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Preface

The area of stochastic approximation has its roots in a paper published by Robbins
and Monro in 1951, where the basic stochastic approximation algorithm was in-
troduced. Ever since, it has been applied in a variety of applications cutting across
several disciplines such as control and communication engineering, signal process-
ing, robotics and machine learning.

Kiefer and Wolfowitz, in a paper in 1952 (nearly six decades ago) published the
first stochastic approximation algorithm for optimization. The algorithm proposed
by them was a gradient search algorithm that aimed at finding the maximum of
a regression function and incorporated finite difference gradient estimates. It was
later found that whereas the Kiefer-Wolfowitz algorithm is efficient in scenarios
involving scalar parameters, this is not necessarily the case with vector parame-
ters, particularly those for which the parameter dimension is high. The problem that
arises is that the number of function measurements needed at each update epoch
grows linearly with the parameter dimension. Many times, it is also possible that
the objective function is not observable as such and one needs to resort to simula-
tion. In such scenarios, with vector parameters, one requires a corresponding (linear
in the parameter-dimension) number of system simulations. In the case of large or
complex systems, this can result in a significant computational overhead.

Subsequently, in a paper published in 1992, Spall proposed a stochastic approx-
imation scheme for optimization that does a random search in the parameter space
and only requires two system simulations regardless of the parameter dimension.
This algorithm that came to be known as simultaneous perturbation stochastic
approximation or SPSA for short, has become very popular because of its high
efficiency, computational simplicity and ease of implementation. Amongst other
impressive works, Katkovnik and Kulchitsky, in a paper published in 1972, also
proposed a random search scheme (the smoothed functional (SF) algorithm) that
only requires one system simulation regardless of the parameter dimension. Subse-
quent work showed that a two-simulation counterpart of this scheme performs well
in practice. Both the Katkovnik-Kulchitsky as well as the Spall approaches involve
perturbing the parameter randomly by generating certain i.i.d. random variables.
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The difference between these schemes lies in the distributions these perturbation
random variables can possess and the forms of the gradient estimators.

Stochastic approximation algorithms for optimization can be viewed as counter-
parts of deterministic search schemes with noise. Whereas, the SPSA and SF algo-
rithms are gradient-based algorithms, during the last decade or so, there have been
papers published on Newton-based search schemes for stochastic optimization. In a
paper in 2000, Spall proposed the first Newton-based algorithm that estimated both
the gradient and the Hessian using a simultaneous perturbation approach incorpo-
rating SPSA-type estimates. Subsequently, in papers published in 2005 and 2007,
Bhatnagar proposed more Newton-based algorithms that develop and incorporate
both SPSA and SF type estimates of the gradient and Hessian. In this text, we com-
monly refer to all approaches for stochastic optimization that are based on randomly
perturbing parameters in order to estimate the gradient/Hessian of a given objective
function as simultaneous perturbation methods. Bhatnagar and coauthors have also
developed and applied such approaches for constrained stochastic optimization, dis-
crete parameter stochastic optimization and reinforcement learning — an area that
deals with the adaptive control of stochastic systems under real or simulated out-
comes. The authors of this book have also studied engineering applications of the
simultaneous perturbation approaches for problems of performance optimization
in domains such as communication networks, vehicular traffic control and service
systems.

The main focus of this text is on simultaneous perturbation methods for stochas-
tic optimization. This book is divided into six parts and contains a total of fourteen
chapters and five appendices. Part I of the text essentially provides an introduc-
tion to optimization problems - both deterministic and stochastic, gives an overview
of search algorithms and a basic treatment of the Robbins-Monro stochastic ap-
proximation algorithm as well as a general multi-timescale stochastic approxima-
tion scheme. Part II of the text deals with gradient search stochastic algorithms for
optimization. In particular, the Kiefer-Wolfowitz, SPSA and SF algorithms are pre-
sented and discussed. Part IIT deals with Newton-based algorithms that are in partic-
ular presented for the long-run average cost objective. These algorithms are based on
SPSA and SF based estimators for both the gradient and the Hessian. Part IV of the
book deals with a few variations to the general scheme and applications of SPSA
and SF based approaches there. In particular, we consider adaptations of simulta-
neous perturbation approaches for problems of discrete optimization, constrained
optimization (under functional constraints) as well as reinforcement learning. The
long-run average cost criterion will be considered here for the objective functions.
Part V of the book deals with three important applications related to vehicular traf-
fic control, service systems as well as communication networks. Finally, five short
appendices at the end summarize some of the basic material as well as important
results used in the text.

This book in many ways summarizes the various strands of research on simul-
taneous perturbation approaches that SB has been involved with during the course
of the last fifteen years or so. Both HLP and LAP have also been working in this
area for over five years now and have been actively involved in the various aspects
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of the research reported here. A large portion of this text (in particular, Parts I1I-V
as well as portions of Part II) is based mainly on the authors’ own contributions to
this area. The text provides a compact coverage of the material in a way that both
researchers and practitioners should find useful. The choice of topics is intended to
cover a sufficient width while remaining tied to the common theme of simultaneous
perturbation methods. While we have made attempts at conveying the main ideas
behind the various schemes and algorithms as well as the convergence analyses, we
have also included sufficient material on the engineering applications of these al-
gorithms in order to highlight the usefulness of these methods in solving real-life
engineering problems. As mentioned before, an entire part of the text, namely Part
IV, comprising of three chapters is dedicated for this purpose. The text in a way
provides a balanced coverage of material related to both theory and applications.
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Part 1

Introduction to Stochastic Recursive
Algorithms



Stochastic recursive algorithms are one of the most important tools for problems
of stochastic optimization. In recent times, an important class of such algorithms
that are based on the simultaneous perturbation technique has become popular be-
cause of their superior computational time performance in converging to an opti-
mum point. This has resulted in a flurry of research activity on stochastic algorithms
that involve simultaneous perturbation.

This part of the book consists of three chapters. Chapter[] gives an introduction to
stochastic optimization problems and provides a motivation of where such problems
arise and why they are important. It also provides an overview of the remaining
chapters.

Chapter 2] discusses some of the well-known deterministic algorithms for opti-
mization. Stochastic recursive algorithms turn out to be the stochastic analogs of
these algorithms.

The basic stochastic recursive algorithm is the Robbins and Monro scheme. It is
found to be applicable in a wide variety of settings, in particular, stochastic optimiza-
tion. In Chapter 3] we discuss in detail the Robbins-Monro algorithm and analyze
its convergence. The Robbins-Monro scheme (so named after its inventors, Robbins
and Monro) is normally applicable when the objective function is an expectation
of a noisy cost objective. Many times, one is faced with a problem of optimizing a
long-run average cost objective in order to, say, optimize a steady-state system per-
formance. Multi-timescale stochastic approximation plays an important role in such
scenarios. We also present in Chapter[3] a general two-timescale stochastic recursive
scheme and present its convergence analysis under general conditions.



Chapter 1
Introduction

1.1 Introduction

Optimization methods play an important role in many disciplines such as signal
processing, communication networks, neural networks, economics, operations re-
search, manufacturing systems, vehicular traffic control, service systems and sev-
eral others. For instance, in a general communication network, a goal could be to
optimally allocate link bandwidth amongst competing traffic flows. Similarly, an
important problem in the setting of traffic signal control is to dynamically find the
optimal order to switch traffic lights at signal junctions and the amount of time that
a lane signal should be green when inputs such as the number of vehicles waiting at
other lanes are provided. In the case of a manufacturing plant, an important problem
is to decide the optimal order in which to allocate machine capacity for manufac-
turing various products on any day given the demand patterns for various products.
These are only a few specific instances of innumerable problems across various dis-
ciplines that fall within the broad category of optimization problems. A usual way
to model these problems analytically is by defining an objective or a cost function
whose optimum constitutes the desired solution. For instance, in the case of the traf-
fic signal control problem, a cost function could be the sum of queue lengths of
vehicles waiting across all lanes at a red signal intersection. Thus, an optimal signal
switching order would ensure that the sum of the queue lengths of waiting vehicles
is minimized and thereby traffic flows are maximized. In general, a cost function is
designed to penalize the less desirable outcomes. However, in principle, there can
be several cost functions that have the same (or common) desired outcome as their
optimum point. Suitably designing a cost objective in order to obtain the desired
outcome in a reasonable amount of time when following a computational procedure
could be a domain-specific problem. For instance, in the context of the traffic signal
control problem mentioned above, another cost objective with the same optimum
could be the sum of squared queue lengths of waiting vehicles instead of the sum of
queue lengths. Optimization problems can be deterministic or stochastic, as well as
they can be static or dynamic. We discuss this issue in more detail below.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 32
springerlink.com © Springer-Verlag London 2013
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A general optimization problem that we shall be concerned about for the most
part in this book has the following form:

Find 6™ that solves minJ(6), (1.1)
6cC

where J : Y — % is called the objective function, 0 is a tunable N-dimensional
parameter and C C %" is the set in which 6 takes values. If one has complete
information about the function J and its first and higher order derivatives, and about
the set C, then (II)) is a deterministic optimization problem. If on the other hand,
J is obtained as J(0) = E¢[1(6,&)], where E¢[-] is the expected value over noisy
observations or samples A(0,&) of the cost function with random noise &, and one
is allowed to observe only these samples (without really knowing J), then one is in
the realm of stochastic optimization. Such problems are more challenging because
of the added complexity of not knowing the cost objective J(-) precisely and to find
the optimum parameter only on the basis of the aforementioned noisy observations.

As we shall subsequently see, many times one resorts to search algorithms in
order to find an optimum point, i.e., a solution to (L.I). In stochastic optimization
algorithms, it is not uncommon to make a random choice in the search direction — in
fact most of our treatment will be centered around such algorithms. Thus, a second
distinction between deterministic and stochastic optimization problems lies in the
way in which search progresses - a random search algorithm invariably results in
the optimization setting being stochastic as well.

Suppose now that the objective function J has a multi-stage character, i.e., is of

N

the form J(6) = Y E[h;(X;)], where N denotes the number of stages and X; is the
i=1

state of an underlying process in stage i, i = 1,...,N. The state captures the most

important attributes of the system that are relevant for the optimization problem.

Further, h; denotes a stage and state-dependent cost function. Let 2 61,..., on)"
denote a vector of parameters 0;, j = 1,...,N and let X; depend on 6. The idea here
is that optimization can be done one stage at a time over N stages after observing the
state X; in each stage i. Here, the value 6; of the parameter in stage i has a bearing on
the cost of all subsequent stages i+ 1,...,N. This in short is the problem of dynamic
optimization. Approaches such as dynamic programming are often used to solve
dynamic optimization problems. Other manifestations of dynamic optimization, say
over an infinite number of stages or in continuous time also exist. In relation to the
above (multi-stage) problem, in static optimization, one would typically perform
a single-shot optimization where the parameters 60y, ..., 8y would be optimized all
at once in the first stage itself. Broadly speaking while in a dynamic optimization
problem with multiple stages, one makes decisions instantly as states are revealed,
in static optimization, there is no explicit notion of time or perhaps even state as all
decisions can be made at once.
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An important class of multi-stage problems are those with an infinite number of
stages and where the objective function is a long-run average over single-stage cost
functions. More precisely, the objective function in this case has the form

N
J(0) = lim %E N hi(X)| (1.2)

W= =i

where X; as before is the state in stage i that we assume depends on the parameter
0. An objective as (I.2) would in most cases not be analytically known. A usual
search procedure to find the optimum parameter in such problems would run into
the difficulty of having to estimate the cost over an infinitely long trajectory before
updating the parameter estimate, thereby making the entire procedure very tedious.

Another important class of optimization problems is that of constrained opti-
mization. Here, the idea is to optimize a given objective or cost function subject to
constraints on the values of additional cost functions. Thus consider the following
variation to the basic problem (L.I).

Find 0" for which J(6*) = glircl{J(G) |Gi(0) <a, i=1,...,p}. (1.3)
€

Here, G;(-) and oy, i = 1,..., p are certain additional cost functions and constants,
respectively, that constitute the functional constraints. In the context of the traffic
signal control problem where the objective function to be minimized is the sum of
queue lengths on the various lanes, constraints could be put for the traffic on the
side roads so that the main road traffic gets higher priority. For instance, a constraint
there could specify that the traffic signal for a side road lane can be switched to
green only provided the number of vehicles waiting on such a lane exceeds ten.
Similarly, in a communication network, the objective could be to maximize the av-
erage throughput. A constraint there could specify that the average delay must be
below a threshold. Another constraint could similarly be on the probability of packet
loss during transmission being below a small constant, say 0.01.

While for the most part, we shall be concerned with optimization problems of the
form (I.I)), we shall subsequently also consider constrained optimization problems
of the type (L3). The objective function (and also the constraint functions in the
case of (I.3)) will be considered to be certain long-run average cost functions.

We shall present various stochastic recursive search algorithms for these prob-
lems. Many of the stochastic search algorithms for optimization can be viewed as
stochastic (i.e., with noise) counterparts of corresponding deterministic search al-
gorithms such as gradient and Newton methods. In the setting of stochastic op-
timization, where the form of the objective function as well as its derivatives is
unknown, one needs to resort to estimation of quantities such as the gradient and
Hessian from noisy function measurements or else through simulation. A finite
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difference estimate of the gradient as proposed by Kiefer and Wolfowitz [18]] re-
quires a number of function measurements or simulations that is linear in the number
of parameter components. A similar estimate of the Hessian [[14] requires a number
of function measurements that is quadratic in the number of measurements or sim-
ulations. When the parameter dimension is large, algorithms with gradient/Hessian
estimators as above would be computationally inefficient because such algorithms
would update once only after all the required function measurements have been
made or simulations conducted. It is here that simultaneous perturbation methods
play a significant role. In a paper published in 1992, Spall presented the Simulta-
neous Perturbation Stochastic Approximation (SPSA) algorithm that estimated the
gradient of the objective function using exactly two function measurements (or sim-
ulations) made from perturbed values of the parameter, where each component of the
parameter is perturbed along random directions using independent random variates
most commonly distributed according to the Bernoulli distribution. A second well-
known simultaneous perturbation technique that in fact came before SPSA was the
smoothed functional (SF) scheme [17]. The idea in this scheme is some what sim-
ilar to SPSA, however, the form of the gradient estimator is considerably different
as perturbations that are distributed as per the Gaussian, Cauchy or uniform distri-
butions can be used. A basic format for the simultaneous perturbation technique is
described in Fig.[T.1l

Perturbation

——(O——| Propose 6 Simulate

Update 6

Fig. 1.1 Overall flow of a basic simultaneous perturbation algorithm.

During the course of the last ten to fifteen years, there has been a spurt of activity
in developing Newton-based simultaneous perturbation methods. In [27]] and [3]],
Newton-based analogs of the SPSA method were proposed. Further, in [4]], Newton-
based analogs of the SF algorithm have been proposed. We may mention here that
in this text, by simultaneous perturbation methods, we refer to the entire family
of algorithms that are based on either gradient or gradient and Hessian estimates
that are obtained using some form of simultaneous random perturbations. While for
the most part, we shall be concerned with static optimization problems, we shall
also consider later, the problem of dynamic stochastic control or of decision making
under uncertainty over a sequence of time instants. This problem will subsequently
be cast as one of dynamic parameter optimization. We shall also present towards the
end, applications of the proposed methods and algorithms to service systems, road
traffic control and communication networks. A common unifying thread in most of
the material presented in this text is of simultaneous perturbation methods.
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1.2 Overview of the Remaining Chapters

We now provide a brief overview of the remainder of this book. In Chapter 2]
we briefly discuss well-known local search algorithms. These have been described
mainly for the case of deterministic optimization. However, we also discuss briefly
the case of stochastic optimization as well. The algorithms for stochastic optimiza-
tion that we present in later chapters will be based on these algorithms.

The fundamental stochastic algorithm due to Robbins and Monro [22] is almost
six decades old. It estimates the zeros of a given objective function from noisy cost
samples. Most stochastic search algorithms can be viewed as variants of this algo-
rithm. In Chapter[3] we describe the R-M algorithm. We also present in this chapter,
a general multi-timescale stochastic approximation algorithm that can be viewed
as a variant of the R-M algorithm. Multi-timescale stochastic approximation al-
gorithms play a significant role in the case of problems where the computational
procedure would typically involve two nested loops where an outer loop update can
happen only upon convergence of the inner loop procedure. A specific instance is the
case when the objective function is a long-run average cost of the form (I.2)). Such
an objective function is useful in scenarios where one is interested in optimizing
steady-state system performance measures, such as minimizing long-run average
delays in a vehicular traffic network or the steady-state loss probability in packet
transmissions in a communication network. A regular computational procedure in
this case would perform the outer loop (parameter) update only after convergence of
the inner loop procedure (viz., after obtaining the long-run average cost correspond-
ing to a given parameter update). The same effect can be obtained with the use of
coupled simultaneous stochastic updates that are however governed with diminish-
ing step-size schedules that have different rates of convergence - the faster update
governed with a slowly diminishing schedule and vice versa. Borkar [[12, [13] has
given a general analysis of these algorithms. We discuss the convergence of both
the R-M and the multi-timescale algorithms.

Amongst the first stochastic gradient search algorithms based on estimating the
gradient of the objective function using noisy cost samples is the Kiefer-Wolfowitz
(K-W) algorithm [18] due to Kiefer and Wolfowitz. We review this algorithm in Chap-
ter[dl While it was originally presented for the case of scalar parameters, in the case
of vector-valued parameters, the K-W algorithm makes function measurements after
perturbing at most one parameter component. Thus, K-W is not efficient under high-
dimensional parameters since the number of function measurements or system simu-
lations required to estimate the gradient grows linearly with the parameter dimension.

Spall invented the simultaneous perturbation stochastic approximation (SPSA)
algorithm [23]], [28] that requires only two function measurements at each instant
regardless of the parameter dimension, by simultaneously perturbing all parame-
ter components using a class of i.i.d. random variables. The most commonly used
perturbations in this class are symmetric, +1-valued, Bernoulli-distributed random
variables. A one-simulation version of this algorithm was subsequently presented in
[24]]. However, it was not found to be as effective as regular two-simulation SPSA.
In [7], certain deterministic constructions for the perturbation random variables have
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been explored for both two-simulation and one-simulation SPSA. These have been
found to yield better results as compared to their random perturbation counterparts.
We review the SPSA algorithm and its variants in Chapter[3]

Katkovnik and Kulchitsky [17] presented a smoothed functional (SF) approach
that is another technique to estimate the gradient of the objective function using
random perturbations. This technique is some what different from SPSA. In partic-
ular, the properties required of the perturbation random variables here are seen to be
most commonly satisfied by Gaussian and Cauchy distributed random variables. If
one considers a convolution of the gradient of the objective function with a smooth-
ing density function (such as that of Gaussian or Cauchy random variables), then
through a suitable integration-by-parts argument, one can rewrite the same as a con-
volution of the gradient of the probability density function (p.d.f.) with the objective
function itself. The derivative of the smoothing p.d.f. is seen to be a scaled version
of the same p.d.f. This suggests that if the perturbations are generated using such
p.d.fs, only one function measurement or system simulation is sufficient to estimate
the gradient of the objective (in fact, the convolution of the gradient, that however
converges to the gradient itself in the scaling limit of the perturbation parameter).
A two-simulation variant of this algorithm that incorporates balanced estimates has
been proposed in [29] and found to perform better than its one-simulation counter-
part. We review developments in the gradient-based SF algorithms in Chapter[6l

Spall [27] presented simultaneous perturbation estimates for the Hessian that
incorporate two independent perturbation sequences that are in the same class of
sequences as used in the SPSA algorithm. The Hessian estimate there is based on
four function measurements or system simulations, two of which are the same as
those used for estimating the gradient of the objective. In [3], three other Hessian
estimators were proposed. These are based on three, two and one system simula-
tion(s), respectively. In Chapter[7] we review the simultaneous perturbation estima-
tors of the Hessian. An issue with Newton-based algorithms that incorporate the
Hessian is in estimating the inverse of the Hessian matrix at each update epoch. We
also discuss in this chapter some of the recent approaches for inverting the Hessian
matrix.

Bhatnagar [4] developed two SF estimators for the Hessian based on one and two
system simulations, respectively, when Gaussian p.d.f. is used as the smoothing
function. Using an integration-by-parts argument (cf. Chapter[@)), twice, the Hessian
estimate is seen to be obtained from a single system simulation itself. A two-sided
balanced Hessian estimator is, however, seen to perform better than its one-sided
counterpart. An interesting observation here is that both the gradient and the Hessian
estimates are obtained using the same simulation(s). We review the SF estimators of
the Hessian matrix in Chapter[8]

In Chapter[0] we consider the case when the optimization problem has a form sim-
ilar to (II)); however, the underlying set C is discrete-valued. Further, we shall let the
objective function be a long-run average cost as with (I.2). In [11]], two gradient search
algorithms based on SPSA and SFhave been proposed for this problem. A randomized
projection approach was proposed there that is seen to help in adapting the continuous
optimization algorithms to the discrete setting. We present another approach based on
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certain generalized projections that can be seen to be a mix of deterministic and ran-
domized projection approaches, and result in the desired smoothing of the dynamics
of the underlying process. Such a projection mechanism would also result in a lower
computational complexity as opposed to a fully randomized projection scheme.

Next, in Chapter we will be concerned with constrained optimization prob-
lems with similar objective as (I.3). We shall, in particular, be concerned here with
the case when the objective has a long-run-average form similar to (I.2). Thus, in
such cases, neither the objective nor the constraint region is known analytically to
begin with. In [8], stochastic approximation algorithms based on SPSA and SF es-
timators for both the gradient and the Hessian have been presented. The general
approach followed is based on forming the Lagrangian — the Lagrange multipliers
are updated on a slower timescale than the parameter that, in turn, is updated on
a slower scale in comparison to that on which data gets averaged. We will review
these algorithms in Chapter[10}

Reinforcement learning (RL) algorithms [2] are geared towards solving stochas-
tic control problems using only real or simulated data when the system model (in
terms of the transition probabilities) is not known. Markov decision process (MDP)
is a general framework for studying such problems. Classical approaches such as
policy iteration and value iteration for solving MDP require knowledge of transi-
tion probabilities. Many RL algorithms are stochastic recursive procedures aimed
at solving such problems when transition probabilities are unknown. Actor-critic
(AC) algorithms are a class of RL algorithms that are based on policy iteration and
involve two loops - the outer loop update does policy improvement while the inner
loop procedure is concerned with policy evaluation. These algorithms thus incorpo-
rate two-timescale stochastic approximation. In [[10,1}|6], AC algorithms for various
cost criteria such as infinite horizon discounted cost, long-run average cost as well
as total expected finite horizon cost, that incorporate simultaneous perturbation gra-
dient estimates have been proposed. We shall review the development of the infinite
horizon algorithms in Chapter[I1]

Chapter[12]considers the problem of optimizing staffing levels in service systems.
The aim is to adapt the staffing levels as they are labor intensive and have a time
varying workload. This problem is, however, nontrivial due to a large number of
parameters and operational variations. Further, any staffing solution is constrained
to maintain the system in steady-state and be compliant to aggregate SLA con-
straints. We formulate the problem using the constrained optimization framework
where the objective is to minimize the labor cost in the long run average sense and
the constraint functions are long run averages of the SLA and queue stability con-
straints. Using the ideas of the algorithms proposed in Chapter[I0]for a generalized
constrained optimization setting, we describe several simulation optimization
methods that have been originally proposed in [19] for solving the labor cost op-
timization problem. The presented algorithms are based on SPSA and SF gradi-
ent/Hessian estimates. These algorithms have been seen in [19] to exhibit better
overall performance vis-a-vis the state-of-the-art optimization tool-kit OptQuest,
while being more than an order of magnitude faster than Optquest.
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In Chapter[I3] we consider the problem of finding optimal timings and the order
in which to switch traffic lights given dynamically evolving traffic conditions. We
describe here applications of the reinforcement learning and stochastic optimization
approaches in order to maximize traffic flow through the adaptive control of traffic
lights. We assume, however, as in the case of real-life situations that only rough
estimates of the congestion levels are available, for instance, whether congestion is
below a lower threshold, above an upper threshold or is in between the two. All
our algorithms incorporate such threshold levels in the feedback policies and find
optimal policies given a particular set of thresholds. For instance, in a recent work
[21], we considered Q-learning-based traffic light control (TLC) where the features
are obtained using such (aforementioned) thresholds. We also describe similar other
algorithms based on simulation optimization methods. An important question then
is to find optimal settings for the thresholds themselves. We address this question
by incorporating simultaneous perturbation estimates to run in tandem with other
algorithms. An important observation is that our algorithm shows significantly better
empirical performance as compared to other related algorithms in the literature.
Another interesting consequence of our approach is that when applied together with
reinforcement learning algorithms, such methods result in obtaining an optimal set
of features from a given parametrized feature class.

In Chapter[14] we select and discuss three important problems in communication
networks, where simultaneous perturbation approaches have been found to be signif-
icantly useful. We first consider the problem of adaptively tuning the parameters in
the case of random early detection (RED) adaptive queue management scheme pro-
posed for TCP/IP networks. The original scheme proposed by Floyd [[15] considers
a fixed set of parameters regardless of the network and traffic conditions. We address
this problem using techniques from constrained optimization [20] and apply simulta-
neous perturbation approaches that are found to exhibit excellent performance. Next,
we consider the problem of tuning the retransmission probability parameter for the
slotted Aloha multi-access communication system. The protocol as such specifies a
fixed value for the same regardless of the number of users sending packets on the
channel and the channel conditions. We propose a stochastic differential equation
(SDE)-based formulation [[16, 9] in order to find an optimal parameter trajectory over
a finite time horizon. We also consider the problem of optimal pricing in the Inter-
net. The idea here is that in order to provide a higher quality of service to a user who
is willing to pay more, one needs to find optimal strategies for fixing prices of the
various services offered. Our techniques [30] play a role here as well and are found
to exhibit significantly better performance in comparison to other known methods.

Finally, in Appendices[AIE]l we present some of the basic material needed in the
earlier chapters. In particular, we present (a) convergence notions for a sequence
of random vectors, (b) results on martingales and their convergence, (c) ordinary
differential equations, (d) the Borkar and Meyn stability result, and (e) the Kushner-
Clark theorem for convergence of projected stochastic approximations. Some of the
background material as well as the main results used in other chapters have also
been summarized in these appendices.
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1.3 Concluding Remarks

Stochastic approximation algorithms are one of the most important class of tech-
niques for solving optimization problems involving uncertainty. Simultaneous per-
turbation approaches for optimization have evolved into a rich area by themselves
from the viewpoint of both theory and numerous highly successful applications.
Several estimators for the gradient and Hessian that involve simultaneous perturba-
tion estimates have been developed in recent times that are seen to show excellent
performance. SPSA and SF algorithms constitute powerful methods for stochastic
optimization that have been found useful in many disciplines of science and engi-
neering. The book reference of [28]] provides an excellent account of SPSA. Surveys
on the SPSA algorithm are available in [26], [25]]. Also, [S] provides a more recent
survey on simultaneous perturbation algorithms involving both SPSA and SF esti-
mators. The current text is a significantly expanded version of [5].
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Chapter 2
Deterministic Algorithms for Local Search

2.1 Introduction

Search algorithms can be broadly classified into two major categories — global
search and local search algorithms. Global search algorithms aim at finding the
global minimum while local search algorithms are mainly concerned with finding
a local minimum point. More formally, for the optimization problem (LI, we say
that 6* € C is a global minimum of the function J if J(6*) < J(0) V6 € C. On the
other hand, we say that 6* € C is a local minimum of J if there exists an € > 0 such
that J(0*) < J(0) VO € C with || 6 — 6™ ||< €. Many times, as we do, the norm
|| - || is chosen to be the Euclidean norm. A necessary condition for existence of
local minima of a function J, assuming it is differentiable at all points within C,
is that
VJ(6)=0for 6 € C,

where C° is the interior of the set C. This condition may, however, not be satisfied
if the local minimum is a boundary point of C. Similarly, a sufficient condition for
a point 8 € C” to be a local minimum point is

VJ(6) =0 and V2J(8) is a positive definite matrix,

assuming that the function J is twice differentiable.

A well-known example of a global search technique is simulated annealing [5, 4]].
Even while it is desirable to converge to a global minimum, global search techniques
are often known to be slow and impractical and many times one has to be content
with local search methods. A typical local search algorithm (ignoring random noise
effects for now) has the form [1]], 2], [3l]:

8(n+1) = 6(n) —a(n)[D(6(n))]~'VJ(8(n)), 2.1)

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 1315]
springerlink.com © Springer-Verlag London 2013
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where D(0(n)) is a positive definite and symmetric N x N matrix and VJ(6(n)) is
the gradient of J(6) evaluated at 0 = 0(n). Also, a(n), n > 0 is a sequence of step-
sizes that are positive and asymptotically diminishing to zero. Note that if VJ(0(n))
and D(0(n)) are analytically known quantities, then recursion (2.I) can proceed as
is and we are in the domain of deterministic optimization. On the other hand, if
J(8(n)) is of the form J(8(n)) = E¢[h(68(n),&)] and we only have access to noisy
cost samples 2(6(n), &), then quantities VJ(6(n)) and in many cases D(6(n)) need
to be estimated. The algorithms for stochastic optimization are thus noisy or stochas-
tic in nature because of the presence of noise in the cost samples. In addition, the
estimators of VJ(6(n)) and D(0(n)) may introduce additional randomness as hap-
pens for instance in the SPSA and SF gradient and higher order algorithms, see
Chapters[BH8| Thus the search direction could be random as well.

2.2 Deterministic Algorithms for Local Search

In order to bring out ideas clearly, we assume here that VJ(0(n)) and [D(8(n))]~!
are analytically known quantities, i.e., we have a deterministic optimization frame-
work with (2.]) as our search algorithm. This will, however, not be the case in the
later sections where we shall primarily be concerned with the stochastic optimiza-
tion setting.

Given 6(n) € C such that VJ(8(n)) # 0, any x(n) € RV satisfying x(n)”
VJ(6(n)) < 0 is called a descent direction since the directional derivative x(n)”
VJ(6(n)) along the direction x(n) is negative and thus by a Taylor’s expansion one
obtains

J(0(n) +a(n)x(n)) = J(0(n)) +a(n)x(n)TVI(0(n)) +o(a(n)). (2.2)

Now since x(n)VJ(6(n)) < 0 and a(n) > 0 Vn, it follows that J(8 (n) +a(n)x(n)) <
J(0(n)) for a(n) sufficiently small. Now since D(8(n)) is a positive definite and
symmetric matrix, so is D(0(n))~!. When x(n) = —D(6(n))~'VJ(8(n)), then from
.2), we have

J(6(n) —a(m)D(8(n))~'VJ(6(n))) = J(6(n)) } 2.3)
—a(n)VJ(6(n))"D(6(n)"'VI(6(n))+o(a(n)). '

Now since D(6(n))~! is positive definite and symmetric, it follows that

~

VJ(0(n)TD(8(n))"'VJ(6(n)) > 0 for all V.J(6(n)) #O.

Hence, x(n) = —D(0(n))~! VJ(6(n)) is a descent direction as well. Algorithms that
update along descent directions are also called descent algorithms.
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The following well-known algorithms are special cases of 2.1):

1. Gradient Algorithm : This is the most commonly used descent algorithm.
Here, D(6(n)) = I (the N-dimensional identity matrix). This is also called the
steepest descent algorithm since its updates are strictly along the direction of
negative gradient.

2. Jacobi Algorithm : In this algorithm, D(6(n)) is set to be an N x N-diagonal
matrix with its ith diagonal element V%i (6(n)), which is also the ith diagonal

)

(
element of the Hessian V2J(6(n)). For D(8(n)) to be a positive definite matrix
in this case, it is easy to see that all elements V J(0(n)),i=1,...,N, should
be positive.
3. Newton Algorithm : Here, D(6(n)) is chosen to be V2J(8(n)), the Hessian of

J(6(n)).

The D(6(n)) matrices in Jacobi and Newton algorithms, respectively, need not be
positive definite (for all n), in general, as they vary with 6(n) and hence should
be projected appropriately after each parameter update so as to ensure that the re-
sulting matrices are positive definite [1, pp.88-98]. With proper scaling provided
by the D(0(n)) matrix, the descent directions obtained using Jacobi and Newton
algorithms are preferable to the one using gradient algorithm. However, obtain-
ing estimates of the Hessian in addition to the gradient, in general, requires much
more computational effort. In subsequent chapters, we will present several algo-
rithms which, in principle, choose a descent direction similar to one of the above
three types. However, all the algorithms discussed subsequently will be stochastic
in nature involving random estimates of the descent direction. Consequently, the
evolution of the optimization parameter updates 6(n) in those algorithms is also
stochastic.
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Chapter 3
Stochastic Approximation Algorithms

3.1 Introduction

The development in the area of stochastic algorithms (not necessarily for optimiza-
tion) started in a seminal paper by Robbins and Monro [17]. They considered the
problem of finding the zeros of a function L : R¥ — RY under noisy observa-
tions. The Robbins-Monro algorithm finds immense applications in various disci-
plines. For instance, in the case of the gradient search algorithm for the problem
of finding a local minimum of the function J : RN 5 R, see Chapter 4] one can
let L(0) = VJ(0). Similarly, in scenarios where the aim is to find a fixed point of
a function F : RY — RY, one may choose L(0) = F(6) — 6. Situations requiring
fixed point computations arise often, for instance, in reinforcement learning, see
Chapter[I1l where one estimates the value of a given policy. The corresponding up-
date is many times a fixed point recursion aimed at solving the Bellman equation
for the given policy.

We first discuss in detail the R-M algorithm in Section 3.2l Next, we review
the multi-timescale variant of the R-M algorithm in Section Such algorithms
are characterized by coupled stochastic recursions that are individually driven by
different step-size schedules or timescales. The step-sizes typically converge to zero
with different rates. An important application of multi-timescale stochastic approx-
imation that we consider in this book is one of minimizing long-run average costs.
In order to apply the regular R-M scheme in such cases, one requires estimates of
the average cost corresponding to a given parameter update. One approach that is
however computationally tedious is to sample long enough cost trajectories using
Monte-Carlo simulation each time to estimate the average cost corresponding to a
given parameter update. This difficulty is avoided through the use of multi-timescale
stochastic approximation as the ‘faster’ recursion in this case can estimate the av-
erage cost corresponding to a given parameter update while the ‘slower’ recursion
updates the parameter.

S. Bhatnagar et al.: Stochastic Recursive Algorithms for Optimization, LNCIS 434, pp. 17-28]
springerlink.com © Springer-Verlag London 2013
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3.2 The Robbins-Monro Algorithm

Let 6(n) denote the nth update of the parameter 0. Let the observed sample of
L(6(n)) be L(0(n)) +M(n+ 1) where M(n+ 1) is a suitable noise term that we
assume to be a martingale difference. The case when noise enters into the argument
of the cost function, such as (say) g(8(n),&(n)), where &(n),n > 0 are some R¥-
valued independent and identically distributed (i.i.d.) random vectors and g : RV x
R¥ — RY can also be handled in our framework, since one can in such a case write

8(6(n),&(n)) =L(6(n)) +M(n+1), @3.D

where L(6(n)) can be set to be L(8(n)) = E¢[g(0(n),E(n))]. Here, E¢[-] denotes
the expectation with respect to the common distribution of § (n). Also, M(n+1) =
2(0(n),&(n)) —L(0(n)), n > 0 can be seen to be a martingale difference sequence
with respect to a suitable filtration. In the original R-M scheme [17]], the noise ran-
dom vectors M(n+ 1) are considered i.i.d. and zero-mean. Note that the i.i.d. as-
sumption there is across M(n), not across individual components of M (n). Equation
(B.I) represents a popular generalization of the original R-M scheme with the addi-
tive noise generalized to a martingale difference instead of just i.i.d. noise.

The Robbins-Monro stochastic approximation algorithm is as follows:
Forn >0,

&(n))
) } (3.2)

where a(n),n > 0 is a sequence of positive real numbers called step-sizes.

Remark 3.1. To derive intuition regarding the above recursion, lets ignore the noise
term M(n+ 1) for a moment. Then, one can see that if the recursion (3.2)) converges
after some iterations (say N), then 68(n+ 1) = 0(n) = 6*,Yn > N, where 0" repre-
sents the converged parameter value. This when used in the above recursion (3.2),
gives us L(6*) = 0. The recursion (3.2) serves the purpose of computing a zero of
the given function L(-). Of course, with the introduction of the noise term M (n+ 1),
more detailed analysis would be necessary along with certain restrictions on the
step-sizes a(n),n > 0, which are discussed in the next section.

If 6(n) are constrained to take values within a prescribed set C C RV (with C be-
ing a strict subset of RV), one will have to project after each iterate the value of
0(n+1) to the set C. The new value of 6(n+ 1) would then correspond to its pro-
jected value after the update. We discuss the convergence analysis of the algorithm
in Section 3.2 primarily for the case when C = R" . It will, however, be assumed
that the iterates 6 (n) will stay uniformly bounded almost surely.
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3.2.1 Convergence of the Robbins-Monro Algorithm

Convergence in the mean-square sense, of the R-M scheme with i.i.d. noise terms
M(n+1) is shown in [17]. As with [3] and [13]], we show convergence in the al-
most sure sense, of the R-M scheme with the generalized martingale difference
noise-term M(n+ 1). In order to prove convergence of recursions such as ([3.2),
one needs to first ensure that the iterates in these recursions remain stable or uni-
formly bounded. If the iterates stay uniformly bounded, then convergence in almost
sure sense would imply convergence in the mean-square sense as well (see Ap-
pendix [A). The converse is however not true in general, i.e., if they converge in the
mean square sense, then they need not converge almost surely, even when they are
uniformly bounded.

Let .Z(n) = o(0(m),M(m),m < n), n > 0 denote a sequence of increasing
sigma fields. Our convergence analysis is based on the ordinary differential equa-
tion (ODE) approach, for instance, see [S, Chapter 2]. Consider the following ODE
associated with (3.2):

6(t) =L(O(1)). (3.3)

We make the following assumptions:

Assumption 3.1. The map L : RV — R" is Lipschitz continuous.

Assumption 3.2. The step-sizes a(n),n > 0 satisfy the requirements
Za(n) = oo, z:a(n)2 < oo, (3.4)
n n

Assumption 3.3. The sequence (M(n),.# (n)), n > 0 forms a martingale dif-
ference sequence. Further, M(n), n > 0 are square integrable random variables
satisfying

E[|M(n+ 1)||2 | Z(n)] <K(1+ ||6(n)||2) a.s.,n >0, 3.5)
for a given constant K > 0.
Assumption 3.4. The iterates (3.2) remain almost surely bounded, i.e.,

sup||0(n)|| < oo, a.s. (3.6)
n

Assumption 3.5. The ODE (3.3) has H C C as its set of globally asymptoti-
cally stable equilibria.

Assumption[3.J]ensures that the ODE (3.3) is well posed. Assumption[3.2is also a
standard requirement. In particular, the first condition in (3.4)) is required to ensure
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that the algorithm does not converge prematurely. The second condition there is
required to reduce the effect of noise. Common examples of {a(n),n > 0} that are
seen to satisfy Assumption[3.2]include

1
e a(n)= ;,Vn > 1landa(0) =1,
1
* a(n)=—,Vn>1witha(0)=1andany « € (0.5,1),
n
Inn

e a(n)= - Vn > 2 with a(0) =a(l) =1,

e a(n) = nliln’ Vn >2 witha(0) =a(l) = 1.

Assumption 3.3] is a general requirement [3]] that is seen to be satisfied in many
applications. For instance, it is seen to be easily satisfied by most reinforcement
learning algorithms.

We now discuss in more detail Assumption [3.4] even though it is routinely as-
sumed in many references. An easy way by which Assumption [3.4] can be satisfied
is if the set C in which 6 takes values is a bounded subset of R" as in such a case
(as mentioned previously), one would project the iterates after each update to the set
C, thereby ensuring that the resulting parameters are both feasible (i.e., take values
in the set where they are allowed to take values in) and remain bounded. In the case
when C is unbounded (such as C = R as here) but one roughly knows the region
of the space where the asymptotically stable equilibria lie, one could choose a large
bounded set that contains the above region as the constraint set for the algorithm and
use projection (as before) to ensure that the iterates remain bounded. This would
also imply that the remainder of the space is not visited by the algorithm which may
in fact be good since the algorithm in such a case would not waste its resources in
exploring the region of the space that does not contain the equilibria. The projection
technique is often used to ensure the stability of iterates. Other approaches to prove
stability of the iterates (for instance when C = R") include the stochastic Lyapunov
technique [13] and the recently proposed approach in [6], [S] whereby one does a
scaling of the original iteration (3.2)) to approximate the same with a deterministic
process in a manner similar to the construction of the fluid model of [9]], [10]. This
approach is remarkable in that using just an ordinary differential equation (ODE)-
based analysis, one can prove both the stability and the convergence of the original
random iterates. Another approach [§]] is to define a bounded constraint region for
the iterates, use projection as above, but gradually increase the size of the constraint
region as iterations progress. Nevertheless, we will assume that C = R" in this anal-
ysis and that the iterates stay bounded under Assumption 3.4l

Define a sequence of time points #(n), n > 0 as follows: #(0) = 0 and for n > 1,

n—1
t(n) =Y a(m). It follows from (34) that #(n) 1 . The map n + t(n) can be
m=0

viewed as a map from the “algorithmic time” to the “real time”. Define now a
continuously interpolated trajectory 0(t),t > 0 (obtained from the algorithm’s up-
dates) as follows: Let 0 (¢(n)) = 6(n),n > 0, with linear interpolation on the interval



3.2 The Robbins-Monro Algorithm 21

[t(n),t(n+1)]. By Assumption[3.4} it follows that sup,~ || 6(¢)|| = sup, || 0 (n)[| < e
a.s. Let T > 0 be a given real number. Define another sequence {T'(n),n > 0} as fol-
lows: T(0) =¢(0) =0 and forn > 1,

T(n) =min{t(m) |t(m) >T(n—1)+T}.

Let I(n) denote the interval [T'(n),T(n+ 1)). From its definition, there exists an
increasing sub-sequence {m(n)} of {n} such that T (n) = ¢t(m(n)), n > 0. Also, let
0"(t),t > t(n) denote the trajectory of the following ODE starting at time 7(n) and
under the initialization 6" (t(n)) = 6(t(n)) = 0(n):

0" (1) = L(6"(1)), t > 1(n). 3.7)
Let Z(n), n > 0 be defined according to

n—1

Z(n)= Y a(mM(m+1).

m=0

Lemma 3.1. The sequence (Z(n),.% (n)), n > 0 is a zero-mean, square integrable,
almost surely convergent martingale.

Proof. Tt is easy to see that each Z(n) is .% (n)-measurable and integrable. Further,
Z(n),n > 0 are square integrable random variables since M (n + 1) are square inte-
grable by Assumption[3.3] Consider now the process {B(n)} defined by

n—1

= Y E[[|Z(m+1)—z(m)|*| F(m)],

m=0

2[ PIMn+ DI | #(m)].

n—1

Y a(m)E [[M(m+1)[* | 7 (m)],

m=0

< Za 21+ 6m)),
by Assumption[3.3l Now, from Assumptions[3.2land 3.4 it follows that
B(n) — B < > a.s.
The claim follows from the martingale convergence theorem (Theorem [B.2)). O
Proposition 3.2. We have

lim sup [|8(t) — 6"(¢)|| =0, a.s.

el (n)



22 3 Stochastic Approximation Algorithms

Proof. (Sketch) The proof for a similar result is given in detail in [S, Chapter 2,
Lemma 1]. The proof follows by following a series of steps that involve bounding
the various terms that upper-bound the norm difference between the algorithm’s and
the ODE’s trajectories. The Lipschitz continuity of L ensures that the growth in the
recursion is at most linear. That together with Assumptions and [3.4] ensure that
the iterates do not blow up. Moreover, the norm difference can then be bounded
from an application of the Gronwall’s inequality (Lemmal[C.T]) and the upper bound
is seen to vanish asymptotically as n — . We refer the reader to [5, Chapter 2,
Lemma 1] for details. a

Note that by Assumption[3.3] H is the globally asymptotically stable attractor set for
the ODE (.3). Recall from Definition[C.IQ that given T, A > 0, we call a bounded,
measurable 0(-) : RTU{0} — R", a (T,A)-perturbation of (33) if there exist 0 =
T0)<T(1)<T(2)<--<T(r)toowith T(r+1)—T(r) > T Vr and solutions
0" (y),y € [T(r),T(r+1)] of 33) for r > 0, such that

sup  [|07(y) —0(y)| <A.
YEIT(r).T(r+1)]

Theorem 3.3. Under AssumptionsB3.1lto[3.3 the iterates 0 (n),n > 0 obtained
from the algorithm (3.2) converge almost surely to H.

Proof. From Proposition[3.2] 6(t) serves as a (T, A)-perturbation for the ODE (3.3).
The claim follows by applying the Hirsch lemma (Lemmal[C.3), for every € > 0. O

A detailed ODE argument showing convergence of the stochastic iterates to a com-
pact connected internally chain transitive invariant set of the corresponding ODE
has been shown in [1]], [S]. In most applications, as we consider, the associated
ODEs either have a unique stable equilibrium or else a set of asymptotically sta-
ble isolated equilibria. Thus, if H = {6*} is a singleton, i.e., contains a unique
asymptotically stable equilibrium of (3.3), then by Theorem[3.3] 6(n) — 6* a.s. as
n — oo, In the case of multiple isolated equilibria, the algorithm shall converge to
one amongst them depending on the noise and initial condition. (Here by isolated
equilibria, we mean that one can construct certain sufficiently small open neighbour-
hoods such that exactly one equilibrium is contained within each neighbourhood.)
Further, in case H does not contain isolated equilibria, Theorem B3] merely says
that the recursion 0(n) asymptotically converges to H. Other ODE-based analyses
of the stochastic recursion include [14], [12], [2] and [13].

We have considered till now the basic R-M scheme which is used to compute
a zero of the given function L(-) under noisy observations. The case where there
are coupled functions L;(+,-) and Ly(,-) with two sets of parameters operating at
different timescales is considered in the next section.
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3.3 Multi-timescale Stochastic Approximation

We consider the case of two timescales here, i.e., recursions involving two different
step-size schedules. Similar ideas as described below carry over when the number
of timescales is more than two. Let 8(n) € RV and @(n) € R¥ be two sequences of
parameters that are updated according to the following coupled stochastic approxi-
mation recursions: Vn > 0,

O(n+1)=0(n)+a(n) (L1(6(n),w(n)) + M'(n+1)), (3.8)
w(n+1) = w(n)+b(n) (L2(0(n),w(n)) + M*(n+1)), (3.9)

where M!(n+ 1) and M?(n+ 1) are martingale difference noise terms (see Ap-
pendix[B.2)). The step-sizes a(n),b(n), n > 0 satisfy the following requirement:

Assumption 3.6. a(n),b(n) > 0, Vn > 0, Further,

Za(n) = zb(n) = oo, 2 (a(n)2 + b(n)2) < o, and, (3.10)

tim 20 _ o, (3.11)

Remark 3.2. To understand the set of recursions (3.8) and (3.9), let us ignore the
noise terms M'(n+ 1) and M?(n+ 1) for the moment and consider a case with
a(n) = % and b(n) = no%ﬁ, n > 1, which satisfies both equations (3.10) and (3.11).
Under these simplifications, the following insight can be derived:

1. It follows that for a given N > 0,

N

N
t(N) 2 Y aln) < Y b(n) £ t(n),

n

and higher the value of N, the further apart the above two summations are. In
other words, the time line 7(n),n > 1 with time steps b(n) reaches infinity faster
than the time line 7(n) with step-sizes a(n). So, we say that the recursion of the
o parameter is on a “faster”” timescale than the recursion of 6.

2. From equation (3.11), it follows that as we go further in the recursions, the
updates to 6 will be quasi-static compared to those for @. Hence, the updates to
o would appear to be equilibrated for the current quasi-static 6. In other words,
for a given 0, the updates to ® would appear to have converged to a point @*
such that L,(6, ®*) = 0 (assuming there is a unique such point corresponding to

0). Thus, one expects that the updates of @ would converge to a ®* 2 ¥(6). For
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the updates to 0, the @ would, for all practical purposes, be ®* itself. Hence,
the updates to 6, ignoring the noise term, would appear to be

0(n+1) = 0(n)+a(n)Li(0(n),y(68(n))).

Following the analysis of the R-M scheme, this recursion would converge to
a point 6* (assuming it is unique) where L;(0*,y(6*) = 0. These concepts
are formalized and discussed along with the necessary assumptions in Section

B31

Remark 3.3. Suppose both the updates of 8 and w were performed with the same
step-size sequence, say a(n),n > 0, then both the recursions could be combined
together and analyzed as one recursion of the basic R-M scheme. These updates
would then together converge to a point 8, ®@* (assuming such a point is unique),
where L1 (0%, ®*) =0 and L, (6", ®*) = 0 simultaneously. This is in contrast to the
case of two timescales where the solution would be 6%, @* such that @* = y(6*)
and L (6*%,y(6%)) =0.

Remark 3.4. Like in the previous section, one can consider the case where the noise
term enters the cost function itself. Thus, let the two recursions be

0(n+1)=6(n)+a(n)gi1(6(n),0(n),&" (n)), (3.12)
o(n+1) = o(n) +b(n)g2(0(n),w(n),E*(n)), (3.13)

where £!(n),n > 0 are i.i.d. random vectors and so are £2(n),n > 0. Then one can
rewrite

£1(0(n),® (n),ﬁ'( )) =Li(6(n),0(n)) + M (n+1),
82(0(n), (n),&2(n)) = L2(6(n), 0(n)) + M>(n+1),
)1

where M'(n+1),M*(n+ 1),n > 0 are suitable martingale difference sequences.
In this manner (3.12) and (B.13) can be recast as the recursions (3.8) and (3.9),
respectively.

Remark 3.5. The above discussion which is for two timescales, can be easily gen-
eralized to multiple timescales by starting the analysis from the “fastest” timescale
to the “slowest” timescale.

3.3.1 Convergence of the Multi-timescale Algorithm

A general analysis of two-timescale algorithms is available in [4] as well as Chapter
6 of [5]. We present a sketch of the same here. We make the following
assumptions:
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Assumption 3.7. The functions L; : RY x R? - RY and L, : RN x R? — R4
are both Lipschitz continuous.

Assumption 3.8. M! (n),M2 (n), n > 0 are both martingale difference
sequences with respect to the filtration .7 (n) = o(0(j), w(j),M' (j),M>(j),
J <n), n > 0. Further,

E[|M(n+ DIP| F@)] <K (1482 +l|o@m)]?), i=1,2
Assumption 3.9. The iterates are a.s. uniformly bounded, i.e.,
e (St < <2, wiip.I.
Assumption 3.10. The ODE
a(t) =L(0,0(t)), (3.14)

has a globally asymptotically stable equilibrium ¥(0), uniformly in 6, where
y: RN — R¥ is a Lipschitz continuous map.

Assumption 3.11. The ODE

6(t) = Li(6(1),7(6(1))), (3.15)

has a globally asymptotically stable equilibrium 6* € RV,

Assumptions are seen to be similar to analogous assumptions for the R-M
algorithm except for the requirement in (3.11) that suggests that a(n) approaches
zero at a rate faster than b(n) does.

Let us define ¢(n) in the same manner as before. Also, let 7(n), n > 0 be defined

according to 7(0) = 0 and t(n z b(m). Note that from the viewpoint of the

(slower) timescale governed by b(n ) n 2 0, the recursion (3.8) can be rewritten as

O(n+1)=0(n)+b(n)n'(n), (3.16)

where n'(n) = i ) +M(n+ 1)) = o(1), since a(n) = o(b(n))
from ([E]) Now (Bﬁ) is seen to track the ODE

6(t) =0. (3.17)

Also, a similar analysis as described in Section[3.2.1] can be used to show that (3.9)
asymptotically tracks the ODE

o(t) = L2(0(1), 0(2))- (3.18)
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In other words, over intervals /(n) = [T'(n), T'(n+1)] of length approximately 7 > 0,
with T'(n) = t(m(n)) = nT, the norm difference between the interpolated trajecto-
ries of the algorithm’s parameter iterates and the trajectories of the ODEs (3.17)-
(B.18) vanishes almost surely as n — oo (cf. Proposition[3.2). Now, as a consequence
of (3.17), the ODE (B.18) can be rewritten as

@) = L,(0,0(t)). (3.19)

By Assumption from an application of Hirsch’s lemma (Lemma [C.3)), it fol-
lows that the recursion for given 6 asymptotically converges to y(6) almost
surely, and in fact, |[o(n) — y(6(n))|| — 0 as n — e almost surely. A similar ar-
gument as Proposition [3.2] can now be applied to show that the norm difference
between the trajectory obtained from the 8-recursion (3.8) when interpolated using
the time instants #(r) and that of the ODE (3.13)) again vanishes asymptotically over
intervals I(n) = [T (n),T (n+ 1)], with T(n),n > 0 defined in a similar manner as
Proposition[3.2] Now, by another application of the Hirsch lemma, it can be shown
that (n) — 6" as n — e almost surely. We thus have the following result (that is
similar to Theorem 2 on pp.66 of [3])):

Theorem 3.4.
lim (0(n), w(n)) = (6*,7(6%)) a.s.

n—yoo

3.4 Concluding Remarks

The R-M algorithm has been analyzed in detail in [3[], [12], [13], [L1], [7], [5] and
several other books and papers. The ODE method is one of the techniques used to
study its convergence. A second approach based entirely on probabilistic arguments
is also popular in the literature. Because of its wide applicability, the R-M algorithm
is still very popular even six decades after it was originally invented.

A general analysis of two-timescale stochastic approximation using the ODE ap-
proach is provided in [4], [S)]. Multi-timescale algorithms are helpful in cases when
in between two successive updates of the algorithm, one typically has to perform an
inner-loop procedure recursively until it converges. Thus, one would in practice have
to wait for a long time before updating the algorithm once. Using a multi-timescale
algorithm as in (3.8)-(3.9), both recursions (for the inner and outer loops) can run
together, and convergence to the desired point can be achieved. Key application ar-
eas where this procedure has been succesfully applied are simulation optimization
and adaptive control that we study in later chapters. There is another reason why
multi-timescale algorithms can be interesting. In [15]], averaging of stochastic ap-
proximation iterates in the case of one-timescale algorithms such as (3.2)) has been
seen to improve the rate of convergence. The same procedure can be accomplished
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using a two-timescale algorithm such as (3.8)-(3.9) wherein the ‘averaging’ is per-
formed along the faster timescale.

Multi-timescale algorithms are also useful in other situations. In [18], a smoothed
version of SPSA is presented that is seen to improve performance. The idea that is
similar to Polyak averaging and the resulting algorithm has a multi-timescale nature.
In [16], [19], the step-sizes a(n), n > 0 are adaptively set according to the objective
function value obtained. Since the update direction in SPSA is random, a move in the
descent direction (in their scheme) is rewarded by a slightly higher step-size in the
next update step while a move in the ascent direction attracts a penalty. Moreover,
if the objective function value becomes worse, a certain blocking mechanism is
enforced whereby starting from the previous estimate, a new gradient evaluation is
made with a reduced step-size a(n). The procedure of [L6]], [19] is performed for the
smoothed version of SPSA making the overall scheme again of the multi-timescale

type.
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Part 11
Gradient Estimation Schemes



Most of the important stochastic recursive algorithms that are based on some form
of gradient estimation were studied in the previous century. These algorithms are
geared towards solving an associated stochastic optimization problem. When the
cost objective is a simple expectation over noisy observations or cost samples,
the Robbins-Monro algorithm in conjunction with a suitable gradient estimator is
applied. Under long-run average cost objectives, a multi-timescale stochastic al-
gorithm with a gradient estimator is used. This part of the book comprises three
chapters and deals with efficient gradient estimation approaches.

The earliest gradient estimation scheme is the Kiefer-Wolfowitz algorithm (pre-
sented originally in a paper in 1952 by Kiefer and Wolfowitz) that relies on gen-
erating a sufficient number of samples by perturbing each individual component of
the parameter, one at a time. There are primarily two versions of this scheme. The
first version involves generating 2N cost samples (each corresponding to a different
perturbed parameter) while the second requires (N + 1) cost samples, where N is the
parameter dimension. These schemes as well as some of their variants are reviewed
in Chapter [} for both cases of cost objectives (when they are simple expectations
and also when they have a long-run average form).

Spall, in a paper in 1992, presented a remarkable gradient estimator that requires
only two function evaluations regardless of the parameter dimension N. This estima-
tor is based on simultaneously perturbing all parameter components using i.i.d. ran-
dom variables satisfying certain properties that are most commonly satisfied by
symmetric Bernoulli random variates. The Robbins-Monro algorithm in conjunction
with this estimator has become famously known in the literature as the simultane-
ous perturbation stochastic approximation (SPSA) algorithm. In a later paper, Spall
also presented a one-measurement gradient estimator using a similar perturbation
methodology that however does not perform well. Bhatnagar, Fu, Marcus and Wang
subsequently presented a simultaneous perturbation methodology that is based on
deterministic (regular) perturbation sequences instead of random. A one-simulation
variant of SPSA based on Hadamard matrix perturbations is seen to exhibit signif-
icantly better performance as compared to the one-simulation randomized differ-
ence algorithm of Spall. In Chapter 3] we discuss in detail the various versions of
the SPSA scheme, both for cost objectives that are an expectation over noisy cost
samples as well as those that are certain long-run averages. We also present the
convergence analyses for the various cases.

Katkovnik and Kulchitsky presented in a paper in 1972, a scheme based on
smoothing the gradient of the cost objective using one of the following probabil-
ity density functions for convolution with the gradient: Gaussian, Cauchy or Uni-
form. It is observed using an integration-by-parts argument that the convolution
of the smoothing density function with the objective gradient is the same as the
convolution of the objective function itself with a scaled density function. A one-
measurement estimator of the gradient is thus obtained. Two-measurement balanced
versions of these estimators are seen to show better performance. We call the result-
ing estimates as the smoothed functional (SF) estimates. Chapter [6] discusses in de-
tail the smoothed functional gradient estimators and the resulting algorithms along
with their convergence analyses.



Chapter 4
Kiefer-Wolfowitz Algorithm

4.1 Introduction

In the Robbins-Monro algorithm (3.2), suppose that g(6(n),&(n)) is an observa-
tion or sample (with noise) of the negative of the gradient of a cost objective
J(6(n)) evaluated at the nth iteration, i.e., g(0(n),&(n)) is a noisy observation of
L(6(n)) = —VJ(6(n)). Here, &(n),n > 0 denotes the i.i.d. noise sequence. One
can show, as we do below, under certain standard conditions that (3.2) converges
to a local minimum of J. We are now in the domain of stochastic gradient algo-
rithms, i.e., gradient algorithms (Chapter 2)) with noise. We shall assume, in partic-
ular, that the objective function is a simple expectation over the noisy cost samples
or J(0) = E¢[h(6,8)]. If VA(6,&) exists for any given noise sample &, then under
certain regularity conditions, see for instance, [8]], [9], [10], it may be possible to
interchange the expectation and the gradient operators to obtain VJ(68) = E[Vh
(6,£)]- In such a case, one may set g(0(n),&(n)) = —Vh(0(n),&(n)) in BI) and
obtain asymptotic convergence to a local minimum of J. Infinitesimal Perturbation
Analysis (IPA) and its variants are largely based on this idea, see [12], [7], [10I,
[8], [9]. When applicable, IPA shows excellent performance. In practice, however,
one often does not have access to direct gradient measurements. It is also possible
that while the function J is continuously differentiable with bounded higher order
derivatives, the function 4 itself is not so. In such cases, one requires other gradi-
ent estimation techniques. The finite difference stochastic approximation (FDSA)
[[L3]], which is usually referred to as the Kiefer-Wolfowitz algorithm (after its inven-
tors) is perhaps the earliest known algorithm that is used for estimating the gradient
under noisy measurements. In Section .2} we describe the basic Kiefer-Wolfowitz
scheme. Its variants are then explained in Section 4.3

4.2 The Basic Algorithm

The original Kiefer-Wolfowitz algorithm [13] was proposed for the case where 0 is
a one-dimensional parameter taking values in a bounded interval C; C R. We first
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discuss this one-dimensional case and subsequently its multi-dimensional parame-
ter version. In the Kiefer-Wolfowitz algorithm, the underlying scheme is still (3.2)
except that the single noisy measurement g(6(n),&(n)) in (3.2) is replaced by

§(0(n).E"(n).& (n) = — (“"("Hﬁ(n%é*(")z)(s—( ’zw(n) —8(n).&~(n)

4.1)
Here, £1(n), €7 (n), n > 0 are R-valued independent noise samples. Further,
h(0(n) + 8(n),E"(n)) and h(0(n) — 8(n),E (n)) are two independent noisy
measurements of the objective with perturbed parameter values 0 (n) 4 6(n) and
0(n) — 0(n), respectively. It can be seen that if one filters out the noise, then
for §(n) sufficiently small, @.I)) will be a noisy approximation of —VJ(6(n)). In
particular,

E[g(8(n),£"(n),&"(n)) | 0(n)] = =VJ(0(n)) +0(8(n)).

The K-W algorithm (£.2)) proceeds along the negative gradient direction in order to
find a local minimum.

h(8(n)+6(n),E*(n)) —h(6(n) — 8(n),&"(n))
28(n) ’
(4.2)

0(n+1)=0(n)—a(n)

n > 0. The scalar parameters 6 (n), n > 0 should be carefully chosen so that 6 (n) — 0
(as n — oo) at a rate slow enough that the variance in the FDSA estimates does not
blow up. We now present our assumptions.

Assumption 4.1. The map J : R — R is Lipschitz continuous and is twice dif-
ferentiable with its second order derivative being bounded. Further, the func-

dJj(e
tion L(0) defined by L(0) = —%, V6 € R and themap 2 : R x R — R are
both Lipschitz continuous.

The above is mainly a technical requirement that ensures that the corresponding
ODE is well posed and its trajectories bounded. Further, the smoothness require-
ments on J(0) ensure via a Taylor series argument that the algorithm converges to a
local minimum. Reference [13] has a more general setting where J(6) need not be
differentiable but should satisfy a set of regularity conditions [13, Conditions 1-3].
However, we limit our discussion to the case where J is differentiable. Though the
result in [13] is for a generalized case where J need not be differentiable, the result
shown is for convergence only in probability while here in our discussion, we show
almost sure convergence.
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Assumption 4.2. The step-sizes a(n),d(n) > 0, Vn and

2
a(n),8(n) »0asn—0, Y a(n)=eco, Z(%) < oo, (4.3)

Thus, a(n) and §(n) are both diminishing sequences of positive numbers with & (n)
going to zero slower than a(n). The first condition above is analogous to a similar
condition in (3.4). The last condition is a stronger requirement and ensures conver-
gence of the resulting martingale noise sequence.

Assumption 4.3. £ (n), £~ (n), n > 0 are independent random variables hav-
ing a common distribution and with finite second moments.

Assumption 4.4. The iterates (4.2) remain almost surely bounded, i.e.,

sup |0 (n)| < oo, a.s. 4.4)
n
Consider the ODE: 27060
. t
0(t) = ——=. 4.5
n=-2C @s)
dj(e
LetS = {9 ‘ % =0 } denote the set of all fixed points of (&.3).

Theorem 4.1. Under Assumptions . V.4 the parameter updates (4.2)) satisfy
0(n) — S with probability one.

Proof. Note that the algorithm (£.2)) can be rewritten as follows:

dJ(6(n))

O(n+1)= 9(n)—a(n)( T

B+ n<n>) , 4.6)

where

h(0(n) +8(n),&*(n)) — h(6(n) — 6(n), & (n))
25
_J(8(n)+8(n))

n(n) = )
—J(6(n) —6(n))
26(n)

, and,
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It is easy to see that 1(n),n > 0, is a martingale difference sequence with respect
to the filtration .7 (n) = o(0(m),&E* (m),&E~ (m),m < n),n > 0. Further, &(m) =

Z a(n (m > 0) forms a martingale with respect to the same filtration. We shall

ﬁrst show below that {é (m)} is an almost surely convergent martingale sequence.
This result will follow from the martingale convergence theorem (Theorem [B.2)) if

we can show that Z [ (m+1)—&(m))? | 9(m)} < oo almost surely. Now note
m=0
that

[1(6(n),& ()| = [h(0,0)] < [A(6/(n),& (n)) —1(0,0)] < K(|6(n)| +[& (n)])-

In the above, K > 0 denotes the Lipschitz constant of the function 4. It follows that

[1(6(n),&(n))] < Ki(1+[6(n)|+ |5 (n))),

where K; = max(K, |h(0,0)|). Similarly, since J(6) is also Lipschitz continuous, it
is easy to see that
[ (8(n)| < K2(1+16(n)]),

for some K, > 0. Now,

S0 E [(E0m+1)=Em))? | F(m)| = S5pa(mE [nm+1)? | #(m)]

<S50 D 3(Om) + 3. & )+ H(0m)— 8. & () | ()
alm 2
T 5Em§z’5 [((00m)+ 8(m)2 +(6(m) — 8(m)2 | ()]
alm 2
<8KiYm o 5((m))2E [1+(6(m))>+8(m)?+ (ET(m))* | F(m)]
alm 2
+8K, Y0, %E [14(0(m))>+ &(m)* | F(m)].

It follows now as a consequence of Assumptions that

A

3 [ 1)) #m)] <oas

Now, using Taylor series expansions of J(0(n)+ 6(n)) and J(6(n) — &(n)), respec-
tively, around the point 6 (n), i.e.,
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50 +5(m) = 1(00) + 80 LA 1 o(5(m2)
16 ~ 5(n)) = 7(0(n)) — 30 LA o512,

we obtain,
B(n)=0(6(n)), ie., B(n) = 0asn — oo.

Thus in lieu of equation (.8)), the iteration scheme in (.2)) can be seen to track the
negative gradient of J but with diminishing noise. Thus, (.6) can be viewed as a
noisy Euler discretization of the ODE

dJ(0)

o— 4
doe ’

4.7
but with diminishing step increments. The result now follows by an application of
the Hirsch lemma (Lemmal[C.3)). O

Remark 4.1. Note that S corresponds to the set of all fixed points of the ODE (4.3)
and not merely local minima. Points in S that are not local minima will however
be unstable equilibria. In principle, the scheme can converge to an unstable equilib-
rium. By assuming noise to be sufficiently rich or by introducing additional noise
[6, [17], one can ensure that the scheme does not get stuck in an unstable equilib-
rium. In most practical applications, however, stochastic approximation algorithms
such as ([4.2) are seen to converge to local minima.

4.2.1 Extension to Multi-dimensional Parameter

For @ € R", a natural extension of the original scheme [#.2) is as given below:

h(6(n) + 8(n)e;, & (n)) —h(B(n) — 8(n)e;, & (n))
25(n) ’
(4.8)

6:(n+1) = 6,(n) — a(n)

fori=1,2,...,N, where ¢; = (O7 ...,0,1,0, ..., O)T € RV, with 1 at the ith lo-
cation, is the unit vector along the ith coordinate direction in RM. Further, *g';“(n),
& (n), i=1,...,N are the corresponding i.i.d. noise samples that are also inde-
pendent of each other and have a common distribution with finite second moments.
Also, 6;(n) € R denotes the ith component of the parameter vector 0 (n) € RV, at up-
date instant n. Under similar assumptions as Assumptions 4. TH4.4] the convergence
of the multi-dimensional K-W algorithm (.8)) can be shown and similar conclu-
sions as in Theorem[.Tlcan be drawn. We leave this as an exercise for the interested
reader.
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4.3 Variants of the Kiefer-Wolfowitz Algorithm

There are some variants of the Kiefer-Wolfowitz algorithm available in the literature
where either different perturbation parameter schemes are explored or the selection
of the perturbation noise is varied. In [[16], [14]], it is seen that the use of common
random numbers, i.e., & (n) = £ (n) reduces the estimator variance. This may be
possible in a few simulation-based settings with random variables that are obtained
from the same pseudo-random sequence. However, in most practical settings, this
is difficult to achieve even when simulation is used. We discuss below two popular
variations, one where the perturbation parameter is held constant and another in
which one-sided perturbations are employed.

4.3.1 Fixed Perturbation Parameter

Quite often it makes sense to simply set 6(n) = & for a ‘small’ 0 > 0 as has been
done in [3], [4] and [5]] (see also [[15} pp. 15] for a discussion along these lines). With
a fixed perturbation parameter, &, the iteration scheme in (#.2) can be re-written as

h(0(n) +8,67(n) —h(6(n) — 8,8 (n))

0(n+1)=0(n)—a(n) 35

(4.9)

Note that we consider 0(n) to be scalar-valued again for simplicity. The case of
vector 6 (n) can be handled as explained in Section[4.2.1] The analysis of recursion
@.9) can be shown under weaker requirements on the step-size sequence a(n),n >
0 than those in Assumption 4.2 The convergence result that one obtains in this
case is also weaker than the one given in Theorem F.]l Specifically, we replace
Assumptiond.2] with the following:

Assumption 4.5. The step-sizes a(n) > 0, Vn and

Ya(n)=c, Y a(n)? <. (4.10)

This is essentially the same requirement as (3.4). For £ > 0, let
S ={60]]60 — 67| < € for some 0% € S},

denote the set of points that are in an &-neighborhood of the set S. We have the
following result:
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Theorem 4.2. Under Assumptions and given € > 0, there
exists 0 > 0 such that for every 6 € (0, 0], the iterates 6(n),n > 0, governed
according to (@9) converge a.s. to S¢.

Proof. (Sketch) One can rewrite (£.9) as

O0(n+1)=0(n)—a(n) <%9<n))+ﬁ(n)+n(n)), 4.11)
where
n JET(n) — n)— “(n n — n) —
n(n):h(e( )+6,87( ))26h(9( )—6,§"(n)) J(6( )+5)261(9( ) 5)7 and

B(n) = J(0(n)+6)—J(6(n)—8) dJ(6(n))
26 de

respectively. As in the proof of Theorem[4.]l one can see that (f(m), m > 0 defined
m

according to & (m) = z a(n)n(n)(m > 0) forms a convergent martingale sequence.
n=0

Further, using Taylor series expansions of J(6(n)+ &) and J(8 (n) — &) around 0 (n),

it is easy to see that (n) = O(8). The result again follows from the Hirsch lemma

(Lemmal|C.3)). O

4.3.2 One-Sided Variants

The gradient estimates in (@.2)) are also called two-sided finite difference (or bal-
anced) estimates while those that we describe below in (4.12)) are called one-sided
finite difference (or unbalanced) estimates. In one-sided FDSA, the scheme is as
follows:

(0 (n) +8(n),&"(n)) —h(6(n),5"(n))

O0(n+1)=0(n)—a(n) 501) (4.12)
The same for N-dimensional parameter 6 can be re-written as
CEF () — -

(4.13)

Proofs of convergence of both of these recursions follow along the same lines as
Theorem .1l One-sided variants bring in a computational advantage by requiring
approximately half of the number of simulations compared to the original Kiefer-
Wolfowitz scheme in the case of multi-dimensional parameter where the original
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algorithm (@.8) requires 2N function measurements in order to obtain one estimate
of the gradient while a one-sided variant (£.13) requires (N + 1) function measure-
ments to obtain a gradient estimate. In the setting of simulation optimization [7], [8],
(L, (2], 150, (1, {21, where one does not have access to function measurements
but needs to simulate the whole system, one requires in effect 2N (resp. (N + 1))
parallel simulations of the entire system when using two-sided (resp. one-sided)
estimates. These algorithms become computationally inefficient when N becomes
large and therefore one requires more computationally efficient methods for gradi-
ent estimation.

4.4 Concluding Remarks

Building on the stochastic algorithms which seek to obtain a zero of a func-
tion with noisy measurements, this chapter introduced and discussed a class of
stochastic algorithms performing gradient descent on a cost objective. The Kiefer-
Wolfowitz algorithm [13]] marks the beginning of the development of this class of
stochastic-gradient algorithms. When applied to N-dimensional parameter settings
(with N > 1), these algorithms require 2N or N + 1 noisy function measurements
depending on whether two-sided or one-sided estimates are used. When N is large,
these algorithms can become computationally inefficient because of the need to gen-
erate so many noisy cost observations. We address this scalability issue in the next
two chapters that deal with the simultaneous perturbation stochastic approximation
(SPSA) and the smoothed functional (SF) gradient algorithms, respectively.
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Chapter 5

Gradient Schemes with Simultaneous
Perturbation Stochastic Approximation

5.1 Introduction

Spall [26]], [29] invented a remarkable algorithm that has become popular by the
name simultaneous perturbation stochastic approximation (SPSA). It is remarkable
in that it requires only two function measurements for a parameter of any dimen-
sion (i.e., any N > 1) and exhibits fast convergence (that is normally faster than the
Kiefer-Wolfowitz algorithm). Unlike Kiefer-Wolfowitz schemes, where parameter
perturbations are performed along each co-ordinate direction separately (in order to
estimate the corresponding partial derivatives), in SPSA, all component directions
are perturbed simultaneously using perturbations that are vectors of independent
random variables that are often assumed to be symmetric, zero-mean, +1-valued,
and Bernoulli distributed.

In the following sections, we discuss in detail the original SPSA algorithm [26] as
well as its variants that are based on one and two function measurements. In partic-
ular, we discuss an important variant of the SPSA algorithm that uses deterministic
perturbations based on Hadamard matrices. We provide the convergence proofs of
the SPSA algorithm and its variants that we discuss.

5.2 The Basic SPSA Algorithm

We present the SPSA algorithm here for the expected cost objective. Recall that the
objective in this case is J(0) = E¢ [1(0,§)], where & : RN x R¥ — R is a given single-
stage cost function. Here /(6,&) denotes a noisy measurement of J(6) and & € R*
is a mean-zero, random variable that corresponds to the noise in the measurements.
Also, as in previous chapters, we let L(6) = VJ(0). Note that the parameter vector

0 is N-dimensional, i.e., 0 2 (6;,65,...,0y)" € RV,
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42 5 Gradient Schemes with Simultaneous Perturbation Stochastic Approximation
5.2.1 Gradient Estimate Using Simultaneous Perturbation

We first describe the gradient estimate VgJ(0) of J(6) when using SPSA. The esti-
mate is obtained from the following relation:

VoJ(0(n)) =
T (B0 S)A(m).EY) — h(Bm) + B()AM.E) [y
s E [( 25(m)Ai(n) ‘ ( >(5' )

The above expectation is over the noise terms £ and £~ as well as the per-

turbation random vector A(n) 2 (A1(n),...,An(n))T, where A;(n),...,An(n) are
independent, mean-zero random variables satisfying the conditions in Assump-
tion [3.4] below. The idea here is to perturb all the coordinate components of the
parameter vector simultaneously using A(n). The two perturbed parameters corre-
spond to 8(n) + 8(n)A(n) and 6(n) — 6(n)A(n), respectively. Several remarks are
in order.

Remark 5.1. A;(n),i = 1,2,...,N,n > 0 satisfy an inverse moment bound, that is,
E[|Ai(n)~"|] < co. Thus, these random variables assign zero probability mass to the
origin. We will see later in Theorem [5.1] that such a choice of random variables
for perturbing the parameter vector ensures that in the recursion (3.I)), the estimate
along undesirable gradient directions averages to zero.

Remark 5.2. In contrast to the Kiefer-Wolfowitz class of algorithms, one can see
that, the SPSA updates have a common numerator for all the 8-components but
a different denominator. The inverse moment condition and the step-size require-
ments ensure convergence to a local minimum. Hence, unlike the Kiefer-Wolfowitz
class of algorithms which require 2N or N + 1 samples of the objective func-
tion, SPSA algorithms need only two samples irrespective of the dimension of the
parameter 6.

Remark 5.3. Most often, one assumes that the perturbation random variables are
distributed according to the symmetric Bernoulli distribution with A;(n) = £1
w.p. 1/2,i=1,...,N, n > 0. In fact, it is found in [23] that under certain con-
ditions, the optimal distribution on components of the simultaneous perturbation
vector is a symmetric Bernoulli distribution. This result is obtained under two sep-
arate objectives (see [23]]): (a) minimize the mean square error of the estimate, and
(b) maximize the likelihood that the estimate remains in a symmetric bounded re-
gion around the true parameter.
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5.2.2 The Algorithm

The update rule in the basic SPSA algorithm is as follows:

0;(n+1) =6;(n) (5.2)

e (h(e(n) +8(A (), 67 (n) —h(6(n) - 5(H)A(n),§*(n)>)
26(}1 Al(l’l) 5

fori=1,...,Nandn > 0.

The overall flow of the basic SPSA algorithm is described in Fig.[5.1l In essence, it
is a closed-loop procedure where the samples of the single stage cost function (-, -)
are obtained for two perturbed parameter values (6(n)+ 6(n)A(n)) and (6(n) —
6(n)A(n)), respectively. These samples are then used to update 0 in the negative
gradient descent direction using the estimate (3.1).

6(n)A(n)

l
@ h(8 +8(n)A(n),&* (n)) F——,

0(n+1)

0(n) — UpdateRule(-)

@

h(0 —8(n)A(n),&* (n)) F——

= —

6(n)

—

n)

Fig. 5.1 Overall flow of the algorithm 5,11

For the sake of completeness and because of its prominence in gradient estima-
tion schemes, we describe below the SPSA algorithm in an algorithmic form.

Algorithm 5.1 The basic SPSA Algorithm for the Expected Cost Objective
Input:

* (, alarge positive integer;

e 0y € C C RV, initial parameter vector;

* Bernoulli(p), random independent Bernoulli +1 sampler with probability p
for ‘+1’and 1 — p for *—17;

* h(6,&), noisy measurement of cost objective J;

¢ a(n) and 8§ (n), step-size sequences chosen complying to assumption in (3.3));

Output: 6* A 0(0).
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n <+ 0.
loop
fori=1toNdo
A;(n) + Bernoulli(1/2).
end for
Y(n)t + h(0+6(n)A(n),ET(n)).
Y(n)” < h(0—36(n)A(n),E
fori=1toNdo
6i(n+1) < 6;(n) —a(n)

end for
n<n+1
if n = Q then
Terminate with 6(Q).
end if
end loop

The algorithm terminates after Q iterations. Asymptotic convergence is then achieved
as Q — oo. More sophisticated stopping criteria may however be used as well. For
instance, in some applications it could perhaps make sense to terminate the algo-
rithm when for a given € > 0, ||6(n) — 6(n—m)|| < € forallm € {1,...,R}, for a
given R > 1.

5.2.3 Convergence Analysis

Before presenting the main theorem proving the convergence of the basic SPSA
algorithm (3.2), we make the following assumptions:

Assumption 5.1. The map J : R¥ — R is Lipschitz continuous and is differen-
tiable with bounded second order derivatives. Further, the map L : RY — RV
defined as L(0) = —VJ(0),V0 € RN and the map / : RN x R — R are both
Lipschitz continuous.

The above is a technical requirement needed to push through a Taylor series expan-
sion and is used in the analysis.

Assumption 5.2. The step-sizes a(n),d(n) > 0, Vn and

2
a(n),8(n) —0asn—0, Y a(n)=e, Z(%) < oo, (5.3)
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Thus, a(n) and §(n) are both diminishing sequences of positive numbers with &(n)
going to zero slower than a(n). The second condition above is analogous to a similar
condition in (3.4). The third condition is a stronger requirement. In [11]], a relaxation
is made and it is assumed that a(n), §(n) — 0 as n — oo and that

Za(n) = w,Za(n)p < oo

for some p € (1,2]. Typically a(n),8(n), n > 0 can be chosen according to a(n) =
a/(A+n+1)*and 6(n) =c/(n+ 1), for a,A,c > 0. The values of o and y sug-
gested in [13] and [15] are 1 and 1/6, respectively. In [28], it is observed that the
choices o = 0.602 and y = 0.101 perform well in practical settings.

Assumption 5.3. £*(n), £~ (n), n > 0 are R¥-valued, independent random
vectors having a common distribution and with finite second moments.

Note that the algorithm (3.2)) can be rewritten as follows:

J(6(n) +8(n)A ( ) =J(6(n) —6(n)A(n))
25(n)Ai(n) 28(n)Ai(n)

6i(n+1) = 6;(n) —a(n) <

E7(n) =&~ (n) =h(6(n) + 8(n)A(n),E " (n)) — h(6(n) — 6(n)A(n),E ™ (n))
—(J(8(n) +6(n)A(n)) = J(8(n) — &(n)A(n))).

Erm &)
28(n)Ai(n)

under an appropriate filtration.

It is easy to see that ,n > 0 forms a martingale difference sequence

Assumption 5.4. The random variables A;(n), n > 0, i = 1,...,N, are
mutually independent, mean-zero, have a common distribution and satisfy
E[(Ai(n))%] < K, Vn >0, for some K < .

In order for the inverse moment of A;(n) to be uniformly bounded (see
Assumption 5.4)), it follows that the random variables A;(n) must have zero prob-
ability mass at the origin. Many times, one simply lets A;(n),n > 0 to be indepen-
dent, symmetric Bernoulli-distributed random variables with A;(n) = +1 w.p. 1/2,
Vi=1,...,N.
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Assumption 5.5. The iterates (3.2)) remain uniformly bounded almost surely,
i.e.,

sup||6@(n)|| < e, a.s. (5.5)

Consider the ODE:
0(t) = —-VJ(6(1)). (5.6)

Assumption 5.6. The set H containing the globally asymptotically stable

equilibria of the ODE (5.6)) (i.e., the local minima of J) is a compact subset of
RV,

Theorem 5.1. Under Assumptions[3.115.6] the parameter updates (3.2) satisfy
0(n) — H with probability one.

Proof. Let V,J(0) represent the ith partial derivative of J(6). The SPSA update rule
(3.2 can be rewritten as follows:

Oi(n+1)=6i(n) —a(n)(VJ(0(n))+ni(n)+ Bi(n)), (5.7)
where
ni(n) _h(B(n) +8(n)A(n), & (n)) —h(6(n) — 8(n)A(n),E (n))
' 26(n)Ai(n)
~J(0(n)+8(n)A(n)) —J(0(n) —8(n)A(n))
28(n)Ai(n) ’

fori=1,2,...,N. Now,
[1(6,€)| —[1(0,0)] < [n(6,&) —h(0,0)| < L||(6,) - (0,0)]],

where L > 0 is the Lipschitz constant of 4. Since || - || is the Euclidean norm, it is
easy to see that ||(6,&) — (0,0)|| < /0| + ||£]|. Thus, we have that

n(6,8)] < K(1+]6] + €],
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for some K > 0. Now 1;(),n > 0 forms a martingale difference sequence with
respect to the sequence of sigma fields .7 (n) = 6(0(m),A(m),E (m),E~ (m),m <
n),n > 0. Let

n—1
Ni(n) =Y a(m)ni(m), n>1,i=1,....,N

m=0
It is easy to see as a consequence of Assumptions and from the martingale
convergence theorem (Theorem [B.2) that N;(n),n > 1, is an almost surely conver-
gent martingale sequence.

Now, Taylor’s series expansions of J(0(n) +6(n)A(n)) and J(6(n) — d(n)A(n)),

respectively, around the point 6(n) give,

Upon substitution of the above in the expression for f3;(n), we get,

N ‘Ifl
Z (6(n)) + O(8(n)).

j=1,j i(n)

Since Aj(n) are i.i.d., bounded and mean-zero random variables, the first term in the
above is a square integrable mean-zero random noise for a given 6(n). The claim
now follows from the Hirsch Lemma (see Lemmal|C.J)). a

As suggested by equation (5.7), while the search direction is randomly chosen and
need not follow a descent path, the algorithm is seen to make the right moves in the

asymptotic average. In the next section, we discuss some of the variants of the basic
SPSA algorithm.

5.3 Variants of the Basic SPSA Algorithm

The SPSA algorithm has evoked significant interest due to its good performance,
ease of implementation and wide applicability. Moreover, it is observed to be scal-
able in that the computational effort does not increase significantly with the pa-
rameter dimension unlike the Kiefer-Wolfowitz algorithms (see for instance, the
experiments in [7]). In the next few sections, we shall review some of the important
variants of the SPSA algorithm.

5.3.1 One-Measurement SPSA Algorithm

Interestingly enough, it is possible to perform gradient estimation via just one mea-
surement. In [27]], a one-measurement version of SPSA has been presented. The



48 5 Gradient Schemes with Simultaneous Perturbation Stochastic Approximation

simulation here is run with the parameter 6 (n) 4 6(n)A (n) where the update rule is
of the form:

6,(n+1) = 6,(n) —aln) (h(e('” +5‘zf1’§if_\((n"))’5+("))> NCES

1

fori=1,...,N and A(n) as before.

Now, we present a proof of convergence of this scheme.

Theorem 5.2. Under Assumptions 3 IH3.0 the parameter updates (3.8) satisfy
0(n) — H with probability one.

Proof. The proof follows in a similar manner as that of Theorem[3.1]except for the
change that because of the presence of only one simulation, there is an additional
bias term in the gradient estimate. Recall that a Taylor series expansion of J(0(n) +
6(n)A(n)) around 0(n) gives

J(0(n)+6(n)A(n))=J(0(n))+ 5(n)A(n)TVJ(9(n)) + O(S(n)z).
One can rewrite (3.8) in a manner similar to (3.7), where

h(6(n) +8(n)A(n),E*(n)) _ J(6(n)+8(n)A(n))

o )
miln) 5 () Arln) S

001+ 8(1A )
P = am)

—V.J(6(n)).

Thus,

J(6(n)) v Ain)
B = o+ 2 ai VO +OG0). 69)
The second term in the above, as previously discussed, is a square integrable mean-
zero random noise (given 0(n)). The first term above (for any n > 0) is also mean-
zero for a given 0(n). Further, the product of a(n) with the first term in the above
can be seen to be square summable. Hirsch Lemma (see Lemma[C.3)) can now be
applied to obtain the claim. O

As observed in [27] and other references, for instance, [8]], the performance of the
one-measurement SPSA algorithm is not as good as its two-measurement coun-
terpart because of the presence of the additional bias term (above) that has a factor
0(n) in its denominator and which tends to zero asymptotically. However, it is noted
in [27]], that one-simulation SPSA may have better adaptability as compared to its
two-simulation counterpart in non-stationary settings.
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5.3.2 One-Sided SPSA Algorithm

A one-sided difference version of SPSA with two measurements has been consid-
ered in [L1]. Here the two simulations are run with the parameters 6(n) + 6(n)A(n)
and 6(n), respectively, and the update rule has the form:

6,(n-+1) = 6i(n) —a(n) (h<9<n> + 6<n>A<§2f+<n>> ~h(6(n).§()

(5.10)

fori=1,...,N with A(n) as before.

Also, T (n),&(n) satisfy Assumption[3.3] with &(n) in place of £~ (). One of the
measurements of A(-,), here, is unperturbed which may be useful in certain appli-
cations [11]]. A similar convergence result as that in[3.1] can be shown for this case
as well. If higher order derivatives of J exist, then one can see that in the case of
the original SPSA algorithm, all even order terms such as the second order terms
involving the Hessian get directly cancelled. This is however not the case with the
one-sided difference SPSA where such terms contribute to the overall bias. The
two-sided form (53.2) is the most studied and used in applications.

5.3.3 Fixed Perturbation Parameter

In many applications [5} |6} [7] and also in discussions [20, pp. 15], of the SPSA
algorithm, a constant value for the perturbation parameters d(n) = 6 > 0, is of-
ten considered for convenience. The SPSA update rule would in this case take the
form:

B:(n+1) = 61(n) —a(n) <h<6<n> +5A(n),§+(nz);A—i(f;()9(n) - 5A(n),§‘(n))>7

(5.11)

fori=1,...,Nandn > 0.

As described in the theorem below, a suitable § > 0 can be chosen based on a desired
€ > 0, to prove convergence of the update rule to an &-neighborhood of the set H
(the local minima of J). For € > 0, let

H®={6]6—0"|| < & forsome 6" € H}.
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Consider now the following requirement of the step-sizes a(n),n > 0, in place of
Assumption[5.2}

Assumption 5.7. The step-sizes a(n) > 0, Vn and

Yan) =, Y a(n)?<ee. (5.12)

Theorem 5.3. Under Assumptions[51) 5357 given € > 0, there exists 5§>0
such that for every 6 € (0,0], the update rule (5.I1) converges a.s. to H®.

Proof. Proceeding along similar lines as in the proof of Theorem 3.1l the update
rule (3.11) can be re-written as

6,(n+1) = 61(n) — a(n) (Vid (6(n)) + 1i(n) + Bi(m)) (5.13)
where
ni(n) _h(6(n)+6A(n),E(n)") —h(6(n) — A (n),E(n)")
’ 25A:(n)
_ J(B(n)+6A(n)) —J(6(n) — 6A(n))
26A:(n) ,
Biln) _J(6(n)+84 (r;)(;A—i (Jn()e(n) —3A(n) V6,

fori=1,2,...,N. As before, it is easy to see that 1;(n),n > 0, is a square integrable
martingale difference sequence. Thus, { Z a(m ,n>1>5 can be seen from

the martingale convergence theorem (Theorem [B.2) to be an almost surely conver-
gent martingale. Now, simplifying the expression of f;(n) using appropriate Taylor
series expansions of J(0(n) + 0A(n)) and J(0(n) — 6A(n)), respectively, around
0(n), we get,

Aj(l’l
A,(n

N
-2
=1,j#i

J
It is easy to see that E [ﬂ,(n) | (n)] O(6). The claim now follows by applying the
Hirsch lemma (LemmalC.3)) O

(8(n))+0(9). (5.14)
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5.4 General Remarks on SPSA Algorithms

It is interesting to note that in each of the update rules (3.2), (5.8) and (3.10Q),
the numerator is the same across all i, i = 1,...,N, while the denominator has a
quantity A;(n) that depends on i. This is unlike the Kiefer-Wolfowitz algorithm (or
FDSA) where the denominator is the same while the numerator is different for dif-
ferent i, see (4.2) and (4.12). Thus, in going from FDSA to SPSA, the complexity
in estimating the gradient shifts (in a way) from the numerator of the estimator
to its denominator. It should be noted that simulating N independent symmetric
Bernoulli-distributed random variables is in general far less computationally expen-
sive than obtaining 2N or (N + 1) objective function measurements or simulations,
particularly when N is large. It has been seen both from theory and experiments
[26], [, [24] that two-sided, two-simulation SPSA (3.2) is computationally far
more superior to FDSA. In [26], asymptotic normality results for SPSA and FDSA
are used to establish the relative efficiency of SPSA. The asymptotic analysis for
the Robbins-Monro algorithm can be adapted to prove almost sure convergence of
the iterates in the SPSA algorithm [26]]. Assuming that there is a unique globally
asymptotically stable equilibrium 6* for the associated ODE (i.e., a global mini-
mum for the basic algorithm), the asymptotic normality result in [26] essentially
says that

n2(0(n)— 6%) B N(u, %)

as n — oo, where 2) denotes convergence in distribution, N(i,X) is a multi-variate
Gaussian with mean ¢ and covariance matrix X that depends on the Hessian at 6*.
In general, u # 0. The quantity r depends upon the choice of the gain sequences
{a(n)} and {8(n)}.

Many interesting analyses of the SPSA algorithm have been reported in the lit-
erature. In [26], the above asymptotic normality result is used to argue the relative
asymptotic efficiency of SPSA over FDSA. In particular, it is argued that SPSA re-
sults in an N-fold computational savings over FDSA. In [[L1], a projected version of
SPSA where the projection region is gradually increased has been presented. This
is a novel approach to take care of the issue of iterate stability in general. In [2] and
[[L7], application of SPSA for optimization in the case of non-differentiable func-
tions is considered. A detailed analysis of SPSA under general conditions can also
be found in [16]. An analysis of SPSA and FDSA when common random num-
bers are used in the simulations is given in [[18]. Different ways of gradient esti-
mation in SPSA using past measurements have been reported in [1] and [21]. In
[22], iterate averaging for stability of the SPSA recursions and improved algorith-
mic behaviour is explored. A case of weighted averaging of the Kiefer-Wolfowitz
and SPSA iterates is considered in [14]]. In [12] and [23]], SPSA is proposed for
use as a global search algorithm. In [13], SPSA is compared with a two-sided
smoothed functional algorithm (see Chapter [6) and it is observed over the exper-
iments considered there that SPSA is the better of the two algorithms. In [28], the
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general technique for implementing SPSA and the choice of gain sequences is dis-
cussed. In [10], non-Bernoulli distributions have been explored for the perturbation
sequences.

In the next section, we discuss an important class of SPSA algorithms where the
perturbation sequence is deterministic and regular (i.e., periodic) rather than a vector
of independent Bernoulli-distributed random variables.

5.5 SPSA Algorithms with Deterministic Perturbations

The SPSA algorithms discussed in the previous sections used zero-mean and mu-
tually independent random perturbations to obtain an estimate of the gradient
of the objective function. We now consider the case when the perturbation se-
quences are constructed differently by a deterministic mechanism. These pertur-
bations are obtained by cyclically passing through a certain construction based on
Hadamard matrices. The principal idea behind the Hadamard matrix construction is
to periodically cancel the bias terms aggregated over iterations where the length
of the period over which such cancellation occurs is small. As a consequence,
one expects an improved algorithmic performance. In [8]], it is observed that in
certain scenarios, the deterministic perturbations are theoretically sound and re-
sult in faster convergence empirically. For further discussions, we will use the
setting of fixed perturbation parameter, that is, §(n) = 6 > 0. Nevertheless, all
the following discussions, can be suitably applied to the general setting with
non-fixed perturbation sequences O(n),n > 0 satisfying the requirements in
Assumption[3.2}

5.5.1 Properties of Deterministic Perturbation Sequences

We first explain the idea why such a construction can work in practice. Recall that a
Taylor series expansion of J(6(n) + 6A(n)) around 6(n) is the following:

J(0(n) +8A(n)) =J(8(n)) +S5A(n)"VI(8(n)) + o(3). (5.15)

Similarly, an expansion of J(0(n) — §A(n)) around 0 (n) gives

J(6(n) — §A(n)) = J(O(n)) — SA(n)TVI(6(n)) +0(5). (5.16)

Hence from (3.13) and (3.16), for i = 1,...,N, one obtains in the case of a two-
measurement algorithm with parameters 0 (n) + 8A(n) and 0(n) — §A(n),
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J(6(n)+06A(n))—J(O(n)—6A(n)) _ A(n)TVJI(0(n))
25A,(n) A,(}’l)

N (n
—vaem+ S A9 sem)
J=Lj#i

A,(I’l)

+0(0)

+0(8). (5.17)

Note that the error terms (at the end) are still 0(8) above because the subsequent
Hessian terms in the above expansions would directly cancel as well. Also, in the
case of a two-measurement, but one-sided gradient estimate involving parameters
0(n)+ 8A(n) and 6(n), one obtains

J(0(n)+8A(n)) —J(6(n)) _ \

(6(n)) +0O(9).

(5.18)
As discussed before, unlike (3.17), the Hessian term would not cancel if it is con-
sidered in the expansion. Hence, the last term above is now O(§).

j=1,j

N
A
Note that 2 i) V;J(6(n)) constitutes the bias. When A;(n), i=1,...,N
j=g Ailn)

n > 0 satisfy Assumption[3.4] for instance, if they are Bernoulli distributed indepen-
dent random variables, A;(n) = 1 w.p.1/2, Vi, n, then it follows that

N

Ao o
,-},-#A( TV (6(m)

i\n

e(n)] =0. (5.19)

The conditional expectation as such can be seen to be obtained in the asymptotic
limit of the algorithm using a martingale argument. However, as we shall subse-
quently see, when the perturbations A;(n) are not random but are obtained through a
deterministic construction instead, it suffices that some finite sums of the bias terms
tend to zero asymptotically.

In the case of a one-measurement algorithm with parameter 0 (n) 4+ 6A(n), on
the other hand, a similar calculation shows

(6(n)) +O(3).

(5.20)
The first and the third terms on the RHS in (5.20) constitute the bias terms. In the
case of random perturbations as described above, the following holds as well in

addition to (3.19):

J(0(n)+08A(n)) J(O(n)) S
Sa) oA V(@ :]Z

E [J(G(”)) ‘ e(n)} —0. (5.21)
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As mentioned before, the quantity 6 > 0 is usually chosen to be either a ‘small’
constant or else is slowly diminishing to zero. In either case, the variances of the
estimates depend on 0. Nevertheless, in the case of one-measurement SPSA with
deterministic perturbations, one wants that the bias contributed by the first term on
the RHS of (3.20) tends to zero in addition to that contributed by the third term on
the same RHS.

In general, a deterministic construction for the perturbation sequences should sat-
isfy the following property in the case of two-measurement SPSA algorithms with
both the two-sided balanced estimates (with parameters 6(n) + 0A(n) and 6(n) —
6A(n), n > 0) as well as the one-sided estimates (with parameters 0 (n) + 6A(n)
and 6 (n), n > 0), respectively.

(P.1) There exists a P € N such that for every i, j € {1,...,N}, i # j and for
any s € N,

s+P Ai(n)
=0. 5.22
Z's Aj(n) 622

Further, in the case of one-measurement SPSA (with parameters 6(n) +
O0A(n), n > 0), one requires the following property in addition to (P.1):

(P.2) There exists a P € N such that for every k € {1,...,N} and any s € N,

s+P 1
=0. 5.23
Z& Ay(n) 62

Property (P.2) is not required to be satisfied by the aforementioned two-
measurement SPSA algorithms while both (P.1) and (P.2) are required for one-
measurement SPSA.

5.5.2 Hadamard Matrix Based Construction
Let Hy, k > 1 be matrices of order 2k 5 2k that are recursively obtained as:
_ 1 1 _ sz—] sz—l
H, = (1 _1> andek = (sz—l _sz—l > , k> 1.

Such matrices are called normalized Hadamard matrices. These are characterized
by all elements in their first row and column being 1.
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5.5.2.1 Construction for Two-Measurement Algorithms

We now describe the construction of the perturbation sequences in the case when
the gradient estimates have the form (3.17) or (3.18). Let P = 2[°22N1_(Note that
P > N.) Consider now the matrix Hp (with P chosen as above). Let i(1),...,h(N),
be any N columns of Hp. In case P = N, then h(1),...,h(N), will correspond to all
N columns of Hp. Form a matrix Hp of order P x N that has h(1),...,h(N) as its
columns. Let e(p),p = 1,...,P, be the P rows of Hp. Now set A(n)” = e(n mod
P+ 1), Vn > 0. The perturbations are thus generated by cycling through the rows
of Hp with A(0)T =e(1),A(1)T =e(2),...,A(P—1)T =¢(P), A(P)T =¢(1), etc.
The following result is obvious from the above construction.

Lemma 5.4. The Hadamard matrix based perturbations A(n), n > 0 for two-
measurement SPSA algorithms satisfy property (P.1).

Here we give an example for the case when the parameter dimension N is 4. As
per Lemma[5.4] we construct the perturbation sequence A(1),...,A(4), from Hy as
follows:

A1) =[1,1,1,1]7,

AQ2) =[1,-1,1,-1]T,
A(3) =[1,1,—1,—-1]T,
A4)=1[1,-1,-1,1]"

In this particular case where N was a power of 2, we ended up taking the row vectors
of Hy as the perturbations. If N is not a power of 2, the procedure would be similar
to the above, except that we only pick N columns from the matrix Hp, where P =
2Mo&2 N1 1t can be easily checked that the perturbations generated above satisfy the
property (P.1).

5.5.2.2 Construction for One-Measurement Algorithms

In the case when the gradient estimates are as in (3.20) and depend on a single
measurement with parameter 0 (n) + 8A (n), the value of P is set to P = 2[l0e2(N+ DT,
Thus, P > N + 1 in this case. Now let &(1),...,h(N) be any N columns of Hp other
than the first column. Form the matrix Hy, of order P x N with i(1),...,h(N) asits N
columns. As before, if e(p),p = 1,..., P are the P rows of Hp, then the perturbation
vectors A(n) are obtained again by cycling through the rows of Hj,. The following
result is now easy to verify from the construction.

Lemma 5.5. The Hadamard matrix based perturbations A(n), n > 0 for one-
measurement SPSA algorithms satisfy both properties (P.1) and (P.2).

We again consider an example where N = 4. Now, to construct perturbations in this
case for one-simulation algorithms, we first form the normalized Hadamard matrix
Hg as follows:
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(11 1 1|1 1 1 1]
1-11 —-1j1 -1 1 -1
11 -1-11 1 —-1-1
I-1-11]|1 -1-11

Hg =

11 1 1|-1-1-1-1
1-11 —-1j—-1 1 -1 1
11 -1-1-1-11 1
| 1-1-11|-11 1 -1

Now, the perturbations A(i),i = 1,...,8 can be obtained by taking columns 2 — 5
(or any 4 columns except the first) of Hg. For instance, taking the rows of columns
2 — 5 from Hg above, we obtain:

A(l) = [1,1,1, ]
A(2)=[-1,1,-1,1)"
AG) = [1,=1,-1,1]%,
Ad)=[-1,— l,l,l]
A(5) = [1,1,1,*1]
A(6) = [-1,1,—1 —1]
A7) =1[1,-1,—1 —1]
A8) =[-1,—-1,1,— 1].

Any other choice of four columns other than the first can be seen to work as well.
Properties P.1-P.2 are seen to be satisfied here.

5.5.3 Two-Sided SPSA with Hadamard Matrix Perturbations

Let 6(n) = (61(n),...,6y(n))T, n > 0 be a sequence of parameters that are
tuned according to the algorithm below (cf. (3.24)). Also, let A(n),n > 0 be a
sequence of perturbations obtained from the Hadamard matrix construction de-
scribed in Section[3.3.2.1l Then, the update rule of the two-sided SPSA algorithm is
given by

h(8(n) +6A(n),E"(n)) —h(8(n) — 6A(n),E~ (n))
25A:(n) ’
(5.24)

6;(n+1)=6,(n)—a(n) (

fori=1,...,Nandn > 0.
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Remark 5.4. In (5.24)), § is a fixed positive real number. The convergence analysis
of the earlier SPSA schemes established that they converge to the set H of asymp-
totically stable equilibrium points of the corresponding ODE. However, with a fixed
0, it is later established that (3.24) converges in the limit to a set that can be made
arbitrarily close to H by the choice of §. Further, a decreasing §-sequence can also
be incorporated in (5.24) as well as the one-sided and one-measurement variants
discussed in the later sections.

Remark 5.5. The overall flow and the algorithm structure of the two-sided SPSA
(524) is similar to Fig.[5.1land Algorithm 5.1l respectively, except that {A(n)} are
obtained here using Hadamard perturbations.

5.5.3.1 Convergence Analysis

Recall that H is the set of globally asymptotically stable equilibria of the ODE
(cf. Assumption [3.6):

O(t) =L(6(t)) = —VJI(O(t)). (5.25)

Givenn >0, let H" 2 {6 €C|]6—6| <n, 6 € H} be the set of points that are
within a distance 1] from the set H. We first provide the main convergence result of
the two-sided SPSA scheme (5.24):

Theorem 5.6. Given 1) > 0, there exists & > 0 such that for all 6 € (0, &),
0(n),n > 0 obtained according to (5.24) satisfy 6(n) — H" almost surely.

In the rest of the section, we provide a sequence of lemmas which would we used to
prove the above theorem. The outline of the steps in the process of proving Theorem
Blis as follows:

(i) Using the equivalent update rule (3.26), the associated martingale difference
sequence is extracted and shown to diminish to zero asymptotically.

(ii) Lemmas 3.7 and B.§] together establish that certain bias terms in the
algorithm obtained upon writing 6;(n+ P) in terms of 6;(n), go to zero asymp-
totically.

(iii) Finally, using suitable Taylor expansions and neglecting the terms correspond-
ing to the bias and the martingale difference, the proof of Theorem 5.6 estab-
lishes that the algorithm (3.26) tracks the ODE (5.23).

(iv) The last step of the proof is proven by invoking the Hirsch lemma.

The formal proof of Theorem[3.6lis provided at the end of this section.
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The update recursion (5.24) could be revised into the following: Vn > 0, Vi =
1,....N,

J(6(n)+06A(n))—J(O(n)—56A(n)) .
i(n+1) = 6i(n) — M(n+1) |,
6;i(n+1)=6;(n) a(n)( 26 (n) +M(n+1)
(5.26)
where Mi(n + 1), n > 0 is a martingale difference sequence for each i = 1,... N,

with respect to the sigma fields .#(n) = o(0(m),M'(m),...,M"(m),m < n),
n>0.

We shall analyze (5.26) below. Let Assumptions[3.1}[3.3]and[3.6] continue to hold.
We also make the following assumptions in addition:

Assumption 5.8. The step-sizes a(n),n > 0 satisfy the requirements

Ya(n)=co, Y a(n)* <eo. (5.27)

Further, %])) — lasn— oo, forall j€{nn+1,...,n+ M} for any given
a(n

M > 0.

Assumption 5.9. The sequence (M(n),.%# (n)), n > 0 forms a martingale dif-
ference sequence. Further, M(n), n > 0 are square integrable random variables
satisfying

E[|M(n+1)|?| F ()] < K(1+]16@)||*) as.,n >0,

for a given constant K > 0.

Note that the initial requirements in Assumption [3.§] are the same as in Assump-
tion[3.7} The last condition in Assumption[3.§]is seen to be satisfied by most dimin-
ishing step-size sequences. Assumption[5.9lis the same as Assumption[3.3

Remark 5.6. As noted before, each function measurement is, in general, indepen-
dently noise corrupted. Thus, the two measurements corresponding to parameters
0(n) + 6A(n) and O(n) — §A(n) may correspond to X' (n) = J(0(n) + 8A(n)) +
El'(n+1)and X?(n) =J(0(n) — 8A(n)) +E*(n+1), respectively, where £ (n+ 1),
E2(n+1), n > 0 themselves are independent martingale difference sequences. In
such a case,

Eln+1)—E2(n+1)
28A:(n) =

Mn+1)=
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are also martingale difference sequences since

Eln+1)—E*(n+1)

E[M(n+1)| Z(n)] =E T \F)
1 or
T 25A(n) (E[E (n+1) =& (n+1)) | Z(n)])
=0 (5.28)

Further, if we assume that
E[IE' (n+ D)]*| Z ()] <K(1+0(n) +8A(n)|?),

E[|E(n+ 1) | #(n)] < K(1+16(n) = SA()|),

then
2

E < Go(1+]6(n)?),

‘§](n+l)§2(n+l) Fn)

25A,~(n)

for some Cp > 0 and since § > 0 is a constant. Moreover, ||A(n)|| = Cy, for
some C] > 0, Vn, because A(n),n > 0, are vectors with only +1s and —1s. Thus,
Assumption holds on Mi(n+ 1), n > 0, if a similar requirement holds for
E'(n+1),E%(n+1),n> 0, respectively.

A result similar to Theorem [3.3] would hold if one can show that the bias terms
in the expansion in (3.17) vanish asymptotically in the limit as § — 0.

Lemma 5.7. Given any fixed integer P > 0,
oo, forallk € {1,...,P}.

O(m+k)—0(m)|| = 0wp. I, asm—

Proof. Fixak € {1,...,P}. Note that the algorithm (3.26) can be rewritten as

ntk—1 0 <J(9(j)+5A(j)) —J(0(j) 5A(j))>

6:(n+k) = 6i(n)— Y a(j

j=n 26Al(])
n+k—1 )
- 2 alM(j+1). (5.29)
j=n
Thus,
n+k—1 . N\ N .
oty - 0] <3 [ L0 I00) ~04(7)
Jj=n i
n+k—1 )
+ X a(IM'(j+1)|. (5.30)
j=n
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It is easy to see that (foreach i =1,...,N),

n—1

N'(n) =Y a()M'(j+1), n>1,
j=0

forms a martingale sequence. Further, it follows from Assumption[5.9] that

S E[(V(mt 1)~ Nm)? | Fm) = 3 E [a(n)2 (M (nt 1) | F(m)]

< z:“oa(n)zl((l +6(m)[).

From Assumptions [3.§] and it follows that the quadratic variation process of
Ni(n),n > 0 converges almost surely. Hence, by the martingale convergence the-
orem (Theorem [B.2), it follows that N'(n),n > 0 converges almost surely. Hence,
n+k—1 )

2 aM(j+1)

j=n

‘1(9(1) +6A()) —J(6()) — 64())) ’ < <|J(9(j) +6A()) —J(6() — 5A(j))|>
26A:(j) - 2614:(j)]

— 0 almost surely as n — co. Now observe that

I(8(j) + BA())| +1/(8()) — 3A()))
= ( 2 ) ’

since |4;(j)| =1,Vj > 0,i=1,...,N. Now note that

(0(j) +6A()) = (O0) < J(8(j) +64(j) —J(0)|
< B[6(j)+8A()l
where B > 0 is the Lipschitz constant of the function J(-). Hence,
[I(0(j)+8A())I < B(1+6(j)+8A()).,
for B = max(|J(0)|,B). Similarly,
[7(0(j) —8A(7)| < B(1+116(j) —8A()ID)-
From Assumption[3.3] it follows that

J(00)) + 8A() —J(00) = 8A())| _
P 254,)) =K<

for some K > 0. Thus, from (3.30),
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n+k—1 n+k—1 )
6i(n+k) —6;(n)| <K D a(j)+| D, a(j)M'(j+1)| — 0 as. with n — oo.
Jj=n j=n
The claim follows. O
For compact notation, let Vi (-) = % For instance ViJ(0(m)) = w
k k

Lemma 5.8. The following holds for any m > 0, k,1 € {1,... N}, k # [:

" a(n) An)

VkJ(G(n))H —0,

M
S 0=
S
b
S

almost surely, as m — oo

Proof. From Lemma[57] ||6(m+s)— 0(m)|| = 0 as m — oo, forall s = 1,...,P.
Also, from Assumption[5.1] we have ||V, J(0(m+s)) — Vi J(0(m))|| — 0 as m — oo,
m+P—1 Ak(n)

forall s=1,...,P. Now from Lemma[54 )’
n=m Al(”)

construction, P is an even positive integer. Hence, one can split any set of the type
A(m) 4 {m,m+1,...,m+P— 1} into two disjoint subsets A ;(m)" and Ay ;(m)~
each having the same number of elements, with Ay ;(m)" UAy;(m)~ = A(m) and

=0V m > 0. Note that by

A
such that Ak((Z; takes value +1 on Ay ;(m)™ and —1 on A ;(m)~, respectively. Thus,
!
m+P—1
a(n) Ar(n
W A0 g, s6(m))
i alm) A(n)
a(n)

vaem) - Y v em|.

a(m) ned )~ 4m)

nEAkJ (m)*

The claim now follows as a consequence of the above and Assumption[3.8] (applied
with M =P —1). O

Proof of Theorem[3.6l Note that the recursion (3.26) can be iteratively written as

n+P—1 o o )
ot 1= " (OISO 580) )
- (5.31)
From (3.17), it follows that
ot p) = o — S anviem - S an S 20y )
! s - ! - A~ A(D
I=n I=n Jj=1,j#i
n+P—1 n+P—1

= Y al)o(8)— Y a(h)M'(I+1). (5.32)
I=n

I=n
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Now the third term on the RHS of (3.32) can be rewritten as

where &!(n) = o(1) from Lemma[5.8] Thus, the algorithm (5.26)) can be seen to be
asymptotically analogous to the following algorithm:

0i(n+1) = 6;(n) —a(n) (ViJ(0(n)) +0(8) + M (n+1)). (5.33)
Now from convergence of the martingale sequence N'(n), it follows that

D a(l)M'(I+ 1) — 0 as n — oo, almost surely. The rest now follows from the Hirsch

I=n
lemma (Lemmal|C.3)). a

5.5.4 One-Sided SPSA with Hadamard Matrix Perturbations

As in the case of the two-sided SPSA algorithm in the previous section, assume that
the sequence of perturbations A(n),n > 0 is obtained from the Hadamard matrix
construction described in Section 3.5.2.11 Then, the update rule of the one-sided
SPSA algorithm is given by

h(0(n)+ 8A(n)

6i(n+1)=6;(n) —a(n) (

(%)

= [uwe

S |+

\-/A

S

N—

S~—

ol

—

(wn

~—~

S

SN—

N—

\—/
~
e
(89}
g
N

fori=1,...,Nandn > 0.

The above recursion can be seen to be equivalent to:

6i(n+1) = 6i(n) —a(n) (J(G(n) +84(m) =J(6(n)) + M (n+ 1)) ,i=1,...,N.
5A,(I’l)

(5.35)
In the above, M’ (n+1), n > 0 is a martingale difference sequence for each i =
1,...,N, with respect to the sigma fields .7 (n) = 6(8(m),M" (m),..., MM (m),m <
n),n > 0. The conclusions of Remark can be seen to hold here as well with
M (n) in place of M‘(n), n > 0,i=1,...,N. The proof of Lemma[5.7 goes through
with minor changes. Further, Lemma[3.8 continues to hold.

Theorem 5.9. Given 1 > 0, there exists 8 > 0 such that for all § € (0, 8], 8 (n),n >
0 obtained according to (3.34) satisfy 6 (n) — H" almost surely.

Proof. The proof follows in a similar manner as Theorem[3.6] except that the Tay-
lor’s series expansion (3.18) is now used instead of (3.17), as a result of which the
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term a(n)o(68) in (533) is replaced with a(n)O(5). The rest follows as in Theo-
rem[3.6l O

5.5.5 One-Measurement SPSA with Hadamard Matrix
Perturbations

The perturbations A(n),n > 0 are obtained here from the Hadamard matrix con-
struction described in Section[5.3.2.2] Recall that this construction results in a per-
turbation sequence with a period P = 2M°&(N+D1 that s, in general, larger than
the corresponding period for the perturbation sequence for two-sided SPSA al-
gorithm. Further, this construction satisfies both properties (P.1) and (P.2). In the
case of two-measurement SPSA algorithms satisfying (P.1) alone was sufficient
to ensure convergence. The update rule of one-measurement SPSA algorithm is
given by

h(0(n)+6A(n),ET(n
0i(n+1) = 6;(n) —a(n) ( (O(n) 5A,~((n)) & ))> , (5.36)
fori=1,...,N and 6 > 0 as before.
5.5.5.1 Convergence Analysis
The algorithm (3.36) can be seen as equivalent to:
J(0(n)+0A(n N

0i(n+1)=6;(n) —a(n) (%(n)()) +M’(n+1)>, (5.37)

where Mi(n + 1), n > 0 is a martingale difference sequence for each i = 1,... N,

with respect to the sigma fields .7 (n) = 6/(8 (m),M' (m),...,M" (m),m <n),n > 0.
The conclusions of Remark[5.6lcan be seen to hold here as well with M (n) in place
of M'(n),n>0,i=1,...,N. The proof of Lemmal[5.7lcan again be seen to hold with
minor changes. As discussed before in Section [3.3.1} the one-measurement SPSA
algorithms involve additional bias terms in comparison to their two-measurement
counterparts and the following lemma proves that the bias terms that result from a
Taylor series expansion of the second term on the RHS of (3.37) go down to zero
asymptotically in the norm.

Lemma 5.10. The following holds for any m > 0, i,k,l € {1,... N}, k #1:

m+P—1 a(n) 1

Vi (6(n))|| =0,
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as m — oo, almost surely.

Proof. From Lemmal[5.3] the sequence A(n),n > 0 obtained as per the construction
described in Section[5.53.2.2satisfies both (P.1) and (P.2). It can be shown in a similar

& a(n) A(n) Vi (6(n)) '

manner as Lemma 5.8] that || )} ) ) — 0 almost surely as
a(m) Ai(n

n=m
m — . Now since J : R¥ — R is continuously differentiable, it is in particular
continuous. It thus follows from Lemmal[3.7] that

|J(8(m+k))—J(O(m))|| — 0asm— oo,

forall k € {1,...,P}. It can now be shown in a similar manner as Lemma[3.§] (using
(P.2)) that

almost surely as m — oo. The claim follows. a

We now have the main convergence result for the one-measurement SPSA with
Hadamard perturbations.

Theorem 5.11. Given 1 > 0, there exists &y > 0 such that for all § € (0, &),
0(n),n > 0 obtained according to (5.37) satisfy 6(n) — H" almost surely.

Proof. Note that the recursion (5.37) can be iteratively written as

n+P—1 n+P—1 .
6i(n+P)=6(n)— Y a(l)<%ﬁf@)>— Y a(l)M'(1+1). (5.38)

I=n I=n

From (3.20), it follows that

n+P—1 n+-P—1
0+ P) = 000) = 3 al)VI(00) - 3 aay
n+P—1 N A (l) n+P—1
= X al) Y, FEVA60)- Y ah)o(s)
I=n j=1,j#i i(0) l=n
n+P—1
= Y a(h)M(1+1). (5.39)
I=n
Now note that
mot W) R al) J(6(1)
Z;l a(l) (SAZ(Z) —a(l’l) = m SAI(Z) —a(}’l)éiz(}’l),
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where £2(n) = o(1) by Lemma[5.10 Similarly,

n+P—1 l N A](l>vh o)) — 3
S al) 3, JERVA60) = awE o).
i=nj=rg A
with &2 (n) = o(1) from Lemma[5.10] The rest follows as in Theorem 5.6l |

5.6 SPSA Algorithms for Long-Run Average Cost Objective

We now present a multi-timescale version of two-measurement SPSA (with random
perturbations) for the case when the underlying process is Markovian and depends
on a parameter. The states of this process can either be directly observed or obtained
through simulation. We will assume for simplicity that the states are simulated even
though the same framework also works for the case of real observations. The single-
stage cost function in this case depends on the (simulated) system state and the goal
is to find a parameter (on which the state depends) that optimizes a long-run average
cost objective. Even though we present here only the two-simulation SPSA with
random perturbations, the analogs of the other SPSA algorithms for the expected
cost criterion presented previously can similarly be described. We now present the
basic framework in more detail below.

5.6.1 The Framework

Let {X(n),n > 1} be an R?-valued parameterized Markov process with a tunable
parameter 6 that takes values in R". Let for any given 6 € R, {X(n)} be ergodic
Markov. Let p(6,x,dy) and vg(dx), respectively, denote the transition kernel and
stationary distribution of {X (n)} when 0 is the operative parameter. When the pro-
cess is in state x, let h(x) be the single-stage cost incurred. The aim is to find a
0* € RN that minimizes (over all ) the long-run average cost

-1
J(6) = lim % Y h(X;). (5.40)
j=0

[—eo

5.6.2 The Two-Simulation SPSA Algorithm

Let {X*(n)},{X~(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (0 (n) + 8A(n)) and (6(n) — 8A(n)), respec-

tively, where A(n) 2 (A (n),...,Ax(n))T with Ai(n),n > 0,i=1,...,N satisfying
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Assumption[5.4 and & > 0 is a given small positive scalar. The algorithm is as fol-
lows: Fori=1,...,N,

01+ 1) =6 —aln) (Z 2 ) (5.41)
Z (n+1)=Z%(n)+b(n) (h(X " (n)) —Z"(n)), (5.42)
Z (n+1)=Z (n)+b(n) (h(X (n))—Z (n)). (5.43)

The quantities Z* (n) and Z~ (n) in (5.42)~(3.43) are used to recursively estimate
the long-run average costs corresponding to the simulations {X*(n)} and {X~(n)},
respectively. Because of the difference in timescales with the recursions (5.42)—
(5.43) proceeding on the faster timescale as compared to the recursion (3.41),
the former recursions appear equilibrated when viewed from the timescale of the
latter.

Remark 5.7. In practice, it is usually observed that an additional averaging over L
instants (for some L > 1) of the recursions (3.42)—(3.43) improves performance. In
other words, for practical implementations, it is suggested to run the above recur-
sions for L instants in an inner loop, in between two successive updates of (3.47).
The value of L is however arbitrary. It is generally observed, see for instance,
[7,13L 4], that a value of L in between 50 and 500 works well. While for our analysis,
we focus on the case of L = 1, the analysis for general L is available in [7].

5.6.3 Assumptions

We make the following assumptions for average cost SPSA algorithms:

Assumption 5.10. The single-stage cost function / : RN x R¥ — R is Lipschitz
continuous.

Assumption 5.11. The long-run average cost J(0) is continuously differen-
tiable in 6 with bounded second derivatives.

Assumptions and [5.17] are standard requirements. In particular, Assump-
tion [5.11] is a technical requirement that ensures that the Hessian of the objective
exists and is bounded, and is used to push through suitable Taylor series arguments
in the proof.

Next, let {6(n)} be a sequence of random parameters obtained using (say) an it-
erative scheme on which the process {X (n)} depends. Let 57 (n) = o(0(m),X (m),
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m < n), n > 1 denote a sequence of associated o-fields. We call {0(n)} non-
anticipative if for all Borel sets A C RY,

P(X(n+1) € A| #(n) = p(6(n). X (n),A).

Under a non-anticipative {0 (n)}, the process {(X(n),0(n))} is Markov. It can
be easily seen that sequences {0(n)} obtained using the algorithms below are
non-anticipative. We shall assume the existence of a stochastic Lyapunov function
(below).

Assumption 5.12. There exist & > 0, K C RY compact and V € C(R?) such
that | lﬁm V(x) = oo and under any non-anticipative {0 (n)},
x|| o0

1. supE[V (X (n))?] < e and
22ElV(X(n+1)) | 2 (n)] <V(X(n))— &, whenever X (n) € K, n > 0.

Assumption[5.12]is required to ensure that the system remains stable under a tunable
parameter. It is not required if the cost function A(-) is bounded in addition. Here
and elsewhere, we let || - || denotes the Euclidean norm.

The algorithm in Section 5.6 2] relies on two different step-size schedules, a(n),
b(n), n > 0 that satisfy the following requirements:

Assumption 5.13. The step-sizes a(n),b(n),n > 0 satisfy the following re-

quirements:
Za(n) = Zh(n) = oo, (5.44)
> (a(n)* +b(n)?) < e, (5.45)
,}52, % =0 (5.46)

Assumption 5.14. The iterates {6(n)} stay uniformly bounded, i.e.,
sup [|6(n)|| < oo, with probability one.
n

Assumption[3.J4lessentially ensures that the 8-update remains stable. An alternative
here is to assume that @ can only take values in some compact subset C of RV,
whereby after each update, 6 is projected to the set C, thereby enforcing stability.
Such a projection-based scheme is considered in Section[3.6.3
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5.6.4 Convergence Analysis

Consider the ODE

0(t) = —-VJ(0(1)), (5.47)

which is the same as (5.6), except that J(-) is now defined according to (3.40). Let
F ={6|VJ(6) =0} be the set of fixed points of (3.47). Further, let H C F be
the set of globally asymptotically stable attractors of (3.47). Also, given € > 0, let
HE={0]]16 — 6| < €,6) € H} denotes the e-neighborhood of the set H. We give
first the main convergence result for the algorithm (3.41)-(5.43).

Theorem 5.12. Under Assumptions[5. 105 14 given € > 0, there exists a &y >
0 such that the sequence of parameter iterates 6(n),n > 0 satisfy 6(n) — H®
with probability one as n — .

The proof of Theorem[3.12]involves steps similar to those used for proving Theorem
except that in this case of the long-run average cost setting, it is also necessary
to establish that the iterates Z* (-) and Z~ () asymptotically converge to the average
cost estimates J(0(n) + 8A(n) and J(0(n) — 8A(n), respectively. We will address
the latter in Lemma 3.6l Further, Lemma [5.19] will establish using suitable Taylor
expansions that the conditional average of the SPSA estimate, i.e.,

J(O(n)+06A(n)) —J(0(n)—8A(n)) | #(n)

E 28A:(n)

is asymptotically close to the gradient of the objective function J(6(n)). The final
step is again to invoke Hirsch lemma to complete the proof. The formal proof of
Theorem[5.12]is provided at the end of this section.

Let 9 (n) = o(8(p), X" (p), X (p),A(p),p <n), n

> 1, denote o-fields gener-
ated by the quantities above. Define sequences N (p),N™(p),

p > 0 as follows:

T(p)= zillb(m) (X (m)) — E [n(X"(m)) |4 (m = 1)]),

N~(p) =3, b(m) (h(X~(m)) — E [(X~(m)) | % (m—1)]),

respectively.

Lemma 5.13. The sequences (N*(p),%(p)), (N~ (p),4(p)), p > 0 are almost
surely convergent martingale sequences.

Proof. We show the proof for the case of N;7 p > 0 as the same for N, ,p > 0 is

completely analogous. It is easy to see that almost surely, E[NT(p+1) | ¥4 (p)] =
N (p), forall p > 0. Now note that
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E[(N+(P))2]§Cpibz(m)(E[hz(XW )) +E*[h(X* (m)) | 4 (m—1)])),

m=1

for some constant C, > 0 (that however depends on p). For the second term on RHS
above, note that by the conditional Jensen’s inequality, we have that almost surely,

E*[h(X*(m)) | 4(m—1)] < E[R*(X* (m)) |4 (m—1)].

Hence,

E[N*(p))2] < 2C, 3, P (m)ER (X (m)].

Now, since A(-) is a Lipschitz continuous function, we have
[A(X T (m))] = [h(0)] < [n(X " (m)) — h(0)] < K| X (m)],
where K > 0 is the Lipschitz constant. Thus,
[A(X T (m))] < CL(1+[IX T (m)])),
for C; = max(K,|h(0)|) < e. Hence, one gets
E[R*(X* (m))] < 2C}(1+E[|IX " (m)]]?]).

As a consequence of Assumption [512 sup, E[|X"(m)|*] < . Thus,
E[(N*(p))?] < oo, for all p > 1. Now note that

SEINT(p+1)=N"(p)*|4(p <2b2p+1)(E[h2(X*(p+1))lff(p)]

+E[(ERXH (p+1)) 1 9(0) 19(p)])
< Y202 (p+ DER(XH(p+1)) | (p)],
p

almost surely. The last inequality above again follows from the conditional Jensen’s
inequality. It can now be easily seen as before, using Assumption[3.12] that

supE[hz( )9 (p)] <o w.p.l.

[)+l

Hence,

YEINT(p+1)=N"(p)* |9 (p)] <

p

almost surely. Thus, by the martingale convergence theorem (Theorem [B.2),
NT(p),p > 0 is an almost surely convergent martingale sequence. a

Lemma 5.14. The updates Z*(p),Z~ (p),p > 0 are uniformly bounded with prob-
ability one.
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Proof. We show the proof for the updates Z*(p), p > 0 as the same for the other
sequence is completely analogous. Note that (5.42) can be rewritten as

Z5(p+ 1) = 2 (p) + () ERK) | (o — 1)~ Z* ()
+b(p)(h(X,)) —E[n(X,)) |4 (p— 1)) (5.48)
From Lemma[5.13l N (p) — NT(e0) < o almost surely. Hence,

Zb E[h(X;) |9 (p—1)]) <o, as.

Thus, it is enough to show the uniform boundedness of the following alternate re-
cursion:

Z (p+1)=Z"(p) +b(p)(EX,) |9 (p—1)]=Z"(p)).

Note that
[E[R(X,)) | (p— D] <E[W(X,)| |9 (p—1)]

<C+E[X, |14 (p—1)])
< oo,

almost surely. The first inequality above follows from the conditional Jensen’s in-
equality, while the second inequality follows as a consequence of the function A
being Lipschitz continuous, see the proof in Lemmal[3.13 Further, the last inequal-
ity follows from Assumption[3.12] The claim now easily follows from the Borkar
and Meyn theorem (Theorem[D.J). O

Now define two sequences of time points {s( )} and {t(n)}, respectively, as follows:
n
5(0) =1(0)=0,s(n) = Y a(j) andt(n 2 b(j), n > 1. Then, the timescale cor-

responding to {s(n)} (resp. {t(n)}) is the slower (resp. faster) of the two timescales.
Consider the following system of ordinary differential equations (ODEs):

6(t) =0, (5.49)
Zt (@) =J(0(t)+8A(t)) —Z" (1), (5.50)
Z7(t)=J(0(t) — 8A(t)) —Z (). (5.51)

From Lemma[5.14] sup |Z" (n)

tions Z*(1),27 (1) deﬁned accordmg to Z+(t(n)) = Z*(n) and Z~(¢t(n)) = Z~(n)
with the maps ¢ — 2% (¢) and t — Z~ (¢) corresponding to continuous linear interpo-
lations on the intervals [t(n),t(n+ 1)].

) sup |Z~ (n)| < e almost surely. Consider the func-

Given T > 0, define {T'(n)} as follows: T (0) = 0 and forn > 1, T (n) = min{z(m)
|t(m) >T(n—1)+T}. LetI(n) = [T (n),T (n+ 1)]. It is clearly the case that there
( =

exists some integer g(n) > 0 such that 7'(n) = t(gq(n)).
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Define also the functions 6"(r),Z""(t),Z~"(t), t € I(n), n > 0, that are obtained
as trajectories of the following ODEs:

0"(t) =0, (5.52)
Z1) =J(6 (t)+5A(t)) ZH(1), (5.53)
Z7"(1) =J(0(r) — 8A(1) —Z"(1), (5.54)

with 0" (T (n)) = 0(q(n)), Z*"(T (n)) = Z* (t(q(n))) = Z* (q(n)) and Z~"(T (n)) =
2= (t(q(n))) = Z= (¢(n)), respectively. Further, A(r) = (Al(t),...7AN(t))T is de-
fined according to A(r) = A(n), fort € [s(n),s(n+1)).

Let 6(1),2 ( ),2~(t),t > 0 be defined according to 8((n)) = 8(n), Z* (t(n)) =
Z*(n) and Z~(t(n)) = Z~ (n), n > 0 with continuous linear interpolation in between
points, i.e., forall t € (¢(n),t(n+1)),n > 0.

Lemma 5.15. Given T, & >0, (0(t(n)+-), 2+ (t(n)+-),2~ (t(n) +-)), is a bounded
(T, €)-perturbation of (3.49Y-331) for n sufficiently large.

Proof. Note that the recursion (3.41)) can be rewritten as follows: Fori = 1,...,N,

6i(n+1) = 6i(n) — b(n)&i(n), (5.55)
z a(n t(n)—Z (n
where &;(n) = % (%) =o0(l) because a(n) = o(b(n)) from
Assumption[3.13

Now note that the recursion (3.42)) can be rewritten as
ZH(n+1)=Z"(n) +b(n)(J(8(n) + 8A(n)) + & (n) + & (n) = Z*(n)), (5.56)

where &' (n) = E[h(X " (n)) | 9,—1] — J (6 (n)+5A( )) and &' (n),n > 1 is the mar-
tingale difference & (n) =h(X*(n)) — E[R(X"(n)) | 9,—1], respectively. Recall that
T(n) =t(q(n)). Also, let T(n+1) =t(q(n+1)). Then, from Lemma[5.13]

q(n+1)

> b()E(j) > 0asn— e,
Jj=q(n)

Now &, (n) — 0 as n — o almost surely because {X " (n)} is ergodic Markov for a
fixed parameter. Hence, the Markov noise vanishes on the ‘natural’ timescale where
t(n) = n that is faster than the timescale of the algorithm as in the latter, #(n) — #(n —
1) — 0 as n — eo. Thus, the algorithm will see the averaged effect of the iterate on
the natural timescale, see Section 6.2 of [9] for a detailed treatment of averaging on
the natural timescale. It is thus easy to see that with probability one,

lim sup ||Z""(t)—Z"(t)|| =0.

" e l(n)

A similar argument holds for the recursion Z~ (n),n > 0. The claim follows. O
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Lemma 5.16. As n — oo, we have with probability one,
12+ (n) = J(8(n) + 8A(n))|, 1Z~ (n) = J(6(n) — 8A(n))|| = O.

Proof. Follows from Lemma and an application of the Hirsch lemma
(Lemmal[C.3) for every € > 0. O

We now concentrate on the slower timescale recursion. Let .7 (n) = o(X ™ (n),
X~ (n), 0(m), m <n;A(m),m < n),n > 1, be a sequence of sigma fields. One can

rewrite (3.41)) as

6:(n+ 1) =6,(n) — aln) <E [J B o2 - . g"(”) —3Am) | 5y
+50)+ G 657
where
) _J(6(n) +6A(n)) —J(6(n) —6A(n))
' 28A;(n)
J(0(n)+0A(n)) —J(6(n)—S6A(n)) , .
- { 26A,(n) | Z ()]
2(n) _Zn)=Z"(n)  J(B(n) +38A(n) —J(6(n) — SA(n))
' 268A(n) 26A(n) ’
respectively.
Let y;(n),n > 0 be defined according to y;(n) = 2 a(m)&! (m).

m=0
Lemma 5.17. The sequence (xi(n),. % (n)),n > 0 forms a convergent martingale se-
quence.

Proof. Tt is easy to see that (y;(n),.#(n)),n > 0 forms a martingale sequence.

By Assumption 5.14] M(w) 4 sup,, ||@(n)|| < e w.p.1. Here w denotes the par-

ticular sample point in the probability space corresponding to the given 6(n)-

trajectory. Note that 0 (n),n > 0 take values in the sample-path-dependent compact

set D(w) = {0 | |0]] < M(w)}. Now as a consequence of Assumption [5.11] since

68 (n) € D(w),¥n, sup|&! (n)| < eo. Further, since P(w | M(w) < ) = 1, we have that
n

sup £ (n)| < o with probability one. It is now easy to see from an application of
n

the martingale convergence theorem (Theorem [B.2)) that {y;(n)} converges almost
surely. g

Lemma 5.18. As n — oo, {?(n) — 0 with probability one.

Proof. The proof follows easily from Lemma[5.16 O
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Lemma 5.19. With probability one,

‘E [J(B(n) +8A(n)) —J(0(n) — SA(n))
28A:(n)

@) V(e o

as 6 — 0.

Proof. Tt follows from suitable Taylor series expansions of J(6(n) + 8A(n)) and
J(0(n) — 6A(n)) around the point 6(n) that

J(0(n)+8A(n)) —J(6(n) — SA(n))

26A,(n) = Vil(8(n))
& A4jn)
+ ViJ(0(n))+o(9).
j:%¢iAi(”) '

It follows from the properties of Aj(n), j=1,...,N that

J(0(n)+8A(n)) — J(6(n) — SA(n))

E 26A,(n)

| F(n)| =ViJ(8(n)) +0().

The claim follows. O

In a similar manner as (3.37), one can now rewrite (3.41)) as
0i(n+1) = 6;(n) —a(n) (Vi (6(n)) + & () + & (0) + G (n)) . (5.58)

where, as a consequence of Lemmal[3.19]

J(6(n)+06A(n))—J(6(n)—0A(n))
28Ai(n)

| Z(n)| —ViJ(6(n)) = 0asn— oo,

Proof of Theorem[5.12] Recall that the recursions (3.41)) can be rewritten as (3.38)).
Now define 6(¢),t > 0 according to 0(¢) = 0(n) for ¢ € [s(n),s(n+1)). As a con-
sequence of Lemmas[5.17H5.19, 6(¢) can be viewed as a (T,y)-perturbation of the
ODE (3.47). The claim now follows by the Hirsch lemma (LemmalC.3). O

5.6.5 Projected SPSA Algorithm

We now consider the case when after each update, the parameter 6 is projected
onto a compact and convex subset C of RY. This ensures that the parameter up-
dates remain stable as they do not escape the set C and thus Assumption 5.14]
is automatically satisfied. Let I" : R¥ — C denotes an operator that projects any
x= (x1,...,xy)T € R" toits nearest point in C. In particular, if x € C, then I'(x) € C
as well. For given x = (xq,...,xy)7 € RY, one may identify I'(x) via the tuple
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I(x) = (Ii(x1),...,Tx(xy))T for suitable R-valued operators Ii,...,Iy. We con-
sider here the projected variant of the two-simulation (two-sided) SPSA algorithm
for the long-run average cost objective that was presented in Section[3.6] A detailed
treatment of projected stochastic approximation can be found in [19] and has been
summarized in Appendix[El

Let {X*(n)},{X~(n)} be two simulated Markov processes that are respectively
governed by the parameter sequences (0 (n) + 8A(n)) and (6(n) — §A(n)), respec-
tively, where A(n) 4 (A1(n),...,An(n))T with A;(n),n > 0,i=1,...,N satisfying
Assumption 5.4l and § > 0 is a given small positive scalar. The algorithm is as
follows:

Fori=1,...,N,
T(n)—Z (n
0+ 1) =1 (600 —at) (S5 ) ) 50
Z* (4 1) =Z* () + b(n) (h(X* (n)) — Z* (), (5.60)
Z- (4 1) =2 (n) + b(n) (X~ (n)) — 2~ (n)). 5.61)

Note that recursions (3.60)-(5.61) are the same as (5.42)-(3.43). Hence, the anal-
ysis of these recursions proceeds along the same lines as the latter (described in
Section[3.6)).

Let ¢(C) denotes the space of all continuous functions from C to R". The oper-
ator I' : €(C) — € (RN) is defined according to

F(v(x)) = lim (M) , 5.62)

n—0 n

for any continuous v : C — RV, The limit in (5.62) exists and is unique since C is
a convex set. In case the limit does not exist, one may consider the set of all limit
points of (5.63). From its definition, I"(v(x)) = v(x) if x € C? (the interior of C). By
an abuse of notation, let H denote the set of all asymptotically stable attractors of
the ODE (3.63) and H¢ be the e-neighborhood of H (given € > 0).

0(t) =T(=VJ(O(1))). (5.63)

Theorem 5.20. Under Assumptions[5 101513 given € > 0, there exists a &y >
0 such that the sequence of parameter iterates 6(n),n > 0 satisfy 6(n) — H®
with probability one as n — oo.

Proof. The result follows from the Kushner and Clark theorem (see Theorem [E.T)).
The assumptions there are seen to hold here, see Remark [E. 1] O
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5.7 Concluding Remarks

In this chapter, we described the idea of simultaneous perturbation for estimating
the gradient of an objective function, for both the expected as well as the long run
average cost settings. Using two alternative constructions - random and Hadamard
matrix-based - several SPSA algorithms including the one-measurement variants
were presented. Detailed convergence proofs were given for the various algorithms
discussed. The SPSA algorithms along with the smoothed functional algorithms
presented in the next chapter are widely applied gradient estimation techniques in
a variety of applications, some of which are discussed in the later chapters of this
book. This is probably because these algorithms are simple and can be implemented
in an on-line manner; further, they require very less computational resources and are
provably convergent.
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