

OXFORD MASTER SERIES IN STATISTICAL,
COMPUTATIONAL, AND THEORETICAL PHYSICS

OXFORD MASTER SERIES IN PHYSICS

The Oxford Master Series is designed for final year undergraduate and
beginning graduate students in physics and related disciplines. It has
been driven by a perceived gap in the literature today. While basic
undergraduate physics texts often show little or no connection with the
huge explosion of research over the last two decades, more advanced
and specialized texts tend to be rather daunting for students. In this
series, all topics and their consequences are treated at a simple level,
while pointers to recent developments are provided at various stages.
The emphasis in on clear physical principles like symmetry, quantum
mechanics, and electromagnetism which underlie the whole of physics.
At the same time, the subjects are related to real measurements and to
the experimental techniques and devices currently used by physicists in
academe and industry. Books in this series are written as course books,
and include ample tutorial material, examples, illustrations, revision
points, and problem sets. They can likewise be used as preparation for
students starting a doctorate in physics and related fields, or for recent
graduates starting research in one of these fields in industry.

CONDENSED MATTER PHYSICS
1. M.T. Dove: Structure and dynamics: an atomic view of materials
2. J. Singleton: Band theory and electronic properties of solids
3. A.M. Fox: Optical properties of solids
4. S.J. Blundell: Magnetism in condensed matter
5. J.F. Annett: Superconductivity, superfluids, and condensates
6. R.A.L. Jones: Soft condensed matter

ATOMIC, OPTICAL, AND LASER PHYSICS
7. C.J. Foot: Atomic physics
8. G.A. Brooker: Modern classical optics
9. S.M. Hooker, C.E. Webb: Laser physics

15. A.M. Fox: Quantum optics: an introduction

PARTICLE PHYSICS, ASTROPHYSICS, AND COSMOLOGY
10. D.H. Perkins: Particle astrophysics
11. Ta-Pei Cheng: Relativity, gravitation and cosmology

STATISTICAL, COMPUTATIONAL, AND THEORETICAL
PHYSICS
12. M. Maggiore: A modern introduction to quantum field theory
13. W. Krauth: Statistical mechanics: algorithms and computations
14. J.P. Sethna: Statistical mechanics: entropy, order parameters, and

complexity

Statistical Mechanics
Algorithms and Computations

Werner Krauth

Laboratoire de Physique Statistique, Ecole Normale
Supérieure, Paris

1

3
Great Clarendon Street, Oxford OX2 6DP
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Oxford University Press 2006

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2006

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data
Data available

Library of Congress Cataloging in Publication Data
Data available

Printed in Great Britain
on acid-free paper by
CPI Antony Rowe, Chippenham, Wilts.

ISBN 0–19–851535–9 (Hbk) 978–0–19–851535–7
ISBN 0–19–851536–7 (Pbk) 978–0–19–851536–4

10 9 8 7 6 5 4 3 2 1

Für Silvia, Alban und Felix

This page intentionally left blank

Preface

This book is meant for students and researchers ready to plunge into
statistical physics, or into computing, or both. It has grown out of my
research experience, and out of courses that I have had the good fortune
to give, over the years, to beginning graduate students at the Ecole Nor-
male Supérieure and the Universities of Paris VI and VII, and also to
summer school students in Drakensberg, South Africa, undergraduates
in Salem, Germany, theorists and experimentalists in Lausanne, Switzer-
land, young physicists in Shanghai, China, among others. Hundreds of
students from many different walks of life, with quite different back-
grounds, listened to lectures and tried to understand, made comments,
corrected me, and in short helped shape what has now been written
up, for their benefit, and for the benefit of new readers that I hope to
attract to this exciting, interdisciplinary field. Many of the students sat
down afterwards, by themselves or in groups, to implement short pro-
grams, or to solve other problems. With programming assignments, lack
of experience with computers was rarely a problem: there were always
more knowledgeable students around who would help others with the
first steps in computer programming. Mastering technical coding prob-
lems should also only be a secondary problem for readers of this book:
all programs here have been stripped to the bare minimum. None exceed
a few dozen lines of code.

We shall focus on the concepts of classical and quantum statistical
physics and of computing: the meaning of sampling, random variables,
ergodicity, equidistribution, pressure, temperature, quantum statistical
mechanics, the path integral, enumerations, cluster algorithms, and the
connections between algorithmic complexity and analytic solutions, to
name but a few. These concepts built the backbone of my courses, and
now form the tissue of the book. I hope that the simple language and
the concrete settings chosen throughout the chapters take away none of
the beauty, and only add to the clarity, of the difficult and profound
subject of statistical physics.

I also hope that readers will feel challenged to implement many of
the programs. Writing and debugging computer code, even for the naive
programs, remains a difficult task, especially in the beginning, but it is
certainly a successful strategy for learning, and for approaching the deep
understanding that we must reach before we can translate the lessons of
the past into our own research ideas.

This book is accompanied by a compact disc containing more than one
hundred pseudocode programs and close to 300 figures, line drawings,

viii Preface

and tables contained in the book. Readers are free to use this mate-
rial for lectures and presentations, but must ask for permission if they
want to include it in their own publications. For all questions, please
contact me at www.lps.ens.fr/˜krauth. (This website will also keep a
list of misprints.) Readers of the book may want to get in contact with
each other, and some may feel challenged to translate the pseudocode
programs into one of the popular computer languages; I will be happy
to assist initiatives in this direction, and to announce them on the above
website.

www.lps.ens.fr/~ krauth

Contents

1 Monte Carlo methods 1
1.1 Popular games in Monaco 3

1.1.1 Direct sampling 3
1.1.2 Markov-chain sampling 4
1.1.3 Historical origins 9
1.1.4 Detailed balance 15
1.1.5 The Metropolis algorithm 21
1.1.6 A priori probabilities, triangle algorithm 22
1.1.7 Perfect sampling with Markov chains 24

1.2 Basic sampling 27
1.2.1 Real random numbers 27
1.2.2 Random integers, permutations, and combinations 29
1.2.3 Finite distributions 33
1.2.4 Continuous distributions and sample transformation 35
1.2.5 Gaussians 37
1.2.6 Random points in/on a sphere 39

1.3 Statistical data analysis 44
1.3.1 Sum of random variables, convolution 44
1.3.2 Mean value and variance 48
1.3.3 The central limit theorem 52
1.3.4 Data analysis for independent variables 55
1.3.5 Error estimates for Markov chains 59

1.4 Computing 62
1.4.1 Ergodicity 62
1.4.2 Importance sampling 63
1.4.3 Monte Carlo quality control 68
1.4.4 Stable distributions 70
1.4.5 Minimum number of samples 76

Exercises 77
References 79

2 Hard disks and spheres 81
2.1 Newtonian deterministic mechanics 83

2.1.1 Pair collisions and wall collisions 83
2.1.2 Chaotic dynamics 86
2.1.3 Observables 87
2.1.4 Periodic boundary conditions 90

2.2 Boltzmann’s statistical mechanics 92
2.2.1 Direct disk sampling 95

x Contents

2.2.2 Partition function for hard disks 97
2.2.3 Markov-chain hard-sphere algorithm 100
2.2.4 Velocities: the Maxwell distribution 103
2.2.5 Hydrodynamics: long-time tails 105

2.3 Pressure and the Boltzmann distribution 108
2.3.1 Bath-and-plate system 109
2.3.2 Piston-and-plate system 111
2.3.3 Ideal gas at constant pressure 113
2.3.4 Constant-pressure simulation of hard spheres 115

2.4 Large hard-sphere systems 119
2.4.1 Grid/cell schemes 119
2.4.2 Liquid–solid transitions 120

2.5 Cluster algorithms 122
2.5.1 Avalanches and independent sets 123
2.5.2 Hard-sphere cluster algorithm 125

Exercises 128
References 130

3 Density matrices and path integrals 131
3.1 Density matrices 133

3.1.1 The quantum harmonic oscillator 133
3.1.2 Free density matrix 135
3.1.3 Density matrices for a box 137
3.1.4 Density matrix in a rotating box 139

3.2 Matrix squaring 143
3.2.1 High-temperature limit, convolution 143
3.2.2 Harmonic oscillator (exact solution) 145
3.2.3 Infinitesimal matrix products 148

3.3 The Feynman path integral 149
3.3.1 Naive path sampling 150
3.3.2 Direct path sampling and the Lévy construction 152
3.3.3 Periodic boundary conditions, paths in a box 155

3.4 Pair density matrices 159
3.4.1 Two quantum hard spheres 160
3.4.2 Perfect pair action 162
3.4.3 Many-particle density matrix 167

3.5 Geometry of paths 168
3.5.1 Paths in Fourier space 169
3.5.2 Path maxima, correlation functions 174
3.5.3 Classical random paths 177

Exercises 182
References 184

4 Bosons 185
4.1 Ideal bosons (energy levels) 187

4.1.1 Single-particle density of states 187
4.1.2 Trapped bosons (canonical ensemble) 190
4.1.3 Trapped bosons (grand canonical ensemble) 196

Contents xi

4.1.4 Large-N limit in the grand canonical ensemble 200
4.1.5 Differences between ensembles—fluctuations 205
4.1.6 Homogeneous Bose gas 206

4.2 The ideal Bose gas (density matrices) 209
4.2.1 Bosonic density matrix 209
4.2.2 Recursive counting of permutations 212
4.2.3 Canonical partition function of ideal bosons 213
4.2.4 Cycle-length distribution, condensate fraction 217
4.2.5 Direct-sampling algorithm for ideal bosons 219
4.2.6 Homogeneous Bose gas, winding numbers 221
4.2.7 Interacting bosons 224

Exercises 225
References 227

5 Order and disorder in spin systems 229
5.1 The Ising model—exact computations 231

5.1.1 Listing spin configurations 232
5.1.2 Thermodynamics, specific heat capacity, and mag-

netization 234
5.1.3 Listing loop configurations 236
5.1.4 Counting (not listing) loops in two dimensions 240
5.1.5 Density of states from thermodynamics 247

5.2 The Ising model—Monte Carlo algorithms 249
5.2.1 Local sampling methods 249
5.2.2 Heat bath and perfect sampling 252
5.2.3 Cluster algorithms 254

5.3 Generalized Ising models 259
5.3.1 The two-dimensional spin glass 259
5.3.2 Liquids as Ising-spin-glass models 262

Exercises 264
References 266

6 Entropic forces 267
6.1 Entropic continuum models and mixtures 269

6.1.1 Random clothes-pins 269
6.1.2 The Asakura–Oosawa depletion interaction 273
6.1.3 Binary mixtures 277

6.2 Entropic lattice model: dimers 281
6.2.1 Basic enumeration 281
6.2.2 Breadth-first and depth-first enumeration 284
6.2.3 Pfaffian dimer enumerations 288
6.2.4 Monte Carlo algorithms for the monomer–dimer

problem 296
6.2.5 Monomer–dimer partition function 299

Exercises 303
References 305

7 Dynamic Monte Carlo methods 307

xii Contents

7.1 Random sequential deposition 309
7.1.1 Faster-than-the-clock algorithms 310

7.2 Dynamic spin algorithms 313
7.2.1 Spin-flips and dice throws 314
7.2.2 Accelerated algorithms for discrete systems 317
7.2.3 Futility 319

7.3 Disks on the unit sphere 321
7.3.1 Simulated annealing 324
7.3.2 Asymptotic densities and paper-cutting 327
7.3.3 Polydisperse disks and the glass transition 330
7.3.4 Jamming and planar graphs 331

Exercises 333
References 335

Acknowledgements 337

Index 339

Monte Carlo methods 1
1.1 Popular games in Monaco 3

1.2 Basic sampling 27

1.3 Statistical data analysis 44

1.4 Computing 62

Exercises 77

References 79

Starting with this chapter, we embark on a journey into the fascinating
realms of statistical mechanics and computational physics. We set out to
study a host of classical and quantum problems, all of value as models
and with numerous applications and generalizations. Many computa-
tional methods will be visited, by choice or by necessity. Not all of these
methods are, however, properly speaking, computer algorithms. Never-
theless, they often help us tackle, and understand, properties of physical
systems. Sometimes we can even say that computational methods give
numerically exact solutions, because few questions remain unanswered.

Among all the computational techniques in this book, one stands out:
the Monte Carlo method. It stems from the same roots as statistical
physics itself, it is increasingly becoming part of the discipline it is meant
to study, and it is widely applied in the natural sciences, mathematics,
engineering, and even the social sciences. The Monte Carlo method is
the first essential stop on our journey.

In the most general terms, the Monte Carlo method is a statistical—
almost experimental—approach to computing integrals using random1

positions, called samples,1 whose distribution is carefully chosen. In this
chapter, we concentrate on how to obtain these samples, how to process
them in order to approximately evaluate the integral in question, and
how to get good results with as few samples as possible. Starting with
very simple example, we shall introduce to the basic sampling techniques
for continuous and discrete variables, and discuss the specific problems
of high-dimensional integrals. We shall also discuss the basic principles
of statistical data analysis: how to extract results from well-behaved
simulations. We shall also spend much time discussing the simulations
where something goes wrong.

The Monte Carlo method is extremely general, and the basic recipes
allow us—in principle—to solve any problem in statistical physics. In
practice, however, much effort has to be spent in designing algorithms
specifically geared to the problem at hand. The design principles are
introduced in the present chapter; they will come up time and again in
the real-world settings of later parts of this book.

1“Random” comes from the old French word randon (to run around); “sample” is
derived from the Latin exemplum (example).

Children randomly throwing pebbles into a square, as in Fig. 1.1, illus-
trate a very simple direct-sampling Monte Carlo algorithm that can be
adapted to a wide range of problems in science and engineering, most
of them quite difficult, some of them discussed in this book. The basic
principles of Monte Carlo computing are nowhere clearer than where it
all started: on the beach, computing �.

Fig. 1.1 Children computing the number � on the Monte Carlo beach.

1.1 Popular games in Monaco 3

1.1 Popular games in Monaco

The concept of sampling (obtaining the random positions) is truly com-
plex, and we had better get a grasp of the idea in a simplified setting be-
fore applying it in its full power and versatility to the complicated cases
of later chapters. We must clearly distinguish between two fundamen-
tally different sampling approaches: direct sampling and Markov-chain
sampling.

1.1.1 Direct sampling

Direct sampling is exemplified by an amusing game that we can imagine
children playing on the beaches of Monaco. In the sand, they first draw
a large circle and a square exactly containing it (see Fig. 1.1). They
then randomly throw pebbles.2 Each pebble falling inside the square
constitutes a trial, and pebbles inside the circle are also counted as
“hits”.

By keeping track of the numbers of trials and hits, the children perform
a direct-sampling Monte Carlo calculation: the ratio of hits to trials
is close to the ratio of the areas of the circle and the square, namely
�/4. The other day, in a game of 4000 trials, they threw 3156 pebbles
inside the circle (see Table 1.1). This means that they got 3156 hits,
and obtained the approximation � � 3.156 by just shifting the decimal
point.

Let us write up the children’s game in a few lines of computer code
(see Alg. 1.1 (direct-pi)). As it is difficult to agree on language and
dialect, we use the universal pseudocode throughout this book. Readers
can then translate the general algorithms into their favorite program-
ming language, and are strongly encouraged to do so. Suffice it to say
here that calls to the function ran (−1, 1) produce uniformly distributed
real random numbers between −1 and 1. Subsequent calls yield inde-
pendent numbers.

procedure direct-pi

Nhits ← 0 (initialize)
for i = 1, . . . , N do⎧⎨⎩

x ← ran (−1, 1)
y ← ran (−1, 1)
if (x2 + y2 < 1) Nhits ← Nhits + 1

output Nhits

——

Algorithm 1.1 direct-pi. Using the children’s game with N pebbles
to compute �.

Table 1.1 Results of five runs of
Alg. 1.1 (direct-pi) with N = 4000

Run Nhits Estimate of �

1 3156 3.156
2 3150 3.150
3 3127 3.127
4 3171 3.171
5 3148 3.148

The results of several runs of Alg. 1.1 (direct-pi) are shown in Ta-
ble 1.1. During each trial, N = 4000 pebbles were thrown, but the ran-

2The Latin word for “pebble” is calculus.

4 Monte Carlo methods

dom numbers differed, i.e. the pebbles landed at different locations in
each run.

We shall return later to this table when computing the statistical er-
rors to be expected from Monte Carlo calculations. In the meantime, we
intend to show that the Monte Carlo method is a powerful approach for
the calculation of integrals (in mathematics, physics, and other fields).
But let us not get carried away: none of the results in Table 1.1 has
fallen within the tight error bounds already known since Archimedes
from comparing a circle with regular n-gons:

3.141 � 3
10
71

< � < 3
1
7
� 3.143. (1.1)

The children’s value for � is very approximate, but improves and finally
becomes exact in the limit of an infinite number of trials. This is Jacob
Bernoulli’s weak law of large numbers (see Subsection 1.3.2). The chil-
dren also adopt a very sensible rule: they decide on the total number of
throws before starting the game. The other day, in a game of “N=4000”,
they had at some point 355 hits for 452 trials—this gives a very nice ap-

355
452

=
355

4 × 113
= 1

4
× 3.14159292 . . .

�/4 = 1
4
× 3.14159265 . . .

proximation to the book value of �. Without hesitation, they went on
until the 4000th pebble was cast. They understand that one must not
stop a stochastic calculation simply because the result is just right, nor
should one continue to play because the result is not close enough to
what we think the answer should be.

1.1.2 Markov-chain sampling

In Monte Carlo, it is not only children who play at pebble games. We
can imagine that adults, too, may play their own version at the local
heliport, in the late evenings. After stowing away all their helicopters,
they wander around the square-shaped landing pad (Fig. 1.2), which
looks just like the area in the children’s game, only bigger.

Fig. 1.2 Adults computing the number � at the Monte Carlo heliport.

1.1 Popular games in Monaco 5

The playing field is much wider than before. Therefore, the game must
be modified. Each player starts at the clubhouse, with their expensive
designer handbags filled with pebbles. With closed eyes, they throw the
first little stone in a random direction, and then they walk to where this
stone has landed. At that position, a new pebble is fetched from the
handbag, and a new throw follows. As before, the aim of the game is to
sweep out the heliport square evenly in order to compute the number �,
but the distance players can cover from where they stand is much smaller
than the dimensions of the field. A problem arises whenever there is a
rejection, as in the case of a lady with closed eyes at a point c near the
boundary of the square-shaped domain, who has just thrown a pebble to
a position outside the landing pad. It is not easy to understand whether
she should simply move on, or climb the fence and continue until, by
accident, she returns to the heliport.

What the lady should do, after a throw outside the heliport, is very
surprising: where she stands, there is already a pebble on the ground.
She should now ask someone to bring her the “outfielder”, place it on
top of the stone already on the ground, and use a new stone to try
another fling. If this is again an “outfielder”, she should have it fetched
and increase the pile by one again, etc. Eventually, the lady moves on,
visits other areas of the heliport, and also gets close to the center, which
is without rejections.

Fig. 1.3 Landing pad of the heliport at the end of the game.

The game played by the lady and her friends continues until the early
morning, when the heliport has to be prepared for the day’s takeoffs and
landings. Before the cleaning starts, a strange pattern of pebbles on the
ground may be noticed (see Fig. 1.3): far inside the square, there are
only single stones, because from there, people do not throw far enough
to reach the outfield. However, close to the boundaries, and especially in
the corners, piles of several stones appear. This is quite mind-boggling,

6 Monte Carlo methods

but does not change the fact that � comes out as four times the ratio of
hits to trials.

Those who hear this story for the first time often find it dubious. They
observe that perhaps one should not pile up stones, as in Fig. 1.3, if the
aim is to spread them out evenly. This objection places these modern
critics in the illustrious company of prominent physicists and mathe-
maticians who questioned the validity of this method when it was first
published in 1953 (it was applied to the hard-disk system of Chapter 2).
Letters were written, arguments were exchanged, and the issue was set-
tled only after several months. Of course, at the time, helicopters and
heliports were much less common than they are today.

A proof of correctness and an understanding of this method, called
the Metropolis algorithm, will follow later, in Subsection 1.1.4. Here,
we start by programming the adults’ algorithm according to the above
prescription: go from one configuration to the next by following a random
throw:

∆x ← ran (−δ, δ) ,
∆y ← ran (−δ, δ)

(see Alg. 1.2 (markov-pi)). Any move that would take us outside the
pad is rejected: we do not move, and count the configuration a second
time (see Fig. 1.4).

i = 1 i = 2 i = 3 (rej.) i = 4 i = 5 i = 6

i = 7 (rej.) i = 8 i = 9 (rej.) i = 10 i = 11 (rej.) i = 12

Fig. 1.4 Simulation of Alg. 1.2 (markov-pi). A rejection leaves the con-
figuration unchanged (see frames i = 3, 7, 9, 11).

Table 1.2 shows the number of hits produced by Alg. 1.2 (markov-pi)
in several runs, using each time no fewer than N = 4000 digital pebbles
taken from the lady’s bag. The results scatter around the number � =
3.1415 . . . , and we might be more inclined to admit that the idea of
piling up pebbles is probably correct, even though the spread of the
data, for an identical number of pebbles, is much larger than for the
direct-sampling method (see Table 1.1).

Table 1.2 Results of five runs of
Alg. 1.2 (markov-pi) with N = 4000
and a throwing range δ = 0.3

Run Nhits Estimate of �

1 3123 3.123
2 3118 3.118
3 3040 3.040
4 3066 3.066
5 3263 3.263

In Alg. 1.2 (markov-pi), the throwing range δ, that is to be kept fixed
throughout the simulation, should not be made too small: for δ � 0, the
acceptance rate is high, but the path traveled per step is small. On the
other hand, if δ is too large, we also run into problems: for a large range
δ � 1, most moves would take us outside the pad. Now, the acceptance

1.1 Popular games in Monaco 7

procedure markov-pi

Nhits ← 0; {x, y} ← {1, 1}
for i = 1, . . . , N do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∆x ← ran (−δ, δ)
∆y ← ran (−δ, δ)
if (|x + ∆x| < 1 and |y + ∆y| < 1) then{

x ← x + ∆x

y ← y + ∆y

if (x2 + y2 < 1) Nhits ← Nhits + 1
output Nhits

——

Algorithm 1.2 markov-pi. Markov-chain Monte Carlo algorithm for
computing � in the adults’ game.

rate is small and on average the path traveled per iteration is again
small, because we almost always stay where we are. The time-honored
rule of thumb consists in choosing δ neither too small, nor too large—
such that the acceptance rate turns out to be of the order of 1

2 (half
of the attempted moves are rejected). We can experimentally check this
“one-half rule” by monitoring the precision and the acceptance rate of
Alg. 1.2 (markov-pi) at a fixed, large value of N .

Algorithm 1.2 (markov-pi) needs an initial condition. One might be
tempted to use random initial conditions

x ← ran (−1, 1) ,
y ← ran (−1, 1)

(obtain the initial configuration through direct sampling), but this is un-
realistic because Markov-chain sampling comes into play precisely when
direct sampling fails. For simplicity, we stick to two standard scenar-
ios: we either start from a more or less arbitrary initial condition whose
only merit is that it is legal (for the heliport game, this is the club-
house, at (x, y) = (1, 1)), or start from where a previous simulation left
off. In consequence, the Markov-chain programs in this book generally
omit the outer loop, and concentrate on that piece which leads from
the configuration at iteration i to the configuration at i + 1. The core
heliport program then resembles Alg. 1.3 (markov-pi(patch)). We note
that this is what defines a Markov chain: the probability of generating
configuration i + 1 depends only on the preceding configuration, i, and
not on earlier configurations.

The Monte Carlo games epitomize the two basic approaches to sam-
pling a probability distribution π(x) on a discrete or continuous space:
direct sampling and Markov-chain sampling. Both approaches evaluate
an observable (a function) O(x), which in our example is 1 inside the

8 Monte Carlo methods

procedure markov-pi(patch)

input {x, y} (configuration i)
∆x ← . . .
∆y ← . . .
...
output {x, y} (configuration i + 1)

Algorithm 1.3 markov-pi(patch). Going from one configuration to the
next, in the Markov-chain Monte Carlo algorithm.

circle and 0 elsewhere (see Fig. 1.5). In both cases, one evaluates

Nhits

trials
=

1
N

N∑
i=1

Oi︸ ︷︷ ︸
sampling

� 〈O〉 =

∫ 1

−1 dx
∫ 1

−1 dy π(x, y)O(x, y)∫ 1

−1
dx
∫ 1

−1
dy π(x, y)︸ ︷︷ ︸

integration

. (1.2)

The probability distribution π(x, y) no longer appears on the left: rather
than being evaluated, it is sampled. This is what defines the Monte Carlo
method. On the left of eqn (1.2), the multiple integrals have disappeared.
This means that the Monte Carlo method allows the evaluation of high-
dimensional integrals, such as appear in statistical physics and other
domains, if only we can think of how to generate the samples.

−1 1
x-coordinate

−1

1

y-
co

or
d
in

at
e

Fig. 1.5 Probability density (π = 1 inside square, zero outside) and
observable (O = 1 inside circle, zero outside) in the Monte Carlo games.

Direct sampling, the approach inspired by the children’s game, is like
pure gold: a subroutine provides an independent hit at the distribution
function π(x), that is, it generates vectors x with a probability propor-
tional to π(x). Notwithstanding the randomness in the problem, direct
sampling, in computation, plays a role similar to exact solutions in ana-
lytical work, and the two are closely related. In direct sampling, there is
no throwing-range issue, no worrying about initial conditions (the club-
house), and a straightforward error analysis—at least if π(x) and O(x)

1.1 Popular games in Monaco 9

are well behaved. Many successful Monte Carlo algorithms contain exact
sampling as a key ingredient.

Markov-chain sampling, on the other hand, forces us to be much more
careful with all aspects of our calculation. The critical issue here is the
correlation time, during which the pebble keeps a memory of the starting
configuration, the clubhouse. This time can become astronomical. In the
usual applications, one is often satisfied with a handful of independent
samples, obtained through week-long calculations, but it can require
much thought and experience to ensure that even this modest goal is
achieved. We shall continue our discussion of Markov-chain Monte Carlo
methods in Subsection 1.1.4, but want to first take a brief look at the
history of stochastic computing.

1.1.3 Historical origins

The idea of direct sampling was introduced into modern science in the
late 1940s by the mathematician Ulam, not without pride, as one can
find out from his autobiography Adventures of a Mathematician (Ulam
(1991)). Much earlier, in 1777, the French naturalist Buffon (1707–1788)
imagined a legendary needle-throwing experiment, and analyzed it com-
pletely. All through the eighteenth and nineteenth centuries, royal courts
and learned circles were intrigued by this game, and the theory was de-
veloped further. After a basic treatment of the Buffon needle problem,
we shall describe the particularly brilliant idea of Barbier (1860), which
foreshadows modern techniques of variance reduction.

Fig. 1.6 Georges Louis Leclerc, Count
of Buffon (1707–1788), performing the
first recorded Monte Carlo simulation,
in 1777. (Published with permission of
Le Monde.)

The Count is shown in Fig. 1.6 randomly throwing needles of length
a onto a wooden floor with cracks a distance b apart. We introduce

φ

xcenter0 b 2b 3b 4b

rcenter

Fig. 1.7 Variables xcenter and φ in Buffon’s needle experiment. The nee-
dles are of length a.

coordinates rcenter and φ as in Fig. 1.7, and assume that the needles’
centers rcenter are uniformly distributed on an infinite floor. The needles
do not roll into cracks, as they do in real life, nor do they interact with
each other. Furthermore, the angle φ is uniformly distributed between 0
and 2�. This is the mathematical model for Buffon’s experiment.

All the cracks in the floor are equivalent, and there are symmetries
xcenter ↔ b − xcenter and φ ↔ −φ. The variable y is irrelevant to the

10 Monte Carlo methods

problem. We may thus consider a reduced “landing pad”, in which

0 < φ <
�

2
, (1.3)

0 < xcenter <
b

2
. (1.4)

The tip of each needle is at an x-coordinate xtip = xcenter − (a/2) cos φ;
and every xtip < 0 signals a hit on a crack. More precisely, the observable
to be evaluated on this landing pad is (writing x for xcenter)

Nhits(x, φ) =
{

of hits of needle centered at x,
with orientation φ

}
=

{
1 for x < a/2 and |φ| < arccos [x/(a/2)]
0 otherwise

.

The mean number of hits of a needle of length a on cracks is given,
finally, by the normalized integral of the function Nhits over the landing
pad from Fig. 1.8:

π/2

0

b/2a/20

φ

xcenter

Nhits=1

Nhits=0

π/2

0

b/2a/20

φ

xcenter

Nhits=1

Nhits=0

Fig. 1.8 “Landing pad” for the Buffon
needle experiment for a < b.

{
mean number

of hits per needle

}
= 〈Nhits〉 =

∫ b/2

0 dx
∫
�/2

0 dφ Nhits(x, φ)∫ b/2

0 dx
∫
�/2

0 dφ
. (1.5)

Integrating (over φ) a function which is equal to one in a certain interval
and zero elsewhere yields the length of that interval (arccos [x/(a/2)]),
and we find, with a suitable rescaling of x,

〈Nhits〉 =
a/2

(b/2)(�/2)

∫ 1

0

dx arccos x =

We might try to remember how to integrate arccos x and, in pass-
ing, marvel at how Buffon—an eighteenth-century botanist—might have
done it, until it becomes apparent to us that in eqn (1.5) it is wiser to
first integrate over x, and then over φ, so that the “φ = arccos x” turns
into “x = cos φ”:

. . . =
a

b

2
�

∫
�/2

0

dφ cos φ =
a

b
· 2
�

(a ≤ b). (1.6)

For a needle as long as the floorboards are wide (a = b), the mean
number of crossings is 2/�. We should also realize that a needle shorter
than the distance between cracks (a ≤ b) cannot hit two of them at once.
The number of hits is then either 0 or 1. Therefore, the probability for
a needle to hit a crack is the same as the mean number of hits:{

probability of
hitting a crack

}
= π(Nhits ≥ 1),{

mean number
of hits

}
= π(Nhits = 1) · 1 + π(Nhits = 2)︸ ︷︷ ︸

=0

·2 +

1.1 Popular games in Monaco 11

We can now write a program to do the Buffon experiment ourselves,
by simply taking xcenter as a random number between 0 and b/2 and φ
as a random angle between 0 and �/2. It remains to check whether or
not the tip of the needle is on the other side of the crack (see Alg. 1.4
(direct-needle)).

procedure direct-needle

NNhits
← 0

for i = 1, . . . , N do⎧⎪⎪⎨⎪⎪⎩
xcenter ← ran (0, b/2)
φ ← ran (0, �/2)
xtip ← xcenter − (a/2)cos φ
if (xtip < 0) Nhits ← Nhits + 1

output Nhits

——

Algorithm 1.4 direct-needle. Implementing Buffon’s experiment for
needles of length a on the reduced pad of eqn (1.4) (a ≤ b).

On closer inspection, Alg. 1.4 (direct-needle) is inelegant, as it com-
putes the number � but also uses it as input (on line 5). There is also
a call to a nontrivial cosine function, distorting the authenticity of our
implementation. Because of these problems with � and cos φ, Alg. 1.4
(direct-needle) is a cheat! Running it is like driving a vintage automo-
bile (wearing a leather cap on one’s head) with a computer-controlled
engine just under the hood and an airbag hidden inside the wooden
steering wheel. To provide a historically authentic version of Buffon’s
experiment, stripped down to the elementary functions, we shall adapt
the children’s game and replace the pebbles inside the circle by nee-
dles (see Fig. 1.9). The pebble–needle trick allows us to sample a ran-
dom angle φ = ran (0, 2�) in an elementary way and to compute sin φ
and cos φ without actually calling trigonometric functions (see Alg. 1.5
(direct-needle(patch))).

reject

reject

Fig. 1.9 The pebble–needle trick sam-
ples a random angle φ and allows us to
compute sin φ and cos φ.

procedure direct-needle(patch)

xcenter ← ran (0, b/2)
1 ∆x ← ran (0, 1)

∆y ← ran (0, 1)
Υ ←

√
∆2

x + ∆2
y

if (Υ > 1) goto 1
xtip ← xcenter − (a/2)∆x/Υ
Nhits ← 0
if (xtip < 0) Nhits ← 1
output Nhits

——

Algorithm 1.5 direct-needle(patch). Historically authentic version
of Buffon’s experiment using the pebble–needle trick.

Fig. 1.10 Buffon’s experiment with 2000 needles (a = b).

1.1 Popular games in Monaco 13

The pebble–needle trick is really quite clever, and we shall revisit it
several times, in discussions of isotropic samplings in higher-dimensional
hyperspheres, Gaussian random numbers, and the Maxwell distribution
of particle velocities in a gas.

We can now follow in Count Buffon’s footsteps, and perform our own
needle-throwing experiments. One of these, with 2000 samples, is shown
in Fig. 1.10.

Looking at this figure makes us wonder whether needles are more
likely to intersect a crack at their tip, their center, or their eye. The full
answer to this question, the subject of the present subsection, allows us
to understand the factor 2/� in eqn (1.6) without any calculation.

Mathematically formulated, the question is the following: a needle
hitting a crack does so at a certain value l of its interior coordinate
0 ≤ l ≤ a (where, say, l = 0 at the tip, and l = a at the end of the eye).
The mean number of hits, Nhits, can be written as

〈Nhits〉 =
∫ a

0

dl 〈Nhits(l)〉 .

We are thus interested in 〈Nhits(l)〉, the histogram of hits as a function
of the interior coordinate l, so to speak. A probabilistic argument can
be used (see Aigner and Ziegler (1992)). More transparently, we may
analyze the experimental gadget shown in Fig. 1.11: two needles held
together by a drop of glue. glue

Fig. 1.11 Gadget No. 1: a white-
centered and a black-centered needle,
glued together.

Fig. 1.12 Buffon’s experiment performed with Gadget No. 1. It is im-
possible to tell whether black or white needles were thrown randomly.

In Fig. 1.12, we show the result of dropping this object—with its white
and dark needles—on the floor. By construction (glue!), we know that

〈Nhits(a/2)〉white needle = 〈Nhits(a)〉black needle .

However, by symmetry, both needles are deposited isotropically (see
Fig. 1.12). This means that

〈Nhits(a)〉black needle = 〈Nhits(a)〉white needle ,

and it follows that for the white needle, 〈Nhits(a/2)〉 = 〈Nhits(a)〉. Gluing
the needles together at different positions allows us to prove analogously

14 Monte Carlo methods

that 〈Nhits(l)〉 is independent of l. The argument can be carried even
further: clearly, the total number of hits for the gadget in Fig. 1.12 is
3/2 times that for a single needle, or, more generally,{

mean number
of hits

}
= Υ · { length of needle

}
. (1.7)

The constant Υ (Upsilon) is the same for needles of any length, smaller
or larger than the distance between the cracks in the floor (we have
computed it already in eqn (1.6)).

Gadgets and probabilistic arguments using them are not restricted to
straight needles. Let us glue a bent cobbler’s (shoemaker’s) needle (see
Fig. 1.13) to a straight one. We see from Fig. 1.14 that the mean number
of hits where the two needles touch must be the same.

Fig. 1.13 A cobbler’s needle (left) and
a crazy cobbler’s needle (right).

Fig. 1.14 Buffon’s experiment performed with Gadget No. 2, a straight
needle and a crazy cobbler’s needle glued together.

This leads immediately to a powerful generalization of eqn (1.7):{
mean

number of hits

}
= Υ ·

{
length of needle
(of any shape)

}
. (1.8)

The constant Υ in eqn (1.8) is the same for straight needles, cobbler’s
needles, and even crazy cobbler’s needles, needles that are bent into full
circles. Remarkably, crazy cobbler’s needles of length a = πb always
have two hits (see Fig. 1.16). Trivially, the mean number of hits is equal
to 2 (see Fig. 1.16). This gives Υ = 2/(�b) without any calculation,
and clarifies why the number � appears in Buffon’s problem (see also
Fig. 1.8). This ingenious observation goes back to Barbier (1860).

Over the last few pages, we have directly considered the mean num-
ber of hits 〈Nhits〉, without speaking about probabilities. We can under-
stand this by looking at what generalizes the square in the Monte Carlo
games, namely a two-dimensional rectangle with sides b/2 and π/2 (see
Fig. 1.15). On this generalized landing pad, the observable O(x, φ), the
number of hits, can take on values between 0 and 4, whereas for the
crazy cobbler’s needles of length �b, the number of hits is always two
(see Fig. 1.15). Evidently, throwing straight needles is not the same as
throwing crazy cobblers’ needles—the probability distributions π(Nhits)

1.1 Popular games in Monaco 15

π/2

0

b/20

φ

xcenter

Nhits=0

Nhits=1

Nhits=2

Nhits=3

=4

π/2

0

b/20

φ

xcenter

Nhits=0

Nhits=1

Nhits=2

Nhits=3

=4

π/2

0

b/20

φ

xcenter

Nhits=0

Nhits=1

Nhits=2

Nhits=3

=4

π/2

0

b/20

φ

xcenter

Nhits=0

Nhits=1

Nhits=2

Nhits=3

=4

π/2

0

b/20

φ

xcenter

Nhits=0

Nhits=1

Nhits=2

Nhits=3

=4

π/2

0

b/20
φ

xcenter

Nhits=2

Fig. 1.15 “Landing pads” for the Buffon needle experiment with a = �b.
Left : straight needles. Right : crazy cobbler’s needles.

differ, and only the mean numbers of hits (the mean of Nhits over the
whole pad) agree.

Fig. 1.16 Straight needles of length �b,
with between zero and four hits, and
round (crazy cobbler’s) needles, which
always hit twice.

Barbier’s trick is an early example of variance reduction, a power-
ful strategy for increasing the precision of Monte Carlo calculations. It
comes in many different guises and shows that there is great freedom in
finding the optimal setup for a computation.

1.1.4 Detailed balance

We left the lady and the heliport, in Subsection 1.1.2, without clarifying
why the strange piles in Fig. 1.3 had to be built. Instead of the heliport
game, let us concentrate on a simplified discrete version, the 3×3 pebble
game shown in Fig. 1.17. The pebble can move in at most four directions:
up, down, left, and right. In this subsection, we perform a complete
analysis of Markov-chain algorithms for the pebble game, which is easily
generalized to the heliport.

c a

b

Fig. 1.17 Discrete pebble game. The corner configuration a is in contact
with configurations b and c.

We seek an algorithm for moving the pebble one step at a time such

16 Monte Carlo methods

that, after many iterations, it appears with the same probability in each
of the fields. Anyone naive who had never watched ladies at heliports
would simply chuck the pebble a few times in a random direction, i.e. one
of four directions from the center, one of three directions from the edges,
or one of two directions from the corners. But this natural algorithm
is wrong. To understand why we must build piles, let us consider the
corner configuration a, which is in contact with the configurations b and
c (see Fig. 1.17). Our algorithm (yet to be found) must generate the
configurations a, b, and c with prescribed probabilities π(a), π(b), and
π(c), respectively, which we require to be equal. This means that we
want to create these configurations with probabilities

{π(a), π(b), . . .} :
{

stationary probability
for the system to be at a, b, etc.

}
, (1.9)

with the help of our Monte Carlo algorithm, which is nothing but a set
of transition probabilities p(a → b) for moving from one configuration
to the other (from a to b),

{p(a → b), p(a → c), . . .} :
{

probability of the algorithm
to move from a to b, etc.

}
.

Furthermore, we enforce a normalization condition which tells us that
the pebble, once at a, can either stay there or move on to b or c:

p(a → a) + p(a → b) + p(a → c) = 1. (1.10)

The two types of probabilities can be linked by observing that the con-
figuration a can only be generated from b or c or from itself:

π(a) = π(b)p(b → a) + π(c)p(c → a) + π(a)p(a → a), (1.11)

which gives

π(a)[1 − p(a → a)] = π(b)p(b → a) + π(c)p(c → a).

Writing eqn (1.10) as 1−p(a → a) = p(a → b)+p(a → c) and introducing
it into the last equation yields

π(a) p(a → b) + π(a)
︷ ︸︸ ︷
p(a → c) = π(c) p(c → a) + π(b)︸ ︷︷ ︸ p(b → a).

This equation can be satisfied by equating the braced terms separately,
and thus we arrive at the crucial condition of detailed balance,{

detailed
balance

}
: π(a)p(a → b) = π(b)p(b → a)

π(a)p(a → c) = π(c)p(c → a) etc. (1.12)

This rate equation renders consistent the Monte Carlo algorithm (the
probabilities {p(a → b)}) and the prescribed stationary probabilities
{π(a), π(b), . . .}.

In the pebble game, detailed balance is satisfied because all proba-
bilities for moving between neighboring sites are equal to 1/4, and the

1.1 Popular games in Monaco 17

probabilities p(a → b) and the return probabilities p(b → a) are trivially
identical. Now we see why the pebbles have to pile up on the sides and
in the corners: all the transition probabilities to neighbors have to be
equal to 1/4. But a corner has only two neighbors, which means that
half of the time we can leave the site, and half of the time we must stay,
building up a pile.

Of course, there are more complicated choices for the transition prob-
abilities which also satisfy the detailed-balance condition. In addition,
this condition is sufficient but not necessary for arriving at π(a) = π(b)
for all neighboring sites a and b. On both counts, it is the quest for
simplicity that guides our choice.

To implement the pebble game, we could simply modify Alg. 1.2
(markov-pi) using integer variables {kx, ky}, and installing the moves
of Fig. 1.17 with a few lines of code. Uniform integer random numbers
nran (−1, 1) (that is, random integers taking values {−1, 0, 1}, see Sub-
section 1.2.2) would replace the real random numbers. With variables
{kx, ky, kz} and another contraption to select the moves, such a program
can also simulate three-dimensional pebble games.

Table 1.3 Neighbor table for the 3 × 3 pebble game

Site Nbr(. . . , k)
k 1 2 3 4

1 2 4 0 0
2 3 5 1 0
3 0 6 2 0
4 5 7 0 1
5 6 8 4 2
6 0 9 5 3
7 8 0 0 4
8 9 0 7 5
9 0 0 8 6

1 2 3

4 5 6

7 8 9

first

second

third

fourth

Fig. 1.18 Numbering and neighbor
scheme for the 3 × 3 pebble game. The
first neighbor of site 5 is site 6, etc.

A smart device, the neighbor table, lets us simplify the code in a
decisive fashion: this addresses each site by a number (see Fig. 1.18)
rather than its Cartesian coordinates, and provides the orientation (see
Table 1.3). An upward move is described, not by going from {kx, ky}
to {kx, ky + 1}, but as moving from a site k to its second neighbor
(Nbr(2, k)). All information about boundary conditions, dimensions, lat-
tice structure, etc. can thus be outsourced into the neighbor table,
whereas the core program to simulate the Markov chain remains un-
changed (see Alg. 1.6 (markov-discrete-pebble)). This program can
be written in a few moments, for neighbor relations as in Table 1.3. It
visits the nine sites equally often if the run is long enough.

We have referred to π(a) as a stationary probability. This simple con-
cept often leads to confusion because it involves ensembles. To be com-
pletely correct, we should imagine a Monte Carlo simulation simulta-
neously performed on a large number of heliports, each with its own

18 Monte Carlo methods

procedure markov-discrete-pebble

input k (position of pebble)
n ← nran (1, 4)
if (Nbr(n, k)
= 0) then (see Table 1.3){

k ← Nbr(n, k)
output k (next position)
——

Algorithm 1.6 markov-discrete-pebble. Discrete Markov-chain
Monte Carlo algorithm for the pebble game.

pebble-throwing lady. In this way, we can make sense of the concept of
the probability of being in configuration a at iteration i, which we have
implicitly used, for example in eqn (1.11), during our derivation of the
detailed-balance condition. Let us use the 3 × 3 pebble game to study
this point in more detail. The ensemble of all transition probabilities be-
tween sites can be represented in a matrix, the system’s transfer matrix
P :

P = {p(a → b)} =

⎡⎢⎢⎢⎣
p(1 → 1) p(2 → 1) p(3 → 1) . . .
p(1 → 2) p(2 → 2) p(3 → 2) . . .
p(1 → 3) p(2 → 3) p(3 → 3) . . .

...
...

...
. . .

⎤⎥⎥⎥⎦ . (1.13)

The normalization condition in eqn (1.10) (the pebble must go some-
where) implies that each column of the matrix in eqn (1.13) adds up to
one.

With the numbering scheme of Fig. 1.18, the transfer matrix is

{p(a → b)} =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
4 · 1

4 · · · · ·
1
4

1
4

1
4 · 1

4 · · · ·
· 1

4
1
2 · · 1

4 · · ·
1
4 · · 1

4
1
4 · 1

4 · ·
· 1

4 · 1
4 0 1

4 · 1
4 ·

· · 1
4 · 1

4
1
4 · · 1

4

· · · 1
4 · · 1

2
1
4

· · · · 1
4 · 1

4
1
4

1
4

· · · · · 1
4 · 1

4
1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.14)

where the symbols “·” stand for zeros. All simulations start at the club-
house, site 9 in our numbering scheme. For the ensemble of Monte Carlo
simulations, this means that the probability vector at iteration i = 0 is

{π0(1), . . . , π0(9)} = {0, . . . , 0, 1}.

1.1 Popular games in Monaco 19

After one iteration of the Monte Carlo algorithm, the pebble is at the
clubhouse with probability 1/2, and at positions 6 and 8 with probabili-
ties 1/4. This is mirrored by the vector {πi=1(1), . . . , πi=1(9)} after one
iteration, obtained by a matrix–vector multiplication

πi+1(a) =
9∑

b=1

p(b → a)πi(b) (1.15)

for i = 0, and i + 1 = 1. Equation (1.15) is easily programmed (see
Alg. 1.7 (transfer-matrix); for the matrix in eqn (1.13), the eqn (1.15)
corresponds to a matrix–vector multiplication, with the vector to the
right). Repeated application of the transfer matrix to the initial proba-
bility vector allows us to follow explicitly the convergence of the Monte
Carlo algorithm (see Table 1.4 and Fig. 1.19).

procedure transfer-matrix

input {p(a → b)} (matrix in eqn (1.14))
input {πi(1), . . . , πi(9)}
for a = 1, . . . , 9 do⎧⎨⎩

πi+1(a) ← 0
for b = 1, . . . , 9 do{

πi+1(a) ← πi+1(a) + p(b → a)πi(b)
output {πi+1(1), . . . , πi+1(9)}
——

Algorithm 1.7 transfer-matrix. Computing pebble-game probabilities
at iteration i + 1 from the probabilities at iteration i.

0.0001

0.01

1

0 10 20 30

p
ro

b
.
(s

h
if
te

d
)

1
/9

 −
 π

i (1
)

iteration i

exact
(0.75)i

Fig. 1.19 Pebble-game probability of site 1, shifted by 1/9 (from Alg. 1.7
(transfer-matrix); see Table 1.4).

Table 1.4 Input/output of Alg. 1.7
(transfer-matrix), initially started at
the clubhouse

Prob. Iteration i
0 1 2 . . . ∞

πi(1) 0 0 0 . . . 1/9
πi(2) 0 0 0 . . . 1/9
πi(3) 0 0 0.062 . . . 1/9
πi(4) 0 0 0 . . . 1/9
πi(5) 0 0 1/8 . . . 1/9
πi(6) 0 1/4 0.188 . . . 1/9
πi(7) 0 0 0.062 . . . 1/9
πi(8) 0 1/4 0.188 . . . 1/9
πi(9) 1 1/2 0.375 . . . 1/9

To fully understand convergence in the pebble game, we must analyze
the eigenvectors {π1

e, . . . ,π
9
e} and the eigenvalues {λ1, . . . , λ9} of the

transfer matrix. The eigenvectors πk
e are those vectors that essentially

reproduce under the application of P :

Pπ
k
e = λkπ

k
e .

20 Monte Carlo methods

Writing a probability vector π = {π(1), . . . , π(9)} in terms of the eigen-
vectors, i.e.

π = α1π
1
e + α2π

2
e + · · · + α9π

9
e =

9∑
k=1

αkπ
k
e ,

allows us to see how it is transformed after one iteration,

Pπ = α1Pπ
1
e + α2Pπ

2
e + · · · + α9Pπ

9
e =

9∑
k=1

αkPπ
k
e

= α1λ1π
1
e + α2λ2π

2
e + · · · + α9λ9π

9
e =

9∑
k=1

αkλkπ
k
e ,

or after i iterations,

P i
π = α1λ

i
1π

1
e + α2λ

i
2π

2
e + · · · + α9λ

i
9π

9
e =

9∑
k=1

αk(λk)i
π

k
e .

Only one eigenvector has components that are all nonnegative, so that
it can be a vector of probabilities. This vector must have the largest
eigenvalue λ1 (the matrix P being positive). Because of eqn (1.10), we
have λ1 = 1. Other eigenvectors and eigenvalues can be computed ex-
plicitly, at least in the 3 × 3 pebble game. Besides the dominant eigen-
value λ1, there are two eigenvalues equal to 0.75, one equal to 0.5, etc.
This allows us to follow the precise convergence towards the asymptotic
equilibrium solution:

{πi(1), . . . , πi(9)}
= { 1

9 , . . . , 1
9}︸ ︷︷ ︸

first eigenvector
eigenvalue λ1 = 1

+α2 · (0.75)i {−0.21, . . . , 0.21}︸ ︷︷ ︸
second eigenvector

eigenvalue λ2 = 0.75

+ · · · .

In the limit i → ∞, the contributions of the subdominant eigenvectors
disappear and the first eigenvector, the vector of stationary probabilities
in eqn (1.9), exactly reproduces under multiplication by the transfer
matrix. The two are connected through the detailed-balance condition,
as discussed in simpler terms at the beginning of this subsection.

The difference between {πi(1), . . . , πi(9)} and the asymptotic solution
is determined by the second largest eigenvalue of the transfer matrix and
is proportional to

(0.75)i = ei·log 0.75 = exp
(
− i

3.476

)
. (1.16)

The data in Fig. 1.19 clearly show the (0.75)i behavior, which is equiv-
alent to an exponential ∝ e−i/∆i where ∆i = 3.476. ∆i is a timescale,
and allows us to define short times and long times: a short simulation

1.1 Popular games in Monaco 21

has fewer than ∆i iterations, and a long simulation has many more than
that.

In conclusion, we see that transfer matrix iterations and Monte Carlo
calculations reach equilibrium only after an infinite number of itera-
tions. This is not a very serious restriction, because of the existence of a
timescale for convergence, which is set by the second largest eigenvalue
of the transfer matrix. To all intents and purposes, the asymptotic equi-
librium solution is reached after the convergence time has passed a few
times. For example, the pebble game converges to equilibrium after a
few times 3.476 iterations (see eqn (1.16)). The concept of equilibrium
is far-reaching, and the interest in Monte Carlo calculations is rightly
strong because of this timescale, which separates fast and slow processes
and leads to exponential convergence.

1.1.5 The Metropolis algorithm

In Subsection 1.1.4, direct inspection of the detailed-balance condition
in eqn (1.12) allowed us to derive Markov-chain algorithms for simple
games where the probability of each configuration was either zero or one.
This is not the most general case, even for pebbles, which may be less
likely to be at a position a on a hilltop than at another position b located
in a valley (so that π(a) < π(b)). Moves between positions a and b with
arbitrary probabilities π(a) and π(b), respecting the detailed-balance
condition in eqn (1.12), are generated by the Metropolis algorithm (see
Metropolis et al. (1953)), which accepts a move a → b with probability

p(a → b) = min
[
1,

π(b)
π(a)

]
. (1.17)

In the heliport game, we have unknowingly used eqn (1.17): for a and
b both inside the square, the move was accepted without further tests
(π(b)/π(a) = 1, p(a → b) = 1). In contrast, for a inside but b outside
the square, the move was rejected (π(b)/π(a) = 0, p(a → b) = 0).

Table 1.5 Metropolis algorithm represented by eqn (1.17): detailed
balance holds because the second and fourth rows of this table are
equal

Case π(a) > π(b) π(b) > π(a)

p(a → b) π(b)/π(a) 1
π(a)p(a → b) π(b) π(a)

p(b → a) 1 π(a)/π(b)
π(b)p(b → a) π(b) π(a)

To prove eqn (1.17) for general values of π(a) and π(b), one has only
to write down the expressions for the acceptance probabilities p(a → b)
and p(b → a) from eqn (1.17) for the two cases π(a) > π(b) and π(b) >
π(a) (see Table 1.5). For π(a) > π(b), one finds that π(a)p(a → b) =

22 Monte Carlo methods

π(b)p(b → a) = π(b). In this case, and likewise for π(b) > π(a), detailed
balance is satisfied. This is all there is to the Metropolis algorithm.

site 0 site 1

Fig. 1.20 Two-site problem. The prob-
abilities to be at site 0 and site 1 are
proportional to π(0) and π(1), respec-
tively.

Let us implement the Metropolis algorithm for a model with just two
sites: site 0, with probability π(0), and site 1, with π(1), probabilities
that we may choose to be arbitrary positive numbers (see Fig. 1.20).
The pebble is to move between the sites such that, in the long run,
the times spent on site 0 and on site 1 are proportional to π(0) and
π(1), respectively. This is achieved by computing the ratio of statistical
weights π(1)/π(0) or π(0)/π(1), and comparing it with a random number
ran (0, 1), a procedure used by almost all programs implementing the
Metropolis algorithm (see Fig. 1.21 and Alg. 1.8 (markov-two-site)).

0 Υ 1

accept

reject

0 Υ1

accept

Fig. 1.21 Accepting a move with probability min(1, Υ) with the help of
a random number ran (0, 1).

We may run this program for a few billion iterations, using the output
of iteration i as the input of iteration i+1. While waiting for the output,
we can also clean up Alg. 1.8 (markov-two-site) a bit, noticing that if
Υ > 1, its comparison with a random number between 0 and 1 makes no
sense: the move will certainly be accepted. For π(l) > π(k), we should
thus work around the calculation of the quotient, the generation of a
random number and the comparison with that number.

procedure markov-two-site

input k (either 0 or 1)
if (k = 0) l ← 1
if (k = 1) l ← 0
Υ ← π(l)/π(k)
if (ran (0, 1) < Υ) k ← l
output k (next site)
——

Algorithm 1.8 markov-two-site. Sampling sites 0 and 1 with station-
ary probabilities π(0) and π(1) by the Metropolis algorithm.

1.1.6 A priori probabilities, triangle algorithm

On the heliport, the moves ∆x and ∆y were restricted to a small square
of edge length 2δ, the throwing range, centered at the present position
(see Fig. 1.22(A)). This gives an example of an a priori probability dis-
tribution, denoted by A(a → b), from which we sample the move a → b,

1.1 Popular games in Monaco 23

that is, which contains all possible moves in our Markov-chain algorithm,
together with their probabilities.

The small square could be replaced by a small disk without bringing
in anything new (see Fig. 1.22(B)). A much more interesting situation
arises if asymmetric a priori probabilities are allowed: in the triangle
algorithm of Fig. 1.22(C), we sample moves from an oriented equilateral
triangle centered at a, with one edge parallel to the x-axis. This extrava-
gant choice may lack motivation in the context of the adults’ game, but
contains a crucial ingredient of many modern Monte Carlo algorithms.

A B C

Fig. 1.22 Throwing pattern in Alg. 1.2 (markov-pi) (A), with variants.
The triangle algorithm (C) needs special attention.

In fact, detailed balance can be reconciled with any a priori probability
A(a → b), even a triangular one, by letting the probability P(a → b) for
moving from a to b be composite:

P(a → b) = A(a → b)︸ ︷︷ ︸
consider a→b

· p(a → b)︸ ︷︷ ︸
accept a → b

.

The probability of moving from a to b must satisfy π(a)P(a → b) =
π(b)P(b → a), so that the acceptance probabilities obey

p(a → b)
p(b → a)

=
π(b)

A(a → b)
A(b → a)

π(a)
.

This leads to a generalized Metropolis algorithm

p(a → b) = min
[
1,

π(b)
A(a → b)

A(b → a)
π(a)

]
, (1.18)

also called the Metropolis–Hastings algorithm. We shall first check the
new concept of an a priori probability with the familiar problem of the
heliport game with the small square: as the pebble throw a → b appears
with the same probability as the return throw b → a, we have A(a →
b) = A(b → a), so that the generalized Metropolis algorithm is the same
as the old one.

The triangle algorithm is more complicated: both the probability of
the move a → b and that of the return move b → a must be considered in
order to balance the probabilities correctly. It can happen, for example,
that the probability A(a → b) is finite, but that the return probability
A(b → a) is zero (see Fig. 1.23). In this case, the generalized Metropolis
algorithm in eqn (1.18) imposes rejection of the original pebble throw

24 Monte Carlo methods

a a (+ move) b (rejected), a

return move

Fig. 1.23 Rejected move a → b in the triangle algorithm.

from a to b. (Alg. 7.3 (direct-triangle) allows us to sample a random
point inside an arbitrary triangle).

The triangle algorithm can be generalized to an arbitrary a priori prob-
ability A(a → b), and the generalized Metropolis algorithm (eqn (1.18))
will ensure that the detailed-balance condition remains satisfied. How-
ever, only good choices for A(a → b) have an appreciable acceptance
rate (the acceptance probability of each move averaged over all moves)
and actually move the chain forward. As a simple example, we can think
of a configuration a with a high probability (π(a) large), close to con-
figurations b with π(b) small. The original Metropolis algorithm leads
to many rejections in this situation, slowing down the simulation. Intro-
ducing a priori probabilities to propose configurations b less frequently
wastes less computer time with rejections. Numerous examples in later
chapters illustrate this point.

A case worthy of special attention is A(a → b) = π(b) and A(b →
a) = π(a), for which the acceptance rate in eqn (1.18) of the generalized
Metropolis algorithm is equal to unity: we are back to direct sampling,
which we abandoned because we did not know how to put it into place.
However, no circular argument is involved. A priori probabilities are
crucial when we can almost do direct sampling, or when we can almost
directly sample a subsystem. A priori probabilities then present the com-
putational analogue of perturbation theory in theoretical physics.

1.1.7 Perfect sampling with Markov chains

The difference between the ideal world of children (direct sampling) and
that of adults (Markov-chain sampling) is clear-cut: in the former, direct
access to the probability distribution π(x) is possible, but in the latter,
convergence towards π(x) is reached only in the long-time limit. Con-
trolling the error from within the simulation poses serious difficulties: we
may have the impression that we have decorrelated from the clubhouse,
without suspecting that it is—figuratively speaking—still around the
corner. It has taken half a century to notice that this difficulty can some-
times be resolved, within the framework of Markov chains, by producing

1.1 Popular games in Monaco 25

perfect chain samples, which are equivalent to the children’s throws and
guaranteed to be totally decorrelated from the initial condition.

i = − 17

club house

i = − 16 i = − 15 i = − 14 i = − 13 i = − 12

i = − 11 i = − 10 i = − 9 i = − 8 i = − 7 i = − 6

i = − 5 i = − 4 i = − 3 i = − 2 i = − 1 i = 0 (now)

Fig. 1.24 A 3 × 3 pebble game starting at the clubhouse at iteration
i = −17, arriving at the present configuration at i = 0 (now).

For concreteness, we discuss perfect sampling in the context of the
3 × 3 pebble game. In Fig. 1.24, the stone has moved in 17 steps from
the clubhouse to the lower right corner. As the first subtle change in the
setting, we let the simulation start at time i = −17, and lead up to the
present time i = 0. Because we started at the clubhouse, the probability
of being in the lower right corner at i = 0 is slightly smaller than 1/9.
This correlation goes to zero exponentially in the limit of long running
times, as we have seen (see Fig. 1.19).

The second small change is to consider random maps rather than ran-
dom moves (see Fig. 1.25: from the upper right corner, the pebble must
move down; from the upper left corner, it must move right; etc.). At each
iteration i, a new random map is drawn. Random maps give a consistent,
alternative definition of the Markov-chain Monte Carlo method, and for
any given trajectory it is impossible to tell whether it was produced by
random maps or by a regular Monte Carlo algorithm (in Fig. 1.26, the
trajectory obtained using random maps is the same as in Fig. 1.24).

i

i

→
i + 1

→
→
→
→
→
→
→
→

Fig. 1.25 A random map at iteration
i and its action on all possible pebble
positions.

In the random-map Markov chain of Fig. 1.26, it can, furthermore, be
verified explicitly that any pebble position at time i = −17 leads to the
lower right corner at iteration i = 0. In addition, we can imagine that
i = −17 is not really the initial time, but that the simulation has been
going on since i = −∞. There have been random maps all along the way,
and Fig. 1.26 shows only the last stretch. The pebble position at i = 0 is
the same for any configuration at i = −17: it is also the outcome of an
infinite simulation, with an initial position at i = −∞, from which it has

26 Monte Carlo methods

decorrelated. The i = 0 pebble position in the lower right corner is thus
a direct sample—obtained by a Markov-chain Monte Carlo method.

i = − 17 i = − 16 i = − 15 i = − 14 i = − 13 i = − 12

i = − 11 i = − 10 i = − 9 i = − 8 i = − 7 i = − 6

i = − 5 i = − 4 i = − 3 i = − 2 i = − 1 i = 0 (now)

Fig. 1.26 Monte Carlo dynamics using time-dependent random maps.
All positions at i = −17 give an identical output at i = 0.

The idea of perfect sampling is due to Propp and Wilson (1996).
It mixes a minimal conceptual extension of the Monte Carlo method
(random maps) with the insight that a finite amount of backtracking
(called coupling from the past) may be sufficient to figure out the present
state of a Markov chain that has been running forever (see Fig. 1.27).

i = 0 (now)

i = − ∞

Fig. 1.27 A random-map Markov chain that has been running since
i = −∞.

Producing direct samples for a 3×3 pebble game by Markov chains is
a conceptual breakthrough, but not yet a great technical achievement.
Later on, in Chapter 5, we shall construct direct samples (using Markov
chains) with 2100 = 1 267 650 600 228 229 401 496 703 205 376 configura-
tions. Going through all of them to see whether they have merged is

1.2 Basic sampling 27

out of the question, but we shall see that it is sometimes possible to
squeeze all configurations in between two extremal ones: if those two
configurations have come together, all others have merged, too.

Understanding and running a coupling-from-the-past program is the
ultimate in Monte Carlo style—much more elegant than walking around
a heliport, well dressed and with a fancy handbag over one’s shoulder,
waiting for the memory of the clubhouse to more or less fade away.

1.2 Basic sampling

On several occasions already, we have informally used uniform random
numbers x generated through a call x ← ran (a, b). We now discuss the
two principal aspects of random numbers. First we must understand
how random numbers enter a computer, a fundamentally deterministic
machine. In this first part, we need little operational understanding, as
we shall always use routines written by experts in the field. We merely
have to be aware of what can go wrong with those routines. Second,
we shall learn how to reshape the basic building block of randomness—
ran (0, 1)—into various distributions of random integers and real num-
bers, permutations and combinations, N -dimensional random vectors,
random coordinate systems, etc. Later chapters will take this program
much further: ran (0, 1) will be remodeled into random configurations of
liquids and solids, boson condensates, and mixtures, among other things.

1.2.1 Real random numbers

Random number generators (more precisely, pseudorandom number gen-
erators), the subroutines which produce ran (0, 1), are intricate deter-
ministic algorithms that condense into a few dozen lines a lot of clever
number theory and probabilities, all rigorously tested. The output of
these algorithms looks random, but is not: when run a second time, un-
der exactly the same initial conditions, they always produce an identical
output. Generators that run in the same way on different computers are
called “portable”. They are generally to be preferred. Random numbers
have many uses besides Monte Carlo calculations, and rely on a solid
theoretical and empirical basis. Routines are widely available, and their
writing is a mature branch of science. Progress has been fostered by
essential commercial applications in coding and cryptography. We cer-
tainly do not have to conceive such algorithms ourselves and, in essence,
only need to understand how to test them for our specific applications.

Every modern, good ran (0, 1) routine has a flat probability distribu-
tion. It has passed a battery of standard statistical tests which would
have detected unusual correlations between certain values {xi, . . . , xi+k}
and other values {xj , . . . , xj+k′} later down the sequence. Last but not
least, the standard routines have been successfully used by many people
before us. However, all the meticulous care taken and all the endorse-
ment by others do not insure us against the small risk that the particular
random number generator we are using may in fact fail in our particular

28 Monte Carlo methods

problem. To truly convince ourselves of the quality of a complicated cal-
culation that uses a given random number generator, it remains for us
(as end users) to replace the random number generator in the very sim-
ulation program we are using by a second, different algorithm. By the
definition of what constitutes randomness, this change of routine should
have no influence on the results (inside the error bars). Therefore, if
changing the random number generator in our simulation program leads
to no systematic variations, then the two generators are almost certainly
OK for our application. There is nothing more we can do and nothing
less we should do to calm our anxiety about this crucial ingredient of
Monte Carlo programs.

Algorithm 1.9 (naive-ran) is a simple example—useful for study, but
unsuited for research—of linear congruential3 random number genera-
tors, which are widely installed in computers, pocket calculators, and
other digital devices. Very often, such generators are the building blocks
of good algorithms.

procedure naive-ran

m ← 134456
n ← 8121
k ← 28411
input idum
idum ← mod(idum · n + k, m)
ran ← idum/real(m)
output idum, ran
——

Algorithm 1.9 naive-ran. Low-quality portable random number gen-
erator, naive-ran(0, 1), using a linear congruential method.

Table 1.6 Repeated calls to Alg. 1.9
(naive-ran). Initially, the seed was set
to idum ← 89053.

idum ran

1 123456 0.91819
2 110651 0.82295
3 55734 0.41451
4 65329 0.48588
5 1844 0.01371
6 78919 0.58695

.
134457 123456 . . .
134458 110651 . . .

.

In Alg. 1.9 (naive-ran), the parameters {m, n, k} have been carefully
adjusted, whereas the variable {idum}, called the seed, is set at the be-
ginning, but never touched again from the outside during a run of the
program. Once started, the sequence of pseudorandom numbers unrav-
els. Just like the sequence of any other generator, even the high-quality
ones, it is periodic. In Alg. 1.9 (naive-ran), the periodicity is 134 456
(see Table 1.6); in good generators, the periodicity is much larger than
we shall ever be able to observe.

Let us denote real random numbers, uniformly distributed between
values a and b, by the abstract symbol ran (a, b), without regard for
initialization and the choice of algorithm (we suppose it to be perfect).
In the printed routines, repeated calls to ran (a, b), such as

x ← ran (−1, 1) ,
y ← ran (−1, 1) ,

(1.19)

generate statistically independent random values for x and y. Later,
we shall often use a concise vector notation in our programs. The two

3Two numbers are congruent if they agree with each other, i.e. if their difference is
divisible by a given modulus: 12 is congruent to 2 (modulo 5), since 12 − 2 = 2 × 5.

1.2 Basic sampling 29

variables {x, y} in eqn (1.19), for example, may be part of a vector x,
and we may assign independent random values to the components of
this vector by the call

x ← {ran (−1, 1) , ran (−1, 1)}.
(For a discussion of possible conflicts between vectors and random num-
bers, see Subsection 1.2.6.)

Depending on the context, random numbers may need a little care.
For example, the logarithm of a random number between 0 and 1, x ←
log ran (0, 1), may have to be replaced by

1 Υ ← ran (0, 1)
if (Υ = 0) goto 1 (reject number)
x ← log Υ

to avoid overflow (Υ = 0, x = −∞) and a crash of the program after a
few hours of running. To avoid this problem, we might define the random
number ran (0, 1) to be always larger than 0 and smaller than 1. However
this does not get us out of trouble: a well-implemented random number
generator between 0 and 1, always satisfying

0 < ran (0, 1) < 1,

might be used to implement a routine ran (1, 2). The errors of finite-
precision arithmetic could lead to an inconsistent implementation where,
owing to rounding, 1 + ran (0, 1) could turn out to be exactly equal to
one, even though we want ran (1, 2) to satisfy

1 < ran (1, 2) < 2.

Clearly, great care is called for, in this special case but also in gen-
eral: Monte Carlo programs, notwithstanding their random nature, are
extremely sensitive to small bugs and irregularities. They have to be
meticulously written: under no circumstance should we accept routines
that need an occasional manual restart after a crash, or that sometimes
produce data which has to be eliminated by hand. Rare problems, for
example logarithms of zero or random numbers that are equal to 1 but
should be strictly larger, quickly get out of control, lead to a loss of trust
in the output, and, in short, leave us with a big mess

1.2.2 Random integers, permutations, and
combinations

Random variables in a Monte Carlo calculation are not necessarily real-
valued. Very often, we need uniformly distributed random integers m,
between (and including) k and l. In this book, such a random integer is
generated by the call m ← nran (k, l). In the implementation in Alg. 1.10
(nran), the if () statement (on line 4) provides extra protection against
rounding problems in the underlying ran (k, l + 1) routine.

30 Monte Carlo methods

procedure nran

input {k, l}
1 m ← int(ran (k, l + 1))

if (m > l) goto 1
output m
——

Algorithm 1.10 nran. Uniform random integer nran (k, l) between (and
including) k and l.

The next more complicated objects, after integers, are permutations
of K distinct objects, which we may take to be the integers {1, . . . , K}.
A permutation P can be written as a two-row matrix4

P =
(

P1 P2 P3 P4 P5

1 2 3 4 5

)
. (1.20)

We can think of the permutation in eqn (1.20) as balls labeled {1, . . . , 5}
in the order {P1, . . . , P5}, on a shelf (ball Pk is at position k). The order
of the columns is without importance in eqn (1.20), and P can also be
written as P =

(
P1 P3 P4 P2 P5
1 3 4 2 5

)
: information about the placing of balls

is not lost, and we still know that ball Pk is in the kth position on the
shelf. Two permutations P and Q can be multiplied, as shown in the
example below, where the columns of Q are first rearranged such that
the lower row of Q agrees with the upper row of P . The product PQ
consists of the lower row of P and the upper row of the rearranged Q:

P︷ ︸︸ ︷
(1 4 3 2 5

1 2 3 4 5)

Q︷ ︸︸ ︷
(1 3 2 4 5

1 2 3 4 5) =

P︷ ︸︸ ︷
(1 4 3 2 5

1 2 3 4 5)

Q (rearranged)︷ ︸︸ ︷
(1 4 2 3 5

1 4 3 2 5) =

PQ︷ ︸︸ ︷
(1 4 2 3 5

1 2 3 4 5) . (1.21)

On the shelf, with balls arranged in the order {P1, . . . , P5}, the multipli-
cation of P from the right by another permutation Q =

(
Q1 Q2 Q3 Q4 Q5

1 2 3 4 5

)
replaces the ball k with Qk (or, equivalently, the ball Pk by QPk

).
The identity (1 2 ... K

1 2 ... K) is a special permutation. Transpositions are
the same as the identity permutation, except for two elements which are
interchanged (Pk = l and Pl = k). The second factor in the product in
eqn (1.21) is a transposition. Any permutation of K elements can be
built up from at most K − 1 transpositions.

Permutations can also be arranged into disjoint cycles

P =
(

P2 P3 P4 P1

P1 P2 P3 P4︸ ︷︷ ︸
first cycle

P6 P7 P8 P9 P5

P5 P6 P7 P8 P9︸ ︷︷ ︸
second cycle

.

.︸ ︷︷ ︸
other cycles

)
,

(1.22)
which can be written in a cycle representation as

P = (P1, P2, P3, P4)(P5, . . . , P9)(. . .)(. . .). (1.23)

4Anticipating later applications in quantum physics, we write permutations “bottom-
up” as

“
P1 . . . PK
1 . . . K

”
rather than “top-down”

“
1 . . . K

P1 . . . PK

”
, as is more common.

1.2 Basic sampling 31

In this representation, we simply record in one pair of parentheses that
P1 is followed by P2, which is in turn followed by P3, etc., until we come
back to P1. The order of writing the cycles is without importance. In
addition, each cycle of length k has k equivalent representations. We
could, for example, write the permutation P of eqn (1.23) as

P = (P5, . . . , P9)(P4, P1, P2, P3)(. . .)(. . .).

Cycle representations will be of central importance in later chapters;
in particular, the fact that every cycle of k elements can be reached
from the identity by means of k − 1 transpositions. As an example, we
can see that multiplying the identity permutation (1 2 3 4

1 2 3 4) by the three
transpositions of (1, 2), (1, 3), and (1, 4) gives

(1 2 3 4
1 2 3 4)︸ ︷︷ ︸
identity

(2 1 3 4
1 2 3 4)︸ ︷︷ ︸
1↔2

(2 3 1 4
2 1 3 4)︸ ︷︷ ︸
1↔3

(2 3 4 1
2 3 1 4)︸ ︷︷ ︸
1↔4

= (2 3 4 1
1 2 3 4) = (1, 2, 3, 4),

a cycle of four elements. More generally, we can now consider a permu-
tation P of K elements containing n cycles, with {k1, . . . , kn} elements.
The first cycle, which has k1 elements, is generated from the identity by
k1 − 1 transpositions, the second cycle by k2 − 1, etc. The total number
of transpositions needed to reach P is (k1 − 1) + · · · + (kn − 1), but
since K = k1 + · · ·+ kn, we can see that the number of transpositions is
K − n. The sign of a permutation is positive if the number of transpo-
sitions from the identity is even, and odd otherwise (we then speak of
even and odd permutations). We see that

sign P = (−1)K−n = (−1)K+n = (−1)# of transpositions. (1.24)

We can always add extra transpositions and undo them later, but the
sign of the permutation remains the same. Let us illustrate the crucial
relation between the number of cycles and the sign of a permutation by
an example:

P = (4 2 5 7 6 3 8 1
1 2 3 4 5 6 7 8) = (1, 4, 7, 8)(2)(3, 5, 6).

This is a permutation of K = 8 elements with n = 3 cycles. It must be
odd, because of eqn (1.24). To see this, we rearrange the columns of P
to make the elements of the same cycle come next to each other:

P =
(

4 7 8 1
1 4 7 8︸ ︷︷ ︸

first cycle

2
2

5 6 3
3 5 6︸ ︷︷ ︸
third cycle

)
. (1.25)

In this representation, it is easy to see that the first cycle is generated
in three transpositions from (1 4 7 8

1 4 7 8); the second cycle, consisting of the
element 2, needs no transposition; and the third cycle is generated in
two transpositions from (3 5 6

3 5 6). The total number of transpositions is
five, and the permutation is indeed odd.

Let us now sample random permutations, i.e. generate one of the K!
permutations with equal probability. In our picture of permutations as

32 Monte Carlo methods

balls on a shelf, it is clear that a random permutation can be created
by placing all K balls into a bucket, and randomly picking out one after
the other and putting them on the shelf, in their order of appearance.
Remarkably, one can implement this procedure with a single vector of
length K, which serves both as the bucket and as the shelf (see Alg. 1.11
(ran-perm); for an example, see Table 1.7). We may instead stop the

procedure ran-perm

{P1, . . . , PK} ← {1, . . . , K}
for k = 1, . . . , K − 1 do{

l ← nran (k, K)
Pl ↔ Pk

output {P1, . . . , PK}
——

Algorithm 1.11 ran-perm. Generating a uniformly distributed random
permutation of K elements.

process after M steps, rather than K (M < K), to sample a random
combination (see Alg. 1.12 (ran-combination)).

procedure ran-combination

{P1, . . . , PK} ← {1, . . . , K}
for k = 1, . . . , M do{

l ← nran (k, K)
Pl ↔ Pk

output {P1, . . . , PM}
——

Algorithm 1.12 ran-combination. Generating a uniformly distributed
random combination of M elements from K.

Table 1.7 Example run of Alg. 1.11
(ran-perm). In each step k, the numbers
k and l are underlined.

P1 P2 P3 P4 P5

1 2 3 4 5
1

4 2 3 1 5
2

4 3 2 1 5
3

4 3 2 1 5
4

4 3 2 5 1

These two programs are the most basic examples of random combi-
natorics, a mature branch of mathematics, where natural, easy-to-prove
algorithms are right next to tough ones. For illustration, we consider a
closely related problem of (a few) black dots and many white dots(• • • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦) ,
which we want to mix, as in(◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦) .
The fastest algorithm for mixing the three black dots with the white ones
is a slightly adapted version of Alg. 1.12 (ran-combination): first swap
the black dot at position 1 with the element at position j = nran (1, 18),
then exchange whatever is at position 2 with the element at nran (2, 18),
and finally swap the contents of the positions 3 and nran (3, 18). The
resulting configuration of dots is indeed a random mixture, but it takes
a bit of thought to prove this.

1.2 Basic sampling 33

1.2.3 Finite distributions

The sampling of nonuniform finite distributions has an archetypal ex-
ample in the Saturday night problem. We imagine K possible evening
activities that we do not feel equally enthusiastic about: study (k = 1,
probability π1 � 0), chores (k = 2, probability π2 ≪ 1), cinema, book
writing, etc. The probabilities πk are all known, but we may still have
trouble deciding what to do. This means that we have trouble in sam-
pling the distribution {π1, . . . , πK}. Two methods allow us to solve the
Saturday night problem: a basic rejection algorithm, and tower sampling,
a rejection-free approach.

procedure reject-finite

πmax ← maxK
k=1 πk

1 k ← nran (1, K)
Υ ← ran (0, πmax)
if (Υ > πk) goto 1
output k
——

Algorithm 1.13 reject-finite. Sampling a finite distribution
{π1, . . . , πK} with a rejection algorithm.

study chores jog book
this
write

movie go out book
this
read

Kk1

0

π1

πmax

Fig. 1.28 Saturday night problem solved by Alg. 1.13 (reject-finite).

In the rejection method (see Alg. 1.13 (reject-finite)), pebbles are
randomly thrown into a big frame containing boxes for all the activities,
whose sizes represent their probabilities. Eventually, one pebble falls into
one of them and makes our choice. Clearly, the acceptance rate of the
algorithm is given by the ratio of the sum of the volumes of all boxes to
the volume of the big frame and is equal to 〈π〉 /πmax, where the mean
probability is 〈π〉 =

∑
k πk/K. This implies that on average we have to

throw πmax/ 〈π〉 pebbles before we have a hit. This number can easily
become so large that the rejection algorithm is not really an option.

Tower sampling is a vastly more elegant solution to the Saturday night
problem. Instead of placing the boxes next to each other, as in Fig. 1.28,
we pile them up (see Fig. 1.29). Algorithm 1.14 (tower-sample) keeps
track of the numbers Π1 = π1, Π2 = π1 + π2, etc. With a single random
number ran (0, ΠK), an activity k is then chosen. There is no rejection.

34 Monte Carlo methods

procedure tower-sample

input {π1, . . . , πK}
Π0 ← 0
for l = 1, . . . , K do Πl ← Πl−1 + πl

Υ ← ran (0, ΠK)
∗ find k with Πk−1 < Υ < Πk

output k
——

Algorithm 1.14 tower-sample. Tower sampling of a finite distribution
{π1, . . . , πK} without rejections.

Tower sampling can be applied to discrete distributions with a total
number K in the hundreds, thousands, or even millions. It often works
when the naive rejection method of Fig. 1.28 fails because of too many
rejections. Tower sampling becomes impracticable only when the prob-
abilities {π1, . . . , πK} can no longer be listed.

Π0 = 0
study

chores

jog

k
activity

Πk−1

Πk

movie

go out

K
activity

ΠK

Fig. 1.29 Saturday night problem
solved by tower sampling.

In Alg. 1.14 (tower-sample), we must clarify how we actually find
the element k, i.e. how we implement the line marked by an asterisk.
For small K, we may go through the ordered table {Π0, . . . , ΠK} one
by one, until the element k, with Πk−1 < Υ ≤ Πk, is encountered. For
large K, a bisection method should be implemented if we are making
heavy use of tower sampling: we first check whether Υ is smaller or larger
than ΠK/2, and then cut the possible range of indices k in half on each
subsequent iteration. Algorithm 1.15 (bisection-search) terminates in
about log2 K steps.

procedure bisection-search

input Υ, {Π0, Π1, . . . , ΠK} (ordered table with Πk ≥ Πk−1)
kmin ← 0
kmax ← K + 1
for i = 1, 2, . . . do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k ← (kmin + kmax)/2 (integer arithmetic)
if (Πk < Υ) then{

kmin ← k
else if (Πk−1 > Υ) then{

kmax ← k
else{

output k
exit

——

Algorithm 1.15 bisection-search. Locating the element k with
Πk−1 < Υ < Πk in an ordered table {Π0, . . . , ΠK}.

1.2 Basic sampling 35

1.2.4 Continuous distributions and sample
transformation

The two discrete methods of Subsection 1.2.3 remain meaningful in the
continuum limit. For the rejection method, the arrangement of boxes in
Fig. 1.28 simply becomes a continuous curve π(x) in some range xmin <
x < xmax (see Alg. 1.16 (reject-continuous)). We shall often use a
refinement of this simple scheme, where the function π(x), which we
want to sample, is compared not with a constant function πmax but with
another function π̃(x) that we know how to sample, and is everywhere
larger than π(x) (see Subsection 2.3.4).

procedure reject-continuous

1 x ← ran (xmin, xmax)
Υ ← ran (0, πmax)
if (Υ > π(x)) goto 1 (reject sample)
output x
——

Algorithm 1.16 reject-continuous. Sampling a value x with proba-
bility π(x) < πmax in the interval [xmin, xmax] with the rejection method.

For the continuum limit of tower sampling, we change the discrete
index k in Alg. 1.14 (tower-sample) into a real variable x:

{k, πk} −→ {x, π(x)}

(see Fig. 1.30). This gives us the transformation method: the loop in the
third line of Alg. 1.14 (tower-sample) turns into an integral formula:

in Alg. 1.14 (tower-sample)︷ ︸︸ ︷
Πk ← Πk−1 + πk −→

Π(x)=Π(x−dx)+π(x)dx︷ ︸︸ ︷
Π(x) =

∫ x

−∞
dx′ π(x′) . (1.26)

Likewise, the line marked by an asterisk in Alg. 1.14 (tower-sample)
has an explicit solution:

in Alg. 1.14 (tower-sample)︷ ︸︸ ︷
find k with Πk−1 < Υ < Πk −→

i.e. x=Π−1(Υ)︷ ︸︸ ︷
find x with Π(x) = Υ, (1.27)

where Π−1 is the inverse function of Π.
As an example, let us sample random numbers 0 < x < 1 distributed

according to an algebraic function π(x) ∝ xγ (with γ > −1) (see
Fig. 1.30, which shows the case γ = − 1

2). We find

π(x) = (γ + 1)xγ for 0 < x < 1,

Π(x) =
∫ x

0

dx π(x′) = xγ+1 = ran (0, 1) ,

x = ran (0, 1)1/(γ+1)
. (1.28)

36 Monte Carlo methods

0

2

0 1

π
(x

)
x

0

1

0 1

Π
(x

)

x

tower

Fig. 1.30 Transformation method as the continuum limit of tower sam-
pling.

The transformation method as laid out in eqns (1.26) and (1.27) can
be interpreted as a sample transformation, stressing the unity between
integration and sampling: any change of variables in an integral can be
done directly with random numbers, i.e. with samples. Indeed, in the
above example of an algebraic function, we can transform the integral
over a flat distribution into the integral of the target distribution:∫ 1

0

dΥ
integral−−−−−−→

transform
const

∫ 1

0

dx xγ .

The same transformation works for samples:{
sample Υ

Υ = ran (0, 1)

}
sample−−−−−−→

transform

{
sample x

with π(x) ∝ xγ

}
.

We now seek the transformation between x and Υ:

dΥ = const · dx xγ .

The sample Υ = ran (0, 1) is thus transformed as follows:

ran (0, 1) = Υ = const′ · xγ+1 + const′′.

Finally (checking that the bounds of ran (0, 1) correspond to x = 0 and
x = 1), this results in

x = ran (0, 1)1/(γ+1)
, (1.29)

in agreement with eqn (1.28). (In Subsection 1.4.2, we shall consider
algebraic distributions for x between 1 and ∞.)

As a second example of sample transformation, we consider random
numbers that are exponentially distributed, so that π(x) ∝ e−λx for
x ≥ 0. As before, we write∫ 1

0

dΥ = const
∫ ∞

0

dx e−λx (1.30)

1.2 Basic sampling 37

and seek a transformation of a flat distribution of Υ in the interval [0, 1]
into the target distribution of x:

dΥ = const · dx e−λx,

ran (0, 1) = Υ = const′ · e−λx + const′′.

Checking the bounds x = 0 and x = ∞, this leads to

− 1
λ

log ran (0, 1) = x. (1.31)

In this book, we shall often transform samples under the integral sign,
in the way we have seen in the two examples of the present subsection.

1.2.5 Gaussians

In many applications, we need Gaussian random numbers y distributed
with a probability

π(y) =
1√
2πσ

exp
[
− (y − 〈y〉)2

2σ2

]
.

(The parameter 〈y〉 is the mean value of the distribution, and σ is the
standard deviation.) One can always change variables using x = (y −
〈y〉)/σ to obtain normally distributed variables x with a distribution

π(x) =
1√
2�

exp
(−x2/2

)
. (1.32)

Inversely, the normally distributed variables x can be rescaled into y =
σx + 〈y〉.

Naively, to sample Gaussians such as those described in eqn (1.32),
one can compute the sum of a handful of independent random vari-
ables, essentially ran (−1, 1), and rescale them properly (see Alg. 1.17
(naive-gauss), the factor 1/12 will be derived in eqn (1.55)). This pro-
gram illustrates the power of the central limit theorem, which will be
discussed further in Subsection 1.3.3. Even for K = 3, the distribution
takes on the characteristic Gaussian bell shape (see Fig. 1.31).

0.5

0

10

p
ro

b
a
b
il
it

y
 π

(x
)

sum of K random numbers x

K = 1
2
3

Fig. 1.31 Probability for the sum
of K random numbers ran

`− 1
2
, 1

2

´
for small K, rescaled as in Alg. 1.17
(naive-gauss).

procedure naive-gauss

σ ←√K/12
Σ ← 0
for k = 1, . . . , K do{

Σ ← Σ + ran
(− 1

2 , 1
2

)
x ← Σ/σ
output x
——

Algorithm 1.17 naive-gauss. An approximately Gaussian random
number obtained from the rescaled sum of K uniform random numbers.

38 Monte Carlo methods

With Alg. 1.17 (naive-gauss), we shall always worry whether its
parameter K is large enough. For practical calculations, it is preferable
to sample Gaussian random numbers without approximations. To do so,
we recall the trick used to evaluate the error integral∫ ∞

−∞

dx√
2�

e−x2/2 = 1. (1.33)

We square eqn (1.33)[∫ ∞

−∞

dx√
2�

exp
(−x2/2

)]2
=
∫ ∞

−∞

dx√
2�

e−x2/2

∫ ∞

−∞

dy√
2�

e−y2/2 (1.34)

=
∫ ∞

−∞

dx dy

2�
exp
[−(x2 + y2)/2

]
, (1.35)

introduce polar coordinates (dx dy = r dr dφ),

. . . =
∫ 2�

0

dφ

2�

∫ ∞

0

r dr exp
(−r2/2

)
,

and finally substitute r2/2 = Υ (r dr = dΥ)

. . . =
∫ 2�

0

dφ

2�︸ ︷︷ ︸
1

∫ ∞

0

dΥ e−Υ︸ ︷︷ ︸
1

. (1.36)

Equation (1.36) proves the integral formula in eqn (1.33). In addition, the
two independent integrals in eqn (1.36) are easily sampled: φ is uniformly
distributed between 0 and 2�, and Υ is exponentially distributed and can
be sampled through the negative logarithm of ran (0, 1) (see eqn (1.31),
with λ = 1). After generating Υ = − log ran (0, 1) and φ = ran (0, 2�),

procedure gauss

input σ
φ ← ran (0, 2�)
Υ ← −log ran (0, 1)
r ← σ

√
2Υ

x ← rcos φ
y ← rsin φ
output {x, y}
——

Algorithm 1.18 gauss. Two independent Gaussian random numbers
obtained by sample transformation. See Alg. 1.19 (gauss(patch)).

we transform the sample, as discussed in Subsection 1.2.4: a crab’s walk
leads from eqn (1.36) back to eqn (1.34) (r =

√
2Υ, x = r cos φ, y =

r sin φ). We finally get two normally distributed Gaussians, in one of
the nicest applications of multidimensional sample transformation (see
Alg. 1.18 (gauss)).

1.2 Basic sampling 39

Algorithm 1.18 (gauss) can be simplified further. As discussed in
Subsection 1.1.3, we can generate uniform random angles by throwing
pebbles into the children’s square and retaining those inside the cir-
cle (see Fig. 1.9). This pebble–needle trick yields a random angle φ,
but allows us also to determine sin φ and cos φ without explicit use
of trigonometric tables (see Alg. 1.19 (gauss(patch))). In the printed
routine, x/

√
Υ′ = cos φ, etc. Moreover, the variable Υ′ = x2 + y2,

for {x, y} inside the circle, is itself uniformly distributed, so that Υ′

in Alg. 1.19 (gauss(patch)) can replace the ran (0, 1) in the original
Alg. 1.18 (gauss). This Box–Muller algorithm is statistically equivalent
to but marginally faster than Alg. 1.18 (gauss).

procedure gauss(patch)

input σ
1 x ← ran (−1, 1)

y ← ran (−1, 1)
Υ′ ← x2 + y2

if (Υ′ > 1 or Υ′ = 0) goto 1 (reject sample)
Υ ← −log Υ′

Υ′′ ← σ
√

2Υ/Υ′
x ← Υ′′x
y ← Υ′′y
output {x, y}
——

Algorithm 1.19 gauss(patch). Gaussian random numbers, as in
Alg. 1.18 (gauss), but without calls to trigonometric functions.

1.2.6 Random points in/on a sphere

The pebble–needle trick, in its recycled version in Subsection 1.2.5, shows
that any random point inside the unit disk of Fig. 1.1 can be transformed
into two independent Gaussian random numbers:{

2 Gaussian
samples

}
⇐=
{

random pebble in
unit disk

}
.

This remarkable relation between Gaussians and pebbles is unknown to
most players of games in Monaco, short or tall. The unit disk is the
same as the two-dimensional unit sphere, and we may wonder whether
a random point inside a d-dimensional unit sphere could be helpful for
generating d Gaussians at a time. Well, the truth is exactly the other way
around: sampling d Gaussians provides a unique technique for obtaining
a random point in a d-dimensional unit sphere:{

d Gaussian
samples

}
=⇒
{

random point in
d-dimensional unit sphere

}
. (1.37)

This relationship is closely linked to the Maxwell distribution of veloci-
ties in a gas, which we shall study in Chapter 2.

40 Monte Carlo methods

In higher dimensions, the sampling of random points inside the unit
sphere cannot really be achieved by first sampling points in the cube
surrounding the sphere and rejecting all those positions which have a
radius in excess of one (see Alg. 1.20 (naive-sphere)). Such a modified
children’s algorithm has a very high rejection rate, as we shall show now
before returning to eqn (1.37).

procedure naive-sphere

1 Σ ← 0
for k = 1, . . . , d do⎧⎨⎩

xk ← ran (−1, 1)
Σ ← Σ + x2

k

if (Σ > 1) goto 1 (reject sample)
output {x1, . . . , xd}
——

Algorithm 1.20 naive-sphere. Sampling a uniform random vector in-
side the d-dimensional unit sphere.

The acceptance rate of Alg. 1.20 (naive-sphere) is related to the
ratio of volumes of the unit hypersphere and a hypercube of side length
2:⎧⎨⎩

volume
of unit sphere

in d dim.

⎫⎬⎭ =

⎧⎨⎩
volume of

d-dim. cube
of length 2

⎫⎬⎭
{

acceptance rate of
Alg. 1.20

}
. (1.38)

The volume Vd(R) of a d-dimensional sphere of radius R is

Vd(R) =
∫

x2
1+···+x2

d
≤R2

dx1 . . . dxd =
[

�
d/2

Γ(d/2 + 1)

]
︸ ︷︷ ︸

Vd(1)

Rd, (1.39)

where Γ(x) =
∫∞
0 dt tx−1e−t, the gamma function, generalizes the fac-

torial. This function satisfies Γ(x+1) = xΓ(x). For an integer argument
n, Γ(n) = (n − 1)!. The value Γ(1/2) =

√
� allows us to construct the

gamma function for all half-integer x.
In this book, we have a mission to derive all equations explicitly, and

thus need to prove eqn (1.39). Clearly, the volume of a d-dimensional
sphere of radius R is proportional to Rd (the area of a disk goes as the
radius squared, the volume of a three-dimensional sphere goes as the
cube, etc.), and we only have to determine Vd(1), the volume of the unit
sphere. Splitting the d-dimensional vector R = {x1, . . . , xd} as

R = {x1, x2︸ ︷︷ ︸
r

, x3, , . . . , , xd︸ ︷︷ ︸
u

}, (1.40)

where R2 = r2 + u2, and writing r in two-dimensional polar coordinates

1.2 Basic sampling 41

r = {r, φ}, we find

Vd(1) =
∫ 1

0

r dr

∫ 2�

0

dφ

(d − 2)-dim. sphere of radius
√

1 − r2︷ ︸︸ ︷∫
x2
3+···+x2

d
≤1−r2

dx3 . . . dxd (1.41)

= 2�
∫ 1

0

dr rVd−2(
√

1 − r2)

= 2�Vd−2(1)
∫ 1

0

dr r
(√

1 − r2
)d−2

= �Vd−2(1)
∫ 1

0

du ud/2−1 =
�

d/2
Vd−2(1). (1.42)

The relation in eqns (1.41) and (1.42) sets up a recursion for the vol-
ume of the d-dimensional unit sphere that starts with the elementary
values V1(1) = 2 (line) and V2(1) = � (disk), and immediately leads to
eqn (1.39).

It follows from eqn (1.39) that, for large d,{
volume of

unit hypersphere

}
�
{

volume of
hypercube of side 2

}
,

and this in turn implies (from eqn (1.38)) that the acceptance rate of
Alg. 1.20 (naive-sphere) is close to zero for d � 1 (see Table 1.8).
The naive algorithm thus cannot be used for sampling points inside the
d-dimensional sphere for large d.

Table 1.8 Volume Vd(1) and accep-
tance rate in d dimensions for Alg. 1.20
(naive-sphere)

d Vd(1) Acceptance rate

2 � �/4 = 0.785
4 4.9348 0.308

10 2.55016 0.002
20 0.026 2.46×10−8

60 3.1×10−18 2.7×10−36

Going back to eqn (1.37), we now consider d independent Gaussian
random numbers {x1, . . . , xd}. Raising the error integral in eqn (1.33)
to the dth power, we obtain

1 =
∫

. . .

∫
dx1 . . .dxd

(
1√
2�

)d

exp
[
−1

2
(x2

1 + · · · + x2
d)
]

, (1.43)

an integral which can be sampled by d independent Gaussians in the
same way that the integral in eqn (1.34) is sampled by two of them.

The integrand in eqn (1.43) depends only on r2 = (x2
1 + · · · + x2

d),
i.e. on the square of the radius of the d-dimensional sphere. It is there-
fore appropriate to write it in polar coordinates with the d − 1 angular
variables; the solid angle Ω is taken all over the unit sphere, the radial
variable is r, and the volume element is

dV = dx1 . . .dxd = rd−1 dr dΩ.

Equation (1.43), the integral sampled by d Gaussians, becomes

1 =
(

1√
2�

)d ∫ ∞

0

dr rd−1 exp
(−r2/2

)∫
dΩ. (1.44)

This is almost what we want, because our goal is to sample random
points in the unit sphere, that is, to sample, in polar coordinates, the
integral

Vd(1) =
∫ 1

0

dr rd−1

∫
dΩ (unit sphere). (1.45)

42 Monte Carlo methods

procedure direct-sphere

Σ ← 0
for k = 1, . . . , d do{

xk ← gauss(σ)
Σ ← Σ + x2

k

Υ ← ran (0, 1)1/d

for k = 1, . . . , d do{
xk ← Υxk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 1.21 direct-sphere. Uniform random vector inside the d-
dimensional unit sphere. The output is independent of σ.

The angular parts of the integrals in eqns (1.44) and (1.45) are iden-
tical, and this means that the d Gaussians sample angles isotropically
in d dimensions, and only get the radius wrong. This radius should be
sampled from a distribution π(r) ∝ rd−1. From eqn (1.29), we obtain
the direct distribution of r by taking the dth root of a random number
ran (0, 1). A simple rescaling thus yields the essentially rejection-free
Alg. 1.21 (direct-sphere), one of the crown jewels of the principality
of Monte Carlo.

procedure direct-surface

σ ← 1/
√

d
Σ ← 0
for k = 1, . . . , d do{

xk ← gauss(σ)
Σ ← Σ + x2

k

for k = 1, . . . , d do{
xk ← xk/

√
Σ

output {x1, . . . , xd}
——

Algorithm 1.22 direct-surface. Random vector on the surface of the
d-dimensional unit sphere. For large d, Σ approaches one (see Fig. 1.32).

The above program illustrates the profound relationship between sam-
pling and integration, and we can take the argument leading to Alg. 1.21
(direct-sphere) a little further to rederive the volume of the unit
sphere. In eqns (1.45) and (1.44), the multiple integrals over the an-
gular variables dΩ are the same, and we may divide them out:The integral in the denominator of

eqn (1.46), where r2/2 = u and r dr =
du, becomes

2d/2−1

Z ∞

0
du ud/2−1e−u

| {z }
Γ(d/2)

.

Vd(1) =
eqn (1.45)
eqn (1.44)

=

(√
2�
)d ∫ 1

0
dr rd−1∫∞

0
dr rd−1 exp (−r2/2)

=
�

d/2

(d/2)Γ(d/2)
. (1.46)

This agrees with the earlier expression in eqn (1.39). The derivation in
eqn (1.46) of the volume of the unit sphere in d dimensions is lightning-

1.2 Basic sampling 43

fast, a little abstract, and as elegant as Alg. 1.21 (direct-sphere) it-
self. After sampling the Gaussians {x1, . . . , xd}, we may also rescale the
vector to unit length. This amounts to sampling a random point on
the surface of the d-dimensional unit sphere, not inside its volume (see
Alg. 1.22 (direct-surface)).

Fig. 1.32 Random pebbles on the surface of a sphere (from Alg. 1.22
(direct sampling, left) and Alg. 1.24 (Markov-chain sampling, right)).

The sampling algorithm for pebbles on the surface of a d-dimensional
sphere can be translated into many computer languages similarly to the
way Alg. 1.22 (direct-surface) is written. However, vector notation
is more concise, not only in formulas but also in programs. This means
that we collect the d components of a vector into a single symbol (as
already used before)

x = {x1, . . . , xd}.
The Cartesian scalar product of two vectors is

(x ··· x′) = x1x
′
1 + · · · + xdx

′
d,

and the square root of the scalar product of a vector with itself gives the
vector’s norm,

|x| =
√

(x ··· x) =
√

x2
1 + · · · + x2

d.

procedure direct-surface(vector notation)

σ ← 1/
√

d
x ← {gauss (σ) , . . . , gauss (σ)}
x ← x/|x|
output x
——

Algorithm 1.23 direct-surface(vector notation). Same program as
Alg. 1.22, in vector notation, with a d-dimensional vector x.

The difference between Alg. 1.22 and Alg. 1.23 is purely notational.
The actual implementation in a computer language will depends on how
vectors can be addressed. In addition, it depends on the random number
generator whether a line such as x ← {gauss (σ) , . . . , gauss (σ)} can

44 Monte Carlo methods

be implemented as a vector instruction or must be broken up into a
sequential loop because of possible conflicts with the seed-and-update
mechanism of the random number generator.

For later use, we also present a Markov-chain algorithm on the surface
of a d-dimensional unit sphere, written directly in vector notation (see
Alg. 1.24 (markov-surface)). The algorithm constructs a random vector
ε from Gaussians, orthogonalizes it, and normalizes it with respect to
the input vector x, the current position of the Markov chain. The step
taken is in the direction of this reworked ε, a random unit vector in the
hyperplane orthogonal to x.

procedure markov-surface

input x (unit vector |x| = 1)
ε ← {gauss (σ) , . . . , gauss (σ)} (d independent Gaussians)
Σ ← (ε ··· x)
ε ← ε − Σx
ε ← ε/|ε|
Υ ← ran (−δ, δ) (δ: step size)
x ← x + Υε

x ← x/|x|
output x
——

Algorithm 1.24 markov-surface. Markov-chain Monte Carlo algorithm
for random vectors on the surface of a d-dimensional unit sphere.

1.3 Statistical data analysis

In the first sections of this book, we familiarized ourselves with sampling
as an ingenious method for evaluating integrals which are unsolvable by
other methods. However, we stayed on the sunny side of the subject,
avoiding the dark areas: statistical errors and the difficulties related to
their evaluation. In the present section, we concentrate on the descrip-
tion and estimation of errors, both for independent variables and for
Markov chains. We first discuss the fundamental mechanism which con-
nects the probability distribution of a single random variable to that of a
sum of independent variables, then discuss the moments of distributions,
especially the variance, and finally review the basic facts of probability
theory—Chebyshev’s inequality, the law of large numbers, and the cen-
tral limit theorem—that are relevant to statistical physics and Monte
Carlo calculations. We then study the problem of estimating mean val-
ues for independent random variables (direct sampling) and for those
coming from Markov-chain simulations.

1.3.1 Sum of random variables, convolution

In this subsection, we discuss random variables and sums of random
variables in more general terms than before. The simplest example of a

1.3 Statistical data analysis 45

random variable, which we shall call ξi, is the outcome of the ith trial in
the children’s game. This is called a Bernoulli variable. It takes the value
one with probability θ and the value zero with probability (1 − θ). ξi

can also stand for the ith call to a random number generator ran (0, 1)
or gauss (σ), etc., or more complicated quantities. We note that in our
algorithms, the index i of the random variable ξi is hidden in the seed-
and-update mechanism of the random number generator.

The number of hits in the children’s game is itself a random variable,
and we denote it by a symbol similar to the others, ξ:

ξ = ξ1 + · · · + ξN .

ξ1 takes values k1, ξ2 takes values k2, etc., and the probability of obtain-
ing {k1, . . . , kN} is, for independent variables,

π({k1, . . . , kN}) = π(k1) · · · · · π(kN).

The sum random variable ξ takes the values {0, . . . , N} with proba-
bilities {π0, . . . , πN}, which we shall now calculate. Clearly, only sets
{k1, . . . , kN} that produce k hits contribute to πk:

πk︸︷︷︸
N trials
k hits

=
∑

k1=0,1,...,kN=0,1
k1+···+kN =k

π(k1)π(k2)···π(kN)︷ ︸︸ ︷
π(k1, . . . , kN) .

The k hits and N −k nonhits among the values {k1, . . . , kN} occur with
probabilities θ and (1 − θ), respectively. In addition, we have to take
into account the number of ways of distributing k hits amongst N trials
by multiplying by the combinatorial factor

(
N
k

)
. The random variable ξ,

the number of hits, thus takes values k with a probability distributed
according to the binomial distribution

πk =
(

N

k

)
θk(1 − θ)N−k (0 ≤ k ≤ N). (1.47)

In this equation, the binomial coefficients are given by(
N

k

)
=

N !
k!(N − k)!

=
(N − k + 1)(N − k + 2) · · ·N

1 × 2 × · · · × k
. (1.48)

We note that Alg. 1.1 (direct-pi)—if we look only at the number of
hits—merely samples this binomial distribution for θ = �/4.

The explicit formula for the binomial distribution (eqn (1.47)) is in-
convenient for practical evaluation because of the large numbers entering
the coefficients in eqn (1.48). It is better to relate the probability dis-
tribution π′ for N + 1 trials to that for N trials: the N + 1th trial is
independent of what happened before, so that the probability π′

k for k
hits with N + 1 trials can be put together from the independent prob-
abilities πk−1 for k − 1 hits and πk for k hits with N trials, and the
Bernoulli distribution for a single trial:

π′
k︸︷︷︸

N + 1 trials
k hits

= πk︸︷︷︸
N trials
k hits

· (1 − θ)︸ ︷︷ ︸
no hit

+ πk−1︸ ︷︷ ︸
N trials

k − 1 hits

· θ︸︷︷︸
hit

, (1.49)

46 Monte Carlo methods

(see Alg. 1.25 (binomial-convolution)).

procedure binomial-convolution

input {π0, . . . , πN} (N trials)
π′

0 ← (1 − θ)π0 (θ: probability of hit)
for k = 1, . . . , N do{

π′
k ← θπk−1 + (1 − θ)πk

π′
N+1 ← θπN

output {π′
0, . . . , π

′
N+1} (N + 1 trials)

——

Algorithm 1.25 binomial-convolution. Probabilities of numbers of
hits for N + 1 trials obtained from those for N trials.

Table 1.9 Probabilities {π0, . . . , πN}
in Alg. 1.25 (binomial-convolution)
for small values of N , with θ = �/4

N π0 π1 π2 π3

1 0.215 0.785 . .
2 0.046 0.337 0.617 .
3 0.010 0.109 0.397 0.484

0

0.5

0 10 20 30 40 50

p
ro

b
a
b
il
it

y
 π

k

number of hits k

N = 1
10
20
30
40
50

Fig. 1.33 Probabilities for the number of hits in the children’s game with
N trials (from Alg. 1.25 (binomial-convolution), using θ = �/4).

In evaluating the binomial distribution using eqn (1.49), we implic-
itly piece together the binomial coefficients in eqn (1.47) through the
relations(

N

0

)
=
(

N

N

)
= 1,

(
N

k − 1

)
+
(

N

k

)
=
(

N + 1
k

)
(1 ≤ k ≤ N).

Replacing θ and (1 − θ) by 1 in Alg. 1.25 (binomial-convolution)
generates Pascal’s triangle of binomial coefficients.

Algorithm 1.25 (binomial-convolution) implements a convolution5

of the distribution function for N trials with the Bernoulli distribution
of one single trial, and gives the binomial distribution (see Fig. 1.33 and
Table 1.9).

Convolutions are a powerful tool, as we show now for the case where ξi

is uniformly distributed in the interval [0, 1]. As before, we are interested
in the distribution π(x) of the sum variable

ξ = ξ1 + · · · + ξN ,

5From the Latin convolvere: to roll together, fold together, or intertwine.

1.3 Statistical data analysis 47

which takes values x in the interval [0, N]. Again thinking recursively,
we can obtain the probability distribution π′(x) for the sum of N + 1
random numbers by convoluting π(y), the distribution for N variables,
with the uniform distribution π1(y − x) in the interval [0, 1] for a single
variable (π1(x) = 1 for 0 < x < 1). The arguments y and x−y have been
chosen so that their sum is equal to x. To complete the convolution, the
product of the probabilities must be integrated over all possible values
of y:

π′(x)︸ ︷︷ ︸
x: sum

of N + 1

=
∫ x

x−1

dy π(y)︸︷︷︸
y: sum
of N

π1(x − y)︸ ︷︷ ︸
x − y:

one term

. (1.50)

Here, the integration generalizes the sum over two terms used in the
binomial distribution. The integration limits implement the condition
that π1(x−y) is different from zero only for 0 < x−y < 1. For numerical
calculation, the convolution in eqn (1.50) is most easily discretized by
cutting the interval [0, 1] into l equal segments {x0 = 0, x1, . . . , xl−1, xl =
1} so that xk ≡ k/l. In addition, weights {π0, . . . , πl} are assigned as
shown in Alg. 1.26 (ran01-convolution). The program allows us to
compute the probability distribution for the sum of N random numbers,
as sampled by Alg. 1.17 (naive-gauss) (see Fig. 1.34). The distribution
of the sum of N uniform random numbers is also analytically known,
but its expression is very cumbersome for large N .

procedure ran01-convolution

{π1
0 , . . . , π

1
l } ← { 1

2l ,
1
l , . . . ,

1
l ,

1
2l}

input {π0, . . . , πNl} (probabilities for sum of N variables)
for k = 0, . . . , Nl + l do{

π′
k ←∑min(l,k)

m=max(0,k−Nl) πk−mπ1
m

output {π′
0, . . . , π

′
Nl+l} (probabilities for N + 1 variables)

——

Algorithm 1.26 ran01-convolution. Probabilities for the sum of N +1
random numbers obtained from the probabilities for N numbers.

Equations (1.49) and (1.50) are special cases of general convolutions
for the sum ξ + η of two independent random variables ξ and η, taking
values x and y with probabilities πξ(x) and πη(y), respectively. The sum
variable ξ + η takes values x with probability

πξ+η(x) =
∫ ∞

−∞
dy πξ(y)πη(x − y).

Again, the arguments of the two independent variables, y and x−y, have
been chosen such that their sum is equal to x. The value of y is arbitrary,
and must be integrated (summed) over. In Subsection 1.4.4, we shall
revisit convolutions, and generalize Alg. 1.26 (ran01-convolution) to
distributions which stretch out to infinity in such a way that π(x) cannot
be cut off at large arguments x.

48 Monte Carlo methods

0

0.5

1

0 10 20 30

p
ro

b
a
b
il
it

y
 π

(x
)

sum of random numbers x

N = 1
10
20
30
40
50

Fig. 1.34 Probability distribution for the sum of N random numbers
ran (0, 1) (from Alg. 1.26 (ran01-convolution), with l = 100).

1.3.2 Mean value and variance

In this subsection, we discuss the moments of probability distributions,
and the connection between the moments of a single variable and those
of a sum of variables. The variance—the second moment—stands out: it
is additive and sets a scale for an interval containing a large fraction of
the events (through the Chebyshev inequality). These two properties will
be discussed in detail. The variance also gives a necessary and sufficient
condition for the convergence of a sum of identically distributed random
variables to a Gaussian, as we shall discuss in Subsection 1.3.3.

The mean value (also called the expectation value) of a distribution
for a discrete variable ξ is given by

〈ξ〉 =
∑

k

kπk,

where the sum runs over all possible values of k. For a continuous vari-
able, the mean value is given, analogously, by

〈ξ〉 =
∫

dx xπ(x). (1.51)

The mean value of the Bernoulli distribution is θ, and the mean of the
random number ξ = ran (0, 1) is obviously 1/2.

The mean value of a sum of N random variables is equal to the sum
of the means of the variables. In fact, for two variables ξ1 and ξ2, and
for their joint probability distribution π(x1, x2), we may still define the
probabilities of x1 and x2 by integrating over the other variable:

π1(x1) =
∫

dx2 π(x1, x2), π2(x2) =
∫

dx1 π(x1, x2),

with 〈ξ1〉 =
∫

dx1 x1π1(x1), etc. This gives

〈ξ1 + ξ2〉 =
∫

dx1 dx2 (x1 + x2)π(x1, x2) = 〈ξ1〉 + 〈ξ2〉.

1.3 Statistical data analysis 49

The additivity of the mean value holds for variables that are not inde-
pendent (i.e. do not satisfy π(x1, x2) = π1(x1)π2(x2)). This was naively
assumed in the heliport game: we strove to make the stationary distri-
bution function π(x1, x2) uniform, so that the probability of falling into
the circle was equal to θ. It was natural to assume that the mean value
of the sum of N trials would be the same as N times the mean value of
a single trial. The fundamental relations

〈aξ + b〉 = a 〈ξ〉 + b, (1.52)

Var (aξ + b) = a2Var (ξ) , (1.53)

are direct consequences of the defini-
tions in eqns (1.51) and (1.54).

Among the higher moments of a probability distribution, the variance

Var (ξ) =
{

average squared distance
from the mean value

}
=
〈
(ξ − 〈ξ〉)2〉 (1.54)

is quintessential. It can be determined, as indicated in eqn (1.54), from
the squared deviations from the mean value. For the Bernoulli distribu-
tion, the mean value is θ, so that

Var (ξ) = θ2︸︷︷︸
(0−〈ξ〉)2

(1 − θ)︸ ︷︷ ︸
π(0)

+ (1 − θ)2︸ ︷︷ ︸
(1−〈ξ〉)2

θ︸︷︷︸
π(1)

= θ(1 − θ).

It is usually simpler to compute the variance from another formula,
obtained from eqn (1.54) by writing out the square:

Var (ξ) =
〈
(ξ − 〈ξ〉)2〉 =

〈
ξ2
〉− 2 〈ξ · 〈ξ〉〉︸ ︷︷ ︸

〈ξ〉〈ξ〉

+ 〈ξ〉2 =
〈
ξ2
〉− 〈ξ〉2.

This gives the following for the Bernoulli distribution:

Var (ξ) =
〈
ξ2
〉︸︷︷︸

02·(1−θ)+12·θ

− 〈ξ〉2︸︷︷︸
θ2

= θ(1 − θ).

The variance of the uniform random number ξ = ran (0, 1) is

Var (ξ) =
∫ 1

0

dx π(x)︸︷︷︸
=1

x2 −
[∫ 1

0

dx π(x)︸︷︷︸
=1

x

]2
=

1
12

, (1.55)

which explains the factor 1/12 in Alg. 1.17 (naive-gauss). The variance
of a Gaussian random number gauss(σ) is∫ ∞

−∞

dx√
2�σ

x2 exp
(
− x2

2σ2

)
= σ2.

The variance (the mean square deviation) has the dimensions of a
squared length, and it is useful to consider its square root, the root
mean square deviation (also called the standard deviation):{

root mean square
(standard) deviation

}
:
√
〈(ξ − 〈ξ〉)2〉 =

√
Var (ξ) = σ.

This should be compared with the mean absolute deviation 〈|ξ − 〈ξ〉|〉,
which measures how far on average a random variable is away from

50 Monte Carlo methods

its mean value. For the Gaussian distribution, for example, the mean
absolute deviation is{

mean absolute
deviation

}
:
∫ ∞

−∞

dx√
2�σ

|x| exp
(
− x2

2σ2

)
=

√
2
�︸︷︷︸

0.798

σ, (1.56)

which is clearly different from the standard deviation.
The numerical difference between the root mean square deviation and

the mean absolute deviation is good to keep in mind, but represents little
more than a subsidiary detail, which depends on the distribution. The
great importance of the variance and the reason why absolute deviations
play no role reside in the way they can be generalized from a single
variable to a sum of variables. To see this, we must first consider the
correlation function of two independent variables ξi and ξj , taking values
xi and xj (where i
= j):∫

dxi

∫
dxj π(xi)π(xj)xixj =

[∫
dxi π(xi)xi

] [∫
dxj π(xj)xj

]
,

which is better written—and remembered—as

〈ξiξj〉 =

{
〈ξi〉 〈ξj〉 for i
= j〈
ξ2
i

〉
for i = j

{
independent

variables

}
.

This factorization of correlation functions implies that the variance of a
sum of independent random variables is additive. In view of eqn (1.53),
it suffices to show this for random variables of zero mean, where we find

Var (ξ1 + · · · + ξN) =
〈
(ξ1 + · · · + ξN)2

〉
=
〈(∑

i

ξi

)(∑
j

ξj

)〉
=

N∑
i

〈
ξ2
i

〉
+
∑
i	=j

〈ξi〉 〈ξj〉︸ ︷︷ ︸
=0

= Var (ξ1) + · · · + Var (ξN). (1.57)

The additivity of variances for the sum of independent random variables
is of great importance. No analogous relation exists for the mean absolute
deviation.

Independent random variables ξi with the same finite variance satisfy,
from eqns (1.52) and (1.53):

Var (ξ1 + · · · + ξN) = NVar (ξi) ,

Var
(

ξ1 + · · · + ξN

N

)
=

1
N

Var (ξi) .

For concreteness, we shall now apply these two formulas to the children’s
game, with Nhits = ξ1 + · · · + ξN :

Var (Nhits) =
〈(

Nhits − �

4
N
)2
〉

= NVar (ξi) = N

0.169︷ ︸︸ ︷
θ(1 − θ),

1.3 Statistical data analysis 51

Var
(

Nhits

N

)
=

〈(
Nhits

N
− �

4

)2
〉

=
1
N

Var (ξi) =

0.169︷ ︸︸ ︷
θ(1 − θ)

N
. (1.58)

In the initial simulation in this book, the number of hits was usually of
the order of 20 counts away from 3141 (for N = 4000 trials), because the
variance is Var (Nhits) = N ·0.169 = 674.2, so that the mean square devi-
ation comes out as

√
674 = 26. This quantity corresponds to the square

root of the average of the last column in Table 1.10 (which analyzes the
first table in this chapter). The mean absolute distance 〈|∆Nhits|〉, equal
to 20, is smaller than the root mean square difference by a factor

√
2/�,

as in eqn (1.56), because the binomial distribution is virtually Gaussian
when N is large and θ is of order unity.

Table 1.10 Reanalysis of Table 1.1 us-
ing eqn (1.58) (N = 4000, θ = �/4)

Nhits |∆Nhits| (∆Nhits)2

1 3156 14.4 207.6
2 3150 8.4 70.7
3 3127 14.6 212.9
4 3171 29.4 864.8
5 3148 6.4 41.1

.

〈〉 3141. 20.7 674.2

The variance not only governs average properties, such as the mean
square deviation of a random variable, but also allows us to perform
interval estimates. Jacob Bernoulli’s weak law of large numbers is of
this type (for sums of Bernoulli-distributed variables, as in the children’s
game). It states that for any interval [�/4−ε, �/4+ε], the probability for
Nhits/N to fall within this interval goes to one as N → ∞. This law is
best discussed in the general context of the Chebyshev inequality, which
we need to understand only for distributions with zero mean:

Var (ξ) =
∫ ∞

−∞
dx x2π(x) ≥

∫
|x|>ε

dx x2π(x) ≥ ε2
∫
|x|>ε

dx π(x)︸ ︷︷ ︸
prob. that
|x−〈x〉|>ε

.

This gives{
Chebyshev
inequality

}
:
{

probability that
|x − 〈x〉 | > ε

}
<

Var (ξ)
ε2

. (1.59)

In the children’s game, the variance of the number of hits, Var (Nhits/N),
is smaller than 1/(4N) because, for θ ∈ [0, 1], θ(1−θ) ≤ 1/4. This allows
us to write{

weak law of
large numbers

}
:
{

probability that
|Nhits/N − �/4| < ε

}
> 1 − 1

4ε2N
.

In this equation, we can keep the interval parameter ε fixed. The prob-
ability inside the interval approaches 1 as N → ∞. We can also bound
the interval containing, say, 99% of the probability, as a function of N .
We thus enter 0.99 into the above inequality, and find{

size of interval containing
99% of probability

}
: ε <

5√
N

.

Chebyshev’s inequality (1.59) shows that a (finite) variance plays the
role of a scale delimiting an interval of probable values of x: whatever
the distribution, it is improbable that a sample will be more than a few
standard deviations away from the mean value. This basic regularity

52 Monte Carlo methods

property of distributions with a finite variance must be kept in mind in
practical calculations. In particular, we must keep this property separate
from the central limit theorem, which involves an N → ∞ limit. Applied
to the sum of independent variables, Chebyshev’s inequality turns into
the weak law of large numbers and is the simplest way to understand
why N -sample averages must converge (in probability) towards the mean
value, i.e. why the width of the interval containing any fixed amount of
probability goes to zero as ∝ 1/

√
N .

1.3.3 The central limit theorem

We have discussed the crucial role played by the mean value of a dis-
tribution and by its variance. If the variance is finite, we can shift any
random variable by the mean value, and then rescale it by the standard
deviation, the square root of the variance, such that it has zero mean
and unity variance. We suppose a random variable ξ taking values y
with probability π(y). The rescaling is done so that ξresc takes values
x = (y − 〈ξ〉)/σ with probability

πresc(x) = σπ(σx + 〈ξ〉︸ ︷︷ ︸
y

) (1.60)

and has zero mean and unit variance. As an example, we have plotted
in Fig. 1.35 the probability distribution of a random variable ξ corre-
sponding to the sum of 50 random numbers ran (0, 1). This distribution
is characterized by a standard deviation σ =

√
50 ×√1/12 = 2.04, and

mean 〈ξ〉 = 25. As an example, y = 25, with π(y) = 0.193, is rescaled to
x = 0, with πresc(0) = 2.04× 0.193 = 0.39 (see Fig. 1.35 for the rescaled
distributions for the children’s game and for the sum of N random num-
bers ran (0, 1)).

The central limit theorem6 states that this rescaled random variable is
Gaussian in the limit N → ∞ if ξ itself is a sum of independent random
variables ξ = ξ1 + · · · + ξN of finite variance.

In this subsection, we prove this fundamental theorem of probabil-
ity theory under the simplifying assumption that all moments of the
distribution are finite:

〈ξi〉
〈
ξ2
i

〉 〈
ξ3
i

〉
. . .

〈
ξk
i

〉
� � � . . . �

0 1 all moments finite
. (1.61)

(Odd moments may differ from zero for asymmetric distributions.) For
independent random variables with identical distributions, the finite
variance by itself constitutes a necessary and sufficient condition for con-
vergence towards a Gaussian (see Gnedenko and Kolmogorov (1954)).
The finiteness of the moments higher than the second renders the proof

6To be pronounced as central limit theorem rather than central limit theorem. The
expression was coined by mathematician G. Polya in 1920 in a paper written in
German, where it is clear that the theorem is central, not the limit.

1.3 Statistical data analysis 53

0

0.4

10−1

π
k
,
π
(x

)
(r

es
c.

)

k, x (rescaled)

N = 5

0

0.4

10−1
π

k
,
π
(x

)
(r

es
c.

)
k, x (rescaled)

N = 50

Fig. 1.35 Distribution functions corresponding to Figs 1.33 and 1.34,
rescaled as in eqn (1.60).

trivial: in this case, two distributions are identical if all their moments
agree. We thus need only compare the moments of the sum random
variable, rescaled as

ξ =
1√
N

(ξ1 + · · · + ξN), (1.62)

with the moments of the Gaussian to verify that they are the same. Let
us start with the third moment:〈(

ξ1 + · · · + ξN√
N

)3
〉

=
1

N3/2

N∑
ijk=1

〈ξiξjξk〉

=
1

N3/2
(〈ξ1ξ1ξ1〉︸ ︷︷ ︸

〈ξ3
1〉

+ 〈ξ1ξ1ξ2〉︸ ︷︷ ︸
〈ξ2

1〉〈ξ2〉=0

+ · · · + 〈ξ2ξ2ξ2〉︸ ︷︷ ︸
〈ξ3

2〉
+ · · ·).

In this sum, only N terms are nonzero, and they remain finite because
of our simplifying assumption in eqn (1.61). We must divide by N3/2;
therefore

〈
ξ3
〉 → 0 for N → ∞. In the same manner, we scrutinize the

fourth moment:〈(
ξ1 + · · · + ξN√

N

)4
〉

=
1

N2

N∑
ijkl=1

〈ξiξjξkξl〉

=
1

N2
[〈ξ1ξ1ξ1ξ1〉︸ ︷︷ ︸

〈ξ4
1〉

+ 〈ξ1ξ1ξ1ξ2〉︸ ︷︷ ︸
〈ξ3

1〉〈ξ2〉=0

+ · · · + 〈ξ1ξ1ξ2ξ2〉︸ ︷︷ ︸
〈ξ2

1〉〈ξ2
2〉

+ · · ·]. (1.63)

Table 1.11 The 40 choices of indices
{i, j, k, l} for N = 4 (see eqn (1.63)) for
which 〈ξiξjξkξl〉 is different from zero

i j k l

1 1 1 1 1
2 1 1 2 2
3 1 1 3 3
4 1 1 4 4
5 1 2 1 2
6 1 2 2 1
7 1 3 1 3
8 1 3 3 1
9 1 4 1 4

10 1 4 4 1
11 2 1 1 2
12 2 1 2 1
13 2 2 1 1
14 2 2 2 2
15 2 2 3 3
16 2 2 4 4
17 2 3 2 3
18 2 3 3 2
19 2 4 2 4
20 2 4 4 2
21 3 1 1 3
22 3 1 3 1
23 3 2 2 3
24 3 2 3 2
25 3 3 1 1
26 3 3 2 2
27 3 3 3 3
28 3 3 4 4
29 3 4 3 4
30 3 4 4 3
31 4 1 1 4
32 4 1 4 1
33 4 2 2 4
34 4 2 4 2
35 4 3 3 4
36 4 3 4 3
37 4 4 1 1
38 4 4 2 2
39 4 4 3 3
40 4 4 4 4

Only terms not containing a solitary index i can be different from zero,
because 〈ξi〉 = 0: for N = 4, there are 40 such terms (see Table 1.11).
Of these, 36 are of type “iijj” (and permutations) and four are of type
“iiii”. For general N , the total correlation function is〈

ξ4
〉

=
1

N2

[
3N(N − 1)

〈
ξ2
i

〉2
+ N

〈
ξ4
i

〉]
.

54 Monte Carlo methods

In the limit of large N , where N � N − 1, we have
〈
ξ4
〉

= 3.
In the same way, we can compute higher moments of ξ. Odd moments

approach zero in the large-N limit. For example, the fifth moment is put
together from const·N2 terms of type “iijjj”, in addition to the N terms
of type “iiiii”. Dividing by N5/2 indeed gives zero. The even moments
are finite, and the dominant contributions for large N come, for the sixth
moment, from terms of type “iijjkk” and their permutations. The total
number of these terms, for large N is � N3 · 6!/3!/23 = N3 × 1 × 3 × 5.
For arbitrary k, the number of ways is{

moments
in eqn (1.62)

}{〈
ξ2k
〉→ 1 × 3 ×· · ·× (2k − 1)〈

x2k−1
〉→ 0

for N → ∞. (1.64)

We now check that the Gaussian distribution also has the moments
given by eqn (1.64). This follows trivially for the odd moments, as the
Gaussian is a symmetric function. The even moments can be computed
from∫ ∞

−∞

dx√
2�

exp
(
−x2

2
+ xh

)
= exp

(
h2

2

)
︸ ︷︷ ︸

because
R

dx√
2�

exp
ˆ−(x − h)2/2

˜
= 1

= 1 +
h2

2
+

(h2/2)2

2!
+ · · · .

We may differentiate this equation 2k times (under the integral on the
left, as it is absolutely convergent) and then set h = 0. On the left, this
gives the (2k)th moment of the Gaussian distribution. On the right, we
obtain an explicit expression:

〈
x2k
〉

=
∂2k

∂h2k

∫ ∞

−∞

dx√
2�

exp
(
−x2

2
+ xh

)∣∣∣∣
h=0

=
∂2k

∂h2k

[
1 +

h2

2
+

(h2/2)2

2!
+

(h2/2)3

3!
+ · · ·

]
h=0

=
∂2k

∂h2k

(
h2k

k!2k

)
=

(2k)!
k!2k

= 1 × 3 × · · · × (2k − 1).

This is the same as eqn (1.64), and the distribution function of the
sum of N random variables, in the limit N → ∞, has no choice but
to converge to a Gaussian, so that we have proven the central limit
theorem (for the simplified case that all the moments of the distribution
are finite). The Gaussian has 68% of its weight concentrated within
the interval [−σ, σ] and 95% of its weight within the interval [−2σ, 2σ]
(see Fig. 1.36). These numbers are of prime importance for statistical
calculations in general, and for Monte Carlo error analysis in particular.
The probability of being more than a few standard deviations away
from the mean value drops precipitously (see Table 1.12, where the error
function is erf(x) = (2/

√
�)
∫ t

0 dt exp
(−t2

)
).

In practical calculations, we are sometimes confronted with a few ex-
ceptional sample averages that are many (estimated) standard devia-
tions away from our (estimated) mean value. We may, for example,

1.3 Statistical data analysis 55

Table 1.12 Probability of being outside a certain interval for any
distribution (from the Chebyshev inequality) and for a Gaussian
distribution.

Excluded Probability of being �∈ interval
interval Chebyshev Gaussian

[−σ, σ] Less than 100% 32%
[−2σ, 2σ] Less than 25% 5%
[−3σ, 3σ] Less than 11% 0.3%
[−4σ, 4σ] Less than 6% 0.006%
[−kσ, kσ] Less than 1

k2 1 − erf(k/
√

2)

compute an observable (say a magnetization) as a function of an ex-
ternal parameter (say the temperature). A number of values lie nicely
on our favorite theoretical curve, but the exceptional ones are 10 or 15
standard deviations off. With the central limit theorem, such an out-
come is extremely unlikely. In this situation, it is a natural tendency
to think that the number of samples might be too small for the cen-
tral limit theorem to apply. This reasoning is usually erroneous because,
first of all, this limit is reached extremely quickly if only the distribution
function of the random variables ξi is well behaved. Secondly, the Cheby-
shev inequality applies to arbitrary distributions with finite variance. It
also limits deviations from the mean value, even though less strictly (see
Table 1.12). In the above case of data points which are very far off a
theoretical curve, it is likely that the estimated main characteristics of
the distribution function are not at all what we estimate them to be, or
(in a Markov-chain Monte Carlo calculation) that the number of inde-
pendent data sets has been severely overestimated. Another possibility
is that our favorite theoretical curve is simply wrong.

0.5/σ

0

−3σ −2σ −σ 3σ2σσ0

p
ro

b
a
b
il
it

y
 π

(x
)

position x

Fig. 1.36 The Gaussian distribution.
The probability of being outside the
interval [−σ, σ] is 0.32, etc. (see Ta-
ble 1.12)

1.3.4 Data analysis for independent variables

Experiments serve no purpose without data analysis, and Monte Carlo
calculations are useful only if we can come up with an estimate of the
observables, such as an approximate value for the mathematical con-
stant �, or an estimate of the quark masses, a value for a condensate
fraction, an approximate equation of state, etc. Our very first simula-
tion in this book generated 3156 hits for 4000 trials (see Table 1.1). We
shall now see what this result tells us about �, at the most fundamental
level of understanding. Hits and nonhits were generated by the Bernoulli
distribution:

ξi =

{
1 with probability θ

0 with probability (1 − θ)
, (1.65)

but the value of �/4 = θ = 〈ξi〉 is supposed unknown. Instead of the
original variables ξi, we consider random variables ηi shifted by this

56 Monte Carlo methods

unknown mean value:
ηi = ξi − θ.

The shifted random variables ηi now have zero mean and the same vari-
ance as the original variables ξi (see eqns (1.52) and (1.53)):

〈ηi〉 = 0, Var (ηi) = Var (ξi) = θ(1 − θ) ≤ 1
4
.

Without invoking the limit N → ∞, we can use the Chebyshev inequal-
ity eqn (1.59) to obtain an interval around zero containing at least 68%
of the probability:In our example, the realizations of the

ηi satisfy

1
N

NX
i=1

ηi =
3156
4000| {z }
0.789

−π

4
. (1.66)

{
with 68%

probability

}
:

∣∣∣∣∣ 1
N

N∑
i=1

ηi

∣∣∣∣∣︸ ︷︷ ︸
see eqn (1.66)

<
1.77σ√

N
<

1.77
2
√

4000
= 0.014.

This has implications for the difference between our experimental result,
0.789, and the mathematical constant �. The difference between the two,
with more than 68% chance, is smaller than 0.014:

�

4
= 0.789 ± 0.014 ⇔ � = 3.156 ± 0.056, (1.67)

where the value 0.056 is an upper bound for the 68% confidence interval
that in physics is called an error bar. The quite abstract reasoning lead-
ing from eqn (1.65) to eqn (1.67)—in other words from the experimental
result 3156 to the estimate of � with an error bar—is extremely powerful,
and not always well understood. To derive the error bar, we did not use
the central limit theorem, but the more general Chebyshev inequality.
We also used an upper bound for the variance. With these precautions
we arrived at the following result. We know with certainty that among
an infinite number of beach parties, at which participants would play the
same game of 4000 as we described in Subsection 1.1.1 and which would
yield Monte Carlo results analogous to ours, more than 68% would hold
the mathematical value of � inside their error bars. In arriving at this
result, we did not treat the number � as a random variable—that would
be nonsense, because � is a mathematical constant.

We must now relax our standards. Instead of reasoning in a way that
holds for all N , we suppose the validity of the central limit theorem. The
above 68% confidence limit for the error bar now leads to the following
estimate of the mean value:

〈ξ〉 =
1
N

N∑
i=1

ξi ± σ√
N

(see Table 1.12; the 68% confidence interval corresponds to one standard
deviation of the Gaussian distribution).

In addition, we must also give up the bound for the variance in favor
of an estimate of the variance, through the expression

Var (ξi) = Var (ηi) � 1
N − 1

⎡⎣ N∑
j=1

(ξj − 1
N

N∑
i=1

ξi)
2

⎤⎦ . (1.68)

1.3 Statistical data analysis 57

The mean value on the right side of eqn (1.68) is equal to the variance
for all N (and one therefore speaks of an unbiased estimator). With the
replacement ξj → ηj , we obtain

〈
1

N − 1

⎡⎣ N∑
j=1

(
ηj − 1

N

N∑
i=1

ηi

)2
⎤⎦〉

=
1

N − 1

⎡⎢⎣ N∑
jk

〈ηjηk〉︸ ︷︷ ︸
Var(ηj)δjk

− 2
N

N∑
ij=1

〈ηiηj〉 +
1

N2

∑
ijk

〈ηiηk〉

⎤⎥⎦ = Var (ηi)

(a more detailed analysis is possible under the conditions of the central
limit theorem). In practice, we always replace the denominator 1

N−1 → We note that

NX
j=1

ξj − 1

N

NX
i=1

ξi

!2

=

NX
j=1

ξ2
j −

2
N

(
NX

j=1

ξj)(
NX

i=1

ξi)+
1
N

(
NX

i=1

ξi)2

=
X

j

ξ2
j − N

0
@ 1

N

X
j

ξj

1
A2

. (1.69)

1
N in eqn (1.68) (the slight difference plays no role at all). We arrive, with
eqn (1.69), at the standard formulas for the data analysis of independent
random variables:

〈ξ〉 =
1
N

N∑
i=1

ξi ± error,

where

error =
1√
N

√
1
N

∑
i

ξ2
i −
(

1
N

∑
i

ξi

)2

.

The error has a prefactor 1/
√

N and not 1/N , because it goes as the
standard deviation, itself the square root of the variance. It should be
noted that the replacement of the variance by an estimate is far from
innocent. This replacement can lead to very serious problems, as we
shall discuss in an example, namely the γ-integral of Section 1.4. In
Markov-chain Monte Carlo applications, another problem arises because
the number of samples, N , must be replaced by an effective number of
independent samples, which must itself be estimated with care. This will
be taken up in Subsection 1.3.5.

We now briefly discuss the Bayesian approach to statistics, not because
we need it for computing error bars, but because of its close connections
with statistical physics (see Section 2.2). We stay in the imagery of the
children’s game. Bayesian statistics attempts to determine the probabil-
ity that our experimental result (3156 hits) was the result of a certain
value �test. If �test was very large (�test � 4, so that θ � 1), and also
if �test � 0, the experimental result, 3156 hits for 4000 trials, would be
very unlikely. Let us make this argument more quantitative and suppose
that the test values of � are drawn from an a priori probability distribu-
tion (not to be confused with the a priori probability of the generalized
Metropolis algorithm). The test values give hits and nonhits with the ap-
propriate Bernoulli distribution and values of Nhits with their binomial
distribution (with parameters θ = �test/4 and N = 4000), but there is a
great difference between those test values that give 3156 hits, and those
that do not. To illustrate this point, let us sample the values of �test

that yield 3156 hits with a program, Alg. 1.27 (naive-bayes-pi). Like

58 Monte Carlo methods

all other naive algorithms in this book, it is conceptually correct, but un-
concerned with computational efficiency. This program picks a random
value of �test (from the a priori probability distribution), then samples
this test value’s binomial distribution. The “good” test values are kept
in a table (see Table 1.13). They have a probability distribution (the a
posteriori probability distribution), and it is reasonable to say that this
distribution contains information on the mathematical constant �.

Table 1.13 Values of �test that lead to
3156 hits for 4000 trials (from Alg. 1.27
(naive-bayes-pi))

Run �test

1 3.16816878
2 3.17387056
3 3.16035151
4 3.13338971
5 3.16499329
...

...

procedure naive-bayes-pi

1 �test ← ran (0, 4) (sampled with the a priori probability)
Nhits ← 0
for i = 1, . . . , 4000 do{

if (ran (0, 1) < �test/4) then{
Nhits ← Nhits + 1

if (Nhits
= 3156) goto 1 (reject �test)
output �test (output with the a posteriori probability)
——

Algorithm 1.27 naive-bayes-pi. Generating a test value �test, which
leads to Nhits = 3156 for N = 4000 trials.

In the Bayesian approach, the choice of the a priori probability in
Alg. 1.27 (naive-bayes-pi) influences the outcome in Table 1.13. We
could use nonuniform a priori probability distributions, as for example
�
2
test ← ran (0, 16), or

√
�test ← ran (0, 2). Since we know Archimedes’

result, it would be an even better idea to use �test ← ran
(
3 10

71 , 3 1
7

)
(which does not contain the point 3.156. . .). Some choices are better
than others. However, there is no best choice for the a priori probability,
and the final outcome, the a posteriori probability distribution, will (for
all finite N) carry the mark of this input distribution.

Let us rephrase the above discussion in terms of probability distribu-
tions, rather than in terms of samples, for random πtest between 0 and
4: {

probability of having
�test with 3156 hits

}
︸ ︷︷ ︸
a posteriori probability for �

=
∫ 4

0

d�test︸ ︷︷ ︸
a priori

probability

{
probability that �test

yields 3156 hits

}
︸ ︷︷ ︸

binomial probability of obtaining
3156 hits, given �test

.

This integral is easily written down and evaluated analytically. For the
binomial distribution, it leads to essentially equivalent expressions as the
error analysis from the beginning of this subsection.

Other choices for the a priori probability are given by∫ 4

0

d�test ,

∫ 16

0

d(�2
test) ,

∫ 2

0

d
√
�test , . . .

∫ 3 1
7

3 10
71

d�test︸ ︷︷ ︸
Archimedes,
see eqn (1.1)

, etc. (1.70)

Some a priori probabilities are clearly preferable to others, and they all
give different values a posteriori probability distributions, even though

1.3 Statistical data analysis 59

the differences are rarely as striking as the ones shown in Fig. 1.37. In
the limit N → ∞, all choices become equivalent.

3.23.1563.1

p
ro

b
a
b
il
it

y
 f
o
r

π
te

st

πtest

3.156 πmaxπmin

p
ro

b
a
b
il
it

y
 f
o
r

π
te

st

πtest

Fig. 1.37 A posteriori probability for a priori choices �test ← ran (0, 4)
(left) and �test ← ran

`
3 10

71
, 3 1

7

´
(right).

Bayesian statistics is a field of great importance for complicated clas-
sification and recognition problems, which are all beyond the scope
of this book. We saw how easy it is to incorporate Archimedes’ bias
3 10

71 < � < 3 1
7 . Within Bayesian statistics, it is nevertheless impossible

to decide which choice would least influence data analysis (be an unbi-
ased choice), for example among the first three a priori probabilities in
eqn (1.70). We stress that no such ambiguity affected the derivation of
the error bar of eqn (1.67) (using the shifted variables ηi). The concept
of an unbiased choice will come up again in the discussion of entropy
and equiprobability in statistical mechanics (see Section 2.2).

We have seen in the first part of the present subsection that error
analysis stands on an extremely solid basis. The children’s Monte Carlo
calculation of � could have been done a long time before Archimedes
obtained a good analytical bound for it. In the same way, we may obtain,
using Monte Carlo methods, numerical results for a model in statistical
mechanics or other sciences, years before the model is analytically solved.
Our numerical results should agree closely, and we should claim credit
for our solution. If, on the other hand, our numerical results turn out to
be wrong, we were most probably sloppy in generating, or in analyzing,
our results. Under no circumstances can we excuse ourselves by saying
that it was “just a simulation”.

1.3.5 Error estimates for Markov chains

We have so far discussed the statistical errors of independent data, as
produced by Alg. 1.1 (direct-pi) and other direct-sampling algorithms.
We must now develop an equally firm grip on the analysis of correlated
data. Let us look again at Alg. 1.2 (markov-pi). This archetypal Markov-
chain program has left 20 000 pebbles lying on the heliport (from five

60 Monte Carlo methods

runs with 4000 pebbles each), which we cannot treat as independent.
The pebbles on the ground are distributed with a probability π(x, y),
but they tend to be grouped, and even lie in piles on top of each other.
What we can learn about π(x, y) by sampling is less detailed than what
is contained in the same number of independent pebbles. As a simple
consequence, the spread of the distribution of run averages is wider than
before.

It is more sensible to treat not the 5 × 4000 pebbles but the five run
averages for 4Nhits/N (that is, the values {3.123, . . . , 3.263}) as indepen-
dent, approximately Gaussian variables (see Table 1.14). We may then
compute an error estimate from the means and mean square deviations
of these five numbers. The result of this naive reanalysis of the heliport
data is shown in Table 1.14.

Table 1.14 Naive reanalysis of the
Markov-chain data from Table 1.2,
treating Nhits for each run as indepen-
dent

Run Nhits Estimate of �

1 3123
2 3118 3.122
3 3040 ±
4 3066 0.04
5 3263

Fig. 1.38 Markov chains on the heliport. Left : all chains start at the
clubhouse. Right : one chain starts where the previous one stops.

Analyzing a few very long runs is a surefooted, fundamentally sound
strategy for obtaining a first error estimate, especially when the influ-
ence of initial conditions is negligible. In cases such as in the left frame of
Fig. 1.38, however, the choice of starting point clearly biases the estima-
tion of �, and we want each individual run to be as long as possible. On
the other hand, we also need a large number of runs in order to minimize
the uncertainty in the error estimate itself. This objective favors short
runs. With naive data analysis, it is not evident how to find the best
compromise between the length of each run and the number of runs, for
a given budget of computer time.

1111110000000111111100011111110001111111000111111100011111110000

1 1 1 0 0 0 .5 1 1 1 0 .5 1 1 1 0 .5 1 1 1 0 .5 1 1 1 0 .5 1 1 1 0 0

1 0.5 0 0.75 1 0.25 1 0.5 0.75 1 0.25 1 0.5 0.75 1 0

0.75 0.375 0.625 0.75 0.875 0.625 0.625 0.5

0.5625 0.6875 0.75 0.5625

Fig. 1.39 Four iterations of Alg. 1.28 (data-bunch) applied to the cor-
related output of Alg. 1.2 (markov-pi).

1.3 Statistical data analysis 61

In the case of the heliport, and also in general, there is an easy way
out of this dilemma: rather than have all Markov chains start at the
clubhouse, we should let one chain start where the last one left off (see
the right frame of Fig. 1.38). This gives a single, much longer Markov
chain. In this case, the cutting-up into five bunches is arbitrary. We
could equally well produce bunches of size {2, 4, 8, . . .}, especially if the
number of data points is a power of two. The bunching into sets of
increasing length can be done iteratively, by repeatedly replacing two
adjacent samples by their average value (see Fig. 1.39 and Alg. 1.28
(data-bunch)). At each iteration, we compute the apparent error, as if
the data were independent. The average value remains unchanged.

Bunching makes the data become increasingly independent, and makes
the apparent error approach the true error of the Markov chain. We want
to understand why the bunched data are less correlated, even though this
can already be seen from Fig. 1.38. In the kth iteration, bunches of size
2k are generated: let us suppose that the samples are correlated on a
length scale ξ � 2k, but that original samples distant by more than 2k

are fully independent. It follows that, at level k, these correlations still
affect neighboring bunches, but not next-nearest ones (see Fig. 1.39):
the correlation length of the data decreases from length 2k to a length
� 2. In practice, we may do the error analysis on all bunches, rather
than on every other one.

procedure data-bunch

input {x1, . . . , x2N} (Markov-chain data)
Σ ← 0
Σ′ ← 0
for i = 1, . . . , N do⎧⎨⎩

Σ ← Σ + x2i−1 + x2i

Σ′ ← Σ′ + x2
2i−1 + x2

2i

x′
i ← (x2i−1 + x2i)/2

error ←√Σ′/(2N) − (Σ/(2N))2/
√

2N
output Σ/(2N), error, {x′

1, . . . , x
′
N}

——

Algorithm 1.28 data-bunch. Computing the apparent error (treating
data as independent) for 2N data points and bunching them into pairs.

It is interesting to apply Alg. 1.28 (data-bunch) repeatedly to the
data generated by a long simulation of the heliport (see Fig. 1.40). In
this figure, we can identify three regimes. For bunching intervals smaller
than the correlation time (here � 64), the error is underestimated. For
larger bunching intervals, a characteristic plateau indicates the true error
of our simulation. This is because bunching of uncorrelated data does
not change the expected variance of the data. Finally, for a very small
number of intervals, the data remain uncorrelated, but the error estimate
itself becomes noisy.

Algorithm 1.28 (data-bunch), part of the folklore of Monte Carlo
computation, provides an unbeaten analysis of Markov-chain data, and

62 Monte Carlo methods

0.01

0.02

0.03

0.04

0.05

1 4 16 64 256 1024 4096

ap
p
ar

en
t

er
ro

r
bunching interval

Fig. 1.40 Repeated bunching of Markov-chain data (from Alg. 1.2
(markov-pi) (N = 214, δ = 0.3), analysis by Alg. 1.28 (data-bunch)).

is the only technique needed in this book. Data bunching is not fail-safe,
as we shall discuss in Section 1.4, but it is the best we can do. What is
missing to convince us of the pertinence of our numerical results must
be made up for by critical judgment, rigorous programming, comparison
with other methods, consideration of test cases, etc.

1.4 Computing

Since the beginning of this chapter, we have illustrated the theory of
Monte Carlo calculation in simple, unproblematic settings. It is time to
become more adventurous, and to advance into areas where things can
go wrong. This will acquaint us with the limitations and pitfalls of the
Monte Carlo method. Two distinct issues will be addressed. One is the
violation of ergodicity—the possibility that a Markov chain never visits
all possible configurations. The second limiting issue of the Monte Carlo
method shows up when fluctuations become so important that averages
of many random variables can no longer be understood as a dominant
mean value with a small admixture of noise.

1.4.1 Ergodicity

The most characteristic limitation of the Monte Carlo method is the
slow convergence of Markov chains, already partly discussed in Subsec-
tion 1.1.2: millions of chain links in a simulation most often correspond
to only a handful of independent configurations. Such a simulation may
resemble our random walk on the surface of a sphere (see Fig. 1.32):
many samples were generated, but we have not even gone around the
sphere once.

It routinely happens that a computer program has trouble decorrelat-
ing from the initial configuration and settling into the stationary proba-
bility distribution. In the worst case, independent samples are not even

1.4 Computing 63

created in the limit of infinite computer time. One then speaks of a
nonergodic algorithm. However, we should stress that a practically non-
ergodic algorithm that runs for a month without decorrelating from the
clubhouse is just as useless and just as common.7

1 2 3

4 5 6

7 8 0

1 2 3

4 5 0

7 8 6

1 2 3

4 5 0

7 8 6

1 2 3

4 0 5

7 8 6

1 0 3

4 2 5

7 8 6

0 1 3

4 2 5

7 8 6

0 1 3

4 2 5

7 8 6

4 1 3

0 2 5

7 8 6

4 1 3

2 0 5

7 8 6

4 1 3

2 8 5

7 0 6

4 1 3

2 8 5

7 0 6

4 1 3

2 8 5

7 6 0

Fig. 1.41 Local Monte Carlo moves applied to the sliding puzzle, a
variant of the pebble game.

In later chapters, we shall be closely concerned with slow (practically
nonergodic) algorithms, and the concept of ergodicity will be much dis-
cussed. At the present stage, however, let us first look at a nonergodic
Monte Carlo algorithm in a familiar setting that is easy to analyze: a
variant of our pebble game, namely the sliding puzzle, a popular toy (see
Fig. 1.41).

The configurations of the sliding puzzle correspond to permutations
of the numbers {0, . . . , 8}, the zero square being empty. Let us see why
not all configurations can be reached by repeated sliding moves in the
local Monte Carlo algorithm, whereby a successful move of the empty
square corresponds to its transposition with one of its neighbors. We
saw in Subsection 1.2.2 that all permutations can be constructed from
transpositions of two elements. But taking the zero square around a
closed loop makes us go left and right the same number of times, and we
also perform equal numbers of successful up and down moves (a loop is
shown in the last frame of Fig. 1.41). Therefore, on a square lattice, the
zero square can return to its starting position only after an even number
of moves, and on completion of an even number of transpositions. Any
accessible configuration with this square in the upper right corner thus
corresponds to an even permutation (compare with Subsection 1.2.2),
and odd permutations with the zero square in the upper right corner, as
in Fig. 1.42, can never be reached: the local Monte Carlo algorithm for
the sliding puzzle is nonergodic. 1 2 3

4 5 6

8 7 0

Fig. 1.42 A puzzle configuration that
cannot be reached from the configura-
tions in Fig. 1.41.

1.4.2 Importance sampling

Common sense tells us that nonergodic or practically nonergodic algo-
rithms are of little help in solving computational problems. It is less evi-
dent that even ergodic sampling methods can leave us with a tricky job.

7This definition of ergodicity, for a random process, is slightly different from that for
a physical system.

64 Monte Carlo methods

Difficulties appear whenever there are rare configurations—configura-
tions with a low probability—which contribute in an important way to
the value of our integral. If these rare yet important configurations are
hardly ever seen, say in a week-long Monte Carlo simulation, we clearly
face a problem. This problem, though, has nothing to do with Markov
chains and shows up whether we use direct sampling as in the children’s
algorithm or walk around like adults on the heliport. It is linked only to
the properties of the distribution that we are trying to sample.

In this context, there are two archetypal examples that we should
familiarize ourselves with. The first is the Monte Carlo golf course. We
imagine trying to win the Monaco golf trophy not by the usual playing
technique but by randomly dropping golf balls (replacing pebbles) onto
the greens (direct sampling) or by randomly driving balls across the
golf course, with our eyes closed (Markov-chain sampling). Either way,
random sampling would take a lot of trials to hit even a single hole out
there on the course, let alone bring home a little prize money, or achieve
championship fame. The golf course problem and its cousin, that of a
needle in a haystack, are examples of genuinely hard sampling problems
which cannot really be simplified.

The second archetypal example containing rare yet important config-
urations belongs to a class of models which have more structure than the
golf course and the needle in a haystack. For these problems, a concept
called importance sampling allows us to reweight probability densities
and observables and to overcome the basic difficulty. This example is
defined by the integral

I(γ) =
∫ 1

0

dx xγ =
1

γ + 1
for γ > −1. (1.71)

We refer to this as the γ-integral, and shall go through the computa-
tional and mathematical aspects of its evaluation by sampling methods
in the remainder of this section. The γ-integral has rare yet important
configurations because, for γ < 0, the integrand all of a sudden becomes
very large close to x = 0. Sampling the γ-integral is simple only in
appearance: what happens just below the surface of this problem was
cleared up only recently (on the timescale of mathematics) by prominent
mathematicians, most notably P. Lévy. His analysis from the 1930s will
directly influence the understanding of our naive Monte Carlo programs.

To evaluate the γ-integral—at least initially—one generates uniform
random numbers xi between 0 and 1, and averages the observable Oi =
xγ

i (see Alg. 1.29 (direct-gamma)). The output of this program should
approximate I(γ).

To obtain the error, a few lines must be added to the program, in
addition to the mean

Σ
N

=
1
N

N∑
i=1

Oi � 〈O〉 ,

1.4 Computing 65

procedure direct-gamma

Σ ← 0
for i = 1, . . . , N do{

xi ← ran (0, 1)
Σ ← Σ + xγ

i (running average: Σ/i)
output Σ/N
——

Algorithm 1.29 direct-gamma. Computing the γ-integral in eqn (1.71)
by direct sampling.

which is already programmed. We also need the average of the squared
observables,

1
N

N∑
i=1

x2γ
i =

1
N

N∑
i=1

O2
i � 〈O2

〉
.

This allows us to estimate the variance (see Subsection 1.3.5):

error =

√
〈O2〉 − 〈O〉2√

N
. (1.72)

With direct sampling, there are no correlation times to worry about.
The output for various values of γ is shown in Table 1.15.

Table 1.15 Output of Alg. 1.29
(direct-gamma) for various values of γ
(N = 10 000). The computation for
γ = −0.8 is in trouble.

γ Σ/N ± Error 1/(γ + 1)

2.0 0.334 ± 0.003 0.333 . . .
1.0 0.501 ± 0.003 0.5
0.0 1.000 ± 0.000 1

−0.2 1.249 ± 0.003 1.25
−0.4 1.682 ± 0.014 1.666 . . .
−0.8 3.959 ± 0.110 5.0

Most of the results in this table agree with the analytical results to
within error bars, and we should congratulate ourselves on this nice suc-
cess! In passing, we should look at the way the precision in our calcula-
tion increases with computer time, i.e. with the number N of iterations.
The calculation recorded in Table 1.15 (with N = 10 000) for γ = 2,
on a year 2005 laptop computer, takes less than 1/100 s and, as we
see, reaches a precision of 0.003 (two digits OK). Using 100 times more
samples (N = 106, 0.26 s), we obtain the result 0.33298 (not shown,
three significant digits). One hundred million samples are obtained in
25 seconds, and the result obtained is 0.3333049 (not shown, four digits
correct). The precision increases as the square root of the number of
samples, and gains one significant digit for each hundred-fold increase of
computer time. This slow but sure convergence is a hallmark of Monte
Carlo integration and can be found in any program that runs without
bugs and irregularities and has a flawless random number generator.

However, the calculation for γ = −0.8 in Table 1.15 is in trouble: the
average of the Oi’s is much further off I(γ) than the internally computed
error indicates. What should we do about this? There is no rescue in sar-
casm8 as it is nonsense, because of Chebyshev’s inequality, to think that
one could be 10 standard deviations off the mean value. Furthermore,
Alg. 1.29 (direct-gamma) is too simple to have bugs, and even our an-
alytical calculation in eqn (1.71) is watertight: I(−0.8) is indeed 5 and

8An example of sarcasm: there are three kinds of lies: lies, damned lies, and statistics.

66 Monte Carlo methods

not 4. . . . To make progress, we monitor our simulation, and output run-
ning averages, as indicated in Alg. 1.29 (direct-gamma). In Fig. 1.43,
this average calmly approaches a wrong mean value. Then chance lets
the program hit a very small value xi, with an incredibly large Oi (we
remember that γ < 0 so that small values of x give large observables).
Thus one sample, in a simulation of a million trials, single-handedly hikes
up the running average.

Figure 1.43 contains a nightmare scenario: a Monte Carlo simulation
converges nicely (with an average of about 4.75, well established for a
computational eternity), until a seemingly pathological sample changes
the course of the simulation. In this situation, real insight and strength
of human character are called for: we must not doctor the data and
suppress even a single sample (which would let us continue with an
average near 4.75). Sooner or later, someone would find out that our
data were botched!

4.5

5

5.5

0 400000 800000

ru
n
n
in

g
av

er
ag

e
Σ

i/
i

number of samples i

value of γ−integral

Fig. 1.43 Running average of Alg. 1.29 (direct-gamma) for γ = −0.8.

What happens in Table 1.15 is that the error formula in eqn (1.72)
involves an average over the squared observable:

1
N

N∑
i=1

O2
i︸ ︷︷ ︸

estimate
(always finite)

�
∫ 1

0

dx x2γ︸ ︷︷ ︸
variance

(infinite for γ<− 1
2)

. (1.73)

We see that the algorithm to evaluate the γ-integral, in the range −1 <
γ < − 1

2 , where it is still finite, has a problem in estimating the error,
because it uses a finite sum to approximate an integral with an infinite
variance. Clearly, the situation is difficult to analyze in the absence of
an analytic solution.

We can salvage the Monte Carlo calculation of the γ-integral by pref-
erentially visiting regions of space where the expression O(x)π(x) is
large. In our example, we split the integrand of the γ-integral appropri-
ately into a new probability density π(x) = xζ and a new observable

1.4 Computing 67

O(x) = xγ−ζ (see Fig. 1.44). For negative ζ (γ < ζ < 0), small values
of x, with a large integrand, are visited more often and the variance of
the observable is reduced, while the product of the probability density
and the observable remains unchanged. This crucial technique is called
importance sampling.

0

10

0 1

d
en

si
ty

,
ob

se
rv

ab
le

variable x

O(x)

π(x)
O(x)

0

10

0 1

d
en

si
ty

,
ob

se
rv

ab
le

variable x

π(x)

π(x)
O(x)

Fig. 1.44 Splits of the γ-integrand into a density and an observable (γ =
−0.8). Left : π(x) = 1; O(x) = x−0.8. Right : π(x) = x−0.7; O(x) = x−0.1.

procedure direct-gamma-zeta

Σ ← 0
for i = 1, . . . , N do{

xi ← ran (0, 1)1/(ζ+1)
(π(xi) ∝ xζ

i , see eqn (1.29))

Σ ← Σ + xγ−ζ
i

output Σ/N
——

Algorithm 1.30 direct-gamma-zeta. Using importance sampling to
compute the γ-integral (see eqn (1.74)).

Table 1.16 Output of Alg. 1.30
(direct-gamma-zeta) with N = 10 000.
All pairs {γ, ζ} satisfy 2γ − ζ > −1 so
that

˙O2
¸

< ∞.

γ ζ Σ/N ζ+1
γ+1

−0.4 0.0 1.685 ± 0.017 1.66
−0.6 −0.4 1.495 ± 0.008 1.5
−0.7 −0.6 1.331 ± 0.004 1.33
−0.8 −0.7 1.508 ± 0.008 1.5

The idea is implemented in Alg. 1.30 (direct-gamma-zeta), our first
application of importance sampling. The output of the program, Σ/N ,
corresponds to the ratio of two γ-integrals:

Σ/N =
1
N

N∑
i=1

Oi � 〈O〉 =

∫ 1

0 dx π(x)O(x)∫ 1

0
dx π(x)

=

∫ 1

0 dx xζxγ−ζ∫ 1

0
dx xζ

=

∫ 1

0 dx xγ∫ 1

0
dx xζ

=
I(γ)
I(ζ)

=
ζ + 1
γ + 1

. (1.74)

This is because Monte Carlo simulations compute
∫

dx π(x)O(x) only
if the density function π is normalized. Otherwise, we have to normalize
with

∫
dx π(x). A glimpse at Table 1.16 shows that the calculation comes

out just right.

68 Monte Carlo methods

We must understand how to compute the error, and why reweighting
is useful. The error formula eqn (1.72) remains valid for the observable
O(x) = xγ−ζ (a few lines of code have to be added to the program). The
variance of O is finite under the following condition:

1
N

N∑
i=1

O2
i � 〈O2

〉
=

∫ 1

0 dx π(x)O2(x)∫ 1

0
dx π(x)

=
∫ 1

0

dx xζx2γ−2ζ < ∞ ⇔ γ > −1
2

+ ζ/2. (1.75)

This gives a much larger range of possible γ values than does eqn (1.73)
for negative values of ζ. All pairs {γ, ζ} in Table 1.16 satisfy the inequal-
ity (1.75). Together, the five different pairs in the table give a product
of all the ratios equal to∫ 1

0
dx x−0.8∫ 1

0 dx x−0.7︸ ︷︷ ︸
γ=−0.8,ζ=−0.7

∫ 1

0
dx x−0.7∫ 1

0 dx x−0.6

∫ 1

0
dx x−0.6∫ 1

0 dx x−0.4

∫ 1

0
dx x−0.4∫ 1

0 dx x0.0
= I(−0.8),

with the numerical result

〈O〉 � 1 × 1.685 × 1.495× 1.331 × 1.508 = 5.057.

Using the rules of Gaussian error propagation, the variance is

Var (O) =

[(
0.017
1.685

)2

+
(

0.008
1.495

)2

+
(

0.004
1.331

)2

+
(

0.008
1.508

)2
]
×5.0572.

From the above expression, the final result for the γ-integral is

I(γ = −0.8) = 5.057± 0.06,

obtained entirely by a controlled Monte Carlo calculation.

1.4.3 Monte Carlo quality control

In Subsection 1.4.2, the Monte Carlo evaluation of the γ-integral pro-
ceeded on quite shaky ground, because the output was sometimes correct
and sometimes wrong. Distressingly, neither the run nor the data anal-
ysis produced any warning signals of coming trouble. We relied on an
analytical quality control provided by the inequalities

if γ >

⎧⎪⎨⎪⎩
−1 : integral exists
− 1

2 : variance exists
− 1

2 + ζ/2 : variance exists (importance sampling)
. (1.76)

To have analytical control over a calculation is very nice, but this
cannot always be achieved. Often, we simply do not completely under-
stand the structure of high-dimensional integrals. We are then forced to

1.4 Computing 69

replace the above analytical “back office” with a numerical procedure
that warns us, with a clear and intelligible voice, about a diverging inte-
gral or an infinite variance. Remarkably, the Markov-chain Monte Carlo
algorithm can serve this purpose: we must simply reformulate the inte-
gration problem at hand such that any nonintegrable singularity shows
up as an infinite statistical weight which attracts Markov chains without
ever allowing them to get away again.

For concreteness, we discuss the γ-integral of Subsection 1.4.2, which
we shall now try to evaluate using a Markov-chain Monte Carlo algo-
rithm (see Alg. 1.31 (markov-zeta)). To see whether the γ-integral for
γ = −0.8 exists and whether its variance is finite, we run Alg. 1.31
(markov-zeta) twice, once with statistical weights π′(x) = |O(x)π(x)| =
x−0.8 and then with π′′(x) = |O2(x)π(x)| = x−1.6. The first case corre-
sponds to putting ζ = −0.8 in the algorithm, and the second to ζ = −1.6.

procedure markov-zeta

input x
x̃ ← x + ran (−δ, δ)
if (0 < x̃ < 1) then{

paccept ← (x̃/x)ζ

if (ran (0, 1) < paccept) x ← x̃
output x
——

Algorithm 1.31 markov-zeta. Markov-chain Monte Carlo algorithm for

a point x on the interval [0, 1] with π(x) ∝ xζ .

0

1

0 5000

co
n
fi
gu

ra
ti

on
 x

i

iteration i

ζ = −0.8

0

1

0 5000

co
n
fi
gu

ra
ti

on
 x

i

iteration i

ζ = −1.6

Fig. 1.45 Runs of Alg. 1.31 (markov-zeta). Left : exponent ζ = −0.8: in-
tegrable singularity at x = 0. Right : ζ = −1.6: nonintegrable singularity.

By simply monitoring the position xi as a function of the iteration
number i, we are able to decide whether the densities π′(x) and π′′(x)
are integrable. In the second case above, there will be a region around
a point x′ where

∫ x+ε

x−ε
dx′ π(x′) = ∞. The simulation will be unable to

70 Monte Carlo methods

escape from the vicinity of this point. On the other hand, an integrable
singularity at x (π(x) → ∞ but

∫ x+ε

x−ε
dx′ π(x′) is finite) does not trap

the simulation. Data for the two cases, π′(x) and π′′(x), are shown in
Fig. 1.45. We can correctly infer from the numerical evidence that the γ-
integral exists for γ = −0.8 (〈O〉 is finite) but not for γ = −1.6 (

〈O2
〉

is
infinite). In the present context, the Metropolis algorithm is purely qual-
itative, as no observables are computed. This qualitative method allows
us to learn about the analytic properties of high-dimensional integrals
when analytical information analogous to eqn (1.76) is unavailable (see
Krauth and Staudacher (1999)).

1.4.4 Stable distributions

Many problems in the natural and social sciences, economics, engineer-
ing, etc. involve probability distributions which are governed by rare yet
important events. For a geologist, the running-average plot in Fig. 1.43
might represent seismic activity over time. Likewise, a financial analyst
might have to deal with similar data (with inverted y-axis) in a record
of stock-exchange prices: much small-scale activity, an occasional Black
Monday, and a cataclysmic crash on Wall Street. Neither the geologist
nor the financial analyst can choose the easy way out provided by im-
portance sampling, because earthquakes and stock crashes cannot be
made to go away through a clever change of variables. It must be un-
derstood how often accidents like the ones shown in the running average
in Fig. 1.43 happen. Both the geologist and the financial analyst must
study the probability distribution of running averages outside the regime
γ > − 1

2 , that is, when the variance is infinite and Monte Carlo calcula-
tions are impossible to do without importance sampling. The subject of
such distributions with infinite variances was pioneered by Lévy in the
1930s. He showed that highly erratic sums of N random variables such
as that in Fig. 1.43 tend towards universal distributions, analogously to
the way that sums of random variables with a finite variance tend to-
wards the Gaussian, as dictated by the central limit theorem. The limit
distributions depend on the power (the parameter γ) and on the precise
asymptotic behavior for x → ±∞.

We shall first generate these limit distributions from rescaled outputs
of Alg. 1.29 (direct-gamma), similarly to what was done for uniform
bounded random numbers in Alg. 1.17 (naive-gauss). Secondly, we
shall numerically convolute distributions in much the same way as we did
for the bounded uniform distribution in Alg. 1.26 (ran01-convolution).
Finally, we shall explicitly construct the limiting distributions using
characteristic functions, i.e. the Fourier transforms of the distribution
functions.

We run Alg. 1.29 (direct-gamma), not once, as for the initial running-
average plot of Fig. 1.43, but a few million times, in order to produce
histograms of the sample average Σ/N at fixed N (see Fig. 1.46, for γ =
−0.8). The mean value of all the histograms is equal to 5, the value of the
γ-integral, but this is not a very probable outcome of a single run: from

1.4 Computing 71

the histogram, a single run with N = 1000 samples is much more likely
to give a sample average around 3.7, and for N = 10 000, we are most
likely to obtain around 4.2. This is consistent with our very first one-shot
simulation recorded in Table 1.15, where we obtained Σ/N = 3.95. We
note that the peak position of the distribution approaches 〈xi〉 = 5 very
slowly as N → ∞ (see Table 1.17).

The averages generated by Alg. 1.29 (direct-gamma) must be rescaled
in order to fall onto a unique curve. The correct rescaling,

Υ =
Σ/N − 〈xi〉

N−1−γ
, (1.77)

will be taken for granted for the moment, and derived later, in eqn (1.80).
Rescaling the output of Alg. 1.29 (direct-gamma), for our value γ =
−0.8, consists in subtracting the mean value, 5, from each average of
N terms and then dividing by N−0.2 (see Fig. 1.46). These histograms
of rescaled averages illustrate the fact that the distribution function
of a sum of random variables, which we computed for the γ-integral,
converges to a limit distribution for large values of N . We recall from
Subsection 1.3.3 that for random variables with a finite variance, Σ/

√
N

gives a unique curve. This case is reached for γ → − 1
2 .

Table 1.17 Peak positions of the his-
togram of sample averages Σ/N (from
Alg. 1.29 (direct-gamma), with γ =
−0.8)

N Peak position of Σ/N

10 1.85
100 3.01

1000 3.74
10 000 4.21

100 000 4.50
1 000 000 4.68

10 000 000 4.80
100 000 000 4.87

0

1

1 10

π
(Σ

/N
)

(h
is

t.
)

average Σ/N

N = 1
10

100
1000

10000

0

0.3

−5 0

π
(Υ

)
(h

is
t.

)

rescaled average Υ

N = 1
10

100
1000

10000

Fig. 1.46 Histograms of averages (left) and rescaled averages (right)
(from Alg. 1.29 (direct-gamma), with γ = −0.8 and Υ = (Σ/N −
5)/N−0.2).

Up to now, we have formulated the γ-integral in terms of a uniform
random variable x = ran (0, 1) and an observable O(x) = xγ . In what
follows, it is better to incorporate the observable into the random vari-
able x = ran (0, 1)γ . That is, we consider random variables ξi taking
values x with probability

π(x) =

{
− 1

γ · 1/x1−1/γ for 1 < x < ∞
0 otherwise

(1.78)

(see eqn (1.29)). We shall also use α = −1/γ, as is standard notation in
this problem since the time of Lévy, who considered the sum of random

72 Monte Carlo methods

variables ξi taking values x with probability π(x) characterized by a zero
mean and by the asymptotic behavior

π(x) �
{

A+/x1+α for x → ∞
A−/|x|1+α for x → −∞ ,

where 1 < α < 2. When rescaled as in eqn (1.77), the probability dis-
tribution keeps the same asymptotic behavior and eventually converges
to a stable distribution which depends only on the three parameters
{α, A+, A−}. For the γ-integral with γ = −0.8, these parameters are
α = −1/γ = 1.25, A+ = 1.25 and A− = 0 (see eqn (1.78)). We
shall later derive this behavior from an analysis of characteristic func-
tions. As the first step, it is instructive to again assume this rescal-
ing, and to empirically generate the universal function for the γ-integral
(where α = 1.25, A+ = 1.25, and A− = 0) from repeated convolu-
tions of a starting distribution with itself. We may recycle Alg. 1.26
(ran01-convolution), but cannot cut off the distribution at large |x|.
This would make the distribution acquire a finite variance, and drive the
convolution towards a Gaussian. We must instead pad the function at
large arguments, as shown in Fig. 1.47, and as implemented in Alg. 1.32
(levy-convolution) for A− = 0. After a number of iterations, the grid
of points xk, between the fixed values xmin and xmax, becomes very
fine, and will eventually have to be decimated. Furthermore, during the
iterations, the function π(x) may lose its normalization and cease to
be of zero mean. This is repaired by computing the norm of π—partly
continuous, partly discrete—as follows:∫

dx π(x)=
∫ x0

−∞
dx

A−
|x|1+α︸ ︷︷ ︸

A− · 1
α

1
|x0|α

+∆

(
π0 + πK

2
+

K−1∑
k=1

πk

)
+
∫ ∞

xK

dx
A+

|x|1+α︸ ︷︷ ︸
A+ · 1

α
1

xα
K

.

The mean value can be kept at zero in the same way.

procedure levy-convolution

input {{π0, x0}, . . . , {πK , xK}} (see Fig. 1.47)
for k = K + 1, K + 2 . . . do (padding){

xk ← x0 + k∆
πk ← A+/x1+α

k

for k = 0, . . . , 2K do (convolution){
x′

k ← (x0 + xk)/21/α

π′
k ← (∆

∑k
l=0 πlπk−l) · 21/α

output {{π′
m, x′

m}, . . . , {π′
n, x′

n}} (all x′ in interval [xmin, xmax])
——

Algorithm 1.32 levy-convolution. Convolution of π(x) with itself.
π(x) is padded as in Fig. 1.47, with A− = 0.

We now discuss stable distributions in terms of their characteristic
functions. Lévy first understood that a non-Gaussian stable law (of zero

1.4 Computing 73

xK0x0

π
(x

)

x

A+/xα+1A−/|x|α+1

xmin xmax

Fig. 1.47 Padding of a discrete function π(xi) with continuous functions
A+/x1+α (for x > xmax � 0) and A−/|x|1+α (for x < xmin � 0).

mean) can only have a characteristic function

φ(t) =
∫ ∞

−∞
dx π(x)eitx = exp

[
−
(

c0 + ic1
t

|t|
)
|t|α
]

, (1.79)

where 1 ≤ α < 2 (we exclude the case α = 1 from our discussion).
This choice, with c0 > 0, ensures that π(x) is real, correctly normalized,
and of zero mean (see Table 1.18). Furthermore, the square of φ(t), the
characteristic function of the convolution of π(t) with itself, is given by
a rescaled φ(t):

Table 1.18 Basic requirements on the
stable distribution π(x) and its charac-
teristic function φ(t)

π(x) φ(t)

Real φ(t) = φ(−t)∗

Normalized φ(0) = 1, |φ(t)| ≤ 1
Zero mean φ′(0) = 1
Positive |c1/c0| < | tan πα

2
|

c0 ≥ 0φ2(t) = exp
[
−
(

c0 + ic1
t

|t|
)
· 2|t|α

]
= φ(t · 21/α). (1.80)

The characteristic function φ(t) is related to the probability density
π(x) by an inverse Fourier transformation:

π(x) =
1
2�

∫ ∞

−∞
dt φ(t)e−ixt.

This means that the empirical limiting function for the rescaled out-
put of Alg. 1.29 (direct-gamma) shown in Fig. 1.46 can be described
by eqn (1.79) with α = 1.25. We need only to clarify the relationship
between the Fourier parameters {c0, c1} and the real-space parameters
{A+, A−}. This point will now be investigated by means of an asymp-
totic expansion of a Fourier integral.

Because α > 1, we may multiply the integrand by a small subdominant
term e−ε|t|. This leaves us with a function

�ε(x) =
1
2�

∫ ∞

−∞
dt e−ixt exp

[
−
(

c0 + ic1
t

|t|
)
|t|α
]

e−ε|t|

=
∫ 0

−∞
dt . . .︸ ︷︷ ︸

π−
ε (x)

+
∫ ∞

0

dt . . .︸ ︷︷ ︸
π+

ε (x)

. (1.81)

74 Monte Carlo methods

We now look in more detail at π+
ε (x), where

π+
ε (x) =

1
2�

∫ ∞

0

dt e−ixt exp [−(c0 + ic1)tα]︸ ︷︷ ︸
1−(c0+ic1)tα+···

e−εt. (1.82)

After the indicated expansion of the exponential, we may evaluate the
integral9 for nonzero ε:

π+
ε (x) � 1

2�

∞∑
m=0

(−1)m

m!
Γ(mα + 1)

(x2 + ε2)(mα+1)/2
(c0 + ic1)m

× exp
[
−i (mα + 1) arctan

x

ε

]
. (1.83)

For concreteness, we may evaluate this asymptotic expansion term by
term for fixed x and ε and compare it with the numerical evaluation of
eqn (1.82) (see Table 1.19). We can neglect the imaginary part of π(x)
(see Table 1.18) and, in the limit ε → 0, the m = 0 term vanishes for
x
= 0, and the m = 1 term dominates. This allows us to drop terms with
m = 2 and higher: the small-t behavior of the characteristic function φ(t)
governs the large-|x| behavior of π(x).

Table 1.19 The function π+
ε (x = 10)

for c0 = 1 and c1 = 0 and its approxi-
mations in eqn (1.83). All function val-
ues are multiplied by 103.

m-values included
ε π+

ε 0 0, 1 0, 1, 2

0 0.99 0 0.94 0.99
0.1 1.16 0.16 1.10 1.16
0.2 1.32 0.32 1.27 1.33

We now collect the real parts in eqn (1.83), using the decomposition
of the exponential function into sines and cosines (e−ixt = cos (xt) −
i sin (xt)), the asymptotic behavior of arctan x (limx→±∞ arctan x =
±�/2), and the relations between sines and cosines (cos (x + �/2) =
− sin x and sin (x + �/2) = cos x). We then find

π+(x) � Γ(1 + α)
2�x1+α

(
c0 sin

�α

2
− c1 cos

�α

2

)
for x → ∞.

The other term gives the same contribution, i.e. π−(x) = π+(x) for large
x. We find, analogously,

π+(x) � Γ(1 + α)
2�|x|1+α

(
c0 sin

�α

2
+ c1 cos

�α

2

)
for x → −∞, (1.84)

with again the same result for π−.
The calculation from eqn (1.81) to eqn (1.84) shows that any charac-

teristic function φ(t) whose expansion starts as in eqn (1.79) for small t
belongs to a probability distribution π(x) with an asymptotic behavior

π(x) �
{

A+/x1+α for x → ∞
A−/|x|1+α for x → −∞ , (1.85)

where

A± =
Γ(1 + α)

�

(
c0 sin

�α

2
± c1 cos

�α

2

)
. (1.86)

9We use Z ∞

0
dt tαe−εtsin

cos xt =
Γ(α + 1)

(ε2 + x2)(α+1)/2

sin
cos

h
(α + 1) arctan

x

ε

i
.

This integral is closely related to the gamma function.

1.4 Computing 75

Equations (1.85) and (1.86) relate the asymptotic behavior of π(x) to
the characteristic function of the corresponding stable distribution. We
can test the formulas for the characteristic distribution of the γ-integral,
where we find, from eqn (1.86),

α = 1.25 (γ = −0.8) :
[

A+ = 1.25
A− = 0

]
⇔
[

c0 = 1.8758
c1 = 4.5286

]
. (1.87)

This gives the following as a limit function for the rescaled sum of ran-
dom variables obtained from Alg. 1.29 (direct-gamma), for −1 < γ <
−0.5:

π(x) =
1
2�

∫ ∞

−∞
dt exp

[
−ixt −

(
c0 + ic1

t

|t|
)
|t|α
]

, (1.88)

with parameters from eqn (1.87). Equation (1.88), an inverse Fourier
transform, can be evaluated by straightforward Riemann integration,
using suitable finite limits for the t-integration. The agreement between
all of our three approaches to the Lévy distribution is excellent (see
Fig. 1.48, and compare it with the rescaled averages in Fig. 1.46).

0.2

0

−10 0 10

π
(x

)

x

samples
from φ(t)

from convol.

0

0.1

−10 0 10

π
(x

)

x

samples
from φ(t)

Fig. 1.48 Stable distributions for α = 1.25. Left : one-sided case (A− = 0,
A+ = 1.25). Right : symmetric case (A− = A+ = 1.25).

For a second illustration of Lévy statistics, we symmetrize output of
Alg. 1.29 (direct-gamma) and take Υ ← ran

(− 1
2 , 1

2

)
. Samples xi are

generated as follows:

xi =

{
Υγ if Υ ≥ 0
−|Υ|γ if Υ < 0

.

The symmetric distribution π(xi) has the same asymptotic behavior for
x → +∞ as the γ-integral, so that A+ = A− = 1.25. Equation (1.86)
once more allows us to compute the parameters {c0, c1} from {A+, A−}:

α = 1.25 (γ = −0.8) :
[

A+ = 1.25
A− = 1.25

]
⇔
[

c0 = 3.7516
c1 = 0

]
.

76 Monte Carlo methods

The parameters {α, c0, c1} can again be entered into the inverse Fourier
transform of eqn (1.88), and the result can be compared with the rescaled
simulation data (see Fig. 1.48).

In conclusion, we have progressed in this subsection from a naive case
study of Alg. 1.29 (direct-gamma) to a systematic analysis of distribu-
tions with a finite mean and infinite variance. The mathematical law and
order in these very erratic random processes is expressed through the
scaling in eqn (1.77), which fixes the speed of convergence towards the
mean value, and through the parameters {α, A+, A−} or, equivalently,
{α, c0, c1}, which are related to each other by eqn (1.86).

1.4.5 Minimum number of samples

In this chapter, we have witnessed Monte Carlo calculations from all
walks of life, and with vastly different convergence properties. With one
exception, when we used Alg. 1.31 (markov-zeta) to sniff out singu-
larities, all these programs attempted to estimate an observable mean
〈O〉 from a sample average. The success could be outstanding, most pro-
nouncedly in the simulation related to the crazy cobbler’s needle, where
a single sample gave complete information about the mean number of
hits. The situation was least glamorous in the case of the γ-integral.
There, typical sample averages remained different from the mean of the
observable even after millions of iterations. Practical simulations are
somewhere in between these extremes, even if the variance is finite: it all
depends on how different the original distribution is from a Gaussian,
how asymmetric it is, and how quickly it falls to zero for large abso-
lute values of its arguments. In a quite difficult case, we saw how the
situation could be saved through importance sampling.

In many problems in physics, importance sampling is incredibly effi-
cient. This technique counterbalances the inherent slowness of Markov-
chain methods, which are often the only ones available and which, in
billions of iterations and months of computer time, generate only a hand-
ful of independent samples. In most cases, though, this relatively small
amount of data allows one to make firm statements about the physical
properties of the system studied. We can thus often get away with just
a few independent samples: this is the main reason why the equilibrium
Monte Carlo method is so firmly established in statistical physics.

Exercises 77

Exercises

(Section 1.1)

(1.1) Implement Alg. 1.1 (direct-pi). Run it twenty
times each for N = 10, 100, . . . , 1×108. Convince
yourself that Nhits/N converges towards �/4. Esti-
mate the mean square deviation

˙
(Nhits/N − �

4
)2

¸
from the runs and plot it as a function of N . How
does the mean square deviation scale with N?

(1.2) Implement and run Alg. 1.2 (markov-pi), starting
from the clubhouse. Convince yourself, choosing a
throwing range δ = 0.3, that Nhits/N again con-
verges towards �/4. Next, study the precision ob-
tained as a function of δ and check the validity of
the one-half rule. Plot the mean square deviation˙
(Nhits/N − �

4
)2

¸
, for fixed large N , as a function

of δ in the range δ ∈ [0, 3]. Plot the rejection rate
of this algorithm as a function of δ. Which value of
the rejection rate yields the highest precision?

(1.3) Find out whether your programming language al-
lows you to check for the presence of a file. If so,
improve handling of initial conditions in Alg. 1.2
(markov-pi) by including the following code frag-
ment:

. . .
if (∃ initfile) then˘

input {x, y} (from initfile)
elsĕ

{x, y} ← {1, 1} (legal initial condition)
. . .

Between runs of the modified program, the output
should be transferred to initfile, to get new initial
conditions. This method for using initial conditions
can be adapted to many Markov-chain programs in
this book.

(1.4) Implement Alg. 1.6 (markov-discrete-pebble), us-
ing a subroutine for the numbering scheme and
neighbor table. The algorithm should run on arbi-
trary rectangular pads without modification of the
main program. Check that, during long runs, all
sites of the pebble game are visited equally often.

(1.5) For the 3×3 pebble game, find a rejection-free local
Monte Carlo algorithm (only moving up, down, left
or right). If you do not succeed for the 3×3 system,
consider n × m pebble games.

(1.6) Implement Alg. 1.4 (direct-needle), and Alg. 1.5
(direct-needle(patch)). Modify both programs

to allow you to simulate needles that are longer
than the floorboards are wide (a > b). Check that
the program indeed computes the number �. Which
precision can be reached with this program?

(1.7) Check by an analytic calculation that the relation-
ship between the mean number of hits and the
length of the needle (eqn (1.8)) is valid for round
(cobbler’s) needles of any size. Analytically calcu-
late the function Nhits(x, φ) for semicircular nee-
dles, that is, for cobblers’ needles broken into two
equal pieces.

(1.8) Determine all eigenvalues and eigenvectors of the
transfer matrix of the 3 × 3 pebble game in
eqn (1.14) (use a standard linear algebra routine).
Analogously compute the eigenvalues of n× n peb-
ble games. How does the correlation time ∆i depend
on the pad size n?

(Section 1.2)

(1.9) Sample permutations using Alg. 1.11 (ran-perm)
and check that this algorithm generates all 120 per-
mutations of five elements equally often. Determine
the cycle representation of each permutation that
is generated. For permutations of K elements, de-
termine the histogram of the probability for be-
ing in a cycle of length l (see Subsection 4.2.2).
Consider an alternative algorithm for generating
random permutations of K elements. Sort random
numbers {x1, . . . , xK} = {ran (0, 1) , . . . , ran (0, 1)}
in ascending order {xP1 < · · · < xPK

}. Show that
{P1, . . . , PK} is a random permutation.

(1.10) Consider the following algorithm which combines
transformation and rejection techniques:

1 x ← −log ran (0, 1)

Υ ← exp
h
− (x−1)2

2

i
if (ran (0, 1) ≥ Υ) goto 1 (reject sample)
output x
——

Analytically calculate the distribution function
π(x) sampled by this program, and its rejection
rate. Implement the algorithm and generate a his-
togram to check your answers.

(1.11) Consider the following code fragment, which is part
of Alg. 1.19 (gauss(patch)):

78 Exercises

x ← ran (−1, 1)
y ← ran (−1, 1)
Υ ← x2 + y2

output Υ

Compute the distribution function π(Υ) using ele-
mentary geometric considerations. Is it true that Υ
is uniformly distributed in the interval Υ ∈ [0, 1]?
Implement the algorithm and generate a histogram
to check your answers.

(1.12) Implement both the naive Alg. 1.17 (naive-gauss)
with arbitrary K and the Box–Muller algorithm,
Alg. 1.18 (gauss). For which value of K can you
still detect statistically significant differences be-
tween the two programs?

(1.13) Generate uniformly distributed vectors {x1, . . . , xd}
inside a d-dimensional unit sphere. Next, incorpo-
rate the following code fragment:

. . .
xd+1 ← ran (−1, 1)

if (
Pd+1

k=1 x2
k > 1) then˘

output “reject”
. . .

Show that the acceptance rate of the modified pro-
gram yields the ratio of unit-sphere volumes in (d+
1) and in d dimensions. Determine V252(1)/V250(1),
and compare with eqn (1.39).

(1.14) Sample random vectors {x1, . . . , xd} on the surface
of the d-dimensional unit sphere, using Alg. 1.22
(direct-surface). Compute histograms of the vari-
able I12 = x2

1 + x2
2. Discuss the special case of

four dimensions (d = 4). Determine the distribu-
tion π(I12) analytically.

(1.15) Generate three-dimensional orthonormal coordi-
nate systems with axes {êx, êy, êz} randomly ori-
ented in space, using Alg. 1.22 (direct-surface).
Test your program by computing the average scalar
products 〈(êx ··· ê′

x)〉, ˙
(êy ··· ê′

y)
¸
, and 〈(êz ··· ê′

z)〉 for
pairs of random coordinate systems.

(1.16) Implement Alg. 1.13 (reject-finite) for K =
10 000 and probabilities πk = 1/kα, where 1 <
α < 2. Implement Alg. 1.14 (tower-sample) for the
same problem. Compare the sampling efficiencies.
NB: Do not recompute πmax for each sample in the
rejection method; avoid recomputing {Π0, . . . , ΠK}
for each sample in the tower-sampling algorithm.

(1.17) Use a sample transformation to derive how to gener-
ate random numbers φ distributed as π(φ) = 1

2
sin φ

for φ ∈ [0, �]. Likewise, determine the distribution
function π(x) for x = cos [ran (0, �/2)]. Test your
answers with histograms.

(Section 1.3)

(1.18) Implement Alg. 1.25 (binomial-convolution).
Compare the probability distribution π(Nhits) for
N = 1000, with histograms generated from many
runs of Alg. 1.1 (direct-pi). Plot the probability
distributions for the rescaled variables x = Nhits/N
and x̃ = (x − �/4)/σ, where σ2 = (�/4)(1 − �/4).

(1.19) Modify Alg. 1.26 (ran01-convolution) to allow you
to handle more general probability distributions,
which are nonzero on an arbitrary interval x ∈ [a, b].
Follow the convergence of various distributions with
zero mean their convergence towards a Gaussian.

(1.20) Implement Alg. 1.28 (data-bunch). Test it for
a single, very long, simulation of Alg. 1.2
(markov-pi) with throwing ranges δ ∈
{0.03, 0.1, 0.3}. Test it also for output of Alg. 1.6
(markov-discrete-pebble) (compute the proba-
bility to be at site 1). If possible, compare with
the correlation times for the n × n pebble game
obtained from the second largest eigenvalue of the
transfer matrix (see Exerc. 1.8).

(Section 1.4)

(1.21) Determine the mean value of O = xγ−ζ in a sim-
ple implementation of Alg. 1.31 (markov-zeta) for
ζ > − 1

2
. Monitor the rejection rate of the algo-

rithm as a function of the step size δ, and compute
the mean square deviation of O. Is the most precise
value of 〈O〉 obtained with a step size satisfying the
one-half rule?

(1.22) Implement Alg. 1.29 (direct-gamma), subtract the
mean value 1/(γ +1) for each sample, and generate
histograms of the average of N samples, and also of
the rescaled averages, as in Fig. 1.46.

(1.23) Implement a variant of Alg. 1.29 (direct-gamma),
in order to sample the distribution

π(x) ∝
(

(x − a)γ if x > a

−c|x − a|γ if x < a
.

For concreteness, determine the mean of the dis-
tribution analytically as a function of {a, c, γ},
and subtract it for each sample. Compute the his-
tograms of the distribution function for the rescaled
sum of random variables distributed as π(x). Com-
pute the parameters {A±, c1,2} of the Lévy distri-
bution as a function of {a, c, γ}, and compare the
histograms of rescaled averages to the analytic limit
distribution of eqn (1.86).

References 79

References

Aigner M., Ziegler G. M. (1992) Proofs from THE BOOK (2nd edn),
Springer, Berlin, Heidelberg, New York

Barbier E. (1860) Note sur le problème de l’aiguille et le jeu du joint
couvert [in French], Journal de Mathématiques Pures et Appliquées (2)
5, 273–286

Gnedenko B. V., Kolmogorov A. N. (1954) Limit Distributions for Sums
of Independent Variables, Addison-Wesley, Cambridge, MA

Krauth W., Staudacher M. (1999) Eigenvalue distributions in Yang–
Mills integrals, Physics Letters B 453, 253–257

Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller
E. (1953) Equation of state calculations by fast computing machines,
Journal of Chemical Physics 21, 1087–1092

Propp J. G., Wilson D. B. (1996) Exact sampling with coupled Markov
chains and applications to statistical mechanics, Random Structures &
Algorithms 9, 223–252

Ulam S. M. (1991) Adventures of a Mathematician, University of Cali-
fornia Press, Berkeley, Los Angeles, London

This page intentionally left blank

Hard disks and spheres 2
2.1 Newtonian deterministic

mechanics 83

2.2 Boltzmann’s statistical
mechanics 92

2.3 Pressure and the
Boltzmann distribution 108

2.4 Large hard-sphere
systems 119

2.5 Cluster algorithms 122

Exercises 128

References 130

In the first chapter of this book, we considered simple problems in statis-
tics: pebbles on the beach, needles falling but never rolling, and people
strolling on heliports by night. We now move on to study model systems
in physics—particles with positions, velocities, and interactions—that
obey classical equations of motion. To understand how physical systems
can be treated with the tools of statistics and simulated with Monte
Carlo methods, we shall consider the hard-sphere model, which lies at
the heart of statistical mechanics. Hard spheres, which are idealizations
of billiard balls, in free space or in a box, behave as free particles when-
ever they are not in contact with other particles or with walls, and obey
simple reflection rules on contact.

The hard-sphere model played a crucial role in the genesis of sta-
tistical mechanics. Since the early days of machine computing, in the
1950s, and up to the present day, the hard-sphere model has spurred
the development of computer algorithms, and both the explicit numeri-
cal integration of Newton’s equations and the Markov-chain Monte Carlo
algorithm were first tried out on this model. We shall use such algorithms
to illustrate mechanics and statistical mechanics, and to introduce the
fundamental concepts of statistical mechanics: the equiprobability prin-
ciple, the Boltzmann distribution, the thermodynamic temperature, and
the pressure. We shall also be concerned with the practical aspects of
computations and witness the problems of Markov-chain algorithms at
high densities. We shall conclude the chapter with a first discussion of
sophisticated cluster algorithms which are common to many fields of
computational physics.

In the hard-sphere model, all configurations have the same potential
energy and there is no energetic reason to prefer any configuration over
any other. Only entropic effects come into play. In spite of this restric-
tion, hard spheres and disks show a rich phenomenology and exhibit
phase transitions from the liquid to the solid state. These “entropic
transitions” were once quite unsuspected, and then hotly debated, be-
fore they ended up poorly understood, especially in two dimensions.
The physics of entropy will appear in several places in this chapter, to
be taken up again in earnest in Chapter 6.

Hard disks move about in a box much like billiard balls. The rules for wall
and pair collisions are quickly programmed on a computer, allowing us to
follow the time evolution of the hard-disk system (see Fig. 2.1). Given
the initial positions and velocities at time t = 0, a simple algorithm
allows us to determine the state of the system at t = 10.37, but the
unavoidable numerical imprecision quickly explodes. This manifestation
of chaos is closely related to the statistical description of hard disks and
other systems, as we shall discuss in this chapter.

t = 0 t = 1.25

wall collision

t = 2.18 t = 3.12

pair collision

t = 3.25 t = 4.03

t = 4.04 t = 5.16 t = 5.84 t = 8.66 t = 9.33 t = 10.37

Fig. 2.1 Event-driven molecular dynamics simulation with four hard
disks in a square box.

2.1 Newtonian deterministic mechanics 83

2.1 Newtonian deterministic mechanics

In this section, we consider hard disks and spheres1 colliding with each
other and with walls. Instantaneous pair collisions conserve momentum,
and wall collisions merely reverse one velocity component, that normal
to the wall. Between collisions, disks move straight ahead, in the same
manner as free particles. To numerically solve the equations of motion—
that is, do a molecular dynamics simulation—we simply propagate all
disks up to the next collision (the next event) in the whole system. We
then compute the new velocities of the collision partners, and continue
the propagation (see Fig. 2.1 and the schematic Alg. 2.1 (event-disks)).

procedure event-disks

input {x1, . . . ,xN}, {v1, . . . ,vN}, t
{tpair, k, l} ← next pair collision
{twall, j} ← next wall collision
tnext ← min[twall, tpair]
for m = 1, . . . , N do{

xm ← xm + (tnext − t)vm

if (twall < tpair) then{
call wall-collision(j)

else{
call pair-collision(k, l)

output {x1, . . . ,xN}, {v1, . . . ,vN}, tnext

——

Algorithm 2.1 event-disks. Event-driven molecular dynamics algo-
rithm for hard disks in a box (see Alg. 2.4 (event-disks(patch))).

Our aim in the present section is to implement this event-driven molec-
ular dynamics algorithm and to set up our own simulation of hard disks
and spheres. The program is both simple and exact, because the inte-
gration of the equations of motion needs no differential calculus, and the
numerical treatment contains no time discretization.

2.1.1 Pair collisions and wall collisions

We determine the time of the next pair collision in the box by considering
all pairs of particles {k, l} and isolating them from the rest of the system
(see Fig. 2.2). This leads to the evolution equations

t1

t2

t0

Fig. 2.2 Motion of two disks from time
t0 to their pair collision time t1.

xk(t) = xk(t0) + vk · (t − t0),
xl(t) = xl(t0) + vl · (t − t0).

1In this chapter, the words “disk” and “sphere” are often used synonymously. For
concreteness, most programs are presented in two dimensions, for disks.

84 Hard disks and spheres

A collision occurs when the norm of the spatial distance vector

xk(t) − xl(t)︸ ︷︷ ︸
∆x(t)

= ∆x︸︷︷︸
xk(t0)−xl(t0)

+ ∆v︸︷︷︸
vk−vl

·(t − t0) (2.1)

equals twice the radius σ of the disks (see Fig. 2.2). This can happen at
two times t1 and t2, obtained by squaring eqn (2.1), setting |∆x| = 2σ,
and solving the quadratic equation

t1,2 = t0 +
−(∆x ··· ∆v) ±√(∆x ··· ∆v)2 − (∆v)2((∆x)2 − 4σ2)

(∆v)2
. (2.2)

The two disks will collide in the future only if the argument of the square
root is positive and if they are approaching each other ((∆x ··· ∆v) < 0,
see Alg. 2.2 (pair-time)). The smallest of all the pair collision times
obviously gives the next pair collision in the whole system (see Alg. 2.1
(event-disks)). Analogously, the parameters for the next wall collision
are computed from a simple time-of-flight analysis (see Fig. 2.3, and
Alg. 2.1 (event-disks) again).

procedure pair-time

input ∆x (≡ xk(t0) − xl(t0))
input ∆v (≡ vk − vl �= 0)
Υ ← (∆x ··· ∆v)2 − |∆v|2(|∆x|2 − 4σ2)
if (Υ > 0 and (∆x ··· ∆v) < 0) then{

tpair ← t0 −
[
(∆x ··· ∆v) +

√
Υ
]
/∆2

v

else{
tpair ← ∞

output tpair

——

Algorithm 2.2 pair-time. Pair collision time for two particles starting
at time t0 from positions xk and xl, and with velocities vk and vl.

t0 t1 t2

Fig. 2.3 Computing the wall collision time twall = min(t1, t2).

Continuing our implementation of Alg. 2.1 (event-disks), we now
compute the velocities after the collision: collisions with a wall of the
box lead to a change of sign of the velocity component normal to the

2.1 Newtonian deterministic mechanics 85

procedure pair-collision

input {xk,xl} (particles in contact: |xk − xl| = 2σ)
input {vk,vl}
∆x ← xk − xl

ê⊥ ← ∆x/|∆x|
∆v ← vk − vl

v′
k ← vk − ê⊥(∆v ··· ê⊥)

v′
l ← vl + ê⊥(∆v ··· ê⊥)

output {v′
k,v′

l}
——

Algorithm 2.3 pair-collision. Computing the velocities of disks
(spheres) k and l after an elastic collision (for equal masses).

lab frame

disk k

disk l

center of mass frame

v⊥
v‖

Fig. 2.4 Elastic collision between equal disks k and l, as seen in two
different reference frames.

wall involved in the collision. Pair collisions are best analyzed in the
center-of-mass frame of the two disks, where vk + vl = 0 (see Fig. 2.4).
Let us write the velocities in terms of the perpendicular and parallel
components v⊥ and v‖ with respect to the tangential line between the
two particles when they are exactly in contact. This tangential line can
be thought of as a virtual wall from which the particles rebound:

vk = v‖ + v⊥
vl = −v‖ − v⊥︸ ︷︷ ︸

before collision

,
v′

k = v‖ − v⊥
v′

l = −v‖ + v⊥︸ ︷︷ ︸
after collision

.

The changes in the velocities of particles k and l are ∓2v⊥. Introducing
the perpendicular unit vector ê⊥ = (xk −xl)/|xk −xl| allows us to write
v⊥ = (vk ··· ê⊥)ê⊥ and 2v⊥ = (∆v ··· ê⊥)ê⊥, where 2v⊥ = v′

k − vk gives
the change in the velocity of particle k. The formulas coded into Alg. 2.3
(pair-collision) follow immediately. We note that ê⊥ and the changes
in velocities v′

k − vk and v′
l − vl are relative vectors and are thus the

same in all inertial reference frames. The program can hence be used
directly with the lab frame velocities.

86 Hard disks and spheres

Algorithm 2.1 (event-disks) is rigorous, but naive in that it com-
putes collision times even for pairs that are far apart and also recom-
putes all pair collision times from scratch after each event, although they
change only for pairs involving a collision partner. Improvements could
easily be worked into the program, but we shall not need them. How-
ever, even our basic code can be accepted only if it runs through many
billions of collisions (several hours of CPU time) without crashing. We
must care about code stability. In addition, we should invest in simpli-
fying input–output: it is a good strategy to let the program search for a
file containing the initial configuration (velocities, positions, and time),
possibly the final configuration of a previous calculation. If no such file
is found, a legal initial configuration should be automatically generated
by the program. Finally, we should plot the results in the natural units
of time for the simulation, such that during a unit time interval each
particle undergoes about one pair collision (and the whole system has
N/2 pair collisions). In this way, the results become independent of the
scale of the initial velocities.

Our molecular dynamics algorithm moves from one collision to the
next with an essentially fixed number of arithmetic operations, requir-
ing on the order of a microsecond for a few disks on a year 2005 laptop
computer. Each collision drives the system further in physical time. Solv-
ing Newton’s dynamics thus appears to be a mere question of computer
budget.

2.1.2 Chaotic dynamics

Algorithm 2.1 (event-disks) solves the hard-sphere equations of mo-
tion on the assumption that the calculation of collision times, positions,
velocity changes, etc. is done with infinite precision. This cannot re-
ally be achieved on a computer, but the question arises of whether it
matters that numbers are truncated after 8 or 16 decimal digits. It is
easiest to answer this question by pitting different versions of the same
event-driven algorithm against each other, starting from identical ini-
tial conditions, but with all calculations performed at different precision
levels: in one case in short format (single precision), and in the other
case in long format (double precision). The standard encoding of 32-bit
floating-point numbers ±a×10b uses one bit for the sign, eight bits for
the exponent b, and 23 bits for the fraction a, so that the precision—the
ratio of neighboring numbers that can be represented on the computer—
is approximately ε = 2−23 � 1.2×10−7. For a 64-bit floating point num-
ber, the precision is about ε = 1×10−16. Most computer languages allow
one to switch precision levels without any significant rewriting of code.

The two versions of the four-disk molecular dynamics calculation,
started off from identical initial conditions (as in Fig. 2.1), get out of
step after as few as 25 pair collisions (see Fig. 2.5), an extremely small
number compared with the million or so collisions which we can handle
per second on a year 2005 laptop computer.

This situation is quite uncomfortable: our computational results, for

2.1 Newtonian deterministic mechanics 87

(64-bit prec)

... t = 31.76 t = 32.80 t = 33.25 t = 33.32 t = 34.94

(32-bit prec)

... t = 32.34 t = 33.16 t = 33.42 t = 33.87 t = 33.93

Fig. 2.5 Calculations starting from the initial configuration of Fig. 2.1,
performed with 64-bit precision (top) and with 32-bit precision (bottom).

computing times beyond a few microseconds, are clearly uncontrolled.
We may drive up the precision of our calculation with special number
formats that are available in many computer languages. However, this
strategy cannot defeat the onset of chaos, that is, cure the extreme
sensitivity to the details of the calculation. It will be impossible to control
a hard-sphere molecular dynamics simulation for a few billion events.

(stat.)

Fig. 2.6 Magnification of a difference
in trajectories through a pair collision,
in the reference frame of a stationary
disk.

The chaos in the hard-sphere model has its origin in the negative
curvature of the spheres’ surfaces, which magnifies tiny differences in
the trajectory at each pair collision and causes serious rounding er-
rors in computations and humbling experiences at the billiard table (see
Fig. 2.6). On the other hand, this sensitivity to initial conditions en-
sures that even finite systems of disks and spheres can be described by
statistical mechanics, as will be discussed later in this chapter.

2.1.3 Observables

In the previous subsections, we have integrated the equations of motion
for hard spheres in a box, but have only looked at the configurations,
without evaluating any observables. We shall do the latter now. For
simplicity, we consider a projected density ηy(a), essentially the fraction
of time for which the y-coordinate of any particle is equal to a. More
precisely, {ηy(a) da} is the fraction of time that the y-coordinate of a disk
center spends between a and a + da (see Fig. 2.7). It can be computed
exactly for given particle trajectories between times t = 0 and t = T :{

y-density
at y = a

}
= ηy(a) =

1
T

∑
intersections i
with gray strip

in Fig. 2.7

1
|vy(i)| . (2.3)

In Fig. 2.7, there are five intersections (the other particles must also
be considered). At each intersection, 1/|vy| must be added, to take into
account the fact that faster particles spend less time in the interval
[a, a + da], and thus contribute less to the density at a.

88 Hard disks and spheres

t = 0

a

0 Tt t = T

Fig. 2.7 y-coordinate vs. time for one disk. The y-density ηy(a) is com-
puted from the time spent between a and a + da (see eqn (2.3)).

The y-density at a corresponds to the observable O(t) = δ [y(t) − a]
(where we have used the Dirac δ-function), and can also be obtained
from the time average

〈O(t)〉T =
1
T

∫ T

0

dt O(t),

so that

ηT
y (a) =

1
T

∫ T

0

dt δ [y(t) − a] . (2.4)

Seasoned theorists can derive the formula for the y-density in eqn (2.3)
in a split second from eqn (2.4) via the transformation rules for the δ-
function. Algorithm 2.1 (event-disks) numerically solves the equations
of motion for hard disks without discretization errors or other imperfec-
tions. In addition to this best possible method of data acquisition, we
may analyze the data using eqn (2.3), without losing information. In
principle, we are limited only by the finite total simulation time.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

Fig. 2.8 Stroboscopic snapshots of the simulation shown in Fig. 2.1.

It is possible to implement data analysis as in eqn (2.3), but this
approach is somewhat overambitious: we can certainly obtain exact run
averages, but because the number of runs is finite and the runs are not
infinitely long, statistical errors would still creep into the calculation. It
is thus justified to take a more leisurely approach to data analysis and

2.1 Newtonian deterministic mechanics 89

simply discretize the time average (2.4):

〈O(t)〉T � 1
M

M∑
i=1

O(ti).

We thus interrupt the calculation in Alg. 2.1 (event-disks) at fixed,
regular time intervals and take stroboscopic snapshots (see Fig. 2.8 and
Alg. 2.4 (event-disks(patch))). The snapshots can then be incorpo-

procedure event-disks(patch)

. . .
imin ← Int (t/∆t) + 1
imax ← Int (tnext/∆t)
for i = imin, . . . , imax do{

t′ ← i∆t − t
output {x1 + t′v1, . . . ,xN + t′vN}, {v1, . . . ,vN}

. . .
——

Algorithm 2.4 event-disks(patch). Alg. 2.1 (event-disks), modified
to output stroboscopic snapshots (with a time interval ∆t).

rated into histograms of observables, and give results identical to an
analysis of eqn (2.3) in the limit of vanishing width of the time slices
or for large run times. The density at point y then converges to a value
independent of the initial configuration, a true time average:

ηy(a) = lim
T→∞

1
T

∑
k

∫ T

0

dt δ[yk(t) − a],

where k = 1, . . . , N represent the disks in the box.

η

0
Ly0

p
ro

j.
 d

en
s.

 η
y

(h
is

t.
)

y−coordinate a

η

0
Ly0

p
ro

j.
 d

en
s.

 η
y

(h
is

t.
)

y−coordinate a

Fig. 2.9 Projected density in a square box at density η = 0.18. Left :
N = 4. Right : N = 64 (from Alg. 2.4 (event-disks(patch))).

Some data obtained from Alg. 2.4 (event-disks(patch)), for hard-
disk systems in a square box, are shown in Fig. 2.9. In the two graphs,

90 Hard disks and spheres

the covering density is identical, but systems are of different size. It often
surprises people that the density in these systems is far from uniform,
even though the disks do not interact, other than through their hard-
core. In particular, the boundaries, especially the corners, seem to attract
disks. Systems with larger {N, Lx, Ly} clearly separate into a bulk region
(the inner part) and a boundary.

2.1.4 Periodic boundary conditions

Bulk properties (density, correlations, etc.) differ from properties near
the boundaries (see Fig. 2.9). In the thermodynamic limit, almost the
whole system is bulk, and the boundary reduces to nearly nothing. To
compute bulk properties for an infinite system, it is often advantageous
to eliminate boundaries even in simulations of small systems. To do so,
we could place the disks on the surface of a sphere, which is an isotropic,
homogeneous environment without boundaries. This choice is, however,
problematic because at high density, we cannot place the disks in a nice
hexagonal pattern, as will be discussed in detail in Chapter 7. Periodic
boundary conditions are used in the overwhelming majority of cases (see
Fig. 2.10): in a finite box without walls, particles that move out through
the bottom are fed back at the top, and other particles come in from one
side when they have just left through the opposite side. We thus identify
the lower and upper boundaries with each other, and similarly the left
and right boundaries, letting the simulation box have the topology of
an abstract torus (see Fig. 2.11). Alternatively, we may represent a box
with periodic boundary conditions as an infinite, periodically repeated
box without walls, obtained by gluing together an infinite number of
identical copies, as also indicated in Fig. 2.10.

identify (glue)

identify

Fig. 2.10 Sample with periodic boundary conditions, interpreted as a
finite torus (left) or an infinite periodic system (right).

Fig. 2.11 Gluing together the sides of
the square in Fig. 2.10 generates an ob-
ject with the topology of a torus.

For hard spheres, the concept of periodic boundary conditions is rela-
tively straightforward. In more complicated systems, however (particles
with long-range interaction potentials, quantum systems, etc.), sloppy
implementation of periodic boundary conditions is frequently a source

2.1 Newtonian deterministic mechanics 91

of severe inconsistencies which are difficult to detect, because they en-
ter the program at the conception stage, not during execution. To avoid
trouble, we must think of a periodic system in one of the two frameworks
of Fig. 2.10: either a finite abstract torus or a replicated infinite system.
We should stay away from vaguely periodic systems that have been set
up with makeshift routines lacking a precise interpretation.

Algorithm 2.1 (event-disks) can be extended to the case of peri-
odic boundary conditions with the help of just two subroutines. As one
particle can be described by many different vectors (see the dark par-
ticle in the right part of Fig. 2.10), we need Alg. 2.5 (box-it) to find
the representative vector inside the central simulation box, with an x-
coordinate between 0 and Lx and a y-coordinate between 0 and Ly.2

Likewise, since many different pairs of vectors correspond to the same
two particles, the difference vector between these particles takes many
values. Algorithm 2.6 (diff-vec) computes the shortest difference vec-
tor between all representatives of the two particles and allows one to
decide whether two hard disks overlap.

procedure box-it

input x
x ← mod (x, Lx)
if (x < 0) x ← x + Lx

y ← mod (y, Ly)
if (y < 0) y ← y + Ly

output x
——

Algorithm 2.5 box-it. Reducing a vector x = {x, y} into a periodic
box of size Lx × Ly .

procedure diff-vec

input {x,x′}
∆x ← x′ − x (∆x ≡ {x∆, y∆})
call box-it (∆x)
if (x∆ > Lx/2) x∆ ← x∆ − Lx

if (y∆ > Ly/2) y∆ ← y∆ − Ly

output ∆x

——

Algorithm 2.6 diff-vec. The difference ∆x = {x∆, y∆} between vec-
tors x and x′ in a box of size Lx ×Ly with periodic boundary conditions.

Periodic systems have no confining walls, and thus no wall collisions.

2Some computer languages allow the output of the mod () function to be negative
(e.g. mod (−1, 3) = −1). Others implement mod () as a nonnegative function (so that,
for example, mod (−1, 3) = 2). The if () statements in Alg. 2.5 (box-it) are then
unnecessary.

92 Hard disks and spheres

Unlike the case for the planar box considered at the beginning of this
section, the pair collision time tpair is generally finite: even two particles
moving apart from each other eventually collide, after winding several
times around the simulation box (see Fig. 2.12), although this is relevant
only for low-density systems. We have to decide on a good strategy to
cope with this: either carefully program the situation in Fig. 2.12, or stay
with our initial attitude (in Alg. 2.2 (pair-time)) that particles moving
away from each other never collide—a dangerous fudge that must be
remembered when we are running the program for a few small disks in
a large box.

t t′ t′′ t′′′ tnext

Fig. 2.12 Pair collision in a box with periodic boundary conditions.

The complications of Fig. 2.12 are also absent in Sinai’s system of two
relatively large disks in a small periodic box, such that disks cannot pass
by each other (Sinai, 1970). Figure 2.13 shows event frames generated by
Alg. 2.1 (event-disks), using the (noninertial) stationary-disk reference
frame that was introduced in Fig. 2.6. Sinai’s hard disks can be simulated

t = 0 t = 0.06 t = 0.09 t = 0.54 t = 0.93 t = 1.33

t = 1.50 t = 1.81 t = 2.12 t = 2.29 t = 2.69 t = 3.09

Fig. 2.13 Time evolution of two disks in a square box with periodic
boundary conditions, in the stationary-disk reference frame.

directly as a single point in the stationary-disk reference frame.

2.2 Boltzmann’s statistical mechanics

We could set up the event-driven algorithm of Section 2.1 in a few hours
and follow the ballet of disks (spheres) approaching and flying away from
each other along intricate, even unpredictable trajectories. In doing so,

2.2 Boltzmann’s statistical mechanics 93

however, we engage in a computational project which in many respects is
far too complicated. In the limit t → ∞, detailed timing information, for
example the ordering of the snapshots in Fig. 2.8, does not enter into the
density profiles, spatial correlation functions, thermodynamic properties,
etc. We need to know only how often a configuration a appears during
an infinitely long molecular dynamics calculation. For hard spheres, it is
the quintessence of Boltzmann’s statistical mechanics that any two legal
configurations a and b have the same probability to appear: π(a) = π(b)
(see Fig. 2.14).

a b

Fig. 2.14 Equiprobability principle for hard disks: π(a) = π(b).

More precisely (for an infinitely long simulation), this means the fol-
lowing:{

probability of configuration with
[x1,x1 + dx1], . . . , [xN ,xN + dxN]

}
∝ π(x1, . . . ,xN) dx1, . . . , dxN ,

where

π(x1, . . . ,xN) =

{
1 if configuration legal
0 otherwise

. (2.5)

In the presence of an energy E which contains kinetic and potential
terms, eqn (2.5) takes the form of the equiprobability principle π(a) =
π(E(a)), where a refers to positions and velocities (see Subsection 2.2.4).
In the hard-sphere model, the potential energy vanishes for all legal
configurations, and we get back to eqn (2.5). This hypothesis can be
illustrated by molecular dynamics simulations (see Fig. 2.15), but the
equal probability of all configurations a and b is an axiom in statistical
mechanics, and does not follow from simple principles, such as micro-
reversibility or detailed balance. Its verification from outside of statistical
mechanics, by solving Newton’s equations of motion, has presented a
formidable mathematical challenge. Modern research in mathematics has
gone far in actually proving ergodicity, the equivalence between Newton’s
deterministic mechanics and Boltzmann’s statistical mechanics, for the
special case of hard spheres. The first milestone result of Sinai (1970), a
50-page proof, shows rigorously that the two-disk problem of Fig. 2.13
is ergodic. Several decades later it has become possible to prove that
general hard-disk and hard-sphere systems are indeed ergodic, under
very mild assumptions (Simanyi 2003, 2004).

Fig. 2.15 Trajectory of the system
shown in Fig. 2.13 after 18, 50, and 500
collisions.

94 Hard disks and spheres

Besides the mathematically rigorous approach, many excellent argu-
ments plead in favor of the equiprobability principle, for hard spheres
in particular, and for statistical physical systems in general. One of the
most discussed is Jaynes’ information-theoretical principle, which essen-
tially states (for hard spheres) that the equal-probability choice is an
unbiased guess. In Fig. 2.15, we show the trajectory of Sinai’s two-disk
system in the stationary-disk reference frame. It has been mathemat-
ically proven that for almost all initial conditions, the central area is
swept out evenly. This is the simplest pattern, the one containing the
least information about the system, and the one corresponding to Jaynes’
principle. The latter principle is closely related to Bayesian statistics
(see Subsection 1.3.4), with a most interesting difference. In Bayesian
statistics, one is hampered by the arbitrariness of defining an unbiased
(flat) a priori probability: what is flat with a given choice of variables ac-
quires structure under a coordinate transformation. In physics, the prob-
lem can be avoided because there exists a special coordinate system—
Cartesian positions and velocities. Boltzmann’s equal-probability choice
is to be understood with respect to Cartesian coordinates, as indicated
in eqn (2.5).

Fig. 2.16 Hard disks (left) and planets orbiting the sun (right): classical
dynamic systems with greatly different behavior.

The foundations of statistical mechanics would be simpler if all phys-
ical systems (finite or infinite, with an arbitrary energy) fell under the
reign of equiprobability (eqn (2.5)) and its generalizations. However, this
is not the case. A notorious counterexample to equal probability of states
with equal energy is the weakly interacting system of a few planets of
mass m orbiting the sun, of mass M (see Fig. 2.16). If we neglect the
planet–planet interactions altogether, in the limit m/M → 0, the planets
orbit the sun on classical Kepler ellipses, the solutions of the two-body
problem of classical mechanics. Small planet–planet interactions modify
the trajectories only slightly, even in the limit of infinite times, as was
shown by the seminal Kolmogorov–Arnold–Moser theorem (see Thirring
(1978) for a rigorous textbook discussion). As a consequence, for small
planet masses, the trajectories remain close to the unperturbed trajecto-
ries. This is totally different from what happens for small disks in a box,
which usually fly off on chaotic trajectories after a few violent collisions.
Statistical mechanics applies, however, for a large number of bodies (e.g.
for describing a galaxy).

2.2 Boltzmann’s statistical mechanics 95

2.2.1 Direct disk sampling

Boltzmann’s statistical mechanics calls for all legal configurations to be
generated with the same statistical weight. This can be put into practice
by generating all configurations—legal and illegal—with the same proba-
bility, and then throwing away (rejecting) the illegal ones. What remains
are hard-disk configurations, and they are clearly generated with equal
probability (see Alg. 2.7 (direct-disks) and Fig. 2.17). It is wasteful to
bring up illegal configurations only to throw them away later, but a bet-
ter solution has not yet been found. The direct-sampling algorithm can

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Fig. 2.17 Direct sampling for four hard disks in a box. The frames
i = 4, 9, 12 contain legal configurations (from Alg. 2.7 (direct-disks)).

procedure direct-disks

1 for k = 1, . . . , N do⎧⎪⎪⎨⎪⎪⎩
xk ← ran (xmin, xmax)
yk ← ran (ymin, ymax)
for l = 1, . . . , k − 1 do{

if (dist (xk,xl) < 2σ) goto 1 (reject sample—tabula rasa)
output {x1, . . . ,xN}
——

Algorithm 2.7 direct-disks. Direct sampling for N disks of radius σ
in a fixed box. The values of {xmin, xmax}, etc., depend on the system.

be written much faster than the molecular dynamics routine (Alg. 2.1
(event-disks)), as we need not worry about scalar products, collision
subroutines etc. The output configurations {x1, . . . ,xN} are produced
with the same probability as the snapshots of Alg. 2.1 (event-disks)
and lead to the same histograms as in Fig. 2.9 (because the physical
system is ergodic). We get a flavor of the conceptual and calculational
simplifications brought about by statistical mechanics.

The tabula-rasa rejection in Alg. 2.7 (direct-disks) often leads to
confusion: instead of sweeping away the whole configuration after the
generation of an overlap, one may be tempted to lift up the offending
disk only, and try again (see Fig. 2.18). In this procedure of random

96 Hard disks and spheres

sequential deposition, any correctly placed disk stays put, whereas in-
correctly positioned disks are moved away.

Monte Carlo

random deposition

Fig. 2.18 Difference between the direct-sampling Monte Carlo method
and random sequential deposition.

Random sequential deposition is an important model for adhesion and
catalysis (see the discussion in Chapter 7) but not for equilibrium: all
configurations are not equally probable. A simplified one-dimensional
discrete hard-rod model allows us to compute deposition probabilities
explicitly and show that they are not the same (see Fig. 2.19): we sup-
pose that rods may be deposited onto five sites, with a minimum dis-
tance of three sites between them. After placing the first rod (with the
same probability on all sites), we try again and again until a two-rod
configuration without overlap is found.

The configurations a and b are thus generated with half the proba-
bility of their parent, whereas the configuration c, a unique descendant,
inherits all the probability of its parent. We obtain

π(a) = π(b) = π(e) = π(f) =
1
4
× 1

2
=

1
8
,

whereas the configurations c and d have a probability

π(c) = π(d) =
1
4
.

In Fig. 2.19, we distinguish rods according to when they were placed (a
is different from d), but the deposition probabilities are nonequivalent
even if we identify a with d, b with e, and c with f . The counterexample
of Fig. 2.19 proves that random deposition is incorrect for hard disks and
spheres in any dimensionality, if the aim is to generate configurations
with equal probabilities.

The direct-sampling Monte Carlo algorithm, as discussed before, gen-
erates all 25 legal and illegal configurations with probability 1/25. Only
the six configurations {a, . . . , f} escape rejection, and their probabilities
are π(a) = · · · = π(f) = 1/6.

2.2 Boltzmann’s statistical mechanics 97

a b c d e f

Fig. 2.19 Random deposition of discrete hard rods.

2.2.2 Partition function for hard disks

Direct sampling would solve the simulation problem for disks and spheres
if its high rejection rate did not make it impractical for all but the small-
est and least dense systems. To convey how serious a problem the rejec-
tions become, we show in Fig. 2.20 the configurations, of which there are
only six, returned by one million trials of Alg. 2.7 (direct-disks) with
N = 16 particles and a density η = �σ2N/V = 0.3. The acceptance rate
is next to zero. It deteriorates further with increasing particle number
or density.

i = 84976 506125 664664 705344 906340 909040

Fig. 2.20 The six survivors from 106 trials of Alg. 2.7 (direct-disks)
(N = 16, η = 0.3, periodic boundary conditions).

Although Alg. 2.7 (direct-disks) does not appear to be a very useful
program, we shall treat it as a VIP3and continue analyzing it. We shall
come across a profound link between computation and physics: the ac-
ceptance rate of the algorithm is proportional to the partition function,
the number of configurations of disks with a finite radius.

We could compute the acceptance rate of the direct-sampling algo-
rithm from long runs at many different values of the radius σ, but it
is better to realize that each sample of random positions {x1, . . . ,xN}
gives a hard-disk configuration for all disk radii from zero up to half the
minimum distance between the vectors or for all densities smaller than
a limiting ηmax (we consider periodic boundary conditions; see Alg. 2.8
(direct-disks-any)). Running this algorithm a few million times gives
the probability distribution π(ηmax) and the acceptance rate of Alg. 2.7

3VIP: Very Important Program.

98 Hard disks and spheres

(direct-disks) for all densities (see Fig. 2.21):

paccept(η)︸ ︷︷ ︸
acceptance rate of

Alg. 2.7 (direct-disks)

= 1 −
∫ η

0

dηmax π(ηmax)︸ ︷︷ ︸
integrated histogram

of Alg. 2.8 (direct-disks-any)

. (2.6)

procedure direct-disks-any

input {N, Lx, Ly}
for k = 1, . . . , N do{

xk ← ran (0, Lx)
yk ← ran (0, Ly)

σ ← 1
2 mink 	=l [dist (xk,xl)]

ηmax ← �σ2N/(LxLy) (limiting density)
output ηmax

——

Algorithm 2.8 direct-disks-any. The limiting hard-disk density for
N random vectors in an Lx ×Ly box with periodic boundary conditions.

1

10−6

0 0.1 0.2 0.3 0.4

p
ac

ce
p
t(

η)

density η

from π(ηmax)
exp[−2(N−1)η]

Fig. 2.21 Acceptance rate of
Alg. 2.7 (direct-disks) for 16 disks
in a square box (from Alg. 2.8
(direct-disks-any), using eqn (2.6)).

The acceptance rate is connected to the number of configurations,
that is, the partition function Z(η) for disks of covering density η. For
zero radius, that is, for an ideal gas, we have⎧⎨⎩

number of
configurations
for density 0

⎫⎬⎭ : Z(η = 0) =
∫

dx1 . . .

∫
dxN = V N .

The partition function Z(η) for disks with a finite radius and a density
η is related to Z(0) via⎧⎨⎩

number of
configurations
for density η

⎫⎬⎭ : Z(η) =
∫

. . .

∫
dx1 . . . dxN π(x1, . . . ,xN)︸ ︷︷ ︸

for disks of finite radius

= Z(0)paccept(η).

This expression resembles eqn (1.38), where the volume of the unit
sphere in d dimensions was related to the volume of a hypercube via
the acceptance rate of a direct-sampling algorithm.

We shall now determine paccept(η) for the hard-disk system, and its
partition function, for small densities η in a box with periodic bound-
ary conditions, using a basic concept in statistical physics, the virial
expansion. Clearly,

Z(η) =
∫

. . .

∫
dx1 . . .dxN

[1 − Υ(x1,x2)]︸ ︷︷ ︸
no overlap

between 1 and 2

[1 − Υ(x1,x3)] · · · [1 − Υ(xN−1,xN)] , (2.7)

2.2 Boltzmann’s statistical mechanics 99

where

Υ(xk,xl) =

{
1 if dist(xk,xl) < 2σ

0 otherwise
.

The product in eqn (2.7) can be multiplied out. The dominant term
collects a “1” in each of the N(N − 1)/2 parentheses, the next largest
term (for small σ) picks up a single term Υ(xk,xl), etc. Because∫ ∫

dxk dxl Υ(xk,xl) = V

∫
dxl Υ(xk,xl)︸ ︷︷ ︸

volume of
excluded region for xl

= V 2 · 4�σ2

V
,

(the area of a disk of radius 2σ appears; see Fig. 2.22), we obtain

accessible region for l

disk k

Fig. 2.22 Excluded and accessible re-
gions for two disks of radius σ.

Z(η) = V N

(
1 − 4�σ2 N(N − 1)

2V

)
� V N exp [−2(N − 1)η]︸ ︷︷ ︸

paccept(η)

. (2.8)

This implies that the probability for randomly chosen disks k and l not
to overlap,⎧⎨⎩

probability that
disks k and l

do not overlap

⎫⎬⎭ = 1 − 4�σ2

V
� exp

(
−4�σ2

V

)
, (2.9)

is uncorrelated at low density. For 16 disks, the function in eqn (2.8)
yields paccept = Z(η)/V N � e−30η. This fits very well the empirical
acceptance rate obtained from Alg. 2.8 (direct-disks-any). At low
density, it is exact (see Fig. 2.21).

We have computed in eqn (2.8) the second virial coefficient B of the
hard-disk gas in two dimensions, the first correction term in 1/V beyond
the ideal-gas expression for the equation of state:

PV

NRT
=

V

N

∂ log Z

∂V
= 1 + B

1
V

+ C
1

V 2
+ · · · ,

which, from eqn (2.8), where η = �σ2N/V , is equal to

1 + 2(N − 1)�σ2︸ ︷︷ ︸
B

1
V

.

This is hardly a state-of-the-art calculation in the twenty-first century,
given that in 1874, Boltzmann had already computed the fourth virial
coefficient, the coefficient of V −3 in the above expansion, for three-
dimensional spheres. The virial expansion was once believed to give
systematic access to the thermodynamics of gases and liquids at all den-
sities up to close packing, in the same way that, say, the expansion of
the exponential function ex = 1 + x + x2/2! + x3/3! + · · · converges
for all real and complex x, but it becomes unwieldy at higher orders.
More fundamentally, this perturbation approach cannot describe phase

100 Hard disks and spheres

transitions: there is important physics beyond virial expansions around
η = 0, and beyond the safe harbor of direct-sampling algorithms.

The relation between our algorithms and the partition functions of
statistical mechanics holds even for the Markov-chain algorithm in Sub-
section 2.2.3, which concentrates on a physical system in a small window
corresponding to the throwing range. This algorithm thus overcomes the
direct-sampling algorithm’s limitation to low densities or small particle
numbers, but has difficulties coping with large-scale structures, which
no longer allow cutting up into small systems.

2.2.3 Markov-chain hard-sphere algorithm

a a (+ move) b

a a (+ move) b

Fig. 2.23 Accepted (top) and rejected (bottom) Monte Carlo moves for
a hard-disk system.

Direct sampling for hard disks works only at low densities and small
particle numbers, and we thus switch to a more general Markov-chain
Monte Carlo algorithm (see Alg. 2.9 (markov-disks)). Disks are moved

procedure markov-disks

input {x1, . . . ,xN} (configuration a)
k ← nran (1, N)
δxk ← {ran (−δ, δ) , ran (−δ, δ)}
if (disk k can move to xk + δxk) xk ← xk + δxk

output {x1, . . . ,xN} (configuration b)
——

Algorithm 2.9 markov-disks. Generating a hard-disk configuration b
from configuration a using a Markov-chain algorithm (see Fig. 2.23).

analogously to the way adults wander between pebble positions on the
Monaco heliport, and attempts to reach illegal configurations with over-
laps are rejected (see Fig. 2.23). Detailed balance between configurations
holds for the same reason as in Alg. 1.2 (markov-pi). The Markov-chain
hard-disk algorithm resembles the adults’ game on the heliport (see

2.2 Boltzmann’s statistical mechanics 101

i = 1 (rej.) i = 2 i = 3 i = 4 (rej.) i = 5 i = 6

i = 7 i = 8 (rej.) i = 9 (rej.) i = 10 i = 11 i = 12 (rej.)

Fig. 2.24 Markov-chain Monte Carlo algorithm for hard disks in a box
without periodic boundary conditions (see Alg. 2.9 (markov-disks)).

Fig. 2.24), but although we again drive disks (pebbles) across a two-
dimensional box (the landing pad), the 2N -dimensional configuration
space is not at all easy to characterize. We must, for example, under-
stand whether the configuration space is simply connected, so that any
configuration can be reached from any other by moving disks, one at a
time, with an infinitesimal step size. Simple connectivity of the configu-
ration space implies that the Monte Carlo algorithm is ergodic, a crucial
requirement. Ergodicity, in the sense just discussed, can indeed be bro-
ken for small N or for very high densities, close to jammed configurations
(see the discussion of jamming in Chapter 7). For our present purposes,
the question of ergodicity is best resolved within the constant-pressure
ensemble, where the box volume may fluctuate (see Subsection 2.3.4),
and the hard-sphere Markov-chain algorithm is trivially ergodic.

The Markov-chain algorithm allows us to generate independent snap-
shots of configurations for impressively large system sizes, and at high
density. These typical configurations are liquid-like at low and moderate
densities, but resemble a solid beyond a phase transition at η � 0.70.
This transition was discovered by Alder and Wainwright (1957) using the
molecular dynamics approach of Section 2.1. This was very surprising
because, in two dimensions, a liquid–solid transition was not expected to
exist. A rigorous theorem (Mermin and Wagner 1966) even forbids po-
sitional long-range order for two-dimensional systems with short-range
interactions, a class to which hard disks belong. An infinitely large sys-
tem thus cannot have endless patterns of disks neatly aligned as in the
right frame of Fig. 2.25. Nevertheless, in two dimensions, long-range or-
der is possible for the orientation of links between neighbors, that is, the
angles, which are approximately 0, 60, 120, 180, and 240 degrees in the
right frame of Fig. 2.25, can have long-range correlations across an infi-
nite system. A detailed discussion of crystalline order in two dimensions
would go beyond the scope of this book, but the transition itself will be
studied again in Subsection 2.4, in the constant-pressure ensemble.

It is interesting to interpret the changes in the configuration space
when the system passes through the phase transition. Naively, we would

102 Hard disks and spheres

η = 0.48 η = 0.72

Fig. 2.25 Snapshots of 256 hard disks in a box of size 1 × √
3/2 with

periodic boundary conditions (from Alg. 2.9 (markov-disks)).

suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.

2.2 Boltzmann’s statistical mechanics 103

i = 0

disk k

... i = 25600000000

same disk

Fig. 2.26 Initial and final configurations of a Monte Carlo simulation

for 256 disks (size 1 ×√
3/2, periodic boundary conditions, η = 0.72).

2.2.4 Velocities: the Maxwell distribution

Molecular dynamics concerns positions and velocities, whereas Alg. 2.7
(direct-disks) and Alg. 2.9 (markov-disks), only worry about po-
sitions. Why the velocities disappear from the Monte Carlo programs
deserves a most thorough answer (and is a No. 1 exam question).

To understand velocities in statistical mechanics, we again apply the
equiprobability principle, not to particle positions within a box, but to
the velocities themselves. This principle calls for all legal sets of hard-
sphere velocities to appear with the same probability:

π(v1, . . . ,vN) =

{
1 if velocities legal
0 if forbidden

.

For concreteness, we consider hard disks in a box. A set {v1, . . . ,vN}
of velocities is legal if it corresponds to the correct value of the kinetic
energy

Ekin =
1
2
m · (v2

1 + · · · + v2
N

)
(fixed).

Each squared velocity in this equation has two components, that is,
v2

k = v2
x,k + v2

y,k, and any legal set of velocities corresponds to a point
on a 2N -dimensional sphere with r2 = 2Ekin/m. The equiprobability
principle thus calls for velocities to be random vectors on the surface of
this 2N -dimensional sphere (see Fig. 2.27).

We recall from Subsection 1.2.6 that random points on the surface of a
hypersphere can be sampled with the help of 2N independent Gaussian
random numbers. The algorithm involves a rescaling, which becomes
unnecessary in high dimensions if the Gaussians’ variance is chosen cor-
rectly (see the discussion of Alg. 1.22 (direct-surface)). In our case,
the correct scaling is

π(vx) =
1√
2�σ

exp
(
− v2

x

2σ2

)
, etc.,

104 Hard disks and spheres

2N-dim. sphere, r2 = 2Ekin/m

Fig. 2.27 Legal sets of velocities for N hard disks in a box.

where

σ =

√
2
m

Ekin

dN
.

This is the Maxwell distribution of velocities in d dimensions; Ekin/(dN)
is the mean kinetic energy per degree of freedom and is equal to 1

2kBT ,
where T is the temperature (in kelvin), and kB is the Boltzmann con-
stant. We find that the variance of the Gaussian describing the velocity
distribution function is σ2 = kBT/m, and we finally arrive at the follow-
ing expressions for the probability distribution of a single component of
the velocity:

π(vx) dvx =
√

m

2�kBT
exp
(
−1

2
mv2

x

kBT

)
dvx.

In two dimensions, we use the product of distributions, one for vx, and
another for vy. We also take into account the fact that the volume ele-
ment can be written as dvx dvy = dφ v dv = 2�v dv:

π(v) dv =
m

kBT
v exp

(
−1

2
mv2

kBT

)
dv.

In three dimensions, we do the same with {vx, vy, vz} and find

π(v) dv =

√
2
�

(
m

kBT

)3/2

v2 exp
(
−1

2
mv2

kBT

)
dv.

Here v is equal to
√

v2
x + v2

y in two dimensions and to
√

v2
x + v2

y + v2
z in

three dimensions.
We can compare the Maxwell distribution with the molecular dynam-

ics simulation results for four disks in a box, and check that the distri-
bution function for each velocity component is Gaussian (see Fig. 2.28).
Even for these small systems, the difference between Gaussians and ran-
dom points on the surface of the hypersphere is negligible.

In conclusion—and in response to the exam question at the beginning
of this subsection—we see that particle velocities drop out of the Monte

2.2 Boltzmann’s statistical mechanics 105

0

0.4

420−2−4

π
(v

x
/σ

)
(h

is
t.

)

velocity component vx/σ

hist.
Maxwell

0

0.5

0 1

π
[v

/(
2σ

)]
 (

h
is

t.
)

abs. velocity v/(2σ)

hist.
Maxwell

Fig. 2.28 Histograms of a velocity component vx (left) and of v =p
v2

x + v2
y (right) for four disks in a box (from Alg. 2.1 (event-disks)).

Carlo approach of Alg. 2.7 (direct-disks) and its generalizations be-
cause they form an independent sampling problem of random points on
the surface of a hypersphere, solved by Alg. 1.22 (direct-surface),
which is naturally connected to the Maxwell distribution of particle ve-
locities.

2.2.5 Hydrodynamics: long-time tails

The direct-sampling algorithms for the positions and the velocities of
hard spheres (Algs 2.7 (direct-disks) and 1.22 (direct-surface))
implement a procedure analogous to the molecular-dynamics approach,
which also determines positions and velocities. In this subsection, we
again scrutinize the relationship of this Monte Carlo approach to hard
spheres with simulations using molecular dynamics. The theorems of
Sinai and Simanyi assure us that molecular dynamics, the solution of
Newton’s equations, converges towards equilibrium, meaning that during
an infinitely long simulation, all legal sets of positions and velocities come
up with the same probability.

In a related context, concerning random processes, simple conver-
gence towards the stationary probability distribution has proved insuffi-
cient (see Subsection 1.1.4). We needed exponential convergence, with a
timescale, the correlation time, for practical equivalence of the Markov-
chain approach to direct sampling. This timescale was provided by the
second largest eigenvalue of the transfer matrix and it allowed us to dis-
tinguish between short and long simulations: a Markov chain that had
run several times longer than the correlation time could be said to be
practically in equilibrium.

As we shall see, the molecular dynamics of hard disks and spheres
lacks an analogous timescale, that is, a typical time after which Alg. 2.1
(event-disks) would move from one set of positions and velocities to an-
other independent set. Convergence is guaranteed by theorems in math-

106 Hard disks and spheres

ematics, but it is not exponential. The inescapable consequence of this
absence of a scale is that statistical mechanics cannot capture all there
is to molecular dynamics. Another discipline of physics, hydrodynamics,
also has its word to say here.

We shall follow this discussion using a special quantity, the velocity
autocorrelation function, whose choice we shall first describe the mo-
tivation for. We imagine a configuration of many hard disks, during a
molecular dynamics simulation, in equilibrium from time t′ = 0 to time
t. Each particle moves from position x(0) to x(t), where

x(t) − x(0) =
∫ t

0

dt′ v(t′)

(we omit particle indices in this and the following equations). We may
average this equation over all possible initial conditions, but it is better
to first square it to obtain the mean squared particle displacement

〈
(x(t) − x(0))2

〉
=
∫ t

0

dt′
∫ t

0

dt′′ 〈(v(t′) ··· v(t′′))〉︸ ︷︷ ︸
Cv(t′′−t′)

.

For a rapidly decaying velocity autocorrelation function, the autocorre-
lation function Cv will be concentrated in a strip around τ = t′′− t′ = 0
(see Fig. 2.29). In the limit t → ∞, we can then extend the integration,
as shown, let the strip extension go to ∞, and obtain the following,
where τ = t′′ − t′:

1
t

〈
(x(t) − x(0))2

〉 � 1
t

∫∫
strip in
Fig. 2.29

dt′ dτ Cv(τ)

t→∞−−−−−−−−−→
decay of C(τ)
faster than 1/τ

2
∫ ∞

0

dτ Cv(τ) = 2D, (2.10)

We see that the mean square displacement during the time interval from
0 to t is proportional to t (not to t2, as for straight-line motion). This
is a hallmark of diffusion, and D in the above equation is the diffusion
constant. Equation (2.10) relates the diffusion constant to the integrated
velocity autocorrelation function. Exponential decay of the autocorrela-

t

0

0

t

t′

t′′ τ

Fig. 2.29 Integration domain for
the velocity autocorrelation function
(square), and strip chosen (gray),
equivalent for t → ∞.

tion function causes diffusive motion, at least for single particles, and
would show that molecular dynamics is practically identical to statistical
mechanics on timescales much larger than the correlation time.

The simple version of Alg. 2.1 (event-disks) (with none of the refine-
ments sketched in Subsection 2.1.1) allows us to compute the velocity
autocorrelation function in the interesting time regime for up to � 1000
disks. It is best to measure time in units of the collision time: between
time 0 and time t′, each particle should have undergone on average t′

collisions—the total number of pair collisions in the system should be
� 1

2Nt′. Even with a basic program that tests far more collisions than
necessary, we can redo a calculation similar that of Alder and Wainwright

2.2 Boltzmann’s statistical mechanics 107

(1970), and produce the clear-cut result for the correlation between the
velocity vk(t) of particle k at time t and the velocity vk(t + τ) at some
later time (see Fig. 2.30). There is no indication of an exponential decay
of the autocorrelation function (which would give a timescale); instead,
the velocity autocorrelation function of the two-dimensional hard-sphere
gas decays as a power law 1/τ . In d dimensions, the result is

Cv(τ) = 〈(v(0) ··· v(τ))〉 ∝ 1
τd/2

. (2.11)

0

0.05

0 0.1 0.2

v
el

o
ci

ty
 a

u
to

co
rr

.

inverse time τ−1

N = 256
512

Fig. 2.30 Velocity autocorrelation for disks vs. inverse time (in collisions
per disk; η = 0.302, square box, from Alg. 2.1 (event-disks)).

The disks in the simulation are in equilibrium: snapshots of velocities
give only the Maxwell distribution. It makes sense, however, to consider
the direction of motion of a particle during a certain time interval. In
order to move in that direction, a particle has to get other particles (in
front of it) out of the way, and these, in turn, form a kind of eddy that
closes on itself behind the original particle, pushing it to continue mov-
ing in its original direction. Theoretically, long-time tails are very well
understood, and detailed calculations confirm the picture of eddies and
the results of straightforward molecular dynamics (for an introductory
discussion of long-time tails, see Pomeau and Résibois (1975)).

Long-time tails are most pronounced in two dimensions, basically be-
cause particles that are pushed away in front of a target disk have only
two directions to go. In this case, of two dimensions, this constriction
has dangerous effects on the diffusion constants: the mean square dis-
placement, for large time intervals t, is not proportional to t as in dif-
fusive motion, but to t log t. (This follows from entering eqn (2.11) into
eqn (2.10).) All this, however, does not imply that, in two dimensions,
diffusive motion does not exist and that, for example, a colloidal Brown-
ian particle on a water surface in a big shallow trough moves faster and
faster as time goes on. For very slow motion, thermal coupling to the
outside world restores a finite diffusion constant (for an example of ther-
mal coupling, see Subsection 2.3.1). It is certainly appropriate to treat

108 Hard disks and spheres

a Brownian particle on a water surface with statistical mechanics. Some
other systems, such as the earth’s atmosphere, are in relatively fast mo-
tion, with limited thermal exchange. Such systems are described partly
by statistical physics, but mostly by hydrodynamics, as is finally quite
natural. We have seen in this subsection that hydrodynamics remains
relevant to mechanical systems even in the long-time (equilibrium) limit,
in the absence of thermal coupling to the outside world.

2.3 Pressure and the Boltzmann
distribution

Equilibrium statistical mechanics contains two key concepts. The first
and foremost is equiprobability, the principle that configurations with
the same energy are equally probable. This is all we need for hard disks
and spheres in a box of fixed volume. In this section, we address the
second key concept, the Boltzmann distribution π(a) ∝ e−βE(a), which
relates the probabilities π(a) and π(b) of configurations a and b with
different energies. It comes up even for hard spheres if we allow variations
in the box volume (see Fig. 2.31) and allow exchange of energy with an
external bath. We thus consider a box at constant temperature and
pressure rather than at constant temperature and volume.0 L x

Fig. 2.31 A box with disks, closed off
by a piston exerting a constant force.

For hard spheres, the constant-pressure ensemble allows density fluc-
tuations on length scales larger than the fixed confines of the simulation
box. The absence of such fluctuations is one of the major differences
between a large and a periodic small system (see Fig. 2.32; the small
system has exactly four disks per box, the large one between two and
six). Our Monte Carlo algorithm for hard spheres at constant pressure
is quite different from Alg. 2.7 (direct-disks), because it allows us
to carry over some elements of a direct sampling algorithm for ideal
particles. We shall discuss this non-interacting case first.

small box (periodic) large box

Fig. 2.32 256 disks at density η = 0.48. Left : periodically replicated
system of four particles. Right : large periodic box.

2.3 Pressure and the Boltzmann distribution 109

2.3.1 Bath-and-plate system

To familiarize ourselves with the concept of pressure, we consider a box
filled with hard disks and closed off by a piston, at position x = L. A
spring pushes the piston to the left with constant force, independent
of x (see Fig. 2.31). The particles and the piston have kinetic energy.
The piston has also potential energy, which is stored in the spring. The
sum of the two energies is constant. If the piston is far to the right, the
particles have little kinetic energy, because potential energy is stored in
the spring. In contrast, at small L, the particles are compressed and they
have a higher kinetic energy. As the average kinetic energy is identified
with the temperature (see Subsection 2.2.4), the disks are not only at
variable volume but also at nonconstant temperature.

It is preferable to keep the piston–box system at constant temperature.
We thus couple it to a large bath of disks through a loose elastic plate,
which can move along the x-direction over a very small distance ∆ (see
Fig. 2.34). By zigzagging in this interval, the plate responds to hits from
both the bath and the system. For concreteness, we suppose that the
particles in the system and in the bath, and also the plate, all have a
mass m = 1 (the spring itself is massless). All components are perfectly
elastic. Head-on collisions between elastic particles of the same mass

vx vx
′

t − δ

t

t + δ

vxvx
′

Fig. 2.33 Elastic head-on collision be-
tween equal-mass objects (case v′x = 0
shown).

exchange the velocities (see Fig. 2.33), and the plate, once hit by a bath
particle with an x-component of its velocity vx will start vibrating with
a velocity ±vx inside its small interval (over the small distance ∆) until
it eventually transfers this velocity to another particle, either in the box
or in the bath.

∆

bath

box

loose plate

0 L x

Fig. 2.34 The box containing particles shown in Fig. 2.31, coupled to
an infinite bath through a loose plate.

The plate’s velocity distribution—the fraction of time it spends at
velocity vx—is not the same as the Maxwell distribution of one veloc-
ity component for the particles. This is most easily seen for a bath of
Maxwell-distributed noninteracting point particles (hard disks with zero

110 Hard disks and spheres

radius): fast particles zigzag more often between the plate and the left
boundary of the bath than slow particles, biasing the distribution by a
factor |vx|:

π(vx) dvx ∝ |vx| exp
(−βv2

x/2
)

dvx. (2.12)

We note that the Maxwell distribution for one velocity component lacks
the |vx| term of eqn (2.12), and it is finite at vx = 0. The biased dis-
tribution, however, must vanish at vx = 0: to acquire zero velocity, the
plate must be hit by a bath particle which itself has velocity zero (see
Fig. 2.33). However, these particles do not move, and cannot get to the
plate. This argument for a biased Maxwell distribution can be applied
to a small layer of finite-size hard disks close to the plate, and eqn (2.12)
remains valid.

The relatively infrequent collisions of the plate with box particles play
no role in establishing the probability distribution of the plate velocity,
and we may replace the bath and the plate exactly by a generator of
biased Gaussian random velocities (with vx > 0; see Fig. 2.33). The dis-
tribution in eqn (2.12) is formally equivalent to the Maxwell distribution
for the absolute velocity in two dimensions, and so we can sample it with
two independent Gaussians as follows:

{Υ1, Υ2} ← {gauss (1/
√

β) , gauss (1/
√

β)},
vx ←

√
Υ2

1 + Υ2
2. (2.13)

Alternatively, the sample transformation of Subsection 1.2.4 can also be
applied to this problem:∫ 1

0

dΥ = c

∫ ∞

0

du exp (−u) = c′
∫ ∞

0

dvx vx exp
(−βv2

x/2
)
.

The leftmost integral is sampled by Υ = ran (0, 1). The substitutions
exp (−u) = Υ and βv2

x/2 = u yield

vx ←
√

−2 log [ran (0, 1)]
β

.

This routine is implemented in Alg. 2.10 (maxwell-boundary). It exactly
replaces—integrates out—the infinite bath.0 L x

Maxwell boundary

Fig. 2.35 A piston with Maxwell
boundary conditions at x = 0.

procedure maxwell-boundary

input {vx, vy} (disk in contact with plate)
Υ ← ran (0, 1)
vx ←√−2log (Υ) /β
output {vx, vy}
——

Algorithm 2.10 maxwell-boundary. Implementing Maxwell boundary
conditions.

In conclusion, to study the box–bath–piston system, we need not set
up a gigantic molecular dynamics simulation with particles on either

2.3 Pressure and the Boltzmann distribution 111

side of the loose plate. The bath can be integrated out exactly, to leave
us with a pure box–piston model with Maxwell boundary conditions.
These boundary conditions are of widespread use in real-life simulations,
notably when the temperature varies through the system.

2.3.2 Piston-and-plate system

We continue our analysis of piston-and-plate systems, without a com-
puter, for a piston in a box without disks, coupled to an infinite bath
represented by Maxwell boundary conditions (see Fig. 2.35). The piston
hits the plate L = 0 at times {. . . , ti, ti+1, . . . }. Between these times,
it obeys Newton’s equations with the constant force generated by the
spring. The piston height satisfies L(t − ti) = v0 · (t − ti) − 1

2 (t − ti)2

(see Fig. 2.36). We take the piston mass and restoring force to be equal
to one, and find

ti+1 − ti︸ ︷︷ ︸
time of flight
in Fig. 2.36

= 2v0.

We see that the time the piston spends on a trajectory with initial
velocity v0 is proportional to v0. We thus find the following:

ti+1

ti

0

ti
m

e
t

piston position L

Fig. 2.36 Trajectory {L, t} of a piston
coupled to a plate with Maxwell bound-
ary conditions at L = 0.

⎧⎨⎩
fraction of time spent

at initial velocities
[v0, v0 + dv0]

⎫⎬⎭ ∝
time of
flight︷︸︸︷
v0

Maxwell boundary cond.︷ ︸︸ ︷
v0 exp

(−βv2
0/2
)
dv0 .

During each flight, the energy is constant, and we can translate what we
have found into a probability distribution of the energy E. Because dE =
v0 dv0, the time the piston spends in the interval of energies [E, E+dE]—
the probability π(E) dE—is

π(E) dE ∝
√

Ee−βE dE. (2.14)

The factor
√

E in eqn (2.14) is also obtained by considering the phase
space of the moving piston, spanned by the variables L and v (see
Fig. 2.37). States with an energy smaller than E are below the curve

L(E, v) = E − v2

2
.

The volume V(E) of phase space for energies ≤ E is given by

V(E) =
∫ √

2E

0

dv

[
E − v2

2

]
=
[
Ev − v3

6

]√2E

0

=
√

2
2
3
E3/2.

It follows that the density of states for an energy E, that is, the number
of phase space elements with energies between E and E + dE, is given
by

N (E) =
∂

∂E
V(E) =

√
2E.

112 Hard disks and spheres

E+dE
E

0

0

p
is

to
n

 p
os

it
io

n
 L

absolute piston velocity |v|

N(E)dE

trajectory with E
E + dE

Fig. 2.37 Piston–plate system. The phase space for an energy in the
interval [E, E + dE] has a volume N (E) dE.

So, we expect to have a probability π(E) as follows:

π(E) dE = N (E) e−βE dE.

It also follows that the system satisfies the equiprobability principle,
that is, it spends equal amounts of time in the interval dx dv, whatever
v is. This follows simply from the fact that dx is proportional to dE and
dv is proportional to dt:

π(x, v) dx dv = exp [−βE(x, v)] dx dv.

This is the Boltzmann distribution, and we have derived it, as promised,
from the equiprobability principle. We can also obtain the Boltzmann
distribution for a piston–plate model with modified springs, for example
with a potential energy E(L) = Lα with arbitrary positive α different
from the case α = 1 treated in this subsection (see Exerc. 2.15).

Our solution of the piston–plate model of Fig. 2.35 can be generalized
to the case of a box containing particles in addition to the piston, the
spring, and the vibrating plate. With more than one disk, we can no
longer solve the equations of motion of the coupled system analytically,
and have to suppose that for a fixed piston position and velocity of the
piston all disk positions and velocities are equally probable, and also
that for fixed disks, the parameters of the piston obey the Boltzmann
distribution. The argument becomes quite involved. In the remainder of
this book, we rather take for granted the two pillars of statistical physics,
namely the equiprobability principle (π(a) = π(E(a))) and the Boltz-
mann distribution, and study their consequences, moving away from the
foundations of statistical mechanics to what has been built on top of
them.

2.3 Pressure and the Boltzmann distribution 113

2.3.3 Ideal gas at constant pressure

In this subsection, we work out some sampling methods for a one-
dimensional gas of point particles interacting with a piston. What we
learn here can be put to work for hard spheres and many other systems.

In this gas, particles at positions {x1, . . . , xN} on the positive axis may
move about and pass through each other, but must satisfy xk < L, where
L is again the piston position, the one-dimensional volume of the box.
The energy of the piston at position L is PL, where P is the pressure
(see Fig. 2.38). L x0

Fig. 2.38 Particles in a line, with a
piston enforcing constant pressure, a
restoring force independent of L.

The system composed of the N particles and the piston may be treated
by Boltzmann statistical mechanics with a partition function

Z =
∫ ∞

0

dL e−βPL

∫ L

0

dx1 . . .

∫ L

0

dxN , (2.15)

which we can evaluate analytically:

Z =
∫ ∞

0

dL e−βPLLN =
N !

(βP)N+1
.

We can use this to compute the mean volume 〈L〉 of our system,

〈Volume〉 = 〈L〉 =

∫∞
0 dL LN+1e−βPL∫∞
0 dL LNe−βPL

=
N + 1
βP

,

which gives essentially the ideal-gas law PV = NkBT .
We may sample the integral in eqn (2.15) by a two-step approach.

First, we fix L and directly sample particle positions to the left of the
piston. Then, we fix the newly obtained particle positions {x1, . . . , xN}
and sample a new piston position L, to the right of all particles, using
the Metropolis algorithm (see Alg. 2.11 (naive-piston-particles) and
Fig. 2.39). To make sure that it is correct to proceed in this way, we may
write the partition function given in eqn (2.15) without L-dependent
boundaries for the x-integration:

Z =
∫ ∞

0

dL

∫ ∞

0

dx1 . . .

∫ ∞

0

dxN e−βPL {L > {x1, . . . , xN}}. (2.16)

The integrals over the positions {x1, . . . , xN} no longer have an L-
dependent upper limit, and Alg. 2.11 (naive-piston-particles) is
thus correct. The naive piston–particle algorithm can be improved: for
fixed particle positions, the distribution of L, from eqn (2.16), is π(L) ∝
e−βPL for L > xmax, so that ∆L = L − xmax can be sampled directly
(see Alg. 2.12 (naive-piston-particles(patch))). This Markov-chain
algorithm consists of two interlocking direct-sampling algorithms which
exchange the current values of xmax and L: one algorithm generates par-
ticle positions for a given L, and the other generates piston positions for
given {x1, . . . , xN}.

114 Hard disks and spheres

procedure naive-piston-particles

input L
{x1, . . . , xN} ← {ran (0, L) , . . . , ran (0, L)} (all indep.)
xmax ← max (x1, . . . , xN)
∆L ← ran (−δ, δ)
Υ ← exp (−βP∆L)
if (ran (0, 1) < Υ and L + ∆L > xmax) then{

L ← L + ∆L

output L, {x1, . . . , xN}
——

Algorithm 2.11 naive-piston-particles. Markov-chain algorithm for
one-dimensional point particles at pressure P (see patch in Alg. 2.12).

a

∆L

b (rejected)

a

∆L

b′

Fig. 2.39 Piston moves in Alg. 2.11 (naive-piston-particles). The
move a → b′ is accepted with probability exp (−βP∆L).

We can construct a direct-sampling algorithm by a simple change of
variables in the partition function Z:

Z =
∫ ∞

0

dL LN

∫ L

0

dx1

L
. . .

∫ L

0

dxN

L
e−βPL (2.17)

=
∫ ∞

0

dL LNe−βPL︸ ︷︷ ︸
sample from

gamma distribution

∫ 1

0

dα1 . . .

∫ 1

0

dαN︸ ︷︷ ︸
sample as αk = ran (0, 1)

for k = 1, . . . , N

. (2.18)

The integration limits for the variables {α1, . . . , αN} no longer depend
on L, and the piston and particles are decoupled. The first integral in
eqn (2.18) is a rescaled gamma distribution π(x) ∝ xN e−x with x = βPL
(see Fig. 2.40), and gamma-distributed random numbers can be directly
sampled as a sum of N + 1 exponential random numbers. For N = 0,
π(x) is a single exponential random variable. For N = 1, it is sampled
by the sum of two independent exponential random numbers, whose

2.3 Pressure and the Boltzmann distribution 115

procedure naive-piston-particles(patch)

input L
{x1, . . . , xN} ← {ran (0, L) , . . . , ran (0, L)}
xmax ← max (x1, . . . , xN)
∆L ← −log (ran (0, 1)) /(βP)
L ← xmax + ∆L

output L, {x1, . . . , xN}
——

Algorithm 2.12 naive-piston-particles(patch). Implementing di-
rect sampling of L into the Markov-chain algorithm for {x1, . . . , xN}.

distribution, the convolution of the original distributions, is given by

π(x) =
∫ x

0

dy e−ye−(x−y)

= e−x

∫ x

0

dy = xe−x

(see Subsection 1.3.1). More generally, a gamma-distributed random
variable taking values x with probability ΓN (x) can be sampled by the
sum of logarithms of N +1 random numbers, or, better, by the logarithm
of the product of the random numbers, to be computed alongside the
αk. It remains to rescale the gamma-distributed sample x into the size of
the box, and the random numbers {α1, . . . , αN} into particle positions
(see Alg. 2.13 (direct-piston-particles)).

procedure direct-piston-particles

Υ ← ran (0, 1)
for k = 1, . . . , N do{

αk ← ran (0, 1)
Υ ← Υran (0, 1)

L ← −log (Υ) /(βP)
output L, {α1L, . . . , αNL}
——

Algorithm 2.13 direct-piston-particles. Direct sampling of one-
dimensional point particles and a piston at pressure P .

0

1

0 1 2 3 4 5 6

Γ
N
(x

)
(g

a
m

m
a
 d

is
t.

)

x

N = 0
1
2
3
4

Fig. 2.40 Gamma distribution
ΓN (x) = xNe−x/N !, the distribution
of the sum of N + 1 exponentially
distributed random numbers.

2.3.4 Constant-pressure simulation of hard spheres

It takes only a few moments to adapt the direct-sampling algorithm
for one-dimensional particles to hard spheres in a d-dimensional box of
variable volume V (and fixed aspect ratio) with π(V) ∝ exp (−βPV).
We simply replace the piston by a rescaling of the box volume and take
into account the fact that the sides of the box scale with the dth root
of the volume. We then check whether the output is a legal hard-sphere
configuration (see Alg. 2.14 (direct-p-disks)). This direct-sampling
algorithm mirrors Alg. 2.7 (direct-disks) (see Fig. 2.41).

116 Hard disks and spheres

procedure direct-p-disks

1 Υ ← ran (0, 1)
for k = 1, . . . , N do{

αk ← {ran (0, 1) , ran (0, 1)}
Υ ← Υran (0, 1)

L ←√−log (Υ) /(βP)
for k = 1, . . . , N do{

xk ← Lαk

if ({{x1, . . . ,xN}, L} not a legal configuration) goto 1
output L, {x1, . . . ,xN}
——

Algorithm 2.14 direct-p-disks. Direct sampling for N disks in a
square box with periodic boundary conditions at pressure P .

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Fig. 2.41 Direct sampling for four hard disks at constant pressure (from
Alg. 2.14 (direct-p-disks)).

We again have to migrate to a Markov-chain Monte Carlo algorithm,
allowing for changes in the volume and for changes in the particle po-
sitions, the variables {α1, . . . ,αN}. Although we cannot hope for a
rejection-free direct-sampling algorithm for hard spheres, we shall see
that the particle rescaling and the direct sampling of the volume carry
over to this interacting system.

a, Va b, Vb c, Vcut

Fig. 2.42 Disk configurations with fixed {α1, . . . , αN}. Configuration c
is at the lower cutoff volume.

Let us consider a fixed configuration α = {α1, . . . ,αN}. It can exist at
any box dimension which is sufficiently big to make it into a legal hard-
sphere configuration. What happens for different volumes at fixed α is
shown in Fig. 2.42: the particle positions are blown up together with the

2.3 Pressure and the Boltzmann distribution 117

box, but the radii of the disks remain the same. There is an α-dependent
lower cutoff (minimum) volume, Vcut, below which configurations are
rejected.

Above Vcut, the rescaled volume x = βPV (with xcut = βPVcut) is
distributed with what is called the gamma-cut distribution:

π(x) = Γcut
N (x, xcut) ∝

{
xN e−x for x > xcut

0 otherwise
.

As always in one dimension, the gamma-cut distribution can be directly
sampled. We can compare it above xcut > N with an exponential:

Γcut
N (x, xcut) ∝ πΓ(x, xcut) =

(
x

xcut

)N

exp [−(x − xcut)]

= exp
[
−(x − xcut) + N log

x

xcut

]
= exp

[
−(x − xcut) + N log

(
1 +

x − xcut

xcut

)
︸ ︷︷ ︸

<(x−xcut)/xcut

]

<

πexp(x,xcut)︷ ︸︸ ︷
exp [−(1 − N/xcut)(x − xcut)] . (2.19)

To sample the gamma-cut distribution, we adapt the rejection method
of Subsection 1.2.4, and rather sample the exponential distribution,
which is everywhere larger. We thus throw uniformly distributed peb-
bles into the region delimited by x ∈ [xcut,∞] and y ∈ [0, πexp(x)] (see
Fig. 2.43). x can be sampled from πexp(x, xcut), and y can be sampled as
a random number between 0 and πexp(x). We must reject the pebble if
y = ran (0, πexp(x)) is above the gamma-cut distribution, in other words
if y = πexp(x)ran (0, 1) > πΓ(x) (see Alg. 2.15 (gamma-cut)).

0

N xcut0

π
Γ
(x

),

π

ex
p
(x

)

x

πΓ (gamma)
πexp (maj.)

Fig. 2.43 Gamma distribution ΓN (x) ∝ πΓ = xNe−x, and its exponential
majoration πexp, which allows us to sample the gamma-cut distribution.

118 Hard disks and spheres

procedure gamma-cut

input xcut

x∗ ← 1 − N/xcut

if (x∗ < 0) exit
1 ∆x ← −log (ran (0, 1)) /x∗

x ← xcut + ∆x

Υ′ ← (x/xcut)N exp [−(1 − x∗)∆x]
if (ran (0, 1) > Υ′) goto 1 (reject sample)
output xcut + ∆x

——

Algorithm 2.15 gamma-cut. Sampling the Gamma distribution for x >
xcut > N .

Alg. 2.15 (gamma-cut) rapidly samples the gamma-cut distribution for
any N and, after rescaling, a legal box volume for a fixed configuration α

(see Alg. 2.16 (rescale-volume)). The algorithm is due to Wood (1968).
It must be sandwiched in between runs of constant-volume Monte Carlo
calculations, and provides a powerful hard-sphere algorithm in the NPT
ensemble, with the particle number, the pressure, and the temperature
all kept constant.

procedure rescale-volume

input {Lx, Ly}, {x1, . . . ,xN}
V ← LxLy

σcut ← mink,l [dist (xk,xl)]
xcut ← βPV · (σ/σcut)

2

Vnew ← [gamma-cut(N, xcut)] /(βP)
Υ ←√Vnew/V
output {ΥLx, ΥLy}, {Υx1, . . . , ΥxN}
——

Algorithm 2.16 rescale-volume. Sampling and rescaling the box di-
mensions and particle coordinates for hard disks at constant P .

Finally, we note that, for hard spheres, the pressure P and inverse
temperature β = 1/(kBT) always appear as a product βP in the Boltz-
mann factor e−βPV . For hard spheres at constant volume, the pressure
is thus proportional to the temperature, as was clearly spelled out by
Daniel Bernoulli in the first scientific work on hard spheres, in 1733,
long before the advent of the kinetic theory of gases and the statistical
interpretation of the temperature. Bernoulli noticed, so to speak, that if
a molecular dynamics simulation is run at twice the original speed, the
particles will hit the walls twice as hard and transfer a double amount
of the original momentum to the wall. But this transfer takes place in
half the original time, so that the pressure must be four times larger.
This implies that the pressure is proportional to v2 ∝ T .

2.4 Large hard-sphere systems 119

2.4 Large hard-sphere systems

Daily life accustoms us to phase transitions between different forms of
matter, for example in water, between ice (solid), liquid, and gas. We
usually think of these phase transitions as resulting from the antago-
nistic interplay between the interactions and the temperature. At low
temperature, the interactions win, and the atoms or the ions settle into
crystalline order. Materials turn liquid when the atoms’ kinetic energy
increases with temperature, or when solvents screen the interionic forces.
Descriptions of phase transitions which focus on the energy alone are
over-simplified for regular materials. They certainly do not explain phase
transitions in hard spheres because there simply are no forces; all con-
figurations have the same energy. However, the transition between the
disordered phase and the ordered phase still takes place.

Our understanding of these entropic effects will improve in Chapter 6,
but we start here by describing the phase transitions of hard disks more
quantitatively than by just contemplating snapshots of configurations.
To do so, we shall compute the equation of state, the relationship be-
tween volume and pressure.

When studying phase transitions, we are naturally led to simulat-
ing large systems. Throughout this book, and in particular during the
present section, we keep to basic versions of programs. However, we
should be aware of engineering tricks which can considerably speed up
the execution of programs without changing in any way the output cre-
ated. We shall discuss these methods in Subsection 2.4.1.

2.4.1 Grid/cell schemes

In this subsection, we discuss grid/cell techniques which allow one to
decide in a constant number of operations whether, in a system of N
particles, a disk k overlaps any other disk. This task comes up when we
must decide whether a configuration is illegal, or whether a move is to be
rejected. This can be achieved faster than by our naive checks of the N−1
distances from all other disks in the system (see for example Alg. 2.9
(markov-disks)). The idea is to assign all disks to an appropriate grid
with cells large enough that a disk in one cell can only overlap with
particles in the same cell or in the adjacent ones. This reduces the overlap
checks to a neighborhood (see Fig. 2.44). Of course, particles may move
across cell boundaries, and cell occupancies must be kept consistent (see
Fig. 2.45).

cell k

Fig. 2.44 Grid/cell scheme with large
cells: a disk in cell k can only overlap
with disks in the same cell or in adja-
cent cells.

There are number of approaches to setting up grid/cell schemes and
to handling the bookkeeping involved in them. One may simply keep all
disk numbers of cell k in a table. A move between cells k and l has us
locate the disk index in the table for cell k, swap it with the last element

120 Hard disks and spheres

of that table, and then reduce the number of elements:

locate︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
1
17
5
9
4

⎤⎥⎥⎥⎥⎦ →

swap︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
1
4
5
9
17

⎤⎥⎥⎥⎥⎦ →

reduce︷ ︸︸ ︷⎡⎢⎢⎣
1
4
5
9

⎤⎥⎥⎦
︸ ︷︷ ︸
disk 17 leaving a cell containing disks {1, 17, 5, 9, 4}.

. (2.20)

In the case of the target cell l, we simply append the disk’s index to the
table, and increment its number of elements.

There are other solutions for grid/cell schemes. They may involve
linked lists rather than tables, that is, a data structure where element 1 in
eqn (2.20) points to (is linked to) element 17, which itself points to disk 5,
etc. Disk 4 would point to an “end” mark, with a “begin” mark pointing
to disk 1. In that case, disk 17 is eliminated by redirecting the pointer
of 1 from 17 directly to 5. Besides using linked lists, it is also possible to
work with very small cells containing no more than one particle, at the

cell k

cell l

Fig. 2.45 Moving a particle between
boxes involves bookkeeping.

cost of having to check more than just the adjacent cells for overlaps.
Any of these approaches can be programmed in several subroutines and
requires only a few instructions per bookkeeping operation. The extra
memory requirements are no issue with modern computers. Grid/cell
schemes reduce running times by a factor of αN , where α < 1 because
of the bookkeeping overhead. We must also consider the human time that
it takes to write and debug the modified code. The computations in this
book have been run without improvement schemes on a year 2005 laptop
computer, but some of them (in Subsections 2.2.5 and 2.4.2) approach a
limit where the extra few hours—more realistically a few days—needed
for implementing them were well spent.

Improved codes are easily tested against naive implementations, which
we always write first and always keep handy. The output of molecular dy-
namics runs or Monte Carlo codes should be strictly equivalent between
basic and improved versions of a program, even after going through
billions of configurations. This frame-to-frame equivalence between two
programs is easier to check than statistical equivalence, say, between di-
rect sampling and Markov-chain sampling, where we can only compare
average quantities, and only up to statistical uncertainties.

2.4.2 Liquid–solid transitions

In this subsection, we simulate hard disks at constant pressure, in order
to obtain the equation of state of a system of hard disks, that is, the
relationship between the pressure and the volume of the system. For
concreteness, we restrict ourselves to a system of 100 disks in a box
with aspect ratio

√
3/2. For this system, we do not need to implement

the grid/cell schemes of Subsection 2.4.1. Straight simulation gives the
following curve shown in Fig. 2.46 for the mean volume per particle. At

2.4 Large hard-sphere systems 121

1

1.2

1.4

4 6 8 10 12

v
ol

u
m

e/
p
ar

ti
cl

e

pressure βP

0

0.1

105 110 115 120

π
(V

)
(h

is
t.

)

volume V

solid liquid

Fig. 2.46 Equation of state for 100 disks (left), and histogram of V at

βP = 8.4177 (right) (σ = 1
2
, Lx/Ly =

√
3/2).

small pressure, the volume is naturally large, and the configurations are
liquid-like. At high pressure, the configurations are crystalline, as was
already discussed in Subsection 2.2.3. It is of fundamental importance
that the volume as a function of pressure behaves differently above and
below the transition separating the two regimes, but this cannot be seen
very clearly in the equation of state of small systems. It is better to
trace the histogram of volumes visited (see Fig. 2.46 again). Both at low
pressure and at high pressure, this histogram has a single peak. In the
transition region βP � 8.4177, the histogram has two peaks. The two
types of configurations appear (see Fig. 2.47), configurations that are
solid-like (at small volume) and configurations that are liquid-like (at
large volume). In this same region, the Monte Carlo simulation using
the local algorithm slows down enormously. While it mixes up liquid
configurations without any problem, it has a very hard time moving
from a solid configuration (as the left configuration in Fig. 2.47) to a
liquid-like configuration (as the right one in that same figure, see Lee
and Strandburg 1992).

V = 110.8 V = 115.9

Fig. 2.47 Typical configuration for 100 disks of radius 1
2

at pressure
βP = 8.4177. Left : solid configuration (at small volume); right : liquid
configuration (at large volume).

122 Hard disks and spheres

At the time of writing of this book, the nature of the transition in
two-dimensional hard disks (in the thermodynamic limit) has not been
cleared up. It might be a first-order phase transition, or a continuous
Kosterlitz–Thouless transition. It is now well understood that in two
dimensions the nature of transition depends on the details of the micro-
scopic model. The phase transition in hard disks could be of first order,
but a slight softening-up of the interparticle potential would make the
transition continuous. The question about the phase transition in hard
disks—although it is highly model-specific—would have been cleared up
a long time ago if only we disposed of Monte Carlo algorithms that,
while respecting detailed balance, allowed us to move in a split second
between configurations as different as the two configurations in Fig. 2.47.
However, this is not the case. On a year 2005 laptop computer, we have
to wait several minutes before moving from a crystalline configuration
to a liquid one, for 100 particles, even if we used the advanced methods
described in Subsection 2.4.1. These times get out of reach of any simula-
tion for the larger systems that we need to consider in to understand the
finite-size effects at the transition. We conclude that simulations of hard
disks do not converge in the transition region (for systems somewhat
larger than those considered in Fig. 2.47). The failure of computational
approaches keeps us from answering an important question about the
phase transition in one of the fundamental models of statistical physics.
(For the transition in three-dimensional hard spheres, see Hoover and
Ree (1968).)

2.5 Cluster algorithms

Local simulation algorithms using the Metropolis algorithm and molec-
ular dynamics methods allow one to sample independent configurations
for large systems at relatively high densities. This gives often very im-
portant information on the system from the inside, so to speak, because
the samples represent the system that one wants to study. In contrast,
analytical methods are often forced to extrapolate from the noninteract-
ing system (see the discussion of virial expansions, in Subsection 2.2.2).
Even the Monte Carlo algorithm, however, runs into trouble at high den-
sity, when any single particle can no longer move, so that the Markov
chain of configurations effectively gets stuck during long times (although
it remains, strictly speaking, ergodic).

In the present section, we start to explore more sophisticated Monte
Carlo algorithms that are not inspired by the physical process of single-
particle motion. Instead of moving one particle after the other, these
methods construct coordinated moves of several particles at a time. This
allows one to go from one configuration, a, to a very different configura-
tion, b, even though single particles cannot really move by themselves.
These algorithm methods can no longer be proven correct by common
sense alone, but by the proper use of a priori probabilities. The algo-
rithms generalize the triangle algorithm of Subsection 1.1.6, which first

2.5 Cluster algorithms 123

went beyond naive pebble-throwing on the Monte Carlo heliport. In
many fields of statistical mechanics, coordinated cluster moves—the dis-
placement of many disks at once, simultaneous flips of spins in a region
of space, collective exchange of bosons, etc.—have overcome the limi-
tations of local Monte Carlo algorithms. The pivot cluster algorithm of
Subsection 2.5.2 (Dress and Krauth 1995) is the simplest representative
of this class of methods.

2.5.1 Avalanches and independent sets

By definition, the local hard-sphere Monte Carlo algorithm rejects all
moves that produce overlaps (see Fig. 2.23). We now study an algo-
rithm, which accepts the move of an independent disk even if it gener-
ates overlaps. It then simply moves the overlapped particles out of place,
and starts an avalanche, where many disks are constrained to move and,
in turn, tip off other disks. Disks that must move but which entail no
other moves are called “terminal”. For simplicity, we suppose that the
displacement vector is the same for all disks (see Fig. 2.48 and Alg. 2.17
(naive-avalanche)).

a

indep.

a (+ move) b

term.

term.

return move

indep.

indep.

term.

Fig. 2.48 Avalanche move a → b and its return move, with independent
and terminal disks.

Detailed balance stipulates that, for hard spheres, the return move be
proposed with the same probability as the forward move. From Fig. 2.48,
it follows that the forward and the return move swap the labels of the
independent and the terminal disks. In that example, the return move
has two independent disks, and hence is never proposed by Alg. 2.17
(naive-avalanche), so that a → b must be rejected also. Only avalanche
moves with a single terminal disk can be accepted. This happens very
rarely: avalanches usually gain breadth when they build up, and do not
taper into a single disk.

Algorithm 2.17 (naive-avalanche) has a tiny acceptance rate for all
but the smallest displacement vectors, and we thus need to generalize it,
by allowing more than one independent disk to kick off the avalanche. For

124 Hard disks and spheres

procedure naive-avalanche

input {x1, . . . ,xN}
k ← nran (1, N)
δ ← {ran (−δ, δ) , ran (−δ, δ)}
construct move (involving disks {k1, . . . , kM})
if (move has single terminal disk) then{

for l = 1, . . . , M do{
xkl

← xkl
+ δ

output {x1, . . . ,xN}
——

Algorithm 2.17 naive-avalanche. Avalanche cluster algorithm for
hard disks, with a low acceptance rate unless |δ| is small.

concreteness, we suppose that avalanches must be connected and that
they must have a certain disk l in common. Under this condition, there

disk l

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

Fig. 2.49 The move a → b, and all avalanches containing the disk l for
a displacement δ. The avalanche k = 1 realizes the move.

are now 12 connected avalanches containing disk l (see Fig. 2.49). This
means that the a priori probability of selecting the frame k = 1, rather
than another one, is 1/12. As in the study of the triangle algorithm, the
use of a priori probabilities obliges us to analyze the return move. In the
configuration b of Fig. 2.48, with a return displacement −δ, 10 connected
avalanches contain disk l, of which one (the frame k = 8) realizes the
return move (see Fig. 2.50). The a priori probability of selecting this
return move is 1/10. We thus arrive at

A(a → b) =
1
12

{
one of the 12 avalanches

in Fig. 2.49

}
,

A(b → a) =
1
10

{
one of the 10 avalanches

in Fig. 2.50

}
.

These a priori probabilities must be entered into the detailed-balance

2.5 Cluster algorithms 125

condition
A(a → b)︸ ︷︷ ︸

propose

P(a → b)︸ ︷︷ ︸
accept

= A(b → a)︸ ︷︷ ︸
propose

P(b → a)︸ ︷︷ ︸
accept

.

Detailed balance is realized by use of the generalized Metropolis algo-
rithm

P(a → b) = min
(

1,
12
10

)
= 1.

It follows that the move a → b in Fig. 2.48 must be accepted with
probability 1.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 7 k = 8 k = 9 k = 10

Fig. 2.50 Return move b → a and all avalanches containing disk l for a
displacement −δ. The avalanche k = 8 realizes the return move.

The algorithm we have discussed in this subsection needs to count
avalanches, and to sample them. For small systems, this can be done by
enumeration methods. It is unclear, however, whether a general efficient
implementation exists for counting and sampling avalanches, because
this problem is related to the task of enumerating the number of inde-
pendent sets of a graph, a notoriously difficult problem. (The application
to the special graphs that arise in our problem has not been studied.)
We shall find a simpler solution in Subsection 2.5.2.

2.5.2 Hard-sphere cluster algorithm

The avalanche cluster algorithm of Subsection 2.5.1 suffers from an im-
balance between forward and return moves because labels of indepen-
dent and terminal disks are swapped between the two displacements, and
because their numbers are not normally the same. In the present subsec-
tion, we show how to avoid imbalances, rejections, and the complicated
calculations of Subsection 2.5.1 by use of a pivot: rather than displacing
each particle by a constant vector δ, we choose a symmetry operation
that, when applied twice to the same disk, brings it back to the original
position. For concreteness, we consider reflections about a vertical line,
but other pivots (symmetry axes or reflection points) could also be used.

126 Hard disks and spheres

With periodic boundary conditions, we can scroll the whole system such
that the pivot comes to lie in the center of the box (see Fig. 2.51).

a

a (+ copy) a (+ cluster)

cluster

b

a (reflected copy) b (reflected copy)

Fig. 2.51 Hard-sphere cluster algorithm. Some particles are swapped
between the original configuration and the copy, i.e., they exchange color.

Let us consider a copy of the original system with all disks reflected
about the symmetry axis, together with the original configuration a. The
original and the copy may be superimposed, and disks in the combined
systems form connected clusters. We may pick one cluster and exchange
in it the disks of the copy with those in the original configuration (see
configuration b in Fig. 2.51). For the return move, we may superimpose
the configuration b and a copy of b obtained through the same reflection
that was already used for a. We may pick a cluster which, by symme-
try, makes us come back to the configuration a. The move a → b and
the return move b → a satisfy the detailed-balance condition. All these
transformations map the periodic simulation box onto itself, avoiding
problems at the boundaries. Furthermore, ergodicity holds under the
same conditions as for the local algorithm: any local move can be seen
as a point reflection about the midpoint between the old and the new
disk configuration. The basic limitation of the pivot cluster algorithm is
that, for high covering density, almost all particles end up in the same
cluster, and will be moved together. Flipping this cluster essentially re-
flects the whole system. Applications of this rejection-free method will
be presented in later chapters.

To implement the pivot cluster algorithm, we need not work with an
original configuration and its copy, as might be suggested by Fig. 2.51.
After sampling the symmetry transformation (horizontal or vertical re-
flection line, pivot, etc.), we can work directly on particles (see Fig. 2.52).
The transformation is applied to a first particle. From then on, we keep
track (by keeping them in a “pocket”) of all particles which still have
to be moved (one at a time) in order to arrive at a legal configuration
(see Alg. 2.18 (hard-sphere-cluster)). A single iteration of the pivot

2.5 Cluster algorithms 127

a a (+ move) b

return move

Fig. 2.52 Hard-sphere cluster algorithm without copies. There is one
independent particle. Constrained particles can be moved one at a time.

cluster algorithm consists in all the operations until the pocket is empty.
The inherent symmetry guarantees that the process terminates.

In conclusion, we have considered in this subsection a rejection-free
cluster algorithm for hard spheres and related systems, which achieves
perfect symmetry between the forward and the return move because the
clusters in the two moves are the same. This algorithm does not work
very well for equal disks or spheres, because the densities of interest
(around the liquid–solid transition) are rather high, so that the clusters
usually comprise almost the entire system. This algorithm has, however,
been used in numerous other contexts, and generalized in many ways,
as will be discussed in later chapters.

procedure hard-sphere-cluster

input {x1, . . . ,xN}
k ← nran (1, N)
P ← {k} (the “pocket”)
A ← {1, . . . , N} \ {k} (other particles)
while (P
= {}) do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ← any element of P
xi ← T (xi)
for ∀ j ∈ A do⎧⎨⎩

if (i overlaps j) then{ A ← A \ {j}
P ← P ∪ {j}

P ← P \ {i}
output {x1, . . . ,xN}
——

Algorithm 2.18 hard-sphere-cluster. Cluster algorithm for N hard
spheres. T is a random symmetry transformation.

128 Exercises

Exercises

(Section 2.1)

(2.1) Implement Alg. 2.2 (pair-time) and incorporate
it into a test program generating two random po-
sitions {x1, x2} with |∆x| > 2σ, and two random
velocities with (∆x ···∆v) < 0. Propagate both disks
up to the time tpair, if finite, and check that they
indeed touch. Otherwise, if tpair = ∞, propagate
the disks up to their time of closest encounter and
check that, then, (∆x ···∆v) = 0. Run this test pro-
gram for at least 1×107 iterations.

(2.2) Show that Alg. 2.3 (pair-collision) is correct in
the center-of-mass frame, but that it can also be
used in the lab frame. Implement it and incorpo-
rate it into a test program generating two random
positions {x1,x2} with |∆x| = 2σ, and two random
velocities {v1,v2} with (∆x ··· ∆v) < 0. Check that
the total momentum and energy are conserved (so
that initial velocities v1,2 and final velocities v′

1,2

satisfy v1 +v2 = v′
1 +v′

2 and v2
1 +v2

2 = v′2
1 +v′2

2).
Run this test program for at least 1×107 iterations.

(2.3) (Uses Exerc. 2.1 and 2.2.) Implement Alg. 2.1
(event-disks) for disks in a square box with-
out periodic boundary conditions. Start from a le-
gal initial condition. If possible, handle the ini-
tial conditions as discussed in Exerc. 1.3. Stop the
program at regular time-intervals (as in Alg. 2.4
(event-disks(patch))). Generate a histogram of
the projected density in one of the coordinates. In
addition, generate histograms of velocities vx and
of the absolute velocity v =

√
v2

x + v2
y .

(2.4) Consider Sinai’s system of two large disks in
a square box with periodic boundary conditions
(Lx/4 < σ < Lx/2). Show that in the reference
frame of a stationary disk (remaining at position
{0, 0}), the center of the moving disk reflects off
the stationary one as in geometric optics, with the
incoming angle equal to the outgoing angle. Im-
plement the time evolution of this system, with
stops at regular time intervals. Compute the two-
dimensional histogram of positions, π(x, y), and de-
termine from it the histogram of projected densi-
ties.

(2.5) Find out whether your programming language al-
lows you to treat real variables and constants us-
ing different precision levels (such as single preci-
sion and double precision). Then, for real variables

x = 1 and y = 2−k, compute x + y in both cases,
where k ∈ {. . . ,−2,−1, 0, 1, 2, . . . }. Interpret the
results of this basic numerical operation in the light
of the discussion of numerical precision, in Subsec-
tion 2.1.2.

(Section 2.2)

(2.6) Directly sample, using Alg. 2.7 (direct-disks), the
positions of four disks in a square box without pe-
riodic boundary conditions, for different covering
densities. Run it until you have data for a high-
quality histogram of x-values (this determines the
projected densities in x, compare with Fig. 2.9).
If possible, confront this histogram to data from
your own molecular dynamics simulation (see Ex-
erc. 2.3), thus providing a simple “experimental”
test of the equiprobability principle.

(2.7) Write a version of Alg. 2.7 (direct-disks) with
periodic boundary conditions. First implement
Alg. 2.5 (box-it) and Alg. 2.6 (diff-vec), and
check them thoroughly. Verify correctness of the
program by running it for Sinai’s two-disk sys-
tem: compute histograms π(xk, yk) for the posi-
tion xk = {xk, yk} of disk k, and for the distance
π(∆x, ∆y) between the two particles.

(2.8) Implement Alg. 2.9 (markov-disks) for four disks
in a square box without periodic boundary con-
ditions (use the same covering densities as in Ex-
erc. 2.6). Start from a legal initial condition. If pos-
sible, implement initial conditions as in Exerc. 1.3.
Generate a high-quality histogram of x-values. If
possible, compare this histogram to the one ob-
tained by molecular dynamics (see Exerc. 2.3), or
by direct sampling (see Exerc. 2.6).

(2.9) Implement Alg. 2.8 (direct-disks-any), in or-
der to determine the acceptance rate of Alg. 2.7
(direct-disks). Modify the algorithm, with the
aim of avoiding use of histograms (which lose in-
formation). Sort the N output samples for ηmax,
such that ηmax,1 ≤ · · · ≤ ηmax,N . Determine the
rejection rate of Alg. 2.7 (direct-disks) directly
from the ordered vector {ηmax,1, . . . , ηmax,N}.

(2.10) Implement Alg. 2.9 (markov-disks), with periodic
boundary conditions, for four disks. If possible, use
the subroutines tested in Exerc. 2.7. Start your

Exercises 129

simulation from a legal initial condition. Demon-
strate explicitly that histograms of projected densi-
ties generated by Alg. 2.7 (direct-disks), Alg. 2.9,
and by Alg. 2.1 agree for very long simulation times.

(2.11) Implement Alg. 2.9 (markov-disks) with periodic
boundary conditions, as in Exerc. 2.10, but for a
larger number of disks, in a box with aspect ra-
tio Lx/Ly =

√
3/2. Set up a subroutine for gener-

ating initial conditions from a hexagonal arrange-
ment. If possible, handle initial conditions as in Ex-
erc. 1.3 (subsequent runs of the program start from
the final output of a previous run). Run this pro-
gram for a very large number of iterations, at var-
ious densities. How can you best convince yourself
that the hard-disk system undergoes a liquid–solid
phase transition?
NB: The grid/cell scheme of Subsection 2.4.1 need
not be implemented.

(Section 2.3)

(2.12) Sample the gamma distribution ΓN(x) using
the naive algorithm contained in Alg. 2.13
(direct-piston-particles). Likewise, implement
Alg. 2.15 (gamma-cut). Generate histograms from
long runs of both programs to check that the distri-
bution sampled are indeed ΓN (x) and Γcut

N (x, xcut).
Histograms have a free parameter, the num-
ber of bins. For the same set of data, gener-
ate one histogram with very few bins and an-
other one with very many bins, and discuss mer-
its and disadvantages of each choice. Next, ana-
lyze data by sorting {x1, . . . , xN} in ascending or-
der {x̃1, . . . , x̃k, . . . , x̃N} (compare with Exerc. 2.9).
Show that the plot of k/N against x̃k can be com-
pared directly with the integral of the considered
distribution function, without any binning. Look
up information about the Kolmogorov–Smirnov
test, the standard statistical test for integrated
probability distributions.

(2.13) Implement Alg. 2.11 (naive-piston-particles)
and Alg. 2.12 (naive-piston-particles(patch)),
and compare these Markov-chain programs to
Alg. 2.13 (direct-piston-particles). Discuss
whether outcomes should be identical, or whether
small differences can be expected. Back up your
conclusion with high-precision calculations of the
mean box volume 〈L〉, and with histograms of π(L),
from all three programs. Generalize the direct-
sampling algorithm to the case of two-dimensional
hard disks with periodic boundary conditions (see
Alg. 2.14 (direct-p-disks)). Plot the equation of

state (mean volume vs. pressure) to sufficient pre-
cision to see deviations from the ideal gas law.

(2.14) (Uses Exerc. 2.3.) Verify that Maxwell bound-
ary conditions can be implemented with the
sum of Gaussian random numbers, as in
eqn (2.13), or alternatively by rescaling an ex-
ponentially distributed variable, as in Alg. 2.10
(maxwell-boundary). Incorporate Maxwell bound-
ary conditions into a molecular dynamics simula-
tion with Alg. 2.1 (event-disks) in a rectangular
box of sides {Lx, Ly}, a tube with Lx � Ly (see
Exerc. 2.3). Set up regular reflection conditions on
the horizontal walls (the sides of the tube), and
Maxwell boundary conditions on the vertical walls
(the ends of the tube). Make sure that positive
x-velocities are generated at the left wall, and neg-
ative x-velocities at the other one. Let the two
Maxwell conditions correspond to different tem-
peratures, Tleft, and Tright. Can you measure the
temperature distribution along x in the tube?

(2.15) In the piston-and-plate system of Subsection 2.3.2,
the validity of the Boltzmann distribution was
proved for a piston subject to a constant force (con-
stant pressure). Prove the validity of the Boltzmann
distribution for a more general piston energy

E(L) = Lα

(earlier we used α = 1). Specifically show that the
piston is at position L, and at velocity v with the
Boltzmann probability

π(L, v) dL dv ∝ exp [−βE(L, v)] dL dv.

First determine the time of flight, and compute the
density of state N (E) in the potential hα. Then
show that at constant energy, each phase space el-
ement dL dv appears with equal probability.
NB: A general formula for the time of flight follows
from the conservation of energy E = 1

2
v2 + Lα:

dL

dt
=

p
2 (E − Lα),

which can be integrated by separation of variables.

(Section 2.4)

(2.16) (Uses Exerc. 2.11.) Include Alg. 2.15 (gamma-cut)
(see Exerc. 2.12) into a simulation of hard disks
at a constant pressure. Use this program to com-
pute the equation of state. Concentrate most of the
computational effort at high pressure.

130 References

References

Alder B., Wainwright T. E. (1957) Phase transition for a hard sphere
system, Journal of Chemical Physics 27, 1208–1209

Alder B. J., Wainwright T. E. (1962) Phase transition in elastic disks,
Physical Review 127, 359–361

Alder B. J., Wainwright T. E. (1970) Decay of the velocity autocor-
relation function, Physical Review A 1, 18–21

Dress C., Krauth W. (1995) Cluster algorithm for hard spheres and
related systems, Journal of Physics A 28, L597–L601

Hoover W. G., Ree F. H. (1968) Melting transition and communal en-
tropy for hard spheres, Journal of Chemical Physics 49, 3609–3617

Lee J. Y., Strandburg K. J. (1992) 1st-order melting transition of the
hard-disk system, Physical Review B 46, 11190–11193

Mermin N. D., Wagner H. (1966) Absence of ferromagnetism or anti-
ferromagnetism in one- or two-dimensional isotropic Heisenberg models,
Physical Review Letters 17, 1133–1136

Metropolis N., Rosenbluth A. W., Rosenbluth M. N., Teller A. H., Teller
E. (1953) Equation of state calculations by fast computing machines,
Journal of Chemical Physics 21, 1087–1092

Pomeau Y., Résibois P. (1975) Time dependent correlation functions
and mode–mode coupling theory, Physics Reports 19, 63–139

Simanyi N. (2003) Proof of the Boltzmann–Sinai ergodic hypothesis for
typical hard disk systems, Inventiones Mathematicae 154, 123–178

Simanyi N. (2004) Proof of the ergodic hypothesis for typical hard ball
systems, Annales de l’Institut Henri Poincaré 5, 203–233

Sinai Y. G. (1970) Dynamical systems with elastic reflections, Russian
Mathematical Surveys 25, 137–189

Thirring W. (1978) A Course in Mathematical Physics. 1. Classical Dy-
namical Systems, Springer, New York

Wood W. W. (1968) Monte Carlo calculations for hard disks in the
isothermal–isobaric ensemble, Journal of Chemical Physics 48, 415–434

Density matrices and path
integrals 3

3.1 Density matrices 133

3.2 Matrix squaring 143

3.3 The Feynman
path integral 149

3.4 Pair density matrices 159

3.5 Geometry of paths 168

Exercises 182

References 184

In this chapter, we continue our parallel exploration of statistical and
computational physics, but now move to the field of quantum mechanics,
where the density matrix generalizes the classical Boltzmann distribu-
tion. The density matrix constructs the quantum statistical probabilities
from their two origins: the quantum mechanical wave functions and the
Boltzmann probabilities of the energy levels. The density matrix can
thus be defined in terms of the complete solution of the quantum prob-
lem (wave functions, energies), but all this information is available only
in simple examples, such as the free particle or the harmonic oscillator.

A simple general expression exists for the density matrix only at high
temperature. However, a systematic convolution procedure allows us to
compute the density matrix at any given temperature from a product
of two density matrices at higher temperature. By iteration, we reach
the density matrix at any temperature from the high-temperature limit.
We shall use this procedure, matrix squaring, to compute the quantum-
statistical probabilities for particles in an external potential.

The convolution procedure, and the connection it establishes between
classical and quantum systems, is the basis of the Feynman path integral,
which really opens up the field of finite-temperature quantum statistics
to computation. We shall learn about path integrals in more and more
complicated settings. As an example of interacting particles, we shall
come back to the case of hard spheres, which model quantum gases and
quantum liquids equally well. The path integral allows us to conceive of
simulations in interacting quantum systems with great ease. This will be
studied in the present chapter for the case of two hard spheres, before
taking up the many-body problem in Chapter 4.

Classical particles are related to points, the pebbles of our first chap-
ter. Analogously, quantum particles are related to one-dimensional ob-
jects, the aforementioned paths, which have important geometric prop-
erties. Path integrals, like other concepts of statistical mechanics, have
spread to areas outside their field of origin, and even beyond physics.
They are for example used to describe stock indices in financial math-
ematics. The final section of this chapter introduces the geometry of
paths and related objects. This external look at our subject will foster
our understanding of quantum physics and of the path integral. We shall
reach analytical and algorithmic insights complementing those of earlier
sections of the chapter.

A quantum particle in a harmonic potential is described by energies and
wave functions that we know exactly (see Fig. 3.1). At zero temperature,
the particle is in the ground state; it can be found with high probability
only where the ground-state wave function differs markedly from zero.
At finite temperatures, the particle is spread over more states, and over
a wider range of x-values. In this chapter, we discuss exactly how this
works for a particle in a harmonic potential and for more difficult sys-
tems. We also learn how to do quantum statistics if we ignore everything
about energies and wave functions.

0

10

20

-5 0 5

w
av

e
fu

n
ct

io
n
 ψ

nh
.o

. (x
)

(s
h
if
te

d
)

position x

Fig. 3.1 Harmonic-oscillator wave functions ψh.o.
n (x) shifted by En (from

Alg. 3.1 (harmonic-wavefunction)).

3.1 Density matrices 133

3.1 Density matrices

Quantum systems are described by wave functions and eigenvalues, solu-
tions of the Schrödinger equation. We shall show for the one-dimensional
harmonic oscillator how exactly the probabilities of quantum physics
combine with the statistical weights in the Boltzmann distribution, be-
fore moving on to more general problems.

3.1.1 The quantum harmonic oscillator

The one-dimensional quantum mechanical harmonic oscillator, which
consists of a particle of mass m in a potential

V (x) =
1
2
mω2x2,

is governed by the Schrödinger equation

Hψh.o.
n =

(
− �

2

2m

∂2

∂x2
+

1
2
mω2x2

)
ψh.o.

n = Enψh.o.
n . (3.1)

procedure harmonic-wavefunction

input x
ψh.o.
−1 (x) ← 0 (unphysical, starts recursion)

ψh.o.
0 (x) ← �

−1/4 exp
(−x2/2

)
(ground state)

for n = 1, 2, . . . do{
ψh.o.

n (x) ←
√

2
nxψh.o.

n−1(x) −
√

n−1
n ψh.o.

n−2(x)
output {ψh.o.

0 (x), ψh.o.
1 (x), . . . }

——

Algorithm 3.1 harmonic-wavefunction. Eigenfunctions of the one-
dimensional harmonic oscillator (with � = m = ω = 1).

In general, the wave functions {ψ0, ψ1, . . . } satisfy a completeness con-
dition ∞∑

n=0

ψ∗
n(x)ψn(y) = δ(x − y),

where δ(x − y) is the Dirac δ-function, and form an orthonormal set:∫ ∞

−∞
dx ψ∗

n(x)ψm(x) = δnm =

{
1 if n = m

0 otherwise
, (3.2)

where δnm is the discrete Kronecker δ-function. The wave functions
of the harmonic oscillator can be computed recursively1 (see Alg. 3.1
(harmonic-wavefunction)). We can easily write down the first few of
them, and verify that they are indeed normalized and mutually or-
thogonal, and that ψh.o.

n satisfies the above Schrödinger equation (for
m = � = ω = 1) with En = n + 1

2 .

1In most formulas in this chapter, we use units such that � = m = ω = 1.

134 Density matrices and path integrals

In thermal equilibrium, a quantum particle occupies an energy state
n with a Boltzmann probability proportional to e−βEn , and the

partition function is therefore

Zh.o.(β) =
∞∑

n=0

e−βEn = e−β/2 + e−3β/2 + e−5β/2 + · · ·

= e−β/2

(
1

1 − e−β

)
=

1
eβ/2 − e−β/2

=
1

2 sinh (β/2)
. (3.3)

The complete thermodynamics of the harmonic oscillator follows from
eqn (3.3). The normalized probability of being in energy level n is{

probability of being
in energy level n

}
=

1
Z

e−βEn .

n

position x

en
er

gy
 l
ev

el
s

Fig. 3.2 A quantum particle at posi-
tion x, in energy level n. The density
matrix only retains information about
positions.

When it is in energy level n (see Fig. 3.2), a quantum system is at
a position x with probability ψ∗

n(x)ψn(x). (The asterisk stands for the
complex conjugate; for the real-valued wave functions used in most of
this chapter, ψ∗ = ψ.) The probability of being in level n at position x
is ⎧⎨⎩

probability of being
in energy level n

at position x

⎫⎬⎭ =
1
Z

e−βEnψn(x)ψ∗
n(x). (3.4)

This expression generalizes the Boltzmann distribution to quantum phy-
sics. However, the energy levels and wave functions are generally un-
known for complicated quantum systems, and eqn (3.4) is not useful for
practical computations. To make progress, we discard the information
about the energy levels and consider the (diagonal) density matrix

π(x) =
{

probability of being
at position x

}
∝ ρ(x, x, β) =

∑
n

e−βEnψn(x)ψ∗
n(x),

as well as a more general object, the nondiagonal density matrix (in the
position representation){

density
matrix

}
: ρ(x, x′, β) =

∑
n

ψn(x)e−βEnψ∗
n(x′), (3.5)

which is the central object of quantum statistics. For example, the par-
tition function Z(β) is the trace of the density matrix, i.e. the sum or
the integral of its diagonal terms:

Z(β) = Tr ρ =
∫

dx ρ(x, x, β) . (3.6)

We shall compute the density matrix in different settings, and often
without knowing the eigenfunctions and eigenvalues. For the case of
the harmonic oscillator, however, we have all that it takes to compute
the density matrix from our solution of the Schrödinger equation (see
Alg. 3.2 (harmonic-density) and Fig. 3.3). The output of this program
will allow us to check less basic approaches.

3.1 Density matrices 135

procedure harmonic-density

input {ψh.o.
0 (x), . . . , ψh.o.

N (x)} (from Alg. 3.1 (harmonic-wavefunction))
input {ψh.o.

0 (x′), . . . , ψh.o.
N (x′)}

input {En = n + 1
2}

ρh.o.(x, x′, β) ← 0
for n = 0, . . . , N do{

ρh.o.(x, x′, β) ← ρh.o.(x, x′, β) + ψh.o.
n (x)ψh.o.

n (x′)e−βEn

output {ρh.o.(x, x′, β)}
——

Algorithm 3.2 harmonic-density. Density matrix for the harmonic
oscillator obtained from the lowest-energy wave functions (see eqn (3.5)).

3.1.2 Free density matrix

We move on to our first analytic calculation, a prerequisite for further
developments: the density matrix of a free particle, with the Hamiltonian

H freeψ = −1
2

∂2

∂x2
ψ = Eψ.

We put the particle in a box of length L with periodic boundary con-
0

0.5

210−1−2

p
ro

b
a
b
il
it

y
 π

(x
)

position x

β = 8
2

0.5

Fig. 3.3 Probability to be at posi-
tion x, π(x) = ρh.o.(x, x, β) /Z (from
Alg. 3.2 (harmonic-density); see also
eqn (3.39)).

ditions, that is, a torus. The solutions of the Schrödinger equation in a
periodic box are plane waves that are periodic in L:

ψa
n(x) =

√
2
L

sin
(
2n�

x

L

)
(n = 1, 2, . . .), (3.7)

ψs
n(x) =

√
2
L

cos
(
2n�

x

L

)
(n = 0, 1, . . .) (3.8)

(see Fig. 3.4), where the superscripts denote wave functions that are
antisymmetric and symmetric with respect to the center of the interval
[0, L]. Equivalently, we can use complex wave functions

ψper,L
n (x) =

√
1
L

exp
(
i2n�

x

L

)
(n = −∞, . . . ,∞), (3.9)

En =
2n2

�
2

L2
, (3.10)

which give

ρper,L(x, x′, β) =
∑

n

ψper,L
n (x)e−βEn

[
ψper,L

n (x′)
]∗

=
1
L

∞∑
n=−∞

exp
[
i2�n

x − x′

L

]
exp
(
−β2n2

�
2

L2

)
. (3.11)

We now let L tend to infinity (the exact expression for finite L is dis-
cussed in Subsection 3.1.3). In this limit, we can transform the sum in
eqn (3.11) into an integral. It is best to introduce a dummy parameter

136 Density matrices and path integrals

n=2

n=1

n=0

LL/20

w
av

e
fu

n
ct

io
n
 ψ

n
(x

)

position x

Fig. 3.4 Wave functions of a one-dimensional free particle in a torus of
length L (shifted; see eqn (3.8)).

∆n = 1, the difference between two successive n-values:

ρper,L(x, x′, β) =
1
L

∞∑
n=−∞

=1︷︸︸︷
∆n exp

[
i2n�

x − x′

L

]
exp
(
−β2n2

�
2

L2

)
.

Changing variables from n to λ, where λ = 2n�/L, and thus ∆λ =
2�∆n/L, gives the term-by-term equivalent sum

ρper,L(x, x′, β) =
1
2�

∑
λ=...,− 2�

L
,0, 2�

L
,...

∆λ exp [iλ(x − x′)] exp
(
−β

2
λ2

)

−−−−→
L→∞

1
2�

∫ ∞

−∞
dλ exp [iλ(x − x′)] exp

(
−β

2
λ2

)
.

This Gaussian integral can be evaluated (see eqn (3.12)). We arrive atWe use

Z ∞

−∞

dλ exp
„
−1

2
λ2

σ2
± λc̃

«

=
√

2�σ exp
„

1
2

c̃2σ2

«
, (3.12)

which follows, when we take c̃ = c/σ2,
from the Gaussian integralZ ∞

−∞

dλ√
2�σ

exp
»
−1

2
(λ ± c)2

σ2

–
= 1.

the free density matrix, the periodic density matrix in the limit of an
infinite torus:

ρfree(x, x′, β) =
√

m

2��2β
exp
[
−m(x − x′)2

2�2β

]
, (3.13)

where we have reinserted the Planck constant and the particle mass. In
the limit of high temperature, ρfree(x, x′, β) is infinitely peaked at x = x′,
and it continues to satisfy

∫∞
−∞ dx ρfree(x, x′, β) = 1. This means that it

realizes the Dirac δ-function:

lim
β→0

ρfree(x, x′, β) → δ(x − x′). (3.14)

For the perturbation theory of Subsection 3.2.1, we need the fact that
the density matrix is generally given by the operator

ρ = e−βH = 1 − βH +
1
2
β2H2 − · · · . (3.15)

3.1 Density matrices 137

The matrix elements of H in an arbitrary basis are Hkl = 〈k|H |l〉, and
the matrix elements of ρ are

〈k|ρ|l〉 = 〈k|e−βH |l〉 = δkl − βHkl +
1
2
β2
∑

n

HknHnl − · · · .

Knowing the density matrix in any basis allows us to compute ρ(x, x′, β),
i.e. the density matrix in the position representation:

ρ(x, x′, β) =
∑
kl

〈x|k〉︸ ︷︷ ︸
ψk(x)

〈k|ρ|l〉 〈l|x′〉︸ ︷︷ ︸
ψ∗

l
(x′)

.

This equation reduces to eqn (3.5) for the diagonal basis where Hnm =
Enδnm and H2

nm = E2
nδnm, etc.

3.1.3 Density matrices for a box

The density matrix ρ(x, x′, β) is as fundamental as the Boltzmann weight
e−βE of classical physics, but up to now we know it analytically only for
the free particle (see eqn (3.13)). In the present subsection, we determine
the density matrix of a free particle in a finite box, both with walls and
with periodic boundary conditions. The two results will be needed in
later calculations. For efficient simulations of a finite quantum system,
say with periodic boundary conditions, it is better to start from the
analytic solution of the noninteracting particle in a periodic box rather
than from the free density matrix in the thermodynamic limit. (For the
analytic expression of the density matrix for the harmonic oscillator, see
Subsection 3.2.2.)

We first finish the calculation of the density matrix for a noninteract-
ing particle with periodic boundary conditions, which we have evaluated
only in the limit L → ∞. We arrived in eqn (3.11) at the exact formula

ρper,L(x, x′, β) =
∞∑

n=−∞
ψper,L

n (x)e−βEn
[
ψper,L

n (x′)
]∗

=
1
L

∞∑
n=−∞

exp
[
i2n�

x − x′

L

]
exp
(
−βn2

�
2

L2

)
︸ ︷︷ ︸

g(n)

. (3.16)

This infinite sum can be transformed using the Poisson sum formula

∞∑
n=−∞

g(n) =
∞∑

w=−∞

∫ ∞

−∞
dφ g(φ)ei2�wφ (3.17)

138 Density matrices and path integrals

and the Gaussian integral rule (eqn (3.12)), to obtain

ρper,L(x, x′, β)

=
∞∑

w=−∞

∫ ∞

−∞
dφ exp

(
i2�φ

x − x′ + Lw

L

)
exp
(
−β�2φ2

L2

)

=
√

1
2�β

∞∑
w=−∞

exp
[
− (x − x′ − wL)2

2β

]

=
∞∑

w=−∞
ρfree(x, x′ + wL, β). (3.18)

The index w stands for the winding number in the context of peri-
odic boundary conditions (see Subsection 2.1.4). The Poisson sum for-
mula (eqn (3.17)) is itself derived as follows. For a function g(φ) that
decays rapidly to zero at infinity, the periodic sum function G(φ) =∑∞

k=−∞ g(φ + k) can be expanded into a Fourier series:

G(φ) =
∞∑

k=−∞
g(φ + k)︸ ︷︷ ︸

periodic in [0, 1]

=
∞∑

w=−∞
cwei2�wφ.

The Fourier coefficients cw =
∫ 1

0
dφ G(φ)e−i2�wφ can be written as

cw =
∫ 1

0

dφ
∞∑

k=−∞
g(φ + k)e−i2�wφ =

∫ ∞

−∞
dφ g(φ)e−i2�wφ.

For φ = 0, we obtain G(0) =
∑

w cw, which gives eqn (3.17).
From eqn (3.18), we obtain the diagonal density matrix for a box with

periodic boundary conditions as a sum over diagonal and nondiagonal
free-particle density matrices:

ρper,L(x, x, β) =
√

1
2�β

{
1 + exp

(
−L2

2β

)
+ exp

[
− (2L)2

2β

]
+ · · ·

}
.

Using eqn (3.6), that is, integrating from 0 to L, we find a new expression
for the partition function (see eqn (3.6)), differing in inspiration from
the sum over energy eigenvalues but equivalent to it in outcome:

Zper,L=
∞∑

n=−∞
exp
(
−β

2n2
�
2

L2

)
︸ ︷︷ ︸
sum over energy eigenvalues

=
L√
2�β

∞∑
w=−∞

exp
(
−w2L2

2β

)
︸ ︷︷ ︸

sum over winding numbers

. (3.19)

n=3

n=2

n=1

L0

w
av

e
fu

n
ct

io
n
 ψ

n
(x

)

position x

Fig. 3.5 Eigenfunctions of a one-
dimensional free particle in a box
(shifted); (see eqn (3.20), and compare
with Fig. 3.4).

We next determine the density matrix of a free particle in a box of
length L with hard walls rather than with periodic boundary conditions.
Again, the free Hamiltonian is solved by plane waves, but they must
vanish at x = 0 and at x = L:

ψbox,[0, L]
n (x) =

√
2
L

sin
(
n�

x

L

)
(n = 1, . . . ,∞) (3.20)

3.1 Density matrices 139

(see Fig. 3.5). The normalized and mutually orthogonal sine functions
in eqn (3.20) have a periodicity 2L, not L, unlike the wave functions in
a box with periodic boundary conditions.

Using the plane waves in eqn (3.20) and their energies En = 1
2 (n�/L)2,

we find the following for the density matrix in the box:

ρbox,[0, L](x, x′, β)

=
2
L

∞∑
n=1

sin
(
�

L
nx
)

exp
(
−β

�
2n2

2L2

)
sin
(
�

L
nx′
)

=
1
L

∞∑
n=−∞

sin
(
n�

x

L

)
exp
(
−β

�
2n2

2L2

)
sin
(

n�
x′

L

)
. (3.21)

We can write the product of the two sine functions as

sin
(
n�

x

L

)
sin
(

n�
x′

L

)
=

1
4

[
exp
(

in�
x − x′

L

)
+ exp

(
−in�

x − x′

L

)
− exp

(
in�

x + x′

L

)
− exp

(
−in�

x + x′

L

)]
. (3.22)

Using eqn (3.22) in eqn (3.21), and comparing the result with the formula
for the periodic density matrix in eqn (3.11), which is itself expressed in
terms of the free density matrix, we obtain

ρbox,[0, L](x, x′, β) = ρper,2L(x, x′, β) − ρper,2L(x,−x′, β)

=
∞∑

w=−∞

[
ρfree(x, x′ + 2wL, β) − ρfree(x,−x′ + 2wL, β)

]
. (3.23)

This intriguing sum over winding numbers is put together from terms
different from those of eqn (3.21). It is, however, equivalent, as we can
easily check in an example (see Fig. 3.6).

0

0 5

p
ro

b
a
b
il
it

y
 π

(x
)

position x

β = 8
2

0.5

Fig. 3.6 Probability of being at posi-
tion x for a free particle in a box with
walls (from eqn (3.21) or eqn (3.23),
with L = 5).

In conclusion, we have derived in this subsection the density matrix of
a free particle in a box either with periodic boundary conditions or with
walls. The calculations were done the hard way—explicit mathematics—
using the Poisson sum formula and the representation of products of
sine functions in terms of exponentials. The final formulas in eqns (3.18)
and (3.23) can also be derived more intuitively, using path integrals, and
they are more generally valid (see Subsection 3.3.3).

3.1.4 Density matrix in a rotating box

In Subsection 3.1.3, we determined the density matrix of a free quantum
particle in a box with periodic boundary conditions. We now discuss the
physical content of boundary conditions and the related counter-intuitive
behavior of a quantum system under slow rotations. Our discussion is

140 Density matrices and path integrals

a prerequisite for the treatment of superfluidity in quantum liquids (see
Subsection 4.2.6), but also for superconductivity in electronic systems,
a subject beyond the scope of this book.

...

0 L

0 = L

Fig. 3.7 A one-dimensional quantum system on a line of length L (left),
and rolled up into a slowly rotating ring (right).

Let us imagine for a moment a complicated quantum system, for ex-
ample a thin wire rolled up into a closed circle of circumference L, or
a circular tube filled with a quantum liquid, ideally 4He (see Fig. 3.7).
Both systems are described by wave functions with periodic boundary
conditions ψn(0) = ψn(L). More precisely, the wave functions in the lab
system for N conduction electrons or N helium atoms satisfy

ψlab
n (x1, . . . , xk + L, . . . , xN) = ψlab

n (x1, . . . , xk, . . . , xN). (3.24)

These boundary conditions for the wave functions in the laboratory
frame continue to hold if the ring rotates with velocity v, because a
quantum system—even if parts of it are moving—must be described ev-
erywhere by a single-valued wave function. The rotating system can
be described in the laboratory reference frame using wave functions
ψlab

n (x, t) and the time-dependent Hamiltonian H lab(t), which represents
the rotating crystal lattice or the rough surface of the tube enclosing the
liquid.

The rotating system is more conveniently described in the corotating
reference frame, using coordinates xrot rather than the laboratory coor-
dinates xlab (see Table 3.1). In this reference frame, the crystal lattice
or the container walls are stationary, so that the Hamiltonian Hrot is
time independent. For very slow rotations, we can furthermore neglect
centripetal forces and also magnetic fields generated by slowly moving
charges. This implies that the Hamiltonian Hrot (with coordinates xrot)
is the same as the laboratory Hamiltonian H lab at v = 0. However, we
shall see that the boundary conditions on the corotating wave functions
ψrot are nontrivial.

Table 3.1 Galilei transformation for a
quantum system. Erot, prot

n , and xrot

are defined in the moving reference
frame.

Reference frame
Lab. Rot.

xlab = xrot + vt xrot

plab
n = prot

n + mv prot
n

Elab
n = 1

2m

`
plab

n

´2
Erot

n = 1
2m

`
prot

n

´2 To discuss this point, we now switch back from the complicated quan-
tum systems to a free particle on a rotating ring, described by a Hamil-
tonian

Hrot = −1
2

∂2

(∂xrot)2
.

We shall go through the analysis of Hrot, but keep in mind that the very
distinction between rotating and laboratory frames is problematic for the

3.1 Density matrices 141

noninteracting system, because of the missing contact with the crystal
lattice or the container boundaries. Strictly speaking, the distinction is
meaningful for a noninteracting system only because the wave functions
of the interacting system can be expanded in a plane-wave basis. In the
rotating system, plane waves can be written as

ψrot
n (xrot) = exp

(
iprotxrot

)
.

This same plane wave can also be written, at all times, in the laboratory
frame, where it must be periodic (see eqn (3.24)). The momentum of the
plane wave in the laboratory system is related to that of the rotating
system by the Galilei transform of Table 3.1.

plab
n =

2�
L

n =⇒ prot
n =

2�
L

n − mv (n = −∞, . . . ,∞). (3.25)

It follows from the Galilei transform of momenta and energies that the
partition function Zrot(β) in the rotating reference frame is

Zrot(β) =
∞∑

n=−∞
exp
[−βErot

n

]
=

∞∑
−∞

exp
[
−β

2
(−v + 2n�/L)2

]
.

In the rotating reference frame, each plane wave with momentum prot
n

contributes velocity prot
n /m. The mean velocity measured in the rotating

reference frame is

〈
vrot(β)

〉
=

1
mZrot(β)

∞∑
n=−∞

prot
n exp

(−βErot
n

)
, (3.26)

with energies and momenta given by eqn (3.25) that satisfy Erot
n =

(prot
n)2/(2m). In the limit of zero temperature, only the lowest-lying

state contributes to this rotating reference-frame particle velocity. The
momentum of this state is generally nonzero, because the lowest energy
state, the n = 0 state at very small rotation, Erot

0 , has nonzero momen-
tum (it corresponds to particle velocity −v). The particle velocity in the
laboratory frame is 〈

vlab
〉

=
〈
vrot
〉

+ v. (3.27)

At low temperature, this particle velocity differs from the velocity of the
ring (see Fig. 3.8).

The particle velocity in a ring rotating with velocity v will now be
obtained within the framework of density matrices, similarly to the way
we obtained the density matrix for a stationary ring, in Subsection 3.1.3.
Writing x for xrot (they are the same at time t = 0, and we do not have
to compare wave functions at different times),

0

5

10

0 5 10

p
ar

ti
cl

e
v
el

oc
it

y
 〈v

la
b
〉

rotation velocity v

T = 2
4
8

Fig. 3.8 Mean lab-frame velocity of a
particle in a one-dimensional ring (from
eqns (3.26) and (3.27) with L = m =
1).

ψrot
n (x) =

√
1
L

exp
(
iprot

n x
)

(n = −∞, . . . ,∞),

Erot
n =

(prot
n)2

2m
.

142 Density matrices and path integrals

The density matrix at positions x and x′ in the rotating system is:

ρrot(x, x′, β) =
∞∑

n=−∞
e−βErot

n ψrot
n (x)

[
ψrot

n (x′)
]∗

=
1
L

∞∑
n=−∞

exp
[
−β

2
(
prot

n

)2] exp
[
iprot

n (x − x′)
]

︸ ︷︷ ︸
g(n), compare with eqn (3.16)

=
∞∑

w=−∞

∫
dφ

L
exp

[
−β

2

(
2�φ
L

− v

)2

+ i
(

2�φ
L

− v

)
(x − x′) + i2�wφ

]
,

where we have again used the Poisson sum formula (eqn (3.17)). Setting
φ′ = 2�φ/L − v and changing w into −w, we reach

ρrot(x, x′, β) =
∞∑

w=−∞
e−iLwv

∫ ∞

−∞

dφ

2�
exp
[
−β

2
φ′2 + iφ′(x − x′ − Lw)

]

=
∞∑

w=−∞
e−iLwvρfree(x, x′ + Lw, β) .

Integrating the diagonal density matrix over all the positions x, from 0
to L, yields the partition function in the rotating system:

Zrot(β) = Tr ρrot(x, x, β)

=
∞∑

w=−∞
e−iLvw

∫ L

0

dx ρfree(x, x + wL, β) (3.28)

(see eqn (3.6)). For small velocities, we expand the exponential in the
above equation. The zeroth-order term gives the partition function in
the stationary system, and the first-order term vanishes because of a
symmetry for the winding number w → −w. The term proportional to
w2 is nontrivial. We multiply and divide by the laboratory partition
function at rest, Z lab

v=0, and obtain

Zrot(β) =
∞∑

w=−∞

∫ L

0

dx ρfree(x, x + wL, β)︸ ︷︷ ︸
Zlab

v=0, see eqn (3.18)

− 1
2
v2L2

∞∑
w=−∞

w2ρfree(x, x + wL, β)
Z lab

v=0︸ ︷︷ ︸
〈w2〉v=0

Z lab
v=0 + · · ·

= Z lab
v=0

(
1 − 1

2
v2L2

〈
w2
〉

v=0

)
.

Noting that the free energy is F = − log (Z) /β, we obtain the following
fundamental formula:

F rot = F lab
v=0 +

v2L2
〈
w2
〉

v=0

2β
+ · · · . (3.29)

3.2 Matrix squaring 143

This is counter-intuitive because we would naively expect the slowly
rotating system to rotate along with the reference system and have the
same free energy as the laboratory system at rest, in the same way as
a bucket of water, under very slow rotation, simply rotates with the
walls and satisfies F rot = F lab

v=0. However, we saw the same effect in the
previous calculation, using wave functions and eigenvalues. Part of the
system simply does not rotate with the bucket. It remains stationary in
the laboratory system.

The relation between the mean squared winding number and the
change of free energies upon rotation is due to Pollock and Ceperley
(1986). Equation (3.29) contains no more quantities specific to nonin-
teracting particles; it therefore holds also in an interacting system, at
least for small velocities. We shall understand this more clearly by rep-
resenting the density matrix as a sum of paths, which do not change
with interactions, and only get reweighted. Equation (3.29) is very con-
venient for evaluating the superfluid fraction of a liquid, that part of a
very slowly rotating system which remains stationary in the laboratory
frame.

In conclusion, we have computed in this subsection the density ma-
trix for a free particle in a rotating box. As mentioned several times, this
calculation has far-reaching consequences for quantum liquids and su-
perconductors. Hess and Fairbank (1967) demonstrated experimentally
that a quantum liquid in a slowly rotating container rotates more slowly
than the container, or even stops to rest. The reader is urged to study
the experiment, and Leggett’s classic discussion (Leggett 1973).

3.2 Matrix squaring

A classical equilibrium system is at coordinates x with a probability π(x)
given by the Boltzmann distribution. In contrast, a quantum statistical
system is governed by the diagonal density matrix, defined through wave
functions and energy eigenvalues. The problem is that we usually do not
know the solutions of the Schrödinger equation, so that we need other
methods to compute the density matrix. In this section, we discuss ma-
trix squaring, an immensely practical approach to computing the density
matrix at any temperature from a high-temperature limit with the help
of a convolution principle, which yields the density matrix at low tem-
perature once we know it at high temperature.

Convolutions of probability distributions have already been discussed
in Chapter 1. Their relation to convolutions of density matrices will
become evident in the context of the Feynman path integral (see Sec-
tion 3.3).

3.2.1 High-temperature limit, convolution

In the limit of high temperature, the density matrix of a quantum sys-
tem described by a Hamiltonian H = H free + V is given by a general

144 Density matrices and path integrals

expression known as the Trotter formula:

ρ(x, x′, β) −−−→
β→0

e−
1
2 βV (x)ρfree(x, x′, β) e−

1
2 βV (x′). (3.30)

To verify eqn (3.30), we expand the exponentials of operators, but ob-
serve that terms may not commute, that is, HfreeV
= V Hfree. We then
compare the result with the expansion in eqn (3.15) of the density matrix
ρ = e−βH . The above Trotter formula gives(

1− β

2
V︸︷︷︸

a

+
β2

8
V 2︸ ︷︷ ︸
b

. . .

)[
1−βH free︸ ︷︷ ︸

c

+
β2

2
(H free)2︸ ︷︷ ︸

d

. . .

](
1− β

2
V︸︷︷︸
e

+
β2

8
V 2︸ ︷︷ ︸

f

. . .

)
,

which yields

1 − β(V + H free)︸ ︷︷ ︸
a+e+c

+
β2

2

[
V 2︸︷︷︸

ae+b+f

+ V H free︸ ︷︷ ︸
ac

+ H freeV︸ ︷︷ ︸
ce

+ (H free)2︸ ︷︷ ︸
d

]
− · · · .

This agrees up to order β2 with the expansion of

e−β(V +Hfree) = 1 − β(V + H free) +
β2

2
(V + H free)(V + H free)︸ ︷︷ ︸

V 2+V Hfree+HfreeV +(Hfree)2

+ · · · .

The above manipulations are generally well defined for operators and
wave functions in a finite box.

Any density matrix ρ(x, x′, β) possesses a fundamental convolution
property:∫

dx′ ρ(x, x′, β1) ρ(x′, x′′, β2) (3.31)

=
∫

dx′ ∑
n,m

ψn(x)e−β1Enψ∗
n(x′)ψm(x′)e−β2Emψ∗

m(x′′)

=
∑
n,m

ψn(x)e−β1En

∫
dx′ ψ∗

n(x′)ψm(x′)︸ ︷︷ ︸
δnm, see eqn (3.2)

e−β2Emψ∗
m(x′′)

=
∑

n

ψn(x)e−(β1+β2)Enψ∗
n(x′′) = ρ(x, x′′, β1 + β2). (3.32)

We can thus express the density matrix in eqn (3.32) at the inverse
temperature β1 + β2 (low temperature) as an integral (eqn (3.31)) over
density matrices at higher temperatures corresponding to β1 and β2.
Let us suppose that the two temperatures are the same (β1 = β2 = β)
and that the positions x are discretized. The integral in eqn (3.31) then
turns into a sum

∑
l, and ρ(x, x′, β) becomes a discrete matrix ρkl.

The convolution turns into a product of a matrix with itself, a matrix
squared: ∫

dx′

�∑
l

ρ(x, x′, β)
�
ρkl

ρ(x′, x′′, β)
�

ρlm

=

=

ρ(x, x′′, 2β) .
�(

ρ2
)
km

3.2 Matrix squaring 145

Matrix squaring was first applied by Storer (1968) to the convolution
of density matrices. It can be iterated: after computing the density ma-
trix at 2β, we go to 4β, then to 8β, etc., that is, to lower and lower
temperatures. Together with the Trotter formula, which gives a high-
temperature approximation, we thus have a systematic procedure for
computing the low-temperature density matrix. The procedure works
for any Hamiltonian provided we can evaluate the integral in eqn (3.31)
(see Alg. 3.3 (matrix-square)). We need not solve for eigenfunctions
and eigenvalues of the Schrödinger equation. To test the program, we
may iterate Alg. 3.3 (matrix-square) several times for the harmonic
oscillator, starting from the Trotter formula at high temperature. With
some trial and error to determine a good discretization of x-values and
a suitable initial temperature, we can easily recover the plots of Fig. 3.3.

procedure matrix-square

input {x0, . . . , xK}, {ρ(xk, xl, β)} (grid with step size ∆x)
for x = x0, . . . , xK do{

for x′ = x0, . . . , xK do{
ρ(x, x′, 2β) ←∑k ∆xρ(x, xk, β) ρ(xk, x′, β)

output {ρ(xk, xl, 2β)}
——

Algorithm 3.3 matrix-square. Density matrix at temperature 1/(2β)
obtained from that at 1/β by discretizing the integral in eqn (3.32).

3.2.2 Harmonic oscillator (exact solution)

Quantum-statistics problems can be solved by plugging the high-tempe-
rature approximation for the density matrix into a matrix-squaring rou-
tine and iterating down to low temperature (see Subsection 3.2.1). This
strategy works for anything from the simplest test cases to compli-
cated quantum systems in high spatial dimensions, interacting particles,
bosons, fermions, etc. How we actually do the integration inside the
matrix-squaring routine depends on the specific problem, and can in-
volve saddle point integration or other approximations, Riemann sums,
Monte Carlo sampling, etc. For the harmonic oscillator, all the inte-
grations can be done analytically. This yields an explicit formula for the
density matrix for a harmonic oscillator at arbitrary temperature, which
we shall use in later sections and chapters.

The density matrix at high temperature,

ρh.o.(x, x′, β)
from

eqn (3.30)−−−−−−→
β→0

√
1

2�β
exp
[
−β

4
x2 − (x − x′)2

2β
− β

4
x′2
]

,

can be written as

ρh.o.(x, x′, β) = c(β) exp
[
−g(β)

(x − x′)2

2
− f(β)

(x + x′)2

2

]
, (3.33)

146 Density matrices and path integrals

where

f(β) −−−→
β→0

β

4
,

g(β) −−−→
β→0

1
β

+
β

4
,

c(β) −−−→
β→0

√
1

2�β
.

(3.34)

The convolution of two Gaussians is again a Gaussian, so that the
harmonic-oscillator density matrix at inverse temperature 2β,

ρh.o.(x, x′′, 2β) =
∫ ∞

−∞
dx′ ρh.o.(x, x′, β) ρh.o.(x′, x′′, β) ,

must also have the functional form of eqn (3.33). We recast the expo-
nential in the above integrand,

− f

2
[
(x + x′)2 + (x′ + x′′)2

]− g

2
[
(x − x′)2 + (x′ − x′′)2

]
= −f + g

2
(
x2 + x′′2)︸ ︷︷ ︸

independent of x′

−2(f + g)
x′2

2
− (f − g)(x + x′′)x′︸ ︷︷ ︸

Gaussian in x′, variance σ2 = (2f + 2g)−1

,

and obtain, using eqn (3.12),

ρh.o.(x, x′′, 2β)

= c(2β) exp
[
−f + g

2
(
x2 + x′′2)+

1
2

(f − g)2

f + g

(x + x′′)2

2

]
. (3.35)

The argument of the exponential function in eqn (3.35) is

−
[
f + g

2
− 1

2
(f − g)2

f + g

]
︸ ︷︷ ︸

f(2β)

(x + x′′)2

2
−
(

f + g

2

)
︸ ︷︷ ︸

g(2β)

(x − x′′)2

2
.

We thus find

f(2β) =
f(β) + g(β)

2
− 1

2
[f(β) − g(β)]2

f(β) + g(β)
=

2f(β)g(β)
f(β) + g(β)

,

g(2β) =
f(β) + g(β)

2
,

c(2β) = c2(β)

√
2�

2[f(β) + g(β)]
= c2(β)

√
2�

2
√

g(2β)
.

The recursion relations for f and g imply

f(2β)g(2β) = f(β)g(β) = f(β/2)g(β/2) = · · · =
1
4
,

3.2 Matrix squaring 147

because of the high-temperature limit in eqn (3.34), and therefore

g(2β) =
g(β) + (1/4)g−1(β)

2
. (3.36)

We can easily check that the only function satisfying eqn (3.36) with the
limit in eqn (3.34) is

g(β) =
1
2

coth
β

2
=⇒ f(β) =

1
2

tanh
β

2
.

Knowing g(β) and thus g(2β), we can solve for c(β) and arrive at

ρh.o.(x, x′, β)

=
√

1
2� sinh β

exp
[
− (x + x′)2

4
tanh

β

2
− (x − x′)2

4
coth

β

2

]
, (3.37)

and the diagonal density matrix is

ρh.o.(x, x, β) =
√

1
2� sinh β

exp
(
−x2 tanh

β

2

)
. (3.38)

To introduce physical units into these two equations, we must replace

x →
√

mω

�
x,

β →�ωβ =
�ω

kBT
,

and also multiply the density matrix by a factor
√

mω/�.
We used Alg. 3.2 (harmonic-density) earlier to compute the diag-

onal density matrix ρh.o.(x, x, β) from the wave functions and energy
eigenvalues. We now see that the resulting plots, shown in Fig. 3.3, are
simply Gaussians of variance

σ2 =
1

2 tanh (β/2)
. (3.39)

For a classical harmonic oscillator, the analogous probabilities are ob-
tained from the Boltzmann distribution

πclass.(x) ∝ e−βE(x) = exp
(−βx2/2

)
.

This is also a Gaussian, but its variance (σ2 = 1/β) agrees with that in
the quantum problem only in the high-temperature limit (see eqn (3.39)
for β → 0). Integrating the diagonal density matrix over space gives the
partition function of the harmonic oscillator:

Zh.o.(β) =
∫

dx ρh.o.(x, x, β) =
1

2 sinh (β/2)
, (3.40)

where we have used the fact that

tanh
β

2
sinh β = 2

(
sinh

β

2

)2

.

148 Density matrices and path integrals

This way of computing the partition function agrees with what we
obtained from the sum of energies in eqn (3.3). Matrix squaring also
allows us to compute the ground-state wave function without solving
the Schrödinger equation because, in the limit of zero temperature,
eqn (3.38) becomes ρh.o.(x, x, β) ∝ exp

(−x2
) ∝ ψh.o.

0 (x)2 (see Alg. 3.1
(harmonic-wavefunction)).

In conclusion, we have obtained in this subsection an analytic expres-
sion for the density matrix of a harmonic oscillator, not from the energy
eigenvalues and eigenfunctions, but using matrix squaring down from
high temperature. We shall need this expression several times in this
chapter and in Chapter 4.

3.2.3 Infinitesimal matrix products

The density matrix at low temperature (inverse temperature β1 + β2)
ρ(x, x′, β1 + β2) is already contained in the density matrices at β1 and
β2. We can also formulate this relation between density matrices at two
different temperatures in terms of a differential relation, by taking one
of the temperatures to be infinitesimally small:

ρ(∆β)ρ(β) = ρ(β + ∆β).

Because of ρ(∆β) = e−∆βH � 1 − ∆βH , this is equivalent to

−Hρ � ρ(β + ∆β) − ρ(β)
∆β

=
∂

∂β
ρ. (3.41)

The effect of the hamiltonian on the density matrix is best clarified in
the position representation, where one finds, either by inserting complete
sets of states into eqn (3.41) or from the definition of the density matrix:

∂

∂β
ρ(x, x′, β) = −

∑
n

Enψn(x)︸ ︷︷ ︸
Hψn(x)

e−βEnψ∗
n(x′) = −Hxρ(x, x′, β) , (3.42)

where Hx means that the Hamiltonian acts on x, not on x′, in the density
matrix ρ(x, x′, β). Equation (3.42) is the differential version of matrix
squaring, and has the same initial condition at infinite temperature:
ρ(x, x′, β → 0) → δ(x − x′) (see eqn (3.14)).

We shall not need the differential equation (3.42) in the further course
of this book and shall simply check in passing that it is satisfied by
ρfree(x, x′, β). We have

∂

∂β
ρfree(x, x′, β) =

∂

∂β

{
1√
2�β

exp
[
− (x − x′)2

2β

]}
=

−β + (x − x′)2

2β2
ρfree(x, x′, β) .

On the other hand, we can explicitly check that:

∂2

∂x2
ρfree(x, x′, β) = ρfree(x, x′, β)

(x − x′)2

β2
− ρfree(x, x′, β) /β,

3.3 The Feynman path integral 149

so that the free density matrix solves the differential equation (3.42).
In this book, we shall be interested only in the density matrix in sta-

tistical mechanics, shown in eqn (3.41), which is related to the evolution
operator in real time, e−itH . Formally, we can pass from real time t to
inverse temperature β through the replacement

β = it,

and β is often referred to as an “imaginary” time. The quantum Monte
Carlo methods in this chapter and in Chapter 4 usually do not carry over
to real-time quantum dynamics, because the weights would become com-
plex numbers, and could then no longer be interpreted as probabilities.

3.3 The Feynman path integral

In matrix squaring, one of the subjects of Section 3.2, we convolute two
density matrices at temperature T to produce the density matrix at tem-
perature T/2. By iterating this process, we can obtain the density ma-
trix at any temperature from the quasi-classical high-temperature limit.
Most often, however, it is impossible to convolute two density matrices
analytically. With increasing numbers of particles and in high dimen-
sionality, the available computer memory soon becomes insufficient even
to store a reasonably discretized matrix ρ(x,x′, β), so that one cannot
run Alg. 3.3 (matrix-square) on a discretized approximation of the
density matrix. Monte Carlo methods are able to resolve this problem.
They naturally lead to the Feynman path integral for quantum systems
and to the idea of path sampling, as we shall see in the present section.

Instead of evaluating the convolution integrals one after the other, as
is done in matrix squaring, we can write them out all together:

ρ(x, x′, β) =
∫

dx′′ ρ(x, x′′, β/2) ρ(x′′, x′, β/2)

=
∫∫∫

dx′′dx′′′dx′′′′ρ(x, x′′′,
β

4
) ρ(x′′′, x′′,

β

4
) ρ(x′′, x′′′′,

β

4
) ρ(x′′′′, x′,

β

4
)

=

This equation continues to increasingly deeper levels, with the kth appli-
cations of the matrix-squaring algorithm corresponding to � 2k integra-
tions. Writing {x0, x1, . . . } instead of the cumbersome {x, x′, x′′, . . . },
this gives

ρ(x0, xN , β) =
∫

· · ·
∫

dx1 . . .dxN−1

× ρ

(
x0, x1,

β

N

)
. . . ρ

(
xN−1, xN ,

β

N

)
, (3.43)

where we note that, for the density matrix ρ(x0, xN , β), the variables x0

and xN are fixed on both sides of eqn (3.43). For the partition function,

150 Density matrices and path integrals

there is one more integration, over the variable x0, which is identified
with xN :

Z =
∫

dx0 ρ(x0, x0, β) =
∫

· · ·
∫

dx0 . . .dxN−1

× ρ

(
x0, x1,

β

N

)
. . . ρ

(
xN−1, x0,

β

N

)
. (3.44)

The sequence {x0, . . . , xN} in eqns (3.43) and (3.44) is called a path, and
we can imagine the variable xk at the value kβ/N of the imaginary-time
variable τ , which goes from 0 to β in steps of ∆τ = β/N (see Feynman
(1972)). Density matrices and partition functions are thus represented
as multiple integrals over paths, called path integrals, both at finite N
and in the limit N → ∞. The motivation for this representation is again
that for large N , the density matrices under the multiple integral signs
are at small ∆τ = β/N (high temperature) and can thus be replaced
by their quasi-classical high-temperature approximations. To distinguish
between the density matrix with fixed positions x0 and xN and the par-
tition function, where one integrates over x0 = xN , we shall refer to the
paths in eqn (3.43) as contributing to the density matrix ρ(x0, xN , β),
and to the paths in eqn (3.44) as contributing to the partition function.

After presenting a naive sampling approach in Subsection 3.3.1, we
discuss direct path sampling using the Lévy construction, in Subsec-
tion 3.3.2. The closely related later Subsection 3.5.1 introduces path
sampling in Fourier space.

3.3.1 Naive path sampling

The Feynman path integral describes a single quantum particle in terms
of paths {x0, . . . , xN} (often referred to as world lines), with weights
given by the high-temperature density matrix or another suitable ap-
proximation:

Z =
∫ ∫

dx0, . . . , dxN−1︸ ︷︷ ︸
sum of paths

ρ(x0, x1, ∆τ) · · · · · ρ(xN−1, x0, ∆τ)︸ ︷︷ ︸
weight π of path

.

More generally, any variable xk can represent a d-dimensional quantum
system. The full path then lies in d + 1 dimensions.

Let us first sample the paths contributing to the partition function of a
harmonic oscillator using a local Markov-chain algorithm (see Fig. 3.9).
We implement the Trotter formula, as we would for an arbitrary poten-
tial. Each path comes with a weight containing terms as the following:

. . . ρfree(xk−1, xk, ∆τ) e−
1
2 ∆τV (xk)︸ ︷︷ ︸

ρ(xk−1, xk, ∆τ) in Trotter formula

e−
1
2 ∆τV (xk)ρfree(xk, xk+1, ∆τ) . . .︸ ︷︷ ︸
ρ(xk, xk+1, ∆τ) in Trotter formula

.

As shown, each argument xk appears twice, and any two contributions
exp
[− 1

2∆τV (xk)
]
, where V (x) = 1

2x2, can be combined into a single

3.3 The Feynman path integral 151

a

i = 0

xk

k

N

a (+ move) b

x′k

Fig. 3.9 Naive path-sampling move. The ratio πb/πa is computed from
{xk−1, xk, xk+1} and from the new position x′

k.

term exp [−∆τV (xk)]. To move from one position of the path to the
next, we choose a random element k and accept the move xk → xk + δx

using the Metropolis algorithm. The ratio of the weights of the new
and the old path involves only two segments of the path and one in-
teraction potential (see Alg. 3.4 (naive-harmonic-path)). A move of
xk, for k
= 0, involves segments {xk−1, xk} and {xk, xk+1}. Periodic
boundary conditions in the τ -domain have been worked in: for k = 0,
we consider the density matrices between {xN−1, x0} and {x0, x1}. Such
a move across the horizon k = 0 changes x0 and xN , but they are the
same (see the iteration i = 10 in Fig. 3.11).

0

0.5

210−1−2

 p
ro

b
ab

il
it

y
 o

f
x

0
(h

is
t.

)

position x0

Monte Carlo
analytic

Fig. 3.10 Histogram of positions x0

(from Alg. 3.4 (naive-harmonic-path),
with β = 4, N = 8, and 1×106 itera-
tions).

procedure naive-harmonic-path

input {x0, . . . , xN−1}
∆τ ← β/N
k ← nran (0, N − 1)
k± ← k ± 1
if (k− = −1)k− ← N
x′

k ← xk + ran (−δ, δ)
πa ← ρfree

(
xk− , xk, ∆τ

)
ρfree
(
xk, xk+ , ∆τ

)
exp
(− 1

2∆τx2
k

)
πb ← ρfree

(
xk− , x′

k, ∆τ

)
ρfree
(
x′

k, xk+ , ∆τ

)
exp
(− 1

2∆τx′2
k

)
Υ ← πb/πa

if (ran (0, 1) < Υ)xk ← x′
k

output {x0, . . . , xN−1}
——

Algorithm 3.4 naive-harmonic-path. Markov-chain sampling of paths

contributing to Zh.o. =
R

dx0 ρh.o.(x0, x0, β).

Algorithm 3.4 (naive-harmonic-path) is an elementary path-integral
Monte Carlo program. To test it, we can generate a histogram of posi-
tions for any of the xk (see Fig. 3.10). For large N , the error in the
Trotter formula is negligible. The histogram must then agree with the
analytical result for the probability π(x) = ρh.o.(x, x, β) /Z, which we
can also calculate from eqns (3.38) and (3.40). This simple path-integral

152 Density matrices and path integrals

0

β

x0

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Fig. 3.11 Markov-chain path sampling for a harmonic potential (from
Alg. 3.4 (naive-harmonic-path)).

Monte Carlo program can in principle, but rarely in practice, solve prob-
lems in equilibrium quantum statistical physics.

Algorithm 3.4 (naive-harmonic-path), like local path sampling in
general, is exceedingly slow. This can be seen from the fluctuations in the
histogram in Fig. 3.10 or in the fact that the path positions in Fig. 3.11
are all on the positive side (xk > 0), just as in the initial configuration:
Evidently, a position xk cannot get too far away from xk−1 and xk+1,
because the free density matrix then quickly becomes very small. Local
path sampling is unfit for complicated problems.

3.3.2 Direct path sampling and the Lévy
construction

To overcome the limitations of local path sampling, we must analyze the
origin of the high rejection rate. As discussed in several other places in
this book, a high rejection rate signals an inefficient Monte Carlo algo-
rithm, because it forces us to use small displacements δ. This is what
happens in Alg. 3.4 (naive-harmonic-path). We cannot move xk very
far away from its neighbors, and are also prevented from moving larger
parts of the path, consisting of positions {xk, . . . , xk+l}. For concrete-
ness, we first consider paths contributing to the density matrix of a free
particle, and later on the paths for the harmonic oscillator. Let us sample
the integral

ρfree(x0, xN , β) =
∫

· · ·
∫

dx1 . . . dxN−1

ρfree(x0, x1, ∆τ) ρfree(x1, x2, ∆τ) . . . ρfree(xN−1, xN , ∆τ)︸ ︷︷ ︸
π(x1,...,xN−1)

. (3.45)

We focus for a moment on Monte Carlo moves where all positions except

x′

x′′

xk

∆′
τ

∆′′
τ

Fig. 3.12 Proposed and ac-
cepted moves in Alg. 3.4
(naive-harmonic-path). The posi-
tion xk is restrained by x′ and x′′. xk are frozen, in particular xk−1 and xk+1. Slightly generalizing the

problem, we focus on a position xk sandwiched in between fixed positions

3.3 The Feynman path integral 153

x′ and x′′, with two intervals in τ , ∆′
τ and ∆′′

τ (see Fig. 3.12). In the
naive path-sampling algorithm, the move is drawn randomly between −δ
and +δ, around the current position xk (see Fig. 3.12). The distribution
of the accepted moves in Fig. 3.12 is given by

πfree(xk|x′, x′′) ∝ ρfree(x′, xk, ∆′
τ) ρfree(xk, x′′, ∆′′

τ) ,

where

ρfree(x′, xk, ∆′
τ) ∝ exp

[
− (x′ − xk)2

2∆′
τ

]
,

ρfree(xk, x′′, ∆′′
τ) ∝ exp

[
− (xk − x′′)2

2∆′′
τ

]
.

Expanding the squares and dropping all multiplicative terms indepen-
dent of xk, we find the following for the probability of xk:

πfree(xk|x′, x′′) ∝ exp
(
−
x′2 − 2x′xk + x2

k

2∆′
τ

− x2
k − 2xkx′′+
x′′2

2∆′′
τ

)
∝ exp

[
− (xk − 〈xk〉)2

2σ2

]
, (3.46)

where
〈xk〉 =

∆′′
τ x′ + ∆′

τx′′

∆′
τ + ∆′′

τ

and
σ2 = (1/∆′′

τ + 1/∆′
τ)−1.

The mismatch between the proposed moves and the accepted moves gen-
erates the rejections in the Metropolis algorithm. We could modify the
naive path-sampling algorithm by choosing xk from a Gaussian distribu-
tion with the appropriate parameters (taking x′ ≡ xk−1 (unless k = 0),
x′′ ≡ xk+1, and ∆′

τ = ∆′′
τ = β/N). In this way, no rejections would be

generated.
The conditional probability in eqn (3.46) can be put to much better

use than just to suppress a few rejected moves in a Markov-chain al-
gorithm. In fact, πfree(xk|x′, x′′) gives the weight of all paths which, in
Fig. 3.12, start at x′, pass through xk and end up at x′′. We can sample
this distribution to obtain x1 (using x′ = x0 and x′′ = xN). Between
the freshly sampled x1 and xN , we may then pick x2, and thereafter x3

between x2 and xN and, eventually, the whole path {x1, . . . , xN} (see
Fig. 3.14 and Alg. 3.5 (levy-free-path)). A directly sampled path with
N = 50 000 is shown in Fig. 3.13; it can be generated in a split second,
has no correlations with previous paths, and its construction has caused
no rejections. In the limit N → ∞, x(τ) is a differentiable continuous
function of τ , which we shall further analyze in Section 3.5.

τ = β

τ = 0
x0

xN

position

Fig. 3.13 A path contributing
to ρfree(x0, xN , β) (from Alg. 3.5
(levy-free-path), with N = 50 000).

Direct path sampling—usually referred to as the Lévy construction—
was introduced by Lévy (1940) as a stochastic interpolation between
points x0 and xN . This generalizes interpolations using polynomials,
trigonometric functions (see Subsection 3.5.1), splines, etc. The Lévy

154 Density matrices and path integrals

construction satisfies a local construction principle: the path x(τ), in any
interval [τ1, τ2], is the stochastic interpolation of its end points x(τ1) and
x(τ2), but the behavior of the path outside the interval plays no role.

The Lévy construction is related to the theory of stable distributions,
also largely influenced by Lévy (see Subsection 1.4.4), essentially because
Gaussians, which are stable distributions, are encountered at each step.
The Lévy construction can be generalized to other stable distributions,
but it then would not generate a continuous curve in the limit ∆τ → 0.

x0

x6

k = 1

x1

k = 2

x2

k = 3

x3

k = 4

x4

k = 5

x5

output

Fig. 3.14 Lévy construction of a free-particle path from x0 to x6 (see
Alg. 3.5 (levy-free-path)).

procedure levy-free-path

input {x0, xN}
∆τ ← β/N
for k = 1, . . . , N − 1 do⎧⎪⎪⎨⎪⎪⎩

∆′
τ ← (N − k)∆τ

〈xk〉 ← (∆′
τxk−1 + ∆τxN)/(∆τ + ∆′

τ)
σ−2 ← ∆−1

τ + ∆′−1
τ

xk ← 〈xk〉 + gauss (σ)
output {x0, . . . , xN}
——

Algorithm 3.5 levy-free-path. Sampling a path contributing to

ρfree(x0, xN , β), using the Lévy construction (see Fig. 3.14).

We now consider the Lévy construction for a harmonic oscillator. The
algorithm can be generalized to this case because the harmonic density
matrix is a Gaussian (the exponential of a quadratic polynomial), and
the convolution of two Gaussians is again a Gaussian:

ρh.o.(x′, x′′, ∆′
τ + ∆′′

τ) =
∫

dxk ρh.o.(x′, xk, ∆′
τ) ρh.o.(xk, x′′, ∆′′

τ)︸ ︷︷ ︸
πh.o.(xk|x′,x′′)

.

3.3 The Feynman path integral 155

Because of the external potential, the mean value 〈xk〉 no longer lies
on the straight line between x′ and x′′. From the nondiagonal harmonic
density matrix in eqn (3.37), and proceeding as in eqn (3.46), we find
the following:

πh.o.(xk|x′, x′′) ∝ exp
[
− 1

2σ2
(xk − 〈xk〉)2

]
,

with parameters

〈xk〉 =
Υ2

Υ1
,

σ =Υ−1/2
1 ,

Υ1 = coth ∆′
τ + coth ∆′′

τ ,

Υ2 =
x′

sinh ∆′
τ

+
x′′

sinh ∆′′
τ

,

as already used in the analytic matrix squaring for the harmonic oscil-
lator. We can thus directly sample paths contributing to the harmonic
density matrix ρh.o.(x0, xN , β) (see Alg. 3.6 (levy-harmonic-path)),
and also paths contributing to Zh.o. =

∫
dx0 ρh.o.(x0, x0, β), if we first

sample x0 from the Gaussian diagonal density matrix in eqn (3.38).

procedure levy-harmonic-path

input {x0, xN}
∆τ ← β/N
for k = 1, . . . , N − 1 do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Υ1 ← coth ∆τ + coth [(N − k)∆τ]
Υ2 ← xk−1/ sinh ∆τ + xN/ sinh [(N − k)∆τ]
〈xk〉 ← Υ2/Υ1

σ ← 1/
√

Υ1

xk ← 〈xk〉 + gauss (σ)
output {x0, . . . , xN}
——

Algorithm 3.6 levy-harmonic-path. Sampling a path contributing to

ρh.o.(x0, xN , β), using the Lévy construction (see Fig. 3.15).

In Alg. 3.5 (levy-free-path), we were not obliged to sample the
path in chronological order (first x0, then x1, then x2, etc.). After fixing
x0 and xN , we could have chosen to sample the midpoint xN/2, then
the midpoint between x0 and xN/2 and between xN/2 and xN , etc. (see
Alg. 3.8 (naive-box-path) and Fig. 3.19 later). We finally note that
free paths can also be directly sampled using Fourier-transformation
methods (see Subsection 3.5.1).

3.3.3 Periodic boundary conditions, paths in a box

We now turn to free paths in a box, first with periodic boundary con-
ditions, and then with hard walls. A path contributing to the density

156 Density matrices and path integrals

0

β

i = 1

x0

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Fig. 3.15 Paths contributing to Zh.o. =
R

dx0 ρh.o.(x0, x0, β) (from
Alg. 3.6 (levy-harmonic-path), with x0 first sampled from eqn (3.38)).

matrix ρper,L(x, x′, β) may wind around the box, that is, go from x to a
periodic image x′ + wL rather than straight to x′ (see Fig. 3.16, where
the path i = 1 has zero winding number, the path i = 2 has a winding
number w = 1, etc.).

0

β

0 Li = 1i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

Fig. 3.16 Paths for a free particle in a periodic box (from Alg. 3.7
(levy-periodic-path) with x0 = ran (0, L)).

The paths contributing to ρper,L(x, x′, β) with a given winding number
w are exactly the same as the paths contributing to ρfree(x, x′ + wL, β).
The total weight of all the paths contributing to ρper,L(x, x′, β) is there-
fore

∑
w ρfree(x, x′ + wL, β), and this is the expression for the density

matrix in a periodic box that we already obtained in eqn (3.18), from
the Poisson sum formula.

We can sample the paths contributing to the periodic density matrix
by a two-step procedure: as each of the images xN + wL carries a sta-
tistical weight of ρfree(x0, xN + wL, β), we may first pick the winding
number w by tower sampling (see Subsection 1.2.3). In the second step,
the path between x0 and xN +wL is filled in using the Lévy construction
(see Alg. 3.7 (levy-periodic-path)).

The paths contributing to ρbox,[0, L](x, x′, β) are the same as the free

3.3 The Feynman path integral 157

procedure levy-periodic-path

input {x0, xN}
for w′ = . . . ,−1, 0, 1, . . . do{

πw′ ← ρfree(x0, xN + w′L, β)
w ← tower sampling (. . . , π−1, π0, π1, . . .)
{x1, . . . , xN−1} ← levy-free-path(x0, xN + wL, β)
output {x0, . . . , xN}
——

Algorithm 3.7 levy-periodic-path. Sampling a free path between x0

and xN in a box of length L with periodic boundary conditions.

paths, with the obvious restriction that they should not cross the bound-
aries. We have already shown that the density matrix of a free particle
in a box satisfies

ρbox,L(x, x′, β)

=
∞∑

w=−∞

[
ρfree(x, x′ + 2wL, β) − ρfree(x,−x′ + 2wL, β)

]
. (3.47)

This is eqn (3.23) again. We shall now rederive it using a graphic method,
rather than the Poisson sum formula of Subsection 3.1.3. Let us imagine
boxes around an interval [wL, (w + 1)L], as in Fig. 3.17. For x and x′

inside the interval [0, L] (the original box), either the paths contributing
to the free density matrix ρfree(x, x′, β) never leave the box, or they
reenter the box from the left or right boundary before connecting with
x′ at τ = β:

ρfree(x, x′, β)︸ ︷︷ ︸
x and x′

in same box

= ρbox(x, x′, β)︸ ︷︷ ︸
path does not

leave box

+ ρright(x, x′, β)︸ ︷︷ ︸
path reenters
from right

+ ρleft(x, x′, β)︸ ︷︷ ︸
path reenters

from left

(3.48)

(see Fig. 3.17).

ρfree(x,x′,β)

=

ρbox(x,x′,β)

+

ρright(x,x′,β)

+

ρleft(x,x′,β)

Fig. 3.17 Free density matrix as a sum of three classes of paths.

When x and x′ are not in the same box, the path connects back to x′

from either the right or the left border:

ρfree(x, x′, β)︸ ︷︷ ︸
x and x′

not in same box

= ρright(x, x′, β)︸ ︷︷ ︸
path enters box of x′

from right

+ ρleft(x, x′, β)︸ ︷︷ ︸
path enters box of x′

from left

.

158 Density matrices and path integrals

By flipping the final leg of a path, we can identify ρright(x, x′, β) with
ρleft(x, 2L − x′, β) etc., (see Fig. 3.18):

ρright(x, x′, β) = ρleft(x, 2L − x′, β)

= ρfree(x, 2L − x′, β) − ρright(x, 2L − x′, β)

= ρfree(x, 2L − x′, β) − ρleft(x, 2L + x′, β)

= ρfree(x, 2L − x′, β) − ρfree(x, 2L + x′, β) + ρright(x, 2L + x′, β).

The density matrix ρright(x, 2L + x′, β) can itself be expressed throughρright(x,x′,β)

=

0 L 2L

ρleft(x,2L−x′,β)

Fig. 3.18 A flip relation between left
and right density matrices.

free density matrices around 4L, so that we arrive at

ρright(x, x′, β) =
∞∑

w=1

[
ρfree(x, 2wL − x′, β) − ρfree(x, 2wL + x′, β)

]
.

Analogously, we obtain

ρleft(x, x′, β) = ρfree(x,−x′, β)

+
∑

w=−1,−2,...

[
ρfree(x, 2wL − x′, β) − ρfree(x, 2wL + x′, β)

]
.

Entered into eqn (3.48), the last two equations yield the box density
matrix.

We now sample the paths contributing to the density matrix in a
box. Naively, we might start a Lévy construction, and abandon it after
the first trespass over box boundaries. Within the naive approach, it is
better to sample the path on large scales first, and then to work one’s
way to small scales (see Fig. 3.19 and Alg. 3.8 (naive-box-path)). Big
moves, which carry a high risk of rejection, are made early. Bad paths
are abandoned quickly.

x4

x0

x8

k = 1
τ = 0

τ = β

0 L

x2

x6

k = 2

x1

x3

x5

x7

k = 3 ...

Fig. 3.19 Path construction in a box, on increasingly finer scales (in
Alg. 3.8 (naive-box-path)).

Each path of the free density matrix that hits the boundary of the box
contributes to the rejection rate of Alg. 3.8 (naive-box-path), given
simply by

preject = 1 − ρbox,[0, L](x, x′, β)
ρfree(x, x′, β)

.

3.4 Pair density matrices 159

procedure naive-box-path

input {x0, xN} (N is power of two: N = 2K)
1 for k = 1, . . . , K do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆k ← 2k

∆τ ← β/∆k⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

for k′ = 1, N/∆k do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k ← k′∆k

k± ← k ± ∆k

〈xk′∆〉 ← 1
2

(
xk− + xk+

)
xk ← 〈xk−

〉
+ gauss (

√
2/∆τ)

if (xk < 0 or xk > L) goto 1
output {x0, . . . , xN}
——

Algorithm 3.8 naive-box-path. Sampling a path contributing to

ρbox,[0, L](x0, xN , β) from large scales down to small ones (see Fig. 3.19).

When L � √
β, this rate is so close to one that the naive algorithm be-

comes impractical. We can then directly sample the positions xk noting
that, for example, the position x4 in Fig. 3.19 is distributed as

π(x4|x0, x8) = ρbox(x0, x4, β/2)ρbox(x4, x8, β/2)︸ ︷︷ ︸
explicitly known, see eqn (3.47)

.

This one-dimensional distribution can be sampled without rejections
using the methods of Subsection 1.2.3, even though we must recompute
it anew for each value of x0 and x8. We shall not pursue the discussion
of this algorithm, but again see that elegant analytic solutions lead to
superior sampling algorithms.

3.4 Pair density matrices

Using wave functions and energy eigenvalues on the one side, and den-
sity matrices on the other, we have so far studied single quantum par-
ticles in external potentials. It is time to move closer to the core of
modern quantum statistical mechanics and to consider the many-body
problem—mutually interacting quantum particles, described by many
degrees of freedom. Path integral methods are important conceptual
and computational tools to study these systems.

For concreteness, and also for consistency with other chapters, we il-
lustrate the quantum many-body problem for a pair of three-dimensional
hard spheres of radius σ. The density matrix for a pair of hard spheres
can be computed with paths, but also in the old way, as in Section 3.1,
with wave functions and eigenvalues. Both approaches have subtleties.
The naive path integral for hard spheres is conceptually simple. It il-
lustrates how the path integral approach maps a quantum system onto
a classical system of interacting paths. However, it is computationally
awkward, even for two spheres. On the other hand, the wave functions

160 Density matrices and path integrals

and energy eigenvalues are not completely straightforward to obtain for
a pair of hard spheres, but they then lead to a computationally fast, ex-
act numerical solution for the pair density matrix. The two approaches
come together in modern perfect action algorithms for the many-body
problem, where analytical calculations are used to describe an N -body
density matrix as a product of two-body terms, and where Monte Carlo
calculations correct for the small error made in neglecting three-body
and higher terms (see Subsection 3.4.3).

3.4.1 Two quantum hard spheres

We first consider noninteracting distinguishable particles, whose density
matrix is the product of the individual density matrices because the wave
function of pairs of noninteracting particles is the product of the single-
particle wave functions. In the simplest terms, the density matrix is a
sum of paths, and the paths for two or more distinguishable free particles
in d dimensions can be put together from the individual uncorrelated
d-dimensional paths, one for each particle. In the following, we shall
imagine that these three-dimensional paths are generated by Algorithm
levy-free-path-3d, which simply executes Alg. 3.5 (levy-free-path)
three times: once for each Cartesian coordinate.

To sample paths contributing to the density matrix for a pair of hard
spheres, we naively generate individual paths as if the particles were
noninteracting. We reject them if particles approach to closer than twice
the sphere radius σ, anywhere on their way from τ = 0 to τ = β:

ρpair({x0,x
′
0}, {xN ,x′

N}, β) =
{

sum of paths
}

=
∑

paths 1, 2

{
path 1:

x0 to xN

}{
path 2:

x′
0 to x′

N

}{
nowhere

closer than 2σ

}
= [1 − preject({x0,x

′
0}, {xN ,x′

N}, β)︸ ︷︷ ︸
rejection rate of Alg. 3.9

]ρfree(x0,xN , β) ρfree(x′
0,x

′
N , β)

(see Fig. 3.20 and Alg. 3.9 (naive-sphere-path)). As discussed through-
out this book, rejection rates of naive sampling algorithms often have
a profound physical interpretation. The naive algorithm for a pair of
quantum hard spheres is no exception to this rule.

procedure naive-sphere-path

1 call levy-free-path-3d(x0,xN , β, N)
call levy-free-path-3d(x′

0,x
′
N , β, N)

for k = 1, . . . , N − 1 do{
if (|xk − x′

k| < 2σ) goto 1 (reject path—tabula rasa)
output {{x0,x

′
0}, . . . , {xN ,x′

N}}
——

Algorithm 3.9 naive-sphere-path. Sampling a path contributing to
ρpair({x0,x

′
0}, {xN , x′

N}, β) (see also Alg. 3.10).

3.4 Pair density matrices 161

accept

0

N

xN

x0

xN
′

x0
′

reject

0

N

xN

x0

xN
′

x0
′

Fig. 3.20 Accepted and rejected configurations in Alg. 3.9
(naive-sphere-path) (schematic reduction from three dimensions).

When running Alg. 3.9 (naive-sphere-path), for example with x0 =
xN and x′

0 = x′
N , we notice a relatively high rejection rate (see Fig. 3.21).

This can be handled for a single pair of hard spheres, but becomes pro-
hibitive for the N -particle case. An analogous problem affected the direct
sampling of classical hard spheres, in Subsection 2.2.1, and was essen-
tially overcome by replacing the direct-sampling algorithm by a Markov-
chain program. However, it is an even more serious issue that our approx-
imation of the pair density matrix, the free density matrix multiplied by
the acceptance rate of Alg. 3.9 (naive-sphere-path), strongly depends
on the number of time slices. This means that we have to use very large
values of N , that is, can describe two quantum hard spheres as a system
of classical spheres connected by lines (as in Fig. 3.20), but only if there
are many thousands of them.

As a first step towards better algorithms, we write the pair density
matrix as a product of two density matrices, one for the relative motion
and the other for the center-of-mass displacement. For a pair of free
particles, we have The various terms in the second line of

eqn (3.49) are rearranged as

exp
„
−1

2
A2 − 1

2
B2

«
=

exp
»
− (A + B)2

4
− (A − B)2

4

–
ρfree,m(x1, x

′
1, β) ρfree,m(x2, x

′
2, β)

=
m

2�β
exp
[
−m(x′

1 − x1)2

2β
− m(x′

2 − x2)2

2β

]
=
√

2m

2�β
exp
[
−2m(X ′ − X)2

2β

]√
m/2
2�β

exp
[
−m(∆′

x − ∆x)2

4β

]
= ρfree,2m(X, X ′, β)︸ ︷︷ ︸

center of mass motion

ρfree,12 m(∆x, ∆′
x, β)︸ ︷︷ ︸

relative motion

, (3.49)

where X = 1
2 (x1 + x2) and X ′ = 1

2 (x′
1 + x′

2) describe the center of
mass and ∆x = x1 − x2 and ∆′

x = x′
1 − x′

2 the relative distance.
Clearly, interactions influence only the relative motion, and it suffices
to generate single-particle paths corresponding to the relative coordi-
nate describing a particle of reduced mass µ = m/2 (or equivalently a
particle of mass m at twice the inverse temperature 2β, see Alg. 3.10

162 Density matrices and path integrals

(naive-sphere-path(patch))). (In the following, we set m = 1.) The
new program runs twice as fast as Alg. 3.9 (naive-sphere-path), if we
only compute the rejection rate. To recover the paths of the original
algorithm, we must sample an independent free path for the center-of-
mass variable X (a path for a particle of mass 2m), and reconstruct the
original variables as x1,2 = X ± 1

2∆x.

0

0.5

1

212σ0

re
je

ct
io

n
 r

at
e

(d
ia

g.
)

distance r

exact
N = 8192

1024
128
16

Fig. 3.21 Rejection rate of Alg. 3.9
(naive-sphere-path) (from Alg. 3.10,
with β = 4, 2σ = 0.2, ∆x,0 = ∆x,N ,
and r = |∆x,0|; for the exact solution
see Subsection 3.4.2).

procedure naive-sphere-path(patch)

∆x,0 ← x′
0 − x0

∆x,N ← x′
N − xN

call levy-free-path-3d(∆x,0, ∆x,N , 2β, N)
for k = 1, . . . , N − 1 do⎧⎨⎩

if (|∆x,k| < 2σ) then{
output “reject”
exit

output “accept”
——

Algorithm 3.10 naive-sphere-path(patch). Computing the rejection
rate of Alg. 3.9 from a single-particle simulation.

In conclusion, we have made first contact in this subsection with the
path-integral Monte Carlo approach to interacting quantum systems. For
concreteness, we considered the case of hard spheres, but other interac-
tion potentials can be handled analogously, using the Trotter formula.
We noted that the problem of two quantum hard spheres could be trans-
formed into a problem involving a large number of interacting classical
hard spheres. In Subsection 3.4.2, we shall find a more economical path-
integral representation for quantum particles, which uses a much smaller
number of time slices.

3.4.2 Perfect pair action

In Subsection 3.4.1, we tested a naive approach to the many-particle
density matrix, one of the central objects of quantum statistical me-
chanics. The density matrix ρpair({x0,x

′
0}, {xN ,x′

N}, β) was computed
by sending pairs of free paths from x0 to xN and from x′

0 to x′
N .

Any pair of paths that got too close was eliminated. All others con-
tributed to the density matrix for a pair of hard spheres. Algorithm 3.9
(naive-sphere-path) can in principle be extended to more than two
particles, and modified for arbitrary interactions. However, we must go
to extremely large values of N in order for the discrete paths to really
describe quantum hard spheres (see Fig. 3.21).

In Alg. 3.10 (naive-sphere-path(patch)), we separated the center-
of-mass motion, which is unaffected by interactions, from the relative
motion, which represents a single free particle of reduced mass µ = 1

2
that cannot penetrate into a region r < 2σ. Let us suppose, for a mo-
ment, that in addition the particle cannot escape to radii beyond a cutoff
L (see Fig. 3.22; the cutoff will afterwards be pushed to infinity). This

3.4 Pair density matrices 163

three-dimensional free particle in a shell r ∈ [2σ, L] has wave functions
and eigenvalues just as the harmonic oscillator from the first pages of
this chapter.

In the present subsection, we shall first compute these wave functions,
and the energy eigenvalues, and then construct the hard-sphere pair
density matrix much like we did in Alg. 3.2 (harmonic-density). We
shall also see how to treat directly the L = ∞ limit. The calculation will
need some basic mathematical concepts common to electrodynamics and
quantum mechanics: the Laplace operator in spherical coordinates, the
spherical Bessel functions, the spherical harmonics, and the Legendre
polynomials. To simplify notation, we shall suppose that this particle of
reduced mass µ = 1

2 is described by variables {x, y, z}, and replace them
by the relative variables {∆x, ∆y, ∆z} in the final equations only.

In Subsection 3.4.3, we show how the analytical calculation of a pair
density matrix can be integrated into a perfect-action Monte Carlo pro-
gram, similar to those that have been much used in statistical mechanics
and in field theory.

L y

z

x 2σ

Fig. 3.22 Solving the Schrödinger equation for a free particle in a shell
r ∈ [2σ, L].

The three-dimensional Hamiltonian for a free particle of mass µ is

− �
2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
︸ ︷︷ ︸

Laplace operator, ∇2

ψ(x, y, z) = Eψ(x, y, z). (3.50)

To satisfy the boundary conditions at r = 2σ and r = L, we write the
wave function ψ(x, y, z) = ψ(r, θ, φ) and the Laplace operator ∇2 in
spherical coordinates:

∇2ψ =
1
r

∂2

∂r2
(rψ) +

1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2
.

The wave function must vanish at r = 2σ and for r = L. The differential
equation (3.50) can be solved by the separation of variables:

ψklm(r, θ, φ) = Ylm(θ, φ)Rkl(r),

where Ylm are the spherical harmonic wave functions. For each value of
l, the function Rkl(r) must solve the radial Schrödinger equation[

− �
2

2µr2

∂

∂r
r2 ∂

∂r
+

�
2l(l + 1)
2µr2

]
Rkl(r) = ERkl(r).

164 Density matrices and path integrals

The spherical Bessel functions jl(r) and yl(r) satisfy this differential
equation. For small l, they are explicitly given by

j0(r) =
sin r

r
, y0(r) = −cos r

r
,

j1(r) =
sin r

r2
− cos r

r
, y1(r) = −cos r

r2
− sin r

r
.

Spherical Bessel functions of higher order l are obtained by the recursion
relation

fl+1(r) =
2l + 1

r
fl(r) − fl−1(r), (3.51)

where f stands either for the functions jl(r) or for yl(r). We find, for
example, that

j2(r) =
(

3
r3

− 1
r

)
sin r − 3

r2
cos r,

y2(r) =
(
− 3

r3
+

1
r

)
cos r − 3

r2
sin r,

etc. (The above recursion relation is unstable numerically for large l and
small r, but we only need it for l � 3.) For example, we can check that
the function j0(r) = sin r/r, as all the other ones, is an eigenfunction of
the radial Laplace operator with an eigenvalue equal to 1:

− 1
r2

∂

∂r
r2 ∂

∂r

(
sin r

r

)
︸ ︷︷ ︸

r cos r−sin r

= − 1
r2

∂

∂r
(r cos r − sin r) =

j0(r)︷ ︸︸ ︷(
sin r

r

)
.

It follows that, analogously, all the functions jl(kr) and yl(kr) are solu-
tions of the radial Schrödinger equation, with an eigenvalue

k2 = 2µEk ⇔ Ek =
k2

2µ
. (3.52)

Besides satisfying the radial Schrödinger equation, the radial wave
functions must vanish at r = 2σ and r = L. The first condition, at
r = 2σ, can be met by appropriately mixing jl(kr) and yl(kr), as follows:

Rδ
kl(r) = const · [jl(kr) cos δ − yl(kr) sin δ] , (3.53)

where the mixing angle δ satisfies

δ = arctan
jl(2kσ)
yl(2kσ)

=⇒ cos δ =
yl(2kσ)
jl(2kσ)

sin δ, (3.54)

so that Rδ
kl(2σ) = 0. The function Rδ

kl(r) vanishes at r = L only for
special values {k0, k1, . . . }. To find them, we can simply scan through
the positive values of k using a small step size ∆k. A change of sign be-
tween Rkl(L) and R(k+∆k)l(L) brackets a zero in the interval [k, k +∆k]
(see Fig. 3.23 and Alg. 3.11 (naive-rad-wavefunction)). The three-

0

1

2

3210

al
lo

w
ed

 k
 v

al
u
es

angular momentum l

Fig. 3.23 Allowed k-values
{k0, k1, . . . } for small k (from
Alg. 3.11 (naive-rad-wavefunction),
with 2σ = 0.2, and L = 40).

3.4 Pair density matrices 165

procedure naive-rad-wavefunction

input {r, σ, L}
n ← 0
for k = 0, ∆k, . . . do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ← arctan [jl(2kσ)/yl(2kσ)]
if (Rδ

(k+∆k)l(L)Rδ
kl(L) < 0) then (function Rδ

kl(r) from eqn (3.53))⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kn ← k
Υ ← 0 (squared norm)
for r = 2σ, 2σ + ∆r, . . . , L do{

Υ ← Υ + ∆rr
2[Rδ

knl(r)]2

output {kn, {Rknl(2σ)/
√

Υ, . . . , Rknl(L)/
√

Υ}}
n ← n + 1

——

Algorithm 3.11 naive-rad-wavefunction. Computing normalized ra-
dial wave functions that vanish at r = 2σ and at r = L.

dimensional wave functions must be normalized, i.e. must satisfy the
relation∫

d3x |ψklm(x)|2 =
∫

dΩ Ylm(θ, φ)Y ∗
lm(θ, φ)︸ ︷︷ ︸

=1

∫ L

2σ

dr r2R2
kl(r)︸ ︷︷ ︸

must be 1

= 1.

The normalization condition on the radial wave functions is taken into
account in Alg. 3.11 (naive-rad-wavefunction).

With the normalized radial wave functions Rδ
knl(r), which vanish at

r = 2σ and r = L, and which have eigenvalues as shown in eqn (3.52),
we have all that it takes to compute the density matrix

ρrel(∆x0 , ∆xN
, β) =

∞∑
l=0

l∑
m=−l

Y ∗
lm(θ0, φ0)Ylm(θN , φN)︸ ︷︷ ︸

2l+1
4� Pl(cos γ)

×
∑

n=0,1,...

exp
(
−β

k2
n

2µ

)
Rknl(r0)Rknl(rN). (3.55)

Here, the relative coordinates are written in polar coordinates ∆x0 =
{r0, θ0, φ0} and ∆xN

= {rN , θN , φN}. Furthermore, we have expressed in
eqn (3.55) the sum over products of the spherical harmonics through the
Legendre polynomials Pl(cos γ), using a standard relation that is familiar
from classical electrodynamics and quantum mechanics. The argument
of the Legendre polynomial involves the opening angle γ between the
vectors ∆x0 and ∆xN

, defined by the scalar product (∆x0 ··· ∆xN
) =

r0rN cos γ.
The Legendre polynomials Pl could be computed easily, but for con-

creteness, we consider here only the diagonal density matrix, where
∆x0 = ∆xN

(so that γ = 0). In this case, the Legendre polynomials

166 Density matrices and path integrals

0

0.2

L2σ

ra
d
ia

l
w

av
e

fu
n
ct

io
n
 (

n
or

m
.)

distance r

l = 0

n = 0
1
2
3

0

0.2

L2σ

ra
d
ia

l
w

av
e

fu
n
ct

io
n
 (

n
or

m
.)

distance r

l = 3

n = 0
1
2
3

Fig. 3.24 Normalized radial wave functions Rδ
knl (from Alg. 3.11

(naive-rad-wavefunction), with 2σ = 1 and L = 10).

are all equal to 1 (Pl(1) = 1), so that we do not have to provide a
subroutine.

The relative-motion density matrix in eqn (3.55) is related to the
density matrix for a pair of hard spheres as follows:

ρpair({x0,x
′
0}, {xN ,x′

N}, β)

=
[

ρpair({x0,x
′
0}, {xN ,x′

N}, β)
ρfree(x0,xN , β) ρfree(x′

0,x
′
N , β)

]
︸ ︷︷ ︸

depends on ∆x and ∆′
x
, only

× ρfree(x0,xN , β) ρfree(x′
0,x

′
N , β) , (3.56)

where it is crucial that the piece in square brackets can be written as a
product of center-of-mass density matrices and of relative-motion density
matrices. The latter cancel, and we find[

ρpair({x0,x
′
0}, {xN ,x′

N}, β)
ρfree(x0,xN , β) ρfree(x′

0,x
′
N , β)

]
=

[
ρrel,µ = 1

2 (∆x0 , ∆xN
, β)

ρfree,µ = 1
2 (∆x0 , ∆xN

, β)

]
.

To obtain the virtually exact results shown in Fig. 3.21, it suffices to
compute, for l = {0, . . . , 3}, the first 25 wave numbers {k0, . . . , k24} for
which the wave functions satisfy the boundary conditions (the first four
of them are shown in Fig. 3.24, for l = 0 and l = 3) (see Table 3.2; the
diagonal free density matrix is

(
1/

√
4�β
)3 = 0.0028).

Table 3.2 Relative density matrix
ρrel
`
∆x,0, ∆x,N , β

´
, and rejection rate

of Alg. 3.9 (naive-sphere-path) (from
Alg. 3.11 (naive-rad-wavefunction)
and eqn (3.55), with β = 4, 2σ = 0.2,
∆x,0 = ∆x,N (r = |∆x,0|, compare
with Fig. 3.21)).

r ρrel Rejection rate

0.2 0.00000 1.00
0.4 0.00074 0.74
0.6 0.00134 0.52
0.8 0.00172 0.39
1.0 0.00198 0.30

The density matrix for the relative motion can be computed directly
in the limit L → ∞ because the functions jl(r) and yl(r) behave as
± sin (r) /r or ± cos (r) /r for large r. (This follows from the recursion
relation in eqn (3.51).) The normalizing integral becomes

Υ =
∫ L

a

dr r2[jl(kr)]2 L→∞−−−−→ 1
k2

∫ L

a

dr sin2 (kr) =
L

2k2
.

3.4 Pair density matrices 167

The asymptotic behavior of the spherical Bessel functions also fixes the
separation between subsequent k-values to ∆k = �/L. (Under this condi-
tion, subsequent functions satisfy sin (kL) = 0 and sin [(k + ∆k)L] = 0,
etc., explaining why there are about 25 states in an interval of length
�25/40 � 2.0, in Fig. 3.23). The sum over discrete eigenvalues n can
then be replaced by an integral:

∑
k

· · · =
1

∆k

∑
k

∆k · · · � 1
∆k

∫
dk . . . ,

and we arrive at the following pair density matrix in the limit L → ∞:

ρrel(x,x′, β) =
∞∑

l=0

Pl(cos γ)
2l + 1

4�

×
∫ ∞

k=0

dk exp
(
−β

k2

2µ

)
R̂δ

kl(r)R̂δ
kl(r

′). (3.57)

In this equation, we have incorporated the constant stemming from the
normalization and from the level spacing ∆k into the radial wave func-
tion:

R̂δ(r) =

√
2
�

k [jl(kr) cos δ − yl(kr) sin δ] .

The integrals in eqn (3.57) are done numerically (except for l = 0). The
mixing angles δ(k, σ) ensure that R̃δ

kl(2σ) = 0 for all k (see eqn (3.54)).

0

N

xN

x0

xN
′

x0
′

Fig. 3.25 A pair of discretized paths,
representing continuous paths of hard
spheres.

In conclusion, we have computed in this subsection the exact statis-
tical weight for all continuous hard-sphere paths going through a dis-
cretized set of position {x0, . . . ,xN} and {x′

0, . . . ,x
′
N} (see Fig. 3.25).

For clarity, let us collect variables on one slice k into a single symbol
Xk ≡ {xk,x′

k}. The weight of a discretized path, the exponential of the
action S, was determined as{

weight
of path

}
∝ exp [−S({X0, . . . ,XN}, ∆τ)]

= ρpair(X0,X1, ∆τ) × · · · × ρpair(XN−1,XN , ∆τ) . (3.58)

Previously, the naive action S was either zero or infinite, and it described
a pair of hard spheres badly, unless ∆τ was very small. In contrast,
the weight of a path, in eqn (3.58), is assembled from the pair density
matrices. It describes a pair of hard spheres exactly, at any ∆τ , and it
corresponds to the “perfect pair action” S({X0, . . . ,XN}, ∆τ).

3.4.3 Many-particle density matrix

The pair density matrix from Subsection 3.4.2 links up with the full
quantum N -body problem (for concreteness, we continue with the ex-
ample of quantum hard spheres). It is easily generalized from two to N

168 Density matrices and path integrals

particles:

ρN-part({x1, . . . ,xN}, {x′
1, . . . ,x

′
N}, ∆τ) �{

N∏
k=1

ρfree(xk,x′
k, ∆τ)

}∏
k<l

ρpair({xk,xl}, {x′
k,x′

l}, ∆τ)
ρfree(xk,x′

k, ∆τ) ρfree(xl,x′
l, ∆τ)︸ ︷︷ ︸

prob. that paths k and l do not collide

. (3.59)

For two particles, this is the same as eqn (3.56), and it is exact. For
N particles, eqn (3.59) remains correct under the condition that we can
treat the collision probabilities for any pair of particles as independent of
those for other pairs. This condition was already discussed in the context
of the virial expansion for classical hard spheres (see Subsection 2.2.2).
It is justified at low density or at high temperature. In the first case (low
density) paths rarely collide, so that the paths interfere very little. In the
second case (∆τ corresponding to high temperature), the path of particle
k does not move away far from the position xk � x′

k, and the interference
of paths is again limited. Because of the relation ∆τ = β/N , we can
always find an appropriate value of N for which the N -density matrix in
eqn (3.59) is essentially exact. The representation of the density matrix
in eqn (3.59) combines elements of a high-temperature expansion and
of a low-density expansion. It is sometimes called a Wigner–Kirkwood
expansion.

In all practical cases, the values of N that must be used are much
smaller than the number of time slices needed in the naive approach of
Subsection 3.4.1 (see Pollock and Ceperley (1984), Krauth (1996)).

3.5 Geometry of paths

Quantum statistical mechanics can be formulated in terms of random
paths in space and imaginary time. This is the path-integral approach
that we started to discuss in Sections 3.3 and 3.4, and for which we
have barely scratched the surface. Rather than continue with quantum
statistics as it is shaped by path integrals, we analyze in this section the
shapes of the paths themselves. This will lead us to new sampling al-
gorithms using Fourier transformation methods. The geometry of paths
also provides an example of the profound connections between classical
statistical mechanics and quantum physics, because random paths do
not appear in quantum physics alone. They can describe cracks in ho-
mogeneous media (such as a wall), interfaces between different media
(such as between air and oil in a suspension) or else between different
phases of the same medium (such as the regions of a magnet with differ-
ent magnetizations). These interfaces are often very rough. They then
resemble the paths of quantum physics, and can be described by very
similar methods. This will be the subject of Subsection 3.5.3.

3.5 Geometry of paths 169

3.5.1 Paths in Fourier space

In the following, we describe paths by use of Fourier variables, the co-
efficients of trigonometric functions. For computer implementation, we
remain primarily interested in discrete paths {x0, . . . , xN}, but we treat
continuous paths first because they are mathematically simpler. As a
further simplification, we consider here paths which start at zero and
return back to zero (x(0) = x(β) = 0). Other cases will be considered in
Subsection 3.5.3.

β

0

0000

0000

im
a
g
.
ti

m
e

τ

position x

= c1 · + c2 · + c3 · + ···

Fig. 3.26 Representation of a continuous path x(τ) as an infinite sum
over Fourier modes.

Any path x(τ) with x(0) = x(β) = 0 can be decomposed into an
infinite set of sine functions:

x(τ) =
∞∑

n=1

cn sin
(

n�
τ

β

)
τ ∈ [0, β] (3.60)

(see Fig. 3.26). The sine functions in eqn (3.60) are analogous to the
wave functions ψbox

n (x), the solutions of the Schrödinger equation in a
box with walls (see Subsection 3.1.3). Now, however, we consider a path,
a function of τ from 0 to β, rather than a wave function, extending in x,
from 0 to L. The difference between pure sine functions and the combined
series of sines and cosines mirrors the one between wave functions with
hard walls and with periodic boundary conditions.

Each path x(τ) contributing to the density matrix ρfree(0, 0, β) is de-
scribed by Fourier coefficients {c0, c1, . . . }. We first determine these co-
efficients for a given path and then express the weight of each path,
and the density matrix, directly in Fourier space. The coefficients are
obtained from the orthonormality relation of Fourier modes:∫ β

0

dτ sin
(

n�
τ

β

)
sin
(

l�
τ

β

)
︸ ︷︷ ︸

1
2{cos[(n−l)�τ/β]−cos[(n+l)�τ/β]}

=
β

2
δnl. (3.61)

We can project out the coefficient cl of mode l by multiplying the Fourier
representation of a path, in eqn (3.60), on both sides by sin (l�τ/β) and

170 Density matrices and path integrals

integrating over τ from 0 to β,

2
β

∫ β

0

dτ sin
(

l�
τ

β

)
x(τ) =

2
β

∫ β

0

dτ sin
(

l�
τ

β

) ∞∑
n=1

cn sin
(

n�
τ

β

)

=
2
β

∞∑
n=1

cn

∫ β

0

dτ sin
(

l�
τ

β

)
sin
(

n�
τ

β

)
︸ ︷︷ ︸

(β/2)δln; see eqn (3.61)

= cl. (3.62)

We can thus determine the Fourier coefficients {c1, c2, . . . } for a given
function x(τ), whereas eqn (3.60) allowed us to compute the function
x(τ) for given Fourier coefficients.

We now express the statistical weight of the path {x0, . . . , xN} directly
in Fourier variables. With ∆τ = β/N , we find{

weight
of path

}
= exp [−S({x0, . . . , xN})]

= ρfree(x0, x1, ∆τ) ρfree(x1, x2, ∆τ) × · · · × ρfree(xN−1, xN , ∆τ) .

In the small-∆τ limit, each term in the action can be written as

1
2

(x − x′)2

∆τ
=

1
2

∆τ
(x − x′)2

∆2
τ

→ 1
2

dτ

[
∂x(τ)

∂τ

]2
(3.63)

and summing over all terms, in the limit ∆τ → 0, corresponds to an
integration from 0 to β. In this limit, the action becomes

S =
1
2

∫ β

0

dτ

[
∂x(τ)

∂τ

]2
. (3.64)

We use this formula to express the action in Fourier space, using the
Fourier representation of the path given in eqn (3.60). The derivative
with respect to τ gives

∂

∂τ
x(τ) =

∞∑
n=1

cn
n�

β
cos
(

n�
τ

β

)
.

The action in eqn (3.64) leads to a double sum of terms ∝ cncm that
is generated by the squared derivative. However, the nondiagonal terms
again vanish. We arrive at

1
2

∫ β

0

dτ

(
∂x

∂τ

)2

=
1
2

∞∑
n=1

c2
n

n2
�
2

β2

∫ β

0

dτ cos2
(

n�
τ

β

)
︸ ︷︷ ︸

β/2

=
1
β

∞∑
n=1

c2
nn2

�
2

4
.

We should note that the derivative of x(τ) and the above exchange of
differentiation and integration supposes that the function x(τ) is suffi-
ciently smooth. We simply assume that the above operations are well
defined. The statistical weight of a path is then given by{

weight of
path

}
∝ exp

(
− 1

β

∞∑
n=1

c2
n

n2
�
2

4

)
,

3.5 Geometry of paths 171

and the density matrix, written in terms of Fourier variables, is an infi-
nite product of integrals:

ρfree(0, 0, β) ∝
∞∏

n=1

[∫ ∞

−∞

dcnn�√
4�β

exp

(
− 1

β

∞∑
n=1

c2
n

n2
�
2

4

)]
.

The Fourier transform of a continuous path is operationally quite sim-
ple but, as mentioned, hides mathematical subtleties. These difficulties
are absent for the Fourier transformation of discrete paths {x0, . . . , xN},
a subject we now turn to.

A discrete function {x0, . . . , xN} can be represented by a finite number
N of Fourier modes:

xk =
N−1∑
n=1

cn sin
(

n�
k

N

)
k = 0, . . . , N (3.65)

(see Fig. 3.27). Remarkably, the discrete sine functions remain mutually
orthogonal if we simply replace the integral over τ in the orthogonality
condition in eqn (3.61) by the sum over a discrete index k: In the following, k and j are discretized

τ indices, and n and l describe Fourier
modes.

β

0

0000

0000

im
a
g
.
ti

m
e

τ

position x

= c1 · + c2 · + c3 ·

Fig. 3.27 Representation of a discrete path {x0, . . . , x4} as a finite sum
over Fourier modes.

N−1∑
k=1

sin
(

n�
k

N

)
sin
(

l�
k

N

)
︸ ︷︷ ︸

1
2{cos[(n−l)�k/N]−cos[(n+l)�k/N]}

=
N

2
δnl. (3.66)

Equation (3.66) can be checked in exponential notation (cos x = Re(eix))
by summing the geometric series for noninteger M/N :

N−1∑
k=0

cos M�

k

N
= Re

N−1∑
k=0

exp
(

i�
M

N

)k

= Re

[
1 − eiM�

1 − exp
(
iM
N �

)] . (3.67)

In eqn (3.66), (n − l) and (n + l) are either both even or odd. In the
first case, the sum in eqn (3.67) is zero. In the second, the two sums are
easily seen to be equal. They thus cancel.

172 Density matrices and path integrals

Again multiplying the discrete function xk of eqn (3.65) on both sides
by sin (l�k/N) and summing over l, we find

2
N

N−1∑
k=1

sin
(

l�
k

N

)
xk =

2
N

N−1∑
k=1

sin
(

l�
k

N

)N−1∑
n=1

cn sin
(

n�
k

N

)

=
2
N

N−1∑
n=1

cn

N−1∑
k=1

sin
(

l�
k

N

)
sin
(

n�
k

N

)
︸ ︷︷ ︸

1
2 Nδln, see eqn (3.66)

= cl, (3.68)

in analogy with eqn (3.62). The N −1 Fourier coefficients {c1, . . . , cN−1}

0

xk

k

4

0

position x

Fig. 3.28 Example path {x0, . . . , xN}
of eqn (3.69). The trigonometric poly-
nomial defined in eqn (3.70) passes
through all the points.

define a trigonometric interpolating polynomial x(τ) which passes ex-
actly through the points {x0, . . . , xN} and which contains the same in-
formation as the Fourier coefficients. To illustrate this point, let us con-
sider an example path for N = 4 described by the two sets of variables:

real-space variables
(in Fig. 3.28)︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣

x0

x1

x2

x3

x4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0.0
0.25
0.15
−0.15

0.0

⎤⎥⎥⎥⎥⎦ ≡

Fourier variables
(in Fig. 3.28, from eqn (3.68))︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣

c0

c1

c2

c3

c4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0.0

0.1104
0.2

−0.039
0.0

⎤⎥⎥⎥⎥⎦ . (3.69)

The trigonometric polynomial interpolating the points {x0, . . . , x4} is

x(τ) =0.1104︸ ︷︷ ︸
c1

· sin
(
�

τ

β

)
+ 0.2︸︷︷︸

c2

· sin
(

2�
τ

β

)
−0.039︸ ︷︷ ︸

c3

· sin
(

3�
τ

β

)
, (3.70)

and we easily check that x(3
4β) = −0.15, etc.

The weight of a path, a product of factors ρfree(xk, xk+1, ∆τ), can be
expressed through Fourier variables. To do so, we write out the weight
as before, but without taking the ∆τ → 0 limit:{

weight
of path

}
= exp [−S({x0, . . . , xN})]

= exp
[
− (x1 − x0)2

2∆τ
− (x2 − x1)2

2∆τ
− (xN − xN−1)2

2∆τ

]
. (3.71)

The action, S, is transformed as

N∑
k=1

(xk − xk−1)2

2∆τ
=

1
2∆τ

N∑
k=1

N−1∑
n,l=1

cncl

×
[
sin
(

n�
k

N

)
− sin

(
n�

k − 1
N

)][
sin
(

l�
k

N

)
− sin

(
l�

k − 1
N

)]
.

3.5 Geometry of paths 173

Terms with n
= l vanish after summation over k, and we end up with:

S =
1

2∆τ

N−1∑
j=1

c2
j

N∑
k=1

[
sin
(

j�
k

N

)
− sin

(
j�

k − 1
N

)]2
︸ ︷︷ ︸

4 cos2[j�(k− 1
2)/N] sin2[j�/(2N)]

=
2

∆τ

N−1∑
n=1

c2
n sin2

(n�

2N

) N∑
k=1

cos2
[
n�

N

(
k − 1

2

)]
︸ ︷︷ ︸

N/2

,

so that {
weight
of path

}
= exp

[
− N

∆τ

N−1∑
n=1

c2
n sin2

(n�

2N

)]
. (3.72)

It is instructive to check that the weight of our example path from
eqn (3.69) comes out the same no matter whether it is computed it
from {x0, . . . , xN}, using eqn (3.71), or from the {c0, . . . , cN}, using
eqn (3.72).

We have arrived at the representation of the path integral as

ρfree(0, 0, β) =
{

sum of paths
from 0 → 0

}
∝
∫ ∞

∞

dc1√
2�σ1

. . .
dcN−1√
2�σN−1

exp
(
− c2

1

2σ2
1

)
. . . exp

(
− c2

N−1

2σ2
N−1

)
=
[∫ ∞

∞

dc1√
2�σ1

exp
(
− c2

1

2σ2
1

)]
. . .

[∫ ∞

∞

dcN−1√
2�σN−1

exp
(
− c2

N−1

2σ2
N−1

)]
,

where
σ2

n =
β

2N2 sin2
(

n�
2N

) � 2β

�
2n2

+ · · · . (3.73)

In the above representation of the path integral in Fourier space, the
integrals are independent of each other. The Fourier modes are thus un-
correlated (〈ckcl〉 ∝ δkl), and the autocorrelations 〈ckck〉, the variance
of mode k, are given by eqn (3.73). This can be checked by generat-
ing paths with Alg. 3.5 (levy-free-path) and by Fourier-transforming
them (see Fig. 3.29). Most simply, free paths are described as indepen-
dent Gaussian modes n with zero mean and variance as ∝ 1/n2.

Paths {x0, . . . , xN} can not only be described but also sampled as
independent Gaussian Fourier modes, that is, as Gaussian random num-
bers {c0, . . . , cN} which can be transformed back to real space (see
Alg. 3.12 (fourier-free-path)). This algorithm is statistically iden-
tical to the Lévy construction. Using fast Fourier methods, it can be
implemented in ∝ N log N operations.

1e-05

1e-04

0.001

0.01

0.1

1

1 4 16 64

v
ar

ia
n
ce

 o
f
c n

Fourier mode n

〈 cn
2 〉
σn

2

N → ∞

Fig. 3.29 Correlation 〈cncn〉 of
Fourier-transformed Lévy paths,
compared to eqn (3.73) (from Alg. 3.5
(levy-free-path), with N = 128,
β = 4).

In this subsection, we have passed back and forth between the real-
space and the Fourier representation of paths, using classic formulas for
expressing the {c1, . . . , cN} in terms of the {x1, . . . , xN} and vice versa.
We saw how to transform the single path, but also the statistical weight

174 Density matrices and path integrals

procedure fourier-free-path

for n = 1, . . . , N − 1 do{
Υn ← 2N2 sin2 [n�/(2N)]
cn ← gauss (

√
β/Υn)

for k = 0, . . . , N do{
xk ←∑N−1

n=1 cn sin
(
n� k

N

)
output {x0, . . . , xN}
——

Algorithm 3.12 fourier-free-path. Sampling a path contributing to

ρfree(0, 0, β) in Fourier space, and then transforming to real variables.

of a path, and the path integral itself. The path integral decoupled in
Fourier space, because the real-space action is translation invariant.

We thus have two direct sampling algorithms: one in real space—the
Lévy construction, and one in Fourier space—the independent sampling
of modes. However, these algorithms exist for completely different rea-
sons: the real-space algorithm relies on a local construction property of
the sequence {x1, . . . , xN}, which allows us to assemble pieces of the path
independently of the other pieces. In contrast, the Fourier transforma-
tion decouples the real-space action because the latter is invariant under
translations. In the case of the free path integral, Fourier transformation
offered new insights, but did not really improve the performance of the
Monte Carlo algorithms. In many other systems, however, simulations
can be extremely difficult when done with one set of coordinates, and
much easier after a coordinate transformations, because the variables
might be less coupled. A simple example of such a system will be shown
in Subsection 3.5.3, where a real-space Monte Carlo simulation would
necessarily be very slow, but a Fourier-space calculation can proceed by
direct sampling, that is, at maximum speed.

In this subsection we did not touch on the subject of fast Fourier
transformation methods, which would allow us to pass between the
{x1, . . . , xN} and the {c1, . . . , cN} in about N log N operations, rather
than ∝ N2 (see for example Alg. 3.12 (fourier-free-path)). For heavy
use of Fourier transformation, the fast algorithms must be implemented,
using widely available routines. However, the naive versions provided by
eqns (3.62) and (3.68) must always be kept handy, as alternative sub-
routines. They help us avoid problems with numerical factors of two
and of �, and with subtle shifts of indices. As mentioned in many other
places throughout this book, there is great virtue in getting to run naive
algorithms before embarking on more elaborate, and less transparent
programming endeavors.

3.5.2 Path maxima, correlation functions

0

N/2

N

x

xmax

0

Fig. 3.30 Geometry of a path. We com-
pute the probability distribution of the
midpoint xN/2, and the probability of
staying to the left of x.

We continue to explore the geometry of free paths, which start and end
at x0 = xN = 0. Let us compute first the probability distribution of the
maximum of all x-values (see Fig. 3.30) i.e. the probability Πmax(x) for

3.5 Geometry of paths 175

the path to remain to the left of x. This path is contained in a box with
the left wall at −∞ and a right wall at x. It thus contributes to the
density matrix ρbox[−∞, x](0, 0, β):

ρbox[−∞, x](0, 0, β) = lim
L→∞

ρbox[0, L](L − x, L − x, β)

L→∞−−−−−−−−−→
see eqn (3.23)

ρfree(L − x, L − x, β)︸ ︷︷ ︸
independent of L and x

− ρfree(L − x, L + x, β)︸ ︷︷ ︸
from eqn (3.23)

,

because in an infinite box the sum over windings is dominated by a single
flip operation. We find

Πmax(x) =
{

prob. that
max. position < x

}
=

ρbox[−∞, x](0, 0, β)
ρfree(0, 0, β)

=
ρfree(x, x, β) − ρfree(−x, x, β)

ρfree(x, x, β)
= 1 − exp

(
−2x2

β

)
.

The probability Πmax(x + dx) counts all paths whose maximum is to
the left of x + dx, and Πmax(x) counts all those paths whose maximum
position is smaller than x. The difference between the two amounts to
all paths whose maximum falls between x and x + dx. Therefore,

πmax(x) =
{

prob. that
xmax = x

}
=

dΠmax(x)
dx

=
4x

β
exp
(
−2x2

β

)
(3.74)

(see Fig. 3.31).
After the maximum positions, we now consider correlations 〈xkxl〉

between the different components of a path {x0, . . . , xN}. The autocor-
relation of xN/2 (see Fig. 3.30) follows, for N → ∞, from the Fourier
representation (3.60) of xN/2:

0

0.5

0 1 2 3 4
π

m
ax

(x
)

max. position x

Monte Carlo
analytic

Fig. 3.31 Distribution of the path
maximum (with β = 4, from modified
Alg. 3.5 (levy-free-path), compared
with eqn (3.74)).

〈
xN

2
xN

2

〉
=

∞∑
k=1

σ2
k sin2 �k

2︸ ︷︷ ︸
0 for k = 2, 4, . . .
1 for k = 1, 3, . . .

→ 2β

�
2

(
1 +

1
32

+
1
52

+ · · ·
)

︸ ︷︷ ︸
�
2/8

=
β

4
. (3.75)

This correlation is in fact independent of N , as we can see as follows.
The probability distribution of the midpoint (corresponding to slice N/2
or, equivalently, to imaginary time τ = β/2) is

πβ/2(x) =
ρfree(0, x, β

2) ρfree(x, 0, β
2)

ρfree(0, 0, β)
=
√

2
�β

exp
(
−2x2

β

)
,

a Gaussian with zero mean and variance σ2 =
〈
x2
〉

= β/4
〈
x2
〉

= β/4,
in agreement with eqn (3.75). The root mean square width of the path
grows with the square root of the length β of the path, that is, with√

β. This relation, (width) ∝ √(length), is the hallmark of diffusive
processes, and of random walks.

We now determine all the path correlations 〈xkxl〉 from the path in-
tegral action. Using for concreteness ∆τ = 1 so that N = β, the action
is

S =
1
2
[
(x1 − x0)2 + · · · + (xN − xN−1)2

]
.

176 Density matrices and path integrals

With x0 = xN = 0, the action S can be written in matrix form:{
weight of

path

}
∝ exp

⎛⎝−1
2

N−1∑
k,l=1

xkMklxl

⎞⎠ .

Let us look at this (N −1)× (N −1) matrix, and its inverse, for N = 8:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 · · · · ·
−1 2 −1 · · · ·
· −1 2 −1 · · ·
· · −1 2 −1 · ·
· · · −1 2 −1 ·
· · · · −1 2 −1
· · · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

︸ ︷︷ ︸
M (in action S)

=
1
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 6 5 4 3 2 1
6 12 10 8 6 4 2
5 10 15 12 9 6 3
4 8 12 16 12 8 4
3 6 9 12 15 10 5
2 4 6 8 10 12 6
1 2 3 4 5 6 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
M−1 (correlation matrix (〈xkxl〉))

, (3.76)

as is easily checked. In general, the inverse of the (N − 1) × (N − 1)
matrix M of eqn (3.76) is

M−1
kl =

1
N

min [(N − k)l, (N − l)k] .

For the free path integral, the correlation functions are given by the
inverse of the matrix M:

〈xkxl〉=(M−1)kl =

∫
dx1. . .dxN−1xkxl exp

(− 1
2

∑
xnMnmxm

)∫
dx1 . . . dxN−1 exp

(− 1
2

∑
xnMnmxm

) . (3.77)

The general correlation formula in eqn (3.77) agrees with the mid-path
correlation (eqn (3.75)), because

(M−1)44 =
16
8

=
β

4
(we note that in eqn (3.76), we supposed β = N = 8). Equation (3.77)
has many applications. We use it here to prove the correctness of a
trivial sampling algorithm for free paths, which generates a first path
{Υ0, . . . , ΥN} from a sum of uncorrelated Gaussian random numbers,
without taking into account that the path should eventually return to
x = 0. We define

Υk =

{
0 for k = 0
Υk−1 + ξk for k = 1, . . . , N

,

where ξk are uncorrelated Gaussian random numbers with variance 1.
After the construction of this first path, we “pull back” ΥN to zero (by
an amount ΥN). For all k, Υk is pulled back by ΥNk/N (see Alg. 3.13
(trivial-free-path) and Fig. 3.32). The pulled-back random variables
ηk (which are correlated) are also sums of the uncorrelated Gaussians
ξk, and their variances depend on k:

ηk = ξ1 + · · · + ξk︸ ︷︷ ︸
Υk

− k

N
(ξ1 + · · · + ξN︸ ︷︷ ︸

ΥN

) =
N∑

l=1

aklξl,

3.5 Geometry of paths 177

where

akl =

{
1 − k

N if l ≤ k

− k
N if l > k

.

procedure trivial-free-path

x0 ← 0, Υ0 ← 0
for k = 1, . . . , N do{

Υk ← Υk−1 + gauss (
√

β/N)
for k = 1, . . . , N do{

xk ← Υk − ΥNk/N
output {x0, . . . , xN}
——

Algorithm 3.13 trivial-free-path. Sampling a path contributing to

ρfree(0, 0, β) with a trivial, yet correct, algorithm (see Fig. 3.32). 0

Υkxk

ΥN0

N

x0 = Υ0 = 0

Fig. 3.32 Direct sampling of a path
contributing to ρfree(0, 0, β) by pulling
back an unrestricted path.

The Gaussians ηk are characterized by their means, which are all zero,
and by their correlations which, for k ≤ l, are given by

〈ηkηl〉 =
β

N

N∑
j=1

akjalj

=
1

N2
[k(N − k)(N − l)︸ ︷︷ ︸

j≤k

− (l − k)k(N − l)︸ ︷︷ ︸
k<j≤l

+ (N − l)kl︸ ︷︷ ︸
l≤j

] =
1
N

k(N − l)︸ ︷︷ ︸
see eqn (3.77)

.

This agrees with the correlation matrix of the path integral. We see that
the random variables {η0, . . . , ηN} from Alg. 3.13 (trivial-free-path)
indeed sample paths contributing to the free density matrix.

3.5.3 Classical random paths

In this chapter, we have discussed a number of direct path-sampling al-
gorithms for the free density matrix. All these algorithms produced sta-
tistically identical output, both for discrete paths and in the continuum
limit. Performances were also roughly equivalent. What really differenti-
ates these algorithms is how they generalize from the free paths (classical
random walks). We saw, for example, that the Lévy construction can be
made to sample harmonic-oscillator paths (see Subsection 3.3.2).

In the present subsection, we consider generalized Fourier sampling
methods. For concreteness, we restrict our attention to the continuous
paths with ∆τ = β/N → 0. In Fourier space, continuous paths are gen-
erated by independent Gaussian random variables with variance ∝ 1/n2,
for all n = {1, 2, . . .} (see Alg. 3.12 (fourier-free-path)). We now an-
alyze the paths that arise from a scaling ∝ 1/nα of the variances. We
again pass between the real-space and the Fourier representations, and
adopt the most general Fourier transform, containing sines and cosines:

x(t) =
∞∑

n=1

{
an cos

(
2n�

t

L

)
+ bn sin

(
2n�

t

L

)}
. (3.78)

178 Density matrices and path integrals

The paths described by eqn (3.78) have zero mean (
∫ L

0
dt x(t)/L = 0),

but need not start at the origin x = 0. The Fourier-space action in
eqn (3.64) can be written for the transform in eqn (3.78) and generalized
to arbitrary values of α:

S =
1
2

∞∑
n=1

(
2�n
L

)α ∫ L

0

dt

[
a2

n cos2
(

2n�
t

L

)
+ b2

n sin2

(
2n�

t

L

)]
=

1
2

∑
n

(
2�n
L

)α
L

2︸ ︷︷ ︸
σ−2

n

(a2
n + b2

n). (3.79)

The an and bn are Gaussian random variables with standard deviation

σn =
1

(�n)1/2

(
L

2�n

)α/2− 1
2

. (3.80)

The roughness exponent ζ = α/2 − 1
2 in eqn (3.80) gives the scaling of

the root mean square width of the path to its length so that we now
have (width) ∝ (length)ζ (ζ is pronounced “zeta”). All quantum paths,
and all random walks have ζ = 1

2 . However, many other paths appearing
in nature are characterized by roughness exponents ζ different from 1

2 .
Predicting these exponents for a given physical phenomenon is beyond
the scope of this book. In this subsection, our goal is more restricted.
We only aim at characterizing Gaussian paths, the simplest paths with
nontrivial roughness exponents (with 0 < ζ < 1), and which are governed
by the action in eqn (3.79).

procedure fourier-gen-path

for n = 1, 2, . . . do⎧⎨⎩ σn ← (�n)−
1
2

(
L

2�n

)ζ
an ← gauss (σn)
bn ← gauss (σn)

for t = 0, ∆t, . . . , L do{
x(t) ←∑∞

n=1

[
an cos

(
2n� t

L

)
+ bn sin

(
2n� t

L

)]
output {x(0), . . . , x(L)}
——

Algorithm 3.14 fourier-gen-path. Sampling a periodic Gaussian path
with roughness ζ.

Periodic Gaussian paths can be easily sampled for various roughness
exponents (see Fig. 3.33 and Alg. 3.14 (fourier-gen-path)). As dis-
cussed, the paths with larger ζ grow faster on large scales, but we see that
they are also smoother, because the Fourier coefficients vanish faster as
n → ∞. Some paths appear wider than others (see Fig. 3.33). This is not
a finite-size effect, as we can see as follows. A larger interval L is gener-
ated by rescaling L → ΥL. Under this rescaling, the standard deviations
of the Gaussian random numbers in Alg. 3.14 (fourier-gen-path) are

3.5 Geometry of paths 179

ζ = 0.2

0

L

ζ = 0.8

Fig. 3.33 Periodic Gaussian paths with two different roughness expo-
nents (from Alg. 3.14 (fourier-gen-path), with 40 Fourier modes).

uniformly rescaled as σn → Υζσn. Under this transformation, each in-
dividual path is rescaled by factors Υ in t (length) and Υζ in x (width),
but its shape remains unchanged. The same rescaling applies also to the
ensemble of all paths; they are self-affine.

We can define the (mean square) width of a path as follows:

ω2 =
1
L

∫ L

0

dx x2(t)

(we remember that the average position is zero). Wide paths have a
larger value of ω2 than narrow paths. We can compute the probability
distribution of the width, πζ(ω2), using Alg. 3.14 (fourier-gen-path)
(see Fig. 3.36, later).

ζ = 0.2

0

L

ζ = 0.8

Fig. 3.34 Free Gaussian paths with two different roughness exponents
(from Alg. 3.15 (fourier-cos-path), with 40 Fourier modes).

However, Alg. 3.14 (fourier-gen-path) is not a unique prescription
for generating Gaussian paths with roughness exponent ζ. We can also
generalize the Fourier sine transform of Subsection 3.5.1, or generate the
paths by a Fourier cosine series:

x(t) =
∞∑

n=1

cn cos
(

n�
t

L

)
,

180 Density matrices and path integrals

where the cn are again independent Gaussian random variables with a
ζ-dependent scaling (see Alg. 3.15 (fourier-cos-path) and Fig. 3.34).
In these “free” paths, the boundary conditions no longer identify x(0)
and x(L).

procedure fourier-cos-path

for n = 1, 2, . . . do{
σn ← 2

�n

(
L
�n

)ζ
cn ← gauss (σn)

for t = 0, ∆t, . . . , L do{
x(t) ←∑∞

n=1 cn cos
(
n� t

L

)
output {x(0), . . . , x(L)}
——

Algorithm 3.15 fourier-cos-path. Sampling a free Gaussian path
with roughness exponent ζ.0

L

t

t+δ

periodic free

Fig. 3.35 Periodic and free Gaussian
paths with ζ = 0.8. In small intervals
[t, t + δ], with δ/L → 0, path fragments
are statistically identical.

The periodic paths in Fig. 3.33 differ from the free paths in Fig. 3.34
not only in the boundary conditions, but also in the width distributions.
Nevertheless, the statistical properties of path fragments are equivalent
in a small interval [t, t+ δ], with δ/L → 0, for δ � t � L (see Fig. 3.35).
To show this, we consider the mean value of the path fragment,

〈x〉t,δ =
1
δ

∫ t+δ

t

dt x(t′),

and the width of a path fragment,

ω2(t, δ) =
∫ t+δ

t

dt′
[
x(t′) − 〈x〉t,δ

]2
.

We rescale the distribution of ω2 such that its mean value is equal to 1.
To obtain the width of a path fragment, we either generate the whole
path from the explicit routines of this subsection or compute the width
directly from the Fourier decomposition without generating x(t). This is
possible because a path fragment which is defined by Fourier coefficients
{c1, c2, . . . } has width

ω2(t, δ) =
∞∑

n,m=1

cncmDnm(t, δ), (3.81)

where the coefficients Dnm(t, δ) are given by

Dnm(t, δ) =
1
δ

∫ t+δ

t

dt′

1
2{cos[(m−n)�t′]+cos[(m+n)�t′]}︷ ︸︸ ︷

cos (n�t′) cos (m�t′)

− 1
δ2

[∫ t+δ

t

dt′ cos (n�t′)

][∫ t+δ

t

dt′ cos (m�t′)

]
.

3.5 Geometry of paths 181

0

1

0 1

p
ro

b
a
b
il
it

y
 π

(z
)

(h
is

t.
)

normalized square width z

δ = 1.0
 1/16
1/256

0

1

0 1

p
ro

b
a
b
il
it

y
 π

(z
)

(h
is

t.
)

normalized square width z

δ = 1.0
 1/16
1/256

Fig. 3.36 Width fluctuations (normalized) for free paths (left) and for
periodic paths (right) with ζ = 0.75 (from eqn (3.81), with z = ω2/ 〈ω2〉).

These integrals can be computed analytically, once and for all. The width
ω2(t, δ) of each path is then obtained directly from eqn (3.81), with co-
efficients cn taken from Alg. 3.15 (fourier-cos-path). The distribution
of ω2(t, δ) can then be determined as an average over many paths. One
can redo an analogous calculation for periodic paths (one finds three
sets of coefficients, one for the sine–sine integrals, one for cosine–cosine
integrals, and one for the mixed terms). For δ = 1, the width distribu-
tions are quite different, but they converge to the same curve in the limit
δ/L → 0 (see Fig. 3.36). For free paths, the width distribution depends
on the length of the interval δ and also on the starting point gt (for
ζ
= 1

2). For periodic paths, the distribution is independent of t because
of translational invariance.

In conclusion, this subsection introduced Gaussian paths, which allow
us to describe real paths in nature, from the notorious random walk
(with α = 2, ζ = 1

2), to cracks, interfaces, and phase boundaries, among
many others. A rough numerical simulation allowed us to show that
the statistical properties of small path fragments become independent
of the boundary condition. This statement can be made mathematically
rigorous (see Rosso, Santachiara, and Krauth (2005)).

182 Exercises

Exercises

(Section 3.1)

(3.1) Use Alg. 3.1 (harmonic-wavefunction) to gener-
ate the wave functions {ψh.o.

0 (x), . . . , ψh.o.
20 (x)} on

a fine grid in the interval x ∈ [−5, 5]. Verify nu-
merically that the wave functions are normalized
and mutually orthogonal, and that they solve the
Schrödinger equation (eqn (3.1)) with � = m =
ω = 1. Analytically prove that the normalization
is correct and that the wave functions are mu-
tually orthogonal. Use the recursion relation to
show analytically that the wave functions solve the
Schrödinger equation.
NB: For the numerical checks, note that, on a grid
with step size ∆x, the gradient is

∂

∂x
ψ(xk) � ψ(xk+1) − ψ(xk)

∆x
,

and the second derivative is approximated as

∂2

∂x2
ψ(xk) � 1

∆x

»
∂

∂x
ψ(xk) − ∂

∂x
ψ(xk−1)

–

� ψ(xk+1) − 2ψ(xk) + ψ(xk−1)

∆2
x

.

(3.2) Determine the density matrix of the harmonic os-
cillator using Algs 3.2 (harmonic-density) and 3.1
(harmonic-wavefunction). Plot the diagonal den-
sity matrix ρh.o.(x, x, β) for several temperatures.
What is its relationship between the density matrix
and the probability π(x) of the quantum particle to
be at position x? Compare this probability with the
Boltzmann distribution π(x) for a classical particle
of mass m = 1 in a potential V (x) = 1

2
x2.

(3.3) Familiarize yourself with the calculation, in
eqn (3.10), of the free density matrix using plane-
wave functions in an infinite box with periodic
boundary conditions (pay attention to the use of
the dummy parameter ∆n). Alternatively deter-
mine the free density matrix using the wave func-
tions (eqn (3.20)) in a box with hard walls at posi-
tions x = −L/2 and x = L/2 in the limit L → ∞.
NB: First shift the functions in eqn (3.20) by L/2
to the left.

Finally, to illustrate the calculation of density ma-
trices in arbitrary bases, expand the free density
matrix in the harmonic oscillator basis:

〈ψh.o.
n |H free|ψh.o.

m 〉 = 〈ψh.o.
n |Hh.o. − 1

2
x2|ψh.o.

m 〉.

Derive an explicit formula for 〈ψh.o.
n |x2|ψh.o.

m 〉
from the recursion relation used in Alg. 3.1
(harmonic-wavefunction). Use the results of these
calculations to compute numerically the density

matrix as ρnm = 1 − βHnm + β2

2

`
H2

´
nm

− · · ·+
and also

ρfree
`
x, x′, β

´
=

∞X
n,m=0

ψh.o.
n (x)ρnmψh.o.

m (x′).

Compare the density matrix obtained with the ex-
act solution.

(Section 3.2)

(3.4) Implement Alg. 3.3 (matrix-square) on a fine
grid of equidistant points. Start from the high-
temperature density matrix in eqn (3.30), and iter-
ate several times, doubling β at each time. Compare
your results with the exact density matrix for the
harmonic oscillator (eqn (3.37)).

(3.5) Consider the exactly solvable Pöschl–Teller poten-
tial

V (x) =
1

2

»
χ(χ − 1)

sin2 x

λ(λ − 1)

cos2 x

–
.

Plot this potential for several choices of χ > 1 and
λ > 1, with x in the interval [0, �/2]. The energy
eigenvalues of a particle of mass m = 1 in this po-
tential are

EP–T
n =

1

2
(χ + λ + 2n)2 for n = 0, . . . ,∞.

All the wave functions are known analytically, and
the ground state has the simple form:

ψP–T
0 (x) = const · sinχ x cosλ x x ∈ [0, �/2].

Use the Trotter formula, and matrix squaring
(Alg. 3.3 (matrix-square)), to compute the den-
sity matrix ρP–T(x, x′, β) at arbitrary temperature.
Plot its diagonal part at low temperatures, and
show that

ρP–T(x, x, β) −−−−→
β→∞

const ·
h
ψP–T

0 (x)
i2

,

for various values of χ and λ. Can you deduce
the value of EP–T

0 from the output of the matrix-
squaring routine? Compute the partition function

Exercises 183

ZP–T(β) using matrix squaring, and compare with
the explicit solution given by the sum over eigen-
values EP–T

n . Check analytically that ψP–T
0 (x) is in-

deed the ground-state wave function of the Pöschl–
Teller potential.

(3.6) In Section 3.2.1, we derived the second-order Trot-
ter formula for the density matrix at high temper-
ature. Show that the expression

ρ
`
x, x′, ∆τ

´ � ρfree
`
x, x′, ∆τ

´
e−∆τ V (x′)

is correct only to first order in ∆τ . Study the be-
comings of this first-order approximation under the
convolution in eqn (3.32), separately for diagonal
matrix elements ρ(x, x, ∆τ) and for nondiagonal el-
ements ρ(x, x′, ∆τ), each at low temperature (large
β = N∆τ).

(3.7) Consider a particle of mass m = 1 in a box
of size L. Compute the probability πbox(x) to
be at a position x, and inverse temperature β,
in three different ways: first, sum explicitly over
all states (adapt Alg. 3.2 (harmonic-density) to
the box wave functions of eqn (3.20), with eigen-
values En = 1

2
(n�/L)2). Second, use Alg. 3.3

(matrix-square) to compute ρbox(x, x′, β) from
the high-temperature limit

ρbox
`
x, x′, β

´
=

(
ρfree(x, x′, β) if 0 < x, x′ < L

0 otherwise
.

Finally, compute πbox,L(x) from the density-matrix
expression in eqn (3.23). Pay attention to the dif-
ferent normalizations of the density matrix and the
probability πbox(x).

(Section 3.3)

(3.8) Implement Alg. 3.4 (naive-harmonic-path). Check
your program by plotting a histogram of the posi-
tions xk for k = 0 and for k = N/2. Verify that the
distributions π(x0) and of π(xN/2) agree with each
other and with the analytic form of ρh.o.(x, x, β) /Z
(see eqn (3.38)).

(3.9) Implement the Lévy construction for paths con-
tributing to the free density matrix (Alg. 3.5
(levy-free-path)). Use this subroutine in an im-
proved path-integral simulation of the harmonic os-
cillator (see Exerc. 3.8): cut out a connected piece
of the path, between time slices k and k′ (possible
across the horizon), and thread in a new piece, gen-
erated with Alg. 3.5 (levy-free-path). Determine
the acceptance probabilities in the Metropolis al-
gorithm, taking into account that the free-particle

Hamiltonian is already incorporated in the Lévy-
construction. Run your program for a sufficiently
long time to allow careful comparison with the ex-
act solution (see eqn (3.38)).

(3.10) Use Markov-chain methods to sample paths con-
tributing to the partition function of a particle in
the Pöschl–Teller potential of Exerc. 3.5. As in Ex-
erc. 3.9, cut out a piece of the path, between time
slices k and k′ (possibly across the horizon), and
thread in a new path, again generated with Alg. 3.5
(levy-free-path) (compare with Exerc. 3.9). Cor-
rect for effects of the potential using the Metropolis
algorithm, again taking into account that the free
Hamiltonian is already incorporated in the Lévy
construction. If possible, check Monte Carlo output
against the density matrix ρP–T(x, x, β) obtained
in Exerc. 3.5. Otherwise, check consistency at low
temperature with the ground-state wave function
ψP–T

0 (x) quoted in Exerc. 3.5.

(3.11) Use Alg. 3.8 (naive-box-path) in order to sam-
ple paths contributing to ρbox(x, x′, β). General-
ize to sample paths contributing to Zbox(β) (sam-
ple x0 = xN from the diagonal density matrix, as
in Fig. 3.15, then use Alg. 3.8 (naive-box-path)).
Sketch how this naive algorithm can be made into a
rejection-free direct sampling algorithm, using the
exact solution for ρbox(x, x′, β) from eqn (3.47). Im-
plement this algorithm, using a fine grid of x-values
in the interval [0, L].
NB: In the last part, use tower sampling, from
Alg. 1.14 (tower-sample), to generate x-values.

(Section 3.5)

(3.12) Compare the three direct-sampling algo-
rithms for paths contributing to ρfree(0, 0, β),
namely Alg. 3.5 (levy-free-path), Alg. 3.12
(fourier-free-path), and finally Alg. 3.13
(trivial-free-path). Implement them. To show
that they lead to equivalent results, Compute the
correlation functions 〈xkxl〉. Can each of these algo-
rithms be generalized to sample paths contributing
to ρh.o.(0, 0, β)?

(3.13) Generate periodic random paths with various
roughness exponents 0 < ζ < 1.5 using Alg. 3.14
(fourier-gen-path). Plot the mean square width
ω2 as a function of L. For given L, deter-
mine the scaling of the mean square deviation˙|x(t) − x(0)|2¸

as a function of t. Explain why
these two quantities differ qualitatively for ζ > 1
(see Leschhorn and Tang (1993)).

184 References

References

Feynman R. P. (1972) Statistical Mechanics: A Set of Lectures, Benja-
min/Cummings, Reading, Massachusetts

Hess G. B., Fairbank W. M. (1967) Measurement of angular momen-
tum in superfluid helium, Physical Review Letters 19, 216–218

Krauth W. (1996) Quantum Monte Carlo calculations for a large num-
ber of bosons in a harmonic trap, Physical Review Letters 77, 3695–3699

Leggett A. J. (1973) Topics in the theory of helium, Physica Fennica
8, 125–170

Leschhorn H., Tang L. H. (1993) Elastic string in a random potential–
comment, Physical Review Letters 70, 2973

Lévy P., (1940) Sur certains processus stochastiques homogènes [in
French], Composition Mathematica 7, 283–339

Pollock E. L., Ceperley D. M. (1984) Simulation of quantum many-body
systems by path-integral methods, Physical Review B 30, 2555–2568

Pollock E. L., Ceperley D. M. (1987) Path-integral computation of su-
perfluid densities, Physical Review B 36, 8343–8352

Rosso A., Santachiara R., Krauth W. (2005) Geometry of Gaussian sig-
nals, Journal of Statistical Mechanics: Theory and Experiment, L08001

Storer R. G. (1968) Path-integral calculation of quantum-statistical den-
sity matrix for attractive Coulomb forces, Journal of Mathematical Phy-
sics 9, 964–970

Bosons 4
4.1 Ideal bosons

(energy levels) 187

4.2 The ideal Bose gas
(density matrices) 209

Exercises 225

References 227

The present chapter introduces the statistical mechanics and computa-
tional physics of identical bosons. Thus, after studying, in Chapter 3, the
manifestation of Heisenberg’s uncertainty principle at finite temperature
for a single quantum particle or several distinguishable quantum parti-
cles, we now follow identical particles to low temperature, where they
lose their individual characters and enter a collective state of matter
characterized by Bose condensation and superfluidity.

We mostly focus in this chapter on the modeling of noninteracting
(ideal) bosons. Our scope is thus restricted, by necessity, because quan-
tum systems are more complex than the classical models of earlier chap-
ters. However, ideal bosons are of considerably greater interest than
other noninteracting systems because they can have a phase transition.
In fact, a statistical interaction originates here from the indistinguisha-
bility of the particles, and can best be studied in the model of ideal
bosons, where it is not masked by other interactions. This chapter’s re-
striction to ideal bosons—leaving aside the case of interacting bosons—is
thus, at least partly, a matter of choice.

Ideal bosons are looked at from two technically and conceptually dif-
ferent perspectives. First, we focus on the energy-level description of
the ideal Bose gas. This means that particles are distributed among
single-particle energy levels following the laws of bosonic statistics. As
in other chapters, we stress concrete calculations with a finite number
of particles.

The chapter’s second viewpoint is density matrices and path integrals,
which are important tools in computational quantum physics. We give a
rather complete treatment of the ideal Bose gas in this framework, lead-
ing up to a direct-sampling algorithm for ideal bosons at finite temper-
ature. We have already discussed in Chapter 3 the fact that interactions
are very easily incorporated into the path-integral formalism. Our ideal-
boson simulation lets us picture real simulations of interacting bosons
in three-dimensional traps and homogeneous periodic boxes.

Our main example system, bosons in a harmonic trap, has provided
the setting for groundbreaking experiments in atomic physics, where
Bose–Einstein condensation has actually been achieved and studied in
a way very close to what we shall do in our simulations using path-
integral Monte Carlo methods. Path-integral Monte Carlo methods have
become a standard approach to interacting quantum systems, from 4He,
to interacting fermions and bosons in condensed matter physics, and to
atomic gases.

We suppose that a three-dimensional harmonic trap, with harmonic po-
tentials in all three space dimensions, is filled with bosons (see Fig. 4.1).
Well below a critical temperature, most particles populate the state with
the lowest energy. Above this temperature, they are spread out into many
states, and over a wide range of positions in space. In the harmonic trap,
the Bose–Einstein condensation temperature increases as the number of
particles grows. We shall discuss bosonic statistics and calculate con-
densation temperatures, but also simulate thousands of (ideal) bosons
in the trap, mimicking atomic gases, where Bose–Einstein condensation
was first observed, in 1995, at microkelvin temperatures.

z-coordinatey-coordinatex-coordinate

en
er

gy
 l
ev

el
s

Fig. 4.1 Energy levels {Ex, Ey, Ez} of a quantum particle in a harmonic
trap. The total energy is E = Ex + Ey + Ez.

4.1 Ideal bosons (energy levels) 187

4.1 Ideal bosons (energy levels)

In this section, we consider ideal bosons in a three-dimensional harmonic
trap, as realized in experiments in atomic physics, and also bosons in
a three-dimensional box with periodic boundary conditions, a situation
more closely related to liquid and gaseous helium (4He). Both systems
will be described in the usual framework of energy levels. Many calcula-
tions will be redone in Section 4.2, in the less familiar but more powerful
framework of density matrices.

4.1.1 Single-particle density of states

In this subsection, we review the concept of a single-particle state and
compute the single-particle degeneracy N (E), that is, the number of
these states with energy E. Let us start with the harmonic trap. For
simplicity, we choose all of the spring constants {ωx, ωy, ωz} equal to
one,1 so that the eigenvalues satisfy

Ex

Ey

Ez

⎫⎬⎭ = 0, 1, 2, . . .

(see Fig. 4.1). To simplify the notation, in this chapter we subtract
the zero-point energy, that is, we set the energy of the ground state
equal to zero. The total energy of one particle in the potential is E =
Ex + Ey + Ez . We need to compute the number of different choices for
{Ex, Ey, Ez} which give an energy E (see Alg. 4.1 (naive-degeneracy),
and Table 4.1).

procedure naive-degeneracy

{N (0) , . . . ,N (Emax)} ← {0, . . . , 0}
for Ex = 0, . . . , Emax do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

for Ey = 0, . . . , Emax do⎧⎪⎪⎨⎪⎪⎩
for Ez = 0, . . . , Emax do⎧⎨⎩

E ← Ex + Ey + Ez

if (E ≤ Emax) then{ N (E) ← N (E) + 1
output {N (0) , . . . ,N (Emax)}
——

Algorithm 4.1 naive-degeneracy. Single-particle degeneracy N (E) for
the harmonic trap (see Table 4.1).

Table 4.1 Degeneracy N (E) for the
harmonic trap

E {Ex, Ey, Ez} N (E)

0 {0,0,0} 1

1
{0, 0, 1}
{0, 1, 0}
{1, 0, 0}

3

2

{0, 0, 2}
{0, 1, 1}
{0, 2, 0}
{1, 0, 1}
{1, 1, 0}
{2, 0, 0}

6

3 . . . 10

4 . . . 15
.

In the case of the harmonic trap, N (E) can be computed explicitly:{
total energy

}
= E = Ex + Ey︸︷︷︸

0≤Ey≤E−Ex

+ remainder︸ ︷︷ ︸
≥0

.

1Throughout this chapter, the word “harmonic trap” refers to an isotropic three-
dimensional harmonic potential with ωx = ωy = ωz = 1.

188 Bosons

For each choice of Ex, the energy Ey may be any integer from 0 to
E − Ex, but then, for given Ex and Ey , the remainder, Ez, is fixed:

N (E) =
E∑

Ex=0

{
number of choices
for Ey given Ex

}
=

E∑
Ex=0

(E − Ex + 1)

= (E + 1) + (E) + · · · + (1) =
(E + 1)(E + 2)

2
. (4.1)

Splitting the energy into {Ex, Ey} and a remainder is a nice trick,
but it is better to use a systematic method2 for computing N (E) before
using it in far more complicated contexts. The method consists in writing
the density of states as a free sum over {Ex, Ey, Ez}

N (E) =
E∑

Ex=0

E∑
Ey=0

E∑
Ez=0

δ(Ex+Ey+Ez),E , (4.2)

where the Kronecker δ-function is defined as

δj,k =

{
1 if j = k

0 if j
= k
.

Because of the δ-function, only combinations of {Ex, Ey, Ez} with a sum
equal to E contribute to N (E) in eqn (4.2). The Kronecker δ-function
may be represented as an integral,

δj,k =
∫

�

−�

dλ

2�
ei(j−k)λ. (4.3)

This formula is evidently correct for j = k (we integrate 1/(2�) from −�

to �), but it is also correct for integers j
= k, because the oscillatory
terms sum to zero.

We enter the integral representation of the Kronecker δ-function into
the density of states in eqn (4.2), exchange sums and integrals, and see
that the three sums in the density of states have become independent:

N (E) =
∫

�

−�

dλ

2�
e−iEλ

(
E∑

Ex=0

eiExλ

)⎛⎝ E∑
Ey=0

eiEyλ

⎞⎠(E∑
Ez=0

eiEzλ

)
.

The three geometric sums can be evaluated explicitly:

1000

500

0

π0−π

in
te

gr
an

d
 N

(E
,λ

)

integration variable λ

E = 10
5

Fig. 4.2 Real part of the integrand of
eqn (4.4).

N (E) =
∫

�

−�

dλ

2�
e−iEλ

[
1 − ei(E+1)λ

1 − eiλ

]3
︸ ︷︷ ︸

N(E,λ)

. (4.4)

This integral can be evaluated by Riemann integration (see Fig. 4.2). It
reproduces eqn (4.1). It may also be evaluated exactly. The substitution
eiλ = z gives the complex contour integral

N (E) =
1

2�i

∮
|z|=1

dz

zE+1

(
1 − zE+1

1 − z

)3

. (4.5)

2What works once is a trick; what works twice is a method.

4.1 Ideal bosons (energy levels) 189

Using (
1

1 − z

)3

=
1
2
(
1 × 2 + 2 × 3z + 3 × 4z2 + · · ·) ,

we expand the integrand into a Laurent (power) series around the sin-
gularity at z = 0:

N (E) =
1

2�i

∮
dz

zE+1

1
2
(
1 × 2 + 2 × 3z + 3 × 4z2 + · · ·) (1 − zE+1

)3
=

1
2�i

∮
dz

[
· · · + 1

2
(E + 1)(E + 2)z−1 + · · ·

]
. (4.6)

The residue theorem of complex analysis states that the coefficient of
z−1, namely 1

2 (E + 1)(E + 2), is the value of the integral. Once more,
we obtain eqn (4.1).

Lx

Lz

Ly

Fig. 4.3 Three-dimensional cubic box with periodic boundary conditions
and edge lengths Lx = Ly = Lz = L.

Table 4.2 Single-particle degener-
acy for a cubic box (from Alg. 4.2
(naive-degeneracy-cube), L =

√
2�)

E N (E)
P

E′≤E

N (E′) 4
3
�E3/2

0 1 1 0.00
1 6 7 4.19
2 12 19 11.85
3 8 27 21.77
4 6 33 33.51
5 24 57 46.83
6 24 81 61.56
7 0 81 77.58
8 12 93 94.78
9 30 123 113.10

After dealing with the single-particle degeneracy for a harmonic trap,
we now consider the same problem for a cubic box with periodic bound-
ary conditions (see Fig. 4.3). The total energy is again a sum of the
energies Ex, Ey, and Ez . As discussed in Subsection 3.1.2, the allowed
energies for a one-dimensional line of length L with periodic boundary
conditions are

Ex

Ey

Ez

⎫⎪⎬⎪⎭ =
2�2

L2

[
. . . , (−2)2, (−1)1, 0, 12, 22, . . .

]
(see eqn (3.10)), For the moment, let us suppose that the cube has a
side length L =

√
2�. Every integer lattice site {nx, ny, nz} in a three-

dimensional lattice then contributes to the single-particle degeneracy
of the energy E = n2

x + n2
y + n2

z (see Fig. 4.4 for a two-dimensional
representation). The single-particle density of states is easily computed
(see Alg. 4.2 (naive-degeneracy-cube)). The number of states with an
energy below E is roughly equal to the volume of a sphere of radius

√
E,

because the integer lattice has one site per unit volume (see Table 4.2).
The density of states N (E) is the key ingredient for calculating the
thermodynamic properties of a homogeneous Bose gas.

190 Bosons

nx

ny

Fig. 4.4 N (E) in a square box of edge length
√

2� with periodic bound-
ary conditions. Integer lattice point {nx, ny} contribute to N `

n2
x + n2

y

´
.

procedure naive-degeneracy-cube

{N (0) , . . . ,N (Emax)} ← {0, . . . , 0}
nmax ← int

√
Emax

for nx = −nmax, . . . , nmax do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
for ny = −nmax, . . . , nmax do⎧⎪⎪⎨⎪⎪⎩

for nz = −nmax, . . . , nmax do⎧⎨⎩
E ← n2

x + n2
y + n2

z

if (|E| ≤ Emax) then{ N (E) ← N (E) + 1
output {N (0) , . . . ,N (Emax)}
——

Algorithm 4.2 naive-degeneracy-cube. Single-particle degeneracy

N (E) for a periodic cubic box of edge length
√

2�.

4.1.2 Trapped bosons (canonical ensemble)

The preliminaries treated so far in this chapter have familiarized us with
the concepts of single-particle states and the corresponding density of
states. The integral representation of the Kronecker δ-function was used
to transform a constraint on the particle number into an integral. (The
integration variable λ will later be related to the chemical potential.)

x,y

z
E

0
1
2
3
4

Fig. 4.5 The five-boson bounded trap
model with a cutoff on the single-
particle spectrum (Emax = 4). The de-
generacies are as in eqn (4.7).

In this subsection, we apply this same method to N trapped bosons.
For concreteness, we shall first work on what we call the five-boson
bounded trap model, which consists of five bosons in the harmonic trap,
as in Fig. 4.5, but with a cutoff on the single-particle energies, namely
Eσ ≤ 4. For this model, naive enumeration still works, so we quickly get
an initial result.

The five-boson bounded trap model keeps the first 35 single-particle
states listed in Table 4.1:

E = 4 (15 states: σ = 20, . . . , 34),
E = 3 (10 states: σ = 10, . . . , 19),
E = 2 (6 states: σ = 4, . . . , 9),
E = 1 (3 states: σ = 1, 2, 3),
E = 0 (1 state: σ = 0).

(4.7)

We construct the five-particle states by packing particle 1 into state σ1,

4.1 Ideal bosons (energy levels) 191

particle 2 into state σ2, etc., each state being taken from the list of 35
states in eqn (4.7): {

five-particle
state

}
= {σ1, . . . , σ5}.

The quantum statistical mechanics of the five-boson bounded trap model
derives from its partition function

Zbtm =
∑

all five-particle
states

e−βEtot(σ1,...,σ5), (4.8)

where the total five-particle energy is equal to

Etot = Etot(σ1, . . . , σ5) = Eσ1 + Eσ2 + Eσ3 + Eσ4 + Eσ5 .

While we should be careful not to forget any five-particle states in the
partition function in eqn (4.8), we are not allowed to overcount them
either. The problem appears because bosons are identical particles, so
that there is no way to tell them apart: the same physical five-particle
state corresponds to particle 1 being in (single-particle) state 34, particle
2 in state 5, and particle 3 in state 8, or to particle 1 being in state 8,
particle 2 in state 5, and particle 3 in state 34, etc.:⎡⎢⎢⎢⎢⎣

σ1 ← 34
σ2 ← 5
σ3 ← 8
σ4 ← 0
σ5 ← 11

⎤⎥⎥⎥⎥⎦ same
as

⎡⎢⎢⎢⎢⎣
σ1 ← 8
σ2 ← 5
σ3 ← 34
σ4 ← 0
σ5 ← 11

⎤⎥⎥⎥⎥⎦ same
as

⎡⎢⎢⎢⎢⎣
σ1 ← 0
σ2 ← 5
σ3 ← 8
σ4 ← 11
σ5 ← 34

⎤⎥⎥⎥⎥⎦ etc. (4.9)

The groundbreaking insight of Bose (in 1923, for photons) and of Ein-
stein (in 1924, for massive bosons) that the partition function should
count only one of the states in eqn (4.9) has a simple combinatorial im-
plementation. To avoid overcounting in eqn (4.8), we consider only those
states which satisfy

0 ≤ σ1 ≤ σ2 ≤ σ3 ≤ σ4 ≤ σ5 ≤ 34. (4.10)

Out of all the states in eqn (4.9), we thus pick the last one.
The ordering trick in eqn (4.10) lets us write the partition function

and the mean energy as

Zbtm =
∑

0≤σ1≤···≤σ5≤34

e−βEtot(σ1,...,σ5),

〈E〉 =
1

Zbtm

∑
0≤σ1≤···≤σ5≤34

Etot(σ1, . . . , σ5)e−βEtot(σ1,...,σ5).

Some of the particles k may be in the ground state (σk = 0). The
number of these particles, N0(σ1, . . . , σ5), is the ground-state occupa-
tion number of the five-particle state {σ1, . . . , σ5}. (In the five-particle
state in eqn (4.9), N0 = 1.) The number N0 can be averaged over the

192 Bosons

Boltzmann distribution analogously to the way the mean energy was
calculated. The mean number of particles in the ground state divided
by the total number of particles is called the condensate fraction. Al-
gorithm 4.3 (naive-bosons) evaluates the above sums and determines
the partition function, the mean energy, and the condensate fraction of
the five-boson bounded trap model. It thus produces our first numeri-
cally exact results in many-particle quantum statistical mechanics (see
Table 4.3).

Table 4.3 Thermodynamics of the
five-boson bounded trap model (from
Alg. 4.3 (naive-bosons))

T Zbtm 〈E〉/N 〈N0〉 /N

0.1 1.000 0.000 1.000
0.2 1.021 0.004 0.996
0.3 1.124 0.026 0.976
0.4 1.355 0.074 0.937
0.5 1.780 0.157 0.878
0.6 2.536 0.282 0.801
0.7 3.873 0.444 0.711
0.8 6.237 0.634 0.616
0.9 10.359 0.835 0.526
1.0 17.373 1.031 0.447

procedure naive-bosons

{E0, . . . , E34} ← {0, 1, 1, 1, 2, . . . , 4} (from eqn (4.7))
Zbtm ← 0
〈E〉 ← 0
〈N0〉 ← 0
for σ1 = 0, . . . , 34 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for σ2 = σ1, . . . , 34 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. . .

. . . for σ5 = σ4, . . . , 34 do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Etot ← Eσ1 + · · · + Eσ5

N0 ← # of zeros among {σ1, . . . , σ5}
Zbtm ← Zbtm + e−βEtot

〈E〉 ← 〈E〉 + Etote−βEtot

〈N0〉 ← 〈N0〉 + N0e−βEtot

. . .
〈E〉 ← 〈E〉 /Zbtm

〈N0〉 ← 〈N0〉 /Zbtm

output {Zbtm, 〈E〉 , 〈N0〉}
——

Algorithm 4.3 naive-bosons. Thermodynamics of the five-boson
bounded trap model at temperature 1/β.

At low temperature, almost all particles are in the ground state and
the mean energy is close to zero, as is natural at temperatures T � 1.
This is not yet (but soon will be) the phenomenon of Bose–Einstein
condensation, which concerns the macroscopic population of the ground
state for large systems at temperatures much higher than the difference
in energy between the ground state and the excited states, in our case
at temperatures T � 1.

Algorithm 4.3 (naive-bosons) goes 575 757 times through its inner
loop. To check that this is indeed the number of five-particle states in the
model, we can represent the 35 single-particle states as modular offices,
put together from two fixed outer walls and 34 inner walls:

� | �︸ ︷︷ ︸
35 modular offices, 2 outer walls and 34 inner walls

.

Five identical particles are placed into these offices, numbered from 0 to

4.1 Ideal bosons (energy levels) 193

34, for example as in the following:

� | • | | • | | | • • | | | | | | | | | | | • | | | | | | | | | | | | | | | | | �︸ ︷︷ ︸
one particle in office (single-particle state) 1, one in 3, two in 6, one in 17

. (4.11)

Each bosonic five-particle state corresponds to one assignment of office
walls as in eqn (4.11). It follows that the number of ways of distributing
N particles into k offices is the same as that for distributing N particles
and k−1 inner walls, i.e. a total number of N +k−1 objects. The inner
walls are identical and the bosons are also identical, and so we have to
divide by combinatorial factors N ! and (k − 1)!:⎧⎨⎩

number of N -particle
states from

k single-particle states

⎫⎬⎭ =
(N + k − 1)!
N !(k − 1)!

=
(

N + k − 1
N

)
. (4.12)

Equation (4.12) can be evaluated for N = 5 and k = 35. It gives
575 757 five-particle states for the five-boson bounded trap model, and
allows Alg. 4.3 (naive-bosons) to pass an important first test. However,
eqn (4.12) indicates that for larger particle numbers and more states, a
combinatorial explosion will put a halt to naive enumeration, and this
incites us to refine our methods.

Considerably larger particle numbers and states can be treated by
characterizing any single-particle state σ = 0, . . . , 34 by an occupation
number nσ. In the example of eqn (4.11), we have

{
five-particle state
in config. (4.11)

}
: all nσ = 0 except

⎡⎢⎢⎣
n1 = 1
n3 = 1
n6 = 2

n17 = 1

⎤⎥⎥⎦ .

A five-particle state can thus be defined in terms of all the occupation
numbers {

five-particle
state

}
= {n0, . . . , n34}︸ ︷︷ ︸

n0+···+n34=5

,

and its energy by

Etot = n0E0 + n1E1 + · · · + n34E34.

The statistical weight of this configuration is given by the usual Boltz-
mann factor e−βEtot . The partition function of the five-boson bounded
trap model is

Zbtm(β) =
5∑

n0=0

· · ·
5∑

n34=0

e−β(n0E0+···+n34E34)δ(n0+···+n34),5, (4.13)

where the Kronecker δ-function fixes the number of particles to five.
Equations (4.8) and (4.13) are mathematically equivalent expressions for
the partition function but eqn (4.13) is hardly the simpler one: instead

194 Bosons

of summing over 575 757 states, there is now an equivalent sum over
635 � 1.72× 1027 terms. However, eqn (4.13) has been put together
from an unrestricted sum and a constraint (a Kronecker δ-function),
and the equation can again be simplified using the providential integral
representation given in Subsection 4.1.1 (see eqn (4.3)):

Zbtm(β) =
∫

�

−�

dλ

2�
e−iNλ

×
(∑

n0

en0(−βE0+iλ)

)
︸ ︷︷ ︸

f0(β,λ)

. . .

(∑
n34

en34(−βE34+iλ)

)
︸ ︷︷ ︸

f34(β,λ)

. (4.14)

In this difficult problem, the summations have again become indepen-
dent, and can be performed. As written in eqn (4.13), the sums should
go from 0 to N for all states. However, for the excited states (E > 0),
the absolute value of Υ = e−βE+iλ is smaller than 1:

|Υ| =
∣∣e−βEeiλ

∣∣ = ∣∣e−βE
∣∣︸ ︷︷ ︸

<1 if
E>0

∣∣eiλ
∣∣︸︷︷︸

1

,

which allows us to take the sum to infinity:

N∑
n=0

Υn =
1 − ΥN+1

1 − Υ
N→∞−−−−→
|Υ|<1

1
1 − Υ

.

The Kronecker δ-function picks up the correct terms even from an infi-
nite sum, and we thus take the sums in eqn (4.14) for the excited states
to infinity, but treat the ground state differently, using a finite sum. We
also take into account the fact that the fk depend only on the energy
Ek, and not explicitly on the state number:

fE(β, λ) =
1 − exp [i(N + 1)λ]

1 − exp (iλ)
, E = 0, (ground state), (4.15)

fE(β, λ) =
1

1 − exp (−βE + iλ)
, E > 0, (excited state). (4.16)

(The special treatment of the ground state is “naive”, that is, appro-
priate for a first try. In Subsection 4.1.3, we shall move the integration
contour for λ in the complex plane, and work with infinite sums for all
energies.)

The partition function is finally written as

ZN (β) =
∫

�

−�

dλ

2�
e−iNλ

Emax∏
E=0

[fE(β, λ)]N(E)

︸ ︷︷ ︸
ZN (β,λ)

. (4.17)

This equation is generally useful for an N -particle problem. For the five-
boson bounded trap model, we can input N (E) = 1

2 (E + 1)(E + 2)

4.1 Ideal bosons (energy levels) 195

directly from eqn (4.1), and set Emax = 4. We may lack the courage to
evaluate this one-dimensional integral analytically in the complex plane,
as for N (E), but can easily integrate numerically, using Riemann sums
and complex arithmetic (see Fig. 4.6). For the five-boson bounded trap
model, the results of Table 4.3 are reproduced, but we can now go to
larger particle numbers and also push Emax to infinity.

From the partition function, it is possible to obtain the mean energy,

〈EN 〉 = −∂ log ZN (β)
∂β

, (4.18)

by comparing log ZN at two nearby temperatures. It is better to differ-

40

20

0

π0−π

in
te

gr
an

d
 Z

N
(β

,λ
)

integration variable λ

Emax = 8
6
4
2
0

Fig. 4.6 Real part of the integrand of
eqn (4.17) for N = 10 and T = 1.

entiate directly inside the sum of eqn (4.13), so that, in the five-boson
bounded trap model:

〈Ebtm〉 =
1

Zbtm(β)

∑
n0

· · ·
∑
n34

(n0E0 + · · · + n34E34)

× exp [−β(n0E0 + · · · + n34E34)] δ(n0+···+n34),5. (4.19)

Each of the terms in parentheses in eqn (4.19) generates expressions of
the general form

E(β, λ) = −
∑

k

1
fk

∂fk

∂β
=
∑
E 	=0

N (E) E ·
(

e−βE+iλ

1 − e−βE+iλ

)
,

which give, with E(β, λ) from the above expression,

〈EN (β)〉 =
1

ZN (β)

∫
�

−�

dλ

2�
e−iNλE(β, λ)

Emax∏
E=0

[fE(β, λ)]N(E)
.

The condensate corresponds to the mean number of particles in the
ground state σ = 0. This number is obtained by differentiating log f0

with respect to iλ. Using the fact that the ground state σ = 0 has zero
energy, we find

N0(β, λ) =
∂

i∂λ
log f0 =

[
− (N + 1) eiλ(N+1)

1 − eiλ(N+1)
+

eiλ

1 − eiλ

]
,

〈N0(β)〉 =
1

ZN (β)

∫
�

−�

dλ

2�
e−iNλN0(β, λ)

Emax∏
E=0

[fE(β, λ)]N(E)
.

The calculation of the partition function, energy, and condensate frac-
tion relies on the degeneracies N (E) in the form of a table or an explicit
formula, and also on the temperature-dependent functions fE(β, λ) de-
fined in eqn (4.16) (see Alg. 4.4 (canonic-bosons); the special treat-
ment the ground state is naive, see eqn (4.15)). This algorithm repro-
duces Table 4.3 for Emax = 4 and N = 5. It allows us to push both
the energy cutoff and the particle numbers to much larger values, and
avoids any combinatorial explosion (see Table 4.4). In Subsection 4.2.3,

196 Bosons

procedure canonic-bosons

input ∆µ (step size for Riemann sums)
Z ← 0; 〈E〉 ← 0; 〈N0〉 ← 0
for λ = −�,−�+ ∆µ, . . . , � do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zλ ← f0(λ)
Eλ ← 0
for E = 1, . . . , Emax do{

Zλ ← ZλfE(λ, β)N(E)

Eλ ← Eλ + N (E) E · (e−βE+iλ
)
/
(
1 − e−βE+iλ

)
Z ← Z + Zλe−iNλ ∆µ

2�

〈E〉 ← 〈E〉 + EλZλe−iNλ ∆µ

2�〈E〉 ← 〈E〉 /Z
output Z, 〈E〉
——

Algorithm 4.4 canonic-bosons. Thermodynamics for N bosons using
the integral representation of the Kronecker δ-function.

an algorithm based on path integrals will greatly improve on Alg. 4.4
(canonic-bosons).

In Fig. 4.7, all particles populate the ground state in the limit of
zero temperature. For temperatures much smaller than the energy gap
between the ground state and the first excited level, this is a simple con-
sequence of Boltzmann statistics. Bose condensation, in contrast, is what
occurs when a finite fraction of particles populates the ground state at
temperatures much larger than the energy gap (in the harmonic trap,

0

1

0 1

co
n
d
en

sa
te

 f
ra

ct
.
〈N

0〉/
N

rescaled temperature T/N1/3

N=5
10
20
40

Fig. 4.7 Condensate fraction 〈N0〉 /N
of N bosons in the harmonic trap.

the gap is equal to 1). This is illustrated for the harmonic trap by a plot
of the condensate fraction 〈N0〉 /N against T/N1/3; we shall discuss in
Subsection 4.1.3 the reason for rescaling the temperature as N1/3. On
the basis of this plot, we can conjecture correctly that the condensate
fraction falls to zero at a rescaled temperature Tc/N

1/3 � 1, so that the
transition temperature (Tc � N1/3) is, for large N , indeed much larger
than the difference (= 1) between the ground state and the first excited
state. Figure 4.7 does describe a system that undergoes Bose–Einstein
condensation. Throughout this subsection, the number of particles was
kept fixed; we considered what is called the canonical ensemble. In the
canonical ensemble, calculations are sometimes more complicated than
when we allow the total number of particles to fluctuate (see Subsec-
tion 4.1.3). However, the canonical ensemble is the preferred framework
for many computational approaches, in classical and in quantum physics
alike.

4.1.3 Trapped bosons (grand canonical ensemble)

So far, we have computed exact N -boson partition functions and related
quantities. In the present subsection, we study the limit N → ∞, where
the integral in eqn (4.17) may be done by the saddle point method. This
means that instead of adding up contributions to this integral over many

4.1 Ideal bosons (energy levels) 197

Table 4.4 Thermodynamics for N = 40 bosons in the harmonic
trap (from Alg. 4.4 (canonic-bosons) with Emax = 50)

T/N1/3 Z 〈E〉 /N 〈N0〉 /N

0.0 1.000 0.000 1.000
0.2 3.710 0.056 0.964
0.4 1083.427 0.572 0.797
0.6 0.128×109 2.355 0.449
0.8 0.127×1017 5.530 0.104
1.0 0.521×1025 8.132 0.031

values of the integration variable λ, we merely evaluate it at one specific
point in the complex plane, which gives the dominant contribution. This
point is called the chemical potential. It has a clear physical interpreta-
tion as the energy that it costs to introduce an additional particle into
the system.

In Subsection 4.1.2, we integrated the function

ZN (β, λ) =
Emax∏
E=0

(
1

1 − e−βE+iλ

)N(E)

e−iNλ (4.20)

over the variable λ, in the interval λ ∈ [−�, �]. This function can also be
considered as a function of the complex variable λ = Re λ + iIm λ (see
Fig. 4.8, for a plot of |ZN (β, λ)| for N = 5 and β = 1).

pole (E=1)
pole (E=0)

saddle point

−1
0

1
π

0

−π

Re λ

Im λ

|ZN(β,λ)|

Fig. 4.8 Absolute value of ZN (β, λ) for complex λ (for N = 5 and β = 1).
Two equivalent integration paths are shown.

For further study of this integral, we use that the integration contour
of analytic functions can be moved in the complex plane, as long as we do
not cross any singular points of the integrand. Instead of integrating the
real λ, from −� to �, we can integrate a complex λ from the point (−�, 0)
up at constant real value to (−�, λi), then from that point to (+�, λi),

198 Bosons

and finally back to the real axis, at (�, 0). We can confirm by elementary
Riemann integration that the integral does not change. (This Riemann
integration runs over a sequence of complex points {λ1, . . . , λK}. We put
∆λ = λk+1−λk in the usual Riemann integration formula.) The first and
third legs of the integration path have a negligible contribution to the
integral, and the contributions come mostly from the part of the path
for which Re λ � 0, as can be clearly seen in Fig. 4.8 (see also Fig. 4.9).
Functions as that in eqn (4.20) are best integrated along paths passing
through saddle points. As we can see, in this case, most of the oscillations
of the integrand are avoided, and large positive contributions at some
parts are not eliminated by large negative ones elsewhere. For large
values of N , the value of the integral is dominated by the neighborhood
of the saddle point; this means that the saddle point of ZN(β, λ) carries
the entire contribution to the integral in eqn (4.17), in the limit N → ∞.
As we can see from Fig. 4.8, at the saddle point λ is purely imaginary,
and ZN is real valued. To find this value, we need to find the minimum
of ZN or, more conveniently, the minimum of log ZN . This leads to the
following:{

saddle
point

}
:

∂

i∂λ

{
−iNλ +

∑
E

N (E) log
(
1 − e−βE+iλ

)}
= 0.

We also let a new real variable µ, the chemical potential, stand for
essentially the imaginary part of λ:

λ = Re λ + i Im λ︸︷︷︸
−βµ

.

0

200

400

π0−π

R
e

Z
N
(β

,λ
)

Re λ

Im λ = 0.1
0.3
0.7

Fig. 4.9 Values of the integrand along
various integration contours in Fig. 4.8.

In terms of the chemical potential µ, we find by differentiating the
above saddle point equation:{

saddle point µ ⇔ N
(canonical ensemble)

}
: N =

∑
E

N (E)
e−β(E−µ)

1 − e−β(E−µ)
. (4.21)

At the saddle point, the function ZN(β, µ) takes the following value:

ZN(β, µ) =
∏

single part.
states σ

[
1 + e−β(Eσ−µ) + e−2·β(Eσ−µ) + · · ·

]

=
∏

E=0,1...

(
1

1 − e−β(E−µ)

)N(E)

=
∏

single part.
states σ

1
1 − exp [−β(Eσ − µ)]

. (4.22)

This equation describes at the same time the saddle point of the canon-
ical partition function (written as an integral over the variable λ) and a
system with independent states σ with energies Eσ − µ. This system is
called the grand canonical ensemble. Equation (4.22), the saddle point
of the canonical partition function, defines the partition function in the
grand canonical ensemble, with fluctuating total particle number.

4.1 Ideal bosons (energy levels) 199

In the grand canonical ensemble, the probability of there being k par-
ticles in state σ is{

probability of having
k particles in state σ

}
: π(Nσ = k) =

exp [−β(Eσ − µ)k]∑∞
Nσ=0 exp [−β(Eσ − µ)Nσ]

.

For the ground state, we find

π(N0) = eβµN0 − eβµ(N0+1). (4.23)

The mean number of particles in state σ is

〈Nσ〉 = π(Nσ = 1) · 1 + π(Nσ = 2) · 2 + π(Nσ = 3) · 3 + · · ·

=

∑∞
Nσ=0 Nσ exp [−β(Eσ − µ)Nσ]∑∞

Nσ=0 exp [−β(Eσ − µ)Nσ]
=

exp [−β(Eσ − µ)]
1 − exp [−β(Eσ − µ)]

. (4.24)

The mean ground-state occupancy in the grand canonical ensemble is

〈N0〉 =
eβµ

1 − eβµ
. (4.25)

The mean total number of particles in the harmonic trap is, in the
grand canonical ensemble,{

mean total number
(grand canonical)

}
: 〈N(µ)〉 =

∞∑
E=0

N (E)
e−β(E−µ)

1 − e−β(E−µ)
. (4.26)

Equation (4.26) determines the mean particle number for a given chem-
ical potential. We should note that eqns (4.26) and (4.21) are essentially
the same expressions. The chemical potential denotes the saddle point
of the canonical partition function for N particles. It is also the point in
the grand canonical system at which the mean particle number satisfies
〈N〉 = N .

The inverse function of eqn (4.26), the chemical potential as a function
of the particle number, is obtained by a basic bisection algorithm (see
Alg. 4.5 (grandcan-bosons), and Table 4.5).

Table 4.5 Mean particle number 〈N〉
vs. µ for bosons in the harmonic trap
at temperature T = 10 (from Alg. 4.5
(grandcan-bosons))

〈N〉 µ

400 −11.17332
800 −4.82883

1000 −2.92846
1200 −1.48065
1400 −0.42927
2000 −0.01869
5000 −0.00283

10 000 −0.00117
.

From the chemical potential corresponding to the mean particle num-
ber chosen, we can go on to compute condensate fractions, energies,
and other observables. All these calculations are trivial to perform for
the ideal gas, because in the grand canonical ensemble all states σ are
independent. As a most interesting example, the condensate fraction
〈N0〉 / 〈N〉 follows directly from eqn (4.25), after calculating µ using
Alg. 4.5 (grandcan-bosons) (see Fig. 4.10).

In conclusion, we have studied in this subsection the function ZN (β, λ)
which, when integrated over λ from � to �, gives the exact canonical par-
tition function for N particles. In the complex λ-plane, this function has
a saddle point defined by a relation of N with the chemical potential µ,
essentially the rescaled imaginary part of the original integration vari-
able λ. In the large-N limit, this point dominates the integral for ZN

(which gives an additional constant which we did not compute), and for

200 Bosons

procedure grandcan-bosons

input 〈N〉 (target mean number of particles)
input µmin (with 〈N(µmin)〉 < 〈N〉)
µmax ← 0
for i = 1, 2, . . . do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ ← (µmin + µmax)/2
if (〈N(µ)〉 < N) then (evaluate eqn (4.26)){

µmin ← µ
else{

µmax ← µ
µ ← (µmin + µmax)/2
output µ
——

Algorithm 4.5 grandcan-bosons. Computing the chemical potential µ
for a given mean number 〈N〉 of bosons.

0

1

0 1co
n
d
en

sa
te

 f
ra

ct
io

n
 〈N

0〉/
〈N

〉

rescaled temperature T/〈N〉1/3

〈N〉 = 100000
10000
1000
100
10

Fig. 4.10 Condensate fraction in the harmonic trap, in the grand canon-
ical ensemble (from Alg. 4.5 (grandcan-bosons), see also eqn (4.31)).

all other (extensive) observables, as the energy and the specific heat (for
which the above constant cancels). The saddle point of the canonical
ensemble also gives the partition function in the grand canonical ensem-
ble. It is significant that at the saddle point the particle number N in
the canonical ensemble agrees with the mean number 〈N〉 in the grand
canonical ensemble, that is, that eqns (4.21) and (4.26) agree even at
finite N . Other extensive observables are equivalent only in the limit
N → ∞.

4.1.4 Large-N limit in the grand canonical
ensemble

Notwithstanding our excellent numerical control of the ideal Bose gas
in the grand canonical ensemble, it is crucial, and relatively straightfor-
ward, to solve this problem analytically in the limit N → ∞. The key to

4.1 Ideal bosons (energy levels) 201

an analytic solution for the ideal Bose gas is that at low temperatures,
the chemical potential is negative and very close to zero. For example,
at temperature T = 10, we have{

µ = −0.00283
(see Table 4.5)

}
⇒ 〈N0〉 = 3533,

〈Nσ=1〉 = 9.48,{
µ = −0.00117
(see Table 4.5)

}
⇒ 〈N0〉 = 8547,

〈Nσ=1〉 = 9.50.

Thus, the occupation of the excited state changes very little; at a chem-
ical potential µ = 0, where the total number of particles diverges, it
reaches 〈Nσ=1〉 = 9.51. For µ around zero, only the ground-state occu-
pation changes drastically; it diverges at µ = 0. For all the excited states,
we may thus replace the actual occupation numbers of states (at a chem-
ical potential very close to 0) by the values they would have at µ = 0.
This brings us to the very useful concept of a temperature-dependent
saturation number, the maximum mean number of particles that can be
put into the excited states:

〈Nsat〉 =
∑
E≥1

(excited)

N (E)
e−βE

1 − e−βE︸ ︷︷ ︸
〈Nsat(E)〉

. (4.27)

As N increases (and µ approaches 0) the true occupation numbers of the
excited states approach the saturation numbers 〈Nsat(E)〉 (see Fig. 4.11).

The saturation number gives a very transparent picture of Bose–
Einstein condensation for the ideal gas. Let us imagine a trap getting
filled with particles, for example the atoms of an experiment in atomic
physics, or the bosons in a Monte Carlo simulation. Initially, particles
go into excited states until they are all saturated, a point reached at
the critical temperature Tc. After saturation, any additional particles
have no choice but to populate the ground state and to contribute to
the Bose–Einstein condensate.

We shall now compute analytically the saturation number for large
temperatures T (small β, large number of particles), where the above
picture becomes exact. In the limit β → 0, the sum in eqn (4.27) can be
approximated by an integral. It is best to introduce the distance between
two energy levels ∆E = 1 as a bookkeeping device:

〈Nsat〉 =
∑
E≥1

(excited)

∆E
(E + 1)(E + 2)

2
e−βE

1 − e−βE
.

Changing the sum variable from E to βE = x, this gives, with ∆E =
∆x/β, the term-by-term identical sum

〈Nsat〉 =
1
β

∑
x=β,2β...

∆x
(x/β + 1)(x/β + 2)

2
e−x

1 − e−x
(4.28)

−−−→
β→0

1
2β3

∫ ∞

0

dx x2 e−x

1 − e−x
. (4.29)

202 Bosons

0

40

0 100

oc
cu

p
at

io
n
 〈N

(E
)〉

energy E
(excited states only)

〈Nsat(E)〉
〈N〉 = 1400

1200
1000

Fig. 4.11 Occupation numbers and saturation numbers for excited states
in the harmonic trap at T = 10 (from Alg. 4.5 (grandcan-bosons)).

In the last step, we have only kept the largest term, proportional to 1/β3.
Depending on our taste and upbringing, we may look this integral upThe series

1
1 − e−x

= 1 + e−x + e−2x + e−3x + · · ·

leads to the integralsZ ∞

0
dx x2e−nx

=
∂2

∂n2

Z ∞

0
dx e−nx

| {z }
1/n for n>0

=
2
n3

. (4.30)

in a book, or on a computer, program it as a Riemann sum, or expand
the denominator of eqn (4.29) into a geometric series, multiply by the
numerator, evaluate the integrals in eqn (4.30), and sum the series. In
any case, the result is

〈Nsat〉 −−−→
β→0

1
β3

∞∑
n=1

1
n3︸ ︷︷ ︸

Riemann
zeta function ζ(3)

=
1.202
β3

.

The series
∑∞

n=1 1/nα is called the Riemann zeta function of α, ζ(α), so
that 〈Nsat〉 → ζ(3)/β3. The numerical value of ζ(3) can be looked up,
or programmed in a few seconds.

The calculation of the saturation numbers in the limit 〈N〉 → ∞ allows
us to determine the critical temperature of the ideal Bose gas and the
dependence of the condensate fraction on the temperature. For large
〈N〉, the saturation number equals the particle number at the critical
temperature, where

〈N〉 = 〈Nsat〉 ⇐⇒ T = Tc,

〈N〉 = 1.202Tc
3 ⇐⇒ Tc =

〈N〉1/3

3
√

1.202
.

This is equivalent to
Tc/ 〈N〉1/3 = 0.94.

Furthermore, below Tc, the difference between the particle number and
the saturation number must come from particles in the ground state,
so that 〈N0〉 = 〈N〉 − 〈Nsat〉. This simple reasoning allows us to com-
pute the condensate fraction. We use one of the above equations (〈N〉 =

4.1 Ideal bosons (energy levels) 203

1.202Tc
3), and also the dependence of the saturation number on tem-

perature (〈Nsat(T)〉 = 1.202T 3), to arrive at

〈N0〉
〈N〉 = 1 − T 3

Tc
3 . (4.31)

The critical temperature Tc increases with the cube root of the mean
particle number. This justifies the scaling used for representing our data
for the five-boson bounded trap model (see Fig. 4.7).

After the thermodynamics, we now turn to structural properties. We
compute the density distribution in the gas, in the grand canonical
ensemble. The grand canonical density is obtained by multiplying the
squared wave functions in the harmonic trap by the occupation numbers
Nσ of eqn (4.24):{

density at point
r = {x, y, z}

}
≡ η(x, y, z) =

∑
σ

ψ2
σ(x, y, z) 〈Nσ〉 . (4.32)

The states σ, indexed by the energies {Ex, Ey, Ez}, run through the list
in Table 4.1, where

ψσ(x, y, z) = ψh.o.
Ex

(x)ψh.o.
Ey

(y)ψh.o.
Ez

(z).

The wave functions of the harmonic oscillator can be computed by
Alg. 3.1 (harmonic-wavefunction). The naive summation in eqn (4.32)
is awkward because to implement it, we would have to program the
harmonic-oscillator wave functions. It is better to reduce the density at
point {x, y, z} into a sum of one-particle terms. This allows us to express
η(x, y, z) in terms of the single-particle density matrix of the harmonic
oscillator, which we determined in Subsection 3.2.2. We expand the de-
nominator of the explicit expression for 〈Nσ〉 back into a geometric sum
and multiply by the numerator:

〈Nσ〉 =
exp [−β(Eσ − µ)]

1 − exp [−β(Eσ − µ)]
=

∞∑
k=1

exp [−kβ(Eσ − µ)]

=
∞∑

k=1

exp [−kβ(Ex + Ey + Ez − µ)] .

The density in eqn (4.32) at the point {x, y, z} turns into

η(x, y, z) =
∞∑

k=1

ekβµ

×
∞∑

Ex=0

e−kβExψ2
Ex

(x)︸ ︷︷ ︸
ρh.o.(x,x,kβ)

∞∑
Ey=0

e−kβEyψ2
Ey

(y)

︸ ︷︷ ︸
ρh.o.(y,y,kβ)

∞∑
Ez=0

e−kβEzψ2
Ez

(z)︸ ︷︷ ︸
ρh.o.(z,z,kβ)

.

Each of the sums in this equation contains a diagonal one-particle harmo-
nic-oscillator density matrix at temperature 1/(kβ), as determined ana-
lytically in Subsection 3.2.2, but for a different choice of the ground-state

204 Bosons

energy. With our present ground-state energy E0 = 0, the diagonal den-
sity matrix of the one-dimensional harmonic oscillator is

ρh.o.(x, x, kβ) =

√
1

2� sinh (kβ)
exp
[
−x2 tanh

(
kβ

2

)
+

kβ

2

]
.

Together with terms containing exp
[−y2 . . .

]
and exp

[−z2 . . .
]
, this

gives

η(r) =
∞∑

k=1

ekβµ

[
1

2� sinh (kβ)

]3/2

exp
[
−r2 tanh

(
kβ

2

)
+

3
2
kβ

]
. (4.33)

This formula can be programmed as it stands. It uses as input the val-
ues of the chemical potential in Table 4.5. However, convergence as k
increases is slow for µ � 0 (it diverges for µ = 0 because sinh3/2 (kβ) �
1
2 exp

(
3
2kβ
)

for large βk, so that each term in the sum is constant). It is
better to compute only the excited-state density, i.e. to add to and then
subtract from eqn (4.33) the ground-state term, put together from

〈N0〉 =
eβµ

1 − eβµ
=

∞∑
k=1

ekβµ,

and the ground-state wave function

∞∑
k=1

ekβµ 1
�
3/2

exp
(−r2

)
.

This yields

ηexc(r) =
∞∑

k=1

ekβµ

×
{[

1
2� sinh (kβ)

]3/2

exp
(
−r2 tanh

kβ

2
+

3
2
kβ

)
− e−r2

�
3/2

}
. (4.34)

The density of the excited states at position r saturates in the same way
as the number of excited particles. Below the critical temperature, the
density ηexc(r) is very close to the saturation density at µ = 0. The total
density is finally given by

η(r) = ηexc(r) +
eβµ

1 − eβµ

1
�
3/2

exp
(−r2

)
. (4.35)

This equation, applied to the ground state E = 0, allows us to obtain the
number of bosons at the point x = {x, y, z}, with |x| = r per unit volume
element in the harmonic trap (see Fig. 4.12). The sudden density increase
in the center is a hallmark of Bose–Einstein condensation in a harmonic
trap. It was first seen in the velocity distribution of atomic gases in the
Nobel-prize-winning experiments of the groups of Cornell and Wieman
(with rubidium atoms) and of Ketterle (with sodium atoms) in 1995.

2000

1640

1000

100

40

0 5 10 15

d
en

si
ty

 η
(r

)

distance from center r

〈N〉 = 90000
80000
70000
60000
50000

Fig. 4.12 Density η(r) in the harmonic
trap at temperature T = 40 (grand
canonical ensemble, from eqn (4.35)).

4.1 Ideal bosons (energy levels) 205

4.1.5 Differences between ensembles—fluctuations

The theory of saddle point integration guarantees that calculations per-
formed in the canonical ensemble (with fixed particle number) and in
the grand canonical ensemble (with fixed chemical potential) give iden-
tical results in the limit N → ∞ for extensive quantities. The differences
in the condensate fraction between the two ensembles are indeed quite
minor, even for N = 10 or 40 bosons, as we can see by comparing out-
put of Alg. 4.4 (canonic-bosons) and of Alg. 4.5 (grandcan-bosons)
with each other (see Fig. 4.13). The condensate fractions, in the two
ensembles, are mean values of probability distributions which we can
also compute. For the grand canonical ensemble, π(N0) is given explic-
itly by eqn (4.23); for the canonical ensemble, it can be obtained using
Alg. 4.4 (canonic-bosons). The two probability distributions here are
completely different, even though their mean values agree very well. The
difference between the two distributions shown in Fig. 4.14 persists in
the limit N → ∞.

0

1

0 1

co
n
d
en

sa
te

 f
ra

ct
io

n

T/〈N〉1/3

〈N〉, N = 10

grand canonical
canonical

0

1

0 1

co
n
d
en

sa
te

 f
ra

ct
io

n

T/〈N〉1/3

〈N〉, N = 40

grand canonical
canonical

Fig. 4.13 Condensate fraction in the harmonic trap (from Alg. 4.4
(canonic-bosons) and Alg. 4.5 (grandcan-bosons)). 0

0.1

400

p
ro

b
a
b
il
it

y
 π

(N
0)

condensate number N0

〈N〉, N = 40

grand canonical
canonical

Fig. 4.14 Probability π(N0)
in the harmonic trap with
T/N1/3 = T/ 〈N〉1/3 = 0.5 (from
modified Alg. 4.4 (canonic-bosons)
and eqn (4.23)).

The huge fluctuations in the grand canonical ideal Bose gas are non-
physical. They are caused by the accidental degeneracy of the chemical
potential with the ground-state energy in the limit N → ∞. Below the
critical temperature, the chemical potential is asymptotically equal to
the ground-state energy, so that the energy it costs to add a particle
into the system, E0 − µ, vanishes. The fluctuations in N0 are limited
only because the mean particle number is fixed. In interacting systems,
the chemical potential differs from the ground-state energy, and any in-
teracting system will have normal fluctuations of particle number. We
have seen in this subsection that the ideal canonical gas also has more
“physical” fluctuations than the grand canonical gas (see Fig. 4.14).

206 Bosons

4.1.6 Homogeneous Bose gas

In this subsection, we study Bose–Einstein condensation in a cubic box
with periodic boundary conditions. The main difference with the trap is
that the mean density in the homogeneous system of the periodic box
cannot change with temperature. It must be the same all over the system
at all temperatures, because it is protected by the translation symme-
try in the same way as the classical density of hard disks in a periodic
box, in Chapter 2, was necessarily constant throughout the system. This
single-particle observable thus cannot signal the Bose–Einstein conden-
sation transition as was possible in the trap (see Fig. 4.12). Another
difference between the harmonic trap and the homogeneous gas lies in
the way the thermodynamic limit is taken. Earlier, a trap with fixed
values of {ωx, ωy, ωz} was filled with more and more particles, and the
thermodynamic limit took place at high temperature. Now we compare
systems of the same density in boxes of increasing size. We shall again
study the canonical and the grand canonical ensembles and interpret the
transition in terms of saturation densities.

0

1

0 1 2 3 4co
n
d
en

sa
te

 f
ra

ct
io

n
 〈N

0〉/
N

temperature T

N = 10
100

0

1

0 1 2 3 4co
n
d
en

sa
te

 f
ra

ct
io

n
 〈N

0〉/
〈N

〉

temperature T

〈N〉 = 10
100

1000
∞

Fig. 4.15 Condensate fraction in a periodic cube (η = 1) in the canonical
ensemble (left) and the grand canonical ensemble (right) (see eqn (4.40)).

Table 4.6 Thermodynamics for N =
64 bosons in a cube with periodic
boundary conditions (from Alg. 4.4
(canonic-bosons) with η = 1)

T Z 〈E〉/N 〈N0〉 /N

0.0 1.000 0.000 1.000
0.5 1.866 0.014 0.990
1.0 31.129 0.112 0.939
1.5 1992.864 0.329 0.857
2.0 3.32×105 0.691 0.749
2.5 1.22×108 1.224 0.619
3.0 8.92×1010 1.944 0.470
3.5 1.18×1014 2.842 0.313
4.0 2.25×1017 3.812 0.188

In a cubic box with periodic boundary conditions, the energy eigen-
values depend on the edge length L as

E(nx, ny, nz) =
2�2

L2

(
n2

x + n2
y + n2

z

)︸ ︷︷ ︸
k

(4.36)

(see eqn (3.10)). The following relation between the particle number, the
volume, and the density,

N = ηL3,

allows us to write the energy levels in terms of the density and the

4.1 Ideal bosons (energy levels) 207

dimensions of the box:

E(nx, ny, nz) =
2�2

L2

(
n2

x + n2
y + n2

z

)︸ ︷︷ ︸
Ê

=
[
2�2
(η

N

)2/3
]

︸ ︷︷ ︸
Υ

Ê. (4.37)

Rescaling the temperature as β̂ = Υβ (with Υ from the above equa-
tion), we find the following, in the straightforward generalization of
eqn (4.17):

ZN(β) =
∫

�

−�

dλ

2�
e−iNλ

Emax∏
E=0

[
fE(β̂, λ)

]N(E)

. (4.38)

The single-particle degeneracies are given by

{N (0) ,N (1) , . . . } = {1, 6, 12, 8, 4, . . .}︸ ︷︷ ︸
from Table 4.2

,

directly obtained from Alg. 4.2 (naive-degeneracy-cube). The calcu-
lation of the mean energy and the condensate fraction is analogous to
the calculation in the trap (see Table 4.6).

As in the harmonic trap, we can compute the saturation number and
deduce from it the transition temperature and the condensate fraction in
the thermodynamic limit (compare with Subsection 4.1.4). There is no
explicit formula for the single-particle degeneracies, but we can simply
sum over all sites of the integer lattice {nx, ny, nz} (whereas for the trap,
we had a sum over energies). With dummy sum variables ∆n = 1, as in
eqn (4.28), we find

〈Nsat〉 =
nmax∑

{nx,ny,nz}=−nmax

	={0,0,0}

∆3
n

e−βE(nx,ny,nz)

1 − e−βE(nx,ny,nz)
,

where E(nx, ny, nz) is defined through eqn (4.37).
Using a change of variables

√
2β(�/L)nx = x, and analogously for ny

and nz, we again find a term-by-term equivalent Riemann sum (with
∆x =

√
2β�/L∆n): If r2 = x2 + y2 + z2,Z ∞

−∞

dx dy dz f(r) = 4�
Z ∞

0
dr r2f(r).

Also,Z ∞

−∞

dµ exp
`−nµ2

´
=
r

�

n

(see eqn (3.12)) impliesZ ∞

−∞

du u2 exp
`−nu2

´
= − ∂

∂n

r
�

n
=

√
�

2n3/2
.

〈Nsat〉 =
L3

�
3(2β)3/2

∑
{xi,yi,zi}
	={0,0,0}

∆x∆y∆z
e−(x2

i +y2
i +z2

i)

1 − e−(x2
i
+y2

i
+z2

i
)
.

For
√

β/L → 0, ∆x, etc., become differentials, and we find

−−−→
β→0

L3

�
3(2β)3/2

∫
dV

e−(x2+y2+z2)

1 − e−(x2+y2+z2)
.

We again expand the denominator Υ/(1 − Υ) = Υ + Υ2 + · · · (as for

208 Bosons

eqn (4.29)) and find

〈Nsat〉 =
2L3

(2β)3/2
�
2

∞∑
n=1

∫ ∞

−∞
du u2e−nu2

=
L3

(2�β)3/2

∞∑
n=1

1
n3/2︸ ︷︷ ︸

ζ(3/2)=2.612...

=
L3

(2�β)3/2
· 2.612.

Again, the total number of particles equals the saturation number at the
critical temperature:

〈N〉 = 〈Nsat〉 ⇐⇒ T = Tc,

〈N〉 =
2.612L3

(2�βc)3/2
⇐⇒ Tc = 2�

(
1

2.612
〈N〉
L3

)2/3

,

so that
Tc(η) = 3.3149η2/3. (4.39)

Below Tc, we can again obtain the condensate fraction as a function
of temperature by noticing that particles are either saturated or in the
condensate:

〈N〉 = 〈Nsat〉 + 〈N0〉 ,

which is equivalent to (using η = 2.612/(2�βc)3/2)

〈N0〉
〈N〉 = 1 −

(
T

Tc

)3/2

. (4.40)

This curve is valid in the thermodynamic limit of a box at constant
density in the limit L → ∞. It was already compared to data for finite
cubes, and to the canonical ensemble (see Fig. 4.15).

Finally, we note that the critical temperature in eqn (4.39) can also
be written as √

2�βc = 1.38η−1/3.

In Chapter 3, we discussed in detail (but in other terms) that the thermal
extension of a quantum particle is given by the de Broglie wavelength
λdB =

√
2�βc (see eqn (3.75)). On the other hand, η−1/3 is the mean

distance between particles. Bose–Einstein condensation takes place when
the de Broglie wavelength is of the order of the inter-particle distance.

We can also write this same relation as

[λdB]3 η = ζ(3/2) = 2.612. (4.41)

It characterizes Bose–Einstein condensation in arbitrary three-dimensio-
nal geometries, if we replace the density η by maxx[η(x)]. In the trap,
Bose–Einstein condensation takes place when the density in the center
satisfies eqn (4.41).

4.2 The ideal Bose gas (density matrices) 209

4.2 The ideal Bose gas (density matrices)

In Section 4.1, we studied the ideal Bose gas within the energy-level
description. This approach does not extend well to the case of interac-
tions, either for theory or for computation, as it builds on the concept
of single-particle states, which ceases to be relevant for interacting par-
ticles. The most systematic approach for treating interactions employs
density matrices and path integrals, which easily incorporate interac-
tions. Interparticle potentials simply reweight the paths, as we saw for
distinguishable quantum hard spheres in Subsection 3.4.3. In the present
section, we treat the ideal Bose gas with density matrices. We concen-
trate first on thermodynamics and arrive at much better methods for
computing Z, 〈E〉, 〈N0〉, etc., in the canonical ensemble. We then turn
to the description of the condensate fraction and the superfluid density
within the path integral framework. These concepts were introduced by
Feynman in the 1950s but became quantitatively clear only much later.

4.2.1 Bosonic density matrix

In this subsection, we obtain the density matrix for ideal bosons as a
sum of single-particle nondiagonal distinguishable density matrices. We
derive this fundamental result only for two bosons and two single-particle
energy levels, but can perceive the general case (N bosons, arbitrary
number of states, and interactions) through this example.

In Chapter 3, the density matrix of a single-particle quantum system
was defined as

ρ(x, x′, β) =
∑

n

ψn(x)e−βEnψ∗
n(x′),

with orthonormal wave functions ψn (
∫

dx |ψn(x)|2 = 1 etc.). The par-
tition function is the trace of the density matrix:

Z =
∑

n

e−βEn = Tr ρ =
∫

dx ρ(x, x, β) .

We may move from one to many particles without changing the frame-
work simply by replacing single-particle states by N -particle states:{

many-particle
density matrix

}
: ρdist({x1, . . . , xN}, {x′

1, . . . , x
′
N}, β)

=
∑

orthonormal
N-particle
states ψn

ψn(x1, . . . , xN)e−βEnψn(x′
1, . . . , x

′
N). (4.42)

For ideal distinguishable particles, the many-body wave functions are
the products of the single-particle wave functions (n ≡ {σ1, . . . , σN}):

ψ{σ1,...,σN}(x1, . . . , xN) = ψσ1(x1)ψσ2 (x2) . . . ψσN
(xN).

210 Bosons

The total energy is the sum of single-particle energies:

En = Eσ1 + · · · + EσN
.

The last three equations give for the N -particle density matrix of dis-For two levels σi = 1, 2 and two parti-
cles, there are three states {σ1, σ2} with
σ1 ≤ σ2:

{σ1, σ2} = {1, 1},
{σ1, σ2} = {1, 2},
{σ1, σ2} = {2, 2}.

tinguishable ideal particles:

ρdist({x1, . . . , xN}, {x′
1, . . . , x

′
N}, β) =

N∏
k=1

ρ(xk, x′
k, β) ,

a product of single-particle density matrices. We see that the quantum
statistics of ideal (noninteracting) distinguishable quantum particles is
no more difficult than that of a single particle.

The bosonic density matrix is defined in analogy with eqn (4.42):

ρsym(x,x′, β) =
∑

symmetric, orthonormal
N-particle wave functions ψsym

n

ψsym
n (x)e−βEnψsym

n (x′).

Here, “symmetric” refers to the interchange of particles xk ↔ xl. Again,
all wave functions are normalized. The symmetrized wave functions have
characteristic, nontrivial normalization factors. For concreteness, we go
on with two noninteracting particles in two single-particle states, σ1 and
σ2. The wave functions belonging to this system are the following:

ψsym
{1,1}(x1, x2) = ψ1(x1)ψ1(x2),

ψsym
{1,2}(x1, x2) =

1√
2

[ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)] ,

ψsym
{2,2}(x1, x2) = ψ2(x1)ψ2(x2).

(4.43)

These three wave functions are symmetric with respect to particle ex-
change (for example, ψsym

12 (x1, x2) = ψsym
12 (x2, x1) = ψ1(x1)ψ1(x2)).

They are also orthonormal (
∫

dx1 dx2 ψsym
12 (x1, x2)2 = 1, etc.). Hence

the ideal-boson density matrix is given by

ρsym({x1, x2}, {x′
1, x

′
2}, β) = ψsym

11 (x1, x2)e−βE11ψ11(x′
1, x

′
2)

+ ψsym
12 (x1, x2)e−βE12ψ12(x′

1, x
′
2)

+ ψsym
22 (x1, x2)e−βE22ψ22(x′

1, x
′
2).

The various terms in this unwieldy object carry different prefactors, if
we write the density matrix in terms of the symmetric wave functions in
eqn (4.43). We shall, however, now express the symmetric density matrix
through the many-particle density matrix of distinguishable particles
without symmetry requirements, and see that the different normalization
factors disappear.

We rearrange ψsym
11 (x1, x2) as 1

2 [ψ1(x1)ψ1(x2) + ψ1(x2)ψ1(x1)], and
analogously for ψsym

22 . We also write out the part of the density matrix
involving ψ12 twice (with a prefactor 1

2). This gives the first two lines
of the following expression; the third belongs to ψsym

11 and the fourth to

4.2 The ideal Bose gas (density matrices) 211

ψsym
22 :

1
4 [ψ1(x1)ψ1(x2) + ψ1(x2)ψ1(x1)] [ψ1(x′

1)ψ1(x′
2) + ψ1(x′

2)ψ1(x′
1)] e−βE11

1
4 [ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)] [ψ1(x′

1)ψ2(x′
2) + ψ1(x′

2)ψ2(x′
1)] e−βE12

1
4 [ψ2(x1)ψ1(x2) + ψ2(x2)ψ1(x1)] [ψ2(x′

1)ψ1(x′
2) + ψ2(x′

2)ψ1(x′
1)] e−βE21

1
4 [ψ2(x1)ψ2(x2) + ψ2(x2)ψ2(x1)]︸ ︷︷ ︸

all permutations Q of {x1, x2}

[ψ2(x′
1)ψ2(x′

2) + ψ2(x′
2)ψ2(x′

1)]︸ ︷︷ ︸
all permutations P of {x′

1, x′
2}

e−βE22

The rows of this expression correspond to a double sum over single-
particle states. Each one has the same prefactor 1/4 (more generally, for
N particles, we would obtain (1/N !)2) and carries a double set (P and
Q) of permutations of {x1, x2}, and of {x′

1, x
′
2}. More generally, for N

particles and a sum over states σ, we have

ρsym({x1, . . . , xN}, {x′
1, . . . , x

′
N}, β) =

∑
{σ1,...,σN}

∑
Q

∑
P

(
1

N !

)2

× [ψσ1 (xQ1) . . . ψσN
(xQN

)]
[
ψσ1(x′

P1
) . . . ψσN

(x′
PN

)
]
e−β(Eσ1+···+EσN

).

This agrees with

ρsym({x1, . . . , xN}, {x′
1, . . . , x

′
N}, β)

=
1

N !

∑
P

ρ
(
x1, x

′
P1

, β
)
. . . ρ
(
xN , x′

PN
, β
)
, (4.44)

where we were able to eliminate one set of permutations. We thus reach
the bosonic density matrix in eqn (4.44) from the distinguishable density
matrix by summing over permutations and dividing by 1/N !, writing
{x′

P1
, . . . , x′

PN
} instead of {x′

1, . . . , x
′
N}. The expression obtained for N

ideal bosons—even though we strictly derived it only for two bosons in
two states—carries over to interacting systems, where we find

bosonic density matrix︷ ︸︸ ︷
ρsym({x1, . . . , xN}, {x′

1, . . . , x
′
N}, β) =

1
N !

∑
P

ρdist
({x1, . . . , xN}, {x′

P1
, . . . , x′

PN
}, β)︸ ︷︷ ︸

distinguishable-particle density matrix

. (4.45)

In conclusion, in this subsection we have studied the density matrix
of an N -particle system. For distinguishable particles, we can easily
generalize the earlier definition by simply replacing normalized single-
particle states with normalized N -particle states. For bosonic systems,
these states have to be symmetrized. In the example of two particles in
two states, the different normalization factors of the wave functions in
eqn (4.43) gave rise to a simple final result, showing that the bosonic
density matrix is the average of the distinguishable-particle density ma-
trix with permuted indices. This result is generally valid for N particles,
with or without interactions. In the latter case, the density matrix of dis-
tinguishable particles becomes trivial. In contrast, in the bosonic density

212 Bosons

matrix, the permutations connect the particles (make them interact), as
we shall study in more detail in Subsection 4.2.3.

4.2.2 Recursive counting of permutations

[1] (1234
1234) (1)(2)(3)(4)

[2] (1243
1234) (1)(2)(34)

[3] (
1324
1234) (1)(23)(4)

[4] (1342
1234) (1)(234)

[5] (1423
1234) (1)(243)

[6] (1432
1234) (1)(24)(3)

[7] (2134
1234) (12)(3)(4)

[8] (
2143
1234) (12)(34)

[9] (2314
1234) (123)(4)

[10] (2341
1234) (1234)

[11] (2413
1234) (1243)

[12] (2431
1234) (124)(3)

[13] (3124
1234) (132)(4)

[14] (3142
1234) (1342)

[15] (3214
1234) (13)(2)(4)

[16] (3241
1234) (134)(2)

[17] (3412
1234) (13)(24)

[18] (3421
1234) (1324)

[19] (4123
1234) (1432)

[20] (4132
1234) (142)(3)

[21] (4213
1234) (143)(2)

[22] (4231
1234) (14)(2)(3)

[23] (4312
1234) (1423)

[24] (4321
1234) (14)(23)

Fig. 4.16 All 24 permutations of four
elements.

Permutations play a pivotal role in the path-integral description of quan-
tum systems, and we shall soon need to count permutations with weights,
that is, compute general “partition functions” of permutations of N par-
ticles

YN =
∑

permutations P

weight(P).

If the weight of each permutation is 1, then YN = N !, the number of
permutations of N elements. For concreteness, we shall consider the
permutations of four elements (see Fig. 4.16). Anticipating the later
application, in Subsection 4.2.3, we allow arbitrary weights depending
on the length of the cycles. For coherence with the later application, we
denote the weight of a cycle of length k by zk, such that a permutation
with one cycle of length 3 and another of length 1 has weight z3z1,
whereas a permutation with four cycles of length 1 has weight z4

1 , etc.
We now derive a crucial recursion formula for YN . In any permutation

of N elements, the last element (in our example the element N = 4)
is in what may be called the last-element cycle. (In permutation [5] in
Fig. 4.16, the last-element cycle, of length 3, contains {2, 3, 4}. In per-
mutation [23], the last-element cycle, of length 4, contains all elements).
Generally, this last-element cycle involves k elements {n1, . . . , nk−1, N}.
Moreover, N − k elements do not belong to the last-element cycle. The
partition function of these elements is YN−k, because we know nothing
about them, and they are unrestricted.

YN is determined by the number of choices for k and the cycle weight
zk, the number of different sets {n1, . . . , nk−1} given k, the number of
different cycles given the set {n1, . . . , nk−1, N}, and the partition func-
tion YM of the elements not participating in the last-element cycle:

YN =
N∑

k=1

zk

⎧⎨⎩
number of
choices for

{n1, . . . , nk−1}

⎫⎬⎭
⎧⎨⎩

number of
cycles with
{n1, . . . , nk}

⎫⎬⎭YN−k.

From Fig. 4.16, it follows that there are (k−1)! cycles of length k with the
same k elements. Likewise, the number of choices of different elements
for {n1, . . . , nk−1} is

(
N−1
k−1

)
. We find

YN =
N∑

k=1

zk

(
N − 1
k − 1

)
(k − 1)! YN−k

=
N∑

k=1

1
N

zk
N !

(N − k)!
YN−k (with Y0 = 1). (4.46)

Equation (4.46) describes a recursion because it allows us to compute
YN from {Y0, . . . , YN−1}.

4.2 The ideal Bose gas (density matrices) 213

We now use the recursion formula in eqn (4.46) to count permutations
of N elements for various choices of cycle weights {z1, . . . , zN}. Let us
start with the simplest case, {z1, . . . , zN} = {1, . . . , 1}, where each cycle
length has the same weight, and every permutation has unit weight. We
expect to find that YN = N !, and this is indeed what results from the
recursion relation, as we may prove by induction. It follows, for this case
of equal cycle weights, that the weight of all permutations with a last-
element cycle of length k is the same for all k (as is zkYN−k/(N − k)!
in eqn (4.46)). This is a nontrivial theorem. To illustrate it, let us count
last-element cycles in Fig. 4.16:

{
in Fig. 4.16,
element 4 is

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
in 6 cycles of length 4
in 6 cycles of length 3
in 6 cycles of length 2
in 6 cycles of length 1

.

The element 4 is in no way special, and this implies that any element
among {1, . . . , N} is equally likely to be in a cycle of length {1, . . . , N}.
As a consequence, in a random permutation (for example generated with
Alg. 1.11 (ran-perm)), the probability of having a cycle of length k is
∝ 1/k. We need more cycles of shorter length to come up with the same
probability. Concretely, we find

{
in Fig. 4.16,

there are

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
6 cycles of length 4
8 cycles of length 3
12 cycles of length 2
24 cycles of length 1

.

The number of cycles of length k is indeed inversely proportional to k.
As a second application of the recursion relation, let us count permuta-
tions containing only cycles of length 1 and 2. Now {z1, z2, z3, . . . , zN} =
{1, 1, 0, . . . , 0} (every permutation has the same weight, under the con-
dition that it contains no cycles of length 3 or longer). We find Y0 = 1
and Y1 = 1, and from eqn (4.46) the recursion relation

YN = YN−1 + (N − 1) YN−2,

so that {Y0, Y1, Y2, Y3, Y4, . . . } = {1, 1, 2, 4, 10, . . .}. Indeed, for N = 4,
we find 10 such permutations in Fig. 4.16 ([1], [2], [3], [6], [7], [8], [15],
[17], [22], and [24]).

In conclusion, we have described in this subsection a recursion formula
for counting permutations that lets us handle arbitrary cycle weights.
We shall apply it, in Subsection 4.2.3, to ideal bosons.

4.2.3 Canonical partition function of ideal bosons

In Subsection 4.2.1, we expressed the partition function of a bosonic
system as a sum over diagonal and nondiagonal density matrices for

214 Bosons

distinguishable particles:

ZN =
1

N !

∑
P

ZP (4.47)

=
1

N !

∑
P

∫
dNxρdist

({x1, . . . , xN}, {xP (1), . . . , xP (N)}, β
)
. (4.48)

For ideal particles, the distinguishable-particle density matrix separates
into a product of single-particle density matrices, but the presence of
permutations implies that these single-particle density matrices are not
necessarily diagonal. For concreteness, we consider, for N = 4 particles,

τ = β

τ = 0

4321

 4 3 2 1

Fig. 4.17 The permutation
`

1 4 2 3
1 2 3 4

´
represented as a path.

the permutation P = (1 4 2 3
1 2 3 4), which in cycle representation is written

as P = (1)(243) (see Fig. 4.17). This permutation consists of one cycle of
length 1 and one cycle of length 3. The permutation-dependent partition
function Z(1)(243) is

Z(1)(243) =
∫

dx1 ρ(x1, x1, β)
∫

dx2

×
[∫

dx3

∫
dx4 ρ(x2, x4, β) ρ(x4, x3, β) ρ(x3, x2, β)

]
︸ ︷︷ ︸

ρ(x2,x2,3β)

. (4.49)

The last line of eqn (4.49) contains a double convolution and can be
written as a diagonal single-particle density matrix at temperature T =
1/(3β). This is an elementary application of the matrix squaring de-
scribed in Chapter 3. After performing the last two remaining integra-
tions, over x1 and x2, we find that the permutation-dependent partition
function Z(1)(243) is the product of single-particle partition functions,
one at temperature 1/β and the other at 1/(3β):

Z(1)(243) = z(β)z(3β). (4.50)

Here, and in the remainder of the present chapter, we denote the single-
particle partition functions with the symbol z(β):{

single-particle
partition function

}
: z(β) =

∫
dx ρ(x, x, β) =

∑
σ

e−βEσ . (4.51)

Equation (4.50) carries the essential message that—for ideal bosons—
the N -particle partition function Z(β) can be expressed as a sum of
products of single-particle partition functions. However, this sum of N !
terms is nontrivial, unlike the one for the gas of ideal distinguishable
particles. Only for small N can we think of writing out the N ! permu-
tations and determining the partition function via the explicit sum in
eqn (4.47). It is better to adapt the recursion formula of Subsection 4.2.2
to the ideal-boson partition functions. Now, the cycle weights are given
by the single-particle density matrices at temperature kβ. Taking into
account that the partition functions carry a factor 1/N ! (see eqn (4.48)),
we find

ZN =
1
N

N∑
k=1

zkZN−k (with Z0 = 1). (4.52)

4.2 The ideal Bose gas (density matrices) 215

This recursion relation (Borrmann and Franke 1993) determines the par-
tition function ZN of an ideal boson system with N particles via the
single-particle partition functions zk at temperatures {1/β, . . . , 1/(Nβ)}
and the partition functions {Z0, . . . , ZN−1} of systems with fewer par-
ticles. For illustration, we shall compute the partition function of the
five-boson bounded trap model at T = 1/2 (β = 2) from the single-
particle partition functions zk obtained from Table 4.1:

E N (E)

0 1
1 3
2 6
3 10
4 15

=⇒ zk(β) = z(kβ) = 1 + 3e−kβ + 6e−2kβ

+10e−3kβ + 15e−4kβ.
(4.53)

The single-particle partition functions {z1(β), . . . , z5(β)} (see Table 4.7,
for β = 2), entered into the recursion relation, give

Table 4.7 Single-particle partition
functions zk(β) = z(kβ) at tempera-
ture T = 1/β = 1

2
, in the five-boson

bounded trap model (from eqn (4.53))

k zk

1 1.545719
2 1.057023
3 1.007473
4 1.001007
5 1.000136

Z0 = . . . = 1,

Z1 =(z1Z0)/1 = . . . = 1.5457,

Z2 =(z1Z1 + z2Z0)/2 = (1.5457× 1.5457 + · · ·)/2 = 1.7231,

Z3 =(z1Z2 + · · ·)/3 = (1.5457× 1.7231 + · · ·)/3 = 1.7683,

Z4 =(z1Z3 + · · ·)/4 = (1.5457× 1.7683 + · · ·)/4 = 1.7782,

Z5 =(z1Z4 + · · ·)/5 = (1.5457× 1.7782 + · · ·)/5 = 1.7802. (4.54)

In a few arithmetic operations, we thus obtain the partition function of
the five-boson bounded trap model at β = 2 (Z5 = Zbtm = 1.7802), that
is, the same value that was earlier obtained through a laborious sum over
575 757 five-particle states (see Table 4.3 and Alg. 4.3 (naive-bosons)).

We can carry on with the recursion to obtain {Z6, Z7, . . . }, and can
also take to infinity the cutoff in the energy. There is no more combi-
natorial explosion. The partition function zk(β) in the harmonic trap,
without any cutoff (Emax = ∞), is

zk(β) =

(∞∑
Ex=0

e−kβEx

)⎛⎝ ∞∑
Ey=0

e−kβEy

⎞⎠(∞∑
Ez=0

e−kβEz

)

=
(

1
1 − e−kβ

)3

(4.55)

(we note that the ground-state energy is now E0 = 0). Naturally, the
expansion of the final expression in eqn (4.55) starts with the terms in
eqn (4.53). This formula goes way beyond the naive summation repre-
sented in Table 4.7 (compare with Alg. 4.3 (naive-bosons)). Together
with the recursion formula (4.52), it gives a general method for com-
puting the partition function of canonical ideal bosons (see Alg. 4.6
(canonic-recursion)).

216 Bosons

procedure canonic-recursion

input {z1, . . . , zN} (zk ≡ zk(β), from eqn (4.55))
Z0 ← 1
for M = 1, . . . , N do{

ZM ← (zMZ0 + zM−1Z1 + · · · + z1ZM−1)/M
output ZN

——

Algorithm 4.6 canonic-recursion. Obtaining the partition function
for N ideal bosons through the recursion in eqn (4.52) (see also Alg. 4.7).

A recursion formula analogous to eqn (4.18) allows us to compute the
internal energy through its own recursion formula, and avoid numerical
differentiation. For an N -particle system, we start from the definition of
the internal energy and differentiate the recursion relation:

〈E〉 = − 1
ZN

∂ZN

∂β
= − 1

NZN

N∑
k=1

∂

∂β
(zkZN−k)

= − 1
NZN

N∑
k=1

(
∂zk

∂β
ZN−k + zk

∂ZN−k

∂β

)
.

This equation contains an explicit formula for the internal energy, but
it also constitutes a recursion relation for the derivative of the partition
function. To determine ∂ZN/∂β, one only needs to know the partition
functions {Z0, . . . , ZN} and the derivatives for smaller particle numbers.
(The recursion starts with ∂Z0/∂β = 0, because Z0 is independent of the
temperature.) We need to know only the single-particle density matrices
zk and their derivatives z′k. For the harmonic trap, with a single-particle
partition function given by eqn (4.55), we obtain

∂

∂β
zk =

∂

∂β

(
1

1 − e−kβ

)3

= −3zk
ke−kβ

1 − e−kβ
.

We pause for a moment to gain a better understanding of the re-
cursion relation, and remember that each of its components relates to
last-element cycles:

ZN ∝ zNZ0︸ ︷︷ ︸
particle N
in cycle of
length N

+ · · · + zkZN−k︸ ︷︷ ︸
particle N
in cycle of
length k

+ · · · + z1ZN−1︸ ︷︷ ︸
particle N
in cycle of
length 1

. (4.56)

It follows that the cycle probabilities satisfy{
probability of having particle

N in cycle of length k

}
: πk =

1
N

zkZN−k

ZN
. (4.57)

The Nth particle is in no way special, and the above expression gives
the probability for any particle to be in a cycle of length k. (As a

4.2 The ideal Bose gas (density matrices) 217

consequence of eqn (4.57), the mean number of particles in cycles of
length k is zkZN−k/ZN , and the mean number of cycles of length k is
zkZN−k/(kZN).)

We can compute the cycle probabilities {π1, . . . , πN} as a by-product
of running Alg. 4.6 (canonic-recursion). For concreteness, we consider
40 particles in a harmonic trap (see Fig. 4.18). At high temperatures,
only short cycles appear with reasonable probability, whereas at small
temperatures also long cycles are probable. In the zero-temperature
limit, the probability of a particle to be in a cycle of length k becomes
independent of k. We shall arrive at a better understanding of these
cycle probabilities in Subsection 4.2.4.

0

1

2

3

4

10 20 30 40

cy
cl

e
p
ro

b
ab

il
it

y
 π

k

cycle length k

T/N1/3 = 0.1
0.3
0.5
0.7
0.9

Fig. 4.18 Cycle probabilities {π1, . . . , π40} for 40 ideal bosons in the
harmonic trap (from modified Alg. 4.6 (canonic-recursion)).

4.2.4 Cycle-length distribution, condensate fraction

Using path integrals, we have so far computed partition functions and
internal energies, finding a much more powerful algorithm than those
studied earlier. It remains to be seen how Bose–Einstein condensation
enters the path-integral picture. This is what we are concerned with in
the present subsection. We shall see that the appearance of long cycles
in the distribution of cycle lengths signals condensation into the ground
state. Moreover, we shall find an explicit formula linking the distribution
of cycle lengths to the distribution of condensed particles.

ZN − k
k

ground state

Fig. 4.19 Restricted partition function
Yk,0 with at least k = 3 particles in the
ground state.

To derive the formula, we consider the restricted N -particle partition
function Yk,0, where at least k particles are in the ground state. From
Fig. 4.19, this partition function is{

partition function with
≥ k bosons in ground state

}
= Yk,0 = e−βkE0ZN−k.

Analogously, we may write, for k + 1 instead of k,{
partition function with

≥ k + 1 bosons in ground state

}
= Yk+1,0 = e−β(k+1)E0ZN−k−1.

218 Bosons

Taking the difference between these two expressions, and paying atten-
tion to the special case k = N , we find{

partition function with
k bosons in ground state

}
=

{
Yk,0 − Yk+1,0 if k < N

Yk,0 if k = N
. (4.58)

Our choice of ground-state energy (E0 = 0) implies Yk,0 = ZN−k, and
we may write the probability of having N0 bosons in the ground state
as

π(N0) =
1

ZN

{
ZN−N0 − ZN−(N0+1) if N0 < N

1 if N0 = N
. (4.59)

This probability was earlier evaluated with more effort (see Fig. 4.14).
The condensate fraction, the mean value of N0, is given by

〈N0〉 =
N∑
0

N0π(N0) =
1

ZN

{
N−1∑
N0=1

N0 ·
[
ZN−N0 − ZN−(N0+1)

]
+ NZ0

}
.

This is a telescopic sum, where similar terms are added and subtracted.
It can be written more simply as

〈N0〉 =
ZN−1 + ZN−2 + · · · + Z0

ZN
(with E0 = 0). (4.60)

The calculations of the condensate fraction and the internal energy are
incorporated into Alg. 4.7 (canonic-recursion(patch)), which pro-
vides us with the same quantities as the program which used the in-
tegral representation of the Kronecker δ-function. It is obviously more
powerful, and basically allows us to deal with as many particles as we
like.

procedure canonic-recursion(patch)

input {z1, . . . , zN}, {z′1, . . . , z′N} (from eqn (4.51))
Z0 ← 1
Z ′

0 ← 0
for M = 1, . . . , N do{

ZM ← (zMZ0 + zM−1Z1 + · · · + z1ZM−1)/M
Z ′

M ← [(z′MZ0 + zMZ ′
0) + · · · + (z′1ZM−1 + z1Z

′
M−1

)]
/M

〈E〉 ← −Z ′
N/ZN

〈N0〉 ← (Z0 + · · · + ZN−1)/ZN (with E0 = 0)
output {Z0, . . . , ZN}, 〈E〉 , 〈N0〉
——

Algorithm 4.7 canonic-recursion(patch). Calculation of the parti-
tion function, the energy, and the condensate fraction for N ideal bosons.

ZN − k

k

σ

Fig. 4.20 Restricted partition function
Yk,σ with at least k = 3 particles in
state σ (for N = 20 particles).

We continue the analysis of restricted partition functions, by simply
generalizing the concept of the restricted partition functions to a state
σ, rather than only the ground state (see Fig. 4.20). From eqn (4.58),
we arrive at{

partition function with
≥ k bosons in state σ

}
= Yk,σ = e−βkEσZN−k.

4.2 The ideal Bose gas (density matrices) 219

This equation can be summed over all states, to arrive at a crucial ex-
pression,

∑
σ

⎧⎨⎩
partition function
with ≥ k bosons

in state σ

⎫⎬⎭ =
∑

σ

e−βkEσ

︸ ︷︷ ︸
zk, see eqn (4.51)

ZN−k ∝
⎧⎨⎩

cycle
weight

πk

⎫⎬⎭,

because it relates the energy-level description (on the left) with the
description in terms of density matrices and cycle-length distributions
(on the right). Indeed, the sum over the exponential factors gives the
partition function of the single-particle system at temperature 1/(kβ),
zk = z(kβ), and the term zkZN−k is proportional to the cycle weight
πk. This leads to a relation between occupation probabilities of states
and cycle weights:

∑
σ

{
partition function with

k bosons in state σ

}
∝
{

cycle weight
πk

}
−
{

cycle weight
πk+1

}
. (4.61)

To interpret this equation, we note that the probability of having k �
1 in any state other than the ground state is essentially zero. This was
discussed in the context of the saturation densities, in Subsection 4.1.3. It
follows that the sum in eqn (4.61) is dominated by the partition function
with k particles in the ground state, and this relates the probability of
having k particles in the ground state (the distribution whose mean gives
the condensate fraction) to the integer derivative of the cycle-length
distribution. (The difference in eqn (4.61) constitutes a negative integer
derivative: −∆f(k)/∆k = f(k)− f(k + 1).) We arrive at the conclusion
that the condensate distribution is proportional to the integer derivative
of the cycle length distribution (Holzmann and Krauth 1999).

For concreteness, we continue with a system of 1000 trapped bosons
at T/N1/3 = 0.5 (see Fig. 4.21). We can compute the cycle length dis-
tribution, from eqn (4.56), and the distribution function π(N0) for the
condensate (see eqn (4.59)). We are thus able to compute the conden-
sate fraction from exact or sampled distributions of cycle lengths, as in
Fig. 4.18.

4.2.5 Direct-sampling algorithm for ideal bosons

τ = β

τ = 0
x5 x4x3x2 x1

x5 x4x3x2 x1

Fig. 4.22 Boson configuration with po-
sitions {x1, . . . , x5} and permutation
P = (1, 2)(3, 5, 4).

In the previous subsections, we have computed partition functions for
ideal bosons by appropriately summing over all permutations and inte-
grating over all particle positions. We now consider sampling, the twin
brother of integration, in the case of the ideal Bose gas. Specifically,
we discuss a direct-sampling algorithm for ideal bosons, which lies at
the heart of some path-integral Monte Carlo algorithms for interact-
ing bosons in the same way as the children’s algorithm performed in a
square on the beach underlies the Markov-chain Monte Carlo algorithm

220 Bosons

10007811

cycle length k

cycle weight πk
derivative πk − πk+1

Fig. 4.21 Cycle weights πk, and derivative πk − πk+1, for 1000 trapped

bosons at T/N1/3 = 0.5 (from Alg. 4.6 (canonic-recursion)).

for hard disks. A boson configuration consists of a permutation and a set
of positions (see Fig. 4.22), which we sample in a two-step procedure.

We saw in Subsection 4.2.3 that the partition function of the canonical
ideal Bose gas can be written as a sum over permutation-dependent
partition functions. To pick a permutation, we might think of tower
sampling in the N ! sectors. For large N , this strategy is not an option.
However, we know the following from eqn (4.52):

ZN =
1
N

(z1ZN−1︸ ︷︷ ︸
particle N
in cycle of
length 1

+ z2ZN−2︸ ︷︷ ︸
particle N
in cycle of
length 2

+ · · · + zN−1Z1︸ ︷︷ ︸
particle N
in cycle of

length N − 1

+ zNZ0︸ ︷︷ ︸
particle N
in cycle of
length N

).

This equation allows us to sample the length k of the last-element cycle
from only N choices, without knowing anything about the permutations
of the N − k particles in other cycles. These probabilities are already
generated in the final step of computing ZN (see, for the five-boson
bounded trap model, the last line of eqn (4.54)).

After sampling the length of the last-element cycle, we eliminate this
cycle from the permutation P , and then continue to sample another cycle
in the remaining permutation with N − k particles, etc. This is iterated
until we run out of particles (see Alg. 4.8 (direct-cycles)). Because
particles are indistinguishable, we need only remember the lengths of
cycles generated, that is, the histogram of cycle lengths {m1, . . . , mN}
in one permutation of N particles (mk gives the number of cycles of
length k (see Table 4.8)).

Table 4.8 Typical output of Alg. 4.8
(direct-cycles) for N = 1000 and
T/N1/3 = 0.5

k mk

1 147
2 18
3 4
4 2
5 1
8 1

25 1
73 1

228 1
458 1

After sampling the permutation, we must determine the coordinates
{x1, . . . ,xN}. Particles {l+1, l+2, . . . , l+k} on each permutation cycle of
length l form a closed path and their coordinates {xl+1(0), . . . ,xl+k(0)}
can be sampled using the Lévy construction of Subsection 3.3.2, at
inverse temperature kβ and with a discretization step ∆τ = β (see
Fig. 4.24 and Alg. 4.9 (direct-harmonic-bosons)).

The complete program for simulating ideal Bose–Einstein condensates

4.2 The ideal Bose gas (density matrices) 221

procedure direct-cycles

input {z1, . . . , zN}, {Z0, . . . , ZN−1} (from Alg. 4.6 (canonic-recursion))
{m1, . . . , mN} ← {0, . . . , 0}
M ← N
while (M > 0) do⎧⎨⎩

k ← tower-sample({z1ZM−1, . . . , zkZM−k, . . . , zMZ0})
M ← M − k
mk ← mk + 1

output {m1, . . . , mN} (mk : number of cycles of length k.)
——

Algorithm 4.8 direct-cycles. Sampling a cycle-length distribution for
N ideal bosons, using Alg. 1.14 (tower-sample).

procedure direct-harmonic-bosons

input {z1, . . . , zN}, {Z0, . . . , ZN} (for harmonic trap)
{m1, . . . , mN} ← direct-cycles({z1, . . . , zN}, {Z0, . . . , ZN−1})
l ← 0
for all mk
= 0 do⎧⎪⎪⎨⎪⎪⎩

for i = 1, . . . , mk do⎧⎨⎩
Υ ← gauss (...)
{xl+1, . . . , xl+k} ← levy-harmonic-path(Υ, Υ, kβ, k)
l ← l + k

output {x1, . . . , xN}
——

Algorithm 4.9 direct-harmonic-bosons. Direct-sampling algorithm
for ideal bosons in the harmonic trap. Only x-coordinates are shown.

with tens of thousands of particles in the harmonic trap takes no more
than a few dozen lines of computer code. It allows us to represent the
spatial distribution of particles (see Fig. 4.23 for a projection in two
dimensions). The very wide thermal cloud at temperatures T > Tc

suddenly shrinks below Tc because most particles populate the single-
particle ground state or, in our path-integral language, because most
particles are on a few long cycles. The power of the path-integral ap-
proach resides in the fact that the inclusion of interactions into the rudi-
mentary Alg. 4.9 (direct-harmonic-bosons) is straightforward, posing
only a few practical problems (most of them treated in Subsection 3.4.2).
Conceptual problem are not met.

4.2.6 Homogeneous Bose gas, winding numbers 0

particle l + 1

β l + 2

l + 3

l + k

l + 1

2β

kβ

Fig. 4.24 Cycle path in Alg. 4.9
(direct-harmonic-bosons).

The single-particle partition function zk(β) in a three-dimensional cube
is the product of the one-dimensional partition functions of a particle
on a line with periodic boundary conditions. It can be computed from
the free density matrix or as a sum over energy levels (see eqn (3.19)).

222 Bosons

−6

−6

6

6

T/N1/3 = 0.9 T/N1/3 = 0.7 T/N1/3 = 0.5

Fig. 4.23 Two-dimensional snapshots of 1000 ideal bosons in a three-
dimensional harmonic trap (from Alg. 4.9 (direct-harmonic-bosons)).

The latter approach gives

zcube(kβ) =

[∞∑
n=−∞

exp (−kβEn)

]3
. (4.62)

We can differentiate with respect to β to get the expressions which allow
us to determine the internal energy:

∂

∂β
zcube(kβ) = −3k

[∑
n

exp (−kβEn)

]2∑
n

En exp (−kβEn) . (4.63)

(In the above two formulas, we use En = 2n2
�
2/L2, see Table 4.9.)

Table 4.9 Single-particle partition
functions zk(β), and their derivative, in
a cubic box with L = 2, at temperature
T = 2 (from eqns (4.62) and (4.63))

k zk(β) ∂
∂β

zk(β)

1 1.6004 -3.4440
2 1.0438 -0.4382
3 1.0037 -0.0543
4 1.0003 -0.0061
5 1.0000 -0.0006
6 1.0000 -0.0001
7 1.0000 0.0000
8 1.0000 0.0000

1.6

1.8

43 Tc

sp
ec

if
ic

 h
ea

t
c V

temperature T

N = 2000
1000
500
250

Fig. 4.25 Specific heat computed for the density = 1, in the canonic
ensemble (from Alg. 4.6 (canonic-recursion), adapted for ideal bosons)

The single-particle partition functions zcube(kβ) and their derivatives
can be entered into Alg. 4.6 (canonic-recursion). The permutations
are sampled as for the harmonic trap. Positions are sampled in a sim-
ilar fashion (see Alg. 4.10 (direct-period-bosons)). It uses Alg. 3.7

4.2 The ideal Bose gas (density matrices) 223

(levy-periodic-path) which itself contains as a crucial ingredient the
sampling of winding numbers. As a consequence, the paths generated
can thus wind around the box, in any of the three spatial dimensions
(see Fig. 4.26 for a two-dimensional representation).

procedure direct-period-bosons

input {z1, . . . , zN}, {Z0, . . . , ZN} (cube, periodic boundary conditions)
{m1, . . . , mN} ← direct-cycles({z1, . . . , zN}, {Z0, . . . , ZN−1})
l ← 0
for all mk
= 0 do⎧⎪⎪⎨⎪⎪⎩

for i = 1, . . . , mk do⎧⎨⎩
Υ ← ran (0, L)
{wx, {xl+1, . . . , xl+k}} ← levy-period-path(Υ, Υ, kβ, k)
l ← l + k

output {x1, . . . , xN}
——

Algorithm 4.10 direct-period-bosons. Sampling ideal bosons in a
periodic cube. Only x-coordinates are shown.

T = 4 T = 3 T = 2

Fig. 4.26 Projected snapshots of 1000 ideal bosons in a cubic box with
periodic boundary conditions (from Alg. 4.10 (direct-period-bosons)).

At high temperature, the mean squared winding number is zero be-
cause the lengths of cycles are very small. At lower temperatures, long
cycles appear. Paths in long cycles can exit the periodic simulation box
on one side and reenter through another side. These paths contribute
to the intricate response of a quantum system to an outside motion.
For each configuration, the winding number w = {wx, wy, wz} is the
sum of the winding numbers of the individual cycles. Using the results
of Subsection 3.1.4, we can use the mean squared winding number to
determine the fraction of the system which remains stationary under a
small rotation, in other words the superfluid fraction:

ρs/ρ =

〈
w2
〉
L2

3βN
=

〈
w2

x

〉
L2

βN
.

224 Bosons

4.2.7 Interacting bosons

The structure of general path-integral Monte Carlo algorithms for inter-
acting bosons is virtually unchanged with respect to the two sampling
algorithms for ideal bosons, Algs 4.9 (direct-harmonic-bosons) and
4.10 (direct-period-bosons). Their detailed presentation and the dis-
cussion of results that can be obtained with them are beyond the scope
of this book. An interacting system has the same path configurations as
the noninteracting system, but the configurations must be reweighted.
This can be done using the perfect pair actions discussed in Chapter 3
(see eqn (3.59)). Markov-chain sampling methods must be employed for
changing both the permutation state and the spatial configurations. The
resulting approach has been useful in precision simulations for liquid he-
lium (see Pollock and Ceperley (1987), and Ceperley (1998)), and many
other systems in condensed matter physics. It can also be used for sim-
ulations of weakly interacting bosons in atomic physics (Krauth, 1996).
Cluster algorithms, which are discussed in several other chapter of this
book, can also be adapted to path-integral simulations of bosons on a
lattice (see Prokof’ev, Svistunov, and Tupitsyn (1998)). This is also be-
yond the present scope of this book, but a discussion of these methods
will certainly be included in subsequent editions.

Exercises 225

Exercises

(Section 4.1)

(4.1) Generalize eqn (4.1), the single-particle density
of states N (E) in the homogeneous trap, to the
case of an inhomogeneous trap with frequencies
{ωx, ωy , ωz} = {5, 1, 1}. Test your result with a
modified version of Alg. 4.1 (naive-degeneracy).
Use the Kronecker δ-function to generalize the in-
tegral representation of N (E) to arbitrary inte-
ger values of {ωx, ωy, ωz}. For frequencies of your
choice, evaluate this integral as a discrete Riemann
sum (generalizing eqn (4.4)). Also determine the
discrete Riemann sum in the complex plane, gener-
alizing eqn (4.5), then, determine an analytic for-
mula for the density of states, valid in the limit of
large energies.
NB: Address the isotropic trap first and recover Ta-
ble 4.1. The complex Riemann sum might incorpo-
rate the following fragment, with complex variables
{z, zold, ∆z},

. . .
zold ← {1, 0}
for φ = ∆φ, 2∆φ, . . . , 2� do8>><

>>:
z ← eiφ

∆z ← z − zold

. . .
zold ← z

. . .

(4.2) Implement Alg. 4.3 (naive-bosons). Compare its
output with the data in Table 4.3. Test the re-
sults for Z(β) against a numerical integration of
eqns (4.17) and (4.16). Are the two calculations of
the partition function equivalent (in the limit of in-
tegration step size ∆x → 0) or should you expect
small differences? Include the calculation of the dis-
tribution function π(N0) in the five-boson bounded
trap model. Implement Alg. 4.4 (canonic-bosons).
Test it for the case of the five-boson bounded trap
model. Finally, choose larger values for Emax and
increase the number of particles.

(4.3) Calculate the ideal-boson chemical potential µ vs.
mean particle number in the grand canonical en-
semble (Alg. 4.5 (grandcan-bosons)), for the har-
monic trap. Plot the condensate fraction against
the rescaled temperature, as in Fig. 4.7. Discuss
why the macroscopic occupation of the ground

state in the T → 0 limit does not constitute Bose–
Einstein condensation and that a more subtle limit
is involved. Compute saturation numbers for the
excited states.

(4.4) Familiarize yourself with the calculations of the
critical temperature for Bose–Einstein condensa-
tion, and of the saturation densities, for the
isotropic harmonic trap. Then, compute the critical
temperature for an anisotropic harmonic trap with
frequencies {ωx, ωy, ωz}. In that trap, the energy
Ex can take on values {0, ωx, 2ωx, 3ωx . . . }, etc.

(4.5) Compute the specific heat capacity in the grand
canonical ensemble for N ideal bosons at density
ρ = 1 in a box with periodic boundary condi-
tions. First determine the chemical potential µ for a
given mean number 〈N〉 of bosons (adapt Alg. 4.5
(grandcan-bosons) to the case of a cubic box—
you may obtain the density of states from Alg. 4.2
(naive-degeneracy-cube)). Then compute the en-
ergy and the specific heat capacity. Compare your
data, at finite N , with the results valid in the ther-
modynamic limit.

(4.6) Implement the first thirty wave functions
{ψh.o.

0 , . . . , ψh.o.
29 } of the harmonic oscillator using

Alg. 3.1 (harmonic-wavefunction) (see Subsec-
tion 3.1.1). Use these wave functions to naively
calculate the density of N bosons in the harmonic
trap (see eqn (4.32)). (Either implement Alg. 4.5
(grandcan-bosons) for determining the chemical
potential as a function of mean particle number,
or use data from Table 4.5.) Is it possible to speak
of a saturation density ηsat(x, y, z) of all the parti-
cles in excited states (analogous to the saturation
numbers discussed in Subsection 4.1.3)?

(4.7) Redo the calculation of the critical temperatures
Tc for Bose–Einstein condensation of the ideal
Bose gas, in the harmonic trap and in the cube
with periodic boundary conditions, but use physical
units (containing particle masses, the Boltzmann
and Planck constants, and the harmonic oscilla-
tor strengths ω), rather than natural units (where
� = m = ω = 1).

What is the Bose–Einstein condensation temper-
ature, in kelvin, of a gas of N = 1×106 Sodium
atoms (atomic weight 23) in a harmonic trap of
ω � 1991 Hz? Likewise, compute the critical tem-

226 Exercises

perature of a gas of ideal bosons of the same mass as
4He (atomic weight 4), and the same molar volume
(59.3 cm3/mole at atmospheric pressure). Is this
transition temperature close to the critical temper-
ature for the normal–superfluid transition in liquid
4He (2.17 kelvin)?

(Section 4.2)

(4.8) (See also Exerc. 1.9). Implement Alg. 1.11
(ran-perm), as discussed in Subsection 1.2.2. Use
it to generate 1×106 random permutations with
N = 1000 elements. Write any of them in cycle-
representation, using a simple subroutine. Generate
histograms for the cycle length distribution, and
show that the probability of finding a cycle is in-
versely proportional to its length. Likewise, gener-
ate a histogram of the length of the cycle containing
an arbitrary element say k = 1000. Convince your-
self that it is flat (see Subsection 4.2.2). Next, use
the recursion relation of eqn (4.46) to determine
the number of permutations of 1000 elements con-
taining only cycles of length l ≤ 5 (construct an
algorithm from eqn (4.46), test it with smaller per-
mutations). Write a program to sample these per-
mutations (again test this program for smaller N).
In addition, compute the number of permutations
of 1000 elements with cycles only of length 5. De-
termine the number of permutations of N elements
with a cycle of length l = 1000.

(4.9) Enumerate the 120 permutations of five elements.
Write each of them in cycle representation, using
a simple subroutine, and generate the cycle length
distribution {m1, . . . , m5}. Use this information to
compute nonrecursively the partition function of
the five-boson bounded trap model as a sum over
120 permutation partition functions ZP , each of
them written as a product of single-particle par-
tition functions (see eqns (4.47) and (4.50)).
NB: Repeatedly use the fragment

. . .
input {P1, . . . , PN}
for k = N, N − 1, . . . , 0 do˘

output {P1, . . . , Pk, N + 1, Pk+1, . . . , PN}
. . .

to generate all permutations of N+1 elements from
a list of permutations of N elements. It generates
the following permutations of four elements from
one permutation of three elements, P = (3 1 2

1 2 3):

312 →

8>><
>>:

3124
3142
3412
4312

(4.10) Compute the single-particle partition function in a
cubic box with periodic boundary conditions, and
enter it in the recursion relations for the internal
energy and the specific heat capacity of the ideal
Bose gas in the canonical ensemble. Implement re-
cursions for Z(β) and for the derivative ∂Z(β)/∂β,
and compute the mean energy as a function of tem-
perature. Determine the specific heat capacity of
the ideal Bose gas, as in Fig. 4.25, from the numer-
ical derivative of the energy with respect to tem-
perature. Determine the condensate fraction from
eqn (4.60) for various temperatures and tempera-
tures. Compare your results with those obtained in
the grand canonical ensemble.

(4.11) Perform a quantum Monte Carlo simulation of
N ideal bosons in the harmonic trap. First im-
plement Alg. 4.6 (canonic-recursion) and then
sample permutations for the N-particle system,
using Alg. 4.8 (direct-cycles). Finally, sam-
ple positions of particles on each cycle with
the Lévy algorithm in a harmonic potential (see
Alg. 3.6 (levy-harmonic-path)). At various tem-
peratures, reproduce snapshots of configurations as
in Fig. 4.23. Which is the largest particle number
that you can handle?

(4.12) (Compare with Exerc. 4.11.) Set up a quantum
Monte Carlo simulation of N ideal bosons in a
three-dimensional cubic box with periodic bound-
ary conditions. The algorithm is similar to that
in Exerc. 4.11, however, positions must be sam-
pled using Alg. 3.7 (levy-periodic-path). (Use
a naive subroutine for sampling the winding num-
bers.) Show that below the transition temperature
nonzero winding numbers become relevant. Plot
paths of particles on a cycle, as in Fig. 4.26, for
several system sizes and temperatures. Next, use
this program to study quantum effects at high tem-
peratures. Sample configurations at temperature
T/Tc = 3; compute the pair correlation function
between particles k and l, using the periodically
corrected distance, r, between them (see Alg. 2.6
(diff-vec)). Generate a histogram of this pair cor-
relation as a function of distance, to obtain π(r).
The function π(r)/(4�r2) shows a characteristic in-
crease at small distance, in the region of close en-
counter. Interpret this effect in terms of cycle length
distributions. What is its length scale? Discuss this
manifestation of the quantum nature of the Bose
gas at high temperature.

References 227

References

Borrmann P., Franke G. (1993) Recursion formulas for quantum statis-
tical partition functions, Journal of Chemical Physics 98, 2484–2485

Ceperley D. M. (1995) Path-integrals in the theory of condensed he-
lium, Reviews of Modern Physics 67, 279–355

Feynman R. P. (1972) Statistical Mechanics: A Set of Lectures, Benja-
min/Cummings, Reading, Massachusetts

Holzmann M., Krauth W. (1999) Transition temperature of the homo-
geneous, weakly interacting Bose gas, Physical Review Letters 83, 2687–
2690

Krauth W. (1996) Quantum Monte Carlo calculations for a large num-
ber of bosons in a harmonic trap, Physical Review Letters 77, 3695–3699

Pollock E. L., Ceperley D. M. (1987) Path-integral computation of su-
perfluid densities, Physical Review B 36, 8343–8352

Prokof’ev N. V., Svistunov B. V., Tupitsyn I. S. (1998) “Worm” al-
gorithm in quantum Monte Carlo simulations, Physics Letters A 238,
253–257

This page intentionally left blank

Order and disorder in spin
systems 5

5.1 The Ising model
(exact computations) 231

5.2 The Ising model
(Monte Carlo algorithms) 249

5.3 Generalized Ising models 259

Exercises 264

References 266

In this chapter, we approach the statistical mechanics and computational
physics of the Ising model, which has inspired generations of physicists.
This archetypal physical system undergoes an order–disorder phase tran-
sition. The Ising model shares this transition and many other properties
with more complicated models which cannot be analyzed so well.

The first focus of this chapter is on enumeration, which applies to the
Ising model because of its finite number of configurations, even though
this number grows exponentially with the lattice size. We shall enu-
merate the spin configurations, and also the loop configurations of the
Ising model’s high-temperature expansion, which can be summed for
very large and even infinite lattices, leading to Onsager’s analytic solu-
tion in two dimensions. This chapter’s second focus is on Monte Carlo
algorithms. We shall start with a simple local implementation of the
Metropolis sampling algorithm and move on to nontrivial realizations
of the perfect-sampling approach described in Subsection 1.1.7 and to
modern cluster algorithms. Cluster algorithms originated from the Ising
model. They have revolutionized computation in many fields of classical
and quantum statistical mechanics.

Theoretical and computational approaches to the Ising model have
met with outstanding success. However, it suffices to modify a few pa-
rameters in the model, for example to let the sign of the interaction be
sometimes positive and sometimes negative, to cause all combined ap-
proaches to get into trouble. The two-dimensional spin glass (where the
interactions are randomly positive and negative) illustrates the difficul-
ties faced by Monte Carlo algorithms. Remarkably, the above-mentioned
enumeration of loop configurations still works. Onsager’s analytic solu-
tion of the Ising model thus turns into a powerful algorithm for two-
dimensional spin glasses.

In this chapter, we witness many close connections between theory
and computation across widely different fields. This unity of physics is
illustrated further in the final section through a relation between spin
systems and classical liquids: we shall see that a liquid with pair inter-
actions is in some sense equivalent to an Ising spin glass and can be
simulated with exactly the same methods. This far-reaching equivalence
makes it difficult to tell whether we are simulating a liquid (with parti-
cles moving around in a continuous space) or spins that are sometimes
up and sometimes down.

In a ferromagnet, up spins want to be next to up spins and down spins
want to be next to down spins. Likewise, colloidal particles on a liquid
surface want to be surrounded by other particles (see Fig. 5.1). At high
temperature, up and down spins are equally likely across the system
and, likewise, the colloidal particles are spread out all over the surface.
At low temperature, the spin system is magnetized, either mostly up
or mostly down; likewise, most of the colloidal particles are in one big
lump. This, in a nutshell, is the statistical physics of the Ising model,
which describes magnets and lattice gases, and which we shall study in
the present chapter.

Fig. 5.1 Configurations of the Ising model on a two-dimensional square
lattice considered as a magnet (left) and as a lattice gas (right).

5.1 The Ising model—exact computations 231

5.1 The Ising model—exact computations

The Ising model describes spins σk ± 1, k = 1, . . . , N , on a lattice, for
example the two-dimensional square lattice shown in Fig. 5.1. In the
simplest case, the ferromagnetic Ising model, neighboring spins prefer
to align. This means that pairs {+, +} and {−,−} of neighboring spins
direction have a lower energy than antiparallel spins (pairs {+,−} and
{−, +}), as expressed by the energy

E = −J
∑
〈k,l〉

σkσl. (5.1)

The sum is over all pairs of neighbors. The parameter J is positive,
and we shall take it equal to one. In a two-dimensional square lattice,
the sites k and l then differ by either a lattice spacing in x or a lat-
tice spacing in y. In a sum over pairs of neighbors, as in eqn (5.1), we
consider each pair only once, that is, we pick either 〈k, l〉 or 〈l, k〉. Al-
gorithm 5.1 (energy-ising) implements eqn (5.1) with the help of a
neighbor scheme that we have encountered already in Chapter 1. The
sum n runs over half the neighbors, so that each pair 〈l, k〉 is indeed
counted only once. We shall soon adopt better approaches for calcu-
lating the energy, but shall always keep Alg. 5.1 (energy-ising) for
checking purposes. We also note that the lattice may either have peri-

procedure energy-ising

input {σ1, . . . , σN}
E ← 0
for k = 1, . . . , N do⎧⎪⎪⎨⎪⎪⎩

for n = 1, . . . , d do (d: space dimension)⎧⎨⎩
j ← Nbr(n, k)
if (j
= 0) then{

E ← E − σkσj

output E
——

Algorithm 5.1 energy-ising. Computing the energy of an Ising-model
configuration. Nbr(., .) encodes the neighbor scheme of Fig. 5.2.

odic boundary conditions or be planar.
1 2 3

4 5 6

7 8 9

first

second

third

fourth

Fig. 5.2 Neighbor scheme in the
two-dimensional Ising model. The first
neighbor of 2 is Nbr(1, 2) = 3,
Nbr(4, 2) = 0, etc.

The Ising model’s prime use is for magnets. Figure 5.1, however, il-
lustrates that it can also serve to describe particles on a lattice. Now, a
variable σ̃k = 1, 0 signals the presence or absence of a particle on site k.
Let us suppose that particles prefer to aggregate: two particles next to
each other have a lower energy than two isolated particles. The simplest
configurational energy is

E = −4J̃
∑
〈k,l〉

σ̃kσ̃l.

However, the transformation σ̃k = 1
2 (σk+1) brings us back to the original

Ising model.

232 Order and disorder in spin systems

The main difference between the Ising model considered as a magnet
and as a lattice gas is in the space of configurations: for a magnet, the
spins can be up or down, more or less independently of the others, so that
all of the 2N configurations {σ1, . . . , σN} = {±1, . . . ,±1} contribute to
the partition function. For the lattice gas, the number of particles, equiv-
alent to the proportions of up and down spins, must be kept constant,
and the partition function is made up of all configurations with a fixed
M =

∑
k σk. For large N , the two versions of the Ising model become

more or less equivalent: it is sufficient to include a constant external
magnetic field, which plays the same role here as the chemical potential
in Section 4.1.3.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

i = 9 i = 10 i = 11 i = 12 i = 13 i = 14 i = 15 i = 16

Fig. 5.3 List of configurations of the Ising model on a 2×2 square lattice.

In Fig. 5.3, we list all configurations for a (magnetic) Ising model on a
2×2 lattice. Without periodic boundary conditions, configurations i = 1
and i = 16 have an energy E = −4, and configurations i = 7 and i = 10
have an energy E = +4. All others are zero-energy configurations.

5.1.1 Listing spin configurations

In the present subsection, we enumerate all the spin configurations of
the Ising model; in fact, we list them one after another. Most simply,
each configuration i = 1, . . . , 2N of N Ising spins is related to the binary
representation of the number i − 1: in Fig. 5.3, zeros in the binary rep-
resentation of i − 1 correspond to down spins, and ones to up spins. As
an example, the binary representation of the decimal number 10 (con-
figuration i = 11 in Fig. 5.3) is 1010, which yields a spin configuration
{+,−, +,−} to be translated to the lattice with our standard number-
ing scheme. It is a simple matter to count numbers from 0 to 2N − 1
if N is not too large, to represent each number in binary form, and to
compute the energy and statistical weight e−βE of each configuration
with Alg. 5.1 (energy-ising).

It is often faster to compute the change of energy resulting from a
spin-flip rather than the energy itself. In Fig. 5.4, for example, we can
find out that Eb = Ea − 4, simply because the “molecular field” acting
on the central site is equal to 2 (it is generated by three up spins and
one down spin). The change in energy is equal to twice the value of the
spin at the site times the molecular field.

5.1 The Ising model—exact computations 233

a b

Fig. 5.4 Two configurations of the Ising model connected by the flip of
a single spin.

procedure gray-flip

input {τ0, . . . , τN}
k ← τ0

if (k > N) exit
τk−1 ← τk

τk ← k + 1
if (k
= 1) τ0 ← 1
output k, {τ0, . . . , τN}
——

Algorithm 5.2 gray-flip. Gray code for spins {1, . . . , N}. k is the next
spin to flip. Initially, {τ0, . . . , τN} = {1, . . . , N + 1}.

On lattices of any size, the change in energy can be computed in a
constant number of operations, whereas the effort for calculating the
energy grows with the number of edges. Therefore it is interesting that
all 2N spin configurations can be enumerated through a sequence of 2N

spin-flips, one at a time. (Equivalently, one may enumerate all numbers
{0, . . . , 2N − 1} by changing a single digit at a time during the enu-
meration.) Algorithms that perform such enumerations are called Gray
codes, and an application of a Gray code for four spins is shown in
Table 5.1. How it works can be understood by (mentally) folding Ta-
ble 5.1 along the horizontal line between configurations i = 8 and i = 9:
the configurations of the first three spins {σ1, σ2, σ3} are folded onto
each other (the first three spins are the same for i = 8 and i = 9,
and also for i = 7 and i = 10, etc.). The spins {σ1, σ2, σ3} remain
unchanged between i = 8 and i = 9, and this is the only moment
at which σ4 flips, namely from − to +. To write down the Gray code
for N = 5, we would fold Table 5.1 along the line following configura-
tion i = 16, and insert {σ5(i = 1), . . . , σ5(i = 16)} = {−, . . . ,−}, and
{σ5(i = 17), . . . , σ5(i = 32)} = {+, . . . , +}. Algorithm 5.2 (gray-flip)
provides a practical implementation. We may couple the Gray code enu-
meration to an update of the energy (see Alg. 5.3 (enumerate-ising)).
Of course, the Gray code still has exponential running time, but the enu-
meration as in Fig. 5.5 gains a factor ∝ N with respect to naive binary
enumeration.

Table 5.1 Gray-code enumeration of
spins {σ1, . . . , σ4}. Each configuration
differs from its predecessor by one spin
only.

i {σ1, . . . , σ4}

1 − − − −
2 + − − −
3 + + − −
4 − + − −
5 − + + −
6 + + + −
7 + − + −
8 − − + −

9 − − + +
10 + − + +
11 + + + +
12 − + + +
13 − + − +
14 + + − +
15 + − − +
16 − − − +

Algorithm 5.3 (enumerate-ising) does not directly compute the par-
tition function at inverse temperature β, but rather the number of con-
figurations with energy E, in other words, the density of states N (E)

234 Order and disorder in spin systems

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

...

Fig. 5.5 List of Ising-model configurations on a 2 × 2 square lattice,
generated by the Gray code (only the dark spins flip, see Table 5.1).

procedure enumerate-ising

{N (−2N) , . . . ,N (2N)} ← {0, . . . , 0}
{σ1, . . . , σN} ← {−1, . . . ,−1}
{τ0, . . . , τN} ← {1, . . . , N + 1}
E ← −2N
N (E) ← 2
for i = 1, . . . , 2N−1 − 1 do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k ← gray-flip ({τ0, . . . , τN})
h ←∑〈j,k〉 σj (field on site k)

E ← E + 2 · σkh
N (E) ← N (E) + 2
σk ← −σk

output {N (E) > 0}
——

Algorithm 5.3 enumerate-ising. Single spin-flip (Gray code) enumer-
ation for the Ising model, using Alg. 5.2 (gray-flip).

(see Table 5.2). We must take care in implementing this program be-
cause N (E) can easily exceed 231, the largest integer that fits into a
standard four-byte computer word. We note, in our case, that it suffices
to generate only half of the configurations, because E(σ1, . . . , σN) =
E(−σ1, . . . ,−σN).

Table 5.2 Density of states N (E)
for small square lattices with periodic
boundary conditions (from Alg. 5.3
(enumerate-ising))

N (E) = N (−E)
E 2 × 2 4 × 4 6 × 6

0 12 20 524 13 172 279 424
4 0 13 568 11 674 988 208
8 2 6 688 8 196 905 106
12 . 1 728 4 616 013 408
16 . 424 2 122 173 684
20 . 64 808 871 328
24 . 32 260 434 986
28 . 0 71 789 328
32 . 2 17 569 080
36 . . 3 846 576
40 . . 804 078
44 . . 159 840
48 . . 35 148
52 . . 6 048
56 . . 1 620
60 . . 144
64 . . 72
68 . . 0
72 . . 2

5.1.2 Thermodynamics, specific heat capacity, and
magnetization

The Ising-model partition function Z(β) can be obtained by summing
appropriate Boltzmann factors for all configurations, but it is better
to start from the density of states, the number of configurations with
energy E, as just calculated:

Z(β) =

∝ 2N terms︷ ︸︸ ︷∑
σ1=±1,...,σN=±1

e−βE(σ1,...,σN) =

∝ N terms︷ ︸︸ ︷∑
E

N (E) e−βE .

Similarly, the mean energy 〈E〉 can be computed from Z(β) by numerical
differentiation, that is,

〈E〉 = − ∂

∂β
log Z, (5.2)

5.1 The Ising model—exact computations 235

but we are again better off using an average over the density of states:

〈E〉 =
∑

σ
Eσe−βEσ∑
σ

e−βEσ

=
1
Z

∑
E

EN (E) e−βE , (5.3)

where we have used σ as a shorthand for {σ1, . . . , σN}. Higher moments
of the energy can also be expressed via N (E):

〈
E2
〉

=
∑

σ
E2

σ
e−βEσ∑

σ
e−βEσ

=
1
Z

∑
E

E2N (E) e−βE. (5.4)

The specific heat capacity CV , the increase in internal energy caused by
an infinitesimal increase in temperature,

CV =
∂ 〈E〉
∂T

=
∂β

∂T

∂ 〈E〉
∂β

= −β2 ∂ 〈E〉
∂β

, (5.5)

can be expressed via eqn (5.2) as a second-order derivative of the parti-
tion function:

CV = β2 ∂2

∂β2
log Z.

Again, there is a more convenient expression, which we write for the
specific heat capacity per particle cV ,

cV = −β2

N

∂ 〈E〉
∂β

= −β2

N

∂

∂β

(∑
σ

Eσe−βEσ∑
σ

e−βEσ

)
=

β2

N

∑
σ

E2e−βEσ

∑
σ

e−βEσ−(∑
σ

Eσe−βEσ

)2
(
∑

σ
e−βEσ)2

=
β2

N

(〈
E2
〉− 〈E〉2

)
,

which can be evaluated with the second formulas in eqns (5.3) and (5.4)
and is implemented in Alg. 5.4 (thermo-ising). We can recognize that
the specific heat capacity, an experimentally measurable quantity, is pro-
portional to the variance of the energy, a statistical measure of the distri-
bution of energies. Specific-heat-capacity data for small two-dimensional
lattices with periodic boundary conditions are shown in Fig. 5.6.

0

0.5

1

0 1 2 3 4 5

sp
ec

if
ic

 h
ea

t
ca

p
ac

it
y
 c

V

temperature T

6×6
4×4
2×2

Fig. 5.6 Specific heat capacity of
the Ising model on small square lat-
tices with periodic boundary conditions
(from Alg. 5.4 (thermo-ising)).

The density of states N (E) does not carry complete information about
the Ising model. We must modify Alg. 5.3 (enumerate-ising) in a
straightforward way to track the magnetization M =

〈∑N
k=1 σk

〉
of

the system and to find the probability πM . This probability is obtained,
at any temperature, from the density of states as a function of energy
and magnetization, N (E, M) (see Fig. 5.7). The probability distribution
of the magnetization per spin is always symmetric around M/N = 0,
featuring a single peak at M = 0 at high temperature, where the system
is paramagnetic, and two peaks at magnetizations ±M̃/N at low tem-
perature, where the system is in the ferromagnetic state. The critical
temperature,

Tc =
2

log
(
1 +

√
2
) = 2.269 (βc = 0.4407), (5.6)

236 Order and disorder in spin systems

procedure thermo-ising

input {N (Emin) , . . . ,N (Emax)} (from Alg. 5.3 (enumerate-ising))
Z ← 0
〈E′〉 ← 0〈
E′2〉← 0

for E = Emin, . . . , Emax do⎧⎪⎪⎨⎪⎪⎩
E′ ← E − Emin

Z ← Z + N (E) e−βE′

〈E′〉 ← 〈E′〉 + E′N (E) e−βE′〈
E′2〉← 〈E′2〉+ E′2N (E) e−βE′

〈E′〉 ← 〈E′〉 /Z〈
E′2〉← 〈E′2〉 /Z

Z ← Ze−βEmin

cV ← β2(
〈
E′2〉− 〈E′〉2)/N

〈e〉 ← (〈E′〉 + Emin)/N
output {Z, 〈e〉 , cV }
——

Algorithm 5.4 thermo-ising. Thermodynamic quantities for the Ising
model at temperature T = 1/β from enumeration data.

separates the two regimes. It is at this temperature that the specific heat
capacity diverges. Our statement about the distribution of the magne-
tization is equivalent to saying that below Tc the Ising model acquires
a spontaneous magnetization (per spin), equal to one of the peak values
of the distribution π(M/N).

Table 5.3 Thermodynamic quantities
for the Ising model on a 6 × 6 lat-
tice with periodic boundary conditions
(from Alg. 5.4 (thermo-ising))

T 〈e〉 cV

0.5 −1.999 0.00003
1.0 −1.997 0.02338
1.5 −1.951 0.19758
2.0 −1.747 0.68592
2.5 −1.280 1.00623
3.0 −0.887 0.55665
3.5 −0.683 0.29617
4.0 −0.566 0.18704

0

0.1

-36 0 36

p
ro

b
a
b
il
it

y
 π

M
 (

h
is

t.
)

total magnetization M

T = 2.5
T = 5.0

Fig. 5.7 Probability πM on a 6×6 square lattice with periodic boundary
conditions (from modified Alg. 5.3 (enumerate-ising)).

5.1.3 Listing loop configurations

The word “enumeration” has two meanings: it refers to listing items
(configurations), but it also applies to simply counting them. The dif-

5.1 The Ising model—exact computations 237

ference between the two is of more than semantic interest: in the list
generated by Alg. 5.3 (enumerate-ising), we were able to pick out any
information we wanted, for example the number of configurations of en-
ergy E and magnetization M , that is, the density of states N (E, M).
In this subsection we discuss an alternative enumeration for the Ising
model. It does not list the spin configurations, but rather all the loop
configurations which appear in the high-temperature expansion of the
Ising model. This program will then turn, in Subsection 5.1.4, into an
enumeration of the second kind (Kac and Ward, 1954). It counts con-
figurations and obtains Z(β) for a two-dimensional Ising system of any
size (Kaufman, 1949), and even for the infinite system (Onsager, 1944).
However, it then counts without listing. For example, it finds the number
N (E) of configurations with energy E but does not tell us how many of
them have a magnetization M .

Van der Waerden, in 1941, noticed that the Ising-model partition func-
tion,

Z =
∑

σ

exp
(
Jβ
∑
〈k,l〉

σkσl

)
=
∑

σ

∏
〈k,l〉

eJβσkσl ,
(5.7)

allows each term eJβσkσl to be expanded and rearranged into just two
terms, one independent of the spins and the other proportional to σkσl:

eβσkσl = 1 + βσkσl +
β2

2!
(σkσl)2︸ ︷︷ ︸

=1

+
β3

3!
(σkσl)3︸ ︷︷ ︸
=σkσl

+ · · · − · · ·

=
(

1 +
β2

2!
+

β4

4!
+ · · ·

)
︸ ︷︷ ︸

cosh β

−σkσl

(
β +

β3

3!
+

β5

5!
+ · · ·

)
︸ ︷︷ ︸

sinhβ

= (cosh β) (1 + σkσl tanh β) .

Inserted into eqn (5.7), with J = +1, this yields

Z(β) =
∑
σ

∏
〈k,l〉

((cosh β) (1 + σkσl tanh β)) . (5.8)

For concreteness, we continue with a 4×4 square lattice without periodic
boundary conditions (with J = 1). This lattice has 24 edges and 16
sites, so that, by virtue of eqn (5.8), its partition function Z4×4(β) is the
product of 24 parentheses, one for each edge:

Z4×4(β) =
∑

{σ1,...,σ16}
cosh24 β(

edge 1︷ ︸︸ ︷
1 + σ1σ2 tanh β)(

edge 2︷ ︸︸ ︷
1 + σ1σ5 tanh β)

× . . . (1 + σ14σ15 tanh β)(1 + σ15σ16 tanh β︸ ︷︷ ︸
edge 24

). (5.9)

238 Order and disorder in spin systems

We multiply out this product: for each edge (parenthesis) k, we have a
choice between a “one” and a “tanh” term. This is much like the option
of a spin-up or a spin-down in the original Ising-model enumeration, and
can likewise be expressed through a binary variable nk:

nk =

{
0 (≡ edge k in eqn (5.9) contributes 1)
1 (≡ edge k contributes (σsk

σs′
k

tanh β))
,

where sk and s′k indicate the sites at the two ends of edge k. Edge
k = 1 has {s1, s

′
1} = {1, 2}, and edge k = 24 has, from eqn (5.9),

{s24, s
′
24} = {15, 16}. Each factored term can be identified by variables

{n1, . . . , n24} = {{0, 1}, . . . , {0, 1}}.

For {n1, . . . , n24} = {0, . . . , 0}, each parenthesis picks a “one”. Summed
over all spin configurations, this gives 216. Most choices of {n1, . . . , n24}
average to zero when summed over spin configurations because the same
term is generated with σk = +1 and σk = −1. Only choices leading to
spin products σ0

s , σ2
s , σ4

s at each lattice site s remain finite after summing
over all spin configurations. The edges of these terms form loop config-
urations, such as those shown for the 4 × 4 lattice in Fig. 5.8. The list
of all loop configurations may be generated by Alg. 5.5 (edge-ising), a
recycled version of the Gray code for 24 digits, coupled to an incremental
calculation of the number of spins on each site. The {o1, . . . , o16} count
the number of times the sites {1, . . . , 16} are present. The numbers in
this vector must all be even for a loop configuration, and for a nonzero
contribution to the sum in eqn (5.9).

Table 5.4 Numbers of loop configura-
tions in Fig. 5.8 with given numbers of
edges (the figure contains one configu-
ration with 0 edges, 9 with 4 edges, etc).
(From Alg. 5.5 (edge-ising)).

Edges # Configs

0 1
4 9
6 12
8 50

10 92
12 158
14 116
16 69
18 4
20 1

procedure edge-ising

input {(s1, s
′
1), . . . , (s24, s

′
24)}

{n1, . . . , n24} ← {0, . . . , 0}
{τ0, . . . , τ24} ← {1, . . . , 25}
{o1, . . . , o16} ← {0, . . . , 0}
output {n1, . . . , n24}
for i = 1, 224 − 1 do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k ← gray-flip ({τ0, . . . , τ24})
nk ← mod (nk + 1, 2)
osk

← osk
+ 2 · nk − 1

os′
k
← os′

k
+ 2 · nk − 1

if ({o1, . . . , o16} all even) then{
output {n1, . . . , n24}

——

Algorithm 5.5 edge-ising. Gray-code enumeration of the loop config-
urations in Fig. 5.8. The edge k connects neighboring sites σk and σ′

k.

For the thermodynamics of the 4×4 Ising model, we only need to keep
track of the number of edges in each configuration, not the configurations
themselves. Table 5.4, which shows the number of loop configurations

5.1 The Ising model—exact computations 239

Fig. 5.8 The list of all 512 loop configurations for the 4× 4 Ising model
without periodic boundary conditions (from Alg. 5.5 (edge-ising)).

240 Order and disorder in spin systems

for any given number of edges, thus yields the exact partition function
for the 4 × 4 lattice without periodic boundary conditions:

Z4×4(β) =
(
216 cosh24 β

) (
1 + 9 tanh4 β + 12 tanh6 β

+ · · · + 4 tanh18 β + 1 tanh20 β
)
. (5.10)

Partition functions obtained from this expression are easily checked
against the Gray-code enumeration.

5.1.4 Counting (not listing) loops in two
dimensions

Following Kac and Ward (1952), we now construct a matrix whose de-
terminant counts the number of loop configurations in Fig. 5.8. This is
possible because the determinant of a matrix U = (ukl) is defined by a
sum of permutations P (with signs and weights). Each permutation can
be written as a collection of cycles, a “cycle configuration”. Our task will
consist in choosing the elements ukl of the matrix U in such a way that
the signs and weights of each cycle configurations correspond to the loop
configurations in the two-dimensional Ising model. We shall finally arrive
at a computer program which implements the correspondence, and effec-
tively solves the enumeration problem for large two-dimensional lattices.
For simplicity, we restrict ourselves to square lattices without periodic
boundary conditions, and consider the definition of the determinant of
a matrix U ,

det U =
∑

permutations

(sign P)u1P1u2P2 . . . uNPN
.

We now represent P in terms of cycles. The sign of a permutation
P of N elements with n cycles is signP = (−1)N+n (see our detailed
discussion in Section 1.2.2). In the following, we shall consider only ma-
trices with even N , for which signP = (−1)# of cycles. The determinant
is thus

det U =
∑
cycle

configs

(−1)# of cycles uP1P2uP2P3 . . . uPM P1︸ ︷︷ ︸
weight of first cycle

uP ′
1P ′

2
. . .︸ ︷︷ ︸

other cycles

=
∑
cycle

configs

({
(−1)· weight of

first cycle

})
× · · · ×

({
(−1)· weight of

last cycle

})
.

It follows from this representation of a determinant in terms of cycle con-
figurations that we should choose the matrix elements ukl such that each
cycle corresponding to a loop on the lattice (for example (P1, . . . , PM))
gets a negative sign (this means that the sign of uP1P2uP2P3 . . . uPM P1

should be negative). All cycles not corresponding to loops should get
zero weight.

We must also address the problem that cycles in the representation
of the determinant are directed. The cycle (P1, P2, . . . , PM−1, PM) is

5.1 The Ising model—exact computations 241

different from the cycle (PM , PM−1, . . . , P2, P1), whereas the loop con-
figurations in Fig. 5.8 have no sense of direction.

For concreteness, we start with a 2×2 lattice without periodic bound-
ary conditions, for which the partition function is

Z2×2 =
(
24 cosh4 β

) (
1 + tanh4 β

)
. (5.11)

The prefactor in this expression (2N multiplied by one factor of cosh β
per edge) was already encountered in eqn (5.10). We can find naively
a 4 × 4 matrix Û2×2 whose determinant generates cycle configurations
which agree with the loop configurations. Although this matrix cannot
be generalized to larger lattices, it illustrates the problems which must
be overcome. This matrix is given by

Û2×2 =

⎡⎢⎢⎣
1 γ tanh β · ·
· 1 · γ tanh β

γ tanh β · 1 ·
· · γ tanh β 1

⎤⎥⎥⎦ .

(In the following, zero entries in matrices are represented by dots.) The
matrix must satisfy

Z2×2 =
(
24 cosh4 β

)
det Û2×2,

and because of
det Û2×2 = 1 − γ4 tanh4 β,

we have to choose γ = ei�/4 = 4
√−1. The value of the determinant is

easily verified by expanding with respect to the first row, or by naively
going through all the 24 permutations of 4 elements (see Fig. 4.16 for
a list of them). Only two permutations have nonzero contributions: the
unit permutation (1234

1234), which has weight 1 and sign 1 (it has four
cycles), and the permutation, (2431

1234) = (1, 2, 4, 3), which has weight
γ4 tanh4 β = − tanh4 β. The sign of this permutation is −1, because
it consists of a single cycle.

The matrix Û2×2 cannot be generalized directly to larger lattices. This
is because it sets u21 equal to zero because u12
= 0, and sets u13 = 0
because u31
= 0; in short it sets ukl = 0 if ulk is nonzero (for k
= l).
In this way, no cycles with hairpin turns are retained (which go from
site k to site l and immediately back to site k). It is also guaranteed
that between a permutation and its inverse (in our case, between the
permutation (1234

1234) and (2431
1234)), at most one has nonzero weight. For

Table 5.5 Correspondence between
lattice sites and directions, and the in-
dices of the Kac–Ward matrix U

Site Direction Index

1

→
↑
←
↓

1
2
3
4

2

→
↑
←
↓

5
6
7
8

...
...

...

k

→
↑
←
↓

4k − 3
4k − 2
4k − 1

4k

larger lattices, this strategy is too restrictive. We cannot generate all
loop configurations from directed cycle configurations if the direction in
which the edges are gone through is fixed. We would thus have to allow
both weights ukl and ulk different from zero, but this would reintroduce
the hairpin problem. For larger N , there is no N × N matrix whose
determinant yields all the loop configurations.

Kac and Ward’s (1951) solution to this problem associates a matrix
index, not with each lattice site, but with each of the four directions

242 Order and disorder in spin systems

on each lattice site (see Table 5.5), and a matrix element with each
pair of directions and lattice sites. Matrix elements are nonzero only for
neighboring sites, and only for special pairs of directions (see Fig. 5.9),
and hairpin turns can be suppressed.

For concreteness, we continue with the 2 × 2 lattice, and its 16 ×
16 matrix U2×2. We retain from the preliminary matrix Û2×2 that the
nonzero matrix element must essentially correspond to terms tanh β, but
that there are phase factors. This phase factor is 1 for a straight move
(case a in Fig. 5.9); it is ei�/4 for a left turn, and e−i�/4 for a right turn.

1 2

a

1 2

b

1 2

c

1
2

d

Fig. 5.9 Graphical representation of the matrix elements in the first row
of the Kac–Ward matrix U2×2 (see Table 5.6).

Table 5.6 The matrix elements of Fig. 5.9 that make up the first
row of the Kac–Ward matrix U2×2 (see eqn (5.12)).

Case Matrix element value type

a u1,5 ν = tanh β (straight move)
b u1,6 α = ei�/4 tanh β (left turn)
c u1,7 0 (hairpin turn)
d u1,8 α = e−i�/4 tanh β (right turn)

The nonzero elements in the first row of U2×2 are shown in Fig. 5.9,
and taken up in Table 5.6. We arrive at the matrix

U2×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ν α · α · · · · · · · ·
· 1 · · · · · · α ν α · · · · ·· · 1 · · · · · · · · · · · · ·· · · 1 · · · · · · · · · · · ·· · · · 1 · · · · · · · · · · ·
· · · · · 1 · · · · · · α ν α ·
· α ν α · · 1 · · · · · · · · ·· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · ν α · α· · · · · · · · · 1 · · · · · ·· · · · · · · · · · 1 · · · · ·
α · α ν · · · · · · · 1 · · · ·· · · · · · · · · · · · 1 · · ·· · · · · · · · · · · · · 1 · ·
· · · · · · · · · α ν α · · 1 ·
· · · · α · α ν · · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.12)

The matrix U2×2 contains four nonzero permutations, which we can
generate with a naive program (in each row of the matrix, we pick one
term out of {1, ν, α, α}, and then check that each column index appears
exactly once). We concentrate in the following on the nontrivial cycles
in each permutation (that are not part of the identity). The identity
permutation, P 1 = (1 ... 16

1 ... 16), one of the four nonzero permutations, has

5.1 The Ising model—exact computations 243

only trivial cycles. It is characterized by an empty nontrivial cycle con-
figuration c1. Other permutations with nonzero weights are

c2 ≡
⎛⎝ site 1 2 4 3

dir. → ↑ ← ↓
index 1 6 15 12

⎞⎠
and

c3 ≡
⎛⎝ site 1 3 4 2

dir. ↑ → ↓ ←
index 2 9 16 7

⎞⎠ .

Finally, the permutation c4 is put together from the permutations c2

and c3, so that we obtain

c1 ≡ 1,

c2 ≡ u1,6u6,15u15,12u12,1 = α4 = − tanh4 β,

c3 ≡ u2,9u9,16u16,7u7,2 = α4 = − tanh4 β,

c4 ≡ c2c3 = α4α4 = tanh8 β.

We thus arrive at

det U2×2 = 1 + 2 tanh4 β + tanh8 β =
(
1 + tanh4 β

)2︸ ︷︷ ︸
see eqn (5.11)

, (5.13)

and this is proportional to the square of the partition function in the
2 × 2 lattice (rather than the partition function itself).

The cycles in the expansion of the determinant are oriented: c2 runs
anticlockwise around the pad, and c3 clockwise. However, both types of
cycles may appear simultaneously, in the cycle c4. This is handled by
drawing two lattices, one for the clockwise, and one for the anticlockwise
cycles (see Fig. 5.10). The cycles {c1, . . . , c4} correspond to all the loop
configurations that can be drawn simultaneously in both lattices. It is
thus natural that the determinant in eqn (5.13) is related to the partition
function in two independent lattices, the square of the partition function
of the individual systems.

1 2

3 4

1′ 2′
3′ 4′

sites c1 c2 c3 c4

Fig. 5.10 Neighbor scheme and cycle
configurations in two independent 2×2
Ising models.

Before moving to larger lattices, we note that the matrix U2×2 can be
written in more compact form, as a matrix of matrices:

U2×2 =

⎡⎢⎢⎣
� u→ u↑ .

u← � · u↑
u↓ · � u→
· u↓ u← �

⎤⎥⎥⎦ (a 16 × 16 matrix,
see eqn (5.15)) , (5.14)

where � is the 4 × 4 unit matrix, and furthermore, the 4 × 4 matrices

244 Order and disorder in spin systems

u→, u↑, u←, and u↓ are given by

u→ =

⎡⎢⎢⎣
ν α · α
· · · ·
· · · ·
· · · ·

⎤⎥⎥⎦ , u↑ =

⎡⎢⎢⎣
· · · ·
α ν α ·
· · · ·
· · · ·

⎤⎥⎥⎦ ,

u← =

⎡⎢⎢⎣
· · · ·
· · · ·
· α ν α
· · · ·

⎤⎥⎥⎦ , u↓ =

⎡⎢⎢⎣
· · · ·
· · · ·
· · · ·
α · α ν

⎤⎥⎥⎦ .

(5.15)

The difference between eqns (5.12) and (5.14) is purely notational.
The 2 × 2 lattice is less complex than larger lattices. For example,

one cannot draw loops in this lattice which sometimes turn left, and
sometimes right. (On the level of the 2 × 2 lattice it is unclear why left
turns come with a factor α and right turns with a factor α.) This is what
we shall study now, in a larger matrix. Cycle configurations will come
up that do not correspond to loop configurations. We shall see that they
sum up to zero.

Fig. 5.11 All 64 loop configurations for two uncoupled 4×2 Ising models
without periodic boundary conditions (a subset of Fig. 5.8).

For concreteness, we consider the 4×2 lattice (without periodic bound-
ary conditions), for which the Kac–Ward matrix can still be written
down conveniently. We understand by now that the matrix and the de-
terminant describe pairs of lattices, one for each sense of orientation, so
that the pair of 4× 2 lattices corresponds to a single 4× 4 lattice with a
central row of links eliminated. The 64 loop configurations for this case
are shown in Fig. 5.11. We obtain

U4×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� u→ · · u↑ · · ·
u← � u→ · · u↑ · ·
· u← � u→ · · u↑ ·
· · u← � · · · u↑

u↓ · · · � u→ · ·
· u↓ · · u← � u→ ·
· · u↓ · · u← � u→
· · · u↓ · · u← �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.16)

Written out explicitly, this gives a 32×32 complex matrix U4×2 = (uk,l)

5.1 The Ising model—exact computations 245

with elements

U4×2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · ν α · α · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· 1 · · · · · · · ········· · · · · · · α ν α ········· · · · · · · · · · ········· · ·· · 1 · · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·· · · 1 · · · · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · 1 · · · ν α · α · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · 1 · · · ········· · · · · · · · · · ········· α ν α · · · · · · ········· · ·
· α ν α · · 1 · · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · 1 · ········· · · · · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · 1 ········· · · ν α · α · · · ········· · · · · · · · · · ········· · ·
········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· α ν α ········· ········· ········· ········· ·········
· · · · · α ν α · ········· 1 · · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · 1 · · · · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · 1 · · · · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · 1 · · · · · ········· · · · · · · · · α ν α ·
· · · · · · · · · α ν α · · 1 · · · · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · · · · 1 · · · ········· · · · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · 1 · · ········· ν α · α · · · · · ········· · ·· · · · · · · · · ········· · · · · · · · 1 · ········· · · · · · · · · · ········· · ·· · · · · · · · · ········· · · · · · · · · 1 ········· · · · · · · · · · ········· · ·
α ········· α ν ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· 1 ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· 1 · · · ν α · α · ········· · ·· · · · · · · · · ········· · · · · · · · · · ········· · 1 · · · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · α ν α · · 1 · · · · · · ········· · ·
· · · · α · α ν · ········· · · · · · · · · · ········· · · · 1 · · · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · · · · 1 · · · ν α · α· · · · · · · · · ········· · · · · · · · · · ········· · · · · · 1 · · · ········· · ·
· · · · · · · · · ········· · · · · · · · · · ········· · α ν α · · 1 · · ········· · ·
· · · · · · · · α ········· α ν · · · · · · · ········· · · · · · · · 1 · ········· · ·· · · · · · · · · ········· · · · · · · · · · ········· · · · · · · · · 1 ········· · ·········· 1 ········· ·········
· · · · · · · · · ········· · · · · · · · · · ········· · · · · · α ν α · ········· 1 ·
· · · · · · · · · ········· · · α · α ν · · · ········· · · · · · · · · · ········· · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is constructed according to the same rules as U2×2, earlier.

1 2 3 4

5 6 7 8

sites loop cycle c1

l l

llll

r r

cycle c2

l
l

r r

r

ll

r

Fig. 5.12 A loop in the 4 × 2 system, not present in Fig. 5.11. Weights
of c1 and c2 cancel.

The cycle c2 in Fig. 5.12 can be described by the following trajectory:

cycle c2 ≡
⎛⎝ site 1 2 3 7 8 4 3 2 6 5

dir. → → ↑ → ↓ ← ← ↑ ← ↓
index 1 5 10 25 32 15 11 6 23 20

⎞⎠ .

This cycle thus corresponds to the following product of matrix elements:{
weight of c2

}
: u1,5u5,10 . . . u23,20u20,1.

The cycle c2 makes four left and four right turns (so that the weight is
proportional to α4α4 ∝ +1) whereas the cycle c1 turns six times to the
left and twice to the right, with weight α6α2 ∝ −1, canceling c2.

A naive program easily generates all of the nontrivial cycles in U4×2

(in each row of the matrix, we pick one term out of {1, ν, α, α}, and then
check that each column index appears exactly once). This reproduces
the loop list, with 64 contributions, shown in Fig. 5.11. There are in
addition 80 more cycle configurations, which are either not present in
the figure, or are equivalent to cycle configurations already taken into
account. Some examples are the cycles c1 and c2 in Fig. 5.12. It was the
good fortune of Kac and Ward that they all add up to zero.

246 Order and disorder in spin systems

procedure combinatorial-ising

input {u→, u↑, u←, u↓} (see eqn (5.15))
{U(j, j′)} ← {0, . . . , 0}
for k = 1, . . . , N do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for n = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j ← 4 · (k − 1) + n
U(j, j) ← 1
for n′ = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k′ ← Nbr(1, k)
if (k′
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u→(n, n′)
k′ ← Nbr(2, k)
if (k′
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u↑(n, n′)
k′ ← Nbr(3, k)
if (k′
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u←(n, n′)
k′ ← Nbr(4, k)
if (k′
= 0) then{

j′ ← 4 · (k′ − 1) + n′

U(j, j′) ← u↓(n, n′)
output {U(j, j′)}
——

Algorithm 5.6 combinatorial-ising. The 4N×4N matrix U , for which√
detU ∝ Z(β) (Ising model without periodic boundary conditions).

On larger than 4 × 2 lattices, there are more elaborate loops. They
can, for example, have crossings (see, for example, the loop in Fig. 5.13).
There, the cycle configurations c1 and c2 correspond to loops in the
generalization of Fig. 5.11 to larger lattices, whereas the cycles c3 and
c4 are superfluous. However, c3 makes six left turns and two right turns,
so that the overall weight is α4 = −1, whereas the cycle c4 makes three
left turns and three right turns, so that the weight is +1, the opposite
of that of c3. The weights of c3 and c4 thus cancel.

For larger lattices, it becomes difficult to establish that the sum of
cycle configurations in the determinant indeed agrees with the sum of
loop configurations of the high-temperature expansion, although rigor-
ous proofs exist to that effect. However, at our introductory level, it
is more rewarding to proceed heuristically. We can, for example, write
down the 144 × 144 matrix U6×6 of the 6 × 6 lattice for various tem-
peratures (using Alg. 5.6 (combinatorial-ising)), and evaluate the
determinant det U6×6 with a standard linear-algebra routine. Partition
functions thus obtained are equivalent to those resulting from Gray-code
enumeration, even though the determinant is evaluated in on the order

5.1 The Ising model—exact computations 247

loop c1 c2 c3

l l
r

l

ll
r

l

c4

l l

r

rr

l

Fig. 5.13 Loop and cycle configurations. The weights of c3 and c4 cancel.

of 1443 � 3×106 operations, while the Gray code goes over 235 � 3×1010

configurations. The point is that the determinant can be evaluated for
lattices that are much too large to go through the list of all configura-
tions.

The matrix UL×L for the L × L lattice contains the key to the ana-
lytic solution of the two-dimensional Ising model first obtained, in the
thermodynamic limit, by Onsager (1944). To recover Onsager’s solu-
tion, we would have to compute the determinant of U , not numerically
as we did, but analytically, as a product over all the eigenvalues. Ana-
lytic expressions for the partition functions for Ising models can also be
obtained for finite lattices with periodic boundary conditions. To adapt
for the changed boundary conditions, one needs four matrices, gener-
alizing the matrix U (compare with the analogous situation for dimers
in Chapter 6). Remarkably, evaluating Z(β) on a finite lattice reduces
to evaluating an explicit function (see Kaufman (1949) and Fisher and
Ferdinand (1969); see also Exerc. 5.9).

The analytic solutions of the Ising model have not been general-
ized to higher dimensions, where only Monte Carlo simulations, high-
temperature expansions, and renormalization-group calculations allow
to compute to high precision the properties of the phase transition. These
properties, as mentioned, are universal, that is, they are the same for a
wide class of systems, called the Ising universality class.

5.1.5 Density of states from thermodynamics

The direct and indirect enumeration algorithms in this chapter differ in
the role played by the density of states. In Alg. 5.3 (enumerate-ising),
it was appropriate to first compute N (E), and later determine par-
tition functions, internal energies, and specific heat capacities at any
temperature, in ∝ N operations. In contrast, the indirect enumerations
in Section 5.1.4 determine the partition function Z(β), not the density
of states. Computing Z(β) from N (E) is straightforward, but how to
recover N (E) from Z(β) requires some thought:

N (E)
Subsection 5.1.2−−−−−−−−−−→←−−−−−−−−−
this subsection

Z(β).

The mathematical problem of the present section is common to many
basic problems in statistical and solid state physics, and appears also in
the interpretation of experimental or Monte Carlo data. In the presence

248 Order and disorder in spin systems

of statistical uncertainties, it is very difficult to solve, and may often be
ill-defined. This means, in our case, that algorithms exist for computing
N (E) if the partition functions were computed exactly. If, however, Z(β)
is known only to limited precision, the output generated by the slightly
perturbed input can be drastically different from the exact output.

For a two-dimensional Ising model on a finite lattice, the exact par-
tition function Z(β) can be obtained from the matrix U of Alg. 5.6
(combinatorial-ising), or better from Kaufman’s explicit formula (see
Exerc. 5.9). For concreteness, we consider the case of periodic boundary
conditions, where the ∆E = 4, and where there are N levels of excited
states. In this case, the Boltzmann weight of the kth excited state is
xke−βE0 , where x = e−4β . The partition function can be expressed as a
polynomial in x, where the prefactors are the densities of state,

Z̃(x) =
Z(β)
e−βE0

= N (0) + N (1)x + N (2) x2 + · · · + N (N) xN .

It now suffices to compute the partition functions of the Ising model at
N +1 different temperatures, x0 = e−4β0 , . . . , xN = e−4βN , to arrive at a
matrix equation relating the partition functions to the densities of state:⎡⎢⎢⎢⎣

1 x0 x2
0 . . . xN

0

1 x1 x2
1 . . . xN

1
...

...
...

...
1 xN x2

N . . . xN
N

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

A (Vandermonde matrix)

⎡⎢⎢⎢⎣
N (0)
N (1)

...
N (N)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Z̃0

Z̃1

...
Z̃N

⎤⎥⎥⎥⎦ . (5.17)

In principle, we can multiply both sides of eqn (5.17) (from the left)
by A−1 to obtain the densities of states. (The special type of matrix in
eqn (5.17) is called a Vandermonde matrix.)

As an alternative to matrix inversion, we could also obtain the den-
sities of state {N (0) , . . . ,N (N)} from repeated interpolations of the
partition function to zero temperature, where only the ground state
contributes to the partition function:

Z(x) � N (E0) e−βE0 for x → 0.

Extrapolating Z(β) to zero temperature thus gives the energy and the
degeneracy of the ground state. We can now go further and, so to speak,
peel off the result of this interpolation from our original problem, that
is, interpolate (Z̃k −N (0))/xk through a polynomial of order N − 1, in
order to determine N (1), etc.

For lattices beyond 4 × 4 or 6 × 6, the matrix inversion in eqn (5.17)
and the naive interpolation scheme both run into numerical instabili-
ties, unless we increase the precision of our calculation much beyond
the standard 32- or 64-bit floating-point formats discussed in Subsec-
tion 2.1.2. Overall, we may be better off using symbolic rather than
numerical computations, and relying on commercial software packages,
which are beyond the scope of this book. A compact procedure by Beale
(1996) allows one to obtain the exact density of states of the Ising model
for systems of size up to 100 × 100.

5.2 The Ising model—Monte Carlo algorithms 249

5.2 The Ising model—Monte Carlo

algorithms

Gray-code enumerations, as discussed in Subsection 5.1.1, succeed only
for relatively small systems, and high-temperature expansions, the sub-
ject of Subsection 5.1.4, must usually be stopped after a limited number
of terms, before they get too complicated. Only under exceptional cir-
cumstances, as in the two-dimensional Ising model, can these methods
be pushed much further. Often, Monte Carlo methods alone are able to
obtain exact results for large sizes. The price to be paid is that config-
urations are sampled rather than enumerated, so that statistical errors
are inevitable. The Ising model has been a major test bed for Monte
Carlo simulations and algorithms, methods and recipes.

Roughly speaking, there have been two crucial periods in Ising-model
computations, since it was realized that local Monte Carlo calculations
are rather imprecise in the neighborhood of the critical point. It took
a long time to appreciate that the lack of precision has two origins:
First, spins are spatially correlated on a certain length scale, called the
correlation length ξ. On this length scale, spins mostly point in the same
direction. It is difficult to turn a spin around, or to turn a small patch
of correlated spins, embedded in a larger region, where the spins are
themselves correlated. This large-scale correlation of spins is directly
responsible for the “critical slowing down” of simulations close to Tc.
Large correlation times are the first origin of the lack of precision. In
the infinite system, ξ diverges at the critical temperature, but in a finite
lattice, this correlation length cannot exceed the system size, so that
the simulation has a typical length scale which depends on system size.
This is the second origin of the lack of precision. In summary, we find
that, on the one hand, observables are difficult to evaluate close to Tc

because of critical slowing down. On the other hand, the observables
of the infinite lattice are difficult to evaluate, because they differ from
those computed for a finite system if we are close to the critical point.
Extrapolation to an infinite system size is thus nontrivial. The critical
slowing down of Monte Carlo algorithms is a natural consequence of a
diverging correlation length, and it can also be seen in many experiments,
in liquids, magnets, etc.

The second crucial period of simulations of the Ising model started
in the late 1980s, when it was finally understood that critical slowing
down is not an inescapable curse of simulation, as it is for experiments.
It was overcome through the construction of cluster algorithms which
enforce the detailed-balance condition with nonintuitive rules which are
unrelated to the flipping of single spins. These methods have spread from
the Ising model to many other fields of statistical physics.

5.2.1 Local sampling methods

A basic task in statistical physics is to write a local Metropolis algo-
rithm for the Ising model. This program is even simpler than a basic

250 Order and disorder in spin systems

Markov-chain simulation for hard disks (in Chapter 2). The Ising model
has a less immediate connection with classical mechanics (there is no
molecular dynamics algorithm for the model). Its phase transition is
better understood than that of hard disks, and the results can be com-
pared with exact solutions in two dimensions, even for finite systems,
so that very fine tests of the algorithm on lattices of any size are pos-
sible. Analogously to Alg. 2.9 (markov-disks), we randomly pick a site
and attempt to flip the spin at that site (see Fig. 5.14). The proposed

a

‘flip’ spin

(move) b

Fig. 5.14 Local Monte Carlo move a → b in the Ising model, to be

accepted with probability min
h
1, e−β(Eb−Ea)

i
.

move between configuration a, with energy Ea, and configuration b, with
energy Eb, must be accepted with probability min

{
1, e−β(Eb−Ea)

}
, as

straightforwardly implemented in Alg. 5.7 (markov-ising). We must
beware of factors of two in evaluating the energy and thoroughly check
the results on small lattices against exact enumeration, before moving
on to larger-scale simulations (see Table 5.7).

procedure markov-ising

input {σ1, . . . , σN}, E
k ← nran (1, N)
h ←∑l σNbr(l,k)

∆E ← 2hσk

Υ ← e−β∆E

if (ran (0, 1) < Υ) then{
σk ← −σk

E ← E + ∆E

output {σ1, . . . , σN}, E
——

Algorithm 5.7 markov-ising. Local Metropolis algorithm for the Ising
model in d dimensions.

Table 5.7 Results of five runs of
Alg. 5.7 (markov-ising) on a 6 × 6 lat-
tice with periodic boundary conditions
at temperature T = 2.0 with, each
time, 1×106 samples (see also Table 5.3)

Run 〈E/N〉 cV

1 -1.74772 0.68241
2 -1.74303 0.70879
3 -1.75058 0.66216
4 -1.74958 0.68106
5 -1.75075 0.66770

This program easily recovers the phase transition between a para-
magnet and a ferromagnet, which takes place in two dimensions at
an inverse temperature βc = log(1 +

√
2)/2 � 0.4407 (see Fig. 5.17).

A naive approach for detecting the phase transition consists in plot-
ting the mean absolute magnetization as a function of temperature (see
Fig. 5.16). However, there are more expert approaches for locating Tc

(see Exerc. 5.6).
Around the critical temperature, the local Monte Carlo algorithm is

5.2 The Ising model—Monte Carlo algorithms 251

-256

0

256

0 400000 800000

m
ag

n
et

iz
at

io
n
 Σ

k
 σ

k

Number of samples i

Fig. 5.15 Total magnetization during a run for a 16 × 16 Ising
model with periodic boundary conditions at β = 0.42 (from Alg. 5.7
(markov-ising)).

increasingly slow. This is because the distribution of the total magneti-
zation becomes wide: between the high-temperature regime where it is
sharply peaked at zero magnetization, and the low-temperature regime
with its double peak structure, the system passes through a regime where
the probability distribution of the magnetization is essentially flat for al-
most all values of M . Such a distribution is extremely difficult to sample
with a single spin-flip algorithm.

0

1

0 1 2 3 4 5
ab

so
lu

te
 m

ag
n
et

iz
at

io
n
 |
〈m

〉|

temperature T

8 × 8
16 × 16
32 × 32

Fig. 5.16 Mean absolute magneti-
zation per spin 〈|m|〉 as a func-
tion of temperature, from Alg. 5.7
(markov-ising).

To illustrate this point, we consider, in Fig. 5.15, the trajectory of
1×106 iterations (number of samples) of a 16 × 16 Ising model with
periodic boundary conditions. Visual inspection of the trajectory reveals
that magnetizations in the range from −256 to +256 appear with roughly
equal probabilities. This means that a Markov chain for M is more or
less equivalent to a random walk on an interval of of length 512, with
a step width ∆M = 2. For a random walk, the distance covered (∆M)
grows as the square root of the number of iterations ∆i (∆M ∝ √

∆i, see
the analogous discussion in Subsection 3.5.2). One independent sample
is generated when the distance covered is of the order of the length of
the interval, measured in units of the step width. We thus find that an
independent sample is generated every ∆i � 2562 steps, so that we can
expect the following:{

number of independent
samples in Fig. 5.15

}
� 1×106/2562 � 15

This again agrees with what we would conclude from a visual inspection
of the figure.

The slowing-down of the local Monte Carlo algorithm close to Tc can
be interpreted as the effect of the divergence of the correlation length
as we approach the critical point. In other words, the local algorithm
slows down because it changes the magnetization by a small amount ∆M

only, in a situation where the distribution of magnetizations is wide, if
measured in units of ∆M .

252 Order and disorder in spin systems

low T (β = 0.5) high T (β = 0.3)

Fig. 5.17 Ising-model configurations in a 32 × 32 square lattice with
periodic boundary conditions (from Alg. 5.7 (markov-ising)).

5.2.2 Heat bath and perfect sampling

In this subsection, we discuss an alternative to the Metropolis Monte
Carlo method, the heat bath algorithm. Rather than flipping a spin at
a random site, we now thermalize this spin with its local environment
(see Fig. 5.18). In the presence of a molecular field h at site k, the spin
points up and down with probabilities π+

h and π−
h , respectively, where

π+
h =

e−βE+

e−βE+ + e−βE− =
1

1 + e−2βh
,

π−
h =

e−βE−

e−βE+ + e−βE− =
1

1 + e+2βh
.

(5.18)

These probabilities are normalized (π+
h +π−

h = 1). To sample {π+
h , π−

h },

(with probability π+
h)

a

(with probability π−h)

b

Fig. 5.18 Heat bath algorithm for the
Ising model. The spin on the central site
has a molecular field h = 2 (see Alg. 5.8
(heatbath-ising)).

we can pick a random number Υ = ran (0, 1) and make the spin point up
if Υ < π+

h and down otherwise. The action taken is independent of the
spin’s orientation before the move (see Alg. 5.8 (heatbath-ising)). The
heat bath algorithm implements a priori probabilities for the smallest
possible subsystem, a single site:

A(± → +) = π+
h ,

A(± → −) = π−
h .

The heat bath algorithm is local, just like the Metropolis algorithm, and
its performance is essentially the same. The algorithm is conveniently
represented in a diagram of the molecular field h against the random
number Υ (see Fig. 5.20).

We now discuss an interesting feature of the heat bath algorithm,
which allows it to function in the context of the perfect-sampling ap-
proach of Subsection 1.1.7. We first discuss the concept of half-order for
configurations in the Ising model (see Fig. 5.19). We may say that, for
a site, an up spin is larger than a down spin, and a whole configuration

5.2 The Ising model—Monte Carlo algorithms 253

procedure heatbath-ising

input {σ1, . . . , σN}, E
k ← nran (1, N)
h ←∑n σNbr(n,k)

σ′ ← σk

Υ ← ran (0, 1)
if (Υ < π+

h) then (see eqn (5.18)){
σk ← 1

else{
σk ← −1

if (σ′
= σk) E ← E − 2hσk

output {σ1, . . . , σN}
——

Algorithm 5.8 heatbath-ising. Heat bath algorithm for the Ising
model.

of spins {σ1, . . . , σN} is larger than another configuration {σ′
1, . . . , σ

′
N}

if the spins on each site k satisfy σk ≥ σ′
k.

<

<
σ2

<

<

< σ1

<
σ−

<
σ+<

σ5

<

σ4 σ3

Fig. 5.19 Half-order in the Ising model: configuration σ− is smaller and
σ+ is larger than all other configurations. σ4 and σ1 are unrelated.

In Fig. 5.19, σ+ and σ− are the two ground states of the Ising model,
but σ+ is larger and σ− is smaller than all other configurations. Let
us now apply the heat bath algorithm, with the same values of k and
Υ (see Alg. 5.8 (heatbath-ising)), to two configurations of spins σ =
{σ1, . . . , σN} ≥ σ′ = {σ′

1, . . . , σ
′
N}. Because of the half-ordering, the

molecular field hk of configuration σ is equal to or larger than the field

−4

−2

0

2

4

0 1

Υ = ran(0,1)

m
ol

ec
u
la

r
fi
el

d
 h

π+
−4π

+
−2 π+

0 π+
2 π+

4

m
ak

e sp
in

 d
ow

n

make spin up

Fig. 5.20 Action to be taken in the
heat bath algorithm as a function of the
molecular field h and the random num-
ber Υ.

h′
k, and on site k, the new spin σk picked will be larger than or equal

to the spin σ′
k (see Fig. 5.20). The heat bath algorithm thus preserves

the half-order of Fig. 5.19. In short, this is because the ordering of spin
configurations induces an ordering of molecular fields, and vice versa.

We can apply the heat bath algorithm to all possible configurations of
Ising spins and be sure that they will remain “herded in” by what results
from applying the algorithm to the configuration σ+ = {+, . . . , +} and
the configuration σ− = {−, . . . ,−}. This property allows us to use the

254 Order and disorder in spin systems

heat bath algorithm as a time-dependent random map in the coupling-
from-the-past framework of Subsection 1.1.7. At each iteration i, we
simply sample values {k, Υ}. This allows us to apply the heat bath
algorithm, as a map, to any configuration (see Fig. 5.21).

i = 0 (now)

i = − ∞

k = 9, Υ = 0.112
k = 1, Υ = 0.921

Fig. 5.21 A random-map Markov chain for a 3× 3 Ising model that has
been running since iteration i = −∞ (compare with Fig. 1.27).

We recall the basic idea of coupling from the past: in a Markov chain,
a configuration (at the present time, i = 0) is perfectly decorrelated
only with respect to configurations going back an infinite number of
iterations (see Fig. 5.21). However, it is possible to infer the configuration
at i = 0 by backtracking a finite number of steps (see Propp and Wilson
(1996)). Half-order makes this practical for the Ising model: during the
backtracking, we need not check all configurations (as we did for the
pebble game in Subsection 1.1.7). It suffices to apply the heat bath
algorithm for the all-up and the all-down configurations. The coming
together of these two extremal configurations at i = 0 indicates a general
merging of all configurations, and signals that the configuration at i = 0
is again a perfect sample.

For the ferromagnetic Ising model, perfect sampling is of fundamental
interest, but of limited practical importance because of the rapid con-
vergence of cluster algorithms (see Subsection 5.2.3). Nagging doubts
about convergence come up in closely related models (see Section 5.3),
and direct-sampling algorithms would be extremely valuable. In two di-
mensions, indirect counting methods using the Kac–Ward matrix U also
lead to direct sampling methods (similar to the algorithm for dimer con-
figurations in Subsection 6.2.3).

5.2.3 Cluster algorithms

Algorithm 5.7 (markov-ising) and its variants, the classic simulation
methods for spin models, have gradually given way to cluster algorithms,
which converge much faster. These algorithms feature large-scale moves.
In the imagery of the heliport game, they propose and accept displace-

5.2 The Ising model—Monte Carlo algorithms 255

ments on the scale of the system, rather than walk about the landing pad
in millimeter-size steps. In this subsection, we discuss cluster methods
in a language stressing the practical aspect of a priori probabilities.

We recall that single-spin-flip Monte Carlo algorithms are slow close
to Tc, because the histogram of essential values of the magnetization is
wide and the step width of the magnetization is small. To sample faster,
we must foster moves which change the magnetization by more than
±2. However, using the single-spin-flip algorithm in parallel, on several
sites at a time, only hikes up the rejection rate. Neither can we, so to
speak, solidly connect all neighboring spins of the same orientation and
flip them all at once. Doing so would quickly lead to a perfectly aligned
state, from which there would be no escape.

Let us analyze a more sophisticated rule for flipping spins. We suppose
that, starting from a random initial spin, a cluster is constructed by
adding, with probability p, neighboring sites with spins of the same
orientation. For the moment, this probability is an arbitrary parameter.
The above solid connection between neighboring spins corresponds to
p = 1. During the cluster construction, we keep a list of cluster sites,
but also one containing pocket sites, that is, new members of the cluster
that can still make the cluster grow. The cluster construction algorithm
picks one pocket site and removes it from the pocket. It then checks all of
this site’s neighbors outside the cluster with spins of like sign and adds
these neighbors, with probability p, to the pocket and the cluster (see
Fig. 5.22). After completion of the construction of the cluster, when the
pocket is empty, all spins in the cluster are flipped. This brings us from
the initial configuration a to the final configuration b (see Fig. 5.23).
From our experience with a priori probabilities, we know beforehand
that a suitable acceptance rule will ensure detailed balance between a
and b, for any 0 < p < 1. In going from a to b, the a priori construction

Fig. 5.22 Ising configuration with 10
cluster sites (the dark and the light
gray sites). The dark sites are pocket
sites.

probabilities A(a) and A(b), the acceptance probabilities P (a → b) and
P (b → a), and the Boltzmann weights π(a) and π(b), must respect the
generalized detailed-balance condition of Subsection 1.1.6:

π(a)A(a → b)P (a → b) = π(b)A(b → a)P (b → a). (5.19)

We must now compute the a priori probability A(a → b), the proba-
bility of stopping the cluster construction process at a given stage rather
than continuing and including more sites (see the cluster of gray sites in
configuration a in Fig. 5.23). A(a → b) is given by an interior part (the
two neighbors inside the cluster) and the stopping probability at the
boundary: each sites on the boundary of the cluster was once a pocket
site and the construction came to a halt because none of the possible
new edges was included. Precisely, the boundary ∂C of the cluster (with
one spin inside and its neighbor outside) involves two types of edge:

{
cluster in a
in Fig. 5.23

}
:

edges across ∂C︷ ︸︸ ︷⎡⎣ inside outside #
+ − n1

+ + n2

⎤⎦ E|∂C = n1 − n2 (5.20)

256 Order and disorder in spin systems

a b

Fig. 5.23 Ising-model configurations connected through a cluster flip. In
a, 16 edges {+,−} and 14 edges {+, +} cross the boundary.

(in the example of Fig. 5.23, n1 = 16 and n2 = 14). The a priori proba-
bility is A(a → b) = Ain · (1 − p)n2 because there were n2 opportunities
to let the cluster grow and none was taken. To evaluate the Boltzmann
weight, we concentrate on the energy across the boundary ∂C, given in
eqn (5.20). It follows that π(a) = πinπoute−β(n1−n2).

We consider the return move from configuration b back to a (see
Fig. 5.23 again), and evaluate the return probability A(b → a) and
the Boltzmann weight π(b). In the cluster for configuration b, the edges
across the boundary ∂C are now

{
cluster in b
in Fig. 5.23

}
:

edges across ∂C︷ ︸︸ ︷⎡⎣ inside outside #
− − n1

− + n2

⎤⎦ E|∂C = −n1 + n2.

The cluster construction probability A(b → a) contains the same inte-
rior part as before, but a new boundary part A(b → a) = Ain · (1−p)n1 ,
because there were n1 opportunities to let the cluster grow and again
none was accepted. By an argument similar to that above, the statisti-
cal weight of configuration b is π(b) = πinπoute−β(n2−n1). The interior
and exterior contributions to the Boltzmann weight are the same as for
configuration a. All the ingredients of the detailed-balance condition in
eqn (5.19) are now known:

e−β(n1−n2)(1 − p)n2P(a → b) = e−β(n2−n1)(1 − p)n1P(b → a). (5.21)

The acceptance probability is

P(a → b) = min
[
1,

e−β(n2−n1)(1 − p)n1

e−β(n1−n2)(1 − p)n2

]
= (5.22)

This equation will soon be simplified, but its main property is that it
can be evaluated explicitly for arbitrary p, like any other acceptance
probability stemming from the generalized detailed-balance condition:
with the p of our choice, we run the cluster construction, which termi-
nates with certain numbers n1 and n2 of satisfied and unsatisfied edges.

5.2 The Ising model—Monte Carlo algorithms 257

Equation (5.22) then yields the probability with which the constructed
move is accepted. Otherwise, we have to stay with the original configu-
ration, as we have done (with piles of pebbles on the heliport) since the
first pages of this book. On closer inspection of eqn (5.22), we write the
acceptance probability as

P(a → b) = min
[
1,

(
e−2β

1 − p

)n2 (1 − p

e−2β

)n1
]

.

The algorithm is even simpler (and at its peak efficiency) at the magic
value p = 1− e−2β , when the acceptance probability is equal to one: we
simply construct a cluster, then flip it, build another one, turns it over
. . . . This is the algorithm of Wolff (1989), which generalizes the original
cluster method of Swendsen and Wang (1987). The algorithm is easily
implemented with the help of a pocket P containing the active sites (see
Alg. 5.9 (cluster-ising)).

We need to work out one technical detail: how to check whether a
site k is already in C. As always, there is a simple solution: we may go
through the cluster and search it for k. It is better to set up a “flag”
on each site: on running Alg. 5.9 (cluster-ising) for the nth time, the
flag of a site entering the cluster is set to n, signaling that it is already
inside.

procedure cluster-ising

input {σ1, . . . , σN}
j ← nran (1, N)
C ← {j}
P ← {j}
while (P
= ∅) do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

k ← any element of P
for (∀ l
∈ C with l neighbor of k, σl = σk) do⎧⎨⎩

if (ran (0, 1) < p) then{ P ← P ∪ {l}
C ← C ∪ {l}

P ← P \ {k}
for ∀k ∈ C do{

σk ← −σk

output {σ1, . . . , σN}
——

Algorithm 5.9 cluster-ising. Cluster algorithm for the Ising model

at the magic value p = 1 − e−2β .

0

1

2

0 1 2 3 4 5

sp
ec

if
ic

 h
ea

t
ca

p
ac

it
y
 c

V

temperature T

4 × 4
16 × 16

Fig. 5.24 Specific heat capacity of
the two-dimensional Ising model with
periodic boundary conditions (from
Alg. 5.9 (cluster-ising); compare
with Fig. 5.6).

The cluster algorithm moves through configuration space with breath-
taking speed (for results, see Fig. 5.24). It far outpaces the local Markov-
chain algorithm, Alg. 5.7 (markov-ising), which suffers from critical
slowing down owing to its small step size (see Fig. 5.15). A typical clus-
ter flip easily involves ∼ 103 spins in a 64×64 Ising model (see Fig. 5.25)
and has the system make a giant leap. Running such a insightful code

258 Order and disorder in spin systems

Fig. 5.25 Large cluster with 1548 up spins in a 64×64 Ising model with
periodic boundary conditions (from Alg. 5.9 (cluster-ising), β = 0.43).

makes us understand the great potential payoff from investments in algo-
rithm design. The implementation of cluster algorithms such as Alg. 5.9
(cluster-ising) is straightforward, and the writing of the code takes
no more than a few hours. It is the understanding, especially the opera-
tional handling of probabilities, which is difficult to obtain. It is on this
point that we have been focusing.

In this context, it is essential to realize that powerful Monte Carlo
methods which allow one to reach huge system sizes, and obtain mil-
lions of essentially independent samples, are the exception rather than
the rule. As stressed throughout this book, one often has to face severe
restrictions on the number of statistically independent samples which
can be produced even during long runs. Moreover, even in cases where
Monte Carlo methods work well (as in the Ising model), there is tight
competition with other methods, such as transfer matrix approaches, ex-
act enumerations, and high-temperature expansions (which are usually,
however, less versatile). These methods only work for small lattices, but
they make up much ground with respect to the Monte Carlo approach
because they produce numerically exact results for small systems, and
can be extrapolated much better because they have no statistical uncer-
tainties. It takes dedication and programming skills, good understand-
ing, and fair judgment to find one’s way through this maze of models
and methods.

5.3 Generalized Ising models 259

5.3 Generalized Ising models

Interactions in nature vary in strength with distance but usually do not
change sign. This applies to the four fundamental forces in nature, and
also to many effective (induced) forces. The exchange interaction, due
to the overlap of d-electron orbitals on different lattice sites, which is
responsible for ferromagnetism, is of this type. It strives to align spins.
In addition, it falls off very quickly with distance. This explains why, in
the Ising model, the effective model for ferromagnetism, only nearest-
neighbor interactions are retained and longer-range interactions are ne-
glected.

Some other interactions are more complicated. One example will be
the depletion interaction of colloids considered in Chapter 6. We shall
see that at some distances, particles are attracted to each other, and at
other nearby distances they are repelled from each other. The dominant
interaction between ferromagnetic impurities in many materials is also
of this type. It couples spins over intermediate distances, but sometimes
favors them to be aligned, sometimes to be of opposite sign. Materials
for which this interaction is dominant are called spin glasses.

The theory of spin glasses, and more generally of disordered systems, is
an active field of research whose basic model is the Ising spin glass, where
the interaction parameter J is replaced by a term Jkl which is different
for any two neighbors k and l. More precisely, each piece of material
(each experimental “sample”) is modeled by a set of interactions {Jkl},
which are random, because their values depend on the precise distances
between spins, which differ from sample to sample. Each experimental
sample has its own set of random parameters which do not change during
the life of the sample (the {Jkl} are “quenched” random variables). Most
commonly, the interaction Jkl between neighboring sites is taken as ran-
domly positive and negative, ±1. One of the long-lasting controversies
in the field of spin glasses concerns the nature of the low-temperature
spin-glass phase in three spatial dimensions.

5.3.1 The two-dimensional spin glass

In this subsection, we pay a lightning visit to the two-dimensional spin
glass. Among the many interesting problems posed by this model, we re-
strict ourselves to running through the battery of computational meth-
ods, enumeration (listing and counting), local Monte Carlo sampling,
and cluster sampling. For concreteness, we consider a single Ising spin
glass sample on a 6×6 lattice without periodic boundary conditions (see
Fig. 5.26) with an energy

E = −Jkl

∑
〈k,l〉

σkσl,

where the parameters Jkl are defined in Fig. 5.26.

Table 5.8 Number of configurations
with energy E of the two-dimensional
spin glass shown in Fig. 5.26 (from
modified Alg. 5.3 (enumerate-ising))

E N (E) = N (−E)

0 6 969 787 392
−2 6 754 672 256

...
...

−34 59 456
−36 6 912
−38 672Algorithm 5.3 (enumerate-ising) is easily modified to generate the

density of states N (E) of this system (see Table 5.8). The main difference

260 Order and disorder in spin systems

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

sites

− + − + +

+ − − + +

− − − − +

− + + + +

+ + + − +

+ − − − +

− − + − + −

+ + + − + −

+ − + + + −

− − + − − −

+ − − − − +

J6,12 = J12,6 = −1

J30,36 = J36,30 = +1

couplings Jkl

Fig. 5.26 Neighbor scheme and coupling strengths of a two-dimensional
±1 spin glass sample without periodic boundary conditions.

with the ferromagnetic Ising model resides in the existence of a large
number of ground states. In our example, there are 672 ground states;
some of them shown in Fig. 5.27. The thermodynamics of this model
follows from N (E), using Alg. 5.4 (thermo-ising) (see Table 5.9). For
a quantitative study of spin glasses, we would have to average the energy,
the free energy, etc., over many realizations of the {Jkl}. However, this
is beyond the scope of this book.

Table 5.9 Logarithm of the partition
function and mean energy per particle
of the two-dimensional spin glass shown
in Fig. 5.26 (from modified Alg. 5.3
(enumerate-ising))

T log Z 〈E〉/N

1. 46.395 −0.932
2. 31.600 −0.665
3. 28.093 −0.495
4. 26.763 −0.389
5. 26.126 −0.319

Fig. 5.27 Several of the 672 ground states (with E = −38) of the two-
dimensional spin glass shown in Fig. 5.26.

Our aim is to check how the computational algorithms carry over from
the Ising model to the Ising spin glass. We can easily modify the local
Monte Carlo algorithm (see Alg. 5.10 (markov-spin-glass)), and re-
produce the data in Table 5.9. For larger systems, the local Monte Carlo
algorithm becomes very slow. This is due, roughly, to the existence of
a large number of ground states, which lie at the bottoms of valleys
in a very complicated energy landscape. At low temperature, Alg. 5.10
(markov-spin-glass) becomes trapped in these valleys, so that the lo-
cal algorithm takes a long time to explore a representative part of the
configuration space. In more than two dimensions, this time is so large
that the algorithm, in the language of Subsection 1.4.1, is practically
nonergodic for large system sizes.

The cluster algorithm of Subsection 5.2.3 can be generalized to the
case of spin glasses (see Alg. 5.11 (cluster-spin-glass)) by changing
a single line in Alg. 5.9 (cluster-ising) (instead of building a cluster
with spins of same sign, we consider neighboring spins σj and σk that
satisfy σjJjkσk > 0). Algorithm 5.11 (cluster-spin-glass) allows to

5.3 Generalized Ising models 261

procedure markov-spin-glass

input {σ1, . . . , σN}, E
k ← nran (1, N)
∆E ← σk

∑
l JklσNbr(l,k) (matrix {Jkl} from Fig. 5.26)

Υ ← e−β∆E

if (ran (0, 1) < Υ) then{
σk ← −σk

E ← E + ∆E

output {σ1, . . . , σN}, E
——

Algorithm 5.10 markov-spin-glass. Local Metropolis algorithm for
the Ising spin glass.

recover the data in Table 5.9, but it does not lead to the spectacular
performance gains that we witnessed in the ferromagnetic Ising model.

procedure cluster-spin-glass

input {Jkl}
...
while (P
= ∅) do⎧⎪⎨⎪⎩

k ← any element of P
for (∀ l
∈ C with l neighbor of k, σlJlkσk > 0) do
...

——

Algorithm 5.11 cluster-spin-glass. Lines that must be changed in
order in Alg. 5.9 (cluster-ising) to allow it to be used for spin glasses.

The reason for this lack of efficiency is the following. The cluster algo-
rithm for the Ising model was constructed with the aim of making large
strides in magnetization at each step. This enables quick moves between
the two ground states of the Ising model, but does not facilitate moves
between the large number of valleys in the spin glass.

Finally, Alg. 5.6 (combinatorial-ising) can also be generalized to
the two-dimensional spin glass, and we again must modify only a few
lines (see Alg. 5.12 (combinatorial-spin-glass)). This algorithm (Saul
and Kardar 1993) can reproduce the data in Table 5.9 exactly. It works
for large two-dimensional spin glasses, where Gray-code enumeration is
not an option. It represents the best computational method for study-
ing the thermodynamics of two-dimensional spin glasses, allowing one to
reach very large system sizes and to average over many samples. How-
ever, the method cannot be generalized to three dimensions.

In conclusion, in this subsection we have briefly discussed the Ising
spin glass in two dimensions, with the aim of testing our algorithms. Lo-
cal Monte Carlo methods slow down so much that they are practically
useless, and cluster algorithms do not improve the convergence. How-
ever, the purely theoretical combinatorial approach of Kac and Ward,

262 Order and disorder in spin systems

procedure combinatorial-spin-glass⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎨⎪⎪⎩
...
U(j, j′) ← Jkk′u→(n, n′) (etc.)
...

——

Algorithm 5.12 combinatorial-spin-glass. One of the four changes
that allows Alg. 5.6 (combinatorial-ising) to be used for spin glasses.

which is closely related to Onsager’s solution of the two-dimensional
Ising model, turns into a computational algorithm. Improved versions of
Alg. 5.12 (combinatorial-spin-glass) nowadays run on supercomput-
ers, attacking problems as yet unsolved. The metamorphosis of the com-
binatorial solution into a practical algorithm illustrates once more that
there is no separation between computational and theoretical physics.

5.3.2 Liquids as Ising-spin-glass models

The present chapter’s main focus—the Ising model—is doubly universal.
First, the Ising model is universal in the sense of critical phenomena.
Near the critical temperature, the correlation length is much larger than
the lattice spacing, the range of interactions and all other length scales.
All detailed properties of the lattice structure and the interaction then
become unimportant, and whole classes of microscopic models become
equivalent to the Ising model.

Second, the Ising model is universal because it appears as a funda-
mental model in many branches of physics and beyond: it is a magnet
and a lattice gas, as already discussed, but also a prominent model of
associative memory in the field of theoretical neuroscience (the Hopfield
model). Furthermore, it appears in nuclear physics, in coding theory,
in short, wherever pairs of coupled binary variables play a role. In this
subsection, we describe a universality of this second kind. We show how
interacting liquids of particles in continuous space, with complicated
classical pair potentials, can be mapped onto the Ising spin glass. This
mapping allows us to extend the pivot cluster algorithm of Chapter 2 to
general liquids, as first proposed by Liu and Luijten (2004).

The pivot cluster algorithm of Subsection 2.5.2 moves particles via a
random symmetry operation, a reflection or rotation about a random
pivot (see Fig. 5.28). Let us apply it, not to hard spheres, but to a liq-
uid of particles interacting with a pair potential V (rkl), where rkl is
the Cartesian distance between particles k and l. For concreteness, we
consider N particles in a box with periodic boundary conditions. The
symmetry operation is a reflection with respect to a vertical axis. Be-
cause of the boundary conditions, the axis can be scrolled so that it
comes to lie in the center of the box (see Fig. 5.28, and the discussion
in Subsection 2.5.2). Only pivot transformations (flips) are allowed, and
each particle can have only two positions, so that there are 2N config-

5.3 Generalized Ising models 263

1
2

3

E12 + E13 + E23

r

1

2′

3

E′
12 + E13 + E′

23

r′

1

2

3′

E12 + E′
13 + E′

23

r′

1

2′

3′

E′
12 + E′

13 + E23

r

Fig. 5.28 A liquid as an Ising spin glass. The distance between particles
2 and 3 is either r (with energy E23) or r′ (with energy E′

23).

urations (the same as the number of configurations of N Ising spins).
Furthermore, the interaction energy between particle k and l can take
only two values:

Ekl : when both k and l are in original position or are flipped,
E′

kl : when either k or l is flipped.

A spin variable σk can be associated with the two possible positions of
particle k:

σk =

{
1 if k is in its original position
−1 if k is flipped

.

For a fixed pivot position, the particle (spin) k and the particle (spin) l
are coupled through an interaction parameter

Jkl =
1
2

(Ekl − E′
kl) ,

and the total energy of the system is{
energy

of system

}
=
∑
〈k,l〉

Jklσkσl︸ ︷︷ ︸
Ising spin glass

+
1
2

∑
〈k,l〉

(Ekl + E′
kl)︸ ︷︷ ︸

const

.

With this definition, the liquid of N particles with arbitrary pair in-
teraction is isomorphic to an Ising spin glass. It can be simulated with
Alg. 5.11 (cluster-spin-glass) (see Liu and Luijten (2004)). Pivots
are chosen randomly, and for each pivot, a single cluster is flipped. The
pivot cluster algorithm for liquids is a powerful tool for studying inter-
acting binary mixtures, and it has great potential for other problems in
soft condensed matter physics. However, systems must be chosen care-
fully in order to avoid constructing clusters which comprise the whole
system. As mentioned, the algorithm points to a far-reaching equivalence
between spin models and classical liquids.

264 Exercises

Exercises

(5.1) Create the neighbor table Nbr(n, k) of Fig. 5.2 for
an L × L′ square lattice with or without periodic
boundary conditions. The subroutine implementing
the algorithm may incorporate the following frag-
ment

input {L, L′, lattice}
if (lattice = “period”) then˘

. . .
elsĕ

. . .
. . .

This subroutine is the only lattice-specific compo-
nent in many programs discussed in the following
exercises.

(Section 5.1)

(5.2) Generate the list of all configurations of N Ising
spins from the binary representation of the num-
bers {0, . . . , 2N − 1}. Determine the density of
states N (E) on small L × L square lattices with
periodic boundary conditions (compare with Ta-
ble 5.2). Compute the basic thermodynamic quan-
tities. Can you enumerate all the configurations on
the 6 × 6 lattice with this program?

(5.3) Implement the Gray code (Alg. 5.2 (gray-flip))
for N spins and test it by printing all the configu-
rations for small N (as in Table 5.1). Use the Gray
code together with Alg. 5.3 (enumerate-ising)
to generate the density of states of the two-
dimensional 2 × 2, 4 × 4, and 6 × 6 square lattices
with and without periodic boundary conditions.
NB: For the 6× 6 lattice, make sure your data for-
mat allows you to handle the very large numbers
appearing in N (E) for some of the energies.

(5.4) Implement Alg. 5.4 (thermo-ising) and compute
the mean energy and specific heat capacity of the
Ising model (use the density of states from Ta-
ble 5.2 or from Alg. 5.3 (enumerate-ising), as in
Exerc. 5.3). Test your implementation by alterna-
tively computing E and cV through discrete deriva-
tives of log Z (see eqns (5.2) and (5.5)).

(5.5) A lattice is called bipartite if its sites can be par-
titioned into two sets, S1 and S2, such that the
neighbors of a site are never in the same set as
the site itself. The square lattice without periodic

boundary conditions is always bipartite, but does
this also hold for the L×L′ square lattice with pe-
riodic boundary conditions? Show that the density
of states of the Ising model on a bipartite lattice
satisfies N (E) = N (−E). Can this relation be sat-
isfied on lattices which are not bipartite?

(5.6) Use single-spin-flip Gray code enumeration to gen-
erate the histogram of the number of configura-
tions with an energy E and a magnetization M ,
N (E, M) in the Ising model on 2×2, 4×4, and 6×6
square lattices with periodic boundary conditions.
Recover the data of Table 5.2 by summing over
all M . Generate from N (E, M) the temperature-
dependent probability distribution πM of the to-
tal magnetization per spin m = M/N (compare
with Fig. 5.7). Discuss the qualitative change of
πm between the single-peak and the double-peak
regimes, which is well captured by the Binder cu-

mulant B(T) = 1
2

h
3 − ˙

m4(T)
¸
/

˙
m2(T)

¸2
i

(see

Binder (1981)). Plot B(T) for the three lattices.
Determine the high- and low-temperature limits of
B(T). Using your numerical results, confirm that
the Binder cumulants for different lattice sizes in-
tersect almost exactly at Tc (see eqn (5.6)).

(5.7) Implement Alg. 5.5 (edge-ising), generating all
the loop configurations on small lattices with and
without periodic boundary conditions. Use his-
tograms (as in Table 5.2) to compute the partition
function for small lattices (check against direct enu-
meration). Why do some of these lattices have the
same number of configurations with e edges and
with E − e edges, where E is the total number of
edges on the lattice? Finally, use the results ob-
tained with Alg. 5.5 (edge-ising) on small lattices
to determine the number of loop configuration with
4, 6, and 8 edges on very large L × L lattices with
periodic boundary conditions. Determine the par-
tition function at very high temperatures (low β)
on these lattices.

(5.8) Consider the 32 × 32 matrix U4×2 in Subsec-
tion 5.1.4. Use a naive computer program to
determine all cycle configurations with nonzero
weights. Compute the weight for each cycle con-
figuration and show that the 64 terms which do
not cancel correspond to the loop configurations
in Fig. 5.11 (You should find a total of 144 cy-

Exercises 265

cle configurations with nonzero weights.) Generate
the matrix UL×L on larger lattices using Alg. 5.6
(combinatorial-ising). Compute det UL×L using
a standard numerical linear-algebra routine. Com-
pare with the results of Gray-code enumerations for
small lattices.
NB: To simplify the enumeration of cycle config-
urations in the naive program, note that a row
vector{uk,1, . . . , uk,16} which differs from zero only
on the diagonal contributes to trivial cycles only.

(5.9) Implement Kaufman’s formula (Kaufman 1949) for
the partition function of the Ising model on a L×L
lattice with periodic boundary conditions from the
following fragment:

. . .
γ0 ← log

`
e2β tanh β

´
for k = 1, . . . , 2L − 1 doj

Υ ← cosh2 (2β) / sinh (2β) − cos (k�/L)

γk ← log
`
Υ +

√
Υ2 − 1

´
Υ ← sinhL2/2 (2β)
{Y1, . . . , Y4} ← {Υ, . . . , Υ}
for k = 0, . . . , L − 1 do8>><

>>:
Y1 ← 2Y1 cosh (γ2k+1L/2)
Y2 ← 2Y2 sinh (γ2k+1L/2)
Y3 ← 2Y3 cosh (γ2kL/2)
Y4 ← 2Y4 sinh (γ2kL/2)

Z ← 2L2/2−1 (Y1 + Y2 + Y3 + Y4)
. . .

Test output of this program against exact enumer-
ation data, from your own Gray-code enumeration
on the lattice with periodic boundary conditions,
or from Table 5.3. Then consult Kaufman’s original
paper. For a practical application of these formulas,
see, for example, Beale (1996).

(Section 5.2)

(5.10) Implement Alg. 5.7 (markov-ising) (local
Metropolis algorithm for the Ising model) and test
it against the specific heat capacity and the energy
for small lattices from exact enumeration to at least
four significant digits (see Table 5.3). Improve your
program as follows. The exponential function eval-
uating the Boltzmann weight may take on only a
few values: replace it by a table to avoid repeated
function evaluations. Also, a variable Υ > 1 will
never be smaller than a random number ran (0, 1):
avoid the superfluous generation of a random num-
ber and comparison in this case. Again test the
improved program against exact results. Generate
plots of the average absolute magnetization against

temperature for lattices of different sizes (compare
with Fig. 5.16).

(5.11) Implement Alg. 5.9 (cluster-ising) with sets
C,Fold, and Fnew simply programmed as vec-
tors. Check for cluster membership through sim-
ple look-up. Test your program against specific-
heat-capacity and mean-energy data obtained by
exact enumeration on small lattices. Improvements
of this program depend on the way your computer
language treats vectors and lists. If possible, han-
dle the initial conditions as follows (compare with
Exerc. 1.3): at each temperature T , let the pro-
gram search for an initial configuration generated
at that same temperature (choose file names which
encode T). If such a file does not exist, choose ran-
dom initial spins. The final configuration of each
run should be made into an initial configuration for
the next run. Use this improved program to com-
pute histograms of the magnetization and to plot
the Binder cumulant as a function of T (compare
with Exerc. 5.6). Reconfirm that Binder cumulants,
at different lattice sizes, intersect almost exactly at
Tc.

(Section 5.3)

(5.12) Implement the local Monte Carlo algorithm for the
two-dimensional ±1 spin glass. Thoroughly test it
in the specific case of Fig. 5.26 (compare the mean
energies per particle with Table 5.9, for the choice
of Jkl given). Compute the specific heat capacity,
and average over many samples. Study the behav-
ior of the ensemble-averaged specific heat capacity
for square lattices of sizes between 2×2 and 32×32.

(5.13) Consider N particles, constrained onto a unit circle,
with positions {x1, . . . ,xN}, satisfying |xk| = 1.
Particles interact with a Lennard-Jones potential

Ekl = |∆x|12 − |∆x|6,

where ∆x = xk−xl is the two-dimensional distance
vector. Implement the spin-glass cluster algorithm
of Liu and Luijten (2004) for this problem. To test
your program, compute the mean energy per par-
ticle, and compare it, for N ≤ 6, with the exact
value obtained by Riemann integration. (You may
also compare with the results of a local Monte Carlo
simulation.)
NB: If Alg. 5.11 (cluster-spin-glass) exists,
adapt it for the particle simulation. Otherwise,
write a naive version of the cluster algorithm for
a few particles.

266 References

References

Beale P. D. (1996) Exact distribution of energies in the two-dimensional
Ising model, Physical Review Letters 76, 78–81

Binder K. (1981) Finite size scaling analysis of Ising-model block distri-
bution-functions, Zeitschrift für Physik B–Condensed Matter 43, 119–
140

Ferdinand A. E., Fisher M. E. (1969) Bounded and inhomogeneous Ising
models. I. specific-heat anomaly of a finite lattice, Physical Review 185,
832–846

Kac M., Ward J. C. (1952) A combinatorial solution of the two-dimensio-
nal Ising model, Physical Review 88, 1332–1337

Kaufman B. (1949) Crystal Statistics. II. Partition function evaluated
by spinor analysis, Physical Review 76, 1232–1243

Liu J. W., Luijten E. (2004) Rejection-free geometric cluster algorithm
for complex fluids, Physical Review Letters 92, 035504

Onsager L. (1944) Crystal Statistics. I. A two-dimensional model with
an order-disorder transition, Physical Review 65, 117–149

Propp J. G., Wilson D. B. (1996) Exact sampling with coupled Markov
chains and applications to statistical mechanics, Random Structures &
Algorithms 9, 223–252

Saul L., Kardar M. (1993) Exact integer algorithm for the two-dimen-
sional ±J Ising spin glass, Physical Review E 48, R3221–R3224

Swendsen R. H., Wang J. S. (1987) Nonuniversal critical-dynamics in
Monte-Carlo simulations, Physical Review Letters 58, 86–88

Wolff U. (1989) Collective Monte-Carlo updating for spin systems, Phys-
ical Review Letters 62, 361–364

Entropic forces 6
6.1 Entropic continuum

models and mixtures 269

6.2 Entropic lattice model:
dimers 281

Exercises 303

References 305

In the present chapter, we revisit classical entropic models, where all
configurations have the same probability. This sight is familiar from the
hard-core systems of Chapter 2, where we struggled with the foundations
of statistical mechanics, and reached a basic understanding of molecu-
lar dynamics and Monte Carlo algorithms. At present, we are more in-
terested in describing entropic forces, which dominate many effects in
soft condensed matter (the physics of biological systems, colloids, and
polymers) and are also of fundamental interest in the context of order–
disorder transitions in quantum mechanical electronic systems.

The chapter begins with a complete mathematical and algorithmic
solution of the problem of one-dimensional hard spheres (the “random
clothes-pins” model) and leads us to a discussion of the Asakura–Oosawa
depletion interaction, one of the fundamental forces in nature, at least
in the realm of biological systems, colloids, and polymers. This multi-
faceted, mysterious interaction is at its strongest in binary systems of
large and small particles, where interesting effects and phase transitions
appear even at low density for no other reason than the presence of con-
stituents of different sizes. Binary oriented squares in two dimensions
provide the simplest model for colloids where the depletion interaction
is sufficiently strong to induce a demixing (flocculation) transition. This
extremely constrained model has not been solved analytically, and re-
sists attacks by standard local Monte Carlo simulation. However, a sim-
ple cluster algorithm—set up in a few dozen lines—samples the binary-
squares model without any problems.

In the second part of this chapter, we consider dimers on a lattice, the
archetypal model of a discrete entropic system where orientation effects
dominate. This lattice system has profound connections with the Ising
model of a magnet (see Chapter 5). Ever since Pauling’s theory of the
benzene molecule in terms of resonating singlets (dimers), the theory
of dimers has had important applications and extensions in molecular
physics and condensed matter theory.

From a computational point of view, dimers lead us to revisit the
issue of enumeration, as in Chapter 5, but here with the chance to as-
similate systematic “breadth-first” and “depth-first” techniques, which
are of general use. These tree-based methods are second only to the
extremely powerful enumeration method based on Pfaffians, which we
shall go through in detail. Again, we discuss Monte Carlo methods, and
conclude with discussions of order and disorder in the monomer–dimer
model.

Clothes-pins are randomly distributed on a line (see Fig. 6.1): any pos-
sible arrangements of pins is equally likely. What is the probability of
a pin being at position x? Most of us would guess that this probability
is independent of position, but this is not the case: pins are much more
likely to be close to a boundary, as if attracted by it. They are also
more likely to be close to each other. In this chapter, we study clothes-
pin attractions and other entropic interactions, which exist even though
there are no charges, currents, springs, etc. These interactions play a
major role in soft condensed matter, the science of colloids, membranes,
polymers, etc., but also in solid state physics.

0 L

Fig. 6.1 15 randomly positioned pins on a segment of length L.

6.1 Entropic continuum models and mixtures 269

6.1 Entropic continuum models and

mixtures

In this section, we treat two continuum models which bring out clearly
the entropic interactions between hard particles. We concentrate first
on a random-pin model (equivalent to hard spheres in one dimension),
and then on a model of a binary mixture of hard particles, where the
interaction between particles is strong enough to induce a phase transi-
tion. This model is easily simulated with the pivot cluster algorithm of
Chapter 2.

6.1.1 Random clothes-pins

2σ

x

Fig. 6.2 Clothes-pin in side view (left)
and front view (right).

We consider clothes-pins of width 2σ on a washing line (a line segment)
between boundaries at x = 0 and x = L, as in Fig. 6.1. The pins
are placed, one after another, at random positions, but if an overlap
is generated, we take them all off the line and start anew (see Alg. 6.1
(naive-pin)). This process places all pins with a flat probability distri-
bution

π(x1, . . . , xN) =

{
1 if legal
0 otherwise

. (6.1)

Two pins overlap if they are less than 2σ away from each other. Likewise,
a pin overlaps with a boundary if it is less than σ away from x = 0 or
x = L (see Fig. 6.2). Equation (6.1) corresponds to a trivial Boltzmann
weight with zero energy for each nonoverlapping configuration and in-
finite energy for arrangements of pins which are illegal—our pins are
one-dimensional hard spheres.

procedure naive-pin

1 for k = 1, . . . , N do⎧⎨⎩
xk ← ran (σ, L − σ)
for l = 1, . . . , k − 1 do{

if (|xk − xl| < 2σ) goto 1 (reject sample—tabula rasa)
output {x1, . . . , xN}
——

Algorithm 6.1 naive-pin. Direct-sampling algorithm for N pins of
width 2σ on a segment of length L (see Alg. 2.7 (direct-disks)).

The partition function of this system is

ZN,L =
∫ L−σ

σ

dx1 . . .

∫ L−σ

σ

dxN π(x1, . . . , xN). (6.2)

(One often multiplies this partition function with a factor 1/N !, in or-
der to avoid a problem called the Gibbs paradox. However, for distin-
guishable pins, the definition in eqn (6.2) is preferable.) The N -particle
probability π(x1, . . . , xN) is totally symmetric in its arguments and thus

270 Entropic forces

satisfies the following for any permutation P of the indices {1, . . . , N}:

π(x1, . . . , xN) = π(xP1 , . . . , xPN
).

The complete domain of integration separates into N ! sectors, one for
each permutation xP1 < · · · < xPN

. Each sector gives the same contri-
bution to the integral, and we may select one ordering and multiply by
the total number of sectors:

ZN,L = N !
∫ L−σ

σ

dx1 . . .

∫ L−σ

σ

dxNπ(x1, . . . , xN)Θ(x1, . . . , xN) (6.3)

(the function Θ is equal to one if x1 < x2 < · · · < xN and zero other-
wise). We know that pin k has k−1 pins to its left, so that we may shift
all the arguments {x1, . . . , xN} by k − 1 pin widths and by σ, because
of the left boundary. Likewise, to the right of pin k, there are N − k − 1
pins, so that, with the transformations

y1 = x1 − σ, . . . , yk = xk − (2k − 1)σ, . . . , yN = xN − (2N − 1)σ,

we obtain the integral

ZN,L = N !
∫ L−2Nσ

0

dy1 . . .

∫ L−2Nσ

0

dyN Θ(y1, . . . , yN), (6.4)

from which the weight function π has disappeared, and only the order
y1 < · · · < yN remains enforced by the function Θ. Undoing the trick
which took us from eqn (6.2) to eqn (6.3), we find that ZN,L is equal to
the Nth power of the effective length of the interval:

ZN,L =

{
(L − 2Nσ)N if L > 2Nσ

0 otherwise
. (6.5)

From eqns (6.2) and (6.5), it follows that the acceptance rate of Alg. 6.1
(naive-pin) is extremely small:

paccept = (L − 2Nσ)N/(L − 2σ)N , (6.6)

which makes us look for more successful sampling approaches using the
transformed variables {y1, . . . , yN} in eqn (6.4). However, sampling this
integral literally means picking uniform random numbers {y1, . . . , yN}
between 0 and L − 2Nσ but accepting them only if y1 < · · · < yN .
This does even a worse job than the naive random-pin program, with an
acceptance rate of 1/N !, an all-time low.

It may be intuitively clear that this worst of all algorithms is in fact the
best of all . . . , if we generate the random numbers {y1, . . . , yN} as before,
and then sort them. To justify this trick, we decompose the sampling
of N random numbers {y1, . . . , yN} = {ran (0, 1) , . . . , ran (0, 1)} into
two steps: we first find the set of the values of the N numbers (without
deciding which one is the first, the second, etc.), and then sample a

6.1 Entropic continuum models and mixtures 271

permutation P giving the order of the numbers. The integral in eqn (6.4)
can then be written, in terms of the permutation P , as

eqn (6.4) =
∑
P

∫ L−2Nσ

0

d(yP1) . . .

∫ L−2Nσ

0

d(yPN
) Θ(yP1 , . . . , yPN

).

Among all the permutations, only P (obtained by sorting the numbers)
gives a nonzero contribution, in agreement with our intuition above. The
generation of random numbers yk, the sorting and the back-transforma-
tion from yk to xk are implemented in Alg. 6.2 (direct-pin), a rejection-
free direct-sampling algorithm for one-dimensional hard spheres.

procedure direct-pin

for k = 1, . . . , N do{
ỹk ← ran (0, L − 2Nσ)

{y1, . . . , yN} ← sort[{ỹ1, . . . , ỹN}]
for k = 1, . . . , N do{

xk ← yk + (2k − 1)σ
output {x1, . . . , xN}
——

Algorithm 6.2 direct-pin. Rejection-free direct-sampling algorithm
for N pins of width 2σ on a line segment of length L.

To check our reasoning about permutation sectors and our sorting
trick, we compare the rejection rate in eqn (6.6) with the empirical
rate of Alg. 6.1 (naive-pin) (see Table 6.1), and generate with both
algorithms the histograms of the probability π(x) for a pin to be at
position x (see Fig. 6.3).

Table 6.1 Number of accepted config-
urations for 107 attempts of Alg. 6.1
(naive-pin)

N 2σ/L Accepted Eqn (6.6)

3 0.1 4 705 436 4 705 075
10 0.03 383 056 383 056
30 0.01 311 305

1/L

0

L0

p
ro

b
a
b
il
it

y
 π

(x
)

(h
is

t.
)

position x

Fig. 6.3 Probability π(x) for a pin to be at position x, with N = 15, 2σ =
0.1, and L = 2 (from Alg. 6.2 (direct-pin), or Alg. 6.1 (naive-pin)).

Remarkably, the probability π(x) of finding a pin at position x on
the washing line depends strongly on position, even though we have put
them there with uniform probability (see eqn (6.1)). In particular, we

272 Entropic forces

are more likely to find a pin close to the boundaries than in the middle
of the line. There are intricate oscillations as a function of x. At one
particular point, the probability of finding a pin falls almost to zero.

0 Lx

add k add N − k − 1

Fig. 6.4 Adding k pins to the left and N − k − 1 others to the right of
the first pin, at x, in order to compute the probability π(x).

All of this is quite mysterious, and we would clearly be more com-
fortable with an analytic solution for π(x). This is what we shall obtain
now. We first place a pin at position x, and then add k other pins to its
left and another N − k − 1 pins to its right. This special arrangement
(see Fig. 6.4) has a probability πk(x), and the sum over all types of
arrangement, putting k pins to the left (for all k) and N − 1 − k pins
to the right of the particle already present at x, gives π(k). We need to
include a combinatorial factor

(
N−1

k

)
, reflecting the number of choices

for picking k out of the N − 1 remaining pins, and to account for the
statistical weights Zk,x−σ and ZN−1−k,L−x−σ:

π(x) =
N−1∑
k=0

1
ZN,L

(
N − 1

k

)
Zk,x−σZN−1−k,L−x−σ︸ ︷︷ ︸
πk(x)

. (6.7)

In eqn (6.8), we have used the fact thatZ a

0
dx xk(a−x)l = ak+l+1 k! l!

(k + l + 1)!
.

The probability is normalized to
∫

dx π(x) = 1 if
∫

dx πk(x) = 1/N ,
as can be seen from∫ L

0

dx πk(x) =
∫ σ[1+2(k−N)]+L

σ(1+2k)

dx πk(x) =
1
N

. (6.8)

We analyze π(x) close to the left boundary where x � σ, and where only
the k = 0 term contributes, and obtain the following from eqns (6.5)
and (6.7):

π(x � σ) = π0(x) =
ZN−1,L−x−σ

ZN,L
� 1

L − 2Nσ

[
1 − N − 1

L − 2Nσ
(x − σ)

]
.

At the left boundary (x = σ), the probability is much larger than the
average value 1/L (in Fig. 6.3, π(x = σ) = 4/L). For x � σ, π(x)
decreases simply because the remaining space to put other particles in
diminishes. A little farther down the line, the peaks in π(x) (see Fig. 6.3)

6.1 Entropic continuum models and mixtures 273

arise from the setting-in of sectors k = 1, 2, 3 . . . , that is, every 2σ. They
die away rapidly.

The time has come to compare our system of pins on a line segment
with the analogous system on a circle, that is, with periodic boundary
conditions. In the first case, the probability π(x) depends explicitly on
x. This is the quantity that we computed in eqn (6.7), and checked
with the results of numerical simulations. Periodic boundary conditions
(obtained by bending the line into a ring) make the system homogeneous,
and guarantee that the density, the probability π(x) of having a pin
at x, is everywhere the same. However, the pair correlation function
π(x, x′) on a ring (the probability of having one pin at x and another
at x′) will be inhomogeneous, for exactly the same reason that π(x) was
inhomogeneous on the line (see Fig. 6.5). We may cut one of the pins in
two for it to take the place of the two boundaries. This transformation
is exact: the boundary interacts with a pin in exactly the same way as
two pins with each other.

x x′

≡

0 x′′ L′

Fig. 6.5 A pair of pins on a ring (left) and a single pin on a line (right).

More generally, the pair correlation function π(x, x′) on a ring of
length L, for a system of N pins, agrees with the boundary correla-
tion function π(x′′ = |x′ − x| − σ) on a line of length L′ = L − 2σ, for
N − 1 pins:

π(xk, xl, L) = π2(|xk − xl|, L)︸ ︷︷ ︸
pair correlation

on ring

= π(|xk − xl| − σ, L − 2σ)︸ ︷︷ ︸
boundary correlation

on line

. (6.9)

6.1.2 The Asakura–Oosawa depletion interaction

Hard pins are the one-dimensional cousins of the hard-sphere systems of
Chapter 2. Without periodic boundary conditions, the density in both
systems is much higher at the boundaries than in the bulk. In contrast,
with periodic boundary conditions, the density is necessarily constant in
both systems. Nontrivial structure can be observed first in two-particle
properties, for example the pair correlation functions. For pins, we have
seen that the pair correlations were essentially identical to the corre-
lations next to a wall (see Fig. 6.5). In more than one dimension, the
pair correlations in a periodic system have no reason to agree with the
single-particle density in a finite box, because the mapping sketched in
Fig. 6.5 cannot be generalized.

274 Entropic forces

In order to better follow the variations of density and pair corre-
lation functions, we now turn to an effective description, which con-
centrates on a single particle or a pair of particles, and averages over
all the remaining particles. In our random-clothes-pin model, we in-
terpret the probability π(x)—the raw computational output shown in
Fig. 6.3—as stemming from the Boltzmann distribution of a single par-
ticle π(x) ∝ exp [−βV (x)], in an effective potential V (x), giving rise
to an (effective) force F (x) = −(∂/∂x) V (x). So we can say that the
increased probability π(x) is due to an attractive force on a pin even
though there are no forces in the underlying model. The entropic force
F (x) attracting the pin to the wall is counterbalanced by an effective
temperature. The force is “effective”: it is not generated by springs, fields
or charges. Likewise, the temperature does not correspond to the kinetic
energy of the particles. The forces and the temperature are created by
integrating out other particles. (In d = 1, we must imagine the pin as
able to hop over its neighbors, and not being limited in a fixed order.)

a b

Fig. 6.6 Two configurations of a clothes-pin on a line, with “halos” drawn
in white, and the accessible region in dark gray.

In drawing configurations of clothes-pins, it is useful to distinguish
between excluded regions of two types. The first is the “core”, the space
occupied by the pin itself. In addition, there is a second type of excluded
region, drawn in Fig. 6.6 as a white “halo”. The center of another pin
can penetrate into neither the core nor the halo. The total added width
of all pins is fixed, but the total added length of the halos is not: in
configuration a in Fig. 6.6, the halos add up to 4σ, whereas, in b, there
is only 2σ of white space (we also draw halos at the boundaries). It
follows that configuration b has more accessible space for other particles
than has a, and should have a higher probability: the pin is attracted
to the boundary. Analogously, the halo picture explains why two pins
prefer to be close to each other (their halos overlap and leave more space
for other particles).

We begin to see that hard-core objects quite generally have a halo
around them. This excluded region of the second type depends on the
configuration, and this gives rise to the interesting behavior of spheres,
disks, pins, etc. The simple halo picture nicely explains the density in-
crease near the boundaries, but fails to capture the intricate oscillations
in π(x) (see the plot of π(x) in Fig. 6.3). Halos are, however, a priceless

6.1 Entropic continuum models and mixtures 275

a b c

Fig. 6.7 Configurations of two disks in a box, with “halos”. The region
accessible to other disks is shown in dark gray.

guide to our intuition in more complex situations, whenever we need
qualitative arguments because there is no exact solution.

We now consider two-dimensional disks and spheres of same radius:
the halo forms a ring of width σ around a disk, which itself has a radius
σ. In Fig. 6.7, we consider three different configurations of two disks.
Evidently, the configuration c has a larger accessible area than has b, but
configuration a has the smallest of them all. We thus expect the density
to be higher in the corners than in the center of the box, as already shown
by our earlier simulations of hard disks in a box (in Subsection 2.1.3).

Particles in the corners or pairs of particles in close contact gain space
for other particles, but this space is quickly used up: unless the density
is really high, and space very precious, the effects described so far only
lead to local modulations of densities and correlation functions, not to
phase transitions.

Mixtures of particles of different size and, more specifically, mixtures
of small and large particles behave differently. To get a first rough idea,
we consider two large disks, with radius σl, surrounded by a large number
of small ones, of radius σs (see Fig. 6.8).

a b c

Fig. 6.8 Large disks in a box, surrounded by many small disks (a), and
effective description in terms of regions excluded for small disks (b, c).

We notice that now the halo around a large disk forms a ring of width
σs. The halo looks smaller than before, but is in fact much larger than
before, if we count how many small particles can be placed in it.

φ

Fig. 6.9 Elimination of accessible areas
(in dark gray) for a pair of disks (left)
and for squares (right).

We now compute (in the limit σs/σl → 0) how much halo is lost if two

276 Entropic forces

disks touch (the dark gray area in Fig. 6.9):

cos φ =
σl

σl + σs
� 1 − σs

σl
,

which implies that φ ∝ √σs/σl. We easily check that the area of the
dark gray disk segments behaves like{

lost area
(disk)

}
∝ σ2

l φ3 ∝ σ2
l

(
σs

σl

)3/2

=
√

σl

σs
σ2

s .

As the area per small disk is ∝ σ2
s , the lost halo area corresponds to the

space occupied by ∝√σl/σs small particles. This number (slowly) goes
to infinity as σs/σl → 0. We can redo this calculation for squares, rather
than disks (see Fig. 6.9 again), with the result:{

lost area
(squares)

}
∝ σlσs =

σl

σs
σ2

s ,

This lost halo area corresponds to many more small particles than in
the case of binary disks, and we can expect the depletion effects to be
much stronger in binary mixtures of squares than in disks.

a b c

Fig. 6.10 Large and small squares (a), and regions that are excluded for
small squares (b, c). Depletion effects are stronger than for disks.

Asakura and Oosawa (1954) first described the effective interaction
between hard-sphere particles, and pointed out its possible relevance to
biological systems, macromolecules, and proteins. Their theoretical de-
scription was on the level of our halo analysis. In the clothes-pin model,
we have already seen that the true interaction between two particles is
oscillatory, and richer than what the simple halo model suggests. But
there is complexity from another angle: even if we computed the exact
effective interaction potential of the two large particles in the boxes in
Figs 6.8 and 6.5, we would fail to be able to describe mixtures of large
particles in a sea of small ones. The probability of having three or more
particles at positions {x1,x2,x3, . . . } is not given by products of pair-
interaction terms. There is some benefit in keeping large and small par-
ticles all through our theoretical description, as modern computational
tools allow us to do.

6.1 Entropic continuum models and mixtures 277

6.1.3 Binary mixtures

We have come to understand that hard particles—pins, disks, spheres,
etc.—experience a curious depletion interaction because configurations
of a few particles which leave a lot of space for the rest have a higher
probability of appearing than others. This causes two hard particles to
strongly attract each other at small distance, then repel each other more
weakly as the distance between them becomes a little larger, then attract
again, etc.

As the large particles in a mixture of large and small ones have a cer-
tain propensity for each other, it is legitimate to ask whether they do
not simply all get closer together in part of the simulation box (together
with a few small ones), leaving the system phase-separated—demixed
into one phase rich in large particles and one rich in small particles.
In nature, phase separation, driven by energy gains at the expense of
entropy, is a very common phenomenon: gravitationally interacting par-
ticles underwent (incomplete) phase separation when forming stars and
planets (and leaving empty space) in the early universe; likewise, water
below the triple point phase-separates into a liquid phase (rich in water)
and a vapor phase (rich in air). In the case of hard particles, the effect
that we shall seek (and find) is special, and clearly paradoxical, as the
particles, at the expense of entropy, attempt to gain interaction energy,
which does not really exist, because it is only an effective quantity for
particles which move freely in space.

For ease of visualization, we discuss phase separation in two-dimen-
sional mixtures, where the effective interaction is stronger than in one
dimension, but less pronounced than in the three-dimensional case. To
directly witness the phase separation transition with a basic simulation,
we shall eventually have to enhance the interaction: we consider large
and small squares, rather than disks. As discussed, the depletion effects
are stronger in squares than in disks.

a a (+ move) b

Fig. 6.11 “Pope in the crowd” effect, which slows down the local Monte
Carlo motion of a large particle surrounded by many small ones.

Exact solutions for hard-sphere systems do not exist in more than
one dimension, and direct-sampling algorithms are unknown. We thus
turn to Markov-chain Monte Carlo simulation for models of large and
small particles at comparable, not necessarily high, densities. However,
because of the difference in size, there are many more small particles

278 Entropic forces

than large ones. The local Monte Carlo approach then encounters a
curious difficulty: virtually all attempted moves of large particles lead to
overlaps with one of the many small particles and must be rejected (see
Fig. 6.11). This “pope in the crowd” effect immobilizes the large particles
in the midst of the small ones, even though the densities are quite low.
This problem arises because the configurations are highly constrained,
not because they are densely packed.

In this situation (many constraints, and rather low density), the rejec-
tion-free pivot cluster algorithm of Subsection 2.5.2 is the method of
choice. This algorithm uses a transformation that maps the simulation
box onto itself and, when applied twice to a particle, returns it to its
original position. With periodic boundary conditions, reflections with
respect to any line parallel to the coordinate axes and also any point-
reflection can be used. In a square box, reflections with respect to a
diagonal are also possible.

a

starting

a (+ move)

covered overlapped

... ... b

Fig. 6.12 Pivot cluster algorithm for binary disks.

The transformation, when applied to a particle, provisionally breaks
the hard-core rule (see Fig. 6.12). A move starts with the choice of the
transformation and an arbitrary starting particle, in an initial config-
uration a. Any particle (large or small) that has generated an overlap
must eventually be moved, possibly generating new overlaps, etc. The
process is guaranteed to terminate with a legal configuration (as in the
final configuration b in Fig. 6.12). It satisfies detailed balance, as was
discussed in Section 2.5.

In this algorithm, two disks overlap if the periodic distance between
their centers is smaller than the sum of their radii (this condition is
checked using Alg. 2.6 (diff-vec)). Algorithm 6.3 (pocket-binary)
provides a simple implementation in a few dozen lines of code (the set
P , the pocket, contains the dark particles in Fig. 6.12, which still have
to be moved). Grid/cell schemes (see Subsection 2.4.1) can speed up
the check for overlap, but we do not need them for our modest sys-
tem sizes. Another highly efficient speedup is implemented in Alg. 6.3
(pocket-binary): disks that are fully covered by another disk are im-
mediately moved, without passing through the pocket (see Fig. 6.12).
These fully covered disks drop out of the consideration because they
cannot generate additional moves.

6.1 Entropic continuum models and mixtures 279

procedure pocket-binary

input {x1, . . . ,xN}
k ← nran (1, N)
P ← {k}
A ← {1, . . . , N} \ {k}
while (P
= {}) do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i ← any element of P
xi ← T (xi)
for ∀ j ∈ A do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

if (i covers j) then{ A ← A \ {j}
xj ← T (xj)

else if (i overlaps j) then{ A ← A \ {j}
P ← P ∪ {j}

P ← P \ {i}
output {x1, . . . ,xN}
——

Algorithm 6.3 pocket-binary. Pocket–cluster algorithm for N parti-
cles. T is a random symmetry transformation of the simulation box.

The choice of initial configuration plays no role, as in any Markov-
chain algorithm (see the discussion of the initial condition at the club-
house, in Subsection 1.1.2): we start either with the last configuration of
a previous simulation with identical parameters or with a configuration
whose only merit is that it is legal. An initial configuration can have the
small and large particles in separate halves of the simulation box. Con-
figurations obtained after a few thousand pivots are shown in Fig. 6.13.
For this system of disks, we notice no qualitative change in behavior as
a function of density.

To directly witness the phase separation transition with a basic sim-
ulation, we now consider large and small squares, rather than disks. As
discussed, the depletion effects are stronger in squares than in disks. A
system of two-dimensional squares contains the essential ingredients of
entropic mixtures. We consider a square box with periodic boundary
conditions, as in Fig. 6.14, with Nl large squares and Ns small ones. It
is for simplicity only that we suppose that the squares are oriented, that
is, they cannot turn. Strikingly, we see a transition between the uniform
configuration at low densities and the phase-separated configuration at
high density.

Experiments usually involve a solvent, in addition to the small and
large particles, and the phase transition manifests itself because the big
clusters come out of solution (they flocculate) and can be found either at
the bottom of the test tube or on its surface (Dinsmore, Yodh, and Pine
1995). Our naive two-dimensional simulation lets us predict a transition
for hard squares between the densities ηl = ηs = 0.18 and ηl = ηs = 0.26
for a size ratio of 20, but this precise experiment is not likely to be

280 Entropic forces

ηl = ηs = 0.18 ηl = ηs = 0.26

Fig. 6.13 Large and small disks in a square box with periodic boundary
conditions (Nl = 18, Ns = 7200, size ratio σs/σl = 1/20).

done anytime soon (Buhot and Krauth 1999). Direct comparison with
experiment is easier in three dimensions, and with spheres rather than
cubes.

Mixtures, in particular, binary mixtures, form an active field of ex-
perimental and theoretical research, with important technological and
industrial applications. Most of this research is concentrated on three di-
mensions, where the depletion interaction is ubiquitous. We do not have
to play tricks (such as study cubes rather than spheres) in order to in-
crease the contact area and strengthen the effective interaction between
large particles. For serious work (trying to go to the largest systems pos-
sible and scanning many densities) we would be well advised to speed up
the calculation of overlaps with the grid/cell scheme of Section 2.4.1. All
this has been done already, and theory and experiment agree beautifully.

ηl = ηs = 0.18 ηl = ηs = 0.26

Fig. 6.14 Large and small oriented squares in a square box with periodic
boundary conditions (Nl = 18, Ns = 7200, size ratio σs/σl = 1/20).

6.2 Entropic lattice model: dimers 281

6.2 Entropic lattice model: dimers

The dimer model that we discuss in the present section is the mother of
all entropic systems in which orientation plays a role. It appears in solid
state physics, in soft condensed matter (polymers and liquid crystals),
and in pure mathematics. Its earliest incarnation was in the chemistry of
the benzene molecule (C6H6), where six carbon atoms form a ring with
electron orbitals sticking out. These orbitals tend to dimerize, that is,
form orbitals which are common to two neighboring carbon atoms (see
Fig. 6.15). Pauling first realized that there are two equivalent lowest-
energy configurations, and proposed that the molecule was neither really
in the one configuration nor in the other, that it in fact resonates between
the two configurations. This system is entropic in the same sense as the
hard spheres of Chapter 2, because the two dimer configurations have
the same energy.

Fig. 6.15 Equal-energy conformations of the benzene molecule (left),
and a complete dimer configuration on a 4 × 4-checkerboard (right).

In the present section, we shall work on lattices where dimerized elec-
tronic orbitals cover the whole system. Again, all configurations appear
with the same probability. In the closely related Ising model of Chap-
ter 5, we were interested in studying a symmetry-breaking phase transi-
tion of spins: at high temperature, the typical configurations of the Ising
model have the same proportions of up spins and down spins, whereas
in the ferromagnetic phase, at low temperature, there is a majority of
spins in one direction. The analogous symmetry-breaking transition for
dimers concerns their orientation. One could imagine that dimers in a
typical large configuration would be preferentially oriented in one direc-
tion (horizontal or vertical). However, we shall see in Subsection 6.2.5
that this transition never takes place, whatever the underlying lattice.

6.2.1 Basic enumeration

We first study dimers by enumeration. Our first dimer enumeration pro-
gram works on bipartite lattices, which can be partitioned into two
classes (such as the gray and white squares of the checkerboard in
Fig. 6.15) such that each dimer touches both classes. We are interested
both in complete coverings (with M = N/2 dimers on N lattice sites)
and in monomer–dimer coverings, where the dimers do not cover all the
sites of the lattice and the number of configurations is usually much
larger. We may occupy each dark square either with a monomer or with

282 Entropic forces

one extremity of a dimer, and check out all the possible directions of a
dimer (or monomer) starting from that site (see Fig. 6.16).

k = 0 (monomer) k = 1 k = 2 k = 3 k = 4

Fig. 6.16 The five possible directions of a monomer or dimer starting
on a given site of a two-dimensional square lattice.

While going through all possible directions for all of the sites of one
sublattice, one simply needs to reject all arrangements that have over-
laps or violate the boundary conditions. An initial algorithm to enu-
merate dimers usually produces code such as the awkward Alg. 6.4
(naive-dimer): there as many nested loops as there are dimers to place.
This program would have to nest loops deeper and deeper as the lattice
gets larger, and we would have to type it anew for any other lattice size!
(Taking this to extremes, we might generate the computer program with
the appropriate depth of nested loops by another program) Never-
theless, Alg. 6.4 (naive-dimer) does indeed successfully generate the
number of inequivalent ways to place M dimers on a lattice of N sites
(see Table 6.2). Some of the legal configurations generated on a 4 × 4
lattice without periodic boundary conditions are shown in Fig. 6.17; the
sites {1, . . . , 8} are numbered row-wise from lower left to upper right, as
usual.

procedure naive-dimer

for i1 = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

for i2 = 1, . . . , 4 do⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

for i3 = 1, . . . , 4 do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. . .

. . .

⎧⎪⎪⎨⎪⎪⎩
for i7 = 1, . . . , 4 do⎧⎨⎩

for i8 = 1, . . . , 4 do{
if ({i1, . . . , i8} legal) then{

output {i1, . . . , i8}
——

Algorithm 6.4 naive-dimer. Enumeration of dimer configurations with
an awkward loop structure (see Alg. 6.5 (naive-dimer(patch))).

Table 6.2 Number of dimer configura-
tions for a 4 × 4 square lattice (from
Alg. 6.4 (naive-dimer))

of # of configurations
dimers Periodic boundary

With Without

0 1 1
1 32 24
2 400 224
3 2496 1044
4 8256 2593
5 14208 3388
6 11648 2150
7 3712 552
8 272 36

Evidently, Alg. 6.4 (naive-dimer) merely enumerates all numbers
from 11 111 111 to 44 444 444, with digits from 1 to 4 (for the problem of
monomers and dimers, we need to count from 00 000 000 to 44 444 444,
with digits from 0 to 4). Let us consider, for a moment, how we usually
count in the decimal system. Counting from i to i + 1, i.e. adding one

6.2 Entropic lattice model: dimers 283

11124333 11224433 11234133 11234234 11321433 11322443

11331133 11331234 11332143 11332244 11332314 ...

Fig. 6.17 Complete dimer coverings on a 4 × 4 square lattice without
periodic boundary conditions (from Alg. 6.4 (naive-dimer); the values
of {i1, . . . , i8} are shown).

to the number i, is done as we can explain for i = 4999:

4999 ← i
+ 1

5000 ← i + 1.

Here, we checked the least significant digits of i (4999) (on the right)
and set any 9 to 0 until a digit different from 9 could be incremented.
This basic counting algorithm—the beginning of mathematics in first
grade—can be adapted for running through {i1, . . . , i8} with digits from
1 to 4 (see Alg. 6.5 (naive-dimer(patch))). It avoids an awkward loop
structure and is easily adapted to other lattices.

Both the awkward and the patched enumeration program must test
whether {i1, . . . , i8} is a legal dimer configuration. Violations of bound-
ary conditions are trivially detected. To test for overlaps, we use an oc-
cupation vector {o1, . . . , oN}, which, before testing, is set to {0, . . . , 0}.
A dimer touching sites l and m has the occupation variables ol and om

incremented. An occupation number in excess of one signals a violation
of the hard-core condition.

Algorithm 6.5 (naive-dimer(patch)) implements base-4 or base-5
counting (base-10 is the decimal system), with imax = 4. With imin =
1, dimer configurations are generated, whereas imin = 0 allows us to
enumerate monomer–dimer configurations. Remarkably, the algorithm
leaves out no configuration, and generates no duplicates. We could spruce
up Alg. 6.5 (naive-dimer(patch)) into a mixed-base enumeration rou-
tine with site-dependent values of imin or imax. Then, the corner sites
would go through only two values, other boundary sites would go through
three values, and only inner sites would go from i = 1 to i = 4. Bound-
ary conditions would thus be implemented in a natural way. However,
the performance gain would be minor, and it is better to move straight
ahead to more powerful tree-based enumerations.

284 Entropic forces

procedure naive-dimer(patch)

{i1, . . . , i8} ← {imin, . . . , imin}
if ({i1, . . . , i8} legal) then{

output {i1, . . . , i8}
for n = 1, 2 . . . do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for k = 8, 7, . . . do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (k = 0) stop (terminate program)
if (ik = imax) then{

ik ← imin

else⎧⎪⎪⎨⎪⎪⎩
ik ← ik + 1
if ({i1, . . . , i8} legal) then{

output {i1, . . . , i8}
goto 1

1 continue
——

Algorithm 6.5 naive-dimer(patch). Enumeration of numbers (digits
from imin to imax) and outputting of legal dimer configurations.

6.2.2 Breadth-first and depth-first enumeration

Algorithm 6.4 (naive-dimer), like computer enumeration in general, is
more reliable than a pencil-and-paper approach, and of great use for
testing Monte Carlo programs. Often, we even write discretized versions
of programs with the sole aim of obtaining enumeration methods to
help debug them. For testing purposes, it is a good strategy to stick
to naive approaches. Nevertheless, the high rejection rate of Alg. 6.4
(naive-dimer) is due to a design error: the program goes through num-
bers, instead of running over dimer configurations. The present subsec-

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

k = 7 k = 8 k = 9 k = 10 k = 11 ...

Fig. 6.18 Single-dimer configurations on a 4 × 4 square lattice without
periodic boundary conditions.

tion corrects this error and discusses direct enumeration methods for
dimers (not numbers). These methods are as easy to implement as the

6.2 Entropic lattice model: dimers 285

naive approaches, and they are widely applicable. We start with single
dimers, listed in Fig. 6.18 in a reasonable but arbitrary order.

1−5−9−10−14 1−5−9−11

Fig. 6.19 Ordering of dimer configura-
tions in terms of the numbering scheme
of Fig. 6.18.

We can say that the configuration k = 3 in Fig. 6.18 is smaller than
the configuration k = 7, simply because it is generated first. The single-
dimer ordering of Fig. 6.18 induces a lexicographic order of many-dimer
configurations, analogous to the ordering of words that is induced by the
alphabetical ordering of letters. There is one difference: within a dimer
configuration, the ordering of the dimers is meaningless. We may arrange
them in order of increasing k: the configuration on the left of Fig. 6.19
is thus called “1–5–9–10–14”, rather than “5–1–9–10–14”. (The problem
arises from the indistinguishability of dimers, and has appeared already
in the discussion of bosonic statistics in Section 4.1.2.) The configuration
1–5–9–10–14 is lexicographically larger than 1–5–9–11, on the right in
Fig. 6.19.

Lexicographic order induces a tree structure among configurations (see
Fig. 6.20). At the base of this tree, on its left, is the empty configuration
(node 0, zero dimers), followed by the single-dimer configurations (nodes
a, b, with a < b), two-dimer configurations (nodes c < d < e < f), etc.

0

a

c
g

h

d

i

j

b
e

f

k

l

breadth-first

0

A

B
C

D

E

F

G

H
I

J

K

L

depth-first

Fig. 6.20 A tree, and two different strategies for visiting all its nodes,
starting from the root, 0.

A straightforward, “breadth-first”, strategy for visiting (enumerating)
all the nodes of a tree is implemented in Alg. 6.6 (breadth-dimer), with
no more effort than for the naive routines at the beginning of this section.

Algorithm 6.6 (breadth-dimer) works on arbitrary lattices and is
simplest if we can store the configurations on disk. An input file con-
taining n-dimer configurations (such as {c, d, e, f} in Fig. 6.20) yields an
ordered output of (n + 1)-dimer configurations (such as {g, h, i, j, k, l}),
which can be fed back into the program. Again, it is a great virtue of
the method that configurations are never left out, nor are they produced
twice.

For larger systems, we may still be able to go through all configurations
but lack the time or space to write them out to a file. It is then preferable

286 Entropic forces

procedure breadth-dimer

input {k1, . . . , kn}
for k = kn + 1, . . . , kmax do{

if ({k1, . . . , kn, k} legal) then{
output {k1, . . . , kn, k}

——

Algorithm 6.6 breadth-dimer. Breadth-first enumeration. kmax is the
number of single-dimer configurations.

to enumerate the nodes of a tree in depth-first fashion, as indicated on
the right of Fig. 6.20. We go as deep into the tree as we can, visiting nodes
in the order A → B → C . . . , and backtracking in the order C → B → D
or D → · · · → A → E if stuck. Algorithm 6.7 (depth-dimer) implements
this strategy with the help of three subroutines, which attempt to put,
move, or delete a dimer:

put-dimer : {k1, . . . , kn} → {k1, . . . , kn, k} with next k > kn,

move-dimer : {k1, . . . , kn} → {k1, . . . , kn−1, k} with next k > kn,

delete-dimer : {k1, . . . , kn} → {k1, . . . , kn−1}.

Table 6.3 Number of dimer configu-
rations on a 6 × 6 square lattice with-
out periodic boundary conditions, from
Alg. 6.7 (depth-dimer)

of dimers # of
configurations

0 1
1 60
2 1622
3 26 172
4 281 514
5 2135 356
6 11 785 382
7 48 145 820
8 146 702 793
9 333 518 324
10 562 203 148
11 693 650 988
12 613 605 045
13 377 446 076
14 154 396 898
15 39 277 112
16 5580 152
17 363 536
18 6728

procedure depth-dimer

D ← {1} (set of dimers)
next ← “put”
while (D
= {}) do⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (next = “put”) then{
call put-dimer (Υ)
if (Υ = 1) {next ← “put”} else {next ← “move”}

else if (next = “move”) then{
call move-dimer(Υ)
if (Υ = 1) {next ← “put”} else {next ← “delete”}

else if (next = “delete”) then{
call delete-dimer(Υ)
next ← “move”

——

Algorithm 6.7 depth-dimer. Depth-first enumeration. The flag Υ = 1
signals a successful “put” or “move” (the set D contains the dimers).

The output of Alg. 6.7 (depth-dimer) for a 4×4 square lattice without
periodic boundary conditions is shown in Fig. 6.21. The configurations
i = 1, . . . , 8, 12, 13, 16 result from a “put”, those at iterations i = 10, 17
result from a pure “move”, and i = 9, 11, 14, 15 are generated from a
“delete” (indicated in dark) followed by a “move”.

Algorithm 6.7 (depth-dimer) runs through the 23 079 663 560 config-
urations on a 6×6 square lattice with periodic boundary conditions with
astounding speed (in a few minutes), but only cognoscenti will be able
to make sense of the sequence generated. During the enumeration, no

6.2 Entropic lattice model: dimers 287

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

i = 7 i = 8 i = 9 i = 10 i = 11 i = 12

i = 13 i = 14 i = 15 i = 16 i = 17 ...

Fig. 6.21 Dimer configurations D on a 4 × 4 square lattice with-
out periodic boundary conditions, in the order generated by Alg. 6.7
(depth-dimer).

configuration is ever forgotten, none is generated twice, and we are free
to pick out any information we want (see Table 6.3). We must choose the
data formats carefully, as the numbers can easily exceed 231, the largest
integer that fits into a standard four-byte computer word.

We shall now analyze pair correlations of dimers, in order to study the
existence of long-range order. For concreteness, we restrict our attention
to the complete dimer model. In this case, there can be four different
dimer orientations, and so the probability of any given orientation is
1/4. If the dimer orientations on far distant sites are independent of each
other, then each of the 16 possible pairs of orientations should appear
with the same probability, 1/16. Data for pair correlations of dimers
on a 6 × 6 square lattice are shown in Table 6.3. There, we cannot go
to distances larger than {∆x, ∆y} = {3, 3}; we see, however, that the
configuration c, with periodic boundary conditions, has a probability
5936/90 176 = 0.0658. This is very close to 1/16 = 0.0625. On the basis
of this very preliminary result, we can conjecture (correctly) that the
dimer model on a square lattice is not in an ordered phase. Orientations
of dimers on far distant sites are independent of each other.

Table 6.4 Number of dimer configu-
rations on a 6 × 6 square lattice, with
dimers prescribed as in Fig. 6.22. The
total number of complete coverings is
90 176 with periodic boundary condi-
tions and 6728 without.

Case # of configurations
Periodic boundary
With Without

a 4888 242
b 6184 1102
c 5936 520

d 6904 1034
e 5800 1102
f 5472 640

a b c d e f

Fig. 6.22 Pair correlation functions (the probability that two dimers are
in the positions shown) for a 6 × 6 square lattice.

288 Entropic forces

In the present subsection, we have approached the double limit of
enumeration (in the sense of Subsection 5.1.4): not only is it impossi-
ble to generate a list of all dimer configurations on a large lattice (be-
cause of its sheer size), but we cannot even compute the size of the list
without actually producing it. Enumerations of complete dimer config-
urations, the subject of Subsection 6.2.3, are the only exception to this
rule: the configurations can be counted but not listed for very large sys-
tem sizes, by methods related to the indirect enumeration methods for
the Ising model. The genuine difficulty of monomer–dimer enumerations
away from complete filling was first pointed out by Valiant (1979).

6.2.3 Pfaffian dimer enumerations

In this subsection, we enumerate complete dimer configurations on a
square lattice by indirect methods, which are closely related to the de-
terminantal enumerations used for the two-dimensional Ising model. To
simplify matters, we leave aside the issue of periodic boundary condi-
tions, even though they are easily included. For the same reason, we
remain with small systems, notwithstanding the fact that the Pfaffian
approach allows us to go to very large systems and count configurations,
compute correlation functions, etc.

Obtaining the number of complete dimer configurations involves com-
puting the partition function

Z =
∑
dimer

configurations

1. (6.10)

What constitutes a legal dimer configuration may be encoded in a matrix
A+ = (a+

kl) with indices {k, l} running over the sites {1, . . . , N}. On a
4 × 4 square lattice, A+ is given by

A+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· + · · + · · · · · · · · · · ·
+ · + · · + · · · · · · · · · ·
· + · + · · + · · · · · · · · ·
· · + · · · · + · · · · · · · ·
+ · · · · + · · + · · · · · · ·
· + · · + · + · · + · · · · · ·
· · + · · + · + · · + · · · · ·
· · · + · · + · · · · + · · · ·
· · · · + · · · · + · · + · · ·
· · · · · + · · + · + · · + · ·
· · · · · · + · · + · + · · + ·
· · · · · · · + · · + · · · · +
· · · · · · · · + · · · · + · ·
· · · · · · · · · + · · + · + ·
· · · · · · · · · · + · · + · +
· · · · · · · · · · · + · · + ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

The elements of this matrix which are marked by a “·” are zero and
those marked by a “+” are equal to one. For example, the elements
a+
12 = a+

21 = 1 signal the edge between sites 1 and 2, in our standard
numbering scheme shown again in Fig. 6.23.1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Fig. 6.23 Numbering scheme for the
4 × 4 square lattice.

Complete (fully packed) dimer configurations correspond to permuta-
tions, as in

P =
(first dimer︷ ︸︸ ︷

P1 P2

1 2

second dimer︷ ︸︸ ︷
P3 P4

3 4
. . .
. . .

last dimer︷ ︸︸ ︷
PN−1 PN

N − 1 N

)
.

6.2 Entropic lattice model: dimers 289

This simply means that the first dimer lives on sites {P1, P2}, the second
on {P3, P4}, etc. (permutations are written “bottom-up” (

(
P1 ... PN

1 ... N

)
),

rather than “top-down”; see Subsection 1.2.2). All dimer configurations
are permutations, but not all permutations are dimer configurations: we
need to indicate whether a permutation is compatible with the lattice
structure. Using the matrix A+ in eqn (6.11), we arrive at

Z =
1

(N/2)!2N/2

∑
permutations P

a+
P1P2

a+
P3P4

. . . a+
PN−1PN

. (6.12)

The combinatorial factor in this equation takes into account that we need
to consider only a subset of permutations, the matchings M , where the
lattice sites of each dimer are ordered (so that P1 < P2, P3 < P4, etc.),
and where, in addition, dimers are ordered within each configuration,
with P1 < P3 < · · · < PN−1. We can also write the partition function as

Z =
∑

matchings M

a+
P1P2

a+
P3P4

. . . a+
PN−1PN︸ ︷︷ ︸

weight of matching:
product of elements of A+

. (6.13)

By construction, the weight of a matching is one if it is a dimer config-
uration, and otherwise zero.

On a 4 × 4 square lattice, there are 16! = 20 922 789 888 000 permu-
tations, and 16!/8!/28 = 2 027 025 matchings, of which 36 contribute to
Z (without periodic boundary conditions), as we know from earlier enu-
merations. However, the straight sum in eqn (6.13) cannot be computed
any more efficiently than through enumeration, so the representation in
eqn (6.13) is not helpful.

To make progress, a sign must be introduced for the matching. This
leads us to the Pfaffian,1 defined for any antisymmetric matrix A of even
order N by

Pf A =
∑

matchings M

sign(M) aP1P2aP3P4 . . . aPN−1PN︸ ︷︷ ︸
N/2 terms

. (6.14)

The sign of the matching is given by the corresponding permutation
P =

(
P1 . . . PN

1 . . . N

)
, and even though many permutations give the same

matching, the product of the sign and the weight is always the same.
Each permutation can be written as a cycle configuration. We remember
that a permutation of N elements with n cycles has a sign (−1)n+N , as
was discussed in Subsection 1.2.2.

Pfaffians can be computed in O(N3) operations, much faster than
straight sums over matchings, but the Pfaffian of A+ is certainly different
from the quantity defined in eqn (6.13). Therefore, the challenge in the
present subsection is to find a matrix A whose Pfaffian gives back the
sum over matchings of A+, and to understand how to evaluate Pf A. We

1J. F. Pfaff (1765–1825), was a professor in Halle, Saxony, and a teacher of C. F.
Gauss.

290 Entropic forces

must first understand the relationship between the Pfaffian in eqn (6.14)
and the determinant

det A =
∑

permutations

sign(P) a1P1 , a2P2 . . . aNPN︸ ︷︷ ︸
N terms

=
∑

cycle configs

(−1)n (aP1P2aP2P3aP3P4aP4P5 aPkP1)︸ ︷︷ ︸
cycle 1

.︸︷︷︸
cycle n

. (6.15)

We see that the Pfaffian is a sum of products of N/2 terms, and the
determinant a sum of products of N terms. (Terms in the determinant
that are missing in the Pfaffian are underlined in eqn (6.15).) The match-
ings of a second copy of A or, more generally, the matchings of another
matrix B can be used to build an alternating cycle configuration. For
concreteness, we illustrate in the case of a 4× 4 matrix how two match-
ings (one of a matrix A (MA), the other of a matrix B (MB)) combine
into an alternating cycle (MA ∪ MB). (See Table 6.5; the products of
the signs and weights of the matchings agree with the sign and weight
of the alternating cycle.)

Table 6.5 Two matchings giving an alternating cycle (see Fig. 6.24).
The product of the signs of MA and MB equals the sign of MA ∪MB .

Object Sign Weight Dimers Perm. Cycle

MA −1 a13a24 {1, 3}{2, 4} `
1 3 2 4
1 2 3 4

´
(1)(2, 3)(4)

MB 1 b12b34 {1, 2}{3, 4} `
1 2 3 4
1 2 3 4

´
(1)(2)(3)(4)

MA ∪ MB Product of a13b34 Both of
`

3 1 4 2
1 2 3 4

´
(1342)

the above ×a42b21 the above

1 2

3 4

lattice MA MB MA∪MB

Fig. 6.24 A 2 × 2 square lattice, a
matching MA of a matrix A, a match-
ing MB of a matrix B, and the alternat-
ing cycle generated from the combined
matching MA ∪ MB .

Generalizing from the above, we see that matchings of an antisym-
metric matrix A and those of another matrix B combine to alternating
cycle configurations:

(Pf A)(Pf B) =
∑

alternating
cycle configs

(−1)n

× (aP1P2bP2P3aP3P4bP4P5 bPkP1)︸ ︷︷ ︸
alternating cycle 1

.︸︷︷︸
alternating cycle n

,

and give, for the special case A = B,

(Pf A)2 =
∑

cycle configs
of even length

(−1)n (aP1P2 aPkP1)︸ ︷︷ ︸
cycle 1

.︸︷︷︸
cycle n

= det A (6.16)

In eqn (6.16), the restriction to cycles of even length is irrelevant because,
for any antisymmetric matrix, the cycles of odd length add up to zero
(for example, the two (distinct) cycles (234) and (243) correspond to
a23a34a42 and a24a43a32—the sum of the two is zero). Equation (6.16)

6.2 Entropic lattice model: dimers 291

gives a first method for computing the Pfaffian of a matrix A, up to its
sign, as the square root of its determinant.

We yet have to find the matrix A enumerating the matchings of A+.
Instead of combining two matchings of the same matrix A, we consider
as the partner of A a matrix B0, called the standard matrix,

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· + · · · · · · · · · · · · · ·
− · · · · · · · · · · · · · · ·
· · · + · · · · · · · · · · · ·
· · − · · · · · · · · · · · · ·
· · · · · + · · · · · · · · · ·
· · · · − · · · · · · · · · · ·
· · · · · · · + · · · · · · · ·
· · · · · · − · · · · · · · · ·
· · · · · · · · · + · · · · · ·
· · · · · · · · − · · · · · · ·
· · · · · · · · · · · + · · · ·
· · · · · · · · · · − · · · · ·
· · · · · · · · · · · · · + · ·
· · · · · · · · · · · · − · · ·
· · · · · · · · · · · · · · · +
· · · · · · · · · · · · · · − ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.17)

This matrix allows only a single matching with nonzero (unit) weight,
namely {1, 2}, {3, 4}, . . . , {N − 1, N}, so that its Pfaffian is PfB0 = 1.
The standard matrix B0 can be combined with a matrix A, due to
Kasteleyn (1961), which differs from the matrix A+ of eqn (6.11) only
in its signs:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ + +

+ + +

+ + +

+ + +

−

−

−

+

+

+

−

−

−

+

+

+

A

a13,14= +1, a14,13= −1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ +

+ +

+ +

+ +

B0

Fig. 6.25 Construction rules for the
matrices A and B0 in eqns (6.17)
and (6.18).

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· + · · − · · · · · · · · · · ·
− · + · · + · · · · · · · · · ·
· − · + · · − · · · · · · · · ·
· · − · · · · + · · · · · · · ·
+ · · · · + · · − · · · · · · ·
· − · · − · + · · + · · · · · ·
· · + · · − · + · · − · · · · ·
· · · − · · − · · · · + · · · ·
· · · · + · · · · + · · − · · ·
· · · · · − · · − · + · · + · ·
· · · · · · + · · − · + · · − ·
· · · · · · · − · · − · · · · +
· · · · · · · · + · · · · + · ·
· · · · · · · · · − · · − · + ·
· · · · · · · · · · + · · − · +
· · · · · · · · · · · − · · − ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.18)

(see Fig. 6.25). The matrix A gives nonzero weights to matchings corre-
sponding to dimer configurations. Some alternating cycle configurations
of A and B0 are shown in Fig. 6.26. In view of eqn (6.15), it remains
to be shown that the weight of each cycle is −1, to be sure that the
Pfaffian of A counts the number of dimer configurations, but this is easy
to show for alternating cycles that are collapsed onto one edge (as in the
configuration labeled a in Fig. 6.26), or for alternating cycles of length
4 (as in the configuration b). The general case follows because general
alternating cycles encircle an odd number of elementary squares of the
lattice or, in other words, can be broken up into an odd number of cycles
of length 4 (the alternating cycle in configuration f , in Fig. 6.26 again,
encloses seven elementary squares). It follows that

Pf A = Pf A PfB0 =

⎧⎨⎩
sum of alternating
cycle configurations
(one per matching)

⎫⎬⎭ =
{

number of
matchings

}
.

On the 4 × 4 lattice without periodic boundary conditions, the Pfaffian
of the matrix A in eqn (6.18), obtained via eqn (6.16) as the square root

292 Entropic forces

a b c d e f

Fig. 6.26 Alternating cycle configurations from dimers (light) and the
unique matching of B0 (dark). Some cycles collapse onto a single edge.

of its determinant, comes out to Pf A = 36. This agrees with the number
of complete dimer configurations obtained in Table 6.2, by enumeration
methods, but we can now compute the number of complete matchings
on the 10×10, the 50×50, and the 100×100 lattice. However, we again
have an enumeration of the second kind, as the Pfaffian approach allows
us to count, but not to list, dimer configurations.

Pfaffians appear in many areas in physics and, for example, are a
crucial ingredient in the fermionic path integral, a subject beyond the
scope of this book. We shall only move ahead one step, and give an
algorithm that computes a Pfaffian directly, without passing through
the determinant and losing a sign. (For the dimer problem, we do not
really need this algorithm, because we know that the Pfaffian is positive.)
The algorithm illustrates that Pfaffians exist by themselves, independent
of determinants. The relationship between Pfaffians and determinants
mimics the relationship between fermion and bosons: two fermions can
make a boson, just as two Pfaffians can combine into a determinant, but
fermions also exist by themselves, and they also carry a sign.

As in the case of determinants, there are three linear operations on
antisymmetric matrices of order N = 2M which change the Pfaffian of
a matrix C in a predictable manner, while systematically transforming
C to the standard matrix B0 of eqn (6.17). These transformation rules
are the following.

First, the Pffaffian of a matrix is multiplied by µ if, for any constant
µ, both row i and column i are multiplied by µ. This follows from the
definition in eqn (6.13). This transformation multiplies the determinant
by µ2.

Second, the Pfaffian of a matrix changes sign if, for i
= j, both the rows
i and j and the columns i and j are interchanged. (The terms in the sum
in eqn (6.12) are the same, but they belong to a permutation which has
one more transposition, that is, an opposite sign.) This transformation
does not change the determinant.

Third, the Pfaffian of a matrix is unchanged if λ times row j is added
to the elements of row i and then λ times column j is added to column
i. This third transformation also leaves the determinant unchanged. We
verify this here for an antisymmetric 4 × 4 matrix C = (ckl), and i =

6.2 Entropic lattice model: dimers 293

1, j = 3:

Pf

⎛⎜⎜⎝
0 c12 c13 + λc23 c14 + λc24

−c12 0 c23 c24

−c13 − λc23 −c23 0 c34

−c14 − λc24 −c24 −c34 0

⎞⎟⎟⎠
= c12c34 − (c13 + λc23)c24 + (c14 + λc24)c23

is indeed independent of λ. More generally, the rule can be proven by con-
structing alternating paths with the standard matrix B0 of eqn (6.17).

We now illustrate the use of the transformation rules for an antisym-
metric 4 × 4 matrix C (which is unrelated to the dimer problem),

C =

⎛⎜⎜⎜⎜⎝
0 6 1 3

−6 0 1 −1

−1 −1 0 −1
−3 1 1 0

⎞⎟⎟⎟⎟⎠ (Pf C = −2).

Because of its small size, we may compute its Pfaffian from the sum over
all matchings:

PfC = c12c34 − c13c24 + c14c23 = 6 × (−1) − (1) × (−1) + 3 × 1 = −2.

Analogously to the standard Gaussian elimination method for determi-
nants, the above transformation rules allow us to reduce the matrix C
to the standard matrix B0. We first subtract (λ = −1) the third column
j = 3 from the second column i = 2 and then the third row from the
second:

C′ =

⎛⎜⎜⎜⎜⎝
0 5 1 3

−5 0 1 0

−1 −1 0 −1
−3 0 1 0

⎞⎟⎟⎟⎟⎠ (Pf C′ = Pf C).

We then add three times the third row (and column) to the first,

C′′ =

⎛⎜⎜⎜⎜⎝
0 2 1 0

−2 0 1 0

−1 −1 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎠ (Pf C′′ = Pf C′),

subtract the second row and column from the first,

C′′′ =

⎛⎜⎜⎜⎜⎝
0 2 0 0

−2 0 1 0

0 −1 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎠ (Pf C′′′ = Pf C′′),

294 Entropic forces

and finally subtract the fourth row from the second and the fourth col-
umn from the second,

C′′′′ =

⎛⎜⎜⎜⎜⎝
0 2 0 0

−2 0 0 0

0 0 0 −1
0 0 1 0

⎞⎟⎟⎟⎟⎠ (Pf C′′′′ = Pf C′′′).

In the matrix C′′′′, it remains to multiply the fourth column and row
by −1 and the second column and row by 1

2 , to arrive at the standard
matrix B0, so that Pf C′′′′ = Pf C = −2 ·PfB0 = −2. A direct Gaussian
elimination algorithm can compute the Pfaffian of any antisymmetric
matrix in about ∝ N3 operations, as we have seen in the above example.
This includes the calculation of the sign, which is not an issue for dimers,
but which often appears in fermion problems.

The matrices A, B, and C in this subsection are all integer-valued,
and therefore their Pfaffians and determinants, being sums of products
of matrix elements, are guaranteed to be integer. On the other hand, the
Gaussian elimination algorithm for Pfaffians and the analogous method
for determinants work with multiplications of rational numbers λ and
µ, so that the rounding errors of real arithmetic cannot usually be
avoided. Modern algorithms compute Pfaffians and determinants of in-
teger matrices without divisions (see, for example, Galbiati and Maffioli
(1994)). This is one of the many meeting points of research-level compu-
tational physics with modern discrete and applied mathematics, where
they jointly attack problems as yet unsolved.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

a

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

+ + + +

+ + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

+

+

+

+

+

b

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

+ + + +

+ + + + +

+ + +

+ + + + +

+ + + + +

+ + + + +

−

−

−

−

−

−

−

−

−

−

−

−

+

+

+

+

+

+

+

+

+

+

+

+

c

Fig. 6.27 The original A-matrix (a), and modifications (b, c) with pre-
scribed dimer orientations.

We now apply Pfaffians to the calculation of dimer–dimer correla-
tion functions and then use them in a direct sampling algorithm. For
concreteness, we consider first a 6 × 6 square lattice without periodic
boundary conditions, with its 6728 complete dimer configurations, as
we know from earlier enumerations (see Table 6.3). We can recover this
number from the Pfaffian of the 36×36 matrix Aa labeled a in Fig. 6.27.
We now use Pfaffians, rather than the direct enumeration methods used
for Table 6.4, to count how many dimer configurations have one hori-
zontal dimer on site 1 and site 2 and another dimer on sites 8 and 9 (see

6.2 Entropic lattice model: dimers 295

part b in Fig. 6.27). The answer is given by the Pfaffian of the matrix Ab,
obtained from Aa by suppressing all connections of sites 1, 2, 8, and 9 to
sites other than the ones forming the prescribed dimers (see Fig. 6.27).
We readily obtain

√
det Ab = Pf Ab = 242, in agreement with case a

in Table 6.4. Other pair correlations can be obtained analogously, for
example Pf Ac = 1102 (corresponding to case c in Fig. 6.27). Pfaffians
of modified A-matrices can be computed numerically for very large N ,
and have even been determined analytically in the limit N → ∞ (see
Fisher and Stephenson (1963)).

As a second application of Pfaffian enumerations, and to provide a
preview of Subsection 6.2.4 on Markov-chain Monte Carlo algorithms,
we discuss a Pfaffian-based direct-sampling algorithm for complete dimer
configurations on a square lattice. For concreteness, we consider the 4×4
square lattice without periodic boundary conditions. The algorithm is
constructive. We suppose that four dimers have already been placed, in
the configuration a of Fig. 6.28. The matrix Aa corresponding to this
configuration is

Aa =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

· + · · − · · · · · · · · · · ·
− · · · · + · · · · · · · · · ·
· · · + · · · · · · · · · · · ·
· · − · · · · · · · · · · · · ·
+ · · · · + · · − · · · · · · ·
· − · · − · + · · + · · · · · ·
· · · · · − · · · · − · · · · ·
· · · · · · · · · · · + · · · ·
· · · · + · · · · + · · · · · ·
· · · · · − · · − · + · · · · ·
· · · · · · + · · − · · · · · ·
· · · · · · · − · · · · · · · ·
· · · · · · · · · · · · · + · ·
· · · · · · · · · · · · − · + ·
· · · · · · · · · · · · · − · +
· · · · · · · · · · · · · · − ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(config. a in Fig. 6.28).

It is generated from the matrix A of eqn (6.18) by cutting all the links
that would conflict with the dimers already placed. The Pfaffian of this
matrix is PfAa = 4. This means that four dimer configurations are
compatible with the dimers that are already placed.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ +

+ +

+ +

+ +

−

−

+

+ − +

a

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ +

+

+ +

+ +

−

− +

b

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ +

+

+

+ +

−

−

+

+ − +

c

Fig. 6.28 Pfaffian direct-sampling algorithm: the dimer orientation on
site 7 is determined from π(b) and π(c).

To carry the construction one step further, we place a dimer on site 7,
but have a choice between letting it point towards site 6 (configuration
b in Fig. 6.28) or site 11 (configuration c). Again, we cut a few links,
compute Pfaffians, and find πb = Pf Ab = 1 and πc = PfAc = 3. We
find that configuration b has a probability 1/4 and configuration c a

296 Entropic forces

probability 3/4. These probabilities are used to sample the orientation
of the dimer on site 7, and to conclude one more step in the construction
of a direct sample. The Pfaffian direct-sampling algorithm illustrates
the fact that an exact solution of a counting problem generally yields a
direct-sampling algorithm. An analogous direct-sampling algorithm can
be easily constructed for the two-dimensional Ising model. (To test the
relative probabilities of having a new spin k point parallel or antiparallel
to a neighboring spin l already placed, we compute the determinants of
modified matrices with infinitely strong coupling Jkl = +∞ or Jkl =
−∞.)

These correlation-free direct-sampling algorithms are primarily of the-
oretical interest, as they are slow and specific to certain two-dimensional
lattices, which are already well understood. Nevertheless, they are in-
triguing: they allow one to estimate, by sampling, quantities from the an-
alytic solutions, which cannot be obtained by proper analytic methods.
For the Ising model, we can thus extract, with statistical uncertainties,
the histogram of magnetization and energy N (M, E) from the analytic
solution (see Fig. 5.7), the key to the behavior of the Ising model in
a magnetic field, which cannot be obtained analytically. In the dimer
model, we are able to compute complicated observables for which no
analytic solution exists.

6.2.4 Monte Carlo algorithms for the
monomer–dimer problem

As discussed in the previous section, the enumeration problem for mono-
mers and dimers is generally difficult. It is therefore useful to consider
Monte Carlo sampling algorithms. We first discuss a local Markov-chain
Monte Carlo algorithms using flips of a pair of neighboring dimers (see
Fig. 6.30). These moves are analogous to the spin flips in the Ising model
(see Subsection 5.2.1). The local Monte Carlo algorithm satisfies detailed
balance because we move with the same probability from configuration
a to configuration b as from b back to a. However, it is not completely
evident that this algorithm is also ergodic, that is, that we can connect
any two configurations by a sequence of moves.

Fig. 6.29 Dimer configuration without
flippable dimer pairs proving nonergod-
icity of the local algorithm in the pres-
ence of periodic boundary conditions.

a a (+ move) b

Fig. 6.30 A local Monte Carlo move flipping a pair of neighboring dimers
in the square lattice.

For concreteness, we discuss the ergodicity for a 6× 6 lattice without
periodic boundary conditions. (The local algorithm is trivially noner-

6.2 Entropic lattice model: dimers 297

godic in the presence of periodic boundary conditions because of the
existence of winding-number sectors similar to those for path integrals,
in Chapter 3, see Fig. 6.29.) We first show that any configuration must
contain a flippable pair of neighboring dimers. Let us try to construct
a configuration without such a pair. Without restricting our argument,
we can suppose that the dimer in the lower right corner points upwards
(see the gray dimer in Fig. 6.31). In order not to give a flippable pair,
the dimer on site a must then point in the direction shown, and this in
turn imposes the orientation of the dimer on site b, on site c, etc., until
we have no choice but to orient the dimers on site g and h as shown.
These two dimers are flippable. a

bc

de

f

g h

Fig. 6.31 Proof that any complete
dimer configuration contains a flippable
pair of dimers.

The argument proving the existence of flippable dimer pairs can be
extended to show that any configuration of dimers can be connected to
the standard configuration of eqn (6.17), where all dimers are in hori-
zontal orientation. (If any two configurations can be connected to the
standard configuration, then there exists a sequence of moves going from
the one configuration to the other, and the algorithm is ergodic.) We first
suppose that the configurations contains no rows of sites where all the
dimers are already oriented horizontally. The lower part of the configu-
ration then again resembles the configuration shown in Fig. 6.31. After
flipping the dimers g and h, we can flip dimer c, etc., and arrange the
lowest row of sites in Fig. 6.31 to be all horizontal. We can then con-
tinue with the next higher row, until the whole configuration contains
only horizontal dimers. We conclude that the local dimer algorithm is
ergodic. However, it is painfully slow.

a (+ move)

symmetry axis

starting dimer

... b

a + b

alternating cycle

Fig. 6.32 Pivot cluster algorithm for dimers on a square lattice with
periodic boundary conditions.

Much more powerful algorithms result from the fact that the combi-
nation of any two dimer configurations a and b (two matchings) gives
rise to an alternating cycle configuration (see the discussion in Subsec-
tion 6.2.3). In any nontrivial alternating cycle, we can simply replace
dimers of configuration a with those of configuration b. If we choose as

298 Entropic forces

configuration b the configuration a itself, transformed with respect to a
symmetry operation of the lattice, we arrive at the pivot cluster algo-
rithm, that was already used for binary mixtures in Subsection 6.1.3
(Krauth and Moessner 2003). This algorithm can be directly imple-
mented from Alg. 6.3 (pocket-binary) (see Fig. 6.32). It gives one of
the fastest simulation methods for dimer models and monomer–dimer
models in two or more dimensions. It can be adapted to a variety of
lattices. Snapshots of configurations generated with this algorithm are
shown in Fig. 6.34. On these large systems, we can compute dimer–dimer
correlation functions, and see explicitly that they do not give long-range
order. In Fig. 6.33, we show the probability of having a horizontal dimer
at one site and another horizontal dimer k sites above. This “ladder”
correlation tends towards the value 1/16 indicating that the dimers be-
come uncorrelated in the limit k → ∞. However, the correlation goes
to zero as a power law in k, not exponentially, showing that the dimer
model, while lacking long-range order, is critical. (The dimer correlations
in Fig. 6.33 have been computed analytically by Fisher and Stephenson
(1963).) In contrast, the monomer–dimer model has exponentially de-
caying correlations, which cannot be obtained analytically.

0.2

0

1 3 5 7 9 11

p
ro

b
a
b
il
it

y
 π

k
 −

 1
/1

6

lattice distance k

32×32
64×64

16/(πk)2

Fig. 6.33 “Ladder” correlations for the
complete dimer model in square lat-
tices.

Fig. 6.34 Dimers (left) and monomer–dimers (right) in a lattice with
periodic boundary conditions (from adapted Alg. 6.3 (pocket-binary)).

At the end of Subsection 6.2.3, we discussed that exact solutions for
enumeration problems yield direct-sampling methods. We can now dis-
cuss the relationship between enumeration and sampling under another
angle. It is known that the monomer–dimer problem is computationally
hard: while Pfaffian methods allow us to count the number of complete
dimer configurations, say on the left of Fig. 6.34, is it impossible to de-
termine the exact number of monomer–dimer configurations for large
systems, say, on the right of Fig. 6.34. On the other hand, sampling
configurations of the monomer–dimer model is easy, and we can use
sampling methods for precision estimates for the number of monomer–
dimer configurations on large lattices. Clearly and remarkably, sampling
does not meet the same limitations as enumeration.

6.2 Entropic lattice model: dimers 299

6.2.5 Monomer–dimer partition function

Monte Carlo simulations and Pfaffian computations allow us to under-
stand, and even to prove rigorously, that the monomer–dimer model on
the square lattice has no phase transition, and that dimer–dimer corre-
lations become critical at complete packing. Remarkably, in this model,
no order–disorder transition takes place. In a typical configuration on a
large lattice, the proportions of horizontal and vertical dimers are thus
equal. This result is a consequence of the mapping of the dimer model
onto the two-dimensional Ising model at the critical point. Rather than
to follow this direction, we highlight in this subsection a powerful theo-
rem due to Heilmann and Lieb (1970) which shows that on any lattice
(in two, three, or higher dimensions or on any irregular graph), the
monomer–dimer model never has a phase transition. The constructive
proof of this theorem has close connections to enumeration methods.

We first generalize our earlier partition function, which counted the
number of complete packings, to variable densities of dimers and suppose
that each dimer has zero energy, whereas a monomer, an empty lattice
site, costs E > 0. Different contributions are weighted with a Boltzmann
factor

Z(β) =
N/2∑
M=0

N (M)︸ ︷︷ ︸
number of
dimer confs

(
e−βE

)N−2M︸ ︷︷ ︸
monomer weight

,

where M represents the number of dimers in a given configuration.
At zero temperature, the penalty for placing monomers becomes pro-
hibitive, and on lattices which allow complete packings, the partition
function Z(β = ∞) thus gives back the sum over the partition function
(6.10), the number of complete packings.

Table 6.6 Number of dimer configura-
tions in a 6×6 square lattice with peri-
odic boundary conditions, from Alg. 6.7
(depth-dimer)

M N (M)
(# dimers) (# configs)

0 1
1 72
2 2340
3 45 456
4 589 158
5 5 386 752
6 35 826 516
7 176 198 256
8 645 204 321
9 1 758 028 568
10 3 538 275 120
11 5 185 123 200
12 5 409 088 488
13 3 885 146 784
14 1 829 582 496
15 524 514 432
16 81 145 872
17 5 415 552
18 90 176

For concreteness, we consider the partition function ZL×L(β) for an
L × L square lattice with periodic boundary conditions. ZL×L(β) is
a polynomial in x = e−βE with positive coefficients which, for small
lattices, are given by

Z2×2(x) = x4 + 8x2 + 8,

Z4×4(x) = x16 + 32x14 + 400x12 + · · · + 3712x2 + 272, (6.19)
Z6×6(x) = x36 + 72x34 + · · · + 5 409 088 488x12 + · · · + 90 176.

The coefficients of Z2×2 correspond to the fact that in the 2 × 2 lattice
without periodic boundary conditions, we can build one configuration
with zero dimers and eight configurations each with one and with two
dimers. The partition function Z4×4 follows from our first enumeration
in Table 6.2, and the coefficients of the 6 × 6 lattice are generated by
depth-first enumeration (see Table 6.6).

In a finite lattice, Z(β) is always positive, and for no value of the
temperature (or of x on the positive real axis) can the free energy log Z,
or any of its derivatives, generate a divergence. The way a transition
can nevertheless take place in the limit of an infinite system limit, was
clarified by Lee and Yang (1952). It involves considering the partition
function as a function of x, taken as a complex variable.

300 Entropic forces

Standard algorithms allow us to compute the (complex-valued) zeros
of these polynomials, that is, the values of x for which ZL×L(x) = 0,
etc. For all three lattices, the zeros remain on the imaginary axis, and
the partition function can be written as

Z2×2(x) = (x2 + 1.1716)(x2 + 6.828)︸ ︷︷ ︸
2 terms

,

Z4×4(x) = (x2 + 0.102)(x2 + 0.506) . . . (x2 + 10.343)︸ ︷︷ ︸
8 terms

, (6.20)

Z6×6(x) = (x2 + 0.024)(x2 + 0.121) . . . (x2 + 10.901)︸ ︷︷ ︸
18 terms

.

We note that the two eqns (6.19) and (6.20) feature the same polyno-
mials, and that the factorized representation allows us to read off the
zeros. For example, the polynomial Z2×2(x) = 0 for x2 = −1.1716 and
for x2 = −6.828, that is, for x = ±i

√
1.1716 and x = ±i

√
6.828. The

zeros of the above partition functions are all purely imaginary. The gen-
eralization of this finding constitutes the Heilmann–Lieb theorem.

Using enumeration, we cannot go much beyond a 6 × 6 lattice. To
nevertheless refine our heuristics, we can compute the partition func-
tions for all the lattices shown in Fig. 6.35. A single run of Alg. 6.7

N = 1 N = 2 ... N = 7 ... N = 16

Fig. 6.35 Building up a 4 × 4 square lattice without periodic boundary
conditions from sublattices containing N = 1, . . . , 16 sites.

Table 6.7 Number of configurations N (M, N) with M dimers on
N-site lattices of Fig. 6.35

M N = 6 7 8 9 10 11 12 13 14 15 16

0 1 1 1 1 1 1 1 1 1 1 1
1 6 8 10 11 13 15 17 18 20 22 24
2 8 16 29 37 55 76 102 117 149 184 224
3 2 7 26 42 90 158 267 343 524 746 1044
4 · · 5 12 52 128 302 460 908 1545 2593
5 · · · · 7 29 123 251 734 1572 3388
6 · · · · · · 11 40 232 682 2150
7 · · · · · · · · 18 88 552
8 · · · · · · · · · · 36

(depth-dimer) on the 4 × 4 lattice suffices to compute the numbers of
M -dimer configurations for all these lattices (see Table 6.7). (We simply

6.2 Entropic lattice model: dimers 301

retain for each configuration on the 4 × 4 lattice the largest occupied
site, N ′. This configuration contributes to all lattices N in Table 6.7
with N ≥ N ′.) We then write down partition functions and compute
roots of polynomials, as before, but for all the 16 lattices of Fig. 6.35:

Z8(x) = (x2 + 0.262)(x2 + 1.151)(x2 + 2.926)(x2 + 5.661),

Z9(x) = x(x2 + 0.426)(x2 + 1.477)(x2 + 3.271)(x2 + 5.826),
Z10(x) = (x2 + 0.190)(x2 + 0.815)(x2 + 1.935)(x2 + 3.623)(x2 + 6.436).

These partition functions are again as in eqn (6.20), slightly generalized
to allow lattices with odd number of sites:

ZN (x) = x
∏

(x2 + bi) for N odd,

ZN (x) =
∏

(x2 + bi) for N even.

Furthermore, the zeros of the polynomial Z8 are sandwiched in between
the zeros of Z9, which are themselves sandwiched in between the zeros of
Z10. (For the zeros of Z8 and Z9, for example, we have that 0 < 0.262 <
0.426 < 1.151, etc.) This observation can be generalized. Let us consider
more lattices differing in one or two sites, for example lattices containing
sites {1, . . . , 7}, {1, . . . , 6}, and also {1, . . . , 3, 5, . . . , 7}. The partition
function on these lattices are related to each other (see Fig. 6.36):

Z1,...,8(x) = xZ1,...,7(x) + Z1,...,6(x) + Z1,...,3,5,...,7(x), (6.21)

simply because site 8 on the lattice {1, . . . , 8} hosts either a monomer
or a dimer, which must point in one of a few directions.

Z1,...,8

=

xZ1,...,7

+

Z1,...,6

+

Z1,...,3,5,...,7

Fig. 6.36 Monomer–dimer partition function on a lattice of 8 sites ex-
pressed through partition functions on sublattices.

If the zeros both of Z1,...,6 and of Z1,...,3,5,...,7 are sandwiched in by
the zeros of Z1,...,7, then it follows, by simply considering eqn (6.21),
that the zeros of Z1,...,7 are sandwiches in by the zeros of Z1,...,8(x).
We see that a relation for lattices of six and seven sites yields the same
relation for lattices between seven and eight sites. More generally, the
zeros of the partition function for any lattice stay on the imaginary axis,
and are sandwiched in by the zeros of partition functions for lattices
with one more site. It also follows from the absence of zeros of the
partition function in the right half plane of the complex variable x that
the logarithm of the partition function, the free energy, is an analytic
function in this same region. It nowhere entered the argument that the

302 Entropic forces

lattice was planar, or the sublattices of the special form used in our
example. Whatever the lattice (2-dimensional lattice, three-dimensional,
an irregular graph, etc.), there can thus never be a phase transition in
the monomer–dimer model.

Exercises 303

Exercises

(Section 6.1)

(6.1) To sample configuration of the one-dimensional
clothes-pin model, implement Alg. 6.1 (naive-pin)
and the rejection-free direct-sampling algorithm
(Alg. 6.2 (direct-pin)). Check that the histograms
for the single-particle density π(x) agree with each
other and with the analytic expression in eqn (6.7).
Generalize the two programs to the case of periodic
boundary conditions (pins on a ring). Compute the
periodically corrected pair correlation function on
the ring (the histogram of the distance between two
pins) and check the equivalence in eqn (6.9) be-
tween the pair correlations on a ring and the bound-
ary correlations on a line.
NB: Implement periodic distances as in Alg. 2.6
(diff-vec).

(6.2) Show by direct analysis of eqn (6.7) that the single-
particle probability π(x) of the clothes-pin model
has a well-defined limit L → ∞ at constant cover-
ing density η = 2Nσ/L. Again, from an evaluation
of eqn (6.7) for finite N , show that, for η < 1

2
, the

function π(x) is exactly constant in an inner re-
gion of the line, more than (2N − 1)σ away from
the boundaries. Prove this analytically for three or
four pins, and also for general values of N .
NB: The general proof is very difficult—see Leff
and Coopersmith (1966).

(6.3) Generalize Alg. 6.2 (direct-pin) to the case of Nl

large and Ns small particles on a segment of length
L. Compute the single-particle probability distri-
bution π(x) for the large particles. Generalize the
program to the case of particles on a ring with pe-
riodic boundary conditions (a “binary necklace”).
Determine the pair-correlation function, as in Ex-
erc. 6.1.
NB: After sampling the variables {y1, . . . , yN}, with
N = Nl + Ns, use Alg. 1.12 (ran-combination) to
decide which ones of them are the large particles.

(6.4) (Relates to Exerc. 6.3). Implement a local Monte
Carlo algorithm for the binary necklace of Nl large
and Ns small beads (particles on a line with peri-
odic boundary conditions). To sample all possible
arrangements of small and large beads, set up a lo-
cal Monte Carlo algorithm with the two types of
move shown in Fig. 6.37. Compare results for the

pair-correlation function with Exerc. 6.3. Comment
on the convergence rate of this algorithm.

a b a b

Fig. 6.37 Two types of move on a binary necklace.

(6.5) Implement Alg. 6.3 (pocket-binary), the cluster
algorithm for hard squares and disks in a rectangu-
lar region with periodic boundary conditions. Test
your program in the case of equal-size particles in
one dimension, or in the binary necklace problem
of Exerc. 6.3. Generate phase-separated configu-
rations of binary mixtures of hard squares, as in
Fig. 6.14. NB: Use Algs 2.5 and 2.6 to handle pe-
riodic boundary conditions. Run the program for
several minutes in order to generate configurations
as in Fig. 6.10 without using grid/cell schemes. If
possible, handle initial conditions as in Exerc. 1.3
(see also Exerc. 2.3). The legal initial configuration
at the very first start of the program may contain
all of the small particles in one half of the box, and
all of the large particles in the other.

(Section 6.2)

(6.6) Implement Alg. 6.4 (naive-dimer) on a 4×4 square
lattice. Use an occupation-number vector for de-
ciding whether a configuration is legal. Check your
program against the data in Table 6.2. Modify it
to allow you to choose the boundary conditions,
and also to choose between the enumeration of
complete dimer configurations or of monomers and
dimers. Implement Alg. 6.5 (naive-dimer(patch)).
Can you treat lattices larger than 4 × 4?

(6.7) Consider the numbers of configurations with M > 0
dimers on the 4 × 4 lattice (see Table 6.2). Ex-
plain why these numbers are all even, except for
four dimers on the 4 × 4 lattice without periodic
boundary conditions, where the number of config-
urations is odd.

(6.8) Implement Alg. 6.7 (depth-dimer) for dimers on
the square lattice. Test it with the histogram of

304 Exercises

Table 6.2. Use it to compute the analogous his-
tograms on the 6 × 6 lattice with or without peri-
odic boundary conditions, but make sure that your
representation allows you to treat sufficiently large
numbers without overflow. Store all the complete
dimer configurations in a file and compute the pair
correlation functions of Table 6.6.

(6.9) Generalize Alg. 6.6 (breadth-dimer) for tetris
molecules (see Fig. 6.38) on an L×L square lattice
without periodic boundary conditions. Start from
a list of single-tetris configurations analogous to
Fig. 6.18. How many configurations of eight tetris
molecules are there on a 7 × 7 lattice?

{x,y}

Fig. 6.38 Tetris molecules on an 8 × 8 lattice.

NB: The enumeration program relies on a list of
single-molecule configurations, and on a list of sites
touched by each of them (there are 24 such config-
urations on the 4×4 lattice, and 120 configurations
on the 6 × 6 lattice). Write down explicitly that a
molecule based at {x, y} (where 1 ≤ x, y ≤ L),
in the same orientation as the dark molecule in
Fig. 6.38, exists if x + 3 ≤ L and if y + 1 ≤ L and
then touches also the positions {x+1, y} {x+2, y}
{x+3, y}, and {x+1, y+1}. All coordinates {x, y}
should then be translated into site numbers.

(6.10) Implement the matrix A of eqn (6.18), general-
ized for an L × L square lattice without periodic
boundary conditions (see Fig. 6.25). Use a stan-
dard linear algebra routine to compute det A and
PfA =

√
det A. Test your implementation against

the enumeration results of Table 6.2 and Table 6.3.
Extend the program to compute Pfaffians of mod-
ified matrices, as A′ and A′′ in Fig. 6.27. Then im-
plement a Pfaffian-based rejection-free direct sam-
pling algorithm for complete dimer configurations.
At each step during the construction of the config-
uration, the algorithm picks a site that is not yet
covered by a dimer, and must compute probabil-
ities for the different orientations of the dimer on
that site, as discussed in Fig. 6.28. Check your algo-
rithm in the 4×4 square lattice. It should generate
the 36 different complete dimer configurations with

approximately equal frequency (see Table 6.2).
NB: An analogous algorithm exists for the two-
dimensional Ising model, and the Ising spin glass.
In that latter case, unlike for dimers, there are no
good Markov-chain sampling methods.

(6.11) The matrices {A1, . . . , A4} in Fig. 6.39 allow one to
count complete dimer configurations with periodic
boundary conditions: consider an arbitrary alter-
nating cycle, either planar or winding around the
lattice (in x or y direction, or both). Compute its
weight for all four matrices (see Kasteleyn (1961)).
Show that the number of complete dimer configura-
tions on the square lattice with periodic boundary
conditions is

Z =
1

2
(−PfA1 + Pf A2 + Pf A3 + Pf A4).

Implement matrices analogous to {A1, . . . , A4} for
L × L square lattices with periodic boundary con-
ditions, and recover the results for complete dimer
configurations in Tables 6.2 and 6.3.

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

−

−

−

−

−

−

−

−

−

−
+ − + −

A1

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

−

−

−

−

−

−

−

−

−

−
− + − +

A2

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

−

−

−

−

−

−

+ − + −

+

+

+

+

A3

+

+

+

+

+

+

+ + +

+ + +

+ + +

+ + +

−

−

−

−

−

−

− + − +

+

+

+

+

A4

Fig. 6.39 Standard matrices for the 4× 4 lattice (com-
pare with Fig. 6.25).

(6.12) Implement the pivot cluster algorithm for dimers
on the L × L square lattice with periodic bound-
ary conditions. Test it by writing out complete
dimer configurations on file: on the 4×4 lattice, the
272 complete dimer configurations should be gen-
erated equally often. Sample configurations with
M < L2/2 dimers and store them on file. Now show
how a single iteration of Alg. 6.6 (breadth-dimer)
allows one to estimate N (M +1)/N (M). Estimate
N (M) from several independent Monte Carlo runs.
Test your procedure in the 4 × 4 lattice and the
6 × 6 lattices against enumeration data, try it out
on much larger lattices.
NB: Thus it is easy to estimate the number of
dimer configurations for any M , because Markov-
chain Monte Carlo algorithms converge very well.
We note that Valiant (1979) has rigorously estab-
lished that counting the number of monomer–dimer
configurations without statistical errors is difficult:
estimation is easy, precise counting difficult.

References 305

References

Asakura S., Oosawa F. (1954) On interaction between 2 bodies immersed
in a solution of macromolecules, Journal of Chemical Physics 22, 1255–
1256

Buhot A., Krauth W. (1999) Phase separation in two-dimensional addi-
tive mixtures, Physical Review E 59, 2939–2941

Dinsmore A. D., Yodh A. G., Pine D. J. (1995) Phase-diagrams of nearly
hard-sphere binary colloids, Physical Review E 52, 4045–4057

Fisher M. E., Stephenson J. (1963) Statistical mechanics of dimers on
a plane lattice. II. Dimer correlations and monomers, Physical Review
132, 1411–1431

Galbiati G., Maffioli F. (1994) On the computation of Pfaffians, Dis-
crete Applied Mathematics 51, 269–275

Heilmann O. J., Lieb E. H. (1970) Monomers and dimers, Physical Re-
view Letters 24, 1412–1414

Kasteleyn P. W. (1961) The statistics of dimers on a lattice I. The num-
ber of dimer arrangements on a quadratic lattice, Physica 27, 1209–1225

Krauth W., Moessner R. (2003) Pocket Monte Carlo algorithm for clas-
sical doped dimer models, Physical Review B 67, 064503

Lee T. D., Yang C. N. (1952) Statistical theory of equations of state
and phase transitions. 2. Lattice gas and Ising model, Physical Review
87, 410–419

Leff H. S., Coopersmith M. H. (1966) Translational invariance proper-
ties of a finite one-dimensional hard-core fluid, Journal of Mathematical
Physics 8, 306–314

Valiant L. G. (1979) Complexity of enumeration and reliability prob-
lems, SIAM Journal on Computing 8, 410–421

This page intentionally left blank

Dynamic Monte Carlo
methods 7

7.1 Random sequential
deposition 309

7.2 Dynamic spin algorithms 313

7.3 Disks on the unit sphere 321

Exercises 333

References 335

In the first six chapters of this book, we have concentrated on equilibrium
statistical mechanics and related computational-physics approaches, no-
tably the equilibrium Monte Carlo method. These and other approaches
allowed us to determine partition functions, energies, superfluid densi-
ties, etc. Physical time played a minor role, as the observables were gen-
erally time-independent. Likewise, Monte Carlo “time” was treated as of
secondary interest, if not a nuisance: we strove only to make things hap-
pen as quickly as possible, that is, to have algorithms converge rapidly.

The moment has come to reach beyond equilibrium statistical mechan-
ics, and to explore time-dependent phenomena such as the crystallization
of hard spheres after a sudden increase in pressure or the magnetic re-
sponse of Ising spins to an external field switched on at some initial time.
The local Monte Carlo algorithm often provides an excellent framework
for studying dynamical phenomena.

The conceptual difference between equilibrium and dynamic Monte
Carlo methods cannot be overemphasized. In the first case, we have an
essentially unrestricted choice of a priori probabilities, since we only want
to generate independent configurations x distributed with a probability
π(x), in whatever way we choose, but as fast as possible. In dynamic
calculations, the time dependence becomes the main object of our study.
We first look at this difference between equilibrium and dynamics in the
case of the random-sequential-deposition problem of Chapter 2, where
a powerful dynamic algorithm perfectly implements the faster-than-the-
clock paradigm. We then discuss dynamic Monte Carlo methods for the
Ising model and encounter the main limitation of the faster-than-the-
clock approach, the futility problem.

In the final section of this chapter, we apply a Monte Carlo method
called simulated annealing, an important tool for solving difficult opti-
mization problems, mostly without any relation to physics. In this ap-
proach, a discrete or continuous optimization problem is mapped onto
an artificial physical system whose ground state (at zero temperature or
infinite pressure) contains the solution to the original task. This ground
state is slowly approached through simulation. Simulated annealing will
be discussed for monodisperse and polydisperse hard disks on the surface
of a sphere, under increasing pressure. It works prodigiously in one case,
where the disks end up crystallizing, but fails in another case, where
they settle into a glassy state.

Disks are dropped randomly into a box (Fig. 7.1), but they stay put
only if they fall into a free spot. Most of the time, this is not the case,
and the last disk must be removed again. It thus takes a long time to fill
the box. In this chapter, we study algorithms that do this much faster:
they go from time t = 4262 to t = 20332 in one step, and also find
out that the box is then full and that no more disks can be added. All
problems considered in this chapter treat dynamic problems, where time
dependence plays an essential role.

t = 1 t = 2 t = 3 t = 4 t = 5 ...

t = 12 t = 13 t = 16 t = 47 t = 4262 t = 20332

Fig. 7.1 Random sequential deposition of disks in a box. Any disk gen-
erating overlaps (as at time t = 3) is removed.

7.1 Random sequential deposition 309

7.1 Random sequential deposition

A number of dynamic models in statistical physics do not call on equi-
librium concepts such as the Boltzmann distribution and equiprobabil-
ity. From Chapter 2, we are already familiar with one of these models,
that of random sequential deposition. This model describes hard disks
which are deposited, one after another, at random positions in an ini-
tially empty square. Disks stick to the region in which they have been
deposited if they do not overlap with any other disk placed earlier; oth-
erwise, they are removed, leaving the state of the system unchanged. It
is instructive to implement random sequential deposition (see Alg. 7.1
(naive-deposition)) and to compare this dynamic Monte Carlo process
with Alg. 2.7 (direct-disks), the equilibrium direct-sampling method
for hard disks.

procedure naive-deposition

k ← 1
for t = 1, 2, . . . do⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xk ← ran (xmin, xmax)
yk ← ran (ymin, ymax)
if (minl<k[dist(xk,xl)] > 2r) then{

output {xk, t}
k ← k + 1

——

Algorithm 7.1 naive-deposition. Depositing hard disks of radius r on
a deposition region delimited by {xmin, ymin} and {xmax, ymax}.

As seen in earlier chapters, equilibrium Monte Carlo problems possess
a stationary probability distribution π(x). In contrast, dynamic pro-
cesses such as random sequential deposition are defined through a rule.
In fact, the rule is all there is to the model.

Random sequential deposition raises several questions. For example,
we would like to compute the stopping time ts for each sample, the
time after which it becomes impossible to place an additional disk in
the system. We notice that Alg. 7.1 (naive-deposition) is unable to
decide whether the current simulation time is smaller or larger than the
stopping time.

We would like to investigate the structure of the final state, after ts.
More generally, we would like to compute the ensemble-averaged density
of the system as a function of time, up to the stopping time, for different
sizes of the deposition region. To compare the time behavior of different-
sized systems, we must rescale the time as τ = t/(deposition area). This
lets us compare systems which have seen the same number of deposition
attempts per unit area. In the limit of a large area L × L, the rescaled
stopping time τs diverges, and it becomes difficult to study the late
stages of the deposition process.

310 Dynamic Monte Carlo methods

7.1.1 Faster-than-the-clock algorithms

In dynamic Monte Carlo methods, as in equilibrium methods, algorithm
design does not stop with naive approaches. In the late stages of Alg. 7.1
(naive-deposition), most deposition attempts are rejected and do not
change the configuration. This indicates that better methods can be
found. Let us first rerun the simulation of Fig. 7.1, but mark in dark
the accessible region (more than two radii away from any disk center
and more than one radius from the boundary) where new disks can still
be placed successfully (see Fig. 7.2). The accessible region has already
appeared in our discussion of entropic interactions in Chapter 6.

t = 1 t = 2 ... t = 12 ... t = 47

accessible region

Fig. 7.2 Some of the configurations of Fig. 7.1, together with their ac-
cessible regions, drawn in dark.

At time t = 47, the remaining accessible region—composed of two
tiny spots—is hardly perceptible: it is no wonder that the waiting time
for the next successful deposition is very large. In Fig. 7.2, this event
occurs at time t = 4263 (∆t = 4215; see Fig. 7.1), but a different set of
random numbers will give different results. Clearly, the waiting time ∆t

until the next successful deposition is a random variable whose proba-
bility distribution depends on the area of the accessible region. Using
the definition

λ = 1 − area of accessible region
area of deposition region

,

we can see that a single deposition fails (is rejected) with a probability λ.
The rejection rate increases with each successful deposition and reaches
1 at the stopping time τs.

The probability of failing once is λ, and of failing twice in a row is λ2.
λk is thus the probability of failing at least k times in a row, in other
words, the probability for the waiting time to be larger than k.

The probability of waiting exactly ∆t steps is given by the probability
of having k rejections in a row, multiplied by the acceptance probability

π(∆t) = λ∆t−1︸ ︷︷ ︸
∆t−1

rejections

acceptance︷ ︸︸ ︷
(1 − λ) = λ∆t−1 − λ∆t .

The distribution function π(∆t)—a discretized exponential function—
can be represented using the familiar tower scheme shown in Fig. 7.3
(see Subsection 1.2.3 for a discussion of tower sampling).

7.1 Random sequential deposition 311

We note that the naive algorithm samples the distribution π(∆t) and
at the same time places a disk center inside the accessible region, that is,
it mixes two random processes concerning the when and the where of the
next successful deposition. Faster-than-the-clock methods, the subject of
the present subsection, nicely disentangle this double sampling problem.
Instead of finding the waiting time the hard way (by trying and trying),
starting at time t, these methods sample ∆t directly (see Fig. 7.3). After
deciding when to place the disk, we have to find out where to put it; this
means that a disk is placed (at the predetermined time t+∆t) anywhere
in the accessible region.

To actually determine the waiting time, we do not need to implement
tower sampling with Alg. 1.14 (tower-sample), but merely solve the
inequality (see Fig. 7.3)

λ∆t < ran (0, 1) < λ∆t−1,

which yields

(∆t − 1) log λ < log ran (0, 1) < ∆t log λ,

∆t = 1 + int

[
log ran (0, 1)

log λ

]
. (7.1)

0

1

∆t=1
λ

∆t=2
λ2

∆t=3
λ3

∆t=4
λ4

∆t=5
λ5

Fig. 7.3 Tower sampling in random se-
quential deposition: a pebble ran (0, 1)
samples the waiting time.

Of course, we can sample ∆t (with the help of eqn (7.1)) only after
computing λ from the area of the accessible region. This region (see
Fig. 7.4) is very complicated in shape: it need not be simply connected,
and connected pieces may have holes.

t = 115 (50 disks) small region

Fig. 7.4 Accessible region, in dark, and the method of cutting it up into
small regions (left). A small region, spanned by a convex polygon (right).

We can considerably simplify the task of computing the area of the
accessible region by cutting up the accessible region into many small
regions {R1, . . . ,RK}, each one confined to one element of a suitable
grid. We let A(Rk) be the area of the small region Rk, so that the total
accessible area is Aacc =

∑
k A(Rk).

312 Dynamic Monte Carlo methods

x1

x2x3

x4

x5

xc

A1

A2

A3

A4
A5

Fig. 7.5 Convex polygon with five vertices {x1, . . . ,x5} and a central
point xc. A random sample inside the fourth triangle is indicated.

For a sufficiently fine grid, the small regions Rk have no holes, but
there may be more than one small region within a single grid element.
The shapes of the small regions are typically as shown in Fig. 7.5.

The small region Rk is spanned by vertices {x1, . . . ,xn}, where xk =
{xk, yk}. The polygon formed by these vectors has an area

Apolygon =
1
2

(x1y2 + · · · + xny1) − 1
2

(x2y1 + · · · + x1yn) , (7.2)

as we might remember from elementary analytic geometry. We must sub-
tract segments of circles (the nonoverlapping white parts of the polygon
in Fig. 7.5) from Apolygon to obtain A(Rk). The sum of all the resulting
areas, Aacc, allows us to compute λ and to sample ∆t.

After sampling the waiting time, we must place a disk inside the ac-
cessible region. It falls into the small region Rk with probability A(Rk),
and the index k is obtained by tower sampling in {A(R1), . . . , A(RK)}.
Knowing that the disk center will fall into small area k, we must sample a
random position x inside Rk. This process involves tower sampling again,
in n triangles formed by neighboring pairs of vertices and a center point
xc (which, for a convex polygon, is inside its boundary) (see Alg. 7.2
(direct-polygon)). In this program, Alg. 7.3 (direct-triangle) sam-
ples a random point inside an arbitrary triangle; any sampled point in
the white segments in Fig. 7.5 instead of in the small area is rejected,
and the sampling repeated. Eventually, a point x inside the gray region
in Fig. 7.5 will be found.

The algorithm for random deposition must keep track of the small re-
gions Rk as they are modified, cut up, and finally eliminated during the
deposition process. It is best to handle this task using oriented surfaces,
by putting arrows on the boundaries of Rk and of the exclusion disk
(see Fig. 7.6). We let the accessible region be on the left-hand side of

7.2 Dynamic spin algorithms 313

Rk (old)

small region (old)

out

in

exclusion disk

Rk (new)

small region (new)

Fig. 7.6 Intersection of a small region Rk with an exclusion disk.

procedure direct-polygon

input {x1, . . . ,xn}
xc ←

∑
xk/n

xn+1 ← x1

for k = 1, . . . , n do{
Ak ← (xcyk + xkyk+1 + xk+1yc

−xkyc − xk+1yk − xcyk+1)/2 (see eqn (7.2))
k ← tower-sample(A1, . . . , An)
x ← direct-triangle(xc,xk,xk+1)
output x
——

Algorithm 7.2 direct-polygon. Uniformly sampling a random position
inside a convex polygon with n > 3 vertices.

the edges delimiting it. Arrows then go around Rk in an anticlockwise
sense, and they circle the exclusion disk in a clockwise sense (other disk
centers can be placed on its outside, again on the left-hand side of the
boundary). The explicit trigonometric computations must produce an
ordered list of “in” and “out” intersections, which will be new vertices.
All the pieces from “out” to “in” intersections are part of the new bound-
ary, in addition to the arcs of the exclusion disks from “in” to the next
“out”. An example of this calculation is shown in Fig. 7.6. The rules
also apply when the exclusion disk cuts the small area Rk into several
pieces. Algorithm 7.4 (fast-deposition) contains little more than the
routines Alg. 7.2 (direct-polygon), Alg. 7.3 (direct-triangle), in ad-
dition to the tower-sampling algorithm. They should all be incorporated
as subroutines and written and tested independently.

7.2 Dynamic spin algorithms

The faster-than-the-clock approach is ideally suited to random sequential
deposition because disks are placed once and never move again. Keeping
track of the accessible area generates overhead computations only in the

314 Dynamic Monte Carlo methods

procedure direct-triangle

input {x1,x2,x3}
{Υ1, Υ2} ← {ran (0, 1) , ran (0, 1)}
if (Υ1 + Υ2 > 1) then{ {Υ1, Υ2} ← {1 − Υ1, 1 − Υ2}
x ← x1 + Υ1 · (x2 − x1) + Υ2 · (x3 − x1)
output x
——

Algorithm 7.3 direct-triangle. Sampling a random pebble x inside
a triangle with vertices {x1,x2, x3}.

procedure fast-deposition

input {R1, . . . ,RK}, t
λ ← 1 − [

∑
l A(Rl)] /Atot (probability of doing nothing)

∆t ← 1 + int [(log ran (0, 1)) / log λ] (see eqn (7.1))
k ← tower-sample(A(R1), . . . , A(RK))

1 x ← direct-polygon(Rk)
if (x not legal point in Rk) then goto 1
output t + ∆t, {R1, . . . ,RK}

——

Algorithm 7.4 fast-deposition. Faster-than-the-clock sequential de-
position of disks. Small regions Rk are described by vertices and edges.

neighborhood of a successful deposition. Small regions Rk are cut up,
amputated, or deleted but otherwise never change shape, nor do they
pop up in unexpected places. The management of the “in” and “out”
intersections in Fig. 7.6 contains the bulk of the programming effort.

Algorithm 7.4 (fast-deposition) is thus exceptionally simple, be-
cause it lacks the dynamics of the usual models, in short because disks
do not move. Rather than pursue further the subject of moving disks, in
this section we consider dynamic spin models which have the same prob-
lem. First, a single-spin Ising model in an external field lets us revisit
the basic setup of the faster-than-the-clock approach. We then apply
the faster-than-the-clock approach to the Ising model on a lattice, with
its characteristic difficulty in computing the probability of rejecting all
moves. Finally, we discuss the futility problem haunting many dynamic
Monte Carlo schemes, even the most insightful ones.

7.2.1 Spin-flips and dice throws

We consider a single Ising spin σ = ±1 in a magnetic field h, at a finite
temperature T = 1/β (see Fig. 7.7). The energy of the up-spin config-
uration (σ = 1) is −h, and the energy of the down-spin configuration
(σ = −1) is +h, in short,

Eσ = −hσ. (7.3)

We model the time evolution of this system with the Metropolis algo-

7.2 Dynamic spin algorithms 315

E = −h E = +h

Fig. 7.7 A single Ising spin in a magnetic field h.

rithm. If we write the energy change of a spin-flip as ∆E = E−σ −Eσ =
2hσ, the probability of flipping a spin is

p(σ → −σ) =

{
1 if σ = −1
e−2βh if σ = +1

. (7.4)

This transition probability satisfies detailed balance and ensures that at
large times, the two spin configurations appear with their Boltzmann
weights. (As usual, rejected moves leave the state of the system un-
changed.) We keep in mind that our present goal is to simulate time
evolution, and not only to generate configurations with the correct equi-
librium weights.

At low temperature, and much as in Alg. 7.1 (naive-deposition),
attempted flips of an up spin are rejected most of the time; σt+1 is then
the same as σt. Again, we can set up the tower-of-probabilities scheme
to find out how many subsequent rejections it will take until the up
spin finally gets flipped. It follows from eqn (7.4) that any down spin at
time t is immediately flipped back up at the subsequent time step (see
Fig. 7.8).

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

t = 7 t = 8 t = 9 t = 10 t = 11 t = 12

Fig. 7.8 Time evolution of an Ising spin in a field. Flips from “+” to
“−” at time t are followed by back-flips to “+” at time t + 1.

For concreteness, we discuss an Ising spin at the parameter value

316 Dynamic Monte Carlo methods

hβ = 1
2 log 6, where

π(+1) = e+βh = e+ log
√

6 =
√

6,

π(−1) = e−βh = e− log
√

6 = 1/
√

6,

and where the magnetization comes out as

m = 〈σ〉 =
1 · π(1) + (−1) · π(−1)

π(1) + π(−1)
=

√
6 − 1/

√
6√

6 + 1/
√

6
=

5
7
.

Because of eqn (7.4) (exp (− log 6) = 1/6), any up configuration has a
probability 1/6 to flip. This is the same as throwing a “flip-die” with five
blank faces and one face that has “flip” written on it (see Fig. 7.9). This
child’s game is implemented by Alg. 7.5 (naive-throw): one random
number is drawn per time step, but 5/6 of the time, the flip is rejected.
Rejected spin-flips do not change the state of the system. They only
increment a counter and generate a little heat in the computer.

Fig. 7.9 A child playing with a flip-die (see Alg. 7.5 (naive-throw)).

procedure naive-throw

for t = 1, 2, . . . do{
Υ ← nran (1, 6)
if (Υ = 1) output t

——

Algorithm 7.5 naive-throw. This program outputs times at which the
die in Fig. 7.9 shows a “flip”.

Flip-die throwing can be implemented without rejections (see Alg. 7.6
(fast-throw)). The probability of drawing a blank face is 5/6, the prob-
ability of drawing two blank faces in a row is (5/6)2, etc. As in Subsec-
tion 7.1.1, the probability of drawing k blank faces in a row, followed by

7.2 Dynamic spin algorithms 317

drawing the “flip” face, is given by the probability of waiting at least k
times minus the probability of waiting at least k + 1 throws:

π(k) = (5/6)k − (5/6)k+1
.

π(k) can be sampled, with rejections, by Alg. 7.5 (naive-throw), and
without them by Alg. 7.6 (fast-throw).

procedure fast-throw

λ ← 5/6 (probability of doing nothing)
t ← 0
for i = 1, 2, . . . do⎧⎨⎩

∆t ← 1 + Int {log [ran (0, 1)] / log λ}
t ← t+
output t + ∆t

——

Algorithm 7.6 fast-throw. Faster-than-the-clock implementation of
flip-die throwing.

The rejection-free Alg. 7.6 (fast-throw) generates one flip per ran-
dom number and runs faster than Alg. 7.5 (naive-throw), with sta-
tistically identical output. The flip-die program is easily made into a
simulation program for the Ising spin, spending exactly one step at a
time in the down configuration and on average six steps at a time in the
up configuration, so that the magnetization comes out equal to 5/7.

7.2.2 Accelerated algorithms for discrete systems

From the case of a single spin in a magnetic field, we now pass to the full-
fledged simulation of the Ising model on N sites, with time-dependent
configurations σ = {σ1, . . . , σN}. We denote by σ[k] the configuration
obtained from σ by flipping the spin k. The energy change from a spin-
flip, ∆E = E

σ
[k] − Eσ , enters into the probability of flipping a spin in

the Metropolis algorithm:

p(σ → σ
[k]) =

1
N

min
(
1, e−β∆E

)
.

This equation in fact corresponds to the local Metropolis algorithm (it
is implemented in Alg. 5.7 (markov-ising)). The first term, 1/N , gives
the probability of selecting spin k, followed by the Metropolis probability
of accepting a flip of that spin. In the Ising model and its variants at
low temperature, most spin-flips are rejected. It can then be interesting
to implement a faster-than-the-clock algorithm which first samples the
time of the next spin-flip, and then the spin to be flipped, just as in the
earlier deposition problem. Rejections are avoided altogether, although
the method is not unproblematic (see Subsection 7.2.3). The probability
λ = 5/6 of drawing a blank face in Alg. 7.6 (fast-throw) must now be
generalized into the probability of doing nothing during one iteration of

318 Dynamic Monte Carlo methods

the Metropolis algorithm,

λ = 1 −
N∑

k=1

p(σ → σ
[k]). (7.5)

This equation expresses that to determine the probability of doing noth-
ing, we must know all the probabilities for flipping spins. Naively, we
can recalculate λ from eqn (7.5) after each step, and sample the waiting
time as in Alg. 7.6 (fast-throw). After finding out when to flip the
next spin, we must decide on which of the N spins to flip. This problem
is solved through a second application of tower sampling (see Alg. 7.7
(dynamic-ising), and Fig. 7.10). Output generated by this program
is statistically indistinguishable from that of Alg. 5.7 (markov-ising).
However, each spin-flip requires of the order of N operations.

0

1

λ
σ→σ

[1]

λ2

λ3

λ4

λ5

...

σ→σ
[k]

...
σ→σ

[N]

fi
rs

t
to

w
er

secon
d
 tow

er

Fig. 7.10 Two-pebble tower sampling
in the Ising model. The first pebble,
ran (0, 1), determines the waiting time
∆t, as in Fig. 7.3. Then, ran (λ, 1) sam-
ples the spin k to be flipped.

procedure dynamic-ising

input t, {σ1, . . . , σN}
for k = 1, . . . , N do{

pk ← p(σ → σ[k])
λ ← 1 −∑k pk

∆t ← 1 + int[log [ran (0, 1)] / log λ]
l ← tower-sample(p1, . . . , pN)
σl ← −σl

t ← t + ∆t

output t, {σ1, . . . , σN}
——

Algorithm 7.7 dynamic-ising. Simulation of the Ising model using the
faster-than-the-clock approach (see Alg. 7.8 (dynamic-ising(patch))).

The recalculation from scratch of λ, the probability of doing nothing,
is easily avoided, because flipping a spin only changes the local envi-
ronment of nearby spins, and does not touch most other spins. These
other spins have as many up and down neighbors as before. The possible
environments (numbers of up and down neighbors) fall into a finite num-
ber n of classes. We must simply perform bookkeeping on the number of
members of each class (see Alg. 7.8 (dynamic-ising(patch))). The first
paper on accelerated dynamic Monte Carlo algorithms, by Bortz, Kalos,
and Lebowitz (1975), coined the name “n-fold way” for this strategy.

For concreteness, we consider a two-dimensional Ising model with
isotropic interactions and periodic boundary conditions. Spin environ-
ments may be grouped into ten classes, from class 1 (for an up spin
surrounded by four up spins) to class 10 (for a down spin surrounded by
four down spins) (see Fig. 7.11). The tower of probabilities of all spin-
flips can be reduced to a tower of 10 classes of spins, if we only know
the number Nk of spins in each class k.

Flipping a spin thus involves concerted actions on the classes, as shown
in the example in Fig. 7.12: the central up spin, being surrounded by
only one up spin, is in class k = 4. Flipping it brings it into class f(4) = 9

7.2 Dynamic spin algorithms 319

class = 1 class = 2 class = 3 class = 4 class = 5

class = 6 class = 7 class = 8 class = 9 class = 10

Fig. 7.11 Classes of the two-dimensional Ising model with periodic
boundary conditions (permuting neighbors does not change the class).

(see Table 7.1). Likewise, flipping the central spin (in class l = 4) trans-
fers its right-hand neighbor from class k = 1 to class g4(1) = 2. All
these operations on the classes are encoded into functions f(k) and gj(k)
in Table 7.1. To be complete, the bookkeeping has to act on the sets
{S1, . . . ,S10} (set Sk contains all the spins (sites) in class k): changing
a spin on site k from class l to class j implies that we have to move k
from set l (Sl → Sl \ {k}) to set j (Sj → Sj ∪ {k}). These computation-
ally cheap operations should be outsourced into subroutines. As a conse-
quence, the single-spin-flip algorithm runs on the order of const·N times
faster than Alg. 7.7 (dynamic-ising), although the constant is quite
small. However, at all but the smallest temperatures, the bookkeeping
involved makes it go slower than the basic Alg. 5.7 (markov-ising).

Table 7.1 The 10 classes of the n-fold
way: a flip of a spin moves it from class
k to f(k). The flip of a neighboring spin,
itself in class j, moves it from class k to
gj(k), see Fig. 7.12.

Site Neighbor flip
k f(k) g1−5(k) g6−10(k)

1 6 2 −
2 7 3 1
3 8 4 2
4 9 5 3
5 10 6 4
6 1 7 5
7 2 8 6
8 3 9 7
9 4 10 8
10 5 − 9

up

4

1

7

class = 8

down

class = 9

2

8

9

Fig. 7.12 Consequences of a spin-flip of the central spin for the classes
of the spin itself and its neighbors (see Table 7.1).

7.2.3 Futility

In previous chapters, we rated algorithms with a high acceptance prob-
ability as much better than methods which rejected most moves. Rejec-
tions appeared wasteful, and indicated that the a priori probability was
inappropriate for the problem we were trying to solve. On the other hand,

320 Dynamic Monte Carlo methods

procedure dynamic-ising(patch)

input t, {c1, . . . , cN}, {S1, . . . ,S10}
for k = 1, . . . , 10 do{

pk ← N (Sk)p(Sk)
λ ← 1 −∑10

k=1 pk

∆t ← 1 + int[log [ran (0, 1)] / log λ]
k ← tower-sample(p1, . . . , p10)
l ← random element of Sk

for all neighbors m of l do⎧⎨⎩
Scm

← Scm
\ {m}

cm ← fneigh(cm, cl)
Scm

← Scm
$ {m}

cl ← fsite(cm, cl)
output t + ∆t, {c1, . . . , cN}, {S1, . . . ,S10}
——

Algorithm 7.8 dynamic-ising(patch). Improved version of Alg. 7.7
(dynamic-ising) using classes. Each spin-flip involves bookkeeping.

algorithms with a large acceptance probability allowed us to increase
the range of moves (the throwing range), thereby moving faster through
phase space. From this angle, faster-than-the-clock methods may appear
to be of more worth than they really are: with their vanishing rejection
rate, they seem to qualify for an optimal rating!

In a dynamic simulation with Alg. 7.7 (dynamic-ising), and in many
other dynamic models which might be attacked with a faster-than-the-
clock approach, we may soon be disappointed by the futility of the sys-
tem’s dynamics, even though it has no rejections. Intricate behind-the-
scenes bookkeeping makes improbable moves or flips happen. The sys-
tem climbs up in energy, but then takes the first opportunity to slide
back down in energy to where it came from. We have no choice but
to diligently undo all bookkeeping, before the same unproductive back-
and-forth motion starts again elsewhere in the system.

Low-temperature dynamics, starting at configuration a in Fig. 7.13,
will drive the system to either b or c, from where it will almost certainly
fall back at the next time step. At low temperature, the system will
take a very long time (and, more importantly, a very large number of
operations) before hopping over one of the potential barriers and getting
to either d or e. In these cases, the dynamics is extremely repetitive, and
futile. It may be wasteful to recompute the tower of probabilities, with or
without bookkeeping tricks (the classes in Fig. 7.12). We may be better
off saving much of the information about the probabilities for convenient
reuse and lookup. After a move σ → σ[k], we may look in an archive to
quickly decide whether we have seen the current configuration before,
and whether we can recycle an old tower of probabilities. There are many
variations of this scheme.

To overcome problems such as the above futility, we may be tempted to
implement special algorithms, but this cannot be achieved without effort.

7.3 Disks on the unit sphere 321

a

bc

d

e

en
er

gy

position

Fig. 7.13 Futile dynamics: motion between points a, b, and c is rejection-
free, but it still takes a long time to get to d or to e.

Before embarking on a special programming project, we should lucidly
evaluate the benefits, hidden problems, programming skills required, etc.
The computer time saved by insightful algorithms is easily overspent on
human time in writing and debugging them. Naive implementations,
such as those used throughout this book, keep us from getting trapped
by the development of overcomplicated procedures which, after all, may
be less powerful than we suspected.

7.3 Disks on the unit sphere

The Monte Carlo method that has accompanied us throughout this book
has outgrown its origins in statistical physics. Nowadays, Monte Carlo
methods appear wherever there is computing and modeling. Some spe-
cific tools of the trade are geared towards improving sampling efficiency,
for example for integration in intermediate dimensions, when Riemann
discretization and its variants no longer work.

Monte Carlo methods also help in solving general optimization prob-
lems in science and engineering. These problems can generally be formu-
lated as artificial statistical-physics models whose ground state at zero
temperature or at infinite pressure contains the sought-after solution.
The simulation of the artificial model starts from high temperature or
low pressure, with temperature gradually going down or pressure slowly
increasing until the ground state is reached. This procedure, called sim-
ulated annealing, was introduced by Kirkpatrick, Gelatt, and Vecchi
(1983), and constitutes an outstanding naive approach to hard optimiza-
tion problems for which no other good solution is available, following the
motto: “If all else fails, try statistical mechanics!”

In the present section, we study simulated annealing in a familiar con-

322 Dynamic Monte Carlo methods

text, again involving hard spheres, namely the close packing of disks on
the surface of a sphere. This problem and its generalizations have been
studied for a long time. Hundreds of papers dedicated to the problem
are spread out over the mathematics and natural-sciences literature (see
Conway and Sloane (1993)). The packing of disks has important ap-
plications, and it is closely connected with J. J. Thomson’s problem of
finding the energetically best position of equal charges on a sphere.

xk

xl

r

θ

xk
′

xl
′

R

Fig. 7.14 Two disks of radius r (opening angle θ) on the unit sphere
(left). Spheres of radius R touching the unit sphere (right).

We consider disks k with an opening angle θ around a central vector
xk, where |xk| = 1. The opening angle is related to the radius of the
disks by sin θ = r (see Fig. 7.14). Two disks with central vectors xk and
xl overlap if

(xk ··· xl) > cos (2θ)

or, equivalently, if
|xk − xl| < 2r.

The covering density of N nonoverlapping disks, that is, the surface area
of the spherical caps of opening angle θ, is

η =
2�N

∫ θ

0
dθ′ sin θ′

4�
=

N

2
(1 − cos θ),

where cos θ =
√

1 − r2.
Nonoverlapping disks with central vectors xk, |xk| = 1, must sat-

isfy mink 	=l |xk −xl| > 2r. The close-packing configuration {x1, . . . ,xN}
maximizes this minimum distance between the N vectors, that is, it
realizes the maximum

max
{x1,...,xN}

|xk|=1

(
min
k 	=l

|xk − xl|
)

. (7.6)

The disk-packing problem is equivalent to the problem of the closest
packing of spheres of radius

R =
1

1/r − 1
(7.7)

7.3 Disks on the unit sphere 323

touching the surface of the unit sphere. This follows from Fig. 7.14 be-
cause the touching spheres have |x′

k − x′
l| = 2R, where |x′

l| = 1 + R. It
was in this formulation, and for the special case R = 1 and N = 13,
that the packing problem of 13 spheres was first debated, more than
300 years ago, by Newton and Gregory: Newton suspected, and Schütte
and van der Waerden (1951) proved a long time later, that R must be
slightly below one. This means that 13 spheres can be packed around
a central unit sphere only if their radius is smaller than 1. The best
solution known has r = 0.4782, which corresponds to R = 0.9165 (see
eqn (7.7)).

Disks with central vectors {x1, . . . ,xN} are most simply placed on
a sphere with N calls to Alg. 1.22 (direct-surface). The minimum
distance between vectors gives the maximum disk radius

rmax =
1
2

min
k<l

|xk − xl|,

and must be compared with the disk radius. We reject the sample and
try again if rmax < r. In the limit of infinite time, this approach will
come up with the optimal solution, but it is by no means practical, as
was discussed in Chapter 2. In Fig. 7.15, a configuration of 16 disks and
density η = 0.3 obtained with the direct-sampling algorithm is compared
with a configuration of disks in a rectangular box with periodic boundary
conditions and with same area. We note that both the surface of a sphere
and a torus are homogeneous substrates (all bulk, no boundary, all points
equivalent) and that the surface of a sphere is isotropic. On a sphere, all
directions are equivalent, but not on a torus.

Fig. 7.15 Equal disks (density η = 0.3, N = 16) on a sphere (left) and
in a rectangular box with periodic boundary conditions (right).

For a long time, the problem of the closest packing on the unit sphere
was formulated as a continuous minimization problem of the potential
energy of particles with a two-body interaction

Eα(x1, . . . ,xN) =
∑
k<l

1
|xk − xl|α ,

in the limiting case α → ∞. For α = 1, the minimum of the poten-
tial energy finds the equilibrium positions of equal static charges with

324 Dynamic Monte Carlo methods

a “1/distance” Coulomb interaction. This problem first appeared in the
context of J. J. Thomson’s “plum pudding” model of the atom (the pre-
cursor of Rutherford’s atomic model) with electrons spread out on the
surface of a sphere of uniform positive charge. For large α, short dis-
tances dominate the energy more and more. (Note that, for example,
1/0.441000 ≫ 1/0.451000.) In the limit α → ∞, only the shortest in-
terparticle distances contribute to the energy, and the minimum-energy
configuration in the limit α → ∞ solves the disk-packing problem.

Continuous minimization routines (such as the Newton–Raphson al-
gorithm) have been applied to find local minima of Eα(x1, . . . ,xN) for
given α, and to follow these minima with increasing α. This strategy of
continuous minimization was carried furthest by Kottwitz (1991), with
α covering the astonishing range from 80 to more than a million. Run-
ning such a sophisticated Newton–Raphson program is a delicate task.
Nevertheless, the approach proved to be successful, and most of the
configurations found have not been improved upon. The empirical close-
packed configurations for small N are almost as firmly established as the
mathematically proven optimal configurations for N ≤ 12 and N = 24,
which have been known for many decades.

In this section, we use the much simpler approach of simulated anneal-
ing to find data as good as were ever discovered before. After discussing
the method, we analyze the results in the asymptotic limit N → ∞ and
monitor the performance of variants of the model. Finally, in Subsec-
tion 7.3.4, we analyze the close-packing problem from the point of view
of graph theory.

7.3.1 Simulated annealing

The configurations in Fig. 7.15 were obtained by direct sampling, but a
Markov-chain algorithm allows us to go further. It is a simple matter to
spruce up the Markov-chain sampling of pebbles on the surface of the
unit sphere, Alg. 1.24 (markov-surface), into a hard-disk algorithm in
which moves x → x′ are proposed with the same probability as x′ → x,

x
′

x

∆
x

Fig. 7.16 Monte Carlo move (from
x to x′) on the sphere (see Alg. 7.9
(markov-sphere-disks)).

so that detailed balance is satisfied (see Alg. 7.9 (markov-sphere-disks)
and Fig. 7.16).

procedure markov-sphere-disks

input {x1, . . . ,xN} (unit vectors |xk| = 1)
k ← nran (1, N)
∆x ← {gauss(σ), . . . , gauss(σ)} (σ � 1)
x′ ← (xk + ∆x)/|xk + ∆x|
Υ ← minl 	=k |xl − x′|
if (Υ > 2r) xk ← x′

output {x1, . . . ,xN}
——

Algorithm 7.9 markov-sphere-disks. Markov-chain algorithm for disks
of radius r on the unit sphere (with σ � 1).

7.3 Disks on the unit sphere 325

During a Markov-chain simulation, disks almost never touch. This sug-
gests that we should slightly swell the disks at certain times during the
simulation, by a small fraction γ of some maximum possible increase that
would still keep the configuration legal (see Alg. 7.10 (resize-disks)).
This program should be sandwiched in between long runs of the Markov-
chain simulation. Combining Markov-chain simulation with careful re-
sizing is reminiscent of the annealing procedure in metallurgy in which
a metal is slowly cooled from high temperature in order to drive out
grain boundaries and other imperfections to make it less brittle. On the
computer, the approach is called simulated annealing. In our example,
we approach infinite pressure rather than zero temperature.

procedure resize-disks

input {x1, . . . ,xN}, r
Υ ← mink 	=l |xk − xl|/2
r ← r + γ · (Υ − r)
output {x1, . . . ,xN}, r
——

Algorithm 7.10 resize-disks. Resizing disks by a factor 0 < γ � 1
(the minimum is over 1 ≤ k, l ≤ N , with k �= l.)

t = 0 t = 500 t = 1000 t = 2000 t = 3000 t = 4000

t = 5000 t = 7000 t = 10000 t = 15000 t = 20000 t = 40000

Fig. 7.17 Simulated-annealing run for 13 disks on the unit sphere. The
final density is η = 0.791393.

Simulated annealing is easily tried for 13 equal disks on a sphere
(see Fig. 7.17, where one time step (∆t = 1) consists of a single re-
sizing of the disks with γ = 0.01, and 10 000 iterations of Alg. 7.9
(markov-sphere-disks), so that the whole simulation in Fig. 7.17 con-
tains 4×108 moves). The step width, set by the standard deviation σ of
the Gaussians, is automatically adjusted after each resizing in order to
keep the acceptance probability on the order of 1

2 . The packing density
η slowly increases during the run until the disks settle into a jammed
configuration, and the step width goes to zero.

Naturally, there are many inequivalent jammed configurations of disks
on the unit sphere, and most of them are not global but local minima (see
Fig. 7.18). Even local minima can trap Alg. 7.9 (markov-sphere-disks)

326 Dynamic Monte Carlo methods

forever (for a small step size). However, running the simulated-annealing

η = 0.79139 η = 0.78639

Fig. 7.18 Optimal (left) and nonoptimal (right) jammed configurations
for N = 13 (both obtained by simulated annealing).

algorithm many times (with small γ and different random numbers)
we shall notice that the solution with the highest density, up to global
rotations, is obtained in the vast majority of runs. This indicates that
the configuration is probably the optimal packing—it certainly has a
large basin of attraction.

Results of simulated-annealing runs for different values of N are shown
in Fig. 7.19 (see also Table 7.2). The density depends very much on the
number of disks; it increases slowly with N but clearly stays below the
close-packing density in two dimensions, ηmax = �/(2

√
3) = 0.907.

Table 7.2 Densities obtained in the
runs shown in Fig. 7.19 (γ = 0.01). The
configurations agree with proven or em-
pirical optima.

N Density η

5 0.73223
6 0.87868
8 0.82358

12 0.89609
13 0.79139
15 0.80716
19 0.81096
24 0.86170
48 0.85963

0.75

0.8

0.85

0.9

0.95

10 20 30 40 50

d
en

si
ty

 η

number of disks N

upper limit ηmax

Fig. 7.19 Density obtained by simulated annealing of disks on the surface
of a sphere, for 5 ≤ N ≤ 50. Most of the configurations are optimal.

Roughly speaking, simulated annealing works because an equilibrium
physical system approaches the ground state in the limit of zero tem-
perature. Likewise, the system of hard disks reaches the state of max-
imum compression (minimum volume) in the limit of infinite pressure.
For infinitely slow annealing, the system remains in equilibrium, and
almost always ends up in the ground state. In order to rigorously con-
form to this description, we would need to perform simulated annealing
at constant pressure, similar to what we considered in Section 2.3.4. It
would be best to take disks of fixed radius r = 1

2 on a central sphere

7.3 Disks on the unit sphere 327

of variable radius R. The surface of the sphere generates a Boltzmann
factor exp

(−βPR2
)
. During the simulation, the pressure P , and thus

the density, would increase slowly, and the outcome would be similar to
that of Alg. 7.10 (resize-disks). This constant-pressure routine can
escape from any local minimum. It is ergodic, as opposed to our simpli-
fied routine in the constant-volume ensemble, which is ergodic for some
densities, and for others can be trapped by local minima, in the limit of
small step size (see Fig. 7.20). A finite ergodic system must reach the
most compressed state in the limit of infinitely slow pressure increase.
This is the theoretical basis of simulated annealing.

However, the above argument is purely formal—practical annealing
cannot proceed infinitely slowly, and usually not even slowly enough for
applications. In the language of Subsection 1.4.2, the constant-pressure
algorithm is practically nonergodic: it would spend weeks of computer
times before escaping from local minima. In fact, both the constant-
pressure algorithm and our simplified implementation rarely fall into
local minima, because the basins of attractions of those minima are very
small; in other words, simulating annealing rarely ever gets dangerously
close to local minima. This nice behavior is specific to disks, spheres, and
central potentials, and disappears for polydisperse (unequal) disks where
the simulated annealing, with the local algorithm, is less successful. Good
solutions are still found, but they are no longer the optimal ones (see
Subsection 7.3.3).

Ergodic

η* ηmax

Forbidden

density η

Fig. 7.20 Jammed disk configurations, and their basins of attraction, for
densities between η∗ and ηmax (schematic).

7.3.2 Asymptotic densities and paper-cutting

As discussed, we have reasons to believe that the packings in Fig. 7.19
are the best possible. Irritatingly, however, the packing densities (except
for N = 12) are substantially smaller than the close-packing density in
the plane ηmax = π/(2

√
3) = 0.907, and we see no clear tendency driving

η(N) all the way to this upper limit. We must find out whether the close-
packing solution for N disks on a sphere has the same packing density
as the close-packing solution for N disks on a torus for N → ∞.

We could employ general arguments to settle this point, but, rather, we
shall construct hard-disk configurations that actually achieve η → ηmax

in the large-N limit (see Habicht and van der Waerden (1951)). This
proves that in Fig. 7.19, we have simply not gone to large enough systems
to see that the upper limit is eventually reached. The idea behind the

328 Dynamic Monte Carlo methods

construction is to build a cone section model that we can imagine cut
out in paper and glued together inside the unit sphere (see Figs 7.21 and
7.22). Hexagonally close-packed configurations are drawn on the paper
strips, and centers of disks that do not cut a boundary (the gray disks
in Fig. 7.22) are projected onto the sphere. As the disks get smaller,
fewer and fewer of them are on the boundaries (the white disks in the
figure), and the packing fraction on the strip approaches the hexagonal
close-packing density. Moreover, as the strips get smaller, their total area
approaches the area of the sphere. It suffices to let the disks decrease in
size more quickly than the strips to reach ηmax. (See Exerc. 7.13 for a
paper-cutting competition.)

xkxk+1

zk

zk+1

Fig. 7.21 Cone section on the inside of
the unit sphere, formed by one of the
strips in Fig. 7.22.

Fig. 7.22 Cone section model consisting of close-packed strips of equal
width, to be glued together and assembled inside the unit sphere.

The area of one strip in Fig. 7.22 is{
area

(one strip)

}
= 2�

xk+1 + xk

2︸ ︷︷ ︸
average strip length

√
(zk+1 − zk)2 + (xk+1 − xk)2︸ ︷︷ ︸

strip width

.

It is better to use angles φk, where xk = cos φk and zk = sin φk (φk+1 −
φk = �/(2n)). The strip width is 2 sin [�/(4n)], and we find the following
for the total area of a cone section model with 2n strips:

Sn

4�
=

n−1∑
k=0

1
2

(cos φk+1 + cos φk)
(
2 sin

�

4n

)
(where φk = k�/(2n)), which may be rewritten and expanded in terms

7.3 Disks on the unit sphere 329

of 1/n:

Sn

4�
=

n−1∑
k=0

cos
(2k + 1)�

4n︸ ︷︷ ︸
1
2 sin−1[π/(4n)]

sin
�

2n
� 1 − �

2

32n2
+ · · · .

As the disks get smaller (in the large-N limit), the fraction of cut-up
disks that cannot be transferred from the strips to the sphere goes to
zero. We may suppose the disks to have identical size on the strip and
on the surface of the sphere, and then the packing density on a cone
section model with only 12 strips (n = 6) already approaches 99% of the
close-packing density in the plane (see Table 7.3).

Table 7.3 Surface area Sn of a cone
section model with 2n strips compared
with the surface area of the unit sphere

n Sn/(4�) 1 − �
2/(32n2)

1 0.70711 0.69157
2 0.92388 0.92289
3 0.96593 0.96573
6 0.99144 0.99143

We now increase the number of strips, in order to reach 100% of the
close-packing density. This obliges us to think about the strip bound-
aries, and to exclude a zone of width � 2r from the strip. The total
length of the boundaries is proportional to n, and we find{

free area
with 2n strips

}
= 4�

(
1 − c

n2
− c′ · nr

)
.

This free area is maximized for n = c′′/r1/3; it varies according to{
free area

with ∝ r−1/3 strips

}
= 4�

(
1 − const · r2/3

)
. (7.8)

Equation (7.8) proves that the disposable area, in the limit r → 0, goes
to 4�, although this limit is reached extremely slowly, and at the price of
introducing a large number of grain boundaries separating regions with
mutually incompatible hexagonal close-packed crystals. Nevertheless, in
the large-N limit, these crystallites contain infinitely many disks.

The conclusion of our paper-cutting exercise is that the best packing of
N disks on the unit sphere, in the limit N → ∞, reaches the hexagonal
close-packing density of disks in the plane. Furthermore, this optimal
packing density grows very slowly with N . From eqn (7.8), it follows
that the density of the homogeneous planar system is approached as

� 1 − const
N1/3

.

The best packing thus has long grain boundaries, regions where the
hexagonal ordering is perturbed. The number of grains increases with
N , but less than proportionally, so that, in the limit N → ∞, the grains
contain more and more particles. Their extension, measured in multi-
ples of the disk radius, diverges. Evidently, however, we do not expect
the grain boundaries of the true optimal packing of N disks to form
concentric circles around the z-axis.

In the thermodynamic limit, packing densities on a sphere and in
a plane thus become equivalent. In retrospect, however, we were well-
advised in Chapter 2 to study the liquid–solid phase transition with
periodic boundary conditions on an abstract torus, rather than on a

330 Dynamic Monte Carlo methods

sphere: in that case, the system sizes available for simulation are too
small to capture the difference between a polycrystalline material and
an amorphous block of matter.

7.3.3 Polydisperse disks and the glass transition

Unerringly, the simulated-annealing algorithm in Section 7.3.1 reaches
the globally optimal solution, sidestepping the many local minima on its
way. Notwithstanding this success, we must understand that simulated
annealing is more a great “first try” than a prodigious scout of ground
states and a true solver of general optimization problems. To see this
in an example, we simply consider unequal (polydisperse) disks on the
surface of the unit sphere instead of the equal disks studied so far (see
Fig. 7.23). For concreteness, let us assume that disk k has an opening
angle

θk = θ · (1 + δk) , (7.9)

so that the density is equal to

rk

r
lθk

θl

Fig. 7.23 Polydisperse disks (with cen-
tral vectors xk and xl, and opening
angles θk and θl) on the surface of
the unit sphere. Disks overlap if their
scalar product (xk ··· xl) is greater than
cos (θk + θl).

η =
N∑

k=1

(
1
2
− cos θk

)
.

The optimization problem, a generalization of eqn (7.6), now consists
in maximizing θ for a fixed ratio of the opening angles. Disks k and l
overlap if arccos (xk ··· xl) > θ · (2 + δk + δl), and we must solve the
following optimization problem:

max
{x1,...,xN}

|x1|=···=|xN |=1

[
min
k<l

arccos (xk ··· xl)
2 + δk + δl

]
.

It is a simple matter to modify Alg. 7.9 (markov-sphere-disks) for
polydisperse disks—it is best to work directly with opening angles—and
attempt increases of θ in eqn (7.9). This modified code gets trapped in
a different final configuration virtually each time it is run, even if the
annealing is very slow (see Fig. 7.24, where δk = 0.2/N · [k − 1

2 (N + 1)]
has been used).

η = 0.802 η = 0.813 η = 0.807 η = 0.788 η = 0.790 η = 0.812

Fig. 7.24 Inequivalent jammed configurations of 13 unequal disks on the
unit sphere found by slow simulated annealing.

In Subsection 7.3.1, we described the motivation for the slow pres-
sure increase by analogy with the physical process of annealing, where

7.3 Disks on the unit sphere 331

imperfections are driven out of a material, and the system is brought
to the ground state. Annealing (in real life) must be done with care,
especially in the presence of imperfections and disorder, because other-
wise the system falls out of equilibrium and gets stuck in a metastable
state. If the imperfections are too pronounced, the final result of an-
nealing is very often a glass, rather than crystalline matter. This also
happens in the simulated annealing process of polydisperse disks on a
sphere. Disorder prevents the system from finding its ground state in a
reasonable time interval, and keeps it blocked in a random jammed con-
figuration, which now has a much larger basin of attraction than in the
monodisperse case. The relations between this phenomenon (in Monte
Carlo algorithms) and the glass transition (in nature) have been widely
discussed in the literature (see, for example, Santen and Krauth (2000)).

We stress again that both the ease with which the monodisperse sys-
tem falls into the optimal solution and the difficulty that the polydisperse
system has in doing the same are remarkable features of the hard-disk
system, and can also be found in three-dimensional hard-sphere systems
and more generally in systems interacting with central potentials. These
phenomena are intimately linked to the dynamics near phase transitions
and the physics of glasses, and many fundamental problems are still
unresolved.

7.3.4 Jamming and planar graphs

Up to now, we have studied the packing of equal disks on the unit sphere
from an empirical point of view, mainly as a case study of simulated an-
nealing. We can reach a deeper theoretical understanding of the problem
by introducing the concept of a contact graph. In the case of a jammed
configuration on the sphere, we draw an edge between the centers of
disks k and l if they are in contact, that is, if |xk −xl| = 2r. The vertices
(vectors xk) and edges form a graph drawn on the surface of the unit
sphere. The edges do not intersect each other if we construct them as
the shortest paths on the sphere between the vertices they connect, from
xk to xl.

The contact graph can also be drawn on the plane—not respecting dis-
tances, but respecting the general topology—without edge intersections:
the contact graph is planar. To concretely draw the graph, we single
out one special face of the graph and pull it to the outside of a convex
polygon made up of the edges of that face. In simple terms, we imagine
the unit sphere as a balloon, with the opening hole inside the special
face (indicated by a cross in Fig. 7.25). We flatten the balloon and the
graph drawn on its surface by dilating the hole to infinity. In the two
examples in Fig. 7.25, the special face is made of vectors {x1, . . . ,x4}.
On the sphere, it corresponds to the inside of vertices 1–4. In the plane,
it represents the outside of the same vertices, including infinity. The rest
of the graph is drawn inside the special face. Every contact graph is
three-connected, which means that it does not fall apart into two dis-
connected pieces if two arbitrary vertices are suppressed together with

332 Dynamic Monte Carlo methods

η = 0.79139

1

2

3

4
×

1 2

34

×

η = 0.78639

1

2 3

4
×

1 2

34

×

Fig. 7.25 Optimal (top) and nonoptimal (bottom) jammed configurations
for 13 equal disks. The contact graphs are shown on the right.

all the incident edges. This property implies that the drawing of the
graph (the neighbor relations of faces) is essentially unique.

In a classic paper, Schütte and van der Waerden (1951) used the
graph representation of jamming to compute the optimal configura-
tions for small numbers of vertices. Going through detailed distinctions
of cases, they were able to determine the optimal configurations for
N ≤ 12. (The optimal configuration for N = 24 was determined by
Robinson (1964)). All these configurations are instantly reproduced by
our simulated-annealing algorithm.

More generally, we see that any given jammed configurations of disks
corresponds to a planar three-connected graph. The reverse problem
consists in deciding whether a given planar three-connected graph can
correspond to a jammed configuration of disks. This problem is most
interesting, as its solution allows us to reduce the optimal-packing prob-
lem to an enumeration problem of planar graphs. The problem has been
partially solved (see Krauth and Loebl (2004)), and work on this fasci-
nating subject is continuing at the very moment that we are finishing
writing this book. . . .

Exercises 333

Exercises

(Section 7.1)

(7.1) Implement Alg. 7.1 (naive-deposition). Include
the use of periodic boundary conditions (use sub-
routine Alg. 2.6 (diff-vec)), and implement a
patch to identify the stopping time ts. (You may
also speed up the program by using a grid/cell
scheme, which is particularly simple for this prob-
lem (see Subsection 2.4.1).) Use this program to
determine the probability distribution of the cov-
ering density at the stopping time ts for systems
of different size. If possible, compare the disk–
disk pair-correlation function of the final state of
random sequential deposition (at ts) with the one
of typical hard disk configurations (from Alg. 2.9
(markov-disks)) at comparable densities.
NB: For the stopping test, note that the accessible
region is bounded by exclusion disks. For any pair
of disks {k, l}, determine a forbidden interval of an-
gles for which the boundary of the exclusion disk of
k is covered by the exclusion disk of l. The stopping
time is reached if the boundaries of all exclusion
disks are completely covered by forbidden intervals
of angles. Use a height representation of all the for-
bidden intervals to determine whether an exclusion
disk is completely covered (see Fig. 7.26).

forbidden interval

height representation

Fig. 7.26 Height representation of forbidden intervals.

(7.2) Prove that Alg. 7.3 (direct-triangle) indeed sam-
ples uniformly distributed pebbles inside a trian-
gle. Implement the routine. Test that the center
of mass of pebbles converges to the geometrically
computed center of mass of the triangle. Use this
routine to implement the triangle algorithm of Sub-
section 1.1.6, a basic application of a priori proba-
bilities. Finally, use Alg. 7.2 (direct-polygon) to
sample a pebble uniformly distributed in a convex
polygon with n vertices. Check that for a regular
(symmetric) hexagon, the center of mass of sampled
pebbles converges to the center of the hexagon.

(7.3) Implement Alg. 7.4 (fast-deposition), not for
disks, but for the simpler case of equal oriented
squares (see Section 6.1.3). Work with rectangular
small regions Rk. Run your system up to the stop-
ping time ts. Compute the average covering den-
sity at time ts for different ratios of the area of the
squares to the deposition area.

(Section 7.2)

(7.4) Implement the Algs 7.5 (naive-throw) and 7.6
(fast-throw) and convince yourself that they pro-
duce equivalent output. Modify the two programs
so that their output (spin state σ(t)) describes
the physical time in a simulation of the single-spin
model of eqn (7.4).

(7.5) Implement Alg. 7.7 (dynamic-ising) for the
two-dimensional Ising model on a small lattice
with periodic boundary conditions (use Alg. 1.14
(tower-sample)). Check your implementation by
computing the mean energy (compare with Ta-
ble 5.3). Modify the program so that it updates
spin configurations after a time interval ∆t different
from 1. Can you realize the limiting case ∆t → 0?
Implement Alg. 7.8 (dynamic-ising(patch)) (the
n-fold-way program) for the two-dimensional Ising
model with periodic boundary conditions on a
small lattice. Check your program by comparing
again the mean energy with the exact results.

(Section 7.3)

(7.6) Consider the close packing of 12 equal disks on the
unit sphere, with the centers xi of the disks forming
a regular dodecahedron. Using polar coordinates,
compute the central vectors {x1, . . . ,x12}, and
the largest possible disk radius (use cos (2π/5) =
1
4
(−1+

√
5)). Determine the covering density η and

compare with Table 7.2. What is the maximum ra-
dius R of spheres arranged as a regular dodecahe-
dron on the surface of the unit sphere?

(7.7) Modify Alg. 1.22 (direct-surface) into a direct-
sampling algorithm of equal disks on the unit
sphere (this program was used to generate
Fig. 7.15). Compute the densest configurations ob-
tained during very long runs for a small number of

334 Exercises

disks (N = 5, 8, 12, 13, 16, . . .) and compare with
the data in Table 7.2. Does this program allow you
to estimate the close packing densities?

(7.8) Implement Alg. 7.9 (markov-sphere-disks) and
run it for small values of N . If possible, handle
initial conditions as in Exerc. 1.3; use Gaussian
unit random vectors for constructing an initial con-
figuration (see Exerc. 7.7). During a long run at
small density of disks, compute polar angles θk

and φk of central vectors xk and check that two-
dimensional histograms of cos θk and of φk are
flat. This shows that the simulation is isotropic.
Compute the acceptance probability of moves as
a function of the standard deviation σ in Alg. 7.9
(markov-sphere-disks), and find a rule to auto-
matically set σ such that it is of the order of 1

2

(that is, smaller than 0.9, and larger than 0.1).
NB: When sampling integrals by the Monte Carlo
method, adaptive choice of the step-size is strictly
forbidden, because it interferes with the detailed-
balance condition.

(7.9) (Uses Exerc. 7.8.) Use Alg. 7.10 (resize-disks) to-
gether with Alg. 7.9 (markov-sphere-disks) of Ex-
erc. 7.8 to implement simulated annealing for hard
disks on the unit sphere. Adapt the step-size σ in
order to keep an acceptance rate of order 1

2
. Check

that for N = 12 disks, your program converges
towards the perfect dodecahedron arrangement of
disks. Then, implement the 13-sphere problem: re-
cover the configurations shown in Fig. 7.18. Study
the influence of the annealing rate γ on the quality
of the final configuration (on the probability that
it is not optimal). List all nonequivalent jammed
configurations generated.

(7.10) Perform further experiments with the simulated
annealing algorithm of Exerc. 7.9. First, run the
program for N = 15. Convince yourself that the
best configuration has density η = 0.80731. Show
that there are in fact two nonequivalent optimal
solutions, with different contact graphs. Run the
simulated annealing algorithm for N = 19. Show
that in the configuration with highest density (η =
0.81096), one of the disks is free to move. It “rat-
tles” in a free spot formed by its neighbors. Fi-
nally, modify the annealing program for polydis-
perse disks. Show that many nonequivalent solu-
tions are obtained even for very small annealing
rates.
NB: The two nonequivalent minima for N = 15
and the rattling solutions for N = 19 were found
by Kottwitz (1991).

(7.11) Write a Markov-chain simulation program for N

disks on a sphere at constant pressure (see Subsec-
tion 2.3.4). For a sphere radius R, the Boltzmann
factor is exp

`−βP · 4�R2
´
. Determine the equation

of state (covering density η vs. pressure P) of the
system for finite N . Interpret your findings in the
light of the discussion of Subsection 7.3.2. Do you
expect a liquid–solid phase transition to take place
in this system for large N?

(7.12) Generate N randomly distributed “cities” in the
unit square and use the simulated annealing algo-
rithm to find a good solution to the traveling sales-
man problem: a round-trip tour of shortest length
visiting all the cities. Implement local Monte Carlo
moves as shown in Fig. 7.27 by rearranging the tour
at two cities k and l (instead of connecting city k
with city k′ and city l with city l′, connect k with
l and k′ with l′). Use as energy the total length of
the tour. Start the simulated annealing algorithm
at high temperature and gradually lower the tem-
perature. Compare the final solution found for dif-
ferent runs.
NB: This is a historic application of simulated an-
nealing. The solutions found by this method are
usually nonoptimal, and are considerably less accu-
rate than those found by other heuristic methods
(for N � 100 cities, even visual inspection usually
gives better tours). However, no other method can
be implemented as quickly.

k

k′

l

l′

a

k

k′

l

l′

b

Fig. 7.27 Local Monte Carlo move in the traveling
salesman problem.

(7.13) (Paper-cutting competition.) Write a portable com-
puter program implementing the cone section
model of Subsection 7.3.2 (see Fig. 7.22) or any
other nonrandom algorithm for placing N equal
disks on the surface of the unit sphere (use values
of N between 12 and at least 1 000 000). Note the
highest covering densities η(N) obtained. Commu-
nicate your program, and a sketch of the algorithm
used, to the author. The best solutions found will
be included in subsequent editions of this book.

References 335

References

Bortz A. B., Kalos M. H., Lebowitz J. L. (1975) A new algorithm
for Monte Carlo simulation of Ising spin systems, Journal of Chemi-
cal Physics 17, 10–18

Conway J. H., Sloane N. J. A. (1993) Sphere Packings, Lattices, and
Groups, 2nd edn, Springer, New York

Habicht W., van der Waerden B. L. (1951) Lagerung von Punkten auf
der Kugel [in German], Mathematische Annalen 96, 223–234

Kirkpatrick S., Gelatt C. D., Vecchi M. P. (1983) Optimization by sim-
ulated annealing, Science 220, 671–680

Kottwitz D. A. (1991) The densest packing of equal circles on a sphere,
Acta Crystallographica A47, 158–165

Krauth W. (2002) Disks on a sphere and two-dimensional glasses, Mar-
kov Processes and Related Fields 8, 215–219

Krauth W., Loebl M. (2004) Jamming and geometric representations
of graphs, preprint, math.CO/0406166

Robinson R. M. (1961) Arrangement of 24 points on a sphere, Math-
ematische Annalen 144, 17–48

Santen L., Krauth W. (2000) Absence of thermodynamic phase tran-
sition in a model glass former, Nature 405, 550–551

Schütte K., van der Waerden B. L. (1951) Auf welcher Kugel haben
5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? [in German],
Mathematische Annalen 123, 96

This page intentionally left blank

Acknowledgements

The cover illustration, taken from a work by Robert Filliou (1923–1987),
is used with kind permission of Marianne Filliou. I thank Françoise
Ninghetto for making the cover project possible.

The illustration of Count Buffon (Fig. 1.6) first appeared in an article
Les mathématiciens jouent à la roulette pour comprendre le hasard, in Le
Monde (Paris), edition of 13 december 1996. Used with kind permission
of Le Monde.

Figures 1.1, 1.2, 1.3, and 7.9 were first published as Figures 1, 2, 7,
and 16; in Krauth, W. “Introduction to Monte Carlo Algorithms” in Ad-
vances in Computer Simulation, Lectures Held at the Eötvös Summer
School in Budapest, Hungary, 16–20 July 1996, Springer Lecture Notes
in Physics, Vol. 501, Kertesz J., Kondor I. (Eds.), Copyright Springer
1998. With kind permission of Springer Science and Business Media.

Material in this book was shaped through essential discussions and
collaborations with C. Bouchiat, A. Buhot, M. Caffarel, D. M. Ceperley,
C. Dress, O. Duemmer, S. Grossmann, M. Holzmann, J. L. Lebowitz,
P. Le Doussal, M. Loebl, M. Mézard, R. Moessner, A. Rosso, L. Santen,
and M. Staudacher.

I thank P. Zoller for the initial suggestion that it was time to start
writing, M. Staudacher for encouragement throughout the project, and
P. M. Goldbart for help.

I am indebted to A. Barrat, O. Duemmer, J.-G. Malherbe, R. Moess-
ner, and A. Rosso for reading through many versions of the text, gen-
erously offering advice and suggesting improvements in the content and
the presentation of the material. I thank C. T. Pham for expert help
with many technical questions.

It was a pleasure working with S. Adlung, E. Robottom, and the
editorial team at OUP.

This page intentionally left blank

Index

a priori probability, 22–24
and dynamic Monte Carlo algorithms,

307
and heat bath algorithm, 252
and rejection rates, 319
and triangle algorithm, 23
in Bayesian statistics, 57
in cluster algorithms, 255

acceptance probability
in avalanche cluster algorithm, 123
in Ising cluster algorithm, 255
in Metropolis algorithm, 21

generalized, 23
acceptance rate

and acceptance probability, 24
and one-half rule, 6, 77
as ratio of partition functions, 33, 78,

97, 128
of direct sampling algorithm, 97
of local Monte Carlo algorithm, 255
of local path sampling, 152
physical interpretation of, 160

action, 167
Aigner M., 13
Alder B. J., 101, 106
algorithm
binomial-convolution (Alg. 1.25), 46
bisection-search (Alg. 1.15), 34
box-it (Alg. 2.5), 91
breadth-dimer (Alg. 6.6), 285
canonic-bosons (Alg. 4.4), 195
canonic-recursion (Alg. 4.6), 215
canonic-recursion(patch) (Alg. 4.7),

218
cluster-ising (Alg. 5.9), 257
cluster-spin-glass (Alg. 5.11), 260
combinatorial-ising (Alg. 5.6), 246
combinatorial-spin-glass (Alg.

5.12), 261
data-bunch (Alg. 1.28), 61
depth-dimer (Alg. 6.7), 286
diff-vec (Alg. 2.6), 91
direct-cycles (Alg. 4.8), 220
direct-disks (Alg. 2.7), 95
direct-disks-any (Alg. 2.8), 97
direct-gamma (Alg. 1.29), 64
direct-gamma-zeta (Alg. 1.30), 67
direct-harmonic-bosons (Alg. 4.9),

220
direct-needle (Alg. 1.4), 11

direct-needle(patch) (Alg. 1.5), 11
direct-p-disks (Alg. 2.14), 115
direct-period-bosons (Alg. 4.10), 222
direct-pi (Alg. 1.1), 3
direct-pin (Alg. 6.2), 271
direct-piston-particles (Alg. 2.13),

115
direct-polygon (Alg. 7.2), 312
direct-sphere (Alg. 1.21), 42
direct-surface (Alg. 1.22), 43

in vector notation, 43
direct-triangle (Alg. 7.3), 312
dynamic-ising (Alg. 7.7), 318
dynamic-ising(patch) (Alg. 7.8), 318
edge-ising (Alg. 5.5), 238
energy-ising (Alg. 5.1), 231
enumerate-ising (Alg. 5.3), 233
event-disks (Alg. 2.1), 83
event-disks(patch) (Alg. 2.4), 89
fast-deposition (Alg. 7.4), 313
fast-throw (Alg. 7.6), 316
fourier-cos-path (Alg. 3.15), 180
fourier-free-path (Alg. 3.12), 173
fourier-gen-path (Alg. 3.14), 178
gamma-cut (Alg. 2.15), 117
gauss (Alg. 1.18), 38
gauss(patch) (Alg. 1.19), 39
grandcan-bosons (Alg. 4.5), 199
gray-flip (Alg. 5.2), 233
hard-sphere-cluster (Alg. 2.18), 126
harmonic-density (Alg. 3.2), 134
harmonic-wavefunction (Alg. 3.1), 133
heatbath-ising (Alg. 5.8), 252
levy-convolution (Alg. 1.32), 72
levy-free-path (Alg. 3.5), 153
levy-free-path-3d, 160
levy-harmonic-path (Alg. 3.6), 155
levy-periodic-path (Alg. 3.7), 156
markov-discrete-pebble (Alg. 1.6), 17
markov-disks (Alg. 2.9), 100
markov-ising (Alg. 5.7), 250
markov-pi (Alg. 1.2), 6
markov-pi(patch) (Alg. 1.3), 7
markov-sphere-disks (Alg. 7.9), 324
markov-spin-glass (Alg. 5.10), 260
markov-surface (Alg. 1.24), 44
markov-two-site (Alg. 1.8), 22
markov-zeta (Alg. 1.31), 69
matrix-square (Alg. 3.3), 145
maxwell-boundary (Alg. 2.10), 110

naive-avalanche (Alg. 2.17), 123
naive-bayes-pi (Alg. 1.27), 57
naive-bosons (Alg. 4.3), 192
naive-box-path (Alg. 3.8), 158
naive-degeneracy (Alg. 4.1), 187
naive-degeneracy-cube (Alg. 4.2), 189
naive-deposition (Alg. 7.1), 309
naive-dimer (Alg. 6.4), 282
naive-dimer(patch) (Alg. 6.5), 283
naive-gauss (Alg. 1.17), 37
naive-harmonic-path (Alg. 3.4), 151
naive-pin (Alg. 6.1), 269
naive-piston-particles (Alg. 2.11),

113
naive-piston-particles(patch) (Alg.

2.12), 113
naive-rad-wavefunction (Alg. 3.11),

164
naive-ran (Alg. 1.9), 28
naive-sphere (Alg. 1.20), 40
naive-sphere-path (Alg. 3.9), 160
naive-sphere-path(patch) (Alg.

3.10), 161
naive-throw (Alg. 7.5), 316
nran (Alg. 1.10), 29
pair-collision (Alg. 2.3), 85
pair-time (Alg. 2.2), 84
pocket-binary (Alg. 6.3), 278
ran-combination (Alg. 1.12), 32
ran-perm (Alg. 1.11), 32
ran01-convolution (Alg. 1.26), 47
reject-continuous (Alg. 1.16), 35
reject-finite (Alg. 1.13), 33
rescale-volume (Alg. 2.16), 118
resize-disks (Alg. 7.10), 325
thermo-ising (Alg. 5.4), 235
tower-sample (Alg. 1.14), 33
transfer-matrix (Alg. 1.7), 19
trivial-free-path (Alg. 3.13), 176

annealing, simulated, 307, 334
disks on sphere, 321–325
traveling salesman problem, 334

Archimedes, 4, 58
Asakura S., 267, 276

Barbier E., 9, 14, 15
Bayesian statistics, 57

and Jaynes’ principle, 94
Beale P. D., 248, 265
Bernoulli D., 118

340 Index

Bernoulli J., 4
Bernoulli variable, 45
Binder K., 264, 265
Boltzmann distribution, 81, 108–112
Boltzmann L., 94, 99
Borrmann P., 215
Bortz A. B., 318
Bose–Einstein condensation, 192

and saturation numbers, 201
critical temperature

homogeneous gas, 208
trap, 202

boundary conditions, periodic, 90
Buffon G. L. L., 9
Buffon needle problem, 9
Buhot A., 280

central limit theorem, 37, 44
and Chebyshev inequality, 52
and data analysis, 56
and Lévy distribution, 70
simplified proof of, 52

Ceperley D. M., 143, 168, 224
characteristic function, 73
Chebyshev inequality, 51, 55–56, 65
cluster algorithm, 81, 123

avalanche, 123
for bosons, 224
for Ising spin glasses, 260
Ising model, 229, 254–258
pivot, 123, 126, 262

for binary mixtures, 267, 278
for liquids, 262

convolution
of density matrix, 131, 143–145, 149
of probability distributions, 46–47, 72,

73, 115, 146
Conway J. H., 322
Coopersmith M. H., 303
coupling from the past, see perfect

sampling

de Broglie wavelength, 208
δ-function, 88

Dirac, 133, 136
Kronecker, 133, 188

integral representation, 188, 193
density matrix, 131–149

bosons, 211
box

hard walls, 139, 157
periodic, 138, 155
rotating, 142

distinguishable particles, 210
free particle, 136
pair of hard spheres, 167

density of states
from partition function, 247–248
Ising model, 234, 235
single-particle, 187, 189

deposition, random sequential, 95, 309
detailed balance, 16
Dinsmore A. D., 279
direct sampling, 3

and a priori probabilities, 24
and analytic solution, 8, 159
dimer configuration, 295, 304
γ integral, 65
historical origin, 9
ideal bosons, 185, 219

in periodic box, 222, 226
in trap, 220, 226

path, 150
Fourier method, 173
free particle, 153
harmonic oscillator, 155
in box, 159, 183
in periodic box, 155
trivial algorithm, 176

pebble
in sphere, 39
in square, 7
in triangle, 312
on surface of sphere, 43

pebble in sphere, 42
permutation

general distribution, 220
uniform, 31

pins (one-dimensional hard spheres),
271

two-dimensional Ising model, 254, 304
two-dimensional Ising spin glass, 304

Dress C., 123

ensemble
canonical, 196, 205
constant-pressure, 101, 108, 326
constant-volume, 118, 327
grand canonical, 198, 199, 205
grand canonical (for ideal bosons)

limit N → ∞, 200, 203
enumeration

awkward, 282
breadth-first, 285
depth-first, 286
Gray code, 233
in the five-boson bounded trap model,

193
independent sets, 125
loop configurations, 229
pencil-and-paper, 284
permutations, 226
spin configurations, 229, 232
tetris configurations, 304
tree-based, 267
two meanings of, 236
using Pfaffians, 288, 304

ergodicity
of Monte Carlo algorithm, 63, 101,

296–297, 327

of physical system, 93, 95
error bar, 56

Fairbank W. M., 143
Ferdinand A. E., 247
Feynman R. P., 150
Fisher M. E., 247, 295, 298
Franke G., 215

Galbiati G., 294
Gaussian integral formula, 136
Gelatt C. D., 321
Gnedenko B. V., 52

Habicht W., 327
haystack

needle in, 64
heat bath algorithm, 252
Heilmann O. J., 299
Hess G. B., 143
Holzmann M., 219
Hoover W. G., 122

imaginary time, 149
importance sampling, 67
initial condition, 7

good implementation of, 77, 128, 265,
303, 334

legal, 7, 128, 303
integration

contour, in complex plane, 188
relation with sampling, 8, 36
Riemann

complex, 198, 225
real-valued, 188

Jaynes’ principle, 94

Kac M., 237
Kalos M. H., 318
Kardar M., 261
Kasteleyn P. W., 291, 304
Kaufman B., 237, 247, 248, 265
Kirkpatrick S., 321
Kolmogorov A. N., 52
Kottwitz D. A., 324, 334

Lebowitz J. L., 318
Lee J. Y., 121
Lee T. D., 299
Leff H. S., 303
Leggett A. J., 143
Leschhorn H., 183
Lévy construction, 153, 220
Lévy P., 64, 70, 72, 78, 153
Lieb E. H., 299
Liu J. W., 262
Loebl M., 332
long-time tails, 105
Luijten E., 262

Index 341

Maffioli F., 294
Markov chain, definition of, 7
Markov-chain sampling, 7
Maxwell distribution, 13, 39, 104
Mermin N. D., 101
Metropolis algorithm, 6, 21

analysis of inefficiency, 122, 153
and heat bath algorithm, 252
for path sampling, 151
for piston–particle problem, 113
generalized, 23, 125
Ising model, 249

Metropolis N., 21
Metropolis–Hastings algorithm, 23
Moessner R., 298
molecular dynamics, 83
molecular field, 232

naive
meaning of word, 58, 194

one-half rule, 7
Onsager L., 229, 237, 247, 262
Oosawa F., 267, 276

paper-cutting competition, 334
partition function, 97

and acceptance rate, 98
and density of states, 234
and Gibbs paradox, 269
and path integral, 149
and virial expansion, 99
dimers, 288
ideal bosons, 191

canonical, 194
grand canonical, 198
recursion relation, 215

in complex plane, 299
Ising model, 234

high-temperature expansion, 237,
240

Kaufman’s formula, 247, 265
monomer–dimer, 299
permutation-dependent (for bosons),

214
permutations, 212
pins, 269
Pöschl–Teller potential, 182
quantum harmonic oscillator, 134, 147
quantum system

rotating, 141
sum of energies, 134
trace of density matrix, 138

restricted (bosons), 217
single-particle, 214
trace of density matrix, 209

path integral, 150
path-integral Monte Carlo, 151
pebble–needle trick

and Maxwell distribution, 13

for generating Gaussians, 39
in Buffon needle problem, 11

perfect action, 160, 167, 224
perfect sampling, 26

Ising model, 252–254
pebble game, 25

permutation
and bosonic density matrix, 211
and dimer configuration, 289
and matching, 289
basic properties of, 30
cycle representation, 30, 240, 289
enumeration of, 226
in matrix determinant, 240
in puzzle game, 63
list of, with four elements, 212
partition function as sum over, 213
random

cycle structure of, 213
recursive counting of, 212
sampling, with cycle-dependent

weight, 220
sign of, 31, 289
uniform random

sampling of, 31
Pfaff J. F., 289
Pfaffian, 288

and alternating cycle configurations,
290

and direct sampling of dimers, 295
definition, 289
dimer–dimer correlation through, 294
Gaussian elimination algorithm, 292
of integer matrix, 294
relation with determinant, 290–292

Pine D. J., 279
pivot cluster algorithm, see cluster

algorithm
Poisson sum formula, 137
Pollock E. L., 143, 168, 224
Pomeau Y., 107
Prokof’ev N. V., 224
Propp J. G., 26
pseudocode, 3
pseudorandom number generator, see

random number generator

random number generator, 27–28
random numbers

algebraic distribution, 35
exponentially distributed, 36
gamma-cut-distributed, 117
gamma-distributed, 114
Gaussian, 37–39
general distribution

by rejection method, 33
by tower sampling, 33

uniformly distributed
integer, 29
real, 3, 27–29

random permutation, see permutation
random variable

correlated, 59
independent, 45

Ree F. H., 122
rejection rate, see acceptance rate
Résibois P., 107
Riemann ζ function, 202
Robinson R. M., 332
Rosenbluth A. W., 21
Rosenbluth M. N., 21
Rosso A., 181

sample transformation, 36
samples, 1
sampling

direct, see direct sampling
Markov-chain, see Markov-chain

sampling
relation with integration, 8, 42

Santachiara R., 181
Santen L., 331
Saul L., 261
Schütte K., 323, 332
seed, of random number generator, 45
Simanyi N., 93, 105
Sinai Y. G., 92, 93, 105
Sloane N. J. A., 322
sphere

d-dimensional
sampling points in, 41
sampling points on surface, 43
volume of, 40

disks on surface of, 322
Staudacher M., 70
Stephenson J., 295, 298
Storer R. G., 145
Strandburg K. J., 121
Svistunov B. V., 224
Swendsen R. H., 257

Tang L. H., 183
Teller A. H., 21
Teller E., 21
Thirring W., 94
tower sampling, 33

for permutations, 220
in n-fold-way algorithm, 318
in dynamic Monte Carlo, 311–315, 318
periodic density matrix, 156

trace, of matrix, 134, 209
transfer matrix, 18–20, 77
triangle algorithm, 23, 333
Trotter formula, 144

and matrix squaring, 145
and path integral, 150

Tupitsyn I. S., 224

Ulam S. M., 9

Valiant L. G., 288, 304

342 Index

van der Waerden B. L., 237, 323, 327, 332
variance

and Chebyshev inequality, 51
definition, 49
estimation of, 56
infinite, difficulty to detect, 66

variance reduction, 9, 15
and importance sampling, 67

Vecchi M. P., 321
vector notation, in algorithms, 28

virial expansion, 98–100

Wagner H., 101
Wainwright T. E., 101, 106
Wang J. S., 257
Ward J. C., 237
Wilson D. B., 26
winding number

and rotations, 143
and superfluid density, 223
of periodic density matrix, 138

sampling of, 156, 223, 226
Wolff U., 257
Wood W. W., 118
world line, 150

Yang C. N., 299
Yodh A. G., 279

ζ function, 202
Ziegler G. M., 13

	Cover
	front_001
	front_002
	front_003
	front_004
	front_005
	front_006
	front_007
	front_008
	front_009
	front_010
	front_011
	front_012
	Page_001
	Page_002
	Page_003
	Page_004
	Page_005
	Page_006
	Page_007
	Page_008
	Page_009
	Page_010
	Page_011
	Page_012
	Page_013
	Page_014
	Page_015
	Page_016
	Page_017
	Page_018
	Page_019
	Page_020
	Page_021
	Page_022
	Page_023
	Page_024
	Page_025
	Page_026
	Page_027
	Page_028
	Page_029
	Page_030
	Page_031
	Page_032
	Page_033
	Page_034
	Page_035
	Page_036
	Page_037
	Page_038
	Page_039
	Page_040
	Page_041
	Page_042
	Page_043
	Page_044
	Page_045
	Page_046
	Page_047
	Page_048
	Page_049
	Page_050
	Page_051
	Page_052
	Page_053
	Page_054
	Page_055
	Page_056
	Page_057
	Page_058
	Page_059
	Page_060
	Page_060_1
	Page_060_1 (1)
	Page_060_1 (2)
	Page_060_1 (3)
	Page_060_1 (4)
	Page_060_1 (5)
	Page_060_1 (6)
	Page_060_1 (7)
	Page_060_1 (8)
	Page_060_1 (9)
	Page_060_1 (10)
	Page_060_1 (11)
	Page_060_1 (12)
	Page_060_1 (13)
	Page_060_1 (14)
	Page_060_1 (15)
	Page_060_1 (16)
	Page_060_1 (17)
	Page_060_1 (18)
	Page_060_1 (19)
	Page_060_1 (20)
	Page_060_1 (21)
	Page_060_1 (22)
	Page_060_1 (23)
	Page_060_1 (24)
	Page_060_1 (25)
	Page_060_1 (26)
	Page_060_1 (27)
	Page_060_1 (28)
	Page_060_1 (29)
	Page_060_1 (30)
	Page_060_1 (31)
	Page_061
	Page_062
	Page_063
	Page_064
	Page_065
	Page_066
	Page_067
	Page_068
	Page_069
	Page_070
	Page_071
	Page_072
	Page_073
	Page_074
	Page_075
	Page_076
	Page_077
	Page_078
	Page_079
	Page_080
	Page_081
	Page_082
	Page_083
	Page_084
	Page_085
	Page_086
	Page_087
	Page_088
	Page_089
	Page_090
	Page_091
	Page_092
	Page_093
	Page_094
	Page_095
	Page_096
	Page_097
	Page_098
	Page_099
	Page_100
	Page_101
	Page_102
	Page_103
	Page_104
	Page_105
	Page_106
	Page_107
	Page_108
	Page_109
	Page_110
	Page_111
	Page_112
	Page_113
	Page_114
	Page_115
	Page_116
	Page_117
	Page_118
	Page_119
	Page_120
	Page_121
	Page_122
	Page_123
	Page_124
	Page_125
	Page_126
	Page_127
	Page_128
	Page_129
	Page_130
	Page_131
	Page_132
	Page_133
	Page_134
	Page_135
	Page_136
	Page_137
	Page_138
	Page_139
	Page_140
	Page_141
	Page_142
	Page_143
	Page_144
	Page_145
	Page_146
	Page_147
	Page_148
	Page_149
	Page_150
	Page_151
	Page_152
	Page_153
	Page_154
	Page_155
	Page_156
	Page_157
	Page_158
	Page_159
	Page_160
	Page_161
	Page_162
	Page_163
	Page_164
	Page_165
	Page_166
	Page_167
	Page_168
	Page_169
	Page_170
	Page_171
	Page_172
	Page_173
	Page_174
	Page_175
	Page_176
	Page_177
	Page_178
	Page_179
	Page_180
	Page_181
	Page_182
	Page_183
	Page_184
	Page_185
	Page_186
	Page_187
	Page_188
	Page_189
	Page_190
	Page_191
	Page_192
	Page_193
	Page_194
	Page_195
	Page_196
	Page_197
	Page_198
	Page_199
	Page_200
	Page_201
	Page_202
	Page_203
	Page_204
	Page_205
	Page_206
	Page_207
	Page_208
	Page_209
	Page_210
	Page_211
	Page_212
	Page_213
	Page_214
	Page_215
	Page_216
	Page_217
	Page_218
	Page_219
	Page_220
	Page_221
	Page_222
	Page_223
	Page_224
	Page_225
	Page_226
	Page_227
	Page_228
	Page_229
	Page_230
	Page_231
	Page_232
	Page_233
	Page_234
	Page_235
	Page_236
	Page_237
	Page_238
	Page_239
	Page_240
	Page_241
	Page_242
	Page_243
	Page_244
	Page_245
	Page_246
	Page_247
	Page_248
	Page_249
	Page_250
	Page_251
	Page_252
	Page_253
	Page_254
	Page_255
	Page_256
	Page_257
	Page_258
	Page_259
	Page_260
	Page_261
	Page_262
	Page_263
	Page_264
	Page_265
	Page_266
	Page_267
	Page_268
	Page_269
	Page_270
	Page_271
	Page_272
	Page_273
	Page_274
	Page_275
	Page_276
	Page_277
	Page_278
	Page_279
	Page_280
	Page_281
	Page_282
	Page_283
	Page_284
	Page_285
	Page_286
	Page_287
	Page_288
	Page_289
	Page_290
	Page_291
	Page_292
	Page_293
	Page_294
	Page_295
	Page_296
	Page_297
	Page_298
	Page_299
	Page_300
	Page_301
	Page_302
	Page_303
	Page_304
	Page_305
	Page_306
	Page_307
	Page_308
	Page_309
	Page_310

