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Preface

If Ptolemy, Agatha Christie, and William of Ockham had a chance to meet, they
would probably agree on one common idea. “We consider it a good principle to ex-
plain the phenomena by the simplest hypothesis possible,” Ptolemy would say. “The
simplest explanation is always the most likely,” Agatha would add. And William of
Ockham would probably nod in agreement: “Pluralitas non est ponenda sine nec-
cesitate,” i.e., “Entities should not be multiplied unnecessarily.” This principle of
parsimony, known today as Ockam’s (or Occam’s) razor, is arguable one of the most
fundamental ideas that pervade philosophy, art and science from ancient to modern
times. “Simplicity is the ultimate sophistication” (Leonardo da Vinci). “Make ev-
erything as simple as possible, but not simpler” (Albert Einstein). Endless quotes in
favor of simplicity from many great minds in the history of humankind could easily
fill out dozens of pages. But we would rather keep this preface short (and simple).

The topic of this book – sparse modeling – is a particular manifestation of the
parsimony principle in the context of modern statistics, machine learning and signal
processing. A fundamental problem in those fields is an accurate recovery of an un-
observed high-dimensional signal from a relatively small number of measurements,
due to measurement costs or other limitations. Image reconstruction, learning model
parameters from data, diagnosing system failures or human diseases are just a few ex-
amples where this challenging inverse problem arises. In general, high-dimensional,
small-sample inference is both underdetermined and computationally intractable, un-
less the problem has some specific structure, such as, for example, sparsity.

Indeed, quite frequently, the ground-truth solution can be well-approximated by
a sparse vector, where only a few variables are truly important, while the remaining
ones are zero or nearly-zero; in other words, a small number of most-relevant vari-
ables (causes, predictors, etc.) can be often sufficient for explaining a phenomenon
of interest. More generally, even if the original problem specification does not yield
a sparse solution, one can typically find a mapping to a new a coordinate system,
or dictionary, which allows for such sparse representation. Thus, sparse structure ap-
pears to be an inherent property of many natural signals – and without such structure,
understanding the world and adapting to it would be considerably more challenging.

In this book, we tried to provide a brief introduction to sparse modeling, includ-
ing application examples, problem formulations that yield sparse solutions, algo-
rithms for finding such solutions, as well as some recent theoretical results on sparse
recovery. The material of this book is based on our tutorial presented several years
ago at the ICML-2010 (International Conference on Machine Learning), as well as
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on a graduate-level course that we taught at the Columbia University in the spring
semester of 2011.

We start chapter 1 with motivating examples and a high-level survey of key recent
developments in sparse modeling. In chapter 2, we formulate optimization problems
that involve commonly used sparsity-enforcing tools such as l0- and l1-norm con-
straints. Essential theoretical results are presented in chapters 3 and 4, while chap-
ter 5 discusses several well-known algorithms for finding sparse solutions. Then, in
chapters 6 and 7, we discuss a variety of sparse recovery problems that extend the
basic formulation towards more sophisticated forms of structured sparsity and to-
wards different loss functions, respectively. Chapter 8 discusses a particular class of
sparse graphical models such as sparse Gaussian Markov Random Fields, a popu-
lar and fast-developing subarea of sparse modeling. Finally, chapter 9 is devoted to
dictionary learning and sparse matrix factorizations.

Note that our book is by no means a complete survey of all recent sparsity-related
developments; in fact, no single book can fully capture this incredibly fast-growing
field. However, we hope that our book can serve as an introduction to the exciting
new field of sparse modeling, and motivate the reader to continue learning about it
beyond the scope of this book.

Finally, we would like to thank many people who contributed to this book in
various ways. Irina would like to thank her colleagues at the IBM Watson Research
Center – Chid Apte, Guillermo Cecchi, James Kozloski, Laxmi Parida, Charles Peck,
Ravi Rao, Jeremy Rice, and Ajay Royyuru – for their encouragement and sup-
port during all these years, as well as many other collaborators and friends whose
ideas helped to shape this book, including Narges Bani Asadi, Alina Beygelzimer,
Melissa Carroll, Gaurav Chandalia, Jean Honorio, Natalia Odintsova, Dimitris Sama-
ras, Katya Scheinberg and Ben Taskar. Ben passed away last year, but he will con-
tinue to live in our memories and in his brilliant work.

The authors are grateful to Dmitry Malioutov, Aurelie Lozano, and Francisco
Pereira for reading the manuscript and providing many valuable comments that
helped to improve this book. Special thanks to Randi Cohen, our editor, for keep-
ing us motivated and waiting patiently for this book to be completed. Last, but not
least, we would like to thank our families for their love, support and patience, and for
being our limitless source of inspiration. We have to admit that it took us a bit longer
than previously anticipated to finish this book (only a few more years); as a result,
Irina (gladly) lost a bet to her daughter Natalie about who will first publish a book.



Chapter 1
Introduction

1.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Computer Network Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Neuroimaging Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Compressed Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Sparse Recovery in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Statistical Learning versus Compressed Sensing . . . . . . . . . . . . . . . . . . . . . 11
1.4 Summary and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

A common question arising in a wide variety of practical applications is how to infer
an unobserved high-dimensional “state of the world” from a limited number of obser-
vations. Examples include finding a subset of genes responsible for a disease, localiz-
ing brain areas associated with a mental state, diagnosing performance bottlenecks in
a large-scale distributed computer system, reconstructing high-quality images from
a compressed set of measurements, and, more generally, decoding any kind of signal
from its noisy encoding, or estimating model parameters in a high-dimensional but
small-sample statistical setting.

The underlying inference problem is illustrated in Figure 1.1, where x =
(x1, ..., xn) and y = (y1, ..., ym) represent an n-dimensional unobserved state of
the world and its m observations, respectively. The output vector of observations, y,
can be viewed as a noisy function (encoding) of the input vector x. A commonly
used inference (decoding) approach is to find x that minimizes some loss function
L(x;y), given the observed y. For example, a popular probabilistic maximum like-
lihood approach aims at finding a parameter vector x that maximizes the likelihood
P (y|x) of the observations, i.e., minimizes the negative log-likelihood loss.

However, in many real-life problems, the number of unobserved variables greatly
exceeds the number of measurements, since the latter may be expensive and also
limited by the problem-specific constraints. For example, in computer network di-
agnosis, gene network analysis, and neuroimaging applications the total number of
unknowns, such as states of network elements, genes, or brain voxels, can be on the
order of thousands, or even hundreds of thousands, while the number of observations,
or samples, is typically on the order of hundreds. Therefore, the above maximum-
likelihood formulation becomes underdetermined, and additional regularization con-
straints, reflecting specific domain properties or assumptions, must be introduced in
order to restrict the space of possible solutions. From a Bayesian probabilistic per-
spective, regularization can be viewed as imposing a prior P (x) on the unknown
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FIGURE 1.1: Is it possible to recover an unobserved high-dimensional signal x
from a low-dimensional, noisy observation y? Surprisingly, the answer is positive,
provided that x has some specific structure, such as (sufficient) sparsity, and the
mapping y = f(x) preserves enough information in order to reconstruct x.

parametersx, and maximizing the posterior probabilityP (x|y) = P (y|x)P (x)/P (y),
as we discuss in the next chapter.

Perhaps one of the simplest and most popular assumptions made about the prob-
lem’s structure is the solution sparsity. In other words, it is assumed that only a
relatively small subset of variables is truly important in a specific context: e.g., usu-
ally only a small number of simultaneous faults occurs in a system; a small number
of nonzero Fourier coefficients is sufficient for an accurate representation of various
signal types; often, a small number of predictive variables (e.g., genes) is most rel-
evant to the response variable (a disease, or a trait), and is sufficient for learning an
accurate predictive model. In all these examples, the solution we seek can be viewed
as a sparse high-dimensional vector with only a few nonzero coordinates. This as-
sumption aligns with a philosophical principle of parsimony, commonly referred to
as Occam’s razor, or Ockham’s razor, and attributed to William of Ockham, a fa-
mous medieval philosopher, though it can be traced back perhaps even further, to
Aristotle and Ptolemy. Post-Ockham formulations of the principle of parsimony in-
clude, among many others, the famous one by Isaac Newton: “We are to admit no
more causes of natural things than such as are both true and sufficient to explain their
appearances”.

Statistical models that incorporate the parsimony assumption will be referred to
as sparse models. These models are particularly useful in scientific applications, such
as biomarker discovery in genetic or neuroimaging data, where the interpretability of
a predictive model, e.g., identification of the most-relevant predictors, is essential.
Another important area that can benefit from sparsity is signal processing, where the
goal is to minimize signal acquisition costs while achieving high reconstruction accu-
racy; as we discuss later, exploiting sparsity can dramatically improve cost-efficiency
of signal processing.

From a historical perspective, sparse signal recovery problem formulations can
be traced back to 1943, or possibly even earlier, when the combinatorial group test-
ing problem was first introduced in (Dorfman, 1943). The original motivation behind
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this problem was to design an efficient testing scheme using blood samples obtained
from a large population (e.g., on the order of 100,000 people) in order to identify a
relatively small number of infected people (e.g., on the order of 10). While testing
each individual was considered prohibitively costly, one could combine the blood
samples from groups of people; testing such combined samples would reveal if at
least one person in the group had a disease. Following the inference scheme in Fig-
ure 1.1, one can represent the health state of the i-th person as a Boolean variable xi,
where xi = 0 if the person is healthy, and xi = 1 otherwise; the test result, or mea-
surement, yj for a group of people Gj is the logical-OR function over the variables
in the group, i.e. yj = 0 if and only if all xi = 0, i ∈ Gj , and 1 otherwise. Given
an upper bound on the number of sick individuals in the population, i.e. the bound
on sparsity of x, the objective of group testing is to identify all sick individuals (i.e.,
nonzero xi), while minimizing the number of tests.

Similar problem formulations arise in many other diagnostic applications, for ex-
ample, in computer network fault diagnosis, where the network nodes, such as routers
or links, can be either functional or faulty, and where the group tests correspond to
end-to-end transactions, called network probes, that go through particular subsets of
elements as determined by a routing table (Rish et al., 2005). (In the next section,
we consider the network diagnosis problem in more detail, focusing, however, on its
continuous rather than Boolean version, where the “hard faults” will be relaxed into
performance bottlenecks, or time delays.) In general, group testing has a long his-
tory of successful applications to various practical problems, including DNA library
screening, multiple access control protocols, and data streams, just to name a few. For
more details on group testing, see the classical monograph by (Du and Hwang, 2000)
and references therein, as well as various recent publications, such as, for example,
(Gilbert and Strauss, 2007; Atia and Saligrama, 2012; Gilbert et al., 2012).

During the past several decades, half a century since the emergence of the com-
binatorial group testing field, sparse signal recovery is experiencing a new wave of
intense interest, now with the primary focus on continuous signals and observations,
and with particular ways of enforcing sparsity, such as using l1-norm regularization.
For example, in 1986, (Santosa and Symes, 1986) proposed an l1-norm based op-
timization approach for the linear inversion (deconvolution) of band-limited reflec-
tion seismograms. In 1992, (Rudin et al., 1992) proposed total variation regularizer,
which is closely related to l1-norm, for noise removal in image processing. In 1996,
the seminal paper by (Tibshirani, 1996) on LASSO, or the l1-norm regularized linear
regression, appeared in statistical literature, and initiated today’s mainstream appli-
cation of sparse regression to a wide range of practical problems. Around the same
time, the basis pursuit (Chen et al., 1998) approach, essentially equivalent to LASSO,
was introduced in the signal processing literature, and breakthrough theoretical re-
sults of (Candès et al., 2006a) and (Donoho, 2006a) gave rise to the exciting new
field of compressed sensing that revolutionized signal processing by exponentially
reducing the number of measurements required for an accurate and computationally
efficient recovery of sparse signals, as compared to the standard Shannon-Nyquist
theory. In recent years, compressed sensing attracted an enormous amount of interest
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in signal processing and related communities, and generated a flurry of theoretical
results, algorithmic approaches, and novel applications.

In this book, we primarily focus on continuous sparse signals, following the de-
velopments in modern sparse statistical modeling and compressed sensing. Clearly,
no single book can possibly cover all aspects of these rapidly growing fields. Thus,
our goal is to provide a reasonable introduction to the key concepts and survey ma-
jor recent results in sparse modeling and signal recovery, such as common problem
formulations arising in sparse regression, sparse Markov networks and sparse ma-
trix factorization, several basic theoretical aspects of sparse modeling, state-of-the-
art algorithmic approaches, as well as some practical applications. We start with an
overview of several motivating practical problems that give rise to sparse signal re-
covery formulations.

1.1 Motivating Examples
1.1.1 Computer Network Diagnosis

One of the central issues in distributed computer systems and networks man-
agement is fast, real-time diagnosis of various faults and performance degradations.
However, in large-scale systems, monitoring every single component, i.e, every net-
work link, every application, every database transaction, and so on, becomes too
costly, or even infeasible. An alternative approach is to collect a relatively small
number of overall performance measures using end-to-end transactions, or probes,
such as ping and traceroute commands, or end-to-end application-level tests, and
then make inferences about the states of individual components. The area of re-
search within the systems management field that focuses on diagnosis of network
issues from indirect observations is called network tomography, similarly to medi-
cal tomography, where health issues are diagnosed based on inferences made from
tomographic images of different organs.

In particular, let us consider the problem of identifying network performance
bottlenecks, e.g., network links responsible for unusually high end-to-end delays, as
discussed, for example, in (Beygelzimer et al., 2007). We assume that y ∈ Rm is an
observed vector of end-to-end transaction delays, x ∈ Rn is an unobserved vector
of link delays, and A is a routing matrix, where aij = 1 if the end-to-end test i goes
through the link j, and 0 otherwise; the problem is illustrated in Figure 1.2. It is often
assumed that the end-to-end delays follow the noisy linear model, i.e.

y = Ax+ ε, (1.1)

where ε is the observation noise, that may reflect some other potential causes of end-
to-end delays, besides the link delays, as well as possible nonlinear effects. The prob-
lem of reconstructing x can be viewed as an ordinary least squares (OLS) regression
problem, where A is the design matrix and x are the linear regression coefficients
found by minimizing the least-squares error, which is also equivalent to maximizing
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FIGURE 1.2: Example of a sparse signal recovery problem: diagnosing performance
bottleneck(s) in a computer network using end-to-end test measurements, or probes.

the conditional log-likelihood logP (y|x) under the assumption of Gaussian noise ε:

min
x
‖y −Ax‖22.

Since the number of tests, m, is typically much smaller than the number of compo-
nents, n, the problem of reconstructing x is underdetermined, i.e., there is no unique
solution, and thus some regularization constraints need to be added. In case of net-
work performance bottleneck diagnosis, it is reasonable to expect that, at any par-
ticular time, there are only a few malfunctioning links responsible for transaction
delays, while the remaining links function properly. In other words, we can assume
that x can be well-approximated by a sparse vector, where only a few coordinates
have relatively large magnitudes, as compared to the rest. Later in this book, we will
focus on approaches to enforcing sparsity in the above problem, and discuss sparse
solution recovery from a small number of measurements.

1.1.2 Neuroimaging Analysis

We now demonstrate a different kind of application example which arises in
medical imaging domain. Specifically, we consider the problem of predicting mental
states of a person based on brain imaging data, such as, for example, functional Mag-
netic Resonance Imaging (fMRI). In the past decade, neuroimaging-based prediction
of mental states became an area of active research on the intersection between statis-
tics, machine learning, and neuroscience. A mental state can be cognitive, such as
looking at a picture versus reading a sentence (Mitchell et al., 2004), or emotional,
such as feeling happy, anxious, or annoyed while playing a virtual-reality videogame
(Carroll et al., 2009). Other examples include predicting pain levels experienced by
a person (Rish et al., 2010; Cecchi et al., 2012), or learning a classification model
that recognizes certain mental disorders such as schizophrenia (Rish et al., 2012a),
Alzheimer’s disease (Huang et al., 2009), or drug addiction (Honorio et al., 2009).

In a typical “mind reading” fMRI experiment, a subject performs a particular
task or is exposed to a certain stimulus, while an MR scanner records the subject’s
blood-oxygenation-level dependent (BOLD) signals indicative of changes in neural
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activity, over the entire brain. The resulting full-brain scans over the time period
associated with the task or stimulus form a sequence of three-dimensional images,
where each image typically has on the order of 10,000-100,000 subvolumes, or vox-
els, and the number of time points, or time repetitions (TRs), is typically on the order
of hundreds.

As mentioned above, a typical experimental paradigm aims at understanding
changes in a mental state associated with a particular task or a stimulus, and one
of the central questions in the modern multivariate fMRI analysis is whether we can
predict such mental states given the sequence of brain images. For example, in a
recent pain perception study by (Baliki et al., 2009), the subjects were rating their
pain level on a continuous scale in response to a quickly changing thermal stimulus
applied to their back via a contact probe. In another experiment, associated with the
2007 Pittsburgh Brain Activity Interpretation Competition (Pittsburgh EBC Group,
2007), the task was to predict mental states of a subject during a videogame session,
including feeling annoyed or anxious, listening to instructions, looking at a person’s
face, or performing a certain task within the game.

Given an fMRI data set, i.e. the BOLD signal (voxel activity) time series for all
voxels, and the corresponding time series representing the task or stimulus, we can
formulate the prediction task as a linear regression problem, where the individual
time points will be treated as independent and identically distributed (i.i.d.) samples
– a simplifying assumption that is, of course, far from being realistic, and yet often
works surprisingly well for predictive purposes. The voxel activity levels correspond
to predictors, while the mental state, task, or stimulus is the predicted response vari-
able. More specifically, let A1, . . . , An denote the set of n predictors, let Y be the
response variable, and let m be the number of samples. Then A = (a1| · · · |an) cor-
responds to an m× n fMRI data matrix, where each ai is an m-dimensional vector
of the i-th predictor’s values, for all m instances, while the m-dimensional vector y
corresponds to the values of the response variable Y , as it is illustrated in Figure 1.3.

As it was already mentioned, in biological applications, including neuroimaging,
interpretability of a statistical model is often as important as the model’s predictive
performance. A common approach to improving a model’s interpretability is variable
selection, i.e. choosing a small subset of predictive variables that are most relevant to
the response variable. In neuroimaging applications discussed above, one of the key
objectives is to discover brain areas that are most relevant to a given task, stimulus, or
mental state. Moreover, variable selection, as well as a more general dimensionality
reduction approach, can significantly improve generalization accuracy of a model by
preventing it from overfitting high-dimensional, small-sample data common in fMRI
and other biological applications.

A simple approach to variable selection, also known in the machine-learning
community as a filter-based approach, is to evaluate each predictive variable inde-
pendently, using some univariate relevance measure, such as, for example, correla-
tion between the variable and the response, or the mutual information between the
two. For example, a traditional fMRI analysis approach known as General Linear
Models (GLMs) (Friston et al., 1995) can be viewed as filter-based variable selec-
tion, since it essentially computes individual correlations between each voxel and
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FIGURE 1.3 (See color insert): Mental state prediction from functional MRI data,
viewed as a linear regression with simultaneous variable selection. The goal is to
find a subset of fMRI voxels, indicating brain areas that are most relevant (e.g., most
predictive) about a particular mental state.

the task or stimulus, and then identifies brain areas where these correlations exceed a
certain threshold. However, such mass-univariate approach, though very simple, has
an obvious drawback, as it completely ignores multivariate interactions, and thus can
miss potentially relevant groups of variables that individually do not appear among
the top-ranked ones1. As it was demonstrated by (Haxby et al., 2001) and others
(see, for example, recent work by (Rish et al., 2012b)), highly predictive models of
mental states can be built from voxels with sub-maximal activation, that would not
be discovered by the traditional GLM analysis. Thus, in recent years, multivariate
predictive modeling became a popular alternative to univariate approaches in neu-
roimaging. Since a combinatorial search over all subsets of voxels in order to evalu-
ate their relevance to the target variable is clearly intractable, a class of techniques,
called embedded methods, appears to be the best practical alternative to both the uni-
variate selection and the exhaustive search, since it incorporates variable selection
into multivariate statistical model learning.

A common example of embedded variable selection is sparse regression, where
a cardinality constraint restricting the number of nonzero coefficients is added to
the original regression problem. Note that in case of linear, or OLS, regression, the
resulting sparse regression problem is equivalent to the sparse recovery problem in-
troduced in the network diagnosis example.

1Perhaps one of the most well-known illustrations of a multi-way interaction among the variables that
cannot be detected by looking at any subset of them, not only at the single variables, is the parity check
(logical XOR) function over n variables; the parity check response variable is statistically independent of
each of its individual inputs, or any subset of them, but is completely determined given the full set of n
inputs.
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1.1.3 Compressed Sensing

One of the most prominent recent applications of sparsity-related ideas is com-
pressed sensing, also known as compressive sensing, or compressive sampling
(Candès et al., 2006a; Donoho, 2006a), an extremely popular and rapidly expand-
ing area of modern signal processing. The key idea behind compressed sensing is
that the majority of real-life signals, such as images, audio, or video, can be well ap-
proximated by sparse vectors, given some appropriate basis, and that exploiting the
sparse signal structure can dramatically reduce the signal acquisition cost; moreover,
accurate signal reconstruction can be achieved in a computationally efficient way, by
using sparse optimization methods, discussed later in this book.

Traditional approach to signal acquisition is based on the classical Shannon-
Nyquist result stating that in order to preserve information about a signal, one must
sample the signal at a rate which is at least twice the signal’s bandwidth, defined
as the highest frequency in the signal’s spectrum. Note, however, that such classical
scenario gives a worst-case bound, since it does not take advantage of any specific
structure that the signal may possess. In practice, sampling at the Nyquist rate usually
produces a tremendous number of samples, e.g., in digital and video cameras, and
must be followed by a compression step in order to store or transmit this information
efficiently. The compression step uses some basis to represent a signal (e.g., Fourier,
wavelets, etc.) and essentially throws away a large fraction of coefficients, leaving a
relatively few important ones. Thus, a natural question is whether the compression
step can be combined with the acquisition step, in order to avoid the collection of an
unnecessarily large number of samples.

As it turns out, the above question can be answered positively. Let s ∈ Rn be a
signal that can be represented sparsely in some basis2 B, i.e. s = Bx, where B is an
n× n matrix of basis vectors (columns), and where x ∈ Rn is a sparse vector of the
signal’s coordinates with only k << n nonzeros. Though the signal is not observed
directly, we can obtain a set of linear measurements:

y = Ls = LBx = Ax, (1.2)

where L is an m × n matrix, and y ∈ Rm is a set of m measurements, or samples,
where m can be much smaller than the original dimensionality of the signal, hence
the name “compressed sampling”. The matrix A = LB is called the design or mea-
surement matrix. The central problem of compressed sensing is reconstruction of a
high-dimensional sparse signal representation x from a low-dimensional linear ob-
servation y, as it is illustrated in Figure 1.4a. Note that the problem discussed above
describes a noiseless signal recovery, while in practical applications there is always
some noise in the measurements. Most frequently, Gaussian noise is assumed which
leads to the classical linear, or OLS, regression problem, discussed before, though
other types of noise are possible. The noisy signal recovery problem is depicted in

2As mentioned above, Fourier and wavelet bases are two examples commonly used in image process-
ing, though in general finding a good basis that allows for a sparse signal representation is a challenging
problem, known as dictionary learning, and discussed later in this book.
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(a) noiseless signal recovery

(b) noisy signal recovery

FIGURE 1.4: Compressed sensing – collecting a relatively small number of linear
measurements that allow for an accurate reconstruction of a high-dimensional sparse
signal: (a) noiseless case, (b) noisy case.

Figure 1.4b, and is equivalent to the diagnosis and sparse regression problems en-
countered in sections 1.1.1 and 1.1.2, respectively.

1.2 Sparse Recovery in a Nutshell
The following two questions are central to all applications that involve sparse

signal recovery: when is it possible to recover a high-dimensional sparse signal from
a low-dimensional observation vector? And, how can we do this in a computationally
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efficient way? The key results in sparse modeling and compressed sensing identify
particular conditions on the design matrix and signal sparsity that allow for an accu-
rate reconstruction of the signal, as well as optimization algorithms that achieve such
reconstruction in a computationally efficient way.

Sparse signal recovery can be formulated as finding a minimum-cardinality so-
lution to a constrained optimization problem. In the noiseless case, the constraint
is simply y = Ax, while in the noisy case, assuming Gaussian noise, the solution
must satisfy ||y − y∗||2 ≤ ε, where y∗ = Ax is the (hypothetical) noiseless mea-
surement, and the actual measurement is ε-close to it in l2-norm (Euclidean norm).
The objective function is the cardinality of x, i.e. the number of nonzeros, which is
often denoted ||x||0 and called l0-norm of x (though, strictly speaking, l0 is not a
proper norm), as discussed in the following chapters. Thus, the optimization prob-
lems corresponding to noiseless and noisy sparse signal recovery can be written as
follows:

(noiseless) min
x
||x||0 subject to y = Ax, (1.3)

(noisy) min
x
||x||0 subject to ||y −Ax||2 ≤ ε. (1.4)

In general, finding a minimum-cardinality solution satisfying linear constraints is an
NP-hard combinatorial problem (Natarajan, 1995). Thus, an approximation is neces-
sary to achieve computational efficiency, and it turns out that, under certain condi-
tions, approximate approaches can recover the exact solution.

Perhaps the most widely known and striking result from the compressed sensing
literature is that, for a random design matrix, such as, for example, a matrix with i.i.d.
Gaussian entries, with high probability, a sparse n-dimensional signal with at most
k nonzeros can be reconstructed exactly from only m = O(k log(n/k)) measure-
ments (Candès et al., 2006a; Donoho, 2006a). Thus, the number of samples can be
exponentially smaller than the signal dimensionality. Moreover, with this number of
measurements, a computationally efficient recovery is possible by solving a convex
optimization problem:

min
x
||x||1 subject to y = Ax, (1.5)

where ||x||1 =
∑n
i=1 |xi| is the l1-norm of x. As shown in chapter 2, the above

problem can be reformulated as a linear program and thus easily solved by standard
optimization techniques.

More generally, in order to guarantee an accurate recovery, the design matrix
does not necessarily have to be random, but needs to satisfy some “nice” proper-
ties. The commonly used sufficient condition on the design matrix is the so-called
restricted isometry property (RIP) (Candès et al., 2006a), which essentially states
that a linear transformation defined by the matrix must be almost isometric (recall
that an isometric mapping preserves vector length), when restricted to any subset of
columns of certain size, proportional to the sparsity k. RIP and other conditions will
be discussed in detail in chapter 3.

Furthermore, even if measurements are contaminated by noise, sparse recovery
is still stable in a sense that recovered signal is a close approximation to the original
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one, provided that the noise is sufficiently small, and that the design matrix satis-
fies certain properties such as RIP (Candès et al., 2006a). A sparse signal can be
recovered by solving a “noisy” version of the above l1-norm minimization problem

min
x
||x||1 subject to ||y −Ax||2 ≤ ε. (1.6)

The above optimization problem can be also written in two equivalent forms (see,
for example, section 3.2 of (Borwein et al., 2006)): either as another constrained
optimization problem, for some value of bound t, uniquely defined by ε:

min
x
||y −Ax||22 subject to ||x||1 ≤ t, (1.7)

or as an unconstrained optimization, using the corresponding Lagrangian for some
appropriate Lagrange multiplier λ uniquely defined by ε, or by t:

min
x

1

2
||y −Ax||22 + λ||x||1. (1.8)

In statistical literature, the latter problem is widely known as LASSO regression
(Tibshirani, 1996), while in signal processing it is often referred to as basis pursuit
(Chen et al., 1998).

1.3 Statistical Learning versus Compressed Sensing
Finally, it is important to point out similarities and differences between statisti-

cal and engineering applications of sparse modeling, such as learning sparse models
from data versus sparse signal recovery in compressed sensing. Clearly, both statisti-
cal and engineering applications involving sparsity give rise to the same optimization
problems, that can be solved by the same algorithms, often developed in parallel in
both statistical and signal processing communities.

However, statistical learning pursues somewhat different goals than compressed
sensing, and often presents additional challenges:

• Unlike compressed sensing, where the measurement matrix can be constructed
to have desired properties (e.g., random i.i.d. entries), in statistical learning, the
design matrix consists of the observed data, and thus we have little control over
its properties. Thus, matrix properties such as RIP are often not satisfied; also
note that testing RIP property of a given matrix is NP-hard, and thus computa-
tionally infeasible in practice.

• Moreover, when learning sparse models from real-life datasets, it is difficult
to evaluate the accuracy of sparse recovery, since the “ground-truth” model
is usually not available, unlike in the compressed sensing setting, where the
ground truth is the known original signal (e.g., an image taken by a camera).
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An easily estimated property of a statistical model is its predictive accuracy on
a test data set; however, predictive accuracy is a very different criterion from
the support recovery, which aims at correct identification of nonzero coordi-
nates in a “ground-truth” sparse vector.

• While theoretical analysis in compressed sensing is often focused on sparse
finite-dimensional signal recovery and the corresponding conditions on the
measurement matrix, the analysis of sparse statistical models is rather focused
on asymptotic consistency properties, i.e. decrease of some statistical errors of
interest with the growing number of dimensions and samples. Three typical
performance metrics include: (1) prediction error – predictions of the esti-
mated model must converge to the predictions of the true model in some norm,
such as l2-norm; this property is known as model efficiency; (2) parameter es-
timation error – estimated parameters must converge to the true parameters,
in some norm such as l2-norm; this property is called parameter estimation
consistency; and (3) model-selection error – the sparsity pattern, i.e. the loca-
tion of nonzero coefficients, must converge to the one of the true model; this
property is also known as model selection consistency, or sparsistency (also,
convergence of the sign pattern is called sign consistency).

• Finally, recent advances in sparse statistical learning include a wider range
of problems beyond the basic sparse linear regression, such as sparse gener-
alized linear models, sparse probabilistic graphical models (e.g., Markov and
Bayesian networks), as well as a variety of approaches enforcing more com-
plicated structured sparsity.

1.4 Summary and Bibliographical Notes
In this chapter, we introduced the concepts of sparse modeling and sparse signal

recovery, and provided several motivating application examples, ranging from net-
work diagnosis to mental state prediction from fMRI and to compressed sampling
of sparse signals. As it was mentioned before, sparse signal recovery dates back
to at least 1943, when combinatorial group testing was introduced in the context
of Boolean signals and logical-OR measurements (Dorfman, 1943). Recent years
have witnessed a rapid growth of the sparse modeling and signal recovery areas,
with the particular focus on continuous sparse signals, their linear projections, and
l1-norm regularized reconstruction approaches, triggered by the breakthrough re-
sults of (Candès et al., 2006a; Donoho, 2006a) on high-dimensional signal recov-
ery via l1-based methods, where the number of measurements is logarithmic in
the number of dimensions – an exponential reduction when compared to the stan-
dard Shannon-Nyquist theory. Efficient l1-norm based sparse regression, such as
LASSO (Tibshirani, 1996) in statistics and its signal-processing equivalent, basis
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pursuit (Chen et al., 1998), are now widely used in various high-dimensional appli-
cations.

In the past years, sparsity-related research has expanded significantly beyond the
original signal recovery formulation, to include sparse nonlinear regression, such
as Generalized Linear Models (GLMs), discussed in chapter 7; sparse probabilistic
networks, such as Markov and Bayesian networks, discussed in chapter 8; sparse
matrix factorization, such as dictionary learning; sparse PCA and sparse nonnegative
matrix factorization (NMF), discussed in chapter 9; and other types of sparse settings.

As it was already mentioned, due to the enormous amount of recent developments
in sparse modeling, a number of important topics remain out of scope of this book.
One example is the low-rank matrix completion – a problem appearing in a variety
of applications, including collaborative filtering, metric learning, multi-task learning,
and many others. Since the rank minimization problem, similarly to l0-norm mini-
mization, is intractable, it is common to use its convex relaxation by the trace norm,
also called the nuclear norm, which is the l1-norm of the vector of singular values.
For more details on low-rank matrix learning and trace norm minimization, see, for
example, (Fazel et al., 2001; Srebro et al., 2004; Bach, 2008c; Candès and Recht,
2009; Toh and Yun, 2010; Negahban and Wainwright, 2011; Recht et al., 2010; Ro-
hde and Tsybakov, 2011; Mishra et al., 2013) and references therein. Another area
we are not discussing here in detail is sparse Bayesian learning (Tipping, 2001; Wipf
and Rao, 2004; Ishwaran and Rao, 2005; Ji et al., 2008), where alternative priors, be-
yond the Laplacian (equivalent to the l1-norm regularizer), are introduced in order
to enforce the solution sparsity. Also, besides several applications of sparse model-
ing that we will discuss herein, there are multiple others that we will not be able
to include, in the fields of astronomy, physics, geophysics, speech processing, and
robotics, just to name a few.

For further references on recent developments in the field, as well as for tutorials
and application examples, we refer the reader to the online repository available at the
Rice University website3, and to other online resources4. Several recent books focus
on particular aspects of sparsity; for example, (Elad, 2010) provides a good introduc-
tion to sparse representations and sparse signal recovery, with a particular focus on
image-processing applications. A classical textbook on statistical learning by (Hastie
et al., 2009) includes, among many other topics, introduction to sparse regression and
its applications. Also, a recent book by (Bühlmann and van de Geer, 2011) focuses
specifically on sparse approaches in high-dimensional statistics. Moreover, various
topics related to compressed sensing are covered in several recently published mono-
graphs and edited collections (Eldar and Kutyniok, 2012; Foucart and Rauhut, 2013;
Patel and Chellappa, 2013).

3http://dsp.rice.edu/cs.
4See, for example, the following blog at http://nuit-blanche.blogspot.com.
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The focus of this chapter is on optimization problems that arise in sparse signal re-
covery. We start with a simple case of noiseless linear measurements, which is later
extended to more realistic noisy recovery formulation(s). Since the ultimate problem
of finding the sparsest solution – the solution with the smallest number of nonze-
ros, also called the l0-norm – is computationally hard (specifically, NP-hard) due to
its nonconvex combinatorial nature, one must resort to approximations. Two main
approximation approaches are typically used in sparse recovery: the first one is to
address the original NP-hard combinatorial problem via approximate methods, such
as greedy search, while the second is to replace the intractable problem with its con-
vex relaxation that is easy to solve. In other words, one can either solve the exact
problem approximately, or solve an approximate problem exactly. In this chapter, we
primarily discuss the second approach – convex relaxations–while the approximate
methods such as greedy search are discussed later in chapter 5. We consider the fam-
ily of lq-norm bounds on the l0-norm, and focus on the l1-norm, in particular, since
it is the only norm in the lq-family that is both sparsity-inducing and convex. Finally,
we discuss the Bayesian (point estimation) perspective on sparse signal recovery and
sparse statistical learning, which yields the maximum a posteriory (MAP) parame-
ter estimation. The MAP approach gives rise to regularized optimization, where the
negative log-likelihood and the prior on the parameters (i.e., on the signal we wish to
recover) correspond to a loss function and a regularizer, respectively.

15
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2.1 Noiseless Sparse Recovery
We follow the notation introduced before: x = (x1, . . . , xn) ∈ R

n is an un-
observed sparse signal, y = (y1, . . . , ym) ∈ R

m is a vector of measurements, or
observations, and A = {aij} ∈ R

m×n is a design matrix. Also, Ai,: and A:,j will
denote the i-th row and the j-th column of A, respectively. However, when there
is no ambiguity, and the notation is clearly defined in a particular context, we will
often use ai as a shorthand for the i-th row or the i-th column-vector of the matrix
A. In general, boldface upper-case letters, such as A, will denote matrices, boldface
lower-case letters, such as x, y, and ai, will denote vectors, and regular (non-bold)
lower-case letters, such as xi, will denote scalars. For example, note the difference
between a scalar xi, usually denoting the i-th coordinate of the vector x, and the
vector xi denoting the i-th vector in some set of vectors.

The simplest problem setting we are going to start with is the noiseless signal
recovery from a set of linear measurements, i.e. solving for x the system of linear
equations:

Ax = y. (2.1)

It is usually assumed that A is a full-rank matrix, and thus for any y ∈ R
m, the above

system of linear equations has a solution. Note that when the number of unknown
variables, i.e. dimensionality of the signal, exceeds the number of observations, i.e.
when n ≥ m, the above system is underdetermined, and can have infinitely many
solutions. In order to recover the signal x, it is necessary to further constrain, or
regularize, the problem. This is usually done by introducing an objective function, or
regularizer R(x), that encodes additional properties of the signal, with lower values
corresponding to more desirable solutions. Signal recovery is then formulated as a
constrained optimization problem:

min
x∈Rn

R(x) subject to y = Ax. (2.2)

For example, when the desired quality is sparsity,R(x) can be defined as the number
of nonzero elements, or the cardinality of x, also called the l0-norm, and denoted
||x||0. Note, however, that the l0-norm is not a proper norm, formally speaking, as
we discuss shortly. The rationale for calling the cardinality of a vector its l0-norm is
explained below.

In general, lq-norms for particular values of q, denoted ||x||q , or, more precisely,
their q-th power ||x||qq , are frequently used as regularizers. We will now take a closer
look at lq-norms and their properties (also, see Appendix). Recall that for a q ≥ 1,
the lq-norm, also called just q-norm of a vector x ∈ R

n, is defined as follows:

||x||q =
(

n∑

i=1

|xi|q
)1/q

. (2.3)
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Among most frequently used lq-norms are the l2-norm (Euclidean norm)

||x||2 =

√
√
√
√

n∑

i=1

|xi|2 (2.4)

and the l1-norm

||x||1 =

n∑

i=1

|xi|. (2.5)

As it is shown in Appendix, section A.1, for q ≥ 1, the functions defined in eq. 2.3
are indeed proper norms, i.e., they satisfy the standard norm properties. When 0 <
q < 1, the function defined in eq. 2.3 is not a proper norm since it violates the triangle
inequality (again, see section A.1 in Appendix), although, for convenience sake, it is
still quite often called lq-norm in the literature, ignoring the abuse of terminology.

We now go back to the cardinality of a vector and its relation to ||lq||-norms. The
function ||x||0 referred to as l0-norm of x is defined as a limit of ||x||qq , i.e. lq-norms
to the q-th power, when q → 0:

||x||0 = lim
q→0

||x||qq = lim
q→0

p∑

i=1

|xi|q =
p∑

i=1

lim
q→0

|xi|q. (2.6)

For each xi, when q → 0, |xi|q → I(xi), the indicator function, which is 0 at
x = 0 and 1 otherwise. Figure 2.1 illustrates this convergence, showing how |xi|q
for several decreasing values of q gets closer and closer to the indicator function.
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FIGURE 2.1: ||x||0-norm as a limit of ||x||qq when q → 0.
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Thus, ||x||0 =
∑p
i=1 I(xi), which gives exactly the number of nonzero elements of

vector x, or its cardinality1. Using the cardinality function, we can now write the
problem of sparse signal recovery from noiseless linear measurements as follows:

(P0) : min
x
||x||0 subject to y = Ax (2.7)

2.2 Approximations
As it was mentioned before, the problem (P0) defined in the eq. 2.7 is NP-hard

(Natarajan, 1995), i.e. no known algorithm can solve it efficiently, in polynomial
time. Therefore, approximations are necessary. The good news is that, under appro-
priate conditions, the optimal, or close to the optimal, solution(s) can still be recov-
ered efficiently by certain approximate techniques.

The following two types of approximate approaches are commonly used. The
first one is to apply a heuristic-based search, such as a greedy search, in order to
explore the solution space of (P0). For example, one can start with a zero vector and
keep adding nonzero coordinates one by one, selecting at each step the coordinate
that leads to the best improvement in the objective function (i.e., greedy coordi-
nate descent). In general, such heuristic search methods are not guaranteed to find
the global optimum. However, in practice, they are simple to implement, very ef-
ficient computationally and often find sufficiently good solutions. Moreover, under
certain conditions, they are even guaranteed to recover the optimal solution. Greedy
approaches to the sparse signal recovery problem will be discussed later in this book.

An alternative approximation technique is the relaxation approach based on re-
placing an intractable objective function or constraint by a tractable one. For ex-
ample, convex relaxations approximates a non-convex optimization problem by a
convex one, i.e. by a problem with convex objective and convex constraints. Such
problems are known to be “easy”, i.e. there exists a variety of efficient optimiza-
tion methods for solving convex problems. Clearly, besides being easy to solve,
e.g., convex, the relaxed version of the (P0) problem must also enforce solution
sparsity. In the following sections, we discuss lq-norm based relaxations, and show
that the l1-norm occupies a unique position among them, combining convexity with
sparsity.

1Note again, that the name l0-norm can be somewhat misleading since ||x||0 is clearly not a proper
norm, as it violates the absolute homogeneity property: indeed, ||αx||0 = ||x||0 for α �= 0; in other
words, l0-“norm” is not scale-sensitive.
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2.3 Convexity: Brief Review
We will now briefly review the notion of convexity, before starting the discussion

of convex relaxations for our sparse recovery problem (P0).
Given two vectors, x1 ∈ R

n and x2 ∈ R
n, and a scalar α ∈ [0, 1], vector

x = αx1 + (1−α)x2 is called a convex combination of x1 and x2. A set S is called
a convex set if any convex combination of its elements belongs to the set, i.e.

∀x1,x2 ∈ S, ∀α ∈ [0, 1], x ∈ S if x = αx1 + (1− α)x2.

In other words, a set is convex if for any two points in the set, the line segment
connecting them also lies within the set.

A function f(x) : S → R defined on a convex set S in a vector space is called a
convex function if

∀x1,x2 ∈ S and ∀α ∈ [0, 1], f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

In other words, the line segment connecting a pair of points in the plot of a convex
function is always above the plot of that function (see Figure 2.2). Another way to
interpret this geometrically is to say that the set of points above the function’s plot
(also called the epigraph of a function) is convex. A function is called strictly convex
if the above inequality is strict, i.e.

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2),

FIGURE 2.2: A convex function.
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assuming x1 
= x2 and 0 < α < 1. An important property of a convex function is
that any of its local minima is also a global one. Moreover, a strictly convex function
has a unique global minimum.

A convex optimization problem is minimization of a convex function over a con-
vex set of feasible solutions defined by the constraints. Due to the properties of the
convex objective functions, convex problems are easier to solve than general opti-
mization problems. Convex optimization is a traditional area of research in optimiza-
tion literature, with many efficient solution techniques developed in the past years.

2.4 Relaxations of (P0) Problem
We will now return to our problem of main interest, (P0), i.e. cardinality mini-

mization with linear constraints. It is easy to see that the constraint y = Ax yields
a convex feasible set; indeed, given two feasible solutions x1 and x2, satisfying this
constraint, any convex combination of them is also feasible, since

A(αx1 + (1− α)x2) = αAx1 + (1 − α)Ax2 = αy + (1 − α)y = y.

Thus, in order to relax (P0) to a convex problem, we only need to replace the objec-
tive function, ||x||0, by a convex one.

Herein, we will focus on the lq-norms as possible relaxations of l0. More pre-
cisely, we will consider the q-th power of lq-norms, i.e. the functions ||x||qq , as reg-
ularization functions R(x) in the general problem setting in eq. 2.2. As Figure 2.1
shows for the one-dimensional case, these functions are convex for q ≥ 1, and non-
convex for q < 1. For example, l2-norm, or Euclidean norm (defined in eq. 2.4), is
perhaps one of the most well-known and commonly used lq-norms, and is a natural
first choice as a relaxation of l0-norm. We get

(P2) : min
x
||x||22 subject to y = Ax (2.8)

There are several advantages to using this objective: the function ||x||22 is strictly con-
vex and thus always has a unique minimum. Moreover, the solution to the problem
(P2) is available in a closed form. Indeed, to solve the problem (P2), we write its
Lagrangian:

L(x) = ||x||22 + λT (y −Ax)

where λ is anm-dimensional vector with all coordinates equal to λ, and the optimal-
ity conditions

∂L(x)
∂x

= 2x+ATλ = 0.

This gives the unique optimal solution x∗ = − 1
2A

Tλ. Since x∗ must satisfy y =
Ax∗, we get λ = −2(AAT )−1y, and thus

x∗ = −1

2
ATλ = AT (AAT )−1y.
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This closed form solution to the (P2) problem is also known as a pseudo-inverse
solution of y = Ax when A has more columns than rows (as mentioned earlier,
it is also assumed that A is full-rank, i.e. all of its rows are linearly independent).
However, despite its convenient properties, ||x||22 objective has a serious drawback:
it turns out that the optimal solution (P2) is practically never sparse, and thus cannot
be used as a good approximation in sparse signal recovery.

2.5 The Effect of lq-Regularizer on Solution Sparsity
To understand why the l2-norm does not promote the solution sparsity while the

l1-norm does, and to understand the convexity and sparsity-inducing properties of
lq-norms in general, let us consider the geometry of a (Pq) problem, where ||x||qq
replaces the original cardinality objective ||x||0:

(Pq) : min
x
||x||qq subject to y = Ax. (2.9)

Sets of vectors with same value of the function f(x), i.e. f(x) = const, are called the
level sets of f(x). For example, the level sets of ||x||qq function are vector sets with
same lq-norm. Figure 2.3a shows examples of the level sets ||x||qq = 1 for several
values of q. A set of vectors satisfying ||x||qq ≤ rq is called an lq-ball of radius r;
its “surface” (set boundary) is the corresponding level set ||x||qq = rq . Note that the
corresponding lq-balls bounded by the level sets in Figure 2.3a are convex for q ≥ 1
(line segments between a pair of its points belong to the ball), and nonconvex for
0 < q < 1 (line segments between a pair of its points do not always belong to the
ball).

From a geometric point of view, solving the optimization problem (Pq) is equiva-
lent to “blowing up” lq-balls with the center at the origin, i.e., increasing their radius,
starting from 0, until they touch the hyperplane Ax = y, as it is shown in Figure
2.3b. The resulting point is the minimum lq-norm vector that is also a feasible point,
i.e. it is the optimal solution of (Pq).

Note that when q ≤ 1, lq-balls have sharp “corners” on the coordinate axis,
corresponding to sparse vectors, since some of their coordinates are zero, but lq-balls
for q > 1 do not have this property. Thus, for q ≤ 1, lq-balls are likely to meet the
hyperplane Ax = y at the corners, thus producing sparse solutions, while for q > 1
the intersection practically never occurs at the axes, and thus solutions are not sparse.
Note that this is an intuitive geometric illustration of the lq-norm properties, rather
than a formal argument; a more formal analysis is provided later in this book.

In summary, we need to approximate the intractable combinatorial l0-norm ob-
jective by a function that would be easier to optimize, but that would also produce
sparse solutions. Within the family of ||x||qq functions, only those with q ≥ 1 are
convex, but only those with 0 < q ≤ 1 are sparsity-enforcing. The only function
within that family that has both useful properties is therefore ||x||1, i.e. the l1-norm.
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(a)

(b)

FIGURE 2.3 (See color insert): (a) Level sets ||x||qq = 1 for several values of q. (b)
Optimization of (Pq) as inflation of the origin-centered lq-balls until they meet the
set of feasible points Ax = y.

This unique combination of sparsity and convexity is the reason for the widespread
use of l1-norms in the modern sparse signal recovery field. In the noiseless case, the
l1-norm relaxation of intractable (P0) problem, stated as the (P1) problem below,
became the main focus of theoretical and algorithmic studies:

(P1) : min
x
||x||1 subject to y = Ax. (2.10)

2.6 l1-norm Minimization as Linear Programming
Note that the problem (P1) can be also reformulated as a linear program (Chen

et al., 1998), a very well studied class of optimization problems with efficient solution
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techniques. Indeed, let us introduce new nonnegative variables u,v ∈ R
n, such that

x = u − v, and ui are nonzero only at positive entries of x, while vi are nonzero
only at negative entries of x. Using the notation z = [uT ,vT ]T ∈ R

2n, we now get
||x||1 =

∑2n
i zi, and Ax = A(u− v) = [A,−A]z. Then (P1) is equivalent to the

following Linear Program (LP):

min
z

2n∑

i

zi subject to y = [A,−A]z and z ≥ 0. (2.11)

Now we just need to verify that, for an optimal solution, the above assumption about
u and v having non-overlapping supports indeed holds, with u and v corresponding
to positive-only and negative-only entries in x, respectively. Indeed, let us assume
the opposite, then there exist uj and vj , for some j, that are both nonzero; also, due
to the nonnegativity constraint above, uj > 0 and vj > 0. Without loss of generality,
we can assume that uj ≥ vj , and replace uj by u′j = uj − vj and vj by v′j = 0 in
the solution to the above LP. Clearly, the nonnegativity constraint is still satisfied, as
well as the linear constraint y = [A,−A], since Ajuj − Ajvj = Aju

′
j − Ajv

′
j , so

the new solution is still feasible. However, it also reduces the objective function by
2vj , which contradicts the optimality of the initial solution. Thus, we showed that u
and v are indeed non-overlapping, i.e. the initial assumption about decomposing x
into positive-only and negative-only parts holds, and thus the problem (P1) is indeed
equivalent to the above linear program in eq. 2.11.

2.7 Noisy Sparse Recovery
So far we considered an idealistic setting with noiseless measurements. How-

ever, in practical applications, such as image processing or statistical data modeling,
the measurement noise is unavoidable. Thus, the linear equation constraint Ax = y
must be relaxed in order to allow for some discrepancy between the “ideal” observa-
tion Ax and its realistic noisy version. For example, it is typically replaced by the
inequality ||y−Ax||2 ≤ ε, stating that the actual measurement vector y is ε-close, in
Euclidean norm, to the (unavailable) noiseless measurement Ax. (From a probabilis-
tic perspective, Euclidean norm, as we discuss in more detail later, arises from the
Gaussian noise assumption about observations; other noise models lead to a wider
class of distances.) Such relaxation is also helpful for exploring approximate solu-
tions to the original noiseless problem (P0). Moreover, a relaxation is necessary in
cases when there are more observations than unknowns, i.e. more rows than columns
in A, a common situation in the classical regression setting, and thus the linear sys-
tem Ax = y may have no solutions. The noisy sparse recovery problem can be then
written as follows:

(P ε0 ) : min
x
||x||0 subject to ||y −Ax||2 ≤ ε. (2.12)
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The corresponding l1-norm relaxation of the l0-norm objective, similarly to the
noiseless case, can be written as

(P ε1 ) : min
x
||x||1 subject to ||y −Ax||2 ≤ ε. (2.13)

Note that, equivalently, we could impose the constraint on the square of the l2-norm,
rather than the l2-norm, i.e. ||y−Ax||22 ≤ ν, where ν = ε2. Then, using an appropri-
ate Lagrange multiplier λ(ε), denoted simply λ below, we can also rewrite the above
problem as an unconstrained minimization:

(Pλ1 ) : min
x

1

2
||y −Ax||22 + λ||x||1, (2.14)

or, for an appropriate parameter t(ε), denoted simply as t, the same problem can be
also rewritten as follows:

(P t1) : min
x
||y −Ax||22 subject to ||x||1 ≤ t. (2.15)

As we already mentioned in the previous chapter, the above l1-norm regular-
ized problem, especially in its two latter forms, (Pλ1 ) and (P t1), is widely known as
the LASSO (Least Absolute Shrinkage and Selection Operator) (Tibshirani, 1996) in
statistical literature, and as the Basis Pursuit (Chen et al., 1998) in signal process-
ing. Note that, similarly to noiseless recovery problem in the previous section, the
problem (P λ1 ) can be reformulated as a quadratic programming (QP), which can be
solved by standard optimization toolboxes:

min
x+,x−∈R

n
+

1

2
||y −Ax+ +Ax−||22 + λ(1Tx+ + 1Tx−). (2.16)

The geometry of the LASSO problem is demonstrated in Figure 2.4, for the
two special cases: (a) n ≤ m, the low-dimensional case, when the number of
measurements exceeds the number of variables, and (b) the high-dimensional case,
i.e. n > m. In both cases, the l1-norm constraint is shown as the diamond-
shaped area with “pointy edges” corresponding to sparse feasible solutions, and the
level sets of the quadratic objective function in eq. 2.15 have different shape de-
pending on whether the number of variables exceeds the number of observations
or not.

In the low-dimensional case when n ≤ m, the quadratic objective function in
eq. 2.15 has the unique minimum x̂ = (ATA)−1ATy, provided that the matrix A
has a full column-rank, i.e. its columns are linearly independent. This can be easily
verified by taking the derivative of the objective function in eq. 2.15:

f(x) = ||y −Ax||22 = (y −Ax)T (y −Ax),

and setting it to zero
∂f(x)

∂x
= −2AT (y −Ax) = 0.
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FIGURE 2.4: Geometry of the noisy sparse recovery via l1-minimization, i.e. prob-
lem (P ε1 ), in two cases: (a) n ≤ m, or a low-dimensional case, as in classical regres-
sion setting with more observations than unknowns; here x̂ = (ATA)−1ATy is the
unique ordinary least squares (OLS) solution; (b) n > m, or high-dimensional case,
with more unknowns than observations; in this case, there are multiple solutions of
the form x̂+ z, ∀z ∈ N(A), where N(A) is the null space of A.

This gives us the unique solution x̂ = (ATA)−1ATy, also called the Ordinary Least
Squares (OLS) solution, since minimization of the above objective is equivalent to
solving the basic OLS regression problem:

(OLS) : min
x
||y −Ax||22.

The OLS solution is also known as a pseudo-inverse solution of y = Ax when A has
more rows than columns2. Note that the OLS solution to the least-squares problem
above exists even if the solution to the system of linear equations y = Ax does not,
which can happen in cases when there are more equations than unknowns, and thus
least squares relaxation is used in such cases. The level sets of the objective function
||y − Ax||22 = const start with the single point x̂ at the minimum, and for larger
values of the function correspond to ellipses, as shown in Figure 2.4a.

On the other hand, when m < n, and A is full row-rank, linear system y = Ax
always has a solution, such as the minimum-l2-norm solution x̂ = AT (AAT )−1y of
(P2), i.e. pseudo-inverse of y = Ax in cases of more columns than rows. Moreover,
there are infinitely many solutions of the form x̂ + z, for all z ∈ N(A), where
N(A) is the null space of A, i.e. a set of all points such that Az = 0, and thus

2Note that the solution of the (P2) problem mentioned above was also called a pseudo-inverse solution,
but for the case when A had more columns than rows, and was full row-rank, i.e. all its rows were linearly
independent.
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A(x̂ + z) = Ax̂ = y. All these solutions form a hyperplane Ax = y (line in two-
dimensions, as shown in Figure 2.4b), corresponding to the minimal-value level set of
the objective function, i.e. ||y−Ax||22 = 0. Any other level set ||y−Ax||22 = const
will corresponds to two hyperplanes parallel to Ax = y, at the same fixed distance
from it (see Figure 2.4b).

Let t0 = minz∈N(A) ||x̂ + z||1 be the minimum l1-norm achieved by the solu-
tions to the linear system y = Ax (or the single solution x̂ in case of m ≥ n). We
will assume that t < t0 in the eq. 2.15, otherwise the l1-norm constraint is vacu-
ous, i.e. the LASSO problem becomes equivalent to the unconstrained ordinary least
squares. Then the least-squares solution(s) are located outside the feasible region,
and thus any solution x∗ to eq. 2.15 must be on the boundary of that region, i.e.
when the level sets of the objective function first meet the feasible region, which
implies ||x∗||1 = t. Note that the diamond-shaped feasible region ||x||1 < t tends
to meet the level sets of the quadratic objective function at the diamond’s vertices
(this is most easily seen in two-dimensional cases, but also generalizes to multidi-
mensional cases), which correspond to sparse solutions. This example illustrates the
intuition behind the sparsity-enforcing property of the l1-norm constraint, similarly
to the noiseless sparse recovery problem.

Note that the feasible region defined by the constraint ||x||1 ≤ t is convex; since
the quadratic objective function is also convex, the solution set of the LASSO prob-
lem is convex as well, i.e. any convex combination of the solution is also a solution.
The properties of LASSO solutions discussed above can be now summarized as fol-
lows:

Theorem 2.1. (Osborne et al., 2000b) 1. If m ≥ n (more samples than unknowns),
then the LASSO problem in eq. 2.15 has a unique solution x∗, and ||x∗||1 = t.
2. If n > m (less samples than unknowns), then a solution x∗ of the LASSO problem
exists and ||x∗||1 = t for any solution. 3. Also, if x∗

1 and x∗
2 are both solutions of the

LASSO problem, then their convex combination αx∗
1 +(1−α)x∗

2, where 0 ≤ α ≤ 1,
is also a solution.

We now mention a couple of other basic properties of LASSO solutions, such
as optimality conditions and solution (or regularization) path. The optimality con-
ditions, obtained by setting to zero the subgradient3 of the LASSO objective, are
commonly used in the literature; for example, see (Fuchs, 2005), as well as more
recent work by (Mairal and Yu, 2012), among several others.

Lemma 2.2. (Optimality conditions) A vector x̂ ∈ Rn is a solution to the LASSO
problem (P λ1 ) given in eq. 2.14 if and only if the following conditions hold for all
i ∈ {1, . . . , n}:

aTi (y −Ax̂) = λ sign(x̂i) if x̂i 
= 0,

|aTi (y −Ax̂)| ≤ λ if x̂i = 0,

where ai is the i-th column of the matrix A, and where sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0, and sign(x) = 0 otherwise.

3Chapter 5 discusses subgradients in more detail.
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A regularization path, or solution path, of LASSO is the sequence of all solutions
obtained for varying regularization parameter λ > 0:

x̂(λ) = argmin
x
f(x, λ) = argmin

x

1

2
||y −Ax||22 + λ||x||1.

An important property of the LASSO solution path is its piecewise linearity, which
allows for efficient active-set methods such as the homotopy algorithm of (Osborne
et al., 2000a) and LARS (Efron et al., 2004), presented later in chapter 5. An intuition
behind the piecewise linearity of the LASSO path is as follows. Let λ1 < λ2 be
two sufficiently close values of λ, so that going from the solution x̂(λ1) to x̂(λ2)
does not (yet) require any coordinate of x̂ to change its sign. Then it is easy to see
that, for all 0 ≤ α ≤ 1, the optimality conditions stated above are satisfied for
λ = αλ1 + (1− α)λ2 and for x̂ = αx̂(λ1) + (1 − α)x̂(λ2), and thus x̂(λ) = x̂. In
other words, the regularization path between λ1 and λ2 is a line, as long as there is
no sign change in the corresponding solutions.

2.8 A Statistical View of Sparse Recovery
We now discuss an alternative view at the sparse recovery problem, which typi-

cally arises in the context of sparse statistical modeling. As it was already mentioned
in chapter 1, in statistical learning settings, the columns of the design matrix A cor-
respond to random variables Aj , called predictors, and the rows of A correspond to
samples, i.e. to the observations of predictive variables, which are often assumed to
be independent and identically distributed, or i.i.d. Also, the entries of y correspond
to observations of another random variable, Y , called the response variable. The task
is to learn a statistical model capable of predicting the response, given the predictors.
For example, in a functional MRI analysis (fMRI), columns of A typically corre-
spond to BOLD signals at particular voxels in 3D brain images, the rows correspond
to particular time points at which the subsequent 3D images are obtained, and the en-
tries of y correspond to a stimulus, such as, for example, the temperature in thermal
pain studies, measured at the same time points. The unobserved vector x represents
the parameters of a statistical model describing the relationship between the response
and predictors, such as, for example, a linear model with Gaussian noise, or OLS re-
gression.

We now define a general statistical learning framework, as follows. Let Z =
(A,y) denote the observed data, i.e. a collection ofm samples containing the values
of the n predictors and the corresponding response, and let M(x) denote a model
with parameters x. The standard model selection approach assumes a loss function
LM (Z,x), or simply L(Z,x), describing the discrepancy between the observed data
and their approximation provided by the model, e.g. sum-squared loss between the
linear model estimate ŷ = Ax and the actual observations y. The model selec-
tion is commonly viewed as minimization of the loss function with respect to the
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parameters x in order to find the model that best fits the data. However, when the
number of parameters n exceeds the number of samples m, such approach is prone
to overfitting the data, i.e. learning a model that can represent the training data re-
ally well, but will fail to generalize to the test data, i.e. previously unseen data that
are presumably coming from the same data distribution. Since the ultimate objective
of statistical learning is indeed a good generalization accuracy of a model, an addi-
tional regularization constraint is typically added to the above optimization problem
in order to prevent overfitting by restricting the parameter space when searching for
the minimum-loss solution. The model selection problem can be generally stated as
follows, where regularization function is denoted as R(x):

min
x
L(Z,x) subject to R(x) ≤ t, (2.17)

which can also be rewritten in two equivalent formulations, where ε and λ are
uniquely determined by t, and vice versa:

min
x
R(x) subject to L(Z,x) ≤ ε, (2.18)

or, using an appropriate Lagrange multiplier λ,

min
x
L(Z,x) + λR(x). (2.19)

We now illustrate a probabilistic interpretation of both loss and regularization
functions. Namely, we assume that the model M(x) describes the probability distri-
bution P (Z|x) of the data, where x are the parameters of this distribution. Also, us-
ing the Bayesian approach, we assume a prior distribution of the parameters P (x|λ),
with a hyper-parameter λ, which is assumed to be fixed for now. The model learn-
ing problem is then commonly stated as the maximum a posteriori (MAP) parameter
estimation, i.e. finding a vector of parameters x maximizing the joint probability
P (Z,x) = P (Z|x)P (x|λ), or, equivalently, minimizing the negative log-likelihood

min
x
− log[P (Z|x)P (x|λ)],

which can be written as

min
x
− logP (Z|x)− logP (x|λ). (2.20)

Note that the MAP formulation of the learning problem gives rise to the regular-
ized loss minimization problem described above, with the loss function L(Z,x) =
− logP (Z|x), which is lower for the models that have higher likelihood, i.e. fit the
data better, and the regularization function R(x, λ) = − logP (x|λ) determined by
the prior on the model parameters.



Sparse Recovery: Problem Formulations 29

The MAP approach to learning statistical models from data generalizes a wide
range of problem formulations. For example, the noisy sparse recovery problem (P1),
i.e. l1-regularized sum-squared loss minimization, also called sparse linear regres-
sion, can be viewed as a particular instance of this approach, with linear Gaussian
observations and Laplace prior on the parameters. Namely, let us assume that ele-
ments of y are i.i.d. random variables following the Gaussian (normal) distribution

Nμ,σ(z) =
1√
2πσ

e−
1
2 (z−μ)2 ,

with the standard deviation σ = 1 and the mean μ = aix, where ai is the i-th row in
the matrix A, i.e.

P (yi|aix) =
1√
2π
e−

1
2 (yi−aix)

2

.

Then the likelihood of the data Z = (A,y), assuming the above model with the
fixed parameters x, is P (A,y|x) = P (y|Ax)P (A). The negative log-likelihood
loss function can be thus written as

L(y,A,x) = − logP (y|Ax) − logP (A) = − log
m∏

i=1

P (yi|aix)− logP (A) =

=
1

2

m∑

i=1

(yi − aix)
2 + const,

where const = log
√
2π − logP (A) does not depend on x, and thus can be ignored

in the objective function in eq. 2.19. Thus, our linear Gaussian assumption about y
leads to the sum-squared loss function

L(y,A,x) =
1

2

m∑

i=1

(yi − aix)
2 =

1

2
||y −Ax||22.

Next, let us assume that parameters xi, i = 1, . . . , n are i.i.d. random variables
following the Laplace prior with the hyperparameter λ:

p(z) =
λ

2
e−λ|z|.

Examples of Laplace distribution for different values of λ are shown in Figure 2.5.
Note that, as λ increases, more probability weight is assigned to values closer to zero.
With the Laplace priors on the parameters, the regularizer can be written as

R(x, λ) = − logP (x|λ) = − log
n∏

i

P (xi|λ) =

= λ
n∑

i

|xi|+ const,
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FIGURE 2.5: Laplace distribution for different values of the λ parameter.

where const = − log λ
2

does not depend on x and can be ignored in our regularized
loss minimization problem in eq. 2.19, leading to the familiar l1-norm regularizer

R(x, λ) = λ

n∑

i

|xi| = ||x||1.

Thus, as we mentioned above, the l1-norm regularized linear regression problem can
be derived as a MAP estimation in a linear Gaussian observation model with Laplace
priors on the parameters.

2.9 Beyond LASSO: Other Loss Functions and Regularizers
Sparse linear regression was just one example illustrating the regularized log-

likelihood maximization approach. Here we provide a very brief overview of several
other types of log-likelihood losses and regularizers that often appear in the litera-
ture, and are summarized in Figure 2.6. Note, however, that the examples below are
only used as a quick preview of the material covered later in this book, and, at this
point, the reader is not expected to immediately develop a deep understanding of all
new concepts involved in those examples from this very “compressed” summary.

Sparse GLM regression (chapter 7). One natural way to extend the classical linear
regression is to go beyond the standard Gaussian noise assumption to a general class
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(e.g., likelihoods) 

Generalized Linear Models 
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Loss(x) + Regularizer(x) 

FIGURE 2.6: Several examples of regularized optimization problems, with different
loss and regularization functions.

of exponential-family noise distributions, which includes, besides Gaussian, a wide
variety of distributions, such as logistic, multinomial, exponential, and Poisson, just
to name a few. When the observations are discrete-valued, e.g., binary or categori-
cal, take only positive values, or otherwise are not well-described by the Gaussian
model, exponential-family distributions may be more appropriate. We will discuss
recovery of sparse signals with exponential-family observations in chapter 7. For
now, we only would like to mention that recovering a signal x from linear observa-
tions Ax contaminated by an exponential-family noise yields the so-called Gener-
alized Linear Model (GLM) regression problems. In such models, the log-likelihood
loss is

L = − log

n∑

i=1

P (yi|Θi) =
n∑

i=1

B(yi, μi),

where Θi = aix is the natural parameter of a particular exponential-family distribu-
tion (ai denotes here the i-th row ofA), μi(Θi) is the corresponding mean parameter,
and B(yi, μi) denotes the so-called Bregman divergence between the observation yi
and its mean parameter μi. Bregman divergences generalize the Euclidean distance
associated with Gaussian noise, and each type of exponential-family noise is associ-
ated with its own Bregman divergence.

Sparse GMRFs (chapter 8). Another commonly used type of data distribution is
multivariate Gaussian, since its log-likelihood is involved in learning sparse Gaus-
sian Markov Networks, also called sparse Gaussian Markov Random Fields (GM-
RFs). This area received much attention in the recent machine-learning and statistical
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literature. The sparse GMRF learning problem is discussed in full detail in chapter
8; here we just mention that the corresponding negative log-likelihood loss function
is given by

L = − log

n∑

i=1

P (Zi|C) = tr(SC)− log det(C),

where S is the empirical covariance matrix, and C is the inverse covariance (or pre-
cision) matrix. It is usually assumed that the data are centered to have zero mean,
and thus the covariance (or inverse covariance) parameters are sufficient to define the
multivariate Gaussian distribution.

Beyond l1-regularization (chapter 6). Finally, there are various types of regulariz-
ers, beyond the l1-norm, that are used in different situations. As it was already men-
tioned, the l1-norm regularizer arises as the negative log-likelihood of the Laplace
prior. Similarly, the squared l2-norm regularizer ||x||22, just like the sum-squared loss
function discussed before, arises from the negative log-likelihood of the Gaussian
prior, and is used in ridge regression:

min
x

1

2
||y −Ax||22 + λ||x||22. (2.21)

More generally, the q-th power of the lq-norm, ||x||qq , for q ≥ 1, is a family of
regularizers used in the bridge regression (Frank and Friedman, 1993; Fu, 1998)
that includes both LASSO and ridge, and corresponds to the prior Pλ,q(x) ∼
C(λ, q)e−λ||x||

q
q :

min
x

1

2
||y −Ax||22 + λ||x||qq. (2.22)

Finally, several other regularizers extending the basic l1-norm penalty were intro-
duced recently in order to model more sophisticated, or structured sparsity patterns.
For example, sometimes we may want to select not the individual variables, but
groups (subsets) of them, assuming a given set of groups to select from. Group spar-
sity is enforced via so-called block-penalties such as l1/l2 or l1/l∞, discussed in
chapter 6. Yet another example is the Elastic Net penalty, which is a convex combi-
nation of the l1- and the l2-norm. When the groups of variables to be selected together
are not given in advance, however, some variables tend to be highly correlated; we
may want to include or exclude such correlated variables together, as a group. The
Elastic Net penalty combines the sparsity-enforcing property of the l1-norm with
the grouping effect added by the l2-norm, which enforces similar-magnitude regres-
sion coefficients on correlated variables. This property is important for interpret-
ing sparse models in biological and neuroimaging applications, just to name a few,
where predictor variables tend to be highly correlated, and the objective is to iden-
tify whole groups of such relevant variables. The Elastic Net is also discussed in
chapter 6.
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2.10 Summary and Bibliographical Notes
In this chapter, we discussed optimization problems that formalize the sparse

signal recovery from linear measurements, for both noiseless and noisy settings. The
ultimate sparse recovery problem is defined as finding the sparsest vector satisfying
a set of linear constraints, or, in other words, minimizing the l0-norm of such vector,
which is known to be an NP-hard combinatorial problem (Natarajan, 1995; see also
Appendix). In order to make the problem tractable, various convex relaxations can
be used, such as lq-norms with q ≥ 1; however, among all such relaxations, only the
l1-norm is sparsity-promoting, which explains its popularity in the sparse modeling
and signal recovery fields. Signal recovery from noisy measurements (Candès et al.,
2006b; Donoho, 2006b), in particular, is most relevant in practical applications, such
as image processing, sensor networks, biology, and medical imaging, just to name
a few; see (Resources, 2010) for a comprehensive list of references on compressed
sensing and its recent applications. Similarly to the noiseless case, this problem can
be formulated as the l0-norm minimization, subject to linear inequality constraints
(instead of linear equations), which allows for including noise in the observations.
Again, the l1-norm relaxation is commonly used instead of the l0-norm in order to
make the problem tractable while still preserving sparsity of solution(s).

Regularized loss minimization problems discussed herein can be also interpreted
as maximum a posteriory (MAP) probability parameter estimation in a model with an
appropriate probability of observed data and an appropriate prior on the parameters.
For example, the noisy sparse signal recovery via l1-regularized sum-squared loss
minimization, known as the LASSO (Tibshirani, 1996) or the Basis Pursuit (Chen
et al., 1998), can be viewed as a MAP estimation problem where linear observa-
tions are disturbed by the Gaussian noise, and where the Laplace prior is assumed
on the parameters. Other types of data distributions and priors give rise to a wide
variety of problems, as it was outlined in section 2.9, such as: structured sparsity,
which involves regularizers beyond the l1-norm, such as group LASSO, simultane-
ous LASSO, fused LASSO, and the Elastic Net, discussed in more detail in chapter
6; sparse Generalized Linear Models and sparse Gaussian Markov Networks, which
replace the objective function by the negative log-likelihood functions for the corre-
sponding statistical models, as discussed in chapters 7 and 8, respectively.

Moreover, various other loss functions have been also explored in the literature;
though we are not going to discuss all of them in this book, a brief review is provided
below. For example, a well-known alternative to the LASSO is the Dantzig selector
proposed by (Candès and Tao, 2007), which replaces the LASSO’s loss function in
eq. 2.14 by ||AT (y − Ax)||∞, i.e. by the maximum absolute value of the inner
product of the current residual (y − Ax) with all the predictors. Properties of the
Dantzig selector, as well as its relation to LASSO, have been extensively analyzed in
the recent literature; see, for example, (Meinshausen et al., 2007; Efron et al., 2007;
Bickel, 2007; Cai and Lv, 2007; Ritov, 2007; Friedlander and Saunders, 2007; Bickel
et al., 2009; James et al., 2009; Koltchinskii, 2009; Asif and Romberg, 2010). There
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are also several other popular loss functions, such as, for example, Huber loss (Huber,
1964), which combines quadratic and linear pieces, and produces robust regression
models; and hinge loss L(y,Ax) =

∑m
i=1 max(0, 1− yaix), where ai denotes the

i-th row of A; and also squared hinge loss discussed in (Rosset and Zhu, 2007),
frequently used in classification problems where each output yi is either 1 or -1.

Also, note that the collection of different structured-sparsity promoting regular-
izers considered in chapter 6 is not exhaustive. For example, a prominent regularizer
that remains out of scope of this book is the nuclear norm, also known as the trace
norm; it is used in multiple applications, e.g., in recent work on multivariate regres-
sion (Yuan et al., 2007) and clustering (Jalali et al., 2011), among many other exam-
ples; see also the bibliography section of the previous chapter for more references on
the trace norm.

We also would like to mention another important group of techniques that ex-
tend the basic LASSO approach, namely, the methods concerned with improving
the asymptotic consistency properties of LASSO. This topic has generated a consid-
erable amount of interest in sparse modeling literature; see (Knight and Fu, 2000;
Greenshtein and Ritov, 2004; Donoho, 2006c,b; Meinshausen, 2007; Meinshausen
and Bühlmann, 2006; Zhao and Yu, 2006; Bunea et al., 2007; Wainwright, 2009),
and other references below. The issue with the basic LASSO is that, in general, it
is not guaranteed to be consistent in terms of model selection – e.g., it may select
“extra” variables that do not belong to the true model (Lv and Fan, 2009); also, due
to parameter shrinkage, LASSO may produce biased parameter estimates. Herein,
we briefly mention some popular methods for improving the asymptotic consistency
of the LASSO. For example, the relaxed LASSO (Meinshausen, 2007) is a two-stage
procedure that first chooses a subset of variables via the LASSO, and then applies the
LASSO again on this subset, now with less “competition” among the variables and
thus with a smaller parameterλ selected via cross-validation; this leads to less shrink-
age, and, as a result, to less biased parameter estimates. An alternative approach,
known as smoothly clipped absolute deviation (SCAD) (Fan and Li, 2005), modifies
the LASSO penalty in order to reduce the shrinkage of large coefficients; however, it
is non-convex. Yet another convex approach, is the adaptive LASSO of (Zou, 2006)
that uses adaptive weights to penalize different coefficients in the l1-norm penalty.
Moreover, methods such as the bootstrap Lasso (Bach, 2008a) and stability-selection
(Meinshausen and Bühlmann, 2010) use the bootstrap approach, i.e. learn multiple
LASSO models on subsets of data, and then include in the model only the intersection
of nonzero coefficients (Bach, 2008a), or sufficiently frequently selected nonzero co-
efficients (Meinshausen and Bühlmann, 2010). This approach eliminates “unstable”
coefficients and improves model-selection consistency of LASSO, as well as stabil-
ity of solutions to the choice of the λ parameter. A recent book by (Bühlmann and
van de Geer, 2011) provides a comprehensive treatment of these approaches.
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This chapter provides an overview of several theoretical results that are central to
the sparse signal recovery. As already mentioned, the key questions in this field are:
What types of signals can be reconstructed accurately from an incomplete set of ob-
servations? What conditions on the design matrix and on the signal would guarantee
an accurate reconstruction? We will start this chapter with a brief overview of the
seminal results by (Donoho, 2006a) and (Candès et al., 2006a) that address these
questions, and provide a couple of illustrative examples. Note that there exist much
earlier theoretical results on sparse signal recovery, dating back to 1989 – see, for ex-
ample, (Donoho and Stark, 1989; Donoho and Huo, 2001). However, the recent work
by (Donoho, 2006a; Candès et al., 2006a) achieved a significant improvement over
these earlier results, reducing the number of samples required for the exact sparse
signal recovery from square root to logarithmic in the signal’s dimension, by going
from deterministic to probabilistic setting.

We will next discuss when the solutions of the l0- and l1-norm minimization
problems, (P0) and (P1), are unique, and what are sufficient conditions for these two
problem to be equivalent, i.e. when the exact l0-norm recovery can be achieved by
its l1-norm relaxation. More specifically, we will focus on the following properties
of the design matrix: spark, mutual coherence, null-space property, and the restricted
isometry property (RIP). We establish the deterministic part of the classical result
stating that RIP guarantees accurate recovery of a sparse signal in both noiseless and
noisy scenarios.

35



36 Sparse Modeling: Theory, Algorithms, and Applications

3.1 The Sampling Theorem
The classical result in signal processing that specifies general conditions for an

accurate signal recovery is the well-known Nyquist-Shannon sampling theorem, stat-
ing that a perfect signal recovery from discrete samples is possible when the sam-
pling frequency is greater than twice the signal bandwidth (the maximal frequency
contained by the signal). This important result was derived independently by mul-
tiple researchers, including the work of (Nyquist, 1928; Shannon, 1949), as well as
(Kotelnikov, 1933; Whittaker, 1915, 1929), and several others. The theorem is some-
times called the Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem, or just
“the sampling theorem”.

More specifically, a signal is given by some function f(t) over a continuous
domain, such as time or space, and sampling refers to the process of converting said
signal to a discrete sequence of numbers, by taking measurements at particular points
in time or space. For example, let f(t) be a signal in a time domain, and let B
hertz be the highest frequency (bandwidth) the signal contains; then, according to
the sampling theorem, sampling f(t) at a series of points spaced 1

2B seconds apart
allows to reconstruct the signal exactly. The discrete version of this theorem (see
Appendix) is applicable in the case of a (generally, complex-valued) discrete input
signal x ∈ C

N , such as, for example, an image given by a finite set of N pixels. The
theorem states that, in order to reconstruct a discrete signal, the number of acquired
Fourier samples must match the size of the signal N .

However, in many practical applications, the number of samples dictated by this
theory may be quite high, making signal acquisition too costly and also requiring
compression for transmission and storage of the collected samples. Note, however,
that the conditions of the theorem are sufficient rather than necessary, and thus a
perfect signal recovery might be still possible with a lower number of samples, pro-
vided that the input signals have some special properties, such as low “effective”
dimensionality. Studying such signals and an associated reduction in the number of
samples needed for signal reconstruction is the main focus of the recently developed
compressed sensing field.

3.2 Surprising Empirical Results
In 2006, Candes, Romberg, and Tao published a paper presenting the follow-

ing puzzling empirical phenomenon that may seem to contradict the conventional
wisdom stated by the sampling theorem (Candès et al., 2006a). They experimented
with a simulated image called the Shepp-Logan phantom (Figure 3.1a); the image
was created by (Shepp and Logan, 1974) as a standard for computerized tomog-
raphy (CT) image reconstruction simulations of the human head. The goal is to
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(a) (b)

(c) (d)

FIGURE 3.1: (a) The Shepp-Logan phantom test image. (b) Sampling domain in
the frequency plane; Fourier coefficients are sampled along 22 radial lines. (c) Re-
construction obtained by setting small Fourier coefficients to zero (minimum-energy
reconstruction). (d) Exact reconstruction by minimizing the total variation.

reconstruct this two-dimensional image from samples of its discrete Fourier trans-
form (see Appendix) on a star-shaped domain (Figure 3.1b), typically used in prac-
tice where imaging devices collect samples along radial lines at a few angles. In this
example, 512 samples are gathered along each of 22 radial lines.

A common approach used in medical imaging is to set the Fourier coefficients at
unobserved frequencies to zero, and to apply next the inverse Fourier transform; this
is the so-called “minimum-energy” reconstruction. An image reconstructed by such
an approach is shown in Figure 3.1c. It is clearly of low quality and contains multiple
artifacts, due to severe undersampling of the original image. Note, however, that the
original image in Figure 3.1a appears to have a certain structure, i.e., it is mostly
piecewise constant, or smooth – it does not have too many abrupt changes in the
pixel intensity values. As shown in (Candès et al., 2006a), this image can actually be
reconstructed perfectly from the given samples (see Figure 3.1d), if instead of using
the standard minimum-energy approach, we minimize the following convex function
known as total variation, which measures smoothness of an image:

||g||TV =
∑

t1,t2

√
|D1g(t1, t2)|2 + |D2g(t1, t2)|2, (3.1)
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where g(t1, t2), 0 ≤ t1, t2 ≤ N −1 is the observed discrete function (e.g., an image)
overN×N points specified by (t1, t2), andD1g,D2g are finite differences between
the function values at neighboring points, specified asD1g = g(t1, t2)−g(t1−1, t2)
andD2g = g(t1, t2)−g(t1, t2−1). The real surprise is that this perfect reconstruction
was achieved by using a much smaller number of samples (almost 50 times smaller,
as discussed in (Candès et al., 2006a)) than the sampling theorem would require!

The Shepp-Logan reconstruction phenomenon prompted further theoretical in-
vestigation of the conditions on the signals and samples that would allow a much
lower sampling rate than the one dictated by the Nyquist-Shannon theorem. As it
was further shown in (Candès et al., 2006a), another large class of discrete-time sig-
nals x ∈ C

N that allow perfect recovery from only partial knowledge of their Fourier
coefficients are sparse signals, where only k out of N values are nonzero. As in the
example above, a perfect reconstruction is achieved from a sub-Nyquist sampling
rate, as long as it exceeds some lower bound, by minimizing another convex function
– in this case, the l1-norm of the signal.

We now present a simple simulation example (only a few lines of MATLAB
code), illustrating l1-norm based signal recovery. Let us first introduce some notation.
Let ZN = {1, · · · , N}1, and let x ∈ R

N . We denote the set of all coordinates with
nonzero values by K = {i ∈ ZN |xi 
= 0}, and the size of this set by |K| = #{i ∈
K}. We will also denote by x|K the restriction of the N -dimensional vector x on a
subset K ⊂ ZN . In our simulation, N = 512 and |K| = 30. We randomly choose
k = |K| numbers from ZN to be the support of the vector signal x, and assign k
randomly selected real values to the corresponding coordinates of x0. We now have
the “ground-truth” signal that needs to be recovered later (see Figure 3.2a). We then
apply the Discrete Fourier Transform, or DFT (see Appendix, section A.2),2 to x0,
and obtain x̂0 = F(x0) (Figure 3.2b). Given the N -dimensional DFT vector x̂0,
let us choose a subset S of 60 coordinates, and restrict x̂0 on S, setting all other
coordinates to zero (see Figure 3.2c). This is the observable spectrum of the signal
(the set of Fourier coefficients). We will now attempt to reconstruct the signal from its
partially observed Fourier spectrum by solving the following optimization problem:

(P ′
1) : min

x
||x||1 subject to F(x)|S = x̂0|S . (3.2)

The solution to the above problem is shown in Figure 3.2d; as we can see, the original
signal is recovered exactly from the incomplete set of Fourier coefficients. In fact, as
our simulations show, the exact recovery happens with overwhelming probability
over the choice of a particular subset S. This is yet another surprising example that
appears to contrast the (discrete version of) Whittaker-Nyquist-Kotelnikov-Shannon
sampling theorem (see Appendix, theorem A.1).

1Note that ZN is usually defined as {0, · · · , N − 1} since it denotes the finite field of order N , but
we will slightly abuse this notation here and use with base 1 instead of 0.

2Strictly speaking, we only use the real part of DFT, i.e., the so-called Discrete Cosine Transform, or
DCT.
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FIGURE 3.2 (See color insert): A one-dimensional example demonstrating perfect
signal reconstruction based on l1-norm. Top-left (a): the original signal x0; top-right
(b): (real part of) the DFT of the original signal, x̂0; bottom-left (c): observed spec-
trum of the signal (the set of Fourier coefficients); bottom-right (d): solution to P ′

1:
exact recovery of the original signal.

3.3 Signal Recovery from Incomplete Frequency Information
The surprising empirical phenomenon described above, namely, the fact that an

exact signal recovery is possible from a number of samples below the bound specified
by the standard sampling theorem, was theoretically justified in seminal papers by
(Candès et al., 2006a) and (Donoho, 2006a). Thus, we will call this phenomenon the
Donoho-Candès-Romberg-Tao (DCRT) phenomenon.

As was shown in the above papers, the two key factors contributing to the
DCRT phenomenon are: sparsity (or, more generally, some low-dimensional struc-
ture) of the original signal x, and randomness of the observed subset of frequencies
in x̂.

Definition 1. An N -dimensional vector x ∈ C
N is called k-sparse if it has at most

k nonzero coordinates. The set of nonzero coordinates of x is called its support set,
denoted supp(x). Given an arbitrary (not necessarily sparse) vector x, we obtain
its k-sparse approximation by keeping k coordinates that have the largest absolute
values, and setting the rest of the coordinates to zero.
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The main result stating the (sufficient) conditions on the number of frequency
samples required for sparse signal recovery from a subset of its DFT coefficients is
given by the following theorem:

Theorem 3.1. (Candès et al., 2006a; Donoho, 2006a) Let x ∈ C
N be a sparse

vector supported on a set K ⊂ ZN , and let S ⊂ ZN be a subset of samples in the
Fourier domain, chosen uniformly at random. Then, for a given constant β > 0, with
probability p > 1−O(N−β), the solution to the optimization problem 3.2 is unique
and equal to x if

|S| ≥ Cβ |K| logN, (3.3)

where Cβ is approximately 23(β + 1).

Essentially, the theorem states that, if a signal x ∈ C
N is k-sparse, then it can be

restored precisely from almost any random subset of its Fourier spectrum of size pro-
portional to the sparsity k and to logN . It is important to note that, since the above
result is probabilistic, there exist particular signals and particular subsets of frequen-
cies that do not allow for such recovery; some counter-examples are mentioned in
(Candès et al., 2006a) and discussed later in this chapter.

The proof of the above theorem comprises the following two parts:

Deterministic part: If the restriction of the DFT matrix on a given subset of fre-
quencies (i.e., a subset of rows) is close to being isometric (i.e., satisfies the
so-called Restricted Isometry Property, or RIP) on subspaces of dimension
3|K|, then the original signal can be recovered exactly.

Probabilistic part: The RIP property holds for typical subsets of the spectrum (i.e.,
typical subsets of rows of the DFT matrix). A “typical” subset denotes here a
subset of fixed size k, selected uniformly at random from all possible size-k
subsets of a given finite set, with some (specified) high probability.

We will now focus on the deterministic part and discuss sufficient conditions for
RIP property, such as mutual coherence, spark, and null space properties, followed
by proof of the exact signal recovery under RIP. Also, as we discuss below, the result
of Theorem 3.1 can be extended to the general class of design matrices, beyond DFT,
provided that some sufficient conditions, such as RIP, are satisfied.

3.4 Mutual Coherence
The term mutual coherence has several meanings, depending on the field of appli-

cation. For example, in optics it describes the auto-correlation of a wave/field at dif-
ferent points with measurement time shift. Herein, we consider the linear-algebraic
notion of the mutual coherence, shown to be one of the key properties in theoretical
work on compressed sensing (Donoho and Huo, 2001; Tropp, 2006; Donoho et al.,
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2006; Elad, 2010). Intuitively, mutual coherence characterizes the level of depen-
dence among the columns of a matrix. Formally,

Definition 2. (Mutual coherence) Given an M ×N matrix A, its mutual coherence
μ(A) is defined as the maximal absolute inner product between pairs of its normal-
ized columns, i.e.

μ(A) = max
i,j∈ZN , i�=j

|a∗i aj |
||ai||2 ||aj ||2

, (3.4)

where ai denotes the i-th column of the matrix A, and a∗i denotes its (conjugate)
transpose (or simply transpose, in case of real-valued vectors).

Clearly, μ(A) = 0 if all columns of anM×N matrix A are mutually orthogonal.
In the case when N > M , mutual coherence is strictly positive: μ(A) > 0.

In general, an achievable lower bound for mutual coherence is given by the Welch
bound (Welch, 1974) (see also (Strohmer and Heath, 2003) for more recent applica-
tions and references). Note that equality in the Welch bound is obtained for a class
of matrices called tight frames, or Grassmanian frames.

Theorem 3.2. (Welch bound (Welch, 1974)) Let A be an M ×N matrix, M ≤ N ,
with normalized columns (i.e., columns having unit l2-norm). Then

μ(A) ≥
√

N −M
M(N − 1)

. (3.5)

Proof. Consider the Gram matrix G = A∗A of the matrix A, with the elements
gij = (a∗i aj)i,j∈ZN . The matrix G is positive semidefinite and self-adjoint. Since
the rank of A does not exceed its smaller dimension, M , so does the rank of G.
Thus, G has no more than M nonzero eigenvalues (see section A.1.1 in Appendix
for a short summary of eigentheory). Let {λl}l∈Zr , r ≤ M be the set of nonzero
eigenvalues of G, counting multiplicity (i.e., if eigenvalue λl has kl eigenvectors,
it is included into the set kl times). The trace of G is Tr(G) =

∑
l∈Zr

λl. Hence,
using the Cauchy-Schwarz inequality, we get

Tr2(G) = (
∑

l∈Zr

λl)
2 ≤ r

∑

l∈Zr

λ2l ≤M
∑

l∈Zr

λ2l . (3.6)

Since Tr(G2) = Tr(GG) =
∑
i,j∈ZN

|(a∗
i aj)|2 =

∑
l∈Zr

λ2l , we obtain

Tr2(G)

M
≤
∑

i,j∈ZN

|(a∗
i aj)|2.

Since the columns of A are normalized, the diagonal entries of G, i.e. gii =
(a∗i ai)i∈ZN , are all ones, which gives us Tr(G) = N . Therefore, from the above
inequality, we get:

∑

i,j∈ZN

|(a∗i aj)|2 = N +
∑

i,j∈ZN ,i�=j
|(a∗i aj)|2 ≥

N2

M
,
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which implies
∑

i,j∈ZN ,i�=j
|(a∗

i aj)|2 ≥
N(N −M)

M
. (3.7)

We will now upper-bound the sum on the left, replacing each of its N(N − 1) terms
with the maximum term over all i, j ∈ ZN , i 
= j, as follows:

N(N − 1) max
i,j∈ZN ,i�=j

|(a∗i aj)|2 ≥
∑

i,j∈ZN ,i�=j
|(a∗i aj)|2.

Combining this inequality with the one in eq. 3.7, we get

max
i,j∈ZN ,i�=j

|(a∗i aj)|2 ≥
N(N −M)

M
· 1

N(N − 1)
=

N −M
M(N − 1)

.

Since maxi,j∈ZN ,i�=j |(a∗i aj)|2 = (maxi,j∈ZN ,i�=j |(a∗
i aj)|)2 = μ(A)2, we obtain

the required inequality 3.5, which concludes the proof.

Note that the mutual coherence is easy to compute, as it requires only O(NM)
operations, unlike the two other matrix properties, RIP and spark, which will be in-
troduced in the next sections. Both RIP and spark are NP-hard to compute (see, for
example, section A.3 in Appendix and (Muthukrishnan, 2005) for the RIP computa-
tional complexity).

We will next introduce the notion of spark, and use it as a sufficient condition that
guarantees the exact recovery of a sparse signal, i.e. the uniqueness of the solution
to the problem in 3.2. Next we show a connection between the spark and the mutual
coherence, and state the exact recovery result in terms of the latter notion.

3.5 Spark and Uniqueness of (P0) Solution
Given a matrix A, its rank, denoted rank(A), is defined as the maximal number

of linearly independent columns, and is a standard notion in linear algebra used for
many years. On the other hand, the notions of Kruskal’s rank and spark of a matrix
A, important for the analysis of sparse signal recovery, were introduced relatively
recently.

Definition 3. (Spark (Donoho and Elad, 2003)) Given anM×N matrix A, its spark
spark(A), is defined as the minimal number of linearly dependent columns.

Spark was used by (Gorodnitsky and Rao, 1997) to establish the uniqueness of
sparse solution for 2.10, and was further developed by (Donoho and Elad, 2003).
Note that spark is closely related to the Kruskal’s rank (Kruskal, 1977), krank(A),
defined as the maximal number k such that every subset of k columns of the matrix
A is linearly independent. It is easy to see that

spark(A) = krank(A) + 1. (3.8)
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Also, note that rank(A) ≥ krank(A).
Although the notion of spark may look like a simple complement to the notion of

rank, it actually requires evaluation of all possible subsets of columns of size up to
spark(A)+1, which makes spark NP-hard to compute. However, in some cases it is
easy to compute spark. For example, if the entries of M ×N matrix A, where M ≤
N , are independent random variables with continuous density function(s), then, with
probability one, any submatrix of size M ×M has maximal rank rank(A) = M ,
and hence its spark(A) =M + 1.

We will now use spark to establish the following sparse signal recovery result:

Theorem 3.3. ((P0) solution uniqueness via spark (Gorodnitsky and Rao, 1997;
Donoho and Elad, 2003)) A vector x̄ is the unique solution of the problem (P0)
(stated in eq. 2.7),

(P0) : min
x
||x||0 subject to y = Ax

if and only if x̄ is a solution of Ax = y and ||x̄||0 < spark(A)/2.

Proof. Part 1: sufficient condition (Gorodnitsky and Rao, 1997). Let us assume that
x 
= x̄ is another solution of Ax = y. Then A(x̄ − x) = 0, i.e., the columns
of A corresponding to nonzero entries of the vector x̄ − x are linearly dependent.
Thus, the number of such columns, ||x̄−x||0, must be greater or equal to spark(A),
by definition of spark. Since the support (the set of nonzeros) of x̄ − x is a union
of supports of x̄ and x, we get ||x̄ − x||0 ≤ ||x̄||0 + ||x||0. But since ||x̄||0 <
spark(A)/2, we get

||x||0 ≥ ||x̄− x||0 − ||x̄||0 > spark(A)/2,

which proves that x̄ is indeed the sparsest solution.
Part 2: necessary condition (Donoho and Elad, 2003). Note that, conversely, the

uniqueness of a k-sparse solution of (P0) implies that k < spark(A)/2. Indeed,
assume that there exists a nonzero null vector h of A corresponding to spark(A) ≤
2k or with support not exceeding 2k. Then there exist a couple of vectors x̄,x with
support not exceeding k and h = x̄− x, and hence Ax̄ = Ax. If support of h is 1,
then we can just take x̄ = 2x = 2h; if support of h is greater that 1, then we can take
x̄,x with non-intersecting support. This contradicts uniqueness of sparse solution of
order k ≥ spark(A)/2.

While spark is a useful notion for proving the above exact recovery result, it
is hard to compute, as we discussed above. On the other hand, mutual coherence
is easier to compute, and thus can serve as a more convenient tool in our analysis,
once we establish the relationship between the two concepts. The next statement
provides such connection, using mutual coherence to lower-bound the spark. (Recall
that μ(A) > 0 when not all columns of A are mutually orthogonal, for example, in
the case of M < N .)
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Theorem 3.4. (Spark and mutual coherence (Donoho and Elad, 2003)) For any
M ×N real-valued matrix A having μ(A) > 0

spark(A) > 1 +
1

μ(A)
. (3.9)

Proof. First, we will normalize the columns of A, obtaining the new matrix A′,
where a′i = ai/||ai||2, for 1 ≤ i ≤ N . Note that column normalization does not
change the mutual coherence and spark properties of A, and thus will not affect the
statement of the theorem. Let λ be an eigenvalue of A, and let x be the associated
(nonzero) eigenvector, i.e. Ax = λx. Then for the i-th coordinate xi, we get

(λ− aii)xi =
∑

j �=i
aijxj . (3.10)

Let i correspond to the largest coordinate of x, i.e. |xi| = maxj∈ZN |xj |. Note that
|xi| is strictly positive since x is nonzero. From eq. 3.10, we obtain the following
inequality, known as Gershgorin’s disks theorem:

|aii − λ| ≤
∑

j �=i
|aij ||

xj
xi
| ≤
∑

j �=i
|aij |. (3.11)

We now return to the spark estimate via the mutual coherence. By definition of spark,
k = spark(A) is the smallest number of dependent columns; let us take the setK of
these columns and form a minor A|K of the matrix A by restricting it to the columns
in K . Clearly, k = |K| = spark(A), and spark(A|K) = k. Let us consider the
Gram matrix of A|K , i.e. G = (A|K)∗A|K . The matrix G is degenerate, or singu-
lar, since A|K is degenerate. Hence the spectrum (the set of all eigenvalues) of G
contains zero, 0 ∈ Sp(G) (see A.5 in Appendix). By applying the inequality in 3.11
to G and eigenvalue λ = 0, we get

|1− 0| ≤
∑

i�=j
|gij | =

∑

i�=j
|a∗i aj | ≤ (k − 1)μ(A), (3.12)

and
1 ≤ (spark(A)− 1)μ(A), (3.13)

which implies the bound in 3.9.

Combining the above result with Theorem 3.3, we obtain the following sufficient
condition for the exact signal recovery based on mutual coherence:

Theorem 3.5. ((P0) solution uniqueness via mutual coherence (Donoho and Elad,
2003)) If x̄ is a solution of Ax = y and ||x̄||0 < 0.5(1+ 1

μ(A) ), then x̄ is the sparsest
solution, i.e. it is the unique solution of the problem (P0) in eq. 2.7.
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3.6 Null Space Property and Uniqueness of (P1) Solution
So far we discussed the l0-norm recovery, i.e. finding the sparsest solution. We

gave the conditions for the uniqueness of the solution of (P0) problem, based on
the notion of spark as a necessary and sufficient condition, and the notion of mutual
coherence as a sufficient condition. We will now consider the exact sparse recovery
(i.e., the uniqueness of the solution) based on l1-norm minimization as stated in the
optimization problem (P1) given by eq. 2.10, and focus on a condition that is both
sufficient and necessary for such recovery.

Definition 4. (Null space property (Cohen et al., 2009)) Given an M ×N matrix A,
we say that A satisfies the null-space property of order k,NSP (k), if, for any subset
K ⊂ ZN of size k and for any nonzero vector in the null-space of A, v ∈ Ker(A),
the following inequality holds:

||v|K ||1 < ||v|Kc ||1, (3.14)

where v|K and v|Kc are the restrictions of v on K and its complement Kc, respec-
tively.

The following theorem due to Gribonval and Nielsen provides necessary and
sufficient condition for the exact l1 recovery.

Theorem 3.6. ((P1) solution uniqueness via null space property (Gribonval and
Nielsen, 2003)) A k-sparse solution x of the linear system Ax = y is exactly recov-
ered by solving the l1-optimization problem (P1) (stated in eq. 2.10):

(P1) : min
x
||x||1 subject to y = Ax,

if and only if A satisfies NSP(k).

Proof. Part 1: NSP(k) implies uniqueness of (P1) solution. Let us assume that A has
a null space property of order k and x̄ is a solution of equation Ax = y with support
on the set K of size not exceeding k. Let z be another solution of this equation, i.e.,
Az = y, and thus Ax̄ = Az. Hence, v = x − z ∈ Ker(A). Note that xKc = 0,
and therefore v|Kc = z|Kc . Then

||x̄||1 ≤ ||x̄− z|K ||1 + ||z|K ||1 = ||v|K ||1 + ||z|K ||1 <
||v|Kc ||1 + ||z|K ||1 = ||z|Kc ||1 + ||z|K ||1 = ||z||1.

(3.15)

In other words, vector x̄ has strictly smaller l1-norm than any other solution, and
hence it is the only solution of the above optimization problem.

Part 2: Uniqueness of (P1) solution implies NSP(k). Let us assume that, for a
given A and given k, and for any given y, a k-sparse solution of the (P1) problem is
always unique. We will now show that A has the NSP(k) property. Let v be a nonzero
vector from kernel of A, and letK be a subset of ZN of size k. Since v|K is k-sparse,



46 Sparse Modeling: Theory, Algorithms, and Applications

and is a solution of the equation Az = A(v|K ), then, by the above assumption, v|K
must be the unique l1-norm minimizing solution of that equation. Since A(v|K +
v|Kc ) = 0, we have A(−v|Kc) = Av|K . Note that v|Kc + v|K 
= 0, and thus
−v|Kc 
= v|K . Then the vector −v|Kc is another solution of the linear equation
Az = A(v|K), and hence, due to the uniqueness assumption, its l1-norm must be
strictly higher than the l1-norm of v|K , which is exactly the NSP(k) property.

Note that although the NSP is NP-hard to verify, it gives a nice geometric char-
acterization of the exact recovery property.

3.7 Restricted Isometry Property (RIP)
As we already discussed, accurate recovery of a sparse signal depends on the

properties of the set of measurements defined by the matrix A. We will now consider
a commonly used sufficient condition for the exact sparse recovery based on l1-norm
minimization called the restricted isometry property, or RIP. An attractive property
of the RIP condition is that it provably holds for typical random matrices A, such as
matrices with i.i.d. random entries drawn from a wide variety of possible probability
distributions. Essentially, RIP at the sparsity level k, or k-restricted isometry prop-
erty, means that every subset of columns of A with cardinality less than k behaves
very close to an isometric transformation, i.e. a transformation that preserves dis-
tances. Restricting near-isometry to subsets of k columns essentially means that the
transformation will almost preserve the length of the corresponding sparse signals.
Formally, following (Candès and Tao, 2005):

Definition 5. (Restricted Isometry Property) The k-restricted isometry constant δk
of the matrix A is the smallest quantity such that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22 (3.16)

for all k-sparse vectors x. The matrix A is said to satisfy the k-restricted isometry
property, RIP(k), if there exists such constant δk that eq. 3.16 is satisfied.

The following lemma describes some simple properties of restricted isometry
constant δk .

Lemma 3.7. Let matrix A satisfy RIP(k). Then

i) δ1 ≤ δ2 ≤ δ3 ≤ . . . .

ii) The restricted isometry constant δk may be evaluated as l2-norm distortion on
vectors with support of size k:

δk = max
K⊂ZN ,|K|≤k

||A|∗KA|K − I||2 =

sup
||x||2=1,||x||0=k,K=supp(x)

|((A|∗KA|K − I)x)∗x|,

where I is the identity matrix of size k.
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Proof. Part i) follows from definition of RIP, since (k − 1)-sparse vector is also k-
sparse. Part ii) follows from the equalities

|||Ax||22 − ||x||22| = |((A∗A− I)x)∗x| and ||B||22 = sup||x||2=1|(B∗Bx)∗x|.

The next lemma connects the restricted isometry constant with mutual coherence.

Lemma 3.8. (RIP and mutual coherence) Let A be a matrix with l2-norm normalized
columns. Then

i) μ(A) = δ2.

ii) The restricted isometry constant δk ≤ (k − 1)μ(A).

Proof. i). By using the characteristic of the restricted isometry constant δ2 from
Lemma 3.7 ii), applied for k = 2 and K = {i, j}:

A|∗KA|K − I =

(
0 a∗i aj

a∗jai 0

)

= a∗i aj

(
0 1
1 0

)

, (3.17)

where the last equality is due to the fact that a∗jai is real, the conjugate to a∗jai is
(a∗jai)

∗ = a∗i aj , and it is just its complex conjugate (a∗jai)
−. Since a∗jai is real,

then a∗jai = a∗i aj . Hence δ2 = maxi�=j ||A|∗KA|K − I||2 = μ(A).
ii). Again, by using the presentation of δk from Lemma 3.7 ii) we have

δk = sup
||x||2=1,||x||0=k

|((A|∗KA|K − I)x)∗x| ≤

sup
||x||2=1,||x||0=k

(s− 1)μ(A)||x||2 = (s− 1)μ(A).
(3.18)

3.8 Square Root Bottleneck for the Worst-Case Exact Recovery
In this section we give an example illustrating the fact that exact signal recovery

(i.e., solution uniqueness) using mutual coherence in the worst-case scenario (i.e.,
for arbitrary matrix A with N > M and nonzero, l2-normalized columns) could not
be done for a sparse signal with the support size larger than the order of

√
M . This

scaling behavior is sometimes referred to as the square root bottleneck.
Indeed, if we consider Welch bound 3.6, then μ(A) >

√
N−M
M(N−1)

. ForM ≤ N/2

it gives N −M ≥ (N − 1)/2 and μ(A) > 1/
√
2M or 1/μ(A) <

√
2M . As it was

mentioned above, this estimate is sharp on tight frames. Thus, for the worst-case
scenario, the best estimate that we can obtain using spark estimate 3.9 will be an
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estimate not better than spark(A) >
√
2M without restriction on special form of

matrices A withN ≥ 2M , and such that it allows a k-sparse vector with k <
√
M/2

to be recovered exactly (see Theorem 3.3). This shows an order of magnitude for
exact recovery in the worst-case scenario to be proportional to the square root of M .

Let us consider a special type of a sparse signal, sometimes called Dirac train
(or Dirac comb), constructed as follows. Let N = L2, and let a signal v equal 1 at
coordinates that are multiples of L, up to L2, and 0 at all other coordinates; in other
words, vi = {1 for i = lL, l = 1, ..., L}, and 0 otherwise. Note that the DFT of v
coincides with v. The restriction of the spectrum of v on the coordinates that are not
multiples of L will be zero. Let us now consider the measurement matrix A that is
the restriction of the DFT matrix on the subset of its M = N −

√
N out of N rows

corresponding to the above coordinates in the spectrum of v. Clearly, the signal v
cannot be recovered from these zero spectrum values, i.e., our L-sparse vector could
not be recovered from equation (F(x))|K = 0, where K ⊂ ZN ,K = {n|n 
= lL}.
In other words, we have M = N −

√
N columns in A, and L =

√
N = O(

√
M)

nonzeros in a Dirac-comb vector that we cannot recover.
In summary, we showed that in order to guarantee sparse signal recovery in the

case of an arbitrary M × N matrix A, the signal must be “sufficiently” sparse, in
a sense that its support size (number of nonzeros) must be on the order no larger
than Ω(

√
M). As we will discuss later, this square root bottleneck can be broken,

i.e. a better scaling behavior can be obtained, if instead of a deterministic sparsity
threshold we consider a probabilistic one, i.e., if we require the sparsity threshold to
hold with high probability, rather than for all vectors x. We will discuss next how
RIP defined in the previous section implies the exact recovery, while leaving the
probabilistic aspects for the next chapter.

3.9 Exact Recovery Based on RIP
This recent result in the series of estimates for noiseless sparse signal recovery is

due to (Candès, 2008):

Theorem 3.9. Let x and x∗ denote solutions of the equation Ax = y and the
problem (P1), respectively, and let δk of A denote the k-restricted isometry constant
in definition 5 of Restricted Isometry Property. Let xk ∈ C

N denote the truncated
version of x with all but the top k largest absolute values set to zero.

I. If δ2k < 1, and x is a k-sparse solution of Ax = y, then it is unique.

II. If δ2k <
√
2− 1, then

i) ||x∗ − x||1 ≤ C0||x− xk||1
ii) ||x∗ − x||2 ≤ C0k

−1/2||x− xk||1,

where C0 is a constant.
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Theorem 3.9 II) implies that:

1. A k-sparse signal x can be recovered exactly from a collection of noiseless
linear measurements y = Ax by solving the l1-norm minimization problem
2.10.

2. For arbitrary x, the quality of its recovery depends on how well x is approxi-
mated by its k-sparse truncated version xk .

Proof of the Theorem 3.9. Part I. Let as assume that Ax = y has two distinct k-
sparse solutions, x1 and x2. Then x̃ = x1 − x2 is a 2k-sparse vector. Using the
condition δ2k < 1 and the lower bound in the definition of the RIP property, we get

0 < (1− δ2k)||x̃||22 ≤ ||Ax̃||22, (3.19)

which implies Ax̃ = Ax1 − Ax2 > 0 and thus contradicts our assumption
Ax1 = Ax2 = y.

Part II. We start with the lemma stating that a linear transformation satisfying the
RIP property applied to vectors with disjoint support leaves them almost disjoint.

Lemma 3.10. Let K,K ′ be a disjoint subset of ZN and |K| ≤ k, |K ′| ≤ k′. Let A
be a transformation satisfying RIP properties with constant δk. Then for x,x′ with
supports, K,K ′ accordingly holds:

| < A(x),A(x′) > | ≤ δk+k′ ||x||2||x′||2. (3.20)

Proof. Without loss of generality we will assume that x and x′ are unit vectors (oth-
erwise, we can normalize them by their l2-norms). Then RIP and disjointness of x
and x′ implies that

2(1− δk+k′ ) = (1− δk+k′ )||x + x′||22 ≤ ||A(x + x′)||22
≤ (1 + δk+k′ )||x + x′||22 = 2(1 + δk+k′ ).

(3.21)

Similar inequality is valid for x− x′:

2(1− δk+k′) ≤ ||Φ(x − x′)||22 ≤ 2(1 + δk+k′). (3.22)

Using the parallelogram identity

1

4
(||u+ v||22 + ||u− v||22) =< u,v >, (3.23)

combined with 3.21 and 3.22, we get

| < A(x),A(x′) > | = 1

4
|||A(x+ x′)||22 − ||A(x − x′)||22|

≤ 1

4
(2(1 + δk+k′ )− 2(1− δk+k′)) = δk+k′ .

(3.24)
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We will first prove section ii) of Part II. Let us decompose x∗ as x∗ = x+h. For
the vector h we enumerate coordinates of CN in decreasing order with respect to h
so that |hi| ≥ |hj | for i ≤ j. Denote by Ti = [ik, (i + 1)k − 1] intervals of indices
of length k. (Note that the last interval may have a length less than k; however, this
is not essential for the proof.) We will denote by hTi the restriction of h on Ti. Also,
we will denote by hT0∪T1 the restriction of h on T0∪T1, and by h(I)c the restriction
of h on indices complimentary to the indices in I .

Our goal now is to show that ||h||l1 is small, i.e., that x∗, a solution of the l1-norm
optimization problem 2.10, is close to the solution x of b = Ax.

We will use the following inequality:

||hTj ||2 ≤

√
√
√
√

(k+1)j−1∑

i=kj

|hi|2 ≤

√
√
√
√

(k+1)j−1∑

i=kj

||hTj ||∞2

≤ k
1
2 ||hTj ||l∞ ≤ k

1
2 k̇−1

kj−1∑

i=(k−1)j

|hi|2 = k−
1
2 ||hTj−1 ||1.

(3.25)

The latter inequality is valid for j ≥ 1. Summing 3.25 over all j ≥ 2:

||h(T0∪T1)c ||2 = ||
∑

j≥2

hTj ||2 ≤
∑

j≥2

||hTj ||2

≤
∑

j≥1

k−
1
2 ||hTj ||1 = k−

1
2 ||hT c0 ||1.

(3.26)

Since x+ h is a minimal, then

||x||1 ≥ ||x+ h||1 =
∑

i∈T0

|xi + hi|+
∑

i∈T c0
|xi + hi|

≤ ||xT0 ||1 − ||hT0 ||1 + ||hT c0 ||1 − ||xT c0 ||1.
(3.27)

Since xT c0 = x− xs,

||hT c0 ||1 ≤ ||hT0 ||1 + 2||xT c0 ||1. (3.28)

Applying 3.26 and then 3.28 to bound ||h(T0∪T1)c ||2,

||h(T0∪T1)c ||2 ≤ k−
1
2 ||hT c0 ||1 ≤ k−

1
2 (||hT0 ||1 + 2||xT c0 ||1)

≤ ||hT0 ||2 + 2k−
1
2 ||x− xk||1,

(3.29)

where the last inequality is due to the Cauchy-Schwartz inequality

||hT0 ||1 =
∑

i<s

hi · sign(hi) ≤ ||{sign(hi)}i<k ||2 · ||hT0 ||2 = k
1
2 ||hT0 ||2. (3.30)

We now define e0 ≡ k−
1
2 ||x− xk||1. The next step is to bound ||h(T0∪T1)c ||2. Since
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both x and x∗ are solutions of the equation b = Au, then Ah = 0 and Ah(T0∪T1) =
−
∑
j≥2 AhTj .

Hence
||Ah(T0∪T1)||22 = − < Ah(T0∪T1),

∑

j≥2

AhTj > . (3.31)

From Lemma 3.10 it follows that

| < Ah(Tk),AhTj > | ≤ δ2k||hTk ||2||hTj ||2, (3.32)

for k = 1, 2 and j ≥ 2.
Since T0 and T1 are disjoint, we get

2||hT0∪T1 ||22 = 2(||hT0 ||22 + ||hT1 ||22) ≥ (||hT0 ||2 + ||hT1 ||2)2. (3.33)

The RIP property applied to the hT0∪T1 , 3.31 and equality AhT0∪T1 = AhT0 +
AhT1 imply that

(1− δ2k)||hT0∪T1 ||22 ≤ ||AhT0∪T1 ||22 ≤ δ2k(||hT0 ||2 + ||hT1 ||2)
∑

j≥2

||hTj ||2

≤
√
2δ2k||hT0∪T1 ||2

∑

j≥2

||hTj ||2.

(3.34)

Let us use the notation ρ ≡
√
2δ2k(1− δ2k)−1. The assumption δ2k <

√
2− 1 in the

formulation of Theorem 3.9 is equivalent to ρ < 1, which we use further.
Hence, 3.34 combined with 3.26 implies that

||hT0∪T1 ||2 ≤
√
2δ2k(1 − δ2k)−1k−

1
2 ||hT0c||1 (3.35)

and, incorporating 3.29,

||hT0∪T1 ||2 ≤ ρ||hT0∪T1 ||2 + 2ρe0, or ||hT0∪T1 ||2 ≤ 2ρ(1− ρ)−1e0. (3.36)

Summarizing,

||h||l2 ≤ ||hT0∪T1 ||2 + ||hcT0∪T1
||2 ≤ ||hT0∪T1 ||2 + ||hT0∪T1 ||2 + 2e0

≤ 2(1− ρ)−1(1 + ρ)e0.
(3.37)

That establishes part ii) of Theorem 3.9.
Part i) is based on the following consideration: The l1 norm of hT0 is estimated

as

||hT0 ||1 ≤ k
1
2 ||hT0 ||2 ≤ ||hT0∪T1 ||2

≤ s
1
2 ρk−

1
2 ||hcT0

||1 = ρ||hcT0
||1.

(3.38)

Then since
||hcT0

||1 ≤ ρ||hcT0
||1 + 2||xcT0

||1, (3.39)
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then
||hcT0

||1 ≤ 2(1− ρ)−1||xcT0
||1, (3.40)

and hence

||h||1 = ||hT0 ||1 + ||hcT0
||1 ≤ (ρ+ 2(1− ρ)−1)||xcT0

||1
≤ 2(1 + ρ)(1 − ρ)−1||xcT0

||1.
(3.41)

This establishes part i) of Theorem 3.9.

3.10 Summary and Bibliographical Notes
Once again, we would like to note that existing literature on the subject of sparse

recovery is immense, and only a relatively small fraction of it was presented here.
This chapter focused primarily on the seminal work by (Donoho, 2006a) and (Candès
et al., 2006a) which gave rise to the compressed sensing field. In (Candès et al.,
2006a), a puzzling empirical phenomenon was presented, which at a first glance
appeared to contradict the conventional sampling theorem (Whittaker, 1990; Nyquist,
1928; Kotelnikov, 2006; Shannon, 1949), achieving accurate signal recovery with a
much smaller number of samples than the sampling theorem would generally require.
The “catch” here was that the sparse structure of a signal was exploited. Moreover,
(Candès et al., 2006a) provided a considerable improvement over the state-of-the-art
results on sparse signal recovery presented earlier in (Donoho and Stark, 1989) and
(Donoho and Huo, 2001), by reducing the sample size required for sparse recovery
from the square root to the logarithmic in the signal dimension.

Next, we considered some key properties of the design matrix that are essential
in sparse recovery, such as mutual coherence, spark, and null space properties. The
mutual coherence was considered in (Donoho and Huo, 2001; Tropp, 2006; Donoho
et al., 2006; Elad, 2010). Spark was used to show uniqueness of the sparse solution in
(Gorodnitsky and Rao, 1997). The Kruskal rank (or krank), a notion related to spark,
was considered in (Kruskal, 1977). The relation between spark and mutual coherence
was presented in (Donoho and Elad, 2003).

The null space property is a necessary and sufficient condition for the sparse re-
covery, and was presented in (Gribonval and Nielsen, 2003) and (Cohen et al., 2009).
The square root bottleneck results are due to (Donoho and Stark, 1989; Donoho and
Huo, 2001). The RIP property was introduced in (Candès et al., 2006a). Our exposi-
tion of the sparse signal recovery based on RIP follows the one presented in (Candès,
2008).
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In this chapter we give examples of matrices satisfying RIP. Namely, we consider
matrices with i.i.d. random entries that decay sufficiently fast (e.g., subgaussian),
matrices with randomly selected rows from the DFT (or DCT) matrix, and matri-
ces with the rows randomly selected from a general orthogonal matrix. We provide
complete and self-contained proofs of RIP in these cases, trying to keep them con-
cise but complete. All necessary background material that goes beyond the standard
probability and linear algebra courses can be found in the Appendix. Also, recall that
matrices that have RIP satisfy this property uniformly for all subsets of size s or less.
For non-uniform results that nevertheless imply the sparse signal recovery we refer
to (Candès and Plan, 2011) and to recent monographs (Foucart and Rauhut, 2013;
Chafai et al., 2012).

We would like to note that the material presented in this chapter is more advanced
and may require a deeper mathematical background than the rest of this book. On
the other hand, the proofs in the chapter are sufficiently independent from the other
topics we cover, and thus skipping them in the first reading will not have a negative
effect on the understanding of the remaining material.
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4.1 When Does RIP Hold?
In this section, we introduce three examples of matrices satisfying RIP, which

actually fall into the following two categories: the first example includes matrices
with i.i.d. random entries following subgaussian distributions, while the other two
examples involve large orthogonal (or DFT) matrices. In these examples we chose
the rows randomly.

Example 1. 1. Random matrices with i.i.d. entries (Candès and Tao, 2006;
Donoho, 2006d; Rudelson and Vershynin, 2006). Let matrix A’s entries be
i.i.d. for a subgaussian distribution with μ = 0 and σ = 1. Then Â = 1√

M
A

satisfies RIP with δS ≤ δ when M ≥ const(ε, δ) · S · log(2N/S) with proba-
bility p > 1− ε. Distribution examples: Gaussian, Bernoulli, subgaussian.

2. Fourier ensemble (Candès and Tao, 2006; Rudelson and Vershynin, 2006).
Let Â = 1√

M
A with A beingM randomly selected rows from anN×N DFT

matrix. Then Â satisfies RIP with δS ≤ δ providing M ≥ const(ε, δ) · S ·
log4(2N), with probability p > 1− ε.

3. General orthogonal ensembles (Candès and Tao, 2006). Let Â be M ran-
domly selected rows from anN×N orthonormal matrix U with re-normalized
columns. Then S-sparse recover x with high probability when M ≥ const ·
M2(U) · S · log6N .

The rest of the chapter is devoted to proving these results.

4.2 Johnson-Lindenstrauss Lemma and RIP for Subgaussian
Random Matrices

In this section we establish part 1 of example 1. While the following result does
not give the best possible estimate, it has, however, a very clear and short proof. In
our exposition we follow (Baraniuk et al., 2008).

The result we are about to present is referred to as the Johnson-Lindenstrauss
lemma. Essentially, it states that |Q| points in the Euclidean space RN can be mapped
into R

n so that the distances between the points are distorted by less than a multi-
plicative factor of 1 ± ε and n is the order of ln(|Q|))/ε2. Note that, in this chapter
only, we will use a somewhat different notation for the norm of a vector, that explic-
itly includes the dimensionality of the space; namely, ‖x‖�N2 will denote the l2-norm
of a vector x ∈ R

N .

Lemma 4.1. (Johnson and Lindenstrauss, 1984) Let ε ∈ (0, 1) be given. For every
set Q of |Q| points in RN , if n is an integer n > n0 = O(ln(|Q|))/ε2), then there



Theoretical Results (Probabilistic Part) 55

exists a Lipschitz mapping f : RN → R
n such that

(1− ε)‖u− v‖2�N2 ≤ ‖f(u)− f(v)‖
2
�n2
≤ (1 + ε)‖u− v‖2�N2 (4.1)

for all u, v ∈ Q.

The Johnson-Lindenstrauss lemma is a concentration inequality since its proof is
based on the following statement.

Let Φ(ω) be a random matrix with entries Φij = 1√
n
Ri,j , where Ri,j are i.i.d.

random variables with E[Rij ] = 0,Var[Rij ] = 1, and a uniform subgaussian tail
defined by constant a. Once again, we refer the reader to the Appendix for definitions
and other information from the theory of subgaussian random variables.

Theorem 4.2. For any x ∈ RN , the random variable ‖Φ(ω)x‖2�n2 is strongly con-
centrated around its expected value,

Prob(|‖Φ(ω)x‖2�n2 − ‖x‖
2
�N2
| ≥ ε‖x‖2�N2 ) ≤ 2e−nc0(ε), 0 < ε < 1, (4.2)

where the probability is taken over all n × N matrices Φ(ω), and c0(ε) > 0 is a
constant depending only on ε ∈ (0, 1).

The inequality given above in eq. 4.2 is called the Johnson-Lindenstrauss concen-
tration inequality. Concentration inequalities form a subarea of discrete geometry. A
reader interested in deeper understanding of this subject is referred to an introductory
book by (Matoušek, 2002).

We are now ready to establish RIP for matrices with subgaussian random entries.

Theorem 4.3. (RIP for random matrices) Suppose that n, N , and 0 < δ < 1
are given. If the probability distribution generating the n × N matrices Φ(ω), ω ∈
ΩnN , satisfies the Johnson-Lindenstrauss concentration inequality, then there exist
constants c1, c2 > 0 depending only on δ such that RIP (3.16) holds for Φ(ω) with
the prescribed δ and any k ≤ c1n/ log(N/k) with probability≥ 1− 2e−c2n.

The proofs of the theorems are given in the next sections.

4.2.1 Proof of the Johnson-Lindenstrauss Concentration Inequality

We now present the proof of the Johnson-Lindenstrauss concentration inequality
and lemma, following (Matoušek, 2002).

Proof. By dividing the expression under the probability sign in 4.2 by ‖x‖�N2 , we
may assume that ‖x‖�N2 = 1. Then

‖Φ(ω)x‖2�n2 − 1 =
1√
n

1√
n
(

n∑

i=1

(

N∑

j=1

Rijxj)
2 − n), (4.3)

or ‖Φ(ω)x‖2�n2 − 1 is distributed as 1√
n
Z , where Z = 1√

n
(
∑n

i=1(Yi)
2 − n), and
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Yi =
∑N
j=1 Rijxj . Since Rij are i.i.d., Yi are independent. By Theorem A.6 (see

Appendix), Yi are subgaussian random variables with E[Yi] = 0,Var[Yi] = 1.
Since ‖x‖�N2 = 1,

Prob[‖Φ(ω)‖ ≥ 1 + ε] ≤ Prob[‖Φ(ω)‖2 ≥ 1 + 2ε] = Prob[Z ≥ 2ε
√
n]. (4.4)

Since we may choose ε ≤ 1

2
, the last probability by Proposition A.8 and Proposition

A.3 does not exceed

e−a(2ε
√
n)2 = e−4aε2n ≤ e−C(ε)n, C(ε) = 4aε2. (4.5)

The proof of the estimate Prob[‖Φ(ω)‖ ≤ 1− ε] ≤ e−C(ε)n is similar.

The Johnson-Lindenstrauss lemma is a direct corollary of estimates 4.4 and 4.5

Proof (Johnson-Lindenstrauss lemma). Consider |Q|2 vectors u − v, where u,v ∈
Q, and take arbitrary F (ω) with entries being subgaussian i.i.d. random variables
with E[Rij ] = 0,Var[Rij ] = 1, and a uniform subgaussian tail defined by constant
a. By choosing n > C log(|Q|)/(aε2), we get that

|Q|2(Prob[‖Φ(ω)‖2 ≥ 1 + ε] + Prob[‖Φ(ω)‖2 ≥ 1− ε]) < 2|Q|2e−4aε2n < 1.

In other words, there exists ω0, such that for every pair u,v ∈ Q,

(1− ε)‖u− v‖2 ≤ ‖Φ(ω0)(u− v)‖2 ≤ (1 + ε)‖u− v‖2.

We choose f = Φ(ω0).

4.2.2 RIP for Matrices with Subgaussian Random Entries

In order to proceed from the Johnson-Lindenstrauss lemma to RIP, we need to
establish that the concentration inequality 4.2 holds uniformly for all unit vectors.
Following the spirit of the Johnson-Lindenstraus lemma’s proof, we need to show
that, with large probability, (1) Φ(ω) is bounded and (2) the estimate 4.2 holds on
centers of small balls covering the unit sphere. In order to do that, we need to estimate
the number of small balls covering the unit sphere.

We will first introduce the definition of the ε-cover of a body D ⊂ R
n.

Definition 6. Let D ⊂ R
N and let ε > 0. The set N ⊂ D is called ε-net of the set

D if the distance from every point of D to the set N is not greater than ε:

∀x ∈ D ∃y ∈ N with dist(x,y) ≤ ε.

The minimal size of set N is called the covering number. The covering number for a
pair K,D of convex bodies in R

n, denotedN(K,D), is defined as a minimal size of
covering K with shifts of D.

Next we will estimate the covering number for unit sphere Sn−1.
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Lemma 4.4. (Size of ε-net of the sphere Sn−1) Let 0 < ε < 1. Then ε-netN may be
chosen with

|N | ≤ (1 +
2

ε
)n. (4.6)

Proof. The proof goes back to at least (Milman and Schechtman, 1986); see also
(Rudelson and Vershynin, 2006). Instead of considering ε-net, we consider the set
N ′ with the smallest distances between points at least ε, i.e. the so-called ε-separated
set ,

N ′ = {xi|dist(xi,xj) ≥ ε}, (4.7)

and consider the maximal such net. This net may be constructed just by adding points
at the distance of ε to already chosen points. The set N ′ is an ε-net. Otherwise,
there will be a point on Sn−1 with the distance from N ′ > ε, and we can choose
more points on the distance ε from N ′. Now we apply volume estimate arguments.
Consider open unit balls B(xi, ε/2) with the origins at the points within the set N ′.
Then the balls do not intersect, and they all are contained in the ball B(0, 1 + ε/2)
of radius 1 + ε

2
, centered at the origin. Hence, estimating volumes of the balls,

|N ′|( ε
2
)n ≤ (1 + ε)n, (4.8)

establishes 4.6.

With a small variation, the proof of Lemma 4.4 estimates N(K,D).

Lemma 4.5. (Volumetric estimate, (Milman and Schechtman, 1986; Rudelson,
2007)) Let 0 < ε < 1, and K,D are convex bodies in R

n. Then D-net N on K
may be chosen with

|N | ≤ V olume(K +D)/V olume(D). (4.9)

Proof. Let N = {x1, ...,xN} ⊂ K be a set with xi + D ∩ xj + D = ∅ for
i 
= j; i, j ∈ ZN . Then

V olume(K +D) ≥ V olume(

N⋃

1

(xi +D)) (4.10)

=

N∑

1

V olume(xi +D) = N · V olume(D). (4.11)

Hence,

N(K,D) ≤ N ≤ V olume(K +D)

V olume(D)
. (4.12)

Corollary 4.6. Let K ⊂ R
n be a convex body. Then for positive ε < 1,

N(K, εK) ≤ (1 +
1

ε
)n. (4.13)

We now apply estimate 4.13 to the proof of uniform form of 4.2.
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Theorem 4.7. Let Φ(ω), ω ∈ ΩnN , be a random matrix of size n × N drawn
according to any distribution that satisfies the concentration inequality 4.2. Then,
for any set T with |T | = k < n and any 0 < δ < 1, we have

(1− δ)‖x‖�N2 ≤ ‖Φ(ω)x‖�n2 ≤ (1 + δ)‖x‖�N2 for all x ∈ XT (4.14)

with a probability at least

1− 2(9/δ)ke−c0(δ/2)n. (4.15)

Proof. Note that it is enough to establish 4.14 for x with ||x||2 = 1. Next, we choose
δ/4-net Q in Sk−1. In other words, for any x ∈ Sk−1 holds

dist(x,Q) ≤ δ/4. (4.16)

According to Lemma 4.4, the set Q may be chosen with a size not exceeding (1 +
8/δ)n ≤ (9/δ)n. By applying estimate 4.2 to the union of points Q, we get with
probability at least as in estimate 4.15 inequality

(1− δ/2)‖q‖2�N2 ≤ ‖Φ(ω)q‖
2
�n2
≤ (1 + δ/2)‖q‖2�N2 for all q ∈ Q, (4.17)

or by taking the square root,

(1− δ/2)‖q‖�N2 ≤ ‖Φ(ω)q‖�n2 ≤ (1 + δ/2)‖q‖�N2 for all q ∈ Q. (4.18)

LetB = supx∈Sk−1 ||Φ(ω)x||−1. ThenB ≤ δ. Indeed, fix x ∈ Sk−1. Pick a q ∈ Q
satisfying dist(x,q) ≤ δ/4. Then

‖Φx‖�n2 ≤ ‖Φ(ω)q‖�n2 + ‖Φ(ω)(x− q)‖�n2 ≤ 1 + δ/2 + (1 +B)δ/4. (4.19)

By taking the supremum over all x ∈ Sn−1 we get

B ≤ δ/2 + (1 +B)δ/4, (4.20)

or B ≤ 3δ/4/(1− δ/4) ≤ δ. This establishes the estimate from above for 4.14. The
estimate from below follows from

‖Φ(ω)x‖�n2 ≥ ‖Φ(ω)q‖�n2 − ‖Φ(ω)(x− q)‖�n2 ≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ.
(4.21)

Now we establish Theorem 4.3.

Proof. For each k-dimensional subspace Xk estimate 4.14 fails with probability at
most

2(9/δ)ke−c0(δ/2)n. (4.22)

For the fixed basis there are (Nk ) ≤ (eN/k)k such subspaces. Hence, for an arbitrary
subspace, estimate 4.14 fails with probability at most

2(eN/k)k(12/δ)ke−c0(δ/2)n = 2e−c0(δ/2)n+k[log(eN/k)+log(12/δ)]. (4.23)
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For a fixed c1 > 0, whenever k ≤ c1n/ log(N/k), we will have that the exponent in
the exponential on the right side of 4.23 is ≤ −c2n, provided that c2 ≤ c0(δ/2) −
c1[1+(1+log(12/δ))/ log(N/k)]. Hence, we can always choose c1 > 0 sufficiently
small to ensure that c2 > 0. Thus, with probability 1 − 2e−c2n the matrix Φ(ω)
satisfies 4.14 for x with ||supp(x)||l0 ≤ k.

4.3 Random Matrices Satisfying RIP
In this section we review several cases of random matrices satisfying RIP. We

describe a few types of randomness, different decay requirements on the distributions
(Gaussian, Bernoulli, subgaussian, subexponential, heavy tail), and i.i.d conditions
on entries, rows, or columns.

Example 1 shows different types of “randomness” that can lead to RIP of a ma-
trix. In one case, we have random entries of the matrix – see example 1(1). Note that
the order of the estimate S log(N/S) in 1 cannot be improved, as it was shown in
the recent work on RIP and phase transitions (see, for example, (Donoho and Tan-
ner, 2009), as well as (Foucart et al., 2010; Garnaev and Gluskin, 1984)), since it is
related to the lower bound of the Gelfand’s width of lN1 ball. For this type of random-
ness, it is possible to consider distributions with different decay, such as Gaussian,
subgaussian, or subexponential. For a similar result with subgaussian entries, de-
cay restriction relaxed to the subexponential entries decay, with estimate of order
S log2(N/S), see (Adamczak et al., 2011).

Other series of results, starting from (Candès et al., 2006a), relate to the randomly
chosen rows of some matrix; see examples 1(2) and 1(3). Since we do not put any
restrictions on the decay of the distribution, it is the case of the so-called heavy-tailed
random matrices. One of the strongest results in this direction is due to (Rudelson and
Vershynin, 2008), where for the constant probability maximal size of recoverable
dimension of the vector is order of S log4(N/S); see also (Rauhut, 2008; Foucart
and Rauhut, 2013) for the result on the Fourier matrices. Recently, this estimate was
improved to S log3(N/S); see (Cheraghchi et al., 2013).

In the rest of the chapter we prove the result presented in (Rudelson and Ver-
shynin, 2008), following the original version of the proof. We use an unpublished
series of lectures by (Rudelson, 2007) for the self-contained proof of the Dudley in-
equality, needed to establish Uniform Rudelson inequality or Uniform Law of Large
Numbers (ULLN); also, see Theorem 11.17 in (Ledoux and Talagrand, 2011) for a
similar exposition of the Dudley inequality.

We proceed as follows. After formulating the main result, we illustrate it on a
couple of examples. Next, we will formulate the uniform Rudelson inequality (URI).
We will also need the statements on uniform deviation and uniform symmetrization.
Finally, we prove the main result and conclude the chapter with the proof of the URI,
including exposition of the Dudley inequality.
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4.3.1 Eigenvalues and RIP

We can formulate RIP in terms of singular values of the matrix A. Recall that
singular value ofN×nmatrix A is a non negative real λ such that there exists a pair
of vectors v,u with Av = λu and A′u = λv, where A′ denotes the transpose of A.
An SVD decomposition is representation of A = UΣV as a product of orthogonal
matrices U and V (i.e., UU′ = IN and U′U = VV′ = V′V = In), and a non-
negative diagonal n× n matrix Σ. The diagonal elements of the matrix Σ are called
singular values. Usually, singular values are listed in a decreasing order:

s1 ≥ s2 ≥ ... ≥ sn ≥ 0. (4.24)

Let smin = sn and smax = s1 be the minimal and the maximal singular values,
respectively. Note that 0 ≤ smin ≤ smax = ||A||. Due to SVD decomposition,
< Ax,Ax >=< A′Ax,x >=< Σ2Vx,Vx >, and hence s2min = min|bx||2=1 <
Ax,Ax >, and s2max = max||x||2=1 < Ax,Ax >. Thus, the RIP 3.16 condition
may be rewritten in the form

(1− δk) ≤ s2min ≤ s2max ≤ 1 + δk. (4.25)

Recall that another way of presenting RIP 3.16 is as follows:

δk = max
T⊂ZN ,|T |≤k

||A|′TA|T − IR|T | ||; (4.26)

see Lemma 3.7, ii).
Thus, a uniform estimate of the singular values over all k-dimensional restrictions

of the matrix A on at most k coordinates T is given by

max
T⊂{1,...,n};|T |

{|1− smax(A|T )|, |1− smin(A|T )|} ≤ δ, (4.27)

which implies that

1− δ2 ≤ smin(A|T ) = min
||x||2=1,supp(x)⊂T

||A|Tx||2 (4.28)

≤ max
||x||2=1,supp(x)⊂T

||A|Tx||2 = smax(A|T ) ≤ 1 + δ2,

(4.29)

or, in other words, RIP holds with δk ≤ δ2.
Given two vectors x and y, we consider an xy′ matrix with coefficients

(xiyj)|i,j . Sometimes we use tensor product notion x⊗ y for the matrix xy′.

4.3.2 Random Vectors, Isotropic Random Vectors

A random n-dimensional vector is given by some probability measure in R
n.

ExpectationEx of a random vector x is the coordinate-wise expectation. The second
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moment of a random vector x is the matrix Σx = Exx′ = Ex ⊗ x. Recall that the
covariance of random vector x is

cov(x) =E(x− Ex)(x − Ex)′ (4.30)
=E(x− Ex)⊗ (x− Ex) = Ex⊗ x− Ex⊗ Ex. (4.31)

Definition 7. A random vector x is called isotropic if, for any vector y ∈ R
n, the

following equation holds:
E < x,y >2= ||y||22. (4.32)

The notion of the isotropic random vector goes back to at least (Robertson, 1940);
also, see (Rudelson, 1999; Kannan et al., 1997; Milman and Pajor, 1989) and (Ver-
shynin, 2012).

Since E < x,y >2= E(x′y)2 =< Σy,y >, the isotropic condition is equiva-
lent to < Σy,y >= ||y||22. Next, since < Σx,y >= 1/4(< Σ(x + y), (x + y) >
− < Σ(x−y), (x−y) >) =< x,y >, the isotropic property is equivalent to Σ = I.

Example 2. Gaussian. The Gaussian random vector x with distribution N(0, I) is
isotropic. Indeed, it is true since the covariance matrix is I.

Bernoulli. The n-dimensional Bernoulli random vector taking values in {−1, 1}n
with equal probability is isotropic. Changing the sign of coordinates does not
change expression in definition 4.32, hence x is isotropic.

4.4 RIP for Matrices with Independent Bounded Rows and
Matrices with Random Rows of Fourier Transform

The following theorem serves as a basis for rigorous explanation of the com-
pressed sensing phenomenon.

Theorem 4.8. (see (Candès et al., 2006a; Rudelson and Vershynin, 2008)) Let A =
(aij) be an n×N matrix which has independent normalized isotropic random vectors
as columns. Suppose also that all entries are bounded, |aij | ≤ K . Then for any
τ > 0, any N, k > 2, and with a probability at least 1− 5n−cτ for

N ≥ C(K)τk log2(n) log(C(K)τk log2(n)) log2(k), (4.33)

A satisfies k-RIP.

When k ≥ logn, estimate 4.33 bounds N from below as

C′
Kτ log(τ)k log

2(n) log3(k).

Our goal is to show that the mean of the RIP parameter

E = Eδk (4.34)
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is bounded around 1 in a controllable way. We will do that by expressing the estimate
of E through E and resolving the inequality with respect to E.

Since vectors Ai are independent and isotropic, definition 4.32 is valid also for
the vectors x with support in T ⊂ ZN of size |T | = d. Hence, Ai|T are independent
and isotropic and EAi|T ⊗Ai|T = Id.

Expression 1 may be presented as a tensor product of columns

1

N
A|∗TA|T − Id =

1

N

N∑

i=1

Ai|T ⊗Ai|T − Id =
1

N

N∑

i=1

Xi, (4.35)

with Xi = Ai|T ⊗Ai|T − Id being independent matrices with expectation 0.
Symmetrization step. We now estimate expression 1 through symmetrization of

theXi by random Bernoulli variable εi taking with equal probability values {−1, 1},
or

E sup
T⊂Zk

||
N∑

i=1

(XiT − EXiT )|| ≤ 2E sup
T⊂Zk

||
N∑

i=1

εiXiT ||. (4.36)

This form of the symmetrization inequality follows from the symmetrization inequal-
ity of section A.5 in Appendix. It states that the expected norm of the sum of centered
variables is bounded from above by twice the expected norm of the sum of the sym-
metrized variables. Lemma A.10 implies estimate 4.36 as follows. We consider Xi

as a vector column in R
n with the norm defined as

||X || = ||X ||Rn + max
T⊂Zk,|T |≤d

||X |T ||Rn . (4.37)

According to the note after definition 16 of vectors independence, vectors Xi are
independent. Thus, we can apply symmetrization Lemma A.10.

By taking norm and then expectation in 4.35, we estimate E as

E =
1

N
E sup
T⊂ZN ,|T |≤k

||
∑

j∈Zn

Xj |T ||.

Since aj1j2 is a function of original independent vectors Aj , the vectorsXj = Aj ⊗
Aj are independent by note after definition 16. Hence, we can apply expression 4.36
in order to obtain

E ≤ 2

N
E max
T⊂ZN ,|T |≤k

||
∑

j∈Zn

εjAj |T ⊗Aj |T ||. (4.38)

We will now use the Uniform Rudelson Inequality (URI) (Rudelson, 1999, 2007;
Vershynin, 2012).

Theorem 4.9. Let x1, ...,xl be vectors in R
m, l < m, with entries bounded by

constant |xji| ≤ K . For the p ≤ m and independent Bernoulli random variables
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ε1, ..., εl holds

E max
T⊂Zm,|T |≤p

||
l∑

i=1

εixi|T ⊗ xi|T || (4.39)

≤ φ(p,m, l)
√
pE max

T⊂Zm,|T |≤p
||

l∑

i=1

xi|T ⊗ xi|T ||
1
2 , (4.40)

where φ(p,m, l) = CK log(p)
√
log(m)log(l).

Estimating from above the right-hand side of inequality 4.38, using the result of
Theorem 4.9, we obtain

E ≤φ(k, n,N)
√
k

N
E max
T⊂ZN ,|T |≤k

||
∑

j∈ZN

xj |T ⊗ xj |T ||
1
2 (4.41)

=
φ(k, n,N)

√
k√

N
E max
T⊂ZN ,|T |≤k

|| 1
N

A|T ⊗A|T ||
1
2 . (4.42)

Next, by using the triangle inequality, we get

E max
T⊂ZN ,|T |≤k

|| 1
N

A|T ⊗A|T || (4.43)

≤E max
T⊂ZN ,|T |≤k

|| 1
N

A|T ⊗A|T − Ik||+ ||Ik|| = E + 1. (4.44)

By substituting 4.44 into 4.42 we get

E ≤ φ(k, n,N)

√
k

N
(E + 1)

1
2 . (4.45)

The solution of inequality 4.45 for positive E is given by

0 < E ≤ 1
2
(a2 +

√
a2(a2 + 4) = b, where a = φ(k, n,N)

√
k
N

. Since we are

interested in the area where a < 1, we have
√
a2 + 4 ≤ a + 2, and the right-hand

side may be estimated above as a(a+ 1) ≤ 2a.
Figure 4.1 illustrates the estimates b ≤ 2a and b ≤ min{

√
2a, 2a2}.

By combining together the above inequalities, we conclude that, for the 0 < a ≤
1,

E ≤ 2a = 2CK log(k)

√
k log(n)log(N)

N
. (4.46)

By resolving 4.46 and by changing the constant CK , we get

N

log(N)
≥ CKδ

−2log2(k) k log(n) implies E ≤ δ. (4.47)

The following choice of N :

N ≥ CKδ
−2log2(k) k log(n)log(δ−2log2(k) k log(n)) (4.48)
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a) b)

FIGURE 4.1: Areas of inequality: (a) area where b ≤ 2a; (b) area where b ≤
max{

√
2a, 2a2}.

guaranties that, for 0 < δ < 1, we have P ({δk > δ
1
2 }) ≤ E

δ
1
2

, due to the simple

estimate P ({x > c}) ≤ Ex/c. Thus, when log(k)
√

k log(n)log(N)
N tends to 0, then

k-RIP holds with probability of at least 1 − δ
1
2 . This gives us at most logarithmic

decay of deviation probability and, in principle, explains the phenomenon. In the rest
of this section, we prove URI and show that RIP holds with probability 1− n−cτ .

4.4.1 Proof of URI

In this subsection, we will prove the URI Theorem 4.9, following the exposi-
tion presented in (Rudelson and Vershynin, 2008). The following estimate is due to
Dudley; see section A.7 in Appendix.

Corollary 4.10. (Dudley entropy inequality) Let T be a compact metric space. Let
Vt, t ∈ T be a subgaussian process with Vt0 = 0. Then

E sup
t∈T

||Vt|| ≤ C

∫ ∞

0

√
logN(T, d, ε)dε. (4.49)

Let B2 be a unit ball in R
m with the Euclidean norm. We also consider B1, the

unit ball in l1 norm in R
m, and their restrictions BT1 , B

T
2 on coordinates T ⊂ Zm.

As a space (T , δ) we choose
⋃

T⊂Zm,|T |≤k
BT2 . We consider metric

δ(x,y) = sup
T⊂Zm,|T |≤k

||Xi|T ⊗Xi|T (x⊗ x− y ⊗ y)||2 (4.50)

= sup
T⊂Zq ,|T |≤k

[
N∑

i

(
< Xi|T ,x >2 − < Xi|T ,y >2

)2
] 1

2

. (4.51)

We define a random process V (x) as

V (x) =
∑

i

εiXi|T ⊗Xi|Tx⊗ x (4.52)

for x ∈
⋃

T⊂Zm,|T |≤k
BT2 .
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Note that V (0) = 0 and V (x) is bounded, and hence it is subgaussian.
Denote the left-hand side of inequality 4.40 by E1. Then, by using the definition

of X ⊗X and the Dudley inequality 4.49 we obtain

E1 ≤E max
T⊂Zm,|T |≤p;x∈BT2

∣
∣
∣
∣
∣

l∑

i=1

εi < Xi|T ,x >2

∣
∣
∣
∣
∣

(4.53)

≤C
∫ ∞

0

log
1
2N(

⋃

T⊂Zm,|T |≤p
BT2 , δ, u)du. (4.54)

The metric δ on the right-hand side of 4.50 can be estimated as

δ(x,y) ≤
[

l∑

i=1

(
< Xi|T ,x >2 + < Xi|T ,y >2

)2
] 1

2

max
i≤l

| < Xi,x− y > |

≤2 max
T⊂Zm,|T |≤p;x∈BT2

[
l∑

i=1

< Xi|T ,x >2

] 1
2

max
i≤l

| < Xi,x− y > |

=2Rmax
i≤l

| < Xi,x− y > |,
(4.55)

where R = supT⊂Zm,|T |≤p ||
∑l

i=1Xi|T ⊗Xi|T ||
1
2 .

Our goal now is to estimate the value of N(
⋃
T⊂Zm,|T |≤pB

T
2 , δ, u). In order to

do that, we replace BT2 with BT1 , which is easier to work with, and use metric δ on
simpler maxi≤l | < Xi,x− y > |.

We will use the notation Dp,m
q =

⋃
T⊂Zm,|T |≤pB

T
q for q = 1, 2. Let ||x||X =

maxi≤l| < Xi,x > | and BX be a unit ball in norm ||.||X . Note that Dp,m
1 ⊂ Bm1

and Dp,m
1 ⊂ KB1X , since ||x||X ≤ K||x||1. Similarly, since ||x||1 ≤

√
p||x||2

(Cauchy-Schwarz inequality applied to x and vector with 1s only on the supp(x)),
then Dp,m

2 ⊂ √pDp,m
1 .

Thus, the right-hand side of 4.54 may be estimated from above as

C

∫ ∞

0

log
1
2N(

√
p

⋃

T⊂Zm,|T |≤p
BT1 , 2R||.||X , u)du

≤ C

∫ ∞

0

log
1
2N(

√
pBm1 , 2R||.||X , u)du

≤ 2R
√
pC

∫ ∞

0

log
1
2N(Bm1 , ||.||X , u)du,

(4.56)

since N(
√
pBm1 , 2R||.||X , u) = N(Bm1 , ||.||X , u/(2R

√
p) and the change of inte-

gration variable u to u/(2R
√
p) is applied.

To prove URI, it is enough to show that 4.56 does not exceed

C(K)
√
p log(p)

√
log(m) log(l)R. (4.57)
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We partition the integral in two parts and estimate them separately. For the small
u we use a volumetric estimate of Lemma 4.5 and Corollary 4.6. Recall that the
corollary estimates size of the ε separated net. For the ε cover net we need to double
the covering body, or take double norm. By taking into account that BT1 ⊂ KB1X ,
we estimate by N(KB1X , ||.||X , u) as

N(BT1 , ||.||X , u) ≤(1 + 2K/u)p;

N(Dp,m
1 , ||.||X , u) ≤d(m, p)(1 + 2K/u)p,

(4.58)

where d(m, p) =
∑p

i=1mCi is a number of different BT1 balls. We estimate mCi
from above using the Stirling formula for i! ∼

√
2πi(i/e)i, and possibly adjusting

the constant as Cni · ei/i(i+1/2) = Ci/
√
(i)(m/i)i. The sum d(m, p) does not

exceed then p(Cm/p)p. Then the log
1
2 of the right-hand side of expression 4.56

does not exceed

C
[√

log(p) +
√
log(m/p) +

√
log(1 + 2K/u)

]
. (4.59)

The following estimate of the covering number will be used for large u. We re-
place

√
pDp,m

1 by
√
pBm1 . Then

N(Bm1 , ||.||X , u) ≤ (2m)q, (4.60)

where q = C2K2/u2. The proof is based on arguments due to Maurey; see (Carl,
1985; Rudelson and Vershynin, 2008).

We estimate that for the arbitrary vector y the distance from it to an appropriate
equally weighted convex combination of q vectors with values ±1 as the only non-
zero coordinate is not more than u further in ||.||X norm.

Indeed, fix vector y ∈ Bm1 and consider random vector Z in R
m, which takes the

only nonzero value sign(yi) with probability |y(i)|, i ∈ Zm. Then EZ = 0.
Consider q identical copies of random variable Z , Z1, ..., Zq . Then, by using the

symmetrization argument (see Lemma A.10),

E||y − 1

q

∑

j∈Zq

Zj||X ≤
2

q
E||
∑

j∈Zq

ejZj||X = C
2

q
Emax

i≤l
|
∑

j∈Zq

< εjZj, Xi > |.

(4.61)
Since | < Zj , Xi > | < K , by the Cauchy inequality

|
∑

j∈Zq

< εjZj , Xi > | ≤
√∑

j∈Zq

< εjZj, Xi >2 ≤ K
√
q. (4.62)

Corollary A.5 implies that the right-hand side of 4.61 does not exceed

CK
√
q
. (4.63)

EachZj takes 2m values, and 1
q

∑
j∈Zq

Zj takes possibly (2m)q values. For q chosen
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above, for arbitrary y ∈ Bm1 holds ||y− 1
q

∑
j∈Zq

Zj ||X ≤ u. By passing to the balls
with double norm, we can restrict by choice of points in Bm1 .

The log
1
2 of the right-hand side of expression 4.60 does not exceed

CK log
1
2 (m)

u
. (4.64)

Now we return to the estimate 4.56. The integral 4.54 does not have
any contribution from u > K , since Dp,m

1 ⊂ √
pKB1X , and hence

N(
⋃
T⊂Zm,|T |≤pB

T
1 , ||.||X , u) is 1.

We partition integral 4.54 into two parts: integrals from 0 to A = 1√
p

and from
A to K . The first part we estimate using 4.59, and the second part we estimate using
4.64.

For the first part, we estimate log
1
2 as log, since we suppose that A < 1/2, and

hence each addend is greater than 1, and integrate the estimate. Then the first part
does not exceed (we again modified the constant without changing notation)

C
√
p
[
A
√

log(p) +
√

log(m/p)
]
+
√
p(A+K) log((A+K)(K))

≤CRK log(K)
√
p log(p)

√
log(m).

(4.65)

The second part of the integral is estimated as (again, with a modified constant)

CRK
√
p log(p)

√
log(m). (4.66)

Thus, the whole integral 4.54 is estimated by CRK log(K)
√
p log(p)

√
log(m).

This concludes the proof of the URI and the proof of 4.34.

4.4.2 Tail Bound for the Uniform Law of Large Numbers (ULLN)
In this section, we formulate and prove the tail estimate in the ULLN, and use it to

finish the proof of Theorem 4.8. Again, our proof follows (Rudelson and Vershynin,
2008).

Consider random selectors, or n Bernoulli variables δ1, ..., δn taking value 1
with probability δ = k/n. Define Ω = {j ∈ Zn|δj = 1} and p(Ω) = k|Ω|(n −
k)n−|Ω|/nn. Measure p defines probability spaces on all subsets of Zn. We say that
Ω is a uniformly random set of size k since E(|Ω|) = k.

Theorem 4.11. Let X1, .., Xn be vectors in R
n with |xij | < K , for all i, j. Suppose

that 1
n

∑
i∈Zn

Xi ⊗Xi = I. Then the

X = sup
TZn,|T |≤p

||
∑

i∈Zn

Xi|T ⊗Xi|T I|| (4.67)

is a random variable that satisfies for any s > 1,

p(X > Csε) ≤ 3e−C(K)sεk/r + 2e−s
2

. (4.68)
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Proof. On the space L of linear operators from R
N �→ R

N consider norm

||V ||L = sup
T∈Zn,|T |≤r

||V |T ||, (4.69)

where V |T = PTV PT , PT is a projection on coordinates of T .
Let δ1, ..., δn be random selectors, i.e. i.i.d. Bernoulli variables with probability

of having value 1 being k/n; δ′1, ..., δ
′
n are their independent copies. Define random

variables
xi =

1

k
δiXi ⊗Xi −

1

n
In, (4.70)

and yi being symmetrization of xi:

xi =
1

k
(δi − δ′i)Xi ⊗Xi. (4.71)

Define
X = ||

∑

i∈Zn

xi||L, Y = ||
∑

i∈Zn

yi||L. (4.72)

By Lemmas A.10, and A.35, A.36, the following estimates holds:

E(X) ≤ E(Y ) ≤2E(X)

p(X > 2E(X) + u) ≤2P (Y > u).
(4.73)

The norm ||Xi ⊗Xi||L is bounded as

||Xi ⊗Xi||L = sup
z∈Rn,||z||2=1,|supp(z)|≤r

| < xi, z > |2, (4.74)

and, hence

||Xi ⊗Xi||L ≤(||Xi||∞ sup
||z||2=1

||z||1)2

≤ (||Xi||∞
√
r sup
||z||2=1

||z||2)2 ≤ K2r.
(4.75)

The norm of yi is estimated as

R = max
i∈Zn

||yi||calL ≤
2

k
||Xi ⊗Xi||L ≤

2K2r

k
2K2r. (4.76)

Now we apply to yi the large deviation bound theorem; see Appendix, section A.8,
Theorem A.13. Due to estimate 4.46, E(X) < δ. Thus we have an estimate

p(X > (2 + 16q)δ + 2Rl+ t) ≤ Cl

ql
+ 2e

− t2

512qδ2 , (4.77)

for all natural l ≥ q, t > 0. Set q = floor(eC) + 1, t =
√
512qsδ, l = floor(t/R).

The condition l ≤ q holds due to 4.76 and choice of k. Thus

p(X > (2 + 16q + 3
√
512qs)δ) ≤ e−

√
512qsδk

2K2r + 2e−s
2

. (4.78)

This estimates implies 4.69.
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In order to finish proof of the Theorem 4.8 we set s = 1
2Cδ

. Then C(K)sδ/r >
1/δ2 by choice of N (or k). Hence

p(X > 1/2) ≤ 5e−C/δ
2

. (4.79)

Since δr ≤ X , and t = I/δ2, this finishes the proof of Theorem 4.8.

4.5 Summary and Bibliographical Notes
In this chapter, we consider RIP for the three main types of random matrices:

matrices with subgaussian i.i.d. random entries, matrices with rows that are randomly
selected from the Fourier (or cosine) transform matrix, and matrices with the rows
selected randomly from an orthonormal matrix. The results considered in this section
are due to (Donoho, 2006a; Candès et al., 2006a; Rudelson and Vershynin, 2008).
Following (Baraniuk et al., 2008), we showed that RIP (and as corollary the Johnson-
Lindenshtraus lemma) holds for the first type of matrices. Extension of these results
to the matrices with sub-exponential entries can be found in (Adamczak et al., 2011),
though with a slightly worse estimate. Note that the order of the estimate in 1 could
not be improved, as it was shown in the phase-transition papers by (Donoho and
Tanner, 2009) and also by (Foucart et al., 2010; Garnaev and Gluskin, 1984), since
it is related to the lower bound of the Gelfand’s width of lN1 ball.

We also showed that RIP holds for the next two types of matrices, following
(Rudelson and Vershynin, 2008). Further improvement of this estimate can be found
in (Cheraghchi et al., 2013).

Note that the results presented in this chapter are uniform for any signal of fixed
support. For non-uniform results that nevertheless imply recovery of the source, we
refer to (Candès and Plan, 2011) and to several recent monographs (Eldar and Ku-
tyniok, 2012; Foucart and Rauhut, 2013; Chafai et al., 2012).
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This chapter provides an overview of several common algorithms for sparse signal
recovery, such as greedy approaches, active set methods (e.g., LARS algorithm),
block-coordinate descent, iterative thresholding, and proximal methods. We focus on
the noisy sparse recovery problems introduced before: the ultimate, and intractable,
l0-norm minimization:

(P ε0 ) : min
x
||x||0 subject to ||y −Ax||2 ≤ ε, (5.1)

and its l1-norm relaxation, also known as LASSO, or basis pursuit:

(P ε1 ) : min
x
||x||1 subject to ||y −Ax||2 ≤ ε, (5.2)

frequently stated in its equivalent Lagrangian form:

(P λ1 ) : min
x

1

2
||y −Ax||22 + λ||x||1. (5.3)

Recall that x is an n-dimensional unknown sparse signal, which in a statistical set-
ting corresponds to a vector of coefficients of a linear regression model, where each
coefficient xi signifies the amount of influence the i-th input, or predictor variable
Ai, has on the output y, anm-dimensional vector of observations of a target variable
Y . A is an m× n design matrix, where the i-th column is an m-dimensional sample
of a random variable Ai, i.e. a set of m independent and identically distributed, or
i.i.d., observations.

71
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Before we start discussing specific algorithms for the sparse recovery problems
stated above, it is worth noting that problems (P ε1 ) and (Pλ1 ), can be, of course,
solved by general-purpose optimization techniques. For example, any convex uncon-
strained problem, such as (Pλ1 ), can be handled by subgradient descent, an iterative
method that, at each iteration, takes a step in the direction of the steepest decline of
the objective. The approach is globally convergent; however, in practice, the conver-
gence may be slow (Bach et al., 2012), and the solutions are typically not sparse. On
the other hand, a more specific subclass of such methods, called proximal algorithms,
is better suited for sparse problems and will be discussed later in this chapter.

Moreover, as it was already mentioned before, the problem (Pλ1 ) can be for-
mulated as a quadratic program, and thus general-purpose toolboxes, such as, for
example, CVX1, can be applied to it. This approach works well for relatively small
problem sizes. However, as discussed in (Bach et al., 2012), generic quadratic pro-
gramming does not scale well with increasing problem size, and thus it becomes
necessary to exploit specific structure of the sparse recovery problem. Thus, the fo-
cus of this chapter is on specialized approaches for solving (Pλ1 ) and (P ε0 ) problems,
as well as some extensions of those problems to other types of objective functions
and regularizers.

Also, before considering methods for solving the above problems in general, we
would like to focus on the specific case of orthogonal design matrices. It turns out
that in such case both l0- and l1-norm optimization problems decompose into inde-
pendent univariate problems, and their optimal solutions can be easily found by very
simple univariate thresholding procedures. This observation also provides an intu-
ition for more general iterative thresholding methods described later in this chapter.

5.1 Univariate Thresholding is Optimal for Orthogonal Designs
An orthogonal, or orthonormal, matrix A is an n× n square matrix satisfying

ATA = AAT = I,

where I denotes the identity matrix, i.e. the matrix where the diagonal elements are
all ones, and off-diagonal elements are all zeros. A linear transformation defined by
an orthogonal matrix A has a nice property: it preserves the l2-norm of a vector, i.e.

||Ax||22 = (Ax)T (Ax) = xT (ATA)x = xTx = ||x||22.

The same is clearly true for AT , and thus we get

||y −Ax||22 = ||AT (y −Ax)||22 = ||x̂− x||22 =

n∑

i=1

(x̂i − xi)2,

1http://cvxr.com/cvx/.
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where x̂ = ATy corresponds to the ordinary least squares (OLS) solution when A
is orthogonal, i.e.

x̂ = argmin
x
||y −Ax||2.

As we show next, the above transformation of the sum-squared loss will greatly sim-
plify both l0- and l1-norm optimizations problems.

5.1.1 l0-norm Minimization

The problem (P ε0 ) can be now rewritten as

min
x
||x||0 subject to

n∑

i=1

(x̂i − xi)2 ≤ ε2. (5.4)

In other words, we are looking for the sparsest (i.e., smallest l0-norm) solution x∗

that is ε-close in l2-sense to the OLS solution x̂ = ATy. It is easy to construct such
solution by choosing k largest (in the absolute value) coordinates of x̂ and by setting
the rest of the coordinates to zero, where k is the smallest number of such coordinates
needed to get ε-close to x̂, i.e. to make the solution feasible. This can be also viewed
as a univariate hard-thresholding of the OLS solution x̂, namely:

x∗i = H(x̂i, ε) =

{
x̂i if |x̂i| ≥ t(ε)
0 if |x̂i| < t(ε).

where t(ε) is a threshold value below the k-th largest, but above the (k + 1)-th
largest value among {|x̂i|}. The univariate hard-thresholding operation, denoted here
H(x, ε), is shown in Figure 5.1a.

x

x*

x

x*

(a) (b)

FIGURE 5.1: (a) Hard thresholding operator x∗ = H(x, ·); (b) soft-thresholding
operator x∗ = S(x, ·).
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5.1.2 l1-norm Minimization

For an orthogonal A, the LASSO problem (Pλ1 ) becomes

min
x

1

2

n∑

i=1

(x̂i − xi)2 + λ

n∑

i=1

|xi|, (5.5)

which trivially decomposes into n independent, univariate optimization problems,
one per each xi variable, i = 1, ..., n:

min
xi

1

2
(x̂i − xi)2 + λ|xi|. (5.6)

When the objective function is convex and differentiable, it is easy to find its mini-
mum by setting its derivative to zero. However, the objective functions in the above
univariate minimization problems are convex but not differentiable at zero, because
of |x| being nondifferentiable at zero. Thus, we will use instead the notion of sub-
derivative. Given a function f(x), its subdifferential at x is defined as

∂f(x) = {z ∈ Rn|f(x′)− f(x) ≥ z(x′ − x) for all x′ ∈ Rn},

where each z is called a subderivative and corresponds to the slope of a tangent line to
f(x) at x. Figure 5.2a shows the case of differentiable function where the subderiva-
tive is just the derivative at x (single tangent line). Figure 5.2a shows f(x) = |x|
as an example of a function nondifferentiable at x = 0, and its set of tangent lines

f(x)

f(x')

x x'

f(x)=|x|

(a) (b)

FIGURE 5.2: (a) For a function f(x) differentiable at x, there is a unique tangent
line at x, with the slope corresponding to the derivative; (b) a nondifferentiable func-
tion has multiple tangent lines, their slopes corresponding to subderivatives, for ex-
ample, f(x) = |x| at x = 0 has subdifferential z ∈ [−1, 1].
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corresponding to the subdifferential

∂f(x) =

⎧
⎨

⎩

1 if x > 0
[-1,1] if x = 0
−1 if x < 0

.

Given a convex function f(x), x∗ is its global minimum if and only if 0 ∈ ∂f(x∗)
(e.g., see (Boyd and Vandenberghe, 2004)). For the objective function

f(x) =
1

2
(x − x̂)2 + λ|x|,

in each of the univariate LASSO problems given by eq. 5.6, the corresponding
subdifferential is

∂f(x) = x− x̂+ λz, (5.7)

and thus the condition 0 ∈ ∂f(x) implies

z =

⎧
⎨

⎩

1 if x > 0
[-1,1] if x = 0
−1 if x < 0.

This gives us the following global minimum solution for each univariate LASSO
problem in eq. 5.6:

x∗i =

⎧
⎨

⎩

x̂i − λ if x̂i ≥ λ
x̂i + λ if x̂i ≤ −λ
0 if |x̂i| < λ.

In other words,
x∗i = S(x̂, λ) = sign(x̂)(|x̂| − λ)+,

where the operator S(x̂, λ) transforming x̂i into x∗i is called the soft thresholding op-
erator (shown in Figure 5.1b), as opposed to the hard thresholding operator H(x, ε)
discussed earlier and illustrated in Figure 5.1a. In summary:

When the design matrix A is orthogonal, both l0- and l1-norm minimization
problems decompose into a set of independent univariate problems given by eq.
5.4 and 5.6, respectively. These problems can be easily solved by first computing
the OLS solution x̂ = ATy and then applying thresholding operators to each
coordinate: l0-minimization (generally NP-hard combinatorial problem) is opti-
mally solved by the univariate hard thresholding, while l1-minimization (LASSO)
is optimally solved by the univariate soft thresholding.

We will now go beyond the special case of orthogonal design matrices and con-
sider several general-purpose optimization approaches for sparse recovery, starting
with the ultimate l0-norm minimization problem.
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5.2 Algorithms for l0-norm Minimization
As it was already mentioned, the ultimate sparse recovery problem, as defined

by eq. 2.12, is NP-hard, and there are two categories of approximate techniques for
solving it: those employing approximate methods, and those using convex approxi-
mations such as l1-norm. In this section we focus on approximate optimization meth-
ods such as greedy approaches for solving the l0-norm minimization combinatorial
problem (P ε0 ):

(P ε0 ) : min
x
||x||0 subject to ||y −Ax||2 ≤ ε, (5.8)

which can be also written in an equivalent form as as

(P k0 ) : min
x
||y −Ax||2 subject to ||x||0 ≤ k, (5.9)

where the bound on the number of nonzero elements, k, is uniquely defined by the
parameter ε in the original (P ε0 ) formulation. The latter problem is also known as
the best subset selection problem, since it aims at finding a subset of k variables that
yield the lowest quadratic loss in eq. 5.9, or, in other words, the best linear regression
fit.

Instead of searching exhaustively for the best solution over all subsets of variables
of size k, which is clearly intractable, a cheaper approximate alternative employed by
greedy methods is to look for a single “best” variable at each iteration. A high-level
greedy algorithmic scheme is outlined below.

Greedy Approach

1. Start with an empty support set, i.e. the set of nonzero (“active”) variables,
and zero vector as the current solution.

2. Select the best variable using some ranking criterion Crank, and add the
variable to the current support set.

3. Update the current solution, and recompute the current objective function,
also called the residual.

4. If the current solution x satisfies a given stopping criterion Cstop, exit and
return x, otherwise go to step 2.

FIGURE 5.3: High-level scheme of greedy algorithms.

All greedy methods for sparse signal recovery that we consider here follow the
above scheme. They differ, however, in specific ways the steps 2, 3, and 4 are im-
plemented: namely, the choice of the variable ranking criterion Crank, the way the
current solution and the residual are updated, and the stopping criterion used. We
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will now discuss possible implementations of those steps, and the resulting greedy
methods.

Step 2: Ranking Criteria for Best Variable Selection

Single-variable OLS fit. Let us consider the best subset selection problem in eq.
5.9, where k = 1. In other words, let us find best single-variable least-squares fit,
i.e. a variable that yields the lowest sum-squared loss in 5.9. This problem can be
easily solved in O(N) time, by evaluating each column of the M ×N matrix A that
corresponds to a different variable. Namely, for each column ai, we will compute
the corresponding sum-squared loss by minimizing the following univariate OLS
objective:

Li(x) = ||aix− y||22 = ||y||22 − 2xaTi y + ||ai||22x2. (5.10)

Taking the derivative of the above function and setting it to zero gives

dLi(x)

dx
= −2aTi y + 2x||ai||22 = 0,

which yields the optimal choice of the coefficient for the i-th variable:

x̂i = argmin
x
Li(x) = aTi y/||ai||22. (5.11)

The above single-variable OLS criterion is used to choose the next best variable in
greedy methods such as matching pursuit (MP), also known as forward stagewise
regression in statistics, and in orthogonal matching pursuit (OMP); these algorithms
will be discussed in more detail later in this chapter.
Full OLS fit. Another possible evaluation criterion for selecting the best next variable
is to compute the overall improvement in the objective function in eq. 5.9 that can
be gained due to adding a candidate variable to the current support. This requires
solving the full OLS regression problem, where the set of variables is restricted to
the current support set, plus the candidate variable. Let S = {i1, ..., ik} be the current
support set of size k, where ij is the index of the variable (column of A) added at the
j-th iteration, let i be the index of the column/variable that is being evaluated, and
let A|S be the restriction of the matrix A on a subset of columns indexed by S. Then
the full-OLS approach is to compute the current solution estimate as

x̂ = argmin
x
||y −A|S∪{i}x||22. (5.12)

Then the current estimate of y is given by

ŷ = A|S∪{i}x̂, (5.13)

and the new residual, i.e., the remaining part of y not yet “explained” by the current
solution, is given by

r = y − ŷ. (5.14)

Thus, according to the full-OLS criterion, the best next variable is the one that re-
sults into the lowest residual, i.e. the smallest sum-squared loss in eq. 5.12. Note
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that, while the full-OLS approach is computationally more expensive than the single-
variable fit, it often leads to more accurate approximations of the exact sparse solu-
tion, as shown, for example, in (Elad, 2010); also, see chapter 3 of (Elad, 2010) for
an efficient implementation of this step. The full-OLS fit approach to variable selec-
tion is used in the Least-Squares OMP (LS-OMP), as discussed in (Elad, 2010), and
is also widely known as forward stepwise regression in statistics (Hastie et al., 2009;
Weisberg, 1980).

Comments. It will be useful to keep in mind the following geometric interpretation
of the full-OLS fit: estimate ŷ can be viewed as the orthogonal projection of the
vector y on the column-space of A|S∪{i}, and thus the corresponding residual in eq.
5.14 is orthogonal to that space.

Also, note that, if the columns of A are normalized to have the unit l2-norm,
i.e. ||ai||2 = 1, then the estimate x̂i = aTi y. And, if on top of that, both y and
the columns of A are centered to have zero means, then the correlation between the
observed values ai of the i-th predictor variable and the observed values y of the
predicted variable, can be written as

corr(y, ai) = aTi y/||y||2.

Thus, for normalized and centered data, the best single-variable fit is achieved by
the column ai most-correlated with y. Moreover, since

cosα =
aTi y

||ai||2||y||2
,

where α is the angle between ai and y, the two column-vectors ai and aj that are
equally correlated with y also have an equal angle with it.

Step 3: Updating the Current Solution and the Residual

Once the next best variable i is selected, it is added to the current support. How-
ever, there are several possible options when it comes to updating the current solution
and the residual. If a single-variable fit was used at step 2, then the coefficients of the
previously selected variables are all left intact, and only the coefficient of the cur-
rently selected variable i is updated, followed by the update of the current residual,
as follows:

xi = xi + x̂i, (5.15)
r = r− aTi x̂i. (5.16)

A more computationally involved update that often leads to a better performance
(Elad, 2010) is to actually recompute the current solution, over the new support
S ∪ {i}, by solving the OLS problem in eq. 5.12, which also produces the new
residual (see eq. 5.14). Note that the residual obtained via such update is orthogonal
to the column-space of A restricted to the current solution support, and thus none
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of the variables in the current support will be considered as potential candidates in
the future iterations of the algorithm, while this is not necessarily true when using
a simple update in eq. 5.16. The update orthogonalizing the residual is used in the
greedy method known as orthogonal matching pursuit (OMP).

Step 4: Stopping Condition

A commonly used stopping condition is achieving some sufficiently small error
on the objective function; the error threshold is given as an input to the algorithm. For
example, setting the error threshold to ε in the formulation (P ε0 ) guarantees that the
solution will satisfy the constraint ||y−Ax||2 ≤ ε. Another possible criterion, used,
for example, in forwards stagewise regression formulation (Hastie et al., 2009), is to
stop the algorithm when there are no more predictors (columns of A) that are still
correlated with the current residual, so that no more improvement to the objective
function is possible.

5.2.1 An Overview of Greedy Methods

Greedy algorithms for sparse signal recovery have a long history in both sig-
nal processing and statistics fields, and same algorithms sometimes appear under
different names in different research communities. Here we present several most
commonly-used methods, although multiple extensions and modifications exist along
the lines of the general greedy scheme present above. From now on, we will assume
that the vector y is centered to have zero mean, and that the columns of the matrix A
are normalized to the unit l2-norm and centered to have zero mean, as it is commonly
assumed in statistical literature. Recall that under such assumptions the best single-
variable fit to the current residual r is achieved by the column ai most-correlated
with the residual.

The following algorithm, shown in Figure 5.4, is known as Matching Pursuit
(MP) (Mallat and Zhang, 1993; Elad, 2010) in the signal processing community, and
is essentially equivalent to the forward stagewise regression (Hastie et al., 2009) in
statistics, although the stopping criteria for those two algorithms may be stated dif-
ferently: MP formulations typically use a threshold on the sum-squared error (Elad,
2010), while forward stagewise iterates until there are no more predictors (columns
of A) correlated with the current residual (Hastie et al., 2009). The MP algorithm
is the simplest greedy method out of those considered herein; it uses simple single-
variable OLS fit to find the next best variable, and a simple update of the solution and
the residual, which only involves a change to the coefficient of the selected variable.
However, as mentioned before, such update does not orthogonalize the residual with
respect to the variables in the current support, and thus the same variable may be
selected again in the future. Thus, though each iteration of the algorithm is simple,
MP, or forward stagewise, may require a potentially large number of iterations to
converge.

A modification of the forward stagewise regression algorithm, known as the
incremental forward stagewise regression (Hastie et al., 2009), makes smaller
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Matching Pursuit (MP)
Input: A, y, ε

1. Initialize: k = 0, xk = 0, Sk = supp(x0) = ∅, rk = y −Ax0 = y

2. Select next variable:
k = k + 1 // next iteration
find the predictor (column in A) most correlated with the residual rk−1:
ik = argmaxi a

T
i r

k−1

x̂ik = maxi a
T
i r

k−1

3. Update:
Sk ← Sk−1 ∪ {ik} // update the support
xk = xk−1, xki = xki + x̂ik // update the solution
rk = rk−1 − aTi x̂ik // update the residual

4. If the current residual rk is uncorrelated with all ai, 1 ≤ i ≤ n, or
if ||rk||2 ≤ ε, then return xk,
otherwise go to step 2 (next iteration of the algorithm).

FIGURE 5.4: Matching Pursuit (MP), or forward stagewise regression.

(incremental) updates at step 3 of the algorithm shown in Figure 5.4, i.e. xki =
xki + δ · x̂ik , where the parameter δ controls the step size. Incremental forward stage-
wise regression with δ → 0 turns out to be closely related to the Lasso problem and
the LARS algorithm for solving it, as discussed in the next section.

We now present the next algorithm in the greedy family, known as the Orthogo-
nal Matching Pursuit (OMP), which was introduced shortly after MP by both (Pati
et al., 1993) and (Mallat et al., 1994). As shown in Figure 5.5, it differs from MP
only in the way the solution and the residual are updated (step 3). As it was men-
tioned above when discussing different implementations of the step 3, OMP will
recompute the coefficients of all variables in the current support, by solving the full
OLS problem over the support augmented with the new variable. As the result of
this operation, the residual becomes orthogonal to the support variables, hence the
word “orthogonal” in the name of the algorithm. Again, as mentioned above, the
OMP update step is more computationally expensive than the MP update, but, due to
orthogonalization, it will only consider each variable once, typically resulting into a
smaller number of iterations. Also, OMP often obtains more accurate sparse solutions
than MP.

Finally, progressing from simple to more sophisticated greedy approaches, we
consider the so-called Least-Squares OMP (LS-OMP) algorithm presented in (Elad,
2010), which is also widely known in statistical literature as forward stepwise re-
gression (Hastie et al., 2009); see Figure 5.6 for details. This approach is sometimes
confused with OMP (e.g., see (Blumensath and Davies, 2007) for a detailed discus-
sion and historical remarks on both algorithms), and thus it is important to clarify
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Orthogonal Matching Pursuit (OMP)
Input: A, y, ε

1. Initialize: k = 0, xk = 0, Sk = supp(x0) = ∅, rk = y −Ax0 = y

2. Select next variable:
k = k + 1 // next iteration
find the predictor (column in A) most correlated with the residual rk−1:
ik = argmaxi a

T
i r

k−1

x̂ik = maxi a
T
i r

k−1

3. Update:
Sk ← Sk−1 ∪ {ik} // update the support
xk = argminx ||y −A|Skx||22 // full-OLS fit on the updated support
rk = minx ||y −A|Skx||22 // update the residual

4. If the current residual rk is uncorrelated with all ai, 1 ≤ i ≤ n, or
if ||rk||2 ≤ ε, then return xk,
otherwise go to step 2 (next iteration of the algorithm).

FIGURE 5.5: Orthogonal Matching Pursuit (OMP).

the distinction between OMP and forward stepwise regression. The key difference
between the two methods is in the variable-selection criterion used in step 2: while
OMP, similarly to MP, finds the predictor variable most correlated with the current
residual (i.e., performs the single-variable OLS fit), LS-OMP, or forwards stepwise
regression, searches for a predictor that best improves the overall fit, i.e. solves the
full OLS problem on the current support plus the candidate variable. Though this
step is more computationally expensive than the single-variable fit, efficient im-
plementations are available that speed it up–see, for example, (Elad, 2010; Hastie
et al., 2009). As a result, all entries in the current solution are updated, so the step
3 of LS-OMP (i.e., updating the solution and the residual) coincides with the step 3
of OMP.

To summarize, we discussed herein three commonly used greedy methods for
the best subset selection, or sparse recovery, problem: Matching Pursuit (MP), also
known as forward stagewise regression; Orthogonal Matching Pursuit (OMP), and
the Least-Squares OMP (LS-OMP), equivalent to forward stepwise regression. How-
ever, as it was already mentioned above, there are multiple extensions and improve-
ments to the basic greedy schemes, including Stagewise OMP (StOMP) (Donoho
et al., 2012), compressive sampling matching pursuit (CoSaMP) (Needell and Tropp,
2008), regularized OMP (ROMP) (Needell and Vershynin, 2009), subspace pursuit
(SP) (Dai and Milenkovic, 2009), sparsity adaptive matching pursuit (SAMP) (Do
et al., 2008), and several others.
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Least-Squares Orthogonal Matching Pursuit (LS-OMP)
Input: A, y, ε

1. Initialize: k = 0, xk = 0, Sk = supp(x0) = ∅, rk = y −Ax0 = y

2. Select next variable:
k = k + 1 // next iteration
find the predictor (column in A) that most improves the full-OLS fit over
Sk−1:
ik = argminiminx ||y −A|S∪{i}x||22.
x̂ik = argminx ||y −A|S∪{ik}x||22

3. Update:
Sk ← Sk−1 ∪ {ik} // update the support
xk = argminx ||y −A|Skx||22 // full-OLS fit on the updated support
rk = minx ||y −A|Skx||22 // update the residual

4. If the current residual rk is uncorrelated with all ai, 1 ≤ i ≤ n, or
if ||rk||2 ≤ ε, then return xk,
otherwise go to step 2 (next iteration of the algorithm).

FIGURE 5.6: Least-Squares Orthogonal Matching Pursuit (LS-OMP), or forward
stepwise regression.

5.3 Algorithms for l1-norm Minimization (LASSO)
As it was already mentioned, an alternative approach to solving the intractable l0-

norm minimization problem P ε0 is to replace the l0-norm by a convex function which
still enforces the solution sparsity, such as, for example, the l1-norm, that gives us the
(P ε1 ) problem, or its equivalent and commonly used Lagrangian form – the LASSO
problem (P λ1 ). There is a vast amount of literature on different methods for solving
this problem, and multiple software packages available online (see, for example, the
Compressed Sensing repository at http://dsp.rice.edu/cs). Herein, we briefly review
several most commonly used algorithms for solving LASSO, starting with the LARS
method of (Efron et al., 2004).

5.3.1 Least Angle Regression for LASSO (LARS)

Least Angle Regression (LAR) proposed by (Efron et al., 2004) is a modification
of the incremental forward stagewise procedure. As shown in (Efron et al., 2004),
after a minor modification, LAR becomes equivalent to the LASSO, and another
simple modification of LAR makes it equivalent to infinitesimal forward stagewise,
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i.e. incremental forward stagewise with the step size ε → 0, denoted FS0, as dis-
cussed in (Hastie et al., 2009). Frequently, LAR is also called LARS, where “S” is
added to denote the close relationship to both Stagewise and LaSSo. One of the most
attractive properties of LARS is its computational efficiency: at the cost of a single
OLS fit, LARS finds the entire regularization path, i.e. the sequence of all LASSO
solutions corresponding to varying regularization parameter λ > 0:

x̂(λ) = argmin
x
f(x, λ) = argmin

x

1

2
||y −Ax||22 + λ||x||1.

The efficiency of LARS results from the fact that the LASSO path is piecewise linear,
as it was shown earlier in chapter 2; indeed, at each step corresponding to a change
in the path direction, LARS must only evaluate the new direction and the step length,
thus avoiding inefficient incremental steps. The piecewise linearity of the LASSO
solution path was also used by a similar to LARS homotopy method proposed earlier
in (Osborne et al., 2000a). Note that an efficient way of computing the full regular-
ization path simplifies the cross-validation procedure of selecting the regularization
parameter that yields the best-predicting solution on a set-aside (cross-validation)
data.

LARS can be viewed, on one hand, as a more cautious version of the forward
stepwise regression, and, on the other hand, as a more efficient version of the incre-
mental forward stagewise, since it makes smaller steps than the former, but larger
steps than the latter. More specifically, LARS starts with an empty set of predic-
tors and selects the one having the largest absolute correlation with the response;
however, unlike the overly greedy forward stepwise, LARS proceeds along the se-
lected direction only until another predictor becomes equally correlated (in the abso-
lute sense) with the current residual. Then, LARS chooses a new direction, which is
equiangular between the two predictors2, and continues moving along this direction
until some third predictor enters the “most correlated” set, also called the active set.
LARS chooses the new direction equiangular between the three active predictors,
and continues further, until the desired number of predictors, that can be specified as
an input to the algorithm, is included in the solution, or until the full path is obtained,
which takes min(m− 1, n) steps. A high-level scheme of LARS is presented in Fig-
ure 5.7. As before, it is assumed that all Ai and y are centered to have zero means,
and that all Ai are normalized to have to unit norms. For more details on LARS, see
(Efron et al., 2004). Multiple publicly available implementations of this algorithm
can be found online. See, for example, Splus and R implementations of LARS (Efron
and Hastie, 2004), a Matlab implementation by (Sjöstrand, 2005), and several others.

LASSO modification. As it was shown by (Efron et al., 2004), LARS becomes
equivalent to LASSO, i.e. it finds the path of optimal solutions to the LASSO prob-
lem, if the following minor modification is added: If a nonzero coefficient becomes
zero, the corresponding variable is removed from the active set, and the current joint
least-squares direction for LARS is recomputed over the remaining variables. For

2Recall that two column-vectors ai and aj that are equally correlated with y also have an equal angle
with it, as discussed before.
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Least Angle Regression (LAR)
Input: m× n matrix A, y

1. Initialize:
x = 0, S = supp(x) = ∅, r = y −Ax = y

2. Select first variable:
find the predictor (column in A) most correlated with the residual r:
i = argmaxi a

T
i r

x̂i = maxi a
T
i r

S ← S ∪ {i} // update the support

3. Move the coefficient xi from 0 towards its least-squares coefficient x̂ik ,
updating the residual r along the way, until some other predictor aj has
as much correlation with the current residual as does ai; then add it to the
support: S ← S ∪ {j}.

4. Move xi and xj in the direction defined by their joint least-squares coeffi-
cient:

δk = (AT
SkASk)

−1AT
Skr

of the current residual on the current support set S, until some other predic-
tor ak has as much correlation with the current residual; then add it to the
support: S ← S ∪ {k}.

5. Continue adding predictors for min(m−1, n) steps, until full OLS solution
is obtained. If n < m, all predictors are now in the model.

FIGURE 5.7: Least Angle Regression (LAR).

example, Figure 5.8 shows an example comparing the path of LARS before and after
implementing the above modification: a nonzero coefficient of one of the variables
actually reaches zero, and the variable has to be deleted from the active set.

To summarize, LARS is a stagewise procedure closely related to greedy ap-
proaches such as OMP, forward stepwise (LS-OMP), and forward stagewise (MP),
but, unlike the greedy methods, LARS (after a minor modification) is able to produce
the exact solution to the LASSO problem (P λ1 ) in eq. 2.14.

• LARS produces the same solution path as LASSO, if the coefficients do not
cross zero (otherwise, LASSO modification is applied to achieve the equiva-
lence).

• LARS produces same solution path as FS0 (infinitesimal forward stagewise)
if the coefficients are monotone (otherwise, another simple FS0 modification,
discussed in (Hastie et al., 2009), can be applied to achieve the equivalence
between the methods).
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FIGURE 5.8: Comparing regularization path of LARS (a) before and (b) after
adding the LASSO modification, on fMRI dataset collected during the pain percep-
tion analysis experiment in (Rish et al., 2010), where the pain level reported by a sub-
ject was predicted from the subject’s fMRI data. The x-axis represents the l1-norm
of the sparse solution obtained on the k-th iteration of LARS, normalized by the
maximum such l1-norm across all solutions. For illustration purposes only, the high-
dimensional fMRI dataset was reduced to a smaller number of voxels (n = 4000
predictors), and onlym = 9 (out of 120) samples were used, in order to avoid clutter
when plotting the regularization path. Herein, LARS selected min(m − 1, n) = 8
variables and stopped.

• LARS is very efficient: at the cost of solving OLS, LARS produces the whole
regularization (solution) path, i.e. a sequence of solutions for the varying val-
ues of the regularization parameter λ, from very large (corresponding to an
empty solution), to zero (corresponding to OLS solution).

As we noted above, such efficient computation of the LASSO regularization path
is possible because the path is piecewise linear. As it turns out, this nice property also
holds for a more general class of regularized problems

x̂(λ) = argmin
x

[L(x) + λR(x)],

with a convex loss L and a regularizerR, where

L(x) =

m∑

i=1

Loss(yi,

n∑

j

aijxj).

Namely, as shown by (Rosset and Zhu, 2007), the solution path is piecewise linear
if L(x) is quadratic or piecewise quadratic, and R(x) is piecewise linear, as it is in
case of l1-norm.
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5.3.2 Coordinate Descent

Another popular approach to solving the LASSO problem, as well as its gener-
alizations to other loss functions and regularizers discussed later in this book, is co-
ordinate descent. As it name suggests, this commonly used optimization technique
fixes all variables (coordinates) except for one, and performs univariate optimization
with respect to that single remaining variable. The procedure keeps iterating over all
variables in some cyclic order, until convergence3. Coordinate descent is an efficient
procedure that is competitive with, and often better than, the LARS algorithm on the
LASSO problem (Hastie et al., 2009), due to an efficient implementation of the uni-
variate optimization step, as we discuss below. However, unlike LARS, coordinate
descent is not a path-generating method, and can only approximate the solution path
by computing the solutions using warm-restart on a grid of λ values.

As before, we assume that all Ai and y are centered to have zero means, and
that all ai are normalized to have the unit norm. Let us denote the current estimate of
xi by x̂i(λ), where λ is the regularization parameter of the LASSO problem in eq.
2.14. Assuming that all coefficients, except for the i-th, are fixed, we can rewrite the
objective function in eq. 2.14 as a function of a single variable xi:

L(xi, λ) =
1

2

m∑

j=1

([yj −
∑

k �=i
ajkx̂k(λ)] − ajixi)2 + λ

∑

k �=i
|x̂k(λ)| + λ|xi| (5.17)

=
1

2
||r− aTi xi||22 + λ|xi|+ const, (5.18)

where the current residual vector r has elements rj = yj−
∑
k �=i ajkx̂k(λ), and thus

the above objective corresponds to a univariate LASSO problem. Similarly to the
derivation of the LASSO solution in case of the orthogonal design matrix, discussed
earlier in this chapter, we compute the subdifferential of L(xi, x̂(λ)) as follows:

∂L(xi, λ) =

m∑

j=1

aji(ajix− rj) + λ∂|x| =

= aTi aix− aTi r+ λ∂|x| = x− aTi r+ λ∂|x|,
where aTi ai = 1 since columns of A are normalized to unit l2-norm. Similarly to eq.
5.7, the condition 0 ∈ ∂L(x, λ) implies that the univariate LASSO solution x will be
given by the soft thresholding operator applied to the univariate OLS solution aTi r,
and thus

x̂i = S(aTi r, λ) = sign(aTi r)(|aTi r| − λ)+ (5.19)

gives the update rule for the i-th coefficientxi. Coordinate descent continues iterating
over the variables in some pre-specified cyclic order, until convergence, as noted
above, and is generally quite fast due to the efficiency of computations at each step
given by eq. 5.19 above. A scheme of the algorithm is outlined in Figure 5.9.

3See (Bach et al., 2012) and references therein on convergence of coordinate descent with non-smooth
objective functions.
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Coordinate Descent (CD)
Input: m× n matrix A, y, λ, ε

1. Initialize: k = 0, x = 0, r = y
Cycle over all variables until convergence:

2. k = k + 1, i = k mod (n+ 1)

3. Compute partial residual r where:

rj = yj −
∑

k �=i
ajkxk

4. Compute univariate OLS solution:

x = aTi r

5. Update xi (univariate LASSO solution):

xi = S(x, λ) = sign(x)(|x| − λ)+

6. If the (full) residual r− aixi < ε, return x,
otherwise go to step 2 (next iteration of the algorithm).

FIGURE 5.9: Coordinate descent (CD) for LASSO.

Note that there are multiple extensions of the above coordinate descent algorithm
to other loss functions, beyond the sum-squared loss in LASSO, e.g., for sparse lo-
gistic regression (Tseng and Yun, 2009) and for sparse Gaussian Markov Network
models (Banerjee et al., 2006; Friedman et al., 2007b), discussed in chapter 8, as well
as extensions beyond the basic l1-norm regularization, e.g., to structured sparsity via
group regularizers such as l1/lq (Yuan and Lin, 2006), discussed later in this book.

5.3.3 Proximal Methods

In this section, we introduce proximal methods, also known as forward-backward
splitting algorithms – a general class of convex optimization techniques that include
as special cases many well-known algorithms, such as iterative thresholding, sub-
gradient and projected gradient methods, as well as alternating projections, among
several others; for more details see (Combettes and Pesquet, 2011; Bach et al., 2012)
and references therein. Proximal methods have a long history in optimization; rela-
tively recently, i.e. during the past decade, they were introduced in signal processing
and sparse optimization, and quickly gained popularity there.
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5.3.3.1 Formulation

Let us consider the following general problem that includes as special cases mul-
tiple sparse-recovery problems, such as the basic LASSO and its extensions beyond
the l1-norm regularizer and beyond the quadratic loss, discussed in other chapters of
this book:

(P ) : min
x
f(x) + g(x), (5.20)

where

• f : Rn → R is a smooth convex function, which is continuously differentiable
with Lipshitz continuous gradient, i.e.

||∇f(x) −∇f(y)|| ≤ L(f)||x− y||, for every x,y ∈ Rn, (5.21)

where L(f) > 0 is called the Lipshitz constant of∇f .

• g : Rn → R is a continuous convex function which is possibly nonsmooth.

For example, f(x) can be a loss function and g(x) a regularizer, such as in the case
of the Lasso problem where f(x) = ||y −Ax||22 and g(x) = ||x||1. Clearly, when
g(x) = 0, the problem in eq. 5.20 is reduced to the standard unconstrained smooth
convex minimization problem.

Proximal methods are iterative algorithms that, starting with some initial point
x0, compute a sequence of updates xk that converges to the actual solution of (P ).
Given the current xk obtained at iteration k, the next iterate xk+1 is found by mini-
mizing the following quadratic approximation of the objective function

min
x∈Rn

f(xk) +∇f(xk)T (x− xk) +
L

2
||x− xk||22 + g(x),

where the first two terms constitute the linearization of f around the current point xk,
and the third (quadratic) term, called the proximal term, helps to keep the next update
xk+1 near the current iterate xk , where f is close to its linear approximations;L > 0
is a constant, which should be an upper bound on the Lipshitz constant L(f), and
is usually computed in practice via line-search. Using simple algebra, and removing
constant terms independent of x, we get the following proximal problem:

(PP ) : min
x∈Rn

1

2
||x− (xk −

1

L
∇f(xk))||22 +

1

L
g(x). (5.22)

We use the following notation:

Gf (x) = x− 1

L
∇f(x)) (5.23)

which denotes the standard gradient update step, as used in well-known gradient
descent methods, while

Proxμg(z) = arg min
x∈Rn

1

2
||x− z||22 + μg(x) (5.24)
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Proximal Algorithm

1. Initialize:
choose x0 ∈ Rn
L← L(f), a Lipshitz constant of∇f
k← 1

2. Iteration step k:
Gf (xk−1)← xk−1 − 1

L
∇f(xk−1)

xk ← Proxμg(Gf (xk−1))
k← k + 1.

3. If a convergence criterion is satisfied, then exit, otherwise go to step 2.

FIGURE 5.10: Proximal algorithm.

denotes the proximal operator (here μ = 1
L

), that is dating back to (Moreau, 1962),
and to early proximal algorithms proposed by (Martinet, 1970) and (Lions and
Mercier, 1979). Then the proximal method can be written concisely as a sequence of
iterative updates, starting from k = 0 and an initial point x0 ∈ Rn:

xk+1 ← Proxμg(Gf (xk)). (5.25)

Note that in the absence of the (nonsmooth) function g(x), the proximal step
reduces to the standard gradient update step

xk+1 ← Gf (xk) = xk −
1

L
∇f(xk),

so that the proximal method reduces to the well-known gradient descent algorithm.
Another standard technique that the proximal approach includes as a particular case
is projected gradient: namely, if, for some set S ⊂ Rn, we assign g(x) = 0 when
x ∈ S, and g(x) = +∞ when x 
∈ S (i.e., g(x) is an indicator function for S), then
solving the proximal problem becomes equivalent to computing a gradient update
and projecting it on S, i.e. performing the projected gradient step:

xk+1 ← ProjS(Gf (xk)),

where ProjS is the projection operator on set S. An algorithmic scheme for the
proximal methods is given in Figure 5.10.

5.3.3.2 Accelerated Methods

An attractive property of proximal algorithms is their simplicity. However, they
may be slow to converge. The convergence of proximal methods is well-studied in
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Accelerated Proximal Algorithm FISTA

1. Initialize:
choose y1 = x0 ∈ Rn, t1 = 1.
L← L(f), a Lipshitz constant of∇f
k← 1

2. Iteration step k: Gf (xk−1)← xk−1 − 1
L
∇f(xk−1)

xk ← Proxμg(Gf (yk−1))

tk+1 =
1+
√

1+4t2k
2

yk+1 = xk + ( tk−1
tk+1

)(xk − xk−1)

k← k + 1

3. If a convergence criterion is satisfied, then exit, otherwise go to step 2.

FIGURE 5.11: Accelerated proximal algorithm FISTA.

the literature – see, for example, (Figueiredo and Nowak, 2003; Daubechies et al.,
2004; Combettes and Wajs, 2005; Beck and Teboulle, 2009) – and is known to be
O( 1k ), where k is the number of iterations, i.e.

F (xk)− F (x̂) � O(
1

k
),

where F (x) = f(x) + g(x), x̂ is the optimal solution of the problem (P) in eq. 5.20,
and xk is the k-th iterate of the proximal method.

Recently, several accelerated methods were proposed to improve the slow conver-
gence of the basic proximal methods. The most prominent is FISTA, or Fast Iterative
Shrinkage-Thresholding Algorithm of (Beck and Teboulle, 2009)4. It is similar to the
basic proximal algorithm, but instead of the update step in eq. 5.26 it performs the
following update:

xk+1 ← Proxμg(Gf (yk)),

where yk is a specific linear combination of the two previous points xk−2 and xk−1,
rather than simply the previous point xk−1. An algorithmic scheme for the FISTA
method is given in Figure 5.11. A similar approach was proposed by Nesterov in
1983 (Nesterov, 1983) for minimization of smooth convex functions, and proven to
be an optimal first-order, i.e. gradient, method in the complexity analysis sense as
presented in (Nemirovsky and Yudin, 1983). FISTA extends Nesterov’s algorithm to
the case of nonsmooth objectives in eq. 5.20, improving the convergence rate from
O( 1k ) to O( 1

k2
).

4Note that this algorithm extends the proximal methods in the general setting in eq. 5.20, not only in
the specific case of the Lasso-solving ISTA method described in the next section, as its name may suggest.
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5.3.3.3 Examples of Proximal Operators

An important step in determining the efficiency of the proximal approach is the
computation of the proximal operator Proxμg in eq. 5.25. It turns out that the proxi-
mal operator can be computed efficiently, in closed form, for many popular types of
the regularization function g(x) involving lq-norms. Herein, we briefly summarize
these results, without their derivation; for more details, see (Combettes and Wajs,
2005) and (Bach et al., 2012). In the rest of this section we use the notation μ = λ/L.

l1-norm penalty (LASSO)

When the LASSO penalty g(x) = λ||x||1 is used in eq. 5.20, the proximal prob-
lem (PP ) in eq. 5.22 becomes

min
x∈Rn

1

2
||x−Gf (xk)||22 + μ||x||1,

where μ = λ/L. Note that the above problem is equivalent to eq. 5.4 in the previous
section on univariate thresholding, where x̂ = Gf (xk). Namely, the problem de-
composes into a set of univariate Lasso problems which are solved independently by
the soft thresholding operator. Thus, the proximal operator in the case of an l1-norm
penalty is just the soft thresholding operator:

[Proxl1 (x)]i = (1− μ

|xi|
)+xi = sign(xi)(|xi| − μ)+.

Thus, for the l1-norm regularizer g(x), we recovered the popular Iterative
Shrinkage-Thresholding Algorithm (ISTA), developed and analyzed independently
by multiple researchers in different areas. One of the earlier versions of ISTA was
presented in (Nowak and Figueiredo, 2001) and (Figueiredo and Nowak, 2003) as
an expectation-maximization (EM) approach, and later in (Figueiredo and Nowak,
2005) in a majorization-minimization framework. In (Daubechies et al., 2004), the
ISTA approach convergence results were derived. Iterative shrinkage-thresholding
algorithms were also independently proposed around the same time by several other
researchers (Elad, 2006; Elad et al., 2006; Starck et al., 2003a,b). In (Combettes and
Wajs, 2005), a connection was made with a general class of forward-backward split-
ting algorithms, as discussed earlier.

l22 penalty

The ridge-regression penalty g(x) = λ||x||22 gives rise to the scaling operator:

Proxl22(x) =
1

1 + μ
x.
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We will now mention two more examples of proximal operators, for the penalties
we have not yet formally introduced: the Elastic Net and the group LASSO. How-
ever, both of those penalties will be discussed in significant detail very soon–in the
next chapter.

l1 + l22 Elastic–Net penalty

When the Elastic–Net (Zou and Hastie, 2005) penalty is used, i.e. g(x) =
λ(||x||1 + α||x||22), where α > 0, the proximal operator is obtained in a closed
form as:

Proxl1+l22(x) =
1

1 + 2μα
Proxμ||·||1(x).

l1/l2 group–LASSO penalty

Given a partition of the x’s coordinates into J groups, the group–LASSO penalty
(Yuan and Lin, 2006) corresponds to g(x) = λ

∑J
j=1 ||xj ||2, where xj is a projection

of x on the j-th group. The proximal operator for this penalty is obtained in a closed
form as follows:

[Proxl1/l2(x)]j = (1− μ

||xj ||2
)+xj , j ∈ {1, ...J}.

In other words, this is the l1-norm proximal operator applied at the group level,
i.e. applied to each projection xj on the j-th group, instead of each single coordinate.

For many more examples of proximal operators, including fused LASSO penalty
(total variation)

∑n−1
i=1 |xi+1 − xi|, where xi is the i-th coordinate of x, combined

l1+ l1/lq norms, hierarchical l1/lq norms, overlapping l1/l∞ norms, as well as trace
norms, see (Bach et al., 2012).

5.4 Summary and Bibliographical Notes
In this chapter, we discussed some popular algorithms for sparse signal recovery,

such as approximate greedy search methods for the l0-norm minimization, as well
as several exact optimization techniques for the convex l1-norm relaxation (LASSO
problem), such as Least Angle Regression (LARS), coordinate descent, and proxi-
mal methods. An interesting feature of LARS is that it is a path-building algorithm,
i.e. it produces the full set of LASSO solutions as the regularization parameter λ
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decreases from infinity (empty solution) to zero (no sparsity). LARS is closely re-
lated to the homotopy method of (Osborne et al., 2000a). Note that path-building
approaches were also developed for extensions of the LASSO problem, such as the
Elastic Net (Zou and Hastie, 2005) and Generalized Linear Models (glmpath of
(Park and Hastie, 2007)), discussed later in this book; also, general sufficient condi-
tions for the piece-wise linearity of the path are discussed in (Rosset and Zhu, 2007).
Similarly, the (block) coordinate descent and proximal methods are commonly used
for solving sparse recovery problems that generalize LASSO to other loss functions
and regularizers, discussed later in this book. See, for example, (Bach et al., 2012)
and references therein for more details on these methods and for comprehensive em-
pirical evaluation of those techniques over a variety of problems.

Clearly, it was not possible to fully cover the huge space of algorithms for sparse
recovery that were developed recently, and continue being developed as we write this
book. As noted before, the reader is referred to the Compressed Sensing Repository
at http://dsp.rice.edu/cs, for a comprehensive set of references and links to available
software packages implementing different approaches to sparse recovery.
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As it was already discussed, the LASSO method has two main advantages over the
standard linear regression, namely, the l1-norm regularization (1) helps to avoid over-
fitting the model on high-dimensional but small-sample data, and (2) facilitates em-
bedded variable selection, i.e. finding a relatively small subset of relevant predictors.
However, LASSO has also certain limitations that motivated development of sev-
eral more advanced sparse methods in the recent years. In this chapter, we discuss
some of these methods such as the Elastic Net, fused LASSO, group LASSO, and
closely related to it, simultaneous LASSO (i.e., multi-task learning), as well as some
practical applications of those methods. These methods focus on proper handling of
correlated variables and various types of additional structure in practical applications
and thus will be called structured sparsity methods1.

In the following, we will assume that the response variable y is centered to have
zero mean and all predictors are standardized to have zero mean and unit length
(l2-norm):

m∑

i=1

yi = 0,
m∑

i=1

aij = 0 and
m∑

i=1

a2ij = 1, 1 ≤ j ≤ n.

1In the literature, structured sparsity typically refers to group LASSO and similar methods, but here we
use this terminology in a broader sense, including all methods that take into account interactions among
the predictors.

95
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6.1 The Elastic Net
We will first discuss the Elastic Net regression method of (Zou and Hastie, 2005).

This method was primarily motivated by applications such as computational biology,
where the predictor variables tend to be correlated with each other, and often form
groups, or clusters, of similarly relevant (or irrelevant) variables with respect to pre-
dicting the target. As argued in (Zou and Hastie, 2005), the original LASSO may not
be ideal for such applications due to the following issues:

• When the number of variables n exceeds the number of observations m, and
the LASSO solution is unique (which happens with probability one when the
entries of A are drawn from a continuous probability distribution (Tibshirani,
2013)), it contains at mostm nonzero coefficients (Osborne et al., 2000b). This
limitation can be undesirable when the main goal is identification of important
predictive variables, since the number of such variables may exceed m.

• If a group of correlated predictors is highly relevant to the target variable,
it is desirable to include all such predictors in a sparse model with similar
coefficients, and particularly, equal predictors must have equal coefficients in
the model. However, this is not necessarily the case with the LASSO solutions,
i.e. they lack the desired grouping property. As discussed in (Zou and Hastie,
2005), it was observed empirically that LASSO tends to select one (arbitrary)
variable from a group of highly correlated ones.

• Also, as it was observed in the original LASSO paper (Tibshirani, 1996), em-
pirical predictive performance of LASSO is dominated by ridge regression
(i.e. l2-norm-regularized linear regression) when the predictors are highly cor-
related, while the situation is reversed when there is a relatively small number
of more independent variables. Thus combining both l1- and l2-norms may be
necessary to achieve “the best of both worlds”.

In particular, let us consider the grouping property. Indeed, when two predictors are
exactly the same, one would expect a linear model to assign equal coefficients to
both variables. As discussed in (Zou and Hastie, 2005), this is achieved by penalized
linear regression

min
x

1

2
||y −Ax||22 + λR(x) (6.1)

when the penalty R(x) is strictly convex (see chapter 2 for the definition of strict
convexity); note that it is also always assumed that the penalty R(x) > 0 for x 
= 0.
However, since the l1-norm is convex, but not strictly convex, this property is not
satisfied by the LASSO, as summarized in the following:

Lemma 6.1. (Zou and Hastie, 2005) Let ai = aj , where ai and aj are the i-th and
j-th columns of the design matrix A, let R(x) > 0 for x 
= 0, and let x̂ be a solution
of 6.1.
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• If R(x) is strictly convex, then xi = xj for any λ > 0.

• If R(x) = ||x||1, then xixj ≥ 0, and there are infinitely many solutions x′

where x′i = α(x̂i + x̂j) and x′j = (1−α)(x̂i + x̂j), for any 0 ≤ α ≤ 1, while
the rest of the coefficients remain the same, i.e. x′k = x̂k for all k 
= i, k 
= i.

In order to avoid the above issue, (Zou and Hastie, 2005) propose the method
called the Elastic Net (EN), which augments LASSO’s regularization with an addi-
tional squared l2-norm term that makes the regularization function strictly convex.
More precisely, the following optimization problem

min
x
||y −Ax||22 + λ1||x||1 + λ2||x||22 (6.2)

is called the naive Elastic Net problem, and the (corrected) Elastic Net solutions is
simply a re-scaled version of the solution to the above naive Elastic Net, as originally
proposed in (Zou and Hastie, 2005); we will discuss the re-scaling issue in more
detail at the end of this section. It is easy to see from eq. 6.2 that the naive Elastic
Net becomes equivalent to the LASSO when λ2 = 0 and λ1 > 0, while for λ1 = 0
and λ2 > 0 it becomes equivalent to the ridge regression (Hoerl and Kennard, 1988),
i.e. the l2-norm regularized linear regression. Clearly, when both λ1 and λ2 are zero,
the naive Elastic Net problem simply reduces to the ordinary least-squares linear
regression, or OLS.

The geometry of the Elastic Net penalty in the two-dimensional case is shown in
Figure 6.1; it can be also viewed as a convex combination of the LASSO and ridge
penalties:

α||x||22 + (1− α)||x||1, where α =
λ2

λ1 + λ2
.
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FIGURE 6.1: Contour plots for the LASSO, ridge, and Elastic Net penalties at the
same function value of 1.
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Note that the Elastic Net penalty still has sharp corners (singularities) that enforce
sparse solutions, similarly to the l1-norm penalty of the LASSO. However, unlike
the LASSO penalty, the Elastic Net penalty is strictly convex and thus guarantees
that equal predictors will be assigned equal coefficients. The Elastic Net can be eas-
ily transformed into an equivalent LASSO problem over a modified (“augmented”)
data matrix, and solved by standard methods for solving LASSO, as shown in the
following.

Lemma 6.2. (Zou and Hastie, 2005) Let (y∗,A∗) be an “augmented” dataset de-
fined as follows:

A∗
(m+n)×n =

1√
1 + λ2

(
A√
λ2I

)

, y∗
(m+n) =

(
y
0

)

,

and let γ = λ1/
√
1 + λ2 and x∗ =

√
1 + λ2x. Then the naive Elastic Net problem

can be written as
min
x∗ ||y

∗ −A∗x∗||22 + γ||x∗||1. (6.3)

If x̂∗ is the solution of the above problem 6.3, then

x̂ =
1√

1 + λ2
x̂∗

is the solution to the naive Elastic Net problem in eq. 6.2.

In other words, solving the naive Elastic Net problem is equivalent to solving the
LASSO problem in eq. 6.3 with the regularization weight γ = λ1/

√
1 + λ2.

Since the number of samples in the problem stated in eq. 6.3, over the augmented
dataset, is m∗ = m+ n and since A∗ has full column-rank, the Elastic Net solution
can include up to n predictors, i.e. all of them, thus eliminating one of the limitations
of the basic LASSO approach. As we already mentioned above, the (naive) Elastic
Net regularizer is strictly convex, implying that equal variables are assigned equal
coefficients, and thus eliminating another drawback of LASSO. Finally, as the fol-
lowing result shows, the (naive) Elastic Net penalty enforces the desirable grouping
of highly correlated variables.

Theorem 6.3. (Zou and Hastie, 2005) Let x̂(λ1, λ2) be the solution of the naive
Elastic Net problem in eq. 6.2 for given λ1 and λ2; as usual, it is assumed that y
is centered and columns of A are standardized. Let x̂i(λ1, λ2) > 0, and let the
(normalized) absolute difference between the i-th and j-th coefficients be defined as

dλ1,λ2(i, j) =
1

||y||1
|x̂i(λ1, λ2)− x̂i(λ1, λ2)|.

Then
dλ1,λ2(i, j) ≤

1

λ2

√
2(1− ρ),

where ρ = aTi aj is the sample correlation between the i-th and j-th predictors.
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In other words, higher correlation between two predictors implies higher similar-
ity, i.e. smaller difference, between their coefficients, provided that the coefficients
are of the same sign. This property is often referred to as grouping of similar predic-
tors. Since the λ2 parameter facilitates such grouping effect, we will also refer to it
as the grouping parameter, while the λ1 weight on the l1-norm is often referred to as
the sparsity parameter. Note that dλ1,λ2(i, j) is inversely proportional to λ2, and thus
coefficients of the same-sign variables in the naive Elastic Net solution become more
similar with increasing λ2. However, in the (corrected) Elastic Net solution, as we
discuss later, they will be rescaled by (1 + λ2), and thus the difference between the
coefficients will be only controlled by ρ, the correlation between the corresponding
predictors.

Since the (naive) Elastic Net problem is equivalent to the LASSO problem on
an augmented dataset, it can be solved by any method for solving LASSO. In (Zou
and Hastie, 2005), the procedure called LARS-EN is proposed. This is a relatively
simple modification (that exploits sparse structure of the augmented data matrix) of
the popular algorithm for solving LASSO, Least Angle Regression using a Stage-
wise procedure (LARS) (Efron et al., 2004). LARS-EN has two input parameters:
the grouping parameter λ2 and the sparsity parameter k that specifies the maximum
number of active predictors, i.e. the predictors having nonzero coefficients in x̂ (also
called the active set). It can be shown (Efron et al., 2004) that each value of k corre-
sponds to a unique value of λ1 in eq. 6.2, with larger λ1 (i.e., larger weight on l1-norm
penalty) enforcing sparser solutions and thus corresponding to a smaller number of
nonzero coefficients k. LARS-EN produces a collection of solutions, i.e. the regu-
larization path, for all values of k varying from 1 to a specified maximum number
of nonzeros. As such, the sparsity parameter is also referred to as the early stopping
parameter, since it serves as a stopping criterion for the LARS-EN incremental pro-
cedure; for more details on the LARS procedure, see chapter 5. Note that LARS-EN,
like the original LARS, is highly efficient, as it finds the entire regularization path
at the cost of a single OLS fit. Remember that knowing the regularization path fa-
cilitates choosing the most-predictive solution x and its corresponding parameter λ1
using cross-validation.

Finally, the Elastic Net estimate of the linear regression coefficients is obtained
by rescaling the naive Elastic Net solution. As argued in (Zou and Hastie, 2005),
such rescaling is needed to compensate for double-shrinkage of the coefficients due
to combination of both LASSO and ridge penalties in the naive Elastic Net. While
the naive Elastic Net achieves desired properties as a variable-selection approach,
i.e., it overcomes LASSO’s limitation on the number of nonzeroes and promotes
grouping of correlated variables, its predictive performance can be inferior as com-
pared to the LASSO or ridge regression; (Zou and Hastie, 2005) argue that the rea-
son for this could be the double-shrinkage, or over-penalizing, of the coefficients
due to combination of penalties in the Elastic Net, as compared to single penalties
of the LASSO and ridge. As a solution to this double-shrinkage problem, (Zou and
Hastie, 2005) propose to use the (corrected) Elastic Net estimate defined as rescaled
version of the naive Elastic Net solution, x̂(EN) =

√
1 + λ2x̂∗. By Lemma 6.2,
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x̂(naive EN) = 1√
1+λ2

x̂∗, and thus

x̂(EN) = (1 + λ2)x̂(naive EN),

i.e. the Elastic Net solution is a rescaled version of the naive Elastic Net solution.
In summary, this section described the Elastic Net (EN), a regularized linear re-

gression method that combines the l1- and l2-norm regularizers and

• is equivalent to LASSO when λ2 = 0 and to ridge regression when λ1 = 0;
also, as shown in eq. 16 in Zou and Hastie (2005), when λ2 → ∞ the Elas-
tic Net becomes equivalent to univariate soft thresholding, i.e. to correlation-
based variable selection method with a particular threshold value;

• EN overcomes LASSO’s limitation on the number of nonzero predictors, i.e.
can potentially choose up to n nonzeros;

• EN enforces solution sparsity while also encouraging grouping effect, i.e. sim-
ilar coefficients among correlated predictors; equal predictors are guaranteed
to be assigned equal coefficients.

6.1.1 The Elastic Net in Practice: Neuroimaging Applications

We will now discuss practical applications of the Elastic Net, focusing on some
high-dimensional prediction problems arising in neuroimaging, and particularly, in
the analysis of functional magnetic resonance images (fMRIs). As discussed earlier
in chapter 1, one of the common questions in fMRI analysis is discovering brain
areas (i.e. subsets of voxels) that are relevant to a given stimulus, task, or mental
state. However, the traditional mass-univariate GLM approach based on individual
voxel activations (correlations between each voxel and the stimulus, task, or mental
state) often misses potentially informative voxel interactions (Haxby et al., 2001;
Rish et al., 2012b). Thus, multivariate predictive modeling, and sparse modeling in
particular, become increasingly popular analysis tools in neuroimaging.

For example, the Elastic Net was shown to produce surprisingly accurate predic-
tive models of pain perception (Rish et al., 2010). Brain imaging analysis of pain is
a rapidly growing area of neuroscience, motivated both by a scientific goal of im-
proving our understanding of pain mechanisms in the human brain and by practical
medical applications (Baliki et al., 2009, 2008). While most of the literature on pain
is still focused on univariate analysis, a more recent work explores the advantages of
sparse modeling for predicting a subject’s pain perception from his or her fMRI data
(Rish et al., 2010), as well as better characterization of brain areas relevant to pain
processing (Rish et al., 2012b). The results discussed in (Rish et al., 2010, 2012b;
Cecchi et al., 2012) were obtained on an fMRI dataset originally presented in (Baliki
et al., 2009). A group of 14 healthy subjects participated in this study. The subjects in
the scanner were asked to rate their pain level using a finger-span device in response
to a series of painful thermal stimuli applied to their back. (An fMRI-compatible de-
vice was used to deliver fast-ramping painful thermal stimuli via a contact probe.)
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FIGURE 6.2: (a) Predictive accuracy of the Elastic Net vs. OLS regression for the
task of predicting thermal pain perception from fMRI data; (b) effects of the sparsity
and grouping parameters on the predictive performance of the Elastic Net.

The task addressed in (Rish et al., 2010, 2012b) was to learn a regression model that
could predict a subject’s pain rating based on his/her fMRI data. The individual time
slices (at which “brain snapshots” were taken) correspond to samples (rows in A),
and the voxels correspond to predictors (columns in A). The target variable y here
is the pain perception level as rated by a subject, at a particular point in time.

Figure 6.2, reproduced here from (Rish et al., 2010), shows the predictive per-
formance of the Elastic Net (EN) regression measured by correlation between the
predicted and actual pain rating by a subject. We can see that, first of all, EN al-
ways outperforms unregularized linear regression (OLS), often by a large margin, as
shown in panel (a); EN often achieves up to 0.7-0.8 (and never below 0.5) correla-
tion between the predicted and actual pain ratings. The results here are shown for EN
with a fixed sparsity (1000 active predictors) and grouping (λ2 = 20). On the other
hand, panel (b) compares EN performance at different levels of sparsity and group-
ing, for one of the subjects from the group (the results were typical for the whole
group). We can see that the EN’s prediction improves with growing λ2 (recall that
smaller values such as λ2 = 0.1 make EN more similar to LASSO). Note that the
optimal (prediction-wise) number of active variables selected by EN at each fixed λ2
increases with increasing λ2. Apparently, at higher values of the grouping parame-
ter, more (correlated) variables are pulled into the model and jointly provide a more
accurate prediction of the target variable, pain perception.

Another example of a successful use of the Elastic Net in fMRI analysis is pre-
dicting mental states of subjects playing a videogame (Carroll et al., 2009), based
on the dataset provided by the 2007 Pittsburgh Brain Activity Interpretation Com-
petition Pittsburgh EBC Group (2007). There were more than 20 different response
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variables in this dataset, including some “objective” and “subjective” variables. The
objective response variables, such as picking up certain objects or hearing instruc-
tions during the game, were measured simultaneously with the functional MRI data,
while a few subjective response variables (e.g., feeling anxious) were estimated off-
line based on videogame recording: namely, a subject was shown a recording of the
videogame just played, and asked to rate particular aspects of his or her emotional
state.

One of the key observation in (Carroll et al., 2009) is that tuning the grouping
parameter λ2 allows to achieve such useful characteristics of a model as better in-
terpretability and better stability. In neuroscience, and other biological applications,
such qualities are playing a particularly important role, since the ultimate goal of
statistical data analysis in such applications is to shed light on underlying natural
phenomena and guide scientific discovery. In the experiments summarized below,
for each value of λ2, the optimal sparsity level (i.e. the desired number of nonzero
coefficients in the LARS-EN procedure) was selected by cross-validation. Figure 6.3

(a) (b)

FIGURE 6.3 (See color insert): Brain maps showing absolute values of the Elastic
Net solution (i.e. coefficients xi of the linear model) for the Instruction target variable
in PBAIC dataset, for subject 1 (radiological view). The number of nonzeros (active
variables) is fixed to 1000. The two panels show the EN solutions (maps) for (a)
λ2 = 0.1 and (b) λ2 = 2. The clusters of nonzero voxels are bigger for bigger λ2,
and include many, but not all, of the λ2 = 0.1 clusters. Note that the highlighted
(red circle) cluster in (a) is identified by EN with λ2 = 0.1, but not in the λ2 = 2.0
model.
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visualizes EN models trained on one of the subject’s fMRI data for predicting one
of the target variables, called “Instructions”, which indicates the beginning of an
auditory playback of instructions, repeated regularly during the videogame. The ab-
solute values of the regression coefficients corresponding to brain voxels are shown
on brain maps (each map corresponds to a different horizontal slice of a 3D MRI im-
age), with nonzero voxels highlighted in color. Two levels of λ2, low (λ2 = 0.1) and
high (λ2 = 2.0), are compared in panels (a) and (b), respectively. We can see that the
higher value of the grouping parameter produces somewhat larger, spatially contigu-
ous clusters while the solutions for lower λ2 (i.e., closer to LASSO) are sparser and
more spotty. From the point of view of neuroscientific interpretation, spatially con-
tiguous clusters of voxels related to a given task or stimulus (e.g., listening to instruc-
tions) make more sense that spotty maps, even though both models can be equally
predictive (see Figure 6.4a). This is because the BOLD signals of neighboring voxels
are typically highly correlated as they reflect the blood flow to that particular brain
region, and thus the whole region, or cluster, should be shown as “active”, or rele-
vant, for a given task. As discussed earlier (Zou and Hastie, 2005), LASSO would
not be an ideal variable-selection method here since it tends to choose one “rep-
resentative” variable from a cluster of correlated variables, and ignore the rest. On
the contrary, the Elastic Net is indeed demonstrating grouping property desirable for
making sparse solutions more interpretable, and controlling the grouping parameter
λ2 helps to improve interpretability of the model.

Besides improving the interpretability of the model, tuning λ2 can also improve
its stability (also called robustness), as demonstrated in (Carroll et al., 2009). In order
to measure stability, the following quantities were computed: Vtotal, the total num-
ber of unique voxels selected by EN over the two experimental runs for each subject,
and Vcommon, the number of voxels co-occurring in the two models. The stability
was then computed as the ratio Vcommon/Vtotal. It was hypothesized that greater in-
clusion of voxels from within correlated clusters would result in greater overlap in
included voxels between two models generated on different datasets. The results pre-
sented in Figure 6.4 (reproduced here from (Carroll et al., 2009)) indeed confirm this
hypothesis. Though the prediction quality remains essentially the same (or slightly
improved) when increasing the λ2 value from 0.1 to 2.0 (Figure 6.4a), the stability of
a model improves considerably, for practically all target variables (responses or stim-
uli) and all subjects (Figure 6.4b). Moreover, as Figure 6.4c shows, increasing λ2 is
frequently associated with the inclusion of a greater number of voxels (recall that the
number of selected voxels is found via cross-validation). These additional voxels are
likely those relevant voxels highly correlated with other relevant voxels. Hence, by
including more relevant yet correlated voxels, increasing λ2 improves model stability
without compromising prediction performance.

Finally, sparse regression can be a much better tool than the traditional univariate
GLM approach for discovering task-relevant brain activations. Indeed, GLM would
essentially rank the voxels by their individual correlations with the task, and present
the top most-correlated ones that survive statistical significance test as “brain activa-
tion” relevant to the task. However, predictive accuracy of subsets of voxels can be a
better proxy for estimating which brain areas are relevant, or informative, about the
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FIGURE 6.4: Even among equally predictive, cross-validated, models (a), increas-
ing the λ2 parameter increases model stability (b) while slightly increasing the num-
ber of included voxels (c). (a) Mean model prediction performance measured by
correlation with test data. Prediction scores for λ2 = 2 are plotted against their
matching scores obtained with λ2 = 0.1. (b) Stability of sparse models at different
values of λ2, for different target variables. (c) The mean number of voxels selected
when a lower λ2 value (0.1) is used are plotted against the matching mean number of
voxels selected when a higher λ2 value (2.0) is used. Mean values in (a) and (c) are
computed over the 3 subjects and 2 experiments (runs), in (b) over the 3 subjects.
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task. Moreover, it provides a tool for exploring multiple relevant sparse solutions.
Indeed, given a brain map of task-relevant voxels either constituting a solution of
the Elastic Net, or the top-ranked voxels found by GLM, what can be said about the
remaining voxels, not shown on the map? Are they completely irrelevant? Or, vice
versa, can such suboptimal voxels can be still highly relevant to a given task or men-
tal state? As it turns out, the answer to the last question is positive for many tasks,
as shown in (Rish et al., 2012b), which raises the question about the validity and
limitations of standard brain-mapping approaches.

It is well-known that multiple near-optimal sparse solutions are possible in the
presence of highly correlated predictors, and exploring the space of such solutions is
an interesting open question. For example, a very simple procedure is used in (Rish
et al., 2012b) to explore this space, by first finding the best EN solution with 1000
voxels, removing those voxels from the set of predictors, and repeating the procedure
until there are no more voxels left. We will call the Elastic Net solutions obtained in
such manner “restricted” since they are found on a restricted subset of voxels. Fig-
ure 6.5a plots the predictive accuracy of subsequent restricted solutions for the pain
perception. Here the x-axis shows the total number of voxels used so far by the first
k “restricted” solutions, with increments of 1000, since this is the size of each subse-
quent solution, found by the Elastic Net after removing from consideration all voxels
from the previous solutions. Predictive accuracy (y axis) is measured by the correla-
tion between the actual value (e.g., pain rating) and predicted value, computed on a
test dataset separate from the training dataset (herein, the first 120 TRs were used for
training, and the remaining 120 TRs for testing). It is quite surprising to see a very
slow degradation of the predictive performance without any clear transition from
highly predictive to irrelevant voxels, as it would be suggested by the “classical”
brain map approach. In other words, for pain perception, there is no clear separation
between relevant and irrelevant areas, suggesting that the task-relevant information
can be widely distributed throughout the brain, rather than localized in a small num-
ber of specific areas – the “holographic” effect, as it was referred to in (Rish et al.,
2012b).

Note that the standard GLM method does not reveal such phenomenon, since,
as shown in Figure 6.6 reproduced here from (Rish et al., 2012b), the individual
voxel-task correlations always seem to decay exponentially (Figure 6.6b), and for
many reasonably predictive (though not necessarily the top) sparse solutions, their
voxel would not even pass the 0.1 correlation threshold (Figure 6.6b). For example,
voxel correlations in the 10th and especially in the 25th solution are mostly below
0.3 and 0.1, respectively; however, the predictive power of those solutions (around
0.55) is still pretty good as compared to the best predictive accuracy obtained by the
1st solution (around 0.67). Thus, such results provide further support to the earlier
observations by (Haxby et al., 2001) that highly predictive models of mental states
can be built from voxels with sub-maximal task correlations. Moreover, these results
suggest that multivariate sparse models can provide a better tool than the standard
mass-univariate neuroimaging methods for exploring the task-related information
spread through the brain.
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FIGURE 6.5 (See color insert): Predictive accuracy of the subsequent “restricted”
Elastic Net solutions, for (a) pain perception and (b) “Instructions” task in PBAIC.
Note very slow accuracy degradation in the case of pain prediction, even for solu-
tions found after removing a significant amount of predictive voxels, which suggests
that pain-related information is highly distributed in the brain (also, see the spatial
visualization of some solutions in Figure (c)). The opposite behavior is observed in
the case of the “Instruction” – a sharp decline in the accuracy after a few first “re-
stricted” solutions are deleted, and very localized predictive solutions shown earlier
in Figure 6.3.

While several other tasks presented in (Rish et al., 2012b), besides the pain rating,
showed a similar “holographic” effect, one task was different as it demonstrated fast
(exponential) performance degradation, and clear separation of relevant vs. irrelevant
areas; this was a relatively simple auditory task from PBAIC (Figure 6.5b). A pos-
sible hypothesis here can be that, while “simple” tasks are localized, more complex
tasks/experiences (such as pain) tend to involve much more distributed brain areas.

Also, note that the grouping property of the Elastic NET again proves useful
here. Indeed, using high values of grouping parameter in the Elastic Net is essen-
tial to enforce inclusion of task-relevant clusters of voxels together (i.e. in the same
solution), and prevent subsequent solutions from drawing voxels from the relevant
areas already “used” by previous solutions, as the LASSO tends to do. This way, if
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FIGURE 6.6: (a) Univariate correlations between each voxel and the pain ratings,
sorted in decreasing order and averaged over 14 subjects. The line corresponds to the
average, while the band around it shows the error bars (one standard deviation). Note
that degradation of univariate voxel correlations is quite rapid, unlike the predictive
accuracy over voxel subsets shown in Figure 1. (b) Univariate correlations with the
pain rating for a single subject (subject 6th), and for three separate sparse solutions:
the 1st, the 10th, and the 25th “restricted” solutions found by the Elastic net with
λ2 = 20.

there is indeed a clear separation between relevant versus irrelevant groups of voxels,
the Elastic Net will detect it, as it happens with the Instructions task in the PBAIC
dataset, while the LASSO (or the close-to-the-LASSO Elastic Net with small group-
ing parameter) will not.

6.2 Fused LASSO
As we just discussed, the Elastic Net generalizes the LASSO and builds regres-

sion models that combine two desirable properties: sparsity (due to the l1-norm reg-
ularizer) and grouping, or coefficient similarity/smoothing, of highly-correlated pre-
dictors (due to the l2-norm regularizer). Such smoothing of the model coefficients,
however, does not use any other information about the problem structure that can be
present in a specific application.

For instance, predictors may follow some natural ordering, with the coefficients
changing smoothly along the ordering. Examples include temporal, spatial, or spatio-
temporal orderings, arising in various signal-processing applications (e.g., imaging,
audio and video processing). Other examples include protein mass-spectrography
data and gene expression data, as discussed in (Tibshirani et al., 2005). In some
applications, such as gene-expression analysis, the order may not be known in ad-
vance, but can be estimated from the data, e.g., via hierarchical clustering.
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FIGURE 6.7: Geometry of the fused LASSO problem in two dimensions. The solu-
tion corresponds to the point where the contours of the quadratic loss function (the
ellipses) touch the feasible region (the rectangle), i.e. the set of all points satisfying
both the bounded l1-norm constraint ||x||1 ≤ t1 and the bounded-difference con-
straint

∑n−1
i=1 |xi+1 − xi| ≤ t2.

In order to enforce smoothness along an ordering of predictors while building a
sparse model, an approach called fused LASSO was proposed by (Tibshirani et al.,
2005); besides the l1-norm penalty on the model coefficients, it adds an l1-norm
penalty on the differences between the coefficients of successive predictors. The lat-
ter penalty encourages sparsity of such differences, i.e. “local constancy” of the co-
efficients along the given ordering:

min
x
||y −Ax||22 subject to ||x||1 ≤ t1 and

n−1∑

i=1

|xi+1 − xi| ≤ t2, (6.4)

or, equivalently, using Lagrangian multipliers:

min
x
||y −Ax||22 + λ1||x||1 + λ2

n−1∑

i=1

|xi+1 − xi|. (6.5)

Figure 6.7 shows the geometry of fused LASSO in a two-dimensional case.
Fused LASSO has multiple applications, for example, in bioinformatics (Tibshi-

rani and Wang, 2008; Friedman et al., 2007a). Also, fused LASSO is closely related
to the total variation (TV) denoising in signal processing. For example, in case of
one-dimensional signals, the only difference between the TV and fused Lasso prob-
lem formulations is that TV includes only the second penalty used by fused LASSO,
i.e., the absolute difference, or variation, between the successive coordinates in x, and
omits the l1-norm penalty on x. The total variation problem has a long history in sig-
nal and image processing as a popular tool for image denoising (Rudin et al., 1992;
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Blomgren and Chan, 1998; Chan and Shen, 2005). As it was shown in (Friedman
et al., 2007a), the solution of the fused LASSO problem can be obtained by simple
soft-thresholding of the TV solution, and thus both approaches have practically the
same computational complexity, and an be solved by similar methods.

Moreover, besides its use in linear regression, the fused LASSO type of penalty
was used for other loss functions – for example, to learn a sparse and locally-constant
Gaussian Markov Random Field (MRF) (Honorio et al., 2009), with applications in
fMRI analysis, where local constancy of model coefficients is implied by the spatial
contiguity of the BOLD response signal, i.e. by the fact that brain activations usually
involve not just a single voxel but the whole brain area around the voxel.

6.3 Group LASSO: l1/l2 Penalty
The fused LASSO and the Elastic Net impose additional constraints on the

model parameters, such as similarity of highly-correlated coefficients or local con-
stancy/similarity of subsequent coefficients along a given ordering. A closely re-
lated approach, called the group LASSO, also imposes an additional structural con-
straint besides the basic sparsity: it assumes there are groups of predictors that are
naturally associated with each other, and thus must be included into (or excluded
from) the model simultaneously. Knowing the groups in advance differentiates the
group LASSO from the Elastic Net, where grouping of the predictors is a completely
data-driven, correlation-based process. The group LASSO approach was introduced
independently, for different applications and under different names, by several re-
searchers – see, for example, (Bakin, 1999; Antoniadis and Fan, 2001; Malioutov
et al., 2005; Lin and Zhang, 2006) – and also further generalized and analyzed in the
work by (Yuan and Lin, 2006).

There are many applications with a natural group structure among the variables
that can be used by group LASSO, such as, for example, a functional cluster of genes
in DNA microarrays, or a set of voxels from the same brain areas in fMRI analysis.
Another common example includes a group of binary indicator variables that encode
categorical variables, or a group of parameters associated with the same predictor
variable but multiple target variables in multi-task learning, as it will be discussed
later.

Let us assume that the set A = {A1, ..., An} of all predictor variables is parti-
tioned into a set G = {G1, ..., GJ} of J (non-intersecting) groups, i.e.

X =
J⋃

j=1

Gj ,

where Gi
⋂
Gj = ∅ for i 
= j. Let xGj denote a vector of linear coefficients that

correspond to the group g ∈ G. The group LASSO problem is stated as follows
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(Yuan and Lin, 2006):

min
x
||y −Ax||22 + λ

J∑

j=1

cj ||xGj ||2, (6.6)

where
∑J

j=1 cj||xGj ||2 is called the block l1/l2 penalty. The weight cj accounts for
varying group sizes, and is usually set to √nj , where nj is the size of the group
Gj . The block penalty uses the l2-norm ||xGj ||2 within each group, and the l1-norm
across the groups, which is simply the sum of all ||xGj ||2, since l2-norms are non-
negative. Note that the group LASSO is equivalent to the standard LASSO when the
groups consist of single variables, i.e., Gj = {Aj}, 1 ≤ j ≤ n, and thus nj = 1 and
∑J

j=1 cj ||xGj ||2 =
∑n

j=1 |xj | = ||x||1. In general, when the groups contain more
than one variable, the group-level l1-norm encourages sparsity across the groups,
i.e. selection of a relatively small subset of groups from G, and setting to zeros all
coefficients in the remaining groups. On the other hand, the l2-norm over the coef-
ficients in each group discourages sparsity within each group; namely, if a group is
selected, then all variables in that group tend to have nonzero coefficients, i.e. are
selected together. In summary, the group LASSO works as a standard LASSO at a
group level, and the sparsity parameter λ controls how many groups are selected to
have nonzero coefficients in the model.

Note that sometimes the weight factor √nj in eq. 6.6 is omitted, i.e. the group
LASSO penalty is simply

∑
j∈J ||xGj ||2. Both formulations are just particular cases

of a more general group-enforcing penalty proposed by (Bakin, 1999):
J∑

j=1

||xj ||Kj , (6.7)

where K1, ..., KJ are positive definite matrices, and ||x||K =
√
xTKx, with xT

denots the transpose of x. The formulation in (Yuan and Lin, 2006) simply uses
Kj = njInj , where Inj is the identity matrix of size nj ; the no-weight formulation
corresponds to Kj = Inj .

6.4 Simultaneous LASSO: l1/l∞ Penalty
Another approach to grouping variables was proposed by (Turlach et al., 2005),

where the task of interest involved selecting a common subset of predictors when si-
multaneously predicting several target (response) variables. The task is called simul-
taneous variable selection, and is an extension of the LASSO to the case of multiple
responses. Each group here consists of the linear regression parameters associated
with a particular predictor across all regression tasks.

More specifically, we assume that there are k response variables, Y1,....,Yk, that
we are going to predict from a set of n predictor variables A1,...,An, and that only a
relatively small subset of the same predictors is relevant to all responses. As usual,



Beyond LASSO: Structured Sparsity 111

we assume that A = {aij} is an m× n data matrix where aij is the i-th observation
of the j-th predictor, i = 1, ...,m and j = 1, ..., n. Instead of a vector y we now have
an m × k matrix Y = {yil} of observed response variables, where each column-
vector yl is an m-dimensional sample of the l-th response variable, l = 1, ..., k. The
goal is to learn simultaneously the n×k matrix of coefficientsX = {xjl} for k linear
regression models, one per each response variable. Here xj l denotes the coefficient
of the j-th predictor in the l-th model. We will denote by xj the j-th row in X (i.e.,
the coefficients of the j-th predictor across all regression tasks), and by yl and xl the
l-th columns in the matrices Y and X, respectively.

The optimization problem for the simultaneous variable selection with multiple
responses is stated as follows (Turlach et al., 2005):

min
x11,...xnp

k∑

l=1

m∑

i=1

(yil −
n∑

j=1

aijxjl)
2, (6.8)

subject to
n∑

j=1

max(|xj1|, ..., |xjk |) ≤ t. (6.9)

This formulation can be also rewritten using the corresponding Lagrangian form, and
the vector notation, as follows:

min
X

k∑

l=1

||yl −Axl||22 + λ

n∑

j=1

||xj ||∞, (6.10)

where ||xj ||∞ = max{|xj1|, ..., |xjn|}
is called the l∞ norm. This regularization penalty is called the block l1/l∞-norm,
since it applies the l1-norm (the sum) to the “blocks” (groups) of coefficients, where
each group is a row of X (i.e., it corresponds to a predictor variable), while the l∞-
norm is used within each row (i.e., across all tasks). Similarly to the l1/l2 block
norm, the l1 part encourages sparsity across the groups, i.e. the rows of X, while
the l∞ penalty only depends on the largest coefficient within each row, and thus no
extra penalty is incurred by making all coefficients nonzero, or even the same as the
maximum. Thus, no sparsity is enforced within the group, and if a predictor (row) is
selected, it enters all k regression models with nonzero coefficients. Thus, both l1/l∞
and l1/l2 block norms have similar effect, enforcing sparsity across the groups, but
not within them.

6.5 Generalizations
6.5.1 Block l1/lq-Norms and Beyond

The l1/l2 and l1/l∞ penalties discussed above are the two most commonly used
members in a large family of the block l1/lq-norm penalties, defined as

J∑

j=1

cj ||xGj ||q , (6.11)
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where q > 1, G is the partition of variables into (non-intersecting) groups, and the
weight cj accounts for varying group sizes, just as it was defined for group LASSO.

An even more general class of penalties, called the composite absolute penalties
(CAP), was suggested by (Zhao et al., 2009). A set of groups of predictors G =
{G1, ..., GJ} is assumed to be given, where the groups are either non-overlapping,
as in the group LASSO, or otherwise forming a hierarchical structure of overlapping
groups. A set of norm parameters q = (q0, q1, ..., qJ ), qi > 0, i ∈ {0, 1, ..., J} is also
given. Let

Zj = ||xGj ||qj
denote the qj-norm of xGj vector over the j-th group of variables. Then the general
CAP penalty is defined as the q0-norm of the vector Z = (Z1, ..., ZJ ), to the q0-th
power:

||Z||q0q0 =
J∑

j=1

cj |Zj|q0 . (6.12)

Here the q0-norm determines the relation among the groups, while the qi-norms
determine within-group relations among the variables in each group. As discussed
above, qj > 1 results in all nonzero coefficients within the group Gj , while q0 = 1
yields l1-norm over the groups, and thus, combined with qj > 1, promotes sparsity at
the group level. In summary, CAP penalties generalize both group LASSO and simul-
taneous LASSO by including l2 and l∞ group norms as particular cases; moreover,
they allow for overlapping groups and hierarchical variable selection. (Zhao et al.,
2009) propose several algorithms for learning CAP-regularized model parameters:
in general cases, they use BLASSO algorithm (Zhao and Yu, 2007) that approxi-
mates the regularization path and works by combining forward and backward steps,
such as adding or deleting a variable. In the specific case of the usual sum-squared
loss and the l∞ within-group penalty, combined with l1 across-group penalty, they
introduce exact path-following algorithms similar to LARS (homotopy), called iCAP
(for non-overlapping groups) and hiCAP (for hierarchical variable selection).

6.5.2 Overlapping Groups

While the original group LASSO formulation assumes non-overlapping groups,
there are multiple recent extensions of this approach to more complex, overlapping
group structures; see (Jenatton et al., 2011a; Jenatton, 2011) for more details. The
block l1/lq penalty with overlapping groups results in a sparsity pattern that is much
less obvious; in order to obtain a desirable nonzero pattern (also called the solution’s
support), the set of overlapping groups must be carefully designed. Recall that the co-
efficients of the variables belonging to any given group are set to zero simultaneously;
thus, unions of the groups correspond to possible zero patterns, and, consequently,
possible supports (nonzero patterns) correspond to the intersections of groups’ com-
plements. For example, let us consider a set of overlapping groups in Figure 6.8,
over a set of variables with some linear ordering. It is easy to see that we can get
all possible contiguous supports by setting to zero various combinations of groups;
contiguous supports are naturally occurring in a variety of practical applications that
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FIGURE 6.8: A set of overlapping groups (shaded) over a sequence of linearly or-
dered predictor variables; zero-pattern (white) and support (shaded) of solutions re-
sulting from setting some of the groups to zero.

involve time series. Another type of sequential data, as discussed, for example, in
(Jenatton et al., 2011a), involves CGH arrays used for tumor diagnosis.

More general classes of support patterns include two-dimensional convex sup-
port, two-dimensional block structures, and hierarchical group structures; again, see
(Jenatton et al., 2011a; Jenatton, 2011) for more details. Hierarchical group structure
assumes that the variables are organized in a tree or a forest, and setting a variable to
zero in the model implies that all its descendant variables are also zeros (or, in other
words, a variable participates in the support, or nonzero pattern, only if all its ances-
tors are in the support). For example, Figure 6.9 shows a a hierarchical set of groups
over a tree containing nine variables, and a sparsity pattern and support resulting from
setting some of the groups to zero. As it was mentioned before, hierarchical groups
were considered first by (Zhao et al., 2009). Another common example of hierarchi-
cal grouping is the sparse group LASSO (Friedman et al., 2010) that assumes a set
of multivariate non-overlapping groups (a forest), and a set of groups formed by all
leaves; thus, there is a variable selection both at the level of non-overlapping groups,
as in the regular group LASSO, and at the variable level within each group, hence
the name “sparse group” LASSO. Hierarchical groups are widely used in a variety
of applications, including computational biology (Kim and Xing, 2010), fMRI anal-
ysis (Jenatton et al., 2011b), topic modeling and image restoration (Jenatton et al.,
2011c), and many others.

A further study of group LASSO with overlapping groups was presented in (Ja-
cob et al., 2009) and (Obozinski et al., 2011). Unlike previous examples where the
supports produced by overlapping groups were intersection-closed (i.e., intersection
of possible supports still belongs to the set of possible supports produced by a given
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FIGURE 6.9: A hierarchical set of overlapping groups (shown within contours) over
a set of predictor variables organized in a tree; zero-pattern (shaded) and support
(white) of solutions resulting from setting to zero groups (x2, x5, x6), (x7), and (x8).

set of groups), (Jacob et al., 2009; Obozinski et al., 2011) consider the case of union-
closed supports. This formulation is referred to as “latent group LASSO” since it is
using group LASSO penalty on a set of latent, or hidden, variables.

6.6 Applications
6.6.1 Temporal Causal Modeling

One natural application of the group LASSO approach is learning sparse vector-
autoregressive models, where the groups correspond to time-lagged variables of the
same time-series. Based on this idea, (Lozano et al., 2009a) propose a grouped graph-
ical Granger modeling method for gene expression regulatory network discovery.
More specifically, given a time-series of observations for each predictor variable,
x1i ,...,xti, and the target variable, y1,...,yt, we may want to learn a regression model
predicting the target variable yt at time t from all previous observations with time
lag up to k. For each i, the set of observations {xt−ki , ..., xt−1

i , xt−1
i } can be natu-

rally considered as a group of variables that need to be simultaneously included into
our sparse model if, for example, the predictor Xi has a causal effect on the target
variable, or simultaneously excluded from the model if there is no such effect.
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6.6.2 Generalized Additive Models

As it was already mentioned, some natural grouping of variables arises in many
applications. For example, (Bakin, 1999) used the group LASSO approach for learn-
ing generalized additive models (GAMs). GAMs generalize the conventional linear
regression model as follows:

g(E(Y )) =
∑

i

fi(xi), fi(x) =
J∑

j=1

αijhk(x),

where E(Y ) is the expectation of the response variable Y , and hk(x) are the basis
functions in the basis expansion of each component function fi(x). Note that when
fi(x) are linear functions, and g(z) = z (identity function), then the model reduces
to simple linear regression. In (Bakin, 1999), the group LASSO type of penalty was
imposed on the parameters αij , where each group includes the coefficients for the
same component function fi, i.e. gi = {αij : j = 1, ...J}; such parameter group-
ing corresponds to imposing sparsity over the component functions, i.e. choosing a
subset of them to be included in the GAM model.

6.6.3 Multiple Kernel Learning

The group LASSO approach was recently used in the multiple kernel learning
framework discussed in (Lanckriet et al., 2004; Bach et al., 2004; Bach, 2008b).
First, we will briefly discuss the standard single kernel learning; for more details,
see, for example, (Shawe-Taylor and Cristianini, 2004). The objective here is to
learn a potentially nonlinear model that first maps the input variables (predictors)
into some high-dimensional (possibly infinite-dimensional) features, and then uses a
linear mapping from the features to the output variable (target). This can be done ef-
ficiently using the so-called kernel trick, which avoids an explicit computation of the
mapping from the input to the feature space, and only involves computing a kernel
K(x1,x2) as discussed below.

More specifically, given a set of m data points (x1, y1), ..., (xm, ym), where xi

is the i-th observation of the input vector x, and yi is the corresponding observation
of the output variable, the traditional single kernel learning aims at constructing a
predictor

y = 〈w,Φ(x)〉,

where Φ : X → F is a function from the input space X into the feature space
F . The feature space here is a reproducing kernel Hilbert space associated with the
kernel function ψ(·, ·) : X ×X → R, and 〈·, ·〉 : F × F → R is the inner product
function in that space. In general,F is an infinite-dimensional function space, though
for simplicity, we focus here on a finite-dimensional case when Φ(x) ∈ Rp, and thus
〈w,Φ(x)〉 = wTΦ(x). Note that the above predictor is linear in features Φ(x) but
nonlinear in the original input x when the mapping Φ(·) is nonlinear.



116 Sparse Modeling: Theory, Algorithms, and Applications

The parameters of the predictor are estimated by solving the optimization prob-
lem:

min
w∈F

m∑

i=1

L(yi,wTΦ(xi)) + λ||wi||22,

where L is some loss function, such as, for example, the quadratic loss. According
to the representer theorem (Kimeldorf and Wahba, 1971), the solution to the above
problem has the formw =

∑m
j=1 αjΦ(x

j). Using this expression, and denoting byα
the column vector (α1, ..., αm)T , and by (Kα)i the i-th element of the corresponding
product of a matrix K and a vector α, we can rewrite the optimization problem as

min
α∈Rm

m∑

i=1

L(yi, (Kα)i) + λαTKα,

where K is the kernel matrix defined as

Kij = ψ(xi,xj) = 〈Φ(xi),Φ(xj)〉.

The above optimization problem can be solved efficiently provided that the kernel
matrix is easy to compute; some examples include linear, polynomial, and Gaus-
sian kernels. For more information on kernel-based learning we refer the reader to
(Shawe-Taylor and Cristianini, 2004). There are also several tutorials available on-
line.

The multiple kernel learning (Lanckriet et al., 2004; Bach et al., 2004; Bach,
2008b) is an extension of the standard kernel-based learning to the case when the
kernel can be represented as a sum of s multiple kernels, i.e.

K(x,x′) =
s∑

i=1

αiKi(x,x
′).

A multiple kernel situation naturally arises in some applications, such as, for exam-
ple, fusion of the multiple heterogeneous data sources (Lanckriet et al., 2004). The
predictor in multiple kernel cases takes the following form

s∑

i=1

wT
i Φi(x),

where Φi : X → Fi is the i-th feature map from the input space to the i-th fea-
ture space Fi, associated with the i-th kernel, and w ∈ Fi. For simplicity, let us
assume again the finite-dimensional case, i.e. Φi(x) ∈ Rni , though the framework
also extends to infinite-dimensional spaces (Bach et al., 2004; Bach, 2008b). Using
the group penalty

s∑

i=1

||wi||2,

where the i-th group is associated with the i-th kernel, allows to select in a data-
driven way the best subset of feature spaces (and associated kernels), out of a poten-
tially large amount of possible spaces (kernels).
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6.6.4 Multi-Task Learning

Simultaneous variable selection with multiple responses presented in (Turlach
et al., 2005) is a particular case of a general problem in machine learning, referred to
as multi-task learning, where the objective is to simultaneously learn multiple pre-
dictive models over the same set of predictors. In general, the design matrices can
be different for different tasks, or coincide as in the case of simultaneous variable
selection in (Turlach et al., 2005). For example, (Liu et al., 2009a) apply the multi-
task approach to learning sparse models for predicting brain activation in fMRI in
response to words as stimuli. More specifically, they simultaneously learn sparse lin-
ear models to predict 20,000 voxel activations, while using the l1/l∞ regularization
to extract a common group of predictive features out of 50,000-dimensional feature
vectors that encode word meaning through words’ co-occurrences with other words.

Besides the linear regression setting, multi-task learning is often applied to classi-
fication problems where the target variable is discrete, e.g., binary. In these cases, an
appropriate loss function, such as logistic loss (Obozinski et al., 2010) or hinge-loss
(Quattoni et al., 2009), replaces the sum-squared loss. Groups are formed by coeffi-
cients of the same predictor variable across all models (i.e., across different learning
tasks).

For example, (Obozinski et al., 2010) consider the optical character recognition
(OCR) problem for multiple writers, where pixel-level or stroke-level representations
of the handwritten characters correspond to the features/predictors, and the task is to
classify a given character into one of a specified class (e.g., a particular digit or let-
ter). Figure 6.10a shows examples of the letter “a” written by different people, and
Figure 6.10b shows the strokes extracted from the data. There are typically a few
thousands of pixel- and/or stroke-level features, and only a relatively small subset of
them turns out to be useful for character recognition. Thus, learning a sparse clas-
sification model looks like a natural approach. (Obozinski et al., 2010) build binary
classifiers that discriminate between pairs of letters, using logistic loss with the l1-
norm regularization as the baseline. In the presence of multiple datasets, one for each
individual, (Obozinski et al., 2010) aim at learning a single sparse model that shares
predictors across different writers. The models are trained jointly on the data for
all participating individuals, using the block l1/l2-norm constraint in order to select
common predictive features across different models (prediction tasks). As demon-
strated in (Obozinski et al., 2010), models learned by such multi-task approach are
more accurate than the models learned separately for each writer, perhaps due to the
fact that the image features important for character recognition are indeed shared
across different subjects despite the differences in their writing styles. Note also that
the number of samples for each individual writer is quite limited (e.g., between 4
and 30 samples), and thus combining the datasets with similar properties tends to
improve the model’s accuracy by increasing the training set size.

Another multi-task problem also discussed in (Obozinski et al., 2010) is a DNA
microarray analysis problem. There are typically several thousands features corre-
sponding to the gene expression levels, and the task is to predict a certain phenotypic
property, e.g. a type of a skin cancer that patient has. A common assumption is that
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(a) (b)

FIGURE 6.10: Sample data for the optical character recognition (OCR) problem: (a)
letter “a” written by 40 different people; (b) stroke features extracted from the data.

only a limited subset of genes is relevant to the given phenotypic variable, such as
presence of a particular disease, and thus a sparse model is a tool of choice. When
the phenotype variables are related, such as, for example, in the case of a related set
of cancers, it can be advantageous to use a multi-task approach and learn multiple
sparse models sharing a common subset of variables/genes, as demonstrated by the
experiments presented in (Obozinski et al., 2010).

6.7 Summary and Bibliographical Notes
In this chapter, we introduced several recently developed sparse regression tech-

niques that extend and improve the standard LASSO approach by incorporating ad-
ditional, domain-specific solution structure, besides the trivial sparsity assumption.
Such methods are based on combining the l1-norm penalty with other lq-norms. For
example, a convex combination of the l1- and the l2-norm penalties in the Elastic
Net regression (Zou and Hastie, 2005) allows for both sparsity and grouping, i.e.
joint inclusion or exclusion, of highly correlated variables, which is particularly rel-
evant in applications such as brain imaging or gene microarray analysis. The fused
LASSO (Tibshirani et al., 2005) imposes smoothness of regression coefficients along
a specified variable ordering – an important feature in time series data. In general,
when the data possess some natural variable grouping, the group LASSO (Yuan and
Lin, 2006) allows for sparsity at the group level; block l1/lq-penalties, with both
non-overlapping and overlapping groups, are a popular tool for imposing different
group structures in a wide range of applications, including multi-task learning, mul-
tiple kernel learning, and various applications in signal processing, biology, and be-
yond. Efficient group LASSO algorithms developed in the past several years include,
among others, block-coordinate descent methods (Yuan and Lin, 2006; Liu et al.,
2009a), projected gradient (Quattoni et al., 2009), active set approaches (Roth and
Fischer, 2008; Obozinski et al., 2010), Nesterov’s method (Liu et al., 2009b), as
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well as greedy techniques such as group orthogonal matching pursuit (Lozano et al.,
2009b). Asymptotic consistency of the group LASSO is the focus of several recent
papers, including (Bach, 2008b; Liu and Zhang, 2009; Nardi and Rinaldo, 2008).
Further extensions include group LASSO for logistic regression (Meier et al., 2008)
and other generalized linear models (GLMs) (Roth and Fischer, 2008). Also, (Jenat-
ton, 2011) provides a comprehensive survey of structured sparsity approaches and
methods.
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In the previous chapter we discussed extensions of the basic LASSO problem to a
wider class of regularizers. We will now focus on a more general class of loss func-
tions, as discussed earlier in chapter 2, namely, on the exponential-family negative
log-likelihood losses. Note, however, that several other popular types of loss func-
tions remain out of scope of this book; see the bibliography section of chapter 2 for
a brief summary.

Recall that, from a probabilistic point of view, the LASSO problem is equiva-
lent to finding model parameters maximizing a posteriory probability (MAP) under
the assumption of linear Gaussian measurements and model parameters following
the Laplace prior. However, in many practical applications, a non-Gaussian model of
measurement noise may be more appropriate. For example, when the measurements
are discrete variables (e.g., binary or categorical, in general), such as failures in a
distributed computer system (Rish et al., 2005; Zheng et al., 2005), word counts in
a document, and so on, then the Bernoulli or multinomial distributions must be used
instead. On the other hand, when actual transaction response times are used to in-
fer possible performance bottlenecks in a system, exponential distribution is better
suited than Gaussian, since the response time is nonnegative (Chandalia and Rish,
2007; Beygelzimer et al., 2007). Non-Gaussian observations, including binary, dis-
crete, nonnegative, etc., variables, are also common in applications such as compu-
tational biology and medical imaging: for example, a binary variable describing the
presence or absence of a particular disease given gene microarray data, or multino-
mial variables corresponding to different levels of emotions such as anger, anxiety, or
happiness that we may want to predict based on brain images (Mitchell et al., 2004;
Carroll et al., 2009). In general, classification problems with discrete class labels are
one of the central topics in modern machine learning.

In this chapter, we will consider a general class of noise distributions, known
as exponential family (Mccullagh and Nelder, 1989), which includes, besides the
Gaussian distribution, many others commonly used distributions, such as Bernoulli,
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multinomial, exponential, gamma, chi-square, beta, Weibull, Dirichlet, and Poisson,
just to name a few. The problem of recovering an unobserved vectorx from the vector
y of linear measurementsAx contaminated by an exponential-family noise is known
as Generalized Linear Model (GLM) regression. Adding the l1-norm constraint to
GLM regression allows for an efficient method of sparse signal recovery, and is often
used in statistical literature (Park and Hastie, 2007).

A natural question to ask next is whether a sparse signal can be accurately recov-
ered from linear measurements corrupted by an exponential-family noise. It turns out
that this question can be answered positively, as it was shown by (Rish and Grabarnik,
2009), where the classical results of (Candès et al., 2006b) were extended to the
exponential-noise case. This chapter provides a summary of those results, as well
as a brief review of the recent theoretical results that address properties of general
regularized M -estimators (maximum-likelihood estimators), including the LASSO
and the l1-regularized GLM problems as particular cases (Negahban et al., 2009,
2012).

7.1 Sparse Recovery from Noisy Observations
Let us first recall some basic results about the sparse signal recovery from noisy

measurements; also, see chapters 3 and 4. We assume that x0 ∈ Rn is a k-sparse
signal, i.e. a signal with no more than k nonzero entries, where k << n. Let A be
an m by n matrix that produces a vector of linear projections y0 = Ax0, where
m << n, and let y be a vector of m noisy measurements that follow some noise
distribution P (y|Ax0). Following (Candès et al., 2006b), we will assume herein
that the matrix A satisfies the restricted isometry property (RIP) at the sparsity level
k (recall that RIP was defined earlier in Chapter 3), which essentially states that every
subset of columns of A with cardinality less than k behaves like a nearly orthonormal
system.

The question we focus on here is whether the true signal x0 can be accurately re-
covered from y, given that the measurement noise is sufficiently small. This question
has been answered in the compressed sensing literature for the particular case when
the noise distribution is Gaussian. Indeed, as it was shown in (Candès et al., 2006b),
if (1) ||y−Ax0||l2 ≤ ε (i.e., the noise is small), (2) x0 is sufficiently sparse, and the
(3) matrix A obeys the RIP with some appropriate RIP constants, then the solution
to the following l1-norm minimization problem:

x∗ = argmin
x
||x||1 subject to ||y −Ax||2 ≤ ε (7.1)

approximates the true signal well. More formally, Theorem 1 in (Candès et al.,
2006b) states:

Theorem 7.1. (Candès et al., 2006b) Let S be such that δ3S + 3δ4S < 2, where δS
is the S-restricted isometry constant of the matrix A, as defined above. Then for any
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signal x0 with the support T 0 = {t : x0 
= 0}, where |T 0| ≤ S and any noise vector
(perturbation) e with ||e||2 ≤ ε, the solution x∗ to the problem in eq. 7.1 obeys

||x∗ − x0||2 ≤ CS · ε, (7.2)

where the constant CS may only depend on δ4S . For reasonable values of δ4S , CS is
well-behaved; e.g., CS ≈ 8.82 for δ4S = 1/5 and CS ≈ 10.47 for δ4S = 1/4.

Moreover, (Candès et al., 2006b) show that (1) no other recovery method “can
perform fundamentally better for arbitrary perturbations of size ε, i.e. even if an ora-
cle would make the actual support T 0 of x0 available to us, making the problem well-
posed, the least-squares solution x̂ (i.e., the maximum-likelihood solution which is
optimal in the absence of any other information) would approximate the true signal
x0 with the error proportional to ε”.

Finally, (Candès et al., 2006b) extend their result from sparse to approximately
sparse vectors:

Theorem 7.2. (Candès et al., 2006b) Let x0 ∈ Rn be an arbitrary vector, and let x0
S

be the truncated vector corresponding to the S largest (absolute) values of x0. Under
the assumptions of Theorem 7.1, the solution x∗ to the problem in eq. 7.1 obeys

||x∗ − x0||2 ≤ C1,S · ε+ C2,S ·
||x0 − x0

S||1√
S

. (7.3)

For reasonable values of δ4S the constants above are well-behaved; e.g., C1,S ≈
12.04 and C2,S ≈ 8.77 for δ4S = 1/5.

In the rest of this chapter, we will discuss an extension of the above compressed-
sensing results to the case of general exponential-family noise distributions, as it was
presented in (Rish and Grabarnik, 2009).

7.2 Exponential Family, GLMs, and Bregman Divergences
Note that the ||y−Ax||2 ≤ ε constraint results from the negative log-likelihood

of a Gaussian variable y ∼ N(μ,Σ) with μ = Ax and Σ = I (i.e., independent
unit-variance Gaussian noise):

− log p(y|Ax0) = f(y) +
1

2
||y −Ax||22. (7.4)

The Gaussian distribution is a particular member of the exponential family of distri-
butions.
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7.2.1 Exponential Family

Definition 8. An exponential family is a parametric family of probability distribu-
tions with the probability density defined as follows1:

pψ,θ(y) = p0(y)e
θTT (y)−ψ(θ), (7.5)

where θ is called the natural parameter of the distribution. T (x) is a vector of suf-
ficient statistics that fully summarizes the data y within the density function, i.e., the
value of the density function is the same for any two data vectors y1 and y2, as long
as T (y1) and T (y2). The function ψ(θ) is strictly convex and differentiable, and is
called the cumulant function, or the log-partition function; this function uniquely
defines a particular member distribution of the exponential family, and can be com-
puted as:

ψ(θ) = log

∫

p0(y)e
θTT (y)dy. (7.6)

Finally, p0(y) is a nonnegative function, called the base measure, which only de-
pends on the data y, and is independent of the parameter θ.

We now demonstrate how two commonly used distributions, the Gaussian distri-
bution and the Bernoulli distribution, can be written in the exponential-family form.

Gaussian distribution, unknown mean, and unknown variance. The univariate Gaus-
sian distribution with some mean μ and standard deviation σ can be written as

p(y) =
1√
2πσ2

exp{− (y − μ)2
2σ2

} = (7.7)

=
1√
2π
exp{ μ

σ2
y − 1

2σ2
y2 − 1

2σ2
μ2 − log σ},

and thus is a member of the exponential family defined in eq. 7.5, where

T (y) = (y, y2)T , (7.8)
θ = (μ/σ2,−1/(2σ2))T ,

ψ(θ) = μ2/(2σ2) + log σ = −θ21/(4θ2)− 0.5 log(−2θ2),
p0(y) = 1/

√
2π.

Gaussian distribution, unknown mean, unit variance. In a specific case of the uni-
variate Gaussian distribution with known variance, and particularly, unit variance,
i.e. σ = 1, we can simplify the above expressions as follows:

p(y) =
1√
2π
exp{− (y − μ)2

2
} = (7.9)

=
exp{−y2/2}√

2π
exp{μy − μ2/2},

1Note that, for the simplicity of exposition, we focus here on the exponential family in a canonical
form; in general, θT T (y) must be replaced by η(θ)T T (y), where η is some known function; it is always
possible, however, to convert an exponential family to the canonical form.
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and thus we get:

T (y) = y, (7.10)
θ = μ,

ψ(θ) = μ2/2 = θ2/2,

p0(y) = exp{−y2/2}/
√
2π.

Another commonly used member of the exponential family is the Bernoulli distribu-
tion, i.e. the distribution of a binary random variable that takes values 0 and 1, with a
single parameter q = p(y = 1). The Bernoulli distribution can be written as follows:

p(y) = qy(1− q)1−y = exp{log(qy(1− q)1−y)} = (7.11)
= exp{y log q + (1− y) log(1 − q)} =
= exp{y log q

1− q + log(1 − q)} =

= exp{yθ− log(1 + eθ)},

namely, we obtained an exponential-family distribution where

T (y) = y, (7.12)

θ = log
q

1− q ,

ψ(θ) = log(1 + eθ),

p0(y) = 1.

Note that we can also rewrite the definition of the exponential family distributions
in eq. 7.5 as a function of T (y), rather than a function of y, since, by definition of
the sufficient statistic, p0(y) can be written as some base measure p′0(T (y)). Thus,
from now on, we will define exponential family simply as

pψ,θ(y) = p0(y)e
θTy−ψ(θ), (7.13)

assuming thaty is a sufficient statistic; note that this version of the exponential family
definition is often used in the literature; see, for example, (Collins et al., 2001; Sajama
and Orlitsky, 2004; Banerjee et al., 2004; Rish et al., 2008; Li and Tao, 2010), just to
name a few.

7.2.2 Generalized Linear Models (GLMs)

Recall that the standard linear regression model, y =
∑
aixi + ε = aTx + ε,

also called the ordinary least-squares (OLS), assumes that the mean of the observed
(output) random variable y is linear in the input vector a of random variables, i.e.
E(y) = aTx, where x are the model parameters, and that the noise ε is zero-mean
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Gaussian noise, which implies that the distribution of y is Gaussian with the mean
μ = aTx. Assuming that the variance of the noise is known (e.g., unit variance after
normalizing the data), the maximum-likelihood parameter estimation of the linear
regression model, given a vector of observations y, and a matrix of (row-vector)
inputs A, consists in minimizing the sum-squared loss ||y −Ax||2, as shown in eq.
7.4.

A generalization of the linear regression model to the exponential-family noise
is known as the Generalized Linear Model (GLM)2. GLM assumes that the mean
μ = E(y) is a (generally, nonlinear) function of the linear predictor θ = aTx,
which corresponds to the natural parameter of the exponential-family distribution
describing the observation noise, i.e.

E(y) = μ(θ) = f−1(aTx), (7.14)

where the function f is called the link function, as it “links” the mean and the linear
predictor, namely, θ = f(μ) and μ = f−1(θ). It can be shown that

μ = E(y) = f−1(θ) = ∇ψ(θ). (7.15)

In case of the unit-variance Gaussian, θ = μ, as shown above in eq. 7.11, and thus
the link function f(μ) and its inverse f−1(θ) are both simply identity functions, i.e.
f(μ) = μ, which yields the standard linear regression model:

E(y) = aTx,

while for the Bernoulli noise with the parameter q = p(y = 1), the mean is μ = q,
and thus the link function is the logit function f(μ) = log μ

1−μ (see eq. 7.13), which
is the inverse of the logistic function f−1(θ) = 1

1+exp−θ , and yields the logistic
regression model:

E(y) =
1

1 + e−aTx
.

7.2.3 Bregman Divergence

As shown by (Banerjee et al., 2004), there is a bijection between the exponential-
family densities pψ,θ(y) and the so-called Bregman divergences dφ(y, μ), defined
below, so that each exponential-family density can be also expressed as

pψ,θ(y) = exp(−dφ(y, μ))fφ(y), (7.16)

where μ = μ(θ) = Epψ,θ (y) is the expectation parameter corresponding to θ, as
discussed in the previous section, φ is the (strictly convex and differentiable) Leg-
endre conjugate of ψ, fφ(y) is a uniquely determined function, and dφ(y, μ) is the
corresponding Bregman divergence defined as follows.

2It is important not to confuse it with the general linear model, which is also abbreviated as GLM;
this model is still linear, though the output is now multivariate, i.e. y is an m-dimensional vector of
random variables, rather than a single variable, and, given n samples, general linear model is written as
Y = AX+U, where Y is a matrix with series of multivariate measurements, X is a design matrix, B is
a matrix of parameters, and U is a noise matrix.
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(a) Relative entropy (KL-divergence) (b) Itakura-Saito distance (Burg divergence)

FIGURE 7.1: Examples of Bregman divergences.

Definition 9. Given a strictly convex function φ : S → R defined on a convex
set S ⊆ R, and differentiable on the interior of S, int(S) (Rockafeller, 1970), the
Bregman divergence dφ : S × int(S)→ [0,∞) is defined as

dφ(x,y) = φ(x) − φ(y) − (x− y)T∇φ(y), (7.17)

where ∇φ(y) is the gradient of φ.

In other words, the Bregman divergence can be thought of as the difference be-
tween the value of φ at point x and the value of the first-order Taylor expansion of φ
around point y evaluated at point x – see, for example, Figures 7.1a and 7.1b, where
h(x) = φ(y) + (x− y)T∇φ(y).

Table 7.1 (derived from Tables 1 and 2 in (Banerjee et al., 2005)) shows particular
examples of commonly used exponential-family distributions and their correspond-
ing Bregman divergences. For example, the unit-variance Gaussian distribution leads
to square loss, multivariate spherical Gaussian (diagonal covariance/independent
variables) gives rise to Euclidean distance, a multivariate Gaussian with the inverse-
covariance (concentration) matrix C leads to Mahalanobis distance, Bernoulli dis-
tribution corresponds to logistic loss, exponential distribution leads to Itakura-Saito
distance, while a multinomial distribution corresponds to the KL-divergence (relative
entropy).

In summary, this section introduced three closely related concepts: exponential-
family distributions, generalized linear models (GLMs), and Bregman divergences.
As illustrated in Figure 7.2, there is a one-to-one mapping between each pair of
these concepts. A specific exponential-family distribution is associated with a par-
ticular GLM, and vice versa; GLM extends the standard linear regression model



128 Sparse Modeling: Theory, Algorithms, and Applications

TABLE 7.1: Examples of commonly used exponential-family distributions and
their corresponding Bregman divergences.

Distribution/ pθ(y) μ φ(μ) dφ(y, μ) Divergence
Domain

1D Gaussian 1√
2πσ2

e
− (x−a)2

2σ2 a 1
2σ2

μ2 1
2σ2

(y − μ)2 square loss

R

Bernoulli qy(1 − q)1−y q μ log μ+ y log(
y
μ

)+ logistic loss

{0, 1} (1 − μ) log(1 − μ) (1 − y) log(
1−y
1−μ )
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by assuming exponential-family, rather than just Gaussian, noise in the model, and
thus a generally nonlinear relation E(y) = f−1(aTx) between the linear predictor
(linear function of the input variables a, with parameters x) and the mean of the
output variable y. The linear predictor here corresponds to the natural parameter of
the distribution θ = aTx, and the link function f relates to the mean parameter μ
– and to the log-partition function of the exponential-family distribution as follows:
μ = f−1(θ) = ∇ψ(θ).

On the other hand, as we discussed earlier, there is a bijection between the
exponential-family densities pψ,θ(y) and the Bregman divergences dφ(y, μ), via the
Legendre duality of φ and ψ.

Thus, fitting a GLM model is equivalent to maximum-likelihood parameter esti-
mation with exponential-family noise assumption, and also equivalent to minimizing
the corresponding Bregman divergence.

7.3 Sparse Recovery with GLM Regression
Let us now consider the following constrained l1-norm minimization problem

that generalizes the standard noisy compressed sensing problem of (Candès et al.,
2006b):

min
x
||x||1 subject to

∑

i

d(yi, μ(aix)) ≤ ε, (7.18)
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FIGURE 7.2: One-to-one correspondences between the exponential-family distribu-
tions, Bregman divergences, and Generalized Linear Models (GLMs).

where d(yi, μ(aix)) is the Bregman divergence between the noisy observation yi
and the mean parameter of the corresponding exponential-family distribution with
the natural parameter θi = Aix. Note that using the Lagrangian form we can write
the above problem as

min
x
λ||x||1 +

∑

i

d(yi, μ(aix)), (7.19)

where the coefficient λ is the Lagrange multiplier uniquely determined by ε. This
problem is known as an l1-norm regularized GLM regression, and includes as
a particular case a standard l1-norm regularized linear regression, in which case
μ(aix) = aix and the Bregman divergence simply reduces to the Euclidian distance.

As shown in (Rish and Grabarnik, 2009), the result in Theorem 7.1 can be ex-
tended to the case of exponential-family noise. Specifically, if: (1) the noise is small,
(2) x0 is sufficiently sparse, and (3) the matrix A obeys the restricted isometry prop-
erty (RIP) with appropriate RIP constants, then the solution to the above problem
approximates the true signal well.

Theorem 7.3. Let S be such that δ3S + 3δ4S < 2, where δS is the S-restricted
isometry constant of the matrix A, as defined above, and let ai denote the i-th row
of A. Then for any signal x0 with the support T 0 = {t : x0 
= 0}, where |T 0| ≤ S,
and for any vector y = (y1, ...., yn) of noisy linear measurements where

1. the noise follows exponential-family distributions pθi(yi), with the natural pa-
rameter θi = (aTi x

0),

2. the noise is sufficiently small, i.e. ∀i, dφi(yi, μ(aTi x0)) ≤ ε, and
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3. each function φi(·) (i.e., the Legendre conjugate of the corresponding log-
partition function, uniquely defining the Bregman divergence), satisfies the
conditions imposed by at least one of the Lemmas below,

the solution x∗ to the problem in eq. 7.18 obeys

||x∗ − x0||l2 ≤ CS · δ(ε), (7.20)

where CS is the constant from Theorem 7.1 (Candès et al., 2006b), and δ(ε) is a
continuous monotone increasing function of ε s.t. δ(0) = 0 (and thus δ(ε) is small
when ε is small). A particular form of this function depends on particular members
of the exponential family.

Proof. Following the proof of Theorem 7.1 (Candès et al., 2006b), we only need to
show that the “tube constraint” (condition 1) still holds (the rest of the proof remains
unchanged), i.e. that

||Ax∗ −Ax0||l2 ≤ δ(ε), (7.21)

where δ is some continuous monotone increasing function of ε, and δ(0) = 0, so its
small when ε is small. This was a trivial consequence of the triangle inequality in
the case of Euclidean distance; however, triangle inequality does not hold, in gen-
eral, for Bregman divergences, and thus a different proof must be provided for the
tube constraint, possibly for each type of Bregman divergence (exponential-family
distribution). Since

||Ax∗ −Ax0||2l2 =

m∑

i=1

(aTi x
∗ − aTi x

0)2 =

m∑

i=1

(θ∗i − θ0i )2,

we will need to show that |θ∗i − θ0i | < β(ε), where β(ε) is a continuous monotone
increasing function of ε s.t. β(0) = 0 (and thus β(ε) is small when ε is small); then
in eq. 7.21 we get δ(ε) =

√
m · β(ε). Lemma 7.5 provides the proof of this fact for

a class of exponential-family distributions with bounded φ′′(y) (where φ(y) is the
Legendre conjugate of the log-partition function that uniquely determines the dis-
tribution). However, for several members of the exponential family (e.g., Bernoulli
distribution) this condition is not satisfied, and those cases must be handled indi-
vidually. Thus, separate proofs are provided for several different members of the
exponential family in Lemmas 7.6, 7.7, and 7.8, and particular expressions for β(ε)
are obtained in each case. Note that for simplicity’s sake, we only consider univariate
exponential-family distributions, corresponding to the case of independent noise for
each measurement yi, which was effectively assumed in standard problem formula-
tion that used Euclidean distance corresponding to a spherical Gaussian distribution,
i.e. a vector of independent Gaussian variables. However, Lemma 7.5 below can be
extended from scalar to vector case, i.e. to multivariate exponential-family distri-
butions that do not necessarily imply independent noise. Lemma 7.8 will provide a
specific case of such distribution - a multivariate Gaussian with concentration matrix
C.
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The “cone constraint” part of the proof in (Candès et al., 2006b) remains in-
tact; it is easy to see that it does not depend on the particular constraint in the
l1-minimization problem 7.18, and only makes use of the sparsity of x0 and l1-
optimality of x∗. Thus, we can simply substitute ||Ah||2 by δ(ε) in eq. 13 on page 8
in the proof of Theorem 7.1 (Candès et al., 2006b), or, equivalently, replace 2ε (that
was shown to bound ||Ah||2 ) by δ(ε) in eq. 14.

Similarly to the sparse signal case (Theorem 7.1 (Candès et al., 2006b)), the
only change we have to make in the proof of Theorem 7.2 for the general case of
approximable, rather than sparse, signals, relates to the tube constraint. Thus, once
we showed it for Theorem 7.3 above, the generalization to approximable signals
follows automatically:

Theorem 7.4. Let x0 ∈ Rm be an arbitrary vector, and let x0
S be the truncated

vector corresponding to the S largest values of x0 (in absolute value). Under the
assumptions of Theorem 7.3, the solution x∗ to the problem in eq. 7.18 obeys

||x∗ − x0||2 ≤ C1,S · δ(ε) + C2,S ·
||x0 − x0S ||1√

S
, (7.22)

where C1,S andC2,S are the constants from Theorem 7.2 (Candès et al., 2006b), and
δ(ε) is a continuous monotone increasing function of ε s.t. δ(0) = 0 (and thus δ(ε)
is small when ε is small). A particular form of this function depends on particular
members of the exponential family.

The following lemma states the sufficient conditions for the “tube constraint” in
eq. 7.21 to hold in general cases of arbitrary exponential-family noise, provided that
φ′′(y) exists and is bounded on the appropriate intervals.

Lemma 7.5. Let y denote a random variable following an exponential-family distri-
bution pθ(y), with the natural parameter θ, and the corresponding mean parameters
μ(θ). Let dφ(y, μ(θ)) denote the Bregman divergence associated with this distribu-
tion. If

1. dφ(y, μ0(θ0)) ≤ ε (small noise),

2. dφ(y, μ∗(θ∗)) ≤ ε (constraint in the GLM problem in eq. 7.18), and

3. φ′′(y) exists and is bounded on [ymin, ymax], where ymin = min{y, μ0, μ∗}
and ymax = max{y, μ0, μ∗},

then

|θ∗ − θ0| ≤ β(ε) =
√
ε ·

2
√
2maxμ̂∈[μ∗;μ0] |φ′′(μ̂)|

√
minŷ∈[ymin;ymax] φ

′′(ŷ)
. (7.23)

Proof. We prove the lemma in two steps: first, we show that |μ∗(θ∗) − μ0(θ0)| is
small if ε is small, and then infer |θ∗ − θ0| is small.
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1. By definition in eq. 7.17, Bregman divergence is the non-linear tail of the Tay-
lor expansion of φ(y) at point μ, i.e., the Lagrange remainder of the linear
approximation:

dφ(y, μ) = φ′′(ŷ)(y − μ)2/2, ŷ ∈ [y1; y2],

where y1 = min{y, μ}, y2 = max{y, μ}.
Let y01 = min{y, μ0}, y02 = max{y, μ0}, y∗1 = min{y, μ∗}, andy∗2 =
max{y, μ∗}. Using the conditions 0 ≤ dφ(y, μ

0) ≤ ε and 0 ≤ dφ(y, μ
∗) ≤ ε,

and observing that

min
ŷ∈[ymin;ymax]

φ′′(ŷ) ≤ min
ŷ∈[y01 ;y

0
2]
φ′′(ŷ)

and min
ŷ∈[ymin;ymax]

φ′′(ŷ) ≤ min
ŷ∈[y∗1 ;y

∗
2 ]
φ′′(ŷ),

we get

φ′′(ŷ)(y − μ0)2/2 ≤ ε ⇔ (y − μ0)2 ≤ 2ε

φ′′(ŷ)
⇔

⇔ |y − μ0| ≤
√
2ε

√
minŷ∈[y01;y

0
2]
φ′′(ŷ)

≤

≤
√
2ε

√
minŷ∈[ymin;ymax] φ

′′(ŷ)

and, similarly, |y − μ∗| ≤
√
2ε

√
minŷ∈[y∗1 ;y

∗
2 ]
φ′′(ŷ)

≤

≤
√
2ε

√
minŷ∈[ymin;ymax] φ

′′(ŷ)
,

from which, using the triangle inequality, we conclude

|μ∗ − μ0| ≤ |y − μ∗|+ |y − μ0| ≤

≤ 2
√
2ε

√
minŷ∈[ymin;ymax] φ

′′(ŷ)
. (7.24)

Note that φ′′(ŷ) under the square root is always positive since φ is strictly
convex.

2. The mean and the natural parameters of an exponential-family distribution re-
late to each other as follows: θ(μ) = φ′(μ) (respectively, θ(μ) = ∇φ(μ) for
vector μ), where φ′(μ) is the link function. Therefore, we can write

|θ∗ − θ0| = |φ′(μ∗)− φ′(μ0)| = |φ′′(μ̂)(μ∗ − μ0)|,

where μ̂ ∈ [μ∗;μ0],
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and thus, using the above result in eq. 7.24, we get

|θ∗ − θ0| ≤ β(ε) =
√
ε ·

2
√
2maxμ̂∈[μ∗;μ0] |φ′′(μ̂)|

√
minŷ∈[ymin;ymax] φ

′′(ŷ)
,

which concludes the proof.

The condition (3) in the above lemma requires that φ′′(y) exists and is bounded
on the intervals between y and both μ0 and μ∗. However, even when this condition is
not satisfied, as it happens for the logistic loss, where φ′′(y) = 1

y(1−y) is unbounded
at 0 and 1, and for several other Bregman divergences shown in Table 7.1, we may
still be able to prove similar results using specific properties of each φ(y), as shown
by the following lemmas.

Lemma 7.6. (Bernoulli noise/Logistic loss) Let the conditions (1) and (2) of Lemma
7.5 be satisfied, and let φ(y) = y log y+(1−y) log(1−y), which corresponds to the
logistic-loss Bregman divergence and Bernoulli distribution p(y) = μy(1 − μ)1−y ,
where the mean parameter μ = P (y = 1). We assume that 0 < μ∗ < 1, and
0 < μ0 < 1. Then

|θ0 − θ∗| ≤ β(ε) = 4ε.

Proof. Using the definition of the logistic-loss Bregman divergence from Table 1,
and the conditions (1) and (2) of Lemma 7.5, we can write

dφ(y, μ
0) = y log(

y

μ0
) + (1− y) log( 1− y

1− μ0
) ≤ ε,

dφ(y, μ
∗) = y log(

y

μ∗
) + (1− y) log( 1− y

1− μ∗ ) ≤ ε, (7.25)

which implies

|dφ(y, μ0)− dφ(y, μ∗)| ≤ 2ε, (7.26)

and, after substituting expressions 7.25 into eq. 7.26, and simplifying, we get

|y log(μ
0

μ∗ ) + (1− y) log(1 − μ
0

1− μ∗ )| ≤ 2ε. (7.27)

The above must be satisfied for each y ∈ {0, 1} (the domain of Bernoulli distribu-
tion). Thus, we get

(1) | log(1 − μ
0

1− μ∗ )| ≤ 2ε if y = 0, and

(2) | log(μ
0

μ∗ )| ≤ 2ε if y = 1, (7.28)
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or, equivalently

(1) e−2ε ≤ 1− μ0
1− μ∗ ≤ e2ε if y = 0, and

(2) e−2ε ≤ μ0

μ∗ ≤ e2ε if y = 1.

Let us first consider the case of y = 0; subtracting 1 from the corresponding inequal-
ities yields

e−2ε − 1 ≤ μ∗ − μ0

1− μ∗ ≤ e2ε − 1⇔

⇔ (1 − μ∗)(e−2ε − 1) ≤ μ∗ − μ0 ≤ (1 − μ∗)(e2ε − 1).

By the mean value theorem, ex − 1 = ex − e0 = d(ex)
dx
|x̂ · (x− 0) = ex̂x, for some

x̂ ∈ [0, x] if x > 0, or for some x̂ ∈ [x, 0] if x < 0. Thus, e−2ε − 1 = −ex̂ · 2ε,
for some x̂ ∈ [−2ε, 0], and since ex is a continuous monotone increasing function,
ex̂ ≤ 1 and thus e−2ε − 1 ≥ −2ε. Similarly, e2ε − 1 = ex̂ · 2ε, for some x̂ ∈ [0, 2ε],
and since ex̂ ≤ e2ε, we get e2ε − 1 ≤ 2ε · e2ε. Thus,

−2ε(1− μ∗) ≤ μ∗ − μ0 ≤ 2εe2ε(1− μ∗)⇒
⇒ |μ∗ − μ0| ≤ 2ε · e2ε. (7.29)

Similarly, in the case of y = 1, we get

e−2ε − 1 ≤ μ0 − μ∗

μ∗ ≤ e2ε − 1,

and can apply the same derivation as above, and get the same result for |μ∗ − μ0| as
in eq. 7.29. Finally, since θ(μ) = φ′(μ) = log( μ

1−μ), we get

|θ0 − θ∗| = | log( μ0

1− μ0
)− log(

μ∗

1− μ∗ )| =

= | log(μ
0

μ∗ )− log(
1 − μ0
1− μ∗ )|.

From eq. 7.28 we get | log(μ
0

μ∗ )| ≤ 2ε and | log( 1−μ
0

1−μ∗ )| ≤ 2ε, which implies

|θ0 − θ∗| = | log(μ
0

μ∗ )− log(
1 − μ0

1− μ∗ )| ≤ 4ε.

Lemma 7.7. (Exponential noise/Itakura-Saito distance) Let the conditions (1) and
(2) of Lemma 7.5 be satisfied, and let φ(y) = − logμ − 1, which corresponds to
the Itakura-Saito distance dφ(y, μ) = y

μ − log( yμ ) − 1 and exponential distribution
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p(y) = λeλy , where the mean parameter μ = 1/λ. We will also assume that the
mean parameter is always separated from zero, i.e. ∃cμ > 0 such that μ ≥ cμ. Then

|θ∗ − θ0| ≤ β(ε) =

√
6 ε

cμ
.

Proof. To establish the result of the lemma we start with inequality |u− logu−1| ≤
ε, where u is y

μ . Replacing u by z = u − 1, z > −1 gives us |z − log(1 + z)| ≤ ε.
Without loss of generality, let us assume that ε ≤ 1

18
. Then the Taylor decomposition

of function z − log(1 + z) at the point z = 0,

z − log(1 + z) =
z2

2
− z3

3
+
θ4

4
, for θ ∈ [0, z] or [z, 0],

implies that

ε ≥ z − log(1 + z) ≥ z2

2
− z3

3
( since

θ4

4
≥ 0 ).

This, in turns, implies that z ≤ 1
3 and z2

2 −
z3

3 ≥
z2

6 for 0 ≤ z ≤ 1
3 .

Hence

z − log(1 + z) ≥ z2

2
for −1

3
≤ z ≤ 0, (7.30)

z − log(1 + z) ≥ z2

6
for 0 ≤ z ≤ 1

3
. (7.31)

Combining together both estimates we get |z| ≤
√
6 ε, or

|y − μ| ≤
√
6 ε · μ,

and
|μ0 − μ∗| ≤

√
6 ε ·max {μ0, μ∗}.

Then

|θ∗ − θ0| = | 1
μ0
− 1

μ∗ | = |
μ∗ − μ0
μ∗ μ0

| ≤
√
6 ε

min {μ∗, μ0} ≤
√
6 ε

cμ
,

since by the assumption of the lemma, min {μ∗, μ0} ≥ cμ.

We now consider multivariate exponential-family distributions; the next lemma
handles the general case of a multivariate Gaussian distribution (not necessarily the
spherical one that had a diagonal covariance matrix and corresponded to the standard
Euclidean distance (see Table 1).
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Lemma 7.8. (Non-i.i.d. Multivariate Gaussian noise/Mahalanobis distance) Let
φ(y) = yTCy, which corresponds to the general multivariate Gaussian with con-
centration matrix C, and Mahalanobis distance dφ(y, μ) = 1

2
(y− μ)TC(y − μ). If

dφ(y, μ
0) ≤ ε and dφ(y, μ∗) ≤ ε, then

||θ0 − θ∗|| ≤
√
2ε||C−1||1/2 · ||C||,

where ||C|| is the operator norm.

Proof. SinceC is (symmetric) positive definite, it can be written asC = LTL, where
L defines a linear operator on y space, and thus

ε/2 ≥ (y − μ)TC(y − μ) = (L(y − μ))T (L(y − μ)) =

= ||L(y − μ)||2.
Also, it is easy to show that ||C−1||I ≤ C ≤ ||C||I (where ||B|| denotes the operator
norm of B), and that

ε/2 ≥ ||L(y − μ)||2 ≥ ||L−1||−2||y − μ||2 ⇒

⇒ ||y − μ|| ≤
√
ε

2
||L−1||.

Then, using triangle inequality, we get

||μ∗ − μ0|| ≤ ||y − μ0||+ ||y − μ∗|| ≤
√
2ε||L−1||.

Finally, since θ(μ) = ∇φ(μ) = Cμ, we get

||θ0 − θ∗|| = ||Cμ0 − Cμ∗|| ≤ ||C|| · ||μ0 − μ∗|| =

= ||C|| · ||μ0 − μ∗|| ≤
√
2ε||L−1|| · ||C||.

Note that ||L−1|| = ||C−1||1/2, which concludes the proof.

7.4 Summary and Bibliographic Notes
In this section, we discussed an extension of standard results on noisy sparse sig-

nal recovery (Candès et al., 2006b) to the general case of exponential-family noise,
where the LASSO problem is replaced by the l1-regularized Generalized Linear
Model (GLM) regression. As shown in (Rish and Grabarnik, 2009), under standard
restricted isometry property (RIP) assumptions on the design matrix, l1-norm min-
imization can provide a stable recovery of a sparse signal under exponential-family
noise assumptions, provided that the noise is sufficiently small and the distribution
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satisfies certain (sufficient) conditions, such as bounded second derivative of the Leg-
endre conjugate φ(y) of the log-partition function that uniquely determines the dis-
tribution. Also, distribution-specific proofs are provided for several members of the
exponential family that may not satisfy the above general condition.

Theoretical analysis of regularized maximum-likelihood estimators, or M -
estimators, became a very popular topic in recent years. A large number of novel
theoretical results have been derived, addressing different aspects of their behav-
ior, including the model-selection consistency, i.e. an accurate recovery of nonzero
pattern of predictor variables, l2- and l1-norm error in parameter estimation (as dis-
cussed in this chapter), or prediction error.

For example, recent work on l1-norm regularized Generalized Linear Models
(GLMs) includes results on risk (expected loss) consistency (van de Geer, 2008),
model-selection consistency of logistic regression (Bunea, 2008; Ravikumar et al.,
2010), and consistency in l2- and l1-norm (Bach, 2010; Kakade et al., 2010). More
specifically, using the properties of self-concordant functions (Boyd and Vanden-
berghe, 2004) and following the technique of Restricted Eigenvalues developed in
(Bickel et al., 2009), a multidimensional version of the result similar to 7.6 was
established in Theorem 5 of (Bach, 2010). Also, (Kakade et al., 2010) use the tech-
nique of Restricted Eigenvalues and (almost) strong convexity of the Fisher risk for
the sub-Gaussian random noise to obtain the result (Corollary 4.4) similar to 7.6.

Recent work by (Negahban et al., 2009), and its extended version presented in
(Negahban et al., 2012), considers a unifying framework for analysis of regular-
ized maximum-likelihood estimators (M-estimators), and states sufficient conditions
that guarantee asymptotic recovery (i.e. consistency) of sparse models’ parameters
(i.e., sparse signals). These general conditions are: decomposability of the regular-
izer (which is satisfied for l1-norm), and restricted strong convexity (RSC) of the
loss function. Generalized Linear Models are considered as a special case, and con-
sistency results from GLMs are derived from the main result using the above two
sufficient conditions. Since the l1-regularizer is decomposable, the main challenge
is establishing RSC for the exponential-family negative log-likelihood loss, and this
is achieved by imposing two (sufficient) conditions, called GLM1 and GLM2, on
the design matrix and on the exponential-family distribution, respectively. Briefly,
the GLM1 condition requires the rows of the design matrix to be i.i.d. samples with
sub-Gaussian behavior, and the GLM2 condition includes as one of the alternative
sufficient conditions a uniformly bounded second derivative of the cumulant func-
tion, similar to our Lemma 7.5 (which bounds its Legendre conjugate). Given GLM1
and GLM2 conditions, (Negahban et al., 2012) derive a bound on l2-norm of the dif-
ference between the true signal and the solution to l1-regularized GLM regression.
The result is probabilistic, with the probability approaching 1 as the number of sam-
ples increases. Note, however, some differences between those results and the earlier
results of (Rish and Grabarnik, 2009) summarized in this chapter. First, the bounds
presented here are deterministic and the design matrix must satisfy RIP rather than
sub-Gaussianity. Second, the focus here is on the constrained l1-norm minimization
formulation rather than on its Lagrangian form; in the constrained formulation, pa-
rameter ε bounding the divergence between the linear projections of the signal and
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its noisy observations (e.g., ||y − Ax||l2 < ε) has a clear intuitive meaning, char-
acterizing the amount of noise in measurements, while the particular values of the
sparsity parameter λ in Lagrangian formulation are somewhat harder to interpret.
The results summarized here provide a very intuitive and straightforward extension
of the standard compressed sensing result presented in (Candès et al., 2006b).

Regarding the algorithms available for solving the l1-regularized Generalized
Linear Model (GLM) regression, one of the popular techniques is the LARS-like
path-following method for GLMs introduced by (Park and Hastie, 2007). It uses the
predictor-corrector method of convex optimization, which finds a series of solutions
for a varying parameter of the optimization problem (in this case, the sparsity param-
eter in front of the l1-norm) by using the initial conditions (solutions at one extreme
value of the parameter) and continuing to find the adjacent solutions on the basis of
the current solutions. The method of (Park and Hastie, 2007) generalizes the LARS
idea to the GLM path which, unlike the LARS/Lasso path, is not piecewise linear.

Another large body of recent research is devoted to regularized M -estimators
that arise in learning probabilistic graphical models, such as Markov Networks, or
Markov Random Fields, discussed in the next chapter.
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In many practical applications such as social network analysis, reverse-engineering
of gene networks, or discovering functional brain connectivity patterns, just to name
a few, the ultimate objective is to reconstruct underlying dependencies among the
variables of interest, such as individuals, genes, or brain areas. Probabilistic graphical
models provide a convenient visualization and inference tool that captures statistical
dependencies among random variables explicitly in a form of a graph.

A common approach to learning probabilistic graphical models is to choose the
simplest model, e.g., the sparsest network, that adequately explains the data. For-
mally, this leads to a regularized maximum-likelihood problem with the penalty on
the number of parameters (i.e., the l0-norm), which is an intractable combinatorial
problem, in general. However, similarly to the regression setting considered in the
previous chapters, replacing the intractable l0-norm by its convex relaxation via the
l1-norm is a popular approach to tackling the sparse graphical model learning prob-
lem. Note that, as discussed before, the sparsity requirement not only improves the
interpretability of the model, but also serves as a regularizer that helps to avoid over-
fitting in cases of high-dimensional problems with a limited number of samples.
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In this chapter, we focus on undirected graphical models, known as Markov net-
works, or Markov random fields (MRFs); more specifically, we consider Gaussian
MRFs, i.e. MRFs defined over Gaussian random variables. In the past decade, learn-
ing sparse Gaussian MRFs (GMRFs) became a rapidly growing area, and multiple
efficient optimization approaches were proposed for learning such models. We will
review some of those algorithms and discuss applications of sparse GMRF learning
in neuroimaging. We will also discuss an important practical issue of regularization
parameter selection, i.e. choosing the “right” level of sparsity. Clearly, sparse graph-
ical model learning is a very large field, and there are multiple other recent develop-
ments, such as, for example, sparse discrete-variable (e.g., binary) Markov networks,
as well as sparse directed graphical models, or Bayesian networks, that remain out
of the scope of this chapter. The bibliography section provides several references to
some of the recent advances in those fields.

We will now start with a review of some basic concepts related to probabilistic
graphical models.

8.1 Background
A graph G is a pair G = (V,E), where V is a finite set of vertices, or nodes,

and E ⊆ V × V a set of edges, or links, that connect pairs of nodes (i, j) ∈ E. An
edge between the nodes i ∈ V and j ∈ V is undirected if (i, j) ∈ E and (j, i) ∈ E,
otherwise it is called a directed edge. G is an undirected graph if all its edges are
undirected, and G is a directed graph if all its edges are directed.

A loop, or a self-loop, is an edge that connects a node to itself. A simple graph is
a graph containing no self-loops and no multiple edges (the latter is true by the defini-
tion of E as a set, since a set contains only a single instance of each of its elements).
From now on, when we refer to a graph, we will always assume a simple graph.

Two nodes i and j are adjacent to each other if they are connected by an edge
(i, j) ∈ E. They are also called neighbors of each other; the set of all neighbors
Ne(i) of a node i is called its neighborhood in G. A path from node i1 to a node ik
is a sequence of distinct nodes i1, i2,...,ik, such that each pair of subsequent nodes ij
and ij+1 is connected by an edge (i, j) ∈ E.

A complete graph is a graph where each pair of nodes is connected by an edge. A
subgraph GS of G is a graph over a subset of nodes S ⊆ V and the subset of edges
ES ⊆ E that connects nodes in S, i.e., (i, j) ∈ ES if and only if i ∈ S, j ∈ S, and
(i, j) ∈ E. The subgraph GS is said to be induced by the nodes in S. A clique C is
a complete subgraph of G. A maximal clique is a clique that is not a subgraph of any
larger clique.

Let X be a set of random variables associated with a probability measure p(X).
The probability measure is also called the (joint) probability distribution, in the case
of discrete variables, or the (joint) probability density, in the case of continuous
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variables. A vector x will denote a particular value assignment to the variable in
X, also called a state, or a configuration.

Given three disjoint subsets of random variables, X1 ⊂ X, X2 ⊂ X, and
X3 ⊂ X, the subsets X1 and X2 are said to be conditionally independent given
X3 (denoted X1 ⊥⊥ X2|X3) if and only if p(X1,X2|X3) = p(X1|X3)p(X2|X3),
or, equivalently, p(X1|X2,X3) = p(X1|X3). When X3 = ∅, X1 and X2 are said to
be marginally independent.

A probabilistic graphical model is a triplet (X, p(X), G), where X is a set of
random variables, associated with a probability measure p(X), and G = (V,E) is a
graph, where the nodes in V are in a one-to-one correspondence with the variables in
X, and the edges inE are used to encode probabilistic dependence and independence
relations among the variables. Their precise meaning will be defined below, in the
specific context of directed and undirected graphical models.

Graphical models have three main advantages: they (1) provide a convenient tool
for visualizing statistical dependencies and independencies among sets of random
variables, (2) encode joint probabilities over large sets of variables in a compact way,
using factorized representations according to the graph structure, and (3) allow for
efficient graph-based inference algorithms. There are several types of probabilistic
graphical models, such as undirected models (Markov networks), directed models
(Bayesian networks), and a general class of chain graphs containing both directed
and undirected edges. These models have different advantages and drawbacks, in
terms of their “expressive power”, i.e. probabilistic independence relationships that
they are capable of representing, convenience of factorization, and inference algo-
rithms; for example, certain sets of independence assumptions are better expressed
by a Markov network rather than a Bayesian network, and vice versa. For a com-
prehensive treatment of graphical models see, for example, (Lauritzen, 1996; Pearl,
1988; Koller and Friedman, 2009).

8.2 Markov Networks
We now introduce undirected graphical models called Markov networks, starting

with the most commonly used class of those models that factorize according to the
graph cliques1:

Definition 10. A Markov network, also called a Markov random field (MRF),
is an undirected graphical model (X, p(X), G) representing a joint probability

1Note that a more general definition of Markov networks stated in terms of the network’s Markov
properties is discussed in section 8.2.1 below (including relatively rare cases of distributions that do
not factorize). However, establishing these properties for an arbitrary probability distribution is not al-
ways easy and/or practical. Also, as shown in the next section, the factorization property stated here
implies these Markov properties; furthermore, factorization property is equivalent to Markov properties
(see Hammersley-Clifford theorem, section 8.2.1) when the probability density is strictly positive (i.e.,
there are no zero-probability states) – which covers most of the typical real-life applications.
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distribution that factorizes as follows:

p(x) =
1

Z

∏

C∈Cliques
φC(XC), (8.1)

where Cliques is the set of all maximal cliques in G, φC(XC ) are nonnegative
potential functions defined over the subsets of the variables corresponding to each
clique, andZ =

∑
x

∏
C∈Cliques φC(XC) is the normalization constant, also called

the partition function.

Given a distribution factorized according to the graph G as stated in eq. 8.1, the
graph satisfies the following three Markov properties: pairwise Markov property (any
two non-adjacent variables are conditionally independent given all other variables),
local Markov property (a variable is conditionally independent of all other variables
given its neighbors), and global Markov property (any two subsets of variables are
conditionally independent given a separating subset); these Markov properties are
formally defined in section 8.2.1 below.

8.2.1 Markov Network Properties: A Closer Look

We will now present a more general definition of a Markov network stated in
terms of the graph properties, and discuss the relationship between Markov prop-
erties and the factorization property introduced in the previous section. Note that
the material of this section, provided for the completeness sake, is not necessary for
understanding the remainder of this chapter, and thus can be skipped if needed.

Most generally, a Markov network is defined as an undirected graphical model
(X, p(X), G), where the undirected graph G satisfies the global Markov property
(called (G) property), stating that any two subsets of variables Y ⊂ X and Z ⊂ X
are independent given the third subset S ⊂ X, if S separates Y and Z in G, i.e., any
path from a node in Y to a node in Z contains a node from S:

(G) ∀S,Y,Z ⊂ V, S separatesY and Z⇒ XY ⊥⊥ XZ|XS, (8.2)

where XA ⊆ X denotes a subset of variables corresponding to a subset of nodes
A ⊆ V.

An undirected graph satisfying the property (G) is also called an independence
map, or I-map, of the distribution p(X). Obviously, a complete graph is a trivial
I-map for any distribution. Thus, a Markov network is often defined as a minimal
I-map (see, e.g., (Pearl, 1988)), i.e. no edge can be removed from it without violating
its I-map property. Note, however, that, given a (minimal) I-map, the reverse of the
above condition in eq. 8.2:

D-map : ∀S,Y,ZXY ⊥⊥ XZ|XS ⇒⊂ V, S separatesY and Z, (8.3)

does not necessarily hold, i.e. there are some sets of independence relations implied
by a probability distribution that may not be represented by an I-map. In case when
condition 8.3 holds, the graph is called a dependency map, or D-map. A graph is
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called called a perfect map, or P-map of a distribution P (X), if it is both an I-map
and D-map of that distribution.

There are also two other commonly used Markov properties that relate graph
constraints and statistical independencies. The local Markov property (called (L)
property) implies that a variable Xi is conditionally independent of the rest of the
variables given its neighbors Ne(i) in G:

(L) : Xi ⊥⊥ XV/{i∪Ne(i)}|XNe(i), (8.4)

while the pairwise Markov property (called (P ) property) states that the lack of
edge (i, j) implies conditional independence betweenXi andXj given the remaining
variables (Lauritzen, 1996):

(P ) : {i, j} /∈ E ⇒ Xi ⊥⊥ Xj |XV/{i,j}. (8.5)

In general, the three Markov properties defined above do not necessarily coincide
(see (Lauritzen, 1996) for examples); moreover, it is easy to show that

(G)⇒ (L)⇒ (P ). (8.6)

However, all three Markov properties become equivalent if the probability measure
is strictly positive (Pearl, 1988; Lauritzen, 1996), i.e., if there are no zero-probability
states (p(x) > 0 for all x). This equivalence follows from the result by (Pearl and
Paz, 1987), and is discussed in various textbooks (Lauritzen, 1996; Pearl, 1988; Cow-
ell et al., 1999).

The strict positivity condition is frequently satisfied in practice, and is also impor-
tant for establishing a link between the qualitative part of a probability distribution,
i.e. its graphical structure (independence relations), and its quantitative part, i.e. pa-
rameters (state probabilities). In order to make Markov networks useful, we need a
compact way of specifying the state probabilities over large number of variables. Fac-
torization according to the graph structure provides such compact representation. We
say that the probability measure satisfies the factorization property, or (F) property,
with respect to a graph G, if

p(x) =
1

Z

∏

C∈Cliques
φC(XC), (8.7)

where Cliques is the set of all maximal cliques in G, φC(XC) are the nonnega-
tive potential functions defined over the subsets of the variables corresponding to
each clique, and Z =

∑
x

∏
C∈Cliques φC(XC) is the normalization constant, also

called the partition function. A commonly considered special case of Markov net-
works is the pairwise Markov network, where the potential functions are defined
over the pairs of nodes connected by an edge. Thus, in a pairwise Markov network,
a potential function over the clique L, B, and D would factorize as φ(L,B,D) =
φ1(L,B)φ1(B,D)φ1(L,D).

In general, the factorization property implies the Markov properties.
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Theorem 8.1. (Lauritzen, 1996) For any undirected graph G and any probability
measure on p(X),

(F )⇒ (G)⇒ (L)⇒ (P ). (8.8)

However, the factorization property and the Markov properties become equiva-
lent in cases of strictly positive p(X). A strictly positive probability measure that
factorizes according to a graph G as specified in eq. 8.7 is also called a Gibbs ran-
dom field (GRF) (the name has roots in statistical physics). The following key result
establishes the equivalence between MRFs and GRFs for strictly positive p(X):

Theorem 8.2. (Hammersley and Clifford, 1971) A strictly positive probability mea-
sure p(X) factorizes over a graphG if and only if it satisfies Markov properties with
respect to G:

(F )⇔ (G)⇔ (L)⇔ (P ), (8.9)

i.e., p(X) > 0 is an MRF if and only if it is a GRF.

This result was first proved in (Hammersley and Clifford, 1971) for discrete-
valued random variables. More recent and simpler proofs are also given in (Grim-
mett, 1973; Preston, 1973; Sherman, 1973; Besag, 1974; Moussouris, 1974; Kinder-
mann and Snell, 1980; Lauritzen, 1996). The idea is to use the Möbius inversion
in order to show (P ) ⇒ (F ). Note that the strict positivity condition is essential:
(Moussouris, 1974) provides an example of a four-node Markov network (a “square”,
i.e. a four-cycle without a chord) where the global Markov property (G) does not im-
ply the factorization property when positivity assumption is violated.

Finally, we would like to mention that the definition of a Markov network can
vary from one publication to another: some include strict positivity as a necessary
part of the definition; some define a Markov network as a nonnegative distribution
that factorizes, and then relate it to Markov properties under positivity conditions;
some use the property (P) as a definition of a Markov network. Since the positivity
assumptions is practically always made in the Markov network literature, it does not
matter which definition was used in the beginning. Also, a Markov network is often
defined as an I-map (i.e., satisfying the global Markov property), but the minimal-
ity condition (minimal I-map) is not always mentioned explicitly. In this book, we
defined a Markov network as a minimal I-map, following the definition of (Pearl,
1988).

8.2.2 Gaussian MRFs
An important particular type of MRFs is a Gaussian MRF (GMRF), i.e. an MRF

encoding multivariate Gaussian distributions. Multivariate Gaussian distributions are
often used for modeling continuous variables in practical applications, due to their
well-understood mathematical properties that lead to simpler theoretical analysis and
to computationally efficient learning algorithms.
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Recall that a multivariate Gaussian density over a set of random variables X is
defined as

p(x) = (2π)−p/2 det(Σ)−
1
2 e−

1
2 (x−μ)TΣ−1(x−μ), (8.10)

where μ is the mean and Σ is the covariance matrix of the distribution, respectively.
Since det(Σ)−1 = det(Σ−1), we can rewrite 8.10, denoting byC = Σ−1 the inverse
covariance matrix, also known as the precision matrix, or the concentration matrix:

p(x) = (2π)−p/2 det(C)
1
2 e−

1
2 (x−μ)TC(x−μ). (8.11)

As it is shown in (Lauritzen, 1996), a pair of Gaussian variables Xi and Xj is con-
ditionally independent given the rest of the variables if and only if the corresponding
entries in C are zero, i.e. if and only if cij = cji = 0. Thus, missing edges in a
Gaussian MRF imply zero entries in C. The reverse is also true, i.e. cij = 0 im-
plies missing edges between Xi andXj in the Gaussian MRF, although this may not
be true for MRFs in general. Therefore, learning the structure of a Gaussian MRF
model is equivalent to identifying zero entries in the corresponding concentration
matrix, and will be the primary focus of section 8.4.

8.3 Learning and Inference in Markov Networks
Two main question arise in the context of probabilistic graphical models:

• How do we construct such models?

• How do we use such models?

The first question typically relates to learning, or estimation, of a graphical model
from data, especially when the number of variables is large, e.g., on the order of
hundreds or thousands, which is typical in modern applications such as biological
or social networks. In such applications, constructing a graphical model manually,
using only a domain expert knowledge, may not feasible, especially when the domain
knowledge is limited and the goal is to actually gain novel insights from the data.

The second question relates to making probabilistic inferences based on a graph-
ical model. While the main focus of this chapter is on learning graphical models, we
will briefly discuss some inference problems later in this section, illustrating success-
ful use of Markov networks in practical applications.

8.3.1 Learning

The problem of learning probabilistic graphical models has a long and rich his-
tory in statistics and machine learning (see the Bibliographic References at the end
of this chapter). This problem involves learning the structure of a graphical model,
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i.e. model selection, and learning the parameters of the joint probability distribution,
i.e. parameter estimation, which can be performed either after or during the structure
learning step, depending on the method used. A commonly used approach to graph-
ical model learning is regularized likelihood maximization, where the regularization
penalizes the model complexity in some way. Traditional model selection criteria,
such as AIC, BIC/MDL, and similar ones, use the penalty proportional to the num-
ber of model parameters, i.e. the l0-norm of the parameter vector. Since finding the
simplest (minimal l0-norm) model that fits the data well is an NP-hard problem, ap-
proximate approaches such as greedy optimization were typically used in the past
(Heckerman, 1995).

An alternative approach that became extremely popular in the past few years is
to use instead a tractable relaxation of the above optimization problem. Similarly
to sparse regression, the intractable l0-norm optimization is replaced by its convex
l1-relaxation (Meinshausen and Bühlmann, 2006; Wainwright et al., 2007; Yuan and
Lin, 2007; Banerjee et al., 2008; Friedman et al., 2007b). We will discuss these types
of approaches to both continuous and discrete Markov networks later in this chapter.

8.3.2 Inference

Once a probabilistic graphical model is constructed, it can be used to make prob-
abilistic inferences about the variables of interest, such as finding the probability of
some unobserved variable(s) given the observed ones (e.g., is a certain gene likely
to be expressed given the expressions of some other genes), or predicting the most
likely state in classification problems (e.g., discriminating between healthy and sick
subjects from brain imaging data).

Formally, let Z ⊂ X be a subset of observed random variables that are assigned
the values Z = z, and let Y ⊆ X − Z be a set of unobserved variables of interest.
Then the probabilistic inference task is to find the posterior probabilityP (Y|Z = z).

Probabilistic inference can be used for predicting the unobserved response vari-
able (or class label) Y given the set of observed features Z, in a machine-learning
setting. Given a training dataset consisting of training samples, i.e. assignments to
both the features and the response variable, we can learn a probabilistic graphical
model; then, given a test sample consisting of a feature assignment, we use proba-
bilistic inference to predict an unobserved response, or class label.

For example, in a particular case of the classification problem, Y ∈ X is a dis-
crete variable (often binary). The probabilistic classification task is a decision prob-
lem, which involves computingP (Y |Z = z) and selecting the most likely class label
y∗ = argmaxy P (Y = y|Z = z). Using the Bayes rule, we get

P (Y = y|Z = z) =
P (Z = z|Y = y)P (Y = y)

P (Z = z)
(8.12)

for each assignment Y = y. Since the denominator does not depend on Y , we only
need to compute

y∗ = argmax
y

P (Z = z|Y = y)P (Y = y). (8.13)
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Thus, given the training data, we can learn the models P (Z = z|Y = y)P (Y = y),
e.g., Markov networks over the set of features Z, separately for each class label
Y = y, and then, given an unlabeled test sample, assign the most likely class using
eq. 8.13.

8.3.3 Example: Neuroimaging Applications

Let us consider an example of using Markov networks for predicting mental
states of a person based on brain imaging data, such as functional MRI (fMRI). The
dataset, first presented in (Mitchell et al., 2004), consists of a series of trials in which
the subject was shown either a picture or a sentence. A subset of 1700 to 2200 voxels,
dependent on a particular subject, was extracted based on the prior knowledge about
the brain areas potentially relevant to the task. The voxels correspond to the features:
each feature is the voxel signal averaged over 6 scans taken while a subject is pre-
sented with a particular stimulus, such as a picture or a sentence. The data contain 40
samples, where half of the samples correspond to the picture stimulus (+1) and the
remaining half correspond to the sentence stimulus (-1).

A successful application of a sparse Markov network classifier to this dataset
was described in (Scheinberg and Rish, 2010). For each class Y = {−1, 1}, a
sparse Gaussian Markov network model was estimated from data using (see the next
section for details); this provided an estimate of the Gaussian conditional density
p(x|y), where x is the feature (voxel) vector; on the test data, the most-likely class
label argmaxy p(x|y)P (y) was selected for each unlabeled test sample. Figure 8.1
presents the classification results for three different subjects, and for the increas-
ing number of top-ranked voxels included in the model, where the ranking used
the p-value in a two-sample t-test performed for each voxel (i.e., lower p-value re-
flects higher discriminative ability of a voxel and thus corresponds to a higher rank).
Each point on the graph represents an average classification error over 40 samples
when using leave-one-out cross-validation. A Markov network classifier is based on
sparse Gaussian MRF models learned by an algorithm SINCO described later in
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FIGURE 8.1: Using a sparse Gaussian Markov network classifier to predict cogni-
tive states of a subject from fMRI data, such as reading a sentence versus viewing a
picture.
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this chapter. We see that the Markov network classifier yields quite accurate pre-
dictions for this task, achieving just 5% misclassification error, and is comparable
to, and frequently better than, the state-of-the-art support-vector machine (SVM)
classifier.

Another successful application of Markov network classifiers to mental state pre-
diction was described in (Cecchi et al., 2009; Rish et al., 2013). The objective of that
work was to discover predictive features (statistical biomarkers) and build a predic-
tive statistical model of schizophrenia, a complex psychiatric disorder that has eluded
a characterization in terms of local abnormalities of brain activity, and is hypothe-
sized to affect the collective, “emergent” working of the brain. The dataset consisted
of fMRI scans collected for schizophrenic and healthy subjects performing a simple
auditory task in the scanner. As it was demonstrated in (Cecchi et al., 2009; Rish
et al., 2013), topological features of a brain’s functional networks, obtained from
thresholded correlation matrices over the whole brain, contain a significant amount
of information, allowing for accurate discrimination between the two groups of sub-
jects. A functional network is a graph where the nodes correspond to voxels, and a
link exists between a pair of nodes if their BOLD (blood-oxygenation-level depen-
dent) signals are highly correlated (either positively or negatively), i.e., the absolute
value of their correlation exceeds a given threshold ε. (In other words, the adjacency
matrix of a functional network is simply the correlation matrix over the set of vox-
els, where the entries with absolute values exceeding ε are replaced by 1s and the
others are replaced by 0s. Note that the functional network can be very different
from the corresponding Markov network, since the latter reflects the sparsity pattern
of the inverse covariance matrix.) In (Cecchi et al., 2009; Rish et al., 2013), voxel
degrees in the functional network were shown to be highly predictive features, al-
lowing for 86% accurate classification between schizophrenic and healthy subjects,
when using leave-one-subject-out cross-validation on 44 samples, 2 samples (exper-
iment runs) per subject, where half of the subjects where schizophrenic patients.
Figure 8.2b demonstrates that the Gaussian Markov network (MRF) classifier was
capable of achieving this accuracy only with a few hundreds of most-discriminative
voxels, where two-sample t-test was used to rank voxels by their discriminative abil-
ity; Figure 8.2a shows the location of the most-discriminative voxels (about 1000
of them) that survived the False-Discovery Rate (FDR) correction for multiple com-
parison, a necessary step to rule out spurious results when performing hypothesis
testing on more than 50,000 voxels. Gaussian MRF classifier significantly outper-
formed Gaussian Naive Bayes and linear SVM, apparently capturing interactions
among the variables (voxel degrees) that turned out to be discriminative between the
two groups.

Sparse Markov network models were also applied recently to the analysis of sev-
eral other brain disorders, such as Alzheimer’s disease (Huang et al., 2009) and
drug addiction (Honorio et al., 2009, 2012). These studies allowed to identify cer-
tain abnormal changes in the network structures associated with the corresponding
diseases. For example, (Honorio et al., 2012) further improves upon the standard
sparse Markov network formulation by allowing node selection, besides the edge se-
lection. This is achieved via sparse group-Lasso type of regularization similar to
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FIGURE 8.2 (See color insert): (a) FDR-corrected 2-sample t-test results for (nor-
malized) degree maps, where the null hypothesis at each voxel assumes no difference
between the schizophrenic vs. normal groups. Red/yellow denotes the areas of low
p-values passing FDR correction at α = 0.05 level (i.e., 5% false-positive rate).
Note that the mean (normalized) degree at those voxels was always (significantly)
higher for normals than for schizophrenics. (b) Gaussian MRF classifier predicts
schizophrenia with 86% accuracy using just 100 top-ranked (most-discriminative)
features, such as voxel degrees in a functional network.

(Friedman et al., 2010) (i.e., combining group-Lasso penalty with the basic l1-
penalty); the groups here correspond to sets of edges adjacent to the same variable,
thus setting all of them to zero as a group amounts to elimination of the node from
the graph. This can improve the interpretability of the Markov network dramaticaly,
especially in high-dimensional datasets where the number of nodes is on the order of
thousands. For example, Figure 8.3, reproduced here from (Honorio et al., 2012),
demonstrates the advantages of the sparse-group (variable-selection) approach to
learning of sparse Markov networks versus the standard (edge-sparse) formulation
outlined in the next section. Figure 8.3 shows the network structures learned for
cocaine-addicted vs healthy control subjects, comparing the two methods. The dis-
connected variables are not shown. The variable-selection sparse Markov network
approach yields much fewer connected variables but a higher log-likelihood than
graphical lasso, as reported in (Honorio et al., 2012), which suggests that the dis-
carded edges from the disconnected nodes are not important for accurate modeling
of this dataset. Moreover, removal of a large number of nuisance variables (voxels)
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FIGURE 8.3 (See color insert): Structures learned for cocaine addicted
(left) and control subjects (right), for sparse Markov network learn-
ing method with variable-selection via �1,2 method (top), and without
variable-selection, i.e., standard graphical lasso approach (bottom). Positive
interactions are shown in blue, negative interactions are shown in red. Notice that
structures on top are much sparser (density 0.0016) than the ones on the bottom
(density 0.023) where the number of edges in a complete graph is ≈378,000.

results into a much more interpretable model, clearly demonstrating brain areas in-
volved in structural model differences that discriminate cocaine addicts from healthy
control subjects. Note that, as shown at the bottom of Figure 8.3, the standard ap-
proach to sparse Markov network learning, such as the glasso algorithm described
later in section 8.4.2, connects most of the brain voxels in both populations, making
it practically impossible to detect any network differences between the two groups
of subjects. The group-penalty approach produces much more “localized” networks
(top of Figure 8.3) that involve a relatively small number of brain areas: cocaine ad-
dicts show increased interactions between the visual cortex (back of the brain, on the
left here) and the prefrontal cortex (front of the brain image, on the right), while at
the same time decreased density of interactions between the visual cortex and other
brain areas (more clearly present in healthy control subjects). The alteration in this
pathway in the addict group is highly significant from a neuroscientific perspective.
First, the trigger for reward was a visual stimulus. Abnormalities in the visual cortex
were reported in Lee et al. (2003) when comparing cocaine abusers to control sub-
jects. Second, the prefrontal cortex is involved in higher-order cognitive functions
such as decision making and reward processing. Abnormal monetary processing in
the prefrontal cortex was reported in Goldstein et al. (2009) when comparing co-
caine addicted individuals to controls. Although a more careful interpretation of the
observed results remains to be done in the near future, these results are encouraging
and lend themselves to specific neuroscientific hypothesis testing.
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8.4 Learning Sparse Gaussian MRFs
We will now discuss in detail the problem of learning sparse Gaussian MRFs, an

important subclass of MRFs that is widely used in practice and lends itself to efficient
optimization approaches. Recall that learning the structure of a Gaussian MRF model
is equivalent to identifying zero entries in the corresponding precision, or inverse co-
variance, matrix (see section 8.2.2). This problem was first introduced by (Dempster,
1972), and is often referred to as the covariance selection problem (Dempster, 1972)
or the model-selection problem in the Gaussian concentration graph model (Cox and
Wermuth, 1996).

We assume the dataset consisting of n independent and identically distributed
(i.i.d.) samples D = {x1,...,xn}, where each sample is a p-dimensional vector – an
assignment to the variables in X. The log-likelihood of such dataset can be written
as:

L(D) =
n

2
det(C)− 1

2

n∑

i=1

(xi − μ)TC(xi − μ) + const, (8.14)

where const is a constant that does not depend on the parameters μ and C. Without
loss of generality, we will further assume that the data are centered, i.e. that μ = 0,
and hence the purpose is to estimate Σ, or its inverse, C. Thus, the second term in
eq. 8.14 can be rewritten as 1

2

∑n
i=1 x

T
i Cxi =

n
2 tr(AC), the likelihood is

L(D) =
n

2
[det(C) − tr(AC)] + const, (8.15)

thus the log-likelihood maximization problem can be now written as

(P1) : max
C
0

det(C)− tr(AC), (8.16)

where A = 1
n

∑n
i=1 x

T
i xi is the empirical covariance matrix, or the maximum-

likelihood estimate of Σ. Note that the C � 0 constraint ensures that C is positive
definite.

The solution to 8.14 is the maximum-likelihood estimator (MLE) Ĉ = A−1,
which appears to be the simplest way to handle the covariance-selection problem.
However, the maximum-likelihood approach has several drawbacks. First, the inverse
of the empirical covariance matrix, A−1, may not even exist when the number of
variables exceeds the number of samples, i.e. p > n. Second, even if A−1 exists
(e.g., for n ≥ p), it does not typically contain any zero elements, even when the
number of samples is quite large2. Therefore, in order to learn the structure of a

2This may appear surprising at first, since A−1 is a consistent maximum-likelihood estimate of the
true inverse-covariance matrix C, i.e. it converges to C with n → ∞. However, consistency means
convergence in probability, which means that, for each cij , and for all ε > 0, limn→∞ Pr

(|aij−cij | ≥
ε
)
= 0, i.e., with high probability, the estimates will be close to the true cij when the number of samples

increases. Still, none of them have to be exact zero if the true cij , even for large n; indeed, this behavior
is observed in various simulated experiments where the number of samples can be increased.
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Gaussian MRF, i.e. to recover zeros of the concentration matrix, one must include an
explicit sparsity-enforcing constraint into the maximum-likelihood formulation.

The sparse inverse covariance selection problem is to find the maximum-
likelihood model with a constraint on the number of parameters (i.e., small l0-norm
of C). In general, this is an intractable combinatorial problem. Early approaches
used greedy forward or backward search that required O(p2) maximum-likelihood-
estimation (MLE) fits for different models in order to add (delete) an edge (Lauritzen,
1996), where p is the number of variables. This approach does not scale well with the
number of variables3; moreover, as it was mentioned above, the existence of MLE
for C is not even guaranteed when the number of variables exceeds the number of
observations (Buhl, 1993).

Recently, however, an alternative approximation approach to the above problem
was suggested in (Yuan and Lin, 2007; Banerjee et al., 2008) that replaces the in-
tractable l0 constraint with its l1-relaxation, known to enforce sparsity, and yields a
convex optimization problem that can be solved efficiently. In the subsequent sec-
tions, we discuss the problem formulation and optimization methods for this prob-
lem.

8.4.1 Sparse Inverse Covariance Selection Problem

Similarly to sparse regression, a common approach to enforcing sparsity in C is
to impose Laplace priors p(Cij) =

λij
2 e

−λij |Cij |, with a common parameter λ > 0,
on the elements of C, which is equivalent to adding the following l1-norm penalty
on the log-likelihood function in eq. 8.15:

Ll1(D) =
n

2
[ln det(C)− tr(AC)]− λ||C||1, (8.17)

where the l1-norm ofC is simply the vector-norm ||C||1 =
∑

i,j |Cij |. Generally, we
assume that λ ≥ 0, where the case of λ = 0 corresponds to the standard maximum-
likelihood formulation. Then the joint log-likelihood maximization problem, first
suggested in (Banerjee et al., 2006), is given by

max
C
0

ln det(C) − tr(AC) − ρ||C||1, (8.18)

where ρ = 2
nλ. Also, a more general assumption can be made about p(C), allow-

ing different elements of the matrix C to have different parameters λij in the cor-
responding Laplace priors. This leads to the following formulation (e.g., in (Duchi
et al., 2008; Scheinberg and Rish, 2010)):

max
C
0

ln det(C)− tr(AC)−
∑

ij

ρij |Cij |, (8.19)

which obviously reduces to the problem in 8.18 when ρij = ρ ∀i, j ∈ {1, ..., p}.
Herein, we will focus on the simpler formulation in the eq. 8.18, although the

3E.g., (Meinshausen and Bühlmann, 2006) reported difficulties when running “the forward selection
MLE for more than thirty nodes in the graph”.
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approaches discussed below can be easily extended to the more general case in eq.
8.19.

For every given ρ > 0, the problem in eq. 8.18 is convex and has a unique so-
lution (Banerjee et al., 2006, 2008). It can be solved in polynomial time by standard
interior point methods (IPMs). For example, (Yuan and Lin, 2007) used the interior
point method for the maxdet problem proposed by (Vandenberghe et al., 1998). How-
ever, the computational complexity of finding a solution within ε from the optimal is
O(p6 log(1/ε)), which becomes infeasible even for medium-sized problems with the
number of variables on the order of hundreds. Moreover, interior point methods do
not typically produce solutions that contain exact zeros, and thus require thresholding
the elements of the matrix, potentially introducing inaccuracies in the zero-pattern
recovery process.

As an alternative to IPMs, various efficient approaches were developed recently
for the problem in eq. 8.18; we will discuss some of those approaches in the next sec-
tion. Many of those approaches (e.g., (Banerjee et al., 2008; Friedman et al., 2007b;
Duchi et al., 2008; Lu, 2009)) are focusing on solving the corresponding dual prob-
lem:

max
W
0

{ln det(W ) : ||W −A||∞ ≤ ρ}, (8.20)

where ||X ||∞ = maxi,j |Xij |. Note that while both primal and dual problems are
convex, the dual is also smooth, unlike the primal. The optimality conditions for
this pair of primal and dual problems imply that Wij − Aij = ρij if Cij > 0 and
Wij −Aij = −ρij if Cij < 0, and that W = C−1, i.e. the solution of the dual gives
an estimate Σ̂ of the covariance matrix, while the primal problem obtains the inverse
covariance estimate Σ̂−1. Note that the constraintW � 0 is enforced implicitly here,
since ln det(W ) = −∞ when W is not positive-definite.

8.4.2 Optimization Approaches
In the past several years, the problem of learning the sparse inverse covari-

ance matrix became a really active area of research that produced a wide variety
of efficient algorithmic approaches, such as methods proposed by (Meinshausen and
Bühlmann, 2006; Banerjee et al., 2006, 2008; Yuan and Lin, 2007; Friedman et al.,
2007b; Rothman et al., 2008; Duchi et al., 2008; Marlin and Murphy, 2009; Schmidt
et al., 2009; Honorio et al., 2009; Lu, 2009; Scheinberg and Rish, 2010; Scheinberg
et al., 2010a), just to name a few. In this section, we will briefly describe some of
those techniques.

8.4.2.1 Neighborhood selection via LASSO

One of the first approaches that applied the l1-relaxation idea to learning zero-
structure of a sparse inverse-covariance matrix was proposed by Meinshausen and
Bühlmann (Meinshausen and Bühlmann, 2006). The idea was simple and elegant: for
each variable Xi, learn its neighborhood (i.e., the nonzeros in the i-th row/column
of the precision matrix) by solving the l1-regularized linear regression (LASSO)
problem with Xi as the target and the remaining variables as the regressors. A link
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between the two variables Xi and Xj is included into the Markov network (i.e., Cij
is nonzero), if the regression coefficient of eitherXi onXj , orXj onXi, is nonzero.
(Alternatively, an AND-rule can be used (Meinshausen and Bühlmann, 2006)). As
shown by (Meinshausen and Bühlmann, 2006), this approach can consistently es-
timate the network structure, i.e., zero-pattern of Σ−1, provided that the sparsity
parameter in the LASSO problems is selected properly, e.g., grows at a particular
rate as p and n grow. This approach is simple and scalable to thousands of variables.
Note, however, that is does not necessarily provide a consistent estimate of the actual
parameters of the precision matrix, and its solutions may violate the symmetry and
positive-definite constraints that the precision matrix must satisfy. As we discuss be-
low, the neighborhood selection approach of (Meinshausen and Bühlmann, 2006) can
be viewed as an approximation of the “exact” l1-regularized maximum-likelihood
problem in eq. 8.18. We will now review several state-of-the-art approaches to the
latter problem.

8.4.2.2 Block-coordinate descent (BCD)

Among the first methods for the l1-regularized likelihood maximization problem
were two block-coordinate descent (BCD) algorithms, COVSEL by (Banerjee et al.,
2006) and glasso by (Friedman et al., 2007b), applied to the dual problem in eq. 8.20.
The idea of the BCD approach is outlined in Figure 8.4. Both BCD methods itera-
tively update one column/row of the matrix W (estimate of the covariance matrix)
at a time, iterating until convergence, where a small enough duality gap is used as a
convergence criterion (Banerjee et al., 2006, 2008):

tr(W−1A)− p+ ρ||W−1||1 ≤ ε. (8.21)

In step 2 of the BCD approach, we use W/i and A/i to denote the matrices ob-
tained by removing the i-th column and the i-th row from the matrices W and A,

Block-Coordinate Descent (BCD)

1. Initialize: W ← A+ ρI

2. For i = 1, ..., p

(a) Solve a box-constrained quadratic program in eq. 8.23:
ŷ = argminy{yTW−1

/i y : ||y −Ai||∞ ≤ ρ}

(b) Update W : replace i-th column by ŷ and i-th row by ŷT

3. end for

4. If convergence achieved, then return W ; otherwise go to step 2.

FIGURE 8.4: Block-coordinate descent approach to solving the dual sparse inverse
covariance problem.
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respectively, while Wi and Ai denote the i-th columns of the corresponding ma-
trices, with the diagonal elements removed. Thus, at each iteration, the empirical
covariance matrix A and the current estimate of W are decomposed as follows:

W =

(
W/i Wi

WT
i wii

)

A =

(
A/i Ai
ATi aii

)

. (8.22)

Assuming that W/i is fixed, step 2 is to solve the optimization problem in eq. 8.20
with respect to the elements of the i-th column/row Wi (without the diagonal ele-
ment). It can be shown that this problem reduces to the following box-constrained
quadratic program:

ŷ = argmin
y
{yTW−1

/i y : ||y − Ai||∞ ≤ ρ}. (8.23)

This subproblem is solved differently by COVSEL (Banerjee et al., 2006) and glasso
(Friedman et al., 2007b). The COVSEL method solves this quadratic program using
an interior-point approach. The overall computational complexity of the resulting
algorithm is O(Kp4), where K is the total number of iterations, each iteration con-
sisting of the full sweep over all columns in step 2. The glasso (Tibshirani, 1996)
approach uses an alternative, and more efficient, way of solving the above quadratic
subproblem. It solves instead the dual of the problem in eq. 8.23:

min
x
xTW/ix−ATi x+ ρ||x||1. (8.24)

The above dual can be rewritten as a LASSO problem, using the notation Q =
(W/i)

1/2 and b = 1
2Q

−1Ai:

min
x
||Qx− b||22 + ρ||x||1. (8.25)

To solve the above LASSO problem, (Tibshirani, 1996) uses an efficient coordinate
descent method suggested in (Friedman et al., 2007a). As a result, glasso is much
faster than COVSEL empirically, and yields the overall (empirical) computational
complexity of approximatelyO(Kp3), as discussed in (Duchi et al., 2008), although
no explicit analysis was provided in the original paper by (Tibshirani, 1996).

Note that glasso clarifies the relationship between the l1-regularized maximum-
likelihood approach and the LASSO-based neighborhood selection approach of
(Meinshausen and Bühlmann, 2006). Indeed, if instead of updating W we always
use the empirical covariance matrix A, then W/i = A/i and problem in 8.25 be-
comes equivalent to the l1-penalized regression of Xi on the remaining variables.
In general, however, W/i 
= A/i, except for the very first iteration. In other words,
iteratively updating W in glasso takes into account the dependencies among the re-
gressors, i.e. solves a sequence of coupled LASSO problems, while the approach of
(Meinshausen and Bühlmann, 2006) treats them as completely independent subprob-
lems. Thus, the method of (Meinshausen and Bühlmann, 2006) can be viewed as an
approximation to the “exact” l1-regularized maximum-likelihood.
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Projected Gradient

1. x← x+ α∇f(x) (step of size α in the direction of gradient)

2. x← ΠS(x) = argminz{||x− z||2 : z ∈ S} (project onto S)

3. If a convergence criterion is satisfied, then exit, otherwise go to step 1.

FIGURE 8.5: Projected gradient approach.

8.4.2.3 Projected gradient approach

In parallel with glasso, an efficient projected gradient (PG) approach was suc-
cessfully applied to the dual problem in 8.20 by several authors (Duchi et al., 2008;
Schmidt et al., 2008). Its time complexity is O(Kp3), i.e. the same order of magni-
tude as for glasso, but empirically it was shown to outperform glasso by the factor
of two (Duchi et al., 2008). The high-level idea of the projected gradient approach is
outlined in Figure 8.5, for a general optimization problem with a convex constraint
set S:

min
x
{f(x) : x ∈ S}. (8.26)

As its name suggests, the projected gradient approach iteratively updates x until con-
vergence, making a step in the gradient direction, and projecting the result onto the
constraint set S at each iteration (Bertsekas, 1976). First-order projected gradient al-
gorithms are typically used in higher-dimensional problems where the second-order
methods become intractable. (Duchi et al., 2008) applies the projected gradient ap-
proach to the dual problem in 8.20, where x = W , f(W ) = − ln det(W ), and
the convex set S is defined by the corresponding box-constraint in 8.20; similarly to
COVSEL and glasso, the duality gap in eq. 8.21 is used as a convergence criterion. In
(Schmidt et al., 2008), a modified version, called spectral projected gradient (SPG),
is applied to the same problem. More recently, an even more efficient version of
the projected gradient approach, called the projected quasi-Newton (PQN) method,
was developed in (Schmidt and Murphy, 2010), and shown to outperform earlier PG
approaches.

In the past couple years, project-gradient methods were considered the fastest
state-of-art techniques available for the sparse inverse-covariance selection problem.
However, most recently, even more efficient techniques were proposed, such as, for
example, the alternating-linearization method (ALM) (Scheinberg et al., 2010a), de-
scribed later in this section.

8.4.2.4 Greedy coordinate ascent on the primal problem

As we discussed above, multiple approaches to the sparse inverse-covariance
selection problem focused on the dual formulation. Alternatively, several methods
have been proposed recently for solving the primal problem directly, such as greedy



Sparse Graphical Models 157

coordinate descent (Scheinberg and Rish, 2010), block coordinate descent ap-
proaches (Sun et al., 2009; Honorio et al., 2009), and alternating linearization method
(Scheinberg et al., 2010a). Herein, we discuss in more detail the method proposed
in (Scheinberg and Rish, 2010), and called SINCO for Sparse INverse COvariance
(Scheinberg and Rish, 2010). (We follow a more concise exposition of this method
presented later in (Scheinberg and Ma, 2011).)

SINCO is a greedy coordinate ascent algorithm that optimizes only one diagonal
or two symmetric off-diagonal elements of C at each iteration, unlike the COVSEL
or glasso, which optimize one row (column) of the dual matrix W . More formally, at
each iteration, the update step for the inverse covariance matrix C can be written as
C + θ(eie

T

j + eje
T

i ), where i and j are the indices of elements being changed, and
θ is the step size. Thus, the objective function of the primal problem in 8.18 can be
written as a function of θ, for a given C and (i, j):

f(θ;C, i, j) = ln det(C + θeie
T

j + θeje
T

i )− tr(A(C + θeie
T

j + θeje
T

i ))−

ρ||C + θeie
T

j + θejei||1. (8.27)

In order to compute this function, (Scheinberg and Rish, 2010) use the following two
properties of the determinant and its inverse: given a p × p matrix X and vectors
u, v ∈ Rp, we have

det(X + uvT ) = det(X)(1 + vTX−1u), and (8.28)
(X + uvT )−1 = X−1 −X−1uvTX−1/(1 + vTX−1u), (8.29)

where the second equation is known as the Sherman-Morrison-Woodbury formula.
At each iteration, SINCO greedily selects a pair (i, j) that yields the best improve-
ment in the objective function and the step size θ. It then replaces the current estimate
of C by C + θ(eie

T

j + eje
T

i ), and updates W = C−1 using the Sherman-Morrison-
Woodbury formula given above. Figure 8.6 presents a high-level overview of the
SINCO method. The key observation is that, given the matrix W = C−1, the exact
line search that optimizes f(θ) along the direction eie

T

j + eje
T

i reduces to a solution
of a quadratic equation, and thus takes a constant number of operations. Moreover,
given the starting objective value, the new function value on each step can be com-
puted in a constant number of steps. Thus, the for-loop over all (i, j) pairs takes
O(p2) time. Updating the dual matrix W = C−1 also takes O(p2) time, as it was
shown in (Scheinberg and Rish, 2010), and thus each iteration takesO(p2) time. The
steps of the SINCO algorithm are well-defined, i.e., the quadratic equation always
yields the maximum of the function f along the chosen direction. The algorithm
converges to the unique optimal solution of 8.18 and, more generally, of the problem
in 8.19, in case of varying sparsity parameters (Scheinberg and Rish, 2010).

One of the main advantages of the SINCO approach is that it naturally pre-
serves the sparsity of the solution and tends to avoid introducing unnecessary (small)
nonzero elements. In practice, this often leads to lower false-positive error rates
when compared to other approaches, such as COVSEL or glasso, while preserv-
ing the same false-negative rates, especially on very sparse problems, as discussed
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SINCO

1. Initialize: C = I, W = I, k = 0

2. Next iteration: k = k + 1, θk = 0, ik = 1, jk = 1, f = f(θk;C, i, j)

3. For i = 1, ..., p, j = 1, ..., p (choose best (i, j))

(a) θij = argmaxθ f(θ), where f(θ) is given in eq. 8.27

(b) If f(θij) > f(θk), then θk = θij , i
k = i, jk = j

end for

4. Update C = C + θeie
T

j + θeje
T

i and W = C−1

5. If f(θk)− f > ε, then go to step 2, otherwise return C and W .

FIGURE 8.6: SINCO - a greedy coordinate ascent approach to the (primal) sparse
inverse covariance problem.

in (Scheinberg and Rish, 2010). Note that, although the current state-of-the-art al-
gorithms for the above problem are converging to the same optimal solution in the
limit, the near-optimal solutions obtained after any fixed number of iterations can
be different structure-wise, even though they reach similar accuracy in the objective
function reconstruction. Indeed, it is well-known that similar likelihoods can be ob-
tained by two distributions with quite different structures due to multiple weak links.
As to the l1-norm regularization, although it often tends to enforce solution sparsity,
it is still only an approximation to l0 (i.e. a sparse solution may have the same l1-
norm as a much denser one). Adding l1-norm penalty is only guaranteed to recover
the “ground-truth” model under certain conditions on the data (that are not always
satisfied in practice) and for certain asymptotic growth regimes of the regulariza-
tion parameter, with growing number of samples n and dimensions p (with unknown
constant). So the optimal solution, as well as near-solutions at given precision, could
possibly include false positives, and one optimization method can potentially choose
sparser near-solutions (at same precision) than another method.

Another advantage of SINCO is that each iteration takes only O(p2) operations,
as opposed to to higher iteration costs of the previous methods. Note, however, that
the overall number of iterations can be potentially higher for SINCO than, say, for
block-coordinate methods updating a column/row at a time. Empirical results pre-
sented in (Scheinberg and Rish, 2010), and reproduced in Figure 8.7, demonstrate
that while glasso is comparable to, or faster than, SINCO for a relatively small num-
ber of variables p, SINCO appears to have much better scaling when p increases
(e.g., gets closer to 1000 variables), and can significantly outperform glasso (which,
in turn, can be orders of magnitude faster than COVSEL). See (Scheinberg and
Rish, 2010) for the details of the experiments. Moreover, SINCO’s greedy approach
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FIGURE 8.7: CPU time comparison between SINCO and glasso on (a) random
networks (n = 500, fixed range of ρ) and (b) scale-free networks that follow power-
law distribution of node degrees (density 21%, n and ρ scaled by the same factor
with p, n = 500 for p = 100).

introduces “important” nonzero elements into the inverse covariance matrix, in a
manner similar to the path-construction process based on sequentially reducing the
value of λ. SINCO can reproduce the regularization path behavior for a fixed (and
sufficiently small) λ, without actually varying its value, but following instead the
greedy solution path, i.e. sequentially introducing nonzero elements in a greedy way.
Thus, SINCO can obtain any desired number of network links directly, without hav-
ing to tune the λ parameter. This behavior is somewhat similar to LARS (Efron et al.,
2004) for Lasso, however, unlike LARS, SINCO updates the coordinates which pro-
vide the best optimal function value improvement, rather than the largest gradient
component.

Finally, while SINCO may not be the fastest method in a sequential setting (in-
deed, methods like the projected gradient of (Duchi et al., 2008) or the smooth op-
timization of (Lu, 2009) outperform glasso, which is comparable to SINCO), it is
important to mention that SINCO lends itself to a straightforward massive paral-
lelization at each iteration, due to the nature of its greedy steps, while none of its
competitors seem to allow such an easy parallelization.

8.4.2.5 Alternating linearization method (ALM)

As we discussed above, coordinate-descent (CD) and block-coordinate descent
(BCD) approaches are generally outperformed by gradient-based methods of (Duchi
et al., 2008) and (Schmidt and Murphy, 2010). Another recently proposed gradient-
based method for solving the primal problem in eq. 8.18, called alternating linear
minimization (ALM) (Scheinberg et al., 2010a)4, was shown to further outperform the
projected-gradient methods of (Duchi et al., 2008) and (Schmidt and Murphy, 2010),
and other state-of-the-art methods such as the smooth optimization approach of (Lu,
2009). Moreover, iteration complexity results are available for ALM, while no such
results were provided for CD, BCDs and projected gradient methods; as shown in

4Not to be confused with ALM standing for Augmented Lagrange Multipliers method.
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(Scheinberg et al., 2010a), ALM obtains an ε-optimal solution (i.e. a solution whose
objective function is within ε from the optimum) in O(1/ε) iterations.

We now briefly discuss the main idea of the ALM method, which exploits the
additive structure of the objective function in eq. 8.18. More specifically, given an
optimization problem

min
x
f(x) + g(x), (8.30)

where f(x) and g(x) are convex functions, one can separate these two function by
introducing a new variable y, which yields an equivalent problem:

min
x,y

f(x) + g(y), s.t. x− y = 0. (8.31)

An alternating direction augmented Lagrangian (ADAL) method can be now used
for problem 8.31. The method iteratively updates each variable, x and y, alternating
between the two, using the following update rules:

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 = argminx L(x,y
k;λk)

λk+1
x = λky − (xk+1 − yk)/μ

yk+1 = argminy L(x
k+1,y;λk+1

x )
λk+1
y = λk+1

x − (xk+1 − yk+1)/μ,

(8.32)

where μ is a penalty parameter and L(x,y : λ) is the augmented Lagrangian:

L(x,y;λ) = f(x) + g(x)− λT (x− y) +
1

2μ
||x− y||2. (8.33)

In case of smooth f and g, it can be shown that λk+1
x = ∇f(xk+1) and λk+1

y =

−∇g(yk+1), and thus at each iteration, updating x becomes equivalent to minimiz-
ing the sum of f(x) and an approximation of g(x) at the current yk, where the
approximation is based on linearization of g(x) and adding an “error” (“prox”) term
1
2μ
||x− yk||22. Similarly, updating y is equivalent to minimizing the sum of g(y) and

a linearlization of f(y) at the current point xk+1 plus the corresponding prox term.
Thus, the method is called alternating linearization.

Note that the primal problem in eq. 8.18 has the same decomposable form as
discussed above, i.e. can be written as

min
C
0

f(C) + g(C), (8.34)

where f(C) = − ln det(C) + tr(AC) and g(C) = ρ||C||1. Though these functions
are not smooth, and the positive-definite constraint is imposed on C, a similar alter-
nating linearization method can be derived for this problem, as shown in (Scheinberg
et al., 2010a) (also, see (Scheinberg and Ma, 2011) for details).

8.4.3 Selecting Regularization Parameter

The previous section discussed several recently proposed methods for solving
the sparse inverse-covariance problem. However, it left open an important question
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on how to choose the “right” level of sparsity, i.e. the regularization parameter λ.
Clearly, the accuracy of the network structure reconstruction can be very sensitive to
the choice of the regularization parameter, and it is a general consensus that optimal
selection of λ in practical settings remains an open problem. Several approaches
proposed in the literature include: (1) cross-validation, (2) theoretical derivations for
asymptotic regime, (3) stability-selection (Meinshausen and Bühlmann, 2010), and
(4) Bayesian treatment of the regularization parameter. We will briefly discuss these
approaches, focusing in more detail on the Bayesian method suggested in (Asadi
et al., 2009; Scheinberg et al., 2009).

At first, the standard cross-validation approach looks like the most natural ap-
proach. For each fixed λ, a model is learned on training data, and evaluated on a
separate cross-validation dataset. The value of λ that yields the best likelihood on
this dataset, i.e. best predicts the unseen data, is selected. Note, however, that opti-
mizing the λ parameter for prediction may not necessarily lead to the best structure-
reconstruction accuracy; moreover, it is well-known that probabilistic models hav-
ing quite different graph structures may correspond to very similar distributions, es-
pecially in the presence of multiple “weak”, or “noisy”, edges (see, for example,
(Beygelzimer and Rish, 2002)). Indeed, as it was observed empirically by several
authors, λ selected by cross-validation with respect to likelihood is typically too
small to provide an accurate structure recovery, i.e. it produces unnecessarily dense
networks and thus yields high false-positive error rates. In fact, theoretical analysis
provided by (Meinshausen and Bühlmann, 2006) for the neighborhood selection ap-
proach proves that the cross-validated λ does not lead to consistent model selection,
since it tends to include too many noisy connections between the variables.

An alternative approach is analyze theoretically conditions on the regulariza-
tion parameter that yield accurate structure recovery. However, most of the exist-
ing approaches (see, e.g., (Meinshausen and Bühlmann, 2006; Banerjee et al., 2008;
Ravikumar et al., 2009)) focus on asymptotic regime, suggesting sufficient condi-
tions for the growth rate of λ in order to guarantee a consistent estimate of the net-
work structure as the number of samples n and the number of dimensions p grow. As
noted in (Meinshausen and Bühlmann, 2006), “such asymptotic considerations give
little advice on how to choose a specific penalty parameter for a given problem”.
As a proxy for “best” λ, Meinshausen and Bühlmann (2006) in their neighborhood-
selection approach provide λ that allows a consistent recovery of sparse structure of
the covariance rather than the inverse covariance matrix, i.e. the recovery of marginal
independencies between i-th and j-th variables, rather than conditional independen-
cies given the rest of the variables. A similar approach is used in (Banerjee et al.,
2008) to derive λ for the optimization problem in eq. 8.17. In practice, however, this
may give too high values of λ, i.e. sparsify the structure too much, missing connec-
tions among variables and thus leading to high false-negative rates. We will present
empirical results that confirm this tendency empirically.

A recently proposed stability selection approach of (Meinshausen and Bühlmann,
2010) proposes a method for improving stability of sparse solutions to the choice of
λ parameter in several sparse optimization problems, including both LASSO and
sparse inverse-covariance selection. This approach, similar in spirit to BOLASSO of
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(Bach, 2008a), randomly samples subsets of a given datasets, and solves the sparse
recovery problem on each of them. A variable, such as an element of the inverse
covariance matrix (i.e., a link in the graph), is included in the final model only if it
appears in a sufficiently high fraction of models learned on those data subsets. As
demonstrated by both (Meinshausen and Bühlmann, 2010) and (Bach, 2008a), this
approach eliminates high sensitivity of sparse solutions to the choice of the regu-
larization parameter. However, stability selection is computationally expensive as it
requires to solve the same optimization problem on multiple subsets of the data.

Yet another alternative is to apply a Bayesian approach, treating λ as a random
variable with some prior probability density p(λ). Herein, we focus on a simple
alternating-maximization method of (Asadi et al., 2009) for finding the maximum
a posteriory probability (MAP) estimate of λ and C. As demonstrated empirically in
(Asadi et al., 2009) and subsequently in (Scheinberg et al., 2009, 2010b), this method
tends to produce a more balanced trade-off between false-positive and false-negative
errors, the “overly inclusive” cross-validation parameter and “overly exclusive” the-
oretically derived parameter of (Banerjee et al., 2008). The joint distribution over C,
λ, and X factorizes as follows: p(X, C, λ) = p(X |C)p(C|λ)p(λ), where p(X |C) is
a multivariate Gaussian distribution with zero mean and covarianceC−1, and p(C|λ)
is Laplace prior p(Cij) =

λij
2
e−λij |Cij |, as discussed above. (For simplicity, we will

again assume a common parameter λ > 0 for all elements Cij of C, although the ap-
proach (Asadi et al., 2009) is easily extendable to the general case of varying sparsity
parameters, as shown in (Scheinberg et al., 2009, 2010b)). Then the MAP estimate
of λ and C is given by

max
C
0,λ

ln p(C, λ|X) = max
C
0,λ

ln p(X, C, λ) = max
C
0,λ

ln[p(X |C)p(C|λ)p(λ)].
(8.35)

This results in the following MAP problem, which essentially adds two extra terms
to the earlier formulation given by eq. 8.17:

max
λ,C
0

n

2
[ln det(C)− tr(AC)]− λ||C||1 + p2 ln

λ

2
+ ln p(λ).

In (Asadi et al., 2009; Scheinberg et al., 2009, 2010b), several types of priors on λ
are considered, including exponential, uniform (flat), and truncated Gaussian priors.
The uniform (flat) prior puts equal weight on all values of λ ∈ [0,Λ] (assuming
sufficiently high Λ), thus the last term ln p(λ) in eq. 8.36 is effectively ignored. The
exponential prior assumes that p(λ) = be−bλ, yielding

max
λ,C
0

n

2
[ln det(C)− tr(AC)] + p2 ln

λ

2
− λ||C||1 − bλ. (8.36)

Rather than taking a more expensive, fully Bayesian approach here and integrating
out C in order to obtain the estimate of b, (Asadi et al., 2009) use a somewhat ad-hoc
approximate estimate b = ||A−1

r ||1/(p2 − 1), where Ar = A + εI is the empirical
covariance matrix (slightly regularized with small ε = 10−3 on the diagonal to ob-
tain an invertible matrix whenA is not invertible). The intuition behind such estimate
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Alternating Maximization Algorithm for Regularization Parameter Selection

1. Initialize λ1

2. Find C(λk), φ(λk) and ψ(λk)

3. If |p2/λ− ‖C(λk)‖1 − b| < ε, go to step 6

4. λk+1 = p2/(‖C(λk)‖1 + b)

5. Find C(λk+1) and ψ(λk+1)
if ψ(λk+1) > ψ(λk) go to step 4
else λk+1 = (λk + λk+1)/2, go to step 5

6. Return λk and C(λk)

FIGURE 8.8: Alternating maximization scheme for simultaneous selection of the
regularization parameter λ and the inverse-covariance matrix C.

is that b = 1/E(λ), and we set E(λ) to be the solution of the above optimization
problem with C fixed to its empirical estimate A−1

r . Also, (Scheinberg et al., 2009,
2010b) consider the unit-variance Gaussian prior, truncated to exclude negative val-
ues of λ.

We will consider here the exponential prior and the corresponding optimization
problem in eq. 8.36. The objective function is concave in C for any fixed λ but is
not concave in C and λ jointly. Thus, we are looking for a local optimum. An alter-
nating maximization approach proposed in (Asadi et al., 2009) solves the following
problem, for each given fixed value of λ:

φ(λ) = max
C

n

2
ln det(C) − n

2
tr(AC) − λ‖C‖1 (8.37)

Given λ, this problem reduces to the standard sparse inverse-covariance problem,
and thus has a unique maximizer C(λ) (Banerjee et al., 2008). We now consider the
following optimization problem:

max
λ

ψ(λ) = max
λ

φ(λ) + p2 lnλ− bλ. (8.38)

Clearly, the optimal solution to this problem is also optimal for problem 8.36. Figure
8.8 shows a simple optimization scheme for problem 8.38 suggested in (Asadi et al.,
2009). This scheme uses line search along the direction of the derivatives and will
converge to the local maximum (if one exists) as long as some sufficient increase
condition (such as Armijo rule Nocedal and Wright (2006)) is applied in Step 4. Step
1 can be performed by any convex optimization method designed to solve problem
8.37.

Empirical evaluation presented in (Asadi et al., 2009; Scheinberg et al., 2009,
2010b) demonstrated advantages of the above MAP approach for λ selection over
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FIGURE 8.9: MAP approach versus cross-validated and theoretical methods for reg-
ularization parameter selection, on sparse random networks (4% density).

both cross-validation-based and theoretically derived λ. (In all experiments, glasso
(Friedman et al., 2007b) method was used to solve the sparse inverse-covariance
selection subproblem in the alternating minimization scheme). Figure 8.9 repro-
duces results on randomly generated synthetic problems. The “ground-truth” random
inverse-covariance matrices of two levels of sparsity were used: a very sparse one,
with only 4% (off-diagonal) nonzero elements, and a relatively dense one, with 52%
(off-diagonal) nonzero elements. n = 30, 50, 500, and1000 instances were sampled
from the corresponding multivariate Gaussian distribution over p = 100 variables.
The structure-learning performance of the Bayesian λ was compared against the two
other alternatives: (1) λ selected by cross-validation and (2) theoretically derived λ
from (Banerjee et al., 2008). Figure 8.9 shows the results on a sparse random net-
work (4% link density); very similar results were also obtained for dense (52% link
density) random matrices. We can clearly see that: (1) cross-validated λ (green) over-
fits dramatically, producing an almost complete matrix (almost 100% false-positive
rate); (2) theoretically derived λ Banerjee et al. (2008) (shown in black) is too
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conservative: it misses almost all edges (has a very high false-negative rate); (3)
prior-based approaches - flat prior (red) and exponential prior (blue) yield much more
balanced trade-off between the two typos of errors.

8.5 Summary and Bibliographical Notes
Probabilistic graphical models are a popular research topic in statistics and ma-

chine learning, with a long history and extensive literature. There are many books
providing comprehensive coverage of different aspects of graphical models, such as
(Pearl, 1988; Whittaker, 1990; Lauritzen, 1996; Cox and Wermuth, 1996; Cowell
et al., 1999; Pearl, 2000; Edwards, 2000; Jordan, 2000; Koller and Friedman, 2009).
This chapter only covers some aspects of undirected graphical models, focusing on
recent advances in learning Gaussian MRFs with sparse structure, while several other
importnant recent developments in sparse graphical model learning remain out of the
scope of this book. For example, sparse learning with discrete-valued MRFs was ad-
dressed in (Wainwright et al., 2007) by extending the LASSO-based neighborhood-
selection approach of (Meinshausen and Bühlmann, 2006) to binary variables via
sparse logistic regression. Asymptotic consistency analysis of sparse Gaussian MRFs
was given in (Ravikumar et al., 2009). (Lee et al., 2006b) learn MRFs using clique
selection heuristic and approximate inference. Learning sparse directed networks,
such as Bayesian networks, for both discrete and continuous variables, is addressed,
for example, in (Schmidt et al., 2007; Huang et al., 2013; Xiang and Kim, 2013).
(Lin et al., 2009) propose an alternative approach based on ensemble-of-trees that
is shown to sometimes outperform l1-regularization approaches of (Banerjee et al.,
2008) and (Wainwright et al., 2007), (Schmidt and Murphy, 2010) propose a method
for learning log-linear models with higher-order (beyond pairwise) potentials; group-
l1 regularization with overlapping groups is used to enforce hierarchical structure
over potentials. A recent doctoral thesis by (Schmidt, 2010) discusses several state-
of-art optimization approaches to learning both directed and undirected sparse graph-
ical models. Finally, various algorithms for the sparse inverse-covariance estimation
problem were proposed recently, including some of the methods discussed above,
such as SINCO, a greedy coordinate-descent approach of (Scheinberg and Rish,
2010), alternating linearization method (ALM) (Scheinberg et al., 2010a), projected
gradient (Duchi et al., 2008), block coordinate descent approaches (Sun et al., 2009;
Honorio et al., 2009), variable-selection (group-sparsity) GMRF learning method
(Honorio et al., 2012), as well as multiple other techniques (Marlin and Murphy,
2009; Schmidt et al., 2009; Lu, 2009; Yuan, 2010; Cai et al., 2011; Olsen et al., 2012;
Kambadur and Lozano, 2013; Honorio and Jaakkola, 2013; Hsieh et al., 2013).





Chapter 9
Sparse Matrix Factorization:
Dictionary Learning and Beyond

9.1 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
9.1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.1.2 Algorithms for Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . . 170

9.2 Sparse PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2.2 Sparse PCA: Synthesis View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.2.3 Sparse PCA: Analysis View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.3 Sparse NMF for Blind Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.4 Summary and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

In this chapter, we will focus on sparsity in the context of matrix factorization, and
consider an approximation Y ≈ AX of an observed matrix Y by a product of two
unobserved matrices, A and X. Common data-analysis methods such as Principal
Component Analysis (PCA) and similar techniques can be formulated as matrix fac-
torization problems. This formulation is also central to a highly popular and promis-
ing research direction in signal processing and statistics known as dictionary learn-
ing, or sparse coding (Olshausen and Field, 1996), discussed in more detail below.

Note that the standard sparse signal recovery setting considered so far assumes
that the design matrix A is known in advance. For example, Fourier transform ma-
trices and random matrices were discussed earlier in this book as two “classical”
examples of dictionaries that generated a wealth of theoretical results on sparse re-
covery. Various other dictionaries, such as wavelets, curvelets, contourlets, and other
transforms, were also proposed recently, especially in the context of image process-
ing (Elad, 2010).

However, a fixed dictionary may not necessarily be the best match for a particular
type of signals, since a given basis (columns of A, or dictionary elements) may not
yield a sufficiently sparse representation of such signals. Thus, a promising alterna-
tive approach that became popular in past years is to learn a dictionary that allows
for a sparse representation, given a training set of observed signal samples. Figure
9.1 illustrates this approach: given a data matrix Y, where each column represents an
observed signal (sample), we want to find the design matrix, or dictionary, A, as well
as a sparse representation of each observed signal in that dictionary, corresponding
to the sparse columns of the matrix X.
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FIGURE 9.1: Dictionary learning, or sparse coding, as matrix factorization; note
that the “code” matrix X is assumed to be sparse.

An alternative approach in sparse matrix factorization is to search for sparse dic-
tionary elements (columns of A) rather than for sparse representations (columns of
X). The motivation for such formulation, used in sparse PCA methods reviewed
later in this chapter, is to improve the interpretability of dictionary elements, or com-
ponents, since sparse components will help to identify small subsets of the “most
important” input variables.

In the next section, we discuss dictionary learning and present several commonly
used algorithms for this problem, using both l0- and l1-norm constraints to enforce
sparsity. Next, we review the sparse PCA problem and methods. We also discuss
other examples of sparse matrix factorizations, such as the sparse Nonnegative Ma-
trix Factorization (NMF) approach of (Hoyer, 2004), in the context of the blind-
source separation problem and its applications to the computer network diagnosis
(Chandalia and Rish, 2007).

9.1 Dictionary Learning
The problem of dictionary learning, also known as sparse coding, was initially

studied by (Olshausen and Field, 1996, 1997) in the context of neuroscience. Dic-
tionary learning was proposed as a model for the evolutionary process that gave
rise to the existing population of simple cells in the mammalian visual cortex. The
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approach of (Olshausen and Field, 1996) was further developed and extended by mul-
tiple researchers, including (Lewicki and Olshausen, 1999; Lewicki and Sejnowski,
2000; Engan et al., 1999; Kreutz-Delgado et al., 2003; Lesage et al., 2005; Elad and
Aharon, 2006; Aharon et al., 2006a,b; Yaghoobi et al., 2009; Skretting and Engan,
2010; Mairal et al., 2009, 2010; Tosic and Frossard, 2011), and many others. Various
algorithms for dictionary learning have been proposed, including K-SVD of (Aharon
et al., 2006a), the Method of Optimal Directions (MOD) of (Engan et al., 1999), the
online dictionary learning approach of (Mairal et al., 2009, 2010), to name a few.
In the past several years, dictionary learning and sparse coding became popular re-
search topics in the machine-learning community, introducing novel methods and
applications of this framework (Lee et al., 2006a; Gregor and LeCun, 2010).

9.1.1 Problem Formulation

We now formally state the dictionary learning, or sparse coding, problem. Let Y
be an m×N matrix, where m < N , and the i-th column, or sample, yi, is a vector
of observations obtained using linear projections specified by some unknownm× n
matrix A, of the corresponding sparse column-vector xi of the (unobserved) n×N
matrix X. For example, if the columns of Y are (vectorized) images, such as fMRI
scans of a brain, then the columns of A are dictionary elements, or atoms (i.e., some
“elementary” images, for example, corresponding to particular brain areas known to
be activated by specific tasks and/or stimuli), and the columns of X correspond to
sparse codes needed to represent each image using the dictionary (i.e., one can hy-
pothesize that the brain activation observed in a given fMRI scan can be represented
as a weighted linear superposition of a relatively small number of active brain areas,
out of a potentially large number of such areas).

The ultimate sparse-coding objective is to find both A and X that yield the spars-
est representation of the data Y, subject to some acceptable approximation error ε:

(Dε
0) : min

A,X

N∑

i=1

||xi||0 subject to ||Y −AX||2 ≤ ε. (9.1)

Note that this problem formulation looks very similar to the classical sparse sig-
nal recovery problem P ε0 , only with two modifications: (1) dictionary A is now in-
cluded as an unknown variable that we must optimize over, and (2) there are M ,
rather than just one, observed samples and the corresponding sparse signals, or sparse
codes. Similarly to the sparse signal recovery problem, the question is whether the
above problem can have a unique solution, assuming that obvious non-uniqueness is-
sues due to scaling and permutation of the dictionary elements are taken care of, e.g.,
by normalizing the columns of A and fixing their ordering. In (Aharon et al., 2006b),
it was shown that, in the case of ε = 0, the answer to the above question is positive,



170 Sparse Modeling: Theory, Algorithms, and Applications

provided that the matrices Y, A, and X satisfy certain conditions; namely, the set of
samples Y must be “sufficiently diverse” and these samples should allow for a “suf-
ficiently sparse” representation (e.g., using less than spark(A)/2 elements), in some
dictionary A. Then such dictionary A is unique, up to re-scaling and permutation of
the columns.

As usual, there are also two alternative ways of formulating the above constrained
optimization problem, i.e., by reversing the roles of the objective and the constraint:

(Dt
0) : min

A,X
||Y −AX||22 subject to ||X(i, :)||0 ≤ k, 1 ≤ i ≤ N,

for some k that corresponds to the above ε, or by using the Lagrangian relaxation:

(Dλ
0 ) : min

A,X
||Y −AX||22 + λ

N∑

i=1

||Xi,:||0.

Clearly, the computational complexity of dictionary learning is at least as high as
the complexity of the original (NP-hard) l0-norm minimization problem. Thus, the
l1-norm relaxation can be applied, as before, to at least convexify the subproblem
concerned with optimizing over the X matrix. Also, it is common to constrain the
norm of the dictionary elements (e.g., by unit norm), in order to avoid arbitrarily
large values of A elements (and, correspondingly, infinitesimal values of X entries)
during the optimization process, leading to the following formulation (Mairal et al.,
2010):

(Dλ
1 ) : min

A,X
||Y −AX||22 + λ

N∑

i=1

||Xi,:||1

subject to ||A:,j ||2 ≤ 1, ∀ j = 1, ..., n. (9.2)

Given a fixed A, the optimization over X is now convex; note, however, that the
joint optimization over both A and X still remains non-convex.

9.1.2 Algorithms for Dictionary Learning

A common approach to non-convex matrix-factorization problems is to use the
alternating-minimization, or the block-coordinate descent (BCD) approach, which
iterates until convergence between the two optimization steps: (1) optimizing with
respect to X, given a fixed A, and (2) optimizing with respect to A, given a fixed X.
In the next section, we consider examples of commonly used algorithms for dictio-
nary learning.

Figure 9.2 presents a simple alternating-maximization approach known as
Method of Optimal Directions (MOD), introduced by (Engan et al., 1999); also, see
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Method of Optimal Directions (MOD)

Input: m×N matrix of samples Y, sparsity level k, precision ε.
Initialize: generate a randomm× n dictionary matrix A, or construct A using n
randomly selected samples (columns) from Y. Normalize A.
Alternating minimization loop:

1. Sparse coding: for each 1 ≤ i ≤ N , solve (using, e.g., MP or OMP)

xi = argmin
x
||yi −Ax||22 subject to ||x||0 ≤ k

to obtain the i-th sparse column of X.

2. Dictionary Update:

A = argmin
Â
||Y − ÂX||22 = YXT (XXT )−1.

3. Stopping criterion: If the change in the approximation error ||Y −AX||22
since the last iteration is less than ε, then exit and return the current A and
X, otherwise go to step 1.

FIGURE 9.2: Method of Optimal Directions (MOD) for dictionary learning.

(Elad, 2010). Note that the dictionary can be initialized in various ways, e.g., gen-
erated randomly or constructed as a random subset of observed samples. It is also
normalized to avoid scaling issues. Then, given the current dictionary A, in step 1,
we solve the standard l0-norm sparse recovery problem for each sample (column i)
in Y, using, for example, greedy matching pursuit methods discussed above, such
as MP or OMP. Once the collection of sparse codes for all samples, i.e., the matrix
X, is computed, we perform the dictionary update step (step 2 in the algorithm) us-
ing the least-squares minimization, and also obtain the current approximation error
||Y − AX||22. If the decrease in the error is sufficiently small, we declare that the
algorithm has converged, and return the computed dictionary A and the sparse code
X; otherwise, we continue alternating iterations.

Another well-known dictionary-learning approach, K-SVD, was introduced by
(Aharon et al., 2006a) several years after MOD. K-SVD employs a different
dictionary-update step, where each column of the dictionary is updated separately;
empirical results demonstrate some improvements in performance of K-SVD over
MOD (Elad, 2010). Moreover, in the past several years, various novel techniques for
dictionary learning were developed.

One of the notable advances was the online dictionary learning introduction by
(Mairal et al., 2009, 2010). Unlike the batch approaches discussed so far, which
attempt to learn a dictionary directly from the full data set, online approaches process
training samples incrementally, one training sample (or a small batch of training
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Online dictionary learning

Input: a sequence of input samples y ∈ R
m, regularization parameter λ, initial

dictionary A0 ∈ R
m×n, number of iterations T , threshold ε.

Initialize: U0 ∈ R
n×n ← 0, V0 ∈ R

m×n ← 0.

For i = 1 to T

1. obtain next input sample yi

2. Sparse coding: compute sparse code xi:

xi = argmin
x∈R

1

2
||yi −Ai−1x||22 + λ||x||1

3. Ui ← Ui−1 + xix
T
i , Vi ← Vi−1 + yix

T
i .

4. Dictionary update: use the BCD algorithm (Figure 9.4), with the input
parameters Ai−1, Ui and Vi, to update the current dictionary by solving

A = arg min
A∈S

1

i

i∑

j=1

(
1

2
||yi −Axi||22 + λ||xi||1) =

arg min
A∈S

1

i
(
1

2
Tr(ATAUi)− Tr(ATVi),

where S = {A = [a1, ..., an] ∈ R
m×n s.t. ||aj ||2 ≤ 1, ∀ j = 1, ..., n }.

Return Ai.

FIGURE 9.3: Online dictionary-learning algorithm of (Mairal et al., 2009).

samples) at a time, similarly to stochastic gradient descent. At each iteration, a sparse
code is computed for the new sample, and the dictionary is updated accordingly. One
of the key motivations behind an online approach is that it scales much better than
the batch techniques in applications with a very large number of training samples,
for example, in image and video processing, where dictionaries are often learned on
small image patches, and the number of such patches can be on the order of several
millions. Moreover, as shown in (Mairal et al., 2009, 2010), the proposed algorithm
provably converges, and tends to outperform batch approaches both in terms of the
speed and the quality of the dictionary learned, on large as well as on small datasets.

Figure 9.3 shows the details of the online dictionary-learning method proposed
by (Mairal et al., 2010). Note that unlike the MOD algorithm presented above, this
method considers the l1-regularized problem formulation stated in eq. 9.2. At each
iteration i of the algorithm, the next sample, yi, is drawn, then the sparse code for
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Block Coordinate Descent (BCD) for Dictionary Update

Input: initial dictionary A ∈ R
m×n (for warm restart); auxiliary matrices U =

[u1, ...,un] ∈ R
n×n, V = [v1, ...,vn] ∈ R

m×n, threshold ε.
Repeat until convergence of A:

1. for each j = 1 to n, update j-th dictionary element:

aj ←
1

max(||zj ||2, 1)
zj , where zj ←

1

ujj
(vj −Auj) + aj ,

2. If the change in ||A||2 on the last two iterations is above ε, go to step 3.

Return learned dictionary Ai.

FIGURE 9.4: Block coordinate descent (BCD) for dictionary update in the online
dictionary-learning method of (Mairal et al., 2009).

this sample is computed, by solving the standard Lasso problem

min
x∈R

1

2
||yi −Ai−1x||22 + λ||x||1,

where A is the current dictionary. (Mairal et al., 2009, 2010) use the LARS algo-
rithm for solving this problem, though, of course, any Lasso solver can be applied
here. After the sparse code for the current sample is obtained, the algorithm updates
the two auxiliary matrices, U and V; these matrices are used later in the dictionary
update step. Finally, the dictionary-update step computes the new dictionary by min-
imizing the following objective function f̂i(A) over the subset S of dictionaries with
norm-bounded columns/elements, using the block-coordinate descent algorithm with
warm restarts, presented in Figure 9.4:

f̂i(A) =
1

i

i∑

j=1

(
1

2
||yi −Axi||22 + λ||xi||1),

where each xj , 1 ≤ j < i was computed at the j-th previous iteration. This function
serves as a surrogate for the corresponding (batch) empirical loss function

fi(A) =
1

i

i∑

j=1

L(yj ,A),

where
L(yj ,A) = min

x
(
1

2
||yi −Ax||22 + λ||x||1).

In other words, the (batch) empirical loss function fi(A) is obtained assuming that
the optimal sparse codes for all samples are computed at once, with respect to a fixed
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dictionary A, while its online surrogate loss function f̂i(A) uses the sparse codes
from earlier iterations. The key theoretical contribution of (Mairal et al., 2009, 2010)
shows that both fi(Ai) and f̂i(At) converge almost surely to the same limit. Finally,
(Mairal et al., 2010) present several augmentations of the baseline approach pre-
sented above that improve its efficiency, including rescaling the “past” data so that the
new coefficientsxi have higher weights, using mini-batches instead of single samples
at each iteration, deleting dictionary atoms that are used very infrequently, and so on.

9.2 Sparse PCA
9.2.1 Background

Principal component analysis (PCA) is a popular data-analysis and dimensionality-
reduction tool with a long history dating back to 1901 (Pearson, 1901) and a wide
range of applications in statistics, science, and engineering. PCA assumes as an input
a set of data points in a high-dimensional space defined by a set of potentially corre-
lated input variables, and applies an orthogonal transformation that maps those points
to another space, defined by a (smaller or equal) set of uncorrelated new variables,
called principal components. The objective of PCA is to reduce the dimensionality
while preserving as much variability in the data as possible. In order to achieve this,
principal components are defined as orthogonal directions that account for the maxi-
mum variance in the data; namely, the first principal component is the direction of the
largest possible variance, and each subsequent component maximizes the remaining
variance subject to the constraint of being uncorrelated with (i.e., orthogonal to) the
previous components1.

PCA can be considered from two alternative perspectives, commonly referred to
in the literature as the analysis view and the synthesis view (Jenatton et al., 2010).
The traditional analysis view assumes the sequential approach outlined above, which
finds the principal components one at a time, iteratively alternating between the
variance-maximization to find the next component, and transformation (deflation) of
the current covariance matrix to eliminate the influence of the previous components.
Specifically, let m × N matrix Y represent a data matrix containing N data points,
or samples, as its columns; the rows correspond to m input variables, or dimensions.
The rows of Y, corresponding to the input variables, are assumed to be centered to
have zero empirical mean. PCA finds a (norm-bounded) vector of loadings a ∈ R

m

for the first principal component, so that projecting the data samples on a yields a
new, highest-variance one-dimensional dataset; in other words, PCA finds the set of
scores x1i, 1 ≤ ı ≤ N of the first principal component x1 = YT a, that maximizes

1Note that in the case of Gaussian data, the orthogonality, or lack of correlation, constraint is sufficient
to guarantee that components are independent, which is not necessarily true in the case of more general
data distributions. In such cases, Independent Component Analysis (ICA) can be used to find independent
(rather than principal) components.
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the variance of the scores,
∑N
i (y

T
i a)

2 = ||YT a||22 = aTYYTa, i.e.,

a = arg max
||a||2≤1

aTCa,

where C = YYT is (proportional to) the empirical covariance matrix. The above
problem turns out to be equivalent to finding the largest eigenvalue and the corre-
sponding eigenvector of C, and finding subsequent principal components also turns
out to be equivalent to finding the remaining eigenvectors of C.

An alternative view at PCA, i.e., the synthesis view, also sometimes referred to
as probabilistic PCA (Tipping and Bishop, 1999), consists in finding an orthogonal
set of new basis vectors, or dictionary elements (loadings), as discussed before, as
columns of an m × k matrix A, where k is the desired number of components, and
the new representation of the data samples in this basis (i.e., the corresponding new
coordinates as the projections on the new basis vectors), given by the columns of
an k × N matrix X, where the columns correspond to data samples represented in
the new basis. In a high-dimensional setting where m ≥ N , i.e., the number of
variables is greater than the number of samples, it is common to search for only a
few first components, i.e., to assume k � m. The matrices A and X are found by
solving the matrix-factorization problem, as discussed above, that minimizes the data
reconstruction error:

min
A,X

||Y −AX||22, (9.3)

where the columns of A are often assumed to have unit-bounded norm, ||ai||2 ≤ 1,
as discussed earlier in the dictionary-learning context. Note, however, that in the liter-
ature on the matrix-factorization (probabilistic) approach to PCA, the orthogonality
constraint on the dictionary elements is often omitted; as a result, the solution vec-
tors do not always coincide with the principal components, but rather span the same
space as the principal components (Tipping and Bishop, 1999). Orthogonalization of
such matrix-factorization solution will recover the principal components.

Note that the above matrix-factorization approach to finding the first k principal
components is closely related to the singular value decomposition (SVD) of the data
matrix. Namely, as mentioned above, let the rows of Y (i.e., the input variables) be
centered to have zero means, and let the rank of Y beK ≤ min(m,N). We consider
the SVD of the transposed data matrix, ZN×m = YT , since in the PCA literature
mentioned herein it is common to assume that the rows correspond to samples, and
the columns correspond to the input variables. Note that ZN×m denotes an N ×m
matrix, and Ik denotes the k × k identity matrix. The SVD of Z is written as

Z = UDAT , UTU = IN , ATA = Im, d1 ≥ d2 ≥ ... ≥ dK > 0.

The well-known property of the SVD is that its first k ≤ K components (the first k
columns of U) produce the best approximation, in the sense of the Frobenius norm,
to the matrix Z, i.e.,

k∑

i=1

diuia
T
i = arg min

Ẑ∈M(k)
||Z− Ẑ||22,

where M(k) is the set of all N ×m matrices of rank k.
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The two views of PCA outlined above, the analysis (solving a sequence of eigen-
value problems) and the synthesis (SVD, or matrix factorization), are equivalent, i.e.,
they find the same set of principal components. However, the equivalence does not
hold anymore once additional constraints, such as sparsity, are added to the problem.

9.2.2 Sparse PCA: Synthesis View

Incorporating sparsity into PCA became a popular research direction, motivated
by the goal of improving interpretability of the classical PCA approaches. Indeed,
though PCA can reduce dimensionality of the data, capturing the data variability by
a few components, the mapping from the input to the principal space still uses all the
input variables, i.e., all loadings are nonzero. This reduces interpretability of the re-
sults, especially if one attempts to identify the input variables that are most relevant.
Several recently proposed sparse PCA approaches impose sparsity-enforcing con-
straints on the loadings, thus achieving variable selection in the input space. We will
first consider the synthesis-view, or matrix-factorization, approaches to sparse PCA
as stated in eq. 9.3 above. Note that this sparse PCA formulation is closely related
to the dictionary-learning (sparse coding) problem discussed above, with the main
difference that the sparsity is enforced not on the code (components) matrix X, but
rather on the dictionary (loadings) matrix A, as shown in Figure 9.5, as compared to
the sparse-coding scheme shown in Figure 9.1.

The matrix-factorization formulation of sparse PCA was considered in several
recent papers (Zou et al., 2006; Bach et al., 2008; Witten et al., 2009). A natural
extension of the matrix-factorization formulation of PCA in order to enforce sparsity
on the component loadings is to add the l1-norm regularization on the columns of
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FIGURE 9.5: Sparse PCA as matrix factorization; note that the loadings (dictionary)
matrix A is assumed to be sparse, as opposed to the code (components) matrix X in
dictionary learning.
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A, which leads to the following problem, considered, for example, by (Bach et al.,
2008) and (Witten et al., 2009):

min
A,X

||Y −AX||22 + λ
k∑

i=1

||ai||1, subject to ||xi||2 ≤ 1, (9.4)

where ai and xi denote the i-th column of A and i-th row of X, respectively, and
the dimensions of the matrices A and X are m × k and k × N , respectively, k
being the number of components. The problem is convex in A given X, and vice
versa, but non-convex in both (A,X), and thus alternating-minimization approaches
are proposed; efficient methods based on simple column updates are considered, for
example, in (Lee et al., 2006a; Witten et al., 2009).

Herein, we discuss in more detail the synthesis-view sparse PCA method of
(Zou et al., 2006) that uses a connection between PCA and linear regression, and
introduces the l1-norm constraint to sparsify the loadings. More specifically, let
YT = UDAT be the singular value decomposition (SVD) of the (transposed) data
matrix YT ; then the rows of X = (UD)T are the principal components and the
columns of A are the corresponding loadings. As discussed above, each principal
component xi is a linear combination of them input variables, xi = YTai; thus, the
loadings ai can be found by regressing this component on the variables, as discussed,
for example, in (Cadima and Jolliffe, 1995). In (Zou et al., 2006), this regression ap-
proach is extended to handle the m > N , using ridge regularizer; namely, given
some positive λ, (Zou et al., 2006) show that the ridge regression estimate

ŵ = argmin
w
||xi −YTw||22 + λ||w||22

recovers, after normalization, to the loadings of the i-th component, i.e. ai =
ŵ/||w||2. Then (Zou et al., 2006) enforce the sparsity on the loadings by adding
the l1-norm regularizer to the above ridge problem, and obtaining the Elastic Net
regression formulation (Zou and Hastie, 2005). However, the above formulation can-
not be used directly to find the loadings since the components xi are not known.
Instead, (Zou et al., 2006) derive the following criterion, that lends itself easily to an
alternating minimization scheme presented in Figure 9.6. Let k denote the number
of principal components, let yi denote the i-th sample (column of Y), i = 1, ..., N ,
Wm×k denote an m× k matrix W, and let Ik denote the k× k identity matrix. The
following result holds:

Theorem 9.1. (Zou et al., 2006) Let Vm×k = (v1, ...vk) and Wm×k =

(w1, ...,wk). For any λ > 0, let V̂ and Ŵ be the solutions of the following problem:

(V̂,Ŵ) = arg min
V,W

N∑

i=1

||yi −WVTyi||22 + λ
k∑

i=1

||wi||22, (9.5)

subject to VTV = Ik. (9.6)

Then ŵi is proportional to the i-th component’s loadings vector, ai, for i =
1, ..., k.
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Sparse PCA

Input: m×N matrix of samples Y, number of principal components k, sparsity
parameters λ, γi, for i = 1, ...k.
Initialize: Set V = APCA(k), where the columns of APCA(k) are the loadings
of the first k principal components obtained by the ordinary PCA, i.e., using SVD
decomposition YT = UDAT .
Alternating-minimization loop:

1. Given Vm×k = (v1, ...vk), solve the Elastic Net for each i = 1, ..., k:

wi = argmin
w

(vi −w)TYYT (vi −w) + λ||w||22 + γi||w||1.

2. Given W = (w1, ...,wk), compute the SVD of YYTW = UDAT .

3. Update: V = UAT .

4. Repeat steps 1-3 until convergence.

5. Normalize the loadings: ai = wi/||wi||22, for i = 1, ..., k, and return A.

FIGURE 9.6: Sparse PCA algorithm based on the Elastic Net (Zou et al., 2006).

Given the above regression-like criterion, the sparsity on the loadings ai is en-
forced by simply adding the l1-norm regularizer to the above formulation, obtaining
the following sparse PCA (SPCA) criterion (Zou et al., 2006):

(V̂,Ŵ) = arg min
V,W

N∑

i=1

||yi −WVTyi||22 + λ

k∑

i=1

||wj ||22 +
k∑

i=1

γj ||wj ||1, (9.7)

subject to VTV = Ik. (9.8)

Note that using potentially different regularization parameters γi allows for different
levels of sparsity in the loadings of different principal components. As it is com-
mon in matrix-factorization problems, the above criterion can be minimized using
an alternating-minimization approach, as shown in Figure 9.6. However, since the
objective function is not convex, we can only hope to find a good local minimum, as
it is typically the case in matrix-factorization settings. Also, as noted by (Zou et al.,
2006), the algorithm is not very sensitive to the choice of λ; in the case of m < N ,
no regularization is necessary and λ can be set to zero.

9.2.3 Sparse PCA: Analysis View

The second class of sparse PCA methods (see, for example, (Jolliffe et al.,
2003; d’Aspremont et al., 2007, 2008)) follows the analysis view of PCA, where the
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ultimate objective is to find

max
a

aTCa subject to ||a||2 = 1, ||a||0 ≤ k, (9.9)

where C = YYT is the empirical covariance matrix given the dataset Y, as dis-
cussed above. The above problem is NP-hard due to the cardinality constraint, as
shown in (Moghaddam et al., 2006) via reduction of the original NP-hard sparse re-
gression (subset-selection with least-squares loss) to sparse PCA. The work by (Jol-
liffe et al., 2003) introduced an algorithm called SCoTLASS, that, similarly to Lasso,
replaces l0-norm by l1-norm in the above formulation; however, the resulting opti-
mization problem is still not convex and the method is computationally expensive.
This motivated further work by (d’Aspremont et al., 2007), where a convex (semidef-
inite) relaxation to the above problem was proposed. Specifically, the problem in eq.
9.9 is first relaxed into

max
a

aTCa subject to ||a||2 = 1, ||a||1 ≤ k1/2, (9.10)

and then into the following semidefinite program (SDP)

max
M

tr(CM) subject to tr(M) = 1,1T |M|1 ≤ k,M  0, (9.11)

whereM = aaT , tr(M) denotes the trace of M, and 1 denotes the vector of all ones.
The above problem can be solved using, for example, Nesterov’s smooth minimiza-
tion approach (Nesterov, 2005), as discussed in (d’Aspremont et al., 2007), which
yields the computational complexity O(m4

√
logm/ε), where m is the dimension-

ality of the input (the number of rows in Y) and ε is the desired solution accuracy.
Also, recent work by (d’Aspremont et al., 2008) proposes a more refined formula-
tion of the semidefinite relaxation to the sparse PCA problem, and derives tractable
sufficient conditions for optimality (e.g., testing global optimality of a given vector a
using such conditions has O(m3) complexity); moreover, (d’Aspremont et al., 2008)
derive a greedy algorithm that computes a full set of good approximate solutions for
all sparsity levels (i.e., the number of nonzeros), with total complexity O(m3).

9.3 Sparse NMF for Blind Source Separation
We now give an example of a different approach to sparse matrix factorization

– the sparse nonnegative matrix factorization (NMF) algorithm proposed by (Hoyer,
2004), which uses alternative constraints to enforce sparsity. NMF has a long history
of applications in a wide range of fields, from chemometrics (Lawton and Sylvestre,
1971) and especially computer vision (see (Shashua and Hazan, 2005; Li et al., 2001;
Guillamet and Vitrià, 2002; Ho, 2008) and references therein), to natural language
processing (Xu et al., 2003; Gaussier and Goutte, 2005) and bioinformatics (Kim and
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Park, 2007), to name a few applications. This approach was also successfully applied
in the context of blind source separation problems in various signal-processing ap-
plications, as well as in less traditional problems such as computer network diagnosis
discussed below.

The blind source separation (BSS) problem, as the name suggests, aims at re-
constructing a set of unobserved signals (sources), represented by rows of a matrix
X, given the observed linear mixtures of these signals (rows of a matrix Y), where
the mixing matrix A is also unknown (thus, the source separation is “blind”). In
other words, we have a matrix-factorization problem, where Y is approximated by
AX. An example of BSS is the famous “cocktail party” problem, where n speakers
(sources) are present in the room with m microphones, and the task is to recon-
struct what each of the speakers is saying, and how close he or she is to each of
the microphones. The rows in the m × N matrix Y correspond to the microphones
(samples/measurements), while the N columns correspond to dimensionality of the
signals in their time domain, i.e., the number of samples. The rows of the n × N
matrix X correspond to signals (individual speakers) that are linearly combined into
microphone measurements via the m × n mixing matrix A, where each entry aij
corresponds to the distance of j-th speaker to the i-th microphone.

The BSS framework also found applications in other domains, such as, for ex-
ample, performance monitoring and diagnosis in distributed computer networks and
systems. Given the heterogeneous, decentralized, and often noncooperative nature of
today’s large-scale networks, it is impractical to assume that all statistics related to
an individual system’s components such as links, routers, or application-layer com-
ponents can be collected for monitoring purposes. On the other hand, end-to-end
measurements, such as test transactions, or probes (e.g., ping, traceroute, and so on),
are typically cheap and easy to obtain. This realization gave rise to the field of net-
work tomography (Vardi, 1996), which focuses on inference-based approaches to
estimate unavailable network characteristics from available measurements.

In particular, (Chandalia and Rish, 2007) proposed a BSS-based approach to
simultaneous discovery of network performance bottlenecks, such as network link
delays, and the routing matrix (also called “dependency matrix” in a more general
setting when the possible causes of performance degradations can include other ele-
ments of a distributed computer system, such as specific software components) from
a collection of end-to-end probe results, using an analogy with the BSS problem. In
this context, the signal matrix X represents unobserved delays at a potentially very
large number of the network components, such as network links, the mixing matrix
A corresponds to the unknown routing matrix, and each row of observations in Y
corresponds to the time it takes a particular end-to-end test transaction to complete,
which can be approximated by the sum of times spent at each of the components
along the routing path, plus some unexpected noise, i.e. Y ≈ AX.

In order to find the matrices A and X , one must to solve a (constrained) opti-
mization problem that minimizes the reconstruction error between Y and Ŷ, where
Ŷ = AX, subject to some constraints on those matrices that are imposed by
the application domain. There are several choices of loss functions to minimize
the error, for example, the squared error or the KL-divergence. The constraints of
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nonnegativity on A and X, as well as sparsity on the X columns, appear naturally,
since both the routing matrix entries and the link delays are obviously nonnega-
tive, and it is typically the case that only a very small number of network compo-
nents are the performance bottlenecks. This combination of constraints yields the
so-called sparse nonnegative matrix factorization (NMF) problem, often considered
in the literature. Particularly, (Chandalia and Rish, 2007) evaluated two sparse NMF
approaches, proposed by Hoyer (2004) and by Cichocki et al. (2006), respectively,
in the context of the computer network data analysis.

Similarly to Hoyer (2004), the sparse NMF problem is formulated as

min
A,X

||Y −AX||22
subject to sparsity(ai) = sA∀i ∈ {1, ...,m}

sparsity(xj) = sX∀j ∈ {1, ..., N},
(9.12)

where ai is the i-th row of A and xj is the j-th column of X. The sparsity(u) of a
d-dimensional vector u is defined as follows:

sparsity(u) =
1√
d− 1

(
√
d−

∑
|ui|√∑
u2i

)

. (9.13)

The desired sparsity levels sA and sX are given as an input. The above notion of
sparsity varies smoothly between 0 (indicating minimum sparsity) and 1 (indicating
maximum sparsity). It exploits the relation between l1- and l2-norms, thus giving
great flexibility to achieve desired sparse solutions. The algorithm by (Hoyer, 2004)
uses projected gradient descent, where in each iteration, matrices A and X are first
updated by taking a step in the direction of the negative gradient, and then each
row-vector of A and each column-vector of X are (non-linearly) projected onto a
nonnegative vector with desired sparsity.

Empirical results on both simulated and real network topologies and network
traffic, presented in (Chandalia and Rish, 2007), demonstrated that both sparse NMF
methods were able to accurately reconstruct the routing matrix and the bottleneck
locations, provided that the level of noise in the system was not too high. Figure
9.7, reproduced here from (Chandalia and Rish, 2007), plots the reconstruction ac-
curacy for both the signal/link delay matrix X (panel (a)) and the routing matrix
(panel (b)), in a simulation experiment, where the network traffic was generated by
a simulator, but the network topology was real – a subnetwork of Gnutella, a large
peer-to-peer network commonly used as a benchmark for experiments in the network
tomography field. The “ground-truth” routing matrixA had 127 columns (nodes) and
50 rows (end-to-end probes). Different evaluation criteria were used for A and X.
Since A was subsequently binarized and interpreted as a routing matrix, the natural
measure of accuracy was the average number of mistakes (0/1 flips) made by the
reconstruction method as compared to the ground-truth routing matrix. On the other
hand, the matrix X represented real-valued delays at different network nodes, and
thus averaged correlation between the actual and reconstructed vectors of delays at
particular nodes was used as a success measure; see (Chandalia and Rish, 2007) for
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FIGURE 9.7: Recovering (a) performance bottlenecks and (b) routing table, or
the so-called “dependency matrix” via sparse NMF applied to simulated traffic on
Gnutella network.

more details on the experimental setup and definition of performance measures, in-
cluding handling the permutations of rows and columns in the reconstructed matrices
to match the ground truth. Overall, sample results in Figure 9.7 demonstrate that both
A and X were reconstructed with a very high accuracy.

9.4 Summary and Bibliographical Notes
In this chapter, we departed from the standard sparse signal recovery setting

where the design matrix (i.e., the dictionary) is given in advance. Instead, we consid-
ered the sparse matrix-factorization setting, which includes such popular problems as
dictionary learning, or sparse coding (Olshausen and Field, 1996), as well as sparse
PCA, where both the dictionary (loadings) and the signals, or code (components)
must be learned, provided a set of data samples (measurements). In other words,
the key change in the problem setting here is the inclusion of a set of hidden (un-
observed) variables in the model; these hidden variables correspond to dictionary
elements, and/or principle components.

Sparse coding, or dictionary learning, was originally introduced in the context of
neuroscience (Olshausen and Field, 1996, 1997), and more recently became an active
area of research in signal processing, statistics, and machine learning; some repre-
sentative examples include the work by (Lewicki and Olshausen, 1999; Lewicki and
Sejnowski, 2000; Engan et al., 1999; Kreutz-Delgado et al., 2003; Lesage et al., 2005;
Elad and Aharon, 2006; Aharon et al., 2006a,b; Yaghoobi et al., 2009; Skretting and
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Engan, 2010; Mairal et al., 2009, 2010; Tosic and Frossard, 2011; Lee et al., 2006a;
Gregor and LeCun, 2010), and multiple other authors. Another example of sparse
matrix factorization is sparse PCA, which includes several lines of work, based on
either synthesis, or sparse matrix factorization, view of PCA (see, e.g., (Zou et al.,
2006; Bach et al., 2008; Witten et al., 2009)), or analysis view, which involves solv-
ing a sequence of sparse eigenvalue problems (see, for example, (Jolliffe et al., 2003;
d’Aspremont et al., 2007, 2008)). Yet another area involving sparse matrix factoriza-
tion is the blind source separation in signal processing, where the goal is to simul-
taneously recover a set of sources/signals and the mixing matrix. We considered a
particular type of approach to this problem, such as sparse nonnegative matrix fac-
torization (NMF) of (Cichocki et al., 2006) and (Hoyer, 2004), and their somewhat
non-traditional application to the performance bottleneck discovery in large-scale
distributed computer systems and networks (Chandalia and Rish, 2007). Note that, in
general, NMF is widely used in numerous applications including, but not limited to,
chemometrics (Lawton and Sylvestre, 1971), computer vision (Shashua and Hazan,
2005; Li et al., 2001; Guillamet and Vitrià, 2002; Ho, 2008), natural language pro-
cessing (Xu et al., 2003; Gaussier and Goutte, 2005), and bioinformatics (Kim and
Park, 2007).

Finally, there are multiple recent developments related to sparse matrix factoriza-
tion and its applications, including efficient optimization approaches to sparse coding
(Lee et al., 2006a; Gregor and LeCun, 2010; Mairal et al., 2010), as well as extensions
to more sophisticated types of sparse coding problems, such as: group sparse coding
(Bengio et al., 2009; Garrigues and Olshausen, 2010), hierarchically structured dic-
tionaries (Xiang et al., 2011), and other types of structured sparse coding (Szlam
et al., 2011); Bayesian formulations with alternative sparsity priors, such as spike-
and-slab (Shelton et al., 2012), or other, smoother priors such as KL-regularization
(Bradley and Bagnell, 2008); non-parametric Bayesian approaches (Zhou et al.,
2009), nonlinear sparse coding (Shelton et al., 2012; Ho et al., 2013), and smooth
sparse coding via kernel smoothing and marginal regression (Balasubramanian et al.,
2013), to name a few. Recent applications of sparse coding range from visual recog-
nition problems (Morioka and Shinı́chi, 2011), music signal representation (Dikmen
and Févotte, 2011), and spatio-temporal feature learning in videos, such as motion
capture data (Kim et al., 2010), to novel document detection in online data streams
(Kasiviswanathan et al., 2012), as well as multitask and transfer learning (Maurer
et al., 2013), among many other applications.





Epilogue

Sparse modeling is a rapidly growing area of research that emerged at the inter-
section of statistics and signal processing. The popularity of sparse modeling can
be attributed to the fact that a seemingly impossible task of reconstructing a high-
dimensional unobserved signal from a relatively small number of measurements be-
comes feasible when a particular type of signal structure is present. This structure,
referred to as sparsity, assumes that most of the signal’s dimensions are zero or close
to zero, in some basis. Surprisingly, this assumption holds for many natural signals.
Moreover, efficient algorithms based on a convex relaxation of the NP-hard sparse
recovery problem are available, making sparse modeling practical in many real-life
applications.

As we already mentioned, no single book cannot capture all recent developments
in this vast and constantly expanding field. Herein, we attempted to cover some of its
key theoretical and algorithmic aspects, and provided various application examples,
with a particular focus on statistical analysis of neuroimaging. Bibliographical sec-
tions at the end of each chapter include references to various sparsity-related topics
that we did not discuss in full detail.

We hope that our book will serve as a good introduction to the exciting new field
of sparse modeling, which, at the same time, is deeply rooted in the ancient principle
of parsimony, and can even be related to our daily lives. You have probably heard
this popular inspirational story: a professor shows an empty jar to his students, and
fills it with a few large rocks; he then dumps some gravel in to fill the empty spaces,
and, finally, pours in sand, filling the jar completely. The point is clear: remember to
focus on a few most-important “big rocks” in your life, before so many other, much
less important “gravel” and “sand” variables fill up your time.
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A.1 Norms, Matrices, and Eigenvalues
Herein, we will use the notation ZN = {0, . . . , n − 1} to index the coordinates

of an n-dimensional vector. We will also use AT and xT to denote the transpose of a
matrix A and of a vector x, respectively. A∗ will denote the conjugate transpose, or
adjoint matrix, of a matrix A with complex entries; recall that the conjugate trans-
pose of A is obtained from A by taking the transpose and then taking the complex
conjugate of each entry (i.e., negating their imaginary parts but not their real parts).

We will denote by < x,y > the inner product of the two complex vectors x ∈
C
N and y ∈ C

N . When the vectors are real-valued, it is equivalent to the dot product
(or scalar product)

∑
i∈ZN

xiyi, and can be also written as a matrix product xTy,
assuming that both x and y are column-vectors.

Let x ∈ C
N . The lq-norm of x, denoted ||x||q , is defined for q ≥ 1 as (also, see

chapter 2):

||x||q =
(
∑

n∈ZN

|xn|q
)1/q

. (A.1)

It is easy to verify that for q ≥ 1, the function ||x||q defined above is indeed a proper
norm, i.e., it satisfies the norm properties, such as:

1. zero vector norm: ||x|| = 0 if and only if x = 0;

2. absolute homogeneity: ∀α, α 
= 0, ||αx|| = |α|||x||; and
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3. triangle inequality: ||x+ y|| ≤ ||x||+ ||y||.

When 0 < q < 1, the function defined in eq. A.1 is not a proper norm since it
violates the triangle inequality. Indeed, let x = (1, 0, ..., 0) and y = (0, 1, 0, ..., 0)
be two unit vectors in Rn. Then, for any 0 < q < 1, we have ||x||q + ||y||q = 2, but
||x + y||q = 21/q > 2, i.e. ||x + y||q > ||x||q + ||y||q , which violates the triangle
inequality. However, for convenience sake, even when 0 < q < 1, the function ||x||q
is still frequently called the lq-norm, despite some abuse of terminology. For the case
of q = 0, we denote by ||x||0 the size of the support of x, denoted supp(x), defined
as a set of nonzero coordinates of x. Thus, ||x||0 = |supp(x)|.

We now define some matrix properties. Let A be an N ×M matrix with real or
complex entries. When M = N , i.e., when the matrix is square, the trace of a matrix
is defined as the sum of its diagonal elements:

Tr(A) =
∑

i∈ZN

aii.

Note that
Tr(AB) = Tr(BA). (A.2)

Next, we define the ||.||q norm of a matrix as

||A||q = sup
x,||x||q=1

||Ax||q .

In particular,

||A||1 = max
j∈ZM

∑

i∈ZN

|aij |, and ||A||∞ = max
i∈ZN

∑

j∈ZM

|aij |. (A.3)

For 1 ≤ p ≤ ∞, ||A||q is a norm. Another quite useful matrix norm is the Perron-
Frobenius norm defined as

||A||F =

√ ∑

i∈ZNj∈ZM

|aij |2 =
√
Tr(A∗A), (A.4)

where A∗ is the conjugate transpose of A.
Note that concepts and definitions summarized herein can be also found in any

standard linear algebra course; however, they are included here for completeness
sake.

A.1.1 Short Summary of Eigentheory

Given an N × N matrix A, an eigenvector x of A is a vector satisfying Ax =
λx, for some complex number λ that is called an eigenvalue of A. The set of all
eigenvalues of matrix A, denoted by Sp(A), is called the spectrum of A. The kernel
of A, also called its null space or nullspace, denoted by Ker(A) or N(A), is the
set of all vectors x, called null vectors, that satisfy Ax = 0. Matrix A is called
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degenerate, or singular, if and only if its kernel includes a nonzero vector (i.e., there
exists x ∈ Ker(A) such that x 
= 0), or, equivalently, if and only if

0 ∈ Sp(A). (A.5)

For example, any nonzero null vector of A (i.e., a nonzero vector from the kernel of
A) is an eigenvector with zero eigenvalue.

By the Cayley-Hamilton theorem, each eigenvalue is a root of the characteristic
equation det(A − λI) = 0, where I is the identity matrix of size N × N , i.e. the
matrix with ones on the main diagonal and zeros elsewhere. There is at least one
eigenvector for each root of the characteristic equation. For a diagonal square ma-
trix, i.e. the matrix with nonzero main diagonal and zeros elsewhere, every element
on the diagonal is an eigenvalue. The multiplicity of an eigenvalue λi as a root of
the characteristic equation, i.e., the largest integer k such that (λ − λi)k divides that
polynomial, is called the algebraic multiplicity of λi, denoted mλi . For each eigen-
value λi, there are exactly mλi linearly independent vectors corresponding to that
eigenvalue, i.e. vectors x satisfying (A − λiI)

mλix = 0. Note that not all of those
vectors are eigenvectors.

If a square N ×N matrix A is self-adjoint (i.e., A∗ = A), then det(A− λI)̄ =
det(A∗ − λ̄I); hence, every eigenvalue is real, and there are exactlyN eigenvectors.
In this case, two eigenvectors ui and uj corresponding to different eigenvalues λi
and λj will be orthogonal, since

λi < ui,uj >=<Aui,uj >=< ui,Auj >= λj < ui,uj >,

which holds only when < ui,uj >= 0, i.e. for orthogonal ui and uj . We can
think of a square matrix A as a set of row-vectors in a basis defined by the row-
vectors e1 = (1, 0, ..., 0); e2 = (0, 1, 0, ..., 0); eN = (0, ..., 0, 1); similarly, the set of
column-vectors of A corresponds to the basis of eT1 ,...,eTN . If the basis is changed,
then the matrix A is transformed into PAP−1, where P is an invertible matrix
(linear operator) that corresponds to the basis change.

If an N × N matrix A has exactly N independent eigenvectors, it becomes a
diagonal matrix, denoted D, when written in the basis of the eigenvectors. Indeed,
for each eigenvalue λi and the associated eigenvector ui from the basis, we have

Aui = λiui. (A.6)

In other words, multiplying a basis vector ui by the matrix A is equivalent to multi-
plying ui by a scalar λi, and hence D (A transformed into the basis of eigenvectors)
is a diagonal matrix with diagonal entries equal to the corresponding eigenvalues.

Let A be a square self-adjoint matrix. By combining the facts stated above with
respect to eigenvectors with the property of the trace given by eq. A.2, we conclude
that the trace of a square self-adjoint matrix A is simply the sum of A’s eigenvalues,
i.e.,

Tr(A) = Tr(PDP−1) = Tr(P−1PD) = Tr(D) =
∑

i∈ZN

λi. (A.7)
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A.2 Discrete Fourier Transform
In this section we present the Discrete Fourier Transform (DFT), a discrete trans-

form widely used in signal processing and related fields; essentially, DFT converts a
set of (equally spaced) function samples from the original domain, such as time, into
different domain, namely, the frequency domain.

There are two variants of DFT, the complex DFT and the real DFT (RDFT or
CT, see below). We focus primarily on the complex DFT, and only mention here the
definition of the real DFT.

Definition 11. The DFT is defined on a finite sequence (a vector) of N real or com-
plex numbers x = (x0, x1, . . . , xN−1)

′ as a sequence (a vector) X = F(x) with the
coordinates given by

Xk =

N−1∑

n=0

xne
−2πi kN n.

The transformation F is a linear transformation on C
N defined by a matrix with

entries Fn,k = e−2π kN n. The columns ui of the matrix F are mutually orthogonal,
since

< ui,uj >=

N−1∑

n=0

e2π
i
N ne−2πi jN n =

N−1∑

n=0

e2πi
i−j
N n = Nδi,j , (A.8)

where δi,j denotes the Kronecker delta function. Recall that the form <,> is conju-
gate linear, i.e., a semi-linear form by the first argument.

Equation A.8 implies that the inverseF−1 of the functionF is proportional to its
conjugate 1

N
F∗. It also leads to Plancherel’s identity:

< x,y >=
1

N
< X,Y > . (A.9)

Indeed,

< x,y >= < x,F−1F(y) >=< x, 1
N
F∗F(y) >

= 1
N
< F(x),F(y) >= 1

N
< X,Y > . (A.10)

This immediately implies Parseval’s identity, by setting x = y:

< x,x >=
1

N
< X,X > . (A.11)

In order to keep real-valued the result of applying DFT to real-valued vectors, one
can just use the real (or just the imaginary) part of the DFT. Namely:

Definition 12. The Real DFT (RDFT) is defined on a finite sequence (a vector) of N
real numbers x = (x0, x1, . . . , xN−1)

′ as a sequence X with the coordinates

Xk =
N−1∑

n=0

xn cos(
2πkn

N
), or Xk =

N−1∑

n=0

xn sin(
2πkn

N
).
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The first transform is called the Discrete Cosine Transform (DCT) and the second
one the Discrete Sine Transform (DST). Herein, we will mainly use DCT.

Without going into further details, we just would like to note that analogs of the
equalities A.8, A.9, and A.11 can be also established for for DCT and DST.

A.2.1 The Discrete Whittaker-Nyquist-Kotelnikov-Shannon Sampling
Theorem

The sampling theorem, associated with the names of Whittaker, Nyquist, Kotel-
nikov, and Shannon, gives criteria for a continuous signal to have a discrete finite
spectrum and to be exactly reconstructable from its discrete finite spectrum. While
the original Shannon proof is sufficiently transparent, a rigorous proof requires elab-
orate results from the Fourier transform theory. Here we concentrate on the discrete
version of the theorem.

Given a discrete signal of size N , x = (xn|n ∈ ZN ), we assume that the observ-
able part of the spectrum or DFT of the signal has the supportK1 , X|K1 = F(x)|K1 .
We also assume that any reconstruction tool (decoder) can be used. Our question is:
what are the conditions on K1 so that the original signal x can be reconstructed
exactly?

Theorem A.1. ((Discrete-to-discrete) Whittaker-Nyquist-Kotelnikov-Shannon sam-
pling theorem) Let x = (xn|n ∈ ZN ) be anN -dimensional signal, and letK1 be the
support of the observable part of the spectrum X = F(x). Then x can be recovered
exactly if and only if |K1| = N .

Proof. If |K1| = N , then by using as a decoder D an inverse DFT, i.e., D =
F−1, the signal x is recovered exactly: x = F−1F(x). If |K1| < N , then
there is a one-point part of the spectrum, say, n0 ∈ ZN , that is not observ-
able. Consider all N -dimensional signals with the spectrum in the n0, L =
{y = (yn|nZN , supp(F(x)) = n0}. The set L is not empty since L =
F−1((0, . . . , 0, λ, 0, . . . , 0), where λ is a real number at the n0-th position. Any two
signals that differ on an element from L will be mapped by the DFT F to the same
spectrum observable on K1, and thus could not be decoded differently.

Finally, we also state the well-known discrete-to-continuous version of the above
sampling theorem:

Theorem A.2. ((Discrete-to-continuous) Whittaker-Nyquist-Kotelnikov-Shannon
sampling theorem) A uniformly sampled analog signal can be recovered perfectly
as long as the sampling rate is at least twice as large as the highest-frequency com-
ponent of the signal.
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A.3 Complexity of l0-norm Minimization
In (Natarajan, 1995) it was shown that the l0-norm minimization problem is NP-

hard (see (Garey and Johnson, 1979) for the definition and examples of NP-hard
problems). Herein, we also provide a brief proof sketch for this important fact. We
formulate below the Minimum Relevant Variables problem (which is essentially the
l0-norm minimization problem) and the 3-set cover problem (called MP5 and X3C
in (Garey and Johnson, 1979), respectively), and show the direct reduction of X3C to
MP5. Note that this consideration may be also extended to the approximation results.
See, for example, (Ausiello et al., 1999), page 448, or (Schrijver, 1986).

Definition 13. (Minimum Relevant Variables, MP5) Instance: A matrix A of size
n×m with integer coefficients and a vector b of size n with integer coefficients.

Question: What is the minimal number of nonzeros that an n-dimensional vector
x with rational coefficients can have, given that x is the solution of Ax = b?

Definition 14. (Exact Cover by 3 sets, X3C) Instance: A finite set X with |X | = 3q
and a collection C of 3-element subsets of X .

Question: Does C contain an exact cover for X , or a sub-collection C ′ ⊆ C
such that every element of X occurs in exactly one element of C′?

The problem X3C is one of the basic problems in the set of NP-complete prob-
lems stated in (Garey and Johnson, 1979). The restriction in the MP5 problem for the
matrix A and the vector b to have integer coefficients is not essential; indeed, since
MP5 is concerned with finding rational coefficients of x, we can multiply all entries
of A and b by the common denominator (of all entries ofA and b). In order to show
that, MP5 problem is NP-complete, we map the problem X3C into the problem MP3
((Garey and Johnson, 1979) refer to this part as to an unpublished result). We give
the details of the mapping here for completeness sake. The set X with size |X | = 3q
we map into R

3q , subsets Si from S we map into matrix A = (aj,i) of size 3q× |S|,
where aj,i = 1 if and only if Si covers point corresponding to the j-th coordinate of
R

3q , and 0 otherwise. Vector x is of size |S| and corresponds to the choosen subsets
of S: (xj = 1 if and only if the covering subset Sj is choosen, and 0 otherwise. As
a vector b we choose the vector with all 3q coefficients equal to 1. Assuming this
mapping, the solution of the X3C becomes the minimal solution of MP5, since the
number of nonzero coefficients should be at least q.

A.4 Subgaussian Random Variables
Subgaussian random variables are important because they generalize nice prop-

erties of finitely supported random variables and those of Gaussian random variables
to a much wider class of random variables.
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Definition 15. Let X be a real random variable with EX = 0. We say that X has
a-subgaussian tail if there exists a constant a, C > 0 such that for all λ > 0,

Prob(|X | > λ) ≤ Ce−aλ
2

. (A.12)

We say that X has a-subgaussian tail up to λ0 if the previous bound holds for all
λ ≤ λ0.

If X1, X2, . . . , Xn is a sequence of random variables, by saying that they have
a uniform subgaussian tail we mean that all of them have subgaussian tails with the
same constant a.

We shorten the term X having a-subgaussian tail to subgaussian random vari-
able X .

Example 3. LetX be a random variable with finite support. An example of such ran-
dom variable is the Bernoulli random variable. Then for t > M = max|supp(|X |)|,
we have Prob(|X | > M) = 0, and thus it is a subgaussian variable. Another exam-
ple of a subgaussianX is simply a Gaussian random variable.

The (moment) generating function of a random variable X is a random variable
Y defined as Y = euX , with Prob(Y = euX > eut) = Prob(X > t). The
generating function is an important tool in the probability theory. The generating
function of the normal (Gaussian) distributionN (μ, σ) is eμt+

1
2σ

2t2 . We characterize
the subgaussian random variable using its generating function.

Proposition A.3. (Characterization of a normalized subgaussian random variable)
Let X be a random variable with EX = 0 and EX2 <∞.

i) If Eeu|X| ≤ CeCu
2

for some constant C > 0 and for all u > 0, then X has a
subgaussian tail. If Eeu|X| ≤ CeCu

2

holds for all u ∈ (0, u0], then X has a
subgaussian tail up to 2Cu0.

ii) If X has a subgaussian tail, then Eeu|X| ≤ eCu
2

for all u > 0, with the constant
C depending only on the constant a of the subgaussian tail.

Proof. i). For all u ∈ (0, u0] and all t ≥ 0, we have by the Markov inequality
Prob(X > t) ≤ E(X)

t :

Prob(|X | ≥ t) = Prob(eu|X| ≥ eut) (A.13)
(Markov inequality) ≤ e−utEeu|X| (A.14)

≤ Ce−ut+Cu
2

. (A.15)

For t ≤ 2Cu0, setting u = t/2C in the above estimate implies Prob[X ≥ t] ≤
Ce−t

2/4C .
ii). Let F be the distribution function of X ; in other words, F (t) = Prob(X <

t).
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We have Eeu|X| =

∫ ∞

−∞
eu|t|dF (t). We split the integration interval into two

subintervals, corresponding to ut ≤ 1 and ut ≥ 1. Then
∫ 1/u

−1/u

eu|t|dF (t) ≤
∫ 1/u

−1/u

3dF (t) ≤ 3. (A.16)

We estimate the second integral by sum for both positive and negative parts:
∫ ∞

1/u

eu|t|dF (t) ≤
∞∑

k=1

ek+1Prob(X ≥ k

u
)

≤ C

∞∑

k=1

e2ke−ak
2/u2

= C

∞∑

k=1

ek(2−ak/u
2), (A.17)

∫ −1/u

−∞
eu|t|dF (t) ≤

∞∑

k=1

ek+1Prob(X ≤ −k
u
)

C ≤
∞∑

k=1

e2ke−ak
2/u2

= C
∞∑

k=1

ek(2−ak/u
2). (A.18)

For u ≤
√
a/2, we have 2 − ak/u2 ≤ −a/2u2 and the sum is bounded by the

geometric series with both first term and quotient e−a/2u
2 ≤ e−1 <

1

2
. So the sum

is at most 2e−a/2u
2

= O(u2) (since ex ≥ 1 + x > x, take the reciprocal values to

obtain e−x ≤ 1

x
for x > 0, and substitute x = a/2u2). Hence Eeu|X| ≤ 1+O(u2) ≤

CeO(u2).
For u >

√
a/2, the largest terms in the considered sum are those with k near

u2/a, and the sum is O(eu
2/2a). So Eeu|X| ≤ CeO(u2) holds.

Example 4. For the random variable X with finite support |X | ≤ M for some
positive M , we have an estimate

EeuX ≤ EeuM = euM . (A.19)

Hence for M ′ = max{(M
2
)2, e} holds

lnM ′ +M ′u2 ≥ 2
√
lnM ′ M ′u2 ≥ 2u

√
M ′ ≥Mu, (A.20)

or
EeuX ≤M ′eM

′u2

. (A.21)

In other words, random variable X satisfies Proposition A.3 ii) with constant C =
max{(M2 )2, e}.
Theorem A.4. Let X0, ..., Xn−1 be a set of the subgaussian random variables with
constant C as in Theorem A.3 ii). Then

E(max
i∈Zn

|Xi|) ≤ 2
√
C log(2n) (A.22)
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Proof. For each u > 0, the following holds:

exp(u E(max
i∈Zn

|Xi|)) ≤Emax
i∈Zn

eu |Xi|

≤E(
∑

i∈Zn

eu Xi + e−u Xi) ≤ 2neCu
2

.
(A.23)

By setting u =
√

log2n
C

we get A.22.

Corollary A.5. Let Xi be random variables with finite support |Xi| ≤ M,M > e
and 0 mean. Then

E(max
i∈Zn

|Xi|) ≤M. (A.24)

The Gaussian random variables are 2-stable, i.e. the mixture of two normal vari-
ables (with 0 mean and standard deviation σ = 1), where the squared mixture coeffi-
cients sum to 1, is again normal (see the proposition below). Our goal is to establish
that subgaussian random variables with 0 mean and σ = 1 are closed with respect to
such a mixture.

Corollary A.6. (Mixture of subgaussian random variables) Let X1, . . . , Xn be
independent random variables, satisfying EXi = 0, Var Xi < C < ∞, and having
a uniform subgaussian tail. Let α1, . . . , αn be real coefficients satisfying α2

1+ · · ·+
α2
n = 1. Then the sum

Y = α1X1 + · · ·+ αnXn (A.25)

has EY = 0, Var Y <∞, and a-subgaussian tail.

Proof. We have EY = 0 by linearity of expectation, and since the variance is addi-
tive for independent random variables,

V arY =
n∑

i=1

α2
iVarXi =

n∑

i=1

α2
i <∞. (A.26)

Since EeuXi ≤ CeCu
2

by Proposition A.3, we have

EeuY =

n∏

i=1

EeuαiXi ≤ CeCu
2(α2

1+···+α2
n) = CeCu

2

, (A.27)

and hence Y has a subgaussian tail.

Sometimes we are interested in a linear combination of subgaussian random vari-
ables. The following corollary states that a linear combination of the zero-mean sub-
gaussian random variables is also subgaussian.

Corollary A.7. (Azuma/Hoefding inequality) Let X1, . . . , Xn be independent ran-
dom variables, satisfying EXi = 0, VarXi <∞, and having a uniform subgaussian
tail. Let α = {α1, . . . , αn} be real coefficients. Then the sum

∑
αiXi satisfies

Prob(|
∑

αiXi| > t) ≤ Ce
− Ct2

||α||2
l2 . (A.28)
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Proof. Indeed,

Prob(|
∑

αiXi| > t) = Prob(|
∑ αi

||α||l2Xi| > t
||α||l2 ) (A.29)

≤ Ce
− Ct2

||α||2
l2 , (A.30)

where the last inequality follows from Proposition A.6.

Proposition A.8. Let k ≥ 1 be an integer. Let Y1, . . . , Yk be independent random
variables with EYi = 0, Var Yi = 1, and a uniform subgaussian tail. Then Z =
1√
k
(Y 2

1 + Y 2
2 + · · ·+ Y 2

k − k) has a subgaussian tail up to
√
k.

To establish A.8 we first show the following:

Lemma A.9. If Y is as the Yi in Proposition A.8, then there are constants C and u0
such that for all u ∈ [0, u0] we have Eeu(Y

2−1) ≤ eCu
2

and Eeu(1−Y
2) ≤ eCu

2

.

We begin with the first inequality. Note that EY 4 is finite (a constant); this fol-
lows from the subgaussian tail of Y , estimate t4 = O(et + e−t) for all t, and Propo-
sition A.3, ii).

Let F be the distribution function of Y 2; that is, F (t) = Prob (Y 2 < t). Split the
integral defining EeuY

2

into two intervals, corresponding to uY 2 ≤ 1 and uY 2 ≥ 1.
Thus,

EeuY
2

=

∫ 1/u

0

eutdF (t) +

∫ ∞

1/u

eutdF (t).

The first integral is estimated by

∫ 1/u

0

1 + ut+ u2t2dF (t) ≤
∫ ∞

0

1 + ut+ u2t2dF (t)

= 1 + uEY 2 + u2EY 4 = 1 + u+O(u2).

The second integral can be estimated by a sum:

∞∑

k=1

ek+1 Prob (Y 2 ≥ k/u) ≤ 2

∞∑

k=1

e2ke−ak/u.

Assume that u ≤ u0 = a/4; then k(2 − a/u) ≤ −ka/2u, and the sum is of order
e−Ω(1/u). Similar to the proof of Proposition A.3 we can bound this by O(u2), and
for EeuY

2

hence the estimate 1 + u+O(u2) ≤ eu+O(u2).
Then Eeu(Y

2−1) = EeuY
2

e−u ≤ eO(u2).
The calculation for estimating Ee−uY

2

is simpler, since e−ut ≤ 1 − ut + u2t2

for all t > 0 and u > 0:
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Ee−uY
2

=

∫ ∞

0

e−utdF (t) ≤
∫ ∞

0

1− ut+ u2t2dF (t)

= 1− uE[Y 2] + u2EY 4 ≤ 1− u+O(u2) ≤ e−u+O(u2).

This yields Eeu(1−Y
2) ≤ eO(u2).

Proof of Proposition A.8. For Z =
1√
k
(Y 2

1 + · · · + Y 2
k − k) and 0 < u ≤ u0

√
k,

with u0 as in Lemma A.9, we calculate E[euZ ] = E[e(u/
√
k)(Y 2

1 +···+Y 2
k −k)] =

E[e(u/
√
k)(Y 2−1)]k ≤ (eCu

2/k)k = eCu
2

. The proposition A.3 implies that Z has
a subgaussian upper tail up to 2C

√
k ≥

√
k (assuming that 2C ≥ 1). The calcula-

tion for the lower tail is similar.

A.5 Random Variables and Symmetrization in R
n

We consider now the symmetrization of random variables in R
n. This type of

argument is used frequently to reduce an arbitrary random variable to the random
variable symmetrized with the Bernoulli random variable taking values {±1} with
equal probability.

A random vector X = (xj)j∈Zd
in R

n is a measurable mapping from event
(probabilistic) space (Ω, μ) into the Rn; here μ is some probabilistic measure on R

n.
The distribution function of X is D((aj)j∈Zd

) = μ({ω ∈ Ω|X(ω) ≤ (aj)j∈Zd
})

for the point a = (aj)j∈Zd
∈ R

d. The expectation EX is defined as

EX =

∫

Ω

X(ω)dμ(ω) ∈ R
d, (A.31)

where the integral is calculated coordinate-wise. The notion of variance is replaced
with covariance defined as

ΣX = EXX ′ = EX ⊗X, (A.32)

with Σ being semi-definite d× d matrix.
Frequently, as an events space (Ω, μ) the space R

d with measure defined by dis-
tribution function D((aj)j∈Zd

) is choosen.

Definition 16. The vectors Xi, i ∈ ZN are independent if for any parallelepiped
Ii =

∏
j∈Zd

[a′ji, a
′′
ji] with a′ji ≤ a′′ji holds

μ({ω|Xi(ω) ∈ Ii for each i ∈ ZN}) =
∏

i∈ZN

μ({ω|Xi(ω) ∈ Ii}). (A.33)
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Since the definition of the independence uses only an image of Xi, the indepen-
dence of Xi, i ∈ ZN implies the independence of f(Xi), i ∈ ZN for any function
f : Rd �→ R

p.
The following statement may be found in (Ledoux and Talagrand, 2011; Ver-

shynin, 2012).

Lemma A.10. Let Xi, i ∈ ZN be a finite set of independent random variables with
values in R

d with some norm ||||. Then

E||
∑

i

(Xi − EXi)|| ≤ 2E||
∑

i

εiXi||. (A.34)

If X,Y are independent identically distributed random variables with values in R
d

with some norm || · ||, then

E||X − EX || ≤ E||X − Y || ≤ 2E||X − EX ||, (A.35)

and for all positive u holds

Prob(||X || > 2EX + u) ≤ 2Prob(||X − Y || > u). (A.36)

Proof. Since the variables Xi are independent, the realization probability space for
the variables εiXi will be product

∏
i∈ZN

(Ω, μ)×
∏
i∈ZN

(B, ν) of n copies of (Ω, μ)
with n copies of space (B, ν), where B = {−1, 1}, μ = (1/2, 1/2).

We also consider variables Yi being independent copies of variableXi. The com-
mon realization space will be

∏
i∈ZN

(Ω, μ) ×
∏
i∈ZN

(B, ν) ×
∏
i∈ZN

(Ω, μ) with
variables Xi dependent only on the first n coordinates, variables εi dependent only
on the second n coordinates, and Yi dependent only on the last coordinates. We
denote expectations by the first(second/third) n coordinates by EX , Eε, EY accord-
ingly. Then

E||
∑

i∈ZN

(Xi − EXi)|| = E||
∑

i∈ZN

(Xi − EYi)||

≤ EXEY ||
∑

i∈ZN

(Xi − Yi)|| = EXEY ||
∑

i∈ZN

εi(Xi − Yi)||

= EεEXEY ||
∑

i∈ZN

εi(Xi − Yi)||

≤ EXEY Eε||
∑

i∈ZN

εi(Xi)||+ EXEYEε||
∑

i∈ZN

εi(Yi)||

= 2E||
∑

i∈ZN

εiXi||,

where the first equality is due to the fact that variables Xi and Yi are identically
distributed and independent.

The first inequality is the corollary of the triangle inequality and is known as the
Jensen inequality. It states that for two vectors, the norm of half sum does not exceed
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half sum of norm, and then it is extended to the expectation of norm of random
variables vs. norm of expectation of vector.

The second equality is due to the fact that by multiplying Xi − Yi by −1 we
simply exchange the i-th variable in the first and the third n-tuple of omegas, and,
hence, the total expectation remains the same.

The third equality is valid since we find an expectation of a constant function.
The second inequality is due to the triangle inequality for norm, and the possibility
to change the order of integration due to the Fubini theorem. Finally, the last equality
is valid since εiXi and εiYi are identically distributed.

To show A.35, we first use three expressions in the proof of A.34 and then just
use triangle inequality:

E||X − EX || =E||(X − EY )|| ≤ EXEY ||X − Y || = E||X − Y ||
≤E||X − EX ||+ E||Y − EY || = 2E||X − EX ||.

(A.37)

To show A.36, we use independence of X and Y and the fact that Prob(||X || ≥
2E||X ||) 2E||X || ≤ E||X ||, and hence Prob(||X || ≤ 2E||X ||) ≥ 1/2:

Prob(||X − Y || > u) ≥ Prob(||X || − ||Y || > u)

≥Prob({||X || > 2E||X ||+ u} ∩ {||Y || ≤ 2E||Y ||})
=Prob(||Y || ≤ 2E||Y ||)Prob(||X || > 2E||X ||+ u)

≥1/2Prob(||X || > 2E||X ||+ u).

(A.38)

A.6 Subgaussian Processes
Let (T, d) be a metric space, in other words, T is a set and d is a distance on T .

Definition 17. Subgaussian process Vt, t ∈ T with indices in the metric space (T, d)
is a set of random variables, possibly with values in R

q satisfying for some constant
c and each t, t′ ∈ T

Prob({||Vt − V ′
t || > s}) ≤ e

cs2

d2(t,t′) . (A.39)

Example 5. Let ψi, i ∈ Zq be a set of independent subgaussian random variables;
choose (T, d) = (Rq , ||||Rq). Then by Azuma/Hoefding inequality Vt, t ∈ T :

Vt =
∑

i∈Zq

tiψi (A.40)

is a subgaussian process.
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A.7 Dudley Entropy Inequality
The goal of this section is to give proof of the Dudley inequality. We follow

Talagrand (1996) and Rudelson (2007) in our exposition. Loosely speaking, the in-
equality estimates probability of divergence of random process through integral of
metric entropy of index set. In order to introduce the inequality we need to clarify
what supt∈T |Vt−Vt0 | means. Since each process is defined a.e. taking sup may end
up not being a measurable function.

We assume that the index set T is compact, in order to have a uniformly bounded
distance between any two sets of points t, t′ ∈ T , and a bounded diameter of
d(T ) = supt,t′∈T d(t, t′). Recall that being compact means that every cover by open
balls contains finite sub-cover. The equivalent formulation says that every continuous
function reaches its sup at some point.

There is a countable dense in (T, d) set, since by covering T with open balls
of size 2−i, and taking finite sub-cover, we obtain a dense, countable subset. We
take supremum over that set. This extra assumption is sufficient to keep us in the
measurable world.

Recall also that logN(T, d, ε) is called metric entropy of metric space (T, d).

Theorem A.11. Let (T, d) be a compact metric space. Let Vt, t ∈ T be a subgaus-
sian process, and let M =

∫∞
0

√
logN(T, d, ε)dε. Then for any s ≥ 1, and any

t0 ∈ T ,
Prob({sup

t∈T
||Vt − Vt0 || > sM}) ≤ e−C·s2 . (A.41)

Proof. By property of compact, T may be covered with a finite number of unit balls,
hence there exists a natural number j0 such that d(T ) ≤ 2j0 . Consider

M2 =
∞∑

j=−j0
2−j
√

logN(T, d, ε). (A.42)

We have
d(T ) ≤ 2−j0 ≤M2,

and, since
√

logN(T, d, ε) is decreasing function by ε,

1

2
M2 ≤M ≤ 2M2. (A.43)

Thus, up to change of constant C in A.41 it is enough to show that

Prob({sup
t∈T

||Vt − Vt0 || > sM2}) ≤ e−C·s2. (A.44)

We choose Πj being 2−j − ε-net with Nj points and approximate t by πj(t) ∈ Πj ,
one of the closest points of Πj to t. As a first point πj0(t) we choose t0.
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We represent Vt − Vt0 as the chain sum

Vt − Vt0 = Vt − Vπl(t) +
l∑

j=j0+1

(Vπj(t) − Vπj−1(t)), (A.45)

and estimate the contribution of each summand in A.45 using subgaussian tail in-
equality. Since πj(t) is the closest point to t in 2−j − ε-net, then

d(πk(t), πk−1(t)) ≤ d(πk(t), t) + d(t, πk−1(t)) ≤ 2−k+2.

There are at most NkNk−1 ≤ N2
k pairs (πk(t), πk−1(t)).

Let aj be a sequence of positive numbers to be defined later. By definition of
subgaussian tail, for any x ∈ T ,

Prob({||Vπj(x) − Vπj−1(x)|| ≥ aj}) ≤ e
ca2j

16·22j .

The probability of supremum in A.44 does not exceed
∞∑

j=j0

NjNj−1e
ca2j

16·22j ≤
∞∑

j=j0

N 2
j e
.
ca2j

16 · 22j . (A.46)

Choose aj = 4√
c
2−j · (

√
logNj +

√
j − j0 + 2 + s). Then the right side of A.46

does not exceed ∞∑

j=j0

e−(j−j0+2)−s2 ≤ e−s
2

.

We established that

Prob({sup
t∈T

||Vt − vt0 || ≥
∞∑

j=j0

aj}) ≤ e−s
2

.

Since
∞∑

j=j0

aj ≤ C

∞∑

j=j0

2−j(
√
logNj+s

√
j − j0 + 2) ≤ CM2+sd(T )+CM2 ≤ CM2·s,

we completed the proof of A.41.

Corollary A.12. (Dudley entropy inequality) Let Vt, t ∈ T be a subgaussian process
with Vt0 = 0. Then

E sup
t∈T

||Vt|| ≤ C

∫ ∞

0

√
logN(T, d, ε)dε. (A.47)

Proof. Using Theorem A.11 we get

E sup
t∈T

||Vt|| =
∫ ∞

0

xProb({sup
t∈T

||Vt|| > x})dx ≤ CM+

∫ ∞

CM

xe−x
2/CMdx ≤ CM,

(A.48)
for appropriate choice of constants on each step.
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A.8 Large Deviation for the Bounded Random Operators
We need the following large deviation type estimate for the uniformly bounded

operators. See Theorems 6.17 and 6.19 from Ledoux and Talagrand (2011) for s =
Kl.

Theorem A.13. Let Y1, ..., Yn be independent symmetric random variables in R
n.

Assume that ||Yj || ≤ M . Then for any l ≥ q, and any t > 0, the random variable
Y = ||

∑
j∈Zn

Yj || satisfies

Prob(Y ≥ 8qE(Y ) + 2Ml+ t) ≤ C

ql
+ 2e

− t2

256E(Y )2 . (A.49)
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Sjöstrand, K. 2005. Matlab implementation of LASSO, LARS, the elastic net and
SPCA: http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3897.

Skretting, K., Engan, K., 2010. Recursive least squares dictionary learning algorithm.
IEEE Transactions on Signal Processing 58 (4), 2121–2130.

Srebro, N., Rennie, J., Jaakkola, T., 2004. Maximum-margin matrix factorization. In:
Proc. of Neural Information Processing Systems (NIPS). Vol. 17. pp. 1329–1336.

Starck, J.-L., Donoho, D., Candès, E., 2003a. Astronomical image representation by
the curvelet transform. Astronomy and Astrophysics 398 (2), 785–800.

Starck, J.-L., Nguyen, M., Murtagh, F., 2003b. Wavelets and curvelets for image
deconvolution: A combined approach. Signal Processing 83, 2279–2283.

Strohmer, T., Heath, R., 2003. Grassmannian frames with applications to coding and
communication. Applied and Computational Harmonic Analysis 14 (3), 257–275.

Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., Ye, J., 2009. Mining
brain region connectivity for Alzheimer’s disease study via sparse inverse covari-
ance estimation. In: Proc. of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). ACM, pp. 1335–1344.

Szlam, A., Gregor, K., Cun, Y., 2011. Structured sparse coding via lateral inhibition.
In: Proc. of Neural Information Processing Systems (NIPS). pp. 1116–1124.

Talagrand, M., 1996. Majorizing measures: The generic chaining. The Annals of
Probability 24 (3), 1049–1103.

Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, Series B 58 (1), 267–288.

Tibshirani, R., 2013. The Lasso problem and uniqueness. Electronic Journal of Statis-
tics 7, 1456–1490.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K., 2005. Sparsity and
smoothness via the fused Lasso. Journal of the Royal Statistical Society Series
B, 91–108.

Tibshirani, R., Wang, P., 2008. Spatial smoothing and hot spot detection for CGH
data using the fused Lasso. Biostatistics 9 (1), 18–29.

Tipping, M., 2001. Sparse Bayesian learning and the Relevance Vector Machine.
Journal of Machine Learning Research 1, 211–244.



224 Bibliography

Tipping, M., Bishop, C., 1999. Probabilistic principal component analysis. Journal
of the Royal Statistical Society, Series B 21 (3), 611–622.

Toh, K.-C., Yun, S., 2010. An accelerated proximal gradient algorithm for nuclear
norm regularized least squares problems. Pacific J. Optim. 6, 615–640.

Tosic, I., Frossard, P., 2011. Dictionary learning: What is the right representation for
my signal? IEEE Signal Proc. Magazine 28 (2), 27–38.

Tropp, A., 2006. Just relax: Convex programming methods for subset slection and
sparse approximation. IEEE Trans. Inform. Theory 51 (3), 1030–1051.

Tseng, P., Yun, S., 2009. A coordinate gradient descent method for nonsmooth sepa-
rable minimization. Mathematical Programming 117 (1), 387–423.

Turlach, B., Venables, W., Wright, S., 2005. Simultaneous variable selection. Tech-
nometrics 47 (3), 349–363.

van de Geer, S., 2008. High-dimensional generalized linear models and the Lasso.
Ann. Statist. 36, 614–645.

Vandenberghe, L., Boyd, S., Wu, S., 1998. Determinant maximization with linear
matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19 (2), 499–533.

Vardi, Y., 1996. Network tomography: Estimating source-destination traffic intensi-
ties from link data. J. Amer. Statist. Assoc. 91, 365–377.

Vershynin, R., 2012. Introduction to the non-asymptotic analysis of random matrices.
In: Eldar, Y., Kutyniok, G. (Eds.), Compressed Sensing, Theory and Application.
Cambridge University Press, pp. 210–268.

Wainwright, M., May 2009. Sharp thresholds for noisy and high-dimensional recov-
ery of sparsity using l1-constrained quadratic programming (Lasso). IEEE Trans-
actions on Information Theory 55, 2183–2202.

Wainwright, M., Ravikumar, P., Lafferty, J., 2007. High-dimensional graphical model
selection using l1-regularized logistic regression. Proc. of Neural Information Pro-
cessing Systems (NIPS) 19, 1465–1472.

Weisberg, S., 1980. Applied Linear Regression. Wiley, New York.

Welch, L., 1974. Lower bounds on the maximum cross correlation of signals (cor-
resp.). IEEE Transactions on Information Theory 20 (3), 397–399.

Whittaker, E., 1915. On the functions which are represented by the expansion of
interpolating theory. Proc. R. Soc. Edinburgh 35, 181–194.

Whittaker, J., 1929. The Fourier theory of the cardinal functions. Proc. Math. Soc.
Edinburgh 1, 169–176.

Whittaker, J., 1990. Graphical Models in Applied Multivariate Statistics. Wiley.



Bibliography 225

Wipf, D., Rao, B., August 2004. Sparse Bayesian learning for basis selection. IEEE
Transactions on Signal Processing 52 (8), 2153–2164.

Witten, D., Tibshirani, R., Hastie, T., 2009. A penalized matrix decomposition, with
applications to sparse canonical correlation analysis and principal components.
Biostatistics 10 (3), 515–534.

Xiang, J., Kim, S., 2013. A* Lasso for learning a sparse Bayesian network struc-
ture for continuous variables. In: Proceedings of Neural Information Processing
Systems (NIPS). pp. 2418–2426.

Xiang, Z., Xu, H., Ramadge, P., 2011. Learning sparse representations of high dimen-
sional data on large scale dictionaries. In: Proc. of Neural Information Processing
Systems (NIPS). Vol. 24. pp. 900–908.

Xu, W., Liu, X., Gong, Y., 2003. Document clustering based on non-negative matrix
factorization. In: Proc. of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. SIGIR ’03. ACM, pp.
267–273.

Yaghoobi, M., Blumensath, T., Davies, M., 2009. Dictionary learning for sparse ap-
proximations with the majorization method. IEEE Transactions on Signal Process-
ing 57 (6), 2178–2191.

Yuan, M., 2010. Sparse inverse covariance matrix estimation via linear programming.
Journal of Machine Learning Research 11, 2261–2286.

Yuan, M., Ekici, A., Lu, Z., Monteiro, R., 2007. Dimension reduction and coeffi-
cient estimation in multivariate linear regression. Journal of the Royal Statistical
Society. Series B (Methodological) 69 (3), 329–346.

Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, Series B 68, 49–67.

Yuan, M., Lin, Y., 2007. Model selection and estimation in the Gaussian graphical
model. Biometrika 94(1), 19–35.

Zhao, P., Rocha, G., Yu, B., 2009. Grouped and hierarchical model selection through
composite absolute penalties. Annals of Statistics 37 (6A), 3468–3497.

Zhao, P., Yu, B., November 2006. On model selection consistency of Lasso. J. Ma-
chine Learning Research 7, 2541–2567.

Zhao, P., Yu, B., 2007. Stagewise Lasso. Journal of Machine Learning Research 8,
2701–2726.

Zheng, A., Rish, I., Beygelzimer, A., 2005. Efficient test selection in active diagnosis
via entropy approximation. In: Proc. of the Twenty-First Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI). AUAI Press, Arlington,
Virginia, pp. 675–682.



226 Bibliography

Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J., 2009. Non-parametric
Bayesian dictionary learning for sparse image representations. In: Proc. of Neural
Information Processing Systems (NIPS). pp. 2295–2303.

Zou, H., 2006. The adaptive Lasso and its oracle properties. Journal of the American
Statistical Association 101 (476), 1418–1429.

Zou, H., Hastie, T., 2005. Regularization and variable selection via the Elastic Net.
Journal of the Royal Statistical Society, Series B 67 (2), 301–320.

Zou, H., Hastie, T., Tibshirani, R., 2006. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics 15 (2), 262–286.



y = Ax +  noise

Measurements: fMRI data (‘encoding’)
mental states, behavior,
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rows – samples (~500)
Columns – voxels (~30,000)
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FIGURE 1.3: Mental state prediction from functional MRI data, viewed as a linear
regression with simultaneous variable selection. The goal is to find a subset of fMRI
voxels, indicating brain areas that are most relevant (e.g., most predictive) about a
particular mental state.

(a)

(b)

q = 2 q = 1 q = 0.5

q = 2 q = 1 q = 0.5

FIGURE 2.3: (a) Level sets ||x||qq = 1 for several values of q. (b) Optimization of
(Pq) as inflation of the origin-centered lq-balls until they meet the set of feasible
points Ax = y.



FIGURE 3.2: A one-dimensional example demonstrating perfect signal reconstruc-
tion based on l1-norm. Top-left (a): the original signal x0; top-right (b): (real part of)
the DFT of the original signal, x̂0; bottom-left (c): observed spectrum of the signal
(the set of Fourier coefficients); bottom-right (d): solution to P ′

1: exact recovery of
the original signal.

(a) (b)

FIGURE 6.3: Brain maps showing absolute values of the Elastic Net solution (i.e.
coefficients xi of the linear model) for the Instruction target variable in PBAIC
dataset, for subject 1 (radiological view). The number of nonzeros (active variables)
is fixed to 1000. The two panels show the EN solutions (maps) for (a) λ2 = 0.1 and
(b) λ2 = 2. The clusters of nonzero voxels are bigger for bigger λ2, and include
many, but not all, of the λ2 = 0.1 clusters. Note that the highlighted (red circle)
cluster in (a) is identified by EN with λ2 = 0.1, but not in the λ2 = 2.0 model.



Pain: predictive performance Instructions: predictive performance
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FIGURE 6.5: Predictive accuracy of the subsequent “restricted” Elastic Net solu-
tions, for (a) pain perception and (b) “Instructions” task in PBAIC. Note very slow
accuracy degradation in the case of pain prediction, even for solutions found after
removing a significant amount of predictive voxels, which suggests that pain-related
information is highly distributed in the brain (also, see the spatial visualization of
some solutions in Figure (c)). The opposite behavior is observed in the case of the
“Instruction” – a sharp decline in the accuracy after a few first “restricted” solutions
are deleted, and very localized predictive solutions shown earlier in Figure 6.3.



MRF vs GNB vs SVM:
schizophrenic vs normal

MRF (0.1): degree (long-distance)
GNB: degree (long-distance)
SVM: degree (long-distance)

K top voxels (ttest)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 50 100 150 200 250 300

(a) (b)

FIGURE 8.2: (a) FDR-corrected 2-sample t-test results for (normalized) degree
maps, where the null hypothesis at each voxel assumes no difference between the
schizophrenic vs. normal groups. Red/yellow denotes the areas of low p-values pass-
ing FDR correction at α = 0.05 level (i.e., 5% false-positive rate). Note that the
mean (normalized) degree at those voxels was always (significantly) higher for nor-
mals than for schizophrenics. (b) Gaussian MRF classifier predicts schizophrenia
with 86% accuracy using just 100 top-ranked (most-discriminative) features, such as
voxel degrees in a functional network.

FIGURE 8.3: Structures learned for cocaine addicted (left) and control subjects
(right), for sparse Markov network learning method with variable-selection via �1,2
method (top), and without variable-selection, i.e., standard graphical lasso approach
(bottom). Positive interactions are shown in blue, negative interactions are shown in
red. Notice that structures on top are much sparser (density 0.0016) than the ones
on the bottom (density 0.023) where the number of edges in a complete graph is
≈378,000.
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