
SpringerBriefs in Computer Science

Series Editors

Stan Zdonik
Peng Ning
Shashi Shekhar
Jonathan Katz
Xindong Wu
Lakhmi C. Jain
David Padua
Xuemin Shen
Borko Furht
V. S. Subrahmanian
Martial Hebert
Katsushi Ikeuchi
Bruno Siciliano

For further volumes:
http://www.springer.com/series/10028

http://www.springer.com/series/10028

Betsy George • Sangho Kim

Spatio-temporal Networks

Modeling and Algorithms

123

Betsy George
Oracle Inc.
Nashua, NH
USA

Sangho Kim
Esri
Redlands, CA
USA

ISSN 2191-5768 ISSN 2191-5776 (electronic)
ISBN 978-1-4614-4917-1 ISBN 978-1-4614-4918-8 (eBook)
DOI 10.1007/978-1-4614-4918-8
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2012943367

� The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To the loving memory of my grandfather
for his unconditional love and relentless
encouragement!!

Betsy George

To my daughter Ellie and wife Taeeun
in appreciation of their patience and
understanding

Sangho Kim

Preface

Spatio-temporal networks are spatial networks whose topology and/or attributes
change with time. These are encountered in many critical areas of everyday life
such as transportation networks, electric power distribution grids, and social net-
works of mobile users. With the advances in technology, monitoring the temporal
changes of such networks is becoming increasingly easier. For example, the
increasing use of traffic sensors on transportation networks generates large
volumes of data such as congestion levels and it becomes important to incorporate
these data into data models and algorithms that deal with spatio-temporal
networks.

A spatio-temporal network (STN) typically consists a finite set of nodes with
location attributes, relationships between nodes (aka edges), and time-dependent
attributes associated with nodes and relationships. STN modeling and computa-
tions raise significant challenges. The model must meet the conflicting require-
ments of simplicity and adequate support for efficient algorithms. Another
challenge is to address the change in semantics of common graph operations such
as shortest path computation, when temporal dimension is added. For example,
shortest path between a start and an end location might be different at different
times of day. Also paradigms (e.g., dynamic programming) used in algorithm
design may be ineffective since their assumptions (e.g., stationary ranking of
candidates) may be violated by the dynamic nature of STNs.

In recent years, STNs have attracted considerable attention in reserach. New
representations have been proposed along with algorithms to perform key STN
operations, while accounting for their time dependence. Designing a STN database
would require the development of data models, query languages, indexing methods
to efficiently represent, query, store, and manage time-variant properties of the
network.

This book explores this design at conceptual, logical, and physical level.
Models used to represent STNs are explored and analyzed. STN operations with
emphasis on their altered semantics with addition of temporal dimension, are
addressed, illustrating the capability toward answering interesting questions. For
example, it is possible to answer queries such as, When is the best time to start so

vii

that I spend the least time on the road? Algorithms to implement these network
operations are discussed. A comparative study of various models and algorithms
would also be provided.

Nashua, NH, USA, April 2012 Betsy George
Sangho Kim

viii Preface

Acknowledgments

First, I would like to thank Prof. Shashi Shekhar, Professor, Department of
Computer Science, University of Minnesota, my advisor, for all the support and
guidance during my research career. Without his constant encouragement this
book would not have been possible. Thank you Prof Shekhar, for being an amazing
mentor. You inspire me with your remarkable and unmatched wisdom, intellect,
and knowledge.

My heartfelt thanks go out to my manager Dr. Jack Wang and Huiling Gong of
Network Data Model group at Oracle Corporation for making every conversation
on Spatio-temporal networks, exciting and fruitful.

I would like to thank my amazing friends for their incredible support; your faith
in me keeps me going. Susan, Amy, Anjali, Vishal, Jean, Erin; thank you for your
amazing friendship, love, support, laughter, and fun!! I count you as the blessings
of my life!!

Last, but not certainly the least to my family, I cannot begin to express how
grateful I am for your love!!!

I thank my father, for being the support that he has been, unrelenting, reliable
and solid. You gave me the courage to step out into the world and explore and
taught me to be open to ideas, to respect everyone, and courage to stand firm on
my own convictions; to my mother, for her joy and positive attitude even in the
face of adversities, resilience, and her generous spirit. Your sacrifices and
unconditional love have made me what I am today. Thank you, Biju, the best
brother in the world, for being there for me, always. You are an incredible person
and I am so blessed to be your sister!! Thank you to my uncles, Joseph Kurian and
Paul Kurian, for being so generous with your life; without your steadfast love and
support, I would not be where I am today.

Nashua, NH, USA Betsy George

I have had the good fortune of being around many remarkable individuals who
have helped me complete this book. First, I would like to thank my advisor,
Professor Shashi Shekhar for his support and guidance as an incredible mentor.

ix

I have truly appreciated the exceptional research training that you have provided
me, the confidence you have instilled in me, and all the advice you have given me
throughout my five years of working with you.

My thanks also go to my manager Dr. Erik Hoel of Geodatabase team at ESRI
for providing me with valuable discussion and collaboration as well as giving
constructive critiques about network model and Geodatabase. The completion of
this book would not have been possible without the help of these individuals.

To my family—I love you with all my heart.
Last but certainly not least, to my love, my little family who gives meaning to

my life, my beloved Taeeun and cutest Hayne (I still prefer her Korean name).
I could not have done this without your love and support. Taeeun, thank you for
treating my difficulties as if they were your own and being with me for finishing
this book. Hayne, you did a good job by eating a lot, growing fast, and behaving
well ever since you were born. Without you and your mom, nothing has meaning.

Redlands, CA, USA Sangho Kim

x Acknowledgments

Contents

1 Spatio-temporal Networks: An Introduction 1
1.1 Spatio-temporal Networks. 1
1.2 Application Domain. 2
1.3 Background Information. 3

2 Time Aggregated Graph: A Model for
Spatio-temporal Networks . 7
2.1 Modeling Spatio-temporal Networks . 7

2.1.1 Illustrative Application Domains. 8
2.1.2 Broad Computer Science Challenges 10

2.2 Basic Concepts . 12
2.2.1 The Conceptual Model . 12
2.2.2 A Logical Data Model . 14
2.2.3 Physical Data Model . 18

2.3 Evaluation and Validation . 21
2.3.1 Representational Comparison: Time Aggregated

Graphs Versus Existing Models 21
2.3.2 Comparison of Storage Costs with Time

Expanded Networks . 23
2.4 Summary . 24

3 Shortest Path Algorithms for a Fixed Start Time 25
3.1 Introduction . 25

3.1.1 Broad Challenges . 26
3.2 Basic Concepts . 27

3.2.1 Classification of Shortest Path Algorithms 27
3.2.2 Algorithmic Challenges . 27

3.3 Shortest Path Computation for Fixed Start Time 29
3.3.1 Shortest Path Algorithm for Fixed Start Time

in a FIFO Network (SP-TAG) 30

xi

http://dx.doi.org/10.1007/978-1-4614-4918-8_1
http://dx.doi.org/10.1007/978-1-4614-4918-8_1
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_1#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_2
http://dx.doi.org/10.1007/978-1-4614-4918-8_2
http://dx.doi.org/10.1007/978-1-4614-4918-8_2
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_2#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_3
http://dx.doi.org/10.1007/978-1-4614-4918-8_3
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec7

3.3.2 A� Formulation of Shortest Path Algorithm for a
Fixed Start Time in a FIFO Network (SP-TAG�) 33

3.4 Shortest Path Algorithm for a Given Start Time in a
Non-FIFO Network (NF-SP-TAG). 35

3.5 Experimental Analysis . 38
3.5.1 Experiment Design . 38
3.5.2 Experimental Results and Analysis 39

3.6 Summary . 42

4 Best Start Time Journeys . 45
4.1 Introduction . 45
4.2 Basic Concepts . 47

4.2.1 The Conceptual Model . 47
4.2.2 Basic Design Space of Shortest Path Algorithms 49
4.2.3 Algorithmic Challenges . 50

4.3 Time Iterative SP-TAG* (TI_SP-TAG*) Algorithm
for FIFO Networks . 51

4.4 Best Start Time Shortest Path Algorithms
for Non-FIFO Networks . 53
4.4.1 Best Start Time Shortest Path (BEST) Algorithm

(Label Correcting Approach) . 54
4.4.2 Best Start Time Algorithm Using ATST

(CP-NF-BEST Algorithm) . 57
4.5 Experimental Analysis . 57

4.5.1 Experiment Design . 58
4.5.2 Experimental Results and Analysis 59

4.6 Summary . 64

5 Spatio-temporal Network Application . 65
5.1 Multimodal Transportation Networks . 65

5.1.1 Modeling Multimodal Networks 65
5.1.2 Time Aggregated Graph Representation. 67
5.1.3 Routing in Multimodal Networks 67

5.2 Modeling Sensor Networks . 68
5.2.1 Hotspot Detection . 69

References . 71

xii Contents

http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec17
http://dx.doi.org/10.1007/978-1-4614-4918-8_3#Sec17
http://dx.doi.org/10.1007/978-1-4614-4918-8_4
http://dx.doi.org/10.1007/978-1-4614-4918-8_4
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec7
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec8
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec9
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec10
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec11
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec12
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec13
http://dx.doi.org/10.1007/978-1-4614-4918-8_4#Sec13
http://dx.doi.org/10.1007/978-1-4614-4918-8_5
http://dx.doi.org/10.1007/978-1-4614-4918-8_5
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec1
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec2
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec3
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec4
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec5
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec6
http://dx.doi.org/10.1007/978-1-4614-4918-8_5#Sec6

Chapter 1
Spatio-temporal Networks: An Introduction

Abstract Spatio-temporal networks are spatial networks whose topology and
parameters change with time. These networks are important for many critical appli-
cations such as emergency traffic planning and route finding services. This chapter
establishes the significance of such networks by describing its applications and briefly
outlines the basic concepts.

1.1 Spatio-temporal Networks

Spatio-temporal networks are encountered in many significant areas of everyday
life, such as transportation, sensor networks, and crime analysis. The underlying
data of interest in these domains display a network structure, where the connectivity
between entities is as relevant as their locations and proximity. Also, a number of
network attributes can display time dependence. A spatio-temporal network typically
consists of a finite set of points with location information, relationships between
pairs of points, and time dependent attributes attached to points and relationships.
Static spatial networks have been traditionally represented as graphs, where nodes
represented the points and edges modeled the relationships. This representation does
not capture the temporal dimension of the networks and the computations based
on this model could lead to inaccurate results. For example, computing the shortest
routes in a transportation network without accounting for travel time changes due to
varying levels of congestion during the day, might not give the correct results.

Figure 1.1 illustrates traffic sensor networks on urban highways which measure
congestion levels at two different times (e.g. 5:07 and 9:37 p.m.). With the increasing
use of sensor networks that monitor traffic data on spatial networks and the con-
sequent availability of time-varying traffic data, it becomes important to incorpo-
rate this data into the models and algorithms related to transportation networks.
However, existing spatio-temporal databases do not provide adequate support for
spatio-temporal networks.

B. George and S. Kim, Spatio-temporal Networks, 1
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8_1,
© The Author(s) 2013

2 1 Spatio-temporal Networks: An Introduction

Fig. 1.1 Sensor networks periodically report time-variant traffic volumes on Twin Cities highways

Though commercial database systems such as Oracle (version 11g) [6, 7] and
ArcMap from ESRI [13] provide support for spatial networks, they do not address
the temporal aspects of the data. Existing work on graph databases [11, 29, 40, 44,
45] also do not adequately address time variance of spatial networks.

Designing a spatio-temporal network database would require the development
of a new data model to efficiently store and manage time-variant properties of the
network. The design of this new model would follow a three step process, namely
conceptual, logical, and physical levels. In addition, new algorithms need to be for-
mulated to process queries in specific application domains. These tasks raise signif-
icant computer science challenges such as (1) finding a balance between conflicting
requirements of storage efficient and expressive power, (2) handling new and alterna-
tive semantics of graph operations, and (3) designing efficient and correct algorithms
since some commonly assumed properties might not hold when temporal changes
are considered.

The book will explore the design of spatio-temporal network databases at the
conceptual, logical, and physical level. Existing approaches to incorporate temporal
changes will be evaluated for their storage efficiency and support for computationally
efficient algorithms.

1.2 Application Domain

An important application domain for spatio-temporal network databases is trans-
portation science [21], a multi-disciplinary field that requires expertise from different
domains. The difficulty, but also fascination, of this professional practice derives

1.2 Application Domain 3

from the intrinsic complexity of transportation systems, which have both physi-
cal and behavioral elements.The physical elements in the systems (e.g., vehicles,
infrastructure, etc.) are governed by the laws of physics. On the other hand, the
mechanisms underlying the functionality and performance of these physical ele-
ments are often connected to travelers’ behavioral choices. Traditionally the center
of behavioral choice modeling [43] has been user equilibrium [48], the idea that all
travelers use the least inconvenient routes and no individual can unilaterally improve
his/her travel. A key assumption of user equilibrium is that travelers have perfect
information about road conditions, and indeed this is generally true for commuters,
who learn recurrent congestion patterns from their day-to-day travels. However, the
assumption does not hold when the congestion is non-recurrent, in particular, when
an extreme event occurs, and transportation network conditions become dynamic
and uncertain. Thus one of the greatest challenges in transportation science is how
to manage traffic in time-varying transportation networks, especially in disaster sit-
uations. This challenge cannot be met without the development of spatio-temporal
databases. Currently, transportation management generates tremendous volumes of
data and a large semantic gap exists between transportation science concepts and
the concepts supported by current database systems. Emergency traffic management
requires research in computer science to develop appropriate spatio-temporal data-
base representations and query processing algorithms to make decisions in a timely
manner.

Apart from emergency planning, spatio-temporal network modeling and planning
have significant impact on applications such as daily commute routing and freight
delivery services, where the primary focus is to reduce logistical costs such as fuel
consumption. Commuters try to find a suitable time to start their commute (best start
time) so that they spend the least time in traffic. The problem of finding best start
time has similar applications in freight delivery services also. The importance of this
problem was emphasized by the New York Times article reporting about a research
by United Parcel Service of America Inc. (UPS). It said “The research at U.P.S. is
paying off. Last year, it cut 28 million miles from truck routes saving roughly three
million gallons of fuel in good part by mapping routes that minimize left turns” [9]. It
is easy to recognize the spatio-temporal dimensions of this research since the shortest
routes and most left turn restrictions are time dependent.

Another area where spatio-temporal routing finds application is in crime analysis.
While mining the frequent routes traveled by criminals, it is necessary to consider
the temporal nature of the transportation network (at times multimodal) to produce
accurate results.

1.3 Background Information

Spatial Network Modeling: The purpose of conceptual modeling is to adequately
represent the data types, their relationships and the associated constraints. Entity
Relationship (ER) model, widely used in conceptual modeling, does not offer

4 1 Spatio-temporal Networks: An Introduction

Fig. 1.2 A PEER diagram for
a spatial network

Vertex

Edge

Path

M

M

M

end

A

T

I

A

L

P

S

P

H

A

R

G

part_of

part_of

begin

adequate features to capture the spatial semantics of networks. The most critical fea-
ture of spatial networks, namely the connectivity between objects can be expressed
using a graph framework. At the conceptual level, the pictogram enhanced ER
(PEER) model [46] can be used. Figure 1.2 shows a PEER diagram for a spatial
network.

In the logical modeling phase, the conceptual data model is implemented using a
commercial database management system. Spatial networks have been extensively
modeled using graphs. In a spatial graph, vertices represent locations and edges
represent relationships between locations. In a road network, the nodes could model
intersections and edges the road segments connecting these intersections. Labels and
weights can be attached to vertices and edges to encode additional information such
as names and travel times. Two edges are considered to be adjacent if they share a
common vertex.

The physical data modeling phase deals with the actual implementation of the
database application. Issues related to storage, indexing and memory management
are addressed in this phase. Adjacency list and adjacency matrix [5] are two well
known main-memory data structures commonly used to implement graphs.

Time Expanded Graph: Time expanded graphs can be used to represent tim
dependent graphs. Given a directed graph G(V, E), we can define the time expanded
graph GT as follows.

Definition 1 (Time Expanded Graph) Let G(N , E) be a directed network with set
of node N and the set of edges E with travel time σi, j . The time expanded graph
over a time horizon T is defined as:
NT := {Ni,t | i ∈ node id of N and t = 0, 1, . . ., T }
ET := {(Ni,t , Ni,t+1) | i ∈ node id of N and t = 0, . . ., T-1}

1.3 Background Information 5

Fig. 1.3 Time expanded
graph

N3N2N1

21
N3N2N1

t=6t=5t=4t=3t=2 t=1

2

t=4t=3

t=2t=1

(b)

(a)

2 2
N3N2N1

2
N3N2N1

N1

N2

N3

N1

N2

N3

N1

N2

N3

N1

N2

N3

N1

N2

N3

N1

N2

N3

∪ {(Ni1,t1, Ni2,t2) | i1, i2 ∈ node id of Ni1 and Ni2 and t2 = t1 + σi1,i2}

In the above definition, the (Ni,t , Ni,t+1) edge is called a holdover edge and the
(Ni1,t1, Ni2,t2) edge is called a transfer edge. Figure 1.3b shows the time expanded
graph for the snapshots of a network shown in Fig. 1.3a.

FIFO and non-FIFO network: In a network, if a flow arrives at the end node
of each edge in the same order as they started at the start node of the edge, the edge
travel costs are said to follow the First In First Out (FIFO) property and the edge is a
FIFO edge. If every edge in a network follows FIFO properly, the network is a FIFO
network. An edge that is not a FIFO edge is called a non-FIFO edge. If there is at
least one non-FIFO edge in a network it is a non-FIFO network. Research in the area
of spatio-temporal networks has primarily been conducted in the fields of databases
and operations research. Related work in the field of databases fall into three broad
categories (1) spatial network databases, (2) graph Databases, and (3) spatio-temporal
databases. The recent release of Oracle (version 11g) includes a network data model
to store and maintain the connectivity of link-node networks and supports basic
features such as shortest path computation [33]. The Network Analyst extension of
ArcMap from ESRI supports a network geodatabase and provides basic algorithms
(e.g., shortest path, service area, closest facility, etc.) [13]. However, these products
do not address the time variance of spatial networks, which is crucial in applications
such as route computations and emergency planning. Although the need for live traffic
information is increasing, there has been little work on the modeling and algorithms
for spatio-temporal network databases. Chorochronos [27], studied various aspects

6 1 Spatio-temporal Networks: An Introduction

of spatio-temporal databases including ontology, modeling, and implementation.
However, researchers have yet to study spatio-temporal networks in this framework.

Graph databases [11–13, 40, 45, 47] primarily deal with spatial networks that do
not vary with time. Research in graph databases that accounts for temporal varia-
tions perform computations over a snapshot of the network [10, 23, 38], and do not
consider the interplay between the edge travel times and the existence of edges. Ding
[10] proposed a model that addresses time-dependency by associating a temporal
attribute to every edge and node of the network so that its state at any instant of
time can be retrieved. This model performs path computations over a snapshot of the
network. Since the network can change over the time taken to traverse these paths,
this computation might not give realistic solutions. It does not propose an algorithm
for the least travel time paths.

On conceptual level, various temporally enhanced entity relationship models have
been proposed [19]. Some of these models capture the temporal properties of rela-
tionships in terms of their existence and validity periods; these do not explicitly
capture the changes in relationship types. Other models such as TERC+ [50] capture
the temporal nature of relationship types by expressing the relationship changes in
terms of entity transformations. This model basically uses entity subtypes to repre-
sent temporal evolution of entities as well as relationships and hence might not be
able to represent evolving relationships between entities without subtypes.

Research in Operations Research is based on the time expanded network [25, 26,
30, 36, 42]. This model duplicates the original network for each discrete time unit
t = 0, 1, . . . , T where T represents the extent of the time horizon. The expanded
network has edges connecting a node and its copy at the next instant in addition to
the edges in the original network, replicated for every time instant. The approach sig-
nificantly increases the network size and is very expensive with respect to memory.
Because of the increased problem size due to replication of the network, the com-
putations also become quite expensive. In addition, time expanded graphs have rep-
resentational issues when modeling non-flow networks. Also, time expanded graphs
require a prior knowledge of the length of the time period and hence might lead to a
semantic mismatch while handling infinite time series. This model incorporates the
time dependent edge attributes into the graph in the process of graph expansion mak-
ing it more application- dependent, thus making physical data independence harder
to achieve.

Stochastic models which use probability distribution functions to describe travel
time [20, 25, 31, 32] have been used to study time-dependence of transportation
networks. T hough they can give valuable insights into the traffic flow analysis, the
computational cost to compute the least expected travel times in these networks is
prohibitively large to adapt to real life scenarios [32].

Chapter 2
Time Aggregated Graph: A Model for
Spatio-temporal Networks

Abstract Spatio-temporal networks represent networks where entities have
spatial attributes and the topology and parameters display time-dependence. Given
the significance of such networks in critical domains such as transportation science
and sensor data analysis, the importance of a model that is simple, expressive and
storage efficient to represent such networks cannot be understated. The model must
provide support for the design of algorithms to process frequent queries that need to be
answered in the application domains. This problem is challenging due to potentially
conflicting requirements of model simplicity and support for efficient algorithms.
Time expanded networks which have been used to model dynamic networks employ
replication of the network across time instants, resulting in high storage overhead and
algorithms that are computationally expensive. Time-aggregated graphs do not repli-
cate nodes and edges across time; rather they allow the properties of edges and nodes
to be modeled as a time series. The chapter presents a description and comparison
of these models.

2.1 Modeling Spatio-temporal Networks

The growing importance of application domains such as transportation networks,
emergency planning and location based services highlights the need for efficient
modeling of spatio-temporal networks (e.g. road networks) that takes into account
changes to the network over time. The model should provide the necessary framework
for developing efficient algorithms that implement the frequent operations posed on
such networks. Frequent queries on such networks might include finding the shortest
route from one place to another or a search for the nearest neighbor. The shortest route
would depend on the time dependent properties of the network such as congestion
on certain road segments, which would increase the travel time on that segment. The
result of a nearest neighbor search could also be time sensitive if it is based on a road
network.

B. George and S. Kim, Spatio-temporal Networks, 7
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8_2,
© The Author(s) 2013

8 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

Modeling such a network poses many challenges. Not only should the model be
able to accommodate changes and compute the results consistent with the existing
conditions, it should do so accurately and simply. In addition, the need to answer
frequent queries quickly means fast algorithms are required for computing the query
results. The model should thus provide sufficient support for the design of correct
and efficient algorithms for frequent computations.

Often dynamic networks have been modeled as time expanded networks, where
the entire network is replicated for every time instant. The changes in the network,
especially the travel time variations, can be very frequent and for modeling such
frequent changes, the time expanded networks would require a large number of
copies of the original network, thus leading to network sizes that are too memory
expensive. For example, traffic sensors on highway networks send measurement data
every 30 s. A one-year dataset may need over one million copies of the road network,
which itself may have a million nodes and edges for each time instant. Such large
sized networks would also result in computationally expensive algorithms.

Various temporally enhanced entity relationship models have been proposed [19].
Some of these models capture the temporal properties of relationships in terms of
their existence and validity periods; these do not explicitly capture the changes in
relationship types. Other models such as TERC+ [50] capture the temporal nature of
relationship types by expressing the relationship changes in terms of entity transfor-
mations. This model basically uses entity subtypes to represent temporal evolution
of entities as well as relationships and hence might not be able to represent evolving
relationships between entities without subtypes.

In this chapter a spatio-temporal network model named time aggregated graph
[16, 17] is described. Time-aggregated graph, models the changes in a spatio-
temporal network by collecting the node/edge attributes into a set of time series.
The model can also account for the changes in the topology of the network. The
edges and nodes can disappear from the network during certain instants of time and
new nodes and edges can be added. The time-aggregated graph keeps track of these
changes through a time series attached to each node and edge that indicates their
presence at various instants of time. The representational capability of the model is
illustrated through various application domains such as transportation science and
emergency planning. The model is compared with another graph-based model, the
time expanded graph, in the context of various application domains.

2.1.1 Illustrative Application Domains

Transportation networks are the kernel framework of many advanced transporta-
tion systems such as the Advanced Traveler Information System and Intelligent
Vehicle Highway Systems. Transportation networks are spatio-temporal in nature
and require significant database support to handle the storage of their large amounts
of multi-dimensional data. Many important applications based on transportation
networks, including travelers’ trip planning, consumer business logistics, and

2.1 Modeling Spatio-temporal Networks 9

Table 2.1 Example Queries with Time-variance and Flow Networks

Static Time-variant

Graph Which is the shortest travel Which is the shortest travel
(no capacity time path from Minneapolis time path from Minneapolis
constraints) downtown to airport? downtown to airport

at different times
of a work day?

Flow network What is the capacity of Twin- What is the capacity of Twin-
Cities freeway network to Cities freeway network to
evacuate Minneapolis downtown? evacuate Minneapolis downtown

at different times in a
work day?

evacuation planning need to be built upon spatio-temporal network databases. For
example, commuters try to find a suitable time to start their commute so that they
spend the least time in traffic. There are many factors affecting the start time and the
shortest route such as congestion levels, incident location, and construction zone.
This is illustrated by the simple time-variant network shown in Fig. 2.2. It can be
seen that the travel time from node N1 to node N2 changes with the start time. If the
travel starts at t = 1, the commute time would be 6 units; travel on the same route
would take 4 units if the start time is moved to t = 3. This shows that the shortest
paths in a time-dependent network vary with time which adds a new dimension to
shortest path computation which cannot be ignored. With the increasing use of sensor
networks to monitor traffic data on spatial networks and the subsequent availabil-
ity of time-varying traffic data, it becomes important to incorporate this data into
the models and algorithms related to transportation networks. One of the greatest
challenges in transportation science is how to manage traffic in time-varying trans-
portation networks, especially in disaster situations. Popular models of emergency
traffic use time-variant flow-network [1] operations like min-cut and max-flow [5].
The queries typically encountered in emergency traffic management would involve
time-variant properties, as illustrated in Table 2.1.

In crime analysis and prevention, identifying the areas of increasing criminal
activity is a key step. Computing the routes that show significantly high crime rates
can improve the efficiency of the patrol operations. Crime data usually consists of
the geographical location of the crime, type of crime and its time of occurrence [28].
To compute the routes of high criminal activity, a model is required to represent
the underlying transportation network along with the time dependent crime data
associated with its edges and nodes. For example, the crime rates can vary with
the time of the day and the interesting routes can change. With the availability of
time-varying data, it becomes important to incorporate this data in the models and
analysis of crime data.

Another interesting area of exploration is the effect of temporal dimension on
conceptual models such as Entity-Relationship (ER) model [3] and more specifically

10 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

disjoint

overlaps

contains

touch
AB

t=t1

t=t2

t=t3

t=t4
t=t5

t=t6 t=t7
t=t8

t=t9

t=t1

t=t2

t=t3

t=t4

...

A B

A

A

A

B

B

B

(a) (b)

Fig. 2.1 Illustration of a dynamic relationship between two objects and its representation. a Loca-
tion of Moving Object. b PEER Diagrams for (a)

N1 N3N2

N1 N3N2 N1 N3N2

N1 N3 N1 N3

N1 N3

1 2 2

2 2 2

2

2 2

N2 N2

N2

t=1 t=3

t=4 t=5 t=6

t=2

Node

Edge

Legend

Travel time

Fig. 2.2 Network at various instants

on the Pictogram-Enhanced Entity-Relationship (PEER) diagram [46]. A simple
example is shown in Fig. 2.1. It illustrates a scenario where a moving sensor B
crosses a geographic area A. Figure 2.1a shows the locations of B at discrete time
instants (t = t1, t2, t3, t4, t5, t6, t7, t8, t9). The relationship of object B with object A
changes with time. This has been represented in Fig. 2.1b using a series of PEER
diagrams. Each diagram represents the relationship at an instant. For example, the
first diagram represents the time instant t = t1 when the relationship between the
objects is ‘disjoint’. The figure shows the representations for the first four instants;
the rest are modeled in a similar manner.

2.1.2 Broad Computer Science Challenges

A time-variant graph is a graph whose edge and node properties and topological
structure are time dependent. For example, traffic volume on urban highways varies
over the time of day which leads to variation in travel time. In addition to net-
work parameter values, the network topology can also change with time due to the
unavailability of certain road segments during some periods of time due to repair or

2.1 Modeling Spatio-temporal Networks 11

natural calamities. There are also be cases where the road segments are unavailable
periodically due to traffic management strategies such as using all lanes of a street in
the same direction to handle peak time congestion. Conventional graph algorithms
cannot easily be applied to the snapshots at discrete time instants to evaluate frequent
queries without accounting for relationships among snapshots.

Time-variant graphs raise many challenges for database research. Due to their
potentially large and evergrowing sizes, a storage-efficient representation is critical
to reduce and possibly eliminate redundant information across different time-points.
Second, new data model concepts need to be investigated to represent and classify
potentially new alternative semantics for common graph operations such as shortest-
path and connectivity. For example, a shortest path between a given pair of nodes
may have at least two interpretations, one for a given start time-point and the other for
the shortest travel-time for any start time in a given time interval. A third challenge
is the design of efficient and correct query processing strategies and algorithms since
some of the commonly assumed graph-properties may not hold for spatio-temporal
graphs. For example, consider the optimal prefix property (a requirement for the
greedy approaches [5]) for shortest paths in a graph. While each prefix path (path
from a source node to an intermediate node in an optimal path) is optimal in a static
graph, it may not be optimal in a spatio-temporal graph due to the potential wait
at the intermediate node. In the network shown in Fig. 2.2, the best time to start a
journey from node N1 to node N3 is t = 4, which takes 4 time units. The optimal
path from N1 to N3 that starts at t = 4 is not optimal for the intermediate node N2.
The best start time for a path from N1 to N2 is t = 1, which proves to be sub-optimal
for a journey from N1 to N3. The lack of optimal prefix property in best start time
shortest paths rules out the possibility of using a greedy strategy in algorithm design.

Key Features Of TAG:

Graph Aggregation: The temporal variation in the topology and parameter values
can be represented using aggregates as edge/node attributes in the graph used to
represent the spatial network. The edges and nodes can disappear from the network
during certain instants of time and new nodes and edges can be added. The time-
aggregated graph keeps track of these changes through a time series attached to each
node and edge that indicates their presence at various instants of time.

Query Language: A query language needs to represent common queries. A key
challenge is to define a complete set of logical operators for the time-aggregated
graph.

Query Processing: The time aggregated graph with the proposed query operators
will be used to process queries pertaining to the domain applications. A frequent
query that arises in spatio-temporal networks is the shortest path computation. The
algorithm needs to consider the availability of the required edges and nodes at the
appropriate time instants. If the shortest route and the shortest route travel time are
time-dependent, shortest path computation can be performed for a given start or it
can find the least travel time path over the entire time period of interest.

12 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

In this chapter we describe a model for spatio-temporal networks called the time
aggregated graph based on graph aggregation. The time-aggregated graph keeps
track of the time-dependence of a graph through a time series attached to each node
and edge that indicates their presence at various instants of time. We show that this
model has less storage requirements than time expanded networks since it does not
rely on replication of the entire network across time instants. We define a set of
logical operators based on the time aggregated graph.

2.2 Basic Concepts

Spatial networks that show time-dependence serve as the underlying networks for
most location based services. Traditionally graphs have been extensively used to
model spatial networks (e.g. road networks) [40]; weights assigned to nodes and
edges are used to encode additional information. In a real world scenario, it is not
uncommon for these network parameters to be time-dependent. Formulation of com-
putationally efficient and correct algorithms for the shortest path computation that
takes into account the dynamic nature of the networks is important. Models of these
networks need to capture the possible changes in topology and values of network
parameters with time and provide the basis for the formulation of computationally
efficient and correct algorithms for the frequent computations like shortest paths.
Given the set of frequent queries posed by an application on a spatial network and
the patterns of variations of the spatial network with time, we need to find a model
that supports efficient and correct algorithms for computating the query results, while
trying to minimize the storage and cost of computation. In this section we discuss
the basics of the model used to represent spatial networks called “time aggregated
networks” [16]. The algorithm presented in this paper is formulated based on this
model. Time aggregated graphs can not only capture the time-dependence of net-
work parameters, but also account for the possibility of edges and nodes being absent
during certain instants of time.

2.2.1 The Conceptual Model

A graph G = (N , E) consists of a finite set of nodes N and edges E between the
nodes in N . If the pair of nodes that determine the edge is ordered, the graph is
directed; if it is not, the graph is undirected. In most cases, additional information
is attached to the nodes and the edges. In this section, we discuss how the time
dependence of these edge/node parameters are handled in the proposed model, the
time-aggregated graph.

We define the time-aggregated graph as follows.

2.2 Basic Concepts 13

(Travel Time Series) [Edge Time Series]

Edge

Node

Snapshots of the Network

(a) t=1

LEGEND

N1 N2

N3 N4
1

22

1

(d)

N1 N2

N3 N4

1 2

(b) t=2

1
N1 N2

N3 N4

2

4

2

(c) t=3

(d) Time Aggregated Graph

N1 N2

N3 N4

[2,2,2] [2,2,3]

[1,−,4]

[1,1,−]

Fig. 2.3 Network at various time instants and the time aggregated graph

taG = (N , E, T F, f1 . . . fk, g1 . . . gl , w1 . . . wp| fi : N → R
T F ; gi : E →

R
T F ;wi : E → R

T F) where
N is the set of nodes,
E is the set of edges,
T F is the length of the entire time interval,
f1 . . . fk are the mappings from nodes to the time-series associated with the nodes,
g1 . . . gl are mappings from edges to the time series associated with the edges, and
w1 . . . wp indicate the time dependent weights (eg. travel times) on the edges.
Each edge has an attribute, called an edge time series that represents the time
instants for which the edge is present. This enables the time aggregated graph to
model the topological changes of the network with time. It is assumed that each
edge travel time has a positive minimum and the presence of an edge at time instant
t is valid for the closed interval [t, t + σ].
Figure 2.3a–c shows a network at three time instants. The network topology and

parameters change over time. For example, edge N3–N4 is present at time instants
t = 1, 3, and disappears at t = 2 and its weight changes from 1 at t = 1 to 4 at
t = 3. The time aggregated graph that represents this dynamic network is shown
in Fig. 2.3d. In this figure, edge N3–N4 has two attributes, both being a series. The
attribute (1, 3) represents the time instants at which the edge is present and [1,∞, 4]
is the weight time series, indicating the weights at various instants of time. Figure 2.4a
shows the time aggregated graph (corresponding to Fig. 2.3a–c and the time expanded
graph that represent the same scenario. Edge weights in a time expanded graph are
not explicitly shown as edge attributes; instead they are represented by edges that
connect the copies of the nodes at various time instants. For example, the weight

14 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

N4

N1

N3

N

N

N1

N2

N3

N4

N3

N2

N1 N1

N2N2 N2 N2 N2

N3

N4

N3 N3 N3N3

N1 N1 N1 N1

N4 N4 N4 N4

 t=1 t=2 t=3 t=4 t=5 t=6 t=7

(a) (b)

[1,−,4]

[1,1,−]

[2,2,2]

Fig. 2.4 Time-aggregated graph versus time expanded graph. a Time Expanded Graph. b Time-
aggregated Graph

1 of edge N1–N2 at t = 1 is represented by connecting the copy of node N1 at t = 1
to the copy of node N2 at time t = 2. The time expansion for the example network
needs to go through 7 steps since the latest time instant would end in the network is
at t = 7. For example, the traversal of edge N3–N4 that starts at t = 3 ends at t = 7,
the travel time of the edge being 4 units. The number of nodes is larger by a factor
of T , where T is the number of time instants and the number of edges is also larger
in number compared to the time-aggregated graph. If the value of T is very large in
a spatial network, it would result in enormously large time expanded networks and
consequently slow computations.

2.2.2 A Logical Data Model

Basic Graph Operations

We extend the logical data model described in [40] to incorporate the time depen-
dence of the graph model. The framework of the model consists of two dimen-
sions (1) graph elements, namely node, edge, route and graph and (2) operator
categories that consist of accessors, modifiers and predicates. A representative set
of operators for each operator category is provided in Tables 2.2, 2.3 and 2.4.
Table 2.2 lists a representative set of ‘access’ operators. For example, the opera-
tor getEdge(node1,node2,time) returns the edge properties of the edge from node
node1 to node node2, such as the edge identifier (if any) and associated parameters
at the specified time instant. For example operator getEdge(N1,N2,1) on the time-
aggregated graph shown in Fig. 2.3 would return the travel time of the edge N1–N2
at t = 1, that is 1. Similarly, get_edge(node1,node2) returns the edge properties for
the entire time interval. In Fig. 2.3, the operator get_edge(N1,N2) would result in
(1, 1,∞). get_edge_earliest(N3,N4,2) returns the earliest time instant at which the
edge N3–N4 is present after t = 2 (that is t = 3). Table 2.3 shows a set of modifier

2.2 Basic Concepts 15

Table 2.2 Examples of operators in the accessor category

at_time at_all_time at_earliest

Node get(node,time) get_node(node) get_node_earliest_Presence
(node,time)

Edge getEdge(node1,node2,time) get_edge(node1,node2) get_edge_earliest_Presence
(node1,node2,time)

Route getRoute(node1,node2,time) get_route(node1,node2) get_route_earliest_Presence
(node1,node2,time)

Graph get_Graph(time) get_Graph() –

Table 2.3 Examples of operators in the modifier category

Insert Delete Modify
at_time at_all_time at_time at_all_time at_time at_all_time

Node insert(node, insert(node, delete(node, delete(node) update(node, update(node,
time,value) valueseries) time) delete(node) time,value) valueseries)

Edge insert(node1, insert(node1, delete(node1, delete(node1, update(node1, update(edge,
node2, node2, node2, ,node2) node2,time valueseries)
time,value) valueseries) ,time) ,node2) value)

Route insert(node1, insert(node1, delete(node1 delete(node1, –
node2,time) ,node2) ,node2,time) node2) –

Graph insert(graph insert(graph) delete(graph, delete(graph) update(graph, update(graph)
time) insert(graph) time) delete(graph) ,time)

N1

(b)(a)

insert

[3]

8 8 ,4) (2,2,3)

(1, 8 ,4) [1,3]

[1,2,3]

N2

(

(1, 8 ,4) [1,3]

[1,2,3][1,2,3]
(2,2,2)

[1,2])8(1,1,

N4N3

[1,2,3]
(2,2,2)

[1,2])8([1,1,

N4N3

N2N1

(2,2,3)

Fig. 2.5 A time aggregated graph before and after an insert operation. a Before insert, b after insert

operators that can be applied to the time aggregated graphs. For example, Fig. 2.5a,
b show a time aggregated graph before and after the insert(N1,N4,3,4) operation this
operation inserts edge N1–N4 at time instant t = 3 and the edge cost is 4.We also
define two predicates on the time-aggregated graph.

exists_at_time_t: This predicate checks whether the entity exists at the start time
instant t .
exists_after_time_t: This predicate checks whether the entity exists at a time instant
after t .

16 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

Table 2.4 Predicate operators in time-aggregated graphs

exists_at_time_t exists_after_time_t

Node exists(node u,at_time_t) exists(node u,after_time_t)
Edge exists(node u,node v, exists(node u,node v,

at_time_t) after_time_t)
Route exists(node u,node v,a_route r exists(node u,node v,a_route r,

at_time_t) after_time_t)

Table 2.4 illustrates these operators. For example, node v is adjacent to node u at
any time t if and only if the edge (u, v) exists at time t as shown in the table.
exists(N1,N2,1) on the time aggregated graph in Fig. 2.3 returns a “true” since the
edge N1–N2 exists at t = 1.

The fundamental entities in graphs, namely, Graph, Node, and Edge and a series
of common operations that are associated with each class are listed.

public class Graph {
public void add(Object label, timestamp t);
// node with the given label is added at the time
instant t.

public void addEdge(Object n1, Object n2, Object
label, timestamp t, timestamp t_time)
// an edge is added with start node n1 and end node

n2 at
// time instant t and travel time, t_time.

public Object delete(Object label, timestamp t)
// removes a node at time t and returns its label.

public Object deleteEdge(Object n1, Object n2,
timestamp t)
// deletes the edge from node n1 to node n2 at t.

public Object get(Object label, timestamp t)
// returns the label of the node if it exists at

time t.

public Iterator get_node_Presence_Series(Object n1)
// the presence series of node n1 is returned.

public Object getEdge(Object n1, Object n2, timestamp
t)
// returns the edge from node n1 to node 2 at time

2.2 Basic Concepts 17

instant t.

public Iterator get_edge_Presence_Series(Object n1,
Object n2)
// the presence series of edge from node n1 to node

n2
// is returned.

public Object get_a_Successor_node(Object label,
timestamp t)
// an adjacent node of the vertex is returned if an

edge exists
// to this node at a time instant at or after t.

public Iterator get_all_Successor_nodes(Object label,
timestamp t)
// all adjacent nodes are returned if edges exist to

them
// at time instants at or after t.

public Object get_an_earliest_Successor_node(Object
label,timestamp t)
// the adjacent node which is connected to the given

node with
// the earliest time stamp after t is returned.

public timestamp get_node_earliest_Presence(Object
n1, timestamp t)
// the earliest time stamp after t at which the node

n1
// is available is returned.

public timestamp get_node_Presence_after_t(Object n1,
timestamp t)
// Part of the presence time series of node n1 after

time t
// is returned.

public timestamp get_edge_earliest_Presence(Object
n1, Object n2, timestamp t)
// the earliest time stamp after t at which the edge

from
// node n1 to node n2 is available is returned.

18 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

public timestamp get_edge_Presence_after_t(Object n1,
Object n2, timestamp t)
// Part of the presence time series of edge(n1-n2)

after time t
// is returned.

}

A few important operations associated with the classes Nodes and Edges are p
rovided below.

public class Node {
public Node(Object label, timestamp t)
// the constructor for the class. A node with

the appropriate
// label is created at the time t.

public Object label()
// returns the label associated with the node

if it exists at t.
}

public class Edge {
public Edge(Object n1, Object n2, Object
label, timestamp t_inst, timestamp t)
// the constructor for the class. an edge is

added with start
// node n1 and end node n2 at time instant t

and
// travel time, t_time.

public Object start()
// returns the start node of the edge.

public Object end()
// returns the end node of the edge.

}

2.2.3 Physical Data Model

A static graph G = (V, E) can be represented using an adjacency matrix. This is a
|V | × |V | matrix, A such that the element ai j is defined as
ai j = wi j if i j ∈ E and wi j is the weight of the edge i j and

2.2 Basic Concepts 19

ai j = 0, otherwise. This representation requires O(N 2) memory. It can be seen that
the storage required for this representation is independent of the number of edges in
the graph, in relation to the number of nodes. In other words, there is no saving in
memory even when the graphs are sparse. One representation that can exploit such
sparsity is the adjacency list representation. The adjacency list representation of a
graph G = (V, E) consists of an array of lists, one for each vertex v ∈ V . The list
corresponding to a vertex v contains all vertices that are adjacent to v in G. For a
directed graph, the space requirement for the lists is O(m) where m = |E |. The
total memory requirement is O(n + m) where n = |V |. The weight of each edge
uv is stored with the vertex v in u’s adjacency list. This representation is especially
suitable for sparse graphs.

Time aggregated graphs can be represented by either one of the representation,
with the necessary modifications. These representations need to be extended to
include the time series representations on edges (corresponding to time dependent
edge costs) and nodes. Adjacency list representation is extended by adding a list to
each vertex in the adjacency list. Adjacency list representation uses an array of point-
ers one pointer for each node. The pointer for each node points to a list of immediate
neighbors. Stored at each neighbor node are the edge presence series and travel times
for the edge starting from the first node to this neighbor. Since the length of the time
series is T , where T is the length of the time period, the adjacency list representation
would require O(m + n + nT + mT), where n is the number of nodes and m is the
number of edges. In reality, not all time series would be of length T and assuming
an average length α, the storage would be O(n + m + αn + αm). The time series
store a single value if the value of the attribute remains constant, indicated by the
character ‘F’. If the value of the attribute changes over time, it is indicated by the
character ‘V’.

To extend the adjacency matrix to represent the time aggregated graph, a third
dimension can be added. The new matrix A would be n × n × T , requiring O(n2T)

memory. Figure 2.6a, b show the adjacency list and adjacency matrix representations
for the time aggregated graph shown in Fig. 2.3. For example, the edge N1–N2 in
the graph at t = 1 is represented by the pointer from N1 to N2 in the adjacency
list. The array (1, 2,∞) is stored at N2 to represent the travel times at t = 1, 2, 3
for the edge N1N2. In the adjacency matrix the presence of edge N1N2 at a time
instant t = 1 is represented by A[1, 2, 1] = 1, since the travel time for the edge is
1 unit at t = 1. Since the edge is absent at an instant t = 3, A[1, 2, 3] = ∞ which
indicates an infinite edge cost at time instant t = 3. Note that the start node, the end
node and the time instant are represented by the first, second and the third dimension
of the matrix. Though the adjacency matrix has been illustrated as three snapshots
in Fig. 2.6b for the sake of clarity, they are represented in one, three-dimensional
matrix.

Logical operations on a time-aggregated graph can be classified as

1. Topology first operators (graph dominated operations).
Examples include get_route(n1,n2) and get_edge(n1,n2).

2. Time-first operators (Time dominated queries).

20 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

N4 N4

12 F F1

4

1

1

22

8
88

8 8

8

N4N1 N1 N1N2 N2 N2N3 N3 N3

N1

N2

N3

N4

8

t=2 t=3

8

8
8

8

8

8
8

8

8

8

8

8

3

(b)(a)

t=1

8

8 8

8
888

8 8 8

8

8 8

8
8

8
8 8

N2

N4

N4

1 2 8

N3

V − variable

F − fixed

− infinity

2

2

8 41

V

V

F

V

3 2N2

N1

N3

N4

LEGEND

8

Fig. 2.6 Storage structures for time aggregated graph. a Adjacency list representation, b adjacency
matrix representation

Some examples are get_Graph(time t) and get_edge_at_t(n1,n2,t).

Both representations are equally capable of handling graph dominated queries. To
compute time first operations (snapshot queries such as to find the graph at a given
time instant), adjacency matrix representation is more suitable. In this representation,
these queries represent the time slices of the matrix at the given time instants.

Graphs representing transportation networks are generally sparse and hence adja-
cency list representation is more likely to be storage efficient compared to adjacency
matrix representations. The choice is hence a tradeoff between the storage cost and
the frequency of time dominated queries. We expect route queries (which are topol-
ogy first queries) to be more frequent and since adjacency list representation is
capable of handling these, based on storage costs, we used adjacency lists in our
implementations. Moreover, most databases use adjacency list representation.

2.2.3.1 Towards Handling Infinite Time Series

In most domains that involve spatio-temporal networks such as transportation net-
works, crime data analysis, and sensor networks data is continuously collected at
discrete instants of time. For example, sensors on urban highways measure conges-
tion levels every 30 s and crime data is appended with every time a crime occurs..
Conceptually, the time aggregated graph can be viewed as a time series of graphs.
Each graph represents the attribute values and the topological structure of the network
at the given instant of time. Based on the periodicity of data collection, the applica-
tion domains can be broadly classified into (1) applications where data is measured
periodically and (2) applications such as crime analysis where data is recorded when
an event occurs.

When data is measured periodically, the underlying model should be able to
capture the changes that take place in the spatio-temporal network at every instant.
Time aggregated graphs represent this as a time series of graphs, each graph in the
series modeling the state of the network. For example, the state of a road network at
t = t1 would be represented as a graph corresponding to this instant. The state of a
sensor network, which would include the measurements at an instant would also be
modeled in a similar manner.

2.2 Basic Concepts 21

N4N3

N2N1
,...][1,1,

[2,2,3....][2,2,2,...]

(b)(a)

N4

N4

N3N2

N4

N3

N2

N1

8

1 2

2

22

8

,4,...]8[1, 8

4

1

3

22

Fig. 2.7 Representation of sliding windows in time aggregated graph. a Time aggregated graph,
b implementation of time series

In application domains where the network state changes due to an event, the time
aggregated graph stores the tuples of time stamp and the event.

Implementation
The time series of graphs would be implemented as a graph where the node

and edge attributes are time series. Most application domains deal with ‘infinite’
streams of data, and the edge and node attributes are possibly infinite time series.
One implementation uses sliding windows implemented through circular buffers.
Figure 2.7a shows a time aggregated graph with time series attributes on its edges.
Figure 2.7b shows the modified adjacency list representation that implements an
infinite time series. Each time series is stored in a circular buffer.

2.3 Evaluation and Validation

2.3.1 Representational Comparison: Time Aggregated Graphs
Versus Existing Models

A time-expanded network has one copy of the set of nodes for each discrete time
instant. Corresponding to each edge with transit time t in the original network, there
is a copy of an edge (called the cross edge) between each pair of copies of nodes
separated by the transit time t [14, 22, 26]. Thus, a time-dependent flow in a dynamic
network can be interpreted as a static flow in a time expanded network. This allows
application of static algorithms on such networks to solve dynamic flow problems.
Apart from the “enormous increase in the size of the underlying network” [26] the
suitability of the model in some application domains needs further exploration.

A time expanded graph assumes that the edge weight represents a flow parameter,
and it represents the time taken by the flow to travel from the source node to the
end node. This is represented by the cross edges between the copies of the graph.

22 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

[d,t,o,c,c,v,o,t,d]

o − overlap v − covers
c − contains

LEGEND

d − disjoint

t − touch

A
B t=t1

t=t2

t=t3

t=t4
t=t5

t=t6 t=t7
t=t8

t=t9

A B

(a) (b)

Fig. 2.8 Illustration of a dynamic relationship between two objects and its representation. a Loca-
tions of Moving Object. b TAG Representation for (a)

Since the cross edges in a time expanded graph represent a flow across the nodes, the
representation of non-flow networks using this model is not obvious. By contrast, the
time aggregated graph model does not impose such a restriction because the attributes
are collected into a time series. This difference can be illustrated through the example
of the possible extension of the PEER diagram explained in Sect. 2.1.1. While time
aggregated graph would model the time-dependent relationships as a time series on
the edge connecting the nodes (that represent the entities), the representation of the
same scenario is not obvious when time expanded graphs are used. An illustration of
the representation of time-dependent relationships using time-aggregated graph rep-
resentation for the scenario depicted in Fig. 2.1 is shown in Fig. 2.8. Figure 2.1 shows
the locations of B at discrete time instants (t = t1, t2, t3, t4, t5, t6, t7, t8, t9). The rela-
tionship of object B with object A changes with time. This has been represented in
Fig. 2.8a using an aggregated representation. The line segment that represents the
relationship has an attribute which is an ordered set, each element indicating the
current relationship of object B with A. For example, the second entry ‘o’ indicates
that the object B touches A at t = t2 and overlaps A at t = t3. In the domain of
crime analysis, the number of crimes reported on a road segment (represented by an
edge) at a given time might not be meaningfully represented by an edge in the time
expanded graph. The time aggregated graph would represent this as an element in
its time series attribute.

In most spatio-temporal networks, the length of the time period (indicated by T in
this paper) might not be known in advance since data arrives as a sequence at discrete
time instants. For example, sensors in transportation networks collect data at a rate of
about once every 30 s. Crimes are reported whenever an incident occurs. In addition
to being able to represent these attributes, the model must be capable of handling
infinite sequences of data. Since time expanded networks require a prior estimate of
the length of the time period T , handling of infinite time series might not be easy and
obvious. Also, the necessity for the prior knowledge of T might lead to problems
in the algorithms based on time expanded networks since an underestimation of T
can result in failure of finding a solution. On the other hand, an over-estimated T
will result in an over-expanded network and hence lead to unnecessary storage and
run-time and would adversely affect the scalability of the algorithms.

2.3 Evaluation and Validation 23

Request

Accepted Added−toGraduatedPromoted

DonorAlumnusApplicant

Person

Appliy

(a) (b)

LEGEND

Donates_to
Graduated_from
Attends_fulltime
Attends_nondegree
Applied_to

D
G
At_F
At_N
Ap

Ap, At_N, At_F,G,DPerson University

Student
Degree Seeking

seeking Student
Non−degree

Fig. 2.9 Representations of dynamic relationships in TERC and aggregated graph. a An example
TERC model, b aggregated model (a adapted from [50])

Time expanded graphs model the time-dependence of edge parameters through
the cross edges that connect the copies of the nodes. This representation, thus, does
not provide the means to separate data (for example, an edge attribute series) from its
physical representation and hence can adversely affect physical data independence.

The temporal conceptual model TERC+ [50] models dynamic relationships
between entities using evolutions of the entities involved. The temporal nature is cap-
tured through representing transitions of objects. An example is shown in Fig. 2.9. It
represents a dynamic relationship between a person and a University. The relationship
changes from an applicant to a donor after graduation. The change in the relationship
is represented through various classes of the same entity as shown in Fig. 2.9a. An
aggregated model of the same scenario is shown in Fig. 2.9b. Though at the finest
level, the representations would be the same, the aggregated model facilitates a bet-
ter high level summarization. This model might not be sufficient to represent cases
where entity subtypes cannot be used to model evolving relationships. For example,
Fig. 2.1, represents a scenario where the entities (a sensor and a geographic area)
involved in the dynamic relationship do not have subtypes and hence might not yield
itself to this model.

2.3.2 Comparison of Storage Costs with Time Expanded Networks

According to the analysis in [41], the memory requirement for a time expanded
network is O(nT) + O(n + mT), where n is the number of nodes, m is the number
of edges in the original graph, and T is the length of the travel time series. The
framework of a time aggregated graph would require a memory of O(n + m), where
n is the number of nodes and m is the number of edges. Each edge that has a time-
varying attribute has an attribute time series associated with it. If the average length
of the time series is α(≤T), the memory required is O(αm), assuming an adjacency
list representation. The total memory requirement for a time aggregated graph is
O(n + m +αm). This comparison shows that the memory usage of time-aggregated
graphs is less than that of time expanded graphs nT > n and α ≤ T .

24 2 Time Aggregated Graph: A Model for Spatio-temporal Networks

Fig. 2.10 TAG: storage costs

 1000

 2000

 3000

 4000

 5000

 6000

 200 300 400 500 600 700

S
to

ra
ge

 U
ni

ts
 (

K
B

)

No: of Nodes

TEXP
TAG

Table 2.5 Description of datasets

Dataset Radius (miles) Number of nodes Number of edges

1 0.5 111 287
2 1 277 674
3 2 562 1443
4 3 786 2106

Experimental Evaluation:

Figure 2.10 shows the result of evaluation of storage requirement for time aggregated
graph in comparison with time expanded graph. The networks used are the road maps
from the Minneapolis downtown area, of radii, 0.5, 2 and 3 miles. This is appended
with travel time series of length 200. The number of nodes and edges in these datasets
are provided in Table 2.5.

The evaluation shows that memory cost of TAG is much less than the time
expanded graph.

2.4 Summary

Spatio-temporal networks form a key part of critical applications such as emergency
planning and there is a great need for database support in this area. This chapter
describes a model based on time aggregation to represent a spatio-temporal network.
Time aggregated graphs represent the time variant properties by aggregating edge
and node parameters into time series. The analytical and experimental analysis of
storage cost requirements of time aggregated graph are presented.

Chapter 3
Shortest Path Algorithms for a Fixed
Start Time

Abstract Shortest path computation is an important query on any network. In a
spatio-temporal network, this computation assumes added semantics due to the
dependence of network attributes on time. Shortest paths can be computed either
for a given start time or to find the start time and the path that leads to least travel
time journeys (best start time journeys). Developing efficient algorithms for com-
puting shortest paths in a time varying spatial network is challenging because these
journeys do not always display greedy property or optimal substructure. This chapter
describes algorithms to compute shortest paths for a given start time. The formula-
tions of shortest path algorithms can also depend on the properties of the network
parameters such as travel times. For example, the algorithm can significantly vary
depending on whether the travel times follow FIFO property or not. The chapter
provides algorithms for both FIFO and non-FIFO travel times.

3.1 Introduction

Spatio-temporal networks are spatial networks whose topology and parameters
change with time. These networks are important due to many critical applications
such as emergency traffic planning and route finding services and there is an immedi-
ate need for models that support the design of efficient algorithms for computing the
frequent queries on such networks. This problem is challenging due to potentially
conflicting requirements of model simplicity and support for efficient algorithms.
Time expanded networks which have been used to model dynamic networks employ
replication of the network across time instants, resulting in high storage overhead and
algorithms that are computationally expensive. In contrast, time-aggregated graphs
do not replicate nodes and edges across time; rather they allow the properties of
edges and nodes to be modeled as a time series. Since the model does not replicate
the entire graph for every instant of time, it uses less memory and the algorithms
for common operations (e.g. connectivity, shortest path) are computationally more

B. George and S. Kim, Spatio-temporal Networks, 25
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8_3,
© The Author(s) 2013

26 3 Shortest Path Algorithms for a Fixed Start Time

efficient than those for time expanded networks. One important query on spatio-
temporal networks is the computation of shortest paths. Shortest paths can be com-
puted either for a given start time or to find the start time and the path that leads to
least travel time journeys (best start time journeys). Developing efficient algorithms
for computing shortest paths in a time varying spatial network is challenging because
these journeys do not always display greedy property or optimal substructure, mak-
ing techniques like dynamic programming inapplicable. The formulations of shortest
path algorithms can also display different characteristics based on some properties
of the network parameters such as travel time.

3.1.1 Broad Challenges

A time-variant graph is a graph whose edge and node properties and topological
structure are time dependent. For example, traffic volume on urban highways varies
over the time of day, which leads to a variation in travel time. In addition to network
parameter values, the network topology can also change with time due to the unavail-
ability of certain road segments during some periods of time due to repair or natural
calamities. Conventional graph algorithms cannot easily be applied to the snap-
shot graphs at discrete time instants to evaluate frequent queries without accounting
for relationships among snapshots. However, time-variant graphs raise many chal-
lenges for database research. Due to their potentially large and evergrowing sizes, a
storage-efficient representation is critical to reduce and possibly eliminate redundant
information across different time-points. Second, new data model concepts need to
be investigated to represent and classify potentially new alternative semantics for
common graph operations such as shortest-path and connectivity. For example, a
shortest path between a given pair of nodes may have at least two interpretations,
one for a given start time-point and the other for the shortest travel-time for any start
time in a given time interval. A third challenge is the design of efficient and correct
query processing strategies and algorithms since some of the commonly assumed
graph-properties may not hold for spatio-temporal graphs. For example, consider
the optimal substructure (required in dynamic programming, [5]) for shortest paths
in a graph. While each prefix path (path from a source node to an intermediate node in
an optimal path) is optimal in a static graph, it may not be optimal in a spatio-temporal
graph due to a potential wait at an intermediate node.

This chapter presents a classification of shortest path algorithms based on the start
time choice and the characteristics of travel time variations (FIFO or non-FIFO). It
further proceeds to describe two shortest path algorithms for a given start time in a
network where travel times follow FIFO property. An algorithm that computes the
shortest path for a given start time in a non-FIFO network is discussed. The non-
FIFO shortest path algorithm is based on a transformation called arrival time series
transformation (ATST) that converts a non-FIFO to a network that displays optimal
prefix property leading to the formulation of a greedy algorithm for a non-FIFO
network.

3.2 Basic Concepts 27

3.2 Basic Concepts

This sections presents a classification of shortest path algorithms and lists some of
the algorithmic challenges.

3.2.1 Classification of Shortest Path Algorithms

One of the most frequent queries on any spatio-temporal network is the computation
of shortest paths. In time dependent networks, the shortest path and the traversal time
are dependent on the start time. For example, a shortest path from node N1 to node
N5 in Fig. 3.1 for the start time t = 1 takes a travel time of 6 units. If the start is
postponed to t = 3, the travel time drops to 4 units. Due to the time dependence of
shortest paths, in a spatio-temporal network it is possible to raise interesting queries
such as “When is the best time to start a journey so that time spent in the network is the
least?”. Sections 3.1 and 3.4 describe the formulations of two shortest path problems,
first for a fixed start time and second, for the least travel time. The design of these
algorithms effectively utilizes certain properties of the time dependent parameters
(such as the FIFO property of travel time). The classification of the algorithms is
shown in Fig. 3.2. The shortest path algorithms show significantly different properties
based on their formulations. For example, shortest path computation for a fixed start
time might display optimal prefix property under certain assumption on travel time
characteristics. Computation of best start time shortest path under non-FIFO travel
times might not always display optimal prefix property ruling out popular design
techniques such as greedy and A∗ based algorithms. Based on these characteristics,
shortest path computation on time aggregated graph falls under various categories
as shown in Fig. 3.2.

3.2.2 Algorithmic Challenges

A time dependent graph might not display some properties that would make some
common algorithm design techniques such as dynamic programming and greedy
strategy feasible. For example most time dependent graphs do not exhibit optimal
prefix property, thus making it impossible to apply greedy methods in shortest path
computations. Figure 3.3 shows a time dependent network represented as a time
aggregated graph. The following example illustrates a scenario where Dijkstra’s
algorithm which uses greedy strategy to compute the shortest path identifies a non-
optimal route. If the edge costs are assumed to be edge travel times, the cost of a
node indicates the arrival time at the node. When the least cost node is expanded,
the costs of the outgoing edges are chosen as the costs at the arrival time. In cases
where an edge is not available, the cost at the earliest available time is selected.

28 3 Shortest Path Algorithms for a Fixed Start Time

N1 N3N2

N1 N3N2 N1 N3N2

N1 N3 N1 N3

N1 N3

1 2 2

2 2 2

2

2 2

N2 N2

N2

t=1 t=3

t=4 t=5 t=6

t=2

Node

Edge

Legend

Travel time

Fig. 3.1 Snapshots of a network

Fig. 3.2 Classification of TAG-based shortest path algorithms

[5,6,7,8,8,9,6,5]

[1,2,4,4,4,4,4,4]

[1,4,4,4,4,4,4,4]

[2,2,2,2,2,2,2,2]

[1,1,1,1,1,1,,1,1]

N5N4

N3

N2

N1

Fig. 3.3 Illustration of shortest path computation

Table 3.1 Trace of Dijkstra’s algorithm for the network shown in Fig. 3.3

Iteration N1 N2 N3 N4 N5

1 1 (closed) ∞ ∞ ∞ ∞
2 1 2 (closed) 3 ∞ ∞
3 1 2 3 (closed) 6 ∞
4 1 2 3 6 (closed) 15
5 1 2 3 6 15 (closed)

Table 3.1 shows the execution trace of Dijkstra’s algorithm on the time aggregated
graph shown in Fig. 3.3. The schedule in Table 3.2 shows the start time and arrival
at each node as computed by the algorithm. As Table 3.2 illustrates, the algorithm
computes the route N1–N2–N4–N5 as the shortest path for the start time t = 1 at
node N1. The total travel time for the route is 14 time units. It can be seen that there
is another route N1–N3–N4–N5 for the same start time which takes a travel time
of 12 time units. This is an optimal route from N1 to N5, which suggests that the
algorithm might not always compute the shortest path.

3.3 Shortest Path Computation for Fixed Start Time 29

Table 3.2 Start and arrival times at nodes

Route computed by algorithm Optimal route

Node N1 N2 N3 N4 N5 Node N1 N2 N3 N4 N5
Arrival time 1 2 – 6 15 Arrival time 1 – 3 7 13
Start time 1 2 – 6 15 Start time 1 – 3 7 13

Total travel time = 14 Total travel time = 12

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,3,4]

[1,2,5,8]

1

1
22

1

N5N4

N3

N2

N1

Fig. 3.4 Optimal sub-structure of shortest paths

3.3 Shortest Path Computation for Fixed Start Time

In time dependent networks, the shortest path and its traversal time are dependent
on the start time at the source node. This section outlines the challenges encountered
and the approaches to address them. It also provides an outline of the algorithm that
computes the shortest path for a given start time in a time-dependent network. The
algorithm uses the time aggregated graph to represent the network.

Challenges

(1) Not all shortest paths for a given start time show optimal prefix property:
The application of a greedy strategy in the shortest path computation (which
is a popular choice in most optimization problems) in a time-aggregated graph
faces a challenge. Not all shortest paths display the optimal sub-structure, as
illustrated by Fig. 3.4. For the sake of simplicity, the travel times are constant
in this example. It can be seen that a shortest path (N1–N3–N4–N5) from N1
to N5 for the start time t = 1, which takes 5 time units, does not display
optimal prefix property. The path from N1 to N4 following the above path is
not optimal (shortest path being N1–N2–N4). Although such paths that do not
display optimal sub-structure could exist, it can be proved that there is at least
one optimal path which satisfies the optimal sub-structure property.

Lemma 1 If there is an optimal route from source to destination, then there is at
least one optimal route from source to destination that shows optimal sub-structure.

Proof As Fig. 3.4 illustrates, the failure of optimal structure of the shortest path
occurs due to a potential wait at the intermediate node (N4), after reaching this node
traversing the optimal path from N1 to N5, assuming travel time variations follow

30 3 Shortest Path Algorithms for a Fixed Start Time

FIFO property. Consider the optimal path from N1 to N4. Append this path to the
path N4–N5 (allowing wait at the intermediate node N4) from the optimal path. This
would be still the shortest path from N1 to N5. Otherwise, it would contradict the
optimality of the original shortest path.

This result enables us to use a greedy approach to compute the shortest path.

(2) Greedy approach in selecting the traversal time of an edge might not ensure
correctness (optimality) of the shortest path: If the travel times follow a
“random” variation, a greedy choice on the edge traversal time (ie.,) select-
ing the edge at the earliest available time instant might not guarantee optimality.
For example, consider computing the shortest path from node N1 to node N3 in
Fig. 3.5 for a start time t = 1. Traversing edge N2–N3 as soon as N2 is reached
(at t = 2) would result in a sub-optimal solution. Waiting at node N2 for a
time unit and starting from node N2 at t = 3 would result in a total travel time
of 3 units in comparison with 4 units if edge N2–N3 was traversed at t = 2.
Shortest path algorithms for both FIFO and non-FIFO networks are described in
the following sections. Algorithm that requires FIFO travel time (greedy version
and A∗ search based) will be discussed in Sects. 3.3.1, 3.3.2 and the algorithm
that can handle non-FIFO travel times will be discussed in Sect. 3.4.

(3) Termination of algorithm is not guaranteed if there is a non-negative cycle
over time: If the graph has an infinite positive cycle and the travel times do not
display FIFO property, an optimal path finding algorithm might not terminate
since it will continue searching for a shortest path indefinitely.
Algorithms presented here assume finite time windows.

3.3.1 Shortest Path Algorithm for Fixed Start Time in a FIFO
Network (SP-TAG)

The algorithm, called the SP-TAG algorithm, uses greedy strategy to find the shortest
path for a fixed start time. Every node has a cost associated with it which represents
the travel time to reach the node from the source node. The algorithm picks the
node with the least cost and updates the costs of its adjacent nodes. While finding
the adjacent nodes, each edge is selected at its earliest available time instant (min_t
operation in the algorithm description). A trace of the algorithm is given in Table 3.3.
The table entries are the costs associated with each node (representing the arrival
times at the node) at each iteration. The node marked as “closed” is the node with
the minimum cost selected for expansion. The travel times are assumed to follow the
FIFO property.

Lemma 2 The SP-TAG algorithm is correct.

Proof The proof of correctness of the algorithm which follows a greedy strategy
follows the proof of correctness for Dijkstra’s algorithm to find the shortest path

3.3 Shortest Path Computation for Fixed Start Time 31

Algorithm 1 Shortest Path (SP-TAG) Algorithm
Input:
1) G(N , E): a graph G with a set of nodes N and a set of edges E;

Each node n ∈ N has a property:
Node Presence Time Series : series of positive

integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel_time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart
Method:

c[s] = tstart ; ∀v �= s, c[v] = ∞;
// c[u] is the cost at the node u.
Insert s in priority queue Q.
while Q is not empty do {

u = extract_min(Q);
for each node v adjacent to u do {

t = min_t ((u, v), c[u]);
if t + σu,v(t) < c[v] {

c[v] = t + σu,v(t); parent[v] = u;
if v is not in Q, insert v in Q;

}
update Q;

}
}

}
Output the route from s to d.

Table 3.3 Trace of the SP-TAG algorithm for the network shown in Fig. 3.4

Iteration N1 N2 N3 N4 N5

1 1 (closed) ∞ ∞ ∞ ∞
2 1 3 (closed) 3 ∞ ∞
3 1 3 3 (closed) 3 ∞
4 1 3 3 4 (closed) 6
5 1 3 3 4 7 (closed)

Fig. 3.5 Illustration of non-
FIFO paths N1 N2 N3

[1,1,1,1] [1,3,1,2]

from a source node to a destination. The key difference in time aggregated graph
is that each edge has a presence series. SP-TAG employs a greedy approach where
it selects the earliest available time instant as the traversal time of the edge. Since
waits are permitted at intermediate nodes, this admissible approach does not violate

32 3 Shortest Path Algorithms for a Fixed Start Time

Table 3.4 Trace of the SP-TAG_∗ algorithm for the network shown in Fig. 3.4

N1 N2 N3 N4 N5
g() h() f() g() h() f() g() h() f() g() h() f() g() h() f()

1 4 5 (X) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 4 5 3 3 6 (X) 3 4 7 ∞ ∞ ∞ ∞ ∞ ∞
1 4 5 3 3 6 3 4 7 4 2 6 (X) ∞ ∞ ∞
1 4 5 3 3 6 3 4 7 4 2 6 6 2 8

Fig. 3.6 Correctness of SP-
TAG algorithm

v

S

y

x

s

the optimality of the shortest path even while considering the time-dependence of
edge presence. To prove the correctness of the algorithm, it needs to be shown that
the cost of a node, when it is closed, is the shortest path distance to the node. This
can be proved by induction on the set of closed nodes (S in Fig. 3.6). Let v be the
next node to be closed. Suppose the cost of node v was last updated when node x
was added to S and v is adjacent to x . When x was added to S, a shorter path to v

through x was discovered. Assume that the cost of v is not the shortest path cost.
This would be due to the existence of a path s · · · y · · · xv as shown in Fig. 3.6. Since
x was closed before y, the shortest path to x is inside S by inductive hypothesis.
Therefore, the length of the path from s to v through y cannot be shorter that the path
s · · · xv. The cost of v cannot be further reduced by forming a path through nodes
outside S. Hence, the cost of the node when it is closed is the shortest path distance
to the node.

Lemma 3 The time complexity of the SP-TAG algorithm is O(m(log T + log n))

where T is the number of time instants, n is the number of nodes and m is the number
of edges in the time aggregated graph.

Proof The cost model analysis assumes an adjacency list representation of the graph
with two significant modifications. The edge time series is stored in the sorted order.
Attached to every adjacent node in the linked list are the edge time series and the
travel time series.

For every node extracted from the priority queue Q, there is one edge time series
look up and a priority queue update for each of its adjacent nodes. The time com-
plexity of this step is O(log T + log n). The asymptotic complexity of the algorithm
would be
O(�v∈N [degree(v).(log T + log n]) = O(m(log T + log n)).

3.3 Shortest Path Computation for Fixed Start Time 33

The time complexity of the SP-TAG shortest path algorithm based on a time
expanded network is O(nT log T + mT) [8]. Assuming a sparse graph where m is
O(n), nT log T < m log T . The SP-TAG algorithm is faster than the algorithm based
on time expanded graph if m log n < mT . In other words, the SP-TAG algorithm is
faster if log n < T .

3.3.2 A∗ Formulation of Shortest Path Algorithm for a Fixed Start
Time in a FIFO Network (SP-TAG∗)

The A∗ formulation of the shortest path algorithm for a fixed start time discussed in
this section finds an optimal solution for FIFO travel times. The main challenge in
formulating an A∗ search is the design of an admissible and monotone heuristic. We
present the heuristic function used in the formulation and we prove the properties of
the heuristic function which guarantee the optimality of the solution (admissibility)
and the optimality of search (monotonicity).

Proposed Heuristic Function The evaluation function f (n) of a node n is for-
mulated as f (n) = g(n) + h(n).

g(n) is the actual cost to reach the node n from the start node s, which is the time
taken to reach the current node from the start node. h(n) is the estimated cost from
the node n to a destination node d. We propose h(n) to be the shortest path travel
time from node n to the destination node d computed based the least travel time on
each edge.

h(n) = Mint=1,2,··· ,T di j (t),∀i j ∈ E

Lemma 4 The heuristic function h(n) is admissible.

Proof A heuristic function h(n) is admissible if it underestimates the cost from the
node n to the destination node. Here, h(n) is the shortest path from n to d based on
the minimum travel times on each edge. Let ST AG be the graph derived from a time
aggregated graph where each edge cost time series has been replaced by a scalar
cost equal to the minimum edge cost. Let P be the shortest path from node i to d in
ST AG .

Shortest path travel time S Pmin = ∑
pq∈P dmin

pq
Let P∗(t) be the shortest path in TAG that starts at node i at time t . For h(n) to

be admissible, S Pmin ≤ S P(t).
S Pmin = ∑

pq∈P dmin
pq ≤ ∑

kl∈P∗ dmin
kl and dmin

kl ≤ dkl(t).

S Pmin ≤ ∑
kl∈P∗ dmin

kl ≤ ∑
kl∈P∗ dkl(t) = S P(t). The heuristic function is

admissible.

Lemma 5 The heuristic function h(n) is monotone.

Proof A heuristic function h(n) is monotone if h(i) ≤ di j + h(j)∀i j ∈ E . Here,
S Pmin

id ≤ di j (t) + S Pmin
jd . S Pmin

id ≤ dmin
i j + S Pmin

jd ; else, it is a contradiction to the

optimality of S Pmin
id . Since dmin

i j ≤ d(
i j t), S Pmin

id ≤ di j (t) + S Pmin
jd .

34 3 Shortest Path Algorithms for a Fixed Start Time

Since the heuristic function is admissible and monotone, the A∗ algorithm finds an
optimal solution and performs and optimal search [24, 37]. A trace of the algorithm
is given in Table 3.4. The table entries are the costs associated with each node
(representing the arrival times at the node) at each iteration. The node marked as
“X” is the node with the minimum cost selected for expansion. The travel times are
assumed to follow the FIFO property.

Algorithm 2 A* based Shortest Path (SP-TAG_*) Algorithm
Input:
1) G(N , E): a graph G with a set of nodes N and a set of edges E;

Each node n ∈ N has a property:
Node Presence Time Series : series of positive

integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel_time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart
Method:

Preprocess: find the shortest path from node i to d in
ST AG.

c[s] = tstart ; ∀v �= s, c[v] = ∞; f [v] = ∞;
// c[u] is the arrival time at the node u.
f [s] = S P[s]; C = �; S = s ;
Insert s in priority queue Q.
while u �= d {

u = extract_min(Q);
C = C

⋃
u; S = S − u;

for each node v adjacent to u do {
i f (f [v] > c[u] + duv(c[u]) + S Pvd (c[u])

c[v] = c[u] + duv(c[u]);
f [v] = c[u] + duv(c[u]) + S Pvd (c[u]);
if v is not in Q, insert v in Q;

}
update Q;

}
}

}
Output the route from s to d.

Lemma 6 SP-TAG_∗ is correct.

Proof The A∗ algorithm finds the shortest path for a given start time. The heuristic
function underestimates the shortest path travel time from the source to the destination
since in the computation of the estimate h, the edge travel times are replaced by the

3.3 Shortest Path Computation for Fixed Start Time 35

minimum values over the entire time horizon. Hence it is not possible for h to exceed
the actual travel time. Since the heuristic function is admissible, the A∗ algorithm
finds an optimal solution [24, 37]. Since the heuristic function is monotone, the
search process will not open any search node that was once expended and closed.
Hence the search is optimal.

Lemma 7 The time complexity of the SP-TAG_∗ algorithm is O(m(log T + log n))

where T is the number of time instants, n is the number of nodes and m is the number
of edges in the time aggregated graph.

Proof The cost model analysis assumes an adjacency list representation of the graph
with two significant modifications. Attached to every adjacent node in the linked list
is the travel time series.

For every node extracted from the priority queue Q, there is one edge time series
look up and a priority queue update for each of its adjacent nodes. The time com-
plexity of this step is O(log T + log n). The asymptotic complexity of the algorithm
would be
O(�v∈N [degree(v).(log T + log n]) = O(m(log T + log n)).

3.4 Shortest Path Algorithm for a Given Start Time in a
Non-FIFO Network (NF-SP-TAG)

If the travel times do not exhibit the FIFO property it is not guaranteed that an early
start at any node ensures an early arrival at any subsequent node. There would be
cases where postponing the start at an intermediate node (by waiting) might lead to a
reduction in the total travel time. This is illustrated in Fig. 3.7. Selecting the departure
time at a node by choosing the earliest availability of the edge, since in some cases,
a wait at an intermediate node can lead to a decrease in the total travel time. For
example, in Fig. 3.7 a greedy selection of the departure time at node N2 would lead
to an arrival at node N3 at t = 7, as shown in Fig. 3.7 (ii), resulting in a total travel
time of 6 units, which is clearly a non-optimal solution. An optimal solution would
be to start at node N1 at t = 1 at node N1, wait at node N2 for 1 time unit, leading
to an arrival at node N3 at t = 5, and hence a decrease in total travel time.

In this section, an algorithm that computes a shortest path in a non-FIFO network
is described. The key idea behind the algorithm is the insight that by formulating the
problem in terms of arrival times at nodes rather than the earliest departure times, we
can cast the problem in a transformed problem space, where optimal substructure is
valid.

Arrival Time Series Transformation (ATST): The edge weight series in a time
aggregated network represents the travel times at various instants. The time series on
an edge i j in the transformed network would indicate the arrival time ai j (t)at node
j for each departure time t at node i , which would be the sum of departure time t
and the travel time σ i j(t) (ai j (t) = t + σ i j(t)).

36 3 Shortest Path Algorithms for a Fixed Start Time

Fig. 3.7 Effect of waits on travel time in non-FIFO networks

Fig. 3.8 TAG with transformed edge weights

Figure 3.8 illustrates the arrival time series transformation (ATST). The first figure
shows a time aggregated graph where the edge weights represent the travel time series.
The second figure shows the transformed TAG (T_TAG) where the edge weights are
modified to represent the arrival times at the end node of each edge. The algorithm
proposed in this section is based on the T_TAG representation.

The algorithm called the NF-SP-TAG computes the shortest path from a given
source node to a destination for a give start time, for non-FIFO networks, using the
T_TAG representation. In this representation, the edge weights represent the arrival
times. Every node has a cost associated with it which represents the arrival time at
the node. The algorithm picks the node with the least cost and updates the costs of its
adjacent nodes. While computing the costs of the adjacent nodes, the algorithm selects
the earliest arrival time that is greater than the departure time (min_arrival operation
in the algorithm) at the start node of the edge. The cost of the node is the arrival time
at the node. Suppose the cost at the node is c[u] and v is an adjacent node. The edge
uv in T_TAG has a time series auv that indicates the arrival times at v. For every start
time t at u. The update on the cost of v is done as c[v] = c[u] + mint≥c[u]auv[t].
A trace of the algorithm is given in Table 3.5. The table entries are the costs associated
with each node (representing the arrival times at the node) at each iteration. The node
marked as “closed” is the node with the minimum cost selected for expansion.

Lemma 8 The NF-SP-TAG algorithm is correct.

Proof The algorithm runs on the transformed TAG where the edge costs are the
arrival times at the end node of the edge. Here we prove that the algorithm computes
the shortest path using the greedy strategy. The key idea behind the algorithm is that,

3.4 Shortest Path Algorithm for a Given Start Time in a Non-FIFO Network (NF-SP-TAG) 37

Algorithm 3 Shortest Path (NF-SP-TAG) Algorithm
Input:
1) G(N , E): a graph G with a set of nodes N and a set of edges E;

Each node n ∈ N has a property:
Node Presence Time Series : series of positive

integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Arrival_time series : series of positive integers;

au,v(t) - arrival time at v for a start time t at u.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart
Method:

c[s] = tstart ; ∀v �= s, c[v] = ∞;
// c[u] is the cost at the node u.
Insert s in priority queue Q.
while Q is not empty do {

u = extract_min(Q);
for each node v adjacent to u do {

t = min_arrival((u, v), c[u]);
if t + σu,v(t) < c[v] {

c[v] = t + σu,v(t); parent[v] = u;
if v is not in Q, insert v in Q;

}
update Q;

}
}

}
Output the route from s to d.

once the start time is fixed, the earliest arrival at any node implies a shortest path
journey. If this is not the case, it contradicts the earliest arrival. The algorithm, at every
step, picks the node with the least cost and expands theirs node. While expanding
the node, it selects the minimum of all the edge costs, that is greater than the arrival
time at the node. The cost of a node is updated as follows using the minimum
in the edge time series c[v] = c[u] + mint≥c[u]auv[t]. Minimum∀t>t1(ai j [t]) <

Minimum∀t>t2(ai j [t]) if t1 ≤ t2.
Since the algorithm always picks the minimum of the edge costs, it ensures the

earliest possible arrival.

Lemma 9 The time complexity of the NF-SP-TAG algorithm is O(m(T + log n))

where T is the number of time instants, n is the number of nodes and m is the number
of edges in the time aggregated graph.

Proof The cost model analysis assumes an adjacency list representation of the graph
with one significant modification. Attached to every adjacent node in the linked list
is the arrival time series with the start time instants.

38 3 Shortest Path Algorithms for a Fixed Start Time

Table 3.5 Trace of the
SP-TAG-nf algorithm for the
network shown in Fig. 3.8

Iteration N1 N2 N3

1 1 (closed) ∞ ∞
2 1 2 (closed) ∞
3 1 2 5 (closed)

For every node extracted from the priority queue Q, there is one edge series look
up to find the earliest arrival, and a priority queue update for each of its adjacent
nodes. The time complexity of this step is O(T + log n). The asymptotic complexity
of the algorithm would be O(�v∈N [degree(v).(T + log n]) = O(m(T + log n)).

3.5 Experimental Analysis

In this section, the experimental analysis of the SP-TAG, SP-TAG∗ and NF-SP-TAG
algorithms are provided. The purpose of the performance evaluation of the algorithm
is to compare the run-times with algorithms based on a time-expanded graph.

3.5.1 Experiment Design

Figure 3.9 illustrates the experiment design to compare the performance of the pro-
posed algorithm and the algorithm based on a time expanded network. Time expanded
graphs make copies of the original network for every time instant under considera-
tion. The model used for the proposed algorithm is time-aggregated graphs. In our
experiments the following were selected as the independent parameters: (1) network
size represented by number of nodes; and (2) the length of the time interval in terms
of number of time instants. The data sets have two main components: (1) the network
data that consists of the graph structure and (2) the travel time series. The networks
chosen are road maps from the Minneapolis downtown area with radii of 0.5, 1, 2
and 3 miles. This is appended with travel time series of various lengths. The travel
time series were synthetically generated. This data was fed to both a time expanded
graph generator, which generates the expanded graph encoding the travel time infor-
mation. An algorithm for computing the shortest path for a given start time was run
on this graph. The algorithms were was run on the same dataset and the results were
compared.

The experiments were conducted on a SUN Solaris workstation with 1.77 GHz
CPU, 1 GB RAM and UNIX operating system. Each experimental result reported in
the following sections is the average over 10 experiment runs with networks generated
using the same input parameters, but with different destination nodes.

3.5 Experimental Analysis 39

Analysis
Add Time
Dimension

Generate
Time Series

Read Data
without Time Series

Best Start Time
Shortest Path Algorithm

Algorithm based on
Time Expanded Graph

Length of Time Series

Fig. 3.9 Experiment design

Table 3.6 Description of
datasets

Dataset Radius Number of Number of
Dataset (miles) nodes edges

1 0.5 111 287
2 1 277 674
3 2 562 1443
4 3 786 2106

3.5.2 Experimental Results and Analysis

Three questions were explored: (1) How does the network size (number of nodes,
number of edges) affect the performance of the algorithms? (2) How does the length
of the time series affect the performance of the algorithms? (3) How do the two rep-
resentations, time expanded graph and time aggregated graph, compare with respect
to algorithm performance?

Experiment 1: how does the network size affect the performance of the algorithms?
The purpose of the first experiment was to evaluate how the network size in terms

of the number of nodes affects the performance of the algorithms. The length of the
travel time series was kept constant, and the network size was varied to observe the
run times of both fixed start time (SP-TAG) algorithms and time-expanded graph
based algorithms. Performance of NF-SF-TAG algorithm was compared to a label
correcting algorithm which could handle non-FIFO travel times.

The experiment was done with four datasets that represent the road maps from the
Minneapolis downtown area of 0.5, 1, 2 and 3 miles radius. The length of the time
series was fixed at 240. The number of nodes and edges in these datasets are provided
in Table 3.6. Figure 3.10 shows the run-time of the fixed start time algorithm based
on the time aggregated graph and the performance of the algorithm based on the time
expanded graph with the A∗ based algorithm displaying a faster runtime among the
TAG algorithms. NF-SP-TAG algorithm displays faster performance compared to
label correcting algorithm (Fig. 3.11).

40 3 Shortest Path Algorithms for a Fixed Start Time

Fig. 3.10 Fixed start time,
FIFO algorithm: run-time
with respect to network size

111
R

un
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

Time Expanded Graph

277 562 786

1000

100

10

1

0.1

Number of Nodes

SP−TAG Algorithm SP−TAG_A* Algorithm

Fig. 3.11 Fixed start time,
FIFO algorithm: run-time with
respect to time series length

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph
SP−TAG Algorithm SP−TAG_A* Algorithm

Experiment 2: how does the length of the time series affect the performance of
the algorithms?

The second experiment evaluated the effect of the number of time instants on
the performance of the algorithms. The length of the time series was varied, while
maintaining the network size constant. The number of time instants was varied from
120 to 480 and the network size parameters were fixed at 562 nodes and 1443 edges.
As seen in Fig. 3.11, the SP-TAG algorithms perform better, with the SP-TAG∗ being
the fastest.

Experiment 3: how does the edge/node ratio of the network affect the performance
of the algorithms?

The third experiment evaluates the effect of edge/node ratio on the performance
(Fig. 3.12). The network size was maintained constant while the length of time series
was varied. The edge/node ratio was varied from 2 to 6 and the network parameter

3.5 Experimental Analysis 41

Fig. 3.12 NF-SP-TAG: run-
time with respect to network
size

111

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

277 562 786

1000

100

10

1

0.1

Number of Nodes

Label Correcting Method
nS−TAG Algorithm

Fig. 3.13 NF-SP-TAG Algo-
rithm: run-time with respect
to length of time series

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Label−Correcting Algorithm
nS−TAG Algorithm

was fixed at 1000 nodes and the number of time instants was fixed at 200 (Fig. 3.13).
The networks were generated using SP-RAND network generator [18]. As seen
in Fig. 3.14, the SP-TAG algorithm performs better, with the A∗ based algorithm
displaying a faster runtime among the TAG algorithms. As illustrated by Fig. 3.15
TAG based NF-SP-TAG algorithm perform better than time expanded based algo-
rithm.

4: How do the two representations, time expanded graph and time aggregated
graph, compare with respect to algorithm performance?

42 3 Shortest Path Algorithms for a Fixed Start Time

Fig. 3.14 SP-TAG algorithm:
run-time with respect to
average node degree

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph
SP−TAG Algorithm SP−TAG_A* Algorithm

3

1

Average Node Degree

4 5 6

1000

100

10

Fig. 3.15 NF-SP-TAG algo-
rithm: run-time with respect
to average node degree

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

nS−TAG Algorithm

3

Average Node Degree

4 5 6

1000

100

10

1

Label Setting Algorithm

Based on the results of Experiments (1), (2), and (3), it can be seen that algorithms
based on the time aggregated graph perform better than those based on the time
expanded graph.

3.6 Summary

This chapter discusses algorithms for a fixed start time for both FIFO and non-
FIFO networks. The formulation of these algorithms is based on a model for
spatio-temporal networks called time-aggregated graphs. The study shows that when
the start time is restricted and the travel times follow the FIFO property, greedy strat-
egy can be used to formulate the shortest path algorithm. An A∗ version based on

3.6 Summary 43

an admissible and monotone heuristic for the same problem, which gives a better
performance compared to the greedy algorithm, is also presented.

When the network travel times do not follow FIFO property, it is not possible to
apply greedy method to find the shortest route. But it is observed that after a network
transformation, a greedy algorithm (NF-SP-TAG) could be formulated. This is based
on the fact that when the start time is fixed, the earliest arrival means the least possible
travel time, for the given start time.

Chapter 4
Best Start Time Journeys

Abstract The time dependence of parameters in a spatio-temporal network adds to
the semantics of common network operations. The result of any analysis in a time
dependent network depends on the time at which it is performed. Shortest path from
an origin to a destination can vary significantly depending on the start time. This leads
to an important and interesting formulation of shortest path computation, “When is
the best time to start a journey so that the time spent in the network is minimized?”
This chapter describes this formulation in detail and presents algorithms for the
computation of ‘best start time’ shortest paths.

4.1 Introduction

Best start time can be defined as the departure time at the start node that would min-
imize the time spent in the network. In a time dependent network, the shortest route
is time dependent and hence by sometimes postponing the start of the journey could
reduce the time spent in the network. This can be true in both FIFO and non-FIFO
networks. In addition to the travel time, the routes also can change over time for
a given source, destination pair. For example, consider the time dependent graph
shown in Fig. 4.1. Here, the shortest path for a start time t = 1 is N1–N3–N4–N5
which takes a travel time of 12 units. When the start time is moved to t = 4 the
shortest path changes to N1–N2–N4–N5 with a travel time of 10 units whereas the
route N1–N3–N4–N5 takes 15 time units, illustrating a change in route as well as
travel time, as the start time changes. Hence, finding the best start time involves
the minimization of travel time over the time and space domains. The formulation
of algorithms to compute the paths that take the least commute time becomes non-
trivial since most of the techniques that are used in static networks might not be
applicable in dynamic scenarios. Since the network changes in its parameter val-
ues and the topology, meeting the requirements of efficiency and correctness can
pose challenges. The potential waits at intermediate nodes can increase the total

B. George and S. Kim, Spatio-temporal Networks, 45
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8_4,
© The Author(s) 2013

46 4 Best Start Time Journeys

[5,6,7,8,8,9,6,5]

[1,2,4,4,4,4,4,4]

[1,4,4,4,4,4,4,4]

[2,2,2,2,2,2,2,2]

[1,1,1,1,1,1,,1,1]

N5N4

N3

N2

N1

Fig. 4.1 Illustration of route change with start time

N1 N3N2

N1 N3N2 N1 N3N2

N1 N3 N1 N3

N1 N3

1 2 2

2 2 2

2

2 2

N2 N2

N2

t=1 t=3

t=4 t=5 t=6

t=2

Node

Edge

Legend

Travel time

Fig. 4.2 Network at various instants

journey time even if an initial part of the path turns out to be optimal. Figure 4.2
shows a spatial network that changes with time. The figure shows the snapshots of
the network at various instants of time, and the edges are marked with the travel
times. It is significant to note that the prefix journeys of the best start time short-
est path journey are not always optimal since some optimal prefix journeys can
lead to longer waits at intermediate nodes. The best start time for a journey from
node N1 to N3 is t = 4, which takes 4 time units. The optimal path from N1 to
N3 that starts at t = 4 is not optimal for the intermediate node N2. The best start
time for a path from N1 to N2 is t = 1, which proves to be sub-optimal for a
journey from N1 to N3. The lack of an optimal substructure in the best start time
shortest paths rules out the possibility of using a greedy strategy in the algorithm
design.

This chapter presents algorithms to compute shortest paths for the best start
time and consequently the least commute time paths for both FIFO and non-FIFO
networks (TI-SP-TAG*, CP-NF-BEST, and BEST algorithms respectively). The
BEST algorithm for non-FIFO networks uses a node cost time series instead of
a scalar node cost. The entries in the time series are updated when a path of smaller
cost is found. The algorithm iterates until every entry reaches a minimum value
and hence does not depend on the greedy choice property. Concurrent Prioritized
Non-FIFO BEst STart (CP-NF-BEST) Algorithm is a logically concurrent version
of NF-SP-TAG algorithm.

The algorithm to find the best start time path in a FIFO network essentially iterates
the SP-TAG* algorithm, described in Sect. 3.3.2, for every time instant. Since the
edge costs follow the FIFO property, the path computed for each step is correct and

http://dx.doi.org/10.1007/978-1-4614-4918-8_3

4.1 Introduction 47

the start time instant that results in the least travel time would be the best start time.
One key step in this algorithm is the computation of the estimated cost at each node
and the algorithm tries to reuse computed costs from the previous iteration to reduce
computational cost.

4.2 Basic Concepts

Spatial networks that show time-dependence serve as the underlying networks for
many applications such as routing in transportation networks. Traditionally graphs
have been extensively used to model spatial networks (e.g. road networks) [40];
weights assigned to nodes and edges are used to encode additional information. In
a real world scenario, it is not uncommon for these network parameters to be time-
dependent. It is important to be able to formulate computationally efficient and correct
algorithms for the shortest path computation that take into account the dynamic nature
of the networks. Models of these networks need to capture the possible changes in
topology and values of network parameters with time and provide the basis for
the formulation of computationally efficient and correct algorithms for the frequent
computations like shortest paths.

Given a set of frequent queries posed by an application on a spatial network
and the pattern of variations of the spatial network with time, we need to find a
model that supports efficient and correct algorithms for computing the query results,
while trying to minimize the storage and cost of computation. In this section we
discuss the basics of the model used to represent time dependent spatial networks
called “Time Aggregated Networks” [16]. The algorithms presented in this paper
are formulated based on this model. Time aggregated graphs can not only capture
the time-dependence of network parameters, but also account for the possibility of
edges and nodes being absent during certain instants of time.

4.2.1 The Conceptual Model

A graph G = (N , E) consists of a finite set of nodes N and edges E between the
nodes in N . If the pair of nodes that determines the edge is ordered, the graph is
directed; if it is not, the graph is undirected. In most cases, additional information is
attached to the nodes and edges. In this section, we discuss how the time dependence
of these edge/node parameters are handled in the proposed time-aggregated graph
model.
We define the time-aggregated graph as follows.
taG = (N , E, T F, f1 . . . fk, g1 . . . gl , w1 . . . wp| fi : N → R

T F ; gi : E →
R

T F ;wi : E → R
T F)

where N is the set of nodes, E is the set of edges, T F is the length of the entire time
interval, f1 . . . fk are the mappings from nodes to the time-series associated with the

48 4 Best Start Time Journeys

[Edge Time Series](Travel Time Series)

Edge

Node

Snapshots of the Network
(a)

(d)

LEGEND

N1 N2

N3 N4
1

22

1
N1 N2

N3 N4

1 2

(b)

1
N1 N2

N3 N4

2

4

2

(c)

N1 N2

N3 N4

[2,2,2] [2,2,3]

[1, ,4]

[1,1,]

Fig. 4.3 Network at various time instants and the time aggregated graph. Snapshots of a network
at time instants a t = 1, b t = 2, c t = 3. d Time aggregated graph

nodes, g1 . . . gl are mappings from edges to the time series associated with the edges,
and w1 . . . wp indicate the time dependent weights (e.g. travel times) on the edges.

Each edge has an attribute, called an edge time series that represents the time
instants for which the edge is present. This enables the time aggregated graph to
model the topological changes of the network with time. We assume that each edge
travel time has a positive minimum and the presence of an edge at time instant t is
valid for the closed interval [t, t + σ].

Figure 4.3a, b, c shows a network at five time instants. The network topology
and parameters change over time. For example, edge N3–N4 is present at time
instants t = 1, 3, and absent at t = 2. The time aggregated graph that represents this
dynamic network is shown in Fig. 4.3d. In this figure, edge N3–N4 has an attribute,
[1,−, 4], which is its weight time series, indicating the weight of the edge at instants
t = 1, 2, 3. Though this model can include spatial properties at nodes and edges,
these properties are not incorporated in the algorithms discussed. Figure 4.4a shows
the time aggregated graph (corresponding to Fig. 4.3a, b, c) and a time expanded
graph that represents the same scenario. Edge weights in a time expanded graph are
not explicitly shown as edge attributes; instead they are represented by edges that
connect the copies of the nodes at various time instants. For example, the weight
1 of edge N1–N2 at t = 1 is represented by connecting the copy of node N1 at
t = 1 to the copy of node N2 at time t = 2. The time expansion for the example
network needs to go through 7 steps since the latest edge traversal in the network
ends at t = 7. The traversal of the edge N3–N4 that starts at t = 3 ends at t = 7,
the travel time of the edge being 4 units. The number of nodes is larger by a factor
of T , where T is the number of time instants and the number of edges is also larger

4.2 Basic Concepts 49

(a)

N3N3

N1 N1 N1 N1

N4 N4 N4 N4

 t=1 t=2 t=3 t=4 t=5 t=6 t=7

N3

(b)
N1

N2

N3

N4 N4

N3

N2

N1 N1

N2N2 N2 N2 N2

N3

N4

N3

[2,−,2] [−,1,1]

[−,−,3]

[2,2,3]

(1,2)

(1,2)

(1,3) (2,3)
[2,2,2]
(1,2,3) (1,2,3)

(3)

[1,−,4](1,3)

[−,2,2](2,3)

[1,5,−]
N1 N2

N3 N4

[1,1,−]

Fig. 4.4 Time-aggregated graph (a) versus time expanded graph (b)

in number compared to the time-aggregated graph. If the value of T is very large in
a spatial network, it would result in enormously large time expanded networks and
consequently slow computations.

Comparison of Storage Costs with Time Expanded Networks
According to the analysis in [41], the memory requirement for time expanded

network is O(nT) + O((n + m)T), where n is the number of nodes and m is
the number of edges in the original graph. The framework of a time aggregated
graph would require a memory of O(n + m), where n is the number of nodes and m
is the number of edges. Edges and nodes with time-varying attributes have attribute
time series associated with them. If the average length of the time series is α(≤ T),
the memory required is O(αm +αn), assuming an adjacency list representation. The
total memory requirement for a time aggregated graph is O(n +m +αm +αn). This
comparison shows that the memory usage of time-aggregated graphs is less than that
of time expanded graphs if α < T .

4.2.2 Basic Design Space of Shortest Path Algorithms

One of the most frequent queries on any spatio-temporal network is the com-
putation of shortest paths. In time dependent networks, the shortest path and
the traversal time are dependent on the start time. For example, a shortest path
from node N1 to N5 in Figure 4.3 for the start time t = 1 is N1–N3–N4–
N5 with a travel time of six units. If the start is postponed to t = 3, the
shortest path changes to N1–N2–N4–N5 and the travel time drops to four units.
Due to the time dependence of shortest paths, in a spatio-temporal network it
is possible to raise interesting queries such as “When is the best time to start
a journey so that time spent in the network is the least?”. Sections 4.3 and 4.4
describe the formulations of two shortest path problems, first for a fixed start time
and second, for the least travel time. The design of these algorithms effectively uti-
lizes certain properties of the time dependent parameters (such as the FIFO property

50 4 Best Start Time Journeys

Fig. 4.5 Classification of TAG-based shortest path algorithms

of travel time). The classification of the algorithms is shown in Fig. 4.5. The shortest
path algorithms show significantly different properties based on their formulations.
For example, shortest path computation for a fixed start time might display optimal
prefix property under certain assumption on travel time characteristics. Computation
of best start time shortest path under non-FIFO travel times might not always display
optimal prefix property ruling out popular design techniques such as greedy and A*
based algorithms. Based on these characteristics, shortest path computation on time
aggregated graph falls under various categories as shown in Fig. 4.5.

4.2.3 Algorithmic Challenges

A time dependent graph might not display some properties that would make some
common algorithm design techniques such as dynamic programming and greedy
strategy feasible. For example most time dependent graphs do not exhibit optimal
prefix property, thus making it impossible to apply greedy methods in shortest path
computations. Figure 4.6 shows a time dependent network represented as a time
aggregated graph. If the edge costs are assumed to be edge travel times, the cost of
a node indicates the arrival time at the node. When the least cost node is expanded,
the costs of the outgoing edges are chosen as the costs at the arrival time. In cases
where an edge is not available, the cost at the earliest available time is selected.
Table 4.1 shows the execution trace of Dijkstra’s algorithm on the time aggregated
graph shown in Fig. 4.6. The schedule in Table 4.2 shows the start time and arrival
at each node as computed by the algorithm. As Table 4.2 illustrates, the algorithm
computes the route N1–N2–N4–N5 as the shortest path for the start time t = 1 at
node N1. The total travel time for the route is 14 time units. It can be seen that there
is another route N1–N3–N4–N5 for the same start time which takes a travel time
of 12 time units. This is an optimal route from N1 to N5, which suggests that the
algorithm might not always compute the shortest path.

Shortest Path Computation and Stationarity
Stationarity means the following: if two reward sequences R1, R2, . . . and

S1, S2, . . . begin with the same reward then the sequences should be preference
ordered the same way as the sequences R2, R3, . . . and S2, S3, . . . [2, 39].
In shortest route computation, if two journeys e1, e2, e3, . . . and f 1, f 2, f 3 . . .

start at the same node, then the preference order of the journeys should not change
for another start time. In the time dependent graph shown in Fig. 4.6 the shortest
path for a start time t = 1 is N1–N3–N4–N5 which takes a travel time of 12 units.

4.2 Basic Concepts 51

[5,6,7,8,8,9,6,5]

[1,2,4,4,4,4,4,4]

[1,4,4,4,4,4,4,4]

[2,2,2,2,2,2,2,2]

[1,1,1,1,1,1,,1,1]

N5N4

N3

N2

N1

Fig. 4.6 Illustration of shortest path computation

Table 4.1 Trace of Dijkstra’s algorithm for the network shown in Fig. 4.6

Iteration N1 N2 N3 N4 N5

1 1 (closed) ∞ ∞ ∞ ∞
2 1 2 (closed) 3 ∞ ∞
3 1 2 3 (closed) 6 ∞
4 1 2 3 6 (closed) 15
5 1 2 3 6 15 (closed)

Table 4.2 Start and arrival times at nodes

Route computed by algorithm Optimal route

Node N1 N2 N3 N4 N5 Node N1 N2 N3 N4 N5

Arrival time 1 2 - 6 15 Arrival time 1 - 3 7 13
Start time 1 2 - 6 15 Start time 1 - 3 7 13

Total travel time = 14 Total travel time = 12

When the start time is moved to t = 4 the shortest path changes to N1–N2–N4–N5
with a travel time of 10 units whereas the route N1–N3–N4–N5 takes 15 time units,
illustrating a change in preference order as the start time changes, and hence dis-
playing non-stationarity. The lack of stationarity would eliminate the possibility of
using dynamic programming as a design technique.

4.3 Time Iterative SP-TAG* (TI_SP-TAG*) Algorithm
for FIFO Networks

Under the assumption of FIFO travel times, the best start algorithm can be formulated
as an iterative formulation of SP-TAG* search algorithm (Time Iterative SP-TAG*).
The SP-TAG* version was chosen instead of the greedy SP-TAG algorithm since

52 4 Best Start Time Journeys

it performed better in the fixed start time algorithms. A comparative experimental
analysis is provided to evaluate this decision in Sect. 4.5.

The evaluation function f (n) of a node n is formulated as f (n) = g(n) + h(n).

Algorithm 1 A* based Best Start Time Shortest Path (BEST_A*) Algorithm
Input:

1) G(N , E): a graph G with a set of nodes N and a
set of edge s E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive
integers;

Each edge e ∈ E has two properties:
Edge Presence Time Series,
Travel_time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;
4) tstart: Start Time;

Output: Shortest Route from s to d for tstart
Method:

Preprocess: find the shortest path from node i to d in
ST AG.

for (i = 1toT) {
tstart = i;
c[s] = tstart ; ∀v �= s, c[v] = ∞; f [v] = ∞; // c[u] is the
arrival time at the node u.
f [s] = S P[s]; C = �; S = s ;
Insert s in priority queue Q.
while u �= d {

u = extract_min(Q);
C = C

⋃
u; S = S − u;

for each node v adjacent to u do {
i f (f [v] > c[v]

c[v] = c[u] + duv(c[u]);
f [v] = c[u] + duv(c[u]) + S Pvd (c[u]);
if v is not in Q, insert v in Q;

}
update Q;

}
}
Compute the travel time as the difference(start time,

arrival time);
}

}
Output the route from s to d.

g(n) is the actual cost to reach the node n from the start node s, which is the time
taken to reach the current node from the start node. h(n) is the estimated cost from
the node n to a destination node d. We propose h(n) to be the shortest path travel time
from node n to the destination node d computed based the least travel time on each

4.3 Time Iterative SP-TAG* (TI_SP-TAG*) Algorithm for FIFO Networks 53

edge. This cost function is used to compute the shortest path for every start time and
the least travel time is chosen from the shortest path travel times for all start times.
The algorithm runs the A* algorithm for every start time and computes the shortest
path for each start time. Since the heuristic function is admissible and monotone (See
Lemma 4 and Lemma 5), the computed shortest paths are correct and the search is
optimal. Due to the FIFO property of the travel times, the best start time would be
the start time that yields the least travel time among the shortest paths over all start
times.

Performance Tuning: It is observed that in a FIFO network, it is possible to take
advantage of the results obtained from the previous steps in the iteration on time
instants. When computing the shortest path for the start time t , the shortest path
for the start time t − 1 has already been computed. In a FIFO network, the earliest
arrival at the destination node (d) for a given start time at the source node (s) implies
the least travel time for the same start time. This leads to the observation that an
admissible estimate of the cost from a node i on the shortest path from node s to
node d can be computed from the costs computed in the previous iteration as follows.
The admissible estimate of travel time from node i to node d is (t −1)+dsi (t −1)+
S Pid(t − 1 + dsi (t − 1)) − (t + dsi (t)) where dsi (t) is the shortest travel time from
s to node i for start time t , S Pid(t) is the shortest travel time from i to destination d
for start time t . (t − 1) + dsi (t − 1) is the arrival time at node i for start time t − 1
and hence (t − 1) + dsi (t − 1) + S Pid(t − 1 + dsi (t − 1)) is the earliest arrival time
at the destination d for the start time t − 1. The estimate is computed by subtracting
the earliest arrival time at i for the (next) start time instant t ((ie.) t + dsi (t)). The
fact that this is admissible can be proved as follows:
Since the network is FIFO, the arrival time for start time t cannot be earlier than that
for t − 1. Or,
t + dsi (t) ≥ (t − 1) + dsi (t − 1).
t + dsi (t) + S Pid(t + dsi (t)) ≥ (t − 1) + dsi (t − 1) + S Pid(t − 1 + dsi (t − 1))

This uses the property that the arrival at the destination d for start time t cannot be
earlier than that for a start at t − 1.
Therefore, S Pid(t+dsi (t)) ≥ (t−1)+dsi (t−1)+S Pid(t−1+dsi (t−1))−(t+dsi (t))
and hence (t −1)+dsi (t −1)+S Pid(t −1+dsi (t −1))−(t +dsi (t)) is an admissible
estimate for the shortest path from an intermediate node i to d. This estimate can
be used only in the case of nodes that are a part of the shortest path at the earlier
iteration. If this is not the case, we use the heuristic based on static TAG (S_TAG)
as explained in Sect. 3.3.2 to estimate the cost.

4.4 Best Start Time Shortest Path Algorithms
for Non-FIFO Networks

A path that takes the smallest travel time for a source-destination traversal over the
entire time horizon (called ’Best Start Time shortest Path’) can be computed. This is

http://dx.doi.org/10.1007/978-1-4614-4918-8_3

54 4 Best Start Time Journeys

significant since it suggests that it is possible to reduce the travel time for the same
source-destination pair if the travel starts at the “right” time instant. The formulation
of algorithms to compute the paths that take the least commute time becomes non-
trivial since most of the techniques that are used in static networks might not be
applicable in dynamic scenarios.

This chapter presents algorithms to compute shortest paths for the best start time
and consequently the least commute time paths for both FIFO and non-FIFO graphs
(TI-SP-TAG*, CP-NF-BEST, and BEST algorithms respectively). The BEST algo-
rithm for non-stationary networks uses a node cost time series instead of a scalar
node cost. The entries in the time series are updated when a path of smaller cost is
found. The algorithm iterates until every entry reaches a minimum value and hence
does not depend on the greedy choice property. We also propose a logically concur-
rent version of NF-SP-TAG algorithm (CP-NF-SP-TAG)for the non-FIFO networks
and compare its performance with the BEST algorithm which uses a label-correcting
strategy [5].

4.4.1 Best Start Time Shortest Path (BEST) Algorithm (Label
Correcting Approach)

The algorithm presented in this section uses the time aggregated graph to model a
time dependent spatial network. While computing the best start time, each node needs
to keep track of the travel times to the destination for every start time instant. The
proposed algorithm attributes each node with a time series, with i th entry representing
the current, least travel time to the destination node for the start time ti . Due to the
lack of optimality of prefix paths and lack of ordering of nodes based on the costs
(ie. travel times), nodes cannot be selected and “closed” based on a minimum scalar
cost. The algorithm uses an iterative, label correcting approach [4] and each entry in
a node time series is modified according to the following condition.

Cu[t] = minimum{Cu[t], σuv(t) + Cv[t + σuv(t)]} (4.1)

where,

uv ∈ E
Cu[t]—travel time from u ∈ N to the destination for the start time t
σuv(t)—travel time of the edge uv at time t

The algorithm maintains a list of all nodes that change its cost according to the
condition and terminates when there is no further improvement indicated by an
empty list. Though the list can be implemented using several data structures, studies
on static networks [4, 49] have shown that the Two_Q implementation [35] of label
correcting algorithms performs the best on road networks.

The search starts at the destination node and proceeds to update the remaining
nodes, finally finding the best start time shortest paths from all nodes to the desti-

4.4 Best Start Time Shortest Path Algorithms for Non-FIFO Networks 55

nation. Figure 4.7 illustrates the trace of the algorithm on a small network. In this
example, the destination node is the node N4. The node cost series C4 is initialized to
[0, 0, 0, 0, 0] and the cost series Ci , i = 1, 2, 3 are initialized to [∞,∞,∞,∞,∞].
The nodes that have N4 in their adjacency lists (that is, all nodes Ni such that
Ni N4 ∈ E), N2 and N3 are relaxed according to condition (4.1). These nodes are
added to the queue since there is a change in their cost series. The steps continue until
the queue is empty, indicating that there is no further cost improvement at any of the
nodes. At every iteration, the node that contributes to a cost improvement is stored
in a descendant array to facilitate the trace of the shortest paths when the algorithm
terminates. At the termination, the cost time series has the travel times for every start
time t = 1, 2, . . . T . For example, the cost time series of node N1 shows that the
travel times from N1 to N4 for start times t = 1 is 4 time units, while the best start
time at this node is t = 4, which results in a travel time of 2 time units and a best
start time shortest path N1–N2–N4. N1–N2 takes 1 time unit at t = 4, reaches N2 at
t = 5 and continues on N2–N4 at t = 5, reaching N4 at t = 6, taking a total travel
time of 2 time units. A more detailed trace is shown in Table 4.3.

Algorithm 2 BEST Algorithm
Input:

G(N , E): a graph G with a set of nodes N and a
set of edges E;

Each node n ∈ N has a property:
Node Presence Time Series : series of positive

integers;
Each edge e ∈ E has two properties:

Edge Presence Time Series,
Travel_time series : series of positive integers;

σu,v(t) - travel time of edge uv at time t.
Output:

Best Start Time shortest route from s to d;
Initialize;
While Queue not Empty

v = Dequeue();
For every node u such that uv ∈ E

For every entry in the cost series Cu of u
if Cu(t) > σuv(t) + Cv(t + σuv(t))

Update Cu(t);
Enqueue(u);
Update the descendant array of u.

Find the minimum entry in the node time series.
Return the BestStartTime and the ShortestRoute;

Lemma 10 The algorithm terminates and computes the best start time paths from
every node to the destination.

56 4 Best Start Time Journeys

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

2 2 2 2 2
5 5 3 2 3[]

3 3 2 2 2
4 3 3 2 3[]

0 0 0 0 0[]− − − −−

0 0 0 0 0[]
1

− −−

0 0 0 0 0[]− − − −−

(Result)
Best Start Time: 4
Route: 1 − 2 − 4

1

3

4 4 4 4 4
1 1 2 2 1[]

2 2 4 4 4
2 3 2 4 3[]

−

4

(Input Network)

(Step 1)

(Step 2)

(Step 3)

(Step 4)

(Legend)

Parent Pointer List[]Distance List from Destination

4

4

2

3

Expansion Node

Best Start Time

− − −−

2

#

−

[]− − − − −

2

1 4

3

ooooooooo
2

1 4

3 ooooooooo[]− − − − −

(4,4,1,1,2)

]− − − − −

ooooooooo[]− − − − −

0 0 0 0 0[]−[

(1,1,2,2,1)

(1,1,2,2,3) (4,4,2,4,3)

(1,1,1,3,2)

2

1

3

4 4 4 4 4
1 1 2 2 1[]

ooooooooo

][4 4 2 4 3
4 4 4 4 4

Fig. 4.7 Trace of the BEST algorithm

Table 4.3 Trace of the BEST algorithm for the network shown in Fig. 4.7

Iteration N1 N2 N3 N4 Queue

1 ∞ . . .∞ ∞ . . .∞ ∞ . . .∞ [0, 0, 0, 0, 0] N1
2 ∞ . . .∞ [1, 1, 2, 2, 1] [4, 4, 2, 4, 3] [0, 0, 0, 0, 0] N2, N3
3 ∞ . . .∞ [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N3
4 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] N1
5 [4, 3, 3, 2, 3] [1, 1, 2, 2, 1] [2, 3, 2, 4, 3] [0, 0, 0, 0, 0] –

Proof The algorithm terminates because there is a positive minimum for the travel
time over every path, for every pair of nodes in the network since the edge weights
(travel times) are positive and each such path has a finite number of edges. The
updates on the costs according to condition (4.1) will generate the optimal travel
times from a node to the destination at the termination of the algorithm. This can be
proved by induction on the number of edges on the path. The base condition would
be for paths with two edges, say from any node u to the destination node d. Every
path with two edges from u to d will transit to some node v and then traverse the
edge to d which takes the least time. If we assume the inductive hypotheses is true
for every path with k edges, the minimality must hold for a path from u with (k + 1)

edges since we can reach node u that with a minimal k-edge path and append uv

with travel time σuv(t).

4.4 Best Start Time Shortest Path Algorithms for Non-FIFO Networks 57

Lemma 11 The computational complexity of the BEST algorithm is O(n2mT),
wheren is the number of nodes, m is the number of edges and T is the length of
the time series.

Proof The worst case computational complexity of the label correcting algorithm
based on Two-Q data structure is O(n2m) when the node costs and edge weights are
scalar quantities [4]. In the BEST algorithm, the relaxation step operates on a time
series (node cost and edge weight) of length T . Hence the computational complexity
of the algorithm is O(n2mT).

4.4.2 Best Start Time Algorithm Using ATST (CP-NF-BEST
Algorithm)

This section describes a best start time algorithm where the benefits of arrival time
series transformation are utilized. The basic idea behind the algorithm is iterating the
NF-SP-TAG algorithm, but with logical concurrency. This concurrency is achieved
by keeping an open list of nodes such that every node has a copy for every start time.
While selecting the node for expansion, the copy of the node with the minimum cost
is selected. The pseudocode is provided in Algorithm 6.

Lemma 12 CP-NF-BEST algorithm is correct.

Proof The proof follows from the correctness of NF-SP-TAG algorithm (Lemma 8).
The algorithm CP-NF-BEST essentially iterates NF-SP-TAG over the entire time
period, maintaining a list of copies of open nodes. At each start time (an iteration),
the algorithm computes the earliest arrival, which is the shortest duration journey for
the given start time. Since there is a minimum for every start time and the algorithm
picks the minimum of these durations, the algorithm computes the least duration
journey shortest path.

Lemma 13 The computational complexity of CP-NF-BEST is O(mT (T + log n))

wherem is the number of edges,n is the number of nodes, and T is the length of time
period.

Proof The complexity of NF-SP-TAG algorithm is O(m(T + log n)). So, the worst
case complexity of CP-NF-BEST is T .O(mT (T + log n)), i.e.,O(mT (T + log n)).

4.5 Experimental Analysis

In this section, the experimental analysis of the BEST algorithm and the SP-TAG
algorithm are provided. The purpose of the performance evaluation of the algorithm
is to compare the run-times with algorithms based on a time-expanded graph.

58 4 Best Start Time Journeys

Algorithm 3 Shortest Path (CP-NF-BEST) Algorithm
Input:

1) G(N , E): a graph G with a set of nodes N and a
set of edges E;
Each node n ∈ N has a property:

Node Presence Time Series : series of positive
integers;

Each edge e ∈ E has two properties:
Edge Presence Time Series,
Arrival_time series : series of positive integers;

au,v(t) - arrival time at v for a start time t at u.
2) s: Source node, s ⊆ N; 3) d: Destination node, d ⊆ N;

Output: Shortest Route from s to d.
Method:

for (i=1 to T) do
si = i; ∀v �= s, c[v] = ∞;

// c[u] is the cost at the node u.
Insert si in priority queue Q.
while Q is not empty do {

ui = extract_min(Q);
if u = d break;
for each node v adjacent to u do {

t = min_arrival((u, v), c[ui]);
if t + σu,v(t) < c[vi] {

vi = t + σu,v(t); parent[vi] = u;
if vi is not in Q, insert vi in Q;

}
update Q;

}
}

}
Output the route from s to d.

4.5.1 Experiment Design

Figure 4.8 illustrates the experiment design to compare the performance of the pro-
posed algorithm and the algorithm based on a time expanded network. Time expanded
graphs make copies of the original network for every time instant under considera-
tion. The model used for the proposed algorithm is time-aggregated graphs. In our
experiments the following were selected as the independent parameters: (1) net-
work size represented by number of nodes; and (2) the length of the time inter-
val in terms of number of time instants. The data sets have two main compo-
nents: (1) the network data that consists of the graph structure and (2) the travel
time series. The networks chosen are road maps from the Minneapolis downtown
area with radii of 0.5, 1, 2 and 3 miles. This is appended with travel time series
of various lengths. The travel time series were synthetically generated. This data
was fed to both a time expanded graph generator, which generates the expanded

4.5 Experimental Analysis 59

Analysis
Add Time
Dimension

Generate
Time Series

Read Data
without Time Series

Best Start Time
Shortest Path Algorithm

Algorithm based on
Time Expanded Graph

Length of Time Series

Fig. 4.8 Experiment design

graph encoding the travel time information. An algorithm for computing the short-
est path for a best start time was run on this graph. The results were compared
to the results from the BEST and TI-SP-TAG* (for FIFO travel times) algo-
rithms.

The experiments were conducted on a SUN Solaris workstation with 1.77 GHz
CPU, 1GB RAM and UNIX operating system. Each experimental result reported
in the following sections is the average over five experiment runs with networks
generated using the same input parameters, but with different destination nodes.

4.5.2 Experimental Results and Analysis

Four questions were explored: (1) How does the network size (number of nodes,
number of edges) affect the performance of the algorithms? (2) How does the length
of the time series affect the performance of the algorithms? (3) How does the network
structure in terms of the edge/node ratio affect the performance? (4) How do the
two representations, time expanded graph and time aggregated graph, compare with
respect to algorithm performance?

Experiment 1: How does the network size and time series length affect the
performance of the BEST algorithm?

The purpose of the first experiment was to evaluate how the network size and
the time series length affect the performance of the BEST algorithm. To evalu-
ate the scalability with respect to the network size, the length of the travel time
series was maintained constant, and the network size was varied to observe the run
times best start time (BEST) algorithms and time-expanded graph based algorithms.
The experiment to study the effect of time series length was performed with a fixed
network size and varying time series lengths.

The experiment was done with four datasets that represent the road maps from
the Minneapolis downtown area of 0.5, 1, 2 and 3 mile radius. The length of the
time series was fixed at 240. The number of nodes and edges in these datasets are
provided in Table 4.4. Figure 4.9 shows the run-time of the best start time algorithms
based on the time aggregated graph and the performance of the algorithm based on

60 4 Best Start Time Journeys

Table 4.4 Description of datasets

Dataset Radius (miles) Number of nodes Number of edges

1 0.5 111 287
2 1 277 674
3 2 562 1443
4 3 786 2106

Fig. 4.9 BEST, CP-NF-
BEST algorithms: run-time
with respect to network size

111

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph
BEST Algorithm

277 562 786

Number of Nodes

1

10

100

1000

10000
CP−NF−BEST Algorithm

Fig. 4.10 BEST, CP-NF-
BEST algorithms: run-time
with respect to time series
length

1

10

100

1000

10000

120 240 360 480

Length of Time Series

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph
BEST Algorithm CP−NF−BEST Algorithm

the time expanded graph. The BEST algorithm runs faster than the time-expanded
graph based algorithm in all cases; further, its run-time seems to increase at a slower
rate.

Experiment 2: How does TI_SP-TAG perform with respect to the network size
and the length of the time series?

4.5 Experimental Analysis 61

Fig. 4.11 TI-SP-TAG* algo-
rithm: run-time with respect
to network size

111
R

un
 ti

m
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

Time Expanded Graph

277 562 786

Number of Nodes

1

10

100

1000

10000
TI_SP−TAG* Algorithm

Fig. 4.12 TI-SP-TAG* algo-
rithm: run-time with respect
to length of time series

111

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph

277 562 786

Number of Nodes

1

10

100

1000

10000
TI_SP−TAG* Algorithm

In the second experiment, the performance of TI SP-TAG algorithm was compared
to an algorithm that runs on time expanded graph. In the evaluation with respect to
series length, the network size was held constant while varying the length of the time
series and run-times were observed. The number of time instants was varied from
120 to 480 and the network size parameters were fixed at 562 nodes and 1443 edges.
In the other case, the length of the time series was held constant and the network
sizes were varied. Figure 4.11 shows the run-time of the fixed start time algorithms
based on the time aggregated graph and the performance of the algorithm based on
the time expanded graph. As seen in Fig. 4.12, the TI_SP-TAG algorithm performs
better, compared to the time expanded graph version. As the length of the time series
increases, the number of copies of the entire network required in the case of the time
expanded graph increases, resulting in a considerable increase in the size of the entire
network, leading to almost exponential increases in run time.

62 4 Best Start Time Journeys

Fig. 4.13 TI_SP-TAG* algo-
rithm: run-time with respect to
average degree of the network

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph

1

10

100

1000

10000

Average Node Degree

3 4 5 6

TI_SP−TAG Algorithm

Fig. 4.14 BEST, CP-NF-
BEST algorithms: run-time
with respect to average degree
of the network

R
un

 ti
m

e
in

 s
ec

on
ds

 (
lo

g
sc

al
e)

Time Expanded Graph
BEST Algorithm

1

10

100

1000

10000

Average Node Degree

3 4 5 6

CP−NF−BEST Alg

Experiment 3: How does the edge/node ratio of the network affect the performance
of the algorithms?

In the third experiment, the effect of edge/node ratio of the network on the per-
formance of the algorithms was evaluated. The network size, and the length of the
time series were held constant and the average degree of the network was varied and
the run-times were observed. The edge/node ratio was varied from 1.5 to 5.5 and the
network parameter was fixed at 1000 nodes and the number of time instants was fixed
at 200. The networks were generated using SP-RAND network generator. As seen in
Fig. 4.13, the TI_SP-TAG* algorithm performs better. Figure 4.14 the performance
of the BEST algorithm and that of the time expanded graph algorithm.

Experiment 4: How does the iterative version of Greedy SP-TAG algorithm com-
pare to the iterative version of SP-TAG* algorithm (TI_SP-TAG)?

4.5 Experimental Analysis 63

Fig. 4.15 Comparison of
TI_SP-TAG* with iterated
SP-TAG: run-time with
respect to network size

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 200 300 400 500 600 700

C
om

pu
ta

tio
n

tim
e

No: of Nodes

TI_SP-TAG*
SP-TAG (iterated)

Fig. 4.16 Comparison of
TI_SP-TAG* with iterated
SP-TAG: run-time with
respect to time series length

 50

 100

 150

 200

 250

 300

 150 200 250 300 350 400 450

C
om

pu
ta

tio
n

tim
e

Length of Time series

TI_SP-TAG*
SP-TAG (iterated)

In the fourth experiment, the iterative version of Greedy SP-TAG algorithm was
compared to the iterative version of SP-TAG* algorithm (TI SP-TAG), with respect
to the (i) network size and (ii) time series length. In case (i), the length of the time
series was kept constant and the network size was varied, whereas in the second case
the length of the time series was changed maintaining the network size constant.
As seen in Figs. 4.15 and 4.16, the TI_SP-TAG* algorithm performs better than the
iterative version of the greedy SP-TAG algorithm.

Experiment 5: How do the two representations, time expanded graph and time
aggregated graph, compare with respect to algorithm performance?

Based on the results of Experiments (1) and (2), it can be seen that algorithms
based on the time aggregated graph perform better than those based on the time
expanded graph. Under the assumption of FIFO travel times, the A* based algorithm
based on an admissible, monotone heuristic shows the best performance among the
three algorithms.

64 4 Best Start Time Journeys

4.6 Summary

This chapter discusses the flexible start time algorithms for both FIFO and non-
FIFO networks. Flexible start time algorithms have significant applications in daily
commutes and in logistical services such as freight delivery. This algorithm enables
us to find the start time such that the travel time is minimized over the entire time
horizon and hence is relevant in the context of fuel consumption.

The Best Start Time algorithm uses a node cost time series instead of a scalar
node cost. The entries in the time series are updated when a path of smaller cost is
found. The algorithm iterates until every entry reaches a minimum value and hence
does not depend on the greedy choice property. This removes the FIFO restriction
from the edge travel times. We also present the experimental analysis of the best start
time algorithm for both FIFO and non-FIFO networks.

Chapter 5
Spatio-temporal Network Application

Abstract This chapter provides brief descriptions of key real world domains where
spatio-temporal networks play a significant role such as multimodal transportation
networks and sensor networks. The chapter illustrates the modeling of multimodal
transportation networks and sensor networks using time aggregated graphs.

5.1 Multimodal Transportation Networks

Multimodal transportation network can be viewed as an integrated network that
consists of multiple component networks that often belong to various modes of
transportation. For example a public transportation system that serves a metropolitan
area can consist of bus networks, subway train networks, and ferry systems, each of
which would typically consist of multiple routes and trips. These networks interact
with one another through facilities for inter-mode transfers, while also allowing
transfers across various routes within a single mode network. A significant feature
of most multimodal transportation networks is that they are schedule-based. The
schedule-based operation of the services make such networks time-dependent and
computatations of routes need to account for the time-dependence, which requires a
model that can capture the temporal dimension of the network.

5.1.1 Modeling Multimodal Networks

Multimodal networks display time dependence in the availability of services (through
schedules) and in network traversal costs (such as travel times) which can depend
on the congestion levels. Since routing in a multimodal network needs to account
for its time variant nature, there is a need for an efficient model that can repre-
sent the schedules and the time variant network traversal costs. Figure 5.1a shows

B. George and S. Kim, Spatio-temporal Networks, 65
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8_5,
© The Author(s) 2013

66 5 Spatio-temporal Network Application

N1 N2 N3

N4

N5

N6

N7 N8 N9

N10 N11 N12

S1 S2 S3

S4

S5

S6

S7 S8 S9

Route 1

Route 2

Route 3

Route 4

S10 S11 S12

(b)

(a)

Fig. 5.1 An example multimodal network

a simple multimodal network that consists of four routes in total. Each stop has
an arrival-departure schedule associated with it. Figure 5.1b shows the network
representation of the multimodal network. Each stop is represented as a node
and the connectivity across stops are represented as network links and the cost
associated with a link is assumed to be the travel time along the link. In addi-
tion to the links that connect the stops along a route, there are links that con-
nect across routes or modes. These indicate the facility to transfer from one route
to another and can be created based on factors such as proximity between the
stops. Such links are represented using broken lines in the figure, an example
being the link N2–N4, which represents the facility to transfer from Route 1 to
Route 4.

For the sake of simplicity it is assumed that the start stops for all routes have the
same departure schedule [8 : 00, 8 : 15, 8 : 30, 8 : 45, 9 : 00, 14 : 00, 14 : 30, 15 :
00, 15 : 30] and the inter-stop travel time for every route is 15 min for morning
trips and 10 min for afternoon trips. For example the travel time along the link that
connects stop S1 to stop S2 is 15 min for start time 8:00 AM and it changes to 10 min
for the start time 2:00 PM.

5.1 Multimodal Transportation Networks 67

N1 N2 N3

N4

N5

N6

N7 N8 N9

N10 N11 N12

[8:00, 8:15,8:30,8:45,9:00,
14:00,14:30,15:00,15:30]

[8:30, 8:45,9:00,9:15,9:30,
14:20,14:50,15:20,15:50]

14:00,14:30,15:00,15:30]
[8:00, 8:15,8:30,8:45,9:00,

[8:15, 8:30,8:45,9:00,9:15,
14:10,14:40,15:10,15:40]

[8:15, 8:30,8:45,9:00,9:15,
14:10,14:40,15:10,15:40]

[8:30, 8:45,9:00,9:15,9:30,
14:20,14:50,15:20,15:50]

Route 1

Route 2

Route 3

Route 4

[15,15,15,15,15,10,10,10,10]

5

5

5 5

5 5

5

5

Fig. 5.2 TAG representation of a multimodal network

5.1.2 Time Aggregated Graph Representation

Figure 5.2 shows the time aggregated graph representation of the multimodal network
shown in Fig. 5.1. The schedules are associated with each node and the time dependent
travel times are represented along the links. The links that represent transfers across
modes or routes are also associated with a cost that would include the transit time
between stops. Costs of transfer links are assumed to be 5 min.

5.1.3 Routing in Multimodal Networks

The routing algorithms that are described in Chap. 3 and 4 can be used in computing
least cost routes in multimodal networks. Routes can be computed based on a fixed
start time or a flexible start time so that the time spent in the network is minimized.

A trace of SP-TAG algorithm from Chap. 3 is given in Table 3.3 for start node
N1 and end node N6 for a start time of 8 AM. This trace assumes that the network
displays the FIFO property. The table entries are the costs associated with each node
(the time required to reach the node from the start) at each iteration. The node marked
as “closed” is the node with the minimum cost selected for expansion.

The routing algorithm accounts for wait times wherever necessary. For example,
when expanding node N2 the cost of node N4 is updated based on the cost of transfer
link and the wait required before the next earliest departure time (8:30), thus updating
the cost as Cost(N4) = Cost(N3)+Transfer link cost+Wait = 15 + 5 + 10 = 30.

A multimodal transportation network can violate the FIFO property. There might
be cases where total travel time can be reduced by choosing to wait at a stop rather than
choose the earliest departure. If the start time is fixed, NF-SP-TAG algorithm from
Chap. 3 can compute the shortest path, whereas CP-NF-BEST algorithm (Chap. 4)

http://dx.doi.org/10.1007/978-1-4614-4918-8
http://dx.doi.org/10.1007/978-1-4614-4918-8
http://dx.doi.org/10.1007/978-1-4614-4918-8
http://dx.doi.org/10.1007/978-1-4614-4918-8
http://dx.doi.org/10.1007/978-1-4614-4918-8
http://dx.doi.org/10.1007/978-1-4614-4918-8

68 5 Spatio-temporal Network Application

Table 5.1 Trace of the SP-TAG algorithm for the network shown in Fig. 5.2

Iteration N1 N2 N3 N4 N5 N6 N9

1 0 (closed) ∞ ∞ ∞ ∞ ∞ ∞
2 0 15 ∞ ∞ ∞ ∞ 5 (closed)
3 0 15 (closed) ∞ ∞ ∞ ∞ 5
4 0 15 30 30 (closed) ∞ ∞ 5
5 0 15 30 30 45 ∞ 5
6 0 15 30 (closed) 30 45 ∞ 5
7 0 15 30 30 45 ∞ 5
8 0 15 30 30 45 (closed) ∞ 5
9 0 15 30 30 45 60 5

could be used to compute the best time to start a journey so that the time spent in the
network is minimized.

5.2 Modeling Sensor Networks

Finding novel and interesting spatio-temporal patterns in the ever increasing collec-
tion of sensor data is an important problem in several scientific domains. Many of
these scientific domains collect sensor data in outdoor environments with underlying
physical interactions. For example, in environmental science, a timely response to
anticipated watershed/in-plant events (e.g., chemical spill, terrorism, etc.) to maintain
water quality is required.

A collection of sensors may be represented as a sensor graphwhere the nodes
represent the sensors and the edges represent selected relationships. For example,
sensors upstream and downstream in a river may have physical interactions via water
flow and related phenomenon such as plume propagation. Relationships can also be
geographical in nature, such as proximity between the sensor units. Formulation of a
model to represent a sensor graph that supports mining useful information from data
poses some significant challenges. Since the volume of data is large, the model used to
represent the sensor graph must be storage efficient. It should also provide sufficient
support for the design of correct and efficient algorithms for data analysis. Second, the
sensor graph characteristics modeled as pairs, < measured_value, error >, can be
time-dependent (e.g., the flow rate in a river stream). The model used to represent a
time-dependent graph should be able to represent the time-variance, simultaneously
maintaining the storage efficiency.

A sensor graph is spatio-temporal in nature since the relative locations of the
sensor nodes and the time-dependence of their characteristics are significant. Spatio-
Temporal graphs can be modeled as time expanded graphs, where the entire network
is replicated for every time instant [26]. The changes in the graph can be very frequent
and for modeling such frequent changes, the time expanded networks would require

5.2 Modeling Sensor Networks 69

a large number of copies of the original network, thus leading to network sizes that
are too memory expensive. Moreover, while modeling sensor graphs that involve no
physical flow, a direct application of this model might not be possible.

Time aggregated graph (TAG) can model the changes in a spatio-temporal graph
by collecting the node and edge attributes into a set of time series. The model can
also account for the changes in the topology of the network. The edges and nodes
can disappear from the network during certain instants of time and new nodes and
edges can be added. TAG keeps track of these changes through a time series attached
to each node and edge that indicates their presence at various instants of time. The
stochastic nature of the physical relationships between the sensors (e.g., the flow rate
of the river stream that connects the sensors) is accounted for by expressing each
element in the attribute time series as a pair of values (i.e., ¡measured value, error¿)
[15].

5.2.1 Hotspot Detection

Definition. The problem of hot spot detection is to discover the sensor nodes that
display significant differences between observed values and expected ‘standard’ val-
ues.

Application. In application domains such as river systems where chemical levels
are constantly monitored, sensors are deployed to detect the changes. In this context,
a hotspot is indicated by a sensor reporting an anomaly, which is characterized by
a measured value different from the expected value. A method to discover hotspots
using TAG representation of sensors is briefly described in this section. The nodes
in the TAG represent the sensors. An edge is added between the nodes if and only
if there is a physical relationship between the nodes. The presence of a hotspot at a
node at various time instants is indicated by a node time series. In addition, the time
dependence of the physical relationships modeled by the edges can be represented
by edge time series attributes. Figure 5.3 illustrates the graph model for the sensor
graph. For the sake of simplicity, edge attributes are not shown in Fig. 5.3. Figure 5.3a
shows an example network. The nodes that are active at time instants t = 2 and 3
are shown in Fig. 5.3b and c. The TAG representation is shown in Fig. 5.3c. The
time series attributes on the nodes indicate the hotspots at various time instants. For
example, the time series 2, 3 on the node N2 indicates that the node is a hot spot at
t = 2, 3.

Method. Given a sensor graph called the source node, the hot spot at any time
instant is the set of nodes where an anomaly has been detected the given time instant.
A modified breadth first strategy is used to find the nodes that indicate the hot spots
at any time instant. The pseudo-code is provided in Algorithm 1 [15].

Each node has a time series attribute that encodes the information about the time
instants at which the node has an anomaly. For example, the time series [2, 3] at
node N2 in Fig. 5.3d indicates that the node is a hotspot at t = 2, 3. The algorithm
searches the graph starting at (any) given node for each value of time t and finds the

70 5 Spatio-temporal Network Application

N8

N7N6

N5

N4

N3
N2

N1

N8

N7N6

N5

N4

N3
N2

N1

(d)(c)

[3]
[3]

[2,3][2,3]

(b)(a)

N8

N7N6

N5

N4

N3
N2

2

N1
N8

N7N6

N5

N4

N3
N2

N1

Fig. 5.3 TAG model to detect hotspots

Table 5.2 Execution trace of the hotspot algorithm

time t1 t2 t3

Hotspot nodes ∅ {N2, N3} {N2, N3, N4, N5}

hotspots. The search uses a breadth-first strategy, modified to incorporate the fact
that each node has a time series that needs to be checked. When each node is visited,
the algorithm checks to see whether it is a hot spot by checking the node time series.
The node time series is assumed to be sorted. The output of the algorithm is the set
of hotspots at every time instant.

Algorithm 1: Hotspot Algorithm
1: Function BasicHotspots(Graph G(N , E), set N , set E , node source)
2: for t = 1, T do
3: mark source as visited;
4: enqueue(Q,source);
5: if t in node_time_series of source then
6: hotspots[t] = source;
7: end if
8: while Q not empty do
9: u = Dequeue();
10: For every node v such that uv ∈ E and if exists(nodeu, t)
11: if v is not marked then
12: v = visi ted
13: Enqueue(Q, v);
14: hotspots[t] = hotspots[t] ⋃

v;
15: end if
16: end while
17: end for

Execution Trace. Table 5.2 shows the trace of the algorithm for the network
shown in Fig. 5.3d. The search starts at node N1 at t = 1 and detects no hotspots. At
t = 2, the search finds that the nodes N2 and N3 are hotspots based on the entry ‘2’
(indicating the presence of a hotspot at t = 2) in their node time series [2, 3]. The
algorithm performs another iteration for t = 3 and finds the hotspots at N2, N3, N4,
and N5. The execution trace is summarized in Table 5.2.

References

1. R. Ahuja, T. Magnanti, J. Orlin, Network Flows—Theory, Algorithms, and Applications,
(Prentice Hall, Englewood Cliffs, 1993)

2. D. Bertsekas, Dynamic Programming: Deterministic and Stochastic Models (Prentice Hall,
Englewood Cliffs, 1987)

3. P. Chen, The entity-relationship model—towards a unified view of data. ACM Trans.
Database Syst. 1(1), 9–36 (1976)

4. B. Cherkassky, A. Goldberg, T. Radzik, Shortest paths algorithms: theory and experimental
evaluation. Math. Program. 73, 129–174 (1996)

5. T. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms (Chapter 26,
Flow Networks) (MIT Press, Cambridge, 2002)

6. O. Corporation. Oracle spatial and oracle locator: location features for oracle. http://www.
oracle.com/technology/products/spatial/

7. O. Corporation. Oracle spatial 10g: an oracle white paper. http://www.oracle.com/
technology/products/spatial/ 2005

8. B.C. Dean, Algorithms for minimum-cost paths in time-dependent networks. Networks 44(1),
41–46 (2004)

9. C.H. Deutsch, U.P.S. embraces high-tech delivery methods. The New York Times (http://
www.nyt.com/) (July 12 2007)

10. Z. Ding, R. Guting, Modeling temporally variable transportation networks, in Procceedings
16th International conference on Database Systems for Advanced Applications (Houston,
2004), pp. 154–168

11. M. Erwig, Graphs in Spatial Databases. Ph.D. thesis, Fern Universität Hagen, 1994
12. M. Erwig, R. Guting, Explicit graphs in a functional model for spatial databases. IEEE Trans.

Knowl. Data Eng. 6(5), 787–804 (1994)
13. ESRI. ArcGIS network analyst. http://www.esri.com/software/arcgis/extensions/ 2006
14. L. Ford, D. Fulkerson, Constructing maximal dynamic flows from static flows. Oper. Res. 6,

419–433 (1958)
15. B. George, J. Kang, S. Shekhar, STSG: a data model for the discovery of spatio-temporal

patterns, in Proceedings of First International Workshop on Knowledge Discovery from
Sensor Data in conjunction with ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2007), Aug 2007

16. B. George, S. Shekhar, Time-aggregated graphs for modeling spatio-temporal networks—an
extended abstract, in: Proceedings of Workshops at International Conference on Conceptual
Modeling, Nov 2006

B. George and S. Kim, Spatio-Temporal Networks,
SpringerBriefs in Computer Science, DOI: 10.1007/978-1-4614-4918-8,
� The Author(s) 2013

71

http://www.oracle.com/technology/products/spatial/
http://www.oracle.com/technology/products/spatial/
http://www.oracle.com/technology/products/spatial/
http://www.oracle.com/technology/products/spatial/
http://www.nyt.com/)
http://www.nyt.com/)
http://www.esri.com/software/arcgis/extensions/

17. B. George, S. Shekhar, Time aggregated graphs: a model for spatio-temporal network. J. Data
Semant. 1(2), 249–303 (2007)

18. A. Goldberg, Network optimization library. http://www.avglab.com/andrew/soft.html 2002
19. H. Gregerson, C. Jensen, Temporal entity relationship models—a survey. IEEE Trans.

Knowl. Data Eng. 11(3), 464–497 1999
20. R. Hall, The fastest path through a network with random time-dependent travel times. Transp.

Sci. 20, 182–188 (1986)
21. R. Hall (ed.), Handbook of Transportation Science (Kluwer Academic Publishers, Norwell,

2003)
22. H. Hamacher, S. Tjandra, Mathematical Modeling of Evacuation Problems: A Sate of the Art.

Pedestrian and Evacuation Dynamics, (Springer, Berlin, 2002) pp. 227–266
23. T. Hamre, Development of semantic spatio-temporal data models for integration of remote

sensing and in situ data in marine information system. Ph.D. thesis, University of Bergen, 1995
24. P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum

cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1986)
25. D. Kaufman, R. Smith, Fastest paths in time-dependent networks for intelligent vehicle

highway systems applications. IVHS J. 1(1), 1–11 (1993)
26. E. Kohler, K. Langtau, M. Skutella, Time-expanded graphs for flow-dependent transit times,

in Procceedings 10th Annual European Symposium on Algorithms, pp. 599–611, 2002
27. M. Koubarakis, T.K. Sellis, A.U. Frank, S. Grumbach, R.H. Güting, C.S. Jensen, N.A.

Lorentzos, Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Schek, M. Scholl, B.
Theodoulidis, N. Tryfona, (eds.), Spatio-Temporal Databases: The CHOROCHRONOS
Approach, Lecture Notes in Computer Science, vol. 2520, (Springer, Berlin, 2003)

28. N. Levine, CrimeStat 3.0: A Spatial Statistics Program for the Analysis of Crime Incident
Locations. (Ned Levine& Associatiates, Houston, 2004)

29. D. Liu, S. Shekhar, M. Coyle, S. Sarkar. An evaluation of access methods for spatial
netwroks in Proceedings of the 2nd workshop on Advances in Geographic, Information
Systems, 1994

30. Q. Lu, B. George, S. Shekhar, Capacity constrained routing algorithms for evacuation
planning: a summary of results, in Procceedings of 9th International Symposium on Spatial
and Temporal Databases (SSTD’05), Aug 2005

31. E. Miller-Hooks, H. Mahmassani, Least possible time paths in stochastic time-varying
networks. Comput. Oper. Res. 25(12), 1107–1125 (1998)

32. E. Miller-Hooks, H. Mahmassani, Path comparisons for a priori and time-adaptive decisions
in stochastic, time-varying networks. Eur. J. Oper. Res. 146, 67–82 (2003)

33. Oracle. Oracle spatial 10g, an oracle white paper. http://www.oracle.com/technology/
products/spatial/, August 2005

34. A. Orda, R. Rom, Minimum weight paths in time-dependent networks. Networks 21,
295–319 (1991)

35. S. Pallottino, Shortest-path methods: complexity, interrelations and new propositions.
Networks 14, 257–267 (1984)

36. S. Pallottino, M.G. Scuttella, Equilibrium and Advanced Transportation Modelling . Shortest
Path Algorithms in Tranportation Models: Classical and Innovative Aspects. (Kluwer,
Boston, 1998), pp. 245–281

37. J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, (Addison
Wesley, Reading, 1984)

38. J. Rasinmäki, Modelling spatio-temporal environmental data in 5th AGILE Conference on
Geographic Information Science, Palma, 2002

39. S. Russel, P. Norwig, Artificial Intelligence: A Modern Approach (Prentice Hall, Upper
Saddle River, 1995)

40. S. Shekhar, S. Chawla, Spatial Databases: Tour (Prentice Hall, Englewood- Cliffs, 2003)
41. D. Sawitzki, Implicit Maximization of Flows over Time. Technical report, University of

Dortmund, 2004

72 References

http://www.avglab.com/andrew/soft.html
http://www.oracle.com/technology/products/spatial/,
http://www.oracle.com/technology/products/spatial/,

42. S.E. Dreyfus, An appraisal of some shortest path algorithms. Oper. Res. 17, 395–412, (1969)
43. Y. Sheffi, Urban Transportation Networks: Equilibrium Analysis with Mathematical

Programming Method (Prentice-Hall, Englewood Cliffs, 1985)
44. S. Shekhar, D. Liu, Connectivity-clustered access method for networks and networks

computations: Summary of results, in Proceedings of IEEE International Conference on Data
Engineering, 1995

45. S. Shekhar, D. Liu, CCAM: A connectivity-clustered access method for networks and
networks computations. IEEE Trans. Knowl. Data Eng. (1997)

46. S. Shekhar, R. Vatsavai, S.Chawla, T. Burk, Spatial Pictogram Enhanced Conceptual Data
Models and Their Translation to Logical Data Models. Integrated Spatial Databases: Digital
Images and GIS., Lecture Notes in Computer Science, Vol. 1737, ed. by P. Agouris, A.
Stefanidis (Springer, Berlin, 1999)

47. S. Stephens, J. Rung, X. Lopez, Graph data representation in oracle databese 10g: case
studies in life sciences. IEEE Data Eng. Bull. 27(4), 61–66 (2004)

48. J. Wardrop, Some theoretical aspects of road traffic research, in Proceedings of the Institution
of Civil Engineers, 2(1), 1952

49. F. Zhan, C. Noon, Shortest paths algorithms: an evaluation using real road networks. Transp.
Sci. 32, 65–73 (1998)

50. E. Zimayi, C. Parent, S. Spaccapietra, TERC?: a temporal conceptual model, in Proceedings
of International Symposium on Digital Media Information Base Nov 1997

References 73

	Spatio-temporal Networks
	Preface
	Acknowledgments
	Contents
	1 Spatio-temporal Networks: An Introduction
	1.1 Spatio-temporal Networks
	1.2 Application Domain
	1.3 Background Information

	2 Time Aggregated Graph: A Model for Spatio-temporal Networks
	2.1 Modeling Spatio-temporal Networks
	2.1.1 Illustrative Application Domains
	2.1.2 Broad Computer Science Challenges

	2.2 Basic Concepts
	2.2.1 The Conceptual Model
	2.2.2 A Logical Data Model
	2.2.3 Physical Data Model

	2.3 Evaluation and Validation
	2.3.1 Representational Comparison: Time Aggregated Graphs Versus Existing Models
	2.3.2 Comparison of Storage Costs with Time Expanded Networks

	2.4 Summary

	3 Shortest Path Algorithms for a Fixed Start Time
	3.1 Introduction
	3.1.1 Broad Challenges

	3.2 Basic Concepts
	3.2.1 Classification of Shortest Path Algorithms
	3.2.2 Algorithmic Challenges

	3.3 Shortest Path Computation for Fixed Start Time
	3.3.1 Shortest Path Algorithm for Fixed Start Time in a FIFO Network (SP-TAG)
	3.3.2 A Formulation of Shortest Path Algorithm for a Fixed Start Time in a FIFO Network (SP-TAG)

	3.4 Shortest Path Algorithm for a Given Start Time in a Non-FIFO Network (NF-SP-TAG)
	3.5 Experimental Analysis
	3.5.1 Experiment Design
	3.5.2 Experimental Results and Analysis

	3.6 Summary

	4 Best Start Time Journeys
	4.1 Introduction
	4.2 Basic Concepts
	4.2.1 The Conceptual Model
	4.2.2 Basic Design Space of Shortest Path Algorithms
	4.2.3 Algorithmic Challenges

	4.3 Time Iterative SP-TAG* (TI_SP-TAG*) Algorithm for FIFO Networks
	4.4 Best Start Time Shortest Path Algorithms for Non-FIFO Networks
	4.4.1 Best Start Time Shortest Path (BEST) Algorithm (Label Correcting Approach)
	4.4.2 Best Start Time Algorithm Using ATST (CP-NF-BEST Algorithm)
	4.5 Experimental Analysis
	4.5.1 Experiment Design
	4.5.2 Experimental Results and Analysis

	4.6 Summary

	5 Spatio-temporal Network Application
	5.1 Multimodal Transportation Networks
	5.1.1 Modeling Multimodal Networks
	5.1.2 Time Aggregated Graph Representation
	5.1.3 Routing in Multimodal Networks

	5.2 Modeling Sensor Networks
	5.2.1 Hotspot Detection

	References

