

Structural Geology Algorithms

Vectors and Tensors

State-of-the-art analysis of geological structures has become increasingly quantitative, but tradition-

ally, graphical methods are used in teaching and in textbooks. Now, this innovative lab book provides

a unified methodology for problem solving in structural geology using linear algebra and computa-

tion. Assuming only limited mathematical training, the book builds from the basics, providing the

fundamental background mathematics, and demonstrating the application of geometry and kine-

matics in geoscience without requiring students to take a supplementary mathematics course.

Starting with classic orientation problems that are easily grasped, the authors then progress to

more fundamental topics of stress, strain, and error propagation. They introduce linear algebra

methods as the foundation for understanding vectors and tensors. Connections with earlier material

are emphasized to allow students to develop an intuitive understanding of the underlying mathematics

before introducing more advanced concepts. All algorithms are fully illustrated with a comprehensive

suite of online MATLAB
® functions, which build on and incorporate earlier functions, and which also

allow users to modify the code to solve their own structural problems.

Containing 20 worked examples and over 60 exercises, this is the ideal lab book for advanced

undergraduates or beginning graduate students. It will also provide professional structural geologists

with a valuable reference and refresher for calculations.

R ICHARD W. ALLMENDINGER is a structural geologist and a professor in the Earth and

Atmospheric Sciences Department at Cornell University. He is widely known for his work on thrust

tectonics and earthquake geology in South America, where much of his work over the past three

decades has been based, as part of the Cornell Andes Project. Professor Allmendinger is the author of

more than 100 publications and numerous widely used structural geology programs forMacs and PCs.

NESTOR CARDOZO is a structural geologist and an associate professor at theUniversity of Stavanger,

Norway, where he teaches undergraduate and graduate courses on structural geology and its appli-

cation to petroleum geosciences. He has been involved in several multidisciplinary research projects to

realistically include faults and their associated deformation in reservoir models. He is the author of

several widely used structural geology and basin analysis programs for Macs.

DONALD M. F I SHER is a structural geologist and professor at Penn State University, where he leads

a structural geology and tectonics research group. His research on active structures, strain histories,

and deformation along convergent plate boundaries has taken him to field areas in Central America,

Kodiak Alaska, northern Japan, Taiwan, and offshore Sumatra. He has been teaching structural

geology to undergraduate and graduate students for more than 20 years.

STRUCTURAL GEOLOGY ALGORITHMS

VECTORS AND TENSORS

R I C H A R D W . A L LM E ND I N G E R

Cornell University, USA

N E S T O R C A R D O Z O

University of Stavanger, Norway

DON A L D M . F I S H E R

Pennsylvania State University, USA

CAMBR IDGE UN IVERS I TY PRES S

Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9781107012004

© Richard W. Allmendinger, Nestor Cardozo and Donald M. Fisher 2012

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

Internal book layout follows a design by G. K. Vallis

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

Allmendinger, Richard Waldron.

Structural geology algorithms : vectors and tensors / Richard W. Allmendinger,

Nestor Cardozo, Donald M. Fisher.

p. cm.

ISBN 978-1-107-01200-4 (hardback) – ISBN 978-1-107-40138-9 (pbk.)

1. Geology, Structural – Mathematics. 2. Rock deformation – Mathematical models.

I. Cardozo, Nestor. II. Fisher, Donald M. III. Title.

QE601.3.M38A45 2011

551.80105181–dc23

2011030685

ISBN 978-1-107-01200-4 Hardback

ISBN 978-1-107-40138-9 Paperback

Additional resources for this publication at www.cambridge.org/allmendinger

Cambridge University Press has no responsibility for the persistence or

accuracy of URLs for external or third-party internet websites referred to

in this publication, and does not guarantee that any content on such

websites is, or will remain, accurate or appropriate.

Contents

Preface page ix

1 Problem solving in structural geology 1

1.1 Objectives of structural analysis 1

1.2 Orthographic projection and plane trigonometry 3

1.3 Solving problems by computation 6

1.4 Spherical projections 8

1.5 Map projections 18

2 Coordinate systems, scalars, and vectors 23

2.1 Coordinate systems 23

2.2 Scalars 25

2.3 Vectors 25

2.4 Examples of structure problems using vector operations 34

2.5 Exercises 43

3 Transformations of coordinate axes and vectors 44

3.1 What are transformations and why are they important? 44

3.2 Transformation of axes 45

3.3 Transformation of vectors 48

3.4 Examples of transformations in structural geology 50

3.5 Exercises 65

4 Matrix operations and indicial notation 66

4.1 Introduction 66

4.2 Indicial notation 66

4.3 Matrix notation and operations 69

4.4 Transformations of coordinates and vectors revisited 77

4.5 Exercises 79

v

5 Tensors 81

5.1 What are tensors? 81

5.2 Tensor notation and the summation convention 82

5.3 Tensor transformations 85

5.4 Principal axes and rotation axis of a tensor 88

5.5 Example of eigenvalues and eigenvectors in structural geology 91

5.6 Exercises 97

6 Stress 98

6.1 Stress “vectors” and stress tensors 98

6.2 Cauchy’s Law 99

6.3 Basic characteristics of stress 104

6.4 The deviatoric stress tensor 112

6.5 A problem involving stress 113

6.6 Exercises 119

7 Introduction to deformation 120

7.1 Introduction 120

7.2 Deformation and displacement gradients 121

7.3 Displacement and deformation gradients in three dimensions 125

7.4 Geological application: GPS transects 128

7.5 Exercises 132

8 Infinitesimal strain 135

8.1 Smaller is simpler 135

8.2 Infinitesimal strain in three dimensions 138

8.3 Tensor shear strain vs. engineering shear strain 140

8.4 Strain invariants 141

8.5 Strain quadric and strain ellipsoid 142

8.6 Mohr circle for infinitesimal strain 143

8.7 Example of calculations 144

8.8 Geological applications of infinitesimal strain 147

8.9 Exercises 164

9 Finite strain 165

9.1 Introduction 165

9.2 Derivation of the Lagrangian strain tensor 166

9.3 Eulerian finite strain tensor 167

9.4 Derivation of the Green deformation tensor 167

9.5 Relations between the finite strain and deformation tensors 168

9.6 Relations to the deformation gradient, F 169

9.7 Practical measures of strain 170

9.8 The rotation and stretch tensors 173

9.9 Multiple deformations 176

9.10 Mohr circle for finite strain 176

9.11 Compatibility equations 178

9.12 Exercises 180

vi Contents

10 Progressive strain histories and kinematics 183

10.1 Finite versus incremental strain 183

10.2 Determination of a strain history 199

10.3 Exercises 213

11 Velocity description of deformation 217

11.1 Introduction 217

11.2 The continuity equation 218

11.3 Pure and simple shear in terms of velocities 219

11.4 Geological application: Fault-related folding 220

11.5 Exercises 252

12 Error analysis 254

12.1 Introduction 254

12.2 Error propagation 255

12.3 Geological application: Cross-section balancing 256

12.4 Uncertainties in structural data and their representation 266

12.5 Geological application: Trishear inverse modeling 270

12.6 Exercises 279

References 281

Index 286

Contents vii

Preface

Structural geology has been taught, largely unchanged, for the last 50 years ormore. The lecture

part of most courses introduces students to concepts such as stress and strain, as well as more

descriptivematerial like fault and fold terminology. The lab part of the course usually focuses on

practical problem solving,mostly traditionalmethods for describing quantitatively the geometry

of structures. While the lecture may introduce advanced concepts such as tensors, the lab

commonly trains the student to use a combination of graphical methods, such as orthographic

or spherical projection, and a variety of plane trigonometry solutions to various problems. This

leads to a disconnect between lecture concepts that require a very precise understanding of

coordinate systems (e.g., tensors) and lab methods that appear to have no common spatial or

mathematical foundation. Students have no chance to understand that, for example, seemingly

unconnected constructions such as down-plunge projections and Mohr circles share a common

mathematical heritage: They are both graphical representations of coordinate transformations.

In fact, it is literally impossible to understand the concept of tensors without understanding

coordinate transformations. And yet, we try to teach students about tensors without teaching

them about the most basic operations that they need to know to understand them.

The basic math behind all of these seemingly diverse topics consists of linear algebra and

vector operations. Many geology students learn something about vectors in their first two

semesters of college math, but are seldom given the opportunity to apply those concepts in

their chosen major. Fewer students have learned linear algebra, as that topic is often reserved

for the third or fourth semester math. Nonetheless, these basic concepts needed for an intro-

ductory structural geology course can easily be mastered without a formal course; we assume

no prior knowledge of either. On one level, then, this book teaches a consistent approach to a

subset of structural geology problems using linear algebra and vector operations. This subset

of structural geology problems coincides with those that are usually treated in the lab portion

of a structural geology course.

The linear algebra approach is ideally suited to computation. Thirty years after the wide-

spread deployment of personal computers, most labs in structural geology teach students

increasingly arcane graphical methods to solve problems. Students are taught the operations

needed to solve orientation problems on a stereonet, but that does not teach them the

ix

mathematics of rotation. Thus, a stereonet, either digital or analog version, is nothing more

than a graphical black box. When the time comes for the student to solve a more involved

problem – say, the rotation of principal stresses into a fault plane coordinate system – how will

they know how to proceed? Thus, on another level, one can look at this book as a structural

geology lab manual for the twenty-first century, one that teaches students how to solve prob-

lems by computation rather than by graphical manipulation.

The concept of a twenty-first century lab manual is important because this book is not a

general structural geology text. We make no attempt to provide an understanding of deforma-

tion, ratherwe focus on how to describe and analyze structures quantitatively. Nonetheless, the

background and approach is common to that of modern continuummechanics treatments. As

such, the book would make a fine accompaniment to recent structural texts such as Pollard &

Fletcher (2005) or Fossen (2010).

Chapter 1 provides an overview of problem solving in structural geology and presents some

classical orientation problems commonly found in the lab portion of a structural geology course.

Throughout the chapter (and the book) we make only a brief attempt to explain why a student

might want to carry out a particular calculation; instead we focus on how to solve it. Chapters 2

and 3 focus on the critically important topic of coordinate systems and coordinate transforma-

tions. These topics are essential to the understanding of vectors and tensors. Chapter 4 presents

a review (for some students, at least) of basic matrix operations and indicial notation, shorthand

that makes it easy to see the essence of an operation without getting bogged down in the details.

Then, in Chapter 5, we address head on the topic of what, exactly, is a tensor as well as essential

operations for analyzing tensors. With this background, we venture on to stress in Chapter 6 and

deformation in Chapters 7 to 11. In the final chapter, we address a topic that all people solving

problems quantitatively should knowhow to do: error analysis. All chapters are accompanied by

well-known examples from structural geology, as well as exercises that will help students grasp

these operations. Allmendinger was the principal author of chapters 1–9, Cardozo of chapters

11–12, and Fisher of chapter 10. All authors contributed algorithms, which were implemented in

MATLAB® by Cardozo. Any bug reports should be sent to him.

Many of the exercises involve computation, which is the ideal way to learn the linear algebra

approach. Someof the exercises in the earlier chapters can be solved using a spreadsheet program,

but, as the exercises get more complicated and the programs more complex, we clearly need a

more functional approach. Throughout the book, we provide code snippets that follow the syntax

ofMATLAB® functions.MATLAB is a popular scientific computing platform that is specifically oriented

towards linear algebra operations. MATLAB is an interpreted language (i.e., no compilation needed)

that is easy to program, and from which results are easily obtained in numerical and graphical

form. Teaching the basic syntax of MATLAB is beyond the scope of this book, but the basic concepts

should be familiar to anyone who is conversant with any programming language. The first author

programs in FORTRAN and the second in Objective C, however, neither has trouble reading the

MATLAB code. Additionally, the code snippets are richly commented to help even the novice reader

capture the basic approach. Many of these code snippets come directly from programs by the first

two authors, which arewidely used by structural geologists. Thus, on a third level, this book can be

viewed as a sort of “Numerical Recipes” (Press et al., 1986) for structural geology.

Many colleagues and students have helped us to learn these methods and have influenced

our own teaching of these topics. Foremost among them is Win Means, whose own little book,

Stress and Strain (Means, 1976), unfortunately now out-of-print, was the first introduction that

many of our generation had to this approach. Win was kind enough to read an earlier copy of

this manuscript. Allmendinger was first introduced to thesemethods through a class that used

Nye’s excellent and concise treatment (Nye, 1985). Classes, and many discussions, with Ray

x Preface

Fletcher, Arvid Johnson, and David Pollard about structural geology were fundamental to

forming his worldview. We thank generations of our students and colleagues who have learned

these topics from us and have, through painful experience, exposed the errors in our problem

sets and computer code. Allmendinger would especially like to thank Ben Brooks, Trent

Cladouhos, Ernesto Cristallini, Stuart Hardy, Phoebe Judge, Jack Loveless, Randy Marrett, and

Alan Zehnder for sharing many programming adventures. He is particularly grateful to the US

National Science Foundation for supporting his research over the years, much of which led to

the methods described here. Cardozo would like to thank Alvar Braathen, Haakon Fossen, and

Jan Tveranger for their interest in the description and modeling of structures, and Sigurd

Aanonsen for introducing inverse problems. Our families have suffered, mostly silently, with

our long hours spent programming, not to mention in preparation of this manuscript.

Preface xi

CHAPTER

ONE

Problem solving in structural geology

1.1 OBJECTIVES OF STRUCTURAL ANALYSIS

In structural analysis, a fundamental objective is to describe as accurately as possible the

geological structures in which we are interested. Commonly, we want to quantify three types

of observations.

Orientations are the angles that describe how a line or plane is positioned in space. We

commonly use either strike and true dip or true dip and dip direction to define planes, and trend

and plunge for the orientations of lines (Fig. 1.1). The trend of the true dip is always at 90� to the

strike, but the true dip is not the only angle that we can measure between the plane and the

horizontal. An apparent dip is any angle between the plane and the horizontal that is not

measured perpendicular to strike. For example, the angle labeled “plunge” in Figure 1.1 is

also an apparent dip because line A lies in the gray plane. Strike, dip direction, and trend are

all horizontal azimuths, usually measured with respect to the geographic north pole of the

Earth. Dip and plunge are vertical angles measured downwards from the horizontal. Where a

line lies in an inclined plane, we also use a measure known as the rake or the pitch, which is the

angle between the strike direction and the line. There are few things more fundamental to

structural geology than the accurate description of these quantities.

Whereas orientations are described using angles only, magnitudes describe how big, or

small, the quantity of interest is. Magnitudes are, essentially, dimensions and thus have units

of length, area, or volume. Some examples of magnitudes include the amplitude of a fold, the

thickness of a bed, the length of a stretched cobble in a deformed conglomerate, the area of

rupture during an earthquake, or the width of a vein. With magnitudes, size matters, whereas

with orientations it does not.

The third type of observation compares both orientation and magnitude of something at

two different times. The difference between an initial and a final state is known as deformation.

Determining deformation involves measuring the feature in the final state and making

1

inferences about its size, position, and orientation in the initial state. Deformation is commonly

broken down into translation, rotation, and strain (or distortion) and each can be analyzed

separately (Fig. 1.2), although when strains are large the sequence in which those effects are

analyzed is important.

To determine orientations, magnitudes, or deformations, we need to make measurements.

All measurements have some degree of uncertainty : is the length of that deformed cobble

10.0 or 10.3 cm? Is the strike of bedding on the limb of a fold 047� or 052�? In structural

geology, themeasurements that wemake of natural, inherently irregular objects usually have a

high degree of uncertainty. Typically, uncertainties, or errors, are estimated bymakingmultiple

measurements and averaging the result. However, we often want to calculate a quantity based

on measurements of different quantities. Error propagation allows us to attach meaningful

uncertainties to calculated quantities; this important operation is the subject of Chapter 12.

A complete structural analysis, of course, involves much more than just orientations,

magnitudes, and deformations. These quantities tell us the “what” but not the “why.” They

may tell us that the rocks surrounding pyrite grains and curved pressure shadows suffered a

rotation of 37� and a stretch of 2, but they tell us nothing about why the deformation occurred

nor, for example, why the rocks surrounding the pyrite changed shape continuously whereas

the pyrite itself did not deform at all. Nor does the fact that a thrust belt was shortened

Figure 1.1 Three-dimensional perspective diagram showing the definition of typical

structural geology terms. Strike and dip give the orientation of the gray plane with

respect to geographic north (N) and the horizontal. Trend and plunge describe the

orientation of line A. Because line A lies within the gray plane, we can specify the rake,

the angle that the line makes with respect to the strike of the plane. The pole or normal

vector is perpendicular to the plane. Note that because dip andplunge aremeasured from

the horizontal, there is an implicit sign convention that down is positive and up negative.

2 Problem solving in structural geology

horizontally by 50% tell us anything about why the thrust belt formed in the first place. This

complete understanding of structures is beyond the scope of this book, but the reader should

never lose sight of the fact that accurate description based onmeasurements and their errors is

just one aspect of a modern structural analysis.

1.2 ORTHOGRAPHIC PROJECTION AND PLANE TRIGONOMETRY

The methods we use to describe structures serve another purpose besides just providing an

answer to a problem: They help us visualize complex, three-dimensional forms, thereby giving

us a better intuitive understanding. Thus, many structural methods are graphical in nature, or

are simple plane trigonometry solutions that have been derived from graphical constructions.

Maps and cross sections constitute some of our most basic ways of graphically representing

structural data and interpretations. Simpler graphical constructions using folding lines, front,

side, and top views, etc. help us to visualize structures in three dimensions (Fig. 1.3). Until the

1980s,most structural geologists did not have knowledge of, or access to, the computing power

needed to analyze complicated structural problems in any way except via graphical methods.

Graphical methods, including spherical projection, were necessary to reduce complex

three-dimensional geometries to two-dimensional sheets of paper.

Beginning structural geology students typically learn two types of graphical constructions:

orthographic and spherical projections. In orthographic projection, one views the simple three-

dimensional geometries as if they formed the sides of a box. Because one can onlymeasure true

angleswith a protractorwhen looking perpendicularly downon the surface inwhich they occur,

the sides of the box have to be unfolded before one can measure the angles of interest.

Consider the problem depicted in Figure 1.3: The gray plane has a strike, a true dip, δ,

measured in a direction perpendicular to the strike, and an apparent dip, α, in a different

direction. If one knows two out of the three quantities – the strike, true dip, and apparent dip –

one can determine the third quantity. In orthographic projection, the true dip direction and the

apparent dip direction are used as folding lines; they are literally like the creases on an unfolded

Figure 1.2 The three components of

deformation – (a) translation, (b) rotation, and

(c) strain – all require the comparison of an

initial and a final state.

1.2 Orthographic projection and plane trigonometry 3

cardboard box. By folding up the sides so that the top and the two sides all lie in the same plane,

one can simply measure with a protractor whichever angle is needed.

The orthographic projection also provides the geometry necessary for deriving a simple

trigonometric relationship that allows us to solve for the angle of interest by introducing a new

angle from the top of the block (Fig. 1.3b): the angle between the strike and the apparent dip

direction, β. Edge b of the top of the block is equal to

b ¼ h

tanδ

The edge between the top and side 2, a is

a ¼ b

sinβ
¼ h

tanδ sinβ

(a)

h

h

b

(b)

a

h

h

Figure 1.3 (a) Block diagram and (b) orthographic projection illustrating a graphical

approach to the apparent dip problem. The dashed lines corresponding to the true

and apparent dip directions are folding lines along which sides 1 and 2 have been

folded up to lie in the same plane as the top of the block. h is the height of the block,

which is the same everywhere along the strike line. δ;α, and β are the true dip, apparent

dip, and angle between the strike and apparent dip directions, respectively.

4 Problem solving in structural geology

And, from side 2 we get

a ¼ h

tanα

Thus, using plane trigonometry, we can write the equation for the apparent dip:

tanδ sinβ ¼ tanα (1:1)

where δ is the true dip, β the angle between the strike and the apparent dip direction, andα the

apparent dip. Plane trigonometry works very well for simple problems but is more cumber-

some, or more likely impossible, for more complex problems.

A different approach, which has the flexibility to handle more difficult computations, is

spherical trigonometry. To visualize this situation, imagine that the plane in which we are

interested intersects the lower half of a sphere (Fig. 1.4) rather than a box. In general, with

power comes complexity, and spherical trigonometry is no exception. To calculate the apparent

Figure 1.4 (a) Perspective view of a

plane intersecting the lower half of a

sphere. The angular relations are the

same as those shown in Figure 1.3.

The intersection of a sphere with any

plane that goes through its center is a

great circle. (b) Same geometry as in (a)

but viewed from directly overhead as

if one were looking down into the bowl

of the lower hemisphere. View (b) was

constructed using a stereographic

projection. γ is the angle between true

and apparent dip directions and other

symbols are as in Figure 1.3.

1.2 Orthographic projection and plane trigonometry 5

dip, onemust realize that, for the right spherical triangle shown (Fig. 1.4b), we know two angles

(γ, which is the difference between the true and apparent dip directions, and the angle 90

because it is a true dip) and the included side (90 � the true dip δ). Thus, we can calculate the

other side of the triangle (90 � the apparent dip α) from the following equation:

cosγ ¼ tan 90� δð Þ � cot 90�αð Þ (1:2)

A problem with both trigonometric methods is that one must guard against a multitude of

special cases such as taking the tangent of 90�, the sign changes associatedwith sine and cosine

functions, etc. On amore basic level, they give one little insight into the physical nature of what

it is we are trying to determine. For most people, they are merely formulas associated with a

complex geometric construction. And, the mathematical solution to this problem bears no

obvious relation to other, more complicated problems we might wish to solve in structural

geology.

1.3 SOLVING PROBLEMS BY COMPUTATION

One of the primary purposes of this book is to show you how to solve problems in structural

geology by computation. There are many reasons for this emphasis: As a practicing geologist,

you will use computer programs written by other people most of your professional life, so you

should know how those programs work. Furthermore, computation is an important skill for

any modern research scientist and allows you to solve problems that others cannot. Most

importantly, the language of computation is linear algebra, and linear algebra is fundamental

to developing a complete understanding of structures and continuum mechanics.

There are lots of different choices of computer platform and language that one couldmake.

Perhaps simplest would be the humble spreadsheet program. In fact, many of the calculations

that we ask you to do early in the book can easily be done in a spreadsheet program without

even using its programming language (Visual Basic in the case of the popular program Excel).

However, when you get to more complicated programs, spreadsheets are inadequate. Most

commercial software these days is written in C, C++, or a variety of other platforms. In those

programs, implementing the interface – that is, the windows, menus, drawing, dialog boxes,

and so on – commonly takes up 95% ormore of the lines of code. In this book, however, we want

you to focus on the scientific algorithms rather than the interface.

Thus, we have chosen to illustrate this approach using the commercial software package,

MATLAB®. Many universities now teach computer science and scientific computing usingMATLAB,

and many research geologists use MATLAB as their computing platform of choice. Because

MATLAB is an interpreted language, it removes much of the fussiness of traditional compiled

languages such as FORTRAN, Pascal, and C among amyriad of others. MATLAB also allows you to

get results conveniently without worrying about the interface. Youwill be introduced toMATLAB

in the next section, so we wanted to say a few general words about programming and syntax

here.

First, programming languages, including spreadsheets and MATLAB, do trigonometric

calculations in radians, not degrees. The relationship between radians and degrees is

1 radian ¼ 180�

p

¼ 57:2957795131�

1� ¼ p

180
¼ 0:0174532925 radians

(1:3)

6 Problem solving in structural geology

The four points of the compass – N, E, S, and W – can be defined in radians quite easily:

North 0� ¼ 0 radians ¼ 360� ¼ 2p radians

East ¼ 90� ¼ p

2
radians

South ¼ 180� ¼ p radians

West ¼ 270� ¼ 3p

2
radians

(1:4)

Second, any good computer code should have explanatory comments that tell the reader

what the program is doing and why. Comments are for humans and are totally ignored by the

computer. In all computer languages, a special character precedes comments; in MATLAB, that

character is %, the percent character. We have tried to use comments liberally in this book to

help you understand what is going on in the functions we provide.

In all computer programs, the things to be calculated are held in variables. Variables can

hold a single number, but they can also hold more complicated groups of numbers called

arrays. The best way to think about arrays is that they represent a list of related data (in one

dimension) or a table of related data in two dimensions. Mathematically, arrays are matrices.

When one has their data in an array, repetitive calculations can be made very easily via

what are known as loops. Let’s say we need to add together 25 random numbers. We could

write

x1 + x2 + x3 + x4 + x5 + x6 + x7 + … + x22 + x23 + x24 + x25

Alternatively, one can do this calculation using an array and a loop:

x = randn(1,25); %x is an array of 25 random numbers

Sum = 0; %Initialize a variable to hold the sum of the array elements

for i=1:25 %Start of the loop. i starts at 1 and ends at 25

Sum = Sum + x(i); %Add the current value x(i) to Sum

end %End of the loop

We will see later on in the book that the arrays and loops are what make the marriage of

computing and linear algebra so seamless. Though the above example is trivial, arrays and

loops will really help when we get to something like a tensor transformation that involves nine

equations with nine terms each!

In computer programs, we can also select at run-time which operations or block of code

are executed. We do this through the if control statement. Suppose we want to add the

even but subtract the odd elements of array x. We can do this by modifying the loop above as

follows:

for i=1:25 %Start of the loop. i starts at 1 and ends at 25

if rem(i,2) == 0 %Start if statement. If remainder i/2=zero (i.e., even)

Sum = Sum + x(i); %Add even element to Sum

else %Else if odd element

Sum = Sum - x(i); %Subtract odd element from Sum

end %End of if statement

end %End of the loop

Finally (for now), manymulti-step calculations are repeatedly used in a variety of contexts. Just

as the tangent is used in both Equations 1.1 and 1.2, you can imagine more complicated

calculations being used multiple times with different values. All programming languages

1.3 Solving problems by computation 7

have a variety of built-in functions, including trigonometric functions. The above code snippets

use two such built-in functions: randn, which assigns random numbers to the array x, and rem,

which determines the remainder of a division by an integer. Programmingmakes it easy towrite

your code in modular snippets that can be reused. You will see multiple examples in this book

where one chunk of code, called a function in MATLAB and a function or subroutine in other

languages, calls another chunk of code. Table 1.1 lists all of the MATLAB functions written

especially for this book and shows which functions call, or are called by, other functions. All

the functions follow the MATLAB help syntax. To get information about one of the functions, for

example function StCoordLine, just type in MATLAB: help StCoordLine

1.4 SPHERICAL PROJECTIONS

The image in Figure 1.4b is known as a spherical projection, which is an elegant way of

representing angular relationships on a sphere on a two-dimensional piece of paper. It should

not be surprising that spherical projections are closely related to map projections, with the

exception that in structural geology we use the lower hemisphere, as shown in Figure 1.4,

whereas map projections use the upper hemisphere. Spherical projections are one of the

most published types of plots in structural geology. They are used to carry out angular

calculations such as rotations, apparent dip problems, and so on, as well as to present orienta-

tion data in papers and reports. Visualizing “stereonets,” as they are commonly called, is one of

the most important tasks a structural geology student can learn.

1.4.1 Data formats in spherical coordinates

Before diving in to stereonets, however, we need to examine briefly how orientations are

generally specified in spherical coordinates (Fig. 1.5). In North America, planes are com-

monly recorded using their strike and dip. But, the strike can correspond to either of two

30°
45°

Plane 1 Format Plane 2

N 15 E, 45 W Quadrant N 15 E, 30 E

015, 45 W Azimuth 015, 30 E

195, 45 Right-hand Rule 015, 30

285, 45 Dip direction & Dip 105, 30

ra
ke

N
15°

Figure 1.5 Common data formats for two planes that share the same strike but dip in

opposite directions. Plane 1 is dark gray and plane 2 light gray. We do not recommend

the quadrant format!

8 Problem solving in structural geology

Chapter Function Description Called by Calls Function(s)

1 StCoordLine Coordinates of a line in an equal angle or equal

area stereonet of unit radius

GreatCircle, SmallCircle,

Bingham, PTAxes

ZeroTwoPi

1 ZeroTwoPi Constrains azimuth to lie between 0 and 2 radians StCoordLine, CartToSph, Pole,

SmallCircle, GeogrToView,

Bingham, InfStrain

2 SphToCart Converts from spherical to Cartesian

coordinates

CalcMV, Angles, Pole, Rotate,

GeogrToView, Bingham, Cauchy,

DirCosAxes, PTAxes

2 CartToSph Converts from Cartesian to spherical

coordinates

CalcMV, Angles, Pole, Rotate,

GeogrToView, Bingham,

PrincipalStress, ShearOnPlane,

InfStrain, PTAxes,FinStrain

ZeroTwoPi

2 CalcMV Calculates the mean vector for a given series of

lines

SphToCart CartToSph

2 Angles Calculates the angles between two lines, between

two planes, etc.

SphToCart, CartToSph, Pole

2 Pole Returns the pole to a plane or the plane that

correspond to a pole

Angles, GreatCircle, Stereonet ZeroTwoPi, SphToCart,

CartToSph

3 DownPlunge Constructs the down plunge projection of a bed

3 Rotate Rotates a line by performing a coordinate

transformation

GreatCircle, SmallCircle SphToCart, CartToSph

3 GreatCircle Computes the great circle path of a plane in an

equal angle or equal area stereonet of unit

radius

Stereonet, Bingham, PTAxes StCoordLine, Pole, Rotate

3 SmallCircle Computes the paths of a small circle defined by its

axis and cone angle, for an equal angle or equal

area stereonet of unit radius

Stereonet ZeroTwoPi, StCoordLine,

Rotate

3 GeogrToView Transforms a line from NED to view direction Stereonet ZeroTwoPi, SphToCart,

CartToSph

3 Stereonet Plots an equal angle or equal area stereonet of unit

radius in any view direction

Bingham, PTAxes Pole, GeogrToView,

SmallCircle, GreatCircle

4 MultMatrix Multiplies two conformable matrices

4 Transpose Calculates the transpose of a matrix

4 CalcCofac Calculates all of the cofactor elements for a

3 × 3 matrix

Determinant

4 Determinant Calculates the determinant and cofactors for a

3 × 3 matrix

Invert CalcCofac

(cont.)

Chapter Function Description Called by Calls Function(s)

4 Invert Calculates the inverse of a 3 × 3 matrix Determinant

5 Bingham Calculates and plots a cylindrical best fit to a pole

distribution

ZeroTwoPi, SphToCart, CartToSph,

Stereonet, StCoordLine,

GreatCircle

6 Cauchy Computes the tractions on an arbitrarily

oriented plane

ShearOnPlane DirCosAxes, SphToCart

6 DirCosAxes Calculates the direction cosines of a

right-handed, Cartesian coordinate

system of any orientation

Cauchy, PrincipalStress

TransformStress

SphToCart

6 TransformStress Transforms a stress tensor from old to new

coordinates

DirCosAxes

6 PrincipalStress Calculates the principal stresses and their

orientations

ShearOnPlane DirCosAxes, CartToSph

6 ShearOnPlane Calculates the direction and magnitudes

of the normal and shear tractions on an

arbitrarily oriented plane

PrincipalStress, Cauchy,

CartToSph

8 InfStrain Computes infinitesimal strain from an input

displacement gradient tensor

GridStrain CartToSph, ZeroTwoPi

8 PTAxes Computes the P and T axes from the

orientation of fault planes and their slip vectors

SphToCart, CartToSph, Stereonet,

GreatCircle, StCoordLine

8 GridStrain Computes the infinitesimal strain of a network of

stations with displacements in x and y

InfStrain

9 FinStrain Computes finite strain from an input

displacement gradient tensor

CartToSph

10 PureShear Computes displacement paths and progressive

finite strain history for pure shear

10 SimpleShear Computes displacement paths and progressive

finite strain history for simple shear

10 GeneralShear Computes displacement paths and progressive

finite strain history for general shear

10 Fibers Determines the incremental and finite strain

history of a fiber in a pressure shadow

11 FaultBendFold Plots the evolution of a simple step, Mode I fault-

bend fold

SuppeEquation

11 SuppeEquation Equation 11.8 for fault-bend folding FaultBendFold,

FaultBendFold Growth

11 SimilarFold Plots the evolution of a similar fold

11 FixedAxisFPF Plots the evolution of a simple step, fixed axis

fault-propagation fold
(cont.)

11 ParallelFPF SuppeEquationTwo

Chapter Function Description Called by Calls Function(s)

Plots the evolution of a simple step, parallel

fault-propagation fold

11 SuppeEquation

Two

Equation 11.20 for parallel fault-propagation

folding

ParallelFPF, Parallel

FPFGrowth

11 Trishear Plots the evolution of a 2D trishear fault-

propagation fold

VelTrishear

11 VelTrishear Symmetric, linear vx trishear velocity field Trishear, BackTrishear

11 FaultBendFold

Growth

Plots the evolution of a simple step, Mode I fault-

bend fold and adds growth strata

SuppeEquation

11 FixedAxisFPF

Growth

Plots the evolution of a simple step, fixed axis

fault-propagation fold and adds growth strata

11 ParallelFPF

Growth

Plots the evolution of a simple step, parallel fault-

propagation fold and adds growth strata

SuppeEquationTwo

11 TrishearGrowth Plots the evolution of a trishear fault-propagation

fold and adds growth strata

VelTrishear

12 BalCrossErr Computes shortening error in area balanced cross

sections

12 BedRealizations Generates realizations of a bed using a spherical

variogram and the Cholesky method

RMLMethod CorrSpher

12 CorrSpher Calculates correlation matrix for a spherical

variogram

BedRealizations

12 BackTrishear Retrodeforms bed for the given trishear

parameters and returns sum of square of

residuals

InvTrishear VelTrishear

12 InvTrishear Inverse trishear modeling using a constrained,

gradient-based optimization method

RMLMethod BackTrishear

12 RMLMethod Runs a Monte Carlo type, trishear inversion

analysis for a folded bed

BedRealizations,

InvTrishear

Table 1.1 List of MATLAB functions in the book

directions 180� apart, and dip direction must be fixed by specifying a geographic quadrant.

Some geologists use the quadrant format such as “N 37 W 43 SW” or “E 15 N 22 S” for

recording the strike and dip (Fig. 1.5). Though a charming anachronism, students should

always be encouraged to eschew this terminology and instead use “azimuth” notation by

citing an angle between zero and 360�, which is much less prone to error as well as being

easier to program. The same bearings as above, but in azimuth format, are “323�” and

“075�”; note that we always use three digits for horizontal azimuths to distinguish them

from vertical angles.

Two methods of recording the orientation of a plane avoid the ambiguity that arises from

dip direction. First, one can record the strike azimuth such that the dip direction is always

clockwise from it, a convention known as the right-hand rule. This tends to be the convention

of choice in North America because it is easy to determine using a standard Brunton

compass. A second method is to record the dip and dip direction, which is more common

in Europe where the Freiberg compass makes this measurement directly. Of course, the pole

also uniquely defines the plane, but it cannot be measured directly with either type of

compass.

Lines are generally recorded in one of twoways. Those associatedwith planes are commonly

recorded by their orientation with respect to the strike of the plane, that is, their pitch or rake

(Fig. 1.1). Although this way is commonly the most convenient in the field, it can lead to

considerable uncertainty if one is not careful because of the ambiguity in strike, mentioned

above, and the fact that pitch can be either of two complementary angles. We follow the

convention that the rake is always measured from the given strike azimuth. For example, the

southeast-plunging line in the northerly striking, east-dipping plane shown in Figure 1.5 would

have a rake of greater than 90� because the strike of the plane using the right-hand rule is 015�.
The second method – recording the trend and plunge directly – is completely unambiguous as

long as the lower hemisphere is always treated as positive. Vectors that point into the upper

hemisphere (e.g., paleomagnetic poles) can simply be given a negative plunge.

As for the conventions used in this book, unless explicitly stated otherwise, planes will be

given as strike and dip using the right-hand rule and lines will be given as trend and plunge,

with a negative plunge indicating a vector pointing upward.

1.4.2 Using stereonets

In the most common type of stereonet, the outermost circle, or primitive, corresponds to the

horizontal plane; it is the top edge of the bowl in Figure 1.4a. Compass azimuths, or horizontal

bearings, are measured along the primitive. To plot a vertical angle such as a dip or a trend, one

counts the degrees inward from the primitive (horizontal) towards the center of the net

(vertical) along one of the two straight lines in the net. On a stereonet plot, lines are represented

as points and planes trace out great circles (Fig. 1.4).

Bymeasuring angles downwards from the horizontal, structural geologists implicitly employ

a coordinate system in which down is positive. This is why structural geologists use a lower

hemisphere projection. The lower hemisphere stereonet is particularly well suited to standard

measurements made in the field with compass and clinometer. However, there is no reason why

the lower hemisphere must be used, or why the primitive must represent the horizontal.

Mineralogists, by convention, plot on the upper hemisphere, and the primitive can represent

any planar surface. For example, it is often instructive to plot structure data on a cross section

where the primitive represents the vertical plane of the section. The user or reader can then

immediately see whether the features being plotted lie in the plane (i.e., plot along the primitive)

12 Problem solving in structural geology

or are oblique to the plane of the section. The operation that makes this possible in modern

computer stereonet programs is the coordinate transformation, which we will see in Chapter 3.

Figure 1.6 illustrates the stereonet solution to the problem first introduced above in

Figure 1.3. Let’s say we know the strike and true dip of the plane (056�, 35� SE). One first rotates

the stereonet until its great circles parallel the strike of the desired plane (Fig. 1.5a). Note that the

geographic directions, N, E, S, W, do not rotate with the net because they are fixed to the

construction. Then, the true dip δ is measured inwards 35� from the primitive along the straight

line perpendicular to the great circles of the net. Finally, we draw the great circle that contains

Figure 1.6 Same angular relations as in

Figures 1.3 and 1.4 but now with the

background of a typical equal area

stereonet. To plot the plane of interest,

we rotate the net (a) so that the great

circles on the net are parallel to the

strike of the plane of interest. In (b) we

return the net so that its great circles

are aligned with geographic north.

Note the similarity of great circles with

lines of longitude and small circleswith

lines of latitude. Symbols are as in

Figures 1.3 and 1.4.

1.4 Spherical projections 13

both the strike and the true dip; because the true dip is 35� and the index great circles on the net

in Figure 1.6 are spaced10� apart, the great circle that represents our plane fallsmidwaybetween

the 30� and 40� index great circle. By restoring the net so that its great circles coincide with

geographic north, we can now determine the apparent dipα along the EW straight line: 21�. You
can verify that this is the correct answer by substituting the appropriate values into Equation 1.1.

Many structural geology lab manuals do an excellent job of describing step-by-step proce-

dures for carrying out a great many operations using stereonets (e.g., Marshak andMitra, 1988;

Ragan, 2009) and we will not repeat those instructions here. There is, however, one operation

that illustrates particularly well the power and limitations of stereonets for carrying out

structural calculations: rotation of data. A line rotated about a rotation axis sweeps out a cone

shape if the angle between the line and axis (the apical angle) is less than 90� (Fig. 1.7a inset)

Figure 1.7 Rotating planes and lines on a

stereonet. (a) Because the rotation axis is

horizontal and parallel to the strike of

bedding,we rotate the net so that its pole is

parallel to the strike. The cone shows how a

line oblique to the rotation axis sweeps out

a conical trace as it rotates; small circles are

conical sections on a sphere. (b) Same

diagram, with the net restored so that its

pole is parallel to the geographic poles.

14 Problem solving in structural geology

and sweeps out a plane if the angle is exactly 90�. The intersection of a sphere and a cone

with its apex at the center of the sphere is a small circle and, as mentioned before, the

intersection of a plane and the sphere is a great circle. This is, in fact, how computer stereonet

programs draw the small circles and great circles that form the net. They take a point on the

primitive at, say, 40� apical angle to the north–south axis and rotate it by equal increments

through 180� until it arrives at the other side of the net, thus “drawing” the small circle at 40� to
the pole. We will explore in more detail how to do this in Chapter 3, once we have developed an

efficient way to do rotations.

The important concept for now is that points rotated on a stereonet follow small circle

traces. Figure 1.7 shows bedding striking 056� and dipping 35� SE (same as before) but now we

have added a line with a trend and plunge of 020, 45, which might, for example, represent a

paleomagnetic pole measured in the rocks. For many reasons, we might want to see what the

orientation of the paleomagnetic pole would have been when the rocks were horizontal, some-

thing practitioners call a fold test. To rotate bedding and everything else back to horizontal we

define a horizontal rotation axis whose azimuth is parallel to the strike of bedding. Because the

beds dip 35�, a 35� rotation about the strike will return the beds to horizontal. On a paper

stereonet, we rotate the net with respect to the overlay until the great circles parallel the strike

of the plane (Fig. 1.7a).

Here, however, we need to introduce an important formalism about the sign of the rotation

and confront the ambiguity of the strike. By convention, positive rotations are clockwise when

looking in the direction of the given azimuth of the rotation axis, and negative when counter-

clockwise. The ambiguity arises because one can cite the strike as either 056� or 236� (that is,
180� away). Which do we use for the azimuth of our rotation axis? If you imagine looking in the

direction 056� (Fig. 1.7), you can see that a clockwise rotationwould produce a steeper dip, not a

shallower dip (i.e., zero). So, we can specify –35� rotation about 056�, or +35� about 236�. On the

stereonet, every point on the great circle that defines the planemoves 35� along the small circle

until it reaches the primitive (and the bedding is horizontal). The paleomagnetic pole also

moves 35� along the small circle that it occupies until it reaches the orientation that it would

have had prior to the tilting of the rocks (assuming, of course that the magnetism happened

before the folding!).

On a paper stereonet, one can only do rotations about horizontal axes because the small

circles are concentric about the poles of the net. We use the small circles to determine graphi-

cally how any point will rotate. This was fine in the above problem because strike lines are by

definition horizontal, but it creates headaches when rotation axes are not horizontal (or

vertical). To get some feeling for the contortions required for rotations about inclined axes on

paper stereonets, look at the description in any basic structure labmanual for how to determine

bedding dip from three drill holes! In Chapter 3, we will develop the equations for how to do

rotations about any axis.

1.4.3 How spherical projection works

As most practicing structural geologists now use a computer program to make spherical

projections, we should ask the question, how does the computer know where to plot our

precious data? Where on the x�y grid of a computer screen does the computer decide to plot

the point that corresponds to a line we have measured in the field? How do spherical projec-

tions actually work? Recall that the purpose of a projection is to take data on a sphere and

project them onto a two-dimensional piece of paper. There are two types of projections

commonly in use in structural geology: the equal angle and equal area projections.

1.4 Spherical projections 15

The equal angle projection – also called a stereographic projection or Wulff net – is the

simplest (Fig. 1.8a). We imagine that the viewer is at the top of the upper hemisphere looking

straight down into the bowl of the lower hemisphere. We see where a line with a plunge of �

pierces the bowl and draw a straight line between the eye of the viewer and the point on the

bowl. The point is plotted where that line of sight intersects the horizontal plane. The distance,

x, from the center of the net of radius R is given by

x ¼ R tan 45� �

2

� �

(1:5)

As you can see from Figure 1.8, this method of projection preserves angles perfectly and thus,

on the horizontal, degrees are equally spaced. The preservation of angles has a downside: areas

are distorted. Thus, for example, a ten by ten degree spherical cap plots as a smaller circle near

the center of the net but is distorted to a larger circle near the edges (Fig. 1.9a). Distortion of

areas was a significant problemwhen geologists tried to assess the density of points plotted on

the projection, as was necessary back in the days of paper stereonets.

To address the area issue, the equal area, or Schmidt, net was introduced to structural

geology (Fig. 1.8b). This construction produces point distributions that have the same density

on the sphere as on the projection. A line with a plunge of � plots a distance x from the center of

a net of radius R, where x is given by

x ¼ R
ffiffiffi

2
p

sin 45� �

2

� �

(1:6)

The square root of 2 is a scaling factor to ensure that the original sphere and the projection have

the same radius (Fig. 1.8b). The tradeoff, of course, is that angles are no longer preserved and

conic sections, including great circles and small circles, are no longer true circles but fourth

order quadrics (Fig. 1.9b). Because of the importance of analyzing concentrations of points,

Figure 1.8 The angular relations involved in calculating the two spherical projections

commonly used in structural geology: (a) equal angle (stereographic or Wulff)

projection, and (b) equal area (Schmidt) projection. The primitives of both projections

represent a vertical plane and thus these plots are perpendicular to a typical stereonet. R

is the desired radius of the projection. The angle � is the vertical angle we wish to plot

(e.g., a plunge or a dip). Circles are at 10� increments; along the horizontal, their spacing

is the same as it would be on a horizontal lower hemisphere projection.

16 Problem solving in structural geology

equal area nets have long been the stereonet of choice of the structural geologist. In reality, all

modern stereonet programs contour on the sphere rather than on the projection so assessing

densities is the same on both. Fortunately, the procedure to plot lines and planes is identical on

both types of projection.

TheMATLAB function StCoordLine below calculates Equations 1.5 and 1.6. It is followed by a

commonly used helper function ZeroTwoPiwhose sole purpose is to make sure that azimuths

are always between 0 and 360� (zero and 2p in radians).

function [xp,yp] = StCoordLine(trd,plg,sttype)

%StCoordLine computes the coordinates of a line

%in an equal angle or equal area stereonet of unit radius

%

% USE: [xp,yp] = StCoordLine(trd,plg,sttype)

%

% trd = trend of line

% plg = plunge of line

% sttype = An integer indicating the type of stereonet. 0 for equal angle

% and 1 for equal area

% xp and yp are the coordinates of the line in the stereonet plot

%

% NOTE: trend and plunge should be entered in radians

%

% StCoordLine uses function ZeroTwoPi

% Take care of negative plunges

if plg < 0.0

trd = ZeroTwoPi(trd+pi);

plg = -plg;

end

% Some constants

piS4 = pi/4.0;

Figure 1.9 (a) The equal angle or Wulff net; (b) the equal area or Schmidt net. In both

projections, spherical caps (small circles) of 10� radius have been plotted on various

parts of the net to show the effect of the projection on the size and shape of the circle.

Because both are lower hemisphere projections, a small circle that crosses the primitive

plots on the opposite side of the net.

1.4 Spherical projections 17

s2 = sqrt(2.0);

plgS2 = plg/2.0;

% Equal angle stereonet: From Equation 1.5 above

% Also see Pollard and Fletcher (2005), eq.2.72

if sttype == 0

xp = tan(piS4 - plgS2)*sin(trd);

yp = tan(piS4 - plgS2)*cos(trd);

% Equal area stereonet: From Equation 1.6 above

% Also see Pollard and Fletcher (2005), eq.2.90

elseif sttype == 1

xp = s2*sin(piS4 - plgS2)*sin(trd);

yp = s2*sin(piS4 - plgS2)*cos(trd);

end

end

function b = ZeroTwoPi(a)

%ZeroTwoPi constrains azimuth to lie between 0 and 2*pi radians

%

% b = ZeroTwoPi(a) returns azimuth b (from 0 to 2*pi)

% for input azimuth a (which may not be between 0 to 2*pi)

%

% NOTE: Azimuths a and b are input/output in radians

b=a;

twopi = 2.0*pi;

if b < 0.0

b = b + twopi;

elseif b >= twopi

b = b - twopi;

end

end

1.5 MAP PROJECTIONS

At first glance, the stereonet looks like our typical image of a globe and it has great circles and

small circles that look, and in fact are, identical to lines of longitude and latitude. The tradeoffs

we have just seen for stereonets – do we want to preserve areas or angles – are exactly those

confronted when we want tomake a flat map of a spherical body like the Earth. A full discussion

of map projections and their subtleties is well beyond the scope of this book and there are

excellent free sources of information available (Snyder, 1987). Nonetheless, given the importance

of maps to geologists, and given their similarities to stereonets, they merit a brief mention here.

1.5.1 Map datum and projection

Tomake amapof the Earth, or somepart of it, several considerationsmust be taken into account.

Of prime importance is the fact that the Earth is not a sphere but an ellipsoid; its radius is 21km

smaller at the poles than at the Equator. Nor is the Earth a perfect ellipsoid but an irregular one

that is best defined by the gravitational equipotential surface at sea level known as the geoid. The

geoid is the reference level for elevations, not the ideal ellipsoid, butmap coordinates are defined

18 Problem solving in structural geology

relative to an ideal ellipsoid. Because geoid anomalies deviate by no more than 100 m from an

ideal ellipsoid, the difference is very small. As measurements of the shape of the Earth have

improved over time, we have developed ellipsoids that more accurately represent the shape of

the Earth. An ellipsoid model for part of the Earth, or the entire Earth, has to be matched with a

datum, which is how you define horizontal position (latitude and longitude) and vertical eleva-

tion on the ellipsoid model. In the United States, we commonly use the 1980 Geodetic Reference

Systemellipsoid (GRS80), NorthAmericanDatumof1983 (NAD83) for the horizontal datum, and

the National Geodetic Vertical Datumof 1929. These are being supplanted by theWorld Geodetic

System 1984 standard (WGS84) with an ellipsoid slightly different than the GRS80 ellipsoid: The

polar radius in the WGS84 system is 0.1mm larger than that in GRS80!

The second major consideration is how to map the Earth to a flat surface. A developable

surface is one that can be flattened without distortion; there are three that form the basis for

most map projections (Fig. 1.10): a cylinder, a cone, or a plane (the first two, of course, must be

sliced before they can be laid flat). Spherical projections, like the ones described in the last

section, are projections onto a planar surface, sometimes also called azimuthal projections. For

that reason, they can only show, atmost, one hemisphere or the other. In addition to these types

of developable surfaces, map projections may be calculated to preserve shape and have the

Figure 1.10 The three types of developable surfaces and their use in map projections.

Within each category, there exist many different types of projections based on different

mathematical formulae.

1.5 Map projections 19

same scale in every direction locally (conformal), preserve area (equal area), show the correct

distance between a point at the center and any other point (equidistant), or show true directions

locally. Planar maps cannot be both conformal and equal area, nor can they be equal area and

equidistant. We see this in the case of our two structural projections: In the equal angle

Wulff net (Fig. 1.9a), circles are true circles everywhere (conformal) but they get larger with

distance from the center of the projection, even though they are the same area on the sphere

(not equal area). In the Schmidt net (Fig. 1.9b), areas are the same everywhere (equal area), but

true circles result only at the exact center of the net and are distorted everywhere else (not

conformable).

Except for globes, which are inconvenient to carry around and are suitable only for con-

tinental or oceanic scale, all map projections represent a tradeoff on these characteristics.

Therefore the choice of map projection depends on the needs of the mapmaker and user (see

USGS Eastern Region, 2000). Table 1.2 summarizes some common projection types, their

attributes, and their appropriate scale of usage.

1.5.2 The UTM projection

One type of projection merits special notice, particularly because this book focuses on rectan-

gular Cartesian coordinate systems. TheUniversal TransverseMercator (UTM) projection yields

a map with rectangular coordinates in distance (meters). Except close to the poles, the Earth is

divided into 60 zones, each 6� of longitude wide. Zone 1 lies between 180� and 174�W longi-

tude, and the zones increase eastward. The x�y coordinate system in each zone is defined by

the central meridian – the longitude halfway between the edges of the zone – and the Equator.

For example, zone 31 is located between 0� and 6� E; its central meridian is 3� E longitude

(Fig. 1.11). For the Northern Hemisphere, the central meridian is assigned a value of 500000 m

in the x, or eastings, direction, and a point along the Equator is given a value of zero meters in

the y, or northings direction. In our zone 31 example, above, a point lying 2500km north of the

Equator at 3� E would have an easting of 500000m and a northing of 2500000m. For points in

the Southern Hemisphere, the easting value is the same – i.e., 500000 m along the central

meridian of the zone – but the Equator is assigned a northing value of 10000000m (Fig. 1.11b).

Projection Type Conformal

Equal

area

Equi-

distant

True

direction Scale

Globe Sphere yes yes yes yes World

Mercator Cylindrical yes partly Regional and smaller

Miller Cylindrical World

Orthographic Azimuthal partly Hemisphere

Stereographic Azimuthal yes partly Hemisphere to local

Lambert

azimuthal equal

area

Azimuthal yes Hemisphere to

regional

Albers equal area

conic

Conic yes Sub-hemisphere to

regional

Lambert conformal

conic

Conic yes partly Regional to local

Equidistant conic Conic partly Regional

Table 1.2 Common map projections

20 Problem solving in structural geology

If our point along the central meridian in zone 31 were 2500km south of the Equator, it would

have UTM coordinates 500000 m east and 7500000 m north.

A couple of things might strike you as odd in this scheme: First, why isn’t the origin of the

coordinate system defined by the western edge of the zone? Why use the central meridian and

assign it a seemingly arbitrary value of 500000 m? The reason is that the distance between the

lines of longitude that define a zone is not constant but is greatest at the Equator (668km) and

diminishes towards the poles; at 6� N a zone is about 3.5 km narrower than it is at the Equator.

By using the central meridian and assigning it a large positive value, we ensure that the x, or

easting, value within the zone is always positive. If you were located 250km east of the central

Figure 1.11 Relationship between geographic coordinates and UTM coordinates. The

gray area shows UTM zone 31, located between 0 and 6� E longitude. (a) In the Northern

Hemisphere, the origin defined by the central meridian (in this case, 3� E) and the

Equator is assigned a value of (500000 m, 0 m). (b) In the Southern Hemisphere, the

central meridian still has a value of 500000 m, but the Equator is assigned a y -value of

10000000 m, a false northing. In both hemispheres east and north are both positive

directions. A zone narrows both northward and southward away from the Equator. The

coordinates are reset for each zone so that, for example, 9� E longitude, the central

meridian for zone 32, also has an x-value of 500000 m.

1.5 Map projections 21

meridian at the Equator, you would still be in the zone, but if you were 250km east of the same

central meridian at, say, 60� N, you would actually be in the next zone to the east!

Second, why is the Equator assigned a value of 10000000 m for points in the Southern

Hemisphere? This assignment enables us to assign positive y values (sometimes called false

northings) to all points in the Southern Hemisphere because the distance from pole to the

Equator is about 10000km. In both hemispheres, north and east are always positive. Because

points in both Northern and Southern Hemispheres can have the same northing values, it is

necessary to specify the hemisphere when converting between UTM and another coordinate

system. Depending on the program used, one identifies the hemisphere in different ways. For

example, a point in the Southern Hemisphere in Chile could be recorded as zone –19 or as zone

19S. Using the letters “S” or “N” to identify hemispheres has its pitfalls, however, because an

older more complicated version of the UTM system uses letters to define latitudinal ranges.

Thus, “19S” could mean Chile or it could mean a point between 32� and 40�N latitude, in the

Atlantic Ocean offshore to the eastern United States!

Northings values are always less than 10000000m because the UTM system is only applied

to 84�N latitude and 80� S latitude. In the polar regions, the Universal Polar Stereographic (UPS)

coordinate system is used, instead. The UTMzones are very regular around the globe except for

the region of eastern Norway and the island of Spitsbergen, where they have been broadened to

accommodate the local geography (Snyder, 1987).

TheUTM coordinate systemwill be very useful whenwewant to calculate strains over awide

area.Wewill see the application, in particular, to determining strain rates in a geodetic GPS data

set in Chapter 8. The equations for converting between longitude–latitude and UTM are rela-

tively straightforward but tedious (Snyder, 1987). Fortunately, MATLAB has built-in functions to

do the conversion for us. If you have the MATLAB Mapping Toolbox, you can use functions

mfwdtran and minvtran to convert from lat-long to UTM and vice versa. Alternatively, you

can check the MATLAB Central File Exchange, a website where MATLAB users share code. The

Geodetic Toolbox by Michael R. Craymer, which can be downloaded from this site, has func-

tions to do the conversions.

22 Problem solving in structural geology

CHAPTER

TWO

Coordinate systems, scalars, and vectors

2.1 COORDINATE SYSTEMS

Virtually everything we do in structural geology explicitly or implicitly involves a coordinate

system. When we plot data on a map each point has a latitude, longitude, and elevation. Strike

and dip of bedding are given in azimuth or quadrant with respect to north, south, east, andwest

and with respect to the horizontal surface of the Earth. In the western United States, samples

may be located with respect to township and range. We may not realize it, but more informal

coordinate systems are used aswell, particularly in the field. The location of an observation or a

sample may be described as “1.2 km from the northwest corner fence post and 3.5km from the

peak with an elevation of 3150 m at an elevation of 1687 m.”

A key aspect, but one that is commonly taken for granted, of all of these ways of reporting a

location is that they are interchangeable. The sample that comes from near the fence post and

the peak could just as easily be described by its latitude, longitude, and elevation or by its

township, range, and elevation. Just because we change the way of reporting our coordinates

(i.e., change our coordinate system), it does not mean that the physical location of the point in

space has changed. This seems so simple as to be trivial, but we will see in Chapter 5 that this

ability to change coordinate systems without changing the fundamental nature of what we are

studying is essential to the concept of tensors.

2.1.1 Spherical versus Cartesian coordinate systems

As described in Chapter 1, because the Earth is nearly spherical, it is most convenient for

structural geologists to record their observations in terms of spherical coordinates. Although a

spherical coordinate system is the easiest to use for collecting data in the field, it is not the

simplest for accomplishing a variety of calculations that we need to perform. One gets an inkling

of this from the fact that, in continuum mechanics texts, spherical coordinates are usually

23

presented and applied towards the back of the book or in an appendix – not exactly front page

material. Far simpler, both conceptually and computationally, are rectangular Cartesian coordi-

nates that are composed of threemutually perpendicular axes. Normally, one thinks of plotting a

point by its distance from the three axes of theCartesian coordinate system.Aswewill see below,

a feature can equally well be plotted by the angles that a vector, connecting it to the origin,makes

with the axes. If the portion of the Earth we are studying is sufficiently small so that our

horizontal reference surface is essentially perpendicular to the radius of the Earth, then we can

solve many different problems in structural geology, simply and easily, by expressing them in

terms of Cartesian, rather than spherical, coordinates. Before we can do this, however, there is an

additional aspect of coordinate systems that we must examine.

2.1.2 Right-handed and left-handed coordinate systems

Theway that the axes of coordinate systems are labeled is not arbitrary. In the case of the Earth,

it matters whether we consider a point that is below sea level to be positive or negative. “That’s

crazy,” you say, everybody knows that elevations above sea level are positive! If that were the

case, then why do structural geologists commonlymeasure positive angles downward from the

horizontal? Why is it that mineralogists use an upper hemisphere stereographic projection

whereas structural geologists use the lower hemisphere? The point is that it does not matter

which is chosen so long as one is clear and consistent. Some simple conventions in the labeling

of coordinate axes insure that consistency.

Coordinate systems can be of two types. Right-handed coordinates are those inwhich, if you

hold your handwith the thumb pointed from the origin in the positive direction of the first axis,

your fingers will curl from the positive direction of the second axis towards the positive

direction of the third axis (Fig. 2.1a). A left-handed coordinate system would function the

same except that the left hand is used. To make the coordinate system left handed, simply

reverse the positions of theX2 andX3 axes as in Figure 2.1b. All thismay seemacademic andnot

very useful, but we will see in Chapter 3 that there are certain types of operations known as

transformationswhich can change the sense of a coordinate system from right to left handed or

vice versa. By convention, the preferred coordinate system is a right-handed one and that is the

one we will use.

(a) Right handed (b) Left handed

Figure 2.1 (a) Right- and (b) left-handed

rectangular Cartesian coordinate

systems.

24 Coordinate systems, scalars, and vectors

2.1.3 Cartesian coordinate systems in geology

Now we can return to the topic at the end of Section 2.1.1, that is, what Cartesian coordinate

systems are appropriate to geology? Sticking with the right-handed convention, there are two

obvious choices, the primary difference being whether one regards up or down as positive

(Fig. 2.2).

In general, the north-east-down (NED) convention is more common in structural geology

where positive angles are measured downwards from the horizontal. In geophysics, as well as

in geographic maps, the east-north-up convention is more customary; after all, elevation above

sea level is commonly treated as positive. Note that these are not the only possible right-handed

coordinate systems. For example, west-south-up is also a perfectly good right-handed system,

although this and all the other possible combinations are seldom used. In the rest of this book,

unless otherwise stated, wewill use the north-east-down convention.Wewill see how to convert

between spherical and Cartesian coordinates in Section 2.3.7.

2.2 SCALARS

Scalars are the simplest physical component we will deal with. They are nothing more than the

value – or magnitude – of some property at any particular point in space. Scalars are independ-

ent of coordinate system and furthermore they have the same value regardless of the coordi-

nate system. As we will see in the following sections, this is not true for vector components.

Common examples of scalar quantities are temperature, mass, density, volume, or energy.

There is no direction associated with these properties, they simply exist in space and would

have the same numerical value, regardless of whether one uses spherical or Cartesian coordi-

nates or even Farmer Joe’s northwest corner fence post.

2.3 VECTORS

Vectors form the basis for virtually all structural calculations so it is important to develop a

very clear, intuitive feel for them. Vectors are physical quantities that have a magnitude and a

direction; they can be defined only with respect to a given coordinate system, which is why we

developed the idea of coordinate systems early in this chapter. Displacement, velocity, temper-

ature gradient, and force are all common examples of vectors. For example, it does not make

any sense to think about your velocity unless you know in what direction you are going.

(a)

+X3 = Down

+X1 = North

+X2 = East

+X1 = East

+X2 = North

+X3 = Up

(b)

Figure 2.2 Cartesian coordinates

commonly used in (a) structural geology

and (b) geophysics and topography.

2.3 Vectors 25

Likewise, displacement is meaningless unless you know where the displaced object was and

where it ended up.

2.3.1 Vectors vs. axes

All geological orientations have a direction in space with respect to a given coordinate system

so all are vectors. However, for many calculations, it makes no difference on which end of the

line you put the arrow. Thus, we make an informal distinction between vectors, which are

lines with a direction (i.e., an arrow at one end of the line) and axes, which are lines with no

directional significance. For example, think about the lineation that is made by the inter-

section between cleavage and bedding. That line, or axis, certainly has a specific orientation

in space and is described with respect to a coordinate system, but there is no difference

between one end of the line and the other. The hinge – or axis – of a cylindrical fold is another

example of a line that has no directional significance. In both of these examples, we could

be very systematic as to how we collected or calculated the data such that the arrow of the

vector always pointed in a consistent direction, but it is seldom worth the trouble. Some

common geological examples of vectors that cannot be treated as axes are the slip on a fault

(i.e., displacement of piercing points), paleocurrent indicators (flute cast, etc.), and paleo-

magnetic poles.

When structural geologists use a lower hemisphere stereographic projection exclusively,we

are automatically treating all lines as axes. To plot lines on the lower hemisphere, we arbitrarily

assume that all lines point downwards. Generally, this is not an issue, but consider the problem

of a series of complex rotations involving paleocurrent directions. At some point during this

process, the current directionmay point into the air (i.e., the upper hemisphere). If we force that

line to point into the lower hemisphere, we have just reversed the direction inwhich the current

flowed! Commonly, poles to bedding are treated as axes as, for example, when we make a

p-diagram. This, however, is not strictly correct. There are really two bedding poles, the vector

that points in the direction that strata become younger, and the vector that points towards

older rocks.

Despite this difference between vectors and axes, there are few problems treating an axis as

a vector for the purposes of the calculations that we will describe below, with a few exceptions

(see Section 2.4.1). The potential problems are far greater treating vectors as axes than axes as

vectors.

2.3.2 Basic vector notation

Clearly, with two different types of quantities around (scalars and vectors), we need a short-

hand way to distinguish between them in equations. We will write scalars, and scalar compo-

nents of vectors, in italics. Vectors in these notes are shown in lower case with bold face print

(which is sometimes known as symbolic or Gibbs notation):

~v ¼ v ¼ v1 v2 v3½ � (2:1)

The above notation is common in linear algebra books but can be confusing because it seems to

equate a vector with three scalars. Here is what it really means: Vectors in three-dimensional

space can be described by three scalar components, indicated above as v1; v2, and v3. In a

Cartesian coordinate system, they give the magnitude of the vector in the direction of, or

projected onto each of the three axes (Fig. 2.3). We will continue to use that notation; when

the reader encounters it, they should interpret the equal sign as “has scalar components in the

26 Coordinate systems, scalars, and vectors

current coordinate system of . . .” Because it is tedious to write out the three components all the

time a shorthand notation, known as indicial notation, is commonly used:

vi , where i = 1, 2, 3 (2:2)

The power of this sort of notation will be explained more fully in Chapter 4.

2.3.3 Magnitude of a vector

Themagnitude of a vector is, graphically, just the length of the arrow. It is a scalar quantity and is,

therefore, generallymarked in regularweight, italicized type. If there is any ambiguity, then vertical

barswill beused todefinitively indicate themagnitude. In twodimensions (Fig. 2.3a), it is quite easy

to see that themagnitude of vectorv can be calculated from the Pythagorean Theorem (the square

of the hypotenuse is equal to the sum of the squares of the other two sides). This is easily

generalized to three dimensions (Fig. 2.3b), yielding the equation for the magnitude of a vector:

v ¼ vj j ¼ v2
1 þ v2

2 þ v2
3

� �1=2
(2:3)

2.3.4 Unit vector and direction cosines

A unit vector is just a vector with amagnitude of one and is indicated by a hat: v̂. Any vector can

be converted into a unit vector parallel to itself by dividing the vector (and its components) by

its own magnitude:

v̂ ¼ v

vj j ¼
v1
vj j

v2
vj j

v3
vj j

� �

(2:4)

If you carefully inspect Figure 2.3, you will see that the cosine of the angle that a vector makes

with a particular axis is just equal to the component of the vector along that axis divided by the

magnitude of the vector. Thus we get

(a) (b)

Figure 2.3 Components of a vector in Cartesian coordinates (a) in two dimensions and

(b) in three dimensions.

2.3 Vectors 27

cosα ¼ v1
vj j cosβ ¼ v2

vj j cosγ ¼ v3
vj j (2:5)

Substituting Equation 2.5 into Equation 2.4 we see that a unit vector can be expressed in terms

of the cosines of the angles that it makes with the axes. These scalars are known as direction

cosines:

v̂ ¼ cosα cosβ cosγ½ � (2:6)

2.3.5 Direction cosines and structural geology

The concept of a unit vector is particularly important in structural geology where we so often

deal with orientations, but not sizes, of planes and lines. Any orientation can be expressed as a

unit vector, whose components are the direction cosines. For example, in a north-east-down

coordinate system, a line that has a 308 plunge due east (0908, 308) would have the following

components (Fig. 2.4):

cosα ¼ cos 90� ¼ 0:0 ðα angle with respect to northÞ
cosβ ¼ cos 30� ¼

ffiffiffi

3
p

=2 ðβ ¼ angle with respect to eastÞ
cosγ ¼ cos 90� � 30�ð Þ ¼ 0:5 ðγ ¼ angle with respect to downÞ

or simply

cosα cosβ cosγ½ � ¼ 0:0
ffiffiffi

3
p

=2 0:5
	

For the third direction cosine, recall that the angle is measured with respect to the vertical,

whereas plunge is givenwith respect to the horizontal. Wewill use direction cosines extensively

to describe the orientation of lines in Cartesian coordinates, and then see how to convert from

spherical to Cartesian coordinates in the sections that follow.

Figure 2.4 Orientation of a line (unit

vector) lying in a vertical, east–west

plane in gray and its representation by

direction cosines.

28 Coordinate systems, scalars, and vectors

2.3.6 Base or reference vectors

Occasionally, it is convenient to represent the axes of a Cartesian coordinate system by three

mutually perpendicular unit vectors known as base vectors (Fig. 2.5). Any vector can be

expressed in terms of the base vectors for the coordinate systems by multiplying the compo-

nents of the vector by the corresponding base vector:

v ¼ v1
^iþ v2

^jþ v3
^k (2:7)

This equation is a more accurate way of describing the vector than Equation 2.1 because it

clearly says that vector v is the sum of three unit vectors, each scaled by their respective scalar

components.

2.3.7 Geologic features as vectors

Virtually all structural features can be reduced to two simple geometric objects: lines and

planes. We commonly express more complex features, such as a deformed surface, as a series

of measurements of lines or planes. For example, a fold is represented as a group of planar

measurements (strikes and dips). The practice of dividing things into structural domains is an

example of breaking something complex down into a series of simpler objects.

It takes no great challenge to see that lines can be treated as vectors. Likewise, because there

is only one line that is perpendicular to a plane, poles to planes can also be treated as vectors.

The question now is: How do we convert from orientations measured in spherical coordinates

to Cartesian coordinates?

The relations between spherical and Cartesian coordinates are shown in Figure 2.6. Notice

that the three angles α;β, and γ are measured along great circles between the point (which

represents the vector) and the positive direction of the axis of the Cartesian coordinate system.

Clearly, the angle γ is just equal to 908 minus the plunge of the line. Therefore (Fig. 2.7),

cosγ ¼ cosð90� plungeÞ ¼ sinðplungeÞ (2:8a)

The relations between the trend and plunge and the other two angles are slightly more difficult

to calculate. Recall that we are dealing just with orientations and therefore the vector of

Figure 2.5 Three mutually perpendicular or

“orthonormal” base vectors.

2.3 Vectors 29

interest, v̂, is a unit vector. Therefore, from simple trigonometry the horizontal line that

corresponds to the trend azimuth is equal to the cosine of the plunge. From here, it is just a

matter of solving for the horizontal triangles in Figure 2.7:

cosα ¼ cosðtrendÞ cosðplungeÞ (2:8b)

cosβ ¼ cosð90� trendÞ cosðplungeÞ ¼ sinðtrendÞ cosðplungeÞ (2:8c)

Figure 2.6 Lower hemisphere

stereo-graphic projection showing

the relation between spherical

coordinates and the north (N), east (E),

down (D) Cartesian coordinates.

α
plungeαααααα
plplplplplplplplplplplplplp unununununununununununununuu gegegegegegegegegegegegegege

 = 90 – plunge

N

E

D

cos(plunge)

trend

cos

cos

cos

v̂

Figure 2.7 Perspective diagram

showing the relations between the

trend and plunge angles and the

direction cosines of the vector in

the Cartesian coordinate system. Dark

gray plane is the vertical plane inwhich

the plunge is measured.

30 Coordinate systems, scalars, and vectors

These relations, along with those for poles to planes, are summarized in Table 2.1.

Figures 2.6 and 2.8 show how the signs of the direction cosines vary with the quadrant.

Although it is not easy to see an orientation expressed in direction cosines and immediately

have an intuitive feel how it is oriented in space, one can quickly tell what quadrant the line dips

in by the signs of the components of the vector. For example, the vector, [–0.4619, –0.7112,

0.5299], represents a line that plunges into the southwest quadrant (2378, 328) because both

cos α and cos β are negative.

Understanding how the signs work is very important for another reason. Because it is

difficult to get an intuitive feel for orientations in direction cosine form, after we do our

calculations we will want to convert from Cartesian back to spherical coordinates. This can

be tricky because, for each direction cosine, there will be two possible angles (due to the

azimuthal range of 0–3608, Fig. 2.8). For example, if cos α ¼ �0:5736, then a ¼ 125� or

α ¼ 235�. In order to tell which of the two is correct, one must look at the value of cos β; if it

is negative thenα ¼ 235�, if positive thenα ¼ 125�. When you use a calculator or a computer to

calculate the inverse cosine, it will only give you one of the two possible angles (generally the

Axis Direction cosines Lines

Poles to planes

(using right-hand rule)

North cosα cosðtrendÞ cosðplungeÞ sinðstrikeÞ sinðdipÞ
East cosβ sinðtrendÞ cosðplungeÞ � cosðstrikeÞ sinðdipÞ
Down cosγ sinðplungeÞ cosðdipÞ

Table 2.1 Conversion from spherical to Cartesian coordinates

Figure 2.8 Graph of the cosine (vertical axis) for angles ranging from 08 to 3608

(horizontal axis). For every positive (or negative) cosine, there are two possible

azimuth values.

2.3 Vectors 31

smaller of the two). You must determine what the other one is by knowing the cyclicity of the

cosine functions (Fig. 2.8).

The MATLAB® function SphToCart, below, carries out the conversions shown in Table 2.1.

function [cn,ce,cd] = SphToCart(trd,plg,k)

%SphToCart converts from spherical to cartesian coordinates

%

% [cn,ce,cd] = SphToCart(trd,plg,k) returns the north (cn),

% east (ce), and down (cd) direction cosines of a line.

%

% k is an integer to tell whether the trend and plunge of a line

% (k = 0) or strike and dip of a plane in right hand rule

% (k = 1) are being sent in the trd and plg slots. In this

% last case, the direction cosines of the pole to the plane

% are returned

%

% NOTE: Angles should be entered in radians

%If line (see Table 2.1)

if k == 0

cd = sin(plg);

ce = cos(plg) * sin(trd);

cn = cos(plg) * cos(trd);

%Else pole to plane (see Table 2.1)

elseif k == 1

cd = cos(plg);

ce = -sin(plg) * cos(trd);

cn = sin(plg) * sin(trd);

end

end

Of course, once we have calculated an answer in Cartesian coordinates, we commonly want

the answer converted back to more familiar spherical coordinates. The following function

CartToSph accomplishes this task. Because any cosine value can correspond to two possible

angles between 0 and 3608, this routine uses code that checks the sign of the direction cosines

to determine which angle is correct.

function [trd,plg] = CartToSph(cn,ce,cd)

%CartToSph Converts from cartesian to spherical coordinates

%

% [trd,plg] = CartToSph(cn,ce,cd) returns the trend (trd)

% and plunge (plg) of a line for input north (cn), east (ce),

% and down (cd) direction cosines

%

% NOTE: Trend and plunge are returned in radians

%

% CartToSph uses function ZeroTwoPi

%Plunge (see Table 2.1)

plg = asin(cd);

32 Coordinate systems, scalars, and vectors

%Trend

%If north direction cosine is zero, trend is east or west

%Choose which one by the sign of the east direction cosine

if cn == 0.0

if ce < 0.0

trd = 3.0/2.0*pi; % trend is west

else

trd = pi/2.0; % trend is east

end

%Else use Table 2.1

else

trd = atan(ce/cn);

if cn < 0.0

%Add pi

trd = trd+pi;

end

%Make sure trd is between 0 and 2*pi

trd = ZeroTwoPi(trd);

end

end

2.3.8 Simple vector operations

Tomultiply a scalar times a vector, justmultiply each component of the vector times the scalar:

xv ¼ xv1 xv2 xv3½ � (2:9)

The most obvious application of scalar multiplication in structural geology is when you want to

reverse the direction of the vector. For example, to change the vector from upper to lower hemi-

sphere (or vice versa) justmultiply the vector (i.e., its components) by –1. The resulting vector will

be parallel to the original and will have the same length, but will point in the opposite direction.

To add two vectors together, you sum their components:

uþ v ¼ vþ u ¼ u1 þ v1 u2 þ v2 u3 þ v3½ � (2:10)

Graphically, vector addition obeys the parallelogram law (Fig. 2.9a) whereby the resulting

vector can be constructed by placing the two vectors to be added end-to-end.

Notice that the order in which you add the two vectors makes no difference. Vector sub-

traction is the same as adding the negative of one vector to the positive of the other (Fig. 2.9b).

We will see an application of vector addition in Section 2.4.1.

(a) (b)

Figure 2.9 (a) Vector addition and (b) vector subtraction using the parallelogram rule.

2.3 Vectors 33

2.3.9 Dot product and cross product

Vector algebra is remarkably simple, in part by virtue of the ease with which one can visualize

various operations. There are two operations that are unique to vectors and that are of great

importance in structural geology. If one understands these two, one has mastered the concept

of vectors. They are the dot product and the cross product.

The dot product is also called the scalar product because this operation produces a scalar

quantity.Whenwe calculate the dot product of two vectors the result is themagnitude of the first

vector times the magnitude of the second vector times the cosine of the angle between the two:

u � v ¼ v � u ¼ uj j vj j cosθ ¼ u1v1 þ u2v2 þ u3v3 (2:11)

The physical meaning of the dot product is the length of v times the length of u as projected

ontov (that is, the length ofu in the direction ofv). Note that the dot product is zerowhenu and

v are perpendicular (because in that case the length of u projected onto v is zero). The dot

product of a vector with itself is just equal to the length of the vector, squared:

v � v ¼ vj j2 ¼ v2
1 þ v2

2 þ v2
3 (2:12)

Equation 2.11 can be rearranged to solve for the angle between two vectors:

cosθ ¼ u1v1 þ u2v2 þ u3v3
uj j vj j (2:13)

This last equation is particularly useful in structural geology. As stated previously, all orienta-

tions are treated as unit vectors. Thus, when we want to find the angle between any two lines,

the product of the two magnitudes, uj j vj j, in Equations 2.11 and 2.13 is equal to one. Upon

rearranging Equation 2.13, this provides a simple and extremely useful equation for calculating

the angle between two lines:

θ ¼ cos�1 cosα1 cosα2 þ cosβ1 cosβ2 þ cosγ1 cosγ2ð Þ (2:14)

The result of the cross product of two vectors is another vector. For that reason, you will often

see the cross product called the vector product. The cross product is conceptually a little more

difficult than the dot product, but is equally useful in structural geology. It is best illustrated

with a diagram (Fig. 2.10), which relates to the Equations 2.15 to 2.17, below.

The cross product’s primary use is when you want to calculate the orientation of a vector

that is perpendicular to two other vectors. The resulting perpendicular vector is parallel to the

unit vector and has amagnitude equal to the product of themagnitude of each vector times the

sine of the angle between them. If u and v are both unit vectors, then the length of the resulting

vector will be equal to the sine of the angle θ. The new vector obeys a right-hand rule with

respect to the other two (Fig. 2.10):

v� u ¼ �u� v ¼ vj j uj j sinθ‘̂ (2:15)

and
v� u ¼ v2u3 � v3u2ð Þ v3u1 � v1u3ð Þ v1u2 � v2u1ð Þ½ � (2:16)

which can also be written in terms of the base vectors of the coordinate system as

v� u ¼ v2u3 � v3u2ð Þ î � v3u1 � v1u3ð Þ ĵ þ v1u2 � v2u1ð Þ ^k (2:17)

2.4 EXAMPLES OF STRUCTURE PROBLEMS USING VECTOR OPERATIONS

2.4.1 Example 1: Finding the mean of a group of vectors

A common problem in structural geology and geophysics is to determine the vector that statisti-

cally represents a group of individual vectors. For example, wemay want to find the average of a

34 Coordinate systems, scalars, and vectors

group of paleomagnetic poles or the vector that best represents poles to bedding. This is a very

easy operation using vector addition; it ismuchmore difficult to do any other way. There are two

things tobedetermined: (1) the orientation of a unit vector that is parallel to the average, ormean,

of all of the individual vectors; and (2) an expression of how “concentrated” the vectors are.

The solution to this problem uses vector addition and is shown graphically in Figure 2.11.

Numerically, the steps are given below; for a computer program to solve this problem, see

function CalcMV at the end of this section. The solution is illustrated with a real problem:

Determine the mean vector of the following four lines, given as trend and plunge: 026, 31; 054,

22; 037, 39; and 012, 47.

1. Convert all of your orientation data into direction cosines.

Trend and plunge cosα cosβ cosγ

026, 31 0.7704 0.3758 0.5150

054, 22 0.5450 0.7501 0.3746

037, 39 0.6207 0.4677 0.6293

012, 47 0.6671 0.1418 0.7314

2. Sum all of the individual components of the vectors, as in Equation 2.11. This will give you

the resultant vector, r. If all the individual vectors have the same orientation, then the

resultant vector will have a length that is equal to the number of vectors summed (in this

example, N ¼ 4); otherwise, it will always be less.

X

cosα ¼ 2:6032
X

cosα
� �2

¼ 6:7767

X

cosβ ¼ 1:7354
X

cosβ
� �2

¼ 3:0116

X

cos γ ¼ 2:2503
X

cosγ
� �2

¼ 5:0639

θ

Figure 2.10 Diagram illustrating the meaning of the cross

product, for the case of two unit vectors. The hand indicates the

right-hand rule convention; for v� u, the fingers curl from v

towards u and the thumb points in the direction of the resulting

vector, which is parallel to the unit vector ‘̂. Note that

v� u ¼ �ðu� vÞ. The cross product can be calculated for any

vectors, not just unit vectors.

2.4 Examples of structure problems using vector operations 35

Length of the resultant vector,

r ¼ 6:7767þ 3:0116þ 5:0639ð Þ1=2 ¼ 3:8539

3. Normalize the resultant vector by dividing each one of its components by the number of

vectors summed together. The length of the normalized vector will always be less than or

equal to 1. The closer it is to 1, the better the concentration.

Note that r ¼ 0:9635 indicates a reasonably strong preferred orientation.

resultant length

N
¼ 3:8539

4
¼ 0:9635

4. Determine a unit vector, m̂, that is parallel to the resultant vector, r. To do this, calculate the

magnitude of the resultant vector (or the normalized resultant vector) and then divide the

components by themagnitude (Eqs. 2.3 and 2.4). These components will now be in direction

cosines.

m̂ ¼ 2:6032

3:8539

1:7354

3:8539

2:2503

3:8539

� �

¼ 0:6755 0:4503 0:5840½ �

5. Convert this final unit vector back to spherical coordinates.

Trend and plunge of mean vector = 033.78, 35.78

This example points out one of the pitfalls of treating axes as vectors (Section 2.3.1).

Suppose that we have two lines that plunge very gently into opposite quadrants (Fig. 2.12).

If we deal with these lines as vectors, the sum of the two vþ uð Þ is a very short, vertical

vector that bisects the obtuse angle between the two (Fig. 2.12). This may be exactly what

we want.

Commonly, however, the lines have no directional significance and are better thought of as

axes. If this were the case then the result of averaging the two together would look very strange,

indeed. After all, there is really very little difference in the orientation of the two lines. One

possible way around this problem is to convert one of the two vectors to an upper hemisphere

vector bymultiplying it by –1 (�u in Fig. 2.12). Then the vector,v� u, ismuchmore like what we

probably had in mind (Fig. 2.12)! We will see a more elegant solution to the problem of how to

determine the statistical average of a group of axes in Chapter 5.

TheMATLAB script CalcMV, below, takes a group of n lines, whose trends and plunges are held

in the arrays T(i), P(i), and calculates the mean vector. Additionally, the program calculates

r

r N

(a) (b)

(c)

Figure 2.11 Example showing the use of vector addition to determine the mean vector.

(a) The four original unit vectors, each of length = 1; (b) addition of the vectors using the

parallelogram law to determine the resultant vector; (c) normalized resultant vector (i.e.,

resultant vector divided by the number of unit vectors) compared to a unit vector.

36 Coordinate systems, scalars, and vectors

the Fisher statistics for the mean vector, which is the standard way to report uncertainties in

paleomagnetic analyses. The variables, d99 and d95, are the cones of uncertainty at the 99 and

95% levels; that is, we are 99 and 95% certain that the mean vector lies within a cone of that

apical angle. To solve Example 1 using CalcMV just type in MATLAB:

T=[26,54,37,12]*pi/180; %Lines trend

P=[31,22,39,47]*pi/180; %Lines plunge

[trd,plg,Rave,conc,d99,d95] = CalcMV(T,P); %Calculate Mean Vector

function [trd,plg,Rave,conc,d99,d95] = CalcMV(T,P)

%CalcMV calculates the mean vector for a given series of lines

%

% [trd,plg,conc,d99,d95] = CalcMV(T,P) calculates the trend (trd)

% and plunge (plg) of the mean vector, its normalized length, and

% Fisher statistics (concentration factor (conc), 99 (d99) and

% 95 (d95) % uncertainty cones); for a series of lines whose trends

% and plunges are stored in the vectors T and P

%

% NOTE: Input/Output trends and plunges, as well as uncertainty

% cones are in radians

%

% CalcMV uses functions SphToCart and CartToSph

%Number of lines

nlines = max(size(T));

%Initialize the 3 direction cosines which contain the sums of the

%individual vectors (i.e. the coordinates of the resultant vector)

Figure 2.12 Perspective view of a lower hemisphere stereographic projection, showing

the addition of vectors, u and v. Illustrates case in which addition of vectors can provide

a misleading answer if the lines being analyzed are axes rather than vectors.

2.4 Examples of structure problems using vector operations 37

CNsum = 0.0;

CEsum = 0.0;

CDsum = 0.0;

%Now add up all the individual vectors

for i=1:nlines

[cn,ce,cd] = SphToCart(T(i),P(i),0);

CNsum = CNsum + cn;

CEsum = CEsum + ce;

CDsum = CDsum + cd;

end

%R is the length of the resultant vector and Rave is the length of

%the resultant vector normalized by the number of lines

R = sqrt(CNsum*CNsum + CEsum*CEsum + CDsum*CDsum);

Rave = R/nlines;

%If Rave is lower than 0.1, the mean vector is insignificant, return error

if Rave < 0.1

error('Mean vector is insignificant');

%Else

else

%Divide the resultant vector by its length to get the average

%unit vector

CNsum = CNsum/R;

CEsum = CEsum/R;

CDsum = CDsum/R;

%Use the following 'if' statement if you want to convert the

%mean vector to the lower hemisphere

if CDsum < 0.0

CNsum = -CNsum;

CEsum = -CEsum;

CDsum = -CDsum;

end

%Convert the mean vector from direction cosines to trend and plunge

[trd,plg]=CartToSph(CNsum,CEsum,CDsum);

%If there are enough measurements calculate the Fisher Statistics

%For more information on these statistics see Fisher et al. (1987)

if R < nlines

if nlines < 16

afact = 1.0-(1.0/nlines);

conc = (nlines/(nlines-R))*afact^2;

else

conc = (nlines-1.0)/(nlines-R);

end

end

if Rave >= 0.65 && Rave < 1.0

afact = 1.0/0.01;

bfact = 1.0/(nlines-1.0);

38 Coordinate systems, scalars, and vectors

d99 = acos(1.0-((nlines-R)/R)*(afact^bfact-1.0));

afact = 1.0/0.05;

d95 = acos(1.0-((nlines-R)/R)*(afact^bfact-1.0));

end

end

end

2.4.2 Example 2: Calculating the rake of a line in a plane

Calculating the angle between any two lines is a commonproblem. The rake, or pitch, is an angle

measured between a line of interest and the strike of the plane that contains the line. This

example provides uswith a perfect illustration of the use of the dot product (function Angles at

the end of Section 2.4.3 includes code for this operation). Suppose we have a plane with a strike

of 2138 and a lineationwithin the plane has a trend and plunge of 278, 42; what is the rake of the

lineation? The solution is easier than in the previous example:

1. Convert the data to direction cosines. Recall that the strike is just a line with zero plunge:

Trend and plunge cosα cosβ cosγ

213, 0 –0.8387 –0.5446 0.0

278, 42 0.1.34 –0.7359 0.6691

2. Then, just multiply the components together and calculate the inverse cosine as in

Equation 2.14:

θ ¼ cos�1 �0:8387� 0:1034ð Þ þ �0:5446��0:7359ð Þ þ 0� 0:6691ð Þð Þ
¼ cos�1 0:3140ð Þ ¼ 71:7�

Note that the rake of 71.78 in this example is with respect to the given strike azimuth of 2138. If

we had been given the other strike azimuth, 0338, then the pitch angle calculated would be the

complement of the above, that is, 108.38. It may also seem strange that, to solve this problem,

we did not even need to know the dip or the dip direction of the plane. That would have been

redundant information because the orientation of the plane is constrained by the two lines

within it. In the next example, we will calculate the true dip of the plane.

2.4.3 Example 3: Determining a true dip from two apparent dips

Determining a line that is perpendicular to two other lines is one of the most common calcu-

lations in structural geology. For example, in analyzing a fault, the pole to the movement plane

is perpendicular to the slip vector and the pole to the fault plane. In a little more familiar

example, the pole to a plane is perpendicular to all of the lines within that plane. Thus, two

apparent dip lines in a plane must be perpendicular to the pole of the plane. The previous

example is just such a case; from the apparent dip and the strike line, both of which were given,

we can calculate the pole to the plane and therefore the dip and dip direction. To accomplish

this, we will use the cross product (function Angles at the end of this section implements this

operation):

2.4 Examples of structure problems using vector operations 39

1. Convert the data to direction cosines. This was already done for us in the previous

example.

2. Calculate the cross product from Equation 2.16. This will give us a vector that is parallel to

the pole, p, but it will not be a unit vector because the lines are not perpendicular:

p1 ¼ �0:7359 � 0:0ð Þ � 0:6691 � �0:5446ð Þ ¼ 0:3644

p2 ¼ 0:6691 � �0:8387ð Þ � 0:1034 � 0:0ð Þ ¼ �0:5612

p3 ¼ 0:1034 � �0:5446ð Þ � �0:7359 � �0:8387ð Þ ¼ �0:6736

p ¼ 0:3644; �0:5612; �0:6736½ �
pj j ¼ 0:9494

3. As you can see, the magnitude of p is not equal to 1, so it must be converted to a unit vector

before we can determine the orientation using Equation 2.4. The components of the unit

pole vector are

p̂ ¼ 0:3644

0:9494
;

�0:5612

0:9494
;

�0:6736

0:9494

� �

¼ 0:3839; �0:5911; �0:7094½ �

4. Before going any farther, notice that the third component of p̂, the down direction cosine, is

negative. Thus, the cross product we have calculated points upwards into the upper hemi-

sphere (because down is positive in our north-east-down coordinate system). To calculate

the lower hemisphere pole, multiply by –1:

� p̂ ¼ �0:3839; 0:5911; 0:7094½ �

5. Now we can calculate the orientation of the pole to the plane in spherical coordinates:

trend and plunge of pole ¼ 123�;45:2�

The true dip of the plane is equal to 90 – 45.2 = 44.88, and the dip direction is equal to 123 + 180 =

3038. Obviously, the dip direction is just 908 from the strike azimuth that we were given

initially.

The function Angles below calculates either the angle between two lines if ans0 = 'l' is

passed to it, or the strike and dip of a plane from two apparent dips in the plane if ans0 = 'a'. In

the first case, the dot product is used and in the second, the cross product. If, instead, the user

passes the strike and dip of two planes in the place of trd1, plg1 and trd2, plg2, then the

function will calculate either the intersection of two planes (ans0 = 'i') or the angle between

the two planes (ans0 ='p'). To solve Example 2 using Angles just type in MATLAB:

[ans1,ans2]=Angles(213*pi/180,0,278*pi/180,42*pi/180,'l');

Example 3 can be solved by entering:

[ans1,ans2]=Angles(213*pi/180,0,278*pi/180,42*pi/180,'a');

function [ans1,ans2] = Angles(trd1,plg1,trd2,plg2,ans0)

%Angles calculates the angles between two lines, between two planes,

%the line which is the intersection of two planes, or the plane

%containing two apparent dips

%

% [ans1,ans2] = Angles(trd1,plg1,trd2,plg2,ans0) operates on

% two lines or planes with trend/plunge or strike/dip equal to

% trd1/plg1 and trd2/plg2

40 Coordinate systems, scalars, and vectors

%

% ans0 is a character that tells the function what to calculate:

%

% ans0 = 'a' -> the orientation of a plane given two apparent dips

% ans0 = 'l' -> the angle between two lines

%

% In the above two cases, the user sends the trend and plunge of two

% lines

%

% ans0 = 'i' -> the intersection of two planes

% ans0 = 'p' -> the angle between two planes

%

% In the above two cases the user sends the strike and dip of two

% planes following the right-hand rule

%

% NOTE: Input/Output angles are in radians

%

% Angles uses functions SphToCart, CartToSph and Pole

%If planes have been entered

if ans0 == 'i' || ans0 == 'p'

k = 1;

%Else if lines have been entered

elseif ans0 == 'a' || ans0 == 'l'

k = 0;

end

%Calculate the direction cosines of the lines or poles to planes

[cn1,ce1,cd1]=SphToCart(trd1,plg1,k);

[cn2,ce2,cd2]=SphToCart(trd2,plg2,k);

%If angle between 2 lines or between the poles to 2 planes

if ans0 == 'l' || ans0 == 'p'

% Use dot product = Sum of the products of the direction cosines

ans1 = acos(cn1*cn2 + ce1*ce2 + cd1*cd2);

ans2 = pi - ans1;

end

%If intersection of two planes or pole to a plane containing two

%apparent dips

if ans0 == 'a' || ans0 == 'i'

%If the 2 planes or apparent dips are parallel, return an error

if trd1 == trd2 && plg1 == plg2

error('lines or planes are parallel');

%Else use cross product

else

cn = ce1*cd2 - cd1*ce2;

ce = cd1*cn2 - cn1*cd2;

2.4 Examples of structure problems using vector operations 41

cd = cn1*ce2 - ce1*cn2;

%Make sure the vector points down into the lower hemisphere

if cd < 0.0

cn = -cn;

ce = -ce;

cd = -cd;

end

%Convert vector to unit vector by dividing it by its length

r = sqrt(cn*cn+ce*ce+cd*cd);

% Calculate line of intersection or pole to plane

[trd,plg]=CartToSph(cn/r,ce/r,cd/r);

%If intersection of two planes

if ans0 == 'i'

ans1 = trd;

ans2 = plg;

%Else if plane containing two dips, calculate plane from its pole

elseif ans0 == 'a'

[ans1,ans2]= Pole(trd,plg,0);

end

end

end

end

Function Angles calls function Pole, which calculates a plane, given its pole (k = 0) or a pole

given the corresponding plane (k = 1).

function [trd1,plg1] = Pole(trd,plg,k)

%Pole returns the pole to a plane or the plane which correspond to a pole

%

% k is an integer that tells the program what to calculate.

%

% If k = 0, [trd1,plg1] = Pole(trd,plg,k) returns the strike

% (trd1) and dip (plg1) of a plane, given the trend (trd)

% and plunge (plg) of its pole.

%

% If k = 1, [trd1,plg1] = Pole(trd,plg,k) returns the trend

% (trd1) and plunge (plg1) of a pole, given the strike (trd)

% and dip (plg) of its plane.

%

% NOTE: Input/Output angles are in radians. Input/Output strike

% and dip are in right-hand rule

%

% Pole uses functions ZeroTwoPi, SphToCart and CartToSph

%Some constants

east = pi/2.0;

%Calculate plane given its pole

if k == 0

if plg >= 0.0

42 Coordinate systems, scalars, and vectors

plg1 = east - plg;

dipaz = trd - pi;

else

plg1 = east + plg;

dipaz = trd;

end

%Calculate trd1 and make sure it is between 0 and 2*pi

trd1 = ZeroTwoPi(dipaz - east);

%Else calculate pole given its plane

elseif k == 1

[cn,ce,cd] = SphToCart(trd,plg,k);

[trd1,plg1] = CartToSph(cn,ce,cd);

end

end

2.5 EXERCISES

The following are a series of simple problems to be completed using vector algebra, exclusively,

although you should report your results in spherical coordinates. The easiest way to do them is

using the MATLAB functions provided above, although we recommend that you first solve the

problems by hand. All can equally well be solved via a spreadsheet program.

1. A plane with a strike of 1278 contains a line with a trend and plunge of 0058, 318. What is the

rake (pitch) of the line? What is the dip of the plane? Solve this problem first by hand and

then by using the function Angles.

2. Two planes have the following orientations, given using the right-hand-rule format (RHR):

237, 25 and 056, 49. Calculate the orientation of the line of intersection between the two

planes. Report your results in spherical coordinates. Solve this problem first by hand and

then by using the function Angles.

3. A quarry has two vertical walls, one trending 002 and the other trending 135. The apparent

dips of bedding on the faces are 40N and 30 SE respectively. Calculate the strike and true dip

of the bedding. Solve this problem first by hand and then by using the function Angles.

4. Two limbs of a chevron fold (A and B) have orientations (strike and dip) as follows: Limb A =

120, 40SW and limb B = 070, 60SE. Determine: (1) the trend and plunge of the hinge line of

the fold; (2) the pitch of the hinge line in limb A; and (3) the pitch of the hinge line in limb

B. Solve this problem using the function Angles.

5. Calculate the mean vector for the following group of lines. Report the magnitude and

orientation (in spherical coordinates) of the mean vector. Solve this problem using either a

spreadsheet or the function CalcMV.

113.0, 73.0 081.0, 77.0

076.0, 78.0 080.0, 58.0

175.0, 71.0 058.0, 62.0

229.0, 62.0 040.0, 57.0

075.0, 62.0 042.0, 71.0

111.0, 77.0 229.0, 23.0

078.0, 85.0 110.0, 72.0

316.0, 53.0 278.0, 61.0

025.0, 78.0 264.0, 78.0

021.0, 57.0

2.5 Exercises 43

CHAPTER

THREE

Transformations of coordinate axes and vectors

3.1 WHAT ARE TRANSFORMATIONS AND WHY ARE THEY IMPORTANT?

The word “transformation” looks imposing and mathematical but it is, in fact, quite a simple

thing that we do commonly without thinking about it. Whenever we change coordinate systems,

we do a coordinate transformation. Suppose we submit some samples of fossils and their

locations in latitude, longitude, and elevation to a paleontologist for identification. The pale-

ontologist writes back with the instructions that the locations in eastings and northings (i.e.,

UTM coordinates), not latitude and longitude, are required. Thus, a coordinate transformation

is needed. This doesn’t make us very happy because the change requires a long calculation that

would be tedious to do by hand! In this chapter, we are interested only in transformations that

can be precisely described mathematically, but one should realize that coordinate transforma-

tions are a very common thing. Basically, coordinate transformations are just another way of

looking at the same thing.1 In the above example, the specific numbers used to describe the

location in the two coordinate systems are different but the physical location where the

samples were collected has not changed. The change in numbers simply represents a change

in the coordinate system not a change in the position or fundamental magnitude of the thing

being described.

The concept of a transformation is very important and one with incredible power for a wide

variety of structural applications. It is commonly necessary to look at a problem from two

different points of view. For example, when studying continental drift (Fig. 3.1a), at least two

different coordinate systems are commonly required, one in present-day geographic space and

one attached to the continent at some time in the past when it was in a different place and

orientation on the globe. Or, take the case of analysis of a fault (Fig. 3.1b). To understandwhat is

1 Later in the book, we will use the word “transformation” in a different context to refer to changes
brought about by deformation that takes place between an initial and a final state.

44

going on from the perspective of the fault we need one coordinate system attached to the fault

(e.g., with one axis perpendicular to the fault plane and another parallel to the slickensides on

the fault). However, we also want to relate this to our more familiar geographic coordinate

system; a transformation allows us to do that.

There is, however, an evenmore elemental reason for the importance of transformations. As

intimated above, real, physical properties do not change when they are transformed from one

coordinate system to another. As we will see in Chapter 5, this statement will be turned around

to form the definition of an entire class of entities known as tensors. For right now, though, it is

sufficient to be aware that the same thing can be described from many different viewpoints.

Because the nature of something does not change when it is transformed, if we know its

coordinates in one system we should be able to calculate its coordinates in any other system.

This logic assumes that we know how the two coordinate systems are related to each other and

that is our starting point.

3.2 TRANSFORMATION OF AXES

Before we can talk about transforming objects, we must consider the transformation that

describes a change from one coordinate system to another. We will address only the change

from one rectangular Cartesian coordinate system to another, whichmeans the transformation

is from one set of mutually perpendicular axes to another. As we will see in Section 3.2.3, this

orthogonality makes our life very much easier.

3.2.1 Two-dimensional change in axes

The simplest type of transformation that you can think of is a two-dimensional shift or trans-

lation of axes without any rotation. Basically, we just establish the origin at a different place; it

is simple to write equations that relate one set of axes to another. In the case of Figure 3.2,

Figure 3.1 Examples of coordinate transformations in geology. (a) Continental drift; the

continent has a coordinate system marked on it that corresponds to some time in the

past. (b) A fault plane with two different coordinate systems.

3.2 Transformation of axes 45

X
0
1
¼X1 � 3 and X

0
2
¼X2 � 2 ðnew in terms of oldÞ

and

X1 ¼X
0
1
þ 3 and X2 ¼X

0
2
þ 2 ðold in terms of newÞ

We will come back to this example when we get to deformation (Chapter 7). Although this

provides a useful starting point, it really doesn’t provide any new information and therefore is

not of great interest in our study of vectors. You can probably visualize that a vector will make

the same angles with the axes in both the new and the old coordinates and, furthermore, the

components of the vector will have the same magnitude in both coordinate systems. We have

not really learned anything, yet.

More interesting is the case of rotation of a coordinate system. From Figure 3.3a you can see

that, in two dimensions, there are four angles that define the transformation. Rather than give

all of these a different letter, they are distinguished by double subscripts. As you can see by

close inspection of the figure, the choice of subscripts is not arbitrary. The convention is that

Figure 3.2 Translation of axes. The new axes

are primed.

(a) (b)

Figure 3.3 Rotation of axes in two dimensions. New axes are primed. (a) Shows the four

angles, θ11, θ12, θ21, and θ22, that define the coordinate transformation. (b) Same

transformation, but expressed in terms of base vectors and their direction cosines,

a11, a12, a21, and a22.

46 Transformations of coordinate axes and vectors

the first subscript refers to the new (i.e., primed) axis, whereas the second subscript refers

to the old (unprimed) axis. Thus, θ21 indicates the angle between the new, X0
2
axis and the old,

X1 axis.

Although there are, clearly, four angles, one can intuitively see that they are not all inde-

pendent of each other. In fact, in two dimensions, we need only specify one of the four and the

rest can be calculated from the first one. For example, θ11 ¼ 90� � θ12, θ21 ¼ 90� þ θ22, etc. If

we represent the axes by their base vectors, then you can see that the projection of the new axis

onto the old axis is equal to the cosine of the angle between the two axes (Fig. 3.3b). For that

reason, the relations between the two coordinate systems are commonly given in terms of the

direction cosines between them: a11 ¼ cosθ11, a12 ¼ cosθ12, a21 ¼ cosθ21, and a22 ¼ cosθ22.

By a simple application of the Pythagorean Theorem (see Fig. 2.4) and recalling that the length

of a unit vector is 1 (i.e., ĵij ¼ 1 in Fig. 3.3b), you can see that

a2
11 þ a2

12 ¼ 1 and a2
21 þ a2

22 ¼ 1 (3:1)

Furthermore, recall that the dot product of two perpendicular vectors is equal to zero (because

the cosine of 908 is zero). Therefore, the dot product of the base vectors in the new system

(Fig. 3.3) gives us a third constraint:

a11a21 þ a12a22 ¼ 0 (3:2)

We have three equations, 3.1 and 3.2, and four unknowns, so only one of the direction cosines is

independent. If you understand this two-dimensional case, extension to three dimensions is

obvious.

3.2.2 Three-dimensional change in axes: The transformation matrix

The relations in three dimensions logically follow from those in two dimensions. There are

three old axes and three new ones; hence, there will be nine angles that completely define the

coordinate transformation (Fig. 3.4a). As before, we use double subscripts to identify the angles

(a) (b)

Figure 3.4 (a) A general, three-dimensional coordinate transformation. The new axes

are primed; the old axes are in black. Only three of the nine possible angles are shown.

(b) Graphic device for remembering how the subscripts of the direction cosines relate to

the new and the old axes.

3.2 Transformation of axes 47

and their direction cosines, with the first subscript referring to the new axis and the second to

the old axis (Fig. 3.4b). As before, not all nine of these angles are independent. Just visually, you

can see that, given θ22 and θ23, the third angle, θ21, is fixed. Intuitively, you may be able to see

that, to completely constrain the transformation, only one other angle between any of the other

two new axes and any of the old axes is needed.

The array of direction cosines in Figure 3.4b is known as the transformation matrix. It is

commonly written:

aij ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

0

@

1

A (3:3)

The way we have written Equation 3.3 uses some notation that we have not seen much of up to

this point. We will see much more of matrices and indicial notation in the next chapter.

3.2.3 The orthogonality relations

Earlier, we begandeveloping some general equations, 3.1 and 3.2, that described how the angles

(or really their direction cosines) relate to one another. The development in three dimensions is

an extension of the previous derivation. In three dimensions, the length of any vector is the

square root of the sum of the squares of its three components (Eq. 2.3). If that vector is a unit

vector, then the sum of the squares of the direction cosines will be equal to one. We showed in

Section 3.2.1 that the components of the transformation matrix are nothing more than the

direction cosines of the base vectors of the new coordinate system in the old coordinate system.

Therefore, we can write the following three equations, which give the lengths (squared) of the

three base vectors of the new coordinate system:

a2
11 þ a2

12 þ a2
13 ¼ 1

a2
21 þ a2

22 þ a2
23 ¼ 1

a2
31 þ a2

32 þ a2
33 ¼ 1

(3:4)

Likewise, as stated above, the dot product of two perpendicular vectors is zero. Because each of

the three base vectors of the new coordinate system is perpendicular to the others, we canwrite

three additional equations:

a21a31 þ a22a32 þ a23a33 ¼ 0

a31a11 þ a32a12 þ a33a13 ¼ 0

a11a21 þ a12a22 þ a13a23 ¼ 0

(3:5)

Equations 3.4 and 3.5 collectively form what are known as the orthogonality relations. Now, in

three dimensions, we have six equations and nine unknowns (i.e., the nine direction cosines).

This proves quantitatively what we already knew intuitively: There are only three independent

direction cosines in the transformation matrix.

3.3 TRANSFORMATION OF VECTORS

Now that we have put the transformation of axes to rest, we’ll look at somethingmore practical:

the transformation of vectors. As before, we’ll start in two dimensions, where it is easier to get a

feeling for the geometry. The two-dimensional transformation equations are derived by pro-

jecting the old components of the vector, v1 and v2, onto the new axes,X0
1
andX

0
2
. In Figure 3.5b,

48 Transformations of coordinate axes and vectors

you can see that v 0
1 will be equal to the sumof line segmentsOA and BC, which can be calculated

from the trigonometry of triangles OAB and BCD (Fig. 3.5b). We get

v 0
1 ¼ v1 cosθ11 þ v2 cosθ12

or, in terms of the direction cosines of the transformation matrix (and including without proof

the equation for v 0
2),

v 0
1 ¼ v1a11 þ v2a12

v 0
2 ¼ v1a21 þ v2a22

(3:6)

Note that the above equations give the new components of the vector in terms of the old. By

projecting the new components, v 0
1 and v 0

2, onto the old axes, X1 and X2, you can make the

same geometric arguments and derive the reverse transformation, which is the old in terms of

the new:

v1 ¼ v 0
1a11 þ v 0

2a21

v2 ¼ v 0
1a12 þ v 0

2a22

(3:7)

There are some subtle, but important, changes between Equations 3.6 and 3.7. First, in the latter

the primed components are on the right-hand side. Less obvious, but no less important, the

positions of a12 and a21 have been switched or transposed. One of the nice things about vector

algebra is that it is extremely symmetrical and logical!

Figure 3.6 shows a three-dimensional vector transformation. As before, notice that only the

coordinates change, not the fundamental length or orientation of the vector, itself. Thus in

Figure 3.6, v1 6¼ v 0
1, v2 6¼ v 0

2, and v3 6¼ v 0
3 but the vector is just as long and points the sameway in

both coordinate systems.

The geometry in three dimensions is really the same as in two, only harder to visualize.

Think about decomposing the vector into its three components parallel to the old axes, and

then transforming those components along with the old axes into the new coordinate system.

Thought of this way, the transformation of any vector is analogous to transforming the base

vectors of the axes themselves, except that the components are not unit vectors. Three equa-

tions describe the three-dimensional vector transformation:

Figure 3.5 Transformation of vector v in two dimensions. (a) The components of the

vector in the old coordinate system are v1 and v2; in the new coordinate system, the

coordinates are v 0
1 and v 0

2. (b) Shows the geometry for deriving the v 0
1 component of

transformation equation (3.5) from triangles OAB and BCD.

3.3 Transformation of vectors 49

v 0
1 ¼ a11v1 þ a12v2 þ a13v3

v 0
2 ¼ a21v1 þ a22v2 þ a23v3

v 0
3 ¼ a31v1 þ a32v2 þ a33v3

(3:8)

and the reverse transformation (old in terms of new):

v1 ¼ a11v
0
1 þ a21v

0
2 þ a31v

0
3

v2 ¼ a12v
0
1 þ a22v

0
2 þ a32v

0
3

v3 ¼ a13v
0
1 þ a23v

0
2 þ a33v

0
3

(3:9)

Note that we have reversed the order of a and v in these equations from the earlier

Equations 3.6 and 3.7, but that is perfectly okay because all terms are scalars. If you examine

carefully Equations 3.8 and 3.9, it looks as though we have “flipped” the transformation matrix

so that the rows are now columns and vice versa. Mathematically, “flipping” a matrix is known

as taking the transpose, as we will see in a later chapter.

You can transform the coordinates of a point in space using the same equations that you

would for vectors (3.8 and 3.9). That’s because any point can be thought of as being connected

to the origin of the coordinate systemby a vector known as a position vector. The components of

the vector are the same as the coordinates of the point. We will use this concept below in

Section 3.4.1.

3.4 EXAMPLES OF TRANSFORMATIONS IN STRUCTURAL GEOLOGY

Generally, we give little thought to the fact that some of our most commonplace structural

problems involve transformations of the type described in the previous section. That is because

we are taught to do themwith laboriousmanualmethods, like orthographic projections, or on a

stereonet. In this section, we will see how to solve two such problems using the methods

developed in this chapter.

Figure 3.6 Vector v in two different coordinate systems. Note that the length and

orientation of v on the page has not changed; only the axes have changed.

50 Transformations of coordinate axes and vectors

3.4.1 Down-plunge projection

To get the best sense of the “true” geometry of a cylindrical fold, geologists usually construct a

profile view of the fold, a cross section of the fold perpendicular to the fold axis. When folds are

cylindrical, all the points along all of their surfaces can be projected parallel to the fold axis onto

this profile plane. This task is complicated by two facts: First, the surface of the Earth is irregular

with hills and valleys and, second, folds commonly plunge oblique to the ground surface. The

graphical method taught in virtually all structural geology lab manuals employs orthographic

projection (Fig. 3.7). One chooses a horizontal folding line that is perpendicular to the fold axis

and another that is horizontal and in the sameplane as the fold axis. Thenby swinging arcswith a

compass and carefully drawing parallel straight lines you can construct the profile.

The construction is made more tedious by the fact that a separate folding line is needed for

each elevation of the control points used. There is ample opportunity for error in the con-

struction of the parallel lines as well as interpolation between widely separated control points.

There is, however, a different way of making a down-plunge projection that applies the

methods we have seen earlier in this chapter. Specifically, we determine the geographic coor-

dinates for a series of points along each bedding surface; that is, we digitize the bedding

surfaces. Then we transform those points into the fold coordinate system (Fig. 3.8). All of this

can be done on a computer muchmore rapidly than is possible by hand. Because we are dealing

with geographic coordinates, our old, right-handed coordinate system will be X1 ¼ east,

X2 ¼ north, and X3 ¼ up (or elevation); our new, right-handed system will be as shown in

Figure 3.8, with X0
3
coinciding with the fold axis.

Now, we need to determine the transformationmatrix in terms of the orientation (trend and

plunge) of the fold axis. The angular relations are given in Figure 3.9. Some of the angles are

Figure 3.7 Graphical construction for drawing a down-plunge projection in a region

with topography. The fold in this example plunges 208 east. The projection of six control

points from the map onto the projection is shown. Modified from Ragan (2009, p. 461).

3.4 Examples of transformations in structural geology 51

Figure 3.9 (a) Equal area lower hemisphere projection showing the angular relations

between the two sets of axes in the down-plunge projection problem. ENU is the old

coordinate system and the axes defined by the fold axis (X0
3) are the new coordinate

system. Several of the angles that define the coordinate transformation (θ21, θ22, etc.)

are shown. (b) The same coordinate transformation viewed in a vertical plane that

contains the trend and plunge of the fold axis.

Figure 3.8 The down-plunge projection, showing the relation between its graphical

construction and the right-hand coordinate system we will use below. The true profile

plane is the plane that contains the X0
1 and X0

2 axes. The X0
2 axis corresponds to a folding

line in the orthographic projection technique shown in Figure 3.7.

52 Transformations of coordinate axes and vectors

obvious, as in the case of all of the new axes with respect to the old X3 axis. For example, from

Figure 3.9b it is clear that the angle between the new X0
3
and the old X3 axes is equal to the fold

axis plunge plus 908. The angle between theX0
1
and X3 axes is equal to the fold axis plunge, itself,

and the angle between X0
2
and X3 is just 908. Thus, in terms of the direction cosines we can write

a13 ¼ cosðplungeÞ

a23 ¼ cosð90Þ ¼ 0

a33 ¼ cos 90þ plungeð Þ ¼ � sin plungeð Þ

Notice that, because all of these are with respect to one old axis, they are not all independent. If

we can determine onemore angle, we could use the orthogonality relations to calculate the rest.

In fact, it will be easier to determine all of the angles directly in this example. The angles that X0
2

makes with the other two old axes are in a horizontal plane (Fig. 3.8) and therefore are just a

function of the trend of the fold axis. Angle X0
2
X1

� �

¼ 360� � trend, and X0
2
X2

� �

¼ trend� 270�.

This will give us two more direction cosines:

a21 ¼ cosð360� trendÞ ¼ cosðtrendÞ

a22 ¼ cosðtrend � 270Þ ¼ � sinðtrendÞ

The final direction cosines can be determined if we recall that they are nothing more than the

direction cosines of the fold axis and its perpendicular (X0
1
) in an east-north-up coordinate

system. Thus, we can use the relations in Table 2.1 and modify them for the change in

coordinate system. The direction cosineswith respect to north and east will not change because

cos(–plunge) = cos(plunge). The cosinewith respect to upwill be equal to the –sin (plunge). Thus,

a31 ¼ sinðtrendÞ cosðplungeÞ

a32 ¼ cosðtrendÞ cosðplungeÞ

and the remaining direction cosines for the X0
1
axis can be calculated by projecting its negative

into the lower hemisphere and then multiplying by –1:

a11 ¼ � sinðtrend þ 180Þ cosð90� plungeÞ ¼ sinðtrendÞ sinðplungeÞ

a12 ¼ � cosðtrend þ 180Þ cosð90� plungeÞ ¼ cosðtrendÞ sinðplungeÞ

Thus, we can combine all of the above equations andwrite out the transformation in shorthand

form, as in Equation 3.3:

aij ¼
sinðtrendÞ sinðplungeÞ cosðtrendÞ sinðplungeÞ cosðplungeÞ

cosðtrendÞ � sinðtrendÞ 0
sinðtrendÞ cosðplungeÞ cosðtrendÞ cosðplungeÞ � sinðplungeÞ

0

@

1

A (3:10)

Now, to accomplish the down-plunge projection, substitute the direction cosines from

Equation 3.10 into Equations 3.8 and coordinates in the new coordinate system can be calcu-

lated. In the actual projection, the v 0
3 component is ignored because everythingwill be projected

onto the X0
1
X0
2
plane. After that, it’s just a matter of connecting the dots! The following MATLAB®

function DownPlunge does the transformations for the down-plunge projection of a bed but it

does not plot or connect the dots!

function dpbedseg = DownPlunge(bedseg,trd,plg)

%DownPlunge constructs the down plunge projection of a bed

%

% [dpbedseg] = DownPlunge(bedseg,trd,plg) constructs the down plunge

% projection of a bed from the X1 (East), X2 (North),

3.4 Examples of transformations in structural geology 53

% and X3 (Up) coordinates of points on the bed (bedseg) and the

% trend (trd) and plunge (plg) of the fold axis

%

% The array bedseg is a two-dimensional array of size npoints x 3

% which holds npoints on the digitized bed, each point defined by

% 3 coordinates: X1 = East, X2 = North, X3 = Up

%

% NOTE: Trend and plunge of fold axis should be entered in radians

%Number of points in bed

nvtex = size(bedseg,1);

%Allocate some arrays

a=zeros(3,3);

dpbedseg = zeros(size(bedseg));

%Calculate the transformation matrix a(i,j). The convention is that

%the first index refers to the new axis and the second to the old axis.

%The new coordinate system is with X3’ parallel to the fold axis, X1'

%perpendicular to the fold axis and in the same vertical plane, and

%X2' perpendicular to the fold axis and parallel to the horizontal. See

%equation 3.10

a(1,1) = sin(trd)*sin(plg);

a(1,2) = cos(trd)*sin(plg);

a(1,3) = cos(plg);

a(2,1) = cos(trd);

a(2,2) = -sin(trd);

a(2,3) = 0.0;

a(3,1) = sin(trd)*cos(plg);

a(3,2) = cos(trd)*cos(plg);

a(3,3) = -sin(plg);

%The east, north, up coordinates of each point to be rotated already define

%the coordinates of vectors. Thus we don't need to convert them to

%direction cosines (and don't want to either because they are not unit vectors)

%The following nested do-loops perform the coordinate transformation on the

%bed. The details of this algorithm are described in Chapter 4

for nv = 1:nvtex

for i = 1:3

dpbedseg(nv,i) = 0.0;

for j = 1:3

dpbedseg(nv,i) = a(i,j)*bedseg(nv,j) + dpbedseg(nv,i);

end

end

end

end

For example, say you want to construct the down-plunge projection of the contact between

the white and gray units in Figure 3.7. Digitize the contact, and in a text editor make a file with

54 Transformations of coordinate axes and vectors

the east, north, up coordinates of points on the contact, one point per line (coordinate entries

can be separated by commas or spaces). Save this file as bedseg.txt. Now type in MATLAB:

load bedseg.txt; %Load bed

dpbedseg = DownPlunge(bedseg,90*pi/180,20*pi/180);% Down plunge projection

plot(dpbedseg(:,2),dpbedseg(:,1), 'k-'); %Plot bed

axis equal; %Make plot axes equal

You will get a chance to try this on a real structure in the exercises at the end of the chapter!

3.4.2 Rotation of orientation data

There are few operationsmore basic to structural geology than rotations. Unfolding lineations,

paleomagnetic fold tests, and converting data measured on a thin section to its original geo-

graphic orientation all require rotations. The stereonet is a convenient graphic device for

accomplishing rotations about a horizontal axis, but rotations about an inclined axis are

more difficult. That is because points (lines) being rotated trace out small circles centered on

the rotation axis. A stereonet only shows small circles centered on the horizontal. It can be

done, but it is tedious.

A rotation is nothing more than a transformation of coordinate system and vectors. When we

unfold linear elements, we are transforming fromageographic coordinate system toonepinned to

bedding (or layering). Therefore, we should be able to use the mathematics developed in this

chapter to determine the equations necessary to accomplish a general rotation about any axis in

space. As before, we need to determine the transformation matrix that will allow us to transform

the vectors representing our orientation measurements. The rotation axis is commonly specified

by its trend and plunge, and the magnitude of rotation is given as an angle that is positive if the

rotation is clockwise about thegivenaxis (theold right-hand rule, again). The trickypart here is that

the rotation axis does not generally coincide with the axes of either the new or the old coordinate

system (unlike the previous example where the fold axis did define one of the new axes).

Ultimatelywewant to calculate the direction cosines for the transformation from the old axes

to their newequivalents, rotated about the given rotation axis.Herewegive thederivation for just

one of the direction cosines, a22; you can derive the rest yourself! In Figure 3.10, notice that,

during the rotation, the X2 axis tracks along a small circle centered on the rotation axis. The size

of the circle, or in three dimensions the half-apical angle of the cone, is equal to the angle between

the rotation axis andX2,β. The angle between the newaxis,X0
2
, and the rotation axiswill also beβ.

Although, the points track along a small circle, the angle thatwewant to calculate is that between

the new and old axes, θ22, which is measured along a great circle (Fig. 3.10).

The simplest way to solve this problem is to use the law of cosines for spherical triangles.

Notice that ω is the angle included between the two equal sides of the β--β--θ22 triangle

(Fig. 3.10). Thus the appropriate formula to use is

cos c ¼ cosa cosb þ sina sinb cosC

where c ¼ θ22, a ¼ b ¼ β, and C ¼ ω. Substituting and rearranging, we get

a22 ¼ cosθ22 ¼ cosβ cosβþ sinβ sinβ cosω

¼ cos2βþ 1� cos2β
� �

cosω

¼ cosωþ cos2β 1� cosωð Þ (3:11a)

By the same reasoning the direction cosines for X1�X0
1
and X3�X0

3
are

3.4 Examples of transformations in structural geology 55

a11 ¼ cosωþ cos2α 1� cosωð Þ

a33 ¼ cosωþ cos2γ 1� cosωð Þ
(3:11b)

We now have three equations and three independent unknowns. Therefore the remaining

direction cosines can be calculated from the orthogonality relations or you can go through

the somewhat more involved geometric derivation. They are given below without proof:

a12 ¼ � cosγ sinωþ cosα cosβ 1� cosωð Þ

a13 ¼ cosβ sinωþ cosα cosγ 1� cosωð Þ

a21 ¼ cosγ sinωþ cosβ cosα 1� cosωð Þ

a23 ¼ � cosα sinωþ cosβ cosγ 1� cosωð Þ

a31 ¼ � cosβ sinωþ cosγ cosα 1� cosωð Þ

a32 ¼ cosα sinωþ cosγ cosβ 1� cosωð Þ

(3:11c)

These equations give the direction cosines of the transformation matrix in terms of the

direction cosines of the rotation axis and the magnitude of the rotation. All that is needed to

accomplish a general rotation is to convert the trend and plunge of the rotation axis into

direction cosines, and then use the transformation matrix in Equations 3.11 in the vector

transformation Equations 3.8. Here is a MATLAB function, Rotate, to do a rotation about an

arbitrary axis:

function [rtrd,rplg] = Rotate(raz,rdip,rot,trd,plg, ans0)

%Rotate rotates a line by performing a coordinate transformation on

%vectors. The algorithm was originally written by Randall A. Marrett

%

% USE: [rtrd,rplg] = Rotate(raz,rdip,rot,trd,plg,ans0)

%

Figure 3.10 Lower hemisphere

projection showing the geometry and

angles involved in a general rotation

about a plunging axis. The newaxes are

indicated by open circles and primed

labels. The angle β is the angle between

the rotation axis and the X2 (east) axis,

ω is the magnitude of the rotation, and

θ22 is the angle between the old X2 and

the new X0
2 axes.

56 Transformations of coordinate axes and vectors

% raz = trend of rotation axis

% rdip = plunge of rotation axis

% rot = magnitude of rotation

% trd = trend of the vector to be rotated

% plg = plunge of the vector to be rotated

% ans0 = A character indicating whether the line to be rotated is an axis

% (ans0 = 'a') or a vector (ans0 = 'v')

%

% NOTE: All angles are in radians

%

% Rotate uses functions SphToCart and CartToSph

%Allocate some arrays

a = zeros(3,3); %Transformation matrix

pole = zeros(1,3); %Direction cosines of rotation axis

plotr = zeros(1,3); %Direction cosines of rotated vector

temp = zeros(1,3); %Direction cosines of unrotated vector

%Convert rotation axis to direction cosines. Note that the convention here

%is X1 = North, X2 = East, X3 = Down

[pole(1) pole(2) pole(3)] = SphToCart(raz,rdip,0);

% Calculate the transformation matrix

x = 1.0 - cos(rot);

sinRot = sin(rot); %Just reduces the number of calculations

cosRot = cos(rot);

a(1,1) = cosRot + pole(1)*pole(1)*x;

a(1,2) = -pole(3)*sinRot + pole(1)*pole(2)*x;

a(1,3) = pole(2)*sinRot + pole(1)*pole(3)*x;

a(2,1) = pole(3)*sinRot + pole(2)*pole(1)*x;

a(2,2) = cosRot + pole(2)*pole(2)*x;

a(2,3) = -pole(1)*sinRot + pole(2)*pole(3)*x;

a(3,1) = -pole(2)*sinRot + pole(3)*pole(1)*x;

a(3,2) = pole(1)*sinRot + pole(3)*pole(2)*x;

a(3,3) = cosRot + pole(3)*pole(3)*x;

%Convert trend and plunge of vector to be rotated into direction cosines

[temp(1) temp(2) temp(3)] = SphToCart(trd,plg,0);

%The following nested loops perform the coordinate transformation

for i = 1:3

plotr(i) = 0.0;

for j = 1:3

plotr(i) = a(i,j)*temp(j) + plotr(i);

end

end

%Convert to lower hemisphere projection if data are axes (ans0 = 'a')

3.4 Examples of transformations in structural geology 57

if plotr(3) < 0.0 && ans0 == 'a'

plotr(1) = -plotr(1);

plotr(2) = -plotr(2);

plotr(3) = -plotr(3);

end

%Convert from direction cosines back to trend and plunge

[rtrd,rplg]=CartToSph(plotr(1),plotr(2),plotr(3));

end

3.4.3 Graphical aside: Plotting great and small circles as a pole rotation

The transformation matrix we derived in the previous problem provides us with a simple and

elegant way to draw great and small circles on any sort of spherical projection. The basic

problem is, how to come up with a series of equally spaced points in the projection (lines in

three dimensions) that one can connect with line segments to form the great or small circle. To

solve this problem, we consider the pole to the great circle, or the axis of the conic section that

defines the small circle, to be the rotation axis. Any vector perpendicular to the pole to the plane

will, when rotated around the pole, trace out a plane that will intersect the projection sphere as

a great circle. Likewise any vector that makes an angle of less than 908 will trace out a cone,

which intersects the projection sphere as a small circle.

Thus, tomake a program to draw great or small circles, youmust first calculate the direction

cosines of the pole to the plane or the center (axis) of the small circle. Then, pick a vector that

lies somewhere on the great or small circle. If you are plotting a great circle, it is most

convenient to choose the point where the circle intersects the primitive (i.e., the edge) of the

projection. One of the main reasons for using a right-hand-rule format for specifying strike

azimuths is that that vector will automatically trace out a lower hemisphere great circle when

rotated 1808 clockwise about the pole (a positive rotation). For small circles, you will probably

want to choose the vector that has the minimum plunge (i.e., the vector with the same trend as

the small circle axis and a plunge equal to the plunge of the axis minus the half apical angle of

the small circle), unless the small circle intersects the edge of the stereographic projection, in

which case the intersection is where you want to start.

From there, it is just amatter of rotating the vector a fixed increment and then drawing a line

segment between the new and the old positions of the vector as projected on the net. This

procedure is repeated until the total number of rotation increments equals 1808 for a great

circle or 3608 for a small circle. On most computer screens, the resolution is such that 20

rotations in 98 increments (or something similar) will produce a reasonably smooth great circle.

Smaller increments are time consuming and may actually produce a rougher great circle. The

following MATLAB functions, GreatCircle and SmallCircle, use rotations to calculate the

traces of great and small circles in equal area and equal angle projections:

function path = GreatCircle(strike,dip,sttype)

%GreatCircle computes the great circle path of a plane in an equal angle

%or equal area stereonet of unit radius

%

% USE: path = GreatCircle(strike,dip,sttype)

%

% strike = strike of plane

58 Transformations of coordinate axes and vectors

% dip = dip of plane

% sttype = type of stereonet. 0 for equal angle and 1 for equal area

% path = vector with x and y coordinates of points in great circle path

%

% NOTE: strike and dip should be entered in radians.

%

% GreatCircle uses functions StCoordLine, Pole and Rotate

%Compute the pole to the plane. This will be the axis of rotation to make

%the great circle

[trda,plga] = Pole(strike,dip,1);

%Now pick a line at the intersection of the great circle with the primitive

%of the stereonet

trd = strike;

plg = 0.0;

%To make the great circle, rotate the line 180 degrees in increments

%of 1 degree

rot=(0:1:180)*pi/180;

path = zeros(size(rot,2),2);

for i = 1:size(rot,2)

%Avoid joining ends of path

if rot(i) == pi

rot(i) = rot(i)*0.9999;

end

%Rotate line

[rtrd,rplg] = Rotate(trda,plga,rot(i),trd,plg,'a');

%Calculate stereonet coordinates of rotated line and add to great

%circle path

[path(i,1),path(i,2)] = StCoordLine(rtrd,rplg,sttype);

end

end

function [path1,path2,np1,np2] = SmallCircle(trda,plga,coneAngle,sttype)

%SmallCircle computes the paths of a small circle defined by its axis and

%cone angle, for an equal angle or equal area stereonet of unit radius

%

% USE: [path1,path2,np1,np2] = SmallCircle(trda,plga,coneAngle,sttype)

%

% trda = trend of axis

% plga = plunge of axis

% coneAngle = cone angle

% sttype = type of stereonet. 0 for equal angle and 1 for equal area

% path1 and path2 are vectors with the x and y coordinates of the points

% in the small circle paths

% np1 and np2 are the number of points in path1 and path2,

% respectively

%

3.4 Examples of transformations in structural geology 59

% NOTE: All angles should be in radians

%

% SmallCircle uses functions ZeroTwoPi, StCoordLine and Rotate

%Find where to start the small circle

if (plga - coneAngle) >= 0.0

trd = trda;

plg = plga - coneAngle;

else

if plga == pi/2.0

plga = plga * 0.9999;

end

angle = acos(cos(coneAngle)/cos(plga));

trd = ZeroTwoPi(trda+angle);

plg = 0.0;

end

%To make the small circle, rotate the starting line 360 degrees in

%increments of 1 degree

rot=(0:1:360)*pi/180;

path1 = zeros(size(rot,2),2);

path2 = zeros(size(rot,2),2);

np1 = 0; np2 = 0;

for i = 1:size(rot,2)

%Rotate line: Notice that here the line is considered as a vector

[rtrd,rplg] = Rotate(trda,plga,rot(i),trd,plg,'v');

% Add to the right path

% If plunge of rotated line is positive add to first path

if rplg >= 0.0

np1 = np1 + 1;

%Calculate stereonet coordinates and add to path

[path1(np1,1),path1(np1,2)] = StCoordLine(rtrd,rplg,sttype);

%If plunge of rotated line is negative add to second path

else

np2 = np2 + 1;

%Calculate stereonet coordinates and add to path

[path2(np2,1),path2(np2,2)] = StCoordLine(rtrd,rplg,sttype);

end

end

end

Normally, stereonets are presented with the primitive equal to the horizontal (i.e., looking

straight down). However, it is often convenient to construct a stereonet in another orientation.

For example, one may want to plot data in the plane of a cross section (a view direction that is

horizontal and perpendicular to the trend of the cross section), or in the down-plunge view of a

cylindrical fold (a view direction parallel to the fold axis). The MATLAB function GeogrToView

below enables one to calculate a stereonet looking in any direction, by transforming any point in

the stereonet from NED coordinates to view direction coordinates.

60 Transformations of coordinate axes and vectors

function [rtrd,rplg] = GeogrToView(trd,plg,trdv,plgv)

%GeogrToView transforms a line from NED to View Direction

%coordinates

%

% USE: [rtrd,rplg] = Geogr To View(trd,plg,trdv,plgv)

%

% trd = trend of line

% plg = plunge of line

% trdv = trend of view direction

% plgv = plunge of view direction

% rtrd and rplg are the new trend and plunge of the line in the view

% direction.

%

% NOTE: Input/Output angles are in radians

%

% GeogrToView uses functions ZeroTwoPi, SphToCart and CartToSph

%Some constants

east = pi/2.0;

% Make transformation matrix between NED and View Direction

a = zeros(3,3);

[a(3,1),a(3,2),a(3,3)] = SphToCart(trdv,plgv,0);

temp1 = trdv + east;

temp2 = 0.0;

[a(2,1),a(2,2),a(2,3)] = SphToCart(temp1,temp2,0);

temp1 = trdv;

temp2 = plgv - east;

[a(1,1),a(1,2),a(1,3)] = SphToCart(temp1,temp2,0);

% Direction cosines of line

dirCos = zeros(1,3);

[dirCos(1),dirCos(2),dirCos(3)] = SphToCart(trd,plg,0);

% Transform line

nDirCos = zeros(1,3);

for i=1:3

nDirCos(i) = a(i,1)*dirCos(1) + a(i,2)*dirCos(2)+ a(i,3)*dirCos(3);

end

% Compute line from new direction cosines

[rtrd,rplg] = CartToSph(nDirCos(1),nDirCos(2),nDirCos(3));

% Take care of negative plunges

if rplg < 0.0

rtrd = ZeroTwoPi(rtrd+pi);

rplg = -rplg;

end

end

3.4 Examples of transformations in structural geology 61

Now we put all of the previous routines together in a function, Stereonet, that plots an

equal area or equal angle stereonet in any view direction you want. This code is very short and

efficient because it calls several of the previous functions in this chapter and Chapters 1 and 2.

function [] = Stereonet(trdv,plgv,intrad,sttype)

%Stereonet plots an equal angle or equal area stereonet of unit radius

%in any view direction

%

% USE: Stereonet(trdv,plgv,intrad,stttype)

%

% trdv = trend of view direction

% plgv = plunge of view direction

% intrad = interval in radians between great or small circles

% sttype = An integer indicating the type of stereonet. 0 for equal angle,

% and 1 for equal area

%

% NOTE: All angles should be entered in radians

%

% Example: To plot an equal area stereonet at 10 deg intervals in a

% default view direction type:

%

% Stereonet(0,90*pi/180,10*pi/180,1);

%

% To plot the same stereonet but with a view direction of say: 235/42,

% type:

%

% Stereonet(235*pi/180,42*pi/180,10*pi/180,1);

%

% Stereonet uses functions Pole, GeogrToView, SmallCircle and GreatCircle

% Some constants

east = pi/2.0;

west = 3.0*east;

% Plot stereonet reference circle

r = 1.0; % radius of stereonet

TH = (0:1:360)*pi/180; % polar angle, range 2 pi, 1 degree increment

[X,Y] = pol2cart(TH,r); % cartesian coordinates of reference circle

plot(X,Y,'k'); % plot reference circle

axis ([-1 1 -1 1]); % size of stereonet

axis equal; axis off; % equal axes, no axes

hold on; % hold plot

% Number of small circles

nCircles = pi/(intrad*2.0);

% Small circles

% Start at the North

trd = 0.0;

plg = 0.0;

62 Transformations of coordinate axes and vectors

% If view direction is not the default (trd=0,plg=90), transform line to

% view direction

if trdv ~= 0.0 || plgv ~= east

[trd,plg] = GeogrToView(trd,plg,trdv,plgv);

end

% Plot small circles

for i = 1:nCircles

coneAngle = i*intrad;

[path1,path2,np1,np2] = SmallCircle(trd,plg,cone Angle,sttype);

plot(path1(1:np1,1),path1(1:np1,2),'b');

if np2 > 0

plot(path2(1:np2,1),path2(1:np2,2),'b');

end

end

% Great circles

for i = 0:nCircles*2

%Western half

if i <= nCircles

% Pole of great circle

trd = west;

plg = i*intrad;

%Eastern half

else

% Pole of great circle

trd = east;

plg = (i-nCircles)*intrad;

end

% If pole is vertical, shift it a little bit

if plg == east

plg = plg * 0.9999;

end

% If view direction is not the default (trd=0,plg=90), transform line to

% view direction

if trdv ~= 0.0 || plgv ~= east

[trd,plg] = GeogrToView(trd,plg,trdv,plgv);

end

% Compute plane from pole

[strike,dip] = Pole(trd,plg,0);

% Plot great circle

path = GreatCircle(strike,dip,sttype);

plot(path(:,1),path(:,2),'b');

end

hold off; %release plot

end

3.4 Examples of transformations in structural geology 63

Figure 3.11 Simplified geologic map of the Big Elk anticline in southeastern Idaho, to

accompany Exercise 8.

64 Transformations of coordinate axes and vectors

3.5 EXERCISES

1. Derive the equation for component a21 of the transformationmatrix for the case of a general

rotation.

2. Derive the transformation matrix of Equation 3.10, but this time as a vector transformation

(Eq. 3.8) between the X1 ¼ north, X2 ¼ east, X3 ¼ up coordinate system and the fold axis

based X0
1
�X0

2
�X0

3
coordinate system.

3. Derive the transformation matrix for a down-plunge projection in the right-handed coor-

dinate system, X1 ¼ south, X2 ¼ west, X3 ¼ down.

4. Evaluate the problem of construction of a vertical section of a plunging cylindrical fold. Can

this problem be carried out as a transformation of coordinates and points? If so, derive the

transformation matrix; if not precisely state why not.

5. Construct the down-plunge projection of the contact between the gray and white units in

Figure 3.7, using the MATLAB function DownPlunge.

6. Using the function Stereonet, plot equal area stereonets with 108 grid interval, and the

following view directions: 123/42, 032/57, 245/21, 321/49.

7. Plot in MATLAB the following lines and planes in equal area stereonets with 108 grid interval,

and view directions 000/90 and 214/56. Lines = 212/23, 014/56, 321/53. Planes = 211/24,

035/67, 238/76. Hint: Use functions StCoordLine (Chapter 1), GreatCircle,

GeogrToView, and Stereonet (this chapter).

8. Figure 3.11 is a geologic map of the Big Elk anticline, located in the Mesozoic thrust belt in

southeastern Idaho, United States (Albee and Cullins, 1975).

a. The trend and plunge of the fold axis is 125/26. In Chapter 5, we will return to this

example once you have learned how to calculate a best-fitting fold axis.

b. Supplementary data file “Problem 3.8” contains the digitized contacts (east, north, up) of

the top of the Jurassic Twin Creek Limestone (Jtc), the Jurassic Stump Sandstone (Js), and

the Cretaceous Peterson Limestone (Kp). Using the equations and functions (e.g.,

DownPlunge) developed in this chapter, construct a down-plunge section of the Big Elk

anticline.

c. The Idaho–Wyoming thrust belt in which this structure occurs thrusts from west to east.

What is the vergence (i.e., asymmetry) of the Big Elk anticline and does it agree with the

general direction of thrusting? Do you note anything unusual about the sequence

between Jtc and Js? This sequence contains the Preuss redbeds, which are known to

contain evaporate minerals. Can you draw any conclusions with this additional

information?

3.5 Exercises 65

CHAPTER

FOUR

Matrix operations and indicial notation

4.1 INTRODUCTION

Up to this point, we have successfully avoided introducing any unfamiliar mathematical con-

cepts or strange symbology. All of the equations that have been presented are, individually,

very simple, involving nothing more than addition and multiplication. There are a lot of them,

however, and it gets tedious to keep rewriting very similar – andmore importantly, predictable –

equations over and over again. What we need is a shorthand way of writing things down that

makes it easier on us while at the same time preserving, or even enhancing, the logic behind

them. It should come as no surprise that such shorthand devices are readily available, and

we will concentrate on two of them in this chapter: matrix notation and the indicial notation,

including the Einstein summation convention. Although some of what follows may look

exotic, just remember that the equations represented are no more complex than what we’ve

seen before.

4.2 INDICIAL NOTATION

We have already been introduced, briefly, to indicial notation in Chapters 2 and 3. Instead of

writing out components of, say, the transformation matrix in the previous chapter:

a ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

0

@

1

A (4:1)

we can write it much more quickly as

a ¼ aij ði; j ¼ 1;2;3Þ (4:2)

66

where i and j refer to the new and the old axes, respectively. The expression in parentheses

means that both indices can have values of 1, 2, or 3. Likewise, vectors can be written as

v ¼ vi ði ¼ 1;2;3Þ (4:3)

Generally, the expression in parentheses is omitted unless it is needed for clarity. In our three-

dimensional Cartesian coordinate system, each index will always have a value of 1, 2, or 3; in

two dimensions, 1 or 2.

There is a confusing variety in how the suffixesmay be written depending on the author, the

coordinate system, and the type of quantity being represented. All of the following may be

encountered at one time or another:

Vi ;T
j
i ; fij ;R

i
�jk ; etc:

In this book, we will only have to deal with single or double subscripts; other formats will be

avoided.

4.2.1 Einstein summation convention

Although the indicial notation saves us some time in writing down equations like (4.1), its real

power lies in the ability to represent in a short space, long repetitive calculations. Many things

that we do with vectors involve adding up their components in various ways. For example, take

the equation for the magnitude of a vector in Chapter 2, which is

vj j ¼ v2
1 þ v2

2 þ v2
3

� �1=2

Using a summation sign, �, we can write this equation somewhat more compactly as

vj j ¼
X

3

i¼1

v2
i

 !1=2

¼
X

3

i¼1

vivi

 !1=2

But, even this ismore thanwe need to do.We can state that, because the subscript i occurs twice

on the right-hand side of the preceding equation, it is assumed that the summation occurs with

respect to that index. This convention is known as the Einstein summation convention. Thus, we

can write

vj j ¼ vivið Þ1=2 (4:4)

Let’s apply this to a more complex situation, the equations for the transformation of a vector,

which were derived in the last chapter:

v 0
1 ¼ a11v1 þ a12v2 þ a13v3

v 0
2 ¼ a21v1 þ a22v2 þ a23v3

v 0
3 ¼ a31v1 þ a32v2 þ a33v3

(4:5)

Notice that, on the right-hand side of each of the three equations, the second subscript of a and

the single subscript of v increase systematically from1 to 3. That suggests that we canwrite the

equations as summations based on those subscripts:

4.2 Indicial notation 67

v 0
1 ¼

X

3

j¼1

a1jvj

v 0
2 ¼

X

3

j¼1

a2jvj

v 0
3 ¼

X

3

j¼1

a3jvj

(4:6)

Now that j occurs twice on the right-hand side of Equations 4.6, we can use our new-found

summation convention so that:

v 0
1 ¼ a1jvj

v 0
2 ¼ a2jvj

v 0
3 ¼ a3jvj

(4:7)

But, this is still too much work! The remaining indices 1, 2, and 3 now occur one on each side of

Equations 4.7. So, we simply represent them as another letter index, in this case i, so that we can

write the above three equations as a single one:

v 0
i ¼ aijvj (4:8)

Clearly, we have saved ourselves a lot of tedious effort transcribing equations, not to mention

potential errors, by reducing Equations 4.5 down to Equation 4.8. In general, in the Einstein

summation convention, whatever subscript is repeated on one side of the equation is known as

the dummy suffix; the summation within a single equation always occurs with respect to that

suffix. The free suffix occurs only once on each side of the equation. There will be as many

equations as there are values of the free suffix and each equation will have as many terms as

there are dummy suffix values. So, assuming that (i; j ¼ 1;2;3), Equation 4.8 represents three

separate equations (i is the free suffix) each of which has three terms (j is the dummy suffix).

Note that in the case of Equation 4.8 we can reverse the order of the a and the v terms on the

right-hand side without changing the meaning of the expression, but we cannot change the

order of the suffixes:

v 0
i ¼ aijvj ¼ vjaij 6¼ ajivj (4:9)

It should be emphasized that, to be a dummy suffix, the subscript has to be repeatedwithin the

same term on the right-hand side of the equation. In the equation (which is not a real equation!)

v 0
j ¼ aj þ vj

j is a free suffix, not a dummy suffix, and therefore three equations are indicated, one for each

value of j .

4.2.2 Summation convention as a compact computer program

For those with some experience with computers, it is particularly useful to think of the

summation convention as a kind of compact computer program. In the case of Equation 4.8,

we have three arrays, twowith dimensions of 1� 3 (vj and v 0
i) and onewith a dimension of 3� 3

(aij). The summation about the dummy suffix, j , can be thought of as an inner loop and the free

suffix, i, defines an outer. Thus, in MATLAB® we would program 4.8 as:

68 Matrix operations and indicial notation

%vold is a 1 x 3 vector with old coordinates

%a is the 3 x 3 transformation matrix between old and new coordinates

vnew = zeros(1,3) %Initialize vector with new coordinates

for i=1:3 %i is the free suffix

for j=1:3 %j is the dummy suffix

vnew(i) = a(i,j)*vold(j) + vnew(i);

end

end

Note that the indices of the arrays in this program appear in just the same order as the

subscripts in Equation 4.8. Readers who have some programming experience should study

this example carefully because it will make it easier to understand the more complex summa-

tion equations that we will encounter in the next chapter.

4.3 MATRIX NOTATION AND OPERATIONS

The summation convention introduced in the previous section will be used for most of our

calculations because it is particularly easy to understand and because of the readiness with

which it is translated into computer code. Also, the indices relate directly to the axes of our

chosen coordinate system. However, there are some operations that are better expressed in

matrix, rather than indicial notation. More importantly, one must make a distinction between a

matrix as a mathematical concept and matrix notation. The latter, like indicial notation, is

nothingmore than simple shorthand though inmanyways less immediately graspable. The use

of a particular notation is commonly an either–or proposition, but in either case, we are

fundamentally dealing with matrices.

Most structural geologists are conversant with the concept of matrices. In fact, we have

already used the concept in our representation of the transformation matrix in the previous

chapter (Section 3.2.2). In its simplest form, a matrix simply represents a rectangular table of

numbers which may, or may not, represent a physical entity and may, or may not, be related to

each other. In a computer program, any array of numbers is a matrix. The transformation

matrix, a, contains nine numbers (Eq. 4.1), only three of which are independent of each other.

The numbers in this case, however, do not represent any particular physical entity; theymerely

represent an arbitrary change of axes that is governed only by our whim and not by any set of

physical conditions or constraints.

There are othermatrices, however, which do represent tangible quantities that really exist. A

vector can be described as a rectangular table of three numbers (in our three-dimensional

Cartesian coordinate system):

vi ¼ v1 v2 v3½ � (4:10)

The vector that represents the displacement of an element ofmatter, fromone point to another,

is something that is not dependent on our fancy but on something that really happened. Once

the displacement has occurred, we can represent it with different numbers by changing the

coordinate system, but we cannot change the fundamental nature of the displacement itself.

4.3.1 Notation and conventions

We use matrices to represent both the groups of numbers with, and without, physical signifi-

cance. When a single letter is used to indicate a matrix, it appears in bold face, as on the left

4.3 Matrix notation and operations 69

sides of Equations 4.1 and 4.2. In this book, if the matrix portrays a physical entity then its

components are enclosed in square brackets, [], as in Equation 4.10, otherwise round brackets

or parentheses, (), are used. This is the convention followed in Nye (1985) but it is by no means

universal.

The only matrices that we will be concerned with in this book are simple, rectangular arrays

of numbers. Square matrices, for example, have the same number of columns and rows; the

first subscript of an individual component refers to its row number and the second to its

column number. Thus, element a23 occurs in row two and column three, as in Equation 4.1. If

we want to refer to the components inmore general terms, it will be with indicial notation with i

indicating row number and j the column number: aij . In a square matrix, the elements in which

both subscripts are the same are collectively named the main or principal diagonal. If all of the

elements in a matrix except the principal diagonal are equal to zero, then the matrix is called a

diagonal matrix.

The identity matrix is a diagonal matrix in which the principal diagonal is entirely made up

of ones:

I ¼ δij ¼
1 0 0
0 1 0
0 0 1

0

@

1

A (4:11)

The indicial representation of thismatrix, δij , is given a special name, theKronecker delta. Aswe

will see below, the Kronecker delta has a number of useful applications. One of the handy

properties of the Kronecker delta is to allow us to substitute one index of a vector for another:

vi ¼ δijvj (4:12)

Matrices can also have an unequal number of rows and columns. When we talk about anm� n

matrix, the first letter (or number) tells us the number of rows and the second the number of

columns. Equation 4.10 is a 1� 3 matrix.

4.3.2 Elementary matrix operations

Multiplication by a single number

Any matrix can be multiplied by a single number simply by multiplying each one of its

individual components by that number:

zP ¼
zP11 zP12 zP13

zP21 zP22 zP23

zP31 zP32 zP33

0

@

1

A (4:13)

The multiplication of a vector by a scalar is an example of this sort of operation (Chapter 2).

Matrix addition

If two matrices have the same number of rows and columns, they can be added together by

adding each component to its equivalent in the other matrix:

PþQ ¼
P11 þQ11ð Þ P12 þQ12ð Þ P13 þQ13ð Þ
P21 þQ21ð Þ P22 þQ22ð Þ P23 þQ23ð Þ
P31 þQ31ð Þ P32 þQ32ð Þ P33 þQ33ð Þ

0

@

1

A (4:14)

This is the type of operation we do when we add two vectors together (Eq. 2.10).

70 Matrix operations and indicial notation

Matrix multiplication

Two matrices can be multiplied together only if the number of columns in the first matrix

matches the number of rows in the second. If two matrices have this property, they are said to

be conformable. The resulting matrix has the same number of rows as the first matrix and the

same number of columns as the second:

A m � nð ÞB n � kð Þ ¼ C m � kð Þ (4:15)

With respect to the above equation, it is as if the n that the two matrices have in common is

“canceled out.” Notice that this operation is not reversible, that is,AB is conformable but BA is

not because the number of columns of B (k) is not necessarily equal to the number of rows ofA

(m). The best way to describe how to carry out matrixmultiplication is to write it in terms of the

summation convention:

Cij ¼ AikBkj (4:16)

In this equation, k is the dummy suffix and i and j are the free suffixes. Thus, if the three

suffixes each have values between 1 and 3, Equation 4.16 represents nine equations, each with

three terms. The expansion for two of the terms is shown below:

C22 ¼ A21B12 þA22B22 þA23B32

C31 ¼ A31B11 þA32B21 þA33B31

In matrix notation, the dot product of two vectors can be calculated by representing the first

vector as a 1� 3 rowmatrix and the second vector as a 3� 1 columnmatrix. This operation will

yield a single number that is the sum of the products of the components of the two matrices:

u � v ¼ uv ¼ u1 u2 u3½ �
v1
v2
v3

2

4

3

5 ¼ u1v1 þ u2v2 þ u3v3½ � (4:17)

The summation notation representation of Equation 4.17 is

uv ¼ vi ui (4:18)

You can see that the result of Equation 4.17 is identical to Equation 2.11. Be very careful with

this, however, because while u � v ¼ v � u, it is clearly not the case with matrix notation. You can

see that uv 6¼ vu, because the left side of this equation yields a single number (i.e., 1� 1matrix)

whereas the right side of the equation yields a 3� 3 matrix!

vu ¼
v1
v2
v3

2

4

3

5 u1 u2 u3½ � ¼
v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

v3u1 v3u2 v3u3

2

4

3

5 (4:19)

In summation notation, we would write Equation 4.19 as

vu ¼ vi uj (4:20)

Notice that the difference between Equations 4.18 and 4.20 is immediately obvious when

written using indicial notation. The matrix multiplication of the two vectors, vu, as in

Equations 4.19 and 4.20 is a special type of feature known as a tensor or dyad product, which

we will see in the next chapter.

4.3 Matrix notation and operations 71

Transpose of a matrix

There are times, when dealing with square matrices, when it is necessary to interchange the

columns and rows. This operation is called the transpose of a matrix and is denoted by a small

superscript T.1 For example, the transpose of the transformation matrix would be

aT ¼
a11 a21 a31

a12 a22 a32

a13 a23 a33

0

@

1

A (4:21)

If a square matrix is equal to its transpose, that is

C ¼ C
T or Cij ¼ Cji (4:22)

then thematrix is said to be symmetric. But, suppose we have the condition thatCij ¼ �Cij . This

can only be true if the principal diagonal of the matrix is all zeros (i.e., C11 ¼ �C11 only if

C11 ¼ 0, etc.). Matrices of this form are known as antisymmetric or skew matrices. The concept

of symmetric and antisymmetric matrices will be very important in our discussion of strain

later on in this book. An orthogonal matrix is one that, when multiplied by its transpose, is

equal to the identity matrix. We will show below that the transformation matrix, a, has this

property:

aaT ¼ I (4:23)

Althoughwe gave a formula for the dot product in Equations 4.17 and 4.18, it is hardly themost

logical way to write the expression because it ismore natural to think of the two vectors as both

row or both column vectors. The transpose gives us a way around this because the transpose of

a row vector is a column vector. Thus, we can rewrite Equations 4.17 and 4.19 as

u � v ¼ uvT (4:24)

v� u ¼ vTu (4:25)

The � represents the dyad product of two vectors.

Thematrix operations described in this chapter are one of MATLAB’s specialties and thus can

commonly be carried out with a single-line command. For people who understand linear

algebra, this makes things very easy, but there is a great temptation to use the one-line

commands as a black box. Thus, below we show the long way of carrying out these operations,

as well as providing you with the one-line MATLAB equivalents. Those who wish to accomplish

these operations in a different programming language will find the translations

straightforward.

function c = MultMatrix(a,b)

%MultMatrix multiplies two conformable matrices

%

% USE: c = MultMatrix(a,b)

%

% Matrix a premultiplies matrix b to produce matrix c, as in the equation

% c = ab

1 Nye (1985) denotes the transpose of a matrix by a small subscript t: Ct.

72 Matrix operations and indicial notation

%

% NOTE: This function is only for illustration purposes. To multiply

% matrices MATLAB use the * operator (e.g. c = a*b)

aRow = size(a,1); %Number of rows in a

aCol = size(a,2); %Number of columns in a

bRow = size(b,1); %Number of rows in b

bCol = size(b,2); %Number of columns in b

%If the multiplication is conformable

if aCol == bRow

%Initialize c

c = zeros(aRow,bCol);

for i = 1:aRow % note the use of the nested loops

for j = 1:bCol % to do the matrix multiplication

for k = 1:aCol

c(i,j) = a(i,k)*b(k,j) + c(i,j);

end

end

end

%Else report an error

else

error('Error: Matrices are not conformable');

end

end

function c = Transpose(a)

%Transpose calculates the transpose of a matrix

%

% USE: c = Transpose(a)

%

% The original matrix is a; the transpose of a is returned in c

%

% NOTE: This function is only for illustration purposes. To get the

% transpose of a matrix in MATLAB use the ' operator (e.g. c = a')

%Number of rows and columns in a

n = size(a,1);

m = size(a,2);

%Initialize c. Note the switch of number of rows and columns here

c = zeros(m,n);

for i = 1:n

for j = 1:m

c(j,i) = a(i,j); %Note the switch of indices, i & j here

end

end

end

4.3 Matrix notation and operations 73

4.3.3 The determinant and inverse of a matrix

Determinant of a matrix

There is a single scalar function of squarematrices, known as the determinant; it is represented

by vertical lines on either side of the matrix or by the letters “det” preceding the matrix. For a

simple 2� 2 matrix, the determinant is easy to calculate:

detC ¼ Cj j ¼
C11 C12

C21 C22

¼ C11C22 � C12C21 (4:26)

For larger matrices, calculating the determinant is considerably more difficult. In general,

one finds the cofactors – that is, the determinants of subsets of the matrix – and multiplies

them times their corresponding elements. For example, the cofactor,M21, of a 3� 3matrix,M, is

determined by taking the negative determinant of the sub-matrix that does not include either

the row or column of the cofactor, itself. If i þ j is even, then you take the positive determinant

of the sub-matrix. That is probably pretty obscure, but perhaps diagramming it out will help

(Fig. 4.1):

The cofactor is negative because i þ j ¼ 2þ 1 ¼ 3 is an odd number. Thus, we can define the

determinant of the entire matrix by

Mj j ¼
M11 M12 M13

M21 M22 M23

M31 M32 M33

¼ M11cof11ðMÞ �M12cof12ðMÞ þM13cof13ðMÞ (4:27)

Expanding the right side of this equation, we get

detM ¼ Mj j ¼ M11 M22M33 �M23M32ð Þ

þM12 M23M31 �M21M33ð Þ

þM13 M21M32 �M22M31ð Þ

(4:28)

or,

detM ¼ Mj j ¼ M11M22M33 þM12M23M31 þM13M21M32

�M13M22M31 �M11M23M32 �M12M21M33

The cofactor method can be used to calculate the determinants of square matrices with orders

higher than 3, butwewill seldomneed to do so in this book. Below, we showhow to calculate the

cofactors and determinant for a 3� 3 matrix.

Figure 4.1 How to construct the cofactor of element M21 of matrixM.

74 Matrix operations and indicial notation

function cofac = CalcCofac(a)

%CalcCofac calculates all of the cofactor elements for a 3 x 3 matrix

%

% USE: cofac = CalcCofac(a)

%

% a is the matrix and cofac are the cofactor elements

%Number of rows and columns in a

n = size(a,1);

m = size(a,2);

%If matrix is 3 x 3

if n == 3 && m == 3

%Initialize cofactor

cofac = zeros(3,3);

%Calculate cofactor. When i+j is odd, the cofactor is negative

cofac(1,1) = a(2,2)*a(3,3) - a(2,3)*a(3,2);

cofac(1,2) = -(a(2,1)*a(3,3) - a(2,3)*a(3,1));

cofac(1,3) = a(2,1)*a(3,2) - a(2,2)*a(3,1);

cofac(2,1) = -(a(1,2)*a(3,3) - a(1,3)*a(3,2));

cofac(2,2) = a(1,1)*a(3,3) - a(1,3)*a(3,1);

cofac(2,3) = -(a(1,1)*a(3,2) - a(1,2)*a(3,1));

cofac(3,1) = a(1,2)*a(2,3) - a(1,3)*a(2,2);

cofac(3,2) = -(a(1,1)*a(2,3) - a(1,3)*a(2,1));

cofac(3,3) = a(1,1)*a(2,2) - a(1,2)*a(2,1);

else

error('Matrix is not 3 x 3');

end

end

function [detA,cofac] = Determinant(a)

%Determinant calculates the determinant and cofactors for a 3 x 3 matrix

%

% USE: [detA,cofac] = Determinant(a)

%

% a is the matrix, detA is the determinant, and cofac are the

% cofactor elements

%

% Determinant uses function CalcCofac

%

% NOTE: This function is only for illustration purposes. To get the

% determinant of a square matrix of any size use the MATLAB function det

% (e.g. detA = det(a))

%Number of rows and columns in a

n = size(a,1);

4.3 Matrix notation and operations 75

m = size(a,2);

%If matrix is 3 x 3

if n == 3 && m == 3

%Calculate the array of cofactors for a. Note that this is not the most

%efficient way of doing this because you will calculate six more

%cofactors than you need. The time loss, however, is negligible

cofac = CalcCofac(a);

%Calculate the determinant of a as in equation 4.27, remembering that

%the cofactor 1,2 from CalcCofac will already be negative

detA = 0.0;

for i = 1:3

detA = a(1,i)*cofac(1,i) + detA;

end

else

error('Matrix is not 3 x 3');

end

end

Inverse of a matrix

We have already seen that multiplication of conformable matrices is possible, but suppose we

have the equation

y ¼ Mx (4:29)

Can we solve this equation for x by dividing through by M? The answer, of course, is “no,”

dividing by a matrix has no meaning. We can, however, get around this limitation by defining

the inverse of a matrix, denoted by the matrix symbol raised to the minus one power: M�1. A

matrix, when multiplied by its inverse, is equal to the identity matrix, I (Eq 4.11):

MM�1 ¼ M�1M ¼ I ¼ δij (4:30)

It can be shown that, if a square matrix has a non-zero determinant, then the matrix has an

inverse. Matrices of this type are called non-singular. We can then solve for x in Equation 4.29 as

follows:

x ¼ M�1y (4:31)

The definition of the inverse of amatrix is simple but the actual calculation is not. The equation

that one can use to find the inverse of matrix,M, is given below (see Nye, 1985, pp. 155–156, or

Malvern, 1969, pp. 41–43, for the derivation):

M�1 ¼

cof11ðMÞ

Mj j

� �

cof21ðMÞ

Mj j

� �

cof31ðMÞ

Mj j

� �

cof12ðMÞ

Mj j

� �

cof22ðMÞ

Mj j

� �

cof32ðMÞ

Mj j

� �

cof13ðMÞ

Mj j

� �

cof23ðMÞ

Mj j

� �

cof33ðMÞ

Mj j

� �

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

(4:32)

You can see that, even for a 3� 3 matrix, inverting it is not simple! Nonetheless, matrix

inversion is the foundation of some very powerful algorithms in geophysics and structural

76 Matrix operations and indicial notation

geology that go under the general heading of “inverse methods.” We will see an example of

matrix inversion when we solve the problem of extracting strain rate from Global Positioning

System (GPS) velocity vectors later on. For large matrices, numerical methods are commonly

used. Below, we show how to calculate the inverse of a 3� 3 matrix.

function aInv = Invert(a)

%Invert calculates the inverse of a 3 x 3 matrix

%

% USE: aInv = Invert(a)

%

% a is the matrix, and aInv is the inverse matrix

%

% Invert uses function Determinant

%

% NOTE: This function is only for illustration purposes. To get the

% inverse of a square matrix of any size use the MATLAB function inv

% (e.g. aInv = inv(a))

%Calculate the cofactors and determinant of a

[detA,cofac] = Determinant(a);

%Calculate the inverse matrix following equation 4.32

aInv = zeros(3,3); %Initialize aInv

for i = 1:3

for j = 1:3

aInv(i,j) = cofac(j,i)/detA; %Note the switch of i & j in cofac

end

end

end

4.4 TRANSFORMATIONS OF COORDINATES AND VECTORS REVISITED

The transformation of a vector from one coordinate system to another is just one example of a

whole general class of matrix algebra operations known as linear transformations. Anytime we

have the same number of equations and unknowns they can be written as a set of simultaneous

linear equations, and matrix concepts provide a simple way of solving these equations. Many

textbooks, for example, describe solutions of linear equations using Cramer’s Rule and there

are other approaches for larger matrices. Most of these methods are beyond the scope of this

book.

The reverse transformation (old in terms of new)

In Chapter 3, we introduced the concept of the transformation matrix, a, and the set of six

equations that govern the relations between the direction cosines, which are known as the

orthogonality relations (Eqs. 3.3 and 3.4). Now that we have indicial notation and some matrix

concepts more fully in mind, we can reexamine these relations in a new light. Using the

summation convention, we can rewrite Equations 3.4 as

4.4 Transformations of coordinates and vectors revisited 77

aikajk ¼ 1; if i and j are equal

Likewise, Equations 3.5 can be rewritten as

aikajk ¼ 0; if i and j are not equal

Recall that the identity matrix (Eq. 4.11) has these same properties. If its two indices are

equal, then they have a value of 1 (i.e., the principal diagonal is equal to 1), otherwise it has a

value of 0 (i.e., the “off-diagonal” elements are equal to 0). Thus, we can write the orthogonality

relations as a single equation in indicial notation:

aikajk ¼ δij (4:33)

or in matrix notation:

aaT ¼ I (4:34)

Thus, the transformation matrix is an orthogonal matrix, as described above.

The transformation of a vector (Eqs. 3.8 and 4.5) in matrix notation can be written simply as

v0 ¼ av or v 0
i ¼ aijvj (4:35)

Clearly, from the discussion of inverse matrices, if we want to solve for v (i.e., we want the

reverse transformation of old in terms of new), we should be able to pre-multiply v0 by the

inverse of a (compare Eqs. 4.29 and 4.31):

v ¼ a�1v0 (4:36)

However, if you compare Equation 4.23 with Equation 4.30, you will see that, for an orthogonal

matrix, its transpose is equal to its inverse; that is, aT ¼ a�1. Therefore, we can also write

Equation 4.36 as

v ¼ aTv0 or vi ¼ aj iv
0
j (4:37)

If you expand Equation 4.37, you will see that it is identical to Equations (3.9). This is a more

elegant way of deriving the reverse transformation than we were able to do in Chapter 3.

Change of “handedness” of axes

Imagine looking at the image of a right-handed coordinate system in the mirror. What

you would see is a left-handed coordinate system (Fig. 4.2). This is nothing more than a certain

type of coordinate transformation. One particularly common place to encounter this type

of transformation is in considering the symmetry of mineral crystals. It would be nice if there

were some way to determine whether or not a particular transformation would produce a

change in the handedness of axes of our coordinate system. As it turns out, there is (Nye,

1985, pp. 35–38). It is possible to show that the determinant of the transformation matrix, a

(and of all orthogonal matrices), can only be equal to +1 or –1. A close inspection of Figure 4.2

shows that the only axis to change is X2; in the mirror, it points in the opposite direction from

the original axis whereas all of the others point essentially in the same direction (accounting for

the perspective of the diagram). Thus the transformation matrix for the situation shown in

Figure 4.2 is

78 Matrix operations and indicial notation

aij ¼
1 0 0
0 �1 0
0 0 1

0

@

1

A (4:38)

The determinant of this matrix, calculated from Equation 4.32, is

deta ¼ aj j ¼ a11 a22a33 � a23a32ð Þ þ a12 a23a31 � a21a33ð Þ þ a13 a21a32 � a22a31ð Þ

¼ a11 a22a33 � a23a32ð Þ þ 0þ 0

¼ a11a22a33 � 0

¼ 1ð Þ �1ð Þ 1ð Þ ¼ �1

Thus, you can show that, if the determinant of the transformation matrix, aj j, equals� 1,

then the transformation will produce a change in the hand of the axes. It is just as easy

to show that a transformation that does not change the hand of the axes has a determinant

of +1.

4.5 EXERCISES

1. Matrices A and B are given below. Calculate the following sums and products: (a) Aþ B, (b)

BþA, (c) AB, and (d) BA.

A ¼
2 6
4 9

� �

and B ¼
3 14
7 10

� �

2. What are the determinants of matrices A and B in Exercise 1?

3. In Equations 4.27 and 4.28, we determined the determinant of matrixM by expansion of the

first row of the matrix. Show that expansion of the second row produces the same determi-

nant for the matrix.

Figure 4.2 The reflection of a right-handed coordinate system in the mirror produces a

left-handed coordinate system.

4.5 Exercises 79

4. Solve for matrix x in the following equation:

y ¼ Mx

4

7

� �

¼
9 1

3 6

� �

x1

x2

� �

5. Expand the following equation:

@ui

@xj
¼ �eij

6. Expand the following equation:

εij ¼
1

2
ðeij þ ejiÞ

7. Expand the terms e11 and e31 in the following equation:

eij ¼
1

2

@ui

@xj
þ
@uj

@xi
þ
@uk

@xi

@uk

@xj

� �

80 Matrix operations and indicial notation

CHAPTER

FIVE

Tensors

5.1 WHAT ARE TENSORS?

Few things are more imposing to structural geologists than the concept of tensors. In most

continuum mechanics textbooks you will find the formal definition of a tensor as a physical

quantity that “transforms like a tensor” or that tensors transform in such a way that a “valid

tensor equation in one coordinate systemwill be valid in any other coordinate system.”These are

rigorous definitions that are important to understand fully (we will come back to them in

Section 5.3), but to someone meeting this concept for the first time they are not terribly illumi-

nating! Yes, we know, or at least have been told at one point or another, that stress and strain are

“tensors,” but what does that statement really mean? Vectors we can handle, but tensors?

In fact, we have already used tensors extensively in this book. All vectors are a type of tensor

quantity known as a first order or first rank tensor. Any physical quantity that is independent of

a particular coordinate system – as we have already seen for vectors (Chapters 3 and 4) – is a

tensor. We have already discussed two types of mathematical and physical entities and nowwe

can add a third:

1. Scalar (zero order tensor): A quantity represented by a single number that is independent of

the coordinate system (i.e., it has the same value, regardless of the coordinate system we

choose). Some examples of scalars are:

* temperature

* mass

* density.

2. Vector (first order tensor): A physical entity with a magnitude and direction represented by

three numbers1 whose values depend on the particular coordinate system. Although the

1 In all of the following discussion, we assume a Cartesian coordinate system unless explicitly stated
otherwise.

81

magnitude of the numbers changes with coordinate system, the magnitude and direction of

the vector is the same in all coordinate systems. A vector can relate a scalar and another

vector. For example, in the equation f ¼ ma, force and acceleration are vectors andmass is a

scalar. Some other familiar examples of vectors are:

* velocity

* displacement

* temperature gradient.

3. Second order tensor: A physical quantity represented by nine numbers. The physical entity

is independent of coordinate system. A second order tensor relates two vectors to each other

or another second order tensor to a scalar. Some examples of second order tensors are:

* thermal conductivity

* stress

* strain.

We can continue this hierarchy of tensors virtually indefinitely. The order of a tensor simply

equals the number of subscripts that it has. Vectors have one subscript so they are first order

tensors, second order tensors have two subscripts, and so on. For convenience sake, when there

is no ambiguity wewill refer to second order tensors simply as “tensors” and first order tensors

as “vectors” but you should be aware that both are members of a general class of physical

quantities, independent of coordinate system, that we call tensors. In this chapter, we will deal

with “generic” tensors and save the discussion of the most important tensors for structural

geology – stress and strain – to the following chapters.

5.2 TENSOR NOTATION AND THE SUMMATION CONVENTION

Because second order tensors in three dimensions are represented by arrays of nine numbers,

we treat them mathematically as 3� 3 matrices. However, as was emphasized in Chapter 4,

matrices may represent physical quantities like vectors and tensors or they may be totally

artificial constructs such as the transformation matrix. In other words, all tensors are matrices

but not all matrices are tensors.

5.2.1 Basic characteristics of a tensor

Like any 3� 3 matrix, tensors are represented by bold face letters or by indicial notation with

two subscripts, each of which can have values of 1, 2, or 3. When writing out the components of

Tensor

rank Name Quantities related

0 Scalar Nothing

Two other scalars

1 Vector Scalar and a vector

2 2nd order tensor (commonly just

“tensor”)

Two vectors

Scalar and a tensor

3 3rd order tensor Vector and a 2nd order

tensor

4 4th order tensor Two 2nd order tensors

Table 5.1 Tensor rank and the types of related entities

82 Tensors

a tensor, we distinguish them from an arbitrary matrix by using square brackets rather than

parentheses, just as we did with vectors:

T ¼ Tij ¼
T11 T12 T13

T21 T22 T23

T31 T32 T33

2

4

3

5 (5:1)

The nine components of the tensor – in this case a generic tensor,T – give the values of the tensor

with reference to the three axes of the specific coordinate system. If we change the axes, then the

nine components will change their values but, just like a vector, the fundamental nature of the

tensor itself will not change. The exact nature of the relation between component and axis

depends on the specific tensor. In the following chapters, we’ll see two examples of this.

Like anymatrix, tensors can be symmetric, asymmetric, or antisymmetric depending on the

relations of the components to each other. If the tensor has nine independent components then

it is asymmetric. If Tij ¼ Tji , then there are only six independent components and the tensor is

symmetric. Finally, antisymmetric (or skew-symmetric) tensors are those in which Tij ¼ �Tji , in

which case there are only three independent components. Any general asymmetric tensor can

be decomposed into a symmetric tensor plus an antisymmetric tensor as follows:

Tij ¼ Sij þAij where Sij ¼
Tij þ Tji

2
and Aij ¼

Tij � Tji

2
(5:2)

You can easily prove to yourself that Sij is symmetric and Aij is antisymmetric.

For all symmetric tensors, there is one set of coordinate axes where all the components,

except for those along the principal diagonal, are zero. That is,

T ¼ Tij ¼
T11 0 0
0 T22 0
0 0 T33

2

4

3

5 ¼
T2 0 0
0 T1 0
0 0 T3

2

4

3

5 (5:3)

The values along the principal diagonal, T1, T2, and T3, are then known as the principal axes of

the tensor. Note that, on the right side of Equation 5.3, we have purposefully not put T1 in the

T11 space, etc. This was done to emphasize a very important point: A component with two

subscripts refers to the axes of the coordinate system; a single subscript refers just to the

magnitude of the component, not its position or orientation. These three single subscripts define

the major, intermediate, and minor magnitude axes of a three-dimensional surface known as

themagnitude ellipsoid (Fig. 5.1). In the case of Equation 5.3, the largest component is specified

Figure 5.1 The magnitude ellipsoid

and principal axes of a generic tensor,

T. Note that the magnitude axes, T1,

T2, and T3, are parallel to X2, X1, and

X3, respectively. Thus, T1 ¼ T22, etc.

Their orientations shown here

correspond to those in Equation 5.3.

5.2 Tensor notation and the summation convention 83

as being parallel to the X2 axis of the coordinate system. Most structural geology students

are already familiar with the “stress ellipsoid” and the “strain ellipsoid.” The general

equation for the magnitude ellipsoid (using our generic tensor, T, and assuming that principal

axes of the tensor are parallel to the axes of the coordinate system with the same index, unlike

in Eq. 5.3) is

X 2
1

T 2
1

þ
X 2
2

T 2
2

þ
X 2
3

T 2
3

¼ 1 (5:4)

We will see more about determining the principal axes of the tensor in Section 5.4.

5.2.2 Tensors relating two vectors

As stated above (Table 5.1), a tensor commonly relates two vectors; more formally, we can state

that a tensor is a “linear vector operator” because the components of the tensor are the

coefficients of a set of linear equations that relate two vectors. Suppose we have two vectors,

u and v, that are related by tensor, T. In matrix or indicial notation, we write

u ¼ Tv or ui ¼ Tijvj (5:5)

With the summation convention, we can easily expand Equation 5.5, realizing that j is the

dummy suffix and i is the free suffix:

u1 ¼ T11v1 þ T12v2 þ T13v3

u2 ¼ T21v1 þ T22v2 þ T23v3

u3 ¼ T31v1 þ T32v2 þ T33v3

(5:6)

If you compare Equation 5.5 with Equation 4.8, you’ll see that they have a very similar form and

their expansion using the summation convention is also the same. That’s because both sets of

equations represent matrix multiplication involving a 3� 3 and a 3� 1 matrix. The similarity

ends there, however. In Equation 4.8, the transformation matrix, a, is not a tensor; it is simply a

linear operator describing the relationship between the same vector in two different coordinate

systems. In Equation 5.5, T is a tensor and u and v are different vectors. You would program

Equation 5.5 as follows:

% v (1 x 3 vector) and T (3 x 3 tensor) are previously declared

u = zeros(1,3); % initialize u (1 x 3 vector)

for i = 1:3 % i is the free suffix

for j = 1:3 %j is the dummy suffix

u(i) = T(i,j)*v(j) + u(i);

end

end

The three iterations of the outer loop will produce three separate equations and the three

iterations of the inner loop mean that each equation will have three terms (i.e., as in

Equation 5.6). Again, note how similar the equation written using the summation convention

is to a computer program.

In the previous chapter, we saw a somewhat different way of producing a tensor as a type of

product of two vectors. This operation is a natural extension of the dot (or scalar) product and

the cross (or vector) product. If we premultiply a column vector times a row vector, the

operation is known as the dyad (or tensor) product and the result is a 3� 3 matrix which is

known as a dyad. The dyad product of two vectors, u and v, is

84 Tensors

T ¼ u� v ¼
u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

2

4

3

5 (5:7a)

Using indicial notation, we would write

Tij ¼ uivj (5:7b)

Coding Equation 5.7 for a computer is simpler because there is no summation involved; both i

and j are free suffixes. Thus, we can write:

%u (1 x 3 vector) and v(1 x 3 vector) are previously declared

T = zeros(3,3); %Initialize T (3 x 3 tensor)

for i = 1:3 %i is a free suffix

for j = 1:3 %j is also a free suffix

T(i,j) = u(i)*v(j); %there is no summation here

end

end

5.3 TENSOR TRANSFORMATIONS

Like vectors, second order tensors are physical quantities independent of a coordinate system.

Therefore, if we know what the components of the tensor are in one coordinate system, we

should be able to determine what they are in any other coordinate system, just as we did for

vectors (Chapter 3). All we need to know is the transformation matrix, a. The equations for

transforming a tensor are somewhat more complicated, however, because a tensor is a more

complicated entity than a vector.

5.3.1 Derivation of the tensor transformation equations

To proceed, onemust first realize that the tensor that relates two vectors in the new coordinate

system is just the transformed version of the same tensor in the old coordinate system (as

before, the primed quantities are in the new coordinate system):

ui ¼ Tijvj (5:8a)

and

u 0
i ¼ T 0

ijv
0
j (5:8b)

Therefore, we can derive an equation that relates T to T0 by combining the transformation

equations for u to u0 and for v to v0:

u 0
i ¼ aikuk (5:9a)

and

vl ¼ aj lv
0
j (5:9b)

Do not be confused by the fact that we are using some unfamiliar letters for subscripts. You can

choose whatever letters youwant as long as you don’t confuse the free and dummy suffixes. All

of these equations obey the summation convention rules. Note that we can just as easily write

Equation 5.8a as

uk ¼ Tk lvl (5:10)

5.3 Tensor transformations 85

Now, if we substitute Equation 5.9b into Equation 5.10, and then take that result and substitute

it into Equation 5.9a, we can write

u0
i ¼ ai kaj lTk lv

0
j (5:11)

But, we also know from Equation 5.8b that u0
i ¼ T 0

ijv
0
j , so the tensor transformation, given as the

new components in terms of the old, is

T 0
ij ¼ aikaj lTk l (summation notation)

T0 ¼ aTTa (matrix notation)
(5:12)

By a similar series of steps, you can derive the reverse transformation, that is, the old compo-

nents in terms of the new:

Tij ¼ ak i al jT
0
k l (summation notation)

T ¼ aT0aT (matrix notation)
(5:13)

These transformations are the key to understanding tensors. The definition of a tensor is a

physical quantity, independent of a specific coordinate system, which generally describes the

relation between two linked vectors (or a scalar and another tensor). The test of a tensor is if it

transforms from one coordinate system to another according to the above equations, 5.12 and

5.13, then it is a tensor. The whole point about tensors is that the nine coefficients simply

correspond to a particular reference frame and change systematically by the above rules upon

change of coordinate system. We can transform them to any other reference frame without

changing the fundamental nature of the physical property that the tensor represents. Therein

lies their power because it is often advantageous, or necessary, to change our view of things (i.e.,

our coordinate system) to understand them more clearly.

5.3.2 Tensor transformation as a computer program

Expanding Equations 5.12 and 5.13 is a tedious task, because there are two dummy suffixes, k

and l, and two free suffixes, i and j . Equation 5.12 alone represents nine individual equations

each with nine terms! For guidance on how to expand the equations by hand, see page 12 of Nye

(1985). As before, for those with some computer programming experience it is easier to think

about expanding them as a series of nested do-loops. The program fragment below carries out

the summation in Equation 5.12:

%T_old (3 x 3) tensor and a (3 x 3 trans. matrix) are previously declared

T_new = zeros(3,3); %initialize T_new (3 x 3 tensor)

for i = 1:3 %Outer loops are controlled by the free suffixes i & j

for j = 1:3

for k = 1:3 %Inner loops are around the dummy suffixes k & L

for L = 1:3

T_new(i,j) = a(i,k)*a(j,L)*T_old(k,L)+T_new(i,j);

end

end

end

end

86 Tensors

Notice that the dummy suffixes are always in the inner loops (the order in which you loop about

k and L does not matter) and the free suffixes are in the outer loops. As you can see from the

above, there will be nine sums for each T_new and there will be nine T_new’s.

5.3.3 A special two-dimensional transformation

In this age of computers, carrying out tensor transformations numerically according to

Equations 5.12 and 5.13 is quite straightforward. This was not always the case, as easily

accessible computers have only come into being in the last 30 years. Furthermore, complex

equations are commonly easier to visualize graphically; it’s not easy to look at Equations 5.12

and 5.13 and immediately have an intuitive grasp of their significance! For simple two-

dimensional transformations in which one of the three axes is the same before and after the

transformation (i.e., a rotation of the coordinate system about one of its axes, Fig. 5.2), there is

just such a graphical construction.

Consider the case where the axes of the old coordinate system are parallel to the principal

axes of the symmetric tensor, T. Then, we wish to change the coordinate system to a different

orientation by rotating about the intermediate axis (Fig. 5.2). The transformation matrix of this

problem is

a ¼
cosθ cos90 cos 90� θð Þ
cos 90 cos 0 cos 90

cos 90þ θð Þ cos90 cosθ

0

@

1

A ¼
cosθ 0 sinθ
0 1 0

� sinθ 0 cosθ

0

@

1

A (5:14)

The initial form of the tensor, T, in the old coordinate system is

T ¼ Tij ¼
T1 0 0
0 T2 0
0 0 T3

2

4

3

5 (5:15)

Now, we can use the tensor transformation equation to calculate what the tensor is in the new

coordinate system. Substituting Equations 5.14 and 5.15 into Equation 5.12 and carrying out

the summation, we get

Figure 5.2 Coordinate transformation

by a rotation about one of the axes of

the coordinate system.

5.3 Tensor transformations 87

T 0
ij ¼

T1 cos
2θþ T3 sin

2θ
� �

0 �T1 sinθ cosθþ T3 sinθ cosθð Þ

0 1 0
�T1 sinθ cosθþ T3 sinθ cosθð Þ 0 T1 sin

2θþ T3 cos
2θ

� �

2

6

4

3

7

5
(5:16)

The components of T in 5.16 can be put in a more useful form by using several trigonometric

identities for double angles:

sin 2θ ¼ 2 sinθ cosθ sin2θ ¼
1� cos2θ

2
cos2θ ¼

1þ cos 2θ

2
(5:17)

Substituting these equations into Equation 5.16 and rearranging, we get the following values

for the components of the tensor in the new coordinate system:

T 0
11 ¼

T1 þ T3

2

� �

þ
T1 � T3

2

� �

cos2θ

T 0
33 ¼

T1 þ T3

2

� �

�
T1 � T3

2

� �

cos2θ

T 0
13 ¼ T 0

31 ¼ �
T1 � T3

2

� �

sin2θ

(5:18)

Most structural geologists will recognize Equations 5.18 and the plot representing them

(Fig. 5.3) as the Mohr circle. This construction, devised by the German engineer Otto Mohr in

the late 1800s, is most commonly associated with the analysis of the stress tensor (i.e., Mohr

circle for stress) but can be equally well applied to any symmetric second order tensor. Thus, we

also have Mohr circle for infinitesimal strain, Mohr circle for finite strain in the deformed state,

etc. These will be presented in following chapters.

5.4 PRINCIPAL AXES AND ROTATION AXIS OF A TENSOR

5.4.1 Magnitude ellipsoid and representation quadric

We stated above that a tensor is a linear vector operator, but it would be helpful if there were

some way to visualize graphically how a tensor relates two vectors. The Mohr circle construc-

tion of the previous section is one such approach, but because it is plotted in “tensor space”,

rather than physical space, visualization is more difficult. We know that tensors can be

Figure 5.3 Mohr circle construction

for a two-dimensional tensor trans-

formation.

88 Tensors

represented by their magnitude ellipsoid and vectors by lines with arrows at one end; that’s the

type of thing that we need to get a physical understanding.

There is a surface that helps one visualize the angular relations between the two vectors

related by a tensor, and it also helps to visualize how one calculates the orientation and

magnitude of the principal axes. That surface is known as the representation quadric. This

surface and its derivation are explained in more detail in Nye (1985, pp. 16–19 and 26–30), and

we will only briefly touch on it here. Unlike themagnitude ellipsoid (Eq. 5.4), the representation

quadric may have the geometric form of either an ellipsoid or hyperboloid defined by the

following equation:

Tijxixj ¼ 1 (5:19)

You can show that Equation 5.19 is a tensor by seeing whether it transforms according to

Equation 5.12. Equation 5.19 can be written in terms of its principal axes, as follows:

T1x
2
1 þ T2x

2
2 þ T3x

2
3 ¼ 1 (5:20)

Note that, in the case of Equation 5.20 the principal axes are in the numerator, not in the

denominator as they are in 5.4. Thus, when plotted on the same diagram the long axes of the

magnitude ellipsoid and the quadric will be at right angles to each other (Fig. 5.4).

The relation between the representation quadric and the magnitude ellipsoid, as well as

their major properties, are illustrated in Figure 5.4. This diagram is a principal section

through the quadric and ellipsoid (i.e., a plane that contains the two principal axes of the

tensor) for the relation ui ¼ Tijvj (Eq. 5.5); it shows the angular relation between u and v in

two dimensions. As v is rotated about the origin with a constant, unit length, the vector u

traces out the surface of the magnitude ellipsoid of the tensor, T. The angle between the two

vectors varies as a complex function of their position with respect to the principal axes of T.

Vector u will always be perpendicular to the tangent to the representation quadric where the

latter is intersected by v. This attribute is known as the radius-normal property of the

representation quadric.

T1

T3

v
u

magnitude ellipsoid

representation quadric

unit circle

tangent to quadric where
intersected by v

T 3
–0.5

T1
–0.5

Figure 5.4 Geometric relations between the representation quadric and the magnitude

ellipsoid of tensor T, and the two vectors that T relates, u and v.

5.4 Principal axes and rotation axis of a tensor 89

5.4.2 Finding the magnitude and orientation of the principal axes

It is clear from the preceding discussion and Figure 5.4 that u and v are parallel only along the

principal axes and nowhere else. At these positions, u has the samemagnitude (and orientation

of course) as the principal axis itself. If u and v are parallel, then they (i.e., their lengths) will be

proportional to each other; one of the vectors, multiplied by a scalar, should be equal to the

other. At a principal axis, the vector v will be parallel and equal to a unit vector, x̂, and u will

simply be equal to a scalar, l, times x̂ (Fig. 5.4):

v ¼ x̂ and u ¼ lx̂ (5:21)

Substituting the relations in 5.21 into Equation 5.5, we can write

l x̂ ¼ Tx̂ (5:22a)

or using indicial notation,

lxi ¼ Tijxj (5:22b)

In Equations 5.21 and 5.22, l is the unknown scalar constant – known as the eigenvalue – and x

is an eigenvector of Tij . Equation 5.22 can be solved by rearranging and using the substitution

property of the Kronecker delta discussed in the previous chapter (Eq. 4.12):

xi ¼ δijxj) Tijxj ¼ lδijxj) Tij � lδij

� �

xj ¼ 0 (5:23)

To solve for l, take the determinant of this final equation (which is known as the secular or

characteristic equation),

Tij � lδij

 ¼
T11 � lð Þ T12 T13

T21 T22 � lð Þ T23

T31 T32 T33 � lð Þ

¼ 0 (5:24)

Expanding, we get a cubic polynomial in l:

l
3 � Il2 � IIl� III ¼ 0 (5:25)

The three roots of l are the three eigenvalues; they will be themagnitudes of the three principal

axes of the tensor. Note that all three roots will be real only if the tensor is symmetric; otherwise

one or more will be imaginary. Once you know the three values of l, you can then substitute

each one in turn back into Equation 5.22 or 5.23 to solve for the three eigenvectors (I, II, and III)

which give you the orientations of the principal axes.

In general, Equation 5.25 is solved numerically by computer using an algorithm known as

the Jacobi Transformation or some more esoteric routine. Such routines can be found in Press

et al. (1986). For a description of how to do this manually, see Nye (1985, Chapter IX). Thus, we

can find the principal axes of any tensor in any general coordinate system by finding its

eigenvectors and eigenvalues.

5.4.3 Invariants of a tensor

The three values of l are scalars that correspond to the magnitudes of the principal axes of the

tensor, which, of course, is independent of the coordinate system. Therefore, I, II, and III, the

three coefficients of Equation 5.25, must also have the same values, regardless of the coordi-

nate systemwe choose. Thus, they are known as the invariants of the tensor and their values, for

any coordinate system, are given in Equations 5.26. If one happens to know the principal axes of

the tensor, then they are particularly easy to calculate:

90 Tensors

I ¼ T11 þ T22 þ T33 ¼ T1 þ T2 þ T3

II ¼
TijTij � I 2
� �

2
¼ � T1T2 þ T2T3 þ T3T1ð Þ

III ¼ detT ¼ Tij

 ¼ T1T2T3

(5:26)

We’ll see that invariants of tensors have a number of uses, described in the following chapters.

5.4.4 Rotation axis of an antisymmetric tensor

An antisymmetric tensor (e.g., Ajk in Equation 5.2) is sometimes also known as an axial vector.

To get the Cartesian coordinates, ri , of that vector:

ri ¼
�bi j kAj k

2
(5:27)

bijk is a “permutation symbol”which is equal to +1 if the suffixes are cyclic,�1 if the suffixes are

acyclic, and 0 if any two suffixes are repeated. The three components of vector r, which give the

orientation of the rotation axis, are

r1 ¼
� A23 �A32ð Þ

2
; r2 ¼

� �A13 þ A31ð Þ

2
; r3 ¼

� A12 �A21ð Þ

2
(5:28)

The amount of rotation in radians is just the length of the vector, r:

rj j ¼
ffi

r21 þ r22 þ r23

q

(5:29)

5.5 EXAMPLE OF EIGENVALUES AND EIGENVECTORS IN STRUCTURAL GEOLOGY

The concepts discussed in this chapter form the basis for understanding the mechanics of

structural geology. However, we defer their application to the next chapters where stress and

strain are treated explicitly. Nonetheless, there is a very important type of problem, the solution

towhich relies heavily on the concept of eigenvalues and eigenvectors. This problem is: “howdo

we find the best-fit axes to a group of axial data that have no directional significance?” Amore

specific example is “howdowe find the best-fit fold axis to a group of bedding poles?”As stated

much earlier (Chapter 2), we cannot use themean vector for this problem because the axes have

no directional significance; we will commonly be plotting everything in the lower hemisphere.

5.5.1 Types of axial distributions

Before proceeding to the numerical solution to this problem, a digression into the types of line

distributions in spherical space is needed. In general, lines can have three types of orientations

(Fig. 5.5), which correspond to the three fundamental types of Euclidean geometric objects:

lines (one-dimensional or 1D), planes (2D), and volumes (3D). A group of lines that are all

parallel or sub-parallel to each other has a linear (1D) preferred orientation; if they were

perfectly parallel to each other they would combine to form a single line, but more commonly

there is some limited scatter (e.g., Fig. 5.5b). In this latter case, the ends of the lines define a

surface whose shape fabric is approximately that of an elongate ellipsoid (a prolate or cigar-

shaped ellipsoid). This type of distribution is commonly called a bipolar distribution. A girdle

distribution (Fig. 5.5c) results when all of the lines are close to being coplanar. When this

5.5 Example of eigenvalues and eigenvectors in structural geology 91

happens, the ends of the lines trace out a surface of a flattened ellipsoid (an oblate or pancake-

shaped ellipsoid). If the lines were all perfectly coplanar, then the oblate ellipsoid would be

reduced to a two-dimensional circle. When all of the lines have a random distribution (Fig. 5.5a)

their ends define a sphere.

5.5.2 Determination of “best-fit” axes

You can see that the problemwe started outwith is really a problemof finding the threemutually

perpendicular axes of the ellipsoids referred to in the previous section. If we calculate three axes

of nearly equal length, they define a sphere and point to a random distribution (Fig. 5.5a). Two

short axes and one very long axis define a prolate ellipsoid and indicate a bipolar distribution

(Fig. 5.5b). Likewise, two axes of equal length and one much shorter axis will define an oblate

ellipsoid and a girdle distribution (Fig. 5.5c). In this last case, if we are trying to calculate the best-

fit fold axis to a cylindrically folded surface, it is the shortest axis in which we are interested.

Suppose we are trying to calculate a fold axis, f (the derivation below follows that of

Charlesworth et al., 1976). If the fold is perfectly cylindrical, then all of the bedding poles,

p½n�, should be perpendicular to f. As is commonly the case, to find the “best fit” to data with

scatter, we want to find amodel fit that reduces, by asmuch as possible, the sum of the squares

of the deviations from this perfect case. Ifθ½i� is the angle between the i ’th bedding pole, p½i�, and

the fold axis, then the cosine of that angle (which should be close to zero) can be used to

represent the deviation. The cosine ofθ½i� is given by the dot product of f andp½i�. Treating both f

and p½i� as row vectors (unlike in Equation 4.17), we write the dot product as

cosθ½i� ¼ p½i�f
T

(5:30)

Thus, we can express the sum of the squares of the deviations as

S ¼
X

n

i¼1

cos2θ½i� ¼
X

n

i¼1

p½i�f
T

� �2

(5:31)

Because the dot product possesses commutability, we can write

p½i�f
T
¼ fpT

½i� (5:32)

and Equation 5.31 can be rewritten as

S ¼
X

n

i¼1

fpT
½i�p½i�f

T
¼ fTf

T
(5:33)

Figure 5.5 Three types of preferred orientations of linear elements displayed as points

in an equal area projection. (a) Random, (b) bipolar, and (c) girdle.

92 Tensors

where T is a matrix composed of the sums and products of the direction cosines

(pi ¼ cosα cosβ cosγ½ �) of the individual lines:

T ¼
X

n

i¼1

pT
½i�p½i� ¼

X

n

i¼1

pipj

� �

½i�

¼

P

cos2α½i�

P

cosα½i� cosβ½i�

P

cosα½i� cosγ½i�
P

cosβ½i� cosα½i�

P

cos2β½i�

P

cosβ½i� cosγ½i�
P

cosγ½i� cosα½i�

P

cosγ½i� cosβ½i�

P

cos2γ½i�

2

6

6

4

3

7

7

5

(5:34)

Matrix T is commonly known as the orientation matrix and it is used extensively in statistical

treatment of orientation data that have Watson or Bingham distributions (see Fisher et al., 1987).

You can think of the orientation matrix as describing the ellipsoidal surface, depicted in the

previous section, referred to an arbitrary coordinate system. To find the principal axes of ellipsoid,

we need to calculate the eigenvalues and eigenvectors of matrix T. In the case of the problem we

started out with, S in Equations 5.31 to 5.33 will correspond to the smallest eigenvalue. If the

fold were perfectly cylindrical, S would be equal to zero (because all of the θ½i�’s would be 90�).

The calculation of the specific eigenvalues and eigenvectors is best left to any of a number of

publicly available “canned” software packages. To get a better feeling about how these routines

work in general, we highly recommend that you read Chapter 11 of Press et al. (1986). MATLAB®

has a built-in function, eig, to solve the eigenvalue problem and thus it is particularly well

suited to this problem. If, instead, you write your own code in a different language, you’ll want

to use two subroutines from Numerical Recipes (Press et al., 1986) that calculate and sort the

eigenvalues and eigenvectors (Jacobi and Eigsrt, respectively).

The following MATLAB function, Bingham, can be used to calculate the three mutually

orthogonal axes of the orientation matrix and the uncertainty “cones” for the Bingham statis-

tics. The statistical part is given here for information only because its complete description is

beyond the scope of this book. For more information on the statistics, we suggest that you see

Fisher et al. (1987), particularly Sections 6.3 to 6.6.

function [eigVec,confCone,bestFit] = Bingham (T,P)

%Bingham calculates and plots a cylindrical best fit to a pole distribution

%to find fold axes from poles to bedding or the orientation of a plane from

%two apparent dips. The statistical routine is based on algorithms in

%Fisher et al. (1987)

%

% USE: [eigVec,confCone,bestFit] = Bingham (T,P)

%

% T and P = Vectors of lines trends and plunges respectively

%

% eigVec = 3 x 3 matrix with eigenvalues (column 1), and trends (column 2)

% and plunges (column 3) of the eigenvectors. Maximum eigenvalue and

% corresponding eigenvector are in row 1, intermediate in row 2,

% and minimum in row 3.

%

% confCone = 2 x 2 matrix with the maximum (column 1) and minimum

% (column 2) radius of the 95% elliptical confidence cone around the

% eigenvector corresponding to the largest (row 1), and lowest (row 2)

% eigenvalue

%

5.5 Example of eigenvalues and eigenvectors in structural geology 93

% besFit = 1 x 2 vector containing the strike and dip (right hand rule)

% of the best fit great circle to the distribution of lines

%

% NOTE: Input/Output trends and plunges, as well as confidence

% cones are in radians. Bingham plots the input lines, eigenvectors and

% best fit great circle in an equal area stereonet.

%

% Bingham uses functions ZeroTwoPi, SphToCart, CartToSph, Stereonet,

% StCoordLine and GreatCircle

%Some constants

east = pi/2.0;

twopi = pi*2.0;

%Number of lines

nlines = max(size(T));

%Initialize the orientation matrix

a=zeros(3,3);

%Fill the orientation matrix with the sums of the squares (for the

%principal diagonal) and the products of the direction cosines of each

%line. cn, ce and cd are the north, east and down direction cosines

for i = 1:nlines

[cn,ce,cd] = SphToCart(T(i),P(i),0);

a(1,1) = a(1,1) + cn*cn;

a(1,2) = a(1,2) + cn*ce;

a(1,3) = a(1,3) + cn*cd;

a(2,2) = a(2,2) + ce*ce;

a(2,3) = a(2,3) + ce*cd;

a(3,3) = a(3,3) + cd*cd;

end

%The orientation matrix is symmetric so the off-diagonal components can be

%equated

a(2,1) = a(1,2);

a(3,1) = a(1,3);

a(3,2) = a(2,3);

%Calculate the eigenvalues and eigenvectors of the orientation matrix using

%MATLAB function eig. D is a diagonal matrix of eigenvalues and V is a

%full matrix whose columns are the corresponding eigenvectors

[V,D] = eig(a);

%Normalize the eigenvalues by the number of lines and convert the

%corresponding eigenvectors to the lower hemisphere

for i = 1:3

D(i,i) = D(i,i)/nlines;

if V(3,i) < 0.0

94 Tensors

V(1,i) = -V(1,i);

V(2,i) = -V(2,i);

V(3,i) = -V(3,i);

end

end

%Initialize eigVec

eigVec = zeros(3,3);

%Fill eigVec

eigVec(1,1) = D(3,3); %Maximum eigenvalue

eigVec(2,1) = D(2,2); %Intermediate eigenvalue

eigVec(3,1) = D(1,1); %Minimum eigenvalue

%Trend and plunge of largest eigenvalue: column 3 of V

[eigVec(1,2),eigVec(1,3)] = CartToSph(V(1,3),V(2,3),V(3,3));

%Trend and plunge of intermediate eigenvalue: column 2 of V

[eigVec(2,2),eigVec(2,3)] = CartToSph(V(1,2),V(2,2),V(3,2));

%Trend and plunge of minimum eigenvalue: column 1 of V

[eigVec(3,2),eigVec(3,3)] = CartToSph(V(1,1),V(2,1),V(3,1));

%Initialize confCone

confCone = zeros(2,2);

%If there are more than 25 lines, calculate confidence cones at the 95%

%confidence level. The algorithm is explained in Fisher et al. (1987)

if nlines >= 25

e11 = 0.0;

e22 = 0.0;

e12 = 0.0;

d11 = 0.0;

d22 = 0.0;

d12 = 0.0;

en11 = 1.0/(nlines* (eigVec(3,1) - eigVec(1,1))^2);

en22 = 1.0/(nlines* (eigVec(2,1) - eigVec(1,1))^2);

en12 = 1.0/(nlines* (eigVec(3,1) - eigVec(1,1))*(eigVec(2,1)…

- eigVec(1,1)));

dn11 = en11;

dn22 = 1.0/(nlines* (eigVec(3,1) - eigVec(2,1))^2);

dn12 = 1.0/(nlines* (eigVec(3,1) - eigVec(2,1))*(eigVec(3,1)…

- eigVec(1,1)));

vec = zeros(3,3);

for i = 1:3

vec(i,1) = sin(eigVec(i,3) + east)* cos(twopi - eigVec(i,2));

vec(i,2) = sin(eigVec(i,3) + east)* sin(twopi - eigVec(i,2));

vec(i,3) = cos(eigVec(i,3) + east);

end

for i = 1:nlines

c1 = sin(P(i)+east)* cos(twopi-T(i));

c2 = sin(P(i)+east)* sin(twopi-T(i));

c3 = cos(P(i)+east);

u1x = vec(3,1)* c1 + vec(3,2)* c2 + vec(3,3)* c3;

5.5 Example of eigenvalues and eigenvectors in structural geology 95

u2x = vec(2,1)* c1 + vec(2,2)* c2 + vec(2,3)* c3;

u3x = vec(1,1)* c1 + vec(1,2)* c2 + vec(1,3)* c3;

e11 = u1x*u1x * u3x*u3x + e11;

e22 = u2x*u2x * u3x*u3x + e22;

e12 = u1x *u2x * u3x*u3x + e12;

d11 = e11;

d22 = u1x*u1x * u2x*u2x + d22;

d12 = u2x * u3x * u1x*u1x + d12;

end

e22 = en22* e22;

e11 = en11* e11;

e12 = en12* e12;

d22 = dn22* d22;

d11 = dn11* d11;

d12 = dn12* d12;

d = -2.0*log(.05)/nlines;

% initialize f

f = zeros(2,2);

if abs(e11*e22-e12*e12) >= 0.000001

f(1,1) = (1/(e11*e22-e12*e12)) * e22;

f(2,2) = (1/(e11*e22-e12*e12)) * e11;

f(1,2) = -(1/(e11*e22-e12*e12)) * e12;

f(2,1) = f(1,2);

%Calculate the eigenvalues and eigenvectors of the matrix f using

%MATLAB function eig. The next lines follow steps 1–4 outlined on

%pp. 34–35 of Fisher et al. (1987)

DD = eig(f);

if DD(1) > 0.0 && DD(2) > 0.0

if d/DD(1) <= 1.0 && d/DD(2) <= 1.0

confCone(1,2) = asin(sqrt(d/DD(2)));

confCone(1,1) = asin(sqrt(d/DD(1)));

end

end

end

% Repeat the process for the eigenvector corresponding to the smallest

% eigenvalue

if abs(d11*d22-d12*d12) >= 0.000001

f(1,1) = (1/(d11*d22-d12*d12)) * d22;

f(2,2) = (1/(d11*d22-d12*d12)) * d11;

f(1,2) = -(1/(d11*d22-d12*d12)) * d12;

f(2,1) = f(1,2);

DD = eig(f);

if DD(1) > 0.0 && DD(2) > 0.0

if d/DD(1) <= 1.0 && d/DD(2) <= 1.0

confCone(2,2) = asin(sqrt(d/DD(2)));

confCone(2,1) = asin(sqrt(d/DD(1)));

end

end

96 Tensors

end

end

%Calculate the best fit great circle to the distribution of points

bestFit=zeros(1,2);

bestFit(1) = ZeroTwoPi(eigVec(3,2) + east);

bestFit(2) = east - eigVec(3,3);

%Plot stereonet

Stereonet(0,90*pi/180,10*pi/180,1);

%Plot lines

hold on;

for i = 1:nlines

[xp,yp] = StCoordLine(T(i),P(i),1);

plot(xp,yp,'k.');

end

%Plot eigenvectors

for i = 1:3

[xp,yp] = StCoordLine(eigVec(i,2),eigVec(i,3),1);

plot(xp,yp,'rs');

end

%Plot best fit great circle

[path] = GreatCircle(bestFit(1),bestFit(2),1);

plot(path(:,1),path(:,2),'r');

%release plot

hold off;

end

5.6 EXERCISES

1. Decompose the following tensor, T, into symmetric and antisymmetric components. Then

calculate the axial vector magnitude, orientation, and sense of rotation:

Tij ¼
8 �1 �1
1 6 0
�5 0 2

2

4

3

5

2. ExpandEquation5.12 for the termsT 0
11 andT 0

13. The twoequations shouldeachhavenine terms

in them. It may help to follow by hand the example of the computer code given in Section 5.3.2.

3. Derive the transformation matrix given in Equation 5.14.

4. Use your expansion in Exercise 2 to derive the equations for the Mohr circle given in

Equation 5.16, using the transformation matrix in Equation 5.14 and the initial form of the

tensor in 5.15.

5. Is the orientation matrix a tensor? Explain your answer.

6. Use the function Bingham to calculate the “best-fit” great circle and the fold axis for the

bedding poles in the Big Elk anticline (Fig. 3.11 and Exercise 8 in Chapter 3).

5.6 Exercises 97

CHAPTER

SIX

Stress

6.1 STRESS “VECTORS” AND STRESS TENSORS

There is much confusion amongst structural geology students regarding the concept of stress.

This confusion remains even after one has got it straight that stress and strain are not

interchangeable. The purpose of this chapter and the next is to examine these two fundamental

concepts in light of the tools we have developed in the preceding five chapters. With this

background we are now in a position to be much more precise about exactly what we mean

by “stress” and “strain.”

Most structural geologists learn fairly early on that stress is defined as a force, f, divided by

the area of the plane, A, on which it acts:

s ¼
f

A
(6:1)

This definition is a perfectly good one and conveys themeaning that stress is ameasure of force

“intensity.” But, if you examine this equation carefully, you will see that force, f, is a vector and

area,A, is a scalar. By this definition, “stress,” s , should also be a vector, just like force. Later on,

in the same introductory course on structural geology, students learn that stress at a point can

be represented by nine numbers and is, in fact, a tensor:

�ij ¼
�11 �12 �13

�21 �22 �23

�31 �32 �33

2

4

3

5 (6:2)

No wonder students are confused! These two types of stress are certainly related to each other,

aswewill see in the next section, but they are not, by anymeans, identical. In this book, theword

“stress” by itself will refer to the stress tensor as in Equation 6.2. The quantity given by

Equation 6.1 will be referred to as the stress vector or more correctly (following general usage

in continuum mechanics and engineering literature) a traction.

98

6.2 CAUCHY’S LAW

6.2.1 Stresses in two dimensions

We’ll begin exploring the relation between stress and traction in two dimensions, where things

are easier to visualize, and then expand the analysis to three dimensions. Suppose we have a

triangular element as shown in Figure 6.1. Two sides of the element are perpendicular to our

coordinate system and the third side, or “plane,” is inclined to the two axes at some arbitrary

angle; in this case the pole to the plane makes an angle of α with respect to the X1 axis and β

with respect to the X2 axis. The stress vector, or traction, on the inclined plane with area A is p,

which can be resolved into two vectors, p1 parallel to the X1 axis and p2 parallel to the X2 axis.

The tractions on the sides of the triangle, which are perpendicular (and, of course, parallel) to

the coordinate system, are labeled with the Greek letter sigma and two subscripts.

The first subscript tells you that the plane is perpendicular to that axis. For example, �11 and

�12 both act on the plane that is perpendicular to theX1 axis. The second subscript identifies the

axis that is parallel to the vector of interest. Thus, �12 and �22 are both parallel to X2. Tractions

that act perpendicular to a plane are called normal tractions (or normal stress vectors); in the

case of planes perpendicular to the coordinate axes, such tractions will always have two

identical subscripts (e.g., �11 and �22). Shear tractions (or shear stress vectors) parallel the

plane and have unequal subscripts (e.g., �12 and �21).

To derive the relations between the traction on the inclined plane and those acting on the

planes perpendicular to the coordinate system, we need to do a balance of forces, not stresses.

Therefore, we need to take into account the areas of the sides of the triangle. The relations

between the areas are determined by the angles α and β. In particular, from similar triangles

(Fig. 6.1) and some simple trigonometry you can see that A1 and A2 can be written as functions

of A and the direction cosines of the pole to the inclined plane:

A1 ¼ A cosα and A2 ¼ A cosβ (6:3)

Figure 6.1 Tractions on the sides of a

two-dimensional triangular element.

Traction p acts on the inclined plane

with area A; the other tractions act on

the two planes perpendicular to the

axes of the coordinate system, X1

and X2.

6.2 Cauchy’s Law 99

Now, we can write the force balance equation for the forces (i.e., tractions times area) parallel

to X1:

p1A ¼ �11A1 þ �21A2 ¼ �11A cosαþ �21A cosβ

Dividing through by the area of the inclined plane, A, we get

p1 ¼ �11 cosαþ �21 cosβ ¼ �11n1 þ �21n2 (6:4a)

where n1 is the direction cosine that the pole to the plane makes with the X1 axis and n2 the

direction cosine with the X2 axis. Likewise, summing forces parallel to the X2 axis we can write

p2 ¼ �12 cosαþ �22 cosβ ¼ �12n1 þ �22n2 (6:4b)

If the triangular element has no torques on it, then �12 must equal �21. You can get an intuitive

feel for why this must be so by imagining what would happen if the two tractions were not

equal.1 For example, in Figure 6.1, if �12 were larger than �21 the trianglewould spin clockwise in

the plane of the page. The only way that this will not happen is if �12 ¼ �21 and they both point

either towards or away from the line of intersection of their mutual planes. This relationship is

sometimes known as the theorem of conjugate shear stresses.

6.2.2 Stresses in three dimensions

The extension of these concepts to three dimensions is quite straightforward. Figure 6.2 shows

the basic configuration, which follows all of the same basic conventions that we established in

Figure 6.1. As before, we can balance the forces to see how the various tractions relate to one

another; therefore we need to determine the areas on which those tractions act. There are

several simple ways to determine this, with one of the most straightforward being to consider

the volume of the tetrahedron:

V ¼
1

3

� �

area of thebaseð Þ heightð Þ

Figure 6.2 Tractions on a tetrahedral

element with three faces perpendicular

to the three axes of the coordinate

system and the fourth face (on the back

side) inclined to all three. Note the

naming convention for the subscripts:

the first subscript shows to which axis

the plane is perpendicular and the

second subscript shows to which axis

the vector is parallel.

1 For a more formal proof of this see Nye (1985), pp. 82–87.

100 Stress

We can write the expression for the volume when each of the four sides is considered to be the

base of the tetrahedron as follows (assuming in this case that the pole to the inclined plane is a

unit vector):

V ¼
1

3
A ¼

1

3
A1ðOA

$
Þ ¼

1

3
A2ðOB

$
Þ ¼

1

3
AðOC
$

Þ

and, from simple trigonometry:

A ¼
A1

cosα
¼

A2

cosβ
¼

A3

cosγ
(6:5)

where α, β, and γ are the angles that the pole to the plane makes with the X1, X2, and X3 axes,

respectively.

Now, we can sum the forces parallel to the X1 axis:

p1A ¼ �11A1 þ �21A2 þ �31A3 ¼ �11A cosαþ �21A cosβþ �31A cosγ

Dividing through by the area of the inclined plane, A, we get

p1 ¼ �11 cosαþ �21 cosβþ �31 cosγ ¼ �11n1 þ �21n2 þ �31n3 (6:6a)

The expressions for the tractions parallel to the other axes are

p2 ¼ �12n1 þ �22n2 þ �32n3 (6:6b)

p3 ¼ �13n1 þ �23n2 þ �33n3 (6:6c)

where n1 ¼ cos α, n2 ¼ cos β, and n3 ¼ cos γ. The structure of these equations should look

familiar to you. We can write them using our shorthand matrix notation as

p ¼ ns ¼ s
Tn (6:7a)

or using the summation convention

pi ¼ �ijnj (6:7b)

With this exercise, we have just shown that the group of nine tractions, �ij , are in fact a tensor.

The stress tensor relates two vectors, the traction on an arbitrary plane and the unit vector that

describes the orientation of the pole to that plane. It is, as we described in Section 5.2.1, a linear

vector operator, the coefficients in a set of three linear equations that describe the relations

between these two vectors.

For the same reasons that wementioned in the two-dimensional case, shear tractions on the

adjoining faces of the block that parallel the coordinate axes must be equivalent. Thus,

�12 ¼ �21; �13 ¼ �31; and �32 ¼ �23

Although there are nine different coefficients to the stress tensor, only six of them are inde-

pendent. Stress, therefore, is a symmetric tensor in which the values above the principal

diagonal of the matrix (Eq. 6.2) are the same as the values below. We know from

Equation 4.20 that the transpose of a symmetric matrix is equal to itself so we can just as easily

write Equations 6.7 as

p ¼ sn or pi ¼ �ijnj (6:8)

Equation 6.8 is known as Cauchy’s Law. Understanding it is the key to grasping why stress is a

tensor; it is also the key to solving a large number of continuummechanics problems in geology.

TheMATLAB® function Cauchy, below, calculates the tractions on a plane of any orientation in

any coordinate system. Thus, the axes do not have to be in a north-east-down coordinate

6.2 Cauchy’s Law 101

system. Function DirCosAxes, which can be found immediately following Cauchy, calculates

the direction cosines of the axes with respect to the NED coordinate system. Notice that to

completely define the orientation of the orthogonal X1, X2, and X3 axes, it is just necessary to

give the trend and plunge of one axis (e.g., X1), and the trend of a second axis (e.g., X3).

function [T,pT] = Cauchy(stress,tX1,pX1,tX3,strike,dip)

%Given the stress tensor in a X1,X2,X3 coordinate system of any

%orientation, Cauchy computes the X1,X2,X3 tractions on an arbitrarily

%oriented plane

%

% USE: [T,pT] = Cauchy(stress,tX1,pX1,tX3,strike,dip)

%

% stress = Symmetric 3 x 3 stress tensor

% tX1 = trend of X1

% pX1 = plunge of X1

% tX3 = trend of X3

% strike = strike of plane

% dip = dip of plane

% T = 1 x 3 vector with tractions in X1, X2 and X3

% pT = 1 x 3 vector with direction cosines of pole to plane transformed

% to X1,X2,X3 coordinates

%

% NOTE = Plane orientation follows the right hand rule

% Input/Output angles are in radians

%

%Cauchy uses functions DirCosAxes and SphToCart

%Compute direction cosines of X1,X2,X3

dC = DirCosAxes(tX1,pX1,tX3);

%Calculate direction cosines of pole to plane

p = zeros(1,3);

[p(1),p(2),p(3)] = SphToCart(strike,dip,1);

%Transform pole to plane to stress coordinates X1,X2,X3

%The transformation matrix is just the direction cosines of X1,X2,X3

pT = zeros(1,3);

for i = 1:3

for j = 1:3

pT(i) = dC(i,j)*p(j) + pT(i);

end

end

%Convert transformed pole to unit vector

r = sqrt(pT(1)*pT(1)+pT(2)*pT(2)+pT(3)*pT(3));

for i = 1:3

pT(i) = pT(i)/r;

end

102 Stress

%Calculate the tractions in stress coordinates X1,X2,X3

T = zeros(1,3); %Initialize T

%Compute tractions using Cauchy's law (Eq. 6.7b)

for i = 1:3

for j = 1:3

T(i) = stress(i,j)*pT(j) + T(i);

end

end

end

function dC = DirCosAxes(tX1,pX1,tX3)

%DirCosAxes calculates the direction cosines of a right handed, orthogonal

%X1,X2,X3 cartesian coordinate system of any orientation with respect to

%North-East-Down

%

% USE: dC = DirCosAxes(tX1,pX1,tX3)

%

% tX1 = trend of X1

% pX1 = plunge of X1

% tX3 = trend of X3

% dC = 3 x 3 matrix containing the direction cosines of X1 (row 1),

% X2 (row 2), and X3 (row 3)

%

% Note: Input angles should be in radians

%

% DirCosAxes uses function SphToCart

%Some constants

east = pi/2.0;

west = 1.5*pi;

%Initialize matrix of direction cosines

dC = zeros(3,3);

%Direction cosines of X1

[dC(1,1),dC(1,2),dC(1,3)] = SphToCart(tX1,pX1,0);

%Calculate plunge of axis 3

%If axis 1 is horizontal

if pX1 == 0.0

if abs(tX1-tX3) == east || abs(tX1-tX3) == west

pX3 = 0.0;

else

pX3 = east;

end

%Else

else

%From Equation 2.14 and with theta equal to 90 degrees

6.2 Cauchy’s Law 103

pX3 = atan(-(dC(1,1)*cos(tX3)+dC(1,2)*sin(tX3))/dC(1,3));

end

%Direction cosines of X3

[dC(3,1),dC(3,2),dC(3,3)] = SphToCart(tX3,pX3,0);

%Compute direction cosines of X2 by the cross product of X3 and X1

dC(2,1) = dC(3,2)*dC(1,3) - dC(3,3)*dC(1,2);

dC(2,2) = dC(3,3)*dC(1,1) - dC(3,1)*dC(1,3);

dC(2,3) = dC(3,1)*dC(1,2) - dC(3,2)*dC(1,1);

% Convert X2 to a unit vector

r = sqrt(dC(2,1)*dC(2,1)+dC(2,2)*dC(2,2)+dC(2,3)*dC(2,3));

for i = 1:3

dC(2,i) = dC(2,i)/r;

end

end

6.3 BASIC CHARACTERISTICS OF STRESS

Because stress is not a characteristic of a material itself (e.g., thermal conductivity), but is

imposed on a material (like an electric field) it is called a field tensor. It is one of the simplest

tensors we will deal with in structural geology, and for that reason is a much better place,

mathematically, to start than with the various tensors related to deformation.

6.3.1 Principal axes of stress

Like any symmetric, second order tensor, the stress tensor can be expressed in terms of its

principal axes, where only the principal diagonal of the corresponding matrix has non-zero

values (e.g., Eq. 5.2). The principal stresses are merely the tractions that comprise the stress

tensor when the coordinate system has a unique orientation. Conventionally, the principal

stresses are written with just a single subscript:

�ij ¼
�1 0 0
0 �2 0
0 0 �3

2

4

3

5 (6:9)

Again, let us remind you that, although the principal stresses are written in Equation 6.9 so that

they are parallel to an axis of the same number, there is no reason why it has to be that way.

Equally important, although they bear superficial similarity, �1, �2, and �3 are most definitively

not the scalar components of a single vector. Single subscripts indicate magnitude only (tech-

nically, the three eigenvalues of the stress tensor) and not orientation in our given coordinate

system. By convention, the largest principal stress is �1 and the smallest is �3. In geology, a

common convention is that compression is positive, reflecting the fact that virtually all stresses

inside the Earth are compressions except at very shallow levels in the crust. Engineering follows

the opposite convention where tensions are positive.

If we know the six independent components of stress in any arbitrary coordinate system, we

can find a coordinate system in which the axes are parallel to the principal stresses. In

Section 5.4.2, we already saw how to solve this problem for our generic tensor, T, but it is

worth going over it again for the case of stress. If a plane is perpendicular to a principal stress,

there will be no shear stress on the plane because all of the off-diagonal components of the

104 Stress

stress matrix are zero. Remember, we argued above that the tractions with unequal subscripts,

i 6¼ j , in the stress tensor are shear tractions and those with equal subscripts, i ¼ j , are normal

tractions. In Equation 6.9, all the components with i 6¼ j are zero. Therefore, we want to find a

plane, and the traction on that plane, where there is no shear stress. The only case where this is

true is when the traction is parallel to the pole of the plane (Fig. 6.3).

Assuming that the principal stress has some unknown magnitude, l, we can express the

parallelism of the traction and the pole as

p n̂ð Þ ¼ ln̂ (6:10)

Substituting Equation 6.10 into Cauchy’s Equation 6.8 we get

ln̂ ¼ sn̂ or lni ¼ �ijnj (6:11)

Using the substitution property of the Kronecker delta (Eq. 4.12), we know thatni ¼ δijnj so that

Equation 6.11 can be rearranged as

�ij � lδij

� �

nj ¼ 0 (6:12)

To solve for l, take the determinant of the part in parentheses, above, and set it equal to zero,

which will give us our familiar cubic in l as in Equation 5.25. Again, this equation is generally

solved numerically. The three eigenvalues, l, are the threemagnitudes of the principal stresses

and the corresponding eigenvectors give the orientations of the principal axes of stress. Below

are two MATLAB functions that deal with these problems. Function TransformStress trans-

forms the stress tensor from one Cartesian system to another of other orientation. Function

PrincipalStress calculates the principal stresses and their orientations for a given stress

tensor in a Cartesian coordinate system of any orientation. PrincipalStress, below, relies on

the MATLAB function eig to do the eigenvalue problem. If you are coding this from scratch in a

normal programming language, you will need to call subroutines such as Jacobi and Eigsrt

from Numerical Recipes (Press et al., 1986).

function nstress = TransformStress(stress,tX1,pX1,tX3,ntX1,npX1,ntX3)

%TransformStress transforms a stress tensor from old X1,X2,X3 to new X1'

%,X2',X3' coordinates

%

Figure 6.3 Illustration of stresses on a

plane perpendicular to a principal stress.

When the plane is perpendicular to a

principal stress the traction on theplane,

p, is parallel to the pole to the plane, n̂,

the tractionhas the samemagnitude and

orientation as the principal stress

(p ¼ �1), and there arenoshear tractions

parallel to the plane.

6.3 Basic characteristics of stress 105

% USE: nstress = TransformStress(stress,tX1,pX1,tX3,ntX1,npX1,ntX3)

%

% stress = 3 x 3 stress tensor

% tX1 = trend of X1

% pX1 = plunge of X1

% tX3 = trend of X3

% ntX1 = trend of X1'

% npX1 = plunge of X1'

% ntX3 = trend of X3'

% nstress = 3 x 3 stress tensor in new coordinate system

%

% NOTE: All input angles should be in radians

%

% TransformStress uses function DirCosAxes

%Direction cosines of axes of old coordinate system

odC = DirCosAxes(tX1,pX1,tX3);

%Direction cosines of axes of new coordinate system

ndC = DirCosAxes(ntX1,npX1,ntX3);

%Transformation matrix between old and new coordinate system

a = zeros(3,3);

for i = 1:3

for j = 1:3

%Use dot product

a(i,j) = ndC(i,1)*odC(j,1) + ndC(i,2)*odC(j,2) + ndC(i,3)*odC(j,3);

end

end

%Transform stress tensor from old to new coordinate system (Eq. 5.12)

nstress = zeros(3,3);

for i = 1:3

for j = 1:3

for k = 1:3

for L = 1:3

nstress(i,j) = a(i,k)*a(j,L)*stress(k,L)+nstress(i,j);

end

end

end

end

end

function [pstress,dCp] = PrincipalStress(stress,tX1,pX1,tX3)

%Given the stress tensor in a X1,X2,X3 coordinate system of any

%orientation, PrincipalStress calculates the principal stresses and their

%orientations (trend and plunge)

%

106 Stress

% USE: [pstress,dCp] = PrincipalStress(stress,tX1,pX1,tX3)

%

% stress = Symmetric 3 x 3 stress tensor

% tX1 = trend of X1

% pX1 = plunge of X1

% tX3 = trend of X3

% pstress = 3 x 3 matrix containing the magnitude (column 1), trend

% (column 2), and plunge (column 3) of the maximum (row 1),

% intermediate (row 2), and minimum (row 3) principal stresses

% dCp = 3 x 3 matrix with direction cosines of the principal stress

% directions: Max. (row 1), Int. (row 2), and Min. (row 3)

%

% NOTE: Input/Output angles are in radians

%

% PrincipalStress uses functions DirCosAxes and CartToSph

%Compute direction cosines of X1,X2,X3

dC = DirCosAxes(tX1,pX1,tX3);

%Initialize pstress

pstress = zeros(3,3);

%Calculate the eigenvalues and eigenvectors of the stress tensor. Use

%MATLAB function eig. D is a diagonal matrix of eigenvalues

%(i.e. principal stress magnitudes), and V is a full matrix whose columns

%are the corresponding eigenvectors (i.e. principal stress directions)

[V,D] = eig(stress);

%Fill principal stress magnitudes

pstress(1,1) = D(3,3); %Maximum principal stress

pstress(2,1) = D(2,2); %Intermediate principal stress

pstress(3,1) = D(1,1); %Minimum principal stress

%The direction cosines of the principal stress tensor are given with

%respect to X1,X2,X3 stress coordinate system, so they need to be

%transformed to the North-East-Down coordinate system (e.g. Eq. 3.9)

tV = zeros(3,3);

for i = 1:3

for j = 1:3

for k = 1:3

tV(j,i) = dC(k,j)*V(k,i) + tV(j,i);

end

end

end

%Initialize dCp

dCp = zeros(3,3);

%Trend and plunge of maximum principal stress direction

6.3 Basic characteristics of stress 107

dCp(1,:) = [tV(1,3),tV(2,3),tV(3,3)];

[pstress(1,2),pstress(1,3)] = CartToSph(tV(1,3),tV(2,3),tV(3,3));

%Trend and plunge of intermediate principal stress direction

dCp(2,:) = [tV(1,2),tV(2,2),tV(3,2)];

[pstress(2,2),pstress(2,3)] = CartToSph(tV(1,2),tV(2,2),tV(3,2));

%Trend and plunge of minimum principal stress direction

dCp(3,:) = [tV(1,1),tV(2,1),tV(3,1)];

[pstress(3,2),pstress(3,3)] = CartToSph(tV(1,1),tV(2,1),tV(3,1));

end

6.3.2 Mohr circle for stress

Mohr circle for stress, like any other Mohr circle, is a graphical calculator which allows us to

determine the normal and shear stress on any plane that is parallel to one of the principal

stresses and can make any angle with respect to the other two principal stresses. As described

in Section 5.3.3, the Mohr circle is derived by making a rotation about one of the principal axes

of a tensor. In Figure 6.4, the old axes are parallel to the principal axes of the tensor, �ij , and the

rotation is around the �2 axis. By choosing our new coordinate system so that it is parallel to the

pole to the plane, the components of the tensor in its new configuration, �0ij , will automatically

give us the normal (�011) and shear (�013) stresses on the plane. Thus the old form of the stress

tensor and the transformation matrix (a) are, respectively,

�ij ¼
�1 0 0
0 �2 0
0 0 �3

2

4

3

5 and aij ¼
cosθ 0 sinθ
0 1 0

� sinθ 0 cosθ

0

@

1

A

Using the identities cos 90� θð Þ ¼ sinθ and cos 90þ θð Þ ¼ � sinθ, the new form of the tensor,

�0ij , is

�0ij ¼

�1cos
2θþ �3sin

2θ
� �

0 �3 � �1ð Þ sinθ cosθð Þ

0 �2 0

� �1 � �3ð Þ sinθ cosθð Þ 0 �1sin
2θþ �3cos

2θ
� �

2

6

6

4

3

7

7

5

(6:13)

Rearranging using the double angle formulas, we get the familiar equations for the Mohr circle:

�011 ¼
�1 þ �3ð Þ

2
þ

�1 � �3ð Þ

2
cos2θ (6:14a)

�013 ¼ �
�1 � �3ð Þ

2
sin2θ (6:14b)

The graphical representation of the Mohr circle is shown in Figure 6.5. Note that, in some

introductory structural geology textbooks, you will see the angle 2θ in the Mohr circle diagram

measured clockwise from �3. Those authors have taken as a convention that the angle θ is

measured between �1 and the plane itself; in our derivation, above, θ is the angle between the

pole to the plane and �1 (Fig. 6.4a). There is nothing particularly wrong with measuring θ from

the plane rather than the pole because the two angles are complementary. Constructing the

Mohr circle this way, however, tends to obscure its origin as a tensor transformation.

A useful property of all Mohr circle constructions is the concept of the pole to the Mohr

circle (point P in Fig. 6.5a), which can help one to relate the Mohr circle diagram to the physical

orientation of the vectors it represents (Ragan, 2009). Lines drawn from the pole to the Mohr

108 Stress

circle to the stress of interest on the circle are parallel to the physical orientation of that vector

in space. For example, the long dashed lines in Figure 6.5a are parallel to the principal stress

vectors in the gray block of material in Figure 6.5b.

Clearly,wecan carry out the tensor transformationby rotating about anyof the three principal

stresses. Thus, there are threeMohr circles for any given state of stress. The above example is for

the state of stress on planes that contain the �2 axis. The other two circles will be for planes that

contain the �1 axis andplanes that contain the �3 axis. The three transformations together give us

a set of three nested circles (Fig. 6.6). Defined this way, all possible stresses in the bodymust plot

in the region between the smallest and largest circles (the shaded region in Fig. 6.6). We are not

limited to finding only those tractions that plot on one of the circles but, indeed, can find the

stress on a plane of any orientation with respect to the coordinate and principal stress axes.

Figure 6.4 Coordinate systems and stress vectors for the Mohr circle for stress. (a) The

“old” coordinate system, which is parallel to the principal axes of the stress tensor. Note

that the X2 axis, which is parallel to �2, is contained within the plane of interest. X1, X3,

�1, �3, and the pole to the plane of interest are all coplanar. (b) The “new” coordinate

system has now been transformed into the coordinate frame of the plane of interest.

Note that X2 has not changed (i.e., X2 ¼ X0
2) but X1 and X3, which are in the plane

perpendicular to X2, have been transformed to X0
1 and X0

3.

6.3 Basic characteristics of stress 109

Figure 6.5 (a) Mohr circle for stress, where θ is the angle between the pole to the plane

and themaximumprincipal stress, �1. Geological convention of compression positive is

followed. Point P is the pole to the Mohr circle for stress. (b) The physical setting for the

state of stress shown in part (a). X1 and X3 represent the old coordinate system parallel

to the principal stresses, whereas X0
1 and X0

3 are the new coordinate system parallel to

the pole to the plane and the plane itself, respectively. Note how the physical

orientations of the stress vectors in (b) are parallel to the lines drawn between the

stresses and point P on the Mohr circle in (a).

Figure 6.6 The three-dimensional Mohr circle for stress. All possible states of stress

must plot within the shaded region; those that include a principal plane of stress plot on

one of the margins of the three circles.

110 Stress

Figure 6.6 shows the construction for finding the normal and shear tractions on a plane that

makes angles of α ¼ 59:5�, β ¼ 55�, and γ ¼ 50� with the X1 (�1), X2 (�2), and X3 (�3) axes,

respectively. The tractions on that plane can be read off the diagram at the point of intersection

of the three arcs (pointp, Fig. 6.6). For those interested in themathematical background for these

relations, see Malvern (1969, pp. 94–101) or Jaeger and Cook (1979, pp. 27–30). Where you

measure the double angles from is most conveniently remembered by recalling which axis they

relate to. Thus, 2γ is measured from �3 on the Mohr circle, 2β from �2, and 2α from �1 (Fig. 6.6).

6.3.3 Special states of stress

There are several special types of stress that can be precisely definedwith our understanding of

the stress tensor. They are particularly easy to recognize when the coordinate axes are parallel

to the principal axes of the tensor. They are listed below and several are illustrated with Mohr

circles in Figure 6.7.

Uniaxial stresshasonly onenon-zeroprincipal stress.Nye (1985) gives as anexample the state

of stress in a vertical rod with a weight hung on one end. Uniaxial stress (Fig. 6.7c) has the form

�ij ¼
�1 0 0
0 0 0
0 0 0

2

4

3

5 (6:15)

Biaxial stress (Fig. 6.7a) has two non-zero principal stresses:

�ij ¼
�1 0 0
0 �2 0
0 0 0

2

4

3

5 (6:16)

Triaxial stress (Fig. 6.7b) is themost general type of stress tensor. It has three non-zero principal

stresses as in Equation 6.17:

�ij ¼
�1 0 0
0 �2 0
0 0 �3

2

4

3

5 (6:17)

When two of the principal stresses are equal and the third is different, it is known as a

cylindrical state of stress (Fig. 6.7c). In this case, only the direction of the different principal

stress is unique; the other two principal stresses can have any orientation in the plane that is

perpendicular to the third. Uniaxial stress, above, is a special case of cylindrical stress where

the two equal stresses are zero.

Of particular import to structural geology is a spherical state of stress. This occurs when all

three principal stresses have the same value (Fig. 6.7d). When this is the case, any direction in

the body can be a principal axis (i.e., the stress magnitude ellipsoid is a sphere) and, therefore,

there are no planes that have shear traction acting on them. When all three principal stresses are

equal, the Mohr circle plots as a single point on the horizontal axis (Fig. 6.7d). Clearly, this point

has a shear stress, �s ¼ 0, and therefore there are no shear tractions in the body. This condition

is also known as hydrostatic stress because, as long as a fluid is not moving, the pressure is

equal in all directions and it can support no shear tractions.

Finally, a pure shear stress is one in which two of the principal stresses are equal and

opposite in sign and the third is zero (Fig. 6.7e). The tensor looks like

�ij ¼
� 0 0
0 0 0
0 0 ��

2

4

3

5 (6:18)

6.3 Basic characteristics of stress 111

6.4 THE DEVIATORIC STRESS TENSOR

The concept of hydrostatic stress allows us to introduce an even more fundamental type of

stress tensor which is very useful in structural geology. We can define the mean normal stress

as the arithmetic average of the three normal tractions (i.e., the principal diagonal) of any stress

tensor:

p ¼
�11 þ �22 þ �33ð Þ

3
(6:19)

Note that themean stress will be the same regardless of the coordinate systembecause the sum

of tractions along the principal diagonal is just the first invariant of the stress tensor. From

Section 4.3.2, we know that any matrix – and all tensors are matrices – can be expressed as the

sum of two other matrices. Therefore we can write the stress tensor as

�ij ¼
p 0 0
0 p 0
0 0 p

2

4

3

5þ
�11 � p �12 �13
�21 �22 � p �23
�31 �32 �33 � p

2

4

3

5 (6:20a)

or, in indicial notation

�ij ¼ pδij þ sij (6:20b)

The matrix on the left, pδij , is the spherical or hydrostatic stress tensor and the matrix on the

right, sij , is the deviatoric stress tensor. As you might imagine, the hydrostatic stress tensor

exerts uniform pressure all around the body of interest. This may cause the body to shrink or

expand (i.e., change volume) but, on first glance, it is difficult to see how it would change the

shape of a body. There is a way this can occur, however. If the body on which the stress is

Figure 6.7 Several special states of stress as shown on general, three-dimensional

Mohr circles. The solid black dot represents a single point. (a) �3 ¼ 0, �1 and �2 6¼ 0;

(b) �1, �2, and �3 6¼ 0; (c) �3 ¼ �2 ¼ 0, �1 6¼ 0; (d) �1 ¼ �2 ¼ �3; (e) �3 ¼ ��1, �2 ¼ 0.

112 Stress

applied is anisotropic with respect to its material properties (e.g., it is stronger along certain

planes than along others) then even uniform hydrostatic pressure will cause it to deform.

Nonetheless, the deviatoric stress tensor is commonly responsible for the vast majority of

shape changes; it is, after all, the tensor that has all of the shear stress associated with it.

The principal axes of the deviatoric stress tensor have the same orientation as those of the

stress tensor itself and the magnitudes differ only by a factor of p:

s1 ¼ �1 � p; s2 ¼ �2 � p; and s3 ¼ �3 � p (6:21)

For arbitrary coordinate axes it is generally easier to determine the principal axes of the

deviatoric tensor than for the stress tensor itself. This is because, for the former, there is an

analytical solution to the eigenvalue problem. For the deviatoric stress tensor, the solution to

the characteristic equation has the form:

l
3 � II½s�l� III½s� ¼ 0 (6:22)

The analytical solution (Malvern, 1969, p. 92) to this equation is

si ¼ 2cosαi

II½s�

3

� �
1
2

(6:23a)

where

cos3α1 ¼
III½s�

2

3

II½s�

� �

3
2
; α2 ¼ α1 þ

2p

3
; and α3 ¼ α1 �

2p

3
(6:23b)

and II½s� and III½s� are the second and third invariants of the stress tensor as described in

Equation 5.26.

6.5 A PROBLEM INVOLVING STRESS

Many clever graphical and analyticalmethods have been developed to determine themagnitude

and orientation of maximum shear stress on an arbitrarily oriented plane. This problem is

particularly germane to any question involving faulting and fracturing of rocks in the upper

crust. For example, during the 1980s, there was substantial interest in methods for finding a

“best-fit” stress tensor for a group of fault plane–slickenside measurements. The orientation

and magnitude of maximum shear stress on a plane is of key importance.

Rather than looking for the shortest solution, ours is designed to illustrate in a clear and

organized way the principles developed in this and previous chapters. It relies on no graphical

construction, simply a couple of tensor transformations. The rotations carried out in the

graphical methods are conceptually the same as tensor transformations. There are three

coordinate systems to deal with (Fig. 6.8): (1) The geographic coordinate system, NED, is what

the data will be entered in and also the coordinate system in which we will want our final

answers. (2) The second coordinate system is defined by the principal stress axes, �1�2�3. All

three of these axes, including their magnitude and orientation are known in advance. (3) The

third set of coordinates is determined by the fault plane itself. These are the pole to the plane, n

(the first axis), the line in the fault plane along which there is zero shear traction, b, and the line

in the plane that has themaximum shear traction, s (the third axis). Of these final three axes, we

only know, at the beginning, the orientation of the pole.

Our solution to this problem will follow these basic steps: transform everything into

principal stress coordinates; calculate the traction vector on the plane; use that vector to

6.5 A problem involving stress 113

determine the other two axes, s and b, of the third coordinate system; use a tensor trans-

formation from �1�2�3 to nbs to calculate the magnitudes of the stresses on the plane; and,

finally, do a vector transformation to get the orientations of s and b in geographic coordinates.

Each of these steps is elaborated below.

6.5.1 Data entry and transformation to principal stress coordinates

The original data – the orientations and magnitudes of the principal stress axes and the

orientation of the plane – are generally entered in geographic coordinates, as trend and plunge

or strike and dip. The direction cosines of the principal stress axeswill form the transformation

matrix, a, for the NED (old) to �1�2�3 (new) transformation. To keep things straight, one only

need enter the orientation of �1 and �3; calculating �2 as the cross product, �3 � �1, will insure

that the second coordinate system is right-handed. The first transformation matrix is

aij ¼

cosα½�1� cosβ½�1�
cosγ½�1 �

cosα½�2� cosβ½�2�
cosγ½�2 �

cosα½�3� cosβ½�3�
cosγ½�3 �

0

@

1

A ¼

CN½�1� CE½�1� CD½�1�

CN½�2� CE½�2� CD½�2�

CN½�3� CE½�3� CD½�3�

0

@

1

A (6:24)

The pole to the fault plane, n, is also entered in geographic coordinates. It, too, must be

transformed into principal stress coordinates but, because the pole is not parallel to either

the new or the old axes, its orientation in the new (principal stress) coordinate system is given

by a vector transformation:

n0
i ¼ aijnj (6:25)

6.5.2 Calculate the traction vector on the plane

Now that we know the pole to the plane in stress coordinates, we can calculate the traction on

the plane p0 in principal stress coordinates, from Cauchy’s Law:

Figure 6.8 Lower hemisphere, equal

area projection showing the three

coordinate systems involved in

determining the maximum shear

traction on the plane. See text for

description of axes.

114 Stress

p0
i ¼ �ijn

0
j where �ij ¼

�1 0 0
0 �2 0
0 0 �3

2

4

3

5 (6:26)

Equations 6.24 to 6.26 are solved by the function Cauchy introduced in Section 6.2.

6.5.3 Determine the orientations of s′ and b′

We need to know the orientations of s0 and b0 (the orientations of s and b in principal stress

coordinates) so that the second transformation matrix, from principal stress to fault plane

coordinates, can be determined. There aremany different ways to do this. One of the simplest is

to rely on the relationship that the maximum shear traction s0 on a plane is also coplanar with

the traction and the pole, p0 and n0. This plane, which contains p0, n0, and s0 (see Fig. 6.8), is

perpendicular to the fault plane and in faulting analysis is called themovement plane. The pole

to the movement plane is also b0, the second axis of our third coordinate system. Because we

know the orientation of n0 and p0 already, b0 can be determined by the cross product of those

two, and then s0 can be determined from the cross product of n0 and b0:

b0 ¼ n0 � p0 and s0 ¼ n0 � b0 (6:27)

The direction cosines of n0, b0, and s0 in principal stress coordinates define our second trans-

formationmatrix, c. Note that the above cross products do not give us unit vectors, so the above

must be divided by their magnitudes in order to get the direction cosines. The second trans-

formation matrix is

cij ¼

n̂0
1 n̂0

2 n̂0
3

b̂0
1 b̂0

2 b̂0
3

ŝ01 ŝ02 ŝ03

0

@

1

A (6:28)

6.5.4 Vector transformation to get the geographic orientations

At this point, if we are just interested in the orientation ofmaximum shear on the plane, all that

is needed is to transform p0, b0, and s0 back to geographic coordinates (we already know what

the pole, n, is). This transformation is from the new principal stress coordinate system back to

the old geographic system, so the order of the subscripts of the transformation matrix, a, is

reversed (i.e., transposed) from what it was in Equation 6.24:

si ¼ aj is
0
j bi ¼ aj ib

0
j and pi ¼ aj ip

0
j (6:29)

These vectors in geographic coordinates will probably have magnitudes different from one.

Beforewe can convert themback intomore familiar trends andplunges, theymust be converted

to unit vectors by dividing each of their components by their magnitudes.

6.5.5 Tensor transformation to get the magnitude of shear and normal tractions

To get the normal and shear tractions on the fault plane, we need to transform the stress tensor

from the principal stress coordinate system (now, the old system) to the fault plane coordinates

(new). The standard tensor transformation,

6.5 A problem involving stress 115

�0ij ¼ cikcj l�k l (6:30)

will give us exactly what we need. The pole to the plane is the first axis so the stresses on the

plane in the new coordinate systemwill have a first suffix of 1. Themaximum shear direction in

that plane, s0, was defined as the third axis so the shear stress on the plane will have a second

subscript of 3. In summary,

* �011 	 normal traction on the plane,

* �013 	 shear traction on the plane,

* �012 	 traction parallel to b ¼ 0.

The equations for these three tractions, which result from Equation (6.30), are

�011 ¼ c11c11�1 þ c12c12�2 þ c13c13�3

�012 ¼ c11c21�1 þ c12c22�2 þ c13c23�3 ¼ 0

�013 ¼ c11c31�1 þ c12c32�2 þ c13c33�3

(6:31)

By setting the second equation in 6.31 to zero and using the orthogonality relations (Eqs. 3.3

and 4.28), we can derive an important quantity called the principal stress ratio, R (Gephart,

1990):

R ¼
�2 � �1ð Þ

�3 � �1ð Þ
¼

c13c23
c12c22

(6:32)

When R ¼ 1, �2 is equal to �3; when R ¼ 0, �2 is equal to �1. This ratio is of key importance to the

problem of deriving stress from fault slip data (the inverse equivalent of the forward problem

that we solved above). Fault reactivation is likewise critically dependent on the principal stress

ratio. Figure 6.9 illustrates, for a single example, how the orientations and magnitudes of

tractions vary with R; you can see that the rake of the potential directions of slip on a pre-

existing fault plane can vary by 908. In essence, Equation 6.32 shows that inversion of fault slip

data for stress can yield only four independent quantities: the ratio of principal stresses R, and

three independent angles (or direction cosines) that uniquely define the orientations of those

principal stress axes. The fourth direction cosine in Equation 6.32 is dependent on the other

three by the orthogonality relations. Thus, as shown by Gephart (1990), it is impossible to

determine the magnitudes of the principal stresses from fault slip data. The importance of the

principal stress ratio was first realized by Bott (1959). Note that Angelier (1984) defines a

variation on the principal stress ratio:

� ¼
�2 � �3
�1 � �3

(6:33)

In this case, if � ¼ 0, then �2 ¼ �3, and if � ¼ 1, then �2 ¼ �1. Thus, � ¼ 1� R. The MATLAB

function ShearOnPlane below carries out all the calculations in this section.

function [TT,dCTT,R] = ShearOnPlane(stress,tX1,pX1,tX3,strike,dip)

%ShearOnPlane calculates the direction and magnitudes of the normal

%and shear tractions on an arbitrarily oriented plane

%

% USE: [TT,dCTT] = ShearOnPlane(stress,tX1,pX1,tX3,strike,dip)

%

% stress = 3 x 3 stress tensor

% tX1 = trend of X1

% pX1 = plunge of X1

116 Stress

% tX3 = trend of X3

% strike = strike of plane

% dip = dip of plane

% TT = 3 x 3 matrix with the magnitude (column 1), trend (column 2) and

% plunge (column 3) of: normal traction on the plane (row 1),

% minimum shear traction (row 2), and maximum shear traction (row 3)

% dCTT = 3 x 3 matrix with the direction cosines of unit vectors parallel

% to: normal traction on the plane (row 1), minimum shear traction

% (row 2), and maximum shear traction (row 3)

% R = Stress ratio

%

% NOTE = Input stress tensor does not need to be along principal stress

% directions

% Plane orientation follows the right hand rule

% Input/Output angles are in radians

%

% ShearOnPlane uses functions PrincipalStress, Cauchy and CartToSph

%Initialize TT and dCTT

TT = zeros(3,3);

dCTT = zeros(3,3);

(a) (b)

Figure 6.9 Illustration of the importance of the stress ratio, R (Eq. 6.32), for determining

the direction and magnitude of shear on an arbitrarily oriented plane (which has the

same orientation as that in Fig. 6.8). The orientations of the principal stresses and the

plane are held constant and the values of �1 ¼ 50MPa and �3 ¼ 10MPa are also

constant. All that varies is the value of R (i.e., �2 relative to �1 and �3). (a) Lower

hemisphere, equal area projection showing the orientations of the principal stresses

(solid squares), the plane of interest (great circle) and its pole (n), and the variation in

orientation of the shear tractions on the plane, s, as well as the traction vector, p, with

0:0
 R
 1:0. (b) Graph showing how, for the same example as (a), the magnitudes of

the traction, normal, and shear vectors vary with R.

6.5 A problem involving stress 117

%Compute principal stresses and principal stress directions

[pstress,dCp] = PrincipalStress(stress,tX1,pX1,tX3);

%Update stress vector so that it is along principal stress directions

stress = zeros(3,3);

for i = 1:3

stress(i,i) = pstress(i,1);

end

%Compute tractions on plane in principal stress direction (Eqs. 6.24–6.26)

[T,pT] = Cauchy(stress,pstress(1,2),pstress(1,3),pstress(3,2),strike,dip);

%Find the B axis by the cross product of T cross pT and convert to

%direction cosines (Eq. 6.27)

B = zeros(1,3);

B(1) = T(2)*pT(3) - T(3)*pT(2);

B(2) = T(3)*pT(1) - T(1)*pT(3);

B(3) = T(1)*pT(2) - T(2)*pT(1);

%Find the shear direction by the cross product of pT cross B. This will

%give S in right handed coordinates (Eq. 6.27)

S = zeros(1,3);

S(1) = pT(2)*B(3) - pT(3)*B(2);

S(2) = pT(3)*B(1) - pT(1)*B(3);

S(3) = pT(1)*B(2) - pT(2)*B(1);

%Convert T, B and S to unit vectors

rT = sqrt(T(1)*T(1)+T(2)*T(2)+T(3)*T(3));

rB = sqrt(B(1)*B(1)+B(2)*B(2)+B(3)*B(3));

rS = sqrt(S(1)*S(1)+S(2)*S(2)+S(3)*S(3));

for i = 1:3

T(i) = T(i)/rT;

B(i) = B(i)/rB;

S(i) = S(i)/rS;

end

%Now we can write the transformation matrix from principal stress

%coordinates to plane coordinates (Eq. 6.28)

a = zeros(3,3);

a(1,:) = [pT(1),pT(2),pT(3)];

a(2,:) = [B(1),B(2),B(3)];

a(3,:) = [S(1),S(2),S(3)];

%Calculate stress ratio (Eq. 6.32)

R = (stress(2,2) - stress(1,1))/(stress(3,3)-stress(1,1));

%Calculate magnitude of normal and shear tractions (Eq. 6.31)

for i = 1:3

118 Stress

TT(i,1) = stress(1,1)*a(1,1)*a(i,1) + stress (2,2)*a(1,2)*a(i,2) +...

stress(3,3)*a(1,3)*a(i,3);

end

%To get the orientation of the tractions in north-east-down coordinates, we

%need to do a vector transformation between principal stress and

%north-east-down coordinates. The transformation matrix is just the

%direction cosines of the principal stresses in north-east-down coordinates

%(Eq. 6.29)

for i = 1:3

for j = 1:3

dCTT(1,i) = dCp(j,i)*pT(j) + dCTT(1,i);

dCTT(2,i) = dCp(j,i)*B(j) + dCTT(2,i);

dCTT(3,i) = dCp(j,i)*S(j) + dCTT(3,i);

end

end

%Trend and plunge of traction on plane

[TT(1,2),TT(1,3)] = CartToSph(dCTT(1,1),dCTT(1,2),dCTT(1,3));

%Trend and plunge of minimum shear direction

[TT(2,2),TT(2,3)] = CartToSph(dCTT(2,1),dCTT(2,2),dCTT(2,3));

%Trend and plunge of maximum shear direction

[TT(3,2),TT(3,3)] = CartToSph(dCTT(3,1),dCTT(3,2),dCTT(3,3));

end

6.6 EXERCISES

1. Using theMohr circle, perform a tensor transformation on the tensor shown in Equation 6.18

by a 45� rotation around the �2 axis. Discuss your results.

2. Show why there is no quadratic term, l2, in Equation 6.22.

3. Show that Equations 6.31 follow from 6.30 when the old coordinate system is parallel to the

principal stress axes.

4. Derive Equation 6.32 from Equations 6.31 and the orthogonality relations.

5. A state of stress with the following principal stress magnitudes, �1 ¼ 40MPa, �2 ¼ 20MPa,

�3 ¼ 10MPa, has a �1 axis oriented vertically, �2 aligned in a horizontal E–Wdirection, and �3
in a horizontal N–S direction. Calculate the magnitude and orientation of the normal and

maximum shear stress acting on a plane striking 60� and dipping 55� SE. Hint: Use function

ShearOnPlane.

6. In theOseberg field, North Sea, the principal stresses are oriented �1 ¼ 080=00, �2 ¼ 000=90,

and �3 ¼ 170=00. If at 2 km depth, �1 ¼ 50MPa, �2 ¼ 40MPa, and �3 ¼ 30MPa, what is the

normal and shear stress on a plane oriented (strike and dip, right-hand rule) 040=65? Hint:

Use function ShearOnPlane.

6.6 Exercises 119

CHAPTER

SEVEN

Introduction to deformation

7.1 INTRODUCTION

A famous structural geologist once remarked, “As a structural geologist, I don’t believe in stress.”

It is true that we never really see stress (because it is a field tensor) or can ever measure stress

directly. All we canobserve is the endproduct of imposing stress onamaterial, and that iswhat is

broadly known as deformation. We may observe deformation while the accompanying stress is

still present, as in the case of seismic waves generated by earthquakes or rock bursts in a quarry

or, more commonly, we may observe rocks that were distorted by stress some hundreds of

millions of years ago. Stress is instantaneous; deformation is what we see in the rocks.

In our study of deformation, we are embarking on new territory in one very important

aspect: We will be comparing the states of material at two different points in time. When we

did stress tensor transformations in the last chapter, we were simply taking two different looks

at the same state of stress at the same instant in time. Studying deformation requires that we

establish both temporal and spatial frames of reference.

Deformation, which most structural geologists choose to concentrate on, is in fact a far

more complicated topic than stress. There is a plethora of different symmetric and asymmetric

tensors, some quite messy, which describe deformation. In this chapter, we introduce some

fundamental concepts about this topic and then in Chapter 8 we’ll take a look at some

simplifying mathematical assumptions that make deformation almost as easy as stress to

deal with. In Chapter 9, we’ll see just how messy it can get with an introduction to finite strain.

In the first chapter, we wrote that deformation is the product of strain (distortion), rotation,

and translation; we are about to find out what that means. Presentations of strain in most

structural geology texts start with some simple one-dimensional measures of strain:

extension: e ¼ lf � li

li
(7:1a)

120

stretch: S ¼ lf
li

(7:1b)

quadratic elongation: l ¼ S2 ¼ lf
li

� �2

(7:1c)

where lf is the final length and li is the initial length. The presence of the li in the denominator of

Equations 7.1 signals an implicit assumption that the initial state is the reference state. One

could equally well choose the final state as the reference condition. On amore profound level, it

is not clear from the above equations what the nature of the extension, stretch, and quadratic

elongations are because there is no explicit coordinate system. We now have the tools to rectify

that shortcoming, thereby enabling a deeper understanding of strain.

Before addressing the topic of strain, however, we need to develop a precise understanding

for some simpler concepts: coordinate transformations, deformation gradients, and displace-

ment gradients.

7.2 DEFORMATION AND DISPLACEMENT GRADIENTS

Though we commonly struggle to determine displacements in geology – the slip on a fault, the

translation of a continent across the globe – individual displacements tell us virtually nothing

about deformation itself. To determine the deformation of a region, we need to know how the

displacement of one part of the region compareswith displacement of several other parts of the

region. The displacement vectors at several different points define a displacement field; defor-

mation is the gradient of the displacement field.

To get a feeling for deformation and displacement gradients, take the following real-world,

if oversimplified, example. Salt Lake City, Utah, and Carson City, Nevada, are located on

opposite sides of the Basin and Range Province in the western United States (Fig. 7.1). The

two cities are presently located about 700km apart but, before extension occurred in the Basin

and Range Province, they (or, strictly, the spots of ground they now occupy) were only about

350km apart. The town of Austin, Nevada, lies more-or-less on the same line of section and is,

at present, about 240km from Carson City. We would like to find not only the distance between

Carson City and Austin prior to extension, but also to have a convenient way of calculating

where any other spot on the line was before the deformation. This problem clearly over-

simplifies the Basin and Range extensional history, but is useful for developing an intuitive

feel for deformation and displacement gradients.

You can think of there being two different coordinate systems in this problem, both of

which have their origin at Carson City, Nevada (Fig. 7.2). We will refer to the axis prior to

extension with a capital X and the present day axis with a small x. Both X and x have the

same units, but the positions of the cities along the coordinate axes have changed because of

the deformation.

The relations between the x and X axes can be described in terms of a coordinate trans-

formation. Although this sounds suspiciously like the transformation of coordinate axes that

we discussed in Chapter 3, it is quite different. The transformation of axes was just a way of

looking at the same thing from two different points of view. The coordinate transformation

here represents two different states in time, one in the present and another in the past.We could,

for example, carry out a transformation of axes to take several different looks at the present

state, but it would not help us to understand the relationship between the present and past

states because the two are different.

7.2 Deformation and displacement gradients 121

In the case of our example, the coordinate transformation is inhomogeneous because the

change is not constant but depends on position. Salt Lake City has clearly beenmoved a greater

distance from Carson City than the town of Austin has; the magnitude of the change depends

on the position of the point of interest. We can write equations that express the position in one

frame of reference as a function of the position in the other reference frame. For the case above,

x ¼ 2X (7:2a)

or

X ¼ 0:5x (7:2b)

Figure 7.2 Two one-dimensional

coordinate systems that describe the

distances between the cities shown in

Figure 7.1 before (b) and after (a) the

Cenozoic extension in the western

United States. You can think of the two

axes as a hypothetical present-day

road map (a) compared to a mid-

Tertiary one (b). In both (a) and (b) the

tick marks occur every 100km.

Figure 7.1 Map of the western United States showing the line along which we are

interested in the one-dimensional strain. The line between Carson City and Salt Lake

City is the x axis discussed in the text.

122 Introduction to deformation

Note that, even in this one-dimensional case, we are treating the positions of the towns as

position vectors, rather than scalars. The first equation (7.2a) gives a point’s position in

present-day coordinates as a function of its position prior to the start of the extension. Salt

Lake City started out at ~350km from Carson City and, by Equation 7.2a, it should now be

~700km away. The second equation (7.2b) yields the position of a point in the past, given its

present coordinates. This is the equation we want in order to solve the question: “How far was

Austin from Carson City before the extension began?” Substituting 240km (i.e., the present

distance between Carson City and Austin) for x in Equation 7.2b, we calculate that “paleo-

Austin” was 120km from “paleo-Carson City” before extension (Fig. 7.2b). In more precise

terms, Equation 7.2a is a Green transformation (new in terms of old), whereas Equation 7.2b

is a Cauchy transformation (old in terms of new).

Although the change in position is not constant, the ratio or gradient of the change is

constant (in this oversimplified example). It is nothingmore than the slopes in the above simple

equations, which apply not only to Salt Lake and Austin, but every other point in between. We

can write these gradients as

�x

�X
¼ lim

@x

@X
¼ 2 (7:3a)

�X

�x
¼ lim

@X

@x
¼ 0:5 (7:3b)

These ratios are known as the deformation gradients and they are homogeneous, unlike

the coordinate transformations. We use @ to indicate partial derivatives in the above equa-

tions because, as we’ll see below, the deformation gradients can be functions of positions

along each of the three axes of the coordinate system. “Deformation gradient” is, in fact, just

a fancy name for something with which we are already familiar. �x gives the present, or

final, length between any two points along the line (Salt Lake and Austin, for example); the

�X is the initial length between the same two points. Thus, the ratios in Equations 7.3 are

nothing more than the stretches referred to either the initial or the final conditions as in

Equation 7.1b:

S ¼ final length; lf
initial length; li

¼ �x

�X
¼ xSalt Lake � xAustinð Þ

XSalt Lake � XAustinð Þ ¼
670� 240ð Þkm
335� 120ð Þkm ¼ 430

215
¼ 2 (7:4a)

�S ¼ initial length; li
final length; lf

¼ �X

�x
¼ 215km

430km
¼ 0:5 (7:4b)

For translation alone, all points along the line move by the same amount and the coordinate

transformations would be homogeneous. In this case,�x ¼ �X, and the deformation gradients

would be equal to one. Likewise, the stretches, S and �S , will also be one.

Another way to look at this problem is to consider the displacement vectors that connect the

initial and final positions of points along the line (Fig. 7.3). Continuing with the Basin and Range

example, we can write

uSalt Lake ¼ xSalt Lake � XSalt Lake ¼ 670km� 335km ¼ 335km

uAustin ¼ xAustin � XAustin ¼ 240km� 120km ¼ 120km
(7:5)

In both cases, the vector, u, is equal to the initial position of the city and it is also equal to half

the final position of the city. That is, the size of the displacement vector depends on its position,

so we can write

7.2 Deformation and displacement gradients 123

u ¼ X (7:6a)

u ¼ 0:5x (7:6b)

The first equation (7.6a) is known as Lagrange displacement (in terms of old) and the second

(7.6b) Euler displacement (in terms of new). Like the coordinate transformation, the displace-

ment field is inhomogeneous because all vectors are not the same length. However, the change

in displacements with position, or displacement gradient, is constant and homogeneous (i.e.,

because the slopes in Equations 7.6 are constant). Thus, we can write

�u

�X
¼ lim

@u

@X
¼ 1 (7:7a)

�u

�x
¼ lim

@u

@x
¼ 0:5 (7:7b)

Again, the partial derivatives are to prepare us for the future three-dimensional case.

The physical meaning of �u becomes obvious when we expand it for the Basin and Range

case that we have been considering throughout this section. �u is just the difference between

two vectors; in the case of our example, it is the difference between uSalt Lake and uAustin (Fig. 7.3).

To simplify the following equations, we’ll just use S as the subscript for Salt Lake and A as the

subscript for Austin. We know from Equations 7.5 that

uS ¼ xS � XS and uA ¼ xA � XA

Therefore, we can write the equation for �u:

�u ¼ uS � uA ¼ xS � XSð Þ � xA � XAð Þ

This equation can now be rearranged in terms of the initial and final lengths between Salt Lake

and Austin:

�u ¼ xS � xAð Þ � XS � XAð Þ ¼ lf � li

Now, we can rewrite Equations 7.7:

e ¼ �u

�X
¼ uS � uAð Þ

XS � XAð Þ ¼
lf � li

li
(7:8a)

�e ¼ �u

�x
¼ uS � uAð Þ

xS � xAð Þ ¼
lf � li

lf
(7:8b)

Thus, the displacement gradients are just the extensions referred to the initial state (e) and to

the final state (�e). So far we have only determined the same simple equations that everyone

learns in their initiation to strain in a first course in structural geology. Equations 7.4 and 7.8

are not quite right because they imply that a scalar quantity – S in the case of 7.4 and e in the

Figure 7.3 Same coordinate systems

as in the previous figure, but now

emphasizing the displacement vectors

that connect initial and final positions

of the cities.

124 Introduction to deformation

case of 7.8 – is equivalent to the ratio of two vectors. This tells us something important: The

stretch and the extension are really scalar components of tensor quantities. The difference here

is that we have been more accurate about what the quantities of interest are and we have

developed these ideas in such away that extension to three dimensions will be straightforward.

If we just had translation alone, the displacement field would be homogeneous because all

of the vectors, u, would be the same length and orientation. The displacement gradient would

be zero because there is no change in u anywhere:

@u

@X
¼ @u

@x
¼ 0

In preparation for three dimensions, we summarize what we’ve learned so far in Table 7.1.

The subscript 1 is used to indicated that the positions, vectors, and gradients are along

the X1 or x1 axis. We use partial derivatives because, in general, there will be three axes in

our Cartesian coordinate system and the transformations and displacements will depend on

all three.

7.3 DISPLACEMENT AND DEFORMATION GRADIENTS IN THREE DIMENSIONS

7.3.1 Displacement of a point

We have seen in the previous section that the deformation and displacement gradients in one

dimension are identical to the stretch and the extension that all students learn about in their

introductory structural geology classes. To analyze real-world deformation, however, we need

to work in three dimensions, not one. Thus, we’ll now leave our (overly) simple Basin and Range

example behind and plunge into three dimensions (Fig. 7.4).The deformation gradientmatrix is

x1
x2
x3

2

4

3

5 ¼

@x1
@X1

@x1
@X2

@x1
@X3

@x2
@X1

@x2
@X2

@x2
@X3

@x3
@X1

@x3
@X2

@x3
@X3

2

6

6

6

4

3

7

7

7

5

X1

X2

X3

2

4

3

5 (7:9)

You can see that it would be very tedious to write matrices like this out all the time. It is much

easier to use the Einstein summation convention. For the same deformation gradient with

respect to the initial state, we write

xi ¼
@xi
@Xj

Xj (7:10a)

With respect to the final state, it is

Xi ¼
@Xi

@xj
xj (7:10b)

Old coordinates New coordinates

Coordinate transformation Green

x1 ¼ @x1
@X1

X1

Cauchy

X1 ¼ @X1

@x1
x1

Displacements Lagrangian

u1 ¼ @u1

@X1
X1

Eulerian

u1 ¼ @u1

@x1
x1

Table 7.1

7.3 Displacement and deformation gradients in three dimensions 125

Likewise, the displacement gradient with respect to the initial state is

ui ¼
@ui

@Xj
Xj (7:11a)

and with respect to the final,

ui ¼
@ui

@xj
xj (7:11b)

Note that Equations 7.10 and 7.11, and Figure 7.4, describe the displacement of a point with

coordinates X1 X2 X3½ � to a position x1 x2 x3½ �. How does this case apply to our earlier

example where there were two vectors, the displacement of Austin and the displacement Salt

Lake (Fig. 7.3)? In Figure 7.4, there are, implicitly, two position vectors, one from the origin to

the tail of the vector, and another from the origin to the head of the vector, u. But, while

Equations 7.10 and 7.11 describe the displacement of a point, they don’t really describe strain

because we don’t yet know how different points within the material move with respect to one

another.

7.3.2 Difference between two displacement vectors

To address this shortcoming, we consider two displacement vectors, which for simplicity’s

sake are illustrated in two dimensions (Fig. 7.5). The situation shown in the blowup on the

right side of Figure 7.5 is equivalent (in 2D) to that shown in Figure 7.4, but now the position

vectors are shown explicitly. Vector PQ has coordinates �X1 �X2 �X3½ � and the distorted

vector P 0Q 0 has coordinates �x1 �x2 �x3½ �. What we want to find is a relationship between

the initial (or final) position of the vectors and the displacement vector, �ui , as shown in

Figure 7.6.

Figure 7.4 Displacement of a point by

vector u in three dimensions. The axes

x and X refer to the new and the old

coordinate systems, respectively.

126 Introduction to deformation

You can see from Figure 7.6 that�ui is the difference between the two displacement vectors

that connect PP 0 (Pui) and QQ0 (Qui). Alternatively,�ui is the difference between P0Q0 and PQ.We

can write a simple vector addition equation that reflects this last statement:

P 0Q 0 ¼ �xi ¼ �Xi þ�ui

Expanding �ui we get

�ui ¼ Qui � Pui

Substituting from Equation 7.11a:

�ui ¼ Qui � Pui ¼
@ui

@Xj

QXj �
@ui

@Xj

PXj ¼
@ui

@Xj

QXj � PXj

� �

Since �Xi ¼ QXi � pXi we can write

�ui ¼
@ui

@Xj
�Xj ði; j ¼ 1;2;3Þ

Remember that we said that the displacement gradient is nothing more than the extension, so,

@ui

@Xj
¼ eij and �ui ¼ eij�Xj (7:12a)

Figure 7.6 All of the vectors involved in describing

the distortion of vector PQ to vector P 0Q 0.

Figure 7.5 (a) Vector PQ is distorted to vector P0Q0 during deformation. (b) A blowup of

the light gray box on the left, showing the physical meaning of �Xi , which is the

difference between the position vector to point P and the position vector to point Q.

7.3 Displacement and deformation gradients in three dimensions 127

Because �ui and �Xj are vectors, it follows that eij is a tensor, the Lagrangian displacement

gradient tensor (referred to the initial state). Following the same steps as above, we canwrite the

Eulerian displacement gradient tensor (referred to the final state):

@ui

@xj
¼ �eij and �ui ¼ �eij�xj (7:12b)

To derive the equivalent expressions for the deformation gradient tensors, we can simply

expand the equations for �xi :

�xi ¼ Q 0
xi � P 0

xi ¼
@xi
@Xj

QXj �
@xi
@Xj

PXj ¼
@xi
@Xj

QXj � PXj

� �

¼ @xi
@Xj

�Xj

As before, the deformation gradients are equivalent to the one-dimensional stretches, so

@xi
@Xj

¼ Fij and �xi ¼ Fij�Xj (7:13a)

@Xi

@xj
¼ �Fij and �Xi ¼ �Fij�xj (7:13b)

Fij is the Green deformation gradient tensor, referred to the initial state, and �Fij is the Cauchy

deformation gradient tensor, referred to the final state. All of the deformation and displace-

ment gradient tensors as described here are valid for either small or large deformations. Having

four different tensors to deal with is cumbersome at best, so it would be nice if there were some

simplifying assumptions that would remove that complexity. In the next chapter, we’ll explore

just such a simplification.

7.4 GEOLOGICAL APPLICATION: GPS TRANSECTS

The Global Positioning System (GPS) has revolutionized the science of geodesy by making it

possible to detect small movements of the Earth over very large distances. This technique has

become the backbone ofmany studies in tectonics over the past decade andhas enabled, for the

first time, structural geologists to measure deformation “in real time.” Many early GPS studies

collected data in transects perpendicular to local structure.

A simple way to look at the strain between stations is to plot the displacement vectors of the

stations against their positions along a transect. The slope in such a plot represents the differ-

ence in displacement of the two stations,�u, over the difference in position of the two stations,

�X (Fig. 7.7). Fromwhat we have just seen, this is nothingmore than the displacement gradient,

and from Equations 7.8 and 7.12 this ratio is, in one dimension, our old friend the extension:

�u

�X
¼ du

dX
¼ e (7:14)

To estimate this gradient, or slope, we commonly fit a straight line to the points (Fig. 7.7). Before

proceedingwith the solution to the geological problem, we need to address the general problem

of fitting data to a straight line.

7.4.1 Least squares fit of data to a line

All graphics programs and spreadsheets now enable a user to fit a straight line to data,

commonly called a linear regression. Undoubtedly, many professors have seen comically

egregious misuse of this function, not only by their students, but also occasionally by their

own colleagues! This is such a fundamental operation that, as scientists, we should know how

128 Introduction to deformation

this actually works. Our discussion below gives only the briefest outline of least squares fitting

and we highly recommend that you read the lucid treatment of this topic by Taylor (1997), the

classic work of Bevington and Robinson (2003), or that found in any of a number of different

statistics textbooks.

In the case shown in Figure 7.7, the equation for the straight-line fit will have the form

u ¼ t þ eX (7:15)

where u is the displacement vector, t is the intercept along the displacement axis (i.e., the

displacement at the position X ¼ 0), the position along the transect is X and the slope of the

line, also the extension as in Equation 7.14, is e. There are n GPS stations and the letter i

designates a station i located at position Xi displaced by an amount ui . Furthermore, we will

assume that there are significant uncertainties, �i , in the displacement vector, ui , but negligible

uncertainties in the position of the station, Xi .

Let’s explore, for a minute, what the uncertainty, �i , actually means. Suppose that you were

able to make multiple measurements of the displacement vector, ui , at station i. The measure-

ments would, of course, not all be identical but would have some variation about the mean, or

average, value. If that variation were well behaved, it would have a normal, or Gaussian,

distribution – the familiar bell curve with a maximum centered at the mean. �i is known as

the standard deviation of that normal distribution and its value is given by

� ¼
ffi

1

N � 1

XN

k¼1
uk � �uð Þ2

r

(7:16)

whereN is thenumber ofmeasurements of displacement vectoru and �u is the average of all of the

measurements of the displacement vector at station i. For simplicity’s sake, we have omitted the

subscript i from Equation 7.16. There is some discussion in the literature of whether or not to

useN or ðN � 1Þ in the denominator of Equation 7.16. Using ðN � 1Þmakes sense because, in the

limiting case where you have only one measurement, the standard deviation is undefined (divide

by zero). However, we particularly like the attitude of Press et al. (1986), who wrote: “If the

differencebetweenN andN � 1 evermatters toyou, thenyouareprobablyuptonogoodanyway –

e.g., trying to substantiate a questionable hypothesis withmarginal data.” Equation 7.16 gives the

value of one standard deviation, where you have a 68% chance that the correct answer lies at 1� or

less from themean. At 2� or less from themean, you are 95% confident, etc. The variance, another

common measure, is equal to the square of the standard deviation.

We return, now, to the question of how to find the best-fit straight line for multiple stations.

Without going into greater detail of normal distribution, suffice it to say that the difference

Figure 7.7 Plot of displacement versus position. The slope

gives the extension, e, in the direction of the transect. Note

the implicit sign convention of the displacements: positive

displacements are those where the vector points in the

positive direction of the position axis. If the transect were

east–west, these vectors would point east; west-pointing

vectors would have negative displacement values.

7.4 Geological application: GPS transects 129

between the observed value at a single station,ui , and the value ofu given by the best-fit straight

line (Eq. 7.15) is

ui � t � eXi

and the statistic �2 is the sum of the squares of the above difference divided by the uncertain-

ties, defined as

�2 ¼
X

n

i¼1

ui � t � eXið Þ2

�2i
(7:17)

This is why linear regression is known as least squares best fit. To find the best-fit line we must

minimize �2, which means differentiating 7.17 with respect to t and e and setting it equal to zero:

@�2

@t
¼ �2

X

n

i¼1

ui � t � eXi

�2i
¼ 0 (7:18a)

and

@�2

@e
¼ �2

X

n

i¼1

Xi ui � t � eXið Þ
�2i

¼ 0 (7:18b)

Equations 7.18 give us two equations for our two unknowns, t and e. Following Press et al.

(1986), we define the following quantities:

S 	
X

n

i¼1

1

�2
i

SX 	
X

n

i¼1

Xi

�2i
Su 	

X

n

i¼1

ui

�2i

SXX 	
X

n

i¼1

X 2
i

�2i
SXu 	

X

n

i¼1

Xiui

�2i
� 	 SSXX � S2

X

(7:19)

and with them can rewrite Equations 7.18 as

tS þ eSX ¼ Su (7:20a)

and

tSX þ eSXX ¼ SXu (7:20b)

We can now solve for t and e:

t ¼ SXX Su � SX SXu
�

(7:21a)

and

e ¼ SSXu � SX Su
�

(7:21b)

Because we know the input uncertainties, �i , we can propagate the errors through to get the

uncertainties on t and e. We will explore error propagation in a subsequent chapter; for now, we

simply give the errors for the two parameters:

�t ¼
ffiffiffiffiffiffiffiffi

SXX
�

r

(7:22a)

and

�e ¼
ffiffiffiffi

S

�

r

(7:22b)

130 Introduction to deformation

Finally, we introduce two additional parameters: The covariance of t and e is

�te ¼
�SX
�

(7:23)

and the correlation coefficient, rte, which varies between –1 and 1,

rte ¼
�SX
ffiffiffiffiffiffiffiffiffiffiffi

SSXX
p (7:24)

The correlation coefficient tells us how well u and X are correlated (rte � 1), anticorrelated

(rte � �1), or uncorrelated (rte � 0).

If youwant to see how to code these from scratch, we highly recommendChapters 14 and 15

of Press et al. (1986); for everyone interested in statistical treatment of data, the Introduction to

Chapter 14 should be required reading! MATLAB® has built in functions for linear regression as

well as a Figure menu for basic fitting (Tools → Basic Fitting). Suppose you have some data in

vectors x and y. You can fit a straight line to the data just by typing:

p=polyfit (x,y,1); %p(1) = slope and p(2) = intercept of line

R=corrcoef (x,y); %R(1,2) = Correlation coefficient

In addition, the MATLAB Statistics Toolbox contains two functions, regress and regstats, to

perform linear regression. regstats provides a complete statistics of the regression.

Performing linear regression of data with errors in x and y, however, is not that simple.

Fortunately, you can find functions to perform this task at the MATLAB Central File Exchange

website, such as the function york_fit by Travis Wiens.

7.4.2 Strain (rate) in a GPS transect

Returning to our initial problem, how does the finding of strain in a GPS transect work in

practice? Here, we will set up a real-world example and leave it to you to solve as part of the

exercises. One of the earliest earthquakes to be captured by a modern GPS network was the

1995 M8.1 Antofagasta event (Klotz et al., 1999). This earthquake occurred on the subducting

plate boundary between the South American Plate and the oceanic Nazca Plate (Fig. 7.8).

Because we are looking at coseismic deformation, this particular problem involves the calcu-

lation of strain, but in the more general case of GPS surveys capturing interseismic deforma-

tion, the data reported are displacements averaged over time or a velocity. Thus, analysis of

interseismic GPS involves the determination of strain rate, rather than strain. The procedure

described here is identical.

The first thing to notice about the Antofagasta data (Fig. 7.8) is that, rather than a single

transect, there is a band of GPS stations. Second, the vectors are not oriented exactly east–west,

but point towards the west-southwest. However, in our UTM-19 (or 19S) coordinate system,

eastings (X1) and northings (X2) are positive. These facts lead to the first two steps in the

analysis:

1. Determine the average or mean vector that characterizes, as best possible, the overall

orientation of the vectors. To do this, you will use the mean vector calculation described

in Chapter 2 (Section 2.4.1). Once you learn more about error propagation, you could redo

this problem to calculate the uncertainties in themean vector, but for right now, just add up

all the vectors and find the mean direction.

2. Determine the two-dimensional transformation matrix aij needed for a new coordinate

system where the X
0
1
axis is parallel to the mean vector direction.

7.4 Geological application: GPS transects 131

3. Transform the east and north coordinates of the GPS vectors, and the east and north

components of the errors into the new coordinate system using Equations 3.6 from

Chapter 3.

4. Plot the u0
1 component of each displacement vector, and its error, against the X 0

1 component

of the station position.

5. Fit a straight line to approximately linear segments of the resulting curve using the relations

or built-in functions from the previous sections.

One-dimensional plots like those you’ve just constructed are standard practice in articles

describing GPS data and it is important to know how to read them. Once you have completed

the Antofagasta earthquake exercise, however, you will see that there are artifacts that result

from the fact that the strain varies in two dimensions because gradients in displacement exist

in two dimensions, not just along a transect. Although we can tell from such a plot if there is

shortening or extension between the two stations, we have no way of knowing how close these

values are to the principal axes of infinitesimal strain, nor do we know anything about rotation.

At the end of Chapter 8, we will see how to solve the more complete problem.

7.5 EXERCISES

In previous chapters, we have given you a lot ofMATLAB code to carry out individual calculations.

In this chapter, you can begin to put those pieces together to solve a very interesting geologic

problem, the one described in the previous section.

Figure 7.8 Shaded relief map of the Chilean Coastal Cordillera near Antofagasta, Chile,

showing the station locations and coseismic GPS vectors of displacement during the

1995Mw 8.1 earthquake. GPS data are from Klotz et al. (1999).

132 Introduction to deformation

1. The table below, modified from Klotz et al. (1999), lists the GPS data for locations shown in

Figure 7.8. The units of the displacements and the errors are meters.

ID Longitude Latitude U(E) Error(E) U(N) Error(N)

julo –70.5460002 –23.5260447 –0.527000 0.002600 –0.082000 0.002800

calc –70.5319985 –24.2640430 –0.852000 0.002700 –0.283000 0.002800

cari –70.4990037 –24.9470407 –0.149000 0.002700 0.003000 0.002800

caco –70.4719967 –23.7660478 –0.832000 0.003200 –0.306000 0.002900

meji –70.4159964 –23.2000390 –0.167000 0.002600 –0.039000 0.002800

unia –70.4199960 –23.7020464 –0.756000 0.002600 –0.274000 0.002800

udan –70.4050006 –23.6690402 –0.730000 0.003200 –0.246000 0.001800

antf –70.4010045 –23.5440436 –0.562000 0.010000 –0.232000 0.010000

urib –70.2800027 –23.5050416 –0.527000 0.002700 –0.232000 0.002800

live –70.2529978 –23.9640425 –0.851000 0.002600 –0.133000 0.002800

mabl –70.0280003 –23.4480389 –0.430000 0.002600 –0.199000 0.002800

baqu –69.7810030 –23.3420390 –0.290000 0.002600 –0.122000 0.002800

minf –69.6060045 –24.1050470 –0.382000 0.002800 0.022000 0.002800

coba –69.5890013 –24.8240416 –0.130000 0.002700 0.068000 0.002800

loba –69.4160042 –23.4480432 –0.219000 0.002900 –0.070000 0.002800

sigo –69.2970033 –22.9260455 –0.078000 0.002700 –0.053000 0.002800

pael –69.0410009 –23.5380448 –0.119000 0.002600 –0.028000 0.002800

esim –68.8980033 –24.2260430 –0.135000 0.002600 0.027000 0.002800

cene –68.6319956 –23.5510467 –0.074000 0.002700 –0.027000 0.002800

ceto –68.5460005 –23.1770408 –0.049000 0.002600 –0.022000 0.002800

nrar –68.4939972 –24.2540478 –0.086000 0.010000 0.024000 0.010000

pbar –68.4250025 –22.7110477 –0.008000 0.002900 –0.015000 0.002800

peni –68.3459975 –23.6400423 –0.049000 0.004000 –0.003000 0.002900

paso –68.2909993 –24.4490472 –0.043000 0.002400 0.014000 0.002700

sanp –68.1649960 –22.9660402 –0.015000 0.002800 –0.016000 0.002800

pein –68.0559972 –23.6860468 –0.050000 0.002900 –0.010000 0.002800

toco –67.9499950 –23.2850458 –0.030000 0.002600 –0.002000 0.002800

ctoc –67.8549994 –22.9280390 –0.010000 0.002600 –0.007000 0.002800

cmin –67.7579993 –23.8890396 –0.036000 0.002600 –0.006000 0.002800

saca –67.6030034 –23.5420476 –0.014000 0.002600 0.006000 0.002800

paja –67.0729981 –23.2250393 –0.006000 0.002600 –0.007000 0.002800

a. This region is in UTM zone 19 south. Convert all of the station locations to eastings and

northings so you can carry out the strain calculations by having both position and

displacement in meters.

b. Following the steps laid out in Section 7.4.2, calculate the coseismic strain during the

1995 Antofagasta earthquake. You may need to calculate the strain for more than one

segment of the curve if the curve is not linear.

c. Is the slope of your graph positive or negative and what does the sign indicate about the

nature of the strain?

d. Provide a plausible explanation for any points on your graph that do not seem to fit the

general trend on your plot.

e. You can define the station positions either by their position prior to, or after, the

displacement. How does your choice of reference frame affect your calculation?

2. The town ofWendover, on the Utah–Nevada border, is about 510km fromCarson City, along

the line between Carson City and Salt Lake City (it is actually about 50km north of the line,

butwe’ll assume that it lies along the line for the purposes of this problem). Use the relations

developed in Section 7.2 to determine where Wendover was prior to Basin and Range

extension. What assumptions have you used in this calculation?

7.5 Exercises 133

3. Figure 7.9 shows a cross section from the Viking Graben in the North Sea (modified from

Fjeldskaar et al., 2004). The section is drawn with no vertical exaggeration and the units on

the scale are in kilometers. The dark gray is the basement and the light gray is the graben and

post-graben fill. Assuming that the top of the basementwas originally horizontal, determine

the Green and Cauchy deformation gradients, and the Lagrange and Euler displacement

gradients. Note that the Green deformation gradient is known in basin modeling circles as

the stretching, or β, factor (McKenzie, 1978).

4. Derive Equations 7.21 from Equations 7.18. Show your intermediate steps.

Figure 7.9 Simplified cross section of the Viking Graben in the North Sea, after

Fjeldskaar et al. (2004). The dark gray unit is the pre-rift basement. Syn- and post-rift

strata are shown in light gray. The section is for use with Exercise 3.

134 Introduction to deformation

CHAPTER

EIGHT

Infinitesimal strain

8.1 SMALLER IS SIMPLER

In the last chapter, we sought a simplifying assumption to reduce the number of different

tensors that we have to deal with. It turns out that, if we only deal with very small changes, we

can cut in half the number of tensors thatwe’ve introduced so far. The same simplification has a

number of other benefits as well.

Consider the simple deformation shown in Figure 8.1. If �X1 ¼ 1:0 and �x1 ¼ 1:001, then

the displacement gradient is

@u1

@X1
¼ 0:001

1:0
¼ 0:001000 and

@u1

@x1
¼ 0:001

1:001
¼ 0:000999

Thus, when strains are small,
@u1

@x1
� @u1

@X1
and the difference between the displacement gradients

in the initial and final states is not important. Small strains are called infinitesimal strains. Small

strains are important in a number of fields in earth sciences, perhaps most notably in

geophysics.

8.1.1 The components of the displacement gradient tensor

Though we saw in the previous chapter that, in one dimension, the displacement gradient

tensor, e, is equivalent to the linear extension that one learns in introductory structural

geology, we are left with the nagging suspicion that the nine components of e in three

dimensions are somewhat more complicated. The infinitesimal strain assumption allows us

some further insight, in particular, into the meanings of the six off-diagonal components

of the tensor.

135

Consider the special case shown in Figure 8.2. Because PQ is perpendicular to the X2 axis,

�X2 ¼ 0. Expanding Equation 7.12 in two dimensions, we get

�u1 ¼ e11�X1 þ e12�X2 ¼ e11�X1 þ 0 ¼ e11�X1

�u2 ¼ e21�X1 þ e22�X2 ¼ e21�X1 þ 0 ¼ e21�X1

(8:1)

From the first equation, you can see that

e11 ¼ �u1

�X1

Because �u1 ¼ �x1 ��X1, this equation says that e11 is equal to the final length minus the

initial length, divided by the initial length. In other words, e11 is just the extension along the X1

axis.

8.1.2 Significance of the off-diagonal components, e21 and e12

From the geometry in Figure 8.2, we can see that

tanθ ¼ �u2

�X1 þ�u1

Remembering our assumption of infinitesimal strain, we see that �u1 � �X1 and therefore

tanθ � �u2

�X1

Furthermore, for small angles, the tangent of an angle is approximately equal to the angle itself,

measured in radians, so tan θ � θ: Thus,

Figure 8.2 The special case of the

deformation of two vectors that start

out parallel to the axes of the

coordinate system.

Figure 8.1 Simple illustration of a

small extension parallel to one of the

axes of the coordinate system.

136 Infinitesimal strain

θ � �u2

�X1

and, again because of infinitesimal assumption, we can write

θ � �u2

�X1
¼ @u2

@X1
¼ e21

Thus, e21 measures the counterclockwise rotation of the vector PQ from the X1 axis towards the

X2 axis; by the same reasoning, e12 measures the clockwise rotation of PM from the X2 axis

towards the X1 axis.

8.1.3 Non-equivalence of e21 and e12

To further understand the significance of the off-diagonal components, let’s see what happens

to the displacement gradient tensor whenwe have just rotation but no strain (Fig. 8.3). With the

assumption of small rotation angles,

e11 ¼ �u1

�X1
¼ 0 and e21 ¼ �u2

�X1
¼ tan� � �

Likewise, e12 will be approximately equal to �� because it is a rotation of �X1 towards X2

(counterclockwise), whereas we just saw that e21 is a clockwise rotation of�X2 towards X1. So,

for the case of pure rotationwith no strain, the displacement gradient tensor in two dimensions

has the form:

eij ¼
0 ��
� 0

� �

Clearly, e21 does not necessarily equal e12, and therefore the displacement gradient tensor, eij ,

is an asymmetric tensor that represents both strain and rotation.

Figure 8.3 A special case where two originally orthogonal vectors, PQ and PM, are

rotated about the origin by a constant angle, �. The resulting vectors P0Q0 and P0M0 are

still perpendicular to each other but each makes an angle of � with the axes of the

coordinate system, X.

8.1 Smaller is simpler 137

8.1.4 Additive decomposition of the displacement gradient tensor

Any asymmetric tensor can be expressed as the sum of a symmetric tensor and an antisym-

metric tensor, so in the case of the displacement gradient tensor:

eij ¼ εij þωij (8:2)

where

εij ¼
1

2
eij þ eji
� �

and ωij ¼
1

2
eij � eji
� �

You can easily prove to yourself that this is true by substituting:

εij þωij ¼
eij
2

þ eji
2

þ eij
2

� eji
2

� �

¼ eij
2

þ eij
2

� �

¼ eij

We call εij the infinitesimal strain tensor ; it is a symmetric tensor.ωij is the rotation tensor ; it is

an antisymmetric tensor. Whenwe do finite strain, youwill see precisely what assumptions this

entails. We will explore the significance of θ and � in great detail in Chapter 10.

8.2 INFINITESIMAL STRAIN IN THREE DIMENSIONS

Obviously, this discussion carries over to three dimensions. For the strain tensor, we canwrite

εij ¼
1

2
eij þ eji
� �

¼

e11
e12 þ e21ð Þ

2

e13 þ e31ð Þ
2

e21 þ e12ð Þ
2

e22
e23 þ e32ð Þ

2

e31 þ e13ð Þ
2

e32 þ e23ð Þ
2

e33

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

and for the rotation tensor

ωij ¼
1

2
eij � eji
� �

¼

0
e12 � e21ð Þ

2

e13 � e31ð Þ
2

e21 � e12ð Þ
2

0
e23 � e32ð Þ

2

e31 � e13ð Þ
2

e32 � e23ð Þ
2

0

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

When it’s written out in matrix form you can clearly see that εij is symmetric and has six

independent components. ωij is antisymmetric and has only three independent components.

The meanings of the eij terms are as follows:

* e11, e22, and e33 – extensions parallel to the axes of the reference system

* e12 – rotation of a line parallel to the 2 axis towards the 1 axis (about the 3 axis)

* e13 – rotation of a line parallel to the 3 axis towards the 1 axis (about the 2 axis; Fig. 8.4), etc.

8.2.1 Rotation axis from the antisymmetric tensor, ω

Anantisymmetric tensor (e.g.,ωjk , above) is sometimes also known as an axial vector. To get the

Cartesian coordinates, ri , of that vector,

ri ¼ �bijkωjk

2
(8:3)

138 Infinitesimal strain

where bijk is a permutation symbol which is equal to +1 if the suffixes are cyclic (e.g., 1–2–3), –1

if the suffixes are acyclic (e.g., 1–3–2), and 0 if any two suffixes are repeated. The three

components of r, which give the orientation of the rotation axis, are

r1 ¼ � ω23 �ω32ð Þ
2

r2 ¼ � �ω13 þω31ð Þ
2

and r3 ¼ � ω12 �ω21ð Þ
2

(8:4)

The amount of rotation in radians is just the length of the vector, r:

rj j ¼ r ¼
ffi

r21 þ r22 þ r23
p

(8:5)

8.2.2 Homogeneous strain

If the deformation is the same throughout the region, then the displacements are not a function

of position. We can express this condition as:

* eij ’s are all constant, and

* eij 6¼ f ðXiÞ:

From Equation 7.12 we have �ui ¼ eij�Xj ; which in the limit becomes

dui ¼ eijdXj (8:6)

Integrating both sides of Equation 8.6,
ð

dui ¼
ð

eijdXj

ui ¼ ti þ eijXj

(8:7)

where the constant of integration is the displacement of the origin. Note the similarity of this

equation to Equation 7.15 in the previous chapter.

With Equation 8.7, there is a more elegant way to prove that rotation is antisymmetrical. We

set up the problem with the rotation axis at the origin (Fig. 8.5). Because Xi is perpendicular to

ui , their dot product should equal zero: ui � Xi ¼ 0. But,

ui ¼ eijXj

Figure 8.4 The physical significance

of e13.

8.2 Infinitesimal strain in three dimensions 139

so from a simple substitution of the last equation into the previous one,

eijXiXj ¼ 0

The only way that this equation can be correct is if

* eij ¼ 0 when i ¼ j , and

* eij ¼ �eji when i 6¼ j .

Notice that the Equation 8.7,
ui ¼ ti þ eijXj

represents three linear equations. It follows that

* straight lines remain straight, and

* parallel lines remain parallel.

The equation may be further broken down into

ui ¼ ti þ εijXj þωijXj

Thus, in one equation we have the complete expression of deformation as a

translationþ strainþ rotation

Commonly in geology, we can’t measure the translation or the rotation, so we just look at the

displacement of points relative to other points within the same body. For example, we can

measure the aspect ratio of a deformed oolite, but we have no way of knowing how far it moved

or howmuch it rotated (obviously, this is not the case for all features, but it is for amajority). We

write this equation as
�ui ¼ εijXj

8.3 TENSOR SHEAR STRAIN VS. ENGINEERING SHEAR STRAIN

The angular shear, ψ, is the change in angle of two lines that were originally perpendicular to

each other (Fig. 8.6a). The angular shear is related to the shear strain, γ, by

γ ¼ tanψ

Figure 8.5 Illustration of the simple

case of pure rotation of a line about the

origin of the coordinate system with

no strain.

140 Infinitesimal strain

Aswe assumed before, when strains are very small, the tangent of an angle is equal to the angle

itself (in radians) so we can write

γ � ψ

This shear strain is known as the engineering shear strain, whereas the shear strains we derived

above – e12, e21, e23, e32, e13, and e31 – are known as the tensor shear strains. In Figure 8.6b, you

can see that e13 and e31 are both positive, because both of the vectors are positive, even though

the rotations implied by the two are opposite in sign. In Means (1976), you will see the

infinitesimal strain tensor written as

e11 e12 e13
e21 e22 e23
e31 e32 e33

2

4

3

5 ¼

ε11
γ12

2

γ13

2
γ21

2
ε22

γ23

2
γ31

2

γ32

2
ε33

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(8:8)

Means defines the off-diagonal components of the displacement gradient tensor such as e12 by

e12 ¼ 1

2

@u1

@X2
þ @u2

@X1

� �

In this book, we have used the following definitions:

e12 ¼ @u1

@X2
and ε12 ¼ 1

2

@u1

@X2
þ @u2

@X1

� �

By the way, you should note that
ε11 γ12 γ13

γ21 ε22 γ23

γ31 γ32 ε33

0

@

1

A is not a tensor!

8.4 STRAIN INVARIANTS

In Chapter 5, we showed that any tensor quantity has invariants, combinations of the compo-

nents that do not change, regardless of the coordinate system you choose. In the case of strain,

the first invariant,

ε1 þ ε2 þ ε3 ¼ ε11 þ ε22 þ ε33 (8:9)

Figure 8.6 (a) Definition of engineering shear strain as the change in angle of two

initially perpendicular lines. (b) The relationship between the tensor shear strain and

the engineering shear strain.

8.4 Strain invariants 141

is equal to the volume strain or the dilatation. The change in volume is independent of the axes

of the coordinate system.

8.5 STRAIN QUADRIC AND STRAIN ELLIPSOID

Like any other tensor, the strain tensor has a quadric surface whose axes are given by ε�0:5
1 and

ε�0:5
3 ; it is the vertically oriented ellipse (Fig. 8.7). The normal to the quadric surface at the point

where the vectorX intersects it gives the orientation of the displacement of the end of the vector

to its new position. You can see (Fig. 8.7) that the elongation of the vector, ε, is just the

component of u in the X direction. Therefore:

ε ¼ u � X ¼ εijXiXj (8:10)

where the X ’s are the direction cosines of the original unit-length line. Expanding this equation

we get

ε ¼ ε11X1X1 þ ε12X1X2 þ ε13X1X3

þ ε21X2X1 þ ε22X2X2 þ ε23X2X3

þ ε31X3X1 þ ε32X3X2 þ ε33X3X3

Combining terms, we get

ε ¼ ε11X
2
1 þ ε22X

2
2 þ ε33X

2
3 þ X1X2 ε12 þ ε21ð Þ þ X1X3 ε13 þ ε31ð Þ þ X2X3 ε23 þ ε32ð Þ

You can see from Figure 8.7 that

x1 ¼ X1 1þ ε1ð Þ x2 ¼ X2 1þ ε2ð Þ and x3 ¼ X3 1þ ε3ð Þ

Substituting these values into the equation for a sphere

X 2
1 þ X 2

2 þ X 2
3 ¼ 1

Figure 8.7 (a) The infinitesimal strain quadric and strain ellipse. (b) An expanded detail

for the vectors X and u in (a). The normal to the quadric surface gives the orientation of

the vectoru, which indicates the displacement of the end of the vectorX; it does not give

the orientation of the new position of vector x directly.

142 Infinitesimal strain

we get

x2
1

1þ ε1ð Þ2
þ x22

1þ ε2ð Þ2
þ x23

1þ ε3ð Þ2
¼ 1 (8:11a)

This is the equation for the infinitesimal strain ellipse. Using the identities in Equations 7.1, we

can also write the equation for the strain ellipse in terms of the principal stretches:

x21
S2
1

þ x22
S2
2

þ x23
S2
3

¼ 1 (8:11b)

or the principal quadratic elongations:

x21
l1

þ x22
l2

þ x23
l3

¼ 1 (8:11c)

8.6 MOHR CIRCLE FOR INFINITESIMAL STRAIN

As shown in Chapter 5, any tensor transformation can, in two dimensions, be represented

by a Mohr circle construction (Fig. 8.8). For infinitesimal strain, we start with the strain

tensor, εij :

εij ¼
ε1 0 0
0 ε2 0
0 0 ε3

2

4

3

5

add a transformation matrix:

aij ¼
cosθ 0 sinθ
0 1 0

�sinθ 0 cosθ

0

@

1

A

The tensor transformation equation is

ε0ij ¼ aikajlεkl (8:12)

Figure 8.8 The coordinate transformation

to yield the Mohr circle for infinitesimal

strain.

8.6 Mohr circle for infinitesimal strain 143

which gives us the new form of the strain tensor:

ε0ij ¼
ε011 0 ε013
0 ε2 0

ε031 0 ε033

2

4

3

5 ¼
ε1 cos

2θþ ε3 sin
2θ

� �

0 ε3 � ε1ð Þ cosθ sinθð Þ
0 ε2 0

ε1 � ε3ð Þ cosθ sinθð Þ 0 ε1 sin
2θþ ε3 cos

2θ
� �

2

6

6

4

3

7

7

5

(8:13)

Upon rearranging, we get

ε011 ¼ ε1 þ ε3ð Þ
2

þ ε1 � ε3ð Þ
2

cos 2θ

ε013 ¼ γ

2
¼ ε1 � ε3ð Þ

2
sin 2θ

(8:14)

Equations 8.14 give the familiar Mohr circle (Fig. 8.9). Probably the most important thing

illustrated by Figure 8.9 is that the two planes of maximum shear strain are oriented at +45�

and 45� to the principal axes, ε1 and ε3. Turning this around, for infinitesimal strain in a shear

zone, the shortening and extension directions are always at 45� to the shear zone boundary.

This forms the basis for both fault slip and microstructure methods. For example, foliation at

the edge of a mylonite zone, P and T axes of earthquakes, and the new tips of sigmoidal gash

fractures are all oriented at 45� to the shear zone (Fig. 8.10). We will return to this in the

geological problems section.

8.7 EXAMPLE OF CALCULATIONS

Problem

Given the following displacement gradient tensor, calculate εij , ωij , and the magnitudes and

orientations of the principal axes:

eij ¼
10 4 �2
�4 3 0
6 0 4

2

4

3

5

Figure 8.9 The Mohr circle for

infinitesimal strain, showing the

graphical calculation for a rotation

of the coordinate system by the

angle θ.

144 Infinitesimal strain

Solution

The strain and rotation tensors are easy to calculate:

εij ¼
1

2
eij þ eji
� �

¼
10 0 2
0 3 0
2 0 4

2

4

3

5 and ωij ¼
1

2
eij � eji
� �

¼
0 4 �4
�4 0 0
4 0 0

2

4

3

5

There are several ways to calculate the orientations and magnitudes of the principal axes. For

example, we could solve the eigenvalue problem that we discussed when talking about generic

tensors. In this case, however, there is an easier way.

Note the position of the zeros in the strain matrix. They indicate that the second, X2, axis is

already parallel to one of the principal axes. Thus, we can solve this problem graphically, using

the Mohr circle construction (Fig. 8.11). All we need to do is rotate the coordinate system about

the X2 axis.

From the Pythagorean theorem, the radius of the circle is

ffi

ð10� 7Þ2 þ 22

q

¼
ffiffiffiffiffiffi

13
p

, therefore

ε1 ¼ 7þ
ffiffiffiffiffiffi

13
p

ε2 ¼ 7�
ffiffiffiffiffiffi

13
p

and ε3 ¼ 3

Figure 8.11 Mohr circle solution to the

problem described in the text.

Figure 8.10 Three geological situations that illustrate the principle that the maximum

infinitesimal shear strain planes are oriented at 45� to the principal axes of infinitesimal

strain: (a) sigmoidal veins (“tension” gashes), (b) heterogeneous ductile shear zone in

granitoid rocks, and (c) P and T axes of earthquakes.

8.7 Example of calculations 145

Notice that ε1 þ ε2 þ ε3 ¼ ε11 þ ε22 þ ε33 (Eq. 8.9). ωij is an antisymmetric tensor or an axial

vector. The amount of rotation in radians is (Eqs. 8.4 and 8.5)

rj j ¼ r ¼
ffi

02 þ ð�4Þ2 þ ð�4Þ2
� �

r

¼ 5:6568 radians

The MATLAB® function InfStrain, below, computes the strain and rotation tensors, principal

strains, components of rotation, rotation magnitude, and rotation axis orientation from an

input displacement gradient tensor. To solve the example above, just type in MATLAB:

e = [10 4 -2;-4 3 0;6 0 4]; %Displacement gradient tensor

[eps,ome,pstrains,rotc,rot] = InfStrain(e); %Solve for strain

function [eps,ome,pstrains,rotc,rot] = InfStrain(e)

%InfStrain computes infinitesimal strain from an input displacement

%gradient tensor

%

% USE: [eps,ome,pstrains,rotc,rot] = InfStrain(e)

%

% e = 3 x 3 displacement gradient tensor

% eps = 3 x 3 strain tensor

% ome = 3 x 3 rotation tensor

% pstrains = 3 x 3 matrix with magnitude (column 1), trend (column 2) and

% plunge (column 3) of maximum (row 1), intermediate (row 2),

% and minimum (row 3) principal strains

% rotc = 1 x 3 vector with rotation components

% rot = 1 x 3 vector with rotation magnitude and trend and plunge of

% rotation axis

%

% NOTE: Output trends and plunges of principal strains and rotation axes

% are in radians

%

% InfStrain uses function CartToSph and ZeroTwoPi

%Initialize variables

eps = zeros(3,3);

ome = zeros(3,3);

pstrains = zeros(3,3);

rotc = zeros(1,3);

rot = zeros(1,3);

%Compute strain and rotation tensors (Eq. 8.2)

for i = 1:3

for j = 1:3

eps(i,j)= 0.5*(e(i,j)+e(j,i));

ome(i,j)= 0.5*(e(i,j)-e(j,i));

end

end

%Compute principal strains and orientations. Here we use the MATLAB

%function eig. D is a diagonal matrix of eigenvalues (i.e. principal

%strains), and V is a full matrix whose columns are the corresponding

%eigenvectors (i.e. principal strain directions)

146 Infinitesimal strain

[V,D] = eig(eps);

%Maximum principal strain

pstrains(1,1) = D(3,3);

[pstrains(1,2),pstrains(1,3)] = CartToSph(V(1,3),V(2,3),V(3,3));

%Intermediate principal strain

pstrains(2,1) = D(2,2);

[pstrains(2,2),pstrains(2,3)] = CartToSph(V(1,2),V(2,2),V(3,2));

%Minimum principal strain

pstrains(3,1) = D(1,1);

[pstrains(3,2),pstrains(3,3)] = CartToSph(V(1,1),V(2,1),V(3,1));

%Calculate rotation components (Eq. 8.4)

rotc(1)=(ome(2,3)-ome(3,2))*-0.5;

rotc(2)=(-ome(1,3)+ome(3,1))*-0.5;

rotc(3)=(ome(1,2)-ome(2,1))*-0.5;

%Compute rotation magnitude (Eq. 8.5)

rot(1) = sqrt(rotc(1)^2+rotc(2)^2+rotc(3)^2);

%Compute trend and plunge of rotation axis

[rot(2),rot(3)] = CartToSph(rotc(1)/rot(1),rotc(2)/rot(1),rotc(3)/rot(1));

%If plunge is negative

if rot(3) < 0.0

rot(2) = ZeroTwoPi(rot(2)+pi);

rot(3) = -rot(3);

rot(1) = -rot(1);

end

end

8.8 GEOLOGICAL APPLICATIONS OF INFINITESIMAL STRAIN

The applications of infinitesimal strain are virtually unlimited, especially in geophysics where

the changes observed are very small relative to the distances over which they occur. For

example, even a very large earthquake may have less than 10 m of slip on a fault plane whose

dimensions span many tens to hundreds of kilometers.

8.8.1 Fault-slip and earthquake data

Analysis of strain for small faults and earthquakes is essentially the same because both

represent small deformations in large regions. Additionally, both represent essentially plane

strain deformation because there is no change in the direction perpendicular to the slip vector,

�u (Fig. 8.12). Our derivation followsMolnar (1983). Initially, we choose a coordinate system so

that X2 is parallel to the strike of the fault plane and perpendicular to the slickensides on the

fault. Later on, we will show the more general case where neither the slickensides nor the fault

plane are parallel, or orthogonal, to the axes. In this specialized case, θ is the angle between the

fault surface and the vertical axis, that is, 90 – dip of the fault.

Derivation of the displacement gradient tensor

We have already derived the displacement gradient tensor:

�ui ¼ eij�Xj where eij ¼
@ui

@Xj

8.8 Geological applications of infinitesimal strain 147

The components of �u are easily determined from the trigonometry of the block (Fig. 8.13):

�u1 ¼ �u sinθ and �u3 ¼ �u cosθ (8:15)

Likewise, the length in the�X3 is simple because the fault does not cut the top or bottom of the

block (i.e., the sides of the block that are perpendicular to the X3 axis):

�X3 ¼ w ¼ w1 þw2ð Þ ¼ w3 þw4ð Þ (8:16)

Therefore, the extension parallel to the X3 axis, e33, is

e33 ¼ �u3

�X3
¼ �u cosθ

w
(8:17)

k

h

w2

w1

w3

w4
Δu

θ

w = w1 + w2 = w3 + w4

Δu << k, h, w

X1

X2

X3

l

fault
surface

ΔX1

ΔX3

Figure 8.12 Block diagram illustrating the coordinate system used in the calculation of

strain and rotation from earthquakes and/or small faults.

w2

w1

w3

w4

θ

X1

X3

θ

Δu1

Δu3

w2

Figure 8.13 View of the faulted block parallel to the X2 axis edge-on to the fault plane.

Detail at left shows the angular relations of the components of the slip vector.

148 Infinitesimal strain

and the rotation towardsX1 of a line originally parallel toX3, the off-diagonal component e13, is

e13 ¼ �u1

�X3
¼ �u sinθ

w
(8:18)

The calculation�X1 is more complicated because the fault has offset the sides of the block that

are perpendicular to X1. The average displacement of those sides of the block is a function of

the ratio of initial length of the side, w for both left and right sides, to the length of the side in

the hangingwall only (in our footwall fixed reference frame). So the average displacement of the

left side of the block is w1=w and of the right side is w3=w (Fig. 8.14).With this insight, we are

now ready to calculate the e11 component of the displacement gradient tensor:

e11 ¼ change in length

initial length
¼

�u1w3

w
��u1w1

w

� �

k
¼

�u1
w3 �w1

w

� �

k
¼ �u1

kw

w3 �w1ð Þ

� �

From the previous equation, and the relations depicted in Figure 8.15, we can see that

w3 �w1 ¼ �l cos θ

so �X1 is

�X1 ¼ wk

w3 �w1ð Þ ¼
wk

�l cos θ
¼ w l sin θð Þ

�l cos θ
¼ �w sin θ

cos θ

Thus we can write for e11:

e11 ¼ ��u l sinθ cosθ

wk
¼ ��u cosθ

w
(8:19)

Figure 8.15 Relationships between l,

k, and w.

w2

w1

w3

w4

θ

X1

X3

average displacement
of the left side

average displacement
of the right side

()()Δu sinθ = Δu1

w1

w

w1

w

Δu sinθ = Δu1()w3

w ()w3

w

Figure 8.14 Illustration of the average displacements of the sides of the block

perpendicular to X1 as a function of the hanging wall length to the total length.

8.8 Geological applications of infinitesimal strain 149

The rotation towards X3 of a line originally parallel to X1, the off-diagonal component e31, in

terms of the slip is

e31 ¼ �u3

�X1
¼ ��u l cos2 θ

wk
¼ ��u cos2θ

w sin θ
(8:20)

The concept of seismic and geometric moment

We can further simplify the equations that have been derived so far by borrowing a concept

from geophysics. Seismologists commonly use a scalar parameter known as the seismic

moment:

Mo ¼ �A�u (8:21)

where � is the shear modulus, A is the fault surface area, and �u is the average slip. For the

purposes of fault-slip data analysis, we can omit the shear modulus (which has units of stress)

from the above equation because we are only interested in the strain; we are left with the

geometric moment:

Mg ¼ A�u (8:22)

For the faulted block in Figure 8.12, the geometric moment would be

Mg ¼ lh�u (8:23)

We can rearrange and simplify this equation by solving for h:

h ¼ V

kw
¼ V

l sin θð Þw (8:24)

where V is the volume of the region being deformed and the other variables are as shown in

Figure 8.12. Substituting Equation 8.24 into 8.23, the geometric moment can be written

Mg ¼ V�u

w sin θ
(8:25)

Finally, the geometric moment divided by the volume gives us a quantity that shows up

repeatedly in the equations that we derived for the displacement gradient tensor:

Mg

V
¼ �u

w sin θ
(8:26)

Substituting Equation 8.26 into Equations 8.17, 8.18, 8.19, and 8.20, and writing the result out

in matrix format, we get our final expression for the displacement gradient tensor in two

dimensions:

eij ¼
Mg

V
� sin θ cosθ sin2θ

�cos2θ sin θ cos θ

� �

(8:27)

Displacement gradient tensor in terms of fault orientation

Equation 8.27 shows that the displacement gradient tensor is composed of a scalar quantity –

the geometric moment divided by the volume of the region – times a tensor that is composed of

nothing more than trigonometric functions of the fault plane orientation, θ: By exploring this

tensor a bit more, we can easily see how to extend it into three dimensions.

From the geometry in Figure 8.16, you can see that the complete orientation of the fault-slip

system can be defined by two unit vectors, one parallel to the slip direction, û, and the other the

150 Infinitesimal strain

pole, or normal, to the fault plane, n̂. Because these are unit vectors, they can bewritten in terms

of the angles that they make with the coordinate system:

û ¼ sinθ cosθ½ � and n̂ ¼ �cosθ sinθ½ � (8:28)

The dyad product (Eqs. 4.19, 4.20, 5.7) of û and n̂ in two dimensions is

û� n̂ ¼ sinθ
cosθ

� �

� cosθ sinθ½ � ¼ �sinθ cosθ sin2θ
�cos2θ sinθ cosθ

� �

(8:29)

This is clearly the same matrix as in Equation 8.27, so we can now rewrite that expression for

the displacement gradient tensor as

eij ¼
Mg

V

� �

û� n̂ ¼ Mg

V

� �

uinj (8:30)

where ui and nj are the direction cosines of the unit vector parallel to the displacement vector

and the unit normal vector of the upward pointing pole, respectively. Equation 8.30 is general

for any coordinate system, not just the special case that we started out with.

Summing multiple faults, additive decomposition, principal axes

Where the volume of rock has multiple faults (or earthquakes), because we are dealing with

infinitesimal strain, the individual faults and theirmoments can be summed and divided by the

total volume:

eij
� �

total
¼

P

n faults

Mguinj

� �

V
(8:31)

Recall that the displacement gradient tensor, eij , is asymmetric. We can additively decompose it

to yield the symmetric infinitesimal strain tensor and an antisymmetric rotation tensor:

eij ¼ εij þωij ¼
Mg uinj þ ujni

� �

2V
þMg uinj � ujni

� �

2V
(8:32)

Because Mg=2V is a scalar, the orientations of the principal axes of εij are identical to the

principal axes of uinj þ ujni

� �

which, for a single fault, is a function of only the fault plane

and slip system orientation. Those principal axes, which you can calculate either by an eigen-

value problem or more simply with the Mohr circle for infinitesimal strain (Fig. 8.9), lie in the

plane of the pole and the slip vector (known in faulting analysis literature as the movement

plane) at 45� to the pole and the fault plane.

Figure 8.16 Edge-on view of the fault

plane, showing the geometry of the

unit normal and slip vectors.

8.8 Geological applications of infinitesimal strain 151

Earthquake seismologists commonly depict earthquake data as focal mechanism solutions

with P (pressure) and T (tension) axes bisecting the appropriate quadrants (Fig. 8.17). Despite

the stress terminology used to name them, we can see from the above analysis that the P and T

axes are in fact the principal axes of infinitesimal strain (strictly speaking, the eigenvectors that

are unit vectors parallel to the principal axes). Calculating these axes requires knowing nothing

more than the pole to the plane and the slip vector (for which one needs to know both the

direction and the sense of slip).

Some further remarks about fault slip and earthquake analyses

Molnar (1983) referred to the quantity Mguinj in Equation 8.31 as the “asymmetric moment

tensor” to distinguish it from the more familiar seismic moment tensor described by Kostrov

(1974). Kostrov’smoment tensor is symmetric because it was derived specifically for the case of

earthquakes, where one commonly does not know which nodal plane is the true slip surface; it

is identical to the symmetric part of Molnar’s tensor (i.e., εij , the symmetric part of Eq. 8.32).

Jackson and McKenzie (1988) have questioned whether or not it is ever possible to determine

the antisymmetric part of theMolnar’s tensor for either earthquakes or faults. It is a question of

frame of reference. Molnar’s analysis assumes that the reference frame is fixed to the footwall,

but usually in geology we don’t know whether the footwall and fault plane are fixed or whether

both rotate during the deformation, domino style (Fig. 8.18).

Throughout this analysis, we have kept the scalar termsMg=V separate from the orientation

terms uinj for a very practical reason. Particularly for the field structural geologist, the scalar

terms are difficult to determine with any degree of accuracy. In any practical situation, because

of the two-dimensional nature of most outcrops, it is virtually impossible to measure the fault

surface area directly and one has little idea whether the displacement observed in the field is

anything close to the “average” displacement. Likewise, there is quite a lot of ambiguity

surrounding the choice of the volume of a region, even in the case of earthquakes. One can

Figure 8.17 A typical earthquake focal

mechanism solution. The two nodal

planes are potential slip surfaces with

potential slip vectors shown as white

boxes. Note that the slip vector on one

plane is also the pole to the other

plane. The nodal planes define a

tension quadrant in gray bisected by

the T axis and a pressure quadrant in

white bisected by the P axis. The

movement plane is shown as a dashed

line.

152 Infinitesimal strain

estimate these parameters via a variety of fractal scaling relations (e.g., Marrett and

Allmendinger, 1990), but these are also subject to order of magnitude uncertainty.

In contrast, calculation of P and T axes (i.e., infinitesimal strain axes orientations) from the

orientation terms is robust and, assuming good outcrop, relatively free from large uncertainty

(Marrett and Allmendinger, 1990). In the field, the most uncertain measurement is the deter-

mination of sense of slip. The only time a P andT axes analysis is likely to fail is when the largest

fault in the region studied has a particularly different kinematics than the rest of the faults

measured. Being able to calculate the geometric moment for that fault would allow one to

correct for this error.

Finally, in as much as this is a chapter on infinitesimal strain, the importance of

Equation 8.31 should be emphasized: Matrix addition is commutative. That means that with

small faults, we can add them together in whatever order we want. In Chapter 9, we will see that

when faults, and strains, become large we can no longer add the faults together in whatever

order; for large faults, we have to know the order of formation to calculate strain correctly.

The MATLAB function PTAxes, below, computes the P and T axes from the orientation of

several fault planes and their slip vectors. It also plots the solution in an equal area stereonet.

function [P,T] = PTAxes(fault,slip)

%PTAxes computes the P and T axes from the orientation of several fault

%planes and their slip vectors. Results are plotted in an equal area

%stereonet

%

% USE: [P,T] = PTAxes(fault,slip)

%

% fault = nfaults x 2 vector with strikes and dips of faults

% slip = nfaults x 2 vector with trends and plunges of slip vectors

% P = nfaults x 2 vector with trends and plunges of the P axes

Figure 8.18 Ambiguity of the rotation determined from the antisymmetric part of the

displacement gradient tensor in Equation 8.32.

8.8 Geological applications of infinitesimal strain 153

% T = nfaults x 2 vector with trends and plunges of the T axes

%

% NOTE: Input/Output angles are in radians

%

% PTAxes uses functions SphToCart, CartToSph, Stereonet, GreatCircle and

% StCoordLine

%Initialize some vectors

n = zeros(1,3);

u = zeros(1,3);

eps = zeros(3,3);

P = zeros(size(fault,1),2);

T = zeros(size(fault,1),2);

% For all faults

for i = 1:size(fault,1)

% Direction cosines of pole to fault and slip vector

[n(1),n(2),n(3)] = SphToCart(fault(i,1),fault(i,2),1);

[u(1),u(2),u(3)] = SphToCart(slip(i,1),slip(i,2),0);

% Compute u(i)*n(j) + u(j)*n(i) (Eq. 8.32)

for j = 1:3

for k = 1:3

eps(j,k)=(u(j)*n(k)+u(k)*n(j));

end

end

% Compute orientations of principal axes of strain. Here we use the

% MATLAB function eig

[V,D] = eig(eps);

% P orientation [P(i,1),

P(i,2)] = CartToSph(V(1,3),V(2,3),V(3,3));

% T orientation

[T(i,1),T(i,2)] = CartToSph(V(1,1),V(2,1),V(3,1));

end

% Plot stereonet

Stereonet(0,90*pi/180,10*pi/180,1);

hold on;

% Plot other elements

for i = 1:size(fault,1)

% Plot fault

[path] = GreatCircle(fault(i,1),fault(i,2),1);

plot(path(:,1),path(:,2),'r');

% Plot Slip vector (red square)

[xp,yp] = StCoordLine(slip(i,1),slip(i,2),1);

plot(xp,yp,'rs');

% Plot P axis (black, filled circle)

[xp,yp] = StCoordLine(P(i,1),P(i,2),1);

plot(xp,yp,'ko','MarkerFaceColor','k');

154 Infinitesimal strain

% Plot T axis (black circle)

[xp,yp] = StCoordLine(T(i,1),T(i,2),1);

plot(xp,yp,'ko');

end

% Release plot

hold off;

end

8.8.2 Displacement fields and two-dimensional strain from GPS data

Because the changes in distance between GPS stations with time are extremely small (tens of

millimeters) relative to the distance between stations (tens of kilometers), the strainsmeasured

by GPS are truly infinitesimal. The two-dimensional problem is shown in Figure 8.19.

We know how to solve this problem:

ui ¼ ti þ eijXj where
@ui

@Xj
¼ eij (8:33)

and

xi ¼ qi þ FijXj where
@xi
@Xj

¼ Fij

and ti is translation of a point at the origin of the coordinate system. From either of these

equations, you can see that there are six unknowns: the two components of the translation

vector (t1; t2ð Þ), and the four components of the displacement gradient tensor or deformation

gradient tensor (e11, e12, e21, e22 or F11, F12, F21, F22). Each station furnishes two equations.

Therefore one needs a minimum of three non-colinear GPS stations to determine the two-

dimensional strain ellipse. In three dimensions there are twelve unknowns, and each station

furnishes three equations. Therefore one needs a minimum of four non-coplanar stations to

determine the three-dimensional strain ellipsoid.

Figure 8.19 Displacements at three stations. The triangle described by the three

stations prior to the deformation, represented by X, has a circle inscribed in it. Upon

deformation, the three stations are displaced by three non-parallel vectors of unequal

length to their new positions, x. The inscribed circle becomes the strain ellipse.

8.8 Geological applications of infinitesimal strain 155

To solve this system of linear equations using standard linear algebra methods, we need to

recast the equations into three matrices, two of which contain only known quantities and one

that contains just the unknown quantities. The equations below will do the trick in two

dimensions, as you can prove to yourself by a standard matrix multiplication:

1u1

1u2

2u1

2u2

.

.

.

.

.

.

nu1

nu2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

1 0 1X1
1X2 0 0

0 1 0 0 1X1
1X2

1 0 2X1
2X2 0 0

0 1 0 0 2X1
2X2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 nX1
nX2 0 0

0 1 0 0 nX1
nX2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

t1

t2

e11

e12

e21

e22

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

(8:34)

Similarly, we could solve for the deformation gradients rather than the displacement gradients:

1x1
1x2
2x1
2x2

.

.

.

.

.

.

nx1
nx2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

1 0 1X1
1X2 0 0

0 1 0 0 1X1
1X2

1 0 2X1
2X2 0 0

0 1 0 0 2X1
2X2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 0 nX1
nX2 0 0

0 1 0 0 nX1
nX2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

q1

q2

F11

F12

F21

F22

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(8:35)

Of course, we only need to solve one of the above two systems of equations because the

displacement and deformation gradient tensors are simply related by the identity matrix:

e ¼ F� I or eij ¼ Fij � δij

Notice that the above Equations 8.34 and 8.35 are written not for three equations but for n

equations. With more than three equations, the system is over-constrained, that is, there are

more equations than unknowns. In such a case, we can actually use the extra information to

assess the uncertainties in the assumption that strain in the region encompassed by the GPS

stations is homogeneous.

The solution to Equations 8.34 or 8.35 is a classic application of inverse theory (see Menke,

1984). These equations are in the form of Equation 4.29, which is repeated here:

y ¼ Mx (8:36)

To solve for x, we multiply y by the inverse of matrix M, that is, M�1:

x ¼ M�1y (8:37)

In the case of Equations 8.34 and 8.35, the large matrix with six columns and the number of

rows equal to twice the stations used (a minimum of six rows), commonly called the design

matrix, is equivalent toM in Equation 8.36. It is thismatrix that wemust calculate the inverse of

to solve this problem. As described in Chapter 4, determining the inverse of even a 3� 3matrix

is tedious; the minimum size of our design matrix is 6� 6!

156 Infinitesimal strain

For perfectly constrained cases of just three GPS stations, one may use a procedure known

as LU decomposition. For the over-constrained situation, the matrix is no longer square and

cannot be inverted directly but a least squares best fit may be made. We highly recommend

reading the relevant sections in Press et al. (Chapters 2 and 15, Press et al., 1986). Menke (1984)

gives the basic least squares solution to Equation 8.37 as

x ¼ MTM
h i�1

MTy (8:38)

In the context of the GPS problem,M is the largematrix of 1’s, 0’s, and position vectors, X. All of

the displacement vectors are held in y, and the unknowns (t1, t2, e11, e12, e21, e22) are in x. One

could imagine using Equations 8.34 and 8.38 to calculate a single best-fit displacement gradient

tensor to all of the stations in a GPS network, but the likelihood of that producing ameaningful

result is small.

There are several potential strategies for calculating a more insightful result that demon-

strates how the gradients, e, vary across a region. One can, for example, construct a network of

triangles, know as a Delaunay triangulation, from the GPS stations. In this approach, each

triangle provides theminimumnumber of stations necessary to calculate a deformation gradient

in that triangle, but the triangles are all of different shapes and sizes, providing a very irregular

view of the deformation (Fig. 8.20). Alternatively, one can establish a regular grid over a region

and calculate the deformation based on the n stations nearest to a grid node, where n 3. This is

an improvement over the triangles method, but is still subject to artifacts produced by the

irregular spacing of stations in a typical GPS network. It is difficult to know, in these cases,

whether a particular pattern is due to heterogeneous strain or heterogeneous station spacing.

Figure 8.20 Delaunay triangulation of the Antofagasta, Chile, GPS network that was

described in Chapter 7.

8.8 Geological applications of infinitesimal strain 157

A third alternative exists. As before, one establishes a regular grid over the region of

interest, but at each node in the grid, one uses all of the stations in the network, weighting

the contribution of each station according to its distance from the node. Thismethod is called a

weighted least squares approach (Allmendinger et al., 2009;Menke, 1984; Shen et al., 1996). The

basic form of the weighted least squares solution is

x ¼ MTWM
h i�1

MTWy

where W is the diagonalized matrix of weighting values, W , given by

W ¼ exp
�d2

2α2

� �

The parameter d is the distance of any particular station from the grid node andα is a distance

weighting constant that specifies how the effect of a particular station decays with distance. A

larger value of α produces greater smoothing, damping out local variations.

This raises an extremely important question with respect to strain: What is the proper

length scale at which to calculate strain? It may come as a surprise that there is no single

correct answer to this question, especially where strain is heterogeneous and discontinuous as

in any study of strain over large areas at the surface of the Earth (Allmendinger et al., 2009). In

part, the answer to this question, regardless of whether one is interested in infinitesimal strain

(this chapter) or finite strain (the next chapter), depends on the problem in which you are

interested. In a thrust belt (Fig. 8.21), for example, the strain at the scale of the entire belt is

entirely different than the strain within a single bed; there is no one correct strain measure.

Oncewe have found the displacement gradient tensor at a particular point, wemay separate

it into the symmetric infinitesimal strain tensor, εij , and the antisymmetric rotation tensor,ωij ,

by Equation 8.2. The eigenvalues and eigenvectors of the infinitesimal strain tensor will give us

the principal strains and the antisymmetric part will give us the rotation axis from Equation 8.3.

This is quite a lot more than we could learn from the one-dimensional plot alone! Note that the

only part of this problem that relies on infinitesimal strain assumptions is this final additive

decomposition into symmetric and antisymmetric tensors. Everything else could equally well

be carried out for finite strain.

The MATLAB function GridStrain, below, computes the two-dimensional infinitesimal strain

of a displacement network using Delaunay triangulation (k = 0), nearest neighbor (k = 1), or the

distance weighted method (k = 2). After the computation, the function plots the grid colored by

the parameter chosen in variable plotpar. Gridstrain uses the MATLAB built-in function lscov

to solve the simple orweighted least squares problemof Equation 8.38. In away,GridStrain is a

Figure 8.21 Cartoon cross section of a hypothetical thrust belt showing three different,

valid measures of horizontal extension. In this, the extension in hand sample is

completely different than that in a train of fold and that for the entire thrust belt. The

length scale for measuring strain depends on the problem in which one is interested.

158 Infinitesimal strain

miniature version of our Macintosh program SSPX (Cardozo and Allmendinger, 2009). You will

get the chance to try GridStrain in the exercises section.

function [cent,eps,ome,pstrains,rotc] = GridStrain (pos,disp,k,par,plotpar)

%GridStrain computes the infinitesimal strain of a network of stations with

%displacements in x (east) and y (north). Strain in z is assumed to be zero

%

% USE: [cent,eps,ome,pstrains,rotc] = GridStrain(pos,disp,k,par,plotpar)

%

% pos = nstations x 2 matrix with x (east) and y (north) positions

% of stations

% disp = nstations x 2 matrix with x (east) and y (north) displacements

% of stations

% k = Type of computation: Delaunay (k = 0), nearest neighbor (k = 1), or

% distance weighted (k = 2).

% par = Parameters for nearest neighbor or distance weighted computation.

% If Delaunay (k = 0), enter a scalar corresponding to the minimum

% internal angle of a triangle valid for computation.

% If nearest neighbor (k = 1), input a 1 x 3 vector with grid

% spacing, number of nearest neighbors, and maximum distance

% to neighbors.

% If distance weighted (k = 2), input a 1 x 2 vector with grid

% spacing and distance weighting factor alpha

% plotpar = Parameter to color the cells: Maximum elongation

% (plotpar = 0), minimum elongation (plotpar = 1),

% rotation (plotpar = 2), or dilatation (plotpar = 3)

% cent = ncells x 2 matrix with x and y positions of cells centroids

% eps = 3 x 3 x ncells array with strain tensors of the cells

% ome = 3 x 3 x ncells array with rotation tensors of the cells

% pstrains = 3 x 3 x ncells array with magnitude and orientation of

% principal strains of the cells

% rotc = ncells x 3 matrix with rotation components of cells

%

% NOTE: Input/Output angles should be in radians. Output azimuths are

% given with respect to north

% pos, disp, grid spacing, max. distance to neighbors, and alpha

% should be in the same units of length

%

% GridStrain uses function InfStrain

% If Delaunay

if k == 0

% Indexes of triangle vertices: Use MATLAB built-in function delaunay

inds = delaunay(pos(:,1),pos(:,2));

% Number of cells

ncells = size(inds,1);

% number of stations per cell = 3

nstat = 3;

% centers of cells

8.8 Geological applications of infinitesimal strain 159

cent = zeros(ncells,2);

for i = 1:ncells

% Triangle vertices

v1x = pos(inds(i,1),1); v2x = pos(inds (i,2),1); v3x = pos(inds

(i,3),1);

v1y = pos(inds (i,1),2); v2y = pos(inds (i,2),2); v3y = pos(inds

(i,3),2);

% Center of cell

cent(i,1)=(v1x + v2x + v3x)/3.0;

cent(i,2)=(v1y + v2y + v3y)/3.0;

% Triangle internal angles

s1 = sqrt((v3x-v2x)^2 + (v3y-v2y)^2);

s2 = sqrt((v1x-v3x)^2 + (v1y-v3y)^2);

s3 = sqrt((v2x-v1x)^2 + (v2y-v1y)^2);

a1 = acos((v2x-v1x)*(v3x-v1x)/(s3*s2)+(v2y- v1y)*(v3y-v1y)/(s3*s2));

a2 = acos((v3x-v2x)*(v1x-v2x)/(s1*s3)+(v3y- v2y)*(v1y-v2y)/(s1*s3));

a3 = acos((v2x-v3x)*(v1x-v3x)/(s1*s2)+(v2y- v3y)*(v1y-v3y)/(s1*s2));

% If any of the internal angles is less than specified minimum,

% invalidate triangle

if a1 < par || a2 < par || a3 < par

inds(i,:) = zeros(1,3);

end

end

% Else if nearest neighbor or distance weighted

else

% Construct grid

xmin = min(pos(:,1)); xmax = max(pos(:,1));

ymin = min(pos(:,2)); ymax = max(pos(:,2));

cellsx = ceil((xmax-xmin)/par(1));

cellsy = ceil((ymax-ymin)/par(1));

xgrid = xmin:par(1):(xmin+cellsx*par(1));

ygrid = ymin:par(1):(ymin+cellsy*par(1));

[XX,YY] = meshgrid(xgrid,ygrid);

% Number of cells

ncells = cellsx * cellsy;

% Number of stations per cell. If nearest neighbor

if k == 1

nstat = par(2); % Number of nearest neighbors

% If distance weighted

elseif k == 2

nstat = size(pos,1); % All stations

end

% centers of cells

cent = zeros(ncells,2);

count = 1;

for i = 1:cellsy

for j = 1:cellsx

cent(count,1) = (XX(i,j)+XX(i,j+1))/2.0;

160 Infinitesimal strain

cent(count,2) = (YY(i,j)+YY(i+1,j))/2.0;

count = count + 1;

end

end

% Initialize indexes of stations for cells

inds = zeros(ncells,nstat);

% Initialize weight factor matrix for distance weighted method

wv = zeros(ncells,nstat*2);

% For all cells set inds and wv (if distance weighted method)

for i = 1:ncells

% Initialize distances to nearest stations to -1.0

dists = ones(1,nstat)*-1.0;

% For all stations

for j = 1:size(pos,1)

% Distance from center of cell to station

distx = cent(i,1) - pos(j,1);

disty = cent(i,2) - pos(j,2);

dist = sqrt(distx^2+disty^2);

% If nearest neighbor

if k == 1

% If within the specified maximum distance to neighbors

if dist <= par(3)

[mind,mini] = min(dists);

% If number of neighbors are less than maximum

if mind == -1.0

dists(mini) = dist;

inds(i,mini) = j;

% Else if maximum number of neighbors

else

% If current distance is lower than maximum distance

[maxd,maxi] = max(dists);

if dist < maxd

dists(maxi) = dist;

inds(i,maxi) = j;

end

end

end

% If distance weighted

elseif k == 2

inds(i,:) = 1:nstat; % All stations

% weight factor

weight = exp(-dist^2/(2.0*par(2)^2));

wv(i,j*2–1) = weight;

wv(i,j*2) = weight;

end

end

end

end

8.8 Geological applications of infinitesimal strain 161

% Initialize arrays

y = zeros(nstat*2,1);M = zeros(nstat*2,6); e = zeros(3,3);

eps = zeros(3,3,ncells); ome = zeros (3,3,ncells);

pstrains = zeros(3,3,ncells); rotc = zeros(ncells,3);

% For each cell

for i = 1:ncells

% If required minimum number of stations

if min(inds(i,:)) > 0

% Fill displacements column vector y and design matrix M

% Use X1 = North, X2 = East

for j = 1:nstat

y(j*2–1) = disp(inds(i,j),2);

y(j*2) = disp(inds(i,j),1);

M(j*2–1,:) = [1 0 pos(inds(i,j),2) pos (inds(i,j),1) 0 0];

M(j*2,:) = [0 1 0 0 pos(inds(i,j),2) pos (inds(i,j),1)];

end

% Compute x (Eqs. 8.37 and 8.38): Use MATLAB function lscov

% If Delaunay or nearest neighbor

if k == 0 || k == 1

x = lscov(M,y);

% If distance weighted

elseif k == 2

x = lscov(M,y,wv(i,:));

end

% Displacement gradient tensor

for j = 1:2

e(j,1) = x(j*2+1);

e(j,2) = x(j*2+2);

end

% Compute strain

[eps(:,:,i),ome(:,:,i),pstrains(:,:,i),rotc (i,:)] = InfStrain(e);

end

end

% Variable to plot

% If maximum principal strain

if plotpar == 0

vp = pstrains(1,1,:);

cbt = 'e1';

% If minimum principal strain

elseif plotpar == 1

vp = pstrains(3,1,:);

cbt = 'e3';

% If rotation: Since we are assuming plane strain, rotation = rotc(3)

elseif plotpar == 2

vp = rotc(:,3)*180/pi;

cbt = 'rot (deg)';

162 Infinitesimal strain

% If dilatation

elseif plotpar == 3

vp = pstrains(1,1,:)+pstrains(2,1,:)+pstrains (3,1,:);

cbt = 'dilat';

end

% scale variable to plot so that is between 0 and 1

minvp = min(vp); maxvp = max(vp); rangvp = maxvp-minvp;

vps = (vp-minvp)/rangvp;

% colormap

colormap(jet);

% Plot cells

% If Delaunay

if k == 0

for i = 1:ncells

% If required minimum number of stations

if min(inds(i,:)) > 0

xp = [pos(inds(i,1),1);pos(inds (i,2),1);pos(inds(i,3),1)];

yp = [pos(inds(i,1),2);pos(inds (i,2),2);pos(inds(i,3),2)];

patch(xp,yp,vps(i),'EdgeColor','k');

end

end

end

% If nearest neighbor or distance weighted

if k == 1 || k == 2

count = 1;

for i = 1:cellsy

for j = 1:cellsx

% If required minimum number of stations

if min(inds(count,:)) > 0

xp = [XX(i,j) XX(i,j+1) XX(i+1,j+1) XX(i+1,j)];

yp = [YY(i,j) YY(i,j+1) YY(i+1,j+1) YY(i+1,j)];

patch(xp,yp,vps (count),'EdgeColor','k');

end

count = count + 1;

end

end

end

% colorbar

ytick = [0 0.2 0.4 0.6 0.8 1.0];

cb = colorbar('Ytick',ytick,'YTickLabel',{num2str(minvp),...

num2str(minvp+rangvp/5),num2str(minvp +2*rangvp/5),...

num2str(minvp+3*rangvp/5),num2str(minvp +4*rangvp/5),num2str(maxvp)});

set(get(cb,'title'),'String',cbt);

8.8 Geological applications of infinitesimal strain 163

% Axes

axis equal;

xlabel('x'); ylabel('y');

end

8.9 EXERCISES

1. In Section 8.2.2, we asserted that “straight lines remain straight” and “parallel lines remain

parallel” in any homogeneous deformation. Prove this to yourself by straining any two

initially parallel line segments according to Equation 8.7.

2. Prove that Equation 8.7, for the case of a pure rotation of a line, requires that the principal

diagonal of the displacement gradient tensor be all zero and that the off-diagonal elements

above the principal diagonal equal the negative of those below.

3. Write Equation8.29 in termsof the direction cosines of the unit normal and unit displacement

vectors. How would your equation change if you use a north-east-down coordinate system?

4. Fifteenmeasurements of faults and their slickensides are given in the table below. Calculate

the P and T axes of the individual faults and then calculate an unweighted moment tensor

summation. The slickensides, of course, give the slip direction, but youwill have to establish

a sign convention in order to incorporate the sense of slip into the slip vector. Use function

PTAxes or a spreadsheet program to solve this problem.

Fault Plane Slickensides
Sense

Strike Dip Direction Trend Plunge of slip

149.5 47.2 W 164.4 15.4 Left lateral

127.6 60 S 134.6 11.9 Left lateral

189.4 34.6 W 349.6 13.1 Left lateral

328 42.5 E 335.3 6.6 Left lateral

22.9 50.2 E 182 23.2 Thrust

108.8 31.1 S 169.2 27.7 Normal

184.6 39.8 W 317.1 31.6 Thrust

93.7 65 S 269.6 8.8 Right lateral

297.6 64.1 N 300.2 5.4 Right lateral

272.5 34.5 N 284.4 8 Right lateral

151.6 58.1 W 154.9 5.3 Left lateral

302.7 47 N 105.3 17.7 Right lateral

349.4 33.7 E 145.2 15.3 Thrust

90.9 71.1 S 96 14.6 Right lateral

189.7 36.6 W 247.9 32.3 Thrust

5. Using the same GPS data set that you were given for Exercise 1 in Chapter 7, calculate the

Delaunay two-dimensional strain field for the coseismic displacements associated with the

1995M 8.1 Antofagasta earthquake. (a) Plot the horizontal extension magnitudes and

compare them to the answer you obtained using a one-dimensional transect in Chapter 7.

(b) Plot the vertical axis rotations and explain the pattern that you see. (c) Repeat a and b but

this time using the nearest neighbor method. (d) Repeat a and b using the distance weighted

method. It is up to you to decide the parameters of the calculation in a to d. Discuss how

these parameters, and specially α in d, affect your results. Hint: Create a text file with the

east and north coordinates and displacements of the GPS stations. Read these in vectors pos

and disp in MATLAB, and use them in the function GridStrain accordingly.

164 Infinitesimal strain

CHAPTER

NINE

Finite strain

9.1 INTRODUCTION

Because processes in the Earth work very slowly, the assumptions of infinitesimal strain work

very well for deformation that happens on the scale of years to centuries. Thus geophysicists,

who measure “real-time” deformation with seismometers, GPS satellites, and InSAR (interfero-

metric radar), are content to stay in the realm of infinitesimal strain. Structural geologists,

however, deal with deformation that accrues over millions of years or more. The assumptions

of infinitesimal strain are commonly not appropriate for the largemagnitude strains that result

from deformation that accumulates over those long time frames. Thus, this chapter and the

next will explore finite strain. In this chapter, we will look at finite strain simply as the differ-

ence between an initial and a final state; in the next chapter, we will see how strain accrues over

time. Finite strain is considerably messier than infinitesimal strain, but we’ll learn some

interesting things along the way.

When deformations are large, we can no longer assume that the initial and final states are

nearly identical:

dXi 6¼ dxi and
@ui

@Xi
6¼
@ui

@xi

and we have to go back to our four measures of deformation:

Old coordinates New coordinates

Coordinate transformation dxi ¼
@xi
@Xj

dXj ðGreenÞ dXi ¼
@Xi

@xj
dxj ðCauchyÞ

Displacements dui ¼
@ui

@Xj
dXj ðLagrangeÞ dui ¼

@ui

@xj
dxj ðEulerÞ

165

9.2 DERIVATION OF THE LAGRANGIAN STRAIN TENSOR

To derive the basic equations of finite strain, we will return to Figure 7.6, but now with some

minor relabeling (Fig. 9.1). As has been our habit throughout the book, we will do the basic

derivations in two dimensions, which we will then generalize by use of the summation con-

vention. From the diagram, you can see that

dxi ¼ dXi þ dui (9:1)

The Lagrangian displacement gradient tensor, eij , gives us the value of dui:

dui ¼
@ui

@Xj
dXj ¼ eijdXj (9:2)

Combining Equations 9.1 and 9.2, we get an expression for the length of P 0Q 0, dxi :

dxi ¼ dXi þ
@ui

@Xj
dXj ¼ dXi þ eijdXj (9:3)

Now, let’s look at the difference in the squared lengths of the two vectors:

PQj j2 ¼ dXidXi ¼ dX 2
1 þ dX 2

2 and P 0Q 0j j
2
¼ dxidxi ¼ dx2

1 þ dx2
2

Expanding the expression for the deformed length, P 0Q 0j j2, by substituting Equation 9.3 we get

P 0Q 0j j
2
¼ dX1 þ e11dX1 þ e12dX2ð Þ

2
þ dX2 þ e21dX1 þ e22dX2ð Þ

2

With further expansion and rearranging of terms, we get

P 0Q 0j j
2
¼ 1þ 2e11 þ e11

2 þ e21
2

	

dX 2
1 þ 1þ 2e22 þ e22

2 þ e12
2

	

dX 2
2

þ e12 þ e11e12 þ e21 þ e21e22½ �2dX1dX2

Let’s simplify this equation by making the following substitutions:

E11 ¼ e11 þ
1

2
e211 þ e221
� �

E22 ¼ e22 þ
1

2
e222 þ e212
� �

E12 ¼
1

2
e12 þ e21ð Þ þ

1

2
e11e12 þ e21e22ð Þ

Now, we can write the difference in the lengths of the vector before and after deformation as

P 0Q 0j j
2
� PQj j2 ¼ 2 E11dX

2
1 þ E22dX

2
2 þ E12dX1dX2

	

Figure 9.1 Distortion of a vector PQ to P0Q0.

Diagram is the same as Figure 7.6 except

that we now use derivatives rather than

deltas. The axes X and x refer to the initial and

final states, respectively.

166 Finite strain

This equation, in general three-dimensional form using the Einstein summation convention,

can be written

P 0Q 0j j
2
� PQj j2 ¼ 2dXiEijdXj

Eij is the Lagrangian finite strain tensor and it has the general form

Eij ¼
1

2

@ui

@Xj
þ
@uj

@Xi
þ
@uk

@Xi

@uk

@Xj

� �

¼
1

2
eij þ eji þ ekiekj
	

(9:4)

where eij is the Lagrangian displacement gradient tensor that we first defined in Chapter 7. In

infinitesimal strain, we assume that the last term in the equation is small enough to neglect:

@uk

@Xi

@uk

@Xj
¼ ekiekj ¼ 0

and we are left with

εij ¼
1

2
eij þ eji
� �

¼
1

2

@ui

@Xj
þ
@uj

@Xi

� �

By way of example, the following shows you how to expand the Lagrangian strain tensor for

i; j ¼ 1;1 and for i; j ¼ 1;3:

E11 ¼
@u1

@X1
þ
1

2

@u1

@X1

� �2

þ
@u2

@X1

� �2

þ
@u3

@X1

� �2
" #

and

E13 ¼
1

2

@u1

@X3
þ
@u3

@X1

� �

þ
1

2

@2u1

@X1@X3
þ

@2u2

@X1@X3
þ

@2u3

@X1@X3

� �

9.3 EULERIAN FINITE STRAIN TENSOR

If wewish to reference our analysis of the deformation to the present deformed state, thenwe’ll

use the Eulerian finite strain tensor. Its form is quite similar to that just presented andwe do not

go through the derivation:

�Eij ¼
1

2

@ui

@xj
þ
@uj

@xi
�
@uk

@xi

@uk

@xj

� �

(9:5)

Notice the difference in the sign of the last term in Equations 9.4 and 9.5. Basically, you can see

that, when we go from infinitesimal to finite strain, we are going from linear partial differential

equations to non-linear partial differentials.

9.4 DERIVATION OF THE GREEN DEFORMATION TENSOR

In this case, we are just interested in finding the new squared length of the vector, P 0Q 0j j2, in

terms of the old length and the orientation of the vector. As before,

P 0Q 0j j
2
¼ dxi dxi ¼ dx2

1 þ dx23 and dxi ¼
@xi
@Xj

dXj ¼ Fij dXj

Substituting and expanding, we get

P 0Q 0j j
2
¼ F11 dX1 þ F12 dX2ð Þ

2
þ F21 dX1 þ F22 dX2ð Þ

2

9.4 Derivation of the Green deformation tensor 167

Expanding as before:

P 0Q 0j j
2
¼ F11

2 þ F21
2

h i

dX 2
1 þ F22

2 þ F12
2

h i

dX 2
3 þ F11F12 þ F21F22½ �2dX1dX3

We can write this in simplified terms (and in three dimensions) as

P 0Q 0j j
2
¼ dXi Cij dXj

This is the same equation as Equation 22.4 in Means (1976).Cij is theGreen deformation tensor,

and it has the form

Cij ¼
@xk
@Xi

@xk
@Xj

¼ FkiFkj (9:6)

Without derivation (which is very similar to what we have just suffered through), the Cauchy

deformation tensor is

PQj j2 ¼ dxi �Cijdx j where �Cij ¼
@Xk

@xi

@Xk

@xj
(9:7)

9.5 RELATIONS BETWEEN THE FINITE STRAIN AND DEFORMATION TENSORS

From the previous derivations, we have

P 0Q 0j j
2
� PQj j2 ¼ 2dXi Eij dXj and P 0Q 0j j

2
¼ dXiCijdXj

Therefore,

PQj j2 ¼ dXi dXi ¼ dXi Cij dXj � 2dXi Eij dXj

We can simplify this further using the substitution property of the Kronecker delta:

dXi ¼ δij dXj

So,

dXi δij dXj ¼ Cij � 2Eij

� �

dXi dXj

The dX ’s cancel out and we have

Eij ¼
1

2
Cij � δij

� �

and Cij ¼ 2Eij þ δij (9:8)

Likewise, we can write the relationship between the two tensors referred to the final state:

�Eij ¼
1

2
δij � �C ij

� �

(9:9)

Thus, the strain tensors do not contain anymore information than the deformation tensors and

vice versa. If you carefully inspect all of these equations, youwill see that they are all symmetric

tensors. Thus, these tensors can all be represented by Mohr circles, they all have invariants,

principal axes, etc.

From the above two equations, it is clear that:

* Eij and Cij have the same principal axes, and

* �Eij and �Cij have the same principal axes.

This is because, if the off-diagonal elements of one tensor are zero, the off-diagonal elements of

the other have to be zero. Note, however, that Eij and �Eij donot have the sameprincipal axes. The

difference in orientation of the principal axes between the initial and final state, as we will see,

is defined as the rotation tensor, R.

168 Finite strain

9.6 RELATIONS TO THE DEFORMATION GRADIENT, F

Recall that the deformation gradient, F, is

dx ¼ F �dX or dxi ¼ Fij dXj where Fij ¼
@xi
@Xj

: (9:10)

We can also write

dx ¼ dX � FT or dxi ¼ dXjFji where Fji ¼
@xj
@Xi

(9:11)

The dot, �, in the above equations represents Gibbs dyadic notation, which is different than

standard matrix multiplication. Recall that the tensor, or dyad, product of two vectors results

when youmultiply a row vector times a column vector. In terms of matrix multiplication, while

Equation 9.10 is equivalent to multiplying a 3� 3 matrix times a 3� 1 column vector,

Equation 9.11 represents multiplying a 1� 3 row vector times a 3� 3 matrix. In the above

case, we can expand 9.10 as

x1
x2
x3

2

4

3

5 ¼
F11 F12 F13
F21 F22 F23
F31 F32 F33

2

4

3

5

X1

X2

X3

2

4

3

5 or

x1 ¼ F11X1 þ F12X2 þ F13X3

x2 ¼ F21X1 þ F22X2 þ F23X3

x3 ¼ F31X1 þ F32X2 þ F33X3

Likewise, 9.11 is expanded as

x1 x2 x3½ � ¼ X1 X2 X3½ �
F11 F21 F31
F12 F22 F32
F13 F23 F33

2

4

3

5

or

x1 ¼ X1F11 þ X2F12 þ X3F13

x2 ¼ X1F21 þ X2F22 þ X3F23

x3 ¼ X1F31 þ X2F32 þ X3F33

Clearly the two are the same.

We have just seen that

P 0Q 0j j
2
¼ dsð Þ

2
¼ dxdx ¼ dX � FT

� �

F � dXð Þ ¼ dX F
T� F

� �

dX

So

C ¼ F
T� F or Cij ¼

@xk
@Xi

@xk
@Xj

(9:12)

And without proof,

�C ¼ B
�1 ¼ F

�1
� �T

� F�1 or �Ckm ¼
@Xj

@xk

@Xj

@xm

B is yet another finite strain tensor called either the left Cauchy–Green tensor or Finger’s tensor.

By substituting into Equations 9.8 and 9.9, we can also derive:

E ¼
1

2
F
T� F� 1

� �

and

�E ¼
1

2
1� F

�1
� �T

� F�1

� �

9.6 Relations to the deformation gradient, F 169

9.7 PRACTICAL MEASURES OF STRAIN

9.7.1 Stretch and quadratic elongation

Now, wewant to relate our tensor description of finite strain to thewell-known scalarmeasures

such as the stretch, elongation, quadratic elongation, and angular shear. Let

dS ¼ PQ
�!

 and ds ¼ P 0Q 0

���!

where dS and ds represent the scalar magnitudes of the lines in the undeformed and deformed

states, respectively. The square of the stretch, then, is just

S2 ¼
dsð Þ

2

dSð Þ2
¼

dXi

dS
Cij

dXj

dS
¼ l

where l is the quadratic elongation. Expanding this equation, we get

S2 ¼
dX1

dS
C11

dX1

dS
þ
dX1

dS
C12

dX2

dS
þ
dX1

dS
C13

dX3

dS

þ
dX2

dS
C21

dX1

dS
þ
dX2

dS
C22

dX2

dS
þ
dX2

dS
C23

dX3

dS

þ
dX3

dS
C31

dX1

dS
þ
dX3

dS
C32

dX2

dS
þ
dX3

dS
C33

dX3

dS

(9:13)

For a vector parallel to the X1 axis,

dX1 ¼ 1; 0; 0ð Þ) dX1 ¼ dS dX2 ¼ 0 and dX3 ¼ 0

By substituting these values into the previous equation, 9.13, you can see that, if l is parallel to a

coordinate axis (the X1 axis in this case), then

lð1Þ ¼ C11 ¼ 1þ 2E11 (9:14)

Without going into the expansion, you can see that the same expressionwith respect to the final

state is

1

S2
¼

1

l
¼

dxi
ds

�Cij
dxj
ds

(9:15)

and the stretch parallel to the x1 axis is

1

S2
1ð Þ

¼
1

l 1ð Þ
¼ �C11 ¼ 1� 2�E11 (9:16)

9.7.2 Elongation

The elongation, e, is just the stretch minus 1. So,

e ¼
ds � dS

ds
¼

dXi

dS
Cij

dXj

dS

� �1
2

� 1 (9:17)

and for an element parallel to the X1 axis:

E 1ð Þ ¼
ffiffiffiffiffiffiffiffi

C11

p

� 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E11
p

� 1

170 Finite strain

Rearranging this last equation, we get

E11 ¼ E 1ð Þ þ
1

2
E2

1ð Þ

In infinitesimal strain, we ignore the final, quadratic term of this equation.

9.7.3 Volume ratio

You can calculate the volume ratio as follows:

dv

dV
¼ S1S2S3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1C2C3

p

¼
ffi

1þ 2E1ð Þ 1þ 2E2ð Þ 1þ 2E3ð Þ
p

¼
ffiffiffiffiffiffiffiffi

IIIC
p

(9:18)

Where S1, S2, and S3 are the principal stretches, and IIIC is the third invariant of tensor Cij .

9.7.4 Angle between two lines

In structural geology, the shear strain is defined as the tangent of the change in angle of two

originally perpendicular lines (e.g., Fig. 8.6a). The key to solving this problem is to remember

that the dot product of two vectors is related to the angle between them:

cosθ ¼
uivj
uj j vj j

This problem is easier to do in matrix notation. First, we define the deformation gradient, F, as

in Equation 9.10:

dx ¼ F �dX ¼ dX �FT where F ¼ Fij ¼
@xi
@Xj

dsð Þ2 ¼ dxdx ¼ dX � FT� F �dX ¼ dX � C � dX where C ¼ F
T� F

cosθf ¼
dxð1Þ � dxð2Þ

dxð1Þ

 dxð2Þ

¼

dXð1Þ� FT
� �

F � dXð2Þ

� �

dXð1ÞCdXð1Þ

� �1
2 dXð2ÞCdXð2Þ

� �1
2

where θf is the angle between the two lines in the final state. If the lines were unit vectors in the

material state, then

cosθf ¼
dX̂ 1ð Þ � C � dX̂ 2ð Þ

S 1ð ÞS 2ð Þ
¼

dX 1ð Þi
Cij dX 2ð Þj

S 1ð ÞS 2ð Þ

Expanding this last equation:

cosθf ¼
1

S 1ð ÞS 2ð Þ

dX 1ð Þ1
C11 dX 2ð Þ1

þ dX 1ð Þ1
C12 dX 2ð Þ2

þ dX 1ð Þ1
C13 dX 2ð Þ3

þdX 1ð Þ2
C21 dX 2ð Þ1

þ dX 1ð Þ2
C22 dX 2ð Þ2

þ dX 1ð Þ2
C23 dX 2ð Þ3

þdX 1ð Þ3
C31 dX 2ð Þ1

þ dX 1ð Þ3
C32 dX 2ð Þ2

þ dX 1ð Þ3
C33 dX 2ð Þ3

8

>
>
<

>
>
:

9

>
>
=

>
>
;

The angle of the line in the initial state, θi , is just

cosθi ¼ dX̂ 1ð Þ � dX̂ 2ð Þ ¼ dX 1ð Þ1
dX 2ð Þ1

þ dX 1ð Þ2
dX 2ð Þ2

þ dX 1ð Þ3
dX 2ð Þ3

n o

To take a simple case, let’s look at the change in the angle of two initially perpendicular lines

that start out parallel to the X1 and X2 axes:

dX̂ 1ð Þ ¼ 1; 0; 0ð Þ and dX̂ 2ð Þ ¼ 0; 1; 0ð Þ

The initial angle between them is 908, so

cosθi ¼ cos90 ¼ 0

9.7 Practical measures of strain 171

The final angle is

cosθf ¼
C12

S 1ð ÞS 2ð Þ
¼

C12

C11C22ð Þ
1
2

¼
2E12

1þ 2E11ð Þ 1þ 2E22ð Þ½ �
1
2

(9:19)

The MATLAB® function FinStrain, below, summarizes all the finite strain concepts we have

discussed so far. FinStrain computes the Lagrangian (frame = 0) or Eulerian (frame = 1) strain

tensor from an input Lagrangian or Eulerian displacement gradient tensor. Besides this, the

function returns practical measures of strain such as principal elongations, dilatation, and

magnitude and orientation of maximum shear strain.

function [eps,pstrains,dilat,maxsh] = FinStrain(e,frame)

%FinStrain computes finite strain from an input displacement

%gradient tensor

%

% [eps,pstrains,dilat,maxsh] = FinStrain(e,frame)

%

% e = 3 x 3 Lagrangian or Eulerian displacement gradient tensor

% frame = Reference frame. Enter 0 for undeformed (Lagrangian) state, or

% 1 for deformed (Eulerian) state

% eps = 3 x 3 Lagrangian or Eulerian strain tensor

% pstrains = 3 x 3 matrix with magnitude (column 1), trend (column 2) and

% plunge (column 3) of maximum (row 1), intermediate (row 2),

% and minimum (row 3) elongations

% dilat = dilatation

% maxsh = 1 x 2 vector with max. shear strain and orientation with

% respect to maximum principal strain direction. Only valid in 2D

%

% NOTE: Output angles are in radians

%

% FinStrain uses function CartToSph

%Initialize variables

eps = zeros(3,3);

pstrains = zeros(3,3);

maxsh = zeros(1,2);

%Compute strain tensor (Eqs. 9.4 and 9.5)

for i=1:3

for j=1:3

eps(i,j)=0.5*(e(i,j)+e(j,i));

for k=1:3

%If undeformed reference frame: Lagrangian strain tensor

if frame == 0

eps(i,j) = eps(i,j) + 0.5*(e(k,i)*e (k,j));

%If deformed reference frame: Eulerian strain tensor

elseif frame == 1

eps(i,j) = eps(i,j) - 0.5*(e(k,i)*e (k,j));

end

end

end

end

172 Finite strain

%Compute principal elongations and orientations. Here we use the MATLAB

%function eig

[V,D] = eig(eps);

%Principal elongations

for i=1:3

ind = 4-i;

%Magnitude

%If undeformed reference frame: Lagrangian strain tensor (Eq. 9.14)

if frame == 0

pstrains(i,1) = sqrt(1.0+2.0*D(ind,ind))-1.0;

%If deformed reference frame: Eulerian strain tensor (Eq. 9.16)

elseif frame == 1

pstrains(i,1) = sqrt(1.0/(1.0–2.0*D(ind, ind)))-1.0;

end

%Orientations

[pstrains(i,2),pstrains(i,3)] = CartToSph(V(1, ind),V(2,ind),V(3,ind));

end

%dilatation (Eq. 9.18)

dilat = (1.0+pstrains(1,1))*(1.0+pstrains(2,1))*(1.0+pstrains(3,1)) - 1.0;

%Maximum shear strain: This only works if plane strain

lmax = (1.0+pstrains(1,1))^2; %Maximum quadratic elongation

lmin = (1.0+pstrains(3,1))^2; %Minimum quadratic elongation

%Maximum shear strain: Ragan (1967) Eq. 3.46

maxsh(1,1) = (lmax-lmin)/(2.0*sqrt(lmax*lmin));

%Angle of maximum shear strain with respect to maximum principal strain

%Ragan (1967) Eq. 3.45

%If undeformed reference frame

if frame == 0

maxsh(1,2) = pi/4.0;

%If deformed reference frame

elseif frame == 1

maxsh(1,2) = atan(sqrt(lmin/lmax));

end

end

9.8 THE ROTATION AND STRETCH TENSORS

With finite strain, we can no longer decompose the displacement gradient into the sum of a

symmetric strain tensor and an antisymmetric rotation tensor aswe did for infinitesimal strain.

But, you can have a multiplicative (or polar) decomposition of the deformation gradient, F, into

the product of two tensors:

F ¼ R � U ¼ V � R (9:20)

dx ¼ R � Uð Þ � dX ¼ V � Rð Þ � dX (9:21a)

9.8 The rotation and stretch tensors 173

In summation notation:

dxi ¼ RikUkj dXj ¼ VikRkj dXj (9:21b)

R is the orthogonal rotation tensor that defines the rotation of the principal axes. Basically, R

rotates the principal axes ofC in the initial state (X) into the principal axes of �C or B�1 in the final

state (x). U is known as the right stretch tensor and V is called the left stretch tensor; both are

symmetric tensors.As it turns out, they are rather simply related to theGreendeformation tensor:

U ¼ C
1
2 ¼ F

T� F
� �1

2
and V ¼ C

�1
� �1

2
¼ F � FT

� �1
2

(9:22)

The rotation tensor, R, gives the difference between the initial and final orientations of the

principal axes, as shown in Figure 9.2. N̂1 N̂2 N̂3 are the eigenvectors of the principal axes in

the initial state and n1 n2 n3 the eigenvectors of the principal axes in the deformed or the

final state. Thus, we can write

n̂ α ¼ R � N̂α or nαi ¼ RijNαj (9:23a)

whereα is the index of the principal axis, not a summation counter like i and j . Or if we know n

and N, we can calculate R:

Rij ¼ nαiNαj (9:23b)

This may look, superficially at least, like a rotation of axes or a tensor transformation but it is

not. Our reference axes, which are not shown in the above diagram, do not change. In general,

neither the initial nor the final orientations of the principal axes will be parallel to the axes of

the coordinate system. Nonetheless, the rotation tensor, R, is an orthogonal matrix like the

transformation matrix, a, that we saw earlier and it works in much the same way. The nine

components of R are the direction cosines of the angles between the axes N̂α and n̂ α.

In infinitesimal strain, the order in which the rotation and the strain occur does not matter,

so we can write

eij ¼ εij þωij ¼ ωij þ εij

Figure 9.2 The rotation tensor, Rij , that relates

the eigenvectors of the principal axes of the

finite deformation tensor (or the strain tensor)

in the deformed state, n̂1, n̂2, and n̂3, to those

of the equivalent deformation (or strain)

tensor in the undeformed state, N̂1, N̂2, and

N̂3. The components of Rij are the direction

cosines of the nine angles between new and

old eigenvectors. Note that neither n nor N

represent a coordinate system.

174 Finite strain

In finite strain, the order is important. As described by Malvern (1969), the same final defor-

mation can be represented by (Fig. 9.3):

1. a stretch defined by U,

2. a rigid body rotation, R, and

3. a translation.

or,

1. a translation,

2. a rigid body rotation, R, and

3. a stretch defined by V.

The left stretch tensor, V, defines the strain of the deformed region in the deformed state

and is most commonly preferred for geological analysis. Because U describes the strain in a

state that the geologist never sees (i.e., the initial state), it is not particularly useful (as we will

see below for the Mohr circle for finite strain in the deformed state).

Figure 9.3 Comparison of the polar decomposition (left two columns) and additive

decomposition (right column) of the deformation gradient tensor, F. Because F is the

same for all three cases, both the initial and final for those cases must also be the same;

only themiddle state, 2, differs. I is the identitymatrix, which represents the initial state;

V is the left stretch tensor; U is the right stretch tensor. In the additive decomposition

case, note 10% dilation of circle in intermediate state. Figure ismodified fromCladouhos

and Allmendinger (1993).

9.8 The rotation and stretch tensors 175

9.9 MULTIPLE DEFORMATIONS

In infinitesimal strain, we saw that the displacement gradient tensor, e, of each increment of

deformation – due to superposed deformations such as movement of several faults – could be

added together to provide a picture of the total strain:

total
e ¼

X
n
e ¼ 1

eþ 2
eþ � � � þn

e (9:24)

This is no longer true for the case of finite strain. As before, we start with the deformation

gradient tensor, F. We start with the first deformation, indicated by the leading superscript 1:

1dx ¼ 1
F �dX

If we now superimpose a second deformation (2F), the deformed state for the first deformation

(1F) becomes the starting state for the second deformation. That is,

2dX ¼ 1dx ¼ 1
F �dX

and now

2dx ¼ 2
F � 2dX ¼ 2

F � 1
F � dX

� �

¼ 2
F � 1

F � dX (9:25)

We can compare this to the infinitesimal strain formulation in Equation 9.24 by recalling the

relation between the displacement and deformation gradient tensors:

e 	 F� I ¼ Fij � δij

Writing the above equation in terms of e:

2
F � 1

F ¼ 2
eþ I

� �
1
eþ I

� �

¼ 1
eþ2

eþ2
e � 1

eþ I (9:26)

You can see that this is equivalent to the summation of the displacement gradient tensors

except for the higher order term,2e�1e. Because matrix multiplication is non-commutative, in

general 2e�1e 6¼ 1e�2e. Therefore, for finite strains you must know the order in which the defor-

mations occur. We will make extensive use of equations like 9.26 in the next chapter. If you are

applying finite strain to the analysis of fault data (either a measured fault population or faults

in a thrust belt), you must know the order in which every single fault formed (Cladouhos and

Allmendinger, 1993). Although this is feasible for larger faults in a thrust belt, it is virtually

impossible for fault slip data.

9.10 MOHR CIRCLE FOR FINITE STRAIN

Because wemost often want to use theMohr circle to learn about the deformed state (that is, we

usually want to determine the orientation of the principal axes when we know how three

randomly orientated lines have been deformed, etc.), we’ll use one of the tensors referred to

the spatial coordinates (i.e., the present-day coordinates). The one most commonly used is the

Cauchy deformation tensor:

�Cij ¼

�C1 0 0
0 �C2 0
0 0 �C3

2

4

3

5 and the transformation matrix aij ¼
cosθ 0 sinθ
0 1 0

� sinθ 0 cosθ

0

@

1

A:

The tensor transformation equation is

�C 0
ij ¼ aikajl

�Ckl (9:27)

176 Finite strain

so

�C 0
ij ¼

�C
0

11 0 �C
0

13

0 �C2 0
�C
0

31 0 �C
0

33

2

4

3

5 ¼

�C1cos
2θþ �C3sin

2θ
� �

0 �C3 � �C1

� �

cosθ sinθ
� �

0 �C2 0
�C1 � �C3

� �

cosθ sinθ
� �

0 �C1 sin
2 θþ �C3 cos

2 θ
� �

2

6
6
4

3

7
7
5

From this we get the familiar equations for the Mohr circle (Fig. 9.4):

�C 0
11 ¼

�C1 þ �C3

� �

2
þ

�C1 � �C3

� �

2
cos2θ and �C 0

13 ¼
�C1 � �C3

� �

2
sin 2θ (9:28)

Remember that we derived an equation for the stretch of lines in the final reference state:

1

S2
ð1Þ

¼
1

lð1Þ
¼

dxi
ds

�Cij
dxj
ds

and, when a line is parallel to the x1 axis of the coordinate system:

1

S2
ð1Þ

¼
1

lð1Þ
¼ �C11

So, substituting in the above equation and using the reciprocal quadratic elongation l
0 ¼ 1=lð Þ,

we get

l
0 ¼

l
0
1 þ l

0
3ð Þ

2
þ

l
0
1 � l

0
3ð Þ

2
cos2θ (9:29a)

Many of you will recognize Equation 9.29a as one of the two equations for the Mohr circle for

finite strain (referred to the deformed state). The other equation is

γ0 ¼
γ

l
¼

l
0
1 � l

0
3ð Þ

2
sin2θ: (9:29b)

Thus, you can see that the component �Cij (where i 6¼ j) of the Cauchy deformation tensor is

equal to γ=l.

There is one particularly useful property of the Mohr circle for strain that is well worth a

mention here: the concept of the pole to the Mohr circle. Mohr circle constructions can be

confusing to first time users because it is difficult to relate physical orientation to the points

on the circle. The Mohr diagram for finite strain (Fig. 9.5) contains a unique point on the Mohr

circle (P) such that all lines that connect P to points on the circle are parallel to the orientation of

longitudinal strain represented by those lines in the physical plane (Allison, 1984; Cutler and

Figure 9.4 Mohr circle for finite strain

in the deformed state

9.10 Mohr circle for finite strain 177

Elliott, 1983; Ragan, 2009). This ismore easily visualizedwith an illustration. Figure 9.5a shows

two crinoid stems – one perpendicular to the section (the ellipse) that gives the orientation and

ratios of the principal stretches and a second parallel to the cross section that gives a longi-

tudinal stretch of 1.12 in an orientation that is 258 from the orientation of maximum stretch

(point A). A Mohr circle (Fig. 9.5b) is constructed based on the ratios of the principal stretches.

Lines from the points representing the principal strains and parallel to the principal strain

orientations (major and minor axes of the elliptical crinoid section) are traced. These lines

intersect at point P, which is the pole of theMohr circle (Fig. 9.5b). Frompoint P, a line parallel to

the crinoid stem in the plane of the section is drawn so that it intersects the circle at point A.

This point represents the state of strain of the crinoid stem. All lines that contain P intersect the

circle at the longitudinal (l0) and shear over longitudinal γ=lð Þ strain values of those lines in the

physical plane.

As we discussed in Chapter 6, the pole to the Mohr circle can also be used to describe the

relationship between the Mohr diagram for stress and the planes on which tractions act in the

physical plane (Mandl and Shippam, 1981). In fact, there is a pole for a Mohr circle construction

of any second rank tensor, and the properties of the pole are invaluable for quickly relating

points on the Mohr circle to the orientations of those attributes in the physical plane.

9.11 COMPATIBILITY EQUATIONS

The equations, such as the infinitesimal strain tensor,

εij ¼
1

2

@ui

@Xj
þ
@uj

@Xi

� �

(9:30)

that we have developed in our understanding of strain work very well when we know the

displacements and we want to calculate strain. Any set of displacements, ui , that you choose

will result in strain. However, the reverse is not so easy: How dowe know if any particular strain

Figure 9.5 Illustration of the pole to the Mohr circle for the case of finite strain in the

deformed state. (a) Cross section (left) and longitudinal section (right) of deformed

crinoid stems that lie in a plane perpendicular to �C2. (b) Mohr circle for finite strain.

P is the pole to theMohr circle; lines from the pole to the principal axes are parallel to the

principal axes’ orientation in physical space.

178 Finite strain

we specify is the plausible result of a real set of displacements? The expression for the

infinitesimal strain tensor, above, represents six partial differential equations, but there are

only three ui . So, you could easily specify εij such that there are no real values of ui that would

satisfy all six equations.

In structural geology, we are introduced qualitatively to the idea of strain compatibility: All

the pieces must fit together without any gaps or overlaps (Fig. 9.6). The deformation in

Figure 9.6d is not compatible because a gap has opened up between the two top blocks.

Mathematically, we need to find some condition such that Equation 9.30 can be integrated

and there exist a continuous, single valued set of displacements across the volume (in three

dimensions). Such conditions are known as Saint-Venant’s compatibility equations.

Note that we are only dealing with the symmetric part of the displacement gradient tensor

here because rigid body translations and rotations do not affect compatibility. Also, although

we show the equations for infinitesimal strain, compatibility also applies to finite strain. To see

how the compatibility equations are derived, see Malvern (1969, p. 185) or any other good

continuum mechanics textbook. All six equations are repeated here:

�S33 	
@2ε11

@X 2
2

þ
@2ε22

@X 2
1

� 2
@2ε12
@X1@X2

¼ 0 (9:31a)

�S11 	
@2ε22

@X 2
3

þ
@2ε33

@X 2
2

� 2
@2ε23
@X2@X3

¼ 0 (9:31b)

�S22 	
@2ε33

@X 2
1

þ
@2ε11

@X 2
3

� 2
@2ε31
@X3@X1

¼ 0 (9:31c)

�S23 	 �
@2ε11
@X2@X3

þ
@

@X1
�
@ε23
@X1

þ
@ε31
@X2

þ
@ε12
@X3

� �

¼ 0 (9:31d)

� S31 	 �
@2ε22
@X3@X1

þ
@

@X2

@ε23
@X1

�
@ε31
@X2

þ
@ε12
@X3

� �

¼ 0 (9:31e)

� S12 	 �
@2ε33
@X1@X2

þ
@

@X3

@ε23
@X1

þ
@ε31
@X2

�
@ε12
@X3

� �

¼ 0 (9:31f)

If you are only dealing with horizontal, two-dimensional or plane strain note that only

Equation 9.31a does not have a term related to the X3 axis on the right-hand side. This is the

equation that you would use, then, to make the horizontal strains compatible.

When might you need to use these equations? The answer is pretty much whenever you are

combining strain data from a variety of different sources. A prominent example would be the

world strain map (Kreemer et al., 2003) which integrates deformation from GPS, earthquake

Figure 9.6 Illustration of different types

of finite strain. (a) Initial geometry;

(b) homogeneous, continuous defor-

mation; (c) heterogeneous, continuous

deformation; and (d) heterogeneous,

discontinuous deformation caused by

lack of strain compatibility which has

produced the gap between the upper

two blocks.

9.11 Compatibility equations 179

focal mechanisms, Quaternary fault slip rates, and other sources to produce smoothed strain

maps throughout the globe. Holt et al. (Holt et al., 2000) describe how they incorporate Saint-

Venant’s equations in their calculations. We will return to the concept of strain compatibility in

Chapter 11, where we use kinematic models to approach fault related folding.

9.12 EXERCISES

1. Two brachiopods on a bedding plane (Fig. 9.7) have experienced an angular shear (ψ) that has

distorted the bilateral symmetry typical of undeformed specimens so that the hinge line is

no longer parallel to the median line. Two others are perpendicular. (a) What is the ratio of

maximum to minimum stretch in the bedding plane? (b) What is the area change in the

bedding plane if the long axis of the lower brachiopod is a line of no finite elongation?

2. Figure 9.8 shows a bed of sandstonewith a clastic dike that has propagated into the adjacent

shale. Assume that the clastic dikewas originally perpendicular to bedding and the cleavage,

shown by the dashed lines, is the direction of maximum finite extension. A quartz vein has

extended during deformation and broken into four sections in the shale. What are the

magnitudes of maximum/minimum stretch and the area change in the shale layer.

Figure 9.7 Four deformed brachiopods on a bedding plane.

180 Finite strain

3. Figure 9.9 shows three rutile needles embedded within a quartz grain that has experienced

intragranular strain (see Mitra, 1978). Measure the longitudinal strain of the three grains to

determine the principal stretches and the orientation of the maximum stretching direction.

Hint: Assume that the pole to the Mohr circle has an orientation and elongation defined by

the needle on the right, with a stretch that lies between the other two needles (e.g., Lisle and

Ragan, 1988).

l1

ψ

Figure 9.8 Sketch of a sandbed (stippled)with

a weak vertical cleavage interbedded with

shale that has a stronger, inclined cleavage.

 is the angular shear of a sandstone dike,

and l1 is the final length of a boudinaged

quartz vein.

Figure 9.9 Three rutile needles that are embedded

within a quartz grain (e.g., the Cambrian Weaverton

Formation of the Appalachians; Mitra, 1978).

9.12 Exercises 181

4. In forward structural modeling, it is common to placemarkers such as regular grids, circles,

etc. to track the evolution of deformation in amodel. As we saw in Section 8.8.2, a minimum

of four stations or displacement points are necessary to compute the strain in three dimen-

sions. Write a computer program or MATLAB function to compute three-dimensional, finite

strain from the initial and final coordinates of the nodes of a regular tetrahedron.

5. Modify function GridStrain such that it computes the two-dimensional finite strain of a

network of displacement points or stations. Notice that in this case the reference frame is

important. Do all your calculations in the deformed reference frame. Hint: Use function

FinStrain instead of InfStrain in GridStrain, and modify GridStrain accordingly.

182 Finite strain

CHAPTER

TEN

Progressive strain histories and kinematics

10.1 FINITE VERSUS INCREMENTAL STRAIN

The limitation of finite strain methods is that they do not consider the kinematics, or the

displacement paths of particles during deformation. As shown in Chapter 9, superposition of

large deformations is not commutative; the sequence of events matters, and the finite strain

can arise by an infinite number of paths. Moreover, when approaching the structure and

tectonic history of a region, it is routine to ask questions that require knowledge of the kine-

matics such as: What is the sense and direction of shear in a fault zone? What is the strain

history near plate boundaries? Or, what is the appropriate kinematic fold model for a specific

structure? Kinematic analysis can in some cases provide critical tests against the predictions of

geodynamic models for processes such as folding and mountain-building. In this chapter, we

evaluate different types of progressive deformation. We provide examples of how a strain

history can be quantified using geologic observations.

10.1.1 Progressive strain histories in two dimensions: Pure shear

Let’s start with a simple example of a square that is deformed into a rectangle (Fig. 10.1). The

intermediate principal stretch S2 ¼ 1, and the deformation can be completely described in two

dimensions. If we ignore the translation component of deformation, the deformed position

vector (x) can be written in terms of the initial position vector (X) by the equations

xi ¼
@xi
@Xj

Xj

or
x1 ¼ S1X1

x2 ¼ X2

x3 ¼ S3X3

(10:1)

183

where S1 and S3 are the maximum and minimum principal stretches. The matrix,
@xi
@Xj

, was

introduced in Equation 7.9 as the deformation gradient tensor, F. In this case, it forms a 3 × 3

matrix, psF; such that

x1
x2
x3

2

4

3

5 ¼
S1 0 0
0 1 0
0 0 S3

2

4

3

5

X1

X2

X3

2

4

3

5 (10:2)

or

x ¼ psF �X (10:3)

In Figure 10.1, the finite strain has been decomposed into 10 infinitesimal strain increments,

defined by incremental deformation gradient tensors that can be indexed so that the final

position vector of an increment is the initial position vector for the next increment:

1xi ¼
1Fij

1Xj

2Xi ¼
1xi

2xi ¼
2Fij

2Xj

3Xi ¼
2xi

3xi ¼
3Fij

3Xj

..

.

nxi ¼
nFij

nXj

(10:4)

The incremental deformation gradient tensors define the maximum stretch direction and

magnitude for each increment of strain, and in this case, the maximum and minimum stretch-

ing directions are parallel to theX1 andX3 axes of the coordinate reference frame. The principal

stretches used for all the strain increments in Figure 10.1 are S
1=10
1 and S

1=10
3 , respectively.

Variation in the orientation and magnitude of incremental stretches through time defines a

cumulative incremental strain history.

Figure 10.1 Pure shear deformation of

a square after a maximum stretch of

2.5, with the maximum incremental

andfinite stretch orientation parallel to

the X1 axis. The displacement path of

points around the outside of the box is

subdivided into 10 increments of

strain. Large white and gray circles are

initial and final positions, respectively.

The eigenvectors of the displacement

field are parallel to the principal axes

of finite strain.

184 Progressive strain histories and kinematics

The deformation gradient tensor at the end of the strain history, psF, results from the

superposition of each of the incremental deformations so that

xi ¼
nFij :::

3Fij
2Fij

1Fij
1Xj (10:5)

After one increment of strain, the incremental and finite deformation gradient tensors are the

same. But for any later point in the strain history, the deformation gradient tensor for the finite

strain is equal to the product of all the preceding incremental deformation gradient tensors.

The displacement field in Figure 10.1 is symmetric and consists of hyperbolic paths. As is

clear from Equation 5.22 and inspection of Figure 10.1, the X1 and X3 axes are flow apophyses

(Ramberg, 1975) defined by the eigenvectors of the deformation gradient tensor, or the vectors

that change length but not orientation in response to the linear transformation psF. The amount

of length change is indicated by the principal stretches, or the eigenvalues. The eigenvectors for

the maximum and minimum stretches define stable and unstable equilibriums with respect to

the orientation of passive linemarkers.Much like a ball at rest is stable at the bottomof a trough

but unstable at the top of a hill, stability is defined in terms of the response of an equilibrium to

perturbations. In the example here, the eigenvector parallel to the maximum stretch (or the X1

axis) defines a stable orientation, and a slight perturbation will result in rotation towards the

equilibriumorientation. The other eigenvector defines an unstable equilibriumorientation; any

perturbation leads to rotation away from this orientation and towards the stable equilibrium.

For the determination of finite strain, we can evaluate the orientation of lines in the

deformed reference frame using the Cauchy deformation tensor for pure shear, �Cij . As shown

in Chapter 9:

Xj j2

xj j2
¼

1

l
¼ l

0 ¼
�CklXkXl

xj j2
¼ �Cklα

0
kα

0
l

where αk
0 and αl

0 are the direction cosines that define the orientation of a vector after defor-

mation. This equation can be rewritten in terms of θ
0
, or the orientation of the line in the

deformed reference frame relative to the direction of maximum stretch:

l
0 ¼ l

0
1cos

2θ
0
þ l

0
3sin

2θ
0

or

l
0 ¼ l

0
1 � l

0
3ð Þcos2θ

0
þ l

0
3

Solving for l0 ¼ 1, we derive the orientation of the lines of no finite elongation:

cos2θ
0
n ¼

1� l
0
3

� �

l
0
1 � l

0
3

� � (10:6)

There are two roots for θ
0
n that satisfy this equation and correspond to two orientations sym-

metrical about the X1 axis. The limit of this function is 1 as l
0
3 approaches infinity, which

corresponds to a θ
0
n value of 0�. If there is no area change, the limit is ½ as l

0
1 and l

0
3 approach

1, which corresponds to a θ
0
n value of ±45�, or the orientation of the lines of no infinitesimal

elongation. Any line oriented so that θ
0
is less than θ

0
n has extended. Lines oriented so that θ

0
is

greater than θ
0
n have shortened. Combining this result with the orientation of the lines of no

infinitesimal elongation leaves us with the three zones of Ramsay (1967; Figure 10.2a) that

indicate whether a line of a specific orientation (θ
0
) is shortening (infinitesimal) and has

shortened (finite) (i.e., zone 3 at θ
0
445�), is lengthening (infinitesimal) but has shortened

(finite) (zone 2, θ
0
n
5θ

0
545�), and is lengthening (infinitesimal) and has lengthened (finite)

(zone 1, θ
0
5θ

0
n).

10.1 Finite versus incremental strain 185

The principal axes for the Cauchy deformation tensor are 1=S1
2 0 0

	

, 0 1 0½ �, and

0 0 1=S3
2

	

and the eigenvectors parallel to these axes do not change as the strain accumu-

lates. In these circumstances, the principal axes of incremental and finite strain are parallel

(finite stretch orientation with respect to X1,
f�, is constant throughout the deformation,

Fig. 10.2b). When the finite strain axes do not rotate relative to the incremental strain axes,

strain is irrotational, and deformation can be defined as pure shear. Variations in the orienta-

tion andmagnitude of finite strain characterize the progressive finite strain history, which in the

case of pure shear is not very interesting (Fig. 10.2b). The MATLAB® function PureShear, below,

computes and plots the displacement paths (Fig. 10.1) and progressive finite strain history

(Fig. 10.2b) for pure shear. To reproduce Figures 10.1 and 10.2(b), type in MATLAB:

pts = [-1 -1;-1 -0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...

1 -0.5;1 -1;0.5 -1;0 -1;-0.5 -1]; %Initial points coordinates

[paths,psf] = PureShear(pts,2.5,10);

function [paths,pfs] = PureShear(pts,st1,ninc)

%PureShear computes and plots displacement paths and progressive finite

%strain history for pure shear with maximum stretching parallel to the

%X1 axis

%

% USE: [paths,pfs] = PureShear(pts,st1,ninc)

%

% pts: npoints x 2 matrix with X1 and X3 locations of points

% st1 = Maximum principal stretch

% ninc = number of strain increments

% paths = displacement paths of points

% pfs = progressive finite strain history. column 1 = orientation of

% maximum stretch with respect to X1 in degrees, column 2 = maximum

f

Figure 10.2 (a) Zones that describe the infinitesimal and finite longitudinal strain of

passive linemarkers during pure shear (after Ramsay, 1967). (b) Progressivefinite strain

history for pure shear, which shows variations in the orientation relative to X1 (f�) and

magnitude (S1) of maximum finite stretch as strain accumulates.

186 Progressive strain histories and kinematics

% stretch magnitude

%

% NOTE: Intermediate principal stretch is 1.0 (Plane strain)

% Output orientations are in radians

%Compute minimum principal stretch and incremental stretches

st1inc=st1^(1.0/ninc);

st3=1.0/st1;

st3inc=st3^(1.0/ninc);

%Initialize displacement paths

npts = size(pts,1); %Number of points

paths = zeros(npts,2,ninc+1);

paths(:,:,1) = pts; %Initial points of paths are input points

%Calculate incremental deformation gradient tensor

F = [(st1inc) 0.0; 0.0 (st3inc)];

%Create a figure and hold

figure;

hold on;

%Compute displacement paths

for i=1:npts %for all points

for j=2:ninc+1 %for all strain increments

%Equation 10.2–10.5

for k=1:2

for L=1:2

paths(i,k,j) = F(k,L)*paths(i,L,j-1) + paths(i,k,j);

end

end

end

%Plot displacement path of point. Use MATLAB function squeeze to reduce

%the 3D matrix to one vector in X1 and another in X3

xx = squeeze(paths(i,1,:));

yy = squeeze(paths(i,2,:));

plot(xx,yy,'k.-');

end

%Release plot and set axes

hold off;

axis equal;

xlabel('X1'); ylabel('X3');

grid on;

%Initalize progressive finite strain history

pfs = zeros(ninc+1,2);

pfs(1,:) = [0 1.0]; %Initial state

%Calculate progressive finite strain history

for i=1:ninc

%First determine the finite deformation gradient tensor

10.1 Finite versus incremental strain 187

finF = F^i;

%Determine Green's deformation tensor

G = finF*finF';

%Stretch magnitude and orientation: Maximum eigenvalue and their

%corresponding eigenvectors of Green's tensor. Use MATLAB function eig

[V,D] = eig(G);

pfs(i+1,1) = atan(V(2,2)/V(1,2));

pfs(i+1,2) = sqrt(D(2,2));

end

%Plot progressive finite strain history

figure;

plot(pfs(:,1)*180/pi,pfs(:,2),'k.-');

xlabel('Theta finite deg');

ylabel('Maximum finite stretch');

axis([-90 90 1 max(pfs(:,2))+0.5]);

grid on;

end

10.1.2 Progressive strain histories in two dimensions: Simple shear

Pure shear may be an appropriate description of two-dimensional deformation in some cases,

but deformation is commonly localized in shear zones where the displacement field is best

describedby straight linedisplacementsparallel to the shear zoneboundaries,whichweassume

to be the X1 axis in Figure 10.3. The new coordinates in terms of old coordinates are given by:

x1 ¼ X1 þ γX3

x2 ¼ X2

x3 ¼ X3

(10:7)

The deformation gradient tensor is given by ssF:

ssFij ¼
1 0 γ
0 1 0
0 0 1

2

4

3

5; (10:8)

where γ is the engineering shear strain introduced earlier. It should be no surprise that the

matrix is asymmetric given the displacement field depicted in Figure 10.3. The figure shows a

progressive strain history consisting of 10 increments of infinitesimal strain, with an engineer-

ing shear strain of γ=10 for each incremental deformation gradient tensor. The deformation

gradient tensor for the finite strain is obtained by superposition of incremental deformation

gradient tensors as in Equation 10.5.

There are two eigenvectors, one parallel to the intermediate stretch and one parallel to theX1

axis. As expected, theX1 axis is an orientation that experiences no rotation or longitudinal strain

due to the deformation gradient tensor, ssF. In this example, the equilibrium defined by the X1

axis orientation is stable for passive line markers rotated or perturbed in a counterclockwise

sense and unstable for markers rotated clockwise, much like a ball at rest on a ledge. As we will

see in thenextsection,whenwecombine thisdeformation fieldwithpureshear, thedualbehavior

188 Progressive strain histories and kinematics

of this orientation occurs when the acute angle between the stable and unstable eigenvectors of

the deformation gradient tensor for a general deformation approaches 0. Because the eigenvec-

tors are parallel to lines of no finite elongation, the eigenvalues are equal to 1.

For the finite strain, we forwardmodel the deformation using the undeformed coordinates,

so we use the Green deformation tensor, Cij .

For simple shear:

Cij ¼
1þ γ2 0 γ

0 1 0
γ 0 1

2

4

3

5 (10:9)

Solving for the eigenvalues (l), or
xj j2

Xj j2
parallel to the principal stretches:

l1 ¼
γ2 þ 2þ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4
p

2

l2 ¼ 1

l3 ¼
γ2 þ 2� γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4
p

2

(10:10)

The orientations of the eigenvectors, or the orientations of the maximum and minimum

principal finite strain, are

γþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4
p

2
0 1

� �

0 1 0½ � γ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4
p

2
0 1

� �

Note that these are not unit vectors, and we have simplified the expression for the eigenvectors

by setting the component in the X3 direction equal to 1. The orientation of the maximum

principal stretch relative to the X1 axis is

�1 ¼ tan�1 2

γþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4
p

 !

(10:11)

Figure 10.3 Simple shear deformation

of a square after a γ of 2.5, with the

shear direction parallel to the X1 axis.

The displacement path of points

around the outside of the box is

subdivided into 10 increments of

strain. Large white and gray circles are

initial and final positions, respectively.

10.1 Finite versus incremental strain 189

For very smallmagnitudesof shear strain (asγ approaches 0), the eigenvectors areparallel to the

principal axes of the incremental strain ellipse with orientations 1 0 1½ � and �1 0 1½ � (i.e.,

�1 and�3 approach45� and−45�). For large strainmagnitudes, theeigenvector for themaximum

stretch approaches 1 0 0½ �. There is no infinitesimal or finite longitudinal strain parallel to

the shear plane and, since there are two lines of no finite elongation symmetric about the

maximumstretch direction, the other orientation of these lines (θ
0
n) is 2�1 (Fig. 10.4a). We define

thisprogressive finite strainhistory as rotationalbecause theprincipal axesof finite strain rotate

relative to theprincipal axes of infinitesimal or incremental strain (f� is not constant throughout

the deformation, Fig. 10.4b). This displacement field, with displacement paths parallel to the

shear direction and rotational strain histories, is characteristic of simple shear.

The asymmetric deformation gradient tensor for simple shear can be decomposed into a

symmetric second rank tensor that reflects the pure strain component of the deformation and a

rigid body rotation (Malvern, 1969):

ssF ¼ R � U (10:12)

whereU is the right stretch tensor (e.g., Chapter 9.8) that defines the pure strain component and

R is the rotation tensor. We first calculate U:

U ¼

ffi

ssF � ssFT
� �

r

(10:13)

The eigenvalues and eigenvectors of U depict the magnitude and orientation of the principal

finite stretches, and the rotation tensor can be calculated by removing the pure strain from the

finite deformation gradient tensor:

R ¼ ssF � U�1

The internal rotation ðωiÞ within the rotation matrix R is equal to 8/2 for small strains.

Figure 10.4 (a) Zones that describe the infinitesimal and finite longitudinal strain of

passive line markers during simple shear (after Ramsay, 1967). (b) Progressive finite

strain history for simple shear, which shows variations in the orientation (f�) and

magnitude (S1) of maximum finite stretch as strain accumulates.

190 Progressive strain histories and kinematics

The function SimpleShear, below, computes and plots the displacement paths (Fig. 10.3)

and progressive finite strain history (Fig. 10.4b) for simple shear. To reproduce Figures 10.3

and 10.4b, type in MATLAB:

pts=[-1 -1;-1 -0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...

1 -0.5;1 -1;0.5 -1;0 -1;-0.5 -1]; %Initial points coordinates

[paths,psf] = SimpleShear(pts,2.5,10);

function [paths,pfs] = SimpleShear(pts,gamma,ninc)

%SimpleShear computes and plots 2D displacement paths and progressive finite

%strain history for simple shear parallel to the X1 axis

%

% USE: [paths,pfs] = SimpleShear(pts,gamma,ninc)

%

% pts: npoints x 2 matrix with X1 and X3 locations of points

% gamma = Engineering shear strain

% ninc = number of strain increments

% paths = displacement paths of points

% pfs = progressive finite strain history. column 1 = orientation of

% maximum stretch with respect to X1 in degrees, column 2 = maximum

% stretch magnitude

%

% NOTE: Intermediate principal stretch is 1.0 (Plane strain)

% Output orientations are in radians

%Incremental engineering shear strain

gammainc = gamma/ninc;

%Initialize displacement paths

npts = size(pts,1); %Number of points

paths = zeros(npts,2,ninc+1);

paths(:,:,1) = pts; %Initial points of paths are input points

%Calculate incremental deformation gradient tensor

F = [1.0 gammainc; 0.0 1.0];

%Create a figure and hold

figure;

hold on;

%Compute displacement paths

for i=1:npts %for all points

for j=2:ninc+1 %for all strain increments

%Equation 10.2–10.5

for k=1:2

for L=1:2

paths(i,k,j) = F(k,L)*paths(i,L,j-1) + paths(i,k,j);

end

end

end

10.1 Finite versus incremental strain 191

%Plot displacement path of point. Use MATLAB function squeeze to reduce

%the 3D matrix to one vector in X1 and another in X3

xx = squeeze(paths(i,1,:));

yy = squeeze(paths(i,2,:));

plot(xx,yy,'k.-');

end

%Release plot and set axes

hold off;

axis equal;

xlabel('X1'); ylabel('X3');

grid on;

%Initalize progressive finite strain history

pfs = zeros(ninc+1,2);

%Initial state: Maximum extension is at 45 deg from shear zone

pfs(1,:) = [pi/4.0 1.0];

%Calculate progressive finite strain history

for i=1 :ninc

%First determine the finite deformation gradient tensor

finF = F^i;

%Determine Green's deformation tensor

G = finF*finF';

%Stretch magnitude and orientation: Maximum eigenvalue and their

%corresponding eigenvectors of Green's tensor. Use MATLAB function eig

[V,D] = eig(G);

pfs(i+1,1) = atan(V(2,2)/V(1,2));

pfs(i+1,2) = sqrt(D(2,2));

end

%Plot progressive finite strain history

figure;

plot(pfs(:,1)*180/pi,pfs(:,2),'k.-');

xlabel('Theta finite deg');

ylabel('Maximum finite stretch');

axis([-90 90 1 max(pfs(:,2))+0.5]);

grid on;

end

10.1.3 General shear: Combinations of pure shear and simple shear

Pure shear and simple shear are useful end members for evaluating the kinematics in two

dimensions, but a more complete treatment of strain requires consideration of sub-simple

shear (DePaor, 1983), which is a general shear where deformation lies within the spectrum of

behavior between simple shear and pure shear. To characterize the displacement paths during

a sub-simple shear, we first need to define the pure shear reference frame (the orientation of the

principal stretches) in terms of the kinematic frame for simple shear (the shear plane and shear

direction). At this point, we restrict the discussion to the two dimensions that contain the

192 Progressive strain histories and kinematics

maximum and minimum stretches, and we consider two cases: (1) sub-simple shear where the

principal shortening direction for coaxial deformation is oriented perpendicular to the shear

plane and the principal extension direction is parallel to the shear direction; and (2) sub-simple

shear where the principal axis of extension lies perpendicular to the shear plane and the

principal shortening direction lies parallel to the shear direction.

We showed in Chapter 9 that the sequence in which we apply strain increments is important

for the kinematics. For sub-simple shear, the final position vector x is not the same for simple

shear followed by pure shear and pure shear followed by simple shear (Fossen and Tikoff,

1993). We are interested in the progressive strain history for simultaneous simple shearing and

pure shearing. The deformation gradient rate tensor for this state is given by Ramberg (1975):

gs _F ¼
exp _ε1tð Þ

_γ

2 _ε1
exp _ε1tð Þ � exp _ε3tð Þð Þ

0 exp _ε3tð Þ

2

4

3

5 (10:14)

where _ε1 and _ε3 are the rate of elongation parallel to the X1 and X3 directions, respectively, and

_γ is the engineering shear strain rate. Note that the components of this matrix and the

contributions of pure and simple shear are given in terms of strain rates and not strains. We

can express this matrix in a form that is independent of time for a deformation that occurs at a

steady rate. If the maximum extension direction is parallel to the X1 axis and area is constant,

then S1 ¼ expð _ε1tÞ, S3 ¼ expð _ε3tÞ and γ ¼ _γt . Consequently,
_γ

_ε1
¼

γ

ln S1
, ln S1ð Þ ¼ _εt , and the

expression for gsF can be simplified (Merle, 1986):

gsF ¼
S1

γ S1 � S3ð Þ

2 ln S1
0 S3

2

4

3

5 (10:15)

With superposition of infinitesimal strain increments, this deformation gradient tensor is used

in Figure 10.5 to construct displacement paths associated with progressive deformations for

the case of sub-simple shear where the maximum shortening direction for pure shear is

perpendicular to the shear plane (Fig. 10.5).

Figure 10.5 Sub-simple shear, or

simultaneous pure and simple shear,

with pure shear shortening perpendicular

to the shear zone boundaries and pure

shear extension parallel to the shear

zone boundaries. No area change, with

a maximum stretch of 2.5 for the pure

shearing component, and a γ of 1:0 for

the simple shear component.

10.1 Finite versus incremental strain 193

Now we are in a position where we can evaluate the displacement field in response to

variations in the ratio of pure shear to simple shear (Fig. 10.6). As in the case of pure shear,

there are two eigenvectors for the deformation gradient tensor. These are parallel to apophyses

that define stable and unstable equilibrium marker orientations. The stable orientation is

parallel to the X1 axis 1 0½ �, whereas the unstable orientation
�γ

2 ln S1
1

� �

varies as a function

Figure 10.6 Sub-simple shear with pure shear shortening perpendicular to the shear

zone boundaries, no area change, and variations in the relative proportion of simple

shear (γ) and pure shear (S1). (a) S1 ¼ 2:5, γ ¼ 0:25; (b) S1 ¼ 2:0, γ ¼ 0:5; (c) S1 ¼ 1:5,

γ ¼ 1:0; and (d) S1 ¼ 1:25, γ ¼ 1:5. The displacement path of points around the outside

of the box is subdivided into 10 increments of strain. Large white and gray circles are

initial and final positions, respectively. Eigenvectors are shown by the dashed arrows.

Wk is the kinematic vorticity number.

194 Progressive strain histories and kinematics

of the ratio of simple shear to pure shear. In two dimensions, a simple dimensionlessmeasure of

the ratio of pure to simple shearing is the cosine of the acute angle between the eigenvectors of the

deformation gradient tensor (Bobyarchick, 1986), or the kinematic vorticity number,Wk (Truesdell,

1953) (Fig. 10.6). Sub-simple shear is characterized by a kinematic vorticity number that lies

between 0 and 1. For sub-simple shear with shortening perpendicular to the shear zone bounda-

ries, the eigenvectors bracket the orientations where passive line markers rotate with the sense of

shear and the orientations where line markers rotate opposite to the sense of shear.

The Green deformation tensor for a general shear with shortening across the shear zone is

C ¼
S1

2 þ
γ2 S1 � S3ð Þ2

4 ln S3

γ S1 � S3ð Þ

2 ln S1
γ S1 � S3ð Þ

2 ln S1
S3

2

2

6

6

4

3

7

7

5

(10:16)

The eigenvectors for the Green deformation tensor are parallel to the maximum finite stretch,

and approach the shear plane as strain accumulates, but the initial orientation of themaximum

stretch varies from 0� to 45� as Wk varies from 0 to 1 (Fig. 10.7). In practice, a lineation that

reflects the direction of maximum stretch will rotate into parallelism with the shear direction

with increasing finite strain magnitude.

In the casewhere the direction ofmaximumstretching for pure shear is perpendicular to the

shear plane, the maximum stretch associated with the pure shear component of deformation,

S1, is parallel to the X3 axis, and S3 is parallel to the X1 axis, so the gradient tensor for

simultaneous pure and simple shearing is

gsF ¼
S3

γ S3 � S1ð Þ

2 ln S3
0 S1

2

4

3

5 (10:17)

Figure 10.8 shows deformation of boxes in response to simultaneous pure shear and simple

shear. In this case, the unstable orientation for passive line markers lies parallel to the shear

plane and the stable orientation is oblique to the shear plane. Passive line markers reorient

during deformation into parallelism with the stable eigenvector. The finite strain ellipse ini-

tially has an orientation between 45� and 90� as the kinematic vorticity number varies from 0 to

1; but in contrast to the case with pure shear stretching parallel to the shear zone boundaries,

f

Figure 10.7 Progressive finite strain histories

for sub-simple shear and the examples in

Figure 10.6.

10.1 Finite versus incremental strain 195

themaximum finite stretch direction at large strains varies significantly for different kinematic

vorticity numbers (Fig. 10.9).

The function GeneralShear, below, computes displacement paths, kinematic vorticity num-

ber, and progressive finite strain history for general shear with a pure shear stretch, no area

change, and a simple shear strain. Maximum finite stretch can be parallel (kk = 0) or perpendic-

ular (kk = 1) to the shear zone. For example, to reproduce Figures 10.6b and 10.7b, type inMATLAB:

Figure 10.8 Sub-simple shear with pure shear shortening parallel to the shear zone

boundaries, no area change, and variations in the relative proportion of simple shear (γ)

and pure shear (S1). (a) S1 ¼ 2:5, γ ¼ 0:25; (b) S1 ¼ 2:0,γ ¼ 0:5; (c) S1 ¼ 1:5, γ ¼ 1:0; and

(d) S1 ¼ 1:25, γ ¼ 1:5. The displacement path of points around the outside of the box is

subdivided into 10 increments of strain. Large white and gray circles are initial and final

positions, respectively. Eigenvectors are shown by the dashed arrows. Wk is the

kinematic vorticity number.

196 Progressive strain histories and kinematics

pts=[-1 -1;-1 -0.5;-1 0;-1 0.5;-1 1;-0.5 1;0 1;0.5 1;1 1;1 0.5;1 0;...

1 -0.5;1 -1;0.5 -1;0 -1;-0.5 -1]; %Initial points coordinates

[paths,wk,psf] = GeneralShear(pts,2.0,0.5,0,10);

And to recreate Figures 10.8b and 10.9b:

[paths,wk,psf] = GeneralShear(pts,2.0,0.5,1,10);

function [paths,wk,pfs] = GeneralShear(pts,st1,gamma,kk,ninc)

%GeneralShear computes displacement paths, kinematic vorticity numbers

%and progressive finite strain history, for a general shear with a pure

%shear stretch, no area change, and a single shear strain

%

% USE: [paths,wk,pfs] = GeneralShear(pts,st1,gamma,kk,ninc)

%

% pts: npoints x 2 matrix with X1 and X3 locations of points

% st1: Pure shear stretch parallel to shear zone

% gamma = Engineering shear strain

% kk = An integer that indicates whether the maximum finite stretch is

% parallel (kk = 0), or perpendicular (kk = 1) to the shear direction

% ninc = number of strain increments

% paths = displacement paths of points

% wk = Kinematic vorticity number

% pfs = progressive finite strain history. column 1 = orientation of

% maximum stretch with respect to X1 in degrees, column 2 = maximum

% stretch magnitude

%

% NOTE: Intermediate principal stretch is 1.0 (Plane strain)

% Output orientations are in radians

%Compute minimum principal stretch and incremental stretches

st1inc=st1^(1.0/ninc);

st3=1.0/st1;

st3inc=st3^(1.0/ninc);

f

Figure 10.9 Progressive finite strain histories

for sub-simple shear and the examples in

Figure 10.8.

10.1 Finite versus incremental strain 197

%Incremental engineering shear strain

gammainc = gamma/ninc;

%Initialize displacement paths

npts = size(pts,1); %Number of points

paths = zeros(npts,2,ninc+1);

paths(:,:,1) = pts; %Initial points of paths are input points

%Calculate incremental deformation gradient tensor

%If max. finite stretch parallel to shear direction (Eq. 10.15)

if kk == 0

F = [st1inc (gammainc*(st1inc-st3inc))/(2.0*log (st1inc));0.0 st3inc];

%If max. finite stretch perpendicular to shear direction (Eq. 10.17)

elseif kk == 1

F = [st3inc (gammainc*(st3inc-st1inc))/(2.0*log (st3inc));0.0 st1inc];

end

%Create a figure and hold

figure;

hold on;

%Compute displacement paths

for i=1:npts %for all points

for j=2:ninc+1 %for all strain increments

%Equations 10.2–10.5

for k=1:2

for L=1:2

paths(i,k,j) = F(k,L)*paths(i,L,j-1) + paths(i,k,j);

end

end

end

%Plot displacement path of point. Use MATLAB function squeeze to reduce

%the 3D matrix to one vector in X1 and another in X3

xx = squeeze(paths(i,1,:));

yy = squeeze(paths(i,2,:));

plot(xx,yy,'k.-');

end

%Release plot and set axes

hold off;

axis equal;

xlabel('X1'); ylabel('X3');

grid on;

%Determine the eigenvectors of the flow (apophyses)

[V,D] = eigs(F);

%If max. finite stretch parallel to shear direction

if kk == 0

theta2=atan(V(2,2)/V(1,2));

198 Progressive strain histories and kinematics

%If max. finite stretch perpendicular to shear direction

elseif kk == 1

theta2=atan(V(2,1)/V(1,1));

end

wk = cos(theta2);

%Initalize progressive finite strain history. We are not including the

%initial state

pfs = zeros(ninc);

%Calculate progressive finite strain history

for i=1:ninc

%First determine the finite deformation gradient tensor

finF = F^i;

%Determine Green's deformation tensor

G = finF*finF';

%Stretch magnitude and orientation: Maximum eigenvalue and their

%corresponding eigenvectors of Green's tensor. Use MATLAB function eig

[V,D] = eig(G);

pfs(i,1) = atan(V(2,2)/V(1,2));

pfs(i,2) = sqrt(D(2,2));

end

%Plot progressive finite strain history

figure;

plot(pfs(:,1)*180/pi,pfs(:,2),'k.-');

xlabel('Theta finite deg');

ylabel('Maximum finite stretch');

axis([-90 90 1 max(pfs(:,2))+0.5]);

grid on;

end

10.2 DETERMINATION OF A STRAIN HISTORY

Finite strain can be quantified from a range of deformed objects using measurements of

angular shear, longitudinal strain, or some combination of the two, but quantitative recon-

structions of kinematics require some assessment of the incremental and progressive finite

strain histories, a more difficult objective. One approach is to substitute space for time; this is

our aim whenever we assume that a larger finite strain magnitude, a tighter fold, or a fault with

more slip represents a later stage in some characteristic structural evolution.

Some deformation fabrics such as fibrous pressure shadows and porphyroblasts with

inclusion trails allow for the quantitative depiction of the strain history (Elliott, 1972).

Measurement of the distribution of strain histories places a constraint on the structural

evolution of regions or individual structures and can provide a test of the space-for-time

assumption. In the following section, we describe a method whereby syntectonic fiber growths

can be used to quantify the displacement path, which can then be used to calculate the

cumulative incremental and progressive finite strain histories.

10.2 Determination of a strain history 199

10.2.1 Syntectonic fibers: Indicators of external and internal rotation

For an increment of strain, the external rotation rate, or external vorticity (_ωe), is determined by

the spin, or angular velocity of the stretching axes relative to thematerial (_ωsp), and the internal

velocity (ωi).

_ωe ¼ _ωsp þ _ωi (10:18)

To illustrate the relative contributions of spin and internal rotation to the external rotation,

consider Figure 10.10. Structural geologists trained in the northeastern United States will

recognize this photo as a fossilized Lycopsid trunk from the Llewellyn Formation of Bear

Valley, Pennsylvania (Nickelsen, 1979). The trunk is oriented vertically on a 36�-dipping fold

limb within the Appalachian Valley and Ridge fold belt.

A simple explanation for the vertical orientation of the trunk before and after deformation

is that the bedding was a passive line marker during irrotational strain, and the stump hap-

pened to be originally oriented parallel to the stable eigenvector for pure shear; both the ωsp

andωi were zero. This seemsunlikely given that the cleavage, although steeper than bedding, is

not close to vertical (Fig. 10.10). Moreover, there are slickenlines on bedding planes and

numerous shear zones in finer-grained layers at this locality, probably due to flexural shear

and flexural slip folding. So, the more likely explanation is that the external rotation (ωe) of the

long axis of the tree trunk is negligible because the rigid rotation of beds through the stretching

axes during tilting was equal and opposite in sign to the angular shear associated with flexime.

In either case, a tree that was vertical when sediments were deposited 300 million years ago is

still vertical after ~50% shortening of the Appalachian fold and thrust belt!

The separation of an external rotation into the components of rigid and internal rotation

requires an assessment of the incremental strain history. That is, we need a record of how the

magnitude and orientation of stretch varies through time relative to both an external reference

frame, such as geographic coordinates, and an internal reference frame, such as shear zone

boundaries or bedding layers with contrasting strength. We do this here using syntectonic

fibers that grow in pressure shadows around rigid objects and record the displacement of the

matrix relative to the rigid host.

Syntectonic fiber growth can be syntaxial or antitaxial, depending on the composition of the

fibers and the rigid object (Durney and Ramsay, 1973). In the case of syntaxial fibers, the fibers

nucleate on themargins of a rigid host of the same composition and grow outward towards the

matrix (e.g., the crinoid method of Durney and Ramsay, 1973) so the most recent increment of

strain is at the tip of the pressure shadow. For antitaxial fibers, the fibers nucleate on grains in

the deformingmatrix and grow towards a host of different composition (e.g., the pyritemethod

ofDurney andRamsay, 1973) so themost recent strain increment is at the interface between the

pyrite and the pressure shadow. Since the curvature of fibers is a measure of the external

rotation, coaxial strain histories are represented by straight fibers and non-coaxial strain

histories are depicted by curved fibers. An analysis of the incremental strain history relative

to the external and internal reference frames allows us to determine if fiber curvature reflects

rotation of the rock body through a fixed irrotational stretching direction or simple shear (i.e.,

internal rotation).

In the following sections, we outline two techniques for quantifying a non-coaxial strain

history by assuming that a rotational strain history recorded by curved fibers can be

approximated by a series of small irrotational strain increments separated by rigid body

rotations.

200 Progressive strain histories and kinematics

10.2.2 Cleavage-parallel displacements and passively deformed fibers

We start with a pyrite pressure shadow with antitaxial fibers as viewed in a thin section cut

parallel to cleavage from the metamorphic hinterland of the Taiwan arc–continent collision

(Fig. 10.11a). There is no evidence for shortening in the direction perpendicular to the long axis

of fibers, because all fibers in the pressure shadow are parallel to each other and the pressure

shadow brackets the rigid pyrite sphere such that adjacent fibers do not converge or diverge as

they are displaced with the matrix away from the pyrite. There is, however, evidence for

(a)

(b)

Figure 10.10 (a) Photograph of a Lycopsid trunk described by Nickelsen (1979) in the

Pennsylvanian Llewellyn Formation in the Valley and Ridge Province of northeastern

Pennsylvania. (b) Stereonet showing the poles and great circles for bedding (circle),

cleavage (square), and the long axis of the tree stump (modified after Nickelsen, 1979).

10.2 Determination of a strain history 201

deformation of early-formed fibers at the outer edge of the pressure shadow, with recrystalli-

zation and thickening of fibers. The thin section contains themaximum stretch (the long axis of

fibers) and the intermediate stretch (perpendicular to the long axis of fiber segments), which is

approximately equal to 1.We subdivide the fiber into a number of increments so that the curved

displacement path is characterized by a series of short, straight, line segments (Fig. 10.11b).

Since the fiber growth is antitaxial (Ramsay andHuber, 1983), the last increment of fiber growth

is recorded by the portion of the fiber closest to the pyrite. The center of the pyrite serves as the

origin of a Cartesian coordinate system, and an arbitrary external reference frame (e.g., hori-

zontal or a structural lineation) is chosen as the X1 axis.

In this example, we assume that fibers deform passively based on the evidence for defor-

mation of early-formed fibers. Such a problem is well suited for an inverse approach where we

Figure 10.11 (a) Photomicrograph of a pyrite pressure shadow viewed downward on

the cleavage plane from a Cretaceous phyllite near the eastward-facing mountain front

of the Central Range of Taiwan. (b) Sketch showing parameters used in strain history

calculations. l0 is projection of initial position vector X on line parallel to fiber segment

(x�X).� is angle betweenmaximumstretch andX1 axis. F
�1 from increment 3 is used to

unstrain 3x to 3X, leaving two increments remaining (right).

202 Progressive strain histories and kinematics

quantify the last increment of strain and use that deformation gradient tensor to undeform all

the remaining fiber segments. The deformation gradient tensor for the last increment, nF, or

n @xi
@Xj

� �

can be written in a coordinate system that parallels the principal maximum and inter-

mediate stretches:
pnx1 ¼ nS1

pnX1

pnx2 ¼ pnX2

(10:19)

or

pnF ¼
nS1 0
0 1

� �

(10:20)

where the superscript n is indexed to the increment number and the superscript p refers to a

reference frame parallel to the principal axes. All displacements occur parallel to themaximum

stretch direction, so the orientation of extension for the last increment, n�, equals (Fig. 10.11b)

n� ¼ tan�1
nx2 �

nX2

nx1 � nX1

� �

(10:21)

To determine the stretch for the nth increment, we first calculate the projection of the initial

position vector onto a line parallel to the stretch direction so that (Fig. 10.11b)

l0 ¼ Xj j cosθ (10:22)

The angle θ is the arccosine of the dot product of the unit vectors parallel to X and x� X:

θ ¼ cos�1 X

Xj j

� �

� x� X

x� Xj j

� �� �

(10:23)

The maximum incremental stretch for increment n is

nS1 ¼
l0 þ x� Xj j

l0
(10:24)

We can now evaluate F in the arbitrary reference frame that we have established parallel to the

X1 axis using a tensor transformation (Eq. 5.12):

nFij ¼ RikRjl
pnFkl

or

F ¼ R � pnF �RT

Since the fiber deforms in response to each increment of deformation, we can use the defor-

mation gradient tensor for the last increment to restore all the points along the fiber to

positions prior to that strain.

The inverse of the tensor nF has the property of displacing the deformed position of the last

increment back to its initial position:

nX ¼ nF�1 � nx (10:25)

All other points along the fiber can be similarly restored.

Now we are left with n − 1 increments, and the initial position vector for increment n� 1,
n�1 X1;X2ð Þ, is the same as n X1;X2ð Þ (Fig. 10.11b). In other words, all fiber segments on a single

fiber originate from the same point on the pyrite surface. The other points along the

10.2 Determination of a strain history 203

displacement path are restored to new positions prior to the strain associated with n�1F. Using

Equations 10.19 through 10.25, n�1F�1 is determined in the samemanner as for the increment n,

and then is used to restore all thepoints to positionsprior to the incrementn� 1. This process is

repeateduntil the first incrementof strain is restoredandthere isonlyonepoint remainingat the

surface of the pyrite grain (Fig. 10.11b). At this stage, we have n i�-values that represent the

maximum stretch directions for each increment and we have n iS-values for the incremental

stretches, so we can plot a cumulative incremental strain history (Fig. 10.12a). This diagram

shows variations in the orientation of incremental stretching as strain accumulates (Fig. 10.12a).

If thestrain rate is constant and thestrain increments arevery small,we can treat thevertical axis

as equivalent to time. A vertical path on this diagram is an irrotational deformation, whereas a

horizontal path is a rigid body rotation.

The progressive finite strain history is obtained by determining the orientation and magni-

tude of stretch after each strain increment. First, wemultiply each deformation gradient tensor

in sequence so that
finite 1F ¼ 1F

finite 2F ¼ 2F � 1F
finite 3F ¼ 3F � 2F � 1F
..
.

finite nF ¼ nF . . . � 3F � 2F � 1F

(10:26)

Figure 10.12 (a) Cumulative incremental strain history showing cumulative elongations

vs. orientation of incremental extension and (b) progressivefinite strain history showing

magnitude vs. orientation of maximum finite stretch for the example in Figure 10.11.

The cumulative incremental strain history consists of pure shear (coaxial) strain

increments separated by rigid body rotations. The progressive finite strain history is

the same as the cumulative incremental strain history for the first increment but,

subsequently, it shows the response of the finite strain ellipse to variations in the

orientation and magnitude of the incremental strain.

204 Progressive strain histories and kinematics

The finite deformation gradient tensors from the second increment to the nth increment are

not symmetric because the curved fiber is approximated by a series of irrotational strain

increments separated by rigid body rotations. We evaluate the finite strain by determining

the eigenvectors and eigenvalues associated with the Green deformation tensor:

C ¼ F � FT

By calculating a new Green deformation tensor after each increment of strain, we can depict

progressive variations in the orientation of maximum finite stretch (i.e., the orientation of the

eigenvector of C that defines the maximum stretch) and the magnitude of finite stretch (i.e.,

square root of the eigenvalues of C). These values are used to construct a progressive finite

strain history (Fig. 10.12b).

10.2.3 Geological applications of strain histories in cleavage

planes: An example from Taiwan

So what do we do with these histories? The X1 axis for both plots was chosen parallel to

horizontal. The cumulative incremental strain history begins with three increments of elonga-

tion at 80–85� to horizontal, or downdip stretch on cleavage planes (Fig. 10.12a). The progres-

sive finite strain history depicts a maximum stretch of about 2.3 after this early history with

little external rotation (Fig. 10.12b). Then, there was a series of four increments with 85–90� of

counterclockwise external rotation with little elongation, followed by two large elongations

parallel to strike, and finally a small, late oblique elongation. The magnitude of the maximum

finite stretch was 3.7.

There is a lot of information here, but what does it mean? One would like to see more

examples to evaluate the spatial heterogeneity of strain histories, but, nevertheless, there are

some features of this sample that are interesting in light of the regional distribution of

structural fabrics in Taiwan (Fig. 10.13). In the collisional mountain belt of Taiwan, there is a

downdip stretching lineation in the foreland, and along-strike stretching lineation in the hinter-

land. This spatial variation in finite strain could be explained by partitioning of oblique

convergence into downdip stretching in the foreland (the pro-wedge that faces the incoming

flux of material from the Asian passive margin), and strike slip shearing in the hinterland (the

retro-wedge that faces the colliding volcanic arc (Fig. 10.13)). One intriguing possibility is that

the strain history of the sample, early downdip extension followed by late along-strike exten-

sion, reflects the change from downdip shearing to along-strike shearing when the rock is

advected through this fixed displacement field within the mountain belt.

10.2.4 Cleavage-perpendicular sections and passive fibers

For an example of a non-coaxial strain history in a cleavage-perpendicular section, we turn to a

pyrite pressure shadow from a 25�-dipping fold limb within the Marcellus Shale of central

Pennsylvania (Fig. 10.14a). We select an external reference frame for the X1 axis (cleavage or

bedding) and then center the origin on the pyrite host. The assumption is that this section

contains themaximum shortening andmaximum extension direction (theX1�X3 plane). In this

example, we assume that the antitaxial syntectonic fibers have deformed passively, and each

increment of strain affects the length and orientation of the fiber segments that grew during

prior increments. As in the cleavage-parallel example, wework to progressively “undeform” the

pressure shadow, beginning with the last increment. For the last increment (the fiber segment

10.2 Determination of a strain history 205

adjacent to the pyrite surface for antitaxial fibers), the initial points n X1;X3ð Þ relate to the

position after deformation n x1; x3ð Þ by the equation

nxi ¼
@xi
@Xj

� �

nXj

or in matrix form:
nx ¼ nF � nX

The undeformed (nX) and deformed (nx) coordinates in our arbitrary reference frameX1�X3

can be rewritten in terms of the coordinates in a reference frame that is parallel to the

maximum stretch (pnX) and (pnx) through a vector coordinate transformation (Chapter 3):

pnXi ¼
naij

nXj

pnxi ¼
naij

nxj
(10:27)

or
pnX ¼ n

a � nX
pnx ¼ n

a � nx

Figure 10.13 Map depicting orientation of tectonic lineations along the Central Cross-

Island Highway of Taiwan. Inset shows transect location. PSP is Philippine Sea plate.

Lower diagram shows an interpretation for the advective flow paths through a double-

sided mountain belt, given accretion in the foreland and erosion off the surface (after

Willett et al., 1993).

206 Progressive strain histories and kinematics

where the superscript p refers to a reference frame parallel to the maximum and minimum

principal stretches p X1 � X3ð Þ. a allows a change of coordinates from our arbitrary reference

frame to a reference frame parallel to the principal stretches, and the n� contained within a is

the difference in orientation between the two reference frames. Now we have four equations

and five unknowns, nX1,
nX3,

nx1,
nx3, and

n�. In the reference frame parallel to the maximum

principal stretch:

pnx ¼ pnF � pnX

or
pn

x1
x3

� �

¼
n

S1 0
0 S3

� �pn
X1

X3

� �

nS1 ¼
pnx1
pnX1

nS3 ¼
pnx3
pnX3

(10:28)

If we make the assumption that there is no change in area (det n F½ � ¼ 1), then

pnX1
pnX3 ¼ pnx1

pnx3 (10:29)

At this point, we can substitute the expressions in Equation 10.27 into Equation 10.29 and solve

for the orientation of incremental extension for the last increment of strain, n� (Fig. 10.14b):

tan2n� ¼
2 nx1

nx3 �
nX1

nX3ð Þ

nx12 � nx32 � nX1
2 þ nX3

2
� � (10:30)

(a) (b)

Figure 10.14 (a) Photomicrograph of pressure shadow from a cleavage-perpendicular

section of Marcellus Formation in central Pennsylvania. Curved antitaxial calcite fibers

developedon near-spherical pyrite framboids. Dashed line shows the orientation of core

(vertical). (b) Points used in Equation 10.30. Note that S1 for third increment in diagram

is not parallel to x�X as itwas in the cleavage-parallel case. All displacements are parallel

to pure shear displacement paths from Figure 10.1, but S1 direction is not parallel to the

X1 axis.

10.2 Determination of a strain history 207

This equation describes the orientation ofmaximumextension relative to an arbitrary axis for a

pure shear displacement from X to x. Now that we have calculated n� for the nth increment, we

can determine the coordinates for the start and end of the displacement in a reference frame

parallel to the maximum stretch with Equation 10.27. We determine the principal strains using

Equation 10.28. Then pnF in the reference frame parallel to the principal stretches can be

transformed into our arbitrary reference frame:

nFij ¼ RikRjl
pnFkl

We are now in a position to use the deformation gradient matrix for the last increment to

“undeform” all the points along the fiber to their positions prior to the last increment of strain.

Note that

nX ¼ nF�1 � nx (10:31)

Following the procedure described in Section 10.2.2, we calculate all the incremental deforma-

tion gradient tensors from the last increment to the first. The eigenvalues and eigenvectors of

these tensors are used to characterize the cumulative incremental strain history (Fig. 10.15a).

The finite strains are determined by multiplying the deformation gradient tensors in sequence

and determining the eigenvalues and eigenvectors of the Green deformation tensor after each

increment to construct the progressive finite strain history (Fig. 10.15b).

10.2.5 Geological applications of strain histories in cleavage-perpendicular planes

In a cleavage-perpendicular section that contains the maximum and minimum stretch orienta-

tions, the external rotation recorded by fibers can be interpreted as due to simple shear (i.e.,

rotational strain, Fig. 10.16b), or spin, where the rocks have rotated through a fixed orientation

of pure shear stretching (Fig. 10.16a). The correct interpretation requires an assessment of the

strain history in the context of geographic (vertical) and internal (bedding) reference frames.

In the example here, the strain history is characterized by a gradual 25� clockwise rotation of

the incremental extension direction (Fig. 10.15). A simple shear parallel to bedding is unlikely

Figure 10.15 (a) Cumulative incremental strain history and (b) progressive finite strain

history for the example in Figure 10.14.

208 Progressive strain histories and kinematics

as the sense of internal rotationwould be opposite towhat is observed; the early fiber segments

should rotate towards bedding (Fig. 10.16b), yet the early fiber segments are bedding-

perpendicular (Figs. 10.15a and 10.16a). Both the magnitude and sense of rotation are consis-

tent with the interpretation that early fiber growth occurred during layer-parallel shortening,

but was followed by rigid rotation related to fold limb rotation through a fixed near-vertical

stretching direction.

We finish with a MATLAB function, Fibers, that computes and plots the incremental and

progressive strain histories of syntectonic fibers on cleavage-parallel (kk = 0) or cleavage-

perpendicular (kk = 1) sections. The user should enter the reference plane, the center of the

pyrite, and x and y points along the fiber from an image displayed in MATLAB. Try this function

on the pressure shadows of Figures 10.11 and 10.14. Remember that, since these are antitaxial

fiber growths, you should start digitizing the fiber at the margin of the pyrite grain (last

increment of fiber growth).

function [cie,pfs] = Fibers(imageName,kk)

%Fibers determines the incremental and finite strain history of a fiber in

%a pressure shadow

%

% USE: [cie,pfs] = Fibers(imageName,kk)

%

% image: A character corresponding to the image filename, including

% extension (eg. = 'fileName.jpg')

% kk = An integer that indicates whether the fiber is on a cleavage

% parallel (kk = 0), or cleavage perpendicular (kk = 1) section

% cie = cumulative incremental elongation: column 1 = Incremental theta,

% column 2 = cumulative incremental maximum elongation

% pfs = progressive finite strain history: column 1 = Finite theta,

% column 2 = maximum stretch magnitude

%

% NOTE: Output theta angles are in radians

%Read and display image

IMG=imread(imageName);

imagesc(IMG);

(a) Rigid rotation (b) Internal rotation

Figure 10.16 Pressure shadow geometries for (a) rotation through a fixed extension

direction and (b) simple shear parallel between bedding planes (internal rotation).

10.2 Determination of a strain history 209

%Prompt the user to define a reference plane. If the current reference

%plane is not satisfactory, the user can re-select the input points

a='n';

while a=='n'

clf; %Clear figure

imagesc(IMG); %Display image

hold on;

disp('Select two points along the reference plane, from left to right.');

[refpx, refpy] = ginput(2);

refpx = round (refpx); %Rounds imput x points to nearest integer

refpy = round (refpy); %Rounds input y points to nearest integer

plot(refpx,refpy,'--y','LineWidth',1.5);

a=input('Would you like to keep the current reference plane? (y/n)

','s');

end

%Prompt the user to select the origin and fiber points from the image

%display. The origin is defined at the center of the pyrite sphere.

%The fiber points are selected sequentially along a single fiber path.

%If the current fiber path is not satisfactory, the user can re-select the

%input points

a='n';

while a=='n'

clf; %Clear figure

imagesc(IMG); %Display image

hold on;

plot(refpx,refpy, '--y', 'LineWidth',1.5)

disp ('Select the origin point, center of pyrite sphere.');

[xo, yo] = ginput(1); %Select center of grain as the origin

xo=round(xo); yo=round(yo); %Rounds positions to nearest integer value

plot (xo,yo,'ok','MarkerFaceColor','k', 'MarkerSize',8) %Plots origin

%Digitize points along fiber

disp ('Digitize points along the fiber');

disp ('Left mouse button picks points');

disp ('Right mouse button picks last point');

x = []; y = []; n = 0; but = 1;

while but == 1

n = n + 1;

[xi,yi,but] = ginput(1);

xi=round(xi); %Rounds point coords to nearest integer

yi=round(yi);

plot (xi,yi,'-or','LineWidth',1.5); %Plots point

x(n) = xi; y(n) = yi; %Add point to fiber path

end

a=input('Would you like to keep the current fiber path? (y/n) ', 's');

end

hold off;

210 Progressive strain histories and kinematics

%Start calculation

%Switch y values from screen coordinates with (0,0) at the upper left

%corner to cartesian coordinates, with (0,0) at the lower left corner

nrow=size(IMG,1); %Number of rows in image

yo=nrow-yo;

y=nrow-y;

refpy = nrow-refpy;

%Set origin of coordinate system at center of pyrite sphere

x=x-xo;

y=y-yo;

%Rotate all points into a reference frame parallel to X1

phi=atan((refpy(2)-refpy(1))/(refpx(2)-refpx(1)));

Rot=[cos(phi) sin(phi);-sin(phi) cos(phi)];

vec=[x;y];

newvec=Rot*vec;

x=newvec(1,:);

y=newvec(2,:);

%Initialize some variables

cie = zeros(n-1,2);

rotmat = zeros(2,2,n-1);

finmat = zeros(2,2,n-1);

elong = zeros(1,n-1);

C = zeros(2,2,n-1);

pfs = zeros(n-1,2);

%Incremental, inverse modeling of pressure shadow (Backwards)

for i=1:n-1

%If cleavage parallel section (Equation 10.21)

if kk == 0

cie(n-i,1)=atan((y(2)-y(1))/(x(2)-x(1)));

%If cleavage perpendicular section (Equation 10.30)

elseif kk == 1

cie(n-i,1)=(atan((2*(x(2)*y(2)-x(1)*y(1)))/...

(x(2)^2-y(2)^2-x(1)^2+y(1)^2)))/2;

end

Beta=[cos(cie(n-i,1)) sin(cie(n-i,1));-sin(cie (n-i,1))...

cos(cie(n-i,1))];

%If cleavage parallel face

if kk == 0

h=[x(1);y(1)];

H=[x(2);y(2)];

v0=H-h;

v1=h/norm(h);

10.2 Determination of a strain history 211

v2=v0/norm(v0);

Alpha=acos(dot(v1,v2));

initlength=norm(h)*cos(Alpha);

st1inc=(norm(v0)+initlength)/initlength;

posmat=[st1inc 0;0 1];

%If cleavage perpendicular section

elseif kk == 1

Bigx1=Beta*[x(1);y(1)];

Bigx2=Beta*[x(2);y(2)];

st1inc=(Bigx2(1)/Bigx1(1));

st3inc=(Bigx2(2)/Bigx1(2));

posmat=[st1inc 0;0 st3inc];

end

rotmat(:,:,n-i)=Beta'*posmat*Beta;

elong(n-i)=st1inc-1;

for j=1:n-i

newposition = rotmat(:,:,n-i)\[x(j+1); y(j+1)];

x(j)=newposition(1);

y(j)=newposition(2);

end

end

%Plot cummulative incremental maximum elongation

figure;

cie(:,2)=cumsum(elong); %Cummulative, incremental, maximum elongation

plot(cie(:,1)*180/pi,cie(:,2),'o');

xlabel('Theta incremental deg');

ylabel('Cumulative incremental elongation')

axis([-90 90 0 max(cie(:,2))+0.5]);

%Compute progressive finite strain (Forward)

finmat(:,:,1)=rotmat(:,:,1);

for i=2:n-1

finmat(:,:,i)=rotmat(:,:,i)*finmat(:,:,i-1);

end

%Determine Cauchy deformation tensor

for i=1:n-1

C(:,:,i)=finmat(:,:,i)'*finmat(:,:,i);

%Stretch magnitude and orientation: Maximum eigenvalue and their

%corresponding eigenvectors of Cauchy's tensor. Use MATLAB function eig

[V,D]=eig(C(:,:,i));

pfs(i,2)=sqrt(D(2,2));

pfs(i,1)=atan(V(2,2)/V(1,2));

end

%Plot Progressive finite strain

figure

plot(pfs(:,1)*180/pi, pfs(:,2), 'o');

212 Progressive strain histories and kinematics

xlabel('Theta finite deg');

ylabel('Progressive Finite Strain');

axis([-90 90 1 max(pfs(:,2))+0.5]);

end

10.3 EXERCISES

1. Given pure shear deformation, derive an expression that relates the orientation of a line

relative to themaximumstretching direction before deformation (θ) to the orientation of the

line relative to the maximum stretching direction after deformation (θ
0
) (Fig. 10.17).

2. Given simple shear deformation, derive an expression that relates the orientation of a line

relative to the shear direction before deformation (�) to the orientation of the line relative to

the shear direction after deformation (�0) (Fig. 10.18).

3. The photo is an outcrop of a siltstone-shale sequence with bedding planes depicted bywhite

lines (Figure 10.19). The dashed white line is parallel to the trace of quartz veins that were

originally planar. (a) Assume that deformation is characterized by simple shear parallel to

bedding in shale layers. If the veins in the undeformed state were parallel to the vein

orientation in the more competent siltstone layers, what is the orientation and magnitude

of themaximum stretch in the shale layers? (b) If the deformationwas characterized by pure

shear with extension parallel to bedding, what is the orientation and magnitude of the

maximum stretch in the shale layers?

4. In the photomicrograph (Fig. 10.20), a circular, rigid siderite porphyroblast has an internal

foliation (Si) that is rotated relative to the penetrative foliation outside the porphyroblast

(S1). Either S1 has rotated relative to a porphyroblast that does not rotate (pure shear), the

porphyroblast has rotated relative to S1 that does not rotate (simple shear parallel to S1), or

Figure 10.17 Pure shear deformation

where a passive marker at an angle θ

from the X1 axis before deformation

makes an angle θ
0
with the X1 axis

after deformation.

10.3 Exercises 213

Figure10.18 Simple shear deformation

where a passive marker at an angle ϕ

from the X1 axis before deformation

makes an angle �0 with the X1 axis

after deformation.

Figure 10.19 Outcrop photo of pervasive quartz veins refracted at contacts between

interbedded siltstone and shale layers from the Kodiak Formation of Afognak Island,

Alaska.

214 Progressive strain histories and kinematics

both have rotated (general shear or simple shear oblique to S1). (a) If we assume passive

rotation of S1 in response to pure shear (with coaxial stretching parallel to S2), what is the

magnitude of the maximum stretch? (b) If we assume simple shear parallel to S1 and a

rotation of an equant inclusion byγ
�

2 (Ghosh andRamberg, 1976; Jeffrey, 1922), what is the

magnitude of the maximum stretch? (c) If we assume general shear (with pure shear

Figure 10.20 Siderite porphyroblast showing apparent rotation of an internal fabric (Si)

relative to external fabric (S1) during development of S2.

Figure 10.21 Sub-simple shear

deformation where a passive marker

at an angle θ from the X1 axis before

deformation makes an angle θ
0
with

the X1 axis after deformation.

10.3 Exercises 215

shortening perpendicular to S1, simple shear parallel to S1, and an incremental stretch

parallel to S2), what is the kinematic vorticity number Wk?

5. Given a general shear, derive an expression that relates the orientation of a line relative to

the shear plane before deformation (θ) to the orientation of a line relative to the shear plane

after deformation (θ
0
) (Fig. 10.21).

6. Determine the cumulative incremental and progressive finite strain histories for the exam-

ple depicted in Figure 10.22. (a) What is the magnitude of finite strain? (b) What is the total

rotation of the maximum stretching direction? Is the external rotation likely due to rigid

rotation or internal rotation? (c) If the bedding is parallel to the stable shear plane of sub-

simple shear and the latest fiber segment is parallel to the incremental stretch, what is the

kinematic vorticity number Wk? Hint: Use functions Fibers and GeneralShear.

7. For the en echelon vein set in Figure 10.23, assume that the veins are confined to the shear

zone and that they open parallel to the incremental maximum stretch direction. What is the

kinematic vorticity number Wk?

50 µm

Figure 10.22 Pyrite pressure shadow with bedding shown by solid white line and

cleavage by dashed line (Fisher et al., 2002).

Figure 10.23 Sketch of en echelon veins.

Shear zone boundaries shown by dashed

lines.

216 Progressive strain histories and kinematics

CHAPTER

ELEVEN

Velocity description of deformation

11.1 INTRODUCTION

There are almost as many types of models as there are reasons for constructing them. At one

extreme, a qualitative interpretation of the history of a region may be described as a “model.”

We have all seen titles like: “A Tectonic model for the Little Jackass Creek Quadrangle.” At the

other extreme, full-fledged mechanical models incorporate a complete set of constitutive

relationships in a computational or analytical framework. In this chapter, we present one

type of numerical model that falls between these two extremes. It is based on a limited set of

largely kinematic and geometric assumptions, while ignoring forces, rock properties, equations

of equilibrium, constitutive relationships, etc. The purpose of these kinematic models is to

simulate structural geometries and visualize the evolution of structures through time. Because

they can be executed quickly, kinematic models can be run thousands or millions of times to

test large parameter spaces. Do not fall into the trap, however, of thinking that they “explain”

the deformation!

Kinematic modeling uses ad-hoc velocity fields that satisfy known boundary conditions,

and obey reasonable assumptions such as conservation of mass throughout deformation.

Strictly speaking, the velocity fields used have no mechanical or dynamical significance. They

are just convenient models to simulate observed structures from a descriptive (i.e., in terms of

strain) rather than a genetic (i.e., in terms of stress) manner (Marrett and Peacock, 1999). A

discussion of the advantages and disadvantages of kinematic with respect to mechanical

modeling is beyond the scope of this book. The interested reader can consult Marrett and

Peacock (1999), and Pollard (2000).

Besides being an excellent topic to illustrate the application of the concepts we have learned

so far (e.g., coordinate transformations, vector operations), there are several advantages

in using velocities to describe deformation (Waltham and Hardy, 1995): (1) The method is

general and applicable to any kind of deformation, and (2) time-evolving parameters that

217

are influenced by deformation – such as temperature, pressure, erosion, and sedimentation –

can be easily modeled once the deformation velocities are specified. An additional advantage

of kinematic models is often overlooked: If we can run a kinematic model forward, we can

also run it backward. This proves to be an extremely useful property to solve a type of

problems known as “inverse” problems.1 In these problems, we are not so much interested

in forward modeling deformation, but rather in finding the model that best replicates

a structure as we observe it today. We will talk more about inverse problems in the next

chapter.

11.2 THE CONTINUITY EQUATION

The starting assumption of all velocity models is that mass is conserved. Matter is neither

created nor destroyed and little if any is converted into energy. This condition is specified by

the continuity equation:

@�

@t
þ �

@vi
@xi

¼ 0

This equation basically says that the change in density (�) with respect to time (t) of a volume

plus the flux of mass in and out of the volume (given by the second term of the equation, v is

velocity) must be equal to zero. The continuity equation can also be written as

@�

@t
þ �rv ¼ 0 (11:1)

where rv is the divergence of the velocity field. If there are no changes in volume, such as

compaction or thermal expansion during deformation, the density remains constant and

Equation 11.1 reduces to

rv ¼
@v1
@x1

þ
@v2
@x2

þ
@v3
@x3

� �

¼ 0 (11:2)

This condition is known as incompressibility. In some tectonic settings such as thrust belts, the

wavelength of individual structures is short compared to their strike parallel dimension. In this

case, we can assume plane strain. This means that there is no velocity parallel to strike (the x3

axis):

@v3
@x3

¼ 0

Thus, cross-sectional area perpendicular to strike must be conserved and we can write the two-

dimensional form of the incompressibility criterion:

rv ¼
@v1
@x1

þ
@v2
@x2

� �

¼ 0 (11:3)

How do we use this equation? In general our approach will be to assume a relationship

for one of the two velocity components (usually v1), and then use Equation 11.3 and the

boundary conditions to calculate the other component (usually v2). A few examples will make

this clearer.

1 Note that this is a different use of the term “inverse” than when we talked about inverting a matrix in a
previous chapter.

218 Velocity description of deformation

11.3 PURE AND SIMPLE SHEAR IN TERMS OF VELOCITIES

Simple shear is a trivial example but a good place to start on understanding the velocity

modeling approach. In simple shear (Fig. 11.1a), the velocity in the x1 direction, v1, is constant,

and depends only on the x2 coordinate:

v1 ¼ x2 tanψ ¼ x2γ (11:4)

Therefore

@v1
@x1

¼ 0

and from Equation 11.3

@v2
@x2

¼ 0

Integrating to solve for v2

v2 ¼ C (11:5)

and since there is no movement in the x2 direction (v2 ¼ 0, Fig. 11.1a), C ¼ 0.

The case for pure shear deformation (Fig. 11.1b) is more interesting. The velocity in the x1

direction, v1, varies linearly with position in x1, so we can write

v1 ¼ ax1 and
@v1
@x1

¼ a (11:6)

Using the incompressibility condition (Eq. 11.3):

@v1
@x1

þ
@v2
@x2

¼ a þ
@v2
@x2

¼ 0 so
@v2
@x2

¼ �a

Integrating to solve for v2:

v2 ¼ �ax2 þ C (11:7)

(a) (b)

Figure 11.1 Velocity description of (a) simple shear, and (b) pure shear. Continuous

rectangle shows the initial state, and dashed rectangle the deformed state. Gray arrows

are velocity vectors.

11.3 Pure and simple shear in terms of velocities 219

and using the boundary condition that there is no movement in the x2 direction at the base of

the block (v2 ¼ 0 at x2 ¼ 0, Fig. 11.1b), C ¼ 0.

11.4 GEOLOGICAL APPLICATION: FAULT-RELATED FOLDING

In the upper brittle crust, folds are often associated with faults. In this section, we will use

velocity models of deformation to describe two types of fault-related folds: those formed by

movement of a rock sequence above a non-planar fault (i.e., fault-bend folds), and those formed

by deformation at the tip of a propagating fault (i.e., fault-propagation folds).

11.4.1 Fault-bend folding

The basic equations for constant layer thickness fault-bend folding come from Suppe (1983).

For a step off a horizontal decollement (Fig. 11.2):

tanθ ¼
sin2γ

2cos2γþ 1ð Þ
β ¼ 180� � 2γ R ¼

sin γ� θð Þ

sinγ
(11:8)

whereθ is the dip of the fault, γ is the axial angle of the fold, β is the dip of the forelimb, andR is

the ratio that describes how slip diminishes across the hanging wall cutoff of the fold.

The model has three distinct regions or domains with different velocities, and in each

domain the velocity is parallel to the local fault orientation (Fig. 11.2). Fault slip rate s is

conserved between domains 1 and 2, but is consumed across domains 2 and 3 (Fig. 11.2). The

horizontal (v1) and vertical (v2) velocities in the three domains are (Hardy, 1995)

Domain1: v1 ¼ s; v2 ¼ 0

Domain2: v1 ¼ s cosθ; v2 ¼ s sinθ

Domain3: v1 ¼ R s; v2 ¼ 0

(11:9)

Figure 11.2 Geometric model of simple step, fault-bend folding with the controlling

parameters together with the three velocity domains. Arrows show the velocity in each

domain.

220 Velocity description of deformation

You can see that since v1 and v2 within each domain are constant, the incompressibility

criterion (area conservation, Eq. 11.3) is satisfied.

Besides incompressibility, another condition, known as strain compatibility (Chapter 9),

should be fulfilled by the model. The three velocity domains must remain in contact, without

overlaps or gaps. This condition requires that all points along a fault or a velocity boundary

f ðx1Þ obey the following equation (Waltham and Hardy, 1995):

1v2 �
1v1

@f

@x1
¼ 2v2 �

2v1
@f

@x1
(11:10)

where the superscripts 1 and 2 refer to the domains to be entered and exited, respectively. For

the domains 1–2 boundary:

s sinθ� s cosθ
@f

@x1
¼ �s

@f

@x1

which, rearranging, gives

@f

@x1
¼

sinθ

ðcosθ� 1Þ
(11:11)

For θ ¼ 30�, tan�1ð@f =@x1Þ or ψ1 (Fig. 11.2) = 125�. This equation predicts that the velocity

boundary between domains 1 and 2 is the bisector of the lower bend in the decollement. For the

domains 2–3 boundary:

� Rs
@f

@x1
¼ s sinθ� s cosθ

@f

@x1

and

R ¼ cosθ�
sinθ

ð@f =@x1Þ
(11:12)

This equation predicts the change of slip across the boundary between domains 2 and 3 for any

inclination of the boundary (Hardy and Poblet, 1995; Hardy, 1995). When the boundary is that

given by Suppe’s equations (Eq. 11.8) forθ ¼ 30�,γ andψ2 ¼ 60� (Fig. 11.2). Using these values in

Equation 11.12 gives a slip ratio R of 0.577, which is identical to that predicted by Equation 11.8.

Fault-bend folds grow as a result of kink bandmigration during two stages (Suppe, 1983). In

the first stage (Fig. 11.3a), the displacement is less than the length of the ramp. The kink bands

marked by AA′ and BB′ grow longer; the anticline increases in height and the crest decreases in

width. The orientation of the boundary between domains 2 and 3 (kink A, Fig. 11.3a) is given by

Equation 11.12. In the second stage (Fig. 11.3b), the displacement is greater than the length of

the ramp; the crest of the anticline increases in width but stops growing in height. The

orientation of the boundary between domains 2 and 3 (kink A, Fig. 11.3b) is given by

Equation 11.11.

The function FaultBendFold, below, plots the evolution of a simple step, Mode 1 (Suppe,

1983) fault-bend fold. FaultBendFold uses the function SuppeEquation to compute γ from

the input θ, and from these two, R (Eq. 11.8). The remaining part of the program deals with the

identification of the velocity domains and the application of the velocities of Equation 11.9 to

the bedding points, as the structure grows. To plot the evolution of a simple step fault-bend

fold with a 25� dipping ramp, type in MATLAB®:

yp = [50,100,150,200,250]; %Beds datums

psect = [1000,500]; %Section parameters

pramp = [400,25*pi/180,100]; %Ramp parameters

11.4 Geological application: Fault-related folding 221

pslip = [300,1]; %Slip parameters

frames = FaultBendFold(yp,psect,pramp,pslip); %Make fold

You will see a movie of the structure’s evolution. To watch the movie again type:

movie(frames);

function frames = FaultBendFold(yp,psect,pramp,pslip)

%FaultBendFold plots the evolution of a simple step, Mode I fault bend fold

%

% USE: frames = FaultBendFold(yp,psect,pramp,pslip)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

% number of points in each bed

% pramp = A 1 x 3 vector containing the x coordinate of the lower bend in

(a)

(b)

Figure 11.3 The two stages in the evolutionof a fault-bend fold. (a) Fault displacement is

less than the length of the ramp. (b) Fault displacement is greater than the length of the

ramp. Numbers indicate the velocity domains.

222 Velocity description of deformation

% the decollement, the ramp angle, and the height of the ramp

% pslip = A 1 x 2 vector containing the total and incremental slip

% frames = An array structure containing the frames of the fold evolution

% You can play the movie again just by typing movie(frames)

%

% NOTE: Input ramp angle should be in radians

%

% FaultBendFold uses function SuppeEquation

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

[XP,YP]=meshgrid(xp,yp);

%Fault geometry and slip

xramp = pramp(1); ramp = pramp(2); height = pramp (3);

slip = pslip(1); sinc = pslip(2);

%Number of slip increments

ninc=round(slip/sinc);

%Ramp angle cannot be greater than 30 degrees, and if it is 30 degrees,

%make it a little bit smaller to avoid convergence problems

if ramp > 30*pi/180

error('ramp angle cannot be more than 30 degrees');

elseif ramp == 30*pi/180

ramp=29.9*pi/180;

end

%Minimize Eq. 11.8 to obtain gamma from the input ramp angle (theta)

options=optimset('display','off');

gamma = fzero('SuppeEquation',1.5,options,ramp);

%Compute slip ratio R (Eq. 11.8)

R = sin(gamma - ramp)/sin(gamma);

%Make fault geometry

xf=[0 xramp xramp+height/tan(ramp) 1.5*extent];

yf=[0 0 height height];

%From the origin of each bed compute the number of points that are in the

%hanging wall. These points are the ones that will move

hwid = zeros(size(yp,2));

for i=1:size(yp,2)

if yp(i) <= height

hwid(i)=0;

for j=1:size(xp,2)

if xp(j) <= xramp + yp(i)/tan(ramp)

hwid(i)= hwid(i)+1;

end

11.4 Geological application: Fault-related folding 223

end

else

hwid(i)=size(xp,2);

end

end

%Deform beds: Apply velocity fields of Eq. 11.9

%Loop over slip increments

for i=1:ninc

%Loop over number of beds

for j=1:size(XP,1)

%Loop over number of hanging wall points in each bed

for k=1:hwid(j)

%If point is in domain 1

if XP(j,k) < xramp - YP(j,k)*tan(ramp/2)

XP(j,k) = XP(j,k) + sinc;

YP(j,k) = YP(j,k);

else

%If point is in domain 2

if YP(j,k) < height

XP(j,k) = XP(j,k) + sinc*cos(ramp);

YP(j,k) = YP(j,k) + sinc*sin(ramp);

else

%If stage 1 of fault bend fold (Fig. 11.3a)

if i*sinc*sin(ramp) < height

%If point is in domain 2

if XP(j,k) < xramp + height/tan (ramp) +...

(YP(j,k)-height)*tan (pi/2-gamma)

XP(j,k) = XP(j,k) + sinc*cos (ramp);

YP(j,k) = YP(j,k) + sinc*sin (ramp);

%If point is in domain 3

else

XP(j,k)= XP(j,k) + sinc*R;

YP(j,k)= YP(j,k);

end

%If stage 2 of fault bend fold (Fig. 11.3b)

else

%If point is in domain 2

if XP(j,k) < xramp + height/tan (ramp)-...

(YP(j,k)-height)*tan (ramp/2)

XP(j,k)= XP(j,k) + sinc*cos (ramp);

YP(j,k)= YP(j,k) + sinc*sin (ramp);

%If point is in domain 3

else

XP(j,k) = XP(j,k) + sinc*R;

YP(j,k) = YP(j,k);

end

end

224 Velocity description of deformation

end

end

end

end

%Plot increment

%Fault

plot(xf,yf,'r-','LineWidth',2);

hold on;

%Beds

for j=1:size(yp,2)

%If below ramp

if yp(j) <= height

plot(XP(j,1:1:hwid(j)),YP(j,1:1:hwid (j)),'k-');

plot(XP(j,hwid(j)+1:1:size(xp,2)),YP(j, hwid(j)+...

1:1:size(xp,2)),'k-');

%If above ramp

else

plot(XP(j,:),YP(j,:),'k-');

end

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ', num2str(i*sinc)));

axis equal;

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

end

end

function y = SuppeEquation(gamma,theta)

%SuppeEquation: First equation in Eq. 11.8 for fault bend folding

y = sin(2*gamma)/(2*(cos(gamma))^2+1) - tan(theta);

end

11.4.2 Similar folding over curving fault bends

Where bends in the faults are curved rather than straight, structural geologists commonly use

inclined simple shear and the resulting similar folds to make kinematic models of folds over

ramps. Hanging-wall, rollover anticlines above listric normal faults represent the most

common application of this approach. Here, again, the velocity boundary condition of

Equation 11.10 comes to our rescue. In this case, the velocity boundary condition is not a

kink axial surface but the fault itself. As elsewhere in this chapter, we follow the development

of Waltham and Hardy (1995).

To start, we define a coordinate systemwith x1 horizontal and x2 vertical and specifyα, the

angle between the vertical and the direction of inclined shear. The direction of inclined shear

fixes the orientation of the x0
2 axis of a second coordinate system, with x0

1 perpendicular to it

11.4 Geological application: Fault-related folding 225

(Fig. 11.4). The angle α then defines the two-dimensional coordinate transformation between

the two coordinate systems:

aij ¼
cosα cosð90þαÞ

cosð90�αÞ cosα

� �

¼
cosα �sinα
sinα cosα

� �

Note that, normally, the coordinate transformation shown in Figure 11.4 would be considered a

rotation by �α, but we are using the common convention that antithetic shear (i.e., in the

opposite sense from the main fault) is positive. Using the transformation of vectors equation,

3.6, we can write the relationship of the velocity of a point undergoing inclined shear in two

coordinate systems as

v 0
1 ¼ a11v1 þ a12v2 ¼ v1 cosα� v2 sinα

v 0
2 ¼ a21v1 þ a22v2 ¼ v1 sinαþ v2 cosα

(11:13a)

and the reverse transformation:

v1 ¼ a11v
0
1 þ a21v

0
2 ¼ v 0

1 cosαþ v 0
2 sinα

v2 ¼ a12v
0
1 þ a22v

0
2 ¼ �v 0

1 sinαþ v 0
2 cosα

(11:13b)

In the inclined simple shearmodel, the velocity perpendicular to the shearing, v 0
1, is assumed to

be constant and, furthermore, we have the boundary condition that where the fault is horizon-

tal outside of the zone of inclined shear, the horizontal velocity is the fault slip rate s, and the

vertical velocity is zero (Fig. 11.4). Using this condition and Equation 11.13a, we can thus write

v 0
1 ¼ s cosα

Substituting this expression into Equation 11.13b, we get

v1 ¼ s cos2αþ v 0
2 sinα

v2 ¼ �s cosα sinαþ v 0
2 cosα

(11:14)

We can nowuse the velocity boundary condition fromEquation 11.10 for the listric normal fault

shown in Figure 11.4, assuming that the footwall velocity is defined by 2v1 and 2v2 (Fig. 11.4).

Substituting and rearranging Equations 11.14 to solve for v 0
2:

Figure 11.4 Geometric model of a similar fold produced by inclined shear with angleα.

Two coordinate systems are used to solve this problem: one geographic (x1�x2) and

another based on the direction of shear (x0
1�x0

2). Arrows show the velocities in the

hanging wall and footwall.

226 Velocity description of deformation

v 0
2 ¼

s cos α sin αþ
@f

@x1

� �

cos2 α

� �

þ 2v2 �
2v1

@f

@x1

cosα�
@f

@x1
sinα

(11:15)

where

@f

@x1
¼

@x2
@x1

¼ tanδ

δ is the local dip of the fault at a position directly down the shear plane from the point of

interest (Fig. 11.4). Equation 11.15 can be simplified for the casewhere the footwall is treated as

stationary. The value for v 0
2 can be substituted into Equations 11.14 to solve for v1 and v2 at any

point. The function SimilarFold, below, plots the evolution of a similar fold with a fixed

footwall. To produce a rollover with a shear angle α of 30� type:

yp = [50,100,150,200,250]; %Beds datums

psect = [1000,500]; %Section parameters

pslip = [200,1]; %Slip parameters

frames = SimilarFold(yp,psect,30*pi/180,pslip); %Make fold with 30 deg shear

Upon pressing return, youwill be asked to digitize the geometry of the listric fault in a figure

window. After that, you will see a movie of the fold’s evolution.

function frames = SimilarFold(yp,psect,alpha,pslip)

%SimilarFold plots the evolution of a similar fold

%

% USE: frames = SimilarFold(yp,psect,alpha,pslip)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

% number of points in each bed

% alpha = Shear angle. Positive for shear antithetic to the fault and

% negative for shear synthetic to the fault

% pslip = A 1 x 2 vector containing the total and incremental slip

% frames = An array structure containing the frames of the fold evolution

% You can play the movie again just by typing movie(frames)

%

% NOTE: Use positive pslip for a normal fault

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

[XP,YP]=meshgrid(xp,yp);

%Slip and number of slip increments

slip = pslip(1); sinc = pslip(2);

ninc=round(slip/sinc);

11.4 Geological application: Fault-related folding 227

%Prompt the user to select the geometry of the fault. If the current fault

%trajectory is not satisfactory, the user can re-select the input points

a='n';

while a=='n'

%Plot beds

for i=1:size(yp,2)

plot(XP(i,:),YP(i,:),'k-');

hold on;

end

axis equal;

axis([0 extent 0 2.0*max(yp)]);

%Digitize fault

disp ('Digitize a listric fault shallowing to the right');

disp ('Left mouse button picks points');

disp ('Right mouse button picks last point');

fault = []; n = 0; but = 1;

while but == 1

n = n + 1;

[xi,yi,but] = ginput(1);

plot (xi,yi,'-or','LineWidth',1.5); %Plots point

fault(n,1) = xi; fault(n,2) = yi; %Add point to fault

end

hold off;

a=input('Would you like to keep the current fault? (y/n) ', 's');

end

%Sort fault points in x

fault = sortrows(fault,1);

xf = fault(:,1)';

yf = fault(:,2)';

%Find tangent of dip of fault segments: df/dx

dfx = zeros(1,n);

for i=1:n-1

dfx(i) = (yf(i+1)-yf(i))/(xf(i+1)-xf(i));

end

dfx(n) = dfx(n-1);

%From the origin of each bed compute the number of points that are in the

%footwall. These points won't move

fwid = zeros(size(yp,2));

%Find y of fault below/above bed points

yfi = interp1(xf,yf,xp,'linear','extrap');

for i=1:size(yp,2)

fwid(i)=0;

for j=1:size(xp,2)

if yp(i) < yfi(j)

fwid(i) = fwid(i) + 1;

228 Velocity description of deformation

end

end

end

%Coordinate transformation matrix between horizontal-vertical coordinate

%system and coordinate system parallel and perpendicular to shear direction

a11=cos(alpha);

a12=-sin(alpha);

a21=sin(alpha);

a22=a11;

%Transform fault and beds to coordinate system parallel and perpendicular

%to shear direction

xfS = xf*a11+yf*a12; %Fault

XPS = XP*a11+YP*a12; %Beds

YPS = XP*a21+YP*a22;

%Compute deformation

%Loop over slip increments

for i=1:ninc

%Loop over number of beds

for j=1:size(XPS,1)

%Loop over number of bed points in hanging wall

for k=fwid(j)+1:size(XPS,2)

%Find local tangent of fault dip: df/dx

if XPS(j,k) <= xfS(1)

ldfx = dfx(1);

elseif XPS(j,k) >= xfS(n)

ldfx = dfx(n);

else

a = 'n'; L = 1;

while a=='n'

if XPS(j,k) >= xfS(L) && XPS(j,k) < xfS(L+1)

ldfx = dfx(L);

a = 's';

else

L = L + 1;

end

end

end

%Compute velocities perpendicular and along shear direction

%Equations 11.13 and 11.15

vxS = sinc*a11;

vyS = (sinc*(a11*a21+ldfx*a11^2))/(a11-ldfx*a21);

%Move point

XPS(j,k) = XPS(j,k) + vxS;

YPS(j,k) = YPS(j,k) + vyS;

end

end

11.4 Geological application: Fault-related folding 229

%Transform beds back to geographic coordinate system

XP=XPS*a11+YPS*a21;

YP=XPS*a12+YPS*a22;

%Plot increment

%Fault

plot(xf,yf,'r-','LineWidth',2);

hold on;

%Beds

for j=1:size(yp,2)

%Footwall

plot(XP(j,1:1:fwid(j)), YP(j,1:1:fwid(j)),'k-');

%Hanging wall

plot(XP(j,fwid(j)+1:1:size(XP,2)),...

YP(j,fwid(j)+1:1:size(XP,2)),'k-');

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ',num2str(i*sinc)));

axis equal;

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

end

end

11.4.3 Fault-propagation folding

Fault-propagation folds consume slip at the tip of a propagating fault. Here, wewill concentrate

on two types of fault-propagation folding velocity models: kink models, which include fixed

axis and parallel models, and the trishear model.

Fixed axis kink model

The basic equations for fixed axis fault-propagation folding come from Suppe and Medwedeff

(1990). For a step off a horizontal decollement (Fig. 11.5) and assuming no excess shear, the fold

interlimb half angles (γ1;γi ;γ
�
i ;γe;γ

�
e) are related to the dip of the fault (θ) by the following

equations:

γ1 ¼
180� � θ

2
γ�
e ¼ cot�1 3� 2cosθ

2sinθ

� �

γ�
i ¼ γ1 � γ�

e

γe ¼ cot�1ðcotγ�
e � 2cotγ1Þ γi ¼ sin�1 sinγ�

i sinγe

sinγ�
e

� �

(11:16)

230 Velocity description of deformation

The kink axis at the top of the forelimb is assumed to be fixed (nomaterial flows through it),

and the forelimb is allowed to thin or thicken (Fig. 11.5). In addition, the ratio of back limb (i.e.,

ramp) length, Lb , to fault slip, which is equivalent to the fault propagation to fault slip ratio

(P=S) is (Suppe et al., 1992):

P=S ¼
cotγ�

e � cotγ1

1

sinθ
�

sinγi=sinγe

sinðγe þ γi � θÞ

þ
sinðγ1 þ θÞ

sinγ1

(11:17)

This ratio is constant in the model, and is equal to 2.0 (you can convince yourself by computing

Eqs. 11.16 and 11.17 with different values of θ). The fixed axis model has three velocity

domains (Fig. 11.5), and in each of these domains the velocities are (Hardy and Poblet, 1995)

Domain 1: v1 ¼ s; v2 ¼ 0

Domain 2: v1 ¼ s cosθ; v2 ¼ s sinθ

Domain 3: v1 ¼ R s cosγe; v2 ¼ R s sinγe

(11:18)

where s is the fault slip rate, γe is the dip of the front axial surface and R is the change in slip

across the boundary between domains 2 and 3 (Fig. 11.5). Notice again that since v1 and v2
within each domain are constant, the incompressibility criterion (Eq. 11.3) is satisfied.R is given

by (Hardy and Poblet, 1995)

R ¼
sinðγ1 þ θÞ

sinðγ1 þ γeÞ
(11:19)

The following function, FixedAxisFPF, plots the evolution of a simple step, fixed axis fault-

propagation fold. The structure of the program is similar to that of function FaultBendFold.

From the input ramp angle θ, Equations 11.16, 11.17, and 11.19 are solved, and then the

velocities of Equation 11.18 are applied to the bedding points as the structure grows. To

make a fixed axis fault-propagation fold with a 20� dipping ramp, type:

Figure 11.5 Geometric model of simple step, fixed axis fault-propagation folding with

the controlling parameters together with the three velocity domains. Arrows show the

velocity in each domain. Notice that the kink axis at the top of the forelimb is fixed

(material does not flow through it).

11.4 Geological application: Fault-related folding 231

yp = [50 100 150 200 250]; %Beds datums

psect = [1000 500]; %Section parameters

pramp = [400 20*pi/180]; %Fault parameters

pslip = [100 0.5]; %Slip parameters

frames = FixedAxisFPF(yp,psect,pramp,pslip); %Make fold

And to make one with a 40� dipping ramp type:

pramp = [400 40*pi/180]; %Fault parameters

frames = FixedAxisFPF(yp,psect,pramp,pslip); %Make fold

You will see thickening of the forelimb for the 20� dipping ramp, and thinning of the

forelimb for the 40� dipping ramp. In the case of a step up from a decollement (Fig. 11.5), the

forelimb thickens if the ramp angle θ529� and thins if θ429� (Suppe and Medwedeff, 1990).

For θ ¼ 29�, bed length and thickness normal to bedding are preserved, and the fixed axis

model is identical to the parallel model. Try running the program with other θ angles. You will

find that it is not possible to produce an anticline with an overturned limb. That is a major

limitation of the fixed axis model.

function frames = FixedAxisFPF(yp,psect,pramp,pslip)

%FixedAxisFPF plots the evolution of a simple step, fixed axis

%fault propagation fold

%

% USE: frames = FixedAxisFPF(yp,psect,pramp,pslip)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

% number of points in each bed

% pramp = A 1 x 2 vector containing the x coordinate of the lower bend in

% the decollement, and the ramp angle

% pslip = A 1 x 2 vector containing the total and incremental slip

% frames = An array structure containing the frames of the fold evolution

% You can play the movie again just by typing movie(frames)

%

% NOTE: Input ramp angle should be in radians

% Base of layers

base = yp(1);

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

%Fault geometry and slip

xramp = pramp(1); ramp = pramp(2);

slip = pslip(1); sinc = pslip(2);

%Number of slip increments

ninc=round(slip/sinc);

232 Velocity description of deformation

%Solve model parameters

%First equation of Eq. 11.16

gam1=(pi-ramp)/2.;

%Second equation of Eq. 11.16

gamestar = acot((3.-2.*cos(ramp))/(2.*sin(ramp)));

%Third equation of Eq. 11.16

gamistar=gam1-gamestar;

%Fourth equation of Eq. 11.16

game=acot(cot(gamestar)-2.*cot(gam1));

%Fifth equation of Eq. 11.16

gami = asin((sin(gamistar)*sin(game))/sin(gamestar));

%Ratio of backlimb length to total slip (P/S)(Eq. 11.17)

a1=cot(gamestar)-cot(gam1);

a2=1./sin(ramp)-(sin(gami)/sin(game))/sin(game+gami-ramp);

a3=sin(gam1+ramp)/sin(gam1);

lbrat=a1/a2 + a3;

%Change in slip between domains 2 and 3 (Eq. 11.19)

R=sin(gam1+ramp)/sin(gam1+game);

%From the origin of each bed compute the number of points that are in the

%hanging wall. These points are the ones that will move. Notice that this

%has to be done for each slip increment, since the fault propagates

hwid = zeros(ninc,size(yp,2));

for i=1:ninc

uplift = lbrat*i*sinc*sin(ramp);

for j=1:size(yp,2)

if yp(j)-base<=uplift

hwid(i,j)=0;

for k=1:size(xp,2)

if xp(k) <= xramp + (yp(j)-base)/tan(ramp)

hwid(i,j)=hwid(i,j)+1;

end

end

else

hwid(i,j)=size(xp,2);

end

end

end

%Deform beds. Apply velocity fields of Eq. 11.18

%Loop over slip increments

for i=1:ninc

% Compute uplift

lb = lbrat*i*sinc;

uplift = lb*sin(ramp);

lbh = lb*cos(ramp);

% Compute point at fault tip

xt = xramp + lbh;

yt = base + uplift;

%Loop over number of beds

11.4 Geological application: Fault-related folding 233

for j=1:size(XP,1)

%Loop over number of hanging wall points in each bed

for k=1:hwid(i,j)

%If point is in domain 1

if XP(j,k) < xramp - (YP(j,k)-base)/tan(gam1)

XP(j,k) = XP(j,k) + sinc;

else

%If point is in domain 2

if XP(j,k) < xt - (YP(j,k)-yt)/tan(gam1)

XP(j,k) = XP(j,k) + sinc*cos(ramp);

YP(j,k) = YP(j,k) + sinc*sin(ramp);

else

%If point is in domain 3

if XP(j,k) < xt + (YP(j,k)-yt)/tan(game)

XP(j,k) = XP(j,k) + sinc*R*cos(game);

YP(j,k) = YP(j,k) + sinc*R*sin(game);

end

end

end

end

end

%Plot increment

%Fault

xf=[0 xramp xramp+lbh];

yf=[base base uplift+base];

plot(xf,yf,'r-','LineWidth',2);

hold on;

%Beds

for j=1:size(yp,2)

%If beds cut by the fault

if yp(j)-base <= uplift

plot(XP(j,1:1:hwid(i,j)), YP(j,1:1:hwid(i,j)),'k-');

plot(XP(j,hwid(i,j)+1:1:size(xp,2)), YP(j,hwid(i,j)+...

1:1:size(xp,2)),'k-');

%If beds not cut by the fault

else

plot(XP(j,:), YP(j,:),'k-');

end

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ',num2str(i*sinc)));

axis equal;

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

end

end

234 Velocity description of deformation

Parallel kink model

In the parallel model, bed length and layer thickness are preserved, and overturned limbs are

allowed. The basic equations for a simple step, parallel fault-propagation fold (Fig. 11.6) are

(Suppe and Medwedeff, 1990)

1þ 2cos2γ�

sin2γ�
þ
cosθ� 2

sinθ
¼ 0 ð11:20Þ

γ1 ¼ 90� � θ=2; γ ¼ 90� þ γ� � γ1; β2 ¼ 180� � 2γ�

where θ is the dip of the fault and γ1, γ, γ
� are axial angles as in Fig. 11.6.

The problem with the parallel model is that the backlimb length Lb is only equal to the fault

length when θ ¼ 29�. Therefore, there is no direct way of deriving the fault propagation to fault

slip ratio P=S . This problem was solved by Hardy (1997) using geometrical relations between

fault slip and the height of the ramp (h), length of the ramp (L), and length of the forelimb (ef ,

Fig. 11.6). Here we just give the solution:

P=S ¼
1

1�
sinθ

sinð2γ� θÞ

� � (11:21)

Contrary to the fixed axis model, the P=S varies with θ in the parallel model. Figure 11.7

shows the variation of P=S for θ angles in the range 10–50�. For θ from 10 to 29�, the P=S

increases approximately linearly from 1.55 to 2.0, whereas above this angle the P=S increases

rapidly with θ reaching a value of 5.25 at θ ¼ 50�. At θ ¼ 29� the P=S of the fixed axis and

parallel models is identical.

The parallel model has four velocity domains (Fig. 11.6). The velocities in these domains are

(Hardy, 1997)

Figure 11.6 Geometric model of simple step, parallel fault-propagation folding with the

controlling parameters together with the four velocity domains. Arrows show the

velocity in each domain.

11.4 Geological application: Fault-related folding 235

Domain1: v1 ¼ s; v2 ¼ 0

Domain2: v1 ¼ s cosθ; v2 ¼ s sinθ

Domain3: v1 ¼ R1s cosγ; v2 ¼ R1s sinγ

Domain4: v1 ¼ R2s cosγ; v2 ¼ R2s sinγ

(11:22)

whereR1 andR2 are the slip ratios between the regions 2 and 3, and 2 and 4, respectively.R1 and

R2 are given by (Hardy and Poblet, 2005)

R1 ¼
sinðγ1 þ θÞ

sinðγ1 þ γÞ

R2 ¼
sinβ2

sinðβ2 � θþ γÞ

(11:23)

The function ParallelFPF, below, plots the evolution of a simple step, parallel fault-

propagation fold. The program’s structure is similar to that of the program before: First the

Figure 11.7 Variation of fault propagation to fault slip ratio (P S=) with step-up angle (θ),

for simple step, fixed axis and parallel fault-propagation folds. Notice that the P S= is

constant in fixed axis folds, while it is variable in parallel fault-propagation folds and

increases with θ. Star shows the location where fixed axis and parallel models intersect

and are identical.

236 Velocity description of deformation

program computes the model parameters (Eqs. 11.20, 11.21 and 11.23), and then it applies

the velocities of Equation 11.22 to the bedding points. ParallelFPF uses function

SuppeEquationTwo to compute γ� from the input θ (Eq. 11.20). To make a parallel fault-

propagation fold with a 20� dipping ramp, type:

yp = [50 100 150 200 250]; %Beds datums

psect = [1000 500]; %Section parameters

pramp = [400 20*pi/180]; %Fault parameters

pslip = [100 0.5]; %Slip parameters

frames = ParallelFPF(yp,psect,pramp,pslip); %Make fold

And to make one with a 40� dipping ramp type:

pramp = [400 40*pi/180]; %Fault parameters

frames = ParallelFPF(yp,psect,pramp,pslip); %Make fold

You will see that the 20� ramp produces a fold with an overturned forelimb, while the 40�

ramp results in a fold with an upright forelimb. Overturned limbs are produced by ramp angles

θ525� (Suppe and Medwedeff, 1990). Also, since the kink axis at the top of the forelimb is not

fixed, there is flow of material through it. At θ529� material rolls from the forelimb onto the

crest of the fold, whereas at θ429� material from the crest rolls onto the forelimb (Zapata and

Allmendinger, 1996). At θ ¼ 29� there is no flow of material through the kink axis (fixed axis

and parallel models are identical). This has important implications for the geometry of growth

strata as we will see in Section 11.5.

function frames = ParallelFPF(yp,psect,pramp,pslip)

%ParallelFPF plots the evolution of a simple step, parallel

%fault propagation fold

%

% USE: frames = ParallelFPF(yp,psect,pramp,pslip)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

% number of points in each bed

% pramp = A 1 x 2 vector containing the x coordinate of the lower bend in

% the decollement, and the ramp angle

% pslip = A 1 x 2 vector containing the total and incremental slip

% frames = An array structure containing the frames of the fold evolution.

% You can play the movie again just by typing movie(frames)

%

% NOTE: Input ramp angle should be in radians

%

% ParallelFPF uses function SuppeEquationTwo

% Base of layers

base = yp(1);

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

11.4 Geological application: Fault-related folding 237

[XP, YP]=meshgrid(xp,yp);

%Fault geometry and slip

xramp = pramp(1); ramp = pramp(2);

slip = pslip(1); sinc = pslip(2);

%Number of slip increments

ninc=round(slip/sinc);

%Solve model parameters

%Solve first equation in Eq. 11.20 by minimizing SuppeEquationTwo

options=optimset('display','off');

gamstar = fzero('SuppeEquationTwo',0.5,options,ramp);

%Solve second equation in Eq. 11.20

gam1 = pi/2. - ramp/2.;

%Solve third equation in Eq. 11.20

gam = pi/2.+gamstar-gam1;

%Solve fourth equation in Eq. 11.20

bet2 = pi - 2.*gamstar;

%Other angle for computation

kap = pi - bet2 + ramp;

%Eq. 11.21

lbrat = 1./(1.-sin(ramp)/sin(2.*gam-ramp));

%Eq. 11.23

R1=sin(gam1+ramp)/sin(gam1+gam);

R2=sin(bet2)/sin(bet2-ramp+gam);

%From the origin of each bed compute the number of points that are in the

%hanging wall. These points are the ones that will move. Notice that this

%has to be done for each slip increment, since the fault propagates

hwid = zeros(ninc,size(yp,2));

for i=1:ninc

uplift = lbrat*i*sinc*sin(ramp);

for j=1:size(yp,2)

if yp(j)-base<=uplift

hwid(i,j)=0;

for k=1:size(xp,2)

if xp(k) <= xramp + (yp(j)-base)/tan(ramp)

hwid(i,j)=hwid(i,j)+1;

end

end

else

hwid(i,j)=size(xp,2);

end

end

end

%Deform beds: Apply velocity fields of Eq. 11.22

%Loop over slip increments

238 Velocity description of deformation

for i=1:ninc

% Compute uplift

lb = lbrat*i*sinc;

uplift = lb*sin(ramp);

lbh = lb*cos(ramp);

% Compute distance ef in Figure 11.6

ef=uplift/sin(2.*gamstar);

% Compute fault tip

xt=xramp+lbh;

yt=base+uplift;

% Compute location e in Figure 11.6

xe=xt+ef*cos(kap);

ye=yt+ef*sin(kap);

%Loop over number of beds

for j=1:size(XP,1)

%Loop over number of hanging wall points in each bed

for k=1:hwid(i,j)

%If point is in domain 1

if XP(j,k) < xramp - (YP(j,k)-base)/tan(gam1)

XP(j,k) = XP(j,k) + sinc;

else

% if y lower than y at e

if YP(j,k) < ye

%If point is in domain 2

if XP(j,k) < xt + (YP(j,k)-yt)/tan(kap)

XP(j,k) = XP(j,k) + sinc*cos(ramp);

YP(j,k) = YP(j,k) + sinc*sin(ramp);

else

%If point is in domain 4

if XP(j,k) < xt + (YP(j,k)-yt)/ tan(gam)

XP(j,k) = XP(j,k) + sinc*R2*cos (gam);

YP(j,k) = YP(j,k) + sinc*R2*sin (gam);

end

end

% if y higher than y at e

else

%If point is in domain 2

if XP(j,k) < xe - (YP(j,k)-ye)/tan(gam1)

XP(j,k) = XP(j,k) + sinc*cos(ramp);

YP(j,k) = YP(j,k) + sinc*sin(ramp);

else

%If point is in domain 3

if XP(j,k) < xe + (YP(j,k)-ye)/tan(gam)

XP(j,k) = XP(j,k) + sinc*R1*cos(gam);

YP(j,k) = YP(j,k) + sinc*R1*sin(gam);

else

%If point is in domain 4

if XP(j,k) < xt + (YP(j,k)-yt)/tan (gam)

11.4 Geological application: Fault-related folding 239

XP(j,k) = XP(j,k) + sinc*R2*cos (gam);

YP(j,k) = YP(j,k) + sinc*R2*sin (gam);

end

end

end

end

end

end

end

%Plot increment

%Fault

xf=[0 xramp xramp+lbh];

yf=[base base uplift+base];

plot(xf,yf,'r-','LineWidth',2);

hold on;

%Beds

for j=1:size(yp,2)

%If beds cut by the fault

if yp(j)-base <= uplift

plot(XP(j,1:1:hwid(i,j)), YP(j,1:1:hwid(i,j)),'k-');

plot(XP(j,hwid(i,j)+1:1:size(xp,2)),...

YP(j,hwid(i,j)+1:1:size(xp,2)),'k-');

%If beds not cut by the fault

else

plot(XP(j,:), YP(j,:),'k-');

end

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ',num2str(i*sinc)));

axis equal;

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

end

end

function y = SuppeEquationTwo(gamstar,ramp)

%SuppeEquationTwo: First equation in Eq. 11.20 for parallel fault

%propagation folding

y = (1.+2.*cos(gamstar)*cos(gamstar))/sin(2.*gamstar) +...

(cos(ramp)-2.)/sin(ramp);

end

Trishear model

In the kink models above, the relations between fault parameters (e.g., ramp angle) and fold

parameters (e.g., interlimb angles) are established at the start of deformation, and the fold

240 Velocity description of deformation

grows in a similar fashion by increasing in size but not changing in shape. This allows the

derivation of mathematical rules to predict fold geometry from fault geometry and vice versa

(e.g., Eqs. 11.16 and 11.20). Kink models, however, cannot explain some of the features com-

monly observed in fault propagation folds, such as footwall synclines and changes in strati-

graphic thickness and dip on forelimbs. These features are better explained by the trishear

kinematic model (Allmendinger, 1998; Erslev, 1991).

The velocity field for the trishear model was derived by Zehnder and Allmendinger (2000);

here we follow the same line of reasoning. In trishear, the displacement along the fault is

accommodated by deformation in a triangular shear zone radiating from the fault tip

(Fig. 11.8). The footwall is held fixed and the hanging wall moves rigidly along the fault at the

fault slip rate s. The movement of the fault tip is determined by the P=S , which in trishear,

unlike kink models, is an input parameter independent of ramp angle θ or other parameters.

The velocity field is defined in a coordinate system attached to the fault tip and with axes

parallel and perpendicular to the fault line (x1�x2 in Fig. 11.8). We seek to construct a velocity

field in the trishear zone that conserves area, is continuous, and matches the velocities at the

hanging wall and footwall boundaries of the zone. The boundary conditions are

Figure 11.8 Geometry of the trishearmodel showing the coordinate systemsused in the

model.

11.4 Geological application: Fault-related folding 241

v1 ¼ s v2 ¼ 0 on x2 ¼ x1 tan’1

v1 ¼ 0 v2 ¼ 0 on x2 ¼ �x1 tan’2

(11:24)

To find the velocities, we will choose a v1 field consistent with Equation 11.24, and then

determine v2 fromEquations 11.24 and11.3 (incompressibility). Let us assume that the trishear

zone is symmetric, ’1 ¼ ’2 ¼ ’. The simplest v1 field that you can think of is where v1 varies

linearly from one side of the triangular shear zone to the other:

v1 ¼
s

2

x2
x1 tan’

þ 1

� �

We can make this equation more general by specifying a “concentration factor” c, which

allows for non-linear variation in v1 as a function of the power 1=c. To simplify writing the

equations, let m ¼ tan’:

v1 ¼
s

2
sgnðx2Þ

x2j j

x1m

� �1=c

þ 1

" #

x140 � x1m
 x2
 x1m c 1 (11:25)

where sgnðx2Þ denotes the sign of x2. It can easily be seen that the above field satisfies the v1

boundary conditions in Equation 11.24. To find v2, we differentiate Equation 11.25with respect

to x1, invoke incompressibility (Eq. 11.3),

@v2
@x2

¼ �
@v1
@x1

and integrate with respect to x2 giving

v2 ¼
sm

2ð1þ cÞ

x2j j

x1m

� �ð1þcÞ=c

þ C

The constant of integration, C, is found by using the v2 boundary conditions in Equation 11.24.

The resulting v2 field in the trishear zone is

v2 ¼
sm

2ð1þ cÞ

x2j j

x1m

� �ð1þcÞ=c

� 1

" #

(11:26)

For c ¼ 1, the v1 velocity distribution (Eq. 11.25) is linear in x2, producing a strain rate that is

nearly uniform with respect to x2. We call this field the “linear field.” Velocity vectors and v1; v2
variations across the trishear zone for this case are plotted in Figure 11.9a for ’ ¼ 30�. As c

increases, the deformation concentrates towards the center of the trishear zone, producing

non-uniform strain rates. Figure 11.9b shows the velocity vectors and v1; v2 variations for c ¼ 3

and ’ ¼ 30�. Note that as x2 ! �x1 tan’, v2=v1 ! � tan’, i.e., as the footwall trishear boundary

is approached, the velocity vectors are parallel to the boundary.

Given the velocity field of Equations 11.25 and 11.26, the resultant deformation is easily

computed. We introduce three coordinate systems (Fig. 11.8): the horizontal–vertical system

(H�V), which is used for inputting and plotting the data; the z - h system, which is attached to

the initial fault tip and is stationary; and the x1�x2 system,which is attached to the fault tip and

moves at a speed ðP=SÞs. At the start of the deformation, the z - h and x1�x2 systems overlap,

and at a later time t they are related by

x1 ¼ � � ðP=SÞst x2 ¼ � (11:27)

The normal flow of a trishear program is then as follows: (1) Bedding data are entered in the

H� V coordinate system; (2) the data are transformed to the z - h system; (3) at each increment

242 Velocity description of deformation

of deformation x1; x2 (Eq. 11.27) and v1; v2 (Eqs. 11.25 and 11.26) are computed, and �; � are

updated accordingly; and (4) the data are transformed back to theH�V coordinate system and

plotted. The following MATLAB function, Trishear, carries out all these steps. Trishear uses

function VelTrishear to compute the velocity field. To make a contractional, trishear fault-

propagation fold with initial fault tip (x1 = 300, x2 = 50), ramp angle = 30�, P=S = 1.5, trishear

angle = 60�, fault slip = 100 units, and concentration factor = 1.0, type:

yp = [50 80 110 140 170]; %Beds datums

psect = [1000 500]; %Section parameters

tparam = [300 50 30*pi/180 1.5 60*pi/180 100 1.0]; %Trishear parameters

sinc = 1.0; %Slip parameters

frames = Trishear(yp,psect,tparam,sinc); %Make trishear fold

You will see that the geometry of the fold is not similar, and that geometry and finite strain

vary along and across the stratigraphy with proximity to the fault tip. Trishear fold geometries

are richer than those of kink models. The drawback, however, is that because trishear folds are

Figure 11.9 Velocity vectors and variation of velocities v1 and v2 along line AB for (a)

symmetric, linear v1 field (c ¼ 1:0), and (b) symmetric, non-linear v1 field with c ¼ 3:0.

11.4 Geological application: Fault-related folding 243

not similar, there are no mathematical or geometric rules to relate fold geometry to fault

geometry. We will talk about the solution to this problem in the next chapter.

function frames = Trishear(yp,psect,tparam,sinc)

%Trishear plots the evolution of a 2D trishear fault propagation fold

%

% USE: frames = Trishear(yp,psect,tparam,sinc)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

number of points in each bed

% tparam = A 1 x 7 vector containing: the x coordinate of the fault tip

% (entry 1), the y coordinate of the fault tip (entry 2), the

% ramp angle (entry 3), the P/S (entry 4), the trishear angle

% (entry 5), the fault slip (entry 6), and the concentration

% factor (entry 7)

% sinc = slip increment

% frames = An array structure containing the frames of the fold evolution

% You can play the movie again just by typing movie(frames)

%

% NOTE: Input ramp and trishear angles should be in radians.

% For reverse faults use positive slip and slip increment.

% For normal faults use negative slip and slip increment

%

% Trishear uses function VelTrishear

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

% Model parameters

xt = tparam(1); %x fault tip

yt = tparam(2); %y fault tip

ramp = tparam(3);%Ramp angle

ps = tparam(4); %P/S

tra = tparam(5); %Trishear angle

m = tan(tra/2); %Tangent of half trishear angle

slip = tparam(6); %Fault slip

c = tparam(7); %Concentration factor

%Number of slip increments

ninc=round(slip/sinc);

%Transformation matrix from geographic to fault coordinates

a11=cos(ramp);

a12=cos(pi/2-ramp);

a21=cos(pi/2+ramp);

a22=a11;

244 Velocity description of deformation

% Transform to coordinates parallel and perpendicular to the fault, and

% with origin at initial fault tip

FX=(XP-xt)*a11+(YP-yt)*a12;

FY=(XP-xt)*a21+(YP-yt)*a22;

%Run trishear model

%Loop over slip increments

for i=1:ninc

%Loop over number of beds

for j=1:size(FX,1)

%Loop over number of points in each bed

for k=1:size(FX,2)

%Solve trishear in a coordinate system attached to current

%fault tip (Eq. 11.27)

xx=FX(j,k)-(ps*i*abs(sinc));

yy=FY(j,k);

%Compute velocity (Eqs. 11.25 and 11.26)

[vx,vy]=VelTrishear(xx,yy,sinc,m,c);

%Update FX, FY coordinates

FX(j,k)=FX(j,k)+vx;

FY(j,k)=FY(j,k)+vy;

end

end

%Transform back to horizontal-vertical XP, YP coordinates for plotting

XP=(FX*a11+FY*a21)+xt;

YP=(FX*a12+FY*a22)+yt;

%Make fault geometry

xtf=xt+(ps*i*abs(sinc))*cos(ramp);

ytf=yt+(ps*i*abs(sinc))*sin(ramp);

XF=[xt xtf];

YF=[yt ytf];

%Make trishear boundaries

axlo=0:10:300;

htz=axlo*m;

ftz=-axlo*m;

XHTZ=(axlo*a11+htz*a21)+xtf;

YHTZ=(axlo*a12+htz*a22)+ytf;

XFTZ=(axlo*a11+ftz*a21)+xtf;

YFTZ=(axlo*a12+ftz*a22)+ytf;

%Plot increment. Fault

plot(XF, YF,'r-','LineWidth',2);

hold on;

% Hanging wall trishear boundary

plot(XHTZ, YHTZ,'b-');

% Footwall trishear boundary

plot(XFTZ, YFTZ,'b-');

% Beds: Split hanging wall and footwall points

hw = zeros(1,size(XP,2));

11.4 Geological application: Fault-related folding 245

fw = zeros(1,size(XP,2));

xhb = zeros(size(XP,1),size(XP,2));

yhb = zeros(size(XP,1),size(XP,2));

xfb = zeros(size(XP,1),size(XP,2));

yfb = zeros(size(XP,1),size(XP,2));

for j=1:size(XP,1)

hw(j)=0.0;

fw(j)=0.0;

for k=1:size(XP,2)

%If hanging wall points

if XP(j,k)<=xt+(YP(j,k)-yt)/tan(ramp),

hw(j)=hw(j)+1;

xhb(j,hw(j))=XP(j,k);

yhb(j,hw(j))=YP(j,k);

%if footwall points

else

fw(j)=fw(j)+1;

xfb(j,fw(j))=XP(j,k);

yfb(j,fw(j))=YP(j,k);

end

end

plot(xhb(j,1:1:hw(j)),yhb(j,1:1:hw(j)),'k-');

plot(xfb(j,1:1:fw(j)),yfb(j,1:1:fw(j)),'k-');

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ',num2str(i*sinc)));

axis equal;

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

end

end

function [vx, vy] = VelTrishear(xx,yy,sinc,m,c)

%VelTrishear: Symmetric, linear vx trishear velocity field

%Equation 6 of Zehnder and Allmendinger 2000

%If behind the fault tip

if xx <0.

%If hanging wall

if yy >=0.

vx = sinc;

vy = 0.;

%If footwall

elseif yy<0.

vx=0.;

vy=0.;

246 Velocity description of deformation

end

%If ahead the fault tip

elseif xx>=0.

%If hanging wall

if yy>=xx*m

vx=sinc;

vy=0.;

%If footwall

elseif yy<=-xx*m

vx=0.;

vy=0.;

%If inside the trishear zone

else

%Some variables to speed up the computation

a=1+c; b=1/c; d=a/c; ayy=abs(yy); syy = yy/ayy;

%Eq. 11.25

vx=(sinc/2.)*(syy*realpow(ayy/(xx*m),b)+1);

%Eq. 11.26

vy=(sinc/2.)*(m/a)*(realpow(ayy/(xx*m),d)-1);

end

end

end

11.4.4 Modeling sedimentation: Growth strata

Once the velocity fields of the fault-related fold models are specified, it is easy to model time-

dependent processes such as sedimentation during growth of the structure (syntectonic sed-

imentation). To illustrate this, we will follow a simple approach. We introduce a ratio G that

describes the relation between regional subsidence and local uplift of the anticlinal crest. When

G ¼ 1:0 (subsidence = uplift), the anticlinal crest is always at the surface and sedimentation

takes place only on the flanks of the structure. When G41:0 (subsidence > uplift), sedimenta-

tion takes place on the crest as well as the flanks, but strata on the crest are thinner than those

on the flanks. The crestal uplift rate for the fault-bend fold and trishear models is just sinθs

and for the simple step, fixed axis, and parallel fold models is twice that (2sinθs; Hardy and

Poblet, 2005). In addition, we will assume that the basin always fills to the top with strata and

that the growing fold has no effect on the local sedimentation. Essentially, a background

regional sedimentation fills the basin to the top, and concepts such as base level, erosion, etc.

are not considered. These assumptions are somewhat naive, but they are sufficient to inves-

tigate the pattern of syntectonic growth strata in the different fault-related fold models.

The functions FaultBendFoldGrowth, FixedAxisFPFGrowth, ParallelFPFGrowth, and

TrishearGrowth plot the evolution of syntectonic sedimentation in the fault-bend fold, fixed

axis, parallel, and trishear models, respectively. These functions use the assumptions intro-

duced before. For the purpose of illustration, we just include here function TrishearGrowth.

To plot the evolution of syntectonic sedimentation in a trishear fold with subsidence versus

uplift rate G ¼ 2:0, type:

yp = [50 80 110 140 170]; %Beds datums

psect = [1000 500]; %Section parameters

11.4 Geological application: Fault-related folding 247

tparam = [300 50 30*pi/180 1.5 60*pi/180 100 1.0]; %Trishear parameters

sinc = 1.0; %Slip parameters

G = 2.0; %Subsidence versus uplift rate

frames = TrishearGrowth(yp,psect,tparam,sinc, G); %Make trishear fold

function frames = TrishearGrowth(yp,psect,tparam,sinc, G)

%Trishear plots the evolution of a 2D trishear fault propagation fold and

%adds growth strata for a given subsidence versus uplift rate

%

% USE: frames = TrishearGrowth(yp,psect,tparam,sinc, G)

%

% yp = Datums or vertical coordinates of undeformed, horizontal beds

% psect = A 1 x 2 vector containing the extent of the section, and the

% number of points in each bed

% tparam = A 1 x 7 vector containing: the x coordinate of the fault tip

% (entry 1), the y coordinate of the fault tip (entry 2), the

% ramp angle (entry 3), the P/S (entry 4), the trishear angle

% (entry 5), the fault slip (entry 6), and the concentration

% factor (entry 7)

% sinc = slip increment

% G = Subsidence versus uplift rate

% frames = An array structure containing the frames of the fold evolution.

% You can play the movie again just by typing movie(frames)

%

% NOTE: Input ramp and trishear angles should be in radians.

% For reverse faults use positive slip and slip increment.

% For normal faults use negative slip and slip increment

%

% TrishearGrowth uses function VelTrishear

% Top of layers

top = yp(size(yp,2));

%Extent of section and number of points in each bed

extent = psect(1); npoint = psect(2);

%Make undeformed beds geometry: This is a grid of points along the beds

xp=0.0:extent/npoint:extent;

[XP, YP]=meshgrid(xp,yp);

% Model parameters

xt = tparam(1); %x fault tip

yt = tparam(2); %y fault tip

ramp = tparam(3);%Ramp angle

ps = tparam(4); %P/S

tra = tparam(5); %Trishear angle

m = tan(tra/2); %Tangent of half trishear angle

slip = tparam(6); %Fault slip

c = tparam(7); %Concentration factor

248 Velocity description of deformation

%Number of slip increments

ninc=round(slip/sinc);

%Transformation matrix from geographic to fault coordinates

a11=cos(ramp);

a12=cos(pi/2-ramp);

a21=cos(pi/2+ramp);

a22=a11;

% Make ten growth strata

nincG=round(ninc/10);

% Initialize count of growth strata to 1

countG = 1;

% Transform to coordinates parallel and perpendicular to the fault, and

% with origin at initial fault tip

FX=(XP-xt)*a11+(YP-yt)*a12;

FY=(XP-xt)*a21+(YP-yt)*a22;

%Run trishear model

%Loop over slip increments

for i=1:ninc

%Loop over number of beds

for j=1:size(FX,1)

%Loop over number of points in each bed

for k=1:size(FX,2)

%Solve trishear in a coordinate system attached to current

%fault tip (Eq. 11.27)

xx=FX(j,k)-(ps*i*abs(sinc));

yy=FY(j,k);

%Compute velocity (Eqs. 11.25 and 11.26)

[vx,vy]=VelTrishear(xx,yy,sinc,m,c);

%Update FX, FY coordinates

FX(j,k)=FX(j,k)+vx;

FY(j,k)=FY(j,k)+vy;

end

end

%Transform back to horizontal-vertical XP, YP coordinates for plotting

XP=(FX*a11+FY*a21)+xt;

YP=(FX*a12+FY*a22)+yt;

%Make fault geometry

xtf=xt+(ps*i*abs(sinc))*cos(ramp);

ytf=yt+(ps*i*abs(sinc))*sin(ramp);

XF=[xt xtf];

YF=[yt ytf];

%Make trishear boundaries

axlo=0:10:300;

htz=axlo*m;

11.4 Geological application: Fault-related folding 249

ftz=-axlo*m;

XHTZ=(axlo*a11+htz*a21)+xtf;

YHTZ=(axlo*a12+htz*a22)+ytf;

XFTZ=(axlo*a11+ftz*a21)+xtf;

YFTZ=(axlo*a12+ftz*a22)+ytf;

%Plot increment. Fault

plot(XF,YF,'r-','LineWidth',2);

hold on;

% Hanging wall trishear boundary

plot(XHTZ, YHTZ,'b-');

% Footwall trishear boundary

plot(XFTZ, YFTZ,'b-');

% Beds: Split hanging wall and footwall points

hw = zeros(1,size(XP,2));

fw = zeros(1,size(XP,2));

xhb = zeros(size(XP,1),size(XP,2));

yhb = zeros(size(XP,1),size(XP,2));

xfb = zeros(size(XP,1),size(XP,2));

yfb = zeros(size(XP,1),size(XP,2));

for j=1:size(XP,1)

hw(j)=0.0;

fw(j)=0.0;

for k=1:size(XP,2)

%If hanging wall points

if XP(j,k)<= xt+(YP(j,k)-yt)/tan(ramp),

hw(j)=hw(j)+1;

xhb(j,hw(j))=XP(j,k);

yhb(j,hw(j))=YP(j,k);

%If footwall points

else

fw(j)=fw(j)+1;

xfb(j,fw(j))=XP(j,k);

yfb(j,fw(j))=YP(j,k);

end

end

%If Pregrowth strata

if (j <= size(yp,2))

plot(xhb(j,1:1:hw(j)),yhb(j,1:1:hw(j)),'k-');

plot(xfb(j,1:1:fw(j)),yfb(j,1:1:fw(j)),'k-');

%If Growth strata

else

plot(xhb(j,1:1:hw(j)),yhb(j,1:1:hw(j)),'g-');

plot(xfb(j,1:1:fw(j)),yfb(j,1:1:fw(j)),'g-');

end

end

%Plot settings

text(0.8*extent,1.75*max(yp),strcat('Slip = ',num2str(i*sinc)));

axis equal;

250 Velocity description of deformation

axis([0 extent 0 2.0*max(yp)]);

hold off;

%Get frame for movie

frames(i) = getframe;

%Add growth strata. Careful: Intersections pregrowth-growth strata are

%not calculated. Growth strata will not look right for subsidence rate

%lower than uplift rate G < 1.0

if (i == countG*nincG)

%Make growth strata

%Update top

top = top + nincG*sinc*sin(ramp)*G;

% Make bed geometry

xm=i*sinc:extent/npoint:extent+i*sinc;

[GXP, GYP]=meshgrid(xm,top);

%Transform to coordinate axes parallel and perpendicular to the

%fault, and with origin at initial fault tip location

GFX=(GXP-xt)*a11+(GYP-yt)*a12;

GFY=(GXP-xt)*a21+(GYP-yt)*a22;

%Add to beds

FX = [FX; GFX];

FY = [FY; GFY];

% update count of growth strata

countG = countG + 1;

end

end

end

Figure 11.10 shows the growth strata geometries for the fault-bend fold (Fig. 11.10a), fixed

axis (Fig. 11.10b), parallel (Fig. 11.10c), and trishear (Fig. 11.10d) models, for G ¼ 2:0. The kink

models (Fig. 11.10a–c) require instantaneous rotation of strata as they pass through a kink axial

surface. The complexity derives from understanding how particles behave with respect to the

kink axes. Fundamentally, there are two possibilities: (1) The kink axes move with the material.

This type of kink axis is referred to as a fixed or passive kink axis (dashed line axes in

Fig. 11.10a–c). (2) The material flows through the kink axis, which is then called an active kink

axis (continuous line axes in Fig. 11.10a–c). Within the growth strata, the fixed and the active

kink axes merge at the depositional surface, forming an upward-narrowing kink band or

growth triangle (Fig. 11.10a–c). In the trishear model (Fig. 11.10d) on the other hand, changes

in dip and thickness of the growth strata are indicative of progressive rotation of thematerial as

the fold limb is gradually rotated into its final orientation. Understanding growth strata geo-

metries is not simple. The functions above facilitate this task.

As we said before, our model of syntectonic sedimentation is quite simplistic. More insight

can be gleaned from an approach that considers the effect of both background sedimentation

and local erosion, transport, and deposition as a result of fold growth (Hardy et al., 1996). The

velocity analysis facilitates this approach, but requires that one be very clear about reference

frames (Waltham and Hardy, 1995). In Chapter 7, we introduced the concept of Lagrangian and

Eulerian reference frames. Modeling simultaneous tectonics and sedimentation generally

requires an Eulerian reference frame so that the two can be treated as simultaneous, rather

than sequential processes (Hardy and Poblet, 1995). In an Eulerian reference frame, different

particles with different velocities may happen to be at a fixed coordinate at different times.

11.4 Geological application: Fault-related folding 251

One’s point of view is of particles flowing through our fixed coordinate systemwith time due to

different processes, rather than the coordinate system being fixed to moving particles in the

Lagrangian case. Wewill leave this topic for now though the interested reader can find excellent

summaries in the literature (Hardy and Poblet, 1995; Hardy et al., 1996; Waltham and Hardy,

1995).

11.5 EXERCISES

1. Compare the fold geometries of rollovers produced by inclined shear with angles 0, 15, 30,

−15, and −30�. In all cases try to use the same geometry for the listric normal fault. Hint: Use

function SimilarFold.

2. Compare the fold geometries of fixed axis andparallel fault-propagation folds forθ = 10, 20,

30, 40, and 50�. Make the comparison in terms of dip and thickness of the forelimb, and

vergence of the fold. Hint: Use functions FixedAxisFPF and ParallelFPF.

3. Compare the geometries of trishear folds for P=S = 1.0, 1.5, 2.0, and 2.5. In all cases use ramp

angle = 30�, trishear angle = 60�, fault slip = 100 units, and concentration factor = 1.0. Hint:

Use function Trishear.

4. Compare the geometries of trishear folds for trishear angles 40, 50, 60, and 70�. In all cases

use ramp angle = 30�, P=S = 1.5, fault slip = 100 units, and concentration factor = 1.0. Hint:

Use function Trishear.

5. Compare the geometries of trishear folds for concentration factor c = 1.0, 1.5, 2.0, and 3.0. In

all cases use ramp angle = 30�, P=S = 1.5, trishear angle = 60�, and fault slip = 100 units. Hint:

Use function Trishear.

Figure 11.10 Growth strata geometries for (a) fault-bend fold, (b) fixed axis, (c) parallel,

and (d) trishear models. In all cases subsidence to uplift rate G ¼ 2:0. In (a) to (c) active

kink axes are indicated by continuous lines, and passive kink axes by dashed lines.

252 Velocity description of deformation

6. There are several velocity fields that can fulfill the incompressibility condition in a sym-

metric trishear zone. One of these fields is the “sine velocity field” corrected from Zehnder

and Allmendinger (2000):

v1 ¼
sðsinβþ 1Þ

2
v2 ¼

sm

p

ðcosβþ β sinβ� p=2Þ

where β ¼ ðx2pÞ=ð2x1mÞ andm ¼ tan’. Write a MATLAB function that implements this veloc-

ity field and use it in the function Trishear. Compare the fold geometries produced by the

linear v1 field and the sine field. Hint: Use function VelTrishear as the base of your new

“sine velocity” function.

7. Compare the growth strata geometries of fixed axis and parallel fault propagation

folds for θ = 10, 20, 30, 40, and 50� and G ¼ 2:0. Make the comparison in terms of the

location of fixed and active kink axes. Hint: Use functions FixedAxisFPFGrowth and

ParallelFPFGrowth.

8. Compare the growth strata geometries of trishear folds for P=S = 1.0, 1.5, 2.0, and 2.5. In all

cases use a ramp angle = 30�, trishear angle = 60�, fault slip = 100 units, concentration

factor = 1.0 and G ¼ 2:0. What happens when the P=S = 1.0? Hint: Use function

TrishearGrowth.

9. Modify the function SimilarFold to simulate growth strata.

10. Discuss a methodology to compute finite strain in velocity models of deformation. Modify

one of the fault-related fold velocity models to plot strain ellipses.

11.5 Exercises 253

CHAPTER

TWELVE

Error analysis

12.1 INTRODUCTION

Structural geologists have a love–hate relationship with uncertainty. Ask any one of us how

much uncertainty is associated with a single strike and dip measurement and we will readily

admit that natural surfaces are highly irregular at various scales and so there are probably

“a few degrees” slop in our measurements. Because one can collect only a relatively small

number of measurements per day in the field, we certainly aren’t going to repeat a single

bedding measurement 20 or more times just to get “good statistics” at a single location!

Nonetheless, when we calculate a mean vector of a bunch of, say, paleocurrent directions

(Chapter 2) or a best-fit fold axis (Chapter 5), we routinely calculate and report the confidence

intervals, or rather more likely a computer program written by someone else calculates them

for us. If you have read this far in the book, however, you now know how to calculate them for

yourself! Two recent trends brought on by the digital age are forcing structural geologists to

reexamine their relationship with uncertainty.1

First, the availability of large digital data sets and their incorporation into routine geological

studies have exploded in the last couple of decades. We have access to digital elevation models

sampled on a 30m grid, GoogleEarth imagery with a resolution of less than 5m, GPS data sets

with thousands of individual stations, and nearly instant access to hundreds or thousands of

aftershocks that follow a large earthquake. These data sets allow us to analyze vastly more data

thanpreviously; the era of collecting just 30 or 40measurements in the field per day is long gone.

The digital data can be analyzed quantitatively and thatmeans taking into account uncertainties.

Second, we now routinely use models to interpret the data that we collect and therefore are

forced to confront the question, “How well does our model fit the data that we are trying to

1 In this chapter and, indeed, throughout the book, we use the terms “error” and “uncertainty”
interchangeably.

254

explain?”A best-fit fold axis represents the approximation of a natural curvilinear surface with

a cylindrical fold model. The mean vector representing an average paleocurrent direction

implies a model of unidirectional current flow. The concept of least squares fitting of a

model to data has been touched on at several points in this book (Chapters 5, 7, and 8) in the

context of specific geological problems. A full treatment of statistics and error analysis is

beyond the scope of this book and there aremany fine texts where these topics are exhaustively

explored, both more authoritatively and more entertainingly than we could ever do (among

many others, the ones we have found to be particularly helpful include: Bevington and

Robinson, 2003; Fisher et al., 1987; Press et al., 1986; Taylor, 1997). There is one topic, however,

that deserves special mention, particularly as we go from uncertainties in data sets that we’ve

measured directly to models that are calculated from data with inherent uncertainties; that

topic is error propagation.

12.2 ERROR PROPAGATION

Suppose that, through repeated measurements, we had determined the uncertainties on two

parameters, a and b; we’ll call the uncertainties δa and δb, respectively. Now we want to

calculate c, the sum of a and b. What is the uncertainty on the calculated value, c? The highest

and lowest likely values of c are

cmax ¼ a þ b þ δa þ δbð Þ

cmin ¼ a þ b � δa þ δbð Þ

In general, we can say that the maximum probable error on the calculated parameter, c, is

δcmax ¼ δa þ δb (12:1)

We have just propagated the errors on a and b to determine the maximum error on c. We will

come back to the question of whether or not δcmax is the most likely error or not, below.

To go beyond this somewhat trivial example, one might develop similar equations for

progressively more complicated cases, but it turns out that all of the specific cases can be

encapsulated in one general rule:

δqmax ¼
@q

@a

δa þ
@q

@b

δb þ � � � þ
@q

@z

δz (12:2)

where q is any function of (a;b; :::; z). You can see that Equation 12.1 can be derived from

Equation 12.2 as the partial derivative of c with respect to a and that with respect to b are both

equal to 1.

Although Equation 12.2 gives the maximum error in q, it is not the most probable error if

uncertainties in the measured parameters are independent and random and thus the errors

follow a Gaussian distribution (i.e., the typical “bell-shaped” curve). Under these conditions, the

calculated error is essentially the square root of the sum of the squares of themeasured errors:

δq ¼

ffi

@q

@a
δa

� �2

þ
@q

@b
δb

� �2

þ � � � þ
@q

@z
δz

� �2
s

(12:3)

Let’s formalize this a bit and look at a somewhatmore complicated casewhere the two variables

involved may have some degree of correlation. In Equation 7.16, the standard deviation of a

series of measurements was described:

12.2 Error propagation 255

� ¼

ffi

1

N � 1

XN

k¼1
uk � �uð Þ2

r

and the variance was defined as the square of the standard deviation. The covariance of two

parameters a and b is

�ab ¼
1

n

X

n

i¼1

ai � �að Þ bi � �b
� �

(12:4)

where �a is the average of the ameasurements and �b is the average of the b measurements. With

this definition, we can now come up with an expression for the variance of a calculated

parameter as a function of the variances and covariances of the measured parameters:

�2c ¼
@c

@a

� �2

�2a þ
@c

@b

� �2

�2b þ 2
@c

@a

@c

@b
�ab (12:5)

If a and b are truly independent and random, the covariance, �ab , will go to zero and

Equation 12.5 simply becomes the square of Equation 12.3. If a and b are highly correlated,

your error will still never be greater than Equation 12.2.

12.3 GEOLOGICAL APPLICATION: CROSS-SECTION BALANCING

Balanced cross sections have been a staple of the structural geologist’s toolbox for more than

half a century, thanks largely to pioneering work in the Canadian Rocky Mountains (e.g., Bally

et al., 1966; Dahlstrom, 1969, 1970; Price and Mountjoy, 1970). Many reasons exist for con-

structing these sections: They may be used to project data to depth and interpret structural

geometry for exploration or scientific purposes, or the magnitudes of shortening calculated

from balanced cross sections may become input for palinspastic restorations or geodynamic

models. Their utility, and limitations, were perhaps best described by Clint Dahlstrom (1969)

when he wrote: “If a cross section passes the geometric tests [i.e., is balanced] it could be

correct… On the other hand, a cross section that does not pass the geometric tests could not

possibly be correct.” We would now like to go the extra step and – rather than the binary

decision: might be correct or definitely not correct – ask the question: What is the uncertainty

associated with balanced cross sections?

Cross sections are models fit to data that come from a variety of sources: outcrop measure-

ments, stratigraphic sections, and subsurface data such as seismic reflection surveys and well

data. Each of these input data sources has uncertainty associated with it. How representative

are the outcropmeasurements, what are the stratigraphic thickness variations, howwell do we

know subsurface velocities in order to convert from time to depth? There are other uncertain-

ties; the most important being the choice of a specific kinematic fold-fault model (Chapter 11).

Although structural geologists who construct balanced cross sections are painfully aware of

these uncertainties, despite half a century of use, there has been no formalway of incorporating

them into the final model in a meaningful way. Before investigating one promising approach to

this problem, we need a brief review.

12.3.1 Line-length and area balancing

In Chapter 11, we showed that all cross-section balancing stems, fundamentally, from the

continuity and incompressibility equations (Eqs. 11.1 and 11.2). If we make a further

256 Error analysis

assumption of plane strain, the two-dimensional version of the incompressibility equation

(Eq. 11.3) is what structural geologists call area balancing (Mitra and Namson, 1989). Finally,

we can reduce the problem to one dimension by assuming a parallel fold model in which

bedding thickness does not change and the stratigraphic horizons are lines of no finite longi-

tudinal strain (Chapter 10). The relationship of these different dimensions to the kinematics of

folding and the general assumptions in each case are shown in Table 12.1.

The majority of published balanced cross sections are line-length balanced sections. Line-

length balanced cross sections are a subset of area balanced sections because they include all of

the assumptions of area and volume balancing. In line-length balancing, the additional assump-

tion is that “parallel” folding occurs via shear parallel to bedding (i.e., “flexural slip” folding);

thus, the stratigraphic layers are lines of no finite longitudinal extension. This allows us to

calculate the shortening simply bymeasuring the bed length in the deformed state and drawing

the same bed length as a straight line in the undeformed state. The majority of shortening in

this model occurs where faults shear across layers. In addition to a restrictive folding model,

the previous sentence highlights an additional hidden weakness of line-length balanced cross

sections: only faults that produce obvious offset at the scale of the section are included in the

shortening estimate. The implicit assumption is that faults with displacements smaller than

the scale of the cross section do not contribute to shortening, a concept that is seldom tested

(Marrett and Allmendinger, 1990, 1992).

People who construct line-length balanced sections (Fig. 12.1) will often say that the magni-

tude of shortening is a “minimum estimate.” This error arises in cases where the thrust fault is

emergent and hanging wall cutoffs have been eroded (Fig. 12.1b). The resulting saw-toothed

gap on the restored section represents the minimum eroded bed length needed to line up the

stratigraphic horizons of hanging wall and footwall. Because the structural geologist does not

know how much bed length has been eroded, s/he simply makes the gap as small as possible.

Though significant, the error resulting from eroded hanging wall cutoffs is hardly the only

error, in fact it is an error largely dependent on a single specific model. There may be many

different individual line-length models that can fill the requisite cross-sectional area. Likewise,

critical unknowns, such as the exact depth to the decollement across a deformed section,

contribute to the apparent paradox that two (or more) line-length balanced sections drawn

along the same profile line commonly have different “minimum” estimates.

Type of balance Dimension Assumptions Fold kinematic model

Volume 3D Density of rocks constant

during deformation, no

compaction, no addition

or subtraction of

material

Non-cylindrical

Area 2D Plane strain, cross-

sectional area preserved

Cylindrical folding

(parallel, similar,

or trishear)

Length 1D Linear strain, no bedding

thickness changes, shear

parallel to layers so the

layers are lines of no

finite elongation

Parallel

Table 12.1 Types of cross section balancing and assumptions

12.3 Geological application: Cross-section balancing 257

One approach to amore accurate and rigorous error estimationwould be for the geologist to

construct numerous different cross sections along the same profile line and look at the

distribution of shortening estimate; essentially a hand-crafted Monte Carlo simulation. To

develop reliable statistics, it would take tens to hundreds of sections in the same exact area,

each having a slightly different starting geometry. Therein lies the fundamental reason why

virtually all line-length balanced sections are presented without error estimates: because a

single section, even one constructed using commercial software packages, can take weeks to

construct, the task of drawing hundreds in the same place is both too daunting and too tedious

to contemplate!

To quantify the uncertainties on shortening magnitudes, we will do the error analysis via

area balancing. This has numerous advantages: (1) Because line-length sections are a subset of

area balancing, a single area balance encompasses all possible line-length solutions. (2) Area

balance is independent of specific, two-dimensional fold-fault kinematic model (e.g., parallel

kink folds, similar folds, trishear folds, disharmonic folding, etc.; Chapter 11). (3) Unlike line-

length sections, area balancing also accounts for shortening due to deformation on structures

Figure 12.1 Line-length balancing using a parallel, kink fold geometry. (a) Shows the

case where the hanging wall cutoffs are preserved so that the restoration of the upper

plate, and the undeformed trajectory of the trailing thrust trace, is unambiguous.

(b) Shows the more typical case where hanging wall cutoffs are eroded. In this case, a

local pin line is needed to restore the thrust plate and the footwall trace of the trailing

thrust. The gap marked by question marks is the source of the statement that such

reconstructions are minimum estimates of shortening.

258 Error analysis

too small to be depicted on the cross section. Finally, (4) because one can describe the areas of

both the deformed and restored sections as explicit equations, the errors can be formally

(analytically) propagated through those equations, obviating the need to draw multiple

sections.

The origin of area balancing dates to the turn of the twentieth century and the work of

Chamberlin (1910; 1919; 1923) and Buxtorf (1916). Those two pioneering authors first used the

condition that the deformed cross-sectional area should equal the initial area to calculate the

depth to the decollement; a technique known as excess area balancing (Mitra and Namson,

1989). Chamberlin first used the term “thin-shelled” to refer to the Appalachian Valley and

Ridge province and “thick-shelled” to describe the Colorado Rocky Mountains because he

concluded from area balancing that the decollement of the former was shallower, and that of

the latter deeper, in the crust. Chamberlin’s analysis was flawed but his insight significant.

Rodgers (1949) introduced slightly modified versions of these terms, “thin-skinned” and

“thick-skinned,” which are widely used today.

12.3.2 Error propagation in a simple area balance

We’ll start with a simple “crustal” area balance, which can be thought of as nothingmore than a

long, skinny box being deformed into a short, fat box (Fig. 12.2). The areas of the two boxes

must be equal, sowe can calculate the shortening as a function of themeasurable dimensions of

the boxes:

X1X2 ¼ x1x2 and S ¼ X1 � x1

Rearranging and solving for S :

S ¼
x1x2 � x1X2

X2
¼ x1x2X

�1
2 � x1 (12:6)

To calculate the shortening, we only need to know the modern-day dimensions (the width and

thickness of the plateau, x1; x2) andmake some estimate of the initial crustal thickness (X2). This

calculation is nothingmore than the classic area balance–depth to decollement equation, where

the unknown is the shortening, S .

Now, let’s see how the errors propagate through Equation 12.6. To do so, we need to

calculate the three partial differential equations:

Figure 12.2 Simple area balance from

an initial undeformed state at the

top to a horizontally shortened and

vertically thickened deformed state

at the bottom. The two areas, A, are

equal.

12.3 Geological application: Cross-section balancing 259

@S

@x2
¼ x1X

�1
2

@S

@X2
¼ �x1x2X

�2
2 and

@S

@x1
¼ x2X

�1
2 � 1

We can now write the complete equation for the error in calculation of S as a function of the

errors in the measured or estimated parameters:

δS ¼

ffi

@S

@x1
δx1

� �2

þ
@S

@x2
δx2

� �2

þ
@S

@X2
δX2

� �2
s

¼

ffi

x2X
�1
2 � 1

� �

δx1
	
2

þ x1X
�1
2

� �

δx2
	
2

þ �x1x2X
�2
2

� �

δX2

	
2
q

(12:7)

With Equation 12.7 in hand, we can enter some realistic values, shown in Table 12.2. Using

Equation 12.6, you can see that these values yield a shortening, S ¼ 200 km (logically enough

since we have doubled the crustal thickness). We can now calculate the uncertainty of this

shortening value from Equation 12.7:

δS ¼

ffi

1ð Þ2 þ 28:6ð Þ2 þ 114:3ð Þ2
q

¼ 118km

So, our shortening estimatewould be 200 ± 118km! This calculation tells us two very important

things: First, there is a high degree of uncertainty – in this case greater than 50% – in crustal

scale balancing. Second, almost all of the uncertainty comes from the error in estimate of initial

crustal thickness, X2: Even if we assumed that the initial crustal thickness error was only ± 5km

(instead of the 10km used in the above calculation), the final shortening estimate would still be

± 64km! For a more realistic crustal scale balance, we could include some additional fluxes: (1)

material lost from the system by erosion, (2) material added to the system by magmatism, and

(3) material lost by tectonic erosion.

12.3.3 Error propagation using a more general area balance

One can calculate analytically the area of a polygon of any shape and number of vertices and

this enables us to capture the area of a polygon that envelops the deformed region of pre-

growth strata (Fig. 12.3) (Judge and Allmendinger, 2011). To start, we define amatrix to hold all

the vertices of our deformed polygon. In this matrix, the number of rows corresponds to the

number of vertices in the polygon and, within an individual row, the first column contains the x1

value and the second the x2 value of a single vertex in two dimensions:

xðn;2Þ ¼

x11 x12
x21 x22
.
.

.
.
.

.

xn1 xn2

2

6

6

6

4

3

7

7

7

5

first vertex

nth vertex

Parameter Value (km) Uncertainty (km) Error in S due to parameter (km)

x1 200 1 1

x2 70 5 28.6

X2 35 10 114.3

Table 12.2 Simple crustal area balance with errors

260 Error analysis

The area of any polygon of any shape (except one that crosses itself) can be written as (e.g.,

Harris and Stocker, 1998)

A ¼
1

2

X

n

i¼1

xi1x iþ1ð Þ2 � x iþ1ð Þ1xi2
� �

if i þ 14n; i þ 1 ¼ 1 (12:8)

where n is the number of vertices in the polygon and (xi1; xi2) are the locations of the

vertices. The uncertainty on the deformed area (δA) is a function of the uncertainty

(δxi1;δxi2) on each specific vertex. To get things in the form of Equations 12.2 and 12.3,

we need to calculate the partial differentials of A with respect to each of the components of

each vertex. To do this, it will help to calculate Equation 12.8 for a simple four-vertex

polygon:

A ¼
1

2
x11x22 � x21x12 þ x21x32 � x31x22 þ x31x42 � x41x32 þ x41x12 � x11x42ð Þ

Gathering terms, and recalling that the first index indicates the vertex number:

A ¼
1

2
x11 x22 � x42ð Þ þ x21 x32 � x12ð Þ þ x31 x42 � x22ð Þ þ x41 x12 � x32ð Þð Þ (12:9a)

and the same equation in terms of the x2 components:

A ¼
1

2
x12 x41 � x21ð Þ þ x22 x11 � x31ð Þ þ x32 x21 � x41ð Þ þ x42 x31 � x11ð Þð Þ: (12:9b)

Now, we can calculate the partial derivatives of each of the four vertices:

@A

@x11
¼

x22 � x42ð Þ

2
and

@A

@x12
¼

x41 � x21ð Þ

2
(12:10a)

@A

@x21
¼

x32 � x12ð Þ

2
and

@A

@x22
¼

x11 � x31ð Þ

2
(12:10b)

@A

@x31
¼

x42 � x22ð Þ

2
and

@A

@x32
¼

x21 � x41ð Þ

2
(12:10c)

@A

@x41
¼

x12 � x32ð Þ

2
and

@A

@x42
¼

x31 � x11ð Þ

2
(12:10d)

Figure 12.3 General area balance for the southernmost Subandean belt in northwestern

Argentina (Echavarría et al., 2003), showing the parameters that go into the equations

described in Section 12.3.3.

12.3 Geological application: Cross-section balancing 261

In general, if you inspect Equations 12.8 and 12.10 carefully, you see that we can write

A ¼
1

2

X

n

i

xi1xk2 � xk1xi2ð Þ and
@A

@xi1
¼

xk2 � xm2ð Þ

2
and

@A

@xi2
¼

xm1 � xk1ð Þ

2

where k ¼ i þ 1 and m ¼ i � 1

if k4n) k ¼ k � n

if m51) m ¼ mþ n

(12:11)

The maximum error on the deformed area, δAmax, propagated from the errors on the input

vertices, is

δAmax ¼
X

n

i¼1

@A

@xi1

δxi1 þ
@A

@xi2

δxi2

� �

(12:12a)

and the Gaussian error, if all the components were independent and random would be

δAGaussian ¼

ffi

X

n

i¼1

@A

@xi1
δxi1

� �2

þ
@A

@xi2
δxi2

� �2
 !

v

u

u

t (12:12b)

To calculate the error on the deformed area, youwould substitute the partial differentials of the

deformed area with respect to each vertex in Equations 12.11 into Equations 12.12.

The error on the deformed area is only the start of this problem because we now have to

calculate the shortening, S , which is a function of the initial width minus the final width

(Fig. 12.3). First, the appropriate equation for the initial width, Wi , is

Wi ¼
2A

T1 þ T2ð Þ
¼ 2A T1 þ T2ð Þ�1 (12:13)

where A is given by Equation 12.8, because the deformed and undeformed areas must be the

same, and T1 and T2 are the stratigraphic thicknesses on the right and left sides of the cross

section (Fig. 12.3). The uncertainty on the initial width is

δWimax ¼
@Wi

@A

δAþ
@Wi

@T1

δT1 þ
@Wi

@T2

δT2 (12:14a)

δWi ¼

ffi

@Wi

@A
δA

� �2

þ
@Wi

@T1
δT1

� �2

þ
@Wi

@T2
δT2

� �2
s

(12:14b)

where

@Wi

@A
¼

2

T1 þ T2ð Þ

@Wi

@T1
¼

�2A

T1 þ T2ð Þ2
and

@W i

@T 2
¼

�2A

T 1 þ T 2ð Þ2

and δA comes from Equation 12.12a if maximum error, or 12.12b if Gaussian error. The

uncertainties in stratigraphic thickness would be determined from the actual stratigraphic

variations in the field.

Finally, the shortening and shortening error are given by

S ¼ Wf �Wi (12:15)

δSmax ¼
@S

@Wi

δWi þ
@S

@Wf

δWf ¼ �δWij j þ δWf

 (12:16a)

δS ¼

ffi

@S

@Wi
δWi

� �2

þ
@S

@Wf

δWf

� �2
s

¼

ffi

�δWið Þ
2
þ δWf

� �2
q

(12:16b)

262 Error analysis

In this section, we have derived just the basic equations for error propagation in a general

area balance. In the process, several important questions and assumptions have been glossed

over. Perhaps the most pressing question is: How does one define the enveloping polygon?

The approach of Judge and Allmendinger (2011) is to increase the number of vertices in the

enveloping polygon (Fig. 12.3a) until the solutions for the shortening magnitude and the error

stabilize. In their analyses, the solutions stabilize at 20 to 25 vertices, but this number will vary

depending on the complexity and length of starting cross section. Additional questions might

include: Should one use the maximum or the Gaussian error? What is the relative contribution

of depth to decollement, stratigraphic thickness, and eroded hanging wall cutoffs in the overall

shortening uncertainty? You will get a chance to explore some of these questions in the

exercises at the end of the chapter.

The following MATLAB® function, BalCrossErr, computes themagnitude and error of short-

ening, deformed area, and initial width in an area balance calculation. The user needs to input

stratigraphic thicknesses and their uncertainties on both sides of the section, as well as the pre-

growth strata polygon vertices, their uncertainties and locations (decollement, surface, subsur-

face, or eroded). Total (kk = 0), stratigraphic thickness (kk = 1), decollement (kk = 2), eroded

(kk = 3), surface (kk = 4), or subsurface (kk = 5) vertices related errors can be computed by the

program.

function [short,shortp,defa,inw] = BalCrossErr(strat,vert,kk)

%BalCrossErr computes the shortening error in area balanced cross sections.

%The algorithm was originally written by Phoebe A. Judge

%

% USE: [short,shortp,defa,inw] = BalCrossErr(strat,vert,kk)

%

% strat= 1 x 5 vector with east stratigraphic thickness (entry 1),

% west strat. thickness (entry 2), error on east strat

% thickness (entry 3), error on west strat thickness

% (entry 4), and error on final width (entry 5)

% vert = number of vertices x 5 vector with x coordinates of vertices

% (column 1), y coords of vertices (column 2), errors in x

% coords of vertices (column 3), errors in y coords of vertices

% (column 4), and vertices tags (column 5). The vertices tags are

% as follows: 1 = Vertex at decollement, 2 = Vertex at surface,

% 3 = Vertex at subsurface, 4 = Vertex at eroded hanging-wall

% cutoff

% kk = A flag to indicate whether the program computes total errors

% (kk = 0), errors due to stratigraphy only (kk = 1), errors due to

% vertices at decollement only (kk = 2), errors due to vertices in

% eroded hanging walls only (kk = 3), errors due to surface

vertices

% (kk = 4), or errors due to subsurface vertices (kk = 5)

% short = Shortening magnitude and its gaussian and maximum errors

% shortp = Shortening percentage and its gaussian and maximum errors

% defa = Deformed area and its gaussian and maximum errors

% inw = Initial width and its gaussian and maximum errors

%

% NOTE: The user selects the length units of the problem. Typical length

% units are kilometers

12.3 Geological application: Cross-section balancing 263

%Stratigraphic thicknesses

E1 = strat(1); %E strat thickness

W1 = strat(2); %W strat thickness

dE1 = strat(3); %Uncertainty on E strat thickness

dW1 = strat(4); %Uncertainty on W strat thickness

dx2 = strat(5); %Uncertainty on the final width

%Vertices

X = vert(:,1); %x coordinate

Y = vert(:,2); %y coordinate

dX = vert(:,3); %Uncertainty in x

dY = vert(:,4); %Uncertainty in y

Loc = vert(:,5); %Vertex location

n = size(vert,1); %Number of vertices

%If only errors due to stratigraphy

if kk == 1

dx2 = 0.0; %Make uncertainty on the final width zero

dX = dX * 0.0; %Make errors in vertices locations zero

dY = dY * 0.0;

%If only errors due to vertices

elseif kk > 1

dE1 = 0.0; %Make errors in stratigraphy zero

dW1 = 0.0;

dx2 = 0.0; %Make error in final width zero

for i=1:n

%If only errors due to decollement vertices

if kk == 2

if Loc(i) ~= 1

dX(i) = 0.0; %Make errors in other vertices zero

dY(i) = 0.0;

end

%If only errors due to eroded hanging walls

elseif kk == 3

if Loc(i) ~= 4

dX(i) = 0.0; %Make errors in other vertices zero

dY(i) = 0.0;

end

%If only errors due to surface vertices

elseif kk == 4

if Loc(i) ~= 2

dX(i) = 0.0; %Make errors in other vertices zero

dY(i) = 0.0;

end

%If only errors due to subsurface vertices

elseif kk == 5

if Loc(i) ~= 3

264 Error analysis

dX(i) = 0.0; %Make errors in other vertices zero

dY(i) = 0.0;

end

end

end

end

%Initialize output variables

short = zeros(1,3); shortp = zeros(1,3);

defa = zeros(1,3); inw = zeros(1,3);

%Deformed area

%Calculate area of deformed state

aX = [X; X(1)];

aY = [Y; Y(1)];

XArea = 0.5*(aX(1:n).*aY(2:n+1) - aX(2:n+1).*aY(1:n));

defa(1) = (abs(sum(XArea)));

%Calculate gaussian uncertainty of deformed area

aX = [X(n); aX];

aY = [Y(n); aY];

dAx = 0.5*(aY(3:n+2) - aY(1:n));

dAy = 0.5*(aX(3:n+2)- aX(1:n));

delAx = (dAx.*dX).^2;

delAy = (dAy.*dY).^2;

%Sum the X and Y components

SdelAx = sum(delAx);

SdelAy = sum(delAy);

%take the square root of the sum of individual components

defa(2) = sqrt(SdelAx+SdelAy);

%Calculate maximum uncertainty of deformed area

dAxM = abs(dAx); dAyM = abs(dAy);

delAxM = dAxM.*dX;

delAyM = dAyM.*dY;

%sum the X and Y components

SdelAxM = sum(delAxM);

SdelAyM = sum(delAyM);

%Add everything together to get the maximum uncertainty in Area

defa(3) = SdelAxM+SdelAyM;

%Original width

%Calculate the original width assuming constant Area

inw(1) = defa(1)/(((E1)/2)+((W1)/2));

%Calculate final width from the imported polygon

x21 = max(X) - min(X);

%Calculate gaussian uncertainty of the original width

ddA = 1/(((E1)/2)+((W1)/2)); %partial of x1 wrt Area

ddE1 = -(2*defa(1))/((E1)^2+(2*E1*W1)+(W1)^2); %partial of x1 wrt E1

ddW1 = -(2*defa(1))/((E1)^2+(2*E1*W1)+(W1)^2); %partial of x1 wrt W1

12.3 Geological application: Cross-section balancing 265

inw(2) = sqrt(((ddA*defa(2))^2)+((ddE1*dE1)^2)+((ddW1*dW1)^2));

%Calculate maximum uncertainty of the original width

inw(3) = ((abs(ddA*defa(3)))+(abs(ddE1*dE1))+(abs(ddW1*dW1)));

%Shortening

%Calculate shortening

short(1) = inw(1)-x21;

%Calculate gaussian uncertainty in shortening

short(2) = sqrt((inw(2))^2+(dx2)^2);

%Calculate maximum uncertainty in shortening

short(3) = (inw(3)+dx2) ;

%Calculate percent shortening

shortp(1) = (1-(x21/inw(1)))*100;

%Calculate gaussian uncertainty of percent shortening

ddx1 = x21/((inw(1))^2); %partial of S wrt x1

ddx2 = -1/inw(1); %partial of S wrt x2

shortp(2) = sqrt(((ddx1*inw(2))^2)+((ddx2*dx2)^2))*100;

%Calculate maximum uncertainty in shortening

shortp(3) = (abs(ddx1*inw(3))+(abs(ddx2*dx2)))*100;

end

12.4 UNCERTAINTIES IN STRUCTURAL DATA AND THEIR REPRESENTATION

Generally speaking, structural data result from a process that involves three sequential steps:

data acquisition, processing, and interpretation. All these three steps generate uncertainties of

different magnitude and nature. Take, for example, seismic reflection surveys on which so

many exploration targets and balanced cross sections depend: uncertainties in acquisition are

prominent in land surveys (especially if operating over rough terrains), but offshore acquisition

generates almost no uncertainties. In processing, uncertainties are mainly due to migration

(relocation of reflectors to their true positions). During the interpretation phase of a project,

detection of seismicmarkers, picking horizons, and interpreting faults are all potential sources

of error. Finally, interpreted horizons and faults should be converted from time to depth,

generating potentially huge errors that can account for as much as 50% or more of the total

uncertainties (Thore et al., 2002). Migration and time-to-depth generated uncertainties can

be quantified based on their associated velocity fields, although this is not straightforward

(Thore et al., 2002). Errors due to interpretation are more difficult to estimate, and their

determination may require the analysis of several interpretations from different people

(Bond et al., 2007).

There is, however, a unifying feature about uncertainties: in order to be implemented,

uncertainties need to be described in terms of magnitude, direction, and correlation length

(ameasure of howuncertainties in one region are correlatedwith those in another region; Thore

et al., 2002). To illustrate these concepts, we refer to the simple, two-dimensional example of

Figure 12.4. The folded bed (black line in Figure 12.4) consists of n points. Each of these points

has uncertainties in location in x1 and x2 (i.e., uncertainty direction). These uncertainties follow

a normal probability distribution, with a mean � equal to the observed or measured x1 and x2,

and a standard deviation � (i.e., uncertainty magnitude). The uncertainties in location are

correlated along the bed up to a maximum distance or correlation length lc . A typical way to

describe the spatial dependence of uncertainties along the profile is through a spherical

266 Error analysis

variogrammodel (Davis, 2002). For thismodel, the n� n matrixR that describes the correlation

of the uncertainties in location is

Rij ¼
1þ 0:5ðh3 � 3hÞ; h51
0; h 1

�

(12:17)

where h is lij=lc , and lij is the distance along the bed between points i and j (Figure 12.4). The

n� n covariance matrix C (a matrix whose ij element is a measure of how uncertainties in

points i and j change together) is

C ¼ SRS (12:18)

where S is an n� n diagonalmatrix with the diagonal elements equal to the standard deviation �.

Given the covariancematrix C, we can generate different realizations (i.e., synthetic data sets

that obey the observations and their uncertainties) of the bed following a procedure known as

the Cholesky or square rootmethod (Oliver et al., 2008). Basically, we decompose the covariance

matrix C into the product of a matrix and its transpose using Cholesky factorization:2

Figure 12.4 Strategy to generate realizations from a folded bed (dark line). Each point

on the bed has uncertainties in x1 and x2 that follow a normal probability distribution,

with a mean equal to the measured location and a standard deviation �. Uncertainties

within a distance along the bed lower than the correlation length are correlated. Gray

lines are realizations.

2 Cholesky factorization is a form of triangular decomposition that can be applied to positive definite
matrices (those matrices that have all eigenvalues greater than zero; Lindfield and Penny, 1999).

12.4 Uncertainties in structural data and their representation 267

C ¼ LLT (12:19)

We then generate a column vector z of n� 1 independent, randomnumbers from 0 to 1. Finally,

we can compute the x1 and x2 locations of points in the realization as (Aster et al., 2005)

x1ðrealizationÞ ¼ x1ðobservedÞ þ Lz

x2ðrealizationÞ ¼ x2ðobservedÞ þ Lz
(12:20)

The MATLAB function BedRealizations, below, generates realizations of a bed in two dimen-

sions using the Cholesky method. The function relies on two MATLAB functions: chol which

performs the Cholesky factorization, and randnwhich generates random numbers. In addition

to the bed data andnumber of realizations, the user needs to input the standard deviation � and

correlation length lc of the uncertainties. BedRealizations calls function CorrSpher (also

below) which computes the correlation matrix R for the spherical variogram model.

function rlzt = BedRealizations(xp,yp,N,sigma,corrl)

%BedRealizations generates and plots realizations of a bed using a

%spherical variogram and the Cholesky method

%

% USE: rlzt = BedRealizations(xp,yp,N,sigma,corrl)

%

% xp = column vector with x locations of points along bed

% yp = column vector with y locations of points along bed

% N = number of realizations

% sigma = Variance

% corrl = Correlation length

% rlzt = npoints x 2 x N+1 matrix with bed realizations. The first

% realization in this matrix is the input xp, yp bed

%

% BedRealizations uses function CorrSpher

%Number of points along bed

nj = max(size(xp));

%Variance matrix

Sf = zeros(nj,nj);

for i=1:nj

for j=1:nj

if i==j

Sf(i,j)=sigma;

end

end

end

%Calculate correlation matrix using spherical variogram model

Rf=CorrSpher(xp,yp,corrl);

%Calculate covariance matrix (Cf)

Cf=Sf*Rf*Sf;

%Cholesky decomposition of covariance matrix. Here we use the MATLAB

%function chol

268 Error analysis

[L,p] = chol(Cf,'lower');

if p > 0

error ('Cf not positive definite');

end

%Initialize realizations

rlzt = zeros(nj,2,N+1);

%Start figure

figure;

hold on;

gray = [0.75 0.75 0.75];

%Generate realizations

for i=1:N+1

%First realization is the bed itself

if i == 1

rlzt(:,1,i) = xp;

rlzt(:,2,i) = yp;

%Other Realizations

else

%Compute uncertainty in horizontal and vertical

z = randn(nj,1);

lz = L*z;

%Add to observed data to generate realization

rlzt(:,1,i) = xp + lz;

rlzt(:,2,i) = yp + lz;

end

% Plot realization

plot(rlzt(:,1,i),rlzt(:,2,i),'.','MarkerEdgeColor',gray);

end

%plot bed in black

plot(rlzt(:,1,1),rlzt(:,2,1),'k.');

hold off;

axis equal;

end

function r = CorrSpher(xp,yp,laj)

%CorrSpher calculates the correlation matrix for a spherical variogram

%

% USE: r=CorrSpher(xp,yp,laj)

%

% xp = vector with x locations of points along bed

% yp = vector with y locations of points along bed

% laj = correlation length

% r = correlation matrix

12.4 Uncertainties in structural data and their representation 269

%Number of points along bed

nj = max(size(xp));

%Initialize correlation matrix

r = zeros(nj,nj);

%Compute correlation matrix

for i=1:nj

for j=1:nj

%Find distance v between points i and j along bed

v = 0.0;

minind = min(i,j); %minimum index

maxind = max(i,j); %maximum index

for k = minind:1:maxind-1

v = v + sqrt((xp(k)-xp(k+1))^2 + (yp(k)-yp(k+1))^2);

end

%Compute variogram entry

h = v/laj;

%If within correlation length

if h < 1.0

r(i,j)=1.0+0.5*(-3*h + h^3);

end

end

end

end

12.5 GEOLOGICAL APPLICATION: TRISHEAR INVERSE MODELING

In Chapter 11, we introduced the trishear kinematic model as a way to produce richer, more

complex fault-propagation fold geometries and strain fields than those of kink-based models.

However, when modeling natural fault-propagation folds, the main limitation of trishear is

that, contrary to the kink models, trishear is incremental and there are no mathematical or

geometrical rules to derive the model parameters from the observed fold geometry. There are

two solutions to this problem: One can run trishear models forward to see how well they

deform the beds to reproduce their final geometry. Implicit in this modeling is the assumption

that one knows the initial geometry of the beds. Alternatively, one can run trishear models

backward to see how well they unfold the beds to their original, approximately planar orienta-

tions (Allmendinger, 1998). In practice, this second strategy is easier because the initial state

(planar beds) ismuch simpler than the final state (complexly folded beds), and there are simple

statistical descriptions of the initial state. In twodimensions, for example, the goodness of fit of

a model can be evaluated by how well the model restores a bed to a straight line. A merit or

objective function fobj is used to measure the fit. By convention this function is low when the fit

is good. fobjcan be easily estimated by a simple least-squares linear regression of the restored

bedprofile. TheMATLAB function BackTrishear, below, restores a folded bed in twodimensions

using an input combination of trishear parameters (a trishear model), and returns an estimate

of fobj. BackTrishear uses function regress (MATLAB Statistics Toolbox) to perform the linear

regression of the restored bed profile.

270 Error analysis

function chisq = BackTrishear(xp,yp,tparam,sinc)

%BackTrishear retrodeforms bed for the given trishear parameters and return

%sum of square of residuals (chisq)

%

% USE: chisq = BackTrishear(xp,yp,tparam,sinc)

%

% xp = column vector with x locations of points along bed

% yp = column vector with y locations of points along bed

% tparam = A 1 x 7 vector with the x and y coordinates of the fault tip

% (entries 1 and 2), the ramp angle (entry 3), the P/S (entry 4),

% the trishear angle (entry 5), the fault slip (entry 6), and the

% concentration factor (entry 7)

% sinc = slip increment

% chisq = sum of square of residuals (objective function)

%

% NOTE: Input ramp and trishear angles should be in radians

% For reverse faults use positive slip and slip increment

% For normal faults use negative slip and slip increment

% The MATLAB Statistics Toolbox is needed to run this function

%

% BackTrishear uses function VelTrishear

% Model parameters

xtf = tparam(1); %x current fault tip

ytf = tparam(2); %y current fault tip

ramp = tparam(3);%Ramp angle

psr = tparam(4)*-1.0; %P/S: Multiply by -1 because we are restoring bed

tra = tparam(5); %Trishear angle

m = tan(tra/2); %Tangent of half trishear angle

slip = tparam(6); %Fault slip

c = tparam(7); %Concentration factor

ninc=round(slip/sinc); %Number of slip increments

sincr = slip/ninc*-1.0; %Slip increment: Multiply by -1 (restoring bed)

%Transformation matrix from geographic to fault coordinates

a11=cos(ramp);

a12=cos(pi/2-ramp);

a21=cos(pi/2+ramp);

a22=a11;

% Transform to coordinates parallel and perpendicular to the fault, and

% with origin at current fault tip

fx=(xp-xtf)*a11+(yp-ytf)*a12;

fy=(xp-xtf)*a21+(yp-ytf)*a22;

% Restore

for i=1:ninc

12.5 Geological application: Trishear inverse modeling 271

for j=1:size(fx,1)

% Solve trishear in a coordinate system attached to current

% fault tip. Note: First retrodeform and then move tip back

xx=fx(j)-(psr*(i-1)*abs(sincr));

yy=fy(j);

% compute velocity

[vx,vy]=VelTrishear(xx,yy,sincr,m,c);

% UPDATE fx, fy coordinates

fx(j)=fx(j)+vx;

fy(j)=fy(j)+vy;

end

end

%Fit straight line to restored bed. Use MATLAB function regress (MATLAB

%Statistics Toolbox) to compute linear regression. b(1) is the intercept

%and b(2) the slope of the line

XX = [ones(size(fx)) fx];

YY = fy;

b = regress(YY,XX);

%Compute chisq (objective function) = Sum of square of residuals between

%straight line and restored bed

chisq = sum((fy-b(1)-b(2)*fx).^2.);

end

We nowhave away to assess the goodness of fit of a trishearmodel. But now the question is:

Within all possible trishear models, what is the model with the best fit or lowest fobj? This is in

essence an inverse (minimization) problem (Aster et al., 2005). There are several ways to solve

this problem. The easiest is to establish a grid of possible trishearmodels (defined byminimum

and maximum limits, and step sizes of the parameters), and to systematically test each one of

these models to find out the one with the lowest fobj (the best-fit model). This grid-search

method (Allmendinger, 1998) is robust (you are guaranteed to find the model with the lowest

fobj in the grid), but it is quite inefficient. A grid search of all parameters of a two-dimensional

trishear model (Chapter 11) may involve testing hundreds of thousands of models, and even at

the speed of today’s personal computers this can take hours.

The other strategy involves the use of optimization methods. Optimization algorithms do

not systematically explore the parameter space as the grid-search method does, but rather

traverse the space in search of the best-fit model. A good analogy is to imagine the parameter

space to be a rough terrain with valleys and hills. The grid-search method would explore the

entire terrain systematically to find the lowest point. The optimization algorithms on the other

hand would be like a ball moving down the terrain under the force of gravity. This of course is

muchmore efficient than the grid-searchmethod. The problemwith optimization algorithms is

that they can be caught in local minima. Depending on the energy and size of the ball, it might

get stuck in a local valley before getting to the lowest point (Cardozo and Aanonsen, 2009).

A detailed description of optimization methods is beyond the scope of this book and there are

several fine texts that introduce this topic in a more authoritative manner (e.g., Nocedal and

Wright, 1999; and Aster et al., 2005).

A depth-converted seismic section of the Santa Fe Springs anticline and the underlying Puente

Hills thrust fault in the Los Angeles Basin (Shaw and Shearer, 1999) illustrates the concept of

272 Error analysis

optimization and trishear inverse modeling. The thrust fault is well defined in the seismic data

(Fig. 12.5). The rampangle is 298. The location of the fault tip is not exactly knownand is assumed

to be along the fault within the gray rectangle in Figure 12.5. The distance along the fault between

the lower end of the rectangle and the possible location of the fault tip is defined here as lft . We

can run a trishear inversion to search for the lft , P=S , trishear angle, and fault slip that best fit the

structure in Figure 12.5. The MATLAB function InvTrishear, below, is designed for this purpose.

The function takes the coordinates of a bed in twodimensions and a guessof the fourparameters

above, and estimates the model (i.e., the combination of trishear parameters) that best restores

the bed. InvTrishear uses our previous function BackTrishear to obtain a value of fobj for the

currently tested model. The inversion (fobj minimization) is done through the MATLAB function

fmincon (MATLAB Optimization Toolbox), which performs a constrained (limits on the searched

parameters), gradient-based optimization.

function [xbest,fval,flag] = InvTrishear(xp,yp,tparams,sinc,maxit)

%InvTrishear performs inverse trishear modeling using a constrained,

%gradient based optimization method

%

% [xbest,fval,flag] = InvTrishear(xp,yp,tparams,sinc,maxit)

%

% xp = column vector with x locations of points along bed

% yp = column vector with y locations of points along bed

% tparams = A 1 x 8 vector with the x and y coordinates of the

Figure 12.5 Depth-converted seismic section of the Santa Fe Springs anticline in the Los

Angeles Basin. Dashed lines are interpreted beds and the rectangle is the area where the

fault tip can be located. Seismic and well data from Shaw and Shearer (1999).

12.5 Geological application: Trishear inverse modeling 273

% lowest possible location of the fault tip (entries 1 and 2),

% the distance along the fault line from the lowest to the

% highest possible locations of the fault tip (lft, entry 3),

% the ramp angle (entry 4), the P/S (entry 5), the trishear angle

% (entry 6), the fault slip (entry 7), and the concentration

% factor (entry 8)

% sinc = slip increment

% maxit = maximum number of iterations in the optimized search

% xbest = Best-fit model

% fval = Objective function value of best-fit model

% flag = Integer that indicates if the model converged (flag > 0)

%

% NOTE: Input ramp and trishear angles should be in radians

% The search is for the best-fit slip, trishear angle, P/S, and lft

% The MATLAB Optimization Toolbox is needed to run this function

%

% InvTrishear uses function BackTrishear

%Trishear parameters for BackTrishear

tparam = zeros(1,7);

%Known values

xtt = tparams(1); %Coordinates of lowest possible location of fault tip

ytt = tparams(2);

tparam(3) = tparams(4); %Ramp angle

tparam(7) = tparams(8); %Concentration factor

%Set initial guess (x0), minimum (lb), and maximum (ub) parameters limits

%Entries in these vectors are: [slip trishear angle P/S lft]

%These entries should be in the same order of magnitude

%The values and scaling below only work for the Santa Fe Springs anticline

%Change lb and ub if you want to search over a larger or smaller parameter

%space

sf = 1.0e-3; %scaling for slip and lft

x0= [tparams(7)*sf tparams(6) tparams(5) tparams(3)*sf/2.]; %initial guess

lb = [0. 40.*pi/180. 1.5 0.0]; %lower limit

ub = [15. 80.*pi/180. 3.5 tparams(3)*sf]; %upper limit

%Optimization settings: Display off, maximum number of iterations, and type

%of algorithm. Use MATLAB function optimset (MATLAB Optimization Toolbox)

options = optimset('Display','off','MaxIter',maxit,...

'Algorithm','active-set');

%Compute best-fit model using constrained, gradient based optimization

%method. Use MATLAB function fmincon (MATLAB Optimization Toolbox)

[xbest,fval,flag] = fmincon(@objfun,x0, [], [], [], [],lb,ub,@confun,...

options);

274 Error analysis

%Supporting functions

%Function to compute the objective function for a given combination of

%parameters x

function f = objfun(x)

tparam(6) = x(1)/sf; %Slip: Return to its non-scaled value

tparam(5) = x(2); %Trishear angle

tparam(4) = x(3); %P/S

lft = x(4)/sf; %lft: Return to its non-scaled value

tparam(2) = ytt + lft*sin(tparam(3)); %x fault tip

tparam(1) = xtt + lft*cos(tparam(3)); %y fault tip

f = BackTrishear(xp,yp,tparam,sinc); %Compute objective function

end

%Function for constrained optimization method fmincon

function [c, ceq] = confun(x)

% Nonlinear inequality constraints

c = [];

% Nonlinear equality constraints

ceq = [];

end

end

Running InvTrishear for bed 4 of Figure 12.5, with an initial guess a0 of [1.0 km, 2.5, 608,

7.5 km] (lft , P=S , trishear angle, and fault slip), minimum limits amin of [0, 1.5, 408, 0], and

maximum limits amax of [2 km, 3.5, 808, 15 km] produces a best-fit estimate af of [1.45km, 2.52,

718, 6.7 km] (for bed 4 with about 500 points, the computation takes 20 seconds!). A forward

model of a smoothed version of the restored beds using the best-fit parameters af is shown in

Figure 12.6. This model fits well beds 4 and 7 and not so well beds 1 to 3.

One can try to refine this analysis by using different beds in the section, changing parameter

limits, etc., but here we are interested in another, perhaps more profound issue. The fold data

in Figure 12.5 have errors of various kinds, including imaging and interpretation errors

(Section 12.4). These errors introduce some uncertainty in the estimated best-fit parameters

af . How can we estimate the uncertainties of af? Figure 12.7 shows a strategy to do this.

Basically, from the observed data set we generate several synthetic data sets (i.e., realizations)

as outlined in Section 12.4. Inversemodeling (fobj minimization) of these realizations gives a set

of simulated best-fit parameters (af1; af2; :::) that are distributed around the best-fit model for

the observed data af0. From these, we can determine the probability distribution and uncer-

tainties of af . Since the synthetic data sets are generated randomly from the observed data and

there is no conditioning between synthetics, this technique is known as a randomized max-

imum likelihood method (RML, Oliver et al., 2008). The MATLAB function RMLMethod below

performs this type of analysis.

function [xbesti,fvali] = RMLMethod(xp,yp,tparams,sinc,maxit,N,sigma,corrl)

%RMLMethod runs a Monte Carlo type, trishear inversion analysis for a

%folded bed

%

% USE: [xbest,fval] = RMLMethod(xp,yp,tparams,sinc,maxit,N,sigma,corrl)

12.5 Geological application: Trishear inverse modeling 275

Figure 12.6 Best-fit trishear model (black tick lines) for the Santa Fe Springs anticline.

The best-fit model was obtained by inversion of bed 4. The entries in the best-fit vector

correspond to location of fault tip along fault line lft, P=S, trishear angle, and fault slip.

Figure 12.7 Strategy to estimate the uncertainty of the best-fit parameters af. From a

measured data set (observations) several synthetic data sets are generated

(realizations). Inverse modeling of these realizations gives a set of simulated best-fit

parameters (af1;af2 :::) from which we can determine the uncertainties of af.

276 Error analysis

%

% xp = column vector with x locations of points along bed

% yp = column vector with y locations of points along bed

% tparams = A vector of guess trishear parameters as in function

% InvTrishear

% sinc = slip increment

% maxit = maximum number of iterations in the optimized search

% N = number of realizations

% sigma = Variance

% corrl = Correlation length

% xbest = Best-fit models for realizations

% fval = Objective function values of best-fit models

%

% NOTE: Input ramp and trishear angles should be in radians

%

% RMLMethod uses function BedRealizations and InvTrishear

%Generate realizations

rlzt = BedRealizations(xp,yp,N,sigma,corrl);

%Initialize xbesti and fvali

xbesti=zeros(N+1,4);

fvali=zeros(N+1,1);

%Find best-fit model for each realization

count = 1;

for i=1:N+1

[xbest,fval,flag] = InvTrishear(rlzt(:,1,i),rlzt(:,2,i),tparams,...

sinc,maxit);

% if the function converges to a solution

if flag > 0

xbesti(count,:)=xbest;

fvali(count,:)=fval;

%Output realization number and fval

disp(['Realization ',num2str(i),' fval = ',num2str(fval)]);

%Increase count

count = count + 1;

end

end

%Remove not used elements of xbesti and fvali

xbesti(count:N+1,:)=[];

fvali(count:N+1,:)=[];

end

Figures 12.8 and 12.9 show the result of applying the RML method to the Santa Fe Springs

anticline. Figure 12.8 shows bed 4 (Fig. 12.5) and its realizations (gray lines). One thousand

realizations were created using a standard deviation � (uncertainty in location) of 50m and a

correlation length lc of 100km (lc must be large to obtain smooth fold profiles). This makes the

12.5 Geological application: Trishear inverse modeling 277

Iftfi–Iftf0 (m) P/Sfi–P/Sf0

Figure 12.9 Statistics of the trishear inversions of bed 4 realizations in Figure 12.8. (a) to

(d) are histograms for uncertainties in (a) location of fault tip along fault projection lft,

(b) P=S, (c) trishear angle, and (d) fault slip. In (a) to (d), the black thick line is a normal

distribution fit to the histogram. Dashed lines delimit the 68% confidence interval.

Figure 12.8 Realizations of bed 4 in Santa Fe Springs anticline (Figure 12.5). Realizations

are based on a standard deviation of 50m and a correlation length of 100km.

278 Error analysis

realizations fall within a distance of ±200m from the interpreted bed. This uncertainty is

comparable with the possible uncertainty due to time-to-depth conversion of the seismic

data, where a 10% error in a seismic velocity of 4 km/s (a reasonable value for the Tertiary

sediments in the Los Angeles Basin) at 1 s two-way travel time would yield an uncertainty in

depth of ±200m.

Figure 12.9 shows the statistics of the inversions of the 1000-bed realizations of Figure 12.8.

Thanks to the fast optimization methods, the 1000 inversions took a couple of hours. The

statistics is shown as deviations of the synthetic best-fit parameters afi with respect to the

observed ones af0. Normal fits to the probability distribution of afi�af0 indicate that the � errors

in lft , P=S , trishear angle, and fault slip are 181m, 0.04, 5.78, and 856m (Figure 12.9). In other

words, there is 68% chance that the true best-fit parameter values fall within intervals in lft , P=S ,

trishear angle, and fault slip of 1216–1578m, 2.48–2.56, 65–768, and 6.06–7.8km (regions

limited by dashed lines in Figure 12.9). Notice that the major uncertainties are in trishear

angle and fault slip. The structure can be fit with relatively high trishear angle and low fault

slip, or vice versa (Figure 12.9 c, d). Based on trishear inverse modeling of the section in

Figure 12.5, Allmendinger and Shaw (2000) found that the Puente Hills thrust initiated at the

same location as the 1987 M6.0 Whittier Narrows earthquake. This observation, which has

important implications for earthquake hazard assessment, is within the 68% confidence inter-

vals of our analysis. You will get the chance to try the RML method in the exercises section.

12.6 EXERCISES

1. Use Equations 12.9 through 12.16 to calculate the uncertainty on shortening in the simple

crustal area balance in Section 12.3.2. Do you get the same answer? If not why not? Discuss

your results.

2. Derive a set of equations, similar to Equations 12.15 and 12.16, that gives the uncertainty on

percentage shortening rather than just the magnitude of shortening.

3. The following table of numbers represents a 30-vertex polygon for the southernmost

Subandean belt in northwestern Argentina (Echavarría et al., 2003), the same one shown in

Figure 12.3. Calculate the uncertainty in shortening magnitude and percentage. Then, redo

your analysis to investigate the relative importance of uncertainties in eroded hanging wall

cutoffs, decollement, and stratigraphic thickness in contributing to the overall uncertainty.

Hint: Use function BalCrossErr.

T1 (km) T2 (km) Error in T1 (km) Error in T2 (km)

2.9 4.6 0.29 0.46

Stratigraphy

x1 (km) x2 (km) Error in x1 (km) Error in x2 (km) Tag*

−23.07511401 −8.58720459 0.75 0.75 1

−93.40383988 −11.03383830 0.75 0.75 1

−87.16732258 −4.17366927 0.8 0.8 3

−85.82407270 0.91149099 0.1 0.1 2

−85.53623344 −1.43919630 0.8 0.8 3

−80.45107318 2.68649976 3.0 3.0 4

−77.62065378 2.97433902 3.0 3.0 4
(cont.)

12.6 Exercises 279

4. Supplementary data file “Problem 12.4” contains the digitized contacts of beds 3 and 4 in

Figure 12.5. It also has a fault file with the lowest and highest possible locations of the

Puente Hills thrust tip. Run an RML analysis for beds 3 and 4. In each case use 1000-bed

realizations and uncertainties, limits, and guess parameters similar to the ones used in

Section 12.5.

x1 (km) x2 (km) Error in x1 (km) Error in x2 (km) Tag*

−75.60577896 0.67162494 0.1 0.1 2

−78.91593045 −0.09594642 0.8 0.8 3

−83.42541220 −4.94124063 0.8 0.8 3

−82.03418911 −6.42841014 0.8 0.8 3

−73.97468982 −6.76422261 0.8 0.8 3

−66.53884227 −0.67162494 0.8 0.8 3

−65.62735128 1.63108914 3.0 3.0 4

−63.90031572 1.87095519 3.0 3.0 4

−66.44289585 −1.82298198 0.8 0.8 3

−65.00369955 −3.07028544 0.8 0.8 3

−61.45368201 −1.58311593 0.8 0.8 3

−60.35029818 0.71959815 0.1 0.1 2

−59.29488756 1.10338383 3.0 3.0 4

−57.37595916 −3.74191038 0.8 0.8 3

−59.19894114 −4.17366927 0.8 0.8 3

−56.60838780 −5.51691915 0.8 0.8 3

−42.40831764 −5.32502631 0.8 0.8 3

−37.27518417 0.52770531 0.8 0.8 3

−35.16436293 0.14391963 0.8 0.8 3

−32.76570243 −4.74934779 0.8 0.8 3

−23.45889969 −5.13313347 0.8 0.8 3

−13.43249880 −2.87839260 0.8 0.8 3

−12.80884707 −4.94124063 0.8 0.8 3

*Tag key indicates the setting of the vertex: 1 – decollement; 2 – point on the land surface; 3 – normal

point in the subsurface; 4 – eroded (i.e., point above the erosional surface).

Enveloping polygon for deformed area

280 Error analysis

References

Albee, H. F. & H. L. Cullins (1975). Geologic Map of the Poker Peak Quadrangle, Bonneville

County, Idaho, U.S. Geological Survey, Geologic Quadrangle Map GQ 1260.

Allison, I. (1984). The pole of the Mohr diagram. Journal of Structural Geology, 6, 331–333.

Allmendinger, R.W. (1998). Inverse and forward numerical modeling of trishear fault-

propagation folds. Tectonics, 17, 640–656.

Allmendinger, R.W. & J.H. Shaw (2000). Estimation of fault propagation distance from fold

shape: Implications for earthquake seismicity. Geology, 28, 1099–1102.

Allmendinger, R.W., J. P. Loveless, M. E. Pritchard & B. Meade (2009). From decades to epochs:

Spanning the gap between geodesy and structural geology of activemountain belts. Journal

of Structural Geology, 31, 1409–1422, doi: 10.1016/j.jsg.2009.08.008.

Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research, 89,

5835–5848.

Aster, R. C., B. Borchers & C.H. Thurber (2005). Parameter Estimation and Inverse Problems.

Amsterdam: Elsevier Academic Press.

Bally, A.W., P. L. Gordy & G.A. Stewart (1966). Structure, seismic data, and orogenic evolution of

southern Canadian Rocky Mountains. Bulletin Canadian Petroleum Geology, 14, 337–381.

Bevington, P. R. & D.K. Robinson (2003). Data Reduction and Error Analysis for the Physical

Sciences. New York: McGraw-Hill.

Bobyarchick, A. R. (1986). The eigenvalues of steady flow in Mohr space. Tectonophysics, 122,

35–51.

Bond, C. E., A.D. Gibbs, Z. K. Shipton & S. Jones (2007). What do you think this is? “Conceptual

uncertainty” in geoscience interpretation. GSA Today, 17, 4.

Bott, M.H. P. (1959). The mechanics of oblique slip faulting. Geological Magazine, 96, 109–117.

Buxtorf, A. (1916). Prognosen und Befunden beim Hauensteinbasis und Grencherbergtunnel

und die Bedeutung der letzteren für die Geologie des Juragebirges. Verhandlungen der

Naturforschenden Gesellschaft in Basel, 27, 184–205.

Cardozo, N. & S. Aanonsen (2009). Optimized trishear inverse modeling. Journal of Structural

Geology, 31, 546–560.

281

Cardozo, N. & R.W. Allmendinger (2009). SSPX: A program to compute strain from displace-

ment/velocity data. Computers and Geosciences, 35, 1343–1357, doi: 10.1016/

j.cageo.2008.05.008.

Chamberlin, R. T. (1910). The Appalachian folds of central Pennsylvania. Journal of Geology, 18,

228–251.

Chamberlin, R. T. (1919). The building of the ColoradoRockies. Journal of Geology,27, 145–164.

Chamberlin, R. T. (1923). On the crustal shortening of the Colorado Rockies. American Journal

of Science, 6, 215–221.

Charlesworth, H.A. K., C.W. Langenberg & J. Ramsden (1976). Determining axes, axial planes,

and sections of macroscopic folds using computer-based methods. Canadian Journal of

Earth Science, 13, 54–65.

Cladouhos, T. T. & R.W. Allmendinger (1993). Finite strain and rotation from fault slip data.

Journal of Structural Geology, 15, 771–784.

Cutler, J. & D. Elliott (1983). The compatibility equations and the pole of theMohr circle. Journal

of Structural Geology, 10, 287–297.

Dahlstrom, C.D.A. (1969). Balanced cross sections. Canadian Journal of Earth Sciences, 6,

743–757.

Dahlstrom, C.D.A. (1970). Structural geology in the eastern margin of the Canadian Rocky

Mountains. Bulletin of Canadian Petroleum Geology, 18, 332–406.

Davis, J. C. (2002). Statistics and Data Analysis in Geology. Hoboken, NJ: John Wiley.

DePaor, D.G. (1983). Orthographic analysis of geological structures – I. Deformation theory.

Journal of Structural Geology, 5, 255–277.

Durney, D.W. & J.G. Ramsay (1973). Incremental strains measured by syntectonic crystal

growths. In K.A. De Jong & R. Scholten, eds., Gravity and Tectonics. New York: John

Wiley & Sons, pp. 67–96.

Echavarría, L., R. Hernández, R.W. Allmendinger & J. Reynolds (2003). Subandean thrust and

fold belt of northwestern Argentina: Geometry and timing of the Andean evolution. AAPG

Bulletin, 87, 965–985.

Elliott, D. (1972). Deformation paths in structural geology. Bulletin of the Geological Society of

America, 83, 2621–2635.

Erslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19, 617–620.

Fisher, D., C. Y. Lu & H.T. Chu (2002). Taiwan Slate Belt: Insights into the ductile interior of

an arc-continent collision. In T. Byrne and C. S. Liu, eds., Geology and Geophysics of an

Arc–Continent Collision. Boulder, CO: Geological Society of America, Special Paper 358,

pp. 93–106.

Fisher, N. I., T. L. Lewis & B. J. Embleton (1987). Statistical Analysis of Spherical Data. Cambridge:

Cambridge University Press.

Fjeldskaar, W., M. Ter Voorde, H. Johansen et al. (2004). Numerical simulation of rifting in the

northern Viking Graben: The mutual effect of modelling parameters. Tectonophysics, 382,

189–212, doi: 10.1016/j.tecto.2004.01.002.

Fossen, H. (2010). Structural Geology. Cambridge: Cambridge University Press.

Fossen, H. & B. Tikoff (1993). The deformation matrix for simultaneous simple shearing, pure

shearing, and volume change, and its application to transpression–transtension tectonics.

Journal of Structural Geology, 15, 413–422.

Gephart, J.W. (1990). Stress and the direction of slip on fault planes. Tectonics, 9, 845–858.

Ghosh, S. K. & H. Ramberg (1976). Reorientation of inclusions by combination of pure shear and

simple shear. Tectonophysics, 34, 1–70.

282 References

Hardy, S. (1995). A method for quantifying the kinematics of fault-bend folding. Journal of

Structural Geology, 17, 1785–1788, doi: 10.1016/0191-8141(95)00077-Q.

Hardy, S. (1997). A velocity description of constant-thickness fault-propagation folding.

Journal of Structural Geology, 19, 893–896.

Hardy, S. & J. Poblet (1995). The velocity description of deformation, Paper 2: Sediment geo-

metries associated with fault-bend and fault-propagation folds. Marine and Petroleum

Geology, 12, 165–176.

Hardy, S. & J. Poblet (2005). Amethod for relating fault geometry, slip rate and uplift data above

fault-propagation folds. Basin Research, 17, 417–424.

Hardy, S., J. Poblet, K. McClay & D. Waltham (1996). Mathematical modelling of growth strata

associated with fault-related fold structures. In P.G. Buchanan & D.A. Nieuwland, eds.,

Modern Developments in Structural Interpretation, Validation and Modelling. London: The

Geological Society, pp. 265–282.

Harris, J.W. & H. Stocker (1998). Handbook of Mathematics and Computational Science. New

York: Springer-Verlag.

Holt, W. E., B. Shen-Tu, J. Haines & J. Jackson (2000). On the determination of self-consistent

strain rate fields within zones of distributed continental deformation. In M.A. Richards

et al., eds., The History and Dynamics of Global Plate Motions. Washington, DC: American

Geophysical Union, Geophysical Monograph, pp. 113–141.

Jackson, J. A. & D. P. McKenzie (1988). The relationship between plate motions and seismic

moment tensors, and the rates of active deformation in theMediterranean andMiddle East.

Geophysical Journal, 93, 45–73.

Jaeger, J. C. & N.G.W. Cook (1979). Fundamentals of Rock Mechanics. London: Chapman and

Hall.

Jeffery, G. B. (1922). Themotion of ellipsoidal particles immersed in a viscous fluid. Proceedings

of the Royal Society of London, Series A, 102, 161–179, doi: doi:10.1098/rspa.1922.0078.

Judge, P. A. & R.W. Allmendinger (2011). Assessing uncertainties in balanced cross sections.

Journal of Structural Geology, 33, 458–467, doi: 10.1016/j.jsg.2011.01.006.

Klotz, J., D. Angermann, G. Michel et al. (1999). GPS-derived deformation of the Central Andes

including the 1995 Antofagasta Mw = 8.0 Earthquake. Pure and Applied Geophysics, 154,

709–730.

Kostrov, V. V. (1974). Seismic moment and energy of earthquakes, and seismic flow of rock.

Izvestiya, Academy of Sciences, USSR, Physics of the Solid Earth, 1, 23–44.

Kreemer, C., W. E. Holt & A. J. Haines (2003). An integrated global model of present-day plate

motions and plate boundary deformation. Geophysical Journal International, 154, 8–34.

Lindfield, G. R. & J. E. T. Penny (1999). Numerical Methods Using MATLAB. Englewood Cliffs, NJ:

Prentice Hall.

Lisle, R. J. & D.M. Ragan (1988). Brevia: Strain from three stretches: a simple Mohr circle

solution. Journal of Structural Geology, 10, 905–906.

Malvern, L. E. (1969). Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs,

NJ: Prentice-Hall.

Mandl, G. & G.K. Shippam (1981). Mechanical model of thrust sheet gliding and imbrication. In

K. R. McClay & N. J. Price, eds., Thrust and Nappe Tectonics. London: Geological Society of

London, Special Publications 9, pp. 79–98.

Marrett, R.A. & R.W. Allmendinger (1990). Kinematic analysis of fault-slip data. Journal of

Structural Geology, 12, 973–986.

Marrett, R. A. & R.W. Allmendinger (1992). The amount of extension on “small” faults: An

example from the Viking Graben. Geology, 20, 47–50.

References 283

Marrett, R. A. & D.C. P. Peacock (1999). Strain and stress. Journal of Structural Geology, 21,

1057–1063.

Marshak, S. & G. Mitra (1988). Basic Methods of Structural Geology. Englewood Cliffs, NJ:

Prentice Hall.

McKenzie, D. (1978). Some remarks on the development of sedimentary basins. Earth and

Planetary Science Letters, 40, 25–32.

Means, W.D. (1976). Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists.

New York: Springer-Verlag.

Means, W.D., B. E. Hobbs, G. S. Lister & P. F. Williams (1980). Vorticity and non-coaxiality in

progressive deformations. Journal of Structural Geology, 2, 371–378.

Menke, W. (1984). Geophysical Data Analysis: Discrete Inverse Theory. Orlando, FL: Academic

Press.

Merle, O. (1986). Patterns of stretch trajectories and strain rates within spreading-gliding

nappes. Tectonophysics, 124, 211–222.

Mitra, S. (1978). Microscopic deformation mechanisms and flow laws in quartzites within the

South Mountain anticline. Journal of Geology, 86, 129–152.

Mitra, S. & J. Namson (1989). Equal-area balancing. American Journal of Science, 289, 563–599.

Molnar, P. (1983). Average regional strain due to slip on numerous faults of different orienta-

tions. Journal of Geophysical Research, 88, 6430–6432.

Nickelsen, R. P. (1979). Sequence of structural stages of the Alleghany Orogeny, at the Bear

Valley strip mine, Shamokin, Pennsylvania. American Journal of Science, 279, 225–271.

Nocedal, J. & S. J. Wright (1999). Numerical Optimization. New York: Springer-Verlag, Springer

Series in Operations Research.

Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices.

Oxford: Oxford University Press.

Oliver, D. S., A. C. Reynolds & N. Liu (2008). Inverse Theory for Petroleum Reservoir

Characterization and History Matching. Cambridge: Cambridge University Press.

Pollard, D.D. (2000). Strain and stress: Discussion. Journal of Structural Geology, 22, 1359–

1368.

Pollard, D.D. & R.C. Fletcher (2005). Fundamentals of Structural Geology. Cambridge:

Cambridge University Press.

Press, W.H., B. P. Flannery, S. A. Teukolsky &W.T. Vetterling (1986). Numerical Recipes: The Art

of Scientific Computing. Cambridge: Cambridge University Press.

Price, R. A. & E.W. Mountjoy (1970). Geologic structure of the Canadian Rocky Mountains

between Bow and Athabasca rivers: A progress report. In J.O. Wheeler ed., Structure of

the Southern Canadian Cordillera. Geological Association of Canada, pp. 7–25.

Ragan, D.M. (2009). Structural Geology: An Introduction to Geometrical Techniques. Cambridge:

Cambridge University Press.

Ramberg, H. (1975). Particle paths, displacement and progressive strain applicable to rocks.

Tectonophysics, 28, 1–37.

Ramsay, J. G. (1967). Folding and Fracturing of Rocks. New York: McGraw-Hill.

Ramsay, J. G. & M. I. Huber (1983). The Techniques of Modern Structural Geology. Volume 1:

Strain Analysis. London: Academic Press.

Rodgers, J. (1949). Evolution of thought on structure of middle and southern Appalachians.

American Association of Petroleum Geologists Bulletin, 33, 1643–1654.

Shaw, J.H. & P.M. Shearer (1999). An elusive blind-thrust fault beneath metropolitan Los

Angeles. Science, 283, 1516–1518.

284 References

Shen, Z., D.D. Jackson & B. X. Ge (1996). Crustal deformation across and beyond the Los Angeles

Basin from geodetic measurements. Journal of Geophysical Research, 101, 27,957–27,980.

Snyder, J. P. (1987). Map Projections: A Working Manual. Washington, DC: U.S. Geological

Survey, Professional Paper 1395.

Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science,

283, 684–721.

Suppe, J. & D. Medwedeff (1990). Geometry and kinematics of fault-propagation folding.

Eclogae Geologicae Helvetiae, 83, 409–454.

Suppe, J., G. T. Chou & S.C. Hook (1992). Rates of folding and faulting determined from growth

strata. In K. R. McClay, ed., Thrust Tectonics. London: Chapman & Hall, pp. 105–121.

Taylor, J. R. (1997). An Introduction to Error Analysis: The Study of Uncertainties in Physical

Measurements. Sausalito, CA: University Science Books.

Thore, P., A. Shtuka, M. Lecour, T. Ait-Ettajer & R. Cognot (2002). Structural uncertainties:

Determination, management, and applications. Geophysics, 67, 840.

Truesdell, C. (1953). Two measures of vorticity. Journal of Rational Mechanics and Analysis, 2,

173–217.

USGS Eastern Region (2000). Map Projections. http://egsc.usgs.gov/isb/pubs/MapProjections/

projections.html (January 27, 2011).

Waltham, D. & S. Hardy (1995). The velocity description of deformation, Paper 1: Theory.Marine

and Petroleum Geology, 12, 153–163.

Willett, S. D., C. Beaumont & P. Fullsack (1993). Mechanical model for the tectonics of doubly

vergent compression orogens. Geology, 21, 371–374.

Zapata, T. R. & R.W. Allmendinger (1996). Growth strata record of instantaneous and progres-

sive limb rotation, Precordillera thrust belt and Bermejo Basin, Argentina. Tectonics, 15,

1065–1083.

Zehnder, A. T. & R.W. Allmendinger (2000). Velocity field for the trishear model. Journal of

Structural Geology, 22, 1009–1014.

References 285

Index

arrays 7
axes 26

balanced cross sections 256
area balancing 257, 258, 259
depth to decollement 259
error propagation 259, 260
Gaussian error on area 262
line-length balancing 257
maximum error on area 262
minimum shortening estimate 257
shortening error 262
thick-skinned 259
thin-skinned 259

Cholesky factorization 267
continuity equation 218
coordinate systems 23–25
Cartesian 24
east-north-up 25
left-handed 24, 78
north-east-down (NED) 25, 28, 114
right-handed 24, 78
spherical 23

deformation 1, 120
elongation 120, 124, 125, 169
gradient 123, 126
quadratic elongation 120
stretch 120, 123, 125
translation 123, 125

Delaunay triangulation 157
direction cosines 28, 31, 185
displacement 165
Euler 124
field 121, 185, 188, 190, 194
gradient 121, 124, 173
Lagrange 124
path 185, 193, 196, 203
vector 123

error propagation 2, 255
error in quadrature 255
maximum error 255

Eulerian frame 251
external rotation 200

fault
decollement 220, 230
inversion for stress 116
listric 225
movement plane 115, 151
principal stress ratio 116
propagation to slip (P/S) 231
Puente Hills thrust 279
stress on arbitrary plane 113–116

fibers
antitaxial 200, 201, 209
syntaxial 200

fold
best-fit axis 91
cylindrical 26, 92
down-plunge projection 51–53
fault-bend fold 220, 221
fault-propagation fold 220, 230, 231, 235, 236
footwall synclines 241
kink bands 221
orientation matrix 93
parallel folding 257
profile view 51
rollover anticline 225, 227
Santa Fe Springs anticline 273
similar fold 227

functions 8

geometric moment 150
growth strata 237, 247

active kink axis 251
fixed or passive kink axis 251
growth triangle 251
instantaneous rotation 251

286

progressive rotation 251
subsidence vs. uplift (G) 247
syntectonic sedimentation 247

incompressibility 218, 221, 231, 242
inverse problem 218, 272

grid search method 272
objective function 270
optimization 272
trishear inverse modeling 270

kinematic models 217
concentration factor 242
fault-bend folding 220
fault-propagation folding 230
fault-related folding 220
fixed axis kink model 230, 231
inclined simple shear 226
parallel kink model 235
similar folding 225
trishear model 240

kinematic vorticity number 195, 196
kinematics 183, 199

Lagrangian frame 252
linear algebra 6
lineation 26
loops 7

magnitudes 1
map projections 18–22

azimuthal 19
conformal 20
datum 19
developable surface 19
eastings 20
equidistant 20
false northings 22
geoid 18
latitude 18
longitude 18
NAD83 19
northings 20
UTM 20–22
WGS84 19

MATLAB 6
matrix

addition 70
antisymmetric (skew) 72, 83
asymmetric 83
cofactors 74
conformable 71
design 156
determinant 74, 79
diagonal 70
dyad product 71, 72
identity 70, 78
inverse 76–77, 78
Kronecker delta 70, 105
multiplication 71
orientation 93

orthogonal 72, 78
principal diagonal 70
square 70
symmetric 72, 83
transpose 49, 50, 72, 78

Mohr circle 168
3D stress 98
finite strain 177
infinitesimal strain 143
pole 108, 177, 178
stress 108–111
tensor transformation 88

notation
Gibbs dyadic 169
indicial 27, 66–67, 82
matrix 66, 69
summation convention 67, 68

orientations 1, 8, 31
azimuth format 12
bipolar distribution 91
dip direction 1, 12
dip, apparent 1, 39
dip, true 1, 39
girdle distribution 91
orientation matrix 93
pitch 1, 12
plunge 1
quadrant format 12
rake 1, 12, 39
right-hand rule 12
strike 1
trend 1

orthographic projection 3–4, 51
folding line 3

partial derivatives 123
pressure shadow 199, 200, 201, 205, 209

radians 6
rotation 2, 55–56
axis, antisymmetric tensor 91
internal 190, 200
of axes 46–48

scalars 25, 81
seismic moment 150
seismic reflection 266
shear
angular 140, 170
antithetic 226
engineering shear strain 141, 188
rate 193

general 192, 196
inclined 225
parallel 257
pure 183, 186, 192, 196, 200
shear strain 140, 171
simple 188, 190, 192, 196, 200, 208
tensor shear strain 141

Index 287

spherical projection 8–18
spin 200, 208
statistics
Bingham 93
correlation coefficient 131
covariance 131, 256, 267
Fisher 37
least squares 92
standard deviation 129, 255
variance 129, 256

stereonet 12–15, 62
equal angle projection 16
equal area projection 17, 20
great circle 12, 58
lower hemisphere 12, 26
primitive 12
rotations 14–15
small circle 15, 58
upper hemisphere 12

strain 2
compatibility 179
dilatation 142
finite 165, 188
elongation 170
quadratic elongation 170
stretch 170, 190
volume ratio 171

history
coaxial 200
cumulative incremental 184, 205, 208
non-coaxial 200, 205
progressive finite 186, 190, 196, 204, 205, 208

infinitesimal 135, 136, 151
axes 153
ellipse 143, 190
principal strains 146
principal stretches 143, 184
tensor 138, 143, 151, 178, 179

invariants 141
irrotational 186, 200
plane strain 218
principal stretches 184, 185
rate 131, 193
rotational 190
volume ratio 171
volume strain 142

stress 120
biaxial 111
Cauchy’s Law 101, 114
compression 104
conjugate shear 100
cylindrical 111
deviatoric 112–113
force 98
hydrostatic 111, 112
mean stress 112
Mohr circle 108–111
3D stress 109

pole to 108
normal 99, 105
on arbitrary plane 113–116

principal axes 104, 114
principal stress ratio 116
pure shear 111
shear 99, 104
spherical 111
tension 104
tensor 101
traction 98, 114
triaxial 111
uniaxial 111

summation convention, Einstein 67, 68
dummy suffix 68
free suffix 68

tensor 45, 81
antisymmetric 138, 158
asymmetric moment 152
Cauchy deformation 168, 176, 177,

185, 186
gradient 128

characteristic (secular) equation 90
deformation gradient 125, 155, 176, 184, 185,

188, 190, 193, 195, 203, 205, 208
rate 193

displacement gradient 135, 146, 147, 150, 151,
155, 157, 168

dyad (tensor) product 84
eigenvalue 90, 91, 105, 185, 189, 205, 208
eigenvector 90, 91, 105, 152, 185, 186, 188, 189,

200, 205, 208
Eulerian finite strain 167
Eulerian displacement gradient 128
field tensor 104
Green deformation 168, 189, 195, 205, 208
gradient 128

infinitesimal strain 138, 146, 151, 158
invariants 90
Lagrangian displacement gradient 128,

166, 167
Lagrangian finite strain 167
linear vector operator 84
magnitude ellipsoid 89
Mohr circle 88, 108–111
principal axes 83
representation quadric 89
rotation 138, 146, 151, 168, 190
rotation axis 91
second order (rank) 82
seismic moment 152
stress tensor 101
stretch, left 174, 175
stretch, right 174, 190
symmetric 138
transformations 85–87, 113, 115

transformation
Cauchy 123
coordinate 44, 121, 165
Green 123
orthogonality relations 48, 77
position vector 50
Pythagorean Theorem 47

288 Index

rotation of axes 46–48
tensor transformations 85–87, 113, 115
transformation matrix 48, 69, 72, 78, 84, 85,

108, 143
translation of axes 45
vector transformations 48–50, 67, 115

trigonometry
plane 5
spherical 5

uncertainty 2, 129, 254, 256, 266
Cholesky or square root method 267
correlation coefficient 131
correlation length 266
covariance 131, 256, 267
Gaussian distribution 129
in best-fit parameters 275
Monte Carlo simulation 258
randomized maximum likelihood 275
realizations 267
spherical variogram 266
standard deviation 129, 255
variance 129, 256

variables 7
vector 25–40, 81
addition 33, 35
axial 138
base 29
cross product 34, 39, 114
direction cosines 28, 31
displacement 123
dot product 34, 39, 47, 71, 72
dyad product 71, 72, 84
Fisher statistics 37
magnitude 27
mean 34–36
resultant 35
scalar multiplication 33
transformations 48–50, 67, 77, 115
unit 27, 30

velocity
divergence 218
domains 220
linear trishear field 242
pure shear 219
simple shear 219

Index 289

Errata

Structural Geology Algorithms

R. W. Allmendinger, N. Cardozo, & D. Fisher

We’ve discovered first hand just how hard it is to produce an error free book. This sheet
lists the errors that we have found to date and provides correction. Please let Rick
Allmendinger (rwa1@cornell.edu) know if you find any additional typos and let Nestor
Cardozo (nestor.cardozo@uis.no) know if you identify any problems with the Matlab™
scripts. Thanks!

Chapter 2
• Section 2.3.2, p. 26 — Third sentence in the section should read (changes in

red):

“Vectors in these notes this book are shown in lower case with bold face
print (which is sometimes known as symbolic or Gibbs notation):”

• P. 39, Section 2.4.2 — cosα for the second row in the table in step 1 is
incorrect:

" 0.1.34 0.1034

Chapter 3
• Section 3.4.3, p. 58 — Sentence in the middle of the page should read

(changes in red):

“One of the main reasons for using a right-hand rule format for specifying
strike azimuths is that that a vector will automatically trace out a lower
hemisphere great circle when rotated 180° clockwise about the pole (a
positive rotation). “

Chapter 4
• P. 73, first full sentence after Equation 4.22 — the second set of subscripts

of C are incorrect. The correct version follows:

“But, suppose we have the condition that Cij = −Cji .”

-1-

mailto:rwa1@cornell.edu
mailto:rwa1@cornell.edu
mailto:nestor.cardozo@uis.no
mailto:nestor.cardozo@uis.no

• P. 74, Equation 4.27 — The minus sign in front of the second term on the
right side of the equation should be a plus sign. The correct equation is
given below:

M =
M11 M12 M13

M 21 M 22 M 23

M 31 M 32 M 33

= M11cof11(M)+M12cof12 (M)+M13cof13(M)

• P. 77, 3rd from last line on the page — the reference to the equations is
incorrect. It should read:

“…orthogonality relations (Eqs. 3.3 and 3.4 3.4 and 3.5).”

Chapter 5
• P. 88, Equation (5.16) — The T22 component of the matrix is incorrect: it

should read T2 and not 1. The correct equation is below:

" ′Tij =

T1 cos
2θ +T3 sin

2θ() 0 −T1 sinθ cosθ +T3 sinθ cosθ()
0 T2 0

−T1 sinθ cosθ +T3 sinθ cosθ() 0 T1 sin
2θ +T3 cos

2θ()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Chapter 6
• P. 116, sentence located between equations 6.31 and 6.32 should read

(changes in red):

“By setting the second equation in 6.31 to zero and using the orthogonality
relations (equations (3.3 3.4) and (4.28 3.5)), “

• P. 101, Section 6.2.2, first equation on the page is missing a subscript. The
correct version is below:

V = 1

3
A = 1

3
A1 OA
 () = 13A2 OB

 () = 13A3 OC
 ()

-2-

Chapter 8
• P. 136, Figure 8.1 — The lengths of the lines should be preceded by the

Greek letter delta (∆). The corrected figure is below:

∆X1

∆x1

u1

X1, x1

X2, x2

• P. 137, section 8.1.3 — Sentence starting with “Likewise…” has some
incorrect subscripts. The correct sentence is below (changes in red):

“Likewise, e12 will be approximately equal to −φ because it is a rotation of
∆ X2 towards X2 (counterclockwise), whereas we just saw that e12 is a
clockwise rotation of ∆ X2 towards X1 .“

• P. 139, first sentence of section 8.2.2 should read (changes in red):

“If the deformation is the same throughout the region, then the
displacements gradients are not a function of position.”

• P. 142, Figure 8.7 — the axes of Figure 8.7a are mislabeled. The corrected
figure is below:

-3-

quadric

strain
ellipsoid

unit
circle

ε1–0.5

ε3–0.5

tangent to quadric

(a)

• P. 144, Equations 8.13 and 8.14 are missing a minus sign. The correct
equation is below:

′ε ij =
′ε11 0 ′ε13
0 ε2 0
′ε31 0 ′ε33

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

ε1 cos
2θ + ε3 sin

2θ() 0 ε3 − ε1()cosθ sinθ()
0 ε2 0

− ε1 − ε3()cosθ sinθ() 0 ε1 sin
2θ + ε3 cos

2θ()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′ε11 =
ε1 + ε3()
2

+
ε1 − ε3()
2

cos2θ

′ε13 =
γ
2
= −

ε1 − ε3()
2

sin2θ

• P. 144, second sentence after equation 8.14, the second 45° is missing a
minus sign. It should read:

“Probably the most important thing illustrated by Figure 8.9 is that the
two planes of maximum shear strain are oriented at +45° and –45° to the
principal axes, !1 and !3.”

• P. 145, Figure 8.11 is incorrectly labeled. The corrected version is below:

-4-

7

ε11 = 10

ε33 = 4 ε13 = 213
2θ = 33.7°

ε11 + ε33
2

10 + 4
2

=

• P. 153, function PTAxes has an error in the calculation of the slip direction.
See the appendix at the end of this document for the corrected script.

Chapter 9
• P. 166, Figure 9.1 — the “partial” sign “∂” should be a normal “d”. The

corrected figure is below:

dxi

dXi

P

Q

Q'

P'

(a)

dXi

Qui

Pui
PXi

dui

X1, x1

X2, x2

• P. 167, Section 9.4 — the left side of first equation in this section has an
incorrect subscript. The corrected version is below:

′P ′Q 2 = dxidxi = dx1
2 + dx2

2

-5-

• P. 170, bottom, section 9.7.2 — the last equation on this page is incorrect
(the left side should be small “e” rather than capital “E”). The corrected
version is below:

e 1() = C11 −1= 1+ 2E11 −1

• P. 171, top, section 9.7.2 — the first equation on this page is incorrect (the
right side should be small “e” rather than capital “E”). The corrected
version is below:

E11 = e 1() +
1
2
e 1()
2

• P. 177, first equation on the page, as well as Equation 9.28 are missing a
minus sign. The corrected versions are below:

Cij
′ =

C1X1′ 0 C13′

0 C2 0

C31
′ 0 C33

′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
=

C1 cos
2θ +C3 sin

2θ() 0 C3 −C1()cosθ sinθ()
0 C2 0

− C1 −C3()cosθ sinθ() 0 C1 sin
2θ +C3 cos

2θ()

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

C13′ = −
C1 −C3()
2

sin2θ

Chapter 10
• P. 188, last three lines on the page should read:

“axis orientation is stable for passive line markers rotated or perturbed in
a counterclockwise clockwise sense and unstable for markers rotated
clockwise counterclockwise, much like a ball at rest on a ledge”

• P. 190, last sentence on page:

“The internal rotation ("i) within the rotation matrix R is equal to 8/2 #/2
for small strains”

• P. 195, sentence preceding equation (10.17):

-6-

“…so the deformation gradient matrix for simultaneous pure and simple
shearing is:”

• P. 200, sentence preceding equation (10.18):

“…the internal velocity vorticity ("i ω i):”

• P. 200, middle of page near end of second paragraph”

“… equal and opposite in sign to the angular shear associated with
flexime flexural shear.”

• P. 212, near bottom of page:
“%Determine Cauchy Green deformation tensor

for i=1:n-1

! C(:,:,i)=finmat(:,:,i)'*finmat(:,:,i);

! %Stretch magnitude and orientation: Maximum eigenvalue and
! their

! %corresponding eigenvectors of Cauchy's Green’s tensor. Use
! Matlab function eig”

• P. 213, top of page:
ylabel('Progressive Finite Strain Maximum finite stretch');

Chapter 11
• P. 221, Section 11.4.1 — The first sentence after Equation 11.11 is incorrect.

The corrected sentence follows (changes in red):

“For θ = 30° , tan−1(∂ f ∂x1) or ψ 1 (Fig. 11.2) = 125° 105°.

• P. 227, equation (11.15) — “x’s” should be in italics. The corrected equation
is below:

′v2 =
s cosα sinα + ∂ f

∂ x1

⎛
⎝⎜

⎞
⎠⎟
cos2α

⎡

⎣
⎢

⎤

⎦
⎥ +

2v2 −
2v1

∂ f
∂ x1

cosα − ∂ f
∂ x1

sinα

• P. 243, immediately above code snippet at bottom of page:

-7-

“To make a contractional, trishear fault propagation fold with initial fault
tip (x1 H = 300, x2 V = 50), ramp angle = 30°, P / S = 1.5, trishear angle =
60°, fault slip = 100 units, and concentration factor = 1.0, type:”

Chapter 12
• P. 263, in function BalCrossErr — the word “vertices” should be on the

same line with the rest of the sentence or should be preceded by a a “%” to
indicate that it is a comment:
“% kk = A flag to indicate wether the program computes total errors

%! (kk = 0), errors due to stratigraphy only (kk = 1), errors due to

%! vertices at decollement only (kk = 2), errors due to vertices in

%! eroded hanging walls only (kk = 3), errors due to surface

%! vertices

-8-

Appendix A — Corrected PTAxes Matlab™ Script
function [P,T] = PTAxes(fault,slip)

%PTAxes computes the P and T axes from the orientation of several fault

%planes and their slip vectors. Results are plotted in an equal area

%stereonet

%

% USE: [P,T] = PTAxes(fault,slip)

%

% fault = nfaults x 2 vector with strikes and dips of faults

% slip = nfaults x 2 vector with trends and plunges of slip vectors

% P = nfaults x 2 vector with trends and plunges of the P axes

% T = nfaults x 2 vector with trends and plunges of the T axes

%

% NOTE: Input/Output angles are in radians

% Slip vector should be given such that it points in the direction

% of fault slip: For example, for a thrust fault with strike and

% dip (right hand rule) 000/30, and dip slip motion, the trend and

% plunge of the slip vector should be 90/-30

%

% PTAxes uses functions SphToCart, CartToSph, Stereonet, GreatCircle and

% StCoordLine

%

%MATLAB script written by Nestor Cardozo for the book Structural

%Geology Algorithms by Allmendinger, Cardozo, & Fisher, 2011. If you use

%this script, please cite this as "Cardozo in Allmendinger et al. (2011)"

%Initialize some vectors

n = zeros(1,3);

u = zeros(1,3);

eps = zeros(3,3);

P = zeros(size(fault,1),2);

T = zeros(size(fault,1),2);

%For all faults

for i=1:size(fault,1)

 %Assume that slip vector is pointing down

-9-

 up = 'n';

 %If slip vector is pointing up

 if slip(i,2) < 0.0

 slip(i,2) = -slip(i,2);

 up = 'y';

 end

 %Direction cosines of pole to fault and slip vector

 [n(1),n(2),n(3)] = SphToCart(fault(i,1),fault(i,2),1);

 [u(1),u(2),u(3)] = SphToCart(slip(i,1),slip(i,2),0);

 %Compute u(i)*n(j) + u(j)*n(i) (Eq. 8.32)

 for j=1:3

 for k=1:3

 eps(j,k)=u(j)*n(k)+u(k)*n(j);

 end

 end

 %Compute orientations of principal axes of strain. Here we use the

 %MATLAB function eig

 [V,D] = eig(eps);

 %If slip vector is pointing down

 if up == 'n'

 %P orientation

 [P(i,1),P(i,2)] = CartToSph(V(1,3),V(2,3),V(3,3));

 %T orientation

 [T(i,1),T(i,2)] = CartToSph(V(1,1),V(2,1),V(3,1));

 %Else if slip vector is pointing up

 else

 %P orientation

 [P(i,1),P(i,2)] = CartToSph(V(1,1),V(2,1),V(3,1));

 %T orientation

 [T(i,1),T(i,2)] = CartToSph(V(1,3),V(2,3),V(3,3));

 end

end

%Plot stereonet

Stereonet(0,90*pi/180,10*pi/180,1);

hold on;

-10-

%Plot other elements

for i=1:size(fault,1)

 %Plot fault

 [path] = GreatCircle(fault(i,1),fault(i,2),1);

 plot(path(:,1),path(:,2),'r');

 %Plot Slip vector (red square)

 [xp,yp] = StCoordLine(slip(i,1),slip(i,2),1);

 plot(xp,yp,'rs');

 %Plot P axis (black, filled circle)

 [xp,yp] = StCoordLine(P(i,1),P(i,2),1);

 plot(xp,yp,'ko','MarkerFaceColor','k');

 %Plot T axis (black circle)

 [xp,yp] = StCoordLine(T(i,1),T(i,2),1);

 plot(xp,yp,'ko');

end

%Release plot

hold off;

end

-11-

	9781107012004i
	Front
	Contents
	Preface
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	References
	Index
	Errata

