods are typically
those derived from sound mathematical theories. They perform point-to-point search
and often require the gradient information (or its variant) to guide its search direction.
Depending largely on the initial guess, the solutions may converge falsely to a local
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4 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

optimal point rather than the global optimum. The classical methods can be catego-
rized according to whether the identification is carried out directly from the measured
time signals or from the frequency domain information via Fourier transform. Some
of the commonly adopted classical methods are introduced in the following sections,
first in the frequency domain and then in the time domain.

1.3.1 Frequency Domain Methods

Identification of dynamic properties and damage in the frequency domain is based
mainly on measured natural frequencies and mode shapes. Time signals are digitally
converted to extract these modal properties by fast Fourier transform (FFT) (Cooley
and Tukey, 1965) or similar algorithms. Loss of stiffness, representing damage to the
structure, is detected when measured natural frequencies are significantly lower than
expected. A useful review on the use of frequencies in detecting structural damage is
given in Salawu (1997).

There has been substantial discussion as to the change in frequency required to
detect damage, and also if changes in frequencies due to environmental effects can be
separated from those due to damage. Creed (1987) estimated that it would be necessary
for a natural frequency to change by 5% for damage to be confidently detected. Case
studies on an offshore jacket and a motorway bridge showed that changes of frequency
in the order of 1% and 2.5% occurred due to day to day changes in deck mass and
temperature respectively. Numerical simulation studies showed that large damage, for
example from the complete loss of a major member would be needed to achieve the
desired 5% change in frequencies. Aktan et al. (1994) suggested that frequency changes
alone do not automatically suggest damage. They reported frequency shifts for both
steel and concrete bridges exceeding 5% due to changes in ambient conditions within a
single day. They also reported that the maximum change in the first 20 frequencies of a
RC slab bridge was less than 5% after it had yielded under an extreme static load. More
recently, Catbas et al. (2008) demonstrated the significant effect of environmental
conditions (particularly the temperature) on the reliability estimation through the SHM
study of a long span truss bridge.

Notwithstanding the above findings, some researchers claimed success using natural
frequencies. For example, Adams et al. (1978) reported very good success in detecting
damage in relatively simple one-dimensional structures. Small saw cuts were identified
and located using changes in the first 3 natural frequencies for simple bars, tapered
bars and a cam shaft. The limitation of the study was the need of highly accurate
frequency measurements to six significant digits. In addition, the location of damage
could only be obtained if at least 2n frequencies were available, where n is the number
of damage locations.

Identification can also be carried out using criteria based on mode shapes. These
methods can be based on a direct comparison of displacement mode shapes or curva-
ture mode shapes. Two methods are commonly used for direct comparison of mode
shapes. The modal assurance criterion (MAC) indicates correlation between two sets
of mode shapes while the coordinate modal assurance criterion (COMAC) indicates
the correlation between mode shapes at selected points on the structure. As the great-
est change in mode shapes is expected to occur at the damage location, COMAC can
be used to determine the approximate location of damage. MAC is defined as shown
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In troduct ion 5

in equation 1.1 whereby �u and �d are the mode shape matrices obtained for the
undamaged structure (denoted by subscript u) and for the damaged structure (denoted
by subscript d). If the structure is undamaged MAC becomes an identity matrix. The
COMAC is computed for a given point (j) by summing the contributions of n modes
as shown in equation 1.2. The COMAC value should be one for undamaged location
and less than one if damage is present.

MAC = (�T
u �d)2

(�T
u �u)(�T

d �d)
(1.1)

COMAC(j) =

n∑
i=1

(ϕu,ijϕd,ij)
2

n∑
i=1

(ϕu,ijϕu,ij)
n∑

i=1

(ϕd,ijϕd,ij)

(1.2)

Salawu and Williams (1995) conducted full scale tests on a reinforced concrete high-
way bridge before and after repairs were carried out. Their results showed that, while
natural frequencies varied by less than 3%, the diagonal MAC values ranged from
0.73 to 0.92 indicating a difference in the state of the structure. Using a threshold level
of 0.8 the COMAC values were able to locate damage at 2 of 3 damaged locations,
but also identified damage at 2 undamaged locations. Fryba and Pirner (2001) used
the COMAC criteria to check the quality of repairs carried out to a concrete bridge
which had slid from its bearings. The modes of the undamaged and repaired halves
of the building were compared to demonstrate that the repairs had been well done.
Mangal et al. (2001) conducted a series of impact and relaxation tests on a model of an
offshore jacket. They found that significant changes in the structural modes occurred
for damage of critical members as long as they were aligned in the direction of loading.
The relaxation type loading gave results as good as the impact loading indicating it to
be a good alternative for future studies.

The use of mode shape curvature in damage detection assumes that changes in
curvature of mode shapes are highly localised to the region of damage and are more
sensitive to damage than the corresponding changes in the mode shapes. Wahab and
De Roeck (1999) used changes in modal curvature to detect damage in a concrete
bridge. The modal curvature was computed from central difference approximation
and a curvature damage factor (CDF) used to combine the changes in curvature over a
number of modes. The method was able to identify the damage location but only for
the largest damage case tested.

While much effort has gone into developing the frequency and mode shape methods,
as mentioned above, significant doubt still remains as to the sensitivity of the tests to
realistic levels of damage. To address this problem, other methods that are claimed
to be more sensitive to damage have been developed. The flexibility of a structure
is the inverse of its stiffness and may be estimated from the measured frequencies
(ω) and modes (�) as shown in equation 1.3 (Raghavandrachar and Aktan, 1992).
Typically, not all modes of a structure can be measured. Nevertheless, a reasonable
estimate of the flexibility is obtained using a limited number of modes. Studies carried
out by Aktan et al. (1994) and Zhao and DeWolf (1999) showed that for structural
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6 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

damage detection, modal flexibilities could give a better indication of damage than the
measured frequencies or mode shapes alone.

F = �
1
ω2

�T (1.3)

A comparison of the performance of several methods is provided in Farrar and
Doebling (1997). A study of various levels of damage on the I-40 bridge over the
Rio Grande was identified using changes in modes, mode shape curvature, flexibility,
stiffness and a damage index method (e.g. Kim and Stubbs, 1995). The study showed
the damage index method to give the best results while the flexibility method failed on
all but the largest damage case.

An advantage of the frequency domain methods is that the input force measurement
may not be required. In fact, input characteristics may also be identified along with the
system parameters. Shi et al. (2000) applied a filter method to the frequency domain to
identify system and input parameters for both simulated and experimental examples.
Spanos and Lu (1995) introduced a decoupling method in frequency domain to identify
the structural properties and force transfer parameters for the non-linear interaction
problems encountered in offshore structural analysis. Roberts and Vasta (2000) used
standard second order spectra and higher order spectra to simultaneously estimate the
system and excitation process parameters from the measured response.

1.3.2 Time Domain Methods

A major drawback of frequency based methods is that for real structures information
for higher modes of vibration will be unreliable due to low signal to noise ratio. In
addition the methods usually involve modal superposition limiting the application to
linear systems. Finally, frequencies are a global property and are rather insensitive to
local damage. Identifying and locating damage is therefore very difficult, particularly
when only the first few modes of vibration can be measured. Time domain meth-
ods remove the need to extract frequencies and modes and, instead, make use of the
dynamic time-history information directly. In this way information from all modelled
modes of vibration are directly included. In addition, non-linear models can be iden-
tified as there is no requirement for the signal to be resolved into linear components.
Ljung and Glover (1981) noted that while frequency and time domain methods should
be viewed as complementary rather than rivalling, if prior knowledge of the system is
available and a model to simulate time-histories is to be obtained, time domain meth-
ods should be adopted. The more established classical time-domain methods include
least squares method, instrumental variable method, maximum likelihood method,
extended Kalman filter method, observer Kalman filter identification method, Monte
Carlo filter method and eigensystem realization algorithm. Some of these methods are
discussed as follows.

1.3.2.1 Least Squares Method

The least squares (LS) method was one of the earliest classical identification techniques
in time domain. The method works by minimising the sum of squared errors between
the measured response and that predicted by the mathematical model. As an illustration
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example, consider the case of a single-degree-of-freedom forced oscillation which may
be modelled as

mẍ + cẋ + kx = F (1.4)

where x, ẋ and ẍ are the displacement, velocity and acceleration of the oscillator caused
by the excitation force F. The least squares method can be used to solve for the mass m,
stiffness k and damping c of the oscillator by minimising the error in the force estimated
from the measured response of the structure using the structural model. The method
assumes the inputs to be correct and error to occur only as output noise. At a given
time step the measured force Fk is therefore the sum of the estimated force F̂k and an
output error εk as

Fk = F̂k + εk = mẍk + cẋk + kxk + εk (1.5)

or in standard form as follows:

yk = ŷk + εk = ϕkθ + εk (1.6)

where the output y, regressor ϕk, and parameter vector θ, represent the force F,
response [ẍk ẋk xk] and parameters [m c k]T of the system, respectively. With N
data points available the output and regressor can form matrices with N rows as

Y =




y1

y2
...

yN


 � =




ϕ1
ϕ2
...

ϕN


 Ŷ =




ŷ1

ŷ2
...

ŷN


 = �θ (1.7)

The output error is assumed to be a random Gaussian variable with zero mean. The
least squares method identifies estimates for the parameters, θ̂ by minimising the sum
of squared errors (SSE) between the measured and estimated output.

SSE =
N∑

k=1

(yk − ϕkθ̂)2 (1.8)

The above error is minimised by setting the derivative to zero.

0 = d

dθ̂
SSE(θ) = 1

2

N∑
k=1

ϕT
k (yk − ϕkθ̂)

N∑
k=1

ϕT
k yk =

N∑
k=1

ϕT
k ϕkθ̂ (1.9)

θ̂ =
[

N∑
k=1

ϕT
k ϕk

]−1 N∑
k=1

ϕT
k yk
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8 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

This leads to the well known least squares estimate for θ.

θ̂ = [ΦTΦ]−1ΦTY (1.10)

It should be noted that, while the force is used as the output of the system in the
example above, this does not have to be the case. For example, the displacement can
be used as output by rearranging the equation of motion as;

x = F
k

− m
k

ẍ − c
k

ẋ (1.11)

The regressor and parameter vectors would now become

ϕk = [Fk ẍk ẋk] θ =
[

1
k

m
k

c
k

]T

(1.12)

The mass, stiffness and damping parameters are not directly identified, but can easily
be extracted from the estimated parameters. In many previous studies it is assumed that
the mass is known and thus the inertia term (mẍ) is grouped with the force reducing
the problem to two unknowns.

While the LS method has a good mathematical basis, it has difficulty when dealing
with real data as noise and inadequacy of system models can cause the results to deviate
significantly. Though the derivation of the method assumes noise on the output, it does
not allow for noise in the regressor, which is unavoidable in a real situation. The method
also requires full measurement of the system, rendering it nonviable for large systems
with many DOFs.

As one of the first time domain methods applied to structural identification problems,
the LS method has received a good deal of attention. Caravani et al. (1977) developed
a recursive algorithm for computing the least squares estimate without matrix inver-
sion and applied it to the identification of a 2-DOF shear building. An interesting
iterative method was proposed by Ling and Haldar (2004). They used a least squares
method with iteration to identify structural properties without using any input force
information. The method worked by alternating between identification of parameters,
using an assumed force, and then updating the force using the identified parameters.
By using several iterations of this procedure the parameters and applied forces could
be identified. The method was demonstrated on several example problems using both
viscous and proportional damping models. Identification of structural parameters in
the time domain without the need for force measurement is a very promising direc-
tion. This idea is explored further with a new output-only identification method in
Chapter 5 of this book.

1.3.2.2 Ins t rumenta l Var iab le Method

This method is similar to the recursive least-square method, in the sense that square-
error norm between the estimated and measured responses is minimised. The equation
of the response forecast is same as Eq. (1.6). A vector of instrumental variables (ξ)
which is highly correlated with ϕ but uncorrelated with the prediction error e is intro-
duced into the criterion function. Unknown parameters are also updated by setting
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the gradient of the criterion function with respect to the unknown parameters to zero
(Imai et al. 1989). The instrumental variable estimation is given by

θ̂iv
k =

[
1
k

k∑
i=1

ξ(i)ϕT (i)

]−1
1
k

k∑
=1

ξ(i)y(i) (1.13)

This method can handle measurement with noise. However, a good initial guess is still
required for this method to work well.

1.3.2.3 Maximum Like l ihood Method

As measured responses are often contaminated by noise, which is usually random
in nature, the identified parameters should be treated as random variables. It is
therefore justifiable to determine unknown parameters by maximising the likelihood
(probability density function) of matching the estimated responses with the measured
responses. This is known as the maximum likelihood method (Yun and Shinozuka,
1980; Shinozuka et al., 1982; DiPasquale and Cakmak, 1988; and Ljung, 1986).
This method has the advantage of providing the best estimation for a wide range of
contamination intensity in the excitation force and the structural response.

In maximizing the likelihood function, it is more convenient to take the logarithm.
Since the logarithm is monotonic, the transformation does not change the optimal
point. The likelihood function can be written in the following form

L(θ, εi) = const − 1
2

log det Λi(θ) − 1
2

εT
i Λ−1

i (θ)εi (1.14)

where θ = vector of unknown parameters, �i(θ) = covariance matrix of prediction
errors (ε). The maximum likelihood method has been proven to have superior con-
vergence properties over the least-square method. However, it usually requires a
larger amount of computational time. Derivatives are also required in this method.
Furthermore, the optimization process is relatively sensitive to the initial guess used.

1.3.2.4 Kalman F i l te r Method

Some of the most commonly used time domain methods today are modifications of the
Kalman filter (Kalman, 1960). The Kalman filter is a set of mathematical equations that
provides a recursive means to estimate the state of a process in a way that minimises
the mean of the square error. An introduction to the Kalman filter can be found in
Welch and Bishop (2004) and Maybeck (1979). The filter estimates the state x, of a
discrete time process governed by the linear stochastic difference equation with input u,
and measurement z, which is related to the state by observation equation. The system
matrices A and B relates the current state to the previous state and the system inputs
while the matrix H relates the measurement to the state of the system. The process
and measurement noise (w and v respectively) are assumed to be zero mean Gaussian
noise with covariances of Q and R respectively, that is, w ∼ N(0,Q) and v ∼ N(0,R).

xk = Axk−1 + Buk−1 + wk−1 (1.15)

zk = Hxk + vk−1 (1.16)
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10 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

The Kalman filter can be thought of in terms of a predictor step followed by a
corrector step. The predictor step is used to find an estimate of x at time step k from
the knowledge of the process prior to k. This estimate, denoted x̂−

k , is estimated from
equation 1.15 assuming the noise term is zero. The corrected state x̂k, is then obtained
as a weighted combination of the predicted state and the state obtained from the
measured response as follows

x̂k = x̂−
k + Kk(zk − Hx̂−

k ) (1.17)

The errors of the predicted and corrected states are therefore

e−
k = xk − x̂−

k (1.18)

ek = xk − x̂k (1.19)

The error covariance for the predicted and corrected states are estimated as

P−
k = E[e−

k e−T
k ] (1.20)

Pk = E[ekeT
k ] (1.21)

The Kalman gain K, is selected to minimise the error covariance of the estimated state.
One form of K which minimises the error covariance (1.21) is shown below:

Kk = P−
k HT [HP−

k HT + R]−1 (1.22)

From this equation we can see that as the measurement error covariance R
approaches zero, the gain approaches H−1 and the state estimate (Eq 1.17) is domi-
nated by the measurement. On the other hand if the a priori estimate error covariance
approaches zero, the gain becomes zero and the estimate is dominated by the predicted
state. In effect the Kalman gain reflects how much we ‘trust’ the measured and pre-
dicted states. In practice the initial estimates of the state x0, error covariance P0, and
noise covariances R and Q are needed to get the filter started. The choice of P0 is not
critical as it will converge as the filter proceeds, while R and Q should be given rea-
sonable values in order for the solution to converge. The Kalman filter is summarised
in figure 1.2. The basic linear Kalman filter described above can also be linearized
about the current operating point for use in non-linear systems. Referred to as the
Extended Kalman Filter (EKF) this powerful modification has allowed for application
of the filter into many identification and control problems.

For identification problems an augmented state vector containing the system state
and the system parameters to be identified is used (Carmichael, 1979). The parameters
are then estimated along with the state as the filter proceeds. Hoshiya and Saito (1984)
proposed that several iterations of the EKF, with the error covariance weighted between
iterations, could lead to more stable parameter estimation. The weighted global iter-
ation procedure was demonstrated for 2- and 3-DOF linear and bilinear hysteretic
systems. Koh and See (1994, 1999) proposed an adaptive EKF method which updates
the system noise covariance in order to enforce consistency between residuals and their
statistics. The method is able to estimate parameters as well as give a useful estimate
of their uncertainty.
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Predictor step

Predict the state

x̂k
� � Axk�1 � Buk�1

x̂k
 � x̂k

� � Kk (zk � Hx̂k
�)

Kk
 � Pk

�HT
  [HPk

�HT
  � R]�1

Pk
� � APk�1 A

T
 � Q

Pk � [I� Kk H]Pk
�

Predict the error covariance

Corrector step

Compute Kalman gain

Correct estimate using measurement

Update error covariance

Initial estimates of the state and
error covariance x̂0, P0

Figure 1.2 Kalman filter.

1.3.2.5 Monte Car lo F i l te r Method

Monte Carlo filter (MCF) was first proposed by Kitagawa (1996). Structural para-
meters are derived by obtaining recursively the conditional distribution function of
the state variable when observation values up to the present time step are given. The
distribution function of a state vector is described by many samples instead of first
and second moments, unlike in the case of EKF. The MCF has an advantage that
it can deal with nonlinear and non-Gaussian noise problem. A modified approach
called the adaptive MCF method was developed by Sato and Kaji (2000). This method
identifies systems with rapidly changing parameters incorporating a “forgetting’’ factor
to express the rate of diminishing effect of past observation data in the covariance of
the adaptive noise. The adaptive noise, which is non-Gaussian and independent of
state variables, is introduced in the state transfer equation to enlarge variance of the
distribution of predictor. Hence, the identified structural parameters become much
dependent on the recent data observed and the reliability of past observation data
can be reduced. Yoshida and Sato (2002) proposed a method of damage detection
using MCF. The formulation is a natural extension of Kalman filter (linear Gaussian)
and does not necessarily require Gaussian noise. Nevertheless, the MCF requires many
particles (samples) and hence a high computational cost in order to describe the detailed
probabilistic nature of the identified parameters.

1.3.2.6 Bayes ian Method

Beck and Katafygiotis (1998) presented a Bayesian statistical framework for system
identification whereby probability models are used to account for parameter uncer-
tainty and prediction uncertainty. Formulating the weighted probability models in the
form of initial predictive probability density function, Bayes’ theorem is applied to
update the predictive PDF. Nevertheless, the initial predictive PDF for the system out-
put is usually a multidimensional integral which is difficult to evaluate. This difficulty is
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12 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

overcome by an asymptotic approximation. Unknown structural parameters are then
identified by maximizing the asymptotic approximation of the probability integral.

An advantage of this method is that it can handle uncertainties such as modeling
errors and non-uniqueness. Vanik et al. (2000) simulated an on-line monitoring by a
sequence of identified modal parameter to compute the updated probability of damage
of structures. Yuen and Katafygiotis (2001) estimated the modal parameters and their
uncertainties using only one set of ambient data. Yuen et al. (2004) combined the modal
identification and Bayesian system identification in a two-stage approach in damage
detection of a benchmark problem. Thus far, the application of Bayesian philosophy
has been confined to small-scale identification problems until recently when an attempt
by substructural identification was carried out to deal with problems of larger scale
(Yuen and Katafygiotis 2006).

1.3.2.7 Grad ient Search Methods

Some researchers have tackled structural identification problems by gradient search
methods, for example, Gauss-Newton least square (Bicanic and Chen 1997; Chen and
Bicanic 2000) and Newton’s method (Liu and Chen 2002; Lee 2009). These methods
have the drawbacks such as the need of good initial guess and gradient information
(which can be difficult to obtain for structural identification problems). More impor-
tantly, these classical methods commonly lack global search capability and tend to
converge prematurely to local optima. Hence, these methods tend to be ineffective in
the presence of noise (Liu and Chen 2002).

1.3.3 Non-Class ical Methods

Many of the classical methods discussed in the previous sections have limitations in
one way or another. Some classical methods require gradient information to guide the
search direction, which normally would require relatively good initial guess in order for
the solution to converge. Some classical methods work on transformed dynamic mod-
els, such as state space models, where the identified parameters lack physical meaning.
This may often make it difficult to extract and separate physical quantities such as
mass and stiffness. The associated state space formulation would usually require time
histories of displacement and velocity which, if integrated from measured acceleration,
would incur numerical error. In addition, a recent trend of research is towards iden-
tification of large systems with as many unknown parameters as possible. For large
systems, many classical methods suffer the ill-condition problem and the difficulty of
convergence increases drastically with the number of unknown parameters.

To reduce the dependence on initial guess and increase the success rate of global
search, exploration methods such as random search may be used but are obviously
not efficient for large systems due to the huge combinatorial possibilities. Some
heuristic rules are needed to define the search strategy and these rules are typically
non-mathematical in nature leading to non-classical methods. These methods usually
depend on computer power for an extensive and hopefully robust search. As computer
power has rapidly increased in recent years, the use of heuristic-based non-classical
methods has become very attractive. To date, the two main non-classical methods
used for structural identification are genetic algorithms (GA) and neural network. The
neural network method for structural identification will be briefly reviewed in the

© 2010 by Taylor and Francis Group, LLC

  



In troduct ion 13

next section. The application of GA in civil engineering has also attracted tremendous
interest from researchers and practitioners in recent years. For example, Furuta et al.
(2006) adopted an improved multi-objective genetic algorithm to develop a bridge
management system that can facilitate practical maintenance plan. The proposed
cost-effective decision-support system was verified via the investigation on a group
of bridges. Okasha and Frangopol (2009) incorporated redundancy in lifetime main-
tenance optimization based system reliability, and used GA to obtain solutions to the
multi-objective optimization problem by considering system reliability, redundancy
and life-cycle cost. The GA-based structural identification methods are the main focus
of this book and its principles will be explained in detail in Chapter 2.

Recently, several other non-classical methods have also been reported. It is beyond
the scope of this book to provide a comprehensive review as they are relatively new and
still growing. Some representative examples are given here. For instance, evolutionary
strategy was studied to identify 3-DOF and 10-DOF lumped systems (Franco et al.
2004). A differential evolution strategy was also investigated for identifying physical
parameters in time domain (Tang et al. 2008). Fuzzy logic, coupled with principles
of continuum damage mechanics, is used to identify the location and extent of struc-
tural damage (Sawyer and Rao, 2000). The proposed methodology represents a unique
approach to damage detection that can be applied to a variety of structures used in
civil engineering and machine and aerospace applications. Simulated annealing was
combined with genetic algorithms to detect damage of beam structures via static dis-
placement and natural frequencies (He and Hwang 2006). Particle swarm optimization
(PSO) was used for structural identification due to its simple concept and quick conver-
gence (Tang et al. 2007). PSO coupled with simplex algorithm was found to perform
better than simulated annealing and basic PSO in damage identification using frequency
domain data (Begambre and Laier 2009). Imitating the self-organization capability of
ant colony, Li et al. (2006) proposed a biologically inspired search method to identify
parameters of a chaotic system.

Collectively, these non-classical methods can also be called soft computing methods
as they rely on (soft) heuristic concepts rather than (hard) mathematical principles. Due
to their great potential in handling difficult problems (e.g. inverse problem as in the
case of structural identification), there has been substantial increase in R&D interest
as evident in the many papers presented in a recent conference on soft computing
technology (Topping and Tsompanakis, 2009).

1.3.3.1 Neura l Network Method

Neural network (NN) method has gained popularity as it is relatively easy to imple-
ment in discovering similarities when confronted with large bodies of data. NN is the
functional imitation of a human brain and works by combining layers of ‘neurons’
through weighted links. At each neuron the weighted inputs are processed using some
simple function to obtain the output from the neuron. A basic neural network usu-
ally contains 3 layers, an input layer, hidden layer and output layer as illustrated in
figure 1.3. By correct weighting of the connections and simple functions at the neu-
rons, the inputs can be fed through the network to arrive at the outputs for both linear
and non-linear systems. The beauty of neural networks lies in the fact that they can be
‘trained’. This means that through some process the network can adjust its weights to
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Input
layer

Hidden
layer Output

layer

Inputs Outputs

Figure 1.3 Layout of a simple neural network.

match given input/output sequences. This pattern recognition ability has allowed the
application of neural networks to artificial intelligence applications.

Several training methods for neural networks have been developed, the most popular
of which is the back propagation algorithm. This involves feeding the errors at the
output layer back through the net to adjust the weights on each link. Other methods
such as the probabilistic neural network have also been developed. An early example of
the application of NN to system identification is given in Chen et al. (1990). They used
multilayer neural networks for the identification of non-linear autoregressive moving
average with exogenous inputs systems. Due to its strengths in pattern recognition and
classification, NN has been used in structural identification and damage detection in
recent years (Tsai and Hsu, 1999; Adeli and Karim, 2000; Ni et al., 2002; Yeung and
Smith, 2005; Jiang et al., 2006).

For a SHM system, its efficiency is mainly determined by the diagnosis methods
and data from numerous sensors of identical or dissimilar types. Sensors are needed
extensively in SHM to provide sufficient input and output. For example, in a fairly
comprehensive long-term monitoring system, Tsing Ma Bridge in Hong Kong is per-
manently instrumented with about 300 sensors of various types (Ko et al., 1999;
Ko and Ni, 2005; Chan et al., 2006). The main drawback in the use of NN for large-
scale system identification is that huge amount of data are required to properly train
the network. A lack of some patterns of data will cause the identification to return
incorrect values.
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Chapter 2

A Primer to Genetic Algorithms

The identification strategies used throughout this book are based on genetic algorithms
(GAs) which are inspired by Darwin’s theory of natural selection and survival of the
fittest. Darwin observed that individuals with characteristics better suited for survival
in the given environment would be more likely to survive to reproduce and have their
genes passed on to the next generations. Through mutations, natural selection and
reproduction, species could evolve and adapt to changes in the environment. In a simi-
lar way it is possible to evolve solutions to a problem through mathematical operators
which mimic the natural selection processes present in nature.

In this chapter an understanding of the functioning of genetic algorithms is
developed. The ideas behind GA and how GA differs from other search algorithms
are first established. The genetic operators are then described using an example prob-
lem and a basic mathematical theory is given to explain why GAs work, providing an
insight into how random processes can be directed to search for the desired solutions.
The orignial GA, in its earlier form, is suitable for simple problems such as the finding
of maximum or minimum of a mathematical function. For more complex engineering
problems, some limitations exist with the original GA. Some of the problems associ-
ated with the original GA have been overcome in recent times. The chapter concludes
with a discussion of the recent advances and modifications that have been suggested
in order to improve the performance of GAs.

2.1 Background to GA

The major early work on adaptation based on GA was by John H. Holland (1975)
in his book: Adaptation in Natural and Artificial Systems. Adaptation is regarded as
a process of progressive variation of structures, leading to an improved performance.
He recognized the similarities between natural and artificial systems and sought ways
in which the operators acting to shape the development of natural systems could be
modelled mathematically. Recognising that operators such as crossing over and muta-
tion that act in natural systems were also present in many artificial systems, Holland
proposed that computers could be programmed by specifying ‘what has to be done’,
rather than ‘how to do it’.

GAs are search algorithms that combine a ‘survival of the fittest’ mentality with a
structured, yet random, exchange of information in order to explore the search space.
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Mathematically this is achieved by representing possible solutions as coded strings.
Many such strings are created, each representing a different location on the given
search space. These strings are then evaluated according to some criteria, and the
‘fittest’ are given a higher probability of selection. Parts of the selected strings are
combined to form new strings and occasionally part of the string is randomly assigned
a new value. Eventually, just as animals adapt to their environment, the strings evolve
to better match the criteria given. The method is similar to human search where good
solutions receive more of our attention while bad solutions are less favoured. We would
reasonably expect that combining and modifying parts of these existing good solutions
may lead to better solutions and in some cases an improvement indeed on the original.
An example of a simple GA is used in section 3.2 to demonstrate how the operators
work together to provide the genetic search. First though, the differences between GA
and classical search methods are discussed here.

Robustness is a central theme for all search algorithms. A balance between explor-
ation of the search space and exploitation of available information is required in order
to allow search algorithms to be successfully applied to a range of different problems.
Traditionally many search methods have generally been calculus based, enumerative
or random. Calculus based search methods work by finding points of zero slope. Gen-
erally this is achieved by stepping on the function and moving in a direction given by
the steepest gradient. These methods are good for finding local optima which depend
on the selected starting position. Furthermore, as the methods require gradient infor-
mation, they are only applicable to functions with well defined slope values. This is
a major drawback as many real life problems contain discontinuities and constraints
which cannot be handled by these methods. Enumerative methods involve checking
the function value at every point within the search space in order to find the optimal
result. Such schemes are ideal for small search spaces but are highly inefficient for sys-
tems involving large search spaces or many parameters. Consider for example a case
where we wish to identify N parameters, where each parameter has a search space
consisting of 100 points. The total search space is then 100N points and it quickly
becomes impossible to evaluate the function at every point in a reasonable time. Even
if we could evaluate a million points per second, the largest number of parameters that
could be identified in this way within a year would be only 6, while it would take more
than 3 million years to try all possibilities for 10 unknowns. Random search algo-
rithms received attention as researchers recognised the shortcomings of calculus based
and enumerative schemes. Nevertheless, they too are inefficient and in the long run
can be expected to perform no better than an enumerative scheme with a coarser grid.

Genetic algorithms differ from the above-mentioned search methods in four
significant ways.

(1) GA works with a coding of the parameter set rather than the parameters them-
selves. This is usually done using a binary system though other coding systems
may also be used. This coding allows the GA to work in a very general way,
allowing application to a wide range of problems. The coding does, however,
present some problems. When binary coding is used, GA may find it difficult to
move, or ‘jump’, between some values. These difficult jumps, known as hamming
cliffs, may be observed by considering an example of a binary string of length 5
which may represent values form 0 to 31. The string 01111 would represent the
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value of 15. If, however, the optimum is at a value of 16, the string required is
10000, a very difficult jump to make as all bits must be simultaneously altered.
Alternative coding methods such as real number encoding used later in this book
help to alleviate this problem.

(2) GA search is carried out with a population of points, not a single point. Most
optimisation techniques search from a single point, proceeding to the next point
according to some predefined rule. These methods often fall on local optima and
fail to find the desired global solution. GA searches using a population of many
diverse points and as such is more likely to discover the global optimal solution.

(3) GA uses an objective function rather than derivatives or other auxiliary informa-
tion. Many other search techniques, particularly calculus based methods, require
much information such as derivatives in order to work. GAs are “blind’’, only
requiring the objective function (fitness values) in order direct the search.

(4) GA works based on probabilistic rules rather than deterministic ones. Prob-
abilistic rules are introduced to make the transition from one set of points to the
next. This does not imply that GA is simply a random search, but means that
GA uses random choice as a tool within a framework biased towards areas of
likely improvement using information derived from the previous search.

A good summary of early GA works, and further details on how they differ from trad-
itional search algorithms can be found in the very good book by Goldberg (1989). The
combination of coding, a population of points, blindness to auxiliary information and
randomised operators give GA the robustness required to solve a wide range of prob-
lems. It is noted here, however, that GA should not be treated simply as a black box,
lest the computational time will become too large for solving realistic problems. Much
understanding and refinements are needed to make the GA approach work effectively.
Incorporating appropriate coding, altering the architecture of the GA, and integrating
problem-specific information are essential in developing strategies appropriate to real
world situations.

For illustration, a simple GA and its theoretical framework based on classical binary
encoding and operators are presented in the following sections. Some of the modifica-
tions that have been made to improve the performance of GA are discussed in section
2.4, whereas the GA strategy developed and later applied in this book is described
in chapter 3. Many have argued that new methods such as the ones presented in this
book deviate from the original GA and as such use names such as evolution programs
in order to acknowledge the deviation from traditional GA architecture, coding and
operators. In this book, however, the term GA is still used. The reason is that, although
the coding and architecture may not exactly resemble the original GA, the underlying
principle remains the same.

2.2 A Simple GA

The concept of GAs is best explained by way of an example. This section uses the
maximisation of a mathematical function to illustrate how a simple GA can be applied
to search for the global optimal solution. Further examples and explanation can be
found in Goldberg (1989) and Michalewicz (1994). Consider the problem of maxi-
mizing the function f (x) as given in equation 2.1 over the range of −20.0 ≤ x ≤ 20.0.
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18 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

This function, shown in figure 2.1, contains a global maxima at x = 0 and would be
difficult to solve using classical optimization methods due to the many local maxima
near the global optimal solution.

f (x) = 0.5 − sin2(2x) − 0.5
1 + 0.02x2

(2.1)

The layout of a simple GA that may be used to maximize this function is shown in
figure 2.2. A sample computer coding for this simple GA is included in the appendix
to help the reader understand how the GA may be implemented. Parts of the code are
also included in this section where necessary to demonstrate how the various operators
are implemented. While the sample code is provided in FORTRAN, any language may
be used and readers new to the area of GA are encouraged to write their own codes
in a computer language they are comfortable with. It is also important to experiment
with GA parameters in order to understand how the GA works and to observe the
effect parameters may have on the performance of the GA.
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Figure 2.1 Function f(x) to be maximised
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Figure 2.2 Layout of a simple GA
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In this example, binary encoding is used. As the search range is −20.0 ≤ x ≤ 20.0,
and in order to consider values to an accuracy of two decimal places, a binary string of
length 12 is required. This binary number can represent integers from 0 to 212 − 1
and the binary to real conversion is made as shown in equation 2.2, where I is
the integer represented by the N binary digits. LL and UL are the lower and upper
bounds of the search space. For example the binary string 011001010001, represents
the integer I = 210 + 29 + 26 + 24 + 20 = 1617, and is converted to the real number
x = −4.21.

x = LL + (UL − LL)
I

2N − 1
(2.2)

The GA begins by generating a set of initial candidate solutions. This is done by
randomly assigning either a 0 or a 1 to each bit of each individual within the initial
population. This is easily achieved using a random number generator as shown in the
extracted code below. The population here contains Pop_size number of individuals
of length N. All bits in the population are initially assigned a 0 value. For each bit, a
random number r in the range [0 1] is then generated and if the value is greater than
0.5, the bit is changed to a value of 1.

Random generation for initial population
Pop=0
DO i=1, Pop_size

DO j=1, N
CALL RANDOM_NUMBER(r)
IF (r>0.5) Pop(i,j)=1

END DO
END DO

The binary strings are converted to real numbers using equation 2.2 and then the
fitness of each solution is calculated. The fitness, or objective function, is a measure of
the quality of a given individual. As the objective in this case is to maximize f (x), and
f (x) is greater than 0 for all values of x, the function value gives an indication of the
quality of the solution and can be used directly as the fitness function.

Reproduction, or selection, is designed to select fitter individuals to receive greater
representation in future generations. Many different selection procedures, including
both probabilistic and deterministic sampling, may be used. One simple way to carry
out reproduction is the so called roulette wheel method, shown in the code below. Each
individual is assigned a selection probability proportional to its fitness and cumulative
probabilities are computed for the selection phase. The new population is then selected
by ‘spinning the wheel’ the required number of times. Each time the wheel is spun, an
individual is selected by comparing the random number with the cumulative probabil-
ities. In this way selection is made with replacement until the new population (T_pop)
is full. This method encourages multiple selections of fitter individuals and filters out
the weakest individuals.
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Selection by roulette wheel method
P_select=Fitness/SUM(Fitness)
DO i=2,Pop_size

P_select(i)=P_select(i)+P_select(i-1)
END DO

DO i=1,Pop_size
CALL RANDOM_NUMBER(r)
DO j=1,Pop_size

IF (P_select(j)>=r) THEN
T_Pop(i,1:N)=Pop(j,1:N)
EXIT

END IF
END DO

END DO
Pop=T_Pop

Crossover and mutation allow the GA to discover new solutions. In this example,
a simple crossover is used. The crossover rate determines the chance of an individual
being involved in a crossover and, once selected, two individuals (parents) are paired up
for the crossover to take place. The crossover point is randomly selected and the ends
of the parents are switched to form two new individuals (offspring). For example, if the
parent strings 111000111001 and 100011100001, representing the values x = 15.57
and x = 2.20, are crossed after the 4th bit, the offspring created are 111011100001
and 100000111001, representing the values x = 17.21 and x = 0.56. There are several
ways to select and pair the parents for crossover. For the method shown in the code
below, parents are first selected into a crossover pool according to the given crossover
rate. Once selected, the order of the parents is shuffled in order to randomly assign
partners. The shuffle subroutine can be seen in the full code provided in the appendix.
If the number of individuals selected is odd, one of the parents is discarded. Crossover
is then carried out using the selected pairs using a random crossover point and the
offspring replace the parents in the population.

Crossover
j=0
DO i=1,Pop_size

CALL RANDOM_NUMBER(r)
IF (r<P_cross) THEN

j=j+1
Select(j)=i

END IF
END DO
CALL Shuffle(Select(1:j),j)
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IF (MOD(j,2)==1) j=j-1

DO i=1,j,2
CALL RANDOM_NUMBER(r)
cross=CEILING(r*(N-1))
O1(1:cross)=Pop(Select(i),1:cross)
O2(1:cross)=Pop(Select(i+1),1:cross)
O1(cross+1:N)=Pop(Select(i+1),cross+1:N)
O2(cross+1:N)=Pop(Select(i),cross+1:N)
Pop(Select(i),1:N)=O1
Pop(Select(i+1),1:N)=O2

END DO

The crossover operator simply recombines information which already exists, but
is unable to explore areas not included in the population. For example, the parents
above both contain a 0 at position four and no crossover can change this value to
a 1. Mutation is therefore needed to ensure the whole search space can be explored.
Mutation works by changing individual bits from 1 to 0 or vice versa. The chance
of an individual bit being mutated is determined by the mutation rate and all bits are
treated in the same way. For example if the second and seventh bits of the individual
111000111001 undergo mutation it will become 101000111101.

The whole process of fitness evaluation, reproduction, crossover and mutation is
repeated for a given number of cycles, or ‘generations’, and the best solution obtained is
output. As an illustration, the simple GA described above is applied using a population
of 10, crossover rate of 0.8, mutation rate of 0.05 and 50 generations. The best solution
at the end of each generation is recorded and plotted in figure 2.3 to illustrate how
the GA evolves the solution over time. In the figure it is seen that the solution quickly
converges to a local maxima of 0.976 at x = 1.56 which is on the local maxima nearest
the global solution. It is also observed that the solution is able to ‘escape’ the local
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Figure 2.3 Function maximisation – GA solution
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maxima to a value of x = 0.024 in the 26th generation, before improving to x = 0.005
as the final result.

This example highlights an important feature of GA. A major strength of GA is
the better capability to escape from local optima to find the global optima solution
compared to many other methods. Nevertheless, while the global maximum solution is
found in this case, this may not always be the case. The identification above is repeated
a total of 50 times. Of those, a solution on the global peak is discovered 32 times, while
the first and second local peaks are discovered 11 and 7 times respectively. In developing
a GA, the reliability and robustness of the solution is therefore very important owing
to the stochastic nature of the search process. Of course we can increase the population
size and the number of generations, but at the cost of longer computational time. It
is also possible to influence the search by selecting appropriate crossover and muta-
tion rates, but in general there is a trade off between exploration (broad search) and
exploitation (local search). For example, small crossover and mutation rates will help
explore the domains around the current solutions and will be less likely to destroy good
solutions. It will, however, make it harder to explore new domains. Large crossover
and mutation rates, on the other hand, will help cover more ground, but at the expense
that the good solutions will be less likely to develop further and will find it harder to
converge. This trade off between exploration of the search space and exploitation of
promising solutions has long been an issue with simple GAs and is one of the key
motivations behind the improved strategy presented in the following chapter.

2.3 Theoretical Framework

The simple GA used in the previous example, adopts binary encoding of variables and
simple crossover and mutation operators. Early attempts to explain why GA worked
used the idea of schema as the building blocks of the solution. This theory is able to
show how favourable building blocks can survive and prosper in a GA and hence how
a population could improve over time. This classical theory has received considerable
criticism (e.g. Koehler, 1997) as it does not consider how a GA is able to search outside
the information present within the population. In addition the theory is too simplified
to explain the complex operators and real encoding used in the algorithms developed
and applied in the later chapters of this book. It is nevertheless the basis of why GA
works and as such a basic summary of the theory is included here. More detailed
discussions on schema and GA theory can be found in Goldberg (1989).

A schema is created by introducing a ‘don’t care’ symbol (*) into the alphabet to
indicate positions which could be filled by any value. For example in a binary chromo-
some of length 10 the schema (1**0******) would represent all individuals with a 1
in the first position and a 0 in the fourth. Schema vary depending on which positions
are fixed (0 or 1) and which are free (*), and as such it is useful for us to have a way
of defining certain properties of the schema. The number of fixed positions (0s or 1s)
gives the order of schema S, o(S) which tell us how well defined a schema is. A high
order schema is therefore more specific about the group of strings it describes. The
distance from the first to last fixed position is the defining length δ(S). An example of
these parameters is given for the strings S1 and S2 shown below.

S1 = (∗1011∗∗∗∗∗) o(S1) = 4 δ(S1) = 3

S2 = (1∗∗∗∗∗∗00∗) o(S2) = 3 δ(S2) = 8
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The theory is concerned with determining the number of a given schema present in
subsequent generations. That is if the number of a given schema S present in the pop-
ulation at time t is denoted as ξ(S, t), what will be the likely number of schema present
at time t + 1, ξ(S, t + 1)? There are two factors of consideration, i.e. the selection of
the schema, and the possible destruction of schema due to crossover and mutation
operations.

For standard roulette wheel selection, the selection process is based on fitness, where
the number of a given schema selected is proportional to the average fitness of the
individuals represented by the schema f (S, t), compared to the average fitness of all the
individuals in the population f (t). That is, it would be expected that based on selection
alone,

ξ(S, t + 1) = ξ(S, t) · f (S, t)

f (t)
(2.3)

This shows that, considering selection alone, it is expected that schema with above
average fitness will receive an increasing representation in successive generations.

The crossover operation is designed to combine promising building blocks. How-
ever it can also destroy them. For example, consider the schema S1 and S2 and the
individuals b1 and b2 below.

S1 = (∗1011∗∗∗∗∗) S2 = (1∗∗∗∗∗∗00∗)

b1 = (0101100111) b2 = (1110101001)

String b1 is an example of schema S1 and b2 an example of S2. If these two individuals
are selected for crossover and crossed after the fifth bit, the resulting offspring would be

b1′ = (0101101001) b2′ = (1110100111)

It is clear that the schema S1 survived in b1′ but schema S2 did not. Additionally
b2′ contains neither S1 nor S2. Some probing into this reveals that a schema can be
destroyed only if the crossover point is within the range enclosed by the fixed bits of the
schema. That means that the chance of a schema surviving the crossover is dependant
on its defining length δ(S). In the above example we have δ(S1) = 3 and δ(S2) = 8. If
the total length of the string is m, there are m − 1 possible crossover locations and
therefore the chance of crossover within the schema is δ(S)/(m − 1). It is therefore
reasonable that in the above example, S1 with a chance of destruction of 3/9 survived,
whereas S2 which had an 8/9 chance was destroyed. It is of course possible that a
crossover within the schema may not destroy it, or that a crossover may create an
example of the schema where it previously did not exist. For this reason, the above
is treated as a ‘worst case’ or lower bound to the expected behaviour. Additionally as
individuals are selected for crossover with a probability pc ≤ 1, it may be that not all
individuals will be subject to this possibility of destruction. The expected number of
schema considering both selection and crossover is then updated as

ξ(S, t + 1) ≥ ξ(S, t) · f(S, t)
f(t)

·
(

1 − pc
δ(S)

m − 1

)
(2.4)
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Note the inequality (≥) is now used to account for the possible creation of new
examples of the schema through crossover.

Finally the mutation operator is considered. Again the chance of destruction of
the schema is calculated and the fact that schema may be created is absorbed by the
inequality. During simple mutation each bit is mutated with a probability, pm. Thus
for each bit the chance of survival is (1 − pm). Each bit is subject to this same chance
of mutation and hence for a schema of order o(S) the chance of survival of the schema
is (1 − pm)o(S). In general the mutation rate is low and this can be approximated as
1 − pm · o(S). The theory is then complete as,

ξ(S, t + 1) ≥ ξ(S, t) · f(S, t)
f(t)

·
(

1 − pc
δ(S)

m − 1

)
(1 − pm · o(S)) (2.5)

Furthermore, as the final term in the expansion of the above is small,

ξ(S, t + 1) ≥ ξ(S, t) · f(S, t)

f(t)
·
(

1 − pc
δ(S)

m − 1
− pm · o(S)

)
(2.6)

This result shows that highly fit, short, low order schemata will receive increasing
representation at each generation. Further to this, the theory makes the assumption
that the relative fitness of a given schema and the overall population remains constant.
That is,

f(S, t)

f(t)
·
(

1 − pc
δ(S)

m − 1
− pm · o(S)

)
= 1 + ε for all t

(2.7)
→ ξ(S, t) ≥ ξ(S, 0) · (1 + ε)t

Thus the highly fit, short, low order schemata receive exponentially increasing
representation in the population.

2.4 Advances in GAs

Over the past three decades various forms of GAs have been widely developed and
applied. A basic coding using binary representation and set of operators, mutation,
crossover and reproduction formed the early basis for application into mathematical
problems. Later as application moved into more complex areas new coding schemes
and operators were developed to adapt to the problems under study. In recent years,
much effort has also been made to alter the architecture of GAs and to incorporate
local search algorithms to further improve the performance and to help reduce the
problems associated with standard GA where a trade off exists between exploration
and exploitation of the possible solutions.

The foundations for GAs were laid by Holland and his students in the early 1960s
(Holland 1962a-b) with a mathematical framework and the idea of schema following
shortly after (Holland 1968, 1971, 1973). By the time Holland collated his ideas in
his 1975 book ‘Adaptation in Natural and Artificial Systems’, the basics of GAs were
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well established. Though Holland is unquestionably the father of GA, the first use of
the term ‘genetic algorithm’ was in fact by one of his students (Bagley 1967). While
Holland’s work remained general, another one of his students (De Jong 1975) began
to focus on problems in mathematical function optimization. De Jong reduced the
genetic algorithm to its bare essentials in order to conduct an in-depth study into the
effect of genetic operators. The resulting GA, using simple crossover and mutation
and roulette wheel selection was denoted as R1. In addition, De Jong considered five
additional models, R2 to R6, which used various modifications of the genetic oper-
ators. The study, on mathematical test functions, paved the way for future GA studies
and applications. A very good review of the early development of genetic algorithms
and a collection of some influential papers can be found in Goldberg (1989) and Fogel
(1998) respectively.

Following De Jong’s work, a number of studies were conducted on improving the
basic GA. The crossover and selection operators were often the focus, with several
procedures proposed with regards to crossover (Booker 1987), selection (Baker 1987),
fitness scaling (Goldberg 1989), and ranking (Whitley 1989). These modifications
attempted to improve performance by striking an appropriate balance between explor-
ation and exploitation of solutions. For example, using fitness scaling techniques,
diversity can be maintained in the population during early stages by reducing the
impact of highly fit individuals, while late in the process when fitness values tended to
converge, differences in fitness can be exaggerated to ensure higher success of better
individuals in the probabilistic selection.

Due to their general form, GAs have been applied to a wide range of problems.
Mathematical function optimization problems have generally been used in the devel-
opment of GAs due to ease of implementation and direct calculation of fitness. The
five-function test suite of De Jong (1975) has often been used, and was extended to
ten functions by Schaffer et al. (1989). Their study, on the effect of GA parameters,
suggested that mutation may play a more crucial role than had previously been recog-
nized. The F6 function proposed by Schaffer was used to demonstrate a modified GA
proposed by Potts et al. (1994). The modified GA split the population into ‘species’
allowing for different rates of mutation and crossover to be used in each species. This
division of the search allowed broad exploration of the search space to be conducted in
parallel with a search exploiting the best solutions. The improved algorithm proposed
in the next chapter uses this idea of multiple species, while modifying the strategy to
use real encoding and improved genetic operators. Combinatorial optimization using
GAs often focused on the travelling salesman problem (TSP). The TSP is conceptually
a very simple problem whereby a salesman wishes to visit n cities and return home
in the most efficient sequence. As the number of cities increases, this problem quickly
becomes difficult due to the large search space as the number of possible combinations
is given by n!. A good overview of the use of GAs for TSP is given in Michalewicz
(1994) while some of the early efforts in this area can be seen in Goldberg and Lingle
(1985), and Grefenstette et al. (1985). Game theory problems such as the iterated
prisoner’s dilemma are well handled by GA as various strategies develop and compete
for survival (Axelrod 1987).

System identification problems are solved using GAs by specifying an appropriate
objective function, usually specified in a form that rewards smaller errors between
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simulated and measured system output. The identification of linear and non-linear
auto regressive with exogenous inputs systems using GAs has been studied by Luh and
Wu (1999). Iba et al. (1993) presented results for non-linear time series prediction and
pattern recognition problems which used a GA combined with a least squares method.
The GA was used to develop an appropriate model while the least squares method was
used to find appropriate model coefficients.

The use of GAs in structural identification and damage detection is a relatively new
development. Much of the work on structural identification has been carried out by the
first author and his colleagues and students, incorporating GAs into various substruc-
ture and hybrid identification schemes (Koh et al. 2000, 2003a,b, Koh and Shankar
2003a,b). These schemes generally aim to identify stiffness and damping (and mass)
parameters from the dynamic time history information with an objective function that
minimizes the error between the measured and simulated accelerations. Some suc-
cess has also been achieved using static displacements or frequency domain models.
Perera and Torres (2005) identified damage in structures by minimising a dynamic
residue vector, while Koh and Shankar (2003a,b) used reference displacements from
a frequency based dynamic model. Rao et al. (2004) also used frequency informa-
tion, utilizing the sum of diagonal terms from a residual force matrix as the objective
function. Chou and Ghaboussi (2001) simply used the response of the structure to a
series of static load to define their objective function. This method nevertheless has
a limitation that only stiffness information can be obtained. The evolution strategy
proposed by Franco et al. (2004) was in effect an adaptive GA, whereby the mag-
nitude of mutations adapted as the analysis proceeded. The results presented for a
10-DOF structure were very good. Where full output was available the average error
was only 2.7% under 5% noise. The procedure failed, however, when only partial
output of three measurements was used and the average error increased to more than
15%. The modified GA strategy presented and applied throughout this book was first
proposed by the authors for structural identification problems (Perry et al, 2006).
Using a combination of a search space reduction method and a novel modified GA,
the strategy is able to accurately and efficiently identify parameters. This strategy is
discussed further in chapter 3, and applied to a variety of problems in the subsequent
chapters.

A note is in order here on the role of local search in GA. Research works have
shown that local search is a useful tool to complement the GA in improving the fine
tuning capability. The accuracy and robustness can be greatly enhanced by embedding
GA-compatible local searchers (Koh et al. 2003b). But the local search is usually
executed in the inner loop of a general GA; thus the accuracy is generally achieved
at the cost of computational time. Recently a Levenberg-Marquardt (LM) method
of local search was proposed (Kishore Kumar et al. 2007) and found to give good
performance in identifying a 3-DOF nonlinear system. Nevertheless, this local search
method appears to be not suitable for large system identification because LM has to
store the approximate Hessian matrix which can be large and expensive in its repetitive
inversion. Besides, considerable preliminary GA runs are needed to provide sufficiently
good initial guess, particularly for systems with large number of unknowns. Hence, the
approach of embedding a local searcher is not adopted here. Instead, the multi-species
method to be presented in the next chapter facilitates local search in a seamless way
by controlling the mutation rate.
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2.5 Chapter Summary

Genetic algorithms have been introduced in this chapter as the search tool for the
optimal solution. Using a structured yet random search, this method has been
shown to possess several crucial advantages over classical methods for structural
identification.

GAs differ from traditional search algorithms in several ways: (1) they work with
a coding of the parameter set rather than the parameters themselves, (2) they search
from a population of points, not a single point, (3) they use an objective function
(which can be defined in terms of any response quantify and gives flexibility) rather
than derivatives or other auxiliary information, (4) they work based on probabilistic
rules rather than deterministic ones. Moreover, GAs have a high level of concurrency
and is thus suitable for distributed computing.

The combination of coding, a population of points, blindness to auxiliary infor-
mation and randomised operators give GAs the robustness required for application
to a wide range of problems. Nevertheless GAs should not and cannot be treated
as a black box; lest the computational time would be too prohibitive for real prob-
lems. Much understanding and refinements are needed to make the GA approach
work effectively. While some issues such as the trade off between exploration and
exploitation of solutions still remain, recent application of GAs to system identifica-
tion problems has shown some promising success. It is the purpose of this book to
build on recent advances and to demonstrate how robust and efficient strategies may
be developed and applied to identify parameters and detect damage in engineering
structures.
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Chapter 3

An Improved GA Strategy

The identification strategy presented in this chapter is in fact an iterative, two-tier
strategy as illustrated in figure 3.1. At the fundamental tier, an improved GA based
on migration and artificial selection (iGAMAS in short) is used to identify the system
based on a given set of search space limits. At the higher tier, a search space reduction
method (SSRM) makes use of the results from iGAMAS to reduce the search space,
feeding the new limits back to the iGAMAS for use in the next identification cycle.

The motivation behind the development of the SSRM arises from the fact that for
GAs, the convergence rate and accuracy are highly dependent on the size of the search
space. By adaptively reducing the limits of the search, a more accurate and efficient
identification is possible. The heart of the method is the iGAMAS. This algorithm,
based on the GAMAS proposed by Potts et al (1994), has been developed in order
to provide a good identification technique that simultaneously explores the search
space and focuses on promising individuals. The proposed iGAMAS includes a reduced
data length procedure and other novel features that are introduced to greatly reduce
the computational time and to increase the accuracy of identified parameters. The
SSRM strategy presented in this chapter is designed to be applicable to a wide range
of problems, be it financial, mathematical, biological, structural, hydrodynamic etc.
As long as the system can be represented by a reasonably accurate model, capable of
reproducing the systems response to a given input, the SSRM can be used. This broad
applicability is an advantageous feature of GA based algorithms and is displayed in the
later chapters, where the SSRM is applied to various problems including output-only

SSRM

iGAMAS

Search
limits

Identification 
results

Figure 3.1 Overview of GA Strategy
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identification and substructural identification by making appropriate adjustments to
the model and formulation.

3.1 SSRM

The search space reduction method (SSRM) is designed specifically to increase the
accuracy and efficiency of identification by reducing the search space. The layout
of the SSRM is shown in figure 3.2, while the iGAMAS, that provides the search
capability, is shown in figure 3.5 and explained in the next section. The basic idea
behind the SSRM is as follows; adaptively reduce the search space for those parameters
that converge quickly in order to reduce the computational effort spent looking far
outside the area where the optimal solution lies. This is achieved by carrying out
several runs of the iGAMAS, following which the mean and standard deviation of
the identified parameters are computed. The standard deviation gives us an indication
of the uncertainty of the identified parameter and the search space can be reduced
accordingly. If the standard deviation is small it is likely that the mean is close to
the optimal parameter value and the search limits can be reduced. Conversely, if the
standard deviation is large we should continue to search broadly for that parameter.

Start

iGAMAS
(fig. 3.5)

Store result of run

Number of runs
completed sufficient to 

evaluate limits?

Optional
convergence check

COV < required COV 

Calculate mean, standard
deviation and coefficient of
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Output average of best results over all runs

Total runs
completed?

Redefine search space
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No

Yes

No

YesYes

No

Figure 3.2 Search Space Reduction Method
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Eventually as some parameters converge almost exactly, the SSRM in effect reduces the
number of unknown parameters and those remaining can be identified more efficiently.

The main parameters that define the SSRM are the number of runs to be used for
evaluation of the search space, the total runs to be carried out and the width of the
reduced search space window. In addition a convergence exit criteria may be included
to exit from the system early if satisfactory convergence is achieved. The final result
can be output as either the single best result or as the average of a given number of
the best runs over all of the runs conducted. Our experience based on many numerical
studies shows that, for the structural identification problems studied in this book, there
is no significant benefit in keeping additional results. In these cases, using the single
best result as output gives the best performance.

3.1.1 Runs for Evaluation of Limits and Total Runs

In order to be effective, the SSRM must work on a reasonable number of runs. The
number of runs to be used for evaluation of the search space limits should consider the
following points.

• The number of runs must be sufficient to get a reasonable estimate for the mean
parameter value.

• The search space is not reduced until the given number of runs is complete. A large
number of runs therefore delays the time when the search space is first reduced.

• Newer results should be more accurate but including a large number of results in
the evaluation of new limits may actually impede convergence. On the other hand,
too few results may cause premature convergence to local optima.

The number of runs must therefore be carefully selected to achieve the desired per-
formance as more runs will make the system more robust, but will slow convergence
resulting in less accurate results and/or an increase in the total computational time.

The total runs to be used depends mostly on the accuracy required and the compu-
tational time allowed. In theory, as the search space is reduced after each additional
run, the results will become more and more accurate. In reality, however, accuracy
will be limited due to such factors as noise, and after a time no further improvement
in accuracy is possible. The total runs should also consider other factors such as the
population size and number of generations. For example, if all other parameters are
constant, using a total of 10 runs and 200 generations per run will result in the same
computational time as would 20 runs with 100 generations per run. It is therefore
important to achieve a good balance of GA parameters. Suggested GA parameter
values are discussed in Chapter 4.

3.1.2 Reducing the Search Space

Search limits = Mean ± window × std dev; but not beyond original limits (3.1)

The width of window defines how quickly the search space is reduced according to
equation 3.1. It is important to choose a window that is small enough to encourage
convergence but big enough so that the global solution is very likely to lie within
the new, reduced, search space. Again this window parameter will depend on other

© 2010 by Taylor and Francis Group, LLC

  



32 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

Run

W
ei

gh
t

1

2

3

4

5

7

6

1 2 3 4 5 76 8 9 10

Figure 3.3 Example of weights used if 4 runs are used to evaluate search space and 10 total runs
are allowed

GA parameters as well as the nature of the problem. For simple problems, where the
results are expected to be quite reliable, a smaller window can be used, whereas if
the results are uncertain a larger window may be a safer option. In the application of
the strategy in this book the window is taken as 4, i.e. the reduced limits are set as 4
standard deviations on each side of the mean. Statistically this ensures there is a very
high chance that the actual result will remain within the reduced limits.

In the SSRM the mean value of each parameter is calculated using weighted results
whereby the more recent runs are given a higher weighting. This is to recognise that
the results should improve as the search space is reduced. The weighting used is as
follows. A weight of 1 is assigned to each of the original runs, until the first time the
search space is reduced. The run immediately following this is given a weighting of 2,
then 3, 4 and so on as illustrated in figure 3.3. For example, if 4 runs are used for
the evaluation of limits and a total of 10 runs are used, the search space will first be
evaluated after the 4th run. In this case all four runs will be weighted equally. After
the fifth run, the limits will again be evaluated, with the fifth run assigned a weighting
of 2 and the second, third and fourth runs each assigned a weight of 1. By the time the
identification reaches the end of the ninth run, the limits used for the final (10th) run
will be evaluated from runs six to nine with weights of 3, 4, 5 and 6 respectively.

If desired, a convergence criterion can be included so the results can be output early
if the values converge quickly. In this case the ratio of the standard deviation and
mean (coefficient of variation) is used. In general the coefficient of variation gives an
indication of the potential error in the parameter values and is therefore useful to check
at the end of the program to see to what extent the results have converged.

3.1.3 Example of Function Maximisation

f (x1, x2) = 100 − 100x2
1 + 1000x1 − x2

2 + 2x2 (3.2)

As an illustrative example of the SSRM procedure consider maximisation of the
two-variable function given in equation 3.2, over the range 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10.
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Figure 3.4 Variation of function due to x1 and x2 Original search space above, reduced search
space below

The function has a global maximum value of 2601 at (5,1). The challenge in this prob-
lem is that the variables have largely different effects on the function value. Over the
range given, the terms containing x1 contribute values ranging from 0 to 2500, whereas
the terms containing x2 contribute values ranging from −80 to 1. This results in a com-
mon problem faced by many search strategies whereby changes in x1 alter the function
value far more than changes in x2. Consequently, the parameter value identified for x1

will generally be much more accurate than that for x2. The SSRM tackles this problem
very effectively. For example, the first four runs of the iGAMAS may return results of
(4.96, 0.20), (4.99, 1.80), (5.00, 1.70) and (5.08, 0.92), with corresponding function
values of 2600.20, 2600.35, 2600.51 and 2600.35. These results give mean parameter
values of 5.0075 and 1.155 and standard deviations of 0.0512 and 0.7484.

It can been seen that, while x1 has converged almost exactly, x2 has considerable
variation. The SSRM would then reduce the limits. Using a window width of 4.0 the
new limits become 4.8027 ≤ x1 ≤ 5.2123, 0 ≤ x2 ≤ 4.1486. Within these new limits the
function value varies by up to 4.51 due to changes in x1 and by 9.91 due to changes in
x2. The relative significance of the parameter x2 has increased and the identification
results in future runs will improve accordingly. The parameter x1 will also continue to
improve as the search becomes more focussed and effort is not wasted evaluating values
that lie far from the optimal solution. The reduction in search space and variation in
function value is shown graphically in figure 3.4. In the plots, the vertical scale has a
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range of 3500 in both of the upper plots and 15 in the lower plots so valid comparison
of the significance of x1 and x2 can be made.

3.2 iGAMAS

The heart of the SSRM is the improved genetic algorithm utilising migration and
artificial selection (iGAMAS). This strategy is based on the basic GAMAS by Potts
et al (1994) but uses a floating-point representation and includes new operators and
techniques designed to increase the speed and accuracy of identification. The basic
layout of the iGAMAS is shown in figure 3.5 and the important features of the strategy
are discussed in the subsequent sections. The most important features that distinguish
the IGAMAS from ‘normal’ GA are the inclusion of multiple species, artificial selection,
regeneration and a variable data length procedure. In addition to these important
points, the strategy includes a rank based selection, new mutation operators and a
new tagging procedure to ensure diversity in the best solutions.

The basic layout of the GAMAS and iGAMAS algorithms are similar, with both
utilising multiple species, and an artificial selection procedure. The major difference
comes in the way the search is conducted within each species. The original GAMAS
is a binary coded GA using classical crossover and mutation operations. The search
is controlled by allowing for a different rate of mutation in each species. In contrast,
the iGAMAS proposed here uses real encoding of variables and as such adopts non-
uniform mutation operators, allowing the focus of the search to vary, not just across
species, but also over time. In addition to this major difference, the iGAMAS includes
a new tagging procedure and a reduced data length procedure which is specifically
designed for dynamic problems. These important changes and additions are discussed
in the relevant sections below.

3.2.1 Solution Representation

Solutions are represented using floating-point numbers in vector form. Each parameter
is represented by a single value and the vector of all parameters makes up an individual
(possible solution). The floating-point representation is more natural and compact than
the binary encoding traditionally used in GA, and avoids problems such as hamming
cliffs discussed in the previous chapter. In addition, the floating-point representation
enables easy application of new operators, such as non-uniform mutation, that would
have been more difficult or impossible to implement in a binary system. There are
of course some arguments in favour of binary encoding, the main one being that,
by controlling the number of bits, we can effectively control the resolution of the
search required. This is however considered a minor benefit, or even a disadvantage,
with respect to the problems under study in this book. This is because a reasonably
high resolution is required to properly capture the dynamic behaviour of the system.

In the computer programs developed, double precision (8-byte) real numbers are
used allowing for approximately 15 significant digits. Each species is stored in matrix
form with each row in the matrix representing an individual solution. Figure 3.6 gives
an illustration of the representation for a problem of m variables, x1 to xm, and species
size n.
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Figure 3.5 Improved Genetic Algorithm based on Migration and Artificial Selection
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1.345 2.175 1.893 0.278Individual 1

x1 x2 x3 xm�1 xm
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1.287 2.002 1.978 0.222Individual 2 1.325

1.529 3.015 1.556 0.135Individual 3 1.114

2.098 1.987 1.758 0.956Individual n-1 0.773

1.037 2.136 1.987 0.786Individual n 0.993

Figure 3.6 Example of representation and storage of solutions

3.2.2 Multiple Species and Focus on Mutation

The real power of the GAMAS and iGAMAS strategies lies in the division of the
population into species. One of the challenges for many search strategies, including
GAs, is the trade off between exploration and exploitation. That is, it is difficult to
find a balance between utilising the information from the previous good solutions
(exploitation), and maintaining a broad search capability (exploration). By splitting
the population into multiple species, this problem can be adequately addressed. As
one species searches broadly, another can be designed to search locally around the
best solutions. In the iGAMAS, four species are used. Species 1 is used to store the
best results while species 2–4 conduct searches increasing in focus from a very broad
random search to a more refined local search. The various searches are controlled by
using different mutation operators. The focus on mutation is a necessary modification
from the original GA brought about because of the real encoding of variables. In a
binary system, crossing over creates new parameter values and mutation is necessary
mainly to ensure that specific bit values are not permanently lost from the process. In
a real coded system however, crossover effectively becomes, a recombination operator,
only altering the combination of parameters and not the parameter values themselves.
Mutation therefore becomes highly important in modifying the existing parameter
values in order for the search space to be properly explored. The operators used to
achieve the desired mutations are discussed further in the relevant sections.

3.2.3 Regeneration, Reintroduction and Migration

A well-known problem with many search algorithms is that the solutions may con-
verge to local optima and find it difficult to escape from the local convergence basin
in order to find the global optimum solution. Regeneration involves the complete ran-
dom replacement of a species. In this way the process is effectively restarted and new
optimum may be found. In the iGAMAS strategy developed, only species 2 and 3
are regenerated. This allows species 4 to focus on refining the previously generated
solutions while species 2 and 3 search for new possibilities. The number of times
regeneration is carried out must be reasonably small to allow sufficient time between
regenerations for good solutions to develop.
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To ensure that species 4 operates on a set of good solutions, a reintroduction is
required. This involves inserting individuals from species 1 into species 4 at a prescribed
interval. The number of reintroductions required should consider that, while it is
desirable to have the best results being modified in species 4, some time may be needed
in order to develop the solutions. Despite this, it is found that ensuring the best results
are present in species 4 is very important and reintroduction should be carried out
frequently to achieve the best results.

Migration facilitates the exchange of information between species. Just as human
movements between different countries (or companies) can help transfer knowledge
and ideas, the migration of individuals between species can help share important infor-
mation. The migration operation involves swapping randomly selected individuals
between species 2 and 3 and also between species 3 and 4. The number of individuals
to be moved at each generation is controlled by the migration rate, which in this book
is taken as 0.05, meaning 5% of the species is exchanged at each generation.

3.2.4 Mutation Operators

A key benefit of multiple species and floating-point representation is that different
mutation operators can be employed to compliment one another. Three different muta-
tion operators are used for species 2 to 4 in the iGAMAS. The mutation operators are
designed to give each species a different strength so that the whole system can be effec-
tive. In each case mutation is carried out on a single parameter value. The mutation
rate determines the probability of an individual value being mutated and a random
number generator then determines the magnitude of the mutation to be applied.
A graphical representation of the mutation provided by the operators for species 3
and 4 is shown in figure 3.7 for a case where regeneration is carried out 3 times and
the random number generated is 0.5. Note that the completely random mutation of
species 2 would have a value of 0.25 in this case and would be independent of the
generation number.

3.2.4.1 Spec ies 2 – Random Mutat ion

Species 2 is designed to search broadly to uncover promising areas in the search space
that have not yet been discovered. The random mutation of species 2 simply involves
random regeneration of the value. The selected parameter within the individual is
assigned a value randomly distributed within the parameter limits by generation of a
random number, r in the range [0 1] as

xi = LLi + r × (ULi − LLi) (3.3)

where ULi and LLi are the upper and lower limits of the search space for the ith
parameter xi.

3.2.4.2 Spec ies 3 – Cyc l i c Non-Uni form Mutat ion

The non-uniform mutation operator reduces the average magnitude of mutations
as the analysis proceeds and has been shown to help increase the accuracy and
convergence rate in mathematical optimisation problems (Michalewicz 1994).
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Figure 3.7 Average magnitude of mutations for species 3 and 4

The cyclic non-uniform mutation operator proposed here is based on this operator but
is modified with the regeneration procedure in mind. The idea is to allow for larger
mutations after regeneration has taken place and then to gradually reduce the size of
the mutations as the solutions develop. This means the average size of the mutations
will decrease gradually within each regeneration cycle to allow solutions to improve
around the current values, and then increase again after the regeneration, where it is
desirable to search broadly again for new possibilities. To achieve this objective the
following operator is used:

xi = xi + (ULi − xi) ×
(

1 − r

(
1− 0.9MOD(g,R)

R

)
1

)
for r2 = 0

(3.4)
= xi + (LLi − xi) ×

(
1 − r

(
1− 0.9MOD(g,R)

R

)
1

)
for r2 = 1

where r1 is a random number in the range [0 1] and r2 is randomly selected as either
0 or 1. MOD(g,R) is the remainder when the generation number g is divided by the
number of generations between regenerations, R. As species 4 is reserved for local
search, the factor of 0.9 ensures that the average size of the mutations in species 3 is
not too small as the generations approach a regeneration point.

3.2.4.3 Spec ies 4 – Loca l Non-Uni form Mutat ion

As species 4 is designed to refine the best solutions, small mutations are preferred.
A local non-uniform mutation operator is used, whereby the size of mutations is
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gradually reduced as the analysis proceeds. The following non-uniform operator
achieves this mutation.

xi = xi + 0.5 × (ULi − xi) × (1 − r(1−g/G)
1 ) for r2 = 0

= xi + 0.5 × (LLi − xi) × (1 − r(1−g/G)
1 ) for r2 = 1 (3.5)

where G is the total number of generations to be run and the multiplier (0.5) ensures
smaller mutations as illustrated in figure 3.7.

3.2.5 Crossover Operators

Two types of crossover are used in the iGAMAS strategy developed, namely a simple
crossover and a multipoint crossover. The crossover operators used do not alter the
values of individual parameters and should be thought of as ‘recombination’ operators
as they recombine parameters from different individuals. The mutation and crossover
operators therefore work in tandem, modifying and recombining the parameters to
explore new areas of the search space.

3.2.5.1 S imple Crossover

The simple crossover is similar to the crossover performed in binary GAs, the only
difference being that, as the parameters are represented by real numbers, crossovers
can only occur between parameters and as such cannot alter the parameter values
themselves. Where mutation is carried out on each parameter separately, crossover is
applied to whole individuals. The probability of an individual being involved in the
crossover is given by the crossover rate. A pool of individuals are randomly selected
for crossover and then randomly paired with one another. The switching position is
randomly chosen for each pair and offspring produced by combining the left part of
one parent with the right part of another and vice versa. For example, if the two parents
PA and PB, with parameter values a1 to a10 and b1 to b10, are crossed at location 3,
two offspring, O1 and O2 will be created as shown below.

PA = (a1 a2 a3 a4 a5 a6 a7 a8 a9 a10) PB = (b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

O1 = (a1 a2 a3 b4 b5 b6 b7 b8 b9 b10) O2 = (b1 b2 b3 a4 a5 a6 a7 a8 a9 a10)

3.2.5.2 Mult ipo in t Crossover

The simple crossover depends on the order of parameters within an individual and is
good at retaining important relationships between adjacent parameters. Nevertheless,
as the recombination is dependant on the order of the parameters, many possibly use-
ful recombinations cannot be obtained. For example, when considering a structural
identification problem with a total of n mass variables (mi) and stiffness variables (ki),
it may be natural to keep adjacent stiffness values together and as such arrange the indi-
viduals as [k1 k2 . . . kn m1 m2 . . . mn]. Just as importantly, however, the corresponding
pairs of mass and stiffness, for example it may be good to keep k1 m1 together. If simple
crossover is used the order of the parameters is important and finding an appropriate
arrangement may be difficult.
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The multipoint crossover aims to overcome this drawback by recombining param-
eters with no dependence on the order. While this increases the chance of some
potentially useful combinations being destroyed, as crossover points can occur at any
number of locations, it does allow for any combination of parameters to survive. The
number of individuals involved in crossover for a given generation is again controlled
by the crossover rate and pairs of individuals are randomly selected for crossover.
The multipoint crossover uses many switching positions, allowing recombination of
parameters from any location in the individuals. The crossover is performed by con-
sidering each parameter in turn. A random number in the range [0 1] is generated and
crossover of the parameter is performed when a value greater than 0.5 is returned. An
example of this recombination is shown below where the random numbers generated
are (0.12, 0.98, 0.76, 0.43, 0.23. 0.01, 0.63, 0.46, 0.36, 0.81) resulting in crossover
at the 2nd, 3rd, 7th and 10th parameters.

PA = (a1 a2 a3 a4 a5 a6 a7 a8 a9 a10) PB = (b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

O1 = (a1 b2 b3 a4 a5 a6 b7 a8 a9 b10) O2 = (b1 a2 a3 b4 b5 b6 a7 b8 b9 a10)

While the crossover appears to be highly disruptive at first, it must be kept in mind
that the order of parameters here does not have the same influence as bit ordering
in binary coded GA, where adjacent bits contribute to the coded parameter value
by similar amounts. The effect on a real coded GA must be considered in terms of
parameter combinations. It is true that in the above example the combinations such as
(a1 a2), and (b6 b7), which would most likely survive a simple crossover, are destroyed.
We also note however, that other parameter combinations such as (a2 a3 a7 a10) are
preserved, a result that would be highly unlikely in a simple crossover.

In the iGAMAS, both forms of crossover are used. The rationale is that some reason-
able ordering of parameters is usually possible, but at the same time it is not desirable
to restrict the algorithm to selecting only the parameter combinations allowed by the
given ordering. The two forms of crossover are applied one after the other. Where both
simple and multipoint crossovers are to be used, the total crossover rate should be con-
sidered. If a crossover rate of Pcs is used for simple crossover, and Pcm for multipoint
crossover, the effective total crossover rate, Pct which is the chance of an individual
being involved in at least one crossover is,

Pct = 1 − (1 − Pcs)(1 − Pcm) (3.6)

3.2.6 Fitness Evaluation and Selection

For the dynamic problems encountered in this book, fitness may be evaluated from
the total sum of square error (SSE) between the simulated and measured response
of the system. At each time step the error between the measured and simulated data
is computed and squared. The sum of all these errors over all measured degrees of
freedom is returned as the SSE. In the programs developed the fitness is evaluated
using a bounded fitness function as

Fitness = 1
0.001 + SSE

(3.7)
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Figure 3.8 Survival probabilities for a population of 50 individuals

This function bounds the maximum fitness at 1000 as errors approach 0 giving us an
indication of the extent to which the results have converged. Generally selection would
then be carried out by allocating a selection probability to each individual based on its
fitness. It is noted however that, as the identification proceeds, many individuals may
have very similar fitness values and the selection procedure becomes almost random. To
avoid this problem a ranking procedure is used to determine the selection probabilities
within each species. The individuals are ranked with the worst individual assigned a
rank of 1, the next worst a rank of 2 and so on. The best is thus assigned a rank
equal to the population size. Reproduction is then carried out by the commonly used
roulette wheel method whereby an individual’s chance of selection is proportional to
its rank as shown in equation 3.8. This procedure ensures that the fittest individual
will always have twice the chance of selection of an average individual within each
species. The probability of survival (selection at least once) of an individual with rank
R, in a population of size n, can be computed as shown in equation 3.9.

Pselection(R) = R∑
R

= 2R
n2 + n

(3.8)

Psurvival(R) = 1 − Pno selection(R) = 1 −
(

n2 + n − 2R
n2 + n

)n

(3.9)

The survival probability for the best individual and median individual as n becomes
large, can be easily computed as 0.865 and 0.632 by substituting R with n or (n + 1)/2
respectively, and noting that the asymptotic limits of (1 + 1/n)n and (1 − 1/n)n are e and
1/e respectively. The convergence to these values is very rapid and even for a population
size of only 9 the survival probabilities are within 3% of the limiting values. A plot of
the survival probabilities for a population of 50 is shown in figure 3.8.

While the survival probabilities for the best solutions may at first appear low, three
factors are to be considered pertaining to selecting the best solutions. The first factor
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is that in any given population there are likely to be multiple selections of the best
results from previous generations. This means that while the best solution has a 14%
chance of not being selected, the 2nd best may represent the same, or a very similar
solution. The second factor of consideration is that we do not want to saturate the
species with the same solution and so it is crucial that the selective pressure on the best
individuals is not set too high. Finally, the survival of the best results over all species
and generations is guaranteed by the artificial selection procedure, ensuring the elite
will survive.

As the name of the method implies, artificial selection is crucial to the functioning of
the iGAMAS. Artificial selection involves ensuring that the fittest individuals generated
over all of the species are stored in species 1 for future refinement by species 4. This
simple procedure involves comparing the fitness value of the weakest individual in
species 1 with the fitness of the individuals in species 2, 3 and 4. If any of the solutions
represent an improvement over those in species 1 they replace them so that species 1
always contains the best solutions that have been obtained. The original (raw, not
ranked) fitness values must of course be used to ensure valid comparison of individuals
across different species.

One potential problem with artificial selection is that the same individual could be
selected many times, thereby saturating species 1. To eliminate this possibility and
ensure diversity is maintained, a new idea of tagging is proposed. The tagging guar-
antees diversity by blocking multiple selections of the solutions with the procedure as
follows:

• All individuals are initially assigned a 0 tag.
• If an individual is selected for species 1 its tag is changed to 1.
• The tag follows the individual wherever it goes, through migration, selection and

reintroduction.
• If an individual is altered in any way through mutation, crossover or regeneration

it no longer represents the same solution and its tag is thus changed back to 0
making it available again for selection to species 1.

3.2.7 Reduced Data Length Procedure

For identification of dynamic systems the simulated response of the system must be
calculated for comparison with the measured values. This is of course the most com-
putationally demanding part of the whole process and is responsible for most of the
time used. To improve computational efficiency a reduced data length procedure is
proposed. The idea is to use a small portion of the total available data to roughly
identify the parameters before increasing to the full data set later in the process. Using
a reduced initial data length may also help in identification success, as the shorter
length gives rise to a smaller number of local optima, thereby increasing the possibility
of discovering the desired solution. In the iGAMAS, the procedure includes specifying
a cut-off point where the evaluation switches from reduced to full data. The cut-off
point and the length of the reduced data to use again depend on the problem but an
indication is given in the examples presented in the following chapters. In general,
if noise is present, a longer reduced data sequence may be required to help average
out the effect of the noise. This procedure is designed for time domain comparisons
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but could also be used for comparison in the frequency domain. For example, if the
objective is to match the frequency response spectrum, a limited number of points in
the response spectrum could be used first before the detailed spectrum is calculated
later in the analysis.

3.3 Chapter Summary

A novel GA based identification strategy has been presented in this chapter. The strat-
egy is a search space reduction method (SSRM) which utilises the search capability of
an improved GA based on migration and artificial selection (iGAMAS). The strategy
is described as a two-tier approach in which the SSRM uses the results of the iGAMAS
to reduce the search space and to return new search limits to the iGAMAS for further
identification.

The SSRM is intuitive in its design, and has been illustrated with a simple example.
By reducing the search space of parameters that converge quickly, we are not only able
to increase the accuracy of these parameters, but are also better in identifying other
parameters, the variation of which now has a relatively larger influence on the objective
function. The iGAMAS provides a robust search, simultaneously allowing for broad
search while preserving and improving the most promising individuals. The population
is split into multiple species, with real encoding of variables and appropriate mutation
operators, controlling the search direction. Rank based selection is used to maintain a
constant selective pressure, while a tagging procedure guarantees diversity in the pool
of best solutions. A reduced data length procedure further improves performance by
allowing rapid completion of early generations.

The identification strategy has been presented in general terms in this chapter as it is
designed to be easily applied to a wide range of problems, be it financial, mathematical,
biological, structural, hydrodynamic, etc. As long as the system can be represented by
a reasonably accurate numerical model, capable of reproducing the systems response
to a given input, the SSRM can be used. This simple application is a feature of GA
based algorithms and is displayed in the following chapters, where the SSRM is applied
to specific problems.
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Chapter 4

Structural Identification by GA

In this chapter the knowledge needed to develop successful structural identification
strategies using genetic algorithms is progressively developed. The concepts behind
structural identification are first described using a simple single degree of freedom
oscillator and a classical GA. Application then moves to more complex structures of
multiple degrees of freedom. The improved GA strategy described in the previous
chapter, referred to as simply SSRM (which includes the use of iGAMAS) is used
to identify unknown stiffness and damping parameters. In order to properly assess
the capabilities of the SSRM, comparison of results with a random search algorithm
and a simple GA (SGA) is provided for the known mass systems. It is shown that,
even for these relatively simple cases, the SSRM provides far superior identification
results. The much more difficult case of identifying systems where the mass is also
unknown is then considered before a final extension is made in the following chapter
to output-only problems where the stiffness and damping properties are identified
without measurement of input excitation. The output-only procedure also estimates
the input forces as the identification proceeds.

Throughout this book, it must be kept in mind that the end goal is procedures
that not only perform well in theory, but that may be applied to real systems. In
this chapter, the numerical strategy is tested in increasing complexity: from one to
many degrees of freedom, and from known mass system to unknown mass system. In
addition, the practical issues of measurement noise effect and high computational cost
are also addressed. In developing the SSRM for use in practical structural problems
the following points are considered.

• The method should not require an unreasonably good initial guess of the
parameters in order to converge.

• Real I/O measurements contain noise and the method should be tested in the
presence of I/O noise.

• The method should operate on incomplete measurements as it is not practical to
have measurements at all degrees of freedom in a structure.

• Dynamic measurements are usually obtained using accelerometers and numerical
error is inevitable in integration of acceleration to compute velocity and displace-
ment. It is therefore preferable to utilise accelerations directly for the identification
procedure.
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Figure 4.1 SDOF System

4.1 Applying GA to Structural Identification

In order to illustrate the problem of structural identification we will first consider
the single degree of freedom (SDOF) system shown in figure 4.1. The equation of
motion for the system is given in equation 4.1. For the identification problem here we
assume the mass m and the damping c of the oscillator are known and that we want to
determine the stiffness k using the measured input force F and acceleration response ẍ.

mẍ + cẋ + kx = F (4.1)

In order to illustrate this problem, we will use the same simple GA described in
Chapter 2 and illustrated in figure 2.2. The only modification required in order to use
the simple GA from chapter 2 is an alteration of the fitness calculation to include a
dynamic simulation. In order to simulate the dynamic response Newmark’s constant
average acceleration method is adopted. The response is computed using the given trial
parameters using the following steps.

1. The system is assumed initially to be at rest. x = 0, ẋ = 0 and ẍ = 0
2. At each time step the incremental displacement �x is computed according to

equation (4.2).

�x =
[

4
h2

m + 2
h

c + k
]−1 [

Fk+1 + mẍk +
[
c + 4

h
m
]

ẋk − kxk

]
(4.2)

3. The displacement and velocity are then computed from the incremental displace-
ment

xk+1 = xk + �x (4.3)

ẋk+1 = 2�x
h

− ẋk (4.4)
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4. Finally, the acceleration is computed by enforcing dynamic equilibrium at k + 1,
and the procedure is repeated from step 2 until the entire time history is complete.

ẍk+1 = m−1(F − cẋk+1 − kxk+1) (4.5)

Once the response is simulated it can be compared to the measured response and the
fitness computed from the sum of square error as described in equation 3.7. The idea
is that, parameters that produce a response close to the measured response should
be close to the actual parameters of the system. As the errors become smaller, the
parameters will converge to the actual system parameters. An example code of how
this simulation and fitness computation can be included is shown below, and a full
program for SDOF identification is included in the appendix. The procedure given
in the box below must be included in a loop to compute the fitness for each of the
individuals within the population.

Simulation and fitness computation for SDOF system
x=0
v=0
a=0

DO t=1,L
delx=(F(t)+m*a+(c+4*m/h)*v-k*x)/(4*m/(h*h)+2*c/h+k)
x=x+delx
v=2*delx/h-v
a=(F(t)-c*v-k*x)/m
a_s(t)=a

END DO
SSE=SUM((a_s-a_m)**2)
Fit=1/(0.001+SSE)

4.1.1 Sample Problem

In order to demonstrate the strategy described above an example system of m = 1 kg
k = 1 kN/m and c = 1 Ns/m (approximately 1.6% critical damping) is considered. The
system is excited with a force as given in equation 4.6 and the response simulated
for one second at a time step of 0.005 s. The input force and resulting acceleration
response is shown in figure 4.2.

F = sin (6πt) + sin (15πt) (4.6)

Assuming search limits of 500 to 2000 N/m for the unknown stiffness and requiring
a resolution of at least 1 N/m results in a string of 11bits. The program is run 25 times
using random initial populations of size 10, crossover rate of 0.8, mutation rate of 0.05
and 50 generations. In 21 of the 25 runs, the identified stiffness was 999.7557 N/m,
which is the nearest value to the exact value of 1000 that can be represented by the
binary coding used. In all of the 25 runs the worst result obtained was 997.5574,
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Figure 4.2 Force and response used for sample problem

less than 0.25% from the exact solution. While this example illustrates the ease at
which a GA can be applied to structural identification, real structures are more than a
single DOF. Due to increased complexity, the simple GA struggles on the multiple-DOF
problems and it is therefore necessary to use the SSRM to identify these systems.

4.2 Identification of MDOF Systems Using SSRM

The extension from one to many DOFs is conceptually simple; however, in reality
the increase in the size of the search space results in a huge increase in the problem
complexity. In the previous section, a single stiffness value was identified using an 11
bit binary sequence, resulting in a search space of 2048 possible solutions. If the same
resolution is then used to identify a problem with 10 unknown stiffness values the
number of points in the search space jumps to a massive 1.29 × 1033. In this section
the extension to MDOF structures is discussed and the strategy is applied to identify
structures where the mass may be known or unknown prior to identification. An
important investigation into the effects of noise and data length is also presented.

The structural systems considered in this chapter are two-dimensional shear build-
ings. The structures consist of rigid beams and flexible columns, reducing the motion
to a single translational degree-of-freedom at each floor level as shown in figure 4.3.

The system dynamics are modelled as given in equation 4.7, where the mass, stiffness
and damping matrices are readily formed from the structural properties as shown in
equations 4.8 to 4.10 respectively. Equation 4.7 is identical to equation 4.1 used for
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the single DOF system, except now the mass stiffness and damping are represented
by matrices and the response is a vector representing the motion at the respective
floor levels. The mass of the structure is lumped at each floor level and damping is
provided as Rayleigh damping where the damping ratio (ζ) is set as 5% in the first
two modes of vibration by selecting appropriate values for α and β. The matrices are
all banded and constant over time allowing for an efficient numerical procedure to
be developed. Newmark’s constant average acceleration integration scheme using an
efficient LU factorisation of the matrices is used to carry out the simulation of the
structural response to a given excitation. More details about Newmark’s method and
the LU factorisation scheme used are given in the appendix.

Mẍ + Cẋ + Kx = F (4.7)

M =




m1 0
m2

. . .

0 mn


 (4.8)

K =




k1 + k2 −k2 0
−k2 k2 + k3 −k3

−k3
. . .

. . .

. . . kn−1 + kn −kn

0 −kn kn




(4.9)

C = αM + βK; ςr = α

2ωr
+ βωr

2
(4.10)
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Table 4.1 Structural properties

5-DOF 10-DOF 20-DOF

Stiffness (×106 N/m) (1–2) 400 (1–4) 500 (1–10) 500
(Levels) (3–5) 250 (5–8) 400 (11–15) 400

(9–10) 300 (16–20) 350

Mass (×103 kg) (1–3) 500 (1–5) 600 (1–10) 400
(Levels) (4–5) 400 (6–10) 420 (11–20) 300

Damping (5% in first 2 modes)
Alpha 0.573346 0.344092 0.215140
Beta 0.003468 0.005812 0.009224

Natural Period (s)
First mode 0.796 1.321 2.123
Second Mode 0.300 0.505 0.797

Table 4.2 Location of forces and measurements

Levels

5-DOF System
Forces applied 5
Acceleration measurements – mass known 2, 5
Acceleration measurements – mass unknown 1, 3, 5

10-DOF System
Forces applied 5, 10
Acceleration measurements – mass known 2, 4, 7, 10
Acceleration measurements – mass unknown 1, 2, 4, 6, 8, 10

20-DOF System
Forces applied 5, 10, 15, 20
Acceleration measurements – mass known 2, 4, 7, 10, 12, 14, 17, 20
Acceleration measurements – mass unknown 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20

Shear buildings of 5, 10 and 20-DOF are considered, with structural properties given
in table 4.1. For each structure, the mass and stiffness properties are first decided. The
eigenvalues of the system are then computed and the natural frequencies obtained are
used to determine the values of α and β so as to provide the required damping ratio of
5% in the first two modes.

Excitation is provided as random white Gaussian noise (WGN) input forces, scaled
to have a root-mean-square (RMS) value of 1000 N. The response of the structure is
then simulated and the accelerations recorded for feeding into the SSRM. For the tests
conducted in sections 4.2.1 and 4.2.2, simulation is carried out for 200 data points
at a time step of 0.01 s. The forces are applied at every 5th floor and acceleration
measurements are obtained from the simulations at selected floors as given in table 4.2.
As the identification of systems where the mass is unknown is more difficult, more
acceleration measurements are used than for the known mass case.

The SSRM is first applied to the MDOF problem by arranging the structural param-
eters into a vector as shown in figure 4.4. The vector contains all of the stiffness, mass
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Figure 4.4 Parameter vector used for n-DOF system

and damping parameters of the structure. In order to obtain a feel of the appropriate
GA parameters for the SSRM and iGAMAS, the investigation first looks at known
mass systems without noise in section 4.2.1. For problems where some of the param-
eters are known, for example in known mass problems, the search limits for those
parameters can simply be input as the exact values. The investigation then moves to
the more difficult unknown mass problems in section 4.2.2, before we finally introduce
input and output noise and the effects of available data length and the benefits of the
reduced data length procedure in section 4.2.3.

For all tests conducted in this chapter, identification is carried out 25 times using
fresh input forces and noise and a summary of the results is presented.

4.2.1 Known Mass Systems

The case of known mass shear buildings is used to compare the performance of the
SSRM, the iGAMAS alone, a simple GA (SGA) and a random search algorithm. The
SGA used here differs from that used for the SDOF example in that a real encoding of
the parameters is used. Mutation is provided as random regeneration of the selected
parameter. When conducting tests to compare identification strategies, two approaches
are possible. The first is to compare the time taken in achieving a given accuracy,
while the second is to compare the accuracy that can be achieved in a given time. In
all of the examples presented in this book, the latter comparison method is used by
fixing the total evaluations. The total evaluations refer to the number of times the
time history simulation (forward analysis) is carried out and are set here as 10,000,
20,000 and 80,000 for the 5, 10 and 20-DOF systems respectively. The corresponding
computational times are approximately 3 s, 12 s, and 100 s when the simulation is
conducted on a standard Pentium 4, 3-GHz PC. The number of evaluations may seem
large but is actually only a very small portion of the entire search space. Consider for
example the 20-DOF system (with 22 unknowns). If we were to partition each variable
into 150 sections, representing 1% resolution of the parameter value, there would be
approximately 15022 (∼1048) regions in the search space to be evaluated. To evaluate
every point on this search space using the same computer used in these tests would
require 3 × 1037 years! The 80,000 evaluations used here therefore represent only a
tiny fraction of the search space.

With any GA it is important to determine balanced parameters whereby the combina-
tion of population sizes, number of generations, mutation and crossover probabilities,
etc are able to work well together to produce consistently good results without requir-
ing excessive computation time. In preparation for this section, a preliminary study was
conducted in order to establish good GA parameters to use for each of the algorithms.
In all cases the population sizes, number of generations, mutation and crossover rates
etc were varied in order to determine parameters that gave consistently good results.
This study was essential in obtaining a feel for the GA parameters that would work
well for the SSRM and iGAMAS algorithms. The GA parameters determined from
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Table 4.3 Known mass systems – GA parameters

5-DOF 10-DOF 20-DOF

SSRM
Population size 7 × 3 9 × 3 19 × 3
Runs** 4/9 4/9 4/9
Generations 53 82 156
Crossover rate 0.8 0.8 0.8
Mutation rate 0.2 0.2 0.1
Regeneration 2 2 3
Reintroduction 25 30 42

iGAMAS
Population size 7 × 3 9 × 3 19 × 3
Generations 476 741 1404
Crossover rate 0.8 0.8 0.8
Mutation rate 0.2 0.05 0.05
Regeneration 5 2 3
Reintroduction 25 30 8

SGA
Population size 80 113 226
Generations 125 176 354
Crossover rate 0.64 0.96 0.96
Mutation rate 0.05 0.05 0.05

** The first number is the number of runs used in evaluation of limits, and the second number is the total number
of runs (see Section 3.1.1)

Table 4.4 Known mass systems – Identification results

SSRM iGAMAS SGA RANDOM

5 DOF
Mean error in stiffness 0.43% (0.05) 1.35% (0.12) 4.58% (0.42) 10.5% (1.0)
Mean error in damping 2.27% (0.40) 6.18% (1.08) 9.41% (1.21) 28.55% (3.29)

10 DOF
Mean error in stiffness 0.43% (0.03) 1.36% (0.10) 4.22% (0.29) 20.1% (1.10)
Mean error in damping 1.56% (0.28) 5.68% (1.03) 12.33% (1.89) 27.65% (2.37)

20 DOF
Mean error in stiffness 0.52% (0.03) 2.29% (0.15) 8.33% (0.39) 24.3% (0.9)
Mean error in damping 0.75% (0.17) 4.93% (1.00) 15.81% (2.81) 27.26% (4.11)

* Standard error of the mean values are given in ( )

this preliminary study are shown in table 4.3. It is important to note that the GA
parameters are selected to be as consistent as possible across all of the three shear
buildings studied. The reduced data length procedure is not used at this stage. Using
the GA parameters specified, identification is carried out 25 times for each of the sys-
tems studied. The identification results are shown in table 4.4 and a comparison of the
mean error in the identified stiffness values is shown in figure 4.5. The results clearly
show that the SSRM performs better than the iGAMAS alone, and far better than a
simple GA or a random search. Although these results refer to the easier, known mass
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Figure 4.5 Mean error in identified stiffness values

systems and there is no noise in the signals, the accuracy achieved is very encouraging.
Furthermore the computational time required to identify the 7 unknown parameters
of the 5-DOF system is only 3.2 s. A time of 100 s in identifying 22 unknowns in the
20-DOF system is very reasonable.

4.2.2 Unknown Mass Systems

Unknown mass systems present a far greater challenge than the known mass systems
considered in the previous section and have rarely been considered in other structural
identification studies. The problem of identifying both mass and stiffness is difficult as,
not only are the number of unknowns increased, but different combinations of mass
and stiffness can produce the same natural frequencies and mode shapes, leading to
similar response characteristics. This fact can be easily illustrated by considering two
SDOF systems. The first system has mass of 1 kg and stiffness of 400 N/m, and the
second has mass of 5 kg and stiffness of 2 kN/m. It is easily noted that both systems have
a frequency of 20 rad/s and would display the same free vibration characteristics. Only
by considering forced oscillations can these components be separated and identified.
Few studies have attempted to identify mass in structural systems, as the objective is
generally to identify damage which is based on changes in stiffness values. In some
cases, however, accurate calculation of mass is not possible, particularly when the
mass is to be modelled as lumped values. In these cases identification of mass can help
in obtaining more realistic estimates of stiffness.

The same three structures are considered in this section, except that now the mass
properties are not input exactly but are to be identified in the range of half to twice the
actual values. As these problems present a far greater challenge, the total evaluations
are increased to 500,000, 1,000,000 and 2,000,000 for the 5, 10 and 20-DOF sys-
tems respectively. The computational times are approximately 2 m 40 s, 10 m 30 s, and
42 m for analysis conducted on a standard Pentium 4, 3-GHz PC. As with the previous
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Table 4.5 Unknown mass systems – GA parameters

5-DOF 10-DOF 20-DOF

Population size 45 × 3 65 × 3 90 × 3
Runs 5/15 5/15 5/15
Generations 247 342 494
Runs to ave for output 1 1 1
Crossover rate 0.4 0.4 0.4
Mutation rate 0.2 0.2 0.1
Window width 4.0 4.0 4.0
Migration 0.05 0.05 0.05
Regeneration 3 3 3
Reintroduction 50 120 200

section some preliminary studies were conducted in order to determine some reason-
able GA parameter values. The purpose is to identify GA parameters that will give
consistently good results rather than trying to obtain so called optimum GA parame-
ters which do not exist in reality due to variation across systems, noise etc. We do not
want to change parameters to achieve only a small gain but would rather use parame-
ters that work well over all systems. The GA parameters selected for use in this section
are presented in table 4.5.

As with the unknown mass systems of the previous section, the consistency of the
GA parameters across the three systems is excellent. The most significant changes, as
compared to the known mass case, are the reduction in crossover rate and an increase
in the number of runs.

The decrease in crossover rate is logical because of the way the identification strategy
is implemented. For the known mass case, the same parameter vector is used but
with the limits for mass set to the exact parameter value. This effectively reduces the
crossover rate as many crossovers occurring in the mass portion of an individual will
have little effect. For the unknown mass case however, all crossovers provide useful
recombination of the parameters. In this way we can see that the rate of 0.8 used in
the known mass systems and the 0.4 rate used here actually provide a similar number
of useful recombinations.

The second important change in the GA parameters is the number of runs. The
runs for all systems are increased to 5 runs with total runs of 15. This increase can
be explained from two considerations. Firstly, as the unknown mass problems pose a
greater challenge, increasing the number of runs leads to better certainty in the mean
and a more robust solution. Secondly, as the total evaluations are increased for the
unknown mass problems, the runs can be increased without reducing the number of
generations too far. For the known mass problems, where the total evaluations are very
limited, using 15 total runs causes the number of generations to become very small
and the performance of iGAMAS is compromised.

The higher reintroduction rate required by the 10 and 20-DOF systems has con-
firmed the earlier findings that a high reintroduction is desirable. The results indicate
that this high reintroduction rate is crucial to the performance of the strategy and the
local search species 4 is working well in refining the search results.
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Table 4.6 Unknown mass systems – Identification results

5-DOF 10-DOF 20-DOF

Mean error – stiffness 0.41 (0.07) 0.64 (0.10) 0.28 (0.03)
Mean error – mass 0.40 (0.07) 0.56 (0.09) 0.32 (0.03)
Mean error – damping 0.97 (0.39) 1.84 (0.52) 1.09 (0.33)

* Standard error of the mean values are given in ( )
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Figure 4.6 Effect of noise on identification

A summary of the achieved accuracy is given in table 4.6. The identification of
unknown mass systems is considered very difficult and as such, the results presented
here are considered excellent. The next question of course is the quality of identifica-
tion results when the signals are contaminated with noise. This is investigated in the
following section.

4.2.3 Effects of Noise and Data Length

In this section the effects of the following two important issues are examined for both
known mass and unknown mass systems:

(a) Measurement noise which is inevitable in SHM of real structural systems.
(b) Data length used in the forward analysis which affects the overall computational

cost of GA-based structural identification.

The same systems are considered but the input forces and measured accelerations
are contaminated with noise. Applying noise to both the inputs and outputs is a much
more general and difficult case compared to the common case of only output noise.
The effect of this noise is illustrated in figure 4.6, where it is seen that the noise on the
force is passed through the simulation and causes errors in the simulated accelerations,
which are used to compute the fitness value. All tests are again carried out 25 times.
For each test, noise is freshly generated to avoid any bias that might result from a
single noise pattern.
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Table 4.7 GA parameters for study on the effect of noise and data length

Known Mass Systems Unknown Mass Systems

5-DOF 10-DOF 20-DOF 5-DOF 10-DOF 20-DOF
Total Evaluations 10,000 20,000 80,000 500,000 1,000,000 2,000,000

Population size 7 × 3 9 × 3 19 × 3 45 × 3 65 × 3 90 × 3
Runs 4/10 4/10 4/10 5/15 5/15 5/15
Generations 48 74 140 247 342 494
Runs to ave for output 1 1 1 1 1 1
Crossover rate 0.8 0.8 0.8 0.4 0.4 0.4
Mutation rate 0.2 0.2 0.1 0.2 0.2 0.1
Window width 4.0 4.0 4.0 4.0 4.0 4.0
Migration 0.05 0.05 0.05 0.05 0.05 0.05
Regeneration 2 2 3 3 3 3
Reintroduction 25 30 50 50 120 200

Table 4.8 Effect of noise and data length – Known mass

Mean error in identified stiffness %

Noise level Data Length 5-DOF 10-DOF 20-DOF

0% 50 0.54 0.99 0.69
100 0.25 0.30 0.39
200 0.44 0.26 0.44
500 0.31 0.45 0.38

1000 0.50 0.45 0.44
5% 50 9.40 5.32 5.55

100 2.64 3.27 3.33
200 1.96 1.90 2.34
500 1.06 1.28 1.61

1000 1.07 0.92 1.11
10% 50 17.61 10.45 11.92

100 5.59 5.82 6.86
200 3.88 3.61 4.40
500 2.40 2.34 2.70

1000 1.36 1.69 2.32

Three noise levels are considered, namely 0%, 5% and 10% of the given signals
based on the RMS values. For each case, data lengths of 50, 100, 200, 500 and
1000 points are considered and the resulting accuracy and computational times are
compared. In all cases the GA parameters are as shown in table 4.7, based on the
findings of the previous sections.

A summary of the results obtained is presented in tables 4.8 and 4.9 and the variation
of the error in stiffness illustrated in figure 4.7. The results for errors in identified mass
are similar to those for stiffness and are not discussed here. When studying the results
it must be kept in mind that the GA parameters are exactly the same in all cases, and
as such, the time taken is proportional to the data length.
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Table 4.9 Effect of noise and data length – Unknown mass

Mean error in identified stiffness

Noise level Data Length 5-DOF 10-DOF 20-DOF

0% 50 1.74 0.72 1.88
100 0.62 1.13 0.62
200 0.41 0.64 0.28
500 0.90 0.81 0.29

1000 0.78 0.56 0.25
5% 50 8.83 6.09 5.84

100 4.68 3.50 3.33
200 2.34 2.29 2.02
500 1.23 1.59 1.24

1000 1.25 1.38 0.98
10% 50 16.36 13.11 11.98

100 7.25 7.09 6.39
200 5.69 4.43 4.44
500 2.55 2.88 2.65

1000 2.11 2.41 2.08

The noise causes the error in identified parameters to increase approximately in
proportion to the noise level applied. Nevertheless the results are still excellent in
general, as even under a large 10% noise, stiffness and mass properties are identified
with good accuracy.

The effect of the data length is twofold. Firstly, a longer data length provides more
information and helps to ‘average out’ the effect of noise such that a better identification
is possible. It is conceivable that there is also a second effect, whereby using more data
points may make it harder to find the desired solution due to many local optima
created, leading to a slower convergence of results. This effect is observed in the case
of zero noise where the best results are achieved at a smaller data length.

In general, for realistic noisy data, the first effect will dominate and using more data
should help to improve the quality of the identification. The combination of these two
effects does, however, support the idea behind the reduced data length procedure. That
is, we can use a shorter length at first to achieve a faster convergence and then increase
to a longer data length later in order to ‘fine tune’ the result and reduce the effect of
noise. This reduced data length procedure is developed and illustrated in the following
section.

4.2.3.1 Reduced Data Length Procedure

The primary purpose of the reduced data length is to complete more evaluations in a
shorter time and hence improve the quality of the identification. For the tests presented
in this section, the total time is fixed as that taken for full runs of 200 data points, with
the result from the previous section taken as a basis for comparison. The computational
times for the known mass case are approximately 3.2 s, 12.4 s and 100 s (on a Pentium
4, 3 GHz computer) for the 5, 10 and 20-DOF systems respectively. The corresponding
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Figure 4.7 Effect of noise and data length
Circle = 0% noise, square = 5% noise, triangle = 10% noise

times for the unknown mass case are 2 min 40 s, 10 min 30 s and 42 min. As the
computational time taken is approximately proportional to the data length, the total
data points evaluated are fixed and computed as the total evaluations times the data
length. The tests are conducted by varying the full data length, the reduced data length,
and the percentage of generations for which the reduced length should be used. With
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Table 4.10 Reduced data length – Best results

Mean % error
Reduced

System (time taken) Noise Full data length data length % Gen* Stiffness Mass

Known mass systems
5-DOF (3.2s) 5% 1000 200 75 1.30 (0.11) – –

10% 500 200 50 2.20 (0.20) – –
10-DOF (12.4s) 5% 500 200 50 1.51 (0.09) – –

10% 500 50 50 2.56 (0.15) – –
20-DOF (100s) 5% 500 100 50 1.59 (0.07) – –

10% 500 0 0 3.05 (0.12) – –

Known mass systems – Double number of generations
5-DOF (6.4s) 5% 500 200 50 0.94 (0.08) – –

10% 1000 100 50 1.72 (0.18) – –
10-DOF (25s) 5% 1000 200 75 1.17 (0.07) – –

10% 1000 200 50 1.82 (0.09) – –
20-DOF (200s) 5% 1000 200 50 1.33 (0.06) – –

10% 1000 200 50 2.35 (0.10) – –

Unknown mass systems
5-DOF (2 min 40 s) 5% 500 200 75 1.21 (0.08) 1.18 (0.10)

10% 500 200 50 2.10 (0.17) 2.31 (0.17)
10-DOF (10 min 30 s) 5% 500 100 50 1.43 (0.07) 1.36 (0.07)

10% 1000 200 75 2.82 (0.14) 2.86 (0.15)

20-DOF (42 min) 5%# 1000 100 50 1.24 (0.04) 1.61 (0.07)
500 200 75 1.31 (0.05) 1.41 (0.06)

10% 1000 100 50 2.33 (0.09) 2.63 (0.09)

* % gen is the percentage of total generations that are run using the reduced data length before analysis switches
to full data.
# Two results given here as best mass and stiffness did not occur for same case.

these parameters the number of generations is chosen such that the total number of
points evaluated (and hence time taken) will be approximately equal. As the time taken
for the known mass problems is reasonably short, trials are also conducted with the
number of generations doubled. All other GA parameters remain unchanged from
those used in the previous section.

The values used for the trials are full data lengths of 200, 500 and 1000, reduced
data of 50, 100 and 200, and percentage of generations to run reduced data of 50, 75
and 90%. A summary of the best results is presented in table 4.10. Herein ‘best’ refers
to the best average performance over 25 tests and not the single best result obtained.

While the best results are impressive, we are ultimately interested in finding some
standard parameters and data lengths that deliver consistently good results over all
systems. The results for a data length of 500 with a reduced length of 200 used for
50% of the generations (denoted here as 500/200/50) are reasonably good over all
systems. Table 4.11 gives a summary of these results and also gives the deviation that
the results fall from the best results given in table 4.10. The deviation is given in terms
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Table 4.11 Reduced data length – Results for 500/200/50

Mean % error Deviation from best*

System Noise Stiffness Mass Stiffness Mass

Known mass systems – normal gen
5-DOF 5% 1.36 (0.12) – 0.06 (0.37) –

10% 2.20 (0.20) – 0 –
10-DOF 5% 1.51 (0.09) – 0 –

10% 2.78 (0.15) – 0.22 (1.04) –
20-DOF 5% 1.81 (0.08) – 0.22 (2.07) –

10% 3.47 (0.15) – 0.42 (2.19)) –

Known mass systems – 2x gen
5-DOF 5% 0.94 (0.08) – 0 –

10% 2.32 (0.16) – 0.60 (2.49) –
10-DOF 5% 1.37 (0.07) – 0.20 (2.02) –

10% 2.47 (0.14) – 0.65 (3.91) –
20-DOF 5% 1.76 (0.08) – 0.43 (4.10) –

10% 2.97 (0.12) – 0.62 (3.97) –

Unknown mass systems
5-DOF 5% 1.63 (0.13) 1.61 (0.14) 0.42 (2.69) 0.43 (2.50)

10% 2.10 (0.17) 2.31 (0.17) 0 0
10-DOF 5% 1.60 (0.09) 1.50 (0.09) 0.17 (1.49) 0.14 (1.23)

10% 2.98 (0.15) 3.00 (0.15) 0.16 (0.78) 0.14 (0.66)
20-DOF 5% 1.38 (0.05) 1.51 (0.06) 0.14 (2.19) 0.10 (1.18)

10% 2.78 (0.10) 3.00 (0.11) 0.45 (3.34) 0.37 (2.60)

* The value in ( ) is the deviation given in terms of a number of standard errors as shown in (Eq 4.11).

of the absolute difference in mean error as well as in terms of a number of standard
errors as given in equation 4.11. x and xB are the mean identification errors obtained
using 500/200/50 and best results respectively, while sx and sxB are the standard errors.

deviation = |x − xB|√
s2
x + s2

xB

(4.11)

The deviation reported in this way gives a good feel as to how significantly differ-
ent the results are. While in some cases there is a significant difference between the
500/200/50 result and the best, the accuracy obtained is still very good and for practi-
cal purposes the convenience of having a single length is desirable. It is also interesting
to compare the results to those obtained using full runs of 500 data points. The mean
error in stiffness is on average 0.26% better using the 500/200/50 reduced data length.
In six cases the results are significantly better (95% confidence interval), while in only
two cases the result is significantly worse. The proposed reduced data length procedure
is therefore considered beneficial in most cases.
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4.3 Chapter Summary

The effectiveness of the SSRM strategy in identifying the parameters of structural
systems has been demonstrated in this chapter. The results presented here are derived
from more than 40,000 simulation tests carried out over more than 100 computer-days.
This huge amount of data has facilitated a comprehensive comparison of results and
developed a good understanding of the various GA parameters. An understanding of
the effect of the GA parameters has been achieved through many tests conducted using
various combinations of the parameters. It is interesting to note that for a classical
GA (e.g. the simple GA used for comparison in this study), large population sizes are
generally preferred, whereas small populations tend to work better for the SSRM. The
mutation rates are also very different, as large mutation rates are preferred for the
SSRM compared to small rates for the simple GA. The total number of runs required
for the SSRM is independent of the system size and is found to be about 10 and 15 for
known mass and unknown mass systems respectively.

The results have clearly shown that the SSRM performs better than the iGAMAS
alone, and far better than a simple GA and obviously a random search. The strategy has
been demonstrated on both known and unknown mass systems as well as in the pres-
ence of input and output noise. The unknown mass system poses a greater challenge,
for which many other identification methods are unable to handle. In the presence of
noise, it is generally observed that a longer data length allows for a more accurate iden-
tification, but at the expense of additional computation time. The reduced data length
procedure allows the combination of fast analysis using a short data length with the
accuracy that can be obtained from longer data. It has been shown that, given a fixed
time, the reduced data procedure can significantly improve the accuracy of results. The
results obtained show that using full data/reduced data/% generations of 500/200/50
appears to work well over all systems, varying at most by 0.6% from the best result
obtained using any data length combinations. The results obtained are very accurate
with mean errors of less than 2% and 3% achieved for unknown mass systems with
noise of 5% and 10% respectively. The proposed strategy is also computationally effi-
cient. A 20-DOF unknown mass system (42 unknowns) is identified in 42 minutes on
a standard Pentium 4, 3-GHz PC.
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Chapter 5

Output-Only Structural Identification

The structural identification results presented in the previous chapter are very good.
In reality, measuring input forces in situations outside the laboratory may not always
be feasible. With this in mind, the SSRM is adapted to identify structural stiffness for
problems where the input force is not measured. The majority of output-only meth-
ods use frequency domain methods. The strengths and weaknesses of these methods
were discussed in the first chapter, where the ability to identify the structure without
input force information was mentioned as a key benefit. These methods will not be
discussed further in this chapter as the global parameters identified by these frequency
domain methods are generally not sufficiently sensitive to local damage. By compar-
ison, there are benefits in developing time domain strategies which are able to better
identify structural parameters at the local level. While common for frequency based
methods, Identification using only output information has rarely been attempted using
time domain identification schemes. The most significant works, by Ling and Haldar
(2004) used classical techniques to carry out the identification using an iterative proce-
dure. This procedure worked reasonably well but will of course suffer from the same
limitations as other classical methods as discussed in the first chapter. Furthermore,
the iterative procedure, while reasonably efficient for a least squares identification,
would require significant computational time for a GA due to the larger time required
for each iteration. In this chapter, a strategy involving simultaneous evolution of struc-
tural parameters and input force is introduced. This procedure uses the SSRM, but since
the input force is unknown, it must also be identified and updated as the search for
structural parameters proceeds. In theory, it is mathematically not possible to identify
all structural parameters and forces at the same time, as the solutions can “float’’ by a
scalar constant. A similar problem was discussed in section 4.2.2, i.e. the free vibration
response of a system would be identical if the mass and stiffness were both scaled by
the same factor. The only way to fix the values is to consider forced oscillations with
a measured force. If the force is unknown, this becomes impossible as the forces can
also be scaled by an arbitrary factor in order to match the mass and stiffness values.
We must therefore know at least one of the properties of the system in order to ‘fix’
the parameters. For the procedure developed here the mass of the structure is assumed
known. For many engineering structures, such as bridges or offshore platforms, this
is a reasonable assumption as the mass may be estimated with reasonable accuracy.
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Before discussing the modifications that are required, let us first properly define the
problem to be considered. The aim is to identify the stiffness properties of the structure
using only selected, noise contaminated acceleration measurements. The structure is
excited with an unknown force time-history. We assume that the structure is initially
at rest and that the location of the force(s) is known. The mass of the structure is
also assumed to be known, and damping is assumed to be of Rayleigh-type damping
where the damping parameters are unknown. The force time history at each location
will be identified along with the system parameters. While the identified force history
can be also of some interest, it is identified primarily to facilitate the identification
of stiffness parameters which is the major objective. It is assumed that acceleration
measurements are available at the location where the force is applied, and at adjacent
degrees of freedom. Other DOFs may or may not be measured depending on the sensor
availability. For example if a 5-DOF shear building is to be identified, and the force is
known to act at the 5th level, then it is assumed that measurement is available at least
at levels 4 and 5.

5.1 Modification of the Identification Strategy

A procedure involving simultaneous identification of the force and structural param-
eters is developed. The SSRM is employed as in the previous chapters, except that
the force used in the simulations is unknown and has to be computed in order for
the simulation of structural response to proceed. The parameter vector used is the
same as before and does not include any parameters related to the unknown force.
Note that the force is therefore not viewed as a variable to be identified by the GA,
but, instead is treated as an unknown component that is required to in the dynamic
equilibrium at each time step. In the SSRM the calculation of force is combined with
the Newmark’s simulation algorithm, resulting in an efficient subroutine that is able
to estimate the input force(s) while simultaneously carrying out the simulation of the
structural response for comparison with measured accelerations to compute the fitness
of the given solution.

The procedure used to compute the force and simulate the response may be thought
of as a predictor-corrector algorithm. An initial estimate, or “prediction’’, of the dis-
placements and velocities at the measured DOFs at time step k + 1 is first obtained
from the measured accelerations at time step k + 1 and “corrected’’ response at time
step k, using the following “predictor’’ equations, where h is the time step.

ẋk+1 = ẋk + h
2

(ẍk + ẍk+1) (5.1)

xk+1 = xk + h
2

(ẋk + ẋk+1) (5.2)

Due to the banded nature of the matrices only the response at the loaded DOF
and adjacent (coupled) DOFs are needed for computing the force and only the sub-
matrix containing the necessary DOFs needs be considered. The unknown force Fu
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Figure 5.1 Simulation and force calculation procedure

is then computed from the known forces Fkn, measured acceleration and predicted
displacement and velocity by

Fu
k+1 = Mẍk+1 + Cẋk+1 + Kxk+1 − Fkn

k+1 (5.3)

Step-by-step integration by Newmark’s constant acceleration method is then used to
recompute the reponse at time step k+1 resulting in revised, or “corrected’’, estimates
of displacement, velocity and acceleration. The corrected accelerations are stored for
comparison with the measured accelerations in order to compute the fitness as required
in the GA procedure. The corrected response is then passed on to the next time step
and the process is repeated for the entire time history as illustrated in Figure 5.1. The
key point to note here is that it is the corrected response, rather than the measured
or predicted response, that is used as the response vector at time “k’’ in Eqs. 5.1
and 5.2. The simulation step used to correct the response estimates effectively uses
the structural dynamic system to act as a filter, thereby minimizing the effect of high-
frequency noise in the measurement. If the corrected (simulated) response is not used,
the force is calculated from the response obtained by direct integration of the measured
accelerations and as such would be more prone to accumulation of errors. Using the
corrected response also ensures that dynamic equilibrium is maintained at the end of
each time step.
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Figure 5.2 Input force generation procedure

5.2 Numerical Study

In order to assess the performance of the proposed identification strategy numerical
simulations are carried out. A preliminary study using the proposed strategy shows
that a longer data length and small time step may be beneficial. Thus in addition to
tests using 500 data points, tests on data lengths of 1000 points are also considered.
A time step of 0.001s has been used throughout this section. The reduced data length
procedure is used in all cases with a reduced length of 40% of the data points used for
50% of the generations.

As the procedure requires integration of acceleration to obtain velocity and displace-
ment, a very irregular random force should not be used. Rather than a purely random
force, a smoothed random wave form is used. The excitation forces must balance hav-
ing broad frequency content with being smooth enough that they can be accurately
integrated for generation of the response in the identification procedure. Here random
data are generated every 20 points and the interpolation functions used to fill in the
intermediate points, resulting in a sort of ‘band limited noise’. In order to create a
smoothed random force a random force is first generated at a time step of 0.02 s (sam-
pling frequency of 50 Hz) and the signal is then converted to a time step of 0.001 s
(1000 Hz) by interpolating and smoothing the force over the intermediate data points.
The wave form in between 2 random points is generated using linear interpolation as
well as the backwards and forward extension of the gradients of neighbouring points.
The idea is to create a curve that flows smoothly through the random points given. The
linear interpolation, backwards and forward extensions are therefore combined using
weighted averages to obtain the value of the wave form at intermediate points as illus-
trated in figure 5.2 for data points 40 to 60. As shown, one of the random data points
on either side of the interval of interest is required for the interpolation in order to
obtain the forward and backward extensions. The quadratic weighting functions used
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Figure 5.3 Weights for input force generation

are given in equations 5.4–5.6 and illustrated in figure 5.3. Using this method, fresh
input forces are prepared for each of the tests conducted. Examples of these forces can
be seen in the force comparisons presented later in the section in figures 5.4 and 5.5.

Interpolation weight w = 0.75 − 0.0025(i − 10)2 (5.4)

Forward extension weight w = 0.00125(20 − i)2 (5.5)

Backward extension weight w = 0.00125i2 (5.6)

It is noted here that while the program does not assume any type of function, and
a purely random signal could be used, as with any identification scheme, some forms
of force input will prove more successful than others. The chosen input forces, while
not optimum, do provide a reasonable balance between providing a good excitation
and being ‘smooth enough’ to allow for reasonable numerical integration of the time
history responses.

The study considers the same three structures that were used in the previous sections.
The location of forces is the same as those used previously; however, due to the method
requiring specific acceleration measurements, the response is measured at the degrees
of freedom as indicated in table 5.1. Apart from data length discussed above, the GA
parameters used are similar to those used previously and are summarised in table 5.2.
As before, the search limits of all stiffness and damping parameters are set as half to
double the exact values. As identification involves unknown force as well as unknown
stiffness and damping parameters, the problem becomes more difficult and additional
runs are allowed as compared to the known mass cases where the force was known.

The identification is considered in the presence of 0, 2, 5 and 10% noise. For each
case the analysis is repeated 25 times and average results reported. In all cases the
stiffness and damping parameters and the force(s) are identified. Errors in identified
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Table 5.1 Numerical study – Location of forces and measurements

Levels

5-DOF System
Forces applied (1) 5
Acceleration measurements (3) 2, 4, 5

10-DOF System
Forces applied (2) 5, 10
Acceleration measurements (6) 2, 4, 5, 6, 9, 10

20-DOF System
Forces applied (4) 5, 10, 15, 20
Acceleration measurements (13) 1, 2, 4, 5, 6, 9, 10, 11, 14, 15, 16, 19, 20

Table 5.2 Numerical study – GA parameters used

5-DOF 10-DOF 20-DOF

Population size 7 × 3 10 × 3 20 × 3
Runs 5/15 5/15 5/15
Generations 60 100 200
Runs to ave for output 1 1 1
Crossover rate 0.8 0.8 0.8
Mutation rate 0.2 0.2 0.1
Window width 4.0 4.0 4.0
Migration 0.05 0.05 0.05
Regeneration 2 2 3
Reintroduction 25 30 50
Data Length 500 or 1000 with reduced data of 40% used for

50% of generations

damping are reasonable. As damping in the structures is dominated by the stiffness
proportional term, the value for β is well estimated. Even under 10% noise, β is
identified with mean error of only 3.02%, 1.12% and 0.53% for the 5, 10 and 20
DOF systems respectively. As α does not contribute as significantly to the damping in
these systems it was estimated less reliably. Since our main interest is in the identified
stiffness values, the results presented in table 5.3 compare the mean and maximum
errors in identified stiffness.

The results presented in table 5.3 are very good. While the time taken for the identi-
fication is slightly longer than was used for the known mass problems (with measured
force), the identification accuracy is outstanding. The fact that the results, even for 500
data points, are much better than those achieved previously (table 4.11) suggests that
noise on force measurement compromises the accuracy when the identification proce-
dure assumes known force (which is commonly done). By identifying force, rather than
assuming force measurement to be accurate, we are able to avoid force measurement
noise that would otherwise affect the accuracy of the forward analysis needed in the
identification procedure. The results also suggest that the smoother force used here is a
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Table 5.3 Numerical study – Error in identified stiffness parameters

500 Data Points 1000 Data Points

System and Noise Mean Error Max Error Mean Error Max Error

5-DOF
Time (min:s) 0:14 0:28
0% noise 0.13 0.31 0.05 0.12
2% noise 0.44 1.05 0.21 0.50
5% noise 0.93 2.19 0.50 1.20
10% noise 2.24 6.06 0.98 2.31

10-DOF
Time (min:s) 1:04 2:08
0% noise 0.05 0.15 0.02 0.06
2% noise 0.33 1.06 0.20 0.59
5% noise 0.84 2.50 0.47 1.23
10% noise 1.70 5.04 0.90 2.70

20-DOF
Time (min:s) 8:39 17:18
0% noise 0.01 0.02 0.01 0.04
2% noise 0.32 1.02 0.21 0.66
5% noise 0.78 2.50 0.52 1.55
10% noise 1.43 4.59 0.93 2.91
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Figure 5.4 Example of identified force for 5-DOF under 10% noise Heavy line = actual force,
light line = identified force

better option than the random force. To be able to identify the structures with limited
output information only, and to achieve average error of less than 1% even under 10%
noise is an accomplishment that, to the knowledge of the authors, has not been reported
before. The feasibility of implementing the SSRM in eliminating the need for force mea-
surement will also go a long way to developing strategies that will work on real systems.

In addition to the structural properties, the input force(s) is also identified.
Figures 5.4 and 5.5 show examples of the forces identified for the 5 and 20-DOF
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Figure 5.5 Example of identified forces for 20-DOF under 10% noise Heavy line = actual force,
light line = identified force

structures respectively, compared to the actual input force used in the simulation. In
both cases the identification result shown is the worst case of 500 data points and
contamination with a very large 10% noise. The figures show that even under these
conditions a very reasonable estimate of the force is achieved. For lower noise levels and
longer data length, there is very little difference between the actual force and identified
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Figure 5.6 (a) Entire system of 3 connected structures, (b) structure extracted for identification

force; thus the comparison is not shown here. The high frequency variation observed
in the figures is due to noise in the measured accelerations that is transferred to the
force via the inertia term in the dynamic equilibrium equation (Eq. 5.3). This may be
reduced by recalculating force based on updated accelerations. Nevertheless, since the
identified stiffness values are very good, there is no need for this additional step.

5.3 Seismic Example

As a further example of how the output-only identification can be used, a seismi-
cally excited system of buildings is considered. The system consists of three shear
buildings connected by two link bridges as illustrated in figure 5.6(a). The structural
properties for the central building are m1−m5 = 7 × 105 kg, m6−m15 = 4 × 105 kg,
k1−k5 = 6 × 105 kN/m and k6−k15 = 4 × 105 kN/m. The left and right buildings have
m = 4 × 105 kg and k = 4 × 105 kN/m for all floors. The link bridges are modelled as
linear springs with axial stiffness of 1 × 106 kN/m. The natural periods of the first two
modes of the system are 1.6 s and 0.8 s. Damping is provided by Rayleigh damping
with a damping ratio of 2% applied to the first 2 modes of the entire coupled system.
For identification purposes α and β are identified along with the unknown stiffness
and force. The mass of the building is assumed known and the seismic loading is easily
computed from the measured ground motion. It should be noted here however that
this is a case of input noise as the noise on the measured ground motions is passed
directly to the excitation.

The response of the entire system to the first 5s of the NS component of the 1940
El Centro earthquake is simulated using a time step of 0.005s. The accelerations at
the ground level and levels 2, 3, 4, 6, 7, 8, 10, 12, and 14 of the central building are
extracted for use in the identification. Noise is added to all acceleration measurements
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Table 5.4 Error in identified stiffness

Noise Level Mean Error Maximum Error

0% 0.34% 1.53%
5% 0.85% 2.08%
10% 1.47% 3.82%
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Figure 5.7 Example of forces identified under 10% noise (Heavy line = actual force, light
line = identified force)

as white Gaussian noise scaled so that the RMS of the noise is a given percentage of
the RMS of the response.

The link bridges cause coupling between the buildings which, when considering a
single building, cannot be readily quantified. Using the proposed strategy, the central
building and the coupling forces can be identified without any information of the
other two buildings as shown in figure 5.6(b), where F1 and F2 represent the unknown
coupling forces from the adjacent buildings.

A fairly broad search range, i.e. half to double the exact values, is again adopted
for all unknown stiffness parameters. The reduced data length procedure is used in all
cases with a reduced length of 40% of the data points used for 50% of the generations.
The identification is considered in the presence of 0, 5 and 10% noise and for each case
the analysis is repeated 5 times using fresh noise signals. In all cases the stiffness and
damping parameters and the force(s) are identified. As our interest is in the identified
stiffness values, the results presented in Table 5.4 compare the absolute mean and
maximum errors in identified stiffness.

By identifying forces, rather than trying to measure them, we are able to avoid the
error that would otherwise be passed through the simulation. The output-only results
are very good; the achieved mean error is only 1.5% under 10% noise level.
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In addition to identifying the structural properties, the method gives the time history
of unknown input. Figure 5.7 shows an example of the forces identified compared to
the actual force for a case of 10% noise contamination. The forces identified for 0%
noise are not shown as they match the true force almost exactly. The forces identified
under 10% noise are high pass filtered to remove the numerical drift that is inevitable
for this sort of problem where only acceleration measurements are used. The figure
shows that, even with limited and highly contaminated data, a very reasonable estimate
of the force is achieved. As with the previous example, the high frequency variation
observed in Figure 5.7 is due to noise in the measured accelerations that is transferred to
the force via the inertia term in the dynamic equilibrium equation. This may be reduced
by filtering or by recalculating force based on corrected accelerations. Nevertheless it
is reckoned that the identification results are very good and this refinement step is not
necessary as far as the main objective of identifying stiffness parameters is concerened.
It is also important to note that the identification of F2 is significantly better than that
of F1. This is most likely due to the fact that the second force is larger and acts at a
location that causes a larger influence than the first force on the measured response of
the structure.

5.4 Chapter Summary

An important extension of the structural identification strategy to output-only identi-
fication in the time domain has been described in this chapter. The strategy works by
simultaneously computing the excitation forces as the structural parameters (stiffness
and damping) are identified. The ability to identify structural properties in the time
domain, without a need for force measurement, is not an entirely new concept. Never-
theless, to the authors’ knowledge, the use of GA and the simultaneous computation
of input force(s) is new, and the results achieved using the proposed strategy represent
a big step forward. The ability to eliminate the need for force measurement allows time
domain methods to compete more favourably with their frequency based counterparts
and opens up the possibility for using a wider range of excitation methods, including
natural vibrations such as wind, water or ground motions.

The strategy has been validated here using numerical simulations of forced and seis-
mically excited structural systems. The results are outstanding, with mean errors in
stiffness of less than 1% and maximum errors less than 3% achieved for structures with
up to 20-DOF even when the incomplete acceleration measurements are contaminated
with 10% noise. The very good results of identified stiffness is partly attributed to the
improved GA strategy used and partly attributed to the avoidance of input measure-
ment error which would otherwise reduce the identification accuracy. The output-only
identification strategy will be put to test in the experimental verification study to be
presented in Chapter 7.
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Chapter 6

Structural Damage Detection

In this chapter, the SSRM strategy developed in the previous chapters is applied to the
area of structural damage detection, an important area in structural health monitoring.
In order to identify damage, the SSRM is used within a damage detection strategy as
described in section 6.1. This strategy includes an option to fix the mass of the structure
based on preliminary identification of the undamaged structure, and may also use the
identified parameters to direct the search when identifying the damaged structure.
An investigation into the effect of using these options is presented. The same three
structures considered in the previous chapter are used and numerical trials are carried
out in order to investigate how best to identify the damage. The knowledge gained is
then used as the strategy is used to identify damaged members in a seven-storey steel
model in the next chapter on experimental verification study.

6.1 Damage Detection Strategy

There are two possible scenarios when it comes to damage detection. (1) Damage can
be identified with no prior measurement of the undamaged structure. (2) Damage can
be identified utilising previous measurements. For the first scenario we have no choice
but to identify the structural properties and compare these to some theoretical values
in order to identify the magnitude and location of damage. In this case the SSRM can
be utilised directly and no additional development is required. In principle, there are
direct methods that can detect damage, for example, by means of fibre optic sensors
to measure strains or detect cracks. Alternatively non-destructive test methods such
as ultrasonic scanning can be used. These direct method are, however, not within
the intended scope of this book which focuses on using vibration signals as a non-
destructive and global means of damage detection. For the second scenario, however,
the additional information of the undamaged structure can be utilised in developing
an improved strategy. This section therefore deals with the scenario where we have
measurements of the structure both before and after damage has taken place. The
strategy assumes that the structural mass, stiffness and damping are unknown, and
the damage can be quantified and detected as a change in the stiffness of the damaged
member. Assuming the mass to be unknown allows the strategy to be applied to a
wider range of problem and aids in proper calibration of the structural model. The
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Figure 6.1 Damage detection strategy

aim is to detect the magnitude and location of the damage from the measured response
of the structure before and after the damage takes place.

The proposed strategy is shown in figure 6.1. The strategy contains two additional
options designed to improve identification to be conducted on the damaged structure.
Firstly it is possible to use the parameters identified for the undamaged structure as a
starting point for the identification of the damaged structure. This has obvious benefit
in that only changes need to be identified giving the identification a good starting point
resulting in a more accurate identification. This option is implemented by setting half
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of the individuals in species 4 to the values identified for the undamaged structure.
The other half of the species as well as species 2 and 3 are initialized randomly. The
value of half is chosen such that sufficient random results exist so as to ensure good
performance of the crossover operation in the early stages.

Secondly there is an option of fixing the mass based on the mass of the undamaged
structure. This option is useful if we are certain that the mass has not been altered
since the measurement of the undamaged structure was made. The identification of
the damaged structure is reduced from an unknown mass problem, to a much easier
known mass problem, which can be identified with better speed and accuracy. There
is also an added benefit that changes in stiffness will not be masked by an apparent
change in the mass. For cases where significant changes in structural mass may have
occurred this option should not be used and a full identification including the mass of
the damaged structure must be done.

Finally the extent of the damage is calculated as the loss in stiffness of the structure
as a percentage of the original undamaged stiffness. This damage measure is used as
it better highlights the damaged members than integrity index type measures which
express the remaining stiffness of the structure as a fraction of the original stiffness.
Integrity index values of 0.99 and 0.95 may appear similar, whereas the corresponding
damage extents of 1% and 5% are more clearly different and thus give a better feel
for the damage that has occurred.

6.2 Verification of Strategy Using Simulated Data

In order to observe the performance of the damage detection strategy and to assess the
effect of the options available, trials are carried using the same structures as chapter 5.
In all cases the damage is simulated by a reduction of stiffness at the 4th storey. This
storey represents a high, medium and low-level storey for the 5, 10 and 20-DOF sys-
tems, respectively. Damage magnitudes of 2.5%, 5% and 10% are simulated for each
structure. In all cases the I/O noise level is set at 5%. All simulations are carried out for
500 data points at a time step of 0.01 s, with forces applied at every 5th level and accel-
eration measurements at 60% of levels as given for the unknown mass cases in table 6.2.
Each system and damage level is simulated 25 times using newly generated random
force and noise signals to produce 25 different data sets. In all cases the search limits
are set, as before, to be half to double the actual parameters of the undamaged system.

The trials presented in this section are designed in order to observe the effect that the
options of fixing the mass and using the undamaged parameters as a starting point will
have on the identified damage. Therefore for each system and damage level there are
four combinations of identification options to be tested. Only the identification of the
damaged structure is affected by these options. The undamaged structure is treated as
an unknown mass problem and the structural parameters are identified using the GA
parameters given for unknown mass systems in table 6.1. If the mass is not fixed based
on this result, the same unknown mass GA parameters are then used to identify the
damaged structure. If the mass is fixed, the GA parameters for the known mass system
can be used and the computational time greatly reduced. In all cases the reduced data
length procedure is used with a reduced length of 200 used for 50% of the generations.
The resulting computational times are indicated in table 6.1 for analysis conducted on
a Pentium 4, 3-GHz PC. The total analysis time is the sum of the analysis for the
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Table 6.1 Damage detection – GA Parameters

Known Mass Systems Unknown Mass Systems

5-DOF 10-DOF 20-DOF 5-DOF 10-DOF 20-DOF

Population size 7 × 3 9 × 3 19 × 3 45 × 3 65 × 3 90 × 3
Runs 4/10 4/10 4/10 5/15 5/15 5/15
Generations 60 100 200 150 200 300
Runs to ave for output 1 1 1 1 1 1
Crossover rate 0.8 0.8 0.8 0.4 0.4 0.4
Mutation rate 0.2 0.2 0.1 0.2 0.2 0.1
Window width 4.0 4.0 4.0 4.0 4.0 4.0
Migration 0.05 0.05 0.05 0.05 0.05 0.05
Regeneration 2 2 3 3 3 3
Reintroduction 25 30 50 50 100 150
Time (min:s) 0:07 0:30 4:10 3:00 10:40 44:30

Table 6.2 Damage detection of 5-DOF system

Identification
Success % Absolute Error in Damage Maximum False Damage

Use Fix
para_u mass 2 × 4 × Mean Median Max Mean Median Max

2.5% damage
Yes Yes 100 84 0.11 (0.00) 0.08 0.46 0.30 (0.01) 0.23 1.10
Yes No 100 68 0.41 (0.02) 0.31 1.67 0.55 (0.02) 0.37 1.97
No Yes 96 72 0.23 (0.01) 0.14 1.07 0.50 (0.02) 0.45 2.47
No No 72 40 1.07 (0.05) 0.62 4.31 1.19 (0.06) 0.70 6.78
5% damage
Yes Yes 100 96 0.21 (0.02) 0.09 2.06 0.34 (0.01) 0.26 1.31
Yes No 96 84 0.52 (0.03) 0.30 3.20 0.79 (0.04) 0.44 3.45
No Yes 100 100 0.18 (0.01) 0.09 0.57 0.43 (0.01) 0.36 0.98
No No 92 76 0.94 (0.06) 0.56 7.78 1.32 (0.08) 0.84 9.60
10% damage
Yes Yes 100 100 0.13 (0.01) 0.08 0.51 0.52 (0.01) 0.51 1.60
Yes No 100 100 0.55 (0.02) 0.35 1.99 0.80 (0.03) 0.50 2.13
No Yes 100 100 0.25 (0.01) 0.17 1.12 0.59 (0.02) 0.40 1.47
No No 100 96 1.08 (0.04) 0.85 3.27 0.73 (0.03) 0.46 3.94

* Noise level is 5% in all cases

undamaged and damaged structures depending on the option chosen. When the mass
is fixed based on the undamaged parameters identified, the total times are 3 min 7 s,
11 min 10 s and 48 min 40 s for the 5, 10 and 20-DOF systems respectively.

A summary of the results is given in tables 6.2 to 6.4. There are three components to
the results presented. These considerations can be understood by viewing the typical
plot of damage results shown in figure 6.2, where the actual damage simulated is 2.5%
in the 4th storey. The first component is the absolute error in the damage identified
at the 4th (damaged) level. Just as important, however, is ensuring that damage is
not falsely reported at undamaged levels. Thus the maximum false damage identified
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Table 6.3 Damage detection of 10-DOF system

Identification
Success % Absolute Error in Damage Maximum False Damage

Use Fix
para_u mass 2 × 4 × Mean Median Max Mean Median Max

2.5% damage
Yes Yes 88 80 0.22 (0.02) 0.08 0.85 0.49 (0.02) 0.29 2.31
Yes No 72 48 0.65 (0.03) 0.31 3.04 1.41 (0.07) 0.88 7.85
No Yes 80 68 0.24 (0.01) 0.12 1.64 0.84 (0.05) 0.32 4.67
No No 44 40 0.99 (0.04) 0.61 3.67 2.19 (0.09) 1.99 7.34
5% damage
Yes Yes 96 80 0.21 (0.01) 0.12 1.15 0.63 (0.03) 0.36 2.88
Yes No 76 60 0.55 (0.02) 0.48 1.92 1.91 (0.08) 0.98 7.36
No Yes 88 76 0.22 (0.01) 0.16 0.64 0.90 (0.04) 0.36 4.20
No No 84 68 1.00 (0.05) 0.44 5.02 1.19 (0.06) 0.45 6.28
10% damage
Yes Yes 100 96 0.13 (0.00) 0.09 0.39 0.45 (0.03) 0.22 3.89
Yes No 96 92 0.68 (0.03) 0.44 2.20 1.35 (0.06) 0.79 6.18
No Yes 100 100 0.26 (0.01) 0.16 1.23 0.67 (0.02) 0.47 1.96
No No 92 76 1.18 (0.04) 0.91 5.10 1.84 (0.08) 1.33 6.93

* Noise level is 5% in all cases

Table 6.4 Damage detection of 20-DOF system

Identification
Success % Absolute Error in Damage Maximum False Damage

Use Fix
para_u mass 2 × 4 × Mean Median Max Mean Median Max

2.5% damage
Yes Yes 88 76 0.11 (0.00) 0.07 0.39 0.55 (0.04) 0.19 4.04
Yes No 84 56 0.28 (0.01) 0.20 0.95 0.78 (0.02) 0.50 2.66
No Yes 92 80 0.24 (0.02) 0.09 2.23 0.58 (0.03) 0.35 2.96
No No 72 40 0.63 (0.03) 0.45 2.70 1.34 (0.06) 0.74 5.44
5% damage
Yes Yes 92 84 0.14 (0.01) 0.08 0.82 0.57 (0.03) 0.20 2.93
Yes No 92 76 0.34 (0.02) 0.20 2.26 1.04 (0.05) 0.56 5.24
No Yes 92 88 0.21 (0.01) 0.10 0.93 0.74 (0.04) 0.36 4.97
No No 88 76 0.58 (0.02) 0.28 1.97 1.32 (0.05) 0.84 5.74
10% damage
Yes Yes 100 100 0.14 (0.01) 0.09 0.79 0.42 (0.02) 0.29 1.96
Yes No 100 96 0.68 (0.06) 0.29 6.47 1.20 (0.03) 1.05 3.59
No Yes 100 96 0.15 (0.01) 0.12 0.46 0.74 (0.02) 0.52 2.96
No No 100 88 0.61 (0.05) 0.22 5.36 1.24 (0.05) 0.84 4.51

* Noise level is 5% in all cases

on the undamaged floors is also presented. For both of these error considerations the
mean, median and maximum values over the 25 tests are presented. In many cases it is
seen that one bad result distorts the mean, and the median may give a better indication
of the expected performance. As with the results of the previous chapter, the standard
errors of the mean results are given in brackets next to the mean values. A graphical
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Figure 6.3a Mean identification results for absolute error in damage

overview of the mean results obtained over all systems and all damage scenarios is
presented in figure 6.3.

Finally, to be of practical use the damage identified should exceed any false damage
by a reasonable margin. In this regard, the success of identification is herein defined
as, among the tests done, the proportion where the identified true damage exceeds the
maximum false damage by a given ratio (which is 2 or 4 as shown in the Tables). For
example, the per cent shown under “Success’’ for “4X’’ is the success rate corresponding
to tests where the true damage identified at the damaged level is at least 4 times the
maximum false damage identified at any of the undamaged levels.
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Figure 6.3b Mean identification results for maximum false damage

The results demonstrate that the strategy is able to accurately and consistently iden-
tify even small levels of damage corresponding to a change in storey stiffness of only
2.5%. The performance of the strategy is enhanced by using the option of fixing
the mass based on the result of the undamaged structure. The results also improve,
although to a lesser extent, when the undamaged parameters identified are used as a
starting point for the identification of the damaged structure. In addition to improved
accuracy, fixing the mass based on the undamaged result reduces the computational
time significantly. For a 20-DOF system the time taken to identify the damaged struc-
ture is reduced from 44 min 30 s to only 4 min 10 s. The results also highlight an
important fact that although the identification is very good, it is not perfect. In some
cases the identification will fail from the standpoint that identified damage should be
significantly larger than any false damage. This is seen for example in the results for
the 10-DOF system with 2.5% damage at the 4th level. In three cases (12%) of the
25 trials conducted, the damage identified at the 4th level was not more than twice
that of any other level in the structure. In one of those cases the damage identified
at an undamaged floor actually exceeded that identified at the damaged (4th) level.
While this failure only occurs once in 25 trials conducted it should be considered. In an
analysis of a real structure it would therefore be recommended that the identification
test be carried out more than once to ensure consistency and validity of the result as it
would be highly unlikely that the same false result would be identified more than once.

6.3 Chapter Summary

This chapter has introduced a damage detection strategy utilising the SSRM devel-
oped in the previous chapters. The strategy makes use of measurement of both the
undamaged and damaged structures to significantly improve the accuracy and reliabil-
ity of detection. The strategy uses measurement of the undamaged structure in order
to calibrate the structural model, and by fixing the mass of the structure based on the
identification of the undamaged structure, is able to reduce the damage detection step
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to a simpler known mass problem. The parameters identified during the calibration
step are also used to initiate the search when identifying the damaged structure. The
numerical studies presented demonstrate that small levels of damage representing as
low as 2.5% reduction in stiffness can be accurately and consistently identified in the
presence of 5% I/O noise. In the next chapter this strategy will be further validated
experimentally by damage detection of a 7-storey steel model.
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Chapter 7

Experimental Verification Study

In order to assess the effectiveness of the strategy on more realistic data, a seven-storey
steel model is constructed and tested in the laboratory. The model layout and dimen-
sions are given in figure 7.1. The structure is designed with flexible columns (provided
by thin plate members) and relatively rigid beams (constructed from square hollow
section) to provide a shear building behaviour. Combined with the symmetry of the
structure and loading, this reduces the significant motion to a single translation at each
floor level. The mass of the structure is also concentrated at the floor levels meaning the
lumped mass formulation should prove reasonable. For reference purpose, the levels
are labelled from 1 to 7, with 1 being the bottom level and 7 the seventh (roof) level.

As a basis for comparison of results, and to help plan the identification tests, pre-
liminary calculations and testing is first carried out as presented in section 7.1. This
includes calculations of the estimated mass and stiffness matrices assuming a steel
modulus of 205 GPa and density of 7850 kg/m3. The section also includes static tests
to estimate the as-built stiffness of the structure, as well as some dynamic tests to
establish the as-built natural frequencies.

Following these initial tests on the model, the testing procedure for the main identi-
fication tests is described in section 7.2. This outlines the tests that are to be conducted
and describes the damaged scenarios to be identified. Finally, the analysis of the
identification tests is presented in section 7.3.

7.1 Preliminary Calculations and Testing

7.1.1 Estimation of Structural Propert ies

Mass
The mass of each floor is estimated by lumping the distributed mass of the structure
at the nearest floor level. The mass is calculated based on the member sizes shown in
figure 5.4 and using a mass density of 7850 kg/m3. The mass of welds is ignored and
results rounded off to the nearest 10 g. The mass matrix (diagonal) of the structure is
therefore;

M = diag(3.78 3.78 3.78 3.78 3.78 3.78 3.31) kg

© 2010 by Taylor and Francis Group, LLC



84 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

Columns
- 25�4.6mm plate

Beams
- 25�25�3.0mm
Square hollow
section 

200 mm 200 mm

20
0 

m
m

(c
/c

 o
f c

ol
um

ns
)

Load direction

Beams
continuous in
load direction

Plan View

Model welded to rigid base

200 mm
c/c of beams

(typical)

200 mm
centre of beam
to base level

14
12

.5
 m

m

Front elevation Side Elevation

Figure 7.1 7-Story steel model

St i f fness

The stiffness is estimated by slope-deflection considerations assuming pure horizontal
translation of the floors. The columns are assumed to start from the mid height of the
beam rather than the beam face to account for the fact that some small rotation at the
beam face may occur. The stiffness is then estimated as given below.

k = 12EI
L3

= 62.36 kN/m (per column) = 375 kN/m (per level)
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Table 7.1 Calculated natural frequencies

ω (rad/s) f (Hz) T (s)

Mode 1 66.95 10.65 0.094
Mode 2 197.69 31.46 0.032
Mode 3 319.16 50.80 0.020
Mode 4 425.83 67.77 0.015
Mode 5 513.06 81.66 0.012
Mode 6 577.42 91.90 0.011
Mode 7 616.74 98.16 0.010

where L = centre-to-centre length

K =




750 −375 0
−375 750 −375

−375 750 −375
−375 750 −375

−375 750 −375
−375 750 −375

0 −375 375




× 103 N/m

In comparison if the columns are assumed fixed at the beam face, the storey stiffness
is 560 kN/m.

Natura l Frequenc ies

The natural frequencies of the system are obtained by solving the eigenvalue problem
as given in equation 7.1 and the resulting frequencies are displayed in table 7.1.

|K − ω2M| = 0 (7.1)

7.1.2 Static Tests

In order to get an estimate of the as-built stiffness of the structure, static tests are per-
formed. The model was mounted horizontally to a rigid vertical support as indicated
in figure 7.2. This allowed weights to be hung from the floors while displacement
transducers recorded the displacement. Two displacement transducers were used (one
on each side of the model) and the average displacement taken. The difference between
the two displacements also allows us to observe any rotational coupling that may be
present. Several different weights were used and the stiffness determined from the
slope of the regression line plotted through the load-displacement points obtained.
The procedure was repeated for each level starting from the first level and work-
ing outwards. The test determines the total stiffness of the structure up to the given
floor and thus the stiffness of the individual floors must be calculated from these
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(7.2)

or Ki = 1(
1

KTi
− 1

KT(i−1)

)

where Ki is the storey stiffness and KTi represents the total stiffness of the structure
determined by the slope of the regression of the displacements at level i due to load
applied at level i.

Based on the measurements in the static tests, the stiffness values are obtained and
presented in table 7.2. For comparison, the stiffness calculated in the previous section
(based on centre-to-centre lengths) is also displayed in the table. It is seen that the
as-built structure is actually slightly stiffer than the theoretical values. Back calculation
for K = 450 kN/m and cross section of 25 × 4.6 mm, gives an effective column length
(fixed ends) of 188 mm showing the result to be reasonable if the column to beam
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Table 7.2 Static stiffness of model

Calculated (kN/m) based on Experimental for the
centre-to-centre lengths as-built frame (kN/m)

K1 375 409.97
K2 375 505.43
K3 375 452.63
K4 375 482.44
K5 375 411.03
K6 375 478.86
K7 375 403.15

0 20 40 60 80 100 120 140
Frequency (Hz)

Figure 7.3 Power spectrum of response at level 7 due to impact at level 7

connection is good. The difference could also be due to slight variation in the member
cross section. Variation in the thickness of only 0.1 mm would cause a 7% change
in stiffness. These measured values are considered more accurate than the calculated
values and should form the basis for comparison with identification values.

7.1.3 Impact Tests

In order to determine the natural frequencies of the structure, impact tests were car-
ried out. The structure was excited using a hammer and the response measured with
accelerometers at each floor and recorded using a 16 channel digital oscilloscope at a
sampling rate of 2 kS/s. The algorithm of fast Fourier transform (FFT) was then used
to convert the signal to frequency domain and the structural frequencies observed from
the plot of power spectrum. 2048 data points were used for the FFT resulting in 1024
frequency divisions. The frequencies obtained are therefore accurate to approximately
±0.5 Hz. An example of the plot obtained is shown in figure 7.3 for the case of an
impact at level 7 and measurement also at level 7. The response at other floors and
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Table 7.3 As-built structural frequencies

Calculated (Hz)# Measured (Hz) Measured Period (s)

Mode 1 11.7 11.7 0.085
Mode 2 34.0 35.2 0.028
Mode 3 55.3 58.6 0.017
Mode 4 72.3 80.1 0.012
Mode 5 90.0 98.6 0.010
Mode 6 101.4 113.3 0.009
Mode 7 108.6 123.0 0.008

#Frequencies calculated using the theoretical masses and as built stiffness values from table 7.2.

for other impacts identified the same frequencies. The extracted values are shown in
table 7.3 where comparison is made with the frequencies calculated based on the stiff-
ness values obtained from the static tests. It is seen that the results match reasonably
well, particularly in the first few modes. The FFT also showed significant energy in
the 600–1000 Hz range. This is most probably due to local vibrations of individual
columns. Care must be taken in planning the identification experiments so that these
modes are not excited.

7.2 Main Identification Tests

7.2.1 Excitation Force

For many of the tests presented in the previous chapters random signals were used
as excitation. Nevertheless it is more repeatable to use a smoother waveform. The
excitation forces used for the tests must balance having broad frequency content with
being smooth enough that they can be accurately integrated for generation of the
response in the identification procedure. Similar to the tests presented for the output-
only identification, in order to create a smoothed random force for input into the
function generator, a random force is first generated at a time step of 0.004 s (250 Hz)
and the signal is then converted to a time step of 0.0002 s (5000 Hz) by interpolating
and smoothing the force over the intermediate data points. The same interpolation
procedure was used here and five different input forces were prepared for use in the
tests. The input forces, labelled A to E were prepared for 500 data points, representing
a 0.1 s time interval and are illustrated in figure 7.4.

7.2.2 Test Setup and Procedure

A schematic diagram of the dynamic testing and data acquisition system is shown
in figure 7.5 while figure 7.6 shows the system as it was used in the lab. The forces
described in the previous section were input into the signal generator (Signametrics
function/pulse generator, model SM-1020) in the PC as a *.wav file. The signal was
then passed through a power amplifier in order to produce sufficient power for the elec-
tromagnetic shaker. The force generated by the shaker was transferred to the structure
via a connecting rod at the 7th storey and the force measured by an ICP (Integrated
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Figure 7.4 Input forces
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PC
(Signal generator)

Power
amplifier

Shaker

Force sensor

Signal conditioners

Oscilloscope
(data acquisition)

Accelerometers

Figure 7.5 Diagram of test setup

PC

Power amplifier Oscilloscope

Signal conditioners

Accelerometers

Force sensor

Shaker

Rigid supporting
frame

Steel structure

Figure 7.6 Test setup used in the lab

Circuit Piezoelectric) force sensor (model PCB-208C02). Figure 7.7 shows the shaker-
sensor-structure connection detail. The shaker was rigidly mounted to the supporting
frame using a bolted connection. The force sensor was connected to the shaker by a
threaded stainless steel stringer. The sensor was then attached to an aluminium base
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Connecting plate

Connecting rod (bolt)

Force sensor

Electromagnetic shaker

Stainless steel stringer

Aluminium plate

Figure 7.7 Shaker connection detail

plate which is threaded to accommodate a standard bolt. A small connecting plate was
welded to the top of the bolt to fix the assembly to the structure.

The response of the structure was measured using seven ICP accelerometers mounted
at the top of each level. The accelerometers used are described in table 7.4 they were
attached to the structure where possible by threaded connections to nuts mounted on
the structure using epoxy as shown in figure 7.8a. Where a threaded connection was
not available, thin double sided tape was used as shown in figure 7.8b. The signals
from the force sensor and the accelerometers are passed through signal conditioners
and recorded using a 16-channel digital oscilloscope. The data was recorded on the
oscilloscope at a sampling rate of 5 kS/s. Although the highest frequency of interest
(the 7th mode) is only 123 Hz, this high sampling frequency allows for a better cap-
ture of the excitation facilitating a more accurate simulation of the response during
identification. 10,000 points were recorded during testing and then 500 points starting
from just before the application of the force are extracted and copied to the input file
for the damage detection program.

Before being used, the data was processed by removing any mean offset that might
have existed. For this purpose a sample of 500 data points (representing 0.1 s) imme-
diately preceding the application of the force was used. It should be noted that this is
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Table 7.4 Accelerometer specification

Freq.
Level Model Serial No Range Sensitivity (mV/g) Range (Hz)

1 PCB – 312A 6532 ±50g 92.6 1–2000
2 PCB – 302A 17618 ±500g 10.02 1–3000
3 PCB – 353B 83737 ±50g 99.1 1–4000
4 PCB – 312A 6533 ±50g 88.6 1–2000
5 PCB – 308B 31764 ±50g 100 1–3000
6 PCB – 302A 14185 ±500g 9.99 1–3000
7 PCB – 308B 31765 ±50g 99.6 1–3000

Figure 7.8 Mounting of accelerometers: (a) threaded, (b) double sided tape

the only signal processing used in this study. The noise level in the signal can also be
estimated from this pre-event portion of the record by comparing the standard devi-
ation of the pre-event portion to that of the 500 points used in the identification. For
the tests conducted, the noise level ranged from 1–10% on all signals.

7.2.3 Damage Scenarios

Two damage magnitudes and three damage locations are used in order to examine the
performance of the strategy. The damage magnitudes are classified as small and large
while the location is given by the corresponding level number. The undamaged structure
and six damaged scenarios are considered as described in table 7.5. The approximate
magnitude of the damage is 4.1% for small damage and 16.7% for large damage as
discussed further below. In addition to these six basic cases, more damage scenarios can
be considered by treating one of the damaged conditions as the undamaged structure.
For example, if damage scenario 2 is treated as the undamaged structure, then the
additional damage of damage scenario 3 is that of a small damage at level 6. In this
way, without conducting further experimental tests, additional cases of small damage
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Table 7.5 Basic damage scenarios

Small Damage Large Damage

D0 – –
D1 Level 4 –
D2 – Level 4
D3 Level 6 Level 4
D4 Levels 3 and 6 Level 4
D5 Level 3 Levels 4 and 6
D6 – Levels 3, 4 and 6

Table 7.6 Additional damage scenarios

Undamaged Damaged Resulting
Case Case Small Damage

D7 D2 D3 Level 6
D8 D3 D4 Level 3
D9 D2 D4 Levels 3 and 6

at one or more levels are generated as shown in table 7.6 to test the GA-based damage
identification strategy.

Appl i cat ion of Damage

Controlled damage is created by cutting the members at the proposed levels. In all
cases the centre column at the lower side of the structure is cut to avoid disturbing the
accelerometers attached to the top of the structure. Small damage is formed as partial
cuts near the top and bottom of the column as indicated in figure 7.9, whereas large
damage is created by a complete cut at the mid-height of the column. The cuts for
small damage are placed near to the beam column connection in order to be in an area
of high bending. An example of the cuts applied to achieve small and large damage is
shown in figure 7.10.

The expected reduction in stiffness due to the small cuts is estimated by the finite
element analysis (ABAQUS 1998). As cuts are made at both the top and bottom of the
column, the bending remains symmetric about the mid-height of the column and only
half the column needs to be modelled, with one end fixed and the other free due to
the inflection point that exists at the mid-height position. The FEM model of both the
damaged and undamaged column is shown in figure 7.11. Shell elements are used with
a grid size of 2.5 mm. An arbitrary load of 100 N is applied as a series of nodal loads
along the free edge. The cut is simulated by the removal of 3 elements on each side
resulting in 7.5 mm long, 2.5 mm wide cuts. The resulting displacements are noted and
compared in table 7.7 to determine the change in stiffness. The analysis is repeated for
a mesh size of 1.25 mm in order to observe the effect of the modelling on the stiffness
obtained. In this case the cut is modelled as 1.25 mm wide. As there are 6 columns per
floor, the expected reduction in column stiffness of 24.6% will result in a reduction

© 2010 by Taylor and Francis Group, LLC

  



94 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

Beam

Beam

Beam

Beam

7.5 7.5
10

10

Complete
cut

Partial
cuts

Small damage Large damage

Figure 7.9 Illustration of damage

Full cut for large damage

Partial cuts applied for small damage

Figure 7.10 Damage applied to the structure

in storey stiffness of only 4.1%. For the case of large damage the column damage is
100% resulting in a storey stiffness reduction of 16.7%.

7.3 Experimental Identification Results

7.3.1 Identif ication of Undamaged Structure

Identification of the undamaged structure is first carried out in order to observe the
variation in structural parameters from those predicted or obtained from the static
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10

87.5

Undamaged Damaged

Figure 7.11 FEM model for small damage

Table 7.7 Result of FEM analysis for small damage

Column Column
Column Mesh Displacement Stiffness Damage

Undamaged 2.5 mm 0.527 mm 94.88 –
Undamaged 1.25 mm 0.527 mm 94.88 –
Damaged 2.5 mm 0.713 mm 70.13 26.1%
Damaged 1.25 mm 0.699 mm 71.53 24.6 %

tests. The GA parameters used for the identification are given in table 7.8 and the
search limits are set as 150 to 800 kN/m for stiffness, 2 to 5.5 kg for mass, 0 to 4 for α

and 0 to 0.0002 for β. The computational time required is 30 min 30 s for a Pentium
4, 3-GHz PC.

A summary of the results obtained is presented in table 7.9 and figures 7.12 and 7.13.
These results highlight the fact that the dynamic model does not perfectly represent
the structural system, and that the first stage in the damage detection strategy serves to
‘calibrate’ the model so damage can be better identified. Because of this, the identifica-
tion is more consistent for tests using the same force input, but identified parameters
may vary more if different forces are is used. This fact is highlighted in the damage
detection results in the following sections. In general, the identified stiffness of the
structure is higher than the stiffness identified in the static tests earlier. The exception
is the first story, where the stiffness is significantly lower. This may be due to a less rigid
connection at the base of the structure. The mass is generally lower than the calculated
values, most probably due to variation in member thickness and modelling error in the

© 2010 by Taylor and Francis Group, LLC

  



96 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

Table 7.8 Identification of undamaged structure – GA parameters

Population Size 50 × 3
Runs 5/20
Generations 800
Data length (full/reduced/% of time) 500/200/50
Runs to ave for output 1
Crossover rate 0.4
Mutation rate 0.2
Window width 4.0
Migration rate 0.05
Regenerations 3
Reintroductions 200

Table 7.9 Identification of undamaged structure – Dynamic test results

Mean identification results

Force A Force B Force C Force D Force E Average Range (%)*

K1 295411 314836 262821 312228 283598 293779 17.71
K2 532176 548887 503918 553384 507057 529084 9.35
K3 506414 525520 504960 498751 510883 509306 5.26
K4 482383 470840 486672 478544 495053 482698 5.02
K5 504470 481815 501969 499633 489848 495547 4.57
K6 504667 533153 512566 496872 510645 511581 7.09
K7 491685 503471 502893 503418 491830 498659 2.36
M1 3.449 3.378 3.211 3.352 3.269 3.332 7.14
M2 3.189 3.329 3.159 3.350 3.239 3.253 5.87
M3 3.370 3.402 3.381 3.517 3.311 3.396 6.07
M4 3.378 3.617 3.454 3.428 3.442 3.464 6.90
M5 3.328 3.396 3.413 3.389 3.387 3.383 2.51
M6 3.264 3.458 3.258 3.326 3.160 3.293 9.05
M7 3.473 3.567 3.400 3.470 3.522 3.486 4.79
Alpha 0.202451 1.078361 0.086371 0.295406 0.000011 0.332520 324.30
Beta 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 –

Frequencies#

Mode 1 11.85 11.82 11.51 11.90 11.71 11.76 3.32
Mode 2 35.42 35.31 35.20 35.31 35.29 35.30 0.61
Mode 3 58.17 58.34 58.24 58.18 58.23 58.23 0.28
Mode 4 79.62 79.57 79.63 79.63 79.60 79.61 0.07
Mode 5 98.15 96.60 98.13 98.08 98.10 97.81 1.59
Mode 6 113.41 113.22 113.30 112.46 113.34 113.15 0.84
Mode 7 120.60 119.20 120.09 118.85 120.44 119.84 1.47

* The range is the difference between the maximum and minimum identified value, expressed as a percentage of
the average.
#Frequencies calculated from solving the eigenvalues from the identified stiffness and mass.

assumption of mass as lumped values. The overestimation of mass at the 7th storey
is reasonable as part of the shaker connection is included in the identified mass. It
is also interesting to observe the frequencies indirectly identified by the strategy. The
identification of these frequencies is considered indirect as they are not specifically
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Figure 7.13 Dynamic tests – Identification of undamaged structure, mass

identified, but can be calculated from the identified mass and stiffness properties. It
is noted that, while the identified parameters vary by more than 5%, the frequencies
vary only very slightly. This observation is consistent with the earlier discussion in
chapter 1, where it was mentioned that natural frequencies tend to be relatively insen-
sitive to local changes in structural properties. In all cases the identified frequencies
match the measured frequencies from table 7.3 with very good accuracy. The identified
damping shows significant variation, indicating the assumed damping model may be
inappropriate. As the damping of the structure is reasonably small and only a short
time-history is required, this damping is unlikely to have a significant effect on the
main objective of identifying stiffness.

© 2010 by Taylor and Francis Group, LLC

  



98 Structura l ident i f i ca t ion and damage detect ion us ing genet ic a l gor i thms

Table 7.10 Damage detection – GA Parameters

Undamaged Damaged
Structure Structure

Population Size 50 × 3 20 × 3
Runs 5/20 5/15
Generations 800 120
Data length (full/reduced/% of gen) 500/200/50 500/200/50
Runs to average for output 1 1
Crossover rate 0.4 0.8
Mutation rate 0.2 0.2
Window width 4.0 4.0
Migration rate 0.05 0.05
Regenerations 3 3
Reintroductions 200 30

7.3.2 Damage Detection

The damage detection tests are carried out using the GA parameters given in table 7.10.
For the identification of the damaged structure the mass is fixed based on the result
of the undamaged structure. The stiffness and damping parameters identified for the
undamaged structure are also used as the starting point for identification of the dam-
aged structure as was described for the earlier numerical examples. Using the GA
parameters given, the computational time is 30 min 30 s for the identification of the
undamaged structure (unknown mass) and computer time of 1 min 25 s for the dam-
aged structure (known mass) on a Pentium 4, 3-GHz PC, resulting in a total analysis
time of 32 minutes. When considering this computational time it is important to
remember the identification of the undamaged structure is in effect a calibration step
and only needs to be carried out once on the undamaged structure. Subsequently the
identification of damage then requires 1min 25 s which is very fast from a practical
point of view and can be performed on site if necessary to check for damage. As in the
previous section, the search limits are set as 150 to 800 kN/m for stiffness, 2 to 5.5 kg
for mass, 0 to 4 for α and 0 to 0.0002 for β.

The results of the damage detection for the steel model are discussed in two parts.
Firstly, the effect of the input forces used for the undamaged and damaged structures
is examined. For this purpose, full measurement of the structure is used and all com-
binations of the five forces are considered. Following this the effect of incomplete
measurement is investigated by carrying out the identification using 4 and then only
two acceleration measurements. In these tests, only the case of the same input force
for the undamaged and damaged structures is considered.

Input Force

The tests carried out using full measurement are separated into two groups depending
on whether the force used to identify the damaged structure is the same as, or differs
from, that used to identify the undamaged structure. That is, if force A is used to
identify the undamaged structure (calibration), force A is again used to identify the
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Table 7.11 Damage detection results based on same force input for undamaged and damaged structure
and full measurement

Mean damage identified (std dev) Success (%)

Max False
Damage Scenario Small Large Damage 1X 2X 4X

Undamaged D0 0.72 (0.24) – – –

Single small D1 3.54 (0.36) 1.43 (0.78) 93% 67% 33%
D7 4.56 (0.46) 1.21 (0.66) 100% 89% 62%
D8 4.16 (0.78) 1.08 (0.44) 100% 87% 49%

98% 81% 48%

Two small D9 3.90 (0.79) 1.05 (0.34) 96% 87% 51%
4.45 (0.43)

Single large D2 17.19 (1.97) 4.06 (1.61) 100% 100% 47%

Three large D6 18.94 (3.06) 4.29 (1.76) 100% 91% 53%
16.01 (1.84)
18.99 (1.10)

One small and D3 4.11 (0.47) 17.55 (2.03) 4.19 (1.37) 47% 9% 0%
one large

Two small and D4 4.46 (2.10) 17.29 (2.00) 4.43 (1.93) 31% 13% 9%
one large 4.39 (1.93)

One small and D5 5.34 (2.58) 17.29 (1.31) 2.44 (1.96) 87% 40% 27%
two large 19.71 (1.59)

damaged structure, or a different force (say force B) is used. A summary of the results
are given in tables 7.11 and 7.12.

It is important that the strategy does not report the structure as damaged when it
is in fact not damaged. The discussion here therefore first considers the identification
results using the tests on the undamaged structure for both undamaged and damaged
inputs (damage case D0). When the same input force is used, the maximum false dam-
age reported averages only 0.72%. In all of the 45 combinations tested the maximum
false damage identified is 2.32% in the worst case, and only 4 of the 45 tests (9%)
exceed 2% maximum false damage, indicating a very good result. Where different
input forces are used, the maximum false damage averages 5.45% and is above 4%
in 53% of the 180 cases considered. These errors suggest that identification of dam-
age using the same input forces will be significantly more reliable than cases where
different forces are used.

The results summarised in table 7.11 give the identification of the damaged cases
achieved when the input forces are the same. It is seen that the results are excellent
for cases where a single magnitude of damage is to be detected. The magnitude and
location of damage is accurately identified and the ratio of damage to maximum false
damage (success) is very good. The identification is less satisfactory when multiple
damages of different magnitudes are to be identified. In these cases the large damage
(17%) present often causes false damage to be reported at other levels. When the false
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Table 7.12 Damage detection results based on different force input for undamaged and damaged
structure and full measurement

Mean damage identified (std dev) Success (%)

Max False
Damage Scenario Small Large Damage 1X 2X 4X

Undamaged D0 5.45 (3.32) – – –

Single small D1 2.58 (4.28) 5.93 (3.97) 50% 22% 2%
D7 4.68 (2.01) 5.78 (2.86) 39% 12% 0%
D8 3.43 (4.05) 5.29 (3.25) 51% 23% 3%

47% 19% 2%

Two small D9 3.27 (4.19) 5.68 (3.33) 26% 7% 4%
4.53 (2.26)

Single large D2 16.84 (3.72) 6.53 (4.91) 83% 70% 54%

Three large D6 19.19 (3.81) 5.04 (4.62) 86% 80% 53%
16.10 (2.87)
19.64 (2.12)

One small and D3 4.42 (1.72) 17.23 (3.13) 6.37 (5.12) 51% 24% 7%
one large

Two small and D4 5.21 (3.45) 16.94 (3.37) 5.90 (5.76) 49% 31% 17%
one large 4.39 (1.85)

One small and D5 5.62 (3.83) 16.84 (2.89) 4.17 (4.03) 63% 56% 30%
two large 20.22 (2.16)

damage is in the order of 4%, identification of small real damage of 4% becomes
impossible. It should be noted it is only the small damage that is unable to be correctly
identified in these cases. For practical purposes these cases should be considered as a
partial success as the large (more important) damage is still successfully identified in
almost all cases. The success percentages given in the table are low as in this study
success requires that all damage levels be properly identified. For the cases where there
is a single or multiple damage of similar magnitude the results are excellent and the
damaged level is successfully reported as containing the largest damage in more than
95% of cases, even when the damage is only 4%. In more than 80% of these cases the
damage identified is more than double that of any false damage reported.

The typical results illustrated in figure 7.14 help to illustrate the above discussion. It
is seen that the single small damage of D1 and the single large damage of D2 are clearly
identified, as is the multiple small damage of D9. However for damage case 3, while
the large damage at level 4 and the small damage at level 6 are both correctly identified,
the false damage reported for level 1 could mask the identification of the real damage
at level 6. In this case the large damage at level 4 would be properly identified, but it
would be difficult to distinguish the real small damage from the false damage.

Due to modelling imperfections, the identification of the undamaged structure
should be thought of as calibration to reduce modelling error. This fact must be kept
in mind when considering the results summarised in table 7.12, where the force used
to identify the damaged structure differs from that used to identify the undamaged
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Figure 7.14 Typical identification results for full measurement using same input forces D1 (4% at
level 4), D2 (17% at level 4), D3 (17% at level 4 and 4% at level 6), D9 (4% at levels 3
and 6)

structure. In this case the identification success is significantly reduced as the model is
calibrated using one force and then used to detect the damage using another force. For
the case of large damage the effect of modelling error can be overcome, and identifi-
cation is reasonably good. For the small damage cases, errors in modelling could be
larger than the real damage and the damage detection is unreliable, due to significant
damage falsely identified at undamaged floors.

Figures 7.15 and 7.16 clearly highlight this fact with a comparison of the results
using same and different forces. The accuracy of the magnitude of identified damage
is of course important. It is seen from tables 7.11 and 7.12 that on average the damage
magnitude identified is reasonably good; however the standard deviation is very large
in some cases. The ratio of standard deviation and mean (coefficient of variation) is
used to compare the results in figure 7.15. It is seen that the results vary much more
for the cases where different input forces are used, particularly for the case of small
damage where the variation is very large. This variation is one of the reasons for the
lower success rate observed in figure 7.16. The other reason, as mentioned earlier is that
due to modelling error, the maximum false damage is much larger when identification
is carried out using different forces.
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Incomplete Measurement

Identification of the structure using incomplete measurement is important for the exten-
sion of the method into more realistic systems. The measurements taken previously
are used, but the available data are reduced to only include selected acceleration meas-
urements. The measurement is first reduced to the four odd numbered levels in the
structure and then to only two levels, namely, levels 2 and 6.
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As with the case of full measurement we first consider the ability of the strategy
to detect the undamaged structure. The maximum false damage averages 1.24% and
0.96% for the case of four and two measurements respectively. The success in terms
of the number of results exceeding 2% is 24% and 11% respectively, and in only one
instance the maximum false damage exceeded 4%. The results in both cases are very
good and give confidence that the identification of the damaged scenarios does in fact
detect and quantify real damage.

In general, more measurements would be expected to give better results, but the
results here show that this is not always true for various reasons such as quality of
signals and location of measurements with respect to the proximity to support and
to excitation. Hence it is possible that the results based on two measurements can
be better than those based on four measurements (as observed here). This is due to
the fact that the measurements used are not the same and the quality of the signals
may differ between the two sets. It may also reflect the fact that the combination
of levels 2 and 6 is a good one for extracting key information from a range of modes of
vibration. To observe the results of another set of two measurements, identification of
the undamaged structure was carried out using measurements from levels 3 and 7. In
this case, the mean false damage identified was 2.70% – larger than 1.24% and 0.96%
reported above. This result reinforces the earlier discussion that levels 2 and 6 were a
good combination and the likely reason is that the quality of measurements at levels 3
and 7 may not be as good as those at levels 2 and 6. Our experience has shown that it
is important to have some measurement near the base of the structure. This fact also
explains the poorer results obtained from the combination of levels 3 and 7 because
the first two floors were not measured. In addition, the only other floor measured in
this case was that at the load application point (i.e. level 7). The local vibration due
to the direct application of load at level 7 could result in less meaningful information
from the viewpoint of global system dynamics. In any case, the mean false damage
identified remains low (<3%) in all the combinations considered.

The identification carried out for the damaged cases is summarised in tables 7.13
and 7.14. As with the case of full measurement presented previously, the results for
multiple damage of different magnitude is poor. The discussion here will therefore
focus on the results obtained when one or more levels are subject to the same magni-
tude of damage. The success achieved for these cases with the reduced measurement
is displayed in figure 7.17. As expected the identification success reduces for fewer
available measurements. Nevertheless, the reduction is reasonably small and the suc-
cess rate achieved is still very good. Using only two measurements to identify a 7-DOF
structure is encouraging, as for a more realistic structure of many DOFs it will be
necessary to identify the damage with as few measurements as possible. Using only
these two measurements the single large damage is consistently identified as more than
double any false damage. The very small (4%) damage is also well identified with a
failure rate of only 9%. In two thirds of cases the small damage is identified as more
than double the maximum false damage.

7.4 Output-Only Identification

In this section, we will carry out the identification of the structure using the output-only
strategy as presented in Chapter 5. Identifying damage without force measurement, for
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Table 7.13 Damage detection results based on same force input for undamaged and damaged structure
and incomplete measurement (1,3,5,7)

Mean damage identified (std dev) Success (%)

Max False
Damage Scenario Small Large Damage 1X 2X 4X

Undamaged D0 1.24 (0.42) – – –

Single small D1 3.61 (0.38) 1.67 (0.46) 89% 56% 18%
D7 4.56 (0.67) 1.64 (0.50) 100% 80% 36%
D8 4.07 (0.75) 1.68 (0.79) 89% 71% 29%

93% 69% 28%

Two small D9 4.32 (1.17) 1.73 (0.68) 89% 67% 24%
4.56 (0.76)

Single large D2 17.59 (2.42) 4.34 (2.26) 100% 100% 53%

Three large D6 18.83 (3.15) 5.10 (2.34) 100% 73% 36%
15.47 (1.78)
18.89 (3.14)

One small and D3 4.64 (1.20) 17.88 (2.61) 4.11 (1.93) 64% 24% 13%
one large

Two small and D4 4.17 (1.43) 17.25 (2.38) 4.98 (2.73) 27% 20% 13%
one large 4.50 (1.33)

One small and D5 5.26 (2.69) 17.07 (1.41) 3.69 (3.43) 67% 31% 16%
two large 19.79 (2.80)

Table 7.14 Damage detection results based on same force input for undamaged and damaged structure
and incomplete measurement (2 and 6)

Mean damage identified (std dev) Success (%)

Max False
Damage Scenario Small Large Damage 1X 2X 4X

Undamaged D0 0.96 (0.33) – – –

Single small D1 3.13 (0.56) 1.72 (0.35) 82% 47% 4%
D7 4.48 (0.26) 1.74 (0.82) 93% 71% 40%
D8 4.35 (0.73) 1.20 (0.56) 98% 84% 51%

91% 67% 32%

Two small D9 2.94 (0.65) 1.47 (0.50) 80% 53% 16%
4.58 (0.28)

Single large D2 16.04 (1.89) 5.20 (1.22) 100% 98% 33%

Three large D6 16.53 (3.14) 5.66 (2.27) 98% 69% 22%
18.07 (2.88)
18.39 (2.03)

One small and D3 2.42 (1.47) 16.75 (2.31) 5.62 (1.08) 0% 0% 0%
one large

Two small and D4 4.71 (2.59) 16.70 (2.42) 4.94 (1.44) 16% 0% 0%
one large 2.58 (1.82)

One small and D5 3.25 (3.79) 18.35 (3.08) 5.40 (2.71) 49% 16% 9%
two large 18.08 (1.60)
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Figure 7.17 Effect of incomplete measurement on identification success

Table 7.15 Additional medium damage scenarios

New damage Undamaged Damaged Resulting medium
scenario case case damage

D10 D1 D2 Level 4
D11 D4 D5 Level 6
D12 D5 D6 Level 3
D13 D4 D6 Levels 3 and 6

this case where structural modelling error is inevitable, poses a significant challenge.
In order to assess the effectiveness of the strategy, in addition to the 9 damage scenar-
ios considered in the previous section, four additional damage scenarios of ‘medium’
13% damage are considered as indicated in table 7.15. Following the findings of the
identification using force measurements, only cases where the same input forces are
used to identify both the damaged and undamaged structures are considered here.

Identification is carried out using the same 500 data points obtained for the previous
tests, except now only the acceleration measurements are used while force measure-
ments are ignored. The mass is treated as known and is set as 3.4 kg for each storey.
It is noted that the mass is not exact but is treated as a reasonable estimate based
on the results of the previous tests. The GA parameters used are the same as those
used for the damaged (known mass) structure, as given in table 7.10. Identification is
first carried out using full acceleration measurements and the computational time, for
identification of each structure, is 114 s on a Pentium 4, 3-GHz PC. An overview of
the results is given in table 7.16. While the results are reasonably good for the large
damage cases, the strategy is unable to consistently detect the small damage cases, and
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Table 7.16 Damage detection results for no force measurement using a single test and full acceleration
measurement

Damage Identified Success %

Damaged Max false
Damage Case level damage 1X 2X 4X

Undamaged D0 – 6.077 – – –

Single small D1 4.034 4.418 51% 33% 2%
D7 4.950 5.193 58% 20% 0%
D8 4.754 6.551 51% 22% 9%

53% 25% 4%

Two small D9 4.896 5.975 51% 20% 4%
6.199

Single medium D10 13.648 6.718 82% 58% 36%
D11 15.068 5.283 91% 80% 51%
D12 14.828 3.113 100% 87% 69%

91% 75% 52%

Two medium D13 15.582 4.772 84% 71% 40%
15.551

Single large D2 17.127 7.102 91% 69% 44%

Three large D6 20.909 4.609 98% 87% 53%
17.375
19.578

Each damage case is tested 45 times.

even medium damage is occasionally missed. The reason for this comes from the fact
that the strategy uses a model based updating of the force. As the structural model does
not exactly match the physical model, errors in structural identification are induced.
The effect of these errors can be reduced, however, by combining the results of several
tests. This procedure is demonstrated in the following subsection.

The force identified is also of interest. Figure 7.18 shows a comparison of the identi-
fied force and the force measured by the load cell during the experiment. The agreement
between the identified forceand and measured force is good, thereby suggesting that
this method is good in identifying not only structural parameters but also external
forces.

7.4.1 Using Mult iple Test Data

In order to reduce the uncertainty in the identification results, it is proposed that
data from several tests be combined to more accurately identify structural parameters.
In order to do this, the calculation of force and simulation of accelerations is carried
out separately for each set of test data, using the trial structural parameters. The total
sum-square-error over all tests is then used to determine the fitness of the solution.
In this way we do not simply find the parameters that best fit a single test, but find
parameters that give the best overall result for a number of experimental tests.
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Table 7.17 Damage detection results for no force measurement using two tests and full acceleration
measurement

Damage Identified Success %

Damaged Max false
Damage Case level damage 1X 2X 4X

Undamaged D0 – 4.167 – – –

Single small D1 3.914 2.787 74% 40% 7%
D7 4.561 2.991 86% 32% 11%
D8 4.244 3.946 62% 34% 6%

74% 53% 8%

Two small D9 4.647 2.912 78% 42% 12%
5.185

Single medium D10 13.948 4.847 98% 83% 37%
D11 15.623 3.335 100% 98% 68%
D12 14.210 2.230 100% 99% 90%

99% 93% 65%

Two medium D13 15.719 2.649 100% 96% 76%
16.076

Single large D2 17.327 4.961 99% 87% 50%
19.959 3.560 100% 98% 64%

Three large D6 17.575
19.625

Each damage case is tested 90 times.

This procedure is first applied using two tests and full acceleration measurements.
Here the two tests used have different force profiles, for example, forces A and B, or
forces B and C etc. The same two force profiles are used for the identification of the
structure before and after damage has taken place. All possible force combinations
are considered, resulting in a total of 90 test cases. The important results are given in
table 7.17.
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Table 7.18 Damage detection results for no force measurement using two tests and incomplete
acceleration measurement (2,6,7)

Damage Identified Success %

Damaged Max false
Damage Case level damage 1X 2X 4X

Undamaged D0 – 4.942 – – –

Single small D1 3.626 3.674 53% 21% 4%
D7 4.147 3.925 59% 20% 1%
D8 3.554 4.045 53% 12% 3%

55% 18% 3%

Two small D9 3.363 3.530 54% 24% 10%
5.299

Single medium D10 14.388 5.923 96% 70% 27%
D11 15.588 3.718 100% 98% 60%
D12 13.812 2.549 100% 99% 86%

99% 89% 58%

Two medium D13 15.733 2.915 100% 97% 73%
16.594

Single large D2 17.514 6.630 98% 74% 31%

Three large D6 20.545 4.107 99% 94% 57%
17.388
19.831

Each damage case is tested 90 times.

While the computational time needed to run the additional data is doubled, the
results are far more reliable. All of the medium and large damage cases are now iden-
tified with almost 100% success. Even when only three acceleration measurements
are available the identification success remains good. These results are summarised in
table 7.18. This idea of combining multiple test data in order to average out uncer-
tainties could be applied to any case including the tests with measured force presented
earlier in this chapter. This is achieved at a cost of increased computational time, but
for situations where accuracy is of most importance, this option is essential.

To gain some insight into the accuracy that can be achieved if more data is available,
identification is carried out using 5, and then 15 sets of data, where measurement is only
available at three locations. The results achieved for 5 tests, shown in table 7.19, are
averaged over nine cases that were considered for each damage scenario. The result for
15 data sets (all of the tests conducted) is shown in table 7.20. Here, as all available data
is used, the test could only be completed once and success can no longer be reported
as a percentage of successful trials. Instead, the success reported in table 7.20 is the
ratio of the smallest real damage identified to the maximum false damage.

When five data sets are used, even the single small damage can be identified in most
cases, and for 15 data sets, even the very difficult cases of multiple damage magnitude
are correctly identified. While it may not always be practical to run so many tests, it
is encouraging to know that, given sufficient information, we are able to accurately

© 2010 by Taylor and Francis Group, LLC

  



Exper imenta l ver i f i ca t ion study 109

Table 7.19 Damage detection results for no force measurement using five tests and incomplete
acceleration measurement (2,6,7)

Damage Identified Success (out of 9)

Damage Case Damaged Max false 1X 2X 4X

Undamaged D0 – 2.217 – – –

Single small D1 3.611 1.987 9/9 4/9 0/9
D7 4.044 2.197 9/9 5/9 0/9
D8 3.014 2.532 6/9 3/9 0/9

88% 44% 0%

Two small D9 3.594 2.050 6/9 3/9 0/9
4.903 67% 33% 0%

Single medium D10 13.937 4.615 9/9 8/9 2/9
D11 15.637 2.673 9/9 9/9 9/9
D12 14.078 1.834 9/9 9/9 9/9

100% 96% 74%

Two medium D13 16.374 1.688 9/9 9/9 9/9
16.824 100% 100% 100%

Single large D2 17.047 4.334 9/9 9/9 5/9
100% 100% 56%

Three large D6 20.830 2.631 9/9 9/9 9/9
17.035 100% 100% 100%
20.094

Each damage case is tested only 9 times. Success is therefore given as n/9, where n is the number of runs which
achieved the given level of success.

identify damage for these ‘output only’ cases, even with only a limited number of
sensors.

A comparison of the results achieved is shown in figure 7.19. The maximum false
damage identified for the case of a single small damage is used for the comparison. The
false damage is closely related to identification success and gives us a good measure
of the reliability of the results. The figure shows how important the multiple test
option is in achieving reasonable levels of false damage. For a single test the maximum
false damage is of the same magnitude as the damage to be identified and we cannot
separate the damage. Nevertheless, even with limited measurements, the maximum
false damage is reduced to 2.2% and 1.1% for 5 and 15 tests, respectively, and we
gain more confidence in the identified damage. For a real case we would need to
balance the computational time available with the required accuracy. If constrained
by very limited time and budget, a single test would quickly identify large damage,
but would not be able to confidently detect small changes in stiffness. With more time
(both experimental and numerical) and a few extra tests, the confidence in detecting
damage of even very small level can be increased considerably.
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Table 7.20 Damage detection results for no force measurement using 15 tests and incomplete
acceleration measurement (2,6,7)

Identified damage

Damage Case 1 2 3 4 5 6 7 Success

Single 4% D1 −0.25 0.68 0.99 3.62 −0.81 −0.18 0.23 3.66
D7 −2.98 1.14 0.47 1.28 −0.38 4.00 −0.52 3.13
D8 0.26 0.65 2.96 −0.47 −0.38 0.93 0.63 3.18

Two 4% D9 −2.72 1.78 3.41 0.82 −0.76 4.89 0.11 1.92

Single 13% D10 4.61 −0.46 0.83 13.95 −0.38 −0.79 0.32 3.03
D11 −1.00 −1.46 2.85 0.75 −0.45 15.68 0.03 5.50
D12 −1.71 0.40 13.99 −1.58 −0.09 1.37 1.54 9.08

Two 13% D13 −2.73 −1.05 16.44 −0.82 −0.54 16.84 1.57 10.47

Single 17% D2 4.37 0.22 1.82 17.06 −1.19 −0.98 0.54 3.90

Three 17% D6 −0.91 0.97 20.76 17.07 −2.52 20.14 2.21 7.72

Multiple D3 1.51 1.36 2.27 18.12 −1.58 3.06 0.02 1.35
Damage D4 1.77 2.01 5.17 17.74 −1.96 3.96 0.65 1.97

D5 0.79 0.58 7.87 18.36 −2.42 19.03 0.68 9.96

Damaged levels highlighted in bold and shaded. Max false damage is in bold. Success is reported as the smallest real
damage/max false damage.
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Figure 7.19 Maximum false damage for case of a single 4% damage

7.5 Chapter Summary

Experimental studies are essential in providing a realistic test of numerical strategies.
Unfortunately they have often been lacking from similar research due to the much
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greater difficulty they pose than numerical simulation studies. To this end, the damage
detection strategy based on the SSRM developed in the previous chapter has been
verified in the damage detection of a seven-storey steel model. The strategy makes
use of measurement of both the undamaged and damaged structures to significantly
improve the accuracy and reliability of detection. The strategy uses measurement of
the undamaged structure in order to calibrate the structural model, and by fixing the
mass of the structure based on the identification of the undamaged structure, is able to
reduce the damage detection step to a simpler known mass problem. The parameters
identified during the calibration step are also used to initiate the search when identifying
the damaged structure.

The damage level considered in the experiments (only 4%) is significantly smaller
than the 10–50% damage generally assumed, even in numerical studies. These tests
have helped to assess the performance of the strategy and also to identify some practical
issues that exist. The model calibration in particular has proved important to reduce
modelling error and results have shown that the same input force should be used
when identifying the undamaged structure (calibration) and the damaged structure
(damage detection). This is essential, particularly when small levels of damage are to
be identified. The detection results presented are excellent when a single magnitude
of damage is to be detected. Single or multiple damaged levels with 4% damage are
identified in almost 100% of cases, an impressive result considering the experimental
noise level was estimated as 1–10%. In detecting a combination of large and small
damage, the modelling error could cause the identification of a false damage to be of
similar magnitude to the small real damage. In these cases the large damage may be
easily identified but the small damage is not. Identification using a reduced number
of acceleration measurements has also been presented. The experimental results have
shown the strategy to be very robust in this respect. With only four, or even two
available measurements, the success rate is very high. Using only two measurements, a
single damage of 4% is identified in 91% of cases. In two thirds of cases the identified
4% damage is more than double any false damage identified.

The output-only time domain strategy presented earlier has also been validated. The
strategy works by simultaneously computing the excitation forces as the structural
parameters (stiffness and damping) are identified. The experimental test results once
again highlight the importance of a good structural model. As the strategy uses the
dynamic equation of motion to update the forces, the results are dependant on how
well the structure and the numerical model match. The results show that this problem
can be significantly reduced by utilising data from several tests. For example, if five
tests are used, the maximum false damage is reduced to merely 2.2% thereby enabling
identification of even small levels of damage. Larger damage of 10–20% is easily
identified using one or two tests and is identified with great certainty if more tests are
available. This idea of multiple data sets could also be applied in a general case, for
example, when force measurements are available to further improve the reliability of
identification.
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Chapter 8

Substructure Methods of Identification

The numerical difficulty in obtaining accurate results increases dramatically with the
number of unknown parameters in the system of interest. In this chapter, the strategy of
“divide-and-conquer’’ is presented to address this issue, by means of the substructure
concept. The key idea is to divide the structure into substructures such that the number
of unknown parameters is within manageable size in each stage of identification. Called
the substructural identification (SSI), this method enables us to identify part of the
structure if other parts are not required for identification. Even if the whole structure
is to be identified, using SSI to identify different parts of the structure in stages will
significantly (or even drastically) improve the computational accuracy and speed due
to the smaller system size in terms of the numbers of DOFs and unknowns involved at
the substructure level.

The first paper on substructural system identification was by Koh et al. (1991) using
the extended Kalman filter method to identify unknown structural parameters. Fur-
ther work was presented by Su and Juang (1994) on the procedures for substructure
state-space models, assembling substructure transfer function data and deduction of
substructure Markov parameters. Yun and Lee (1997) proposed a substructural iden-
tification method using the sequential prediction error method and an auto-regressive
and moving average with stochastic input model. Subsequent research works adopt-
ing the substructural approach include those by Oreta and Tanabe (1994), Hermann
and Pradlwarter (1998), Yun and Bahng (2000), Koh et al. (2000, 2003a), Koh and
Shankar (2003a,b), Tee et al. (2005) and Huang and Yang (2008).

Though this divide-and-conquer idea seems straightforward, special attention is
needed in the formulation because substructure is not isolated from the remainder of
the structure (or adjacent substructures). It is essential to account for interaction forces
at interface between the substructure and other parts of the structure. The improved
GA strategy as presented in the earlier chapters is employed to facilitate the divide-and-
conquer identification strategy. A numerical simulation study is presented, including a
fairly large system of 100 DOFs to illustrate the identification performance. The meth-
ods are tested for known-mass as well as unknown-mass systems with 202 unknown
parameters. Effects of incomplete and noisy measurements are accounted for.

8.1 Substructural Identification

In order to illustrate the substructural identification strategy, consider a lumped mass
system as shown in figure 8.1(a). The substructure to be identified is shown in
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Figure 8.1 (a) Complete structure (b) A substructure

figure 8.1(b). To derive the equations of motion for the substructure, the equations of
motion for the complete structure can be written in the following partitioned form.




MFF MFf

MfF Mff Mfr

Mrf Mrr Mrg

Mgr Mgg MgG
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CFF CFf
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uF

uf

ur

ug

uG




=




PF

Pf

Pr

Pg

PG




(8.1)

In the above equation, subscript ‘r’ denotes internal DOFs of the substructure con-
cerned, subscripts ‘F’ and ‘G’ denote the DOFs of the remaining structure on the two
sides marked as F and G in figure 8.1(a). Subscripts ‘f ’ and ‘g’ denote interface DOFs
of the substructure with the remaining structure on the two sides F and G, respec-
tively. For conciseness, let subscript j denote all interface DOFs (i.e. j = f ∪ g). For the
substructure considered, the equations of motion may be extracted from the above
equation system to yield

[Mrj Mrr]
{

üj(t)
ür(t)

}
+ [Crj Crr]

{
u̇j(t)
u̇r(t)

}
+ [Krj Krr]

{
uj(t)
ur(t)

}
= Pr(t) (8.2)
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Figure 8.2 (a) SSI without Overlap; (b) SSI with Overlap; (c) PSI

Treating interaction effects at the interface ends as “input’’, the above equation system
can be organised as

Mrrür(t) + Crru̇r(t) + Krrur(t) = Pr(t) − Mrjüj(t) − Crju̇j(t) − Krjuj(t) (8.3)

Two versions of the SSI approach are possible depending on whether there is any
overlap between adjacent substructures.

8.1.1 Substructural Identif ication Without Overlap

The first version of substructural identification is the SSI without overlap version as
illustrated in figure 8.2(a). Adjacent substructures do not overlap, i.e. no structural
member appears in more than one substructure. The identification procedure requires
response measurements at interface DOFs which are treated as input to the substruc-
ture of concern. In principle, equation (8.3) can be used for SSI (Koh and See 1991) but
this will require accelerations, velocities and displacements at the interface DOFs as
evident in the RHS of the equation. For practical reason, acceleration signals measured
by means of accelerometers is normally preferred over velocity and displacement sig-
nals. To eliminate the requirement of displacement and velocity signals which contain
errors if numerically integrated from acceleration signals, the concept of “quasi-static
displacement’’ vector is adopted. The displacements for internal DOFs are split into
quasi-static displacements (us

r) and “relative’’ displacements (u∗
r ), i.e.

ur(t) = us
r(t) + u∗

r (t) (8.4)
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Quasi-static displacements are obtained by solving equation (8.3) while ignoring the
applied force (Pr), inertia effect and damping effect. With all time-derivative terms set
to zero, we have

Krrus
r = −Krjuj (8.5)

Hence,

us
r = −K−1

rr Krjuj = r uj (8.6)

where r is called the (static) influence coefficient matrix relating the internal DOFs to
the interface DOFs, i.e. how the internal DOFs would displace if the interface DOFs
are statically displaced. Substituting the above equation into equation (8.3) leads to

Mrrü∗
r (t) + Crru̇∗

r (t) + Krru∗
r (t) = Pr(t) − (Mrj + Mrrr)üj(t) − (Crj + Crrr) u̇j(t) (8.7)

The RHS without Pr term represents forces induced by motion relating to interface
DOFs and may be referred to as “interface motion forces’’ for convenience. Since
damping force is usually small compared to inertia force in typical civil engineering
structures, the velocity-dependent part in the interface motion forces is assumed to be
negligible. Hence,

Mrrü∗
r (t) + Crru̇∗

r (t) + Krru∗
r (t) = Pr(t) − (Mrj + Mrrr)üj(t) (8.8)

Consequently, only accelerations (instead of displacements or velocities) at interface
DOFs are required to compute the interface motion forces. Furthermore, if there
is no excitation within the substructure, Pr simply vanishes and the method can
advantageously be used for “output-only’’ identification (i.e. no force measurement
is necessary) for identification of the substructure.

The forward analysis as required in the GA approach involves solving the above
equations of motion subjected to the excitation and interface motion forces. Note that
the fitness function is defined in terms of the measured components of the relative
accelerations (ü∗

r ). A block diagram of the GA-implementation for the SSI method is
presented in figure 8.3.

For lumped mass systems, Mrj vanishes and equation (8.8) can be simplified to

Mrrü∗
r (t) + Crru̇∗

r (t) + Krru∗
r (t) = Pr(t) − Mrrrüj(t) (8.9)

In addition, if a substructure includes the free end, such as substructure S1 in figure
2(a), the influence coefficients matrix reduces to simply

r = [1 1 · · · 1]T (8.10)

8.1.2 Substructural Identif ication With Overlap

Another version of substructural identification is the SSI with overlap version as illus-
trated in figure 8.2(b). Adjacent substructures are allowed to have overlap members,
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Figure 8.3 Block diagram for GA-based SSI method

i.e. some structural members appear in two substructures (or more). The overlap has
the following four implications.

(1) A node (or DOF) may be interface to one substructure but internal to another
substructure. For example, for identification of substructure S1 in figure 8.2(b),
acceleration measurement at interface node A is required as input. Nevertheless,
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for S2-identification, node A is an internal node and its measured response is
treated as output.

(2) At the overlap, interface acceleration required in substructure Si+1 can actually
be computed from the previously identified substructure Si. In figure 8.2(b),
the upper interface node of S2 is node B at which no acceleration measure-
ment is required. Instead, having identified S1, the acceleration at node A can
be computed by solving the equations of motion for S1. Thus, less response
measurements are required as compared to SSI without overlap. Nevertheless,
error propagation may result since any identification error of S1 is carried for-
ward to S2 in SSI with overlap, whereas the identification of one substructure is
independent from others in SSI without overlap.

(3) Once identified in a substructure Si, the overlap member can optionally be taken
as known in the subsequent substructure Si+1 but this gives another source of
error propagation.

(4) While interface masses are excluded in SSI without overlap, these masses are
included in one substructure or another in SSI with overlap. This facilitates the
identification of all masses if unknown.

Despite the above differences, the GA-implementation procedure for the SSI with
overlap is very similar to that for the SSI without overlap. In fact, the block diagram as
shown in figure 8.3 still applies. The main deviation is that some interface accelerations
are not necessarily obtained from measurement but numerically computed in a previous
substructure as explained earlier.

8.1.3 Progress ive Structural Identif ication

In general, identification results would improve with increasing number of response
measurements (given that the measurement locations of course play an influential role
too). In the above-mentioned SSI approach, only measurements within the substructure
of concern and at interface ends are used when identifying the substructure parameters.
Given a limited number of sensors, the identification results can be enhanced greatly
if the measurement program allows shift of measurement sensors according to the
substructure under investigation. If this is not possible, an alternative is to make use
of as many response measurements as possible by progressively expanding the domain
of substructural identification.

To this end, a variation of the SSI called the progressive structural identification
(PSI) method is presented as illustrated in figure 8.2(c). This employs the same idea of
dividing the system to be identified into several sub-systems to improve the identifi-
cation performance. The main difference is that the substructure grows progressively
while still keeping the number of unknowns small at each stage. For the structure as
shown in figure 2(c), the topmost substructure is selected as the first substructure (S1)
for identification. After its unknown structural parameters are identified, an extended
substructure is considered, i.e. the second substructure (S2) which includes the pre-
vious substructure (S1). But the identified parameters of S1 are taken as known. The
response signals used in substructure S1 are used again in the fitness evaluation while
identifying the parameters of S2. This procedure continues until the whole or required
part of the structure is identified.
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As compared to the SSI method, the main advantage of the PSI method is that it uti-
lizes increasing availability of response measurements without increasing the number
of unknowns as the substructure enlarges. The cost incurred is the increase in computa-
tional time for the forward analysis involving solving larger systems. This shortcoming
may, nevertheless, be offset by faster convergence at each stage due to the availability
of more response measurements.

8.2 Numerical Examples

8.2.1 Identif ication of 100-DOF Known-Mass System

To check the applicability and performance of the proposed methods, numerical simu-
lation study is carried out on examples with known exact values. A 100-DOF known
mass structural system is used to observe the performance of the SSI method without
overlap. For comparison purpose, the GA method is also applied to the complete struc-
ture in a direct manner and is referred here as the “complete structural identification’’
(CSI) method.

The 100-DOF lumped mass system similar to that presented in figure 8.1 is consid-
ered. The aim here is to identify the 100 stiffness parameters. The exact parameters are:
m1 = 6000 kg, m2 = m3 . . . = m100 = 3000 kg, k1 = k2 . . . k100 = 7000 kN/m. Rayleigh
damping is assumed and modal damping ratio of 2% is used for modes 1 and 10.
A lower damping is used compared to the earlier example to ensure the damping in
the higher modes is not too high, as for the substructure method the higher frequency
modes are important and should not be numerically damped out. Though not the main
focus, the damping constants are included as unknown in all the identification exam-
ples. The numerically simulated response is obtained for 1s at time step of 0.002 s
(500 steps) by using Newmark’s constant-acceleration method and random noise is
added. The improved GA strategy is applied for both the SSI and CSI methods with
the parameters shown in table 8.1. The reduced data length procedure is used with
200 (40%) of the data used for 50% of the generations. The computational time is
approximately 12 minutes for the SSI method and 25 minutes for the CSI. It is impor-
tant to note that although 10 substructures are analysed and the total evaluations is
much greater, the SSI takes a much shorter time than the CSI due to the much smaller
systems to be simulated.

In order to further demonstrate the performance of the SSI a third set of tests is
conducted with a larger population and number of generations. The identification

Table 8.1 Identification parameters used – Known mass

CSI SSI SSI (with larger population)

Number of substructures 1 10 10
Population size 20 × 3 10 × 3 20 × 3
Runs 4/10 4/10 4/10
Generations 200 150 200
Crossover rate 0.8 0.8 0.8
Mutation rate 0.2 0.2 0.2
Regeneration 3 3 3
Reintroduction 50 50 50
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parameters here are the same as for the CSI. This case has a computational time of 30
minutes, which is only slightly longer than the CSI despite the fact that 10 substructures
are analysed using the same number of evaluations as the CSI structure. Ten excitation
forces act on the 10th, 20th … and 100th nodes. Acceleration response measurements
(simulated) are assumed to be available at 40 nodes, viz. the 2nd, 5th, 7th and 10th
nodes in each set of 10 nodes. The same force and response measurements are used so
that a fair comparison of the methods can be made.

(1) CSI: The complete structure is identified as a whole without substructuring.
(2) SSI without overlap: The structure is divided into ten substructures. The first

substructure begins from node 90 to node 100, but the mass at node 90 (where
acceleration is used as input) is not included in the substructure formulation. This
substructure is denoted as S1 = [90–100) for convenience. Square bracket indi-
cates that acceleration measurement at interface node 90 is required (as input).
Parenthesis indicates that acceleration measurement at node 100 is optional and,
if available (as in this case), is treated as output. The second substructure is
S2 = [80–90], for which the measurement at interface nodes 80 and 90 are treated
as input. The other substructures are treated in the same way right down to the
base node 0. Note that S1 is used for identification of k91 to k100, whereas S2 is
for k81 to k90 and so on.

Due to the stochastic nature of the GA approach, the comparison is performed using
10 sets of identification results corresponding to different initial populations which are
randomly generated within the specified search range of 0.5 to 1.5 times the actual
values. It is noted that the relative accelerations are used in the fitness evaluation and
are derived from Eqs. (8.4) and (8.6) as follows:

ü∗
r (t) = ür(t) − rüj(t) (8.11)

Table 8.2 presents the mean and maximum absolute errors of identified stiffness
parameters corresponding to each data set of initial population for all the methods
considered. The results consistently show that the divide-and-conquer idea indeed
works. The results appear to improve less at larger noise levels, however this is likely
due to the fact that the best possible results will be limited at this higher noise. Also the

Table 8.2 Average Identification Results – Known mass

CSI SSI SSI (with larger population)

0% Noise
Mean Absolute Error 1.23 0.32 0.10
Maximum Absolute Error 5.70 2.46 0.92
5% Noise
Mean Absolute Error 1.53 0.83 0.68
Maximum Absolute Error 5.98 3.65 2.66
10% Noise
Mean Absolute Error 1.74 1.59 1.37
Maximum Absolute Error 6.79 6.80 6.11
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large number of measurements available to the CSI will help more at larger noise levels
whereas the SSI only has 4 measurements to use for identification in each substructure.
Notwithstanding the above the results are excellent considering the size of the system
and a relatively small identification time. It is also a credit to the main identification
procedure that even the CSI is also able to give reasonable results on this very large
system.

8.2.2 Identif ication of 100-DOF Unknown-Mass System

As further demonstration of the substructure method, we consider the same 100-DOF
structure as the previous example but with all mass, stiffness and damping parame-
ters assumed unknown. In this example the focus is to identify a specific part of the
structure (floors 60–70) without having to determine information from the rest of the
structure. For this purpose excitation is provided only at floors 60, 65 and 70 and
accelerations measured at floors 60, 61, 63, 65, 67, 69 and 70. As with the previous
example, acceleration data is available for 500 data points at a sampling rate of 0.002s.
This example illustrates perhaps the greatest strength of the substructure method; the
ability to identify part of a structure without any requirement on the remainder of the
structure. A substructure with internal nodes 61-69 is considered, allowing for identi-
fication of stiffness k61 to k70 and mass from m61 to m69. The accelerations measured
at nodes 60 and 70 are used as input at the boundaries of substructure. The results
from an average of 10 runs using the GA parameters of table 8.3 are presented in
table 8.4. Approximate computational time for the identification is 29 minutes. The

Table 8.3 Identification parameters used – Unknown
Mass (internal nodes 61–69 substructure)

Population size 60 × 3
Runs 5/15
Generations 360
Crossover rate 0.4
Mutation rate 0.2
Regeneration 3
Reintroduction 120

Table 8.4 Average Identification Results – Unknown Mass (internal nodes 61–69 substructure)

Stiffness Mass

0% Noise
Mean Absolute Error 0.57 0.54
Maximum Absolute Error 1.02 1.04
5% Noise
Mean Absolute Error 0.89 0.84
Maximum Absolute Error 1.79 1.62
10% Noise
Mean Absolute Error 3.21 3.10
Maximum Absolute Error 5.59 5.79
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results illustrate the exceptional ability of the substructure method, in combination
with the SSRM, to quickly and accurately identify required information from even
very large unknown mass systems. The ability of the substructure method to isolate a
part of the structure is one of the most promising solutions available for tackling large
real life problems with many hundreds of nodes.

8.3 Chapter Summary

A practical divide-and-conquer strategy by means of substructure concept is presented
for identification of large systems with many unknowns. The numerical difficulty in
identifying large systems is overcome by working in smaller and more manageable
search domains. The improved GA strategy is readily adopted as the identification tool
for its robustness and efficiency. Note that, to some extent, the results presented have
accounted for modelling error associated with damping. This is because the damping
term in the interface motion force is neglected as explained earlier. Furthermore, the
damping constants of the Rayleigh model adopted for the full structure are not neces-
sarily the same as those at the substructure level. In spite of such modelling errors, the
identified results are generally very good. The salient features of each of the methods
considered are compared below and summarized in Table 8.5.

(1) CSI: By applying GA-based identification to the complete structure, this method
is relatively easy to implement but the identification accuracy or efficiency may
not be acceptable for large systems.

(2) SSI without overlap – The identification of each substructure is completely inde-
pendent of other substructures. The identification sequence of substructures is
immaterial, and it is thus also possible to identify only part of the structure

Table 8.5 Pros and Cons of Different Identification Methods

Method Pros Cons

Complete structural
identification

• Easy to implement – no
substructural formulation is
needed

• Search domain involves all
unknown parameters, making
convergence difficult and time
consuming for large systems

Substructural
identification
without overlap

• No interface motion force from
adjacent substructures is required

• Easy to implement parallel
computing at substructure level

• If needed, interface masses have
to be identified after all other
parameters are identified

Substructural
identification
with overlap

• Applicable to identifying unknown mass
• Less response measurements if

making using of acceleration
solution obtained in another
substructure

• Interface motion forces from
adjacent substructures are
required

• Error propagation if result from
one substructure is used in
another substructure

Progressive
structural
identification

• No interface motion force from
adjacent substructures is required

• Applicable to identifying unknown mass

• Error propagation as result
from one substructure is used
in the next substructure
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without the knowledge of others. As a result, there is no error propagation prob-
lem and parallel computing can be easily applied. Furthermore, if the excitation
force is outside the substructure, no force measurement is required leading to
an “output-only’’ identification approach. Nevertheless, interface masses are not
included in identification of any substructure. If interface masses are to be identi-
fied, it is necessary to refine substructures so as to include the interface masses yet
to be determined, or conduct CSI with only these interface masses as unknown.

(3) SSI with overlap – Some measurements are used both as interface measurements
(input) to one substructure and as internal measurements (output) to another.
Thus the number of measurements required can be reduced as compared to SSI
without overlap. Besides, identification of all masses including interface masses
is possible since they are included in one substructure or another. Nevertheless,
error propagation may arise from inaccuracy if (a) some interface measurements
are computed from previously identified substructures, or (b) structural param-
eters of overlap members if assumed as known in the subsequent substructure.
In such cases, the identification of each substructure is to some extent dependent
on the identification sequence and the results of previous substructures.

(4) PSI – The main idea is to include as many available measurements as possible
while keeping the number of unknowns small at each stage of identification.
Interface masses are included in stages. As a result, the PSI method may be the
most suitable for identification of unknown-mass systems. The computational
cost for forward analysis increases as the substructure grows in size. Neverthe-
less, this may be offset by a faster convergence due to the use of more response
measurements and the total computational time is thus not necessarily much
longer than SSI.
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A.1 A Simple GA Code

The following shows a simple GA program that finds the maximum value of a given
function as discussed in chapter 3. The function value is assumed positive over the
search range specified and is defined in the sub function f (x). The program here is
coded in FORTRAN.

Input file

The input is named in.txt in the following form.

N LL UL
Pop_size Tot_gen
P_cross P_mut

PROGRAM Simple_GA

IMPLICIT NONE ! Variable Declaration
INTEGER:: i,j,stat ! counters, file open status
INTEGER:: g,Tot_gen ! generation number and total generations
INTEGER:: N, Pop_size ! number of bits, population size
INTEGER:: cross ! crossover location
REAL(8):: x, P_cross, P_mut ! x, Crossover and mutation probabilities
REAL(8):: LL, UL, r ! search limits, random number
REAL(8), DIMENSION(:), ALLOCATABLE:: Fitness ! fitness of individuals
INTEGER, DIMENSION(:), ALLOCATABLE:: Select ! vector for crossover operation
INTEGER, DIMENSION(:), ALLOCATABLE:: Twos ! vector to store the powers of two
REAL(8), DIMENSION(:), ALLOCATABLE:: P_select ! vector to store selection probabilities
INTEGER, DIMENSION(:,:), ALLOCATABLE:: Pop, T_Pop ! population, temporary pop
INTEGER, DIMENSION(:), ALLOCATABLE:: O1, O2, best ! offspring for crossover, best solution
REAL(8):: Best_fit=0

OPEN(UNIT=1,FILE=in.txt ,STATUS="OLD",IOSTAT=stat) ! open input file, in.txt
IF (stat/=0) STOP "*** ERROR OPENING INPUT FILE ***" ! check file opened successfully
READ(1,*) N, LL, UL ! read inputs from file
READ(1,*) Pop_size, Tot_gen
READ(1,*) P_cross, P_mut
CLOSE (1) ! close input file

ALLOCATE(Pop(Pop_size,N), T_pop(Pop_size,N)) ! allocate matrices and vectors
ALLOCATE(Fitness(Pop_size))
ALLOCATE(P_select(Pop_size), Select(Pop_size))
ALLOCATE(O1(N), O2(N), Twos(N), Best(N))
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Twos(N)=1 ! compute powers of 2

DO i=1,N-1 ! for binary to real conversion

Twos(N-i)=Twos(N+1-i)*2

END DO

! Generate initial population

CALL RANDOM_SEED() ! assigns the seed for random numbers

Pop=0 ! set all values to 0 initially

DO i=1, Pop_size

DO j=1, N

CALL RANDOM_NUMBER(r) ! generates r in range [0 1]

IF (r>0.5) Pop(i,j)=1 ! decide if bit should be 0 or 1

END DO

END DO

DO g=1, Tot_gen ! Main analysis loop

DO i=1, Pop_size ! Evaluate fitness

x=SUM(pop(i,1:N)*twos) ! converts the binary number to an integer

x=LL+(UL-LL)*x/(2**N-1) ! converts integer to real x value

Fitness(i)=f(x) ! f(x) defined in function subprogram below

IF (Fitness(i)>Best_fit) THEN

Best_fit=fitness(i) ! Store best result

Best=Pop(i,1:N)

END IF

END DO

IF (g==Tot_gen) EXIT ! final gen - skip crossover and mutation

P_select=Fitness/SUM(Fitness) ! Selection - Roulette wheel selection

DO i=2,Pop_size ! proportional to fitness

P_select(i)=P_select(i)+P_select(i-1) ! cumulative probability

END DO

DO i=1,Pop_size

CALL RANDOM_NUMBER(r) ! r decides which solutions are reproduced

DO j=1,Pop_size

IF (P_select(j)>=r) THEN

T_Pop(i,1:N)=Pop(j,1:N) ! new population stored temporarily

EXIT

END IF

END DO

END DO

Pop=T_Pop

j=0 ! Crossover

DO i=1,Pop_size ! j to record the number of individuals selected

CALL RANDOM_NUMBER(r)

IF (r<P_cross) THEN
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j=j+1

Select(j)=i ! record which individual selected

END IF

END DO

CALL Shuffle(Select(1:j),j) ! Shuffles the selected individuals

IF (MOD(j,2)==1) j=j-1 ! if odd number selected remove one

DO i=1,j,2

CALL RANDOM_NUMBER(r) ! randomly select crossover location

cross=CEILING(r*(N-1))

O1(1:cross)=Pop(Select(i),1:cross)

O2(1:cross)=Pop(Select(i+1),1:cross)

O1(cross+1:N)=Pop(Select(i+1),cross+1:N)

O2(cross+1:N)=Pop(Select(i),cross+1:N)

Pop(Select(i),1:N)=O1

Pop(Select(i+1),1:N)=O2

END DO

DO i=1, Pop_size ! Mutation

DO j=1, N

CALL RANDOM_NUMBER(r)

IF(r<P_mut) THEN

IF (Pop(i,j)==0) THEN

Pop(i,j)=1

ELSE

Pop(i,j)=0

END IF

END IF

END DO

END DO

END DO ! End main analysis loop

x=SUM(Best*twos) ! converts the best result to an integer

x=LL+(UL-LL)*x/(2**N-1) ! converts integer to real x value

PRINT*, "max value of", Best_fit, "Was found at x= ", x ! Output final result to screen

STOP

CONTAINS

FUNCTION F(x) ! Function for computing f(x)

REAL(8) :: F

REAL(8), INTENT(IN):: x

F=0.5-((sin(2*x))**2-0.5)/(1.0+0.02*x*x) ! Example function used in Chapter 2

END FUNCTION f ! End of function f(x)

SUBROUTINE Shuffle(vector, size) ! Subroutine to shuffle vector
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IMPLICIT NONE

INTEGER,INTENT(IN) :: size

INTEGER,INTENT(INOUT) :: vector(size)

INTEGER :: temp(size),i,loc

REAL :: shuf(size)

CALL RANDOM_NUMBER(shuf)

DO i=1,size

loc=MAXLOC(shuf,DIM=1)

temp(i)=vector(loc)

shuf(loc)=0

END DO

vector=temp

END SUBROUTINE Shuffle ! End of shuffle subroutine

END PROGRAM Simple_GA ! End of program

A.2 SDOF Identification

The following is a sample program for SDOF identification as discussed in Chapter 4.

Input file

The input file is named in.txt in the following form.

N LL UL
Pop_size Tot_gen
P_cross P_mut
L h m c

PROGRAM Simple_GA_SDOF
IMPLICIT NONE ! Variable Declaration

INTEGER:: i,j,stat ! counters, file open status

INTEGER:: g,Tot_gen ! generation number and total generations

INTEGER:: N, Pop_size ! number of bits, population size

INTEGER:: cross ! crossover location

REAL(8):: P_cross, P_mut ! Crossover and mutation probabilities

REAL(8):: LL, UL, r ! search limits, random number

REAL(8), DIMENSION(:), ALLOCATABLE:: Fitness ! fitness of individuals

INTEGER, DIMENSION(:), ALLOCATABLE:: Select ! vector for crossover operation

INTEGER, DIMENSION(:), ALLOCATABLE:: Twos ! vector to store the powers of two

REAL(8), DIMENSION(:), ALLOCATABLE:: P_select ! vector to store selection probabilities

INTEGER, DIMENSION(:,:), ALLOCATABLE:: Pop, T_Pop ! population, temporary pop

INTEGER, DIMENSION(:), ALLOCATABLE:: O1, O2, best ! offspring for crossover, best solution

REAL(8):: Best_fit=0

REAL(8):: x, v, a, delx ! response

REAL(8):: k, m, c ! structural parameters
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REAL(8):: h, sse ! time step, error

INTEGER:: L,t ! length of response data, step number

REAL(8), DIMENSION(:), ALLOCATABLE:: a_s, a_m, F ! simulated and measured accelerations,

! forces

OPEN(UNIT=1,FILE= in.txt ,STATUS="OLD",IOSTAT=stat) ! open input file, in.txt

IF (stat/=0) STOP "*** ERROR OPENING INPUT FILE ***" ! check file opened successfully

READ(1,*) N, LL, UL ! read inputs from file

READ(1,*) Pop_size, Tot_gen

READ(1,*) P_cross, P_mut

READ(1,*) L, h, m, c

ALLOCATE(a_s(L),a_m(L),F(L))

DO i=1,L

READ(1,*) F(i)

END DO

DO i=1,L

READ(1,*) a_m(i)

END DO

CLOSE (1) ! close input file

ALLOCATE(Pop(Pop_size,N), T_pop(Pop_size,N)) ! allocate matrices and vectors

ALLOCATE(Fitness(Pop_size))

ALLOCATE(P_select(Pop_size), Select(Pop_size))

ALLOCATE(O1(N), O2(N), Twos(N), Best(N))

Twos(N)=1 ! compute powers of 2

DO i=1,N-1 ! for binary to real conversion

Twos(N-i)=Twos(N+1-i)*2

END DO

! Generate initial population

CALL RANDOM_SEED() ! assigns the seed for random numbers

Pop=0 ! set all values to 0 initially

DO i=1, Pop_size

DO j=1, N

CALL RANDOM_NUMBER(r) ! generates r in range [0 1]

IF (r>0.5) Pop(i,j)=1 ! decide if bit should be 0 or 1

END DO

END DO

DO g=1, Tot_gen ! Main analysis loop

DO i=1, Pop_size ! Evaluate fitness

k=SUM(pop(i,1:N)*twos) ! converts the binary number to an integer

k=LL+(UL-LL)*k/(2**N-1) ! converts integer to real x value

x=0

v=0

a=0
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DO t=1,L

delx=(F(t)+m*a+(c+4*m/h)*v-k*x)/(4*m/(h*h)+2*c/h+k)

x=x+delx

v=2*delx/h-v

a=(F(t)-c*v-k*x)/m

a_s(t)=a

END DO

sse=SUM((a_s-a_m)**2)

Fitness(i)=1.0/(0.001+sse)

IF (Fitness(i)>Best_fit) THEN

Best_fit=fitness(i) ! Store best result

Best=Pop(i,1:N)

END IF

END DO

IF (g==Tot_gen) EXIT ! final gen - skip crossover and mutation

P_select=Fitness/SUM(Fitness) ! Selection - Roulette wheel selection

DO i=2,Pop_size ! proportional to fitness

P_select(i)=P_select(i)+P_select(i-1) ! cumulative probability

END DO

DO i=1,Pop_size

CALL RANDOM_NUMBER(r) ! r decides which solutions are reproduced

DO j=1,Pop_size

IF (P_select(j)>=r) THEN

T_Pop(i,1:N)=Pop(j,1:N) ! new population stored temporarily

EXIT

END IF

END DO

END DO

Pop=T_Pop

j=0 ! Crossover

DO i=1,Pop_size ! j to record the number of individuals selected

CALL RANDOM_NUMBER(r)

IF (r<P_cross) THEN

j=j+1

Select(j)=i ! record which individual selected

END IF

END DO

CALL Shuffle(Select(1:j),j) ! Shuffles the selected individuals

IF (MOD(j,2)==1) j=j-1 ! if odd number selected remove one

DO i=1,j,2

CALL RANDOM_NUMBER(r) ! randomly select crossover location

cross=CEILING(r*(N-1))

O1(1:cross)=Pop(Select(i),1:cross)

O2(1:cross)=Pop(Select(i+1),1:cross)

O1(cross+1:N)=Pop(Select(i+1),cross+1:N)
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O2(cross+1:N)=Pop(Select(i),cross+1:N)

Pop(Select(i),1:N)=O1

Pop(Select(i+1),1:N)=O2

END DO

DO i=1, Pop_size ! Mutation

DO j=1, N

CALL RANDOM_NUMBER(r)

IF(r<P_mut) THEN

IF (Pop(i,j)==0) THEN

Pop(i,j)=1

ELSE

Pop(i,j)=0

END IF

END IF

END DO

END DO

END DO ! End main analysis loop

k=SUM(Best*twos) ! converts the best result to an integer

k=LL+(UL-LL)*k/(2**N-1) ! converts integer to real x value

PRINT*, "max fitness of", Best_fit, "Was found at k= ", k ! Output final result to screen

STOP

CONTAINS

SUBROUTINE Shuffle(vector, size) ! Subroutine to shuffle vector

IMPLICIT NONE

INTEGER,INTENT(IN) :: size

INTEGER,INTENT(INOUT) :: vector(size)

INTEGER :: temp(size),i,loc

REAL :: shuf(size)

CALL RANDOM_NUMBER(shuf)

DO i=1,size

loc=MAXLOC(shuf,DIM=1)

temp(i)=vector(loc)

shuf(loc)=0

END DO

vector=temp

END SUBROUTINE Shuffle

END PROGRAM Simple_GA_SDOF ! End of program

© 2010 by Taylor and Francis Group, LLC

  



138 Append ix

A.3 Newmark’s Constant Average Acceleration Method

Newmark’s method works directly on the general dynamic equilibrium equation

Mẍ + Cẋ + Kx = F (A.1)

Acceleration is assumed to be constant over each time step h, from time step k to
k + 1

ẍ = ẍk + ẍk+1

2
(A.2)

Integrating twice with respect to time,

ẋk+1 = ẋk +
(

ẍk + ẍk+1

2

)
h (A.3)

xk+1 = xk + ẋkh +
(

ẍk + ẍk+1

2

)
h2

2
(A.4)

Rearranging the above equations leads to representations for incremental accelera-
tion and incremental velocity as

�ẍ = ẍk+1 − ẍk = 4�x
h2

− 4ẋk

h
− 2ẍk (A.5)

�ẋ = ẋk+1 − ẋk = 2�x
h

− 2ẋk (A.6)

Substitution into the equilibrium equation at time step k + 1 gives,

M{ẍk + �ẍ} + C{ẋk + �ẋ} + K{xk + �x} = Fk+1 (A.7)

M
{

ẍk +
(

4�x
h2

− 4ẋk

h
− 2ẍk

)}
+C
{

ẋk +
(

2�x
h

− 2ẋk

)}
+K{xk+�x} = Fk+1(A.8)

Rearrangement in terms of incremental displacements yields

[
4
h2

M + 2
h

C + K
]
�x = Fk+1 + Mẍk +

[
C + 4

h
M
]
ẋk − Kxk (A.9)

This equation can then be solved for incremental displacements at each time step
using the LU scheme in A.3.1. Velocities are then obtained easily by equation A.6 and
to maintain equilibrium at each step, acceleration is calculated directly by substitution
of these values into the equation of motion (Eq A.1) at time step k + 1.
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Stabi l i ty

The stability can be investigated by considering the case of undamped free vibration
of a single degree of freedom oscillator.

ẍ + ω2x = 0 (A.10)

Rearranging equation A.9 with F = 0, C = 0, ẍk = −ω2xk and ω2 = k/m(
4
h2

+ ω2
)

�x = −2ω2xk + 4
h

ẋk (A.11)

�x = 4h
4 + h2ω2

ẋk − 2h2ω2

4 + h2ω2
xk (A.12)

The displacement and velocity at k + 1 is then

xk+1 = xk + �x

= 4h
4 + h2ω2

ẋk + 4 − h2ω2

4 + h2ω2
xk (A.13)

ẋk+1 = ẋk + �ẋ (A.14)

= 2�x
h

− ẋk

= 4 − h2ω2

4 + h2ω2
ẋk − 4hω2

4 + h2ω2
xk

or in difference form Yk+1 = AYk


ẋ

x




k+1

=




4 − h2ω2

4 + h2ω2
− 4hω2

4 + h2ω2

4h
4 + h2ω2

4 − h2ω2

4 + h2ω2




ẋ

x




k

(A.15)

The eigenvalues of A are then calculated by |A − λI| = 0 and simplified as

λ = 4 − h2ω2

4 + h2ω2
± 4

√−h2ω2

4 + h2ω2
(A.16)

λ is always complex as h2ω2 > 0 and so the spectral radius is

|λ| =
√√√√(4 − h2ω2

4 + h2ω2

)2

+
(

4
√

h2ω2

4 + h2ω2

)2

= 1 (A.17)

Thus the method is unconditionally stable.
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A.3.1 LU Factorisation Scheme

Due to the banded nature of the matrices for the shear frame structures considered,
normal factorisation schemes are inefficient due to the large number of ‘zero’ computa-
tions. The following LU factorisation, forward substitution and backward substitution
algorithms are developed to solve for incremental displacements of equation A.9.
Equation A.9 is in the form A�x = b where

A =
[

4
h2

M + 2
h

C + K
]

and b = Fk+1 + Mẍk +
[
C + 4

h
M
]
ẋk − Kxk (A.18)

It is noted that A is constant for every time step whereas b varies at each step. A is
therefore factorised into a lower triangular matrix L and an upper triangular matrix U.
Due to the symmetric and banded nature of A, L consists of a diagonal with values all
1 and a single lower band whereas U consists of a diagonal and upper band. Thus A,
L and U can be stored as shown below, where the subscripts used denote the position
in the simplified system rather than the original matrices.

A =




a1,1 a1,2 0
a1,2 a2,1 a2,2

. . .
. . .

. . .

an−2,2 an−1,1 an−1,2

0 an−1,2 an,1


 ⇒ A =




a1,1 a1,2

a2,1 a2,2
...

...

an−1,1 an−1,2

an,1 0


 (A.19)

L =




1 0
l2 1

l3 1
. . .

. . .

0 ln 1


⇒ L =




l2
l3
...

ln


 (A.20)

U =




u1,1 u1,2 0
u2,1 u2,2

u3,1
. . .

. . . un−1,2

0 un,1




⇒ U =




u1,1 u1,2

u2,1 u2,2
...

...

un−1,1 un−1,2

un,1 0


 (A.21)

The coefficients of L and U are obtained from A as

Set U = A (A.22)

for k = 2, n

lk = uk−1,1

uk−1,2

uk,1 = uk,1 − lkuk−1,2
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This factorisation only needs to be carried out once as the matrices do not vary with
time. At each time step, the vector b is calculated and the incremental displacement
solved by forward and backwards substitution as follows.

Forward substitution Ly = b ⇒ solve for y

y1 = b1 (A.23)

for k = 2, n

yk = bk − yk−1lk

Backwards substitution U�x = y → solve for �x

�xn = yn

un,1
(A.24)

for k = n − 1, 1, −1

�xk = yk − �xk+1uk,2

uk,1

© 2010 by Taylor and Francis Group, LLC

  



References

ABAQUS (1998), Standard User’s Manual (Version 5.8), Hibbit, Karlsson and Sorensen, Inc.,
Pawtucket, Rhode Island, USA.

Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), “A vibration technique for non-
destructively assessing the integrity of structures.’’ Journal of Mechanical Engineering Science,
20 (2), 93–100.

Adeli, H. (2001), “Special Issue: Health Monitoring of Structures.’’ Computer-Aided Civil and
Infrastructure Engineering, 16(1).

Adeli, J. and Karim, A. (2000), “Fuzzy-wavelet RBFNN model for freeway incident detection.’’
Journal of Transportation Engineering, ASCE, 126(6), 464–471.

Aktan, A.E., Lee, K.H., Chuntavan, C. and Aksel, T. (1994), Modal testing for structural
identification and condition assessment of constructed facilities, in Proceedings of the 12th
International Modal Analysis Conference, Honolulu, Hawaii, 462–468.

Axelrod, R. (1987), “The evolution of strategies in the itterated prisoner’s dilemma,’’ in Davis, L.
(Ed), Genetic Algorithms and Simulated Annealing, Pitman, London, 32–41.

Bagley, J.D. (1967), The behavior of adaptive systems which employ genetic and correlation
algorithms, Doctoral Dissertation, University of Michigan.

Baker, J.E. (1987), Reducing Bias and Inefficiency in the Selection Algorithm, in Grefenstette, J.J.
(Ed), Genetic Algorithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, 14–21.

Beck, J. L. and Katafygiotis, L. S. (1998). “Updating models and their uncertainties: Bayesian
statistical framework.’’ Journal of Engineering Mechanics, 124(4), 455–461.

Begambre, O. and Laier, J. E. (2009). “A hybrid Particle Swarm Optimization – Simplex algo-
rithm (PSOS) for structural damage identification.’’ Advances in Engineering Software, 40(9),
883–891.

Bernal, D. and Beck, J. (2004), “Special Issue: Phase 1 of the IASC-ASCE Structural Health
Monitoring Benchmark.’’ Journal of Engineering Mechanics, ASCE, 130(1).

Bicanic, N. and Chen, H. P. (1997). “Damage identification in framed structures using natural
frequencies.’’ International Journal for Numerical Methods in Engineering, 40(23), 4451–
4468.

Booker, L. (1987), Improving Search in Genetic Algorithms, in Davis, L. (Ed), Genetic
Algorithms and Simulated Annealing, Pitman, London, 61–73.

Caravani, P., Watson, M.L. and Thomson, W.T. (1977), “Recursive Least-Squares Time Domain
Identification of Structural Parameters.’’ Journal of Applied Mechanics, ASME, 44, 135–140.

Carden, E.P. and Fanning, P. (2004), “Vibration Based Condition Monitoring: A Review,
Structural Health Monitoring.’’ 3, 355–377.

Catbas, F.N., Susoy, M., and Frangopol, D.M. (2008). “Structural health monitoring and reli-
ability estimation: Long span truss bridge application with environmental monitoring data.’’
Engineering Structures, Elsevier, 30(9), 2347–2359.

© 2010 by Taylor and Francis Group, LLC



126 References

Carmichael, D.G. (1979), “The State Estimation Problem in Experimental Structural Mechan-
ics.’’ Proceedings of 3rd International Conference on Applications of Stastics and Probability
in Soil and Structural Engineering, Sydney, 802–815.

Chan, T.H.T., Yu, L., Tam, H.Y., Ni, Y.Q., Liu, S.Y., Chung, W.H., and Cheng, L.K. (2006),
“Fiber Bragg grating sensors for structural health monitoring of Tsing Ma Bridge: background
and experimental observation.’’ Engineering Structures, Vol. 28, No. 5, 648–659.

Chang, C.C. (2007). “Special issue: management of civil infrastructure.’’ Structure and
Infrastructure Engineering Engineering, Vol. 3, No. 2, 93–185.

Chang, P.C., Flatau, A. and Liu, S.C. (2003), “Review Paper: Health Monitoring of Civil
Infrastructure.’’ Structural Health Monitoring 2, 257–267.

Chen, H. P. and Bicanic, N. (2000). “Assessment of damage in continuum structures based on
incomplete modal information.’’ Computers and Structures, 74(5), 559–570.

Chen, S., Billings, S.A. and Grant, P.M. (1990), “Non-linear system identification using neural
networks.’’ International Journal of Control 51(6), 1191–1214.

Chou, J.H. and Ghaboussi, J. (2001), “Genetic algorithm in structural damage detection,
Computers and Structures.’’ 79, 1335–1353.

Cooley, J.W. and Tukey, J.W. (1965), “An Algorithm for the Machine Calculation of Complex
Fourier Series.’’ Mathematics of Computation 19(90), 297–311.

Creed, S.G. (1987), “Assessment of large engineering structures using data collected during
in-service loading.’’ in Garas, F.K. Clarke, J.L. and Armer, G.S.T. (Ed), Structural Assessment:
the use of full and large scale testing, Butterworths, London, 55–62.

De Jong, K.A. (1975), An analysis of the behavior of a class of genetic adaptive systems, Doctoral
Dissertation, University of Michigan.

DiPasquale, E., and Cakmak, A. S. (1988). Identification of the serviceability limit state and
direction of seismic structural damage, Tech. Rep. NCEER-88-0022, Nat. Ctr. for Earthquake
Engrg. Res., Buffalo. N.Y.

Farrar, C.R. and Doebling, S.W. (1997), “Lessons Learned from Applications of Vibration-Based
Damage Identification Methods to a Large Bridge Structure, in Structural Health Monitoring –
Current Status and Perspectives.’’ Proceedings of the International Workshop on Structural
Health Monitoring, Stanford University, Sept 18–20, 351–370.

Farrar, C.R. and Worden, K. (2007). “Theme Issue on Structural Health Monitoring.’’
Philosophical Transactions of the Royal Society A, 365 (1851).

Fogel, D.B. (1998), Evolutionary Computation: The Fossil Record, IEEE Press, New York.
Franco, G., Betti, R. and Lus, H. (2004), “Identification of Structural Systems Using an

Evolutionary Strategy.’’ Journal of Engineering Mechanics, ASCE, 130(10), 1125–1139.
Frangopol, D.M. and Messervey, T.B. (2009). “Life-cycle cost and performance prediction: Role

of structural health monitoring.’’ Chapter 16 in Frontier Technologies for Infrastructures
Engineering, S-S, Chen and A.H-S. Ang, eds., Structures and Infrastructures Book Series,
Vol. 4, D. M. Frangopol, Book Series Editor, CRC Press/Balkema, Boca Raton, London, New
York, Leiden, 361-381.

Frangopol, D.M., and Messervey, T.B. (2009). “Maintenance principles for civil structures,’’
Chapter 89 in Encyclopedia of Structural Health Monitoring, C. Boller, F-K. Chang, and
Y. Fujino, eds., John Wiley & Sons Ltd, Chicester, UK, Vol. 4, 1533–1562.

Friswell, M.I. (2007). “Damage Identification Using Inverse Methods.’’ Philosophical Transac-
tions of the Royal Society A, 365 (1851), 393–410.

Fryba, L. and Pirner, M. (2001), “Load tests and modal analysis of bridges.’’ Engineering
Structures 23, 102–109.

Furuta, H., Kameda, T., Nakahara, K., Takahashi, Y. and Frangopol, D. M. (2006), “Optimal
bridge maintenance planning using improved multi-objective genetic algorithm.’’ Structure
and Infrastructure Engineering, Taylor & Francis, 2(1), 33–41.

Ghanem, R. and Shinozuka, M. (1995), “Structural System Identification. I: Theory.’’ Journal
of Engineering Mechanics, ASCE, 121(2), 255–263.

© 2010 by Taylor and Francis Group, LLC

  



References 127

Ghanem, R. and Sture, S. (2000). “Special Issue: Structural Health Monitoring.’’ Journal of
Engineering Mechanics, ASCE, 126(7).

Goldberg, D.E. and Lingle, R. (1985), Alleles, Loci, and the Travelling Salesman Problem, in
Grefenstette, J. (Ed), Proceedings of an International Conference on Genetic Algorithms and
their Applications, Lawrence Erlbaum Associates, 154–159.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley Publishing Company.

Grefenstette, J., Gopal, R., Rosmaita, B. and Van Gucht, D. (1985), Genetic Algorithms for the
Travelling Salesman Problem, in Grefenstette, J. (Ed), Proceedings of an International Confer-
ence on Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, 160–168.

He, R. S. and Hwang, S. F. (2006). “Damage detection by an adaptive real-parameter simulated
annealing genetic algorithm.’’ Computers & Structures, 84(31–32), 2231–2243.

Herrmann, T. and Pradlwarter, H.J. (1998). “Two-step Identification Approach for Damped
Finite Element Models.’’ Journal of Engineering Mechanics, ASCE, 124 (6), 639–647.

Hjelmstad, K. D. and Shin, S. (1997). “Damage Detection and Assessment of Structures from
Static Response.’’ Journal of Engineering Mechanics, ASCE, 123(6), 568–576.

Holland, J.H. (1962a), “Information Processing in Adaptive Systems, in Information Process-
ing in the Nervous System.’’ Proceedings of the International Union of Physiological Sciences,
XXII International Congress, Leiden.

Holland, J.H. (1962b), “Outline for a Logical Theory of Adaptive Systems.’’ Journal of the
Association for Computing Machinery, 9, 297–314.

Holland, J.H. (1968), Hierarchical Descriptions, Universal Spaces and Adaptive Systems,
Technical Report, OAR Projects 01252 and 08226, University of Michigan.

Holland, J.H. (1971), “Processing and Processors for Schemata.’’ in Jacks, E.L. (Ed), Associative
Information Processing, 127–146, New York: American Elsevier.

Holland, J.H. (1973), “Genetic Algorithms and the Optimal Allocation of Trials.’’ SIAM Journal
on Computing 2(2), 88–105.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbour.

Hoshiya, M. and Saito, E. (1984), “Structural Identification by Extended Kalman Filter.’’ Journal
of Engineering Mechanics, ASCE, 110(12), 1757–1770.

Hsieh, K.H., Halling, M.W. and Barr, P.J. (2006), “Overview of Vibrational Structural Health
Monitoring with Representitive Case Studies.’’ Journal of Bridge Engineering, ASCE, 11(6),
707–715.

Humar, J., Bagchi, A. and Xu, H. (2006), “Performance of Vibration-Based Techniques for the
Identification of Structural Damage.’’ Structural Health Monitoring, 5, 215–242.

Huang, H.W. and Yang, J.N. (2008), “Damage identificaion of substructure for local health
monitoring.’’ Smart Structures and Systems, 4(6), 795–807.

Iba, H., Kurita, T., De Garis, H. and Sato,T. (1993), “System Identification using Structured
Genetic Algorithms.’’ in Forrest, S. (Ed), Proceedings of the fifth International Conference on
Genetic Algorithms, Morgan Kaufmann, California, 279–286.

Imai, H., Yun, C. B. and Shinozuka, M. (1989). “Fundamentals of system identification in
structural dynamics.’’ Probabilistic Engineering Mechanics, 4(4), 162–173.

Jiang, S.-F., C.-M. Zhang and Koh, C.G. (2006) “Structural damage detection by integrating data
fusion and probabilistic neural network.’’ Advances in Structural Engineering, 9(4), 445–458.

Kalman, R.E. (1960), “A New Approach to Linear Filtering and Prediction Problems.’’ Journal
of Basic Engineering, ASME, 82(Series D), 35–45.

Kim, J.T. and Stubbs, N. (1995), “Model-Uncertainty Impact and Damage-Detection Accuracy
in Plate Girder.’’ Journal of Structural Engineering, ASCE, 121 (10), 1409–1417.

Kishore Kumar, R., Sandesh S. and Shankar, K. (2007). “Parametric identification of non-linear
dynamic systems using Levenburg-Marquardt method and genetic algorithm.’’ International
Journal of Structural Stability and Dynamics, 7(4), 715–725.

© 2010 by Taylor and Francis Group, LLC

  



128 References

Kitagawa, G. (1996). “Monte Carlo filter and smoother for non-Gaussian state space models.’’
Journal of Computational and Graphical Statistics, 5(1), 1–25.

Ko, J.M., and Ni, Y.Q. (2005), “Technology developments in structural health monitoring of
large-scale bridges.’’ Engineering Structures, 27(12), 1715–1725.

Ko, J.M., Ni, Y.Q. and Chan, T.H.T. (1999). “Dynamic monitoring of structural health in cable-
supported bridges.’’ Proceedings of International Symposium on Smart Systems for Bridges,
Structures and Highways, S.C. Liu ed., New Port Beach, USA, March, 370–381.

Koehler, G.J. (1997), New directions in genetic algorithm theory, Annals of operations research,
75, pg 49–68.

Koh, C.G., See, M. and Balendra, T. (1991), “Estimation of structural parameters in time
domain: a substructure approach.’’ Earthquake Engineering and Structural Dynamics, 20(8),
787–801.

Koh, C.G., Hong, B and Liaw, C.Y. (2000), “Parameter Identification of Large Structural
Systems in Time Domain.’’ Journal of Structural Engineering, 126(8), 957–963.

Koh, C.G., Hong, B and Liaw, C.Y. (2003a), “Substructural and progerssive structural
identification methods.’’ Engineering Structures, 25, 1551–1563.

Koh, C.G., Chen, Y.F. and Liaw, C.Y. (2003b), “A Hybrid Computational Strategy for
Identification of Structural Parameters.’’ Computers and Structures, 81, 107–117.

Koh, C.G. and See, M. (1994), “Identification and Uncertainty Estimation of Structural
Parameters, Journal of Engineering Mechanics.’’ 120 (6), 1219–1236.

Koh, C.G. and See, M. (1999), “Techniques in the identification and uncertainty estimation of
parameter in structural systems.’’ in Leondes, C.T (Ed), Structural Dynamic Systems Com-
putational Techniques and Optimixation, Computational Techniques, Gordon and Breach
Science Publishers.

Koh, C.G. and Shankar, K. (2003a), “Stiffness Identification by a Substructural Approach
in Frequency Domain.’’ International Journal of Structural Stability and Dynamics 3(2),
267–281.

Koh, C.G. and Shankar, K. (2003b), “Substructural Identification Method Without Interface
Measurement.’’ Journal of Engineering Mechanics, ASCE, 129(7), 769–776.

Koh, H-M., and Frangopol, D.M., eds. (2008). Bridge Maintenance, Safety, Management,
Health Monitoring and Informatics, Set of Book and CD-ROM, A Balkema Book (ISBN 13:
978-0-415-46844-2 (hbk), 786 pages) and CD-ROM (ISBN 13 978-0-415-46844-2), 465 full
length papers, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, Leiden,
2008.

Lee, J. (2009). “Identification of multiple cracks in a beam using natural frequencies.’’ Journal
of Sound and Vibration, 320(3), 482–490.

Li, L., Yang, Y., Peng, H. and Wang X (2006), “Parameters identification of chaotic systems via
chaotic ant swarm.’’ Chaos, Solitons and Fractals, 28(5), 1204–1211.

Ling, X. and Haldar, A. (2004), “Element Level System Identification with Unknown Input with
Rayleigh Damping.’’ Journal of Engineering Mechanics, ASCE, 30 (8), 877–885.

Liu, G.R. and Chen, S.C. (2002). “A novel technique for inverse identification of distributed
stiffness factor in structures.’’ Journal of Sound and Vibration, 254(5), 823–835.

Liu, M., Frangopol, D.M. and Kim, S. (2009a). “Bridge system performance assessment from
structural health monitoring: A case study.’’ Journal of Structural Engineering, ASCE 135(6),
733–742.

Liu, M., Frangopol, D.M. and Kim, S. (2009b). “Bridge safety evaluation based on monitored
live load effects.’’ Journal of Bridge Engineering, ASCE, 14(4), 257–269.

Ljung, L. (1986). “Frequency and time domain methods in system identification.’’ Modeling
identification and robust control, C.I. Byrnes and A. Lindquist, eds., 615–624.

Ljung, L. and Glover, K. (1981), “Frequency Domain Versus Time Domain Methods in System
Identification.’’ Automatica, 17 (1), 71–86

© 2010 by Taylor and Francis Group, LLC

  



References 129

Luh, G.C. and Wu, C.Y. (1999), “Non-linear system identification using genetic algorithms.’’
Proceedings of the Institution of Mechanical Engineers, 213(1), 105–117.

Mangal, L., Idichandy, V.G. and Ganapathy, C. (2001), “Structural monitoring of offshore
platforms using impulse and relaxation response.’’ Ocean Engineering, 28, 689–705.

Maybeck, P.S. (1979), Stochastic Models, Estimation, and Control, Volume 1, Academic Press,
New York.

Michalewicz, Z. (1994), Genetic Algorithms + Data Structures = Evolution Programs, Second,
Extended Edition, Springer-Verlag, Berlin Heidelberg.

Ni, Y.Q., Ko, J.M., and Zheng, G. (2002), “Dynamic analysis of large-diameter sagged cables
taking into account flexural rigidity.’’ Journal of Sound and Vibration, Vol. 257, No. 2,
301–319.

Okasha, M.N. and Frangopol, D.M. (2009). “Lifetime-oriented multi-objective optimization of
structural maintenance, considering system reliability, redundancy, and life-cycle cost using
GA.’’ Structural Safety, Elsevier, 31(6), 460–474.

Oreta, W. C. and Tanabe, T. A. (1994), “Element Identification of Member Properties of Framed
Structures.’’ Journal of Structural Engineering, ASCE, 120(7), 1961–1976.

Perera, R. and Torres, R. (2005), “Structural Damage Assessment using Genetic Algorithms.’’
9th International Confernce on Inspection, Appraisal, Repairs & Maintenance of Structures,
20–21.

Perry, M.J., Koh, C.G. and Choo, Y.S. (2006), “Modified Genetic Algorithm Strategy for
Structural Identification.’’ Computers and Structures, 84, 529–540.

Potts, J.C., Giddens, T.J. and Yadav, S.B. (1994), “The Development and Evaluation of an
Improved Genetic Algorithm Based on Migration and Artificial Selection.’’ IEEE Trans. on
Systems Man. and Cybernetics, 24 (1), 73–86.

Raghavendrachar, M. and Aktan, A.E. (1992), “Flexability by Multireference Impact Testing
for Bridge Diagnosis.’’ Journal of Structural Engineering, ASCE, 118 (8), 2186–2203.

Rao, M.A., Srinivas, J. and Murthy, B.S.N. (2004), “Damage detection in vibrating bodies using
genetic algorithms.’’ Computers and Structures, 82, 963–968.

Roberts, J.B. and Vasta, M. (2000), “Parametric Identification of Systems with Non-Gaussian
Excitation using Measured Response Spectra.’’ Probabilistic Engineering Mechanics, 15,
59–71.

Sanayei, M. and Onipede, O. (1991), “Damage assessment of structures using static test data.’’
AIAA Journal, 29(7), 1174–1179.

Salawu, O.S. (1997), “Detection of Structural Damage through Changes in Frequency: a
Review.’’ Engineering Structures 19 (9), 718–723.

Salawu, O.S. and Williams, C. (1995), “Bridge Assessment Using Forced Vibration Testing.’’
Journal of Structural Engineering 121(2), 161–173.

Sato, T., and Kaji, K. (2000). “Structural System Identification using Monte Carlo Filter.’’ 3rd
US-Japan workshop on nonlinear system identification and structural health monitoring.

Sawyer, J.P. and Rao S.S. (2000), “Structural damage detection and identification using fuzzy
logic.’’ AIAA Journal 38(12), 2328–2335.

Schaffer, J.D., Caruana, R.A., Eshelman, L.J and Das, R. (1989), “A Study of Control Param-
eters Affecting Online Performance of genetic Algorithms for Function Optimization.’’ Third
International Conference on Genetic Algorithms, George Mason University, June 4–7.

Shi, T., Jones, N.P. and Ellis, J.H. (2000), “Simultaneous Estimation of System and Input
Parameters from Output Measurements.’’ Journal of Engineering Mechanics, ASCE, 126(7),
746–753.

Shinozuka, M. and Ghanem, R. (1995), “Structural System Identification. II: Experimental
Verification.’’ Journal of Engineering Mechanics, ASCE, 121 (2), 265–273.

Shinozuka, M., Yun, C. B. and Imai, H. (1982). “Identification of linear structural dynamic sys-
tems.’’ Proceedings of the American Society of Civil Engineer, ASCE, 108(EM6), 1371–1389.

© 2010 by Taylor and Francis Group, LLC

  



130 References

Spanos, P.D. and Lu, R. (1995), “Nonlinear System Identification in Offshore Structural
Reliability.’’ Journal of Offshore Engineering and Artic Engineering, ASME, 117, 171–177.

Su, T.-J. and Juang, J.-N. (1994). “Substructure System Identification and Synthesis.’’
J. Guidance, Control, and Dynamics, 17(5), 1087–1095.

Tang, H. Fukuda, M. and Xue, S. (2007). “Particle swarm optimization for structural system
identification.’’ The 6th International Workshop on Structural Health Monitoring, Stanford,
CA, 483–492.

Tang, H. S. Xue, S. T. and Fan, C. X. (2008). “Differential evolution strategy for structural
system identification.’’ Computers & Structures, 86(21–22), 2004–2012.

Tee, K.F., Koh, C.G. and Quek, S.T. (2005), “Substructural First and Second Order Model
Identification for Structural Damage Assessment.’’ Earthquake Engineering and Structural
Dynamics, 34(15), 1755–1775.

Topping, B.H.V. and Tsompanakis, Y. (2009), Proceedings of the First International Confer-
ence on Soft Computing Technology in Civil, Structural and Environmental Engineering,
Civil-Comp Press, Stirling, U.K.

Tsai, C.H. and Hsu, D.S. (1999), “Damage Diagnostics of Existing Reinforced Concrete Struc-
tures.’’ in Kumar, B. and Topping, B.H.V (Ed), Artificial Intelegence Applications in Civil and
Structural Engineering, Civil-Comp Press, Edinburgh, 85–92.

Vanik, M.W., Beck, J.L., and Au, S.K. (2000). “Bayesian probabilistic approach to structural
health monitoring.’’ Journal of Engineering Mechanics, 126(7), 738–745.

Wahab, M.M.A. and De Roeck, G. (1999), “Damage Detection in Bridges Using Modal Cur-
vatures: Application to a Real Damage Scenario.’’ Journal of Sound and Vibration, 226 (2),
217–235.

Wang, X., Hu, N., Fukunaga, H. and Yao Z.H. (2001), “Structural damage identification using
static test data and changes in frequencies.’’ Engineering Structures, 23(6), 610–621.

Welch, G. and Bishop, G. (2004), An Introduction to the Kalman Filter, UNC-Chapel Hill, TR
95-041, April 5, 2004.

Whitley, D. (1989), “The GENITOR Algorithm and Selective Pressure: Why Rank-Based Allo-
cation of Reproductive Trials is Best.’’ Proceedings of the Third International Conference on
Genetic Algorithms, George Mason University, June 4–7, 116–121.

Wu, Z. and Fujino, Y. (2006). “Special Issue: Structural Health Monitoring and Intelligient
Infrastrcutre.’’ Smart Materials and Structures, 14(3).

Yeung, W.T. and Smith, J.W. (2005). “Damage Detection in Bridges using Neural Networks for
Pattern Recognition of Vibration Signatures.’’ Engineering Structures, 27, 685–698.

Yoshida, I. and Sato, T. (2002). “Health Monitoring Algorithm by the Monte Carlo Filter Based
on Non-Gaussian Noise.’’ Journal of Natural Disaster Science, 20 (2), 101–107.

Yuen, K.V. and Katafygiotis, L.S. (2001). “Bayesian time-domain approach for modal updating
using ambient data.’’ Probabilistic Engineering Mechanics, 16(3), 219–231.

Yuen, K.V., Au, S.K. and Beck, J.L. (2004). “Two-stage structural health monitoring approach
for phase I benchmark studies.’’ Journal of Engineering Mechanics, 130(1), 16–33.

Yuen, K.V. and Katafygiotis, L. S. (2006). “Substructure identification and health moni-
toring using noisy response measurements only.’’ Computer-Aided Civil and Infrastructure
Engineering, 21(4), 280–291.

Yun, C.B. and Bahng, E.Y. (2000), “Substructural Identification Using Neural Networks.’’
Computer and Structures, 77(1), 41–52.

Yun, C.B. and Lee, H.-J. (1997). “Substructural Identification for Damage Estimation of
Structures.’’ J. Structural Safety, 19(1), 121–140.

Yun, C. B., and Shinozuka, M., (1980), “Identification of nonlinear structural dynamic system.’’
Journal of Structural Mechanics, ASCE, 8(2), 187–203.

Zhao, J. and DeWolf, T. (1999), “Sensitivity Study for Vibrational Parameters Used in Damage
Detection.’’ Journal of Structural Engineering, ASCE, 125 (4), 410–416.

© 2010 by Taylor and Francis Group, LLC

  



Structures and Infrastructures Series
Book Series Editor: Dan M. Frangopol

ISSN:1747–7735

Publisher: CRC/Balkema, Taylor & Francis Group

1. Structural Design Optimization Considering Uncertainties
Editors: Yiannis Tsompanakis, Nikos D. Lagaros & Manolis Papadrakakis
2008
ISBN:978-0-415-45260-1 (Hb)

2. Computational Structural Dynamics and Earthquake Engineering
Editors: Manolis Papadrakakis, Dimos C. Charmpis,
Nikos D. Lagaros & Yiannis Tsompanakis
2008
ISBN: 978-0-415-45261-8 (Hb)

3. Computational Analysis of Randomness in Structural Mechanics
Christian Bucher
2009
ISBN: 978-0-415-40354-2 (Hb)

4. Frontier Technologies for Infrastructures Engineering
Editors: Shi-Shuenn Chen & Alfredo H-S. Ang
2009
ISBN: 978-0-415-49875-3 (Hb)

5. Damage Models and Algorithms for Assessment of Structures
under Operating Conditions
Siu-Seong Law and Xin-Qun Zhu
ISBN: 978-0-415-42195-9 (Hb)

6. Structural Identification and Damage Detection using Genetic Algorithms
Chan Ghee Koh and Michael John Perry
ISBN: 978-0-415-46102-3 (Hb)

© 2010 by Taylor and Francis Group, LLC


	Cit p_4:1: 
	Cit p_14:1: 
	Cit p_10:1: 
	Cit p_9:1: 
	Cit p_2:1: 
	Cit p_12:1: 
	Cit p_21:1: 
	Cit p_22:1: 
	Cit p_38:1: 
	Cit p_38:2: 
	Cit p_23:1: 
	Cit p_32:1: 
	Cit p_25:1: 
	Cit p_35:1: 
	Cit p_19:1: 
	Cit p_35:2: 
	Cit p_20:1: 
	Cit p_20:2: 
	Cit p_36:1: 
	Cit p_36:2: 
	Cit p_61:1: 
	Cit p_53:1: 
	Cit p_45:1: 
	Cit p_61:2: 
	Cit p_54:1: 
	Cit p_47:1: 
	Cit p_47:2: 
	Cit p_57:1: 
	Cit p_50:1: 
	Cit p_50:2: 
	Cit p_58:1: 
	Cit p_43:1: 
	Cit p_59:1: 
	Cit p_59:2: 
	Cit p_52:1: 
	Cit p_44:1: 
	Cit p_60:1: 
	Cit p_52:2: 
	Cit p_76:1: 
	Cit p_68:1: 
	Cit p_76:2: 
	Cit p_77:1: 
	Cit p_69:1: 
	Cit p_70:1: 
	Cit p_78:1: 
	Cit p_63:1: 
	Cit p_71:1: 
	Cit p_79:1: 
	Cit p_80:1: 
	Cit p_64:1: 
	Cit p_81:1: 
	Cit p_73:1: 
	Cit p_74:1: 
	Cit p_66:1: 
	Cit p_66:2: 
	Cit p_67:1: 
	Cit p_83:1: 
	Cit p_103:1: 
	Cit p_92:1: 
	Cit p_104:1: 
	Cit p_93:1: 
	Cit p_85:1: 
	Cit p_93:2: 
	Cit p_94:1: 
	Cit p_95:1: 
	Cit p_96:1: 
	Cit p_88:1: 
	Cit p_97:1: 
	Cit p_101:1: 
	Cit p_90:1: 
	Cit p_98:1: 
	Cit p_99:1: 
	Cit p_127:1: 
	Cit p_119:1: 
	Cit p_121:1: 
	Cit p_113:1: 
	Cit p_122:1: 
	Cit p_114:1: 
	Cit p_106:1: 
	Cit p_123:1: 
	Cit p_115:1: 
	Cit p_107:1: 
	Cit p_123:2: 
	Cit p_124:1: 
	Cit p_125:1: 
	Cit p_109:1: 
	Cit p_110:1: 
	Cit p_110:2: 
	Cit p_126:1: 


