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Preface

The area of stochastic approximation has its roots in a paper published by Robbins
and Monro in 1951, where the basic stochastic approximation algorithm was in-
troduced. Ever since, it has been applied in a variety of applications cutting across
several disciplines such as control and communication engineering, signal process-
ing, robotics and machine learning.

Kiefer and Wolfowitz, in a paper in 1952 (nearly six decades ago) published the
first stochastic approximation algorithm for optimization. The algorithm proposed
by them was a gradient search algorithm that aimed at finding the maximum of
a regression function and incorporated finite difference gradient estimates. It was
later found that whereas the Kiefer-Wolfowitz algorithm is efficient in scenarios
involving scalar parameters, this is not necessarily the case with vector parame-
ters, particularly those for which the parameter dimension is high. The problem that
arises is that the number of function measurements needed at each update epoch
grows linearly with the parameter dimension. Many times, it is also possible that
the objective function is not observable as such and one needs to resort to simula-
tion. In such scenarios, with vector parameters, one requires a corresponding (linear
in the parameter-dimension) number of system simulations. In the case of large or
complex systems, this can result in a significant computational overhead.

Subsequently, in a paper published in 1992, Spall proposed a stochastic approx-
imation scheme for optimization that does a random search in the parameter space
and only requires two system simulations regardless of the parameter dimension.
This algorithm that came to be known as simultaneous perturbation stochastic
approximation or SPSA for short, has become very popular because of its high
efficiency, computational simplicity and ease of implementation. Amongst other
impressive works, Katkovnik and Kulchitsky, in a paper published in 1972, also
proposed a random search scheme (the smoothed functional (SF) algorithm) that
only requires one system simulation regardless of the parameter dimension. Subse-
quent work showed that a two-simulation counterpart of this scheme performs well
in practice. Both the Katkovnik-Kulchitsky as well as the Spall approaches involve
perturbing the parameter randomly by generating certain i.i.d. random variables.



VIII Preface

The difference between these schemes lies in the distributions these perturbation
random variables can possess and the forms of the gradient estimators.

Stochastic approximation algorithms for optimization can be viewed as counter-
parts of deterministic search schemes with noise. Whereas, the SPSA and SF algo-
rithms are gradient-based algorithms, during the last decade or so, there have been
papers published on Newton-based search schemes for stochastic optimization. In a
paper in 2000, Spall proposed the first Newton-based algorithm that estimated both
the gradient and the Hessian using a simultaneous perturbation approach incorpo-
rating SPSA-type estimates. Subsequently, in papers published in 2005 and 2007,
Bhatnagar proposed more Newton-based algorithms that develop and incorporate
both SPSA and SF type estimates of the gradient and Hessian. In this text, we com-
monly refer to all approaches for stochastic optimization that are based on randomly
perturbing parameters in order to estimate the gradient/Hessian of a given objective
function as simultaneous perturbation methods. Bhatnagar and coauthors have also
developed and applied such approaches for constrained stochastic optimization, dis-
crete parameter stochastic optimization and reinforcement learning – an area that
deals with the adaptive control of stochastic systems under real or simulated out-
comes. The authors of this book have also studied engineering applications of the
simultaneous perturbation approaches for problems of performance optimization
in domains such as communication networks, vehicular traffic control and service
systems.

The main focus of this text is on simultaneous perturbation methods for stochas-
tic optimization. This book is divided into six parts and contains a total of fourteen
chapters and five appendices. Part I of the text essentially provides an introduc-
tion to optimization problems - both deterministic and stochastic, gives an overview
of search algorithms and a basic treatment of the Robbins-Monro stochastic ap-
proximation algorithm as well as a general multi-timescale stochastic approxima-
tion scheme. Part II of the text deals with gradient search stochastic algorithms for
optimization. In particular, the Kiefer-Wolfowitz, SPSA and SF algorithms are pre-
sented and discussed. Part III deals with Newton-based algorithms that are in partic-
ular presented for the long-run average cost objective. These algorithms are based on
SPSA and SF based estimators for both the gradient and the Hessian. Part IV of the
book deals with a few variations to the general scheme and applications of SPSA
and SF based approaches there. In particular, we consider adaptations of simulta-
neous perturbation approaches for problems of discrete optimization, constrained
optimization (under functional constraints) as well as reinforcement learning. The
long-run average cost criterion will be considered here for the objective functions.
Part V of the book deals with three important applications related to vehicular traf-
fic control, service systems as well as communication networks. Finally, five short
appendices at the end summarize some of the basic material as well as important
results used in the text.

This book in many ways summarizes the various strands of research on simul-
taneous perturbation approaches that SB has been involved with during the course
of the last fifteen years or so. Both HLP and LAP have also been working in this
area for over five years now and have been actively involved in the various aspects
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of the research reported here. A large portion of this text (in particular, Parts III-V
as well as portions of Part II) is based mainly on the authors’ own contributions to
this area. The text provides a compact coverage of the material in a way that both
researchers and practitioners should find useful. The choice of topics is intended to
cover a sufficient width while remaining tied to the common theme of simultaneous
perturbation methods. While we have made attempts at conveying the main ideas
behind the various schemes and algorithms as well as the convergence analyses, we
have also included sufficient material on the engineering applications of these al-
gorithms in order to highlight the usefulness of these methods in solving real-life
engineering problems. As mentioned before, an entire part of the text, namely Part
IV, comprising of three chapters is dedicated for this purpose. The text in a way
provides a balanced coverage of material related to both theory and applications.
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Part I
Introduction to Stochastic Recursive

Algorithms



Stochastic recursive algorithms are one of the most important tools for problems
of stochastic optimization. In recent times, an important class of such algorithms
that are based on the simultaneous perturbation technique has become popular be-
cause of their superior computational time performance in converging to an opti-
mum point. This has resulted in a flurry of research activity on stochastic algorithms
that involve simultaneous perturbation.

This part of the book consists of three chapters. Chapter 1 gives an introduction to
stochastic optimization problems and provides a motivation of where such problems
arise and why they are important. It also provides an overview of the remaining
chapters.

Chapter 2 discusses some of the well-known deterministic algorithms for opti-
mization. Stochastic recursive algorithms turn out to be the stochastic analogs of
these algorithms.

The basic stochastic recursive algorithm is the Robbins and Monro scheme. It is
found to be applicable in a wide variety of settings, in particular, stochastic optimiza-
tion. In Chapter 3, we discuss in detail the Robbins-Monro algorithm and analyze
its convergence. The Robbins-Monro scheme (so named after its inventors, Robbins
and Monro) is normally applicable when the objective function is an expectation
of a noisy cost objective. Many times, one is faced with a problem of optimizing a
long-run average cost objective in order to, say, optimize a steady-state system per-
formance. Multi-timescale stochastic approximation plays an important role in such
scenarios. We also present in Chapter 3, a general two-timescale stochastic recursive
scheme and present its convergence analysis under general conditions.



Chapter 1
Introduction

1.1 Introduction

Optimization methods play an important role in many disciplines such as signal
processing, communication networks, neural networks, economics, operations re-
search, manufacturing systems, vehicular traffic control, service systems and sev-
eral others. For instance, in a general communication network, a goal could be to
optimally allocate link bandwidth amongst competing traffic flows. Similarly, an
important problem in the setting of traffic signal control is to dynamically find the
optimal order to switch traffic lights at signal junctions and the amount of time that
a lane signal should be green when inputs such as the number of vehicles waiting at
other lanes are provided. In the case of a manufacturing plant, an important problem
is to decide the optimal order in which to allocate machine capacity for manufac-
turing various products on any day given the demand patterns for various products.
These are only a few specific instances of innumerable problems across various dis-
ciplines that fall within the broad category of optimization problems. A usual way
to model these problems analytically is by defining an objective or a cost function
whose optimum constitutes the desired solution. For instance, in the case of the traf-
fic signal control problem, a cost function could be the sum of queue lengths of
vehicles waiting across all lanes at a red signal intersection. Thus, an optimal signal
switching order would ensure that the sum of the queue lengths of waiting vehicles
is minimized and thereby traffic flows are maximized. In general, a cost function is
designed to penalize the less desirable outcomes. However, in principle, there can
be several cost functions that have the same (or common) desired outcome as their
optimum point. Suitably designing a cost objective in order to obtain the desired
outcome in a reasonable amount of time when following a computational procedure
could be a domain-specific problem. For instance, in the context of the traffic signal
control problem mentioned above, another cost objective with the same optimum
could be the sum of squared queue lengths of waiting vehicles instead of the sum of
queue lengths. Optimization problems can be deterministic or stochastic, as well as
they can be static or dynamic. We discuss this issue in more detail below.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 3–12.
springerlink.com © Springer-Verlag London 2013



4 1 Introduction

A general optimization problem that we shall be concerned about for the most
part in this book has the following form:

Find θ ∗ that solves min
θ∈C

J(θ ), (1.1)

where J : RN → R is called the objective function, θ is a tunable N-dimensional
parameter and C ⊂ RN is the set in which θ takes values. If one has complete
information about the function J and its first and higher order derivatives, and about
the set C, then (1.1) is a deterministic optimization problem. If on the other hand,
J is obtained as J(θ ) = Eξ [h(θ ,ξ )], where Eξ [·] is the expected value over noisy
observations or samples h(θ ,ξ ) of the cost function with random noise ξ , and one
is allowed to observe only these samples (without really knowing J), then one is in
the realm of stochastic optimization. Such problems are more challenging because
of the added complexity of not knowing the cost objective J(·) precisely and to find
the optimum parameter only on the basis of the aforementioned noisy observations.

As we shall subsequently see, many times one resorts to search algorithms in
order to find an optimum point, i.e., a solution to (1.1). In stochastic optimization
algorithms, it is not uncommon to make a random choice in the search direction – in
fact most of our treatment will be centered around such algorithms. Thus, a second
distinction between deterministic and stochastic optimization problems lies in the
way in which search progresses - a random search algorithm invariably results in
the optimization setting being stochastic as well.

Suppose now that the objective function J has a multi-stage character, i.e., is of

the form J(θ ) =
N

∑
i=1

E[hi(Xi)], where N denotes the number of stages and Xi is the

state of an underlying process in stage i, i = 1, . . . ,N. The state captures the most
important attributes of the system that are relevant for the optimization problem.

Further, hi denotes a stage and state-dependent cost function. Let θ �= (θ1, . . . ,θN)
T

denote a vector of parameters θ j, j = 1, . . . ,N and let Xi depend on θ . The idea here
is that optimization can be done one stage at a time over N stages after observing the
state Xi in each stage i. Here, the value θi of the parameter in stage i has a bearing on
the cost of all subsequent stages i+1, . . . ,N. This in short is the problem of dynamic
optimization. Approaches such as dynamic programming are often used to solve
dynamic optimization problems. Other manifestations of dynamic optimization, say
over an infinite number of stages or in continuous time also exist. In relation to the
above (multi-stage) problem, in static optimization, one would typically perform
a single-shot optimization where the parameters θ1, . . . ,θN would be optimized all
at once in the first stage itself. Broadly speaking while in a dynamic optimization
problem with multiple stages, one makes decisions instantly as states are revealed,
in static optimization, there is no explicit notion of time or perhaps even state as all
decisions can be made at once.
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An important class of multi-stage problems are those with an infinite number of
stages and where the objective function is a long-run average over single-stage cost
functions. More precisely, the objective function in this case has the form

J(θ ) = lim
N→∞

1
N

E

[
N

∑
i=1

hi(Xi)

]
, (1.2)

where Xi as before is the state in stage i that we assume depends on the parameter
θ . An objective as (1.2) would in most cases not be analytically known. A usual
search procedure to find the optimum parameter in such problems would run into
the difficulty of having to estimate the cost over an infinitely long trajectory before
updating the parameter estimate, thereby making the entire procedure very tedious.

Another important class of optimization problems is that of constrained opti-
mization. Here, the idea is to optimize a given objective or cost function subject to
constraints on the values of additional cost functions. Thus consider the following
variation to the basic problem (1.1).

Find θ ∗ for which J(θ ∗) = min
θ∈C
{J(θ ) | Gi(θ )≤ αi, i = 1, . . . , p}. (1.3)

Here, Gi(·) and αi, i = 1, . . . , p are certain additional cost functions and constants,
respectively, that constitute the functional constraints. In the context of the traffic
signal control problem where the objective function to be minimized is the sum of
queue lengths on the various lanes, constraints could be put for the traffic on the
side roads so that the main road traffic gets higher priority. For instance, a constraint
there could specify that the traffic signal for a side road lane can be switched to
green only provided the number of vehicles waiting on such a lane exceeds ten.
Similarly, in a communication network, the objective could be to maximize the av-
erage throughput. A constraint there could specify that the average delay must be
below a threshold. Another constraint could similarly be on the probability of packet
loss during transmission being below a small constant, say 0.01.

While for the most part, we shall be concerned with optimization problems of the
form (1.1), we shall subsequently also consider constrained optimization problems
of the type (1.3). The objective function (and also the constraint functions in the
case of (1.3)) will be considered to be certain long-run average cost functions.

We shall present various stochastic recursive search algorithms for these prob-
lems. Many of the stochastic search algorithms for optimization can be viewed as
stochastic (i.e., with noise) counterparts of corresponding deterministic search al-
gorithms such as gradient and Newton methods. In the setting of stochastic op-
timization, where the form of the objective function as well as its derivatives is
unknown, one needs to resort to estimation of quantities such as the gradient and
Hessian from noisy function measurements or else through simulation. A finite
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difference estimate of the gradient as proposed by Kiefer and Wolfowitz [18] re-
quires a number of function measurements or simulations that is linear in the number
of parameter components. A similar estimate of the Hessian [14] requires a number
of function measurements that is quadratic in the number of measurements or sim-
ulations. When the parameter dimension is large, algorithms with gradient/Hessian
estimators as above would be computationally inefficient because such algorithms
would update once only after all the required function measurements have been
made or simulations conducted. It is here that simultaneous perturbation methods
play a significant role. In a paper published in 1992, Spall presented the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm that estimated the
gradient of the objective function using exactly two function measurements (or sim-
ulations) made from perturbed values of the parameter, where each component of the
parameter is perturbed along random directions using independent random variates
most commonly distributed according to the Bernoulli distribution. A second well-
known simultaneous perturbation technique that in fact came before SPSA was the
smoothed functional (SF) scheme [17]. The idea in this scheme is some what sim-
ilar to SPSA, however, the form of the gradient estimator is considerably different
as perturbations that are distributed as per the Gaussian, Cauchy or uniform distri-
butions can be used. A basic format for the simultaneous perturbation technique is
described in Fig. 1.1.

Propose θ

Perturbation

Simulate

Update θ

Fig. 1.1 Overall flow of a basic simultaneous perturbation algorithm.

During the course of the last ten to fifteen years, there has been a spurt of activity
in developing Newton-based simultaneous perturbation methods. In [27] and [3],
Newton-based analogs of the SPSA method were proposed. Further, in [4], Newton-
based analogs of the SF algorithm have been proposed. We may mention here that
in this text, by simultaneous perturbation methods, we refer to the entire family
of algorithms that are based on either gradient or gradient and Hessian estimates
that are obtained using some form of simultaneous random perturbations. While for
the most part, we shall be concerned with static optimization problems, we shall
also consider later, the problem of dynamic stochastic control or of decision making
under uncertainty over a sequence of time instants. This problem will subsequently
be cast as one of dynamic parameter optimization. We shall also present towards the
end, applications of the proposed methods and algorithms to service systems, road
traffic control and communication networks. A common unifying thread in most of
the material presented in this text is of simultaneous perturbation methods.
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1.2 Overview of the Remaining Chapters

We now provide a brief overview of the remainder of this book. In Chapter 2,
we briefly discuss well-known local search algorithms. These have been described
mainly for the case of deterministic optimization. However, we also discuss briefly
the case of stochastic optimization as well. The algorithms for stochastic optimiza-
tion that we present in later chapters will be based on these algorithms.

The fundamental stochastic algorithm due to Robbins and Monro [22] is almost
six decades old. It estimates the zeros of a given objective function from noisy cost
samples. Most stochastic search algorithms can be viewed as variants of this algo-
rithm. In Chapter 3, we describe the R-M algorithm. We also present in this chapter,
a general multi-timescale stochastic approximation algorithm that can be viewed
as a variant of the R-M algorithm. Multi-timescale stochastic approximation al-
gorithms play a significant role in the case of problems where the computational
procedure would typically involve two nested loops where an outer loop update can
happen only upon convergence of the inner loop procedure. A specific instance is the
case when the objective function is a long-run average cost of the form (1.2). Such
an objective function is useful in scenarios where one is interested in optimizing
steady-state system performance measures, such as minimizing long-run average
delays in a vehicular traffic network or the steady-state loss probability in packet
transmissions in a communication network. A regular computational procedure in
this case would perform the outer loop (parameter) update only after convergence of
the inner loop procedure (viz., after obtaining the long-run average cost correspond-
ing to a given parameter update). The same effect can be obtained with the use of
coupled simultaneous stochastic updates that are however governed with diminish-
ing step-size schedules that have different rates of convergence - the faster update
governed with a slowly diminishing schedule and vice versa. Borkar [12, 13] has
given a general analysis of these algorithms. We discuss the convergence of both
the R-M and the multi-timescale algorithms.

Amongst the first stochastic gradient search algorithms based on estimating the
gradient of the objective function using noisy cost samples is the Kiefer-Wolfowitz
(K-W) algorithm [18] due to Kiefer and Wolfowitz. We review this algorithm in Chap-
ter 4. While it was originally presented for the case of scalar parameters, in the case
of vector-valued parameters, the K-W algorithm makes function measurements after
perturbing at most one parameter component. Thus, K-W is not efficient under high-
dimensional parameters since the number of function measurements or system simu-
lations required to estimate the gradient grows linearly with the parameter dimension.

Spall invented the simultaneous perturbation stochastic approximation (SPSA)
algorithm [23], [28] that requires only two function measurements at each instant
regardless of the parameter dimension, by simultaneously perturbing all parame-
ter components using a class of i.i.d. random variables. The most commonly used
perturbations in this class are symmetric, ±1-valued, Bernoulli-distributed random
variables. A one-simulation version of this algorithm was subsequently presented in
[24]. However, it was not found to be as effective as regular two-simulation SPSA.
In [7], certain deterministic constructions for the perturbation random variables have
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been explored for both two-simulation and one-simulation SPSA. These have been
found to yield better results as compared to their random perturbation counterparts.
We review the SPSA algorithm and its variants in Chapter 5.

Katkovnik and Kulchitsky [17] presented a smoothed functional (SF) approach
that is another technique to estimate the gradient of the objective function using
random perturbations. This technique is some what different from SPSA. In partic-
ular, the properties required of the perturbation random variables here are seen to be
most commonly satisfied by Gaussian and Cauchy distributed random variables. If
one considers a convolution of the gradient of the objective function with a smooth-
ing density function (such as that of Gaussian or Cauchy random variables), then
through a suitable integration-by-parts argument, one can rewrite the same as a con-
volution of the gradient of the probability density function (p.d.f.) with the objective
function itself. The derivative of the smoothing p.d.f. is seen to be a scaled version
of the same p.d.f. This suggests that if the perturbations are generated using such
p.d.fs, only one function measurement or system simulation is sufficient to estimate
the gradient of the objective (in fact, the convolution of the gradient, that however
converges to the gradient itself in the scaling limit of the perturbation parameter).
A two-simulation variant of this algorithm that incorporates balanced estimates has
been proposed in [29] and found to perform better than its one-simulation counter-
part. We review developments in the gradient-based SF algorithms in Chapter 6.

Spall [27] presented simultaneous perturbation estimates for the Hessian that
incorporate two independent perturbation sequences that are in the same class of
sequences as used in the SPSA algorithm. The Hessian estimate there is based on
four function measurements or system simulations, two of which are the same as
those used for estimating the gradient of the objective. In [3], three other Hessian
estimators were proposed. These are based on three, two and one system simula-
tion(s), respectively. In Chapter 7, we review the simultaneous perturbation estima-
tors of the Hessian. An issue with Newton-based algorithms that incorporate the
Hessian is in estimating the inverse of the Hessian matrix at each update epoch. We
also discuss in this chapter some of the recent approaches for inverting the Hessian
matrix.

Bhatnagar [4] developed two SF estimators for the Hessian based on one and two
system simulations, respectively, when Gaussian p.d.f. is used as the smoothing
function. Using an integration-by-parts argument (cf. Chapter 6), twice, the Hessian
estimate is seen to be obtained from a single system simulation itself. A two-sided
balanced Hessian estimator is, however, seen to perform better than its one-sided
counterpart. An interesting observation here is that both the gradient and the Hessian
estimates are obtained using the same simulation(s). We review the SF estimators of
the Hessian matrix in Chapter 8.

In Chapter 9, we consider the case when the optimization problem has a form sim-
ilar to (1.1); however, the underlying set C is discrete-valued. Further, we shall let the
objective function be a long-run average cost as with (1.2). In [11], two gradient search
algorithms based on SPSA and SF have been proposed for this problem. A randomized
projection approach was proposed there that is seen to help in adapting the continuous
optimization algorithms to the discrete setting. We present another approach based on
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certain generalized projections that can be seen to be a mix of deterministic and ran-
domized projection approaches, and result in the desired smoothing of the dynamics
of the underlying process. Such a projection mechanism would also result in a lower
computational complexity as opposed to a fully randomized projection scheme.

Next, in Chapter 10, we will be concerned with constrained optimization prob-
lems with similar objective as (1.3). We shall, in particular, be concerned here with
the case when the objective has a long-run-average form similar to (1.2). Thus, in
such cases, neither the objective nor the constraint region is known analytically to
begin with. In [8], stochastic approximation algorithms based on SPSA and SF es-
timators for both the gradient and the Hessian have been presented. The general
approach followed is based on forming the Lagrangian – the Lagrange multipliers
are updated on a slower timescale than the parameter that, in turn, is updated on
a slower scale in comparison to that on which data gets averaged. We will review
these algorithms in Chapter 10.

Reinforcement learning (RL) algorithms [2] are geared towards solving stochas-
tic control problems using only real or simulated data when the system model (in
terms of the transition probabilities) is not known. Markov decision process (MDP)
is a general framework for studying such problems. Classical approaches such as
policy iteration and value iteration for solving MDP require knowledge of transi-
tion probabilities. Many RL algorithms are stochastic recursive procedures aimed
at solving such problems when transition probabilities are unknown. Actor-critic
(AC) algorithms are a class of RL algorithms that are based on policy iteration and
involve two loops - the outer loop update does policy improvement while the inner
loop procedure is concerned with policy evaluation. These algorithms thus incorpo-
rate two-timescale stochastic approximation. In [10, 1, 6], AC algorithms for various
cost criteria such as infinite horizon discounted cost, long-run average cost as well
as total expected finite horizon cost, that incorporate simultaneous perturbation gra-
dient estimates have been proposed. We shall review the development of the infinite
horizon algorithms in Chapter 11.

Chapter 12 considers the problem of optimizing staffing levels in service systems.
The aim is to adapt the staffing levels as they are labor intensive and have a time
varying workload. This problem is, however, nontrivial due to a large number of
parameters and operational variations. Further, any staffing solution is constrained
to maintain the system in steady-state and be compliant to aggregate SLA con-
straints. We formulate the problem using the constrained optimization framework
where the objective is to minimize the labor cost in the long run average sense and
the constraint functions are long run averages of the SLA and queue stability con-
straints. Using the ideas of the algorithms proposed in Chapter 10 for a generalized
constrained optimization setting, we describe several simulation optimization
methods that have been originally proposed in [19] for solving the labor cost op-
timization problem. The presented algorithms are based on SPSA and SF gradi-
ent/Hessian estimates. These algorithms have been seen in [19] to exhibit better
overall performance vis-a-vis the state-of-the-art optimization tool-kit OptQuest,
while being more than an order of magnitude faster than Optquest.
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In Chapter 13, we consider the problem of finding optimal timings and the order
in which to switch traffic lights given dynamically evolving traffic conditions. We
describe here applications of the reinforcement learning and stochastic optimization
approaches in order to maximize traffic flow through the adaptive control of traffic
lights. We assume, however, as in the case of real-life situations that only rough
estimates of the congestion levels are available, for instance, whether congestion is
below a lower threshold, above an upper threshold or is in between the two. All
our algorithms incorporate such threshold levels in the feedback policies and find
optimal policies given a particular set of thresholds. For instance, in a recent work
[21], we considered Q-learning-based traffic light control (TLC) where the features
are obtained using such (aforementioned) thresholds. We also describe similar other
algorithms based on simulation optimization methods. An important question then
is to find optimal settings for the thresholds themselves. We address this question
by incorporating simultaneous perturbation estimates to run in tandem with other
algorithms. An important observation is that our algorithm shows significantly better
empirical performance as compared to other related algorithms in the literature.
Another interesting consequence of our approach is that when applied together with
reinforcement learning algorithms, such methods result in obtaining an optimal set
of features from a given parametrized feature class.

In Chapter 14, we select and discuss three important problems in communication
networks, where simultaneous perturbation approaches have been found to be signif-
icantly useful. We first consider the problem of adaptively tuning the parameters in
the case of random early detection (RED) adaptive queue management scheme pro-
posed for TCP/IP networks. The original scheme proposed by Floyd [15] considers
a fixed set of parameters regardless of the network and traffic conditions. We address
this problem using techniques from constrained optimization [20] and apply simulta-
neous perturbation approaches that are found to exhibit excellent performance. Next,
we consider the problem of tuning the retransmission probability parameter for the
slotted Aloha multi-access communication system. The protocol as such specifies a
fixed value for the same regardless of the number of users sending packets on the
channel and the channel conditions. We propose a stochastic differential equation
(SDE)-based formulation [16, 9] in order to find an optimal parameter trajectory over
a finite time horizon. We also consider the problem of optimal pricing in the Inter-
net. The idea here is that in order to provide a higher quality of service to a user who
is willing to pay more, one needs to find optimal strategies for fixing prices of the
various services offered. Our techniques [30] play a role here as well and are found
to exhibit significantly better performance in comparison to other known methods.

Finally, in Appendices A-E, we present some of the basic material needed in the
earlier chapters. In particular, we present (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) the Kushner-
Clark theorem for convergence of projected stochastic approximations. Some of the
background material as well as the main results used in other chapters have also
been summarized in these appendices.
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1.3 Concluding Remarks

Stochastic approximation algorithms are one of the most important class of tech-
niques for solving optimization problems involving uncertainty. Simultaneous per-
turbation approaches for optimization have evolved into a rich area by themselves
from the viewpoint of both theory and numerous highly successful applications.
Several estimators for the gradient and Hessian that involve simultaneous perturba-
tion estimates have been developed in recent times that are seen to show excellent
performance. SPSA and SF algorithms constitute powerful methods for stochastic
optimization that have been found useful in many disciplines of science and engi-
neering. The book reference of [28] provides an excellent account of SPSA. Surveys
on the SPSA algorithm are available in [26], [25]. Also, [5] provides a more recent
survey on simultaneous perturbation algorithms involving both SPSA and SF esti-
mators. The current text is a significantly expanded version of [5].
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Chapter 2
Deterministic Algorithms for Local Search

2.1 Introduction

Search algorithms can be broadly classified into two major categories – global
search and local search algorithms. Global search algorithms aim at finding the
global minimum while local search algorithms are mainly concerned with finding
a local minimum point. More formally, for the optimization problem (1.1), we say
that θ ∗ ∈C is a global minimum of the function J if J(θ ∗) ≤ J(θ ) ∀θ ∈C. On the
other hand, we say that θ ∗ ∈C is a local minimum of J if there exists an ε > 0 such
that J(θ ∗) ≤ J(θ ) ∀θ ∈ C with ‖ θ − θ ∗ ‖< ε . Many times, as we do, the norm
‖ · ‖ is chosen to be the Euclidean norm. A necessary condition for existence of
local minima of a function J, assuming it is differentiable at all points within C,
is that

∇J(θ ) = 0 for θ ∈Co,

where Co is the interior of the set C. This condition may, however, not be satisfied
if the local minimum is a boundary point of C. Similarly, a sufficient condition for
a point θ ∈Co to be a local minimum point is

∇J(θ ) = 0 and ∇2J(θ ) is a positive definite matrix,

assuming that the function J is twice differentiable.
A well-known example of a global search technique is simulated annealing [5, 4].

Even while it is desirable to converge to a global minimum, global search techniques
are often known to be slow and impractical and many times one has to be content
with local search methods. A typical local search algorithm (ignoring random noise
effects for now) has the form [1], [2], [3]:

θ (n+ 1) = θ (n)− a(n)[D(θ (n))]−1∇J(θ (n)), (2.1)

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 13–15.
springerlink.com © Springer-Verlag London 2013
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where D(θ (n)) is a positive definite and symmetric N×N matrix and ∇J(θ (n)) is
the gradient of J(θ ) evaluated at θ = θ (n). Also, a(n), n≥ 0 is a sequence of step-
sizes that are positive and asymptotically diminishing to zero. Note that if ∇J(θ (n))
and D(θ (n)) are analytically known quantities, then recursion (2.1) can proceed as
is and we are in the domain of deterministic optimization. On the other hand, if
J(θ (n)) is of the form J(θ (n)) = Eξ [h(θ (n),ξ )] and we only have access to noisy
cost samples h(θ (n),ξ ), then quantities ∇J(θ (n)) and in many cases D(θ (n)) need
to be estimated. The algorithms for stochastic optimization are thus noisy or stochas-
tic in nature because of the presence of noise in the cost samples. In addition, the
estimators of ∇J(θ (n)) and D(θ (n)) may introduce additional randomness as hap-
pens for instance in the SPSA and SF gradient and higher order algorithms, see
Chapters 5–8. Thus the search direction could be random as well.

2.2 Deterministic Algorithms for Local Search

In order to bring out ideas clearly, we assume here that ∇J(θ (n)) and [D(θ (n))]−1

are analytically known quantities, i.e., we have a deterministic optimization frame-
work with (2.1) as our search algorithm. This will, however, not be the case in the
later sections where we shall primarily be concerned with the stochastic optimiza-
tion setting.

Given θ (n) ∈ C such that ∇J(θ (n)) �= 0, any x(n) ∈ R
N satisfying x(n)T

∇J(θ (n)) < 0 is called a descent direction since the directional derivative x(n)T

∇J(θ (n)) along the direction x(n) is negative and thus by a Taylor’s expansion one
obtains

J(θ (n)+ a(n)x(n)) = J(θ (n))+ a(n)x(n)T∇J(θ (n))+ o(a(n)). (2.2)

Now since x(n)T∇J(θ (n))< 0 and a(n)> 0 ∀n, it follows that J(θ (n)+a(n)x(n))<
J(θ (n)) for a(n) sufficiently small. Now since D(θ (n)) is a positive definite and
symmetric matrix, so is D(θ (n))−1. When x(n) =−D(θ (n))−1∇J(θ (n)), then from
(2.2), we have

J(θ (n)− a(n)D(θ (n))−1∇J(θ (n))) = J(θ (n))
−a(n)∇J(θ (n))T D(θ (n))−1∇J(θ (n))+ o(a(n)).

}
(2.3)

Now since D(θ (n))−1 is positive definite and symmetric, it follows that

∇J(θ (n))T D(θ (n))−1∇J(θ (n))> 0 for all ∇J(θ (n)) �= 0.

Hence, x(n)=−D(θ (n))−1 ∇J(θ (n)) is a descent direction as well. Algorithms that
update along descent directions are also called descent algorithms.
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The following well-known algorithms are special cases of (2.1):

1. Gradient Algorithm : This is the most commonly used descent algorithm.
Here, D(θ (n)) = I (the N-dimensional identity matrix). This is also called the
steepest descent algorithm since its updates are strictly along the direction of
negative gradient.

2. Jacobi Algorithm : In this algorithm, D(θ (n)) is set to be an N×N-diagonal
matrix with its ith diagonal element ∇2

i,iJ(θ (n)), which is also the ith diagonal
element of the Hessian ∇2J(θ (n)). For D(θ (n)) to be a positive definite matrix
in this case, it is easy to see that all elements ∇2

i,iJ(θ (n)), i = 1, . . . ,N, should
be positive.

3. Newton Algorithm : Here, D(θ (n)) is chosen to be ∇2J(θ (n)), the Hessian of
J(θ (n)).

The D(θ (n)) matrices in Jacobi and Newton algorithms, respectively, need not be
positive definite (for all n), in general, as they vary with θ (n) and hence should
be projected appropriately after each parameter update so as to ensure that the re-
sulting matrices are positive definite [1, pp.88-98]. With proper scaling provided
by the D(θ (n)) matrix, the descent directions obtained using Jacobi and Newton
algorithms are preferable to the one using gradient algorithm. However, obtain-
ing estimates of the Hessian in addition to the gradient, in general, requires much
more computational effort. In subsequent chapters, we will present several algo-
rithms which, in principle, choose a descent direction similar to one of the above
three types. However, all the algorithms discussed subsequently will be stochastic
in nature involving random estimates of the descent direction. Consequently, the
evolution of the optimization parameter updates θ (n) in those algorithms is also
stochastic.
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Chapter 3
Stochastic Approximation Algorithms

3.1 Introduction

The development in the area of stochastic algorithms (not necessarily for optimiza-
tion) started in a seminal paper by Robbins and Monro [17]. They considered the
problem of finding the zeros of a function L : RN → R

N under noisy observa-
tions. The Robbins-Monro algorithm finds immense applications in various disci-
plines. For instance, in the case of the gradient search algorithm for the problem
of finding a local minimum of the function J : RN → R, see Chapter 4, one can
let L(θ ) = ∇J(θ ). Similarly, in scenarios where the aim is to find a fixed point of
a function F : RN → R

N , one may choose L(θ ) = F(θ )− θ . Situations requiring
fixed point computations arise often, for instance, in reinforcement learning, see
Chapter 11, where one estimates the value of a given policy. The corresponding up-
date is many times a fixed point recursion aimed at solving the Bellman equation
for the given policy.

We first discuss in detail the R-M algorithm in Section 3.2. Next, we review
the multi-timescale variant of the R-M algorithm in Section 3.3. Such algorithms
are characterized by coupled stochastic recursions that are individually driven by
different step-size schedules or timescales. The step-sizes typically converge to zero
with different rates. An important application of multi-timescale stochastic approx-
imation that we consider in this book is one of minimizing long-run average costs.
In order to apply the regular R-M scheme in such cases, one requires estimates of
the average cost corresponding to a given parameter update. One approach that is
however computationally tedious is to sample long enough cost trajectories using
Monte-Carlo simulation each time to estimate the average cost corresponding to a
given parameter update. This difficulty is avoided through the use of multi-timescale
stochastic approximation as the ‘faster’ recursion in this case can estimate the av-
erage cost corresponding to a given parameter update while the ‘slower’ recursion
updates the parameter.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 17–28.
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3.2 The Robbins-Monro Algorithm

Let θ (n) denote the nth update of the parameter θ . Let the observed sample of
L(θ (n)) be L(θ (n)) +M(n+ 1) where M(n+ 1) is a suitable noise term that we
assume to be a martingale difference. The case when noise enters into the argument
of the cost function, such as (say) g(θ (n),ξ (n)), where ξ (n),n ≥ 0 are some R

k-
valued independent and identically distributed (i.i.d.) random vectors and g : RN ×
R

k→R
N can also be handled in our framework, since one can in such a case write

g(θ (n),ξ (n)) = L(θ (n))+M(n+ 1), (3.1)

where L(θ (n)) can be set to be L(θ (n)) = Eξ [g(θ (n),ξ (n))]. Here, Eξ [·] denotes
the expectation with respect to the common distribution of ξ (n). Also, M(n+ 1) =
g(θ (n),ξ (n))−L(θ (n)), n ≥ 0 can be seen to be a martingale difference sequence
with respect to a suitable filtration. In the original R-M scheme [17], the noise ran-
dom vectors M(n+ 1) are considered i.i.d. and zero-mean. Note that the i.i.d. as-
sumption there is across M(n), not across individual components of M(n). Equation
(3.1) represents a popular generalization of the original R-M scheme with the addi-
tive noise generalized to a martingale difference instead of just i.i.d. noise.

The Robbins-Monro stochastic approximation algorithm is as follows:
For n≥ 0,

θ (n+ 1) = θ (n)+ a(n)g(θ (n),ξ (n))
= θ (n)+ a(n)(L(θ (n))+M(n+ 1))

}
, (3.2)

where a(n),n≥ 0 is a sequence of positive real numbers called step-sizes.

Remark 3.1. To derive intuition regarding the above recursion, lets ignore the noise
term M(n+1) for a moment. Then, one can see that if the recursion (3.2) converges
after some iterations (say N), then θ (n+ 1) = θ (n) = θ ∗,∀n ≥ N, where θ ∗ repre-
sents the converged parameter value. This when used in the above recursion (3.2),
gives us L(θ ∗) = 0. The recursion (3.2) serves the purpose of computing a zero of
the given function L(·). Of course, with the introduction of the noise term M(n+1),
more detailed analysis would be necessary along with certain restrictions on the
step-sizes a(n),n≥ 0, which are discussed in the next section.

If θ (n) are constrained to take values within a prescribed set C ⊂ R
N (with C be-

ing a strict subset of RN), one will have to project after each iterate the value of
θ (n+ 1) to the set C. The new value of θ (n+ 1) would then correspond to its pro-
jected value after the update. We discuss the convergence analysis of the algorithm
in Section 3.2.1 primarily for the case when C = R

N . It will, however, be assumed
that the iterates θ (n) will stay uniformly bounded almost surely.
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3.2.1 Convergence of the Robbins-Monro Algorithm

Convergence in the mean-square sense, of the R-M scheme with i.i.d. noise terms
M(n+ 1) is shown in [17]. As with [5] and [13], we show convergence in the al-
most sure sense, of the R-M scheme with the generalized martingale difference
noise-term M(n + 1). In order to prove convergence of recursions such as (3.2),
one needs to first ensure that the iterates in these recursions remain stable or uni-
formly bounded. If the iterates stay uniformly bounded, then convergence in almost
sure sense would imply convergence in the mean-square sense as well (see Ap-
pendix A). The converse is however not true in general, i.e., if they converge in the
mean square sense, then they need not converge almost surely, even when they are
uniformly bounded.

Let F (n) = σ(θ (m),M(m),m ≤ n), n ≥ 0 denote a sequence of increasing
sigma fields. Our convergence analysis is based on the ordinary differential equa-
tion (ODE) approach, for instance, see [5, Chapter 2]. Consider the following ODE
associated with (3.2):

θ̇ (t) = L(θ (t)). (3.3)

We make the following assumptions:

Assumption 3.1. The map L : RN → R
N is Lipschitz continuous.

Assumption 3.2. The step-sizes a(n),n≥ 0 satisfy the requirements

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞. (3.4)

Assumption 3.3. The sequence (M(n),F (n)), n ≥ 0 forms a martingale dif-
ference sequence. Further, M(n), n≥ 0 are square integrable random variables
satisfying

E[‖M(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0, (3.5)

for a given constant K > 0.

Assumption 3.4. The iterates (3.2) remain almost surely bounded, i.e.,

sup
n
‖θ (n)‖< ∞, a.s. (3.6)

Assumption 3.5. The ODE (3.3) has H ⊂ C as its set of globally asymptoti-
cally stable equilibria.

Assumption 3.1 ensures that the ODE (3.3) is well posed. Assumption 3.2 is also a
standard requirement. In particular, the first condition in (3.4) is required to ensure
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that the algorithm does not converge prematurely. The second condition there is
required to reduce the effect of noise. Common examples of {a(n),n ≥ 0} that are
seen to satisfy Assumption 3.2 include

• a(n) =
1
n

, ∀n≥ 1 and a(0) = 1,

• a(n) =
1

nα
, ∀n≥ 1 with a(0) = 1 and any α ∈ (0.5,1),

• a(n) =
lnn
n

, ∀n≥ 2 with a(0) = a(1) = 1,

• a(n) =
1

n lnn
, ∀n ≥ 2 with a(0) = a(1) = 1.

Assumption 3.3 is a general requirement [5] that is seen to be satisfied in many
applications. For instance, it is seen to be easily satisfied by most reinforcement
learning algorithms.

We now discuss in more detail Assumption 3.4 even though it is routinely as-
sumed in many references. An easy way by which Assumption 3.4 can be satisfied
is if the set C in which θ takes values is a bounded subset of RN as in such a case
(as mentioned previously), one would project the iterates after each update to the set
C, thereby ensuring that the resulting parameters are both feasible (i.e., take values
in the set where they are allowed to take values in) and remain bounded. In the case
when C is unbounded (such as C = R

N as here) but one roughly knows the region
of the space where the asymptotically stable equilibria lie, one could choose a large
bounded set that contains the above region as the constraint set for the algorithm and
use projection (as before) to ensure that the iterates remain bounded. This would
also imply that the remainder of the space is not visited by the algorithm which may
in fact be good since the algorithm in such a case would not waste its resources in
exploring the region of the space that does not contain the equilibria. The projection
technique is often used to ensure the stability of iterates. Other approaches to prove
stability of the iterates (for instance when C =R

N) include the stochastic Lyapunov
technique [13] and the recently proposed approach in [6], [5] whereby one does a
scaling of the original iteration (3.2) to approximate the same with a deterministic
process in a manner similar to the construction of the fluid model of [9], [10]. This
approach is remarkable in that using just an ordinary differential equation (ODE)-
based analysis, one can prove both the stability and the convergence of the original
random iterates. Another approach [8] is to define a bounded constraint region for
the iterates, use projection as above, but gradually increase the size of the constraint
region as iterations progress. Nevertheless, we will assume that C =R

N in this anal-
ysis and that the iterates stay bounded under Assumption 3.4.

Define a sequence of time points t(n), n ≥ 0 as follows: t(0) = 0 and for n ≥ 1,

t(n) =
n−1

∑
m=0

a(m). It follows from (3.4) that t(n) ↑ ∞. The map n → t(n) can be

viewed as a map from the “algorithmic time” to the “real time”. Define now a
continuously interpolated trajectory θ̄ (t), t ≥ 0 (obtained from the algorithm’s up-
dates) as follows: Let θ̄ (t(n)) = θ (n),n≥ 0, with linear interpolation on the interval
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[t(n), t(n+1)]. By Assumption 3.4, it follows that supt≥0 ‖θ̄(t)‖= supn ‖θ (n)‖<∞
a.s. Let T̄ > 0 be a given real number. Define another sequence {T (n),n≥ 0} as fol-
lows: T (0) = t(0) = 0 and for n≥ 1,

T (n) = min{t(m) | t(m)≥ T (n− 1)+ T̄}.

Let I(n) denote the interval [T (n),T (n+ 1)). From its definition, there exists an
increasing sub-sequence {m(n)} of {n} such that T (n) = t(m(n)), n ≥ 0. Also, let
θ n(t), t ≥ t(n) denote the trajectory of the following ODE starting at time t(n) and
under the initialization θ n(t(n)) = θ̄(t(n)) = θ (n):

θ̇ n(t) = L(θ n(t)), t ≥ t(n). (3.7)

Let Z(n), n≥ 0 be defined according to

Z(n) =
n−1

∑
m=0

a(m)M(m+ 1).

Lemma 3.1. The sequence (Z(n),F (n)), n ≥ 0 is a zero-mean, square integrable,
almost surely convergent martingale.

Proof. It is easy to see that each Z(n) is F (n)-measurable and integrable. Further,
Z(n),n ≥ 0 are square integrable random variables since M(n+ 1) are square inte-
grable by Assumption 3.3. Consider now the process {B(n)} defined by

B(n) =
n−1

∑
m=0

E
[‖Z(m+ 1)−Z(m)‖2 |F (m)

]
,

=
n−1

∑
m=0

E
[
a(m)2‖M(m+ 1)‖2 |F (m)

]
,

=
n−1

∑
m=0

a(m)2E
[‖M(m+ 1)‖2 |F (m)

]
,

≤
n−1

∑
m=0

a(m)2(1+ ‖θ (n)‖2),

by Assumption 3.3. Now, from Assumptions 3.2 and 3.4, it follows that

B(n)→ B∞ < ∞ a.s.

The claim follows from the martingale convergence theorem (Theorem B.2). ��
Proposition 3.2. We have

lim
n→∞ sup

t∈I(n)
‖θ̄(t)−θ n(t)‖= 0, a.s.
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Proof. (Sketch) The proof for a similar result is given in detail in [5, Chapter 2,
Lemma 1]. The proof follows by following a series of steps that involve bounding
the various terms that upper-bound the norm difference between the algorithm’s and
the ODE’s trajectories. The Lipschitz continuity of L ensures that the growth in the
recursion is at most linear. That together with Assumptions 3.3 and 3.4 ensure that
the iterates do not blow up. Moreover, the norm difference can then be bounded
from an application of the Gronwall’s inequality (Lemma C.1) and the upper bound
is seen to vanish asymptotically as n→ ∞. We refer the reader to [5, Chapter 2,
Lemma 1] for details. ��

Note that by Assumption 3.5, H is the globally asymptotically stable attractor set for
the ODE (3.3). Recall from Definition C.10 that given T̄ , Δ > 0, we call a bounded,
measurable θ (·) : R+∪{0} → R

N , a (T̄ ,Δ)-perturbation of (3.3) if there exist 0 =
T (0) < T (1) < T (2) < · · · < T (r) ↑ ∞ with T (r + 1)−T(r) ≥ T̄ ∀r and solutions
θ r(y), y ∈ [T (r),T (r+ 1)] of (3.3) for r ≥ 0, such that

sup
y∈[T (r),T (r+1)]

‖θ r(y)−θ (y)‖< Δ .

Theorem 3.3. Under Assumptions 3.1 to 3.5, the iterates θ (n),n≥ 0 obtained
from the algorithm (3.2) converge almost surely to H.

Proof. From Proposition 3.2, θ̄ (t) serves as a (T̄ ,Δ)-perturbation for the ODE (3.3).
The claim follows by applying the Hirsch lemma (Lemma C.5), for every ε > 0. ��

A detailed ODE argument showing convergence of the stochastic iterates to a com-
pact connected internally chain transitive invariant set of the corresponding ODE
has been shown in [1], [5]. In most applications, as we consider, the associated
ODEs either have a unique stable equilibrium or else a set of asymptotically sta-
ble isolated equilibria. Thus, if H = {θ ∗} is a singleton, i.e., contains a unique
asymptotically stable equilibrium of (3.3), then by Theorem 3.3, θ (n)→ θ ∗ a.s. as
n→ ∞. In the case of multiple isolated equilibria, the algorithm shall converge to
one amongst them depending on the noise and initial condition. (Here by isolated
equilibria, we mean that one can construct certain sufficiently small open neighbour-
hoods such that exactly one equilibrium is contained within each neighbourhood.)
Further, in case H does not contain isolated equilibria, Theorem 3.3 merely says
that the recursion θ (n) asymptotically converges to H. Other ODE-based analyses
of the stochastic recursion include [14], [12], [2] and [13].

We have considered till now the basic R-M scheme which is used to compute
a zero of the given function L(·) under noisy observations. The case where there
are coupled functions L1(·, ·) and L2(·, ·) with two sets of parameters operating at
different timescales is considered in the next section.
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3.3 Multi-timescale Stochastic Approximation

We consider the case of two timescales here, i.e., recursions involving two different
step-size schedules. Similar ideas as described below carry over when the number
of timescales is more than two. Let θ (n) ∈ R

N and ω(n) ∈ R
d be two sequences of

parameters that are updated according to the following coupled stochastic approxi-
mation recursions: ∀n≥ 0,

θ (n+ 1) = θ (n)+ a(n)
(
L1(θ (n),ω(n))+M1(n+ 1)

)
, (3.8)

ω(n+ 1) = ω(n)+ b(n)
(
L2(θ (n),ω(n))+M2(n+ 1)

)
, (3.9)

where M1(n+ 1) and M2(n + 1) are martingale difference noise terms (see Ap-
pendix B.2). The step-sizes a(n),b(n), n≥ 0 satisfy the following requirement:

Assumption 3.6. a(n),b(n)> 0, ∀n≥ 0, Further,

∑
n

a(n) =∑
n

b(n) = ∞, ∑
n

(
a(n)2 + b(n)2)< ∞, and, (3.10)

lim
n→∞

a(n)
b(n)

= 0. (3.11)

Remark 3.2. To understand the set of recursions (3.8) and (3.9), let us ignore the
noise terms M1(n+ 1) and M2(n+ 1) for the moment and consider a case with
a(n) = 1

n and b(n) = 1
n0.6 , n ≥ 1, which satisfies both equations (3.10) and (3.11).

Under these simplifications, the following insight can be derived:

1. It follows that for a given N ≥ 0,

t(N)
�
=

N

∑
n

a(n)<
N

∑
n

b(n)
�
= τ(n),

and higher the value of N, the further apart the above two summations are. In
other words, the time line τ(n),n≥ 1 with time steps b(n) reaches infinity faster
than the time line t(n) with step-sizes a(n). So, we say that the recursion of the
ω parameter is on a “faster” timescale than the recursion of θ .

2. From equation (3.11), it follows that as we go further in the recursions, the
updates to θ will be quasi-static compared to those for ω . Hence, the updates to
ω would appear to be equilibrated for the current quasi-static θ . In other words,
for a given θ , the updates to ω would appear to have converged to a point ω∗
such that L2(θ ,ω∗) = 0 (assuming there is a unique such point corresponding to

θ ). Thus, one expects that the updates of ω would converge to a ω∗ �= γ(θ ). For
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the updates to θ , the ω would, for all practical purposes, be ω∗ itself. Hence,
the updates to θ , ignoring the noise term, would appear to be

θ (n+ 1) = θ (n)+ a(n)L1(θ (n),γ(θ (n))).

Following the analysis of the R-M scheme, this recursion would converge to
a point θ ∗ (assuming it is unique) where L1(θ ∗,γ(θ ∗) = 0. These concepts
are formalized and discussed along with the necessary assumptions in Section
3.3.1.

Remark 3.3. Suppose both the updates of θ and ω were performed with the same
step-size sequence, say a(n),n ≥ 0, then both the recursions could be combined
together and analyzed as one recursion of the basic R-M scheme. These updates
would then together converge to a point θ ∗,ω∗ (assuming such a point is unique),
where L1(θ ∗,ω∗) = 0 and L2(θ ∗,ω∗) = 0 simultaneously. This is in contrast to the
case of two timescales where the solution would be θ ∗,ω∗ such that ω∗ = γ(θ ∗)
and L1(θ ∗,γ(θ ∗)) = 0.

Remark 3.4. Like in the previous section, one can consider the case where the noise
term enters the cost function itself. Thus, let the two recursions be

θ (n+ 1) = θ (n)+ a(n)g1(θ (n),ω(n),ξ 1(n)), (3.12)

ω(n+ 1) = ω(n)+ b(n)g2(θ (n),ω(n),ξ 2(n)), (3.13)

where ξ 1(n),n ≥ 0 are i.i.d. random vectors and so are ξ 2(n),n ≥ 0. Then one can
rewrite

g1(θ (n),ω(n),ξ 1(n)) = L1(θ (n),ω(n))+M1(n+ 1),
g2(θ (n),ω(n),ξ 2(n)) = L2(θ (n),ω(n))+M2(n+ 1),

where M1(n + 1),M2(n + 1),n ≥ 0 are suitable martingale difference sequences.
In this manner (3.12) and (3.13) can be recast as the recursions (3.8) and (3.9),
respectively.

Remark 3.5. The above discussion which is for two timescales, can be easily gen-
eralized to multiple timescales by starting the analysis from the “fastest” timescale
to the “slowest” timescale.

3.3.1 Convergence of the Multi-timescale Algorithm

A general analysis of two-timescale algorithms is available in [4] as well as Chapter
6 of [5]. We present a sketch of the same here. We make the following
assumptions:
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Assumption 3.7. The functions L1 : RN ×R
d → R

N and L2 : RN ×R
d → R

d

are both Lipschitz continuous.

Assumption 3.8. M1(n),M2(n), n ≥ 0 are both martingale difference
sequences with respect to the filtration F (n) = σ(θ ( j),ω( j),M1( j),M2( j),
j ≤ n), n≥ 0. Further,

E
[‖Mi(n+ 1)‖2 |F (n)

] ≤ K
(
1+ ‖θ (n)‖2+ ‖ω(n)‖2) , i = 1,2.

Assumption 3.9. The iterates are a.s. uniformly bounded, i.e.,

sup
n
(‖θ (n)‖+ ‖ω(n)‖)< ∞, w.p.1.

Assumption 3.10. The ODE

ω̇(t) = L2(θ ,ω(t)), (3.14)

has a globally asymptotically stable equilibrium γ(θ ), uniformly in θ , where
γ : RN →R

N is a Lipschitz continuous map.

Assumption 3.11. The ODE

θ̇ (t) = L1(θ (t),γ(θ (t))), (3.15)

has a globally asymptotically stable equilibrium θ ∗ ∈R
N .

Assumptions 3.7-3.9 are seen to be similar to analogous assumptions for the R-M
algorithm except for the requirement in (3.11) that suggests that a(n) approaches
zero at a rate faster than b(n) does.

Let us define t(n) in the same manner as before. Also, let τ(n), n≥ 0 be defined

according to τ(0) = 0 and τ(n) =
n−1

∑
m=0

b(m). Note that from the viewpoint of the

(slower) timescale governed by b(n),n≥ 0, the recursion (3.8) can be rewritten as

θ (n+ 1) = θ (n)+ b(n)η1(n), (3.16)

where η1(n) =
a(n)
b(n)

(
L1(θ (n),ω(n))+M1(n+ 1)

)
= o(1), since a(n) = o(b(n))

from (3.11). Now (3.16) is seen to track the ODE

θ̇ (t) = 0. (3.17)

Also, a similar analysis as described in Section 3.2.1 can be used to show that (3.9)
asymptotically tracks the ODE

ω̇(t) = L2(θ (t),ω(t)). (3.18)
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In other words, over intervals Î(n) = [T̂ (n), T̂ (n+1)] of length approximately T̂ > 0,
with T̂ (n) = τ(m(n)) ≈ nT̂ , the norm difference between the interpolated trajecto-
ries of the algorithm’s parameter iterates and the trajectories of the ODEs (3.17)-
(3.18) vanishes almost surely as n→∞ (cf. Proposition 3.2). Now, as a consequence
of (3.17), the ODE (3.18) can be rewritten as

ω̇(t) = L2(θ ,ω(t)). (3.19)

By Assumption 3.10, from an application of Hirsch’s lemma (Lemma C.5), it fol-
lows that the recursion (3.9) for given θ asymptotically converges to γ(θ ) almost
surely, and in fact, ‖ω(n)− γ(θ (n))‖ → 0 as n→ ∞ almost surely. A similar ar-
gument as Proposition 3.2 can now be applied to show that the norm difference
between the trajectory obtained from the θ -recursion (3.8) when interpolated using
the time instants t(n) and that of the ODE (3.15) again vanishes asymptotically over
intervals I(n) = [T (n),T (n+ 1)], with T (n),n ≥ 0 defined in a similar manner as
Proposition 3.2. Now, by another application of the Hirsch lemma, it can be shown
that θ (n)→ θ ∗ as n→ ∞ almost surely. We thus have the following result (that is
similar to Theorem 2 on pp.66 of [5]):

Theorem 3.4.
lim
n→∞(θ (n),ω(n)) = (θ ∗,γ(θ ∗)) a.s.

3.4 Concluding Remarks

The R-M algorithm has been analyzed in detail in [3], [12], [13], [11], [7], [5] and
several other books and papers. The ODE method is one of the techniques used to
study its convergence. A second approach based entirely on probabilistic arguments
is also popular in the literature. Because of its wide applicability, the R-M algorithm
is still very popular even six decades after it was originally invented.

A general analysis of two-timescale stochastic approximation using the ODE ap-
proach is provided in [4], [5]. Multi-timescale algorithms are helpful in cases when
in between two successive updates of the algorithm, one typically has to perform an
inner-loop procedure recursively until it converges. Thus, one would in practice have
to wait for a long time before updating the algorithm once. Using a multi-timescale
algorithm as in (3.8)-(3.9), both recursions (for the inner and outer loops) can run
together, and convergence to the desired point can be achieved. Key application ar-
eas where this procedure has been succesfully applied are simulation optimization
and adaptive control that we study in later chapters. There is another reason why
multi-timescale algorithms can be interesting. In [15], averaging of stochastic ap-
proximation iterates in the case of one-timescale algorithms such as (3.2) has been
seen to improve the rate of convergence. The same procedure can be accomplished



References 27

using a two-timescale algorithm such as (3.8)-(3.9) wherein the ‘averaging’ is per-
formed along the faster timescale.

Multi-timescale algorithms are also useful in other situations. In [18], a smoothed
version of SPSA is presented that is seen to improve performance. The idea that is
similar to Polyak averaging and the resulting algorithm has a multi-timescale nature.
In [16], [19], the step-sizes a(n), n≥ 0 are adaptively set according to the objective
function value obtained. Since the update direction in SPSA is random, a move in the
descent direction (in their scheme) is rewarded by a slightly higher step-size in the
next update step while a move in the ascent direction attracts a penalty. Moreover,
if the objective function value becomes worse, a certain blocking mechanism is
enforced whereby starting from the previous estimate, a new gradient evaluation is
made with a reduced step-size a(n). The procedure of [16], [19] is performed for the
smoothed version of SPSA making the overall scheme again of the multi-timescale
type.
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Part II
Gradient Estimation Schemes



Most of the important stochastic recursive algorithms that are based on some form
of gradient estimation were studied in the previous century. These algorithms are
geared towards solving an associated stochastic optimization problem. When the
cost objective is a simple expectation over noisy observations or cost samples,
the Robbins-Monro algorithm in conjunction with a suitable gradient estimator is
applied. Under long-run average cost objectives, a multi-timescale stochastic al-
gorithm with a gradient estimator is used. This part of the book comprises three
chapters and deals with efficient gradient estimation approaches.

The earliest gradient estimation scheme is the Kiefer-Wolfowitz algorithm (pre-
sented originally in a paper in 1952 by Kiefer and Wolfowitz) that relies on gen-
erating a sufficient number of samples by perturbing each individual component of
the parameter, one at a time. There are primarily two versions of this scheme. The
first version involves generating 2N cost samples (each corresponding to a different
perturbed parameter) while the second requires (N+1) cost samples, where N is the
parameter dimension. These schemes as well as some of their variants are reviewed
in Chapter 4, for both cases of cost objectives (when they are simple expectations
and also when they have a long-run average form).

Spall, in a paper in 1992, presented a remarkable gradient estimator that requires
only two function evaluations regardless of the parameter dimension N. This estima-
tor is based on simultaneously perturbing all parameter components using i.i.d. ran-
dom variables satisfying certain properties that are most commonly satisfied by
symmetric Bernoulli random variates. The Robbins-Monro algorithm in conjunction
with this estimator has become famously known in the literature as the simultane-
ous perturbation stochastic approximation (SPSA) algorithm. In a later paper, Spall
also presented a one-measurement gradient estimator using a similar perturbation
methodology that however does not perform well. Bhatnagar, Fu, Marcus and Wang
subsequently presented a simultaneous perturbation methodology that is based on
deterministic (regular) perturbation sequences instead of random. A one-simulation
variant of SPSA based on Hadamard matrix perturbations is seen to exhibit signif-
icantly better performance as compared to the one-simulation randomized differ-
ence algorithm of Spall. In Chapter 5, we discuss in detail the various versions of
the SPSA scheme, both for cost objectives that are an expectation over noisy cost
samples as well as those that are certain long-run averages. We also present the
convergence analyses for the various cases.

Katkovnik and Kulchitsky presented in a paper in 1972, a scheme based on
smoothing the gradient of the cost objective using one of the following probabil-
ity density functions for convolution with the gradient: Gaussian, Cauchy or Uni-
form. It is observed using an integration-by-parts argument that the convolution
of the smoothing density function with the objective gradient is the same as the
convolution of the objective function itself with a scaled density function. A one-
measurement estimator of the gradient is thus obtained. Two-measurement balanced
versions of these estimators are seen to show better performance. We call the result-
ing estimates as the smoothed functional (SF) estimates. Chapter 6 discusses in de-
tail the smoothed functional gradient estimators and the resulting algorithms along
with their convergence analyses.



Chapter 4
Kiefer-Wolfowitz Algorithm

4.1 Introduction

In the Robbins-Monro algorithm (3.2), suppose that g(θ (n),ξ (n)) is an observa-
tion or sample (with noise) of the negative of the gradient of a cost objective
J(θ (n)) evaluated at the nth iteration, i.e., g(θ (n),ξ (n)) is a noisy observation of
L(θ (n)) = −∇J(θ (n)). Here, ξ (n),n ≥ 0 denotes the i.i.d. noise sequence. One
can show, as we do below, under certain standard conditions that (3.2) converges
to a local minimum of J. We are now in the domain of stochastic gradient algo-
rithms, i.e., gradient algorithms (Chapter 2) with noise. We shall assume, in partic-
ular, that the objective function is a simple expectation over the noisy cost samples
or J(θ ) = Eξ [h(θ ,ξ )]. If ∇h(θ ,ξ ) exists for any given noise sample ξ , then under
certain regularity conditions, see for instance, [8], [9], [10], it may be possible to
interchange the expectation and the gradient operators to obtain ∇J(θ ) = E[∇h
(θ ,ξ )]. In such a case, one may set g(θ (n),ξ (n)) = −∇h(θ (n),ξ (n)) in (3.1) and
obtain asymptotic convergence to a local minimum of J. Infinitesimal Perturbation
Analysis (IPA) and its variants are largely based on this idea, see [12], [7], [10],
[8], [9]. When applicable, IPA shows excellent performance. In practice, however,
one often does not have access to direct gradient measurements. It is also possible
that while the function J is continuously differentiable with bounded higher order
derivatives, the function h itself is not so. In such cases, one requires other gradi-
ent estimation techniques. The finite difference stochastic approximation (FDSA)
[13], which is usually referred to as the Kiefer-Wolfowitz algorithm (after its inven-
tors) is perhaps the earliest known algorithm that is used for estimating the gradient
under noisy measurements. In Section 4.2, we describe the basic Kiefer-Wolfowitz
scheme. Its variants are then explained in Section 4.3.

4.2 The Basic Algorithm

The original Kiefer-Wolfowitz algorithm [13] was proposed for the case where θ is
a one-dimensional parameter taking values in a bounded interval C1 ⊂ R. We first

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 31–39.
springerlink.com © Springer-Verlag London 2013
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discuss this one-dimensional case and subsequently its multi-dimensional parame-
ter version. In the Kiefer-Wolfowitz algorithm, the underlying scheme is still (3.2)
except that the single noisy measurement g(θ (n),ξ (n)) in (3.2) is replaced by

ḡ(θ (n),ξ+(n),ξ−(n)) =−
(

h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))
2δ (n)

)
.

(4.1)
Here, ξ+(n), ξ−(n), n ≥ 0 are R-valued independent noise samples. Further,
h(θ (n) + δ (n),ξ+(n)) and h(θ (n) − δ (n),ξ−(n)) are two independent noisy
measurements of the objective with perturbed parameter values θ (n) + δ (n) and
θ (n)− δ (n), respectively. It can be seen that if one filters out the noise, then
for δ (n) sufficiently small, (4.1) will be a noisy approximation of −∇J(θ (n)). In
particular,

E[ḡ(θ (n),ξ+(n),ξ−(n)) | θ (n)] =−∇J(θ (n))+ o(δ (n)).

The K-W algorithm (4.2) proceeds along the negative gradient direction in order to
find a local minimum.

θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))

2δ (n)
,

(4.2)

n≥ 0. The scalar parameters δ (n), n≥ 0 should be carefully chosen so that δ (n)→ 0
(as n→ ∞) at a rate slow enough that the variance in the FDSA estimates does not
blow up. We now present our assumptions.

Assumption 4.1. The map J : R→R is Lipschitz continuous and is twice dif-
ferentiable with its second order derivative being bounded. Further, the func-

tion L(θ ) defined by L(θ ) =−dJ(θ )
dθ

, ∀θ ∈R and the map h : R×R→R are

both Lipschitz continuous.

The above is mainly a technical requirement that ensures that the corresponding
ODE is well posed and its trajectories bounded. Further, the smoothness require-
ments on J(θ ) ensure via a Taylor series argument that the algorithm converges to a
local minimum. Reference [13] has a more general setting where J(θ ) need not be
differentiable but should satisfy a set of regularity conditions [13, Conditions 1-3].
However, we limit our discussion to the case where J is differentiable. Though the
result in [13] is for a generalized case where J need not be differentiable, the result
shown is for convergence only in probability while here in our discussion, we show
almost sure convergence.
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Assumption 4.2. The step-sizes a(n),δ (n)> 0, ∀n and

a(n),δ (n)→ 0 as n→ 0, ∑
n

a(n) = ∞, ∑
n

(
a(n)
δ (n)

)2

< ∞. (4.3)

Thus, a(n) and δ (n) are both diminishing sequences of positive numbers with δ (n)
going to zero slower than a(n). The first condition above is analogous to a similar
condition in (3.4). The last condition is a stronger requirement and ensures conver-
gence of the resulting martingale noise sequence.

Assumption 4.3. ξ+(n), ξ−(n), n≥ 0 are independent random variables hav-
ing a common distribution and with finite second moments.

Assumption 4.4. The iterates (4.2) remain almost surely bounded, i.e.,

sup
n
|θ (n)|< ∞, a.s. (4.4)

Consider the ODE:

θ̇ (t) =−dJ(θ (t))
dt

. (4.5)

Let S =

{
θ
∣∣∣∣dJ(θ )

dθ
= 0

}
denote the set of all fixed points of (4.5).

Theorem 4.1. Under Assumptions 4.1-4.4, the parameter updates (4.2) satisfy
θ (n)→ S with probability one.

Proof. Note that the algorithm (4.2) can be rewritten as follows:

θ (n+ 1) = θ (n)− a(n)

(
dJ(θ (n))

dθ
+β (n)+η(n)

)
, (4.6)

where

η(n) =
h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))

2δ (n)

−J(θ (n)+ δ (n))− J(θ (n)− δ (n))
2δ (n)

, and,
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β (n) =
J(θ (n)+ δ (n))− J(θ (n)− δ (n))

2δ (n)
−∇J(θ (n)).

It is easy to see that η(n),n ≥ 0, is a martingale difference sequence with respect
to the filtration F (n) = σ(θ (m),ξ+(m),ξ−(m),m ≤ n),n ≥ 0. Further, ξ̂ (m) =

m

∑
n=0

a(n)η(n)(m≥ 0) forms a martingale with respect to the same filtration. We shall

first show below that {ξ̂ (m)} is an almost surely convergent martingale sequence.
This result will follow from the martingale convergence theorem (Theorem B.2) if

we can show that
∞

∑
m=0

E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)

]
< ∞ almost surely. Now note

that

|h(θ (n),ξ (n))|− |h(0,0)| ≤ |h(θ (n),ξ (n))− h(0,0)| ≤ K̄(|θ (n)|+ |ξ (n)|).

In the above, K̄ > 0 denotes the Lipschitz constant of the function h. It follows that

|h(θ (n),ξ (n))| ≤ K̄1(1+ |θ (n)|+ |ξ (n)|),

where K̄1 = max(K̄, |h(0,0)|). Similarly, since J(θ ) is also Lipschitz continuous, it
is easy to see that

|J(θ (n)| ≤ K̄2(1+ |θ (n)|),
for some K̄2 > 0. Now,

∑∞m=0 E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)

]
= ∑∞m=0 a(m)2E

[
η(m+ 1)2 |F (m)

]

≤ ∑∞m=0
a(m)2

δ (m)2 E
[
h(θ (m)+ δ (m),ξ+(m))2 + h(θ (m)− δ (m),ξ−(m))2 |F (m)

]
+∑∞m=0

a(m)2

δ (m)2 E
[
(J(θ (m)+ δ (m))2 + J(θ (m)− δ (m))2 |F (m)

]

≤ 8K̄1∑∞m=0
a(m)2

δ (m)2 E
[
1+(θ (m))2 + δ (m)2 +(ξ+(m))2 |F (m)

]
+8K̄2∑∞m=0

a(m)2

δ (m)2 E
[
1+(θ (m))2 + δ (m)2 |F (m)

]
.

It follows now as a consequence of Assumptions 4.2-4.4, that

∞

∑
m=0

E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)

]
< ∞ a.s.

Now, using Taylor series expansions of J(θ (n)+δ (n)) and J(θ (n)−δ (n)), respec-
tively, around the point θ (n), i.e.,
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J(θ (n)+ δ (n)) = J(θ (n))+ δ (n)
dJ(θ (n))

dθ
+O(δ (n)2),

J(θ (n)− δ (n)) = J(θ (n))− δ (n)dJ(θ (n))
dθ

+O(δ (n)2),

we obtain,
β (n) = O(δ (n)), i.e., β (n)→ 0 as n→ ∞.

Thus in lieu of equation (4.6), the iteration scheme in (4.2) can be seen to track the
negative gradient of J but with diminishing noise. Thus, (4.6) can be viewed as a
noisy Euler discretization of the ODE

θ̇ =−dJ(θ )
dθ

, (4.7)

but with diminishing step increments. The result now follows by an application of
the Hirsch lemma (Lemma C.5). ��
Remark 4.1. Note that S corresponds to the set of all fixed points of the ODE (4.5)
and not merely local minima. Points in S that are not local minima will however
be unstable equilibria. In principle, the scheme can converge to an unstable equilib-
rium. By assuming noise to be sufficiently rich or by introducing additional noise
[6, 17], one can ensure that the scheme does not get stuck in an unstable equilib-
rium. In most practical applications, however, stochastic approximation algorithms
such as (4.2) are seen to converge to local minima.

4.2.1 Extension to Multi-dimensional Parameter

For θ ∈ R
N , a natural extension of the original scheme (4.2) is as given below:

θi(n+ 1) = θi(n)− a(n)
h(θ (n)+ δ (n)ei,ξ+i (n))− h(θ (n)− δ (n)ei,ξ−i (n))

2δ (n)
,

(4.8)

for i = 1,2, . . . ,N, where ei =
(

0, . . . , 0, 1, 0, . . . , 0
)T ∈ R

N , with 1 at the ith lo-
cation, is the unit vector along the ith coordinate direction in R

N . Further, ξ+i (n),
ξ−i (n), i = 1, . . . ,N are the corresponding i.i.d. noise samples that are also inde-
pendent of each other and have a common distribution with finite second moments.
Also, θi(n)∈R denotes the ith component of the parameter vector θ (n)∈RN , at up-
date instant n. Under similar assumptions as Assumptions 4.1-4.4, the convergence
of the multi-dimensional K-W algorithm (4.8) can be shown and similar conclu-
sions as in Theorem 4.1 can be drawn. We leave this as an exercise for the interested
reader.
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4.3 Variants of the Kiefer-Wolfowitz Algorithm

There are some variants of the Kiefer-Wolfowitz algorithm available in the literature
where either different perturbation parameter schemes are explored or the selection
of the perturbation noise is varied. In [16], [14], it is seen that the use of common
random numbers, i.e., ξ+i (n) = ξ−i (n) reduces the estimator variance. This may be
possible in a few simulation-based settings with random variables that are obtained
from the same pseudo-random sequence. However, in most practical settings, this
is difficult to achieve even when simulation is used. We discuss below two popular
variations, one where the perturbation parameter is held constant and another in
which one-sided perturbations are employed.

4.3.1 Fixed Perturbation Parameter

Quite often it makes sense to simply set δ (n) ≡ δ for a ‘small’ δ > 0 as has been
done in [3], [4] and [5] (see also [15, pp. 15] for a discussion along these lines). With
a fixed perturbation parameter, δ , the iteration scheme in (4.2) can be re-written as

θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ ,ξ+(n))− h(θ (n)− δ ,ξ−(n))

2δ
. (4.9)

Note that we consider θ (n) to be scalar-valued again for simplicity. The case of
vector θ (n) can be handled as explained in Section 4.2.1. The analysis of recursion
(4.9) can be shown under weaker requirements on the step-size sequence a(n),n≥
0 than those in Assumption 4.2. The convergence result that one obtains in this
case is also weaker than the one given in Theorem 4.1. Specifically, we replace
Assumption 4.2 with the following:

Assumption 4.5. The step-sizes a(n)> 0, ∀n and

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞. (4.10)

This is essentially the same requirement as (3.4). For ε > 0, let

Sε = {θ | |θ −θ ∗|< ε for some θ ∗ ∈ S} ,

denote the set of points that are in an ε-neighborhood of the set S. We have the
following result:
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Theorem 4.2. Under Assumptions 4.1, 4.3, 4.4 and 4.5, given ε > 0, there
exists δ̄ > 0 such that for every δ ∈ (0, δ̄ ], the iterates θ (n),n ≥ 0, governed
according to (4.9) converge a.s. to Sε .

Proof. (Sketch) One can rewrite (4.9) as

θ (n+ 1) = θ (n)− a(n)

(
dJ(θ (n))

dθ
+β (n)+η(n)

)
, (4.11)

where

η(n) =
h(θ (n)+δ ,ξ+(n))−h(θ (n)−δ ,ξ−(n))

2δ
− J(θ (n)+δ )−J(θ (n)−δ )

2δ
, and

β (n) =
J(θ (n)+ δ )− J(θ (n)− δ )

2δ
− dJ(θ (n))

dθ
,

respectively. As in the proof of Theorem 4.1, one can see that ξ̂ (m),m ≥ 0 defined

according to ξ̂ (m) =
m

∑
n=0

a(n)η(n)(m≥ 0) forms a convergent martingale sequence.

Further, using Taylor series expansions of J(θ (n)+δ ) and J(θ (n)−δ ) around θ (n),
it is easy to see that β (n) = O(δ ). The result again follows from the Hirsch lemma
(Lemma C.5). ��

4.3.2 One-Sided Variants

The gradient estimates in (4.2) are also called two-sided finite difference (or bal-
anced) estimates while those that we describe below in (4.12) are called one-sided
finite difference (or unbalanced) estimates. In one-sided FDSA, the scheme is as
follows:

θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ (n),ξ+(n))− h(θ (n),ξ−(n))

δ (n)
. (4.12)

The same for N-dimensional parameter θ can be re-written as

θi(n+ 1) = θi(n)− a(n)
h(θ (n)+ δ (n)ei,ξ+i (n))− h(θ (n),ξ−i (n))

δ (n)
, i = 1,2, . . . ,N.

(4.13)
Proofs of convergence of both of these recursions follow along the same lines as
Theorem 4.1. One-sided variants bring in a computational advantage by requiring
approximately half of the number of simulations compared to the original Kiefer-
Wolfowitz scheme in the case of multi-dimensional parameter where the original



38 4 Kiefer-Wolfowitz Algorithm

algorithm (4.8) requires 2N function measurements in order to obtain one estimate
of the gradient while a one-sided variant (4.13) requires (N + 1) function measure-
ments to obtain a gradient estimate. In the setting of simulation optimization [7], [8],
[11], [12], [5], [1], [2], where one does not have access to function measurements
but needs to simulate the whole system, one requires in effect 2N (resp. (N + 1))
parallel simulations of the entire system when using two-sided (resp. one-sided)
estimates. These algorithms become computationally inefficient when N becomes
large and therefore one requires more computationally efficient methods for gradi-
ent estimation.

4.4 Concluding Remarks

Building on the stochastic algorithms which seek to obtain a zero of a func-
tion with noisy measurements, this chapter introduced and discussed a class of
stochastic algorithms performing gradient descent on a cost objective. The Kiefer-
Wolfowitz algorithm [13] marks the beginning of the development of this class of
stochastic-gradient algorithms. When applied to N-dimensional parameter settings
(with N > 1), these algorithms require 2N or N + 1 noisy function measurements
depending on whether two-sided or one-sided estimates are used. When N is large,
these algorithms can become computationally inefficient because of the need to gen-
erate so many noisy cost observations. We address this scalability issue in the next
two chapters that deal with the simultaneous perturbation stochastic approximation
(SPSA) and the smoothed functional (SF) gradient algorithms, respectively.
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Chapter 5
Gradient Schemes with Simultaneous
Perturbation Stochastic Approximation

5.1 Introduction

Spall [26], [29] invented a remarkable algorithm that has become popular by the
name simultaneous perturbation stochastic approximation (SPSA). It is remarkable
in that it requires only two function measurements for a parameter of any dimen-
sion (i.e., any N ≥ 1) and exhibits fast convergence (that is normally faster than the
Kiefer-Wolfowitz algorithm). Unlike Kiefer-Wolfowitz schemes, where parameter
perturbations are performed along each co-ordinate direction separately (in order to
estimate the corresponding partial derivatives), in SPSA, all component directions
are perturbed simultaneously using perturbations that are vectors of independent
random variables that are often assumed to be symmetric, zero-mean, ±1-valued,
and Bernoulli distributed.

In the following sections, we discuss in detail the original SPSA algorithm [26] as
well as its variants that are based on one and two function measurements. In partic-
ular, we discuss an important variant of the SPSA algorithm that uses deterministic
perturbations based on Hadamard matrices. We provide the convergence proofs of
the SPSA algorithm and its variants that we discuss.

5.2 The Basic SPSA Algorithm

We present the SPSA algorithm here for the expected cost objective. Recall that the
objective in this case is J(θ ) =Eξ [h(θ ,ξ )], where h :RN×Rk→R is a given single-
stage cost function. Here h(θ ,ξ ) denotes a noisy measurement of J(θ ) and ξ ∈ R

k

is a mean-zero, random variable that corresponds to the noise in the measurements.
Also, as in previous chapters, we let L(θ ) = ∇J(θ ). Note that the parameter vector

θ is N-dimensional, i.e., θ Δ
= (θ1,θ2, . . . ,θN)

T ∈ R
N .

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 41–76.
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5.2.1 Gradient Estimate Using Simultaneous Perturbation

We first describe the gradient estimate ∇θJ(θ ) of J(θ ) when using SPSA. The esti-
mate is obtained from the following relation:

∇θJ(θ (n)) =

lim
δ (n)↓0

E

[(
h(θ (n)+ δ (n)Δ(n),ξ+)− h(θ (n)+ δ (n)Δ(n),ξ−)

2δ (n)Δi(n)

)∣∣∣∣θ (n)
]
.

(5.1)

The above expectation is over the noise terms ξ+ and ξ− as well as the per-

turbation random vector Δ(n) �= (Δ1(n), . . . ,ΔN(n))T , where Δ1(n), . . . ,ΔN(n) are
independent, mean-zero random variables satisfying the conditions in Assump-
tion 5.4 below. The idea here is to perturb all the coordinate components of the
parameter vector simultaneously using Δ(n). The two perturbed parameters corre-
spond to θ (n)+ δ (n)Δ(n) and θ (n)− δ (n)Δ(n), respectively. Several remarks are
in order.

Remark 5.1. Δi(n), i = 1,2, . . . ,N,n ≥ 0 satisfy an inverse moment bound, that is,
E[|Δi(n)−1|]< ∞. Thus, these random variables assign zero probability mass to the
origin. We will see later in Theorem 5.1 that such a choice of random variables
for perturbing the parameter vector ensures that in the recursion (5.1), the estimate
along undesirable gradient directions averages to zero.

Remark 5.2. In contrast to the Kiefer-Wolfowitz class of algorithms, one can see
that, the SPSA updates have a common numerator for all the θ -components but
a different denominator. The inverse moment condition and the step-size require-
ments ensure convergence to a local minimum. Hence, unlike the Kiefer-Wolfowitz
class of algorithms which require 2N or N + 1 samples of the objective func-
tion, SPSA algorithms need only two samples irrespective of the dimension of the
parameter θ .

Remark 5.3. Most often, one assumes that the perturbation random variables are
distributed according to the symmetric Bernoulli distribution with Δi(n) = ±1
w.p. 1/2, i = 1, . . . ,N, n ≥ 0. In fact, it is found in [25] that under certain con-
ditions, the optimal distribution on components of the simultaneous perturbation
vector is a symmetric Bernoulli distribution. This result is obtained under two sep-
arate objectives (see [25]): (a) minimize the mean square error of the estimate, and
(b) maximize the likelihood that the estimate remains in a symmetric bounded re-
gion around the true parameter.
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5.2.2 The Algorithm

The update rule in the basic SPSA algorithm is as follows:

θi(n+1) =θi(n) (5.2)

−a(n)

(
h(θ (n)+δ (n)Δ (n),ξ+(n))−h(θ (n)−δ (n)Δ (n),ξ−(n))

2δ (n)Δi(n)

)
,

for i = 1, . . . ,N and n≥ 0.

The overall flow of the basic SPSA algorithm is described in Fig. 5.1. In essence, it
is a closed-loop procedure where the samples of the single stage cost function h(·, ·)
are obtained for two perturbed parameter values (θ (n)+ δ (n)Δ(n)) and (θ (n)−
δ (n)Δ(n)), respectively. These samples are then used to update θ in the negative
gradient descent direction using the estimate (5.1).

θ (n)

+

δ (n)Δ (n)

−

δ (n)Δ (n)

h(θ +δ (n)Δ (n),ξ+(n))

h(θ −δ (n)Δ (n),ξ+(n))

UpdateRule(·)

Y+(n)

Y−(n)

θ (n+1)

Fig. 5.1 Overall flow of the algorithm 5.1.

For the sake of completeness and because of its prominence in gradient estima-
tion schemes, we describe below the SPSA algorithm in an algorithmic form.

Algorithm 5.1 The basic SPSA Algorithm for the Expected Cost Objective
Input:

• Q, a large positive integer;
• θ0 ∈C ⊂ R

N , initial parameter vector;
• Bernoulli(p), random independent Bernoulli ±1 sampler with probability p

for ‘+1’ and 1− p for ‘−1’;
• h(θ ,ξ ), noisy measurement of cost objective J;
• a(n) and δ (n), step-size sequences chosen complying to assumption in (5.3);

Output: θ ∗ Δ= θ (Q).
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n← 0.
loop

for i = 1 to N do
Δi(n)← Bernoulli(1/2).

end for
Y (n)+← h(θ + δ (n)Δ(n),ξ+(n)).
Y (n)− ← h(θ − δ (n)Δ(n),ξ−(n)).
for i = 1 to N do

θi(n+ 1)← θi(n)− a(n)
Y+(n)−Y−(n)

2δ (n)Δi(n)
.

end for
n← n+ 1
if n = Q then

Terminate with θ (Q).
end if

end loop

The algorithm terminates after Q iterations. Asymptotic convergence is then achieved
as Q→ ∞. More sophisticated stopping criteria may however be used as well. For
instance, in some applications it could perhaps make sense to terminate the algo-
rithm when for a given ε > 0, ‖θ (n)− θ (n−m)‖< ε for all m ∈ {1, . . . ,R}, for a
given R > 1.

5.2.3 Convergence Analysis

Before presenting the main theorem proving the convergence of the basic SPSA
algorithm (5.2), we make the following assumptions:

Assumption 5.1. The map J : RN→R is Lipschitz continuous and is differen-
tiable with bounded second order derivatives. Further, the map L : RN → R

N

defined as L(θ ) = −∇J(θ ),∀θ ∈ R
N and the map h : RN ×R

k → R are both
Lipschitz continuous.

The above is a technical requirement needed to push through a Taylor series expan-
sion and is used in the analysis.

Assumption 5.2. The step-sizes a(n),δ (n)> 0, ∀n and

a(n),δ (n)→ 0 as n→ 0, ∑
n

a(n) = ∞, ∑
n

(
a(n)
δ (n)

)2

< ∞. (5.3)
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Thus, a(n) and δ (n) are both diminishing sequences of positive numbers with δ (n)
going to zero slower than a(n). The second condition above is analogous to a similar
condition in (3.4). The third condition is a stronger requirement. In [11], a relaxation
is made and it is assumed that a(n),δ (n)→ 0 as n→ ∞ and that

∑
n

a(n) = ∞,∑
n

a(n)p < ∞

for some p ∈ (1,2]. Typically a(n),δ (n), n ≥ 0 can be chosen according to a(n) =
a/(A+ n+ 1)α and δ (n) = c/(n+ 1)γ , for a,A,c > 0. The values of α and γ sug-
gested in [13] and [15] are 1 and 1/6, respectively. In [28], it is observed that the
choices α = 0.602 and γ = 0.101 perform well in practical settings.

Assumption 5.3. ξ+(n), ξ−(n), n ≥ 0 are R
k-valued, independent random

vectors having a common distribution and with finite second moments.

Note that the algorithm (5.2) can be rewritten as follows:

θi(n+1) = θi(n)−a(n)

(
J(θ (n)+δ (n)Δ (n))−J(θ (n)−δ (n)Δ (n))

2δ (n)Δi(n)
+
ξ̂+(n)− ξ̂−(n)

2δ (n)Δi(n)

)
,

(5.4)

where

ξ̂+(n)− ξ̂−(n) =h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n)− δ (n)Δ(n),ξ−(n))
− (J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))).

It is easy to see that
ξ̂+(n)− ξ̂−(n)

2δ (n)Δi(n)
,n≥ 0 forms a martingale difference sequence

under an appropriate filtration.

Assumption 5.4. The random variables Δi(n), n ≥ 0, i = 1, . . . ,N, are
mutually independent, mean-zero, have a common distribution and satisfy
E[(Δi(n))−2]≤ K̄, ∀n≥ 0, for some K̄ < ∞.

In order for the inverse moment of Δi(n) to be uniformly bounded (see
Assumption 5.4), it follows that the random variables Δi(n) must have zero prob-
ability mass at the origin. Many times, one simply lets Δi(n),n ≥ 0 to be indepen-
dent, symmetric Bernoulli-distributed random variables with Δi(n) = ±1 w.p. 1/2,
∀i = 1, . . . ,N.
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Assumption 5.5. The iterates (5.2) remain uniformly bounded almost surely,
i.e.,

sup
n
‖θ (n)‖< ∞, a.s. (5.5)

Consider the ODE:
θ̇ (t) =−∇J(θ (t)). (5.6)

Assumption 5.6. The set H containing the globally asymptotically stable
equilibria of the ODE (5.6) (i.e., the local minima of J) is a compact subset of
R

N .

Theorem 5.1. Under Assumptions 5.1-5.6, the parameter updates (5.2) satisfy
θ (n)→ H with probability one.

Proof. Let ∇iJ(θ ) represent the ith partial derivative of J(θ ). The SPSA update rule
(5.2) can be rewritten as follows:

θi(n+ 1) = θi(n)− a(n)(∇iJ(θ (n))+ηi(n)+βi(n)) , (5.7)

where

ηi(n) =
h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n)− δ (n)Δ(n),ξ−(n))

2δ (n)Δi(n)

− J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))
2δ (n)Δi(n)

,

βi(n) =
J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))

2δ (n)Δi(n)
−∇iJ(θ (n)),

for i = 1,2, . . . ,N. Now,

|h(θ ,ξ )|− |h(0,0)| ≤ |h(θ ,ξ )− h(0,0)| ≤ L̂‖(θ ,ξ )− (0,0)‖,

where L̂ > 0 is the Lipschitz constant of h. Since ‖ · ‖ is the Euclidean norm, it is
easy to see that ‖(θ ,ξ )− (0,0)‖≤ ‖θ‖+ ‖ξ‖. Thus, we have that

|h(θ ,ξ )| ≤ K̂(1+ ‖θ‖+ ‖ξ‖),
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for some K̂ > 0. Now ηi(n),n ≥ 0 forms a martingale difference sequence with
respect to the sequence of sigma fields F (n) = σ(θ (m),Δ(m),ξ+(m),ξ−(m),m≤
n),n≥ 0. Let

N̄i(n) =
n−1

∑
m=0

a(m)ηi(m), n≥ 1, i = 1, . . . ,N.

It is easy to see as a consequence of Assumptions 5.1–5.5 and from the martingale
convergence theorem (Theorem B.2) that N̄i(n),n ≥ 1, is an almost surely conver-
gent martingale sequence.

Now, Taylor’s series expansions of J(θ (n)+δ (n)Δ(n)) and J(θ (n)−δ (n)Δ(n)),
respectively, around the point θ (n) give,

J(θ (n)+ δ (n)Δ(n)) = J(θ (n))+ δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2),

J(θ (n)− δ (n)Δ(n)) = J(θ (n))− δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2).

Upon substitution of the above in the expression for βi(n), we get,

βi(n) =
N

∑
j=1, j �=i

Δ j(n)
Δi(n)

∇ jJ(θ (n))+O(δ (n)).

Since Δ j(n) are i.i.d., bounded and mean-zero random variables, the first term in the
above is a square integrable mean-zero random noise for a given θ (n). The claim
now follows from the Hirsch Lemma (see Lemma C.5). ��
As suggested by equation (5.7), while the search direction is randomly chosen and
need not follow a descent path, the algorithm is seen to make the right moves in the
asymptotic average. In the next section, we discuss some of the variants of the basic
SPSA algorithm.

5.3 Variants of the Basic SPSA Algorithm

The SPSA algorithm has evoked significant interest due to its good performance,
ease of implementation and wide applicability. Moreover, it is observed to be scal-
able in that the computational effort does not increase significantly with the pa-
rameter dimension unlike the Kiefer-Wolfowitz algorithms (see for instance, the
experiments in [7]). In the next few sections, we shall review some of the important
variants of the SPSA algorithm.

5.3.1 One-Measurement SPSA Algorithm

Interestingly enough, it is possible to perform gradient estimation via just one mea-
surement. In [27], a one-measurement version of SPSA has been presented. The
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simulation here is run with the parameter θ (n)+δ (n)Δ(n) where the update rule is
of the form:

θi(n+ 1) = θi(n)− a(n)

(
h(θ (n)+ δ (n)Δ(n),ξ+(n))

δ (n)Δi(n)

)
, (5.8)

for i = 1, . . . ,N and Δ(n) as before.

Now, we present a proof of convergence of this scheme.

Theorem 5.2. Under Assumptions 5.1-5.6, the parameter updates (5.8) satisfy
θ (n)→ H with probability one.

Proof. The proof follows in a similar manner as that of Theorem 5.1 except for the
change that because of the presence of only one simulation, there is an additional
bias term in the gradient estimate. Recall that a Taylor series expansion of J(θ (n)+
δ (n)Δ(n)) around θ (n) gives

J(θ (n)+ δ (n)Δ(n)) = J(θ (n))+ δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2).

One can rewrite (5.8) in a manner similar to (5.7), where

ηi(n) =
h(θ (n)+ δ (n)Δ(n),ξ+(n))

δ (n)Δi(n)
− J(θ (n)+ δ (n)Δ(n))

δ (n)Δi(n)
,

βi(n) =
J(θ (n)+ δ (n)Δ(n))

δ (n)Δi(n)
−∇iJ(θ (n)).

Thus,

βi(n) =
J(θ (n))
δ (n)Δi(n)

+
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))+O(δ (n)). (5.9)

The second term in the above, as previously discussed, is a square integrable mean-
zero random noise (given θ (n)). The first term above (for any n ≥ 0) is also mean-
zero for a given θ (n). Further, the product of a(n) with the first term in the above
can be seen to be square summable. Hirsch Lemma (see Lemma C.5) can now be
applied to obtain the claim. ��
As observed in [27] and other references, for instance, [8], the performance of the
one-measurement SPSA algorithm is not as good as its two-measurement coun-
terpart because of the presence of the additional bias term (above) that has a factor
δ (n) in its denominator and which tends to zero asymptotically. However, it is noted
in [27], that one-simulation SPSA may have better adaptability as compared to its
two-simulation counterpart in non-stationary settings.
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5.3.2 One-Sided SPSA Algorithm

A one-sided difference version of SPSA with two measurements has been consid-
ered in [11]. Here the two simulations are run with the parameters θ (n)+δ (n)Δ(n)
and θ (n), respectively, and the update rule has the form:

θi(n+ 1) = θi(n)− a(n)

(
h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n),ξ (n))

δ (n)Δi(n)

)
,

(5.10)
for i = 1, . . . ,N with Δ(n) as before.

Also, ξ+(n),ξ (n) satisfy Assumption 5.3 with ξ (n) in place of ξ−(n). One of the
measurements of h(·, ·), here, is unperturbed which may be useful in certain appli-
cations [11]. A similar convergence result as that in 5.1 can be shown for this case
as well. If higher order derivatives of J exist, then one can see that in the case of
the original SPSA algorithm, all even order terms such as the second order terms
involving the Hessian get directly cancelled. This is however not the case with the
one-sided difference SPSA where such terms contribute to the overall bias. The
two-sided form (5.2) is the most studied and used in applications.

5.3.3 Fixed Perturbation Parameter

In many applications [5, 6, 7] and also in discussions [20, pp. 15], of the SPSA
algorithm, a constant value for the perturbation parameters δ (n) ≡ δ > 0, is of-
ten considered for convenience. The SPSA update rule would in this case take the
form:

θi(n+1)= θi(n)−a(n)

(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n)− δΔ(n),ξ−(n))

2δΔi(n)

)
,

(5.11)
for i = 1, . . . ,N and n≥ 0.

As described in the theorem below, a suitable δ > 0 can be chosen based on a desired
ε > 0, to prove convergence of the update rule to an ε-neighborhood of the set H
(the local minima of J). For ε > 0, let

Hε = {θ | ‖θ −θ ∗‖< ε for some θ ∗ ∈ H} .
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Consider now the following requirement of the step-sizes a(n),n ≥ 0, in place of
Assumption 5.2:

Assumption 5.7. The step-sizes a(n)> 0, ∀n and

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞. (5.12)

Theorem 5.3. Under Assumptions 5.1, 5.3-5.7, given ε > 0, there exists δ̄ > 0
such that for every δ ∈ (0, δ̄ ], the update rule (5.11) converges a.s. to Hε .

Proof. Proceeding along similar lines as in the proof of Theorem 5.1, the update
rule (5.11) can be re-written as

θi(n+ 1) = θi(n)− a(n)(∇iJ(θ (n))+ηi(n)+βi(n)) , (5.13)

where

ηi(n) =
h(θ (n)+ δΔ(n),ξ (n)+)− h(θ (n)− δΔ(n),ξ (n)−)

2δΔi(n)

− J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

,

βi(n) =
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
−∇iJ(θ (n)),

for i = 1,2, . . . ,N. As before, it is easy to see that ηi(n),n≥ 0, is a square integrable

martingale difference sequence. Thus,

{
n−1

∑
m=0

a(m)ηi(m),n ≥ 1

}
can be seen from

the martingale convergence theorem (Theorem B.2) to be an almost surely conver-
gent martingale. Now, simplifying the expression of βi(n) using appropriate Taylor
series expansions of J(θ (n)+ δΔ(n)) and J(θ (n)− δΔ(n)), respectively, around
θ (n), we get,

βi(n) =
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))+O(δ ). (5.14)

It is easy to see that E[βi(n) | θ (n)] = O(δ ). The claim now follows by applying the
Hirsch lemma (Lemma C.5). ��
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5.4 General Remarks on SPSA Algorithms

It is interesting to note that in each of the update rules (5.2), (5.8) and (5.10),
the numerator is the same across all i, i = 1, . . . ,N, while the denominator has a
quantity Δi(n) that depends on i. This is unlike the Kiefer-Wolfowitz algorithm (or
FDSA) where the denominator is the same while the numerator is different for dif-
ferent i, see (4.2) and (4.12). Thus, in going from FDSA to SPSA, the complexity
in estimating the gradient shifts (in a way) from the numerator of the estimator
to its denominator. It should be noted that simulating N independent symmetric
Bernoulli-distributed random variables is in general far less computationally expen-
sive than obtaining 2N or (N + 1) objective function measurements or simulations,
particularly when N is large. It has been seen both from theory and experiments
[26], [7], [24] that two-sided, two-simulation SPSA (5.2) is computationally far
more superior to FDSA. In [26], asymptotic normality results for SPSA and FDSA
are used to establish the relative efficiency of SPSA. The asymptotic analysis for
the Robbins-Monro algorithm can be adapted to prove almost sure convergence of
the iterates in the SPSA algorithm [26]. Assuming that there is a unique globally
asymptotically stable equilibrium θ ∗ for the associated ODE (i.e., a global mini-
mum for the basic algorithm), the asymptotic normality result in [26] essentially
says that

nr/2(θ (n)−θ ∗) D→ N(μ ,Σ)

as n→ ∞, where
D→ denotes convergence in distribution, N(μ ,Σ) is a multi-variate

Gaussian with mean μ and covariance matrix Σ that depends on the Hessian at θ ∗.
In general, μ �= 0. The quantity r depends upon the choice of the gain sequences
{a(n)} and {δ (n)}.

Many interesting analyses of the SPSA algorithm have been reported in the lit-
erature. In [26], the above asymptotic normality result is used to argue the relative
asymptotic efficiency of SPSA over FDSA. In particular, it is argued that SPSA re-
sults in an N-fold computational savings over FDSA. In [11], a projected version of
SPSA where the projection region is gradually increased has been presented. This
is a novel approach to take care of the issue of iterate stability in general. In [2] and
[17], application of SPSA for optimization in the case of non-differentiable func-
tions is considered. A detailed analysis of SPSA under general conditions can also
be found in [16]. An analysis of SPSA and FDSA when common random num-
bers are used in the simulations is given in [18]. Different ways of gradient esti-
mation in SPSA using past measurements have been reported in [1] and [21]. In
[22], iterate averaging for stability of the SPSA recursions and improved algorith-
mic behaviour is explored. A case of weighted averaging of the Kiefer-Wolfowitz
and SPSA iterates is considered in [14]. In [12] and [23], SPSA is proposed for
use as a global search algorithm. In [13], SPSA is compared with a two-sided
smoothed functional algorithm (see Chapter 6) and it is observed over the exper-
iments considered there that SPSA is the better of the two algorithms. In [28], the
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general technique for implementing SPSA and the choice of gain sequences is dis-
cussed. In [10], non-Bernoulli distributions have been explored for the perturbation
sequences.

In the next section, we discuss an important class of SPSA algorithms where the
perturbation sequence is deterministic and regular (i.e., periodic) rather than a vector
of independent Bernoulli-distributed random variables.

5.5 SPSA Algorithms with Deterministic Perturbations

The SPSA algorithms discussed in the previous sections used zero-mean and mu-
tually independent random perturbations to obtain an estimate of the gradient
of the objective function. We now consider the case when the perturbation se-
quences are constructed differently by a deterministic mechanism. These pertur-
bations are obtained by cyclically passing through a certain construction based on
Hadamard matrices. The principal idea behind the Hadamard matrix construction is
to periodically cancel the bias terms aggregated over iterations where the length
of the period over which such cancellation occurs is small. As a consequence,
one expects an improved algorithmic performance. In [8], it is observed that in
certain scenarios, the deterministic perturbations are theoretically sound and re-
sult in faster convergence empirically. For further discussions, we will use the
setting of fixed perturbation parameter, that is, δ (n) ≡ δ > 0. Nevertheless, all
the following discussions, can be suitably applied to the general setting with
non-fixed perturbation sequences δ (n),n ≥ 0 satisfying the requirements in
Assumption 5.2.

5.5.1 Properties of Deterministic Perturbation Sequences

We first explain the idea why such a construction can work in practice. Recall that a
Taylor series expansion of J(θ (n)+ δΔ(n)) around θ (n) is the following:

J(θ (n)+ δΔ(n)) = J(θ (n))+ δΔ(n)T∇J(θ (n))+ o(δ ). (5.15)

Similarly, an expansion of J(θ (n)− δΔ(n)) around θ (n) gives

J(θ (n)− δΔ(n)) = J(θ (n))− δΔ(n)T∇J(θ (n))+ o(δ ). (5.16)

Hence from (5.15) and (5.16), for i = 1, . . . ,N, one obtains in the case of a two-
measurement algorithm with parameters θ (n)+ δΔ(n) and θ (n)− δΔ(n),
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J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

=
Δ(n)T∇J(θ (n))

Δi(n)
+ o(δ )

= ∇iJ(θ (n))+
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))

+o(δ ). (5.17)

Note that the error terms (at the end) are still o(δ ) above because the subsequent
Hessian terms in the above expansions would directly cancel as well. Also, in the
case of a two-measurement, but one-sided gradient estimate involving parameters
θ (n)+ δΔ(n) and θ (n), one obtains

J(θ (n)+ δΔ(n))− J(θ (n))
δΔi(n)

= ∇iJ(θ (n))+
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))+O(δ ).

(5.18)
As discussed before, unlike (5.17), the Hessian term would not cancel if it is con-
sidered in the expansion. Hence, the last term above is now O(δ ).

Note that
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n)) constitutes the bias. When Δi(n), i = 1, . . . ,N,

n≥ 0 satisfy Assumption 5.4, for instance, if they are Bernoulli distributed indepen-
dent random variables, Δi(n) =±1 w.p.1/2, ∀i,n, then it follows that

E

[
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))

∣∣∣∣∣θ (n)
]
= 0. (5.19)

The conditional expectation as such can be seen to be obtained in the asymptotic
limit of the algorithm using a martingale argument. However, as we shall subse-
quently see, when the perturbations Δi(n) are not random but are obtained through a
deterministic construction instead, it suffices that some finite sums of the bias terms
tend to zero asymptotically.

In the case of a one-measurement algorithm with parameter θ (n)+ δΔ(n), on
the other hand, a similar calculation shows

J(θ (n)+ δΔ(n))
δΔi(n)

=
J(θ (n))
δΔi(n)

+∇iJ(θ (n))+
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))+O(δ ).

(5.20)
The first and the third terms on the RHS in (5.20) constitute the bias terms. In the
case of random perturbations as described above, the following holds as well in
addition to (5.19):

E

[
J(θ (n))
δΔi(n)

∣∣∣∣θ (n)
]
= 0. (5.21)
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As mentioned before, the quantity δ > 0 is usually chosen to be either a ‘small’
constant or else is slowly diminishing to zero. In either case, the variances of the
estimates depend on δ . Nevertheless, in the case of one-measurement SPSA with
deterministic perturbations, one wants that the bias contributed by the first term on
the RHS of (5.20) tends to zero in addition to that contributed by the third term on
the same RHS.

In general, a deterministic construction for the perturbation sequences should sat-
isfy the following property in the case of two-measurement SPSA algorithms with
both the two-sided balanced estimates (with parameters θ (n)+ δΔ(n) and θ (n)−
δΔ(n), n ≥ 0) as well as the one-sided estimates (with parameters θ (n)+ δΔ(n)
and θ (n), n≥ 0), respectively.

(P.1) There exists a P ∈ N such that for every i, j ∈ {1, . . . ,N}, i �= j and for
any s ∈N,

s+P

∑
n=s

Δi(n)
Δ j(n)

= 0. (5.22)

Further, in the case of one-measurement SPSA (with parameters θ (n) +
δΔ(n), n≥ 0), one requires the following property in addition to (P.1):

(P.2) There exists a P ∈ N such that for every k ∈ {1, . . . ,N} and any s ∈ N,

s+P

∑
n=s

1
Δk(n)

= 0. (5.23)

Property (P.2) is not required to be satisfied by the aforementioned two-
measurement SPSA algorithms while both (P.1) and (P.2) are required for one-
measurement SPSA.

5.5.2 Hadamard Matrix Based Construction

Let H2k , k≥ 1 be matrices of order 2k× 2k that are recursively obtained as:

H2 =

(
1 1
1 −1

)
and H2k =

(
H2k−1 H2k−1

H2k−1 −H2k−1

)
, k > 1.

Such matrices are called normalized Hadamard matrices. These are characterized
by all elements in their first row and column being 1.
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5.5.2.1 Construction for Two-Measurement Algorithms

We now describe the construction of the perturbation sequences in the case when
the gradient estimates have the form (5.17) or (5.18). Let P = 2�log2 N�. (Note that
P≥ N.) Consider now the matrix HP (with P chosen as above). Let h(1), . . . ,h(N),
be any N columns of HP. In case P = N, then h(1), . . . ,h(N), will correspond to all
N columns of HP. Form a matrix H ′P of order P×N that has h(1), . . . ,h(N) as its
columns. Let e(p), p = 1, . . . ,P, be the P rows of H ′P. Now set Δ(n)T = e(n mod
P+ 1), ∀n ≥ 0. The perturbations are thus generated by cycling through the rows
of H ′P with Δ(0)T = e(1),Δ(1)T = e(2), . . . ,Δ(P− 1)T = e(P), Δ(P)T = e(1), etc.
The following result is obvious from the above construction.

Lemma 5.4. The Hadamard matrix based perturbations Δ(n), n ≥ 0 for two-
measurement SPSA algorithms satisfy property (P.1).

Here we give an example for the case when the parameter dimension N is 4. As
per Lemma 5.4, we construct the perturbation sequence Δ(1), . . . ,Δ(4), from H4 as
follows:

Δ(1) = [1,1,1,1]T ,

Δ(2) = [1,−1,1,−1]T ,

Δ(3) = [1,1,−1,−1]T ,

Δ(4) = [1,−1,−1,1]T .

In this particular case where N was a power of 2, we ended up taking the row vectors
of H4 as the perturbations. If N is not a power of 2, the procedure would be similar
to the above, except that we only pick N columns from the matrix HP, where P =
2�log2 N�. It can be easily checked that the perturbations generated above satisfy the
property (P.1).

5.5.2.2 Construction for One-Measurement Algorithms

In the case when the gradient estimates are as in (5.20) and depend on a single
measurement with parameter θ (n)+δΔ(n), the value of P is set to P = 2�log2(N+1)�.
Thus, P≥ N + 1 in this case. Now let h(1), . . . ,h(N) be any N columns of HP other
than the first column. Form the matrix H ′P of order P×N with h(1), . . . ,h(N) as its N
columns. As before, if e(p), p = 1, . . . ,P are the P rows of H ′P, then the perturbation
vectors Δ(n) are obtained again by cycling through the rows of H ′P. The following
result is now easy to verify from the construction.

Lemma 5.5. The Hadamard matrix based perturbations Δ(n), n ≥ 0 for one-
measurement SPSA algorithms satisfy both properties (P.1) and (P.2).

We again consider an example where N = 4. Now, to construct perturbations in this
case for one-simulation algorithms, we first form the normalized Hadamard matrix
H8 as follows:
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H8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, the perturbations Δ(i), i = 1, . . . ,8 can be obtained by taking columns 2− 5
(or any 4 columns except the first) of H8. For instance, taking the rows of columns
2− 5 from H8 above, we obtain:

Δ(1) = [1,1,1,1]T ,

Δ(2) = [−1,1,−1,1]T ,

Δ(3) = [1,−1,−1,1]T ,

Δ(4) = [−1,−1,1,1]T ,

Δ(5) = [1,1,1,−1]T ,

Δ(6) = [−1,1,−1,−1]T ,

Δ(7) = [1,−1,−1,−1]T ,

Δ(8) = [−1,−1,1,−1]T .

Any other choice of four columns other than the first can be seen to work as well.
Properties P.1–P.2 are seen to be satisfied here.

5.5.3 Two-Sided SPSA with Hadamard Matrix Perturbations

Let θ (n) = (θ1(n), . . . ,θN(n))T , n ≥ 0 be a sequence of parameters that are
tuned according to the algorithm below (cf. (5.24)). Also, let Δ(n),n ≥ 0 be a
sequence of perturbations obtained from the Hadamard matrix construction de-
scribed in Section 5.5.2.1. Then, the update rule of the two-sided SPSA algorithm is
given by

θi(n+1)= θi(n)−a(n)

(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n)− δΔ(n),ξ−(n))

2δΔi(n)

)
,

(5.24)
for i = 1, . . . ,N and n≥ 0.



5.5 SPSA Algorithms with Deterministic Perturbations 57

Remark 5.4. In (5.24), δ is a fixed positive real number. The convergence analysis
of the earlier SPSA schemes established that they converge to the set H of asymp-
totically stable equilibrium points of the corresponding ODE. However, with a fixed
δ , it is later established that (5.24) converges in the limit to a set that can be made
arbitrarily close to H by the choice of δ . Further, a decreasing δ -sequence can also
be incorporated in (5.24) as well as the one-sided and one-measurement variants
discussed in the later sections.

Remark 5.5. The overall flow and the algorithm structure of the two-sided SPSA
(5.24) is similar to Fig. 5.1 and Algorithm 5.1 respectively, except that {Δ(n)} are
obtained here using Hadamard perturbations.

5.5.3.1 Convergence Analysis

Recall that H is the set of globally asymptotically stable equilibria of the ODE
(cf. Assumption 5.6):

θ̇ (t) = L(θ (t)) =−∇J(θ (t)). (5.25)

Given η > 0, let Hη Δ
= {θ ∈C | ‖θ −θ0‖< η , θ0 ∈H} be the set of points that are

within a distance η from the set H. We first provide the main convergence result of
the two-sided SPSA scheme (5.24):

Theorem 5.6. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
θ (n),n≥ 0 obtained according to (5.24) satisfy θ (n)→ Hη almost surely.

In the rest of the section, we provide a sequence of lemmas which would we used to
prove the above theorem. The outline of the steps in the process of proving Theorem
5.6 is as follows:

(i) Using the equivalent update rule (5.26), the associated martingale difference
sequence is extracted and shown to diminish to zero asymptotically.

(ii) Lemmas 5.7 and 5.8 together establish that certain bias terms in the
algorithm obtained upon writing θi(n+P) in terms of θi(n), go to zero asymp-
totically.

(iii) Finally, using suitable Taylor expansions and neglecting the terms correspond-
ing to the bias and the martingale difference, the proof of Theorem 5.6 estab-
lishes that the algorithm (5.26) tracks the ODE (5.25).

(iv) The last step of the proof is proven by invoking the Hirsch lemma.

The formal proof of Theorem 5.6 is provided at the end of this section.
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The update recursion (5.24) could be revised into the following: ∀n ≥ 0, ∀i =
1, . . . ,N,

θi(n+ 1) = θi(n)− a(n)

(
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
+Mi(n+ 1)

)
,

(5.26)

where Mi(n+ 1), n ≥ 0 is a martingale difference sequence for each i = 1, . . . ,N,
with respect to the sigma fields F (n) = σ(θ (m),M1(m), . . . ,MN(m),m ≤ n),
n≥ 0.

We shall analyze (5.26) below. Let Assumptions 5.1, 5.5 and 5.6 continue to hold.
We also make the following assumptions in addition:

Assumption 5.8. The step-sizes a(n),n≥ 0 satisfy the requirements

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞. (5.27)

Further,
a( j)
a(n)

→ 1 as n→ ∞, for all j ∈ {n,n+ 1, . . . ,n+M} for any given

M > 0.

Assumption 5.9. The sequence (M(n),F (n)), n ≥ 0 forms a martingale dif-
ference sequence. Further, M(n), n≥ 0 are square integrable random variables
satisfying

E[‖M(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0,

for a given constant K > 0.

Note that the initial requirements in Assumption 5.8 are the same as in Assump-
tion 5.7. The last condition in Assumption 5.8 is seen to be satisfied by most dimin-
ishing step-size sequences. Assumption 5.9 is the same as Assumption 3.3.

Remark 5.6. As noted before, each function measurement is, in general, indepen-
dently noise corrupted. Thus, the two measurements corresponding to parameters
θ (n)+ δΔ(n) and θ (n)− δΔ(n) may correspond to X1(n) ≡ J(θ (n)+ δΔ(n)) +
ξ 1(n+1) and X2(n)≡ J(θ (n)−δΔ(n))+ξ 2(n+1), respectively, where ξ 1(n+1),
ξ 2(n+ 1), n ≥ 0 themselves are independent martingale difference sequences. In
such a case,

Mi(n+ 1) =
ξ 1(n+ 1)− ξ 2(n+ 1)

2δΔi(n)
, n≥ 0, i = 1, . . . ,N,
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are also martingale difference sequences since

E
[
Mi(n+ 1) |F (n)

]
= E

[
ξ 1(n+ 1)− ξ 2(n+ 1)

2δΔi(n)
|F (n)

]

=
1

2δΔi(n)

(
E
[
(ξ 1(n+ 1)− ξ 2(n+ 1)) |F (n)

])
= 0. (5.28)

Further, if we assume that

E[|ξ 1(n+ 1)|2 |F (n)]≤ K(1+ ‖θ (n)+ δΔ(n)‖2),

E[|ξ 2(n+ 1)|2 |F (n)]≤ K(1+ ‖θ (n)− δΔ(n)‖2),

then

E

[∣∣∣∣ξ 1(n+ 1)− ξ 2(n+ 1)
2δΔi(n)

∣∣∣∣
2
∣∣∣∣∣F (n)

]
≤C0(1+ ‖θ (n)‖2),

for some C0 > 0 and since δ > 0 is a constant. Moreover, ‖Δ(n)‖ = C1, for
some C1 > 0, ∀n, because Δ(n),n ≥ 0, are vectors with only +1s and −1s. Thus,
Assumption 5.9 holds on Mi(n + 1), n ≥ 0, if a similar requirement holds for
ξ 1(n+ 1),ξ 2(n+ 1),n≥ 0, respectively.

A result similar to Theorem 3.3 would hold if one can show that the bias terms
in the expansion in (5.17) vanish asymptotically in the limit as δ → 0.

Lemma 5.7. Given any fixed integer P > 0, ‖θ (m+k)−θ (m)‖→ 0 w.p. 1, as m→
∞, for all k ∈ {1, . . . ,P}.
Proof. Fix a k ∈ {1, . . . ,P}. Note that the algorithm (5.26) can be rewritten as

θi(n+ k) = θi(n)−
n+k−1

∑
j=n

a( j)

(
J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))

2δΔi( j)

)

−
n+k−1

∑
j=n

a( j)Mi( j+ 1). (5.29)

Thus,

|θi(n+ k)−θi(n)| ≤
n+k−1

∑
j=n

a( j)

∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)

∣∣∣∣
+

∣∣∣∣∣
n+k−1

∑
j=n

a( j)Mi( j+ 1)

∣∣∣∣∣ . (5.30)
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It is easy to see that (for each i = 1, . . . ,N),

Ni(n) =
n−1

∑
j=0

a( j)Mi( j+ 1), n≥ 1,

forms a martingale sequence. Further, it follows from Assumption 5.9 that

n

∑
m=0

E
[
(Ni(m+ 1)−Ni(m))2 |F (m)

]
=

n

∑
m=0

E
[
a(n)2(Mi(n+ 1))2 |F (m)

]

≤
n

∑
m=0

a(n)2K(1+ ‖θ (n)‖2).

From Assumptions 5.8 and 5.5, it follows that the quadratic variation process of
Ni(n),n ≥ 0 converges almost surely. Hence, by the martingale convergence the-
orem (Theorem B.2), it follows that Ni(n),n ≥ 0 converges almost surely. Hence,∣∣∣∣∣
n+k−1

∑
j=n

a( j)Mi( j+ 1)

∣∣∣∣∣→ 0 almost surely as n→ ∞. Now observe that

∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)

∣∣∣∣≤
( |J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))|

2δ |Δi( j)|
)

≤
( |J(θ ( j)+ δΔ( j))|+ |J(θ ( j)− δΔ( j))|

2δ

)
,

since |Δi( j)| = 1,∀ j ≥ 0, i = 1, . . . ,N. Now note that

|J(θ ( j)+ δΔ( j))|− |J(0)| ≤ |J(θ ( j)+ δΔ( j))− J(0)|

≤ B̂‖θ ( j)+ δΔ( j)‖
where B̂ > 0 is the Lipschitz constant of the function J(·). Hence,

|J(θ ( j)+ δΔ( j))| ≤ B̃(1+ ‖θ ( j)+ δΔ( j)‖),

for B̃ = max(|J(0)|, B̂). Similarly,

|J(θ ( j)− δΔ( j))| ≤ B̃(1+ ‖θ ( j)− δΔ( j)‖).

From Assumption 5.5, it follows that

sup
j

∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)

∣∣∣∣≤ K̃ < ∞,

for some K̃ > 0. Thus, from (5.30),
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|θi(n+ k)−θi(n)| ≤ K̃
n+k−1

∑
j=n

a( j)+

∣∣∣∣∣
n+k−1

∑
j=n

a( j)Mi( j+ 1)

∣∣∣∣∣→ 0 a.s. with n→ ∞.

The claim follows. ��

For compact notation, let ∇k(·) = ∂ (·)
∂θk

. For instance ∇kJ(θ (m)) =
∂J(θ (m))

∂θk
.

Lemma 5.8. The following holds for any m≥ 0, k, l ∈ {1, . . . ,N}, k �= l:∥∥∥∥∥
m+P−1

∑
n=m

a(n)
a(m)

Δk(n)
Δl(n)

∇kJ(θ (n))

∥∥∥∥∥→ 0,

almost surely, as m→ ∞.

Proof. From Lemma 5.7, ‖θ (m+ s)− θ (m)‖ → 0 as m→ ∞, for all s = 1, . . . ,P.
Also, from Assumption 5.1, we have ‖∇kJ(θ (m+s))−∇kJ(θ (m))‖→ 0 as m→∞,

for all s = 1, . . . ,P. Now from Lemma 5.4,
m+P−1

∑
n=m

Δk(n)
Δl(n)

= 0 ∀ m≥ 0. Note that by

construction, P is an even positive integer. Hence, one can split any set of the type

A(m)
Δ
= {m,m+ 1, . . . ,m+P− 1} into two disjoint subsets Ak,l(m)+ and Ak,l(m)−

each having the same number of elements, with Ak,l(m)+ ∪Ak,l(m)− = A(m) and

such that
Δk(n)
Δl(n)

takes value +1 on Ak,l(m)+ and−1 on Ak,l(m)−, respectively. Thus,

∥∥∥∥∥
m+P−1

∑
n=m

a(n)
a(m)

Δk(n)
Δl(n)

∇kJ(θ (n))

∥∥∥∥∥

=

∥∥∥∥∥∥ ∑
n∈Ak,l(m)+

a(n)
a(m)

∇kJ(θ (n))− ∑
n∈Ak,l(m)−

a(n)
a(m)

∇kJ(θ (n))

∥∥∥∥∥∥ .
The claim now follows as a consequence of the above and Assumption 5.8 (applied
with M = P− 1). ��
Proof of Theorem 5.6. Note that the recursion (5.26) can be iteratively written as

θi(n+P) = θi(n)−
n+P−1

∑
l=n

a(l)

(
J(θ (l)+ δΔ(l))− J(θ (l)− δΔ(l))

2δΔi(l)
+Mi(l + 1)

)
(5.31)

From (5.17), it follows that

θi(n+P) = θi(n)−
n+P−1

∑
l=n

a(l)∇iJ(θ (l))−
n+P−1

∑
l=n

a(l)
N

∑
j=1, j �=i

Δ j(l)

Δi(l)
∇ jJ(θ (l))

−
n+P−1

∑
l=n

a(l)o(δ )−
n+P−1

∑
l=n

a(l)Mi(l + 1). (5.32)
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Now the third term on the RHS of (5.32) can be rewritten as

a(n)
n+P−1

∑
l=n

a(l)
a(n)

N

∑
j=1, j �=i

Δ j(l)

Δi(l)
∇ jJ(θ (l)) = a(n)ξ 1

i (n),

where ξ 1
i (n) = o(1) from Lemma 5.8. Thus, the algorithm (5.26) can be seen to be

asymptotically analogous to the following algorithm:

θi(n+ 1) = θi(n)− a(n)
(
∇iJ(θ (n))+ o(δ )+Mi(n+ 1)

)
. (5.33)

Now from convergence of the martingale sequence Ni(n), it follows that
∞

∑
l=n

a(l)Mi(l + 1)→ 0 as n→∞, almost surely. The rest now follows from the Hirsch

lemma (Lemma C.5). ��

5.5.4 One-Sided SPSA with Hadamard Matrix Perturbations

As in the case of the two-sided SPSA algorithm in the previous section, assume that
the sequence of perturbations Δ(n),n ≥ 0 is obtained from the Hadamard matrix
construction described in Section 5.5.2.1. Then, the update rule of the one-sided
SPSA algorithm is given by

θi(n+ 1) = θi(n)− a(n)

(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n))

δΔi(n)

)
, (5.34)

for i = 1, . . . ,N and n≥ 0.

The above recursion can be seen to be equivalent to:

θi(n+ 1) = θi(n)− a(n)

(
J(θ (n)+ δΔ(n))− J(θ (n))

δΔi(n)
+ M̄i(n+ 1)

)
, i = 1, . . . ,N.

(5.35)
In the above, M̄i(n+ 1), n ≥ 0 is a martingale difference sequence for each i =
1, . . . ,N, with respect to the sigma fields F (n) = σ(θ (m),M̄1(m), . . . ,M̄N(m),m≤
n),n ≥ 0. The conclusions of Remark 5.6 can be seen to hold here as well with
M̄i(n) in place of Mi(n), n≥ 0, i = 1, . . . ,N. The proof of Lemma 5.7 goes through
with minor changes. Further, Lemma 5.8 continues to hold.

Theorem 5.9. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0], θ (n),n≥
0 obtained according to (5.34) satisfy θ (n)→ Hη almost surely.

Proof. The proof follows in a similar manner as Theorem 5.6, except that the Tay-
lor’s series expansion (5.18) is now used instead of (5.17), as a result of which the
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term a(n)o(δ ) in (5.33) is replaced with a(n)O(δ ). The rest follows as in Theo-
rem 5.6. ��

5.5.5 One-Measurement SPSA with Hadamard Matrix
Perturbations

The perturbations Δ(n),n ≥ 0 are obtained here from the Hadamard matrix con-
struction described in Section 5.5.2.2. Recall that this construction results in a per-
turbation sequence with a period P = 2�log2(N+1)� that is, in general, larger than
the corresponding period for the perturbation sequence for two-sided SPSA al-
gorithm. Further, this construction satisfies both properties (P.1) and (P.2). In the
case of two-measurement SPSA algorithms satisfying (P.1) alone was sufficient
to ensure convergence. The update rule of one-measurement SPSA algorithm is
given by

θi(n+ 1) = θi(n)− a(n)

(
h(θ (n)+ δΔ(n),ξ+(n))

δΔi(n)

)
, (5.36)

for i = 1, . . . ,N and δ > 0 as before.

5.5.5.1 Convergence Analysis

The algorithm (5.36) can be seen as equivalent to:

θi(n+ 1) = θi(n)− a(n)

(
J(θ (n)+ δΔ(n))

δΔi(n)
+ M̂i(n+ 1)

)
, (5.37)

where M̂i(n+ 1), n ≥ 0 is a martingale difference sequence for each i = 1, . . . ,N,
with respect to the sigma fields F (n) = σ(θ (m),M̂1(m), . . . ,M̂N(m),m≤ n),n≥ 0.
The conclusions of Remark 5.6 can be seen to hold here as well with M̂i(n) in place
of Mi(n), n≥ 0, i= 1, . . . ,N. The proof of Lemma 5.7 can again be seen to hold with
minor changes. As discussed before in Section 5.5.1, the one-measurement SPSA
algorithms involve additional bias terms in comparison to their two-measurement
counterparts and the following lemma proves that the bias terms that result from a
Taylor series expansion of the second term on the RHS of (5.37) go down to zero
asymptotically in the norm.

Lemma 5.10. The following holds for any m≥ 0, i,k, l ∈ {1, . . . ,N}, k �= l:∥∥∥∥∥
m+P−1

∑
n=m

a(n)
a(m)

1
Δi(n)

J(θ (n))

∥∥∥∥∥ ,
∥∥∥∥∥

m+P−1

∑
n=m

a(n)
a(m)

Δk(n)
Δl(n)

∇kJ(θ (n))

∥∥∥∥∥→ 0,
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as m→ ∞, almost surely.

Proof. From Lemma 5.5, the sequence Δ(n),n≥ 0 obtained as per the construction
described in Section 5.5.2.2 satisfies both (P.1) and (P.2). It can be shown in a similar

manner as Lemma 5.8 that

∥∥∥∥∥
m+P−1

∑
n=m

a(n)
a(m)

Δk(n)
Δl(n)

∇kJ(θ (n))

∥∥∥∥∥→ 0 almost surely as

m→ ∞. Now since J : RN → R is continuously differentiable, it is in particular
continuous. It thus follows from Lemma 5.7 that

‖J(θ (m+ k))− J(θ (m))‖→ 0 as m→ ∞,

for all k ∈ {1, . . . ,P}. It can now be shown in a similar manner as Lemma 5.8 (using
(P.2)) that ∥∥∥∥∥

m+P−1

∑
n=m

a(n)
a(m)

1
Δi(n)

J(θ (n))

∥∥∥∥∥→ 0,

almost surely as m→ ∞. The claim follows. ��
We now have the main convergence result for the one-measurement SPSA with
Hadamard perturbations.

Theorem 5.11. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
θ (n),n≥ 0 obtained according to (5.37) satisfy θ (n)→ Hη almost surely.

Proof. Note that the recursion (5.37) can be iteratively written as

θi(n+P) = θi(n)−
n+P−1

∑
l=n

a(l)

(
J(θ (l)+ δΔ(l))

δΔi(l)

)
−

n+P−1

∑
l=n

a(l)Mi(l + 1). (5.38)

From (5.20), it follows that

θi(n+P) = θi(n)−
n+P−1

∑
l=n

a(l)∇iJ(θ (l))−
n+P−1

∑
l=n

a(l)
J(θ (l))
δΔi(l)

−
n+P−1

∑
l=n

a(l)
N

∑
j=1, j �=i

Δ j(l)
Δi(l)

∇ jJ(θ (l))−
n+P−1

∑
l=n

a(l)O(δ )

−
n+P−1

∑
l=n

a(l)Mi(l + 1). (5.39)

Now note that

n+P−1

∑
l=n

a(l)
J(θ (l))
δΔi(l)

= a(n)
n+P−1

∑
l=n

a(l)
a(n)

J(θ (l))
δΔi(l)

= a(n)ξ 2
i (n),
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where ξ 2
i (n) = o(1) by Lemma 5.10. Similarly,

n+P−1

∑
l=n

a(l)
N

∑
j=1, j �=i

Δ j(l)

Δi(l)
∇ jh(θ (l)) = a(n)ξ 3

i (n),

with ξ 3
i (n) = o(1) from Lemma 5.10. The rest follows as in Theorem 5.6. ��

5.6 SPSA Algorithms for Long-Run Average Cost Objective

We now present a multi-timescale version of two-measurement SPSA (with random
perturbations) for the case when the underlying process is Markovian and depends
on a parameter. The states of this process can either be directly observed or obtained
through simulation. We will assume for simplicity that the states are simulated even
though the same framework also works for the case of real observations. The single-
stage cost function in this case depends on the (simulated) system state and the goal
is to find a parameter (on which the state depends) that optimizes a long-run average
cost objective. Even though we present here only the two-simulation SPSA with
random perturbations, the analogs of the other SPSA algorithms for the expected
cost criterion presented previously can similarly be described. We now present the
basic framework in more detail below.

5.6.1 The Framework

Let {X(n),n ≥ 1} be an R
d-valued parameterized Markov process with a tunable

parameter θ that takes values in R
N . Let for any given θ ∈ R

N , {X(n)} be ergodic
Markov. Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and
stationary distribution of {X(n)} when θ is the operative parameter. When the pro-
cess is in state x, let h(x) be the single-stage cost incurred. The aim is to find a
θ ∗ ∈ R

N that minimizes (over all θ ) the long-run average cost

J(θ ) = lim
l→∞

1
l

l−1

∑
j=0

h(Xj). (5.40)

5.6.2 The Two-Simulation SPSA Algorithm

Let {X+(n)},{X−(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (θ (n)+ δΔ(n)) and (θ (n)− δΔ(n)), respec-

tively, where Δ(n) Δ= (Δ1(n), . . . ,ΔN(n))T with Δi(n),n ≥ 0, i = 1, . . . ,N satisfying
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Assumption 5.4 and δ > 0 is a given small positive scalar. The algorithm is as fol-
lows: For i = 1, . . . ,N,

θi(n+ 1) =θi(n)− a(n)

(
Z+(n)−Z−(n)

2δΔi(n)

)
, (5.41)

Z+(n+ 1) =Z+(n)+ b(n)
(
h(X+(n))−Z+(n)

)
, (5.42)

Z−(n+ 1) =Z−(n)+ b(n)
(
h(X−(n))−Z−(n)

)
. (5.43)

The quantities Z+(n) and Z−(n) in (5.42)–(5.43) are used to recursively estimate
the long-run average costs corresponding to the simulations {X+(n)} and {X−(n)},
respectively. Because of the difference in timescales with the recursions (5.42)–
(5.43) proceeding on the faster timescale as compared to the recursion (5.41),
the former recursions appear equilibrated when viewed from the timescale of the
latter.

Remark 5.7. In practice, it is usually observed that an additional averaging over L
instants (for some L > 1) of the recursions (5.42)–(5.43) improves performance. In
other words, for practical implementations, it is suggested to run the above recur-
sions for L instants in an inner loop, in between two successive updates of (5.41).
The value of L is however arbitrary. It is generally observed, see for instance,
[7, 3, 4], that a value of L in between 50 and 500 works well. While for our analysis,
we focus on the case of L = 1, the analysis for general L is available in [7].

5.6.3 Assumptions

We make the following assumptions for average cost SPSA algorithms:

Assumption 5.10. The single-stage cost function h :RN×R
k→R is Lipschitz

continuous.

Assumption 5.11. The long-run average cost J(θ ) is continuously differen-
tiable in θ with bounded second derivatives.

Assumptions 5.10 and 5.11 are standard requirements. In particular, Assump-
tion 5.11 is a technical requirement that ensures that the Hessian of the objective
exists and is bounded, and is used to push through suitable Taylor series arguments
in the proof.

Next, let {θ (n)} be a sequence of random parameters obtained using (say) an it-
erative scheme on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m),
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m ≤ n), n ≥ 1 denote a sequence of associated σ -fields. We call {θ (n)} non-
anticipative if for all Borel sets A⊂ R

d ,

P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).

Under a non-anticipative {θ (n)}, the process {(X(n),θ (n))} is Markov. It can
be easily seen that sequences {θ (n)} obtained using the algorithms below are
non-anticipative. We shall assume the existence of a stochastic Lyapunov function
(below).

Assumption 5.12. There exist ε0 > 0, K ⊂ R
d compact and V ∈C(Rd) such

that lim
‖x‖→∞

V (x) = ∞ and under any non-anticipative {θ (n)},

1. sup
n

E[V (X(n))2]< ∞ and

2. E[V (X(n+ 1)) |H (n)]≤V (X(n))− ε0, whenever X(n) �∈ K, n≥ 0.

Assumption 5.12 is required to ensure that the system remains stable under a tunable
parameter. It is not required if the cost function h(·) is bounded in addition. Here
and elsewhere, we let ‖ · ‖ denotes the Euclidean norm.

The algorithm in Section 5.6.2 relies on two different step-size schedules, a(n),
b(n), n≥ 0 that satisfy the following requirements:

Assumption 5.13. The step-sizes a(n),b(n),n ≥ 0 satisfy the following re-
quirements:

∑
n

a(n) =∑
n

b(n) = ∞, (5.44)

∑
n
(a(n)2 + b(n)2)< ∞, (5.45)

lim
n→∞

a(n)
b(n)

= 0. (5.46)

Assumption 5.14. The iterates {θ (n)} stay uniformly bounded, i.e.,
sup

n
‖θ (n)‖< ∞, with probability one.

Assumption 5.14 essentially ensures that the θ -update remains stable. An alternative
here is to assume that θ can only take values in some compact subset C of RN ,
whereby after each update, θ is projected to the set C, thereby enforcing stability.
Such a projection-based scheme is considered in Section 5.6.5.
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5.6.4 Convergence Analysis

Consider the ODE

θ̇ (t) =−∇J(θ (t)), (5.47)

which is the same as (5.6), except that J(·) is now defined according to (5.40). Let
F = {θ | ∇J(θ ) = 0} be the set of fixed points of (5.47). Further, let H ⊂ F be
the set of globally asymptotically stable attractors of (5.47). Also, given ε > 0, let
Hε = {θ | ‖θ −θ0‖< ε,θ0 ∈H} denotes the ε-neighborhood of the set H. We give
first the main convergence result for the algorithm (5.41)-(5.43).

Theorem 5.12. Under Assumptions 5.10–5.14, given ε > 0, there exists a δ0 >
0 such that the sequence of parameter iterates θ (n),n ≥ 0 satisfy θ (n)→ Hε

with probability one as n→ ∞.

The proof of Theorem 5.12 involves steps similar to those used for proving Theorem
5.6, except that in this case of the long-run average cost setting, it is also necessary
to establish that the iterates Z+(·) and Z−(·) asymptotically converge to the average
cost estimates J(θ (n)+ δΔ(n) and J(θ (n)− δΔ(n), respectively. We will address
the latter in Lemma 5.16. Further, Lemma 5.19 will establish using suitable Taylor
expansions that the conditional average of the SPSA estimate, i.e.,

E

[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
|F (n)

]

is asymptotically close to the gradient of the objective function J(θ (n)). The final
step is again to invoke Hirsch lemma to complete the proof. The formal proof of
Theorem 5.12 is provided at the end of this section.

Let G (n) = σ(θ (p),X+(p),X−(p),Δ(p), p ≤ n), n ≥ 1, denote σ -fields gener-
ated by the quantities above. Define sequences N+(p),N−(p), p ≥ 0 as follows:

N+(p) =
p

∑
m=1

b(m)
(
h(X+(m))−E

[
h(X+(m)) | G (m− 1)

])
,

N−(p) =
p

∑
m=1

b(m)
(
h(X−(m))−E

[
h(X−(m)) | G (m− 1)

])
,

respectively.

Lemma 5.13. The sequences (N+(p),G (p)), (N−(p),G (p)), p ≥ 0 are almost
surely convergent martingale sequences.

Proof. We show the proof for the case of N+
p , p ≥ 0 as the same for N−p , p ≥ 0 is

completely analogous. It is easy to see that almost surely, E[N+(p+ 1) | G (p)] =
N+(p), for all p≥ 0. Now note that
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E[(N+(p))2]≤Cp

p

∑
m=1

b2(m)(E[h2(X+(m))+E2[h(X+(m)) | G (m− 1)]]),

for some constant Cp > 0 (that however depends on p). For the second term on RHS
above, note that by the conditional Jensen’s inequality, we have that almost surely,

E2[h(X+(m)) | G (m− 1)]≤ E[h2(X+(m)) | G (m− 1)].

Hence,

E[(N+(p))2]≤ 2Cp

p

∑
m=1

b2(m)E[h2(X+(m))].

Now, since h(·) is a Lipschitz continuous function, we have

|h(X+(m))|− |h(0)| ≤ |h(X+(m))− h(0)| ≤ K‖X+(m)‖,

where K > 0 is the Lipschitz constant. Thus,

|h(X+(m))| ≤C1(1+ ‖X+(m)‖),

for C1 = max(K, |h(0)|)< ∞. Hence, one gets

E[h2(X+(m))]≤ 2C2
1(1+E[‖X+(m)‖2]).

As a consequence of Assumption 5.12, supm E[‖X+(m)‖2] < ∞. Thus,
E[(N+(p))2]< ∞, for all p≥ 1. Now note that

∑
p

E[(N+(p+ 1)−N+(p))2 | G (p)]≤∑
p

b2(p+ 1)(E[h2(X+(p+ 1)) | G (p)]

+E[
(
E[h(X+(p+ 1)) | G (p)]

)2 | G (p)])

≤∑
p

2b2(p+ 1)E[h2(X+(p+ 1)) | G (p)],

almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumption 5.12, that

sup
p

E[h2(X+
p+1) | G (p)]< ∞ w.p.1.

Hence,

∑
p

E[(N+(p+ 1)−N+(p))2 | G (p)]< ∞

almost surely. Thus, by the martingale convergence theorem (Theorem B.2),
N+(p), p ≥ 0 is an almost surely convergent martingale sequence. ��
Lemma 5.14. The updates Z+(p),Z−(p), p ≥ 0 are uniformly bounded with prob-
ability one.
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Proof. We show the proof for the updates Z+(p), p ≥ 0 as the same for the other
sequence is completely analogous. Note that (5.42) can be rewritten as

Z+(p+ 1) = Z+(p)+ b(p)(E[h(X+
p ) | G (p− 1)]−Z+(p))

+ b(p)(h(X+
p )−E[h(X+

p ) | G (p− 1)]). (5.48)

From Lemma 5.13, N+(p)→ N+(∞)< ∞ almost surely. Hence,

∑
p

b(p)(h(X+
p )−E[h(X+

p ) | G (p− 1)])< ∞, a.s.

Thus, it is enough to show the uniform boundedness of the following alternate re-
cursion:

Z+(p+ 1) = Z+(p)+ b(p)(E[h(X+
p ) | G (p− 1)]−Z+(p)).

Note that
|E[h(X+

p ) | G (p− 1)]| ≤ E[|h(X+
p )| | G (p− 1)]

≤C1(1+E[‖X+
p ‖ | G (p− 1)])

< ∞,

almost surely. The first inequality above follows from the conditional Jensen’s in-
equality, while the second inequality follows as a consequence of the function h
being Lipschitz continuous, see the proof in Lemma 5.13. Further, the last inequal-
ity follows from Assumption 5.12. The claim now easily follows from the Borkar
and Meyn theorem (Theorem D.1). ��
Now define two sequences of time points {s(n)} and {t(n)}, respectively, as follows:

s(0) = t(0) = 0, s(n) =
n−1

∑
j=0

a( j) and t(n) =
n−1

∑
j=0

b( j), n≥ 1. Then, the timescale cor-

responding to {s(n)} (resp. {t(n)}) is the slower (resp. faster) of the two timescales.
Consider the following system of ordinary differential equations (ODEs):

θ̇ (t) = 0, (5.49)

Ż+(t) = J(θ (t)+ δΔ(t))−Z+(t), (5.50)

Ż−(t) = J(θ (t)− δΔ(t))−Z−(t). (5.51)

From Lemma 5.14, sup
n
|Z+(n)|, sup

n
|Z−(n)|<∞ almost surely. Consider the func-

tions Ẑ+(t), Ẑ−(t) defined according to Ẑ+(t(n)) = Z+(n) and Ẑ−(t(n)) = Z−(n)
with the maps t→ Ẑ+(t) and t→ Ẑ−(t) corresponding to continuous linear interpo-
lations on the intervals [t(n), t(n+ 1)].

Given T̄ > 0, define {T̄ (n)} as follows: T̄ (0) = 0 and for n≥ 1, T̄ (n) =min{t(m)
| t(m)≥ T̄ (n− 1)+ T̄}. Let Ī(n) = [T̄ (n), T̄ (n+ 1)]. It is clearly the case that there
exists some integer q(n)> 0 such that T̄ (n) = t(q(n)).
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Define also the functions θ n(t),Z+,n(t),Z−,n(t), t ∈ I(n), n≥ 0, that are obtained
as trajectories of the following ODEs:

θ̇ n(t) = 0, (5.52)

Ż+,n(t) = J(θ (t)+ δΔ(t))−Z+,n(t), (5.53)

Ż−,n(t) = J(θ (t)− δΔ(t))−Z−,n(t), (5.54)

with θ n(T̄ (n)) = θ (q(n)), Z+,n(T̄ (n)) = Ẑ+(t(q(n)))= Z+(q(n)) and Z−,n(T̄ (n))=
Ẑ−(t(q(n))) = Z−(q(n)), respectively. Further, Δ(t) Δ= (Δ1(t), . . . ,ΔN(t))T is de-
fined according to Δ(t) = Δ(n), for t ∈ [s(n),s(n+ 1)).

Let θ̂ (t), Ẑ+(t), Ẑ−(t), t ≥ 0 be defined according to θ̂(t(n)) = θ (n), Ẑ+(t(n)) =
Z+(n) and Ẑ−(t(n)) = Z−(n), n≥ 0 with continuous linear interpolation in between
points, i.e., for all t ∈ (t(n), t(n+ 1)),n≥ 0.

Lemma 5.15. Given T̄ ,ε > 0, (θ̂ (t(n)+ ·), Ẑ+(t(n)+ ·), Ẑ−(t(n)+ ·)), is a bounded
(T̄ ,ε)-perturbation of (5.49)-(5.51) for n sufficiently large.

Proof. Note that the recursion (5.41) can be rewritten as follows: For i = 1, . . . ,N,

θi(n+ 1) = θi(n)− b(n)ξ̄i(n), (5.55)

where ξ̄i(n) =
a(n)
b(n)

(
Z+(n)−Z−(n)

2δΔi(n)

)
= o(1) because a(n) = o(b(n)) from

Assumption 5.13.
Now note that the recursion (5.42) can be rewritten as

Z+(n+ 1) = Z+(n)+ b(n)(J(θ (n)+ δΔ(n))+ ξ+1 (n)+ ξ+2 (n)−Z+(n)), (5.56)

where ξ+1 (n) = E[h(X+(n)) | Gn−1]− J(θ (n)+ δΔ(n)) and ξ+2 (n),n≥ 1 is the mar-
tingale difference ξ+2 (n) = h(X+(n))−E[h(X+(n)) | Gn−1], respectively. Recall that
T̄ (n) = t(q(n)). Also, let T̄ (n+ 1) = t(q(n+ 1)). Then, from Lemma 5.13,

q(n+1)

∑
j=q(n)

b( j)ξ+2 ( j)→ 0 as n→ ∞.

Now ξ+1 (n)→ 0 as n→ ∞ almost surely because {X+(n)} is ergodic Markov for a
fixed parameter. Hence, the Markov noise vanishes on the ‘natural’ timescale where
t(n) = n that is faster than the timescale of the algorithm as in the latter, t(n)− t(n−
1)→ 0 as n→ ∞. Thus, the algorithm will see the averaged effect of the iterate on
the natural timescale, see Section 6.2 of [9] for a detailed treatment of averaging on
the natural timescale. It is thus easy to see that with probability one,

lim
n→∞ sup

t∈Ī(n)
‖Z+,n(t)− Ẑ+(t)‖= 0.

A similar argument holds for the recursion Z−(n),n≥ 0. The claim follows. ��
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Lemma 5.16. As n→ ∞, we have with probability one,

‖Z+(n)− J(θ (n)+ δΔ(n))‖, ‖Z−(n)− J(θ (n)− δΔ(n))‖→ 0.

Proof. Follows from Lemma 5.15 and an application of the Hirsch lemma
(Lemma C.5) for every ε > 0. ��
We now concentrate on the slower timescale recursion. Let F (n) = σ(X+(n),
X−(n), θ (m), m ≤ n;Δ(m),m < n),n ≥ 1, be a sequence of sigma fields. One can
rewrite (5.41) as

θi(n+ 1) =θi(n)− a(n)

(
E

[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
|F (n)

]

+ ζ 1
i (n)+ ζ

2
i (n)

)
, (5.57)

where

ζ 1
i (n) =

J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

−E

[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
|F (n)

]
,

ζ 2
i (n) =

Z+(n)−Z−(n)
2δΔi(n)

− J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

,

respectively.

Let χi(n),n≥ 0 be defined according to χi(n) =
n

∑
m=0

a(m)ζ 1
i (m).

Lemma 5.17. The sequence (χi(n),F (n)),n≥ 0 forms a convergent martingale se-
quence.

Proof. It is easy to see that (χi(n),F (n)),n ≥ 0 forms a martingale sequence.

By Assumption 5.14, M(w)
Δ
= supn ‖θ (n)‖ < ∞ w.p.1. Here w denotes the par-

ticular sample point in the probability space corresponding to the given θ (n)-
trajectory. Note that θ (n),n ≥ 0 take values in the sample-path-dependent compact
set D(w) = {θ | ‖θ‖ ≤ M(w)}. Now as a consequence of Assumption 5.11, since
θ (n)∈D(w),∀n, sup

n
|ζ 1

i (n)|< ∞. Further, since P(w |M(w)<∞) = 1, we have that

sup
n
|ζ 1

i (n)|< ∞ with probability one. It is now easy to see from an application of

the martingale convergence theorem (Theorem B.2) that {χi(n)} converges almost
surely. ��
Lemma 5.18. As n→ ∞, ζ 2

i (n)→ 0 with probability one.

Proof. The proof follows easily from Lemma 5.16. ��
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Lemma 5.19. With probability one,∣∣∣∣E
[

J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

|F (n)

]
−∇iJ(θ (n))

∣∣∣∣→ 0,

as δ → 0.

Proof. It follows from suitable Taylor series expansions of J(θ (n) + δΔ(n)) and
J(θ (n)− δΔ(n)) around the point θ (n) that

J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)

= ∇iJ(θ (n))

+
N

∑
j=1, j �=i

Δ j(n)

Δi(n)
∇ jJ(θ (n))+ o(δ ).

It follows from the properties of Δ j(n), j = 1, . . . ,N that

E

[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))

2δΔi(n)
|F (n)

]
= ∇iJ(θ (n))+ o(δ ).

The claim follows. ��
In a similar manner as (5.57), one can now rewrite (5.41) as

θi(n+ 1) = θi(n)− a(n)
(
∇iJ(θ (n))+ ζ 3

i (n)+ ζ
1
i (n)+ ζ

2
i (n)

)
, (5.58)

where, as a consequence of Lemma 5.19,

ζ 3
i (n)

Δ
= E

[
J(θ (n)+δΔ (n))−J(θ (n)−δΔ (n))

2δΔi(n)
|F (n)

]
−∇iJ(θ (n))→ 0 as n→ ∞.

Proof of Theorem 5.12. Recall that the recursions (5.41) can be rewritten as (5.58).
Now define θ̄ (t), t ≥ 0 according to θ̄ (t) = θ (n) for t ∈ [s(n),s(n+ 1)). As a con-
sequence of Lemmas 5.17–5.19, θ̄ (t) can be viewed as a (T,γ)–perturbation of the
ODE (5.47). The claim now follows by the Hirsch lemma (Lemma C.5). ��

5.6.5 Projected SPSA Algorithm

We now consider the case when after each update, the parameter θ is projected
onto a compact and convex subset C of RN . This ensures that the parameter up-
dates remain stable as they do not escape the set C and thus Assumption 5.14
is automatically satisfied. Let Γ : RN → C denotes an operator that projects any
x = (x1, . . . ,xN)

T ∈RN to its nearest point in C. In particular, if x∈C, then Γ (x)∈C
as well. For given x = (x1, . . . ,xN)

T ∈ R
N , one may identify Γ (x) via the tuple
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Γ (x) = (Γ1(x1), . . . ,ΓN(xN))
T for suitable R-valued operators Γ1, . . . ,ΓN . We con-

sider here the projected variant of the two-simulation (two-sided) SPSA algorithm
for the long-run average cost objective that was presented in Section 5.6. A detailed
treatment of projected stochastic approximation can be found in [19] and has been
summarized in Appendix E.

Let {X+(n)},{X−(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (θ (n)+ δΔ(n)) and (θ (n)− δΔ(n)), respec-

tively, where Δ(n) Δ= (Δ1(n), . . . ,ΔN(n))T with Δi(n),n ≥ 0, i = 1, . . . ,N satisfying
Assumption 5.4 and δ > 0 is a given small positive scalar. The algorithm is as
follows:

For i = 1, . . . ,N,

θi(n+ 1) =Γi

(
θi(n)− a(n)

(
Z+(n)−Z−(n)

2δΔi(n)

))
, (5.59)

Z+(n+ 1) =Z+(n)+ b(n)
(
h(X+(n))−Z+(n)

)
, (5.60)

Z−(n+ 1) =Z−(n)+ b(n)
(
h(X−(n))−Z−(n)

)
. (5.61)

Note that recursions (5.60)-(5.61) are the same as (5.42)-(5.43). Hence, the anal-
ysis of these recursions proceeds along the same lines as the latter (described in
Section 5.6).

Let C (C) denotes the space of all continuous functions from C to R
N . The oper-

ator Γ̄ : C (C)→ C (RN) is defined according to

Γ̄ (v(x)) = lim
η→0

(
Γ (x+ηv(x))− x

η

)
, (5.62)

for any continuous v : C→ R
N . The limit in (5.62) exists and is unique since C is

a convex set. In case the limit does not exist, one may consider the set of all limit
points of (5.63). From its definition, Γ̄ (v(x)) = v(x) if x ∈Co (the interior of C). By
an abuse of notation, let H denote the set of all asymptotically stable attractors of
the ODE (5.63) and Hε be the ε-neighborhood of H (given ε > 0).

θ̇ (t) = Γ̄ (−∇J(θ (t))). (5.63)

Theorem 5.20. Under Assumptions 5.10–5.13, given ε > 0, there exists a δ0 >
0 such that the sequence of parameter iterates θ (n),n ≥ 0 satisfy θ (n)→ Hε

with probability one as n→ ∞.

Proof. The result follows from the Kushner and Clark theorem (see Theorem E.1).
The assumptions there are seen to hold here, see Remark E.1. ��
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5.7 Concluding Remarks

In this chapter, we described the idea of simultaneous perturbation for estimating
the gradient of an objective function, for both the expected as well as the long run
average cost settings. Using two alternative constructions - random and Hadamard
matrix-based - several SPSA algorithms including the one-measurement variants
were presented. Detailed convergence proofs were given for the various algorithms
discussed. The SPSA algorithms along with the smoothed functional algorithms
presented in the next chapter are widely applied gradient estimation techniques in
a variety of applications, some of which are discussed in the later chapters of this
book. This is probably because these algorithms are simple and can be implemented
in an on-line manner; further, they require very less computational resources and are
provably convergent.
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Chapter 6
Smoothed Functional Gradient Schemes

6.1 Introduction

We studied the gradient SPSA algorithm in Chapter 5. A remarkable feature of that
algorithm is that it estimates the gradient of the objective by simultaneously per-
turbing all parameter components and requires only one or two measurements of
the objective function for this purpose. Smoothed functional (SF) algorithms also
belong to the class of simultaneous perturbation methods, because they update the
gradient/Hessian of the objective using function measurements involving parameter
updates that are perturbed simultaneously in all component directions. The SF gra-
dient estimates were originally developed by Katkovnik and Kulchitsky [7, 8]. The
original idea was to approximate the gradient of expected performance by its convo-
lution with a multivariate Gaussian distribution. This results in the objective func-
tion getting smoothed because of the convolution. The objective function smoothing
that results from the convolution with a smoothing density function can in fact help
the algorithm to converge to a global minimum or to a point close to it. This fact
has been observed in [9]. We illustrate this in Fig. 6.1. As shown in the Figure, the
smoothing might offset the global minimum slightly. But that problem is more than
compensated by the fact that other local minima may have disappeared because of
the smoothing.

While the original SF algorithm in [7] uses only one simulation, in [9] and [5],
a related two-simulation SF algorithm based on a finite difference gradient estimate
is presented. The latter algorithm has been shown in [9] to have lower variability
as compared to the one-simulation SF algorithm. It has been observed in [8] that
the Cauchy and the Uniform density functions can also be used for the perturbation
random variables in addition to Gaussian.

The objective function used in the aforementioned references that discuss the
SF algorithm is largely an expectation over noisy cost samples. In [3, 2], the SF
algorithm with Gaussian perturbations has been explored when the objective is a

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 77–102.
springerlink.com © Springer-Verlag London 2013
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Fig. 6.1 A sample function f (·) with multiple local minima and a global minimum and its
convolution with a Gaussian density of standard deviation β = 0.08. Here, we use ‘◦′ to
denote the convolution operation.

long-run average cost function and the basic underlying process is an ergodic
Markov process for any given parameter value. In [2], two different Hessian esti-
mates for the objective function using the smoothed functional technique have been
obtained as well. It is interesting to note that these (Hessian estimates) also require
only one and two system simulations, which are the same as those used to esti-
mate the gradients. We discuss the Hessian estimators and the resulting Newton
SF algorithms in Chapter 8. The focus of the current chapter is on the gradient SF
algorithms.

The remaining part of this chapter is organized as follows: In Section 6.2, we
present for the expected cost objective, the SF gradient algorithm with perturba-
tions distributed according to the Gaussian distribution. In Section 6.3, we present
general conditions for any candidate p.d.f. to be used for smoothing and hence
gradient estimation. Cauchy density function satisfies the necessary properties for
smoothing and also offers better exploration of the parameter space owing to its
more heavy tailed nature in comparison to Gaussian density. In Section 6.4, we
present SF algorithms using Cauchy density for smoothing. In Section 6.5, we dis-
cuss multi-timescale versions of Gaussian SF algorithms for the long-run average
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cost objective including a variant with projection. Finally, we present the concluding
remarks in Section 6.6.

6.2 Gaussian Based SF Algorithm

We consider here the expected cost objective where the objective function is J(θ ) =
Eξ [h(θ ,ξ )], where h(θ ,ξ ) denotes a noisy measurement of J(θ ) with ξ as the noise
that is assumed to be zero mean and independent of θ . Also, as in previous chapters,

we let L(θ ) = ∇J(θ ). Note that the parameter vector θ is N-dimensional, i.e., θ �=
(θ1,θ2, . . . ,θN)

T ∈R
N .

Gaussian-based SF techniques, originally developed by [7], have been proposed
for solving stochastic optimization problems. Section 6.2.1 discusses the basic idea
of smoothing the gradient of a function using a Gaussian density. The Gaussian SF
algorithm using this basic idea is then discussed in Section 6.2.2 followed by its
detailed convergence analysis in Section 6.2.3.

6.2.1 Gradient Estimation via Smoothing

We first illustrate the idea of obtaining an estimate of the gradient of the objective
function J : RN →R using a Gaussian density function for smoothing. Later, we ex-
tend this idea to the case when Cauchy density is used for the purpose of smoothing.
The gradient estimate that we describe now requires only one measurement with a
certain perturbed parameter update.

The SF estimate of the gradient of an N-dimensional objective is obtained by the
following steps:

• Define the SF estimate as the convolution of a multivariate Gaussian density
with the gradient of the objective function. This step is illustrated in Fig. 6.1,
where a sample function f (·) is convolved with a Gaussian random variable
with mean 0 and variance β = 0.08.

• Argue that the same is equivalent to expectation of product of a scaling term
and the objective with perturbed parameter where the perturbation is with a
multivariate standard Gaussian random vector. The scaling term is a function of
the multivariate standard Gaussian random vector itself.

• In the limit as the spread parameter (denoted β below) goes to zero, the SF
estimate becomes equal to the true gradient of the objective.

In what follows, we make this intuition precise. For some scalar constant β > 0, let

Dβ ,1J(θ ) =
∫

Gβ (θ −η)∇ηJ(η)dη (6.1)
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be the convolution of the gradient of the objective function J(·) with the N-
dimensional multivariate Gaussian density function Gβ (·) (i.e., the p.d.f. of N in-
dependent N(0,β 2)-distributed Gaussian random variables) defined by

Gβ (θ −η) =
1

(2π)N/2βN
exp

(
−1

2

N

∑
i=1

(θi−ηi)
2

β 2

)
,

where θ ,η ∈ R
N with η �= (η1, . . . ,ηN)

T . The quantity Dβ ,1J(θ ) can be viewed as
a smoothed gradient of the objective, which in fact converges to the true gradient
(∇J(θ )) in the limit as β → 0.

Integrating by parts in (6.1), it is easy to see that

Dβ ,1J(θ ) = −
∫
∇ηGβ (θ −η)J(η)dη

=

∫
∇ηGβ (η)J(θ −η)dη . (6.2)

It is easy to verify that ∇ηGβ (η) =
−η
β 2 Gβ (η). Substituting the last and η ′ =

η
β

in

(6.2), one obtains

Dβ ,1J(θ ) =
1
β

∫
−η ′ 1

(2π)N/2
exp

(
−1

2

N

∑
i=1

(η ′i )
2

)
J(θ −βη ′)dη ′. (6.3)

In the above we use the fact that η = βη ′ = (βη ′1, . . . ,βη ′N)T (written component-
wise), and hence dη = βNdη ′1 · · ·dη ′N = βNdη ′. Upon substituting η̄ = −η ′, one
obtains

Dβ ,1J(θ ) = E

[
1
β
η̄J(θ +βη̄)

]
, (6.4)

where the expectation above is taken w.r.t. the N-dimensional multivariate Gaussian
p.d.f.

G(η̄) =
1

(2π)N/2
exp

(
−1

2

N

∑
i=1

(η̄i)
2

)
,

with β = 1 (i.e., the joint p.d.f. of N independent N(0,1)-distributed random
variables).

The form of the gradient estimator suggested by (6.4) (for a large positive integer
M and a small scalar β > 0) is

∇J(θ )≈ 1
β

1
M

M

∑
n=1
η(n)J(θ +βη(n)). (6.5)
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Here η(n) �=(η1(n), . . . ,ηN(n))T , with ηi(n), i= 1, . . . ,N, n≥ 0, being independent
N(0,1)-distributed random variables.

6.2.2 The Basic Gaussian SF Algorithm

In this section, we discuss an incremental gradient descent algorithm that finds the
optimal parameter θ that minimizes the expected cost objective. The basic SF algo-
rithm’s update rule is given by

θi(n+ 1) = θi(n)− a(n)

(
ηi(n)
β

h(θ (n)+βη(n),ξ (n))
)
, (6.6)

for i = 1, . . . ,N and β > 0.

In the above, η(n) = (η1(n), . . . ,ηN(n))T , n≥ 0, denotes a sequence of independent
N(0,1)-distributed random variables η1(n), . . . ,ηN(n), n≥ 0.

The term in brackets in the above update rule is motivated by the smoothed gra-
dient estimator Dβ ,1 in (6.4). While (6.4) has an expectation, in (6.6) a sample eval-
uation of the estimate is used following the idea from (6.5). This coupled with the
fact that a stochastic approximation algorithm sees the asymptotic average ensures
that we are indeed performing a negative descent in the long run w.r.t. the objective
function J(·). In fact, we prove later in Section 6.2.3 that the above recursion (6.6)
eventually tracks the ODE,

θ̇ (t) =−∇J(θ (t)). (6.7)

The algorithm flow is diagrammatically described in Fig. 6.2. As evident in (6.4),
each step of the algorithm (6.6) involves a perturbed simulation using the parameter
θ + βη , and the output of the simulation is used to tune the parameter θ in the
negative gradient descent direction. An algorithmic view of the basic SF scheme is
provided in Algorithm 6.1.

θ (n) +

p(n)

h(θ (n)+ p(n),ξ (n)) UpdateRule(·) θ (n+1)

Fig. 6.2 Overall flow of the basic SF algorithm.
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Algorithm 6.1 The Complete Algorithm Structure
Input:

• R, a large positive integer representing the number of iterations;
• θ (0), initial parameter vector;
• β > 0 is a fixed smoothing control parameter;
• K ≥ 1 is fixed integer used to control the duration of the average cost accu-

mulation (c.f. (12.10));
• {η(n),n≥ 1}, N-dimensional i.i.d. Gaussian random variables.
• UpdateRule(), the stochastic update rule (6.6).
• Simulate(θ )→ X , the simulator of the system. X represents the state of the

underlying Markov process at the end of the simulation.

Output: θ ∗, the parameter vector after R iterations.

θ ← θ (0), n← 1
loop

X̂ ← Simulate(θ +βη(n)).
θ ←UpdateRule(X̂ ,θ ).
if n = R then

Terminate with θ .
end if
n← n+ 1.

end loop

6.2.3 Convergence Analysis of Gaussian SF Algorithm

The basic SF algorithm (6.6) can be rewritten as follows: For i = 1, . . . ,N, n≥ 0,

θi(n+ 1) = θi(n)− a(n)
ηi(n)
β

(J(θ (n)+βη(n))+ χ(n)), (6.8)

where
χ(n) = h(θ (n)+βη(n),ξ (n))− J(θ (n)+βη(n)).

Let F (n) = σ(θ (m),χ(m),m≤ n;η(m),m < n), n > 0 be a sequence of associated
sigma fields. Now (χ(n),F (n)), n ≥ 0 can be seen to be a martingale difference
sequence. Next consider

M̂i(n+ 1) =
ηi(n)
β

χ(n).

It is easy to see that E
[
M̂i(n+ 1) |F (n)

]
= 0, ∀n≥ 0. Thus, (6.8) can be rewritten

as

θi(n+ 1) = θi(n)− a(n)

(
ηi(n)
β

J(θ (n)+βη(n))+ M̂i(n+ 1)

)
, (6.9)
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where (M̂i(n),F (n)),n ≥ 0 are suitable martingale difference sequences,
i = 1, . . . ,N.

We now analyze the algorithm (6.9) under the following assumptions:

Assumption 6.1. The function J : RN → R is Lipschitz continuous and con-
tinuously differentiable with bounded second derivatives.

Assumption 6.2. The sequence (M̂i(n),F (n)), n ≥ 0 forms a martingale
difference sequence. Further, (M̂i(n), n≥ 0) are square integrable random vari-
ables satisfying

E[‖M̂i(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0,

for a given constant K > 0.

Assumption 6.3. The step-sizes a(n),n≥ 0 satisfy the requirements

∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞. (6.10)

Assumption 6.4. The iterates (6.9) remain almost surely bounded, i.e.,

sup
n
‖θ (n)‖< ∞, a.s. (6.11)

Assumption 6.5. The ODE (6.7) has H as a compact set of globally asymp-
totically stable equilibria.

Given ε > 0, let Hε denote the set of points that are in an open ε-neighborhood of
H, i.e.,

Hε = {θ | ‖θ −θ0‖< ε, θ0 ∈H}.
The main convergence result of the SF scheme (6.9) is as follows:

Theorem 6.1. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 >
0, such that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.9) satisfy
θ (n)→ Hε almost surely as n→ ∞.

In order to prove Theorem 6.1, we provide a sequence of Lemmas and Proposi-
tions in the following order:

(i) Proposition 6.2 and Lemma 6.3 together analyze the martingale difference
sequence associated with the algorithm (6.9). Lemma 6.4 shows that the re-
sulting martingale is almost surely convergent.
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(ii) Proposition 6.5 establishes that the conditional average of the SF estimate, i.e.,

E
[
η(n)
β J(θ (n)+βη(n)) |F (n)

]
is asymptotically close to the gradient of the

objective function J(θ (·)).
(iii) Proposition 6.6 proves that the interpolated trajectory θ̄(t) of the algorithm

(6.9) tracks the ODE (6.7).
(iv) The last step of the proof is proven by invoking the Hirsch lemma.

The formal proof of Theorem 6.1 is given at the end of this section.
Note that (6.9) can be rewritten as

θi(n+1) = θi(n)−a(n)

(
E

[
ηi(n)
β

J(θ (n)+βη(n)) |F (n)

]
+ M̄i(n+1)+ M̂i(n+1)

)
,

(6.12)

where M̄i(n+ 1) =
ηi(n)
β

J(θ (n)+βη(n))−E

[
ηi(n)
β

J(θ (n)+βη(n)) |F (n)

]
.

Proposition 6.2. We have that (M̄i(n),F (n)),n ≥ 0 is a martingale difference se-
quence with

E
[|M̄i(n+ 1)|2 |F (n)

] ≤ K̂
(
1+ ‖θ (n)‖2) , ∀n≥ 0,

for some K̂ > 0.

Proof. It is easy to see that (M̄i(n),F (n)),n ≥ 0 is a martingale difference se-
quence. Now note that

E
[|M̄i(n+ 1)|2 |F (n)

] ≤ 2

(
E
[
η2

i (n)
β 2 J2(θ (n)+βη(n)) |F (n)

]
+E

[
E
[
ηi(n)
β J(θ (n)+βη(n)) |F (n)

]2 |F (n)

])
≤ 4E

[
η2

i (n)
β 2 J2(θ (n)+βη(n)) |F (n)

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.13)

The first inequality above follows because for any x,y ∈ R, (x− y)2 ≤ 2(x2 + y2),
while the second inequality follows from the conditional Jensen’s inequality.

From Assumption 6.1, J(·) is Lipschitz continuous. Hence,

|J(θ )|− |J(0)| ≤ |J(θ )− J(0)| ≤ L̂‖θ‖,

where L̂ > 0 is the Lipschitz constant of the function J(·). Hence,

|J(θ )| ≤C0(1+ ‖θ‖),

where C0 = max(|J(0)|, L̂)> 0. Hence,

J2(θ )≤C2
0(1+ ‖θ‖)2≤ 2C2

0(1+ ‖θ‖2),



6.2 Gaussian Based SF Algorithm 85

where we use the inequality that for any x,y ∈ R, (x + y)2 ≤ 2(x2 + y2). It now
follows from (6.13) that

E
[|M̄i(n+ 1)|2 |F (n)

]≤ 8C2
0

β 2 E
[
η2

i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]
. (6.14)

Now, note that

‖θ (n)+βη(n)‖2 = (θ (n)+βη(n))T (θ (n)+βη(n))

= ‖θ (n)‖2 +β 2‖η(n)‖2 + 2βθ (n)Tη(n).

Hence,

E
[
η2

i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]

= E
[
η2

i (n)(1+ ‖θ (n)‖2+β 2‖η(n)‖2 + 2βθ (n)Tη(n) |F (n)
]

= 1+ ‖θ (n)‖2+β 2E
[
∑ j �=iη2

j (n)η2
i (n)+η4

i (n)
]

+2βθ (n)T E
[
∑ j �=iη2

i (n)η j(n)+η3
i (n)
]
.

(6.15)

In the above, we make use of the fact that θ (n) is measurable F (n) while
η(n) is independent of F (n). Moreover, η j(n), j = 1, . . . ,N,n ≥ 0 are
independent random variables. We now make use of the fact that E[η j(n)] =
E[η3

j (n)] = 0, E[η2
j (n)] = 1 and E[η4

j (n)] = 3, j = 1, . . . ,N,n ≥ 0. Thus, (6.15)
can be rewritten as

E
[
η2

i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]
= 1+ ‖θ (n)‖2+β 2(N + 2)

≤ (1+β 2(N + 2))(1+ ‖θ (n)‖2).

It now follows from (6.14) that

E
[|M̄i(n+ 1)|2 |F (n)

]≤ 8C2
0

β 2 (1+β 2(N + 2))(1+ ‖θ (n)‖2)

= K̂(1+ ‖θ (n)‖2),

where K̂ =
8C2

0

β 2 (1+β 2(N + 2)). The claim follows. ��

Now (6.9) can be rewritten as

θi(n+ 1) = θi(n)− a(n)E

[
ηi(n)
β

J(θ (n)+βη(n)) |F (n)

]
+ a(n)Mi(n+ 1),

(6.16)
where Mi(n+ 1) = M̄i(n+ 1)+ M̂i(n+ 1).
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Lemma 6.3. For each i= 1, . . . ,N, (Mi(n),F (n)),n≥ 0 form martingale difference
sequences with

E[|Mi(n+ 1)|2 |F (n)]≤ K̃(1+ ‖θ (n)‖2), ∀n,

for some K̃ > 0.

Proof. The proof follows from Proposition 6.2 and Assumption 6.2. ��
Now, let M(n) = (M1(n), . . . ,MN(n))T ,n≥ 0. Then (M(n),F (n)),n ≥ 0 is a vector
martingale sequence. Also,

E
[‖M(n+ 1)‖2 |F (n)

]
= E

[
(M1(n+ 1))2 + . . .+(MN(n+ 1))2 |F (n)

]
,

≤ NK̃(1+ ‖θ (n)‖2),

= K1(1+ ‖θ (n)‖2),

where K1 = NK̃. Let Z(n), n≥ 0 be defined according to

Z(n) =
n−1

∑
m=0

a(m)M(m+ 1).

Lemma 6.4. The sequence (Z(n),F (n)), n ≥ 0 is a zero-mean, square integrable,
almost surely convergent martingale.

Proof. The proof follows from an application of the martingale convergence theo-
rem (Theorem B.2) using the result in Lemma 6.3 and from Assumptions 6.3 and
6.4, see for instance, the proof of Lemma 3.1. ��
We now have the following result:

Proposition 6.5. Almost surely,∥∥∥∥E

[
η(n)
β

J(θ (n)+βη(n)) |F (n)

]
−∇J(θ (n))

∥∥∥∥→ 0 as β → 0.

Proof. Recall that η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)
distributed random variates. Using a Taylor series expansion of J(θ (n) + βη(n))
around θ (n), one obtains

J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))+
β 2

2
η(n)T∇2J(θ (n))η(n)+o(β 2).

Thus,

E

[
η(n)
β

J(θ (n)+βη(n)) |F (n)

]
=

1
β

E[η(n)J(θ (n)) |F (n)]
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+E[η(n)η(n)T∇J(θ (n)) |F (n)]+
β
2

E[η(n)η(n)T∇2J(θ (n))η(n) |F (n)]+o(β ).
(6.17)

Now,
E[η(n)J(θ (n)) |F (n)] = E[η(n) |F (n)]J(θ (n)) = 0,

since η(n) is independent of F (n). Also,

E[η(n)η(n)T∇J(θ (n)) |F (n)] = E[η(n)η(n)T |F (n)]∇J(θ (n))

= ∇J(θ (n)),

again since η(n)η(n)T is independent of F (n) and E[η(n)η(n)T ] = I (the identity
matrix). Consider, now the third term on the RHS of (6.17). Note that

η(n)T∇2J(θ (n))η(n) =
N

∑
j=1

N

∑
i=1
η j(n)ηi(n)∇2

jiJ(θ (n)).

Thus,

E
[
η(n)η(n)T∇2J(θ (n))η(n) |F (n)

]
= E

[
η(n)

N

∑
j=1

N

∑
i=1
η j(n)ηi(n)

]
∇2

jiJ(θ (n))

= E

[
η1(n)

N

∑
j=1

N

∑
i=1
η j(n)ηi(n), . . . ,ηN(n)

N

∑
j=1

N

∑
i=1
η j(n)ηi(n)

]
∇2

jiJ(θ (n))

= 0,

since, E[ηk(n)] = E[η3
k (n)] = 0 and E[η2

k (n)] = 1 and ηi(n) is independent of η j(n)
for i �= j. The claim follows. ��
In lieu of Proposition 6.5, the update rule (6.8) can be rewritten as

θ (n+ 1) = θ (n)− a(n)(∇J(θ (n))+ (Z(n+ 1)−Z(n))). (6.18)

Now as with Chapter 3, consider a sequence of time points t(n), n ≥ 0 in the fol-

lowing manner: t(0) = 0 and for n ≥ 1, t(n) =
n−1

∑
m=0

a(m). Define now a continu-

ously interpolated trajectory θ̄ (t), t ≥ 0 (obtained from the algorithm’s updates)
as follows: Let θ̄ (t(n)) = θ (n),n ≥ 0, with linear interpolation on the interval
[t(n), t(n+1)]. By Assumption 6.4, it follows that supt≥0 ‖θ̄(t)‖= supn ‖θ (n)‖<∞
a.s. Let T > 0 be a given real number. Define another sequence {T (n),n≥ 0} as fol-
lows: T (0) = t(0) = 0 and for n≥ 1,

T (n) = min{t(m) | t(m)≥ T (n− 1)+T}.

Let I(n) denote the interval [T (n),T (n+ 1)). From its definition, there exists an
increasing subsequence {m(n)} of {n} such that T (n) = t(m(n)), n ≥ 0. Also, let
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θ n(t), t ≥ t(n) denote the trajectory of the ODE (6.7) starting at time t(n) and under
the initialization θ n(t(n)) = θ̄ (t(n)) = θ (n).

Proposition 6.6. We have

lim
n→∞ sup

t∈I(n)
‖θ̄(t)−θ n(t)‖= 0, a.s.

Proof. Follows as in [4, Chapter 2, Lemma 1]. ��
Proof of Theorem 6.1. It follows from Proposition 6.6 that θ̄ (t) serves as a
(T,Δ)-perturbation for the ODE (6.7) (see Appendix C for definition of (T,Δ)-
perturbation). The claim follows by applying the Hirsch lemma (Lemma C.5), for
every ε > 0. ��

6.2.4 Two-Measurement Gaussian SF Algorithm

The algorithms discussed so far require one measurement of the objective function
to estimate the gradient. We now discuss a two-sided finite-difference SF estimate
[9, 5, 2] - a variant that has the advantage of a lower estimation bias in comparison
to the one-sided form described in Section 6.2.1.

6.2.4.1 Gradient Estimate

Recall the one-sided gradient estimate obtained in (6.4). The two-sided form of the
gradient estimate will be described by Dβ ,2J(θ ) where

Dβ ,2J(θ ) �= E

[
η̄
2β

(J(θ +βη̄)− J(θ −βη̄))
]
. (6.19)

As with Dβ ,1J(θ ), η̄ above is an N-dimensional vector of independent N(0,1) ran-
dom variates and the expectation in (6.19) is taken w.r.t. the distribution of η̄ . It will
be seen using suitable Taylor series expansions that Dβ ,2J(θ ) is a valid SF gradient
estimate that has a lower bias as compared to its one-measurement counterpart (6.4).

The form of the two-measurement SF gradient estimator is thus

∇J(θ )≈ 1
2β

1
M

M

∑
n=1
η(n)(J(θ +βη(n))− J(θ−βη(n))), (6.20)

where M > 0 is a large positive integer and β > 0 is a small scalar. Also, in (6.20),

η(n) �= (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)-distributed random
variables as before.
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6.2.4.2 The Algorithm

Based on (6.20), the two-measurement version of the gradient Gaussian SF algo-
rithm is as follows: For i = 1, . . . ,N, n≥ 0,

θi(n+ 1) = θi(n)− a(n)

(
ηi(n)
2β

(
h(θ (n)+βη(n),ξ+(n))

−h(θ (n)−βη(n),ξ−(n))
))

,

(6.21)

for i = 1, . . . ,N and β > 0.

The above recursion can be seen as equivalent to

θi(n+1) = θi(n)−a(n)
ηi(n)

2β

(
J(θ (n)+βη(n))−J(θ (n)−βη(n))+χ1 (n)−χ2(n)

)
,

(6.22)

where (χ1(n),F (n)),n≥ 0 and (χ2(n),F (n)),n≥ 0 are two martingale difference
sequences that are independent of one another. In particular, for the measurement
corresponding to (θ (n) + βη(n)), the measurement noise is χ1(n), while for the
measurement with (θ (n)−βη(n)), the same is χ2(n).

6.2.4.3 Convergence Analysis

Let F (n) = σ(θ (m),χ1(m),χ2(m),m ≤ n;η(m),m < n),n ≥ 1 be a sequence of

sigma fields. By an abuse of notation, let M̂i(n) =
ηi(n)
2β

(
χ1(n)− χ2(n)

)
. It is easy

to see that (M̂i(n),F (n)),n ≥ 0 is also a martingale difference sequence. We now
consider the following analogous algorithm:

θi(n+1) = θi(n)−a(n)

(
ηi(n)
2β

(J(θ (n)+βη(n))−J(θ (n)−βη(n))) + M̂i(n+1)

)
.

(6.23)

We let Assumptions 6.1–6.5 continue to hold with the following changes: In As-
sumption 6.2, M̂i(n) and F (n),n≥ 0 are as defined above (i.e., for two-measurement
algorithms). Further, Assumption 6.4 holds with (6.23) in place of (6.9). Following
the same sequence of steps as for the one-measurement algorithm (cf. Section 6.2.4),
one can rewrite (6.23) as

θi(n+1) = θi(n)−a(n)

(
E
[
ηi(n)
2β (J(θ (n)+βη(n))−J(θ (n)−βη(n))) |F (n)

]
+Mi(n+1)

)
,

⎫⎪⎪⎬
⎪⎪⎭
(6.24)
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where (Mi(n),F (n)),n ≥ 0 is a martingale difference sequence satisfying the con-
clusions of Lemma 6.3. We now have the following result for the two-measurement
SF algorithm.

Proposition 6.7. Almost surely,∥∥∥∥E

[
η(n)
2β

(J(θ (n)+βη(n))−J(θ (n)−βη(n))) |F (n)

]
−∇J(θ (n))

∥∥∥∥→ 0 as β → 0.

Proof. Recall that η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)-
distributed random variates. Using a Taylor series expansion of J(θ (n) + βη(n))
around θ (n), one obtains

J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))+
β 2

2
η(n)T∇2J(θ (n))η(n)+o(β 2).

Similarly, a Taylor series expansion of J(θ (n)−βη(n)) around θ (n) gives

J(θ (n)−βη(n)) = J(θ (n))−βη(n)T∇J(θ (n))+
β 2

2
η(n)T∇2J(θ (n))η(n)+o(β 2).

Thus,

E
[
η(n)
2β (J(θ (n)+βη(n))− J(θ (n)−βη(n))) |F (n)

]
= E[η(n)η(n)T∇J(θ (n)) |F (n)]+ o(β ).

(6.25)

Now, it can be seen as in the proof of Proposition 6.5 that

E[η(n)η(n)T∇J(θ (n)) |F (n)] = E[η(n)η(n)T |F (n)]∇J(θ (n))

= ∇J(θ (n)), a.s.

The claim follows. ��
Remark 6.1. Regarding the bias term resulting in the basic update rule (6.22), we
observe the following:

• Note that from the Taylor series expansions of J(θ (n)+βη(n)) and J(θ (n)−
βη(n)) around θ (n), it can be seen that in the expression

η(n)
2β

(J(θ (n)+βη(n))− J(θ (n)−βη(n))),

the bias terms
1

2β
η(n)J(θ (n)) and βη(n)η(n)T∇2J(θ (n))η(n) resulting from

the expansions of J(θ (n)+βη(n)) and J(θ (n)−βη(n)), respectively, around
θ (n), directly cancel (cf. Proposition 6.7), and so do not contribute to the bias.
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On the other hand, the aforementioned bias terms average to zero in the case of
one-measurement SF (cf. Proposition 6.5).

• For small β > 0, the term
1
β
η(n)J(θ (n)) can result in a much higher bias in

the one-measurement algorithm as compared to the two-measurement case be-
cause of the presence of β in the denominator of that term. It has also been
observed in [9, 2] that the two-measurement algorithm performs better than its
one-measurement counterpart. In particular, in the one-measurement SF algo-
rithm, a low value of β results in a large bias and a high β results in inaccuracies
in the estimate. The two-measurement counterpart, on the other hand, is more
robust to different values of β largely because of the direct cancellation of the
bias terms that results from the use of two measurements.

The remainder of the analysis follows along similar lines as in Section 6.2.3. The
main convergence result again is the following:

Theorem 6.8. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 > 0, such
that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.23) satisfy θ (n)→ Hε

almost surely as n→ ∞.

6.3 General Conditions for a Candidate Smoothing Function

While Gaussian density function has been a popular choice as a smoothing function
to estimate the gradient, it is possible to achieve the same effect using other can-
didate functions as well. In this section, we discuss general conditions that have to
be met by any candidate function, to be used as a smoothing function. Let Fβ be an
operator defined such that

Fβ J(θ ) =
∫
η

hβ (η)∇ηJ(θ −η)dη =

∫
η

hβ (θ −η)∇ηJ(η)dη ,

is the SF estimate of J(θ ) with hβ (·) as a smoothing function with smoothing pa-
rameter β > 0. [8, pp. 471] lists a set of four conditions for a smoothing function.
They are as follows:

(a) hβ (η) =
1
βN h(η/β ), is a piece-wise differentiable function w.r.t. η ;

(b) lim
β→0

hβ (η) = δ (η), where δ (·) is the Dirac-Delta function;

(c) lim
β→0

Fβ J(θ ) = ∇θJ(θ ) and

(d) hβ (·) is a probability density function (p.d.f.), i.e., Fβ J(θ ) = Eη∇ηJ(θ −
η).
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Remark 6.2. One can easily verify that Gaussian, Cauchy and uniform distributions
satisfy the above set of conditions. In a recent work, [6], the q-Gaussian family of
distributions have also been shown to satisfy the aforementioned conditions. (The q-
Gaussians are a generalized class of density functionals than the Gaussian density.
Here, q represents a real-valued parameter and in fact, a q-Gaussian density with
q = 1 is the standard Gaussian density.)

Remark 6.3. It is worth noting here that smoothing with uniform density results in
an iteration procedure very similar to that of the Kiefer-Wolfowitz algorithm dis-
cussed in Chapter 4. We leave the verification of this fact as an exercise to the
readers. However, as discussed earlier, Kiefer-Wolfowitz algorithm does not scale
well for higher dimensions. On the contrary, gradient estimates based on Gaussian
and Cauchy smoothing procedures can be obtained with only one or two simulations
regardless of the parameter dimension.

6.4 Cauchy Variant of the SF Algorithm

In this section, we use the Cauchy density function to obtain an estimate of the
gradient and derive a stochastic iterative algorithm that performs negative gradient
descent w.r.t. the objective function J(θ ). The idea of obtaining the gradient estimate
here is similar to the case when Gaussian density was used (see Section 6.2.1), and
the specifics are handled in the next section.

6.4.1 Gradient Estimate

Let Λ be a hypercube centered at the origin such that C ⊆ Λ , i.e., the set of all
admissible values of θ is contained in Λ . Now the N-dimensional Cauchy p.d.f.,
truncated to Λ , can be written as follows:

Hβ (θ −η) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ
(N+1

2

)
π

N+1
2 β nΩ

1(
1+

(θ −η)T (θ −η)
β 2

) N+1
2

for η ∈Λ 0,

0 otherwise,

(6.26)

where θ ,η ∈ R
N , β > 0, Λ0 represents the interior of the set Λ , Γ (·) is the

standard gamma function (that must not be confused with the projection operator
Γ that we use in projected algorithms) and Ω is a scaling factor to ensure that∫
η Hβ (θ −η)dη = 1. Cauchy distribution without truncation has no moments de-

fined. However, truncation to a bounded set, in this caseΛ , ensures that all moments
of the Cauchy distribution are well defined. Like in the case of Gaussian smoothing,
we now define the Cauchy smoothing operator Fβ ,1 below:
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Fβ ,1J(θ ) =
∫
η

Hβ (θ −η)∇ηJ(η)dη . (6.27)

Upon integration by parts of (6.27), we get,

Fβ ,1J(θ ) =−∫
η
∇ηHβ (θ −η)J(η)dη

=
∫
η
∇ηHβ (η)J(θ −η)dη .

Now, observing that

∇ηHβ (η) =

⎧⎪⎨
⎪⎩
− η(N + 1)
(β 2 +ηTη)

Hβ (η) for η ∈Λ0,

0 otherwise,

the expression for Fβ ,1J(θ ) can be updated to

Fβ ,1J(θ ) =−
∫
η∈Λ

η(N + 1)
(β 2 +ηTη)

Hβ (η)J(θ −η)dη .

Now, by simple substitution of η ′ =−η
β

, we get,

Fβ ,1J(θ ) =
∫
η∈Λ

η ′(N + 1)
β (1+η ′Tη ′)

H1(η)J(θ +βη ′)dη ′,

which could be compactly written as

Fβ ,1J(θ ) = Eη

[
η(N + 1)
β (1+ηTη)

J(θ +βη)
]
, (6.28)

where the expectation is over η which has standard truncated multivariate Cauchy
distribution, H1(·). Now, since truncated Cauchy distribution satisfies condition (c)
for a smoothing function, it is possible to write a sample average estimate of the
above as an approximate estimate of the gradient of J(θ ), i.e.,

∇θJ(θ )≈ 1
M

M

∑
n=1

η(n)(N + 1)
β (1+η(n)Tη(n))

J(θ +βη(n)), (6.29)

where η(1),η(2), . . . ,η(M) are i.i.d. samples with standard truncated multivariate
Cauchy distribution H1(·). For the estimate to be accurate, M is chosen to be a large
integer with β close to zero.
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6.4.2 Cauchy SF Algorithm

Let η(n) = (η1(n), . . . ,ηN(n))T , n≥ 0 be a sequence of independent standard trun-
cated multivariate Cauchy distributed random variables. Note that unlike multivari-
ate Gaussian distributed random variables, here for a given n, η1(n), . . . ,ηN(n), are
not independent of each other. Based on the SF estimate (6.29), the algorithm that
we consider is the following: For i = 1, . . . ,N, n≥ 0,

θi(n+ 1) = θi(n)− a(n)

(
ηi(n)(N + 1)

β (1+η(n)Tη(n))
(J(θ (n)+βη(n)))

)
. (6.30)

The overall algorithm is similar to Algorithm 6.1, except that Cauchy-based pertur-
bations are used in this case. One can now follow a similar sequence of steps as in
the previous section to conclude with the following theorem.

Theorem 6.9. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 > 0, such
that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.30) satisfy θ (n)→ Hε

almost surely as n→ ∞.

Remark 6.4. The single measurement version of the Cauchy SF estimate (6.28) can
be extended for two measurements as follows:

Fβ ,1J(θ ) = Eη

[
η(N + 1)

2β (1+ηTη)
(J(θ +βη)− J(θ−βη))

]
. (6.31)

Based on (6.31), the two-measurement version of the Cauchy gradient SF algorithm
is as follows:

θi(n+1) = θi(n)−a(n)

(
ηi(n)(N +1)

2β (1+η(n)T η(n))
(J(θ (n)+βη(n))−J(θ (n)−βη(n)))

+χ1(n)−χ2(n)

)
, i = 1, . . . ,N, n≥ 0,

(6.32)

where as beforeη(n),n≥ 0, are independent standard truncated multivariate Cauchy
distributed random variables (even though for a given n, η1(n), . . . ,ηN(n) are not
independent). The convergence analysis follows in a similar manner as that of the
two-measurement Gaussian SF algorithm discussed previously.

6.5 SF Algorithms for the Long-Run Average Cost Objective

We now present gradient SF algorithms for the case when the underlying process
is Markovian and depends on a parameter. The basic framework is the same as in
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Chapter 5.6. The single-stage cost function depends on the simulated system state.
Let {X(n),n ≥ 1} be an R

d-valued parameterized Markov process with a tunable
parameter θ that takes values in R

N . Let for any given θ ∈ R
N , {X(n)} be ergodic

Markov. Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and
stationary distribution of {X(n)} when θ is the operative parameter. When the pro-
cess is in state x, let h(x) be the single-stage cost incurred. The aim is to find a
θ ∗ ∈ R

N that minimizes (over all θ ) the long-run average cost (5.40). As with the
average cost setting for SPSA, we let Assumptions 5.10–5.14 hold in this setting as
well.

The algorithms that we present below are the analogs of the algorithms presented
in Section 6.2.2 and are taken from [3, 2]. In [2], they are referred to as G-SF1 and
G-SF2, respectively. We use the same abbreviations here. Note that G-SF1 refers
to the one-simulation variant of the SF algorithm, while G-SF2 refers to the two-
simulation variant.

6.5.1 The G-SF1 Algorithm

The algorithm that we present below is the analog of the one-measurement Gaus-
sian SF algorithm described in Section 6.2.2. Let X(n),n≥ 0 be a simulated Markov

process governed by the parameter sequence (θ (n)+βη(n)),n≥ 0, where η(n) �=
(η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N being independent N(0,1)-
distributed random variables and β > 0 is a given small positive scalar. The al-
gorithm is as follows: For i = 1, . . . ,N,n ≥ 0,

θi(n+ 1) =θi(n)− a(n)Zi(n), (6.33)

Zi(n+ 1) =Zi(n)+ b(n)

(
ηi(n)
β

h(X(n))−Zi(n)

)
. (6.34)

Remark 6.5. As with the simulation-based SPSA algorithms for the long-run aver-
age cost objective, it is seen that in practice, an additional averaging over L instants
(for some L > 1) of the recursion (6.34) improves performance. In other words, for
practical implementations, it is suggested to run (6.34) for L instants in an inner
loop, in between two successive updates of (6.33). The value of L is, however, ar-
bitrary. It is generally observed, see for instance, [1, 2] that a value of L in between
50 and 500 works well. While for our analysis, we focus on the case of L = 1, the
analysis for general L is available in [1, 2].
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6.5.1.1 Convergence Analysis of the G-SF1 Algorithm

Let G (n) = σ(θ (p),Xp,η(p), p≤ n), n≥ 1, denote σ -fields generated by the quan-
tities above. Define sequences Ni(p), p ≥ 0, i ∈ {1, . . . ,N} as follows:

Ni(p) =
p

∑
m=1

b(m)

(
ηi(m)

β
h(Xm)−E

[
ηi(m)

β
h(Xm) | G (m− 1)

])
.

Lemma 6.10. The sequences (Ni(p),G (p)), p ≥ 0, i = 1, . . . ,N are almost surely
convergent martingale sequences.

Proof. It is easy to see that almost surely, E[Ni(p+ 1) | G (p)] = Ni(p), for all p≥ 0.
Now, note that

E[N2
i (p)]≤ Cp

β 2

p

∑
m=1

b2(m)(E[η2
i (m)h2(Xm)+E2[ηi(m)h(Xm) | G (m− 1)]])

for some constant Cp > 0 (that however depends on p). For the second term on the
RHS above, note that almost surely,

E2[ηi(m)h(Xm) | G (m− 1)]≤ E[η2
i (m)h2(Xm) | G (m− 1)],

by the conditional Jensen’s inequality. Hence,

E[N2
i (p)]≤ 2Cp

β 2 ∑
p
m=1 b2(m)E[η2

i (m)h2(Xm)]

≤ 2Cp

β 2 ∑
p
m=1 b2(m)E[η4

i (m)]1/2E[h4(Xm)]
1/2

by the Cauchy-Schwartz inequality. Since, h(·) is a Lipschitz continuous function,
we have

|h(Xm)|− |h(0)| ≤ |h(Xm)− h(0)| ≤ K‖Xm‖,
where K > 0 is the Lipschitz constant for the function h. Thus,

|h(Xm)| ≤C1(1+ ‖Xm‖),

for C1 = max(K, |h(0)|)< ∞. Hence, one gets

E[h4(Xm)]≤C2(1+E[‖Xm‖4])

for (constant) C2 = 8C4
1.

As a consequence of Assumption 5.12, supm E[‖Xm‖4]<∞. Thus, E[N2
i (p)]<∞,

for all p ≥ 1. Now, note that

∑
p

E[(Ni(p+ 1)−Ni(p))2 | G (p)]≤∑
p

b2(p+ 1)(E[(
η2

i (p+ 1)
β 2 h(Xp+1))

2 | G (p)]
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+E[E2[
η2

i (p+ 1)
β 2 h(Xp+1) | G (p)] | G (p)])

≤∑
p

2b2(p+ 1)E[(
η2

i (p+ 1)
β 2 h(Xp+1))

2 | G (p)],

almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumption 5.12, that

sup
p

1
β 2 E[(η2

i (p+ 1)h(Xp+1))
2 | G (p)]< ∞ w.p.1.

Now, from Assumption 5.13,

∑
p

E[(Ni(p+ 1)−Ni(p))2 | G (p)]< ∞

almost surely. Thus, by the martingale convergence theorem (Theorem B.2), Ni(p),
p≥ 0 are almost surely convergent for each i = 1, . . . ,N. ��
Lemma 6.11. The sequences of updates {Zi(p)}, i= 1, . . . ,N in (6.34) are uniformly
bounded with probability one.

Proof. Note that (6.34) can be rewritten as

Zi(p+ 1) = Zi(p)+ b(p)(
1
β

E[ηi(p)h(Xp) | G (p− 1)]−Zi(p))

+ b(p)
1
β
(ηi(p)h(Xp)−E[ηi(p)h(Xp) | G (p− 1)]). (6.35)

From Lemma 6.10, it follows that

∑
p

b(p)
1
β
(ηi(p)h(Xp)−E[ηi(p)h(Xp) | G (p− 1)])< ∞, a.s.

Thus, it is enough to consider the boundedness of the following alternate recursion:

Zi(p+ 1) = Zi(p)+ b(p)(
1
β

E[ηi(p)h(Xp) | G (p− 1)]−Zi(p)).

It can be seen as in the proof of Lemma 6.10 that supp E[ηi(p)h(Xp) | G (p− 1)]<
∞ with probability one. The claim now easily follows from the Borkar and Meyn
theorem (Theorem D.1). ��
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Define {s(n)} and {t(n)} as follows: s(0) = t(0) = 0, s(n) =
n−1

∑
j=0

a( j) and t(n) =

n−1
∑
j=0

b( j), n ≥ 1, respectively. Then, the timescale corresponding to {s(n)} (resp.

{t(n)}) is the slower (resp. faster) of the two timescales.
Consider the following system of ordinary differential equations (ODEs):

θ̇ (t) = 0, (6.36)

Ż(t) = Dβ ,1J(θ (t))−Z(t). (6.37)

Let Z(n)
�
= (Z1(n), . . . ,ZN(n))T , n ≥ 0. From Lemma 6.11, sup

n
‖Z(n)‖< ∞. Con-

sider the functions Ẑ(t) defined according to Ẑ(t(n)) = Z(n) with the maps t→ Ẑ(t)
corresponding to continuous linear interpolations on intervals [t(n), t(n+1)]. Given
T̄ > 0, define {T̄ (n)} as follows: T̄ (0) = 0 and for n ≥ 1, T̄ (n) = min{t(m)
| r(m) ≥ T̄ (n− 1) + T̄}. Let Ī(n) = [T̄ (n), T̄ (n + 1)]. There exists some integer
q(n) > 0 such that T̄ (n) = t(q(n)). Define also functions Zn(t), t ∈ I(n), n ≥ 0,
that are obtained as trajectories of the following ODEs:

Żn(t) = Dβ ,1J(θ )−Zn(t), (6.38)

with Zn(T̄ (n)) = Ẑ(t(q(n))) = Z(q(n)).

Lemma 6.12. lim
n→∞ sup

t∈Ī(n)
‖Zn(t)− Ẑ(t)‖= 0 w.p.1.

Proof. Follows in the same manner as [4, Chapter 2, Lemma 1]. ��
Lemma 6.13. Given T̄ ,γ > 0, ((θ (t(n) + ·), Z(t(n) + ·)), is a bounded (T̄ ,γ)-
perturbation of (6.36)-(6.37) for n sufficiently large.

Proof. Note that the parameter update recursion (6.33) can be rewritten as

θ (n+ 1) = θ (n)+ b(n)ξ̂1(n), (6.39)

where ξ̂1(n) = o(1), since a(n) = o(b(n)). The rest follows from Lemma 6.12. ��
Lemma 6.14. ‖Z(n)−Dβ ,1J(θ (n))‖→ 0 w.p. 1, as n→ ∞.

Proof. Follows from an application of the Hirsch lemma (Lemma C.5) for every
ε > 0. ��
Finally, we consider the slower recursion (6.33). In lieu of Lemma 6.14, the slower
recursion can be rewritten as

θ (n+ 1) = θ (n)− a(n)(Dβ ,1J(θ (n)+ ε̂(n)), (6.40)

where ε̂(n) = o(1). Now from Proposition 6.5,
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‖Dβ ,1J(θ (n))−∇J(θ (n))‖→ 0 as β → 0 a.s.

Consider now the ODE (6.7), but with J being the long-run average cost. Let H be
as in Assumption 6.5 with J as above. The following is the main result that follows
again from an application of the Hirsch lemma (Lemma C.5).

Theorem 6.15. Under Assumptions 5.10–5.13 and Assumption 6.5, given ε >
0, there exists β0 > 0, such that for all β ∈ (0,β0], the iterates θ (n) obtained
from (6.33) to (6.34) satisfy θ (n)→ Hε almost surely as n→ ∞.

6.5.2 The G-SF2 Algorithm

We now present the two-simulation gradient SF algorithm (G-SF2) that is the ana-
log of the two-measurement algorithm described in Section 6.2.4. Let X1(n),n ≥ 0
and X2(n),n ≥ 0 be two simulated Markov processes that are respectively gov-
erned by the parameter sequences (θ (n) + βη(n)) and (θ (n)− βη(n)),n ≥ 0,

where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N being indepen-
dent N(0,1)-distributed random variables and β > 0 is a given small positive scalar.
The two processes X1(n) and X2(n),n≥ 0 evolve independently of one another. The
algorithm is as follows: For i = 1, . . . ,N,n ≥ 0,

θi(n+ 1) =θi(n)− a(n)Zi(n), (6.41)

Zi(n+ 1) =Zi(n)+ b(n)

(
ηi(n)
β
(
h(X1(n))− h(X2(n))

)−Zi(n)

)
. (6.42)

The convergence of the algorithm proceeds along the same lines as G-SF1 and one
could prove an analogue of Theorem 6.15 by following the same steps as in Section
6.5.1.1.

Finally, as described in Remark 6.5, the empirical performance of the G-SF2
algorithm also improves with an additional averaging over L instants of the iterates
(6.42) in between two successive updates of the parameter (6.41).

Remark 6.6. It is worth noting here that one can easily derive two algorithms analo-
gous to G-SF1 and G-SF1 described above, based on the Cauchy SF estimates from
(6.28) and (6.31), respectively. We leave it to the interested reader to derive these
(multi-timescale Cauchy-perturbation SF) algorithms.
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6.5.3 Projected SF Algorithms

As with Section 5.6.5 of Chapter 5, we consider here the case where the param-
eter θ can take values in a predefined compact set C that is a subset of R

N . Let
Γ : RN →C denote the ‘projection operator’ that projects any x = (x1, . . . ,xN)

T ∈
RN to its nearest point in C, i.e., for any given x = (x1, . . . ,xN)

T ∈ RN , Γ (x) �=
(Γ1(x1), . . . ,ΓN(xN))

T ∈ R
N . The operator Γ ensures that Assumption 5.14 is auto-

matically enforced.

6.5.3.1 The G-SF1 Algorithm with Projection

Let X(n),n≥ 0 be a simulated Markov process governed by the parameter sequence

(θ (n) + βη(n)),n ≥ 0, where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i =
1, . . . ,N being independent N(0,1)-distributed random variables and β > 0 is a
given small positive scalar. The algorithm is as follows: For i = 1, . . . ,N,n≥ 0,

θi(n+ 1) =Γi(θi(n)− a(n)Zi(n)), (6.43)

Zi(n+ 1) =Zi(n)+ b(n)

(
ηi(n)
β

h(X(n))−Zi(n)

)
. (6.44)

Let Γ̄ : C (C)→ C (RN) be defined as in (5.62). Also, let H denote the set of all
asymptotically stable attractors of the ODE (5.63) and Hε its ε-neighborhood. An
application of the Kushner-Clark theorem (Theorem E.1) shows the following result:

Theorem 6.16. Under Assumptions 5.10–5.13, given ε > 0, there exists a δ0 > 0
such that the sequence of parameter iterates θ (n),n ≥ 0 governed by (6.43)-(6.44)
satisfy θ (n)→ Hε with probability one as n→ ∞.

6.5.3.2 The G-SF2 Algorithm with Projection

Let X1(n),n ≥ 0 and X2(n),n ≥ 0 be two simulated Markov processes that are,
respectively, governed by the parameter sequences (θ (n) + βη(n)) and (θ (n)−
βη(n)),n ≥ 0, where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N
being independent N(0,1)-distributed random variables and β > 0 is a given small
positive scalar. The two processes X1(n) and X2(n),n ≥ 0 evolve independently of
one another. The algorithm is as follows: For i = 1, . . . ,N,n≥ 0,
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θi(n+ 1) =Γi(θi(n)− a(n)Zi(n)), (6.45)

Zi(n+ 1) =Zi(n)+ b(n)

(
ηi(n)
β
(
h(X1(n))− h(X2(n))

)−Zi(n)

)
. (6.46)

The convergence result of (6.45) follows in a similar manner as in the case of the
projected G-SF1 algorithm (6.43).

6.6 Concluding Remarks

In this chapter, we introduced the smoothed functional technique for estimating the
gradient, and showed how it can be used to develop convergent stochastic recur-
sive algorithms for both the expected cost as well as the long-run average cost ob-
jectives. As in the previous chapter, the algorithms presented in this chapter also
incorporated the simultaneous perturbation approach to estimate the gradient. How-
ever, unlike SPSA algorithms, the algorithms here used certain smoothing functions
- most commonly Gaussian and Cauchy densities - for simultaneous perturbation
and in turn for gradient estimation. All the SF algorithms presented here are on-
line implementable. Further, as with the SPSA algorithms, they require only one or
two samples of the objective function for any N-dimensional parameter. We demon-
strate the empirical usefulness of both SPSA as well as SF algorithms in various
application contexts in Part V of this book.
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Part III
Hessian Estimation Schemes



Newton-based algorithms estimate both the gradient and the Hessian of the objec-
tive, and are in general seen to be more efficient than gradient-based algorithms as
they exhibit fast convergence (in terms of the number of iterates). However, they re-
quire more computation than gradient-based schemes, because of the need to project
the associated Hessian matrix to the space of positive definite and symmetric ma-
trices at each update epoch and to invert the same. During the course of the last
twelve years, there has been significant work done on developing efficient simulta-
neous perturbation-based Hessian estimators and Newton-based schemes. This part
consists of two chapters – on Newton SPSA and Newton SF methods.

In a paper in 2000, Spall presented a Newton-based procedure involving an effi-
cient four-simulation Hessian estimation procedure that relies on two independent
perturbation sequences, each of which have similar properties to the one used for
obtaining gradient SPSA estimates. This algorithm was presented for the case when
the cost is an expectation over noisy cost samples. Subsequently, in a paper in 2005,
Bhatnagar obtained three other SPSA-based Hessian estimates, that require three,
two and one simulation(s), respectively. Together with the four simulation estimate
presented by Spall, Bhatnagar proposed four Newton SPSA algorithms (using the
aforementioned estimates in addition) for the long-run average cost objective. We
discuss the Newton SPSA schemes in detail in Chapter 7.

Bhatnagar, in a paper in 2007, presented two Newton SF algorithms. He pre-
sented both algorithms for the case when the perturbation sequence used is i.i.d. and
Gaussian distributed. By convolving the Hessian of the objective function with the
N-dimensional Gaussian density and applying the integration-by-parts argument
twice, one obtains the convolved Hessian as a convolution of the Hessian with a
scaled N-dimensional Gaussian where the scaling matrix is obtained from the com-
ponents of the N-vector Gaussian. The same simulation (with a Gaussian-perturbed
parameter) is seen to estimate both the gradient as well as the Hessian of the objec-
tive. A two-simulation version of the same is seen to exhibit better performance in
general. We discuss in detail the Newton SF schemes in Chapter 8.



Chapter 7
Newton-Based Simultaneous Perturbation
Stochastic Approximation

7.1 Introduction

In Chapters 4–6, we discussed gradient-based approaches. Whereas, the finite-
difference Kiefer-Wolfowitz algorithm is seen to require 2N (resp. N + 1) simu-
lations for an N-dimensional parameter when two-sided balanced (resp. one-sided)
estimates are used, the gradient SPSA algorithms are based on exactly two or one
simulation samples at each update epoch regardless of the parameter dimension N.
Hessian estimates, on the other hand, are harder to obtain than the gradient and
typically require more samples of the objective function. In [4], the Hessian is esti-
mated using finite differences that are in turn based on finite difference estimates of
the gradient. This requires O(N2) samples of the objective function at each update
epoch. In [9], for the case where the objective function gradients are known, the
Hessian is estimated using finite gradient differences.

The first Newton SPSA algorithm that estimates the Hessian in addition to the
gradient using simultaneous perturbation estimates has been proposed in [11]. The
estimates in this algorithm are obtained using four objective function samples at
each update epoch in cases where the gradient estimates are not known and three
samples in cases where the latter are known. This is achieved using two inde-
pendent perturbation sequences with random variables in these assumed bounded,
zero-mean, symmetric, having a common distribution and mutually independent of
one another. This method is an extension of the random perturbation gradient SPSA
algorithm of [10] that uses only one such perturbation sequence. In [13], a similar
algorithm that, however, uses the geometric mean of the eigen-values of the Hessian
(suitably projected so that the eigen-values remain positive) in place of the Hessian
itself, has been proposed.

In [2], four multi-timescale Newton SPSA algorithms that require four, three,
two and one simulation(s), respectively, have been proposed for the long-run aver-
age cost objective. All of these algorithms incorporate random perturbation Hessian

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 105–131.
springerlink.com © Springer-Verlag London 2013
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estimates. The four-simulation algorithm incorporates a similar Hessian estimate as
the one proposed in [11]. While unbiased and convergent Hessian estimates based
on a deterministic construction for the perturbation variables are not yet available, a
Hadamard matrix-based deterministic Hessian estimate has been proposed and in-
corporated in [8] in the context of adaptive optimization of parameters in the random
early detection (RED) flow control scheme for the Internet, see Chapter 14.2. Even
though the Hessian estimates there are not unbiased, the resulting scheme still tracks
a local minimum of the objective and is seen to perform well. The current chapter is
largely based on [2].

We first summarize the long-run average cost framework in Section 7.2,
along with the necessary assumptions. In Section 7.3, the four multi-timescale
Newton SPSA algorithms are described. Also in Section 7.4, we describe a
means to improve the performance of these four algorithms using the Wood-
bury’s identity. Convergence analyses of all these algorithms are then provided in
Section 7.5.

7.2 The Framework

We describe in this section the problem framework and assumptions. Let {X(n),n≥
1} be an R

d-valued parameterized Markov process with a tunable parameter θ that
takes values in a given compact and convex set C ⊂ R

N . We assume that for any
given θ ∈C, the process {X(n)} is ergodic Markov. Let p(θ ,x,dy) and νθ , respec-
tively, denote the transition kernel and stationary distribution of {X(n)}, when θ
is the operative parameter. When the process is in state x, let h(x) be the single-
stage cost incurred. The aim is to find a θ ∗ ∈C that minimizes (over all θ ∈C) the
long-run average cost

J(θ ) = lim
l→∞

1
l

l−1

∑
j=0

h(X( j)). (7.1)

7.3 Newton SPSA Algorithms

We now describe the Newton SPSA algorithms from [2]. The analysis of these al-
gorithms will be subsequently shown. The four algorithms that we present below
are based on different estimates of the Hessian and require four, three, two and one
simulation(s), respectively. Two of these algorithms, based on two and one simu-
lation(s), respectively, also incorporate different simultaneous perturbation gradient
estimates (than the gradient SPSA algorithms presented in Chapter 5). The Hes-
sian estimates in all the four algorithms depend on two independent sequences of
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perturbation random variables. Let C ⊂ R
N be a compact and convex set

in which the parameters θ take values. To ensure that the θ -updates take values
in this set, we use the projection operator Γ : RN → C. For x = (x1, . . . ,xN)

T ∈
R

N , let Γ (x) = (Γ1(x1), . . . ,ΓN(xN))
T be the closest point in C to x in terms of

the Euclidean norm distance. We also define a matrix-valued projection operator
P : RN×N → R

N×N in a way that for any N ×N-matrix A, P(A) is positive def-
inite and symmetric. In particular, if A is positive definite and symmetric, then
P(A) = A.

7.3.1 Four-Simulation Newton SPSA (N-SPSA4)

We first present the Hessian estimate for the N-SPSA4 algorithm. This will be fol-
lowed by a description of the algorithm itself. The gradient estimate here is the same
as that of regular (two-simulation) SPSA.

7.3.1.1 The Hessian Estimate

Let Δ1, . . . ,ΔN , Δ̂1, . . . , Δ̂N be independent, bounded, zero-mean, symmetric random
variables having a common distribution and mutually independent of one another.
Let Δ = (Δ1, . . . ,ΔN)

T and Δ−1 = (1/Δ1, . . . ,1/ΔN)
T . Also, let Δ̂ = (Δ̂1, . . . , Δ̂N)

T

and Δ̂−1 = (1/Δ̂1, . . . ,1/Δ̂N)
T , respectively.

Then the four-simulation estimate of the Hessian of J(θ ) with respect to θ is
based on the following relationship.

∇2
θ J(θ )= lim

δ1,δ2→0
EΔ−1

⎛
⎜⎜⎜⎝

J(θ + δ1Δ + δ2Δ̂)− J(θ + δ1Δ)
−(J(θ − δ1Δ + δ2Δ̂)− J(θ − δ1Δ))

2δ1δ2

⎞
⎟⎟⎟⎠(Δ̂−1)T

.

(7.2)

The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relationship in (7.2) will be used in the next section to construct a stochastic ap-
proximation algorithm. In [11], the form of the Hessian estimate is slightly different
from (7.2). It has the form
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∇2
θ J(θ ) = lim

δ1,δ2→0
E

⎡
⎢⎢⎢⎣1

2
Δ−1

⎛
⎜⎜⎜⎝

J(θ +δ1Δ +δ2Δ̂)−J(θ +δ1Δ )
−(J(θ −δ1Δ +δ2Δ̂)−J(θ −δ1Δ ))

2δ1δ2

⎞
⎟⎟⎟⎠
(
Δ̂−1
)T

⎤
⎥⎥⎥⎦

+ lim
δ1,δ2→0

E

⎡
⎢⎢⎢⎣1

2
Δ̂−1

⎛
⎜⎜⎜⎝

J(θ +δ1Δ +δ2Δ̂)−J(θ +δ1Δ )
−(J(θ −δ1Δ +δ2Δ̂ )−J(θ −δ1Δ ))

2δ1δ2

⎞
⎟⎟⎟⎠
(
Δ−1
)T

⎤
⎥⎥⎥⎦ .

In Section 7.5.2, it will be shown that the relationship (7.2) is a valid Hessian es-
timator. In all the algorithms below, Δ1(n), . . . ,ΔN(n), Δ̂1(n), . . . , Δ̂N(n),n ≥ 0 will
be treated to independent random variables requiring standard assumptions on such
perturbations (see Assumption 7.6). Also, δ1,δ2 > 0 will be considered to be given
small constants. (A discussion on how these constants can be chosen in practice can
be found in [11].)

7.3.1.2 The N-SPSA4 Algorithm

Consider four simulated Markov processes {X−(n)}, {X+(n)}, {X−+(n)} and
{X++(n)}, that are governed by the parameter sequences {θ (n)−δ1Δ(n)}, {θ (n)+
δ1Δ(n)}, {θ (n)− δ1Δ(n)+ δ2Δ̂ (n)}, and {θ (n)+ δ1Δ(n)+ δ2Δ̂ (n)}, respectively.
The aforementioned Markov processes are assumed to be independent of one an-
other. Let Zw(n), w ∈ {−,+,−+,++}, be quantities defined via recursions (7.3)-
(7.6) below that are used for averaging the cost function in the four simulations. We
initialize Zw(0) = 0, ∀w ∈ {−,+,−+,++}.

The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,

Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.3)

Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.4)

Z−+(n+ 1) =Z−+(n)+ b(n)(h(X−+(n))−Z−+(n)), (7.5)

Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.6)

Hj,i(n+ 1) =Hj,i(n)+ c(n)

⎛
⎜⎝
(

Z++(n)−Z+(n)
δ2Δ̂ j(n)

)
−
(

Z−+(n)−Z−(n)
δ2Δ̂ j(n)

)
2δ1Δi(n)

−Hj,i(n)

⎞
⎟⎠ .

(7.7)

θk(n+ 1) =Γk

(
θk(n)+ a(n)

N

∑
l=1

Mk,l(n)

(
Z−(n)−Z+(n)

2δ1Δl(n)

))
. (7.8)
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In the above, we set Hj,i(n + 1) = Hi, j(n + 1) for j > i. Further, M(n) =
[[Mi, j(n)]]Ni, j=1 denotes the inverse of the matrix H(n) = P([[Hi, j(n)]]Ni, j=1)

Remark 7.1. In practice, an additional averaging over a certain prescribed number
L of the faster iterates (7.3)-(7.6) in between two successive updates of the other
recursions viz., (7.7) and (7.8), respectively, is seen to improve performance. The
same is true for the other algorithms as well.

7.3.2 Three-Simulation Newton SPSA (N-SPSA3)

N-SPSA3 algorithm, which we will discuss now, is based on three simulations. The
gradient estimate here is again the same as that of regular two-simulation SPSA. We
explain below the Hessian estimate used.

7.3.2.1 The Hessian Estimate

The three-simulation estimate of the Hessian of J(θ ) with respect to θ is based on
the following relationship.

∇2
θ J(θ ) = lim

δ1,δ2→0
E

[
Δ−1

(
J(θ + δ1Δ + δ2Δ̂ )− J(θ + δ1Δ)

δ1δ2

)(
Δ̂−1)T

]
. (7.9)

The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relation in (7.9) will be used in the next section to provide the complete algorithm.
Also, later in Section 7.5.3, this relation will be proved.

7.3.2.2 The N-SPSA3 Algorithm

Consider three simulated Markov processes {X−(n)}, {X+(n)} and {X++(n)}, that
are governed by the parameter sequences {θ (n)− δ1Δ(n)}, {θ (n)+ δ1Δ(n)}, and
{θ (n) + δ1Δ(n) + δ2Δ̂ (n)}, respectively. The aforementioned Markov processes
are assumed to be independent of one another. Let Zw(n), w ∈ {−,+,++}, be
quantities defined via recursions (7.10)-(7.12) below that are used for
averaging the cost function in the three simulations. We initialize Zw(0) = 0,
∀w ∈ {−,+,++}.

The algorithm is given as follows: For n ≥ 0, j, i = 1, . . . ,N, j ≤ i,
k = 1, . . . ,N,
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Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.10)

Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.11)

Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.12)

Hj,i(n+ 1) =Hj,i(n)+ c(n)

(
Z++(n)−Z+(n)

δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)

)
. (7.13)

θk(n+ 1) =Γk

(
θk(n)+ a(n)

N

∑
l=1

Mk,l(n)

(
Z−(n)−Z+(n)

2δ1Δl(n)

))
. (7.14)

In the above, M(n) denotes the inverse of the Hessian H(n), constructed as in the
N-SPSA4 algorithm (see Section 7.3.1.2).

7.3.3 Two-Simulation Newton SPSA (N-SPSA2)

Now we present the two-simulation Newton SPSA algorithm, N-SPSA2. While the
Hessian estimate here is the same as for N-SPSA3, see Section 7.3.2, the gradient
estimate is different from regular two-simulation SPSA. We therefore explain below
the gradient estimate used.

7.3.3.1 The Gradient Estimate

The two-simulation estimate of the gradient of J(θ ) with respect to θ is based on
the following relationship.

∇θJ(θ ) = lim
δ2→0

E

[(
J(θ + δ1Δ + δ2Δ̂ )− J(θ + δ1Δ)

δ2

)(
Δ̂−1)T

]
. (7.15)

The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relationship (7.15) will be proven later in Section 7.5.4.

7.3.3.2 The N-SPSA2 Algorithm

Consider two simulated Markov processes {X+(n)} and {X++(n)}, that are gov-
erned by the parameter sequences {θ (n)+δ1Δ(n)}, and {θ (n)+δ1Δ(n)+δ2Δ̂ (n)},
respectively. The aforementioned Markov processes are assumed to be independent
of one another. Let Zw(n), w∈ {+,++}, be quantities defined via recursions (7.16)-
(7.17) below that are used for averaging the cost function in the four simulations.
We initialize Zw(0) = 0, ∀w ∈ {+,++}.
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The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,

Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.16)

Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.17)

Hj,i(n+ 1) =Hj,i(n)+ c(n)

(
Z++(n)−Z+(n)

δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)

)
. (7.18)

θk(n+ 1) =Γk

(
θk(n)+ a(n)

N

∑
l=1

Mk,l(n)

(
Z+(nL)−Z++(nL)

δ2Δ̂l(n)

))
. (7.19)

In the above, H(n) and M(n) are as in the earlier N-SPSA algorithms.

7.3.4 One-Simulation Newton SPSA (N-SPSA1)

The N-SPSA1 algorithm which is based on just one simulation will be discussed
now. Both the gradient and the Hessian estimates here are different from all the
other algorithms. Hence, we first present these two estimates below.

7.3.4.1 The Gradient Estimate

The one-simulation estimate of the gradient of J(θ ) with respect to θ is based on
the following relationship.

∇θJ(θ ) = lim
δ2→0

E

[(
J(θ + δ1Δ + δ2Δ̂)

δ2

)(
Δ̂−1)T

]
. (7.20)

The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ .

7.3.4.2 The Hessian Estimate

The one-simulation estimate of the Hessian of J(θ ) with respect to θ is based on
the following relationship.

∇2
θJ(θ ) = lim

δ1,δ2→0
E

[
Δ−1

(
J(θ + δ1Δ + δ2Δ̂)

δ1δ2

)(
Δ̂−1)T

]
. (7.21)
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The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . Both the
gradient estimate (7.20) and the Hessian estimate (7.21) will be validated later in
Section 7.5.5.

7.3.4.3 The N-SPSA1 Algorithm

Consider a simulated Markov process {X++(n)} governed by the parameter se-
quence {θ (n)+ δ1Δ(n)+ δ2Δ̂(n)}. Let Z++(n) be quantities defined via the recur-
sion (7.22) below that are used for averaging the cost function in the simulation. We
initialize Z++(0) = 0.

The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,

Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)). (7.22)

Hj,i(n+ 1) =Hj,i(n)+ c(n)

(
Z++(n)

δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)

)
. (7.23)

θk(n+ 1) =Γk

(
θk(n)− a(n)

N

∑
l=1

Mk,l(n)

(
Z++(nL)

δ2Δ̂l(n)

))
. (7.24)

In the above, H(n) and M(n) are constructed as in any of the N-SPSA algorithms
described previously.

Remark 7.2. An important question that arises is how to decide on the choice of the
algorithm (out of the four algorithms described above) for a given problem. As can
be seen, the gradient estimates in the N-SPSA4 and N-SPSA3 algorithms are the
same, and so are the Hessian estimates in the N-SPSA3 and N-SPSA2 algorithms,
respectively. The Hessian estimates for N-SPSA3 (and so also N-SPSA2) have a
higher bias in comparison to the ones for N-SPSA4. It has however been observed
in [2] that on a low-dimensional parameter setting, N-SPSA4 shows the best com-
putational performance. However, on a high-dimensional setting, N-SPSA3 shows
the best results on the whole. The algorithm N-SPSA1 has the largest bias as com-
pared to the other algorithms and does not exhibit good performance in general. We
believe that the choice of the algorithm could be guided by various factors, such
as (a) the accuracy of the converged parameter value that will in general depend
on the overall bias in the estimate as well as (b) the ease of implementation or the
simplicity of the procedure. The latter consideration is in particular meaningful in
the case when real-time computations have to be performed using resources with
limited computational power. In such cases, accuracy of the estimate will have to
be balanced against the computational resource available for performing the vari-
ous computations. For instance, in the case of constrained optimization algorithms
considered in Chapter 10, a one-sided version of N-SPSA2 is implemented where
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one of the simulations is run with the nominal parameter update θ (n) itself. This is
guided by the fact that the said simulation also estimates the Lagrange multiplier,
hence to avoid the use of a third simulation, the aforementioned one-sided version
is suggested.

7.4 Woodbury’s Identity Based Newton SPSA Algorithms

All four algorithms described in the previous section have a high computational
complexity, as in each iteration, the estimate of the projected Hessian H(·) needs
to be inverted. In this section, we address this problem using a popular identity that
goes by the name of Woodbury’s identity, for incrementally obtaining the inverse
of the projected Hessian. For a matrix of order N, typical inversion techniques re-
quire O(N3) computations and some specialized ones are O(N2log(N)). We use the
Woodbury’s identity to provide an incremental inversion scheme here, which is of
computational complexity O(N2). The identity is given below:

(A+BCD)−1 = A−1−A−1B
(
C−1 +DA−1B

)−1
DA−1,

for matrices A,B,C and D of appropriate dimensions. The iteration scheme for the
Hessian matrix in all the four Newton SPSA algorithms can be revised to:

H(n+ 1) = (1− c(n))H(n)+R(n)Y(n)S(n),

where,

R(n)=
1
δ1

[
1

Δ1(n)
1

Δ2(n)
. . .

1
Δ|A|×|B|(n)

]T

,S(n)=
1
δ2

[
1

Δ̂1(n)

1

Δ̂2(n)
. . .

1

Δ̂|A|×|B|(n)

]
,

and a scalar quantity,

Y (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(n)
(
(Z++(n)−Z+(n))− (Z−+(n)−Z−(n))

)
for N-SPSA4,

c(n)
(
Z++(n)−Z+(n)

)
for N-SPSA3 and N-SPSA2,

c(n)
(
Z++(n)

)
for N-SPSA1.

Now, Woodbury’s identity applied to M(n+ 1) = H(n+ 1)−1 gives

M(n+ 1) =

(
M(n)

1− b(n)

[
I− Y (n)R(n)S(n)M(n)

1− c(n)+Y(n)S(n)M(n)R(n)

])
. (7.25)
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This computationally cost-effective procedure for estimating the inverse can now be
used to create four new algorithms, W-SPSA4, W-SPSA3, W-SPSA2 and W-SPSA1
with four, three, two and one simulations respectively. We provide the full algorithm
W-SPSA4 below:

The W-SPSA4 Algorithm

Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.26)

Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.27)

Z−+(n+ 1) =Z−+(n)+ b(n)(h(X−+(n))−Z−+(n)), (7.28)

Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.29)

Y (n) =c(n)
(
(Z++(n)−Z+(n))− (Z−+(n)−Z−(n))

)
, (7.30)

M(n+ 1) =P

(
M(n)

1− b(n)

[
I− Y (n)R(n)S(n)M(n)

1− c(n)+Y(n)S(n)M(n)R(n)

])
, (7.31)

θk(n+ 1) =Γk

(
θk(n)+ a(n)

N

∑
l=1

Mk,l(n)

(
Z−(n)−Z+(n)

2δ1Δl(n)

))
. (7.32)

As previously with N-SPSA4, the operator P(·) ensures that updates to M(n+ 1)
are symmetric and positive definite. The algorithms W-SPSA3, W-SPSA2 and W-
SPSA1 can similarly be derived using the appropriate Y (n) and the update (7.25) in
N-SPSA3, N-SPSA2 and N-SPSA1, respectively.

7.5 Convergence Analysis

7.5.1 Assumptions

We make the following assumptions for the analysis of N-SPSA algorithms:

Assumption 7.1. The single-stage cost function h : Rd → R is Lipschitz
continuous.
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Assumption 7.2. The long-run average cost J(θ ) is twice continuously differ-
entiable in θ with bounded third derivatives.

Assumptions 7.1 and 7.2 are standard requirements. For instance, Assumption 7.2
is a technical requirement that ensures that the Hessian of the objective exists and is
used to push through suitable Taylor series arguments in the proof.

Let {θ (n)} be a sequence of random parameters obtained using (say) an iterative
scheme on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m), m≤ n),
n ≥ 1 denote a sequence of associated σ -fields. We call {θ (n)} non-anticipative if
for all Borel sets A⊂ R

d ,

P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).

Under a non-anticipative {θ (n)}, the process {X(n),θ (n)} is Markov. The se-
quences {θ (n)} resulting in the algorithms discussed in Section 7.3 and Section 7.4,
are, for instance, non-anticipative. We shall assume the existence of a stochastic
Lyapunov function (below).

Assumption 7.3. There exist ε0 > 0, K ⊂ R
d compact and V ∈ C(Rd) such

that lim
‖x‖→∞

V (x) = ∞ and under any non-anticipative {θ (n)},

1. supn E[V (X(n))2]< ∞ and
2. E[V (X(n+ 1)) |H (n)]≤V (X(n))− ε0, whenever X(n) �∈ K, n≥ 0.

Assumption 7.3 is required to ensure that the system remains stable under a tunable
parameter. It will not be required if the cost function h(·) is bounded. As before,
we let ‖ · ‖ denote the Euclidean norm. Also, for any matrix A ∈ R

N×N , its norm is
defined as the induced matrix norm, also denoted using ‖ · ‖ and defined according
to ‖A‖= max

{x∈RN |‖x‖=1}
‖Ax‖.

Like any descent algorithms, the aim here is to find a local minimum. So, one
needs to ensure that the Hessian estimate after each iterate is positive definite and
symmetric. This is achieved by projecting the Hessian estimate to the space of pos-
itive definite and symmetric matrices using the operator P described before.

Assumption 7.4. (i) Let A(n),B(n),n≥ 0 be sequences of matrices in R
N×N

such that lim
n→∞‖A(n)−B(n)‖= 0. Then lim

n→∞‖P(A(n))−P(B(n))‖= 0 as

well.
(ii) Let C(n),n ≥ 0 be a sequence of matrices in R

N×N , such that sup
n

‖C(n)‖< ∞. Then
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sup
n
‖P(C(n))‖, sup

n
‖P(C(n))−1‖< ∞,

as well.

Various operators described for instance via the modified Choleski factorization
procedure, see [1], or the ones presented in [11] and [13], respectively, can be used
for projecting the Hessian updates onto the space of positive definite and symmetric
matrices. The continuity requirement in Assumption 7.4 on the operator P can be
easily imposed in the modified Choleski factorization procedure and the operators
in [11]. Also the procedure in [13] has been shown (there) to satisfy this require-
ment. In fact, since ‖A(n)− B(n)‖ → 0 as n→ ∞, the eigenvalues of A(n) and
B(n) asymptotically become equal, since they are themselves uniformly continuous
functions of the elements of these matrices. A sufficient condition [1, pp.35] for
the other requirements in Assumption 7.4 is that the eigenvalues of each projected
Hessian update be both bounded above as well as away from zero. Thus for some
scalars c1, c2 > 0 let

c1‖z‖2 ≤ zT P(C(n))z≤ c2‖z‖2, ∀z ∈ R
N , n≥ 0. (7.33)

Then all the eigenvalues of P(C(n)), ∀n, lie between c1 and c2. The above also
ensures that the procedure does not get stuck at a non-stationary point. Now by [1,
Propositions A.9 and A.15],

sup
n
‖P(C(n))‖, sup

n
‖{P(C(n))}−1‖< ∞.

Most projection operators are seen to satisfy (7.33) either by explicitly projecting
eigenvalues to the positive half line as with [13] or via (7.33) getting automatically
enforced (such as in the modified Choleski factorization procedure). A more general
condition than (7.33) is, however, given on [1, pp.36].

We show in Lemma 7.7 that sup
n
‖H(n)‖< ∞ w.p. 1, where H(n) is the nth

update of the Hessian. Assumption 7.4 is a technical requirement and is needed
in the convergence analysis. All the algorithms discussed in this chapter, require
(i) estimation of the the long-run average cost objective for various perturbed
parameter sequences, (ii) obtain the aforementioned estimates of the long-run av-
erage cost, and finally, (iii) obtain a parameter update using the Hessian and gradi-
ent estimates. Assumption 7.5 provides conditions on the three step-size schedules,
a(n),b(n),c(n),n≥ 0 for achieving the necessary timescale separations as discussed
above.

Assumption 7.5. The step-sizes a(n),b(n),c(n),n ≥ 0 satisfy the following
requirements:

∑
n

a(n) =∑
n

b(n) =∑
n

c(n) = ∞, (7.34)
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∑
n
(a(n)2 + b(n)2 + c(n)2)< ∞, (7.35)

a(n) = o(c(n)) and c(n) = o(b(n)). (7.36)

Finally, the algorithms require 2N independent parameter perturbation random vari-
ables Δi(n), Δ̂i(n), i = 1, . . . ,N, at each parameter update step n.

Assumption 7.6. The random variables Δi(n), Δ̂i(n), n ≥ 0, i = 1, . . . ,N, are
mutually independent, mean-zero, have a common distribution and satisfy
E[(Δi(n))−2], E[(Δ̂i(n))−2] ≤ K̄, for some K̄ < ∞.

7.5.2 Convergence Analysis of N-SPSA4

Let for any continuous function v(·) : C→ R
N ,

Γ̃ (v(y)) = lim
0<η→0

(
Γ (y+ηv(y))− y

η

)
. (7.37)

Note that if y ∈Co (the interior of C), then Γ̃ (v(y)) = v(y). However, if y ∈ ∂C (the
boundary of C) and v(y) is such that y+ηv(y) �∈ C for η > 0 how-so-ever small,
then Γ̃ (v(y)) is the projection of v(y) to the boundary of C. Also, the limit in (7.37)
is well defined as a consequence of the fact that C is compact and convex. If that is
not the case, one may alternatively consider the set of all limit points of (7.37).

Now, let M̄(θ ) = P(∇2J(θ ))−1 denote the inverse of the projected Hessian ma-
trix corresponding to parameter θ and let M̄k,l(θ ) be its (k, l)’th element. Consider
the following ODE:

θ̇ (t) = Γ̃ (−M̄(θ (t))∇J(θ (t))). (7.38)

Let
K
Δ
= {θ ∈C | ∇J(θ )T Γ̃ (−M̄(θ )∇J(θ )) = 0}.

Further, given η > 0, let Kη = {θ ∈ C | ‖θ − θ0‖ ≤ η , θ0 ∈ K} be the set of
all points that are within a distance η from the set K. Further, let K̂ = {θ ∈ C |
Γ̃ (−M̄(θ )∇J(θ )) = −M̄(θ )∇J(θ )}. It is easy to see that Co ⊆ K̂, where Co is the
interior of C.

We first provide the main convergence result below.

Theorem 7.1. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.3)-(7.8) converges to Kη with probability one.
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The proof of Theorem 7.1 will be established by the following steps:

(i) Lemmas 7.2-7.5 and Corollary 7.6 are used to show that Z(·)(n) sequences
in (7.3)-(7.6), converge almost surely to the long-run cost objective J(·) with
corresponding perturbed parameter sequences.

(ii) Lemmas 7.7-7.8 are used to show that the noise terms in the Hessian estimate
are bounded and diminish to zero.

(iii) Proposition 7.9 and Lemma 7.10 collectively show that the Hessian estimate
H(n) indeed converges almost surely to the Hessian of the long-run average
cost objective, J(·).

(iv) Lemma 7.11 shows that the inverse of the projected Hessian estimate also
converges almost surely to the inverse of the projected Hessian of J(·).

(v) From this result and the convergence results from Section 5.2.3 related to the
basic gradient SPSA algorithm 5.2.2, we conclude the proof for the main re-
sult. The formal proof of Theorem 7.1 is given at the end of this section.

Let G (l) = σ(θ (p),Δ(p), Δ̂ (p),Hj,i(p),X−(p),X+(p),X−+(p),X++(p), p ≤ l,
i, j = 1, . . . ,N), l ≥ 1, denote σ -fields generated by the quantities above. Note that
recursions (7.3)-(7.6) can be rewritten as

Zw(p+ 1) = Zw(p)+ b(p)(h(Xw(p))−Zw(p)), (7.39)

w ∈ {−,+,−+,++}.
Define sequences {Mw(p)}, w ∈ {−,+,−+,++}, as follows:

Mw(p) =
p

∑
m=1

b(m)(h(Xw(m))−E[h(Xw(m)) | G (m− 1)]).

Lemma 7.2. The sequences {Mw(p), G (p)}, w∈{−,+,−+,++} are almost surely
convergent martingale sequences.

Proof. It is easy to see that {Mw(p), G (p)}, w ∈ {−,+,−+,++} are martingale
sequences. Let Aw(p), p ≥ 0, w ∈ {−,+,−+,++} denote the quadratic variation
processes associated with these martingale sequences. Thus,

Aw(p) = E

[
p

∑
m=1

(Mw(m+1)−Mw(m))2 | G (m−1)

]
+E
[
(Mw(0))2

]

= E

[
p

∑
m=1

b2(m+1)
(

h(Xw(m+1))−E[h(Xw(m+1))2 | G (m)]
)]

+E
[
(Mw(0))2

]

=
p

∑
m=1

b2(m+1)
(

E[h2(Xw(m+1)) | G (m)]−E2[h(Xw(m+1)) | G (m)]
)
+E
[
(Mw(0))2

]
.

Now observe that because h(·) is Lipschitz continuous (cf. Assumption 7.1),

|h(Xw(m))|− |h(0)| ≤ |h(Xw(m))− h(0)| ≤ K‖Xw(m)‖,
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where K > 0 is the Lipschitz constant. Thus,

|h(Xw(m))| ≤C1(1+ ‖Xw(m)‖)

for C1 = max(K, |h(0)|) < ∞. By Assumption 7.3, it follows that supm
E[‖Xw(m)‖2] < ∞. Now from Assumption 7.5 (cf. equation (7.35)), it follows that
Aw(p)→ Aw(∞) as p→ ∞ almost surely, ∀w ∈ {−,+,−+,++}. The claim now
follows from the martingale convergence theorem (Theorem B.2). ��
Lemma 7.3. The recursions (7.3)-(7.6) are uniformly bounded with probability one.

Proof. Recall that the recursions (7.3)-(7.6) are analogously written as (7.39). The
latter can be rewritten as

Zw(p+1) = Zw(p)+b(p)(E[h(Xw(p)) |G (p−1)]−Zw(p))+Mw(p)−Mw(p−1),
(7.40)

w ∈ {−,+,−+,++}. Now as a consequence of Lemma 7.2, it is sufficient to show
the boundedness of the following recursion:

Zw(p+ 1) = Zw(p)+ b(p)(E[h(Xw(p)) | G (p− 1)]−Zw(p)). (7.41)

As in Lemma 7.2, it can be shown that

|h(Xw(m))| ≤C1(1+ ‖Xw(m)‖),

for a constant C1 > 0. It again follows from Assumption 7.3 that supm E[‖Xw(m)‖ |
G (m−1)]<∞ almost surely. The rest now follows easily from the Borkar and Meyn
stability theorem (Theorem D.1). ��
Now, define a sequence of time points {s(n),n ≥ 0} as follows: s(0) = 0, s(n) =
n−1

∑
i=0

a(i), n ≥ 1. For i = 1, . . . ,N, let Δi(t) = Δi(n) and Δ̂i(t) = Δ̂i(n) for t ∈
[s(n),s(n + 1)], n ≥ 0. Further let Δ(t) = (Δ1(t), . . . ,ΔN(t))

T and
Δ̂(t) = (Δ̂1(t), . . . , Δ̂N(t))

T , respectively. Also, define another sequence of time

points {t(n)} as follows: t(0) = 0, t(n) =
n−1

∑
i=0

b(i), n ≥ 1. Consider the following

system of ODEs: For i, j ∈ {1, . . . ,N}, w ∈ {−,+,−+,++},

θ̇i(t) = 0, (7.42)

Ḣ j,i(t) = 0, (7.43)

Żw(t) = J(θw(t))−Zw(t). (7.44)

Here and in the rest of the chapter, the following notation for the parameters is
used: θ−(t) = (θ (t) −δ1Δ(t)), θ+(t) = (θ (t) +δ1Δ(t)), θ−+(t) = (θ (t) −δ1Δ(t)
+δ2Δ̂ (t)) and θ++(t) = (θ (t) +δ1Δ(t) +δ2Δ̂ (t)), respectively.
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Define now functions z̄w(t), w ∈ {−,+,−+,++} according to z̄w(t(n)) = Zw(n)
with the maps t → z̄w(t) corresponding to continuous linear interpolations on inter-
vals [t(n), t(n+1)]. Given T > 0, define {T (n)} as follows: T (0) = 0 and for n≥ 1,
T (n) = min{t(m) | t(m) ≥ T (n− 1)+ T}. Let I(n) = [T (n),T (n+ 1)]. Note that
there exists some integer m(n)> 0 such that T (n) = t(m(n)). Define also functions
zw,n(t), w ∈ {−,+,−+,++}, t ∈ I(n), n≥ 0, according to

żw,n(t) = J(θw(t))− zw,n(t), (7.45)

with zw,n(T (n)) = z̄w(t(m(n))) = Zw(m(n)).

Lemma 7.4. lim
n→∞ sup

t∈I(n)
‖zw,n(t)− z̄w(t)‖= 0 ∀w ∈ {−,+,−+,++}, w.p.1.

Proof. The proof follows as in [3, Chapter 2, Lemma 1] (see Proposition 3.2). ��
Lemma 7.5. Given T,ε > 0, ((θi(t(n) + ·), Hj,i(t(n) + ·), z̄w(t(n) + ·)), i, j ∈
{1, . . . ,N}, w ∈ {−,+,−+,++}, is a bounded (T,ε)-perturbation of (7.42)-(7.44)
for n sufficiently large.

Proof. Observe that the iterations (7.7)-(7.8) of the algorithm can be written as

Hj,i(n+ 1) = Hj,i(n)+ b(n)ξ1(n),

θi(n+ 1) = Γi(θi(n)+ b(n)ξ2(n)),

respectively, where ξ1(n) and ξ2(n) are both o(1) as a consequence of Assump-
tion 7.5 (cf. equation (7.36)). The claim now follows from Lemma 7.4. ��
Corollary 7.6. For all w ∈ {−,+,−+,++},

‖Zw(n)− J(θw(n))‖→ 0 a.s.,

as n→ ∞.

Proof. The claim follows from the Hirsch lemma (Lemma C.5) applied on (7.44)
for every ε > 0. ��
We now look at the recursion (7.7).

Lemma 7.7. The iterates Hj,i(n), n ≥ 0, j, i ∈ {1, . . . ,N}, in (7.7), are uniformly
bounded with probability one.

Proof. The result follows as a consequence of Lemma 7.3 using the Borkar-Meyn
theorem (Theorem D.1). ��
The next step is to replace Zw(n) by J(θw(n)) in the update of (7.7), in lieu of
Corollary 7.6. Thus, let
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Fj,i(θ (n),Δ(n), Δ̂ (n))
Δ
=

(
J(θ++(n))− J(θ+(n))

δ2Δ̂ j(n)

)
−
(

J(θ−+(n))− J(θ−(n))
δ2Δ̂ j(n)

)

2δ1Δi(n)
.

Also let F (n) = σ(θi(m), Hj,i(m), Z−(mL), Z+(mL), Z−+(mL), Z++(mL), m≤ n,
i, j = 1, . . . ,N; Δ(m), Δ̂ (m), m < n), n≥ 1. Let {Nj,i(n)}, j, i = 1, . . . ,N be defined
according to

Nj,i(n)=
n−1

∑
m=0

c(m)(Fj,i(θ (m),Δ(m), Δ̂ (m))−E[Fj,i(θ (m),Δ(m), Δ̂ (m)) | F (m)]).

Lemma 7.8. The sequences {Nj,i(n),F (n)}, j, i = 1, . . . ,N form almost surely con-
vergent martingale sequences.

Proof. The claim follows in a similar manner as Lemma 7.2. ��
Proposition 7.9. With probability one, ∀ j, i ∈ {1, . . . ,N},∣∣∣∣∣∣∣E
⎡
⎢⎣
(

J(θ++(n))−J(θ+(n))
δ2Δ̂ j(n)

)
−
(

J(θ−+(n))−J(θ−(n))
δ2Δ̂ j(n)

)
2δ1Δi(n)

∣∣∣∣∣∣∣ F (n)

⎤
⎥⎦−∇2

j,iJ(θ (n))

∣∣∣∣∣∣∣→ 0

as δ1,δ2→ 0.

Proof. The proof proceeds using several Taylor series expansions to evaluate the
conditional expectation above. Note that

J(θ (n)+δ1Δ(n)+δ2Δ̂ (n)) = J(θ (n)+δ1Δ(n))+δ2

N

∑
k=1

Δ̂k(n)∇kJ(θ (n)+δ1Δ(n))

+
1
2
δ 2

2

N

∑
k=1

N

∑
l=1

Δ̂k(n)∇2
k,lJ(θ (n)+ δ1Δ(n))Δ̂l(n)+ o(δ 2

2 ).

Similarly,

J(θ (n)−δ1Δ(n)+δ2Δ̂ (n)) = J(θ (n)−δ1Δ(n))+δ2

N

∑
k=1

Δ̂k(n)∇kJ(θ (n)−δ1Δ(n))

+
1
2
δ 2

2

N

∑
k=1

N

∑
l=1

Δ̂k(n)∇2
k,lJ(θ (n)− δ1Δ(n))Δ̂l(n)+ o(δ 2

2 ).

It can now be seen that

E

[((
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))

δ2Δ̂ j(n)

)
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−
(

J(θ (n)− δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)− δ1Δ(n))
δ2Δ̂ j(n)

))
/2δ1Δi(n) | F (n)

]

= E

[
∇ jJ(θ (n)+ δ1Δ(n))−∇ jJ(θ (n)− δ1Δ(n))

2δ1Δi(n)

+∑
k �= j

Δ̂k(n)

Δ̂ j(n)

∇kJ(θ (n)+ δ1Δ(n))−∇kJ(θ (n)− δ1Δ(n))
2δ1Δi(n)

+δ2

N

∑
k=1

N

∑
l=1

Δ̂k(n)(∇2
k,lJ(θ (n)+ δ1Δ(n))−∇2

k,lJ(θ (n)− δ1Δ(n)))Δ̂l(n)

4δ1Δi(n)Δ̂ j(n)

+ o(δ2) | F (n)

]
(7.46)

Now using Taylor series expansions of∇ jJ(θ (n)+δ1Δ(n)) and∇ jJ(θ (n)−δ1Δ(n))
around ∇ jJ(θ (n)) gives

∇ jJ(θ (n)+ δ1Δ(n))−∇ jJ(θ (n)− δ1Δ(n))
2δ1Δi(n)

=∇2
j,iJ(θ (n))

+∑
l �=i

Δl(n)
Δi(n)

∇2
j,lJ(θ (n))+ o(δ 2

1 ).

A similar expansion can be obtained with index k in place of j in the second term
on the RHS of (7.46). Also note that

∇2
k,lJ(θ (n)+δ1Δ (n))−∇2

k,lJ(θ (n)−δ1Δ (n))
4δ1Δi(n)

=
N

∑
m=1

Δ (m)(n)∇3
k,l,mJ(θ (n))

2Δi(n)
+o(δ1)

Thus,

δ2

N

∑
k=1

N

∑
l=1

Δ̂k(n)(∇2
k,lJ(θ (n)+ δ1Δ(n))−∇2

k,lJ(θ (n)− δ1Δ(n)))Δ̂l(n)

4δ1Δi(n)Δ̂ j(n)

= δ2

N

∑
k=1

N

∑
l=1

N

∑
m=1

Δ̂k(n)Δ(m)(n)∇3
k,l,mJ(θ (n))Δ̂l(n)

2Δ̂ j(n)Δi(n)
+ o(δ1).

Substituting the above in (7.46), one obtains

E

[((
J(θ (n)+δ1Δ (n)+δ2Δ̂(n))−J(θ (n)+δ1Δ (n))

2δ1Δi(n)δ2Δ̂ j(n)

)

−
(

J(θ (n)−δ1Δ (n)+δ2Δ̂(n))−J(θ (n)−δ1Δ (n))
2δ1Δi(n)δ2Δ̂ j(n)

)) ∣∣∣∣∣ F (n)

]
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= E

[
∇2

j,iJ(θ (n))+∑
l �=i

Δl(n)
Δi(n)

∇2
j,l J(θ (n))+∑

k �= j

Δ̂k(n)

Δ̂ j(n)
∇2

k,iJ(θ (n))

+∑
k �= j
∑
l �=i

Δ̂k(n)

Δ̂ j(n)

Δl(n)
Δi(n)

∇2
k,lJ(θ (n))+δ2

N

∑
k,l,m=1

Δ̂k(n)Δ (m)(n)∇3
k,l,mJ(θ (n))Δ̂l(n)

2Δ̂ j(n)Δi(n)

+o(δ1)+o(δ2) | F (n)

]

=∇2
j,iJ(θ (n))+∑

l �=i

E

[
Δl(n)
Δi(n)

| F (n)

]
∇2

j,l J(θ (n))+∑
k �= j

E

[
Δ̂k(n)

Δ̂ j(n)
| F (n)

]
∇2

k,iJ(θ (n))

+∑
k �= j
∑
l �=i

E

[
Δ̂k(n)

Δ̂ j(n)

Δl(n)
Δi(n)

| F (n)

]
∇2

k,lJ(θ (n))

+δ2

N

∑
k=1

N

∑
l=1

N

∑
m=1

E

[
Δ̂k(n)Δ̂l(n)Δ (m)(n)

2Δ̂ j(n)Δi(n)
| F (n)

]
∇3

k,l,mJ(θ (n))+o(δ1)+o(δ2).

Now, by Assumption 7.6, it is easy to see that all conditional expectations in the last
equality above equal zero. Thus

E

[((
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))

2δ1Δi(n)δ2Δ̂ j(n)

)

−
(

J(θ (n)− δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)− δ1Δ(n))
2δ1Δi(n)δ2Δ̂ j(n)

)) ∣∣∣∣∣ F (n)

]

= ∇2
j,iJ(θ (n))+ o(δ1)+ o(δ2).

The claim follows. ��

Consider now the following ODEs: For j, i = 1, . . . ,N,

Ḣj,i(t) = ∇2
j,iJ(θ (t))−Hj,i(t),

θ̇i(t) = 0.

}
(7.47)

Next define {r(n)} as follows: r(0) = 0 and for n > 0, r(n) =
n−1

∑
m=0

c(m). De-

fine H̄(t) = [[H̄j,i(t)]]Nj,i=1 and x̄w(t), w ∈ {−,+,−+,++}, as follows: For j, i =
1, . . . ,N, H̄ j,i(r(n)) = Hj,i(n) and x̄w(r(n)) = Zw(nL) with linear interpolations on
[r(n),r(n+ 1)].

The following can now be shown in the same way as Corollary 7.6.

Lemma 7.10. ‖H(n)−∇2J(θ (n))‖ → 0 a.s. as δ1,δ2→ 0 and n→ ∞,

where H(n) = [[Hj,i(n)]]Nj,i=1.
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Lemma 7.11. With probability one, ‖P(H(n))−1− P(∇2J(θ (n)))−1‖ → 0 as δ1,
δ2→ 0 and n→ ∞.

Proof. Note that
‖P(H(n))−1−P(∇2J(θ (n)))−1‖

= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))P(H(n))−1− I)‖
= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))P(H(n))−1−P(H(n))P(H(n))−1)‖

= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))−P(H(n)))P(H(n))−1‖
≤ ‖P(∇2J(θ (n)))−1‖ · ‖P(∇2J(θ (n)))−P(H(n))‖ · ‖P(H(n))−1‖

≤ sup
n
‖P(∇2J(θ (n)))−1‖sup

n
‖P(H(n))−1‖ · ‖P(∇2J(θ (n)))−P(H(n))‖

→ 0 as n→ ∞,

by Assumption 7.4. In the above, I denotes the N ×N-identity matrix. The claim
follows. ��
Proof of Theorem 7.1. For i = 1, . . . ,N, let {Ri(n), n≥ 1} be defined according to

Ri(n) =
n−1

∑
m=0

a(m)
N

∑
k=1

M̄i,k(θ (m))

(
J(θ (m)− δ1Δ(m))− J(θ (m)+ δ1Δ(m))

2δ1Δk(m)

−E

[
J(θ (m)− δ1Δ(m))− J(θ (m)+ δ1Δ(m))

2δ1Δk(m)
|F (m)

])
,

n ≥ 1. Then it is easy to see that {Ri(n), F (n)}, i = 1, . . . ,N, are almost surely
convergent martingale sequences. Now recursion (7.8) of the algorithm can be
rewritten as

θi(n+ 1) = Γi(θi(n)+ a(n)
N

∑
k=1

M̄i,k(θ (n))(E[(J(θ (n)− δ1Δ(n))

− J(θ (n)+ δ1Δ(n)))/2δ1Δk(n) | F (n)]+ (Ri(n+ 1)−Ri(n))+ a(n)α(n)),
(7.48)

where (Ri(n+ 1)−Ri(n)) is o(1) by the above and α(n) vanishes as n→ ∞ and
δ1,δ2→ 0 by Corollary 7.6 and Lemma 7.11.

Using Taylor series expansions of J(θ (n) −δ1Δ(n)) and J(θ (n) +δ1Δ(n)), re-
spectively, around θ (n) and taking the conditional expectation above, it is easy to
see that recursion (7.8) can be rewritten as

θi(n+1) = Γi(θi(n)−a(n)
N

∑
k=1

M̄i,k(θ (n))∇kJ(θ (n))+a(n)ξδ1
(n)+(Ri(n+1)−Ri(n))

+a(n)α(n)), (7.49)
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where ξδ1
(n) vanishes as n→ ∞ and δ1→ 0. Note that (7.49) can be viewed, using

a standard approximation argument as in [5, pp.191-196] and Proposition 7.9, as
a discretization of the ODE (7.38) with certain error terms that, however, vanish
asymptotically (as n→ ∞) and in the limit as δ1,δ2→ 0. Now J(θ ) itself serves as
an associated Lyapunov function for the ODE (7.38). The claim now follows from
Lasalle’s invariance theorem [7]. ��
Remark 7.3. Note that for θ ∈ K̂∩K, ∇J(θ ) = 0 by positive definiteness of M̄(θ ).
Further, on the set K\K̂, if∇J(θ ) �= 0, one has Γ̃i(−(M̄(θ )∇J(θ ))i) = 0 for all those
i (i = 1, . . . ,N) for which ∇iJ(θ ) �= 0. (Here−(M̄(θ )∇J(θ ))i corresponds to the ith
component of the vector (M̄(θ )∇J(θ )).) The latter correspond to spurious fixed
points that, however, can occur only on the projection set boundaries (since Co ⊆ K̂)
[6, pp. 79].

7.5.3 Convergence Analysis of N-SPSA3

The analysis proceeds in exactly the same way as for N-SPSA4. Note, however, that
the form of the Hessian estimator here is different. Hence, we show that the Hessian
estimator is consistent.

Let F1(n)
Δ
= σ(θi(m), Hj,i(m), Z−(mL), Z+(m), Z++(m), m≤ n, i, j = 1, . . . ,N;

Δ(m), Δ̂(m), m < n), n≥ 1 be a sequence of sigma fields.

Proposition 7.12. With probability one, ∀ j, i ∈ {1, . . . ,N}∣∣∣∣∣E
[

J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)

|F1(n)

]
−∇2

j,iJ(θ (n))

∣∣∣∣∣
−→ 0 as δ1,δ2→ 0.

Proof. Note as before that

J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)

=
N

∑
l=1

Δ̂l(n)∇lJ(θ (n)+ δ1Δ(n))
δ1Δi(n)Δ̂ j(n)

+
δ2

2

N

∑
l=1

N

∑
m=1

Δ̂l(n)Δ̂(m)(n)∇2
l,mJ(θ (n)+ δ1Δ(n))

δ1Δi(n)Δ̂ j(n)
+ o(δ2) (7.50)

Taking again appropriate Taylor series expansions of ∇lJ(θ (n) + δ1Δ(n)) and
∇2

l,mJ(θ (n) + δ1Δ(n)) around θ (n), substituting in (7.50), taking the conditional
expectation w.r.t. F1(n), one obtains

E

[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))

δ1δ2Δi(n)Δ̂ j(n)
|F1(n)

]
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=
N

∑
l=1

1
δ1

E

[
Δ̂l(n)

Δi(n)Δ̂ j(n)
|F1(n)

]
∇lJ(θ (n))+∇2

j,iJ(θ (n))

+
N

∑
l=1,l �= j

N

∑
k=1,k �=i

E

[
Δ̂l(n)Δk(n)

Δ̂ j(n)Δi(n)
|F1(n)

]
∇2

l,kJ(θ (n))

+
δ1

2

N

∑
l=1

N

∑
k=1

N

∑
m=1

E

[
Δ̂l(n)Δk(n)Δ(m)(n)

Δi(n)Δ̂ j(n)
|F1(n)

]
∇3

k,m,lJ(θ (n))

+
δ2

2δ1

N

∑
l=1

N

∑
m=1

E

[
Δ̂l(n)Δ̂(m)(n)

Δi(n)Δ̂ j(n)
|F1(n)

]
∇2

l,mJ(θ (n))

+
δ2

2

N

∑
l=1

N

∑
m=1

N

∑
k=1

E

[
Δ̂l(n)Δ̂(m)(n)Δk(n)

Δi(n)Δ̂ j(n)
|F1(n)

]
∇3

l,m,kJ(θ (n))+ o(δ1)+ o(δ2).

From Assumption 7.6, all the conditional expectation terms on the RHS above equal
zero. Thus

E

[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))

δ1δ2Δi(n)Δ̂ j(n)
|F1(n)

]

= ∇2
j,iJ(θ (n))+ o(δ1)+ o(δ2).

The claim follows. ��

Theorem 7.13. Given η > 0, there exists δ̂ > 0 such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.10)-(7.14) converges to the set Kη with probability one.

Proof. Follows in the same manner as Theorem 7.1. ��

7.5.4 Convergence Analysis of N-SPSA2

As with N-SPSA3, the analysis proceeds along similar lines as for N-SPSA4. Let

F2(n)
Δ
= σ(θi(m), Hj,i(m), Z+(m), Z++(m), m ≤ n, i, j = 1, . . . ,N; Δ(m), Δ̂ (m),

m < n), n≥ 1 denote a sequence of sigma fields. Since the form of the Hessian esti-
mate here is the same as in N-SPSA3, the conclusions of Proposition 7.12 continue
to hold with F2(n) in place of F1(n). Note, however, that the form of the gradient
estimate here is different. We have the following result for the gradient estimate.

Proposition 7.14. For all k = 1, . . . ,N,



7.5 Convergence Analysis 127

lim
δ1,δ2→0

‖E
[

J(θ (n)+δ1Δ (n))−J(θ (n)+δ1Δ (n)+δ2Δ̂(n))
δ2Δ̂k(n)

|F2(n)

]
+∇kJ(θ (n))‖= 0,

with probability one.

Proof. Note that

J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)

=−
N

∑
l=1

Δ̂l(n)

Δ̂k(n)
∇lJ(θ (n)+δ1Δ(n))

− δ2

2

N

∑
l=1

N

∑
j=1

Δ̂l(n)

Δ̂k(n)
Δ̂ j(n)∇2

l, jJ(θ (n)+ δ1Δ(n))+ o(δ2). (7.51)

Again

∇lJ(θ (n)+ δ1Δ(n)) = ∇lJ(θ (n))+ δ1

N

∑
j=1
Δ j(n)∇2

l, jJ(θ (n))+ o(δ1),

∇2
l, jJ(θ (n)+ δ1Δ(n)) = ∇2

l, jJ(θ (n))+ δ1

N

∑
m=1

Δ(m)(n)∇3
l, j,mJ(θ (n))+ o(δ1).

Substituting the above in (7.51) and taking conditional expectations, we have

E

[
J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))

δ2Δ̂k(n)
| F2(n)

]

=−∇kJ(θ (n))−
N

∑
l=1,l �=k

E

[
Δ̂l(n)

Δ̂k(n)
|F2(n)

]
∇lJ(θ (n))

−δ1

N

∑
l=1

N

∑
j=1

E

[
Δ̂l(n)Δ j(n)

Δ̂k(n)
|F2(n)

]
∇2

l, jJ(θ (n))

−δ2

2

N

∑
l=1

N

∑
j=1

E

[
Δ̂l(n)Δ̂ j(n)

Δ̂k(n)
|F2(n)

]
∇2

l, jJ(θ (n))

−δ1δ2

2

N

∑
l=1

N

∑
j=1

N

∑
m=1

E

[
Δ̂l(n)Δ̂ j(n)Δ(m)(n)

Δ̂k(n)
|F2(n)

]
∇3

l, j,mJ(θ (n))+ o(δ1)+ o(δ2).

Now it is easy to see using Assumption 7.6 that all conditional expectation terms on
the RHS above equal zero. Thus,

E

[
J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))

δ2Δ̂k(n)
| F2(n)

]

=−∇kJ(θ (n))+ o(δ1)+ o(δ2).
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The claim follows. ��

Theorem 7.15. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.16)-(7.19) converges to the set Kη with probability one.

Proof. Using an appropriate martingale construction, it is easy to see that recursion
(7.19) can be rewritten as

θi(n+ 1) = Γi(θi(n)+ a(n)
N

∑
k=1

M̄i,k(θ (n))(E[(J(θ (n)+ δ1Δ(n))

− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n)))/δ2Δ̂k(n) |F2(n)])+α1(n)+ a(n)α2(n)), (7.52)

where α1(n) is o(1) and α2(n) becomes asymptotically negligible as δ1,δ2→ 0. The
claim now follows in a similar manner as Theorem 7.1 upon using the conclusions
of Proposition 7.14. ��

7.5.5 Convergence Analysis of N-SPSA1

The analysis in this case also proceeds along similar lines as that of N-SPSA4. Let
F3(n) = σ(θi(m), Hj,i(m), Z++(m), m ≤ n, i, j = 1, . . . ,N; Δ(m), Δ̂ (m), m < n),
n≥ 1 denote a sequence of sigma fields. The forms of the gradient and the Hessian
estimators are both different from the other algorithms. Hence, we first show their
unbiasedness.

Proposition 7.16. With probability one, ∀ j, i ∈ {1, . . . ,N},

lim
δ1,δ2→0

∣∣∣∣∣E
[

J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ1δ2Δi(n)Δ̂ j(n)

|F3(n)

]
−∇2

j,iJ(θ (n))

∣∣∣∣∣= 0. (7.53)

Proof. The proof here is similar to that of Proposition 7.12, the only difference be-
ing the presence of additional bias terms that arise from the Taylor series expansion

of the ‘extra’ term E

[
J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)

|F3(n)

]
that in turn results from the Tay-

lor’s expansion of the first term in (7.53). Now note that

E

[
J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)

|F3(n)

]
= E

[
1

Δi(n)Δ̂ j(n)
|F3(n)

]
J(θ (n))
δ1δ2

+
N

∑
k=1

E

[
Δk(n)

Δi(n)Δ̂ j(n)
|F3(n)

]
∇kJ(θ (n))

δ2
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+
δ1

2δ2

N

∑
k=1

N

∑
m=1

E

[
Δk(n)Δ(m)(n)

Δi(n)Δ̂ j(n)
|F3(n)

]
∇2

k,mJ(θ (n))+ o(δ1).

It is easy to see from Assumption 7.6 that all the conditional expectation terms on
the RHS above equal zero. The rest follows as in Proposition 7.12. ��
Proposition 7.17. For all k = 1, . . . ,N,

lim
δ1,δ2→0

∣∣∣∣∣E
[

J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)

|F3(n)

]
−∇kJ(θ (n))

∣∣∣∣∣= 0,

with probability one.

Proof. Note that

J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)

=
J(θ (n)+ δ1Δ(n))

δ2Δ̂k(n)
+

N

∑
l=1

Δ̂l(n)

Δ̂k(n)
∇lJ(θ (n)+ δ1Δ(n))

+
δ2

2

N

∑
l=1

N

∑
j=1

Δ̂l(n)

Δ̂k(n)
Δ̂ j(n)∇2

l, jJ(θ (n)+ δ1Δ(n))+ o(δ2). (7.54)

Upon comparison with (7.51), it is clear that there is an extra term
J(θ (n)+ δ1Δ(n))

δ2Δ̂(n)
on the RHS of (7.54) that is not present in the corresponding expression in (7.51).
Again note that

E

[
J(θ (n)+ δ1Δ(n))

δ2Δ̂k(n)
|F3(n)

]
= E

[
1

Δ̂k(n)
|F3(n)

]
J(θ (n))
δ2

+δ1

N

∑
l=1

E

[
Δl(n)

Δ̂k(n)
|F3(n)

]
∇lJ(θ (n))

δ2

+
δ 2

1

2

N

∑
l=1

N

∑
m=1

E

[
Δl(n)Δ(m)(n)

Δ̂k(n)
|F3(n)

] ∇2
l,mJ(θ (n))
δ2

+ o(δ1).

It is easy to see from Assumption 7.6 that all the conditional expectation terms on
the RHS above equal zero. The rest now follows as in Proposition 7.14. ��

Theorem 7.18. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.22)-(7.24) converges to the set Kη with probability one.

Proof. As before, (7.24) can be rewritten using a martingale argument as

θi(n+ 1) = Γi(θi(n)− a(n)
N

∑
k=1

M̄i,k(θ (n))E

[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂ (n))

δ2Δ̂k(n)
|F3(n)

]
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+α3(n)+ a(n)α4(n)),

where α3(n) is o(1) and α4(n) vanishes asymptotically as δ1,δ2 → 0. The
rest now follows from Propositions 7.16 and 7.17, in a similar manner as
Theorem 7.1. ��

7.5.6 Convergence Analysis of W-SPSA Algorithms

The convergence of the W-SPSA4 algorithm follows from that of the N-SPSA4
algorithm with the following lemma in place of Lemma 7.11.

Lemma 7.19. ∥∥M(n)−P(∇2J(θ (n)))−1
∥∥→ 0 w.p. 1,

with δ1,δ2→ 0 as n→ ∞, ∀i, j ∈ {1,2, . . . , |A|× |B|}.
Proof. From Woodbury’s identity, since M(n),n ≥ 1 sequence of W-SPSA4 is
identical to the P(H(n))−1,n ≥ 1 sequence of N-SPSA4, the result follows from
Lemma 7.11. ��
On similar lines, one can derive convergence results for W-SPSA3, W-SPSA2 and
W-SPSA1 algorithms.

7.6 Concluding Remarks

We presented in this chapter four different Newton SPSA algorithms from [2] for
the long-run average cost objective. It has been empirically shown in [2] that N-
SPSA4 shows the best results on a low-dimensional setting (considered there),
while N-SPSA3 shows the same for high-dimensional parameters. This, however,
needs to be verified over other settings. The short comings of Newton-based al-
gorithms are the requirements of (a) projection to the set of positive definite and
symmetric matrices and (b) the problem of taking the inverse of the projected
Hessian update at each step. For the second problem, we proposed variants to the
N-SPSA algorithms that directly update the inverse of the Hessian matrix by mak-
ing use of the Woodbury’s identity. The problem of finding the Hessian inverse is
altogether avoided by [13] where the inverse of the geometric mean of the ‘pro-
jected eigen-values’ of the Hessian update at each update epoch replaces the in-
verse of the Hessian. Finally, [12] proposes certain improved Hessian estimates for
Newton SPSA.
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Chapter 8
Newton-Based Smoothed Functional Algorithms

8.1 Introduction

We saw in Chapter 6, the development of gradient estimates using the SF technique.
The idea is that there was to convolve the gradient of the objective with a multi-
variate smoothing density functional. Using an integration-by-parts argument, the
same is obtained as a convolution of the objective with a scaled version of the den-
sity. The density functions that can be used for smoothing include Gaussian, Cauchy
and uniform pdfs.

We extend the above idea to obtain Hessian estimates using Gaussian pdfs as
smoothing functions. By taking the convolution of the Hessian of the objective with
a multi-variate Gaussian pdf, and through an integration-by-parts argument applied
twice, one obtains in an elegant manner the same as a convolution of the objective
function with a transformed density functional. The transformation involves gener-
ating N independent N(0,1)–distributed random variates at each update step (where
N corresponds to the parameter dimension). The same perturbed simulation is also
seen (see Chapter 6) to estimate the gradient of the objective function. This results
in a one-simulation Newton SF algorithm where one perturbed simulation estimates
both the gradient and the Hessian of the objective.

Next in Section 8.2.2, we derive a two-simulation balanced estimate of the Hes-
sian of the objective function that is seen to have a lower bias than its one-simulation
counterpart. As discussed in Chapter 6, the same two simulations are also seen to
help in obtaining a balanced SF estimate of the gradient.

Prior work on Hessian-based estimation schemes in the literature has been dis-
cussed in Chapter 7 including the simultaneous perturbation techniques presented
there. As with Chapter 7, we consider here the long-run average cost objective and
develop multi-timescale stochastic approximation algorithms. The material in this
chapter is entirely based on [2].

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 133–148.
springerlink.com © Springer-Verlag London 2013
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The rest of the chapter is organized as follows: The Hessian estimates are de-
rived in Section 8.2. The two Newton SF algorithms that incorporate these Hessian
estimators as well as the gradient SF estimators described in Chapter 6 are then pre-
sented in Section 8.3. The proofs of convergence of these algorithms are presented
in Section 8.4. Finally, Section 8.5 presents the concluding remarks.

The framework that we use is exactly the same as described in Section 7.2 of
Chapter 7, hence the same is not repeated here. Further, we let Assumptions 7.1–7.5
hold.

8.2 The Hessian Estimates

We present in this section both the one-simulation and the two-simulation Hessian
SF estimates.

8.2.1 One-Simulation Hessian SF Estimate

Let
D2
β ,1J(θ ) �=

∫
Gβ (θ −η)∇2

ηJ(η)dη , (8.1)

denote the convolution of the N-dimensional multi-variate Gaussian pdf Gβ (·) (i.e.,
the joint pdf of N independent N(0,β 2)-distributed random variables) with∇2

ηJ(η),
the Hessian of J(η). The precise expression of Gβ (θ −η) is

Gβ (θ −η) =
1

(2π)N/2βN
exp

(
−1

2

N

∑
i=1

(θi−ηi)
2

β 2

)
,

where θ ,η ∈R
N with θ �= (θ1, . . . ,θN)

T and η �= (η1, . . . ,ηN)
T . It can be seen that

in the limit as β → 0, D2
β ,1J(θ )→∇2J(θ ). Thus, for β > 0 small enough, D2

β ,1J(θ )
will serve as an estimate of the Hessian∇2J(θ ). This argument will be made precise
later.

Now, as with the G-SF schemes, upon integrating by parts in (8.1), one obtains

D2
β ,1J(θ ) =−∫ ∇ηGβ (θ −η)∇ηJ(η)dη

=
∫
∇ηGβ (η)∇ηJ(θ −η)dη .

It is easy to see that

∇ηGβ (η) =−
η
β 2 Gβ (η).
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Hence,

D2
β ,1J(θ ) = − 1

β 2

∫
ηGβ (η)∇ηJ(η)dη

= − 1
β 2

∫
∇η (ηGβ (η))J(θ −η)dη . (8.2)

The last equality above is obtained via another operation involving integration by
parts. Before we proceed further, we first evaluate ∇η (ηGβ (η)) = ∇η((η1Gβ (η),
. . ., ηNGβ (η)). Note that

∇η(ηGβ (η)) =

⎡
⎢⎢⎣
∇η1(η1Gβ (η)) ∇η2(η1Gβ (η)) · · · ∇ηN (η1Gβ (η))
∇η1(η2Gβ (η)) ∇η2(η2Gβ (η)) · · · ∇ηN (η2Gβ (η))

· · · · · · · · · · · ·
∇η1(ηNGβ (η)) ∇η2(ηNGβ (η)) · · · ∇ηN (ηNGβ (η))

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(
1− η2

1
β 2

)
−η1η2

β 2 · · · −η1ηN
β 2

−η2η1
β 2

(
1− η2

2
β 2

)
· · · −η2ηN

β 2

· · · · · · · · · · · ·
−ηNη1

β 2 −ηNη2
β 2 · · ·

(
1− η2

N
β 2

)

⎤
⎥⎥⎥⎥⎥⎦Gβ (η).

Let Ĥ(η) denote the matrix above that multiplies Gβ (η). Then from (8.2), we have

D2
β ,1J(θ ) =− 1

β 2

∫
Ĥ(η)Gβ (η)J(θ −η)dη .

Let η ′=η/β . Then η = βη ′=(βη ′1, . . . ,βη ′N)T (written component-wise). Hence,
dη = βNdη ′1 · · ·dη ′N = βNdη ′. Hence (8.2) becomes

D2
β ,1J(θ ) =

1
β 2

∫
H̄(η ′)G1(η ′)J(θ −βη ′)dη ′, (8.3)

where G1(η ′) = Gβ (η ′) with β = 1, i.e., the joint p.d.f. of N independent, N(0,1)-
distributed random variables. Also,

H̄(η ′) =

⎡
⎢⎢⎣
((η ′1)2− 1) η ′1η ′2 · · · η ′1η ′N
η ′2η

′
1 ((η ′2)

2− 1) · · · η ′2η
′
N

· · · · · · · · · · · ·
η ′Nη ′1 η ′Nη ′2 · · · ((η ′N)2− 1)

⎤
⎥⎥⎦ . (8.4)
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Note that since η ′i = ηi/β , i = 1, . . . ,N, they are independent N(0,1)-distributed
random variables. Now since η ′i and −η ′i have the same distribution, one obtains

D2
β ,1J(θ ) = E

[
1
β 2 H̄(η̄)J(θ +βη̄) | θ

]
,

where the expectation above is taken w.r.t. the p.d.f. G1(η̄). Hence the form of the
estimator for ∇2J(θ (n)) suggested by the above is (for a large integer M > 0 and a
small scalar β > 0)

∇2J(θ (n))≈ 1
β 2

1
M

M

∑
n=1

H̄(η(n))J(θ (n)+βη(n)). (8.5)

Here η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)–distributed ran-
dom variables.

8.2.2 Two-Simulation Hessian SF Estimate

We now describe a two-simulation (balanced) SF estimate of the Hessian. Let

D2
β ,2J(θ ) = E

[
1

2β 2 H̄(η̄)(J(θ +βη̄)+ J(θ −βη̄)) | θ
]
,

with η̄ �= (η1, . . . ,ηN)
T , with η1, . . . ,ηN being independent, N(0,1)-distributed ran-

dom variables. Then D2
β ,2J(θ ) will serve as an estimate of the Hessian ∇2J(θ ). Us-

ing a Taylor series argument, it will be seen that this estimate has a lower bias than
the one-simulation Hessian SF estimate in Section 8.2.1.

Thus, the form of the two-sided Hessian estimator suggested by the above is the
following: For a large integer M > 0 and a small scalar β > 0,

∇2J(θ (n))≈ 1
2β 2

1
M

M

∑
n=1

H̄(η(n))(J(θ (n)+βη(n))+ J(θ (n)−βη(n))),
(8.6)

where η(n) �= (η1(n), . . . ,ηN(n))T is a vector of N(0,1)-distributed random
variables.
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8.3 The Newton SF Algorithms

We now present the two Newton SF algorithms that are based on the afore-
mentioned one- and two-simulation SF estimates of the Hessian. These algorithms
also incorporate the one- and two-simulation gradient SF estimates described in
Chapter 6. The two combinations of (a) one-simulation gradient and Hessian es-
timates as well as the (b) two-simulation gradient and Hessian estimates, respec-
tively, result in one-simulation and two-simulation Newton SF algorithms that are
respectively referred to as N-SF1 and N-SF2.

As with the algorithms in Chapters 5–7, it is observed that the performance
of the SF algorithms improves considerably when the parameter vector is
updated once after a given number L of instants when L > 1. This happens as a
consequence of the additional data averaging (over L instants) on top of the two-
timescale averaging. The value of L is, however, totally arbitrary, and in fact, it is
observed (see [1, 2, 3]) that a value of L between 50 and 500 works well in many
cases.

8.3.1 The One-Simulation Newton SF Algorithm (N-SF1)

We now describe the Newton SF algorithm which requires one simulation
with perturbed parameter θ + βη . Let {X(n)} be the underlying Markov process
parametrized with θ (n)+βη(n). Let Zi, j(n), i, j = 1,2, . . . ,N, denote components
of the Hessian estimate at update instant n. Also, let Zi(n), i = 1,2, . . . ,N, denote
components of the gradient estimate at update instant n. The algorithm is given as
follows: For a large integer M > 0 and a small β > 0, and for i, j,k = 1, . . . ,N,
j < k,

Zi,i(n+ 1) = Zi,i(n)+ b(n)

(
η2

i (n)− 1
β 2 h(X(n))−Zi,i(n)

)
, (8.7)

Zj,k(n+ 1) = Zj,k(n)+ b(n)

(
η j(n)ηk(n)

β 2 h(X(n))−Zj,k(n)

)
. (8.8)

For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). For l = 1, . . . ,N, update

Zl(n+ 1) = Zl(n)+ c(n)

(
ηl(n)
β

h(X(n))−Zl(n)

)
. (8.9)
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Next, form the matrix H(n) = P([[Zj,k(n)]]Nj,k=1) and compute its inverse

M(n) = [[Mj,k(n)]]Nj,k=1
�
= H(n)−1. For i = 1, . . . ,N, update θi(n) according to

θi(n+ 1) = Γi

(
θi(n)− a(n)

N

∑
k=1

Mi,k(n)Zk(n)

)
, (8.10)

where for some x= (x1, . . . ,xN)
T ∈RN , Γ (x) �=(Γ1(x1), . . .,ΓN(xN))

T represents the
projection of x onto the constraint set C. This is an L2 projection (i.e., the Euclidean-
norm projection).

Next, we present the two-simulation Newton SF algorithm that has a lower bias
in both its gradient and Hessian estimates over its one-simulation counterpart.

8.3.2 The Two-Simulation Newton SF Algorithm (N-SF2)

The Newton SF algorithm, N-SF2, requiring two simulations {X1(n)} and {X2(n)}
with θ+βη and θ−βη respectively, is presented below: For a large integer M > 0
and a small β > 0, and for i, j,k = 1, . . . ,N, j < k,

Zi,i(n+ 1) = Zi,i(n)+ b(n)(
η2

i (n)− 1
2β 2 (h(X1(n))+ h(X2(n)))−Zi,i(n)),

(8.11)

Zj,k(n+ 1) = Zj,k(n)+ b(n)(
η j(n)ηk(n)

2β 2 (h(X1(n))+ h(X2(n)))−Zj,k(n)).

(8.12)

For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). Now, for l = 1, . . . ,N, update

Zl(n+ 1) = Zl(n)+ c(n)

(
ηl(n)
2β

(h(X1(n))− h(X2(n)))−Zl(n)

)
. (8.13)

Next, form the matrix H(n) = P([[Zj,k(n)]]Nj,k=1) and compute its inverse M(n) =

[[Mj,k(n)]]Nj,k=1
�
= H(n)−1. Finally, for i = 1, . . . ,N,

θi(n+ 1) = Γi

(
θi(n)− a(n)

N

∑
k=1

Mi,k(n)Zk(n)

)
, (8.14)

where the projection operator Γ is defined as for the N-SF1 algorithm.
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Remark 8.1. As noted previously, the performance of the algorithms N-SF1 and N-
SF2 is seen to improve considerably if recursions (8.7)–(8.9) (resp. (8.11)–(8.13))
in N-SF1 (resp. N-SF2) are run for some given number L > 1 of instants in between
two successive updates of the parameter (cf. recursions (8.10) and (8.14) in N-SF1
and N-SF2, respectively). In such a case, the projected Hessian matrix H(n) and its
inverse M(n) will also have to be computed only once every L instants using the
most recent information on the average cost samples Zj,k(n), j,k ∈ {1, . . . ,N}. Re-
cursions incorporating the L-step averaging are given in [2] and have been analyzed
there for this case as well.

8.4 Convergence Analysis of Newton SF Algorithms

The detailed analysis of convergence of both the Newton SF algorithms, N-SF1 and
N-SF2 is discussed in the following sections.

8.4.1 Convergence of N-SF1

Consider the ODE

θ̇ (t) = Γ̃ (−P(∇2J(θ (t)))−1∇J(θ (t))), (8.15)

where for any y ∈ R
N and a bounded, continuous function v(·) : RN → R

N ,

Γ̃ (v(y)) = lim
0<η→0

(
Γ (y+ηv(y))−Γ (y)

η

)
.

Let
K
�
= {θ ∈C | ∇J(θ )T Γ̃ (−{P(∇2J(θ ))}−1∇J(θ )) = 0}.

Further, for any set S ⊆C, given η > 0, Sη
�
= {θ ∈C |‖ θ −θ0 ‖≤ η , θ0 ∈ S} shall

denote the set of all points in C that are in an ‘η-neighborhood’ of the set S. Let K̂
denote the set {θ ∈C | Γ̃ (−P(∇2J(θ ))−1∇J(θ )) =−P(∇2J(θ ))−1∇J(θ )}. Let Co

denote the interior of C. Then, one can see that Co ⊆ K̂. Now, the main convergence
result for N-SF1 is as follows:

Theorem 8.1. Under Assumptions 7.1–7.5, given η > 0, there exists β̂ > 0,
such that for all β ∈ (0, β̂ ], the parameter updates θ (n),n≥ 0 obtained using
N-SF1 converge to Kη with probability one as M→ ∞.

To prove this theorem, we provide a sequence of Lemmas, Propositions and
Corollaries in the rest of the section, as explained below:
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1. Proposition 8.2, Lemma 8.3, Proposition 8.4 and Corollary 8.5 prove that the
Hessian updates Zi, j(n)s in N-SF1 converge to the actual Hessian in the limit as
β → 0.

2. Lemma 8.6 shows that the inverse of the projected Hessian estimate also con-
verges to the inverse of the projected Hessian of the objective.

3. Lemmas 8.7–8.8 and Corollary 8.9 show that the gradient estimates Zi(n) also
converge to the actual gradient of the objective, again in the limit as β → 0.

4. With gradient and Hessian estimates converging to those of the objective itself,
the main result is proven using Lasalle’s invariance theorem. The formal proof
of the main result is given at the end of this subsection.

The theory of multi-timescale stochastic approximation (see Chapter 3.3) allows us
to treat θ (n)≡ θ (a constant) while analyzing the Hessian and gradient updates. Let
F (l) = σ(θ (p),X(p), p≤ l;η(p), p < l), l ≥ 1, denote a sequence of sigma fields.
Now define sequences {Ml,l(p)}, {Mi, j(p)}, l, i, j ∈ {1, . . . ,N}, i �= j as follows: For
l = 1, . . . ,N,

Ml,l(p) =
p

∑
m=1

b(m)

(
η2

l (m)− 1
β 2 h(X(m))−E

[
η2

l (m)− 1
β 2 h(X(m)) |F (m− 1)

])
.

Further, for i, j ∈ {1, . . . ,N}, we have

Mi, j(p) =
p

∑
m=1

b(m)

(
ηi(m)η j(m)

β 2 h(X(m))−E

[
ηi(m)η j(m)

β 2 h(X(m)) |F (m−1)

])
.

Proposition 8.2. The sequences {Ml,l(p),F (p)} and {Mi, j(p),F (p)}, l, i, j = 1,
. . . ,N, i �= j are almost surely convergent martingale sequences.

Proof. We consider first the sequence {Ml,l(p),F (p)}. It is easy to see that it is a
martingale sequence. To see that it is square integrable, note that

E[M2
l,l(p)]≤ Cp

β 4

p

∑
m=1

b2(m)(E[(η2
l (m)−1)2h2(X(m))+E2[(η2

l (m)−1)h(X(m)) |F (m−1)]])

for some constant Cp > 0 (that, however, depends on p). For the second term on
RHS above, note that almost surely,

E2[η2
l (m)− 1)h(X(m)) |F (m− 1)]≤ E[(η2

l (m)− 1)2h2(X(m)) |F (m− 1)],

by the conditional Jensen’s inequality. Hence,

E[M2
l,l(p)]≤ 2Cp

β 4

p

∑
m=1

b2(m)E[(η2
l (m)− 1)2h2(X(m))]
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≤ 2Cp

β 4

p

∑
m=1

b2(m)E[(η2
l (m)− 1)2]1/2E[h4(X(m))]1/2

by the Cauchy–Schwartz inequality. Since, h(·) is a Lipschitz continuous function,
we have

|h(X(m))|− |h(0)| ≤ |h(X(m))− h(0)| ≤ Ĉ ‖ X(m) ‖,
where Ĉ > 0 is the Lipschitz constant. Thus,

|h(X(m))| ≤C1(1+ ‖ X(m) ‖)

for C1 = max(Ĉ, |h(0)|)<∞. Hence, one gets

E[h4(X(m))]≤C2(1+E[‖ X(m) ‖4])

for (constant) C2 = 8C4
1. As a consequence of Assumption 7.3, supm E[‖ X(m) ‖4]<

∞. It now follows from Assumption 7.5 that E[M2
l,l(p)]< ∞, for all p≥ 1.

Now note that

∑
p

E[(Ml,l(p+ 1)−Ml,l(p))2 |F (p)]

≤∑
p

b2(p+ 1)

(
E

[(
η2

l (p+ 1)− 1
β 2 h(Xp+1)

)2

|F (p)

]

+E

[
E2
[
η2

l (p+ 1)− 1

β 2 h(Xp+1) |F (p)

]
|F (p)

])

≤∑
p

2b2(p+ 1)E

[(
η2

l (p+ 1)− 1

β 2 h(Xp+1)

)2

|F (p)

]
,

almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumptions 7.3 that

sup
p

1
β 2 E[((η̃2

l (p+ 1)− 1)h(Xp+1))
2 |F (p)]< ∞ w.p.1.

Hence, using Assumption 7.5, it can be seen that

∑
p

E[(Ml,l(p+ 1)−Ml,l(p))2 |F (p)]< ∞

almost surely. Thus, by the martingale convergence theorem (Theorem D.1),
{Ml,l(p)} are almost surely convergent martingale sequences. A similar proof set-
tles the claim for {Mi, j(p)} as well. ��

Let Y (n)
�
= [[Zj,k(n)]]Nj,k=1 and Z(n)

�
= (Z1(n), . . . ,ZN(n))T . Then, the matrix H(n)

in the algorithm corresponds to P(Y (n)). In vector–matrix notation, the Hessian
update recursions (8.7)–(8.8) can be written as
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Y (n+ 1) = Y (n)+ b(n)

(
1
β 2 H̄(η(n))h(Xn)−Y(n)

)
. (8.16)

Lemma 8.3. The Hessian updates Y (n),n≥ 0 are uniformly bounded and further

‖ Y (n)−D2
β ,1J(θ (n)) ‖→ 0 as n→ ∞,

with probability one.

Proof. The ODE associated with (8.16) is

Ẏ (t) = D2
β ,1J(θ (t))−Y(t), (8.17)

that has Y ∗ = D2
β ,1J(θ ) as its unique globally asymptotically stable equilibrium

(when θ (t)≡ θ ). Note that (8.16) can be rewritten as

Y (n+ 1) = Y (n)+ b(n)

(
1
β 2 E[H̄(η(n))h(Xn) |F (n)]−Y (n)

)

+b(n)
1
β 2 (H̄(η(n))h(Xn)−E[H̄(η(n))h(Xn) |F (n)]) .

From Proposition 8.2, we have that almost surely,

∑
n

b(n)
1
β 2 (H̄(η(n))h(Xn)−E[H̄(η(n))h(Xn) |F (n)])< ∞.

Also, it can be seen as in the proof of Proposition 8.2 that supn E[H̄(η(n))h(Xn) |
F (n)] < ∞ with probability one. It is now easy to verify Assumptions D.1 and
D.2, as a result of which the claim follows from the Borkar and Meyn theorem
(Theorem D.1. ��
Proposition 8.4. ‖ D2

β ,1J(θ (n))−∇2J(θ (n)) ‖→ 0 as β → 0.

Proof. Recall that

D2
β ,1J(θ (n)) = E

[
1
β 2 H̄(η(n))J(θ (n)+βη(n)) | θ (n)

]
,

where η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1) random vari-
ates and the expectation is taken w.r.t. the density of η(n). Using a Taylor series
expansion of J(θ (n)+βη(n)) around θ (n), one obtains



8.4 Convergence Analysis of Newton SF Algorithms 143

D2
β ,1J(θ (n)) = E

[
1
β 2 H̄(η(n))(J(θ (n))+βη(n)T∇J(θ (n))

+
β 2

2
η(n)T∇2J(θ (n))η(n)+o(β 2) | θ (n)

]
=

1
β 2 E[H̄(η(n))J(θ (n)) | θ (n)]+ 1

β
E[H̄(η(n))η(n)T∇J(θ (n)) | θ (n)]

+ 1
2 E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)]+O(β ).

(8.18)

Now observe that E[H̄(η(n))] = 0 (the matrix of all zero elements) with E[H̄(η(n))]
being the matrix of expectations of individual elements of H̄(η(n)). Hence the first
term on the RHS of (8.18) equals zero. Now consider the second term on the RHS
of (8.18). Note that

E[H̄(η(n))η(n)T∇J(θ (n)) | θ (n)] =

E

⎡
⎢⎢⎣

(η2
1 (n)−1)η(n)T∇J(θ (n)) η1(n)η2(n)η(n)T∇J(θ (n)) · · · η1(n)ηN(n)η(n)T∇J(θ (n))

η2(n)η1(n)η(n)T∇J(θ (n)) (η2
2 (n)−1)η(n)T∇J(θ (n)) · · · η2(n)ηN(n)η(n)T∇J(θ (n))

· · · · · · · · · · · ·
ηN(n)η1(n)η(n)T∇J(θ (n)) ηN(n)η2(n)η(n)T∇J(θ (n)) · · · (η2

N(n)−1)η(n)T∇J(θ (n))

| θ (n)

⎤
⎥⎥⎦ .

(8.19)

Consider the first term (corresponding to the first row and first column) above. Note
that

E[(η2
1 (n)−1)η(n)T∇J(θ (n)) | θ (n)]

= E[(η3
1 (n)−η1(n),η2

1 (n)η2(n)−η2(n), . . . ,η2
1 (n)ηN(n)−ηN (n))T∇J(θ (n)) | θ (n)]

= 0.

Similarly all other terms in (8.19) can be seen to be equal to zero as well. We use here
the facts that E[η1(n)] = E[η3

1 (n)] = 0 and E[η2
1 (n)] = 1. Also, ηi(n) is independent

of η j(n) for all i �= j. Hence the second term on the RHS of (8.18) equals zero as
well. Consider now the third term on the RHS of (8.18). Note that

1
2

E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)] =

1
2

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(η2
1 (n)−1)

N
∑

i, j=1
∇i jJ(θ (n))ηi(n)η j(n) · · · η1(n)ηN(n)

N
∑

i, j=1
∇i jJ(θ (n))ηi(n)η j(n)

η2(n)η1(n)
N
∑

i, j=1
∇i jJ(θ )ηi(n)η j(n) · · · η2(n)ηN(n)

N
∑

i, j=1
∇i jJ(θ (n))ηi(n)η j(n)

· · · · · · · · ·

ηN(n)η1(n)
N
∑

i, j=1
∇i jJ(θ (n))ηi(n)η j(n) · · · (η2

N(n)−1)
N
∑

i, j=1
∇i jJ(θ (n))ηi(n)η j(n)

| θ (n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(8.20)

Consider now the term corresponding to the first row and first column above.
Note that
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E[(η2
1 (n)−1)∑N

i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]
= E[η2

1 (n)∑
N
i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]−E[∑N

i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)].
(8.21)

The first term on the RHS of (8.21) equals

E[η4
1 (n)∇11J(θ (n)) | θ (n)]+E[∑i= j,i�=1η2

1 (n)η
2
i (n)∇i jJ(θ (n)) | θ (n)]

+E[∑i�= j,i�=1η2
1 (n)ηi(n)η j(n)∇i jJ(θ (n)) | θ (n)] = 3∇11J(θ (n))+∑i= j,i�=1∇i jJ(θ (n)),

since E[η4
1 (n)] = 3. The second term on RHS of (8.21) equals −

N

∑
i=1

∇iiJ(θ (n)).

Adding the above two terms, one obtains

E[(η2
1 (n)− 1)

N

∑
i, j=1

∇i jJ(θ (n))ηi(n)η j(n) | θ (n)] = 2∇11J(θ (n)).

Consider now the term in the first row and second column of the matrix in (8.20).
Note that

E[η1(n)η2(n)∑N
i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]

= 2E[η2
1 (n)η

2
2 (n)∇12J(θ (n)) | θ (n)]

+E[∑(i, j) �∈{(1,2),(2,1)}η1(n)η2(n)ηi(n)η j(n)∇i jJ(θ (n)) | θ (n)]
= 2∇12J(θ (n)).

Proceeding in a similar manner, it is easy to verify that the (i, j)th term (i, j ∈
{1, . . . ,N}) in the matrix in (8.20) equals 2∇i jJ(θ (n)). Substituting the above back
in (8.20), one obtains

1
2

E[H̄(η(n))η(n)T∇2J(θ (n))η(n)] = ∇2J(θ (n)).

The claim now follows from (8.18). ��
Corollary 8.5. We have

‖ Y (n)−∇2J(θ (n)) ‖→ 0 as n→ ∞ and β → 0,

with probability one.

Proof. Follows from Lemma 8.3 and Proposition 8.4. ��
Lemma 8.6. With probability one, as n→ ∞ and β → 0,

‖ P(Y (n))−1−P(∇2J(θ (n)))−1 ‖→ 0.
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Proof. Follows as in Lemma 7.11 (cf. Chapter 7). ��
Next, we consider the gradient updates in (8.9). The proof of the following result

has been shown in Chapter 6 (see Lemma chap6:Lemma23). Let Z(n)
�
= (Zl(n), l =

1, . . . ,N)T .

Lemma 8.7.
‖ Z(n)−Dβ ,1J(θ (n)) ‖→ 0 as n→ ∞,

with probability one.

The next result shows the unbiasedness of the gradient estimates (in the limit as
β → 0). The proof of this result is also given in Chapter 6 (see Proposition 6.5).

Lemma 8.8.
‖ Dβ ,1J(θ (n))−∇J(θ (n)) ‖→ 0 as β → 0.

Combining Lemmas 8.7 and 8.8, one obtains

Corollary 8.9. With probability one, as n→ ∞ and β → 0,

‖ Z(n)−∇J(θ (n)) ‖→ 0.

We now consider the slowest timescale recursion involving the θ update (equa-
tion 8.10) of the algorithm.

Proof of Theorem 8.1. Recall that the parameter update recursion corresponds to

θ (n+ 1) = Γ (θ (n)− a(n)P(Y(n))−1Z(n)). (8.22)

Note that one can rewrite (8.22) as

θ (n+1) = Γ (θ (n)−a(n)(P(∇2J(θ (n)))−1∇J(θ (n))

+(P(∇2J(θ (n)))−1−P(Y (n))−1)∇J(θ (n))+P(Y (n))−1(∇J(θ (n))−Z(n))))+O(β ),

where the O(β ) term comes about because β > 0 is held fixed in the algorithm.
Further, results such as Proposition 8.4, Lemma 8.6 and Corollary 8.9 have been
shown for the case when β → 0.

Now as a consequence of Lemma 8.6, Corollary 8.5 and Assumption 7.4, the
second and third terms multiplying a(n) above asymptotically vanish as n→ ∞ and
β → 0. One can then view (8.22) as a noisy Euler discretization of the ODE (8.15)
using a standard approximation argument as [4, pp.191–196]. Note that J(θ ) itself
serves as an associated Liapunov function for (8.15) since

dJ(θ )
dt

= ∇J(θ )T .
θ = ∇J(θ )T Γ̃ (−P(∇2J(θ ))−1∇J(θ ))≤ 0.
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In particular for θ ∈ K̂,
dJ(θ )

dt
< 0 if ∇J(θ ) �= 0. Now since J(θ ) satisfies As-

sumption 7.2, it is in particular continuous and hence uniformly bounded on the
compact set C ⊂ R

N . Let λ = supθ J(θ )< ∞. Then, {θ | J(θ )≤ λ} =C. The rest
follows from the Lasalle’s invariance theorem (Theorem C.4) and the Hirsch lemma
(Lemma C.5). ��

8.4.2 Convergence of N-SF2

The proof of convergence proceeds along similar lines as N-SF1. Hence, we only
present the main results.

Proposition 8.10.

‖ D2
β ,2J(θ (n))−∇2J(θ (n)) ‖→ 0 as β → 0.

Proof. Recall that

D2
β ,2J(θ (n)) = E

[
1

2β 2 H̄(η(n))(J(θ (n)+βη(n))+ J(θ (n)−βη(n))) | θ (n)
]
,

where η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1) random vari-
ables. Using Taylor series expansions of J(θ (n) + βη(n)) and J(θ (n)− βη(n))
around θ (n), one obtains

J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))

+
β 2

2
η(n)T∇2J(θ (n))η(n)+ o(β 2)), (8.23)

J(θ (n)−βη(n)) = J(θ (n))−βη(n)T∇J(θ (n))

+
β 2

2
η(n)T∇2J(θ (n))η(n)+ o(β 2)). (8.24)

From the foregoing, one obtains

D2
β ,2J(θ (n)) = E

[
1

2β 2 H̄(η(n))(2J(θ (n))+β 2η(n)T∇2J(θ (n))η(n)+o(β 3)) | θ (n)
]
.

It has been shown in the proof of Proposition 8.4 that E[H̄(η(n))J(θ (n)) | θ (n)] = 0

and
1
2

E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)] = ∇2J(θ (n)), respectively. The

claim follows. ��
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Remark 8.2. The bias in the Hessian estimates in N-SF2 is lower as compared to
the same in N-SF1. This is because when the terms in the Taylor series expansions
in (8.23)–(8.24) are summed, the gradient terms βη(n)T∇J(θ (n)) get directly can-
celled. This is unlike the corresponding estimate in N-SF1 where the gradient terms
only average to zero (and do not have a direct cancellation).

Next, the following result shows the unbiasedness of the gradient estimates and has
been shown for the G-SF2 algorithm in Chapter 6.

Proposition 8.11.

‖ Dβ ,2J(θ (n))−∇J(θ (n)) ‖→ 0 as β → 0.

Remark 8.3. It has been shown in Chapter 6 that the bias in the gradient estimates
of N-SF2 is much less as compared to that in N-SF1 because of a direct cancellation
of many of the terms in the Taylor series expansions in the estimates of N-SF2. This
is unlike N-SF1 where these terms in fact average to zero and do not cancel off
directly.

The proof of the main result below follows along the same lines as that of
Theorem 8.1.

Theorem 8.12. Under Assumptions 7.1–7.5, given η > 0, there exists β̂ > 0,
such that for all β ∈ (0, β̂ ], the sequence {θ (n)} obtained using N-SF2 con-
verges to Kη with probability one as M→ ∞.

8.5 Concluding Remarks

The SF estimators of the Hessian belong to the class of simultaneous perturbation
estimators that require only a few system simulations to perform Hessian updates
at each instant regardless of the parameter dimension. The two Hessian estimators
that were presented required respectively, one and two system simulations. An ad-
vantage with these estimators is that the same system simulations can also be used
to estimate the gradient. Hence, they give rise to Newton-based algorithms with one
or two simulations.

In the experiments studied in [2] as well as the application in service systems (see
Chapter 12), these algorithms have been found to be very efficient. The estimators
presented here were based on Gaussian perturbation sequences. It would be interest-
ing to develop similar estimators using Cauchy and uniform perturbation sequences
as well.



148 8 Newton-Based Smoothed Functional Algorithms

References

1. Bhatnagar, S.: Adaptive multivariate three-timescale stochastic approximation algo-
rithms for simulation based optimization. ACM Transactions on Modeling and Computer
Simulation 15(1), 74–107 (2005)

2. Bhatnagar, S.: Adaptive Newton-based smoothed functional algorithms for simulation op-
timization. ACM Transactions on Modeling and Computer Simulation 18(1), 2:1–2:35
(2007)

3. Bhatnagar, S., Mishra, V., Hemachandra, N.: Stochastic algorithms for discrete parameter
simulation optimization. IEEE Transactions on Automation Science and Engineering 9(4),
780–793 (2011)

4. Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Un-
constrained Systems. Springer, New York (1978)



Part IV
Variations to the Basic Scheme



This part deals with certain variations to the basic scheme. In particular, we con-
sider applications of simultaneous perturbation approaches to (a) discrete parameter
optimization, (b) optimization under inequality constraints when both the objective
and the constraint functions are certain long-run average cost objectives, and (c) re-
inforcement learning — a class of methods that deal with the problem of stochastic
control under lack of precise model information.

Many times, one is interested in optimizing a certain cost objective over a discrete
set of alternatives or parameters and the goal is to find the best possible parameter.
The problem becomes even more interesting when long-run average cost objectives
are used. In situations when the parameter set is small, traditional approaches for this
problem involve estimating the objective function value for each parameter using
Monte-Carlo simulation in order to judge the best parameter. Bhatnagar, Mishra and
Hemachandra, in a paper in 2011, presented adaptations of gradient SPSA and SF
algorithms for the problem of discrete parameter search for long-run average cost
objectives. They also presented a novel random projection technique. The adapted
algorithms are seen to be better in performance than a well-known algorithm in the
literature in the case when the parameter set is small. When the set is large, the
adapted algorithms are still seen to show good results and require less computation.
Chapter 9 presents the adaptations of gradient SPSA and SF algorithms to the case
of discrete parameter optimization.

One is often interested in optimizing a given objective function subject to certain
functional (inequality) constraints being met. For instance, one might be interested
in finding a path over which throughput is maximized for a given stream of packets
passing through a communication network given that the mean delays along that
path are below a pre-specified threshold. The problem becomes interesting when
both the objective and the constraint functions are certain long-run averages as un-
der such scenarios, the constraint region is also not known precisely. In a paper in
2011, Bhatnagar, Hemachandra and Mishra, presented four simultaneous perturba-
tion algorithms for this purpose, that incorporate a Lagrange multiplier approach.
Chapter 10 presents the simultaneous perturbation algorithms for this problem.

In problems of stochastic control, one is often confronted with scenarios where
model information (i.e., knowledge of transition probabilities) is not known and yet
one wants to pick an optimal feedback control policy. More over, in many real-life
situations, the cardinalities of the state and/or action spaces could be large as well
making schemes based on numerical techniques computationally infeasible. Rein-
forcement learning broadly refers to a class of algorithms that are based on simula-
tion based approaches. In many papers, Bhatnagar and several coauthors presented
a host of algorithms for these problems for various cost settings and also for cases
when (a) the state-action space size is manageable as well as (b) when it is not and
approximation methods based on function approximation need to be resorted to.
Chapter 11 deals with the applications of simultaneous perturbation approaches to
reinforcement learning.



Chapter 9
Discrete Parameter Optimization

9.1 Introduction

We begin by recalling the basic optimization problem discussed in Chapter 1.

Find θ ∗ that solves min
θ∈C

J(θ ), (9.1)

for a given objective function J : RN→R that is a function of a tunable parameter θ
taking values in a set C⊂R

N . In all the chapters in this book, except the current, the
set C has been considered to be a compact and convex subset of RN . In this chapter,
however, we assume that the set C is discrete-valued and contains a finite number of
points. Moreover, J(θ ),θ ∈ C is a long-run average cost objective. This chapter is
largely based on [3].

The above problem has attracted considerable attention in the case when
the objective is an expected value over certain noisy cost function measurements.
In such cases, when the cardinality of the constraint set C is small, two of the
techniques that have been widely studied go under the names of ranking and se-
lection (R&S) [1], and multiple comparison procedures (MCP) [9]. The observa-
tions for given θ in these procedures are assumed i.i.d., often with the normal
distribution.

As the name suggests, in the R&S class of procedures, the objective function
value corresponding to each parameter is estimated from sample path observations
and then the various estimates are ranked to obtain the best parameter value. The
above procedures are in general not applicable when the number of parameters
is large due to the amount of computational effort involved. Optimal computing
budget allocation (OCBA) [8, 6, 7] is an R&S procedure that is widely regarded
as being amongst the best procedures for small-scale discrete optimization. The
idea in OCBA is to optimally allocate a given computing budget between various
alternatives in a way as to maximize the probability of correct selection. Ordinal

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 151–166.
springerlink.com © Springer-Verlag London 2013
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optimization [14] and simulated annealing [15] are amongst the popular procedures
used for large parameter sets.

As stated before, the afore-mentioned approaches have been proposed for the
case when the objective function is an expectation over noisy cost samples and
do not carry over in a straightforward manner to long-run average cost objec-
tives. A problem with optimization under steady-state simulation is that it is ex-
pensive to obtain multiple-independent simulation trajectories corresponding to
any given parameter, see, however, [12] for an R&S procedure for steady-state
simulations.

Gradient search approaches for continuous parameter optimization have also
been applied to the case of discrete optimization in [11, 10, 2, 4]. The idea in these
methods is to first form a closed convex hull of the discrete search space and con-
sider an alternative continuous optimization problem in the (above) closed convex
hull except for a difference between the various techniques. In [11, 4], the ‘con-
tinuous portion’ of the optimization procedure is allowed to proceed as in contin-
uous optimization procedures and upon convergence, the parameter in the original
discrete domain that is the closest to the converged parameter value (in the con-
vex hull) is identified as the converged parameter in the discrete set. In [10, 2],
after each iterate, the parameter value obtained from the continuous optimization
step is projected back to the discrete set, resulting in the parameter update in each
step of the procedure being precisely over the discrete set. In [3], a somewhat
similar approach as [11, 4] is used except that for purposes of projection of the
continuous parameter update to the discrete set, a random projection approach is
considered instead of deterministically projecting each update to the discrete set.
This is seen to smooth the underlying dynamics of the associated process. A dis-
crete form of SPSA is considered in [13] and some convergence results have been
shown for the same. A different form of discrete algorithm as compared to [13]
that shows better results has recently been presented in [16]. In what follows, we
shall consider general smooth mappings of which the random projection procedure
of [3] emerges as a special case. The algorithms of [3] are then presented for these
mappings.

The rest of the chapter is organized as follows: discrete optimization framework
is presented in Section 9.2. The algorithms are presented in Section 9.3. Finally,
concluding remarks are presented in Section 9.4.

9.2 The Framework

We consider the following the problem setting. Let Xθ (n),n ≥ 0 be a discrete-time
stochastic process whose evolution depends on a parameter θ ∈ C ⊂ R

N for some
fixed N ≥ 1. Let C (the set in which θ takes values) be a (discrete) finite set having
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the form C =∏N
i=1Ci, where Ci = {c0

i , . . . ,c
ni
i }, i = 1, . . . ,N. Let Ci,min ≡ c0

i < c1
i <

· · · < cni
i ≡Ci,max, for each i = 1, . . . ,N. By construction, the set C contains (say) p

points θ 1,θ 2, . . . ,θ p, with p < ∞. Thus, C = {θ 1,θ 2, . . . ,θ p}. For any θ ∈ C, let
Xθ (n), n≥ 0 take values in the set S = {0,1,2, . . . , |S |}, where |S |<∞ could be
a large integer.

For fixed θ ∈ C, we assume Xθ (n),n ≥ 0 to be an ergodic Markov chain with
transition probabilities pθ (i, j), i, j ∈S . Note that when the parameter θ is tuned
(i.e., with θ (n) in place of θ at instant n), the process Xθ (n),n ≥ 0, in general
will not be Markov. Let h : S → R be a given state-dependent, single-stage cost
function. Our aim is to find a θ ∗ ∈ C satisfying (9.1) where for any θ ∈C, J(θ ) is
the long-run average cost

J(θ ) = lim
n→∞

1
n

n

∑
i=1

h(Xθ (i)). (9.2)

Now let C̄ denote the closed convex hull of the set C (i.e., the smallest closed and

convex set containing C). Let θ (n) �= (θ1(n), . . . ,θN(n))T , n≥ 1 denote the sequence
of updates of the parameter θ . As stated before, the idea in the described procedures
will be to consider the parameter updates in the set C̄ (and not C). However, when
needed, the discrete parameter to use corresponding to the continuous update shall
be obtained from a certain projection operator. We describe below some of the pro-
jection operators.

9.2.1 The Deterministic Projection Operator

This is the most commonly used operator, even though as we will later explain,
proving the convergence of the resulting scheme when using this operator is not easy
because of lack of smoothness at some points in the (extended) transition dynamics
of the Markov process corresponding to parameters in the closed and convex hull.
For any θ = (θ1, . . . ,θN)

T ∈ R
N , let Γ (θ ) = (Γ1(θ1), . . ., ΓN(θN))

T ∈C denote the
(deterministic) projection of θ to the set C and is defined as follows: Let θi be such
that c j

i ≤ θi ≤ c j+1
i for some c j

i < c j+1
i , with c j

i ,c
j+1
i ∈Ci. Now set

Γi(θi) =

{
c j

i if (c j
i ≤ θi < (c j

i + c j+1
i )/2

c j+1
i if (c j

i + c j+1
i )/2 < θi ≤ c j+1

i .

If θi = (c j
i + c j+1

i )/2, then θi is set to either c j
i or c j+1

i according to some
prescribed rule. Also,

Γi(θi) =

{
Ci,min if θi ≤Ci,min

Ci,max if θi ≥Ci,max.

It is clear from the above that Γ (θ ) ∈C.
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9.2.2 The Random Projection Operator

We now describe the random projection technique from [3]. Unlike the commonly
used deterministic projection operators, this technique is seen to smooth the transi-
tion dynamics of (the extended parametrized Markov process) {Xθ (n)}, when θ ∈
C̄. For θ ∈RN , the projection mappingΓ (θ ) in this case is defined as follows: Let θi

be such that c j
i ≤ θi ≤ c j+1

i for some c j
i < c j+1

i , with c j
i ,c

j+1
i ∈Ci, i = 1, . . . ,N. Now

observe that one can represent θi in terms of c j
i ,c

j+1
i as θi = αic

j
i +(1−αi)c

j+1
i ,

where

αi =
c j+1

i −θi

c j+1
i − c j

i

∈ [0,1].

Thus,

Γi(θi) =

{
c j

i w.p. (c j+1
i −θi)/(c

j+1
i − c j

i )

c j+1
i w.p. (θi− c j

i )/(c
j+1
i − c j

i ).

Also,

Γi(θi) =

{
Ci,min w.p.1 if θi ≤Ci,min

Ci,max w.p.1 if θi ≥Ci,max.

It is easy to see that Γ (θ ) ∈C. Now note that any θ ∈ C̄ can be written as a convex
combination

θ =
p

∑
k=1

αk(θ )θ k, (9.3)

of the elements of C. The weights αk(θ ) satisfy 0 ≤ αk(θ ) ≤ 1, ∀k ∈ {1, . . . , p}
and

p

∑
k=1

αk(θ ) = 1. Such a representation is useful to show the convergence of the

algorithms even though precise knowledge of the weights αk(θ ) is not required. One
possible manner in which the weights αk(θ ) can be obtained is by projecting θ ∈ C̄
to its nearest neighbours in C using the weights in the Γ -projection. We consider
the following example for illustrative purposes.

Example 9.1. Let θ be a vector with three components θ = (θ1,θ2,θ3)
T ∈R

3. Sup-
pose c j

1 ≤ θ1 ≤ c j+1
1 , ck

2 ≤ θ2 ≤ ck+1
2 and cl

3 ≤ θ3 ≤ cl+1
3 . Then with appropriate

α1,α2,α3 ∈ [0,1], one can write

θ = (α1c j
1 +(1−α1)c j+1

1 ,α2ck
2 +(1−α2)ck+1

2 ,α3cl
3 +(1−α3)cl+1

3 )T .

For this example, Table 9.1 shows the various points in C⊂R
3 with respect to which

the above θ can be expressed as a convex combination, as well as the corresponding
weights. The remaining points in C are assigned a weight of zero each.
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Table 9.1 Example: Parameter θ =(α1c j
1+(1−α1)c j+1

1 , α2ck
2+(1−α2)ck+1

2 , α3cl
3+(1−

α3)cl+1
3 )T ∈ C̄ ⊂ R

3 as a convex combination of the elements of C

S.N. Elements in C Weights

1. (c j
1,c

k
2,c

l
3)

T α1α2α3

2. (c j
1,c

k
2,c

l+1
3 )T α1α2(1−α3)

3. (c j
1,c

k+1
2 ,cl

3)
T α1(1−α2)α3

4. (c j
1,c

k+1
2 ,cl+1

3 )T α1(1−α2)(1−α3)

5. (c j+1
1 ,ck

2,c
l
3)

T (1−α1)α2α3

6. (c j+1
1 ,ck

2,c
l+1
3 )T (1−α1)α2(1−α3)

7. (c j+1
1 ,ck+1

2 ,cl
3)

T (1−α1)(1−α2)α3

8. (c j+1
1 ,ck+1

2 ,cl+1
3 (1−α1)(1−α2)(1−α3)

A procedure as described above can similarly be extended to the case of param-
eters θ with N components. As a consequence of the above, one can alternatively
view the (randomized) Γ -projection as a probabilistic projection of θ ∈ C̄ to the set
C so that Γ (θ ) = θ k ∈C with probability γk(θ ), k = 1, . . . , p, for some γk(θ ) such

that 0 ≤ γk(θ ) ≤ 1, ∀k = 1, . . . , p, and
p

∑
k=1

γk(θ ) = 1. For instance, in Example 9.1,

Γ (θ ) = θ1
�
= (c j

1,c
k
2,c

l
3)

T with probability γ1(θ ) = (1−α1)(1−α2)(1−α3). It is
easy to see that γk(θ ), k = 1, . . . , p, are continuously differentiable functions of θ .

9.2.3 A Generalized Projection Operator

We now present a generalized projection operator that can alternatively be used (in
place of the deterministic projection scheme as well as the randomized projection
scheme, respectively). The manner in which this operator is constructed, it works
as a deterministic projection scheme in some portions of the parameter space and
as a randomized projection scheme in some other portions. Unlike the deterministic
projection scheme, it has the advantage that it results in a smooth transition dynam-
ics for the extended Markov process with parameters in the closed and convex hull.
Over the randomized projection scheme, it has the advantage of a lower compu-
tational requirement because in a significant portion of the space, a deterministic
projection is used and thus one does not require generation of random numbers for
the probabilistic projection in these portions.

Let θi be such that c j
i ≤ θi ≤ c j+1

i for some c j
i < c j+1

i , with c j
i ,c

j+1
i ∈ Ci, i =

1, . . . ,N. Let ε > 0 be a given small constant. Now set
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Γi(θi) =

{
c j

i if (c j
i ≤ θi < (c j

i + c j+1
i )/2− ε

c j+1
i if (c j

i + c j+1
i )/2+ ε ≤ θi ≤ c j+1

i .

Further, for (c j
i + c j+1

i )/2− ε ≤ θi ≤ (c j
i + c j+1

i )/2+ ε , i = 1, . . . ,N,

Γi(θi) =

{
c j

i w.p. fi(θi)

c j+1
i w.p. 1− fi(θi).

Also, as before,

Γi(θi) =

{
Ci,min if θi ≤Ci,min

Ci,max if θi ≥Ci,max.

In the above, fi(·) is a decreasing and continuously differentiable function that takes
values in [0,1] and is such that

fi(θi) =

{
0 if θi = (c j

i + c j+1
i )/2+ ε

1 if (c j
i + c j+1

i )/2− ε.

For the purposes of analysis, one can view the generalized projection operator as
another randomized projection scheme where the deterministic “if” statements are
replaced by similar statements with “w.p.1 if” conditions. For instance, the first set
of conditions for the generalized scheme can (for simplicity in analysis) be approx-
imately rewritten as

Γi(θi) =

{
c j

i w.p.1 if (c j
i ≤ θi < (c j

i + c j+1
i )/2− ε

c j+1
i w.p.1 if (c j

i + c j+1
i )/2+ ε ≤ θi ≤ c j+1

i .

The same applies to the other deterministic conditions as well.
In a similar manner as the randomized projection scheme described above, it is

easy to see that one can obtain weights βk(θ ),k = 1, . . . , p such that Γ (θ ) = θ k

w.p. βk(θ ). Here, βk(θ ) ∈ [0,1],∀k = 1, . . . , p and
p

∑
k=1

βk(θ ) = 1 for any θ ∈ C̄. The

quantity ε can be chosen arbitrarily in applications. A larger value of ε will allow
for greater “exploration” of the discrete parameter space by the algorithm.

Example 9.2. As an example, let θ �= (θ1,θ2)
T be such that θ1 ∈ [ck

1,(c
k
1+ck+1

1 )/2−
ε) and θ2 ∈ [(cl

2 +cl
2)/2−ε,(cl

2+cl+1
2 )/2+ε]. Then, from the manner in which the

generalized projection operator is defined, we have that

Γ1(θ1) =

{
ck

1 w.p.1
ck+1

1 w.p.0.
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Also,

Γ2(θ2) =

{
cl

2 w.p. f2(θ2)

cl+1
2 w.p.1− f2(θ2).

Since each parameter component is mapped independently (of the other compo-
nents) to its discrete set of points, we have that

Γ (θ ) =
{
(ck

1,c
l
2)

T w.p. f2(θ2)

(ck
1,c

l+1
2 )T w.p.1− f2(θ2).

The remaining components in C are then assigned a weight of 0 each. Thus, if θ j

and θm, respectively correspond to the points (ck
1,c

l
2)

T and (ck
1,c

l+1
2 )T within the

set C, then one may let β j(θ ) = f2(θ2) and βm(θ ) = 1− f2(θ2). Further, βk(θ ) =
0,∀k ∈ {1, . . . , p} with k �∈ { j,m}.

9.2.4 Regular Projection Operator to C̄

We denote the regular projection of any θ ∈ R
N to the set C̄ =

N

∏
i=1

[Ci,min,Ci,max],

which is the closed convex hull of C (from construction) as Γ̄ (θ ) �= (Γ̄1(θ1), . . .,
Γ̄N(θN))

T . Here Γ̄i(θi) = min(Ci,max,max(θi,Ci,min)). It is easy to obtain this pro-
jection by simply comparing each component θ j of the parameter θ ( j = 1, . . . ,N)
with the corresponding boundary points Cj,min and Cj,max in the sets C j and resetting
(component-wise) θ j to Cj,min or Cj,max depending on whether θ j is below Cj,min or
above Cj,max. Further, if Cj,min ≤ θ j ≤Cj,max, then Γ̄j(θ j) = θ j.

9.2.5 Basic Results for the Generalized Projection Operator Case

We consider here the generalized projection operator. Similar results with the ran-
domized projection operator have been presented in [3]. Define the transition prob-
abilities pθ (i, j), i, j ∈S with θ ∈ C̄ according to

pθ (i, j) =
p

∑
k=1

βk(θ )pθ k(i, j), (9.4)

with βk(θ ) obtained as described in the generalized projection scheme. It is easy to
see that 0≤ pθ (i, j)≤ 1,∀i, j ∈S ,θ ∈ C̄ and ∑

j∈S

pθ (i, j) = 1,∀i ∈S ,θ ∈ C̄. Also,

pθ (i, j) are continuously differentiable in θ ∈ C̄, because of the fact that fk(θk),k =
1, . . . , p are chosen to be continuously differentiable functions. For any n ≥ 1, let
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pn
θ (i, j) represent the probability of going from state i to state j in n steps when the

underlying parameter is θ .

Lemma 9.1. For any θ ∈ C̄, i, j ∈S and any n≥ 1

pn
θ (i, j) ≥

p

∑
l=1

β n
l (θ )pn

θ l (i, j).

Proof. We prove the claim by induction. Note that the claim is true for n = 1 from
(9.4). Assume that the claim is valid for some n = K > 1. We now show that it is
true for n = K + 1. Note that

pK+1
θ (i, j) = ∑

l∈S

pθ (i, l)pK
θ (l, j)

≥ ∑
l∈S

p

∑
r=1

βr(θ )pθ r(i, l)
p

∑
m=1

βK
m (θ )pK

θm(l, j)

=
p

∑
r=1

p

∑
m=1

βr(θ )βK
m (θ ) ∑

l∈S

pθ r(i, l)pK
θm(l, j)

≥
p

∑
r=1

βK+1
r (θ ) ∑

l∈S

pθ r(i, l)pK
θ r(l, j)

=
p

∑
r=1

βK+1
r (θ )pK+1

θ r (i, j).

The first inequality above follows from the induction hypothesis while the second
inequality follows by considering only values of m = r in the second summation in
its preceding expression. The claim follows. ��
Lemma 9.2. For any θ ∈ C̄, {Xθ (n),n≥ 1} is an ergodic Markov chain.

Proof. It is easy to see that the process Xθ (n),n≥ 1, θ ∈ C̄ governed by the transi-
tion probabilities pθ (i, j), i, j ∈S (defined as in (9.4)) is Markov. Now each of the

processes Xθ
k
(n),n≥ 1, k = 1, . . . , p is ergodic Markov. Consider now Xθ

k
(n),n≥ 1

for some θ k ∈ C. Since Xθ
k
(n),n ≥ 1 is irreducible, for any i, j, l ∈S , there exist

integers n1,k, n2,k > 0 such that p
n1,k

θ k (i, l) > 0 and p
n2,k

θ k (l, j) > 0. (Here n1,k in gen-

eral depends on i and l, and n2,k on l and j, respectively.) Now since Xθ
k
(n),n ≥ 1

is aperiodic, there exists Mk > 0 (that depends on l) such that pn
θ k (l, l) > 0 for all

l ∈S and n≥Mk, see for instance [5, Lemma 5.3.2, pp.99]. Now

p
n1,k+n+n2,k

θ k (i, j)≥ p
n1,k

θ k (i, l)pn
θ k (l, l)p

n2,k

θ k (l, j)

> 0 ∀n≥Mk.
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Thus pn
θ k(i, j) > 0 for all n > Nk

�
= n1,k + n2,k +Mk, k = 1, . . . , p. Now let N̂ =

max(N1, . . . ,Np) < ∞. Hence, pn
θ k(i, j) > 0 for all n ≥ N̂ and k = 1, . . . , p. From

Lemma 9.1, it follows that pn
θ (i, j) > 0, ∀n ≥ N̂. The above is true for all i, j ∈S

with, however, a possibly different value of N̂ for different (i, j)–tuples. Thus
{Xθ (n)} is irreducible. It can also be seen to be aperiodic by letting j = i. Fi-
nally, the chain {Xθ (n)}, θ ∈ C̄ is positive recurrent since it is irreducible and finite
state. ��

Now let J̄(θ ) be defined as in (9.2) for θ ∈ C̄, i.e.,

J̄(θ ) = lim
n→∞

1
n

n−1

∑
m=0

h(Xθ (m)), θ ∈ C̄.

Note that the single-stage cost function h(·) is the same as before. The only differ-
ence is in the parameter θ that now takes values in C̄. By Lemma 9.2, the above
limit is well defined for all θ ∈ C̄. By definition, J̄(θ ) = J(θ ) for all θ ∈C.

Lemma 9.3. J̄(θ ) is continuously differentiable in θ ∈ C̄.

Proof. Let γ(θ ) �= (γi(θ ), i ∈S )T denote the stationary distribution of the Markov
chain Xθ (n),n≥ 1, θ ∈ C̄. Then, J̄(θ ) can be written as

J̄(θ ) =∑
i∈S

h(i)γi(θ ).

Thus it is sufficient to show that γ(θ ) is continuously differentiable in θ . Let us

denote P(θ ) �= [[pθ (i, j), i, j ∈ S ]] as the transition probability matrix when the
parameter is θ ∈ C̄ is held fixed.

The claim will follow using a result from [17, Theorem 2 on pp.402–403]. Let

P∞(θ ) = lim
m→∞

1
m

m

∑
n=1

Pn(θ ) and Z(θ ) �= [I−P(θ )−P∞(θ )]−1, respectively, where I

denotes the (|S |×|S |)-identity matrix and Pm(θ ) is the matrix of m-step transition
probabilities pm

θ (i, j), i, j ∈S . From [17, Theorem 2], one can write

γ(θ + δei) = γ(θ )(I +(P(θ + δei)−P(θ ))Z(θ )+ o(h)),

where δ > 0 is a small quantity and ei, i ∈ {1, . . . ,N} is a unit vector with 1 as its
ith entry and 0s elsewhere. Hence we get

∇iγ(θ ) = γ(θ )∇iP(θ )Z(θ ), i = 1, . . . ,N.

Thus,
∇γ(θ ) = γ(θ )∇P(θ )Z(θ ). (9.5)

By construction (as mentioned before), ∇P(θ ) exists and is continuous. Hence
∇γ(θ ) exists. Next, we verify that ∇γ(θ ) is continuous as well. Note that γ(θ ) is
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continuous because it is differentiable. The claim will follow if we show that Z(θ )
is also a continuous function.

Let H(θ ,θ+θ0)= [I−(P(θ+θ0)−P(θ ))]−1. Then H(θ ,θ+θ0)→ I as ‖θ0‖→
0. Also, let U(θ ,θ + θ0) = (P(θ + θ0)− P(θ ))Z(θ ). Then U(θ ,θ + θ0)→ 0̄ as
‖θ0‖ → 0. Here 0̄ is a matrix with all elements being zero. From [17, Theorem 2],
we have

Z(θ +θ0) = Z(θ )H(θ ,θ +θ0)

−P∞(θ )H(θ ,θ +θ0)U(θ ,θ +θ0)Z(θ )H(θ ,θ +θ0).

Hence we get

‖Z(θ +θ0)−Z(θ )‖ ≤ ‖Z(θ )‖‖H(θ ,θ +θ0)− I‖

+‖P∞(θ )‖‖H(θ ,θ +θ0)‖‖U(θ ,θ +θ0)‖‖Z(θ )‖‖H(θ ,θ +θ0)‖.
It can thus be seen that

‖Z(θ +θ0)−Z(θ )‖→ 0 as ‖θ0‖→ 0.

The claim follows. ��

9.3 The Algorithms

The operator Γ̄ will be used to project the continuous-valued iterates in the algo-
rithms (below) to the closed convex hull C̄ of the set C while Γ will be used to
identify the actual parameter value used in the simulation. We present two algo-
rithms: one based on SPSA gradient estimates and the other based on SF estimates.
We refer to these as simply SPSA and SFA, respectively. We consider the mapping
Γ to be defined via the generalized projection scheme. These algorithms but with
the randomized projection operator are described in [3]. Since we use a long-run av-
erage cost objective, both algorithms incorporate two step-size sequences a(n) and
b(n),n ≥ 0 that satisfy Assumption 3.6. Thus, recursions governed by a(n),n ≥ 0
are slower while those governed by b(n),n≥ 0 are faster. In either of the algorithms

below, θ (m)
�
= (θ1(m), . . . ,θN(m))T shall denote the parameter vector at the end of

the mth iteration.

9.3.1 The SPSA Algorithm

Let Δ1(m), . . . ,ΔN(m) denote independent random variables having the distribution
Δi(m) = ±1 w.p. 1/2, ∀i = 1, . . . ,N, m ≥ 0. Set θ 1

i (m) = Γi(θi(m)+ δΔi(m)) and
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θ 2
i (m) = Γi(θi(m)− δΔi(m)), respectively, for i = 1, . . . ,N, where δ > 0 is a given

(small) constant. Other distributions for the perturbation sequences Δi(m),m ≥ 0,

i = 1, . . . ,N may also be used (see Chapter 5). Let θ j(m)
�
= (θ j

1 (m), . . . ,θ j
N(m)),

j = 1,2. Set Z(0) = 0.
Generate two parallel simulations {Xθ1(m)(m)} and {Xθ2(m)(m)} governed by

parameter sequences {θ 1(m)} and {θ 2(m)}, respectively.

Fix a large integer M > 0. For i = 1, . . . ,N, m = 0,1, . . . ,M− 1, we have

θi(m+ 1) =Γ̄i

(
θi(m)+ a(m)

Z(m+ 1)
2δΔi(m)

)
, (9.6)

Z(m+ 1) =Z(m)+ b(m)(h(Xθ
2(m)(m))− h(Xθ

1(m)(m))−Z(m)). (9.7)

Output Γ (θ (M)) as the final parameter.

9.3.2 The SFA Algorithm

Let η1(m), . . . ,ηN(m) be independent N(0,1)-distributed random variables. Let
β > 0 be a given (small) constant. Let θ j(m) = (θ j

1 (m), . . . ,θ j
N(m))T , j = 1,2,

where θ 1
i (m) = Γi(θi(m)+βηi(m)) and θ 2

i (m) = Γi(θi(m)−βηi(m)), i = 1, . . . ,N,
respectively.

Generate two parallel simulations {Xθ1(m)(m)} and {Xθ2(m)(m)} governed by
parameter sequences {θ 1(m)} and {θ 2(m)}, respectively.

Fix a large integer M > 0. For i = 1, . . . ,N, m = 0,1, . . . ,M− 1, we have

θi(m+ 1) = Γ̄i(θi(m)+ a(m)Zi(m+ 1)), (9.8)

Zi(m+1) = Zi(m)+b(m)

(
ηi(m)

2β
(h(Xθ

2(m)(m))− h(Xθ
1(m)(m)))−Zi(m)

)
.

(9.9)
Output Γ (θ (M)) as the final parameter.

It is important to note that while the updates of the parameter θ in the SPSA and
SFA algorithms are performed in the set C̄, the actual parameters used in the two
simulations at the mth instant, m ≥ 0, in these algorithms (i.e., θ 1(m) and θ 2(m),
respectively) are C-valued as a consequence of the Γ -projection.
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9.3.3 Convergence Analysis

We show here the convergence of both algorithms. The first result below shows
that under the extended dynamics of the Markov chain Xθ (n),n ≥ 0, θ ∈ C̄, each
algorithm is analogous to its continuous parameter counterpart where the random
projection operator Γ is replaced with Γ̄ .

Lemma 9.4. Under the extended dynamics of the Markov process {Xθ (n)} defined
over all θ ∈ C̄,

(i) SPSA is analogous to a similar algorithm in which θ i(m) in SPSA is replaced

by θ̄ i(m)
�
= (θ̄ i

j(m), j = 1, . . . ,N)T , i = 1,2, where θ̄ 1
j (m) = Γ̄j(θ j(m)+δΔ j(m))

and θ̄ 2
j (m) = Γ̄j(θ j(m)− δΔ j(m)), respectively, j = 1, . . . ,N.

(ii) SFA is analogous to a similar algorithm in which θ i(m) in SFA is replaced

by θ̄ i(m)
�
= (θ̄ i

j(m), j = 1, . . . ,N)T , i = 1,2, where θ̄ 1
j (m) = Γ̄j(θ j(m)+βη j(m))

and θ̄ 2
j (m) = Γ̄j(θ j(m)−βη j(m)), respectively, j = 1, . . . ,N.

Proof. We prove here the claim in part (i) for the case of SPSA. The same for
SFA (in part (ii)) follows in a similar manner. Consider the SPSA algorithm (9.6)–
(9.7). Let θ (m) be a given parameter update that lies in C̄o (where C̄o denotes the
interior of the set C̄). Let δ > 0 be sufficiently small so that θ̄ 1(m) = (Γ̄j(θ j(m)+
δΔ j(m)), j = 1, . . . ,N)T = (θ j(m) + δΔ j(m)), j = 1, . . . ,N)T and θ̄ 2(m) =
(Γ̄j(θ j(m)−δΔ j(m)), j = 1, . . . ,N)T = (θ j(m)−δΔ j(m)), j = 1, . . . ,N)T . Thus, the
perturbed parameters θ̄ 1(m) and θ̄ 2(m) lie in C̄o as well.

Consider now the Γ -projected parameters θ 1(m) = (Γj(θ j(m) + δΔ j(m)), j =
1, . . . ,N)T and θ 2(m) = (Γj(θ j(m)− δΔ j(m)), j = 1, . . . ,N)T , respectively. By the
construction of the generalized projection operator, these parameters are equal to
θ k ∈ C with probabilities βk((θ j(m) + δΔ j(m), j = 1, . . . ,N)T ) and βk((θ j(m)−
δΔ j(m), j = 1, . . . ,N)T ), respectively. When the operative parameter is θ k, the
transition probabilities are pθ k(i, l), i, l ∈ S. Thus with probabilities βk((θ j(m) +
δΔ j(m), j = 1, . . . ,N)T ) and βk((θ j(m)−δΔ j(m), j = 1, . . . ,N)T ), respectively, the
transition probabilities in the two simulations equal pθ k (i, l), i, l ∈ S.

Next, consider the alternative (extended) system with parameters θ̄ 1(m) and
θ̄ 2(m), respectively. The transition probabilities are now given by

pθ̄ i(m)( j, l) =
p

∑
k=1

βk(θ̄ i(m))pθ k ( j, l),

i = 1,2, j, l ∈ S. Thus, with probability βk(θ̄ i(m)), a transition probability of
pθ k( j, l) is obtained in the ith system. Thus, the two systems (original and the one
with extended dynamics) are analogous.

Now consider the case when θ (m) ∈ ∂C̄, i.e., is a point on the boundary of C̄).
Then, one or more components of θ (m) are extreme points. For simplicity, assume
that only one component (say the ith component) is an extreme point as the same ar-
gument carries over if there are more parameter components that are extreme points.
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By the ith component of θ (m) being an extreme point, we mean that θi(m) is ei-
ther Ci,min or Ci,max. The other components j = 1, . . . ,N, j �= i are not extreme, i.e.,
cl

j ≤ θ j(m) ≤ cl+1
j for some l, l + 1 ∈ {1, . . . , p}. Thus, one of θi(m)+ δΔi(m) or

θi(m)−δΔi(m) will lie outside of the interval [Ci,min,Ci,max] while the other will lie
inside of it for δ > 0 small enough. For instance, suppose that θi(m) = Ci,max and
that θi(m) + δΔi(m) > Ci,max (which will happen if Δi(m) = +1). In such a case,
θ 1

i (m) = Γi(θi(m)+ δΔi(m)) =Ci,max with probability one. Then, as before, θ 1(m)

can be written as the convex combination θ 1(m) =
p

∑
k=1

βk(θ 1(m))θ k and the rest

follows as before. ��
As a consequence of Lemma 9.4, it is sufficient to analyze the convergence of the
SPSA and SFA algorithms for the new system with extended transition probabili-
ties and where θ̄ i(m) is used in place of θ i(m), i = 1,2. Let for any bounded and
continuous function v(·) : R→R,

Γ̂i(v(y)) = lim
0<η→0

(
Γ̄i(y+ηv(y))− Γ̄i(y)

η

)
.

For x = (x1, . . . ,xN)
T , let Γ̂ (x) = (Γ̂1(x1), . . ., Γ̂N(xN))

T . Let

K̂ = {θ ∈ C̄ | Γ̂ (−∇J̄(θ )) = 0}.

Given ε > 0, let K̂ε be the ε-neighborhood of K̂, i.e., the set of points that are within
a distance of ε from the set K̂. Let P be the set

P = {θ̂ ∈C | θ̂ = Γ (θ ),θ ∈ K̂},

and Pε be its ε-neighborhood.

Theorem 9.5. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0,δ0), {θ (M)} obtained
according to the SPSA algorithm satisfies θ (M)→ θ ∗ ∈ Pε almost surely as
M→ ∞.

Proof. As a consequence of Lemma 9.4(i), we consider the alternative system with
θ̄ 1(m), θ̄ 2(m) in place of θ 1(m), θ 2(m), respectively. For this system, it can be
shown in a similar manner as Chapter 5 that given any ε > 0, there exists a δ0 > 0
such that for all δ ∈ (0,δ0), θ (M)→ θ ∗ for some θ ∗ ∈ K̂ε almost surely as M→∞.
ThusΓ (θ (M))→Γ (θ ∗) as M→∞ almost surely. Note that since θ ∗ ∈ K̂ε , we have
Γ (θ ∗) ∈ Pε . The claim follows. ��
The following result holds for the SFA algorithm.
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Theorem 9.6. Given ε > 0, ∃β0 > 0 such that ∀β ∈ (0,β0), {θ (M)} obtained
according to the SFA algorithm satisfies θ (M)→ θ ∗ for some θ ∗ ∈ Pε almost
surely as M→ ∞.

Proof. As with Theorem 9.5, as a consequence of Lemma 9.4(ii), we consider the
alternative system with θ̄ 1(m), θ̄ 2(m) in place of θ 1(m), θ 2(m), respectively. It can
now be shown in a similar manner as Chapter 6 that given any ε > 0, there exists a
β0 > 0 such that for all β ∈ (0,β0), θ (M)→ θ ∗ ∈ K̂ε almost surely as M→ ∞. The
rest follows in a similar manner as Theorem 9.5. ��
Remark 9.1. The equivalence between the original system and its (alternate) con-
tinuous analog (cf. Lemma 9.4) critically depends on the quantities βk(θ ), k =
1, . . . , p (that describe the Γ -projection) being continuously differentiable. This is
the case when either the generalized or the randomized projection operator is used
in the algorithms. (In the latter case, in fact we have αk(θ ) in place of βk(θ ) that
are seen to be continuously differentiable.) The proofs of Theorems 9.5 and 9.6 are
based on this equivalence. On the other hand, if deterministic projections are used
(in place of randomized), one can proceed by splitting the convex hull C̄ into dis-
joint regions such that a point θ̄ in any such region will project to a unique θ ∈C.
This however will result in the transition probabilities (as function of θ ) being non-
smooth at the boundaries of these regions. The analysis in Lemma 9.3 as well as
Theorems 9.5 and 9.6 will not carry through in such a case unless the (determinis-
tic) projection scheme at the boundaries of the afore-mentioned regions is modified
in a way that the transition probabilities become smooth. In fact, the generalized
projection scheme is designed to achieve precisely this.

9.4 Concluding Remarks

We presented in this chapter adaptations of the SPSA and SFA algorithms for dis-
crete parameter optimization for the optimization of a long-run average cost cri-
terion associated with an underlying parametrized Markov chain. The idea was to
update the algorithms in a closed and convex hull of the parameter region while
the two parallel systems used in these algorithms are run at any instant using a
suitable projection of the continuous-valued running parameter update to the under-
lying discrete set. Three different operators, deterministic, randomized and gener-
alized, respectively, were presented for this purpose. The transition dynamics was
first extended to include the case of continuously-valued parameters in the closed
and convex hull of the discrete parameter space. It was observed that the tran-
sition probabilities and hence also the stationary distribution of the parametrized
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Markov process become continuously differentiable in the (continuously-valued)
parameter in the extended space. This was, however, the case when either ran-
domized or generalized projection operators (but not deterministic) are used. The
generalized projection operator is a hybrid between deterministic and randomized
schemes. The regular convergence analysis of the SPSA and SFA algorithms can
then be carried over to the discrete parameter setting when randomized or general-
ized projection operators are used.

In [3], the performance of the SPSA and SFA algorithms has been empirically
tested, in the case when randomized projection operators are used, over several ex-
periments on two different settings of admission control. In one of these settings,
the parameter set is small and contains around 100 elements (parameters) while in
another, it is large and has about 108 parameters. Performance comparisons with
the equal allocation algorithm as well as the optimal computing budget allocation
(OCBA) procedure [8, 6, 7] have also been shown ([3]) in the case when the param-
eter set has size 100. Over small-sized parameter sets, OCBA is widely regarded
in the literature as being amongst the best algorithms for discrete parameter search.
While the original OCBA scheme has been proposed for the case when the objec-
tive function is an expectation over noisy cost samples, an adaptation of the same
for the long-run average cost criterion is described in [3]. It is observed in [3] that
for low computing budgets, the performance of SPSA and OCBA is similar and
better than SPSA and equal allocation. On the other hand, as the computing bud-
get is increased, SFA shows the best results and is clearly better than OCBA. The
performance of SPSA is also better than OCBA in this regime. In the case when
the parameter set is large (for instance in the setting with 108 parameters in [3],
R&S procedures such as OCBA and equal allocation are no longer implementable.
It is observed that even in such cases, SPSA and SFA are easily implementable and
show good results. An advantage in adapting efficient continuous optimization pro-
cedures such as SPSA and SFA to the case of discrete parameter optimization is
that the search proceeds along the direction determined by the procedure that makes
it computationally more efficient as one does not require storage of cost estimates
corresponding to each parameter. On the other hand, in most other R&S proce-
dures such as OCBA, the cost estimate corresponding to each parameter needs to be
obtained first (using a given number of simulation samples) and stored before com-
parisons are drawn. This can result in such procedures being computationally less ef-
ficient particularly for large parameter spaces. A potential disadvantage, on the other
hand, with adopting SPSA and SFA-based techniques for discrete parameter search
is that in some cases, they may get caught in some bad local minima. This is unlike
R&S type procedures. A possible future direction is to extensively study the em-
pirical performance of SPSA and SFA with the generalized projection operator on
various settings as well as the performance of similar adaptations of the other algo-
rithms described in earlier chapters such as SPSA with Hadamard matrix perturba-
tions as well as the Newton-based algorithms for the discrete parameter optimization
setting.
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Chapter 10
Algorithms for Constrained Optimization

10.1 Introduction

The optimization problem that we have considered so far has the form

Find θ ∗ ∈C such that J(θ ∗) = min
θ∈C

J(θ ), (10.1)

for a given objective function J : RN →R and where C⊂R
N is a given set in which

θ takes values.
In many applications, the problem of optimizing the objective needs to be carried

out keeping in view that certain functional constraints are satisfied. Many times,
these (functional) constraints are specified via some other cost functions being be-
low certain thresholds. For example, in the case of communication networks, a
problem of interest could be to find a path from the source to the destination for
a user over which the throughput is maximum, subject to the constraint that the
mean delay-per-packet is below some threshold (of say one second). Another con-
straint could similarly be on the probability of packet loss being below some other
threshold (say 0.01).

The problem that we are interested in this chapter has the form:

Find θ ∗ such that J(θ ∗) = min
θ∈C
{J(θ ) | Gi(θ )≤ αi, i = 1, . . . , p}, (10.2)

where Gi(·) and αi, i = 1, . . . , p are additionally prescribed cost functions and con-
stants that together constitute the functional constraints. The constraint region in
which optimization needs to be performed in such a case becomes

C∩ (∩p
i=1{θ | Gi(θ )≤ αi}

)
.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 167–186.
springerlink.com © Springer-Verlag London 2013
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Note that the constraint region here is parameter-dependent since the constraint
functions (like the objective) are also parameter-dependent. We specifically con-
sider here the case when the objective and the constraint functions are all long-run
averages of certain given sample cost functions whose values at each instant can be
estimated through simulation. We incorporate the Lagrange multiplier approach to
deal with the inequality constraints.

Since neither the objective nor the constraints are known analytically, information
on their gradients and/or Hessians is usually not available (even when they exist).
As we shall see, a combination of multi-timescale stochastic approximation and
simultaneous perturbation methods proves useful here. Two of these methods are
based on the SPSA technique while the other two incorporate the SF approach. The
material presented in this chapter is largely based on [2].

Section 10.2 describes the constrained optimization problem framework and the
simulation optimization methods are presented subsequently in Section 10.3. A
sketch of the convergence analysis of these algorithms is given in Section 10.4.
Finally, Section 10.5 presents the concluding remarks. Application of methods sim-
ilar to the ones described in this chapter as well as those given in Chapter 9, to the
context of service systems, has been explored in Chapter 12. Somewhat similar tech-
niques have also been applied in the context of the random early detection (RED)
scheme for flow control in Chapter 14.2.

10.2 The Framework

Let {X(n),n ≥ 1} be an R
d-valued parametrized Markov process with a tunable

parameter θ . We assume that θ ∈ C ⊂ R
N , where C is a compact and convex set.

Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and stationary
distribution of {X(n)} when θ is the operative parameter.

Let h,g1,g2, . . . ,gp : Rd → R
+ ∪{0} be given functions (for some p ≥ 1). The

function h is the single-stage cost while g1, . . . ,gp are associated maps that deter-
mine the constraints. The aim here is to find a parameter θ ∈C that minimizes the
long-run average cost

J(θ ) = lim
l→∞

1
l

l−1

∑
j=0

h(X( j)), (10.3)

subject to

Gi(θ ) = lim
l→∞

1
l

l−1

∑
j=0

gi(X( j)) ≤ αi, i = 1,2, . . . , p. (10.4)

Here α1, . . . ,αp > 0 are given constants that specify the threshold levels.



10.2 The Framework 169

We will assume that there exists at least one θ ∈ C for which all the inequality
constraints (10.4) are satisfied. Note, however, that there may not be a unique (con-
strained) minimizer θ ∗. Thus, it is enough to find a θ ∗ that minimizes J(θ ) while
satisfying all the functional constraints. Note also that, in general, it is very difficult
to achieve a global minimum and optimization methods such as simulated anneal-
ing that aim at finding a global minimum can be computationally inefficient. Hence,
many times, one has to be content with finding a local minimum. We apply the La-
grange relaxation procedure to account for the constraints and provide algorithms
for finding a locally optimum parameter.

Lagrangian Relaxation

The constrained long-run average cost optimization problem described above can
be expressed using the standard Lagrange multiplier theory as an unconstrained
optimization problem. Let L(θ ,λ1,λ2 . . . ,λp) denote the Lagrangian described by

L(θ ,λ1,λ2 . . . ,λp) =J(θ )+
p

∑
i=1

λi(Gi(θ )−αi)

=
∫ (

h(x)+
p

∑
i=1

λi (gi(x)−αi)

)
νθ (dx), (10.5)

where λ1,λ2, . . . ,λp ∈ R
+ ∪ {0} denote the Lagrange multipliers corresponding

to the p functional constraints. In the following, we denote by Λ , the vector
Λ = (λ1, . . . ,λp)

T .
An optimal (θ ∗,Λ∗) is a saddle point for the Lagrangian, i.e., L(θ ,Λ∗) ≥

L(θ ∗,Λ∗)≥ L(θ ∗,Λ). Thus, it is necessary to design an algorithm which descends
in θ and ascends in Λ in order to find the optimum point. An iterative local search
procedure would update θ and Λ in descent and ascent directions, respectively.
Neither the objective nor the constraint functions have analytical expressions as
a consequence of being long-run averages. So, the Lagrangian L(θ ,Λ) also does
not possess an analytical expression. Thus, any optimization algorithm in this set-
ting must rely on outcomes either from a real system or those obtained using
simulation.

Assumptions

Let {θ (n)} be a sequence of random parameters obtained using an iterative scheme
on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m), m ≤ n), n ≥ 0
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denote a sequence of associated σ -fields. We call {θ (n)} non-anticipative if for all
Borel sets A⊂ R

d ,

P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).

It is easy to see that sequences {θ (n)} obtained using the algorithms in the
next section are non-anticipative. Under non-anticipative {θ (n)}, the joint process
{(X(n),θ (n))} is Markov.

Assumption 10.1. The process {X(n)} is ergodic Markov for any given θ ∈C.

Assumption 10.2. The single-stage cost and constraint functions h,g1,g2, . . . ,
gp : Rd →R

+∪{0} are all Lipschitz continuous.

Assumption 10.3. The functions J(·) and Gi(·), i = 1,2, . . . , p are twice con-
tinuously differentiable functions with bounded third derivatives.

Assumption 10.4. There exist ε0 > 0, K ⊂ R
d compact and V ∈C(Rd) such

that lim
‖x‖→∞

V (x) = ∞ and under any non-anticipative {θ (n)},

(i) supn E[V (X(n))2]< ∞, for any given X0, and
(ii) E[V (X(n+1)) |H (n)]≤V (X(n))−ε0 a.s., whenever X(n) �∈ K, n≥ 0.

Here C(Rd) is the set of all real-valued continuous functions on R
d . Also, ‖ · ‖ de-

notes the Euclidean vector norm. The same norm also denotes (by an abuse of nota-
tion) the matrix norm induced by the Euclidean vector norm (i.e., ‖A‖= sup

‖x‖=1
‖Ax‖,

A ∈ R
N×N).

Let P : RN×N → {positive definite and symmetric matrices} denote an opera-
tor that projects any N×N-matrix to the space of positive definite and symmetric
matrices. We let P(A) = A, if A is positive definite and symmetric. For a matrix A,
let {P(A)}−1 denote the inverse of the matrix P(A).

Assumption 10.5. If {A(n)} and {B(n)} are sequences of matrices in R
N×N

such that lim
n→∞‖A(n)−B(n)‖= 0, then lim

n→∞‖P(A(n))−P(B(n))‖= 0 as well.

Further, for any sequence {C(n)} of matrices in R
N×N , if sup

n
‖C(n)‖ < ∞,

then sup
n
‖P(C(n))‖, sup

n
‖{P(C(n))}−1‖ < ∞ as well.

Assumption 10.6. Let a(n), b(n), c(n) and d(n), n ≥ 0 be sequences of posi-
tive step-sizes that satisfy the requirements
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∞

∑
n=0

a(n) =
∞

∑
n=0

b(n) =
∞

∑
n=0

c(n) =
∞

∑
n=0

d(n) = ∞, (10.6)

∞

∑
n=0

a(n)2,
∞

∑
n=0

b(n)2,
∞

∑
n=0

c(n)2,
∞

∑
n=0

d(n)2 < ∞, (10.7)

lim
n→∞

a(n)
b(n)

= lim
n→∞

b(n)
c(n)

= lim
n→∞

c(n)
d(n)

= 0. (10.8)

Note that Assumption 10.1 ensures, in particular, that the long-run average cost
(10.3) and the constraint functions (10.4) are well defined for any θ . Assump-
tion 10.2 ensures that the single-stage cost functions h,g1, . . . ,gp exhibit an at most
linear growth (as a function of the state). Assumption 10.3 is a technical requirement
used to push through a Taylor’s argument (See Section 10.4).

Assumption 10.4 concerns the existence of a stochastic Lyapunov function V (·).
This ensures that the system remains stable under a tunable parameter. Note that
Assumption 10.4 will not be required if the functions h(·) and gi(·), i = 1, . . . , p
are bounded in addition. Assumption 10.5 is required for Newton-based algorithms
where one projects the Hessian estimate after each iteration onto the space of pos-
itive definite and symmetric matrices. This ensures that the algorithm progresses
along the negative gradient direction at each update epoch. Finally, Assumption 10.6
ensures a difference in timescales in recursions governed with the various step sizes
as explained in earlier chapters.

10.3 Algorithms

As explained below, an algorithm for the constrained optimization problem would
require three or four nested loops depending on whether the algorithm is a gradient-
based scheme or is Newton based.

1. The inner-most loop in any of these schemes would aggregate data over various
simulation runs for given Λ and θ .

2. The next outer loop would update θ for a givenΛ -update, so that corresponding
to that update, the optimum θ is attained. The update in this loop, in turn, may
depend on the outcome of another (nested) inner loop depending on whether the
scheme works only with gradients or requires both gradient as well as Hessian
computations.

3. Finally, the outer-most loop would update the Lagrange multipliers Λ using
outcomes of the aforementioned loop updates.

Note that a regular procedure as described above will take a very long time to con-
verge because any of the outer-loop updates would have to wait for convergence of
the corresponding inner-loop procedures. Multi-timescale stochastic approximation
again comes to our rescue. By having coupled stochastic updates with different (di-
minishing) step-size schedules, with each converging to zero at a different rate, one
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can have recursions that proceed simultaneously and yet converge to an equilibrium
solution.

We describe four stochastic approximation algorithms for this purpose. Two
of these are gradient-based algorithms while the other two are Newton-based
schemes. These algorithms incorporate SPSA and SF gradient/Hessian estimates
that are, however, different from the balanced estimates presented in Chapters 7
and 8, respectively. All four algorithms use two simulations each, one of which
corresponds to the running parameter update in each algorithm, while the other
is from a perturbed parameter sequence that in turn depends on the particular
scheme (gradient/Hessian as well as SPSA/SF) used. The running parameter (θ )
update in each of these algorithms is also used to aggregate data for the La-
grange multiplier updates. Hence, for reducing the simulation load, we incorpo-
rate the estimates from the running parameter into the gradient/Hessian estimators
as well.

All four step-size schedules (cf. Assumption 10.6) are used for the Newton al-
gorithms while the gradient algorithms rely on the sequences a(n), b(n), and c(n),
n ≥ 0, respectively. For x = (x1, . . . ,xN)

T ∈ R
N , let Γ (x) = (Γ1(x1), . . ., ΓN(xN))

T

represent the projection of x onto the set C. Further, let Γ̂ : R→ [0, L̄] denote the
projection Γ̂ (y) = min(L̄,max(y,0)) for any y ∈ R, where L̄ > 0 is a large constant.
L̄ < ∞ ensures that the stochastic recursions that use Γ̂ stay uniformly bounded.

In the following, we let θ (n) �= (θ1(n), . . . ,θN(n))T , denote the nth update of the
parameter θ and λi(n) (resp. Λ(n)), the nth update of λi (resp. Λ ), i = 1, . . . , p.
In what follows, before presenting the four algorithms, we first present the gradi-
ent or gradient/Hessian estimates used in each scheme depending on whether the
same is a gradient or Newton-based algorithm, since as mentioned before, the forms
of the gradient/Hessian estimators used here are different from those proposed in
Chapters 7 and 8.

10.3.1 Constrained Gradient-Based SPSA Algorithm (CG-SPSA)

The Gradient Estimate

Let Δ1, . . ., ΔN be independent random variables satisfying Assumption 5.4. Let
Δ = (Δ1, . . . ,ΔN)

T and Δ−1 = (1/Δ1, . . . ,1/ΔN)
T , respectively. Then, the form of

the estimate of the gradient of L(θ ,Λ) w.r.t. θ is obtained from the following
relationship:

∇θL(θ ,Λ) = lim
δ↓0

E

[(
L(θ + δΔ ,Λ)−L(θ ,Λ)

δ

)
Δ−1
]
,

where the expectation is w.r.t. the distribution of Δ . This is essentially same as the
one-sided SPSA gradient estimation scheme discussed in Chapter 5.3.2.
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The Algorithm

Generate two parallel simulations {X(n)} and {X ′(n)} such that at any instant n,
X(n) is governed by θ (n) while X ′(n) is governed by θ (n)+ δΔ(n), where δ > 0
is a given small constant. Also, Δ(n) is the vector Δ(n) = (Δ1(n), . . . ,ΔN(n))T .
Here Δl(n), l = 1, . . . ,N, n ≥ 0 being independent random variables satisfying
Assumption 5.4. We have for l = 1, . . . ,N, i = 1, . . . , p,

Z(n+ 1) =Z(n)

+ c(n)

(
h(X ′(n))+

p

∑
i=1
λi(n)gi(X

′(n))

− h(X(n))−
p

∑
i=1

λi(n)gi(X(n))−Z(n)

)
, (10.9)

θl(n+ 1) =Γl

(
θl(n)− b(n)

Z(n)
δΔl(n)

)
, (10.10)

Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.11)

λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.12)

In the above, Z(n) is an estimate of (L(θ (n)+δΔ(n),Λ(n))−L(θ (n),Λ(n))). Also,
Z(n)/(δΔl(n)) is an estimate of∇θl L(θ (n),Λ(n)), the partial derivative correspond-
ing to the lth component of θ , l = 1, . . . ,N. Further, Yi(n) is the nth estimate of the
constraint function Gi(θ (n)) in (10.4).

10.3.2 Constrained Newton-Based SPSA Algorithm (CN-SPSA)

The Gradient and Hessian Estimates

The gradient and Hessian estimates in CN-SPSA depend on two independent se-
quences of perturbation random variables. The form of the gradient estimates here
is different from the one used in CG-SPSA. Let Δ1, . . . ,ΔN , Δ̂1, . . . , Δ̂N be mutually
independent random variables satisfying Assumption 7.6. Let Δ and Δ−1 be as be-
fore. Also, let Δ̂ = (Δ̂1, . . . , Δ̂N)

T and Δ̂−1 = (1/Δ̂1, . . . ,1/Δ̂N)
T , respectively. Then,

the estimates of the gradient and Hessian of L(θ ,Λ) w.r.t. θ are based on the follow-
ing relationships that are prove later in Propositions 10.11 and 10.10, respectively.

∇θL(θ ,Λ) = lim
δ1,δ2↓0

E

[(
L(θ + δ1Δ + δ2Δ̂ ,Λ)−L(θ ,Λ)

δ2

)
Δ̂−1

]
,
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∇2
θL(θ ,Λ) = lim

δ1,δ2↓0
E

[
�−1

(
L(θ + δ1Δ + δ2Δ̂ ,Λ)−L(θ ,Λ)

δ1δ2

)(
Δ̂−1)T

]
.

The expectations above are taken w.r.t. the joint distribution of Δ and Δ̂ .

The Algorithm

Let Δ(n), Δ̂ (n), n≥ 0 be two sequences of independent perturbation vectors Δ(n) �=
(Δ1(n), . . . ,ΔN(n))T and Δ̂(n) �= (Δ̂1(n), . . . , Δ̂N(n))T , respectively, with Δl(n),
Δ̂l(n), l = 1, . . . ,N,n ≥ 0 satisfying Assumption 7.6. Let δ1,δ2 > 0 be two small
constants. Generate two parallel simulations {X(n)} and {X ′(n)} such that at
any instant n, X(n) is governed by the parameter θ (n) while X ′(n) is governed
by θ (n) + δ1Δ(n) + δ2Δ̂ (n). Then, the update rule of CN-SPSA algorithm is as
follows:

Z(n+ 1) =Z(n)+ d(n)

(
h(X ′(n))+

p

∑
i=1

λi(n)gi(X
′(n))

− h(X(n))−
p

∑
i=1
λi(n)gi(X(n))−Z(n)

)
. (10.13)

For j, l ∈ {1, . . . ,N}, j ≤ l,

Hj,l(n+ 1) =Hj,l(n)+ c(n)

(
Z(n)

δ1δ2Δl(n)Δ̂ j(n)
−Hj,l(n)

)
, (10.14)

For l = 1, . . . ,N, i = 1, . . . , p,

θl(n+ 1) =Γl

(
θl(n)− b(n)

N

∑
k=1

Ml,k(n)

(
Z(n)

δ2Δ̂k(n)

))
, (10.15)

Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.16)

λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.17)

In the above,

• We set Hj,l(n+ 1) = Hl, j(n+ 1) for j > l.

• M(n) = [[Mk,l(n)]]Nk,l=1 denotes the inverse of the matrix H(n)
�
= P([[Hk,l

(n)]]Nk,l=1).

• Z(n) is an estimate of (L(θ (n)+ δ1Δ(n)+ δ2Δ̂ (n),Λ(n))−L(θ (n),Λ(n))).
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• Z(n)/(δ2Δ̂k(n)) is an estimate of the partial derivative ∇θk L(θ (n),Λ(n)) and
Z(n)/(δ1δ2Δl(n)Δ̂ j(n)) is an estimate of the ( j, l)th component of the Hessian
matrix H(n).

10.3.3 Constrained Gradient-Based SF Algorithm (CG-SF)

The Gradient Estimate

The gradient estimate here will involve a one-sided form described below. Let η =
(η1, . . . ,ηN)

T be a vector of independent N(0,1)-distributed random variates. The
gradient estimates for CG-SF are based on the following relationship whose proof
is given later in Proposition 10.2.

∇θL(θ ,Λ) = lim
β↓0

E

[
η
β
(L(θ +βη ,Λ)−L(θ ,Λ))

]
,

where the expectation is taken w.r.t. the distribution of η .

The Algorithm

Let β > 0 be a given small constant. Let η(n) �= (η1(n), . . . ,ηN(n))T , where ηl(n),
l = 1, . . . ,N, n ≥ 0 are independent N(0,1)-distributed random variables. Generate
two parallel simulations {X(n)} and {X ′(n)} such that at any instant n, X(n) is
governed by the parameter θ (n) while X ′(n) is governed by θ (n)+ βη(n). Then
for l = 1, . . . ,N, i = 1, . . . , p, we have

Zl(n+ 1) =Zl(n)+ c(n)

(
ηl(n)
β

(
h(X ′(n))+

p

∑
i=1
λi(n)gi(X

′(n))

− h(X(n))−
p

∑
i=1
λi(n)gi(X(n))

)
−Zl(n)

)
, (10.18)

θl(n+ 1) =Γl (θl(n)− b(n)Zl(n)) , (10.19)

Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.20)

λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.21)

Here Zl(n) is an estimate of ∇θl L(θ (n),Λ(n)).
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10.3.4 Constrained Newton-Based SF Algorithm (CN-SF)

The Gradient and Hessian Estimates

The gradient estimate in CN-SF is the same as the one in CG-SF. As in the case of
the N-SF algorithms of Chapter 8, where there are no functional constraints, (see
(8.4)), let

H̄(η) �=

⎡
⎢⎢⎣
(η2

1 − 1) η1η2 · · · η1ηN

η2η1 (η2
2 − 1) · · · η2ηN

· · · · · · · · · · · ·
ηNη1 ηNη2 · · · (η2

N − 1)

⎤
⎥⎥⎦ , (10.22)

where η = (η1, . . . ,ηN)
T is a vector of mutually independent N(0,1) random vari-

ables. The estimate for the Hessian in CN-SF is obtained from the following rela-
tionship:

∇2
θL(θ ,Λ) = lim

β→0

1
β 2 E [H̄(η)(L(θ +βη ,Λ)−L(θ ,Λ))] , (10.23)

where the expectation is taken w.r.t. the distribution of η .

The Algorithm

Let β > 0 be a given small constant. Let η(n) �= (η1(n), . . . ,ηN(n))T , where ηl(n),
l = 1, . . . ,N, n ≥ 0 are mutually independent N(0,1)-distributed random variables.
Generate two parallel simulations {X(n)} and {X ′(n)} such that at any instant n,
X(n) is governed by the parameter θ (n) while X ′(n) is governed by θ (n)+βη(n).
For i, j,k = 1, . . . ,N, j < k, update

Zi,i(n+ 1) =(1− d(n))Zi,i(n)

+ d(n)

(
η2

i (n)− 1
β 2

(
− h(X(n))−

p

∑
i=1
λi(n)gi(X(n))

+ h(X ′(n))+
p

∑
i=1
λi(n)gi(X

′(n))
))

, (10.24)



10.3 Algorithms 177

Zj,k(n+ 1) =(1− d(n))Zj,k(n)

+ d(n)

(
η j(n)ηk(n)

β 2

(
− h(X(n))−

p

∑
i=1
λi(n)gi(X(n))

+ h(X ′(n))+
p

∑
i=1

λi(n)gi(X
′(n))

))
. (10.25)

For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). Next for l = 1, . . . ,N, i = 1, . . . , p,
update

Zl(n+ 1) =Zl(n)+ c(n)

(
ηl(n)
β

(
h(X ′(n))+

p

∑
i=1
λi(n)gi(X

′(n))

−h(X(n))−
p

∑
i=1

λi(n)gi(X(n))

)
−Zl(n)

)
, (10.26)

θl(n+ 1) =Γl

(
θl(n)− b(n)

N

∑
k=1

Ml,k(n)Zk(n)

)
, (10.27)

Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.28)

λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.29)

In the above, M(n) = [[Mi, j(n)]]Ni, j=1
�
= H(n)−1 denotes the inverse of the Hessian

matrix H(n) = P([[Zi, j(n)]]Ni, j=1). Also, Zi,i(n) (resp. Zj,k(n)) is the nth estimate of

the (i, i)th (resp. ( j,k)th) element of the Hessian matrix ∇2
θL(θ ,λ ). Further, as with

CG-SF, Zl(n) is an estimate of ∇θl L(θ (n),Λ(n)).

Remark 10.1. The quantities Yi(n) in each of these algorithms are used in the
updates of the Lagrange multipliers λi(n), i = 1, . . . , p,n ≥ 0, for which one re-
quires the nominal parameter updates θ (n),n ≥ 0. For simulation efficiency, the
gradient/Hessian estimators in these algorithms have been designed in a way as
to make use of the simulations with the nominal parameters as well. On the other
hand, the two-simulation-balanced estimators of the gradient/Hessian described in
Chapters 7 and 8 could be slightly more efficient as compared to the one-sided
(unbalanced) estimators used here because of less higher-order biases in the for-
mer. The resulting algorithms with such (balanced) estimators would however re-
quire three parallel simulations. Nevertheless, it would be interesting to empiri-
cally study the comparisons of such algorithms (with balanced estimators) with
the algorithms presented here both in terms of accuracy as well as computational
effort.
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10.4 A Sketch of the Convergence

We first provide a sketch of the convergence proof for the algorithm CN-SF. Later,
we describe the changes necessary in the analysis of the other algorithms.

Convergence Analysis of CN-SF

The analysis of (10.24)–(10.27) works along the lines of SF schemes discussed in
Chapter 8. Since a(n) = o(b(n)), a multi-timescale stochastic approximation anal-
ysis allows us to treat Λ(n) as a constant while analyzing (10.24)–(10.27), under
which condition these updates reduce to a scheme similar to the one used in Chapter
8 except with different gradient and Hessian estimators. In the following, we, there-
fore, first show that the gradient and Hessian estimators that we use are strongly
consistent.

Let H̄(η(n)) be defined as in (10.22) with η(n) in place of η , where η(n) are the
random variables described in the algorithm.

Proposition 10.1.∥∥∥∥∥E

[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)

]

−∇2
θ(n)L(θ (n),Λ(n))

∥∥∥∥∥→ 0, as β → 0.

Proof. Note that

E

[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)

]

= E[
1
β 2 H̄(η(n))(J(θ (n)+βη(n))+

p

∑
i=1

λi(n)Gi(θ (n)+βη(n))

−J(θ (n))−
p

∑
i=1
λi(n)Gi(θ (n))) | θ (n),Λ(n)].

Using Taylor series expansions of J(θ (n)+βη(n)) and Gi(θ (n)+βη(n)), respec-
tively, around θ (n), one obtains

L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))

= βη(n)T (∇J(θ (n))+
p

∑
i=1

λi(n)∇Gi(θ (n)))

+
β 2

2
η(n)T (∇2J(θ (n))+

p

∑
i=1
λi(n)∇2Gi(θ (n)))η(n)+ o(β 2). (10.30)
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Hence,

E

[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ (n))−L(θ (n),Λ (n))) | θ (n),Λ (n)

]

= E

[
1
β

H̄(η(n))η(n)T

(
∇J(θ (n))+

p

∑
i=1
λi(n)∇Gi(θ (n))

)
| θ (n),Λ (n)

]

+
1
2

E

[
H̄(η(n))η(n)T

(
∇2J(θ (n))+

p

∑
i=1
λi(n)∇2Gi(θ (n))

)
η(n) | θ (n),Λ (n)

]
+O(β ).

The first term on the RHS above equals zero, while the second term equals ∇2
θ(n)

L(θ (n),Λ(n)). ��

Proposition 10.2.

‖E
[

1
β
η(n)(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)

]
−∇θ(n)L(θ (n),Λ(n))‖ → 0

as β → 0.

Proof. Note that

E

[
1
β
η(n)(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)

]

= E[η(n)η(n)T∇θ(n)L(θ (n),Λ(n)) | θ (n),Λ(n)]

+
β
2

E[η(n)η(n)T∇2
θ(n)L(θ (n),Λ(n))η(n) | θ (n),Λ(n)]+ o(β )

= ∇θ(n)L(θ (n),Λ(n))+ o(β ).

The last equality follows since the second term on the RHS of the first equality
above equals zero and E[η(n)η(n)T ] = I, the identity matrix. The claim follows. ��

Consider now the recursion (10.27). Since a(n) = o(b(n)), we treat Λ(n) ≡ Λ , a
constant, in the analysis of (10.27). The ODE associated with (10.27) is thus

θ̇ (t) = Γ̃ (−{P(∇2
θL(θ (t),Λ))}−1∇θL(θ (t),Λ)), (10.31)

where for any y ∈ R
N and a bounded, continuous function v(·) : RN → R

N ,

Γ̃ (v(y)) = lim
0<η→0

(
Γ (y+ηv(y))−Γ (y)

η

)
.



180 10 Algorithms for Constrained Optimization

Let

KΛ
�
= {θ ∈C | ∇θL(θ ,Λ)T Γ̃ (−{P(∇2

θL(θ ,Λ))}−1∇θL(θ ,Λ)) = 0}.
Further, let

K̂Λ
�
= {θ ∈C | Γ̃ (−{P(∇2

θL(θ ,Λ ))}−1∇θL(θ ,Λ )) =−{P(∇2
θL(θ ,Λ ))}−1∇θL(θ ,Λ )}.

Let Co denote the interior of C. Then, one can see that Co ⊆ K̂Λ for any Λ =
(λ1, . . . ,λp)

T , with λi ≥ 0, i = 1, . . . , p. In the light of Propositions 10.1 and 10.2, we
have the following result whose proof follows in a similar manner as Theorem 8.12
(Chapter 8).

Theorem 10.3. Let λi(n)≡ λi ∀n ≥ 0, for some λi ≥ 0, i = 1, . . . , p. Then the
sequence {θ (n)} converges as β → 0 to a point θΛ ∈KΛ with probability one,
where Λ = (λ1, . . . ,λp)

T .

Consider now the recursion (10.28) and consider the following sequence of ODEs:
For l = 1, . . . ,N, i = 1, . . . , p,

λ̇i(t) = 0, (10.32)

θ̇l(t) = 0, (10.33)

Ẏi(t) = Gi(θ (t))−Yi(t). (10.34)

In lieu of (10.32)–(10.33), θ (t) ≡ θ for some θ ∈ R
N and (10.34) can be

rewritten as
Ẏi(t) = Gi(θ )−Yi(t). (10.35)

We now have the following result:

Proposition 10.4. ‖Yi(n)−Gi(θ (n))‖→ 0 w.p. 1, as n→ ∞, for all i = 1, . . . , p.

Proof. Since a(n) = o(c(n)) and b(n) = o(c(n)), one can treat in a similar manner
as the foregoing, Λ(n) and θ (n) to be constants when analyzing (10.28). Rewrite
(10.28) as

Yi(n+ 1) = Yi(n)+ c(n)(Gi(θ (n))+ ξi(n)+M(n+ 1)−Yi(n)),

where ξi(n) = E[gi(X(n)) |F (n−1)]−Gi(θ (n)) with F (n) = σ(X(m),θ (m),m≤
n), n ≥ 0 being the associated σ -fields and M(n+ 1) = (gi(X(n))−E[gi(X(n)) |
F (n−1)]). Let N(n) =

n

∑
m=0

c(m)Mm+1, n≥ 0. We will first verify that (N(n),F (n)),

n≥ 0 is a square-integrable martingale. Note that

E[N(n)2]≤ Kn

n

∑
m=0

c(m)2E[g2
i (X(n))+E2[gi(X(n)) |F (n− 1)]],
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for some Kn > 0 that depends on n. By the conditional Jensen’s inequality, we have

E2[gi(X(n)) |F (n−1)]≤E[g2
i (X(n)) |F (n−1)]. Thus, E[N(n)2]≤ 2Kn

n

∑
m=0

c(m)2

E[g2
i (X(n))]. Now since gi(·) is Lipschitz continuous,

|gi(X(n))| ≤ |gi(0)|+ |gi(X(n))− gi(0)| ≤ |gi(0)|+ K̄i‖X(n)‖,

where K̄i > 0 is the Lipschitz constant for the function gi(·). Thus, |gi(X(n))| ≤
Ki(1 + ‖X(n)‖), where Ki = max(|gi(0)|, K̄i). Hence E[g2

i (X(n))] ≤ 2K2
i

(1+E[‖X(n)‖2]). Now from Assumption 10.4, we have that supn E[‖X(n)‖2]< ∞.
Hence, E[N(n)2]<∞ for all n≥ 0. Further, E[N(n+1) |F (n)] =N(n) w.p.1. Thus,
N(n),n≥ 0 is a square-integrable martingale sequence. Now,

∑
n

E[(N(n+ 1)−N(n))2 |F (n)]

=∑
n

c(n+ 1)2E[(gi(X(n+ 1))−E[gi(X(n+ 1)) |F (n)])2 |F (n)]

≤ 2∑
n

c(n+ 1)2E[g2
i (X(n+ 1))+E2[gi(X(n+ 1)) |F (n)] |F (n)]

≤ 4∑
n

c(n+ 1)2E[g2
i (X(n+ 1)) |F (n)].

From Assumption 10.4 and the Lipschitz continuity of gi(·), it can again be seen
that supn E[g2

i (X(n+ 1)) |F (n)] < ∞ almost surely. Since ∑n c(n)2 < ∞, we have
that

∑
n

E[(N(n+ 1)−N(n))2 |F (n)]< ∞ w.p.1.

Hence, from the martingale convergence theorem (Theorem B.2), {N(n)} is an al-
most surely convergent sequence. Now, ξi(n),n ≥ 0 constitutes the Markov noise.
Note, however, that as a consequence of Assumption 10.1, along the ‘natural
timescale’, ξi(n)→ 0 w.p. 1 as n→ ∞, ∀i = 1, . . . , p. Since the natural timescale
is faster than the timescale of the stochastic recursion, the latter sees the quantity
ξi(n) as having converged to zero, see [6, Chapter 6.2] for a detailed analysis of
natural timescale recursions. The rest follows in a straightforward manner from the
Hirsch lemma (Lemma C.5) applied to the ODE (10.35) for every ε > 0. ��

Finally, we consider the slowest timescale recursion (10.29). In the light of
Proposition 10.4, one may consider the following alternate recursion: For i =
1, . . . , p,

λi(n+ 1) = Γ̂ (λi(n)+ a(n)(Gi(θ (n))−αi)). (10.36)

Let for any λ ∈R and a bounded, continuous function w(·) : R→ R,

¯̂Γ (w(λ )) = lim
0<η→0

(
Γ̂ (λ +ηw(λ ))− Γ̂ (λ )

η

)
.
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Then (10.36) is an Euler discretization with (nonuniform) step sizes a(n) of the
ODE

λ̇i(t) =
¯̂Γ (Gi(θ (t))−αi), (10.37)

i = 1, . . . , p. Let

F
�
= {Λ = (λ1, . . . ,λp)

T | λi ∈ [0, L̄], ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ KΛ}.
Also, let

F− �= {Λ = (λ1, . . . ,λp)
T | λi ∈ [0, L̄), ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ KΛ}.

A standard stochastic approximation argument using the Hirsch lemma and Theo-
rem 10.3 also shows the following:

Theorem 10.5. Λ(n)→ Λ∗ for some Λ∗ �= (λ ∗1 , . . . ,λ ∗p)T ∈ F as n→ ∞ and
β → 0 with probability one.

Let Λ∗ be as in Theorem 10.5. The next proposition shows that the limiting point
θΛ∗ corresponding to Λ∗ satisfies all the inequality constraints viz., Gi(θΛ

∗
) ≤ αi,

∀i = 1, . . . , p. In other words, the limiting point θΛ∗ is a feasible point of the con-
strained optimization problem (10.3)-(10.4).

Proposition 10.6. For any Λ∗ ∈ F−, the corresponding parameter θΛ∗ ∈ KΛ∗ sat-
isfies all inequality constraints Gi(θΛ

∗
)≤ αi, ∀i = 1, . . . , p.

Proof. Suppose not. Then for some i ∈ {1, . . . , p}, Gi(θΛ
∗
)> αi. Hence,

¯̂Γ (Gi(θΛ
∗
)−αi) = lim

η→0

Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi))−λ ∗i

η

= lim
η→0

λ ∗i +η(Gi(θΛ
∗
)−αi)−λ ∗i

η
= Gi(θΛ

∗
)−αi > 0,

which is a contradiction since Λ∗ ∈ F−. The second equality above follows because
λ ∗i ≥ 0 and Gi(θΛ

∗
) > αi. Hence, for sufficiently small η > 0, λ ∗i +η(Gi(θΛ

∗
)−

αi) ∈ F− as well and hence

Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i +η(Gi(θΛ

∗
)−αi).

The claim follows. ��
We call Λ̂ ∈F a spurious fixed point of the ODE (10.37) if the non-projected version
of the same, i.e.,

λ̇i(t) = Gi(θ (t))−αi,
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does not have Λ̂ as a fixed point. Such a fixed point is introduced by the
projection operator in the ODE and would lie on the boundary of the constraint
set (cf. [7]).

Corollary 10.7. For any Λ∗ ∈ F for which λ ∗i = L̄ for some i = 1, . . . , p, and
Gi(θΛ

∗
)> αi, is a spurious fixed point of (10.37).

Proof. Observe that

Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i = L̄,

since λ ∗i +η(Gi(θΛ
∗
)−αi) > L̄ for any η > 0. Hence, ¯̂Γ (Gi(θΛ )−αi) = 0. The

claim follows. ��
Proposition 10.8. ForΛ∗ ∈F, if Gi(θΛ

∗
)<αi, for some i∈ {1, . . . , p}, then λ ∗i = 0.

Proof. We consider both possibilities viz., (a) λ ∗i = 0 and (b) λ ∗i > 0, respectively.
Consider (a) first. It is easy to see that for λ ∗i = 0 and Gi(θΛ

∗
) < αi, we have that

Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = 0 as well for all η > 0.

Now consider (b). Note that for λ ∗i > 0, one can find η0 > 0, such that for all
0 < η ≤ η0,

Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i +η(Gi(θΛ

∗
)−αi)> 0.

Thus
¯̂Γ (Gi(θΛ

∗
)−αi) = Gi(θΛ

∗
)−αi < 0,

which is a contradiction since Λ∗ ∈ F . Thus, for Λ∗ ∈ F , Gi(θΛ
∗
) < αi for some

i ∈ {1, . . . , p} is only possible provided λ ∗i = 0. ��

Remark 10.2. From Theorem 10.5, Λ(n)→Λ∗ for some Λ∗ �= (λ ∗1 , . . . ,λ
∗
p)

T

with λ ∗i ∈ [0, L̄], ∀i = 1, . . . , p such that θΛ∗ ∈ KΛ∗ and ¯̂Γ (Gi(θΛ
∗
)−αi) =

0, ∀i = 1, . . . , p. Note that for given Λ , the condition ¯̂Γ (Gi(θΛ )−αi) = 0,
i = 1, . . . , p is the same as ¯̂Γ (∇λi

L(θΛ ,Λ)) = 0. Using the envelope theorem
of mathematical economics [8, pp.964-966], one may conclude that (10.37)
corresponds to

λ̇i(t) =
¯̂Γ (∇λi

L(θΛ
∗
,Λ∗)), (10.38)

i = 1, . . . , p, interpreted in the ‘Caratheodory’ sense, see [5, Lemma 4.3]. The
parameter tuple (θ (n),Λ(n)) can then be seen to converge to a local minimum
– local maximum tuple for the Lagrangian L(·, ·).
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Convergence Analysis of CG-SF

Again in view of a(n) = o(b(n)), we let Λ(n) ≡ Λ , a constant, when analyzing
(10.18)–(10.19). Proposition 10.2 shows that the gradient estimator is strongly con-
sistent. (Note that the form of the gradient estimates in both CN-SF and CG-SF are

the same.) Now let K′Λ
�
= {θ ∈ C | Γ̃ (−∇θL(θ ,Λ)) = 0}. One can see that K′Λ is

analogous to KΛ , except for some spurious fixed points on the boundary (in addition
to the regular fixed points). The conclusions of Theorem 10.3 now continue to hold
with K′Λ in place of KΛ .

Finally, let the set F be now defined as

F
�
= {Λ = (λ1, . . . ,λp)

T | λi ∈ [0, L̄], ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ K′Λ}.

The conclusions of Theorem 10.5 as well as Propositions 10.6 and 10.8 continue to
hold with the set F defined above.

Convergence Analysis of CG-SPSA

As before, since a(n) = o(b(n)), let Λ(n) ≡ Λ (a constant) ∀n, while analyzing
(10.18)–(10.19).

Proposition 10.9. With probability one, ∀l ∈ {1, . . . ,N}, as δ → 0,∣∣∣∣E
[

L(θ (n)+δΔ (n),Λ (n))−L(θ (n),Λ (n))
δΔl(n)

| θ (n),Λ (n)
]
−∇θl

L(θ (n),Λ (n))
∣∣∣∣→ 0.

Proof. Follows from a routine Taylor series based argument and the properties of
the perturbations Δi(n), i = 1, . . . ,N,n ≥ 0 (cf. Assumption 5.4). ��

The rest of the analysis is now identical to that of CG-SF.

Convergence Analysis of CN-SPSA

Again since a(n) = o(b(n)), let Λ(n)≡Λ (a constant) ∀n, when analyzing (10.13)-
(10.15). The analysis of these recursions follows in a similar manner as that of the
recursions in Chapter 7. The Hessian and gradient estimators used are seen to be
strongly consistent. The gradient estimator here is defined from the same two sim-
ulations that are used to estimate the Hessian in this scheme. Hence, the gradient
estimator here is significantly different when compared with the estimator used in
CG-SPSA.
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Proposition 10.10. With probability one, ∀ j, i ∈ {1, . . . ,N},∣∣∣∣∣E
[

L(θ (n)+ δ1Δ(n)+ δ2Δ̂(n),Λ(n))−L(θ (n),Λ(n))
δ1δ2Δi(n)Δ̂ j(n)

| θ (n),Λ(n)
]

−∇2
θ j ,θi

L(θ (n),Λ(n))

∣∣∣∣∣→ 0,

as δ1,δ2→ 0.

Proof. Follows again by using an argument based on Taylor series expansion, see
for instance, Chapter 7 for a proof of unbiasedness of a similar estimator. ��

Proposition 10.11. With probability one, ∀k ∈ {1, . . . ,N},∣∣∣∣∣E
[

L(θ (n)+ δ1Δ(n)+ δ2Δ̂(n),Λ(n))−L(θ (n),Λ(n))
δ2Δ̂k(n)

| θ (n),Λ(n)
]

− ∇θk L(θ (n),Λ(n))

∣∣∣∣∣→ 0,

as δ1,δ2→ 0.

Proof. As before, follows using an argument based on an appropriate Taylor
series expansion, see Chapter 5 for a proof of unbiasedness of a similar
estimator. ��

The rest of the analysis now follows in a similar manner as that of CN-SF.

10.5 Concluding Remarks

We presented in this chapter simulation-based algorithms for optimizing an objec-
tive function under inequality constraints that are in turn obtained from some other
related objective functions. Both the objective and the constraint functions were
considered to have a long-run average form. Hence neither the objective nor the
constraints are analytically known functions of the parameter. The Lagrange relax-
ation approach was used to handle the inequality constraints and the algorithms
were based on multi-timescale stochastic approximation for performing parameter
search with the long-run average objective and under similar constraint functions.
Similar approaches have also been used in the context of the random early detection
(RED) scheme for flow control in TCP/IP networks [9, 4] (see Chapter 14.2). Such
techniques have also been applied in the context of reinforcement learning for the
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problem of controlling a stochastic dynamic system under functional constraints,
see [5, 1, 3]. An application, in the context of service systems, of similar methods
as explored in this chapter for the problem of discrete parameter constrained opti-
mization is considered in Chapter 12.

References

1. Bhatnagar, S.: An actor-critic algorithm with function approximation for discounted cost
constrained markov decision processes. Systems and Control Letters 59, 760–766 (2010)

2. Bhatnagar, S., Hemachandra, N., Mishra, V.: Stochastic approximation algorithms for con-
strained optimization via simulation. ACM Transactions on Modeling and Computer Sim-
ulation 21, 15:1–15:22 (2011)

3. Bhatnagar, S., Lakshmanan, K.: An online actorcritic algorithm with function approxi-
mation for constrained Markov decision processes. Journal of Optimization Theory and
Applications 153(3), 688–708 (2012)

4. Bhatnagar, S., Patro, R.K.: A proof of convergence of the B-RED and P-RED algorithms
in random early detection. IEEE Communication Letters 13(10), 809–811 (2009)

5. Borkar, V.S.: An actor-critic algorithm for constrained Markov decision processes. Sys-
tems and Control Letters 54, 207–213 (2005)

6. Borkar, V.S.: Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge
University Press and Hindustan Book Agency (Jointly Published), Cambridge and New
Delhi (2008)

7. Kushner, H.J., Yin, G.G.: Stochastic Approximation Algorithms and Applications.
Springer, New York (1997)

8. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University
Press, Oxford (1995)

9. Patro, R.K., Bhatnagar, S.: A probabilistic constrained nonlinear optimization framework
to optimize RED parameters. Performance Evaluation 66(2), 81–104 (2009)



Chapter 11
Reinforcement Learning

11.1 Introduction

Reinforcement learning (RL) [22], [5] is one of the most active research areas in
machine learning and artificial intelligence (AI). While it has its roots in AI, RL has
found tremendous applications in problems involving sequential decision making
under uncertainty or stochastic control [3, 4, 19].

The basic framework in RL involves interactions between an “agent”, i.e., the
learner/controller and the “environment”. The task of the agent is to observe the
state of the environment and select an action. On its part, the environment reacts (to
the agent’s selection of an action) by probabilistically changing its state. In addition,
the environment hands over the agent a certain reward that could be positive or
negative — a negative reward implies a penalty or cost. The agent next observes the
new state of the environment, again selects an action and the process is repeated.
The goal of the agent is to select an action at each time instant (upon observing the
state of the environment) in a way as to maximize a long-term reward. The reward
that the agent receives from the environment when it selects an action plays the
role of a “reinforcement” signal. The agent uses this signal to update its strategy
to select actions based on the environment state. Many times, these updates are
incremental in nature resulting in algorithms that gradually converge to the optimal
strategies.

One of the challenges unique to RL is the tradeoff between “exploration” and
“exploitation”. To obtain a large reward, an RL agent might select actions it has
previously tried that were found to yield a high reward. However, in doing so, it
would not be exploring other (unexplored) actions that could potentially result in
an even higher reward. Thus, it needs to strike a balance between exploiting actions
known to give high rewards and exploring newer actions.

RL algorithms are largely classified under two broad categories: those that deal
with the problem of prediction and those that deal with control. Usually, it is con-
venient to assume that the controller selects actions according to a policy that is

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 187–220.
springerlink.com © Springer-Verlag London 2013
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a decision rule that suggests which action to pick in which state. The policy can
also be a function of time. In the problem of prediction, one is often interested
in evaluating, in terms of the long-term reward or cost, the value of a given pol-
icy. When the state space is large or high-dimensional, estimating the value itself
of a given policy may be difficult and one requires function approximation-based
approaches. An efficient RL algorithm for the problem of prediction is temporal
difference (TD) learning. In the problem of control, on the other hand, the aim is
to find an optimal control policy. In actor-critic RL algorithms, for instance, the
problem of prediction forms a subtask of the control problem. In particular, for per-
forming an update on the policy, the ‘value’ of the current update of the policy is
first estimated. Multi-timescale stochastic approximation helps in such scenarios.
Another important RL algorithm for the problem of control is Q-learning. One of
the problems that algorithms such as TD and Q-learning with function approxi-
mation suffer from is the off-policy problem. In particular, Q-learning with func-
tion approximation can in fact diverge. We discuss this in more detail in the later
sections.

The area of RL has seen several impressive applications. Examples include the
development of a world class computer backgammon player [24] as well as the
control of an inverted autonomous helicopter flight [27]. RL is applicable in sit-
uations when information about the system model is not precisely known, how-
ever, states can be simulated via a simulator or else directly observed from a real
system.

In this chapter, we shall study recently developed algorithms for RL that are
based on simultaneous perturbation techniques. These algorithms are largely from
[9, 1, 7, 8, 6]. We discuss algorithms that are based on full-state representations as
well as those that incorporate function approximation. A distinguishing feature of
these algorithms is that they are based on simultaneous perturbation ideas. Apart
from being easily implementable, some of these algorithms also exhibit signifi-
cant improvements over well-known algorithms in the literature. For instance, we
show that the multi-timescale simultaneous perturbation variant of Q-learning with
function approximation is convergent and does not suffer from the off-policy prob-
lem. We shall be concerned here with the problem of minimizing costs rather than
maximizing rewards. The two problems can be seen to be analogous if one defines
costs as negative rewards.

11.2 Markov Decision Processes

Consider a discrete time stochastic process {X(n),n ≥ 0} that takes values at each
instant in a set S called the state space. Suppose that the evolution of {X(n)} depends
on a control-valued sequence {Z(n)}. Let A(X(n)) denote the set of all controls
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(also called actions) that are available to the controller when the state of the MDP

is X(n) ∈ S. Then, A
�
= ∪X∈SA(X) is the set of all possible actions, also called the

action space. We let S and A be both finite sets.

t t+1 t+2t−1t−2

s t
at

s t+1

Fig. 11.1 The Controlled Markov Behaviour

As illustrated in Fig. 11.1, the process {X(n)} is said to be a Markov decision
process (MDP) if it satisfies the following (controlled Markov) property: For any
states i0, i1, . . . , in−1, i, j ∈ S and actions a j ∈ A(i j), j = 0,1, . . . ,n− 1, a ∈ A(i),
we have

Pr(X(n+ 1) = j | X(n) = i,Z(n) = a,X(n− 1) = in−1,Z(n− 1) = an−1, . . . ,

X0 = i0,Z0 = a0)
�
= p(i, j,a).

(11.1)

Here, p(i, j,a), i, j ∈ S, a ∈ A(i) are called controlled transition probabilities and
satisfy the properties 0≤ p(i, j,a) ≤ 1 and ∑ j∈S p(i, j,a) = 1.

Problems in MDPs fall into two main categories: finite horizon and infinite
horizon. In finite horizon MDPs, the process is observed and controlled only
over a fixed number N of time instants while in infinite horizon problems, the
same is done over an infinite number of instants. We shall be concerned here
with infinite horizon problems. The text [3] deals primarily with finite horizon
problems.

It is often convenient for an agent to select actions according to a policy, i.e.,
a rule for selecting actions. By an admissible policy π , we mean a sequence
of functions π = {μ0,μ1,μ2, . . . ,} with each μk : S → A, such that μk(i) ∈ A(i),
∀i ∈ S, k ∈ {0,1, . . .}. Let Π be the set of all admissible policies. If μk = μ ,
∀k = 0,1, . . ., for some μ independent of k, then we call the policy π (or many
times μ itself) a stationary deterministic policy (SDP). By a randomized policy
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(RP) ψ , we mean a sequence ψ = {φ0, φ1,φ2, . . .} with each φ(n) : S→P(A),
n = 0,1, . . ., where P(A) is the set of all probability vectors on A. The above
map is defined so that for each i ∈ S, φ(n)(i) ∈ P(A(i)), n = 0,1,2, . . ., with
P(A(i)) being the set of all probability vectors on A(i). A stationary random-
ized policy (SRP) is a RP ψ for which φ(n) = φ ∀n = 0,1, . . .. By an abuse of
notation, we refer to φ itself as the SRP. We now describe the two long-term cost
criteria.

• The infinite horizon discounted cost criterion:
Let r(i,a) denote the single-stage cost when the current state is i and the action
chosen is a ∈ A(i). Let α ∈ (0,1) be the discount factor – a given constant. The
aim is to minimize over all admissible policies, π = {μ0,μ1,μ2, . . .}, the infinite
horizon discounted cost:

V π(i) = E

[
∞

∑
k=0

αkr(Xk,μk(Xk)) | X0 = i

]
, (11.2)

starting from a given initial state i ∈ S. For a given policy π , the function V π(·)
is called the value function corresponding to policy π . The optimal cost or value
function V ∗(·) is now defined by

V ∗(i) = min
π∈Π

V π(i), i ∈ S. (11.3)

One can show that an optimal SDP exists in this case and the optimal cost V ∗
satisfies the Bellman equation

V ∗(i) = min
a∈A(i)

(
r(i,a)+∑

j∈S

α p(i, j,a)V ∗( j)

)
. (11.4)

From the form of the cost function (11.2), it is evident that the single-stage
costs over the first few stages only matter since costs for subsequent stages get
beaten down due to the exponential weighting via the discount factor. Hence,
this form of the cost function is useful in cases when one is primarily interested
in controlling the transient performance of the system.

• The long-run average cost criterion:
Let r(i,a) denote the single-stage cost in this case as before. The aim here is to
find an admissible policy π ∈ Π that minimizes the associated infinite horizon
average cost J(π) defined as

J(π) = lim
N→∞

1
N

E

[
N−1

∑
k=0

r(Xk,μk(Xk)) | X0 = i

]
, (11.5)
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starting from any initial state i. In case, the limit in (11.5) does not exist, one
may replace the same with ‘limsup’. However, we shall assume that the result-
ing Markov chain under any SDP π is ergodic, i.e., aperiodic, irreducible (and
hence also positive recurrent since it is finite state). Under this assumption, the
limit above can be shown to exist. Further, for any SDP π , a function hπ : S→R

exists that satisfies the Bellman equation corresponding to the policy π (also
called the Poisson equation):

J(π)+ hπ(i) = r(i,μ(i))+∑
j∈S

p(i, j,μ(i))hπ ( j),

for all i ∈ S.
Let J∗ denote the optimal cost. Then,

J∗ = min
π

J(π).

Note that J(π) (and so also J∗) does not depend on the initial state i (see (11.5))
because of the ergodicity assumption. Let h∗(·) now denote the differential cost
function. It can again be seen that an optimal SDP exists and the resulting Bell-
man equation for optimality corresponds to

J∗+ h∗(i) = min
a∈A(i)

(
r(i,a)+∑

j∈S

p(i, j,a)h∗( j)

)
, ∀i ∈ S. (11.6)

Note that the cost function (11.5) here is a long-run average of single-stage cost
functions. This form of the cost function is useful in scenarios where one is in-
terested in controlling the steady-state system performance but not so much the
transient system behaviour.

11.3 Numerical Procedures for MDPs

We now describe two of the important numerical procedures for MDPs assuming
that information on transition probabilities is completely known. Moreover, the con-
troller can fully observe the states of the system. In the case of the RL algorithms
that we discuss in the next section, information on transition probabilities is usually
assumed to be unavailable. In some instances, even the states of the MDP may not
be fully observable. Such systems are then modelled in the setting of partially ob-
served MDPs (POMDPs). We shall, however, not be concerned with POMDPs in
this article.
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The numerical schemes that we describe below go by the names of value iteration
and policy iteration [4], [19], respectively. A few other computational procedures
largely based on these two aproaches are also available in the literature. We describe
both procedures below for the two different cost criteria.

11.3.1 Numerical Procedures for Discounted Cost MDPs

Value Iteration

• Step 1: Set an initial estimate V0(·) of the value function.
• Step 2: For n = 0,1,2, . . . , for all i ∈ S, iterate the following until conver-

gence:

Vn+1(i) = min
a∈A(i)

(
r(i,a)+α ∑

j∈S

p(i, j,a)V (n)( j)

)
. (11.7)

The iteration (11.7) is based on the Bellman equation for optimality (11.4) and can
be seen to be a fixed point iteration corresponding to a given contraction operator.
Hence, it can be seen to converge ([4], [19]). In practice, the above iteration can be
stopped after a certain large number (N) of iterates. The value VN(·) would then be
an estimate of the true value function V ∗(·).

Policy Iteration

• Step 1: Set an initial estimate μ0 of the optimal SDP.
• Step 2 (Policy Evaluation): Given the SDP update μn at iteration n, solve

the Bellman equation (11.4) with actions obtained only according to the
policy μn. Thus the iteration there does not involve the ‘min’ operation. In
vector-matrix notation, this corresponds to solving

V μn = Rμn +αPμnV μn , (11.8)

where V μn is the value function under the stationary policy μn. Further,
Rμn and Pμn are the cost vector and transition probability matrix, respec-
tively, under policy μn. The unique solution to (11.8) corresponds to

V μn = (I−αPμn)−1Rμn .
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Computing the inverse above could be problematic in many cases partic-
ularly when the number of states is large. One can in such a case solve
(11.8) by running a value iteration scheme (for the given policy μn) as
follows: For m = 0,1,2, . . .,

V μn
m+1(i) = r(i,μn(i))+α ∑

j∈S

p(i, j,μn(i))V
μn

m ( j),

starting from any V μn
0 (i), i ∈ S. Upon convergence of the inner loop, viz.,

V μn
m (i)→V μn(i), as m→ ∞, a policy update is performed as below.

• Step 3 (Policy Improvement):

μn+1(i) ∈ argmin

(
r(i, ·)+α ∑

j∈S

p(i, j, ·)V μn( j)

)
.

Even though we have described the above procedures considering SDP updates, one
can also describe these with SRP updates.

11.3.2 Numerical Procedures for Long-Run Average Cost MDPs

The Relative Value Iteration Scheme

Note that (11.6) constitutes a system of |S| equations with |S|+ 1 unknowns. One
way to solve this system could be to set h∗(i0) = 0 for some i0 ∈ S and solve the
system for J∗,h∗(i), i ∈ S\{i0}. Another procedure (that we consider here), that is
commonly used and is called the relative value iteration scheme, is to arbitrarily
select a state i0 ∈ S as a reference state and estimate J∗ from the estimates of h∗(i0)
and perform a value iteration type recursion on the Bellman equation (11.6) in a
similar manner as for the discounted cost setting. Thus, arbitrarily initialize h0(i),
∀i ∈ S. Further for all n≥ 1, i ∈ S,

hn+1(i) = min
a∈A(i)

(
r(i,a)+∑

j∈S

p(i, j,a)hn( j)

)
− hn(i0). (11.9)

This procedure is slightly different from the value iteration scheme for discounted
cost MDPs for the following reason: If one ignores the minimization operation in
(11.3), then obtaining a solution to (11.3) would involve inverting the full-rank ma-
trix (I−αP). On the other hand, if one ignores the minimization step in (11.6), then
a solution would involve inverting the matrix (I−P) that, however, is singular as
one of its eigenvalues is zero. Note that the solution h∗ to (11.9) is not unique as ad-
dition of a constant function h̄ (say h̄(i) = k, ∀i, for some k ∈ R) to h∗ results in the
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equation (11.6) being satisfied as well. This is not so in the discounted cost setting
because of the presence of the discount factor α multiplying the expected value of
the next state ∑ j∈S p(i, j,a)V ∗( j)), see (11.4).

Policy Iteration

• Step 1: Set an initial estimate μ0 of the optimal SDP. Arbitarily select a
state i0 ∈ S as a reference state.

• Step 2 (Policy Evaluation): Given the SDP update μn, perform the fol-
lowing iteration: For m = 0,1,2, . . ., i ∈ S,

hμn
m+1(i) = r(i,μn(i))+α ∑

j∈S

p(i, j,μn(i))h
μn
m ( j)− hμn

m (i0), (11.10)

starting from any hμn
0 (i), i ∈ S. Upon convergence of the inner loop, viz.,

hμn
m (i)→ hμn(i), as m→ ∞, for all i ∈ S, a policy update is performed as

below.
• Step 3 (Policy Improvement):

μn+1(i) ∈ argmin

(
r(i, ·)+α ∑

j∈S

p(i, j, ·)hμn( j)

)
. (11.11)

Proofs of convergence of the above procedures in the cases of both discounted cost
and long-run average cost criteria can be found, for instance, in [4].

In the next section, we present RL algorithms for both discounted and long-run
average cost criteria in the case of full-state representations. The basic underlying
assumption in this setting is that the sizes of the state and action spaces are man-
ageable and as such do not result in significant computational challenges for the
given algorithms. Subsequently, we shall also present algorithms with function ap-
proximation that are, in particular, useful when the state and/or action spaces are
large.

11.4 Reinforcement Learning Algorithms for Look-up Table
Case

In all our algorithms, we let |S| < ∞, i.e., the state space is finite. The action sets
A(i) corresponding to any state i will be chosen to be either finite or else compact
and convex subsets of a given Euclidean space.
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11.4.1 An Actor-Critic Algorithm for Infinite Horizon Discounted
Cost MDPs

We first present, from [9], an actor-critic algorithm based on the policy iteration
technique. We let all sets A(i) be compact (non-discrete) and convex subsets of RN .
The algorithms we present here fall under the broad class of actor-critic algorithms
that are based on the policy iteration approach. Recall that policy iteration involves
updates using two nested loops: an outer-loop update occurring only on convergence
of the inner-loop procedure corresponding to the given outer-loop update. Using
two-timescale stochastic approximation, one is able to run recursions for both loops
simultaneously.

We make the following assumption on the cost function and transition
probabilities.

Assumption 11.1. For all i, j ∈ S, a ∈ A(i), both r(i,a) and p(i, j,a) are con-
tinuously differentiable w.r.t. a.

Under Assumption 11.1, one can show that an optimal stationary policy exists for
this problem and the optimal cost V ∗ satisfies the Bellman equation. Since any ac-

tion ai
�
= (a1

i , . . . ,a
N
i )

T ∈ A(i) ⊂ R
N , i ∈ S, one can identify a SDP π directly with

the vector (a1
1, . . . ,a

N
1 , a1

2, . . . ,a
N
2 , . . ., a1

s , . . . ,a
N
s )

T or simply with the block vector
(a1, . . . ,as)

T of actions ordered lexicographically according to states, i.e., the jth
component ( j = 1, . . . ,s) of this vector would correspond to the action taken in state
j. Let Vπ(i) be the stationary value or cost-to-go function corresponding to the SDP
π starting from i ∈ S.

Lemma 11.1. Under Assumption 11.1, Vπ(i), ∀i ∈ S are continuously differ-
entiable functions of π .

Proof. It follows from the Bellman equation for the given SDP π that Vπ
�
=

(Vπ(i), i ∈ S)T satisfies
Vπ = (I−αPπ)−1Rπ ,

where Pπ = [[p(i, j,π(i))]]i, j∈S is the transition probability matrix of the Markov
chain under SDP π and Rπ = (r(i,π(i)), i ∈ S)T is the single-stage cost vector. The
claim follows from an application of the Cramer’s rule. ��

Let π(n) �= (a1(n), . . . ,as(n))T with each ai(n)
�
= (a1

i (n), . . . ,a
N
i (n))

T denote the
nth update of policy π . For simplicity assume that for n ≥ 0, �(n) ∈ R

N|S| is a
vector of mutually independent, ±1-valued, mean zero random variables � j

i (n),
j = 1, . . . ,N, i ∈ S (viz.,�(n) = (�1

1(n), . . .,�N
1 (n),�1

2(n), . . .,�N
2 (n), . . .,�1

s (n),
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. . .,�N
s (n))

T ). More general Δ j
i (n) can be considered. In fact, any Δ j

i (n) that satisfy
Assumption 5.4 may be considered.

Let Γi : RN → A(i) be the projection operator that projects any N-dimensional
vector x to the action set A(i) (i.e., Γi(x) ∈ A(i)), i ∈ S. Further, let δ > 0 be a given
(small) constant. Consider two step-size sequences {b(n)} and {c(n)} that satisfy

∑
n

b(n) =∑
n

c(n) = ∞, ∑
n

b(n)2,∑
n

c(n)2 < ∞ and c(n) = o(b(n)). (11.12)

The Actor-Critic Algorithm

Let {Y 1
n (i,a)} and {Y 2

n (i,a)} be two independent families of i.i.d. random variables,
each having the distribution p(i, ·,a). The algorithm is as follows: For all i ∈ S,
r = 1,2, we initialize V r

0 (i) = 0. Then, ∀i ∈ S, j = 1, . . . ,N, we have

a j
i (n+ 1) =Γ j

i

(
a j

i (n)+ c(n)

(
V 1

n (i)−V 2
n (i)

2δ� j
i (n)

))
, (11.13)

V r
n+1(i) =V r

n (i)+ b(n)(r(i,π r
i (n))+αV r

n (Y
r
n (i,π

r
i (n)))−V r

n (i)). (11.14)

This algorithm is an actor-critic algorithm based on policy iteration and performs
both the value function updates (V r

n (i)) and the policy updates (a j
i (n)). As with other

multi-timescale algorithms, an additional averaging (on top of the two timescale
averaging) over L epochs (with L > 1 set arbitrarily) of the value corresponding to
a given policy update is seen to improve algorithmic behaviour.

Convergence Analysis

Let Fl = σ(ai(p),�i(p),V 1
p (i),V

2
p (i), p ≤ l, i ∈ S;Y 1

p (i,π1
i (p)),Y 2

p (i,π2
i (p)), p <

l, i ∈ S), l ≥ 1 be a sequence of associated sigma fields. We first analyze the
faster recursion. Define a sequence {t(n)} according to t(0) = 0 and for n ≥ 1,

t(n) =
n−1

∑
m=0

c(m). Let a j
i (t), t ≥ 0 be defined according to a j

i (t(n)) = a j
i (n) with con-

tinuous linear interpolation in between. Also, let � j
i (t(n)) = � j

i (n) ∀n ≥ 0 with
� j

i (t) =� j
i (t(n)) =� j

i (n) ∀t ∈ [t(n), t(n+ 1)).
Consider the following system of ODEs: ∀ j = 1, . . . ,N, i ∈ S, r = 1,2,

ȧ j
i (t) = 0, (11.15)

V̇ l
t (i) = Rπ

l(t) + (αPπ
l(t)− I)V l

t (i) (11.16)
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Here Rπ
l(t) = (r(i,π l(t)), i ∈ S)T is the vector (over all states) of the single-stage

costs under SDP π l(t) and Pπ
l(t) = [[p(i, j,π l(t))]]i, j∈S is the transition probability

matrix of the Markov process {X(n)} when actions are chosen according to the
above SDP. Note that the iterates (11.13) can be rewritten as

a j
i (n+ 1) = Γ j

i

(
a j

i (n)+ b(n)ξ1(n)
)
,

where ξ1(n) = o(1) as a consequence of (11.12). Thus, along the faster timescale,
the iterates (11.13) asymptotically track (11.15).

Now in lieu of (11.15), one can let a j
i (t) = a j

i , t ≥ 0. Similarly,� j
i (t) =� j

i , t ≥ 0.
Hence, π l(t)≡ π l, t ≥ 0, l = 1,2. Thus, (11.16) can be rewritten as

V̇ l
t (i) = Rπ

l
+(αPπ

l − I)V l
t (i) (11.17)

It is easy to see that (11.17) has V l,∗(i) = (I−αPπ
l
)−1Rπ

l
as its globally asymptot-

ically stable equilibrium.

Define sequences {Jl
i (n), n ≥ 1}, l = 1,2, i ∈ S, according to Jl

i (n)
�
=

n−1

∑
k=0

b(k)

[(r(i,π l
i (k)) +αV l

k (Y
l
k (i, π

l
i (k)))) −∑ j∈S p(i, j, π l

i (k)) (r(i,π l
i (k)) +αV l

k ( j))], i ∈ S,
l = 1,2, n ≥ 1. It is easily seen that these are martingale sequences with respect to
the filtration Fn, n≥ 0. Let Ml

i (n+ 1) = (Jl
i (n+ 1)− Jl

i(n)), n≥ 0.

Lemma 11.2. The iterates V r
k (i), r = 1,2, satisfy supk ‖V r

k (i) ‖<∞ ∀i ∈ S. Further,
V r

k (i)→V r,∗(i) as k→ ∞ almost surely.

Proof. Note that (11.14) can be rewritten as

V l
k+1(i) =V l

k (i)+b(n)

(
r(i,π l

i (k))+α ∑
j∈S

p(i, j,π l
i (k))V

l
k ( j)−V l

k (i)

)
+Ml

i (n+1).

Note that one can rewrite Ml
i (n+ 1) = b(n)Nl

i (n+ 1) where (Nl
i (n),Fn)) is a mar-

tingale difference sequence. It is easy to see that

E[|Nl
i (n+ 1)|2 |Fn]≤ K(1+ ‖V l

n ‖2),

for some constant K > 0. Further, the origin is the globally asymptotically stable
equilibrium point for the ODE

V̇ l
t (i) = (αPπ

l − I)V l
t (i), (11.18)

since all the eigenvalues of the matrix (αPπ
l − I) have negative real parts. Assump-

tions D.1 and D.2 [11, (A1) and (A2)] are now satisfied and the claim now follows
from Theorem D.1 [11, Theorems 2.1(i)-Theorem 2.2]. ��
Consider now the slower timescale recursion (11.13). The ODE associated with that
recursion is
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ȧi(t) = Γ̂i

(
−∇iV π(t)(i)

)
, i ∈ S. (11.19)

Let K denote the set of local minima of V (·)(i). Also, for given ε > 0,

K ε = {π |‖ π−π0 ‖< ε, π0 ∈K }.

The following theorem now follows from standard arguments involving consistency
of the SPSA estimator as well as the Kushner–Clark theorem (Theorem E.1).

Theorem 11.3. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0,δ0], the algorithm
(11.13)-(11.14) converges to Mε with probability one.

11.4.2 The Q-Learning Algorithm and a Simultaneous
Perturbation Variant for Infinite Horizon Discounted Cost
MDPs

The Q-learning algorithm [26] is based on the Q-value iteration technique. We re-
view it first below and subsequently present a multi-timescale variant based on one-
simulation (Hadamard matrix based deterministic perturbation) SPSA that is partic-
ularly useful when the action space is large.

11.4.2.1 The Q-Learning Algorithm

Let the Q-value function under an admissible policyψ = {μ0,μ1,μ2, . . .} be defined
as follows: ∀i ∈ S, a ∈ A(i),

Qψ(i,a) = E

[
∞

∑
k=0

αkr(Xk,μk(Xk)) | X0 = i,Z0 = a

]
(11.20)

= r(i,a)+E

[
∞

∑
k=1

αkr(Xk,μk(Xk)) | X0 = i,Z0 = a

]
. (11.21)

Let the optimal Q-values be defined according to

Q∗(i,a) = min
ψ∈Ψ

Qψ(i,a), i ∈ S,a ∈ A(i). (11.22)

Here Ψ denotes the set of all admissible policies. It can be shown (as described
previously) that an optimal policy that is an SDP exists. Hence,

Q∗(i,a) = min
μ∈ΨS

Qμ(i,a), (11.23)
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whereΨS is the class of all SDP μ . It follows as in (11.20) that

Qμ(i,a) = r(i,a)+αE

[
∞

∑
k=1

αk−1r(Xk,μ(Xk)) | X0 = i,Z0 = a

]
(11.24)

= r(i,a)+α ∑
j∈S

p(i, j,a)E

[
∞

∑
k=1

αk−1r(Xk,μ(Xk)) | X1 = j,μ

]
(11.25)

= r(i,a)+α ∑
j∈S

p(i, j,a)Vμ( j), (11.26)

where Vμ( j), j ∈ S, is the value function under SDP μ . It follows from (11.23) that

Q∗(i,a) = min
μ∈ΨS

Qμ(i,a) = min
μ∈ΨS

(
r(i,a)+α ∑

j∈S

p(i, j,a)Vμ( j)

)
,

≥ r(i,a)+α ∑
j∈S

p(i, j,a) min
μ∈ΨS

Vμ( j),

= r(i,a)+α ∑
j∈S

p(i, j,a)V ∗( j). (11.27)

Further,

Q∗(i,a) = min
μ∈ΨS

Qμ(i,a) ≤ r(i,a)+α ∑
j∈S

p(i, j,a)Vμ ′( j) ∀μ ′ ∈ΨS.

Hence,

Q∗(i,a) ≤ r(i,a)+α ∑
j∈S

p(i, j,a) min
μ ′∈ΨS

Vμ ′( j)

= r(i,a)+α ∑
j∈S

p(i, j,a)V ∗( j). (11.28)

The Bellman equation (11.4) now corresponds to

V ∗(i) = min
a∈A(i)

Q∗(i,a), i ∈ S. (11.29)

It follows from (11.27)-(11.28) and (11.29) that

Q∗(i,a) =

(
r(i,a)+ γ ∑

j∈S

p(i, j,a) min
v∈A( j)

Q∗( j,v)

)
. (11.30)

(11.30) is also referred to as the Q-Bellman equation.
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The Q-learning Update

The Q-learning algorithm [26] aims to solve the Q-Bellman equation (11.30) using
stochastic approximation by assuming lack of information on the transition proba-
bilities p(i, j,a) and proceeds in the following manner: ∀i ∈ S, a ∈ A(i),

Qn+1(i,a) = Qn(i,a)+ c(n)

(
r(i,a)+ γ min

v∈A(Yn(i,a))
Qn(Yn(i,a),v)−Qn(i,a)

)
.

(11.31)

Here, Yn(i,a) is a simulated next state when the current state is i and action a ∈ A(i)
is chosen. The random variables Yn(i,a), n ≥ 0 are assumed independent and have
the distribution p(i,a, ·), i∈ S, a∈A(i). Further, c(n), n≥ 0 are step-sizes that satisfy
c(n)> 0 ∀n≥ 0 and

∑
n

c(n) = ∞, ∑
n

c(n)2 < ∞. (11.32)

The algorithm (11.31) works in the case of full-state representations. The Q-learning
algorithm for full-state representations can become computationally cumbersome in
cases when the cardinality of the action sets is high because of the requirement of
explicit minimization in (11.31). It is also known to suffer from the problem of
improper convergence if all actions are not explored sufficiently. In practice, this
problem is tackled by selecting actions as suggested by the algorithm with a high
probability, however, with a small probability, actions not suggested by the algo-
rithm are explored to learn the best actions.

11.4.2.2 Two-Timescale Q-learning Algorithm

The algorithm below avoids the computational difficulty with large action sets (dis-
cussed above) by incorporating two timescales. Further, it updates randomized poli-
cies, as a result of which, actions that are not the ‘current best’ actions also get
selected with a certain probability. A recursion similar to (11.31) but without the
explicit minimization is run on the slower timescale, while on the faster scale, the
minimization operation is conducted through a gradient search procedure. This algo-
rithm has been presented in [8] and incorporates deterministic perturbations SPSA
with the perturbation sequences obtained using the Hadamard matrix-based con-
struction.

Let S and A
�
= ∪i∈SA(i) be finite sets with each set A(i) assumed to contain

exactly (N + 1) elements (for simplicity). Let a0
i ,a

1
i , . . . ,a

N
i denote the elements

of A(i). Let Qn(·, ·) denote the nth update of the Q-value function. Let πi(n)
�
=

(πi,a(n),a ∈ A(i))T , i ∈ S denote the nth update of the randomized policy, where
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πi,a(n) is the probability at the nth update of the randomized policy of picking

action a ∈ A(i) in state i ∈ S. Further, let π̂i(n)
�
= (πi,a(n),a ∈ A(i)\{a0

i })T de-
note the vector of probabilities of actions a ∈ A(i) other than that of action a0

i . In
the scheme below, we shall update π̂i(n) using our algorithm, while the probabil-
ity πi,a0

i
(n) will get automatically specified via πi,a0

i
(n) = 1− ∑

a∈A(i)\{a0
i }
πi,a(n). Let

π ′i (n) =Γ (π̂i(n)−δΔn(i)) denote the perturbed SRP corresponding to π̂i(n), where

δ > 0 is a given small constant. Also, Δn(i)
�
= (Δn(i,a1

i ), . . . ,Δn(i,aN
i ))

T , n ≥ 0,
i ∈ S denotes the perturbation vector obtained from the Hadamard matrix construc-
tion. We use perturbed SRPs in the simulations in order to estimate the gradient
of the Q-function and, therefore, to also update the parameters. The algorithm be-
low incorporates one-simulation deterministic SPSA with Hadamard matrix-based
perturbations. Let PS⊂ R

N be the simplex

PS = {(y1, . . . ,yN)
T |yi ≥ 0,1≤ i≤ N and

N

∑
i=1

yi ≤ 1},

in which π̂i, i ∈ S, take values. Further, let Γ : RN → PS denote the projection map.
Let

(Δn(i))
−1 �=

(
1

Δn(i,a1
i )
, . . . ,

1

Δn(i,aN
i )

)T

, ∀n≥ 0, ∀i ∈ S.

Let ψn( j) denote the action chosen from the set A( j) according to the distribution
given by π ′j(n), with probability of picking action a j

0 ∈ A( j) automatically specified
from the latter. Also, as before, let Yn(i,a) be the ‘next’ state of the MDP when the
current state is i and action a is chosen. We let b(n) and c(n), n≥ 0 be two step-size
sequences that satisfy (11.12).

Update Rule

For all i ∈ S,a ∈ A(i), initialize Q0(i,a) and π̂i(0). Then ∀i ∈ S,a ∈ A(i),

Qn+1(i,a) =Qn(i,a)+ c(n)(r(i,a)+αQn(Yn(i,a),ψn(Yn(i,a)))−Qn(i,a)) ,

(11.33)

π̂i(n+ 1) =Γ
(
π̂i(n)+ b(n)

Qn(i,ψn(i))
δ

(Δn(i))
−1
)
. (11.34)
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A Sketch of Convergence

As with other multi-timescale algorithms, recursion (11.33) being the slower recur-
sion is quasi-static when viewed from the timescale of b(n), n ≥ 0. Hence one can
treat Qn(i,a)≈ Q(i,a) (i.e., independent of n) when analyzing (11.34).

Using standard arguments, one can show that (11.34) asymptotically tracks the
trajectories of the following ODE in the limit as δ → 0:

˙̂πi = Γ̂ (−∇Qπ̂i(t)(i)), (11.35)

The asymptotically stable fixed points of (11.35) lie within the set M = {π̂i |
Γ̂ (∇Qπ̂i(i)) = 0}. Hence, let πu

i (n)→ πu,∗
i as n→ ∞. Note that if u∗ corresponds

to a unique optimal action in state i, then the following will be true: πu,∗
i = 1 for

u = u∗ and πu,∗
i = 0 for all u∈U(i), u �= u∗. Else, if the optimal action is not unique,

then one expects policy π∗ in state i to assign equal positive mass to all optimal ac-
tions (i.e., those whose Q values are equal and uniformly lower compared to those
of the other actions). Let Q∗(i,u), i ∈ S,u ∈U(i) correspond to the unique solution
of (11.30).

Theorem 11.4. For all i ∈ S,u∈U(i), the recursions Qn(i,u) converge almost
surely to Q∗(i,u) in the limit as δ → 0.

11.4.3 Actor-Critic Algorithms for Long-Run Average Cost MDPs

We now consider the case of MDPs under the long-run average cost criterion. As
with the infinite horizon discounted cost setting, we also consider two cases here —
(a) when the action sets are (non-discrete) compact and (b) when the action sets are
discrete and finite. The algorithms here are from [1].

Assumption 11.2. The Markov process {X(n)} under any SDP is ergodic.

Under Assumption 11.2, the long-run average cost for any given SDP (and hence
also SRP) is well defined.

11.4.3.1 An Algorithm for (Non-Discrete) Compact and Convex Action Sets

Here, one can directly perform a gradient search in the space of SDPs. We apply
the one-simulation SPSA algorithm with Hadamard matrix-based perturbations. We
assume that the single-stage cost r(i,a) and the transition probabilities p(i, j,a) are
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continuously differentiable functions of a. We let each action set A(i), i ∈ S to be a

compact and convex subset of RN . Let Γi, i ∈ S
�
= {1,2, . . . ,s} denote the projection

map from R
N to A(i). As for the discounted cost case, let π(n) �= (ai(n), i ∈ S)T

with each ai(n)
�
= (a1

i (n), . . . ,a
N
i (n))

T denote the nth update of SDP π . Let�i(n)
�
=

(�1
i (n), . . . ,�N

i (n))
T ∈R

N be a vector of±1-valued variables� j
i (n), j = 1, . . . ,N,

i∈ S that are obtained from the Hadamard matrix construction. LetΓi :RN→A(i) be
the projection operator and δ > 0 be a given constant. Let π ′i (n)=Γi(πi(n)+δΔi(n))
denote the perturbed policy at instant n.

Update Rule

Let {b(n)} and {c(n)} be two step-size sequences that satisfy (11.12). Also, let
{Y ′n(i,a)} be a family of i.i.d. random variables, each having the distribution p(i, ·,a).
The algorithm is as follows: For all i∈ S, we initialize h′i(0)= 0. Fix a reference state
i0 ∈ S arbitrarily. The algorithm proceeds as follows: ∀i ∈ S, we have

πi(n+ 1) =Γi

(
πi(n)− c(n)

(h′i(n)+ h′i0(n))
δ

(Δi(n))
−1

)
, (11.36)

h′i(n+ 1) =(1− b(n))h′i(n)+ b(n)(r(i,π ′i (n))− h′i0(n)+ h′Y ′n(i,a′i)(n)).
(11.37)

This algorithm is also of the policy iteration type and performs policy evaluation on
a faster timescale as compared to policy improvement.

A Sketch of Convergence

Lemma 11.5. The iterates h′i(n) governed according to (11.37) stay uniformly
bounded, i.e., supn≥0 |hr

i (n)|< ∞,∀i ∈ S.

Proof. (Sketch:) A detailed proof of this result is given in [15, Section 6.1]. The
main idea there is to first show that the iterates (11.37) stay uniformly bounded for a
given initial condition and then show that if they stay bounded for one initial condi-
tion, they remain bounded under all initial conditions. This also gives an alternative
stability criterion, other than the one in Appendix D, and is presented in Chapter 3
of [10]. ��
Lemma 11.6. For a given SDP π ′i (n)≡ π ′i , the iterates h′i(n) obtained from (11.37)
asymptotically converge to hπ ′(i), where hπ ′(i) is the solution to the Poisson
equation
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hπ ′(i)+ hπ ′(i0) = r(i,π ′i )+∑
j∈S

p(i, j,π ′i )hπ ′( j), (11.38)

i ∈ S, where π ′i is the action prescribed by the SDP π ′ in state i.

Proof. For given π ′i (n)≡ π ′i , the ODE associated with (11.37) is

ḣπ ′(i) = r(i,π ′i )+∑
j∈S

p(i, j,π ′i )hπ ′( j)− hπ ′(i)− hπ ′(i0). (11.39)

Now (11.39) has hπ ′(i) as its unique globally asymptotically stable equilibrium,
where hπ ′(i) is the unique solution of (11.38). The result can now be shown from an
application of the Borkar–Meyn theorem (Theorem D.1). ��
Consider now the ODE along the slower timescale:

π̇i(s) = Γ̂i(−�i hπ(s)(i)−�ihπ(s)(i0)) (11.40)

for all i ∈ S. Let M = {π | Γ̂i(�ihπ(s)(i)+�ihπ(s)(i0)) = 0, ∀i ∈ S} be the set of all
fixed points of (11.40). Also, given ε > 0, let Mε be the ε-neighborhood of M.

The following is the main result that follows from an application of the Kushner–
Clark theorem (Theorem E.1).

Theorem 11.7. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
{π(n)} converges to Mε with probability 1.

11.4.3.2 Algorithms for Finite Action Sets

Here, both the state space S and the action sets A(i), i ∈ S are discrete-valued and
finite. There are two ways in which one can deal with such action sets. One pos-
sibility is to construct the closed convex hull of these sets which will result in the
sets being compact and convex, and apply the algorithm for compact and convex
action spaces using SDP-based updates. This will require suitable extensions to the
transition dynamics, i.e., the transition probabilities p(i, j,a) as well as the single-
stage costs r(i,a) so that these quantities are well defined over the afore-mentioned
closed convex hulls. Thus, while the algorithm will update SDPs over the closed and
convex hull, the actual actions that are picked during the process will be obtained by
projecting the continuous-valued update to the discrete set, see Chapter 9 for ideas
along these lines in the case of simulation-based discrete parameter optimization.

The other alternative (as we do here) is to search for the optimum within the

space of SRPs. Let Γi, i ∈ S
�
= {1,2, . . . ,s} now denote the projection map from

R
N to the probability simplex PS (defined previously). For simplicity, as before,

we assume that each action set A(i) comprises exactly N elements. Let πi(n)
�
=

(π1
i (n), . . . ,πN

i (n))T denote the vector of probabilities of picking individual actions,
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i.e., the elements of A(i) as per the policy update at time n. We let π(n)= (πi(n)T , i∈
S)T denote the nth update of SRP π . Again let�i(n)

�
= (�1

i (n), . . . ,�N
i (n))

T ∈R
N

be a vector of±1-valued variables� j
i (n), j = 1, . . . ,N, i ∈ S that are obtained from

the Hadamard matrix construction and let π ′i (n)
�
= Γi(πi(n) + δ�i(n)) denote the

perturbed policy at the nth update of the algorithm. Also, let {Y ′n(i,a)} be a family
of i.i.d. random variables, each having the distribution p(i, ·,a). Further, ξ ′n(i,π ′i ),
n ≥ 0 will denote i.i.d random variables having the distribution π ′i over the action
set A(i), i ∈ S.

Update Rule

The algorithm is as follows: For all i ∈ S,n≥ 0,

πi(n+ 1) =Γi

(
πi(n)− c(n)

(h′i(n)+ h′i0(n))
δ

(Δi(n))
−1

)
, (11.41)

h′i(n+ 1) =(1− b(n))h′i(n)+ b(n)(r(i,ξ ′n(i,π ′i (n)))− h′i0(n)+ h′Y ′n(i,ξ ′n(i,π ′i (n)))(n)).
(11.42)

A Sketch of Convergence

Similar results as those in the previous case are obtained here.

Lemma 11.8. The iterates h′i(n) governed according to (11.42) stay uniformly
bounded, i.e., supn≥0 |hr

i (n)|< ∞,∀i ∈ S.

Proof. (Sketch:) Follows in a similar manner as Lemma 11.5 (see Section 6.1
of [15]. ��
Lemma 11.9. For a given SRP π ′i (n)≡ π ′i , the iterates h′i(n) obtained from (11.42)
asymptotically converge to hπ ′(i), where hπ ′(i) is the solution to the Poisson
equation

hπ ′(i0)+ hπ ′(i) =

(
∑

a∈A(i)

π ′i,a(r(i,a)+∑
j∈S

p(i, j,a)hπ ′( j)

)
, ∀i ∈ S. (11.43)

where π ′i,a is the probability of action a being picked in state i under SRP π ′.

Proof. Follows in a similar manner as the proof of Lemma 11.6. ��
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Now let M = {π | Γ̂i(�ihπ(s)(i)+�ihπ(s)(i0)) = 0, ∀i ∈ S} be the set of all fixed
points of a similar ODE as (11.40) except that Γ̂i is now defined for the simplex
PS. The following is the main result that can be shown using the Kushner–Clark
theorem (Theorem E.1).

Theorem 11.10. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
{π(n)} converges to Mε with probability 1.

11.5 Reinforcement Learning Algorithms with Function
Approximation

We now consider a class of problems where the number of states and also possi-
bly actions are large so that the algorithms for solving the Bellman equation by
simulating state transitions from every state at each instant become highly (com-
putationally) inefficient. In particular, if the state space is very large as happens
when the dimension of the state vector increases, even storing a vector of the size
of the state space might become impossible. For example, consider a communica-
tion network with 10 nodes, where the state is the vector of number of packets at
each of these nodes. If each node can accommodate 100 equal-sized packets, then
the size of the state space becomes 10010 = 1020. Further, if the number of nodes is
increased by 10, i.e., if the total number of nodes is now 20, then the size of the state
space becomes 10020 = 1040 which is an exponential increase in the state-space
size. Nevertheless, storing vectors of large sizes becomes an infeasible task. In such
cases, one often resorts to suitable parameterizations of the value functions and/or
policies.

11.5.1 Temporal Difference (TD) Learning with Discounted Cost

The temporal difference learning algorithm is a popular algorithm for the problem
of prediction, i.e., estimating the value function corresponding to a given policy, see
[22, 25]. The value function V π(·) under an SDP π is approximated here with the
parametrized function

w(i,v) = vT fi, (11.44)

with parameter v
�
= (v1, . . . ,vd)

T ∈ R
d , where fi

�
= ( fi(1), . . . , fi(d))T is the feature

vector corresponding to state i ∈ S. Let Φ be a |S| × d-matrix whose kth column

(k = 1, . . . ,d) is f (k)
�
= ( fi(k), i ∈ S)T . Here |S| denotes the cardinality of S. The

following are standard requirements [25].
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Assumption 11.3. The Markov chain {X(n)} under SDP π is ergodic.

Assumption 11.4. The basis functions { f (k),k = 1, . . . ,d} are linearly independent.
Further, d ≤ |S|.
The functions f (1), . . . , f (d) are the basis functions from S to R. The idea here is to
tune v suitably so that w(i,v) is ‘close’ to V π(i). The gradient of the parametrized
function in (11.44) is

∇w(i,v) = fi.

Representations of the type (11.44) are called linear representations or architec-
tures. Nonlinear representations such as those based on sigmoidal functions or
neural networks have also been widely studied in the literature [5]. However, an-
alytical/convergence results for the TD algorithm are known mainly in the case of
linear architectures and so we will be primarily concerned with these (architectures)
here.

The TD algorithm works with an infinite Markov sequence of states i0, i1, i2, . . .
obtained by picking actions according to the SDP π . Let vn be the nth update
of the parameter. At instant n, let δn be the ‘temporal difference’ that is defined
according to

δn = r(in,μ(in))+αw(in+1,vn)−w(in,vn)

= r(in,μ(in))+αvT
n fin+1 − vT

n fin . (11.45)

Let {γ(n)} be a step-size sequence satisfying the following requirement:

Assumption 11.5. The step-sizes γ(n) satisfy γ(n)> 0∀n and

∑
n
γ(n) = ∞, ∑

n
γ2(n)< ∞.

The TD(λ ) algorithm for the infinite horizon discounted cost case is the
following:

vn+1 = vn + γ(n)δnzn, (11.46)

where zn ∈ R
d is called the eligibility trace vector and is defined as

zn =
n

∑
m=0

(αλ )n−m fim . (11.47)

Here λ ∈ [0,1] is a given parameter.
The vectors zn, n≥ 0 can be obtained recursively according to

zn+1 = αλ zn + fin+1 . (11.48)
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Convergence of TD

We analyze here the convergence of the TD recursion using the Borkar–Meyn theo-
rem (Theorem D.1). We consider here specifically the case of λ = 0 for simplicity.
In this case, zn = fin in (11.46) define the operator Tπ : R|S| → R

|S| as follows:

T π(J)(i) = r(i,πi)+α ∑
j∈S

p(i, j,πi)J( j)),

∀i ∈ S, where πi is the action selected in state i using the SDP π . Let

R = (r(i,πi), i ∈ S)T ,

denote the column vector of single-stage costs under SDP π . Also, let

P = [[p(i, j,πi]]i, j∈S denote the transition probability matrix under SDP π . Let d
�
=

(d(i), i ∈ S)T denote the stationary distribution of the corresponding Markov chain
under SDP π and D denote the (|S| × |S|)-diagonal matrix with entries d(i), i ∈ S
along the diagonal. The proof of the following result has been shown in detail in
[25]. We show the same below using the stability and convergence result of [11]
(Theorem D.1).

Theorem 11.11. Under Assumptions 11.3 – 11.5, vn,n≥ 0 governed by recur-
sion (11.46) satisfy vn → vπ as n→ ∞ with probability one. Also, vπ is the
unique solution to the following system of equations:

ΦT DΦvπ =ΦT DπT π(Φvπ). (11.49)

In particular,
vπ =−(ΦT D(αP− I)Φ)−1ΦT DR. (11.50)

Proof. The ODE associated with (11.46) for λ = 0 is the following:

v̇ =∑
i∈S

d(i)[r(i,πi)+αvT ∑
j∈S

p(i, j,πi) f j− vT fi] fi. (11.51)

In vector-matrix notation, the above ODE is analogous to

v̇ =ΦT D(T π(Φv)−Φv)
�
= g(v). (11.52)

It is easy to see that g(v) is Lipschitz continuous in v. Now define g∞(v) as

g∞(v)
�
= lim

n→∞
g(nv)

n
=ΦT D(αP− I)Φv,
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where I is the identity matrix. Consider now the ODE

v̇ = g∞(v). (11.53)

For x ∈ R
|S|, define the weighted Euclidean norm ‖ x ‖D according to ‖ x ‖D=

(xT Dx)1/2. Note that
‖ x ‖2

D= xT Dx =‖ (D)1/2x ‖2 .

Now for any function V ∈ R
|S|, we have

‖ PV ‖2
D=V T PT DPV =∑

i∈S

d(i)E2[V (X(n+ 1)) | X(n) = i,π ]

≤∑
i∈S

d(i)E[V 2(X(n+ 1)) | X(n) = i,π ] =∑
i∈S

d( j)V 2( j) =‖V ‖2
D .

The inequality above follows from the conditional Jensen’s inequality while the
second last equality on upon evaluating the conditional expectation on its LHS and
noting that dT = dT P. We thus have

‖ αPV ‖D≤ α ‖V ‖D .

Now,

V T DαPV = αV T (D)1/2(D)1/2PV ≤ α ‖ (D)1/2V ‖‖ (D)1/2PV ‖

= α ‖V ‖D‖ PV ‖D≤ α ‖V ‖2
D= αV T DV.

Thus,
V T D(αP− I)V ≤ (α− 1) ‖V ‖2

D< 0, ∀V �= 0,

implying that D(αP− I) is negative definite. Thus,ΦT D(αP− I)Φ is also negative
definite since Φ is a full rank matrix by Assumption 11.4. Thus, (11.53) has the
origin as its unique globally asymptotically stable equilibrium.

Next, define N(n), n≥ 0 according to

N(n) = δn fX(n)−E[δn fX(n) |F (n)],

where F (n) = σ(vr,N(r),r ≤ n). It is easy to see that

E[‖ N(n+ 1) ‖2|F (n)]≤ Ĉ(1+ ‖ vn ‖2), n≥ 0, (11.54)

for some 0 < Ĉ < ∞.
Now let v̂ = vπ be a solution to

g(v̂) =ΦT D(T π(Φ v̂)−Φ v̂) = 0. (11.55)

Note that (11.55) corresponds to the linear system of equations

ΦT DR+ΦT D(αP− I)Φ v̂ = 0. (11.56)
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Now since we have already shown that ΦT D(αP− I)Φ is negative definite, it is
of full rank and invertible. Hence vπ is the unique solution to (11.56) and cor-
responds to (11.50). The claim now follows from Theorems 2.1–2.2(i) of [11]
(cf. Theorem D.1). ��

11.5.2 An Actor-Critic Algorithm with a Temporal Difference
Critic for Discounted Cost MDPs

We now consider the problem of control in discounted cost MDPs and present here
an actor-critic algorithm that incorporates TD in the critic and policy gradients [17,
13, 12, 23] in the actor. The TD algorithm solves the problem of prediction by
incorporating temporal differences in its update. We now restrict attention to SRPs

π that depend on a parameter θ �= (θ1, . . . ,θN)
T ∈ R

N and consider the problem of
finding the optimum θ . We let θ take values in a compact and convex subset C of

R
N . Let πθ �= (πθi , i ∈ S) denote the parametrized SRP. Here, πθi = (πθi,a, i ∈ S,a ∈

A(i)) is the distribution over the set of actions A(i) that are feasible in state i. Here,
πθi,a is the probability of picking action a in state i under policy πθ . By an abuse of

notation, we let π itself denote the parametrized SRP πθ .

Assumption 11.6. The Markov chain {X(n)} under SRP πθ for any θ ∈C is
ergodic.

Assumption 11.7. For any a∈A(i), i∈ S, π(i,a) is continuously differentiable
in θ .

Assumption 11.8. Let b(n),c(n),n≥ 0 be two step-size sequences that satisfy
b(n),c(n)> 0∀n and

∑
n

b(n) =∑
n

c(n) = ∞, ∑
n
(b2(n)+ c2(n))< ∞, c(n) = o(b(n)).

Let Γ : R
N → C denote the projection operator defined so that for any

x = (x1, . . . ,xN)
T ∈ R

N , Γ (x) �= (Γ1(x1), . . . ,ΓN(xN))
T is the nearest point to x in

the set C. Let θ (n) �= (θ1(n), . . . ,θN(n))T denote the nth update of θ . Further, let

Δ(n) �= (Δ1(n), . . . ,ΔN(n))T , n ≥ 0 be a sequence of ±1-valued variables Δ j(n),
j = 1, . . . ,N obtained from the Hadamard matrix construction for perturbation
sequences (for a one-simulation implementation). A some what similar algorithm
incorporating two simulation random perturbation SPSA for MDPs with functional
constraints has been presented in [6].
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The Algorithm

Let {X ′n} denote the simulation governed by the sequence of policy updates {π ′(n)}.
Here, π ′(n) �= (π ′i (n), i ∈ S), n≥ 0 where π ′i (n) is the distribution (π ′i,a(n),a ∈ A(i))
over the set A(i) of feasible actions in state i ∈ S. The policy updates π ′(n) are
parametrized by θ (n)+ δΔ(n), n ≥ 0. Let Z′n denote the action chosen at time n

according to the above policy. Let P(X ′0 = s0)
�
= β (s0), s0 ∈ S denote the initial

distribution of the Markov chain under the given policy.
The algorithm is as follows: For n≥ 0, k = 1, . . . ,N,

δ ′n =r(X ′n,Z
′
n)++αv′n

T fX ′n+1
− v′n

T fX ′n , (11.57)

v′n+1 =v′n + b(n)δ ′n fX ′n , (11.58)

θk(n+ 1) =Γk

(
θk(n)− c(n) ∑

s0∈S

β (s0)

(
v′n

T fs0

δΔk(n)

))
. (11.59)

The recursions (11.57)–(11.58) correspond to the TD(0) update.

Convergence of the Actor-Critic Algorithm

The analysis of the (faster timescale) TD recursion proceeds in a similar manner
as for the TD convergence analyzed previously. Note, however, that the latter was
analyzed for the case when the actions in the MDP are selected according to a given
SDP and not when they are chosen according to a parametrized SRP. Nevertheless,
under Assumption 11.6, the Markov chain under SRP πθ for any θ ∈C is ergodic.
Hence, a similar analysis as before can be carried through in this case.

Since the actor-critic scheme is a multi-timescale stochastic approximation algo-
rithm, one can let θ (n) ≡ θ and Δ(n) ≡ Δ (where θ ,Δ are given constants) when
analyzing (11.58). Let π ′ denote the policy governed by the parameter θ + δΔ .
Define the operator T ′ : R|S| → R

|S| as follows:

T ′(J)(i) = ∑
a∈A(i)

π ′i,a(r(i,a)+α ∑
j∈S

p(i, j,a)J( j)),

∀i ∈ S. Also, let

Rπ
′
=

(
∑

a∈A(i)

π ′(i,a)r(i,a), i ∈ S

)T

,

denote the column vector of single-stage costs under policy π ′. Also, define T (J)
and Rπ in an analogous manner as T ′(J) and Rπ

′
, respectively, except with π in

place of π ′ in their definitions, where π is the policy governed by the parameter θ .
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Let dπ
′

(resp. dπ ) denote the stationary distribution of the corresponding Markov
chain when the underlying parameter is θ + δΔ (resp. θ ). Also, let Dπ

′
(resp. Dπ )

denote the (|S| × |S|)-diagonal matrix with entries dπ
′
(i) (resp. dπ(i)), i ∈ S along

the diagonal.
The proof of the following result can be shown along the same lines as Theo-

rem chap11-rl-prop1-1.

Theorem 11.12. Under Assumptions 11.4 and 11.6–11.8, with θ (n) ≡ θ and
Δ(n)≡ Δ , (for given θ and Δ ), v′n,n≥ 0 governed by recursion (11.58) satisfy
v′n→ vπ

′
as n→ ∞ with probability one. Also, vπ

′
is the unique solution to the

following system of equations:

ΦT Dπ
′
Φvπ

′
=ΦT Dπ

′
T ′(Φvπ

′
). (11.60)

In particular,

vπ
′
=−(ΦT Dπ

′
(αPπ

′ − I)Φ)−1ΦT Dπ
′
Rπ
′
. (11.61)

In a similar manner as above, under policy π (i.e., when the governing parameter
is θ ∈ C, one can also obtain vπ as the unique solution to the following system of
equations:

ΦT DπΦvπ =ΦT DπT (Φvπ), (11.62)

or alternatively,
vπ =−(ΦT Dπ(αPπ − I)Φ)−1ΦT DπRπ . (11.63)

Lemma 11.13. Under Assumptions 11.4 and 11.6–11.7, the solution vπ to (11.62)
is continuously differentiable in θ .

Proof. From Assumption 11.7, it is easy to see that Rπ and Pπ are continuously dif-
ferentiable in θ . One can now verify that the stationary distribution dπ of a Markov
chain {X(n)} under the SRP π is also continuously differentiable in θ (see, for
instance, Theorem 2, pp. 402–403 of [20]). Hence, Dπ is also continuously differ-
entiable in θ . Now writing out the inverse of the matrixΦT Dπ(αPπ− I)Φ explicitly
using Cramer’s rule, one can see that vπ is continuously differentiable in θ . ��
The analysis of the slower recursion now proceeds along expected lines. Consider
the following ODE associated with (11.59):

θ̇ = Γ̂

(
− ∑

s0∈S

β (s0)∇θ vπT fs0

)
. (11.64)

Let M ⊂ {θ ∈C | Γ̂
(
∑

s0∈S

β (s0)∇θ vπT fs0

)
= 0} denote the set of asymptotically

stable equilibria of (11.64) within the set C, i.e., the local minima of the function
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∑
s0∈S

β (s0)v
(·)T

fs0 . Let Mε be the ε-neighborhood of M. The following now follows

from the convergence of the one-simulation Hadamard matrix gradient estimates
and the Kushner-Clark theorem (Theorem E.1).

Theorem 11.14. Under Assumptions 11.4 and 11.6–11.8, given ε > 0, ∃δ0 > 0 such
that for all δ ∈ (0,δ0), θ (n), n≥ 0 obtained according to (11.59) satisfy θ (n)→Mε

as n→ ∞, with probability one.

11.5.3 Function Approximation Based Q-Learning Algorithm
and a Simultaneous Perturbation Variant for Infinite
Horizon Discounted Cost MDPs

We now describe the Q-learning algorithm with function approximation and its two-
timescale variant. Even though it is a popular algorithm, Q-learning with function
approximation is known to suffer from the off-policy problem that we describe be-
low. Broadly speaking, the algorithm does not converge in some cases because of
the non-linearity in the update equation that comes about because of the minimiza-
tion operation. Indeed, a convergence analysis of the algorithm under general con-
ditions is not available. We describe in Section 11.5.3.2, a two-timescale variant of
Q-learning, where the minimization step is conducted on a faster timescale recur-
sion, while the algorithm without the minimization is run on a slower scale. The
latter recursion (without minimization) is then a linear update rule that resembles
TD for the joint (state-action) Markov chain. We incorporate a one-simulation, de-
terministic, Hadamard matrix-based perturbations for the faster recursion and prove
its convergence. The two-timescale variant of Q-learning does not suffer from the
off-policy problem.

11.5.3.1 The Q-Learning Algorithm with Function Approximation

Recall that the Q-Bellman equation (11.30) holds in the case of full-state repre-
sentations. The Q-learning algorithm under full state representations tracks the Q-
Bellman equation and converges to the optimal Q values. We now discuss the func-
tion approximation version of Q-learning.

For i ∈ S, a ∈ A(i), let Q∗(i,a) ≈ θ ∗Tφi,a, where θ ∗ �= (θ ∗(1), . . . ,θ ∗(d))T is a
d-dimensional parameter and φi,a = (φi,a(1), . . . ,φi,a(d))T is the associated feature
vector. Note that φi,a are state–action features and are defined for all tuples (i,a)∈S
where S = {(i,a) | i∈ S,a∈ A(i)} denotes the set of all feasible state-action tuples.

Let Φ now denote a matrix with rows φT
i,a, (i,a) ∈ S . Assuming that the total

number of states is n and the number of feasible actions in any state i (i.e., the
cardinality of the set A(i)) is mi (where mi ≥ 1), the number of rows in the matrix
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Φ is
n

∑
j=1

m j. The number of columns of this matrix is d. One can also write Φ as

Φ = (Φ(k),k = 1, . . . ,d), where Φ(k) is the column vector

Φ(k) = (φi,a(k), (i,a) ∈S )T , k = 1, . . . ,d.

Now Q∗ = (Q∗(i,a),(i,a) ∈S )T is approximated according to

Q∗ ≈
d

∑
i=1

Φ(i)θ ∗(i), i.e., Q∗ ≈Φθ ∗.

The estimates Qn(i,a), n≥ 0, of Q∗(i,a), (i,a) ∈S are approximated as Qn(i,a)≈
θT

n φi,a, where θn
�
= (θn(1), . . . ,θn(d))T is the nth update of the parameter θ .

The Q-Learning Update Rule

The Q-learning algorithm with function approximation updates the parameter θ ac-
cording to

θn+1 = θn+c(n)φX(n),Zn(r(X(n),Zn)+γ min
v∈A(X(n+1))

θT
n φX(n+1),v−θT

n φX(n),Zn),

(11.65)

where θ0 is set arbitrarily and the step-sizes c(n), n ≥ 0 satisfy (11.32). It is im-
portant to note that like the actor-critic algorithm (11.57)–(11.59), (11.65) is also an
on-line scheme as it works with a single trajectory of (feasible) state-action tuples
(X(n),Zn), n≥ 0 and updates the parameter θ as new states are observed and actions
chosen. Also note that ∇θnQn(X(n),Zn) ≈ ∇θnθT

n φX(n),Zn = φX(n),Zn . The algorithm
(11.65), however, is known to suffer from the off-policy problem [2], [22] and may
not converge in some cases. This is because the update in (11.65) is nonlinear be-
cause of the minimization operation. Note that if actions are picked according to a
given policy (and one does not have minimization), then (11.65) is a regular TD(0)
scheme for the joint (state–action) Markov chain.

11.5.3.2 Two-Timescale Q-Learning with Function Approximation

We now describe an algorithm based on Q-learning with function approximation
that does not suffer from the off-policy problem because it incorporates multiple
timescales. Let πw = (πw(i), i ∈ S)T represent a class of SRP, parametrized by w,
where each πw(i) is the distribution πw(i) = (πw(i,a),a ∈ A(i))T over the set of fea-

sible actions A(i) in state i. Here w
�
= (w1, . . . ,wN)

T ∈RN is a parameter in addition
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to θ . In what follows, we restrict attention to SRPs that are parametrized by w. We
let w take values in a compact and convex set W ⊂R

N . We now make the following
assumptions.

Assumption 11.9. The Markov chain {X(n)} under any SRP πw is aperiodic
and irreducible.

Assumption 11.10. The probabilities πw(i,a), (i,a)∈S are continuously dif-
ferentiable in the parameter w with ∇wπw(i,a) being Lipschitz continuous.
Further, πw(i,a)> 0 ∀i ∈ S, a ∈ A(i), w ∈C.

Assumption 11.11. The basis functions {Φ(k),k = 1, . . . ,d} are linearly in-
dependent. Further, d ≤ |S |.

Assumptions 11.9 and 11.11 are similar to 11.6 and 11.7, respectively, except for
a slight change in the notation being used. Note also that the matrix Φ considered
here is a state–action feature matrix unlike the one considered in Sections 11.5.1
and 11.5.2, respectively.. Assumption 11.10 is stronger than Assumption 11.7. How-
ever, for the classes of parametrized policies that one normally considers, Assump-
tion 11.7 is seen to hold. A well-studied example of parametrized policies that sat-
isfy Assumption 11.10 or Assumption 11.7 is the parametrized Boltzmann policies
given by

πw(i,a) =
exp(wTφi,a)

∑b∈A(i) exp(wTφi,b)
.

Let Δn = (Δn(1), . . . ,Δn(N))T be certain perturbation vectors obtained from a nor-
malized Hadamard matrix that will be used to perturb the updates wn of the pa-
rameter w. In what follows, we use the one-simulation simultaneous perturbation
Hadamard matrix-based updates for the sequence wn while the parameters θn fol-
low a TD(0) update for the state-action Markov chain.

Two-Timescale Q-Learning Update Rule

Let Θ ⊂ R
d be the set in which θn,n ≥ 0 take values. Also, recall that W is the

set in which wn,n ≥ 0 take values. We assume that Θ (resp. W ) is a compact and
convex subset of Rd (resp. RN). This requirement on the sets Θ and W essentially
ensure that the updates θn and wn below remain uniformly bounded almost surely.

Let π(wn+δΔn)
�
= (π(wn+δΔn)(i,a), (i,a) ∈S , where δ > 0 is a given small constant,

be the randomized policy followed during the nth update. Note that this randomized
policy is governed by the parameter (wn + δΔn).
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The algorithm is as follows: ∀n≥ 0,

θn+1 =γ
(
θn + c(n)φX(n),Zn

(
r(X(n),Zn)+ γθT

n φX(n+1),Zn+1
−θT

n φX(n),Zn

))
,

(11.66)

wn+1 =Γ

(
wn− b(n)

(
θT

n φX(n),Zn

δ

)
(Δn)

−1

)
, (11.67)

where γ : Rd →Θ (resp. Γ : RN →W ) is the projection operator that projects
any x ∈ R

d (resp. x ∈ R
N) to the setΘ (resp. W ).

Convergence Analysis

It is easy to verify that pw(i,a; j,b) = p(i, j,a)πw( j,b), (i,a),( j,b) ∈S form tran-
sition probabilities for the joint process (X(n),Zn), n ≥ 0 under the SRP πw. Under
Assumptions 11.9 and 11.10, it is also easy to see that the process (X(n),Zn),n≥ 0
with Zn, n ≥ 0 obtained from the SRP πw, for any w ∈W , is an ergodic Markov
process. Hence, (X(n),Zn),n ≥ 0 has a unique stationary distribution fw(i,a) =
dπw(i)πw(i,a), (i,a) ∈ S . One can also show from an application of Theorem 2
on pp.402–403 of [20] (on smoothness of the stationary distribution for finite state
chains) that under Assumptions 11.9 and 11.10, fw(i,a), (i,a)∈S are differentiable
in w ∈W with ∇w fw(i,a) being Lipschitz continuous in w.

As with other multi-scale schemes, the recursion (11.66) is quasi-static when
viewed from the faster timescale corresponding to b(n),n ≥ 0. Hence, let θn ≡ θ
when analyzing (11.67).

Let
Q̄(θ ,w) �= ∑

(i,a)∈S

fw(i,a)θTφi,a

denote the stationary average Q value under the parameters θ and w, respectively.

Lemma 11.15. The partial derivatives of Q̄(θ ,w) with respect to any θ ∈ Θ and
w ∈W exist. Further, ∇wQ̄(θ ,w) is Lipschitz continuous in (θ ,w) ∈Θ ×W.

Proof. This can be seen from the fact that W and Θ are both compact sets, hence
continuous functions on these sets remain uniformly bounded. ��
The ODE associated with (11.67) is

ẇ(t) = Γ̂
(−∇wQ̄(θ ,w(t))

)
, (11.68)

with θ fixed. Let Kθ denote the set of asymptotically stable equilibria of (11.68) and
Kεθ be the ε-neighborhood of Kθ . Let
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Ki
n =

n−1

∑
j=0

a( j)

(
θT

j φXj ,Zj −E[θT
j φXj ,Zj |F j]

δΔ i
j

)
,

with Fn = σ(Xj,Zj, j < n;θ j,wj , j ≤ n), n ≥ 1, as a sequence of associated sigma
fields. The following result now follows from the martingale convergence theorem
(Theorem B.2) in a straight forward manner.

Lemma 11.16. For all i = 1, . . . ,N, (Ki
n,Fn), n ≥ 0 are almost surely convergent

martingale sequences.

The convergence of the recursion (11.67) now follows as a consequence of the con-
sistency of the Hadamard matrix-based estimator and the Kushner–Clark theorem
(Theorem E.1).

Theorem 11.17. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0], {wn}
governed by (11.67) converges to Kεθ almost surely.

Let F be a (|S |× |S |)-diagonal matrix with entries fw(i,a), (i,a) ∈S along the
diagonal. Let P denote the transition probability matrix of the joint Markov chain
(X(n),Zn), n ≥ 0 when actions are selected according to the SRP πw. Also, let R
denote the vector of single-stage expected costs r(i,a), (i,a) ∈ S . The following
ODE is associated with (11.66):

θ̇ (t) = γ̂(ΦT F (T (Φθ (t))−Φθ (t))), (11.69)

where for any bounded and continuous ζ : Rd → R
d ,

γ̂(ζ (θ )) = lim
η↓0

(
γ(θ +ηζ (θ ))−θ

η

)
.

Note that when θ ∈Θ o, γ̂(ζ (θ )) = ζ (θ ). Also, when θ ∈ ∂Θ such that θ+ηζ (θ ) �∈
Θ for any η > 0, γ̂(ζ (θ )) is the projection of ζ (θ ) to the setΘ .

Let M̄
�
= {θ ∈ Θ | γ̂(ΦT F(T (Φθ )−Φθ )) = 0}. Note that if θ ∈ Θ o ∩ M̄,

ΦT F(T (Φθ )−Φθ ) = 0. We now have the following result on the convergence
of the recursion (11.66).

Theorem 11.18. Under Assumptions 11.9 – 11.11, the quantities θn,n≥ 0 governed
according to (11.66) satisfy θn→ M̄ with probability one.

Proof. The result can be seen to follow from an application of the Kushner-Clark
theorem (Theorem E.1) for projected stochastic approximation. ��
Lets denote by w≡ w(θ ) any point in Kθ and view w(·) as a map from W to R

N .

Lemma 11.19. The map w : W → R
N is Lipschitz continuous.
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Proof. Follows as a consequence of the implicit function theorem (cf. Theorem 1 of
[14], also stated as Theorem 1.1 of [21]). ��
Let U = {(θ ,w) | θ ∈ M̄,w ∈ Kθ} and given ε > 0, let U ε = {(θ ,w) | θ ∈ M̄,
w ∈ Kεθ}.

Theorem 11.20. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
the sequence of iterates (θn,wn), n≥ 0 satisfy

(θn,wn)→U ε ,

with probability one.

Proof. (Sketch:) The result can be shown in a similar manner as Theorem 2, Chap-
ter 6 of [10], with the difference being that since the θ -update does not have a
unique fixed point (i.e., a unique globally asymptotically stable equilibrium for the
associated ODE), the convergence can only be shown to the set U using similar
techniques. ��

11.6 Concluding Remarks

In this chapter, we considered the application of simultaneous perturbation meth-
ods for problems of stochastic control under (a) lack of model information and (b)
large state-action spaces. We presented various reinforcement learning algorithms
based on simultaneous perturbation approaches for this purpose. These algorithms
are seen to perform well even over large state-action spaces. For instance, some of
these algorithms have been applied in the context of road traffic control in [18, 16]
(see Chapter 13), where they have been observed to work well even over very
high-dimensional state-action spaces. Finally, in [6], the simultaneous perturbation
methodology has been applied to develop an actor-critic algorithm for constrained
Markov decision processes that is similar in flavour to the methods developed in
Chapter 10.
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Part V
Applications



This part deals with engineering applications of simultaneous perturbation methods
that have been discussed in previous chapters. Specifically, the engineering appli-
cations that we consider are in the domains of (a) service systems, (b) road traffic
control and (c) communication networks.

In many service domains such as call centers, one is often interested in dynam-
ically finding the optimal staffing levels based on various service requirements of
incoming customers and the desired quality of service (QoS). Prashanth, Prasad,
Bhatnagar, Desai and Dasgupta in a few papers presented simultaneous perturbation
algorithms based on both SPSA and SF techniques for this problem and observed
that these algorithms showed better empirical performance as compared to the cur-
rent state-of-the-art technique. Chapter 12 discusses the application of the SPSA
and SF algorithms to service systems.

To maximize flow of vehicles and minimize congestion near road traffic junc-
tions, it is important to regulate traffic lights in a manner that achieves the de-
sired results. By assuming coarse information the system state (for instance, the
level of congestion along a lane as being in the ‘high’, ‘medium’ or ‘low’ re-
gions, Prashanth and Bhatnagar, in a paper in 2011, presented an adaptation of the
Q-learning algorithm with function approximation. This algorithm, however, incor-
porates threshold-type feedback policies where the values of the thresholds are con-
sidered fixed. Prashanth and Bhatnagar subsequently presented adaptations of the
deterministic SPSA algorithm in order to find optimal thresholds and also presented
various other threshold-based schemes for traffic signal control. The combinations
of the simultaneous perturbation method for adapting thresholds together with the
proposed traffic signal control schemes are seen to result in powerful algorithms for
this problem. An advantage here is that the simultaneous perturbation module (on
top of the regular algorithms) results in only a minor increase in computational ef-
fort. Chapter 13 discusses application of simultaneous perturbation methods to road
traffic control.

Simultaneous perturbation approaches have also been found to be highly efficient
in the context of communication networks. Chapter 14 discusses some of these ap-
plications. We consider, in particular, three applications where simultaneous per-
turbation methods have been found to be very useful. These applications are on
(a) random early detection (RED), (b) multi-access communication and (c) inter-
net pricing. The regular RED scheme prescribes a fixed set of threshold parameters
that are not seen to work well over various settings. While there have been several
works that aim at designing adaptive algorithms for RED, most of them, like regular
RED suffer from the problem of wide oscillations in the instantaneous queue length
process. By formulating the problem in the nonlinear optimization setting and by
developing deterministic perturbation based Newton SPSA algorithms, Patro and
Bhatnagar showed that the resulting scheme is both provably convergent and also
results in significantly low variance. Next, in the slotted Aloha multi-access commu-
nication protocol, it is observed that the feedback probability parameter is held fixed.
It is clearly the case that the same parameter value will not work for all network set-
tings. Bhatnagar, Karmeshu and Mishra designed an SF algorithm for finding the
optimal parameter trajectory for controlling a parametrized stochastic differential
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equation. This algorithm was then applied by them for finding the optimal parame-
ter settings for the slotted Aloha communication protocol. The algorithm is seen to
exhibit good performance. Finally, Vemu, Bhatnagar and Hemachandra studied the
application of SPSA for finding optimal pricing policies within a given parametrized
class of these policies. In particular, threshold-type feedback policies were consid-
ered. The resulting algorithm is seen to exhibit good performance.



Chapter 12
Service Systems

12.1 Introduction

A Service System (SS) is an organization composed of (i) the resources that sup-
port, and (ii) the processes that drive service interactions so that the outcomes
meet customer expectations . Here we consider the domain of data-center
management, where the customers own data centers and other IT infrastructures
supporting their businesses. The size, complexity, and uniqueness of the tech-
nology installations drive outsourcing of the management responsibilities to spe-
cialized service providers that manage the data-centers from remote locations.
These are called delivery centers and comprise groups of service workers (SWs)
skilled in specific technology areas supporting service requests (SRs) from cus-
tomers. Each such group is a SS constituting of the processes, the people, and
the customers that drive the operations. A delivery center in general contains
multiple SS.

An important problem in the context of service systems is to find the opti-
mal staffing levels subject to Service Level Agreement (SLA) and queue stability
constraints and for a given dispatching policy (a map from the service requests
to service workers). Given a dispatching policy, there are two fundamental chal-
lenges in optimizing the staffing levels, i.e., specifications of numbers of workers
across shifts and skill levels. First, given an SS with its operational characteris-
tics, the staffing levels need to be optimized while maintaining steady-state and
compliance to aggregate Service Level Agreement (SLA) constraints, e.g., 95%
of all urgent SRs in a month from a given customer must be resolved in 4 h.
Note that the 4 hour deadline does not apply to all individual SRs, but to 95% of
them that arrive in a month. Second, it is also necessary to keep the SR queues
stable owing to the fact that SLAs are calculated for completed work and not
unresolved SRs. The problem is challenging because analytical modeling of SS
operations is difficult due to aggregate SLA constraints and also because the SS
characteristics such as work patterns, technologies, and customers supported change
frequently.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 225–241.
springerlink.com © Springer-Verlag London 2013
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Our approach is to formulate this problem as a constrained hidden Markov cost
process [5] parameterized by the (discrete) worker parameter and develop simulta-
neous perturbation methods to solve the same. To have a sense of the search space
size, an SS consisting of 30 SWs who work in 6 shifts and 3 distinct skill levels
corresponds to more than 2 trillion configurations. Apart from the high cardinality
of the discrete parameter set, the constrained Markov cost process involves a hidden
or unobserved state component. The single-stage cost function for the constrained
Markov cost process is designed so as to balance the conflicting objectives of worker
under-utilization and SLA under/over-achievement. The performance objective is a
long-run average of this single stage cost function and the goal is to find the op-
timum steady state worker parameter (i.e., the one that minimizes this objective)
from a discrete high-dimensional parameter set. Note that the optimum worker pa-
rameter is a constrained minimum owing to the queue stability and SLA compliance
constraints.

We present algorithms based on the simultaneous perturbation technique for
solving the above problem. Simulation is employed for finding the optimum (con-
strained) worker parameter as the single stage cost function can be estimated only
via simulation. Henceforth, we shall refer to these algorithms as Staff Allocation
using Stochastic Optimization with Constraints (SASOC) algorithms. Both first and
second order methods based on the techniques presented in the earlier chapters are
described. An important aspect of all SASOC algorithms is that they involve the
generalized smooth projection operator, which is essential to project the continuous-
valued worker parameter tuned by the SASOC algorithms onto the discrete set. As
described in Chapter 9, the generalized projection operator ensures that the underly-
ing transition dynamics of the constrained Markov cost process is itself smooth (as a
function of the continuous-valued parameter), which in turn allows one to mimic the
continuous constrained optimization techniques, such as those described in Chapter
10, in the context of optimizing staff levels of a SS.

The remaining part of this chapter is organized as follows: We introduce the
service system framework in Section 12.2. We formulate the labor cost optimization
problem with SLA constraints in Section 12.3. We then discuss several first order
simultaneous perturbation algorithms, similar to those in Chapter 10, for solving the
afore-mentioned problem in Section 12.5. Thereafter, two second-order methods
using SPSA for estimating the gradient and the Hessian are presented in Section
12.6. A discussion on the convergence of all the algorithms is available in Section
12.7 and some representative experimental results on the algorithms described are
briefly presented in Section 12.8. The material reported in this chapter is based on
[2, 3, 6].

12.2 Service System Framework

Figure 12.1 shows the main components of the operational model of SS. SRs ar-
rive from multiple customers supported by the SS and get classified and queued
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Fig. 12.1 Components of the operational models of SS

into high, medium, or low complexity queues by a queue manager (human or
automated). Also, depending on the urgency of the SRs as well as the dispatch-
ing policy being used, each individual SR is assigned a priority in each of the
complexity queues. SWs are grouped according to their skill levels, viz., high,
medium, or low and work according to predefined shift schedules. Depending
on the dispatching policy in place, the resource allocator (human or machine
based) either pushes the SRs to SWs proactively or the SWs pull the highest pri-
ority SR from the complexity queue when it becomes available. In the former
case, each of the SWs has an associated priority queue. Generally, SWs work
on SRs with complexity matching to their skill levels. However, a swing policy
may kick-in dynamically and assign higher-skilled workers to lower complexity
queues if they grow beyond a threshold. Finally, a preemption policy specifies a
preemptive action such as an urgent SR preempting all other SRs regardless of
their status. A runtime monitor collects statistics on the performance of the SS
against the SLAs, monitors the queues for unstable behavior such as unbounded
growth, and triggers invocation of the swing policy when swing thresholds are
crossed.



228 12 Service Systems

Table. 12.1 provides an example of staffing levels Wi, j and utilization ui, j of work-
ers across shifts and complexities, while Table. 12.2 illustrates SLA targets γi, j and
SLA attainments γ ′i, j for a service system with two customers and four priority levels
for SRs.

Table 12.1 Example: Sample workers and utilizations

(a) Workers θi

Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2

(b) Utilizations ui, j

Skill levels
Shift High Med Low
S1 67% 34% 26%
S2 45% 55% 39%
S3 23% 77% 62%

Table 12.2 Example: Sample SLA constraints

(a) SLA targets γi, j
Customers

Priority Bossy Corp Cool Inc
P1 95%4h 89%5h
P2 95%8h 98%12h
P3 100%24h 95%48h
P4 100%18h 95%144h

(b) SLA attainments γ ′i, j
Customers

Priority Bossy Corp Cool Inc
P1 98%4h 95%5h
P2 98%8h 99%12h
P3 89%24h 90%48h
P4 92%18h 95%144h

12.3 Problem Formulation

We consider the problem of finding the optimal staffing levels (see Fig. 12.1), while
adhering to the SLA constraints and maintaining state-to-state queues. We formulate
this as a constrained hidden Markov cost process as follows:

Worker parameter θ : The worker parameter specifies the number of workers
for each shift and of each skill level in a SS and is given by

θ = (W1, . . . ,W|A|×|B|)T ∈D ,

where Wi indicates the number of service workers whose skill level is i%|B| and
whose shift index is i/|B|. The parameter vector θ takes values in the set D , where

D
�
= {0,1, . . . ,Wmax}N . Here, Wmax serves as an upper bound for the number of

workers in any shift and of any skill level. Note that one can enumerate all the
points in D as D = {D1,D2, . . . ,Dp} for some p > 1.
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State (X(n),Y (n)): The state consists of the observed part X(n) and the un-
observed or hidden part Y (n) and is described by

X(n) = (N(n),u(n),γ ′(n),q(n)), (12.1)

Y (n) = (Z(n)). (12.2)

In the above,

• N(n) = (N1(n), . . . ,N|B|(n))T , where Ni(n) denotes the number of SRs in the
system queue corresponding to skill level i ∈B.
• Z(n) = (Z1,1,1(n), . . . ,Z1,1,Wmax(n), . . . ,Z|A|,|B|,Wmax(n)) is the vector of residual

service times. Here, Zi, j,k(n) denotes the residual service time of the SR cur-
rently being processed by the kth worker in shift i and of skill level j. Note
that if there is no kth worker corresponding to the shift i and skill level j,
then Zi, j,k = κ , where κ is a special value used to signify the non-existence
of a worker. Considering that the service times follow a truncated log-normal
distribution in our setting, the residual service time at any point cannot be
precisely estimated and hence, is part of the unobserved or hidden state
component Y (n).
• The utilization vector u(n) = (u1,1(n), . . . ,u|A|,|B|(n)), where each ui, j(n) ∈ [0,1]

is the average utilization of the workers in shift i and skill level j, at
instant n.
• The SLA attainment vector γ ′(n) = (γ ′1,1(n), . . . ,γ

′
|C|,|P|(n)), where γ ′i, j(n) ∈ [0,1]

denotes the SLA attainment for customer i and priority j, at instant n.
• q(n) is a single scalar (Boolean) variable that denotes the queue feasibility status

of the system at instant n. In other words, q(n) is false if the growth rate of the
SR queues (for each complexity) is beyond a threshold and is true otherwise. We
need q(n) to ensure system steady-state which is independent of SLA attainments
because the latter are computed only on the SRs that were completed and not on
those queued up in the system.

Considering that the queue lengths, utilizations and SLA attainments at instant
n+ 1 depend only on the state at instant n, i.e., {(X(n),Y (n))}, we observe that
{(X(n),Y (n)),n ≥ 0} is a constrained hidden Markov cost process for any given
(fixed) parameter θ .

Allowing S to denote the state space, we observe that S is compact as the various
components of X(n) and Y (n) are closed and bounded. This is because, each element
of u(n), γ ′(n) takes values in [0,1] and 0≤ q(n)≤ 1. Further, the system SR queues
N have a finite buffer each and hence, X(n),n ≥ 0 is closed and bounded. Further,
the residual time vector in Y (n) also takes values in a compact set in lieu of the fact
that each element of Z is upper bounded by the total service times at the SR queues
and that in turn takes values in [0,�].

Cost: The single-stage cost function is designed so as to minimize the
under-utilization of workers as well as over/under-achievement of SLAs. Here,
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under-utilization of workers is the complement of utilization and in essence, this
is equivalent to maximizing the worker utilizations. The over/under-achievement
of SLAs is the distance between attained and the contractual SLAs. Hence, the
cost function is designed to balance between two conflicting objectives and has the
form:

c(X(n)) = r×
(

1−
|A|
∑
i=1

|B|
∑
j=1
αi, j× ui, j(n)

)
+ s×

( |C|
∑
i=1

|P|
∑
j=1

∣∣γ ′i, j(n)− γi, j∣∣
)
,

(12.3)

where r,s ≥ 0 and r+ s = 1. Further, 0 ≤ γi, j ≤ 1 denotes the contractual SLA for
customer i and priority j. Note that the first term in (12.3) uses a weighted sum of
utilizations over workers from each shift and across each skill level. The weights
αi, j are derived from the workload distribution across shifts and skill levels over a

month long period. These weights satisfy 0≤ αi, j ≤ 1, ∑|A|i=1∑
|B|
j=1αi, j = 1. Such a

prioritization of workers helps in optimizing the worker set based on the workload
expected in a particular shift and skill combination.

Constraints: The constraints are on the SLA attainments and queue growth,
given by:

gi, j(X(n)) = γi, j− γ ′i, j(n)≤ 0,∀i = 1, . . . , |C|, j = 1, . . . , |P|, (12.4)

h(X(n)) = 1− q(n)≤ 0, (12.5)

Here (12.4) specifies that the attained SLA levels should be equal to or above the
contractual SLA targets for each customer-priority tuple. Further, (12.5) ensures that
the SR queues for each complexity in the system stay bounded. In the constrained
optimization problem formulated below, we attempt to satisfy these constraints in
the long-run average sense (see (12.6)).

System evolution:

nT (n+1)T

X(n)

Instant

State X(n+1)

Simulate(θn,T )

Fig. 12.2 A portion of the time-line illustrating the process

For a typical SS, as described in Section 12.2, the above model translates to
a stochastic evolution of the system from one state to another, while incurring
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a state-dependent single-stage cost as constraint functions described via c(X(n)),
gi, j(X(n)),h(X(n)), i = 1, . . . , |C|, j = 1, . . . , |P|. Note that these functions depend
explicitly on only the observed part X(n) of the state process (X(n),Y (n)),n ≥ 0.
As illustrated in Fig. 12.2, the nth system transition of this underlying constrained
Markov cost process involves a simulation of the service system for a fixed pe-
riod T with the current worker parameter θn. For instance, in our representative
experiments discussed in Section 12.8, T = 10, which translates to a simulation
of the service system for a period of 10 months with the staffing levels specified
by θn. Also, note that this is a continuously running simulation, where at discrete
time instants nT we update the worker parameter θn and the simulation output
causes a probabilistic transition from the current state (X(n),Y (n)) to the next state
(X(n+ 1),Y (n+ 1)), while incurring a single stage cost c(X(n)). By an abuse of
notation, we refer to the state at instant nT as (X(n),Y (n)).

The Objective: Our aim is to find a θ that minimizes the long-run average cost,

J(θ ) �= lim
n→∞

1
n

n−1
∑

m=0
E[c(X(m))]

subject to

Gi, j(θ )
�
= lim

n→∞
1
n

n−1
∑

m=0
E[gi, j(X(m))]≤ 0 ∀i = 1, . . . , |C|, j = 1, . . . , |P|,

H(θ ) �= lim
n→∞

1
n

n−1
∑

m=0
E[h(X(m))]≤ 0.

(12.6)

Projection Operator: The SASOC algorithms treat the parameter as continuous-
valued and tune it accordingly. Let us denote this continuous version of the worker
parameter by θ̄ =(W̄1, . . . ,W̄N). Note that θ̄i ∈ [0,Wmax], i= 1,2, . . . ,N. The SASOC
algorithms that we present subsequently tune the worker parameter in the convex
hull of D , denoted by D̄ , a set that can be simply defined as D̄ = [0,Wmax]

N . The
projection operator Γ̄ projects any θ ∈ R

N onto the set D̄ and is defined as Γ̄ (θ ) =
(Γ̄1(θ1), . . . ,Γ̄N(θN))

T , where Γ̄i(θi) = min(Wmax,max(θi,0)), i = 1, . . . ,N.
A generalized projection operator Γ (θ ) = (Γ1(W1), . . . ,ΓN(WN))

T that projects θ
on to the discrete set D is necessary to guide the service system simulation. This
projection idea has been described in Chapter 9 for an unconstrained discrete opti-
mization problem. Specifically,Γi(Wi) is defined in a manner similar to the definition
of the generalized projection scheme discussed in Chapter 9.2.3 and we omit the
definition here. Recall from Chapter 9 that the Γ -operator ensures that the transition
dynamics of the parameter extended Markov process for any θ ∈ D̄ is smooth (as
desired) and requires a lower computational effort because in a large portion of the
parameter space (assuming ζ is small), the Γ -operator is essentially deterministic.

Thus, Γ̄ (·) keeps the parameter updates within the set D̄ and Γ (·) projects them
to the discrete set D . The projected updates are then used as the parameter values
for conducting the simulation of the service system.
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12.4 Solution Methodology

The constrained long-run average cost optimization problem (12.6) can be expressed
using the standard Lagrange multiplier theory as an unconstrained optimization
problem given below.

max
λ

min
θ

L(θ ,λ ) �= lim
n→∞

1
n

n−1

∑
m=0

E

{
c(X(m))+

|C|
∑
i=1

|P|
∑
j=1
λi, jgi, j(X(m))+λ f h(X(m))

}
,

(12.7)

where λi, j ≥ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P| represent the Lagrange multipli-
ers corresponding to the constraints Gi, j(θ ) ≤ 0 and λ f represents the Lagrange
multiplier for the constraint H(θ ) ≤ 0 in the optimization problem (12.6). Also,
λ = (λi, j,λ f , i = 1, . . . , |C|, j = 1, . . . , |P|)T .

As in Chapter 10, we present several simulation optimization methods for ob-
taining a saddle point of the Lagrangian (12.7). All SASOC algorithms update the
worker parameter along a descent direction as follows:

θ (n+ 1) = Γ̄ (θ (n)− b(n)H −1
n hn). (12.8)

In the above, hn represents the estimate of the gradient while Hn is the particu-
lar positive definite and symmetric matrix used at update instant n. For the sake of
simplicity, we have omitted an additive stochastic noise term in the update (12.8).
In other words, all SASOC algorithms can be seen as noisy variants of (12.8) and
use either SPSA or SF-based estimates of the gradient and the Hessian of the La-
grangian.

As illustrated in Fig. 12.3, each algorithm involves an iterative procedure, where a
proposed candidate solution θ is evaluated using a simulation framework twice - one
with unperturbed parameter and another with perturbed parameter. The perturbation
p(n) is algorithm-specific and is motivated by the gradient estimate of the given
algorithm. The results of the simulation, specifically the attained SLAs γ ′i, j and the
queue stability parameter q are used to tune the parameter in an algorithm-specific
descent direction. Algorithm 12.1 gives the structure of all the SASOC algorithms
presented in the subsequent sections.

Algorithm 12.1 Skeleton of SASOC algorithms
Input:

• R, a large positive integer;
• θ (0), initial parameter vector; p(·); Δ
• UpdateRule(), the algorithm-specific update rule for the worker parameter θ

and Lagrange multiplier λ .
• Simulate(θ ,T )→ X , the simulator of the SS
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θ (n)

+

p(n)

Simulate(Γ (θ̂),T )

Simulate(Γ (θ ),T )

UpdateRule(·)

θ̂ (n) X̂(n)

X(n)

θ (n+1)

θ (n)

Fig. 12.3 Overall flow of the algorithm 12.1.

Output: θ ∗ �= Γ (θ (R)).
θ ← θ (0), n← 1
loop

X ← Simulate(Γ (θ (n)),T ).
X̂ ← Simulate(Γ (θ (n)+ p(n)),T ).
UpdateRule().
n← n+ 1
if n = R then

Terminate and output Γ (θ (R)).
end if

end loop

The algorithms described next can be categorized as follows:

• Based on whether the algorithms estimate the gradient or the Hessian, they can
be categorized as being of the first or the second order.

• Based on the technique employed for estimating the gradient/Hessian, they can
be categorized as SPSA or SF-based method. The various choices of Hn used
in our algorithms are described below.

The SASOC algorithms mainly differ in the choice of Hn in (12.8) and hence the
descent direction:

1. SASOC-G: Here Hn = I (identity matrix). This algorithm tunes the worker pa-
rameter θ in the negative gradient descent direction, with a one-sided SPSA
gradient estimate, as explained in Chapter 10.3.1, being used.

2. SASOC-SF-N: Here again Hn = I. However, the gradient estimate incorporates
one-sided SF with Gaussian perturbations similar to the estimate used in the
CG-SF algorithm described in Chapter 10.3.3.

3. SASOC-SF-C: As in SASOC-SF-N, here also we use the SF-based gradient
estimate, i.e., Hn = I. However, the perturbations in this case are based on the
Cauchy distribution.



234 12 Service Systems

4. SASOC-H: Here Hn = P(∇2L(θ ,λ )(n)), the estimate of the Hessian of L w.r.t.
θ (n) that is suitably projected to the space of positive definite and symmet-
ric matrices. Hence, this uses a Newton update for optimizing the worker pa-
rameter. This algorithm is simular to the CN-SPSA algorithm described in
Chapter 10.3.2.

5. SASOC-W: Here, as with SASOC-H, Hn is the estimate of the projected
Hessian of L. However, in this algorithm, the inverse of the Hessian ma-
trix is tuned directly using the Woodbury’s identity, a procedure described in
Chapter 7.4.

Note that while the algorithms of Chapter 10 are for a continuous-valued parameter,
the SASOC algorithms are for the discrete-valued worker parameter θ . In essence,
the SASOC algorithms use the continuous optimization procedures similar to the
ones described in Chapter 10 and the convergence of these algorithms is ensured
by employing a generalized projection operator (see Chapter 9.2.3) that makes the
underlying transition dynamics smooth. Table. 12.3 summarizes the various features
of the SASOC algorithms presented here.

Table 12.3 Summary of SASOC algorithms

Algorithm Order Type Hn p(n)
SASOC-SPSA First SPSA I δΔ (n)
SASOC-SF-N First SF-Gaussian I βη(n)
SASOC-SF-C First SF-Cauchy I βη(n)
SASOC-H Second SPSA-Hessian P(∇2L(θ ,λ )(n)) δ1Δ (n)+δ2Δ̂(n)
SASOC-W Second SPSA-Woodbury „ „

We next present the first-order methods that include either SPSA or SF based
gradient estimates and in the following section (Section 12.6), we present the
second-order methods. A discussion of the convergence of both the first as well
as the second order methods is then presented in Section 12.7.

12.5 First Order Methods

12.5.1 SASOC-SPSA

This is a three time-scale stochastic approximation algorithm that does primal de-
scent on the worker parameter while performing dual ascent on the Lagrange mul-
tipliers. This algorithm is similar to CG-SPSA described in Chapter 10 and uses a
one-sided SPSA gradient estimate. The update rule for this algorithm is given by
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Wi(n+ 1) = Γ̄i

[
Wi(n)+ b(n)

(
L̄(n)−L̄′(n)
βηi(n)

)]
,∀i = 1,2, . . . ,N,

L̄(n+ 1) = L̄(n)+ d(n)(l(X(n),λ (n))− L̄(n)),

L̄′(n+ 1) = L̄′(n)+ d(n)(l(X̂(n),λ (n))− L̄′(n)),

λi, j(n+ 1) = (λi, j(n)+ a(n)gi, j(X(n)))+ ,∀i = 1,2, . . . , |C|, j = 1,2, . . . , |P|,

λ f (n+ 1) =
(
λ f (n)+ a(n)h(X(n))

)+
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12.9)

where

• l(X ,λ ) = c(X)+
|C|
∑

i=1

|P|
∑
j=1
λi, jgi, j(X)+ λ f h(X) is the single-stage sample of the

Lagrangian;
• X(n) represents the state at iteration n from the simulation run with parameter
Γ (θ (n)) while X̂(n) represents the state at iteration n from the simulation run
with the perturbed parameter Γ (θ (n) + δΔ(n)). For simplicity, hereafter we
use θ to denote θ (n) and θ + δΔ to denote θ (n)+ δΔ(n). Also, Γ denotes the
generalized projection operator used to project θ onto the discrete set D ;

• δ > 0 is a fixed perturbation control parameter while Δ is a vector of perturba-
tion random variables that are independent, zero-mean and have the symmetric
Bernoulli distribution;

• The operator Γ̄ (·) ensures that the updated value for θ stays within the convex
hull D̄ and is defined as follows: Γ̄ (θ ) = (Γ̄1(θ1), . . . ,Γ̄N(θN)

T , with Γ̄i(θi) =
min(Wmax,max(θi,0)), i = 1, . . . ,N.

• L̄ and L̄′ represent Lagrange estimates corresponding to θ and θ + δΔ respec-
tively. Thus, for each iteration, two simulations are carried out, one with the
normal parameter θ and the other with the perturbed parameter θ + δΔ , the
results of which are used to update L̄ and L̄′.

12.5.2 SASOC-SF-N

This algorithm is also a first-order method like SASOC-SPSA. However, it uses
a Gaussian smoothed functional gradient estimate similar to the one in the CG-
SF algorithm of 10. The overall update rule for this algorithm is same as that of
SASOC-SPSA, except the updates to the parameter θ , which is given by,

Wi(n+ 1) = Γ̄i

[
Wi(n)+ b(n)

(
ηi(n)
β

(L̄(n)− L̄′(n))
)]

, (12.10)
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for all i = 1,2, . . . , |A|× |B|. In the above,

• The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P|
and λ f are the same as in SASOC-SPSA.

• β > 0 is a fixed smoothing control parameter.
• η =

(
η1,η2, . . . ,η|A|×|B|

)
is a vector of |A| × |B| independent N(0,1) random

variables;
• The rest of the symbols are the same as in SASOC-SPSA algorithm. Specifi-

cally, X(n) represents the state at iteration n from the unperturbed simulation,
while X̂(n) represents the state from the perturbed simulation. However, note
that the perturbed simulation in this case is run with the parameter Γ (θ +βη).
In other words, the perturbation p(n) in Fig. 12.3 corresponds to βη .

12.5.3 SASOC-SF-C

This algorithm uses the Cauchy instead of the Gaussian density as the smoothing
density function. The rest is similar to that in SASOC-SF-N. The Cauchy distribu-
tion has a heavier tail as compared to the Gaussian distribution. Hence, it is seen to
explore the search space better (see Chapter 6 for a detailed treatment). The update
rule of SASOC-SF-C algorithm for the parameter θ , is given by

Wi(n+ 1) = Γ̄i

[
Wi(n)+ b(n)

(
ηi(n)(N + 1)

β (1+η(n)Tη(n))
(L̄(n)− L̄′(n))

)]
,

(12.11)

for all i = 1,2, . . . , |A|× |B|. In the above,

• The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P|
and λ f are the same as in SASOC-SPSA.

• β > 0 is a fixed smoothing control parameter while η is an N-dimensional
multi-variate Cauchy random vector truncated to some μ ;

• The rest of the symbols are the same as in SASOC-SF-N algorithm.

12.6 Second Order Methods

We now present two second-order algorithms — SASOC-H and SASOC-W, which
use SPSA based estimates for the gradient and the Hessian. In principle, these al-
gorithms are similar to the Hessian and Woodbury variants of second-order SPSA
based algorithms described in Chapter 7.
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12.6.1 SASOC-H

This algorithm is similar to CN-SPSA (see Chapter 10.3.2) in terms of the gradient
and the Hessian estimates. The update rule of this algorithm is given by

Wi(n+ 1) =Γ̄i

(
Wi(n)+ b(n)

|A|×|B|
∑
j=1

Mi, j(n)

(
L̄(n)− L̄′(n)
δ2�̂ j(n)

))
, (12.12)

Hi, j(n+ 1) =Hi, j(n)+ b(n)

(
L̄′(n)− L̄(n)

δ1� j(n)δ2�̂i(n)
−Hi, j(n)

)
,

for all i, j = 1,2, . . . , |A|× |B|. In the above,

* The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P| and
λ f are the same as in SASOC-SPSA.

* δ1,δ2 > 0 are fixed perturbation control parameters while Δ and Δ̂ are two inde-
pendent vectors of perturbation random variables that are independent, zero-mean
and have the symmetric Bernoulli distribution;

* L̄ and L̄′ represent the Lagrangian estimates corresponding to θ and θ + δ1Δ +
δ2Δ̂ respectively. Thus, for each iteration, two simulations are carried out, one
with the nominal parameter Γ (θ ) and the other with the perturbed parameter
Γ (θ +δ1Δ+δ2Δ̂), the results of which are used to update L̄ and L̄′, respectively;

* H = [Hi, j]
|A|×|B|,|A|×|B|
i=1, j=1 represents the Hessian estimate of the Lagrangian. Here

H(0) is set to be a positive definite and symmetric matrix, in particular, H(0)= cI,
with c > 0 and I being the identity matrix; and

* M(n) = P(H(n))−1 = [M(n)i, j]
|A|×|B|,|A|×|B|
i=1, j=1 represents the inverse of the Hes-

sian estimate H of the Lagrangian, where P(·) is a projection operator en-
suring that the Hessian estimates remain symmetric and positive definite, see
Chapters 7 and 8.

* The rest of the symbols are the same as in the first-order methods described
before.

12.6.2 SASOC-W

The SASOC-H algorithm is more robust than SASOC-G. However, it requires the
computation of inverse of the Hessian H at each stage which is a computationally in-
tensive operation. As described in Chapter 7, we develop a second order method that
directly tunes the inverse of the Hessian H using the Woodbury’s identity. The result-
ing algorithm has a computational complexity of O(n2), as compared to SASOC-H,
which is O(n3). The update rule of this algorithm, named SASOC-W, is given by
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Wi(n+1) =Γ̄i

(
Wi(n)+b(n)

|A|×|B|
∑
j=1

Mi, j(n)

(
L̄(n)− L̄′(n)
δ1�̂ j(n)

))
, (12.13)

M(n+1) =P

(
M(n)

1−b(n)

[
I− b(n)(L̄′(n)− L̄(n))P(n)Q(n)M(n)

1−b(n)+b(n)(L̄′(n)− L̄(n))Q(n)M(n)P(n)

])
,

where all the symbols are as described in SASOC-H and the update equations corre-
sponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P| and λ f are the same as in SASOC-
SPSA. Note here that M, the inverse of the Hessian H, is directly updated, whereas
in SASOC-H, the Hessian was updated first and its inverse was later explicitly com-
puted in order to obtain M.

Remark 12.1. As noted in the previous chapters, an additional averaging over L
instants (for a given L > 1) of recursions involving data averaging, in between two
successive parameter updates, is seen to result in better algorithmic performance,
see [2, 3, 6].

12.7 Notes on Convergence

The convergence analysis of all the SASOC algorithms presented above proceed
along the lines of their respective counterparts in Chapter 10. However, considering
that the problem (12.6) is for a discrete parameter, it is necessary to first smoothen
the underlying transition dynamics for any θ ∈ D̄ (recall that D̄ is the convex hull
of the discrete set D). This can be achieved using a procedure described in Chapter
9. Specifically, a result similar to one in Lemma 9.4 can be shown for the SASOC
algorithms. As a consequence, one could mimic a continuous parameter system,
allowing the proofs of Chapter 10 to hold.

Some algorithm-specific notes follow:

• The assumptions and the convergence analysis of the SASOC-SPSA
algorithm are along the lines of the CG-SPSA algorithm described in
Section 10.3.1.

• The convergence analysis of the SF based first order methods - SASOC-SF-
N and SASOC-SF-C is similar to the CG-SF algorithm described in Section
10.3.3. In particular, the SF-based algorithms are distinguished by the gradient
estimate proceeding on the faster-timescale, the analysis of which can be seen
to be along the lines of the Gaussian and Cauchy variants of the SF algorithms
described in Chapter 6.

• The convergence analysis of SASOC-H and SASOC-W on the faster timescales
(i.e., the recursions corresponding to the worker parameter and the Hessian
estimates) proceeds along the lines of the Hessian and the Woodbury vari-
ants of the SPSA-based schemes described in Section 7.3.3 and Section 7.4,
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respectively. The complete analysis, including the slowest timescale update of
Lagrange parameters, can then be seen to be similar to that of the CN-SPSA
algorithm of Chapter 10.

12.8 Summary of Experiments
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Fig. 12.4 Performance of OptQuest and SASOC algorithms for EDF dispatching policy on a
real SS

We present a representative optimum staffing level result obtained using the
various SASOC algorithms described previously, on the simulation framework pro-
posed in [1]. The detailed simulation results are available in [3, 6]. The underly-
ing dispatching policy used is the EDF, where the time left to SLA target deadline
is used to assign the SRs to the SWs, i.e., the SW works on the SR that has the
earliest deadline. As mentioned before, all the SASOC algorithms involve two ser-
vice system simulations — one with unperturbed parameter and the other with the
perturbed parameter. Further, for purposes of comparison, an algorithm for staff
allocation using the state-of-the-art optimization tool-kit OptQuest [4] was also im-
plemented. OptQuest is a well-established tool for solving simulation optimization
problems and we used a scatter search based algorithm for performance compar-
isons. The algorithms are compared using W ∗sum as the performance metric. Here
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Wsum
�
= ∑|A|i=1∑

|B|
j=1 Wi, j is the sum of workers across shifts and skill levels and W ∗sum

denotes the value obtained upon convergence of Wsum.
As evident in Fig. 12.8, the SASOC algorithms in general are seen to exhibit

much superior performance compared to OptQuest, as they (a) exhibit more than
an order of magnitude faster convergence than OptQuest, (b) consistently obtain
solutions of good quality and in most cases better than those found by OptQuest, and
(c) show guaranteed convergence even in scenarios where OptQuest does not find
a feasible solution even after 5,000 iterations. Amongst the SASOC algorithms, we
observe that (the first-order method) SASOC-SF-C and (the second-order method)
SASOC-W show the best performance.

12.9 Concluding Remarks

In this chapter, we adapted various simultaneous perturbation-based simulation op-
timization algorithms for the problem of optimizing staffing levels in the context
of a service system. We formulated the problem as a constrained hidden Markov
cost process. The objective and the constraint functions were considered to be long
run averages of a state dependent single-stage cost function. The single-stage cost
function that balanced the conflicting objectives of maximizing worker utilizations
and minimizing the over-achievement of SLA was employed. For solving the con-
strained problem, we applied the techniques described in Chapter 10 to develop both
SPSA and SF-based schemes for performing gradient descent in the primal while
simultaneously performing an ascent in the dual for the Lagrange multipliers. These
algorithms were found to exhibit better overall performance in comparison to the
state-of-the-art simulation optimization toolkit OptQuest.

An interesting feature of the algorithms described in this chapter was that they
performed constrained discrete parameter optimization and thus are an extension of
the algorithms described in Chapter 9 for unconstrained discrete parameter settings
as well as the ones described in Chapter 10 for the problem of constrained con-
tinuously valued parameters. The developed algorithms are sufficiently general and
can be applied for other problems of constrained discrete parameter optimization
involving long-run average objective and constraint functions.
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Chapter 13
Road Traffic Control

13.1 Introduction

In this chapter, we present a few applications of simultaneous perturbation and re-
inforcement learning techniques developed in the earlier chapters for the problem
of maximizing traffic flows through the adaptive control of traffic lights at traffic
intersections. We consider two inter-related problems here:

(I) developing suitable traffic light control (TLC) algorithms that use threshold-
based coarse information about congestion on the various lanes of the road
network as input, and

(II) developing an algorithm to tune the aforementioned thresholds used in any
threshold-based TLC algorithm.

Note that any TLC algorithm attempting to maximize traffic flow needs as input
- the queue lengths along the individual lanes leading to the intersection. How-
ever, precise information about the queue lengths on the individual lanes is hard
to obtain in practice, while aggregate information can be obtained using thresh-
olds. For instance, one could use thresholds, say L1 and L2, to infer whether or
not the traffic congestion on a given lane is in the low (below L1), medium (be-
tween L1 and L2) or high (above L2) range, respectively. The inter-relation be-
tween the two problems described above arises from the fact that the thresholds
(such as L1 and L2) play a crucial role and a problem is to select these thresholds
optimally.

Reinforcement learning algorithms are model-free and easy to implement. How-
ever, their application to a problem involving high-dimensional state spaces, as
is the case with the traffic light control problem here, is nontrivial. Function
approximation-based approaches were discussed in Chapter 11 and we specifi-
cally make use of Q-learning with a linear function approximation architecture
(see Section 11.5.3) to solve the first problem - that of designing a TLC algorithm

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 243–255.
springerlink.com © Springer-Verlag London 2013
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that maximizes traffic flow in the long term. The crux of this application is the
choice of features used in the Q-learning-based TLC algorithm. We first describe
the Q-learning-based TLC algorithm proposed in [4] with its choice of features
and then a TLC algorithm that also uses Q-learning with function approximation
but with an enhanced feature selection scheme. The enhancement in the feature
selection scheme arises from an intelligent combination of the state and action fea-
tures, as opposed to keeping the state and action features separate, which is a case
treated in [4].

The TLC algorithm of [4] is based on certain graded thresholds and the thresh-
old values used in this algorithm are considred fixed and not necessarily optimal.
The problem is one of finding an optimal feedback policy within a class of pa-
rameterized feedback policies with the underlying parameter, in general, being a
vector of the various thresholds. It is thus necessary to design an online algo-
rithm to tune the thresholds on queue lengths and/or elapsed times and thereby
tune the parameter of the associated feedback policy. For solving this problem,
we consider the one-measurement SPSA algorithm with Hadamard matrix per-
turbations, described in Chapter 5. This algorithm is easily implementable, con-
verges to the optimal threshold values and most importantly works for any graded
threshold-based TLC algorithm. This algorithm is combined with several graded
threshold-based TLC algorithms, with each combination resulting in interesting
consequences. For instance, when applied together with RL (such as with the Q-
learning-based TLC algorithms), our threshold tuning algorithm results in tuning
the associated parameterized state-representation features. In the context of RL,
developing algorithms for feature adaptation is currently a hot area of research in
itself.

The chapter is organized as follows:

• In Section 13.2.1, we formulate the traffic light control problem as a Markov
Decision Process (MDP).

• In Section 13.2.2, we describe the Q-learning-based algorithm for solving the
above problem.

• In Section 13.3, we formulate the average cost problem for finding the
optimal threshold values in any graded threshold-based TLC algorithm and
also describe the threshold tuning algorithm based on SPSA for solving the
same.

• In Section 13.3.2, we combine the above algorithm with three different
graded threshold-based TLC algorithms (including the Q-learning TLC
above) and discuss interesting consequences that arise from these
combinations.

• In Section 13.3.3, we discuss some of the performance simulation results of the
threshold tuning algorithm.
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13.2 Q-Learning for Traffic Light Control

13.2.1 Traffic Control Problem as an MDP

We consider a road network with m junctions, m > 1. Each junction has multiple
cross-roads with each road having j lanes. Our algorithms require a description
of states, actions and costs. The state is the vector of queue lengths and the elapsed
times since the signal turned red on those lanes that have a traffic signal at the various
junctions in the network. Control decisions are made by a centralized controller that
receives the state information from the various lanes and makes decision on which
traffic lights to switch green during a cycle. This decision is then relayed back to
the individual junctions. We assume for simplicity that there are no propagation and
feedback delays. The elapsed time counter for a lane with green signal stays at zero
till the time the signal turns red. For a network with a total of N signaled lanes, the
state at time n is given by

sn = (q1(n), . . . ,qN(n), t1(n), . . . , tN(n))
T ,

where qi(n) is the queue length on lane i at time n and ti(n) is the elapsed time for
the red signal on lane i at time n.

The actions an comprise the sign configuration (which feasible combination of
traffic lights to switch) in the m junctions of the road network and have the form:
an = (a1(n), . . . ,am(n))T , where ai(n) is the sign configuration at junction i in the
time slot n. We consider only sign configurations that are feasible in the action set
and not all possible red-green combinations of traffic lights (which would grow ex-
ponentially with the number of traffic lights). Thus, the action set A(sn) = {feasible
sign configurations in state sn}.

The cost function here has two components. The first component is the sum of
the queue lengths of the individual lanes and the second component is the sum of
the elapsed times since the signal turned red on the lanes on which the signal is red.
The elapsed time on lanes for which the signal is green is zero. The idea here is to
regulate the flow of traffic so as to minimize the queue lengths, while at the same
time ensure fairness so that no lane suffers from being red for a long duration. Fur-
ther, lanes on the main road are given higher priority over others. We achieve pri-
oritization of main road traffic as follows: Let Ip denote the set of indices of lanes
whose traffic should be given higher priority. Then the single-stage cost k(sn,an) has
the form

k(sn,an) = r1 ∗ (∑i∈Ip r2 ∗ qi(n)+∑i/∈Ip s2 ∗ qi(n))
+ s1 ∗ (∑i∈Ip r2 ∗ ti(n)+∑i/∈Ip s2 ∗ ti(n)),

(13.1)
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where ri,si≥ 0 and ri+si = 1, i= 1,2. Further, r2 > s2. Thus, lanes in Ip are assigned
a higher cost and hence a cost optimizing strategy must assign a higher priority to
these lanes in order to minimize the overall cost.

13.2.2 The TLC Algorithm

Recall the Q-learning algorithm from Chapter 11 with the following update rule:

Qn+1(i,a) = Qn(i,a)+ a(n)

(
r(i,a)+ γ min

v∈A(Yn(i,a))
Qn(Yn(i,a),v)−Qn(i,a)

)
.

(13.2)
Here, r(i,a) is the single-stage cost when state is i and a feasible action a is chosen.
Further, Yn(i,a) is a simulated next state when the current state is i and action a ∈
A(i) is chosen. One could use the above recursion to find the optimal Q-values and
hence, the optimal sign configuration policy for the traffic control MDP described
in the previous section.

However, the Q-learning algorithm (13.2) requires a look-up table to store the Q-
values for every possible (s,a)-tuple. While this is useful in small state and action
spaces, it becomes computationally expensive for larger road networks involving
multiple junctions. For instance, in the case of a small road network (e.g. a two-
junction corridor) say with 10 signalled lanes, with each lane accommodating 20
vehicles, the number of state-action tuples (and hence the size of the Q(s,a) lookup
table) is of the order of 1014. This leads to an extraordinary computation time and
space as lookup table representation requires a lot of memory and moreover, the
lookup and update operation of Q(s,a) for any (s,a) tuple is expensive because of
the number of (s,a)-tuples. For instance, in the case of the ten-lane example above,
(13.2) would correspond to a system of 1014 equations needed to update Qn(i,a) for
each feasible (i,a)-tuple once. The situation is aggravated when we consider larger
road networks such as a grid or a corridor with several junctions, as the sizes of the
state and action spaces blow up exponentially. To alleviate this problem of curse of
dimensionality, we incorporate feature-based methods. These methods handle the
above problem by making computational complexity manageable.

Feature-based methods were introduced in Section 11.5 of Chapter 11. Specifi-
cally, the linear function approximation architecture for Q-learning algorithm was
described in Section 11.5.3. Recall that the idea there is to approximate the Q-value
function Q(s,a) as

Q(s,a)≈ θTσs,a, (13.3)

where σs,a is a d-dimensional feature (column) vector, with d significantly less in
comparison to the cardinality of the set of feasible state-action tuples (s,a). Also,
in (13.3) θ is a tunable parameter whose dimension is the same as that of σs,a. This
approximation thus results in significant complexity gains both in terms of space
as well as time. The algorithm QTLC-FA is the function approximation variant of
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Q-learning used in the context of traffic control MDP. QTLC-FA thus updates the
parameter θ , a d-dimensional quantity using the following update rule (similar to
(11.65):

θ (n+1) = θ (n)+α(n)σsn ,an(k(sn,an)+ γ min
v∈A(sn+1)

θ (n)Tσsn+1,v−θ (n)Tσsn,an ),

(13.4)

where θ0 is set arbitrarily. In (13.4), the action an is chosen in state sn according
to an = argminv∈A(sn) θ

T
n σsn,v. Thus, instead of solving a system in |S×A(S)| vari-

ables, we solve here a system in only d variables. Here S×A(S)
�
= {(i,a) | i ∈ S,a∈

A(i)}. For instance, in the case of a (3x3)-grid road network, it can be seen that
while |S×A(S)| ∼ 10101, d is only about 200. This results in significant speed up in
the computation time when feature-based representations are used.

A Basic Feature Selection Procedure

Note that σsn,an are state-action features. The features are chosen based on the queue
lengths and elapsed times of each signalled lane of the road network. A basic method
for selecting features is to set the features in the following manner: Let

σsn,an = (σq1(n), . . . ,σqN(n),σt1(n), . . . ,σtN (n),σa1(n), . . . ,σam(n))
T

where

σqi(n) =

⎧⎨
⎩

0 if qi(n)< L1

0.5 if L1 ≤ qi(n)≤ L2

1 if qi(n)> L2

σti(n) =

{
0 if ti(n)≤ T1

1 if ti(n)> T1.

(13.5)

Further σa1(n), . . . ,σam(n) correspond to the actions or sign configurations chosen at
each of the m junctions. As before, N is the total number of lanes (inclusive of all
junctions) in the network. L1 and L2 are thresholds on the queue lengths and T1

is a threshold on the elapsed time. Note that the parameter θn has dimension the
same as that of σsn,an . Again the advantage here is that instead of updating the Q-
values for each feasible (s,a)-tuple as before, one estimates these according to the
parametrization (13.3).

An advantage in using the above features is that one does not require full in-
formation on the queue lengths or the elapsed times. Thresholds L1 and L2 can be
marked on the lanes and used to estimate low (below L1), medium (between L1 and
L2) or high (above L2) traffic. Likewise the elapsed time can be categorized as being
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below the threshold (T1) or above it. While precise queue length information is of-
ten hard to obtain, a characterization of traffic at any time as low, medium or high is
easier.

13.2.3 Summary of Experimental Results

Results of the simulation experiments of the various TLC algorithms described
above, using the Green Light District traffic simulation software [5] are presented in
[4]. In particular, the performance of the Q-learning-based TLC algorithm QTLC-
FA was compared against various existing TLC algorithms - Fixed timing, Longest
queue and SOTL from [2] as well as the Q-learning-based TLC algorithm from [1]
that uses full state representation. Four different road networks - a two-junction cor-
ridor, a 2x2-grid network, a 3x3-grid network and an eight-junction corridor, were
considered for comparing the above TLC algorithms. Using the average junction
waiting times (AJWT), i.e., the average time that a user waits at a junction and to-
tal arrived road users (TAR), i.e., the number of road users who have completed
their trips, as the performance metrics, it was seen there that QTLC-FA consistently
shows the best results in all the four road networks studied. QTLC-FA was seen
to be easily implementable on larger road network scenarios, and requires much
less computation, whereas the algorithm from [1] was implementable only on a two
junction corridor and did not scale to larger networks because of the exponential
increase in computational complexity with more lanes and junctions. Further, it was
also observed that the transient period, i.e., the initial period when QTLC-FA is tun-
ing its parameters before stabilizing on a policy, is only a few cycles and hence,
QTLC-FA converges rapidly to a good sign configuration policy.

13.3 Threshold Tuning Using SPSA

The Q-learning-based TLC algorithm as well as the ones that we describe subse-
quently is based on queue-length thresholds L1 and L2 and the elapsed time thresh-
old T1. More such thresholds may be chosen in practice. However, an increase in the
number of thresholds also results in an increase in the computational complexity of
the scheme. It is generally observed that this choice of two thresholds (L1 and L2)
for the queue lengths and one threshold (T1) for the elapsed time works well. How-
ever, a question that remains is how should these threshold parameters be chosen.
Ideally, one would want to select them optimally, in a way that optimizes a certain
objective criterion. This the goal we consider now.

Thus, our aim here is to find an optimal value for the parameter vector θ =
(L1,L2,T1)

T that minimizes the long run average cost objective. In other words,
the aim of the tuning algorithm is to find a θ that minimizes
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J(θ ) = lim
l→∞

1
l

l−1

∑
j=0

k(s j ,a j), (13.6)

where k(s j,a j) denotes the single stage cost (13.1).
The actions a j are assumed to be governed by one of the policies that we present

below, that in turn will be parameterized by the threshold parameter θ . While it
is desirable to find a θ ∗ ∈ C that minimizes J(·), it is, in general, very difficult to
achieve a global minimum. We use therefore a local optimization method for which
one needs to evaluate ∇J(θ )≡ (∇1J(θ ),∇2J(θ ),∇3J(θ ))T , for all algorithms.

Because of the long-run average nature of the objective, we use a multi-timescale
stochastic approximation procedure (cf. Chapter 3).

13.3.1 The Threshold Tuning Algorithm

The threshold tuning algorithm estimates the gradient of the objective function
∇θJ(θ ) using a one-sided SPSA-based estimate with Hadamard matrix perturba-
tions. Let �(n) = (�1(n),�2(n),�3(n))T ,n ≥ 1 be the perturbation vectors ob-
tained using the Hadamard matrix construction described in Section 5.5.2.2. The
recursive update equation for θ is then given by

L1(n+ 1) =π1

(
L1(n)− a(n)

(
Z̃(nL)
δ�1(n)

))
, (13.7)

L2(n+ 1) =π1

(
L2(n)− a(n)

(
Z̃(nL)
δ�2(n)

))
, (13.8)

T1(n+ 1) =π2

(
T1(n)− a(n)

(
Z̃(nL)
δ�3(n)

))
. (13.9)

In the above,

• L1(n),L2(n),T1(n) denote the n-th updates of the thresholds L1,L2 and T1, re-
spectively.

• Z̃(nL) represents the cost function averaging term obtained by accumulating the
single stage cost over L cycles and is specific to the TLC algorithm being used
to obtain the sign configuration policy on the faster timescale. These updates
will be explained in the TLC algorithms in the next section.

• L ≥ 1 is a fixed parameter which controls the rate of update of θ in relation to
that of Z̃. This parameter allows for accumulation of updates to Z̃ for L iterations
in between two successive θ updates. It is usually observed that allowing L to
be greater than 1 improves the algorithm’s performance.

• δ > 0 is a given small constant.
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• The projection operators πi : R→ R, i = 1,2 are defined as follows: For any

x ∈ R, π1(x)
�
= min(max(Lmin,x),Lmax) and π2(x)

�
= min(max(Tmin,x),Tmax),

respectively. Here, Lmin,Lmax are the bounds on the thresholds L1 and L2. Sim-
ilarly, Tmin,Tmax are the bounds on the threshold T1.

The complete algorithm is described as under.

Algorithm 13.1. The threshold tuning algorithm
Input:

• R, a large positive integer; θ0, initial parameter vector; δ > 0;�;
• UpdateTheta(), the stochastic update rule discussed in (13.9)
• Simulate(θ )→ X : the function that performs one time-step of the road traffic

simulation and output the single-stage cost value k(ŝn, ·) (cf. (13.1))
• UpdateAverageCost(): the function that updates the average cost estimate

Z̃(·) used in (13.9) and is specific to the TLC-algorithm.
• UpdateTheta(): the function that updates the threshold parameter θ according

to (13.9).

Output: θ ∗ �= θR.
θ ← θ0, n← 1
loop

X̂ ← Simulate(θ + δΔ )
UpdateAverageCost()
if n % L = 0 then

UpdateTheta()
end if
n← n+ 1
if n = R then

Terminate with θ .
end if

end loop

13.3.2 Traffic Light Control with Threshold Tuning

Here we describe two TLC algorithms, each based on graded thresholds L1,L2 and
T1. While the first algorithm is based on Q-learning and incorporates an enhanced
feature selection scheme as compared to [4], the second is a simple priority-based
TLC algorithm. The threshold tuning algorithm described in the previous section
is combined with each of these TLC algorithms using multi-timescale stochastic
approximation. The threshold parameter θ = (L1,L2,T1)

T is tuned on the slower
timescale while the policy is obtained on the faster timescale using one of the TLC
algorithms outlined below.
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13.3.2.1 Q-Learning TLC with an Enhanced Feature Selection Scheme

It turns out that with QTLC-FS, the curse of dimensionality cannot be fully con-
trolled for larger networks with high-dimensional states. To alleviate this problem,
the QTLC-FA algorithm described above made use of feature-based representations
and function approximation. We further improve the performance of the QTLC-FA
algorithm by incorporating a novel feature selection scheme that uses priorities to
intelligently combine the state and action features. In the QTLC-FA algorithm, the
feature vector contained a bit each for the congestion estimate, elapsed time estimate
and the sign configuration portion, respectively, for each lane of the road network.
While each of these attributes is important, the approximation architecture used in
the QTLC-FA algorithm did not take into account the dependence between features.
We incorporate dependence between the state and the action features while using
graded thresholds and also reduce the dimension of the feature vector by more than
half as compared to that for the QTLC-FA algorithm. We denote the Q-learning-
based TLC with the enhanced feature selection scheme by QTLC-FA-NFS.

The various aspects of the QTLC-FA-NFS algorithm, for instance the function
approximation architecture, the Q-learning update rule remain the same as that de-
scribed for the QTLC-FA algorithm. The key difference is in the choice of features
which is explained below.

The features in the QTLC-FA-NFS algorithm are chosen as described below: Let

σsn,an = (σ1(n), . . . ,σK(n))
T , (13.10)

where the procedure for selection of feature value σi(n) corresponding to lane i is
explained in Table. 13.1.

Table 13.1 Feature selection (σi(n)) table for lane i

State Action Feature

qi(n)< L1 and ti(n)< T1
RED 0

GREEN 1

qi(n)< L1 and ti(n)≥ T1
RED 0.2

GREEN 0.8

L1 ≤ qi(n)< L2 and ti(n)< T1
RED 0.4

GREEN 0.6

L1 ≤ qi(n)< L2 and ti(n)≥ T1
RED 0.6

GREEN 0.4

qi(n)≥ L2 and ti(n)< T1
RED 0.8

GREEN 0.2

qi(n)≥ L2 and ti(n)≥ T1
RED 1

GREEN 0

The feature selection scheme is graded and assigns a value for each lane based on
whether the queue length on the lane is below L1, is between L1 and L2, or is above
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L2, on whether the elapsed time is below T1 or above it and also on whether the sign
configuration indicates a RED or GREEN light for the lane. For instance, if both
queue length and elapsed time are above the “highest” threshold levels for the lane,
then an action of GREEN would result in a feature value of 0 and an action of RED
would result in the value 1. In essence, this choice indicates that the TLC algorithm
should attempt to switch this lane to green. On the other hand, if both queue length
and elapsed time are below the “lowest” threshold level for the lane, then the feature
value chosen is just the opposite, i.e., a 0 for RED and 1 for GREEN, implying that
it is better to keep this lane red. The feature values corresponding to other decision
choices are appropriately graded.

The threshold tuning algorithm (13.9) is combined with the sign configuration
policy from QTLC-FA-NFS through multiple time-scale recursions. The recursions
on the faster timescale in the case of QTLC-FA-NFS-TT algorithm are as follows:
Let {s̃n,n≥ 0} denote a state-valued process that depends on both the tunable policy
as well as the tunable parameter θ̃l , l ≥ 0, where θ̃l = θn + δ�(n) for n =

[
l
L

]
,

and updates of θn ≡ (L1(n),L2(n),T1(n))T are governed according to (13.9). For
m = nL, . . . ,(n+ 1)L− 1,

Z̃(m+ 1) = Z̃(m)+ b(n)
(
k(s̃m, âm)− Z̃(m)

)
, (13.11a)

ω(m+ 1) = ω(m)+ b(n)σs̃m,âm(k(s̃m, âm)+ γ min
v∈A (s̃m+1)

ω(m)Tσs̃m+1,v

−ω(m)Tσs̃m,âm). (13.11b)

The step-size sequences a(n) and b(n),n ≥ 0 satisfy the standard assumptions for
multi-timescale algorithms, i.e.,

∑
n

a(n) =∑
n

b(n) =∞,∑
n
(a(n)2 + b(n)2)< ∞,a(n) = o(b(n)).

The action âm in (13.11a)-(13.11b) is chosen to be the one that minimizes ωT
mσs̃m,v

over all v ∈A (s̃m).
Note that one could combine the QTLC-FA algorithm with the threshold tuning

algorithm in a similar manner and we denote the resulting multi-timescale algorithm
by QTLC-FA-TT. The difference between QTLC-FA-TT and QTLC-FA-NFS-TT is
that the underlying sign configuration policy is derived from QTLC-FA for the former
and QTLC-FA-NFS for the latter. The rest of the algorithm, including the update rule
for the faster recursion (13.11a)-(13.11b), hold for QTLC-FA-TT as well.

13.3.2.2 Priority-Based TLC

The sign configuration policy is a graded threshold-based policy that assigns differ-
ent priorities to different policy levels. The thresholds here are on the queue lengths



13.3 Threshold Tuning Using SPSA 253

(say L1 and L2) and elapsed times since the last switch over of lights to red (say T1)
on individual lanes. The cost assigned to each lane is decided based on whether the
queue length on that lane is below L1, is between L1 and L2, or is above L2 at any
instant and also on whether the elapsed time is below T1 or above it. For instance,
if both queue length and elapsed time are above the “highest” threshold levels (L2

and T1, respectively) on a given lane, then the policy assigns the highest priority
to that lane. The priority assignment for any lane i of the road network based on
the queue length qi and elapsed time ti is shown in Table. 13.2. The policy then se-
lects the sign configuration with the maximum (over all feasible sign configurations)
sum of lane priority values. In essence, the TLC algorithm flushes the traffic on
lanes with long waiting queues, while also giving higher priority to lanes that have
been waiting on a red signal for a long time. This helps to combine efficiency with
fairness.

Table 13.2 Priority assignment for each lane in the TLC policy

Condition Priority value
qi < L1 and ti < T1 1
qi < L1 and ti ≥ T1 2
qi ≥ L1 and qi < L2 and ti < T1 3
qi ≥ L1 and qi < L2 and ti ≥ T1 4
qi ≥ L2 and ti < T1 5
qi ≥ L2 and ti ≥ T1 6

As with the previous TLC algorithms, we combine the threshold tuning algo-
rithm (13.9) with PTLC to obtain the PTLC-TT algorithm. The state-valued pro-
cess {ŝn,n ≥ 0} in this case under the priority-based policy described above de-
pends on the tunable parameter sequence θ̂l = θn + δ�(n),n ≥ 0, where θn ≡
(L1(n),L2(n),T1(n))T ,n ≥ 0 are updated according to (13.9). The faster timescale
recursions here are given as follows: For m = nL, . . . ,(n+ 1)L− 1,

Z̃(m+ 1) = Z̃(m)+ b(n)(k(ŝm, âm)− Z̃(m)). (13.12)

The action âm above is selected in state ŝm based on the priority assignment policy
(described above), i.e., select the sign configuration that has the maximum sum of
priority values (where the maximum is over all feasible sign configurations) and
switch the lanes in the chosen sign configuration to green.

The convergence analysis of the threshold tuning algorithm under standard as-
sumptions proceeds along the lines of the one-measurement SPSA algorithm with
Hadamard matrix-based perturbations, discussed in Section 5.5.5. The reader is re-
ferred to Theorem 5.11, which provides a complete proof of convergence of the
one-measurement SPSA algorithm with Hadamard Matrix Perturbations.
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13.3.3 Summary of Experimental Results

Performance of the threshold tuning algorithm, described in Section 13.3, was stud-
ied in conjunction with three TLC algorithms that incorporate graded thresholds.
These include the Q-learning based algorithms - QTLC-FA and QTLC-FA-NFS,
and the priority-based scheme PTLC, respectively. Comparisons drawn were be-
tween the tuned variants of the TLC algorithms against their counterparts that in-
volved fixed thresholds (no tuning). We show here the results of some representative
experiments on a ten-junction corridor network. The ten-junction corridor consists
of 22 edge nodes (where traffic is generated), 10 junctions with traffic lights, 31
roads, with each being 4 lanes wide and when full can house upto 1500 vehicles.
The cardinality of the state-action space in this case is of the order of 1090.

Figures 13.2(a) – 13.2(b) show plots comparing PTLC, QTLC-FA and QTLC-
FA-NFS algorithms with their tuning counterparts on a ten-junction corridor. It can
be observed from the results that incorporating the threshold tuning algorithm re-
sults in significant gains for all the TLC algorithms, with the QTLC-FA-NFS algo-
rithm showing the best overall performance. Further, the parameter θ was also seen
to converge to the optimal threshold value for all the TLC algorithms.
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Fig. 13.1 A Ten-Junction Corridor Network - used for our experiments
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13.4 Concluding Remarks

In this chapter, we applied reinforcement learning and simultaneous perturbation
methods to the problem of traffic signal control. We described Q-learning with func-
tion approximation for traffic light control. Later, we also studied an application of
one-measurement SPSA with Hadamard matrix perturbations for finding the opti-
mal threshold values in any graded threshold-based TLC algorithm. The combina-
tion of the threshold tuning algorithm with the Q-learning-based TLC algorithms
as well as a simple priority-based scheme was found to result in significant perfor-
mance improvements, in comparison to the TLC algorithms without tuning.
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Chapter 14
Communication Networks

14.1 Introduction

Simultaneous perturbation methods that we have discussed in the earlier chapters
have been found to be useful in the area of communication networks where often the
performance metrics depend on certain parameters and one is interested in finding
the optimal parameters. Many times, one is interested in optimizing steady-state
performance in these settings. Hence, the simultaneous perturbation approaches for
the long-run average cost objective play a significant role. Apart from being efficient
and scalable, a distinct advantage with these algorithms is that they are independent
of the technology and protocols used and hence are widely applicable over a large
range of settings.

We consider mainly three different problems in the area of communication net-
works here. The first problem deals with the random early detection (RED) adaptive
queue management scheme for the Internet. The original paper on RED by Floyd
[10] proposed a fixed set of parameters for the scheme regardless of the network and
traffic conditions. A problem with traditional RED that has been reported in several
papers is that of massive queue oscillations. Using our techniques, it is observed
that these oscillations dramatically diminish to almost zero variances in the aver-
age queue sizes. This problem is dealt with in detail in Section 14.2, and is based
on [16, 6].

The second problem that we consider here deals with the problem of finding
the optimal retransmission probabilities for the slotted Aloha multi-access com-
munication system [2]. The slotted Aloha protocol prescribes a fixed probability
of retransmission for packets that are involved in a collision in a previous slot.
In particular, colliding packets attempt retransmission in all subsequent slots af-
ter collision has taken place with a certain ‘retransmission’ probability until suc-
cessful transmission. The standards, however, specify that these probabilities be
held fixed regardless of the network and traffic conditions (including the number
of transmitting nodes). We study applications of our techniques on this problem

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 257–280.
springerlink.com © Springer-Verlag London 2013
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in Section 14.3. The approach and methodology here follow [15] that is in turn
based on [4].

Finally, the third problem deals with the issue of dynamic pricing in the Inter-
net. Pricing is regarded as an effective tool to control congestion and achieve qual-
ity of service (QoS) provisioning for multiple differentiated levels of service. We
consider the problem of pricing for congestion control in the case of a network
of nodes with multiple queues and multiple grades of service, and develop certain
graded feedback control policies over which using the simultaneous perturbation
algorithms, one obtains the optimal such policies. This part is mainly based on [26].
An important feature when using the approaches developed in the earlier chapters
is that they almost always result in significant performance gains over other ap-
proaches that do not use these methods. Section 14.5 then provides the concluding
remarks.

14.2 The Random Early Detection (RED) Scheme for the
Internet

This section deals with the application of the simultaneous perturbation approaches
to the RED flow control scheme and is based on [16, 6].

14.2.1 Introduction to RED Flow Control

Enhancing network performance has emerged as a major challenge for today’s in-
ternet applications given the large volumes of traffic that flows. Various adaptive
queue management techniques have been proposed to tackle growing congestion.
An important scheme in this direction is the random early detection (RED) [10].
RED uses a weighted average queue length metric as a measure of congestion. Fur-
ther, it uses two threshold levels, a maximum and a minimum threshold (maxth and
minth), to segregate buffers into three regions of low, medium and high conges-
tion intervals. The weighting parameter (wq) used to compute the weighted average
is typically chosen to be much less than 1. Further, a certain “max-probability”
parameter (maxp) is chosen. The basic idea in this scheme is as follows: The
weighted average queue length is computed each time a packet arrives. This is
then compared with the two threshold levels to determine whether the level of
congestion is in the aforementioned low, medium or high ranges. If the conges-
tion level is inferred as low (i.e., the weighted average queue length is below the
minimum threshold), the arriving packet is not dropped. On the other hand, if the
congestion level is high (i.e., the weighted average queue length is above the max-
imum threshold), the arriving packet is dropped. Finally, if the congestion level is
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found to be in the medium range, packets are dropped with a certain probability
parameter p that increases linearly with the number of packets dropped (until it
reaches maxp).

The idea behind using a weighted average queue length as opposed to instan-
taneous queue length for detecting congestion is to reduce oscillations that would
otherwise result in the system. On the other hand, the regular average queue length
(i.e., the one computed by assigning the same weight to each observation, and which
is the inverse of the total number of observations till that instant) is far less suscep-
tible to large variations in instantaneous queue length than the weighted average
queue length (when the number of packets over which the average has been taken is
fairly large). Nevertheless, a problem that has been consistently observed with RED
is of large oscillations in the weighted average queue behaviour. As such, the param-
eters wq, minth, maxth and maxp have been considered fixed in the original scheme
regardless of the network and traffic conditions. This results in poor performance of
the scheme. Hence, one needs to tune the parameters in a way as to achieve opti-
mal performance. Various techniques have been proposed for tuning the parameters
and many of them are heuristic in nature [9]. Simultaneous perturbation-based ap-
proaches have been proposed in [24] and [16]. In [24], a robust SPSA update is used,
where the idea is that in order to reduce oscillations in the scheme, one uses the sign
of the increment in the update rather than the increment itself. While this results in
an interesting alternative, it still does not fully remove the oscillations in the scheme.
The algorithms proposed in [16], on the other hand, are geared towards solving
a stochastic constrained optimization problem by using the barrier and penalty
function methods and incorporate Newton-based updates. The latter schemes are
seen to dramatically reduce the queue oscillations in RED. Our treatment here
is based entirely on [16]. A proof of convergence of these algorithms has been
provided in [6].

14.2.2 The Framework

The aim here is to tune the parameters in a way as to stabilize with a high probability
the weighted average queue length (qav) near a given target threshold denoted Q∗.
The weighted average queue length as such evolves in the following manner: Let
qav(n) denote the weighted average queue length as seen by the nth arriving packet.
Then,

qav(n) = (1−wq)qav(n− 1)+wqqinst(n),

where 0 < wq < 1 is the weighting factor and qinst(n) is the instantaneous
queue length seen by the nth arriving packet. Let θ denote the 4-dimensional
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parameter θ =(wq,maxp,minth,maxth)
T . The optimization problem can now be cast

as follows:

min
θ

f (θ ) = (Eqav−Q∗)2

s.t P[qav ≤ Q∗] ≥ α . (14.1)

Here, qav denotes the steady state average queue length and Eqav denotes its ex-
pected value. The objective function aims at bringing the mean steady-state average
queue length (Eqav) near the target Q∗. The constraint specifies that the probability
of qav being less than or equal to Q∗ should not drop below a given α ∈ (0,1) that in
turn can be chosen in a way as to comply with any specific demands on the traffic.
Through a proper choice of Q∗, one can maximize throughput while at the same
time minimize delays and reduce packet losses, thereby controlling congestion and
providing a good quality of service (QoS) to the various flows in the network. We
make the following assumptions:

Assumption 14.1. Both the mean E(qav) and the variance Var(qav) of the av-
erage queue length are twice differentiable and have bounded third derivatives
w.r.t. the parameter θ .

Assumption 14.2. E[qav] has a nonlinear dependency on the RED parameters.
Hence, E[qav] = f1(θ ), where f1 is some nonlinear function.

Assumption 14.3. The average queue length, qav for given θ has a normal
distribution with mean E(qav) and variance Var(qav) i.e., qav ∼ N(Eqav,
Var(qav)).

Assumption 14.1 is a technical requirement to utilize second-order parameter
updation techniques directly. As a consequence of Assumption 14.2, standard
nonlinear programming techniques can be applied to the optimization problem. As-
sumption 14.3 is also a technical requirement that aids in converting the proba-
bilistic constraint into a deterministic one [22]. Note here that since the weighted
average queue length process qav(n),n≥ 0 evolves using a fixed weighting parame-
ter wq, one can expect that under certain conditions, the steady-state average queue
length qav will have most of its probability mass concentrated in a narrow range
around Eqav. Assumption 14.3 has been made only to help formulate the problem
in a standard nonlinear programming framework. The requirement on the distri-
bution of qav being normally distributed may, however, be replaced by the more
realistic requirement of the same being distributed as per the truncated normal
distribution.

Now note that one can rewrite f (θ ) = (Eqav−Q∗)2 as f (θ ) = q̂2 +Q∗2−2Q∗q̂,
where q̂ = Eqav. Further, the constraint P(qav ≤Q∗)≥ α can also be reduced using
Assumption 14.3 as follows:
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P

(
qav−Eqav√

Var(qav)
≤ Q∗ − q̂

σ̂

)
≥ α, (14.2)

where σ̂ =
√

Var(qav) =
√

Eq2
av− (Eqav)2. From Assumption 14.3,

qav−Eqav√
Var(qav)

∼ Normal(0, 1).

Hence, from (14.2),

Q∗ − q̂≥ σ̂ Φ−1(α),

where Φ−1(α) is the inverse of the standard Gaussian c.d.f. evaluated at α . Thus,
(14.2) is analogous to

C3 σ̂ + q̂ ≤ C4 , or that

C4 − C3 σ̂ − q̂ ≥ 0, (14.3)

where C3 = Φ−1(α) and C4 = Q∗, respectively. Thus, the problem in revised form
is the following:

min
θ

(
q̂2 +C1−C2q̂

)
s.t C4−C3σ̂ − q̂≥ 0, (14.4)

where C1 =Q∗2 and C2 = 2Q∗. Two approaches, the barrier and the penalty function
methods, are now incorporated for the solution of this problem. These approaches
are first explained below.

14.2.2.1 The Barrier Function Method

This method [12] adds the logarithm of the constraints as the penalty term to the
objective function. The minimization problem with the relaxed objective is given as
under.

Find min
θ

B(θ ;b) = q̂2 +C1−C2q̂− b log[C4−C3σ̂ − q̂]. (14.5)

One solves the problems (14.5) for a sequence of values for b= bk, bk ↓ 0 (cf. [19]).
A second-order parameter update technique is used for solving (14.5). The gradient
and Hessian of B(θ ;b) can be evaluated as below. Representing the 4-dimensional
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parameter θ as θ = (θ1, θ2, θ3, θ4)
T , the gradient ∇θB of B(θ ; b) is obtained as

follows : For i = 1,2,3,4 and b = bk,

∇θi B = 2 q̂ q̂
′
θi
− C2 q̂

′
θi
+ bk

(C3 σ̂
′
θi
+ q̂

′
θi
)

(C4 − C3 σ̂ − q̂)
, (14.6)

Further, the Hessian ∇2
θB of B(θ ; b) is obtained as follows : For i, j ∈ {1,2,3,4},

we have

∇2
θi,θ j

B = 2 q̂ q̂
′′
θi,θ j

+ 2(q̂
′
θi
)2 − C2 q̂

′′
θi,θ j

+ bk

⎡
⎣ (C3σ̂

′′
θi,θ j

+ q̂
′′
θi,θ j

)(C4−C3σ̂ − q̂)+ (C3 σ̂
′
θi
+ q̂

′
θi
)2

(C4−C3σ̂ − q̂)2

⎤
⎦ , (14.7)

14.2.2.2 The Penalty Function Method

The second approach employed is the penalty method to solve the optimization
problem (14.4). Here, the penalty term is taken to be a quadratic function of the
constraints [23]. The optimization problem with the relaxed objective obtained afer
absorbing the constraints is given by:

min
θ

P(θ ;r) = q̂2 + C1 − C2q̂ +
1
2r

(C4−C3σ̂ − q̂)2. (14.8)

One solves here a sequence of unconstrained minimization problems (14.8) corre-
sponding to values of r = rk, rk ↑∞ (cf. [19]). The gradient∇θP is given as follows:
For i = 1,2,3,4 and r = rk, we have

∇θiP = 2q̂q̂
′
θi
−C2q̂

′
θi
− 1

rk

[
(C4−C3σ̂ − q̂)(C3σ̂

′
θi
+ q̂

′
θi
)
]
. (14.9)

Also, the Hessian ∇2
θP of P(θ ; b) is obtained as follows: For i, j ∈ {1,2,3,4},

we have

∇2
θi,θ j

P = 2 q̂ q̂
′′
θi,θ j

+ 2(q̂
′
θi
)2 − C2 q̂

′′
θi,θ j

− 1
rk

[
(C3 σ̂

′′
θi,θ j

+ q̂
′′
θi,θ j

)(C4 − C3 σ̂ − q̂)− (C3 σ̂
′
θi
+ q̂

′
θi
)2
]
, (14.10)
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14.2.3 The B-RED and P-RED Stochastic Approximation
Algorithms

In order to apply Newton-based algorithms using the barrier and penalty function
methods, one requires estimates of the derivatives of quantities such as q̂ and σ̂
that involve steady-state expectations (see Chapter 10). Thus, the relationships of
these quantities with θ are not analytically known. A way out is to use multi-
timescale stochastic approximation. Let Bi and Pi denote the ith sample observations
of the barrier and penalty objective functions obtained either through real network
observations or simulation of quantities q̂, q̂2 and σ̂ . For given θ and b (resp. r),
let Bi (resp. Pi) be i.i.d. We thus need to perform the optimization in (14.5)-(14.8)
under only the available sample observations and without any model information
being known. The objective functions B(θ ;b) and P(θ ;r) are estimated from the
sample observations Bi, Pi, i = 1,2, . . . as

B(θ ;b) = lim
n→∞

1
n

n

∑
i=1

Bi, P(θ ;r) = lim
n→∞

1
n

n

∑
i=1

Pi.

Let [θi,min,θi,max], θi,min < θi,max, correspond to the constraint interval for param-

eter θi, i = 1, . . . ,4. Thus θ takes values in the set C
�
= ∏4

i=1[θi,min,θi,max]. Let
Γi : R → [θi,min,θi,max] defined by Γi(x) = max(min(x,θi,max),θi,min) denote the
projection operator. Let {Δ(n)} and {Δ̂(n)} be two {±1}4-valued perturbation se-
quences with Δ(n) = (Δ1(n), . . . ,Δ4(n))T and Δ̂(n) = (Δ̂1(n), . . . , Δ̂4(n))T , respec-
tively, that are generated using the Hadamard matrix-based construction described
in Chapter 5.5.2.1.

Let δ1, δ2 > 0 be given small constants. Consider four parallel simulations that
are, respectively, governed by parameters θ (n)− δ1Δ(n), θ (n)+ δ1Δ(n), θ (n)−
δ1Δ(n)+ δ2Δ̂ (n), and θ (n)+ δ1Δ(n)+ δ2Δ̂(n). Let {q−(n)}, {q+(n)}, {q−+(n)}
and {q++(n)}, respectively, denote the instantaneous queue length processes asso-
ciated with these simulations. Let {a(n)}, {b(n)}, {c(n)} and {d(n)} correspond to
four step-size sequences that satisfy

∑
n

d(n) =∑
n

b(n) =∑
n

c(n) =∑
n

a(n) = ∞, (14.11)

∑
n

(
d(n)2 + b(n)2 + c(n)2 + a(n)2)< ∞, (14.12)

a(n) = o(c(n)), c(n) = o(b(n)) and b(n) = o(d(n)). (14.13)

14.2.3.1 The B-RED Algorithm

We now describe the B-RED algorithm that incorporates the estimates of the barrier
function. For all w ∈ {−,+,−+,++}, i, j = 1, . . . ,4,
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Zw
q (n+ 1) =(1− d(n))Zw

q (n)+ d(n)qw
av(n) (14.14)

Zw
q2(n+ 1) =(1− d(n))Zw

q2(n)+ d(n)(qw
av(n))

2 (14.15)

σ̂w(n) =(Zw
q2(n)− (Zw

q (n))
2)1/2 (14.16)

q̂
′
i(n+ 1) =(1− b(n))q̂

′
i(n)+ b(n)Gi(Zq(n)) (14.17)

σ̂
′
i (n+ 1) =(1− b(n))σ̂

′
i (n)+ b(n)Gi(σ̂ (n)) (14.18)

q̂
′′
j,i(n+ 1) =(1− c(n))q̂

′′
j,i(n)+ c(n)Hj,i(Zq(n)) (14.19)

σ̂
′′
j,i(n+ 1) =(1− c(n))σ̂

′′
j,i(n)+ c(n)Hj,i(σ̂(n)) (14.20)

θi(n+ 1) =Γi

(
θi(n)− a(n)(λ̂n)

−1∇̂iB
)
. (14.21)

We now explain the various expressions used above:

• In (14.21), ∇̂iB = 2q̂(n)q̂′i(n) −C2q̂′i(n) +b(C3σ̂ ′i (n)+ q̂′i(n)) /(C4−C3σ̂(n)−
q̂(n)) estimated from (14.5) where q̂(n) = 1

2(Z
+
q (n) + Z−q (n)) and σ̂(n) =

1
2 (σ̂

+(n)+ σ̂−(n)).
• In (14.21), λ̂n is obtained as per the procedure of [28] as explained below:

LetΠn≡ diag
[
λ1,n, · · · ,λq,n,λq+1,n, · · · ,λ4,n

]
, where λi,n, i = 1, · · · ,4 are eigen-

values of ∇̂2
θ(n)B, such that λi,n > λi+1,n, ∀i = 1, . . . ,4. Further, λq,n > 0 , and

λq+1,n ≤ 0, for q ∈ {1, · · · ,4}. Now set λ̂q,n = ηλq−1,n, λ̂q+1,n = ηλ̂q,n, · · · ,
λ̂4,n =ηλ̂3,n, whereη =(

λq−1,n
λ1,n

)q−2. If all λ j,n > 0, j∈{1, . . . ,4}, let λ̂ j,n = λ j,n.

Now λ̂n denotes the geometric mean λ̂n = [λ1,nλ2,n · · ·λq−1,nλ̂q,nλ̂q+1,n · · · λ̂4,n]
1
4 .

• In (14.14)-(14.15), Zw
q (n) and Zw

q2(n) are the estimates of Eqw
av and E(qw

av)
2,

respectively.
• In (14.17), Gi(Zq(n)) = (Z+

q (n) −Z−q (n))/(2δΔi(n)) is an estimate of the ith
component of the gradient of Eqav.

• In (14.19), Hj,i(Zq(n)) = (4δ1δ2)
−1[(� j(n)�̂i(n))−1 + (�i(n)�̂ j(n))−1]

[Z++
q (n) −Z+

q −Z−+q +Z−q ] is an estimate of the (i, j)th component of the Hes-
sian of Eqav.

• In (14.18), (14.20), Gi(σ̂(n)), Hj,i(σ̂ (n)) are similarly the gradient and Hessian
estimates for (Var(qav))

1/2.

Remark 14.1. The algorithm presented above is a second-order method where nei-
ther the Hessian update is projected to the space of positive definite and symmetric
matrices nor is the inverse of the latter (projected Hessian) computed. Instead, one
computes the eigen-values of the Hessian update and projects them in a way as to
make them positive (in case they are not). Next the inverse of the geometric mean
of these (projected) eigen-values is used in place of the Hessian inverse in the algo-
rithm. This method has been proposed in [28] as an efficient alternative to regular
Newton methods.
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Remark 14.2. As with the multi-timescale algorithms described in earlier chapters,
it is observed in [6] that an additional averaging over a certain number L > 1 of
epochs for the recursions (14.14)–(14.18) in between two successive updates of
the other (slower) recursions is seen to improve the empirical performance of the
scheme.

Remark 14.3. Note that while Gi(Zq(n)) and Gi(σ̂(n)) are true estimates of the gra-
dients of Eqav, (Var(qav))

1/2 (see Chapter 7), however, Hj,i(Zq(n)), Hj,i(σ̂(n)) turn
out to be biased estimates of the Hessians of the associated quantities because the
bias terms in the Hessians do not cancel when Hadamard matrix perturbations are
used. Note that in Chapter 7 [21] a similar four-simulation estimate of the Hessian
has been presented that incorporates randomized perturbations. Such an estimate
is seen to be asymptotically unbiased unlike the estimate above where the biases
in the Hessian estimate may not become asymptotically negligible. This, however,
does not affect the analysis as the overall scheme still converges to a local mini-
mum. A Hadamard matrix-based construction for both the gradient and the Hessian
has been used in these algorithms as it is seen to exhibit significant improvements
in empirical performance.

14.2.3.2 The P-RED Algorithm

The P-RED algorithm is obtained in a similar manner with the only change being
the use of ∇̂iP in place of ∇̂iB in (14.21) that can be estimated from (14.8).

14.2.3.3 A Sketch of Convergence

Let for any bounded and continuous function v : R→R,

Γ̂i(v(y)) = lim
0<η→0

(
Γi(y+ηv(y))−Γi(y)

η

)
, i = 1, . . . ,4.

Corresponding to B-RED, consider the system of ODEs: For i = 1, . . . ,4,

θ̇i = Γ̂i(−(λ̂θ )−1∇θiB). (14.22)

The stable fixed points of (14.22) lie in the set KB = {θ ∈C | Γ̂i ((λ̂θ )−1 ∇θiB) = 0,
i = 1, . . . ,4}. For η > 0, let KηB denote the η-neighborhood of KB.

Theorem 14.1. Given η > 0, there exists a δ̂ > 0, such that for all δ1, δ2

∈ (0, δ̂ ], the parameters θ (n), n ≥ 0 given by the algorithm B-RED converge
to KηB with probability one.
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Proof. (Sketch) The proof of convergence of (14.14)-(14.20) proceeds as with other
multi-timescale schemes, see Chapter 7. Hence consider (14.21). Let P(∇̂2

θ(n)B)

denote the spectral radius of ∇̂2
θ(n)B, i.e., the maximum of the magnitudes of the

eigenvalues of ∇̂2
θ(n)B. Then by Proposition A.15 of [1], we have that P(∇̂2

θ(n)B)≤
‖∇̂2

θ(n)B‖. Note also that sup
n
‖∇̂2

θ(n)B‖ < ∞. This follows since all the updates

(14.14)-(14.20) are uniformly bounded as they are convex combinations of uni-
formly bounded quantities in these recursions. Hence supn λ̂n < ∞ w.p. 1. Further,
from construction, supn λ̂n > 0. Also, since the eigenvalues of ∇̂2

θ(n)B are uniformly
continuous functions of the elements of this matrix, these converge as θ (n) → θ
for some θ ∈ C (since then ∇̂2

θ(n)B→ ∇̂2
θB). Let λ̂θ denote the geometric mean of

the projected eigenvalues of ∇̂2
θB. Then ∞ > supθ∈C λ̂θ > 0. Now the first ODE in

(14.22) corresponds to the recursion (14.21). Because of the projection to a compact
set, (14.21) is uniformly bounded w.p. 1. The rest now follows as in Chapter 7. ��
Remark 14.4. The convergence of the P-RED algorithm follows along exactly the
same lines as for the B-RED algorithm and similar conclusions as those of Theo-
rem 14.1 continue to hold.

14.2.4 Summary of Experimental Results

Results of experiments over different networks with multiple nodes have been pre-
sented in [16]. In particular, the experiments were conducted using the ns2.26
network simulator [13] by changing the router code. In fact, the standard RED
code implemented over the router in ns2.26 was replaced by the code for the B-
RED and P-RED algorithms. The four-simulation algorithm was implemented us-
ing a single simulation run on the simulation platform as described below: First,
data averaging is performed for the perturbed parameters corresponding to the
parameter (θ (0)− δ1Δ(0)) for the first L packet arrivals (cf. Remark 14.2). For
the next L arrivals, data averaging with parameter (θ (0) + δ1Δ(0)) is conducted.
Subsequently, the same is done for (θ (0)− δ1Δ(0) + δ2Δ̂(0)) and finally for
(θ (0)+ δ1Δ(0)+ δ2Δ̂(0)). At the end of 4L packet arrivals, the parameter θ is up-
dated and then the next cycle of data averaging over 4L packet arrivals is performed.
Thus, the algorithms spend majority of the time in on-line data averaging which is
a simple operation. Because of the sequential implementation procedure described
above, the B-RED and P-RED algorithms are amenable to online implementation
in a real network scenario, involving only real data and no simulated outcomes. The
value of L was selected to be 64 in the experiments. At the start of the simulations,
the algorithms are set in the active state.

Detailed experimental comparisons have been shown in [16] between B-RED
and P-RED algorithms with various other well-studied algorithms in the literature,
over different network topologies and settings, as well as traffic parameters. The
performance was also studied under both (a) given load conditions as well as (b)
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dynamically increasing loads. The B-RED and P-RED algorithms not only result
in good performance by yielding low delays and high throughput but also rapidly
stabilize the oscillations in the average queue lengths in all settings (even under
dynamically increasing loads). This was much unlike other algorithms in the litera-
ture, many of which seem to yield large oscillations. The simultaneous perturbation
methods are seen to be highly useful in such settings.

14.3 Optimal Policies for the Retransmission Probabilities in
Slotted Aloha

In this section, we study the application of the smoothed functional algorithm for
the problem of optimizing the retransmission probabilities for the slotted Aloha
multi-access communication protocol. We formulate the problem as a parameter-
ized stochastic differential equation (SDE) and then find the optimal parameter tra-
jectory using a smoothed functional algorithm. The material in this section is based
on [15, 4].

14.3.1 Introduction to the Slotted Aloha Multiaccess
Communication Protocol

The slotted Aloha multiple access communication scheme [2] is an efficient algo-
rithm for bursty traffic. It divides time into slots of fixed size and each node can
send at most one packet at the beginning of each timeslot. We consider a network
with N transmitting nodes sending packets on a common broadcast channel. Packets
arrive at each node independently with probability p. All packets are assumed to be
of equal size and which is the same as the slot length. We assume that there is no
buffer available at any of the nodes, i.e., at most one packet can be sent on the chan-
nel in any slot by a given node. A new packet received in the current slot at a node is
transmitted in the immediate next slot. A packet arriving at a node when a transmis-
sion from that node is in progress is dropped, i.e., it immediately leaves the system.
A transmission is successful if only one packet is transmitted in a slot. Collision
occurs if two or more packets are transmitted in the same slot. Colliding packets
are considered backlogged and each such packet is retransmitted with probability q
at the beginning of each subsequent slot (by the corresponding nodes that are also
referred to as ‘backlogged nodes’) until such packets are retransmitted successfully.
Note that a collision results in at least two nodes (those that transmitted the collid-
ing packets) becoming backlogged at the end of the slot in which the collision took
place. New packets can thus only be admitted at unbacklogged nodes. At the end of
each slot, the channel broadcasts to each node whether zero, one, or more than one
packets were transmitted during the previous slot. The channel as such is assumed
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to be error free. For instance, if only one packet is transmitted during a slot, it is
successfully received.

14.3.2 The SDE Framework

Let K(n) denote the number of backlogged nodes (0≤ K(n)≤ N) at the beginning
of the nth slot. Each of these (backlogged) nodes transmits a packet in the nth slot
with probability q independent of the other nodes. The remaining u(n) = N−K(n)
nodes are unbacklogged in the nth slot and transmit a packet in the slot if one (or
more) packets arrived during the previous slot at these nodes. Note that K(n),n≥ 0
satisfies the update rule

K(n+ 1) = K(n)+A(n)− In, (14.23)

where A(n) is the number of new arrivals admitted to the system (aggregated over
all nodes) in the nth slot and In is the indicator random variable

In = 1 if transmission in the nth slot is successful.

0 otherwise

It is clear from the above that K(n),n≥ 0 is a discrete time Markov chain.
Under the identification XN(t) ≡ K([Nt])/N where [Nt] denotes the integer part

of Nt, it is argued in [14] that for a large but finite number N of users, the behaviour
of the system can be approximated by the following SDE:

dXN(t) = μ(XN(t))dt +
1√
N
σ(XN(t))dW (t), (14.24)

where the drift and the diffusion terms μ(·) and σ(·), respectively, are given by

μ(XN(t)) = N p(1−XN(t))

− (N p(1−XN(t))+NqXN(t))exp(−N p(1−XN(t))−NqXN(t)), (14.25)

σ2(XN(t)) = (N p)2(1−XN(t))2 +N p(1−XN(t))

− (N p(1−XN(t))−NqXN(t))exp(−N p(1−XN(t))−NqXN(t)). (14.26)

In (14.24), W (·) denotes the one-dimensional Brownian motion. It is important to
note that both the drift and the diffusion terms, i.e., μ(XN(t)) and σ(XN(t)), respec-
tively, depend on the parameter q. Thus, we explicitly consider the parameterization
of these terms and the resulting parameterized SDE takes the following form:

dXN(t) = μ(XN(t),q)dt +
1√
N
σ(XN(t),q)dW (t), (14.27)
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with μ(Xm(t),q) and σ(Xm(t),q) defined according to (14.25) and (14.26), respec-
tively. In [15], two different cost formulations, the expected finite horizon cost as
well as the long-run average cost, have been considered. We focus here on the ex-
pected finite horizon cost structure.

14.3.2.1 The Expected Finite Horizon Cost

Let [0,T ] for some 0 < T < ∞ be the interval over which we consider the evo-
lution of the SDE (14.27). Let ḡ : [0,T ]×R → R represent the associated cost
function. Let

J̄Xm
0
(q(·)) �= E

[∫ T

0
ḡ(t,X(t))dt | Xm(0) = Xm

0

]
. (14.28)

Here, q(t) ∈ [0,1] is the retransmission probability prescribed by the trajectory q(·)
at time t ∈ [0,T ]. The objective is to find a function q∗ : [0,T ]→ R with q∗(t) ∈
[0,1], ∀t ∈ [0,T ] that minimizes (14.28) over all functions q : [0,T ]→ R, given the
initial state Xm

0 .
For computational purposes, we shall consider a suitable discretization of the

SDE (14.27) and recast the problem in the discrete time framework.

14.3.2.2 The Discretized Problem

Let T = Mh for some M > 0, where h is a small time element. The Euler-Milstein
discretization of the SDE (14.27) [11, pp.340-343] corresponds to:

XN
j+1 = XN

j + μ(XN
j ,q j)h+

1√
N
σ(XN

j ,q j)
√

hZj+1

+
1

2N
σ ′X (X

N
j ,q j)σ(XN

j ,q j)h(Z
2
j+1− 1), (14.29)

where σ ′X (·, ·) is the partial derivative of σ(·, ·) with respect to the first argument
(X). Also, q j ≡ q( jh) is the retransmission probability parameter at instant jh and
Zj+1, j ≥ 0 are independent N(0,1)-distributed random variables.

Let g j(XN
j ) ≡ ḡ( jh,XN( jh)), j = 1, . . . ,M be Lipschitz continuous functions.

Given the initial state XN
0 of the SDE, the aim in the discretized setting is to find

parameters q0, q1, . . ., qM−1 ∈ [0,1] that minimize the finite horizon cost

JXN
0
(q0, . . . ,qM−1)

�
= EXN

0

[
M

∑
j=1

g j(X
N
j )

]
h. (14.30)
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The quantity h (the slot length) is a constant and does not play a role and hence can
be dropped from (14.30). Thus, the final form of the discretized objective is

JXN
0
(q0, . . . ,qM−1)

�
= EXN

0

[
M

∑
j=1

g j(X
N
j )

]
. (14.31)

14.3.3 The Algorithm

The algorithm incorporates two step-size schedules a(n),b(n),n ≥ 0 such that

a(n) = o(b(n)). More generally, these schedules satisfy Assumption 3.6. Let q(n)
�
=

(q0(n), . . . ,qM−1(n))T denote the parameter trajectory at instant n. Let β > 0 be a
small constant. Also, let ηi(n),n ≥ 0, i = 0,1, . . . ,M− 1 be independent N(0,1)-

distributed random variables and let η(n) �= (η0(n), . . . ,ηM−1(n))T , n ≥ 0. Gener-

ate two independent SDE trajectories X+(n)
�
= {X+

0 (n),X+
1 (n), . . . ,X+

M−1(n)} and

X−(n) �= {X−0 (n),X−1 (n), . . . ,X−M−1(n)} that are, respectively, governed by the pa-
rameter trajectories or vectors q+(n) = q(n)+ βη(n) and q−(n) = q(n)− βη(n).
The algorithm is as follows: ∀ j = 0, . . . ,M− 1,

Yj(n+ 1) =(1− b(n))Yj(n)+ b(n)
η j(n)

2β

M−1

∑
i= j

(gi(X
+
i (n))− gi(X

−
i (n))),

(14.32)

q j(n+ 1) =Γ (q j(n)− a(n)Yj(n)). (14.33)

The algorithm prescribes a retransmission probability q j(n) at the nth iteration in
the jth stage. The value of this parameter affects the evolution of the system from
the jth stage onwards. Consider the ODE

q̇(t) = (Γ̃ (−∇1JXN
0
(q(t))), . . . ,Γ̃ (−∇MJXN

0
(q(t))))T , (14.34)

where for any y ∈ R and a bounded, continuous function v : R→ R,

Γ̃ (v(y)) = lim
η→0

(Γ (y+ηv(y))−Γ (y))/η .

The stable fixed points of this ODE lie within the set

K
�
= {θ ∈ [0,1]M | (Γ̃ (−∇1JXN

0
(θ )), . . . ,Γ̃ (−∇MJXN

0
(θ )))T = (0,0, . . . ,0)T}.

Given ε > 0, let K ε denote the ε-neighborhood of K .
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Theorem 14.2. Given ε > 0, there exists a β̂ > 0, such that for all β ∈ (0, β̂ ], q(n)=
(q0(n),q1(n), . . . ,qM−1(n))T → Kε as n→ ∞ with probability one.

Proof. Using a standard two-timescale argument, one can let q j(n) ≡ q j, n =
0,1, . . . ,M− 1 when analyzing the faster recursion (14.32). Now {Mj(p), p ≥ 1},
j ∈ {0,1, . . . ,M− 1} defined according to

Mj(p) =
p

∑
n=1

b(n)(
η j(n)

2β

N

∑
i= j

(gi(X
+
i (n))− gi(X

−
i (n)))

−E[
η j(n)

2β

N

∑
i= j

(gi(X
+
i (n))− gi(X

−
i (n))) |F (n− 1)]),

can be seen to be martingale sequences, where F (k) = σ(q j(n), η j(n), X+
j (n),

X−j (n), n≤ k, j = 0,1, . . . ,M− 1), k ≥ 1, is the associated filtration. Since gi(·) are
Lipschitz continuous functions,

‖ gi(x) ‖ − ‖ gi(0) ‖≤‖ gi(x)− gi(0) ‖≤ L ‖ x ‖,

where L > 0 is the Lipschitz coefficient for the function gi(·). Thus,

‖ gi(x) ‖≤ K̄(1+ ‖ x ‖),

where K̄ = max(‖ gi(0) ‖,L)> 0. This together with the square summability of the
sequence b(n),n ≥ 0 and the fact that the fourth moment of the N(0,1) random
variable is finite implies that the quadratic variation processes of the above mar-
tingales are almost surely convergent and by the martingale convergence theorem
(Theorem B.2), Mj(p), p ≥ 0, j = 0,1, . . . ,M− 1 are almost surely convergent as
well. Consider now the following system of ODEs along the faster timescale: For
j = 0,1, . . . ,M− 1,

Ẏj(t) = D j
β JX0(q)−Yj(t), (14.35)

where D j
β JX0(q) = E[

η j
2β (J

j
X0
(q+βη)− J j

X0
(q−βη))], with J j

X0
(q̂) = EXN

0[ M
∑

i= j
gi(XN

i )
]
, for q̂ = q+ βη or q̂ = q− βη , respectively. Here, q = (q0,q1, . . . ,

qM−1)
T is the trajectory (or vector) of re-transmission probabilities over the M

stages and η = (η0,η1, . . . ,ηM−1)
T is the M-dimensional vector of independent

N(0,1)-random variables. One can now show that almost surely ‖ Yj(n)−D j
β JX0

(q(n)) ‖→ 0 as n → ∞. From Taylor’s expansions of J j
X0
(q(n) + βη(n)) and

J j
X0
(q(n)− βη(n)) around q(n), it is easy to see that ‖ D j

β JX0(q(n))− ∇ jJ
j
X0

(q(n)) ‖→ 0 as β → 0 almost surely. We thus obtain

‖ Yj(n)−∇ jJ
j
X0
(q(n)) ‖→ 0 as n→ ∞ and β → 0, (14.36)

almost surely.
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Finally, consider the slower timescale recursion (14.33). In lieu of the above, one
can rewrite (14.33) as follows: ∀ j = 0,1, . . . ,M− 1,

q j(n+ 1) = Γ (q j(n)− a(n)∇ jJ
j
X0
(q(n))+ a(n)ξ2(n)), (14.37)

where (because of (14.36)), ξ2(n) = (∇ jJ
j
X0
(q(n))−Yj(n)) → 0 as n → ∞ and

β → 0. The ODEs associated with (14.37) correspond to q̇ j(t) = Γ̃ (−∇ jJ
j
X0
(q(t))),

j = 1, . . . ,M, for which K is the set of asymptotically stable attractors with
V (q) = JX0(q) as the associated strict Lyapunov function. The claim follows from
the Kushner-Clark theorem (Theorem E.1). ��

14.3.4 Summary of Experimental Results

In [15], results of experiments with varying number of nodes and the net arrival
rate (λ = N p) are shown. The discretization constant h is chosen as 0.01 and the
total number of epochs is M = 40. The performance is measured in terms of the
fraction of backlogged nodes and the average throughput. Two results of two sets of
experiments have been shown in [15]. In the first of these, λ is varied for a given
number (N = 200) of nodes. It is observed here that as λ is increased, the fraction of
backlogged nodes increases as well while the throughput decreases. This happens
because of an increase in collisions that result from a higher value of λ .

In the second set of experiments, for a fixed value of λ (λ = 0.4), the number
of nodes N is varied from 100 to 500. It is interesting to observe that in this case
(as the number of nodes is increased while keeping the net arrival rate constant),
the throughput increases while the fraction of backlogged nodes decrease. This is
possibly because for fixed λ , a higher value of N results in a lower value of p.

These results point to the need to dynamically adapt the retransmission probabil-
ity parameter in a slotted Aloha multi-access communication system for improved
performance. Similar enhancements in the case of other multi-access communica-
tion protocols such as CSMA, CSMA/CD, etc. can be made along similar lines.

14.4 Dynamic Multi-layered Pricing Schemes for the Internet

In this section, we describe the problem of finding a dynamic optimal pricing
scheme in the presence of multiple queues and multiple grades of service. We con-
sider a class of multi-layered price feedback policies and apply the SPSA algo-
rithm with a Hadamard matrix construction for finding an optimal policy within the
prescribed class of policies. This portion is based on [26].
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14.4.1 Introduction to Dynamic Pricing Schemes

Network pricing has been recognized as an effective means for managing conges-
tion and providing better quality of service to the internet users. There is a large
body of work on internet pricing where the emphasis is on the network adjusting the
prices of its resources based on the demand and the users adapting their transmission
rates suitably to optimize a certain utility function. The idea in the differentiated ser-
vices architecture is to suitably divide the available bandwidth amongst the various
competing flows.

The work conserving Tirupati Pricing (TP) scheme is proposed in [17]. A
stochastic approximation-based pricing scheme is used in [27] for a single-node
system. This scheme increases the price if congestion is above a certain threshold
and lowers it otherwise. In [20], the TP pricing is observed to perform better than
another pricing scheme that goes by the name of Paris Metro Pricing (PMP) over
a single-node model. A stochastic approximation-based adaptive pricing methodol-
ogy is considered in [8] to bring the congestion along any route to a certain pre-
scribed level. Unlike [27], the objective function there depends on the price and not
the actual congestion levels. However, prices for the entire routes and not of individ-
ual queues along the route are considered. The latter scenario incorporating prices
for individual queues along a route is considered in [25] and is seen to result in per-
formance improvements as it allows for greater flexibility since packets from one
service grade at one link can shift to another service grade on another link.

In [26], the TP pricing scheme is adopted and a state-dependent multi-layered
pricing scheme is considered that clusters together states in each queue into various
levels with prices assigned to each such level. Thus, the queue manager charges a
price to an incoming packet joining that queue on the basis of the level of congestion
within the queue. The material in this section is based on [26].

14.4.2 The Pricing Framework

Consider a network having N links with the ith link providing Ji possible grades
of service to the packets. The transmission capacity on the ith link is assumed to
be μi. There is a separate queue for each service grade. Thus, there are a total of
Ji queues on the ith link and packets desiring a particular grade of service join the
corresponding queue. Let bi, j denote the buffer size in the jth queue on the ith link.
A route r is denoted by a sequence of tuples r := [(i1, j1), (i2, j2), · · · , (inr , jnr )]
comprising nr links (i1, . . . , inr ) and the corresponding service grades ( j1, . . . , jnr )
used on each of these. The service grades could be different for different links on
a route. Let K be the total number of routes. Each of the Ji queues at link i can be
serviced according to any policy that provides the required QoS, e.g., round robin,
weighted fair queuing, etc.

Let Zi j(t) denote the queue length or buffer occupancy of the jth queue on the ith
link at time t. Let Zr(t) ∈ℜ denote the total congestion along route r at time t, i.e.,
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the sum of Zi j(t) over all queues on the route r. Thus,

Zr(t) =
nr

∑
k=1

Zik jk (t).

Let Zi(t)
�
= [Zi1(t), . . . ,ZiJi (t)] denote the vector of queue lengths of all queues

on the ith link. The state of the network at time t shall be denoted by Z(t)
�
=

[Z1(t), . . . ,ZN(t)]. In order to meet the desired QoS, the network service provider
selects an operating point Z∗ for the vector of congestion levels, where Z∗ =
[Z∗1 , . . . ,Z

∗
K ] with each Z∗i = [Z∗i1, . . . ,Z

∗
iJi
].

Let pi(t) = [pi1(t), . . . , piJi(t)] be the vector of prices for unit traffic on link i at
time t, where pi j(t) denotes the price (for unit traffic) on link i for service class j
at time t. The vector of prices pi(t) is posted by the service provider for each link
i = 1,2, . . . ,N. The price vector pi(t) is updated periodically every T time instants
(for given T > 0) using an SPSA-based algorithm that is described below.

Each user sends packets along the route with the least cost. The cost function
is assumed to be an increasing function of both price and congestion. Further, the
users strictly follow the routes prescribed by their associated cost functions. Let
Cs(x,Zi j(t), pi j(t)) denote the cost to user s for sending x units of traffic on link i
using service grade j. It is assumed that instantaneous values of the quantities Zi j(t)
and pi j(t) for all tuples (i, j) along a route are known to the users. Let

ji = arg min
j∈{1,...,Ji}

Cs(x,Zi j(t), pi j(t))

denote the least cost service grade on the ith link for user s at time t. The user s
would then select its least cost route corresponding to

arg min
r=[(1, j1),...,(nr, jnr )]

nr

∑
i=1

Cs(x,Zi ji(t), pi ji(t)),

assuming 1 denotes the source node and nr the destination node. The minimum
above is taken over all feasible routes from the source to destination for the sth user.
An example of a cost function Cs(·, ·, ·) is

Cs(x,Zi j(t), pi j(t)) = x(pi j(t)−Us(x,Zi j(t))),

where Us(x,Zi j(t)) is the utility of user s in sending x units of traffic using the jth
service grade on the ith link when the congestion level there is Zi j(t). In general both
the cost function and the utility are different for different users. Thus, the optimal
routes for two users sending packets from the same source to the same destination
node under identical conditions of congestion could, in general, be different. For
instance, a user transmitting real-time video might be more interested in getting a
low-delay path to transmit packets even if it means that he needs to pay more for it.
On the other hand, another user transmitting data packets might be more interested
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in getting a low price path to send packets even if it takes a longer time for packets
to reach their destination.

14.4.3 The Price Feed-Back Policies and the Algorithms

We first describe two different price feed-back policies here.

14.4.3.1 SPSA-Based Link Route Pricing (SPSA-LRP)

Let Z1∗
i j and Z2∗

i j be two queue length thresholds with Z1∗
i j > Z2∗

i j . Let

pi j(n+ 1) =

⎧⎨
⎩
θ 1

i j(n) if B≥ Zi j(n)≥ Z1∗
i j

θ 2
i j(n) if Z2∗

i j < Zi j(n)≤ Z1∗
i j

θ 3
i j(n) if 0≤ Zi j(n)< Z2∗

i j .
(14.38)

14.4.3.2 SPSA-Based Weighted Average Link Route Pricing
(SPSA-WA-LRP)

pi j(n+ 1) =

⎧⎪⎨
⎪⎩
θ 1

i j(n) if B≥ Ẑi j(n)≥ Z1∗
i j

θ 2
i j(n) if Z2∗

i j < Ẑi j(n)≤ Z2∗
i j

θ 3
i j(n) if 0≤ Ẑi j(n)< Z2∗

i j ,

(14.39)

where Ẑi j(n) denotes the ‘weighted average’ congestion in the jth queue at the ith
link at instant nT , n≥ 0, and is obtained recursively as

Ẑi j(n+ 1) = (1−wz)Ẑi j(n)+wzZi j(n), (14.40)

with 0 < wz < 1 being a given small constant. The idea behind using a ‘weighted
average’ queue length in the pricing policy SPSA-WA-LRP as opposed to the regu-
lar queue length in SPSA-LRP is to reduce oscillations that would otherwise result
in frequent adjustments to the price levels. This is in the spirit of the RED algorithm
(cf. Section 14.2).

Remark 14.5. Using an appropriate choice of the threshold levels Z1∗
i j and Z2∗

i j for
the jth queue on the ith link, one can effectively classify congestion in the queue
at any instant as being in the ‘low’, ‘medium’ or ‘high’ ranges. The policies de-
scribed above would then assign a different price depending on the aforementioned
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congestion levels. In general, more layers for the pricing policies (14.38) and (14.39)
may be used.

14.4.3.3 The Cost Formulation

Let θi j
Δ
= (θ 1

i j,θ 2
i j ,θ 3

i j) denote the ‘price’ parameter vector associated with the jth
queue on the ith link, and θ = (θi j , j = 1, . . . ,Ji, i = 1, . . . ,N). The components of
these parameters correspond to the price levels obtained through one of the policies
SPSA-LRP or SPSA-WA-LRP. Let θ take values in the set C ⊂ R

d , where d = 3γ ,
with γ being the dimension of Z(t). The set C has the form C = [A,A]d , where
0 < A < A < ∞.

Let {Z(t), t ≥ 0} be an ergodic Markov process for any given θ ∈ C. In many
interesting scenarios, Z(t), t ≥ 0, may not be Markov but the appended process
{(Z(t),W (t)), t ≥ 0} is Markov, where {W (t), t ≥ 0} is a suitable additional process.
The methodology and analysis here easily extend to the latter case as well as long
as {(Z(t),W (t)) , t ≥ 0} is ergodic for any given θ .

No specific model for the demand is assumed except that at any instant, the de-
mand may depend on the current congestion (i.e., state) and price (i.e., parameter)
levels. Further, given the current congestion and price levels, the demand at the cur-
rent instant is independent of the previous values of the demand.

Controllers at individual queues update the prices associated with their queues
based on local congestion information pertaining to their queues. Let hi j(·) denote
the single-stage cost associated with link-service grade tuple (i, j) that depends at
any instant t only on the state Zi j(t) of the queue. Let queue lengths be observed
every T instants of time, for some fixed T > 0, and based on this information, prices

at individual queues are instantly updated. Let Zi j(k)
Δ
= Zi j(kT ) denote the queue

length at the jth queue on the ith link at instant kT .
For any given θ ∈C, let

J(θ ) = ∑
j∈{1,...,Ji},
i∈{1,...,N}

Ji j(θ ), (14.41)

where Ji j(θ ) = lim
n→∞

1
n

n

∑
k=1

hi j(Zi j(k)).

The aim is to find a parameter θ ∗ ∈C that minimizes J(·).

14.4.3.4 The Algorithm

Let a(n),b(n),n ≥ 0 be two-step size sequences that satisfy Assumption 3.6. Let

δ > 0 be a given (small) constant. Let Δi j(n)
Δ
= (Δ1

i j(n),Δ2
i j(n),Δ3

i j(n)) be a vector
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of {±1}3-valued perturbations obtained via the one-simulation Hadamard matrix-
based construction described in Chapter 5.5.2.2.

Let the queue length process Zi j(n),n ≥ 0 of the jth queue on the ith link be
governed by the parameter sequence (θi j(n) + δΔi j(n)),n ≥ 0. Then, for all j =
1, . . . ,Ji; i = 1, . . . ,N;k = 1,2,3, we have

Yi j(n+ 1) =Yi j(n)+ b(n)(hi j (Zi j(n))−Yi j(n)) (14.42)

θ k
i j(n+ 1) =Γ

(
θ k

i j(n)− a(n)
Yi j(n)

δΔ k
i j(n)

)
. (14.43)

In the above, Yi j(n), n≥ 0 are quantities used to average the single-stage cost hi j(·)
in order to estimate Ji j(·). Also, Γ (·) is a projection operator that projects each price
update to the interval [A,A].

Consider now the following system of ODEs: For j = 1, . . . ,Ji; i = 1, . . . ,N,

θ̇i j(t) = Γ̂ (−∇Ji j(θi j(t)), (14.44)

where Γ̂ (·) is defined according to

Γ̂ (v(y)) = lim
γ↓0

(
Γ (y+ γv(y))−Γ (y)

γ

)
,

for any bounded and continuous function v(·). The stable fixed points of (14.44) lie
within the set M = {θi j | Γ̂ (∇Ji j(θi j)) = 0}. Let for given ε > 0, Mε denote the
ε-neighborhood of M. We have the following main convergence result:

Theorem 14.3. Given any ε > 0, there exists a δ0 > 0 such that for all δ ∈ (0,δ0],
θi j(n) converges as n→ ∞ to a point in Mε .

Proof. Follows from a standard two-timescale argument as in Chapter 5. ��

14.4.4 Summary of Experimental Results

The results of several experiments over a setting involving a four-node network have
been presented in [26]. All simulations were carried out using the network simulator
with each simulation run for one thousand seconds. Detailed performance compar-
isons were drawn between SPSA-LRP, SPSA-WA-LRP and an algorithm from [25]
that was, in turn, seen to be significantly better in comparison to [8]. Performance
comparisons between these algorithms were drawn in terms of both the throughput
and the delay metrics. Amongst the three algorithms, SPSA-LRP shows the best re-
sults followed by SPSA-WA-LRP. It is observed that SPSA-LRP exhibits a through-
put improvement in the range of 67-82 percent for all routes over the algorithm of
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[25], while SPSA-WA-LRP shows a similar improvement in the range of 34 to 69
percent. This happens because both SPSA-LRP and SPSA-WA-LRP use a combina-
tion of congestion-based feed-back control policies that are tuned using SPSA and
hence utilize network resources in a better manner as compared to the algorithm of
[25] that does not use any of the simultaneous perturbation approaches.

14.5 Concluding Remarks

We considered the applications of simultaneous perturbation approaches on
problems of control and optimization in communication networks. Specifically, we
studied the applications of these approaches on the following three problems: (a)
finding optimal parameters in the case of the RED scheme for the internet, (b) find-
ing optimal retransmission probabilities in the case of the slotted Aloha multi-access
communication protocol, and (c) finding optimal strategies for network pricing in
the internet.

The problem of RED flow control was formulated using a constrained nonlinear
programming framework. The barrier and penalty function objectives were used and
two multi-timescale Newton-based stochastic approximation algorithms that incor-
porated the Newton SPSA technique but with Hadamard matrix perturbations were
presented. These algorithms are seen to show significantly better performance when
compared with many other algorithms in the literature as they are seen to consider-
ably bring down the queue oscillations – a problem consistently reported in many
other studies. A different formulation of the RED problem has also been studied
in [24], where a ‘robust’ version of gradient SPSA has been developed. The idea
there is to replace the increment in the SPSA update with the sign of the same (i.e.,
+1 if the increment is positive, −1 if it is negative, and 0 otherwise). This helps in
bringing down the queue oscillations over regular RED but is not as effective as the
B-RED and P-RED schemes.

Next, the problem of finding the optimal retransmission probabilities in slotted
Aloha was formulated in the setting of parameterized SDEs over a finite horizon and
a gradient SF algorithm was used to find the optimal parameter trajectory. In [15],
the same problem for the long-run average cost objective has also been addressed.
The resulting algorithm in such a case results in a scalar (retransmission probabil-
ity) parameter. The slotted Aloha problem in a different setting (without an SDE
formulation) has also been studied in [7]. The regular gradient SPSA algorithm has
been incorporated there. However, traffic from sources is individually considered,
unlike [15] where the aggregate behaviour under a large number of sources is taken
into account using an SDE framework. Thus, the number of sources considered in
[7] is only of the order of a few tens, unlike [15] where the same is in the order of a
few hundreds.

Finally, the problem of internet pricing was studied using two classes of closed-
loop feedback policies that assigned price levels depending on the levels of con-
gestion. Whereas in SPSA-LRP, instantaneous congestion levels were considered,
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in SPSA-WA-LRP, weighted average queue lengths were considered for the pric-
ing levels. The latter policies are reminiscent of the RED flow control mechanism
and lead to less oscillations that would otherwise result from rapid price changes.
The one-simulation SPSA algorithm with Hadamard matrix perturbations was em-
ployed here and is seen to result in significantly better performance over the other
algorithms.

Simultaneous perturbation methods have been studied in various other applica-
tions in communication networks. For instance, in [3, 5], applications of SPSA to
available bit rate (ABR) flow control in asynchronous transfer mode (ATM) net-
works have been studied. Also, in [18], SPSA has been applied over the problem
of finding optimal slot assignment to slaves in bluetooth networks for both piconets
as well as scatternets. From these applications, it is clear that simultaneous pertur-
bation methods play a significant role in problems of performance optimization in
communication networks. An important characteristic of these methods is that they
are independent of the technology and protocols used, are scalable (as they can be
applied in high-dimensional settings), and hence are widely applicable.
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Part VI
Appendix



This part puts together five appendices on (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) a result on
convergence of projected stochastic approximation due to Kushner and Clark.Some
of the background material as well as the main results used in other chapters have
been summarized here.



Appendix A
Convergence Notions for a Sequence of Random
Vectors

We briefly discuss here the various notions of convergence for random vectors.
Let (Ω ,F ,P) denote the underlying probability space, where Ω is the sample
set, F the sigma field and P the probability measure, see for instance, [1] for
a good account of probability theory. Let Xn,n ≥ 0 denote a sequence of R

N–
valued random vectors on (Ω ,F ,P). Suppose X is another R

N–valued random
vector on (Ω ,F ,P). Further, let x ∈ R

N be an N-dimensional vector. Let FXn(·),
FX(·), n ≥ 0 denote the corresponding distribution functions associated with the
random vectors Xn, X , n≥ 0. Suppose Xn = (X1

n , . . . ,X
N
n )T , X = (X1, . . . ,XN)T and

x = (x1, . . . ,xN)T , respectively, where Xi
n, Xi, xi, i = 1, . . . ,N are R-valued. Then

FXn(x) = P(Xi
n ≤ xi, i = 1, . . . ,N) and FX(x) = P(Xi ≤ xi, i = 1, . . . ,N), respectively.

The following are standard notions of convergence:

1. Deterministic Convergence: We say that Xk → X as k→ ∞ deterministically
if Xk(w)→ X(w) as k→ ∞ for all w ∈Ω .

2. Uniformly: Xk → X uniformly as k→ ∞ if for all ε > 0 there exists an N > 1
such that ∀n≥ N,∀w ∈Ω , ‖Xk(w)−X(w)‖< ε .

3. Almost Sure (a.s.) or With Probability One (w.p.1) Convergence: We say
that Xk→ X as k→ ∞ almost surely (a.s.) or with probability one (w.p.1) if

P

(
w ∈Ω | lim

k→∞
‖ Xk(w)−X(w) ‖= 0

)
= 1.

4. Probabilistic or In Probability Convergence: We say that Xk → X as k→ ∞
probabilistically or in probability if

lim
k→∞

P(w ∈Ω |‖ Xk(w)−X(w) ‖≥ ε) = 0 ∀ε > 0.

5. Convergence in Lp: Let for p≥ 1,

Lp(Ω ,F ,P) = {X |E|X |p < ∞} ,
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denote a set of all RN-valued random variables on (Ω ,F ,P) which have finite
pth moment. We say that Xk→ X as k→ ∞ in Lp for p≥ 1, if

lim
k→∞

E (‖ Xk(w)−X(w) ‖p) = 0.

When p = 2, the Lp convergence is also referred to as mean-square conver-
gence.

6. In Distribution Convergence: We say that Xk→ X as k→ ∞ in distribution if

lim
k→∞

FXk(x) = FX(x) at all points x of continuity of FX(x).

7. Nearly uniformly: Xk → X nearly uniformly as k→ ∞ if ∀ε > 0,∃A ∈ F such
that P(A)< ε and on Ac,Xk→ X uniformly.

Theorem A.1 (Egorov). If Xk
a.s.−−→ X, then, Xk

n.u.−−→ X. The result is true for any
measure μ with μ(Ω)< ∞.

Lp P

a.s. n.u.

d

Always
|Xn| ≤ g ∈ L1

Fig. A.1 Relationship between the various notions of convergence. We use the following
abbreviations - a.s. to denote “almost surely”, n.u. for “nearly uniformly”, P for “convergence
in probability”, d for “convergence in distribution”, Lp for “convergence in Lp”.

A general relationship between the various notions of convergence is shown in Fig-
ure A.1. In the figure, a directed arrow from “A” to “B” i.e., A→ B indicates that
“A is stronger than B”. Further, we assume that a transitivity property holds in that
A→ B and B→ C implies that A→ C, even when an arrow from “A” to “C” is
not explicitly shown. Note that a.s. or w.p.1 convergence implies that there exists
a set of zero probability on which the said convergence does not hold. Determin-
istic convergence can be viewed as a special case of a.s. convergence as here the
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above zero-probability set is in fact empty. Also, while in Figure A.1, there is no
arrow between a.s. convergence and m.s. convergence, the former implies the latter
under certain conditions on the random vectors Xn,X , n ≥ 1. As an example, if the
said random vectors are uniformly bounded by a L1 function, then Lp convergence
follows from a.s. convergence.
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Appendix B
Martingales

As before, let (Ω ,F ,P) be a given probability space. Let {Fn} be a family of
increasing sub-σ−fields of F (also called a filtration), i.e.,

F0 ⊂F1 ⊂F2⊂ · · · ⊂Fn ⊂Fn+1 ⊂ ·· · ⊂F .

Definition B.1. 1. A sequence of R-valued random variables Xn,n ≥ 0 defined
on (Ω ,F ,P) is said to be a martingale w.r.t. the filtration {Fn} if each Xn is
integrable and measurable with respect to Fn.

2. Further,
E[Xn+1 |Fn] = Xn w.p.1 ∀n≥ 0. (B.1)

Definition B.2. A sequence of random variables Xn,n ≥ 0 as in Definition 1 is said
to be a submartingale w.r.t. the filtration {Fn} if the first part in Definition 1 holds.
In addition, the equality in (B.1) is replaced with “≥”.

Definition B.3. A sequence of random variables Xn,n ≥ 0 as in Definition 1 is said
to be a submartingale w.r.t. the filtration {Fn} if the first part in Definition 1 holds.
In addition, the equality in (B.1) is replaced with “≤”.

Many times, one identifies the martingale (alternatively, sub- or super-martingale)
with the sequence of tuples (Xn,Fn), n≥ 0 instead of just {Xn} itself.

Definition B.4. For a martingale sequence Xn,n ≥ 0, the sequence Mn+1, n ≥ 0 ob-
tained as Mn+1 = (Xn+1−Xn), n≥ 0 with M0 = X0, is called a martingale difference
sequence.

Note that
E[Mn+1 |Fn] = E[(Xn+1−Xn) |Fn]

= (E[Xn+1 |Fn]−Xn) = 0 w.p.1,

from (B.1).
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Definition B.5. A vector martingale (also many times referred to as a martingale) is
a sequence of RN−valued random vectors Xn = (X1

n , . . . ,X
N
n ) such that each of its

component processes Xi
n,n≥ 0 (i = 1, . . . ,N) is a martingale.

We recall the following important result due to Doob, see, for instance, [1, Theorem
3.2.2 on pp. 49].

Theorem B.1 (Doob decomposition). A submartingale (Xn,Fn),n ≥ 0, can
be decomposed as Xn = Yn +An, n≥ 0, where (Yn,Fn), n≥ 0, is a zero-mean
martingale and An,n ≥ 0 is a non-decreasing process, i.e., An ≤ An+1 almost
surely for all n ≥ 0. Further, An is Fn−1-measurable for all n ≥ 0, where
F−1 = {φ ,Ω}. This decomposition is almost surely unique.

There are various convergence results for martingales but the one that we often use
in this book is based on the convergence of the quadratic variation process associated
with the martingale Xn,n ≥ 0 (see below). Let Xn, n ≥ 0 be a square integrable
(scalar) martingale, i.e., it is a martingale for which E[X2

n ] < ∞ for all n ≥ 0. It is
easy to see that in this case, (X2

n ,Fn), n ≥ 0 forms a submartingale. Hence from
the Doob decomposition theorem (cf. Theorem B.1), it follows that X2

n = Yn +An,
n ≥ 0, where {Yn} and {An} satisfying the properties in Theorem B.1. It is easy to
see that

An =
n

∑
m=1

(
E
[
X2

m |Fm−1
]−X2

m−1

)
+E
[
X2

0

]

=
n−1

∑
m=0

E
[
(Xm+1−Xm)

2 |Fm

]
+E
[
X2

0

]
, (B.2)

∀n ≥ 0. As mentioned above, An,n ≥ 0 is called the quadratic variation process
associated with the martingale Xn,n ≥ 0.

Theorem B.2 (Martingale Convergence Theorem). Let (Xn,Fn), n≥ 0 be a
square-integrable martingale with An,n≥ 0 as its quadratic variation process.
Let A∞ = lim

n→∞An. Then {Xn} converges with probability one on the set {A∞ <

∞} and Xn = o( f (An)) on {A∞ = ∞} for every increasing f : [0,∞)→ [0,∞)
satisfying

∫ ∞
0
(1+ f (t))−2dt < ∞.

The proof of this result is available for instance on pp. 53-54 of [1] (cf. Theorem
3.3.4). Detailed treatments of martingales can be found, for instance, in the texts of
Breiman [2], Neveu [3] and Borkar [1].
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Appendix C
Ordinary Differential Equations

We begin with a definition of the O and o notation as this has been used at various
places the text.

Definition C.1. Let {an} and {bn} be two sequences of real numbers such that bn ≥
0,∀n.

1. We say an = O(bn) if there exists a constant L > 0 such that |an| ≤ Lbn for all
n.

2. We say an = o(bn) if lim
n→∞

an

bn
= 0.

Definition C.2. A function h : Rd→Rd is said to be Lipschitz continuous if ∃M >
0 such that

‖ h(x)− h(y) ‖≤M ‖ x− y ‖, ∀x,y ∈Rd.

The Gronwall inequality plays an important role in the proof of convergence of
stochastic approximation algorithms. We give the result below, whose proof can be
found in several texts, see for instance, Appendix B of [1].

Lemma C.1 (Gronwall inequality). For continuous functions f (·),g(·) ≥ 0
and scalars K1,K2,T ≥ 0,

f (t)≤ K1 +K2

∫ t

0
f (s)g(s)ds ∀t ∈ [0,T ], (C.1)

implies

f (t)≤ K1eK2
∫ T

0 g(s)ds, t ∈ [0,T ].

Consider the ODE given by

θ̇ (t) = L(θ (t)), θ (0) = θ0. (C.2)



292 C Ordinary Differential Equations

Definition C.3. The ODE (C.2) is said to be well-posed if starting from any θ (0) =
θ0, the trajectory θ (·) = {θ (t), t ≥ 0} of (C.2) is unique. Further, the map θ0→ θ (·)
is continuous.

Theorem C.2. A sufficient condition for (C.2) to be well-posed is if the function
L : RN →R

N is Lipschitz continuous.

Proof. See Theorem 5 on pp.143 of [1]. ��
Definition C.4. A closed set H ⊂ R

N is called an invariant set for the ODE (C.2)
if whenever the initial point θ (0) ∈ H, then θ (t) ∈ H for all t ≥ 0, i.e., if the ODE
trajectory is initiated in H, it stays in H for all time.

Definition C.5. A closed set H ⊂ R
N is called an attractor for the ODE (C.2) if

(i) H is an invariant set, and
(ii) there is an open set M containing H (i.e., M is an open neighborhood

of H) such that if the ODE trajectory is initiated in M, it stays in M and con-
verges to H.

Definition C.6. The largest possible open set M that is an open neighborhood of H
such that any ODE trajectory initiated in M stays in M and converges to H is called
the Domain of Attraction of H.

Given η > 0, let
Hη = {θ ∈ R

N |‖ θ − θ̄ ‖< η ,
denote the η-neighborhood of H, i.e., the set of all points within a distance η from
the set H.

Definition C.7. A closed invariant set H is Lyapunov stable if for any ε > 0, there
exists δ > 0 such that every trajectory initiated in Hδ stays in Hε for all time (i.e.,
if θ (0) ∈Hδ , then θ (t) ∈Hε for all t).

Definition C.8. A closed invariant set H is asymptotically stable if it is both Lya-
punov stable and an attractor.

Definition C.9. A closed invariant set H is globally asymptotically stable if H is
asymptotically stable and an attractor. All trajectories of the ODE in this case con-
verge to H. Thus, the domain of attraction of H when it is globally asymptotically
stable is RN .

The following theorem gives a criterion to verify asymptotic stability of the
set H.

Theorem C.3. The set H is asymptotically stable for the ODE (C.2) if one can find
a function V : RN → R such that the following hold:
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(i) V (θ )≥ 0 ∀θ ∈R
N,

(ii) There exists an open neighborhood M of H such that V (θ )→ ∞ as θ → ∂O
(i.e., the boundary of M),

(iii)
dV (θ (t))

dt
= ∇V (θ (t))T θ̇ (t) = ∇V (θ (t))T L(θ (t)) ≤ 0, ∀θ (·) ∈M.

In particular,
dV (θ (t))

dt
= 0 if and only if θ (t) ∈ H.

The following result on convergence of an ODE trajectory is due to Lasalle [3].

Theorem C.4 (Lasalle Invariance Theorem). Let H be the globally asymp-
totically stable attractor set for the ODE (C.2). Let V : RN → R be a func-
tion such that V (θ ) ≥ 0 ∀θ ∈ R

N. Further, V (θ ) → ∞ as ‖ θ ‖→ ∞ and
∇V (θ )T L(θ ) ≤ 0 ∀θ . Then any trajectory θ (·) must converge to the largest
invariant set contained in

{θ | ∇V (θ )T L(θ ) = 0}.

Definition C.10 ((T,Δ)-perturbation). Given T , Δ > 0, we call a bounded,
measurable y(·) : R+∪{0}→R

N , a (T,Δ)-perturbation of (C.2) if there exist
0 = T0 < T1 < T2 < · · · < Tr ↑ ∞ with Tr+1− Tr ≥ T ∀r and solutions θ r(t),
t ∈ [Tr,Tr+1] of (C.2) for r ≥ 0, such that

sup
t∈[Tr ,Tr+1]

‖ θ r(t)− y(t) ‖< Δ .

Again let H be the globally asymptotically stable attractor set for (C.2) and Hε

be the ε-neighborhood of H. The following result due to Hirsch [2] (Theorem 1,
pp.339) describes convergence to Hε of a function that closely approximates the
ODE trajectory.

Lemma C.5 (Hirsch Lemma). Given ε , T > 0, ∃Δ̄ > 0 such that for all Δ ∈
(0, Δ̄ ), every (T,Δ)-perturbation of (C.2) converges to Hε .
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Appendix D
The Borkar-Meyn Theorem for Stability and
Convergence of Stochastic Approximation

While there are various techniques to show stability of stochastic iterates, we review
below the one by Borkar and Meyn [2] (see also [1], Chapter 3) as it is seen to be
widely applicable in a large number of settings. They analyze the N-dimensional
stochastic recursion

Xn+1 = Xn + a(n)(h(Xn)+Mn+1),

under the following assumptions:

Assumption D.1.

(i) The function h : RN → RN is Lipschitz continuous and there exists a
function h∞ : RN →RN such that

lim
r→∞

h(rx)
r

= h∞(x),x ∈RN .

(ii) The origin in RN is an asymptotically stable equilibrium for the ODE

ẋ(t) = h∞(x(t)). (D.1)

(iii) There is a unique globally asymptotically stable equilibrium x∗ ∈RN for
the ODE D.1.

Assumption D.2. The sequence {Mn,Gn,n ≥ 1} with Gn = σ(Xi,Mi, i≤ n) is
a martingale difference sequence. Further for some constant C0 < ∞ and any
initial condition X0 ∈RN ,

E[‖Mn+1 ‖2| Gn]≤C0(1+ ‖ Xn ‖2), n≥ 0.
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Further, the step-sizes a(n),n≥ 0 satisfy

a(n)> 0∀n, ∑
n

a(n) = ∞, ∑
n

a(n)2 < ∞.

The main result of [2] (see Theorems 2.1(i)-2.2 of [2]) is the following:

Theorem D.1 (Borkar and Meyn Theorem). Suppose Assumptions D.1 and
D.2 hold. For any initial condition X0 ∈ RN, supn ‖ Xn ‖< ∞ almost surely
(a.s.). Further, Xn→ x∗ a.s. as n→ ∞.

[2] also contains a result for bounded step-size sequences (not tapering to zero).
However, for our purposes, we only require the result for diminishing step-sizes.
Assumptions D.1 and D.2 are seen to be satisfied in many cases, for instance, in
reinforcement learning algorithms.
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Appendix E
The Kushner-Clark Theorem for Convergence
of Projected Stochastic Approximation

We review here an important result due to Kushner and Clark [3] (cf. Theorem
5.3.1 on pp. 191-196 of [3]) that shows the convergence of projected stochastic
approximations. While the result, as stated in [3], is more generally applicable, we
present its adaptation here that is relevant to the setting that we consider.

Let C ⊂ RN be a compact and convex set and Γ : RN → C denote a projec-
tion operator that projects any x = (x1, . . . ,xN)

T ∈ RN to its nearest point in C.
Thus, if x ∈ C, then Γ (x) ∈ C as well. For instance, if C is an N-dimensional

rectangle having the form C =
N

∏
i=1

[ai,min,ai,max], where −∞ < ai,min < ai,max < ∞,

∀i = 1, . . . ,N, then a convenient way to identify Γ (x) is according to Γ (x) =
(Γ1(x1), . . . ,ΓN(xN))

T , where the individual operators Γi : R → R are defined by
Γi(xi) = min(ai,max,max(ai,min,x)), i = 1, . . . ,N.

Consider the following the N-dimensional stochastic recursion

Xn+1 = Γ (Xn + a(n)(h(Xn)+ ξn +βn)), (E.1)

under the assumptions listed below. Also, consider the following ODE associated
with (E.1):

Ẋ(t) = Γ̄ (h(X(t))). (E.2)

Let C (C) denote the space of all continuous functions from C to RN . The operator
Γ̄ : C (C)→ C (RN) is defined according to

Γ̄ (v(x)) = lim
η→0

(
Γ (x+ηv(x))− x

η

)
, (E.3)

for any continuous v : C→RN . The limit in (E.3) exists and is unique since C is
a convex set. In case this limit is not unique, one may consider the set of all limit
points of (E.3). Note also that from its definition, Γ̄ (v(x)) = v(x) if x ∈ Co (the
interior of C). This is because for such an x, one can find η > 0 sufficiently small so
that x+ηv(x)∈Co as well and hence Γ (x+ηv(x)) = x+ηv(x). On the other hand,
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if x ∈ ∂C (the boundary of C) is such that x+ηv(x) �∈C, for any small η > 0, then
Γ̄ (v(x)) is the projection of v(x) to the tangent space of ∂C at x.

Consider now the assumptions listed below.

Assumption E.1. The function h : RN →RN is continuous.

Assumption E.2. The step-sizes a(n),n≥ 0 satisfy

a(n)> 0∀n, ∑
n

a(n) = ∞, a(n)→ 0 as n→ ∞.

Assumption E.3. The sequence βn,n≥ 0 is a bounded random sequence with
βn→ 0 almost surely as n→ ∞.

Let t(n),n≥ 0 be a sequence of positive real numbers defined according to t(0) = 0

and for n ≥ 1, t(n) =
n−1

∑
j=0

a( j). By Assumption E.2, t(n) → ∞ as n → ∞. Let

m(t) = max{n | t(n)≤ t}. Thus, m(t)→ ∞ as t→ ∞.

Assumption E.4. There exists T > 0 such that ∀ε > 0,

lim
n→∞P

(
sup
j≥n

max
t≤T

∣∣∣∣∣
m( jT+t)−1

∑
i=m( jT )

a(i)ξi

∣∣∣∣∣≥ ε
)

= 0.

Assumption E.5. The ODE (E.2) has a compact subset K of RN as its set of
asymptotically stable equilibrium points.

[3, Theorem 5.3.1 (pp. 191-196)] essentially says the following:

Theorem E.1 (Kushner and Clark Theorem). Under Assumptions E.1–E.5,
almost surely, Xn→ K as n→ ∞.

Remark E.1. We comment here on the validity of Assumptions E.1–E.5. Note that
Assumptions E.1, E.2 and E.5 are essentially standard requirements. In particular,
the ODE (E.2) turns out to be well-posed as a consequence of Assumption E.1. The
requirement on the sequence of step-sizes summing to infinity in Assumption E.2
ensures that the algorithm does not converge prematurely since t(n)→ ∞ as n→
∞, even though the difference between successive time points (in the algorithm’s
trajectory) t(n)− t(n− 1)→ 0. Assumption E.5 holds because C is a compact set
and K being a closed subset of C is also compact.
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In the type of algorithms that we consider in this book, ξn will typically corre-
spond to the martingale difference term Mn+1. In such a case, the process Nn,n ≥ 0

defined according to N0 = 0 and Nn =
n−1

∑
m=0

ξm,n≥ 1 will correspond to a martingale

with respect to an appropriate filtration. If this martingale is convergent (that can
perhaps be shown using say a martingale convergence theorem based argument),
then Assumption E.4 can be seen to easily hold as well.

Finally, the sequence βn,n ≥ 0 in (E.1) will correspond in many cases to a mea-
surement error term. For instance, if say h(Xn) = −∇J(Xn), where Xn is the nth
parameter update and ∇J(Xn) is being estimated, i.e., is not known precisely, then
βn could correspond to the error in the gradient estimate. As an example, consider
the SPSA algorithm (with projection), see Chapter 5).

Xn+1 = Γ
(

Xn + a(n)

(
J(Xn− δ (n)Δ(n))− J(Xn+ δ (n)Δ(n))

2δ (n)
(Δ(n))−1

))
,

(E.4)
where Δ(n) = (Δ1(n), . . . ,ΔN(n))T with Δ j(n),n ≥ 0, j = 1, . . . ,N being inde-
pendent random variables with (say) Δ j(n) = ±1 w. p. 1/2. Also, (Δ(n))−1 =
(1/Δ1(n), . . . ,1/ΔN(n)). Now (E.4) can be rewritten in the form (E.1) with h(Xn) =
−∇J(Xn). Also,

ξn =
J(Xn− δ (n)Δ(n))− J(Xn + δ (n)Δ(n))

2δ (n)
(Δ(n))−1

−E

[
J(Xn− δ (n)Δ(n))− J(Xn + δ (n)Δ(n))

2δ (n)
(Δ(n))−1 |Fn

]
,

and

βn = E

[
J(Xn + δ (n)Δ(n))− J(Xn− δ (n)Δ(n))

2δ (n)
(Δ(n))−1 |Fn

]
−∇J(Xn),

respectively, where Fn = σ(Xm,m≤ n;Δ(m),m < n),n≥ 1. Assuming that δ (n)→
0, it can be seen that βn→ 0 as n→ ∞. Further, if one assumes in addition to As-

sumption E.2 that∑
n

(
a(n)
δ (n)

)2

<∞, then the martingale sequence
n−1

∑
m=0

a(m)ξm,n≥ 1

can be seen to be convergent. Assumption E.4 is seen to hold in such a case.

Remark E.2. Note that stability of the iterates (E.1) is guaranteed by the fact that
the operator Γ projects each iterate of (E.1) to the set C that is a compact subset
of RN . The result as stated in Theorem 5.3.1 of [3] is in fact more general than
that described in Theorem E.1. The latter however suffices for our purposes. In
applications where it is usually difficult to prove that the iterates of the stochastic
recursion are stable, projection is a commonly used technique to enforce stability of
the iterates. By choosing the constraint region C to be large enough, one can also
ensure in many cases, that C contains all the asymptotically stable attractors of the
unprojected ODE Ẋ(t) = h(X(t)). In such a case, it might actually be useful to apply
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a projection based scheme since then the algorithm would not spend its resources
in searching the portion of the parameter space that is known not to contain the
stable attractors. In the case when there are no stable fixed points of the unprojected
ODE that lie inside the constraint set C (i.e., in Co), the algorithm will converge
to a boundary point of C that is the closest to an asymptotically stable attractor of
the unprojected ODE. There could also be spurious fixed points that get introduced
because of the projection operation. All such points however lie on the boundary of
the constraint region C (see for instance pp. 79 of [4]).

Remark E.3. As described in Assumption E.5, the set K ⊂RN corresponds to the
set of asymptotically stable equilibria of the ODE (E.2). The set of fixed points,
say K̂, of the ODE (E.2) would contain K in addition to other fixed points that
would however be unstable. A stochastic approximation procedure would typically
converge to the set K̂. It has however been shown, for instance, in [2], [5] and [1]
(Chapter 4) that with a sufficiently rich noise sequence, the stochastic update in fact
converges to the stable attractor set and avoids the unstable portion of K̂ altogether.
Further, in practice, it is ususally the case that the stochastic algorithm converges
to the stable set (and not the unstable portion) even when no extra conditions are
imposed on the noise sequence.
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Preface


The area of stochastic approximation has its roots in a paper published by Robbins
and Monro in 1951, where the basic stochastic approximation algorithm was in-
troduced. Ever since, it has been applied in a variety of applications cutting across
several disciplines such as control and communication engineering, signal process-
ing, robotics and machine learning.


Kiefer and Wolfowitz, in a paper in 1952 (nearly six decades ago) published the
first stochastic approximation algorithm for optimization. The algorithm proposed
by them was a gradient search algorithm that aimed at finding the maximum of
a regression function and incorporated finite difference gradient estimates. It was
later found that whereas the Kiefer-Wolfowitz algorithm is efficient in scenarios
involving scalar parameters, this is not necessarily the case with vector parame-
ters, particularly those for which the parameter dimension is high. The problem that
arises is that the number of function measurements needed at each update epoch
grows linearly with the parameter dimension. Many times, it is also possible that
the objective function is not observable as such and one needs to resort to simula-
tion. In such scenarios, with vector parameters, one requires a corresponding (linear
in the parameter-dimension) number of system simulations. In the case of large or
complex systems, this can result in a significant computational overhead.


Subsequently, in a paper published in 1992, Spall proposed a stochastic approx-
imation scheme for optimization that does a random search in the parameter space
and only requires two system simulations regardless of the parameter dimension.
This algorithm that came to be known as simultaneous perturbation stochastic
approximation or SPSA for short, has become very popular because of its high
efficiency, computational simplicity and ease of implementation. Amongst other
impressive works, Katkovnik and Kulchitsky, in a paper published in 1972, also
proposed a random search scheme (the smoothed functional (SF) algorithm) that
only requires one system simulation regardless of the parameter dimension. Subse-
quent work showed that a two-simulation counterpart of this scheme performs well
in practice. Both the Katkovnik-Kulchitsky as well as the Spall approaches involve
perturbing the parameter randomly by generating certain i.i.d. random variables.
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The difference between these schemes lies in the distributions these perturbation
random variables can possess and the forms of the gradient estimators.


Stochastic approximation algorithms for optimization can be viewed as counter-
parts of deterministic search schemes with noise. Whereas, the SPSA and SF algo-
rithms are gradient-based algorithms, during the last decade or so, there have been
papers published on Newton-based search schemes for stochastic optimization. In a
paper in 2000, Spall proposed the first Newton-based algorithm that estimated both
the gradient and the Hessian using a simultaneous perturbation approach incorpo-
rating SPSA-type estimates. Subsequently, in papers published in 2005 and 2007,
Bhatnagar proposed more Newton-based algorithms that develop and incorporate
both SPSA and SF type estimates of the gradient and Hessian. In this text, we com-
monly refer to all approaches for stochastic optimization that are based on randomly
perturbing parameters in order to estimate the gradient/Hessian of a given objective
function as simultaneous perturbation methods. Bhatnagar and coauthors have also
developed and applied such approaches for constrained stochastic optimization, dis-
crete parameter stochastic optimization and reinforcement learning – an area that
deals with the adaptive control of stochastic systems under real or simulated out-
comes. The authors of this book have also studied engineering applications of the
simultaneous perturbation approaches for problems of performance optimization
in domains such as communication networks, vehicular traffic control and service
systems.


The main focus of this text is on simultaneous perturbation methods for stochas-
tic optimization. This book is divided into six parts and contains a total of fourteen
chapters and five appendices. Part I of the text essentially provides an introduc-
tion to optimization problems - both deterministic and stochastic, gives an overview
of search algorithms and a basic treatment of the Robbins-Monro stochastic ap-
proximation algorithm as well as a general multi-timescale stochastic approxima-
tion scheme. Part II of the text deals with gradient search stochastic algorithms for
optimization. In particular, the Kiefer-Wolfowitz, SPSA and SF algorithms are pre-
sented and discussed. Part III deals with Newton-based algorithms that are in partic-
ular presented for the long-run average cost objective. These algorithms are based on
SPSA and SF based estimators for both the gradient and the Hessian. Part IV of the
book deals with a few variations to the general scheme and applications of SPSA
and SF based approaches there. In particular, we consider adaptations of simulta-
neous perturbation approaches for problems of discrete optimization, constrained
optimization (under functional constraints) as well as reinforcement learning. The
long-run average cost criterion will be considered here for the objective functions.
Part V of the book deals with three important applications related to vehicular traf-
fic control, service systems as well as communication networks. Finally, five short
appendices at the end summarize some of the basic material as well as important
results used in the text.


This book in many ways summarizes the various strands of research on simul-
taneous perturbation approaches that SB has been involved with during the course
of the last fifteen years or so. Both HLP and LAP have also been working in this
area for over five years now and have been actively involved in the various aspects
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of the research reported here. A large portion of this text (in particular, Parts III-V
as well as portions of Part II) is based mainly on the authors’ own contributions to
this area. The text provides a compact coverage of the material in a way that both
researchers and practitioners should find useful. The choice of topics is intended to
cover a sufficient width while remaining tied to the common theme of simultaneous
perturbation methods. While we have made attempts at conveying the main ideas
behind the various schemes and algorithms as well as the convergence analyses, we
have also included sufficient material on the engineering applications of these al-
gorithms in order to highlight the usefulness of these methods in solving real-life
engineering problems. As mentioned before, an entire part of the text, namely Part
IV, comprising of three chapters is dedicated for this purpose. The text in a way
provides a balanced coverage of material related to both theory and applications.
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Part I
Introduction to Stochastic Recursive


Algorithms







Stochastic recursive algorithms are one of the most important tools for problems
of stochastic optimization. In recent times, an important class of such algorithms
that are based on the simultaneous perturbation technique has become popular be-
cause of their superior computational time performance in converging to an opti-
mum point. This has resulted in a flurry of research activity on stochastic algorithms
that involve simultaneous perturbation.


This part of the book consists of three chapters. Chapter 1 gives an introduction to
stochastic optimization problems and provides a motivation of where such problems
arise and why they are important. It also provides an overview of the remaining
chapters.


Chapter 2 discusses some of the well-known deterministic algorithms for opti-
mization. Stochastic recursive algorithms turn out to be the stochastic analogs of
these algorithms.


The basic stochastic recursive algorithm is the Robbins and Monro scheme. It is
found to be applicable in a wide variety of settings, in particular, stochastic optimiza-
tion. In Chapter 3, we discuss in detail the Robbins-Monro algorithm and analyze
its convergence. The Robbins-Monro scheme (so named after its inventors, Robbins
and Monro) is normally applicable when the objective function is an expectation
of a noisy cost objective. Many times, one is faced with a problem of optimizing a
long-run average cost objective in order to, say, optimize a steady-state system per-
formance. Multi-timescale stochastic approximation plays an important role in such
scenarios. We also present in Chapter 3, a general two-timescale stochastic recursive
scheme and present its convergence analysis under general conditions.







Chapter 1
Introduction


1.1 Introduction


Optimization methods play an important role in many disciplines such as signal
processing, communication networks, neural networks, economics, operations re-
search, manufacturing systems, vehicular traffic control, service systems and sev-
eral others. For instance, in a general communication network, a goal could be to
optimally allocate link bandwidth amongst competing traffic flows. Similarly, an
important problem in the setting of traffic signal control is to dynamically find the
optimal order to switch traffic lights at signal junctions and the amount of time that
a lane signal should be green when inputs such as the number of vehicles waiting at
other lanes are provided. In the case of a manufacturing plant, an important problem
is to decide the optimal order in which to allocate machine capacity for manufac-
turing various products on any day given the demand patterns for various products.
These are only a few specific instances of innumerable problems across various dis-
ciplines that fall within the broad category of optimization problems. A usual way
to model these problems analytically is by defining an objective or a cost function
whose optimum constitutes the desired solution. For instance, in the case of the traf-
fic signal control problem, a cost function could be the sum of queue lengths of
vehicles waiting across all lanes at a red signal intersection. Thus, an optimal signal
switching order would ensure that the sum of the queue lengths of waiting vehicles
is minimized and thereby traffic flows are maximized. In general, a cost function is
designed to penalize the less desirable outcomes. However, in principle, there can
be several cost functions that have the same (or common) desired outcome as their
optimum point. Suitably designing a cost objective in order to obtain the desired
outcome in a reasonable amount of time when following a computational procedure
could be a domain-specific problem. For instance, in the context of the traffic signal
control problem mentioned above, another cost objective with the same optimum
could be the sum of squared queue lengths of waiting vehicles instead of the sum of
queue lengths. Optimization problems can be deterministic or stochastic, as well as
they can be static or dynamic. We discuss this issue in more detail below.
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A general optimization problem that we shall be concerned about for the most
part in this book has the following form:


Find θ ∗ that solves min
θ∈C


J(θ ), (1.1)


where J : RN → R is called the objective function, θ is a tunable N-dimensional
parameter and C ⊂ RN is the set in which θ takes values. If one has complete
information about the function J and its first and higher order derivatives, and about
the set C, then (1.1) is a deterministic optimization problem. If on the other hand,
J is obtained as J(θ ) = Eξ [h(θ ,ξ )], where Eξ [·] is the expected value over noisy
observations or samples h(θ ,ξ ) of the cost function with random noise ξ , and one
is allowed to observe only these samples (without really knowing J), then one is in
the realm of stochastic optimization. Such problems are more challenging because
of the added complexity of not knowing the cost objective J(·) precisely and to find
the optimum parameter only on the basis of the aforementioned noisy observations.


As we shall subsequently see, many times one resorts to search algorithms in
order to find an optimum point, i.e., a solution to (1.1). In stochastic optimization
algorithms, it is not uncommon to make a random choice in the search direction – in
fact most of our treatment will be centered around such algorithms. Thus, a second
distinction between deterministic and stochastic optimization problems lies in the
way in which search progresses - a random search algorithm invariably results in
the optimization setting being stochastic as well.


Suppose now that the objective function J has a multi-stage character, i.e., is of


the form J(θ ) =
N


∑
i=1


E[hi(Xi)], where N denotes the number of stages and Xi is the


state of an underlying process in stage i, i = 1, . . . ,N. The state captures the most
important attributes of the system that are relevant for the optimization problem.


Further, hi denotes a stage and state-dependent cost function. Let θ �= (θ1, . . . ,θN)
T


denote a vector of parameters θ j, j = 1, . . . ,N and let Xi depend on θ . The idea here
is that optimization can be done one stage at a time over N stages after observing the
state Xi in each stage i. Here, the value θi of the parameter in stage i has a bearing on
the cost of all subsequent stages i+1, . . . ,N. This in short is the problem of dynamic
optimization. Approaches such as dynamic programming are often used to solve
dynamic optimization problems. Other manifestations of dynamic optimization, say
over an infinite number of stages or in continuous time also exist. In relation to the
above (multi-stage) problem, in static optimization, one would typically perform
a single-shot optimization where the parameters θ1, . . . ,θN would be optimized all
at once in the first stage itself. Broadly speaking while in a dynamic optimization
problem with multiple stages, one makes decisions instantly as states are revealed,
in static optimization, there is no explicit notion of time or perhaps even state as all
decisions can be made at once.







1.1 Introduction 5


An important class of multi-stage problems are those with an infinite number of
stages and where the objective function is a long-run average over single-stage cost
functions. More precisely, the objective function in this case has the form


J(θ ) = lim
N→∞


1
N


E


[
N


∑
i=1


hi(Xi)


]
, (1.2)


where Xi as before is the state in stage i that we assume depends on the parameter
θ . An objective as (1.2) would in most cases not be analytically known. A usual
search procedure to find the optimum parameter in such problems would run into
the difficulty of having to estimate the cost over an infinitely long trajectory before
updating the parameter estimate, thereby making the entire procedure very tedious.


Another important class of optimization problems is that of constrained opti-
mization. Here, the idea is to optimize a given objective or cost function subject to
constraints on the values of additional cost functions. Thus consider the following
variation to the basic problem (1.1).


Find θ ∗ for which J(θ ∗) = min
θ∈C
{J(θ ) | Gi(θ )≤ αi, i = 1, . . . , p}. (1.3)


Here, Gi(·) and αi, i = 1, . . . , p are certain additional cost functions and constants,
respectively, that constitute the functional constraints. In the context of the traffic
signal control problem where the objective function to be minimized is the sum of
queue lengths on the various lanes, constraints could be put for the traffic on the
side roads so that the main road traffic gets higher priority. For instance, a constraint
there could specify that the traffic signal for a side road lane can be switched to
green only provided the number of vehicles waiting on such a lane exceeds ten.
Similarly, in a communication network, the objective could be to maximize the av-
erage throughput. A constraint there could specify that the average delay must be
below a threshold. Another constraint could similarly be on the probability of packet
loss during transmission being below a small constant, say 0.01.


While for the most part, we shall be concerned with optimization problems of the
form (1.1), we shall subsequently also consider constrained optimization problems
of the type (1.3). The objective function (and also the constraint functions in the
case of (1.3)) will be considered to be certain long-run average cost functions.


We shall present various stochastic recursive search algorithms for these prob-
lems. Many of the stochastic search algorithms for optimization can be viewed as
stochastic (i.e., with noise) counterparts of corresponding deterministic search al-
gorithms such as gradient and Newton methods. In the setting of stochastic op-
timization, where the form of the objective function as well as its derivatives is
unknown, one needs to resort to estimation of quantities such as the gradient and
Hessian from noisy function measurements or else through simulation. A finite
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difference estimate of the gradient as proposed by Kiefer and Wolfowitz [18] re-
quires a number of function measurements or simulations that is linear in the number
of parameter components. A similar estimate of the Hessian [14] requires a number
of function measurements that is quadratic in the number of measurements or sim-
ulations. When the parameter dimension is large, algorithms with gradient/Hessian
estimators as above would be computationally inefficient because such algorithms
would update once only after all the required function measurements have been
made or simulations conducted. It is here that simultaneous perturbation methods
play a significant role. In a paper published in 1992, Spall presented the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm that estimated the
gradient of the objective function using exactly two function measurements (or sim-
ulations) made from perturbed values of the parameter, where each component of the
parameter is perturbed along random directions using independent random variates
most commonly distributed according to the Bernoulli distribution. A second well-
known simultaneous perturbation technique that in fact came before SPSA was the
smoothed functional (SF) scheme [17]. The idea in this scheme is some what sim-
ilar to SPSA, however, the form of the gradient estimator is considerably different
as perturbations that are distributed as per the Gaussian, Cauchy or uniform distri-
butions can be used. A basic format for the simultaneous perturbation technique is
described in Fig. 1.1.


Propose θ


Perturbation


Simulate


Update θ


Fig. 1.1 Overall flow of a basic simultaneous perturbation algorithm.


During the course of the last ten to fifteen years, there has been a spurt of activity
in developing Newton-based simultaneous perturbation methods. In [27] and [3],
Newton-based analogs of the SPSA method were proposed. Further, in [4], Newton-
based analogs of the SF algorithm have been proposed. We may mention here that
in this text, by simultaneous perturbation methods, we refer to the entire family
of algorithms that are based on either gradient or gradient and Hessian estimates
that are obtained using some form of simultaneous random perturbations. While for
the most part, we shall be concerned with static optimization problems, we shall
also consider later, the problem of dynamic stochastic control or of decision making
under uncertainty over a sequence of time instants. This problem will subsequently
be cast as one of dynamic parameter optimization. We shall also present towards the
end, applications of the proposed methods and algorithms to service systems, road
traffic control and communication networks. A common unifying thread in most of
the material presented in this text is of simultaneous perturbation methods.
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1.2 Overview of the Remaining Chapters


We now provide a brief overview of the remainder of this book. In Chapter 2,
we briefly discuss well-known local search algorithms. These have been described
mainly for the case of deterministic optimization. However, we also discuss briefly
the case of stochastic optimization as well. The algorithms for stochastic optimiza-
tion that we present in later chapters will be based on these algorithms.


The fundamental stochastic algorithm due to Robbins and Monro [22] is almost
six decades old. It estimates the zeros of a given objective function from noisy cost
samples. Most stochastic search algorithms can be viewed as variants of this algo-
rithm. In Chapter 3, we describe the R-M algorithm. We also present in this chapter,
a general multi-timescale stochastic approximation algorithm that can be viewed
as a variant of the R-M algorithm. Multi-timescale stochastic approximation al-
gorithms play a significant role in the case of problems where the computational
procedure would typically involve two nested loops where an outer loop update can
happen only upon convergence of the inner loop procedure. A specific instance is the
case when the objective function is a long-run average cost of the form (1.2). Such
an objective function is useful in scenarios where one is interested in optimizing
steady-state system performance measures, such as minimizing long-run average
delays in a vehicular traffic network or the steady-state loss probability in packet
transmissions in a communication network. A regular computational procedure in
this case would perform the outer loop (parameter) update only after convergence of
the inner loop procedure (viz., after obtaining the long-run average cost correspond-
ing to a given parameter update). The same effect can be obtained with the use of
coupled simultaneous stochastic updates that are however governed with diminish-
ing step-size schedules that have different rates of convergence - the faster update
governed with a slowly diminishing schedule and vice versa. Borkar [12, 13] has
given a general analysis of these algorithms. We discuss the convergence of both
the R-M and the multi-timescale algorithms.


Amongst the first stochastic gradient search algorithms based on estimating the
gradient of the objective function using noisy cost samples is the Kiefer-Wolfowitz
(K-W) algorithm [18] due to Kiefer and Wolfowitz. We review this algorithm in Chap-
ter 4. While it was originally presented for the case of scalar parameters, in the case
of vector-valued parameters, the K-W algorithm makes function measurements after
perturbing at most one parameter component. Thus, K-W is not efficient under high-
dimensional parameters since the number of function measurements or system simu-
lations required to estimate the gradient grows linearly with the parameter dimension.


Spall invented the simultaneous perturbation stochastic approximation (SPSA)
algorithm [23], [28] that requires only two function measurements at each instant
regardless of the parameter dimension, by simultaneously perturbing all parame-
ter components using a class of i.i.d. random variables. The most commonly used
perturbations in this class are symmetric, ±1-valued, Bernoulli-distributed random
variables. A one-simulation version of this algorithm was subsequently presented in
[24]. However, it was not found to be as effective as regular two-simulation SPSA.
In [7], certain deterministic constructions for the perturbation random variables have
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been explored for both two-simulation and one-simulation SPSA. These have been
found to yield better results as compared to their random perturbation counterparts.
We review the SPSA algorithm and its variants in Chapter 5.


Katkovnik and Kulchitsky [17] presented a smoothed functional (SF) approach
that is another technique to estimate the gradient of the objective function using
random perturbations. This technique is some what different from SPSA. In partic-
ular, the properties required of the perturbation random variables here are seen to be
most commonly satisfied by Gaussian and Cauchy distributed random variables. If
one considers a convolution of the gradient of the objective function with a smooth-
ing density function (such as that of Gaussian or Cauchy random variables), then
through a suitable integration-by-parts argument, one can rewrite the same as a con-
volution of the gradient of the probability density function (p.d.f.) with the objective
function itself. The derivative of the smoothing p.d.f. is seen to be a scaled version
of the same p.d.f. This suggests that if the perturbations are generated using such
p.d.fs, only one function measurement or system simulation is sufficient to estimate
the gradient of the objective (in fact, the convolution of the gradient, that however
converges to the gradient itself in the scaling limit of the perturbation parameter).
A two-simulation variant of this algorithm that incorporates balanced estimates has
been proposed in [29] and found to perform better than its one-simulation counter-
part. We review developments in the gradient-based SF algorithms in Chapter 6.


Spall [27] presented simultaneous perturbation estimates for the Hessian that
incorporate two independent perturbation sequences that are in the same class of
sequences as used in the SPSA algorithm. The Hessian estimate there is based on
four function measurements or system simulations, two of which are the same as
those used for estimating the gradient of the objective. In [3], three other Hessian
estimators were proposed. These are based on three, two and one system simula-
tion(s), respectively. In Chapter 7, we review the simultaneous perturbation estima-
tors of the Hessian. An issue with Newton-based algorithms that incorporate the
Hessian is in estimating the inverse of the Hessian matrix at each update epoch. We
also discuss in this chapter some of the recent approaches for inverting the Hessian
matrix.


Bhatnagar [4] developed two SF estimators for the Hessian based on one and two
system simulations, respectively, when Gaussian p.d.f. is used as the smoothing
function. Using an integration-by-parts argument (cf. Chapter 6), twice, the Hessian
estimate is seen to be obtained from a single system simulation itself. A two-sided
balanced Hessian estimator is, however, seen to perform better than its one-sided
counterpart. An interesting observation here is that both the gradient and the Hessian
estimates are obtained using the same simulation(s). We review the SF estimators of
the Hessian matrix in Chapter 8.


In Chapter 9, we consider the case when the optimization problem has a form sim-
ilar to (1.1); however, the underlying set C is discrete-valued. Further, we shall let the
objective function be a long-run average cost as with (1.2). In [11], two gradient search
algorithms based on SPSA and SF have been proposed for this problem. A randomized
projection approach was proposed there that is seen to help in adapting the continuous
optimization algorithms to the discrete setting. We present another approach based on
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certain generalized projections that can be seen to be a mix of deterministic and ran-
domized projection approaches, and result in the desired smoothing of the dynamics
of the underlying process. Such a projection mechanism would also result in a lower
computational complexity as opposed to a fully randomized projection scheme.


Next, in Chapter 10, we will be concerned with constrained optimization prob-
lems with similar objective as (1.3). We shall, in particular, be concerned here with
the case when the objective has a long-run-average form similar to (1.2). Thus, in
such cases, neither the objective nor the constraint region is known analytically to
begin with. In [8], stochastic approximation algorithms based on SPSA and SF es-
timators for both the gradient and the Hessian have been presented. The general
approach followed is based on forming the Lagrangian – the Lagrange multipliers
are updated on a slower timescale than the parameter that, in turn, is updated on
a slower scale in comparison to that on which data gets averaged. We will review
these algorithms in Chapter 10.


Reinforcement learning (RL) algorithms [2] are geared towards solving stochas-
tic control problems using only real or simulated data when the system model (in
terms of the transition probabilities) is not known. Markov decision process (MDP)
is a general framework for studying such problems. Classical approaches such as
policy iteration and value iteration for solving MDP require knowledge of transi-
tion probabilities. Many RL algorithms are stochastic recursive procedures aimed
at solving such problems when transition probabilities are unknown. Actor-critic
(AC) algorithms are a class of RL algorithms that are based on policy iteration and
involve two loops - the outer loop update does policy improvement while the inner
loop procedure is concerned with policy evaluation. These algorithms thus incorpo-
rate two-timescale stochastic approximation. In [10, 1, 6], AC algorithms for various
cost criteria such as infinite horizon discounted cost, long-run average cost as well
as total expected finite horizon cost, that incorporate simultaneous perturbation gra-
dient estimates have been proposed. We shall review the development of the infinite
horizon algorithms in Chapter 11.


Chapter 12 considers the problem of optimizing staffing levels in service systems.
The aim is to adapt the staffing levels as they are labor intensive and have a time
varying workload. This problem is, however, nontrivial due to a large number of
parameters and operational variations. Further, any staffing solution is constrained
to maintain the system in steady-state and be compliant to aggregate SLA con-
straints. We formulate the problem using the constrained optimization framework
where the objective is to minimize the labor cost in the long run average sense and
the constraint functions are long run averages of the SLA and queue stability con-
straints. Using the ideas of the algorithms proposed in Chapter 10 for a generalized
constrained optimization setting, we describe several simulation optimization
methods that have been originally proposed in [19] for solving the labor cost op-
timization problem. The presented algorithms are based on SPSA and SF gradi-
ent/Hessian estimates. These algorithms have been seen in [19] to exhibit better
overall performance vis-a-vis the state-of-the-art optimization tool-kit OptQuest,
while being more than an order of magnitude faster than Optquest.







10 1 Introduction


In Chapter 13, we consider the problem of finding optimal timings and the order
in which to switch traffic lights given dynamically evolving traffic conditions. We
describe here applications of the reinforcement learning and stochastic optimization
approaches in order to maximize traffic flow through the adaptive control of traffic
lights. We assume, however, as in the case of real-life situations that only rough
estimates of the congestion levels are available, for instance, whether congestion is
below a lower threshold, above an upper threshold or is in between the two. All
our algorithms incorporate such threshold levels in the feedback policies and find
optimal policies given a particular set of thresholds. For instance, in a recent work
[21], we considered Q-learning-based traffic light control (TLC) where the features
are obtained using such (aforementioned) thresholds. We also describe similar other
algorithms based on simulation optimization methods. An important question then
is to find optimal settings for the thresholds themselves. We address this question
by incorporating simultaneous perturbation estimates to run in tandem with other
algorithms. An important observation is that our algorithm shows significantly better
empirical performance as compared to other related algorithms in the literature.
Another interesting consequence of our approach is that when applied together with
reinforcement learning algorithms, such methods result in obtaining an optimal set
of features from a given parametrized feature class.


In Chapter 14, we select and discuss three important problems in communication
networks, where simultaneous perturbation approaches have been found to be signif-
icantly useful. We first consider the problem of adaptively tuning the parameters in
the case of random early detection (RED) adaptive queue management scheme pro-
posed for TCP/IP networks. The original scheme proposed by Floyd [15] considers
a fixed set of parameters regardless of the network and traffic conditions. We address
this problem using techniques from constrained optimization [20] and apply simulta-
neous perturbation approaches that are found to exhibit excellent performance. Next,
we consider the problem of tuning the retransmission probability parameter for the
slotted Aloha multi-access communication system. The protocol as such specifies a
fixed value for the same regardless of the number of users sending packets on the
channel and the channel conditions. We propose a stochastic differential equation
(SDE)-based formulation [16, 9] in order to find an optimal parameter trajectory over
a finite time horizon. We also consider the problem of optimal pricing in the Inter-
net. The idea here is that in order to provide a higher quality of service to a user who
is willing to pay more, one needs to find optimal strategies for fixing prices of the
various services offered. Our techniques [30] play a role here as well and are found
to exhibit significantly better performance in comparison to other known methods.


Finally, in Appendices A-E, we present some of the basic material needed in the
earlier chapters. In particular, we present (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) the Kushner-
Clark theorem for convergence of projected stochastic approximations. Some of the
background material as well as the main results used in other chapters have also
been summarized in these appendices.
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1.3 Concluding Remarks


Stochastic approximation algorithms are one of the most important class of tech-
niques for solving optimization problems involving uncertainty. Simultaneous per-
turbation approaches for optimization have evolved into a rich area by themselves
from the viewpoint of both theory and numerous highly successful applications.
Several estimators for the gradient and Hessian that involve simultaneous perturba-
tion estimates have been developed in recent times that are seen to show excellent
performance. SPSA and SF algorithms constitute powerful methods for stochastic
optimization that have been found useful in many disciplines of science and engi-
neering. The book reference of [28] provides an excellent account of SPSA. Surveys
on the SPSA algorithm are available in [26], [25]. Also, [5] provides a more recent
survey on simultaneous perturbation algorithms involving both SPSA and SF esti-
mators. The current text is a significantly expanded version of [5].
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Chapter 2
Deterministic Algorithms for Local Search


2.1 Introduction


Search algorithms can be broadly classified into two major categories – global
search and local search algorithms. Global search algorithms aim at finding the
global minimum while local search algorithms are mainly concerned with finding
a local minimum point. More formally, for the optimization problem (1.1), we say
that θ ∗ ∈C is a global minimum of the function J if J(θ ∗) ≤ J(θ ) ∀θ ∈C. On the
other hand, we say that θ ∗ ∈C is a local minimum of J if there exists an ε > 0 such
that J(θ ∗) ≤ J(θ ) ∀θ ∈ C with ‖ θ − θ ∗ ‖< ε . Many times, as we do, the norm
‖ · ‖ is chosen to be the Euclidean norm. A necessary condition for existence of
local minima of a function J, assuming it is differentiable at all points within C,
is that


∇J(θ ) = 0 for θ ∈Co,


where Co is the interior of the set C. This condition may, however, not be satisfied
if the local minimum is a boundary point of C. Similarly, a sufficient condition for
a point θ ∈Co to be a local minimum point is


∇J(θ ) = 0 and ∇2J(θ ) is a positive definite matrix,


assuming that the function J is twice differentiable.
A well-known example of a global search technique is simulated annealing [5, 4].


Even while it is desirable to converge to a global minimum, global search techniques
are often known to be slow and impractical and many times one has to be content
with local search methods. A typical local search algorithm (ignoring random noise
effects for now) has the form [1], [2], [3]:


θ (n+ 1) = θ (n)− a(n)[D(θ (n))]−1∇J(θ (n)), (2.1)


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 13–15.
springerlink.com © Springer-Verlag London 2013
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where D(θ (n)) is a positive definite and symmetric N×N matrix and ∇J(θ (n)) is
the gradient of J(θ ) evaluated at θ = θ (n). Also, a(n), n≥ 0 is a sequence of step-
sizes that are positive and asymptotically diminishing to zero. Note that if ∇J(θ (n))
and D(θ (n)) are analytically known quantities, then recursion (2.1) can proceed as
is and we are in the domain of deterministic optimization. On the other hand, if
J(θ (n)) is of the form J(θ (n)) = Eξ [h(θ (n),ξ )] and we only have access to noisy
cost samples h(θ (n),ξ ), then quantities ∇J(θ (n)) and in many cases D(θ (n)) need
to be estimated. The algorithms for stochastic optimization are thus noisy or stochas-
tic in nature because of the presence of noise in the cost samples. In addition, the
estimators of ∇J(θ (n)) and D(θ (n)) may introduce additional randomness as hap-
pens for instance in the SPSA and SF gradient and higher order algorithms, see
Chapters 5–8. Thus the search direction could be random as well.


2.2 Deterministic Algorithms for Local Search


In order to bring out ideas clearly, we assume here that ∇J(θ (n)) and [D(θ (n))]−1


are analytically known quantities, i.e., we have a deterministic optimization frame-
work with (2.1) as our search algorithm. This will, however, not be the case in the
later sections where we shall primarily be concerned with the stochastic optimiza-
tion setting.


Given θ (n) ∈ C such that ∇J(θ (n)) �= 0, any x(n) ∈ R
N satisfying x(n)T


∇J(θ (n)) < 0 is called a descent direction since the directional derivative x(n)T


∇J(θ (n)) along the direction x(n) is negative and thus by a Taylor’s expansion one
obtains


J(θ (n)+ a(n)x(n)) = J(θ (n))+ a(n)x(n)T∇J(θ (n))+ o(a(n)). (2.2)


Now since x(n)T∇J(θ (n))< 0 and a(n)> 0 ∀n, it follows that J(θ (n)+a(n)x(n))<
J(θ (n)) for a(n) sufficiently small. Now since D(θ (n)) is a positive definite and
symmetric matrix, so is D(θ (n))−1. When x(n) =−D(θ (n))−1∇J(θ (n)), then from
(2.2), we have


J(θ (n)− a(n)D(θ (n))−1∇J(θ (n))) = J(θ (n))
−a(n)∇J(θ (n))T D(θ (n))−1∇J(θ (n))+ o(a(n)).


}
(2.3)


Now since D(θ (n))−1 is positive definite and symmetric, it follows that


∇J(θ (n))T D(θ (n))−1∇J(θ (n))> 0 for all ∇J(θ (n)) �= 0.


Hence, x(n)=−D(θ (n))−1 ∇J(θ (n)) is a descent direction as well. Algorithms that
update along descent directions are also called descent algorithms.
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The following well-known algorithms are special cases of (2.1):


1. Gradient Algorithm : This is the most commonly used descent algorithm.
Here, D(θ (n)) = I (the N-dimensional identity matrix). This is also called the
steepest descent algorithm since its updates are strictly along the direction of
negative gradient.


2. Jacobi Algorithm : In this algorithm, D(θ (n)) is set to be an N×N-diagonal
matrix with its ith diagonal element ∇2


i,iJ(θ (n)), which is also the ith diagonal
element of the Hessian ∇2J(θ (n)). For D(θ (n)) to be a positive definite matrix
in this case, it is easy to see that all elements ∇2


i,iJ(θ (n)), i = 1, . . . ,N, should
be positive.


3. Newton Algorithm : Here, D(θ (n)) is chosen to be ∇2J(θ (n)), the Hessian of
J(θ (n)).


The D(θ (n)) matrices in Jacobi and Newton algorithms, respectively, need not be
positive definite (for all n), in general, as they vary with θ (n) and hence should
be projected appropriately after each parameter update so as to ensure that the re-
sulting matrices are positive definite [1, pp.88-98]. With proper scaling provided
by the D(θ (n)) matrix, the descent directions obtained using Jacobi and Newton
algorithms are preferable to the one using gradient algorithm. However, obtain-
ing estimates of the Hessian in addition to the gradient, in general, requires much
more computational effort. In subsequent chapters, we will present several algo-
rithms which, in principle, choose a descent direction similar to one of the above
three types. However, all the algorithms discussed subsequently will be stochastic
in nature involving random estimates of the descent direction. Consequently, the
evolution of the optimization parameter updates θ (n) in those algorithms is also
stochastic.
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Chapter 3
Stochastic Approximation Algorithms


3.1 Introduction


The development in the area of stochastic algorithms (not necessarily for optimiza-
tion) started in a seminal paper by Robbins and Monro [17]. They considered the
problem of finding the zeros of a function L : RN → R


N under noisy observa-
tions. The Robbins-Monro algorithm finds immense applications in various disci-
plines. For instance, in the case of the gradient search algorithm for the problem
of finding a local minimum of the function J : RN → R, see Chapter 4, one can
let L(θ ) = ∇J(θ ). Similarly, in scenarios where the aim is to find a fixed point of
a function F : RN → R


N , one may choose L(θ ) = F(θ )− θ . Situations requiring
fixed point computations arise often, for instance, in reinforcement learning, see
Chapter 11, where one estimates the value of a given policy. The corresponding up-
date is many times a fixed point recursion aimed at solving the Bellman equation
for the given policy.


We first discuss in detail the R-M algorithm in Section 3.2. Next, we review
the multi-timescale variant of the R-M algorithm in Section 3.3. Such algorithms
are characterized by coupled stochastic recursions that are individually driven by
different step-size schedules or timescales. The step-sizes typically converge to zero
with different rates. An important application of multi-timescale stochastic approx-
imation that we consider in this book is one of minimizing long-run average costs.
In order to apply the regular R-M scheme in such cases, one requires estimates of
the average cost corresponding to a given parameter update. One approach that is
however computationally tedious is to sample long enough cost trajectories using
Monte-Carlo simulation each time to estimate the average cost corresponding to a
given parameter update. This difficulty is avoided through the use of multi-timescale
stochastic approximation as the ‘faster’ recursion in this case can estimate the av-
erage cost corresponding to a given parameter update while the ‘slower’ recursion
updates the parameter.
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3.2 The Robbins-Monro Algorithm


Let θ (n) denote the nth update of the parameter θ . Let the observed sample of
L(θ (n)) be L(θ (n)) +M(n+ 1) where M(n+ 1) is a suitable noise term that we
assume to be a martingale difference. The case when noise enters into the argument
of the cost function, such as (say) g(θ (n),ξ (n)), where ξ (n),n ≥ 0 are some R


k-
valued independent and identically distributed (i.i.d.) random vectors and g : RN ×
R


k→R
N can also be handled in our framework, since one can in such a case write


g(θ (n),ξ (n)) = L(θ (n))+M(n+ 1), (3.1)


where L(θ (n)) can be set to be L(θ (n)) = Eξ [g(θ (n),ξ (n))]. Here, Eξ [·] denotes
the expectation with respect to the common distribution of ξ (n). Also, M(n+ 1) =
g(θ (n),ξ (n))−L(θ (n)), n ≥ 0 can be seen to be a martingale difference sequence
with respect to a suitable filtration. In the original R-M scheme [17], the noise ran-
dom vectors M(n+ 1) are considered i.i.d. and zero-mean. Note that the i.i.d. as-
sumption there is across M(n), not across individual components of M(n). Equation
(3.1) represents a popular generalization of the original R-M scheme with the addi-
tive noise generalized to a martingale difference instead of just i.i.d. noise.


The Robbins-Monro stochastic approximation algorithm is as follows:
For n≥ 0,


θ (n+ 1) = θ (n)+ a(n)g(θ (n),ξ (n))
= θ (n)+ a(n)(L(θ (n))+M(n+ 1))


}
, (3.2)


where a(n),n≥ 0 is a sequence of positive real numbers called step-sizes.


Remark 3.1. To derive intuition regarding the above recursion, lets ignore the noise
term M(n+1) for a moment. Then, one can see that if the recursion (3.2) converges
after some iterations (say N), then θ (n+ 1) = θ (n) = θ ∗,∀n ≥ N, where θ ∗ repre-
sents the converged parameter value. This when used in the above recursion (3.2),
gives us L(θ ∗) = 0. The recursion (3.2) serves the purpose of computing a zero of
the given function L(·). Of course, with the introduction of the noise term M(n+1),
more detailed analysis would be necessary along with certain restrictions on the
step-sizes a(n),n≥ 0, which are discussed in the next section.


If θ (n) are constrained to take values within a prescribed set C ⊂ R
N (with C be-


ing a strict subset of RN), one will have to project after each iterate the value of
θ (n+ 1) to the set C. The new value of θ (n+ 1) would then correspond to its pro-
jected value after the update. We discuss the convergence analysis of the algorithm
in Section 3.2.1 primarily for the case when C = R


N . It will, however, be assumed
that the iterates θ (n) will stay uniformly bounded almost surely.
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3.2.1 Convergence of the Robbins-Monro Algorithm


Convergence in the mean-square sense, of the R-M scheme with i.i.d. noise terms
M(n+ 1) is shown in [17]. As with [5] and [13], we show convergence in the al-
most sure sense, of the R-M scheme with the generalized martingale difference
noise-term M(n + 1). In order to prove convergence of recursions such as (3.2),
one needs to first ensure that the iterates in these recursions remain stable or uni-
formly bounded. If the iterates stay uniformly bounded, then convergence in almost
sure sense would imply convergence in the mean-square sense as well (see Ap-
pendix A). The converse is however not true in general, i.e., if they converge in the
mean square sense, then they need not converge almost surely, even when they are
uniformly bounded.


Let F (n) = σ(θ (m),M(m),m ≤ n), n ≥ 0 denote a sequence of increasing
sigma fields. Our convergence analysis is based on the ordinary differential equa-
tion (ODE) approach, for instance, see [5, Chapter 2]. Consider the following ODE
associated with (3.2):


θ̇ (t) = L(θ (t)). (3.3)


We make the following assumptions:


Assumption 3.1. The map L : RN → R
N is Lipschitz continuous.


Assumption 3.2. The step-sizes a(n),n≥ 0 satisfy the requirements


∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞. (3.4)


Assumption 3.3. The sequence (M(n),F (n)), n ≥ 0 forms a martingale dif-
ference sequence. Further, M(n), n≥ 0 are square integrable random variables
satisfying


E[‖M(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0, (3.5)


for a given constant K > 0.


Assumption 3.4. The iterates (3.2) remain almost surely bounded, i.e.,


sup
n
‖θ (n)‖< ∞, a.s. (3.6)


Assumption 3.5. The ODE (3.3) has H ⊂ C as its set of globally asymptoti-
cally stable equilibria.


Assumption 3.1 ensures that the ODE (3.3) is well posed. Assumption 3.2 is also a
standard requirement. In particular, the first condition in (3.4) is required to ensure
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that the algorithm does not converge prematurely. The second condition there is
required to reduce the effect of noise. Common examples of {a(n),n ≥ 0} that are
seen to satisfy Assumption 3.2 include


• a(n) =
1
n


, ∀n≥ 1 and a(0) = 1,


• a(n) =
1


nα
, ∀n≥ 1 with a(0) = 1 and any α ∈ (0.5,1),


• a(n) =
lnn
n


, ∀n≥ 2 with a(0) = a(1) = 1,


• a(n) =
1


n lnn
, ∀n ≥ 2 with a(0) = a(1) = 1.


Assumption 3.3 is a general requirement [5] that is seen to be satisfied in many
applications. For instance, it is seen to be easily satisfied by most reinforcement
learning algorithms.


We now discuss in more detail Assumption 3.4 even though it is routinely as-
sumed in many references. An easy way by which Assumption 3.4 can be satisfied
is if the set C in which θ takes values is a bounded subset of RN as in such a case
(as mentioned previously), one would project the iterates after each update to the set
C, thereby ensuring that the resulting parameters are both feasible (i.e., take values
in the set where they are allowed to take values in) and remain bounded. In the case
when C is unbounded (such as C = R


N as here) but one roughly knows the region
of the space where the asymptotically stable equilibria lie, one could choose a large
bounded set that contains the above region as the constraint set for the algorithm and
use projection (as before) to ensure that the iterates remain bounded. This would
also imply that the remainder of the space is not visited by the algorithm which may
in fact be good since the algorithm in such a case would not waste its resources in
exploring the region of the space that does not contain the equilibria. The projection
technique is often used to ensure the stability of iterates. Other approaches to prove
stability of the iterates (for instance when C =R


N) include the stochastic Lyapunov
technique [13] and the recently proposed approach in [6], [5] whereby one does a
scaling of the original iteration (3.2) to approximate the same with a deterministic
process in a manner similar to the construction of the fluid model of [9], [10]. This
approach is remarkable in that using just an ordinary differential equation (ODE)-
based analysis, one can prove both the stability and the convergence of the original
random iterates. Another approach [8] is to define a bounded constraint region for
the iterates, use projection as above, but gradually increase the size of the constraint
region as iterations progress. Nevertheless, we will assume that C =R


N in this anal-
ysis and that the iterates stay bounded under Assumption 3.4.


Define a sequence of time points t(n), n ≥ 0 as follows: t(0) = 0 and for n ≥ 1,


t(n) =
n−1


∑
m=0


a(m). It follows from (3.4) that t(n) ↑ ∞. The map n → t(n) can be


viewed as a map from the “algorithmic time” to the “real time”. Define now a
continuously interpolated trajectory θ̄ (t), t ≥ 0 (obtained from the algorithm’s up-
dates) as follows: Let θ̄ (t(n)) = θ (n),n≥ 0, with linear interpolation on the interval
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[t(n), t(n+1)]. By Assumption 3.4, it follows that supt≥0 ‖θ̄(t)‖= supn ‖θ (n)‖<∞
a.s. Let T̄ > 0 be a given real number. Define another sequence {T (n),n≥ 0} as fol-
lows: T (0) = t(0) = 0 and for n≥ 1,


T (n) = min{t(m) | t(m)≥ T (n− 1)+ T̄}.


Let I(n) denote the interval [T (n),T (n+ 1)). From its definition, there exists an
increasing sub-sequence {m(n)} of {n} such that T (n) = t(m(n)), n ≥ 0. Also, let
θ n(t), t ≥ t(n) denote the trajectory of the following ODE starting at time t(n) and
under the initialization θ n(t(n)) = θ̄(t(n)) = θ (n):


θ̇ n(t) = L(θ n(t)), t ≥ t(n). (3.7)


Let Z(n), n≥ 0 be defined according to


Z(n) =
n−1


∑
m=0


a(m)M(m+ 1).


Lemma 3.1. The sequence (Z(n),F (n)), n ≥ 0 is a zero-mean, square integrable,
almost surely convergent martingale.


Proof. It is easy to see that each Z(n) is F (n)-measurable and integrable. Further,
Z(n),n ≥ 0 are square integrable random variables since M(n+ 1) are square inte-
grable by Assumption 3.3. Consider now the process {B(n)} defined by


B(n) =
n−1


∑
m=0


E
[‖Z(m+ 1)−Z(m)‖2 |F (m)


]
,


=
n−1


∑
m=0


E
[
a(m)2‖M(m+ 1)‖2 |F (m)


]
,


=
n−1


∑
m=0


a(m)2E
[‖M(m+ 1)‖2 |F (m)


]
,


≤
n−1


∑
m=0


a(m)2(1+ ‖θ (n)‖2),


by Assumption 3.3. Now, from Assumptions 3.2 and 3.4, it follows that


B(n)→ B∞ < ∞ a.s.


The claim follows from the martingale convergence theorem (Theorem B.2). ��
Proposition 3.2. We have


lim
n→∞ sup


t∈I(n)
‖θ̄(t)−θ n(t)‖= 0, a.s.
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Proof. (Sketch) The proof for a similar result is given in detail in [5, Chapter 2,
Lemma 1]. The proof follows by following a series of steps that involve bounding
the various terms that upper-bound the norm difference between the algorithm’s and
the ODE’s trajectories. The Lipschitz continuity of L ensures that the growth in the
recursion is at most linear. That together with Assumptions 3.3 and 3.4 ensure that
the iterates do not blow up. Moreover, the norm difference can then be bounded
from an application of the Gronwall’s inequality (Lemma C.1) and the upper bound
is seen to vanish asymptotically as n→ ∞. We refer the reader to [5, Chapter 2,
Lemma 1] for details. ��


Note that by Assumption 3.5, H is the globally asymptotically stable attractor set for
the ODE (3.3). Recall from Definition C.10 that given T̄ , Δ > 0, we call a bounded,
measurable θ (·) : R+∪{0} → R


N , a (T̄ ,Δ)-perturbation of (3.3) if there exist 0 =
T (0) < T (1) < T (2) < · · · < T (r) ↑ ∞ with T (r + 1)−T(r) ≥ T̄ ∀r and solutions
θ r(y), y ∈ [T (r),T (r+ 1)] of (3.3) for r ≥ 0, such that


sup
y∈[T (r),T (r+1)]


‖θ r(y)−θ (y)‖< Δ .


Theorem 3.3. Under Assumptions 3.1 to 3.5, the iterates θ (n),n≥ 0 obtained
from the algorithm (3.2) converge almost surely to H.


Proof. From Proposition 3.2, θ̄ (t) serves as a (T̄ ,Δ)-perturbation for the ODE (3.3).
The claim follows by applying the Hirsch lemma (Lemma C.5), for every ε > 0. ��


A detailed ODE argument showing convergence of the stochastic iterates to a com-
pact connected internally chain transitive invariant set of the corresponding ODE
has been shown in [1], [5]. In most applications, as we consider, the associated
ODEs either have a unique stable equilibrium or else a set of asymptotically sta-
ble isolated equilibria. Thus, if H = {θ ∗} is a singleton, i.e., contains a unique
asymptotically stable equilibrium of (3.3), then by Theorem 3.3, θ (n)→ θ ∗ a.s. as
n→ ∞. In the case of multiple isolated equilibria, the algorithm shall converge to
one amongst them depending on the noise and initial condition. (Here by isolated
equilibria, we mean that one can construct certain sufficiently small open neighbour-
hoods such that exactly one equilibrium is contained within each neighbourhood.)
Further, in case H does not contain isolated equilibria, Theorem 3.3 merely says
that the recursion θ (n) asymptotically converges to H. Other ODE-based analyses
of the stochastic recursion include [14], [12], [2] and [13].


We have considered till now the basic R-M scheme which is used to compute
a zero of the given function L(·) under noisy observations. The case where there
are coupled functions L1(·, ·) and L2(·, ·) with two sets of parameters operating at
different timescales is considered in the next section.
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3.3 Multi-timescale Stochastic Approximation


We consider the case of two timescales here, i.e., recursions involving two different
step-size schedules. Similar ideas as described below carry over when the number
of timescales is more than two. Let θ (n) ∈ R


N and ω(n) ∈ R
d be two sequences of


parameters that are updated according to the following coupled stochastic approxi-
mation recursions: ∀n≥ 0,


θ (n+ 1) = θ (n)+ a(n)
(
L1(θ (n),ω(n))+M1(n+ 1)


)
, (3.8)


ω(n+ 1) = ω(n)+ b(n)
(
L2(θ (n),ω(n))+M2(n+ 1)


)
, (3.9)


where M1(n+ 1) and M2(n + 1) are martingale difference noise terms (see Ap-
pendix B.2). The step-sizes a(n),b(n), n≥ 0 satisfy the following requirement:


Assumption 3.6. a(n),b(n)> 0, ∀n≥ 0, Further,


∑
n


a(n) =∑
n


b(n) = ∞, ∑
n


(
a(n)2 + b(n)2)< ∞, and, (3.10)


lim
n→∞


a(n)
b(n)


= 0. (3.11)


Remark 3.2. To understand the set of recursions (3.8) and (3.9), let us ignore the
noise terms M1(n+ 1) and M2(n+ 1) for the moment and consider a case with
a(n) = 1


n and b(n) = 1
n0.6 , n ≥ 1, which satisfies both equations (3.10) and (3.11).


Under these simplifications, the following insight can be derived:


1. It follows that for a given N ≥ 0,


t(N)
�
=


N


∑
n


a(n)<
N


∑
n


b(n)
�
= τ(n),


and higher the value of N, the further apart the above two summations are. In
other words, the time line τ(n),n≥ 1 with time steps b(n) reaches infinity faster
than the time line t(n) with step-sizes a(n). So, we say that the recursion of the
ω parameter is on a “faster” timescale than the recursion of θ .


2. From equation (3.11), it follows that as we go further in the recursions, the
updates to θ will be quasi-static compared to those for ω . Hence, the updates to
ω would appear to be equilibrated for the current quasi-static θ . In other words,
for a given θ , the updates to ω would appear to have converged to a point ω∗
such that L2(θ ,ω∗) = 0 (assuming there is a unique such point corresponding to


θ ). Thus, one expects that the updates of ω would converge to a ω∗ �= γ(θ ). For







24 3 Stochastic Approximation Algorithms


the updates to θ , the ω would, for all practical purposes, be ω∗ itself. Hence,
the updates to θ , ignoring the noise term, would appear to be


θ (n+ 1) = θ (n)+ a(n)L1(θ (n),γ(θ (n))).


Following the analysis of the R-M scheme, this recursion would converge to
a point θ ∗ (assuming it is unique) where L1(θ ∗,γ(θ ∗) = 0. These concepts
are formalized and discussed along with the necessary assumptions in Section
3.3.1.


Remark 3.3. Suppose both the updates of θ and ω were performed with the same
step-size sequence, say a(n),n ≥ 0, then both the recursions could be combined
together and analyzed as one recursion of the basic R-M scheme. These updates
would then together converge to a point θ ∗,ω∗ (assuming such a point is unique),
where L1(θ ∗,ω∗) = 0 and L2(θ ∗,ω∗) = 0 simultaneously. This is in contrast to the
case of two timescales where the solution would be θ ∗,ω∗ such that ω∗ = γ(θ ∗)
and L1(θ ∗,γ(θ ∗)) = 0.


Remark 3.4. Like in the previous section, one can consider the case where the noise
term enters the cost function itself. Thus, let the two recursions be


θ (n+ 1) = θ (n)+ a(n)g1(θ (n),ω(n),ξ 1(n)), (3.12)


ω(n+ 1) = ω(n)+ b(n)g2(θ (n),ω(n),ξ 2(n)), (3.13)


where ξ 1(n),n ≥ 0 are i.i.d. random vectors and so are ξ 2(n),n ≥ 0. Then one can
rewrite


g1(θ (n),ω(n),ξ 1(n)) = L1(θ (n),ω(n))+M1(n+ 1),
g2(θ (n),ω(n),ξ 2(n)) = L2(θ (n),ω(n))+M2(n+ 1),


where M1(n + 1),M2(n + 1),n ≥ 0 are suitable martingale difference sequences.
In this manner (3.12) and (3.13) can be recast as the recursions (3.8) and (3.9),
respectively.


Remark 3.5. The above discussion which is for two timescales, can be easily gen-
eralized to multiple timescales by starting the analysis from the “fastest” timescale
to the “slowest” timescale.


3.3.1 Convergence of the Multi-timescale Algorithm


A general analysis of two-timescale algorithms is available in [4] as well as Chapter
6 of [5]. We present a sketch of the same here. We make the following
assumptions:
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Assumption 3.7. The functions L1 : RN ×R
d → R


N and L2 : RN ×R
d → R


d


are both Lipschitz continuous.


Assumption 3.8. M1(n),M2(n), n ≥ 0 are both martingale difference
sequences with respect to the filtration F (n) = σ(θ ( j),ω( j),M1( j),M2( j),
j ≤ n), n≥ 0. Further,


E
[‖Mi(n+ 1)‖2 |F (n)


] ≤ K
(
1+ ‖θ (n)‖2+ ‖ω(n)‖2) , i = 1,2.


Assumption 3.9. The iterates are a.s. uniformly bounded, i.e.,


sup
n
(‖θ (n)‖+ ‖ω(n)‖)< ∞, w.p.1.


Assumption 3.10. The ODE


ω̇(t) = L2(θ ,ω(t)), (3.14)


has a globally asymptotically stable equilibrium γ(θ ), uniformly in θ , where
γ : RN →R


N is a Lipschitz continuous map.


Assumption 3.11. The ODE


θ̇ (t) = L1(θ (t),γ(θ (t))), (3.15)


has a globally asymptotically stable equilibrium θ ∗ ∈R
N .


Assumptions 3.7-3.9 are seen to be similar to analogous assumptions for the R-M
algorithm except for the requirement in (3.11) that suggests that a(n) approaches
zero at a rate faster than b(n) does.


Let us define t(n) in the same manner as before. Also, let τ(n), n≥ 0 be defined


according to τ(0) = 0 and τ(n) =
n−1


∑
m=0


b(m). Note that from the viewpoint of the


(slower) timescale governed by b(n),n≥ 0, the recursion (3.8) can be rewritten as


θ (n+ 1) = θ (n)+ b(n)η1(n), (3.16)


where η1(n) =
a(n)
b(n)


(
L1(θ (n),ω(n))+M1(n+ 1)


)
= o(1), since a(n) = o(b(n))


from (3.11). Now (3.16) is seen to track the ODE


θ̇ (t) = 0. (3.17)


Also, a similar analysis as described in Section 3.2.1 can be used to show that (3.9)
asymptotically tracks the ODE


ω̇(t) = L2(θ (t),ω(t)). (3.18)
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In other words, over intervals Î(n) = [T̂ (n), T̂ (n+1)] of length approximately T̂ > 0,
with T̂ (n) = τ(m(n)) ≈ nT̂ , the norm difference between the interpolated trajecto-
ries of the algorithm’s parameter iterates and the trajectories of the ODEs (3.17)-
(3.18) vanishes almost surely as n→∞ (cf. Proposition 3.2). Now, as a consequence
of (3.17), the ODE (3.18) can be rewritten as


ω̇(t) = L2(θ ,ω(t)). (3.19)


By Assumption 3.10, from an application of Hirsch’s lemma (Lemma C.5), it fol-
lows that the recursion (3.9) for given θ asymptotically converges to γ(θ ) almost
surely, and in fact, ‖ω(n)− γ(θ (n))‖ → 0 as n→ ∞ almost surely. A similar ar-
gument as Proposition 3.2 can now be applied to show that the norm difference
between the trajectory obtained from the θ -recursion (3.8) when interpolated using
the time instants t(n) and that of the ODE (3.15) again vanishes asymptotically over
intervals I(n) = [T (n),T (n+ 1)], with T (n),n ≥ 0 defined in a similar manner as
Proposition 3.2. Now, by another application of the Hirsch lemma, it can be shown
that θ (n)→ θ ∗ as n→ ∞ almost surely. We thus have the following result (that is
similar to Theorem 2 on pp.66 of [5]):


Theorem 3.4.
lim
n→∞(θ (n),ω(n)) = (θ ∗,γ(θ ∗)) a.s.


3.4 Concluding Remarks


The R-M algorithm has been analyzed in detail in [3], [12], [13], [11], [7], [5] and
several other books and papers. The ODE method is one of the techniques used to
study its convergence. A second approach based entirely on probabilistic arguments
is also popular in the literature. Because of its wide applicability, the R-M algorithm
is still very popular even six decades after it was originally invented.


A general analysis of two-timescale stochastic approximation using the ODE ap-
proach is provided in [4], [5]. Multi-timescale algorithms are helpful in cases when
in between two successive updates of the algorithm, one typically has to perform an
inner-loop procedure recursively until it converges. Thus, one would in practice have
to wait for a long time before updating the algorithm once. Using a multi-timescale
algorithm as in (3.8)-(3.9), both recursions (for the inner and outer loops) can run
together, and convergence to the desired point can be achieved. Key application ar-
eas where this procedure has been succesfully applied are simulation optimization
and adaptive control that we study in later chapters. There is another reason why
multi-timescale algorithms can be interesting. In [15], averaging of stochastic ap-
proximation iterates in the case of one-timescale algorithms such as (3.2) has been
seen to improve the rate of convergence. The same procedure can be accomplished
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using a two-timescale algorithm such as (3.8)-(3.9) wherein the ‘averaging’ is per-
formed along the faster timescale.


Multi-timescale algorithms are also useful in other situations. In [18], a smoothed
version of SPSA is presented that is seen to improve performance. The idea that is
similar to Polyak averaging and the resulting algorithm has a multi-timescale nature.
In [16], [19], the step-sizes a(n), n≥ 0 are adaptively set according to the objective
function value obtained. Since the update direction in SPSA is random, a move in the
descent direction (in their scheme) is rewarded by a slightly higher step-size in the
next update step while a move in the ascent direction attracts a penalty. Moreover,
if the objective function value becomes worse, a certain blocking mechanism is
enforced whereby starting from the previous estimate, a new gradient evaluation is
made with a reduced step-size a(n). The procedure of [16], [19] is performed for the
smoothed version of SPSA making the overall scheme again of the multi-timescale
type.
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Part II
Gradient Estimation Schemes







Most of the important stochastic recursive algorithms that are based on some form
of gradient estimation were studied in the previous century. These algorithms are
geared towards solving an associated stochastic optimization problem. When the
cost objective is a simple expectation over noisy observations or cost samples,
the Robbins-Monro algorithm in conjunction with a suitable gradient estimator is
applied. Under long-run average cost objectives, a multi-timescale stochastic al-
gorithm with a gradient estimator is used. This part of the book comprises three
chapters and deals with efficient gradient estimation approaches.


The earliest gradient estimation scheme is the Kiefer-Wolfowitz algorithm (pre-
sented originally in a paper in 1952 by Kiefer and Wolfowitz) that relies on gen-
erating a sufficient number of samples by perturbing each individual component of
the parameter, one at a time. There are primarily two versions of this scheme. The
first version involves generating 2N cost samples (each corresponding to a different
perturbed parameter) while the second requires (N+1) cost samples, where N is the
parameter dimension. These schemes as well as some of their variants are reviewed
in Chapter 4, for both cases of cost objectives (when they are simple expectations
and also when they have a long-run average form).


Spall, in a paper in 1992, presented a remarkable gradient estimator that requires
only two function evaluations regardless of the parameter dimension N. This estima-
tor is based on simultaneously perturbing all parameter components using i.i.d. ran-
dom variables satisfying certain properties that are most commonly satisfied by
symmetric Bernoulli random variates. The Robbins-Monro algorithm in conjunction
with this estimator has become famously known in the literature as the simultane-
ous perturbation stochastic approximation (SPSA) algorithm. In a later paper, Spall
also presented a one-measurement gradient estimator using a similar perturbation
methodology that however does not perform well. Bhatnagar, Fu, Marcus and Wang
subsequently presented a simultaneous perturbation methodology that is based on
deterministic (regular) perturbation sequences instead of random. A one-simulation
variant of SPSA based on Hadamard matrix perturbations is seen to exhibit signif-
icantly better performance as compared to the one-simulation randomized differ-
ence algorithm of Spall. In Chapter 5, we discuss in detail the various versions of
the SPSA scheme, both for cost objectives that are an expectation over noisy cost
samples as well as those that are certain long-run averages. We also present the
convergence analyses for the various cases.


Katkovnik and Kulchitsky presented in a paper in 1972, a scheme based on
smoothing the gradient of the cost objective using one of the following probabil-
ity density functions for convolution with the gradient: Gaussian, Cauchy or Uni-
form. It is observed using an integration-by-parts argument that the convolution
of the smoothing density function with the objective gradient is the same as the
convolution of the objective function itself with a scaled density function. A one-
measurement estimator of the gradient is thus obtained. Two-measurement balanced
versions of these estimators are seen to show better performance. We call the result-
ing estimates as the smoothed functional (SF) estimates. Chapter 6 discusses in de-
tail the smoothed functional gradient estimators and the resulting algorithms along
with their convergence analyses.







Chapter 4
Kiefer-Wolfowitz Algorithm


4.1 Introduction


In the Robbins-Monro algorithm (3.2), suppose that g(θ (n),ξ (n)) is an observa-
tion or sample (with noise) of the negative of the gradient of a cost objective
J(θ (n)) evaluated at the nth iteration, i.e., g(θ (n),ξ (n)) is a noisy observation of
L(θ (n)) = −∇J(θ (n)). Here, ξ (n),n ≥ 0 denotes the i.i.d. noise sequence. One
can show, as we do below, under certain standard conditions that (3.2) converges
to a local minimum of J. We are now in the domain of stochastic gradient algo-
rithms, i.e., gradient algorithms (Chapter 2) with noise. We shall assume, in partic-
ular, that the objective function is a simple expectation over the noisy cost samples
or J(θ ) = Eξ [h(θ ,ξ )]. If ∇h(θ ,ξ ) exists for any given noise sample ξ , then under
certain regularity conditions, see for instance, [8], [9], [10], it may be possible to
interchange the expectation and the gradient operators to obtain ∇J(θ ) = E[∇h
(θ ,ξ )]. In such a case, one may set g(θ (n),ξ (n)) = −∇h(θ (n),ξ (n)) in (3.1) and
obtain asymptotic convergence to a local minimum of J. Infinitesimal Perturbation
Analysis (IPA) and its variants are largely based on this idea, see [12], [7], [10],
[8], [9]. When applicable, IPA shows excellent performance. In practice, however,
one often does not have access to direct gradient measurements. It is also possible
that while the function J is continuously differentiable with bounded higher order
derivatives, the function h itself is not so. In such cases, one requires other gradi-
ent estimation techniques. The finite difference stochastic approximation (FDSA)
[13], which is usually referred to as the Kiefer-Wolfowitz algorithm (after its inven-
tors) is perhaps the earliest known algorithm that is used for estimating the gradient
under noisy measurements. In Section 4.2, we describe the basic Kiefer-Wolfowitz
scheme. Its variants are then explained in Section 4.3.


4.2 The Basic Algorithm


The original Kiefer-Wolfowitz algorithm [13] was proposed for the case where θ is
a one-dimensional parameter taking values in a bounded interval C1 ⊂ R. We first
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discuss this one-dimensional case and subsequently its multi-dimensional parame-
ter version. In the Kiefer-Wolfowitz algorithm, the underlying scheme is still (3.2)
except that the single noisy measurement g(θ (n),ξ (n)) in (3.2) is replaced by


ḡ(θ (n),ξ+(n),ξ−(n)) =−
(


h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))
2δ (n)


)
.


(4.1)
Here, ξ+(n), ξ−(n), n ≥ 0 are R-valued independent noise samples. Further,
h(θ (n) + δ (n),ξ+(n)) and h(θ (n) − δ (n),ξ−(n)) are two independent noisy
measurements of the objective with perturbed parameter values θ (n) + δ (n) and
θ (n)− δ (n), respectively. It can be seen that if one filters out the noise, then
for δ (n) sufficiently small, (4.1) will be a noisy approximation of −∇J(θ (n)). In
particular,


E[ḡ(θ (n),ξ+(n),ξ−(n)) | θ (n)] =−∇J(θ (n))+ o(δ (n)).


The K-W algorithm (4.2) proceeds along the negative gradient direction in order to
find a local minimum.


θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))


2δ (n)
,


(4.2)


n≥ 0. The scalar parameters δ (n), n≥ 0 should be carefully chosen so that δ (n)→ 0
(as n→ ∞) at a rate slow enough that the variance in the FDSA estimates does not
blow up. We now present our assumptions.


Assumption 4.1. The map J : R→R is Lipschitz continuous and is twice dif-
ferentiable with its second order derivative being bounded. Further, the func-


tion L(θ ) defined by L(θ ) =−dJ(θ )
dθ


, ∀θ ∈R and the map h : R×R→R are


both Lipschitz continuous.


The above is mainly a technical requirement that ensures that the corresponding
ODE is well posed and its trajectories bounded. Further, the smoothness require-
ments on J(θ ) ensure via a Taylor series argument that the algorithm converges to a
local minimum. Reference [13] has a more general setting where J(θ ) need not be
differentiable but should satisfy a set of regularity conditions [13, Conditions 1-3].
However, we limit our discussion to the case where J is differentiable. Though the
result in [13] is for a generalized case where J need not be differentiable, the result
shown is for convergence only in probability while here in our discussion, we show
almost sure convergence.
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Assumption 4.2. The step-sizes a(n),δ (n)> 0, ∀n and


a(n),δ (n)→ 0 as n→ 0, ∑
n


a(n) = ∞, ∑
n


(
a(n)
δ (n)


)2


< ∞. (4.3)


Thus, a(n) and δ (n) are both diminishing sequences of positive numbers with δ (n)
going to zero slower than a(n). The first condition above is analogous to a similar
condition in (3.4). The last condition is a stronger requirement and ensures conver-
gence of the resulting martingale noise sequence.


Assumption 4.3. ξ+(n), ξ−(n), n≥ 0 are independent random variables hav-
ing a common distribution and with finite second moments.


Assumption 4.4. The iterates (4.2) remain almost surely bounded, i.e.,


sup
n
|θ (n)|< ∞, a.s. (4.4)


Consider the ODE:


θ̇ (t) =−dJ(θ (t))
dt


. (4.5)


Let S =


{
θ
∣∣∣∣dJ(θ )


dθ
= 0


}
denote the set of all fixed points of (4.5).


Theorem 4.1. Under Assumptions 4.1-4.4, the parameter updates (4.2) satisfy
θ (n)→ S with probability one.


Proof. Note that the algorithm (4.2) can be rewritten as follows:


θ (n+ 1) = θ (n)− a(n)


(
dJ(θ (n))


dθ
+β (n)+η(n)


)
, (4.6)


where


η(n) =
h(θ (n)+ δ (n),ξ+(n))− h(θ (n)− δ (n),ξ−(n))


2δ (n)


−J(θ (n)+ δ (n))− J(θ (n)− δ (n))
2δ (n)


, and,
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β (n) =
J(θ (n)+ δ (n))− J(θ (n)− δ (n))


2δ (n)
−∇J(θ (n)).


It is easy to see that η(n),n ≥ 0, is a martingale difference sequence with respect
to the filtration F (n) = σ(θ (m),ξ+(m),ξ−(m),m ≤ n),n ≥ 0. Further, ξ̂ (m) =


m


∑
n=0


a(n)η(n)(m≥ 0) forms a martingale with respect to the same filtration. We shall


first show below that {ξ̂ (m)} is an almost surely convergent martingale sequence.
This result will follow from the martingale convergence theorem (Theorem B.2) if


we can show that
∞


∑
m=0


E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)


]
< ∞ almost surely. Now note


that


|h(θ (n),ξ (n))|− |h(0,0)| ≤ |h(θ (n),ξ (n))− h(0,0)| ≤ K̄(|θ (n)|+ |ξ (n)|).


In the above, K̄ > 0 denotes the Lipschitz constant of the function h. It follows that


|h(θ (n),ξ (n))| ≤ K̄1(1+ |θ (n)|+ |ξ (n)|),


where K̄1 = max(K̄, |h(0,0)|). Similarly, since J(θ ) is also Lipschitz continuous, it
is easy to see that


|J(θ (n)| ≤ K̄2(1+ |θ (n)|),
for some K̄2 > 0. Now,


∑∞m=0 E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)


]
= ∑∞m=0 a(m)2E


[
η(m+ 1)2 |F (m)


]


≤ ∑∞m=0
a(m)2


δ (m)2 E
[
h(θ (m)+ δ (m),ξ+(m))2 + h(θ (m)− δ (m),ξ−(m))2 |F (m)


]
+∑∞m=0


a(m)2


δ (m)2 E
[
(J(θ (m)+ δ (m))2 + J(θ (m)− δ (m))2 |F (m)


]


≤ 8K̄1∑∞m=0
a(m)2


δ (m)2 E
[
1+(θ (m))2 + δ (m)2 +(ξ+(m))2 |F (m)


]
+8K̄2∑∞m=0


a(m)2


δ (m)2 E
[
1+(θ (m))2 + δ (m)2 |F (m)


]
.


It follows now as a consequence of Assumptions 4.2-4.4, that


∞


∑
m=0


E
[
(ξ̂ (m+ 1)− ξ̂(m))2 |F (m)


]
< ∞ a.s.


Now, using Taylor series expansions of J(θ (n)+δ (n)) and J(θ (n)−δ (n)), respec-
tively, around the point θ (n), i.e.,
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J(θ (n)+ δ (n)) = J(θ (n))+ δ (n)
dJ(θ (n))


dθ
+O(δ (n)2),


J(θ (n)− δ (n)) = J(θ (n))− δ (n)dJ(θ (n))
dθ


+O(δ (n)2),


we obtain,
β (n) = O(δ (n)), i.e., β (n)→ 0 as n→ ∞.


Thus in lieu of equation (4.6), the iteration scheme in (4.2) can be seen to track the
negative gradient of J but with diminishing noise. Thus, (4.6) can be viewed as a
noisy Euler discretization of the ODE


θ̇ =−dJ(θ )
dθ


, (4.7)


but with diminishing step increments. The result now follows by an application of
the Hirsch lemma (Lemma C.5). ��
Remark 4.1. Note that S corresponds to the set of all fixed points of the ODE (4.5)
and not merely local minima. Points in S that are not local minima will however
be unstable equilibria. In principle, the scheme can converge to an unstable equilib-
rium. By assuming noise to be sufficiently rich or by introducing additional noise
[6, 17], one can ensure that the scheme does not get stuck in an unstable equilib-
rium. In most practical applications, however, stochastic approximation algorithms
such as (4.2) are seen to converge to local minima.


4.2.1 Extension to Multi-dimensional Parameter


For θ ∈ R
N , a natural extension of the original scheme (4.2) is as given below:


θi(n+ 1) = θi(n)− a(n)
h(θ (n)+ δ (n)ei,ξ+i (n))− h(θ (n)− δ (n)ei,ξ−i (n))


2δ (n)
,


(4.8)


for i = 1,2, . . . ,N, where ei =
(


0, . . . , 0, 1, 0, . . . , 0
)T ∈ R


N , with 1 at the ith lo-
cation, is the unit vector along the ith coordinate direction in R


N . Further, ξ+i (n),
ξ−i (n), i = 1, . . . ,N are the corresponding i.i.d. noise samples that are also inde-
pendent of each other and have a common distribution with finite second moments.
Also, θi(n)∈R denotes the ith component of the parameter vector θ (n)∈RN , at up-
date instant n. Under similar assumptions as Assumptions 4.1-4.4, the convergence
of the multi-dimensional K-W algorithm (4.8) can be shown and similar conclu-
sions as in Theorem 4.1 can be drawn. We leave this as an exercise for the interested
reader.
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4.3 Variants of the Kiefer-Wolfowitz Algorithm


There are some variants of the Kiefer-Wolfowitz algorithm available in the literature
where either different perturbation parameter schemes are explored or the selection
of the perturbation noise is varied. In [16], [14], it is seen that the use of common
random numbers, i.e., ξ+i (n) = ξ−i (n) reduces the estimator variance. This may be
possible in a few simulation-based settings with random variables that are obtained
from the same pseudo-random sequence. However, in most practical settings, this
is difficult to achieve even when simulation is used. We discuss below two popular
variations, one where the perturbation parameter is held constant and another in
which one-sided perturbations are employed.


4.3.1 Fixed Perturbation Parameter


Quite often it makes sense to simply set δ (n) ≡ δ for a ‘small’ δ > 0 as has been
done in [3], [4] and [5] (see also [15, pp. 15] for a discussion along these lines). With
a fixed perturbation parameter, δ , the iteration scheme in (4.2) can be re-written as


θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ ,ξ+(n))− h(θ (n)− δ ,ξ−(n))


2δ
. (4.9)


Note that we consider θ (n) to be scalar-valued again for simplicity. The case of
vector θ (n) can be handled as explained in Section 4.2.1. The analysis of recursion
(4.9) can be shown under weaker requirements on the step-size sequence a(n),n≥
0 than those in Assumption 4.2. The convergence result that one obtains in this
case is also weaker than the one given in Theorem 4.1. Specifically, we replace
Assumption 4.2 with the following:


Assumption 4.5. The step-sizes a(n)> 0, ∀n and


∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞. (4.10)


This is essentially the same requirement as (3.4). For ε > 0, let


Sε = {θ | |θ −θ ∗|< ε for some θ ∗ ∈ S} ,


denote the set of points that are in an ε-neighborhood of the set S. We have the
following result:
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Theorem 4.2. Under Assumptions 4.1, 4.3, 4.4 and 4.5, given ε > 0, there
exists δ̄ > 0 such that for every δ ∈ (0, δ̄ ], the iterates θ (n),n ≥ 0, governed
according to (4.9) converge a.s. to Sε .


Proof. (Sketch) One can rewrite (4.9) as


θ (n+ 1) = θ (n)− a(n)


(
dJ(θ (n))


dθ
+β (n)+η(n)


)
, (4.11)


where


η(n) =
h(θ (n)+δ ,ξ+(n))−h(θ (n)−δ ,ξ−(n))


2δ
− J(θ (n)+δ )−J(θ (n)−δ )


2δ
, and


β (n) =
J(θ (n)+ δ )− J(θ (n)− δ )


2δ
− dJ(θ (n))


dθ
,


respectively. As in the proof of Theorem 4.1, one can see that ξ̂ (m),m ≥ 0 defined


according to ξ̂ (m) =
m


∑
n=0


a(n)η(n)(m≥ 0) forms a convergent martingale sequence.


Further, using Taylor series expansions of J(θ (n)+δ ) and J(θ (n)−δ ) around θ (n),
it is easy to see that β (n) = O(δ ). The result again follows from the Hirsch lemma
(Lemma C.5). ��


4.3.2 One-Sided Variants


The gradient estimates in (4.2) are also called two-sided finite difference (or bal-
anced) estimates while those that we describe below in (4.12) are called one-sided
finite difference (or unbalanced) estimates. In one-sided FDSA, the scheme is as
follows:


θ (n+ 1) = θ (n)− a(n)
h(θ (n)+ δ (n),ξ+(n))− h(θ (n),ξ−(n))


δ (n)
. (4.12)


The same for N-dimensional parameter θ can be re-written as


θi(n+ 1) = θi(n)− a(n)
h(θ (n)+ δ (n)ei,ξ+i (n))− h(θ (n),ξ−i (n))


δ (n)
, i = 1,2, . . . ,N.


(4.13)
Proofs of convergence of both of these recursions follow along the same lines as
Theorem 4.1. One-sided variants bring in a computational advantage by requiring
approximately half of the number of simulations compared to the original Kiefer-
Wolfowitz scheme in the case of multi-dimensional parameter where the original
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algorithm (4.8) requires 2N function measurements in order to obtain one estimate
of the gradient while a one-sided variant (4.13) requires (N + 1) function measure-
ments to obtain a gradient estimate. In the setting of simulation optimization [7], [8],
[11], [12], [5], [1], [2], where one does not have access to function measurements
but needs to simulate the whole system, one requires in effect 2N (resp. (N + 1))
parallel simulations of the entire system when using two-sided (resp. one-sided)
estimates. These algorithms become computationally inefficient when N becomes
large and therefore one requires more computationally efficient methods for gradi-
ent estimation.


4.4 Concluding Remarks


Building on the stochastic algorithms which seek to obtain a zero of a func-
tion with noisy measurements, this chapter introduced and discussed a class of
stochastic algorithms performing gradient descent on a cost objective. The Kiefer-
Wolfowitz algorithm [13] marks the beginning of the development of this class of
stochastic-gradient algorithms. When applied to N-dimensional parameter settings
(with N > 1), these algorithms require 2N or N + 1 noisy function measurements
depending on whether two-sided or one-sided estimates are used. When N is large,
these algorithms can become computationally inefficient because of the need to gen-
erate so many noisy cost observations. We address this scalability issue in the next
two chapters that deal with the simultaneous perturbation stochastic approximation
(SPSA) and the smoothed functional (SF) gradient algorithms, respectively.
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Chapter 5
Gradient Schemes with Simultaneous
Perturbation Stochastic Approximation


5.1 Introduction


Spall [26], [29] invented a remarkable algorithm that has become popular by the
name simultaneous perturbation stochastic approximation (SPSA). It is remarkable
in that it requires only two function measurements for a parameter of any dimen-
sion (i.e., any N ≥ 1) and exhibits fast convergence (that is normally faster than the
Kiefer-Wolfowitz algorithm). Unlike Kiefer-Wolfowitz schemes, where parameter
perturbations are performed along each co-ordinate direction separately (in order to
estimate the corresponding partial derivatives), in SPSA, all component directions
are perturbed simultaneously using perturbations that are vectors of independent
random variables that are often assumed to be symmetric, zero-mean, ±1-valued,
and Bernoulli distributed.


In the following sections, we discuss in detail the original SPSA algorithm [26] as
well as its variants that are based on one and two function measurements. In partic-
ular, we discuss an important variant of the SPSA algorithm that uses deterministic
perturbations based on Hadamard matrices. We provide the convergence proofs of
the SPSA algorithm and its variants that we discuss.


5.2 The Basic SPSA Algorithm


We present the SPSA algorithm here for the expected cost objective. Recall that the
objective in this case is J(θ ) =Eξ [h(θ ,ξ )], where h :RN×Rk→R is a given single-
stage cost function. Here h(θ ,ξ ) denotes a noisy measurement of J(θ ) and ξ ∈ R


k


is a mean-zero, random variable that corresponds to the noise in the measurements.
Also, as in previous chapters, we let L(θ ) = ∇J(θ ). Note that the parameter vector


θ is N-dimensional, i.e., θ Δ
= (θ1,θ2, . . . ,θN)


T ∈ R
N .


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 41–76.
springerlink.com © Springer-Verlag London 2013
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5.2.1 Gradient Estimate Using Simultaneous Perturbation


We first describe the gradient estimate ∇θJ(θ ) of J(θ ) when using SPSA. The esti-
mate is obtained from the following relation:


∇θJ(θ (n)) =


lim
δ (n)↓0


E


[(
h(θ (n)+ δ (n)Δ(n),ξ+)− h(θ (n)+ δ (n)Δ(n),ξ−)


2δ (n)Δi(n)


)∣∣∣∣θ (n)
]
.


(5.1)


The above expectation is over the noise terms ξ+ and ξ− as well as the per-


turbation random vector Δ(n) �= (Δ1(n), . . . ,ΔN(n))T , where Δ1(n), . . . ,ΔN(n) are
independent, mean-zero random variables satisfying the conditions in Assump-
tion 5.4 below. The idea here is to perturb all the coordinate components of the
parameter vector simultaneously using Δ(n). The two perturbed parameters corre-
spond to θ (n)+ δ (n)Δ(n) and θ (n)− δ (n)Δ(n), respectively. Several remarks are
in order.


Remark 5.1. Δi(n), i = 1,2, . . . ,N,n ≥ 0 satisfy an inverse moment bound, that is,
E[|Δi(n)−1|]< ∞. Thus, these random variables assign zero probability mass to the
origin. We will see later in Theorem 5.1 that such a choice of random variables
for perturbing the parameter vector ensures that in the recursion (5.1), the estimate
along undesirable gradient directions averages to zero.


Remark 5.2. In contrast to the Kiefer-Wolfowitz class of algorithms, one can see
that, the SPSA updates have a common numerator for all the θ -components but
a different denominator. The inverse moment condition and the step-size require-
ments ensure convergence to a local minimum. Hence, unlike the Kiefer-Wolfowitz
class of algorithms which require 2N or N + 1 samples of the objective func-
tion, SPSA algorithms need only two samples irrespective of the dimension of the
parameter θ .


Remark 5.3. Most often, one assumes that the perturbation random variables are
distributed according to the symmetric Bernoulli distribution with Δi(n) = ±1
w.p. 1/2, i = 1, . . . ,N, n ≥ 0. In fact, it is found in [25] that under certain con-
ditions, the optimal distribution on components of the simultaneous perturbation
vector is a symmetric Bernoulli distribution. This result is obtained under two sep-
arate objectives (see [25]): (a) minimize the mean square error of the estimate, and
(b) maximize the likelihood that the estimate remains in a symmetric bounded re-
gion around the true parameter.
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5.2.2 The Algorithm


The update rule in the basic SPSA algorithm is as follows:


θi(n+1) =θi(n) (5.2)


−a(n)


(
h(θ (n)+δ (n)Δ (n),ξ+(n))−h(θ (n)−δ (n)Δ (n),ξ−(n))


2δ (n)Δi(n)


)
,


for i = 1, . . . ,N and n≥ 0.


The overall flow of the basic SPSA algorithm is described in Fig. 5.1. In essence, it
is a closed-loop procedure where the samples of the single stage cost function h(·, ·)
are obtained for two perturbed parameter values (θ (n)+ δ (n)Δ(n)) and (θ (n)−
δ (n)Δ(n)), respectively. These samples are then used to update θ in the negative
gradient descent direction using the estimate (5.1).


θ (n)


+


δ (n)Δ (n)


−


δ (n)Δ (n)


h(θ +δ (n)Δ (n),ξ+(n))


h(θ −δ (n)Δ (n),ξ+(n))


UpdateRule(·)


Y+(n)


Y−(n)


θ (n+1)


Fig. 5.1 Overall flow of the algorithm 5.1.


For the sake of completeness and because of its prominence in gradient estima-
tion schemes, we describe below the SPSA algorithm in an algorithmic form.


Algorithm 5.1 The basic SPSA Algorithm for the Expected Cost Objective
Input:


• Q, a large positive integer;
• θ0 ∈C ⊂ R


N , initial parameter vector;
• Bernoulli(p), random independent Bernoulli ±1 sampler with probability p


for ‘+1’ and 1− p for ‘−1’;
• h(θ ,ξ ), noisy measurement of cost objective J;
• a(n) and δ (n), step-size sequences chosen complying to assumption in (5.3);


Output: θ ∗ Δ= θ (Q).
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n← 0.
loop


for i = 1 to N do
Δi(n)← Bernoulli(1/2).


end for
Y (n)+← h(θ + δ (n)Δ(n),ξ+(n)).
Y (n)− ← h(θ − δ (n)Δ(n),ξ−(n)).
for i = 1 to N do


θi(n+ 1)← θi(n)− a(n)
Y+(n)−Y−(n)


2δ (n)Δi(n)
.


end for
n← n+ 1
if n = Q then


Terminate with θ (Q).
end if


end loop


The algorithm terminates after Q iterations. Asymptotic convergence is then achieved
as Q→ ∞. More sophisticated stopping criteria may however be used as well. For
instance, in some applications it could perhaps make sense to terminate the algo-
rithm when for a given ε > 0, ‖θ (n)− θ (n−m)‖< ε for all m ∈ {1, . . . ,R}, for a
given R > 1.


5.2.3 Convergence Analysis


Before presenting the main theorem proving the convergence of the basic SPSA
algorithm (5.2), we make the following assumptions:


Assumption 5.1. The map J : RN→R is Lipschitz continuous and is differen-
tiable with bounded second order derivatives. Further, the map L : RN → R


N


defined as L(θ ) = −∇J(θ ),∀θ ∈ R
N and the map h : RN ×R


k → R are both
Lipschitz continuous.


The above is a technical requirement needed to push through a Taylor series expan-
sion and is used in the analysis.


Assumption 5.2. The step-sizes a(n),δ (n)> 0, ∀n and


a(n),δ (n)→ 0 as n→ 0, ∑
n


a(n) = ∞, ∑
n


(
a(n)
δ (n)


)2


< ∞. (5.3)
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Thus, a(n) and δ (n) are both diminishing sequences of positive numbers with δ (n)
going to zero slower than a(n). The second condition above is analogous to a similar
condition in (3.4). The third condition is a stronger requirement. In [11], a relaxation
is made and it is assumed that a(n),δ (n)→ 0 as n→ ∞ and that


∑
n


a(n) = ∞,∑
n


a(n)p < ∞


for some p ∈ (1,2]. Typically a(n),δ (n), n ≥ 0 can be chosen according to a(n) =
a/(A+ n+ 1)α and δ (n) = c/(n+ 1)γ , for a,A,c > 0. The values of α and γ sug-
gested in [13] and [15] are 1 and 1/6, respectively. In [28], it is observed that the
choices α = 0.602 and γ = 0.101 perform well in practical settings.


Assumption 5.3. ξ+(n), ξ−(n), n ≥ 0 are R
k-valued, independent random


vectors having a common distribution and with finite second moments.


Note that the algorithm (5.2) can be rewritten as follows:


θi(n+1) = θi(n)−a(n)


(
J(θ (n)+δ (n)Δ (n))−J(θ (n)−δ (n)Δ (n))


2δ (n)Δi(n)
+
ξ̂+(n)− ξ̂−(n)


2δ (n)Δi(n)


)
,


(5.4)


where


ξ̂+(n)− ξ̂−(n) =h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n)− δ (n)Δ(n),ξ−(n))
− (J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))).


It is easy to see that
ξ̂+(n)− ξ̂−(n)


2δ (n)Δi(n)
,n≥ 0 forms a martingale difference sequence


under an appropriate filtration.


Assumption 5.4. The random variables Δi(n), n ≥ 0, i = 1, . . . ,N, are
mutually independent, mean-zero, have a common distribution and satisfy
E[(Δi(n))−2]≤ K̄, ∀n≥ 0, for some K̄ < ∞.


In order for the inverse moment of Δi(n) to be uniformly bounded (see
Assumption 5.4), it follows that the random variables Δi(n) must have zero prob-
ability mass at the origin. Many times, one simply lets Δi(n),n ≥ 0 to be indepen-
dent, symmetric Bernoulli-distributed random variables with Δi(n) = ±1 w.p. 1/2,
∀i = 1, . . . ,N.
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Assumption 5.5. The iterates (5.2) remain uniformly bounded almost surely,
i.e.,


sup
n
‖θ (n)‖< ∞, a.s. (5.5)


Consider the ODE:
θ̇ (t) =−∇J(θ (t)). (5.6)


Assumption 5.6. The set H containing the globally asymptotically stable
equilibria of the ODE (5.6) (i.e., the local minima of J) is a compact subset of
R


N .


Theorem 5.1. Under Assumptions 5.1-5.6, the parameter updates (5.2) satisfy
θ (n)→ H with probability one.


Proof. Let ∇iJ(θ ) represent the ith partial derivative of J(θ ). The SPSA update rule
(5.2) can be rewritten as follows:


θi(n+ 1) = θi(n)− a(n)(∇iJ(θ (n))+ηi(n)+βi(n)) , (5.7)


where


ηi(n) =
h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n)− δ (n)Δ(n),ξ−(n))


2δ (n)Δi(n)


− J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))
2δ (n)Δi(n)


,


βi(n) =
J(θ (n)+ δ (n)Δ(n))− J(θ (n)− δ (n)Δ(n))


2δ (n)Δi(n)
−∇iJ(θ (n)),


for i = 1,2, . . . ,N. Now,


|h(θ ,ξ )|− |h(0,0)| ≤ |h(θ ,ξ )− h(0,0)| ≤ L̂‖(θ ,ξ )− (0,0)‖,


where L̂ > 0 is the Lipschitz constant of h. Since ‖ · ‖ is the Euclidean norm, it is
easy to see that ‖(θ ,ξ )− (0,0)‖≤ ‖θ‖+ ‖ξ‖. Thus, we have that


|h(θ ,ξ )| ≤ K̂(1+ ‖θ‖+ ‖ξ‖),
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for some K̂ > 0. Now ηi(n),n ≥ 0 forms a martingale difference sequence with
respect to the sequence of sigma fields F (n) = σ(θ (m),Δ(m),ξ+(m),ξ−(m),m≤
n),n≥ 0. Let


N̄i(n) =
n−1


∑
m=0


a(m)ηi(m), n≥ 1, i = 1, . . . ,N.


It is easy to see as a consequence of Assumptions 5.1–5.5 and from the martingale
convergence theorem (Theorem B.2) that N̄i(n),n ≥ 1, is an almost surely conver-
gent martingale sequence.


Now, Taylor’s series expansions of J(θ (n)+δ (n)Δ(n)) and J(θ (n)−δ (n)Δ(n)),
respectively, around the point θ (n) give,


J(θ (n)+ δ (n)Δ(n)) = J(θ (n))+ δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2),


J(θ (n)− δ (n)Δ(n)) = J(θ (n))− δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2).


Upon substitution of the above in the expression for βi(n), we get,


βi(n) =
N


∑
j=1, j �=i


Δ j(n)
Δi(n)


∇ jJ(θ (n))+O(δ (n)).


Since Δ j(n) are i.i.d., bounded and mean-zero random variables, the first term in the
above is a square integrable mean-zero random noise for a given θ (n). The claim
now follows from the Hirsch Lemma (see Lemma C.5). ��
As suggested by equation (5.7), while the search direction is randomly chosen and
need not follow a descent path, the algorithm is seen to make the right moves in the
asymptotic average. In the next section, we discuss some of the variants of the basic
SPSA algorithm.


5.3 Variants of the Basic SPSA Algorithm


The SPSA algorithm has evoked significant interest due to its good performance,
ease of implementation and wide applicability. Moreover, it is observed to be scal-
able in that the computational effort does not increase significantly with the pa-
rameter dimension unlike the Kiefer-Wolfowitz algorithms (see for instance, the
experiments in [7]). In the next few sections, we shall review some of the important
variants of the SPSA algorithm.


5.3.1 One-Measurement SPSA Algorithm


Interestingly enough, it is possible to perform gradient estimation via just one mea-
surement. In [27], a one-measurement version of SPSA has been presented. The
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simulation here is run with the parameter θ (n)+δ (n)Δ(n) where the update rule is
of the form:


θi(n+ 1) = θi(n)− a(n)


(
h(θ (n)+ δ (n)Δ(n),ξ+(n))


δ (n)Δi(n)


)
, (5.8)


for i = 1, . . . ,N and Δ(n) as before.


Now, we present a proof of convergence of this scheme.


Theorem 5.2. Under Assumptions 5.1-5.6, the parameter updates (5.8) satisfy
θ (n)→ H with probability one.


Proof. The proof follows in a similar manner as that of Theorem 5.1 except for the
change that because of the presence of only one simulation, there is an additional
bias term in the gradient estimate. Recall that a Taylor series expansion of J(θ (n)+
δ (n)Δ(n)) around θ (n) gives


J(θ (n)+ δ (n)Δ(n)) = J(θ (n))+ δ (n)Δ(n)T∇J(θ (n))+O(δ (n)2).


One can rewrite (5.8) in a manner similar to (5.7), where


ηi(n) =
h(θ (n)+ δ (n)Δ(n),ξ+(n))


δ (n)Δi(n)
− J(θ (n)+ δ (n)Δ(n))


δ (n)Δi(n)
,


βi(n) =
J(θ (n)+ δ (n)Δ(n))


δ (n)Δi(n)
−∇iJ(θ (n)).


Thus,


βi(n) =
J(θ (n))
δ (n)Δi(n)


+
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))+O(δ (n)). (5.9)


The second term in the above, as previously discussed, is a square integrable mean-
zero random noise (given θ (n)). The first term above (for any n ≥ 0) is also mean-
zero for a given θ (n). Further, the product of a(n) with the first term in the above
can be seen to be square summable. Hirsch Lemma (see Lemma C.5) can now be
applied to obtain the claim. ��
As observed in [27] and other references, for instance, [8], the performance of the
one-measurement SPSA algorithm is not as good as its two-measurement coun-
terpart because of the presence of the additional bias term (above) that has a factor
δ (n) in its denominator and which tends to zero asymptotically. However, it is noted
in [27], that one-simulation SPSA may have better adaptability as compared to its
two-simulation counterpart in non-stationary settings.
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5.3.2 One-Sided SPSA Algorithm


A one-sided difference version of SPSA with two measurements has been consid-
ered in [11]. Here the two simulations are run with the parameters θ (n)+δ (n)Δ(n)
and θ (n), respectively, and the update rule has the form:


θi(n+ 1) = θi(n)− a(n)


(
h(θ (n)+ δ (n)Δ(n),ξ+(n))− h(θ (n),ξ (n))


δ (n)Δi(n)


)
,


(5.10)
for i = 1, . . . ,N with Δ(n) as before.


Also, ξ+(n),ξ (n) satisfy Assumption 5.3 with ξ (n) in place of ξ−(n). One of the
measurements of h(·, ·), here, is unperturbed which may be useful in certain appli-
cations [11]. A similar convergence result as that in 5.1 can be shown for this case
as well. If higher order derivatives of J exist, then one can see that in the case of
the original SPSA algorithm, all even order terms such as the second order terms
involving the Hessian get directly cancelled. This is however not the case with the
one-sided difference SPSA where such terms contribute to the overall bias. The
two-sided form (5.2) is the most studied and used in applications.


5.3.3 Fixed Perturbation Parameter


In many applications [5, 6, 7] and also in discussions [20, pp. 15], of the SPSA
algorithm, a constant value for the perturbation parameters δ (n) ≡ δ > 0, is of-
ten considered for convenience. The SPSA update rule would in this case take the
form:


θi(n+1)= θi(n)−a(n)


(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n)− δΔ(n),ξ−(n))


2δΔi(n)


)
,


(5.11)
for i = 1, . . . ,N and n≥ 0.


As described in the theorem below, a suitable δ > 0 can be chosen based on a desired
ε > 0, to prove convergence of the update rule to an ε-neighborhood of the set H
(the local minima of J). For ε > 0, let


Hε = {θ | ‖θ −θ ∗‖< ε for some θ ∗ ∈ H} .







50 5 Gradient Schemes with Simultaneous Perturbation Stochastic Approximation


Consider now the following requirement of the step-sizes a(n),n ≥ 0, in place of
Assumption 5.2:


Assumption 5.7. The step-sizes a(n)> 0, ∀n and


∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞. (5.12)


Theorem 5.3. Under Assumptions 5.1, 5.3-5.7, given ε > 0, there exists δ̄ > 0
such that for every δ ∈ (0, δ̄ ], the update rule (5.11) converges a.s. to Hε .


Proof. Proceeding along similar lines as in the proof of Theorem 5.1, the update
rule (5.11) can be re-written as


θi(n+ 1) = θi(n)− a(n)(∇iJ(θ (n))+ηi(n)+βi(n)) , (5.13)


where


ηi(n) =
h(θ (n)+ δΔ(n),ξ (n)+)− h(θ (n)− δΔ(n),ξ (n)−)


2δΔi(n)


− J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


,


βi(n) =
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
−∇iJ(θ (n)),


for i = 1,2, . . . ,N. As before, it is easy to see that ηi(n),n≥ 0, is a square integrable


martingale difference sequence. Thus,


{
n−1


∑
m=0


a(m)ηi(m),n ≥ 1


}
can be seen from


the martingale convergence theorem (Theorem B.2) to be an almost surely conver-
gent martingale. Now, simplifying the expression of βi(n) using appropriate Taylor
series expansions of J(θ (n)+ δΔ(n)) and J(θ (n)− δΔ(n)), respectively, around
θ (n), we get,


βi(n) =
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))+O(δ ). (5.14)


It is easy to see that E[βi(n) | θ (n)] = O(δ ). The claim now follows by applying the
Hirsch lemma (Lemma C.5). ��
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5.4 General Remarks on SPSA Algorithms


It is interesting to note that in each of the update rules (5.2), (5.8) and (5.10),
the numerator is the same across all i, i = 1, . . . ,N, while the denominator has a
quantity Δi(n) that depends on i. This is unlike the Kiefer-Wolfowitz algorithm (or
FDSA) where the denominator is the same while the numerator is different for dif-
ferent i, see (4.2) and (4.12). Thus, in going from FDSA to SPSA, the complexity
in estimating the gradient shifts (in a way) from the numerator of the estimator
to its denominator. It should be noted that simulating N independent symmetric
Bernoulli-distributed random variables is in general far less computationally expen-
sive than obtaining 2N or (N + 1) objective function measurements or simulations,
particularly when N is large. It has been seen both from theory and experiments
[26], [7], [24] that two-sided, two-simulation SPSA (5.2) is computationally far
more superior to FDSA. In [26], asymptotic normality results for SPSA and FDSA
are used to establish the relative efficiency of SPSA. The asymptotic analysis for
the Robbins-Monro algorithm can be adapted to prove almost sure convergence of
the iterates in the SPSA algorithm [26]. Assuming that there is a unique globally
asymptotically stable equilibrium θ ∗ for the associated ODE (i.e., a global mini-
mum for the basic algorithm), the asymptotic normality result in [26] essentially
says that


nr/2(θ (n)−θ ∗) D→ N(μ ,Σ)


as n→ ∞, where
D→ denotes convergence in distribution, N(μ ,Σ) is a multi-variate


Gaussian with mean μ and covariance matrix Σ that depends on the Hessian at θ ∗.
In general, μ �= 0. The quantity r depends upon the choice of the gain sequences
{a(n)} and {δ (n)}.


Many interesting analyses of the SPSA algorithm have been reported in the lit-
erature. In [26], the above asymptotic normality result is used to argue the relative
asymptotic efficiency of SPSA over FDSA. In particular, it is argued that SPSA re-
sults in an N-fold computational savings over FDSA. In [11], a projected version of
SPSA where the projection region is gradually increased has been presented. This
is a novel approach to take care of the issue of iterate stability in general. In [2] and
[17], application of SPSA for optimization in the case of non-differentiable func-
tions is considered. A detailed analysis of SPSA under general conditions can also
be found in [16]. An analysis of SPSA and FDSA when common random num-
bers are used in the simulations is given in [18]. Different ways of gradient esti-
mation in SPSA using past measurements have been reported in [1] and [21]. In
[22], iterate averaging for stability of the SPSA recursions and improved algorith-
mic behaviour is explored. A case of weighted averaging of the Kiefer-Wolfowitz
and SPSA iterates is considered in [14]. In [12] and [23], SPSA is proposed for
use as a global search algorithm. In [13], SPSA is compared with a two-sided
smoothed functional algorithm (see Chapter 6) and it is observed over the exper-
iments considered there that SPSA is the better of the two algorithms. In [28], the
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general technique for implementing SPSA and the choice of gain sequences is dis-
cussed. In [10], non-Bernoulli distributions have been explored for the perturbation
sequences.


In the next section, we discuss an important class of SPSA algorithms where the
perturbation sequence is deterministic and regular (i.e., periodic) rather than a vector
of independent Bernoulli-distributed random variables.


5.5 SPSA Algorithms with Deterministic Perturbations


The SPSA algorithms discussed in the previous sections used zero-mean and mu-
tually independent random perturbations to obtain an estimate of the gradient
of the objective function. We now consider the case when the perturbation se-
quences are constructed differently by a deterministic mechanism. These pertur-
bations are obtained by cyclically passing through a certain construction based on
Hadamard matrices. The principal idea behind the Hadamard matrix construction is
to periodically cancel the bias terms aggregated over iterations where the length
of the period over which such cancellation occurs is small. As a consequence,
one expects an improved algorithmic performance. In [8], it is observed that in
certain scenarios, the deterministic perturbations are theoretically sound and re-
sult in faster convergence empirically. For further discussions, we will use the
setting of fixed perturbation parameter, that is, δ (n) ≡ δ > 0. Nevertheless, all
the following discussions, can be suitably applied to the general setting with
non-fixed perturbation sequences δ (n),n ≥ 0 satisfying the requirements in
Assumption 5.2.


5.5.1 Properties of Deterministic Perturbation Sequences


We first explain the idea why such a construction can work in practice. Recall that a
Taylor series expansion of J(θ (n)+ δΔ(n)) around θ (n) is the following:


J(θ (n)+ δΔ(n)) = J(θ (n))+ δΔ(n)T∇J(θ (n))+ o(δ ). (5.15)


Similarly, an expansion of J(θ (n)− δΔ(n)) around θ (n) gives


J(θ (n)− δΔ(n)) = J(θ (n))− δΔ(n)T∇J(θ (n))+ o(δ ). (5.16)


Hence from (5.15) and (5.16), for i = 1, . . . ,N, one obtains in the case of a two-
measurement algorithm with parameters θ (n)+ δΔ(n) and θ (n)− δΔ(n),
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J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


=
Δ(n)T∇J(θ (n))


Δi(n)
+ o(δ )


= ∇iJ(θ (n))+
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))


+o(δ ). (5.17)


Note that the error terms (at the end) are still o(δ ) above because the subsequent
Hessian terms in the above expansions would directly cancel as well. Also, in the
case of a two-measurement, but one-sided gradient estimate involving parameters
θ (n)+ δΔ(n) and θ (n), one obtains


J(θ (n)+ δΔ(n))− J(θ (n))
δΔi(n)


= ∇iJ(θ (n))+
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))+O(δ ).


(5.18)
As discussed before, unlike (5.17), the Hessian term would not cancel if it is con-
sidered in the expansion. Hence, the last term above is now O(δ ).


Note that
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n)) constitutes the bias. When Δi(n), i = 1, . . . ,N,


n≥ 0 satisfy Assumption 5.4, for instance, if they are Bernoulli distributed indepen-
dent random variables, Δi(n) =±1 w.p.1/2, ∀i,n, then it follows that


E


[
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))


∣∣∣∣∣θ (n)
]
= 0. (5.19)


The conditional expectation as such can be seen to be obtained in the asymptotic
limit of the algorithm using a martingale argument. However, as we shall subse-
quently see, when the perturbations Δi(n) are not random but are obtained through a
deterministic construction instead, it suffices that some finite sums of the bias terms
tend to zero asymptotically.


In the case of a one-measurement algorithm with parameter θ (n)+ δΔ(n), on
the other hand, a similar calculation shows


J(θ (n)+ δΔ(n))
δΔi(n)


=
J(θ (n))
δΔi(n)


+∇iJ(θ (n))+
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))+O(δ ).


(5.20)
The first and the third terms on the RHS in (5.20) constitute the bias terms. In the
case of random perturbations as described above, the following holds as well in
addition to (5.19):


E


[
J(θ (n))
δΔi(n)


∣∣∣∣θ (n)
]
= 0. (5.21)
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As mentioned before, the quantity δ > 0 is usually chosen to be either a ‘small’
constant or else is slowly diminishing to zero. In either case, the variances of the
estimates depend on δ . Nevertheless, in the case of one-measurement SPSA with
deterministic perturbations, one wants that the bias contributed by the first term on
the RHS of (5.20) tends to zero in addition to that contributed by the third term on
the same RHS.


In general, a deterministic construction for the perturbation sequences should sat-
isfy the following property in the case of two-measurement SPSA algorithms with
both the two-sided balanced estimates (with parameters θ (n)+ δΔ(n) and θ (n)−
δΔ(n), n ≥ 0) as well as the one-sided estimates (with parameters θ (n)+ δΔ(n)
and θ (n), n≥ 0), respectively.


(P.1) There exists a P ∈ N such that for every i, j ∈ {1, . . . ,N}, i �= j and for
any s ∈N,


s+P


∑
n=s


Δi(n)
Δ j(n)


= 0. (5.22)


Further, in the case of one-measurement SPSA (with parameters θ (n) +
δΔ(n), n≥ 0), one requires the following property in addition to (P.1):


(P.2) There exists a P ∈ N such that for every k ∈ {1, . . . ,N} and any s ∈ N,


s+P


∑
n=s


1
Δk(n)


= 0. (5.23)


Property (P.2) is not required to be satisfied by the aforementioned two-
measurement SPSA algorithms while both (P.1) and (P.2) are required for one-
measurement SPSA.


5.5.2 Hadamard Matrix Based Construction


Let H2k , k≥ 1 be matrices of order 2k× 2k that are recursively obtained as:


H2 =


(
1 1
1 −1


)
and H2k =


(
H2k−1 H2k−1


H2k−1 −H2k−1


)
, k > 1.


Such matrices are called normalized Hadamard matrices. These are characterized
by all elements in their first row and column being 1.
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5.5.2.1 Construction for Two-Measurement Algorithms


We now describe the construction of the perturbation sequences in the case when
the gradient estimates have the form (5.17) or (5.18). Let P = 2�log2 N�. (Note that
P≥ N.) Consider now the matrix HP (with P chosen as above). Let h(1), . . . ,h(N),
be any N columns of HP. In case P = N, then h(1), . . . ,h(N), will correspond to all
N columns of HP. Form a matrix H ′P of order P×N that has h(1), . . . ,h(N) as its
columns. Let e(p), p = 1, . . . ,P, be the P rows of H ′P. Now set Δ(n)T = e(n mod
P+ 1), ∀n ≥ 0. The perturbations are thus generated by cycling through the rows
of H ′P with Δ(0)T = e(1),Δ(1)T = e(2), . . . ,Δ(P− 1)T = e(P), Δ(P)T = e(1), etc.
The following result is obvious from the above construction.


Lemma 5.4. The Hadamard matrix based perturbations Δ(n), n ≥ 0 for two-
measurement SPSA algorithms satisfy property (P.1).


Here we give an example for the case when the parameter dimension N is 4. As
per Lemma 5.4, we construct the perturbation sequence Δ(1), . . . ,Δ(4), from H4 as
follows:


Δ(1) = [1,1,1,1]T ,


Δ(2) = [1,−1,1,−1]T ,


Δ(3) = [1,1,−1,−1]T ,


Δ(4) = [1,−1,−1,1]T .


In this particular case where N was a power of 2, we ended up taking the row vectors
of H4 as the perturbations. If N is not a power of 2, the procedure would be similar
to the above, except that we only pick N columns from the matrix HP, where P =
2�log2 N�. It can be easily checked that the perturbations generated above satisfy the
property (P.1).


5.5.2.2 Construction for One-Measurement Algorithms


In the case when the gradient estimates are as in (5.20) and depend on a single
measurement with parameter θ (n)+δΔ(n), the value of P is set to P = 2�log2(N+1)�.
Thus, P≥ N + 1 in this case. Now let h(1), . . . ,h(N) be any N columns of HP other
than the first column. Form the matrix H ′P of order P×N with h(1), . . . ,h(N) as its N
columns. As before, if e(p), p = 1, . . . ,P are the P rows of H ′P, then the perturbation
vectors Δ(n) are obtained again by cycling through the rows of H ′P. The following
result is now easy to verify from the construction.


Lemma 5.5. The Hadamard matrix based perturbations Δ(n), n ≥ 0 for one-
measurement SPSA algorithms satisfy both properties (P.1) and (P.2).


We again consider an example where N = 4. Now, to construct perturbations in this
case for one-simulation algorithms, we first form the normalized Hadamard matrix
H8 as follows:
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H8 =


⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣


1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.


Now, the perturbations Δ(i), i = 1, . . . ,8 can be obtained by taking columns 2− 5
(or any 4 columns except the first) of H8. For instance, taking the rows of columns
2− 5 from H8 above, we obtain:


Δ(1) = [1,1,1,1]T ,


Δ(2) = [−1,1,−1,1]T ,


Δ(3) = [1,−1,−1,1]T ,


Δ(4) = [−1,−1,1,1]T ,


Δ(5) = [1,1,1,−1]T ,


Δ(6) = [−1,1,−1,−1]T ,


Δ(7) = [1,−1,−1,−1]T ,


Δ(8) = [−1,−1,1,−1]T .


Any other choice of four columns other than the first can be seen to work as well.
Properties P.1–P.2 are seen to be satisfied here.


5.5.3 Two-Sided SPSA with Hadamard Matrix Perturbations


Let θ (n) = (θ1(n), . . . ,θN(n))T , n ≥ 0 be a sequence of parameters that are
tuned according to the algorithm below (cf. (5.24)). Also, let Δ(n),n ≥ 0 be a
sequence of perturbations obtained from the Hadamard matrix construction de-
scribed in Section 5.5.2.1. Then, the update rule of the two-sided SPSA algorithm is
given by


θi(n+1)= θi(n)−a(n)


(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n)− δΔ(n),ξ−(n))


2δΔi(n)


)
,


(5.24)
for i = 1, . . . ,N and n≥ 0.
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Remark 5.4. In (5.24), δ is a fixed positive real number. The convergence analysis
of the earlier SPSA schemes established that they converge to the set H of asymp-
totically stable equilibrium points of the corresponding ODE. However, with a fixed
δ , it is later established that (5.24) converges in the limit to a set that can be made
arbitrarily close to H by the choice of δ . Further, a decreasing δ -sequence can also
be incorporated in (5.24) as well as the one-sided and one-measurement variants
discussed in the later sections.


Remark 5.5. The overall flow and the algorithm structure of the two-sided SPSA
(5.24) is similar to Fig. 5.1 and Algorithm 5.1 respectively, except that {Δ(n)} are
obtained here using Hadamard perturbations.


5.5.3.1 Convergence Analysis


Recall that H is the set of globally asymptotically stable equilibria of the ODE
(cf. Assumption 5.6):


θ̇ (t) = L(θ (t)) =−∇J(θ (t)). (5.25)


Given η > 0, let Hη Δ
= {θ ∈C | ‖θ −θ0‖< η , θ0 ∈H} be the set of points that are


within a distance η from the set H. We first provide the main convergence result of
the two-sided SPSA scheme (5.24):


Theorem 5.6. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
θ (n),n≥ 0 obtained according to (5.24) satisfy θ (n)→ Hη almost surely.


In the rest of the section, we provide a sequence of lemmas which would we used to
prove the above theorem. The outline of the steps in the process of proving Theorem
5.6 is as follows:


(i) Using the equivalent update rule (5.26), the associated martingale difference
sequence is extracted and shown to diminish to zero asymptotically.


(ii) Lemmas 5.7 and 5.8 together establish that certain bias terms in the
algorithm obtained upon writing θi(n+P) in terms of θi(n), go to zero asymp-
totically.


(iii) Finally, using suitable Taylor expansions and neglecting the terms correspond-
ing to the bias and the martingale difference, the proof of Theorem 5.6 estab-
lishes that the algorithm (5.26) tracks the ODE (5.25).


(iv) The last step of the proof is proven by invoking the Hirsch lemma.


The formal proof of Theorem 5.6 is provided at the end of this section.
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The update recursion (5.24) could be revised into the following: ∀n ≥ 0, ∀i =
1, . . . ,N,


θi(n+ 1) = θi(n)− a(n)


(
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
+Mi(n+ 1)


)
,


(5.26)


where Mi(n+ 1), n ≥ 0 is a martingale difference sequence for each i = 1, . . . ,N,
with respect to the sigma fields F (n) = σ(θ (m),M1(m), . . . ,MN(m),m ≤ n),
n≥ 0.


We shall analyze (5.26) below. Let Assumptions 5.1, 5.5 and 5.6 continue to hold.
We also make the following assumptions in addition:


Assumption 5.8. The step-sizes a(n),n≥ 0 satisfy the requirements


∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞. (5.27)


Further,
a( j)
a(n)


→ 1 as n→ ∞, for all j ∈ {n,n+ 1, . . . ,n+M} for any given


M > 0.


Assumption 5.9. The sequence (M(n),F (n)), n ≥ 0 forms a martingale dif-
ference sequence. Further, M(n), n≥ 0 are square integrable random variables
satisfying


E[‖M(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0,


for a given constant K > 0.


Note that the initial requirements in Assumption 5.8 are the same as in Assump-
tion 5.7. The last condition in Assumption 5.8 is seen to be satisfied by most dimin-
ishing step-size sequences. Assumption 5.9 is the same as Assumption 3.3.


Remark 5.6. As noted before, each function measurement is, in general, indepen-
dently noise corrupted. Thus, the two measurements corresponding to parameters
θ (n)+ δΔ(n) and θ (n)− δΔ(n) may correspond to X1(n) ≡ J(θ (n)+ δΔ(n)) +
ξ 1(n+1) and X2(n)≡ J(θ (n)−δΔ(n))+ξ 2(n+1), respectively, where ξ 1(n+1),
ξ 2(n+ 1), n ≥ 0 themselves are independent martingale difference sequences. In
such a case,


Mi(n+ 1) =
ξ 1(n+ 1)− ξ 2(n+ 1)


2δΔi(n)
, n≥ 0, i = 1, . . . ,N,
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are also martingale difference sequences since


E
[
Mi(n+ 1) |F (n)


]
= E


[
ξ 1(n+ 1)− ξ 2(n+ 1)


2δΔi(n)
|F (n)


]


=
1


2δΔi(n)


(
E
[
(ξ 1(n+ 1)− ξ 2(n+ 1)) |F (n)


])
= 0. (5.28)


Further, if we assume that


E[|ξ 1(n+ 1)|2 |F (n)]≤ K(1+ ‖θ (n)+ δΔ(n)‖2),


E[|ξ 2(n+ 1)|2 |F (n)]≤ K(1+ ‖θ (n)− δΔ(n)‖2),


then


E


[∣∣∣∣ξ 1(n+ 1)− ξ 2(n+ 1)
2δΔi(n)


∣∣∣∣
2
∣∣∣∣∣F (n)


]
≤C0(1+ ‖θ (n)‖2),


for some C0 > 0 and since δ > 0 is a constant. Moreover, ‖Δ(n)‖ = C1, for
some C1 > 0, ∀n, because Δ(n),n ≥ 0, are vectors with only +1s and −1s. Thus,
Assumption 5.9 holds on Mi(n + 1), n ≥ 0, if a similar requirement holds for
ξ 1(n+ 1),ξ 2(n+ 1),n≥ 0, respectively.


A result similar to Theorem 3.3 would hold if one can show that the bias terms
in the expansion in (5.17) vanish asymptotically in the limit as δ → 0.


Lemma 5.7. Given any fixed integer P > 0, ‖θ (m+k)−θ (m)‖→ 0 w.p. 1, as m→
∞, for all k ∈ {1, . . . ,P}.
Proof. Fix a k ∈ {1, . . . ,P}. Note that the algorithm (5.26) can be rewritten as


θi(n+ k) = θi(n)−
n+k−1


∑
j=n


a( j)


(
J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))


2δΔi( j)


)


−
n+k−1


∑
j=n


a( j)Mi( j+ 1). (5.29)


Thus,


|θi(n+ k)−θi(n)| ≤
n+k−1


∑
j=n


a( j)


∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)


∣∣∣∣
+


∣∣∣∣∣
n+k−1


∑
j=n


a( j)Mi( j+ 1)


∣∣∣∣∣ . (5.30)
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It is easy to see that (for each i = 1, . . . ,N),


Ni(n) =
n−1


∑
j=0


a( j)Mi( j+ 1), n≥ 1,


forms a martingale sequence. Further, it follows from Assumption 5.9 that


n


∑
m=0


E
[
(Ni(m+ 1)−Ni(m))2 |F (m)


]
=


n


∑
m=0


E
[
a(n)2(Mi(n+ 1))2 |F (m)


]


≤
n


∑
m=0


a(n)2K(1+ ‖θ (n)‖2).


From Assumptions 5.8 and 5.5, it follows that the quadratic variation process of
Ni(n),n ≥ 0 converges almost surely. Hence, by the martingale convergence the-
orem (Theorem B.2), it follows that Ni(n),n ≥ 0 converges almost surely. Hence,∣∣∣∣∣
n+k−1


∑
j=n


a( j)Mi( j+ 1)


∣∣∣∣∣→ 0 almost surely as n→ ∞. Now observe that


∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)


∣∣∣∣≤
( |J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))|


2δ |Δi( j)|
)


≤
( |J(θ ( j)+ δΔ( j))|+ |J(θ ( j)− δΔ( j))|


2δ


)
,


since |Δi( j)| = 1,∀ j ≥ 0, i = 1, . . . ,N. Now note that


|J(θ ( j)+ δΔ( j))|− |J(0)| ≤ |J(θ ( j)+ δΔ( j))− J(0)|


≤ B̂‖θ ( j)+ δΔ( j)‖
where B̂ > 0 is the Lipschitz constant of the function J(·). Hence,


|J(θ ( j)+ δΔ( j))| ≤ B̃(1+ ‖θ ( j)+ δΔ( j)‖),


for B̃ = max(|J(0)|, B̂). Similarly,


|J(θ ( j)− δΔ( j))| ≤ B̃(1+ ‖θ ( j)− δΔ( j)‖).


From Assumption 5.5, it follows that


sup
j


∣∣∣∣J(θ ( j)+ δΔ( j))− J(θ ( j)− δΔ( j))
2δΔi( j)


∣∣∣∣≤ K̃ < ∞,


for some K̃ > 0. Thus, from (5.30),
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|θi(n+ k)−θi(n)| ≤ K̃
n+k−1


∑
j=n


a( j)+


∣∣∣∣∣
n+k−1


∑
j=n


a( j)Mi( j+ 1)


∣∣∣∣∣→ 0 a.s. with n→ ∞.


The claim follows. ��


For compact notation, let ∇k(·) = ∂ (·)
∂θk


. For instance ∇kJ(θ (m)) =
∂J(θ (m))


∂θk
.


Lemma 5.8. The following holds for any m≥ 0, k, l ∈ {1, . . . ,N}, k �= l:∥∥∥∥∥
m+P−1


∑
n=m


a(n)
a(m)


Δk(n)
Δl(n)


∇kJ(θ (n))


∥∥∥∥∥→ 0,


almost surely, as m→ ∞.


Proof. From Lemma 5.7, ‖θ (m+ s)− θ (m)‖ → 0 as m→ ∞, for all s = 1, . . . ,P.
Also, from Assumption 5.1, we have ‖∇kJ(θ (m+s))−∇kJ(θ (m))‖→ 0 as m→∞,


for all s = 1, . . . ,P. Now from Lemma 5.4,
m+P−1


∑
n=m


Δk(n)
Δl(n)


= 0 ∀ m≥ 0. Note that by


construction, P is an even positive integer. Hence, one can split any set of the type


A(m)
Δ
= {m,m+ 1, . . . ,m+P− 1} into two disjoint subsets Ak,l(m)+ and Ak,l(m)−


each having the same number of elements, with Ak,l(m)+ ∪Ak,l(m)− = A(m) and


such that
Δk(n)
Δl(n)


takes value +1 on Ak,l(m)+ and−1 on Ak,l(m)−, respectively. Thus,


∥∥∥∥∥
m+P−1


∑
n=m


a(n)
a(m)


Δk(n)
Δl(n)


∇kJ(θ (n))


∥∥∥∥∥


=


∥∥∥∥∥∥ ∑
n∈Ak,l(m)+


a(n)
a(m)


∇kJ(θ (n))− ∑
n∈Ak,l(m)−


a(n)
a(m)


∇kJ(θ (n))


∥∥∥∥∥∥ .
The claim now follows as a consequence of the above and Assumption 5.8 (applied
with M = P− 1). ��
Proof of Theorem 5.6. Note that the recursion (5.26) can be iteratively written as


θi(n+P) = θi(n)−
n+P−1


∑
l=n


a(l)


(
J(θ (l)+ δΔ(l))− J(θ (l)− δΔ(l))


2δΔi(l)
+Mi(l + 1)


)
(5.31)


From (5.17), it follows that


θi(n+P) = θi(n)−
n+P−1


∑
l=n


a(l)∇iJ(θ (l))−
n+P−1


∑
l=n


a(l)
N


∑
j=1, j �=i


Δ j(l)


Δi(l)
∇ jJ(θ (l))


−
n+P−1


∑
l=n


a(l)o(δ )−
n+P−1


∑
l=n


a(l)Mi(l + 1). (5.32)
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Now the third term on the RHS of (5.32) can be rewritten as


a(n)
n+P−1


∑
l=n


a(l)
a(n)


N


∑
j=1, j �=i


Δ j(l)


Δi(l)
∇ jJ(θ (l)) = a(n)ξ 1


i (n),


where ξ 1
i (n) = o(1) from Lemma 5.8. Thus, the algorithm (5.26) can be seen to be


asymptotically analogous to the following algorithm:


θi(n+ 1) = θi(n)− a(n)
(
∇iJ(θ (n))+ o(δ )+Mi(n+ 1)


)
. (5.33)


Now from convergence of the martingale sequence Ni(n), it follows that
∞


∑
l=n


a(l)Mi(l + 1)→ 0 as n→∞, almost surely. The rest now follows from the Hirsch


lemma (Lemma C.5). ��


5.5.4 One-Sided SPSA with Hadamard Matrix Perturbations


As in the case of the two-sided SPSA algorithm in the previous section, assume that
the sequence of perturbations Δ(n),n ≥ 0 is obtained from the Hadamard matrix
construction described in Section 5.5.2.1. Then, the update rule of the one-sided
SPSA algorithm is given by


θi(n+ 1) = θi(n)− a(n)


(
h(θ (n)+ δΔ(n),ξ+(n))− h(θ (n))


δΔi(n)


)
, (5.34)


for i = 1, . . . ,N and n≥ 0.


The above recursion can be seen to be equivalent to:


θi(n+ 1) = θi(n)− a(n)


(
J(θ (n)+ δΔ(n))− J(θ (n))


δΔi(n)
+ M̄i(n+ 1)


)
, i = 1, . . . ,N.


(5.35)
In the above, M̄i(n+ 1), n ≥ 0 is a martingale difference sequence for each i =
1, . . . ,N, with respect to the sigma fields F (n) = σ(θ (m),M̄1(m), . . . ,M̄N(m),m≤
n),n ≥ 0. The conclusions of Remark 5.6 can be seen to hold here as well with
M̄i(n) in place of Mi(n), n≥ 0, i = 1, . . . ,N. The proof of Lemma 5.7 goes through
with minor changes. Further, Lemma 5.8 continues to hold.


Theorem 5.9. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0], θ (n),n≥
0 obtained according to (5.34) satisfy θ (n)→ Hη almost surely.


Proof. The proof follows in a similar manner as Theorem 5.6, except that the Tay-
lor’s series expansion (5.18) is now used instead of (5.17), as a result of which the
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term a(n)o(δ ) in (5.33) is replaced with a(n)O(δ ). The rest follows as in Theo-
rem 5.6. ��


5.5.5 One-Measurement SPSA with Hadamard Matrix
Perturbations


The perturbations Δ(n),n ≥ 0 are obtained here from the Hadamard matrix con-
struction described in Section 5.5.2.2. Recall that this construction results in a per-
turbation sequence with a period P = 2�log2(N+1)� that is, in general, larger than
the corresponding period for the perturbation sequence for two-sided SPSA al-
gorithm. Further, this construction satisfies both properties (P.1) and (P.2). In the
case of two-measurement SPSA algorithms satisfying (P.1) alone was sufficient
to ensure convergence. The update rule of one-measurement SPSA algorithm is
given by


θi(n+ 1) = θi(n)− a(n)


(
h(θ (n)+ δΔ(n),ξ+(n))


δΔi(n)


)
, (5.36)


for i = 1, . . . ,N and δ > 0 as before.


5.5.5.1 Convergence Analysis


The algorithm (5.36) can be seen as equivalent to:


θi(n+ 1) = θi(n)− a(n)


(
J(θ (n)+ δΔ(n))


δΔi(n)
+ M̂i(n+ 1)


)
, (5.37)


where M̂i(n+ 1), n ≥ 0 is a martingale difference sequence for each i = 1, . . . ,N,
with respect to the sigma fields F (n) = σ(θ (m),M̂1(m), . . . ,M̂N(m),m≤ n),n≥ 0.
The conclusions of Remark 5.6 can be seen to hold here as well with M̂i(n) in place
of Mi(n), n≥ 0, i= 1, . . . ,N. The proof of Lemma 5.7 can again be seen to hold with
minor changes. As discussed before in Section 5.5.1, the one-measurement SPSA
algorithms involve additional bias terms in comparison to their two-measurement
counterparts and the following lemma proves that the bias terms that result from a
Taylor series expansion of the second term on the RHS of (5.37) go down to zero
asymptotically in the norm.


Lemma 5.10. The following holds for any m≥ 0, i,k, l ∈ {1, . . . ,N}, k �= l:∥∥∥∥∥
m+P−1


∑
n=m


a(n)
a(m)


1
Δi(n)


J(θ (n))


∥∥∥∥∥ ,
∥∥∥∥∥


m+P−1


∑
n=m


a(n)
a(m)


Δk(n)
Δl(n)


∇kJ(θ (n))


∥∥∥∥∥→ 0,
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as m→ ∞, almost surely.


Proof. From Lemma 5.5, the sequence Δ(n),n≥ 0 obtained as per the construction
described in Section 5.5.2.2 satisfies both (P.1) and (P.2). It can be shown in a similar


manner as Lemma 5.8 that


∥∥∥∥∥
m+P−1


∑
n=m


a(n)
a(m)


Δk(n)
Δl(n)


∇kJ(θ (n))


∥∥∥∥∥→ 0 almost surely as


m→ ∞. Now since J : RN → R is continuously differentiable, it is in particular
continuous. It thus follows from Lemma 5.7 that


‖J(θ (m+ k))− J(θ (m))‖→ 0 as m→ ∞,


for all k ∈ {1, . . . ,P}. It can now be shown in a similar manner as Lemma 5.8 (using
(P.2)) that ∥∥∥∥∥


m+P−1


∑
n=m


a(n)
a(m)


1
Δi(n)


J(θ (n))


∥∥∥∥∥→ 0,


almost surely as m→ ∞. The claim follows. ��
We now have the main convergence result for the one-measurement SPSA with
Hadamard perturbations.


Theorem 5.11. Given η > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
θ (n),n≥ 0 obtained according to (5.37) satisfy θ (n)→ Hη almost surely.


Proof. Note that the recursion (5.37) can be iteratively written as


θi(n+P) = θi(n)−
n+P−1


∑
l=n


a(l)


(
J(θ (l)+ δΔ(l))


δΔi(l)


)
−


n+P−1


∑
l=n


a(l)Mi(l + 1). (5.38)


From (5.20), it follows that


θi(n+P) = θi(n)−
n+P−1


∑
l=n


a(l)∇iJ(θ (l))−
n+P−1


∑
l=n


a(l)
J(θ (l))
δΔi(l)


−
n+P−1


∑
l=n


a(l)
N


∑
j=1, j �=i


Δ j(l)
Δi(l)


∇ jJ(θ (l))−
n+P−1


∑
l=n


a(l)O(δ )


−
n+P−1


∑
l=n


a(l)Mi(l + 1). (5.39)


Now note that


n+P−1


∑
l=n


a(l)
J(θ (l))
δΔi(l)


= a(n)
n+P−1


∑
l=n


a(l)
a(n)


J(θ (l))
δΔi(l)


= a(n)ξ 2
i (n),
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where ξ 2
i (n) = o(1) by Lemma 5.10. Similarly,


n+P−1


∑
l=n


a(l)
N


∑
j=1, j �=i


Δ j(l)


Δi(l)
∇ jh(θ (l)) = a(n)ξ 3


i (n),


with ξ 3
i (n) = o(1) from Lemma 5.10. The rest follows as in Theorem 5.6. ��


5.6 SPSA Algorithms for Long-Run Average Cost Objective


We now present a multi-timescale version of two-measurement SPSA (with random
perturbations) for the case when the underlying process is Markovian and depends
on a parameter. The states of this process can either be directly observed or obtained
through simulation. We will assume for simplicity that the states are simulated even
though the same framework also works for the case of real observations. The single-
stage cost function in this case depends on the (simulated) system state and the goal
is to find a parameter (on which the state depends) that optimizes a long-run average
cost objective. Even though we present here only the two-simulation SPSA with
random perturbations, the analogs of the other SPSA algorithms for the expected
cost criterion presented previously can similarly be described. We now present the
basic framework in more detail below.


5.6.1 The Framework


Let {X(n),n ≥ 1} be an R
d-valued parameterized Markov process with a tunable


parameter θ that takes values in R
N . Let for any given θ ∈ R


N , {X(n)} be ergodic
Markov. Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and
stationary distribution of {X(n)} when θ is the operative parameter. When the pro-
cess is in state x, let h(x) be the single-stage cost incurred. The aim is to find a
θ ∗ ∈ R


N that minimizes (over all θ ) the long-run average cost


J(θ ) = lim
l→∞


1
l


l−1


∑
j=0


h(Xj). (5.40)


5.6.2 The Two-Simulation SPSA Algorithm


Let {X+(n)},{X−(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (θ (n)+ δΔ(n)) and (θ (n)− δΔ(n)), respec-


tively, where Δ(n) Δ= (Δ1(n), . . . ,ΔN(n))T with Δi(n),n ≥ 0, i = 1, . . . ,N satisfying
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Assumption 5.4 and δ > 0 is a given small positive scalar. The algorithm is as fol-
lows: For i = 1, . . . ,N,


θi(n+ 1) =θi(n)− a(n)


(
Z+(n)−Z−(n)


2δΔi(n)


)
, (5.41)


Z+(n+ 1) =Z+(n)+ b(n)
(
h(X+(n))−Z+(n)


)
, (5.42)


Z−(n+ 1) =Z−(n)+ b(n)
(
h(X−(n))−Z−(n)


)
. (5.43)


The quantities Z+(n) and Z−(n) in (5.42)–(5.43) are used to recursively estimate
the long-run average costs corresponding to the simulations {X+(n)} and {X−(n)},
respectively. Because of the difference in timescales with the recursions (5.42)–
(5.43) proceeding on the faster timescale as compared to the recursion (5.41),
the former recursions appear equilibrated when viewed from the timescale of the
latter.


Remark 5.7. In practice, it is usually observed that an additional averaging over L
instants (for some L > 1) of the recursions (5.42)–(5.43) improves performance. In
other words, for practical implementations, it is suggested to run the above recur-
sions for L instants in an inner loop, in between two successive updates of (5.41).
The value of L is however arbitrary. It is generally observed, see for instance,
[7, 3, 4], that a value of L in between 50 and 500 works well. While for our analysis,
we focus on the case of L = 1, the analysis for general L is available in [7].


5.6.3 Assumptions


We make the following assumptions for average cost SPSA algorithms:


Assumption 5.10. The single-stage cost function h :RN×R
k→R is Lipschitz


continuous.


Assumption 5.11. The long-run average cost J(θ ) is continuously differen-
tiable in θ with bounded second derivatives.


Assumptions 5.10 and 5.11 are standard requirements. In particular, Assump-
tion 5.11 is a technical requirement that ensures that the Hessian of the objective
exists and is bounded, and is used to push through suitable Taylor series arguments
in the proof.


Next, let {θ (n)} be a sequence of random parameters obtained using (say) an it-
erative scheme on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m),
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m ≤ n), n ≥ 1 denote a sequence of associated σ -fields. We call {θ (n)} non-
anticipative if for all Borel sets A⊂ R


d ,


P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).


Under a non-anticipative {θ (n)}, the process {(X(n),θ (n))} is Markov. It can
be easily seen that sequences {θ (n)} obtained using the algorithms below are
non-anticipative. We shall assume the existence of a stochastic Lyapunov function
(below).


Assumption 5.12. There exist ε0 > 0, K ⊂ R
d compact and V ∈C(Rd) such


that lim
‖x‖→∞


V (x) = ∞ and under any non-anticipative {θ (n)},


1. sup
n


E[V (X(n))2]< ∞ and


2. E[V (X(n+ 1)) |H (n)]≤V (X(n))− ε0, whenever X(n) �∈ K, n≥ 0.


Assumption 5.12 is required to ensure that the system remains stable under a tunable
parameter. It is not required if the cost function h(·) is bounded in addition. Here
and elsewhere, we let ‖ · ‖ denotes the Euclidean norm.


The algorithm in Section 5.6.2 relies on two different step-size schedules, a(n),
b(n), n≥ 0 that satisfy the following requirements:


Assumption 5.13. The step-sizes a(n),b(n),n ≥ 0 satisfy the following re-
quirements:


∑
n


a(n) =∑
n


b(n) = ∞, (5.44)


∑
n
(a(n)2 + b(n)2)< ∞, (5.45)


lim
n→∞


a(n)
b(n)


= 0. (5.46)


Assumption 5.14. The iterates {θ (n)} stay uniformly bounded, i.e.,
sup


n
‖θ (n)‖< ∞, with probability one.


Assumption 5.14 essentially ensures that the θ -update remains stable. An alternative
here is to assume that θ can only take values in some compact subset C of RN ,
whereby after each update, θ is projected to the set C, thereby enforcing stability.
Such a projection-based scheme is considered in Section 5.6.5.
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5.6.4 Convergence Analysis


Consider the ODE


θ̇ (t) =−∇J(θ (t)), (5.47)


which is the same as (5.6), except that J(·) is now defined according to (5.40). Let
F = {θ | ∇J(θ ) = 0} be the set of fixed points of (5.47). Further, let H ⊂ F be
the set of globally asymptotically stable attractors of (5.47). Also, given ε > 0, let
Hε = {θ | ‖θ −θ0‖< ε,θ0 ∈H} denotes the ε-neighborhood of the set H. We give
first the main convergence result for the algorithm (5.41)-(5.43).


Theorem 5.12. Under Assumptions 5.10–5.14, given ε > 0, there exists a δ0 >
0 such that the sequence of parameter iterates θ (n),n ≥ 0 satisfy θ (n)→ Hε


with probability one as n→ ∞.


The proof of Theorem 5.12 involves steps similar to those used for proving Theorem
5.6, except that in this case of the long-run average cost setting, it is also necessary
to establish that the iterates Z+(·) and Z−(·) asymptotically converge to the average
cost estimates J(θ (n)+ δΔ(n) and J(θ (n)− δΔ(n), respectively. We will address
the latter in Lemma 5.16. Further, Lemma 5.19 will establish using suitable Taylor
expansions that the conditional average of the SPSA estimate, i.e.,


E


[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
|F (n)


]


is asymptotically close to the gradient of the objective function J(θ (n)). The final
step is again to invoke Hirsch lemma to complete the proof. The formal proof of
Theorem 5.12 is provided at the end of this section.


Let G (n) = σ(θ (p),X+(p),X−(p),Δ(p), p ≤ n), n ≥ 1, denote σ -fields gener-
ated by the quantities above. Define sequences N+(p),N−(p), p ≥ 0 as follows:


N+(p) =
p


∑
m=1


b(m)
(
h(X+(m))−E


[
h(X+(m)) | G (m− 1)


])
,


N−(p) =
p


∑
m=1


b(m)
(
h(X−(m))−E


[
h(X−(m)) | G (m− 1)


])
,


respectively.


Lemma 5.13. The sequences (N+(p),G (p)), (N−(p),G (p)), p ≥ 0 are almost
surely convergent martingale sequences.


Proof. We show the proof for the case of N+
p , p ≥ 0 as the same for N−p , p ≥ 0 is


completely analogous. It is easy to see that almost surely, E[N+(p+ 1) | G (p)] =
N+(p), for all p≥ 0. Now note that
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E[(N+(p))2]≤Cp


p


∑
m=1


b2(m)(E[h2(X+(m))+E2[h(X+(m)) | G (m− 1)]]),


for some constant Cp > 0 (that however depends on p). For the second term on RHS
above, note that by the conditional Jensen’s inequality, we have that almost surely,


E2[h(X+(m)) | G (m− 1)]≤ E[h2(X+(m)) | G (m− 1)].


Hence,


E[(N+(p))2]≤ 2Cp


p


∑
m=1


b2(m)E[h2(X+(m))].


Now, since h(·) is a Lipschitz continuous function, we have


|h(X+(m))|− |h(0)| ≤ |h(X+(m))− h(0)| ≤ K‖X+(m)‖,


where K > 0 is the Lipschitz constant. Thus,


|h(X+(m))| ≤C1(1+ ‖X+(m)‖),


for C1 = max(K, |h(0)|)< ∞. Hence, one gets


E[h2(X+(m))]≤ 2C2
1(1+E[‖X+(m)‖2]).


As a consequence of Assumption 5.12, supm E[‖X+(m)‖2] < ∞. Thus,
E[(N+(p))2]< ∞, for all p≥ 1. Now note that


∑
p


E[(N+(p+ 1)−N+(p))2 | G (p)]≤∑
p


b2(p+ 1)(E[h2(X+(p+ 1)) | G (p)]


+E[
(
E[h(X+(p+ 1)) | G (p)]


)2 | G (p)])


≤∑
p


2b2(p+ 1)E[h2(X+(p+ 1)) | G (p)],


almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumption 5.12, that


sup
p


E[h2(X+
p+1) | G (p)]< ∞ w.p.1.


Hence,


∑
p


E[(N+(p+ 1)−N+(p))2 | G (p)]< ∞


almost surely. Thus, by the martingale convergence theorem (Theorem B.2),
N+(p), p ≥ 0 is an almost surely convergent martingale sequence. ��
Lemma 5.14. The updates Z+(p),Z−(p), p ≥ 0 are uniformly bounded with prob-
ability one.
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Proof. We show the proof for the updates Z+(p), p ≥ 0 as the same for the other
sequence is completely analogous. Note that (5.42) can be rewritten as


Z+(p+ 1) = Z+(p)+ b(p)(E[h(X+
p ) | G (p− 1)]−Z+(p))


+ b(p)(h(X+
p )−E[h(X+


p ) | G (p− 1)]). (5.48)


From Lemma 5.13, N+(p)→ N+(∞)< ∞ almost surely. Hence,


∑
p


b(p)(h(X+
p )−E[h(X+


p ) | G (p− 1)])< ∞, a.s.


Thus, it is enough to show the uniform boundedness of the following alternate re-
cursion:


Z+(p+ 1) = Z+(p)+ b(p)(E[h(X+
p ) | G (p− 1)]−Z+(p)).


Note that
|E[h(X+


p ) | G (p− 1)]| ≤ E[|h(X+
p )| | G (p− 1)]


≤C1(1+E[‖X+
p ‖ | G (p− 1)])


< ∞,


almost surely. The first inequality above follows from the conditional Jensen’s in-
equality, while the second inequality follows as a consequence of the function h
being Lipschitz continuous, see the proof in Lemma 5.13. Further, the last inequal-
ity follows from Assumption 5.12. The claim now easily follows from the Borkar
and Meyn theorem (Theorem D.1). ��
Now define two sequences of time points {s(n)} and {t(n)}, respectively, as follows:


s(0) = t(0) = 0, s(n) =
n−1


∑
j=0


a( j) and t(n) =
n−1


∑
j=0


b( j), n≥ 1. Then, the timescale cor-


responding to {s(n)} (resp. {t(n)}) is the slower (resp. faster) of the two timescales.
Consider the following system of ordinary differential equations (ODEs):


θ̇ (t) = 0, (5.49)


Ż+(t) = J(θ (t)+ δΔ(t))−Z+(t), (5.50)


Ż−(t) = J(θ (t)− δΔ(t))−Z−(t). (5.51)


From Lemma 5.14, sup
n
|Z+(n)|, sup


n
|Z−(n)|<∞ almost surely. Consider the func-


tions Ẑ+(t), Ẑ−(t) defined according to Ẑ+(t(n)) = Z+(n) and Ẑ−(t(n)) = Z−(n)
with the maps t→ Ẑ+(t) and t→ Ẑ−(t) corresponding to continuous linear interpo-
lations on the intervals [t(n), t(n+ 1)].


Given T̄ > 0, define {T̄ (n)} as follows: T̄ (0) = 0 and for n≥ 1, T̄ (n) =min{t(m)
| t(m)≥ T̄ (n− 1)+ T̄}. Let Ī(n) = [T̄ (n), T̄ (n+ 1)]. It is clearly the case that there
exists some integer q(n)> 0 such that T̄ (n) = t(q(n)).
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Define also the functions θ n(t),Z+,n(t),Z−,n(t), t ∈ I(n), n≥ 0, that are obtained
as trajectories of the following ODEs:


θ̇ n(t) = 0, (5.52)


Ż+,n(t) = J(θ (t)+ δΔ(t))−Z+,n(t), (5.53)


Ż−,n(t) = J(θ (t)− δΔ(t))−Z−,n(t), (5.54)


with θ n(T̄ (n)) = θ (q(n)), Z+,n(T̄ (n)) = Ẑ+(t(q(n)))= Z+(q(n)) and Z−,n(T̄ (n))=
Ẑ−(t(q(n))) = Z−(q(n)), respectively. Further, Δ(t) Δ= (Δ1(t), . . . ,ΔN(t))T is de-
fined according to Δ(t) = Δ(n), for t ∈ [s(n),s(n+ 1)).


Let θ̂ (t), Ẑ+(t), Ẑ−(t), t ≥ 0 be defined according to θ̂(t(n)) = θ (n), Ẑ+(t(n)) =
Z+(n) and Ẑ−(t(n)) = Z−(n), n≥ 0 with continuous linear interpolation in between
points, i.e., for all t ∈ (t(n), t(n+ 1)),n≥ 0.


Lemma 5.15. Given T̄ ,ε > 0, (θ̂ (t(n)+ ·), Ẑ+(t(n)+ ·), Ẑ−(t(n)+ ·)), is a bounded
(T̄ ,ε)-perturbation of (5.49)-(5.51) for n sufficiently large.


Proof. Note that the recursion (5.41) can be rewritten as follows: For i = 1, . . . ,N,


θi(n+ 1) = θi(n)− b(n)ξ̄i(n), (5.55)


where ξ̄i(n) =
a(n)
b(n)


(
Z+(n)−Z−(n)


2δΔi(n)


)
= o(1) because a(n) = o(b(n)) from


Assumption 5.13.
Now note that the recursion (5.42) can be rewritten as


Z+(n+ 1) = Z+(n)+ b(n)(J(θ (n)+ δΔ(n))+ ξ+1 (n)+ ξ+2 (n)−Z+(n)), (5.56)


where ξ+1 (n) = E[h(X+(n)) | Gn−1]− J(θ (n)+ δΔ(n)) and ξ+2 (n),n≥ 1 is the mar-
tingale difference ξ+2 (n) = h(X+(n))−E[h(X+(n)) | Gn−1], respectively. Recall that
T̄ (n) = t(q(n)). Also, let T̄ (n+ 1) = t(q(n+ 1)). Then, from Lemma 5.13,


q(n+1)


∑
j=q(n)


b( j)ξ+2 ( j)→ 0 as n→ ∞.


Now ξ+1 (n)→ 0 as n→ ∞ almost surely because {X+(n)} is ergodic Markov for a
fixed parameter. Hence, the Markov noise vanishes on the ‘natural’ timescale where
t(n) = n that is faster than the timescale of the algorithm as in the latter, t(n)− t(n−
1)→ 0 as n→ ∞. Thus, the algorithm will see the averaged effect of the iterate on
the natural timescale, see Section 6.2 of [9] for a detailed treatment of averaging on
the natural timescale. It is thus easy to see that with probability one,


lim
n→∞ sup


t∈Ī(n)
‖Z+,n(t)− Ẑ+(t)‖= 0.


A similar argument holds for the recursion Z−(n),n≥ 0. The claim follows. ��
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Lemma 5.16. As n→ ∞, we have with probability one,


‖Z+(n)− J(θ (n)+ δΔ(n))‖, ‖Z−(n)− J(θ (n)− δΔ(n))‖→ 0.


Proof. Follows from Lemma 5.15 and an application of the Hirsch lemma
(Lemma C.5) for every ε > 0. ��
We now concentrate on the slower timescale recursion. Let F (n) = σ(X+(n),
X−(n), θ (m), m ≤ n;Δ(m),m < n),n ≥ 1, be a sequence of sigma fields. One can
rewrite (5.41) as


θi(n+ 1) =θi(n)− a(n)


(
E


[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
|F (n)


]


+ ζ 1
i (n)+ ζ


2
i (n)


)
, (5.57)


where


ζ 1
i (n) =


J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


−E


[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
|F (n)


]
,


ζ 2
i (n) =


Z+(n)−Z−(n)
2δΔi(n)


− J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


,


respectively.


Let χi(n),n≥ 0 be defined according to χi(n) =
n


∑
m=0


a(m)ζ 1
i (m).


Lemma 5.17. The sequence (χi(n),F (n)),n≥ 0 forms a convergent martingale se-
quence.


Proof. It is easy to see that (χi(n),F (n)),n ≥ 0 forms a martingale sequence.


By Assumption 5.14, M(w)
Δ
= supn ‖θ (n)‖ < ∞ w.p.1. Here w denotes the par-


ticular sample point in the probability space corresponding to the given θ (n)-
trajectory. Note that θ (n),n ≥ 0 take values in the sample-path-dependent compact
set D(w) = {θ | ‖θ‖ ≤ M(w)}. Now as a consequence of Assumption 5.11, since
θ (n)∈D(w),∀n, sup


n
|ζ 1


i (n)|< ∞. Further, since P(w |M(w)<∞) = 1, we have that


sup
n
|ζ 1


i (n)|< ∞ with probability one. It is now easy to see from an application of


the martingale convergence theorem (Theorem B.2) that {χi(n)} converges almost
surely. ��
Lemma 5.18. As n→ ∞, ζ 2


i (n)→ 0 with probability one.


Proof. The proof follows easily from Lemma 5.16. ��
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Lemma 5.19. With probability one,∣∣∣∣E
[


J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


|F (n)


]
−∇iJ(θ (n))


∣∣∣∣→ 0,


as δ → 0.


Proof. It follows from suitable Taylor series expansions of J(θ (n) + δΔ(n)) and
J(θ (n)− δΔ(n)) around the point θ (n) that


J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))
2δΔi(n)


= ∇iJ(θ (n))


+
N


∑
j=1, j �=i


Δ j(n)


Δi(n)
∇ jJ(θ (n))+ o(δ ).


It follows from the properties of Δ j(n), j = 1, . . . ,N that


E


[
J(θ (n)+ δΔ(n))− J(θ (n)− δΔ(n))


2δΔi(n)
|F (n)


]
= ∇iJ(θ (n))+ o(δ ).


The claim follows. ��
In a similar manner as (5.57), one can now rewrite (5.41) as


θi(n+ 1) = θi(n)− a(n)
(
∇iJ(θ (n))+ ζ 3


i (n)+ ζ
1
i (n)+ ζ


2
i (n)


)
, (5.58)


where, as a consequence of Lemma 5.19,


ζ 3
i (n)


Δ
= E


[
J(θ (n)+δΔ (n))−J(θ (n)−δΔ (n))


2δΔi(n)
|F (n)


]
−∇iJ(θ (n))→ 0 as n→ ∞.


Proof of Theorem 5.12. Recall that the recursions (5.41) can be rewritten as (5.58).
Now define θ̄ (t), t ≥ 0 according to θ̄ (t) = θ (n) for t ∈ [s(n),s(n+ 1)). As a con-
sequence of Lemmas 5.17–5.19, θ̄ (t) can be viewed as a (T,γ)–perturbation of the
ODE (5.47). The claim now follows by the Hirsch lemma (Lemma C.5). ��


5.6.5 Projected SPSA Algorithm


We now consider the case when after each update, the parameter θ is projected
onto a compact and convex subset C of RN . This ensures that the parameter up-
dates remain stable as they do not escape the set C and thus Assumption 5.14
is automatically satisfied. Let Γ : RN → C denotes an operator that projects any
x = (x1, . . . ,xN)


T ∈RN to its nearest point in C. In particular, if x∈C, then Γ (x)∈C
as well. For given x = (x1, . . . ,xN)


T ∈ R
N , one may identify Γ (x) via the tuple
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Γ (x) = (Γ1(x1), . . . ,ΓN(xN))
T for suitable R-valued operators Γ1, . . . ,ΓN . We con-


sider here the projected variant of the two-simulation (two-sided) SPSA algorithm
for the long-run average cost objective that was presented in Section 5.6. A detailed
treatment of projected stochastic approximation can be found in [19] and has been
summarized in Appendix E.


Let {X+(n)},{X−(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (θ (n)+ δΔ(n)) and (θ (n)− δΔ(n)), respec-


tively, where Δ(n) Δ= (Δ1(n), . . . ,ΔN(n))T with Δi(n),n ≥ 0, i = 1, . . . ,N satisfying
Assumption 5.4 and δ > 0 is a given small positive scalar. The algorithm is as
follows:


For i = 1, . . . ,N,


θi(n+ 1) =Γi


(
θi(n)− a(n)


(
Z+(n)−Z−(n)


2δΔi(n)


))
, (5.59)


Z+(n+ 1) =Z+(n)+ b(n)
(
h(X+(n))−Z+(n)


)
, (5.60)


Z−(n+ 1) =Z−(n)+ b(n)
(
h(X−(n))−Z−(n)


)
. (5.61)


Note that recursions (5.60)-(5.61) are the same as (5.42)-(5.43). Hence, the anal-
ysis of these recursions proceeds along the same lines as the latter (described in
Section 5.6).


Let C (C) denotes the space of all continuous functions from C to R
N . The oper-


ator Γ̄ : C (C)→ C (RN) is defined according to


Γ̄ (v(x)) = lim
η→0


(
Γ (x+ηv(x))− x


η


)
, (5.62)


for any continuous v : C→ R
N . The limit in (5.62) exists and is unique since C is


a convex set. In case the limit does not exist, one may consider the set of all limit
points of (5.63). From its definition, Γ̄ (v(x)) = v(x) if x ∈Co (the interior of C). By
an abuse of notation, let H denote the set of all asymptotically stable attractors of
the ODE (5.63) and Hε be the ε-neighborhood of H (given ε > 0).


θ̇ (t) = Γ̄ (−∇J(θ (t))). (5.63)


Theorem 5.20. Under Assumptions 5.10–5.13, given ε > 0, there exists a δ0 >
0 such that the sequence of parameter iterates θ (n),n ≥ 0 satisfy θ (n)→ Hε


with probability one as n→ ∞.


Proof. The result follows from the Kushner and Clark theorem (see Theorem E.1).
The assumptions there are seen to hold here, see Remark E.1. ��
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5.7 Concluding Remarks


In this chapter, we described the idea of simultaneous perturbation for estimating
the gradient of an objective function, for both the expected as well as the long run
average cost settings. Using two alternative constructions - random and Hadamard
matrix-based - several SPSA algorithms including the one-measurement variants
were presented. Detailed convergence proofs were given for the various algorithms
discussed. The SPSA algorithms along with the smoothed functional algorithms
presented in the next chapter are widely applied gradient estimation techniques in
a variety of applications, some of which are discussed in the later chapters of this
book. This is probably because these algorithms are simple and can be implemented
in an on-line manner; further, they require very less computational resources and are
provably convergent.
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Chapter 6
Smoothed Functional Gradient Schemes


6.1 Introduction


We studied the gradient SPSA algorithm in Chapter 5. A remarkable feature of that
algorithm is that it estimates the gradient of the objective by simultaneously per-
turbing all parameter components and requires only one or two measurements of
the objective function for this purpose. Smoothed functional (SF) algorithms also
belong to the class of simultaneous perturbation methods, because they update the
gradient/Hessian of the objective using function measurements involving parameter
updates that are perturbed simultaneously in all component directions. The SF gra-
dient estimates were originally developed by Katkovnik and Kulchitsky [7, 8]. The
original idea was to approximate the gradient of expected performance by its convo-
lution with a multivariate Gaussian distribution. This results in the objective func-
tion getting smoothed because of the convolution. The objective function smoothing
that results from the convolution with a smoothing density function can in fact help
the algorithm to converge to a global minimum or to a point close to it. This fact
has been observed in [9]. We illustrate this in Fig. 6.1. As shown in the Figure, the
smoothing might offset the global minimum slightly. But that problem is more than
compensated by the fact that other local minima may have disappeared because of
the smoothing.


While the original SF algorithm in [7] uses only one simulation, in [9] and [5],
a related two-simulation SF algorithm based on a finite difference gradient estimate
is presented. The latter algorithm has been shown in [9] to have lower variability
as compared to the one-simulation SF algorithm. It has been observed in [8] that
the Cauchy and the Uniform density functions can also be used for the perturbation
random variables in addition to Gaussian.


The objective function used in the aforementioned references that discuss the
SF algorithm is largely an expectation over noisy cost samples. In [3, 2], the SF
algorithm with Gaussian perturbations has been explored when the objective is a


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 77–102.
springerlink.com © Springer-Verlag London 2013
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Fig. 6.1 A sample function f (·) with multiple local minima and a global minimum and its
convolution with a Gaussian density of standard deviation β = 0.08. Here, we use ‘◦′ to
denote the convolution operation.


long-run average cost function and the basic underlying process is an ergodic
Markov process for any given parameter value. In [2], two different Hessian esti-
mates for the objective function using the smoothed functional technique have been
obtained as well. It is interesting to note that these (Hessian estimates) also require
only one and two system simulations, which are the same as those used to esti-
mate the gradients. We discuss the Hessian estimators and the resulting Newton
SF algorithms in Chapter 8. The focus of the current chapter is on the gradient SF
algorithms.


The remaining part of this chapter is organized as follows: In Section 6.2, we
present for the expected cost objective, the SF gradient algorithm with perturba-
tions distributed according to the Gaussian distribution. In Section 6.3, we present
general conditions for any candidate p.d.f. to be used for smoothing and hence
gradient estimation. Cauchy density function satisfies the necessary properties for
smoothing and also offers better exploration of the parameter space owing to its
more heavy tailed nature in comparison to Gaussian density. In Section 6.4, we
present SF algorithms using Cauchy density for smoothing. In Section 6.5, we dis-
cuss multi-timescale versions of Gaussian SF algorithms for the long-run average
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cost objective including a variant with projection. Finally, we present the concluding
remarks in Section 6.6.


6.2 Gaussian Based SF Algorithm


We consider here the expected cost objective where the objective function is J(θ ) =
Eξ [h(θ ,ξ )], where h(θ ,ξ ) denotes a noisy measurement of J(θ ) with ξ as the noise
that is assumed to be zero mean and independent of θ . Also, as in previous chapters,


we let L(θ ) = ∇J(θ ). Note that the parameter vector θ is N-dimensional, i.e., θ �=
(θ1,θ2, . . . ,θN)


T ∈R
N .


Gaussian-based SF techniques, originally developed by [7], have been proposed
for solving stochastic optimization problems. Section 6.2.1 discusses the basic idea
of smoothing the gradient of a function using a Gaussian density. The Gaussian SF
algorithm using this basic idea is then discussed in Section 6.2.2 followed by its
detailed convergence analysis in Section 6.2.3.


6.2.1 Gradient Estimation via Smoothing


We first illustrate the idea of obtaining an estimate of the gradient of the objective
function J : RN →R using a Gaussian density function for smoothing. Later, we ex-
tend this idea to the case when Cauchy density is used for the purpose of smoothing.
The gradient estimate that we describe now requires only one measurement with a
certain perturbed parameter update.


The SF estimate of the gradient of an N-dimensional objective is obtained by the
following steps:


• Define the SF estimate as the convolution of a multivariate Gaussian density
with the gradient of the objective function. This step is illustrated in Fig. 6.1,
where a sample function f (·) is convolved with a Gaussian random variable
with mean 0 and variance β = 0.08.


• Argue that the same is equivalent to expectation of product of a scaling term
and the objective with perturbed parameter where the perturbation is with a
multivariate standard Gaussian random vector. The scaling term is a function of
the multivariate standard Gaussian random vector itself.


• In the limit as the spread parameter (denoted β below) goes to zero, the SF
estimate becomes equal to the true gradient of the objective.


In what follows, we make this intuition precise. For some scalar constant β > 0, let


Dβ ,1J(θ ) =
∫


Gβ (θ −η)∇ηJ(η)dη (6.1)







80 6 Smoothed Functional Gradient Schemes


be the convolution of the gradient of the objective function J(·) with the N-
dimensional multivariate Gaussian density function Gβ (·) (i.e., the p.d.f. of N in-
dependent N(0,β 2)-distributed Gaussian random variables) defined by


Gβ (θ −η) =
1


(2π)N/2βN
exp


(
−1


2


N


∑
i=1


(θi−ηi)
2


β 2


)
,


where θ ,η ∈ R
N with η �= (η1, . . . ,ηN)


T . The quantity Dβ ,1J(θ ) can be viewed as
a smoothed gradient of the objective, which in fact converges to the true gradient
(∇J(θ )) in the limit as β → 0.


Integrating by parts in (6.1), it is easy to see that


Dβ ,1J(θ ) = −
∫
∇ηGβ (θ −η)J(η)dη


=


∫
∇ηGβ (η)J(θ −η)dη . (6.2)


It is easy to verify that ∇ηGβ (η) =
−η
β 2 Gβ (η). Substituting the last and η ′ =


η
β


in


(6.2), one obtains


Dβ ,1J(θ ) =
1
β


∫
−η ′ 1


(2π)N/2
exp


(
−1


2


N


∑
i=1


(η ′i )
2


)
J(θ −βη ′)dη ′. (6.3)


In the above we use the fact that η = βη ′ = (βη ′1, . . . ,βη ′N)T (written component-
wise), and hence dη = βNdη ′1 · · ·dη ′N = βNdη ′. Upon substituting η̄ = −η ′, one
obtains


Dβ ,1J(θ ) = E


[
1
β
η̄J(θ +βη̄)


]
, (6.4)


where the expectation above is taken w.r.t. the N-dimensional multivariate Gaussian
p.d.f.


G(η̄) =
1


(2π)N/2
exp


(
−1


2


N


∑
i=1


(η̄i)
2


)
,


with β = 1 (i.e., the joint p.d.f. of N independent N(0,1)-distributed random
variables).


The form of the gradient estimator suggested by (6.4) (for a large positive integer
M and a small scalar β > 0) is


∇J(θ )≈ 1
β


1
M


M


∑
n=1
η(n)J(θ +βη(n)). (6.5)
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Here η(n) �=(η1(n), . . . ,ηN(n))T , with ηi(n), i= 1, . . . ,N, n≥ 0, being independent
N(0,1)-distributed random variables.


6.2.2 The Basic Gaussian SF Algorithm


In this section, we discuss an incremental gradient descent algorithm that finds the
optimal parameter θ that minimizes the expected cost objective. The basic SF algo-
rithm’s update rule is given by


θi(n+ 1) = θi(n)− a(n)


(
ηi(n)
β


h(θ (n)+βη(n),ξ (n))
)
, (6.6)


for i = 1, . . . ,N and β > 0.


In the above, η(n) = (η1(n), . . . ,ηN(n))T , n≥ 0, denotes a sequence of independent
N(0,1)-distributed random variables η1(n), . . . ,ηN(n), n≥ 0.


The term in brackets in the above update rule is motivated by the smoothed gra-
dient estimator Dβ ,1 in (6.4). While (6.4) has an expectation, in (6.6) a sample eval-
uation of the estimate is used following the idea from (6.5). This coupled with the
fact that a stochastic approximation algorithm sees the asymptotic average ensures
that we are indeed performing a negative descent in the long run w.r.t. the objective
function J(·). In fact, we prove later in Section 6.2.3 that the above recursion (6.6)
eventually tracks the ODE,


θ̇ (t) =−∇J(θ (t)). (6.7)


The algorithm flow is diagrammatically described in Fig. 6.2. As evident in (6.4),
each step of the algorithm (6.6) involves a perturbed simulation using the parameter
θ + βη , and the output of the simulation is used to tune the parameter θ in the
negative gradient descent direction. An algorithmic view of the basic SF scheme is
provided in Algorithm 6.1.


θ (n) +


p(n)


h(θ (n)+ p(n),ξ (n)) UpdateRule(·) θ (n+1)


Fig. 6.2 Overall flow of the basic SF algorithm.
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Algorithm 6.1 The Complete Algorithm Structure
Input:


• R, a large positive integer representing the number of iterations;
• θ (0), initial parameter vector;
• β > 0 is a fixed smoothing control parameter;
• K ≥ 1 is fixed integer used to control the duration of the average cost accu-


mulation (c.f. (12.10));
• {η(n),n≥ 1}, N-dimensional i.i.d. Gaussian random variables.
• UpdateRule(), the stochastic update rule (6.6).
• Simulate(θ )→ X , the simulator of the system. X represents the state of the


underlying Markov process at the end of the simulation.


Output: θ ∗, the parameter vector after R iterations.


θ ← θ (0), n← 1
loop


X̂ ← Simulate(θ +βη(n)).
θ ←UpdateRule(X̂ ,θ ).
if n = R then


Terminate with θ .
end if
n← n+ 1.


end loop


6.2.3 Convergence Analysis of Gaussian SF Algorithm


The basic SF algorithm (6.6) can be rewritten as follows: For i = 1, . . . ,N, n≥ 0,


θi(n+ 1) = θi(n)− a(n)
ηi(n)
β


(J(θ (n)+βη(n))+ χ(n)), (6.8)


where
χ(n) = h(θ (n)+βη(n),ξ (n))− J(θ (n)+βη(n)).


Let F (n) = σ(θ (m),χ(m),m≤ n;η(m),m < n), n > 0 be a sequence of associated
sigma fields. Now (χ(n),F (n)), n ≥ 0 can be seen to be a martingale difference
sequence. Next consider


M̂i(n+ 1) =
ηi(n)
β


χ(n).


It is easy to see that E
[
M̂i(n+ 1) |F (n)


]
= 0, ∀n≥ 0. Thus, (6.8) can be rewritten


as


θi(n+ 1) = θi(n)− a(n)


(
ηi(n)
β


J(θ (n)+βη(n))+ M̂i(n+ 1)


)
, (6.9)
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where (M̂i(n),F (n)),n ≥ 0 are suitable martingale difference sequences,
i = 1, . . . ,N.


We now analyze the algorithm (6.9) under the following assumptions:


Assumption 6.1. The function J : RN → R is Lipschitz continuous and con-
tinuously differentiable with bounded second derivatives.


Assumption 6.2. The sequence (M̂i(n),F (n)), n ≥ 0 forms a martingale
difference sequence. Further, (M̂i(n), n≥ 0) are square integrable random vari-
ables satisfying


E[‖M̂i(n+ 1)‖2 |F (n)]≤ K(1+ ‖θ (n)‖2) a.s., n≥ 0,


for a given constant K > 0.


Assumption 6.3. The step-sizes a(n),n≥ 0 satisfy the requirements


∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞. (6.10)


Assumption 6.4. The iterates (6.9) remain almost surely bounded, i.e.,


sup
n
‖θ (n)‖< ∞, a.s. (6.11)


Assumption 6.5. The ODE (6.7) has H as a compact set of globally asymp-
totically stable equilibria.


Given ε > 0, let Hε denote the set of points that are in an open ε-neighborhood of
H, i.e.,


Hε = {θ | ‖θ −θ0‖< ε, θ0 ∈H}.
The main convergence result of the SF scheme (6.9) is as follows:


Theorem 6.1. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 >
0, such that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.9) satisfy
θ (n)→ Hε almost surely as n→ ∞.


In order to prove Theorem 6.1, we provide a sequence of Lemmas and Proposi-
tions in the following order:


(i) Proposition 6.2 and Lemma 6.3 together analyze the martingale difference
sequence associated with the algorithm (6.9). Lemma 6.4 shows that the re-
sulting martingale is almost surely convergent.
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(ii) Proposition 6.5 establishes that the conditional average of the SF estimate, i.e.,


E
[
η(n)
β J(θ (n)+βη(n)) |F (n)


]
is asymptotically close to the gradient of the


objective function J(θ (·)).
(iii) Proposition 6.6 proves that the interpolated trajectory θ̄(t) of the algorithm


(6.9) tracks the ODE (6.7).
(iv) The last step of the proof is proven by invoking the Hirsch lemma.


The formal proof of Theorem 6.1 is given at the end of this section.
Note that (6.9) can be rewritten as


θi(n+1) = θi(n)−a(n)


(
E


[
ηi(n)
β


J(θ (n)+βη(n)) |F (n)


]
+ M̄i(n+1)+ M̂i(n+1)


)
,


(6.12)


where M̄i(n+ 1) =
ηi(n)
β


J(θ (n)+βη(n))−E


[
ηi(n)
β


J(θ (n)+βη(n)) |F (n)


]
.


Proposition 6.2. We have that (M̄i(n),F (n)),n ≥ 0 is a martingale difference se-
quence with


E
[|M̄i(n+ 1)|2 |F (n)


] ≤ K̂
(
1+ ‖θ (n)‖2) , ∀n≥ 0,


for some K̂ > 0.


Proof. It is easy to see that (M̄i(n),F (n)),n ≥ 0 is a martingale difference se-
quence. Now note that


E
[|M̄i(n+ 1)|2 |F (n)


] ≤ 2


(
E
[
η2


i (n)
β 2 J2(θ (n)+βη(n)) |F (n)


]
+E


[
E
[
ηi(n)
β J(θ (n)+βη(n)) |F (n)


]2 |F (n)


])
≤ 4E


[
η2


i (n)
β 2 J2(θ (n)+βη(n)) |F (n)


]
.


⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭


(6.13)


The first inequality above follows because for any x,y ∈ R, (x− y)2 ≤ 2(x2 + y2),
while the second inequality follows from the conditional Jensen’s inequality.


From Assumption 6.1, J(·) is Lipschitz continuous. Hence,


|J(θ )|− |J(0)| ≤ |J(θ )− J(0)| ≤ L̂‖θ‖,


where L̂ > 0 is the Lipschitz constant of the function J(·). Hence,


|J(θ )| ≤C0(1+ ‖θ‖),


where C0 = max(|J(0)|, L̂)> 0. Hence,


J2(θ )≤C2
0(1+ ‖θ‖)2≤ 2C2


0(1+ ‖θ‖2),
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where we use the inequality that for any x,y ∈ R, (x + y)2 ≤ 2(x2 + y2). It now
follows from (6.13) that


E
[|M̄i(n+ 1)|2 |F (n)


]≤ 8C2
0


β 2 E
[
η2


i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]
. (6.14)


Now, note that


‖θ (n)+βη(n)‖2 = (θ (n)+βη(n))T (θ (n)+βη(n))


= ‖θ (n)‖2 +β 2‖η(n)‖2 + 2βθ (n)Tη(n).


Hence,


E
[
η2


i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]


= E
[
η2


i (n)(1+ ‖θ (n)‖2+β 2‖η(n)‖2 + 2βθ (n)Tη(n) |F (n)
]


= 1+ ‖θ (n)‖2+β 2E
[
∑ j �=iη2


j (n)η2
i (n)+η4


i (n)
]


+2βθ (n)T E
[
∑ j �=iη2


i (n)η j(n)+η3
i (n)
]
.


(6.15)


In the above, we make use of the fact that θ (n) is measurable F (n) while
η(n) is independent of F (n). Moreover, η j(n), j = 1, . . . ,N,n ≥ 0 are
independent random variables. We now make use of the fact that E[η j(n)] =
E[η3


j (n)] = 0, E[η2
j (n)] = 1 and E[η4


j (n)] = 3, j = 1, . . . ,N,n ≥ 0. Thus, (6.15)
can be rewritten as


E
[
η2


i (n)(1+ ‖θ (n)+βη(n)‖2) |F (n)
]
= 1+ ‖θ (n)‖2+β 2(N + 2)


≤ (1+β 2(N + 2))(1+ ‖θ (n)‖2).


It now follows from (6.14) that


E
[|M̄i(n+ 1)|2 |F (n)


]≤ 8C2
0


β 2 (1+β 2(N + 2))(1+ ‖θ (n)‖2)


= K̂(1+ ‖θ (n)‖2),


where K̂ =
8C2


0


β 2 (1+β 2(N + 2)). The claim follows. ��


Now (6.9) can be rewritten as


θi(n+ 1) = θi(n)− a(n)E


[
ηi(n)
β


J(θ (n)+βη(n)) |F (n)


]
+ a(n)Mi(n+ 1),


(6.16)
where Mi(n+ 1) = M̄i(n+ 1)+ M̂i(n+ 1).
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Lemma 6.3. For each i= 1, . . . ,N, (Mi(n),F (n)),n≥ 0 form martingale difference
sequences with


E[|Mi(n+ 1)|2 |F (n)]≤ K̃(1+ ‖θ (n)‖2), ∀n,


for some K̃ > 0.


Proof. The proof follows from Proposition 6.2 and Assumption 6.2. ��
Now, let M(n) = (M1(n), . . . ,MN(n))T ,n≥ 0. Then (M(n),F (n)),n ≥ 0 is a vector
martingale sequence. Also,


E
[‖M(n+ 1)‖2 |F (n)


]
= E


[
(M1(n+ 1))2 + . . .+(MN(n+ 1))2 |F (n)


]
,


≤ NK̃(1+ ‖θ (n)‖2),


= K1(1+ ‖θ (n)‖2),


where K1 = NK̃. Let Z(n), n≥ 0 be defined according to


Z(n) =
n−1


∑
m=0


a(m)M(m+ 1).


Lemma 6.4. The sequence (Z(n),F (n)), n ≥ 0 is a zero-mean, square integrable,
almost surely convergent martingale.


Proof. The proof follows from an application of the martingale convergence theo-
rem (Theorem B.2) using the result in Lemma 6.3 and from Assumptions 6.3 and
6.4, see for instance, the proof of Lemma 3.1. ��
We now have the following result:


Proposition 6.5. Almost surely,∥∥∥∥E


[
η(n)
β


J(θ (n)+βη(n)) |F (n)


]
−∇J(θ (n))


∥∥∥∥→ 0 as β → 0.


Proof. Recall that η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)
distributed random variates. Using a Taylor series expansion of J(θ (n) + βη(n))
around θ (n), one obtains


J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))+
β 2


2
η(n)T∇2J(θ (n))η(n)+o(β 2).


Thus,


E


[
η(n)
β


J(θ (n)+βη(n)) |F (n)


]
=


1
β


E[η(n)J(θ (n)) |F (n)]
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+E[η(n)η(n)T∇J(θ (n)) |F (n)]+
β
2


E[η(n)η(n)T∇2J(θ (n))η(n) |F (n)]+o(β ).
(6.17)


Now,
E[η(n)J(θ (n)) |F (n)] = E[η(n) |F (n)]J(θ (n)) = 0,


since η(n) is independent of F (n). Also,


E[η(n)η(n)T∇J(θ (n)) |F (n)] = E[η(n)η(n)T |F (n)]∇J(θ (n))


= ∇J(θ (n)),


again since η(n)η(n)T is independent of F (n) and E[η(n)η(n)T ] = I (the identity
matrix). Consider, now the third term on the RHS of (6.17). Note that


η(n)T∇2J(θ (n))η(n) =
N


∑
j=1


N


∑
i=1
η j(n)ηi(n)∇2


jiJ(θ (n)).


Thus,


E
[
η(n)η(n)T∇2J(θ (n))η(n) |F (n)


]
= E


[
η(n)


N


∑
j=1


N


∑
i=1
η j(n)ηi(n)


]
∇2


jiJ(θ (n))


= E


[
η1(n)


N


∑
j=1


N


∑
i=1
η j(n)ηi(n), . . . ,ηN(n)


N


∑
j=1


N


∑
i=1
η j(n)ηi(n)


]
∇2


jiJ(θ (n))


= 0,


since, E[ηk(n)] = E[η3
k (n)] = 0 and E[η2


k (n)] = 1 and ηi(n) is independent of η j(n)
for i �= j. The claim follows. ��
In lieu of Proposition 6.5, the update rule (6.8) can be rewritten as


θ (n+ 1) = θ (n)− a(n)(∇J(θ (n))+ (Z(n+ 1)−Z(n))). (6.18)


Now as with Chapter 3, consider a sequence of time points t(n), n ≥ 0 in the fol-


lowing manner: t(0) = 0 and for n ≥ 1, t(n) =
n−1


∑
m=0


a(m). Define now a continu-


ously interpolated trajectory θ̄ (t), t ≥ 0 (obtained from the algorithm’s updates)
as follows: Let θ̄ (t(n)) = θ (n),n ≥ 0, with linear interpolation on the interval
[t(n), t(n+1)]. By Assumption 6.4, it follows that supt≥0 ‖θ̄(t)‖= supn ‖θ (n)‖<∞
a.s. Let T > 0 be a given real number. Define another sequence {T (n),n≥ 0} as fol-
lows: T (0) = t(0) = 0 and for n≥ 1,


T (n) = min{t(m) | t(m)≥ T (n− 1)+T}.


Let I(n) denote the interval [T (n),T (n+ 1)). From its definition, there exists an
increasing subsequence {m(n)} of {n} such that T (n) = t(m(n)), n ≥ 0. Also, let
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θ n(t), t ≥ t(n) denote the trajectory of the ODE (6.7) starting at time t(n) and under
the initialization θ n(t(n)) = θ̄ (t(n)) = θ (n).


Proposition 6.6. We have


lim
n→∞ sup


t∈I(n)
‖θ̄(t)−θ n(t)‖= 0, a.s.


Proof. Follows as in [4, Chapter 2, Lemma 1]. ��
Proof of Theorem 6.1. It follows from Proposition 6.6 that θ̄ (t) serves as a
(T,Δ)-perturbation for the ODE (6.7) (see Appendix C for definition of (T,Δ)-
perturbation). The claim follows by applying the Hirsch lemma (Lemma C.5), for
every ε > 0. ��


6.2.4 Two-Measurement Gaussian SF Algorithm


The algorithms discussed so far require one measurement of the objective function
to estimate the gradient. We now discuss a two-sided finite-difference SF estimate
[9, 5, 2] - a variant that has the advantage of a lower estimation bias in comparison
to the one-sided form described in Section 6.2.1.


6.2.4.1 Gradient Estimate


Recall the one-sided gradient estimate obtained in (6.4). The two-sided form of the
gradient estimate will be described by Dβ ,2J(θ ) where


Dβ ,2J(θ ) �= E


[
η̄
2β


(J(θ +βη̄)− J(θ −βη̄))
]
. (6.19)


As with Dβ ,1J(θ ), η̄ above is an N-dimensional vector of independent N(0,1) ran-
dom variates and the expectation in (6.19) is taken w.r.t. the distribution of η̄ . It will
be seen using suitable Taylor series expansions that Dβ ,2J(θ ) is a valid SF gradient
estimate that has a lower bias as compared to its one-measurement counterpart (6.4).


The form of the two-measurement SF gradient estimator is thus


∇J(θ )≈ 1
2β


1
M


M


∑
n=1
η(n)(J(θ +βη(n))− J(θ−βη(n))), (6.20)


where M > 0 is a large positive integer and β > 0 is a small scalar. Also, in (6.20),


η(n) �= (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)-distributed random
variables as before.
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6.2.4.2 The Algorithm


Based on (6.20), the two-measurement version of the gradient Gaussian SF algo-
rithm is as follows: For i = 1, . . . ,N, n≥ 0,


θi(n+ 1) = θi(n)− a(n)


(
ηi(n)
2β


(
h(θ (n)+βη(n),ξ+(n))


−h(θ (n)−βη(n),ξ−(n))
))


,


(6.21)


for i = 1, . . . ,N and β > 0.


The above recursion can be seen as equivalent to


θi(n+1) = θi(n)−a(n)
ηi(n)


2β


(
J(θ (n)+βη(n))−J(θ (n)−βη(n))+χ1 (n)−χ2(n)


)
,


(6.22)


where (χ1(n),F (n)),n≥ 0 and (χ2(n),F (n)),n≥ 0 are two martingale difference
sequences that are independent of one another. In particular, for the measurement
corresponding to (θ (n) + βη(n)), the measurement noise is χ1(n), while for the
measurement with (θ (n)−βη(n)), the same is χ2(n).


6.2.4.3 Convergence Analysis


Let F (n) = σ(θ (m),χ1(m),χ2(m),m ≤ n;η(m),m < n),n ≥ 1 be a sequence of


sigma fields. By an abuse of notation, let M̂i(n) =
ηi(n)
2β


(
χ1(n)− χ2(n)


)
. It is easy


to see that (M̂i(n),F (n)),n ≥ 0 is also a martingale difference sequence. We now
consider the following analogous algorithm:


θi(n+1) = θi(n)−a(n)


(
ηi(n)
2β


(J(θ (n)+βη(n))−J(θ (n)−βη(n))) + M̂i(n+1)


)
.


(6.23)


We let Assumptions 6.1–6.5 continue to hold with the following changes: In As-
sumption 6.2, M̂i(n) and F (n),n≥ 0 are as defined above (i.e., for two-measurement
algorithms). Further, Assumption 6.4 holds with (6.23) in place of (6.9). Following
the same sequence of steps as for the one-measurement algorithm (cf. Section 6.2.4),
one can rewrite (6.23) as


θi(n+1) = θi(n)−a(n)


(
E
[
ηi(n)
2β (J(θ (n)+βη(n))−J(θ (n)−βη(n))) |F (n)


]
+Mi(n+1)


)
,


⎫⎪⎪⎬
⎪⎪⎭
(6.24)
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where (Mi(n),F (n)),n ≥ 0 is a martingale difference sequence satisfying the con-
clusions of Lemma 6.3. We now have the following result for the two-measurement
SF algorithm.


Proposition 6.7. Almost surely,∥∥∥∥E


[
η(n)
2β


(J(θ (n)+βη(n))−J(θ (n)−βη(n))) |F (n)


]
−∇J(θ (n))


∥∥∥∥→ 0 as β → 0.


Proof. Recall that η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)-
distributed random variates. Using a Taylor series expansion of J(θ (n) + βη(n))
around θ (n), one obtains


J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))+
β 2


2
η(n)T∇2J(θ (n))η(n)+o(β 2).


Similarly, a Taylor series expansion of J(θ (n)−βη(n)) around θ (n) gives


J(θ (n)−βη(n)) = J(θ (n))−βη(n)T∇J(θ (n))+
β 2


2
η(n)T∇2J(θ (n))η(n)+o(β 2).


Thus,


E
[
η(n)
2β (J(θ (n)+βη(n))− J(θ (n)−βη(n))) |F (n)


]
= E[η(n)η(n)T∇J(θ (n)) |F (n)]+ o(β ).


(6.25)


Now, it can be seen as in the proof of Proposition 6.5 that


E[η(n)η(n)T∇J(θ (n)) |F (n)] = E[η(n)η(n)T |F (n)]∇J(θ (n))


= ∇J(θ (n)), a.s.


The claim follows. ��
Remark 6.1. Regarding the bias term resulting in the basic update rule (6.22), we
observe the following:


• Note that from the Taylor series expansions of J(θ (n)+βη(n)) and J(θ (n)−
βη(n)) around θ (n), it can be seen that in the expression


η(n)
2β


(J(θ (n)+βη(n))− J(θ (n)−βη(n))),


the bias terms
1


2β
η(n)J(θ (n)) and βη(n)η(n)T∇2J(θ (n))η(n) resulting from


the expansions of J(θ (n)+βη(n)) and J(θ (n)−βη(n)), respectively, around
θ (n), directly cancel (cf. Proposition 6.7), and so do not contribute to the bias.







6.3 General Conditions for a Candidate Smoothing Function 91


On the other hand, the aforementioned bias terms average to zero in the case of
one-measurement SF (cf. Proposition 6.5).


• For small β > 0, the term
1
β
η(n)J(θ (n)) can result in a much higher bias in


the one-measurement algorithm as compared to the two-measurement case be-
cause of the presence of β in the denominator of that term. It has also been
observed in [9, 2] that the two-measurement algorithm performs better than its
one-measurement counterpart. In particular, in the one-measurement SF algo-
rithm, a low value of β results in a large bias and a high β results in inaccuracies
in the estimate. The two-measurement counterpart, on the other hand, is more
robust to different values of β largely because of the direct cancellation of the
bias terms that results from the use of two measurements.


The remainder of the analysis follows along similar lines as in Section 6.2.3. The
main convergence result again is the following:


Theorem 6.8. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 > 0, such
that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.23) satisfy θ (n)→ Hε


almost surely as n→ ∞.


6.3 General Conditions for a Candidate Smoothing Function


While Gaussian density function has been a popular choice as a smoothing function
to estimate the gradient, it is possible to achieve the same effect using other can-
didate functions as well. In this section, we discuss general conditions that have to
be met by any candidate function, to be used as a smoothing function. Let Fβ be an
operator defined such that


Fβ J(θ ) =
∫
η


hβ (η)∇ηJ(θ −η)dη =


∫
η


hβ (θ −η)∇ηJ(η)dη ,


is the SF estimate of J(θ ) with hβ (·) as a smoothing function with smoothing pa-
rameter β > 0. [8, pp. 471] lists a set of four conditions for a smoothing function.
They are as follows:


(a) hβ (η) =
1
βN h(η/β ), is a piece-wise differentiable function w.r.t. η ;


(b) lim
β→0


hβ (η) = δ (η), where δ (·) is the Dirac-Delta function;


(c) lim
β→0


Fβ J(θ ) = ∇θJ(θ ) and


(d) hβ (·) is a probability density function (p.d.f.), i.e., Fβ J(θ ) = Eη∇ηJ(θ −
η).
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Remark 6.2. One can easily verify that Gaussian, Cauchy and uniform distributions
satisfy the above set of conditions. In a recent work, [6], the q-Gaussian family of
distributions have also been shown to satisfy the aforementioned conditions. (The q-
Gaussians are a generalized class of density functionals than the Gaussian density.
Here, q represents a real-valued parameter and in fact, a q-Gaussian density with
q = 1 is the standard Gaussian density.)


Remark 6.3. It is worth noting here that smoothing with uniform density results in
an iteration procedure very similar to that of the Kiefer-Wolfowitz algorithm dis-
cussed in Chapter 4. We leave the verification of this fact as an exercise to the
readers. However, as discussed earlier, Kiefer-Wolfowitz algorithm does not scale
well for higher dimensions. On the contrary, gradient estimates based on Gaussian
and Cauchy smoothing procedures can be obtained with only one or two simulations
regardless of the parameter dimension.


6.4 Cauchy Variant of the SF Algorithm


In this section, we use the Cauchy density function to obtain an estimate of the
gradient and derive a stochastic iterative algorithm that performs negative gradient
descent w.r.t. the objective function J(θ ). The idea of obtaining the gradient estimate
here is similar to the case when Gaussian density was used (see Section 6.2.1), and
the specifics are handled in the next section.


6.4.1 Gradient Estimate


Let Λ be a hypercube centered at the origin such that C ⊆ Λ , i.e., the set of all
admissible values of θ is contained in Λ . Now the N-dimensional Cauchy p.d.f.,
truncated to Λ , can be written as follows:


Hβ (θ −η) =


⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩


Γ
(N+1


2


)
π


N+1
2 β nΩ


1(
1+


(θ −η)T (θ −η)
β 2


) N+1
2


for η ∈Λ 0,


0 otherwise,


(6.26)


where θ ,η ∈ R
N , β > 0, Λ0 represents the interior of the set Λ , Γ (·) is the


standard gamma function (that must not be confused with the projection operator
Γ that we use in projected algorithms) and Ω is a scaling factor to ensure that∫
η Hβ (θ −η)dη = 1. Cauchy distribution without truncation has no moments de-


fined. However, truncation to a bounded set, in this caseΛ , ensures that all moments
of the Cauchy distribution are well defined. Like in the case of Gaussian smoothing,
we now define the Cauchy smoothing operator Fβ ,1 below:
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Fβ ,1J(θ ) =
∫
η


Hβ (θ −η)∇ηJ(η)dη . (6.27)


Upon integration by parts of (6.27), we get,


Fβ ,1J(θ ) =−∫
η
∇ηHβ (θ −η)J(η)dη


=
∫
η
∇ηHβ (η)J(θ −η)dη .


Now, observing that


∇ηHβ (η) =


⎧⎪⎨
⎪⎩
− η(N + 1)
(β 2 +ηTη)


Hβ (η) for η ∈Λ0,


0 otherwise,


the expression for Fβ ,1J(θ ) can be updated to


Fβ ,1J(θ ) =−
∫
η∈Λ


η(N + 1)
(β 2 +ηTη)


Hβ (η)J(θ −η)dη .


Now, by simple substitution of η ′ =−η
β


, we get,


Fβ ,1J(θ ) =
∫
η∈Λ


η ′(N + 1)
β (1+η ′Tη ′)


H1(η)J(θ +βη ′)dη ′,


which could be compactly written as


Fβ ,1J(θ ) = Eη


[
η(N + 1)
β (1+ηTη)


J(θ +βη)
]
, (6.28)


where the expectation is over η which has standard truncated multivariate Cauchy
distribution, H1(·). Now, since truncated Cauchy distribution satisfies condition (c)
for a smoothing function, it is possible to write a sample average estimate of the
above as an approximate estimate of the gradient of J(θ ), i.e.,


∇θJ(θ )≈ 1
M


M


∑
n=1


η(n)(N + 1)
β (1+η(n)Tη(n))


J(θ +βη(n)), (6.29)


where η(1),η(2), . . . ,η(M) are i.i.d. samples with standard truncated multivariate
Cauchy distribution H1(·). For the estimate to be accurate, M is chosen to be a large
integer with β close to zero.
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6.4.2 Cauchy SF Algorithm


Let η(n) = (η1(n), . . . ,ηN(n))T , n≥ 0 be a sequence of independent standard trun-
cated multivariate Cauchy distributed random variables. Note that unlike multivari-
ate Gaussian distributed random variables, here for a given n, η1(n), . . . ,ηN(n), are
not independent of each other. Based on the SF estimate (6.29), the algorithm that
we consider is the following: For i = 1, . . . ,N, n≥ 0,


θi(n+ 1) = θi(n)− a(n)


(
ηi(n)(N + 1)


β (1+η(n)Tη(n))
(J(θ (n)+βη(n)))


)
. (6.30)


The overall algorithm is similar to Algorithm 6.1, except that Cauchy-based pertur-
bations are used in this case. One can now follow a similar sequence of steps as in
the previous section to conclude with the following theorem.


Theorem 6.9. Under Assumptions 6.1 to 6.5, given ε > 0, there exists β0 > 0, such
that for all β ∈ (0,β0], the iterates θ (n) obtained from (6.30) satisfy θ (n)→ Hε


almost surely as n→ ∞.


Remark 6.4. The single measurement version of the Cauchy SF estimate (6.28) can
be extended for two measurements as follows:


Fβ ,1J(θ ) = Eη


[
η(N + 1)


2β (1+ηTη)
(J(θ +βη)− J(θ−βη))


]
. (6.31)


Based on (6.31), the two-measurement version of the Cauchy gradient SF algorithm
is as follows:


θi(n+1) = θi(n)−a(n)


(
ηi(n)(N +1)


2β (1+η(n)T η(n))
(J(θ (n)+βη(n))−J(θ (n)−βη(n)))


+χ1(n)−χ2(n)


)
, i = 1, . . . ,N, n≥ 0,


(6.32)


where as beforeη(n),n≥ 0, are independent standard truncated multivariate Cauchy
distributed random variables (even though for a given n, η1(n), . . . ,ηN(n) are not
independent). The convergence analysis follows in a similar manner as that of the
two-measurement Gaussian SF algorithm discussed previously.


6.5 SF Algorithms for the Long-Run Average Cost Objective


We now present gradient SF algorithms for the case when the underlying process
is Markovian and depends on a parameter. The basic framework is the same as in
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Chapter 5.6. The single-stage cost function depends on the simulated system state.
Let {X(n),n ≥ 1} be an R


d-valued parameterized Markov process with a tunable
parameter θ that takes values in R


N . Let for any given θ ∈ R
N , {X(n)} be ergodic


Markov. Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and
stationary distribution of {X(n)} when θ is the operative parameter. When the pro-
cess is in state x, let h(x) be the single-stage cost incurred. The aim is to find a
θ ∗ ∈ R


N that minimizes (over all θ ) the long-run average cost (5.40). As with the
average cost setting for SPSA, we let Assumptions 5.10–5.14 hold in this setting as
well.


The algorithms that we present below are the analogs of the algorithms presented
in Section 6.2.2 and are taken from [3, 2]. In [2], they are referred to as G-SF1 and
G-SF2, respectively. We use the same abbreviations here. Note that G-SF1 refers
to the one-simulation variant of the SF algorithm, while G-SF2 refers to the two-
simulation variant.


6.5.1 The G-SF1 Algorithm


The algorithm that we present below is the analog of the one-measurement Gaus-
sian SF algorithm described in Section 6.2.2. Let X(n),n≥ 0 be a simulated Markov


process governed by the parameter sequence (θ (n)+βη(n)),n≥ 0, where η(n) �=
(η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N being independent N(0,1)-
distributed random variables and β > 0 is a given small positive scalar. The al-
gorithm is as follows: For i = 1, . . . ,N,n ≥ 0,


θi(n+ 1) =θi(n)− a(n)Zi(n), (6.33)


Zi(n+ 1) =Zi(n)+ b(n)


(
ηi(n)
β


h(X(n))−Zi(n)


)
. (6.34)


Remark 6.5. As with the simulation-based SPSA algorithms for the long-run aver-
age cost objective, it is seen that in practice, an additional averaging over L instants
(for some L > 1) of the recursion (6.34) improves performance. In other words, for
practical implementations, it is suggested to run (6.34) for L instants in an inner
loop, in between two successive updates of (6.33). The value of L is, however, ar-
bitrary. It is generally observed, see for instance, [1, 2] that a value of L in between
50 and 500 works well. While for our analysis, we focus on the case of L = 1, the
analysis for general L is available in [1, 2].
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6.5.1.1 Convergence Analysis of the G-SF1 Algorithm


Let G (n) = σ(θ (p),Xp,η(p), p≤ n), n≥ 1, denote σ -fields generated by the quan-
tities above. Define sequences Ni(p), p ≥ 0, i ∈ {1, . . . ,N} as follows:


Ni(p) =
p


∑
m=1


b(m)


(
ηi(m)


β
h(Xm)−E


[
ηi(m)


β
h(Xm) | G (m− 1)


])
.


Lemma 6.10. The sequences (Ni(p),G (p)), p ≥ 0, i = 1, . . . ,N are almost surely
convergent martingale sequences.


Proof. It is easy to see that almost surely, E[Ni(p+ 1) | G (p)] = Ni(p), for all p≥ 0.
Now, note that


E[N2
i (p)]≤ Cp


β 2


p


∑
m=1


b2(m)(E[η2
i (m)h2(Xm)+E2[ηi(m)h(Xm) | G (m− 1)]])


for some constant Cp > 0 (that however depends on p). For the second term on the
RHS above, note that almost surely,


E2[ηi(m)h(Xm) | G (m− 1)]≤ E[η2
i (m)h2(Xm) | G (m− 1)],


by the conditional Jensen’s inequality. Hence,


E[N2
i (p)]≤ 2Cp


β 2 ∑
p
m=1 b2(m)E[η2


i (m)h2(Xm)]


≤ 2Cp


β 2 ∑
p
m=1 b2(m)E[η4


i (m)]1/2E[h4(Xm)]
1/2


by the Cauchy-Schwartz inequality. Since, h(·) is a Lipschitz continuous function,
we have


|h(Xm)|− |h(0)| ≤ |h(Xm)− h(0)| ≤ K‖Xm‖,
where K > 0 is the Lipschitz constant for the function h. Thus,


|h(Xm)| ≤C1(1+ ‖Xm‖),


for C1 = max(K, |h(0)|)< ∞. Hence, one gets


E[h4(Xm)]≤C2(1+E[‖Xm‖4])


for (constant) C2 = 8C4
1.


As a consequence of Assumption 5.12, supm E[‖Xm‖4]<∞. Thus, E[N2
i (p)]<∞,


for all p ≥ 1. Now, note that


∑
p


E[(Ni(p+ 1)−Ni(p))2 | G (p)]≤∑
p


b2(p+ 1)(E[(
η2


i (p+ 1)
β 2 h(Xp+1))


2 | G (p)]
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+E[E2[
η2


i (p+ 1)
β 2 h(Xp+1) | G (p)] | G (p)])


≤∑
p


2b2(p+ 1)E[(
η2


i (p+ 1)
β 2 h(Xp+1))


2 | G (p)],


almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumption 5.12, that


sup
p


1
β 2 E[(η2


i (p+ 1)h(Xp+1))
2 | G (p)]< ∞ w.p.1.


Now, from Assumption 5.13,


∑
p


E[(Ni(p+ 1)−Ni(p))2 | G (p)]< ∞


almost surely. Thus, by the martingale convergence theorem (Theorem B.2), Ni(p),
p≥ 0 are almost surely convergent for each i = 1, . . . ,N. ��
Lemma 6.11. The sequences of updates {Zi(p)}, i= 1, . . . ,N in (6.34) are uniformly
bounded with probability one.


Proof. Note that (6.34) can be rewritten as


Zi(p+ 1) = Zi(p)+ b(p)(
1
β


E[ηi(p)h(Xp) | G (p− 1)]−Zi(p))


+ b(p)
1
β
(ηi(p)h(Xp)−E[ηi(p)h(Xp) | G (p− 1)]). (6.35)


From Lemma 6.10, it follows that


∑
p


b(p)
1
β
(ηi(p)h(Xp)−E[ηi(p)h(Xp) | G (p− 1)])< ∞, a.s.


Thus, it is enough to consider the boundedness of the following alternate recursion:


Zi(p+ 1) = Zi(p)+ b(p)(
1
β


E[ηi(p)h(Xp) | G (p− 1)]−Zi(p)).


It can be seen as in the proof of Lemma 6.10 that supp E[ηi(p)h(Xp) | G (p− 1)]<
∞ with probability one. The claim now easily follows from the Borkar and Meyn
theorem (Theorem D.1). ��
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Define {s(n)} and {t(n)} as follows: s(0) = t(0) = 0, s(n) =
n−1


∑
j=0


a( j) and t(n) =


n−1
∑
j=0


b( j), n ≥ 1, respectively. Then, the timescale corresponding to {s(n)} (resp.


{t(n)}) is the slower (resp. faster) of the two timescales.
Consider the following system of ordinary differential equations (ODEs):


θ̇ (t) = 0, (6.36)


Ż(t) = Dβ ,1J(θ (t))−Z(t). (6.37)


Let Z(n)
�
= (Z1(n), . . . ,ZN(n))T , n ≥ 0. From Lemma 6.11, sup


n
‖Z(n)‖< ∞. Con-


sider the functions Ẑ(t) defined according to Ẑ(t(n)) = Z(n) with the maps t→ Ẑ(t)
corresponding to continuous linear interpolations on intervals [t(n), t(n+1)]. Given
T̄ > 0, define {T̄ (n)} as follows: T̄ (0) = 0 and for n ≥ 1, T̄ (n) = min{t(m)
| r(m) ≥ T̄ (n− 1) + T̄}. Let Ī(n) = [T̄ (n), T̄ (n + 1)]. There exists some integer
q(n) > 0 such that T̄ (n) = t(q(n)). Define also functions Zn(t), t ∈ I(n), n ≥ 0,
that are obtained as trajectories of the following ODEs:


Żn(t) = Dβ ,1J(θ )−Zn(t), (6.38)


with Zn(T̄ (n)) = Ẑ(t(q(n))) = Z(q(n)).


Lemma 6.12. lim
n→∞ sup


t∈Ī(n)
‖Zn(t)− Ẑ(t)‖= 0 w.p.1.


Proof. Follows in the same manner as [4, Chapter 2, Lemma 1]. ��
Lemma 6.13. Given T̄ ,γ > 0, ((θ (t(n) + ·), Z(t(n) + ·)), is a bounded (T̄ ,γ)-
perturbation of (6.36)-(6.37) for n sufficiently large.


Proof. Note that the parameter update recursion (6.33) can be rewritten as


θ (n+ 1) = θ (n)+ b(n)ξ̂1(n), (6.39)


where ξ̂1(n) = o(1), since a(n) = o(b(n)). The rest follows from Lemma 6.12. ��
Lemma 6.14. ‖Z(n)−Dβ ,1J(θ (n))‖→ 0 w.p. 1, as n→ ∞.


Proof. Follows from an application of the Hirsch lemma (Lemma C.5) for every
ε > 0. ��
Finally, we consider the slower recursion (6.33). In lieu of Lemma 6.14, the slower
recursion can be rewritten as


θ (n+ 1) = θ (n)− a(n)(Dβ ,1J(θ (n)+ ε̂(n)), (6.40)


where ε̂(n) = o(1). Now from Proposition 6.5,
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‖Dβ ,1J(θ (n))−∇J(θ (n))‖→ 0 as β → 0 a.s.


Consider now the ODE (6.7), but with J being the long-run average cost. Let H be
as in Assumption 6.5 with J as above. The following is the main result that follows
again from an application of the Hirsch lemma (Lemma C.5).


Theorem 6.15. Under Assumptions 5.10–5.13 and Assumption 6.5, given ε >
0, there exists β0 > 0, such that for all β ∈ (0,β0], the iterates θ (n) obtained
from (6.33) to (6.34) satisfy θ (n)→ Hε almost surely as n→ ∞.


6.5.2 The G-SF2 Algorithm


We now present the two-simulation gradient SF algorithm (G-SF2) that is the ana-
log of the two-measurement algorithm described in Section 6.2.4. Let X1(n),n ≥ 0
and X2(n),n ≥ 0 be two simulated Markov processes that are respectively gov-
erned by the parameter sequences (θ (n) + βη(n)) and (θ (n)− βη(n)),n ≥ 0,


where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N being indepen-
dent N(0,1)-distributed random variables and β > 0 is a given small positive scalar.
The two processes X1(n) and X2(n),n≥ 0 evolve independently of one another. The
algorithm is as follows: For i = 1, . . . ,N,n ≥ 0,


θi(n+ 1) =θi(n)− a(n)Zi(n), (6.41)


Zi(n+ 1) =Zi(n)+ b(n)


(
ηi(n)
β
(
h(X1(n))− h(X2(n))


)−Zi(n)


)
. (6.42)


The convergence of the algorithm proceeds along the same lines as G-SF1 and one
could prove an analogue of Theorem 6.15 by following the same steps as in Section
6.5.1.1.


Finally, as described in Remark 6.5, the empirical performance of the G-SF2
algorithm also improves with an additional averaging over L instants of the iterates
(6.42) in between two successive updates of the parameter (6.41).


Remark 6.6. It is worth noting here that one can easily derive two algorithms analo-
gous to G-SF1 and G-SF1 described above, based on the Cauchy SF estimates from
(6.28) and (6.31), respectively. We leave it to the interested reader to derive these
(multi-timescale Cauchy-perturbation SF) algorithms.
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6.5.3 Projected SF Algorithms


As with Section 5.6.5 of Chapter 5, we consider here the case where the param-
eter θ can take values in a predefined compact set C that is a subset of R


N . Let
Γ : RN →C denote the ‘projection operator’ that projects any x = (x1, . . . ,xN)


T ∈
RN to its nearest point in C, i.e., for any given x = (x1, . . . ,xN)


T ∈ RN , Γ (x) �=
(Γ1(x1), . . . ,ΓN(xN))


T ∈ R
N . The operator Γ ensures that Assumption 5.14 is auto-


matically enforced.


6.5.3.1 The G-SF1 Algorithm with Projection


Let X(n),n≥ 0 be a simulated Markov process governed by the parameter sequence


(θ (n) + βη(n)),n ≥ 0, where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i =
1, . . . ,N being independent N(0,1)-distributed random variables and β > 0 is a
given small positive scalar. The algorithm is as follows: For i = 1, . . . ,N,n≥ 0,


θi(n+ 1) =Γi(θi(n)− a(n)Zi(n)), (6.43)


Zi(n+ 1) =Zi(n)+ b(n)


(
ηi(n)
β


h(X(n))−Zi(n)


)
. (6.44)


Let Γ̄ : C (C)→ C (RN) be defined as in (5.62). Also, let H denote the set of all
asymptotically stable attractors of the ODE (5.63) and Hε its ε-neighborhood. An
application of the Kushner-Clark theorem (Theorem E.1) shows the following result:


Theorem 6.16. Under Assumptions 5.10–5.13, given ε > 0, there exists a δ0 > 0
such that the sequence of parameter iterates θ (n),n ≥ 0 governed by (6.43)-(6.44)
satisfy θ (n)→ Hε with probability one as n→ ∞.


6.5.3.2 The G-SF2 Algorithm with Projection


Let X1(n),n ≥ 0 and X2(n),n ≥ 0 be two simulated Markov processes that are,
respectively, governed by the parameter sequences (θ (n) + βη(n)) and (θ (n)−
βη(n)),n ≥ 0, where η(n) �= (η1(n), . . . ,ηN(n))T with ηi(n),n ≥ 0, i = 1, . . . ,N
being independent N(0,1)-distributed random variables and β > 0 is a given small
positive scalar. The two processes X1(n) and X2(n),n ≥ 0 evolve independently of
one another. The algorithm is as follows: For i = 1, . . . ,N,n≥ 0,
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θi(n+ 1) =Γi(θi(n)− a(n)Zi(n)), (6.45)


Zi(n+ 1) =Zi(n)+ b(n)


(
ηi(n)
β
(
h(X1(n))− h(X2(n))


)−Zi(n)


)
. (6.46)


The convergence result of (6.45) follows in a similar manner as in the case of the
projected G-SF1 algorithm (6.43).


6.6 Concluding Remarks


In this chapter, we introduced the smoothed functional technique for estimating the
gradient, and showed how it can be used to develop convergent stochastic recur-
sive algorithms for both the expected cost as well as the long-run average cost ob-
jectives. As in the previous chapter, the algorithms presented in this chapter also
incorporated the simultaneous perturbation approach to estimate the gradient. How-
ever, unlike SPSA algorithms, the algorithms here used certain smoothing functions
- most commonly Gaussian and Cauchy densities - for simultaneous perturbation
and in turn for gradient estimation. All the SF algorithms presented here are on-
line implementable. Further, as with the SPSA algorithms, they require only one or
two samples of the objective function for any N-dimensional parameter. We demon-
strate the empirical usefulness of both SPSA as well as SF algorithms in various
application contexts in Part V of this book.
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Part III
Hessian Estimation Schemes







Newton-based algorithms estimate both the gradient and the Hessian of the objec-
tive, and are in general seen to be more efficient than gradient-based algorithms as
they exhibit fast convergence (in terms of the number of iterates). However, they re-
quire more computation than gradient-based schemes, because of the need to project
the associated Hessian matrix to the space of positive definite and symmetric ma-
trices at each update epoch and to invert the same. During the course of the last
twelve years, there has been significant work done on developing efficient simulta-
neous perturbation-based Hessian estimators and Newton-based schemes. This part
consists of two chapters – on Newton SPSA and Newton SF methods.


In a paper in 2000, Spall presented a Newton-based procedure involving an effi-
cient four-simulation Hessian estimation procedure that relies on two independent
perturbation sequences, each of which have similar properties to the one used for
obtaining gradient SPSA estimates. This algorithm was presented for the case when
the cost is an expectation over noisy cost samples. Subsequently, in a paper in 2005,
Bhatnagar obtained three other SPSA-based Hessian estimates, that require three,
two and one simulation(s), respectively. Together with the four simulation estimate
presented by Spall, Bhatnagar proposed four Newton SPSA algorithms (using the
aforementioned estimates in addition) for the long-run average cost objective. We
discuss the Newton SPSA schemes in detail in Chapter 7.


Bhatnagar, in a paper in 2007, presented two Newton SF algorithms. He pre-
sented both algorithms for the case when the perturbation sequence used is i.i.d. and
Gaussian distributed. By convolving the Hessian of the objective function with the
N-dimensional Gaussian density and applying the integration-by-parts argument
twice, one obtains the convolved Hessian as a convolution of the Hessian with a
scaled N-dimensional Gaussian where the scaling matrix is obtained from the com-
ponents of the N-vector Gaussian. The same simulation (with a Gaussian-perturbed
parameter) is seen to estimate both the gradient as well as the Hessian of the objec-
tive. A two-simulation version of the same is seen to exhibit better performance in
general. We discuss in detail the Newton SF schemes in Chapter 8.







Chapter 7
Newton-Based Simultaneous Perturbation
Stochastic Approximation


7.1 Introduction


In Chapters 4–6, we discussed gradient-based approaches. Whereas, the finite-
difference Kiefer-Wolfowitz algorithm is seen to require 2N (resp. N + 1) simu-
lations for an N-dimensional parameter when two-sided balanced (resp. one-sided)
estimates are used, the gradient SPSA algorithms are based on exactly two or one
simulation samples at each update epoch regardless of the parameter dimension N.
Hessian estimates, on the other hand, are harder to obtain than the gradient and
typically require more samples of the objective function. In [4], the Hessian is esti-
mated using finite differences that are in turn based on finite difference estimates of
the gradient. This requires O(N2) samples of the objective function at each update
epoch. In [9], for the case where the objective function gradients are known, the
Hessian is estimated using finite gradient differences.


The first Newton SPSA algorithm that estimates the Hessian in addition to the
gradient using simultaneous perturbation estimates has been proposed in [11]. The
estimates in this algorithm are obtained using four objective function samples at
each update epoch in cases where the gradient estimates are not known and three
samples in cases where the latter are known. This is achieved using two inde-
pendent perturbation sequences with random variables in these assumed bounded,
zero-mean, symmetric, having a common distribution and mutually independent of
one another. This method is an extension of the random perturbation gradient SPSA
algorithm of [10] that uses only one such perturbation sequence. In [13], a similar
algorithm that, however, uses the geometric mean of the eigen-values of the Hessian
(suitably projected so that the eigen-values remain positive) in place of the Hessian
itself, has been proposed.


In [2], four multi-timescale Newton SPSA algorithms that require four, three,
two and one simulation(s), respectively, have been proposed for the long-run aver-
age cost objective. All of these algorithms incorporate random perturbation Hessian


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 105–131.
springerlink.com © Springer-Verlag London 2013
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estimates. The four-simulation algorithm incorporates a similar Hessian estimate as
the one proposed in [11]. While unbiased and convergent Hessian estimates based
on a deterministic construction for the perturbation variables are not yet available, a
Hadamard matrix-based deterministic Hessian estimate has been proposed and in-
corporated in [8] in the context of adaptive optimization of parameters in the random
early detection (RED) flow control scheme for the Internet, see Chapter 14.2. Even
though the Hessian estimates there are not unbiased, the resulting scheme still tracks
a local minimum of the objective and is seen to perform well. The current chapter is
largely based on [2].


We first summarize the long-run average cost framework in Section 7.2,
along with the necessary assumptions. In Section 7.3, the four multi-timescale
Newton SPSA algorithms are described. Also in Section 7.4, we describe a
means to improve the performance of these four algorithms using the Wood-
bury’s identity. Convergence analyses of all these algorithms are then provided in
Section 7.5.


7.2 The Framework


We describe in this section the problem framework and assumptions. Let {X(n),n≥
1} be an R


d-valued parameterized Markov process with a tunable parameter θ that
takes values in a given compact and convex set C ⊂ R


N . We assume that for any
given θ ∈C, the process {X(n)} is ergodic Markov. Let p(θ ,x,dy) and νθ , respec-
tively, denote the transition kernel and stationary distribution of {X(n)}, when θ
is the operative parameter. When the process is in state x, let h(x) be the single-
stage cost incurred. The aim is to find a θ ∗ ∈C that minimizes (over all θ ∈C) the
long-run average cost


J(θ ) = lim
l→∞


1
l


l−1


∑
j=0


h(X( j)). (7.1)


7.3 Newton SPSA Algorithms


We now describe the Newton SPSA algorithms from [2]. The analysis of these al-
gorithms will be subsequently shown. The four algorithms that we present below
are based on different estimates of the Hessian and require four, three, two and one
simulation(s), respectively. Two of these algorithms, based on two and one simu-
lation(s), respectively, also incorporate different simultaneous perturbation gradient
estimates (than the gradient SPSA algorithms presented in Chapter 5). The Hes-
sian estimates in all the four algorithms depend on two independent sequences of
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perturbation random variables. Let C ⊂ R
N be a compact and convex set


in which the parameters θ take values. To ensure that the θ -updates take values
in this set, we use the projection operator Γ : RN → C. For x = (x1, . . . ,xN)


T ∈
R


N , let Γ (x) = (Γ1(x1), . . . ,ΓN(xN))
T be the closest point in C to x in terms of


the Euclidean norm distance. We also define a matrix-valued projection operator
P : RN×N → R


N×N in a way that for any N ×N-matrix A, P(A) is positive def-
inite and symmetric. In particular, if A is positive definite and symmetric, then
P(A) = A.


7.3.1 Four-Simulation Newton SPSA (N-SPSA4)


We first present the Hessian estimate for the N-SPSA4 algorithm. This will be fol-
lowed by a description of the algorithm itself. The gradient estimate here is the same
as that of regular (two-simulation) SPSA.


7.3.1.1 The Hessian Estimate


Let Δ1, . . . ,ΔN , Δ̂1, . . . , Δ̂N be independent, bounded, zero-mean, symmetric random
variables having a common distribution and mutually independent of one another.
Let Δ = (Δ1, . . . ,ΔN)


T and Δ−1 = (1/Δ1, . . . ,1/ΔN)
T . Also, let Δ̂ = (Δ̂1, . . . , Δ̂N)


T


and Δ̂−1 = (1/Δ̂1, . . . ,1/Δ̂N)
T , respectively.


Then the four-simulation estimate of the Hessian of J(θ ) with respect to θ is
based on the following relationship.


∇2
θ J(θ )= lim


δ1,δ2→0
EΔ−1


⎛
⎜⎜⎜⎝


J(θ + δ1Δ + δ2Δ̂)− J(θ + δ1Δ)
−(J(θ − δ1Δ + δ2Δ̂)− J(θ − δ1Δ))


2δ1δ2


⎞
⎟⎟⎟⎠(Δ̂−1)T


.


(7.2)


The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relationship in (7.2) will be used in the next section to construct a stochastic ap-
proximation algorithm. In [11], the form of the Hessian estimate is slightly different
from (7.2). It has the form
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∇2
θ J(θ ) = lim


δ1,δ2→0
E


⎡
⎢⎢⎢⎣1


2
Δ−1


⎛
⎜⎜⎜⎝


J(θ +δ1Δ +δ2Δ̂)−J(θ +δ1Δ )
−(J(θ −δ1Δ +δ2Δ̂)−J(θ −δ1Δ ))


2δ1δ2


⎞
⎟⎟⎟⎠
(
Δ̂−1
)T


⎤
⎥⎥⎥⎦


+ lim
δ1,δ2→0


E


⎡
⎢⎢⎢⎣1


2
Δ̂−1


⎛
⎜⎜⎜⎝


J(θ +δ1Δ +δ2Δ̂)−J(θ +δ1Δ )
−(J(θ −δ1Δ +δ2Δ̂ )−J(θ −δ1Δ ))


2δ1δ2


⎞
⎟⎟⎟⎠
(
Δ−1
)T


⎤
⎥⎥⎥⎦ .


In Section 7.5.2, it will be shown that the relationship (7.2) is a valid Hessian es-
timator. In all the algorithms below, Δ1(n), . . . ,ΔN(n), Δ̂1(n), . . . , Δ̂N(n),n ≥ 0 will
be treated to independent random variables requiring standard assumptions on such
perturbations (see Assumption 7.6). Also, δ1,δ2 > 0 will be considered to be given
small constants. (A discussion on how these constants can be chosen in practice can
be found in [11].)


7.3.1.2 The N-SPSA4 Algorithm


Consider four simulated Markov processes {X−(n)}, {X+(n)}, {X−+(n)} and
{X++(n)}, that are governed by the parameter sequences {θ (n)−δ1Δ(n)}, {θ (n)+
δ1Δ(n)}, {θ (n)− δ1Δ(n)+ δ2Δ̂ (n)}, and {θ (n)+ δ1Δ(n)+ δ2Δ̂ (n)}, respectively.
The aforementioned Markov processes are assumed to be independent of one an-
other. Let Zw(n), w ∈ {−,+,−+,++}, be quantities defined via recursions (7.3)-
(7.6) below that are used for averaging the cost function in the four simulations. We
initialize Zw(0) = 0, ∀w ∈ {−,+,−+,++}.


The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,


Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.3)


Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.4)


Z−+(n+ 1) =Z−+(n)+ b(n)(h(X−+(n))−Z−+(n)), (7.5)


Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.6)


Hj,i(n+ 1) =Hj,i(n)+ c(n)


⎛
⎜⎝
(


Z++(n)−Z+(n)
δ2Δ̂ j(n)


)
−
(


Z−+(n)−Z−(n)
δ2Δ̂ j(n)


)
2δ1Δi(n)


−Hj,i(n)


⎞
⎟⎠ .


(7.7)


θk(n+ 1) =Γk


(
θk(n)+ a(n)


N


∑
l=1


Mk,l(n)


(
Z−(n)−Z+(n)


2δ1Δl(n)


))
. (7.8)
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In the above, we set Hj,i(n + 1) = Hi, j(n + 1) for j > i. Further, M(n) =
[[Mi, j(n)]]Ni, j=1 denotes the inverse of the matrix H(n) = P([[Hi, j(n)]]Ni, j=1)


Remark 7.1. In practice, an additional averaging over a certain prescribed number
L of the faster iterates (7.3)-(7.6) in between two successive updates of the other
recursions viz., (7.7) and (7.8), respectively, is seen to improve performance. The
same is true for the other algorithms as well.


7.3.2 Three-Simulation Newton SPSA (N-SPSA3)


N-SPSA3 algorithm, which we will discuss now, is based on three simulations. The
gradient estimate here is again the same as that of regular two-simulation SPSA. We
explain below the Hessian estimate used.


7.3.2.1 The Hessian Estimate


The three-simulation estimate of the Hessian of J(θ ) with respect to θ is based on
the following relationship.


∇2
θ J(θ ) = lim


δ1,δ2→0
E


[
Δ−1


(
J(θ + δ1Δ + δ2Δ̂ )− J(θ + δ1Δ)


δ1δ2


)(
Δ̂−1)T


]
. (7.9)


The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relation in (7.9) will be used in the next section to provide the complete algorithm.
Also, later in Section 7.5.3, this relation will be proved.


7.3.2.2 The N-SPSA3 Algorithm


Consider three simulated Markov processes {X−(n)}, {X+(n)} and {X++(n)}, that
are governed by the parameter sequences {θ (n)− δ1Δ(n)}, {θ (n)+ δ1Δ(n)}, and
{θ (n) + δ1Δ(n) + δ2Δ̂ (n)}, respectively. The aforementioned Markov processes
are assumed to be independent of one another. Let Zw(n), w ∈ {−,+,++}, be
quantities defined via recursions (7.10)-(7.12) below that are used for
averaging the cost function in the three simulations. We initialize Zw(0) = 0,
∀w ∈ {−,+,++}.


The algorithm is given as follows: For n ≥ 0, j, i = 1, . . . ,N, j ≤ i,
k = 1, . . . ,N,
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Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.10)


Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.11)


Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.12)


Hj,i(n+ 1) =Hj,i(n)+ c(n)


(
Z++(n)−Z+(n)


δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)


)
. (7.13)


θk(n+ 1) =Γk


(
θk(n)+ a(n)


N


∑
l=1


Mk,l(n)


(
Z−(n)−Z+(n)


2δ1Δl(n)


))
. (7.14)


In the above, M(n) denotes the inverse of the Hessian H(n), constructed as in the
N-SPSA4 algorithm (see Section 7.3.1.2).


7.3.3 Two-Simulation Newton SPSA (N-SPSA2)


Now we present the two-simulation Newton SPSA algorithm, N-SPSA2. While the
Hessian estimate here is the same as for N-SPSA3, see Section 7.3.2, the gradient
estimate is different from regular two-simulation SPSA. We therefore explain below
the gradient estimate used.


7.3.3.1 The Gradient Estimate


The two-simulation estimate of the gradient of J(θ ) with respect to θ is based on
the following relationship.


∇θJ(θ ) = lim
δ2→0


E


[(
J(θ + δ1Δ + δ2Δ̂ )− J(θ + δ1Δ)


δ2


)(
Δ̂−1)T


]
. (7.15)


The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . The
relationship (7.15) will be proven later in Section 7.5.4.


7.3.3.2 The N-SPSA2 Algorithm


Consider two simulated Markov processes {X+(n)} and {X++(n)}, that are gov-
erned by the parameter sequences {θ (n)+δ1Δ(n)}, and {θ (n)+δ1Δ(n)+δ2Δ̂ (n)},
respectively. The aforementioned Markov processes are assumed to be independent
of one another. Let Zw(n), w∈ {+,++}, be quantities defined via recursions (7.16)-
(7.17) below that are used for averaging the cost function in the four simulations.
We initialize Zw(0) = 0, ∀w ∈ {+,++}.
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The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,


Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.16)


Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.17)


Hj,i(n+ 1) =Hj,i(n)+ c(n)


(
Z++(n)−Z+(n)


δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)


)
. (7.18)


θk(n+ 1) =Γk


(
θk(n)+ a(n)


N


∑
l=1


Mk,l(n)


(
Z+(nL)−Z++(nL)


δ2Δ̂l(n)


))
. (7.19)


In the above, H(n) and M(n) are as in the earlier N-SPSA algorithms.


7.3.4 One-Simulation Newton SPSA (N-SPSA1)


The N-SPSA1 algorithm which is based on just one simulation will be discussed
now. Both the gradient and the Hessian estimates here are different from all the
other algorithms. Hence, we first present these two estimates below.


7.3.4.1 The Gradient Estimate


The one-simulation estimate of the gradient of J(θ ) with respect to θ is based on
the following relationship.


∇θJ(θ ) = lim
δ2→0


E


[(
J(θ + δ1Δ + δ2Δ̂)


δ2


)(
Δ̂−1)T


]
. (7.20)


The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ .


7.3.4.2 The Hessian Estimate


The one-simulation estimate of the Hessian of J(θ ) with respect to θ is based on
the following relationship.


∇2
θJ(θ ) = lim


δ1,δ2→0
E


[
Δ−1


(
J(θ + δ1Δ + δ2Δ̂)


δ1δ2


)(
Δ̂−1)T


]
. (7.21)
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The expectation above is taken w.r.t. the common distribution of Δ and Δ̂ . Both the
gradient estimate (7.20) and the Hessian estimate (7.21) will be validated later in
Section 7.5.5.


7.3.4.3 The N-SPSA1 Algorithm


Consider a simulated Markov process {X++(n)} governed by the parameter se-
quence {θ (n)+ δ1Δ(n)+ δ2Δ̂(n)}. Let Z++(n) be quantities defined via the recur-
sion (7.22) below that are used for averaging the cost function in the simulation. We
initialize Z++(0) = 0.


The algorithm is given as follows: For n≥ 0, j, i = 1, . . . ,N, j≤ i, k = 1, . . . ,N,


Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)). (7.22)


Hj,i(n+ 1) =Hj,i(n)+ c(n)


(
Z++(n)


δ1δ2Δi(n)Δ̂ j(n)
−Hj,i(n)


)
. (7.23)


θk(n+ 1) =Γk


(
θk(n)− a(n)


N


∑
l=1


Mk,l(n)


(
Z++(nL)


δ2Δ̂l(n)


))
. (7.24)


In the above, H(n) and M(n) are constructed as in any of the N-SPSA algorithms
described previously.


Remark 7.2. An important question that arises is how to decide on the choice of the
algorithm (out of the four algorithms described above) for a given problem. As can
be seen, the gradient estimates in the N-SPSA4 and N-SPSA3 algorithms are the
same, and so are the Hessian estimates in the N-SPSA3 and N-SPSA2 algorithms,
respectively. The Hessian estimates for N-SPSA3 (and so also N-SPSA2) have a
higher bias in comparison to the ones for N-SPSA4. It has however been observed
in [2] that on a low-dimensional parameter setting, N-SPSA4 shows the best com-
putational performance. However, on a high-dimensional setting, N-SPSA3 shows
the best results on the whole. The algorithm N-SPSA1 has the largest bias as com-
pared to the other algorithms and does not exhibit good performance in general. We
believe that the choice of the algorithm could be guided by various factors, such
as (a) the accuracy of the converged parameter value that will in general depend
on the overall bias in the estimate as well as (b) the ease of implementation or the
simplicity of the procedure. The latter consideration is in particular meaningful in
the case when real-time computations have to be performed using resources with
limited computational power. In such cases, accuracy of the estimate will have to
be balanced against the computational resource available for performing the vari-
ous computations. For instance, in the case of constrained optimization algorithms
considered in Chapter 10, a one-sided version of N-SPSA2 is implemented where
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one of the simulations is run with the nominal parameter update θ (n) itself. This is
guided by the fact that the said simulation also estimates the Lagrange multiplier,
hence to avoid the use of a third simulation, the aforementioned one-sided version
is suggested.


7.4 Woodbury’s Identity Based Newton SPSA Algorithms


All four algorithms described in the previous section have a high computational
complexity, as in each iteration, the estimate of the projected Hessian H(·) needs
to be inverted. In this section, we address this problem using a popular identity that
goes by the name of Woodbury’s identity, for incrementally obtaining the inverse
of the projected Hessian. For a matrix of order N, typical inversion techniques re-
quire O(N3) computations and some specialized ones are O(N2log(N)). We use the
Woodbury’s identity to provide an incremental inversion scheme here, which is of
computational complexity O(N2). The identity is given below:


(A+BCD)−1 = A−1−A−1B
(
C−1 +DA−1B


)−1
DA−1,


for matrices A,B,C and D of appropriate dimensions. The iteration scheme for the
Hessian matrix in all the four Newton SPSA algorithms can be revised to:


H(n+ 1) = (1− c(n))H(n)+R(n)Y(n)S(n),


where,


R(n)=
1
δ1


[
1


Δ1(n)
1


Δ2(n)
. . .


1
Δ|A|×|B|(n)


]T


,S(n)=
1
δ2


[
1


Δ̂1(n)


1


Δ̂2(n)
. . .


1


Δ̂|A|×|B|(n)


]
,


and a scalar quantity,


Y (n) =


⎧⎪⎪⎪⎨
⎪⎪⎪⎩


c(n)
(
(Z++(n)−Z+(n))− (Z−+(n)−Z−(n))


)
for N-SPSA4,


c(n)
(
Z++(n)−Z+(n)


)
for N-SPSA3 and N-SPSA2,


c(n)
(
Z++(n)


)
for N-SPSA1.


Now, Woodbury’s identity applied to M(n+ 1) = H(n+ 1)−1 gives


M(n+ 1) =


(
M(n)


1− b(n)


[
I− Y (n)R(n)S(n)M(n)


1− c(n)+Y(n)S(n)M(n)R(n)


])
. (7.25)
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This computationally cost-effective procedure for estimating the inverse can now be
used to create four new algorithms, W-SPSA4, W-SPSA3, W-SPSA2 and W-SPSA1
with four, three, two and one simulations respectively. We provide the full algorithm
W-SPSA4 below:


The W-SPSA4 Algorithm


Z−(n+ 1) =Z−(n)+ b(n)(h(X−(n))−Z−(n)), (7.26)


Z+(n+ 1) =Z+(n)+ b(n)(h(X+(n))−Z+(n)), (7.27)


Z−+(n+ 1) =Z−+(n)+ b(n)(h(X−+(n))−Z−+(n)), (7.28)


Z++(n+ 1) =Z++(n)+ b(n)(h(X++(n))−Z++(n)), (7.29)


Y (n) =c(n)
(
(Z++(n)−Z+(n))− (Z−+(n)−Z−(n))


)
, (7.30)


M(n+ 1) =P


(
M(n)


1− b(n)


[
I− Y (n)R(n)S(n)M(n)


1− c(n)+Y(n)S(n)M(n)R(n)


])
, (7.31)


θk(n+ 1) =Γk


(
θk(n)+ a(n)


N


∑
l=1


Mk,l(n)


(
Z−(n)−Z+(n)


2δ1Δl(n)


))
. (7.32)


As previously with N-SPSA4, the operator P(·) ensures that updates to M(n+ 1)
are symmetric and positive definite. The algorithms W-SPSA3, W-SPSA2 and W-
SPSA1 can similarly be derived using the appropriate Y (n) and the update (7.25) in
N-SPSA3, N-SPSA2 and N-SPSA1, respectively.


7.5 Convergence Analysis


7.5.1 Assumptions


We make the following assumptions for the analysis of N-SPSA algorithms:


Assumption 7.1. The single-stage cost function h : Rd → R is Lipschitz
continuous.
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Assumption 7.2. The long-run average cost J(θ ) is twice continuously differ-
entiable in θ with bounded third derivatives.


Assumptions 7.1 and 7.2 are standard requirements. For instance, Assumption 7.2
is a technical requirement that ensures that the Hessian of the objective exists and is
used to push through suitable Taylor series arguments in the proof.


Let {θ (n)} be a sequence of random parameters obtained using (say) an iterative
scheme on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m), m≤ n),
n ≥ 1 denote a sequence of associated σ -fields. We call {θ (n)} non-anticipative if
for all Borel sets A⊂ R


d ,


P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).


Under a non-anticipative {θ (n)}, the process {X(n),θ (n)} is Markov. The se-
quences {θ (n)} resulting in the algorithms discussed in Section 7.3 and Section 7.4,
are, for instance, non-anticipative. We shall assume the existence of a stochastic
Lyapunov function (below).


Assumption 7.3. There exist ε0 > 0, K ⊂ R
d compact and V ∈ C(Rd) such


that lim
‖x‖→∞


V (x) = ∞ and under any non-anticipative {θ (n)},


1. supn E[V (X(n))2]< ∞ and
2. E[V (X(n+ 1)) |H (n)]≤V (X(n))− ε0, whenever X(n) �∈ K, n≥ 0.


Assumption 7.3 is required to ensure that the system remains stable under a tunable
parameter. It will not be required if the cost function h(·) is bounded. As before,
we let ‖ · ‖ denote the Euclidean norm. Also, for any matrix A ∈ R


N×N , its norm is
defined as the induced matrix norm, also denoted using ‖ · ‖ and defined according
to ‖A‖= max


{x∈RN |‖x‖=1}
‖Ax‖.


Like any descent algorithms, the aim here is to find a local minimum. So, one
needs to ensure that the Hessian estimate after each iterate is positive definite and
symmetric. This is achieved by projecting the Hessian estimate to the space of pos-
itive definite and symmetric matrices using the operator P described before.


Assumption 7.4. (i) Let A(n),B(n),n≥ 0 be sequences of matrices in R
N×N


such that lim
n→∞‖A(n)−B(n)‖= 0. Then lim


n→∞‖P(A(n))−P(B(n))‖= 0 as


well.
(ii) Let C(n),n ≥ 0 be a sequence of matrices in R


N×N , such that sup
n


‖C(n)‖< ∞. Then
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sup
n
‖P(C(n))‖, sup


n
‖P(C(n))−1‖< ∞,


as well.


Various operators described for instance via the modified Choleski factorization
procedure, see [1], or the ones presented in [11] and [13], respectively, can be used
for projecting the Hessian updates onto the space of positive definite and symmetric
matrices. The continuity requirement in Assumption 7.4 on the operator P can be
easily imposed in the modified Choleski factorization procedure and the operators
in [11]. Also the procedure in [13] has been shown (there) to satisfy this require-
ment. In fact, since ‖A(n)− B(n)‖ → 0 as n→ ∞, the eigenvalues of A(n) and
B(n) asymptotically become equal, since they are themselves uniformly continuous
functions of the elements of these matrices. A sufficient condition [1, pp.35] for
the other requirements in Assumption 7.4 is that the eigenvalues of each projected
Hessian update be both bounded above as well as away from zero. Thus for some
scalars c1, c2 > 0 let


c1‖z‖2 ≤ zT P(C(n))z≤ c2‖z‖2, ∀z ∈ R
N , n≥ 0. (7.33)


Then all the eigenvalues of P(C(n)), ∀n, lie between c1 and c2. The above also
ensures that the procedure does not get stuck at a non-stationary point. Now by [1,
Propositions A.9 and A.15],


sup
n
‖P(C(n))‖, sup


n
‖{P(C(n))}−1‖< ∞.


Most projection operators are seen to satisfy (7.33) either by explicitly projecting
eigenvalues to the positive half line as with [13] or via (7.33) getting automatically
enforced (such as in the modified Choleski factorization procedure). A more general
condition than (7.33) is, however, given on [1, pp.36].


We show in Lemma 7.7 that sup
n
‖H(n)‖< ∞ w.p. 1, where H(n) is the nth


update of the Hessian. Assumption 7.4 is a technical requirement and is needed
in the convergence analysis. All the algorithms discussed in this chapter, require
(i) estimation of the the long-run average cost objective for various perturbed
parameter sequences, (ii) obtain the aforementioned estimates of the long-run av-
erage cost, and finally, (iii) obtain a parameter update using the Hessian and gradi-
ent estimates. Assumption 7.5 provides conditions on the three step-size schedules,
a(n),b(n),c(n),n≥ 0 for achieving the necessary timescale separations as discussed
above.


Assumption 7.5. The step-sizes a(n),b(n),c(n),n ≥ 0 satisfy the following
requirements:


∑
n


a(n) =∑
n


b(n) =∑
n


c(n) = ∞, (7.34)
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∑
n
(a(n)2 + b(n)2 + c(n)2)< ∞, (7.35)


a(n) = o(c(n)) and c(n) = o(b(n)). (7.36)


Finally, the algorithms require 2N independent parameter perturbation random vari-
ables Δi(n), Δ̂i(n), i = 1, . . . ,N, at each parameter update step n.


Assumption 7.6. The random variables Δi(n), Δ̂i(n), n ≥ 0, i = 1, . . . ,N, are
mutually independent, mean-zero, have a common distribution and satisfy
E[(Δi(n))−2], E[(Δ̂i(n))−2] ≤ K̄, for some K̄ < ∞.


7.5.2 Convergence Analysis of N-SPSA4


Let for any continuous function v(·) : C→ R
N ,


Γ̃ (v(y)) = lim
0<η→0


(
Γ (y+ηv(y))− y


η


)
. (7.37)


Note that if y ∈Co (the interior of C), then Γ̃ (v(y)) = v(y). However, if y ∈ ∂C (the
boundary of C) and v(y) is such that y+ηv(y) �∈ C for η > 0 how-so-ever small,
then Γ̃ (v(y)) is the projection of v(y) to the boundary of C. Also, the limit in (7.37)
is well defined as a consequence of the fact that C is compact and convex. If that is
not the case, one may alternatively consider the set of all limit points of (7.37).


Now, let M̄(θ ) = P(∇2J(θ ))−1 denote the inverse of the projected Hessian ma-
trix corresponding to parameter θ and let M̄k,l(θ ) be its (k, l)’th element. Consider
the following ODE:


θ̇ (t) = Γ̃ (−M̄(θ (t))∇J(θ (t))). (7.38)


Let
K
Δ
= {θ ∈C | ∇J(θ )T Γ̃ (−M̄(θ )∇J(θ )) = 0}.


Further, given η > 0, let Kη = {θ ∈ C | ‖θ − θ0‖ ≤ η , θ0 ∈ K} be the set of
all points that are within a distance η from the set K. Further, let K̂ = {θ ∈ C |
Γ̃ (−M̄(θ )∇J(θ )) = −M̄(θ )∇J(θ )}. It is easy to see that Co ⊆ K̂, where Co is the
interior of C.


We first provide the main convergence result below.


Theorem 7.1. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.3)-(7.8) converges to Kη with probability one.
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The proof of Theorem 7.1 will be established by the following steps:


(i) Lemmas 7.2-7.5 and Corollary 7.6 are used to show that Z(·)(n) sequences
in (7.3)-(7.6), converge almost surely to the long-run cost objective J(·) with
corresponding perturbed parameter sequences.


(ii) Lemmas 7.7-7.8 are used to show that the noise terms in the Hessian estimate
are bounded and diminish to zero.


(iii) Proposition 7.9 and Lemma 7.10 collectively show that the Hessian estimate
H(n) indeed converges almost surely to the Hessian of the long-run average
cost objective, J(·).


(iv) Lemma 7.11 shows that the inverse of the projected Hessian estimate also
converges almost surely to the inverse of the projected Hessian of J(·).


(v) From this result and the convergence results from Section 5.2.3 related to the
basic gradient SPSA algorithm 5.2.2, we conclude the proof for the main re-
sult. The formal proof of Theorem 7.1 is given at the end of this section.


Let G (l) = σ(θ (p),Δ(p), Δ̂ (p),Hj,i(p),X−(p),X+(p),X−+(p),X++(p), p ≤ l,
i, j = 1, . . . ,N), l ≥ 1, denote σ -fields generated by the quantities above. Note that
recursions (7.3)-(7.6) can be rewritten as


Zw(p+ 1) = Zw(p)+ b(p)(h(Xw(p))−Zw(p)), (7.39)


w ∈ {−,+,−+,++}.
Define sequences {Mw(p)}, w ∈ {−,+,−+,++}, as follows:


Mw(p) =
p


∑
m=1


b(m)(h(Xw(m))−E[h(Xw(m)) | G (m− 1)]).


Lemma 7.2. The sequences {Mw(p), G (p)}, w∈{−,+,−+,++} are almost surely
convergent martingale sequences.


Proof. It is easy to see that {Mw(p), G (p)}, w ∈ {−,+,−+,++} are martingale
sequences. Let Aw(p), p ≥ 0, w ∈ {−,+,−+,++} denote the quadratic variation
processes associated with these martingale sequences. Thus,


Aw(p) = E


[
p


∑
m=1


(Mw(m+1)−Mw(m))2 | G (m−1)


]
+E
[
(Mw(0))2


]


= E


[
p


∑
m=1


b2(m+1)
(


h(Xw(m+1))−E[h(Xw(m+1))2 | G (m)]
)]


+E
[
(Mw(0))2


]


=
p


∑
m=1


b2(m+1)
(


E[h2(Xw(m+1)) | G (m)]−E2[h(Xw(m+1)) | G (m)]
)
+E
[
(Mw(0))2


]
.


Now observe that because h(·) is Lipschitz continuous (cf. Assumption 7.1),


|h(Xw(m))|− |h(0)| ≤ |h(Xw(m))− h(0)| ≤ K‖Xw(m)‖,
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where K > 0 is the Lipschitz constant. Thus,


|h(Xw(m))| ≤C1(1+ ‖Xw(m)‖)


for C1 = max(K, |h(0)|) < ∞. By Assumption 7.3, it follows that supm
E[‖Xw(m)‖2] < ∞. Now from Assumption 7.5 (cf. equation (7.35)), it follows that
Aw(p)→ Aw(∞) as p→ ∞ almost surely, ∀w ∈ {−,+,−+,++}. The claim now
follows from the martingale convergence theorem (Theorem B.2). ��
Lemma 7.3. The recursions (7.3)-(7.6) are uniformly bounded with probability one.


Proof. Recall that the recursions (7.3)-(7.6) are analogously written as (7.39). The
latter can be rewritten as


Zw(p+1) = Zw(p)+b(p)(E[h(Xw(p)) |G (p−1)]−Zw(p))+Mw(p)−Mw(p−1),
(7.40)


w ∈ {−,+,−+,++}. Now as a consequence of Lemma 7.2, it is sufficient to show
the boundedness of the following recursion:


Zw(p+ 1) = Zw(p)+ b(p)(E[h(Xw(p)) | G (p− 1)]−Zw(p)). (7.41)


As in Lemma 7.2, it can be shown that


|h(Xw(m))| ≤C1(1+ ‖Xw(m)‖),


for a constant C1 > 0. It again follows from Assumption 7.3 that supm E[‖Xw(m)‖ |
G (m−1)]<∞ almost surely. The rest now follows easily from the Borkar and Meyn
stability theorem (Theorem D.1). ��
Now, define a sequence of time points {s(n),n ≥ 0} as follows: s(0) = 0, s(n) =
n−1


∑
i=0


a(i), n ≥ 1. For i = 1, . . . ,N, let Δi(t) = Δi(n) and Δ̂i(t) = Δ̂i(n) for t ∈
[s(n),s(n + 1)], n ≥ 0. Further let Δ(t) = (Δ1(t), . . . ,ΔN(t))


T and
Δ̂(t) = (Δ̂1(t), . . . , Δ̂N(t))


T , respectively. Also, define another sequence of time


points {t(n)} as follows: t(0) = 0, t(n) =
n−1


∑
i=0


b(i), n ≥ 1. Consider the following


system of ODEs: For i, j ∈ {1, . . . ,N}, w ∈ {−,+,−+,++},


θ̇i(t) = 0, (7.42)


Ḣ j,i(t) = 0, (7.43)


Żw(t) = J(θw(t))−Zw(t). (7.44)


Here and in the rest of the chapter, the following notation for the parameters is
used: θ−(t) = (θ (t) −δ1Δ(t)), θ+(t) = (θ (t) +δ1Δ(t)), θ−+(t) = (θ (t) −δ1Δ(t)
+δ2Δ̂ (t)) and θ++(t) = (θ (t) +δ1Δ(t) +δ2Δ̂ (t)), respectively.
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Define now functions z̄w(t), w ∈ {−,+,−+,++} according to z̄w(t(n)) = Zw(n)
with the maps t → z̄w(t) corresponding to continuous linear interpolations on inter-
vals [t(n), t(n+1)]. Given T > 0, define {T (n)} as follows: T (0) = 0 and for n≥ 1,
T (n) = min{t(m) | t(m) ≥ T (n− 1)+ T}. Let I(n) = [T (n),T (n+ 1)]. Note that
there exists some integer m(n)> 0 such that T (n) = t(m(n)). Define also functions
zw,n(t), w ∈ {−,+,−+,++}, t ∈ I(n), n≥ 0, according to


żw,n(t) = J(θw(t))− zw,n(t), (7.45)


with zw,n(T (n)) = z̄w(t(m(n))) = Zw(m(n)).


Lemma 7.4. lim
n→∞ sup


t∈I(n)
‖zw,n(t)− z̄w(t)‖= 0 ∀w ∈ {−,+,−+,++}, w.p.1.


Proof. The proof follows as in [3, Chapter 2, Lemma 1] (see Proposition 3.2). ��
Lemma 7.5. Given T,ε > 0, ((θi(t(n) + ·), Hj,i(t(n) + ·), z̄w(t(n) + ·)), i, j ∈
{1, . . . ,N}, w ∈ {−,+,−+,++}, is a bounded (T,ε)-perturbation of (7.42)-(7.44)
for n sufficiently large.


Proof. Observe that the iterations (7.7)-(7.8) of the algorithm can be written as


Hj,i(n+ 1) = Hj,i(n)+ b(n)ξ1(n),


θi(n+ 1) = Γi(θi(n)+ b(n)ξ2(n)),


respectively, where ξ1(n) and ξ2(n) are both o(1) as a consequence of Assump-
tion 7.5 (cf. equation (7.36)). The claim now follows from Lemma 7.4. ��
Corollary 7.6. For all w ∈ {−,+,−+,++},


‖Zw(n)− J(θw(n))‖→ 0 a.s.,


as n→ ∞.


Proof. The claim follows from the Hirsch lemma (Lemma C.5) applied on (7.44)
for every ε > 0. ��
We now look at the recursion (7.7).


Lemma 7.7. The iterates Hj,i(n), n ≥ 0, j, i ∈ {1, . . . ,N}, in (7.7), are uniformly
bounded with probability one.


Proof. The result follows as a consequence of Lemma 7.3 using the Borkar-Meyn
theorem (Theorem D.1). ��
The next step is to replace Zw(n) by J(θw(n)) in the update of (7.7), in lieu of
Corollary 7.6. Thus, let
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Fj,i(θ (n),Δ(n), Δ̂ (n))
Δ
=


(
J(θ++(n))− J(θ+(n))


δ2Δ̂ j(n)


)
−
(


J(θ−+(n))− J(θ−(n))
δ2Δ̂ j(n)


)


2δ1Δi(n)
.


Also let F (n) = σ(θi(m), Hj,i(m), Z−(mL), Z+(mL), Z−+(mL), Z++(mL), m≤ n,
i, j = 1, . . . ,N; Δ(m), Δ̂ (m), m < n), n≥ 1. Let {Nj,i(n)}, j, i = 1, . . . ,N be defined
according to


Nj,i(n)=
n−1


∑
m=0


c(m)(Fj,i(θ (m),Δ(m), Δ̂ (m))−E[Fj,i(θ (m),Δ(m), Δ̂ (m)) | F (m)]).


Lemma 7.8. The sequences {Nj,i(n),F (n)}, j, i = 1, . . . ,N form almost surely con-
vergent martingale sequences.


Proof. The claim follows in a similar manner as Lemma 7.2. ��
Proposition 7.9. With probability one, ∀ j, i ∈ {1, . . . ,N},∣∣∣∣∣∣∣E
⎡
⎢⎣
(


J(θ++(n))−J(θ+(n))
δ2Δ̂ j(n)


)
−
(


J(θ−+(n))−J(θ−(n))
δ2Δ̂ j(n)


)
2δ1Δi(n)


∣∣∣∣∣∣∣ F (n)


⎤
⎥⎦−∇2


j,iJ(θ (n))


∣∣∣∣∣∣∣→ 0


as δ1,δ2→ 0.


Proof. The proof proceeds using several Taylor series expansions to evaluate the
conditional expectation above. Note that


J(θ (n)+δ1Δ(n)+δ2Δ̂ (n)) = J(θ (n)+δ1Δ(n))+δ2


N


∑
k=1


Δ̂k(n)∇kJ(θ (n)+δ1Δ(n))


+
1
2
δ 2


2


N


∑
k=1


N


∑
l=1


Δ̂k(n)∇2
k,lJ(θ (n)+ δ1Δ(n))Δ̂l(n)+ o(δ 2


2 ).


Similarly,


J(θ (n)−δ1Δ(n)+δ2Δ̂ (n)) = J(θ (n)−δ1Δ(n))+δ2


N


∑
k=1


Δ̂k(n)∇kJ(θ (n)−δ1Δ(n))


+
1
2
δ 2


2


N


∑
k=1


N


∑
l=1


Δ̂k(n)∇2
k,lJ(θ (n)− δ1Δ(n))Δ̂l(n)+ o(δ 2


2 ).


It can now be seen that


E


[((
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))


δ2Δ̂ j(n)


)
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−
(


J(θ (n)− δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)− δ1Δ(n))
δ2Δ̂ j(n)


))
/2δ1Δi(n) | F (n)


]


= E


[
∇ jJ(θ (n)+ δ1Δ(n))−∇ jJ(θ (n)− δ1Δ(n))


2δ1Δi(n)


+∑
k �= j


Δ̂k(n)


Δ̂ j(n)


∇kJ(θ (n)+ δ1Δ(n))−∇kJ(θ (n)− δ1Δ(n))
2δ1Δi(n)


+δ2


N


∑
k=1


N


∑
l=1


Δ̂k(n)(∇2
k,lJ(θ (n)+ δ1Δ(n))−∇2


k,lJ(θ (n)− δ1Δ(n)))Δ̂l(n)


4δ1Δi(n)Δ̂ j(n)


+ o(δ2) | F (n)


]
(7.46)


Now using Taylor series expansions of∇ jJ(θ (n)+δ1Δ(n)) and∇ jJ(θ (n)−δ1Δ(n))
around ∇ jJ(θ (n)) gives


∇ jJ(θ (n)+ δ1Δ(n))−∇ jJ(θ (n)− δ1Δ(n))
2δ1Δi(n)


=∇2
j,iJ(θ (n))


+∑
l �=i


Δl(n)
Δi(n)


∇2
j,lJ(θ (n))+ o(δ 2


1 ).


A similar expansion can be obtained with index k in place of j in the second term
on the RHS of (7.46). Also note that


∇2
k,lJ(θ (n)+δ1Δ (n))−∇2


k,lJ(θ (n)−δ1Δ (n))
4δ1Δi(n)


=
N


∑
m=1


Δ (m)(n)∇3
k,l,mJ(θ (n))


2Δi(n)
+o(δ1)


Thus,


δ2


N


∑
k=1


N


∑
l=1


Δ̂k(n)(∇2
k,lJ(θ (n)+ δ1Δ(n))−∇2


k,lJ(θ (n)− δ1Δ(n)))Δ̂l(n)


4δ1Δi(n)Δ̂ j(n)


= δ2


N


∑
k=1


N


∑
l=1


N


∑
m=1


Δ̂k(n)Δ(m)(n)∇3
k,l,mJ(θ (n))Δ̂l(n)


2Δ̂ j(n)Δi(n)
+ o(δ1).


Substituting the above in (7.46), one obtains


E


[((
J(θ (n)+δ1Δ (n)+δ2Δ̂(n))−J(θ (n)+δ1Δ (n))


2δ1Δi(n)δ2Δ̂ j(n)


)


−
(


J(θ (n)−δ1Δ (n)+δ2Δ̂(n))−J(θ (n)−δ1Δ (n))
2δ1Δi(n)δ2Δ̂ j(n)


)) ∣∣∣∣∣ F (n)


]
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= E


[
∇2


j,iJ(θ (n))+∑
l �=i


Δl(n)
Δi(n)


∇2
j,l J(θ (n))+∑


k �= j


Δ̂k(n)


Δ̂ j(n)
∇2


k,iJ(θ (n))


+∑
k �= j
∑
l �=i


Δ̂k(n)


Δ̂ j(n)


Δl(n)
Δi(n)


∇2
k,lJ(θ (n))+δ2


N


∑
k,l,m=1


Δ̂k(n)Δ (m)(n)∇3
k,l,mJ(θ (n))Δ̂l(n)


2Δ̂ j(n)Δi(n)


+o(δ1)+o(δ2) | F (n)


]


=∇2
j,iJ(θ (n))+∑


l �=i


E


[
Δl(n)
Δi(n)


| F (n)


]
∇2


j,l J(θ (n))+∑
k �= j


E


[
Δ̂k(n)


Δ̂ j(n)
| F (n)


]
∇2


k,iJ(θ (n))


+∑
k �= j
∑
l �=i


E


[
Δ̂k(n)


Δ̂ j(n)


Δl(n)
Δi(n)


| F (n)


]
∇2


k,lJ(θ (n))


+δ2


N


∑
k=1


N


∑
l=1


N


∑
m=1


E


[
Δ̂k(n)Δ̂l(n)Δ (m)(n)


2Δ̂ j(n)Δi(n)
| F (n)


]
∇3


k,l,mJ(θ (n))+o(δ1)+o(δ2).


Now, by Assumption 7.6, it is easy to see that all conditional expectations in the last
equality above equal zero. Thus


E


[((
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))


2δ1Δi(n)δ2Δ̂ j(n)


)


−
(


J(θ (n)− δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)− δ1Δ(n))
2δ1Δi(n)δ2Δ̂ j(n)


)) ∣∣∣∣∣ F (n)


]


= ∇2
j,iJ(θ (n))+ o(δ1)+ o(δ2).


The claim follows. ��


Consider now the following ODEs: For j, i = 1, . . . ,N,


Ḣj,i(t) = ∇2
j,iJ(θ (t))−Hj,i(t),


θ̇i(t) = 0.


}
(7.47)


Next define {r(n)} as follows: r(0) = 0 and for n > 0, r(n) =
n−1


∑
m=0


c(m). De-


fine H̄(t) = [[H̄j,i(t)]]Nj,i=1 and x̄w(t), w ∈ {−,+,−+,++}, as follows: For j, i =
1, . . . ,N, H̄ j,i(r(n)) = Hj,i(n) and x̄w(r(n)) = Zw(nL) with linear interpolations on
[r(n),r(n+ 1)].


The following can now be shown in the same way as Corollary 7.6.


Lemma 7.10. ‖H(n)−∇2J(θ (n))‖ → 0 a.s. as δ1,δ2→ 0 and n→ ∞,


where H(n) = [[Hj,i(n)]]Nj,i=1.
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Lemma 7.11. With probability one, ‖P(H(n))−1− P(∇2J(θ (n)))−1‖ → 0 as δ1,
δ2→ 0 and n→ ∞.


Proof. Note that
‖P(H(n))−1−P(∇2J(θ (n)))−1‖


= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))P(H(n))−1− I)‖
= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))P(H(n))−1−P(H(n))P(H(n))−1)‖


= ‖P(∇2J(θ (n)))−1(P(∇2J(θ (n)))−P(H(n)))P(H(n))−1‖
≤ ‖P(∇2J(θ (n)))−1‖ · ‖P(∇2J(θ (n)))−P(H(n))‖ · ‖P(H(n))−1‖


≤ sup
n
‖P(∇2J(θ (n)))−1‖sup


n
‖P(H(n))−1‖ · ‖P(∇2J(θ (n)))−P(H(n))‖


→ 0 as n→ ∞,


by Assumption 7.4. In the above, I denotes the N ×N-identity matrix. The claim
follows. ��
Proof of Theorem 7.1. For i = 1, . . . ,N, let {Ri(n), n≥ 1} be defined according to


Ri(n) =
n−1


∑
m=0


a(m)
N


∑
k=1


M̄i,k(θ (m))


(
J(θ (m)− δ1Δ(m))− J(θ (m)+ δ1Δ(m))


2δ1Δk(m)


−E


[
J(θ (m)− δ1Δ(m))− J(θ (m)+ δ1Δ(m))


2δ1Δk(m)
|F (m)


])
,


n ≥ 1. Then it is easy to see that {Ri(n), F (n)}, i = 1, . . . ,N, are almost surely
convergent martingale sequences. Now recursion (7.8) of the algorithm can be
rewritten as


θi(n+ 1) = Γi(θi(n)+ a(n)
N


∑
k=1


M̄i,k(θ (n))(E[(J(θ (n)− δ1Δ(n))


− J(θ (n)+ δ1Δ(n)))/2δ1Δk(n) | F (n)]+ (Ri(n+ 1)−Ri(n))+ a(n)α(n)),
(7.48)


where (Ri(n+ 1)−Ri(n)) is o(1) by the above and α(n) vanishes as n→ ∞ and
δ1,δ2→ 0 by Corollary 7.6 and Lemma 7.11.


Using Taylor series expansions of J(θ (n) −δ1Δ(n)) and J(θ (n) +δ1Δ(n)), re-
spectively, around θ (n) and taking the conditional expectation above, it is easy to
see that recursion (7.8) can be rewritten as


θi(n+1) = Γi(θi(n)−a(n)
N


∑
k=1


M̄i,k(θ (n))∇kJ(θ (n))+a(n)ξδ1
(n)+(Ri(n+1)−Ri(n))


+a(n)α(n)), (7.49)
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where ξδ1
(n) vanishes as n→ ∞ and δ1→ 0. Note that (7.49) can be viewed, using


a standard approximation argument as in [5, pp.191-196] and Proposition 7.9, as
a discretization of the ODE (7.38) with certain error terms that, however, vanish
asymptotically (as n→ ∞) and in the limit as δ1,δ2→ 0. Now J(θ ) itself serves as
an associated Lyapunov function for the ODE (7.38). The claim now follows from
Lasalle’s invariance theorem [7]. ��
Remark 7.3. Note that for θ ∈ K̂∩K, ∇J(θ ) = 0 by positive definiteness of M̄(θ ).
Further, on the set K\K̂, if∇J(θ ) �= 0, one has Γ̃i(−(M̄(θ )∇J(θ ))i) = 0 for all those
i (i = 1, . . . ,N) for which ∇iJ(θ ) �= 0. (Here−(M̄(θ )∇J(θ ))i corresponds to the ith
component of the vector (M̄(θ )∇J(θ )).) The latter correspond to spurious fixed
points that, however, can occur only on the projection set boundaries (since Co ⊆ K̂)
[6, pp. 79].


7.5.3 Convergence Analysis of N-SPSA3


The analysis proceeds in exactly the same way as for N-SPSA4. Note, however, that
the form of the Hessian estimator here is different. Hence, we show that the Hessian
estimator is consistent.


Let F1(n)
Δ
= σ(θi(m), Hj,i(m), Z−(mL), Z+(m), Z++(m), m≤ n, i, j = 1, . . . ,N;


Δ(m), Δ̂(m), m < n), n≥ 1 be a sequence of sigma fields.


Proposition 7.12. With probability one, ∀ j, i ∈ {1, . . . ,N}∣∣∣∣∣E
[


J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)


|F1(n)


]
−∇2


j,iJ(θ (n))


∣∣∣∣∣
−→ 0 as δ1,δ2→ 0.


Proof. Note as before that


J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)


=
N


∑
l=1


Δ̂l(n)∇lJ(θ (n)+ δ1Δ(n))
δ1Δi(n)Δ̂ j(n)


+
δ2


2


N


∑
l=1


N


∑
m=1


Δ̂l(n)Δ̂(m)(n)∇2
l,mJ(θ (n)+ δ1Δ(n))


δ1Δi(n)Δ̂ j(n)
+ o(δ2) (7.50)


Taking again appropriate Taylor series expansions of ∇lJ(θ (n) + δ1Δ(n)) and
∇2


l,mJ(θ (n) + δ1Δ(n)) around θ (n), substituting in (7.50), taking the conditional
expectation w.r.t. F1(n), one obtains


E


[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))


δ1δ2Δi(n)Δ̂ j(n)
|F1(n)


]
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=
N


∑
l=1


1
δ1


E


[
Δ̂l(n)


Δi(n)Δ̂ j(n)
|F1(n)


]
∇lJ(θ (n))+∇2


j,iJ(θ (n))


+
N


∑
l=1,l �= j


N


∑
k=1,k �=i


E


[
Δ̂l(n)Δk(n)


Δ̂ j(n)Δi(n)
|F1(n)


]
∇2


l,kJ(θ (n))


+
δ1


2


N


∑
l=1


N


∑
k=1


N


∑
m=1


E


[
Δ̂l(n)Δk(n)Δ(m)(n)


Δi(n)Δ̂ j(n)
|F1(n)


]
∇3


k,m,lJ(θ (n))


+
δ2


2δ1


N


∑
l=1


N


∑
m=1


E


[
Δ̂l(n)Δ̂(m)(n)


Δi(n)Δ̂ j(n)
|F1(n)


]
∇2


l,mJ(θ (n))


+
δ2


2


N


∑
l=1


N


∑
m=1


N


∑
k=1


E


[
Δ̂l(n)Δ̂(m)(n)Δk(n)


Δi(n)Δ̂ j(n)
|F1(n)


]
∇3


l,m,kJ(θ (n))+ o(δ1)+ o(δ2).


From Assumption 7.6, all the conditional expectation terms on the RHS above equal
zero. Thus


E


[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))− J(θ (n)+ δ1Δ(n))


δ1δ2Δi(n)Δ̂ j(n)
|F1(n)


]


= ∇2
j,iJ(θ (n))+ o(δ1)+ o(δ2).


The claim follows. ��


Theorem 7.13. Given η > 0, there exists δ̂ > 0 such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.10)-(7.14) converges to the set Kη with probability one.


Proof. Follows in the same manner as Theorem 7.1. ��


7.5.4 Convergence Analysis of N-SPSA2


As with N-SPSA3, the analysis proceeds along similar lines as for N-SPSA4. Let


F2(n)
Δ
= σ(θi(m), Hj,i(m), Z+(m), Z++(m), m ≤ n, i, j = 1, . . . ,N; Δ(m), Δ̂ (m),


m < n), n≥ 1 denote a sequence of sigma fields. Since the form of the Hessian esti-
mate here is the same as in N-SPSA3, the conclusions of Proposition 7.12 continue
to hold with F2(n) in place of F1(n). Note, however, that the form of the gradient
estimate here is different. We have the following result for the gradient estimate.


Proposition 7.14. For all k = 1, . . . ,N,
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lim
δ1,δ2→0


‖E
[


J(θ (n)+δ1Δ (n))−J(θ (n)+δ1Δ (n)+δ2Δ̂(n))
δ2Δ̂k(n)


|F2(n)


]
+∇kJ(θ (n))‖= 0,


with probability one.


Proof. Note that


J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)


=−
N


∑
l=1


Δ̂l(n)


Δ̂k(n)
∇lJ(θ (n)+δ1Δ(n))


− δ2


2


N


∑
l=1


N


∑
j=1


Δ̂l(n)


Δ̂k(n)
Δ̂ j(n)∇2


l, jJ(θ (n)+ δ1Δ(n))+ o(δ2). (7.51)


Again


∇lJ(θ (n)+ δ1Δ(n)) = ∇lJ(θ (n))+ δ1


N


∑
j=1
Δ j(n)∇2


l, jJ(θ (n))+ o(δ1),


∇2
l, jJ(θ (n)+ δ1Δ(n)) = ∇2


l, jJ(θ (n))+ δ1


N


∑
m=1


Δ(m)(n)∇3
l, j,mJ(θ (n))+ o(δ1).


Substituting the above in (7.51) and taking conditional expectations, we have


E


[
J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))


δ2Δ̂k(n)
| F2(n)


]


=−∇kJ(θ (n))−
N


∑
l=1,l �=k


E


[
Δ̂l(n)


Δ̂k(n)
|F2(n)


]
∇lJ(θ (n))


−δ1


N


∑
l=1


N


∑
j=1


E


[
Δ̂l(n)Δ j(n)


Δ̂k(n)
|F2(n)


]
∇2


l, jJ(θ (n))


−δ2


2


N


∑
l=1


N


∑
j=1


E


[
Δ̂l(n)Δ̂ j(n)


Δ̂k(n)
|F2(n)


]
∇2


l, jJ(θ (n))


−δ1δ2


2


N


∑
l=1


N


∑
j=1


N


∑
m=1


E


[
Δ̂l(n)Δ̂ j(n)Δ(m)(n)


Δ̂k(n)
|F2(n)


]
∇3


l, j,mJ(θ (n))+ o(δ1)+ o(δ2).


Now it is easy to see using Assumption 7.6 that all conditional expectation terms on
the RHS above equal zero. Thus,


E


[
J(θ (n)+ δ1Δ(n))− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))


δ2Δ̂k(n)
| F2(n)


]


=−∇kJ(θ (n))+ o(δ1)+ o(δ2).
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The claim follows. ��


Theorem 7.15. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.16)-(7.19) converges to the set Kη with probability one.


Proof. Using an appropriate martingale construction, it is easy to see that recursion
(7.19) can be rewritten as


θi(n+ 1) = Γi(θi(n)+ a(n)
N


∑
k=1


M̄i,k(θ (n))(E[(J(θ (n)+ δ1Δ(n))


− J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n)))/δ2Δ̂k(n) |F2(n)])+α1(n)+ a(n)α2(n)), (7.52)


where α1(n) is o(1) and α2(n) becomes asymptotically negligible as δ1,δ2→ 0. The
claim now follows in a similar manner as Theorem 7.1 upon using the conclusions
of Proposition 7.14. ��


7.5.5 Convergence Analysis of N-SPSA1


The analysis in this case also proceeds along similar lines as that of N-SPSA4. Let
F3(n) = σ(θi(m), Hj,i(m), Z++(m), m ≤ n, i, j = 1, . . . ,N; Δ(m), Δ̂ (m), m < n),
n≥ 1 denote a sequence of sigma fields. The forms of the gradient and the Hessian
estimators are both different from the other algorithms. Hence, we first show their
unbiasedness.


Proposition 7.16. With probability one, ∀ j, i ∈ {1, . . . ,N},


lim
δ1,δ2→0


∣∣∣∣∣E
[


J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ1δ2Δi(n)Δ̂ j(n)


|F3(n)


]
−∇2


j,iJ(θ (n))


∣∣∣∣∣= 0. (7.53)


Proof. The proof here is similar to that of Proposition 7.12, the only difference be-
ing the presence of additional bias terms that arise from the Taylor series expansion


of the ‘extra’ term E


[
J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)


|F3(n)


]
that in turn results from the Tay-


lor’s expansion of the first term in (7.53). Now note that


E


[
J(θ (n)+ δ1Δ(n))
δ1δ2Δi(n)Δ̂ j(n)


|F3(n)


]
= E


[
1


Δi(n)Δ̂ j(n)
|F3(n)


]
J(θ (n))
δ1δ2


+
N


∑
k=1


E


[
Δk(n)


Δi(n)Δ̂ j(n)
|F3(n)


]
∇kJ(θ (n))


δ2
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+
δ1


2δ2


N


∑
k=1


N


∑
m=1


E


[
Δk(n)Δ(m)(n)


Δi(n)Δ̂ j(n)
|F3(n)


]
∇2


k,mJ(θ (n))+ o(δ1).


It is easy to see from Assumption 7.6 that all the conditional expectation terms on
the RHS above equal zero. The rest follows as in Proposition 7.12. ��
Proposition 7.17. For all k = 1, . . . ,N,


lim
δ1,δ2→0


∣∣∣∣∣E
[


J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)


|F3(n)


]
−∇kJ(θ (n))


∣∣∣∣∣= 0,


with probability one.


Proof. Note that


J(θ (n)+ δ1Δ(n)+ δ2Δ̂(n))
δ2Δ̂k(n)


=
J(θ (n)+ δ1Δ(n))


δ2Δ̂k(n)
+


N


∑
l=1


Δ̂l(n)


Δ̂k(n)
∇lJ(θ (n)+ δ1Δ(n))


+
δ2


2


N


∑
l=1


N


∑
j=1


Δ̂l(n)


Δ̂k(n)
Δ̂ j(n)∇2


l, jJ(θ (n)+ δ1Δ(n))+ o(δ2). (7.54)


Upon comparison with (7.51), it is clear that there is an extra term
J(θ (n)+ δ1Δ(n))


δ2Δ̂(n)
on the RHS of (7.54) that is not present in the corresponding expression in (7.51).
Again note that


E


[
J(θ (n)+ δ1Δ(n))


δ2Δ̂k(n)
|F3(n)


]
= E


[
1


Δ̂k(n)
|F3(n)


]
J(θ (n))
δ2


+δ1


N


∑
l=1


E


[
Δl(n)


Δ̂k(n)
|F3(n)


]
∇lJ(θ (n))


δ2


+
δ 2


1


2


N


∑
l=1


N


∑
m=1


E


[
Δl(n)Δ(m)(n)


Δ̂k(n)
|F3(n)


] ∇2
l,mJ(θ (n))
δ2


+ o(δ1).


It is easy to see from Assumption 7.6 that all the conditional expectation terms on
the RHS above equal zero. The rest now follows as in Proposition 7.14. ��


Theorem 7.18. Given η > 0, there exists δ̂ > 0, such that for all δ1,δ2 ∈ (0, δ̂ ],
the algorithm (7.22)-(7.24) converges to the set Kη with probability one.


Proof. As before, (7.24) can be rewritten using a martingale argument as


θi(n+ 1) = Γi(θi(n)− a(n)
N


∑
k=1


M̄i,k(θ (n))E


[
J(θ (n)+ δ1Δ(n)+ δ2Δ̂ (n))


δ2Δ̂k(n)
|F3(n)


]
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+α3(n)+ a(n)α4(n)),


where α3(n) is o(1) and α4(n) vanishes asymptotically as δ1,δ2 → 0. The
rest now follows from Propositions 7.16 and 7.17, in a similar manner as
Theorem 7.1. ��


7.5.6 Convergence Analysis of W-SPSA Algorithms


The convergence of the W-SPSA4 algorithm follows from that of the N-SPSA4
algorithm with the following lemma in place of Lemma 7.11.


Lemma 7.19. ∥∥M(n)−P(∇2J(θ (n)))−1
∥∥→ 0 w.p. 1,


with δ1,δ2→ 0 as n→ ∞, ∀i, j ∈ {1,2, . . . , |A|× |B|}.
Proof. From Woodbury’s identity, since M(n),n ≥ 1 sequence of W-SPSA4 is
identical to the P(H(n))−1,n ≥ 1 sequence of N-SPSA4, the result follows from
Lemma 7.11. ��
On similar lines, one can derive convergence results for W-SPSA3, W-SPSA2 and
W-SPSA1 algorithms.


7.6 Concluding Remarks


We presented in this chapter four different Newton SPSA algorithms from [2] for
the long-run average cost objective. It has been empirically shown in [2] that N-
SPSA4 shows the best results on a low-dimensional setting (considered there),
while N-SPSA3 shows the same for high-dimensional parameters. This, however,
needs to be verified over other settings. The short comings of Newton-based al-
gorithms are the requirements of (a) projection to the set of positive definite and
symmetric matrices and (b) the problem of taking the inverse of the projected
Hessian update at each step. For the second problem, we proposed variants to the
N-SPSA algorithms that directly update the inverse of the Hessian matrix by mak-
ing use of the Woodbury’s identity. The problem of finding the Hessian inverse is
altogether avoided by [13] where the inverse of the geometric mean of the ‘pro-
jected eigen-values’ of the Hessian update at each update epoch replaces the in-
verse of the Hessian. Finally, [12] proposes certain improved Hessian estimates for
Newton SPSA.
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Chapter 8
Newton-Based Smoothed Functional Algorithms


8.1 Introduction


We saw in Chapter 6, the development of gradient estimates using the SF technique.
The idea is that there was to convolve the gradient of the objective with a multi-
variate smoothing density functional. Using an integration-by-parts argument, the
same is obtained as a convolution of the objective with a scaled version of the den-
sity. The density functions that can be used for smoothing include Gaussian, Cauchy
and uniform pdfs.


We extend the above idea to obtain Hessian estimates using Gaussian pdfs as
smoothing functions. By taking the convolution of the Hessian of the objective with
a multi-variate Gaussian pdf, and through an integration-by-parts argument applied
twice, one obtains in an elegant manner the same as a convolution of the objective
function with a transformed density functional. The transformation involves gener-
ating N independent N(0,1)–distributed random variates at each update step (where
N corresponds to the parameter dimension). The same perturbed simulation is also
seen (see Chapter 6) to estimate the gradient of the objective function. This results
in a one-simulation Newton SF algorithm where one perturbed simulation estimates
both the gradient and the Hessian of the objective.


Next in Section 8.2.2, we derive a two-simulation balanced estimate of the Hes-
sian of the objective function that is seen to have a lower bias than its one-simulation
counterpart. As discussed in Chapter 6, the same two simulations are also seen to
help in obtaining a balanced SF estimate of the gradient.


Prior work on Hessian-based estimation schemes in the literature has been dis-
cussed in Chapter 7 including the simultaneous perturbation techniques presented
there. As with Chapter 7, we consider here the long-run average cost objective and
develop multi-timescale stochastic approximation algorithms. The material in this
chapter is entirely based on [2].


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 133–148.
springerlink.com © Springer-Verlag London 2013
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The rest of the chapter is organized as follows: The Hessian estimates are de-
rived in Section 8.2. The two Newton SF algorithms that incorporate these Hessian
estimators as well as the gradient SF estimators described in Chapter 6 are then pre-
sented in Section 8.3. The proofs of convergence of these algorithms are presented
in Section 8.4. Finally, Section 8.5 presents the concluding remarks.


The framework that we use is exactly the same as described in Section 7.2 of
Chapter 7, hence the same is not repeated here. Further, we let Assumptions 7.1–7.5
hold.


8.2 The Hessian Estimates


We present in this section both the one-simulation and the two-simulation Hessian
SF estimates.


8.2.1 One-Simulation Hessian SF Estimate


Let
D2
β ,1J(θ ) �=


∫
Gβ (θ −η)∇2


ηJ(η)dη , (8.1)


denote the convolution of the N-dimensional multi-variate Gaussian pdf Gβ (·) (i.e.,
the joint pdf of N independent N(0,β 2)-distributed random variables) with∇2


ηJ(η),
the Hessian of J(η). The precise expression of Gβ (θ −η) is


Gβ (θ −η) =
1


(2π)N/2βN
exp


(
−1


2


N


∑
i=1


(θi−ηi)
2


β 2


)
,


where θ ,η ∈R
N with θ �= (θ1, . . . ,θN)


T and η �= (η1, . . . ,ηN)
T . It can be seen that


in the limit as β → 0, D2
β ,1J(θ )→∇2J(θ ). Thus, for β > 0 small enough, D2


β ,1J(θ )
will serve as an estimate of the Hessian∇2J(θ ). This argument will be made precise
later.


Now, as with the G-SF schemes, upon integrating by parts in (8.1), one obtains


D2
β ,1J(θ ) =−∫ ∇ηGβ (θ −η)∇ηJ(η)dη


=
∫
∇ηGβ (η)∇ηJ(θ −η)dη .


It is easy to see that


∇ηGβ (η) =−
η
β 2 Gβ (η).
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Hence,


D2
β ,1J(θ ) = − 1


β 2


∫
ηGβ (η)∇ηJ(η)dη


= − 1
β 2


∫
∇η (ηGβ (η))J(θ −η)dη . (8.2)


The last equality above is obtained via another operation involving integration by
parts. Before we proceed further, we first evaluate ∇η (ηGβ (η)) = ∇η((η1Gβ (η),
. . ., ηNGβ (η)). Note that


∇η(ηGβ (η)) =


⎡
⎢⎢⎣
∇η1(η1Gβ (η)) ∇η2(η1Gβ (η)) · · · ∇ηN (η1Gβ (η))
∇η1(η2Gβ (η)) ∇η2(η2Gβ (η)) · · · ∇ηN (η2Gβ (η))


· · · · · · · · · · · ·
∇η1(ηNGβ (η)) ∇η2(ηNGβ (η)) · · · ∇ηN (ηNGβ (η))


⎤
⎥⎥⎦


=


⎡
⎢⎢⎢⎢⎢⎣


(
1− η2


1
β 2


)
−η1η2


β 2 · · · −η1ηN
β 2


−η2η1
β 2


(
1− η2


2
β 2


)
· · · −η2ηN


β 2


· · · · · · · · · · · ·
−ηNη1


β 2 −ηNη2
β 2 · · ·


(
1− η2


N
β 2


)


⎤
⎥⎥⎥⎥⎥⎦Gβ (η).


Let Ĥ(η) denote the matrix above that multiplies Gβ (η). Then from (8.2), we have


D2
β ,1J(θ ) =− 1


β 2


∫
Ĥ(η)Gβ (η)J(θ −η)dη .


Let η ′=η/β . Then η = βη ′=(βη ′1, . . . ,βη ′N)T (written component-wise). Hence,
dη = βNdη ′1 · · ·dη ′N = βNdη ′. Hence (8.2) becomes


D2
β ,1J(θ ) =


1
β 2


∫
H̄(η ′)G1(η ′)J(θ −βη ′)dη ′, (8.3)


where G1(η ′) = Gβ (η ′) with β = 1, i.e., the joint p.d.f. of N independent, N(0,1)-
distributed random variables. Also,


H̄(η ′) =


⎡
⎢⎢⎣
((η ′1)2− 1) η ′1η ′2 · · · η ′1η ′N
η ′2η


′
1 ((η ′2)


2− 1) · · · η ′2η
′
N


· · · · · · · · · · · ·
η ′Nη ′1 η ′Nη ′2 · · · ((η ′N)2− 1)


⎤
⎥⎥⎦ . (8.4)
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Note that since η ′i = ηi/β , i = 1, . . . ,N, they are independent N(0,1)-distributed
random variables. Now since η ′i and −η ′i have the same distribution, one obtains


D2
β ,1J(θ ) = E


[
1
β 2 H̄(η̄)J(θ +βη̄) | θ


]
,


where the expectation above is taken w.r.t. the p.d.f. G1(η̄). Hence the form of the
estimator for ∇2J(θ (n)) suggested by the above is (for a large integer M > 0 and a
small scalar β > 0)


∇2J(θ (n))≈ 1
β 2


1
M


M


∑
n=1


H̄(η(n))J(θ (n)+βη(n)). (8.5)


Here η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1)–distributed ran-
dom variables.


8.2.2 Two-Simulation Hessian SF Estimate


We now describe a two-simulation (balanced) SF estimate of the Hessian. Let


D2
β ,2J(θ ) = E


[
1


2β 2 H̄(η̄)(J(θ +βη̄)+ J(θ −βη̄)) | θ
]
,


with η̄ �= (η1, . . . ,ηN)
T , with η1, . . . ,ηN being independent, N(0,1)-distributed ran-


dom variables. Then D2
β ,2J(θ ) will serve as an estimate of the Hessian ∇2J(θ ). Us-


ing a Taylor series argument, it will be seen that this estimate has a lower bias than
the one-simulation Hessian SF estimate in Section 8.2.1.


Thus, the form of the two-sided Hessian estimator suggested by the above is the
following: For a large integer M > 0 and a small scalar β > 0,


∇2J(θ (n))≈ 1
2β 2


1
M


M


∑
n=1


H̄(η(n))(J(θ (n)+βη(n))+ J(θ (n)−βη(n))),
(8.6)


where η(n) �= (η1(n), . . . ,ηN(n))T is a vector of N(0,1)-distributed random
variables.
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8.3 The Newton SF Algorithms


We now present the two Newton SF algorithms that are based on the afore-
mentioned one- and two-simulation SF estimates of the Hessian. These algorithms
also incorporate the one- and two-simulation gradient SF estimates described in
Chapter 6. The two combinations of (a) one-simulation gradient and Hessian es-
timates as well as the (b) two-simulation gradient and Hessian estimates, respec-
tively, result in one-simulation and two-simulation Newton SF algorithms that are
respectively referred to as N-SF1 and N-SF2.


As with the algorithms in Chapters 5–7, it is observed that the performance
of the SF algorithms improves considerably when the parameter vector is
updated once after a given number L of instants when L > 1. This happens as a
consequence of the additional data averaging (over L instants) on top of the two-
timescale averaging. The value of L is, however, totally arbitrary, and in fact, it is
observed (see [1, 2, 3]) that a value of L between 50 and 500 works well in many
cases.


8.3.1 The One-Simulation Newton SF Algorithm (N-SF1)


We now describe the Newton SF algorithm which requires one simulation
with perturbed parameter θ + βη . Let {X(n)} be the underlying Markov process
parametrized with θ (n)+βη(n). Let Zi, j(n), i, j = 1,2, . . . ,N, denote components
of the Hessian estimate at update instant n. Also, let Zi(n), i = 1,2, . . . ,N, denote
components of the gradient estimate at update instant n. The algorithm is given as
follows: For a large integer M > 0 and a small β > 0, and for i, j,k = 1, . . . ,N,
j < k,


Zi,i(n+ 1) = Zi,i(n)+ b(n)


(
η2


i (n)− 1
β 2 h(X(n))−Zi,i(n)


)
, (8.7)


Zj,k(n+ 1) = Zj,k(n)+ b(n)


(
η j(n)ηk(n)


β 2 h(X(n))−Zj,k(n)


)
. (8.8)


For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). For l = 1, . . . ,N, update


Zl(n+ 1) = Zl(n)+ c(n)


(
ηl(n)
β


h(X(n))−Zl(n)


)
. (8.9)
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Next, form the matrix H(n) = P([[Zj,k(n)]]Nj,k=1) and compute its inverse


M(n) = [[Mj,k(n)]]Nj,k=1
�
= H(n)−1. For i = 1, . . . ,N, update θi(n) according to


θi(n+ 1) = Γi


(
θi(n)− a(n)


N


∑
k=1


Mi,k(n)Zk(n)


)
, (8.10)


where for some x= (x1, . . . ,xN)
T ∈RN , Γ (x) �=(Γ1(x1), . . .,ΓN(xN))


T represents the
projection of x onto the constraint set C. This is an L2 projection (i.e., the Euclidean-
norm projection).


Next, we present the two-simulation Newton SF algorithm that has a lower bias
in both its gradient and Hessian estimates over its one-simulation counterpart.


8.3.2 The Two-Simulation Newton SF Algorithm (N-SF2)


The Newton SF algorithm, N-SF2, requiring two simulations {X1(n)} and {X2(n)}
with θ+βη and θ−βη respectively, is presented below: For a large integer M > 0
and a small β > 0, and for i, j,k = 1, . . . ,N, j < k,


Zi,i(n+ 1) = Zi,i(n)+ b(n)(
η2


i (n)− 1
2β 2 (h(X1(n))+ h(X2(n)))−Zi,i(n)),


(8.11)


Zj,k(n+ 1) = Zj,k(n)+ b(n)(
η j(n)ηk(n)


2β 2 (h(X1(n))+ h(X2(n)))−Zj,k(n)).


(8.12)


For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). Now, for l = 1, . . . ,N, update


Zl(n+ 1) = Zl(n)+ c(n)


(
ηl(n)
2β


(h(X1(n))− h(X2(n)))−Zl(n)


)
. (8.13)


Next, form the matrix H(n) = P([[Zj,k(n)]]Nj,k=1) and compute its inverse M(n) =


[[Mj,k(n)]]Nj,k=1
�
= H(n)−1. Finally, for i = 1, . . . ,N,


θi(n+ 1) = Γi


(
θi(n)− a(n)


N


∑
k=1


Mi,k(n)Zk(n)


)
, (8.14)


where the projection operator Γ is defined as for the N-SF1 algorithm.
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Remark 8.1. As noted previously, the performance of the algorithms N-SF1 and N-
SF2 is seen to improve considerably if recursions (8.7)–(8.9) (resp. (8.11)–(8.13))
in N-SF1 (resp. N-SF2) are run for some given number L > 1 of instants in between
two successive updates of the parameter (cf. recursions (8.10) and (8.14) in N-SF1
and N-SF2, respectively). In such a case, the projected Hessian matrix H(n) and its
inverse M(n) will also have to be computed only once every L instants using the
most recent information on the average cost samples Zj,k(n), j,k ∈ {1, . . . ,N}. Re-
cursions incorporating the L-step averaging are given in [2] and have been analyzed
there for this case as well.


8.4 Convergence Analysis of Newton SF Algorithms


The detailed analysis of convergence of both the Newton SF algorithms, N-SF1 and
N-SF2 is discussed in the following sections.


8.4.1 Convergence of N-SF1


Consider the ODE


θ̇ (t) = Γ̃ (−P(∇2J(θ (t)))−1∇J(θ (t))), (8.15)


where for any y ∈ R
N and a bounded, continuous function v(·) : RN → R


N ,


Γ̃ (v(y)) = lim
0<η→0


(
Γ (y+ηv(y))−Γ (y)


η


)
.


Let
K
�
= {θ ∈C | ∇J(θ )T Γ̃ (−{P(∇2J(θ ))}−1∇J(θ )) = 0}.


Further, for any set S ⊆C, given η > 0, Sη
�
= {θ ∈C |‖ θ −θ0 ‖≤ η , θ0 ∈ S} shall


denote the set of all points in C that are in an ‘η-neighborhood’ of the set S. Let K̂
denote the set {θ ∈C | Γ̃ (−P(∇2J(θ ))−1∇J(θ )) =−P(∇2J(θ ))−1∇J(θ )}. Let Co


denote the interior of C. Then, one can see that Co ⊆ K̂. Now, the main convergence
result for N-SF1 is as follows:


Theorem 8.1. Under Assumptions 7.1–7.5, given η > 0, there exists β̂ > 0,
such that for all β ∈ (0, β̂ ], the parameter updates θ (n),n≥ 0 obtained using
N-SF1 converge to Kη with probability one as M→ ∞.


To prove this theorem, we provide a sequence of Lemmas, Propositions and
Corollaries in the rest of the section, as explained below:
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1. Proposition 8.2, Lemma 8.3, Proposition 8.4 and Corollary 8.5 prove that the
Hessian updates Zi, j(n)s in N-SF1 converge to the actual Hessian in the limit as
β → 0.


2. Lemma 8.6 shows that the inverse of the projected Hessian estimate also con-
verges to the inverse of the projected Hessian of the objective.


3. Lemmas 8.7–8.8 and Corollary 8.9 show that the gradient estimates Zi(n) also
converge to the actual gradient of the objective, again in the limit as β → 0.


4. With gradient and Hessian estimates converging to those of the objective itself,
the main result is proven using Lasalle’s invariance theorem. The formal proof
of the main result is given at the end of this subsection.


The theory of multi-timescale stochastic approximation (see Chapter 3.3) allows us
to treat θ (n)≡ θ (a constant) while analyzing the Hessian and gradient updates. Let
F (l) = σ(θ (p),X(p), p≤ l;η(p), p < l), l ≥ 1, denote a sequence of sigma fields.
Now define sequences {Ml,l(p)}, {Mi, j(p)}, l, i, j ∈ {1, . . . ,N}, i �= j as follows: For
l = 1, . . . ,N,


Ml,l(p) =
p


∑
m=1


b(m)


(
η2


l (m)− 1
β 2 h(X(m))−E


[
η2


l (m)− 1
β 2 h(X(m)) |F (m− 1)


])
.


Further, for i, j ∈ {1, . . . ,N}, we have


Mi, j(p) =
p


∑
m=1


b(m)


(
ηi(m)η j(m)


β 2 h(X(m))−E


[
ηi(m)η j(m)


β 2 h(X(m)) |F (m−1)


])
.


Proposition 8.2. The sequences {Ml,l(p),F (p)} and {Mi, j(p),F (p)}, l, i, j = 1,
. . . ,N, i �= j are almost surely convergent martingale sequences.


Proof. We consider first the sequence {Ml,l(p),F (p)}. It is easy to see that it is a
martingale sequence. To see that it is square integrable, note that


E[M2
l,l(p)]≤ Cp


β 4


p


∑
m=1


b2(m)(E[(η2
l (m)−1)2h2(X(m))+E2[(η2


l (m)−1)h(X(m)) |F (m−1)]])


for some constant Cp > 0 (that, however, depends on p). For the second term on
RHS above, note that almost surely,


E2[η2
l (m)− 1)h(X(m)) |F (m− 1)]≤ E[(η2


l (m)− 1)2h2(X(m)) |F (m− 1)],


by the conditional Jensen’s inequality. Hence,


E[M2
l,l(p)]≤ 2Cp


β 4


p


∑
m=1


b2(m)E[(η2
l (m)− 1)2h2(X(m))]







8.4 Convergence Analysis of Newton SF Algorithms 141


≤ 2Cp


β 4


p


∑
m=1


b2(m)E[(η2
l (m)− 1)2]1/2E[h4(X(m))]1/2


by the Cauchy–Schwartz inequality. Since, h(·) is a Lipschitz continuous function,
we have


|h(X(m))|− |h(0)| ≤ |h(X(m))− h(0)| ≤ Ĉ ‖ X(m) ‖,
where Ĉ > 0 is the Lipschitz constant. Thus,


|h(X(m))| ≤C1(1+ ‖ X(m) ‖)


for C1 = max(Ĉ, |h(0)|)<∞. Hence, one gets


E[h4(X(m))]≤C2(1+E[‖ X(m) ‖4])


for (constant) C2 = 8C4
1. As a consequence of Assumption 7.3, supm E[‖ X(m) ‖4]<


∞. It now follows from Assumption 7.5 that E[M2
l,l(p)]< ∞, for all p≥ 1.


Now note that


∑
p


E[(Ml,l(p+ 1)−Ml,l(p))2 |F (p)]


≤∑
p


b2(p+ 1)


(
E


[(
η2


l (p+ 1)− 1
β 2 h(Xp+1)


)2


|F (p)


]


+E


[
E2
[
η2


l (p+ 1)− 1


β 2 h(Xp+1) |F (p)


]
|F (p)


])


≤∑
p


2b2(p+ 1)E


[(
η2


l (p+ 1)− 1


β 2 h(Xp+1)


)2


|F (p)


]
,


almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumptions 7.3 that


sup
p


1
β 2 E[((η̃2


l (p+ 1)− 1)h(Xp+1))
2 |F (p)]< ∞ w.p.1.


Hence, using Assumption 7.5, it can be seen that


∑
p


E[(Ml,l(p+ 1)−Ml,l(p))2 |F (p)]< ∞


almost surely. Thus, by the martingale convergence theorem (Theorem D.1),
{Ml,l(p)} are almost surely convergent martingale sequences. A similar proof set-
tles the claim for {Mi, j(p)} as well. ��


Let Y (n)
�
= [[Zj,k(n)]]Nj,k=1 and Z(n)


�
= (Z1(n), . . . ,ZN(n))T . Then, the matrix H(n)


in the algorithm corresponds to P(Y (n)). In vector–matrix notation, the Hessian
update recursions (8.7)–(8.8) can be written as
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Y (n+ 1) = Y (n)+ b(n)


(
1
β 2 H̄(η(n))h(Xn)−Y(n)


)
. (8.16)


Lemma 8.3. The Hessian updates Y (n),n≥ 0 are uniformly bounded and further


‖ Y (n)−D2
β ,1J(θ (n)) ‖→ 0 as n→ ∞,


with probability one.


Proof. The ODE associated with (8.16) is


Ẏ (t) = D2
β ,1J(θ (t))−Y(t), (8.17)


that has Y ∗ = D2
β ,1J(θ ) as its unique globally asymptotically stable equilibrium


(when θ (t)≡ θ ). Note that (8.16) can be rewritten as


Y (n+ 1) = Y (n)+ b(n)


(
1
β 2 E[H̄(η(n))h(Xn) |F (n)]−Y (n)


)


+b(n)
1
β 2 (H̄(η(n))h(Xn)−E[H̄(η(n))h(Xn) |F (n)]) .


From Proposition 8.2, we have that almost surely,


∑
n


b(n)
1
β 2 (H̄(η(n))h(Xn)−E[H̄(η(n))h(Xn) |F (n)])< ∞.


Also, it can be seen as in the proof of Proposition 8.2 that supn E[H̄(η(n))h(Xn) |
F (n)] < ∞ with probability one. It is now easy to verify Assumptions D.1 and
D.2, as a result of which the claim follows from the Borkar and Meyn theorem
(Theorem D.1. ��
Proposition 8.4. ‖ D2


β ,1J(θ (n))−∇2J(θ (n)) ‖→ 0 as β → 0.


Proof. Recall that


D2
β ,1J(θ (n)) = E


[
1
β 2 H̄(η(n))J(θ (n)+βη(n)) | θ (n)


]
,


where η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1) random vari-
ates and the expectation is taken w.r.t. the density of η(n). Using a Taylor series
expansion of J(θ (n)+βη(n)) around θ (n), one obtains
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D2
β ,1J(θ (n)) = E


[
1
β 2 H̄(η(n))(J(θ (n))+βη(n)T∇J(θ (n))


+
β 2


2
η(n)T∇2J(θ (n))η(n)+o(β 2) | θ (n)


]
=


1
β 2 E[H̄(η(n))J(θ (n)) | θ (n)]+ 1


β
E[H̄(η(n))η(n)T∇J(θ (n)) | θ (n)]


+ 1
2 E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)]+O(β ).


(8.18)


Now observe that E[H̄(η(n))] = 0 (the matrix of all zero elements) with E[H̄(η(n))]
being the matrix of expectations of individual elements of H̄(η(n)). Hence the first
term on the RHS of (8.18) equals zero. Now consider the second term on the RHS
of (8.18). Note that


E[H̄(η(n))η(n)T∇J(θ (n)) | θ (n)] =


E


⎡
⎢⎢⎣


(η2
1 (n)−1)η(n)T∇J(θ (n)) η1(n)η2(n)η(n)T∇J(θ (n)) · · · η1(n)ηN(n)η(n)T∇J(θ (n))


η2(n)η1(n)η(n)T∇J(θ (n)) (η2
2 (n)−1)η(n)T∇J(θ (n)) · · · η2(n)ηN(n)η(n)T∇J(θ (n))


· · · · · · · · · · · ·
ηN(n)η1(n)η(n)T∇J(θ (n)) ηN(n)η2(n)η(n)T∇J(θ (n)) · · · (η2


N(n)−1)η(n)T∇J(θ (n))


| θ (n)


⎤
⎥⎥⎦ .


(8.19)


Consider the first term (corresponding to the first row and first column) above. Note
that


E[(η2
1 (n)−1)η(n)T∇J(θ (n)) | θ (n)]


= E[(η3
1 (n)−η1(n),η2


1 (n)η2(n)−η2(n), . . . ,η2
1 (n)ηN(n)−ηN (n))T∇J(θ (n)) | θ (n)]


= 0.


Similarly all other terms in (8.19) can be seen to be equal to zero as well. We use here
the facts that E[η1(n)] = E[η3


1 (n)] = 0 and E[η2
1 (n)] = 1. Also, ηi(n) is independent


of η j(n) for all i �= j. Hence the second term on the RHS of (8.18) equals zero as
well. Consider now the third term on the RHS of (8.18). Note that


1
2


E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)] =


1
2


E


⎡
⎢⎢⎢⎢⎢⎢⎢⎣


(η2
1 (n)−1)


N
∑


i, j=1
∇i jJ(θ (n))ηi(n)η j(n) · · · η1(n)ηN(n)


N
∑


i, j=1
∇i jJ(θ (n))ηi(n)η j(n)


η2(n)η1(n)
N
∑


i, j=1
∇i jJ(θ )ηi(n)η j(n) · · · η2(n)ηN(n)


N
∑


i, j=1
∇i jJ(θ (n))ηi(n)η j(n)


· · · · · · · · ·


ηN(n)η1(n)
N
∑


i, j=1
∇i jJ(θ (n))ηi(n)η j(n) · · · (η2


N(n)−1)
N
∑


i, j=1
∇i jJ(θ (n))ηi(n)η j(n)


| θ (n)


⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.


(8.20)


Consider now the term corresponding to the first row and first column above.
Note that
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E[(η2
1 (n)−1)∑N


i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]
= E[η2


1 (n)∑
N
i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]−E[∑N


i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)].
(8.21)


The first term on the RHS of (8.21) equals


E[η4
1 (n)∇11J(θ (n)) | θ (n)]+E[∑i= j,i�=1η2


1 (n)η
2
i (n)∇i jJ(θ (n)) | θ (n)]


+E[∑i�= j,i�=1η2
1 (n)ηi(n)η j(n)∇i jJ(θ (n)) | θ (n)] = 3∇11J(θ (n))+∑i= j,i�=1∇i jJ(θ (n)),


since E[η4
1 (n)] = 3. The second term on RHS of (8.21) equals −


N


∑
i=1


∇iiJ(θ (n)).


Adding the above two terms, one obtains


E[(η2
1 (n)− 1)


N


∑
i, j=1


∇i jJ(θ (n))ηi(n)η j(n) | θ (n)] = 2∇11J(θ (n)).


Consider now the term in the first row and second column of the matrix in (8.20).
Note that


E[η1(n)η2(n)∑N
i, j=1∇i jJ(θ (n))ηi(n)η j(n) | θ (n)]


= 2E[η2
1 (n)η


2
2 (n)∇12J(θ (n)) | θ (n)]


+E[∑(i, j) �∈{(1,2),(2,1)}η1(n)η2(n)ηi(n)η j(n)∇i jJ(θ (n)) | θ (n)]
= 2∇12J(θ (n)).


Proceeding in a similar manner, it is easy to verify that the (i, j)th term (i, j ∈
{1, . . . ,N}) in the matrix in (8.20) equals 2∇i jJ(θ (n)). Substituting the above back
in (8.20), one obtains


1
2


E[H̄(η(n))η(n)T∇2J(θ (n))η(n)] = ∇2J(θ (n)).


The claim now follows from (8.18). ��
Corollary 8.5. We have


‖ Y (n)−∇2J(θ (n)) ‖→ 0 as n→ ∞ and β → 0,


with probability one.


Proof. Follows from Lemma 8.3 and Proposition 8.4. ��
Lemma 8.6. With probability one, as n→ ∞ and β → 0,


‖ P(Y (n))−1−P(∇2J(θ (n)))−1 ‖→ 0.
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Proof. Follows as in Lemma 7.11 (cf. Chapter 7). ��
Next, we consider the gradient updates in (8.9). The proof of the following result


has been shown in Chapter 6 (see Lemma chap6:Lemma23). Let Z(n)
�
= (Zl(n), l =


1, . . . ,N)T .


Lemma 8.7.
‖ Z(n)−Dβ ,1J(θ (n)) ‖→ 0 as n→ ∞,


with probability one.


The next result shows the unbiasedness of the gradient estimates (in the limit as
β → 0). The proof of this result is also given in Chapter 6 (see Proposition 6.5).


Lemma 8.8.
‖ Dβ ,1J(θ (n))−∇J(θ (n)) ‖→ 0 as β → 0.


Combining Lemmas 8.7 and 8.8, one obtains


Corollary 8.9. With probability one, as n→ ∞ and β → 0,


‖ Z(n)−∇J(θ (n)) ‖→ 0.


We now consider the slowest timescale recursion involving the θ update (equa-
tion 8.10) of the algorithm.


Proof of Theorem 8.1. Recall that the parameter update recursion corresponds to


θ (n+ 1) = Γ (θ (n)− a(n)P(Y(n))−1Z(n)). (8.22)


Note that one can rewrite (8.22) as


θ (n+1) = Γ (θ (n)−a(n)(P(∇2J(θ (n)))−1∇J(θ (n))


+(P(∇2J(θ (n)))−1−P(Y (n))−1)∇J(θ (n))+P(Y (n))−1(∇J(θ (n))−Z(n))))+O(β ),


where the O(β ) term comes about because β > 0 is held fixed in the algorithm.
Further, results such as Proposition 8.4, Lemma 8.6 and Corollary 8.9 have been
shown for the case when β → 0.


Now as a consequence of Lemma 8.6, Corollary 8.5 and Assumption 7.4, the
second and third terms multiplying a(n) above asymptotically vanish as n→ ∞ and
β → 0. One can then view (8.22) as a noisy Euler discretization of the ODE (8.15)
using a standard approximation argument as [4, pp.191–196]. Note that J(θ ) itself
serves as an associated Liapunov function for (8.15) since


dJ(θ )
dt


= ∇J(θ )T .
θ = ∇J(θ )T Γ̃ (−P(∇2J(θ ))−1∇J(θ ))≤ 0.







146 8 Newton-Based Smoothed Functional Algorithms


In particular for θ ∈ K̂,
dJ(θ )


dt
< 0 if ∇J(θ ) �= 0. Now since J(θ ) satisfies As-


sumption 7.2, it is in particular continuous and hence uniformly bounded on the
compact set C ⊂ R


N . Let λ = supθ J(θ )< ∞. Then, {θ | J(θ )≤ λ} =C. The rest
follows from the Lasalle’s invariance theorem (Theorem C.4) and the Hirsch lemma
(Lemma C.5). ��


8.4.2 Convergence of N-SF2


The proof of convergence proceeds along similar lines as N-SF1. Hence, we only
present the main results.


Proposition 8.10.


‖ D2
β ,2J(θ (n))−∇2J(θ (n)) ‖→ 0 as β → 0.


Proof. Recall that


D2
β ,2J(θ (n)) = E


[
1


2β 2 H̄(η(n))(J(θ (n)+βη(n))+ J(θ (n)−βη(n))) | θ (n)
]
,


where η(n) = (η1(n), . . . ,ηN(n))T is a vector of independent N(0,1) random vari-
ables. Using Taylor series expansions of J(θ (n) + βη(n)) and J(θ (n)− βη(n))
around θ (n), one obtains


J(θ (n)+βη(n)) = J(θ (n))+βη(n)T∇J(θ (n))


+
β 2


2
η(n)T∇2J(θ (n))η(n)+ o(β 2)), (8.23)


J(θ (n)−βη(n)) = J(θ (n))−βη(n)T∇J(θ (n))


+
β 2


2
η(n)T∇2J(θ (n))η(n)+ o(β 2)). (8.24)


From the foregoing, one obtains


D2
β ,2J(θ (n)) = E


[
1


2β 2 H̄(η(n))(2J(θ (n))+β 2η(n)T∇2J(θ (n))η(n)+o(β 3)) | θ (n)
]
.


It has been shown in the proof of Proposition 8.4 that E[H̄(η(n))J(θ (n)) | θ (n)] = 0


and
1
2


E[H̄(η(n))η(n)T∇2J(θ (n))η(n) | θ (n)] = ∇2J(θ (n)), respectively. The


claim follows. ��
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Remark 8.2. The bias in the Hessian estimates in N-SF2 is lower as compared to
the same in N-SF1. This is because when the terms in the Taylor series expansions
in (8.23)–(8.24) are summed, the gradient terms βη(n)T∇J(θ (n)) get directly can-
celled. This is unlike the corresponding estimate in N-SF1 where the gradient terms
only average to zero (and do not have a direct cancellation).


Next, the following result shows the unbiasedness of the gradient estimates and has
been shown for the G-SF2 algorithm in Chapter 6.


Proposition 8.11.


‖ Dβ ,2J(θ (n))−∇J(θ (n)) ‖→ 0 as β → 0.


Remark 8.3. It has been shown in Chapter 6 that the bias in the gradient estimates
of N-SF2 is much less as compared to that in N-SF1 because of a direct cancellation
of many of the terms in the Taylor series expansions in the estimates of N-SF2. This
is unlike N-SF1 where these terms in fact average to zero and do not cancel off
directly.


The proof of the main result below follows along the same lines as that of
Theorem 8.1.


Theorem 8.12. Under Assumptions 7.1–7.5, given η > 0, there exists β̂ > 0,
such that for all β ∈ (0, β̂ ], the sequence {θ (n)} obtained using N-SF2 con-
verges to Kη with probability one as M→ ∞.


8.5 Concluding Remarks


The SF estimators of the Hessian belong to the class of simultaneous perturbation
estimators that require only a few system simulations to perform Hessian updates
at each instant regardless of the parameter dimension. The two Hessian estimators
that were presented required respectively, one and two system simulations. An ad-
vantage with these estimators is that the same system simulations can also be used
to estimate the gradient. Hence, they give rise to Newton-based algorithms with one
or two simulations.


In the experiments studied in [2] as well as the application in service systems (see
Chapter 12), these algorithms have been found to be very efficient. The estimators
presented here were based on Gaussian perturbation sequences. It would be interest-
ing to develop similar estimators using Cauchy and uniform perturbation sequences
as well.
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Part IV
Variations to the Basic Scheme







This part deals with certain variations to the basic scheme. In particular, we con-
sider applications of simultaneous perturbation approaches to (a) discrete parameter
optimization, (b) optimization under inequality constraints when both the objective
and the constraint functions are certain long-run average cost objectives, and (c) re-
inforcement learning — a class of methods that deal with the problem of stochastic
control under lack of precise model information.


Many times, one is interested in optimizing a certain cost objective over a discrete
set of alternatives or parameters and the goal is to find the best possible parameter.
The problem becomes even more interesting when long-run average cost objectives
are used. In situations when the parameter set is small, traditional approaches for this
problem involve estimating the objective function value for each parameter using
Monte-Carlo simulation in order to judge the best parameter. Bhatnagar, Mishra and
Hemachandra, in a paper in 2011, presented adaptations of gradient SPSA and SF
algorithms for the problem of discrete parameter search for long-run average cost
objectives. They also presented a novel random projection technique. The adapted
algorithms are seen to be better in performance than a well-known algorithm in the
literature in the case when the parameter set is small. When the set is large, the
adapted algorithms are still seen to show good results and require less computation.
Chapter 9 presents the adaptations of gradient SPSA and SF algorithms to the case
of discrete parameter optimization.


One is often interested in optimizing a given objective function subject to certain
functional (inequality) constraints being met. For instance, one might be interested
in finding a path over which throughput is maximized for a given stream of packets
passing through a communication network given that the mean delays along that
path are below a pre-specified threshold. The problem becomes interesting when
both the objective and the constraint functions are certain long-run averages as un-
der such scenarios, the constraint region is also not known precisely. In a paper in
2011, Bhatnagar, Hemachandra and Mishra, presented four simultaneous perturba-
tion algorithms for this purpose, that incorporate a Lagrange multiplier approach.
Chapter 10 presents the simultaneous perturbation algorithms for this problem.


In problems of stochastic control, one is often confronted with scenarios where
model information (i.e., knowledge of transition probabilities) is not known and yet
one wants to pick an optimal feedback control policy. More over, in many real-life
situations, the cardinalities of the state and/or action spaces could be large as well
making schemes based on numerical techniques computationally infeasible. Rein-
forcement learning broadly refers to a class of algorithms that are based on simula-
tion based approaches. In many papers, Bhatnagar and several coauthors presented
a host of algorithms for these problems for various cost settings and also for cases
when (a) the state-action space size is manageable as well as (b) when it is not and
approximation methods based on function approximation need to be resorted to.
Chapter 11 deals with the applications of simultaneous perturbation approaches to
reinforcement learning.







Chapter 9
Discrete Parameter Optimization


9.1 Introduction


We begin by recalling the basic optimization problem discussed in Chapter 1.


Find θ ∗ that solves min
θ∈C


J(θ ), (9.1)


for a given objective function J : RN→R that is a function of a tunable parameter θ
taking values in a set C⊂R


N . In all the chapters in this book, except the current, the
set C has been considered to be a compact and convex subset of RN . In this chapter,
however, we assume that the set C is discrete-valued and contains a finite number of
points. Moreover, J(θ ),θ ∈ C is a long-run average cost objective. This chapter is
largely based on [3].


The above problem has attracted considerable attention in the case when
the objective is an expected value over certain noisy cost function measurements.
In such cases, when the cardinality of the constraint set C is small, two of the
techniques that have been widely studied go under the names of ranking and se-
lection (R&S) [1], and multiple comparison procedures (MCP) [9]. The observa-
tions for given θ in these procedures are assumed i.i.d., often with the normal
distribution.


As the name suggests, in the R&S class of procedures, the objective function
value corresponding to each parameter is estimated from sample path observations
and then the various estimates are ranked to obtain the best parameter value. The
above procedures are in general not applicable when the number of parameters
is large due to the amount of computational effort involved. Optimal computing
budget allocation (OCBA) [8, 6, 7] is an R&S procedure that is widely regarded
as being amongst the best procedures for small-scale discrete optimization. The
idea in OCBA is to optimally allocate a given computing budget between various
alternatives in a way as to maximize the probability of correct selection. Ordinal


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 151–166.
springerlink.com © Springer-Verlag London 2013
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optimization [14] and simulated annealing [15] are amongst the popular procedures
used for large parameter sets.


As stated before, the afore-mentioned approaches have been proposed for the
case when the objective function is an expectation over noisy cost samples and
do not carry over in a straightforward manner to long-run average cost objec-
tives. A problem with optimization under steady-state simulation is that it is ex-
pensive to obtain multiple-independent simulation trajectories corresponding to
any given parameter, see, however, [12] for an R&S procedure for steady-state
simulations.


Gradient search approaches for continuous parameter optimization have also
been applied to the case of discrete optimization in [11, 10, 2, 4]. The idea in these
methods is to first form a closed convex hull of the discrete search space and con-
sider an alternative continuous optimization problem in the (above) closed convex
hull except for a difference between the various techniques. In [11, 4], the ‘con-
tinuous portion’ of the optimization procedure is allowed to proceed as in contin-
uous optimization procedures and upon convergence, the parameter in the original
discrete domain that is the closest to the converged parameter value (in the con-
vex hull) is identified as the converged parameter in the discrete set. In [10, 2],
after each iterate, the parameter value obtained from the continuous optimization
step is projected back to the discrete set, resulting in the parameter update in each
step of the procedure being precisely over the discrete set. In [3], a somewhat
similar approach as [11, 4] is used except that for purposes of projection of the
continuous parameter update to the discrete set, a random projection approach is
considered instead of deterministically projecting each update to the discrete set.
This is seen to smooth the underlying dynamics of the associated process. A dis-
crete form of SPSA is considered in [13] and some convergence results have been
shown for the same. A different form of discrete algorithm as compared to [13]
that shows better results has recently been presented in [16]. In what follows, we
shall consider general smooth mappings of which the random projection procedure
of [3] emerges as a special case. The algorithms of [3] are then presented for these
mappings.


The rest of the chapter is organized as follows: discrete optimization framework
is presented in Section 9.2. The algorithms are presented in Section 9.3. Finally,
concluding remarks are presented in Section 9.4.


9.2 The Framework


We consider the following the problem setting. Let Xθ (n),n ≥ 0 be a discrete-time
stochastic process whose evolution depends on a parameter θ ∈ C ⊂ R


N for some
fixed N ≥ 1. Let C (the set in which θ takes values) be a (discrete) finite set having
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the form C =∏N
i=1Ci, where Ci = {c0


i , . . . ,c
ni
i }, i = 1, . . . ,N. Let Ci,min ≡ c0


i < c1
i <


· · · < cni
i ≡Ci,max, for each i = 1, . . . ,N. By construction, the set C contains (say) p


points θ 1,θ 2, . . . ,θ p, with p < ∞. Thus, C = {θ 1,θ 2, . . . ,θ p}. For any θ ∈ C, let
Xθ (n), n≥ 0 take values in the set S = {0,1,2, . . . , |S |}, where |S |<∞ could be
a large integer.


For fixed θ ∈ C, we assume Xθ (n),n ≥ 0 to be an ergodic Markov chain with
transition probabilities pθ (i, j), i, j ∈S . Note that when the parameter θ is tuned
(i.e., with θ (n) in place of θ at instant n), the process Xθ (n),n ≥ 0, in general
will not be Markov. Let h : S → R be a given state-dependent, single-stage cost
function. Our aim is to find a θ ∗ ∈ C satisfying (9.1) where for any θ ∈C, J(θ ) is
the long-run average cost


J(θ ) = lim
n→∞


1
n


n


∑
i=1


h(Xθ (i)). (9.2)


Now let C̄ denote the closed convex hull of the set C (i.e., the smallest closed and


convex set containing C). Let θ (n) �= (θ1(n), . . . ,θN(n))T , n≥ 1 denote the sequence
of updates of the parameter θ . As stated before, the idea in the described procedures
will be to consider the parameter updates in the set C̄ (and not C). However, when
needed, the discrete parameter to use corresponding to the continuous update shall
be obtained from a certain projection operator. We describe below some of the pro-
jection operators.


9.2.1 The Deterministic Projection Operator


This is the most commonly used operator, even though as we will later explain,
proving the convergence of the resulting scheme when using this operator is not easy
because of lack of smoothness at some points in the (extended) transition dynamics
of the Markov process corresponding to parameters in the closed and convex hull.
For any θ = (θ1, . . . ,θN)


T ∈ R
N , let Γ (θ ) = (Γ1(θ1), . . ., ΓN(θN))


T ∈C denote the
(deterministic) projection of θ to the set C and is defined as follows: Let θi be such
that c j


i ≤ θi ≤ c j+1
i for some c j


i < c j+1
i , with c j


i ,c
j+1
i ∈Ci. Now set


Γi(θi) =


{
c j


i if (c j
i ≤ θi < (c j


i + c j+1
i )/2


c j+1
i if (c j


i + c j+1
i )/2 < θi ≤ c j+1


i .


If θi = (c j
i + c j+1


i )/2, then θi is set to either c j
i or c j+1


i according to some
prescribed rule. Also,


Γi(θi) =


{
Ci,min if θi ≤Ci,min


Ci,max if θi ≥Ci,max.


It is clear from the above that Γ (θ ) ∈C.
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9.2.2 The Random Projection Operator


We now describe the random projection technique from [3]. Unlike the commonly
used deterministic projection operators, this technique is seen to smooth the transi-
tion dynamics of (the extended parametrized Markov process) {Xθ (n)}, when θ ∈
C̄. For θ ∈RN , the projection mappingΓ (θ ) in this case is defined as follows: Let θi


be such that c j
i ≤ θi ≤ c j+1


i for some c j
i < c j+1


i , with c j
i ,c


j+1
i ∈Ci, i = 1, . . . ,N. Now


observe that one can represent θi in terms of c j
i ,c


j+1
i as θi = αic


j
i +(1−αi)c


j+1
i ,


where


αi =
c j+1


i −θi


c j+1
i − c j


i


∈ [0,1].


Thus,


Γi(θi) =


{
c j


i w.p. (c j+1
i −θi)/(c


j+1
i − c j


i )


c j+1
i w.p. (θi− c j


i )/(c
j+1
i − c j


i ).


Also,


Γi(θi) =


{
Ci,min w.p.1 if θi ≤Ci,min


Ci,max w.p.1 if θi ≥Ci,max.


It is easy to see that Γ (θ ) ∈C. Now note that any θ ∈ C̄ can be written as a convex
combination


θ =
p


∑
k=1


αk(θ )θ k, (9.3)


of the elements of C. The weights αk(θ ) satisfy 0 ≤ αk(θ ) ≤ 1, ∀k ∈ {1, . . . , p}
and


p


∑
k=1


αk(θ ) = 1. Such a representation is useful to show the convergence of the


algorithms even though precise knowledge of the weights αk(θ ) is not required. One
possible manner in which the weights αk(θ ) can be obtained is by projecting θ ∈ C̄
to its nearest neighbours in C using the weights in the Γ -projection. We consider
the following example for illustrative purposes.


Example 9.1. Let θ be a vector with three components θ = (θ1,θ2,θ3)
T ∈R


3. Sup-
pose c j


1 ≤ θ1 ≤ c j+1
1 , ck


2 ≤ θ2 ≤ ck+1
2 and cl


3 ≤ θ3 ≤ cl+1
3 . Then with appropriate


α1,α2,α3 ∈ [0,1], one can write


θ = (α1c j
1 +(1−α1)c j+1


1 ,α2ck
2 +(1−α2)ck+1


2 ,α3cl
3 +(1−α3)cl+1


3 )T .


For this example, Table 9.1 shows the various points in C⊂R
3 with respect to which


the above θ can be expressed as a convex combination, as well as the corresponding
weights. The remaining points in C are assigned a weight of zero each.
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Table 9.1 Example: Parameter θ =(α1c j
1+(1−α1)c j+1


1 , α2ck
2+(1−α2)ck+1


2 , α3cl
3+(1−


α3)cl+1
3 )T ∈ C̄ ⊂ R


3 as a convex combination of the elements of C


S.N. Elements in C Weights


1. (c j
1,c


k
2,c


l
3)


T α1α2α3


2. (c j
1,c


k
2,c


l+1
3 )T α1α2(1−α3)


3. (c j
1,c


k+1
2 ,cl


3)
T α1(1−α2)α3


4. (c j
1,c


k+1
2 ,cl+1


3 )T α1(1−α2)(1−α3)


5. (c j+1
1 ,ck


2,c
l
3)


T (1−α1)α2α3


6. (c j+1
1 ,ck


2,c
l+1
3 )T (1−α1)α2(1−α3)


7. (c j+1
1 ,ck+1


2 ,cl
3)


T (1−α1)(1−α2)α3


8. (c j+1
1 ,ck+1


2 ,cl+1
3 (1−α1)(1−α2)(1−α3)


A procedure as described above can similarly be extended to the case of param-
eters θ with N components. As a consequence of the above, one can alternatively
view the (randomized) Γ -projection as a probabilistic projection of θ ∈ C̄ to the set
C so that Γ (θ ) = θ k ∈C with probability γk(θ ), k = 1, . . . , p, for some γk(θ ) such


that 0 ≤ γk(θ ) ≤ 1, ∀k = 1, . . . , p, and
p


∑
k=1


γk(θ ) = 1. For instance, in Example 9.1,


Γ (θ ) = θ1
�
= (c j


1,c
k
2,c


l
3)


T with probability γ1(θ ) = (1−α1)(1−α2)(1−α3). It is
easy to see that γk(θ ), k = 1, . . . , p, are continuously differentiable functions of θ .


9.2.3 A Generalized Projection Operator


We now present a generalized projection operator that can alternatively be used (in
place of the deterministic projection scheme as well as the randomized projection
scheme, respectively). The manner in which this operator is constructed, it works
as a deterministic projection scheme in some portions of the parameter space and
as a randomized projection scheme in some other portions. Unlike the deterministic
projection scheme, it has the advantage that it results in a smooth transition dynam-
ics for the extended Markov process with parameters in the closed and convex hull.
Over the randomized projection scheme, it has the advantage of a lower compu-
tational requirement because in a significant portion of the space, a deterministic
projection is used and thus one does not require generation of random numbers for
the probabilistic projection in these portions.


Let θi be such that c j
i ≤ θi ≤ c j+1


i for some c j
i < c j+1


i , with c j
i ,c


j+1
i ∈ Ci, i =


1, . . . ,N. Let ε > 0 be a given small constant. Now set
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Γi(θi) =


{
c j


i if (c j
i ≤ θi < (c j


i + c j+1
i )/2− ε


c j+1
i if (c j


i + c j+1
i )/2+ ε ≤ θi ≤ c j+1


i .


Further, for (c j
i + c j+1


i )/2− ε ≤ θi ≤ (c j
i + c j+1


i )/2+ ε , i = 1, . . . ,N,


Γi(θi) =


{
c j


i w.p. fi(θi)


c j+1
i w.p. 1− fi(θi).


Also, as before,


Γi(θi) =


{
Ci,min if θi ≤Ci,min


Ci,max if θi ≥Ci,max.


In the above, fi(·) is a decreasing and continuously differentiable function that takes
values in [0,1] and is such that


fi(θi) =


{
0 if θi = (c j


i + c j+1
i )/2+ ε


1 if (c j
i + c j+1


i )/2− ε.


For the purposes of analysis, one can view the generalized projection operator as
another randomized projection scheme where the deterministic “if” statements are
replaced by similar statements with “w.p.1 if” conditions. For instance, the first set
of conditions for the generalized scheme can (for simplicity in analysis) be approx-
imately rewritten as


Γi(θi) =


{
c j


i w.p.1 if (c j
i ≤ θi < (c j


i + c j+1
i )/2− ε


c j+1
i w.p.1 if (c j


i + c j+1
i )/2+ ε ≤ θi ≤ c j+1


i .


The same applies to the other deterministic conditions as well.
In a similar manner as the randomized projection scheme described above, it is


easy to see that one can obtain weights βk(θ ),k = 1, . . . , p such that Γ (θ ) = θ k


w.p. βk(θ ). Here, βk(θ ) ∈ [0,1],∀k = 1, . . . , p and
p


∑
k=1


βk(θ ) = 1 for any θ ∈ C̄. The


quantity ε can be chosen arbitrarily in applications. A larger value of ε will allow
for greater “exploration” of the discrete parameter space by the algorithm.


Example 9.2. As an example, let θ �= (θ1,θ2)
T be such that θ1 ∈ [ck


1,(c
k
1+ck+1


1 )/2−
ε) and θ2 ∈ [(cl


2 +cl
2)/2−ε,(cl


2+cl+1
2 )/2+ε]. Then, from the manner in which the


generalized projection operator is defined, we have that


Γ1(θ1) =


{
ck


1 w.p.1
ck+1


1 w.p.0.
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Also,


Γ2(θ2) =


{
cl


2 w.p. f2(θ2)


cl+1
2 w.p.1− f2(θ2).


Since each parameter component is mapped independently (of the other compo-
nents) to its discrete set of points, we have that


Γ (θ ) =
{
(ck


1,c
l
2)


T w.p. f2(θ2)


(ck
1,c


l+1
2 )T w.p.1− f2(θ2).


The remaining components in C are then assigned a weight of 0 each. Thus, if θ j


and θm, respectively correspond to the points (ck
1,c


l
2)


T and (ck
1,c


l+1
2 )T within the


set C, then one may let β j(θ ) = f2(θ2) and βm(θ ) = 1− f2(θ2). Further, βk(θ ) =
0,∀k ∈ {1, . . . , p} with k �∈ { j,m}.


9.2.4 Regular Projection Operator to C̄


We denote the regular projection of any θ ∈ R
N to the set C̄ =


N


∏
i=1


[Ci,min,Ci,max],


which is the closed convex hull of C (from construction) as Γ̄ (θ ) �= (Γ̄1(θ1), . . .,
Γ̄N(θN))


T . Here Γ̄i(θi) = min(Ci,max,max(θi,Ci,min)). It is easy to obtain this pro-
jection by simply comparing each component θ j of the parameter θ ( j = 1, . . . ,N)
with the corresponding boundary points Cj,min and Cj,max in the sets C j and resetting
(component-wise) θ j to Cj,min or Cj,max depending on whether θ j is below Cj,min or
above Cj,max. Further, if Cj,min ≤ θ j ≤Cj,max, then Γ̄j(θ j) = θ j.


9.2.5 Basic Results for the Generalized Projection Operator Case


We consider here the generalized projection operator. Similar results with the ran-
domized projection operator have been presented in [3]. Define the transition prob-
abilities pθ (i, j), i, j ∈S with θ ∈ C̄ according to


pθ (i, j) =
p


∑
k=1


βk(θ )pθ k(i, j), (9.4)


with βk(θ ) obtained as described in the generalized projection scheme. It is easy to
see that 0≤ pθ (i, j)≤ 1,∀i, j ∈S ,θ ∈ C̄ and ∑


j∈S


pθ (i, j) = 1,∀i ∈S ,θ ∈ C̄. Also,


pθ (i, j) are continuously differentiable in θ ∈ C̄, because of the fact that fk(θk),k =
1, . . . , p are chosen to be continuously differentiable functions. For any n ≥ 1, let
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pn
θ (i, j) represent the probability of going from state i to state j in n steps when the


underlying parameter is θ .


Lemma 9.1. For any θ ∈ C̄, i, j ∈S and any n≥ 1


pn
θ (i, j) ≥


p


∑
l=1


β n
l (θ )pn


θ l (i, j).


Proof. We prove the claim by induction. Note that the claim is true for n = 1 from
(9.4). Assume that the claim is valid for some n = K > 1. We now show that it is
true for n = K + 1. Note that


pK+1
θ (i, j) = ∑


l∈S


pθ (i, l)pK
θ (l, j)


≥ ∑
l∈S


p


∑
r=1


βr(θ )pθ r(i, l)
p


∑
m=1


βK
m (θ )pK


θm(l, j)


=
p


∑
r=1


p


∑
m=1


βr(θ )βK
m (θ ) ∑


l∈S


pθ r(i, l)pK
θm(l, j)


≥
p


∑
r=1


βK+1
r (θ ) ∑


l∈S


pθ r(i, l)pK
θ r(l, j)


=
p


∑
r=1


βK+1
r (θ )pK+1


θ r (i, j).


The first inequality above follows from the induction hypothesis while the second
inequality follows by considering only values of m = r in the second summation in
its preceding expression. The claim follows. ��
Lemma 9.2. For any θ ∈ C̄, {Xθ (n),n≥ 1} is an ergodic Markov chain.


Proof. It is easy to see that the process Xθ (n),n≥ 1, θ ∈ C̄ governed by the transi-
tion probabilities pθ (i, j), i, j ∈S (defined as in (9.4)) is Markov. Now each of the


processes Xθ
k
(n),n≥ 1, k = 1, . . . , p is ergodic Markov. Consider now Xθ


k
(n),n≥ 1


for some θ k ∈ C. Since Xθ
k
(n),n ≥ 1 is irreducible, for any i, j, l ∈S , there exist


integers n1,k, n2,k > 0 such that p
n1,k


θ k (i, l) > 0 and p
n2,k


θ k (l, j) > 0. (Here n1,k in gen-


eral depends on i and l, and n2,k on l and j, respectively.) Now since Xθ
k
(n),n ≥ 1


is aperiodic, there exists Mk > 0 (that depends on l) such that pn
θ k (l, l) > 0 for all


l ∈S and n≥Mk, see for instance [5, Lemma 5.3.2, pp.99]. Now


p
n1,k+n+n2,k


θ k (i, j)≥ p
n1,k


θ k (i, l)pn
θ k (l, l)p


n2,k


θ k (l, j)


> 0 ∀n≥Mk.
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Thus pn
θ k(i, j) > 0 for all n > Nk


�
= n1,k + n2,k +Mk, k = 1, . . . , p. Now let N̂ =


max(N1, . . . ,Np) < ∞. Hence, pn
θ k(i, j) > 0 for all n ≥ N̂ and k = 1, . . . , p. From


Lemma 9.1, it follows that pn
θ (i, j) > 0, ∀n ≥ N̂. The above is true for all i, j ∈S


with, however, a possibly different value of N̂ for different (i, j)–tuples. Thus
{Xθ (n)} is irreducible. It can also be seen to be aperiodic by letting j = i. Fi-
nally, the chain {Xθ (n)}, θ ∈ C̄ is positive recurrent since it is irreducible and finite
state. ��


Now let J̄(θ ) be defined as in (9.2) for θ ∈ C̄, i.e.,


J̄(θ ) = lim
n→∞


1
n


n−1


∑
m=0


h(Xθ (m)), θ ∈ C̄.


Note that the single-stage cost function h(·) is the same as before. The only differ-
ence is in the parameter θ that now takes values in C̄. By Lemma 9.2, the above
limit is well defined for all θ ∈ C̄. By definition, J̄(θ ) = J(θ ) for all θ ∈C.


Lemma 9.3. J̄(θ ) is continuously differentiable in θ ∈ C̄.


Proof. Let γ(θ ) �= (γi(θ ), i ∈S )T denote the stationary distribution of the Markov
chain Xθ (n),n≥ 1, θ ∈ C̄. Then, J̄(θ ) can be written as


J̄(θ ) =∑
i∈S


h(i)γi(θ ).


Thus it is sufficient to show that γ(θ ) is continuously differentiable in θ . Let us


denote P(θ ) �= [[pθ (i, j), i, j ∈ S ]] as the transition probability matrix when the
parameter is θ ∈ C̄ is held fixed.


The claim will follow using a result from [17, Theorem 2 on pp.402–403]. Let


P∞(θ ) = lim
m→∞


1
m


m


∑
n=1


Pn(θ ) and Z(θ ) �= [I−P(θ )−P∞(θ )]−1, respectively, where I


denotes the (|S |×|S |)-identity matrix and Pm(θ ) is the matrix of m-step transition
probabilities pm


θ (i, j), i, j ∈S . From [17, Theorem 2], one can write


γ(θ + δei) = γ(θ )(I +(P(θ + δei)−P(θ ))Z(θ )+ o(h)),


where δ > 0 is a small quantity and ei, i ∈ {1, . . . ,N} is a unit vector with 1 as its
ith entry and 0s elsewhere. Hence we get


∇iγ(θ ) = γ(θ )∇iP(θ )Z(θ ), i = 1, . . . ,N.


Thus,
∇γ(θ ) = γ(θ )∇P(θ )Z(θ ). (9.5)


By construction (as mentioned before), ∇P(θ ) exists and is continuous. Hence
∇γ(θ ) exists. Next, we verify that ∇γ(θ ) is continuous as well. Note that γ(θ ) is
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continuous because it is differentiable. The claim will follow if we show that Z(θ )
is also a continuous function.


Let H(θ ,θ+θ0)= [I−(P(θ+θ0)−P(θ ))]−1. Then H(θ ,θ+θ0)→ I as ‖θ0‖→
0. Also, let U(θ ,θ + θ0) = (P(θ + θ0)− P(θ ))Z(θ ). Then U(θ ,θ + θ0)→ 0̄ as
‖θ0‖ → 0. Here 0̄ is a matrix with all elements being zero. From [17, Theorem 2],
we have


Z(θ +θ0) = Z(θ )H(θ ,θ +θ0)


−P∞(θ )H(θ ,θ +θ0)U(θ ,θ +θ0)Z(θ )H(θ ,θ +θ0).


Hence we get


‖Z(θ +θ0)−Z(θ )‖ ≤ ‖Z(θ )‖‖H(θ ,θ +θ0)− I‖


+‖P∞(θ )‖‖H(θ ,θ +θ0)‖‖U(θ ,θ +θ0)‖‖Z(θ )‖‖H(θ ,θ +θ0)‖.
It can thus be seen that


‖Z(θ +θ0)−Z(θ )‖→ 0 as ‖θ0‖→ 0.


The claim follows. ��


9.3 The Algorithms


The operator Γ̄ will be used to project the continuous-valued iterates in the algo-
rithms (below) to the closed convex hull C̄ of the set C while Γ will be used to
identify the actual parameter value used in the simulation. We present two algo-
rithms: one based on SPSA gradient estimates and the other based on SF estimates.
We refer to these as simply SPSA and SFA, respectively. We consider the mapping
Γ to be defined via the generalized projection scheme. These algorithms but with
the randomized projection operator are described in [3]. Since we use a long-run av-
erage cost objective, both algorithms incorporate two step-size sequences a(n) and
b(n),n ≥ 0 that satisfy Assumption 3.6. Thus, recursions governed by a(n),n ≥ 0
are slower while those governed by b(n),n≥ 0 are faster. In either of the algorithms


below, θ (m)
�
= (θ1(m), . . . ,θN(m))T shall denote the parameter vector at the end of


the mth iteration.


9.3.1 The SPSA Algorithm


Let Δ1(m), . . . ,ΔN(m) denote independent random variables having the distribution
Δi(m) = ±1 w.p. 1/2, ∀i = 1, . . . ,N, m ≥ 0. Set θ 1


i (m) = Γi(θi(m)+ δΔi(m)) and
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θ 2
i (m) = Γi(θi(m)− δΔi(m)), respectively, for i = 1, . . . ,N, where δ > 0 is a given


(small) constant. Other distributions for the perturbation sequences Δi(m),m ≥ 0,


i = 1, . . . ,N may also be used (see Chapter 5). Let θ j(m)
�
= (θ j


1 (m), . . . ,θ j
N(m)),


j = 1,2. Set Z(0) = 0.
Generate two parallel simulations {Xθ1(m)(m)} and {Xθ2(m)(m)} governed by


parameter sequences {θ 1(m)} and {θ 2(m)}, respectively.


Fix a large integer M > 0. For i = 1, . . . ,N, m = 0,1, . . . ,M− 1, we have


θi(m+ 1) =Γ̄i


(
θi(m)+ a(m)


Z(m+ 1)
2δΔi(m)


)
, (9.6)


Z(m+ 1) =Z(m)+ b(m)(h(Xθ
2(m)(m))− h(Xθ


1(m)(m))−Z(m)). (9.7)


Output Γ (θ (M)) as the final parameter.


9.3.2 The SFA Algorithm


Let η1(m), . . . ,ηN(m) be independent N(0,1)-distributed random variables. Let
β > 0 be a given (small) constant. Let θ j(m) = (θ j


1 (m), . . . ,θ j
N(m))T , j = 1,2,


where θ 1
i (m) = Γi(θi(m)+βηi(m)) and θ 2


i (m) = Γi(θi(m)−βηi(m)), i = 1, . . . ,N,
respectively.


Generate two parallel simulations {Xθ1(m)(m)} and {Xθ2(m)(m)} governed by
parameter sequences {θ 1(m)} and {θ 2(m)}, respectively.


Fix a large integer M > 0. For i = 1, . . . ,N, m = 0,1, . . . ,M− 1, we have


θi(m+ 1) = Γ̄i(θi(m)+ a(m)Zi(m+ 1)), (9.8)


Zi(m+1) = Zi(m)+b(m)


(
ηi(m)


2β
(h(Xθ


2(m)(m))− h(Xθ
1(m)(m)))−Zi(m)


)
.


(9.9)
Output Γ (θ (M)) as the final parameter.


It is important to note that while the updates of the parameter θ in the SPSA and
SFA algorithms are performed in the set C̄, the actual parameters used in the two
simulations at the mth instant, m ≥ 0, in these algorithms (i.e., θ 1(m) and θ 2(m),
respectively) are C-valued as a consequence of the Γ -projection.
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9.3.3 Convergence Analysis


We show here the convergence of both algorithms. The first result below shows
that under the extended dynamics of the Markov chain Xθ (n),n ≥ 0, θ ∈ C̄, each
algorithm is analogous to its continuous parameter counterpart where the random
projection operator Γ is replaced with Γ̄ .


Lemma 9.4. Under the extended dynamics of the Markov process {Xθ (n)} defined
over all θ ∈ C̄,


(i) SPSA is analogous to a similar algorithm in which θ i(m) in SPSA is replaced


by θ̄ i(m)
�
= (θ̄ i


j(m), j = 1, . . . ,N)T , i = 1,2, where θ̄ 1
j (m) = Γ̄j(θ j(m)+δΔ j(m))


and θ̄ 2
j (m) = Γ̄j(θ j(m)− δΔ j(m)), respectively, j = 1, . . . ,N.


(ii) SFA is analogous to a similar algorithm in which θ i(m) in SFA is replaced


by θ̄ i(m)
�
= (θ̄ i


j(m), j = 1, . . . ,N)T , i = 1,2, where θ̄ 1
j (m) = Γ̄j(θ j(m)+βη j(m))


and θ̄ 2
j (m) = Γ̄j(θ j(m)−βη j(m)), respectively, j = 1, . . . ,N.


Proof. We prove here the claim in part (i) for the case of SPSA. The same for
SFA (in part (ii)) follows in a similar manner. Consider the SPSA algorithm (9.6)–
(9.7). Let θ (m) be a given parameter update that lies in C̄o (where C̄o denotes the
interior of the set C̄). Let δ > 0 be sufficiently small so that θ̄ 1(m) = (Γ̄j(θ j(m)+
δΔ j(m)), j = 1, . . . ,N)T = (θ j(m) + δΔ j(m)), j = 1, . . . ,N)T and θ̄ 2(m) =
(Γ̄j(θ j(m)−δΔ j(m)), j = 1, . . . ,N)T = (θ j(m)−δΔ j(m)), j = 1, . . . ,N)T . Thus, the
perturbed parameters θ̄ 1(m) and θ̄ 2(m) lie in C̄o as well.


Consider now the Γ -projected parameters θ 1(m) = (Γj(θ j(m) + δΔ j(m)), j =
1, . . . ,N)T and θ 2(m) = (Γj(θ j(m)− δΔ j(m)), j = 1, . . . ,N)T , respectively. By the
construction of the generalized projection operator, these parameters are equal to
θ k ∈ C with probabilities βk((θ j(m) + δΔ j(m), j = 1, . . . ,N)T ) and βk((θ j(m)−
δΔ j(m), j = 1, . . . ,N)T ), respectively. When the operative parameter is θ k, the
transition probabilities are pθ k(i, l), i, l ∈ S. Thus with probabilities βk((θ j(m) +
δΔ j(m), j = 1, . . . ,N)T ) and βk((θ j(m)−δΔ j(m), j = 1, . . . ,N)T ), respectively, the
transition probabilities in the two simulations equal pθ k (i, l), i, l ∈ S.


Next, consider the alternative (extended) system with parameters θ̄ 1(m) and
θ̄ 2(m), respectively. The transition probabilities are now given by


pθ̄ i(m)( j, l) =
p


∑
k=1


βk(θ̄ i(m))pθ k ( j, l),


i = 1,2, j, l ∈ S. Thus, with probability βk(θ̄ i(m)), a transition probability of
pθ k( j, l) is obtained in the ith system. Thus, the two systems (original and the one
with extended dynamics) are analogous.


Now consider the case when θ (m) ∈ ∂C̄, i.e., is a point on the boundary of C̄).
Then, one or more components of θ (m) are extreme points. For simplicity, assume
that only one component (say the ith component) is an extreme point as the same ar-
gument carries over if there are more parameter components that are extreme points.
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By the ith component of θ (m) being an extreme point, we mean that θi(m) is ei-
ther Ci,min or Ci,max. The other components j = 1, . . . ,N, j �= i are not extreme, i.e.,
cl


j ≤ θ j(m) ≤ cl+1
j for some l, l + 1 ∈ {1, . . . , p}. Thus, one of θi(m)+ δΔi(m) or


θi(m)−δΔi(m) will lie outside of the interval [Ci,min,Ci,max] while the other will lie
inside of it for δ > 0 small enough. For instance, suppose that θi(m) = Ci,max and
that θi(m) + δΔi(m) > Ci,max (which will happen if Δi(m) = +1). In such a case,
θ 1


i (m) = Γi(θi(m)+ δΔi(m)) =Ci,max with probability one. Then, as before, θ 1(m)


can be written as the convex combination θ 1(m) =
p


∑
k=1


βk(θ 1(m))θ k and the rest


follows as before. ��
As a consequence of Lemma 9.4, it is sufficient to analyze the convergence of the
SPSA and SFA algorithms for the new system with extended transition probabili-
ties and where θ̄ i(m) is used in place of θ i(m), i = 1,2. Let for any bounded and
continuous function v(·) : R→R,


Γ̂i(v(y)) = lim
0<η→0


(
Γ̄i(y+ηv(y))− Γ̄i(y)


η


)
.


For x = (x1, . . . ,xN)
T , let Γ̂ (x) = (Γ̂1(x1), . . ., Γ̂N(xN))


T . Let


K̂ = {θ ∈ C̄ | Γ̂ (−∇J̄(θ )) = 0}.


Given ε > 0, let K̂ε be the ε-neighborhood of K̂, i.e., the set of points that are within
a distance of ε from the set K̂. Let P be the set


P = {θ̂ ∈C | θ̂ = Γ (θ ),θ ∈ K̂},


and Pε be its ε-neighborhood.


Theorem 9.5. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0,δ0), {θ (M)} obtained
according to the SPSA algorithm satisfies θ (M)→ θ ∗ ∈ Pε almost surely as
M→ ∞.


Proof. As a consequence of Lemma 9.4(i), we consider the alternative system with
θ̄ 1(m), θ̄ 2(m) in place of θ 1(m), θ 2(m), respectively. For this system, it can be
shown in a similar manner as Chapter 5 that given any ε > 0, there exists a δ0 > 0
such that for all δ ∈ (0,δ0), θ (M)→ θ ∗ for some θ ∗ ∈ K̂ε almost surely as M→∞.
ThusΓ (θ (M))→Γ (θ ∗) as M→∞ almost surely. Note that since θ ∗ ∈ K̂ε , we have
Γ (θ ∗) ∈ Pε . The claim follows. ��
The following result holds for the SFA algorithm.
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Theorem 9.6. Given ε > 0, ∃β0 > 0 such that ∀β ∈ (0,β0), {θ (M)} obtained
according to the SFA algorithm satisfies θ (M)→ θ ∗ for some θ ∗ ∈ Pε almost
surely as M→ ∞.


Proof. As with Theorem 9.5, as a consequence of Lemma 9.4(ii), we consider the
alternative system with θ̄ 1(m), θ̄ 2(m) in place of θ 1(m), θ 2(m), respectively. It can
now be shown in a similar manner as Chapter 6 that given any ε > 0, there exists a
β0 > 0 such that for all β ∈ (0,β0), θ (M)→ θ ∗ ∈ K̂ε almost surely as M→ ∞. The
rest follows in a similar manner as Theorem 9.5. ��
Remark 9.1. The equivalence between the original system and its (alternate) con-
tinuous analog (cf. Lemma 9.4) critically depends on the quantities βk(θ ), k =
1, . . . , p (that describe the Γ -projection) being continuously differentiable. This is
the case when either the generalized or the randomized projection operator is used
in the algorithms. (In the latter case, in fact we have αk(θ ) in place of βk(θ ) that
are seen to be continuously differentiable.) The proofs of Theorems 9.5 and 9.6 are
based on this equivalence. On the other hand, if deterministic projections are used
(in place of randomized), one can proceed by splitting the convex hull C̄ into dis-
joint regions such that a point θ̄ in any such region will project to a unique θ ∈C.
This however will result in the transition probabilities (as function of θ ) being non-
smooth at the boundaries of these regions. The analysis in Lemma 9.3 as well as
Theorems 9.5 and 9.6 will not carry through in such a case unless the (determinis-
tic) projection scheme at the boundaries of the afore-mentioned regions is modified
in a way that the transition probabilities become smooth. In fact, the generalized
projection scheme is designed to achieve precisely this.


9.4 Concluding Remarks


We presented in this chapter adaptations of the SPSA and SFA algorithms for dis-
crete parameter optimization for the optimization of a long-run average cost cri-
terion associated with an underlying parametrized Markov chain. The idea was to
update the algorithms in a closed and convex hull of the parameter region while
the two parallel systems used in these algorithms are run at any instant using a
suitable projection of the continuous-valued running parameter update to the under-
lying discrete set. Three different operators, deterministic, randomized and gener-
alized, respectively, were presented for this purpose. The transition dynamics was
first extended to include the case of continuously-valued parameters in the closed
and convex hull of the discrete parameter space. It was observed that the tran-
sition probabilities and hence also the stationary distribution of the parametrized
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Markov process become continuously differentiable in the (continuously-valued)
parameter in the extended space. This was, however, the case when either ran-
domized or generalized projection operators (but not deterministic) are used. The
generalized projection operator is a hybrid between deterministic and randomized
schemes. The regular convergence analysis of the SPSA and SFA algorithms can
then be carried over to the discrete parameter setting when randomized or general-
ized projection operators are used.


In [3], the performance of the SPSA and SFA algorithms has been empirically
tested, in the case when randomized projection operators are used, over several ex-
periments on two different settings of admission control. In one of these settings,
the parameter set is small and contains around 100 elements (parameters) while in
another, it is large and has about 108 parameters. Performance comparisons with
the equal allocation algorithm as well as the optimal computing budget allocation
(OCBA) procedure [8, 6, 7] have also been shown ([3]) in the case when the param-
eter set has size 100. Over small-sized parameter sets, OCBA is widely regarded
in the literature as being amongst the best algorithms for discrete parameter search.
While the original OCBA scheme has been proposed for the case when the objec-
tive function is an expectation over noisy cost samples, an adaptation of the same
for the long-run average cost criterion is described in [3]. It is observed in [3] that
for low computing budgets, the performance of SPSA and OCBA is similar and
better than SPSA and equal allocation. On the other hand, as the computing bud-
get is increased, SFA shows the best results and is clearly better than OCBA. The
performance of SPSA is also better than OCBA in this regime. In the case when
the parameter set is large (for instance in the setting with 108 parameters in [3],
R&S procedures such as OCBA and equal allocation are no longer implementable.
It is observed that even in such cases, SPSA and SFA are easily implementable and
show good results. An advantage in adapting efficient continuous optimization pro-
cedures such as SPSA and SFA to the case of discrete parameter optimization is
that the search proceeds along the direction determined by the procedure that makes
it computationally more efficient as one does not require storage of cost estimates
corresponding to each parameter. On the other hand, in most other R&S proce-
dures such as OCBA, the cost estimate corresponding to each parameter needs to be
obtained first (using a given number of simulation samples) and stored before com-
parisons are drawn. This can result in such procedures being computationally less ef-
ficient particularly for large parameter spaces. A potential disadvantage, on the other
hand, with adopting SPSA and SFA-based techniques for discrete parameter search
is that in some cases, they may get caught in some bad local minima. This is unlike
R&S type procedures. A possible future direction is to extensively study the em-
pirical performance of SPSA and SFA with the generalized projection operator on
various settings as well as the performance of similar adaptations of the other algo-
rithms described in earlier chapters such as SPSA with Hadamard matrix perturba-
tions as well as the Newton-based algorithms for the discrete parameter optimization
setting.
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Chapter 10
Algorithms for Constrained Optimization


10.1 Introduction


The optimization problem that we have considered so far has the form


Find θ ∗ ∈C such that J(θ ∗) = min
θ∈C


J(θ ), (10.1)


for a given objective function J : RN →R and where C⊂R
N is a given set in which


θ takes values.
In many applications, the problem of optimizing the objective needs to be carried


out keeping in view that certain functional constraints are satisfied. Many times,
these (functional) constraints are specified via some other cost functions being be-
low certain thresholds. For example, in the case of communication networks, a
problem of interest could be to find a path from the source to the destination for
a user over which the throughput is maximum, subject to the constraint that the
mean delay-per-packet is below some threshold (of say one second). Another con-
straint could similarly be on the probability of packet loss being below some other
threshold (say 0.01).


The problem that we are interested in this chapter has the form:


Find θ ∗ such that J(θ ∗) = min
θ∈C
{J(θ ) | Gi(θ )≤ αi, i = 1, . . . , p}, (10.2)


where Gi(·) and αi, i = 1, . . . , p are additionally prescribed cost functions and con-
stants that together constitute the functional constraints. The constraint region in
which optimization needs to be performed in such a case becomes


C∩ (∩p
i=1{θ | Gi(θ )≤ αi}


)
.


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 167–186.
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Note that the constraint region here is parameter-dependent since the constraint
functions (like the objective) are also parameter-dependent. We specifically con-
sider here the case when the objective and the constraint functions are all long-run
averages of certain given sample cost functions whose values at each instant can be
estimated through simulation. We incorporate the Lagrange multiplier approach to
deal with the inequality constraints.


Since neither the objective nor the constraints are known analytically, information
on their gradients and/or Hessians is usually not available (even when they exist).
As we shall see, a combination of multi-timescale stochastic approximation and
simultaneous perturbation methods proves useful here. Two of these methods are
based on the SPSA technique while the other two incorporate the SF approach. The
material presented in this chapter is largely based on [2].


Section 10.2 describes the constrained optimization problem framework and the
simulation optimization methods are presented subsequently in Section 10.3. A
sketch of the convergence analysis of these algorithms is given in Section 10.4.
Finally, Section 10.5 presents the concluding remarks. Application of methods sim-
ilar to the ones described in this chapter as well as those given in Chapter 9, to the
context of service systems, has been explored in Chapter 12. Somewhat similar tech-
niques have also been applied in the context of the random early detection (RED)
scheme for flow control in Chapter 14.2.


10.2 The Framework


Let {X(n),n ≥ 1} be an R
d-valued parametrized Markov process with a tunable


parameter θ . We assume that θ ∈ C ⊂ R
N , where C is a compact and convex set.


Let p(θ ,x,dy) and νθ (dx), respectively, denote the transition kernel and stationary
distribution of {X(n)} when θ is the operative parameter.


Let h,g1,g2, . . . ,gp : Rd → R
+ ∪{0} be given functions (for some p ≥ 1). The


function h is the single-stage cost while g1, . . . ,gp are associated maps that deter-
mine the constraints. The aim here is to find a parameter θ ∈C that minimizes the
long-run average cost


J(θ ) = lim
l→∞


1
l


l−1


∑
j=0


h(X( j)), (10.3)


subject to


Gi(θ ) = lim
l→∞


1
l


l−1


∑
j=0


gi(X( j)) ≤ αi, i = 1,2, . . . , p. (10.4)


Here α1, . . . ,αp > 0 are given constants that specify the threshold levels.
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We will assume that there exists at least one θ ∈ C for which all the inequality
constraints (10.4) are satisfied. Note, however, that there may not be a unique (con-
strained) minimizer θ ∗. Thus, it is enough to find a θ ∗ that minimizes J(θ ) while
satisfying all the functional constraints. Note also that, in general, it is very difficult
to achieve a global minimum and optimization methods such as simulated anneal-
ing that aim at finding a global minimum can be computationally inefficient. Hence,
many times, one has to be content with finding a local minimum. We apply the La-
grange relaxation procedure to account for the constraints and provide algorithms
for finding a locally optimum parameter.


Lagrangian Relaxation


The constrained long-run average cost optimization problem described above can
be expressed using the standard Lagrange multiplier theory as an unconstrained
optimization problem. Let L(θ ,λ1,λ2 . . . ,λp) denote the Lagrangian described by


L(θ ,λ1,λ2 . . . ,λp) =J(θ )+
p


∑
i=1


λi(Gi(θ )−αi)


=
∫ (


h(x)+
p


∑
i=1


λi (gi(x)−αi)


)
νθ (dx), (10.5)


where λ1,λ2, . . . ,λp ∈ R
+ ∪ {0} denote the Lagrange multipliers corresponding


to the p functional constraints. In the following, we denote by Λ , the vector
Λ = (λ1, . . . ,λp)


T .
An optimal (θ ∗,Λ∗) is a saddle point for the Lagrangian, i.e., L(θ ,Λ∗) ≥


L(θ ∗,Λ∗)≥ L(θ ∗,Λ). Thus, it is necessary to design an algorithm which descends
in θ and ascends in Λ in order to find the optimum point. An iterative local search
procedure would update θ and Λ in descent and ascent directions, respectively.
Neither the objective nor the constraint functions have analytical expressions as
a consequence of being long-run averages. So, the Lagrangian L(θ ,Λ) also does
not possess an analytical expression. Thus, any optimization algorithm in this set-
ting must rely on outcomes either from a real system or those obtained using
simulation.


Assumptions


Let {θ (n)} be a sequence of random parameters obtained using an iterative scheme
on which the process {X(n)} depends. Let H (n) = σ(θ (m),X(m), m ≤ n), n ≥ 0
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denote a sequence of associated σ -fields. We call {θ (n)} non-anticipative if for all
Borel sets A⊂ R


d ,


P(X(n+ 1)∈ A |H (n)) = p(θ (n),X(n),A).


It is easy to see that sequences {θ (n)} obtained using the algorithms in the
next section are non-anticipative. Under non-anticipative {θ (n)}, the joint process
{(X(n),θ (n))} is Markov.


Assumption 10.1. The process {X(n)} is ergodic Markov for any given θ ∈C.


Assumption 10.2. The single-stage cost and constraint functions h,g1,g2, . . . ,
gp : Rd →R


+∪{0} are all Lipschitz continuous.


Assumption 10.3. The functions J(·) and Gi(·), i = 1,2, . . . , p are twice con-
tinuously differentiable functions with bounded third derivatives.


Assumption 10.4. There exist ε0 > 0, K ⊂ R
d compact and V ∈C(Rd) such


that lim
‖x‖→∞


V (x) = ∞ and under any non-anticipative {θ (n)},


(i) supn E[V (X(n))2]< ∞, for any given X0, and
(ii) E[V (X(n+1)) |H (n)]≤V (X(n))−ε0 a.s., whenever X(n) �∈ K, n≥ 0.


Here C(Rd) is the set of all real-valued continuous functions on R
d . Also, ‖ · ‖ de-


notes the Euclidean vector norm. The same norm also denotes (by an abuse of nota-
tion) the matrix norm induced by the Euclidean vector norm (i.e., ‖A‖= sup


‖x‖=1
‖Ax‖,


A ∈ R
N×N).


Let P : RN×N → {positive definite and symmetric matrices} denote an opera-
tor that projects any N×N-matrix to the space of positive definite and symmetric
matrices. We let P(A) = A, if A is positive definite and symmetric. For a matrix A,
let {P(A)}−1 denote the inverse of the matrix P(A).


Assumption 10.5. If {A(n)} and {B(n)} are sequences of matrices in R
N×N


such that lim
n→∞‖A(n)−B(n)‖= 0, then lim


n→∞‖P(A(n))−P(B(n))‖= 0 as well.


Further, for any sequence {C(n)} of matrices in R
N×N , if sup


n
‖C(n)‖ < ∞,


then sup
n
‖P(C(n))‖, sup


n
‖{P(C(n))}−1‖ < ∞ as well.


Assumption 10.6. Let a(n), b(n), c(n) and d(n), n ≥ 0 be sequences of posi-
tive step-sizes that satisfy the requirements
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∞


∑
n=0


a(n) =
∞


∑
n=0


b(n) =
∞


∑
n=0


c(n) =
∞


∑
n=0


d(n) = ∞, (10.6)


∞


∑
n=0


a(n)2,
∞


∑
n=0


b(n)2,
∞


∑
n=0


c(n)2,
∞


∑
n=0


d(n)2 < ∞, (10.7)


lim
n→∞


a(n)
b(n)


= lim
n→∞


b(n)
c(n)


= lim
n→∞


c(n)
d(n)


= 0. (10.8)


Note that Assumption 10.1 ensures, in particular, that the long-run average cost
(10.3) and the constraint functions (10.4) are well defined for any θ . Assump-
tion 10.2 ensures that the single-stage cost functions h,g1, . . . ,gp exhibit an at most
linear growth (as a function of the state). Assumption 10.3 is a technical requirement
used to push through a Taylor’s argument (See Section 10.4).


Assumption 10.4 concerns the existence of a stochastic Lyapunov function V (·).
This ensures that the system remains stable under a tunable parameter. Note that
Assumption 10.4 will not be required if the functions h(·) and gi(·), i = 1, . . . , p
are bounded in addition. Assumption 10.5 is required for Newton-based algorithms
where one projects the Hessian estimate after each iteration onto the space of pos-
itive definite and symmetric matrices. This ensures that the algorithm progresses
along the negative gradient direction at each update epoch. Finally, Assumption 10.6
ensures a difference in timescales in recursions governed with the various step sizes
as explained in earlier chapters.


10.3 Algorithms


As explained below, an algorithm for the constrained optimization problem would
require three or four nested loops depending on whether the algorithm is a gradient-
based scheme or is Newton based.


1. The inner-most loop in any of these schemes would aggregate data over various
simulation runs for given Λ and θ .


2. The next outer loop would update θ for a givenΛ -update, so that corresponding
to that update, the optimum θ is attained. The update in this loop, in turn, may
depend on the outcome of another (nested) inner loop depending on whether the
scheme works only with gradients or requires both gradient as well as Hessian
computations.


3. Finally, the outer-most loop would update the Lagrange multipliers Λ using
outcomes of the aforementioned loop updates.


Note that a regular procedure as described above will take a very long time to con-
verge because any of the outer-loop updates would have to wait for convergence of
the corresponding inner-loop procedures. Multi-timescale stochastic approximation
again comes to our rescue. By having coupled stochastic updates with different (di-
minishing) step-size schedules, with each converging to zero at a different rate, one
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can have recursions that proceed simultaneously and yet converge to an equilibrium
solution.


We describe four stochastic approximation algorithms for this purpose. Two
of these are gradient-based algorithms while the other two are Newton-based
schemes. These algorithms incorporate SPSA and SF gradient/Hessian estimates
that are, however, different from the balanced estimates presented in Chapters 7
and 8, respectively. All four algorithms use two simulations each, one of which
corresponds to the running parameter update in each algorithm, while the other
is from a perturbed parameter sequence that in turn depends on the particular
scheme (gradient/Hessian as well as SPSA/SF) used. The running parameter (θ )
update in each of these algorithms is also used to aggregate data for the La-
grange multiplier updates. Hence, for reducing the simulation load, we incorpo-
rate the estimates from the running parameter into the gradient/Hessian estimators
as well.


All four step-size schedules (cf. Assumption 10.6) are used for the Newton al-
gorithms while the gradient algorithms rely on the sequences a(n), b(n), and c(n),
n ≥ 0, respectively. For x = (x1, . . . ,xN)


T ∈ R
N , let Γ (x) = (Γ1(x1), . . ., ΓN(xN))


T


represent the projection of x onto the set C. Further, let Γ̂ : R→ [0, L̄] denote the
projection Γ̂ (y) = min(L̄,max(y,0)) for any y ∈ R, where L̄ > 0 is a large constant.
L̄ < ∞ ensures that the stochastic recursions that use Γ̂ stay uniformly bounded.


In the following, we let θ (n) �= (θ1(n), . . . ,θN(n))T , denote the nth update of the
parameter θ and λi(n) (resp. Λ(n)), the nth update of λi (resp. Λ ), i = 1, . . . , p.
In what follows, before presenting the four algorithms, we first present the gradi-
ent or gradient/Hessian estimates used in each scheme depending on whether the
same is a gradient or Newton-based algorithm, since as mentioned before, the forms
of the gradient/Hessian estimators used here are different from those proposed in
Chapters 7 and 8.


10.3.1 Constrained Gradient-Based SPSA Algorithm (CG-SPSA)


The Gradient Estimate


Let Δ1, . . ., ΔN be independent random variables satisfying Assumption 5.4. Let
Δ = (Δ1, . . . ,ΔN)


T and Δ−1 = (1/Δ1, . . . ,1/ΔN)
T , respectively. Then, the form of


the estimate of the gradient of L(θ ,Λ) w.r.t. θ is obtained from the following
relationship:


∇θL(θ ,Λ) = lim
δ↓0


E


[(
L(θ + δΔ ,Λ)−L(θ ,Λ)


δ


)
Δ−1
]
,


where the expectation is w.r.t. the distribution of Δ . This is essentially same as the
one-sided SPSA gradient estimation scheme discussed in Chapter 5.3.2.
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The Algorithm


Generate two parallel simulations {X(n)} and {X ′(n)} such that at any instant n,
X(n) is governed by θ (n) while X ′(n) is governed by θ (n)+ δΔ(n), where δ > 0
is a given small constant. Also, Δ(n) is the vector Δ(n) = (Δ1(n), . . . ,ΔN(n))T .
Here Δl(n), l = 1, . . . ,N, n ≥ 0 being independent random variables satisfying
Assumption 5.4. We have for l = 1, . . . ,N, i = 1, . . . , p,


Z(n+ 1) =Z(n)


+ c(n)


(
h(X ′(n))+


p


∑
i=1
λi(n)gi(X


′(n))


− h(X(n))−
p


∑
i=1


λi(n)gi(X(n))−Z(n)


)
, (10.9)


θl(n+ 1) =Γl


(
θl(n)− b(n)


Z(n)
δΔl(n)


)
, (10.10)


Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.11)


λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.12)


In the above, Z(n) is an estimate of (L(θ (n)+δΔ(n),Λ(n))−L(θ (n),Λ(n))). Also,
Z(n)/(δΔl(n)) is an estimate of∇θl L(θ (n),Λ(n)), the partial derivative correspond-
ing to the lth component of θ , l = 1, . . . ,N. Further, Yi(n) is the nth estimate of the
constraint function Gi(θ (n)) in (10.4).


10.3.2 Constrained Newton-Based SPSA Algorithm (CN-SPSA)


The Gradient and Hessian Estimates


The gradient and Hessian estimates in CN-SPSA depend on two independent se-
quences of perturbation random variables. The form of the gradient estimates here
is different from the one used in CG-SPSA. Let Δ1, . . . ,ΔN , Δ̂1, . . . , Δ̂N be mutually
independent random variables satisfying Assumption 7.6. Let Δ and Δ−1 be as be-
fore. Also, let Δ̂ = (Δ̂1, . . . , Δ̂N)


T and Δ̂−1 = (1/Δ̂1, . . . ,1/Δ̂N)
T , respectively. Then,


the estimates of the gradient and Hessian of L(θ ,Λ) w.r.t. θ are based on the follow-
ing relationships that are prove later in Propositions 10.11 and 10.10, respectively.


∇θL(θ ,Λ) = lim
δ1,δ2↓0


E


[(
L(θ + δ1Δ + δ2Δ̂ ,Λ)−L(θ ,Λ)


δ2


)
Δ̂−1


]
,
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∇2
θL(θ ,Λ) = lim


δ1,δ2↓0
E


[
�−1


(
L(θ + δ1Δ + δ2Δ̂ ,Λ)−L(θ ,Λ)


δ1δ2


)(
Δ̂−1)T


]
.


The expectations above are taken w.r.t. the joint distribution of Δ and Δ̂ .


The Algorithm


Let Δ(n), Δ̂ (n), n≥ 0 be two sequences of independent perturbation vectors Δ(n) �=
(Δ1(n), . . . ,ΔN(n))T and Δ̂(n) �= (Δ̂1(n), . . . , Δ̂N(n))T , respectively, with Δl(n),
Δ̂l(n), l = 1, . . . ,N,n ≥ 0 satisfying Assumption 7.6. Let δ1,δ2 > 0 be two small
constants. Generate two parallel simulations {X(n)} and {X ′(n)} such that at
any instant n, X(n) is governed by the parameter θ (n) while X ′(n) is governed
by θ (n) + δ1Δ(n) + δ2Δ̂ (n). Then, the update rule of CN-SPSA algorithm is as
follows:


Z(n+ 1) =Z(n)+ d(n)


(
h(X ′(n))+


p


∑
i=1


λi(n)gi(X
′(n))


− h(X(n))−
p


∑
i=1
λi(n)gi(X(n))−Z(n)


)
. (10.13)


For j, l ∈ {1, . . . ,N}, j ≤ l,


Hj,l(n+ 1) =Hj,l(n)+ c(n)


(
Z(n)


δ1δ2Δl(n)Δ̂ j(n)
−Hj,l(n)


)
, (10.14)


For l = 1, . . . ,N, i = 1, . . . , p,


θl(n+ 1) =Γl


(
θl(n)− b(n)


N


∑
k=1


Ml,k(n)


(
Z(n)


δ2Δ̂k(n)


))
, (10.15)


Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.16)


λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.17)


In the above,


• We set Hj,l(n+ 1) = Hl, j(n+ 1) for j > l.


• M(n) = [[Mk,l(n)]]Nk,l=1 denotes the inverse of the matrix H(n)
�
= P([[Hk,l


(n)]]Nk,l=1).


• Z(n) is an estimate of (L(θ (n)+ δ1Δ(n)+ δ2Δ̂ (n),Λ(n))−L(θ (n),Λ(n))).







10.3 Algorithms 175


• Z(n)/(δ2Δ̂k(n)) is an estimate of the partial derivative ∇θk L(θ (n),Λ(n)) and
Z(n)/(δ1δ2Δl(n)Δ̂ j(n)) is an estimate of the ( j, l)th component of the Hessian
matrix H(n).


10.3.3 Constrained Gradient-Based SF Algorithm (CG-SF)


The Gradient Estimate


The gradient estimate here will involve a one-sided form described below. Let η =
(η1, . . . ,ηN)


T be a vector of independent N(0,1)-distributed random variates. The
gradient estimates for CG-SF are based on the following relationship whose proof
is given later in Proposition 10.2.


∇θL(θ ,Λ) = lim
β↓0


E


[
η
β
(L(θ +βη ,Λ)−L(θ ,Λ))


]
,


where the expectation is taken w.r.t. the distribution of η .


The Algorithm


Let β > 0 be a given small constant. Let η(n) �= (η1(n), . . . ,ηN(n))T , where ηl(n),
l = 1, . . . ,N, n ≥ 0 are independent N(0,1)-distributed random variables. Generate
two parallel simulations {X(n)} and {X ′(n)} such that at any instant n, X(n) is
governed by the parameter θ (n) while X ′(n) is governed by θ (n)+ βη(n). Then
for l = 1, . . . ,N, i = 1, . . . , p, we have


Zl(n+ 1) =Zl(n)+ c(n)


(
ηl(n)
β


(
h(X ′(n))+


p


∑
i=1
λi(n)gi(X


′(n))


− h(X(n))−
p


∑
i=1
λi(n)gi(X(n))


)
−Zl(n)


)
, (10.18)


θl(n+ 1) =Γl (θl(n)− b(n)Zl(n)) , (10.19)


Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.20)


λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.21)


Here Zl(n) is an estimate of ∇θl L(θ (n),Λ(n)).
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10.3.4 Constrained Newton-Based SF Algorithm (CN-SF)


The Gradient and Hessian Estimates


The gradient estimate in CN-SF is the same as the one in CG-SF. As in the case of
the N-SF algorithms of Chapter 8, where there are no functional constraints, (see
(8.4)), let


H̄(η) �=


⎡
⎢⎢⎣
(η2


1 − 1) η1η2 · · · η1ηN


η2η1 (η2
2 − 1) · · · η2ηN


· · · · · · · · · · · ·
ηNη1 ηNη2 · · · (η2


N − 1)


⎤
⎥⎥⎦ , (10.22)


where η = (η1, . . . ,ηN)
T is a vector of mutually independent N(0,1) random vari-


ables. The estimate for the Hessian in CN-SF is obtained from the following rela-
tionship:


∇2
θL(θ ,Λ) = lim


β→0


1
β 2 E [H̄(η)(L(θ +βη ,Λ)−L(θ ,Λ))] , (10.23)


where the expectation is taken w.r.t. the distribution of η .


The Algorithm


Let β > 0 be a given small constant. Let η(n) �= (η1(n), . . . ,ηN(n))T , where ηl(n),
l = 1, . . . ,N, n ≥ 0 are mutually independent N(0,1)-distributed random variables.
Generate two parallel simulations {X(n)} and {X ′(n)} such that at any instant n,
X(n) is governed by the parameter θ (n) while X ′(n) is governed by θ (n)+βη(n).
For i, j,k = 1, . . . ,N, j < k, update


Zi,i(n+ 1) =(1− d(n))Zi,i(n)


+ d(n)


(
η2


i (n)− 1
β 2


(
− h(X(n))−


p


∑
i=1
λi(n)gi(X(n))


+ h(X ′(n))+
p


∑
i=1
λi(n)gi(X


′(n))
))


, (10.24)
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Zj,k(n+ 1) =(1− d(n))Zj,k(n)


+ d(n)


(
η j(n)ηk(n)


β 2


(
− h(X(n))−


p


∑
i=1
λi(n)gi(X(n))


+ h(X ′(n))+
p


∑
i=1


λi(n)gi(X
′(n))


))
. (10.25)


For j > k, set Zj,k(n+ 1) = Zk, j(n+ 1). Next for l = 1, . . . ,N, i = 1, . . . , p,
update


Zl(n+ 1) =Zl(n)+ c(n)


(
ηl(n)
β


(
h(X ′(n))+


p


∑
i=1
λi(n)gi(X


′(n))


−h(X(n))−
p


∑
i=1


λi(n)gi(X(n))


)
−Zl(n)


)
, (10.26)


θl(n+ 1) =Γl


(
θl(n)− b(n)


N


∑
k=1


Ml,k(n)Zk(n)


)
, (10.27)


Yi(n+ 1) =Yi(n)+ c(n)(gi(X(n))−Yi(n)), (10.28)


λi(n+ 1) =Γ̂ (λi(n)+ a(n)(Yi(n)−αi)). (10.29)


In the above, M(n) = [[Mi, j(n)]]Ni, j=1
�
= H(n)−1 denotes the inverse of the Hessian


matrix H(n) = P([[Zi, j(n)]]Ni, j=1). Also, Zi,i(n) (resp. Zj,k(n)) is the nth estimate of


the (i, i)th (resp. ( j,k)th) element of the Hessian matrix ∇2
θL(θ ,λ ). Further, as with


CG-SF, Zl(n) is an estimate of ∇θl L(θ (n),Λ(n)).


Remark 10.1. The quantities Yi(n) in each of these algorithms are used in the
updates of the Lagrange multipliers λi(n), i = 1, . . . , p,n ≥ 0, for which one re-
quires the nominal parameter updates θ (n),n ≥ 0. For simulation efficiency, the
gradient/Hessian estimators in these algorithms have been designed in a way as
to make use of the simulations with the nominal parameters as well. On the other
hand, the two-simulation-balanced estimators of the gradient/Hessian described in
Chapters 7 and 8 could be slightly more efficient as compared to the one-sided
(unbalanced) estimators used here because of less higher-order biases in the for-
mer. The resulting algorithms with such (balanced) estimators would however re-
quire three parallel simulations. Nevertheless, it would be interesting to empiri-
cally study the comparisons of such algorithms (with balanced estimators) with
the algorithms presented here both in terms of accuracy as well as computational
effort.
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10.4 A Sketch of the Convergence


We first provide a sketch of the convergence proof for the algorithm CN-SF. Later,
we describe the changes necessary in the analysis of the other algorithms.


Convergence Analysis of CN-SF


The analysis of (10.24)–(10.27) works along the lines of SF schemes discussed in
Chapter 8. Since a(n) = o(b(n)), a multi-timescale stochastic approximation anal-
ysis allows us to treat Λ(n) as a constant while analyzing (10.24)–(10.27), under
which condition these updates reduce to a scheme similar to the one used in Chapter
8 except with different gradient and Hessian estimators. In the following, we, there-
fore, first show that the gradient and Hessian estimators that we use are strongly
consistent.


Let H̄(η(n)) be defined as in (10.22) with η(n) in place of η , where η(n) are the
random variables described in the algorithm.


Proposition 10.1.∥∥∥∥∥E


[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)


]


−∇2
θ(n)L(θ (n),Λ(n))


∥∥∥∥∥→ 0, as β → 0.


Proof. Note that


E


[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)


]


= E[
1
β 2 H̄(η(n))(J(θ (n)+βη(n))+


p


∑
i=1


λi(n)Gi(θ (n)+βη(n))


−J(θ (n))−
p


∑
i=1
λi(n)Gi(θ (n))) | θ (n),Λ(n)].


Using Taylor series expansions of J(θ (n)+βη(n)) and Gi(θ (n)+βη(n)), respec-
tively, around θ (n), one obtains


L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))


= βη(n)T (∇J(θ (n))+
p


∑
i=1


λi(n)∇Gi(θ (n)))


+
β 2


2
η(n)T (∇2J(θ (n))+


p


∑
i=1
λi(n)∇2Gi(θ (n)))η(n)+ o(β 2). (10.30)
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Hence,


E


[
1
β 2 H̄(η(n))(L(θ (n)+βη(n),Λ (n))−L(θ (n),Λ (n))) | θ (n),Λ (n)


]


= E


[
1
β


H̄(η(n))η(n)T


(
∇J(θ (n))+


p


∑
i=1
λi(n)∇Gi(θ (n))


)
| θ (n),Λ (n)


]


+
1
2


E


[
H̄(η(n))η(n)T


(
∇2J(θ (n))+


p


∑
i=1
λi(n)∇2Gi(θ (n))


)
η(n) | θ (n),Λ (n)


]
+O(β ).


The first term on the RHS above equals zero, while the second term equals ∇2
θ(n)


L(θ (n),Λ(n)). ��


Proposition 10.2.


‖E
[


1
β
η(n)(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)


]
−∇θ(n)L(θ (n),Λ(n))‖ → 0


as β → 0.


Proof. Note that


E


[
1
β
η(n)(L(θ (n)+βη(n),Λ(n))−L(θ (n),Λ(n))) | θ (n),Λ(n)


]


= E[η(n)η(n)T∇θ(n)L(θ (n),Λ(n)) | θ (n),Λ(n)]


+
β
2


E[η(n)η(n)T∇2
θ(n)L(θ (n),Λ(n))η(n) | θ (n),Λ(n)]+ o(β )


= ∇θ(n)L(θ (n),Λ(n))+ o(β ).


The last equality follows since the second term on the RHS of the first equality
above equals zero and E[η(n)η(n)T ] = I, the identity matrix. The claim follows. ��


Consider now the recursion (10.27). Since a(n) = o(b(n)), we treat Λ(n) ≡ Λ , a
constant, in the analysis of (10.27). The ODE associated with (10.27) is thus


θ̇ (t) = Γ̃ (−{P(∇2
θL(θ (t),Λ))}−1∇θL(θ (t),Λ)), (10.31)


where for any y ∈ R
N and a bounded, continuous function v(·) : RN → R


N ,


Γ̃ (v(y)) = lim
0<η→0


(
Γ (y+ηv(y))−Γ (y)


η


)
.
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Let


KΛ
�
= {θ ∈C | ∇θL(θ ,Λ)T Γ̃ (−{P(∇2


θL(θ ,Λ))}−1∇θL(θ ,Λ)) = 0}.
Further, let


K̂Λ
�
= {θ ∈C | Γ̃ (−{P(∇2


θL(θ ,Λ ))}−1∇θL(θ ,Λ )) =−{P(∇2
θL(θ ,Λ ))}−1∇θL(θ ,Λ )}.


Let Co denote the interior of C. Then, one can see that Co ⊆ K̂Λ for any Λ =
(λ1, . . . ,λp)


T , with λi ≥ 0, i = 1, . . . , p. In the light of Propositions 10.1 and 10.2, we
have the following result whose proof follows in a similar manner as Theorem 8.12
(Chapter 8).


Theorem 10.3. Let λi(n)≡ λi ∀n ≥ 0, for some λi ≥ 0, i = 1, . . . , p. Then the
sequence {θ (n)} converges as β → 0 to a point θΛ ∈KΛ with probability one,
where Λ = (λ1, . . . ,λp)


T .


Consider now the recursion (10.28) and consider the following sequence of ODEs:
For l = 1, . . . ,N, i = 1, . . . , p,


λ̇i(t) = 0, (10.32)


θ̇l(t) = 0, (10.33)


Ẏi(t) = Gi(θ (t))−Yi(t). (10.34)


In lieu of (10.32)–(10.33), θ (t) ≡ θ for some θ ∈ R
N and (10.34) can be


rewritten as
Ẏi(t) = Gi(θ )−Yi(t). (10.35)


We now have the following result:


Proposition 10.4. ‖Yi(n)−Gi(θ (n))‖→ 0 w.p. 1, as n→ ∞, for all i = 1, . . . , p.


Proof. Since a(n) = o(c(n)) and b(n) = o(c(n)), one can treat in a similar manner
as the foregoing, Λ(n) and θ (n) to be constants when analyzing (10.28). Rewrite
(10.28) as


Yi(n+ 1) = Yi(n)+ c(n)(Gi(θ (n))+ ξi(n)+M(n+ 1)−Yi(n)),


where ξi(n) = E[gi(X(n)) |F (n−1)]−Gi(θ (n)) with F (n) = σ(X(m),θ (m),m≤
n), n ≥ 0 being the associated σ -fields and M(n+ 1) = (gi(X(n))−E[gi(X(n)) |
F (n−1)]). Let N(n) =


n


∑
m=0


c(m)Mm+1, n≥ 0. We will first verify that (N(n),F (n)),


n≥ 0 is a square-integrable martingale. Note that


E[N(n)2]≤ Kn


n


∑
m=0


c(m)2E[g2
i (X(n))+E2[gi(X(n)) |F (n− 1)]],







10.4 A Sketch of the Convergence 181


for some Kn > 0 that depends on n. By the conditional Jensen’s inequality, we have


E2[gi(X(n)) |F (n−1)]≤E[g2
i (X(n)) |F (n−1)]. Thus, E[N(n)2]≤ 2Kn


n


∑
m=0


c(m)2


E[g2
i (X(n))]. Now since gi(·) is Lipschitz continuous,


|gi(X(n))| ≤ |gi(0)|+ |gi(X(n))− gi(0)| ≤ |gi(0)|+ K̄i‖X(n)‖,


where K̄i > 0 is the Lipschitz constant for the function gi(·). Thus, |gi(X(n))| ≤
Ki(1 + ‖X(n)‖), where Ki = max(|gi(0)|, K̄i). Hence E[g2


i (X(n))] ≤ 2K2
i


(1+E[‖X(n)‖2]). Now from Assumption 10.4, we have that supn E[‖X(n)‖2]< ∞.
Hence, E[N(n)2]<∞ for all n≥ 0. Further, E[N(n+1) |F (n)] =N(n) w.p.1. Thus,
N(n),n≥ 0 is a square-integrable martingale sequence. Now,


∑
n


E[(N(n+ 1)−N(n))2 |F (n)]


=∑
n


c(n+ 1)2E[(gi(X(n+ 1))−E[gi(X(n+ 1)) |F (n)])2 |F (n)]


≤ 2∑
n


c(n+ 1)2E[g2
i (X(n+ 1))+E2[gi(X(n+ 1)) |F (n)] |F (n)]


≤ 4∑
n


c(n+ 1)2E[g2
i (X(n+ 1)) |F (n)].


From Assumption 10.4 and the Lipschitz continuity of gi(·), it can again be seen
that supn E[g2


i (X(n+ 1)) |F (n)] < ∞ almost surely. Since ∑n c(n)2 < ∞, we have
that


∑
n


E[(N(n+ 1)−N(n))2 |F (n)]< ∞ w.p.1.


Hence, from the martingale convergence theorem (Theorem B.2), {N(n)} is an al-
most surely convergent sequence. Now, ξi(n),n ≥ 0 constitutes the Markov noise.
Note, however, that as a consequence of Assumption 10.1, along the ‘natural
timescale’, ξi(n)→ 0 w.p. 1 as n→ ∞, ∀i = 1, . . . , p. Since the natural timescale
is faster than the timescale of the stochastic recursion, the latter sees the quantity
ξi(n) as having converged to zero, see [6, Chapter 6.2] for a detailed analysis of
natural timescale recursions. The rest follows in a straightforward manner from the
Hirsch lemma (Lemma C.5) applied to the ODE (10.35) for every ε > 0. ��


Finally, we consider the slowest timescale recursion (10.29). In the light of
Proposition 10.4, one may consider the following alternate recursion: For i =
1, . . . , p,


λi(n+ 1) = Γ̂ (λi(n)+ a(n)(Gi(θ (n))−αi)). (10.36)


Let for any λ ∈R and a bounded, continuous function w(·) : R→ R,


¯̂Γ (w(λ )) = lim
0<η→0


(
Γ̂ (λ +ηw(λ ))− Γ̂ (λ )


η


)
.
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Then (10.36) is an Euler discretization with (nonuniform) step sizes a(n) of the
ODE


λ̇i(t) =
¯̂Γ (Gi(θ (t))−αi), (10.37)


i = 1, . . . , p. Let


F
�
= {Λ = (λ1, . . . ,λp)


T | λi ∈ [0, L̄], ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ KΛ}.
Also, let


F− �= {Λ = (λ1, . . . ,λp)
T | λi ∈ [0, L̄), ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ KΛ}.


A standard stochastic approximation argument using the Hirsch lemma and Theo-
rem 10.3 also shows the following:


Theorem 10.5. Λ(n)→ Λ∗ for some Λ∗ �= (λ ∗1 , . . . ,λ ∗p)T ∈ F as n→ ∞ and
β → 0 with probability one.


Let Λ∗ be as in Theorem 10.5. The next proposition shows that the limiting point
θΛ∗ corresponding to Λ∗ satisfies all the inequality constraints viz., Gi(θΛ


∗
) ≤ αi,


∀i = 1, . . . , p. In other words, the limiting point θΛ∗ is a feasible point of the con-
strained optimization problem (10.3)-(10.4).


Proposition 10.6. For any Λ∗ ∈ F−, the corresponding parameter θΛ∗ ∈ KΛ∗ sat-
isfies all inequality constraints Gi(θΛ


∗
)≤ αi, ∀i = 1, . . . , p.


Proof. Suppose not. Then for some i ∈ {1, . . . , p}, Gi(θΛ
∗
)> αi. Hence,


¯̂Γ (Gi(θΛ
∗
)−αi) = lim


η→0


Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi))−λ ∗i


η


= lim
η→0


λ ∗i +η(Gi(θΛ
∗
)−αi)−λ ∗i


η
= Gi(θΛ


∗
)−αi > 0,


which is a contradiction since Λ∗ ∈ F−. The second equality above follows because
λ ∗i ≥ 0 and Gi(θΛ


∗
) > αi. Hence, for sufficiently small η > 0, λ ∗i +η(Gi(θΛ


∗
)−


αi) ∈ F− as well and hence


Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i +η(Gi(θΛ


∗
)−αi).


The claim follows. ��
We call Λ̂ ∈F a spurious fixed point of the ODE (10.37) if the non-projected version
of the same, i.e.,


λ̇i(t) = Gi(θ (t))−αi,
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does not have Λ̂ as a fixed point. Such a fixed point is introduced by the
projection operator in the ODE and would lie on the boundary of the constraint
set (cf. [7]).


Corollary 10.7. For any Λ∗ ∈ F for which λ ∗i = L̄ for some i = 1, . . . , p, and
Gi(θΛ


∗
)> αi, is a spurious fixed point of (10.37).


Proof. Observe that


Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i = L̄,


since λ ∗i +η(Gi(θΛ
∗
)−αi) > L̄ for any η > 0. Hence, ¯̂Γ (Gi(θΛ )−αi) = 0. The


claim follows. ��
Proposition 10.8. ForΛ∗ ∈F, if Gi(θΛ


∗
)<αi, for some i∈ {1, . . . , p}, then λ ∗i = 0.


Proof. We consider both possibilities viz., (a) λ ∗i = 0 and (b) λ ∗i > 0, respectively.
Consider (a) first. It is easy to see that for λ ∗i = 0 and Gi(θΛ


∗
) < αi, we have that


Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = 0 as well for all η > 0.


Now consider (b). Note that for λ ∗i > 0, one can find η0 > 0, such that for all
0 < η ≤ η0,


Γ̂ (λ ∗i +η(Gi(θΛ
∗
)−αi)) = λ ∗i +η(Gi(θΛ


∗
)−αi)> 0.


Thus
¯̂Γ (Gi(θΛ


∗
)−αi) = Gi(θΛ


∗
)−αi < 0,


which is a contradiction since Λ∗ ∈ F . Thus, for Λ∗ ∈ F , Gi(θΛ
∗
) < αi for some


i ∈ {1, . . . , p} is only possible provided λ ∗i = 0. ��


Remark 10.2. From Theorem 10.5, Λ(n)→Λ∗ for some Λ∗ �= (λ ∗1 , . . . ,λ
∗
p)


T


with λ ∗i ∈ [0, L̄], ∀i = 1, . . . , p such that θΛ∗ ∈ KΛ∗ and ¯̂Γ (Gi(θΛ
∗
)−αi) =


0, ∀i = 1, . . . , p. Note that for given Λ , the condition ¯̂Γ (Gi(θΛ )−αi) = 0,
i = 1, . . . , p is the same as ¯̂Γ (∇λi


L(θΛ ,Λ)) = 0. Using the envelope theorem
of mathematical economics [8, pp.964-966], one may conclude that (10.37)
corresponds to


λ̇i(t) =
¯̂Γ (∇λi


L(θΛ
∗
,Λ∗)), (10.38)


i = 1, . . . , p, interpreted in the ‘Caratheodory’ sense, see [5, Lemma 4.3]. The
parameter tuple (θ (n),Λ(n)) can then be seen to converge to a local minimum
– local maximum tuple for the Lagrangian L(·, ·).
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Convergence Analysis of CG-SF


Again in view of a(n) = o(b(n)), we let Λ(n) ≡ Λ , a constant, when analyzing
(10.18)–(10.19). Proposition 10.2 shows that the gradient estimator is strongly con-
sistent. (Note that the form of the gradient estimates in both CN-SF and CG-SF are


the same.) Now let K′Λ
�
= {θ ∈ C | Γ̃ (−∇θL(θ ,Λ)) = 0}. One can see that K′Λ is


analogous to KΛ , except for some spurious fixed points on the boundary (in addition
to the regular fixed points). The conclusions of Theorem 10.3 now continue to hold
with K′Λ in place of KΛ .


Finally, let the set F be now defined as


F
�
= {Λ = (λ1, . . . ,λp)


T | λi ∈ [0, L̄], ¯̂Γ (Gi(θΛ )−αi) = 0, ∀i = 1, . . . , p, θΛ ∈ K′Λ}.


The conclusions of Theorem 10.5 as well as Propositions 10.6 and 10.8 continue to
hold with the set F defined above.


Convergence Analysis of CG-SPSA


As before, since a(n) = o(b(n)), let Λ(n) ≡ Λ (a constant) ∀n, while analyzing
(10.18)–(10.19).


Proposition 10.9. With probability one, ∀l ∈ {1, . . . ,N}, as δ → 0,∣∣∣∣E
[


L(θ (n)+δΔ (n),Λ (n))−L(θ (n),Λ (n))
δΔl(n)


| θ (n),Λ (n)
]
−∇θl


L(θ (n),Λ (n))
∣∣∣∣→ 0.


Proof. Follows from a routine Taylor series based argument and the properties of
the perturbations Δi(n), i = 1, . . . ,N,n ≥ 0 (cf. Assumption 5.4). ��


The rest of the analysis is now identical to that of CG-SF.


Convergence Analysis of CN-SPSA


Again since a(n) = o(b(n)), let Λ(n)≡Λ (a constant) ∀n, when analyzing (10.13)-
(10.15). The analysis of these recursions follows in a similar manner as that of the
recursions in Chapter 7. The Hessian and gradient estimators used are seen to be
strongly consistent. The gradient estimator here is defined from the same two sim-
ulations that are used to estimate the Hessian in this scheme. Hence, the gradient
estimator here is significantly different when compared with the estimator used in
CG-SPSA.
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Proposition 10.10. With probability one, ∀ j, i ∈ {1, . . . ,N},∣∣∣∣∣E
[


L(θ (n)+ δ1Δ(n)+ δ2Δ̂(n),Λ(n))−L(θ (n),Λ(n))
δ1δ2Δi(n)Δ̂ j(n)


| θ (n),Λ(n)
]


−∇2
θ j ,θi


L(θ (n),Λ(n))


∣∣∣∣∣→ 0,


as δ1,δ2→ 0.


Proof. Follows again by using an argument based on Taylor series expansion, see
for instance, Chapter 7 for a proof of unbiasedness of a similar estimator. ��


Proposition 10.11. With probability one, ∀k ∈ {1, . . . ,N},∣∣∣∣∣E
[


L(θ (n)+ δ1Δ(n)+ δ2Δ̂(n),Λ(n))−L(θ (n),Λ(n))
δ2Δ̂k(n)


| θ (n),Λ(n)
]


− ∇θk L(θ (n),Λ(n))


∣∣∣∣∣→ 0,


as δ1,δ2→ 0.


Proof. As before, follows using an argument based on an appropriate Taylor
series expansion, see Chapter 5 for a proof of unbiasedness of a similar
estimator. ��


The rest of the analysis now follows in a similar manner as that of CN-SF.


10.5 Concluding Remarks


We presented in this chapter simulation-based algorithms for optimizing an objec-
tive function under inequality constraints that are in turn obtained from some other
related objective functions. Both the objective and the constraint functions were
considered to have a long-run average form. Hence neither the objective nor the
constraints are analytically known functions of the parameter. The Lagrange relax-
ation approach was used to handle the inequality constraints and the algorithms
were based on multi-timescale stochastic approximation for performing parameter
search with the long-run average objective and under similar constraint functions.
Similar approaches have also been used in the context of the random early detection
(RED) scheme for flow control in TCP/IP networks [9, 4] (see Chapter 14.2). Such
techniques have also been applied in the context of reinforcement learning for the
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problem of controlling a stochastic dynamic system under functional constraints,
see [5, 1, 3]. An application, in the context of service systems, of similar methods
as explored in this chapter for the problem of discrete parameter constrained opti-
mization is considered in Chapter 12.
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Chapter 11
Reinforcement Learning


11.1 Introduction


Reinforcement learning (RL) [22], [5] is one of the most active research areas in
machine learning and artificial intelligence (AI). While it has its roots in AI, RL has
found tremendous applications in problems involving sequential decision making
under uncertainty or stochastic control [3, 4, 19].


The basic framework in RL involves interactions between an “agent”, i.e., the
learner/controller and the “environment”. The task of the agent is to observe the
state of the environment and select an action. On its part, the environment reacts (to
the agent’s selection of an action) by probabilistically changing its state. In addition,
the environment hands over the agent a certain reward that could be positive or
negative — a negative reward implies a penalty or cost. The agent next observes the
new state of the environment, again selects an action and the process is repeated.
The goal of the agent is to select an action at each time instant (upon observing the
state of the environment) in a way as to maximize a long-term reward. The reward
that the agent receives from the environment when it selects an action plays the
role of a “reinforcement” signal. The agent uses this signal to update its strategy
to select actions based on the environment state. Many times, these updates are
incremental in nature resulting in algorithms that gradually converge to the optimal
strategies.


One of the challenges unique to RL is the tradeoff between “exploration” and
“exploitation”. To obtain a large reward, an RL agent might select actions it has
previously tried that were found to yield a high reward. However, in doing so, it
would not be exploring other (unexplored) actions that could potentially result in
an even higher reward. Thus, it needs to strike a balance between exploiting actions
known to give high rewards and exploring newer actions.


RL algorithms are largely classified under two broad categories: those that deal
with the problem of prediction and those that deal with control. Usually, it is con-
venient to assume that the controller selects actions according to a policy that is


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 187–220.
springerlink.com © Springer-Verlag London 2013







188 11 Reinforcement Learning


a decision rule that suggests which action to pick in which state. The policy can
also be a function of time. In the problem of prediction, one is often interested
in evaluating, in terms of the long-term reward or cost, the value of a given pol-
icy. When the state space is large or high-dimensional, estimating the value itself
of a given policy may be difficult and one requires function approximation-based
approaches. An efficient RL algorithm for the problem of prediction is temporal
difference (TD) learning. In the problem of control, on the other hand, the aim is
to find an optimal control policy. In actor-critic RL algorithms, for instance, the
problem of prediction forms a subtask of the control problem. In particular, for per-
forming an update on the policy, the ‘value’ of the current update of the policy is
first estimated. Multi-timescale stochastic approximation helps in such scenarios.
Another important RL algorithm for the problem of control is Q-learning. One of
the problems that algorithms such as TD and Q-learning with function approxi-
mation suffer from is the off-policy problem. In particular, Q-learning with func-
tion approximation can in fact diverge. We discuss this in more detail in the later
sections.


The area of RL has seen several impressive applications. Examples include the
development of a world class computer backgammon player [24] as well as the
control of an inverted autonomous helicopter flight [27]. RL is applicable in sit-
uations when information about the system model is not precisely known, how-
ever, states can be simulated via a simulator or else directly observed from a real
system.


In this chapter, we shall study recently developed algorithms for RL that are
based on simultaneous perturbation techniques. These algorithms are largely from
[9, 1, 7, 8, 6]. We discuss algorithms that are based on full-state representations as
well as those that incorporate function approximation. A distinguishing feature of
these algorithms is that they are based on simultaneous perturbation ideas. Apart
from being easily implementable, some of these algorithms also exhibit signifi-
cant improvements over well-known algorithms in the literature. For instance, we
show that the multi-timescale simultaneous perturbation variant of Q-learning with
function approximation is convergent and does not suffer from the off-policy prob-
lem. We shall be concerned here with the problem of minimizing costs rather than
maximizing rewards. The two problems can be seen to be analogous if one defines
costs as negative rewards.


11.2 Markov Decision Processes


Consider a discrete time stochastic process {X(n),n ≥ 0} that takes values at each
instant in a set S called the state space. Suppose that the evolution of {X(n)} depends
on a control-valued sequence {Z(n)}. Let A(X(n)) denote the set of all controls
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(also called actions) that are available to the controller when the state of the MDP


is X(n) ∈ S. Then, A
�
= ∪X∈SA(X) is the set of all possible actions, also called the


action space. We let S and A be both finite sets.


t t+1 t+2t−1t−2


s t
at


s t+1


Fig. 11.1 The Controlled Markov Behaviour


As illustrated in Fig. 11.1, the process {X(n)} is said to be a Markov decision
process (MDP) if it satisfies the following (controlled Markov) property: For any
states i0, i1, . . . , in−1, i, j ∈ S and actions a j ∈ A(i j), j = 0,1, . . . ,n− 1, a ∈ A(i),
we have


Pr(X(n+ 1) = j | X(n) = i,Z(n) = a,X(n− 1) = in−1,Z(n− 1) = an−1, . . . ,


X0 = i0,Z0 = a0)
�
= p(i, j,a).


(11.1)


Here, p(i, j,a), i, j ∈ S, a ∈ A(i) are called controlled transition probabilities and
satisfy the properties 0≤ p(i, j,a) ≤ 1 and ∑ j∈S p(i, j,a) = 1.


Problems in MDPs fall into two main categories: finite horizon and infinite
horizon. In finite horizon MDPs, the process is observed and controlled only
over a fixed number N of time instants while in infinite horizon problems, the
same is done over an infinite number of instants. We shall be concerned here
with infinite horizon problems. The text [3] deals primarily with finite horizon
problems.


It is often convenient for an agent to select actions according to a policy, i.e.,
a rule for selecting actions. By an admissible policy π , we mean a sequence
of functions π = {μ0,μ1,μ2, . . . ,} with each μk : S → A, such that μk(i) ∈ A(i),
∀i ∈ S, k ∈ {0,1, . . .}. Let Π be the set of all admissible policies. If μk = μ ,
∀k = 0,1, . . ., for some μ independent of k, then we call the policy π (or many
times μ itself) a stationary deterministic policy (SDP). By a randomized policy
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(RP) ψ , we mean a sequence ψ = {φ0, φ1,φ2, . . .} with each φ(n) : S→P(A),
n = 0,1, . . ., where P(A) is the set of all probability vectors on A. The above
map is defined so that for each i ∈ S, φ(n)(i) ∈ P(A(i)), n = 0,1,2, . . ., with
P(A(i)) being the set of all probability vectors on A(i). A stationary random-
ized policy (SRP) is a RP ψ for which φ(n) = φ ∀n = 0,1, . . .. By an abuse of
notation, we refer to φ itself as the SRP. We now describe the two long-term cost
criteria.


• The infinite horizon discounted cost criterion:
Let r(i,a) denote the single-stage cost when the current state is i and the action
chosen is a ∈ A(i). Let α ∈ (0,1) be the discount factor – a given constant. The
aim is to minimize over all admissible policies, π = {μ0,μ1,μ2, . . .}, the infinite
horizon discounted cost:


V π(i) = E


[
∞


∑
k=0


αkr(Xk,μk(Xk)) | X0 = i


]
, (11.2)


starting from a given initial state i ∈ S. For a given policy π , the function V π(·)
is called the value function corresponding to policy π . The optimal cost or value
function V ∗(·) is now defined by


V ∗(i) = min
π∈Π


V π(i), i ∈ S. (11.3)


One can show that an optimal SDP exists in this case and the optimal cost V ∗
satisfies the Bellman equation


V ∗(i) = min
a∈A(i)


(
r(i,a)+∑


j∈S


α p(i, j,a)V ∗( j)


)
. (11.4)


From the form of the cost function (11.2), it is evident that the single-stage
costs over the first few stages only matter since costs for subsequent stages get
beaten down due to the exponential weighting via the discount factor. Hence,
this form of the cost function is useful in cases when one is primarily interested
in controlling the transient performance of the system.


• The long-run average cost criterion:
Let r(i,a) denote the single-stage cost in this case as before. The aim here is to
find an admissible policy π ∈ Π that minimizes the associated infinite horizon
average cost J(π) defined as


J(π) = lim
N→∞


1
N


E


[
N−1


∑
k=0


r(Xk,μk(Xk)) | X0 = i


]
, (11.5)
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starting from any initial state i. In case, the limit in (11.5) does not exist, one
may replace the same with ‘limsup’. However, we shall assume that the result-
ing Markov chain under any SDP π is ergodic, i.e., aperiodic, irreducible (and
hence also positive recurrent since it is finite state). Under this assumption, the
limit above can be shown to exist. Further, for any SDP π , a function hπ : S→R


exists that satisfies the Bellman equation corresponding to the policy π (also
called the Poisson equation):


J(π)+ hπ(i) = r(i,μ(i))+∑
j∈S


p(i, j,μ(i))hπ ( j),


for all i ∈ S.
Let J∗ denote the optimal cost. Then,


J∗ = min
π


J(π).


Note that J(π) (and so also J∗) does not depend on the initial state i (see (11.5))
because of the ergodicity assumption. Let h∗(·) now denote the differential cost
function. It can again be seen that an optimal SDP exists and the resulting Bell-
man equation for optimality corresponds to


J∗+ h∗(i) = min
a∈A(i)


(
r(i,a)+∑


j∈S


p(i, j,a)h∗( j)


)
, ∀i ∈ S. (11.6)


Note that the cost function (11.5) here is a long-run average of single-stage cost
functions. This form of the cost function is useful in scenarios where one is in-
terested in controlling the steady-state system performance but not so much the
transient system behaviour.


11.3 Numerical Procedures for MDPs


We now describe two of the important numerical procedures for MDPs assuming
that information on transition probabilities is completely known. Moreover, the con-
troller can fully observe the states of the system. In the case of the RL algorithms
that we discuss in the next section, information on transition probabilities is usually
assumed to be unavailable. In some instances, even the states of the MDP may not
be fully observable. Such systems are then modelled in the setting of partially ob-
served MDPs (POMDPs). We shall, however, not be concerned with POMDPs in
this article.
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The numerical schemes that we describe below go by the names of value iteration
and policy iteration [4], [19], respectively. A few other computational procedures
largely based on these two aproaches are also available in the literature. We describe
both procedures below for the two different cost criteria.


11.3.1 Numerical Procedures for Discounted Cost MDPs


Value Iteration


• Step 1: Set an initial estimate V0(·) of the value function.
• Step 2: For n = 0,1,2, . . . , for all i ∈ S, iterate the following until conver-


gence:


Vn+1(i) = min
a∈A(i)


(
r(i,a)+α ∑


j∈S


p(i, j,a)V (n)( j)


)
. (11.7)


The iteration (11.7) is based on the Bellman equation for optimality (11.4) and can
be seen to be a fixed point iteration corresponding to a given contraction operator.
Hence, it can be seen to converge ([4], [19]). In practice, the above iteration can be
stopped after a certain large number (N) of iterates. The value VN(·) would then be
an estimate of the true value function V ∗(·).


Policy Iteration


• Step 1: Set an initial estimate μ0 of the optimal SDP.
• Step 2 (Policy Evaluation): Given the SDP update μn at iteration n, solve


the Bellman equation (11.4) with actions obtained only according to the
policy μn. Thus the iteration there does not involve the ‘min’ operation. In
vector-matrix notation, this corresponds to solving


V μn = Rμn +αPμnV μn , (11.8)


where V μn is the value function under the stationary policy μn. Further,
Rμn and Pμn are the cost vector and transition probability matrix, respec-
tively, under policy μn. The unique solution to (11.8) corresponds to


V μn = (I−αPμn)−1Rμn .
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Computing the inverse above could be problematic in many cases partic-
ularly when the number of states is large. One can in such a case solve
(11.8) by running a value iteration scheme (for the given policy μn) as
follows: For m = 0,1,2, . . .,


V μn
m+1(i) = r(i,μn(i))+α ∑


j∈S


p(i, j,μn(i))V
μn


m ( j),


starting from any V μn
0 (i), i ∈ S. Upon convergence of the inner loop, viz.,


V μn
m (i)→V μn(i), as m→ ∞, a policy update is performed as below.


• Step 3 (Policy Improvement):


μn+1(i) ∈ argmin


(
r(i, ·)+α ∑


j∈S


p(i, j, ·)V μn( j)


)
.


Even though we have described the above procedures considering SDP updates, one
can also describe these with SRP updates.


11.3.2 Numerical Procedures for Long-Run Average Cost MDPs


The Relative Value Iteration Scheme


Note that (11.6) constitutes a system of |S| equations with |S|+ 1 unknowns. One
way to solve this system could be to set h∗(i0) = 0 for some i0 ∈ S and solve the
system for J∗,h∗(i), i ∈ S\{i0}. Another procedure (that we consider here), that is
commonly used and is called the relative value iteration scheme, is to arbitrarily
select a state i0 ∈ S as a reference state and estimate J∗ from the estimates of h∗(i0)
and perform a value iteration type recursion on the Bellman equation (11.6) in a
similar manner as for the discounted cost setting. Thus, arbitrarily initialize h0(i),
∀i ∈ S. Further for all n≥ 1, i ∈ S,


hn+1(i) = min
a∈A(i)


(
r(i,a)+∑


j∈S


p(i, j,a)hn( j)


)
− hn(i0). (11.9)


This procedure is slightly different from the value iteration scheme for discounted
cost MDPs for the following reason: If one ignores the minimization operation in
(11.3), then obtaining a solution to (11.3) would involve inverting the full-rank ma-
trix (I−αP). On the other hand, if one ignores the minimization step in (11.6), then
a solution would involve inverting the matrix (I−P) that, however, is singular as
one of its eigenvalues is zero. Note that the solution h∗ to (11.9) is not unique as ad-
dition of a constant function h̄ (say h̄(i) = k, ∀i, for some k ∈ R) to h∗ results in the
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equation (11.6) being satisfied as well. This is not so in the discounted cost setting
because of the presence of the discount factor α multiplying the expected value of
the next state ∑ j∈S p(i, j,a)V ∗( j)), see (11.4).


Policy Iteration


• Step 1: Set an initial estimate μ0 of the optimal SDP. Arbitarily select a
state i0 ∈ S as a reference state.


• Step 2 (Policy Evaluation): Given the SDP update μn, perform the fol-
lowing iteration: For m = 0,1,2, . . ., i ∈ S,


hμn
m+1(i) = r(i,μn(i))+α ∑


j∈S


p(i, j,μn(i))h
μn
m ( j)− hμn


m (i0), (11.10)


starting from any hμn
0 (i), i ∈ S. Upon convergence of the inner loop, viz.,


hμn
m (i)→ hμn(i), as m→ ∞, for all i ∈ S, a policy update is performed as


below.
• Step 3 (Policy Improvement):


μn+1(i) ∈ argmin


(
r(i, ·)+α ∑


j∈S


p(i, j, ·)hμn( j)


)
. (11.11)


Proofs of convergence of the above procedures in the cases of both discounted cost
and long-run average cost criteria can be found, for instance, in [4].


In the next section, we present RL algorithms for both discounted and long-run
average cost criteria in the case of full-state representations. The basic underlying
assumption in this setting is that the sizes of the state and action spaces are man-
ageable and as such do not result in significant computational challenges for the
given algorithms. Subsequently, we shall also present algorithms with function ap-
proximation that are, in particular, useful when the state and/or action spaces are
large.


11.4 Reinforcement Learning Algorithms for Look-up Table
Case


In all our algorithms, we let |S| < ∞, i.e., the state space is finite. The action sets
A(i) corresponding to any state i will be chosen to be either finite or else compact
and convex subsets of a given Euclidean space.
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11.4.1 An Actor-Critic Algorithm for Infinite Horizon Discounted
Cost MDPs


We first present, from [9], an actor-critic algorithm based on the policy iteration
technique. We let all sets A(i) be compact (non-discrete) and convex subsets of RN .
The algorithms we present here fall under the broad class of actor-critic algorithms
that are based on the policy iteration approach. Recall that policy iteration involves
updates using two nested loops: an outer-loop update occurring only on convergence
of the inner-loop procedure corresponding to the given outer-loop update. Using
two-timescale stochastic approximation, one is able to run recursions for both loops
simultaneously.


We make the following assumption on the cost function and transition
probabilities.


Assumption 11.1. For all i, j ∈ S, a ∈ A(i), both r(i,a) and p(i, j,a) are con-
tinuously differentiable w.r.t. a.


Under Assumption 11.1, one can show that an optimal stationary policy exists for
this problem and the optimal cost V ∗ satisfies the Bellman equation. Since any ac-


tion ai
�
= (a1


i , . . . ,a
N
i )


T ∈ A(i) ⊂ R
N , i ∈ S, one can identify a SDP π directly with


the vector (a1
1, . . . ,a


N
1 , a1


2, . . . ,a
N
2 , . . ., a1


s , . . . ,a
N
s )


T or simply with the block vector
(a1, . . . ,as)


T of actions ordered lexicographically according to states, i.e., the jth
component ( j = 1, . . . ,s) of this vector would correspond to the action taken in state
j. Let Vπ(i) be the stationary value or cost-to-go function corresponding to the SDP
π starting from i ∈ S.


Lemma 11.1. Under Assumption 11.1, Vπ(i), ∀i ∈ S are continuously differ-
entiable functions of π .


Proof. It follows from the Bellman equation for the given SDP π that Vπ
�
=


(Vπ(i), i ∈ S)T satisfies
Vπ = (I−αPπ)−1Rπ ,


where Pπ = [[p(i, j,π(i))]]i, j∈S is the transition probability matrix of the Markov
chain under SDP π and Rπ = (r(i,π(i)), i ∈ S)T is the single-stage cost vector. The
claim follows from an application of the Cramer’s rule. ��


Let π(n) �= (a1(n), . . . ,as(n))T with each ai(n)
�
= (a1


i (n), . . . ,a
N
i (n))


T denote the
nth update of policy π . For simplicity assume that for n ≥ 0, �(n) ∈ R


N|S| is a
vector of mutually independent, ±1-valued, mean zero random variables � j


i (n),
j = 1, . . . ,N, i ∈ S (viz.,�(n) = (�1


1(n), . . .,�N
1 (n),�1


2(n), . . .,�N
2 (n), . . .,�1


s (n),
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. . .,�N
s (n))


T ). More general Δ j
i (n) can be considered. In fact, any Δ j


i (n) that satisfy
Assumption 5.4 may be considered.


Let Γi : RN → A(i) be the projection operator that projects any N-dimensional
vector x to the action set A(i) (i.e., Γi(x) ∈ A(i)), i ∈ S. Further, let δ > 0 be a given
(small) constant. Consider two step-size sequences {b(n)} and {c(n)} that satisfy


∑
n


b(n) =∑
n


c(n) = ∞, ∑
n


b(n)2,∑
n


c(n)2 < ∞ and c(n) = o(b(n)). (11.12)


The Actor-Critic Algorithm


Let {Y 1
n (i,a)} and {Y 2


n (i,a)} be two independent families of i.i.d. random variables,
each having the distribution p(i, ·,a). The algorithm is as follows: For all i ∈ S,
r = 1,2, we initialize V r


0 (i) = 0. Then, ∀i ∈ S, j = 1, . . . ,N, we have


a j
i (n+ 1) =Γ j


i


(
a j


i (n)+ c(n)


(
V 1


n (i)−V 2
n (i)


2δ� j
i (n)


))
, (11.13)


V r
n+1(i) =V r


n (i)+ b(n)(r(i,π r
i (n))+αV r


n (Y
r
n (i,π


r
i (n)))−V r


n (i)). (11.14)


This algorithm is an actor-critic algorithm based on policy iteration and performs
both the value function updates (V r


n (i)) and the policy updates (a j
i (n)). As with other


multi-timescale algorithms, an additional averaging (on top of the two timescale
averaging) over L epochs (with L > 1 set arbitrarily) of the value corresponding to
a given policy update is seen to improve algorithmic behaviour.


Convergence Analysis


Let Fl = σ(ai(p),�i(p),V 1
p (i),V


2
p (i), p ≤ l, i ∈ S;Y 1


p (i,π1
i (p)),Y 2


p (i,π2
i (p)), p <


l, i ∈ S), l ≥ 1 be a sequence of associated sigma fields. We first analyze the
faster recursion. Define a sequence {t(n)} according to t(0) = 0 and for n ≥ 1,


t(n) =
n−1


∑
m=0


c(m). Let a j
i (t), t ≥ 0 be defined according to a j


i (t(n)) = a j
i (n) with con-


tinuous linear interpolation in between. Also, let � j
i (t(n)) = � j


i (n) ∀n ≥ 0 with
� j


i (t) =� j
i (t(n)) =� j


i (n) ∀t ∈ [t(n), t(n+ 1)).
Consider the following system of ODEs: ∀ j = 1, . . . ,N, i ∈ S, r = 1,2,


ȧ j
i (t) = 0, (11.15)


V̇ l
t (i) = Rπ


l(t) + (αPπ
l(t)− I)V l


t (i) (11.16)
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Here Rπ
l(t) = (r(i,π l(t)), i ∈ S)T is the vector (over all states) of the single-stage


costs under SDP π l(t) and Pπ
l(t) = [[p(i, j,π l(t))]]i, j∈S is the transition probability


matrix of the Markov process {X(n)} when actions are chosen according to the
above SDP. Note that the iterates (11.13) can be rewritten as


a j
i (n+ 1) = Γ j


i


(
a j


i (n)+ b(n)ξ1(n)
)
,


where ξ1(n) = o(1) as a consequence of (11.12). Thus, along the faster timescale,
the iterates (11.13) asymptotically track (11.15).


Now in lieu of (11.15), one can let a j
i (t) = a j


i , t ≥ 0. Similarly,� j
i (t) =� j


i , t ≥ 0.
Hence, π l(t)≡ π l, t ≥ 0, l = 1,2. Thus, (11.16) can be rewritten as


V̇ l
t (i) = Rπ


l
+(αPπ


l − I)V l
t (i) (11.17)


It is easy to see that (11.17) has V l,∗(i) = (I−αPπ
l
)−1Rπ


l
as its globally asymptot-


ically stable equilibrium.


Define sequences {Jl
i (n), n ≥ 1}, l = 1,2, i ∈ S, according to Jl


i (n)
�
=


n−1


∑
k=0


b(k)


[(r(i,π l
i (k)) +αV l


k (Y
l
k (i, π


l
i (k)))) −∑ j∈S p(i, j, π l


i (k)) (r(i,π l
i (k)) +αV l


k ( j))], i ∈ S,
l = 1,2, n ≥ 1. It is easily seen that these are martingale sequences with respect to
the filtration Fn, n≥ 0. Let Ml


i (n+ 1) = (Jl
i (n+ 1)− Jl


i(n)), n≥ 0.


Lemma 11.2. The iterates V r
k (i), r = 1,2, satisfy supk ‖V r


k (i) ‖<∞ ∀i ∈ S. Further,
V r


k (i)→V r,∗(i) as k→ ∞ almost surely.


Proof. Note that (11.14) can be rewritten as


V l
k+1(i) =V l


k (i)+b(n)


(
r(i,π l


i (k))+α ∑
j∈S


p(i, j,π l
i (k))V


l
k ( j)−V l


k (i)


)
+Ml


i (n+1).


Note that one can rewrite Ml
i (n+ 1) = b(n)Nl


i (n+ 1) where (Nl
i (n),Fn)) is a mar-


tingale difference sequence. It is easy to see that


E[|Nl
i (n+ 1)|2 |Fn]≤ K(1+ ‖V l


n ‖2),


for some constant K > 0. Further, the origin is the globally asymptotically stable
equilibrium point for the ODE


V̇ l
t (i) = (αPπ


l − I)V l
t (i), (11.18)


since all the eigenvalues of the matrix (αPπ
l − I) have negative real parts. Assump-


tions D.1 and D.2 [11, (A1) and (A2)] are now satisfied and the claim now follows
from Theorem D.1 [11, Theorems 2.1(i)-Theorem 2.2]. ��
Consider now the slower timescale recursion (11.13). The ODE associated with that
recursion is
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ȧi(t) = Γ̂i


(
−∇iV π(t)(i)


)
, i ∈ S. (11.19)


Let K denote the set of local minima of V (·)(i). Also, for given ε > 0,


K ε = {π |‖ π−π0 ‖< ε, π0 ∈K }.


The following theorem now follows from standard arguments involving consistency
of the SPSA estimator as well as the Kushner–Clark theorem (Theorem E.1).


Theorem 11.3. Given ε > 0, ∃δ0 > 0 such that ∀δ ∈ (0,δ0], the algorithm
(11.13)-(11.14) converges to Mε with probability one.


11.4.2 The Q-Learning Algorithm and a Simultaneous
Perturbation Variant for Infinite Horizon Discounted Cost
MDPs


The Q-learning algorithm [26] is based on the Q-value iteration technique. We re-
view it first below and subsequently present a multi-timescale variant based on one-
simulation (Hadamard matrix based deterministic perturbation) SPSA that is partic-
ularly useful when the action space is large.


11.4.2.1 The Q-Learning Algorithm


Let the Q-value function under an admissible policyψ = {μ0,μ1,μ2, . . .} be defined
as follows: ∀i ∈ S, a ∈ A(i),


Qψ(i,a) = E


[
∞


∑
k=0


αkr(Xk,μk(Xk)) | X0 = i,Z0 = a


]
(11.20)


= r(i,a)+E


[
∞


∑
k=1


αkr(Xk,μk(Xk)) | X0 = i,Z0 = a


]
. (11.21)


Let the optimal Q-values be defined according to


Q∗(i,a) = min
ψ∈Ψ


Qψ(i,a), i ∈ S,a ∈ A(i). (11.22)


Here Ψ denotes the set of all admissible policies. It can be shown (as described
previously) that an optimal policy that is an SDP exists. Hence,


Q∗(i,a) = min
μ∈ΨS


Qμ(i,a), (11.23)
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whereΨS is the class of all SDP μ . It follows as in (11.20) that


Qμ(i,a) = r(i,a)+αE


[
∞


∑
k=1


αk−1r(Xk,μ(Xk)) | X0 = i,Z0 = a


]
(11.24)


= r(i,a)+α ∑
j∈S


p(i, j,a)E


[
∞


∑
k=1


αk−1r(Xk,μ(Xk)) | X1 = j,μ


]
(11.25)


= r(i,a)+α ∑
j∈S


p(i, j,a)Vμ( j), (11.26)


where Vμ( j), j ∈ S, is the value function under SDP μ . It follows from (11.23) that


Q∗(i,a) = min
μ∈ΨS


Qμ(i,a) = min
μ∈ΨS


(
r(i,a)+α ∑


j∈S


p(i, j,a)Vμ( j)


)
,


≥ r(i,a)+α ∑
j∈S


p(i, j,a) min
μ∈ΨS


Vμ( j),


= r(i,a)+α ∑
j∈S


p(i, j,a)V ∗( j). (11.27)


Further,


Q∗(i,a) = min
μ∈ΨS


Qμ(i,a) ≤ r(i,a)+α ∑
j∈S


p(i, j,a)Vμ ′( j) ∀μ ′ ∈ΨS.


Hence,


Q∗(i,a) ≤ r(i,a)+α ∑
j∈S


p(i, j,a) min
μ ′∈ΨS


Vμ ′( j)


= r(i,a)+α ∑
j∈S


p(i, j,a)V ∗( j). (11.28)


The Bellman equation (11.4) now corresponds to


V ∗(i) = min
a∈A(i)


Q∗(i,a), i ∈ S. (11.29)


It follows from (11.27)-(11.28) and (11.29) that


Q∗(i,a) =


(
r(i,a)+ γ ∑


j∈S


p(i, j,a) min
v∈A( j)


Q∗( j,v)


)
. (11.30)


(11.30) is also referred to as the Q-Bellman equation.
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The Q-learning Update


The Q-learning algorithm [26] aims to solve the Q-Bellman equation (11.30) using
stochastic approximation by assuming lack of information on the transition proba-
bilities p(i, j,a) and proceeds in the following manner: ∀i ∈ S, a ∈ A(i),


Qn+1(i,a) = Qn(i,a)+ c(n)


(
r(i,a)+ γ min


v∈A(Yn(i,a))
Qn(Yn(i,a),v)−Qn(i,a)


)
.


(11.31)


Here, Yn(i,a) is a simulated next state when the current state is i and action a ∈ A(i)
is chosen. The random variables Yn(i,a), n ≥ 0 are assumed independent and have
the distribution p(i,a, ·), i∈ S, a∈A(i). Further, c(n), n≥ 0 are step-sizes that satisfy
c(n)> 0 ∀n≥ 0 and


∑
n


c(n) = ∞, ∑
n


c(n)2 < ∞. (11.32)


The algorithm (11.31) works in the case of full-state representations. The Q-learning
algorithm for full-state representations can become computationally cumbersome in
cases when the cardinality of the action sets is high because of the requirement of
explicit minimization in (11.31). It is also known to suffer from the problem of
improper convergence if all actions are not explored sufficiently. In practice, this
problem is tackled by selecting actions as suggested by the algorithm with a high
probability, however, with a small probability, actions not suggested by the algo-
rithm are explored to learn the best actions.


11.4.2.2 Two-Timescale Q-learning Algorithm


The algorithm below avoids the computational difficulty with large action sets (dis-
cussed above) by incorporating two timescales. Further, it updates randomized poli-
cies, as a result of which, actions that are not the ‘current best’ actions also get
selected with a certain probability. A recursion similar to (11.31) but without the
explicit minimization is run on the slower timescale, while on the faster scale, the
minimization operation is conducted through a gradient search procedure. This algo-
rithm has been presented in [8] and incorporates deterministic perturbations SPSA
with the perturbation sequences obtained using the Hadamard matrix-based con-
struction.


Let S and A
�
= ∪i∈SA(i) be finite sets with each set A(i) assumed to contain


exactly (N + 1) elements (for simplicity). Let a0
i ,a


1
i , . . . ,a


N
i denote the elements


of A(i). Let Qn(·, ·) denote the nth update of the Q-value function. Let πi(n)
�
=


(πi,a(n),a ∈ A(i))T , i ∈ S denote the nth update of the randomized policy, where







11.4 Reinforcement Learning Algorithms for Look-up Table Case 201


πi,a(n) is the probability at the nth update of the randomized policy of picking


action a ∈ A(i) in state i ∈ S. Further, let π̂i(n)
�
= (πi,a(n),a ∈ A(i)\{a0


i })T de-
note the vector of probabilities of actions a ∈ A(i) other than that of action a0


i . In
the scheme below, we shall update π̂i(n) using our algorithm, while the probabil-
ity πi,a0


i
(n) will get automatically specified via πi,a0


i
(n) = 1− ∑


a∈A(i)\{a0
i }
πi,a(n). Let


π ′i (n) =Γ (π̂i(n)−δΔn(i)) denote the perturbed SRP corresponding to π̂i(n), where


δ > 0 is a given small constant. Also, Δn(i)
�
= (Δn(i,a1


i ), . . . ,Δn(i,aN
i ))


T , n ≥ 0,
i ∈ S denotes the perturbation vector obtained from the Hadamard matrix construc-
tion. We use perturbed SRPs in the simulations in order to estimate the gradient
of the Q-function and, therefore, to also update the parameters. The algorithm be-
low incorporates one-simulation deterministic SPSA with Hadamard matrix-based
perturbations. Let PS⊂ R


N be the simplex


PS = {(y1, . . . ,yN)
T |yi ≥ 0,1≤ i≤ N and


N


∑
i=1


yi ≤ 1},


in which π̂i, i ∈ S, take values. Further, let Γ : RN → PS denote the projection map.
Let


(Δn(i))
−1 �=


(
1


Δn(i,a1
i )
, . . . ,


1


Δn(i,aN
i )


)T


, ∀n≥ 0, ∀i ∈ S.


Let ψn( j) denote the action chosen from the set A( j) according to the distribution
given by π ′j(n), with probability of picking action a j


0 ∈ A( j) automatically specified
from the latter. Also, as before, let Yn(i,a) be the ‘next’ state of the MDP when the
current state is i and action a is chosen. We let b(n) and c(n), n≥ 0 be two step-size
sequences that satisfy (11.12).


Update Rule


For all i ∈ S,a ∈ A(i), initialize Q0(i,a) and π̂i(0). Then ∀i ∈ S,a ∈ A(i),


Qn+1(i,a) =Qn(i,a)+ c(n)(r(i,a)+αQn(Yn(i,a),ψn(Yn(i,a)))−Qn(i,a)) ,


(11.33)


π̂i(n+ 1) =Γ
(
π̂i(n)+ b(n)


Qn(i,ψn(i))
δ


(Δn(i))
−1
)
. (11.34)
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A Sketch of Convergence


As with other multi-timescale algorithms, recursion (11.33) being the slower recur-
sion is quasi-static when viewed from the timescale of b(n), n ≥ 0. Hence one can
treat Qn(i,a)≈ Q(i,a) (i.e., independent of n) when analyzing (11.34).


Using standard arguments, one can show that (11.34) asymptotically tracks the
trajectories of the following ODE in the limit as δ → 0:


˙̂πi = Γ̂ (−∇Qπ̂i(t)(i)), (11.35)


The asymptotically stable fixed points of (11.35) lie within the set M = {π̂i |
Γ̂ (∇Qπ̂i(i)) = 0}. Hence, let πu


i (n)→ πu,∗
i as n→ ∞. Note that if u∗ corresponds


to a unique optimal action in state i, then the following will be true: πu,∗
i = 1 for


u = u∗ and πu,∗
i = 0 for all u∈U(i), u �= u∗. Else, if the optimal action is not unique,


then one expects policy π∗ in state i to assign equal positive mass to all optimal ac-
tions (i.e., those whose Q values are equal and uniformly lower compared to those
of the other actions). Let Q∗(i,u), i ∈ S,u ∈U(i) correspond to the unique solution
of (11.30).


Theorem 11.4. For all i ∈ S,u∈U(i), the recursions Qn(i,u) converge almost
surely to Q∗(i,u) in the limit as δ → 0.


11.4.3 Actor-Critic Algorithms for Long-Run Average Cost MDPs


We now consider the case of MDPs under the long-run average cost criterion. As
with the infinite horizon discounted cost setting, we also consider two cases here —
(a) when the action sets are (non-discrete) compact and (b) when the action sets are
discrete and finite. The algorithms here are from [1].


Assumption 11.2. The Markov process {X(n)} under any SDP is ergodic.


Under Assumption 11.2, the long-run average cost for any given SDP (and hence
also SRP) is well defined.


11.4.3.1 An Algorithm for (Non-Discrete) Compact and Convex Action Sets


Here, one can directly perform a gradient search in the space of SDPs. We apply
the one-simulation SPSA algorithm with Hadamard matrix-based perturbations. We
assume that the single-stage cost r(i,a) and the transition probabilities p(i, j,a) are
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continuously differentiable functions of a. We let each action set A(i), i ∈ S to be a


compact and convex subset of RN . Let Γi, i ∈ S
�
= {1,2, . . . ,s} denote the projection


map from R
N to A(i). As for the discounted cost case, let π(n) �= (ai(n), i ∈ S)T


with each ai(n)
�
= (a1


i (n), . . . ,a
N
i (n))


T denote the nth update of SDP π . Let�i(n)
�
=


(�1
i (n), . . . ,�N


i (n))
T ∈R


N be a vector of±1-valued variables� j
i (n), j = 1, . . . ,N,


i∈ S that are obtained from the Hadamard matrix construction. LetΓi :RN→A(i) be
the projection operator and δ > 0 be a given constant. Let π ′i (n)=Γi(πi(n)+δΔi(n))
denote the perturbed policy at instant n.


Update Rule


Let {b(n)} and {c(n)} be two step-size sequences that satisfy (11.12). Also, let
{Y ′n(i,a)} be a family of i.i.d. random variables, each having the distribution p(i, ·,a).
The algorithm is as follows: For all i∈ S, we initialize h′i(0)= 0. Fix a reference state
i0 ∈ S arbitrarily. The algorithm proceeds as follows: ∀i ∈ S, we have


πi(n+ 1) =Γi


(
πi(n)− c(n)


(h′i(n)+ h′i0(n))
δ


(Δi(n))
−1


)
, (11.36)


h′i(n+ 1) =(1− b(n))h′i(n)+ b(n)(r(i,π ′i (n))− h′i0(n)+ h′Y ′n(i,a′i)(n)).
(11.37)


This algorithm is also of the policy iteration type and performs policy evaluation on
a faster timescale as compared to policy improvement.


A Sketch of Convergence


Lemma 11.5. The iterates h′i(n) governed according to (11.37) stay uniformly
bounded, i.e., supn≥0 |hr


i (n)|< ∞,∀i ∈ S.


Proof. (Sketch:) A detailed proof of this result is given in [15, Section 6.1]. The
main idea there is to first show that the iterates (11.37) stay uniformly bounded for a
given initial condition and then show that if they stay bounded for one initial condi-
tion, they remain bounded under all initial conditions. This also gives an alternative
stability criterion, other than the one in Appendix D, and is presented in Chapter 3
of [10]. ��
Lemma 11.6. For a given SDP π ′i (n)≡ π ′i , the iterates h′i(n) obtained from (11.37)
asymptotically converge to hπ ′(i), where hπ ′(i) is the solution to the Poisson
equation
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hπ ′(i)+ hπ ′(i0) = r(i,π ′i )+∑
j∈S


p(i, j,π ′i )hπ ′( j), (11.38)


i ∈ S, where π ′i is the action prescribed by the SDP π ′ in state i.


Proof. For given π ′i (n)≡ π ′i , the ODE associated with (11.37) is


ḣπ ′(i) = r(i,π ′i )+∑
j∈S


p(i, j,π ′i )hπ ′( j)− hπ ′(i)− hπ ′(i0). (11.39)


Now (11.39) has hπ ′(i) as its unique globally asymptotically stable equilibrium,
where hπ ′(i) is the unique solution of (11.38). The result can now be shown from an
application of the Borkar–Meyn theorem (Theorem D.1). ��
Consider now the ODE along the slower timescale:


π̇i(s) = Γ̂i(−�i hπ(s)(i)−�ihπ(s)(i0)) (11.40)


for all i ∈ S. Let M = {π | Γ̂i(�ihπ(s)(i)+�ihπ(s)(i0)) = 0, ∀i ∈ S} be the set of all
fixed points of (11.40). Also, given ε > 0, let Mε be the ε-neighborhood of M.


The following is the main result that follows from an application of the Kushner–
Clark theorem (Theorem E.1).


Theorem 11.7. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
{π(n)} converges to Mε with probability 1.


11.4.3.2 Algorithms for Finite Action Sets


Here, both the state space S and the action sets A(i), i ∈ S are discrete-valued and
finite. There are two ways in which one can deal with such action sets. One pos-
sibility is to construct the closed convex hull of these sets which will result in the
sets being compact and convex, and apply the algorithm for compact and convex
action spaces using SDP-based updates. This will require suitable extensions to the
transition dynamics, i.e., the transition probabilities p(i, j,a) as well as the single-
stage costs r(i,a) so that these quantities are well defined over the afore-mentioned
closed convex hulls. Thus, while the algorithm will update SDPs over the closed and
convex hull, the actual actions that are picked during the process will be obtained by
projecting the continuous-valued update to the discrete set, see Chapter 9 for ideas
along these lines in the case of simulation-based discrete parameter optimization.


The other alternative (as we do here) is to search for the optimum within the


space of SRPs. Let Γi, i ∈ S
�
= {1,2, . . . ,s} now denote the projection map from


R
N to the probability simplex PS (defined previously). For simplicity, as before,


we assume that each action set A(i) comprises exactly N elements. Let πi(n)
�
=


(π1
i (n), . . . ,πN


i (n))T denote the vector of probabilities of picking individual actions,
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i.e., the elements of A(i) as per the policy update at time n. We let π(n)= (πi(n)T , i∈
S)T denote the nth update of SRP π . Again let�i(n)


�
= (�1


i (n), . . . ,�N
i (n))


T ∈R
N


be a vector of±1-valued variables� j
i (n), j = 1, . . . ,N, i ∈ S that are obtained from


the Hadamard matrix construction and let π ′i (n)
�
= Γi(πi(n) + δ�i(n)) denote the


perturbed policy at the nth update of the algorithm. Also, let {Y ′n(i,a)} be a family
of i.i.d. random variables, each having the distribution p(i, ·,a). Further, ξ ′n(i,π ′i ),
n ≥ 0 will denote i.i.d random variables having the distribution π ′i over the action
set A(i), i ∈ S.


Update Rule


The algorithm is as follows: For all i ∈ S,n≥ 0,


πi(n+ 1) =Γi


(
πi(n)− c(n)


(h′i(n)+ h′i0(n))
δ


(Δi(n))
−1


)
, (11.41)


h′i(n+ 1) =(1− b(n))h′i(n)+ b(n)(r(i,ξ ′n(i,π ′i (n)))− h′i0(n)+ h′Y ′n(i,ξ ′n(i,π ′i (n)))(n)).
(11.42)


A Sketch of Convergence


Similar results as those in the previous case are obtained here.


Lemma 11.8. The iterates h′i(n) governed according to (11.42) stay uniformly
bounded, i.e., supn≥0 |hr


i (n)|< ∞,∀i ∈ S.


Proof. (Sketch:) Follows in a similar manner as Lemma 11.5 (see Section 6.1
of [15]. ��
Lemma 11.9. For a given SRP π ′i (n)≡ π ′i , the iterates h′i(n) obtained from (11.42)
asymptotically converge to hπ ′(i), where hπ ′(i) is the solution to the Poisson
equation


hπ ′(i0)+ hπ ′(i) =


(
∑


a∈A(i)


π ′i,a(r(i,a)+∑
j∈S


p(i, j,a)hπ ′( j)


)
, ∀i ∈ S. (11.43)


where π ′i,a is the probability of action a being picked in state i under SRP π ′.


Proof. Follows in a similar manner as the proof of Lemma 11.6. ��
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Now let M = {π | Γ̂i(�ihπ(s)(i)+�ihπ(s)(i0)) = 0, ∀i ∈ S} be the set of all fixed
points of a similar ODE as (11.40) except that Γ̂i is now defined for the simplex
PS. The following is the main result that can be shown using the Kushner–Clark
theorem (Theorem E.1).


Theorem 11.10. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
{π(n)} converges to Mε with probability 1.


11.5 Reinforcement Learning Algorithms with Function
Approximation


We now consider a class of problems where the number of states and also possi-
bly actions are large so that the algorithms for solving the Bellman equation by
simulating state transitions from every state at each instant become highly (com-
putationally) inefficient. In particular, if the state space is very large as happens
when the dimension of the state vector increases, even storing a vector of the size
of the state space might become impossible. For example, consider a communica-
tion network with 10 nodes, where the state is the vector of number of packets at
each of these nodes. If each node can accommodate 100 equal-sized packets, then
the size of the state space becomes 10010 = 1020. Further, if the number of nodes is
increased by 10, i.e., if the total number of nodes is now 20, then the size of the state
space becomes 10020 = 1040 which is an exponential increase in the state-space
size. Nevertheless, storing vectors of large sizes becomes an infeasible task. In such
cases, one often resorts to suitable parameterizations of the value functions and/or
policies.


11.5.1 Temporal Difference (TD) Learning with Discounted Cost


The temporal difference learning algorithm is a popular algorithm for the problem
of prediction, i.e., estimating the value function corresponding to a given policy, see
[22, 25]. The value function V π(·) under an SDP π is approximated here with the
parametrized function


w(i,v) = vT fi, (11.44)


with parameter v
�
= (v1, . . . ,vd)


T ∈ R
d , where fi


�
= ( fi(1), . . . , fi(d))T is the feature


vector corresponding to state i ∈ S. Let Φ be a |S| × d-matrix whose kth column


(k = 1, . . . ,d) is f (k)
�
= ( fi(k), i ∈ S)T . Here |S| denotes the cardinality of S. The


following are standard requirements [25].
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Assumption 11.3. The Markov chain {X(n)} under SDP π is ergodic.


Assumption 11.4. The basis functions { f (k),k = 1, . . . ,d} are linearly independent.
Further, d ≤ |S|.
The functions f (1), . . . , f (d) are the basis functions from S to R. The idea here is to
tune v suitably so that w(i,v) is ‘close’ to V π(i). The gradient of the parametrized
function in (11.44) is


∇w(i,v) = fi.


Representations of the type (11.44) are called linear representations or architec-
tures. Nonlinear representations such as those based on sigmoidal functions or
neural networks have also been widely studied in the literature [5]. However, an-
alytical/convergence results for the TD algorithm are known mainly in the case of
linear architectures and so we will be primarily concerned with these (architectures)
here.


The TD algorithm works with an infinite Markov sequence of states i0, i1, i2, . . .
obtained by picking actions according to the SDP π . Let vn be the nth update
of the parameter. At instant n, let δn be the ‘temporal difference’ that is defined
according to


δn = r(in,μ(in))+αw(in+1,vn)−w(in,vn)


= r(in,μ(in))+αvT
n fin+1 − vT


n fin . (11.45)


Let {γ(n)} be a step-size sequence satisfying the following requirement:


Assumption 11.5. The step-sizes γ(n) satisfy γ(n)> 0∀n and


∑
n
γ(n) = ∞, ∑


n
γ2(n)< ∞.


The TD(λ ) algorithm for the infinite horizon discounted cost case is the
following:


vn+1 = vn + γ(n)δnzn, (11.46)


where zn ∈ R
d is called the eligibility trace vector and is defined as


zn =
n


∑
m=0


(αλ )n−m fim . (11.47)


Here λ ∈ [0,1] is a given parameter.
The vectors zn, n≥ 0 can be obtained recursively according to


zn+1 = αλ zn + fin+1 . (11.48)
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Convergence of TD


We analyze here the convergence of the TD recursion using the Borkar–Meyn theo-
rem (Theorem D.1). We consider here specifically the case of λ = 0 for simplicity.
In this case, zn = fin in (11.46) define the operator Tπ : R|S| → R


|S| as follows:


T π(J)(i) = r(i,πi)+α ∑
j∈S


p(i, j,πi)J( j)),


∀i ∈ S, where πi is the action selected in state i using the SDP π . Let


R = (r(i,πi), i ∈ S)T ,


denote the column vector of single-stage costs under SDP π . Also, let


P = [[p(i, j,πi]]i, j∈S denote the transition probability matrix under SDP π . Let d
�
=


(d(i), i ∈ S)T denote the stationary distribution of the corresponding Markov chain
under SDP π and D denote the (|S| × |S|)-diagonal matrix with entries d(i), i ∈ S
along the diagonal. The proof of the following result has been shown in detail in
[25]. We show the same below using the stability and convergence result of [11]
(Theorem D.1).


Theorem 11.11. Under Assumptions 11.3 – 11.5, vn,n≥ 0 governed by recur-
sion (11.46) satisfy vn → vπ as n→ ∞ with probability one. Also, vπ is the
unique solution to the following system of equations:


ΦT DΦvπ =ΦT DπT π(Φvπ). (11.49)


In particular,
vπ =−(ΦT D(αP− I)Φ)−1ΦT DR. (11.50)


Proof. The ODE associated with (11.46) for λ = 0 is the following:


v̇ =∑
i∈S


d(i)[r(i,πi)+αvT ∑
j∈S


p(i, j,πi) f j− vT fi] fi. (11.51)


In vector-matrix notation, the above ODE is analogous to


v̇ =ΦT D(T π(Φv)−Φv)
�
= g(v). (11.52)


It is easy to see that g(v) is Lipschitz continuous in v. Now define g∞(v) as


g∞(v)
�
= lim


n→∞
g(nv)


n
=ΦT D(αP− I)Φv,
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where I is the identity matrix. Consider now the ODE


v̇ = g∞(v). (11.53)


For x ∈ R
|S|, define the weighted Euclidean norm ‖ x ‖D according to ‖ x ‖D=


(xT Dx)1/2. Note that
‖ x ‖2


D= xT Dx =‖ (D)1/2x ‖2 .


Now for any function V ∈ R
|S|, we have


‖ PV ‖2
D=V T PT DPV =∑


i∈S


d(i)E2[V (X(n+ 1)) | X(n) = i,π ]


≤∑
i∈S


d(i)E[V 2(X(n+ 1)) | X(n) = i,π ] =∑
i∈S


d( j)V 2( j) =‖V ‖2
D .


The inequality above follows from the conditional Jensen’s inequality while the
second last equality on upon evaluating the conditional expectation on its LHS and
noting that dT = dT P. We thus have


‖ αPV ‖D≤ α ‖V ‖D .


Now,


V T DαPV = αV T (D)1/2(D)1/2PV ≤ α ‖ (D)1/2V ‖‖ (D)1/2PV ‖


= α ‖V ‖D‖ PV ‖D≤ α ‖V ‖2
D= αV T DV.


Thus,
V T D(αP− I)V ≤ (α− 1) ‖V ‖2


D< 0, ∀V �= 0,


implying that D(αP− I) is negative definite. Thus,ΦT D(αP− I)Φ is also negative
definite since Φ is a full rank matrix by Assumption 11.4. Thus, (11.53) has the
origin as its unique globally asymptotically stable equilibrium.


Next, define N(n), n≥ 0 according to


N(n) = δn fX(n)−E[δn fX(n) |F (n)],


where F (n) = σ(vr,N(r),r ≤ n). It is easy to see that


E[‖ N(n+ 1) ‖2|F (n)]≤ Ĉ(1+ ‖ vn ‖2), n≥ 0, (11.54)


for some 0 < Ĉ < ∞.
Now let v̂ = vπ be a solution to


g(v̂) =ΦT D(T π(Φ v̂)−Φ v̂) = 0. (11.55)


Note that (11.55) corresponds to the linear system of equations


ΦT DR+ΦT D(αP− I)Φ v̂ = 0. (11.56)
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Now since we have already shown that ΦT D(αP− I)Φ is negative definite, it is
of full rank and invertible. Hence vπ is the unique solution to (11.56) and cor-
responds to (11.50). The claim now follows from Theorems 2.1–2.2(i) of [11]
(cf. Theorem D.1). ��


11.5.2 An Actor-Critic Algorithm with a Temporal Difference
Critic for Discounted Cost MDPs


We now consider the problem of control in discounted cost MDPs and present here
an actor-critic algorithm that incorporates TD in the critic and policy gradients [17,
13, 12, 23] in the actor. The TD algorithm solves the problem of prediction by
incorporating temporal differences in its update. We now restrict attention to SRPs


π that depend on a parameter θ �= (θ1, . . . ,θN)
T ∈ R


N and consider the problem of
finding the optimum θ . We let θ take values in a compact and convex subset C of


R
N . Let πθ �= (πθi , i ∈ S) denote the parametrized SRP. Here, πθi = (πθi,a, i ∈ S,a ∈


A(i)) is the distribution over the set of actions A(i) that are feasible in state i. Here,
πθi,a is the probability of picking action a in state i under policy πθ . By an abuse of


notation, we let π itself denote the parametrized SRP πθ .


Assumption 11.6. The Markov chain {X(n)} under SRP πθ for any θ ∈C is
ergodic.


Assumption 11.7. For any a∈A(i), i∈ S, π(i,a) is continuously differentiable
in θ .


Assumption 11.8. Let b(n),c(n),n≥ 0 be two step-size sequences that satisfy
b(n),c(n)> 0∀n and


∑
n


b(n) =∑
n


c(n) = ∞, ∑
n
(b2(n)+ c2(n))< ∞, c(n) = o(b(n)).


Let Γ : R
N → C denote the projection operator defined so that for any


x = (x1, . . . ,xN)
T ∈ R


N , Γ (x) �= (Γ1(x1), . . . ,ΓN(xN))
T is the nearest point to x in


the set C. Let θ (n) �= (θ1(n), . . . ,θN(n))T denote the nth update of θ . Further, let


Δ(n) �= (Δ1(n), . . . ,ΔN(n))T , n ≥ 0 be a sequence of ±1-valued variables Δ j(n),
j = 1, . . . ,N obtained from the Hadamard matrix construction for perturbation
sequences (for a one-simulation implementation). A some what similar algorithm
incorporating two simulation random perturbation SPSA for MDPs with functional
constraints has been presented in [6].
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The Algorithm


Let {X ′n} denote the simulation governed by the sequence of policy updates {π ′(n)}.
Here, π ′(n) �= (π ′i (n), i ∈ S), n≥ 0 where π ′i (n) is the distribution (π ′i,a(n),a ∈ A(i))
over the set A(i) of feasible actions in state i ∈ S. The policy updates π ′(n) are
parametrized by θ (n)+ δΔ(n), n ≥ 0. Let Z′n denote the action chosen at time n


according to the above policy. Let P(X ′0 = s0)
�
= β (s0), s0 ∈ S denote the initial


distribution of the Markov chain under the given policy.
The algorithm is as follows: For n≥ 0, k = 1, . . . ,N,


δ ′n =r(X ′n,Z
′
n)++αv′n


T fX ′n+1
− v′n


T fX ′n , (11.57)


v′n+1 =v′n + b(n)δ ′n fX ′n , (11.58)


θk(n+ 1) =Γk


(
θk(n)− c(n) ∑


s0∈S


β (s0)


(
v′n


T fs0


δΔk(n)


))
. (11.59)


The recursions (11.57)–(11.58) correspond to the TD(0) update.


Convergence of the Actor-Critic Algorithm


The analysis of the (faster timescale) TD recursion proceeds in a similar manner
as for the TD convergence analyzed previously. Note, however, that the latter was
analyzed for the case when the actions in the MDP are selected according to a given
SDP and not when they are chosen according to a parametrized SRP. Nevertheless,
under Assumption 11.6, the Markov chain under SRP πθ for any θ ∈C is ergodic.
Hence, a similar analysis as before can be carried through in this case.


Since the actor-critic scheme is a multi-timescale stochastic approximation algo-
rithm, one can let θ (n) ≡ θ and Δ(n) ≡ Δ (where θ ,Δ are given constants) when
analyzing (11.58). Let π ′ denote the policy governed by the parameter θ + δΔ .
Define the operator T ′ : R|S| → R


|S| as follows:


T ′(J)(i) = ∑
a∈A(i)


π ′i,a(r(i,a)+α ∑
j∈S


p(i, j,a)J( j)),


∀i ∈ S. Also, let


Rπ
′
=


(
∑


a∈A(i)


π ′(i,a)r(i,a), i ∈ S


)T


,


denote the column vector of single-stage costs under policy π ′. Also, define T (J)
and Rπ in an analogous manner as T ′(J) and Rπ


′
, respectively, except with π in


place of π ′ in their definitions, where π is the policy governed by the parameter θ .







212 11 Reinforcement Learning


Let dπ
′


(resp. dπ ) denote the stationary distribution of the corresponding Markov
chain when the underlying parameter is θ + δΔ (resp. θ ). Also, let Dπ


′
(resp. Dπ )


denote the (|S| × |S|)-diagonal matrix with entries dπ
′
(i) (resp. dπ(i)), i ∈ S along


the diagonal.
The proof of the following result can be shown along the same lines as Theo-


rem chap11-rl-prop1-1.


Theorem 11.12. Under Assumptions 11.4 and 11.6–11.8, with θ (n) ≡ θ and
Δ(n)≡ Δ , (for given θ and Δ ), v′n,n≥ 0 governed by recursion (11.58) satisfy
v′n→ vπ


′
as n→ ∞ with probability one. Also, vπ


′
is the unique solution to the


following system of equations:


ΦT Dπ
′
Φvπ


′
=ΦT Dπ


′
T ′(Φvπ


′
). (11.60)


In particular,


vπ
′
=−(ΦT Dπ


′
(αPπ


′ − I)Φ)−1ΦT Dπ
′
Rπ
′
. (11.61)


In a similar manner as above, under policy π (i.e., when the governing parameter
is θ ∈ C, one can also obtain vπ as the unique solution to the following system of
equations:


ΦT DπΦvπ =ΦT DπT (Φvπ), (11.62)


or alternatively,
vπ =−(ΦT Dπ(αPπ − I)Φ)−1ΦT DπRπ . (11.63)


Lemma 11.13. Under Assumptions 11.4 and 11.6–11.7, the solution vπ to (11.62)
is continuously differentiable in θ .


Proof. From Assumption 11.7, it is easy to see that Rπ and Pπ are continuously dif-
ferentiable in θ . One can now verify that the stationary distribution dπ of a Markov
chain {X(n)} under the SRP π is also continuously differentiable in θ (see, for
instance, Theorem 2, pp. 402–403 of [20]). Hence, Dπ is also continuously differ-
entiable in θ . Now writing out the inverse of the matrixΦT Dπ(αPπ− I)Φ explicitly
using Cramer’s rule, one can see that vπ is continuously differentiable in θ . ��
The analysis of the slower recursion now proceeds along expected lines. Consider
the following ODE associated with (11.59):


θ̇ = Γ̂


(
− ∑


s0∈S


β (s0)∇θ vπT fs0


)
. (11.64)


Let M ⊂ {θ ∈C | Γ̂
(
∑


s0∈S


β (s0)∇θ vπT fs0


)
= 0} denote the set of asymptotically


stable equilibria of (11.64) within the set C, i.e., the local minima of the function
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∑
s0∈S


β (s0)v
(·)T


fs0 . Let Mε be the ε-neighborhood of M. The following now follows


from the convergence of the one-simulation Hadamard matrix gradient estimates
and the Kushner-Clark theorem (Theorem E.1).


Theorem 11.14. Under Assumptions 11.4 and 11.6–11.8, given ε > 0, ∃δ0 > 0 such
that for all δ ∈ (0,δ0), θ (n), n≥ 0 obtained according to (11.59) satisfy θ (n)→Mε


as n→ ∞, with probability one.


11.5.3 Function Approximation Based Q-Learning Algorithm
and a Simultaneous Perturbation Variant for Infinite
Horizon Discounted Cost MDPs


We now describe the Q-learning algorithm with function approximation and its two-
timescale variant. Even though it is a popular algorithm, Q-learning with function
approximation is known to suffer from the off-policy problem that we describe be-
low. Broadly speaking, the algorithm does not converge in some cases because of
the non-linearity in the update equation that comes about because of the minimiza-
tion operation. Indeed, a convergence analysis of the algorithm under general con-
ditions is not available. We describe in Section 11.5.3.2, a two-timescale variant of
Q-learning, where the minimization step is conducted on a faster timescale recur-
sion, while the algorithm without the minimization is run on a slower scale. The
latter recursion (without minimization) is then a linear update rule that resembles
TD for the joint (state-action) Markov chain. We incorporate a one-simulation, de-
terministic, Hadamard matrix-based perturbations for the faster recursion and prove
its convergence. The two-timescale variant of Q-learning does not suffer from the
off-policy problem.


11.5.3.1 The Q-Learning Algorithm with Function Approximation


Recall that the Q-Bellman equation (11.30) holds in the case of full-state repre-
sentations. The Q-learning algorithm under full state representations tracks the Q-
Bellman equation and converges to the optimal Q values. We now discuss the func-
tion approximation version of Q-learning.


For i ∈ S, a ∈ A(i), let Q∗(i,a) ≈ θ ∗Tφi,a, where θ ∗ �= (θ ∗(1), . . . ,θ ∗(d))T is a
d-dimensional parameter and φi,a = (φi,a(1), . . . ,φi,a(d))T is the associated feature
vector. Note that φi,a are state–action features and are defined for all tuples (i,a)∈S
where S = {(i,a) | i∈ S,a∈ A(i)} denotes the set of all feasible state-action tuples.


Let Φ now denote a matrix with rows φT
i,a, (i,a) ∈ S . Assuming that the total


number of states is n and the number of feasible actions in any state i (i.e., the
cardinality of the set A(i)) is mi (where mi ≥ 1), the number of rows in the matrix
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Φ is
n


∑
j=1


m j. The number of columns of this matrix is d. One can also write Φ as


Φ = (Φ(k),k = 1, . . . ,d), where Φ(k) is the column vector


Φ(k) = (φi,a(k), (i,a) ∈S )T , k = 1, . . . ,d.


Now Q∗ = (Q∗(i,a),(i,a) ∈S )T is approximated according to


Q∗ ≈
d


∑
i=1


Φ(i)θ ∗(i), i.e., Q∗ ≈Φθ ∗.


The estimates Qn(i,a), n≥ 0, of Q∗(i,a), (i,a) ∈S are approximated as Qn(i,a)≈
θT


n φi,a, where θn
�
= (θn(1), . . . ,θn(d))T is the nth update of the parameter θ .


The Q-Learning Update Rule


The Q-learning algorithm with function approximation updates the parameter θ ac-
cording to


θn+1 = θn+c(n)φX(n),Zn(r(X(n),Zn)+γ min
v∈A(X(n+1))


θT
n φX(n+1),v−θT


n φX(n),Zn),


(11.65)


where θ0 is set arbitrarily and the step-sizes c(n), n ≥ 0 satisfy (11.32). It is im-
portant to note that like the actor-critic algorithm (11.57)–(11.59), (11.65) is also an
on-line scheme as it works with a single trajectory of (feasible) state-action tuples
(X(n),Zn), n≥ 0 and updates the parameter θ as new states are observed and actions
chosen. Also note that ∇θnQn(X(n),Zn) ≈ ∇θnθT


n φX(n),Zn = φX(n),Zn . The algorithm
(11.65), however, is known to suffer from the off-policy problem [2], [22] and may
not converge in some cases. This is because the update in (11.65) is nonlinear be-
cause of the minimization operation. Note that if actions are picked according to a
given policy (and one does not have minimization), then (11.65) is a regular TD(0)
scheme for the joint (state–action) Markov chain.


11.5.3.2 Two-Timescale Q-Learning with Function Approximation


We now describe an algorithm based on Q-learning with function approximation
that does not suffer from the off-policy problem because it incorporates multiple
timescales. Let πw = (πw(i), i ∈ S)T represent a class of SRP, parametrized by w,
where each πw(i) is the distribution πw(i) = (πw(i,a),a ∈ A(i))T over the set of fea-


sible actions A(i) in state i. Here w
�
= (w1, . . . ,wN)


T ∈RN is a parameter in addition
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to θ . In what follows, we restrict attention to SRPs that are parametrized by w. We
let w take values in a compact and convex set W ⊂R


N . We now make the following
assumptions.


Assumption 11.9. The Markov chain {X(n)} under any SRP πw is aperiodic
and irreducible.


Assumption 11.10. The probabilities πw(i,a), (i,a)∈S are continuously dif-
ferentiable in the parameter w with ∇wπw(i,a) being Lipschitz continuous.
Further, πw(i,a)> 0 ∀i ∈ S, a ∈ A(i), w ∈C.


Assumption 11.11. The basis functions {Φ(k),k = 1, . . . ,d} are linearly in-
dependent. Further, d ≤ |S |.


Assumptions 11.9 and 11.11 are similar to 11.6 and 11.7, respectively, except for
a slight change in the notation being used. Note also that the matrix Φ considered
here is a state–action feature matrix unlike the one considered in Sections 11.5.1
and 11.5.2, respectively.. Assumption 11.10 is stronger than Assumption 11.7. How-
ever, for the classes of parametrized policies that one normally considers, Assump-
tion 11.7 is seen to hold. A well-studied example of parametrized policies that sat-
isfy Assumption 11.10 or Assumption 11.7 is the parametrized Boltzmann policies
given by


πw(i,a) =
exp(wTφi,a)


∑b∈A(i) exp(wTφi,b)
.


Let Δn = (Δn(1), . . . ,Δn(N))T be certain perturbation vectors obtained from a nor-
malized Hadamard matrix that will be used to perturb the updates wn of the pa-
rameter w. In what follows, we use the one-simulation simultaneous perturbation
Hadamard matrix-based updates for the sequence wn while the parameters θn fol-
low a TD(0) update for the state-action Markov chain.


Two-Timescale Q-Learning Update Rule


Let Θ ⊂ R
d be the set in which θn,n ≥ 0 take values. Also, recall that W is the


set in which wn,n ≥ 0 take values. We assume that Θ (resp. W ) is a compact and
convex subset of Rd (resp. RN). This requirement on the sets Θ and W essentially
ensure that the updates θn and wn below remain uniformly bounded almost surely.


Let π(wn+δΔn)
�
= (π(wn+δΔn)(i,a), (i,a) ∈S , where δ > 0 is a given small constant,


be the randomized policy followed during the nth update. Note that this randomized
policy is governed by the parameter (wn + δΔn).
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The algorithm is as follows: ∀n≥ 0,


θn+1 =γ
(
θn + c(n)φX(n),Zn


(
r(X(n),Zn)+ γθT


n φX(n+1),Zn+1
−θT


n φX(n),Zn


))
,


(11.66)


wn+1 =Γ


(
wn− b(n)


(
θT


n φX(n),Zn


δ


)
(Δn)


−1


)
, (11.67)


where γ : Rd →Θ (resp. Γ : RN →W ) is the projection operator that projects
any x ∈ R


d (resp. x ∈ R
N) to the setΘ (resp. W ).


Convergence Analysis


It is easy to verify that pw(i,a; j,b) = p(i, j,a)πw( j,b), (i,a),( j,b) ∈S form tran-
sition probabilities for the joint process (X(n),Zn), n ≥ 0 under the SRP πw. Under
Assumptions 11.9 and 11.10, it is also easy to see that the process (X(n),Zn),n≥ 0
with Zn, n ≥ 0 obtained from the SRP πw, for any w ∈W , is an ergodic Markov
process. Hence, (X(n),Zn),n ≥ 0 has a unique stationary distribution fw(i,a) =
dπw(i)πw(i,a), (i,a) ∈ S . One can also show from an application of Theorem 2
on pp.402–403 of [20] (on smoothness of the stationary distribution for finite state
chains) that under Assumptions 11.9 and 11.10, fw(i,a), (i,a)∈S are differentiable
in w ∈W with ∇w fw(i,a) being Lipschitz continuous in w.


As with other multi-scale schemes, the recursion (11.66) is quasi-static when
viewed from the faster timescale corresponding to b(n),n ≥ 0. Hence, let θn ≡ θ
when analyzing (11.67).


Let
Q̄(θ ,w) �= ∑


(i,a)∈S


fw(i,a)θTφi,a


denote the stationary average Q value under the parameters θ and w, respectively.


Lemma 11.15. The partial derivatives of Q̄(θ ,w) with respect to any θ ∈ Θ and
w ∈W exist. Further, ∇wQ̄(θ ,w) is Lipschitz continuous in (θ ,w) ∈Θ ×W.


Proof. This can be seen from the fact that W and Θ are both compact sets, hence
continuous functions on these sets remain uniformly bounded. ��
The ODE associated with (11.67) is


ẇ(t) = Γ̂
(−∇wQ̄(θ ,w(t))


)
, (11.68)


with θ fixed. Let Kθ denote the set of asymptotically stable equilibria of (11.68) and
Kεθ be the ε-neighborhood of Kθ . Let
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Ki
n =


n−1


∑
j=0


a( j)


(
θT


j φXj ,Zj −E[θT
j φXj ,Zj |F j]


δΔ i
j


)
,


with Fn = σ(Xj,Zj, j < n;θ j,wj , j ≤ n), n ≥ 1, as a sequence of associated sigma
fields. The following result now follows from the martingale convergence theorem
(Theorem B.2) in a straight forward manner.


Lemma 11.16. For all i = 1, . . . ,N, (Ki
n,Fn), n ≥ 0 are almost surely convergent


martingale sequences.


The convergence of the recursion (11.67) now follows as a consequence of the con-
sistency of the Hadamard matrix-based estimator and the Kushner–Clark theorem
(Theorem E.1).


Theorem 11.17. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0], {wn}
governed by (11.67) converges to Kεθ almost surely.


Let F be a (|S |× |S |)-diagonal matrix with entries fw(i,a), (i,a) ∈S along the
diagonal. Let P denote the transition probability matrix of the joint Markov chain
(X(n),Zn), n ≥ 0 when actions are selected according to the SRP πw. Also, let R
denote the vector of single-stage expected costs r(i,a), (i,a) ∈ S . The following
ODE is associated with (11.66):


θ̇ (t) = γ̂(ΦT F (T (Φθ (t))−Φθ (t))), (11.69)


where for any bounded and continuous ζ : Rd → R
d ,


γ̂(ζ (θ )) = lim
η↓0


(
γ(θ +ηζ (θ ))−θ


η


)
.


Note that when θ ∈Θ o, γ̂(ζ (θ )) = ζ (θ ). Also, when θ ∈ ∂Θ such that θ+ηζ (θ ) �∈
Θ for any η > 0, γ̂(ζ (θ )) is the projection of ζ (θ ) to the setΘ .


Let M̄
�
= {θ ∈ Θ | γ̂(ΦT F(T (Φθ )−Φθ )) = 0}. Note that if θ ∈ Θ o ∩ M̄,


ΦT F(T (Φθ )−Φθ ) = 0. We now have the following result on the convergence
of the recursion (11.66).


Theorem 11.18. Under Assumptions 11.9 – 11.11, the quantities θn,n≥ 0 governed
according to (11.66) satisfy θn→ M̄ with probability one.


Proof. The result can be seen to follow from an application of the Kushner-Clark
theorem (Theorem E.1) for projected stochastic approximation. ��
Lets denote by w≡ w(θ ) any point in Kθ and view w(·) as a map from W to R


N .


Lemma 11.19. The map w : W → R
N is Lipschitz continuous.
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Proof. Follows as a consequence of the implicit function theorem (cf. Theorem 1 of
[14], also stated as Theorem 1.1 of [21]). ��
Let U = {(θ ,w) | θ ∈ M̄,w ∈ Kθ} and given ε > 0, let U ε = {(θ ,w) | θ ∈ M̄,
w ∈ Kεθ}.


Theorem 11.20. Given ε > 0, there exists δ0 > 0 such that for all δ ∈ (0,δ0],
the sequence of iterates (θn,wn), n≥ 0 satisfy


(θn,wn)→U ε ,


with probability one.


Proof. (Sketch:) The result can be shown in a similar manner as Theorem 2, Chap-
ter 6 of [10], with the difference being that since the θ -update does not have a
unique fixed point (i.e., a unique globally asymptotically stable equilibrium for the
associated ODE), the convergence can only be shown to the set U using similar
techniques. ��


11.6 Concluding Remarks


In this chapter, we considered the application of simultaneous perturbation meth-
ods for problems of stochastic control under (a) lack of model information and (b)
large state-action spaces. We presented various reinforcement learning algorithms
based on simultaneous perturbation approaches for this purpose. These algorithms
are seen to perform well even over large state-action spaces. For instance, some of
these algorithms have been applied in the context of road traffic control in [18, 16]
(see Chapter 13), where they have been observed to work well even over very
high-dimensional state-action spaces. Finally, in [6], the simultaneous perturbation
methodology has been applied to develop an actor-critic algorithm for constrained
Markov decision processes that is similar in flavour to the methods developed in
Chapter 10.
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Part V
Applications







This part deals with engineering applications of simultaneous perturbation methods
that have been discussed in previous chapters. Specifically, the engineering appli-
cations that we consider are in the domains of (a) service systems, (b) road traffic
control and (c) communication networks.


In many service domains such as call centers, one is often interested in dynam-
ically finding the optimal staffing levels based on various service requirements of
incoming customers and the desired quality of service (QoS). Prashanth, Prasad,
Bhatnagar, Desai and Dasgupta in a few papers presented simultaneous perturbation
algorithms based on both SPSA and SF techniques for this problem and observed
that these algorithms showed better empirical performance as compared to the cur-
rent state-of-the-art technique. Chapter 12 discusses the application of the SPSA
and SF algorithms to service systems.


To maximize flow of vehicles and minimize congestion near road traffic junc-
tions, it is important to regulate traffic lights in a manner that achieves the de-
sired results. By assuming coarse information the system state (for instance, the
level of congestion along a lane as being in the ‘high’, ‘medium’ or ‘low’ re-
gions, Prashanth and Bhatnagar, in a paper in 2011, presented an adaptation of the
Q-learning algorithm with function approximation. This algorithm, however, incor-
porates threshold-type feedback policies where the values of the thresholds are con-
sidered fixed. Prashanth and Bhatnagar subsequently presented adaptations of the
deterministic SPSA algorithm in order to find optimal thresholds and also presented
various other threshold-based schemes for traffic signal control. The combinations
of the simultaneous perturbation method for adapting thresholds together with the
proposed traffic signal control schemes are seen to result in powerful algorithms for
this problem. An advantage here is that the simultaneous perturbation module (on
top of the regular algorithms) results in only a minor increase in computational ef-
fort. Chapter 13 discusses application of simultaneous perturbation methods to road
traffic control.


Simultaneous perturbation approaches have also been found to be highly efficient
in the context of communication networks. Chapter 14 discusses some of these ap-
plications. We consider, in particular, three applications where simultaneous per-
turbation methods have been found to be very useful. These applications are on
(a) random early detection (RED), (b) multi-access communication and (c) inter-
net pricing. The regular RED scheme prescribes a fixed set of threshold parameters
that are not seen to work well over various settings. While there have been several
works that aim at designing adaptive algorithms for RED, most of them, like regular
RED suffer from the problem of wide oscillations in the instantaneous queue length
process. By formulating the problem in the nonlinear optimization setting and by
developing deterministic perturbation based Newton SPSA algorithms, Patro and
Bhatnagar showed that the resulting scheme is both provably convergent and also
results in significantly low variance. Next, in the slotted Aloha multi-access commu-
nication protocol, it is observed that the feedback probability parameter is held fixed.
It is clearly the case that the same parameter value will not work for all network set-
tings. Bhatnagar, Karmeshu and Mishra designed an SF algorithm for finding the
optimal parameter trajectory for controlling a parametrized stochastic differential
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equation. This algorithm was then applied by them for finding the optimal parame-
ter settings for the slotted Aloha communication protocol. The algorithm is seen to
exhibit good performance. Finally, Vemu, Bhatnagar and Hemachandra studied the
application of SPSA for finding optimal pricing policies within a given parametrized
class of these policies. In particular, threshold-type feedback policies were consid-
ered. The resulting algorithm is seen to exhibit good performance.







Chapter 12
Service Systems


12.1 Introduction


A Service System (SS) is an organization composed of (i) the resources that sup-
port, and (ii) the processes that drive service interactions so that the outcomes
meet customer expectations . Here we consider the domain of data-center
management, where the customers own data centers and other IT infrastructures
supporting their businesses. The size, complexity, and uniqueness of the tech-
nology installations drive outsourcing of the management responsibilities to spe-
cialized service providers that manage the data-centers from remote locations.
These are called delivery centers and comprise groups of service workers (SWs)
skilled in specific technology areas supporting service requests (SRs) from cus-
tomers. Each such group is a SS constituting of the processes, the people, and
the customers that drive the operations. A delivery center in general contains
multiple SS.


An important problem in the context of service systems is to find the opti-
mal staffing levels subject to Service Level Agreement (SLA) and queue stability
constraints and for a given dispatching policy (a map from the service requests
to service workers). Given a dispatching policy, there are two fundamental chal-
lenges in optimizing the staffing levels, i.e., specifications of numbers of workers
across shifts and skill levels. First, given an SS with its operational characteris-
tics, the staffing levels need to be optimized while maintaining steady-state and
compliance to aggregate Service Level Agreement (SLA) constraints, e.g., 95%
of all urgent SRs in a month from a given customer must be resolved in 4 h.
Note that the 4 hour deadline does not apply to all individual SRs, but to 95% of
them that arrive in a month. Second, it is also necessary to keep the SR queues
stable owing to the fact that SLAs are calculated for completed work and not
unresolved SRs. The problem is challenging because analytical modeling of SS
operations is difficult due to aggregate SLA constraints and also because the SS
characteristics such as work patterns, technologies, and customers supported change
frequently.


S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 225–241.
springerlink.com © Springer-Verlag London 2013
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Our approach is to formulate this problem as a constrained hidden Markov cost
process [5] parameterized by the (discrete) worker parameter and develop simulta-
neous perturbation methods to solve the same. To have a sense of the search space
size, an SS consisting of 30 SWs who work in 6 shifts and 3 distinct skill levels
corresponds to more than 2 trillion configurations. Apart from the high cardinality
of the discrete parameter set, the constrained Markov cost process involves a hidden
or unobserved state component. The single-stage cost function for the constrained
Markov cost process is designed so as to balance the conflicting objectives of worker
under-utilization and SLA under/over-achievement. The performance objective is a
long-run average of this single stage cost function and the goal is to find the op-
timum steady state worker parameter (i.e., the one that minimizes this objective)
from a discrete high-dimensional parameter set. Note that the optimum worker pa-
rameter is a constrained minimum owing to the queue stability and SLA compliance
constraints.


We present algorithms based on the simultaneous perturbation technique for
solving the above problem. Simulation is employed for finding the optimum (con-
strained) worker parameter as the single stage cost function can be estimated only
via simulation. Henceforth, we shall refer to these algorithms as Staff Allocation
using Stochastic Optimization with Constraints (SASOC) algorithms. Both first and
second order methods based on the techniques presented in the earlier chapters are
described. An important aspect of all SASOC algorithms is that they involve the
generalized smooth projection operator, which is essential to project the continuous-
valued worker parameter tuned by the SASOC algorithms onto the discrete set. As
described in Chapter 9, the generalized projection operator ensures that the underly-
ing transition dynamics of the constrained Markov cost process is itself smooth (as a
function of the continuous-valued parameter), which in turn allows one to mimic the
continuous constrained optimization techniques, such as those described in Chapter
10, in the context of optimizing staff levels of a SS.


The remaining part of this chapter is organized as follows: We introduce the
service system framework in Section 12.2. We formulate the labor cost optimization
problem with SLA constraints in Section 12.3. We then discuss several first order
simultaneous perturbation algorithms, similar to those in Chapter 10, for solving the
afore-mentioned problem in Section 12.5. Thereafter, two second-order methods
using SPSA for estimating the gradient and the Hessian are presented in Section
12.6. A discussion on the convergence of all the algorithms is available in Section
12.7 and some representative experimental results on the algorithms described are
briefly presented in Section 12.8. The material reported in this chapter is based on
[2, 3, 6].


12.2 Service System Framework


Figure 12.1 shows the main components of the operational model of SS. SRs ar-
rive from multiple customers supported by the SS and get classified and queued
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Fig. 12.1 Components of the operational models of SS


into high, medium, or low complexity queues by a queue manager (human or
automated). Also, depending on the urgency of the SRs as well as the dispatch-
ing policy being used, each individual SR is assigned a priority in each of the
complexity queues. SWs are grouped according to their skill levels, viz., high,
medium, or low and work according to predefined shift schedules. Depending
on the dispatching policy in place, the resource allocator (human or machine
based) either pushes the SRs to SWs proactively or the SWs pull the highest pri-
ority SR from the complexity queue when it becomes available. In the former
case, each of the SWs has an associated priority queue. Generally, SWs work
on SRs with complexity matching to their skill levels. However, a swing policy
may kick-in dynamically and assign higher-skilled workers to lower complexity
queues if they grow beyond a threshold. Finally, a preemption policy specifies a
preemptive action such as an urgent SR preempting all other SRs regardless of
their status. A runtime monitor collects statistics on the performance of the SS
against the SLAs, monitors the queues for unstable behavior such as unbounded
growth, and triggers invocation of the swing policy when swing thresholds are
crossed.
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Table. 12.1 provides an example of staffing levels Wi, j and utilization ui, j of work-
ers across shifts and complexities, while Table. 12.2 illustrates SLA targets γi, j and
SLA attainments γ ′i, j for a service system with two customers and four priority levels
for SRs.


Table 12.1 Example: Sample workers and utilizations


(a) Workers θi


Skill levels
Shift High Med Low
S1 1 3 7
S2 0 5 2
S3 3 1 2


(b) Utilizations ui, j


Skill levels
Shift High Med Low
S1 67% 34% 26%
S2 45% 55% 39%
S3 23% 77% 62%


Table 12.2 Example: Sample SLA constraints


(a) SLA targets γi, j
Customers


Priority Bossy Corp Cool Inc
P1 95%4h 89%5h
P2 95%8h 98%12h
P3 100%24h 95%48h
P4 100%18h 95%144h


(b) SLA attainments γ ′i, j
Customers


Priority Bossy Corp Cool Inc
P1 98%4h 95%5h
P2 98%8h 99%12h
P3 89%24h 90%48h
P4 92%18h 95%144h


12.3 Problem Formulation


We consider the problem of finding the optimal staffing levels (see Fig. 12.1), while
adhering to the SLA constraints and maintaining state-to-state queues. We formulate
this as a constrained hidden Markov cost process as follows:


Worker parameter θ : The worker parameter specifies the number of workers
for each shift and of each skill level in a SS and is given by


θ = (W1, . . . ,W|A|×|B|)T ∈D ,


where Wi indicates the number of service workers whose skill level is i%|B| and
whose shift index is i/|B|. The parameter vector θ takes values in the set D , where


D
�
= {0,1, . . . ,Wmax}N . Here, Wmax serves as an upper bound for the number of


workers in any shift and of any skill level. Note that one can enumerate all the
points in D as D = {D1,D2, . . . ,Dp} for some p > 1.
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State (X(n),Y (n)): The state consists of the observed part X(n) and the un-
observed or hidden part Y (n) and is described by


X(n) = (N(n),u(n),γ ′(n),q(n)), (12.1)


Y (n) = (Z(n)). (12.2)


In the above,


• N(n) = (N1(n), . . . ,N|B|(n))T , where Ni(n) denotes the number of SRs in the
system queue corresponding to skill level i ∈B.
• Z(n) = (Z1,1,1(n), . . . ,Z1,1,Wmax(n), . . . ,Z|A|,|B|,Wmax(n)) is the vector of residual


service times. Here, Zi, j,k(n) denotes the residual service time of the SR cur-
rently being processed by the kth worker in shift i and of skill level j. Note
that if there is no kth worker corresponding to the shift i and skill level j,
then Zi, j,k = κ , where κ is a special value used to signify the non-existence
of a worker. Considering that the service times follow a truncated log-normal
distribution in our setting, the residual service time at any point cannot be
precisely estimated and hence, is part of the unobserved or hidden state
component Y (n).
• The utilization vector u(n) = (u1,1(n), . . . ,u|A|,|B|(n)), where each ui, j(n) ∈ [0,1]


is the average utilization of the workers in shift i and skill level j, at
instant n.
• The SLA attainment vector γ ′(n) = (γ ′1,1(n), . . . ,γ


′
|C|,|P|(n)), where γ ′i, j(n) ∈ [0,1]


denotes the SLA attainment for customer i and priority j, at instant n.
• q(n) is a single scalar (Boolean) variable that denotes the queue feasibility status


of the system at instant n. In other words, q(n) is false if the growth rate of the
SR queues (for each complexity) is beyond a threshold and is true otherwise. We
need q(n) to ensure system steady-state which is independent of SLA attainments
because the latter are computed only on the SRs that were completed and not on
those queued up in the system.


Considering that the queue lengths, utilizations and SLA attainments at instant
n+ 1 depend only on the state at instant n, i.e., {(X(n),Y (n))}, we observe that
{(X(n),Y (n)),n ≥ 0} is a constrained hidden Markov cost process for any given
(fixed) parameter θ .


Allowing S to denote the state space, we observe that S is compact as the various
components of X(n) and Y (n) are closed and bounded. This is because, each element
of u(n), γ ′(n) takes values in [0,1] and 0≤ q(n)≤ 1. Further, the system SR queues
N have a finite buffer each and hence, X(n),n ≥ 0 is closed and bounded. Further,
the residual time vector in Y (n) also takes values in a compact set in lieu of the fact
that each element of Z is upper bounded by the total service times at the SR queues
and that in turn takes values in [0,�].


Cost: The single-stage cost function is designed so as to minimize the
under-utilization of workers as well as over/under-achievement of SLAs. Here,
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under-utilization of workers is the complement of utilization and in essence, this
is equivalent to maximizing the worker utilizations. The over/under-achievement
of SLAs is the distance between attained and the contractual SLAs. Hence, the
cost function is designed to balance between two conflicting objectives and has the
form:


c(X(n)) = r×
(


1−
|A|
∑
i=1


|B|
∑
j=1
αi, j× ui, j(n)


)
+ s×


( |C|
∑
i=1


|P|
∑
j=1


∣∣γ ′i, j(n)− γi, j∣∣
)
,


(12.3)


where r,s ≥ 0 and r+ s = 1. Further, 0 ≤ γi, j ≤ 1 denotes the contractual SLA for
customer i and priority j. Note that the first term in (12.3) uses a weighted sum of
utilizations over workers from each shift and across each skill level. The weights
αi, j are derived from the workload distribution across shifts and skill levels over a


month long period. These weights satisfy 0≤ αi, j ≤ 1, ∑|A|i=1∑
|B|
j=1αi, j = 1. Such a


prioritization of workers helps in optimizing the worker set based on the workload
expected in a particular shift and skill combination.


Constraints: The constraints are on the SLA attainments and queue growth,
given by:


gi, j(X(n)) = γi, j− γ ′i, j(n)≤ 0,∀i = 1, . . . , |C|, j = 1, . . . , |P|, (12.4)


h(X(n)) = 1− q(n)≤ 0, (12.5)


Here (12.4) specifies that the attained SLA levels should be equal to or above the
contractual SLA targets for each customer-priority tuple. Further, (12.5) ensures that
the SR queues for each complexity in the system stay bounded. In the constrained
optimization problem formulated below, we attempt to satisfy these constraints in
the long-run average sense (see (12.6)).


System evolution:


nT (n+1)T


X(n)


Instant


State X(n+1)


Simulate(θn,T )


Fig. 12.2 A portion of the time-line illustrating the process


For a typical SS, as described in Section 12.2, the above model translates to
a stochastic evolution of the system from one state to another, while incurring
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a state-dependent single-stage cost as constraint functions described via c(X(n)),
gi, j(X(n)),h(X(n)), i = 1, . . . , |C|, j = 1, . . . , |P|. Note that these functions depend
explicitly on only the observed part X(n) of the state process (X(n),Y (n)),n ≥ 0.
As illustrated in Fig. 12.2, the nth system transition of this underlying constrained
Markov cost process involves a simulation of the service system for a fixed pe-
riod T with the current worker parameter θn. For instance, in our representative
experiments discussed in Section 12.8, T = 10, which translates to a simulation
of the service system for a period of 10 months with the staffing levels specified
by θn. Also, note that this is a continuously running simulation, where at discrete
time instants nT we update the worker parameter θn and the simulation output
causes a probabilistic transition from the current state (X(n),Y (n)) to the next state
(X(n+ 1),Y (n+ 1)), while incurring a single stage cost c(X(n)). By an abuse of
notation, we refer to the state at instant nT as (X(n),Y (n)).


The Objective: Our aim is to find a θ that minimizes the long-run average cost,


J(θ ) �= lim
n→∞


1
n


n−1
∑


m=0
E[c(X(m))]


subject to


Gi, j(θ )
�
= lim


n→∞
1
n


n−1
∑


m=0
E[gi, j(X(m))]≤ 0 ∀i = 1, . . . , |C|, j = 1, . . . , |P|,


H(θ ) �= lim
n→∞


1
n


n−1
∑


m=0
E[h(X(m))]≤ 0.


(12.6)


Projection Operator: The SASOC algorithms treat the parameter as continuous-
valued and tune it accordingly. Let us denote this continuous version of the worker
parameter by θ̄ =(W̄1, . . . ,W̄N). Note that θ̄i ∈ [0,Wmax], i= 1,2, . . . ,N. The SASOC
algorithms that we present subsequently tune the worker parameter in the convex
hull of D , denoted by D̄ , a set that can be simply defined as D̄ = [0,Wmax]


N . The
projection operator Γ̄ projects any θ ∈ R


N onto the set D̄ and is defined as Γ̄ (θ ) =
(Γ̄1(θ1), . . . ,Γ̄N(θN))


T , where Γ̄i(θi) = min(Wmax,max(θi,0)), i = 1, . . . ,N.
A generalized projection operator Γ (θ ) = (Γ1(W1), . . . ,ΓN(WN))


T that projects θ
on to the discrete set D is necessary to guide the service system simulation. This
projection idea has been described in Chapter 9 for an unconstrained discrete opti-
mization problem. Specifically,Γi(Wi) is defined in a manner similar to the definition
of the generalized projection scheme discussed in Chapter 9.2.3 and we omit the
definition here. Recall from Chapter 9 that the Γ -operator ensures that the transition
dynamics of the parameter extended Markov process for any θ ∈ D̄ is smooth (as
desired) and requires a lower computational effort because in a large portion of the
parameter space (assuming ζ is small), the Γ -operator is essentially deterministic.


Thus, Γ̄ (·) keeps the parameter updates within the set D̄ and Γ (·) projects them
to the discrete set D . The projected updates are then used as the parameter values
for conducting the simulation of the service system.
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12.4 Solution Methodology


The constrained long-run average cost optimization problem (12.6) can be expressed
using the standard Lagrange multiplier theory as an unconstrained optimization
problem given below.


max
λ


min
θ


L(θ ,λ ) �= lim
n→∞


1
n


n−1


∑
m=0


E


{
c(X(m))+


|C|
∑
i=1


|P|
∑
j=1
λi, jgi, j(X(m))+λ f h(X(m))


}
,


(12.7)


where λi, j ≥ 0, ∀i = 1, . . . , |C|, j = 1, . . . , |P| represent the Lagrange multipli-
ers corresponding to the constraints Gi, j(θ ) ≤ 0 and λ f represents the Lagrange
multiplier for the constraint H(θ ) ≤ 0 in the optimization problem (12.6). Also,
λ = (λi, j,λ f , i = 1, . . . , |C|, j = 1, . . . , |P|)T .


As in Chapter 10, we present several simulation optimization methods for ob-
taining a saddle point of the Lagrangian (12.7). All SASOC algorithms update the
worker parameter along a descent direction as follows:


θ (n+ 1) = Γ̄ (θ (n)− b(n)H −1
n hn). (12.8)


In the above, hn represents the estimate of the gradient while Hn is the particu-
lar positive definite and symmetric matrix used at update instant n. For the sake of
simplicity, we have omitted an additive stochastic noise term in the update (12.8).
In other words, all SASOC algorithms can be seen as noisy variants of (12.8) and
use either SPSA or SF-based estimates of the gradient and the Hessian of the La-
grangian.


As illustrated in Fig. 12.3, each algorithm involves an iterative procedure, where a
proposed candidate solution θ is evaluated using a simulation framework twice - one
with unperturbed parameter and another with perturbed parameter. The perturbation
p(n) is algorithm-specific and is motivated by the gradient estimate of the given
algorithm. The results of the simulation, specifically the attained SLAs γ ′i, j and the
queue stability parameter q are used to tune the parameter in an algorithm-specific
descent direction. Algorithm 12.1 gives the structure of all the SASOC algorithms
presented in the subsequent sections.


Algorithm 12.1 Skeleton of SASOC algorithms
Input:


• R, a large positive integer;
• θ (0), initial parameter vector; p(·); Δ
• UpdateRule(), the algorithm-specific update rule for the worker parameter θ


and Lagrange multiplier λ .
• Simulate(θ ,T )→ X , the simulator of the SS
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θ (n)


+


p(n)


Simulate(Γ (θ̂),T )


Simulate(Γ (θ ),T )


UpdateRule(·)


θ̂ (n) X̂(n)


X(n)


θ (n+1)


θ (n)


Fig. 12.3 Overall flow of the algorithm 12.1.


Output: θ ∗ �= Γ (θ (R)).
θ ← θ (0), n← 1
loop


X ← Simulate(Γ (θ (n)),T ).
X̂ ← Simulate(Γ (θ (n)+ p(n)),T ).
UpdateRule().
n← n+ 1
if n = R then


Terminate and output Γ (θ (R)).
end if


end loop


The algorithms described next can be categorized as follows:


• Based on whether the algorithms estimate the gradient or the Hessian, they can
be categorized as being of the first or the second order.


• Based on the technique employed for estimating the gradient/Hessian, they can
be categorized as SPSA or SF-based method. The various choices of Hn used
in our algorithms are described below.


The SASOC algorithms mainly differ in the choice of Hn in (12.8) and hence the
descent direction:


1. SASOC-G: Here Hn = I (identity matrix). This algorithm tunes the worker pa-
rameter θ in the negative gradient descent direction, with a one-sided SPSA
gradient estimate, as explained in Chapter 10.3.1, being used.


2. SASOC-SF-N: Here again Hn = I. However, the gradient estimate incorporates
one-sided SF with Gaussian perturbations similar to the estimate used in the
CG-SF algorithm described in Chapter 10.3.3.


3. SASOC-SF-C: As in SASOC-SF-N, here also we use the SF-based gradient
estimate, i.e., Hn = I. However, the perturbations in this case are based on the
Cauchy distribution.
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4. SASOC-H: Here Hn = P(∇2L(θ ,λ )(n)), the estimate of the Hessian of L w.r.t.
θ (n) that is suitably projected to the space of positive definite and symmet-
ric matrices. Hence, this uses a Newton update for optimizing the worker pa-
rameter. This algorithm is simular to the CN-SPSA algorithm described in
Chapter 10.3.2.


5. SASOC-W: Here, as with SASOC-H, Hn is the estimate of the projected
Hessian of L. However, in this algorithm, the inverse of the Hessian ma-
trix is tuned directly using the Woodbury’s identity, a procedure described in
Chapter 7.4.


Note that while the algorithms of Chapter 10 are for a continuous-valued parameter,
the SASOC algorithms are for the discrete-valued worker parameter θ . In essence,
the SASOC algorithms use the continuous optimization procedures similar to the
ones described in Chapter 10 and the convergence of these algorithms is ensured
by employing a generalized projection operator (see Chapter 9.2.3) that makes the
underlying transition dynamics smooth. Table. 12.3 summarizes the various features
of the SASOC algorithms presented here.


Table 12.3 Summary of SASOC algorithms


Algorithm Order Type Hn p(n)
SASOC-SPSA First SPSA I δΔ (n)
SASOC-SF-N First SF-Gaussian I βη(n)
SASOC-SF-C First SF-Cauchy I βη(n)
SASOC-H Second SPSA-Hessian P(∇2L(θ ,λ )(n)) δ1Δ (n)+δ2Δ̂(n)
SASOC-W Second SPSA-Woodbury „ „


We next present the first-order methods that include either SPSA or SF based
gradient estimates and in the following section (Section 12.6), we present the
second-order methods. A discussion of the convergence of both the first as well
as the second order methods is then presented in Section 12.7.


12.5 First Order Methods


12.5.1 SASOC-SPSA


This is a three time-scale stochastic approximation algorithm that does primal de-
scent on the worker parameter while performing dual ascent on the Lagrange mul-
tipliers. This algorithm is similar to CG-SPSA described in Chapter 10 and uses a
one-sided SPSA gradient estimate. The update rule for this algorithm is given by







12.5 First Order Methods 235


Wi(n+ 1) = Γ̄i


[
Wi(n)+ b(n)


(
L̄(n)−L̄′(n)
βηi(n)


)]
,∀i = 1,2, . . . ,N,


L̄(n+ 1) = L̄(n)+ d(n)(l(X(n),λ (n))− L̄(n)),


L̄′(n+ 1) = L̄′(n)+ d(n)(l(X̂(n),λ (n))− L̄′(n)),


λi, j(n+ 1) = (λi, j(n)+ a(n)gi, j(X(n)))+ ,∀i = 1,2, . . . , |C|, j = 1,2, . . . , |P|,


λ f (n+ 1) =
(
λ f (n)+ a(n)h(X(n))


)+
,


⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭


(12.9)


where


• l(X ,λ ) = c(X)+
|C|
∑


i=1


|P|
∑
j=1
λi, jgi, j(X)+ λ f h(X) is the single-stage sample of the


Lagrangian;
• X(n) represents the state at iteration n from the simulation run with parameter
Γ (θ (n)) while X̂(n) represents the state at iteration n from the simulation run
with the perturbed parameter Γ (θ (n) + δΔ(n)). For simplicity, hereafter we
use θ to denote θ (n) and θ + δΔ to denote θ (n)+ δΔ(n). Also, Γ denotes the
generalized projection operator used to project θ onto the discrete set D ;


• δ > 0 is a fixed perturbation control parameter while Δ is a vector of perturba-
tion random variables that are independent, zero-mean and have the symmetric
Bernoulli distribution;


• The operator Γ̄ (·) ensures that the updated value for θ stays within the convex
hull D̄ and is defined as follows: Γ̄ (θ ) = (Γ̄1(θ1), . . . ,Γ̄N(θN)


T , with Γ̄i(θi) =
min(Wmax,max(θi,0)), i = 1, . . . ,N.


• L̄ and L̄′ represent Lagrange estimates corresponding to θ and θ + δΔ respec-
tively. Thus, for each iteration, two simulations are carried out, one with the
normal parameter θ and the other with the perturbed parameter θ + δΔ , the
results of which are used to update L̄ and L̄′.


12.5.2 SASOC-SF-N


This algorithm is also a first-order method like SASOC-SPSA. However, it uses
a Gaussian smoothed functional gradient estimate similar to the one in the CG-
SF algorithm of 10. The overall update rule for this algorithm is same as that of
SASOC-SPSA, except the updates to the parameter θ , which is given by,


Wi(n+ 1) = Γ̄i


[
Wi(n)+ b(n)


(
ηi(n)
β


(L̄(n)− L̄′(n))
)]


, (12.10)
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for all i = 1,2, . . . , |A|× |B|. In the above,


• The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P|
and λ f are the same as in SASOC-SPSA.


• β > 0 is a fixed smoothing control parameter.
• η =


(
η1,η2, . . . ,η|A|×|B|


)
is a vector of |A| × |B| independent N(0,1) random


variables;
• The rest of the symbols are the same as in SASOC-SPSA algorithm. Specifi-


cally, X(n) represents the state at iteration n from the unperturbed simulation,
while X̂(n) represents the state from the perturbed simulation. However, note
that the perturbed simulation in this case is run with the parameter Γ (θ +βη).
In other words, the perturbation p(n) in Fig. 12.3 corresponds to βη .


12.5.3 SASOC-SF-C


This algorithm uses the Cauchy instead of the Gaussian density as the smoothing
density function. The rest is similar to that in SASOC-SF-N. The Cauchy distribu-
tion has a heavier tail as compared to the Gaussian distribution. Hence, it is seen to
explore the search space better (see Chapter 6 for a detailed treatment). The update
rule of SASOC-SF-C algorithm for the parameter θ , is given by


Wi(n+ 1) = Γ̄i


[
Wi(n)+ b(n)


(
ηi(n)(N + 1)


β (1+η(n)Tη(n))
(L̄(n)− L̄′(n))


)]
,


(12.11)


for all i = 1,2, . . . , |A|× |B|. In the above,


• The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P|
and λ f are the same as in SASOC-SPSA.


• β > 0 is a fixed smoothing control parameter while η is an N-dimensional
multi-variate Cauchy random vector truncated to some μ ;


• The rest of the symbols are the same as in SASOC-SF-N algorithm.


12.6 Second Order Methods


We now present two second-order algorithms — SASOC-H and SASOC-W, which
use SPSA based estimates for the gradient and the Hessian. In principle, these al-
gorithms are similar to the Hessian and Woodbury variants of second-order SPSA
based algorithms described in Chapter 7.
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12.6.1 SASOC-H


This algorithm is similar to CN-SPSA (see Chapter 10.3.2) in terms of the gradient
and the Hessian estimates. The update rule of this algorithm is given by


Wi(n+ 1) =Γ̄i


(
Wi(n)+ b(n)


|A|×|B|
∑
j=1


Mi, j(n)


(
L̄(n)− L̄′(n)
δ2�̂ j(n)


))
, (12.12)


Hi, j(n+ 1) =Hi, j(n)+ b(n)


(
L̄′(n)− L̄(n)


δ1� j(n)δ2�̂i(n)
−Hi, j(n)


)
,


for all i, j = 1,2, . . . , |A|× |B|. In the above,


* The update equations corresponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P| and
λ f are the same as in SASOC-SPSA.


* δ1,δ2 > 0 are fixed perturbation control parameters while Δ and Δ̂ are two inde-
pendent vectors of perturbation random variables that are independent, zero-mean
and have the symmetric Bernoulli distribution;


* L̄ and L̄′ represent the Lagrangian estimates corresponding to θ and θ + δ1Δ +
δ2Δ̂ respectively. Thus, for each iteration, two simulations are carried out, one
with the nominal parameter Γ (θ ) and the other with the perturbed parameter
Γ (θ +δ1Δ+δ2Δ̂), the results of which are used to update L̄ and L̄′, respectively;


* H = [Hi, j]
|A|×|B|,|A|×|B|
i=1, j=1 represents the Hessian estimate of the Lagrangian. Here


H(0) is set to be a positive definite and symmetric matrix, in particular, H(0)= cI,
with c > 0 and I being the identity matrix; and


* M(n) = P(H(n))−1 = [M(n)i, j]
|A|×|B|,|A|×|B|
i=1, j=1 represents the inverse of the Hes-


sian estimate H of the Lagrangian, where P(·) is a projection operator en-
suring that the Hessian estimates remain symmetric and positive definite, see
Chapters 7 and 8.


* The rest of the symbols are the same as in the first-order methods described
before.


12.6.2 SASOC-W


The SASOC-H algorithm is more robust than SASOC-G. However, it requires the
computation of inverse of the Hessian H at each stage which is a computationally in-
tensive operation. As described in Chapter 7, we develop a second order method that
directly tunes the inverse of the Hessian H using the Woodbury’s identity. The result-
ing algorithm has a computational complexity of O(n2), as compared to SASOC-H,
which is O(n3). The update rule of this algorithm, named SASOC-W, is given by
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Wi(n+1) =Γ̄i


(
Wi(n)+b(n)


|A|×|B|
∑
j=1


Mi, j(n)


(
L̄(n)− L̄′(n)
δ1�̂ j(n)


))
, (12.13)


M(n+1) =P


(
M(n)


1−b(n)


[
I− b(n)(L̄′(n)− L̄(n))P(n)Q(n)M(n)


1−b(n)+b(n)(L̄′(n)− L̄(n))Q(n)M(n)P(n)


])
,


where all the symbols are as described in SASOC-H and the update equations corre-
sponding to L̄, L̄′, λi, j, i = 1, . . . , |C|, j = 1, . . . , |P| and λ f are the same as in SASOC-
SPSA. Note here that M, the inverse of the Hessian H, is directly updated, whereas
in SASOC-H, the Hessian was updated first and its inverse was later explicitly com-
puted in order to obtain M.


Remark 12.1. As noted in the previous chapters, an additional averaging over L
instants (for a given L > 1) of recursions involving data averaging, in between two
successive parameter updates, is seen to result in better algorithmic performance,
see [2, 3, 6].


12.7 Notes on Convergence


The convergence analysis of all the SASOC algorithms presented above proceed
along the lines of their respective counterparts in Chapter 10. However, considering
that the problem (12.6) is for a discrete parameter, it is necessary to first smoothen
the underlying transition dynamics for any θ ∈ D̄ (recall that D̄ is the convex hull
of the discrete set D). This can be achieved using a procedure described in Chapter
9. Specifically, a result similar to one in Lemma 9.4 can be shown for the SASOC
algorithms. As a consequence, one could mimic a continuous parameter system,
allowing the proofs of Chapter 10 to hold.


Some algorithm-specific notes follow:


• The assumptions and the convergence analysis of the SASOC-SPSA
algorithm are along the lines of the CG-SPSA algorithm described in
Section 10.3.1.


• The convergence analysis of the SF based first order methods - SASOC-SF-
N and SASOC-SF-C is similar to the CG-SF algorithm described in Section
10.3.3. In particular, the SF-based algorithms are distinguished by the gradient
estimate proceeding on the faster-timescale, the analysis of which can be seen
to be along the lines of the Gaussian and Cauchy variants of the SF algorithms
described in Chapter 6.


• The convergence analysis of SASOC-H and SASOC-W on the faster timescales
(i.e., the recursions corresponding to the worker parameter and the Hessian
estimates) proceeds along the lines of the Hessian and the Woodbury vari-
ants of the SPSA-based schemes described in Section 7.3.3 and Section 7.4,
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respectively. The complete analysis, including the slowest timescale update of
Lagrange parameters, can then be seen to be similar to that of the CN-SPSA
algorithm of Chapter 10.


12.8 Summary of Experiments
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Fig. 12.4 Performance of OptQuest and SASOC algorithms for EDF dispatching policy on a
real SS


We present a representative optimum staffing level result obtained using the
various SASOC algorithms described previously, on the simulation framework pro-
posed in [1]. The detailed simulation results are available in [3, 6]. The underly-
ing dispatching policy used is the EDF, where the time left to SLA target deadline
is used to assign the SRs to the SWs, i.e., the SW works on the SR that has the
earliest deadline. As mentioned before, all the SASOC algorithms involve two ser-
vice system simulations — one with unperturbed parameter and the other with the
perturbed parameter. Further, for purposes of comparison, an algorithm for staff
allocation using the state-of-the-art optimization tool-kit OptQuest [4] was also im-
plemented. OptQuest is a well-established tool for solving simulation optimization
problems and we used a scatter search based algorithm for performance compar-
isons. The algorithms are compared using W ∗sum as the performance metric. Here
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Wsum
�
= ∑|A|i=1∑


|B|
j=1 Wi, j is the sum of workers across shifts and skill levels and W ∗sum


denotes the value obtained upon convergence of Wsum.
As evident in Fig. 12.8, the SASOC algorithms in general are seen to exhibit


much superior performance compared to OptQuest, as they (a) exhibit more than
an order of magnitude faster convergence than OptQuest, (b) consistently obtain
solutions of good quality and in most cases better than those found by OptQuest, and
(c) show guaranteed convergence even in scenarios where OptQuest does not find
a feasible solution even after 5,000 iterations. Amongst the SASOC algorithms, we
observe that (the first-order method) SASOC-SF-C and (the second-order method)
SASOC-W show the best performance.


12.9 Concluding Remarks


In this chapter, we adapted various simultaneous perturbation-based simulation op-
timization algorithms for the problem of optimizing staffing levels in the context
of a service system. We formulated the problem as a constrained hidden Markov
cost process. The objective and the constraint functions were considered to be long
run averages of a state dependent single-stage cost function. The single-stage cost
function that balanced the conflicting objectives of maximizing worker utilizations
and minimizing the over-achievement of SLA was employed. For solving the con-
strained problem, we applied the techniques described in Chapter 10 to develop both
SPSA and SF-based schemes for performing gradient descent in the primal while
simultaneously performing an ascent in the dual for the Lagrange multipliers. These
algorithms were found to exhibit better overall performance in comparison to the
state-of-the-art simulation optimization toolkit OptQuest.


An interesting feature of the algorithms described in this chapter was that they
performed constrained discrete parameter optimization and thus are an extension of
the algorithms described in Chapter 9 for unconstrained discrete parameter settings
as well as the ones described in Chapter 10 for the problem of constrained con-
tinuously valued parameters. The developed algorithms are sufficiently general and
can be applied for other problems of constrained discrete parameter optimization
involving long-run average objective and constraint functions.
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Chapter 13
Road Traffic Control


13.1 Introduction


In this chapter, we present a few applications of simultaneous perturbation and re-
inforcement learning techniques developed in the earlier chapters for the problem
of maximizing traffic flows through the adaptive control of traffic lights at traffic
intersections. We consider two inter-related problems here:


(I) developing suitable traffic light control (TLC) algorithms that use threshold-
based coarse information about congestion on the various lanes of the road
network as input, and


(II) developing an algorithm to tune the aforementioned thresholds used in any
threshold-based TLC algorithm.


Note that any TLC algorithm attempting to maximize traffic flow needs as input
- the queue lengths along the individual lanes leading to the intersection. How-
ever, precise information about the queue lengths on the individual lanes is hard
to obtain in practice, while aggregate information can be obtained using thresh-
olds. For instance, one could use thresholds, say L1 and L2, to infer whether or
not the traffic congestion on a given lane is in the low (below L1), medium (be-
tween L1 and L2) or high (above L2) range, respectively. The inter-relation be-
tween the two problems described above arises from the fact that the thresholds
(such as L1 and L2) play a crucial role and a problem is to select these thresholds
optimally.


Reinforcement learning algorithms are model-free and easy to implement. How-
ever, their application to a problem involving high-dimensional state spaces, as
is the case with the traffic light control problem here, is nontrivial. Function
approximation-based approaches were discussed in Chapter 11 and we specifi-
cally make use of Q-learning with a linear function approximation architecture
(see Section 11.5.3) to solve the first problem - that of designing a TLC algorithm
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that maximizes traffic flow in the long term. The crux of this application is the
choice of features used in the Q-learning-based TLC algorithm. We first describe
the Q-learning-based TLC algorithm proposed in [4] with its choice of features
and then a TLC algorithm that also uses Q-learning with function approximation
but with an enhanced feature selection scheme. The enhancement in the feature
selection scheme arises from an intelligent combination of the state and action fea-
tures, as opposed to keeping the state and action features separate, which is a case
treated in [4].


The TLC algorithm of [4] is based on certain graded thresholds and the thresh-
old values used in this algorithm are considred fixed and not necessarily optimal.
The problem is one of finding an optimal feedback policy within a class of pa-
rameterized feedback policies with the underlying parameter, in general, being a
vector of the various thresholds. It is thus necessary to design an online algo-
rithm to tune the thresholds on queue lengths and/or elapsed times and thereby
tune the parameter of the associated feedback policy. For solving this problem,
we consider the one-measurement SPSA algorithm with Hadamard matrix per-
turbations, described in Chapter 5. This algorithm is easily implementable, con-
verges to the optimal threshold values and most importantly works for any graded
threshold-based TLC algorithm. This algorithm is combined with several graded
threshold-based TLC algorithms, with each combination resulting in interesting
consequences. For instance, when applied together with RL (such as with the Q-
learning-based TLC algorithms), our threshold tuning algorithm results in tuning
the associated parameterized state-representation features. In the context of RL,
developing algorithms for feature adaptation is currently a hot area of research in
itself.


The chapter is organized as follows:


• In Section 13.2.1, we formulate the traffic light control problem as a Markov
Decision Process (MDP).


• In Section 13.2.2, we describe the Q-learning-based algorithm for solving the
above problem.


• In Section 13.3, we formulate the average cost problem for finding the
optimal threshold values in any graded threshold-based TLC algorithm and
also describe the threshold tuning algorithm based on SPSA for solving the
same.


• In Section 13.3.2, we combine the above algorithm with three different
graded threshold-based TLC algorithms (including the Q-learning TLC
above) and discuss interesting consequences that arise from these
combinations.


• In Section 13.3.3, we discuss some of the performance simulation results of the
threshold tuning algorithm.
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13.2 Q-Learning for Traffic Light Control


13.2.1 Traffic Control Problem as an MDP


We consider a road network with m junctions, m > 1. Each junction has multiple
cross-roads with each road having j lanes. Our algorithms require a description
of states, actions and costs. The state is the vector of queue lengths and the elapsed
times since the signal turned red on those lanes that have a traffic signal at the various
junctions in the network. Control decisions are made by a centralized controller that
receives the state information from the various lanes and makes decision on which
traffic lights to switch green during a cycle. This decision is then relayed back to
the individual junctions. We assume for simplicity that there are no propagation and
feedback delays. The elapsed time counter for a lane with green signal stays at zero
till the time the signal turns red. For a network with a total of N signaled lanes, the
state at time n is given by


sn = (q1(n), . . . ,qN(n), t1(n), . . . , tN(n))
T ,


where qi(n) is the queue length on lane i at time n and ti(n) is the elapsed time for
the red signal on lane i at time n.


The actions an comprise the sign configuration (which feasible combination of
traffic lights to switch) in the m junctions of the road network and have the form:
an = (a1(n), . . . ,am(n))T , where ai(n) is the sign configuration at junction i in the
time slot n. We consider only sign configurations that are feasible in the action set
and not all possible red-green combinations of traffic lights (which would grow ex-
ponentially with the number of traffic lights). Thus, the action set A(sn) = {feasible
sign configurations in state sn}.


The cost function here has two components. The first component is the sum of
the queue lengths of the individual lanes and the second component is the sum of
the elapsed times since the signal turned red on the lanes on which the signal is red.
The elapsed time on lanes for which the signal is green is zero. The idea here is to
regulate the flow of traffic so as to minimize the queue lengths, while at the same
time ensure fairness so that no lane suffers from being red for a long duration. Fur-
ther, lanes on the main road are given higher priority over others. We achieve pri-
oritization of main road traffic as follows: Let Ip denote the set of indices of lanes
whose traffic should be given higher priority. Then the single-stage cost k(sn,an) has
the form


k(sn,an) = r1 ∗ (∑i∈Ip r2 ∗ qi(n)+∑i/∈Ip s2 ∗ qi(n))
+ s1 ∗ (∑i∈Ip r2 ∗ ti(n)+∑i/∈Ip s2 ∗ ti(n)),


(13.1)







246 13 Road Traffic Control


where ri,si≥ 0 and ri+si = 1, i= 1,2. Further, r2 > s2. Thus, lanes in Ip are assigned
a higher cost and hence a cost optimizing strategy must assign a higher priority to
these lanes in order to minimize the overall cost.


13.2.2 The TLC Algorithm


Recall the Q-learning algorithm from Chapter 11 with the following update rule:


Qn+1(i,a) = Qn(i,a)+ a(n)


(
r(i,a)+ γ min


v∈A(Yn(i,a))
Qn(Yn(i,a),v)−Qn(i,a)


)
.


(13.2)
Here, r(i,a) is the single-stage cost when state is i and a feasible action a is chosen.
Further, Yn(i,a) is a simulated next state when the current state is i and action a ∈
A(i) is chosen. One could use the above recursion to find the optimal Q-values and
hence, the optimal sign configuration policy for the traffic control MDP described
in the previous section.


However, the Q-learning algorithm (13.2) requires a look-up table to store the Q-
values for every possible (s,a)-tuple. While this is useful in small state and action
spaces, it becomes computationally expensive for larger road networks involving
multiple junctions. For instance, in the case of a small road network (e.g. a two-
junction corridor) say with 10 signalled lanes, with each lane accommodating 20
vehicles, the number of state-action tuples (and hence the size of the Q(s,a) lookup
table) is of the order of 1014. This leads to an extraordinary computation time and
space as lookup table representation requires a lot of memory and moreover, the
lookup and update operation of Q(s,a) for any (s,a) tuple is expensive because of
the number of (s,a)-tuples. For instance, in the case of the ten-lane example above,
(13.2) would correspond to a system of 1014 equations needed to update Qn(i,a) for
each feasible (i,a)-tuple once. The situation is aggravated when we consider larger
road networks such as a grid or a corridor with several junctions, as the sizes of the
state and action spaces blow up exponentially. To alleviate this problem of curse of
dimensionality, we incorporate feature-based methods. These methods handle the
above problem by making computational complexity manageable.


Feature-based methods were introduced in Section 11.5 of Chapter 11. Specifi-
cally, the linear function approximation architecture for Q-learning algorithm was
described in Section 11.5.3. Recall that the idea there is to approximate the Q-value
function Q(s,a) as


Q(s,a)≈ θTσs,a, (13.3)


where σs,a is a d-dimensional feature (column) vector, with d significantly less in
comparison to the cardinality of the set of feasible state-action tuples (s,a). Also,
in (13.3) θ is a tunable parameter whose dimension is the same as that of σs,a. This
approximation thus results in significant complexity gains both in terms of space
as well as time. The algorithm QTLC-FA is the function approximation variant of
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Q-learning used in the context of traffic control MDP. QTLC-FA thus updates the
parameter θ , a d-dimensional quantity using the following update rule (similar to
(11.65):


θ (n+1) = θ (n)+α(n)σsn ,an(k(sn,an)+ γ min
v∈A(sn+1)


θ (n)Tσsn+1,v−θ (n)Tσsn,an ),


(13.4)


where θ0 is set arbitrarily. In (13.4), the action an is chosen in state sn according
to an = argminv∈A(sn) θ


T
n σsn,v. Thus, instead of solving a system in |S×A(S)| vari-


ables, we solve here a system in only d variables. Here S×A(S)
�
= {(i,a) | i ∈ S,a∈


A(i)}. For instance, in the case of a (3x3)-grid road network, it can be seen that
while |S×A(S)| ∼ 10101, d is only about 200. This results in significant speed up in
the computation time when feature-based representations are used.


A Basic Feature Selection Procedure


Note that σsn,an are state-action features. The features are chosen based on the queue
lengths and elapsed times of each signalled lane of the road network. A basic method
for selecting features is to set the features in the following manner: Let


σsn,an = (σq1(n), . . . ,σqN(n),σt1(n), . . . ,σtN (n),σa1(n), . . . ,σam(n))
T


where


σqi(n) =


⎧⎨
⎩


0 if qi(n)< L1


0.5 if L1 ≤ qi(n)≤ L2


1 if qi(n)> L2


σti(n) =


{
0 if ti(n)≤ T1


1 if ti(n)> T1.


(13.5)


Further σa1(n), . . . ,σam(n) correspond to the actions or sign configurations chosen at
each of the m junctions. As before, N is the total number of lanes (inclusive of all
junctions) in the network. L1 and L2 are thresholds on the queue lengths and T1


is a threshold on the elapsed time. Note that the parameter θn has dimension the
same as that of σsn,an . Again the advantage here is that instead of updating the Q-
values for each feasible (s,a)-tuple as before, one estimates these according to the
parametrization (13.3).


An advantage in using the above features is that one does not require full in-
formation on the queue lengths or the elapsed times. Thresholds L1 and L2 can be
marked on the lanes and used to estimate low (below L1), medium (between L1 and
L2) or high (above L2) traffic. Likewise the elapsed time can be categorized as being
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below the threshold (T1) or above it. While precise queue length information is of-
ten hard to obtain, a characterization of traffic at any time as low, medium or high is
easier.


13.2.3 Summary of Experimental Results


Results of the simulation experiments of the various TLC algorithms described
above, using the Green Light District traffic simulation software [5] are presented in
[4]. In particular, the performance of the Q-learning-based TLC algorithm QTLC-
FA was compared against various existing TLC algorithms - Fixed timing, Longest
queue and SOTL from [2] as well as the Q-learning-based TLC algorithm from [1]
that uses full state representation. Four different road networks - a two-junction cor-
ridor, a 2x2-grid network, a 3x3-grid network and an eight-junction corridor, were
considered for comparing the above TLC algorithms. Using the average junction
waiting times (AJWT), i.e., the average time that a user waits at a junction and to-
tal arrived road users (TAR), i.e., the number of road users who have completed
their trips, as the performance metrics, it was seen there that QTLC-FA consistently
shows the best results in all the four road networks studied. QTLC-FA was seen
to be easily implementable on larger road network scenarios, and requires much
less computation, whereas the algorithm from [1] was implementable only on a two
junction corridor and did not scale to larger networks because of the exponential
increase in computational complexity with more lanes and junctions. Further, it was
also observed that the transient period, i.e., the initial period when QTLC-FA is tun-
ing its parameters before stabilizing on a policy, is only a few cycles and hence,
QTLC-FA converges rapidly to a good sign configuration policy.


13.3 Threshold Tuning Using SPSA


The Q-learning-based TLC algorithm as well as the ones that we describe subse-
quently is based on queue-length thresholds L1 and L2 and the elapsed time thresh-
old T1. More such thresholds may be chosen in practice. However, an increase in the
number of thresholds also results in an increase in the computational complexity of
the scheme. It is generally observed that this choice of two thresholds (L1 and L2)
for the queue lengths and one threshold (T1) for the elapsed time works well. How-
ever, a question that remains is how should these threshold parameters be chosen.
Ideally, one would want to select them optimally, in a way that optimizes a certain
objective criterion. This the goal we consider now.


Thus, our aim here is to find an optimal value for the parameter vector θ =
(L1,L2,T1)


T that minimizes the long run average cost objective. In other words,
the aim of the tuning algorithm is to find a θ that minimizes
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J(θ ) = lim
l→∞


1
l


l−1


∑
j=0


k(s j ,a j), (13.6)


where k(s j,a j) denotes the single stage cost (13.1).
The actions a j are assumed to be governed by one of the policies that we present


below, that in turn will be parameterized by the threshold parameter θ . While it
is desirable to find a θ ∗ ∈ C that minimizes J(·), it is, in general, very difficult to
achieve a global minimum. We use therefore a local optimization method for which
one needs to evaluate ∇J(θ )≡ (∇1J(θ ),∇2J(θ ),∇3J(θ ))T , for all algorithms.


Because of the long-run average nature of the objective, we use a multi-timescale
stochastic approximation procedure (cf. Chapter 3).


13.3.1 The Threshold Tuning Algorithm


The threshold tuning algorithm estimates the gradient of the objective function
∇θJ(θ ) using a one-sided SPSA-based estimate with Hadamard matrix perturba-
tions. Let �(n) = (�1(n),�2(n),�3(n))T ,n ≥ 1 be the perturbation vectors ob-
tained using the Hadamard matrix construction described in Section 5.5.2.2. The
recursive update equation for θ is then given by


L1(n+ 1) =π1


(
L1(n)− a(n)


(
Z̃(nL)
δ�1(n)


))
, (13.7)


L2(n+ 1) =π1


(
L2(n)− a(n)


(
Z̃(nL)
δ�2(n)


))
, (13.8)


T1(n+ 1) =π2


(
T1(n)− a(n)


(
Z̃(nL)
δ�3(n)


))
. (13.9)


In the above,


• L1(n),L2(n),T1(n) denote the n-th updates of the thresholds L1,L2 and T1, re-
spectively.


• Z̃(nL) represents the cost function averaging term obtained by accumulating the
single stage cost over L cycles and is specific to the TLC algorithm being used
to obtain the sign configuration policy on the faster timescale. These updates
will be explained in the TLC algorithms in the next section.


• L ≥ 1 is a fixed parameter which controls the rate of update of θ in relation to
that of Z̃. This parameter allows for accumulation of updates to Z̃ for L iterations
in between two successive θ updates. It is usually observed that allowing L to
be greater than 1 improves the algorithm’s performance.


• δ > 0 is a given small constant.
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• The projection operators πi : R→ R, i = 1,2 are defined as follows: For any


x ∈ R, π1(x)
�
= min(max(Lmin,x),Lmax) and π2(x)


�
= min(max(Tmin,x),Tmax),


respectively. Here, Lmin,Lmax are the bounds on the thresholds L1 and L2. Sim-
ilarly, Tmin,Tmax are the bounds on the threshold T1.


The complete algorithm is described as under.


Algorithm 13.1. The threshold tuning algorithm
Input:


• R, a large positive integer; θ0, initial parameter vector; δ > 0;�;
• UpdateTheta(), the stochastic update rule discussed in (13.9)
• Simulate(θ )→ X : the function that performs one time-step of the road traffic


simulation and output the single-stage cost value k(ŝn, ·) (cf. (13.1))
• UpdateAverageCost(): the function that updates the average cost estimate


Z̃(·) used in (13.9) and is specific to the TLC-algorithm.
• UpdateTheta(): the function that updates the threshold parameter θ according


to (13.9).


Output: θ ∗ �= θR.
θ ← θ0, n← 1
loop


X̂ ← Simulate(θ + δΔ )
UpdateAverageCost()
if n % L = 0 then


UpdateTheta()
end if
n← n+ 1
if n = R then


Terminate with θ .
end if


end loop


13.3.2 Traffic Light Control with Threshold Tuning


Here we describe two TLC algorithms, each based on graded thresholds L1,L2 and
T1. While the first algorithm is based on Q-learning and incorporates an enhanced
feature selection scheme as compared to [4], the second is a simple priority-based
TLC algorithm. The threshold tuning algorithm described in the previous section
is combined with each of these TLC algorithms using multi-timescale stochastic
approximation. The threshold parameter θ = (L1,L2,T1)


T is tuned on the slower
timescale while the policy is obtained on the faster timescale using one of the TLC
algorithms outlined below.
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13.3.2.1 Q-Learning TLC with an Enhanced Feature Selection Scheme


It turns out that with QTLC-FS, the curse of dimensionality cannot be fully con-
trolled for larger networks with high-dimensional states. To alleviate this problem,
the QTLC-FA algorithm described above made use of feature-based representations
and function approximation. We further improve the performance of the QTLC-FA
algorithm by incorporating a novel feature selection scheme that uses priorities to
intelligently combine the state and action features. In the QTLC-FA algorithm, the
feature vector contained a bit each for the congestion estimate, elapsed time estimate
and the sign configuration portion, respectively, for each lane of the road network.
While each of these attributes is important, the approximation architecture used in
the QTLC-FA algorithm did not take into account the dependence between features.
We incorporate dependence between the state and the action features while using
graded thresholds and also reduce the dimension of the feature vector by more than
half as compared to that for the QTLC-FA algorithm. We denote the Q-learning-
based TLC with the enhanced feature selection scheme by QTLC-FA-NFS.


The various aspects of the QTLC-FA-NFS algorithm, for instance the function
approximation architecture, the Q-learning update rule remain the same as that de-
scribed for the QTLC-FA algorithm. The key difference is in the choice of features
which is explained below.


The features in the QTLC-FA-NFS algorithm are chosen as described below: Let


σsn,an = (σ1(n), . . . ,σK(n))
T , (13.10)


where the procedure for selection of feature value σi(n) corresponding to lane i is
explained in Table. 13.1.


Table 13.1 Feature selection (σi(n)) table for lane i


State Action Feature


qi(n)< L1 and ti(n)< T1
RED 0


GREEN 1


qi(n)< L1 and ti(n)≥ T1
RED 0.2


GREEN 0.8


L1 ≤ qi(n)< L2 and ti(n)< T1
RED 0.4


GREEN 0.6


L1 ≤ qi(n)< L2 and ti(n)≥ T1
RED 0.6


GREEN 0.4


qi(n)≥ L2 and ti(n)< T1
RED 0.8


GREEN 0.2


qi(n)≥ L2 and ti(n)≥ T1
RED 1


GREEN 0


The feature selection scheme is graded and assigns a value for each lane based on
whether the queue length on the lane is below L1, is between L1 and L2, or is above
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L2, on whether the elapsed time is below T1 or above it and also on whether the sign
configuration indicates a RED or GREEN light for the lane. For instance, if both
queue length and elapsed time are above the “highest” threshold levels for the lane,
then an action of GREEN would result in a feature value of 0 and an action of RED
would result in the value 1. In essence, this choice indicates that the TLC algorithm
should attempt to switch this lane to green. On the other hand, if both queue length
and elapsed time are below the “lowest” threshold level for the lane, then the feature
value chosen is just the opposite, i.e., a 0 for RED and 1 for GREEN, implying that
it is better to keep this lane red. The feature values corresponding to other decision
choices are appropriately graded.


The threshold tuning algorithm (13.9) is combined with the sign configuration
policy from QTLC-FA-NFS through multiple time-scale recursions. The recursions
on the faster timescale in the case of QTLC-FA-NFS-TT algorithm are as follows:
Let {s̃n,n≥ 0} denote a state-valued process that depends on both the tunable policy
as well as the tunable parameter θ̃l , l ≥ 0, where θ̃l = θn + δ�(n) for n =


[
l
L


]
,


and updates of θn ≡ (L1(n),L2(n),T1(n))T are governed according to (13.9). For
m = nL, . . . ,(n+ 1)L− 1,


Z̃(m+ 1) = Z̃(m)+ b(n)
(
k(s̃m, âm)− Z̃(m)


)
, (13.11a)


ω(m+ 1) = ω(m)+ b(n)σs̃m,âm(k(s̃m, âm)+ γ min
v∈A (s̃m+1)


ω(m)Tσs̃m+1,v


−ω(m)Tσs̃m,âm). (13.11b)


The step-size sequences a(n) and b(n),n ≥ 0 satisfy the standard assumptions for
multi-timescale algorithms, i.e.,


∑
n


a(n) =∑
n


b(n) =∞,∑
n
(a(n)2 + b(n)2)< ∞,a(n) = o(b(n)).


The action âm in (13.11a)-(13.11b) is chosen to be the one that minimizes ωT
mσs̃m,v


over all v ∈A (s̃m).
Note that one could combine the QTLC-FA algorithm with the threshold tuning


algorithm in a similar manner and we denote the resulting multi-timescale algorithm
by QTLC-FA-TT. The difference between QTLC-FA-TT and QTLC-FA-NFS-TT is
that the underlying sign configuration policy is derived from QTLC-FA for the former
and QTLC-FA-NFS for the latter. The rest of the algorithm, including the update rule
for the faster recursion (13.11a)-(13.11b), hold for QTLC-FA-TT as well.


13.3.2.2 Priority-Based TLC


The sign configuration policy is a graded threshold-based policy that assigns differ-
ent priorities to different policy levels. The thresholds here are on the queue lengths
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(say L1 and L2) and elapsed times since the last switch over of lights to red (say T1)
on individual lanes. The cost assigned to each lane is decided based on whether the
queue length on that lane is below L1, is between L1 and L2, or is above L2 at any
instant and also on whether the elapsed time is below T1 or above it. For instance,
if both queue length and elapsed time are above the “highest” threshold levels (L2


and T1, respectively) on a given lane, then the policy assigns the highest priority
to that lane. The priority assignment for any lane i of the road network based on
the queue length qi and elapsed time ti is shown in Table. 13.2. The policy then se-
lects the sign configuration with the maximum (over all feasible sign configurations)
sum of lane priority values. In essence, the TLC algorithm flushes the traffic on
lanes with long waiting queues, while also giving higher priority to lanes that have
been waiting on a red signal for a long time. This helps to combine efficiency with
fairness.


Table 13.2 Priority assignment for each lane in the TLC policy


Condition Priority value
qi < L1 and ti < T1 1
qi < L1 and ti ≥ T1 2
qi ≥ L1 and qi < L2 and ti < T1 3
qi ≥ L1 and qi < L2 and ti ≥ T1 4
qi ≥ L2 and ti < T1 5
qi ≥ L2 and ti ≥ T1 6


As with the previous TLC algorithms, we combine the threshold tuning algo-
rithm (13.9) with PTLC to obtain the PTLC-TT algorithm. The state-valued pro-
cess {ŝn,n ≥ 0} in this case under the priority-based policy described above de-
pends on the tunable parameter sequence θ̂l = θn + δ�(n),n ≥ 0, where θn ≡
(L1(n),L2(n),T1(n))T ,n ≥ 0 are updated according to (13.9). The faster timescale
recursions here are given as follows: For m = nL, . . . ,(n+ 1)L− 1,


Z̃(m+ 1) = Z̃(m)+ b(n)(k(ŝm, âm)− Z̃(m)). (13.12)


The action âm above is selected in state ŝm based on the priority assignment policy
(described above), i.e., select the sign configuration that has the maximum sum of
priority values (where the maximum is over all feasible sign configurations) and
switch the lanes in the chosen sign configuration to green.


The convergence analysis of the threshold tuning algorithm under standard as-
sumptions proceeds along the lines of the one-measurement SPSA algorithm with
Hadamard matrix-based perturbations, discussed in Section 5.5.5. The reader is re-
ferred to Theorem 5.11, which provides a complete proof of convergence of the
one-measurement SPSA algorithm with Hadamard Matrix Perturbations.
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13.3.3 Summary of Experimental Results


Performance of the threshold tuning algorithm, described in Section 13.3, was stud-
ied in conjunction with three TLC algorithms that incorporate graded thresholds.
These include the Q-learning based algorithms - QTLC-FA and QTLC-FA-NFS,
and the priority-based scheme PTLC, respectively. Comparisons drawn were be-
tween the tuned variants of the TLC algorithms against their counterparts that in-
volved fixed thresholds (no tuning). We show here the results of some representative
experiments on a ten-junction corridor network. The ten-junction corridor consists
of 22 edge nodes (where traffic is generated), 10 junctions with traffic lights, 31
roads, with each being 4 lanes wide and when full can house upto 1500 vehicles.
The cardinality of the state-action space in this case is of the order of 1090.


Figures 13.2(a) – 13.2(b) show plots comparing PTLC, QTLC-FA and QTLC-
FA-NFS algorithms with their tuning counterparts on a ten-junction corridor. It can
be observed from the results that incorporating the threshold tuning algorithm re-
sults in significant gains for all the TLC algorithms, with the QTLC-FA-NFS algo-
rithm showing the best overall performance. Further, the parameter θ was also seen
to converge to the optimal threshold value for all the TLC algorithms.
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Fig. 13.1 A Ten-Junction Corridor Network - used for our experiments
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Fig. 13.2 Performance Comparison of TLC Algorithms with their tuning counterparts on a
Ten-Junction Corridor Network
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13.4 Concluding Remarks


In this chapter, we applied reinforcement learning and simultaneous perturbation
methods to the problem of traffic signal control. We described Q-learning with func-
tion approximation for traffic light control. Later, we also studied an application of
one-measurement SPSA with Hadamard matrix perturbations for finding the opti-
mal threshold values in any graded threshold-based TLC algorithm. The combina-
tion of the threshold tuning algorithm with the Q-learning-based TLC algorithms
as well as a simple priority-based scheme was found to result in significant perfor-
mance improvements, in comparison to the TLC algorithms without tuning.
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Chapter 14
Communication Networks


14.1 Introduction


Simultaneous perturbation methods that we have discussed in the earlier chapters
have been found to be useful in the area of communication networks where often the
performance metrics depend on certain parameters and one is interested in finding
the optimal parameters. Many times, one is interested in optimizing steady-state
performance in these settings. Hence, the simultaneous perturbation approaches for
the long-run average cost objective play a significant role. Apart from being efficient
and scalable, a distinct advantage with these algorithms is that they are independent
of the technology and protocols used and hence are widely applicable over a large
range of settings.


We consider mainly three different problems in the area of communication net-
works here. The first problem deals with the random early detection (RED) adaptive
queue management scheme for the Internet. The original paper on RED by Floyd
[10] proposed a fixed set of parameters for the scheme regardless of the network and
traffic conditions. A problem with traditional RED that has been reported in several
papers is that of massive queue oscillations. Using our techniques, it is observed
that these oscillations dramatically diminish to almost zero variances in the aver-
age queue sizes. This problem is dealt with in detail in Section 14.2, and is based
on [16, 6].


The second problem that we consider here deals with the problem of finding
the optimal retransmission probabilities for the slotted Aloha multi-access com-
munication system [2]. The slotted Aloha protocol prescribes a fixed probability
of retransmission for packets that are involved in a collision in a previous slot.
In particular, colliding packets attempt retransmission in all subsequent slots af-
ter collision has taken place with a certain ‘retransmission’ probability until suc-
cessful transmission. The standards, however, specify that these probabilities be
held fixed regardless of the network and traffic conditions (including the number
of transmitting nodes). We study applications of our techniques on this problem
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in Section 14.3. The approach and methodology here follow [15] that is in turn
based on [4].


Finally, the third problem deals with the issue of dynamic pricing in the Inter-
net. Pricing is regarded as an effective tool to control congestion and achieve qual-
ity of service (QoS) provisioning for multiple differentiated levels of service. We
consider the problem of pricing for congestion control in the case of a network
of nodes with multiple queues and multiple grades of service, and develop certain
graded feedback control policies over which using the simultaneous perturbation
algorithms, one obtains the optimal such policies. This part is mainly based on [26].
An important feature when using the approaches developed in the earlier chapters
is that they almost always result in significant performance gains over other ap-
proaches that do not use these methods. Section 14.5 then provides the concluding
remarks.


14.2 The Random Early Detection (RED) Scheme for the
Internet


This section deals with the application of the simultaneous perturbation approaches
to the RED flow control scheme and is based on [16, 6].


14.2.1 Introduction to RED Flow Control


Enhancing network performance has emerged as a major challenge for today’s in-
ternet applications given the large volumes of traffic that flows. Various adaptive
queue management techniques have been proposed to tackle growing congestion.
An important scheme in this direction is the random early detection (RED) [10].
RED uses a weighted average queue length metric as a measure of congestion. Fur-
ther, it uses two threshold levels, a maximum and a minimum threshold (maxth and
minth), to segregate buffers into three regions of low, medium and high conges-
tion intervals. The weighting parameter (wq) used to compute the weighted average
is typically chosen to be much less than 1. Further, a certain “max-probability”
parameter (maxp) is chosen. The basic idea in this scheme is as follows: The
weighted average queue length is computed each time a packet arrives. This is
then compared with the two threshold levels to determine whether the level of
congestion is in the aforementioned low, medium or high ranges. If the conges-
tion level is inferred as low (i.e., the weighted average queue length is below the
minimum threshold), the arriving packet is not dropped. On the other hand, if the
congestion level is high (i.e., the weighted average queue length is above the max-
imum threshold), the arriving packet is dropped. Finally, if the congestion level is
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found to be in the medium range, packets are dropped with a certain probability
parameter p that increases linearly with the number of packets dropped (until it
reaches maxp).


The idea behind using a weighted average queue length as opposed to instan-
taneous queue length for detecting congestion is to reduce oscillations that would
otherwise result in the system. On the other hand, the regular average queue length
(i.e., the one computed by assigning the same weight to each observation, and which
is the inverse of the total number of observations till that instant) is far less suscep-
tible to large variations in instantaneous queue length than the weighted average
queue length (when the number of packets over which the average has been taken is
fairly large). Nevertheless, a problem that has been consistently observed with RED
is of large oscillations in the weighted average queue behaviour. As such, the param-
eters wq, minth, maxth and maxp have been considered fixed in the original scheme
regardless of the network and traffic conditions. This results in poor performance of
the scheme. Hence, one needs to tune the parameters in a way as to achieve opti-
mal performance. Various techniques have been proposed for tuning the parameters
and many of them are heuristic in nature [9]. Simultaneous perturbation-based ap-
proaches have been proposed in [24] and [16]. In [24], a robust SPSA update is used,
where the idea is that in order to reduce oscillations in the scheme, one uses the sign
of the increment in the update rather than the increment itself. While this results in
an interesting alternative, it still does not fully remove the oscillations in the scheme.
The algorithms proposed in [16], on the other hand, are geared towards solving
a stochastic constrained optimization problem by using the barrier and penalty
function methods and incorporate Newton-based updates. The latter schemes are
seen to dramatically reduce the queue oscillations in RED. Our treatment here
is based entirely on [16]. A proof of convergence of these algorithms has been
provided in [6].


14.2.2 The Framework


The aim here is to tune the parameters in a way as to stabilize with a high probability
the weighted average queue length (qav) near a given target threshold denoted Q∗.
The weighted average queue length as such evolves in the following manner: Let
qav(n) denote the weighted average queue length as seen by the nth arriving packet.
Then,


qav(n) = (1−wq)qav(n− 1)+wqqinst(n),


where 0 < wq < 1 is the weighting factor and qinst(n) is the instantaneous
queue length seen by the nth arriving packet. Let θ denote the 4-dimensional
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parameter θ =(wq,maxp,minth,maxth)
T . The optimization problem can now be cast


as follows:


min
θ


f (θ ) = (Eqav−Q∗)2


s.t P[qav ≤ Q∗] ≥ α . (14.1)


Here, qav denotes the steady state average queue length and Eqav denotes its ex-
pected value. The objective function aims at bringing the mean steady-state average
queue length (Eqav) near the target Q∗. The constraint specifies that the probability
of qav being less than or equal to Q∗ should not drop below a given α ∈ (0,1) that in
turn can be chosen in a way as to comply with any specific demands on the traffic.
Through a proper choice of Q∗, one can maximize throughput while at the same
time minimize delays and reduce packet losses, thereby controlling congestion and
providing a good quality of service (QoS) to the various flows in the network. We
make the following assumptions:


Assumption 14.1. Both the mean E(qav) and the variance Var(qav) of the av-
erage queue length are twice differentiable and have bounded third derivatives
w.r.t. the parameter θ .


Assumption 14.2. E[qav] has a nonlinear dependency on the RED parameters.
Hence, E[qav] = f1(θ ), where f1 is some nonlinear function.


Assumption 14.3. The average queue length, qav for given θ has a normal
distribution with mean E(qav) and variance Var(qav) i.e., qav ∼ N(Eqav,
Var(qav)).


Assumption 14.1 is a technical requirement to utilize second-order parameter
updation techniques directly. As a consequence of Assumption 14.2, standard
nonlinear programming techniques can be applied to the optimization problem. As-
sumption 14.3 is also a technical requirement that aids in converting the proba-
bilistic constraint into a deterministic one [22]. Note here that since the weighted
average queue length process qav(n),n≥ 0 evolves using a fixed weighting parame-
ter wq, one can expect that under certain conditions, the steady-state average queue
length qav will have most of its probability mass concentrated in a narrow range
around Eqav. Assumption 14.3 has been made only to help formulate the problem
in a standard nonlinear programming framework. The requirement on the distri-
bution of qav being normally distributed may, however, be replaced by the more
realistic requirement of the same being distributed as per the truncated normal
distribution.


Now note that one can rewrite f (θ ) = (Eqav−Q∗)2 as f (θ ) = q̂2 +Q∗2−2Q∗q̂,
where q̂ = Eqav. Further, the constraint P(qav ≤Q∗)≥ α can also be reduced using
Assumption 14.3 as follows:







14.2 The Random Early Detection (RED) Scheme for the Internet 261


P


(
qav−Eqav√


Var(qav)
≤ Q∗ − q̂


σ̂


)
≥ α, (14.2)


where σ̂ =
√


Var(qav) =
√


Eq2
av− (Eqav)2. From Assumption 14.3,


qav−Eqav√
Var(qav)


∼ Normal(0, 1).


Hence, from (14.2),


Q∗ − q̂≥ σ̂ Φ−1(α),


where Φ−1(α) is the inverse of the standard Gaussian c.d.f. evaluated at α . Thus,
(14.2) is analogous to


C3 σ̂ + q̂ ≤ C4 , or that


C4 − C3 σ̂ − q̂ ≥ 0, (14.3)


where C3 = Φ−1(α) and C4 = Q∗, respectively. Thus, the problem in revised form
is the following:


min
θ


(
q̂2 +C1−C2q̂


)
s.t C4−C3σ̂ − q̂≥ 0, (14.4)


where C1 =Q∗2 and C2 = 2Q∗. Two approaches, the barrier and the penalty function
methods, are now incorporated for the solution of this problem. These approaches
are first explained below.


14.2.2.1 The Barrier Function Method


This method [12] adds the logarithm of the constraints as the penalty term to the
objective function. The minimization problem with the relaxed objective is given as
under.


Find min
θ


B(θ ;b) = q̂2 +C1−C2q̂− b log[C4−C3σ̂ − q̂]. (14.5)


One solves the problems (14.5) for a sequence of values for b= bk, bk ↓ 0 (cf. [19]).
A second-order parameter update technique is used for solving (14.5). The gradient
and Hessian of B(θ ;b) can be evaluated as below. Representing the 4-dimensional
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parameter θ as θ = (θ1, θ2, θ3, θ4)
T , the gradient ∇θB of B(θ ; b) is obtained as


follows : For i = 1,2,3,4 and b = bk,


∇θi B = 2 q̂ q̂
′
θi
− C2 q̂


′
θi
+ bk


(C3 σ̂
′
θi
+ q̂


′
θi
)


(C4 − C3 σ̂ − q̂)
, (14.6)


Further, the Hessian ∇2
θB of B(θ ; b) is obtained as follows : For i, j ∈ {1,2,3,4},


we have


∇2
θi,θ j


B = 2 q̂ q̂
′′
θi,θ j


+ 2(q̂
′
θi
)2 − C2 q̂


′′
θi,θ j


+ bk


⎡
⎣ (C3σ̂


′′
θi,θ j


+ q̂
′′
θi,θ j


)(C4−C3σ̂ − q̂)+ (C3 σ̂
′
θi
+ q̂


′
θi
)2


(C4−C3σ̂ − q̂)2


⎤
⎦ , (14.7)


14.2.2.2 The Penalty Function Method


The second approach employed is the penalty method to solve the optimization
problem (14.4). Here, the penalty term is taken to be a quadratic function of the
constraints [23]. The optimization problem with the relaxed objective obtained afer
absorbing the constraints is given by:


min
θ


P(θ ;r) = q̂2 + C1 − C2q̂ +
1
2r


(C4−C3σ̂ − q̂)2. (14.8)


One solves here a sequence of unconstrained minimization problems (14.8) corre-
sponding to values of r = rk, rk ↑∞ (cf. [19]). The gradient∇θP is given as follows:
For i = 1,2,3,4 and r = rk, we have


∇θiP = 2q̂q̂
′
θi
−C2q̂


′
θi
− 1


rk


[
(C4−C3σ̂ − q̂)(C3σ̂


′
θi
+ q̂


′
θi
)
]
. (14.9)


Also, the Hessian ∇2
θP of P(θ ; b) is obtained as follows: For i, j ∈ {1,2,3,4},


we have


∇2
θi,θ j


P = 2 q̂ q̂
′′
θi,θ j


+ 2(q̂
′
θi
)2 − C2 q̂


′′
θi,θ j


− 1
rk


[
(C3 σ̂


′′
θi,θ j


+ q̂
′′
θi,θ j


)(C4 − C3 σ̂ − q̂)− (C3 σ̂
′
θi
+ q̂


′
θi
)2
]
, (14.10)
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14.2.3 The B-RED and P-RED Stochastic Approximation
Algorithms


In order to apply Newton-based algorithms using the barrier and penalty function
methods, one requires estimates of the derivatives of quantities such as q̂ and σ̂
that involve steady-state expectations (see Chapter 10). Thus, the relationships of
these quantities with θ are not analytically known. A way out is to use multi-
timescale stochastic approximation. Let Bi and Pi denote the ith sample observations
of the barrier and penalty objective functions obtained either through real network
observations or simulation of quantities q̂, q̂2 and σ̂ . For given θ and b (resp. r),
let Bi (resp. Pi) be i.i.d. We thus need to perform the optimization in (14.5)-(14.8)
under only the available sample observations and without any model information
being known. The objective functions B(θ ;b) and P(θ ;r) are estimated from the
sample observations Bi, Pi, i = 1,2, . . . as


B(θ ;b) = lim
n→∞


1
n


n


∑
i=1


Bi, P(θ ;r) = lim
n→∞


1
n


n


∑
i=1


Pi.


Let [θi,min,θi,max], θi,min < θi,max, correspond to the constraint interval for param-


eter θi, i = 1, . . . ,4. Thus θ takes values in the set C
�
= ∏4


i=1[θi,min,θi,max]. Let
Γi : R → [θi,min,θi,max] defined by Γi(x) = max(min(x,θi,max),θi,min) denote the
projection operator. Let {Δ(n)} and {Δ̂(n)} be two {±1}4-valued perturbation se-
quences with Δ(n) = (Δ1(n), . . . ,Δ4(n))T and Δ̂(n) = (Δ̂1(n), . . . , Δ̂4(n))T , respec-
tively, that are generated using the Hadamard matrix-based construction described
in Chapter 5.5.2.1.


Let δ1, δ2 > 0 be given small constants. Consider four parallel simulations that
are, respectively, governed by parameters θ (n)− δ1Δ(n), θ (n)+ δ1Δ(n), θ (n)−
δ1Δ(n)+ δ2Δ̂ (n), and θ (n)+ δ1Δ(n)+ δ2Δ̂(n). Let {q−(n)}, {q+(n)}, {q−+(n)}
and {q++(n)}, respectively, denote the instantaneous queue length processes asso-
ciated with these simulations. Let {a(n)}, {b(n)}, {c(n)} and {d(n)} correspond to
four step-size sequences that satisfy


∑
n


d(n) =∑
n


b(n) =∑
n


c(n) =∑
n


a(n) = ∞, (14.11)


∑
n


(
d(n)2 + b(n)2 + c(n)2 + a(n)2)< ∞, (14.12)


a(n) = o(c(n)), c(n) = o(b(n)) and b(n) = o(d(n)). (14.13)


14.2.3.1 The B-RED Algorithm


We now describe the B-RED algorithm that incorporates the estimates of the barrier
function. For all w ∈ {−,+,−+,++}, i, j = 1, . . . ,4,
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Zw
q (n+ 1) =(1− d(n))Zw


q (n)+ d(n)qw
av(n) (14.14)


Zw
q2(n+ 1) =(1− d(n))Zw


q2(n)+ d(n)(qw
av(n))


2 (14.15)


σ̂w(n) =(Zw
q2(n)− (Zw


q (n))
2)1/2 (14.16)


q̂
′
i(n+ 1) =(1− b(n))q̂


′
i(n)+ b(n)Gi(Zq(n)) (14.17)


σ̂
′
i (n+ 1) =(1− b(n))σ̂


′
i (n)+ b(n)Gi(σ̂ (n)) (14.18)


q̂
′′
j,i(n+ 1) =(1− c(n))q̂


′′
j,i(n)+ c(n)Hj,i(Zq(n)) (14.19)


σ̂
′′
j,i(n+ 1) =(1− c(n))σ̂


′′
j,i(n)+ c(n)Hj,i(σ̂(n)) (14.20)


θi(n+ 1) =Γi


(
θi(n)− a(n)(λ̂n)


−1∇̂iB
)
. (14.21)


We now explain the various expressions used above:


• In (14.21), ∇̂iB = 2q̂(n)q̂′i(n) −C2q̂′i(n) +b(C3σ̂ ′i (n)+ q̂′i(n)) /(C4−C3σ̂(n)−
q̂(n)) estimated from (14.5) where q̂(n) = 1


2(Z
+
q (n) + Z−q (n)) and σ̂(n) =


1
2 (σ̂


+(n)+ σ̂−(n)).
• In (14.21), λ̂n is obtained as per the procedure of [28] as explained below:


LetΠn≡ diag
[
λ1,n, · · · ,λq,n,λq+1,n, · · · ,λ4,n


]
, where λi,n, i = 1, · · · ,4 are eigen-


values of ∇̂2
θ(n)B, such that λi,n > λi+1,n, ∀i = 1, . . . ,4. Further, λq,n > 0 , and


λq+1,n ≤ 0, for q ∈ {1, · · · ,4}. Now set λ̂q,n = ηλq−1,n, λ̂q+1,n = ηλ̂q,n, · · · ,
λ̂4,n =ηλ̂3,n, whereη =(


λq−1,n
λ1,n


)q−2. If all λ j,n > 0, j∈{1, . . . ,4}, let λ̂ j,n = λ j,n.


Now λ̂n denotes the geometric mean λ̂n = [λ1,nλ2,n · · ·λq−1,nλ̂q,nλ̂q+1,n · · · λ̂4,n]
1
4 .


• In (14.14)-(14.15), Zw
q (n) and Zw


q2(n) are the estimates of Eqw
av and E(qw


av)
2,


respectively.
• In (14.17), Gi(Zq(n)) = (Z+


q (n) −Z−q (n))/(2δΔi(n)) is an estimate of the ith
component of the gradient of Eqav.


• In (14.19), Hj,i(Zq(n)) = (4δ1δ2)
−1[(� j(n)�̂i(n))−1 + (�i(n)�̂ j(n))−1]


[Z++
q (n) −Z+


q −Z−+q +Z−q ] is an estimate of the (i, j)th component of the Hes-
sian of Eqav.


• In (14.18), (14.20), Gi(σ̂(n)), Hj,i(σ̂ (n)) are similarly the gradient and Hessian
estimates for (Var(qav))


1/2.


Remark 14.1. The algorithm presented above is a second-order method where nei-
ther the Hessian update is projected to the space of positive definite and symmetric
matrices nor is the inverse of the latter (projected Hessian) computed. Instead, one
computes the eigen-values of the Hessian update and projects them in a way as to
make them positive (in case they are not). Next the inverse of the geometric mean
of these (projected) eigen-values is used in place of the Hessian inverse in the algo-
rithm. This method has been proposed in [28] as an efficient alternative to regular
Newton methods.
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Remark 14.2. As with the multi-timescale algorithms described in earlier chapters,
it is observed in [6] that an additional averaging over a certain number L > 1 of
epochs for the recursions (14.14)–(14.18) in between two successive updates of
the other (slower) recursions is seen to improve the empirical performance of the
scheme.


Remark 14.3. Note that while Gi(Zq(n)) and Gi(σ̂(n)) are true estimates of the gra-
dients of Eqav, (Var(qav))


1/2 (see Chapter 7), however, Hj,i(Zq(n)), Hj,i(σ̂(n)) turn
out to be biased estimates of the Hessians of the associated quantities because the
bias terms in the Hessians do not cancel when Hadamard matrix perturbations are
used. Note that in Chapter 7 [21] a similar four-simulation estimate of the Hessian
has been presented that incorporates randomized perturbations. Such an estimate
is seen to be asymptotically unbiased unlike the estimate above where the biases
in the Hessian estimate may not become asymptotically negligible. This, however,
does not affect the analysis as the overall scheme still converges to a local mini-
mum. A Hadamard matrix-based construction for both the gradient and the Hessian
has been used in these algorithms as it is seen to exhibit significant improvements
in empirical performance.


14.2.3.2 The P-RED Algorithm


The P-RED algorithm is obtained in a similar manner with the only change being
the use of ∇̂iP in place of ∇̂iB in (14.21) that can be estimated from (14.8).


14.2.3.3 A Sketch of Convergence


Let for any bounded and continuous function v : R→R,


Γ̂i(v(y)) = lim
0<η→0


(
Γi(y+ηv(y))−Γi(y)


η


)
, i = 1, . . . ,4.


Corresponding to B-RED, consider the system of ODEs: For i = 1, . . . ,4,


θ̇i = Γ̂i(−(λ̂θ )−1∇θiB). (14.22)


The stable fixed points of (14.22) lie in the set KB = {θ ∈C | Γ̂i ((λ̂θ )−1 ∇θiB) = 0,
i = 1, . . . ,4}. For η > 0, let KηB denote the η-neighborhood of KB.


Theorem 14.1. Given η > 0, there exists a δ̂ > 0, such that for all δ1, δ2


∈ (0, δ̂ ], the parameters θ (n), n ≥ 0 given by the algorithm B-RED converge
to KηB with probability one.
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Proof. (Sketch) The proof of convergence of (14.14)-(14.20) proceeds as with other
multi-timescale schemes, see Chapter 7. Hence consider (14.21). Let P(∇̂2


θ(n)B)


denote the spectral radius of ∇̂2
θ(n)B, i.e., the maximum of the magnitudes of the


eigenvalues of ∇̂2
θ(n)B. Then by Proposition A.15 of [1], we have that P(∇̂2


θ(n)B)≤
‖∇̂2


θ(n)B‖. Note also that sup
n
‖∇̂2


θ(n)B‖ < ∞. This follows since all the updates


(14.14)-(14.20) are uniformly bounded as they are convex combinations of uni-
formly bounded quantities in these recursions. Hence supn λ̂n < ∞ w.p. 1. Further,
from construction, supn λ̂n > 0. Also, since the eigenvalues of ∇̂2


θ(n)B are uniformly
continuous functions of the elements of this matrix, these converge as θ (n) → θ
for some θ ∈ C (since then ∇̂2


θ(n)B→ ∇̂2
θB). Let λ̂θ denote the geometric mean of


the projected eigenvalues of ∇̂2
θB. Then ∞ > supθ∈C λ̂θ > 0. Now the first ODE in


(14.22) corresponds to the recursion (14.21). Because of the projection to a compact
set, (14.21) is uniformly bounded w.p. 1. The rest now follows as in Chapter 7. ��
Remark 14.4. The convergence of the P-RED algorithm follows along exactly the
same lines as for the B-RED algorithm and similar conclusions as those of Theo-
rem 14.1 continue to hold.


14.2.4 Summary of Experimental Results


Results of experiments over different networks with multiple nodes have been pre-
sented in [16]. In particular, the experiments were conducted using the ns2.26
network simulator [13] by changing the router code. In fact, the standard RED
code implemented over the router in ns2.26 was replaced by the code for the B-
RED and P-RED algorithms. The four-simulation algorithm was implemented us-
ing a single simulation run on the simulation platform as described below: First,
data averaging is performed for the perturbed parameters corresponding to the
parameter (θ (0)− δ1Δ(0)) for the first L packet arrivals (cf. Remark 14.2). For
the next L arrivals, data averaging with parameter (θ (0) + δ1Δ(0)) is conducted.
Subsequently, the same is done for (θ (0)− δ1Δ(0) + δ2Δ̂(0)) and finally for
(θ (0)+ δ1Δ(0)+ δ2Δ̂(0)). At the end of 4L packet arrivals, the parameter θ is up-
dated and then the next cycle of data averaging over 4L packet arrivals is performed.
Thus, the algorithms spend majority of the time in on-line data averaging which is
a simple operation. Because of the sequential implementation procedure described
above, the B-RED and P-RED algorithms are amenable to online implementation
in a real network scenario, involving only real data and no simulated outcomes. The
value of L was selected to be 64 in the experiments. At the start of the simulations,
the algorithms are set in the active state.


Detailed experimental comparisons have been shown in [16] between B-RED
and P-RED algorithms with various other well-studied algorithms in the literature,
over different network topologies and settings, as well as traffic parameters. The
performance was also studied under both (a) given load conditions as well as (b)
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dynamically increasing loads. The B-RED and P-RED algorithms not only result
in good performance by yielding low delays and high throughput but also rapidly
stabilize the oscillations in the average queue lengths in all settings (even under
dynamically increasing loads). This was much unlike other algorithms in the litera-
ture, many of which seem to yield large oscillations. The simultaneous perturbation
methods are seen to be highly useful in such settings.


14.3 Optimal Policies for the Retransmission Probabilities in
Slotted Aloha


In this section, we study the application of the smoothed functional algorithm for
the problem of optimizing the retransmission probabilities for the slotted Aloha
multi-access communication protocol. We formulate the problem as a parameter-
ized stochastic differential equation (SDE) and then find the optimal parameter tra-
jectory using a smoothed functional algorithm. The material in this section is based
on [15, 4].


14.3.1 Introduction to the Slotted Aloha Multiaccess
Communication Protocol


The slotted Aloha multiple access communication scheme [2] is an efficient algo-
rithm for bursty traffic. It divides time into slots of fixed size and each node can
send at most one packet at the beginning of each timeslot. We consider a network
with N transmitting nodes sending packets on a common broadcast channel. Packets
arrive at each node independently with probability p. All packets are assumed to be
of equal size and which is the same as the slot length. We assume that there is no
buffer available at any of the nodes, i.e., at most one packet can be sent on the chan-
nel in any slot by a given node. A new packet received in the current slot at a node is
transmitted in the immediate next slot. A packet arriving at a node when a transmis-
sion from that node is in progress is dropped, i.e., it immediately leaves the system.
A transmission is successful if only one packet is transmitted in a slot. Collision
occurs if two or more packets are transmitted in the same slot. Colliding packets
are considered backlogged and each such packet is retransmitted with probability q
at the beginning of each subsequent slot (by the corresponding nodes that are also
referred to as ‘backlogged nodes’) until such packets are retransmitted successfully.
Note that a collision results in at least two nodes (those that transmitted the collid-
ing packets) becoming backlogged at the end of the slot in which the collision took
place. New packets can thus only be admitted at unbacklogged nodes. At the end of
each slot, the channel broadcasts to each node whether zero, one, or more than one
packets were transmitted during the previous slot. The channel as such is assumed
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to be error free. For instance, if only one packet is transmitted during a slot, it is
successfully received.


14.3.2 The SDE Framework


Let K(n) denote the number of backlogged nodes (0≤ K(n)≤ N) at the beginning
of the nth slot. Each of these (backlogged) nodes transmits a packet in the nth slot
with probability q independent of the other nodes. The remaining u(n) = N−K(n)
nodes are unbacklogged in the nth slot and transmit a packet in the slot if one (or
more) packets arrived during the previous slot at these nodes. Note that K(n),n≥ 0
satisfies the update rule


K(n+ 1) = K(n)+A(n)− In, (14.23)


where A(n) is the number of new arrivals admitted to the system (aggregated over
all nodes) in the nth slot and In is the indicator random variable


In = 1 if transmission in the nth slot is successful.


0 otherwise


It is clear from the above that K(n),n≥ 0 is a discrete time Markov chain.
Under the identification XN(t) ≡ K([Nt])/N where [Nt] denotes the integer part


of Nt, it is argued in [14] that for a large but finite number N of users, the behaviour
of the system can be approximated by the following SDE:


dXN(t) = μ(XN(t))dt +
1√
N
σ(XN(t))dW (t), (14.24)


where the drift and the diffusion terms μ(·) and σ(·), respectively, are given by


μ(XN(t)) = N p(1−XN(t))


− (N p(1−XN(t))+NqXN(t))exp(−N p(1−XN(t))−NqXN(t)), (14.25)


σ2(XN(t)) = (N p)2(1−XN(t))2 +N p(1−XN(t))


− (N p(1−XN(t))−NqXN(t))exp(−N p(1−XN(t))−NqXN(t)). (14.26)


In (14.24), W (·) denotes the one-dimensional Brownian motion. It is important to
note that both the drift and the diffusion terms, i.e., μ(XN(t)) and σ(XN(t)), respec-
tively, depend on the parameter q. Thus, we explicitly consider the parameterization
of these terms and the resulting parameterized SDE takes the following form:


dXN(t) = μ(XN(t),q)dt +
1√
N
σ(XN(t),q)dW (t), (14.27)
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with μ(Xm(t),q) and σ(Xm(t),q) defined according to (14.25) and (14.26), respec-
tively. In [15], two different cost formulations, the expected finite horizon cost as
well as the long-run average cost, have been considered. We focus here on the ex-
pected finite horizon cost structure.


14.3.2.1 The Expected Finite Horizon Cost


Let [0,T ] for some 0 < T < ∞ be the interval over which we consider the evo-
lution of the SDE (14.27). Let ḡ : [0,T ]×R → R represent the associated cost
function. Let


J̄Xm
0
(q(·)) �= E


[∫ T


0
ḡ(t,X(t))dt | Xm(0) = Xm


0


]
. (14.28)


Here, q(t) ∈ [0,1] is the retransmission probability prescribed by the trajectory q(·)
at time t ∈ [0,T ]. The objective is to find a function q∗ : [0,T ]→ R with q∗(t) ∈
[0,1], ∀t ∈ [0,T ] that minimizes (14.28) over all functions q : [0,T ]→ R, given the
initial state Xm


0 .
For computational purposes, we shall consider a suitable discretization of the


SDE (14.27) and recast the problem in the discrete time framework.


14.3.2.2 The Discretized Problem


Let T = Mh for some M > 0, where h is a small time element. The Euler-Milstein
discretization of the SDE (14.27) [11, pp.340-343] corresponds to:


XN
j+1 = XN


j + μ(XN
j ,q j)h+


1√
N
σ(XN


j ,q j)
√


hZj+1


+
1


2N
σ ′X (X


N
j ,q j)σ(XN


j ,q j)h(Z
2
j+1− 1), (14.29)


where σ ′X (·, ·) is the partial derivative of σ(·, ·) with respect to the first argument
(X). Also, q j ≡ q( jh) is the retransmission probability parameter at instant jh and
Zj+1, j ≥ 0 are independent N(0,1)-distributed random variables.


Let g j(XN
j ) ≡ ḡ( jh,XN( jh)), j = 1, . . . ,M be Lipschitz continuous functions.


Given the initial state XN
0 of the SDE, the aim in the discretized setting is to find


parameters q0, q1, . . ., qM−1 ∈ [0,1] that minimize the finite horizon cost


JXN
0
(q0, . . . ,qM−1)


�
= EXN


0


[
M


∑
j=1


g j(X
N
j )


]
h. (14.30)
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The quantity h (the slot length) is a constant and does not play a role and hence can
be dropped from (14.30). Thus, the final form of the discretized objective is


JXN
0
(q0, . . . ,qM−1)


�
= EXN


0


[
M


∑
j=1


g j(X
N
j )


]
. (14.31)


14.3.3 The Algorithm


The algorithm incorporates two step-size schedules a(n),b(n),n ≥ 0 such that


a(n) = o(b(n)). More generally, these schedules satisfy Assumption 3.6. Let q(n)
�
=


(q0(n), . . . ,qM−1(n))T denote the parameter trajectory at instant n. Let β > 0 be a
small constant. Also, let ηi(n),n ≥ 0, i = 0,1, . . . ,M− 1 be independent N(0,1)-


distributed random variables and let η(n) �= (η0(n), . . . ,ηM−1(n))T , n ≥ 0. Gener-


ate two independent SDE trajectories X+(n)
�
= {X+


0 (n),X+
1 (n), . . . ,X+


M−1(n)} and


X−(n) �= {X−0 (n),X−1 (n), . . . ,X−M−1(n)} that are, respectively, governed by the pa-
rameter trajectories or vectors q+(n) = q(n)+ βη(n) and q−(n) = q(n)− βη(n).
The algorithm is as follows: ∀ j = 0, . . . ,M− 1,


Yj(n+ 1) =(1− b(n))Yj(n)+ b(n)
η j(n)


2β


M−1


∑
i= j


(gi(X
+
i (n))− gi(X


−
i (n))),


(14.32)


q j(n+ 1) =Γ (q j(n)− a(n)Yj(n)). (14.33)


The algorithm prescribes a retransmission probability q j(n) at the nth iteration in
the jth stage. The value of this parameter affects the evolution of the system from
the jth stage onwards. Consider the ODE


q̇(t) = (Γ̃ (−∇1JXN
0
(q(t))), . . . ,Γ̃ (−∇MJXN


0
(q(t))))T , (14.34)


where for any y ∈ R and a bounded, continuous function v : R→ R,


Γ̃ (v(y)) = lim
η→0


(Γ (y+ηv(y))−Γ (y))/η .


The stable fixed points of this ODE lie within the set


K
�
= {θ ∈ [0,1]M | (Γ̃ (−∇1JXN


0
(θ )), . . . ,Γ̃ (−∇MJXN


0
(θ )))T = (0,0, . . . ,0)T}.


Given ε > 0, let K ε denote the ε-neighborhood of K .
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Theorem 14.2. Given ε > 0, there exists a β̂ > 0, such that for all β ∈ (0, β̂ ], q(n)=
(q0(n),q1(n), . . . ,qM−1(n))T → Kε as n→ ∞ with probability one.


Proof. Using a standard two-timescale argument, one can let q j(n) ≡ q j, n =
0,1, . . . ,M− 1 when analyzing the faster recursion (14.32). Now {Mj(p), p ≥ 1},
j ∈ {0,1, . . . ,M− 1} defined according to


Mj(p) =
p


∑
n=1


b(n)(
η j(n)


2β


N


∑
i= j


(gi(X
+
i (n))− gi(X


−
i (n)))


−E[
η j(n)


2β


N


∑
i= j


(gi(X
+
i (n))− gi(X


−
i (n))) |F (n− 1)]),


can be seen to be martingale sequences, where F (k) = σ(q j(n), η j(n), X+
j (n),


X−j (n), n≤ k, j = 0,1, . . . ,M− 1), k ≥ 1, is the associated filtration. Since gi(·) are
Lipschitz continuous functions,


‖ gi(x) ‖ − ‖ gi(0) ‖≤‖ gi(x)− gi(0) ‖≤ L ‖ x ‖,


where L > 0 is the Lipschitz coefficient for the function gi(·). Thus,


‖ gi(x) ‖≤ K̄(1+ ‖ x ‖),


where K̄ = max(‖ gi(0) ‖,L)> 0. This together with the square summability of the
sequence b(n),n ≥ 0 and the fact that the fourth moment of the N(0,1) random
variable is finite implies that the quadratic variation processes of the above mar-
tingales are almost surely convergent and by the martingale convergence theorem
(Theorem B.2), Mj(p), p ≥ 0, j = 0,1, . . . ,M− 1 are almost surely convergent as
well. Consider now the following system of ODEs along the faster timescale: For
j = 0,1, . . . ,M− 1,


Ẏj(t) = D j
β JX0(q)−Yj(t), (14.35)


where D j
β JX0(q) = E[


η j
2β (J


j
X0
(q+βη)− J j


X0
(q−βη))], with J j


X0
(q̂) = EXN


0[ M
∑


i= j
gi(XN


i )
]
, for q̂ = q+ βη or q̂ = q− βη , respectively. Here, q = (q0,q1, . . . ,


qM−1)
T is the trajectory (or vector) of re-transmission probabilities over the M


stages and η = (η0,η1, . . . ,ηM−1)
T is the M-dimensional vector of independent


N(0,1)-random variables. One can now show that almost surely ‖ Yj(n)−D j
β JX0


(q(n)) ‖→ 0 as n → ∞. From Taylor’s expansions of J j
X0
(q(n) + βη(n)) and


J j
X0
(q(n)− βη(n)) around q(n), it is easy to see that ‖ D j


β JX0(q(n))− ∇ jJ
j
X0


(q(n)) ‖→ 0 as β → 0 almost surely. We thus obtain


‖ Yj(n)−∇ jJ
j
X0
(q(n)) ‖→ 0 as n→ ∞ and β → 0, (14.36)


almost surely.
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Finally, consider the slower timescale recursion (14.33). In lieu of the above, one
can rewrite (14.33) as follows: ∀ j = 0,1, . . . ,M− 1,


q j(n+ 1) = Γ (q j(n)− a(n)∇ jJ
j
X0
(q(n))+ a(n)ξ2(n)), (14.37)


where (because of (14.36)), ξ2(n) = (∇ jJ
j
X0
(q(n))−Yj(n)) → 0 as n → ∞ and


β → 0. The ODEs associated with (14.37) correspond to q̇ j(t) = Γ̃ (−∇ jJ
j
X0
(q(t))),


j = 1, . . . ,M, for which K is the set of asymptotically stable attractors with
V (q) = JX0(q) as the associated strict Lyapunov function. The claim follows from
the Kushner-Clark theorem (Theorem E.1). ��


14.3.4 Summary of Experimental Results


In [15], results of experiments with varying number of nodes and the net arrival
rate (λ = N p) are shown. The discretization constant h is chosen as 0.01 and the
total number of epochs is M = 40. The performance is measured in terms of the
fraction of backlogged nodes and the average throughput. Two results of two sets of
experiments have been shown in [15]. In the first of these, λ is varied for a given
number (N = 200) of nodes. It is observed here that as λ is increased, the fraction of
backlogged nodes increases as well while the throughput decreases. This happens
because of an increase in collisions that result from a higher value of λ .


In the second set of experiments, for a fixed value of λ (λ = 0.4), the number
of nodes N is varied from 100 to 500. It is interesting to observe that in this case
(as the number of nodes is increased while keeping the net arrival rate constant),
the throughput increases while the fraction of backlogged nodes decrease. This is
possibly because for fixed λ , a higher value of N results in a lower value of p.


These results point to the need to dynamically adapt the retransmission probabil-
ity parameter in a slotted Aloha multi-access communication system for improved
performance. Similar enhancements in the case of other multi-access communica-
tion protocols such as CSMA, CSMA/CD, etc. can be made along similar lines.


14.4 Dynamic Multi-layered Pricing Schemes for the Internet


In this section, we describe the problem of finding a dynamic optimal pricing
scheme in the presence of multiple queues and multiple grades of service. We con-
sider a class of multi-layered price feedback policies and apply the SPSA algo-
rithm with a Hadamard matrix construction for finding an optimal policy within the
prescribed class of policies. This portion is based on [26].
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14.4.1 Introduction to Dynamic Pricing Schemes


Network pricing has been recognized as an effective means for managing conges-
tion and providing better quality of service to the internet users. There is a large
body of work on internet pricing where the emphasis is on the network adjusting the
prices of its resources based on the demand and the users adapting their transmission
rates suitably to optimize a certain utility function. The idea in the differentiated ser-
vices architecture is to suitably divide the available bandwidth amongst the various
competing flows.


The work conserving Tirupati Pricing (TP) scheme is proposed in [17]. A
stochastic approximation-based pricing scheme is used in [27] for a single-node
system. This scheme increases the price if congestion is above a certain threshold
and lowers it otherwise. In [20], the TP pricing is observed to perform better than
another pricing scheme that goes by the name of Paris Metro Pricing (PMP) over
a single-node model. A stochastic approximation-based adaptive pricing methodol-
ogy is considered in [8] to bring the congestion along any route to a certain pre-
scribed level. Unlike [27], the objective function there depends on the price and not
the actual congestion levels. However, prices for the entire routes and not of individ-
ual queues along the route are considered. The latter scenario incorporating prices
for individual queues along a route is considered in [25] and is seen to result in per-
formance improvements as it allows for greater flexibility since packets from one
service grade at one link can shift to another service grade on another link.


In [26], the TP pricing scheme is adopted and a state-dependent multi-layered
pricing scheme is considered that clusters together states in each queue into various
levels with prices assigned to each such level. Thus, the queue manager charges a
price to an incoming packet joining that queue on the basis of the level of congestion
within the queue. The material in this section is based on [26].


14.4.2 The Pricing Framework


Consider a network having N links with the ith link providing Ji possible grades
of service to the packets. The transmission capacity on the ith link is assumed to
be μi. There is a separate queue for each service grade. Thus, there are a total of
Ji queues on the ith link and packets desiring a particular grade of service join the
corresponding queue. Let bi, j denote the buffer size in the jth queue on the ith link.
A route r is denoted by a sequence of tuples r := [(i1, j1), (i2, j2), · · · , (inr , jnr )]
comprising nr links (i1, . . . , inr ) and the corresponding service grades ( j1, . . . , jnr )
used on each of these. The service grades could be different for different links on
a route. Let K be the total number of routes. Each of the Ji queues at link i can be
serviced according to any policy that provides the required QoS, e.g., round robin,
weighted fair queuing, etc.


Let Zi j(t) denote the queue length or buffer occupancy of the jth queue on the ith
link at time t. Let Zr(t) ∈ℜ denote the total congestion along route r at time t, i.e.,
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the sum of Zi j(t) over all queues on the route r. Thus,


Zr(t) =
nr


∑
k=1


Zik jk (t).


Let Zi(t)
�
= [Zi1(t), . . . ,ZiJi (t)] denote the vector of queue lengths of all queues


on the ith link. The state of the network at time t shall be denoted by Z(t)
�
=


[Z1(t), . . . ,ZN(t)]. In order to meet the desired QoS, the network service provider
selects an operating point Z∗ for the vector of congestion levels, where Z∗ =
[Z∗1 , . . . ,Z


∗
K ] with each Z∗i = [Z∗i1, . . . ,Z


∗
iJi
].


Let pi(t) = [pi1(t), . . . , piJi(t)] be the vector of prices for unit traffic on link i at
time t, where pi j(t) denotes the price (for unit traffic) on link i for service class j
at time t. The vector of prices pi(t) is posted by the service provider for each link
i = 1,2, . . . ,N. The price vector pi(t) is updated periodically every T time instants
(for given T > 0) using an SPSA-based algorithm that is described below.


Each user sends packets along the route with the least cost. The cost function
is assumed to be an increasing function of both price and congestion. Further, the
users strictly follow the routes prescribed by their associated cost functions. Let
Cs(x,Zi j(t), pi j(t)) denote the cost to user s for sending x units of traffic on link i
using service grade j. It is assumed that instantaneous values of the quantities Zi j(t)
and pi j(t) for all tuples (i, j) along a route are known to the users. Let


ji = arg min
j∈{1,...,Ji}


Cs(x,Zi j(t), pi j(t))


denote the least cost service grade on the ith link for user s at time t. The user s
would then select its least cost route corresponding to


arg min
r=[(1, j1),...,(nr, jnr )]


nr


∑
i=1


Cs(x,Zi ji(t), pi ji(t)),


assuming 1 denotes the source node and nr the destination node. The minimum
above is taken over all feasible routes from the source to destination for the sth user.
An example of a cost function Cs(·, ·, ·) is


Cs(x,Zi j(t), pi j(t)) = x(pi j(t)−Us(x,Zi j(t))),


where Us(x,Zi j(t)) is the utility of user s in sending x units of traffic using the jth
service grade on the ith link when the congestion level there is Zi j(t). In general both
the cost function and the utility are different for different users. Thus, the optimal
routes for two users sending packets from the same source to the same destination
node under identical conditions of congestion could, in general, be different. For
instance, a user transmitting real-time video might be more interested in getting a
low-delay path to transmit packets even if it means that he needs to pay more for it.
On the other hand, another user transmitting data packets might be more interested
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in getting a low price path to send packets even if it takes a longer time for packets
to reach their destination.


14.4.3 The Price Feed-Back Policies and the Algorithms


We first describe two different price feed-back policies here.


14.4.3.1 SPSA-Based Link Route Pricing (SPSA-LRP)


Let Z1∗
i j and Z2∗


i j be two queue length thresholds with Z1∗
i j > Z2∗


i j . Let


pi j(n+ 1) =


⎧⎨
⎩
θ 1


i j(n) if B≥ Zi j(n)≥ Z1∗
i j


θ 2
i j(n) if Z2∗


i j < Zi j(n)≤ Z1∗
i j


θ 3
i j(n) if 0≤ Zi j(n)< Z2∗


i j .
(14.38)


14.4.3.2 SPSA-Based Weighted Average Link Route Pricing
(SPSA-WA-LRP)


pi j(n+ 1) =


⎧⎪⎨
⎪⎩
θ 1


i j(n) if B≥ Ẑi j(n)≥ Z1∗
i j


θ 2
i j(n) if Z2∗


i j < Ẑi j(n)≤ Z2∗
i j


θ 3
i j(n) if 0≤ Ẑi j(n)< Z2∗


i j ,


(14.39)


where Ẑi j(n) denotes the ‘weighted average’ congestion in the jth queue at the ith
link at instant nT , n≥ 0, and is obtained recursively as


Ẑi j(n+ 1) = (1−wz)Ẑi j(n)+wzZi j(n), (14.40)


with 0 < wz < 1 being a given small constant. The idea behind using a ‘weighted
average’ queue length in the pricing policy SPSA-WA-LRP as opposed to the regu-
lar queue length in SPSA-LRP is to reduce oscillations that would otherwise result
in frequent adjustments to the price levels. This is in the spirit of the RED algorithm
(cf. Section 14.2).


Remark 14.5. Using an appropriate choice of the threshold levels Z1∗
i j and Z2∗


i j for
the jth queue on the ith link, one can effectively classify congestion in the queue
at any instant as being in the ‘low’, ‘medium’ or ‘high’ ranges. The policies de-
scribed above would then assign a different price depending on the aforementioned
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congestion levels. In general, more layers for the pricing policies (14.38) and (14.39)
may be used.


14.4.3.3 The Cost Formulation


Let θi j
Δ
= (θ 1


i j,θ 2
i j ,θ 3


i j) denote the ‘price’ parameter vector associated with the jth
queue on the ith link, and θ = (θi j , j = 1, . . . ,Ji, i = 1, . . . ,N). The components of
these parameters correspond to the price levels obtained through one of the policies
SPSA-LRP or SPSA-WA-LRP. Let θ take values in the set C ⊂ R


d , where d = 3γ ,
with γ being the dimension of Z(t). The set C has the form C = [A,A]d , where
0 < A < A < ∞.


Let {Z(t), t ≥ 0} be an ergodic Markov process for any given θ ∈ C. In many
interesting scenarios, Z(t), t ≥ 0, may not be Markov but the appended process
{(Z(t),W (t)), t ≥ 0} is Markov, where {W (t), t ≥ 0} is a suitable additional process.
The methodology and analysis here easily extend to the latter case as well as long
as {(Z(t),W (t)) , t ≥ 0} is ergodic for any given θ .


No specific model for the demand is assumed except that at any instant, the de-
mand may depend on the current congestion (i.e., state) and price (i.e., parameter)
levels. Further, given the current congestion and price levels, the demand at the cur-
rent instant is independent of the previous values of the demand.


Controllers at individual queues update the prices associated with their queues
based on local congestion information pertaining to their queues. Let hi j(·) denote
the single-stage cost associated with link-service grade tuple (i, j) that depends at
any instant t only on the state Zi j(t) of the queue. Let queue lengths be observed
every T instants of time, for some fixed T > 0, and based on this information, prices


at individual queues are instantly updated. Let Zi j(k)
Δ
= Zi j(kT ) denote the queue


length at the jth queue on the ith link at instant kT .
For any given θ ∈C, let


J(θ ) = ∑
j∈{1,...,Ji},
i∈{1,...,N}


Ji j(θ ), (14.41)


where Ji j(θ ) = lim
n→∞


1
n


n


∑
k=1


hi j(Zi j(k)).


The aim is to find a parameter θ ∗ ∈C that minimizes J(·).


14.4.3.4 The Algorithm


Let a(n),b(n),n ≥ 0 be two-step size sequences that satisfy Assumption 3.6. Let


δ > 0 be a given (small) constant. Let Δi j(n)
Δ
= (Δ1


i j(n),Δ2
i j(n),Δ3


i j(n)) be a vector
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of {±1}3-valued perturbations obtained via the one-simulation Hadamard matrix-
based construction described in Chapter 5.5.2.2.


Let the queue length process Zi j(n),n ≥ 0 of the jth queue on the ith link be
governed by the parameter sequence (θi j(n) + δΔi j(n)),n ≥ 0. Then, for all j =
1, . . . ,Ji; i = 1, . . . ,N;k = 1,2,3, we have


Yi j(n+ 1) =Yi j(n)+ b(n)(hi j (Zi j(n))−Yi j(n)) (14.42)


θ k
i j(n+ 1) =Γ


(
θ k


i j(n)− a(n)
Yi j(n)


δΔ k
i j(n)


)
. (14.43)


In the above, Yi j(n), n≥ 0 are quantities used to average the single-stage cost hi j(·)
in order to estimate Ji j(·). Also, Γ (·) is a projection operator that projects each price
update to the interval [A,A].


Consider now the following system of ODEs: For j = 1, . . . ,Ji; i = 1, . . . ,N,


θ̇i j(t) = Γ̂ (−∇Ji j(θi j(t)), (14.44)


where Γ̂ (·) is defined according to


Γ̂ (v(y)) = lim
γ↓0


(
Γ (y+ γv(y))−Γ (y)


γ


)
,


for any bounded and continuous function v(·). The stable fixed points of (14.44) lie
within the set M = {θi j | Γ̂ (∇Ji j(θi j)) = 0}. Let for given ε > 0, Mε denote the
ε-neighborhood of M. We have the following main convergence result:


Theorem 14.3. Given any ε > 0, there exists a δ0 > 0 such that for all δ ∈ (0,δ0],
θi j(n) converges as n→ ∞ to a point in Mε .


Proof. Follows from a standard two-timescale argument as in Chapter 5. ��


14.4.4 Summary of Experimental Results


The results of several experiments over a setting involving a four-node network have
been presented in [26]. All simulations were carried out using the network simulator
with each simulation run for one thousand seconds. Detailed performance compar-
isons were drawn between SPSA-LRP, SPSA-WA-LRP and an algorithm from [25]
that was, in turn, seen to be significantly better in comparison to [8]. Performance
comparisons between these algorithms were drawn in terms of both the throughput
and the delay metrics. Amongst the three algorithms, SPSA-LRP shows the best re-
sults followed by SPSA-WA-LRP. It is observed that SPSA-LRP exhibits a through-
put improvement in the range of 67-82 percent for all routes over the algorithm of
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[25], while SPSA-WA-LRP shows a similar improvement in the range of 34 to 69
percent. This happens because both SPSA-LRP and SPSA-WA-LRP use a combina-
tion of congestion-based feed-back control policies that are tuned using SPSA and
hence utilize network resources in a better manner as compared to the algorithm of
[25] that does not use any of the simultaneous perturbation approaches.


14.5 Concluding Remarks


We considered the applications of simultaneous perturbation approaches on
problems of control and optimization in communication networks. Specifically, we
studied the applications of these approaches on the following three problems: (a)
finding optimal parameters in the case of the RED scheme for the internet, (b) find-
ing optimal retransmission probabilities in the case of the slotted Aloha multi-access
communication protocol, and (c) finding optimal strategies for network pricing in
the internet.


The problem of RED flow control was formulated using a constrained nonlinear
programming framework. The barrier and penalty function objectives were used and
two multi-timescale Newton-based stochastic approximation algorithms that incor-
porated the Newton SPSA technique but with Hadamard matrix perturbations were
presented. These algorithms are seen to show significantly better performance when
compared with many other algorithms in the literature as they are seen to consider-
ably bring down the queue oscillations – a problem consistently reported in many
other studies. A different formulation of the RED problem has also been studied
in [24], where a ‘robust’ version of gradient SPSA has been developed. The idea
there is to replace the increment in the SPSA update with the sign of the same (i.e.,
+1 if the increment is positive, −1 if it is negative, and 0 otherwise). This helps in
bringing down the queue oscillations over regular RED but is not as effective as the
B-RED and P-RED schemes.


Next, the problem of finding the optimal retransmission probabilities in slotted
Aloha was formulated in the setting of parameterized SDEs over a finite horizon and
a gradient SF algorithm was used to find the optimal parameter trajectory. In [15],
the same problem for the long-run average cost objective has also been addressed.
The resulting algorithm in such a case results in a scalar (retransmission probabil-
ity) parameter. The slotted Aloha problem in a different setting (without an SDE
formulation) has also been studied in [7]. The regular gradient SPSA algorithm has
been incorporated there. However, traffic from sources is individually considered,
unlike [15] where the aggregate behaviour under a large number of sources is taken
into account using an SDE framework. Thus, the number of sources considered in
[7] is only of the order of a few tens, unlike [15] where the same is in the order of a
few hundreds.


Finally, the problem of internet pricing was studied using two classes of closed-
loop feedback policies that assigned price levels depending on the levels of con-
gestion. Whereas in SPSA-LRP, instantaneous congestion levels were considered,
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in SPSA-WA-LRP, weighted average queue lengths were considered for the pric-
ing levels. The latter policies are reminiscent of the RED flow control mechanism
and lead to less oscillations that would otherwise result from rapid price changes.
The one-simulation SPSA algorithm with Hadamard matrix perturbations was em-
ployed here and is seen to result in significantly better performance over the other
algorithms.


Simultaneous perturbation methods have been studied in various other applica-
tions in communication networks. For instance, in [3, 5], applications of SPSA to
available bit rate (ABR) flow control in asynchronous transfer mode (ATM) net-
works have been studied. Also, in [18], SPSA has been applied over the problem
of finding optimal slot assignment to slaves in bluetooth networks for both piconets
as well as scatternets. From these applications, it is clear that simultaneous pertur-
bation methods play a significant role in problems of performance optimization in
communication networks. An important characteristic of these methods is that they
are independent of the technology and protocols used, are scalable (as they can be
applied in high-dimensional settings), and hence are widely applicable.
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Part VI
Appendix







This part puts together five appendices on (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) a result on
convergence of projected stochastic approximation due to Kushner and Clark.Some
of the background material as well as the main results used in other chapters have
been summarized here.







Appendix A
Convergence Notions for a Sequence of Random
Vectors


We briefly discuss here the various notions of convergence for random vectors.
Let (Ω ,F ,P) denote the underlying probability space, where Ω is the sample
set, F the sigma field and P the probability measure, see for instance, [1] for
a good account of probability theory. Let Xn,n ≥ 0 denote a sequence of R


N–
valued random vectors on (Ω ,F ,P). Suppose X is another R


N–valued random
vector on (Ω ,F ,P). Further, let x ∈ R


N be an N-dimensional vector. Let FXn(·),
FX(·), n ≥ 0 denote the corresponding distribution functions associated with the
random vectors Xn, X , n≥ 0. Suppose Xn = (X1


n , . . . ,X
N
n )T , X = (X1, . . . ,XN)T and


x = (x1, . . . ,xN)T , respectively, where Xi
n, Xi, xi, i = 1, . . . ,N are R-valued. Then


FXn(x) = P(Xi
n ≤ xi, i = 1, . . . ,N) and FX(x) = P(Xi ≤ xi, i = 1, . . . ,N), respectively.


The following are standard notions of convergence:


1. Deterministic Convergence: We say that Xk → X as k→ ∞ deterministically
if Xk(w)→ X(w) as k→ ∞ for all w ∈Ω .


2. Uniformly: Xk → X uniformly as k→ ∞ if for all ε > 0 there exists an N > 1
such that ∀n≥ N,∀w ∈Ω , ‖Xk(w)−X(w)‖< ε .


3. Almost Sure (a.s.) or With Probability One (w.p.1) Convergence: We say
that Xk→ X as k→ ∞ almost surely (a.s.) or with probability one (w.p.1) if


P


(
w ∈Ω | lim


k→∞
‖ Xk(w)−X(w) ‖= 0


)
= 1.


4. Probabilistic or In Probability Convergence: We say that Xk → X as k→ ∞
probabilistically or in probability if


lim
k→∞


P(w ∈Ω |‖ Xk(w)−X(w) ‖≥ ε) = 0 ∀ε > 0.


5. Convergence in Lp: Let for p≥ 1,


Lp(Ω ,F ,P) = {X |E|X |p < ∞} ,
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denote a set of all RN-valued random variables on (Ω ,F ,P) which have finite
pth moment. We say that Xk→ X as k→ ∞ in Lp for p≥ 1, if


lim
k→∞


E (‖ Xk(w)−X(w) ‖p) = 0.


When p = 2, the Lp convergence is also referred to as mean-square conver-
gence.


6. In Distribution Convergence: We say that Xk→ X as k→ ∞ in distribution if


lim
k→∞


FXk(x) = FX(x) at all points x of continuity of FX(x).


7. Nearly uniformly: Xk → X nearly uniformly as k→ ∞ if ∀ε > 0,∃A ∈ F such
that P(A)< ε and on Ac,Xk→ X uniformly.


Theorem A.1 (Egorov). If Xk
a.s.−−→ X, then, Xk


n.u.−−→ X. The result is true for any
measure μ with μ(Ω)< ∞.


Lp P


a.s. n.u.


d


Always
|Xn| ≤ g ∈ L1


Fig. A.1 Relationship between the various notions of convergence. We use the following
abbreviations - a.s. to denote “almost surely”, n.u. for “nearly uniformly”, P for “convergence
in probability”, d for “convergence in distribution”, Lp for “convergence in Lp”.


A general relationship between the various notions of convergence is shown in Fig-
ure A.1. In the figure, a directed arrow from “A” to “B” i.e., A→ B indicates that
“A is stronger than B”. Further, we assume that a transitivity property holds in that
A→ B and B→ C implies that A→ C, even when an arrow from “A” to “C” is
not explicitly shown. Note that a.s. or w.p.1 convergence implies that there exists
a set of zero probability on which the said convergence does not hold. Determin-
istic convergence can be viewed as a special case of a.s. convergence as here the
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above zero-probability set is in fact empty. Also, while in Figure A.1, there is no
arrow between a.s. convergence and m.s. convergence, the former implies the latter
under certain conditions on the random vectors Xn,X , n ≥ 1. As an example, if the
said random vectors are uniformly bounded by a L1 function, then Lp convergence
follows from a.s. convergence.
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Appendix B
Martingales


As before, let (Ω ,F ,P) be a given probability space. Let {Fn} be a family of
increasing sub-σ−fields of F (also called a filtration), i.e.,


F0 ⊂F1 ⊂F2⊂ · · · ⊂Fn ⊂Fn+1 ⊂ ·· · ⊂F .


Definition B.1. 1. A sequence of R-valued random variables Xn,n ≥ 0 defined
on (Ω ,F ,P) is said to be a martingale w.r.t. the filtration {Fn} if each Xn is
integrable and measurable with respect to Fn.


2. Further,
E[Xn+1 |Fn] = Xn w.p.1 ∀n≥ 0. (B.1)


Definition B.2. A sequence of random variables Xn,n ≥ 0 as in Definition 1 is said
to be a submartingale w.r.t. the filtration {Fn} if the first part in Definition 1 holds.
In addition, the equality in (B.1) is replaced with “≥”.


Definition B.3. A sequence of random variables Xn,n ≥ 0 as in Definition 1 is said
to be a submartingale w.r.t. the filtration {Fn} if the first part in Definition 1 holds.
In addition, the equality in (B.1) is replaced with “≤”.


Many times, one identifies the martingale (alternatively, sub- or super-martingale)
with the sequence of tuples (Xn,Fn), n≥ 0 instead of just {Xn} itself.


Definition B.4. For a martingale sequence Xn,n ≥ 0, the sequence Mn+1, n ≥ 0 ob-
tained as Mn+1 = (Xn+1−Xn), n≥ 0 with M0 = X0, is called a martingale difference
sequence.


Note that
E[Mn+1 |Fn] = E[(Xn+1−Xn) |Fn]


= (E[Xn+1 |Fn]−Xn) = 0 w.p.1,


from (B.1).
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Definition B.5. A vector martingale (also many times referred to as a martingale) is
a sequence of RN−valued random vectors Xn = (X1


n , . . . ,X
N
n ) such that each of its


component processes Xi
n,n≥ 0 (i = 1, . . . ,N) is a martingale.


We recall the following important result due to Doob, see, for instance, [1, Theorem
3.2.2 on pp. 49].


Theorem B.1 (Doob decomposition). A submartingale (Xn,Fn),n ≥ 0, can
be decomposed as Xn = Yn +An, n≥ 0, where (Yn,Fn), n≥ 0, is a zero-mean
martingale and An,n ≥ 0 is a non-decreasing process, i.e., An ≤ An+1 almost
surely for all n ≥ 0. Further, An is Fn−1-measurable for all n ≥ 0, where
F−1 = {φ ,Ω}. This decomposition is almost surely unique.


There are various convergence results for martingales but the one that we often use
in this book is based on the convergence of the quadratic variation process associated
with the martingale Xn,n ≥ 0 (see below). Let Xn, n ≥ 0 be a square integrable
(scalar) martingale, i.e., it is a martingale for which E[X2


n ] < ∞ for all n ≥ 0. It is
easy to see that in this case, (X2


n ,Fn), n ≥ 0 forms a submartingale. Hence from
the Doob decomposition theorem (cf. Theorem B.1), it follows that X2


n = Yn +An,
n ≥ 0, where {Yn} and {An} satisfying the properties in Theorem B.1. It is easy to
see that


An =
n


∑
m=1


(
E
[
X2


m |Fm−1
]−X2


m−1


)
+E
[
X2


0


]


=
n−1


∑
m=0


E
[
(Xm+1−Xm)


2 |Fm


]
+E
[
X2


0


]
, (B.2)


∀n ≥ 0. As mentioned above, An,n ≥ 0 is called the quadratic variation process
associated with the martingale Xn,n ≥ 0.


Theorem B.2 (Martingale Convergence Theorem). Let (Xn,Fn), n≥ 0 be a
square-integrable martingale with An,n≥ 0 as its quadratic variation process.
Let A∞ = lim


n→∞An. Then {Xn} converges with probability one on the set {A∞ <


∞} and Xn = o( f (An)) on {A∞ = ∞} for every increasing f : [0,∞)→ [0,∞)
satisfying


∫ ∞
0
(1+ f (t))−2dt < ∞.


The proof of this result is available for instance on pp. 53-54 of [1] (cf. Theorem
3.3.4). Detailed treatments of martingales can be found, for instance, in the texts of
Breiman [2], Neveu [3] and Borkar [1].
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Appendix C
Ordinary Differential Equations


We begin with a definition of the O and o notation as this has been used at various
places the text.


Definition C.1. Let {an} and {bn} be two sequences of real numbers such that bn ≥
0,∀n.


1. We say an = O(bn) if there exists a constant L > 0 such that |an| ≤ Lbn for all
n.


2. We say an = o(bn) if lim
n→∞


an


bn
= 0.


Definition C.2. A function h : Rd→Rd is said to be Lipschitz continuous if ∃M >
0 such that


‖ h(x)− h(y) ‖≤M ‖ x− y ‖, ∀x,y ∈Rd.


The Gronwall inequality plays an important role in the proof of convergence of
stochastic approximation algorithms. We give the result below, whose proof can be
found in several texts, see for instance, Appendix B of [1].


Lemma C.1 (Gronwall inequality). For continuous functions f (·),g(·) ≥ 0
and scalars K1,K2,T ≥ 0,


f (t)≤ K1 +K2


∫ t


0
f (s)g(s)ds ∀t ∈ [0,T ], (C.1)


implies


f (t)≤ K1eK2
∫ T


0 g(s)ds, t ∈ [0,T ].


Consider the ODE given by


θ̇ (t) = L(θ (t)), θ (0) = θ0. (C.2)
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Definition C.3. The ODE (C.2) is said to be well-posed if starting from any θ (0) =
θ0, the trajectory θ (·) = {θ (t), t ≥ 0} of (C.2) is unique. Further, the map θ0→ θ (·)
is continuous.


Theorem C.2. A sufficient condition for (C.2) to be well-posed is if the function
L : RN →R


N is Lipschitz continuous.


Proof. See Theorem 5 on pp.143 of [1]. ��
Definition C.4. A closed set H ⊂ R


N is called an invariant set for the ODE (C.2)
if whenever the initial point θ (0) ∈ H, then θ (t) ∈ H for all t ≥ 0, i.e., if the ODE
trajectory is initiated in H, it stays in H for all time.


Definition C.5. A closed set H ⊂ R
N is called an attractor for the ODE (C.2) if


(i) H is an invariant set, and
(ii) there is an open set M containing H (i.e., M is an open neighborhood


of H) such that if the ODE trajectory is initiated in M, it stays in M and con-
verges to H.


Definition C.6. The largest possible open set M that is an open neighborhood of H
such that any ODE trajectory initiated in M stays in M and converges to H is called
the Domain of Attraction of H.


Given η > 0, let
Hη = {θ ∈ R


N |‖ θ − θ̄ ‖< η ,
denote the η-neighborhood of H, i.e., the set of all points within a distance η from
the set H.


Definition C.7. A closed invariant set H is Lyapunov stable if for any ε > 0, there
exists δ > 0 such that every trajectory initiated in Hδ stays in Hε for all time (i.e.,
if θ (0) ∈Hδ , then θ (t) ∈Hε for all t).


Definition C.8. A closed invariant set H is asymptotically stable if it is both Lya-
punov stable and an attractor.


Definition C.9. A closed invariant set H is globally asymptotically stable if H is
asymptotically stable and an attractor. All trajectories of the ODE in this case con-
verge to H. Thus, the domain of attraction of H when it is globally asymptotically
stable is RN .


The following theorem gives a criterion to verify asymptotic stability of the
set H.


Theorem C.3. The set H is asymptotically stable for the ODE (C.2) if one can find
a function V : RN → R such that the following hold:
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(i) V (θ )≥ 0 ∀θ ∈R
N,


(ii) There exists an open neighborhood M of H such that V (θ )→ ∞ as θ → ∂O
(i.e., the boundary of M),


(iii)
dV (θ (t))


dt
= ∇V (θ (t))T θ̇ (t) = ∇V (θ (t))T L(θ (t)) ≤ 0, ∀θ (·) ∈M.


In particular,
dV (θ (t))


dt
= 0 if and only if θ (t) ∈ H.


The following result on convergence of an ODE trajectory is due to Lasalle [3].


Theorem C.4 (Lasalle Invariance Theorem). Let H be the globally asymp-
totically stable attractor set for the ODE (C.2). Let V : RN → R be a func-
tion such that V (θ ) ≥ 0 ∀θ ∈ R


N. Further, V (θ ) → ∞ as ‖ θ ‖→ ∞ and
∇V (θ )T L(θ ) ≤ 0 ∀θ . Then any trajectory θ (·) must converge to the largest
invariant set contained in


{θ | ∇V (θ )T L(θ ) = 0}.


Definition C.10 ((T,Δ)-perturbation). Given T , Δ > 0, we call a bounded,
measurable y(·) : R+∪{0}→R


N , a (T,Δ)-perturbation of (C.2) if there exist
0 = T0 < T1 < T2 < · · · < Tr ↑ ∞ with Tr+1− Tr ≥ T ∀r and solutions θ r(t),
t ∈ [Tr,Tr+1] of (C.2) for r ≥ 0, such that


sup
t∈[Tr ,Tr+1]


‖ θ r(t)− y(t) ‖< Δ .


Again let H be the globally asymptotically stable attractor set for (C.2) and Hε


be the ε-neighborhood of H. The following result due to Hirsch [2] (Theorem 1,
pp.339) describes convergence to Hε of a function that closely approximates the
ODE trajectory.


Lemma C.5 (Hirsch Lemma). Given ε , T > 0, ∃Δ̄ > 0 such that for all Δ ∈
(0, Δ̄ ), every (T,Δ)-perturbation of (C.2) converges to Hε .
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Appendix D
The Borkar-Meyn Theorem for Stability and
Convergence of Stochastic Approximation


While there are various techniques to show stability of stochastic iterates, we review
below the one by Borkar and Meyn [2] (see also [1], Chapter 3) as it is seen to be
widely applicable in a large number of settings. They analyze the N-dimensional
stochastic recursion


Xn+1 = Xn + a(n)(h(Xn)+Mn+1),


under the following assumptions:


Assumption D.1.


(i) The function h : RN → RN is Lipschitz continuous and there exists a
function h∞ : RN →RN such that


lim
r→∞


h(rx)
r


= h∞(x),x ∈RN .


(ii) The origin in RN is an asymptotically stable equilibrium for the ODE


ẋ(t) = h∞(x(t)). (D.1)


(iii) There is a unique globally asymptotically stable equilibrium x∗ ∈RN for
the ODE D.1.


Assumption D.2. The sequence {Mn,Gn,n ≥ 1} with Gn = σ(Xi,Mi, i≤ n) is
a martingale difference sequence. Further for some constant C0 < ∞ and any
initial condition X0 ∈RN ,


E[‖Mn+1 ‖2| Gn]≤C0(1+ ‖ Xn ‖2), n≥ 0.
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Further, the step-sizes a(n),n≥ 0 satisfy


a(n)> 0∀n, ∑
n


a(n) = ∞, ∑
n


a(n)2 < ∞.


The main result of [2] (see Theorems 2.1(i)-2.2 of [2]) is the following:


Theorem D.1 (Borkar and Meyn Theorem). Suppose Assumptions D.1 and
D.2 hold. For any initial condition X0 ∈ RN, supn ‖ Xn ‖< ∞ almost surely
(a.s.). Further, Xn→ x∗ a.s. as n→ ∞.


[2] also contains a result for bounded step-size sequences (not tapering to zero).
However, for our purposes, we only require the result for diminishing step-sizes.
Assumptions D.1 and D.2 are seen to be satisfied in many cases, for instance, in
reinforcement learning algorithms.
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Appendix E
The Kushner-Clark Theorem for Convergence
of Projected Stochastic Approximation


We review here an important result due to Kushner and Clark [3] (cf. Theorem
5.3.1 on pp. 191-196 of [3]) that shows the convergence of projected stochastic
approximations. While the result, as stated in [3], is more generally applicable, we
present its adaptation here that is relevant to the setting that we consider.


Let C ⊂ RN be a compact and convex set and Γ : RN → C denote a projec-
tion operator that projects any x = (x1, . . . ,xN)


T ∈ RN to its nearest point in C.
Thus, if x ∈ C, then Γ (x) ∈ C as well. For instance, if C is an N-dimensional


rectangle having the form C =
N


∏
i=1


[ai,min,ai,max], where −∞ < ai,min < ai,max < ∞,


∀i = 1, . . . ,N, then a convenient way to identify Γ (x) is according to Γ (x) =
(Γ1(x1), . . . ,ΓN(xN))


T , where the individual operators Γi : R → R are defined by
Γi(xi) = min(ai,max,max(ai,min,x)), i = 1, . . . ,N.


Consider the following the N-dimensional stochastic recursion


Xn+1 = Γ (Xn + a(n)(h(Xn)+ ξn +βn)), (E.1)


under the assumptions listed below. Also, consider the following ODE associated
with (E.1):


Ẋ(t) = Γ̄ (h(X(t))). (E.2)


Let C (C) denote the space of all continuous functions from C to RN . The operator
Γ̄ : C (C)→ C (RN) is defined according to


Γ̄ (v(x)) = lim
η→0


(
Γ (x+ηv(x))− x


η


)
, (E.3)


for any continuous v : C→RN . The limit in (E.3) exists and is unique since C is
a convex set. In case this limit is not unique, one may consider the set of all limit
points of (E.3). Note also that from its definition, Γ̄ (v(x)) = v(x) if x ∈ Co (the
interior of C). This is because for such an x, one can find η > 0 sufficiently small so
that x+ηv(x)∈Co as well and hence Γ (x+ηv(x)) = x+ηv(x). On the other hand,
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if x ∈ ∂C (the boundary of C) is such that x+ηv(x) �∈C, for any small η > 0, then
Γ̄ (v(x)) is the projection of v(x) to the tangent space of ∂C at x.


Consider now the assumptions listed below.


Assumption E.1. The function h : RN →RN is continuous.


Assumption E.2. The step-sizes a(n),n≥ 0 satisfy


a(n)> 0∀n, ∑
n


a(n) = ∞, a(n)→ 0 as n→ ∞.


Assumption E.3. The sequence βn,n≥ 0 is a bounded random sequence with
βn→ 0 almost surely as n→ ∞.


Let t(n),n≥ 0 be a sequence of positive real numbers defined according to t(0) = 0


and for n ≥ 1, t(n) =
n−1


∑
j=0


a( j). By Assumption E.2, t(n) → ∞ as n → ∞. Let


m(t) = max{n | t(n)≤ t}. Thus, m(t)→ ∞ as t→ ∞.


Assumption E.4. There exists T > 0 such that ∀ε > 0,


lim
n→∞P


(
sup
j≥n


max
t≤T


∣∣∣∣∣
m( jT+t)−1


∑
i=m( jT )


a(i)ξi


∣∣∣∣∣≥ ε
)


= 0.


Assumption E.5. The ODE (E.2) has a compact subset K of RN as its set of
asymptotically stable equilibrium points.


[3, Theorem 5.3.1 (pp. 191-196)] essentially says the following:


Theorem E.1 (Kushner and Clark Theorem). Under Assumptions E.1–E.5,
almost surely, Xn→ K as n→ ∞.


Remark E.1. We comment here on the validity of Assumptions E.1–E.5. Note that
Assumptions E.1, E.2 and E.5 are essentially standard requirements. In particular,
the ODE (E.2) turns out to be well-posed as a consequence of Assumption E.1. The
requirement on the sequence of step-sizes summing to infinity in Assumption E.2
ensures that the algorithm does not converge prematurely since t(n)→ ∞ as n→
∞, even though the difference between successive time points (in the algorithm’s
trajectory) t(n)− t(n− 1)→ 0. Assumption E.5 holds because C is a compact set
and K being a closed subset of C is also compact.
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In the type of algorithms that we consider in this book, ξn will typically corre-
spond to the martingale difference term Mn+1. In such a case, the process Nn,n ≥ 0


defined according to N0 = 0 and Nn =
n−1


∑
m=0


ξm,n≥ 1 will correspond to a martingale


with respect to an appropriate filtration. If this martingale is convergent (that can
perhaps be shown using say a martingale convergence theorem based argument),
then Assumption E.4 can be seen to easily hold as well.


Finally, the sequence βn,n ≥ 0 in (E.1) will correspond in many cases to a mea-
surement error term. For instance, if say h(Xn) = −∇J(Xn), where Xn is the nth
parameter update and ∇J(Xn) is being estimated, i.e., is not known precisely, then
βn could correspond to the error in the gradient estimate. As an example, consider
the SPSA algorithm (with projection), see Chapter 5).


Xn+1 = Γ
(


Xn + a(n)


(
J(Xn− δ (n)Δ(n))− J(Xn+ δ (n)Δ(n))


2δ (n)
(Δ(n))−1


))
,


(E.4)
where Δ(n) = (Δ1(n), . . . ,ΔN(n))T with Δ j(n),n ≥ 0, j = 1, . . . ,N being inde-
pendent random variables with (say) Δ j(n) = ±1 w. p. 1/2. Also, (Δ(n))−1 =
(1/Δ1(n), . . . ,1/ΔN(n)). Now (E.4) can be rewritten in the form (E.1) with h(Xn) =
−∇J(Xn). Also,


ξn =
J(Xn− δ (n)Δ(n))− J(Xn + δ (n)Δ(n))


2δ (n)
(Δ(n))−1


−E


[
J(Xn− δ (n)Δ(n))− J(Xn + δ (n)Δ(n))


2δ (n)
(Δ(n))−1 |Fn


]
,


and


βn = E


[
J(Xn + δ (n)Δ(n))− J(Xn− δ (n)Δ(n))


2δ (n)
(Δ(n))−1 |Fn


]
−∇J(Xn),


respectively, where Fn = σ(Xm,m≤ n;Δ(m),m < n),n≥ 1. Assuming that δ (n)→
0, it can be seen that βn→ 0 as n→ ∞. Further, if one assumes in addition to As-


sumption E.2 that∑
n


(
a(n)
δ (n)


)2


<∞, then the martingale sequence
n−1


∑
m=0


a(m)ξm,n≥ 1


can be seen to be convergent. Assumption E.4 is seen to hold in such a case.


Remark E.2. Note that stability of the iterates (E.1) is guaranteed by the fact that
the operator Γ projects each iterate of (E.1) to the set C that is a compact subset
of RN . The result as stated in Theorem 5.3.1 of [3] is in fact more general than
that described in Theorem E.1. The latter however suffices for our purposes. In
applications where it is usually difficult to prove that the iterates of the stochastic
recursion are stable, projection is a commonly used technique to enforce stability of
the iterates. By choosing the constraint region C to be large enough, one can also
ensure in many cases, that C contains all the asymptotically stable attractors of the
unprojected ODE Ẋ(t) = h(X(t)). In such a case, it might actually be useful to apply
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a projection based scheme since then the algorithm would not spend its resources
in searching the portion of the parameter space that is known not to contain the
stable attractors. In the case when there are no stable fixed points of the unprojected
ODE that lie inside the constraint set C (i.e., in Co), the algorithm will converge
to a boundary point of C that is the closest to an asymptotically stable attractor of
the unprojected ODE. There could also be spurious fixed points that get introduced
because of the projection operation. All such points however lie on the boundary of
the constraint region C (see for instance pp. 79 of [4]).


Remark E.3. As described in Assumption E.5, the set K ⊂RN corresponds to the
set of asymptotically stable equilibria of the ODE (E.2). The set of fixed points,
say K̂, of the ODE (E.2) would contain K in addition to other fixed points that
would however be unstable. A stochastic approximation procedure would typically
converge to the set K̂. It has however been shown, for instance, in [2], [5] and [1]
(Chapter 4) that with a sufficiently rich noise sequence, the stochastic update in fact
converges to the stable attractor set and avoids the unstable portion of K̂ altogether.
Further, in practice, it is ususally the case that the stochastic algorithm converges
to the stable set (and not the unstable portion) even when no extra conditions are
imposed on the noise sequence.
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