
Andrej Brodnik
Alejandro López-Ortiz
Venkatesh Raman
Alfredo Viola (Eds.)

Space-Efficient
Data Structures, Streams,
and Algorithms

Fe
st

sc
hr

ift
LN

CS
 8

06
6

Papers in Honor of J. Ian Munro
on the Occasion of His 66th Birthday

 123

Lecture Notes in Computer Science 8066
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrej Brodnik Alejandro López-Ortiz
Venkatesh Raman Alfredo Viola (Eds.)

Space-Efficient
Data Structures, Streams,
and Algorithms

Papers in Honor of J. Ian Munro
on the Occasion of His 66th Birthday

13

Volume Editors

Andrej Brodnik
University of Ljubljana, Faculty of Computer and Information Science
Ljubljana, Slovenia and
University of Primorska, Department of Information Science and Technology
Koper, Slovenia
E-mail: andrej.brodnik@fri.uni-lj.si

Alejandro López-Ortiz
University of Waterloo, Cheriton School of Computer Science
Waterloo, ON, Canada
E-mail: alopez-o@uwaterloo.ca

Venkatesh Raman
The Institute of Mathematical Sciences
Chennai, India
E-mail: vraman@imsc.res.in

Alfredo Viola
Universidad de la República, Facultad de Ingeniería
Montevideo, Uruguay
E-mail: viola@fing.edu.uy

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40272-2 e-ISBN 978-3-642-40273-9
DOI 10.1007/978-3-642-40273-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944678

CR Subject Classification (1998): F.2, E.1, G.2, H.3, I.2.8, E.5, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

J. Ian Munro

Preface

This volume contains research articles and surveys presented at Ianfest-66, a con-
ference on space-efficient data structures, streams, and algorithms held during
August 15–16, 2013, at the University of Waterloo, Canada.

The conference was held to celebrate Ian Munro’s 66th birthday. Just like
Ian’s interests, the articles in this volume encompass a spectrum of areas in-
cluding sorting, searching, selection and several types of, and topics in, data
structures including space-efficient ones.

Ian Munro completed his PhD at the University of Toronto, around the time
when computer science in general, and analysis of algorithms in particular, was
maturing to be a field of research. His PhD thesis resulted in the classic book
The Computational Complexity of Algebraic and Numeric Problems with his
PhD supervisor Allan Borodin. He presented his first paper in STOC 1971, the
same year and conference in which Stephen Cook (also from the same university)
presented the paper on what we now call “NP-completeness.” Knuth’s first two
volumes of The Art of Computer Programming were out, and the most influential
third volume was to be released soon after. Hopcroft and Tarjan were developing
important graph algorithms (for planarity, biconnected components etc).

Against this backdrop, Ian started making fundamental contributions in sort-
ing, selection and data structures (including optimal binary search trees, heaps
and hashing). He steadfastly stayed focused on these subjects, always taking an
expansive view, which included text search and data streams at a time when few
others were exploring these topics.

While the exact worst case comparison bound to find the median is still
open, he closed this problem in 1984 along with his student Walter Cunto for
the average case. His seminal work on implicit data structures with his student
Hendra Suwanda marked his focus on space-efficient data structures. This was
around the time of “megabyte” main memories, so space was becoming cheaper,
though, as usual, the input sizes were becoming much larger. He saw early on
that these trends will continue making the focus on space-efficiency more, rather
than less, important. This trend has continued with the development of personal
computing in its many forms and multilevel caches. His unique expertise helped
contribute significantly to the Oxford English Dictionary (OED) project at Wa-
terloo, and the founding of the OpenText as a company dealing with text-based
algorithms.

His invited contribution at the FSTTCS conference titled Tables brought the
focus of work on succinct data structures in the years to come. His early work
with Mike Paterson on selection is regarded as the first paper in a model that
has later been called the “streaming model,” a model of intense study in the
modern Internet age. In this model, his other paper “Frequency estimation of

VIII Preface

internet packet streams with limited space” with Erik Demaine and Alejandro
López-Ortiz has received over 300 citations.

In addition to his research, Ian is an inspiring teacher. He has supervised (or
co-supervised) over 20 PhD students and about double the number of Master’s
students. For many years, Ian has been part of the faculty team that coached
Canadian high school students for the International Olympiad in Informatics
(IOI). He has led the Canadian team and served on the IOI’s international
scientific committee.

Ian also gets a steady stream of post-doctoral researchers and other visi-
tors from throughout the world. He has served in many program committees of
international conferences and in editorial boards of journals, and has given ple-
nary talks at various international conferences. He has held visiting positions at
several places including Princeton University, University of Washington, AT&T
Bell Labaratories, University of Arizona, University of Warwick and Universitè
libre de Bruxelles. Through his students and their students and other collab-
orators, he has helped establish strong research groups in various parts of the
world including Chile, India, South Korea, Uruguay and in many parts of Eu-
rope and North America. He also has former students in key positions in leading
companies of the world.

His research achievements have been recognized by his election as Fellow of
the Royal Society of Canada (2003) and Fellow of the ACM (2008). He was made
a University Professor in 2006.

Ian has a great sense of generosity, wit and humor. Ian, his wife, Marilyn,
and his children, Alison and Brian, are more than a host to his students and
collaborators; they have helped establish a long-lasting friendship with them.

At 66 Ian is going strong, makes extensive research tours, supervises many
PhD students and continues to educate and inspire students and researchers. We
wish him and his family many more years of fruitful and healthy life.

We thank a number of people that made this volume possible. First and
foremost, we thank all the authors who came forward to contribute their articles
on a short notice, all anonymous referees, proofreaders, and the speakers at the
conference. We thank Marko Grgurovič,Wendy Rush and Jan Vesel for collecting
and verifying data about Ian’s students and work. We thank Alfred Hofmann,
Anna Kramer and Ronan Nugent at Springer for their enthusiastic support and
help in producing this Festschrift. We thank Alison Conway at Fields Institute at
Toronto for maintaining the conference website and managing registration, and
Fields Institute for their generous financial support, and University of Waterloo
for their infrastructural and organizational support.

This volume contains surveys on emerging, as well as established, fields in
data structures and algorithms, written by leading experts, and we feel that it
will become a book to cherish in the years to come.

June 2013 Andrej Brodnik
Alejandro López-Ortiz

Venkatesh Raman
Alfredo Viola

Curriculum Vitae J. Ian Munro

Current Position

University Professor and Canada Research Chair in Algorithm Design

Address

Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1
https://cs.uwaterloo.ca/~imunro/

Personal Information

Born: July 10, 1947
Married: to Marilyn Miller
Two children: Alison and Brian

Education

Ph.D., Computer Science, University of Toronto, 1971
M.Sc., Computer Science, University of British Columbia, 1969
B.A. (Hons), Mathematics, University of New Brunswick, 1968

Experience

1971-present: Professor, University of Waterloo, Ontario, Canada

Professional Interests

Data structures, particularly fast and space-efficient structures.
The design, analysis and implementation of algorithms.
Bioinformatics.
Database systems and data warehousing, particularly efficiency issues.

X Curriculum Vitae J. Ian Munro

Co-authors

1. Brian Allen
2. Stephen Alstrup
3. Helmut Alt
4. Lars Arge
5. Diego Arroyuelo
6. Jérémy Barbay
7. Michael A. Bender
8. David Benoit
9. Therese Biedl
10. Allan Borodin
11. Prosenjit Bose
12. Gerth Stølting Brodal
13. Andrej Brodnik
14. Jean Cardinal
15. Svante Carlsson
16. Luca Castelli Aleardi
17. Pedro Celis
18. Timothy Chan
19. David R. Clark
20. Francisco Claude
21. Gordon Cormack
22. Joseph C. Culberson
23. Walter Cunto
24. David DeHaan
25. Erik D. Demaine
26. Martin L. Demaine
27. David P. Dobkin
28. Reza Dorrigiv
29. Stephane Durocher
30. Amr Elmasry
31. Martin Farach-Colton
32. Arash Farzan
33. Paolo Ferragina
34. Amos Fiat
35. Faith E. Fich
36. Jeremy T. Fineman
37. Samuel Fiorini
38. Rudolf Fleischer
39. Gianni Franceschini
40. Robert Fraser
41. Michael L. Fredman
42. Travis Gagie
43. W. Morven Gentleman
44. Pedram Ghodsnia

45. Lukasz Golab
46. Mordecai Golin
47. Alexander Golynski
48. Gastón H. Gonnet
49. Roberto Grossi
50. Gwenaël Joret
51. Torben Hagerup
52. Angèle M. Hamel
53. E. R. Hansen
54. Nicholas J. A. Harvey
55. Meng He
56. Bryan Holland-Minkley
57. John Iacono
58. Lars Jacobsen
59. X Richard Ji
60. Raphaël M. Jungers
61. Kanela Kaligosi
62. T. Kameda
63. Johan Karlsson
64. Rolf G. Karlsson
65. Marek Karpinski
66. Paul E. Kearney
67. Graeme Kemkes
68. James A. King
69. Alejandro López-Ortiz
70. Stefan Langerman
71. Per-Åke Larson
72. Anna Lubiw
73. Kurt Mehlhorn
74. Peter Bro Miltersen
75. Pat Morin
76. Moni Naor
77. Yakov Nekrich
78. Patrick K. Nicholson
79. Andreas Nilsson
80. B. John Oommen
81. Mark H. Overmars
82. Linda Pagli
83. Thomas Papadakis
84. Michael S. Paterson
85. Derek Phillips
86. Patricio V. Poblete
87. M. Ziaur Rahman
88. Raúl J. Ramı́rez

Curriculum Vitae J. Ian Munro XI

89. Rajeev Raman
90. Venkatesh Raman
91. Theis Rauhe
92. Manuel Rey
93. Edward L. Robertson
94. Doron Rotem
95. Alejandro Salinger
96. Jeffrey S. Salowe
97. Peter Sanders
98. Srinivasa Rao Satti
99. Jeanette P. Schmidt

100. Allen J. Schwenk
101. Alejandro A. Schäffer
102. Robert Sedgewick

103. Alan Siegel
104. Matthew Skala
105. Philip M. Spira
106. Adam J. Storm
107. Hendra Suwanda
108. David J. Taylor
109. Mikkel Thorup
110. Kamran Tirdad
111. Frank Wm. Tompa
112. Troy Vasiga
113. Alfredo Viola
114. Derick Wood
115. Gelin Zhou

Books and Book chapters

[1] Barbay, J., Munro, J.I.: Succinct encoding of permutations: Applications
to text indexing. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp.
915–919. Springer (2008)

[2] Borodin, A., Munro, J.I.: The computational complexity of algebraic and
numeric problems. American Elsevier, New York (1975)

[3] Munro, J.I., Satti, S.R.: Succinct representation of data structures. In:
Mehta, D.P., Sahni, S. (eds.) Handbook of Data Structures and Applica-
tions. Chapman & Hall/Crc Computer and Information Science Series, ch.
37. Chapman & Hall/CRC (2004)

Edited Proceedings

[4] Blum, M., Galil, Z., Ibarra, O.H., Kozen, D., Miller, G.L., Munro, J.I.,
Ruzzo, W.L. (eds.): SFCS 1983: Proceedings of the 24th Annual Sympo-
sium on Foundations of Computer Science, p. iii. IEEE Computer Society,
Washington, DC (1983)

[5] Chwa, K.-Y., Munro, J.I. (eds.): COCOON 2004. LNCS, vol. 3106.
Springer, Heidelberg (2004)

[6] López-Ortiz, A., Munro, J.I. (eds.): ACM Transactions on Algorithms 2(4),
491 (2006)

[7] Munro, J.I. (ed.): Proceedings of the Fifteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA,
January 11-14. SIAM (2004)

XII Curriculum Vitae J. Ian Munro

Journal and Conference Papers

[8] Allen, B., Munro, J.I.: Self-organizing binary search trees. J. ACM 25(4),
526–535 (1978); A preliminary version appeared in SFCS 1976: Proceed-
ings of the 17th Annual Symposium on Foundations of Computer Science,
pp. 166–172. IEEE Computer Society, Washington, DC (1976)

[9] Alt, H., Mehlhorn, K., Munro, J.I.: Partial match retrieval in implicit data
structures. Inf. Process. Lett. 19(2), 61–65 (1984); A preliminary version
appeared in Gruska, J., Chytil, M.P. (eds.): MFCS 1981. LNCS, vol. 118,
pp. 156–161. Springer, Heidelberg (1981)

[10] Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Ian Munro,
J.I.: An optimal cache-oblivious priority queue and its application to graph
algorithms. SIAM J. Comput. 36(6), 1672–1695 (2007)

[11] Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro,
J.I.: Cache-oblivious priority queue and graph algorithm applications. In:
STOC 2002: Proceedings of the Thiry-Fourth Annual ACM Symposium
on Theory of Computing, pp. 268–276. ACM, New York (2002)

[12] Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz,
A., Ian Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled
monotonic chains and adaptive range search. Theor. Comput. Sci. 412(32),
4200–4211 (2011); A Preliminary Version Appeared in Dong, Y., Du, D.-
Z., Ibarra, O. (eds.): ISAAC 2009. LNCS, vol. 5878, pp. 203–212. Springer,
Heidelberg (2009)

[13] Barbay, J., Castelli Aleardi, L., He, M., Munro, J.I.: Succinct represen-
tation of labeled graphs. Algorithmica 62(1-2), 224–257 (2012); A Pre-
liminary Version Appeared in Tokuyama, T. (ed.): ISAAC 2007. LNCS,
vol. 4835, pp. 316–328. Springer, Heidelberg (2007)

[14] Barbay, J., Golynski, A., Munro, J.I., Satti, S.R.: Adaptive searching in
succinctly encoded binary relations and tree-structured documents. Theor.
Comput. Sci. 387(3), 284–297 (2007); A Preliminary Version Appeared in
Lewenstein, M., Valiente, G. (eds.): CPM 2006. LNCS, vol. 4009, pp. 24–
35. Springer, Heidelberg (2006)

[15] Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings,
binary relations and multilabeled trees. ACM Trans. Algorithms 7(4), 1–
27 (2011); A Preliminary Version Appeared in SODA 2007: Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 680–689. Society for Industrial and Applied Mathematics, Philadelphia
(2007)

[16] Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Satti, S.R.:
Representing trees of higher degree. Algorithmica 43(4), 275–292 (2005);
A Preliminary Version Appeared in Dehne, F., Gupta, A., Sack, J.-R.,
Tamassia, R. (eds.): WADS 1999. LNCS, vol. 1663, pp. 169–180. Springer,
Heidelberg (1999)

[17] Biedl, T., Chan, T., Demaine, E.D., Fleischer, R., Golin, M., King, J.A.,
Munro, J.I.: Fun-sort – or the chaos of unordered binary search. Discrete
Appl. Math. 144(3), 231–236 (2004)

Curriculum Vitae J. Ian Munro XIII

[18] Biedl, T., Golynski, A., Hamel, A.M., López-Ortiz, A., Munro, J.I.: Sorting
with networks of data structures. Discrete Appl. Math. 158(15), 1579–1586
(2010)

[19] Borodin, A., Munro, J.I.: Evaluating polynomials at many points. Inf.
Process. Lett. 1(2), 66–68 (1971)

[20] Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., López-
Ortiz, A., Morin, P., Munro, J.I.: Online routing in convex subdivisions.
Int. J. Comput. Geometry Appl. 12(4), 283–296 (2002); A Preliminary
Version Appeared in Lee, D.T., Teng, S.-H. (eds.): ISAAC 2000. LNCS,
vol. 1969, pp. 47–59. Springer, Heidelberg (2000)

[21] Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple poly-
gons. Comput. Geom. Theory Appl. 23(3), 313–335 (2002)

[22] Brodal, G.S., Demaine, E.D., Fineman, J.T., Iacono, J., Langerman,
S., Munro, J.I.: Cache-oblivious dynamic dictionaries with update/query
tradeoffs. In: SODA 2010: Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, pp. 1448–1456. Society for In-
dustrial and Applied Mathematics, Philadelphia (2010)

[23] Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation
with an improved buddy system. Acta Inf. 41(4-5), 273–291 (2005)

[24] Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.:
Resizable arrays in optimal time and space. In: Dehne, F., Gupta, A.,
Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48.
Springer, Heidelberg (1999)

[25] Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst
case constant time priority queue. J. Syst. Softw. 78(3), 249–256 (2005); A
Preliminary Version Appeared in SODA 2001: Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 523–528. So-
ciety for Industrial and Applied Mathematics, Philadelphia (2001)

[26] Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the
prefix sum problem on a specialized memory architecture. In: IFIP TCS,
pp. 103–114 (2006)

[27] Brodnik, A., Miltersen, P.B., Munro, J.I.: Trans-dichotomous algorithms
without multiplication - some upper and lower bounds. In: Rau-Chaplin,
A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS,
vol. 1272, pp. 426–439. Springer, Heidelberg (1997)

[28] Brodnik, A., Munro, J.I.: Membership in constant time and almost-
minimum space. SIAM J. Comput. 28(5), 1627–1640 (1999); A Preliminary
Version Appeared in van Leeuwen, J. (ed.): ESA 1994. LNCS, vol. 855, pp.
72–81. Springer, Heidelberg (1994)

[29] Brodnik, A., Munro, J.I.: Neighbours on a grid. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 309–320. Springer, Heidelberg
(1996)

XIV Curriculum Vitae J. Ian Munro

[30] Cardinal, J., Fiorini, S., Joret, G., Jungers, R.M., Munro, J.I.: An efficient
algorithm for partial order production. CoRR abs/0811.2572 (2008); A
Preliminary Version Appeared in STOC 2009: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, pp. 93–100. ACM,
New York (2009)

[31] Cardinal, J., Fiorini, S., Joret, G., Jungers, R.M., Munro, J.I.: An efficient
algorithm for partial order production. SIAM J. Comput. 39(7), 2927–2940
(2010)

[32] Cardinal, J., Fiorini, S., Joret, G., Jungers, R.M., Munro, J.I.: Sorting un-
der partial information (without the ellipsoid algorithm). In: STOC 2010:
Proceedings of the 42nd ACM Symposium on Theory of Computing, pp.
359–368. ACM, New York (2010)

[33] Carlsson, S., Munro, J.I., Poblete, P.V.: An implicit binomial queue with
constant insertion time. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988.
LNCS, vol. 318, pp. 1–13. Springer, Heidelberg (1988)

[34] Celis, P., Larson, P.Å., Munro, J.I.: Robin hood hashing. In: SFCS 1985:
Proceedings of the 26th Annual Symposium on Foundations of Computer
Science, pp. 281–288. IEEE Computer Society, Washington, DC (1985)

[35] Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In:
SODA 1996: Proceedings of the Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 383–391. Society for Industrial and Applied
Mathematics, Philadelphia (1996)

[36] Claude, F., Munro, J.I., Nicholson, P.K.: Range queries over untangled
chains. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 82–93. Springer, Heidelberg (2010)

[37] Cormack, G., Munro, J.I., Vasiga, T., Kemkes, G.: Structure, scoring and
purpose of computing competitions. Informatics in education 5(1), 15–36
(2006)

[38] Culberson, J.C., Munro, J.I.: Explaining the behaviour of binary search
trees under prolonged updates: a model and simulations. Comput. J. 32(1),
68–75 (1989)

[39] Culberson, J.C., Munro, J.I.: Analysis of the standard deletion algorithms
in exact fit domain binary search trees. Algorithmica 5(3), 295–311 (1990)

[40] Cunto, W., Gonnet, G.H., Munro, J.I., Poblete, P.V.: Fringe analysis for
extquick: an in situ distributive external sorting algorithm. Inf. Com-
put. 92(2), 141–160 (1991)

[41] Cunto, W., Munro, J.I.: Average case selection. J. ACM 36(2), 270–279
(1989); A Preliminary Version Appeared in STOC 1984: Proceedings of the
Sixteenth Annual ACM Symposium on Theory of Computing, pp. 369–375.
ACM, New York (1984)

[42] Cunto, W., Munro, J.I., Poblete, P.V.: A case study in comparison based
complexity: Finding the nearest value(s). In: Dehne, F., Sack, J.-R., San-
toro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 1–12. Springer, Heidelberg
(1991)

[43] Cunto, W., Munro, J.I., Rey, M.: Selecting the median and two quartiles
in a set of numbers. Softw. Pract. Exper. 22(6), 439–454 (1992)

Curriculum Vitae J. Ian Munro XV

[44] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections,
unions, and differences. In: SODA 2000: Proceedings of the Eleventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp. 743–752. Society
for Industrial and Applied Mathematics, Philadelphia (2000)

[45] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Experiments on adaptive set
intersections for text retrieval systems. In: Buchsbaum, A.L., Snoeyink, J.
(eds.) ALENEX 2001. LNCS, vol. 2153, pp. 91–104. Springer, Heidelberg
(2001)

[46] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of
internet packet streams with limited space. In: Möhring, R.H., Raman,
R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg
(2002)

[47] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Robot localization without
depth perception. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002.
LNCS, vol. 2368, pp. 249–259. Springer, Heidelberg (2002)

[48] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Note: on universally easy
classes for NP-complete problems. Theor. Comput. Sci. 304(1-3), 471–476
(2003); A Preliminary Version Appeared in SODA 2001: Proceedings of
the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
910–911. Society for Industrial and Applied Mathematics, Philadelphia
(2001)

[49] Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with an im-
proved buddy system. In: Pandu Rangan, C., Raman, V., Sarukkai, S.
(eds.) FST TCS 1999. LNCS, vol. 1738, pp. 84–96. Springer, Heidelberg
(1999)

[50] Dobkin, D.P., Munro, J.I.: Time and space bounds for selection problems.
In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 192–204.
Springer, Heidelberg (1978)

[51] Dobkin, D.P., Munro, J.I.: Determining the mode. Theor. Comput. Sci. 12,
255–263 (1980)

[52] Dobkin, D.P., Munro, J.I.: Optimal time minimal space selection algo-
rithms. J. ACM 28(3), 454–461 (1981)

[53] Dobkin, D.P., Munro, J.I.: Efficient uses of the past. J. Algorithms 6(4),
455–465 (1985); A Preliminary Version Appeared in SFCS 1980: Proceed-
ings of the 21st Annual Symposium on Foundations of Computer Science,
pp. 200–206. IEEE Computer Society, Washington, DC (1980)

[54] Dorrigiv, R., Durocher, S., Farzan, A., Fraser, R., López-Ortiz, A., Munro,
J.I., Salinger, A., Skala, M.: Finding a hausdorff core of a polygon: On con-
vex polygon containment with bounded hausdorff distance. In: Dehne, F.,
Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664,
pp. 218–229. Springer, Heidelberg (2009)

[55] Dorrigiv, R., López-Ortiz, A., Munro, J.I.: List update algorithms for data
compression. In: DCC 2008: Proceedings of the Data Compression Con-
ference, p. 512. IEEE Computer Society, Washington, DC (2008)

XVI Curriculum Vitae J. Ian Munro

[56] Dorrigiv, R., López-Ortiz, A., Munro, J.I.: An application of self-organizing
data structures to compression. In: Vahrenhold, J. (ed.) SEA 2009. LNCS,
vol. 5526, pp. 137–148. Springer, Heidelberg (2009)

[57] Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of
paging algorithms. Theor. Comput. Sci. 410(38-40), 3694–3701 (2009). A
Preliminary Version Appeared in Tokuyama, T. (ed.): ISAAC 2007. LNCS,
vol. 4835, pp. 488–499. Springer, Heidelberg (2007)

[58] Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range ma-
jority in constant time and linear space. Inf. Comput. 222, 169–179 (2013);
A preliminary version appeared in Aceto, L., Henzinger, M., Sgall, J. (eds.):
ICALP 2011, Part I. LNCS, vol. 6755, pp. 244–255. Springer, Heidelberg
(2011)

[59] Elmasry, A., He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority
data structures. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O.
(eds.) ISAAC 2011. LNCS, vol. 7074, pp. 150–159. Springer, Heidelberg
(2011)

[60] Farzan, A., Ferragina, P., Franceschini, G., Munro, J.I.: Cache-oblivious
comparison-based algorithms on multisets. In: Brodal, G.S., Leonardi, S.
(eds.) ESA 2005. LNCS, vol. 3669, pp. 305–316. Springer, Heidelberg
(2005)

[61] Farzan, A., Munro, J.I.: Succinct representation of finite abelian groups.
In: ISSAC 2006: Proceedings of the 2006 International Symposium on Sym-
bolic and Algebraic Computation, pp. 87–92. ACM, New York (2006)

[62] Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In:
Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404.
Springer, Heidelberg (2008)

[63] Farzan, A., Munro, J.I.: A uniform approach towards succinct representa-
tion of trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp.
173–184. Springer, Heidelberg (2008)

[64] Farzan, A., Munro, J.I.: Succinct representation of dynamic trees. Theor.
Comput. Sci. 412(24), 2668–2678 (2011)

[65] Farzan, A., Munro, J.I.: Dynamic succinct ordered trees. In: Albers, S.,
Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 439–450. Springer, Heidelberg
(2009)

[66] Farzan, A., Munro, J.I.: A uniform paradigm to succinctly encode var-
ious families of trees. Algorithmica, 1–25 (2012), http://dx.doi.org/
10.1007/s00453-012-9664-0

[67] Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with
applications to orthogonal range maxima. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391,
pp. 327–338. Springer, Heidelberg (2012)

[68] Fiat, A., Munro, J.I., Naor, M., Schäffer, A.A., Schmidt, J.P., Siegel, A.:
An implicit data structure for searching a multikey table in logarithmic
time. J. Comput. Syst. Sci. 43(3), 406–424 (1991)

Curriculum Vitae J. Ian Munro XVII

[69] Fich, F.E., Munro, J.I., Poblete, P.V.: Permuting in place. SIAM J. Com-
put. 24(2), 266–278 (1995); A Preliminary Version Appeared in SFCS
1990: Proceedings of the 31st Annual Symposium on Foundations of Com-
puter Science, vol.1, pp. 372–379, IEEE Computer Society, Washington,
DC (1990)

[70] Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit B-trees: a new
data structure for the dictionary problem. J. Comput. Syst. Sci. 68(4), 788–
807 (2004); A Preliminary Version Appeared in FOCS 2002: Proceedings
of the 43rd Symposium on Foundations of Computer Science, pp. 145–154.
IEEE Computer Society, Washington, DC (2002)

[71] Franceschini, G., Munro, J.I.: Implicit dictionaries with O(1) modifications
per update and fast search. In: SODA 2006: Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 404–
413. ACM, New York (2006)

[72] Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements
in compressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Sil-
vestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer,
Heidelberg (2011)

[73] Gentleman, W.M., Munro, J.I.: Designing overlay structures. Softw. Pract.
Exper. 7(4), 493–500 (1977)

[74] Ghodsnia, P., Tirdad, K., Munro, J.I., Lóez-Ortiz, A.: A novel approach
for leveraging co-occurrence to improve the false positive error in signature
files. J. of Discrete Algorithms 18, 63–74 (2013)

[75] Golab, L., DeHaan, D., Demaine, E.D., López-Ortiz, A., Munro, J.I.: Iden-
tifying frequent items in sliding windows over on-line packet streams. In:
IMC 2003: Proceedings of the 3rd ACM SIGCOMM Conference on Inter-
net Measurement, pp. 173–178. ACM, New York (2003)

[76] Golynski, A., Munro, J.I., Satti, S.R.: Rank/select operations on large
alphabets: a tool for text indexing. In: SODA 2006: Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp.
368–373. ACM, New York (2006)

[77] Gonnet, G.H., Larson, P.Å., Munro, J.I., Rotem, D., Taylor, D.J., Tompa,
F.W.: Database storage structures research at the University of Waterloo.
IEEE Database Eng. Bull. 5(1), 49–52 (1982)

[78] Gonnet, G.H., Munro, J.I.: Efficient ordering of hash tables. SIAM J. Com-
put. 8(3), 463–478 (1979)

[79] Gonnet, G.H., Munro, J.I.: A linear probing sort and its analysis. In: STOC
1981: Proceedings of the Thirteenth Annual ACM Symposium on Theory
of Computing, pp. 90–95. ACM, New York (1981)

[80] Gonnet, G.H., Munro, J.I.: The analysis of an improved hashing technique.
In: STOC 1977: Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, pp. 113–121. ACM, New York (1977)

[81] Gonnet, G.H., Munro, J.I.: The analysis of linear probing sort by the use
of a new mathematical transform. J. Algorithms 5(4), 451–470 (1984)

XVIII Curriculum Vitae J. Ian Munro

[82] Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–
971 (1986); A Preliminary Version Appeared in Nielsen, M., Schmidt, E.M.
(eds.): ICALP 1982. LNCS, vol. 140, pp. 282–291. Springer, Heidelberg
(1982)

[83] Gonnet, G.H., Munro, J.I., Suwanda, H.: Toward self-organizing linear
search. In: SFCS 1979: Proceedings of the 20th Annual Symposium on
Foundations of Computer Science, pp. 169–174. IEEE Computer Society,
Washington, DC (1979)

[84] Gonnet, G.H., Munro, J.I., Suwanda, H.: Exegesis of self-organizing linear
search. SIAM J. Comput. 10(3), 613–637 (1981)

[85] Gonnet, G.H., Munro, J.I., Wood, D.: Direct dynamic structures for some
line segment problems. Computer Vision, Graphics, and Image Process-
ing 23(2), 178–186 (1983)

[86] Hagerup, T., Mehlhorn, K., Munro, J.I.: Maintaining discrete probability
distributions optimally. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.)
ICALP 1993. LNCS, vol. 700, pp. 253–264. Springer, Heidelberg (1993)

[87] Harvey, N.J.A., Munro, J.I.: Deterministic skipnet. Inf. Process.
Lett. 90(4), 205–208 (2004); A Preliminary Version Appeared in PODC
2003: Proceedings of the Twenty-Second Annual Symposium on Princi-
ples of Distributed Computing, pp. 152–152. ACM, New York(2003)

[88] He, M., Munro, J.I.: Succinct representations of dynamic strings. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346.
Springer, Heidelberg (2010)

[89] He, M., Munro, J.I.: Space efficient data structures for dynamic orthogonal
range counting. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011.
LNCS, vol. 6844, pp. 500–511. Springer, Heidelberg (2011)

[90] He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear
space. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 160–169. Springer, Heidelberg (2011)

[91] He, M., Munro, J.I., Satti, S.R.: A categorization theorem on suffix ar-
rays with applications to space efficient text indexes. In: SODA 2005:
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 23–32. Society for Industrial and Applied Mathematics,
Philadelphia (2005)

[92] He, M., Munro, J.I., Satti, S.R.: Succinct ordinal trees based on tree cover-
ing. ACM Trans. Algorithms 8(4), 1–32 (2012); A Preliminary Version Ap-
peared in Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.): ICALP
2007. LNCS, vol. 4596, pp. 509–520. Springer, Heidelberg (2007)

[93] He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: Asano,
T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS,
vol. 7074, pp. 140–149. Springer, Heidelberg (2011)

[94] He, M., Munro, J.I., Zhou, G.: A framework for succinct labeled ordinal
trees over large alphabets. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.)
ISAAC 2012. LNCS, vol. 7676, pp. 537–547. Springer, Heidelberg (2012)

[95] He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In:
Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586.
Springer, Heidelberg (2012)

Curriculum Vitae J. Ian Munro XIX

[96] Kaligosi, K., Mehlhorn, K., Munro, J.I., Sanders, P.: Towards optimal mul-
tiple selection. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 103–114. Springer,
Heidelberg (2005)

[97] Kameda, T., Munro, J.I.: A O(|V | ∗ |E|) algorithm for maximum matching
of graphs. Computing 12(1), 91–98 (1974)

[98] Karlsson, R.G., Munro, J.I.: Proximity of a grid. In: Mehlhorn, K. (ed.)
STACS 1985. LNCS, vol. 182, pp. 187–196. Springer, Heidelberg (1984)

[99] Karlsson, R.G., Munro, J.I., Robertson, E.L.: The nearest neighbor prob-
lem on bounded domains. In: Brauer, W. (ed.) ICALP 1985. LNCS,
vol. 194, pp. 318–327. Springer, Heidelberg (1985)

[100] Kearney, P.E., Munro, J.I., Phillips, D.: Efficient generation of uniform
samples from phylogenetic trees. In: Benson, G., Page, R.D.M. (eds.)
WABI 2003. LNCS (LNBI), vol. 2812, pp. 177–189. Springer, Heidelberg
(2003)

[101] Munro, J.I.: Efficient determination of the transitive closure of a directed
graph. Inf. Process. Lett. 1(2), 56–58 (1971)

[102] Munro, J.I.: Some results concerning efficient and optimal algorithms. In:
STOC 1971: Proceedings of the Third Annual ACM Symposium on Theory
of Computing, pp. 40–44. ACM Press, New York (1971)

[103] Munro, J.I.: Efficient polynomial evaluation. In: Proc. Sixth Annual
Princeton Conference on Information Sciences and Systems (1972)

[104] Munro, J.I.: In search of the fastest algorithm. In: AFIPS 1973: Proceed-
ings of the National Computer Conference and Exposition, June 4-8, pp.
453–453. ACM, New York (1973)

[105] Munro, J.I.: The parallel complexity of arithmetic computation. In:
Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 466–475. Springer, Hei-
delberg (1977)

[106] Munro, J.I.: Review of “The Complexity of Computing” (Savage, J.E. in
1977). IEEE Transactions on Information Theory 24(3), 401–401 (1978)

[107] Munro, J.I.: A multikey search problem. In: Proceedings of the 17th Aller-
ton Conference on Communication, Control and Computing, pp. 241–244
(1979)

[108] Munro, J.I.: An implicit data structure supporting insertion, deletion, and
search in O(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986); A Pre-
liminary Version An Implicit Data Structure for the Dictionary Problem
that Runs in Polylog Time Appeared in SFCS 1984: Proceedings of the
25th Annual Symposium onFoundations of Computer Science, pp. 369–
374. IEEE Computer Society, Washington, DC (1984)

[109] Munro, J.I.: Developing implicit data structures. In: Wiedermann, J.,
Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 168–176.
Springer, Heidelberg (1986)

[110] Munro, J.I.: Searching a two key table under a single key. In: STOC 1987:
Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 383–387. ACM, New (1987)

XX Curriculum Vitae J. Ian Munro

[111] Munro, J.I.: Data manipulations based on orderings. In: Algorithms and
Order, pp. 283–306. Springer, Netherlands (1988)

[112] Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996.
LNCS, vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

[113] Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.)
ESA 2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)

[114] Munro, J.I.: Space efficient suffix trees. J. Algorithms 39(2), 205–222 (2001)
[115] Munro, J.I.: Succinct data structures. Electr. Notes Theor. Comput.

Sci. 91, 3 (2004)
[116] Munro, J.I.: Lower bounds for succinct data structures. In: Ferragina, P.,

Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, p. 3. Springer, Heidel-
berg (2008)

[117] Munro, J.I.: Reflections on optimal and nearly optimal binary search trees.
Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion
of His 60th Birthday, pp. 115–120 (2009)

[118] Munro, J.I.: The complexity of partial orders. In: Bader, D.A., Mutzel, P.
(eds.) ALENEX, p. 64. SIAM/Omnipress (2012)

[119] Munro, J.I., Borodin, A.: Efficient evaluation of polynomial forms. J. Com-
put. Syst. Sci. 6(6), 625–638 (1972)

[120] Munro, J.I., Celis, P.: Techniques for collision resolution in hash tables
with open addressing. In: ACM 1986: Proceedings of 1986 ACM Fall Joint
Computer Conference, pp. 601–610. IEEE Computer Society Press, Los
Alamitos (1986)

[121] Munro, J.I., Ji, X.R.: On the pivot strategy of quicksort. In: Canadian
Conference on Electrical and Computer Engineering, vol. 1, pp. 302–305.
IEEE (1996)

[122] Munro, J.I., Nicholson, P.K.: Succinct posets. In: Epstein, L., Ferragina,
P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 743–754. Springer, Heidelberg
(2012)

[123] Munro, J.I., Overmars, M.H., Wood, D.: Variations on visibility. In: SCG
1987: Proceedings of the Third Annual Symposium on Computational Ge-
ometry, pp. 291–299. ACM, New York (1987)

[124] Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In:
SODA 1992: Proceedings of the Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 367–375. Society for Industrial and Applied
Mathematics, Philadelphia (1992)

[125] Munro, J.I., Paterson, M.S.: Optimal algorithms for parallel polynomial
evaluation. J. Comput. Syst. Sci. 7(2), 189–198 (1973); A Preliminary Ver-
sion Appeared in SWAT 1971: Proceedings of the 12th Annual Symposium
on Switching and Automata Theory, pp. 132–139. IEEE Computer Society,
Washington, DC (1971)

[126] Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage.
Theor. Comput. Sci. 12, 315–323 (1980); A Preliminary Version Appeared
in SFCS 1978: Proceedings of the 19th Annual Symposium on Foundations
of Computer Science, pp. 253–258. IEEE Computer Society, Washington,
DC (1978)

Curriculum Vitae J. Ian Munro XXI

[127] Munro, J.I., Poblete, P.V.: Implicit structuring of data. In: Proceedings of
the Twelfth Manitoba Conference on Numerical Mathematics and Com-
puting: held at the University of Manitoba, September 30-October 2,
vol. 37, p. 73. Utilitas Mathematica Publishing (1983)

[128] Munro, J.I., Poblete, P.V.: A discipline for robustness or storage reduc-
tion in binary search trees. In: PODS 1983: Proceedings of the 2nd ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, pp.
70–75. ACM Press, New York (1983)

[129] Munro, J.I., Poblete, P.V.: Probabilistic issues in data structures. In: Com-
puter Science and Statistics: proceedings of the 14th Symposium on the
Interface, p. 32. Springer, Heidelberg (1983)

[130] Munro, J.I., Poblete, P.V.: Fault tolerance and storage reduction in binary
search trees. Information and Control 62(2/3), 210–218 (1984)

[131] Munro, J.I., Poblete, P.V.: Searchability in merging and implicit data
structures. BIT 27(3), 324–329 (1987); A preliminary version appeared
in Dı́az, J. (ed.): ICALP 1983. LNCS, vol. 154, pp. 527–535. Springer,
Heidelberg (1983)

[132] Munro, J.I., Raman, R., Raman, V., Satti, S.R.: Succinct representations
of permutations and functions. Theor. Comput. Sci. 438, 74–88 (2012); A
Preliminary Version Appeared in Baeten, J.C.M., Lenstra, J.K., Parrow,
J., Woeginger, G.J. (eds.): ICALP 2003. LNCS, vol. 2719, pp. 345–356.
Springer, Heidelberg (2003)

[133] Munro, J.I., Raman, V.: Fast sorting in-place sorting with O(n) data. In:
Biswas, S., Nori, K.V. (eds.) FSTTCS 1991. LNCS, vol. 560, pp. 266–277.
Springer, Heidelberg (1991)

[134] Munro, J.I., Raman, V.: Sorting multisets and vectors in-place. In: Dehne,
F., Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519, pp. 473–
480. Springer, Heidelberg (1991)

[135] Munro, J.I., Raman, V.: Sorting with minimum data movement. J. Algo-
rithms 13(3), 374–393 (1992); A Preliminary Version Appeared in Dehne,
F., Santoro, N., Sack, J.-R. (eds.): WADS 1989. LNCS, vol. 382, pp. 552–
562. Springer, Heidelberg (1989)

[136] Munro, J.I., Raman, V.: Fast stable in-place sorting with O(n) data moves.
Algorithmica 16(2), 151–160 (1996)

[137] Munro, J.I., Raman, V.: Selection from read-only memory and sorting with
minimum data movement. Theor. Comput. Sci. 165(2), 311–323 (1996); A
preliminary version appeared in Shyamasundar, R.K. (ed.): FSTTCS 1992.
LNCS, vol. 652, pp. 380–391. Springer, Heidelberg (1992)

[138] Munro, J.I., Raman, V.: Succinct representation of balanced parentheses
and static trees. SIAM J. Comput. 31(3), 762–776 (2001); A Preliminary
Version Succinct Representation of Balanced Parentheses, Static Trees and
Planar Graphs Appeared in FOCS 1997: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science, p. 118. IEEE Computer
Society, Washington, DC (1997)

[139] Munro, J.I., Raman, V., Salowe, J.S.: Stable in situ sorting and minimum
data movement. BIT 30(2), 220–234 (1990)

XXII Curriculum Vitae J. Ian Munro

[140] Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. In: Arvind,
V., Sarukkai, S. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 186–197.
Springer, Heidelberg (1998)

[141] Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees
succinctly. In: SODA 2001: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 529–536. Society for Industrial
and Applied Mathematics, Philadelphia (2001)

[142] Munro, J.I., Ramirez, R.J.: Technical note - reducing space requirements
for shortest path problems. Operations Research 30(5), 1009–1013 (1982)

[143] Munro, J.I., Robertson, E.L.: Parallel algorithms and serial data struc-
tures. In: Proceedings of the 17th Allerton Conference on Communication,
Control and Computing, pp. 21–26 (1979)

[144] Munro, J.I., Robertson, E.L.: Continual pattern replication. Information
and Control 48(3), 211–220 (1981)

[145] Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1006–1015. Springer, Heidelberg (2004)

[146] Munro, J.I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Com-
put. 5(1), 1–8 (1976)

[147] Munro, J.I., Suwanda, H.: Implicit data structures for fast search and up-
date. J. Comput. Syst. Sci. 21(2), 236–250 (1980); A Preliminary Version
Appeared in STOC 1979: Proceedings of the Eleventh Annual ACM Sym-
posium on Theory of Computing, pp. 108–117. ACM, New York(1979)

[148] Oommen, B.J., Hansen, E.R., Munro, J.I.: Deterministic optimal and ex-
pedient move-to-rear list organizing strategies. Theor. Comput. Sci. 74(2),
183–197 (1990); A Preliminary Version Deterministic move-to-rear list Or-
ganizing Strategies with Optimal and Expedient Properties Appeared in
Proceedings of the 25th Allerton Conference on Communication, Control
and Computing (1987)

[149] Papadakis, T., Munro, J.I., Poblete, P.V.: Analysis of the expected search
cost in skip lists. In: Gilbert, J.R., Karlsson, R. (eds.) SWAT 1990. LNCS,
vol. 447, pp. 160–172. Springer, Heidelberg (1990)

[150] Papadakis, T., Munro, J.I., Poblete, P.V.: Average search and update costs
in skip lists. BIT 32(2), 316–332 (1992)

[151] Poblete, P.V., Munro, J.I.: The analysis of a fringe heuristic for binary
search trees. J. Algorithms 6(3), 336–350 (1985)

[152] Poblete, P.V., Munro, J.I.: Last-come-first-served hashing. J. Algo-
rithms 10(2), 228–248 (1989)

[153] Poblete, P.V., Munro, J.I., Papadakis, T.: The binomial transform and
the analysis of skip lists. Theor. Comput. Sci. 352(1), 136–158 (2006); A
Preliminary Version The Binomial Transform and its Application to the
Analysis of Skip lists appeared in Spirakis, P.G. (ed.): ESA 1995. LNCS,
vol. 979, pp. 554–569. Springer, Heidelberg (1995)

[154] Poblete, P.V., Viola, A., Munro, J.I.: Analyzing the LCFS linear probing
hashing algorithm with the help of Maple. MAPLETECH 4(1), 8–13 (1997)

Curriculum Vitae J. Ian Munro XXIII

[155] Poblete, P.V., Viola, A., Munro, J.I.: The diagonal Poisson transform and
its application to the analysis of a hashing scheme. Random Struct. Algo-
rithms 10(1-2), 221–255 (1997); A Preliminary Version The Analysis of a
Hashing Schema by the Diagonal Poisson Transform (extended abstract)
appeared in van Leeuwen, J. (ed.): ESA 1994. LNCS, vol. 855, pp. 94–405.
Springer, Heidelberg (1994)

[156] Rahman, M.Z., Munro, J.I.: Integer representation and counting in the bit
probe model. Algorithmica 56(1), 105–127 (2010); A Preliminary Version
Appeared in Tokuyama, T. (ed.): ISAAC 2007. LNCS, vol. 4835, pp. 5–16.
Springer, Heidelberg (2007)

[157] Ramı́rez, R.J., Tompa, F.W., Munro, J.I.: Optimum reorganization points
for arbitrary database costs. Acta Inf. 18, 17–30 (1982)

[158] Robertson, E.L., Munro, J.I.: Generalized instant insanity and polynomial
completeness. In: Proceedings of the 1975 Conference on Information Sci-
ences and Systems: Papers Presented, April 2-4, p. 263. The Johns Hopkins
University, Dept. of Electrical Engineering (1975)

[159] Robertson, E.L., Munro, J.I.: NP-completeness, puzzles and games. Utili-
tas Math. 13, 99–116 (1978)

[160] Schwenk, A.J., Munro, J.I.: How small can the mean shadow of a set be?
The American Mathematical Monthly 90(5), 325–329 (1983)

[161] Tirdad, K., Ghodsnia, P., Munro, J.I., López-Ortiz, A.: COCA filters: Co-
occurrence aware bloom filters. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 313–325. Springer, Heidelberg
(2011)

Technical Reports

[162] Alstrup, S., Bender, M.A., Demaine, E.D., Farach-Colton, M., Munro, J.I.,
Rauhe, T., Thorup, M.: Efficient tree layout in a multilevel memory hier-
archy. CoRR cs.DS/0211010 (2002)

[163] Biedl, T., Demaine, E.D., Demaine, M.L., Fleischer, R., Jacobsen, L.,
Munro, J.I.: The complexity of clickomania. CoRR cs.CC/0107031 (2001)

[164] Dobkin, D.P., Munro, J.I.: A minimal space selection algorithm that runs
in linear time. Tech. Rep. 106, Department of Computer Science, Univer-
sity of Waterloo (1977)

[165] He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority data struc-
tures. CoRR abs/1104.5517 (2011)

[166] Karpinski, M., Munro, J.I., Nekrich, Y.: Range reporting for moving points
on a grid. CoRR abs/1002.3511 (2010)

[167] Munro, J.I.: On random walks in binary trees. Tech. Rep. CS-76-33, De-
partment of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada (1976)

[168] Munro, J.I., Poblete, P.V.: A lower bound for determining the median.
Tech. Rep. CS-82-21, Faculty of Mathematics, University of Waterloo
(1982)

XXIV Curriculum Vitae J. Ian Munro

Others

[169] Blum, M., Galil, Z., Ibarra, O.H., Kozen, D., Miller, G.L., Munro, J.I.,
Ruzzo, W.L.: Foreword. In: SFCS 1983: Proceedings of the 24th Annual
Symposium on Foundations of Computer Science, p. iii. IEEE Computer
Society, Washington, DC (1983)

[170] Chwa, K.Y., Munro, J.I.: Computing and combinatorics - Preface. Theor.
Comput. Sci. 363(1), 1–1 (2006)

[171] López-Ortiz, A., Munro, J.I.: Foreword. ACM Transactions on Algo-
rithms 2(4), 491 (2006)

[172] Munro, J.I.: Some results in the study of algorithms. Ph.D. thesis, Univer-
sity of Toronto (1971)

[173] Munro, J.I., Brodnik, A., Carlsson, S.: Digital memory structure and de-
vice, and methods for the management thereof, US Patent App. 09/863,313
(May 24, 2001)

[174] Munro, J.I., Brodnik, A., Carlsson, S.: A digital memory structure and
device, and methods for the management thereof, eP Patent 1,141,951
(October 10, 2001)

[175] Munro, J.I., Wagner, D.: Preface. J. Exp. Algorithmics 14, 1:2.1–1:2.1
(2010), http://doi.acm.org/10.1145/1498698.1537596

Ph.D. Student Supervision

[1] Allen, B.: On Binary Search Trees (1977)
[2] Osborn, S.L.: Normal Forms for Relational Data Bases (1978)
[3] Suwanda, H.: Implicit Data Structures for the Dictionary Problem (1980)
[4] Pucci, W.C.: Average Case Selection (1983)
[5] Poblete, P.V.: Formal Techniques for Binary Search Trees (1983)
[6] Karlsson, R.G.: Algorithms in a Restricted Universe (1985)
[7] Celis, P.: Robin Hood Hashiong (1986)
[8] Culberson, J.C.: The Effect of Asymmetric Deletions on Binary Search Trees

(1986)
[9] Raman, V.: Sorting In-Place with Minimum Data Movement (1991)
[10] Papadakis, T.: Skip Lists and Probabilistic Analysis of Algorithms (1993)
[11] Brodnik, A.: Searching in Constant Time and Minimum Space Minimae

Res Magni Momenti Sunt (1995)
[12] Viola, A.: Analysis of Hashing Algorithms and a New Mathematical Trans-

form (1995)
[13] Clark, D.: Compact PAT Trees (1997)
[14] Zhang, W.: Improving the Performance of Concurrent Sorts in Datsbase

Systems (1997)
[15] Demaine, E.D.: Folding and Unfolding (2001)
[16] Golynski, A.: Upper and Lower Bounds for Text Indexing Data Structures

(2007)
[17] He, M.: Succinct Indexes (2008)

Curriculum Vitae J. Ian Munro XXV

[18] Skala, M.A.: Aspects of Metric Spaces in Computation (2008)
[19] Farzan, A.: Succinct Representation of Trees and Graphs (2009)
[20] Claude, F.: Space-Efficient Data Structures for Information Retrieval (2013)
[21] Salinger, A.J.: Models for Parallel Computation in Multi-Core, Heteroge-

neous, and Ultra Wide-Word Architectures

– * –

[22] Nicholson, P.: Space efficient data structures in Word-RAM and Bitprobe
Models (working title) (2013) (expected year of graduation)

[23] G. Zhou.

Professional Service and Honors

Fellow of Royal Society of Canada
ACM Fellow

Table of Contents

The Query Complexity of Finding a Hidden Permutation 1
Peyman Afshani, Manindra Agrawal, Benjamin Doerr,
Carola Doerr, Kasper Green Larsen, and Kurt Mehlhorn

Bounds for Scheduling Jobs on Grid Processors . 12
Joan Boyar and Faith Ellen

Quake Heaps: A Simple Alternative to Fibonacci Heaps 27
Timothy M. Chan

Variations on Instant Insanity . 33
Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat,
Thomas D. Morgan, and Ryuhei Uehara

A Simple Linear-Space Data Structure for Constant-Time Range
Minimum Query . 48

Stephane Durocher

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 61
David Kirkpatrick

Frugal Streaming for Estimating Quantiles . 77
Qiang Ma, S. Muthukrishnan, and Mark Sandler

From Time to Space: Fast Algorithms That Yield Small and Fast Data
Structures . 97

Jérémy Barbay

Computing (and life) Is all About Tradeoffs : A Small Sample of Some
Computational Tradeoffs . 112

Allan Borodin

A History of Distribution-Sensitive Data Structures 133
Prosenjit Bose, John Howat, and Pat Morin

A Survey on Priority Queues . 150
Gerth Stølting Brodal

On Generalized Comparison-Based Sorting Problems 164
Jean Cardinal and Samuel Fiorini

A Survey of the Game “Lights Out!” . 176
Rudolf Fleischer and Jiajin Yu

XXVIII Table of Contents

Random Access to High-Order Entropy Compressed Text 199
Roberto Grossi

Succinct and Implicit Data Structures for Computational Geometry 216
Meng He

In Pursuit of the Dynamic Optimality Conjecture . 236
John Iacono

A Survey of Algorithms and Models for List Update 251
Shahin Kamali and Alejandro López-Ortiz

Orthogonal Range Searching for Text Indexing . 267
Moshe Lewenstein

A Survey of Data Structures in the Bitprobe Model 303
Patrick K. Nicholson, Venkatesh Raman, and S. Srinivasa Rao

Succinct Representations of Ordinal Trees . 319
Rajeev Raman and S. Srinivasa Rao

Array Range Queries . 333
Matthew Skala

Indexes for Document Retrieval with Relevance . 351
Wing-Kai Hon, Manish Patil, Rahul Shah,
Sharma V. Thankachan, and Jeffrey Scott Vitter

Author Index . 363

The Query Complexity of Finding

a Hidden Permutation�

Peyman Afshani1, Manindra Agrawal2, Benjamin Doerr3,
Carola Doerr3,4, Kasper Green Larsen1, and Kurt Mehlhorn3

1 MADALGO, Department of Computer Science, Aarhus University, Denmark
2 Indian Institute of Technology Kanpur, India

3 Max Planck Institute for Informatics, Saarbrücken, Germany
4 Université Paris Diderot - Paris 7, LIAFA, Paris, France

Abstract. We study the query complexity of determining a hidden per-
mutation. More specifically, we study the problem of learning a secret
(z, π) consisting of a binary string z of length n and a permutation π of
[n]. The secret must be unveiled by asking queries x ∈ {0, 1}n, and for
each query asked, we are returned the score fz,π(x) defined as

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} ;
i.e., the length of the longest common prefix of x and z with respect
to π. The goal is to minimize the number of queries asked. We prove
matching upper and lower bounds for the deterministic and randomized
query complexity of Θ(n log n) and Θ(n log log n), respectively.

1 Introduction

Query complexity, also referred to as decision tree complexity, is one of the most
basic models of computation. We aim at learning an unknown object (a secret)
by asking queries of a certain type. The cost of the computation is the number
of queries made until the secret is unveiled. All other computation is free.

Let Sn denote the set of permutations of [n] := {1, . . . , n}; let [0..n] :=
{0, 1, . . . , n}. Our problem is that of learning a hidden permutation π ∈ Sn

together with a hidden bit-string z ∈ {0, 1} through queries of the following
type. A query is again a bit-string x ∈ {0, 1}n. As answer we receive the length
of the longest common prefix of x and z in the order of π, which we denote by

fz,π(x) := max{i ∈ [0..n] | ∀j ≤ i : zπ(j) = xπ(j)} .

We call this problem the HiddenPermutation problem. It is a Mastermind-
like problem; however, the secret is now a permutation and a string and not just
a string. Figure 1 sketches a gameboard for the HiddenPermutation game.

It is easy to see that O(n log n) queries suffice deterministically to unveil the
secret. Doerr and Winzen [1] showed that randomization allows to do better.

� The full paper is available at http://eccc.hpi-web.de/report/2012/087/

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 1–11, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://eccc.hpi-web.de/report/2012/087/

2 P. Afshani et al.

1

0

1

0

0 0

1

1

1 0

1

1

0

0

0

0

1 0 2

1

3

2

4

Fig. 1. A gameboard for the HiddenPermutation game for n = 4. The first player
(codemaker) chooses z and π by placing a string in {0, 1}4 into the 4× 4 grid on the
right side, one digit per row and column; here, z = 0100 and π(1) = 4, π(2) = 2,
π(3) = 3, and π(4) = 1. The second player (codebreaker) places its queries into the
columns on the left side of the board. The score is shown below each column. The
computation of the score by the codemaker is simple. She goes through the codematrix
column by column and advances as long as the query and the code agrees.

They gave a randomized algorithm with O(n logn/ log log n) expected complex-
ity. The information-theoretic lower bound is only Θ(n) as the answer to each
query is a number between zero and n and hence may reveal as many as logn
bits. We show: the deterministic query complexity is Θ(n logn), cf. Section 3,
and the randomized query complexity is Θ(n log logn), cf. Sections 4 and 5. Both
upper bound strategies are efficient, i.e., can be implemented in polynomial time.
The lower bound is established by a (standard) adversary argument in the de-
terministic case and by a potential function argument in the randomized case.
The randomized upper and lower bound require a non-trivial argument.

The archetypal guessing game is Mastermind. The secret is a string z ∈ [k]n,
and a query is also a string x ∈ [k]n. The answer to a query is the number eq(z, x)
of positions in which x and z agree and the numberw(z, x) of additional colors in x
that appear in z (formally, w(z, x) := maxπ∈Sn |{i ∈ [n] | zi = xπ(i)}|− eq(z, x)).
Some applications were found recently [2,3]. Mastermind has been studied inten-
sively since the sixties [4,5,6,7,8,9] and thus even before it was invented as a board
game. In particular, [4,6] show that for all n and k ≤ n1−ε, the secret code can
be found by asking Θ(n log k/ logn) random queries. This can be turned into a
deterministic strategy having the same asymptotic complexity. The information-
theoretic lower bound of Ω(n log k/ logn) shows that this is best possible, and
also, that there is no difference between the randomized and deterministic case.
Similar situations have been observed for a number of guessing, liar, and pusher-
chooser games (see, e.g., [10,11]). Our results show that the situation is different
for the HiddenPermutation game. The complexity of Mastermind with n po-
sitions and k = n colors is open. The best upper bound is O(n log logn), cf. [12],
and the best lower bound is the trivial linear one.

The Query Complexity of Finding a Hidden Permutation 3

2 Preliminaries

For all positive integers k ∈ N we define [k] := {1, . . . , k} and [0..k] := [k] ∪ {0}.
By enk we denote the kth unit vector (0, . . . , 0, 1, 0, . . . , 0) of length n. For a
set I ⊆ [n] we define enI :=

∑
i∈I e

n
i = ⊕i∈Ie

n
i , where ⊕ denotes the bitwise

exclusive-or. We say that we create y from x by flipping I or that we create y
from x by flipping the entries in position(s) I if y = x⊕enI . By Sn we denote the
set of all permutations of [n]. For r ∈ R≥0, let 	r
 := min{n ∈ N0 | n ≥ r}. and
�r := max{n ∈ N0 | n ≤ r}. To increase readability, we sometimes omit the 	·

signs; that is, whenever we write r where an integer is required, we implicitly
mean 	r
.

Let n ∈ N. For z ∈ {0, 1}n and π ∈ Sn, define fz,π : {0, 1}n → [0..n] as in
the introduction. We call z the target string and π the target permutation. The
score of a query xi is si = fz,π(x

i). We may stop after t queries x1 to xt if there
is only a single pair (z, π) ∈ {0, 1}n × Sn with si = fz,π(x

i) for 1 ≤ i ≤ t.
A randomized strategy for the HiddenPermutation problem is a tree of

outdegree n + 1 in which a probability distribution over {0, 1}n is associated
with every node of the tree. The search starts as the root. In any node, the query
is selected according to the probability distribution associated with the node,
and the search proceeds to the child selected by the score. The complexity of a
strategy on input (z, π) is the expected number of queries required to identify the
secret, and the randomized query complexity of a strategy is the worst case over
all secrets. Deterministic strategies are the special case in which a fixed query is
associated with every node. The deterministic (randomized) query complexity
of HiddenPermutation is the best possible (expected) complexity.

We remark that knowing z allows us to determine π with n−1 queries z⊕eni ,
1 ≤ i < n. Observe that π−1(i) equals fz,π(z ⊕ eni) + 1. Conversely, knowing the
target permutation π we can identify z in a linear number of guesses. The first
query is arbitrary. If our current query x has a score of k, we next query the
string x′ created from x by flipping the entry in position π(k+1). Thus, learning
one part of the secret is no easier (up to O(n) questions) than learning the full.

A simple information-theoretic argument gives an Ω(n) lower bound for the
deterministic query complexity and, together with Yao’s minimax principle [13],
also for the randomized complexity. The search space has size 2nn!, since the un-
known secret is an element of {0, 1}n×Sn. That is, we need to “learn” Ω(n log n)
bits of information. Each score is a number between 0 and n, i.e., we learn at
most O(log n) bits of information per query, and the Ω(n) bound follows.

Let H := (xi, si)ti=1 be a vector of queries xi ∈ {0, 1}n and scores si ∈ [0..n].
We call H a guessing history. A secret (z, π) is consistent with H if fz,π(x

i) = si

for all i ∈ [t]. H is feasible if there exists a secret consistent with it.
An observation crucial in our proofs is the fact that a vector (V1, . . . , Vn)

of subsets of [n], together with a top score query (x∗, s∗), captures the total
knowledge provided by a guessing history H = (xi, si)ti=1 about the set of secrets
consistent withH. We will call Vj the candidate set for position j; Vj will contain
all indices i ∈ [n] for which the following simple rules (1) to (3) do not rule out
that π(j) equals i.

4 P. Afshani et al.

Theorem 1. Let t ∈ N, and let H = (xi, si)ti=1 be a guessing history. Construct
the candidate sets V1, . . . , Vn ⊆ [n] according to the following rules:

(1) If there are h and � with j ≤ sh ≤ s� and xh
i �= x�

i , then i �∈ Vj.

(2) If there are h and � with s = sh = s� and xh
i �= x�

i , then i �∈ Vs+1.

(3) If there are h and � with sh < s� and xh
i = x�

i , then i �∈ Vsh+1.

(4) If i is not excluded by one of the rules above, then i ∈ Vj .

Furthermore, let s∗ := max{s1, . . . , st} and let x∗ = xj for some j with sj = s∗.
Then a pair (z, π) is consistent with H if and only if (a) fz,π(x

∗) = s∗ and
(b) π(j) ∈ Vj for all j ∈ [n].

Proof. Let (z, π) satisfy conditions (a) and (b). We show that (z, π) is consistent
with H. To this end, let h ∈ [t], let x = xh, s = sh, and f := fz,π(x). We need
to show f = s.

Assume f < s. Then zπ(f+1) �= xπ(f+1). Since f+1 ≤ s∗, this together with (a)
implies xπ(f+1) �= x∗

π(f+1). Rule (1) yields π(f + 1) /∈ Vf+1; a contradiction to

(b).
Similarly, if we assume f > s, then xπ(s+1) = zπ(s+1). We distinguish two

cases. If s < s∗, then by condition (a) we have xπ(s+1) = x∗
π(s+1). By rule (3)

this implies π(s+ 1) /∈ Vs+1; a contradiction to (b).
On the other hand, if s = s∗, then xπ(s+1) = zπ(s+1) �= x∗

π(s+1) by (a). Rule

(2) implies π(s+ 1) /∈ Vπ(s+1), again contradicting (b).
Necessity is trivial. ��

Wemay construct the sets Vj incrementally. The following update rules are direct
consequences of Theorem 1. In the beginning, let Vj := [n], 1 ≤ j ≤ n. After the
first query, record the first query as x∗ and its score as s∗. For all subsequent
queries, do the following: Let I be the set of indices in which the current query
x and the current best query x∗ agree. Let s be the objective value of x and let
s∗ be the objective value of x∗.

Rule A: If s < s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s and Vs+1 ← Vs+1 \ I.
Rule B: If s = s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ + 1.

Rule C: If s > s∗, then Vi ← Vi ∩ I for 1 ≤ i ≤ s∗ and Vs∗+1 ← Vs∗+1 \ I. We
further replace s∗ ← s and x∗ ← x.

It is immediate from the update rules that the Vjs form a laminar family; i.e.,
for i < j either Vi∩Vj = ∅ or Vi ⊆ Vj . As a consequence of Theorem 1 we obtain
a polynomial time test for the feasibility of histories. It gives additional insight
in the meaning of the candidate sets V1, . . . , Vn.

Theorem 2. It is decidable in polynomial time whether a guessing history is
feasible. Furthermore, we can efficiently compute the number of pairs consistent
with it.

The Query Complexity of Finding a Hidden Permutation 5

3 Deterministic Complexity

We show that the deterministic query complexity of HiddenPermutation is
Θ(n log n).

Theupper bound is achievedby an algorithmthat resembles binary search and it-
eratively identifies π(1), . . . , π(n) and the correspondingbit values zπ(1), . . . , zπ(n):
We start by querying the all-zeros string 0n and the all-ones string 1n. The scores
determine zπ(1). By flipping a set I containing half of the bit positions in the bet-
ter (the one achieving largest score) of the two strings, we can determine whether
π(1) ∈ I or not. This allows us to find π(1) via a binary search strategy inO(log n)
queries. Once π(1) and zπ(1) are known, we iterate this strategy on the remaining
bit positions to determine π(2) and zπ(2), and so on, yielding an O(n log n) query
strategy for identifying the secret.

We proceed to the lower bound. The adversary strategy proceeds in rounds. In
every round, the adversary reveals the next two values of π and the corresponding
bits of z and every algorithm uses Ω(log n) queries. We describe the first phase.
Let x1 be the first query. The adversary gives it a score of 1, sets (x

∗, s∗) = (x1, 1)
and Vi to [n] for 1 ≤ i ≤ n. In the first phase, the adversary will only return
scores 0 and 1; observe that according to the rules for the incremental update of
the sets Vi, only sets V1 and V2 will be modified in the first phase, and all other
Vis stay equal to the [n].

Let x be the next query and assume |V1| ≥ 3. Let I = {i | xi = x∗
i } be the set

of positions in which x and x∗ agree. If |I ∩V1| ≥ |V1|/2, the adversary returns a
score of 1 and replaces V1 by V1 ∩ I and V2 by V2 ∩ I. Otherwise, the adversary
returns a score of 0 and replaces V1 by V1 \ I. In either case, the cardinality of
V1 is at most halved and V1 stays a subset of V2. The adversary proceeds as long
as |V1| ≥ 3 before the query. Then |V1| ≥ 2 after the answer by the adversary.

If |V1| = 2 before the query, the adversary starts the next phase by giving x
a score of 3. Let i1 ∈ V1 and i2 ∈ V2 be arbitrary. The adversary commits to
π(1) = i1, π(2) = i2, zi1 = x∗

i1
, and zi2 = 1 − x∗

i2
, removes i1 and i2 from V3 to

Vn, and sets (x∗, s∗) = (x, 3).

Theorem 3. The deterministic query complexity of the HiddenPermutation

problem with n positions is Θ(n logn).

4 The Randomized Strategy

We show that the randomized query complexity is only O(n log logn). Our ran-
domized strategy learns an expected number of Θ(log n/ log logn) bits per query,
and we have already seen that deterministic strategies can only learn a constant
number of bits per query in the worst case. In the language of the candidate
sets Vi, we manage to reduce the sizes of many Vis in parallel, that is, we gain
information on several π(i)s despite the seemingly sequential way fz,π offers in-
formation. The key to this is using partial information given by the Vi (that is,
information that does not determine πi, but only restricts it) to guess with good
probability an x with fz,π(x) > s∗.

6 P. Afshani et al.

Theorem 4. The randomized query complexity of the HiddenPermutation

problem with n positions is O(n log logn).

The strategyhas twoparts. In themainpart,we identify thepositionsπ(1), . . . , π(q)
and the corresponding bit values zπ(1), . . . , zπ(q) for some q ∈ n−Θ(n/ logn) with
O(n log logn) queries. In the secondpart,we find the remainingn−q ∈ Θ(n/ log n)
positions and entries using the binary search algorithm with O(log n) queries per
position. Part 1 is outlined below; the details are given in the full paper.

4.1 The Main Strategy

Here and in the following we denote by s∗ the current best score, and by x∗

we denote a corresponding query; i.e., fz,π(x
∗) = s∗. For brevity, we write f

for fz,π.
There is a trade-off between learning more information about π by reducing

the sets V1, . . . , Vs∗+1 and increasing the score s∗. Our main task is to find the
right balance between the two. In our O(n log logn) strategy, we partition the
sets V1, . . . , Vn into several levels, each of which has a certain capacity. Depending
on the status (i.e., the fill rate) of these levels, either we try to increase s∗, or
we aim at reducing the sizes of the candidate sets.

In the beginning, all candidate sets V1, . . . , Vn belong to level 0. In the first
step we aim at moving V1, . . . , Vlogn to the first level. This is done sequentially.
We start by querying f(x) and f(y), where x is arbitrary and y = x ⊕ 1n is
the bitwise complement of x. By swapping x and y if needed, we may assume
f(x) = 0 < f(y). We now run a randomized binary search for finding π(1). We
choose uniformly at random a subset F1 ⊆ V1 (V1 = [n] in the beginning) of size
|F1| = |V1|/2. We query f(y′) where y′ is obtained from y by flipping the bits in
F1. If f(y

′) > f(x), we set V1 ← V1 \F1; we set V1 ← F1 otherwise. This ensures
π(1) ∈ V1. We stop this binary search once π(2) �∈ V1 is sufficiently likely; the
analysis will show that Pr[π(2) ∈ V1] ≤ 1/ logd n (and hence |V1| ≤ n/ logd n)
for some large enough constant d is a good choice.

We now start pounding on V2. Let {x, y} = {y, y ⊕ 1[n]\V1
}. If π(2) �∈ V1,

one of f(x) and f(y) is one and the other is larger than one. Swapping x and y
if necessary, we may assume f(x) = 1 < f(y). We now use randomized binary
search to reduce the size of V2 to n/ logd n. The randomized binary search is
similar to before. Initially we have V2 = [n] \ V1. At each step we chose a subset
F2 ⊆ V2 of size |V2|/2 and we create y′ from y by flipping the bits in positions
F2. If f(y

′) = 1 we update V2 by F2 and we update V2 by V2 \F2 otherwise. We
stop once |V2| ≤ n/ logd n.

At this point we have |V1|, |V2| ≤ n/ logd n and V1 ∩ V2 = ∅. We hope that
π(3) /∈ V1 ∪ V2, in which case we move set V3 from level 0 to level 1 (the case
π(3) ∈ V1 ∪ V2 is called a failure and needs to be treated separately. In case of
a failure we abort the first level and we move V1 and V2 to the second level by
decreasing their sizes to at most n/ log2d n, we potentially move them further to
the third level, and so on until we finally have π(3) /∈ V1 ∪ V2, in which case we
move V3 to level 1 as before).

The Query Complexity of Finding a Hidden Permutation 7

At some point the probability that π(i) /∈ V1∪ . . .∪Vi−1 drops below a certain
threshold and we cannot ensure to make progress anymore by simply querying
y ⊕ ([n]\(V1 ∪ . . . ∪ Vi−1)). This situation is reached when i = logn and hence
we abandon the previously described strategy once s∗ = log n. At this point, we
move our focus from increasing the current best score s∗ to reducing the size
of the candidate sets V1, . . . , Vs∗ , thus adding them to the second level. More
precisely, we reduce their sizes to at most n/ log2d n. This reduction is carried
out by subroutine2, which we describe in the full paper. It reduces the sizes of
the up to x�−1 candidate sets from some value ≤ n/xd

�−1 to the target size n/xd
�

of level � with an expected number of O(1)x�−1d(log(x�)− log(x�−1))/ log(x�−1)
queries.

Once the sizes |V1|, . . . , |Vs∗ | have been reduced to at most n/ log2d n, we move
our focus back to increasing s∗. The probability that π(s∗+1) ∈ V1∪. . .∪Vs∗ will
now be small enough , and we proceed as before by flipping [n] \ (V1 ∪ . . .∪ Vs∗)
and reducing the size of Vs∗+1 to n/ log

d n. Again we iterate this process until the
first level is filled; i.e., until we have s∗ = 2 logn. As we did with V1, . . . , Vlog n,

we reduce the sizes of Vlog n+1, . . . , V2 logn to n/ log2d n, thus adding them to the
second level. We iterate this process of moving logn sets from level 0 to level 1
and then moving them to the second level until log2 n sets have been added to
the second level. At this point the second level has reached its capacity and we
proceed by reducing the sizes of V1, . . . , Vlog2 n to at most n/ log4d n, thus adding
them to the third level.

In total we have t = O(log logn) levels. For 1 ≤ i ≤ t, the ith level has a

capacity of xi := log2
i−1

n sets, each of which is required to be of size at most
n/xd

i . Once level i has reached its capacity, we reduce the size of the sets on the
ith level to at most n/xd

i+1, thus moving them from level i to level i+ 1. When
xt sets Vi, . . . , Vi+xt have been added to the last level, level t, we finally reduce
their sizes to one. This corresponds to determining π(i + j) for each j ∈ [xt].

This concludes the presentation of the main ideas of the first phase.

5 The Lower Bound

In this section, we prove a tight lower bound for the randomized query com-
plexity of the HiddenPermutation problem. The lower bound is stated in the
following:

Theorem 5. The randomized query complexity of the HiddenPermutation

problem with n positions is Ω(n log logn).

To prove a lower bound for randomized query schemes, we appeal to Yao’s prin-
ciple. That is, we first define a hard distribution over the secrets and show that
every deterministic query scheme for this hard distribution needs Ω(n log logn)
queries in expectation. This part of the proof is done using a potential function
argument.

Hard Distribution. Let Π be a permutation drawn uniformly among all the
permutations of [n] (in this section, we use capital letters to denote random

8 P. Afshani et al.

variables). Given such a permutation, we let our target string Z be the one
satisfying ZΠ(i) = (i mod 2) for i = 1, . . . , n. Since Z is uniquely determined
by the permutation Π , we will mostly ignore the role of Z in the rest of this
section. Finally, we use F (x) to denote the value of the random variable fZ,Π(x)
for x ∈ {0, 1}n. We will also use the notation a ≡ b to mean that a ≡ b mod 2.

Deterministic Query Schemes. By fixing the random coins, a randomized
solution with expected t queries implies the existence of a deterministic query
scheme with expected t queries over our hard distribution. The rest of this section
is devoted to lower bounding t for such a deterministic query scheme.

A deterministic query scheme is a decision tree T in which each node v is
labeled with a string xv ∈ {0, 1}n. Each node has n+1 children, numbered from
0 to n, and the ith child is traversed if F (xv) = i. To guarantee correctness, no
two inputs can end up in the same leaf.

For a node v in the decision tree T , we define maxv as the largest value of F
seen along the edges from the root to v. Note that maxv is not a random variable
and in fact, at any node v and for any ancestor u of v, conditioned on the event
that the search path reaches v, the value of F (xu) is equal to the index of the
child of u that lies on the path to v. Finally, we define Sv as the subset of inputs
(as outlined above) that reach node v.

We use a potential function which measures how much “information” the
queries asked have revealed about Π . Our goal is to show that the expected
increase in the potential function after asking each query is small. Our poten-
tial function depends crucially on the candidate sets. The update rules for the
candidate sets are slightly more specific than the ones in Section 2 because we
now have a fixed connection between the two parts of the secret. We denote the
candidate set for π(i) at node v with V v

i . At the root node r, we have V r
i = [n]

for all i. Let v be a node in the tree and let w0, . . . , wn be its children (wi is
traversed when the score i is returned). Let P v

0 (resp. P v
1) be the set of posi-

tions in xv that contain 0 (resp. 1). Thus, formally, P v
0 = {i | xv[i] = 0} and

P v
1 = {i | xv[i] = 1}.1 The precise definition of candidate sets is as follows:

V
wj

i =

⎧⎨
⎩

V v
i ∩ P v

i mod 2 if i ≤ j ,
V v
i ∩ P v

j mod 2 if i = j + 1 ,

V v
i if i > j + 1.

As with the upper bound case, the candidate sets have some very useful prop-
erties. These properties are slightly different from the ones observed before, due
to the fact that some extra information has been announced to the query algo-
rithm. We say that a candidate set V v

i is active (at v) if the following conditions
are met: (i) at some ancestor node u of v, we have F (xu) = i − 1, (ii) at every
ancestor node w of u we have F (xw) < i− 1, and (iii) i < min {n/3,maxv}. We
call V v

maxv +1 pseudo-active (at v).
For intuition on the requirement i < n/3, observe from the following lemma

that V v
maxv +1 contains all sets V v

i for i ≤ maxv and i ≡ maxv. At a high level,

1 To prevent our notations from becoming too overloaded, here and in the remainder
of the section we write x = (x[1], . . . , x[n]) instead of x = (x1, . . . , xn).

The Query Complexity of Finding a Hidden Permutation 9

this means that the distribution of Π(maxv +1) is not independent of Π(i) for
i ≡ maxv. The bound i < n/3, however, forces the dependence to be rather small
(there are not too many such sets). This greatly helps in the potential function
analysis.

In the full paper, we show (using similar arguments as for showing Theorem 1)
that the candidate sets satisfy the following:

Lemma 1. The candidate sets have the following properties:
(i) Two candidate sets V v

i and V v
j with i < j ≤ maxv and i �≡ j are disjoint.

(ii) An active candidate set V v
j is disjoint from any candidate set Vi provided

i < j < maxv.
(iii) The candidate set V v

i , i ≤ maxv is contained in the set V v
maxv +1 if i ≡

maxv and is disjoint from it if i �≡ maxv.
(iv) For two candidate sets V v

i and V v
j , i < j, if V v

i ∩ V v
j �= ∅ then V v

i ⊂ V v
j .

5.1 Potential Function

We define the potential of an active candidate set V v
i as log log (2n/|V v

i |). This is
inspired by the upper bound: a potential increase of 1 corresponds to a candidate
set advancing one level in the upper bound context (in the beginning, a set V v

i

has size n and thus its potential is 0 while at the end its potential is Θ(log logn).
With each level, the quantity n divided by the size of Vi is squared). We define
the potential at a node v as

ϕ(v) = log log
2n

|V v
maxv +1| − Conv

+
∑
j∈Av

log log
2n

|V v
j |

,

in which Av is the set of indices of active candidate sets at v and Conv is the
number of candidate sets contained inside V v

maxv +1. Note that from Lemma 1,
it follows that Conv = �maxv /2.

The intuition for including the term Conv is the same as our requirement
i < n/3 in the definition of active candidate sets, namely that once Conv ap-
proaches |V v

maxv +1|, the distribution of Π(maxv +1) starts depending heavily on
the candidate sets V v

i for i ≤ maxv and i ≡ maxv. Thus we have in some sense
determined Π(maxv +1) already when |V v

maxv +1| approaches Conv. Therefore,
we have to take this into account in the potential function since otherwise chang-
ing V v

maxv +1 from being pseudo-active to being active could give a huge potential
increase.

After some lengthy calculations, it is possible to prove the following lemma.

Lemma 2. Let v be a node in T and let iv be the random variable giving the
value of F (xv) when Π ∈ Sv and 0 otherwise. Also let w0, . . . , wn denote the
children of v, where wj is the child reached when F (xv) = j. Then, E[ϕ(wiv)−
ϕ(v) | Π ∈ Sv] = O(1).

5.2 Potential at the End

Intuitively, if the maximum score value increases after a query, it increases, in
expectation, only by an additive constant. In fact, in the full paper, we prove

10 P. Afshani et al.

that the probability of increasing the maximum score value by α after one query
is 2−Ω(α). Thus, it follows from the definition of the active candidate sets that
when the score reaches n/3 we expect Ω(n) active candidate sets. However, by
Lemma 1, the active candidate sets are disjoint. This means that a fraction of
them (again at least Ω(n) of them), must be small, or equivalently, their total
potential is Ω(n log logn).

Lemma 3. Let � be the random variable giving the leaf node of T that the de-
terministic query scheme ends up in on input Π. We have ϕ(�) = Ω(n log logn)
with probability at least 3/4.

5.3 Putting Things together

Finally, we show how Lemma 2 and Lemma 3 combine to give our lower bound.
Essentially this boils down to showing that if the query scheme is too efficient,
then the query asked at some node of T increases the potential by ω(1) in
expectation, contradicting Lemma 2. To show this explicitly, define t as the
random variable giving the number of queries asked on input Π . We have E[t] =
t, where t was the expected number of queries needed for the deterministic query
scheme. Also let �1, . . . , �4t be the random variables giving the first 4t nodes of
T traversed on input Π , where �1 = r is the root node and �i denotes the node
traversed at the ith level of T . If only m < 4t nodes are traversed, define �i = �m
for i > m; i.e., ϕ(�i) = ϕ(�m). From Lemma 3, Markov’s inequality and a union
bound, we may now write

E[ϕ(�4t)] = E

[
ϕ(�1) +

4t−1∑
i=1

ϕ(�i+1)− ϕ(�i)

]
=E[ϕ(r)] + E

[
4t−1∑
i=1

ϕ(�i+1)− ϕ(�i)

]

=
4t−1∑
i=1

E[ϕ(�i+1)− ϕ(�i)] = Ω(n log logn).

Hence there exists a value i∗, where 1 ≤ i∗ ≤ 4t− 1, such that

E[ϕ(�i∗+1)− ϕ(�i∗)] = Ω(n log logn/t).

But

E[ϕ(�i∗+1)− ϕ(�i∗)] =
∑

v∈Ti∗ |v non-leaf

Pr[Π ∈ Sv]E[ϕ(wiv)− ϕ(v) | Π ∈ Sv],

where Ti∗ is the set of all nodes at depth i∗ in T , w0, . . . , wn are the children of
v and iv is the random variable giving the score of F (xv) on an input Π ∈ Sv

and 0 otherwise. Since the events Π ∈ Sv and Π ∈ Su are disjoint for v �= u, we
conclude that there must exist a node v ∈ Ti∗ for which

E[ϕ(wiv)− ϕ(v) | Π ∈ Sv] = Ω(n log log n/t).

Combined with Lemma 2 this shows that n log logn/t = O(1); i.e., t = Ω(n log
logn). This concludes the proof of Theorem 5.

The Query Complexity of Finding a Hidden Permutation 11

References

1. Doerr, B., Winzen, C.: Black-box complexity: Breaking the o(n logn) barrier of
LeadingOnes. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E.,
Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 205–216. Springer, Heidelberg
(2012)

2. Goodrich, M.T.: The Mastermind attack on genomic data. In: Proceedings of the
2009 30th IEEE Symposium on Security and Privacy (SP 2009), pp. 204–218. IEEE
(2009)

3. Focardi, R., Luccio, F.L.: Cracking bank PINs by playing Mastermind. In: Boldi,
P. (ed.) FUN 2010. LNCS, vol. 6099, pp. 202–213. Springer, Heidelberg (2010)

4. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos
Akadémia Matematikai Kutató Intézet Közleményei 8, 229–243 (1963)

5. Knuth, D.E.: The computer as master mind. Journal of Recreational Mathemat-
ics 9, 1–5 (1977)

6. Chvátal, V.: Mastermind. Combinatorica 3, 325–329 (1983)
7. Chen, Z., Cunha, C., Homer, S.: Finding a hidden code by asking questions. In: Cai,
J.-Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 50–55. Springer,
Heidelberg (1996)

8. Goodrich, M.T.: On the algorithmic complexity of the Mastermind game with
black-peg results. Information Processing Letters 109, 675–678 (2009)

9. Viglietta, G.: Hardness of Mastermind. In: Kranakis, E., Krizanc, D., Luccio, F.
(eds.) FUN 2012. LNCS, vol. 7288, pp. 368–378. Springer, Heidelberg (2012)

10. Pelc, A.: Searching games with errors — fifty years of coping with liars. Theoretical
Computer Science 270, 71–109 (2002)

11. Spencer, J.: Randomization, derandomization and antirandomization: Three
games. Theoretical Computer Science 131, 415–429 (1994)

12. Doerr, B., Spöhel, R., Thomas, H., Winzen, C.: Playing Mastermind with many
colors. In: SODA 2013, pp. 695–704. SIAM (2013)

13. Yao, A.C.C.: Probabilistic computations: Toward a unified measure of complexity.
In: FOCS 1977, pp. 222–227. IEEE (1977)

Bounds for Scheduling Jobs on Grid Processors�

Joan Boyar1 and Faith Ellen2

1 University of Southern Denmark
joan@imada.sdu.dk

2 University of Toronto
faith@cs.toronto.edu

Abstract. In the Grid Scheduling problem, there is a set of jobs each
with a positive integral memory requirement. Processors arrive in an
online manner and each is assigned a maximal subset of the remaining
jobs such that the sum of the memory requirements of those jobs does
not exceed the processor’s memory capacity. The goal is to assign all the
jobs to processors so as to minimize the sum of the memory capacities
of the processors that are assigned at least one job. Previously, a lower
bound of 5

4
on the competitive ratio of this problem was achieved using

jobs of size S and 2S − 1. For this case, we obtain matching upper and
lower bounds, which vary depending on the ratio of the number of small
jobs to the number of large jobs.

1 Introduction

The Grid is a computing environment comprised of various processors which
arrive at various times and to which jobs can be assigned. We consider the
problem of scheduling a set of jobs, each with a specific memory requirement.
When a processor arrives, it announces its memory capacity. Jobs are assigned
to the processor so that the sum of the requirements of its assigned jobs does
not exceed its capacity. In this way, the processor can avoid the expensive costs
of paging when it executes the jobs. The charge for a set of jobs is (proportional
to) the memory capacities of the processors to which they are assigned. There is
no charge for processors whose capacities are too small for any remaining jobs.
The goal is to assign all the jobs to processors in a manner that minimizes the
total charge.

The Grid Scheduling problem was motivated by a problem in bioinformatics
in which genomes are compared to a very large database of DNA sequences to
identify regions of interest [2]. In this application, an extremely large problem
is divided into a set of independent jobs with varying memory requirements.

� This research was supported in part by the Danish Council for Independent Research,
Natural Sciences (FNU), the VELUX Foundation, and the Natural Science and
Engineering Research Council of Canada (NSERC). Parts of this work were carried
out while Joan Boyar was visiting University of Waterloo and University of Toronto
and while Faith Ellen was visiting University of Southern Denmark.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 12–26, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Bounds for Scheduling Jobs on Grid Processors 13

The Grid Scheduling problem can also be rephrased as a bin packing problem
for a given set of items, using variable-sized bins, which arrive one by one, in
an online manner. In contrast, usual bin packing problems assume the bins are
given and the items arrive online.

The Grid Scheduling problem was introduced by Boyar and Favrholdt in [1].
They gave an algorithm to solve this problem with competitive ratio 13

7 . This
solved an open question in [8], which considered a similar problem. They also
proved that the competitive ratio of any algorithm for this problem is at least
5
4 . The lower bound proof uses s = 2� items of size S and � items of size L =
2S − 1, where S > 1 is an integer and M = 2L − 1 is the maximum bin size.
If S = 1, then L = 2S − 1 = 1, so all items have the same size, making the
problem uninteresting. Likewise, if there is no bound on the maximum bin size,
the problem is uninteresting, because the competitive ratio is unbounded: Once
enough bins for an optimal packing have arrived, an adversary can send bins of
arbitrarily large size, which the algorithm would be forced to use.

In many applications of bin packing, there are only a small number of dif-
ferent item sizes. A number of papers have considered the problem of packing
a sequence of items of two different sizes in bins of size 1 in an online matter.
In particular, there is a lower bound of 4/3 on the competitive ratio [6,4] and
a matching upper bound [4]. When both item sizes are bounded above by 1/k,

the competitive ratio can be improved to (k+1)2

k2+k+1 [3].
In this paper, we consider the Restricted Grid Scheduling problem, a version

of the Grid Scheduling problem where the input contains exactly s items of size
S and � items of size L = 2S − 1 and the maximum bin size is M = 2L − 1,
which includes the scenario used in the 5

4 lower bound. Two natural questions
arise for this problem:

1. Is there an algorithm matching the 5
4 lower bound on the competitive ratio

or can this lower bound be improved?
2. What is the competitive ratio for the problem when there are initially s

items of size S and � items of size L, when the ratio of s to � is arbitrary,
rather than fixed to 2?

We obtain matching upper and lower bounds on the competitive ratio of the
Restricted Grid Scheduling problem.

Theorem 1. For unbounded S, the competitive ratio of the Restricted Grid
Scheduling problem is⎧⎨

⎩
1 + 1

2+s/� if � ≤ s/2,

1 + 1
4 if s/2 < � ≤ 5s/6, and

1 + 2
3+6�/s if 5s/6 < �.

We begin with some preliminaries, including a formal definition of the Grid
Scheduling problem and some properties of optimal packings. In Section 3, we
prove the lower bound on the competitive ratio of the Restricted Grid Scheduling
problem. Then, in Section 4, we present properties of optimal packings for the

14 J. Boyar and F. Ellen

Restricted Grid Scheduling problem. Some of these provide motivation for our
design, while others are important for the analysis. We show why a few simple
algorithms are not optimal in Section 5. Our algorithm, 2-Phase-Packer, appears
in Section 6, together with part of the analysis. We conclude with some open
questions. The omitted proofs and the rest of the analysis are in the full paper.

2 Preliminaries

The competitive ratio [7,5] of an on-line algorithm is the worst-case ratio of
the on-line performance to the optimal off-line performance, up to an additive
constant. More precisely, for a set I of items (or, equivalently, a multi-set of
item sizes), a sequence σ of bins, and an algorithm A for the Grid Scheduling
problem, let A(I, σ) denote the total size of all the bins used by A when packing
I in the sequence σ of bins. Then, the competitive ratio CRA of A is

CRA = inf {c | ∃b, ∀I, ∀σ,A(I, σ) ≤ c ·OPT(I, σ) + b} ,

where OPT denotes an optimal off-line algorithm. For specific choices of families

of sets In and sequences σn, the performance ratios, A(In,σn)
OPT(In,σn)

, can be used to

prove a lower bound on the competitive ratio of A.
Given a set of items and a sequence of bins, each with a size in {1, . . . ,M}, the

goal of the Grid Scheduling problem is to pack the items in the bins so that the
sum of the sizes of the items packed in each bin is at most the size of the bin and
the sum of the sizes of bins used is minimized. The bins in the sequence arrive
one at a time and each must be packed before the next bin arrives, without
knowledge of the sizes of any future bins. If a bin is at least as large as the
smallest unpacked item, it must be packed with at least one item. There is no
charge for a bin that is smaller than this. It is assumed that enough sufficiently
large bins arrive so that any algorithm eventually packs all items. For example,
it suffices that every sequence ends with enough bins of size M to pack every
item one per bin.

Given a set of items and a sequence of bins, a partial packing is an assignment
of some of the items to bins such that the sum of the sizes of the items assigned
to each bin is at most the size of the bin. A packing is a partial packing that
assigns every item to a bin. If p is a packing of a set of items I into a sequence
of bins σ and p′ is a packing of a disjoint set of items I ′ into a sequence of bins
σ′, then we use pp′ to denote the packing of I ∪ I ′ into the sequence of bins σσ′,
where each item in I is assigned to the same bin as in p and each item in I ′ is
assigned to the same bin as in p′.

If every item has size at least S, there is no loss of generality in assuming that
every bin has size at least S. This is because no packing can use a bin of size
less than S.

A packing is valid if every bin that can be used is used. In other words, in a
valid packing, if a bin is empty, then all remaining items are larger than the bin.

Bounds for Scheduling Jobs on Grid Processors 15

A bin in a packing p for σ is wasteful if its empty space is at least the size of
the smallest remaining item. A packing is thrifty if it contains no wasteful bins.
Since a packing is valid if and only if it has no wasteful empty bin, every thrifty
packing is valid.

A packing is optimal if it is valid and the sum of the sizes of the bins it uses
is at least as small as any other valid packing.

Lemma 1. For any sequence of bins and any optimal packing pp′ of these bins,
there is an optimal packing pq that uses the same set of bins, in which q has no
wasteful bins.

Taking p to be empty in Lemma 1 yields the following result.

Corollary 1. For any optimal packing of a sequence of bins, there is an optimal
thrifty packing of that sequence using the same set of bins.

3 Lower Bounds

Theorem 2. For unbounded S, any algorithm for the Restricted Grid Schedul-
ing problem has competitive ratio at least⎧⎨

⎩
1 + 1

2+s/� if � ≤ s/2,

1 + 1
4 if s/2 < � ≤ 5s/6, and

1 + 2
3+6�/s if 5s/6 < �.

Proof. Consider an instance of the Grid Scheduling problem in which there are
s items of size S, � items of size L = 2S− 1, and maximum bin size M = 2L− 1.
We start with the case when � ≤ s/2 and then handle the case when � > s/2.
In both cases, we consider two subcases, depending on how the algorithm packs
the first batch of bins.

Case I: � ≤ s/2.
The adversary begins by giving � bins of size 2S. In each of these bins, the
algorithmmust pack either two items of size S or one item of size L. Let 0 ≤ k ≤ �
be the number of these bins in which the algorithm packs two items of size S.
Then the algorithm has s− 2k items of size S and k items of size L left to pack.

Case I.1: k ≤ �/2.
Next, the adversary gives s − 2� bins of size S, followed by 2� bins of size L.
The algorithm must pack one item of size S in each bin of size S and must
use one bin of size L for each of the remaining s − 2k − (s − 2�) = 2(� − k)
items of size S and k items of size L. The total cost incurred by the algorithm
is � · 2S + (s− 2�) · S + (2�− k) · L = s · S + 2� · L− k · L ≥ s · S + 3� · L/2.

For this sequence, OPT packs two items of size S in each of the � bins of
size 2S, one item of size S in each of the s− 2� bins of size S, and one item of

16 J. Boyar and F. Ellen

size L in each of the next � bins of size L, for total cost s · S + � · L. Thus, the
performance ratio of the algorithm is at least

s · S + 3� · L/2
s · S + � · L = 1 +

� · L
2� · L+ 2s · S = 1 +

�

2�+ s+ s/L

= 1 +
1

2 + s
� +

s/�
2S−1

→ 1 +
1

2 + s/�
as S →∞.

Case I.2: k > �/2.
Next, the adversary gives s bins of size S, followed by � bins of size M . The
algorithm packs one item of size S in the first s − 2k ≥ 2� − 2k ≥ 0 of these
bins, using up all its items of size S. It discards the remaining 2k bins of size
S, because it has no remaining elements that are small enough to fit in them.
Then the algorithm packs its remaining k items of size L into k bins of size
M = 4S − 3. The total cost incurred by the algorithm is

� · 2S + (s− 2k) · S + k · (4S − 3)
= (2�+ s) · S + k · (2S − 3)
> (2�+ s) · S + � · (S − 3/2).

For this sequence, OPT packs one item of size L in each of the � bins of size 2S
and one item of size S in each of the next s bins. The total cost used by OPT is
� · 2S + s · S. Thus, the performance ratio of the algorithm is at least

(3�+ s) · S − 3�/2

(2�+ s) · S = 1 +
1− 3/(2S)

2 + s/�
→ 1 +

1

2 + s/�
as S →∞.

Case II: � > s/2. The adversary begins by giving �s/2 bins of size 2S. In each
of these bins, the algorithm must pack either two items of size S or one item of
size L. Let 0 ≤ k ≤ �s/2 be the number of these bins in which the algorithm
packs two items of size S. Then the algorithm has s − 2k items of size S and
�− �s/2+ k items of size L left to pack.

Case II.1: k ≤ �s/2 − s/8− �/4 + 1 or k ≤ �s/2 − s/3 + 1.
Next, the adversary next gives 	s/2
−�s/2 bins of size S (i.e. one bin of size S if
s is odd and no bins of size S if s is even), �s/2−k+�−1 bins of size L, and 1 bin
of size M . Since (s−2k)+(�−�s/2+k) = (s/2
−�s/2)+(�s/2−k+�−1)+1,
the algorithm packs one of its remaining items in each of these bins, so the total
cost it incurs is �s/2 · 2S + (s/2
 − �s/2) · S + (�s/2 − k + �− 1) · L+M =
s · S + � · L+ (�s/2 − k + 1) · L− 1.

If s ≥ 4, then �s/2− k ≥ min{s/8+ �/4, s/3}− 1 > s/4− 1 ≥ 0, so there are
at least � bins of size L. Because of the additive constant in the definition of the
competitive ratio, the case s ≤ 3 can be ignored. For this sequence, OPT packs
two items of size S in each of the �s/2 bins of size 2S, one item of size S in the
bin of size S, if s is odd, and one item of size L in each of the next � bins of size
L. Its total cost is s · S + � · L.

Bounds for Scheduling Jobs on Grid Processors 17

If k ≤ �s/2 − s/8 − �/4 + 1, then (�s/2 − k + 1) · L ≥ (s/8 + �/4) · L =
S · s/4− s/8 + L · �/4, so the performance ratio of the algorithm is at least

(s · S + � · L) · 5/4− s/8− 1

s · S + � · L =
5

4
− s/8 + 1

s · S + � · (2S − 1)
→ 5

4
as S →∞.

Similarly, if k ≤ �s/2 − s/3 + 1, then (�s/2 − k + 1) · L ≥ (s/3) · L, so the
performance ratio of the algorithm is at least

1 +
(s/3) · L

s · S + � · L = 1 +
2− 1/(s · S)

3 + 6�/s− 3�/(s · S) → 1 +
2

3 + 6�/s
as S →∞.

Case II.2: k > �s/2 − s/8− �/4 + 1 and k > �s/2 − s/3 + 1 > s/6.
Next, the adversary gives max{s− 2k, s− �+ �s/2} bins of size S, followed by
min{2k, �− �s/2} bins of size L+S, max{�− �s/2− 2k, 0} bins of size L, and
finally k bins of sizeM = 4S−3. The algorithm packs its s−2k items of size S into
bins of size S. Since min{2k, �−�s/2}+max{�−�s/2−2k, 0}+k = �−�s/2+k,
the algorithm packs one item of size L in each bin of size L+ S, L, and M . The
total cost incurred by the algorithm is

�s/2 · 2S + (s− 2k) · S +min{2k, �− �s/2} · (L+ S)
+max{�− �s/2 − 2k, 0} · L+ k ·M

= (2�s/2+ s) · S + (� − �s/2) · L+ k · (2S − 3) + min{2k, �− �s/2} · S.

For this sequence, OPT fills every bin it uses except for the �s/2 bins of size
2S, in which it puts items of size L = 2S − 1. Therefore, the total cost used by
OPT is s · S + � · L+ �s/2.

If 2k ≥ �− �s/2, the performance ratio of the algorithm is at least

(2�s/2+ s) · S + (� − �s/2) · L+ k · (2S − 3) + (�− �s/2) · S
s · S + � · L+ �s/2

>
(�+ s+ �s/2) · S + (� − �s/2) · L+ (�s/2 − s/8− �/4 + 1) · (2S − 3)

s · S + � · L+ �s/2

=
5

4
+

(�s/2 − s/2 + 2) · S + �+ 3s/8− 13�s/2/4− 3

(s+ 2�) · S − �+ �s/2

>
5

4
+

�+ 3s/8− 13�s/2/4− 3

(s+ 2�) · S − �+ �s/2 → 5

4
as S →∞.

If 2k ≤ �− �s/2, the performance ratio of the algorithm is at least

(2�s/2+ s) · S + (�− �s/2) · L+ k · (4S − 3)

s · S + � · L+ �s/2

= 1 +
k · (4S − 3)

(s+ 2�) · S − �+ �s/2

> 1 +
(s/6) · (4S − 3)

(s+ 2�) · S + �s/2 − �

= 1 +
2− 3/2S

3 + 6�/s+ 3(�s/2 − �)/sS
→ 1 +

2

3 + 6�/s
as S →∞.

18 J. Boyar and F. Ellen

Note that 5
4 ≤ 1 + 2

3+6�/s if and only if � ≤ 5s/6. Thus, 5
4 is a lower bound on

the competitive ratio when s/2 < � ≤ 5s/6 and 1 + 2
3+6�/s is a lower bound on

the competitive ratio when � > 5s/6.

4 Properties of Optimal Packings for Restricted Grid
Scheduling

We say that a bin used in a packing is bad if it contains an item of size S, it
has empty space at least L−S, and it occurs while items of size L remain. Note
that a bin containing an item of size L and an item of size S has empty space
at most M − L− S = L− S − 1, so it is not bad.

Lemma 2. For any set of items and any sequence of bins, there exists an opti-
mal thrifty packing that contains no bad bin.

Proof. Fix a set of items and a sequence of bins and suppose every optimal
thrifty packing contains a bad bin. Consider an optimal thrifty packing p which
has the longest prefix without bad bins. Let b′ be the last bin to which p assigns
an item of size L. Then the first bad bin b occurs before b′. Since p is thrifty, the
empty space in b is less than L.

Note that p has no empty bins (of size at least S) between b and b′. Otherwise,
let b′′ be the first empty bin following b. Since p is valid, size(b′′) < L and, when
bin b′′ arrives, only items of size L remain. Then each nonempty bin after b′′,
including b, contains exactly one item, which is of size L. Consider the packing
p′ obtained from p by moving one item of size S in b to bin b′′ and moving the
item of size L in b′ to bin b. Then b′ is empty in the packing p′. Since p is valid,
p and p′ are the same prior to bin b, there are no empty bins between b and b′′

in p′, and no item which occurred before b′′ in p has been moved after b′′ in p′, it
follows that p′ is valid. But the cost of p′ is equal to the cost of p − the size of b′

+ size of b′′, which is lower than the cost of p, since size(b′′) < L ≤ size(b′). By
Corollary 1, there is an optimal thrifty packing with the same cost as p′, which
contradicts the optimality of p.

Let p′ be the packing obtained from p by switching an item of size S in b with
the item of size L in b′. Note that p′ is optimal, since p is. Since b contains an
item of size L, it is not bad in p′. Furthermore, bin b is not wasteful, since its
empty space, which was less than L in p, is less than L− (S−L) = S in p′. None
of the bins in p are wasteful, since p is thrifty, so none of the bins in p′ prior to
b are wasteful. By Lemma 1, there is an optimal packing p′′ that is identical to
p′ up to and including bin b and which has no wasteful bins after b. This implies
that p′′ is thrifty. But p′′ has a longer prefix without bad bins than p does. Thus,
it contradicts the choice of p.

This motivates the following definition.

Definition 1. A partial packing is reasonable if every bin b contains

– one item of size S, if size(b) ∈ [S,L− 1],

Bounds for Scheduling Jobs on Grid Processors 19

– one item of size L, if size(b) = L,
– two items of size S or one item of size L, if size(b) ∈ [L+ 1, L+ S − 1],
– one item of size S and one item of size L, if size(b) = L+ S, and
– three items of size S or one item of size S and one item of size L, if size(b) ∈

[L+ S + 1, 2L− 1].

Note that a reasonable partial packing contains no wasteful, bad, or empty bins.
For any packing, consider the first bin after which there are no items of size L

remaining or at most 2 items of size S remaining. This bin is called the key bin
of the packing. The partial packing that assigns the same items into each bin up
to and including its key bin and assigns no items to any subsequent bin is called
the front of the packing. We say that a packing is reasonable if it is thrifty and
its front is reasonable.

Corollary 2. For any set of items and any sequence of bins, there exists an
optimal packing that is reasonable.

From now on, we will restrict attention to reasonable packings.
Given a set of items and a sequence of bins, two reasonable partial packings

can differ as to whether they use one item of size L or two items of size S in
certain bins. Therefore, the numbers of items of size S and items of size L they
do not assign may differ. However, if both have at least one item of size S and
at least one item of size L unassigned, the set of bins they have used is the same
and there is a simple invariant relating the numbers of unassigned items of size
S and unassigned items of size L they have.

Lemma 3. Consider two reasonable partial packings of a set of items into a
sequence of bins. Suppose that before bin b, each packing has at least one unas-
signed item of size S and at least one unassigned item of size L or at least three
unassigned items of size S. Then immediately after bin b has been packed, the
number of items of size S available plus twice the number of items of size L
available is the same for both packings.

Once a packing runs out of items of size S, it may be impossible for it to com-
pletely use some bins, so this relationship does not necessarily hold.

For any sequence of bins σ and any nonnegative integers s and �, letOPT (σ, s, �)
denote the cost of an optimal packing of s items of size S and � items of size
L = 2S − 1 using σ. This must be at least the sum of the sizes of all the items.

Proposition 1. OPT (σ, s, �) ≥ sS + �L.

Given any optimal packing for a set of items, a packing for a subset of these
items can be obtained by removing the additional items from bins, starting from
the end.

Proposition 2. OPT (σ, s′, �′) ≤ OPT (σ, s, �) for all s′ ≤ s and �′ ≤ �.

For any sequence of bins σ and any nonnegative integers s and �, let R(σ, s, �)
denote the maximum cost of any reasonable packing of s items of size S and �
items of size L = 2S − 1 using σ.

20 J. Boyar and F. Ellen

When all items have the same size, all thrifty algorithms, including OPT,
behave exactly the same.

Proposition 3. For all integers s, � > 0, R(σ, s, 0) = OPT (σ, s, 0) and R(σ, 0, �)
= OPT (σ, 0, �).

Thus, if R and OPT both run out of items of size L at the same time or they
both run out of items of size S at the same time, then they will use the same
set of bins and, hence, have the same cost. The following four lemmas describe
the relationship between the costs incurred by R and OPT when one of them
has run out of one size of items.

Lemma 4. For any sequence of bins σ and any integers s, � ≥ 0,
R(σ, s, �) ≤ OPT(σ, s + 2�, 0) + �(2S − 3).

Lemma 5. For any sequence of bins σ and any integers s, � ≥ 0, if 2k = s+2�,
then R(σ, s, �) ≤ OPT(σ, 0, k) + (s+ �− k − 1)L+M.

Lemma 6. For any sequence of bins σ and any integers s, � ≥ 0,
R(σ, s+ 2�, 0) ≤ OPT(σ, s, �) + (�− 1)L+M .

Lemma 7. For any sequence of bins σ and any integers s, � ≥ 0, if 2k = s+2�,
then R(σ, 0, k) ≤ OPT(σ,min{s, �}, �) + (k − �)M .

5 Simple Non-optimal Algorithms

It is helpful to understand why simple reasonable algorithms are not optimal
for the Restricted Grid Scheduling problem. The following examples show why
a number of natural candidates don’t work well enough.

Example 1. Consider the reasonable algorithm that always uses items of size S,
when there is a choice. Let s = 2� and let σ consist of � bins of size 2S, followed
by s bins of size S, and then � bins of size M . For this instance, the algorithm has
a performance ratio of �·2S+�·M

�·2S+s·S = 3
2 −

3
4S , which is greater than 5/4 for large S.

Example 2. Consider the reasonable algorithm that always uses items of size
L, when there is a choice. Let s = 2� and let σ consist of � bins of size 2S,
followed by s− 1 bins of size L and then 1 bin of size M . For this instance, the

algorithm has a performance ratio of �·2S+(s−1)·L+M
�·2S+�·L = 3

2 + 1
� −

1/�+1/2
2S−1 , which

is also greater than 5/4 for large S.

For the two instances considered above, the reasonable algorithm which al-
ternates between using two items of size S and one item of size L, when it has a
choice, would do well, achieving a performance ratio of 5/4. However, it doesn’t
do as well on other instances.

Bounds for Scheduling Jobs on Grid Processors 21

Example 3. Let 2s = 3� and let σ consist of � bins of size 2S, followed by s bins of
size S and �/2 bins of size M . For this instance, the algorithm which alternates
between using two items of size S and one item of size L, when it has a choice,

has a performance ratio of �·2S+(s−�)·S+(�/2)·M
�·2S+s·S = 1 +

�
2 ·(M−2S)

(2�+s)·S = 1 + 2
7 −

3
7S ,

which is larger than 5/4 for S sufficiently large.

As the above examples partially illustrate, once either the online algorithm
or OPT has run out of one type of item (items of size S or items of size L), the
adversary can give bins which make the online algorithm waste a lot of space.
The algorithm we present in the next section aims to postpone this situation
long enough to get a good ratio. The following example indicates the need for
a second phase in order to obtain the optimal competitive ratios, which are less
than 5/4 in some cases.

Example 4. Consider the reasonable algorithm which uses one item of size L
twice as often as two items of size S, when it has a choice. Let 3s = 2� and let
σ consist of � bins of size 2S, followed by s bins of size S and �/3 bins of size
M . For this instance, the algorithm packs �/3 = s/2 bins of size 2S with two

items of size S, so it has a performance ratio of �·2S+(�/3)·M
�·2S+s·S = 1 +

s
2 ·M−sS

(2�+s)·S =

1 + S−3/2
4·S = 5

4 −
3
8S , which exceeds the lower bound of 1 + 2

3+6�/s = 7
6 for S

sufficiently large.

6 A Matching Upper Bound

In this section, we present a reasonable algorithm, 2-Phase-Packer, for the Re-
stricted Grid Scheduling problem. It is asymptotically optimal: the competitive
ratio matches the lower bound in Section 3 for all three ranges of the ratio s/�
of the initial numbers of items of size S and items of size L. Not surprisingly,
2-Phase-Packer has two phases.

In the first phase, it attempts to balance the number of items of size S and
the number of items of size L it uses, aiming for the ratio indicated by the lower
bound. When it receives bins where it has a choice of using one item of size L
or two items of size S in part or all of that bin (i.e., bins with sizes in the ranges
[2S, 3S − 2] and [3S, 4S − 3]), it uses one item of size L in a certain fraction of
them (and increments the variable L-bins) and uses two items of size S in the
remaining fraction (and increments S-bins). The fraction varies depending on
the original ratio s/�: at least 2, between 2 and 6/5, and less than 6/5. It is
enforced by a macro called UseLs, which indicates that an item of size L should
be used if and only if L-bins ≤ rS-bins, where r is the target ratio of L-bins
to S-bins. For example, when equal numbers of each should be used, we have
UseLs = (L-bins ≤ S-bins). Both L-bins and S-bins start at zero, so, in this case,
2-Phase-Packer starts by choosing to use one item of size L and then alternates.
Note that S-bins and L-bins do not change after Phase 1 is completed.

In the middle range for the ratio s/�, there are two different fractions used.
The first fraction is used until S-bins reaches a specific value. Afterwards, its

22 J. Boyar and F. Ellen

choices alternate. To do so, for the rest of Phase 1, it records the number of
times it chooses to pack two items of size S in a bin and the number of times
it chooses to pack one item of size L in late-S-bins and late-L-bins, respectively.
The variables late-S-bins and late-L-bins are also zero initially.

2-Phase-Packer uses countS and countL throughout the algorithm to keep
track of the total numbers of items of size S and items of size L it has used,
whether or not it had a choice. (Specifically, countS is incremented every time
an item of size S is used and countL is incremented every time an item of size L
is used.) It continues with Phase 1 until it has used a certain number of items
of size S or items of size L (depending on the relationship between s and �).
For each of the three ranges of s/�, we define a different condition for ending
Phase 1. In Phase 2, only items of size S or only items of size L are used where
a reasonable algorithm has a choice, depending on whether one would expect an
excess of items of size S or items of size L, given the ratio s/�.

The definitions of the end of Phase 1 for the various ranges of s/� imply these
inequalities.

Lemma 8. If s/2 < � ≤ 5s/6, then S-bins ≤ 3s/8− �/4 + 1.
If s < 6�/5, then S-bins ≤ s/6 + 1.

The following simple invariants can be proved inductively.

Lemma 9. L-bins ≤ countL and 2S-bins ≤ countS.
If � ≤ s/2, then S-bins ≤ L-bins ≤ S-bins+ 1.
If s/2 < � ≤ 5s/6, then late-S-bins ≤ late-L-bins ≤ late-S-bins+ 1 and
�c(S-bins− 1)+ 1 ≤ L-bins ≤ �c S-bins+ 1, where 1 < c = 10�−3s

s+2� ≤ 2.
If 5s/6 < �, then 2S-bins ≤ L-bins ≤ 2S-bins+ 1.

We analyse the performance of 2-Phase-Packer as compared to the cost of an
optimal reasonable packing on an arbitrary sequence, σ, using the three different
ranges for the relationship between s and � in the lower bound.

Both 2-Phase-Packer and OPT use exactly the same bins until one of them
runs out of either items of size L or items of size S. Thus, there are four cases
to consider.

1. OPT runs out of items of size L at or before the point where 2-Phase-Packer
runs out of anything.

2. OPT runs out of items of size S at or before the point where 2-Phase-Packer
runs out of anything.

3. 2-Phase-Packer runs out of items of size L before OPT runs out of anything.
4. 2-Phase-Packer runs out of items of size S before OPT runs out of anything.

We only present the analysis for Case 1. The remaining cases are similar.
Consider an arbitrary sequence of bins σ in which 2-Phase-Packer packs s

items of size S and � items of size L. Suppose that, in this instance, OPT packs
its last item of size L in bin b′, but prior to bin b′, both OPT and 2-Phase-Packer
have unpacked items of both sizes. Let countL′ and countS′ denote the number
of items of size L and items of size S, respectively, that 2-Phase-Packer has used

Bounds for Scheduling Jobs on Grid Processors 23

macro Phase1done =

⎧⎨
⎩
countL ≥ ��/2� if � ≤ s/2
countS ≥ �3s/4− �/2� if s/2 < � ≤ 5s/6
countS ≥ �s/3� if 5s/6 < �

macro UseLs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L-bins ≤ S-bins if � ≤ s/2
if (S-bins < �(s+ 2�)/16�)
then L-bins ≤ (10�− 3s)S-bins/(s+ 2�)
else late-L-bins ≤ late-S-bins

if s/2 < � ≤ 5s/6

L-bins ≤ 2S-bins if 5s/6 < �

countS % counts the number of items of size S used; initially 0
countL % counts the number of items of size L used; initially 0
S-bins← L-bins← late-S-bins← late-L-bins← 0

for each arriving bin b
if only one type of item still remains then use as many items as fit in b
else if size(b) ∈ [S, 2S − 2] then use 1 item of size S
else if size(b) = 2S − 1 then use 1 item of size L
else if size(b) = 3S − 1 then use 1 item of size L and 1 item of size S
else if only one item of size S still remains then

use 1 item of size L
if remaining space in b is at least S then use 1 item of size S

else if only two items of size S still remain and size(b) ∈ [3S, 4S − 3] then
use 1 item of size L and 1 item of size S

else if (not Phase1done) then
% Use range determined ratio
if 6�/5 ≤ s < 2� and S-bins ≥ �(s+ 2�)/16� then

if UseLs then late-L-bins ++
else late-S-bins ++

if size(b) ∈ [2S, 3S − 2] then
if UseLs then use 1 item of size L; L-bins ++;
else use 2 items of size S; S-bins ++;

if size(b) ∈ [3S, 4S − 3] then
if UseLs then use 1 item of size L and 1 item of size S; L-bins ++;
else use 3 items of size S; S-bins ++;

else % In Phase 2
if � ≤ s/2 then use as many items of size S as fit in bin b
else use 1 item of size L

if remaining space in b is at least S then use 1 item of size S
end for

Fig. 1. The algorithm 2-Phase-Packer

up to and including bin b′. Let S-bins′ denote the number of bins at or before b′

where 2-Phase-Packer had a choice and used two items of size S instead of one
of size L and let L-bins′ denote the number where it used one item of size L and
could have used two of size S instead. Let σ′ denote the portion of σ after b′.

24 J. Boyar and F. Ellen

Both algorithms use all bins up to and including bin b′, since all bins have size
at least S. If X is the total cost of these bins, then X ≥ (countS′)S+(countL′)L
and 2-Phase-Packer (σ, s, �) = X+ 2-Phase-Packer (σ′, s− countS′, �− countL′).
In this case, Lemma 3 implies that, after bin b′, OPT has (s− countS′) + 2(�−
countL′) items of size S remaining, soOPT (σ, s, �) = X+OPT (σ′, (s−countS′)+
2(�− countL′), 0).

Since 2-Phase-Packer is reasonable, Lemma 4 implies that 2-Phase-Packer(σ′,
s − countS′, � − countL′) ≤ R(σ′, s − countS′, � − countL′) ≤ OPT(σ′, (s −
countS′)+2(�− countL′), 0)+(�− countL′)(2S−3), so 2-Phase-Packer(σ, s, �) ≤
OPT(σ, s, �) +(�−countL′)(2S−3). By Proposition 1, OPT(σ, s, �) ≥ sS+ �L ≥
sL/2+ �L = (s+2�)L/2. When computing the competitive ratio, we will choose
the additive constant to be at least L, so we subtract L from 2-Phase-Packer’s
cost in the ratio. Thus,

2-Phase-Packer(σ, s, �)− L

OPT(σ, s, �)
≤ OPT(σ, s, �) + (�− countL′)(2S − 3)− L

OPT(σ, s, �)

≤ 1 +
(� − countL′ − 1)(L− 2)

(s+ 2�)L/2

≤ 1 +
2(�− countL′ − 1)

s+ 2�
.

It remains to bound �− countL′− 1 in each of the three ranges for the ratio s/�.
We use the fact that, immediately after bin b′, OPT has run out of items of size
L, so at least � bins of size at least L are in σ up to and including bin b′.

First, consider the case when � ≤ s/2. If countL′ < ��/2, then Phase 1
was not completed when bin b′ arrived. Therefore, each time a bin of size
at least L arrives up to and including bin b′, 2-Phase-Packer either packs an
item of size L in it and, hence, increments countL, or it increments S-bins. Hence,
countL′ + S-bins′ ≥ �. By Lemma 9, L-bins′ ≥ S-bins′. Since countL′ ≥ L-bins′,
by Lemma 9, it follows that countL′ ≥ �/2 ≥ ��/2. This is a contradiction.
Thus, countL′ ≥ ��/2 and

2-Phase-Packer(σ, s, �)− L

OPT(σ, s, �)
≤ 1 +

2(�− countL′ − 1)

s+ 2�

≤ 1 +
�

s+ 2�
= 1 +

1

2 + s/�
.

So, suppose that s/2 < �. During Phase 1, each time a bin of size at least L
arrives, 2-Phase-Packer either packs an item of size L in it and, hence, incre-
ments countL, or it increments S-bins. During Phase 2, 2-Phase-Packer packs
an item of size L in each such bin until it runs out of items of size L. Therefore,
countL′ + S-bins′ ≥ �.

Bounds for Scheduling Jobs on Grid Processors 25

If � ≤ 5s/6, then Lemma 8 implies that �− countL′ ≤ S-bins′ ≤ 3s/8− �/4+1
and

2-Phase-Packer(σ, s, �)− L

OPT(σ, s, �)
≤ 1 +

2(�− countL′ − 1)

s+ 2�
≤ 1 +

2(3s/8− �/4)

s+ 2�

= 1 +
s/4 + �/2 + s/2− �

s+ 2�
< 1 +

s/4 + �/2

s+ 2�
=

5

4
.

Similarly, if s < 6�/5, then �− countL′ ≤ S-bins′ ≤ s/6+ 1, by Lemma 8, and

2-Phase-Packer(σ, s, �)− L

OPT(σ, s, �)
≤ 1 +

2(�− countL′ − 1)

s+ 2�

≤ 1 +
s/3

s+ 2�
< 1 +

2

3 + 6�/s
.

7 Conclusions and Open Problems

We have shown that varying the proportion of items of size S to items of size L
does not lead to a larger competitive ratio if the maximum bin size is at most
4S − 3. This may also be the case for an arbitrary maximum bin size, but there
are complications. First, in bins of size 2kS, where k ≥ 2S − 1, it is possible
to pack more than k items of size L. In addition, it may be an advantage to
have mixed bins which contain more than one item of size S and more than one
item of size L. So, when bins can be large, one needs to consider how to maintain
a good ratio of items of size L to items of size S, as they are used. We conjecture
that maintaining the ratios specified in 2-Phase-Packer is sufficient.

One could also consider the the Grid Scheduling problem for two bin sizes, S
and L �= 2S − 1. For example, when L is a multiple of S, then the algorithm of
Example 2, which always uses as many items of size L as possible, is optimal and,
hence, has competitive ratio 1. It would be interesting to see if changing the ratio
of S to L could improve the lower bound. We conjecture that it does not.

For the general problem, where there could be more than two sizes of items,
we would like to close the gap between our lower bound and the upper bound of
13
7 in [1]. Using many item sizes, it is not hard to prove a lower bound of 3

2 on the
strict competitive ratio (the competitive ratio where the additive constant in the
definition is zero). However, the strict competitive ratio is not very interesting
for this problem, since the ratio can be made larger simply by increasing the size
of M and giving a last bin of size M .

Finally, it would be interesting to consider the competitive ratio of random-
ized algorithms for the Grid Scheduling problem or Restricted Grid Scheduling
problem against an oblivious adversary.

26 J. Boyar and F. Ellen

References

1. Boyar, J., Favrholdt, L.M.: Scheduling jobs on Grid processors. Algorithmica 57(4),
819–847 (2010)

2. Boyar, J., Favrholdt, L.M.: A new variable-sized bin packing problem. Journal of
Scheduling 15, 273–287 (2012)

3. Epstein, L., Levin, A.: More online bin packing with two item sizes. Discrete Opti-
mization 5(4), 705–713 (2008)

4. Gutin, G., Jensen, T.R., Yeo, A.: On-line bin packing with two item sizes. Algorith-
mic Operations Research 1(2) (2006)

5. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3(1), 79–119 (1988)

6. Liang, F.M.: A lower bound for on-line bin packing. Inform. Process. Lett. 10, 76–79
(1980)

7. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Comm. of the ACM 28(2), 202–208 (1985)

8. Zhang, G.: A new version of on-line variable-sized bin packing. Discrete Applied
Mathematics 72, 193–197 (1997)

Quake Heaps:

A Simple Alternative to Fibonacci Heaps

Timothy M. Chan

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

tmchan@uwaterloo.ca

Abstract. This note describes a data structure that has the same the-
oretical performance as Fibonacci heaps, supporting decrease-key op-
erations in O(1) amortized time and delete-min operations in O(log n)
amortized time. The data structure is simple to explain and analyze, and
may be of pedagogical value.

1 Introduction

In their seminal paper [5], Fredman and Tarjan investigated the problem of
maintaining a set S of n elements under the operations

– insert(x): insert an element x to S;
– delete-min(): remove the minimum element x from S, returning x;
– decrease-key(x, k): change the value of an element x to a smaller value k.

They presented the first data structure, called Fibonacci heaps, that can support
insert() and decrease-key() in O(1) amortized time, and delete-min() in O(log n)
amortized time.

Since Fredman and Tarjan’s paper, a number of alternatives have been pro-
posed in the literature, including Driscoll et al.’s relaxed heaps and run-relaxed
heaps [1], Peterson’s Vheaps [9], which is based on AVL trees (and is an instance
of Høyer’s family of ranked priority queues [7]), Takaoka’s 2-3 heaps [11], Ka-
plan and Tarjan’s thin heaps and fat heaps [8], Elmasry’s violation heaps [2], and
most recently, Haeupler, Sen, and Tarjan’s rank-pairing heaps [6]. The classical
pairing heaps [4,10,3] are another popular variant that performs well in practice,
although they do not guarantee O(1) decrease-key cost.

Among all the data structures that guarantee constant decrease-key and log-
arithmic delete-min cost, Fibonacci heaps have remained the most popular to
teach. The decrease-key operation uses a simple “cascading cut” strategy, which
requires an extra bit per node for marking. For the analysis, the potential func-
tion itself is not complicated, but one needs to first establish bounds on the
maximum degree of the trees (Fibonacci numbers come into play here), and this
requires understanding some subtle structural properties of the trees formed (a
node may lose at most one child when it is not a root, but may lose multiple chil-
dren when it is a root). In contrast, Vheaps are more straightforward to analyze,

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 27–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

28 T.M. Chan

for those already acquainted with AVL trees, but the decrease-key() algorithm
requires division into multiple cases, like the update algorithms of most balanced
search trees. The recent rank-pairing heaps interestingly avoid cascading cuts by
performing cascading rank changes, which may lead to a simpler implementation,
but from the teaching perspective, the analysis appears even more complicated
than for Fibonacci heaps (and there are also divisions into multiple cases).

In this note, we describe a data structure that is arguably the easiest to
understand among all the existing methods. There is no case analysis involved,
and no “cascading” during decrease-key(). We use a very simple, and rather
standard, idea to ensure balance: be lazy during updates, and just rebuild when
the structure gets “bad”. Previous methods differ based on what local structural
invariants are imposed. Our method is perhaps the most relaxed, completely
forgoing local constraints, only requiring the tracking of some global counters.
(Violation heaps [2] are of a similar vein but require multiple local counters; our
method is simpler.)

In Section 2, we give a self-contained presentation of our method,1 which
should be helpful for classroom use; it only assumes basic knowledge of amortized
analysis. We find a description based on tournament trees the most intuitive,
although the data structure can also be expressed more traditionally in terms of
heap-ordered trees or half-ordered trees, as noted in Section 3.

2 Quake Heaps

The Approach. We will work with a collection of tournament trees, where
each element in S is stored in exactly one leaf, and the element of each internal
node is defined as the minimum of the elements at the children. We require that
at each node x, all paths from x to a leaf have the same length; this length is
referred to as the height of x. We also require that each internal node has degree
2 or 1. See Figure 1.

8513101415163209112 13

4

21

1

5

31

314

51014320112

64

Fig. 1. An example

Two basic operations are easy to do in constant time under these requirements:
First, given two trees of the same height, we can link them into one, simply

1 Tradition demands a name to be given. The one in the title will hopefully make some
sense after reading Section 2.

Quake Heaps: A Simple Alternative to Fibonacci Heaps 29

by creating a new root pointing to the two roots, storing the smaller element
among the two roots. Secondly, given a node x whose element is different from x’s
parent’s, we can cut out the subtree rooted at x. Note that x’s former parent’s
degree is reduced to 1, but our setup explicitly allows for degree-1 nodes.

Inserting an element can be trivially done by creating a new tree of size 1. The
number of trees in the collection increases by 1, but can be reduced by linking
at a convenient time later.

For a delete-min operation, we can just remove the path of nodes that store
the minimum element. The number of trees in the collection grows, and this
is the time to do repeated linking operations to reduce the number of trees.
Namely, whenever there are two trees of the same height, we link them.

For a decrease-key operation on an element, let x be the highest node that
stores the element. It would be too costly to update the elements at all the
ancestors of x. Instead we can perform a cut at x. Then we can decrease the
value of x at will in the separate new tree.

We need to address one key issue: after many decrease-key operations, the
trees may become too off-balanced. Let ni denote the number of nodes at height
i. (In particular, n0 = n = |S|.) Our approach is simple—we maintain the
following invariant for some fixed constant α ∈ (1/2, 1):

ni+1 ≤ αni.

(To be concrete, we can set α = 3/4, for example.) The invariant clearly implies
that the maximum height is at most log1/α n. When the invariant is violated for
some i, a “seismic” event occurs and we remove everything from height i+1 and
up, to allow rebuilding later. Since ni+1 = ni+2 = · · · = 0 now, the invariant is
restored. Intuitively, events of large “magnitude” (i.e., events at low heights i)
should occur infrequently.

Pseudocode. We give pseudocode for all three operations below:

insert(x):
1. create a new tree containing {x}
decrease-key(x, k):
1. cut the subtree rooted at the highest node storing x [yields 1 new tree]
2. change x’s value to k

delete-min():
1. x← minimum of all the roots
2. remove the path of nodes storing x [yields multiple new trees]
3. while there are 2 trees of the same height:
4. link the 2 trees [reduces the number of trees by 1]
5. if ni+1 > αni for some i then:
6. let i be the smallest such index
7. remove all nodes at heights > i [increases the number of trees]
8. return x

30 T.M. Chan

We can explicitly maintain a pointer to the highest node storing x for each
element x; it is easy to update these pointers as linkings are performed. It is
also easy to update the ni’s as nodes are created and removed. Lines 3–4 in
delete-min() can be done in time proportional to the current number of trees,
by using an auxiliary array of pointers to trees indexed by their heights.

Analysis. In the current data structure, let N be the number of nodes, T be
the number of trees, and B be the number of degree-1 nodes (the “bad” nodes).
Define the potential to be N + T + 1

2α−1B. The amortized cost of an operation
is the actual cost plus the change in potential.

For insert(), the actual cost is O(1), and N and T increase by 1. So, the
amortized cost is O(1).

For decrease-key(), the actual cost is O(1), and T and B increase by 1. So,
the amortized cost is O(1).

For delete-min(), we analyze lines 1–4 first. Let T (0) be the value of T just
before the operation. Recall that the maximum height, and thus the length of
the path in line 2, is O(log n). We can bound the actual cost by T (0)+O(log n).
Since after lines 3–4 there can remain at most one tree per height, T is decreased
to O(log n). So, the change in T is O(log n)−T (0). Since linking does not create
degree-1 nodes, the change in B is nonpositive. Thus, the amortized cost is
O(log n).

For lines 5–7 of delete-min(), let n
(0)
j be the value of nj just before these

lines. We can bound the actual cost of lines 5–7 by
∑

j>i n
(0)
j . The change in

N is at most −
∑

j>i n
(0)
j . The change in T is at most +n

(0)
i . Let b

(0)
i be the

number of degree-1 nodes at height i just before lines 5–7. Observe that n
(0)
i ≥

2n
(0)
i+1 − b

(0)
i . Thus, b

(0)
i ≥ 2n

(0)
i+1 − n

(0)
i ≥ (2α − 1)n

(0)
i . Hence, the change in B

is at most −(2α − 1)n
(0)
i . Thus, the net change in T + 1

2α−1B is nonpositive.
We conclude that the amortized cost of lines 5–7 is nonpositive. Therefore, the
overall amortized cost for delete-min() is O(log n).

3 Comments

Like Fibonacci heaps, our method can easily support the meld (i.e., merge)
operation in O(1) amortized time, by just concatenating the lists of trees.

Many variations of the method are possible. Linking of equal-height trees can
be done at other places, for example, immediately after an insertion or after lines
5–7 of delete-min(), without affecting the amortized cost. Alternatively, we can
perform less linking in lines 3–4 of delete-min(), as long as the number of trees
is reduced by a fraction if it exceeds Θ(log n).

We can further relax the invariant to ni+c ≤ αni for any integer constant
c. In the analysis, the potential can be readjusted to N + T + 1

c(2α−1)B. It is

straightforward to check that the amortized number of comparisons per decrease-
key() is at most 1 + 1

c(2α−1) , which can be made arbitrarily close to 1 at the

Quake Heaps: A Simple Alternative to Fibonacci Heaps 31

expense of increasing the constant factor in delete-min(). (A similar tradeoff of
constant factors is possible with Fibonacci heaps as well, by relaxing the “lose
at most one child per node” property to “at most c children” [5].)

In the tournament trees, it is convenient to assume that the smaller child of
each node is always the left child (and if the node has degree 1, its only child is
the left child).

3 16

1

3

20

1

91 14 15

4

124

131264

1

20

1

3

143

16

15

14

13

12

1

6

4209 3

1

13 1516

14

6

12

4

20

9

3

Fig. 2. Transforming a tournament tree into a heap-ordered tree or a half-ordered tree

The tournament trees require a linear number of extra nodes, but more space-
efficient representations are possible where each element is stored in only one
node. One option is to transform each tournament tree T into a heap-ordered,
O(log n)-degree tree T ′: the children of x in T ′ are the right children of all the
nodes storing x in T . See Figure 2 (middle). Binomial heaps and Fibonacci heaps
are usually described for trees of this form.

Another option is to transform T into a binary tree T ′′ as follows: after short-
cutting degree-1 nodes in T , the right child of x in T ′′ is the right child of the
highest node storing x in T ; the left child of x in T ′′ is the right child of the
sibling of the highest node storing x in T . See Figure 2 (right). The resulting
tree T ′′ is a half-ordered binary tree: the value of every node x is smaller than
the value of any node in the right subtree of x. Høyer [7] advocated the use of
such trees in implementation. It is straightforward to redescribe our method in
terms of half-ordered binary trees. For example, see [7] on the analogous linking
and cutting operations.

While our method is simple to understand conceptually, we do not claim that
it would lead to the shortest code, nor the fastest implementation in practice,
compared to existing methods.

Philosophically, Peterson’s and Høyer’s work demonstrated that a heap data
structure supporting decrease-key() in constant amortized time can be obtained
from techniques for balanced search trees supporting deletions in constant amor-
tized time. The moral of this note is that the heap problem is in fact simpler
than balanced search trees—a very simple lazy update algorithm suffices to en-
sure balance for heaps.

References

1. Driscoll, J., Gabow, H., Shrairman, R., Tarjan, R.: Relaxed heaps: an alternative
to Fibonacci heaps with applications to parallel computation. Commun. ACM 31,
1343–1354 (1988)

32 T.M. Chan

2. Elmasry, A.: The violation heap: a relaxed Fibonacci-like heap. Discrete Math.,
Alg. and Appl. 2, 493–504 (2010)

3. Elmasry, A.: Pairing heaps with O(log log n) decrease cost. In: Proc. 20th ACM–
SIAM Sympos. Discrete Algorithms, pp. 471–476 (2009)

4. Fredman, M., Sedgewick, R., Sleator, D., Tarjan, R.: The pairing heap: a new form
of self-adjusting heap. Algorithmica 1, 111–129 (1986)

5. Fredman, M., Tarjan, R.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34, 596–615 (1987)

6. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM J. Comput. 40,
1463–1485 (2011)

7. Høyer, P.: A general technique for implementation of efficient priority queues. In:
Proc. 3rd Israel Sympos. Theory of Comput. Sys., pp. 57–66 (1995)

8. Kaplan, H., Tarjan, R.: Thin heaps, thick heaps. ACM Trans. Algorithms 4(1), 3
(2008)

9. Peterson, G.: A balanced tree scheme for meldable heaps with updates. Tech.
Report GIT-ICS-87-23, Georgia Institute of Technology (1987)

10. Pettie, S.: Towards a final analysis of pairing heaps. In: Proc. 46th IEEE Sympos.
Found. Comput. Sci., pp. 174–183 (2005)

11. Takaoka, T.: Theory of 2-3 heaps. Discrete Applied Math. 126, 115–128 (2003)

Variations on Instant Insanity

Erik D. Demaine1, Martin L. Demaine1, Sarah Eisenstat1,
Thomas D. Morgan2, and Ryuhei Uehara3

1 MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA
{edemaine,mdemaine,seisenst}@mit.edu

2 Harvard University School of Engineering and Applied Sciences,
33 Oxford St., Cambridge, MA 02138, USA

tdmorgan@seas.harvard.edu
3 School of Information Science,

Japan Advanced Institute of Science and Technology (JAIST),
Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan

uehara@jaist.ac.jp

Abstract. In one of the first papers about the complexity of puzzles,
Robertson and Munro [14] proved that a generalized form of the then-
popular Instant Insanity puzzle is NP-complete. Here we study several
variations of this puzzle, exploring how the complexity depends on the
piece shapes and the allowable orientations of those shapes.

Prepared in honor of Ian Munro’s 66th birthday.

1 Introduction

In the late 1960s, the company Parker Brothers popularized a puzzle known as
Instant Insanity1. Instant Insanity is composed of four cubes, where each face of
each cube is colored red, green, white, or blue. The goal is to arrange the cubes
in a tower with dimensions 1 × 1 × 4 so that on each of the four long sides of
the tower, every color appears (exactly once per side). This puzzle has a rich
history — the name Instant Insanity dates back to 1967 [13], but there were
many earlier variants, released under such names as Katzenjammer, Groceries,
and The Great Tantalizer [12].

The mathematics behind the Instant Insanity puzzle have been studied ex-
tensively, and the puzzle is used as a sample application of graph theory in
some textbooks [1,4,16]. In 1978, Robertson and Munro [14] showed that, by
generalizing the number of colors and cubes from 4 to n, the puzzle becomes
NP-complete to solve; they also proved a two-player variant PSPACE-complete.
Their paper was one of the first to study the computational complexity of puz-
zles and games [5,8,11]. More recently, there have been two studies of variants

1 The name “Instant Insanity” was originally trademarked by Parker Brothers in 1967.
The trademark is currently owned by Winning Moves, Inc.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 33–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 E.D. Demaine et al.

Fig. 1. A modern instance of Instant Insanity (left, distributed by Winning Moves,
Inc., 2010), and a much older The Great Tantalizer (right, indicated only as British
Made, consisting of wooden blocks).

of Instant Insanity. In 2002, Jebasingh and Simoson [10] studied variants of the
problem with Platonic solid pieces. In 2008, Berkove et al. [3] studied a problem
in which the goal is to combine cubes to form a larger box with consistent colors
on each side.

Our Results. Inspired by Robertson and Munro [14], our goal is to explore how
the complexity of the puzzle changes with the shape of the pieces and the set of
allowable motions. In particular, we consider puzzles in which all of the pieces
are shaped like identical right prisms, and the goal is to stack the pieces to form
a taller prism with the same base. In Section 2, we establish a combinatorial
definition for the pieces of a puzzle, and give a formal definition of the Instant
Insanity problem.

In Section 3.2, we examine the case of pieces where the base of the prism
is a regular polygon. When the base is an equilateral triangle, we show that
the problem is easy to solve. When the base is a square (but the piece is not a
cube), we prove that the problem is NP-complete, even though the number of
allowable configurations for each piece is only a third as large as the number of
configurations for the original Instant Insanity problem.

In Section 3.3, we consider the case of regular polygon prisms where the mo-
tion is restricted, and show that even in the case of equilateral triangle pieces
with three possible configurations per piece, the problem remains NP-complete.
Finally, in Section 4, we prove results about some irregular prism pieces, using
a technique for solving any puzzle in which each piece has two possible configu-
rations.

2 Definitions

2.1 Instant Insanity

Let C be a finite set of colors. Given a polyhedral piece shape, let k1 be the
number of potentially visible sides, and let k2 be the number of sides that are

Variations on Instant Insanity 35

Fig. 2. A rendering of the original Instant
Insanity puzzle. Although the back of the
tower is not shown, each color occurs ex-
actly once on each of the four long sides
of the tower of blocks.

Fig. 3. A generalized version of the puzzle
with octagonal prism pieces. The top and
bottom of each prism can never lie on any
of the eight sides of the tower. The other
eight faces are visible at all times.

visible in any given configuration. In this paper, we restrict ourselves to pieces
in the shape of a right prism, which often implies that k1 = k2. For each (poten-
tially visible) side of the piece shape, we assign a unique number from the set
{1, . . . , k1}. Hence, a single piece can be represented by a tuple in Ck1 assigning
a color to each of the k1 sides. When defining a piece, we sometimes use the
special symbol ∗, which represents a unique color used once in the entire puzzle.

The set of possible configurations of a single piece is given by the piece con-
figurations P ⊆ {1, . . . , k1}k2 . Each piece configuration indicates how the colors
in the original piece should be assigned to the visible sides. Specifically, a piece
configuration is a mapping from each of the k2 visible sides to the index of one
of the sides of the piece shape. A single side of a single piece cannot appear
on multiple sides of the puzzle, so each piece configuration has the additional
restriction that no element of the tuple is repeated.

For each visible side 1 ≤ i ≤ k2, we define the function Fi : C
k1 × P → C to

return the color of side i, given a piece and its configuration. Formally, we say:

Fi(〈a1, . . . , ak1〉, 〈q1, . . . , qk2〉) = aqi .

As an example, we consider the original Instant Insanity puzzle. Each cube has
k1 = 6 sides with colors on them; only k2 = 4 of those sides are visible when
the cubes are stacked vertically. Suppose that we number the sides as depicted
in Fig. 4. Then there are 24 possible piece configurations: 6 ways to choose the
side that faces down, and 4 possible ways to rotate the visible faces. These 24
piece configurations are listed in Fig. 5.

Many piece shapes, including the cube, have a number of symmetries. In
particular, many have the following property:

Definition 1. The set of piece configurations P is rotationally symmetric if P
is closed under cyclic shifts.

Using this combinatorial definition of piece configurations, we can formally define
two variants of the Instant Insanity problem:

36 E.D. Demaine et al.

5

41

5

1

2

4

3

6 {〈1, 2, 3, 4〉, 〈2, 3, 4, 1〉, 〈3, 4, 1, 2〉, 〈4, 1, 2, 3〉,
〈1, 4, 3, 2〉, 〈2, 1, 4, 3〉, 〈3, 2, 1, 4〉, 〈4, 3, 2, 1〉,
〈1, 5, 3, 6〉, 〈5, 3, 6, 1〉, 〈3, 6, 1, 5〉, 〈6, 1, 5, 3〉,
〈1, 6, 3, 5〉, 〈5, 1, 6, 3〉, 〈3, 5, 1, 6〉, 〈6, 3, 5, 1〉,
〈2, 5, 4, 6〉, 〈5, 4, 6, 2〉, 〈4, 6, 2, 5〉, 〈6, 2, 5, 4〉,
〈2, 6, 4, 5〉, 〈5, 2, 6, 4〉, 〈4, 5, 2, 6〉, 〈6, 4, 5, 2〉}

Fig. 4. Labels for each of the
faces on a cube

Fig. 5. The 24 different piece configurations for the
cube piece depicted in Fig. 4

Definition 2. The Complete-Insanity(P) problem is defined as follows:

Input: A set of colors C and a sequence of pieces A1, . . . , An, where n = |C|.
Output: Yes if and only if there is a sequence of configurations p1, . . . , pn ∈ P

such that for each side 1 ≤ i ≤ k2, the set of visible colors {Fi(Aj , pj) | 1 ≤
j ≤ n} = C.

Definition 3. The Partial-Insanity(P) problem is defined as follows:

Input: A set of colors C and a sequence of pieces A1, . . . , An, where n ≤ |C|.
Output: Yes if and only if there is a sequence of configurations p1, . . . , pn ∈ P

such that for each side 1 ≤ i ≤ k2, all of the visible colors Fi(Aj , pj) on side
i are distinct.

Note that both problems require all visible colors on a single side to be distinct;
however, the Partial-Insanity(P) problem only requires a subset of all of the
colors to be visible on a single side, while the Complete-Insanity(P) problem
requires all colors to be visible. Clearly, the Partial-Insanity(P) problem is at
least as hard as the Complete-Insanity(P) problem, and both are contained
in the complexity class NP.

2.2 Positive Not-All-Equal Satisfiability

In this paper, we prove that several variants of the Instant Insanity puzzle are
NP-complete to solve by reducing from a known NP-complete problem. The
problem we use for these reductions is a variant of the 3-Sat problem known as
Positive-Not-All-Equal-Sat, or Positive-NAE-Sat.

Definition 4. The Positive-NAE-Sat problem is defined as follows:

Input: A set of n variables x1, . . . , xn and m clauses C1, . . . , Cm. Each clause
Ci is composed of three positive literals ci,1, ci,2, ci,3 ∈ {x1, . . . , xn}.

Output: Yes if there exists some mapping φ : {x1, . . . , xn} → {T, F} such
that each clause Ci has at least one literal ci,j1 such that φ(ci,j1) = T , and
at least one literal ci,j2 such that φ(ci,j2) = F .

This problem was one of many Boolean satisfiability problems shown to be NP-
complete by Schaefer [15].

Variations on Instant Insanity 37

3 Regular Prism Pieces

3.1 Partial versus Complete Insanity

In this section, we show that for many types of regular pieces, if the Partial-

Insanity(P) problem is NP-complete, then the Complete-Insanity(P) prob-
lem is NP-complete. We do this by way of a third problem in which the use
of each color is restricted. Specifically, we restrict the number of occurrences of
c ∈ C: the sum over all pieces Ai of the number of sides of Ai with the color c.

Definition 5. The One-or-All-Insanity(P) problem is defined as follows:

Input: A set of colors C and a sequence of pieces A1, . . . , An, where n ≤ |C|.
Furthermore, the number of occurrences of each color c ∈ C is either 1 or k2.

Output: Yes if and only if there is a sequence of configurations p1, . . . , pn ∈ P
such that for each side 1 ≤ i ≤ k2, all of the visible colors Fi(Aj , pj) on side
i are distinct.

Lemma 1. Suppose that k1 = k2 and the set of piece configurations P is ro-
tationally symmetric. Then there exists a polynomial-time reduction from the
problem Partial-Insanity(P) to the problem One-or-All-Insanity(P).

Proof. Suppose that we are given an instance of the Partial-Insanity(P) prob-
lem consisting of colors C and pieces A1, . . . , An. Using these pieces, we construct
an instance of the One-or-All-Insanity(P) problem as follows:

1. The first n pieces are identical to the pieces A1, . . . , An.
2. For each color c ∈ C, let #(c) be the number of occurrences of c in the

set of pieces A1, . . . , An. If #(c) = 1 or #(c) = k2, then we do not need
to do anything. If #(c) > k2, then the puzzle must be impossible to solve.
Otherwise, we generate k2 −#(c) new pieces, each defined as follows:

〈c, ∗, ∗, . . . , ∗︸ ︷︷ ︸
k2 − 1 times

〉.

(Recall that each ∗ symbol represents a unique color used exactly once.)

Let D be the set of colors generated by this process, and let B1, . . . , Bm be
the pieces. Our construction ensures that the pieces B1, . . . , Bm form a valid
instance of the One-or-All-Insanity(P) problem. We must additionally show
that the puzzle formed by A1, . . . , An can be solved if and only if B1, . . . , Bm

can be solved.
Suppose that we have a solution p1, . . . , pn to the problem A1, . . . , An. If we

use p1, . . . , pn to configure B1, . . . , Bn, then we are guaranteed that for the first
n pieces, no color is used twice on the same side. So our goal is to find a way
to configure the remaining m− n pieces. All of the new colors generated in step
2 of the reduction occur exactly once, so they can be used on any side of the
puzzle. Because the set of piece configurations P is rotationally symmetric, the

38 E.D. Demaine et al.

first color in each piece Bi for n + 1 ≤ i ≤ m can be placed on any side of the
puzzle. Each color occurs at most k2 times, so it is straightforward to arrange
the pieces Bn+1, . . . , Bm to ensure that no color occurs twice on any side.

Furthermore, if there exists a solution q1, . . . , qm to the problem B1, . . . , Bm,
then we can find a solution to A1, . . . , An using the piece configurations q1, . . . , qn.
This means that our polynomial-time reduction is correct. ��

Lemma 2. Suppose that k1 = k2 and the set of piece configurations P is ro-
tationally symmetric. Then there exists a polynomial-time reduction from One-

or-All-Insanity(P) to Complete-Insanity(P).

Proof. Suppose that we are given an instance of the One-or-All-Insanity(P)
problem consisting of colors C and pieces A1, . . . , An. Let C1 be the set of colors
that are used once, and let C2 be the set of colors that are used k2 times. For
each color c ∈ C2, let g(c) be a unique index in {1, . . . , |C2|}.

For each 1 ≤ i ≤ k2, we construct n pieces Bi,1, . . . , Bi,n and |C2| distinct
colors Di = {di,1, . . . , di,|C2|}. If the piece Aj consists of the sequence of colors
aj,1, . . . , aj,k2 , then we define the colors bi,j,1, . . . , bi,j,k2 for the piece Bi,j as
follows:

bi,j,k =

{
di,g(aj,k), if aj,k ∈ C2;

aj,k, otherwise.

This ensures that each color c ∈ (C1 ∪D1 ∪ · · · ∪Dk2) is used exactly k2 times
in the set of pieces B1,1, . . . , Bk2,n. Hence the number of colors is k2n, which
is the same as the number of pieces, making this an instance of Complete-

Insanity(P).
Now we wish to show that A1, . . . , An is solvable if and only if B1,1, . . . , Bk2,n

is solvable. First, suppose that B1,1, . . . , Bk2,n is solvable. This means that there
is a way to configure B1,1, . . . , B1,n such that no color is used twice on a single
side. The pieces B1,1, . . . , B1,n are almost identical to the pieces A1, . . . , An, with
the exception that each color c ∈ C2 is replaced with the color d1,g(c). Hence,
a configuration of B1,1, . . . , B1,n that does not reuse colors on any side must
also be a configuration of A1, . . . , An that does not reuse colors on any side.
So if B1,1, . . . , Bk2,n is a solvable instance of Complete-Insanity(P), then
A1, . . . , An is a solvable instance of One-or-All-Insanity(P).

Next, suppose that A1, . . . , An is solvable. This means that there is a se-
quence of configurations p1, . . . , pn such that if we apply p1, . . . , pn to the pieces
A1, . . . , An, then no color is used twice on a single side. Let σi be the circular shift
of k2 elements by i so that σi(〈a1, . . . , ak2〉) = 〈ai+1 mod k2 , . . . , ai+k2 mod k2〉.
Because P is rotationally symmetric, for any 1 ≤ i ≤ k2 and any 1 ≤ j ≤ n,
σi(pj) ∈ P .

Suppose that we use the configuration σi(pj) for the piece Bi,j . Suppose, for
the sake of contradiction, that there is some pair of distinct pieces Bi1,j1 and
Bi2,j2 that assigns the same color c to the same side of the puzzle. Note that the
colors of Bi1,j1 must be a subset of C1 ∪Di1 , while the colors of Bi2,j2 must be
a subset of C1 ∪Di2 . We consider three cases:

Variations on Instant Insanity 39

8
7 6

5
1

2
3

5

4

8
7 6

5

Fig. 6. Labels for each of the faces on an 8-sided regular prism

Case 1: i1 �= i2. Then it must be that c ∈ C1. Because A1, . . . , An is an instance
of One-or-All-Insanity(P), there is exactly one piece Aj3 that uses the
color c. By construction of the pieces Bi1,j1 and Bi2,j2 , it must be that
j1 = j2 = j3, and the index of c is the same in both pieces. The configuration
of Bi1,j1 is σi1 (pj1), while the configuration of Bi2,j2 is σi2 (pj2) = σi2(pj1).
Hence the configurations would map the color c to different sides of the
puzzle, contradicting our assumption that c occurs twice on the same side.

Case 2: i1 = i2 and c ∈ C1. Because c ∈ C1, it is used exactly once in
the original set of pieces A1, . . . , An. Therefore, it is also used exactly once
in the set of pieces Bi1,1, . . . , Bi1,n, and so if it occurs both in Bi1,j1 and
Bi2,j2 = Bi1,j2 , then we must have j1 = j2. Again, this means that c is not
used twice.

Case 3: i1 = i2 and c /∈ C1. Let i = i1 = i2. By our assumption, we know
that there exists some � such that F�(Bi,j1 , σi(pj1)) = F�(Bi,j2 , σi(pj2)) =
c. Because σi is a cyclic shift, this means that there is some �′ such that
F�′(Bi,j1 , pj1) = F�′(Bi,j2 , pj2) = c. By construction of Bi,j1 and Bi,j2 , this
means that F�′(Aj1 , pj1) = F�′(Aj2 , pj2), which is a contradiction.

��

The combination of Lemmas 1 and 2 yields the following theorem:

Theorem 1. Suppose that k1 = k2 and the set of piece configurations P is
rotationally symmetric. Then there exists a polynomial-time reduction from the
Partial-Insanity(P) problem to the Complete-Insanity(P) problem.

3.2 Regular Prism Pieces

Definition 6. The k-sided regular prism is a right prism whose base is a regular
k-sided polygon. We leave the bases of the prism unlabeled, because they cannot
become visible. The other k faces we label in order, as depicted in Fig. 6. We
define Rk to be the set of piece configurations of a k-sided regular prism: in
particular, Rk is the union of all cyclic shifts of 〈1, . . . , k〉 and its reverse.

Note that in the case of k = 4, we assume that the height of the prism and the
side length of the square base are distinct, so that the pieces do not have the
full range of motion of the original Instant Insanity puzzle.

Our first result concerns right prism pieces with an equilateral triangle base:

40 E.D. Demaine et al.

Theorem 2. The Partial-Insanity(R3) problem can be solved in polynomial
time.

Proof. Let Pk be the set of all permutations of {1, . . . , k}. By definition, R3 =
P3. Furthermore, for any k, the set of piece configurations Pk is rotationally sym-
metric, so by Theorem 1, if the Complete-Insanity(Pk) problem is solvable
in polynomial time, then the Partial-Insanity(Pk) problem is also solvable in
polynomial time. Hence we may examine the Complete-Insanity(Pk) instead.

In particular, our goal is to show that Complete-Insanity(Pk) can be solved
if and only if every color c ∈ C occurs exactly k times in the pieces A1, . . . , An.
It is easy to see that if a particular series of pieces A1, . . . , An can be solved, then
the number of occurrences of each color must be k. We may show the converse
by induction on k.

First, consider the base case Complete-Insanity(P1). If all colors occur
exactly once, then the only possible configuration of the puzzle is in fact a
solved state. By induction, we assume that Complete-Insanity(Pk−1) can be
solved if each color is used exactly k−1 times. Suppose that we have an instance
A1, . . . , An of the Complete-Insanity(Pk) puzzle in which each color is used
exactly k times. We construct a multigraph G as follows:

1. For each index 1 ≤ i ≤ n, construct a node ui.
2. For each color c ∈ C, construct a node vc.
3. For each piece Ai = (a1, . . . , ak) and each side 1 ≤ j ≤ k, construct an edge

from ui to vaj . (Note that this may result in the creation of parallel edges.)

Because each piece has k colors, and each color is used exactly k times, G is
a k-regular bipartite multigraph. By applying Hall’s theorem [7], we know that
G has a perfect matching, which can be computed in O(kn

√
n) time with the

Hopcroft-Karp algorithm [9]. For each edge (ui, vc) in the matching, we wish
to configure piece Ai so that the color on the first visible side is c. By using
the matching to determine the colors on side 1, we ensure that no color will
occur twice. Furthermore, because the set of piece configurations Pk consists
of all permutations, we know that for each piece Ai, the remaining k − 1 sides
can be arbitrarily assigned to the remaining k − 1 visible sides of the puzzle.
In particular, we are left with an instance of the Complete-Insanity(Pk−1)
problem in which each color occurs k− 1 times. Hence, by induction, the puzzle
is solvable. In particular, the Partial-Insanity(R3) problem can be solved in
O(n

√
n) time. ��

Note that the structure of this proof reveals some interesting properties about
the problem Complete-Insanity(R3). In particular, we don’t need to know
anything about the assignment of colors to pieces to determine whether a given
Complete-Insanity(R3) puzzle can be solved — we need only check whether
the number of occurrences of each color is 3. Furthermore, careful analysis reveals
that the reduction of Theorem 1 will produce an Complete-Insanity(R3) puz-
zle with 3 copies of each color if and only if the original Partial-Insanity(R3)
puzzle has at most 3 copies of each color. Hence, to determine whether a given

Variations on Instant Insanity 41

instance of Partial-Insanity(R3) can be solved, it is sufficient to check that
every color occurs ≤ 3 times.

The Partial-Insanity(R4) problem is not as easy to solve:

Theorem 3. The Partial-Insanity(R4) problem is NP-complete.

Proof. We show that Partial-Insanity(R4) is NP-complete by a reduction
from the Positive-NAE-Sat problem. Suppose that we are given a Positive-

NAE-Sat instance θ with n clauses, each containing three literals. Let m be the
number of variables. Then we can represent which literals are associated with
which variables by a function γ : {0, . . . , 3n− 1} → {0, . . . ,m− 1} mapping the
index of each literal to the index of the corresponding variable. Let L(i) = {x |
γ(x) = i}, and let �(i, k) be the kth literal index in L(i). Then our reduction
proceeds as follows.

For each literal index 0 ≤ x ≤ 3n − 1, add three colors: ax, bx, and cx. For
each variable 0 ≤ i ≤ m − 1 and each index 0 ≤ h ≤ |L(i)| − 1, let x = �(i, h)
and y = �(i, (h+ 1) mod |L(i)|). Use these values to construct two pieces:

Ax,0 = 〈ax, bx, cx, bx〉
Ax,1 = 〈ax, cx, by, cx〉

Intuitively, the placement of the color ax will determine whether or not the
corresponding literal is true — in particular, the structure of the pieces Ax,0 and
Ax,1 ensures that the two copies of the color ax must occur on opposite sides of
the puzzle. Hence the color ax can either be placed on sides 1 and 3, or on sides
2 and 4. These two possibilities represent the two possible assignments to literal
x. The use of the color by in Ax,1 ensures that the assignment to literal x is the
same as the assignment to literal y, so that the assignment is consistent.

We must also add pieces to ensure that the assignment is satisfying. For each
clause 0 ≤ j ≤ n−1, add a new color dj and construct the following three pieces:

B3j+0 = 〈dj , a3j+0, ∗, ∗〉
B3j+1 = 〈dj , a3j+1, ∗, ∗〉
B3j+2 = 〈dj , a3j+2, ∗, ∗〉

We wish to show that, when taken together, these pieces form a puzzle that can
be solved if and only if the original Positive-NAE-Sat problem can be solved.

Suppose that we have a consistent solution to the original Positive-NAE-

Sat instance θ. We can represent this solution as a function φ : {1, . . . , 3n} →
{T, F} assigning a value of true or false to each of the literals. This assign-
ment has the property that for any pair of indices j1, j2, if γ(j1) = γ(j2),
then φ(j1) = φ(j2). Using this assignment, we wish to construct configurations
p0,0, p0,1, . . . , p3n−1,0, p3n−1,1 for the pieces A0,0, A0,1, . . . , A3n−1,0, A3n−1,1 and
configurations q0, . . . , q3n−1 for the pieces B0, . . . , B3n−1. We define these con-
figurations as follows:

– For each literal 0 ≤ x ≤ 3n−1, if φ(x) = T , then we set px,0 = 〈1, 2, 3, 4〉 and
px,1 = 〈3, 4, 1, 2〉. Otherwise, we set px,0 = 〈2, 3, 4, 1〉 and px,1 = 〈4, 1, 2, 3〉.

42 E.D. Demaine et al.

– For each clause 0 ≤ j ≤ n − 1, we assign q3j+0, q3j+1, and q3j+2 according
to the following table:

φ(3j + 0) φ(3j + 1) φ(3j + 2) q3j+0 q3j+1 q3j+2

T T F 〈1, 2, 3, 4〉 〈3, 4, 1, 2〉 〈2, 3, 4, 1〉
T F T 〈1, 2, 3, 4〉 〈2, 3, 4, 1〉 〈3, 4, 1, 2〉
T F F 〈1, 2, 3, 4〉 〈2, 3, 4, 1〉 〈4, 1, 2, 3〉
F T T 〈4, 1, 2, 3〉 〈3, 4, 1, 2〉 〈1, 2, 3, 4〉
F T F 〈4, 1, 2, 3〉 〈3, 4, 1, 2〉 〈2, 3, 4, 1〉
F F T 〈4, 1, 2, 3〉 〈2, 3, 4, 1〉 〈1, 2, 3, 4〉

It may be verified that by configuring the pieces in this way, we ensure that
no color appears twice on the same side of the puzzle. Hence we have shown
that the existence of a solution to the Positive-NAE-Sat instance implies the
existence of a solution to the constructed Partial-Insanity(R4) puzzle.

Suppose now that the Partial-Insanity(R4) problem can be solved. Let
p0,0, . . . , p3n−1,1 be the sequence of configurations for the piecesA0,0, . . . , A3n−1,1,
and let q0, . . . , q3n−1 be the sequence of configurations for B0, . . . , B3n−1. Then
we construct an assignment function φ : {1, . . . , 3n} → {T, F} as follows: for
each literal 0 ≤ x ≤ 3n − 1, if the configuration px,0 = (s1, s2, s3, s4), then
we define φ(x) = T if and only if s1 ≡ 1 (mod 2). To see that this is a valid
assignment, we must show that this assignment is both consistent and satisfying.

Suppose, for the sake of contradiction, that the assignment is not consistent.
This means that there exists some variable i such that {φ(j) | γ(j) = i} =
{T, F}. Then there must be some index h such that φ(�(i, h)) �= φ(�(i, (h+1) mod
|L(i)|)). Let x = �(i, h) and let y = �(i, (h + 1) mod |L(i)|). Without loss of
generality, we may assume that φ(x) = F and φ(y) = T . Hence F2(Ay,0, py,0) =
F4(Ay,0, py,0) = by. No color is used twice on the same side, so we know that
either F1(Ax,1, px,1) = by or F3(Ax,1, px,1) = by. In either case, all possible
configurations px,1 have the property that F2(Ax,1, px,1) = F4(Ax,1, px,1) = cx.
By assumption, φ(x) �= φ(y), so either F2(Ax,0, px,0) = cx or F4(Ax,0, px,0) = cx.
In either case, we have a contradiction — colors cannot be repeated on the same
side of the puzzle. Hence, the assignment of values to literals must be consistent.

Now suppose that there is some clause j such that φ(3j + 0) = φ(3j + 1) =
φ(3j+2). Without loss of generality, we may assume that all three of these values
are T . For each literal index x ∈ {3j + 0, 3j + 1, 3j + 2}, pieces Ax,0 and Ax,1

must be configured so that they do not place the color cx on the same side of the
puzzle. Furthermore, because φ(x) = T , we know that the configuration of Ax,0

must place the color ax on side 1 or side 3. Together, these constraints ensure
that the configuration of Ax,1 must also place the color ax on side 1 or side 3.
Hence between the pieces Ax,0 and Ax,1, the color ax must be placed both on
side 1 and on side 3. Then Bx must place ax on either side 2 or side 4, and must
therefore place dj on side 1 or 3. This holds for all x ∈ {3j+0, 3j+1, 3j+2}. As a
result, dj must show up at least twice on either side 1 or side 3. This contradicts
our assumption that the puzzle was solved. ��

Variations on Instant Insanity 43

3.3 Regular Prism Pieces with Restricted Motion

In this section, we consider what happens when the motion of the pieces is
limited. In particular, we consider what happens when the pieces of the puzzle
are mounted on a central dowel, so that the set of allowable motions is restricted
to rotations around the dowel.

Definition 7. We define Uk to be the unflippable piece configurations of the
k-sided regular prism: in particular, Uk is the set of all cyclic shifts of 〈1, . . . , k〉.

Theorem 4. The Partial-Insanity(Uk) problem is NP-complete for all k ≥ 3.

Proof. Suppose that we are given a Positive-NAE-Sat instance θ with n
clauses, each containing three literals. Let m be the number of variables. Again,
we represent the relationship between variables and the corresponding literal
indices with a function γ : {0, . . . , 3n− 1} → {0, . . . ,m− 1} mapping the index
of each literal to the index of the corresponding variable.

Let L(i) = {x | γ(x) = i}, and let �(i, j) be the jth literal index in L(i).
Then our reduction proceeds as follows. For each literal index 0 ≤ x ≤ 3n − 1,
construct six colors: ax, bx,1, bx,2, cx,1, cx,2, and dx. We then use these colors to
define three pieces for each literal index x:

Ax = 〈ax, . . . , ax︸ ︷︷ ︸
k − 2 times

, bx,1, bx,2〉

Bx = 〈 ∗, . . . , ∗︸ ︷︷ ︸
k − 3 times

, ax, cx,1, cx,2〉

Cx = 〈 ∗, . . . , ∗︸ ︷︷ ︸
k − 3 times

, ax, dx, ∗〉

To ensure that all of the pieces A0, . . . , A3n−1 have the same configuration, we
use a series of gadgets, each of which consists of k−1 identical pieces. Specifically,
for every x ∈ {0, . . . , 3n− 2}, we create k − 1 copies of the following piece:

Gx = 〈 ∗, . . . , ∗︸ ︷︷ ︸
k − 2 times

, bx,1, bx+1,2〉

These k− 1 copies of Gx, combined with the piece Ax, all have the color bx,1 on
side k − 1. Hence, each piece must have a different configuration. There are k
possible configurations, and k pieces, so each configuration is used exactly once.
The configurations are rotationally symmetric, so we may suppose without loss
of generality that the configuration of Ax is 〈1, . . . , k〉. Every other possible cyclic
shift is used to configure one of the pieces Gx. Hence, the color bx+1,2 occurs
on sides {1, 2, 3, . . . , k − 1} — everything except side k. So the only possible
configuration for piece Ax+1 is 〈1, . . . , k〉. By induction, for any pair x1, x2, the
configuration of Ax1 must be the same as the configuration of Ax2 .

We also wish to ensure that for any x1, x2 such that γ(x1) = γ(x2), the
configuration of Bx1 is the same as the configuration of Bx2 . We accomplish

44 E.D. Demaine et al.

this with a nearly identical construction. For each variable i, and each index
h ∈ {0, . . . , |L(i)| − 2}, let x = �(i, h) and let y = �(i, h + 1). Then we create
k − 1 copies of the following piece:

Hx = 〈 ∗, . . . , ∗︸ ︷︷ ︸
k − 2 times

, cx,1, cy,2〉

By a similar argument, this enforces the desired constraint.
Finally, for each clause j ∈ {0, . . . , n− 1}, we add one more piece:

Dj = 〈d3j+0, . . . , d3j+0︸ ︷︷ ︸
k − 3 times

, d3j+0, d3j+1, d3j+2〉.

This completes the construction. Next, we must show that this construction
is in fact a reduction: that there is a solution to this instance of the Partial-

Insanity(Uk) problem if and only if there is a solution to the original Positive-
NAE-Sat problem.

Suppose that we are given an assignment φ : {0, . . . , 3n− 1} → {T, F} map-
ping each literal to true or false. Then we can construct a solution to the
Partial-Insanity(Uk) puzzle as follows. For each Ax, use the configuration
〈1, . . . , k〉. If φ(x) = T , then the configuration of Bx is 〈k, 1, . . . , k − 1〉 and the
configuration of Cx is 〈k− 1, k, 1, . . . , k− 2〉. Otherwise, the configuration of Bx

is 〈k − 1, k, 1, . . . , k − 2〉 and the configuration of Cx is 〈k, 1, . . . , k − 1〉. The
configuration of Dj is determined according to the following table:

φ(3j + 0) φ(3j + 1) φ(3j + 2) configuration of Dj

T T F 〈k, 1, . . . , k − 2, k − 1〉
T F T 〈k − 1, k, 1, . . . , k − 2〉
T F F 〈k − 1, k, 1, . . . , k − 2〉
F T T 〈1, . . . , k − 2, k − 1, k〉
F T F 〈k, 1, . . . , k − 2, k − 1〉
F F T 〈1, . . . , k − 2, k − 1, k〉

It can be verified that by configuring the pieces in this way, we ensure that each
color occurs at most once per side.

Because the configurations of Ax1 and Ax2 are the same for any x1, x2 ∈
{0, . . . , 3n−1}, there is a way to configure the gadgets Gx so that the colors bx,1
and bx,2 occur exactly once on each visible side of the puzzle. Similarly, because
the configurations of Bx1 and Bx2 are the same for any x1, x2 ∈ {0, . . . , 3n− 1}
with γ(x1) = γ(x2), there is a way to configure the gadgets Hx.

We have shown that if there exists a satisfying assignment for the original
Positive-NAE-Sat problem, then there is a solution to the corresponding
Partial-Insanity(Uk) puzzle. Now we wish to show the converse. To that end,
suppose that we have a solution to the puzzle. For each literal x ∈ {0, . . . , 3n−1},
let px be the configuration of Ax, let qx be the configuration of Bx, and let rx be
the configuration of Cx. Furthermore, for each clause j ∈ {0, . . . , n−1}, let sj be
the configuration of Dj . Without loss of generality, suppose that p0 = 〈1, . . . , k〉.

Variations on Instant Insanity 45

Then, as we have argued previously, the k−1 copies of the pieces G0, . . . , G3n−2

ensure that px = 〈1, . . . , k〉 for all literal indices x.
We define our assignment function φ : {0, . . . , 3n − 1} → {T, F} as follows:

φ(x) = T if and only if qx = 〈k, 1, . . . , k−1〉. To see that this assignment function
is consistent, we recall that the k − 1 copies of the pieces H0, . . . , H3n−2 ensure
that qx1 = qx2 for all x1, x2 ∈ {0, . . . , 3n − 1} with γ(x1) = γ(x2). Hence, if
γ(x1) = γ(x2), then φ(x1) = φ(x2).

It remains to show that our assignment function is satisfying: for all clauses
j ∈ {0, . . . , n−1}, {φ(3j+0), φ(3j+1), φ(3j+2)} = {T, F}. Suppose, for the sake
of contradiction, that there is some clause with φ(3j+0) = φ(3j+1) = φ(3j+2).
We know that px = 〈1, . . . , k〉 for all x ∈ {3j + 0, 3j + 1, 3j + 2}, so the color
ax already shows up on sides {1, . . . , k− 2}. Hence the configurations qx and rx
must be in the set {〈k, 1, . . . , k − 1〉, 〈k − 1, k, 1, . . . , k − 2〉}. We also know that
qx �= rx for all x ∈ {3j + 0, 3j + 1, 3j + 2}.

If φ(3j + 0) = φ(3j + 1) = φ(3j + 2) = T , then q3j+0 = q3j+1 = q3j+2 =
〈k, 1, . . . , k− 1〉, and r3j+0 = r3j+1 = r3j+2 = 〈k− 1, k, 1, . . . , k− 2〉. This means
that the three pieces C3j+0, C3j+1, and C3j+2 map the three colors d3j+0, d3j+1,
and d3j+2 to side 1. Hence, there is no way to configure Dj to avoid duplicating
one of the colors on one of the sides. A similar argument shows that setting
φ(3j + 0) = φ(3j + 1) = φ(3j + 2) = F also leads to contradiction. Hence, the
assignment is satisfying as well as consistent. ��

4 Irregular Prism Pieces

In this section, we consider less regular pieces. Because the symmetries of the
shape determine the number of possible configurations, puzzles with highly asym-
metric shapes are easy to solve. For instance, if all edge lengths are distinct (as
in the case of a generic k-gon), then there is exactly one possible configuration
for each piece, making the puzzle trivial to solve. Nonetheless, there are a few
shapes with interesting symmetries, some of which we discuss here.

The results in this section derive from the following theorem:

Theorem 5. For any set of piece configurations P , if |P | = 2, then Partial-

Insanity(P) can be solved in polynomial time.

Proof. We may show this by a reduction to 2-Sat. Let p1, p2 be the two piece
configurations in P . Suppose that we are given a set of pieces A1, . . . , An. Then
we construct two variables for each piece Ai: a variable xi,1 that is true if and
only if Ai is in configuration p1, and a variable xi,2 that is true if and only if
Ai is in configuration p2. We additionally construct two clauses for each Ai:
(xi,1 ∨ xi,2) and (¬xi,1 ∨ ¬xi,2). This ensures that Ai must be placed in exactly
one of the two configurations.

Next, we construct constraints to ensure that no color is used twice. For each
pair of piece indices 1 ≤ i1 �= i2 ≤ n and for each pair of (not necessarily
distinct) configurations j1, j2 ∈ {1, 2}, we examine the k2 visible sides. If there
exists some � ∈ {1, . . . , k2} such that F�(Ai1 , pj1) = F�(Ai2 , pj2), then we know

46 E.D. Demaine et al.

331 31
2

4

2

411

2
3

41 4

2

Fig. 7. Labels for the faces on a right
prism with an isoceles triangle base

Fig. 8. Labels for each of the potentially
visible faces on a box

that the pair of assigned configurations is invalid, and so we add a constraint
(¬xi1,j1 ∨ ¬xi2,j2) to prevent the reuse of colors on a single side.

Because these constraints completely encapsulate the requirements of the
Partial-Insanity(P) problem, we may use a standard 2-Sat algorithm to
find a satisfying assignment [2,6], then use the satisfying assignment to deter-
mine how we configure the pieces. ��

For example, we can make use of Theorem 5 to help analyze the complexity of
solving a puzzle with the following shape:

Definition 8. Suppose that the piece shape is a right prism with an isoceles
triangle base. If we number the sides of the prism in order around the base, as
depicted in Fig. 7, then the set of configurations is T = {〈1, 2, 3〉, 〈1, 3, 2〉}.
Because |T | = 2, we can show the following:

Theorem 6. The problem Partial-Insanity(T) can be solved in polynomial
time.

We can also use Theorem 5 to help us analyze more complex shapes:

Definition 9. Suppose that the piece shape is a box with dimensions w×h× d,
where the goal is to stack pieces into a tower with base w × h. If we number the
sides of the prism in order around the base, as depicted in Fig. 8, then the set
of configurations is B = {〈1, 2, 3, 4〉, 〈3, 4, 1, 2〉, 〈1, 4, 3, 2〉, 〈3, 2, 1, 4〉}.

Theorem 7. The problem Partial-Insanity(B) can be solved in polynomial
time.

Proof. The set of configurations B is generated by allowing side 1 to swap freely
with side 3, and allowing side 2 to swap freely with side 4. Hence, we can de-
compose the Partial-Insanity(B) problem into two instances of the Partial-
Insanity(P2) problem: one for sides 1 and 3, and one for sides 2 and 4. If we
solve both halves of the problem with the technique of Theorem 5, it is straight-
forward to combine the solutions to compute the configuration of each piece. ��

5 Conclusion

In this paper, we have examined several variants of Instant Insanity, exploring
how the complexity changes as the geometry of the pieces changes. We have also

Variations on Instant Insanity 47

explored how restricting the motion of the pieces can change the complexity. In
particular, we have analyzed several types of triangular prism puzzles and rect-
angular prism puzzles, discovering which variants are NP-complete and which
can be solved in polynomial time.

Our results leave open a few problems. In particular, the complexity of
Partial-Insanity(Rk) for k ≥ 5 is still unknown. Because the Partial-

Insanity(R4) problem is NP-complete, it is likely (but not yet proven) that
the Partial-Insanity(Rk) problem is NP-complete for k ≥ 5 as well.

References

1. Arlinghaus, W.C.: The tantalizing four cubes. In: Michaels, J.G., Rosen, K.H.
(eds.) Applications of Discrete Mathematics, ch. 16. McGraw-Hill Higher Educa-
tion (1991)

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified boolean formulas. Information Processing Letters 8(3), 121–
123 (1979)

3. Berkove, E., Van Sickle, J., Hummon, B., Kogut, J.: An analysis of the (colored
cubes)3 puzzle. Discrete Mathematics 308(7), 1033–1045 (2008)

4. Chartrand, G.: Introductory Graph Theory, pp. 125–132. Courier Dover Publica-
tions (1985); Originally published in 1977 as Graphs as Mathematical Models

5. Eppstein, D.: Computational complexity of games and puzzles (April 2013),
http://www.ics.uci.edu/~eppstein/cgt/hard.html

6. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing 5(4), 691–703 (1976)

7. Hall, P.: On representatives of subsets. Journal of the London Mathematical Soci-
ety s1-10(1), 26–30 (1935)

8. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters (July
2009)

9. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing 2(4), 225–231 (1973)

10. Jebasingh, A., Simoson, A.: Platonic solid insanity. In: Congressus Numerantium,
vol. 154, pp. 101–112 (2002)

11. Kendall, G., Parkes, A., Spoerer, K.: A survey of NP-complete puzzles. ICGA
Journal 31(1), 13–34 (2008)

12. O’Beirne, T.H.: Puzzles and paradoxes. New Scientist 247, 358–359 (1961)
13. United States Patent and Trademark Office. Trademark Electronic Search System

(TESS) (April 2013), http://tmsearch.uspto.gov/
14. Robertson, E., Munro, I.: NP-completeness, puzzles and games. Utilitas Mathe-

matica 13, 99–116 (1978)
15. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing, vol. 14, pp. 216–226
(1978)

16. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University
Press (2001)

http://www.ics.uci.edu/~eppstein/cgt/hard.html
http://tmsearch.uspto.gov/

A Simple Linear-Space Data Structure

for Constant-Time Range Minimum Query�

Stephane Durocher

University of Manitoba, Winnipeg, Canada
durocher@cs.umanitoba.ca

Abstract. We revisit the range minimum query problem and present
a new O(n)-space data structure that supports queries in O(1) time.
Although previous data structures exist whose asymptotic bounds match
ours, our goal is to introduce a new solution that is simple, intuitive, and
practical without increasing asymptotic costs for query time or space.

1 Introduction

1.1 Motivation

Along with the mean, median, and mode of a multiset, the minimum (equiv-
alently, the maximum) is a fundamental statistic of data analysis for which
efficient computation is necessary. Given a list A[0 : n − 1] of n items drawn
from a totally ordered set, a range minimum query (RMQ) consists of an input
pair of indices (i, j) for which the minimum element of A[i : j] must be returned.
The objective is to preprocess A to construct a data structure that supports
efficient response to one or more subsequent range minimum queries, where the
corresponding input parameters (i, j) are provided at query time.

Although the complete set of possible queries can be precomputed and stored
using Θ(n2) space, practical data structures require less storage while still en-
abling efficient response time. For all i, if i = j, then a range query must report
A[i]. Consequently, any range query data structure for a list of n items requires
Ω(n) storage space in the worst case [7]. This leads to a natural question: how
quickly can an O(n)-space data structure answer a range minimum query?

Previous O(n)-space data structures exist that provide O(1)-time RMQ (e.g.,
[4–6, 14, 18], see Section 2). These solutions typically require a transformation
or invoke a property that enables the volume of stored precomputed data to
be reduced while allowing constant-time access and RMQ computation. Each
such solution is a conceptual organization of the data into a compact table for
efficient reference; essentially, the algorithm reduces to a clever table lookup. In
this paper our objective is not to minimize the total number of bits occupied
by the data structure (our solution is not succinct) but rather to present a sim-
ple and more intuitive method for organizing the precomputed data to support

� Work supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC).

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 48–60, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Simple Linear-Space Data Structure for Constant-Time RMQ 49

RMQ efficiently. Our solution combines new ideas with techniques from various
previous data structures: van Emde Boas trees [16], resizable arrays [10], range
mode query [11, 12, 23], one-sided RMQ [4], and a linear-space data structure
that supports RMQ in O(

√
n) time. The resulting RMQ data structure stores

efficient representations of the data to permit direct lookup without requiring
the indirect techniques employed by previous solutions (e.g., [1, 4–6, 18, 22, 27])
such as transformation to a lowest common ancestor query, Cartesian trees, Eu-
lerian tours, or the Four Russians speedup. The data structure’s RMQ algorithm
is astonishingly simple: it can be implemented as a single if statement with four
branches, each of which returns the minimum of at most three values retrieved
from precomputed tables (see the pseudocode for Algorithm 2 in Section 3.3).

The RMQ problem is sometimes defined such that a query returns only the
index of the minimum element instead of the minimum element itself. In partic-
ular, this is the case for succinct data structures that support O(1)-time RMQ
using only O(n) bits of space [14, 19, 20, 26] (see Section 2). In order to return
the actual minimum element, say A[i], in addition to its index i, any such data
structure must also store the values from the input array A, corresponding to a
lower bound of Ω(n log u) bits of space in the worst case when element are drawn
from a universe of size u or, equivalently, Ω(n) words of space (this lower bound
also applies to other array range query problems [7]). Therefore, a range query
data structure that uses o(n) words of space requires storing the input array A
separately, resulting in total space usage of Θ(n) words of space in the worst
case. In this paper we require that a RMQ return the minimum element. Our
RMQ data structure stores all values of A internally and matches the optimal
asymptotic bounds of O(n) words of space and O(1) query time.

1.2 Definitions and Model of Computation

We assume the RAM word model of computation with word size Θ(log u), where
elements are drawn from a universe U = {−u, . . . , u− 1} for some fixed positive
integer u > n. Unless specified otherwise, memory requirements are expressed in
word-sized units. We assume the usual set of O(1)-time primitive operations: ba-
sic integer arithmetic (addition, subtraction, multiplication, division, and mod-
ulo), bitwise logic, and bit shifts. We do not assume O(1)-time exponentiation
nor, consequently, radicals. When the base operand is a power of two and the re-
sult is an integer, however, these operations can be computed using a bitwise left
or right shifts. All arithmetic computations are on integers in U , and integer di-
vision is assumed to return the floor of the quotient. Finally, our data structure
only requires finding the binary logarithm of integers in the range {0, . . . , n}.
Consequently, the complete set of values can be precomputed and stored in a
table of size O(n) to provide O(1)-time reference for the log (and log log) opera-
tions at query time, regardless of whether logarithm computation is included in
the RAM model’s set of primitive operations.

A common technique used in array range searching data structures (e.g., [4,
11,23]) is to partition the input array A[0 : n−1] into a sequence of 	n/b
 blocks,
each of size b (except possibly for the last block whose size is [(n−1) mod b]+1).

50 S. Durocher

A query range A[i : j] spans between 0 and 	n/b
 complete blocks. We refer to
the sequence of complete blocks contained within A[i : j] as the span, to the
elements of A[i : j] that precede the span as the prefix, and to the elements of
A[i : j] that succeed the span as the suffix. See Figure 1. One or more of the
prefix, span, and suffix may be empty. When the span is empty, the prefix and
suffix can lie either in adjacent blocks, or in the same block; in the latter case
the prefix and suffix are equal.

We summarize the asymptotic resource requirements of a given RMQ data
structure by the ordered pair 〈f(n), g(n)〉, where f(n) denotes the storage space
it requires measured in words and g(n) denotes its worst-case RMQ time for an
array of size n. Our discussion focuses primarily on these two measures of effi-
ciency; other measures of interest include the preprocessing time and the update
time. Note that similar notation is sometimes used to pair precomputation time
and query time (e.g., [4, 18]).

2 Related Work

Multiple 〈ω(n), O(1)〉 solutions are known, including precomputing RMQs for all
query ranges in 〈O(n2), O(1)〉, and precomputing RMQs for all ranges of length
2k for some k ∈ Z+ in 〈O(n log n), O(1)〉 (Sparse Table Algorithm) [4,18]. In the
latter case, a query is decomposed into two (possibly overlapping) precomputed
queries. Similarly, 〈O(n), ω(1)〉 solutions exist, including the 〈O(n), O(

√
n)〉 data

structure described in Section 3.1, and a tournament tree which provides an
〈O(n), O(log n)〉 solution. This latter data structure (known in RMQ folklore,
e.g., [25]) consists of a binary tree that recursively partitions the array A such
that successive array elements are stored in order as leaf nodes, and each internal
node stores the minimum element in the subarray of A stored in leaves below it.
Given an arbitrary pair of array indices (i, j), a RMQ is processed by traversing
the path from i to j in the tree and returning the minimum value stored at
children of nodes on the path corresponding to subarrays contained in A[i : j].

Several 〈O(n), O(1)〉 RMQ data structures exist, many of which depend on the
equivalence between the RMQ and lowest common ancestor (LCA) problems.
Harel and Tarjan [22] gave the first 〈O(n), O(1)〉 solution to LCA. Their solution
was simplified by Schieber and Vishkin [27]. Berkman and Vishkin [6] showed
how to solve the LCA problem in 〈O(n), O(1)〉 by transformation to RMQ using
an Euler tour. This method was simplified by Bender and Farach-Colton [4]
to give an ingenious solution which we briefly describe below. Comprehensive
overviews of previous solutions are given by Davoodi [13] and Fischer [17].

The array A[0 : n − 1] can be transformed into a Cartesian tree C(A) on n
nodes such that a RMQ on A[i : j] corresponds to the LCA of the respective
nodes associated with i and j in C(A). When each node in C(A) is labelled by
its depth, an Eulerian tour on C(A) (i.e., the depth-first traversal sequence on
C(A)) gives an array B[0 : 2n − 2] for which any two adjacent values differ by
±1. Thus, a LCA query on C(A) corresponds to a ±1-RMQ on B. Array B is
partitioned into blocks of size (logn)/2. Separate data structures are constructed

A Simple Linear-Space Data Structure for Constant-Time RMQ 51

to answer queries that are contained within a single block of B and those that
span multiple blocks, respectively. In the former case, the ±1 property implies
that the number of unique blocks in B is O(

√
n); all O(

√
n log2 n) possible RMQs

on blocks of B are precomputed (the Four Russians technique [3]). In the latter
case, a query can be decomposed into a prefix, span, and suffix (see Section 1.2).
RMQs on the prefix and suffix are contained within respective single blocks,
each of which can be answered in O(1) time as in the former case. The span
covers zero or more blocks. The minimum of each block of B is precomputed
and stored in A′[0 : 2n/ logn − 1]. A RMQ on A′ (the minimum value in the
span) can be found in 〈O(n), O(1)〉 using the 〈O(n′ logn′), O(1)〉 data structure
mentioned above due to the shorter length of A′ (i.e., n′ = 2n/ logn).

Fischer and Heun [18] use similar ideas to give a 〈O(n), O(1)〉 solution to RMQ
that applies the Four Russians technique to any array (i.e., it does not require
the ±1 property) on blocks of length Θ(log n). Yuan and Atallah [29] examine
RMQ on multidimensional arrays and give a new one-dimensional 〈O(n), O(1)〉
solution that uses a hierarchical binary decomposition of A[0 : n− 1] into Θ(n)
canonical intervals, each of length 2k for some k ∈ Z+, and precomputed queries
within blocks of length Θ(log n) (similar to the Four Russians technique).

When only the minimum’s index is required, Sadakane [26] gives a succinct
data structure requiring 4n+ o(n) bits that supports O(1)-time RMQ. Fischer
and Heun [19, 20] and Davoodi et al. [14] reduce the space requirements to
2n + o(n) bits. Finally, the RMQ problem has been examined in the dynamic
setting [8,13], in two and higher dimensions [2,9,15,21,26,29], and on trees and
directed acyclic graphs [5, 8, 15].

Various array range query problems have been examined in addition to range
minimum query. See the survey by Skala [28].

3 A New 〈O(n), O(1)〉 RMQ Data Structure

Thenewdata structure is described in steps, startingwithaprevious 〈O(n), O(
√
n)〉

data structure, extending it to 〈O(n log logn), O(log logn)〉 by applying the tech-
nique recursively, eliminating recursion to obtain 〈O(n log logn), O(1)〉, andfinally
reducing the space to 〈O(n), O(1)〉. To simplify the presentation, suppose initially

that the inputarrayAhas sizen = 22
k

, for somek ∈ Z+; as described inSection3.5,
removing this constraint and generalizing to an arbitrary n is easily achieved with-
out any asymptotic increase in time or space.

3.1 〈O(n), O(
√
n)〉 Data Structure

The following 〈O(n), O(
√
n)〉 data structure is known in RMQ folklore (e.g.,

[25]) and has similar high-level structure to the ±1-RMQ algorithm of Bender
and Farach-Colton [4, Section 4]. While subobtimal and often overlooked in
favour of more efficient solutions, this data structure forms the basis for our new
〈O(n), O(1)〉 data structure.

52 S. Durocher

3 3 3 34 46 0 77 788 93 1

3 10 4

n

n

prefix span suffix

B

A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i j

0 1 2 3

Fig. 1. A 〈O(n), O(√n)〉 data structure: the array A is partitioned into
√
n blocks of

size
√
n. The range minimum of each block is precomputed and stored in array B. A

range minimum query A[2 : 14] is processed by finding the minimum of the respective
minima of the prefix A[2 : 3], the span A[4 : 11] (determined by examining B[1 : 2]),
and the suffix A[12 : 14]. In this example this corresponds to min{3, 0, 4} = 0.

The input array A[0 : n − 1] is partitioned into
√
n blocks of size

√
n. The

range minimum of each block is precomputed and stored in a table B[0 :
√
n−1].

See Figure 1. A query range spans between zero and
√
n complete blocks.

The minimum of the span is computed by iteratively scanning the corresponding
values in B. Similarly, the respective minima of the prefix and suffix are com-
puted by iteratively examining their elements. The range minimum corresponds
to the minimum of these three values. Since the prefix, suffix, and array B each
contain at most

√
n elements, the worst-case query time is Θ(

√
n). The total

space required by the data structure is Θ(n) (or, more precisely, n + Θ(
√
n)).

Precomputation requires only a single pass over the input array in Θ(n) time.
Updates (e.g., set A[i] ← x) require Θ(

√
n) time in the worst case; whenever

an array element equal to its block’s minimum is increased, the block must be
scanned to identify the new minimum.

3.2 〈O(n log logn), O(log logn)〉 Data Structure

One-sided range minimum queries (where one endpoint of the query range co-
incides with one end of the array A) are trivially precomputed [4] and stored in
arrays C and C′, each of size n, where for each i,

C[i] =

{
min{A[i], C[i− 1]} if i > 0,

A[0] if i = 0,

and C ′[i] =

{
min{A[i], C′[i+ 1]} if i < n− 1,

A[n− 1] if i = n− 1.
(1)

Any subsequent one-sided RMQ on A[0 : j] or A[j : n − 1] can be answered in
O(1) time by referring to C[j] or C′[j].

The 〈O(n), O(
√
n)〉 solution discussed in Section 3.1 includes three range min-

imum queries on subproblems of size
√
n, of which at most one is two-sided.

A Simple Linear-Space Data Structure for Constant-Time RMQ 53

In particular, if the span is non-empty, then the query on array B is two-sided,
and the queries on the prefix and suffix are one-sided. Similarly, if the query
range is contained in a single block, then there is a single two-sided query and
no one-sided queries. Finally, if the query range intersects exactly two blocks,
then there are two one-sided queries (one each for the prefix and suffix) and no
two-sided queries.

Thus, upon adding arrays C and C′ to the data structure, at most one of the
three (or fewer) subproblems requires ω(1) time to identify its range minimum.
This search technique can be applied recursively on two-sided queries. By lim-
iting the number of recursive calls to at most one and by reducing the problem
size by an exponential factor of 1/2 at each step of the recursion, the resulting
query time is bounded by the following recurrence (similar to that achieved by
van Emde Boas trees [16]):

T (n) ≤
{
T (
√
n) +O(1) if n > 2,

O(1) if n ≤ 2

∈ O(log logn). (2)

Each step invokes at most one recursive RMQ on a subarray of size
√
n. Each

recursive call is one of two types: i) a recursive call on array B (a two-sided
query to compute the range minimum of the span) or ii) a recursive call on the
entire query range (contained within a single block).

Recursion can be avoided entirely for determining the minimum of the span (a

recursive call of the first type). Since there are
√
n blocks,

(√
n+1
2

)
< n distinct

spans are possible. As is done in the rangemode query data structure of Krizanc et
al. [23], the minimum of each span can be precomputed and stored in a tableD of
size n. Any subsequent RMQ on a span can be answered inO(1) time by reference
to tableD. Consequently, tables C andD suffice, and table B can be eliminated.

The result is a hierarchical data structure containing log logn+1 levels1 which
we number 0, . . . , log logn, where the xth level2 is a sequence of bx(n) = n ·2−2x

blocks of size sx(n) = n/bx(n) = 22
x

. See Table 1.

Table 1. The xth level is a sequence of bx(n) blocks of size sx(n)

x 0 1 2 . . . i . . . log log n− 2 log log n− 1 log log n

bx(n) n/2 n/4 n/16 . . . n2−2i . . . n3/4 √
n 1

sx(n) 2 4 16 . . . 22
i

. . . n1/4 √
n n

1 Throughout this manuscript, log a denotes the binary logarithm log2 a.
2 Level log log n is included for completeness since we refer to the size of the parent of
blocks on level x, for each x ∈ {0, . . . , log log n − 1}. The only query that refers to
level log log n directly is the complete array: i = 0 and j = n−1. The global minimum
for this singular case can be stored using O(1) space and updated in O(

√
n) time as

described in Section 3.1.

54 S. Durocher

Generalizing (1), for each x ∈ {0, . . . , log logn} the new arrays Cx and C′
x are

defined by

Cx[i] =

{
min{A[i], Cx[i− 1]} if i �= 0 mod sx(n),

A[i] if i = 0 mod sx(n),

and C′
x[i] =

{
min{A[i], C′

x[i+ 1]} if (i+ 1) �= 0 mod sx(n),

A[i] if (i+ 1) = 0 mod sx(n).

We refer to a sequence of blocks on level x that are contained in a common block
on level x + 1 as siblings and to the common block as their parent. Each block
on level x+1 is a parent to sx+1(n)/sx(n) = sx(n) siblings on level x. Thus, any
query range contained in some block at level x+1 covers at most sx(n) siblings
at level x, resulting in Θ(sx(n)

2) = Θ(sx+1(n)) distinct possible spans within
a block at level x + 1 and Θ(sx+1(n) · bx+1(n)) = Θ(n) total distinct possible
spans at level x+1, for any x ∈ {0, . . . , log log n− 1}. These precomputed range
minima are stored in table D, such that for every x ∈ {0, . . . , log logn−1}, every
b ∈ {0, . . . , bx+1(n)− 1}, and every {i, j} ⊆ {0, . . . , sx(n)− 1}, Dx[b][i][j] stores
the minimum of the span A[b · sx+1(n)+ i · sx(n) : b · sx+1(n)+ (j+1)sx(n)− 1].

This gives the following recursive algorithm whose worst-case time is bounded
by (2):
Algorithm 1

RMQ(i, j)
1 if i = 0 and j = n− 1 // query is entire array
2 return minA // precomputed array minimum
3 else
4 return RMQ(log logn− 1, i, j) // start recursion at top level

RMQ(x, i, j)
1 if x > 0
2 bi ← �i/sx(n) // blocks containing i and j
3 bj ← �j/sx(n)
4 if bi = bj // i and j in same block at level x
5 return RMQ(x− 1, i, j) // two-sided recursive RMQ: T (

√
n) time

6 else if bj − bi ≥ 2 // span is non-empty
7 b ← i mod sx+1(n)
8 return min{C′

x[i], Cx[j], Dx[b][bi + 1][bj − 1]}
// 2 one-sided RMQs + precomputed span: O(1) time

9 else
10 return min{C′

x[i], Cx[j]} // 2 one-sided RMQs: O(1) time
11 else
12 return min{A[i], A[j]} // base case (block size ≤ 2): O(1) time

The space required by array Dx for each level x < log log n is

O
(
sx(n)

2 · bx+1(n)
)
= O (sx+1(n) · bx+1(n)) = O(n).

A Simple Linear-Space Data Structure for Constant-Time RMQ 55

Since arrays Cx and C′
x also require O(n) space at each level, the total space

required is O(n) per level, resulting in O(n log logn) total space for the complete
data structure.

For each level x < log logn, precomputing arrays Cx, C
′
x, and Dx is easily

achieved in O(n · sx(n)) = O(n · 22x) time per level, or O(n3/2) total time. Each
update requires O(sx(n)) time per level, or O(

√
n) total time per update.

3.3 〈O(n log logn), O(1)〉 Data Structure

Each step of Algorithm 1 described in Section 3.2 invokes at most one recursive
call on a subarray whose size decreases exponentially at each step. Specifically,
the only case requiring ω(1) time occurs when the query range is contained within
a single block of the current level. In this case, no actual computation or table
lookup occurs locally; instead, the result of the recursive call is returned directly
(see Line 5 of Algorithm 1). As such, the recursion can be eliminated by jumping
directly to the level of the data structure at which the recursion terminates, that
is, the highest level for which the query range is not contained in a single block.
Any such query can be answered in O(1) time using a combination of at most
three references to arrays C and D (see Lines 8 and 10 of Algorithm 1). We refer
to the corresponding level of the data structure as the query level, whose index
we denote by �.

More precisely, Algorithm 1 makes a recursive call whenever bi = bj, where
bi and bj denote the respective indices of the blocks containing i and j in the
current level (see Line 5 of Algorithm 1). Thus, we seek to identify the highest
level for which bi �= bj. In fact, it suffices to identify the highest level � ∈
{0, . . . , log log n−1} for which no query of size j−i+1 can be contained within a
single block. While the query could span the boundary of (at most) two adjacent
blocks at higher levels, it must span at least two blocks at all levels less than or
equal to �. In other words, the size of the query range is bounded by

s�(n) <j − i+ 1 ≤ s�+1(n)

⇔ 22
�

<j − i+ 1 ≤ 22
�+1

⇔ log log(j − i+ 1)− 1 ≤ � < log log(j − i+ 1)

⇒ � = �log log(j − i).

As discussed in Section 1.2, since we only require finding binary logarithms of
positive integers up to n, these values can be precomputed and stored in a table
of size O(n). Consequently, the value � can be computed in O(1) time at query
time, where each logarithm is found by a table lookup.

This gives the following simple algorithm whose worst-case running time is
constant (note the absence of loops and recursive calls):

56 S. Durocher

Algorithm 2

RMQ(i, j)
1 if i = 0 and j = n− 1 // query is entire array
2 return minA // precomputed array minimum
3 else if j − i ≥ 2
4 �← �log log(j − i)
5 bi ← �i/s�(n)
6 bj ← �j/s�(n) // blocks containing i and j
7 if bj − bi ≥ 2 // span is non-empty
8 b ← i mod s�+1(n)
9 return min{C′

�[i], C�[j], D�[b][bi + 1][bj − 1]}
// 2 one-sided RMQs + precomputed span: O(1) time

10 else
11 return min{C′

�[i], C�[j]} // 2 one-sided RMQs: O(1) time
12 else
13 return min{A[i], A[j]} // query contains ≤ 2 elements

Although the query algorithm differs from Algorithm 1, the data structure re-
mains unchanged except for the addition of precomputed values for logarithms
which require O(n) additional space total space. As such, the space remains
O(n log logn) while the query time is reduced to O(1) in the worst case. Pre-
computation and update times remain O(n3/2) and O(

√
n), respectively.

3.4 〈O(n), O(1)〉 Data Structure

The data structures described in Sections 3.2 and 3.3 store exact precomputed
values in arrays Cx, C

′
x, and Dx. That is, for each a and each x, Cx[a] stores A[b]

for some b (similarly for C′
x and Dx). If the array A is accessible during a query,

then it suffices to store the relative index b − a instead of storing A[b]. Thus,
Cx[a] stores b− a and the returned value is A[Cx[a] + a] = A[(b− a) + a] = A[b].
Since the range minimum is contained in the query range A[i : j] we get that
{a, b} ⊆ {i, . . . , j} and, therefore,

|b − a| ≤ j − i+ 1 ≤ s�+1(n).

Consequently, for each level x, log(sx+1(n)) = 2x+1 bits suffice to encode any
value stored in Cx, C

′
x, or Dx. Therefore, for each level x, each table Cx, C

′
x,

and Dx can be stored using O(n · 2x+1) bits. Observe that

log logn−1∑
x=0

n · 2x+1 < 2n logn < 2n logu, (3)

where log u denotes the word size under the RAM model. Therefore, the total
space occupied by the tables Cx, C

′
x, and Dx can be compacted into O(n log u)

bits or, equivalently, O(n) words of space. We now describe how to store this

A Simple Linear-Space Data Structure for Constant-Time RMQ 57

compact representation to enable efficient access. For each i ∈ {0, . . . , n−1}, the
values C0[i], . . . , Clog logn−1[i] can be stored in two words by (3). Specifically, the
first word stores Clog log n−1[i] and for each x ∈ {0, . . . , log logn−2}, bits 2x+1−1
through 2x+2 − 2 store the value Cx[i]. Thus, all values C0[i], . . . , Clog logn−2[i]
are stored using

log logn−2∑
i=0

2x+1 = logn− 2 < log u

bits, i.e., a single word. The value Cx[i] can be retrieved using a bitwise left
shift followed by a right shift or, alternatively, a bitwise logical AND with the
corresponding mask sequence of consecutive 1 bits (all O(log logn) such bit
sequences can be precomputed). An analogous argument applies to the arrays
C′

x and D, resulting in O(n) space for the complete data structure.
To summarize, the query algorithm is unchanged from Algorithm 2 and the

corresponding query time remains constant, but the data structure’s required
space is reduced to O(n). Precomputation and update times remain O(n3/2)
and O(

√
n), respectively. This gives the following lemma:

Lemma 1. Given any n = 22
k

for some k ∈ Z+ and any array A[0 : n − 1],
Algorithm 2 supports range minimum queries on A in O(1) time using a data
structure of size O(n).

3.5 Generalizing to an Arbitrary Array Size n

To simplify the presentation in Sections 3.1 to 3.4 we assumed that the input

array had size n = 22
k

for some k ∈ Z+. As we show in this section, generalizing
the data structure to an arbitrary positive integer n while maintaining the same
asymptotic bounds on space and time is straightforward.

Let m denote the largest value no larger than n for which Lemma 1 applies.
That is,

m = 22
�log log n�

⇒ m ≤ n < m2

⇒ n/m <
√
n. (4)

Define a new array A′[0 : n′ − 1], where n′ = m	n/m
, that corresponds to the
array A padded with dummy data3 to round up to the next multiple of m. Thus,

∀i ∈ {0, . . . , n′ − 1}, A′[i] =

{
A[i] if i < n

+∞ if i ≥ n.

Since n′ = 0 mod m, partition array A′ into a sequence of blocks of size m. The
number of blocks in A′ is 	n/m
 < 	

√
n
.

3 For implementation, it suffices to store u − 1 (the largest value in the universe U)
instead of +∞ as the additional values.

58 S. Durocher

By (4) and Lemma 1, for each block we can construct a data structure to
support RMQ on that block in O(1) time using O(m) space per block. Therefore,
the total space required by all blocks in A′ is O(n/m
 ·m) = O(n). Construct
arrays C, C′, and D as before on the top level of array A′ using the blocks of
size m. The arrays C and C′ each require O(n′) = O(n) space. The array D
requires O(n/m
2) ⊆ O(n) space by (4). Therefore, the total space required by
the complete data structure remains O(n).

Each query is performed as in Algorithm 2, except that references to C, C′,
and D at the top level access the corresponding arrays (which are stored sepa-
rately from Cx, C

′
x, and Dx for the lower levels). Therefore, the query time is

increased by a constant factor for the first step at the top level, and the total
query time remains O(1).

This gives the following theorem:

Theorem 1 (Main Result). Given any n ∈ Z+, and any array A[0 : n − 1],
Algorithm 2 supports range minimum queries on A in O(1) time using a data
structure of size O(n).

4 Directions for Future Work

4.1 Succinctness

The data structure presented in this paper uses O(n) words of space. It is not
currently known whether its space can be reduced to O(n) bits if a RMQ returns
only the index of the minimum element. As suggested by Patrick Nicholson
(personal communication, 2011), each array Cx and C′

x can be stored using
binary rank and select data structures in O(n) bits of space (e.g., [24]). That
is, we can support references to Cx and C′

x in constant time using O(n) bits of
space per level or O(n log logn) total bits. It is not known whether the remaining
components of the data structure can be compressed similarly, or whether the
space can be reduced further to O(n) bits.

4.2 Higher Dimensions

As shown by Demaine et al. [15], RMQ data structures based on Cartesian trees
cannot be generalized to two or higher dimensions. The data structure presented
in this paper does not involve Cartesian trees. Although it is possible that some
other constraint may preclude generalization to higher dimensions, this remains
to be examined.

4.3 Dynamic Data

As described, our data structure structure requires O(
√
n) time per update (e.g.,

set A[i]← x) in the worst case. It is not known whether the data structure can
be modified to support efficient queries and updates without increasing space.

A Simple Linear-Space Data Structure for Constant-Time RMQ 59

Acknowledgements. The author thanks Timothy Chan and Patrick Nichol-
son with whom this paper’s results were discussed. The author also thanks the
students of his senior undergraduate class in advanced data structures at the
University of Manitoba; preparing lecture material on range searching in arrays
inspired him to revisit solutions to the range minimum query problem. Finally,
the author thanks an anonymous reviewer for helpful suggestions.

References

1. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest commmon ancestors: a
survey and a new algorithms for a distributed environment. Theory of Computing
Systems 37(3), 441–456 (2004)

2. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

3. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradžev, I.A.: On economical con-
struction of the transitive closure of a directed graph. Soviet Mathematics—
Doklady 11(5), 1209–1210 (1970)

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

5. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Low-
est common ancestors in trees and directed acyclic graphs. Journal of Algo-
rithms 57(2), 75–94 (2005)

6. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structures. SIAM Jour-
nal on Computing 22(2), 221–242 (1993)

7. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 377–388. Springer, Heidelberg (2005)

8. Brodal, G.S., Davoodi, P., Srinivasa Rao, S.: Path minima queries in dynamic
weighted trees. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 290–301. Springer, Heidelberg (2011)

9. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

10. Brodnik, A., Carlsson, S., Demaine, E.D., Munro, J.I., Sedgewick, R.D.: Resizable
arrays in optimal time and space. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia,
R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 37–48. Springer, Heidelberg (1999)

11. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. In: Proceedings of the Sympo-
sium on Theoretical Aspects of Computer Science (STACS). Leibniz International
Proceedings in Informatics, vol. 14, pp. 291–301 (2012)

12. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. Theory of Computing Sys-
tems (to appear, 2013)

13. Davoodi, P.: Data Structures: Range Queries and Space Efficiency. PhD thesis,
Aarhus University (2011)

14. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for
range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

60 S. Durocher

15. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range mini-
mum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer,
Heidelberg (2009)

16. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

17. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

18. Fischer, J., Heun, V.: Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In: Lewenstein, M., Valiente, G.
(eds.) CPM 2006. LNCS, vol. 4009, pp. 36–48. Springer, Heidelberg (2006)

19. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

20. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

21. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

22. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

23. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. Nordic Journal of Computing 12, 1–17 (2005)

24. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

25. Pasailă, D.: Range minimum query and lowest common ancestor,
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=

lowestCommonAncestor

26. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5, 12–22 (2007)

27. Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and
parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)

28. Skala, M.: Array range queries. In: Brodnik, A., Lopez-Ortiz, A., Raman, V., Viola,
A. (eds.) Munro Festschrift. LNCS, vol. 8066, pp. 337–354. Springer, Heidelberg
(2013)

29. Yuan, H., Atallah, M.J.: Data structures for range minimum queries. In: Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 150–160
(2010)

http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor
http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=lowestCommonAncestor

Closing a Long-Standing Complexity Gap

for Selection: V3(42) = 50

David Kirkpatrick

Department of Computer Science, University of British Columbia,
201-2366 Main Mall, Vancouver, B.C., V6T 1Z4, Canada

kirk@cs.ubc.ca

Abstract. The selection problem has a long history, with deep roots in
concrete complexity theory, and important practical applications. Nev-
ertheless, some very basic questions remain unresolved. Included among
these is the exact specification of the worst-case complexity of selecting
the third largest of a set of n elements, a problem (originally formulated
in terms of tennis tournaments) that dates back to 1883.
Inspired, in part, by the contributions of J. Ian Munro, to the selec-

tion problem as well as many other problems in concrete complexity, we
revisit a question concerning the complexity of selecting the third largest
element. The question was raised, and only partially solved, in the au-
thor’s Ph.D. thesis, at a time that marks the beginning of a long friend-
ship with Ian, and research journeys with numerous parallel interests. In
this paper, we settle one very specific instance of this question that is
interesting, in part, because it constitutes (i) a new counterexample to a
natural conjecture about the exact complexity of this problem, and (ii)
what the author now believes is the only remaining counterexample.
The author hopes, in this modest way, to reflect his deep admiration

for Ian’s many contributions to the theory, practice and appreciation of
algorithm design and analysis.

1 Introduction

The selection problem, determining the i-th largest, for specified i, of a collec-
tion of n elements drawn from some totally ordered universe, has a rich history
that predates its seminal role in the popularization and development of concrete
complexity theory. It captures the essence of tournaments whose objective is
to correctly identify or rank the top competitors, and appeals to our everyday
familiarity with the design (or mis-design) of such competitions. Within com-
plexity theory, it has served as a benchmark that not only sheds light on the
more specific problem of determining the maximum and the more general prob-
lem of sorting, but also plays a fundamental role, quite distinct from sorting, in
the design of divide-and-conquer algorithms.

For more than three decades, the research of J. Ian Munro has advanced
our understanding of a variety of aspects of the selection problem. Early work
with M. Paterson [15] and D. Dobkin [5], concerning selection and sorting on

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 61–76, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

62 D. Kirkpatrick

space-constrained computation models, set the stage for the development of rich
and well-motivated sub-disciplines of space efficient data structures and algo-
rithms, including streaming algorithms. The complexity of the median prob-
lem, the special case where where i = 	n/2
, was the focus of joint work with
P. V. Poblete [16]. Subsequent work, with W. Cunto [3] and M. Ray [4], altered
the conventional focus to consider other practical considerations, like average
case behaviour and the minimization of data movement. More recently, Munro
and collaborators have achieved breakthroughs in our understanding of some
generalizations of selection, including multiple selection [8] and the production
of arbitrary partial orders [2].

Munro’s research has served as a source of both insight and inspiration for
the author over these same decades. This is a least part of the motivation for
picking up the selection problem thread, set aside by the author a long time ago.

1.1 The Selection Problem

We denote by Vi(n) the minimum, over all comparison-based algorithms (tour-
naments) A, of number of comparisons required by A to identify the i-th largest
element in a set of n distinct inputs, in worst case over all presentations (per-
mutations) of that input set. Similarly, Wi(n) denotes the minimum number of
comparisons to solve the multiple selection variant: determine the j-th largest
element, for all j, 1 ≤ j ≤ i, collectively. As we shall see, the exact value of Vi(n),
when i = 1, 2, has been known for some time. Furthermore, much is known about
the asymptotic behavior of Vi(n), particularly for the special case of the median;
Knuth [13] remains an excellent overview of work in the area. Our focus here
will be on small values of i, in particular i = 3.

1.2 Background on Selecting the Third Largest

It would defy tradition not to mention the pioneering role of Charles Dodg-
son, better known as Lewis Carroll, whose 1883 essay in St. James’s Gazette
posed the question of the correct allocation of second and third prizes in tennis
tournaments. Hugo Steinhaus is credited with formulating, as early as 1929, the
complexity question that amounts to determining an exact description of W2(n)
(which, it is easy to see, coincides with V2(n)).

The bound W2(n) ≤ n − 2 + 	lg n
 was established by J. Schreier [17], in
1932, but more than three decades passed before S. S. Kislitsyn showed that
this bound is tight [11]. Knuth [12] provided a simpler proof of Kislitsyn’s lower
bound, with the use of an “oracle” (or adversary) argument, a technique that has
had a significant impact on a good deal of subsequent work in this and related
areas.

Kislitsyn also generalized Schreier’s upper bound by demonstrating that

Wi(n) ≤ n− i+

i−2∑
t=0

	lg(n− t)
.

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 63

This was subsequently refined, by A. Hadian and M. Sobel [7], to give

Vi(n) ≤ n− i+ (i− 1)	lg(n− i+ 2)
,

which is tight (like Kislitsyn’s bound), when i = 2.
The remaining gap, in the case where i = 3, was narrowed by F. Yao [18],

who presented an adversary strategy showing

V3(n) ≥

⎧⎨
⎩

n− 3 + 2	lg(n− 1)
 , n− 1 = 4 · 2k
n− 5 + 2	lg(n− 1)
 , 4 · 2k < n− 1 < 6 · 2k
n− 4 + 2	lg(n− 1)
 , 6 · 2k ≤ n− 1 < 8 · 2k ,

for k ≥ 0. This left V3(n) specified to within two, for all values of n, and exactly,
whenever n = 4 · 2k + 1.

In the author’s 1974 Ph.D. thesis [9] (see also [10]), Yao’s bound was strength-
ened and generalized to

Vi(n) ≥ n+ i− 3 +
i−2∑
j=0

	lg n− i+ 2

i+ j

.

In the special case where i = 3 this gives

V3(n) ≥
{
n− 4 + 2	lg(n− 1)
 , 4 · 2k < n− 1 ≤ 6 · 2k
n− 3 + 2	lg(n− 1)
 , 6 · 2k < n− 1 ≤ 8 · 2k .

(1)

In addition, Hadian and Sobel’s upper bound on V3(n) was lowered to

V3(n) ≤
{
n− 4 + 2	lg(n− 1)
 , 4 · 2k < n− 1 ≤ 5 · 2k
n− 3 + 2	lg(n− 1)
 , 5 · 2k < n− 1 ≤ 8 · 2k (2)

or, equivalently,

V3(n) ≤ n+ 1 + 	lg n− 1

4

+ 	lg n− 1

5

.

Together (1) and (2) determine V3(n) to within one, when 5 ·2k < n− 1 ≤ 6 ·2k,
and exactly, otherwise.

The author went on to conjecture that the upper bound (2) is tight (and, in
an Appendix of [9], outlined a, regrettably incomplete, proof that the conjecture
holds for all n ≥ 50).

M. Aigner [1], apparently unaware of [9], re-derived (2). He went on to pro-
vide a lengthy argument that (2) is, in fact, tight for all n ≥ 6. Unfortunately,
Aigner’s argument too seems to fall short of a complete proof [14]; in particular,
J. Eusterbrock [6], trying to re-establish Aigner’s claim with a computer-assisted
proof search, discovered a counterexample: V3(22) = 28.

64 D. Kirkpatrick

1.3 The New Result for V3(42)

For obvious reasons, the author feels motivated to try and provide a complete and
convincing proof, specifying V3(n) exactly, for all n ≥ 3. This paper is a modest,
but important step in that direction. It proves that V3(42) = 50, providing a
second, and the author believes last, counterexample to Aigner’s claim (which
would require V3(42) = 51).

2 The Algorithm and Its Analysis

2.1 Representation and Realization of Posets

We follow the usual convention and represent the partial orders realized at in-
termediate steps in an algorithm as Hasse diagrams. These are directed acyclic
graphs on the underlying set of elements, where an arrow is drawn from element
u to element v if it has been determined that u < v by a direct comparison; for
ease of reading elements will be positioned in such a way that all arrows point
upwards. (Note that our Hasse diagrams may include some edges that do not
belong to the transitive reduction of the associated partial ordering, but for the
sake of clarity, and convention, we include these in our Hasse diagrams.)

︷︸︸︷

︸︷︷︸

i− 1

n− i

U V

Fig. 1. (left) the partial order Si−1
n−i, and (right) illustrating poset refinement

The problem of selecting the i-th largest element is equivalent to that of
producing the partial order Si−1

n−i, which has a central element with i − 1 above
(larger) and n− i below (smaller) (see Fig. 1, left). We say that one (unlabeled)
partial order P1 refines another (unlabeled) partial order P2 (denoted P1 ⇒
P2), if there is a labeling of P1 and P2 such that every linear extension of P1

is a linear extension of P2. We take advantage of the fact that an algorithm

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 65

that behaves correctly for inputs consistent with partial order P must (after
suitable re-labeling) also behave correctly on refinements of P . So, for example,
in considering the outcomes of a comparison between elements U and V in Fig. 1
(right), it will suffice to consider only the case where U > V , since the partial
order that results in the case V > U is a refinement of the partial order that
results when U > V .

With only a slight abuse of our earlier notation, we can describe a generalization
of the Schreier-Kislitsyn formula for V2(n). Specifically, let V2(S

0
r1 , S

0
r2 , . . . , S

0
rt)

denote the minimum number of comparisons to select the second largest element
from a collection of elements for which a partial ordering S0

r1 ∪ S0
r2 ∪ . . . ∪ S0

rt is
given. Then

V2(S
0
r1 , S

0
r2 , . . . , S

0
rt) = t− 2 + 	lg(2r1 + 2r2 + · · ·+ 2rt)
. (3)

The straightforward inductive proof of this result (attributed to R. W. Floyd), in
fact a modest generalization that considers an arbitrary initial partial ordering,
is an exercise (p. 219) in Knuth [12].

2.2 A Decision Tree Formulation of the Algorithm

Our algorithm has two phases. In the first phase, elements are partitioned into
four sets, consisting of 32, 4, 4 and 2 elements respectively. Each set provides
input to a balanced (single knockout) tournament on the elements of that set,
for a total of 31 + 3 + 3 + 1 = 38 comparisons. The (partially) labeled Hasse
diagram describing the result of phase 1 is shown in Fig. 2.

The second phase involves a tournament (see Fig. 3) that refines the partial
order produced in phase 1, in a way that suffices to identify one of the two largest
elements in the set. To avoid unnecessary clutter the upper (resp., lower) branch
following a comparison E1 : E2 corresponds consistently to the > (resp., <)

A

A4A0 A2A1 A3

B C D

Fig. 2. Posets after phase 1

66 D. Kirkpatrick

B : A4

A3 : D

C : D

A1 : A0

A1 : A0

A1 : A2

A2 : A1

A2 : C

D : A2

A2 : C

C : D

A3 : C

A4 : C

A4 : C

A4 : D

A4 : C

B : C

A : B

A : C

⇑

⇑

⇑

⇓

⇑

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

>

<

Fig. 3. Comparison tree in phase 2

outcome, i.e. the case where E1 > E2 (resp., E1 < E2). Note that some branches
(marked by ⇑ or ⇓) are not described, because their associated poset is a refine-
ment of that associated with their sibling branch (and hence can be treated in
a completely symmetric fashion).

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 67

It remains to determine, at each of the fifteen leaves of this tournament, the
second largest of the remaining elements. Figures 4 through 18 (see Appendix A)
illustrate the Hasse diagrams associated with each of the fifteen leaves, with the
results of phase 2 comparisons highlighted (in bold red). In each case, a parallel
figure is drawn below that (i) highlights (by a circle) the element that has been
identified as one of the two largest elements, and (ii) removes those elements
that are known to be smaller than three or more other elements. What remains,
in each case, is a collection of partial orders of the form S0

j , so we can appeal
directly to (3).

Table 1. Analysis of phase 2 leaf configurations

Phase 2 Subproblem V2 Equivalent Completion Total
Cost Cost

4 X1 V2(S0, S1, S2, S3, S4) 8 12
4 X2 V2(S0, S1, S3, S5) 8 12
4 X3 V2(S0, S1, S2, S3, S4) 8 12
4 X4 V2(S0, S1, S1, S2, S4) 8 12
5 X5 V2(S4, S4, S5) 7 12
6 X6 V2(S5, S5) 6 12
7 X7 V2(S6) 5 12
7 X8 V2(S0, S1, S3) 5 12
7 X9 V2(S6) 5 12
7 X10 V2(S0, S1, S1, S1) 5 12
7 X11 V2(S6) 5 12
7 X12 V2(S0, S2, S3) 5 12
6 X13 V2(S5, S5) 6 12
7 X14 V2(S6) 5 12
7 X15 V2(S0, S1, S2) 4 11

2.3 Analysis

We have reduced our problem to fifteen cases, the leaf configurations in Fig. 3. In
each case, we have recorded in the Table 1 above (i) the phase 2 cost, the number
of phase 2 comparisons leading to that leaf, (ii) the generalized V2 problem
that remains to be solved at that leaf, (iii) the completion cost, the number of
comparisons sufficient to solve this generalized V2 problem, and (iv) the total
number of comparisons used (after the 38 in phase 1).

In summary, we have shown the following

Theorem 1. V3(42) = 50.

68 D. Kirkpatrick

3 Conclusion

This paper establishes the exact number of comparisons necessary and sufficient
(in the worst case) to determine the third largest of a set of 42 elements. This
is only the second known counterexample to a natural conjecture, made by the
author almost 40 years ago, concerning the exact value of V3(n). The result in
this paper was discovered in a renewed effort to finally establish this conjecture
in a complete and convincing fashion.

Acknowledgements. The author acknowledges the generous support of the
Natural Sciences and Engineering Research Council of Canada.

This also seems like an opportune time to express the author’s deep appreci-
ation for the wide-ranging contributions of Donald Knuth. His efforts not only
introduced research on discrete algorithms to a broad audience, but have also
served, for many decades, as a model of clarity and precision.

References

1. Aigner, M.: Selecting the top three elements. Discrete Applied Mathematics 4,
247–267 (1982)

2. Cardinal, J., Florini, S., Joret, G., Jungers, R.M., Munro, J.I.: An efficient algo-
rithm for partial order production. SIAM J. on Computing 39, 2927–2940 (2010)

3. Cunto, W., Munro, J.I.: Average case selection. J. ACM 36, 270–279 (1989)
4. Cunto, W., Munro, J.I., Rey, M.: Selecting the median and two quartiles in a set
of numbers. Software: Practice and Experience 22, 439–454 (1992)

5. Dobkin, D., Munro, J.I.: Optimal time minimal space selection algorithms. J.
ACM 28, 454–461 (1981)

6. Eusterbrock, J.: Errata to “Selecting the top three elements” byM.Aigner:A result of
a computer-assisted proof search. Discrete AppliedMathematics 41, 131–137 (1993)

7. Hadian, A., Sobel, M.: Selecting the i-th largest using binary errorless comparisons.
Colloquia Mathematica Societatis Janos Bolyai 4, 585–599 (1969)

8. Kaligosi, K., Mehlhorn, K., Munro, J.I., Sanders, P.: Towards optimal multiple
selection. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 103–114. Springer, Heidelberg (2005)

9. Kirkpatrick, D.G.: Topics in the complexity of combinatorial algorithms. Technical
Report 74, Department of Computer Science, University of Toronto (1974)

10. Kirkpatrick, D.G.: A unified lower bound for selection and set partitioning prob-
lems. J. ACM 28, 150–165 (1981)

11. Kislitsyn, S.S.: On the selection of the k-th element of an ordered set by pairwise
comparisons. Sibirsk. Mat. Zh. 5, 557–564 (1964) (in Russian)

12. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, vol. 3.
Addison-Wesley, Reading (1973)

13. Knuth, D.E.: Sorting and Searching, 2nd edn. The Art of Computer Programming,
vol. 3. Addison-Wesley, Reading (1998)

14. Knuth, D.E.: Private correspondence (July 1996)
15. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical

Computer Science 12, 315–323 (1980)

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 69

16. Munro, J.I., Poblete, P.V.: A lower bound for determining the median. Technical
Research Report CS-82-21, University of Waterloo (1982)

17. Schreier, J.: On tournament elimination systems. Mathesis Polska 7, 154–160 (1932)
(in Polish)

18. Yao, F.F.: On lower bounds for selection problems. Technical Report MAC TR-121,
M. I. T. (1974)

Appendix A: The partial orders at X1. . .X15

A

A4A0 A2A1 A3

B

C

A

A4A0 A2A1 A3

B

C

D

Fig. 4. The poset at X1 (above) and its reduction (below)

A

A4A0 A2A1 A3

B

C

D

A

A4A0 A2A1 A3

B

C

D

Fig. 5. The poset at X2 (above) and its reduction (below)

70 D. Kirkpatrick

A

A0 A2A1 A3

B C

D

A

A4A0 A2A1 A3

B C

D

Fig. 6. The poset at X3 (above) and its reduction (below)

A

A0 A2A1 A3

D

C

B

A

A4A0 A2A1 A3

B

C

D

Fig. 7. The poset at X4 (above) and its reduction (below)

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 71

A

A4A2

A1

A3

A

A4

A0

A2

A1

A3

BC D

C D B

Fig. 8. The poset at X5 (above) and its reduction (below)

A

C A3

D

A4

B

A

C

A4

B

A0

A2

A1

A3

D

Fig. 9. The poset at X6 (above) and its reduction (below)

72 D. Kirkpatrick

A

C

A

C

A0

A2

A1

A3

D

A4

B

A4

B

Fig. 10. The poset at X7 (above) and its reduction (below)

A

A2 A3
A4

C

A

C

A0

A2

A1

A3

D

A4

B

Fig. 11. The poset at X8 (above) and its reduction (below)

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 73

A

A4

C B

A

C

A0

A1

B

D

A2
A3

A4

Fig. 12. The poset at X9 (above) and its reduction (below)

A

D A4

C

A

C

A0

A1

A2
A3

B
D A4

Fig. 13. The poset at X10 (above) and its reduction (below)

74 D. Kirkpatrick

A

A4

B
D

A

C

A0

A1

A2
A3

B
D A4

Fig. 14. The poset at X11 (above) and its reduction (below)

A

D

A4

A3A2

A

C

A0

A1

A2
A3

D

B

A4

C

Fig. 15. The poset at X12 (above) and its reduction (below)

Closing a Long-Standing Complexity Gap for Selection: V3(42) = 50 75

A

A2

A4

B

A1
CD

A

C

A0

A1

A2

D

A3

B

A4

Fig. 16. The poset at X13 (above) and its reduction (below)

A

C A4

B

A

C

A0

A1

A2

D

A3

B

A4

Fig. 17. The poset at X14 (above) and its reduction (below)

76 D. Kirkpatrick

A

A2

A4

C

A

C

A0

A1

A2

D

A3

B

A4

Fig. 18. The poset at X15 (above) and its reduction (below)

Frugal Streaming for Estimating Quantiles

Qiang Ma1, S. Muthukrishnan1, and Mark Sandler2

1 Rutgers University, Piscataway, NJ 08854, USA
{qma,muthu}@cs.rutgers.edu

2 Google Inc. New York, NY 10011, USA
sandler@google.com

Abstract. Modern applications require processing streams of data for estimating
statistical quantities such as quantiles with small amount of memory. In many
such applications, in fact, one needs to compute such statistical quantities for each
of a large number of groups (e.g.,network traffic grouped by source IP address),
which additionally restricts the amount of memory available for the stream for
any particular group. We address this challenge and introduce frugal streaming,
that is algorithms that work with tiny – typically, sub-streaming – amount of
memory per group.

We design a frugal algorithm that uses only one unit of memory per group to
compute a quantile for each group. For stochastic streams where data items are
drawn from a distribution independently, we analyze and show that the algorithm
finds an approximation to the quantile rapidly and remains stably close to it. We
also propose an extension of this algorithm that uses two units of memory per
group. We show experiments with real world data from HTTP trace and Twit-
ter that our frugal algorithms are comparable to existing streaming algorithms
for estimating any quantile, but these existing algorithms use far more space per
group and are unrealistic in frugal applications; further, the two memory frugal
algorithm converges significantly faster than the one memory algorithm.

1 Introduction

Modern applications require processing streams of data for estimating statistical quan-
tities such as quantiles with small amount of memory. A typical application is in IP
packet analysis systems such as Gigascope [8] where an example of a query is to find
the median packet (or flow) size for IP streams from some given IP addresses. Since
IP addresses send millions of packets in reasonable time windows, it is prohibitive to
store all packet or flow sizes and estimate the median size. Another application is in
social networking sites such as Facebook or Twitter where there are rapid updates from
users, and one is interested in median time between successive updates from a user. In
yet another example, search engines can model their search traffic and for each search
term, want to estimate the median time between successive instances of that search.

Motivated by applications such as these, there has been extensive work in the database
community on theory and practice of approximately estimating quantiles of streams
with limited memory [1–4, 6, 7, 9–11, 13, 14, 17]. Taken together, this body of research
has generated methods for approximating quantiles to 1 + ε approximation with space
roughly O(1/ε) in various models of data streams.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 77–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

78 Q. Ma, S. Muthukrishnan, and M. Sandler

Our work here begins with our experience that while the algorithms above are useful,
in reality, they get used within GROUPBYs, that is, there are a large number of groups
and each group defines a stream within which we need to compute quantiles. In example
applications above, this is evident. In IP traffic analysis, one wishes to find median
packet size from each of the source IP addresses, and therefore the number of “groups”
is upto 232 (or 2128). Similarly, in social network application, we wish to compute
the median time between updates for each user, and the number of users is in 100’s
of millions for Facebook or Twitter. Likewise, the number of “groups” of interest to
search engines is in 100’s of millions of search terms. Now, the bottleneck of high
speed memory manifests in a different way. We can no longer allocate a lot of memory
to any of the groups! In real systems such as Gigascope, low level aggregation engines
keep in memory as many groups as they can and rely on higher level aggregation to
aggregate partial answers from various groups, which ends up essentially forcing the
higher level aggregator to work as a high speed streamer, and proves ineffective.

Motivated by this, we introduce the new direction of frugal streaming, that is stream-
ing algorithms that work with tiny amount of memory per group, memory that is far less
than is used by typical streaming algorithms. In fact, we will work with 1 or 2 memory
locations per group. Our contributions are as follows.

– We present two frugal streaming algorithms for estimating a quantile of a stream.
One uses 1 unit of memory for the data stream item, and the other uses 2 units of
memory.

– For stochastic streams, that is streams where each item is drawn independently
from a distribution, we can mathematically analyze and show how our algorithms
converge rapidly to the desired quantile and how they stably oscillate around the
quantile as stream progresses.

– We evaluate our algorithms on real datasets from Twitter. We show that our fru-
gal streaming algorithms perform accurately and quickly. Regular streaming algo-
rithms known previously either are highly inadequate given our memory constraints
or need significantly more memory to be comparable in accuracy. Further, our fru-
gal algorithms have an intriguing “memoryless” property. Say the stream abruptly
changes and now represents a new distribution; irrespective of the past, at any given
moment, our frugal algorithms move towards the median of the new distribution
without waiting for the new streaming items to drown out the old median. We also
experimentally evaluate the performance of our frugal streaming algorithms with
changing streams.

Ian Munro and Mike Paterson [16], very early on, introduced and solved the problem
of estimating quantiles in one or more passes with small memory. This influential paper
was a prelude to the area of streaming that was to emerge 15+ years later. Our paper
here is an homage to this classical paper.

In Section 2 we introduce definitions and notations. We present our 1 unit of memory
frugal streaming algorithm in Section 3. It is analyzed for stochastic streams in Section 4
to give insights about its speed in approaching true quantile and its stability in the long
run. Section 5 gives an extension to 2 units of memory frugal streaming algorithm.
We discuss related algorithms and present our experimental study in Section 6 and 7.
Section 8 has concluding remarks.

Frugal Streaming for Estimating Quantiles 79

2 Background and Notations

Suppose values in domain D are integers1 distributed over {1, 2, 3, . . . , N}. Given a
random variable X in domain D, denote its cumulative distribution function (CDF) as
F (x), and its quantile function as Q(x). In other words, F (Q(x)) = x if the CDF is
strictly monotonic.

h-th p-quantile is x such that Pr(X < x) = F (x) = h
p . For convenience we use

h
p -quantile for the hth p-quantile. S is a sampled set from D. Define a rank function
that gives the number of items in S which are smaller than x, R(x) = |S′| where
S′ = {si ∈ S, si < x}. So when size of S grows to infinity, F (x) = R(x)

|S| .

In this paper we consider rank p-quantiles, so the h
p -quantile approximation returned

by algorithm is considered correct even if the approximation value has zero probability
in domain D. For example, if D is distributed over two values 1 and 1000 with equal
probabilities. Under value quantile evaluation, a median estimation at 1000 would be
considered accurate (throughout our paper, upper median is used for even sample sizes).
But any value between 1 and 1000 can also give us good estimation in terms of ranking,
hence they are considered correct estimation under rank quantile evaluation.

Throughout when we refer to memory use of algorithms, each memory unit has
sufficient bits to store the input domain, that is, each memory unit is logN bits. This
is standard in data stream literature where a method uses f words, it is really f words
each of which has sufficient bits to store the input, or f logN bits.

3 Frugal Streaming Algorithm

We start from median estimation problem and then generalize our algorithm to estimate
any quantile of stream S.

3.1 1 Unit Memory Algorithm to Estimate Median

Our algorithm maintains only one unit of memory m̃ which contains its estimate for the
stream median, mS . When a new stream item si arrives, consider what our algorithm
can do? Since it has no memory of the past beyond m̃, it can do very little. The algo-
rithm adjusts its estimate so that the absolute difference with the new stream item is
decreased. C-style pseudo code of this algorithm is described in Algorithm 1, Frugal-
1U -Median .

Example 1. To illustrate how Frugal-1U -Median works, let us consider the example
in Figure 1. The estimated median from Frugal-1U -Median algorithm starts from
m̃0 = 0, and gets updated on each arriving stream item. For example, when s4 = 5
comes, it is larger than m̃3 whose value is 1, therefore m̃4 = m̃3 + 1 = 2. In this
example, m̃ starts from 0, and after reading 5 items from the stream it reaches the
stream median for the first time.

1 For domains with non-integer values, their values can be rewritten to keep desired precision
and converted to integers.

80 Q. Ma, S. Muthukrishnan, and M. Sandler

Fig. 1. Estimate stream median

Algorithm 1 Frugal-1U -Median

Input: Data stream S, 1 unit of memory m̃
Output: m̃
1: Initialization m̃ = 0
2: for each si in S do
3: if si > m̃ then
4: m̃ = m̃+ 1;
5: else if si < m̃ then
6: m̃ = m̃− 1;
7: end if
8: end for

3.2 1 Unit of Memory to Estimate Any Quantile

Following the same intuition as above, we can use 1 unit of memory to estimate any
h
k -quantile, where 1 ≤ h ≤ k − 1 . If the current stream item is larger than estimation,
we need to increase estimation by 1; otherwise, we need to decrease estimation by
1. The trick to generalize median estimation to any h

k -quantile estimation is that not
every stream item seen will cause an update. If the current stream item is larger than
estimation, an increment update will be triggered only with probability h

k . The rationale
behind it is that if we are estimating h

k -quantile, and if the current estimate is at stream’s
true h

k -quantile, we will expect to see stream items larger than the current estimate with
probability 1− h

k . If the probability of seeing larger stream items is greater than 1− h
k ,

it is caused by the fact that the current estimate is smaller than stream’s true h
k -quantile.

Similarly, a smaller stream item will cause a decrement update only with probability
1 − h

k . Our general 1 unit of memory quantile estimation algorithm is described in
Algorithm 2, Frugal-1U .

We need to make a few observations. Besides m̃, this algorithm uses rand and h
k .

Notice that we can implement the algorithm without explicitly storing rand value, h
k is

a constant across all the groups, no matter how many, and can be kept in registers.
Update taken by m̃ in Frugal-1U is 1, it is a small change at each step when the

stream quantile to estimate is large. When it is allowed one extra unit of memory, we
can use it to store the size of update to take, denoted as step. The extension to two
units of memory algorithm is presented in Section 5.

Frugal Streaming for Estimating Quantiles 81

Algorithm 2 Frugal-1U
Input: Data stream S, h, k, 1 unit of memory m̃
Output: m̃
1: Initialization m̃ = 0
2: for each si in S do
3: rand = random(0,1); // get a random value in [0,1]
4: if si > m̃ and rand > 1− h

k
then

5: m̃ = m̃+ 1;
6: else if si < m̃ and rand > h

k
then

7: m̃ = m̃− 1;
8: end if
9: end for

4 Analysis of Frugal-1U -Median

Our frugal algorithm for estimating a quantile can behave badly on certain streams. For
example, if the true stream quantile value has high probability, even if current estimation
is at the true stream quantile, an update of 1 to our estimation will cause large change in
rank quantile error. Also any adversary that can remember the entire past and reorder the
stream items, they can constantly mislead our algorithm by spreading out the median.
This is expected because our algorithm has no memory of the past. The real intuition
and strength of our algorithm comes from elsewhere. We say a stream is Stochastic if
each stream item is drawn from some distribution D, randomly and independently from
other stream items. We will analyze and show that for Stochastic streams, our algorithm
quickly converges to an estimate of the target quantile, and further, stably remains in
the neighborhood of the quantile as stream progresses.

4.1 Approaching Speed

For our 1 memory algorithm, each update size is 1. At any time ti, our algorithm estima-
tion has non-zero probabilities to move towards or away from true quantile. Therefore
for sufficiently large t, the probability that algorithm estimation moves continuously
in one direction is very low. When current algorithm estimation is far away from true
quantile, the speed of approaching the true quantile is high, since every update is highly
biased towards true quantile. But as the estimation gets closer to true quantile, the bias
to move towards true quantile gets weaker so the speed of approaching the true quantile
is low. In other words, we are likely to see algorithm estimation showing an oscillating
trajectory towards true quantile. The analysis of our algorithm is non-trivial and chal-
lenging because the rate of the convergence to an estimate is not constant and depends
on a number of varying factors. We rely on the concept of stochastic dominance and we
show that in fact the algorithm will approach the true quantile with linear speed.

Recall our notations from Section 2, F (t) is the CDF of distribution, Q(x) is quan-
tile. Let xi be an indicator variable for the direction of i-th step of the algorithm, where
xi = 1 for increment and xi = −1 for decrement. Let m̃t =

∑t
i=1 xi, in other words

m̃t is the estimation of the quantile at time t. Let |F (i) − F (i + 1)| ≤ δ, so δ is the

82 Q. Ma, S. Muthukrishnan, and M. Sandler

maximum single location probability in distribution and 0 ≤ δ < 1. Suppose the algo-
rithm is to estimate h

k quantile, whose value is M . Assume the algorithm estimate starts
from position m̃0, where m̃0 < M . The distance from start position to true quantile is
M − m̃0, but the analysis trivially generalizes to the case where the distance from start
position to the true quantile is M .

Lemma 1. For median estimation, assume the algorithm estimate starts from position
m̃0, where F (m̃0) < 1

2 − δ. After T = M| log 1/ε|
δ steps of algorithm, the probability

that F (m̃t) <
1
2 − δ for all t < T is at most ε. In other words, after O(M) steps it is

likely the algorithm has crossed vicinity of the true quantile, 1
2 − δ, at least once.

Proof. Let M ′ = Q(12 − δ), we can compute the expectation of a move whenever the
algorithm is below M ′.

Pr [xi = 1] ≥ 1

2
(1 − (

1

2
− δ)) =

1

2
− 1

22
+ δ ∗ 1

2

we denote it by θ, then

Pr [xi = −1] ≤ (1 − 1

2
)(
1

2
− δ) = θ − δ

Therefore we have
E [xi] ≥ δ (1)

In other words the expected shift of each xi before it hits M ′ is then at least δ. To
prove our lemma, we therefore can use tail inequalities to bound the deviation of m̃t =∑

xi from the expectation. The main difficulty, however arises from the fact xi are not
independent from each other and the constraint (1) holds only when m̃t ≤M ′. Consider
an arbitrary sequence of moves xi. Define yi = xi for all i < i0, where i0 is the time
where m̃i0 crossed M ′ for the first time, and yi = 1 with probability θ, yi = −1 with
probability θ − δ, and 0 otherwise. Similarly we define Yt =

∑
yi for all i < i0. Then

we have Pr [m̃i < M ′, ∀i ∈ [T]] = Pr [Yi < M ′, ∀i ∈ [T]]. Therefore it is enough
for us to prove our statement for Yi. However, Yi are still not necessarily independent
from each other, before they cross M ′, however all of them satisfy E [yi] ≥ δ and
Pr [yi = 1] ≥ θ, and Pr [yi = −1] ≤ θ − δ. Define zi (and Zi respectively), such that
zi is stochastically dominated by yi and each zi is 1 with probability θ and −1 with
probability θ − δ. Using the Hoeffding inequality we have:

Pr [|Zt −E [Zt] | > C] ≤ exp(− tC

2
)

using the fact

E [Zt] ≥ δt ≥ M | log 1/ε| = M − (M log 1/ε+M)

and using C = (M + M log 1/ε) and using union bound over all t we have desired
result immediately for Zt. Using the fact that Yt ≥ Zt we have the probability that Yt

never crosses the vicinity is less than ε and hence lemma holds.

Frugal Streaming for Estimating Quantiles 83

Note, that our constraints are spelled in terms of probability mass inequality rather
than absolute error. This is required, since for any function f(M), it is possible to
devise a distribution, such that the algorithm will be f(M)2 far away from true quantile
in absolute steps, and yet it will be very close to it in terms of probability mass.

Lemma 2. For median estimation, algorithm estimation starts from a position m̃0,
where F (m̃0) > 1

2 + δ. After T = M| log 1/ε|
δ steps of algorithm, the probability that

F (m̃t) >
1
2 + δ for all t < T is at most ε.

Proof. Proof is similar to Lemma 1.

Theorem 1. For median estimation, algorithm estimation starts from a position m̃0,
where F (m̃0) is outside of region [12−δ, 12 +δ]. After T = M| log ε|

δ steps the algorithm,
the probability that F (m̃t) is outside of this close region [12 − δ, 12 + δ] for all t < T is
at most ε.

Proof. Proof is directly obtained from Lemma 1 and Lemma 2.

In approaching speed analysis, we do not need assumptions on algorithm’s starting esti-
mation. Therefore this actually implies for Frugal-1U algorithm, quantile estimations
adjust to new distribution quantile when the underlying distribution changes, regardless
of current estimation position. The speed of approaching new distribution quantile can
be determined by Theorem 1. We verified this feature of Frugal-1U in experiments on
streams with changing distribution, but omit the results in the interest of space.

4.2 Stability

Next we show that after algorithm estimate once reaches true median, the probability
of estimate drifting far away from true median is low. Note that Theorem 1 is affecting
this estimation drifting process the whole time.

Lemma 3. To estimate the median, suppose algorithm estimate starts from true me-
dian, after t steps the algorithm estimate is at position F (m̃t), where

Pr

[
F (m̃t) >

1

2
+ 2

√
δ ln

t

ε

]
≤ ε.

Proof. Define ω = 2
√
δ ln t

ε . Let us split the interval [12 ,
1
2 +ω] into two, [12 ,

1
2 +ω/2]

and [12 + ω/2, 12 + ω]. Our approach is to show that once the algorithm reaches the
boundary of the first interval, it is very unlikely to continue through the second interval,
without ever dipping back into the first. First of all we note that we need at least T = ω

δ
more steps of increment than decrement to reach outside of the second interval, and by
the way we select the probabilistic weight of the interval, we will need at least T/2 to
pass through each.

Consider arbitrary outcome of the algorithm where m̃t > T . Since x changes by at
most 1 at every step, there exists j, such that m̃j = T

2 . Therefore the entire space of

84 Q. Ma, S. Muthukrishnan, and M. Sandler

events can be decomposed based on the value of j where m̃j = �T/2 and for all i > j,
m̃i > m̃j . Thus:

Pr [m̃t > T] =
t∑

j=0

Pr [m̃t > T, m̃i > m̃j , ∀i > j]×Pr
[
m̃j =

⌊
T
2

⌋]
≤

t∑
j=0

Pr [m̃t > T, m̃i > m̃j , ∀i > j]

Let us consider individual term for a fixed j in the sum above. We want to show that
each term is at most ε/t. Define Y

(j)
i for i ≥ j, where Y

(j)
i = m̃j +

∑i
k=j+1 yj , and

y
(j)
i = xi if X ′

i > m̃j , for all i′ < i, and for the remainder of the segment y(j)i is
random variable that is -1 with probability p = 1

2 + ω
2 and 1 otherwise. In other words

Yi agrees with m̃i until m̃i = m̃j for the first time after j, after that Y (j)
i becomes

independent of m̃i. We have:

Pr [m̃t > T, m̃i > m̃j , ∀i > j]

= Pr
[
Y

(j)
t > T, Y

(j)
i > Y

(j)
j , ∀i > j

]
≤ Pr

[
Y

(j)
t > T

]
therefore it is sufficient to compute an upper bound for Pr

[
Y

(j)
t > T

]
for all j. Let

Zj
i be a variable which both stochastically dominates Y (j)

i , and is -1 with probability

p and 1 otherwise. Since Y
(j)
i is -1 with probability of at least p, so such variable Zj

i

always exists. Note that Zj
i are independent from each other for all i, thus we can use

standard tail inequality to upper bound Z
(j)
t , and because of the dominance the result

will immediately apply to Y
(j)
i . Since Z

(j)
i only depends on j at the starting point, we

can shift it to zero and rewrite out constraint as:

t∑
j=0

Pr [Zj > T/2] ≤ ε

where Zj is defined as sum
∑j

i=0 zi, and zi is -1 with probability p and 1 otherwise.
The expected value of Zj is (1 − p)j − pj = (1 − 2p)j = −ωj. Furthermore by our
assumption, ω ≥ δT

2 . Therefore using Hoeffding inequality we have Pr [Zj > T/2] ≤
exp− (ωj+T)2

4j . Thus it is sufficient for us to show that

exp

(
− (ωj + T)2

4j

)
≤ ε

t
, for all j < t

This constraint is automatically satisfied for all j such that

j ≥ 4

ω2
ln

t

ε
= j0.

Indeed, if j > j0 we have (ωj + T)/4j ≥ ω2

4j ≥ ln t/ε.

Frugal Streaming for Estimating Quantiles 85

On the other hand if j ≤ j0, then we have

(ωj + T)2

4j
≥ T 2ω2

16 ln t/ε

but T ≥ ω/δ and substituting the expression for ω we have:

T 2ω2

4 ln t/ε
≥ ω4

16δ2 ln t/ε
= ln t/ε

Thus Pr [Zj > T/2] ≤ ε/t, for j < j0, completing the proof.

Lemma 4. To estimate the median, suppose algorithm estimate starts from true me-
dian, after t steps, the algorithm estimate is at position F (m̃t), where

Pr

[
F (m̃t) <

1

2
− 2

√
δ ln

t

ε

]
≤ ε.

Proof. Following the same reasoning in the proof of LEMMA 3, we can prove that
the probability of estimation moving far to the left is small. Where we can split the
interval [12 − ω, 1

2] into two [12 − ω, 1
2 −ω/2] and [12 − ω/2, 12]. We can show that once

the algorithm reaches the boundary of the first interval, it is very unlikely to continue
through the second interval without ever dipping back into the first.

Theorem 2. To estimate median, after t steps, the probability of the algorithm current
position

Pr

[∣∣∣∣F (m̃t)−
1

2

∣∣∣∣ > 2

√
δ ln

t

ε

]
≤ ε.

Proof. This theorem is obtained from Lemma 3 and 4.

These properties of median estimation can be generalized to any quantile h
k .

5 Algorithm Extensions

TheFrugal-1U algorithm described in Section 3 uses 1 unit of memory and is intuitive,
and we managed to analyze it; however it has linear convergence to the true quantile.
This is effectively by design, because the algorithm does not have the capability to
remember anything except the current location. A simple extension to our algorithm is
to keep a current step size in memory, and modify it if the new samples are consistently
on one side of the current estimate.2 In this section we describe a 2 units of memory
algorithm that we use in experiments for comparison.

Generally the algorithm uses two variables to keep quantile estimate and update size,
and one extra bit to keep sign, which indicates the increment or decrement direction of

2 Another approach that we do not explore here, is to use multiplicative update on step size
instead of additive.

86 Q. Ma, S. Muthukrishnan, and M. Sandler

Algorithm 3 Frugal-2U
Input: Data stream S, h, k, m̃, step, sign
Output: m̃
1: Initialization m̃ = 0, step = 1, sign = 1
2: for each si in S do
3: rand = random(0,1);
4: if si > m̃ and rand > 1− h/k then
5: step += (sign > 0) ? f(step) : − f(step);
6: m̃ += (step> 0) ? step� : 1;
7: sign = 1;
8: if m̃ > si then
9: step += si − m̃;

10: m̃ = si;
11: end if
12: else if si < m̃ and rand > h/k then
13: step += (sign < 0) ? f(step) : − f(step);
14: m̃ - = (step> 0) ? step� : 1;
15: sign = −1;
16: if m̃ < si then
17: step += m̃− si;
18: m̃ = si;
19: end if
20: end if
21: if (m̃− si) ∗ sign < 0 and step> 1 then
22: step= 1;
23: end if
24: end for

estimate. Empirically this algorithm has much better convergence and stability property
than 1 unit of memory algorithm, however the precise convergence/stability analysis of
it is one of our future work. On the intuitive level the algorithm for finding the median
works as follows. As before it maintains the current estimate of median but in addition it
also maintains an update step that increases or decreases based on the observed values,
determined by a function f . More precisely, the step increases if the next element from
the stream is on the same side of the current estimate, and decreases otherwise. When
estimation is close to true quantiles, step can be decreased to extremely small value.

The increment and decrement factors to be applied to step remains an open problem.
step can potentially grow to very large values, so the randomness of the order which
stream items appear affects estimation accuracy. For example, if let stepi be the step
value at ith update, a multiplicative update of stepi+1 = 2 × stepi might be a good
choice for a random order stream, which intuitively needs O(logM) updates to reach
true quantile at distance M from current estimate. However in empirical data periodic
pattern might be apparent in the stream, for example social network users might have
shorter activity intervals at evening, but longer intervals at early morning. Then step

can easily get increased to a huge value. It will make the algorithm estimate drift far
away from true quantile, hence estimates will have large oscillations.

Frugal Streaming for Estimating Quantiles 87

Therefore to trade off convergence speed for estimation stability we present a version
of 2 units of memory algorithm that applies constant factor additive update to step size,
where f(step) = 1. Full details of the algorithm are described in Algorithm 3. Lines 4-
11 handle stream items larger than algorithm estimation, and lines 12-19 handle smaller
stream items. For brevity we only look at lines 4-11 in detail. Similar to Algorithm
Frugal-1U , the key to make Frugal-2U able to estimate any quantile is that not every
stream item will cause an estimation update, so line 4 enables updates only on “un-
expected” larger stream items. step is cumulatively updated in line 5. Line 6 ensures
minimum update to estimation is 1, and step size is only applied in update when it is
positive. The reason is that when algorithm estimation is close to true quantile, Frugal-
2U updates are likely to be triggered by larger and smaller (than estimation) stream
items with largely equal chances. Therefore step is decreased to a small negative value
and it serves as a buffer for value bursts (e.g., a short series of very large values) to
stabilize estimations. Lines 8-11 are to ensure estimation do not go beyond empirical
value domain when step gets increased to very large value. At the end of the algorithm,
we reset step if its value is larger than 1 and two consecutive updates are not in the
same direction. This is to prevent large estimate oscillations if step gets accumulated
to a large value. This checking is implemented by lines 21-23.

Note that Frugal-1U and Frugal-2U algorithms are initialized by 0, but in practice
they can be initialized by the first stream item to reduce the time needed to converge to
true quantiles.

6 Related Work and Algorithms to Compare

There has been extensive work in the database community on theory and practice of ap-
proximately estimating quantiles of streams with limited memory (e.g.., [1–4,6,7,9–11,
13, 14, 17]). This body of research has generated methods for approximating quantiles
to 1 + ε approximation with space roughly O(1/ε) in various models of data streams.

We compare our algorithms with existing algorithms that use constant memory for
stochastic streams [11], and also non-constant memory algorithms described in [10,17].
However all the non-constant memory algorithms above use considerably more than 2
persistent variables. While some of the algorithms such as the one described in [1]
have a tuning parameter allowing to decrease memory utilization, the algorithm then
performs poorly when used with less than 20 variables. Here we briefly overview the
algorithms we compare.

6.1 GK Algorithm

Greenwald and Khanna [10] proposed an online algorithm to compute ε-approximate
quantile summaries with worst-case space requirement of O(1ε log(εN)). Greenwald-
Khanna algorithm (GK) maintains a list of tuples (vi, gi, �i), where vi is a value seen
from the stream and tuples are order by v in ascending order.

∑i
j=1 gj gives the mini-

mum rank of vi, and its maximum rank is
∑i

j=1 gj+ �i. GK is composed of two main
operations which are to insert a new tuple in to tuple list when sees a new value, and
do compression on the tuple list to achieve the minimum space as possible. Throughout

88 Q. Ma, S. Muthukrishnan, and M. Sandler

the updates it is kept invariant that for any tuple we have
∑i

j=1 gj+ �i≤ 2εN to en-
sure the ε-approximate query answers. To make it comparable with our Frugal-1U and
Frugal-2U , we limit the number of tuples maintained by GK . When this memory
budget is exceeded we gradually increase ε (increment by 0.001) to force compression
operation get conducted repeatedly until number of tuples used is within specified bud-
get. In our comparison, we limit the number of tuples to be t = 20.

6.2 q-digest Algorithm

Tree based stream summary algorithms were studied by Manku et al. [14], Munro and
Paterson [16], Alsabti et at. [2], Shrivastava et al. [17] and Huang et al. [12]. In this pa-
per we compare with q-digest algorithm proposed in [17], which is most relevant to our
comparison aspects. Their proposed algorithm builds a binary tree on a value domain σ,
with depth log σ. Each node v in this tree is considered as a bucket representing a value
range in the domain, associated with a counter indicating the number of items falling
in this bucket. A leaf node represents a single value in domain, and associated with the
number of items having this value. Each parent node represents the union of the ranges
of children nodes, root node represents the full domain range. This algorithm then keeps
merging and removing nodes in the tree to meet memory budget requirement.

For every new stream sample we make a trivial q-digest and merge it with q-digest
built so far. Therefore, at any time we can query for a quantile based on the most recently
updated q-digest . For our evaluation we used number of buckets of b = 20 to build
tree digests.

6.3 Selection Algorithm

Guha and McGregor [11] proposed an algorithm that uses constant memory and op-
erates on random order streams, where the order of elements of the stream have not
been chosen by adversary. Their approach is a single pass algorithm that uses constant
space and their guarantee is that for a given r (the rank of element of interest) their
algorithm returns an element that is within O(n1/2) rank of r with probability at least
1 − δ. The algorithm does not require prior knowledge of the length of the stream, nor
the distribution, which is in common with our Frugal-1U and Frugal-2U .

This single-pass algorithm (Selection) processes the stream in phases, and each
phase is composed of three sub-phases namely, sample, estimate and update. Through-
out the process, algorithm maintains an interval (a, b) which encloses the true quantile
and each phase tries to narrow this interval. At any time algorithm has to keep four
variables which are the boundaries a and b, estimation u, and a counter to estimate rank
of u. For this algorithm, data size n should be given in order to decide how to divide
stream into pieces. By adding one more variable, one can remove this requirement of
knowing n beforehand. The proved accuracy guarantee can be achieved when the over-
all stream is very large. In experiments, to relax the requirement of very large streams
we set δ = 0.99, and the version without knowing n in advance is evaluated. 3

3 McGregor and Valiant [15] gave a new algorithm using the same space, proving improved
approximation with accuracy n1/3+o(1) can be achieved. This algorithm behaves qualitatively
similar to the algorithm Selection we have implemented here.

Frugal Streaming for Estimating Quantiles 89

7 Empirical Evaluations

In this section we evaluate our algorithms on both synthetic and two real world data
sets. For synthetic data we consider two scenarios, one when data arrive from a static
distribution, and one when the distribution changes mid-stream. These tests demonstrate
that our algorithms perform well for both scenarios. For real world data we evaluate
on HTTP streams [5] and Twitter user tweet streams, where our goals are to evaluate
median and 90-% quantile estimates of TCP-flow durations and tweet intervals. As
mentioned earlier the structure of our algorithms allow us to estimate quantiles for every
stream with 1 or 2 in-memory variables, and the quantile to estimate can be shared by
all streams.

Instead of evaluating the absolute error of quantile estimation, we evaluate how far
the estimate is from the true quantile by the relative mass error. For example if the esti-
mate of 90-% quantile turned out to be 89-% quantile then the error is 0.01. Throughout
our evaluations, we initialize Frugal-1U and Frugal-2U algorithm estimates with 0 4.
For non-constant memory algorithms GK and q-digest , we limit the memory budget
to 20 units of their in-memory data structure.

7.1 Synthetic Data

In this section we evaluate algorithms on data streams from a Cauchy distribution (den-
sity function f(x) = γ

π(γ2+(x−x0)2
). The reason we picked Cauchy is because it has a

high probability of outliers, the expected value of a Cauchy random variable is infinity,
thus we can demonstrate that our algorithms work well in the presence of outliers.

Static Distribution. For our experiments we fix x0 = 10000 and γ = 1250, and draw
3 × 104 samples. Figure 2 shows the evaluation results. Not only for Frugal-1U and
Frugal-2U , but also most of the algorithms in comparison need some time (some
amount of stream items) before getting to a stable quantile estimation. When memory is
insufficient for the non-constant memory algorithms, estimation performance degrades
much. Due to smaller fixed update size of Frugal-1U , it takes much longer travel than
Frugal-2U to reach stream quantiles.

Dynamic Distribution. Since the algorithms in comparison are not built for estimating
changing distributions, we only evaluate Frugal-1U and Frugal-2U in the scenario
where the underlying distribution of stream changes. We generate three sub-streams
drawn from three different Cauchy distributions and feed them one by one to our algo-
rithms. For each of the three sub-streams we sample 2 × 104 items in value domains
[10000, 15000], [15000, 20000] and [20000, 25000] respectively.

Figure 3 shows the median and 90-% quantile estimations for Frugal-1U and
Frugal-2U algorithms. Those sub-streams are ordered by their medians in the se-
quence of highest, lowest and middle, then they are feed to algorithms one by one.
For other algorithms they either need to know the value domain as input or they try to
learn upper and lower bounds for the quantile in query, therefore if the stream under-
lying distribution changes their knowledge about stream are out-dated hence quantile

4 In practice we can also initialize them with the first stream item.

90 Q. Ma, S. Muthukrishnan, and M. Sandler

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000 30000

Q
ua

nt
ile

 v
al

ue

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 5000 10000 15000 20000 25000 30000

R
el

at
iv

e
m

as
s

er
ro

r

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(a) (b)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 5000 10000 15000 20000 25000 30000

Q
ua

nt
ile

 v
al

ue

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0 5000 10000 15000 20000 25000 30000

R
el

at
iv

e
m

as
s

er
ro

r

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(c) (d)

Fig. 2. Evaluation on a stream from one Static Cauchy Distribution. (a) median estimation. (b)
relative mass error for (a). (c) 90-% quantile estimation. (d) relative mass error for (c).

approximations are probably not accurate. Stream-quantile curve shows the cumu-
lative stream quantile, and this is the curve which the other algorithms try to approxi-
mate if the combined stream is of interest at the beginning. But in this figure we want
to show that our Frugal-1U and Frugal-2U are doing a different job. Use-Distrib
curve shows the quantile values for each sub-distribution. The change of Use-Distrib
curve indicates the change of underlying distribution. We can see that our algorithms
are trying to reach new distribution’s quantile when the stream underlying distribution
changes. It is only that Frugal-1U takes longer time to approach new distribution’s
quantiles, while Frugal-2U can make “sharper” turns in its quantile estimations when
distribution changes. Frugal-1U in Figure 3.(b) leaves a steeper approaching trace to
90-% quantile than estimating median in Figure 3.(a), because it is more biased to move
estimate towards one direction (getting larger).

One counter argument is that the property of adapting to changing distribution’s new
quantile also might be a disadvantage, because it makes the algorithms vulnerable to
short bursts of ”noise”. However since the adjustment taken by Frugal-1U is 1, when
the true stream quantile is large the shifting from the true stream quantile caused by
short bursts will not affect much in terms of relative mass error. For Frugal-2U it

Frugal Streaming for Estimating Quantiles 91

 0

 5000

 10000

 15000

 20000

 25000

 0 10000 20000 30000 40000 50000 60000

Q
ua

nt
ile

 V
al

ue

Item Count

Stream Quantile
Use Distrib
Frugal-1U
Frugal-2U

 0

 5000

 10000

 15000

 20000

 25000

 0 10000 20000 30000 40000 50000 60000

Q
ua

nt
ile

 V
al

ue

Item Count

Stream Quantile
Use Distrib
Frugal-1U
Frugal-2U

(a) (b)

Fig. 3. Evaluation on one stream generated from three Cauchy distributions. (a) Median estima-
tion. (b) 90-% quantile estimation. The change of Use-Distrib curve indicates the change of
underlying distribution. Frugal-2U algorithm converges to new distribution quantiles signifi-
cantly faster than Frugal-1U .

is true that step’s increment and decrement function f should be picked to trade-off
between convergence speed and stability when bursts or periodic patterns are apparent
in streams. But once after reaching a close estimate of true quantile, the decreasing
step value is able to buffer the impact of some value bursts.

7.2 HTTP Streams Data

From an HTTP request and response trace [5] collected for over a period of 6 months,
spanning 2003-10 to 2004-03, we extract out TCP-flow durations (in millisecond) be-
tween local clients and 100 remote sites, and order them by connections set up time to
form streams. In this experiment we first evaluate on streams generated with each of
those 100 sites in each of the 6 months. Therefore in total we have 600 streams. But in
final performance evaluations we filter out streams with length less than 2000 items and
end up with 419 usable streams. Finally we collect the last estimations for median and
90-% quantile by all algorithms.

Figure 4 shows the relative mass error and cumulative percent of 419 TCP-flow du-
ration streams. Figure 4.(a) and (b) show that Frugal-2U performances are better than
or comparable with other algorithms. Whereas Frugal-1U largely makes underesti-
mations for most of the streams, because in evaluations we initiated Frugal-1U and
Frugal-2U quantile estimations from 0, however duration stream median (and 90-
% quantile) values can easily be tens of thousands. In comparison, t = 20 for GK and
b = 20 for q-digest are not enough to get close estimations. Note that in relative mass
error, the overestimate errors are bounded by 0.5 and 0.1 respectively for median and
90-% quantile estimations.

In the situations where there are millions of streams to be processed simultaneously,
statistical quantities about more general groups can help understand the characteristics
of different groups. In HTTP request and response trace, streams generated by remote
site can also be considered as GROUPBY application to understand the communication
patterns from local clients to different remote sites.

92 Q. Ma, S. Muthukrishnan, and M. Sandler

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(a)

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-1
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(b)

Fig. 4. Evaluation on 419 TCP-flow duration streams by cumulative percent of all streams at
different relative mass errors. (a) median estimation. (b) 90-% quantile estimation.

We evaluate all algorithms for one GROUPBY application on this HTTP trace data,
where connections with all 100 sites in each month are combined by their creation time.
This simulates the viewpoint from trace collecting host. For brevity here we present
the results from evaluation on combined stream of month 2004-03, and the results are
similar for other months. This combined stream has about 1.6 × 106 items. Figure 5
presents the results on estimating median and 90-% quantile of this stream. In this
stream we have median and 90-% quantile values at about 544,267 and 1,464,793 (in
microsecond) respectively. Due to the large quantile value Frugal-1U shows a slower
convergence to true stream quantile, while Frugal-2U handles this problem much bet-
ter. Selection converges to [-0.1, 0.1] relative mass error region after about 2 × 105

items, but it is oscillatory thereafter and needs much more items to stabilize. In con-
trast, although Frugal-1U and Frugal-2U need relatively more stream items to reach
a large true quantile their estimations are relatively stabler. In Figure 5.(a), b = 20 q-
digest gives very oscillatory median estimation around 8 × 105, and from the curve it
seems converging to stream median but apparently it needs much more stream items.
Overall, 20 units of in-memory variables are not sufficient for GK and q-digest to
make accurate quantile estimations.

7.3 Twitter Data Set

From an on-line twitter user directory, we collected 4554 users over 80 directories (e.g.
Food and Business). Those tweets from individual users form 4554 sub-streams in the
ocean of all tweets. We extracted the intervals (in seconds) between two consecutive
tweets for every user and then run our algorithms on those interval streams. This allows
us to answer the question of “what is the median inactive time for a given user across
all?”.

Among the total 4554 twitter users, we filtered out the users with less than 2000
tweets since we need a decent number of data items to reflect the true distribution and
allow our algorithms to reach true quantiles. Since twitter does not store more than 3200
tweets of a single user, therefore at the time of data collection the maximum length of a

Frugal Streaming for Estimating Quantiles 93

-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

0 2x10 5
4x10 5

6x10 5
8x10 5

1x10 6
1.2x10 6

1.4x10 6
1.6x10 6

R
el

at
iv

e
m

as
s

er
ro

r

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(a)

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

0 2x10 5
4x10 5

6x10 5
8x10 5

1x10 6
1.2x10 6

1.4x10 6
1.6x10 6

R
el

at
iv

e
m

as
s

er
ro

r

Item Count

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(b)

Fig. 5. Relative mass error evaluation on TCP-flow duration stream of month 2004-03. (a) median
estimation. (b) 90-% quantile estimation.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(a)

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(b)

Fig. 6. Evaluation on 4414 twitter users’ tweet interval streams, by cumulative percent of all
streams at different relative mass errors. (a) median estimation. (b) 90-% quantile estimation.

single user’s interval stream is 3200. Finally we evaluated our algorithms on 4414 tweet
interval streams, and collected the last estimations for median and 90-% quantile.

Figure 6 shows the relative mass error and cumulative percent of all 4414 interval
streams. In Figure 6.(a) we see that about 70 percent of the last median estimation by
Frugal-1U are under-estimating (less than -0.1). In evaluations we initiated Frugal-
1U and Frugal-2U quantile estimations from 0, however interval stream median (and
90-% quantile) values can easily be tens of thousands. Therefore within 2000 steps
they can not fully reach true median. Frugal-2U applies dynamic step size hence it
performs much better than Frugal-1U algorithm, with more than 70 percent of the last
median estimations in error range [-0.1, 0.1]. In comparison, b = 20 for q-digest are
not enough to get close estimations, and Selection does not work well on these short
streams. Figure 6.(b) shows that when estimating 90-% quantile, which are much larger
values, as expected Frugal-1U cannot reach true quantile when the stream items are
few (94% of twitter user interval streams have 90-% quantiles larger than 3,200). Again
Frugal-2U shows its advantages over Frugal-1U but it also needs longer streams
to reach true quantiles. In comparison, t = 20 for GK and b = 20 for q-digest are

94 Q. Ma, S. Muthukrishnan, and M. Sandler

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(a)

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

 0
 0.1
 0.2

 0 20 40 60 80 100

R
el

at
iv

e
m

as
s

er
ro

r

Cumulative percent of all streams

20t-GK
20b-q-digest

Selection
Frugal-1U
Frugal-2U

(b)

Fig. 7. Evaluation on 905 daily tweet interval streams, by cumulative percent of all streams at
different relative mass errors. (a) Median estimation. (b) 90-% quantile estimation.

not affected by stream sizes, however Selection algorithm needs much longer streams.
Again note that from this figure, the overestimate errors are bounded by 0.5 and 0.1
respectively for median and 90-% quantile estimations, because relative mass error is
measured.

For a database there are various meaningful GROUPBY applications, such as group
by geo-location and age for an on-line social network database. To simulate such ap-
plications, we evaluate our algorithms on the combined tweet interval streams on each
day. We merge tweet interval streams from all 4554 twitter users in our dataset, and
sort all the intervals based on the their creation time. We divide the combined inter-
val stream into segments by day, and in total our tweet interval data spans 1328 days
from 2008 to 2011. We ran our algorithms on each day’s stream and take the last es-
timations from algorithms to evaluate their accuracy. We filter out the days that have
less than 2000 intervals in the daily stream, with similar reason to filter individual
tweeter user’s tweet interval streams. After filtering process, we have 905 days left.
Figure 7 shows the cumulative percent of all days against relative mass error, we can
see that median and 90-% quantile under-estimation problems in individual user inter-
val streams are alleviated (in daily interval streams about 67% of the streams have size
larger than 3,200). Figure 7.(a) demonstrates that Frugal-1U can reach close estima-
tion before the daily interval streams end. Frugal-2U does not have much advantage
over Frugal-1U in these streams, so it just shows similar performance with Frugal-
1U . In Figure 7.(b), for 90-% quantile on most of the days Frugal-1U algorithm
underestimates the true quantiles by using update size of 1. For median and 90-% quan-
tile estimations by Frugal-2U almost all last estimates are in relative mass error range
[-0.1, 0.1]. In comparison, t = 20 for GK and b = 20 for q-digest are not enough to
get close estimations, and Selection algorithm needs much more stream items.

Throughout our extensive experiments on synthetic and real-world HTTP trace and
twitter data, for streams given enough number of data items in the stream, our 1 and
2 variables stochastic algorithms can achieve quite comparative accuracy against other
non-constant and constant memory algorithms, while using much less memory and be-
ing very efficient for per item update.

Frugal Streaming for Estimating Quantiles 95

8 Conclusions and Future Directions

We have introduced the concept of frugal streaming and presented algorithms that can
estimate arbitrary quantiles using 1 or 2 unit memories. This is very useful when we
need to estimate quantiles for each of many groups, as applications demand in reality.
These algorithms do not perform well with adversarial streams, but we have mathemat-
ically analyzed the 1 unit of memory algorithm and shown fast approach and stability
properties for stochastic streams. Our analysis is non-trivial, and we believe it provides
a framework for analysis of other statistical estimates with stochastic streams. Further
we have reported extensive experiments with our algorithms and several prior quantile
algorithms on synthetic data as well as real dataset from HTTP trace and Twitter.

To the best of our knowledge our algorithms are the first that perform well with 2
or less persistent variables per group. In contrast, other regular streaming algorithms,
while having other desirable properties, perform poorly when pushed to the extreme on
memory consumption like we do with our frugal streaming algorithms.

Our work has initiated frugal streaming, but much remains to be done. First, we need
mathematical analysis of 2 or more memory algorithms and at this moment, it looks
quite non-trivial. We also need frugal streaming algorithms for other problems such as
distinct count estimation and others, that are critical for streaming applications. Finally,
as our experiments and insights indicate, frugal streaming algorithms work with so little
memory of the past that they are adaptable to changes in the stream characteristics. It
will be of great interest to understand this phenomenon better.

References

1. Agrawal, R., Swami, A.: A one-pass space-efficient algorithm for finding quantiles. In: Proc.
7th Intl. Conf. Management of Data, COMAD 1995 (1995)

2. Alsabti, K., Ranka, S., Singh, V.: A one-pass algorithm for accurately estimating quantiles
for disk-resident data. In: Proc. 23rd VLDB Conference, pp. 346–355 (1997)

3. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows. In: Pro-
ceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2004, pp. 286–296. ACM, New York (2004)

4. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and k-medians
over data stream windows. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2003, pp. 234–243. ACM,
New York (2003)

5. Bissias, G.D., Liberatore, M., Jensen, D., Levine, B.N.: Privacy vulnerabilities in encrypted
HTTP streams. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856, pp. 1–11.
Springer, Heidelberg (2006)

6. Cormode, G., Korn, F., Muthukrishnan, S., Srivastava, D.: Space- and time-efficient deter-
ministic algorithms for biased quantiles over data streams. In: Proceedings of the Twenty-
Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS 2006, pp. 263–272. ACM, New York (2006)

7. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-min sketch
and its applications. Journal of Algorithms 55(1), 58–75 (2005)

8. Cranor, C., Johnson, T., Spataschek, O.: Gigascope: a stream database for network applica-
tions. In: SIGMOD, pp. 647–651 (2003)

96 Q. Ma, S. Muthukrishnan, and M. Sandler

9. Gilbert, A.C., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: How to summarize the universe:
dynamic maintenance of quantiles. In: Proceedings of the 28th International Conference on
Very Large Data Bases, VLDB 2002, pp. 454–465. VLDB Endowment (2002)

10. Greenwald, M., Khanna, S.: Space-efficient online computation of quantile summaries. SIG-
MOD Rec. 30, 58–66 (2001)

11. Guha, S., Mcgregor, A.: Stream order and order statistics: Quantile estimation in random-
order streams. SIAM Journal on Computing 38, 2044–2059 (2009)

12. Huang, Z., Wang, L., Yi, K., Liu, Y.: Sampling based algorithms for quantile computation in
sensor networks. In: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, pp. 745–756. ACM, New York (2011)

13. Lin, X., Lu, H., Xu, J., Yu, J.X.: Continuously maintaining quantile summaries of the most
recent n elements over a data stream. In: Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, pp. 362–374. IEEE Computer Society, Washington, DC
(2004)

14. Manku, G.S., Rajagopalan, S., Lindsay, B.G.: Approximate medians and other quantiles in
one pass and with limited memory. SIGMOD Rec. 27, 426–435 (1998)

15. Mcgregor, A., Valiant, P.: The shifting sands algorithm. In: SODA (2012)
16. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical Computer

Science 12(3), 315–323 (1980)
17. Shrivastava, N., Buragohain, C., Agrawal, D., Suri, S.: Medians and beyond: new aggrega-

tion techniques for sensor networks. In: Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys 2004, pp. 239–249. ACM, New York (2004)

From Time to Space:
Fast Algorithms That Yield

Small and Fast Data Structures

Jérémy Barbay

Departamento de Ciencias de la Computación (DCC),
Universidad de Chile, Santiago, Chile

jbarbay@dcc.uchile.cl

Abstract. In many cases, the relation between encoding space and ex-
ecution time translates into combinatorial lower bounds on the compu-
tational complexity of algorithms in the comparison or external memory
models. We describe a few cases which illustrate this relation in a dis-
tinct direction, where fast algorithms inspire compressed encodings or
data structures. In particular, we describe the relation between search-
ing in an ordered array and encoding integers; merging sets and encoding
a sequence of symbols; and sorting and compressing permutations.

Keywords: Adaptive (Analysis of) Algorithms, Compressed Data
Structures, Permutation, Set Union, Sorting, Unbounded Search.

1 Introduction

The worst-case analysis of algorithmic constructs is the theoretical equivalent of
a grumpy and bitter fellow who always predicts the worst outcome possible for
any actions you might take, however far-fetched the prediction.

Consider for instance the case of data compression. In a modern digital cam-
era, one does not assume that each picture of width w and height h measured
in pixels of b bytes will require h × w × b bytes of storage space. Rather, the
design assumes that the pictures taken have some regularities (e.g. many pixels
of similar colors grouped together), which permit to encode it in less space. Only
a truly random set of pixels will require h×w × b bytes of space, and those are
usually not meaningful in the usage of a camera.

Similar to compression techniques, some opportunistic algorithms perform
faster than the worst case on some instances. As a simple example, consider the
sequential search algorithm on a sorted array of n elements, which performs n
comparisons in the worst case but much less in other cases. More sophisticated
search algorithms [9] uses O(logn) comparisons in the worst case, yet much less
in many particular cases. The study and comparison of the performance of such
algorithms requires finer analysis techniques than the worst case among instances
of fixed sizes. An analysis technique reinvented several times (under names such
as parameterized complexity, output-sensitive complexity, adaptive (analysis of)

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 97–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

98 J. Barbay

algorithms, distribution-sensitive algorithms and others) is to study the worst-
case performance among finer classes of instances, defined not only by a bound
on their size but also by bounds on some defined measure of their difficulty.

This concept of opportunism, in common between encodings and algorithms,
has yielded some dual analysis, where any fine-analysis of an encoding scheme
implies a similar analysis of an algorithm, and vice-versa. For instance, already
in 1976 Bentley and Yao [9] described adaptive algorithms inspired by Elias
codes [13] for searching in a (potentially unbounded) sorted array. More re-
cently in 2009, Laber and Avila [1] showed that any comparison-based merging
algorithm can be adapted into a compression scheme for bit vectors. In par-
ticular, they discovered a relation between previous independent results on the
distinct problems of comparison-based merging and compression schemes for
bit vectors: the Binary Merging algorithm proposed by Hwang and Lin [24]
is closely related to a runlength-based coder using Rice coding [35], while
Recursive Merging is closely related to a runlength-based coder using the
Binary Interpolative Coder. The very same year, Barbay and Navarro [7],
observing that any comparison-based sorting algorithm yields an encoding for
permutations, exploited the similarity between the Wavelet Tree [22], a data
structure used for compression, and the execution of an adaptive variant of Merge
Sort, to develop and analyze various compressed data structures for permuta-
tions and adaptive sorting algorithms. In this case, the construction algorithm
of each data structure is in fact an adaptive algorithm sorting the permutation,
in a number of comparisons roughly the same as the number of bits used by the
data structure. Given those results, the following questions naturally arise:

1. All comparison-based adaptive sorting algorithms yield compressed encod-
ings. One can wonder if all comparison-based adaptive sorting algorithm,
and not only those based on MergeSort, can inspire compressed data struc-
tures, and if a similar relationship exists for all comparison-based algorithms
on other problems than sorting. Which adaptive algorithms yield com-
pressed data structures?

2. In the cases of permutations [7], techniques from data compression inspired
improvements on the design of algorithms and the analysis of their perfor-
mance. Are there cases where such relations between compressed
data structures and adaptive algorithms are bijective?

3. Ignoring the relation between comparison-based merging algorithms and
compressed encodings of bit vectors led to the independent discovery of sim-
ilar techniques [1]. Could a better understanding of such relations
simplify future research?

This survey aims to be a first step toward answering those questions, by reviewing
some adaptive techniques (Section 2), some related data structures (Section 3),
and various relations between them in the comparison model, such as between
sorted search algorithms and encodings for sequences of integers (Section 4.1),
merging algorithms and string data structures (Section 4.2), and sorting al-
gorithms and permutation data structures (Section 4.3). We conclude with a
selection of open problems in Section 5.

Fast Algorithms That Yield Small and Fast Data Structures 99

2 Adaptive Analysis

2.1 Sorted Search

A regular implementation of binary search returns the insertion rank r (defined
as r ∈ [1..n] such that r = 1 and x ≤ A[1] or r > 1 and A[r − 1] < x ≤ A[r])
of an element x in a sorted array A of n elements in 	lg n
 + 1 ∈ O(log n)
comparisons1 in the worst case and in �lg n + 1 ∈ O(log n) comparisons in
the best case. The performance of sequential search is much more variable: the
algorithm will perform min(r, n) + 1 comparisons (between 2 and n+ 1), which
corresponds to a worst-case complexity of O(n) comparisons. An interesting (if
minor) fact is that, whenever the insertion rank of x is less than 	lg n
+1, linear
search outperforms binary search.

In 1976, inspired by Elias’ codes [13] for sequences of integers, Bentley and
Yao [9] described a family of algorithms for unbounded search in a (potentially
infinite) sorted array. Among those, the doubling search algorithm [9] returns
the insertion rank after 1+ 2�lg r comparisons. Hence, doubling search outper-
forms binary search whenever the insertion rank of x is less than

√
n, and never

performs worse than twice the complexity of the binary search. It is widely used
in practice, whereas its asymptotic worst-case complexity is the same as binary
search, both optimal in the comparison model: the traditional worst-case analysis
for a fixed value of n fails to distinguish the performance of those algorithms.

2.2 Union of Sorted Sets

A problem where the output size can vary but is not a good measure of diffi-
culty, is the description of the sorted union of sorted sets: given k sorted sets,
describe their union. On the one hand, the sorted union of A = {0, 1, 2, 3, 4}
and B = {5, 6, 7, 8, 9} is easier to describe (all values from A in their original
order, followed by all values from B, in their original order) than the union of
C = {0, 2, 4, 6, 8} and D = {1, 3, 5, 7, 9}. On the other hand, a deterministic
algorithm must find this description, which can take much more time than to
output it when computing the union of many sets at once.

Carlsson et al. [11] defined the adaptive algorithm Adaptmerge to compute
the union of two sorted sets in adaptive time. This can be used to compute the
union of k sets by merging them two by two, but Demaine et al. [12] proposed
an algorithm whose complexity depends on the minimal encoding size C of a
certificate, a set of comparisons required to check the correctness of the output
of the algorithm (yielding worst-case complexity Θ(C)) over instances of fixed
size n and certificate-encoding-size C). An alternative approach is to consider the
non-deterministic complexity [6], the number of steps δ performed by a non de-
terministic algorithm to solve the instance, or equivalently the minimal number
of comparisons of a certificate (yielding worst-case complexity Θ(δk log(n/δk))
over instances of fixed size n and certificate-comparison-size δ).
1 We note lgn= log2 n, lg(k)(n)= the logarithm iterated k times, and log n when the

base do not matter, such as in asymptotic notations.

100 J. Barbay

2.3 Sorting

Sorting an array A of numbers is a basic problem, where the size of the output
of an instance is always equal to its input size. Still, some instances are easier
than others to sort (e.g. a sorted array, which can be checked/sorted in linear
time). Instead of the output size, one can consider the disorder in an array as a
measure of the difficulty of sorting this array [10, 28].

There are many ways to measure this disorder: one can consider the num-
ber of exchanges required to sort an array; the number of adjacent exchanges
required; the number of pairs (i, j) such that A[i] > A[j], but there are many
others [33]. For each disorder measure, the logarithm of the number of instances
with a fixed size and disorder forms a natural lower bound to the worst-case
complexity of any sorting algorithm in the comparison model, as a correct algo-
rithm must at least be able to distinguish all instances. As a consequence, there
could be as many optimal algorithms as there are difficulty measures. Instead,
one can reduce difficulty measures between themselves, which yields a hierarchy
of disorder measures [29].

An algorithm is adaptive with respect to a given measure of presortedness M
if its running time is a function of both the measure M and the size n of the
input list X = 〈x1, . . . , xn〉, being linear for small values of M and at most
polylogarithmic in n for larger ones. Many measures have been defined [29], we
list here only a few relevant ones:

– nSRuns, the number of Strict Runs, subsequences of consecutive positions in
the input with a gap between successive values exactly 1, from beginning to
end (e.g. (1, 2, 6, 7, 8, 9, 3, 4, 5) is composed of nSRuns = 3 strict runs);

– nRuns, the number of Runs, subsequences of consecutive positions in the
input with a positive gap between successive values, from beginning to end
(e.g. (1, 2, 6, 7, 8, 9, 3, 4, 5) is composed of nRuns = 2 runs);

– nSSUS, the number of Strict Shuffled Up Sequences, subsequences in the input
with a gap between successive values exactly 1, from beginning to end (e.g.
(1, 5, 2, 6, 3, 8, 4, 9, 7) is composed of nSSUS = 4 strict shuffled up sequences);

– nSUS, the number of Shuffled Up Sequences, subsequences in the input
with a positive gap between successive values, from beginning to end (e.g.
(1, 5, 2, 6, 3, 8, 4, 9, 7) is composed of nSUS = 2 shuffled up sequences);

– nSMS, the number of Shuffled Monotone Sequences, subsequences in the input
with a positive gap between successive values, from beginning to end or from
end to beginning (e.g. (1, 9, 2, 8, 3, 7, 4, 6, 5) is composed of nSMS = 2 shuffled
monotone sequences);

– nInv, the number nInv(X) = |{(i, j) : i < j ∧ xi > xj}| of inversions (i.e.,
pairs in wrong order) in the input (e.g. (2, 3, 4, 5, 6, 7, 8, 9, 1) has nInv = 8
inversions); and

– nRem, the minimum number of elements that must be removed from the input
in order to obtain a sorted subsequence (e.g. (2, 3, 4, 5, 6, 7, 8, 9, 1) needs only
nRem = 1 removal to be sorted).

Moffat and Petersson [33] proposed a framework to compare those measures of
presortedness, based on the cost function CM (|X |, k) representing the minimum

Fast Algorithms That Yield Small and Fast Data Structures 101

Hist Block nRem Exc ≡ Ham

Reg Loc Osc Inv≡DS Max≡Par

nSMS Enc nSUS nRuns nSRuns

H(vSMS) H(vSUS) H(vLRM) H(vRuns) H(vSRuns)

Fig. 1. Partial order on some measures of disorder for adaptive sorting, completed
from Moffat and Petersson’s survey [29] in 1992. A measure A dominates a measure B
(A → B or A ⊇ B) if superior asymptotically. Round lined boxes signal the measures
for which a compressed data structure supporting π() and π−1() in sublinear time is
known [3, 4, 7], round dotted boxes signal the results that can be inferred, and bold
round boxes signal the additional compressed data structure presented in this article
(see Section 4.3).

number of comparisons to sort a list X such that M(X) = k, where M is a
measure of presortedness. Given two measures of disorder M1 and M2:

– M1 ⊇ M2, M1 is superior to M2 if CM1(|X |,M1(X)) =
O(CM2 (|X |,M2(X)));

– M1 ⊃M2, M1 is strictly superior to M2 if M1 ⊇ M2 and M2 � M1;
– M1 ≡M2, M1 and M2 are equivalent if M1 ⊇M2 and M2 ⊇ M1;
– M1 and M2 are independent if M1 � M2 and M2 � M1.

This organization yields a partial on those measures and the corresponding al-
gorithms, such as the one given in Figure 1.

3 Encodings and Data Structures

3.1 Integers

In 1975, Elias introduced the concept of universal prefix-free codeword set [13],
such that given any countable set M of messages and any probability distribution
P on M , the codewords in order of increasing length yield a code set of average
cost within a constant factor of the source entropy, for any alphabet B of size
|B| ≥ 2. In the binary case (|B| = 2), he discussed the properties of existing
representation of integers such as unary (code α) and binary (code β̂), and
presented several new techniques of binary representations of integers (γ, γ′, δ,
and ω), showing that the δ and ω codes are asymptotically optimal universal.

The γ code of an integer i is constructed by inserting after each of the bit
of the binary representation β̂(i) of i a single bit of the unary representation
α(|β̂(i)|) of the length |β̂(j)| of β̂(j). Dropping the first bit (always equal to 1)
of β̂(i) yields a code of length 1+2�lg i for any positive integer i > 0. Reordering
the bits of γ(i) yields a variant of the code, γ′(i) = α(|β̂(i)|).β̂(i) with the same

102 J. Barbay

length which “is easier for people to read” [13] and is usually referred to as the
“Gamma Code”. Both γ and γ′ codes are universal but neither is asymptotically
optimal, as the length of the codes stays at a factor of 2 of the optimal value of
�lg i suggested by information theory. The δ and ω codes below reduce this.

The δ code of an integer i is constructed in a similar way to the γ code,
only encoding the length |β̂(i)| of the binary representation β̂(i) of i through
the γ code γ(|β̂(i)|) instead of the unary code α(|β̂(i)|), i.e. replacing α(|β̂(i)|)
by γ(|β̂(i)|). The δ code δ(i) of an integer i has length |δ(i)| = 1 + �lg i +
2�lg(1 + �lg i). This code is, this time, asymptotically optimal as the ratio
1 + 1+2�lg(1+�lg i)	

lg i of its length to the information theory lower bound tends to
1 for large values of i. The same improvement techniques can be applied again
in order to improve the convergence rate of this ratio.

The ω code is constructed by concatenating several groups of bits, the right-
most group being the binary representation β̂(i) of i, and each other group being
the binary encoding β̂(l − 1) of the length l less one of the following group, the
process halting on the left with a group of length 2. Elias points out that there
is a code performing even better than the ω code, but only for very large integer
values (“much larger than Eddington’s estimate of the number of protons and
electrons in the universe”).

3.2 Sets and Bit Vectors

Jacobson introduced the concept of succinct data structures encoding Sets and
bit vectors [25] within space close to the information lower bounds while sup-
porting efficiently some basic operators on it, as a constructing block for other
data-structures, such as tree structures and planar graphs. Given a bit vector
B[1, . . . , n] (potentially representing a set S ⊂ [1..n] such that α ∈ S if and
only if B[α] = 1), a bit α ∈ {0, 1}, a position x ∈ [1..n] = {1, . . . , n} and an
integer r ∈ {1, . . . , n}, the operator bin_rank(B,α, x) returns the number of
occurrences of α in B[1..x], and the operator bin_select(B,α, r) returns the
position of the r-th label α in B, or n if none.

An index of n lg lgn
lgn +O(n

logn) additional bits [19] support those operators in
constant time in the Θ(log n)-word RAM model on a bit vector of length n. This
space is asymptotically negligible (i.e. it is within o(n)) compared to the n bits
required to encode the bit vector itself, in the worst case over all bit vectors of n
bits, and is optimal up to asymptotically negligible terms among the encodings
keeping the index separated from the encoding of the binary string [19]. As the
index is separated from the encoding of the binary string, the result holds even
if the binary string has exactly v bits set to one and is compressed to 	lg

(
n
v

)

bits, as long as the encoding supports in constant time the access to a machine
word of the string [34].

3.3 Permutations and Functions

Another basic building block for various data structures is the representation of a
permutation of the integers {1, . . . , n}, denoted by [1..n]. The basic operators on

Fast Algorithms That Yield Small and Fast Data Structures 103

a permutation are the image of a number i through the permutation, through its
inverse or through πk(), the k-th power of it (i.e. π() iteratively applied k times
starting at i, where k can be any integer so that π−1() is the inverse of π()).

A straightforward array of n words encodes a permutation π and supports the
application of the operator π() in constant time. An additional index composed
of n/t shortcuts [18] cutting the largest cycles of π in loops of less than t elements
supports the inverse permutation π−1() in at most t word-accesses. Using such
an encoding for the permutation mapping a permutation π to one of its cyclic
representations, one can also support the application of the operator πk(), the k
times iterated application of operator π(), in at most t word-accesses (i.e. in time
independent of k), with the same space constraints [31]. Those results extend
to functions on finite sets [31] by a simple combination with the tree encodings
from Jacobson [25].

3.4 Strings

Another basic abstract data type is the string, composed of n characters taken
from an alphabet of arbitrary size σ (as opposed to binary for the bit vector).
The basic operations on a string are to access it, and to search and count the
occurrences of a pattern, such as a simple character from [1..σ] in the sim-
plest case [22]. Formally, for any character α ∈ [1..σ], position x ∈ [1..n] in the
string and positive integer r, those operations are performed via the operators
string_access(x), the x-th character of the string; string_rank(α, x), the
number of occurrences of α before position x; and string_select(α, r), the
position of the r-th α-occurrence.

Golynski et al. [21] showed how to encode a string of length n over the alpha-
bet [1..σ] via n/σ permutations over [1..σ] and a few bit vectors of length n; and
how to support the string operators using the operators on those permutations.
Choosing a value of t = lg σ in the encoding of the permutation from Munro et
al. [31] yields an encoding using n

(
lg σ + o(log σ)

)
bits in order to support the

operators in at mostO(lg lg σ) word accesses. Observing that the encoding of per-
mutations already separates the data from the index, Barbay et al. [5] properly
separated the data and the index of strings, yielding a succinct index using the
same space and supporting the operators in O(lg lg σ lg lg lg σ(f(n, σ) + lg lg σ))
word accesses, if each word of the data can be accessed in f(n, σ) word accesses.
The space used by the resulting data-structures is optimal up to asymptotically
negligible terms, among all possible succinct indexes [20] of fixed alphabet size.

A large body of work has further compressed strings to within entropy limits,
culminating (or close) with full independence on the alphabet size from both
the redundancy space of the compressed indexes and the time of support of the
operators [8].

104 J. Barbay

4 Fast Algorithms That Yield Compression Schemes

4.1 From Unbounded Search to Integer Compression

Bentley and Yao [9] mentioned that each comparison-based unbounded search
algorithm A implies a corresponding encoding for integers, by memorizing the bit
result of each comparison performed by A: simulating A’s execution with those
bits will yield the same position in the array, hence those bits code the position
of the searched element. Their search algorithms are clearly inspired from Elias’
codes [13] yet Bentley and Yao do not give explicitly the correspondence between
the codes generated by their unbounded search algorithms and the codes from
Elias. We remedy this in the following table:

Search Algorithm cmps and bits Encoding Scheme
binary �lgn+ 1 binary

sequential �p+ 1 unary
B1 [9] 2�lg p+ 1 γ′ [13]
B2 [9] 2�lg lg p+ �lg p+ 1 δ [13]
U [9]

∑
i�lg

(i) p+ �lg�lg
∗ p	 p+ �lg∗ p+ 1 ω [13]

Each of those codes is readily extendable to a compressed data structure for
integers supporting algebraic operations such as the sum, difference, and prod-
uct in time linear in the sum of the sizes of the compressed encodings of the
operands and results. The most advanced codes γ, γ′, δ and ω even support, by
construction, the extraction of the integer part of the logarithm in base two, in
time linear in the sum of the sizes of the compressed encodings of the operands.

4.2 From Merging Algorithms to Set and String Compression

Consider k sorted arrays of integers A1, . . . , Ak. A k-Merging Algorithm com-
putes the sorted union A = A1 ∪ . . .∪Ak of those k arrays, with no repetitions.

Ávila and Laber observed that any comparison-based merging algorithm
yields an encoding for strings [1]. The transformation is simple: given a string S
of n symbols from alphabet [1..k] and a comparison-based merging algorithm M ,
define the k sorted arrays A1, . . . , Ak such that for each value i ∈ [1..k], Ai is the
set of positions in S of symbol i. Running algorithm M on input (A1, . . . , Ak)
yields the elements from [1..n] in sorted order. Let C be the bit string formed by
the sequence of results of each comparison performed by M . Since the execution
of M on (A1, . . . , Ak) can be simulated via C without any access to (A1, . . . , Ak),
the bit vector C encodes the string S, potentially in less than n	lg k
 bits.

Many merging algorithms perform sublinearly in the size of the input on
particular instances: this means that some strings of n symbols from an alpha-
bet [1..σ] of size σ are encoded in less than n	lg σ
 bits, i.e. that the encoding
implied by the merging algorithm is compressing the string. Ávila and Laber fo-
cused on binary merging algorithms and the compression schemes they implied
for bit vectors and sets (i.e. binary sources). They observed that Hwang and

Fast Algorithms That Yield Small and Fast Data Structures 105

Lin’s binary merging algorithm [24] yields an encoding equivalent to using Rice
coding [35] in a runlength-based encoder of the string; and that the Recursive
Merging algorithm [2] yields an encoding equivalent to Moffat and Stuiver’s
Binary Interpolative coder [30]. Furthermore, they note that at least one
merging algorithm [15] yields a new encoding scheme (probabilistic in this case)
for bit vectors, which was not considered before!

Merging Algorithm cmps and bits Source Encoding Scheme
Hwang and Lin [24] n lg(1 + m

n) Rice coding+runlength [35]
Recursive Merging [2] n lg(1 + m

n) Binary Interpolative [30]
Probabilistic Binary [15] (m+n) lg(m

m+n)+0.2355 Randomized Rice Code [1]

4.3 From Sorting Algorithms to Permutations Data Structures

Barbay and Navarro [7] observed that each adaptive sorting algorithm in the
comparison model also describes an encoding of the permutation π that it sorts,
so that it can be used to compress permutations from specific classes to less than
the information-theoretic lower bound of lg(n!) ∈ n logn − n

ln 2 + log(n)
2 + Θ(1)

bits. Furthermore they used the similarity of the execution of the Merge Sort
algorithm with a wavelet tree [22], to support the application of the operator π()
and its inverse π−1() in time logarithmic in the disorder of the permutation π (as
measured by nRuns, nSRuns, nSUS, nSSUS or nSMS) in the worst case. We describe
below their results and some additional on additional preorder measures.

H(vRuns)-Adaptive Sorting and Compression: The simplest way to par-
tition a permutation into sorted chunks is to divide it into runs of consecutive
positions forming already sorted blocks, in n− 1 comparisons. For example, the
permutation (8 , 9 , 1, 4, 5, 6, 7,2,3) contains nRuns = 3 ascending runs, of lengths
forming the vector vRuns = 〈2, 5, 2〉.

Using a simple partition of the permutation into runs, merging those via
a wavelet tree sorts the permutation and yields a data structure compressing
a permutation to nH(vRuns) + O(nRuns logn) + o(n) bits in time O(n(1 +
H(vRuns))), which is worst-case optimal in the comparison model. Further-
more, this data structure supports the operators π() and π−1() in sublinear time
O(1+ log nRuns), with the average supporting time O(1+H(vRuns)) decreasing
with the entropy of the partition of the permutation into runs [7].

Strict-Runs-Adaptive Sorting and Compression: A two-level partition
of the permutation yields further compression [7]. The first level partitions the
permutation into strict ascending runs (maximal ranges of positions satisfying
π(i + k) = π(i) + k). The second level partitions the heads (first position) of
those strict runs into conventional ascending runs.

For example, the permutation π = (8, 9, 1, 4, 5, 6, 7, 2, 3) has nSRuns = 4 strict
runs of lengths forming the vector vSRuns = 〈2, 1, 4, 2〉. The run heads are

106 J. Barbay

〈8, 1, 4, 2〉, which form 3 monotone runs, of lengths forming the vector vHRuns =
〈1, 2, 1〉. The number of strict runs can be anywhere between nRuns and n: for in-
stance the permutation (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5) contains nSRuns = nRuns = 2
strict runs while the permutation (1 , 3 , 5 , 7 , 9 ,2,4,6,8,10) contains nSRuns =
10 strict runs, each of length 1, and 2 runs, each of length 5.

H(vSUS)-Adaptive Sorting and Compression: The preorder measures seen
so far have considered runs which group contiguous positions in π: this does not
need to be always the case. A permutation π over [1..n] can be decomposed in n
comparisons into a minimal number nSUS of Shuffled Up Sequences, defined as a
set of, not necessarily consecutive, subsequences of increasing numbers that have
to be removed from π in order to reduce it to the empty sequence [26]. Then those
subsequences can be merged using the same techniques as above, which yields
a new adaptive sorting algorithm and a new compressed data structure [7]. For
example, the permutation (1 ,6, 2 ,7, 3 ,8, 4 ,9, 5 ,10) contains nSUS = 2 shuffled
up sequences of lengths forming the vector vSUS = 〈5, 5〉, but nRuns = 5 runs,
all of length 2.

Note that it is a bit more complicated to partition a permutation π over
[1..n] into a minimal number nSMS of Shuffled Monotone Sequences, sequences
of not necessarily consecutive subsequences of increasing or decreasing numbers:
an optimal partition is NP -hard to compute [27].

H(vLRM)-Adaptive Sorting and Compression: LRM-Trees partition a se-
quence of values into consecutive sorted blocks, and express the relative position
of the first element of each block within a previous block. They were introduced
under this name as an internal tool for basic navigational operations in ordinal
trees [36] and, under the name “2d-Min Heaps”, to index integer arrays in order
to support range minimum queries on them [16]. Such a tree can be computed
in 2(n − 1) comparisons within the array and overall linear time, through an
algorithm similar to that of Cartesian Trees [17].

The interest of LRM trees in the context of adaptive sorting and permuta-
tion compression is that the values are increasing in each root-to-leaf branch:
they form a partition of the array into sub-sequences of increasing values. Bar-
bay et al. [4] described how to compute the partition of the LRM-tree of minimal
size-vector entropy, which yields a sorting algorithm asymptotically better than
H(vRuns)-adaptive sorting, and better in practice than H(vSUS)-adaptive sort-
ing; as well as a smaller compressed data structure.

nRem-Adaptive Sorting and Compression: The preorder measures described
above are all variants of MergeSort, exploiting the similarity of its execution
with a wavelet tree: they are all situated on the same “branch” of the graph from
Figure 1 representing the measures of preorder and their relation.

The preorder measure nRem counts how many elements must be removed from
a permutation so that what remains is already sorted. Its exact value is n minus

Fast Algorithms That Yield Small and Fast Data Structures 107

the length of the Longest Increasing Subsequence, which can be computed in
time n lg n, but in order to adaptively sort in time faster than this, nRem can be
approximated within a factor of 2 in n comparisons by an algorithm very similar
to the one building a LRM-tree, which returns a partition of π into one part of
2nRem unsorted elements, and n − 2nRem elements in increasing order. Sorting
those 2nRem unsorted elements using any n-worst-case optimal comparison-based
algorithm (ideally, one of the adaptive algorithms described above), and merging
its result with the n − 2nRem elements found to be already in increasing order,
yields an adaptive sorting algorithm that performs 2n + 2nRem lg(n/nRem + 1)
comparisons [14, 29]. Similarly, partitioning π into those two parts by a bit vector
of n bits; representing the order of the 2nRem elements in a wavelet tree (using
any of the data structures described above) and representing the merging of both
into n bits yields a compressed data structure using 2n + 2nRem lg(n/nRem) +
o(n) bits and supporting the operators π() and π−1() in sublinear time, within
O(log(nRem+ 1) + 1).

nInv-Adaptive Sorting and Compression: The preorder measure nInv

counts the number of pairs (i, j) of positions 1 ≤ i < j ≤ n in a permutation π
over [1..n] such that π(i) > π(j). Its value is exactly the number of comparisons
performed by the algorithm Insertion Sort, between n and n2 for a permuta-
tion over [1..n]. A variant of Insertion Sort, named Local Insertion Sort,
sorts π in n(1 + lg(nInv/n)) comparisons [14, 29].

As before, the bit vector B listing the binary results of the comparisons per-
formed by Local Insertion Sort on a permutation π identifies exactly π, be-
cause B is sufficient to simulate the execution of Local Insertion Sort on π
without access to it. This yields an encoding of π into n(1 + 	lg(nInv/n)
) bits,
which is smaller than n	lgn
 bits for permutations such that nInv ∈ o(n2). Yet
it is not clear how to support the operator π() (yet even its inverse π−1()) on
such an encoding without reading all the n(1 + lg(nInv/n)) bits of B: the bits
deciding of a single value can be spread in the whole encoding.

But reordering those bits does yield a compressed data structure supporting
the operator π() in constant time, by simply encoding the n values (π(i)−i)i∈[1..n]

using the γ′ code from Elias [13], and indexing the positions of the beginning
of each code by a compressed bit vector. Following the execution of Linear
Insertion Sort algorithm over a permutation π over [1..n] presenting nInv

inversions, the number of swaps of the i-th element π(i) required to reach its
final position in the sorted list is π(i) = i + g+i (π) − g−i (π), where g+i (π) =
|{j ∈ [1..n] : j > i and π(j) < π(i)}| is the number of swaps to the right; and
g−i (π) = |{j ∈ [1..n] : j < i and π(j) > π(i)}| is the number of swaps to the
left. By definition of nInv, g+ and g−,

∑n
i=1 g

+
i (π) =

∑n
i=1 g

−
i (π) = nInv, and

by property of the γ′ code, the number of bits used to store the values of g+i (π)

(or g−i (π)) is Gap(g+i (π))i∈[1..n] =
∑n

i=1 lg g
+
i (π) ≤ n lg

(∑n
i=1 g+

i (π)

n

)
= n lg nInv

n ,

by concavity of the logarithm. Since π(i)− i = g+i (π)−g−i (π), the data structure
uses n+Gap((π(i)−i)i∈[1..n])+o(n) ⊂ n+2n lg nInv

n +o(n) = n(1+2 lg nInv
n)+o(n)

bits.

108 J. Barbay

Note that the compressed data structure described so far supports the oper-
ator π() in constant time, which is faster than the compressed data structure
described above, but not the operator π−1() (other than in at least linear time,
by reconstructing π). By definition of nInv, the inverse permutation π−1 has the
same number nInv of inversions than π: the data structure for π−1 uses the same
space as for π. Hence encoding both the permutations π and its inverse π−1 as
described above yields a data structure using space within 2n(1+2 lg nInv

n)+o(n)
which supports both operators π() and π−1() in constant time. This space is less
than n logn + o(n) for instance where nInv[0..n

5
4], but of course in the worst

case where nInv is close to n2, this space is getting close to 8n logn+2n+ o(n),
a solution four times as costly as merely encoding in a raw form both π and its
inverse π−1.

Other Adaptive Sorting and Compression: As we observed in Section 2.3,
Moffat and Petersson [29] list many other measures of preorder and adaptive
sorting techniques. Each measure explored above yields a compressed data struc-
ture for permutation supporting the operators π() and π−1() in sublinear time.
Figure 1 shows the relation between those measures, and the table below shows
the relation between a selection of adaptive sorting algorithms and some permu-
tation data structure (omitting both the o() order terms in the space and the
support time for the operators for sake of space).

Sorting Algorithm cmps=bits Permutation Data Structure
Natural MergeSort [23] n(1+ lg nRuns) Runs [7]
BN-MergeSort [7] n(1+H(vRuns)) Huffman Runs [7]
H(vSUS)-Sort [7] 2nH(vSUS) Huffman SUS [7]
H(SMS)-Sort [3] 2nH(vSMS) Huffman SMS [7]
Rem-Sort (here) 2n+ 2nRem lg(n/nRem) Rem-encoding (here)
Local Ins Sort (here) 2n(1 + 2 lg(nInv/n)) Inv-encoding (here)

Note that all comparison-based adaptive sorting algorithms yield a compres-
sion scheme for permutations, but not all yield one for which we know how to
support useful operators (such as π() and π−1()) in sublinear time.

5 Selected Open Problems

From Compression Schemes to Compressed Data Structures: In most
current applications, compressed data is useless if it needs to be totally de-
compressed in order to access a small part of it. We saw how to support some
operators on compressed data inspired from adaptive algorithms in the cases of
permutations, integers and strings, but there are many other operators to study,
from the iterated operator πk() on a compressed permutation π, non-algebraic
operators on compressed integers, patern matching operators on compressed
strings, etc...

Fast Algorithms That Yield Small and Fast Data Structures 109

From Compression Schemes to Adaptive Algorithms: Bentley and Yao
[9] were already asking in 1976 if there are cases where such relations between
compressed data structures and adaptive algorithms are bijective. Such a ques-
tion comes naturally and applies to many other Abstract Data Types than in-
tegers or permutations, as both compression schemes and adaptive algorithms
take advantage of forms of regularity in the instances considered. If a systematic
transformation generating a distinct adaptive algorithm from each distinct com-
pression scheme might not exist, at least one should be able to define a subclass
of compression schemes which are in bijection with adaptive algorithms.

Other Compressed Data Structures for Permutations: Each adaptive
sorting algorithm in the comparison model yields a compression scheme for per-
mutations, but the encoding thus defined does not necessarily support the simple
application of the permutation to a single element without decompressing the
whole permutation, nor the application of the inverse permutation. Figure 1
represents the preorder measures for which opportunistic sorting algorithms are
known, and in round boxes the ones for which compressed data structures for per-
mutations (supporting in sublinear time the operators π() and π−1()) are known.
Are there compressed data structures for permutations, supporting the
operators π() and π−1() in sublinear time and using space proportional to
the other preorder measures? What about other useful operators on per-
mutations, such as πk()?

Sorting and Encoding Multisets: Munro and Spira [32] showed how to sort
multisets through MergeSort, Insertion Sort and Heap Sort, adapting them
with counters to sort in time O(n(1+H(〈m1, . . . ,mr〉))) where mi is the number
of occurrences of i in the multiset (note this is totally different from our results,
that depend on the distribution of the lengths of monotone runs). It seems easy to
combine both approaches (e.g. on Merge Sort in a single algorithm using both
runs and counters), yet quite hard to analyze the complexity of the resulting
algorithm. The difficulty measure must depend not only on both the entropy of
the partition into runs and the entropy of the repartition of the values of the
elements, but also on their interaction.

References

[1] Ávila, B.T., Laber, E.S.: Merge source coding. In: Proceedings of IEEE Interna-
tional Symposium on Information Theory (ISIT), pp. 214–218. IEEE (2009)

[2] Baeza-Yates, R.: A fast set intersection algorithm for sorted sequences. In: Sahi-
nalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 400–408. Springer, Heidelberg (2004)

[3] Barbay, J., Claude, F., Gagie, T., Navarro, G., Nekrich, Y.: Efficient fully-
compressed sequence representations. Algorithmica (to appear, 2013)

[4] Barbay, J., Fischer, J., Navarro, G.: LRM-trees: Compressed indices, adaptive
sorting, and compressed permutations. Elsevier Theoretical Computer Science
(TCS) 459, 26–41 (2012)

110 J. Barbay

[5] Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

[6] Barbay, J., Kenyon, C.: Deterministic algorithm for the t-threshold set problem.
In: Proceedings of the 14th International Symposium Algorithms and Computa-
tion (ISAAC), pp. 575–584 (2003)

[7] Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: 26th International Symposium on Theoretical Aspects of Computer
Science (STACS 2009), vol. 3, pp. 111–122 (2009)

[8] Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Transactions on Algorithms (TALG) (to appear, 2013)

[9] Bentley, J.L., Yao, A.C.-C.: An almost optimal algorithm for unbounded searching.
Information Processing Letters 5(3), 82–87 (1976)

[10] Burge, W.H.: Sorting, trees, and measures of order. Information and Control 1(3),
181–197 (1958)

[11] Carlsson, S., Levcopoulos, C., Petersson, O.: Sublinear merging and natural merge-
sort. Algorithmica 9(6), 629–648 (1993)

[12] Demaine, E.D., López-Ortiz, A., Munro, J.I.: Adaptive set intersections, unions,
and differences. In: Proceedings of the 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 743–752 (2000)

[13] Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory 21(2), 194–203 (1975)

[14] Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms. ACM Com-
puting Surveys 24(4), 441–476 (1992)

[15] Fernandez de la Vega, W., Kannan, S., Santha, M.: Two probabilistic results on
merging. In: Asano, T., Imai, H., Ibaraki, T., Nishizeki, T. (eds.) SIGAL 1990.
LNCS, vol. 450, pp. 118–127. Springer, Heidelberg (1990)

[16] Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

[17] Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. STOC, pp. 135–143. ACM Press (1984)

[18] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: IEEE Symposium on Foundations of Computer Science, pp.
305–313 (2000)

[19] Golynski, A.: Optimal lower bounds for rank and select indexes. In: Bugliesi, M.,
Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp.
370–381. Springer, Heidelberg (2006)

[20] Golynski, A.: Upper and Lower Bounds for Text Indexing Data Structures. PhD
thesis. University of Waterloo (2007)

[21] Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: Proceedings of the 17th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 368–373. ACM (2006)

[22] Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 841–850. ACM (2003)

[23] Harris, J.D.: Sorting unsorted and partially sorted lists using the natural merge
sort. Software: Practice and Experience 11(12), 1339–1340 (1981)

[24] Hwang, F.K., Lin, S.: A simple algorithm for merging two disjoint linearly-ordered
sets. SIAM J. Comput. 1(1), 31–39 (1972)

[25] Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 549–554
(1989)

Fast Algorithms That Yield Small and Fast Data Structures 111

[26] Levcopoulos, C., Petersson, O.: Sorting shuffled monotone sequences. In: Gilbert,
J.R., Karlsson, R. (eds.) SWAT 1990. LNCS, vol. 447, pp. 181–191. Springer,
Heidelberg (1990)

[27] Levcopoulos, C., Petersson, O.: Sorting shuffled monotone sequences. Inf. Com-
put. 112(1), 37–50 (1994)

[28] Mannila, H.: Measures of presortedness and optimal sorting algorithms. IEEE
Trans. Computers 34(4), 318–325 (1985)

[29] Moffat, A., Petersson, O.: An overview of adaptive sorting. Australian Computer
Journal 24(2), 70–77 (1992)

[30] Moffat, A., Stuiver, L.: Binary interpolative coding for effective index compression.
Inf. Retr. 3(1), 25–47 (2000)

[31] Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations and functions. Theor. Comput. Sci. 438, 74–88 (2012)

[32] Munro, J.I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Com-
put. 5(1), 1–8 (1976)

[33] Petersson, O., Moffat, A.: A framework for adaptive sorting. Discrete Applied
Mathematics 59, 153–179 (1995)

[34] Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

[35] Rice, R.F., Plaunt, J.R.: Adaptive variable-length coding for efficient compression
of spacecraft television data. IEEE Trans. Commun. COM-19, 889–897 (1971)

[36] Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA,
pp. 134–149. ACM/SIAM (2010)

Computing (and Life) Is All about Tradeoffs

A Small Sample of Some Computational Tradeoffs

Allan Borodin

University of Toronto
bor@cs.toronto.edu

Abstract. A pervasive theme in Compute Science (as in any science or
for that matter in life) is tradeoffs. This is, of course, a recurring theme
in many of Ian Munro’s papers (e.g. in data structures, streaming algo-
rithms). In one form or another, time space tradeoffs can be found in
many settings. Another traditional research area concerns tradeoffs be-
tween performance (e.g. approximation bounds) vs complexity bounds.
Newer areas of research consider various issues of tradeoffs involving
concepts relating to fairness, privacy, conceptual simplicity, robustness,
and self-interest (e.g. truthfulness). We will review some of the well es-
tablished results as well as some of the many open questions involving
tradeoffs.

1 Introduction

The title of this talk is not meant to presumptiously suggest that I will have
anything useful to say about all the tradeoffs we face in our lives. Rather, I just
want to put into perspective that tradeoffs in computation are to be expected
and the fact that there are so many papers that implicitly or explicitly concern
tradeoffs, is certainly not a surprise. In fact, this talk is even more narrowly
focused than “tradeoffs in computation” in that I will only discuss tradeoffs
that can be considered within the context of “theoretical computer science”. By
this, I mean that the discussion is limited to tradeoffs where there has been
an attempt to quantify the concepts involved and establish provable results for
such concepts. Even within this perhaps more modest goal, we will necessarily
be limited to only a small subset of what is truly a pervasive theme in theoretical
computer science. I apologize in advance for all glaring omissions.

I wanted to choose a topic that would have a substantial history as well as
being current. But mainly, I wanted to choose a topic that would relate well
to some of Ian Munro’s research interests and contributions. As I will discuss,
even though there is only one paper title in Ian’s DBLP that contains the word
“tradeoff”, I would argue that his work is directly related to or has inspired a
number of seminal tradeoff results, especially for tradeoffs in the area of data
structures.

Just like someone in queuing theory who sees lines everywhere, when I started
to think about this survey paper I began to see quantifiable tradeoff issues every-
where. Indeed, for any algorithm, one can usually formalize (in a meaningful way)

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 112–132, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computing (and Life) Is All about Tradeoffs 113

a model capturing that algorithm and then quantify and measure the resources
being used and the quality of the results obtained. This leads naturally to ask
whether one can reduce one or more of the resources and the impact that would
have on the quality. Similarly, for impossibility results, where a model needs to
be explicitly stated a priori, one might have results that consider extreme cases
(e.g. “no space” vs unrestriced space, deterministic vs randomized algorithms)
and interpolate (e.g. for small space, for a limited number of random bits) to
try to gain a better understanding of the inherent tradeoffs. The ideal goal is to
have matching positive (i.e. algorithmic) and impossibility results, but this is rel-
atively rare. Given the perceived difficulty of establishing “robust” impossibilty
results in most areas of research, we tend to believe that our positive results are
closer to “truth” than the weaker impossibility results. However, our religious
belief (in the religion of theoretical computer science) is that our impossibility
results often lead to new and unexpected algorithms improving upon the state
of the art (and what may have also been conjectured). I think a good example
of this phenomenon can be found in many of Ian’s data structure results.

Unless otherwise stated, I will only consider worst case results. (However, some
of the lower bounds mentioned also apply to random inputs.) My organization
(and choice of examples) is arbitrary but still I wanted to give some sense of the
diversity of tradeoff results in the world of theoretical computer science. I will
try to provide the latest journal version reference for papers, although this may
distort the time line of some results.

2 Complexity Theory: Time Space Tradeoffs

Since computer science is such a relatively new academic subject, calling any
results classical is an abuse of language. But let’s start with what might be
called “classical issues” in complexity theory. Perhaps the most natural tradeoff
issue is that of time vs space. Of course, time space issues are also prominent in
many areas and in particular within the context of data structures. But here I
am referring to time vs space within some general model of discrete computation.
Unless otherwise noted, I am considering complexity theory when all inputs and
outputs are encoded as strings over some finite (often binary) alphabet. With a
slight abuse of notation, we will refer to this as Boolean complexity theory.

2.1 Time vs Space in Turing Machine Models

We first consider this issue within the context of a multi-tape Turing machine
(TM) model. Unfortunately, the most basic questions are essentially completely
open. It will be a refreshing contrast to see how results can be established within
more structured models as in the theory of data structures.

The TM model is such a precise model that it immediately provides a defi-
nition of time, by which we mean sequential time. In order to study space, we
usually assume a read only input tape and write only output tape and define
space as the number of tape squares on the work tapes or the maximum length of

114 A. Borodin

any work tape. We measure time T (n) and space S(n) as functions of the length
n of the input and output and often focus on decision problems. Some funda-
mental issues immediately arise. What functions are computable in space S(n)
and/or time T (n)? Unfortunately, given the current state of complexity theory,
we do not know how to prove that a given “explicit” function (say a decision
problem within the class NP) cannot be computed in space S(n) = O(log n) or
in time T (n) = O(n log n).

It is immediate that a problem computable in space S(n) ≥ logn is also
simultaneously computable in time cT (n) for some constant c depending on the
cardinality of the work tape symbols. But when is such an exponential blow up
in time required, especially if we wish to maintain small space? In this regard, let
me mention one fundamental open question. Namely, the STCON problem (does
there exist a directed path from s to t) is computable in linear time and linear
space by say breadth or depth first search and, by Savitch’s theorem [87] in space
O(log2 n). But can we compute STCON simulataneously in space O(log2 n) and

time that is substantially less than clog
2(n) = nO(logn) and, in particular, can

we achieve log2(n) space and polynomial time simutaneously or must there be a
tradeoff? The general problem is whether all problems computable in polynomial
time and also in polylog space are computable simultaneously in polynomial time
and polylog space or must there be tradeoffs?

In the terminology of complexity theory, the class of decision problems si-
multaneously computable in time T (n) and space S(n) is called TISP(T, S).
The question above asks whether or not the inclusion TISP(poly, polylog) ⊆
P ∩ polylogspace is proper and the conjecture is that the inclusion is proper.
Since such a grand challenge question does not seem within current reach, for
what bounds T and S can we prove negative results about TISP(T, S)? In this
regard, Cobham [30] showed that even for a simple function such as deciding if
an input string w is a palindrome requires TS = Ω(n2). But one can easily argue
that such a result is more about the restrictive sequential nature of accessing
the input tape than about the complexity of the problem.

2.2 The Branching Program Model

There is a substantial history of time space tradeoffs that go beyond the limita-
tions of the basic TM model including results on k head Turiing machines (e.g.
[37,60]). One thread of results concerns the time space complexity of sorting and
the related decision problem of determining if a set of elements are all distinct.
This thread begins with a more structured model, namely that of comparison
branching programs as studied in [18]. This model extends the comparison tree
model where nodes indicate pairwise comparisons. (This is, of course, the basic
model in which we show the n logn lower bound for the number of compar-
isons to sort n elements.) In braching programs, the underlying model is a DAG,
rather than a tree with nodes again indicating pairwise comparisons. Now differ-
ent computation paths can lead to the same node. Each node in such a branching
program represents a state of the computation and space is defined as the log of
the number of states. This is a purely information theoretic way to define space

Computing (and Life) Is All about Tradeoffs 115

and in some sense this model can be considered as the ultimate comparison
based model for studying space or time space lower bounds. For sorting, edge
labels in the branching program are used to indicate ranks for elements of the
input. For element distinctness, edges are unlabelled and leaves are are labelled
by accept or reject. Borodin et al [18] show that TS = Ω(n2) for sorting and

Yao [94] shows that TS = Ω(n2−O(1/
√
logn)) for element distinctness following

a weaker bound of TS = Ω(n3/2) in [16]. More recently, Chan [28] proves that
time T = Ω(n log logS(n)) for the median (and other selection problems). The
Chan lower bound corresponds to positive time space results for selection as will
be discussed in section 5.1.

Returning to “Boolean complexity”, the comparison branching program is
extended by Borodin and Cook [15] to a model called R-way branching programs
where now inputs are integers in the range [1, R] and each node queries a specific
input and branches R-ways according to the value of that input. They show a
lower bound of TS = Ω(n2/ logn) in this model for sorting integers in the range
[1, n2]. (We ignore the additional O(log n) cost to read each integer.) Beame [10]
shows TS = Ω(n2) for a slightly different variant of sorting and that this bound
can be met exactly for all space bounds logn ≤ S(n) ≤ n. This is an example of
a tight time space tradeoff, where provably it is shown precisely how time must
increase as space decreases. Such tight results do not exist for Boolean decision
problems with respect to a general model. However, there has been a significant
sequence of results initiated by Ajtai [3] establishing some limited but non trivial
time space lower bounds for Boolean decision problems showing that non linear
time is required for sublinear space. I believe the best lower bound in this regard
with respect to a general branching program is the Beame and Vee [12] result for
a specific decision problem that requires time T = Ω(n log2 n) when the space
S = n1−ε for any ε > 0.

Before leaving the topic of time space tradeoffs, we note that the branch-
ing program models (like circuit models) are non uniform models. That is, for
every n, one can have a different algorithm. Starting with the work of Nepom-
njaščǐi [74] and Fortnow [45] there are some very interesting TISP lower bound
results for uniform models that allow random access of the input. Specifically,
there is a sequence of TISP results for the NP hard problem SAT. This cul-
minates thus far in the paper of Williams [91] where SAT is proven not to be
in TISP(nc, nε) for various values of c < 2 and ε < 1. The best lower bound
in [91] is c = cos(π/7) ≈ 1.8019. It is conjectured in [91] that this is optimal
for the proof technique of alternation trading proofs, an indirect diagonalization
method based on simulating nondeterminism for time and space bounded deter-
ministic algorithms. Surprisingly, Buss and Williams [23] show that this “strange
constant” conjecture is indeed optimal for the proofs based on such alternation
trading.

3 Complexity Theory: Parallel vs Sequential Complexity

Booelan circuits are a basic (non-uniform) model in which there are precise
analogs of parallel (circuit depth) and sequential complexity (circuit size).

116 A. Borodin

Pippinger [82] defined the compleixty classes NCk and their union NC =
∪k≥0NCk. NC is the class of problems that can be computed by circuits within
simultaneous polylog depth and polynomial size. This is analogous to but dif-
ferent from the class TISP (poly, polylog) discussed in section 2.1. Uniform ver-
sions of these classes arise when one considers various PRAM models. The basic
Booelan circuit and complexity theory question is whether or not every problem
computable in polynomial (TM) time or polynomial (circuit) size can be com-
puted in NC or ignoring the size constraint whether or not all polynomial time
problems can be computed in polylog depth. It is widely conjectured that this
is not the case but currently it is not even known that polynomial time is not
contained in NC1 which is the same as the class of problems having polynomial
size formulas. The immediate tradeoff question is how much must size suffer in
order to achieve some amount of parallelization.

There is also an arithmetic version of circuits where the basic binary opera-
tions are +,−,×. Such circuits compute polynomials over some underlying ring.
(The arithmetic circuit model can also include a division operation for computing
polynomials or rational functions.) This leads to arithmetic analogs of parallel
vs sequential complexity. One early result in this regard is the result of Munro
and Paterson [68] that establishes a very tight (within one operation) size bound
for the evaluation of a univariate polynomial in terms of the depth of the arith-
metic circuit. For multivariate polynomials, we consider the arithmetic versions
of the NCk and NC classes. It is easy to see that circuits of depth d computing
a multivariate polynomial have size and degree at most 2d. A reasonable ana-
logue of the above poly size vs NC question is then whether every polynomial
P (x1, . . . , xn) of polynomial degree (in n) that is computable by polynomial size
arithmetic circuits is computable in the arithmetic analogues of NC or even in
some fixed NCk. Surprisingly, such polynomials are all computed within the
class NC2 as shown by Valiant et al [89] following a previous result by Hyafil
[55] showing that all such polynomials are computable in O(log2 n) depth but
with size nO(log n). More specifically, Valiant et al show that every polynomial of
degree d that is computable in size c is also computable simultaneously in depth
O((log c) · (log d)) and size O(c3). It is open if depth O(log c+ log d) is possible.

4 Randomization vs Time and Accuracy

The previous section only considered deterministic algorithms. Of course, a cen-
tral question in complexity theory (as well as any of the topics mentioned in this
paper) is the power of randomization. In some problem settings, randomization
is necessary to achieve any meaningful results (e.g. for interactive proofs, prob-
abilistically checkable proofs, cryptography, sublinear time and in many prob-
lems within the context of streaming algorithms and online algorithms.). In
the complexity theory setting of the previous section, fundamental questions are
formulated in terms of an unrestricted version of randomization comparing the
complexity of deterministic vs randomized computation. The natural quantifi-
cation is to consider how many random bits are needed to achieve a stated goal,
say a reduction in space or time, while insuring some probability of correctness.

Computing (and Life) Is All about Tradeoffs 117

The fundamental complexity theory question is whether more can be done
in randomized polynomial time than in deterministic polynomial time. In terms
of decision problems, the power of randomization question in complexity theory
asks whether P is a proper subset of complexity classes ZPP,RP,BPP . Perhaps
the most notable relevant example is the symbolic determinant problem (i.e. is
det(A) �≡ 0 where the entries of matrix A are multivariate polynomials). This
problem is easily seen to be in the class RP but not known to be in P . While
this question is beyond our current reach, it is interesting to note that some
research (see Impagliazzo and Wigderson [56]) surpisingly brings into question
what would have been the prevailing view that P is a proper subset of RP . Even
if it turns out that say P = BPP , there will inevitably be a question as to the
tradeoffs between error probability and time.

Consder the problem of primality testing. The question of primality testing
is in some sense solved as a complexity theory question by the deterministic
polynomial time algorithm of Agarwal, Kayal and Saxena [2]. However, from the
view of actual practice, randomized primality testing as initiated independently
by Solovay and Strassen [88] and Rabin [83] are much more efficient. I am not
aware of any results quantifying a tradeoff between randomness or the error
probability and the time complexity of the algorithm.

But there are many areas of research where the power of randomness is better
understood and quantified. One such example (see section 6) is the tight tradeoff
between randomness and bits communicated as shown in Canetti and Goldreich
[24]. Other examples include tradeoffs in oblivious routing in Krizanc, Peleg and
Upfal [62]. In the next section, we briefly consider the streaming model where a
number of results rely on randomization.

5 The Streaming Model and Other Space Restricted
Models

Given the large volumes of data (for example, in analyzing internet routing data),
it is often infeasible to store the data and one is forced to process the data in
a stream using relatively limited space. Well before the model was being used
for such relatively modern applcations, Munro and Paterson [69] introduced the
streaming model where data items stream by in one or more passes. Their goal
was to study the space complexity of selecting the kth largest number (from
an input steram of n distinct numbers) when the input is being processed by
some fixed number of passes. The most interesting case is for computing the
median, that is when k = 	n/2
. They show the following nearly matching
results. There is a p pass algorithm that selects the kth largest element using

memory O(n
1
p (log n)2−

2
p). On the other hand, for any k such that Ω(n) = k ≤

n/2, any deterministic p pass streaming algorithm for selecting the kth largest

element requires space Ω(n
1
p).

The streaming model is one of a number of space restricted models that are
studied for particular settings in contrast to the general models considered in
section 2. See also the specific results concerning data structures in section 8.1.

118 A. Borodin

5.1 Multi-pass and RAM Comparison Based Models

The Munro and Paterson results led to a number of positive results for selection
and other problems. One of the early surprising results of complexity analysis
was the Blum et al [14] linear time algorithm for selection. I say surprising in
that there were conjectures stating that n logn comparison were necessary in a
deterministic comparison computation tree and indeed the linear time algorithm
was derived following attempts to establish a lower bound. (See my comment
in the Introduction as to our “religious beliefs” about the value of impossibility
results.) The Munro and Paterson selection algorithm can be interpreted in
terms of space vs. time (say comparisons) and a natural question is to study
time bounds for selection when space is limited. Extending the algorithm in [69],
Frederickson [49] gave an algorithm that achieved time O(n log∗ n+n logS n) in
a comparion based, read-only input RAM model for space satisfying Ω(log2 n) =
S(n) = O(n/ logn). Here space means the number of additional registers. Chan
[28] noted the bound in [49] could be reduced to O(n log∗(n/S)+n logS n) which
then yields the Blum et al time bound for unrestricted space. Frederickson’s
result can be interpreted as a p pass, S space streaming algorithm achieving
almost linear time O(n log(p)(n/S)) where log(p) is the pth iterated logarithm.
Munro and Raman [71] and, respectively, Raman and Ramnath [85] derive time
bounds for smaller space bounds; specifically time O(n1+ε) for constant space
(with ε > 0 arbitarility small depending on the space) and (respectively) time
O(n log2 n) for space O(log n). The Munro and Raman paper also considered
the time for a randomized algorithm (or for a random ordering of the inputs)
and derived the improved time bound O(n log logS n) for all space S = ω(1).
Hence linear time can be achieved with space nδ for any δ > 0. Chan’s [28] lower
bound (as mentioned in section 2) shows that this time bound is optimal for
S = ω(logn).

5.2 Streaming Space vs Approximation

The most prevalent use of the streaming model is to gather statistics on the
stream of data. The desired goal is to use a small amount of time (say even O(1)
time) per data item and relatively small space (perhaps log(n) or polylog space).
Often the data must be sampled and the natural goal is to study the tradeoff
between the space required and the probabilistic confidence in the statistical
approximation being estimated. The seminal paper in this regard is by Alon,
Matias and Szegedy [5] who gave several results concerning the computation of
frequency moments by a one pass streaming algorithm. The one pass streaming
model has generated a mini industry of papers for computing different statistical
properties of an input stream, and in particular for what are called frequent item
queries (e.g. top k queries, threshold queries) An excellent treatment of the now
classic one pass streaming model can be found in the survey by Muthukrishnan
[73]. Moreover, variants of the model have also been introduced to capture other
requirements in large data streams (see Datar et al [32] and Golab et al [52] for
results concerning the sliding window model) and Demaine et al [33] for a num-
ber of deterministic and randomized tradeoffs in a more structured streaming

Computing (and Life) Is All about Tradeoffs 119

model in which counters are explicit in the model. Given important applications
such as estimating statistical properties of packet streams, the precise relation
between all the relevant paprameters (space, randomness, time per input item,
approximation and error bounds) continues to attract attention.

5.3 Priority Branching Trees and Programs: Space vs
Approximation

Motivated by the study of the power of simple dynamic programming and simple
back-tracking algorithms for optimization and search problems, Alekhnovich et
al [4] study the priority branching tree pBT model. Similar to computation trees,
nodes represent input items that are being queried and based on the value of
the item, the computation branches. But in contrast, this is a uniform model of
computation where the computation unfolds as more and more input items are
queried. The essense of the model is to prescibe how the algorithm is allowed to
choose the next item to look at. A considerably stronger dynamic programming
model is studied in Davis, Impagliazzo and Buresh-Oppenheim [22] where they
define priority branching programs (pBPs), a DAG extension of pBTS. The issue
in [4,22] as it has been studied thus far mainly studies the width of pBTs and
pBPs (which can be viewed as space) required for achieving optimality in these
models. But in doing so, there are some very limited results that address the
interplay between program width (or the total number of nodes in the pBT or
pBP) and the quality of the approximation.

6 Communication Complexity

One of the most important theoretical models is the two party communication
model introduced by Yao [93] and its extension to mutli-party communciation
and the number on forehead (NOF) model in Chandra, Furst and Lipton [29].
These models play a pivotal role in many if not most aspects of theoretical
computer science. The model also lends itself directly to many natural tradeoff
questions. In the basic two party model, A and B each hold half of an n bit
input w and they alternate sending messages so as to compute a function f(w).

Perhaps the most basic tradeoff in communciation complexity is the tradeoff
between rounds and bits communicated (i.e. the communication complexity).
Papadimitriou and Sipser [79] considered a pointer chasing problem (to find the
kth pointer) that can be easily solved in k rounds and communication complexity
k logn but showed that any 2 round protocol would require Ω(n) bits of com-
munication. Duris, Galil and Schnitger [38] extend the lower bound to show that
ω(n/k2) communication is necessary for any k − 1 round protocol thus estab-
lishing a relatively tight tradeoff. Similar exponential gaps between k − 1 and k
round communcaition complexity were established for randomized protocols by
Halstenberg and Reischuk [53], and Nisan and Wigderson [76]. Impagliazzo and
Williams [57] consider a variant of the basic model allowing synchronized clocks
(which allow processors to only pass messages during certain rounds thereby

120 A. Borodin

allowing the equality function to be solved with a single bit of communication
but using 2n rounds). They establish strong tradeoff results between rounds and
communication in this model.

Another notable example of tight tradeoffs in communciation complexity is the
tradeoff between randomness and bits communicated in Canetti and Goldreich
[24]. They consider and establish tight tradeoff results in four models, depending
on whether the random bit are private or public (i.e. shared by both parties) and
whether the communication is one-way or two-way. With the exception of the
one way, public coin model, two lower bounds are derived, for the other three
models and which of the two is more meaningful depends on the determinitsic
communication complexity. In particular, the more meaningful bound for small
values of m (for the worst case communication cost over all input instances and
coin tosses) in the two-way public coin model is as follows: for any non-degenerate
n by n communication problem (expressed as a 2n×2n matrix with distinct rows
and distinct columns), any protocol must satisfy r ≥ log(n

(1−ε)2m) where r is the

number of random bits used and ε is the advantage in accuracy over probability
1
2 correctness. That is, for small values of m, Ω(log n) random bits are needed
and it can be shown that O(log n) is always sufficient while maintaining the same
communciation cost but possibly cutting the advantage to ε/2.

The communication complexity setting also provides for tight results concern-
ing the tradeoff between privacy and bits communcated. The study of information-
theoretic privacy (i.e. independent of computational complexity assumptions)
was begun in Kushilevitz [63] and led to the study of privacy vs communciation
results in Feigenbaum, Jaggard and Schapira [40]. The following development is
another success story for tradeoff results. Feigenbaum et al. define the privacy
approximation ratio (PAR) to measure the loss of privacy in a communication
complexity protocol. They study the PAR in both a worst case sense (over all in-
put pairs) and average case sense for (integral valued) Vickery auctions in which
two parties {A,B} must arrive at a winner revealing the bid of the losing party.
If A and B both have n bit integer bids, then the PAR ranges between 1 (per-
fect privacy) and 2n (revealing the value of the winner). Kushilevitz showed that
PAR = 1 (perfect privacy) requires exponential communciation (and is achiev-
able by the ascending English auction). Feigenbaum et al. describe a binary
search protocol that achieves a spectrum of privacy vs communciation tradeoffs
and in particular show that linear communication (which is necessary) can be
acheived with an exponential PAR. Ada et al. [1] then show the tightness of
the positive tradeoffs established in [40] for Vickery auctions. More specifically
they show that for every n and p with 2 ≤ p ≤ n/4, every deterministic proto-
col obtaining worst case PAR < 2p−2 must have communication complexity at
least 2

n
4p . Like the time space tradeoffs in proof complexity (see section 9), and

in contrast to what can be proven in computational complexity, these results
yield super linear lower bounds. In particular, any deterministic protocol must
either have communciation complexity or PAR at least 2Ω(

√
n). Similar tradeoff

limitations are shown for average case PAR.

Computing (and Life) Is All about Tradeoffs 121

7 Distributed Computing

Distributed computation is another area where tradeoffs are very natural and
multi-faceted. Obviously, distributed systems is a field in itself and one that
is of growing importance with the platforms for cloud computing. I refer the
reader to the Attiya and Welch [8] text and the Fich and Rupert [43] survey of
impossibility results. I will retrict attention to synchronous message passing and
shared memory models.

For synchronous message passing models, some of the measures of interest
are rounds of communication, number and size of messages, and the number of
possible faulty processes. As just one example of tradeoffs in this area, let me
mention what is one of the most fundamental problems and results in distributed
computing. Namely, consider the problem of processes trying to achieve consen-
sus in the presense of possibly faulty processors. Consensus means that all non
faulty processors return the same value and that value is held by at least one of
the processes (possibly faulty). There is a spectrum of different types of failures.
The easiest type of failure to accomodate are crash faults where the processes
cease to operate at some point during the computation. The most difficult type
are Byzantine faults where a process may be maliciously providing false informa-
tion during a computation including misreporting their identity. For Byzantine
failures, consensus also means that if all processes hold the same value, then the
nonfaulty processes must return that value. The consenus problem was intro-
duced and initially studied in the Byzantine fault model by Pease, Shostak and
Lamport [80]. Letting n be the total number of processes, and f , the maximum
number of faulty processes, there are two basic tradeoffs (depending on the type
of failures) as follows: for n ≥ f+2 (resp. n ≥ 3f+1) in order to achieve consen-
sus, f +1 rounds of communication are necessary and sufficient in a system with
at most f crash failures (resp. Byzantine failures). The positive result for Byzan-
tine faults is proven in the defining paper by Peasse, Shostak and Lamport. The
negative result for Byzantine faults is due to Fischer and Lynch [44]. The results
for crash failures are due to Dolev and Strong [34] who consider the stronger
model of Byzantine faults but with authenticaion (so that process identity can
be verified). Similar tradeoffs between the number of rounds vs number of faults
have been proven for other types of failures (in between crash and Byzantine)
and for other distributed problems (e.g. terminating reliable boradcast).

For shared memory models, one is often interested in the difficulty of imple-
menting a given object in terms of the atomic or primitive operations that are
allowed in the model. For example, a snapshot object stores some m component
values and supports two operations, a scan (which is a consistent view of all
m values) and an update of any of the m components. For the synchoronous
shared memory model, Brodsky and Fich [20] consider the implementation of
a snapshot in terms of the number of atomic read/write operations required.
They show an asymtotically tight tradeoff for implementing a snapshot object
amongst n processes. Namely, Tu = Θ(log(min{m,n}/Ts)) where Tu is the time
(i.e. number of atomic operations) for an update and Ts is the time for a scan.

122 A. Borodin

8 Tradeoffs in Data Structures

Data structures (both static and dynamic) provide one of the most active areas
for tradeoff results. Indeed, this important area naturally raises multi-faceted
tradeoff results relating to the relation of space, preprocessing time, update time,
and query time (with respect to tradeoffs bewteen a variety of query requests).
It is also an area in which Munro and his students have a number of seminal
results especially in the area of data structures allowing only limited space.

8.1 Implicit and Semi-implicit Data Structures

In their seminal paper, Munro and Suwanda [72] defined and studied algorithms
for implicit data structures and semi-implicit data structures. The underlying
computational model for Munro and Suwanda (and many subsequent papers)
allows comparisons and data and pointer movements. Time is measured in terms
of the number of comparisons and moves. The results here do not apply to
models with more general operations (as in the cell probe model discussed in the
next subsection) that can exploit properties of the data. Implicit data structures
(resp. semi-implicit data structures) store elements in an array and use only a
constant number of pointers (or more religiously no pointers as in a heap data
structure for a priority queue) and constant (or no) additional space beyond the
number of elements of the array. Simply stated, an implicit data structure can
be viewed as a set of allowable permutations along with methods for search and
update. Semi-implicit data structures allow some sublinear number of pointers
or additional amount of space and hence provides a model for studying space vs
performance. Within the implicit data structure model (or any data structure
model), the goal is to study tradeoffs between the operations required by the
data structure.

Perhaps the most studied and basic data structure problem is the dictionary
where queries are simply to search for the existence of an element (or a key
which in turn has an associated value) in a given set. In the case of dynamic
dictionaries, we also have insertions and deletions. One way to realize an implicit
dictionary is to insure that the contents of the dictionary array are constrained
to satisfy some partial order, examples being unsorted lists, sorted lists and
heaps. To keep the size n of a dynamic dictionary fixed (for the purpose of the
lower bound), updates are replaced by value changes (which can be realized by
a deletion followed by an insertion). Munro and Suwanda show that under the
partial order contstraint, the product of update and search time is Ω(n). They
show that this product can be realized by a triangular grid organization resulting
in O(

√
n) time for both search and updates. They then go beyond the partial

order constraint and combine rotated lists with the triangular grid scheme so
as to achieve O(n1/3 log n) time for search and update using O(log n) additional
memory.

The Munro and Suwanda paper initated an active research area. Frederick-
son [48] created an improved implicit data structure for dictionairies, and then
Munro [67] provided what was conjectured to be the best possible upper bounds

Computing (and Life) Is All about Tradeoffs 123

for implicit dictionaries achieving O(log2 n) for both search and update. This
conjecture was disproved in the work of Franceschini, et al [46] who were able to
achieve time O(log2 n/ log logn) for both search and update. This seems to be the
current best implicit dictionary upper bound. Recalling that implicit data struc-
tures are structures characterized by the set of allowable permutations, Borodin
et al [17] gave a lower bound on the number of comparisons for search in terms
of the number of moves and comparisons for an update in any implicit dynamic
dictionary. One corollary of this lower bound is that any implict dictionary with
constant update time (i.e. moves plus comparisons) requires Ω(nε) search time
for some ε > 0. This lower bound on update time was improved to Ω(n) by
Radhakrishnan and Raman [84]. Surprisingly (and contraducting a conjecture
in [17]), Franceschini and Munro [47] show that it is possible to achieve O(log3 n)
search time using only O(1) exchanges (and O(log3 n)) comparisons in an im-
plicit data structure using only a constant amount of additional memory. There
is still a significant gap in the upper and lower bounds for implicit dictionaries;
in particular, whether they can achieve the same O(log n) time that is acheived
by balanced search trees. And, more generally, how much additional space is
required to achieve the best possible tradeoffs between search and update.

One of the most impressive implicit data structures is for the multi-key search
problem where n items can be searched according to any one of k keys. Fiat et al
provide an implicit data structure for this problem that uses on O(k log k logn)
comparisons. For fixed k, this O(log n) comparison method stands in contrast

to the Alt, Mehlhorn and Munro [6] lower bound of Ω(n1− 1
k) for searching a

multi-key table when all comparisons are restricted to be against the search
key. Beyond dictionaries, we note that implicit data structures and semi-implicit
data structures have been studied for many different data structure problems
(e.g. [6,70,25,21]).

8.2 The Cell Probe Model

The cell probe model of Yao [93] is arguably the most general data structure
model. It can simulate RAM algorithms over any instruction set and plays the
same information theoretic abstraction for data structure problems as does the
R-way branching program model discussed in section 2.2. Lower bounds in this
model therefore apply generally and upper bounds can be viewed as a starting
point for a possible realistic imnplementation. We will simplify the discussion
here and just mention some cell probe model results for membership search and
the nearest neighbor problem. But in its generality, the cell probe model has
probably been used to prove results for every natural data structure problem
imagineable. (See Gál and Miltersen [50] for a spectrum of results indicating the
generality of the model.) As the name suggests, data itema are encoded in, say,
s cells of some word size w and queries are realized by a 2w way tree probing
a cell at each node and branching according to the value of the cell. The query
time t is the depth of the computation tree. In the basic membership search
problem we have a set of S = {x1, . . . , xn} with each xi in some universe U ,
say {0, 1}m, and a query is to simply determine if a given y is in S. For such

124 A. Borodin

problems, it is often assumed that w = Θ(m). To further refine the results, it is
often desireable to state “transdichotomous” bounds that are a function only of
n, holding for all values of m. The model immediately raises tradeoffs between
the space s and the query time t for different queries. In dynamic problems,
updates are allowed and the computation tree allows for a probed cell to be
changed. This induces futher tradoffs. For static problems, one can also measure
the preprocessing cost to set up the data structure and the tradeoffs between
preprocessing, space and query costs. Needless to say, the cell probe model is a
test bed for a variety of interesting tradeoff questions. Yao’s persuasive question
was “should tables be sorted” to answer a membership query. Yao answered that
question for the implicit cell probe model (no extra cells) in the affirmative by
showing that 	log(n+1)
 probes are necessary when the set of possible elements
S = {1, . . . ,m} is sufficiently large. Curiously, with one extra cell, 2 probes are
sufficient when m is sufficently large. Miltersen and Fich [42] give a more precise
answer as to when Ω(log n) time is necessary for a particular RAM model.

Another widely studied problem studied within the context of the cell probe
model is the nearest neighbor search (NNS) problem. In the NNS problem, there
is a set S of n points in a d-dimensional Euclidean space. The search problem is
to find the nearest point in S to a given query point x. The problem is interesting
for static and dynamic data bases, for small and large dimensions d, for discrete
and continuous spaces, and for deterministic and randomized algorithms. The
goal is to find a nearest neighbor exactly or just to obtain a good approximation
to the nearest neighbor (i.e. for some given ε to find a point y ∈ S so that
||y−x|| ≤ (1+ ε) · ||z−x|| for all z ∈ S). There is also a decision problem variant
(to determine if there is a y ∈ S within some given distance λ to the search
query x) as well as the special case of partial match queries. In the static high
dimensional problem, there are time space tradeoff questions relating the time for
a query vs the number and size of cells used to store the data base. For example,
if the data base S = {0, 1}d, then two extremes are either to use just nd bits and
search exhaustively (with search time nd) or to store an answer to each possible
query using 2d bits but using only O(d) bit operations for the search time. The
question becomes whether one can, say, simlutaneously achieve space which is
polynomial in nd and search time O(d) (or even polynomial in d). The question
is mainly of interest when d is asymptotically larger than logn and smaller than
nδ for all δ > 0. The conjecture is that there is a curse of dimensionality for the
exact NNS problem in that either the space or search time must be exponential
in d. For the approximate NNS, the curse of dimensionality has been traded
for a curse of approximation bound in the randomized algorithms of Indyk and
Motwani [58], and Kushilevitz, Ostrovsky and Rabani [64]. Some cell probe lower
bounds have appeared for deterministic and randomized algorithms for both
the exact and approximate NNS problem ([19,27,9]) but the question of precise
tradeoff results for NNS problems remains largely open.

Computing (and Life) Is All about Tradeoffs 125

9 Proof Complexity: Time vs Space Revisited

Initiated by Cook and Reckhow [31], proof complexity was motivated by the
“NP = co-NP? ” question , and the natural questions relating to the relative
power of various proof systems (in terms of the lengths of proofs). In addition,
there are interesting time space tradeoffs that have been studied for various proof
systems. Such tradeoffs directly impact DPLL-based SAT solvers, since memory
and time are often both bottlenecks. Perhaps the most studied proof system is
resolution refutation, which is also at least implicitly involved in all DPLL-based
solvers. For resolution proofs, the usual notions of time is length (i.e. number of
resolution steps) of the proof or the size defined as the total number of clauses
in the proof. The notion of resolution space is usually given by the maximum
(over all resolution steps) number of clauses that are active (i.e. derived by some
step t but still needed at some step t′ ≥ t).

As in the branching program model, linear space is always achieveable in
resolution proofs. On the other hand, the conjecture is that natural CNF for-
mulas (encoding simple mathematical statements) will require exponential size
proofs in general proof systems thereby proving NP �= co-NP. While no lower
bounds have been established for say Frege or extended Frege systems, results
for proof size have been proven in a number of proof systems including reso-
lution. For resolution, it is interesting to understand what formulas can have
small proofs and when such short proofs can be achieved with relatively small
space. Time space resolution tradeoffs have been studied for both sublinear space
and superlinear space (up to subexponential space). Whereas the “barrier” for
computational complexity space and time space studies is log space, for resolu-
tion proof systems (and some other restricted proof systems) there are now time
space tradeoffs that go beyond linear space! We mention two results in regard
to this success story.

Beame, Beck and Impagliazzo [11] break the “linear space barrier” showing
that there are formulas of size n, with refutation proofs with simultaneous size
and space quasi-polynomial in n (so not polynomial space) but any resolution
proof that is restricted to polynomial space requires size that is exponential in n.
Following this result, Beck, Nordstrom and Tang [13] provide a similar tradeoff
result for the stronger polynomial calculus proof system. Huynh and Nordstrom
[54] obtain size space tradeoffs for stronger proof systems (cutting planes) but for
a weaker regime of parameters (space at most linear). Nordstrom [77] provides
an excellent summary of time space tradeoffs in proof complexity.

10 A Variety of Current and Potential Tradeoff Studies

This survey has necessarily been far from comprehensive given the pervasive
nature of tradeoffs. Indeed, I have omitted discussion of entire well studied fields
such as approximation algorithms (see, for example, the texts by Vazirani [90],
and Shmoys and Williamson [92]), parameterized complexity (see the text by
Downey and Fellows [35]), and packet routing networks (see, for example, Peleg

126 A. Borodin

and Upfal [81]). These fields are inherently about tradeoffs and remain active
areas of research.

Computer science continues to evolve as the technology advances and the per-
vasive use of computing and communication continues at what often seems an
accelerated pace. Theoretical computer science tries to keep pace and conferences
will, for example, contain sections on algorthmic game theory, mechansim de-
sign, differential privacy, online social networks, social choice, internet routing,
high dimensional data, and search engines. While recent results in these top-
ics may not explicitly emphasize tradeoffs, it seems reasonable to expect more
quantifiable tradeoff results in new contexts.

One current area of interest is algorthmic game theory and mechanism design
as pioneered by Nisan and Ronen [75]. The classical fields of game theory and
mechanism design did not account for computational constraints. For example,
the inherent allocation problems that underlie various auctions are NP hard
and often NP hard to obtain any non trivial approximation. Hence the truthful
VCG mechanism (which requires an optimal allocation along with the VCG
payment rule) is not in general computationally feasible. Similarly, the existence
of a “good” equilibrium does not discuss efficient methods for reaching such
an equilibrium. The tradeoff between computational feasibility and the goals of
self-interested agents is the raison d’etre for the area of computational game
theory/mechanism design.

Suppose we consider the conbinatorial auction problem where agents have
valuations for various subsets of items and no item can be allocated to more
than one person. The underlying allocation problem is a multi-minded general-
ization of the set packing problem, which is NP hard to approximate even for
very restricted forms of the problem. The emphasis so far in this area has been
to see what approximations to the social welfare (the sum of true valuations
for the sets allocated to agents) are possible by mechanisms that run in poly-
nomial time. Here the mechanism has to contend with agents that may not bid
truthfully. Incentive compatible mechanisms guarantee that the utility for every
agent (i.e. the valuation minus the payment for the allocated set) is dominated
by a truthful bid. There have been examples [78] where it is proven that incen-
tive compatible mechanisms cannot provide approximations that are nearly as
good as the approximations that can be achieved by computationally efficient
algorithms for the underlying allocation problem. While there are some defini-
tions of “approximate truthfullness”(as in McSherry and Talwar [66]), there has
not yet been a quantifiable study of tradeoffss between quantifiable measures of
truthfulness and computational efficiency.

A major aspect of algorithmic game theory is the computation and proper-
ties of equilbria and in particular of pure, mixed and Bayesian Nash equilibria.
Although previously studied in game theory by economists (for example as in
Dubey [36]), the tradeoff between performance (i.e. approximation guarantees)
and solutions achieving equilibrium was launched in algorithmic game theory by
Koutsoupias and Papadimitriou [61]. They defined the price of anarchy (POA)
as the ratio between the performance (for example, the social welfare of the

Computing (and Life) Is All about Tradeoffs 127

game) at the worst possible equilibria to that of the optimal performance for the
game. The POA definition was soon exploited in a seminal paper on routing by
Roughgarden and Tardos [86]. One can define various notions of ε approximate
equilibria and then study the tradeoffs between performance and equilibria. The
POA concept can be extended to any concept of stability (for example, stability
in cooperative and non-cooperative games, stable matchings) and then one can
study properties of achieving some degree of stability (as in the stability scores
of Feldman, Meir, Tennenholtz [41]). In cooperative game theory, cores capture
the concept of stability against coalitions and approximate cores are a subject
of interest within economics.

Another important area of recent research concerns the many issues involving
privacy especially as it relates to say online social network data bases. In par-
ticular, what is the value of privacy? We have already seen the cost of privacy
in the setting of communication complexity. The active and important area of
differential privacy as initiated by Dwork [39] studies the question of privacy
vs accuracy of information in statistical databases. As online social networks
and recommendation systems continue to request personal information, there
is a need to understand the cost of privacy loss verses the perceived benefit in
participating (see, for example, Carrascal et al [26]).

In studying online algorithms, there are two commonly used measures of the
quality of the algorithm, namely the competitive ratio (measuring an algorithms
performance relative to an optimal solution) and regret (measuring the algo-
rithms limiting cost per online step relative to that of a fixed optimal solution)
While these two measures seem quite related, there are problems where it is
proved that there is a tradeoff between these two criteria. Lin et al [65] con-
sider a general problem they call “smoothed online convex optimization” (which
adds a smoothed switching cost to an online convex optimzation problem). Their
tradeoff for an instance of this problem shows that any algorithm that achives
constant competitive ratio cannot achieve sublinear regret. Many natural online
learning problems require some tradeoff between realizing some immediate gain
vs the potential cost/gain for the future. Such considerations constitute the fun-
damental issue of “exploitation vs exploration”, as considered in reinforcement
learning. Fundamental tradeoffs in this regard are discussed in the excellent sur-
vey by Kaelbling, Littman and Moore [59].

An area of increasing importance concerns tradeoffs between energy and per-
formance. In this regard, Yao, Demers and Shenker [95] introduced “speed scal-
ing”, whereby the speed of a system can be set so as to lower energy cost while
still trying to preserve say response time. See Andrew, Lin and Wierman [7] for
results concerning such tradeoffs.

Finally, there is an important aspect of computation that is not usually quan-
tified but does often play an important criteria in many computational choices.
Namely, algorithmic simplicity, style or structure usually induces some degree
of understandability, extendability, or maintainability and therefore becomes a
critical aspect in computation. But here we do not yet have any quantifica-
tion or well accepted hierarchy of algorithmic design nor do we have quantifiable

128 A. Borodin

measures for understandability, extendability and maintainability. In this regard,
the work concerning categorical data in databases and information systems (see
Gibson, Kleinberg and Raghavan [51]) may provide a good starting point.

Acknowledgements. I would like to thank Faith Ellen, Toni Pitassi, Venkatesh
Raman and Vinod Vaikunthanathan for many helpful comments and references.
I especially appreciate Faith Ellen’s reading of a preliminary draft. I would also
like to thank the organizers for their patience and for inviting me to speak at
this workshop celebrating Ian’s 66th birthday.

References

1. Ada, A., Chattopadhyay, A., Cook, S.A., Fontes, L., Koucký, M., Pitassi, T.: The
hardness of being private. In: IEEE Conference on Computational Complexity, pp.
192–202 (2012)

2. Agarwal, M., Kayal, N., Saxena, N.: Primes is in p. Annals of Mathemat-
ics 160(r21), 781–793 (2004)

3. Ajtai, M.: A non-linear time lower bound for boolean branching programs. Theory
of Computing 1(1), 149–176 (2005)

4. Alekhnovich, M., Borodin, A., Buresh-Oppenheim, J., Impagliazzo, R., Magen, A.:
Toward a model for backtracking and dynamic programming. Electronic Collo-
quium on Computational Complexity (ECCC) 16, 38 (2009)

5. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

6. Alt, H., Mehlhorn, K., Munro, J.I.: Partial match retrieval in implicit data struc-
tures. Inf. Process. Lett. 19(2), 61–65 (1984)

7. Andrew, L.L.H., Lin, M., Wierman, A.: Optimality, fairness, and robustness in
speed scaling designs. In: SIGMETRICS, pp. 37–48 (2010)

8. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Ad-
vanced Topics. Wiley Series on Parallel and Distributed Computing. Wiley (2004)

9. Barkol, O., Rabani, Y.: Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. J. Comput. Syst. Sci. 64(4), 873–896
(2002)

10. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
In: STOC, pp. 197–203 (1989)

11. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: super-
polynomial lower bounds for superlinear space. In: STOC, pp. 213–232 (2012)

12. Beame, P., Vee, E.: Time-space tradeoffs, multiparty communication complexity,
and nearest-neighbor problems. In: IEEE Conference on Computational Complex-
ity, p. 18 (2002)

13. Beck, C., Nordstrom, J., Tang, B.: Some trade-off results for the polynomial cal-
culus. In: STOC (2013)

14. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4), 448–461 (1973)

15. Borodin, A., Cook, S.A.: A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput. 11(2), 287–297 (1982)

16. Borodin, A., Fich, F.E., Meyer auf der Heide, F., Upfal, E., Wigderson, A.: A
time-space tradeoff for element distinctness. SIAM J. Comput. 16(1), 97–99 (1987)

Computing (and Life) Is All about Tradeoffs 129

17. Borodin, A., Fich, F.E., Meyer auf der Heide, F., Upfal, E., Wigderson, A.: A
tradeoff between search and update time for the implicit dictionary problem. Theor.
Comput. Sci. 58, 57–68 (1988)

18. Borodin, A., Fischer, M.J., Kirkpatrick, D.G., Lynch, N.A., Tompa, M.: A time-
space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci. 22(3),
351–364 (1981)

19. Borodin, A., Ostrovsky, R., Rabani, Y.: Lower bounds for high dimensional nearest
neighbor search and related problems. In: Discrete and Computational Geometry
– The Goodman-Polack Festschrift, vol. 25, pp. 255–276 (2003)

20. Brodsky, A., Fich, F.E.: Efficient synchronous snapshots. In: PODC, pp. 70–79
(2004)

21. Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms
and data structures. In: Symposium on Computational Geometry, pp. 239–246
(2004)

22. Buresh-Oppenheim, J., Davis, S., Impagliazzo, R.: A stronger model of dynamic
programming algorithms. Algorithmica 60(4), 938–968 (2011)

23. Buss, S.R., Williams, R.: Limits on alternation-trading proofs for time-space lower
bounds. In: IEEE Conference on Computational Complexity, pp. 181–191 (2012)

24. Canetti, R., Goldreich, O.: Bounds on tradeoffs between randomness and commu-
nication complexity. Computational Complexity 3, 141–167 (1993)

25. Carlsson, S., Munro, J.I., Poblete, P.V.: An implicit binomial queue with constant
insertion time. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp.
1–13. Springer, Heidelberg (1988)

26. Carrascal, J., Riederer, C., Erramilli, V., Cherubini, M., de Oliveira, R.: Your
browsinf behavior for a big mac: Economics of personal information online. In:
WWW (2013)

27. Chakrabarti, A., Chazelle, B., Gum, B., Lvov, A.: A lower bound on the complexity
of approximate nearest-neighbor searching on the hamming cube. In: STOC, pp.
305–311 (1999)

28. Chan, T.: Comparison-based time-space lower bounds for selection. ACM Trans-
action on Algorithms 6(n) (2010)

29. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: STOC, pp.
94–99 (1983)

30. Cobham, A.: The recognition problem for the set of perfect squares. In: SWAT
(FOCS), pp. 78–87 (1966)

31. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Log. 44(1), 36–50 (1979)

32. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

33. Demaine, E.D., López-Ortiz, A., Munro, J.I.: Frequency estimation of internet
packet streams with limited space. In: Möhring, R.H., Raman, R. (eds.) ESA 2002.
LNCS, vol. 2461, pp. 348–360. Springer, Heidelberg (2002)

34. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

35. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)
36. Dubey, P.: Inefficiency of nash equilibrium. Mathematics of Operations Re-

search 11(1), 1–8 (1986)
37. Duris, P., Galil, Z.: A time-space tradeoff for language recognition. Mathematical

Systems Theory 17(1), 3–12 (1984)
38. Duris, P., Galil, Z., Schnitger, G.: Lower bounds on communication complexity.

Inf. Comput. 73(1), 1–22 (1987)

130 A. Borodin

39. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006)

40. Feigenbaum, J., Jaggard, A.D., Schapira, M.: Approximate privacy: foundations
and quantification (extended abstract). In: Proceedings of the 11th ACM Confer-
ence on Electronic Commerce, EC 2010, pp. 167–178. ACM (2010)

41. Feldman, M., Meir, R., Tennenholtz, M.: Stability scores: measuring coalitional
stability. In: AAMAS, pp. 771–778 (2012)

42. Fich, F.E., Miltersen, P.B.: Tables should be sorted (on random access machines).
In: Sack, J.-R., Akl, S.G., Dehne, F., Santoro, N. (eds.) WADS 1995. LNCS,
vol. 955, pp. 482–493. Springer, Heidelberg (1995)

43. Fich, F.E., Ruppert, E.: Hundreds of impossibility results for distributed comput-
ing. Distributed Computing 16(2-3), 121–163 (2003)

44. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive con-
sistency. Inf. Process. Lett. 14(4), 183–186 (1982)

45. Fortnow, L.: Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci. 60(2),
337–353 (2000)

46. Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit b-trees: a new data
structure for the dictionary problem. J. Comput. Syst. Sci. 68(4), 788–807 (2004)

47. Franceschini, G., Munro, J.I.: Implicit dictionaries with o(1) modifications per
update and fast search. In: SODA, pp. 404–413 (2006)

48. Frederickson, G.N.: Implicit data structures for the dictionary problem. J.
ACM 30(1), 80–94 (1983)

49. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection.
J. Comput. Syst. Sci. 34(1), 19–26 (1987)

50. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379(3), 405–417 (2007)

51. Gibson, D., Kleinberg, J.M., Raghavan, P.: Clustering categorical data: An ap-
proach based on dynamical systems. VLDB J. 8(3-4), 222–236 (2000)

52. Golab, L., DeHaan, D., Demaine, E.D., López-Ortiz, A., Munro, J.I.: Identifying
frequent items in sliding windows over on-line packet streams. In: Internet Mea-
surement Comference, pp. 173–178 (2003)

53. Halstenberg, B., Reischuk, R.: Different modes of communication. SIAM J. Com-
put. 22(5), 913–934 (1993)

54. Huynh, T., Nordström, J.: On the virtue of succinct proofs: amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity. In: STOC,
pp. 233–248 (2012)

55. Hyafil, L.: On the parallel evaluation of multivariate polynomials. SIAM J. Com-
put. 8(2), 120–123 (1979)

56. Impagliazzo, R., Wigderson, A.: P = BPP if e requires exponential circuits: De-
randomizing the xor lemma. In: STOC, pp. 220–229 (1997)

57. Impagliazzo, R., Williams, R.: Communication complexity with synchronized
clocks. In: IEEE Conference on Computational Complexity, pp. 259–269 (2010)

58. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: STOC, pp. 604–613 (1998)

59. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
J. Artif. Intell. Res. (JAIR) 4, 237–285 (1996)

60. Karchmer, M.: Two time-space tradeoffs for element distinctness. Theor. Comput.
Sci. 47(3), 237–246 (1986)

61. Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. Computer Science
Review 3(2), 65–69 (2009)

Computing (and Life) Is All about Tradeoffs 131

62. Krizanc, D., Peleg, D., Upfal, E.: A time-randomness tradeoff for oblivious routing
(extended abstract). In: STOC, pp. 93–102 (1988)

63. Kushilevitz, E.: Privacy and communication complexity. SIAM J. Discrete
Math. 5(2), 273–284 (1992)

64. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. SIAM J. Comput. 30(2), 457–474 (2000)

65. Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online
optimization with switching cost. SIGMETRICS Performance Evaluation Re-
view 40(3), 98–100 (2012)

66. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS, pp.
94–103 (2007)

67. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in o(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)

68. Munro, J.I., Paterson, M.: Optimal algorithms for parallel polynomial evaluation.
J. Comput. Syst. Sci. 7(2), 189–198 (1973)

69. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Com-
put. Sci. 12, 315–323 (1980)

70. Munro, J.I., Poblete, P.V.: Searchability in merging and implicit data structures.
BIT 27(3), 324–329 (1987)

71. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with mini-
mum data movement. Theor. Comput. Sci. 165(2), 311–323 (1996)

72. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J.
Comput. Syst. Sci. 21(2), 236–250 (1980)

73. Muthukrishnan, S.: Theory of data stream computing: where to go. In: PODS, pp.
317–319 (2011)

74. Nepomnnjaščǐi, V.: Rudimentary predicates and turing computations. Dokl. Akad.
Nauk SSSR 195, 282–284 (1070); English translation in Soviet Math. Dokl. 11,
1462–1465 (1970)

75. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Be-
havior 35(1-2), 166–196 (2001)

76. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM
J. Comput. 22(1), 211–219 (1993)

77. Nordstrom, J.: Pebble games, proof complexity, and time-space trade-offs. In: Log-
ical Methods in Computer Science (to appear, 2013)

78. Papadimitriou, C.H., Schapira, M., Singer, Y.: On the hardness of being truthful.
In: FOCS, pp. 250–259 (2008)

79. Papadimitriou, C.H., Sipser, M.: Communication complexity. J. Comput. Syst.
Sci. 28(2), 260–269 (1984)

80. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

81. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510–530 (1989)

82. Pippenger, N.: On simultaneous resource bounds (preliminary version). In: FOCS,
pp. 307–311 (1979)

83. Rabin, M.O.: Probabilistic algorithm for testing primality. Journal of Number The-
ory 12(1), 128–138 (1980)

84. Radhakrishnan, J., Raman, V.: A tradeoff between search and update in dictio-
naries. Inf. Process. Lett. 80(5), 243–247 (2001)

85. Raman, V., Ramnath, S.: Improved upper bounds for time-space trade-offs for
selection. Nord. J. Comput. 6(2), 162–180 (1999)

132 A. Borodin

86. Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259
(2002)

87. Savitch, W.J.: Deterministic simulation of non-deterministic turing machines (de-
tailed abstract). In: STOC, pp. 247–248 (1969)

88. Solovay, R., Strassen, V.: Erratum: A fast monte-carlo test for primality. SIAM J.
Comput. 7(1), 118 (1978)

89. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of
polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

90. Vazirani, V.V.: Approximation algorithms. Springer-Verlag New York, Inc., New
York (2001)

91. Williams, R.: Alternation-trading proofs, linear programming, and lower bounds.
In: STACS, pp. 669–680 (2010)

92. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-
bridge University Press (2011)

93. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC, pp. 209–213 (1979)

94. Yao, A.C.-C.: Near-optimal time-space tradeoff for element distinctness. SIAM J.
Comput. 23(5), 966–975 (1994)

95. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu energy.
In: FOCS, pp. 374–382 (1995)

A History

of Distribution-Sensitive Data Structures�

Prosenjit Bose1, John Howat2, and Pat Morin1

1 School of Computer Science
Carleton University

{jit,morin}@scs.carleton.ca
2 School of Computing
Queen’s University

howat@cs.queensu.ca

Abstract. Distribution-sensitive data structures attempt to exploit pat-
terns in query distributions in order to allow many sequences of queries
execute faster than in traditional data structures. In this paper, we sur-
vey the history of such data structures, outline open problems in the
area, and offer some new results.

1 Introduction

Data structures that exploit non-uniform query distributions to solve data struc-
turing problems are typically termed distribution-sensitive. The idea of a query
distribution being non-uniform is a deliberately vague notion; such data struc-
tures can take advantage of many different types of underlying patterns in a
query distribution, and we will elaborate on the specific types of patterns that
are generally studied in Section 3.

Most distribution-sensitive data structures evolve from the following high-level
principle. For a given problem, a data structure that does not take advantage of
the query distribution typically has a query time that is a function of the size
of the data structure, and a (possibly matching) lower bound may also exist.
A quantity related to a property of the query distribution is defined. A data
structure is designed such that its query time is a function of this quantity as
opposed to the size of the data structure. This quantity, in the worst case, is no
larger than the number of elements stored in the data structure. As a result, any
existing lower bounds are not violated. However, in many cases, it is possible to
beat known lower bounds, at least for some queries (or sequences of queries).

Distribution-sensitive data structures are often motivated by practical con-
cerns, since the types of queries handled in real-world applications are generally
not uniformly random. For example, imagine a file system on a server that han-
dles a large number of users. One possible source of non-uniformity is that some
files get accessed much more frequently than others (e.g., programs essential
to the operating system or commonly-accessed documents), and an efficient file

� Research supported in part by NSERC. Dedicated to Ian Munro.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 133–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

134 P. Bose, J. Howat, and P. Morin

system may wish to speed up access to these files. The same could be said of
users, as well. Users who log-in to the system infrequently (such as guest users)
might have their files retrieved more slowly in order to speed up the access of
more frequent users.

Another source of non-uniformity could be the relative location of files. During
a directory traversal, for example, a user might be likely to access files that
are, in some sense, close together (either physically on disk or abstractly in the
directory structure). If directory traversal is a common operation, speeding up
such accesses would be beneficial.

Perhaps the clearest source of non-uniformity would be an explicit descrip-
tion of the distribution of queries to files. Each file would have some specified
probability of being requested by a user. Naturally, we would expect frequently
requested files to be accessed quickly, while files that are seldom requested could
be accessed relatively slowly. Having complete information about the distribu-
tion of queries is, in general, a somewhat unrealistic assumption. Nevertheless,
this information can be approximated empirically.

Organization. The remainder of this paper is organized in the following way.
We begin with a review of optimum binary search trees in Section 2. We then
provide an overview of different distribution patterns that have been considered
in the literature in Section 3. We then tour data structures that take advantage of
these patterns in Section 4. Finally, in Section 5, we present a new distribution-
sensitive data structure.

2 Optimum Binary Search Trees

Perhaps the earliest data structuring result that can be considered distribution-
sensitive is that of optimum binary search trees, introduced in 1975 by Knuth [1].
An optimum binary search tree is a binary search tree on n keys that has average
search cost that is no larger than that of any other binary search tree built on
those n keys. Note that finding such a tree is not trivial, and an exhaustive
approach is hopeless since it is well-known that there are an exponential number
of possible binary search trees on a given number of keys.

To construct such a tree, one defines a query probability for each key.1 The
construction algorithm uses dynamic programming to construct the tree inO

(
n2
)

time. The average search cost for a key drawn from the specified probability dis-
tribution is the sum (over all keys) of the probability associated with a key
multiplied by the cost to search for that key in the tree (i.e., the depth of the
node containing that key).

It is important to note that the optimum binary search tree has the minimum
average search cost over all binary search trees built on the given keys: there
is no asymptotic notation required. This is, in general, a fairly lofty goal (as

1 One may also wish to consider the case when not all queries are stored in the tree
(i.e., some queries are unsuccessful). In this case, one also defines the probability
that a query lies between two adjacent keys for each such pair.

A History of Distribution-Sensitive Data Structures 135

evidenced by the large amount of time required to construct the tree). Linear
time algorithms were designed to build binary search trees that are optimal to
within a constant factor [2–5].

One important limitation of optimum binary search trees is that they require
a priori knowledge of the query distribution, which (in many applications) may
not be available.

3 Distribution Patterns

Optimum binary search trees exploit the most obvious form of non-uniformity:
explicit non-uniformity. In this section, we discuss other patterns and properties
of queries that are commonly observed in data structuring problems. We defer
examples of data structures with these properties until Section 4.

For simplicity and concreteness, we describe these properties as they are used
for static dictionary data structures. Such data structures maintain a static set
S = {s1, s2, . . . , sn} of n keys under the search operation, where we are given
a key and must return the corresponding element in the data structure. The
sequence of queries is given online and is denoted A = 〈a1, a2, . . . , am〉, where
at ∈ S (for 1 ≤ t ≤ m) and m is the length of the query sequence. We also
assume a sufficiently long query sequence, so that m is Ω(n logn). Throughout
this paper, we use log x to denote max{1, log2 x}.

3.1 Static and Dynamic Optimality

Consider the frequency f(x) of a query x ∈ S, i.e., the number of times that
query is made in A: f(x) = |{t | at = x}|. The static optimality property states
that the time to execute A is

O

(
m+

n∑
i=1

f(xi) log(m/f(xi))

)

Note that the quantity f(xi)/m is essentially the probability p(xi) that xi is
queried. The sum can therefore be re-written as

n∑
i=1

f(xi) log(m/f(xi)) =
n∑

i=1

mp(xi) log(1/p(xi)) = mH

where H is the empirical entropy of the query distribution.2 The average query
time is therefore mH/m = H . Since the entropy of the query distribution is
a lower bound on the average query time (to within lower-order terms) [6],
it follows that a data structure with the static optimality property is optimal
in this sense. The optimum binary search trees of Knuth match this average
query time [1]. Note that, although the query time is stated in terms of query

2 For this reason, the static optimality property is also known as the entropy bound.

136 P. Bose, J. Howat, and P. Morin

frequencies, it is not necessarily required that the data structure be given the
frequencies. While optimum binary search trees require the frequencies to be
specified in advance, not all data structures require this.

The dynamic optimality property enforces a much stronger sense of “optimal-
ity.” Given some specific class of data structure (e.g., binary search trees), let
OPT (A) denote the total query time of the fastest possible data structure in that
class to execute the sequence A, given that it may perform arbitrary restructur-
ing after each query (e.g., rotations in a binary search tree), which are included
in the access time. Another data structure of that class is dynamically optimal
if it can execute A in time O(OPT (A)), assuming A is sufficiently long. The
problem of designing a dynamically optimal binary search tree is a longstanding
open problem. We discuss this problem in more detail in Section 4.

3.2 Key-Independent Optimality

Another kind of optimality is that of key-independent optimality, which was
introduced by Iacono [7]. Let b : S → S be a random bijection and let b(A) denote
the query sequence 〈b(a1), b(a2), . . . , b(am)〉. Recall that OPT (A) represents the
fastest possible time that a data structure in a given class can execute A. Now,
consider the quantity E[OPT (b(A))]: the expected value of the fastest time a
data structure in a given class can execute b(A). We say that a data structure
is key-independently optimal if it can execute A in time O(E[OPT (b(A))]).

Intuitively, a key-independently optimal data structure executes sequences
with random key values as fast as any other data structure in that class.

3.3 The Working-Set Property

In the query sequence A = 〈a1, a2, . . . , am〉, we say that at is queried at time t
for 1 ≤ t ≤ m. We define the working-set number of x at time t, denoted wt(x),
to be the number of distinct elements queried since the last time x was queried
(i.e., the last time x appeared in A). If x has not yet appeared in A (prior to time
t), then we set wt(x) = n. To be more precise, we slightly modify the notation
of Iacono [7]: let lt(x) = min ({∞} ∪ {t′ > 0 | at−t′ = x}) and define

wt(x) =

{
n if lt(x) =∞
|{at−lt(x)+1, . . . , at}| otherwise

The working set property states that the time required to execute A is

O

(
m+

m∑
t=1

logwt(at)

)

Intuitively, query sequences that repeat particular queries frequently are exe-
cuted faster in data structures with the working-set property. Sleator and Tar-
jan [8] indicate one possible motivation for why this is a desirable property.
Suppose that, while the set S is quite large, there exists a subset S′ ⊂ S such

A History of Distribution-Sensitive Data Structures 137

that all queries to the data structure belong to S′. In this case, the working-set
property allows queries to run in O(log |S′|) time instead of O(log |S|) time, since
the working-set number of any query at any time is at most |S′|. This essentially
means that the elements of S \ S′ can be ignored, since they are never queried.
Put another way, it is as if those elements are not present in the data structure.

This property was first discussed in this context by Sleator and Tarjan [8],
although the general idea is similar to that of the move-to-front heuristic [9].
IIacono proved that any data with the working-set property is also statically
optimal [10]. Therefore, ensuring the working-set property is one way of circum-
venting the need for a priori knowledge of the query distribution. Furthermore,
the bound provided by the working-set property is asymptotically equivalent to
that provided by key-independent optimality [7]. Finally, for certain classes of
skip-lists and B-trees, the working-set property is asymptotically equivalent to
dynamic optimality [11].

3.4 The Queueish Property

In some sense, the queueish property is the opposite of the working-set property.
The queue number of the element x ∈ A at time t is denoted qt(x) and is defined
to be n−wt(x)−1, i.e., the number of distinct elements of S that have not been
queried since the last time x was queried. The queueish property states that the
time required to execute A is

O

(
m+

m∑
t=1

log qt(at)

)

Iacono and Langerman proved that no binary search tree has the queueish prop-
erty [12]. As a result, this particular property has yet to be explored in signifi-
cantly more detail, at least for the dictionary problem. A weaker version of this
property called the weakly queueish property exists in at least one dictionary [12].
The weak version of the property states that a query at should execute in time
O(log qt(at)) + o(logn).

3.5 The Static and Dynamic Finger Properties

While both the working-set and queueish properties consider the time between
queries, the static and dynamic finger properties consider the distance between
queries. Let d(x, y) denote the rank distance between x and y, i.e., the number
of elements in S between x and y.

We first consider the static finger property. Fix an element f ∈ S, which we
shall call a finger. The static finger property states that the time required to
execute A is

O

(
m+

m∑
t=1

log d(f, at)

)

138 P. Bose, J. Howat, and P. Morin

The “static” in “static finger” arises from the fact that the finger f is fixed.
Iacono showed that any data structure that has the static optimality property
also has the static finger property, for any choice of finger f [13].

The dynamic finger property allows the finger to dynamically change over
time: the finger is always the previous query. Therefore, the dynamic finger
property states that the time required to execute the sequence A is

O

(
m+

m∑
t=2

log d(at−1, at)

)

3.6 The Unified Property

The unified property3 is a combination of the working-set and dynamic finger
properties and was introduced by Bădoiu et al. [14]. The unified bound ut(x)
for a query x at time t is defined as follows

ut(x) = min
y∈S

(wt(y) + d(y, x))

Intuitively, ut(x) is small whenever a recently queried element is close to x. More
formally, the unified property states that the time required to execute A is

O

(
m+

m∑
t=1

log ut(at)

)

It is important to note that having the unified property is not the same as
simultaneously having both the working-set and dynamic finger properties. To
illustrate this, we consider an example of a query sequence due to Bădoiu et al.
[14]. Suppose S = {1, 2, . . . , n} for some even n and define A as follows

A = 〈1, n/2 + 1, 2, n/2 + 2, 3, n/2 + 3, . . . , n/2, n, 1, n/2+ 1, . . .〉

In A, every query (after the first n queries) will have working-set number n,
and so the working-set property gives a bound of O(m logn) for the sequence.
Similarly, every query is at distance n/2 from the previous query, and so the
dynamic finger property gives a bound of O(m logn) for each sequence as well.
However, observe that after the first n queries, query at−2 is at distance 1 from
at. The unified property therefore gives a bound of only O(m) for the sequence,
since both the working-set number and the distance are constant, which is a
factor of O(logn) better than either of the other two bounds.

4 Examples of Distribution-Sensitive Data Structures

In this section, we survey a selection of known distribution-sensitive data struc-
tures.
3 As noted by Bădoiu et al. [14], a “unified bound” appears in the original paper on
splay trees by Sleator and Tarjan [8], which is simply the minimum of the bounds
provided by static optimality, the working-set property and the static finger property.
The property we discuss here is distinct.

A History of Distribution-Sensitive Data Structures 139

4.1 Splay Trees

The splay tree of Sleator and Tarjan [8] is among the first distribution-sensitive
data structures and is certainly one of the most interesting. The reasons for
this are two-fold: first, splay trees have a considerable number of distribution-
sensitive properties, including most of those mentioned in Section 3. Perhaps
more interesting is the fact there is still much to be shown about the behaviour
of splay trees.

The splay tree fits into the usual binary search tree model, and the splay
operation, which consists of a series of rotations, is used after every query. We
omit the details of the splaying operation. Splay trees support queries in O(logn)
amortized time; this means that individual queries may take as much as O(n)
time, but the sequence as a whole executes in O(m logn) time.

Splay trees have many of the properties mentioned in Section 3. Sleator and
Tarjan showed that splay trees are statically optimal, have the static finger
property and have the working-set property [8]. Iacono later showed that splay
trees are key-independently optimal [7].

Sleator and Tarjan conjectured that splay trees have the dynamic finger prop-
erty [8]; this was verified 15 years later with a fairly difficult proof due to Cole
et al. [15,16], although Tarjan showed that the less general sequence where the
keys are queried in sequential order can be executed in O(n) time [17]. This
bound is known as the scanning bound or sequential access theorem.

Given that splay trees have both the working-set and dynamic finger proper-
ties, Bădoiu et al. conjectured that splay trees also satisfy the unified property
[14]; this question is still open.

Perhaps the most important unresolved conjecture was also posed by Sleator
and Tarjan in their original paper [8]: are splay trees dynamically optimal? This
problem remains open and is generally viewed as the most important question
in this line of research. Note that this problem must, by its nature, be studied
with respect to a particular class of data structure. For example, the problem is
resolved for some classes of skip lists and B-trees [11].

4.2 Other Data Structures

Many other data structures also exhibit distribution-sensitive properties.

The Working-Set Structure. The working-set structure is due to Bădoiu et al.
[14] and provides an even stronger version of the working-set property. Rather
than executing the sequence in time O(m+

∑m
t=1 logwt(at)), the working-set

structure guarantees that each individual query at is answered in worst-case time
O(logwt(at)) per query in the sequence. This can be viewed as de-amortizing
the working-set property provided by, for example, splay trees. This means that
any query can be answered in time O(logn), since wt(at) ≤ n for all t; this
is a significant improvement over the O(n) guarantee offered by splay trees.
The working-set structure is not a binary search tree, however. Instead, it is
a collection of binary search trees and queues, each of which increases doubly

140 P. Bose, J. Howat, and P. Morin

exponentially in size to ensure that recently queried elements are found quickly.
Therefore, the working-set structure is not directly comparable with splay trees.
However, Bose et al. showed how to construct and maintain a binary search tree
with the same query time as the working-set structure [18].

The Unified Structure. The unified structure was also introduced by Bădoiu
et al. [14] and was the first data structure to have the unified property. Like
the working-set structure, the unified structure is not a binary search tree and
is therefore not directly comparable with splay trees either. However, Derry-
berry [19] studied binary search trees that support the unified property.

Skip-Splay Trees. The skip-splay tree is due to Derryberry and Sleator [20] and is
an attempt to achieve the unified property within the binary search tree model.
Skip-splay trees fall slightly short of this goal: they execute the query sequence in
time O(m log logn+

∑m
t=1 log ut(at)), and so spend an extra O(log logn) amor-

tized time per query.

Nearing Dynamic Optimality. Considering the apparent difficulty of the problem
of proving splay trees to be dynamically optimal, attention has turned somewhat
to finding other binary search trees that are competitive to dynamically optimal
data structures: their query times are a (sub-logarithmic) factor away from dy-
namic optimality. Several data structures come within a factor of O(log logn) of
dynamic optimality [21–23].

Finger Search. In the finger search problem, we are given a pointer to some ele-
ment of the data structure before we perform a query for another element. The
goal is then to execute the query in time that is a function (usually logarithmic)
of d, where d is the rank distance from the query to the finger. This is a general-
ization of the dynamic finger property: to achieve the dynamic finger property,
one can simply use a pointer to the previous answer. Several finger search data
structures are known for various models (e.g., [24–26]). Skip lists also allow for
finger searches [27]. Kaporis et al. [28] show how to achieve O(log log d) queries
when the contents of S are chosen according to a certain kind of distribution.

Biased Search Trees. The biased search trees of Bent et al. [29] are similar
in spirit to optimum binary search trees. Each element si ∈ S is assigned a
positive real weight wi, and a query for si is executed in time O(logW/wi),
where W =

∑n
i=1 wi is the sum of all weights in the data structure. When wi is

viewed as the probability that si is queried, then we have W = 1 and achieve
essentially the same as an optimum binary search tree (to within a constant
factor). The key difference is that biased search trees support insertions and
deletions of elements into and from S. Splay trees can also be made to support
this query time, although only in the amortized sense. Treaps support this query
time in the expected sense [30]. Bagchi et al. presented a biased version of skip
lists that can also match this query time [31].

A History of Distribution-Sensitive Data Structures 141

Priority Queues. Johnson described a priority queue that allowed for insertion
and deletion in time O(log logD) [32], where D is the difference in priorities
of the elements before and after the element to be inserted or deleted. In this
setting, the allowable values of priorities come from a restricted range of integers.
This type of distribution sensitivity is similar in spirit to that of the dynamic
finger property, except that the measure of distance is in terms of priority and
that the distance is measured to both the previous and next elements. Iacono
showed that pairing heaps offer a bound very similar to that of the working-set
property, except in the priority queue setting [10] . The minimum element can be
extracted from a pairing heap in time O(logmin{n, k}), where n is the number of
elements in the pairing heap and k is the number of heap operations performed
since x was inserted. Similar results were obtained by Elmasry [33].

Queaps and Queueish Dictionaries. Iacono and Langerman [12] presented a heap
with the queueish property: the minimum element x can be extracted in time
O(log k), where k is the number of elements that have been in the heap longer
than x. A dictionary data structure is also presented that supports a query for x
at time t in time O(log qt(x) + log logn). Iacono and Langerman also showed that
no binary search tree can have the queueish or even weakly queueish property [12]
by showing an access sequence such that having the queueish property would
violate the lower bound of Wilber [34].

The Temporal Precedence Problem. For the temporal precedence problem, a
list must be maintained over many insertion operations. Queries consist of two
pointers into the list and must quickly determine which of the two items pointed
to was inserted first. Brodal et al. gave a data structure in the pure pointer
machine model that is capable of answering queries in time O(log log δ) [35],
where δ is the number of insertions that occurred between the insertions of the
query elements.

Random Input and Predecessor Search. The predecessor search problem asks for
the largest element of S less than or equal to some query element. Belazzougui
et al. [36] showed that this can be accomplished quickly when the set S is
chosen according to a certain kind of distribution (as in the work of Kaporis et
al. [28]). This differs from the usual notion of distribution sensitivity: rather
than considering patterns in the query distribution, patterns in the input itself
are considered.

Point Searching. For the (planar) point searching problem, the set S consists
of points in the plane and a query consists of a point and the data structure
must determine if that point is in the set S. If the point is not in the set S, then
the data structure must indicate this. Demaine et al. described how to answer
point searching queries in a distribution-sensitive manner [37]. The query time
is logarithmic in a function related to the number of points in a certain region
defined by the current and previous queries. Therefore, this data structure can be
considered to have a two-dimensional analogue of the dynamic finger property.

142 P. Bose, J. Howat, and P. Morin

Point Location. For the (planar) point location problem, we are given a series
of regions in the plane. Queries consist of a query point and the data structure
must determine which region contains the query point. This particular prob-
lem has been thoroughly studied and has had several distribution-sensitive data
structures proposed for it. One approach is to obtain an optimal data structure
based on the probability distribution of the queries (e.g., [38, 39]). In fact, it is
possible to achieve close to this even without knowledge of the distribution [40].
Another approach to the problem is to support an analogue of the dynamic fin-
ger property, as proposed by Iacono and Langerman [41]. In this setting, the
query time achieved is very similar to that achieved for point searching [37].

Nearest Neighbour Search. For the nearest neighbour problem, we are given a
set of points in the plane, and a query asks for the closest point in the set
to the query point. In general, it is difficult to find the exact solution quickly
using a reasonable amount of space, and so most data structures settle for an
approximate solution (i.e., a point that is not much further away than the nearest
neighbour). Derryberry et al. proposed a data structure for the (approximate)
nearest neighbour problem that executes queries in time that is a (logarithmic)
function of the number of points in a certain box containing the query and the
answer to the previous query [42]. In fact, this technique works in any constant
dimension; the query time has quadratic dependence on the dimension (and, of
course, the approximation becomes worse as the dimension increases).

Biased Range Trees. Range searching is a very well-studied problem, but very
little has been done in terms of distribution-sensitive data structures for range
searching. Recall that for the range searching problem, we are given a set of
points in the plane. A query consists of some region (typically of a specific shape)
and we must report (or count) the number of points in the region. Dujmović et al.
described a data structure that, given a query distribution, can answer quarter-
space (i.e., quadrant) queries in time that is optimal (to within a constant factor)
[43]. Afshani et al. subsequently extended this result to four-sided queries [44].

5 Searching with Temporal Fingers

In this section, we present a new distribution-sensitive data structure for search-
ing in a static dictionary. In this data structure, the time required to search
for a query element is logarithmic in the distance from the query element to a
temporal finger, plus a small additive term.

Consider a set S and a sequence A = 〈a1, a2, . . . , am〉, where at ∈ S. For
the purposes of this chapter, we assume S = {1, 2, . . . , n} (which is simply a
reduction to rank-space) and that the set S is static.

Recall that the working-set property roughly states that accesses are fast
if they have been made recently. Conversely, the queueish property states that
accesses are fast if they have not been made recently. We propose a generalization
of these two properties, where a temporal finger is defined and the access time is

A History of Distribution-Sensitive Data Structures 143

a function of the distance in A between the temporal finger and the element to
be accessed. Such a property can be viewed as a temporal version of the static
finger property.

5.1 Defining Temporal Distance

We briefly review some definitions from Section 3. Recall that our access sequence
is A = 〈a1, a2, . . . , am〉. Define

lt(x) = min ({∞} ∪ {t′ > 0 | at−t′ = x})

One can think of lt(x) as the most recent time x has been queried in A before
time t. We then define

wt(x) =

{
n if lt(x) =∞
|{at−lt(x)+1, . . . , at}| otherwise

Here, wt(x) is the usual working-set number of element x at time t. We are now
ready to define temporal distance. Consider a temporal finger f where 1 ≤ f ≤ n.
The temporal distance from x to f at time t is defined as

τt,f (x) = |wt(x)− f + 1|

Observe that if f = 1, then τt,f (x) = wt(x). In this case, having query time
logarithmic in the temporal distance is equivalent to the working-set property.
Conversely, if f = n, then τt,f (x) = n− wt(x) − 1, which is precisely the queue
number qt(x) defined by Iacono and Langerman [12] and described in Section 4.2.
Performing a query in time logarithmic in the temporal distance in this case is
equivalent to the queueish property. In general, our goal is a query time of
O(log τt,f (x)) + o(logn).

Another way to view temporal distance is the following. At any time t, the
query sequence A defines a permutation of the elements that orders them from
most recent query to least recent query. The temporal finger f points to the f -th
item in this permutation, and the temporal distance τi,f (x) is the distance from
the f -th item to x in the permutation.

5.2 Background

The notion of a dictionary with query times that are sensitive to temporal dis-
tance is not new: the working-set structure [14] and the queueish dictionary [12]
are two well-known examples. Layered working-set trees [18] also fall into this
category.

However, the notion of allowing the finger by which temporal distance is
measured to be selected in advance is relatively new; prior to this thesis, this
problem has only been studied in the context of priority queues. Elmasry et al.
developed a priority queue that supports a constant number of temporal fingers
[45]. In particular, this shows the existence of a priority queue that supports
both the working-set and queueish properties.

144 P. Bose, J. Howat, and P. Morin

6 The Data Structure

Our data structure consists of two parts: Old and Young. A schematic of the
data structure is illustrated in Figure 1.

OLDYOUNG

︸ ︷︷ ︸
f

︸ ︷︷ ︸
n−f

· · · · · · · · · · · ·

D′j′ Dj

Q′j′ Qj

D′1

D′2

D′k′

D1

D2

Dk−1

Dk

Q′2 Q′1Q′k′
Qj Q2 Qk−1 Qk

most recent least recent

Fig. 1. A schematic of the data structure for temporal finger searching. Pointers be-
tween elements in substructures and the corresponding queue elements are not shown.
The substructures in the Old data structure are drawn as trees, but are actually
implemented as sorted arrays.

6.1 The Old Data Structure

The Old data structure contains the n − f elements that were last accessed
more than f queries ago. They are stored in a working-set structure [14].

As discussed in Section 4.2, the working-set structure consists of balanced
binary search trees (e.g., AVL trees [46]) D1, D2, . . . , Dk of size 22

j

for j =
1, 2, . . . , k. It follows that k is O(log log(n− f)). Each tree Dj has an accom-
panying queue Qj containing the same elements as in the order that they were
inserted into Dj . Pointers are maintained between an element in a tree and the
corresponding element in the queue. The concatenation of all queues is precisely
a list of the n− f elements in the order they were queried, from most recent to
least recent.

6.2 The Young Data Structure

The Young data structure contains the f elements that were accessed at most
f accesses ago. They are stored in a modified queueish dictionary [12].

The queueish dictionary consists of a series of substructures D′
1, D

′
2, . . . , D

′
k′

and queues Q′
1, Q

′
2, . . . , Q

′
k′ . As in the Old data structure, the concatenation

of the queues in this data structure orders the elements in increasing order
of last access time. However, the queues no longer correspond exactly to the
substructures: all of the elements of Q′

1 ∪Q′
2 ∪ · · · ∪Q′

j are stored in D′
j , but D

′
j

may contain additional elements. Pointers are maintained between each element

A History of Distribution-Sensitive Data Structures 145

of D′
j and its corresponding entry in a queue (which may not be Q′

j). The size of

Q′
j is between 22

j−1 and 22
j

. D′
k′ will contain all elements in the structure and

thus have size f , and Q′
k′ has size at least 22

k′−1. Therefore, k′ = O(log log f).
As suggested by Iacono and Langerman, D′

j can be implemented as a sorted
array [12]. Note that D′

k′ will be implemented differently; we address this issue
during the analysis.

6.3 Performing a Query

To perform the query x at time t, we search in D1, D
′
1, D2, D

′
2, . . . and so on,

until x is found. At this point x is now the most recently accessed (i.e., youngest)
element in the data structure, so we delete it from the structure we found it in
and insert it into Young. There are two possible cases: either x is found in Old

or Young.
Suppose first that x is found in Old, say x ∈ Dj . In this case, we delete x

from Dj, insert x into Young. We then delete the oldest element in Young

and insert it into Old. In doing so, we will need to shift elements in Old down
to restore the size of Dj . This can be done by taking the oldest element out of
each subtree and placing it in the next larger subtree until we reach Dj.

Suppose now that x is found in Young, say x ∈ D′
j . This case is handled

exactly as it would be in a regular queueish dictionary: x is removed from Q′
j

and inserted at the front of Q′
k′ . In doing so, |Q′

j | may become too small (i.e.,

less than 22
j−1). If this occurs, we remove 22

j − |Q′
j| elements from the end of

Q′
j+1, insert them at the front of Q′

j , and reconstruct D′
j from the elements in

Q′
1, Q

′
2, . . . , Q

′
j . This may result in Q′

j+1 becoming too small (and so on); these
cases are handled identically.

6.4 Access Cost

The cost of an access can be separated into two parts: the cost of finding the
query element and the cost of adjusting the data structure.

Finding x. To find the element x at time t, we search inD1, D
′
1, D2, D

′
2, . . . until x

is found in Dj orD
′
j . The cost to find the element is therefore

∑j
l=1 O

(
log 22

l
)
=∑j

l=1 O
(
2l
)
= O

(
2j
)
. Again, there are two possible cases: either x ∈ Dj or

x ∈ D′
j .

If x ∈ Dj, then wt(x) = f +Ω
(
22

j−1
)
. Therefore, τt,f (x) = |wt(x)− f +1| =

|f + Ω
(
22

j
)
− f + 1| = Ω

(
22

j−1
)
. Equivalently, j ≤ log log τt,f (x) + O(1). The

cost to find the element is therefore O
(
2j
)
= O(log τt,f (x)).

If x ∈ D′
j , then qt(x) = (n − f) + Ω

(
22

j−1
)
, and since wt(x) = n − qt(x) −

1, we have wt(x) = f − Ω
(
22

j−1
)
− 1. Therefore, τt,f (x) = |wt(x) − f +

146 P. Bose, J. Howat, and P. Morin

1| = |f − Ω
(
22

j−1
)
− 1 − f + 1| = | − Ω

(
22

j−1
)
| = Ω

(
22

j−1
)
. Equivalently,

j ≤ log log τt,f (x) + O(1). The cost to find the element is therefore O
(
2j
)
=

O(log τt,f (x)).
In either case, we have that the portion of the access cost dedicated to finding

x is O(log τt,f (x)).

Adjusting the Data Structure. The data structure must now be adjusted. If x
is found in Young, then Young can be restructured in the usual manner at
amortized cost O(log log f) by radix sorting the indices, as suggested by Iacono
and Langerman [12]. If x is found in Old, however, an insertion must be per-
formed into D′

k′ . If D′
k′ is implemented as a binary search tree or sorted array,

this will take time Θ(log f), which is too slow.
We therefore describe alternative implementations of D′

k′ to improve our ac-
cess time.

The first alternative is to use a y-fast trie [47]. In this case, the word size can
be considered Θ(logn), since we are effectively operating in rank space. Doing
so allows us to insert, delete and search in D′

k′ in amortized time O(log logn).
This follows from the fact that we know the rank of x because we have already
found it in the previous stage.

Recall that the queueish dictionary still requires a way of rebuilding smaller
structures from larger structures. If the other substructures are implemented as
arrays, all that is required is following pointers from Q′

k′ to the oldest elements
in D′

k′ , placing them in an array, deleting them from Q′
k′ , and proceeding as

usual. This results in an amortized query time of

O(log τt,f (x)) +O(log logn)

The second alternative is to instead use the predecessor search structure of
Beame and Fich [48]. Doing so allows us to insert, delete and search in D′

k′

in time

O

(
min

{
(log logn)(log log f)

log log logn
,

√
log f

log log f

})

This results in an amortized query time of

O(log τt,f (x)) +O

(
min

{
(log logn)(log log f)

log log logn
,

√
log f

log log f

})

At this point we note that, using the first technique, we match the performance
of the queueish dictionary described by Iacono and Langerman [12] when f = n.
Using the second technique, we match the performance of the working-set struc-
ture of Bădoiu et al. [14] when f = 1. It is also straightforward to determine in
advance which technique should be used: if f is Ω(logn), then the first technique
should be used; otherwise the second technique should be used.

To summarize, we have

A History of Distribution-Sensitive Data Structures 147

Theorem 1. Let 1 ≤ f ≤ n. There exists a static dictionary over the set
{1, 2, . . . , n} that supports querying element x in amortized time

O(log τt,f (x)) +O

(
min

{
log logn,

(log logn)(log log f)

log log log n
,

√
log f

log log f

})

where τt,f (x) denotes the temporal distance between the query x and the element
f at time t.

There are several possible directions for future research.

1. Can the additive term in Theorem 1 be reduced? This would be interesting
even for specific (ranges of) values of f . When f = n, for example, the best
known result is O(log τt,nn+ log logn) [12]. The case when f = 1 is fully
solved [14].

2. Is it possible to support multiple temporal fingers (e.g., O(1) many)? Simply
searching the structures in parallel allows us to find the query element in
time proportional to the logarithm of the minimum temporal distance, but
it is not obvious how to quickly restructure the data structures and promote
the query element to the cheapest substructure in parallel for each structure.

3. Is it possible to maintain the temporal finger property while supporting
dynamic update operations?

References

1. Knuth, D.: Optimum binary search trees. Acta Informatica 1, 14–25 (1971)
2. Mehlhorn, K.: Nearly optimal binary search trees. Acta Inf. 5, 287–295 (1975)
3. Mehlhorn, K.: A best possible bound for the weighted path length of binary search
trees. SIAM J. Comput. 6(2), 235–239 (1977)

4. Bayer, P.: Improved bounds on the cost of optimal and balanced binary search
trees. Master’s thesis, MIT (1975)

5. Fredman, M.L.: Two applications of a probabilistic search technique: Sorting x +
y and building balanced search trees. In: STOC, pp. 240–244 (1975)

6. Shannon, C.: A mathematical theory of communication. Bell Systems Technical
Journal 27, 379–423, 623–565 (1948)

7. Iacono, J.: Key-independent optimality. Algorithmica 42(1), 3–10 (2005)
8. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686 (1985)

9. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

10. Iacono, J.: Improved upper bounds for pairing heaps. In: Halldórsson, M.M. (ed.)
SWAT 2000. LNCS, vol. 1851, pp. 32–45. Springer, Heidelberg (2000)

11. Bose, P., Doüıeb, K., Langerman, S.: Dynamic optimality for skip lists and B-
trees. In: SODA 2008: Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 1106–1114 (2008)

12. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)
13. Iacono, J.: Distribution Sensitive Data Structures. PhD thesis, Rutgers, The State

University of New Jersey (2001)

148 P. Bose, J. Howat, and P. Morin

14. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–
96 (2007)

15. Cole, R.: On the dynamic finger conjecture for splay trees. Part II: The proof.
SIAM Journal on Computing 30(1), 44–85 (2000)

16. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture
for splay trees. Part I: Splay Sorting log n-Block Sequences. SIAM Journal on
Computing 30(1), 1–43 (2000)

17. Tarjan, R.: Sequential access in splay trees takes linear time. Combinatorica 5,
367–378 (1985)

18. Bose, P., Doüıeb, K., Dujmović, V., Howat, J.: Layered working-set trees. Algo-
rithmica 63(1), 476–489 (2012)

19. Derryberry, J.C.: Adapative Binary Search Trees. PhD thesis, Carnegie Mellon
University (2009)

20. Derryberry, J.C., Sleator, D.D.: Skip-splay: Toward achieving the unified bound in
the BST model. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS
2009. LNCS, vol. 5664, pp. 194–205. Springer, Heidelberg (2009)

21. Bose, P., Doüıeb, K., Dujmović, V., Fagerberg, R.: An o(log log n)-competitive
binary search tree with optimal worst-case access times. In: Kaplan, H. (ed.) SWAT
2010. LNCS, vol. 6139, pp. 38–49. Springer, Heidelberg (2010)

22. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality—
almost. SIAM Journal on Computing 37(1), 240–251 (2007)

23. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive dynamic bi-
nary search trees. In: SODA 2006: Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 374–383 (2006)

24. Andersson, A.A., Thorup, M.: Dynamic ordered sets with exponential search trees.
Journal of the ACM 54(3) (2007)

25. Brodal, G.S., Lagogiannis, G., Makris, C., Tsakalidis, A., Tsichlas, K.: Optimal
finger search trees in the pointer machine. Journal of Computer and System Sci-
ences 67(2), 381–418 (2003)

26. Dietz, P.F., Raman, R.: A constant update time finger search tree. Information
Processing Letters 52(3), 147–154 (1994)

27. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

28. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.:
Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

29. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on
Computing 14, 545–568 (1985)

30. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4/5), 464–497
(1996)

31. Bagchi, A., Buchsbaum, A.L., Goodrich, M.T.: Biased skip lists. Algorithmica 42,
31–48 (2005)

32. Johnson, D.B.: A priority queue in which initialization and queue operations take
O(log logD) time. Theory of Computing Systems 15(1), 295–309 (1981)

33. Elmasry, A.: A priority queue with the working-set property. International Journal
of Foundations of Computer Science 17(6), 1455–1465 (2006)

34. Wilber, R.: Lower bounds for accessing binary search trees with rotations. SIAM
Journal on Computing 18(1), 56–67 (1989)

35. Brodal, G.S., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions
for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)

A History of Distribution-Sensitive Data Structures 149

36. Belazzougui, D., Kaporis, A., Spirakis, P.: Random input helps searching prede-
cessors. arXiv:1104.4353 (2011)

37. Demaine, E.D., Iacono, J., Langerman, S.: Proximate point searching. Computa-
tional Geometry: Theory and Applications 28(1), 29–40 (2004)

38. Arya, S., Malamatos, T., Mount, D.M., Wong, K.C.: Optimal expected-case planar
point location. SIAM Journal on Computing 37(2), 584–610 (2007)

39. Colette, S., Dujmović, V., Iacono, J., Langerman, S., Morin, P.: Distribution-
sensitive point location in convex subdivisions. In: SODA 2008: Proceedings of
the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 912–921
(2008)

40. Iacono, J.: A static optimality transformation with applications to planar point
location. arXiv:1104.5597 (2011)

41. Iacono, J., Langerman, S.: Proximate planar point location. In: SoCG 2003: Pro-
ceedings of the 19th Annual ACM Symposium on Computational Geometry, pp.
220–226 (2003)

42. Derryberry, J., Sheehy, D., Woo, M., Sleator, D.D.: Achieving spatial adaptiv-
ity while finding approximate nearest neighbors. In: CCCG 2008: Proceedings of
the 20th Annual Canadian Conference on Computational Geometry, pp. 163–166
(2008)

43. Dujmović, V., Howat, J., Morin, P.: Biased range trees. In: SODA 2009: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
486–495 (2009)

44. Afshani, P., Barbay, J., Chan, T.M.: Instance-optimal geometric algorithms. In:
FOCS 2009: Proceedings of the 50th Annual IEEE Symposium on Foundations of
Computer Science, pp. 129–138 (2009)

45. Elmasry, A., Farzan, A., Iacono, J.: A unifying property for distribution-sensitive
priority queues. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS,
vol. 7056, pp. 209–222. Springer, Heidelberg (2011)

46. Adelson-Velskii, G., Landis, E.: An algorithm for the organization of information.
Soviet Math. Doklady 3, 1259–1263 (1962)

47. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters 17(2), 81–84 (1983)

48. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

A Survey on Priority Queues

Gerth Stølting Brodal

MADALGO�, Department of Computer Science, Aarhus University
gerth@cs.au.dk

Abstract. Back in 1964 Williams introduced the binary heap as a basic
priority queue data structure supporting the operations Insert and Ex-

tractMin in logarithmic time. Since then numerous papers have been
published on priority queues. This paper tries to list some of the direc-
tions research on priority queues has taken the last 50 years.

1 Introduction

In 1964 Williams introduced “Algorithm 232” [125]—a data structure later
known as binary heaps. This data structure essentially appears in all introduc-
tory textbooks on Algorithms and Data Structures because of its simplicity and
simultaneously being a powerful data structure.

A tremendous amount of research has been done within the design and analy-
sis of priority queues over the last 50 years, building on ideas originating back to
the initial work of Williams and Floyd in the early 1960s. In this paper I try to
list some of this work, but it is evident by the amount of research done that the
list is in no respect complete. Many papers address several aspects of priority
queues. In the following only a few of these aspects are highlighted.

2 The Beginning: Binary Heaps

Williams’ binary heap is a data structure to store a dynamic set of elements
from an ordered set supporting the insertion of an element (Insert) and the
deletion of the minimum element (ExtractMin) in O(lg n) time, where n is the
number of elements in the priority queue1. Williams’ data structure was inspired
by Floyd’s 1962 paper on sorting using a tournament tree [65], but compared to
Floyd’s earlier work a binary heap is implicit, i.e. the data structure only uses one
array of size n for storing the n elements without using any additional space2. For
a set of size n it is simply an arrayA[1..n] storing the n elements in a permutation
implicitly representing a binary tree satisfying heap order, i.e. A[i] ≤ A[2i] and

� Center for Massive Data Algorithms, a Center of the Danish National Research
Foundation.

1 We let lg x denote the binary logarithm of x.
2 In the following we denote a data structure storing O(1) words of lg n bits between
the operations also as being implicit. The additional space will be stated explicitly
in these cases.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 150–163, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Survey on Priority Queues 151

A[i] ≤ A[2i+1] for all 1 ≤ i ≤ n (provided 2i ≤ n and 2i+1 ≤ n, respectively).
Williams gave an algorithm for constructing a heap from an array of n elements
in O(n lg n) time [125]. This was subsequently improved by Floyd [66] to O(n).

The average case performance of the operations on a binary heap was studied
in a sequence of papers. Porter and Simon [111] introduced the random heap
model, and proved that random insertions into a random heap require about
1.61 element exchanges. Bollobás and Simon [10] considered inserting a random
sequence of elements into an initially empty binary heap and proved that the
average number of exchanges per element inserted is about 1.7645. Doberkat
studied the average number of exchanges for ExtractMin in a random heap
[38] and for Floyd’s heap construction algorithm [39].

Gonnet and Munro considered the constants in the number of comparisons to
maintain a binary heap [80], and gave upper and lower bounds proving that In-
sert requires lg lgn±O(1) comparisons (the upper bound still requiring O(lg n)
elements to be moved) and ExtractMin requires lg n + lg∗ n± O(1) compar-
isons. An 1.5n − O(lg n) lower bound for the number of comparisons for con-
structing a heap was proved by Carlsson and Chen in [22].

Sack and Strothotte [113] showed how to support the merging of two binary
heaps (Meld) of size n and k in time O(k+lg n · lg k), where k ≤ n. If the heaps
are represented as binary trees using pointers the additive “k” term disappears
from their bound.

It is obvious that the k smallest elements in a heap can be extracted by k
applications of ExtractMin in O(k lg n) time. Frederickson [73] proved that
the partial order given by a binary heap (or more generally, from any heap
ordered binary tree) allows us to select the k smallest elements in O(k) time
(reported in arbitrary order).

3 Reducing the Number of Comparisons

All the results in Section 2 assume the partial order of the original binary heaps
of Williams. In this section we summarize work on lowering the constants in the
number of comparisons by considering priority queues with alternative require-
ments with respect to the order maintained.

Johnson [88] generalized binary heaps to implicit d-ary heaps with O(lgd n)
and O(d lgd n) time for Insert and ExtractMin, respectively. By setting d =
ω(1), d-ary heaps achieve sublogarithmic insertion time. Subsequently many pri-
ority queues achieved constant time Insert and logarithmic time ExtractMin,
surpassing the bounds of Johnson.

The weak heaps of Peterson and Dutton [108,41] are not completely implicit
like binary heaps. They store the input elements in one array and require one
additional bit per element. Edelkamp and Wegener [47] proved that sorting n
elements using a weak heap uses n lgn + 0.09n comparisons, getting very close
to the information theoretic lower bound of n lgn − 1.44n comparisons [67]. A
refinement of weak heap sorting performs at most n lgn−0.9n comparisons [46].
Edelkamp et al. [43] studied variations of weak heaps, in particular they reduced
the cost of Insert to be constant.

152 G.S. Brodal

Elmasry et al. [56] studied how to reduce the number of comparisons for pri-
ority queues to get close to the optimal number of comparisons, and presented a
pointer based spriority queue implementation supporting Insert with O(1) com-
parisons and ExtractMin with lg n+ O(1) comparisons. Edelkamp et al. [45]
recently achieved the same bounds by an implicit priority queue using O(1) extra
words of lgn bits.

4 Double-Ended Priority Queues

Atkinson et al. [8] generalized the partial order of binary heaps and introduced
the implicit Min-Max heaps supporting both ExtractMin and ExtractMax

in logarithmic time and having linear construction time. Essentially Min-Max
heaps and all the following double-ended priority queues maintain a Min-heap
and a Max-heap for some partition of the elements stored.

Carlsson introduced the implicit Deap [21] as an alternative to Min-Max
heaps, improving the number of comparisons for ExtractMin/ExtractMax

from 3
2 lg n+ lg lgn to lgn+ lg lg n. Carlsson et al. [23] gave a proof that a Deap

can be constructed in linear time.
General techniques to convert single ended priority queues into double-

ended priority queues were presented by Chong and Sahni [32] and El-
masry et al. [57]. Alternative implementations of implicit double-ended queues
include [106,26,37,99,6]. Ding and Weiss [35] presented an implicit double-ended
priority queue for multi-dimensional data.

Double-ended priority queues supporting Meld were presented by Ding and
Weiss [36], Khoong and Leong [96], and Cho and Sahni [31], which are based on
min-max heaps, binomial queues, and leftist trees, respectively.

5 Implicit Data Structures

The original implicit heaps of Williams require O(lg n) worst-case time for In-

sert and ExtractMin. Similar bounds are achieved by several of the above
mentioned implicit double-ended priority queues. Carlsson et al. [24] described
an implicit heap with O(1) time Insert and O(lg n) time ExtractMin, storing
O(1) extra words of lg n bits between operations. Edelkamp et al. [45] presented
an implicit priority queue with the same time bounds and also using O(1) extra
words, but only requiring lg n + O(1) comparisons per ExtractMin. A pri-
ority queue with amortized O(1) time Insert and O(lg n) time ExtractMin

was presented by Harvey and Zatloukal [84], that does not store any additional
information between operations.

The existence of efficient implicit priority queue data structures implied the
canonical question if efficient implicit dynamic dictionaries also existed. The
study of implicit dynamic dictionaries was initiated by Munro and Suwanda [104]
who proved tight Θ(

√
n) bounds on implicit dictionaries satisfying a fixed partial

order. The bounds for implicit dictionaries were subsequently improved by Fred-
erickson [71] who achieved logarithmic time searches and O(n

√
2/ lg n · lg3/2 n)

A Survey on Priority Queues 153

time updates, and the first polylogarithmic bounds were given by Munro in [101]
achieving O(lg2 n) time for both updates and searches by encoding the bits of
pointers for an AVL-tree by the relative order of pairs of elements. Munro and
Poblete [103] presented a semi-dynamic implicit dictionary with O(lg2 n) time
insertions and O(lg n) time searches. Subsequently update time was improved to
O(lg2 n/ lgn) by implicit B-trees [69], and eventually logarithmic time bounds
where obtained by Franceschini and Grossi [68]. Franceschini and Munro [70]
furthermore reduced the number of exchanges to O(1) while keeping the number
of comparisons per operation logarithmic (update bounds being amortized).

6 DecreaseKey and Meld

Dijkstra’s single source shortest paths algorithm makes essential use of priority
queues, and in particular the primitive of lowering the priority of an existing
element in the priority queue. Fredman and Tarjan [77] introduced the De-

creaseKey operation for this and presented Fibonacci heaps, supporting De-

creaseKey in amortized constant time implying a running time of O(m+n lg n)
for Dijkstra’s algorithm, improving the previous bound of O(m lgm/n n) achieved
using anm/n-ary heap [89]. Fibonacci heaps also resulted in improved algorithms
for computing minimum trees in weighted graphs with running time O(m lg∗ n).
Fibonacci heaps are a generalization of the binomial queues of Vuillemin [123],
which achieve the same performance as Fibonacci heaps except for the De-

creaseKey operation. In particular both data structures support Meld in
amortized constant time. The worst-case time for Meld in a binomial queue
is Θ(lg n), but the amortized time was proven to be constant by Khoong and
Leong [96].

A sequence of priority queues achieves the same amortized performance as
Fibonacci heaps. Peterson [108] gave a solution based on AVL-trees, Driscoll
et al. [40] presented the rank-relaxed heaps, Kaplan and Tarjan [94] presented
the thin heaps, Chan [25] presented the quake heaps, Haeupler et al. [81] pre-
sented the rank-pairing heaps, and Elmasry [53] presented the violation heaps.
Høyer [85] presented a general technique to construct different data structures
achieving time bounds matching those of Fibonacci heaps, using red-black, AVL-
trees and (a, b)-trees. Elmasry improved the number of comparisons of Fibonacci
heaps by a constant factor [48].

A direction of research has been to develop priority queues with worst-case time
guarantees for the operations supportedbyFibonacci heaps.The run-relaxedheaps
by Driscoll et al. [40] achieve worst-case constant timeDecreaseKey operations,
but Meld takes logarithmic time. The same result was achieved by Kaplan and
Tarjan [93] with fat heaps. Elmasry et al. presented two-tier relaxed heaps [58] in
which the number of comparisons forExtractMin is reduced to lg n+3 lg lgn+
O(1). Elmasry et al. [55] achieve similar bounds whereDecreaseKey operations
are supported with lgn + O(lg lg n) comparisons by introducing structural vio-
lations instead of heap order violations. The first priority queue with worst-case
o(lg n) timeMeldwas a generalization of binomial queues by Fagerberg [63], sup-
portingMeld in o(lg n) time and ExtractMin in time ω(lgn). A priority queue

154 G.S. Brodal

with constant time Insert and Meld, and logarithmic time ExtractMin and
DecreaseKey was presented byBrodal [11]. A purely functional implementation
of [11] (withoutDecreaseKey) was given by Brodal and Okasaki in [17].

Comparison based priority queues with worst-case constant time Insert, De-

creaseKey and Meld and logarithmic time ExtractMin were presented by
Brodal [12], assuming the RAM model. Similar bounds in the RAM model were
achieved by Elmasry and Katajainen [59]. Brodal et al. [16] recently achieved
matching bounds in the pointer machine model.

Common to many of the priority queues achieving good worst-case bounds
for Meld and/or DecreaseKey are that they use some redundant counting
scheme [33] to control the number of trees in a forest of heap ordered trees, the
number of structural violations and/or heap order violations.

Kaplan et al. [92] emphasized the requirement that the DecreaseKey op-
eration as arguments must take both the element to be deleted and a reference
to the priority queue containing this element, since otherwise FindMin, De-

creaseKey, or Meld must take non-constant time.
Chazelle [28] introduced the soft heap, a priority queue specialized toward

minimum spanning tree computations that is allowed to perform a limited num-
ber of internal errors. A simplified version of soft heaps was given by Kaplan and
Zwick [95]. Minimum spanning tree algorithms using soft heaps were presented
by Chazelle [27] and Pettie and Ramachandran [110], where [110] is an optimal
minimum spanning tree algorithm but with unknown complexity.

Mortensen and Pettie [43] presented an implicit priority queue supporting
Insert and DecreaseKey in amortized constant time and ExtractMin in
logarithmic time, using O(1) words of extra storage.

7 Self-adjusting Priority Queues

Crane [34] introduced the leftist heaps. The leftist heaps of Crane are height
balanced heap ordered binary trees, where for each node the height of the left
subtree is at least the height of the right subtree. Cho and Sahni [30] introduced
a weight-balanced version of leftist trees. Okasaki [105] introduced maxiphobic
heaps as a very pedagogical and easy to understand priority queue where oper-
ations are based on the recursive melding of binary heap ordered trees.

Sleator and Tarjan introduced the skew heaps [117] as a self-adjusting version
of leftist heaps [34], i.e. a data structure where no balancing information is
stored at the nodes of the structure and where the structure is adjusted on each
update according to some local updating role. A tight analysis was given in
[91,115] for the amortized number of comparisons performed by ExtractMin

and Meld in a skew heap, showing that the amortized number of comparisons
is approximately lgφ n, where φ = (

√
5 + 1)/2 is the golden ratio. The upper

bound was given by Kaldewaij and Schoenmakers [91] and the matching lower
bound was given by Schoenmakers [115].

Pairing heaps [76] were introduced as a self-adjusting version of Fibonacci
heaps, but the exact asymptotic amortized complexity of pairing heaps remains

A Survey on Priority Queues 155

unsettled. Stasko and Vitter [118] did an early experimental evaluation show-
ing that DecreaseKey was virtually constant. Fredman later disproved this
by showing a lower bound of amortized time Ω(lg lg n) for the DecreaseKey

operation on pairing heaps [74]. Iacono [86] gave an analysis of pairing heaps
achieving amortized constant Insert and Meld, and logarithmic ExtractMin

andDecreaseKey operations. Pettie [109] proved an upper bound of amortized
O(22

√
lg lgn) time for Insert, Meld and DecreaseKey, and amortized O(lg n)

time for ExtractMin.
Variations of pairing heaps were considered in [118,51,52], all achieving amor-

tized constant time Insert. Stasko and Vitter [118] achieved that Meld, De-

creaseKey, and ExtractMin all take amortized O(lg n) time. Elmasry in [49]
examined parameterized versions of skew heaps, pairing heaps, and skew-pairing
heaps, both theoretically and experimentally, and in [51] and [52] showed how
to improve the time bound for DecreaseKey to amortized O(lg lg n) and the
time bounds for Meld to amortized O(lg lgn) and amortized O(1), respectively.

8 Distribution Sensitive Priority Queues

Priority queues with distribution-sensitive performance have been designed and
analyzed (similarly to the working-set properties of splay trees for dictionar-
ies [116]). Fischer and Paterson’s fishspear priority queue [64] supports a se-
quence of Insert and ExtractMin operations, where the amortized cost for
handling an element is logarithmic in the “max-depth” of the element, i.e. over
time the largest number elements less than the element simultaneously in the
priority queue. Iacono [86] proved that for pairing heaps ExtractMin on an
element takes amortized logarithmic time in the number of operations performed
since the insertion of the element. The funnel-heap of Brodal and Fagerberg [13]
achieves ExtractMin logarithmic in the number of insertions performed since
the element to be deleted was inserted. Elmasry [50] described a priority queue
where ExtractMin takes time logarithmic in the number of elements inserted
after the element to be deleted was inserted and are still present in the priority
queue. Iacono and Langerman [87] introduced the Queap priority queue where
ExtractMin takes time logarithmic in the number of elements inserted before
the element to be deleted and still present in the priority queue, a property de-
noted “queueish”. Elmasry et al. [54] describe a priority queue with a unified
property covering both queueish and working set properties.

9 RAM Priority Queues

Priority queues storing non-negative integers and where the running time de-
pends on the maximal possible value N stored in the priority queue were pre-
sented by van Emde Boas et al. [60,61], who achieved Insert and ExtractMin

in time O(lg lgN) using space O(N lg lgN) and O(N) in [61] and [60], respec-
tively. Using dynamic perfect hashing, the Y-fast tries of Willard [124] reduces
the space to O(n), by making the time bounds amortized randomized O(lg lgN).

156 G.S. Brodal

Subsequent work initiated by the fusion trees of Fredman and Willard [78] has
explored the power of the RAM model to develop algorithms with o(lg n) time
priority queue operations and being independent of the word size w (assuming
that elements stored are integers in the range {0, 1, . . . , 2w − 1}). Fusion trees
achieve O(lg n/ lg lg n) time Insert and ExtractMin using linear space.

Thorup [120] showed how to support Insert and ExtractMin in O(lg lg n)
time for w-bit integers on a RAM with word size w bits (using superlinear
space or linear space using hashing). Linear space deterministic solutions using
O((lg lgn)2) amortized and worst-case time were presented by Thorup [119] and
Andersson and Thorup [3], respectively. Raman [112] presented a RAM priority
queue supporting DecreaseKey, resulting in an O(m + n

√
lg n lg lg n) time

implementation of Dijkstra’s single source shortest path algorithm.
That priority queues can be used to sort n numbers is trivial. Thorup in [122]

proved that the opposite direction also applies: Given a RAM algorithm that
sorts n words in O(n · S(n)) time, Thorup describes how to support Insert

and ExtractMin in O(S(n)) time, i.e. proving the equivalence between sort-
ing and priority queues. Using previous deterministic O(n lg lgn) time and ex-
pected O(n

√
lg lg n) time RAM sorting algorithms by Han [82] and Han and

Thorup [83], respectively, this implies deterministic and randomized priority
queues with Insert and ExtractMin in O(lg lg n) and expected O(

√
lg lg n)

time, respectively. Thorup [121] presented a RAM priority queue supporting In-

sert and DecreaseKey in constant time and ExtractMin in O(lg lg n) time,
resulting in an O(m + n lg lg n) time implementation of Dijkstra’s single source
shortest path algorithm.

A general technique to convert non-meldable priority queues with Insert op-
erations taking more than constant time to a corresponding data structure with
constant time Insert operations was presented by Alstrup et al. [2]. A general
technique was described by Mendelson et al. [100] to convert non-meldable pri-
ority queues without DecreaseKey into a priority queue supporting Meld in
constant time and with an additive α(n) cost in the time for the Delete op-
eration, i.e. the operation of deleting an arbitrary element given by a reference.
Here α is the inverse of the Ackermann function.

Brodnik et al. studied the power of the RAMBO model (random access ma-
chine with byte overlap). In [18] they showed how to support Insert and Ex-

tractMin in constant time (and in [19] they showed how to perform constant
time queries and updates for the dynamic prefix sum problem).

10 Hierarchical Memory Models

Early work on algorithm design in the 60s and 70s made the (by then realistic)
assumption that running time was bound by the number of instructions per-
formed, and the goal was to construct algorithms minimizing the number of in-
structions performed. On modern computer architectures the running time of an
algorithm implementation is often not dominated by the number of instructions
performed, but by other factors such as the number of cache faults, page faults,

A Survey on Priority Queues 157

TLB misses, and branch mispredictions. This has lead to computational models
such as the I/O-model of Aggarwal and Vitter [1] and the cache-oblivious model
Frigo et al. [79], modeling that the bottleneck in a computation is the number
of cache-line or disk-block transfers performed by an algorithm. The I/O-model
assumes that the parameters M and B are known to the algorithm, where M
and B are the capacity in elements of the memory and a disk block, respectively.
In the cache-oblivious model the block and memory parameters are not known
by the algorithm, with the consequence that a cache-oblivious algorithm with
good I/O-performance automatically achieves good I/O-performance on several
levels.

Fadel et al. [62] described an amortized I/O-optimal priority queue by adopt-
ing binary heaps to external memory by letting each node store Θ(M) elements
and the degree of each node be Θ(M/B). An alternative solution with the same
amortized performance was achieved by Arge [4] using a “buffer tree”. An ex-
ternal memory priority queue with worst-case bounds matching the previous
structures amortized bounds was presented in [15].

Cache-oblivious priority queues were presented by Arge et al. [5] and Brodal
and Fagerberg [13]. External memory and cache oblivious priority queues sup-
porting an adapted version of DecreaseKey to solve the single source shortest
path problem on undirected graphs with O(n+ m

B lg m
B) I/Os were presented by

Kumar and Swabe [97] and Brodal et al. [14], respectively.
Fischer and Paterson [64] introduced the Fishspear priority queue designed

for sequential storage such as a constant number of stacks or tapes, and using
amortized O(lg n) time per Insert and ExtractMin operation.

11 Priority Queues for Sorting with Limited Space

Since the seminal paper by Munro and Patterson [102] on sorting and selection
for read-only input memory with a limited read-write working space (and write-
only output memory for the case of sorting), a sequence of papers have presented
priority queues for sorting in this model. Frederickson [72] achieved a time-space
product of O(n2 lgn) for sorting, and [107] and [7] achieved an O(n2) time-space
product for a wide-range of working space sizes, which was proven to be optimal
by Beame [9].

12 Empirical Investigations

Many experimental evaluations of priority queues have been done, e.g.
[20,90,98,30,75,29,44]. The importance of cache misses were observed in [98],
and an implementation adopted to be cache efficient based on merging sorted
lists and making efficient use of registers was presented by Sanders [114].

Modern machines are complex and an efficient implementation is not neces-
sarily an implementation performing the fewest possible instructions. As men-
tioned, other parameters that are important to reduce are e.g. the number of
cache misses, number of TLB misses, number of branch mispredictions, and

158 G.S. Brodal

number of branches performed. Memory hierarchy issues can be addressed on
the algorithm design level, other issues such as branch mispredictions can be
reduced by using special CPU instructions such as predicated instructions such
as conditional move instruction (e.g. the CMOV instruction available on the In-
tel Pentium II and later processors), and exploiting parallelism using e.g. SIMD
instructions. Some recent work considering priority queues in this context was
done by Edelkamp et al. [42].

13 Concluding Remarks

As stated in the introduction, this paper lists some of the research done related
to priority queues, but the list is not expected to be complete. A lot of branches
of related work have not been discussed. Examples are: Work on discrete event
simulation that makes heavy use of priority queues, and where a lot of work
on specialized priority queues has been done; priority queues in parallel models,
both practical and theoretical work; concurrency issues for parallel access to a
priority queue; results on sorting based on priority queues; just to mention few.

Acknowledgment. The author would like to thank Rolf Fagerberg, Andy
Brodnik, Jyrki Katajainen, Amr Elmasry, Jesper Asbjørn Sindahl Nielsen and
the anonymous reviewers for valuable input.

References

1. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Alstrup, S., Husfeldt, T., Rauhe, T., Thorup, M.: Black box for constant-time
insertion in priority queues (note). ACM Trans. Algorithms 1(1), 102–106 (2005)

3. Andersson, A., Thorup, M.: Tight(er) worst-case bounds on dynamic searching
and priority queues. In: Proc. 32nd ACM Symposium on Theory of Computing,
pp. 335–342. ACM (2000)

4. Arge, L.: The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica 37, 1–24 (2003)

5. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: An
optimal cache-oblivious priority queue and its application to graph algorithms.
SIAM J. Comput. 36(6), 1672–1695 (2007)

6. Arvind, A., Rangan, C.P.: Symmetric min-max heap: A simpler data structure
for double-ended priority queue. Inf. Process. Lett. 69(4), 197–199 (1999)

7. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-
only data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS,
vol. 7876, pp. 32–41. Springer, Heidelberg (2013)

8. Atkinson, M.D., Sack, J.R., Santoro, N., Strothotte, T.: Min-max heaps and gen-
eralized priority queues. Commun. ACM 29(10), 996–1000 (1986)

9. Beame, P.: A general sequential time-space tradeoff for finding unique elements.
SIAM J. Comput. 20(2), 270–277 (1991)

A Survey on Priority Queues 159

10. Bollobás, B., Simon, I.: Repeated random insertion into a priority queue. J. Al-
gorithms 6(4), 466–477 (1985)

11. Brodal, G.S.: Fast meldable priority queues. In: Sack, J.-R., Akl, S.G., Dehne, F.,
Santoro, N. (eds.) WADS 1995. LNCS, vol. 955, pp. 282–290. Springer, Heidelberg
(1995)

12. Brodal, G.S.: Worst-case efficient priority queues. In: Proc. 7th ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 52–58. SIAM (1996)

13. Brodal, G.S., Fagerberg, R.: Funnel heap - a cache oblivious priority queue. In:
Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 219–228. Springer,
Heidelberg (2002)

14. Brodal, G.S., Fagerberg, R., Meyer, U., Zeh, N.: Cache-oblivious data struc-
tures and algorithms for undirected breadth-first search and shortest paths. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 480–492.
Springer, Heidelberg (2004)

15. Brodal, G.S., Katajainen, J.: Worst-case efficient external-memory priority
queues. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 107–118. Springer,
Heidelberg (1998)

16. Brodal, G.S., Lagogiannis, G., Tarjan, R.E.: Strict Fibonacci heaps. In: Proc. 44th
ACM Symposium on Theory of Computing, pp. 1177–1184. ACM (2012)

17. Brodal, G.S., Okasaki, C.: Optimal purely functional priority queues. J. Funct.
Program. 6(6), 839–857 (1996)

18. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Systems and Software 78(3), 249–256 (2005)

19. Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi,
L., Kohayakawa, Y. (eds.) Fourth IFIP International Conference on Theoretical
Computer Science, TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston (2006)

20. Brown, M.R.: Implementation and analysis of binomial queue algorithms. SIAM
J. Comput. 7(3), 298–319 (1978)

21. Carlsson, S.: The deap - a double-ended heap to implement double-ended priority
queues. Inf. Process. Lett. 26(1), 33–36 (1987)

22. Carlsson, S., Chen, J.: The complexity of heaps. In: Proc. 3rd ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 393–402. SIAM (1992)

23. Carlsson, S., Chen, J., Strothotte, T.: A note on the construction of data structure
“deap”. Inf. Process. Lett. 31(6), 315–317 (1989)

24. Carlsson, S., Munro, J.I., Poblete, P.V.: An implicit binomial queue with constant
insertion time. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318,
pp. 1–13. Springer, Heidelberg (1988)

25. Chan, T.M.: Quake heaps: a simple alternative to Fibonacci heaps. Manuscript
(2009)

26. Chang, S.C., Du, M.W.: Diamond deque: A simple data structure for priority
deques. Inf. Process. Lett. 46(5), 231–237 (1993)

27. Chazelle, B.: A minimum spanning tree algorithm with inverse-ackermann type
complexity. J. ACM 47(6), 1028–1047 (2000)

28. Chazelle, B.: The soft heap: an approximate priority queue with optimal error
rate. J. ACM 47(6), 1012–1027 (2000)

29. Cherkassky, B.V., Goldberg, A.V., Silverstein, C.: Buckets, heaps, lists, and mono-
tone priority queues. SIAM J. Comput. 28(4), 1326–1346 (1999)

30. Cho, S., Sahni, S.: Weight-biased leftist trees and modified skip lists. ACM J.
Experimental Algorithmics 3, 2 (1998)

160 G.S. Brodal

31. Cho, S., Sahni, S.: Mergeable double-ended priority queues. Int. J. Found. Com-
put. Sci. 10(1), 1–18 (1999)

32. Chong, K., Sahni, S.: Correspondence-based data structures for double-ended
priority queues. ACM J. Experimental Algorithmics 5, 2 (2000)

33. Clancy, M.J., Knuth, D.E.: A programming and problem-solving seminar.
Tech. Rep. Technical Report STAN-CS-77-606, Computer Science Department,
Stanford University (1977)

34. Crane, C.A.: Linear lists and priority queues as balanced binary trees. Ph.D.
thesis, Stanford University, Stanford, CA, USA (1972)

35. Ding, Y., Weiss, M.A.: The K-D heap: An efficient multi-dimensional priority
queue. In: Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1993. LNCS, vol. 709,
pp. 302–313. Springer, Heidelberg (1993)

36. Ding, Y., Weiss, M.A.: The relaxed min-max heap. Acta Inf. 30(3), 215–231 (1993)
37. Ding, Y., Weiss, M.A.: On the complexity of building an interval heap. Inf. Pro-

cess. Lett. 50(3), 143–144 (1994)
38. Doberkat, E.E.: Deleting the root of a heap. Acta Inf. 17, 245–265 (1982)
39. Doberkat, E.E.: An average case analysis of floyd’s algorithm to construct heaps.

Information and Control 61(2), 114–131 (1984)
40. Driscoll, J.R., Gabow, H.N., Shrairman, R., Tarjan, R.E.: Relaxed heaps: An al-

ternative to Fibonacci heaps with applications to parallel computation. Commun.
ACM 31(11), 1343–1354 (1988)

41. Dutton, R.D.: Weak-heap sort. BIT 33(3), 372–381 (1993)
42. Edelkamp, S., Elmasry, A., Katajainen, J.: A catalogue of algorithms for building

weak heaps. In: Smyth, B. (ed.) IWOCA 2012. LNCS, vol. 7643, pp. 249–262.
Springer, Heidelberg (2012)

43. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap data structure: Vari-
ants and applications. J. Discrete Algorithms 16, 187–205 (2012)

44. Edelkamp, S., Elmasry, A., Katajainen, J.: The weak-heap family of priority
queues in theory and praxis. In: Proc. 18th Computing: The Australasian Theory
Symposium, CRPIT, vol. 128, pp. 103–112. Australian Computer Society (2012)

45. Edelkamp, S., Elmasry, A., Katajainen, J.: Ultimate binary heaps (submitted,
2013)

46. Edelkamp, S., Stiegeler, P.: Implementing HEAPSORT with (n log n− 0.9n) and
QUICKSORT with (n log n+0.2n) comparisons. ACM J. Experimental Algorith-
mics 7, 5–24 (2002)

47. Edelkamp, S., Wegener, I.: On the performance of weak-heapsort. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 254–266. Springer, Heidelberg
(2000)

48. Elmasry, A.: Layered heaps. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004.
LNCS, vol. 3111, pp. 212–222. Springer, Heidelberg (2004)

49. Elmasry, A.: Parameterized self-adjusting heaps. J. Algorithms 52(2), 103–119
(2004)

50. Elmasry, A.: A priority queue with the working-set property. Int. J. Found. Com-
put. Sci. 17(6), 1455–1466 (2006)

51. Elmasry, A.: Pairing heaps with O(log log n) decrease cost. In: Proc. 20th ACM-
SIAM Symposium on Discrete Algorithms, pp. 471–476. SIAM (2009)

52. Elmasry, A.: Pairing heaps with costless meld. In: de Berg, M., Meyer, U. (eds.)
ESA 2010, Part II. LNCS, vol. 6347, pp. 183–193. Springer, Heidelberg (2010)

53. Elmasry, A.: The violation heap: A relaxed Fibonacci-like heap. In: Thai, M.T.,
Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 479–488. Springer,
Heidelberg (2010)

A Survey on Priority Queues 161

54. Elmasry, A., Farzan, A., Iacono, J.: A priority queue with the time-finger property.
J. Discrete Algorithms 16, 206–212 (2012)

55. Elmasry, A., Jensen, C., Katajainen, J.: On the power of structural violations in
priority queues. In: Proc. 13th Computing: The Australasian Theory Symposium,
CRPIT, vol. 65, pp. 45–53. Australian Computer Society (2007)

56. Elmasry, A., Jensen, C., Katajainen, J.: Multipartite priority queues. ACM Trans.
Algorithms 5(1) (2008)

57. Elmasry, A., Jensen, C., Katajainen, J.: Two new methods for constructing
double-ended priority queues from priority queues. Computing 83(4), 193–204
(2008)

58. Elmasry, A., Jensen, C., Katajainen, J.: Two-tier relaxed heaps. Acta Inf. 45(3),
193–210 (2008)

59. Elmasry, A., Katajainen, J.: Worst-case optimal priority queues via extended
regular counters. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.)
CSR 2012. LNCS, vol. 7353, pp. 125–137. Springer, Heidelberg (2012)

60. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Inf. Process. Lett. 6(3), 80–82 (1977)

61. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an effi-
cient priority queue. Mathematical Systems Theory 10, 99–127 (1977)

62. Fadel, R., Jakobsen, K.V., Katajainen, J., Teuhola, J.: Heaps and heapsort on
secondary storage. Theoretical Computer Science 220(2), 345–362 (1999)

63. Fagerberg, R.: A generalization of binomial queues. Inf. Process. Lett. 57(2),
109–114 (1996)

64. Fischer, M.J., Paterson, M.: Fishspear: A priority queue algorithm. J. ACM 41(1),
3–30 (1994)

65. Floyd, R.W.: Algorithm 113: Treesort. Commun. ACM 5(8), 434 (1962)
66. Floyd, R.W.: Algorithm 245: Treesort3. Commun. ACM 7(12), 701 (1964)
67. Ford Jr., L.R., Johnson, S.M.: A tournament problem. The American Mathemat-

ical Monthly 66(5), 387–389 (1959)
68. Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-

oblivious search trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)

69. Franceschini, G., Grossi, R., Munro, J.I., Pagli, L.: Implicit B-trees: a new data
structure for the dictionary problem. J. Comput. Syst. Sci. 68(4), 788–807 (2004)

70. Franceschini, G., Munro, J.I.: Implicit dictionaries with O(1) modifications per
update and fast search. In: Proc. 17th ACM-SIAM Symposium on Discrete Algo-
rithm, pp. 404–413. SIAM (2006)

71. Frederickson, G.N.: Implicit data structures for the dictionary problem. J.
ACM 30(1), 80–94 (1983)

72. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selec-
tion. J. Comput. Syst. Sci. 34(1), 19–26 (1987)

73. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Com-
put. 104(2), 197–214 (1993)

74. Fredman, M.L.: On the efficiency of pairing heaps and related data structures. J.
ACM 46(4), 473–501 (1999)

75. Fredman, M.L.: A priority queue transform. In: Vitter, J.S., Zaroliagis, C.D. (eds.)
WAE 1999. LNCS, vol. 1668, pp. 244–258. Springer, Heidelberg (1999)

76. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: A
new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

77. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM 34(3), 596–615 (1987)

162 G.S. Brodal

78. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993)

79. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious al-
gorithms. In: Proc. 40th Foundations of Computer Science, pp. 285–297. IEEE
(1999)

80. Gonnet, G.H., Munro, J.I.: Heaps on heaps. SIAM J. Comput. 15(4), 964–971
(1986)

81. Haeupler, B., Sen, S., Tarjan, R.E.: Rank-pairing heaps. SIAM J. Comput. 40(6),
1463–1485 (2011)

82. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. In: Proc.
34th ACM Symposium on Theory of Computing, pp. 602–608. ACM (2002)

83. Han, Y., Thorup, M.: Integer sorting in O(n
√
log log n) expected time and linear

space. In: Proc. 43rd Foundations of Computer Science, pp. 135–144. IEEE (2002)
84. Harvey, N.J.A., Zatloukal, K.C.: The post-order heap. In: Proc. 3rd International

Conference on Fun with Algorithms (2004)
85. Høyer, P.: A general technique for implementation of efficient priority queues. In:

Proc. 3rd Israel Symposium on Theory of Computing and Systems, pp. 57–66.
IEEE (1995)

86. Iacono, J.: Improved upper bounds for pairing heaps. In: Halldórsson, M.M. (ed.)
SWAT 2000. LNCS, vol. 1851, pp. 32–45. Springer, Heidelberg (2000)

87. Iacono, J., Langerman, S.: Queaps. Algorithmica 42(1), 49–56 (2005)
88. Johnson, D.B.: Priority queues with update and finding minimum spanning trees.

Inf. Process. Lett. 4(3), 53–57 (1975)
89. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J.

ACM 24(1), 1–13 (1977)
90. Jones, D.W.: An empirical comparison of priority-queue and event-set implemen-

tations. Commun. ACM 29(4), 300–311 (1986)
91. Kaldewaij, A., Schoenmakers, B.: The derivation of a tighter bound for top-down

skew heaps. Inf. Process. Lett. 37(5), 265–271 (1991)
92. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In:

Proc. 34th ACM Symposium on Theory of Computing, pp. 573–582. ACM (2002)
93. Kaplan, H., Tarjan, R.E.: New heap data structures. Tech. Rep. TR-597-99, De-

partment of Computer Science, Princeton University (1999)
94. Kaplan, H., Tarjan, R.E.: Thin heaps, thick heaps. ACM Trans. Algorithms 4(1)

(2008)
95. Kaplan, H., Zwick, U.: A simpler implementation and analysis of chazelle’s soft

heaps. In: Proc. 20th ACM-SIAMSymposium onDiscrete Algorithms, pp. 477–485.
SIAM (2009)

96. Khoong, C.M., Leong, H.W.: Double-ended binomial queues. In: Ng, K.W.,
Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS,
vol. 762, pp. 128–137. Springer, Heidelberg (1993)

97. Kumar, V., Schwabe, E.J.: Improved algorithms and data structures for solving
graph problems in external memory. In: Proc. 8th Symposium on Parallel and
Distributed Processing, pp. 169–177. IEEE (1996)

98. LaMarca, A., Ladner, R.E.: The influence of caches on the performance of heaps.
ACM J. Experimental Algorithmics 1, 4 (1996)

99. van Leeuwen, J., Wood, D.: Interval heaps. Comput. J. 36(3), 209–216 (1993)
100. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding priority queues.

ACM Trans. Algorithms 2(4), 535–556 (2006)
101. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search

in O(log2 n) time. J. Comput. Syst. Sci. 33(1), 66–74 (1986)

A Survey on Priority Queues 163

102. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

103. Munro, J.I., Poblete, P.V.: Searchability in merging and implicit data structures.
BIT 27(3), 324–329 (1987)

104. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J.
Comput. Syst. Sci. 21(2), 236–250 (1980)

105. Okasaki, C.: Alternatives to two classic data structures. In: Proc. 36th SIGCSE
Technical Symposium on Computer Science Education, pp. 162–165. ACM (2005)

106. Olariu, S., Overstreet, C.M., Wen, Z.: A mergeable double-ended priority queue.
Comput. J. 34(5), 423–427 (1991)

107. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proc. 39th
Foundations of Computer Science, pp. 264–268. IEEE (1998)

108. Peterson, G.L.: A balanced tree scheme for meldable heaps with updates. Tech.
Rep. GIT-ICS-87-23, School of Informatics and Computer Science, Georgia Insti-
tute of Technology (1987)

109. Pettie, S.: Towards a final analysis of pairing heaps. In: Proc. 46th Foundations
of Computer Science, pp. 174–183. IEEE (2005)

110. Pettie, S., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM 49(1), 16–34 (2002)

111. Porter, T., Simon, I.: Random insertion into a priority queue structure. IEEE
Trans. Software Eng. 1(3), 292–298 (1975)

112. Raman, R.: Priority queues: Small, monotone and trans-dichotomous. In:
Dı́az, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 121–137. Springer, Heidelberg
(1996)

113. Sack, J.R., Strothotte, T.: An algorithm for merging heaps. Acta Inf. 22(2),
171–186 (1985)

114. Sanders, P.: Fast priority queues for cached memory. ACM J. Experimental Al-
gorithmics 5, 7 (2000)

115. Schoenmakers, B.: A tight lower bound for top-down skew heaps. Inf. Process.
Lett. 61(5), 279–284 (1997)

116. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3),
652–686 (1985)

117. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69
(1986)

118. Stasko, J.T., Vitter, J.S.: Pairing heaps: experiments and analysis. Commun.
ACM 30(3), 234–249 (1987)

119. Thorup, M.: Faster deterministic sorting and priority queues in linear space. In:
Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pp. 550–555. SIAM
(1998)

120. Thorup, M.: On RAM priority queues. SIAM J. Comput. 30(1), 86–109 (2000)
121. Thorup, M.: Integer priority queues with decrease key in constant time and the

single source shortest paths problem. J. Comput. Syst. Sci. 69(3), 330–353 (2004)
122. Thorup, M.: Equivalence between priority queues and sorting. J. ACM 54(6)

(2007)
123. Vuillemin, J.: A data structure for manipulating priority queues. Commun.

ACM 21(4), 309–315 (1978)
124. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space

Θ(N). Inf. Process. Lett. 17(2), 81–84 (1983)
125. Williams, J.W.J.: Algorithm 232: Heapsort. Commun. ACM 7(6), 347–348 (1964)

On Generalized Comparison-Based

Sorting Problems

Jean Cardinal and Samuel Fiorini

Université libre de Bruxelles (ULB)
{jcardin,sfiorini}@ulb.ac.be

Abstract. We survey recent results on comparison-based sorting prob-
lems involving partial orders. In particular, we outline recent algorithms
for partial order production and sorting under partial information. We
emphasize the complementarity of the two problems and the common
aspects of the algorithms. We also include open questions on two other
related problems, namely partial order identification and sorting with
forbidden comparisons.

1 Introduction

Sorting by comparison is a cornerstone of algorithms theory, and thorough anal-
yses of comparison-based sorting and its relatives, such as linear-time median
finding, multiple selection, and binary search trees, have been carried out since
the seventies. Such analyses typically use powerful tools from analytic combina-
torics.

However, optimal algorithms for simple generalizations of comparison-based
sorting are not always known, or not well understood. The generalizations we
consider in this paper tackle the following questions:

– What if only a partial, or approximate, ordering is required?
– What if some a priori knowledge is available on the ordering?
– What if the input data has no underlying total order?
– What if not all comparisons are allowed?

When properly formalized, these questions give rise to challenging theoretical
problems. We will concentrate on versions of these problems involving partial
orders and graphs.

In Section 2, we define two complementary sorting problems, called respec-
tively partial order production and sorting under partial information. In Section 3
we define the entropy of a graph and explain its relevance to these problems. Fi-
nally, in Section 4 we describe algorithms for the two problems that are (nearly)
optimal with respect to the number of comparisons they perform, and run in
polynomial time. This first part of the paper summarizes the work done by a
superset of the authors in collaboration with Ian Munro, and first published in
2009 and 2010. We chose to explain the two contributions in parallel, in order

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 164–175, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Generalized Comparison-Based Sorting Problems 165

to highlight the common features of the problems and their solutions. In fact,
we believe that the two results are two facets of the same body of knowledge.

We consider another sorting problem, called partial order identification, in
Section 5, and summarize known results about it. In contrast with the two
previous ones, finding an efficient algorithm for this latter problem is still open,
in a sense that we will make precise.

A fourth sorting problem, that we refer to as sorting with forbidden compar-
isons, is defined in Section 6. Although some special cases are well-studied, it
seems that this question has received less attention than the ones above.

2 Sorting to and from a Partial Order

We now define our first two problems. In what follows, e(P) denotes the number
of linear extensions of a partially ordered set P .

2.1 Partial Order Production

In this problem, we are given a set P of n elements partially ordered by �,
and another set S of n elements with an underlying, unknown, total order ≤.
We wish to find a bijection f : P �→ S, such that for every x, y ∈ P , we have
x � y ⇒ f(x) ≤ f(y). For this purpose, we are allowed to query the unknown
total order ≤, and aim at minimizing the number of such queries.

Hence in this problem, the objective is to sort the data partially, by placing
the items of S into bins, such that they obey the prescribed partial order relation
� among the bins. Constructing a binary heap, for instance, amounts to placing
items in nodes of a binary tree, so that the element assigned to a node is always
smaller or equal to those assigned to the children of this node. The multiple
selection problem can also be cast as the problem of partitioning the data into
totally ordered bins of fixed sizes. Both problems are special cases of the partial
order production problem.

The overall number of bijections is n!, but for the given partially ordered set
P , we have e(P) feasible bijections. Hence the information-theoretic worst-case
lower bound on the number of comparisons for the partial order production
problem is (logarithms are base 2):

logn!− log e(P).

Indeed, each query cuts out a part of the solution space that should contain, for
the algorithm performing the sorting, half of the remaining bijections. One may
stop querying when the remaining part of the solution space only contains fea-
sible bijections. Because the solution space is initially of size n! and the number
of feasible bijections is e(P), the number of queries one has to make is at least
logn!− log e(P) in the worst case.

The partial order production problem was first studied in 1976 by
Schönhage [27], then successively by Aigner [1], Saks [26] and Bollobás and

166 J. Cardinal and S. Fiorini

Hell [3]. In his survey, Saks conjectured that the problem can be solved by per-
forming a number of comparisons that is within a linear term of the lower bound
in the worst case. Saks’ conjecture was eventually proved in 1989 by Yao [30].
However, in the last section of his paper, Yao asked whether there exists an
algorithm for the problem that is both query-optimal and runs in polynomial
time.

2.2 Sorting with Partial Information

Here we are given a set P of n elements partially ordered by �, and we seek
an underlying, unknown, total order ≤ that extends �. We wish to identify the
total order by querying it, and aim at minimizing the number of such queries.
Hence, this is the sorting problem in which the results of some comparisons are
already known and given as input.

Since we wish to identify one of the e(P) linear extensions of P , the
information-theoretic lower bound on the worst-case number of comparisons for
this problem is simply

log e(P).

Note that the sum of the two lower bounds for the two problems is equal to logn!,
the lower bound for sorting. This is not surprising, since one can sort by first
solving a partial order production problem for an arbitrary partial order, then
solving an instance of sorting under partial information with the same partial
order as input. In fact, this is exactly what heapsort does. In this algorithm, we
first produce a partial order whose Hasse diagram is a binary tree, then sort the
items in a total order using the partial information provided by the heap.

The problem of sorting under partial information was first posed by Fredman
in 1976 [15], who showed that there exists an algorithm that performs log e(P)+
2n comparisons.

In 1984, Kahn and Saks [19] showed that there is a constant δ > 0 such that
every (non-totally ordered) poset has a query of the form ”is vi < vj?” such that
the fraction of linear extensions in which vi < vj lies in the interval [δ, 1 − δ].
They proved this for the constant δ = 3/11. The well-known 1/3-2/3 conjecture
(which remains open), formulated independently by Fredman, Linial and Stanley
(see [22]) asserts that the same result holds for δ = 1/3 (which, if true, is tight).
Kahn and Linial [18] later gave a simpler proof of the existence of such a δ (with
smaller value of δ). Brightwell, Felsner and Trotter [5], and Brightwell [4] further
improved the value of δ.

Iteratively choosing such a comparison yields an algorithm that performs
O(log e(P)) comparisons. However, we do not know of any polynomial-time al-
gorithm for finding a balanced pair, hence this does not lead to an algorithm
with polynomial overall complexity. Indeed, computing the proportion of linear
extensions that place vi before vj is �P-complete [6].

In 1995, Kahn and Kim [17] described a polynomial-time algorithm performing
O(log e(P)) comparisons. Their key insight is to relate log e(P) to the entropy
of the incomparability graph of P . We describe this notion below, and outline a
simplification of their result yielding a more practical algorithm.

On Generalized Comparison-Based Sorting Problems 167

3 The Role of Graph Entropy

It is known that computing the number of linear extensions of a partial order
is �P-complete [6]. Hence just computing the exact value of the lower bounds
given above is out of reach. This is where graph entropy comes to the rescue.
This notion will help us not only in finding a polynomial-time computable lower
bound, but also in designing efficient algorithms for both problems.

We will only define graph entropy for comparability graphs here, which is
exactly what we need for tackling our sorting problems. Consider a set P of n
elements partially ordered by �. To each element v we associate an open interval
I(v) ⊆ (0, 1) in such a way that whenever v � w, interval I(v) is entirely to the
left of interval I(w). We obtain a collection {I(v)}v∈P of intervals that is said
to be consistent with �. The entropy of P is then defined as

H(P) := min
{I(v)}v∈P

1

n

∑
v∈P

log
1

length(I(v))
,

where the minimum is taken over all collections of intervals consistent with �.

I(b) I(c) I(d) I(e)

a

b

c

d

e

0 1

I(f)

I(a)f

Fig. 1. A partially ordered set and its optimal consistent collection of intervals

The entropy of P in fact only depends on its comparability graph G, and
coincides with the graph entropy H(G), as first defined by Körner [21]. Because
G is a perfect graph, the graph entropy of its complement Ḡ satisfies H(Ḡ) =
logn−H(G) (see Csiszár et al. [9]). This leads to defining

H(P̄) := logn−H(P),

which is exactly the graph entropy of the incomparability graph Ḡ of P .
This definition of H(P) was instrumental in our work [7,8], although graph

entropy admits several definitions and appears in other contexts [28].
Intuitively, H(P) measures the average amount of information per element

of P , and the optimal consistent collection of intervals tries to capture what
the average linear extension of P looks like. Think of taking a random point in
each interval; what we get as a result is a linear extension of P . Clearly, small
intervals give us more information about the resulting linear extension than big
intervals. For instance, in Figure 1, the contribution of f to the total amount of
information is log 1 = 0 and that of a is log 5 ≈ 2.32.

168 J. Cardinal and S. Fiorini

In case P is an antichain, H(P) = 0. In case P is a chain, H(P) = logn.
Between these two extreme cases, H(P) is monotonic in the sense that adding
comparabilities to P can never decrease H(P). In particular, we always have
0 ≤ H(P) ≤ logn. For example, when P is formed of a chain of n− 1 elements
plus one element that is incomparable to all others, H(P) = n−1

n log(n − 1) =
logn− 1

n logn−Θ
(
1
n

)
, see Figure 1 for an illustration for n = 6.

Similarly, H(P̄) measures the average amount of uncertainty per element of
P . For instance H(P̄) = 0 in case P is a chain, H(P̄) = logn in case P is an
antichain. We have 0 ≤ H(P̄) ≤ logn and adding comparabilities to P can never
increase H(P̄).

The quantities that we will use are nH(P) and nH(P̄). These quantities
measure the total amount of information and uncertainty in P , respectively. They
yield lower bounds for the partial order production problem and the problem
of sorting under partial information, respectively. The intuition is that each
query produces information or equivalently, reduces the uncertainty, about the
underlying unknown linear order. For producing P , we have to create at least as
much information as contained in P . For sorting with partial information P , we
have to reduce the uncertainty from that inherent in P to 0.

Theorem 1. Let P be a partially ordered set of n elements. Then,

nH(P) ≤ logn!− log e(P) + log e · n, (1)

nH(P̄) ≤ 2 log e(P). (2)

Eq. (1) is based on a simple volume argument using the so-called order polytope,
see [7]. Kahn and Kim [17] proved that nH(P̄) ≤ c log e(P) with a constant c
slightly larger than 11. Eq.(2) was proved in [8], and is tight (take P to be an
antichain of two elements).

Now, we sketch a simple proof of the weaker inequality nH(P̄) ≤ 4 log e(P)
that crucially relies on our interval-based definition of the entropy of partially
ordered sets. The reader is referred to [8] for more details. The whole argument
boils down to the following game: a player picks two incomparable elements a
and b in P and gives them to an oracle. The oracle decides which of the two
comparabilities a ≺ b or b ≺ a should be added to P . The goal for the player is
to pick a and b in such a way that the entropy of the resulting partially ordered
set P ′ always satisfies nH(P ′) ≤ nH(P) + 4.

b ≺ a:

a ≺ b:

I(b)

I(a)

I(b)

I(a)

I(a)

I(b)

Fig. 2. The proof idea: take quarters of intervals

On Generalized Comparison-Based Sorting Problems 169

A winning strategy for the player is to compute the optimal consistent collec-
tion of intervals {I(v)}v∈P for P and then pick a and b such that the length of
I(a) is maximum and I(b) contains the midpoint of I(a). If the oracle answers
a ≺ b, the player changes the collection of intervals by replacing I(a) by its first
quarter and I(b) by its last quarter. Otherwise, the oracle answers b ≺ a and
the players replaces I(a) by its last quarter and I(b) by its first quarter. This
is illustrated in Fig 2. In both cases, the player’s changes to the collection of
intervals causes an increase of 2 log 4 = 4 in the sum∑

v

log
1

length(I(v))
.

Hence, nH(P ′) ≤ nH(P) + 4 in both cases.

4 Approximating the Entropy and Efficient Algorithms

At the heart of our method lies a greedy algorithm for coloring the comparability
or incomparability graph of a partially ordered set P . This algorithm simply
iteratively finds a maximum size independent set (or stable set), makes it a new
color class and removes it from the graph, until no vertex is left. When the
greedy coloring algorithm is applied to the comparability graph of P , we obtain
a greedy antichain decomposition of P . When it is applied to the incomparability
graph of P , we obtain a greedy chain decomposition of P . This is illustrated in
Figure 3.

Fig. 3. Greedy antichain and chain decompositions

Any coloring of G has an entropy, defined as the Shannon entropy of the size
distribution of its color classes. If k is the number of color classes and pi denotes
the fraction of vertices in the ith color class, then the entropy of the coloring
is
∑k

i=1 pi log
1
pi
. This actually equals the graph entropy of the graph obtained

170 J. Cardinal and S. Fiorini

from G by adding all edges between any two color classes. The key fact is that
the entropy of this new graph is not much bigger than that of G, provided that
G is perfect.

Theorem 2 ([7]). Let G be a perfect graph on n vertices and denote by g the
entropy of a greedy coloring of G. Then

g ≤ H(G) + logH(G) +O(1). (3)

We now explain how to design algorithms for the two problems that rely on
greedy colorings. For the sake of a concise and readable exposition, we deliber-
ately skip many important details.

The main idea is to replace the target or partial information P by a partially
ordered set Q with a simpler structure, such that solving the problem with P
replaced by Q also solves the problem for P . This may force the algorithm to
perform more comparisons, but not much more, thanks to Theorem 2. Thus
we trade a few extra comparisons for a major gain in terms of structure. The
transformations for the two problems are illustrated on Figure 3.

4.1 From Partial Order Production to Multiple Selection

For the partial order production problem, we add comparabilities to P to trans-
form it into a layered partially ordered set, where the elements in each layer are
mutually incomparable. This is achieved by a greedy antichain decomposition of
the order, as illustrated on top of Figure 3. Now the entropy of the layered order
is equal to that of the greedy coloring of the comparability graph and Theorem 2
applies. (Note that it is well possible that applying the greedy coloring algorithm
blindly can yield a collection of antichains that is not totally ordered. We can
solve this issue by applying an uncrossing step that preserves the value of the
entropy, or by applying the greedy coloring algorithm twice. Details are given in
the original paper [7].)

When P is a layered partial ordered set, the partial order production problem
is essentially equivalent to the multiple selection problem, for which Kaligosi,
Mehlhorn, Munro and Sanders [19] give an algorithm that requires only at most
nH(P)+o(nH(P))+O(n) comparisons. Combining this with Theorems 1 and 2,
we obtain a polynomial-time algorithm for the partial order production problem
performing at most logn!− log e(P) + o(log n!− log e(P)) +O(n) comparisons.
Since there exists a simple Ω(n) adversarial lower bound for the problem, pro-
vided that the comparability graph of P is connected, our algorithm is query-
optimal.

4.2 From Sorting under Partial Information to Multiple Merging

For the problem of sorting under partial information, we remove comparabilities
from P and turn it into a union of chains. We then sort this collection of chains
by iteratively picking the two minimum size chains and merging them, following

On Generalized Comparison-Based Sorting Problems 171

a known strategy proposed by Frazer and Bennett [14]. This exactly mimics
the construction of a Huffman tree, and therefore the query complexity is easily
seen to be related to the entropy of the coloring. Combining again the bounds
of Theorems 1 and 2, this leads to a O(n2.5) time algorithm performing at most
(1 + ε) log e(P) +Oε(n) comparisons.

Clearly, the information-theoretic lower bound can be sublinear for this prob-
lem. For instance, think of a chain with n− 1 elements with 1 extra element in-
comparable to all others as in Figure 1. There, the lower bound is log e(P) = logn
and nH(P̄) = log n + Θ(1). To obtain a query-optimal algorithm, extra work
is needed. Putting aside the largest chain in the greedy chain decomposition
and carefully merging this chain with the rest in a last step, remembering the
comparabilities between the two parts, leads to a query-optimal algorithm. The
interested reader is again referred to the original paper [8].

For both of the problems, we have query-optimal algorithms whose work can
be divided in two phases: a first costly phase where P is carefully analyzed, that
takes O(n2.5) time but where no comparison is performed; a second phase where
comparisons are done that takes O(B)+O(n) time, where B is the corresponding
information theory lower bound [7,8].

5 Partial Order Identification

We now consider the problem of identifying a partial order. Given a set P of n
elements, with an unknown, underlying partial order �, we wish to identify this
partial order by querying it, and aim at minimizing the number of such queries.
We suppose that we have access to an oracle that, given two elements a and b,
tells us that either a � b, b � a, or a and b are incomparable. An algorithm for
a given input size n can therefore be modeled as a ternary decision tree.

Partial order identification was studied in particular by Faigle and Turán in
1988 [13]. In this contribution, they present a number of other related problems,
and a number of algorithms for the identification problem. The problem was
also tackled by Dubhashi et al. [11], and much more recently by Daskalakis et
al. [10].

The problem has a trivial Ω(n2) lower bound in terms of number of compar-
isons, as

(
n
2

)
comparisons are necessary to identify an empty order, in which all

pairs are incomparable. In order to provide more interesting lower bounds, we
introduce two parameters associated with a partial order P . The first parameter
is the number N of downsets of P , where an downset is a subset of P that is
closed for the relation �. Hence D is an downset if and only for every x ∈ D,
all elements y � x are also in D. The second parameter is w, the width of the
order, that is, the size of a largest antichain in P . Note that while a largest
antichain can be found in polynomial time, counting the number of downsets is
again �P-complete [24].

5.1 Partial Order Identification Using Central Elements

The following lower bound was proved by Dubhashi et al. [11]:

172 J. Cardinal and S. Fiorini

Theorem 3. The worst-case number of comparisons for solving the poset iden-
tification problem, given that the poset (P,�) is guaranteed to have at most N
downsets, is Ω(n logN) (where n = |P |).

This lower bound comes from the fact that the number of partial orders with
n elements and at most N downsets is exponential in n logN . It appears to be
achievable via a generalization of insertion sort: insert the elements one at a time
in the poset induced by the previous elements. This can be carried out using a
number of queries proportional to logN , thanks to the existence of a so-called
central element, a classical result due to Linial and Saks [23].

Theorem 4. In every poset, there exists an element such that the fraction of
downsets containing this element is between δ and 1− δ, for a certain universal
constant δ (at least 0.17).

This algorithm was proposed by Faigle and Turán [13], although they do not
seem to have noticed the optimality of the algorithm. For each element x, it
performs two binary searches, one for identifying the downset consisting of el-
ements smaller than x, and another one for the elements greater than x. The
remaining elements must be those that are incomparable. The binary searches
use the central elements as pivots. Here is a more detailed outline of the algo-
rithm that, given a poset (P,�) and a new element x �∈ P , identifies the downset
of elements of P smaller than x. We use the notations DP (y) := {z ∈ P : z � y}
and UP (y) := {z ∈ P : z y}.

1. Bisect (x, P)
2. if P = ∅, return ∅
3. choose a central element y ∈ P
4. if x � y:

(a) let P ′ := P \DP (y)
(b) let Q := Bisect (x, P ′)
(c) return DP (y) ∪Q

5. else:

(a) let P ′ := P \ UP (y)
(b) return Bisect (x, P ′)

It can be checked that the number of remaining downsets after each comparison
is cut down by a constant factor. Indeed, in the case where x � y, there cannot
be more downsets in P \DP (y) than downsets in P that contain y. Otherwise,
all the downsets in P \UP (y) are in one-to-one correspondence with downsets of
P that do not contain y. In both cases, this number is a constant fraction of N .

However, the bisection, and therefore the whole insertion sort algorithm, is
not known to admit a polynomial-time implementation. This is because we are
so far not able to identify a central element in polynomial time. Indeed, any
polynomial-time probabilistic algorithm for finding a δ-central element of a poset
would yield a polynomial-time algorithm for estimating its number of downsets
to within an arbitrary small factor with high probability [11].

On Generalized Comparison-Based Sorting Problems 173

Finding a 1/4-central element can be done in polynomial time in a 2-
dimensional poset, as shown by Steiner [29]. Faigle et al. [12] study other special
cases of posets, and give polynomial-time algorithms for finding central elements
in interval and series-parallel orders. Hence identifying 2-dimensional, interval,
and series-parallel orders can be done optimally in terms of queries, and the
algorithm is polynomial.

5.2 Partial Order Identification Using Chain Decompositions

An alternative algorithm was proposed by Faigle and Turán [13] to implement the
insertion sort procedure. For each inserted element x, this algorithm computes
a chain decomposition of the current poset, and performs a bisection search for
x in each of the chains. This algorithm has query complexity O(nw log(n/w)),
where w is the width of the poset. This is straightforward from the fact that
there exists a chain decomposition into w chains (Dilworth’s Theorem), which
can be found in polynomial time. However, this is not tight with respect to the
following lower bound as a function of w, proved by Daskalakis et al. [10].

Theorem 5. The worst-case number of comparisons for solving the poset iden-
tification problem, given that the poset (P,�) is guaranteed to have width at most
w, is Ω(n(log n+ w)).

Note that the lower bound with respect to w is not comparable to the lower
bound with respect to N , since the sets of possible inputs are distinct. Daskalakis
et al. [10] also give an algorithm that reaches the Ω(n(log n+w)) lower bound.
However, again, this algorithm is not polynomial. In particular, it requires the
exact computation of the number of linear extensions (under some constraints)
of the current poset. They also propose a practical implementation of Faigle and
Turán’s suboptimal chain decomposition strategy.

Hence, to the best of our knowledge, the following question is still open: find
a query-optimal polynomial-time algorithm for partial order identification, where
query-optimality is with respect to either the width w or the number of downsets
N .

6 Sorting with Forbidden Comparisons

In this last section, we briefly summarize previous results on sorting problems
involving forbidden comparisons, that is, in which some designated pairs of ele-
ments cannot be compared.

A well-known special case of this problem is the so-called nuts and bolts prob-
lem. Let B = {b1, b2, . . . , bn} (the bolts) be a set of totally ordered elements
(say, real numbers), and let S = {s1, s2, . . . , sn} (the nuts) be a permutation of
B. The numbers correspond to the widths of the nuts and bolts, and the goal is
to match them. The only comparison operations that are allowed are between
nuts and bolts, that is, we are only allowed to test whether si ≤ bj for some pair
i, j ∈ [n]. It is not difficult to find a randomized Quicksort-like algorithm that

174 J. Cardinal and S. Fiorini

runs in expected O(n logn) time [25]. In 1994, Alon et al. [2] proposed a deter-
ministic algorithm running in time O(n(log n)O(1)). Komlós, Ma and Szemerédi
gave a deterministic O(n logn) algorithm in 1996 [20].

The problem of sorting with forbidden comparisons generalizes the nuts and
bolts problem. We are given a graph G = (V,E). The set V is the set of ele-
ments to sort, and E is the set of pairs for which comparison is allowed. When
we compare a pair (u, v) ∈ E, we are given the orientation of the edge uv in G
corresponding to the order of the elements u, v. The goal is to unveil the under-
lying total order on V . We are also promised that probing all edges effectively
yields a total order. Hence G has a Hamiltonian path, and the orientation of the
edges that are not in this path are implied by transitivity.

In 2011, Huang et al. [16] proposed an algorithm performing O(n3/2 logn)
queries. This algorithm maintains a likeliness information about the orientation
of each edge, and implements a two-way strategy that at each step identifies an
edge to probe, or finds the orientation of the edges incident to a subset of O(

√
n)

vertices in O(n logn) time. A subroutine of the algorithm involves estimating
the average ranks of the elements by sampling the order polytope, a technique
reminiscent of the ones used for sorting under partial information. There is not
any interesting lower bound for this problem, however, apart from the standard
Ω(n logn) bound for sorting. Increasing this lower bound would definitely be an
important progress.

Acknowledgments. This work is supported by the ARC Convention AUWB-
2012-12/17-ULB2 (COPHYMA project), and the ESF EUROCORES pro-
gramme EuroGIGA, CRP ComPoSe, F.R.S.-FNRS Grant R70.01.11F.We thank
our coauthors on [7,8], Gwenaël Joret for proofreading a draft of this manuscript,
as well as the anonymous referees for their careful reading and many important
precisions.

References

1. Aigner, M.: Producing posets. Discrete Math. 35, 1–15 (1981)
2. Alon, N., Blum, M., Fiat, A., Kannan, S., Naor, M., Ostrovsky, R.: Matching nuts
and bolts. In: SODA, pp. 690–696 (1994)

3. Bollobás, B., Hell, P.: Sorting and graphs. In: Graphs and Order, Banff, Alta,
1984, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 147, pp. 169–184. Reidel,
Dordrecht (1985)

4. Brightwell, G.R.: Balanced pairs in partial orders. Discrete Mathematics 201(1-3),
25–52 (1999)

5. Brightwell, G.R., Felsner, S., Trotter, W.T.: Balancing pairs and the cross product
conjecture. Order 2(4), 327–349 (1995)

6. Brightwell, G.R., Winkler, P.: Counting linear extensions. Order 8(3), 225–242
(1991)

7. Cardinal, J., Fiorini, S., Joret, G., Jungers, R.M., Munro, J.I.: An efficient algo-
rithm for partial order production. SIAM J. Comput. 39(7), 2927–2940 (2010)

8. Cardinal, J., Fiorini, S., Joret, G., Jungers, R.M., Munro, J.I.: Sorting under partial
information (without the ellipsoid algorithm). In: STOC, pp. 359–368 (2010); To
appear in Combinatorica

On Generalized Comparison-Based Sorting Problems 175

9. Csiszár, I., Körner, J., Lovász, L., Marton, K., Simonyi, G.: Entropy splitting for
antiblocking corners and perfect graphs. Combinatorica 10(1), 27–40 (1990)

10. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
selection in posets. SIAM J. Comput. 40(3), 597–622 (2011)

11. Dubhashi, D.P., Mehlhorn, K., Ranjan, D., Thiel, C.: Searching, sorting and
randomised algorithms for central elements and ideal counting in posets. In:
Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 436–443. Springer,
Heidelberg (1993)

12. Faigle, U., Lovász, L., Schrader, R., Turán, G.: Searching in trees, series-parallel
and interval orders. SIAM J. Comput. 15(4), 1075–1084 (1986)

13. Faigle, U., Turán, G.: Sorting and recognition problems for ordered sets. SIAM J.
Comput. 17(1), 100–113 (1988)

14. Frazer, W.D., Bennett, B.T.: Bounds on optimal merge performance, and a strategy
for optimality. J. ACM 19(4), 641–648 (1972)

15. Fredman, M.L.: How good is the information theory bound in sorting? Theor.
Comput. Sci. 1(4), 355–361 (1976)

16. Huang, Z., Kannan, S., Khanna, S.: Algorithms for the generalized sorting problem.
In: FOCS, pp. 738–747 (2011)

17. Kahn, J., Kim, J.H.: Entropy and sorting. J. Comput. Syst. Sci. 51(3), 390–399
(1995)

18. Kahn, J., Linial, N.: Balancing extensions via Brunn-Minkowski. Combinatorica 11,
363–368 (1991)

19. Kaligosi, K., Mehlhorn, K., Munro, J.I., Sanders, P.: Towards optimal multiple
selection. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 103–114. Springer, Heidelberg (2005)

20. Komlós, J., Ma, Y., Szemerédi, E.: Matching nuts and bolts in o(n log n) time.
SIAM J. Discrete Math. 11(3), 347–372 (1998)

21. Körner, J.: Coding of an information source having ambiguous alphabet and the
entropy of graphs. In: Transactions of the 6th Prague Conference on Information
Theory, pp. 411–425 (1973)

22. Linial, N.: The information-theoretic bound is good for merging. SIAM J. Com-
put. 13(4), 795–801 (1984)

23. Linial, N., Saks, M.: Every poset has a central element. J. Comb. Theory, Ser.
A 40(2), 195–210 (1985)

24. Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the
probability that a graph is connected. SIAM J. Comput. 12(4), 777–788 (1983)

25. Rawlins, G.J.E.: Compared to what? - an introduction to the analysis of algorithms.
Principles of computer science series. Computer Science Press (1992)

26. Saks, M.E.: The information theoretic bound for problems on ordered sets and
graphs. In: Graphs and order, Banff, Alta, 1984, NATO Adv. Sci. Inst. Ser. C
Math. Phys. Sci, vol. 147, pp. 137–168. Reidel, Dordrecht (1985)

27. Schönhage, A.: The production of partial orders. In: Journées Algorithmiques,
École Norm. Sup., Paris, 1975, pp. 229–246, Astérisque, No. 38–39. Soc. Math.,
France (1976)

28. Simonyi, G.: Graph entropy: a survey. In: Combinatorial Optimization (New
Brunswick, NJ, 1992–1993. DIMACS Ser. Discrete Math. Theoret. Comput. Sci,
vol. 20, pp. 399–441. Amer. Math. Soc., Providence (1995)

29. Steiner, G.: Searching in 2-dimensional partial orders. J. Algorithms 8(1), 95–105
(1987)

30. Yao, A.C.: On the complexity of partial order productions. SIAM J. Comput. 18(4),
679–689 (1989)

A Survey of the Game “Lights Out!”

Rudolf Fleischer1,2 and Jiajin Yu3

1 IIPL and SCS, Fudan University, Shanghai, China
2 AIT Dept., GUtech, Muscat, Oman

rudolf.fleischer@gmail.com
3 College of Computing, Georgia Institute of Technology, USA

jiajyu@gmail.com

Abstract. Lights Out! is an electrical game played on a 5 × 5-grid
where each cell has a button and an indicator light. Pressing the button
will change the light of the cell and the lights of its rectilinear adjacent
neighbors. Given an initial configuration of lights, some on and some
off, the goal of the game is to switch all lights off. The game can be
generalized to arbitrary graphs instead of a grid. Lights Out! has been
studied independently by three different communities, graph theoreti-
cians, gamers, and algorithmicists. In this paper, we survey the game
and present the results in a unified framework.

1 Introduction

The solitaire game Lights Out! is played on a 5 × 5-grid where each cell has
a button and an indicator light. Pressing the button will change the light and
the lights of all its rectilinear adjacent neighbors from on to off or vice versa.
Given an arbitrary initial on/off pattern of lights, the goal of the game is to
switch all lights off by pressing a subset of the buttons. The game can naturally
be generalized to arbitrary graphs instead of a grid.

This gamewas first studied by Sutner [67,68] in the context of cellular automata
(he tried to characterize configurations without predecessors, so-calledGarden-of-
Eden configurations). He showed that we can, for any graph, turn all lights off if
initially all lights are on. Later, several simple proofs of this theorem were given
or rediscovered [19,35,45,47] and variants of the game were studied [11,38,39,68].
Linear algebra, combinatorics, and the theory of cellular automata were employed
to derive the results. After the all-on-to-all-off problem was was fairly well under-
stood, Amin and Slater [5] and Goldwasser et al. [45,47] focused on universally
solvable graphs. Furthermore, Armin and Slater [5] and Conlon et al. [34] studied
the complexity of determining the minimum number of steps to turn off all lights.
Goldwasser [44] studied maximization variants of the game.

This paper is organized as follows. We present the game and some linear
algebra background in Section 2. In Section 3, we present three proofs for the all-
on to all-off game, in particular we propose a new greedy algorithm to compute
a solution. We continue with a characterization of completely solvable instances
of various graph classes in Section 4. In Section 5 we turn to the complexity of

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 176–198, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Survey of the Game “Lights Out!” 177

optimization variants of the game and we show that it is NP-hard to find the
minimum number of steps to turn off all lights when we start with all lights on.
We also study the complexity of the game on special graph classes. At the end
of each section, we give a short summary of previous results.

2 Preliminaries

2.1 The Game

First, we give a formal definition of the game Lights Out!. We are given an
undirected graph G = (V,E) with n nodes, where each node v ∈ V has a state
(light) Cv ∈ {0, 1}. We say v is off if Cv = 0, and on if Cv = 1.

A configuration of the game is a binary vector C of length n, where Cv is the
state of node v. One step of the game consists of choosing a node v and flipping
the states of v and all its neighbors in G from on to off or vice versa. We call
this step an activation of node v. We call the configuration where all nodes are
on (off) the all-on (all-off) configuration. The goal of the game is to reach the
all-off configuration from the given initial configuration by a finite sequence of
activations, in which case we say the initial configuration is solvable. We say a
graph is universally solvable if every initial configuration is solvable.

Clearly, the order of activations is not important and it is not necessary to
select a node more than once. Thus the game reduces to the question whether we
can find a subset X of the nodes, called an activation set, such that activating
all nodes in X will turn off all nodes in G. A minumum solution of the game is
an activation set of minimum cardinality. The characteristic vector x of X is a
vector of dimension n with a 1 entry at all positions indexed by nodes in X , and
0 entries otherwise.

We can generalize the game by introducing a neighborhood vector F of dimen-
sion n. For each node v, if Fv = 1 then activating node v will also flip the state
of v (i.e., this is the model we used above), while Fv = 0 means that the state
of v will not change, only the states of its neighbors change.

In this paper, we follow the notation by Sutner [68] and let σ+ denote the
game 1-Lights Out! (using closed neighborhoods), while σ denotes the game
0-Lights Out! (using open neighborhoods). More generally, σF denotes the
game F -Lights Out!, or Lights Out! with F -neighborhood constraints.

2.2 The Math

Let G = (V,E) be an undirected graph with n = |V | nodes and m = |E| edges.
For a node v ∈ V , the open neighborhood N(v) of v is the set of nodes adjacent
to v, i.e., N(v) = {u | (u, v) ∈ E}. The closed neighborhood N [v] is the open
neighborhood plus v itself. We denote by AG the adjacency matrix of G where all
entries on the main diagonal are 1, i.e., AG represents the closed neighborhood
relation of the nodes in V .

A subset W of V is a dominating set, or node cover, of G if every node in
V contains at least one node of W in its closed neighborhood. The domination

178 R. Fleischer and J. Yu

number γ(G) of G is the size of a minimum dominating set. A perfect cover
(or efficient cover) covers each node exactly once. More generally, an odd (even)
cover W of G is a cover such that the closed neighborhood of each node contains
an odd (even) number of nodes in W . For example, the emtpy set is an even
cover of any graph G, and any perfect cover is an odd cover.

We can further generalize this concept. Let D be a binary vector of dimension
n, called a parity vector. We say a node v is even if D(v) = 0, and odd if
D(v) = 1. A D-parity cover of G is a nonempty subset W of V such that the
closed neighborhood of each even (odd) node contains an even (odd) number of
nodes in W . For example, V is a D-parity cover for the parity vector D which
is defined by D(v) = 0 if deg(v) is odd and D(v) = 1 if deg(v) is even.

We say a graph is APR (all parity realizable) [4] if there exists a D-parity
cover for any parity vector D. If we interpret D as an initial configuration for
σ+, then D-parity covers are exactly the activation sets solving the game. We
thus obtain the following theorem relating Lights Out! and odd covers which
can be found in most early papers on the subject.

Theorem 1. An undirected graph is universally solvable if and only if it is APR.
In particular, minimum σ+ solutions for an initial configuration D are exactly
the minimum cardinality D-parity covers of G. ��
We can extend the definitions above to open neighborhoods, or even a mixture of
open and closed neighborhoods. Let F be a binary vector of dimension n, called
the neighborhood vector. An F -neighborhood cover of G is a node cover where we
use in the definition of “cover” the open neighborhood of a node v if F (v) = 0
and its closed neighborhood if F (v) = 1. If not specified, we always assume
that F (v) = 1 for all nodes v, i.e., the default is to use closed neighborhoods.
Note that F -neighborhood covers are exactly the activation sets for σ+. The
F -neighborhood relation can be described by the F -adjacency matrix AF

G of G
which is the adjacency matrix of G with F on the main diagonal.

We will also consider some special graph classes. Pn is a path of n nodes, Cn

a cycle of n nodes, and Gn,m = Pn × Pm is the complete n×m grid graph with
n columns and m rows. Any subgraph of some Gn,m is a grid graph. Kn is the
complete graph on n nodes, and Kn,m is the complete bipartite graph on n and
m nodes, respectively. A caterpillar consists of a path, called the spine, and an
arbitrary number of nodes attached to the spine nodes, called feet. The nodes on
the spine are called segments. A uniform caterpillar Cn,m has a spine of length
n and m feet attached to each segment.

We assume some familiarity with basic concepts from linear algebra. Through-
out the paper, we do arithmetic in GF (2) unless explicitly stated otherwise, i.e.,
addition is usually the binary XOR operation. Two vectorsx and y are orthogonal
if x · y = 0. The weight wt(x) of a binary vector is the number of ones in x.

We denote by diag(A) the main diagonal vector of A. The image of a matrix
A is the set of all vectors Ax, for all X. The kernel, or nullspace, kerA of A
is the set of vectors x such Ax = 0, i.e., the kernel is orthogonal to A, and
its dimension is the nullity of A. Amin et al. [3] called the nullity the parity
dimension PD(G) of G.

A Survey of the Game “Lights Out!” 179

The range R(A) ofA is the set of vectorsAx, for all x, its dimension is the rank
of A. Note that rank and nullity add up to the number of columns of A. If y is
orthogonal to kerA, then Ax = y has a solution over GF (2). An n× n-matrix A
is invertible if and only if kerA = {0}, i.e., the nullity of A is 0 and A has rank n.

2.3 Historical Review

Lights Out!. The commercial game Lights Out! is played on G5,5 [38]. We
can find many links and other materials on Lights Out! on Jaap’s Puzzle
Page [65]. Lotto [58] analysed the game Quinto which is equivalent to finding
odd covers of a 5×5 grid. The commercial game Orbix is the open neighborhood
version of Lights Out!, played on an icosahedron [38]. Merlin is Lights Out!

played on a certain directed graph with nine nodes (a directed 3 × 3-grid with
diagonals), see [62].

Fraenkel [40] studied a two-player variant of Lights Out! where the two
players start from some initial configuration, and the first player switching off
all lights wins.

Odd Covers. Sutner [67,68] observed that finding an odd cover for an undirected
graph G is equivalent to solving Ag ·x = 1 over GF (2). This immediately implies
an O(n3) algorithm to compute odd covers. Surprisingly, every graph has an odd
cover. Sutner [67,68] gave an proof based on σ-automata. Caro [19] gave a simpler
proof based on the following lemma [2]: Ax = 1 has no solution over GF (2) if
and only if A has an odd number of rows whose sum is zero (these rows would
induce an odd-cardinality subgraph where all nodes have odd degree, which is
impossible).

The number of different odd covers is 2d, where d is the dimension of the nullspace
(or kernel) of AG, and any even cover must have even cardinality [3,67,68]. Dawes
[36] observed that two odd covers differ by an element in the nullspace and that
trees can have exponentially many odd covers. Amin and Salter [5] showed that
for any parity vectorD the number of different D-parity covers is the same.

G4,4 has 16 odd covers (any subset of the nodes in the top row can be extended
to an odd cover), G5,5 has four odd covers, and G6,6 has only one odd cover. Pn

has one odd cover if n ≡ 0, 1 mod 3, and two odd covers if n ≡ 2 mod 3. Cn has
one odd cover if n �≡ 0 mod 3, and four odd covers otherwise.

Galvin [41] proposed an algorithm to find an odd cover of trees in linear time.
Dawes [36] proposed an O(n log n) time algorithm to find a minimum odd cover
of trees, which was later extended by Amin and Slater to series-parallel graphs [4]
and graphs of bounded treewidth by Gassner and Hatzl [42].

Cellular Automata. Sutner [67] studied non-uniform binary cellular automata on
directed graphs, so-called σ-automata, whose behaviour is equivalent to playing
Lights Out!, which is equivalent to determining odd covers. He distinguished
between σ (open neighborhood) and σ+ (closed neighborhood) games.

Conlon et al. [34] studied neighborhood inversions in graphs, which is equiv-
alent to playing Lights Out!.

180 R. Fleischer and J. Yu

Domination Numbers. For an old survey on graph domination see Cockayne and
Hedetniemi [33]. MacGillivray and Seyffarth [59] showed that the domination
number of planar graphs of diameter two is at most three, and that of diameter
three is at most 10; it can be unboundend for planar graphs of diameter four
and non-planar graphs of diameter two. Goddard et al. [43] showed that there is
only one unique planar diameter-two graph with domination number two; if the
diameter is three and the radius is two then the domination number is at most
six; large diamater-three planar graphs have domination number at most seven.

Jacobson et al. [51] presented closed formulas for γ(Gn,k) for k = 1, . . . , 4:
γ(Gn,2) = �n+1

2 �, γ(Gn,3) = n − �n−1
4 �, and γ(Gn,4) = n + 1 if and only

if n = 1, 2, 3, 4, 5, 9 and γ(Gn,4) = n otherwise. Further, they showed that

limm,n→∞
γ(Gn,m)

mn = 1
5 and that γ(G × H) ≥ γ(G) · γ(H) if G is connected,

of order 2n, γ(G) = n, and G �= C4 (Cockayne had conjectured this inequality
for all graphs). Cockayne et al. [31] proposed similar results, in particular they

gave nearly tight lower and upper bounds for γ(Gn,n) (it is between
n2+n−3

5 and

approximately n2+4n−16
5). Chang et al. gave closed formulas for k = 5, 6 [23] and

explicitly constructed minimum dominating sets for k = 1, . . . , 10 [23,24].
Hare et al. [49] gave a linear time algorithm to compute γ(Gn,k) for fixed k, but

the runtime is exponential in k. They observed that there are 2k ways to choose

nodes on the top row, and (1+
√
2)k+1+(1−√

2)k+1

2 ways to cover or not cover the top
row. Livingston and Stout [56] gave a constant time algorithm for fixed k that can
also compute minimum or perfect dominating sets; the algorithm can be extended
to graphs G × Pn, where Pn can be a path, a cycle, or a complete binary tree.
Recently, Goncalves et al. [48] settled the problem and determined γ(Gn,m).

Berman et al. [13] and Clark et al. [27] showed that it is NP-complete to
compute the domination number of grid graphs and unit disk graphs.

Kikuno et al. [53] gave a linear time algorithm to determine the domination
number of series-parallel graphs. Pfaff et al. [63] extended this algorithm to
compute the total domination number (open neighborhood) and the independent
domination number, i.e., the size of a smallest dominating independent set, or
the size of a smallest clique in Ḡ [14] (dynamic program with sixteen labels).

Cockayne et al. [31] compared γ(G) with the irredundance number ir(G) (the
smallest maximal non-redundant subset of nodes, where a node is redundant
if its closed neighborhood is already covered) and the independent domination
number i(G). In [32], they proved ir(G) ≤ γ(G) ≤ i(G). In [17], they showed that
i(G) ≤ γ(G)(k−1)−(k−2) if G does not contain an induced K1,k+1, generalizing
an earlier result by Allan and Laskar [1] who had shown that γ(G) = i(G) if

G does not contain an induced K1,3, and that ir(G) > γ(G)
2 . Beyer et al. [14]

conjectured that determining i(G) is NP-complete, and they gave a linear time
algorithm for trees (dynamic program with three labels).

Clark et al. [28,29,30] studied domination number of graphs with degree con-
straints. Caro et al. [22] studied connected odd covers and showed that it is
NP-complete to decide whether such a cover exists. Caro et al. [20,21] studied
more general modulo based domination problems.

A Survey of the Game “Lights Out!” 181

Perfect Covers. Perfect d-covers were introduced by Biggs [16,15] to study per-
fect d-error correcting codes. Later, Bange et al. [10] characterized trees with
one or two disjoint perfect 1-covers and called them efficient dominating sets.
They showed that all perfect covers have the same cardinality and proposed a
linear time algorithm to construct them on trees. They also showed that it is in
general NP-complete to decide the existence of a perfect 1-cover (reduction from
3SAT), even in three-regular planar graphs (this result was attributed to Mike
Fellows). In [9], they computed efficient near-dominating sets (minimizing the
number of uncovered nodes) in all Gn,m.

Masters et al. [61] showed that a graph has at most one perfect dominating
set if its adjacency matrix is invertible.

Livingston and Stout [55] gave a linear time algorithm to compute perfect
d-covers of trees and series-parallel graphs. They also characterized graphs with
perfect d-covers for several classes of graphs (paths, cycles, trees, grids, hyper-
cubes, cube connected cycles, and de Bruijn graphs). Jacobson and Peters [52]
showed that determining γk(G) (cover each node at least k times) is NP-complete,
and gave linear time algorithms for trees and seriell-parallel graphs (recursive
algorithm, with 4 labels for the tree). For recent results on perfect covers see,
for example, Brandstädt et al. [18].

3 Solving All-On Configurations

In this section we give three proofs for the amazing fact that the all-on configu-
ration can be solved for any graph. The first proof uses graph-theory, the second
one linear algebra, and the third one is algorithmic.

Theorem 2 ([67]). The all-on configuration is solvable for any undirected graph.

3.1 A Graph Theoretical Proof

Cowen et al. [35] and Eriksson et al. [39] proposed a proof by induction on n,
the number of nodes in G.

Proof (Theorem 2). If n = 1, then there is only one node in G. Selecting this
node will flip its state from on to off.

Assume the claim is true for graphs with at most n nodes. Consider a graph G
with n+ 1 nodes. For any node v in G, let Xv be an activation set for the n-nodes
graph G − {v}. If there exists a node v such that Xv is also a solution for G, then
we are done. Otherwise, eachXv will turn all nodes off except node v.

If n is odd, then we apply all the activitation setsXv, for all nodes v. Each node
v will not change its state when we apply Xv, and it will change its state an odd
number of times when we apply the union of all setsXw, for all w �= v. Since there
is an odd number of such nodes w, v will change its state and turn off.

If n is even, then at least one node v of G has even degree (the sum of all node
degrees in G equals twice the number of edges, i.e., it is even). We first activate
v. As a result, all nodes in N [v] will turn off. Then we apply the activation sets

182 R. Fleischer and J. Yu

Xu, for all u ∈ G−N [v]. Since n+1 and |N [v]| are odd, there is an even number
of such nodes u. Thus, the nodes in N [v] are not affected and will remain off
because they will change their state an even number of times, while the nodes in
G −N [v] will change their state an odd number of times (Xw does not change
the state of w), i.e., they will also turn off. ��
Note that the proof implies an algorithm to compute an activation set. However,
the running time is exponential in n (we must basically compute activation
sets for all subgraphs of G). We will see more efficient algorithms in the next
subsections.

3.2 An Algebraic Proof

We now state a more general result that was first reported by Dodis and Win-
kler [38], generalizing a proof by Goldwasser et al. [45,47]. It follows directly from
the following theorem from linear algebra. The special case where all entries on the
maindiagonal are 1was also studiedbySutner [67], Lotto [58], andCowenet al. [35].

Theorem 3 ([45,47]). For any symmetric binary matrix A, the linear equation
Ax = diag(A) has a solution over GF (2).

Proof. Let F = diag(A). Consider a vector y in kerA, i.e., Ay = 0. Let B be
the submatrix of A where we delete all rows and columns v with Fvyv = 0. Note
that B is still symmetric and diag(B) = 1. The corresponding subvector of y is
the vector 1. Thus, B1 = 0. This means that every row of B contains an even
number of ones. Since B is symmetric, this is only possible if B has an even
number of rows. This implies Fx = 0 (because Fvyv = 1 for an even number of
indices v), i.e., F is orthogonal to the kernel of A. But then F is in the image of
A, i.e., there exists a vector x such that Ax = F . ��
For a closed neighborhood adjacency matrix AG, where the diagonal vector is
1, Theorem 3 says that the equation AG · x = 1 always has a solution over
GF (2). The next theorem generalizes Theorem 2 to arbitrary F -neighborhood
configurations.

Theorem 4 ([38]). Let G be an undirected graph and F an arbitrary neighbor-
hood vector. Then there exists an F -neighborhood F -parity cover of G, i.e., the
initial configuration F is solvable for σF .

Proof. The initial configuration is F . Consider a set X of nodes with character-
istic vector x. After activating X , each node v switches to state

Fv +
∑

u∈N(v)∩X

xu + Fvxv = Fv + (AF
Gx)v ,

where Fv is the state of v before the activation, the sum describes the effect
of activating all nodes in the open neighborhood of v, and Fvxv is the possible
contribution of activating v itself. Since diag(AF

G) = F , we can apply Theorem 3
and conclude that the equation Ax = F , or equivalently Ax + F = 0, has a
solution, i.e., there is an activation set X solving the initial configuration F
with F -neighborhood constraints. ��

A Survey of the Game “Lights Out!” 183

3.3 A Greedy Algorithm

We can find an activation set for σF by solving the system of linear equations
AF

Gx = F , for example by Gaussian elimination. Since the matrix AF
G is the

adjacency matrx of the underlying graph G, we can interpret the steps of the
Gaussian elimination as graph operations in G. This leads to the following greedy
algorithm for σF .

Consider a graphG = (V,E) with initial configuration F and F -neighborhood
constraints. The algorithm runs in two phases. In Phase 1, we repeatedly select
an arbitrary node v that is switched on. For all nodes w ∈ N(v), we flip the
state of w and the neighborhood constraint Fw. Thus, at any time, the state of
a node is the same as its neighborhood constraint.

Then we modify the graph by replacing N [v] by the complement of N(v).
To be more precise, we delete all edges connecting two nodes in N(v) and we
add edges between nodes in N(v) that were unconnected. We call this step a
neighborhood inverson. Then we delete v and its incident edges from the graph.

Phase 1 ends when all remaining nodes are switched off. We compute an
activiation set W for this graph. For example, we could choose W = ∅. In Phase
2, we add back all deleted nodes in reverse order of deletion in Phase 1, each
time undoing the neighborhood inversions. When we restore node v, we add v
to W if N(v) ∩ W contains an even number of nodes (here N(v) is the open
neighborhood of v in the current graph after restoring v). At the end of Phase 2,
we return W as activation set for G. Note that we do not need to track changes
of states and neighborhood constraints in Phase 2 (although we do that in the
proof below to show correctness of the algorithm).

Theorem 5 ([8,25]). The greedy algorithm computes an activation set in time
O(n3).

Proof. Each step in Phase 1 needs time linear in the size of the neighborhood
of the selected node. Since this neighborhood can contain at most O(n) nodes,
the total running time of Phase 1 is bounded by O(n3). Phase 2 reverses the
operations of Phase 1 and has therefore the same running time.

To see the correctness of the algorithm, we claim that in Phase 2, at any
time, the current set W is an activation set for the current graph. This is true
initially because all nodes are off and W is empty. Now assume we have reached
current graph H with activation set X . By restoring the next node v, we change
the states and neighborhood constraints of nodes in N(v) and we invert the
neighborhood relation in N(v). If the size of N(v) ∩X is even, we add v to X .

Let p denote the parity of |N(v) ∩ X | (i.e., p = 0 if the number of nodes is
even, and p = 1 if the number is odd). We select v if p = 0. Thus, choosing or
not choosing v contributes 1− p to the cover count (the cumulative effect of all
its activated neighbors) of each node in N(v).

For any node w in N(v), inverting the neighborhood of v changes the con-
nectivity of w to any other node in N(v). If w �∈ X , then we must add p to the
cover count of w. Since we also flip the state of all nodes in N(v), the state of w
changes by (1− p)+ p+1 = 0, i.e., w will still be off after activating all nodes in

184 R. Fleischer and J. Yu

X ∪{w}. If w ∈ X , then we must add p−1 to the cover count of w. However, we
also flip the neighborhood constraint of w, i.e., we change whether w can influ-
ence its own state. Thus, the state of w changes by (1− p) + (p− 1)+1+1 = 0,
i.e., w will still be off after activating all nodes in X ∪ {w}. ��

Conlon et al. [34] studied graph classes where it is easy to determine activation
sets. For a clique, we can activate an arbitrary node to switch all states. If all
nodes of a graph have even degree, then the set of all nodes is an activation set.
This is for example the case for Eulerian graphs. Interestingly, we can reverse
this statement.

Lemma 6 ([34]). If X is an activation set for the all-on configuration of a
graph G, then X induces an Eulerian subgraph of G. ��

Corollary 7 ([34]). If X is an activation set for the all-on configuration of a
tree, then no two nodes of X are adjacent. ��

3.4 Historical Review

Sutner [67] showed for σ+ that the all-on configuration can be solved for any
graph. Later, Caro proposed a simpler proof based on linear algebra [19] and
extended the ideas to modk domination problems [20]. Another linear algebra
proof was suggested by Goldwasser et al. [45,47] and Anderson and Feil [6]. Dodis
and Winkler [38] proposed the generalization to σF , see Theorem 3.

Cowen et al. [35] gave an elegant graph theoretical proof of Theorem 2 and
generalized it to infinite graphs where every node has finite degree. Eriksson
et al. [39] gave a similar graph theoretical proof. Our proof in Subsection 3.1
combines ideas from both proofs.

Algebraic proofs for special cases were given by Sutner [67], Lotto [58], and
Cowen et al. [35]. The general case was proved by Goldwasser et al. [45,47],
Anderson and Feil [6], and Dodis and Winkler [38].

Losada [57] rediscovered several of the techniques to solve Lights Out! on
grids and generalized them to grids embedded on surfaces of higher genus. Scher-
puis [65] and Martin-Sanchez and Pareja-Flores [60] summarize some of the al-
gebraic solutions for Lights Out! on grids.

Arya et al. [8] and Chen and Gu [25] independently proposed the greedy
algorithm from Subsection 3.3. Conlon et al. [34] studied graph classes where it
is easy to determine activation sets.

4 Universally Solvable Graphs

Theorem 8 ([3,5,67,68]). If G has a D-parity cover for some parity vector
D, then there exist exactly 2PD(G) distinct D-parity covers. In particular, there
always exist 2PD(G) distinct odd covers. ��

Theorem 9 ([45,47,67,68]). A graph is universally solvable if and only if its
adjacency matrix is invertible.

A Survey of the Game “Lights Out!” 185

Proof. The proof follows basically from the previous theorem. Let A be an n×n-
matrix. We have seen in Subsection 3.2 that an initial configuration C is solvable
if the linear equation Ax = C has a solution over GF (2). Since there are 2n

different initial configurations, the image of A has dimension n (and nullity 0),
i.e., A is invertible. ��
So we need to study the kernel of the adjacency matrix if we want to show
universal solvability. In the rest of this section we will do this for a few simple
graph classes. We begin with universally solvable grid graphs.

4.1 Lights Out! on Grid Graphs

Gn,m has nm nodes in m rows and n columns. We denote the node in column i
and row j by (i, j). The neighbors of (i, j) are {(i−1, j), (i, j+1), (i+1, j), (i, j−
1)} (not including those pairs where at least one component is zero).

Goldwasser et al. [45,47] observed that the structure of the kernel of the
adjacency matrix of a grid can be analysed using Fibonacci polynomials. For
i ≥ 0, the ith Fibonacci polynomial fi is recursively defined as

f0(x) = 1

f1(x) = x

fk(x) = xfk−1(x) + fk−2(x) for k ≥ 2

For example, fi−1(1) = Fi, the ith Fibonacci number, for i ≥ 1. The adjacency
matrix An,m of Gn,m can be written as

An,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bm Im 0 0 0 · · · 0 0

Im Bm Im 0 0 · · · 0 0

0 Im Bm Im 0 · · · 0 0

.

0 0 0 0 0 · · · Im Bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Im is the m × m identity matrix and Bm is an m × m binary matrix.
For the σ game, we use B0

m which is defined as B0
m[i, j] = 1 if |i − j| = 1, and

B0
m[i, j] = 0 otherwise. For the σ+ game, we use B+

m = B0
m + Im. We use Bm

for both B0
m and B+

m if the context is clear.
Let x be a vector of dimension mn satisfying Ax = 0. We split x into n

subvectors (x1,x2, · · · ,xn), each of length m, and define x0 = xm+1 = 0.
Then, clearly xi = Bmxi−1+xi−2, for i = 2, . . . , n+1, or, xi = fi−1(Bm) ·x1,
for i = 1, . . . , n+ 1. It is now straightforward, though tedious and technical, to
prove a few properties of the Fibonacci polynomials applied to the matrix Bm.

Lemma 10 ([11,45,47])

(a) For n > m, fn(x) = fn−m(x)fm(x) + fn−m−1(x)fm−1(x).
(b) An,m, fn(Bm), and fm(Bn) have the same nullity.
(c) fm−1(B

0
m) is invertible.

186 R. Fleischer and J. Yu

(d) fm(x) is the characteristic polynomial of B0
m, i.e., fm(B0

m) = 0.
(e) fm(x+ 1) is the minimal polynomial of B+

m, i.e., fm(B+
m + Im) = 0. ��

Theorem 11 ([11,45,47])

(a) The nullity of A0
n,m is gcd(n + 1,m + 1) − 1. In particular, the σ game on

Gn,m is universally solvable if and only if n + 1 and m + 1 are relatively
prime.

(b) The nullity of A+
n,m is the degree of gcd(fn(x+1), fm(x)). In particular, the

σ+ game on Gn,m is universally solvable if and only if fn(x+ 1) and fm(x)
are relatively prime.

Proof (Sketch)

(a) By Lemma 10(b), we only need to determine the nullity δ of

fn(B
0
m) = fn−m(B0

m)fm(B0
m) + fn−m−1(B

0
m)fm−1(B

0
m)

= fn−m−1(B
0
m)fm−1(B

0
m) ,

which is the same as the nullity of fn−m−1(Bm) because fm−1(Bm) is in-
vertible by Lemma 10(c).

If n + 1 is a multiple of m + 1, we can repeatedly apply Theorem 10(a)
until we see that δ is equal to the nullity of fm(B0

m). Since fm(B0
m) = 0,

δ = dim(ker fm(Bm))) = m. If m+1 does not divide n+1, we can similarly
show that δ = gcd(n+ 1,m+ 1)− 1.

(b) If P (x) = gcd(fm(x + 1), fn(x)), then there exists u(x) and v(x) such that
P (x) = fm(x + 1)u(x) + fn(x)v(x). Thus, P (B+

m) = fn(B
+
m)v(B+

m) by
Lemma 10(e), which implies ker fn(B

+
m) ⊆ kerP (B+

m). On the other hand,
P (x) is a factor of fn(x), which implies kerP (B+

m) ⊆ ker fn(B
+
m). Thus,

ker fn(B
+
m) = kerP (B+

m). Using the Primary Decomposition Theorem, we
can show that the dimension of the kernel is equal to the degree of P (x). ��

4.2 Lights Out! on Other Graph Classes

The techniques of the previous subsection are very specific for grid graphs and
do not generalize to other graph classes. We start with a few easy observations.

Theorem 12 ([4]). A graph is universally solvable, or APR, if and only if the
empty set is the only even cover.

Proof. Consider a graph with adjacency matrix A. If S is an even conver, then
As = 0, where s is the characteristic vector of S. The theorem follows now from
Theorem 9. ��
Corollary 13 ([4]). A graph where all nodes have odd degree is not universally
solvable.

Proof. If all nodes have odd degree, then the set of all nodes is an even cover. ��
Amin and Slater [5] characterized several APR graph classes. We first consider
paths.

A Survey of the Game “Lights Out!” 187

Theorem 14 ([5]). A path Pn is universally solvable if and only if n �= 3k+2,
for k ≥ 0

Proof. It is easy to see that P1 is APR and P2 is non-APR. For n ≥ 3, assume
there is a non-empty even cover S of Pn. If some node does not belong to S, then
both its neighbors must belong to S. If a node belongs to S, then it has exactly
one neighbor in S. Both endpoints of Pn must belong to S. Thus, n = 3k+2 for
some k ≥ 1. ��

An n-leg spider T = (v, P1, P2, . . . , Pn) is a tree where n paths P1, P2, . . . , Pn

are connected to the root v. 1-leg and 2-leg spiders are paths and are therefore
covered by the previous theorem.

Theorem 15 ([5]). Let T be an n-leg spider, for some n ≥ 3. For i = 0, 1, 2, let
ti denote the number of legs of length 3k+ i, for some k ≥ 0. T is not universally
solvable if and only if t2 = 0 and t1 is odd, or t2 > 0 and t2 is even.

Proof. Assume T has a non-empty even cover S. If the root v is not in S, then
S induces non-empty even covers for all legs. In that case, all legs contribute to
t2 by Theorem 14 and all their endpoints are in S. Since v must be covered by
an even number of nodes, T has an even number of legs, i.e., t2 is even.

If v is in S, then there must be an odd number of legs whose first node
(adjacent to the root) is in S. For these legs, the second node cannot be in S,
while S induces an even cover for the rest of the path. Thus, by Theorem 14,
these legs contribute to t1. The other legs all contribute to t0 because S induces
an even cover for the leg minus its first node. Thus, t2 = 0 and t1 is odd.

Conversely, if t2 = 0 and t1 is odd, or if t2 > 0 and t2 is even, then we can
construct in the same way a non-empty even cover for T . ��

We now consider caterpillars. If a caterpillar has only nodes of odd degree, then
every internal segment must have an odd number of feet, while the two end
segments must each have an even number of feet. It is difficult to characterize
the properties of APR caterpillars, we can only give an inductive construction
of non-APR caterpillars. The composition of two caterpillars T1 and T2 is the
caterpillar T1 ◦ x ◦ T2, where x is a new node with an arbitrary number of feet
which is connected to one end segment of T1 and T2.

Theorem 16 ([5]). The set T of all non-APR caterpillars can be defined by

1. each caterpillar with only odd-degree nodes is in T ;

2. if T1 and T2 are in T , then their composition is also in T .

Proof. We first show that all caterpillars in T are non-APR. If all nodes have
odd degree, then the caterpillar is non-APR by Corollary 13. If T1 and T2 are
non-APR caterpillars with non-empty even covers S1 and S2, respectively, then
the Si must contain the end segments. Thus, S1 ∪ S2 is a non-empty even cover
of the composition of T1 and T2.

188 R. Fleischer and J. Yu

We now show that T contains all non-APR caterpillars. Consider a non-APR
caterpillar T which has at least one even-degree node. Let S be a non-empty
even cover of T , If a segment belongs to S, then so do all its feet. Since S �= V
(this would imply that all nodes have odd degree), there must be a segment x
which is not in S. This node cannot be an end segment, so it splits the spine
into two parts, i.e., two non-APR caterpillars whose composition is T . ��

We now consider APR trees. We know from Section 4 that a graph is universally
solvable if and only if there is a bijection between initial configurations and
activation sets. Let (Ti, xi), for i = 1, 2, be an APR tree Ti with a designated
node xi ∈ Ti. Let Xi be the activation solving the initial configuration Ci = {xi}.
If x1 �∈ X1, then we can combine T1 and T2 in a Type 1 operation by adding the
edge (x1, x2).

If we have an even number of APR trees (Ti, xi), for i = 1, . . . , 2k, with
designated nodes xi ∈ Ti and all xi ∈ Xi, then we can combine these trees into
a single tree by creating a new node v and connecting it with all the xi. It is
easy to see that Type 1 and Type 2 operations again create APR trees.

Theorem 17 ([5]). A tree is universally solvable if and only if it is K1 or it
can be obtained from a set of universally solvable trees by a Type 1 or Type 2
operation. ��

Theorem 18 ([5]). If a tree contains exactly one vertex of even degree, then
the tree is APR. ��

4.3 Historical Reviews

Pelletier [62] showed that Merlin is APR because its adjacency matrix is invert-
ible. After computing the inverted adjacency matrix, it is easy to read off an
solution for a given parity vector in quadratic time. Consider the submatrix of
all columns whose corresponding nodes have odd parity; choose node i if row i
has an odd number of non-zero entries in this submatrix.

Sutner [67,68] showed that a directed (or undirected) graph is APR if and
only if its corresponding σ-automaton is reversible if and only if the nullspace
of AG has dimension 0. In this case, any solution is unique. The same result
for undirected graphs was found by Amin and Slator [4]. They observed that a
graph cannot be APR if all nodes have odd degree. On the other hand, a tree
is APR if it has exactly one vertex of even degree [5]. They also gave other
characterizations of APR trees [5]. Amin et al. [3] studied the parity dimension
of various graph classes like cycles, paths, trees, and random graphs.

Amin and Slater [4] showed how to decide whether a series-parallel graph is
APR and find a minimum D-cover (if it exists) using a dynamic program with 16
labels on each node. They further showed that Kn is not APR, for n ≥ 2. For Pn,
the nullspace has dimension d = 0 if n ≡ 0, 1 mod 3, and d = 1 if n ≡ 2 mod 3
[4,67,68]. For open neighborhoods, it is d = 0 if n is even and d = 1 if n is odd [68].
In this case, the nullspace of Gn,m has dimension gcd(n + 1,m+ 1) − 1. Gn,n is
invertible iff n is even. For closed neighborhoods, Sutner claimed that for any n

A Survey of the Game “Lights Out!” 189

there is anm ≥ n such that the nullspace ofGn,m has dimension n. He gave a table
of the dimensions of Gn,n, for n = 1, . . . , 100. Cn is APR iff n �≡ 0 mod 3 [67,4].
Gn,1 and Gn,3 are APR iff n �≡ 2 mod 3, Gn,2 is APR iff n is even, Gn,5 is APR iff
n �≡ 4 mod 5, and G2n+1,3k+2 is not APR for k ≥ 0 and n ≥ 1 [4].

G + H is APR iff G and H are APR and G or H has an odd cover of even
cardinality [4]. In particular, a fan Fn = K1 + Pn is APR iff n ≡ 0, 4 mod 6,
a wheel Wn = K1 + Cn is APR iff n ≡ 2, 4 mod 6, and Kn,m is APR iff nm is
even. Amin et al. [5] studied APR trees: A spider (or star) is APR iff one ray has
length ≡ 2 mod 3 or there is no such ray but an even number of rays of length
≡ 1 mod 3; if k is even then a k-ary tree is APR; a complete k-ary tree is APR
iff it has exactly one node of even degree; they also constructively characterized
all APR caterpillars and all APR trees.

Sutner [68] studied solvability of directed graphs with open and closed neigh-
borhoods in the context of σ-automata. Finding a D-cover for directed graph G
is equivalent to solving AG · x = D over GF (2) (or (Ag − I) · x = D in case of
open neighborhoods). The number of different solutions (if there is a D-cover)
is 2d, where d is the dimension of the nullspace of AG.

Sutner [70] showed that the reachability and predecessor problems are un-
decidable for 1-dimensional infinite cellular automata. For finite 1-dimensional
cellular automata, the predecessor problem can be solved in linear time. For
2-dimensional cellular automata, there exists a rule such that the predecessor
problem is NP-complete. In [69], he gave a quadratic algorithm to decide surjec-
tivity of a linear cellular automaton. In [71], he gave a quadratic time algorithm
to test whether the global map is injective, m-to-one, or surjective.

Goldwasser et al. [45,47] first used divisibility properties of Fibonacci poly-
nomials to characterize APR grid graphs for σ+. In particular, they obtained
an O(n log2 n) time algorithm to decide whether Gn,m is APR, where n ≥ m.
Sutner [68] obtained similar results for σ and σ+ on grid graphs studying the
same recursive polynomials which he called Chebychev polynomials. Later, Barua
and Ramakrishnan [11] simplified this technique, and Sutner [72] extended the
results. Sutner [73] also used the Fibonacci polynomials to analyze the cycle
structure of σ-automata.

Ware [76] computed all factors of the first one hundred Fibonacci polynomials
and give a list of all solvable grids Gn,n, for n ≤ 1, 000. Goldwasser et al. [46]
showed that Fibonacci polynomials can also be used to analyze even covers. In
2002, Klostermeyer [54] presented a survey on parity domination in grid graphs.

Dodis and Winkler [38] studied F -neighborhood covers. For fixed F , they
called the parity vector D = F a universal configuration because it is the only
parity vector that guarantees the existence of a D-parity F -neighborhood cover
in any graph. Note that the greedy algorithm in Section 3.3 always moves from
one universal configuration to another in a smaller graph (and stops when it
reaches the all-zero parity vector which has a trivial empty set solution).

190 R. Fleischer and J. Yu

5 Optimization Problems

5.1 Minimum Odd Covers

We have seen in Section 3 that all undirected graphs have an activation set for the
all-on initial configuration. It is natural to ask for a smallest such activation set.
In this section we study this and other optimization problems. Let k-AllOff

denote {(G = (V,E), k) | G has an activation set of size at most k for the all-on
configuration}.

Theorem 19 ([66]). k-AllOff is NP-complete.

Proof. k-AllOff is clearly in NP. To prove NP-hardness, we give a reduction
from 3SAT. Let F be a formula in 3CNF with n variables and m clauses. We
now construct a graph G. For each variable xi, the variable gadget consists of a
triangle, where two of the nodes correspond to the positive and negative literal of
the variable, respectively.1 For each clause, the clause gadget has three a-nodes
and seven b-nodes, see Fig. 1. The b-nodes form a clique K7 (these edges are
omitted in the figure). The a-nodes represent the three literals in the clause, and
are connected to their corresponding literal nodes in the variable gadgets.

a-vertices

K7

b-vertices

Fig. 1. A clause gadget in the reduction from 3SAT to k-AllOff

We now show that F is satisfiable if and only if G has an activation set of size
n +m. Let X be an activation set for G. X must contain at least one node of
each variable gadget and at least one one of the b-nodes of each clause gadget.
Since X has size n+m, it must contain exactly one node from each gadget. We
can therefore define a truth-assignment α for the variables by α(xi) = 1 if and
only if xi ∈ X . Since no b-node can cover all three a-nodes in its clause gadget,
at least one of the a-nodes must be covered by a variable gadget, i.e., each clause
is satisfied by α and F is true.

On the other hand, if we have a satisfying assignment α for F , we select the
xi in the varibale gadget for the activation set if α(xi) = 1, and x̄i if α(xi) = 0.
This covers at least one a-node in each of the clause gadgets. The other two

1 Sutner [66] only used two nodes connected by an edge as variable gadget, but then
the correctness argument becomes more involved because it is seemingly possible
that a-nodes could be used to cover the variable nodes.

A Survey of the Game “Lights Out!” 191

nodes can then be covered by choosing an appropriate b-node. This gives us an
activation set of size m+ n. ��

Conlon et al. [34] studied graph classes where it is easy to compute the size of a
minimum activation set, which we denote by α(G). Recall that the characteristic
vector x of an activation set is a solution to Ax = 1, and every node of G must
have an odd number of activated nodes in its closed neighborhood. Also, if two
non-adjacent nodes have the same open neighborhood, then they must either be
both activated or both not activated.

Theorem 20 ([34])

(a) α(Kn) = 1.

(b) α(Pn) = �n
3 �.

(c) α(Cn) =

{
n
3 if n ≡ 0 mod 3

n otherwise

(d) α(Kn,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min(m,n) if both m and n are odd

m if only m is odd

n if only n is odd

m+ n if m and n are even

(e) α(Cn,m) =

⎧⎪⎨
⎪⎩
�n
3 �+m� 2n

3 � if m is even

nm if m is odd and n is even
1
2 (n− 1)(m+ 1) + 1 if m and n are odd

(f) α(Gn,2) =

⎧⎪⎨
⎪⎩
n if n ≡ 0 mod 4

n+ 2 if n ≡ 2 mod 4
1
2 (n+ 1) if n is odd

(g) α(Gn,3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

5n
3 if n ≡ 0 mod 6

n if n ≡ 1 mod 6

n+ 2 if n ≡ 2, 3 mod 6

10�n
6 � ≡ 4 mod 6

n+ 1 if n ≡ 5 mod 6

(h) α(Gn,4) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n if n ≡ 0 mod 5

6�n
5 �+ 2 if n ≡ 1 mod 5

6�n
5 �+ 4 if n ≡ 2 mod 5

2(n+ 2) if n ≡ 3 mod 5

6�n
5 � if n ≡ 4 mod 5

(i) If Th is a full binary tree of height h ≥ 0, then α(Th) =
1
3 (4

h/2�+1 − 1).

Proof. (Sketch)

192 R. Fleischer and J. Yu

(a) We can activate any node.

(b) By Lemma 7, every consecutive pair of activated nodes must be separated
by a pair of non-activated nodes.

(c) If no two activated nodes are adjacent, then every consecutive pair of acti-
vated nodes must be separated by a pair of non-activated nodes. Otherwise,
all nodes must be activated.

(d) Let Vm and Vn be the two partitions of Kn,m. If m or n are odd, it suffices
to activate the smallest odd partition, otherwise we must activate all nodes.

(e) Since all feet of a segment must either be all activated or all not activated,
and the segment is activated if the feet are not activated, we try to activate
as many segments as possible. If m is even, we find the minimum activation
for the spine, which is a Pn, and activate all feet connected to non-activated
segments. Ifm and n are odd, we must activate every second segment starting
with an end segment. If m is odd and n is even, we must activate all feet
and no segment.

(f) If m ≡ 2 mod 4, we must alternate 4-cycles of activated and unactivated
nodes. Similarly for m ≡ 0 mod 4. If m is odd, we can use a perfect star
cover with the activated nodes arranged in a knights move pattern.

(g) Extensive case analysis.

(h) Extensive case analysis.

(i) We must activate the root and all nodes on even levels of the tree. ��

Amin and Slater [4] proposed a linear-time algorithm for series-parallel graphs
based on dynamic programming. Gassner and Hatzl [42] generalized this algo-
rithm to graphs of bounded treewidth and distance-hereditary graphs.

5.2 Maximizing Off Nodes

We have seen that for some graphs not all initial configurations are solvable.
It is natural to ask how difficiult it is to switch off as many nodes as possible.
Goldwasser et al. [44] called this problem MOS (Maximizing Off Switches) and
showed that it is NP-complete via a gap-preserving reduction from a variant of
MAX-3SAT where each variable appears in exactly five clauses [7].

Theorem 21 ([44]). MOS is NP-complete. Further, there exists a constant ε >
0 such that no polynomial time algorithm for MOS can achieve an approximation
ratio better than 1 + ε, unless P=NP. ��

Note that it is easy to achieve an approximation ratio of 2 − � 2
n�. We know

from Section 3 that there always exists an odd cover that changes the state of
every node in the graph. If more than half of the nodes are on in the initial
configuration, we can use this odd cover to turn more than half of the nodes off.

We now turn to the fixed parameter variant of MOS. Let G be a graph and
c ≥ 0 a constant. We denote by c-MOS the problem to decide whether we can

A Survey of the Game “Lights Out!” 193

reach a configuration with at most c on nodes from any initial configuration [44].
We attack this problem using techniques from coding theory. We have seen in
Theorem 9 that kerAG is orthogonal to the range of A. Let y1,y2, · · · ,yk be
a basis of kerAG. Let H be the k × n-matrix with yi as row i, for i = 1, . . . , k.
Every solvable initial configuration xC satisfies H = 0.

This means all the solvable configurations form a linear code C with binary
codewords of length n. The matrix H is the parity check matrix of the code C,
i.e., Hc = 0 for all c ∈ C. For any word w of length n, the k-dimensional vector
s = Hw is called the syndrome of w.

Lemma 22 ([44]). The coset w+C is equal to the set of all configurations that
can be reached from initial configuration w via activations.

Proof. For every c ∈ C there exists a vector x representing a c-parity activation
set, i.e., Ax = c. Thus, for every word u in the coset w + C there exists a
codeword c ∈ C and a vector x such that u = w+ c = w+Ax. Thus, u can be
obtained from the initial configuration w via the activation set x. ��

Observe that all u in the coset w+ C have the same syndrome since there exists
a codeword c such that u = w + c and thus Hu = H(w + c) = Hw = s. The
weight of a coset is the minimum weight of any vector in the coset. The covering
radius of the code is the maximum weight of any coset.

Lemma 23 ([44]). The weight of a coset w+C is equal to the smallest number
of columns of H whose sum is the syndrome Hw of the coset.

Proof. The syndrome s = Hw is the sum of some columns of H , encoded by
the positions of the ones in w. Since every word u in the coset w + C has the
same syndrome s, the weight of the coset is the smallest number of columns in
H whose sum equals s. ��

In c-MOS, we want from any initial configuration reach a configuration with at
most c on nodes. This means, the vectors in the range of A can contain at most
c ones. The weight of a coset w+C is the minimum number of ones of any vector
in the coset. If the weight of any coset is not greater than c, then we can turn
off at least n− c nodes for every initial configuration. So all we need to do is to
compute the covering radius of C, i.e., check whether every syndrome s can be
formed by a sum of at most c columns of H .

5.3 Bounds for Trees

Wang and Wu [75] recently proposed a tight bound for the minimum number of
on nodes we can guarantee for trees. For any tree and any initial configuration,
we can always find an activation set that leaves at most � �

2� nodes on, where �
is the number of leaves.

We first introduce some notation. We denote the set {1, 2, . . . , n} by [n]. For
an m× n matrix A, if I and J are subsets of [m] and [n], respectively, then we
denote by M(I, J) the submatrix indexed by the rows I and columns J . The
covering radius of a matrix A is defines as ρ(M) = maxx miny∈R(M) wt(x− y).

194 R. Fleischer and J. Yu

Lemma 24 ([75]). Let A be an m× n matrix. Let I and J be disjoint subsets
of [n] such that A([m], I ∪ {j}) is of full column rank for all j ∈ J . Then, for

any c, there exists y ∈ R(A) with wt(c,y) ≤ n − |I| − � |J|
2 �. In particular,

ρ(A) ≤ n− |I| − � |J|
2 �. ��

Theorem 25 ([75]). Let T be a tree with � leaves. For any initial configuration,
there exists an activation set that leaves at most � �

2� nodes on, and these nodes
are leaves.

Proof. Let AT be the adjacency matrix of T . Let I be the column index set
corresponding to internal nodes of T and J the column index set corresponding
to leaf nodes. It is not difficult to see that I and J satisfy the conditions in
Lemma 24, so we conclude

ρ(A) ≤ n− |I| − � |J |
2
� = n− r − � l

2
� = � l

2
�

��

5.4 Historical Review

Minimum Covers. Sutner [66] gave the first NP-hardness proof for finding min-
imum odd covers. Later several special graph classes were studied. Conlon et
al. [34] derived closed formulas for simple graph classes like paths, cycles, cater-
pillars, and narrow grids. Galvin [41], Dawes [36], and Chen et al. [26] proposed
to first enumerate all feasible solutions for a tree and then use some linear al-
gebra techniques to find the minimum solution. Amin and Slate [5] proposed
linear time dynamic programs to compute minimum odd covers for trees and
series-parallel graphs.

Heck [50] showed how to compute a minimum solution for Nine-Tails, which
is Lights Out! on G3,3, using dynamic programming in time Θ(2n) (it is ac-
tually BFS in the game graph going backwards from the end configuration).
Delahan et al. [37] proposed a simpler algorithm. For each node v, he precom-
puted the (unique) Dv-cover, where Dv(w) = 1 exactly if w = v. Then we can
compute a minimum D-cover (they did not mention that any D-cover must be
unique, though) in time O(n2) by bitwise addition of those Dv where D(v) = 1.

Goldwasser and Klostermeyer [44] introduced MOS and proved it is NP-hard
to find an optimal solution and a (1 + ε)-approximation. They also used coding
theory to construct a polynomial time algorithm to solve the fixed parameter
variant c-MOS and gave tight bounds for grid graphs. Wang and Wu [75] gave
tight bounds for trees.

Codes. The following problems are NP-complete [64, p. 739 ff]:

1. Weight of Error (or Maximum Likelihood Decoding): Does Hy = s have
a solution y with weight at most w? (Reduction from 3D-Matching [12], the
matrix is non-symmetric.)

A Survey of the Game “Lights Out!” 195

2. Minimal Weight: Does Hy = 0 have a non-zero solution y of weight at most
w? (Reduction from Weight of Error [74])
This is equivalent to Even Vertex Set: For a given graph, are there at most
w nodes (but more than zero nodes) that form an even cover?

3. Maximal Weight (alphabet size two or three): Does Hy = 0 have a non-zero
solution y of weight at least w? (Reduction from Max-Cut)

4. Weight Distribution: Does Hy = 0 have a non-zero solution y of weight
w? (Reduction from 3D-Matching [12])

Acknowledgements. We thank the following colleagues for their helpful dis-
cussions at HKUST during an early stage of this paper: Sunil Arya, Siu-Wing
Cheng, Mordecai Golin, Torleiv Kløve, Stefan Langermann, Yiu Cho Leung,
Hyeon-Suk Na, Sheung Hung Poon, Gerhard Trippen, Ho Man Tsui, Antoine
Vigneron, and Joseph Zhen Zhou.

References

1. Allan, R.B., Laskar, R.: On domination and some related topics in graph theory. In:
Proceedings of the 9th Southeastern Conference on Combinatorics, Graph Theory
and Computing, pp. 43–56. Utilitas Mathematica, Winnipeg (1978)

2. Alon, N., Caro, Y.: On three zero-sum Ramsey-type problems. Journal of Graph
Theory 17, 177–192 (1993)

3. Amin, A., Clark, L., Slater, P.: Parity dimension for graphs. Discrete Mathemat-
ics 187, 1–17 (1998)

4. Amin, A.T., Slater, P.J.: Neighborhood domination with parity restrictions in
graphs. Congressus Numerantium 91, 19–30 (1992)

5. Amin, A.T., Slater, P.J.: All parity realizable trees. Journal of Combinatorial Math-
ematics and Combinatorial Computing 20, 53–63 (1996)

6. Anderson, M., Feil, T.: Turning lights out with linear algebra. Mathematical Mag-
azine 71(4), 300–303 (1998)

7. Arora, S., Lund, C.: Hardness of approximations. In: Hochbaum, D.S. (ed.) Approx-
imation Algorithms for NP-Hard Problems, pp. 399–446. PWS Publishing Com-
pany, Boston (1997)

8. Arya, S., Cheng, S.-W., Fleischer, R., Golin, M., Kløve, T., Langermann, S.,
Leung, Y.C., Na, H.-S., Poon, S.H., Trippen, G., Tsui, H.M., Vigneron, A., Zhou,
Z.: Fiver (2002) (manuscript)

9. Bange, D.W., Barkauskas, A.E., Host, L.H., Slater, P.J.: Efficient near-dominating
of grid graphs. Congressus Numerantium 58, 83–92 (1987)

10. Bange, D.W., Barkauskas, A.E., Slater, P.J.: Efficient dominating sets in graphs.
In: Ringeisen, R.D., Roberts, F.S. (eds.) Applications of Discrete Mathematics,
pp. 189–199. Society of Industrial and Applied Mathematics, Philadelphia (1988)

11. Barua, R., Ramakrishnan, S.: σ-game, σ+-game and two-dimensional addititive
cellular automata. Theoretical Computer Science 154(2), 349–366 (1996)

12. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractabil-
ity of certain coding problems. IEEE Transactions on Information Theory IT-24,
384–386 (1978)

196 R. Fleischer and J. Yu

13. Berman, F., Leighton, F.T., Shor, P., Snyder, L.: Generalized planar matching.
Technical Report MIT/LCS/TM-273. MIT (April 1985)

14. Beyer, T., Proskurowski, A., Hedetniemi, S., Mitchell, S.: Independent domination
in trees. In: Proceedings of the 8th Southeastern Conference on Combinatorics,
Graph Theory and Computing, pp. 321–328 (1977)

15. Biggs, N.: Perfect codes and distance transitive graphs. In: McDonough, F.P.,
Mavron, V.C. (eds.) Proceedings of the 3rd British Combinatorial Conference
(Combinatorics). London Mathematical Society Lecture Notes Series, vol. 13,
pp. 1–8 (1973)

16. Biggs, N.: Perfect codes in graphs. Journal of Combinatorial Theory, Series B 15,
289–296 (1973)

17. Bollobás, B., Cockayne, E.J.: Graph-theoretic parameters concerning domination,
independence, and irredundance. Journal of Graph Theory 3, 241–249 (1979)

18. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient dominating and edge domi-
nating sets for graphs and hypergraphs. arXiv:1207.0953v2[cs.DM] (2012)

19. Caro, Y.: Simple proofs to three parity theorems. Ars Combinatoria 42, 175–180
(1996)

20. Caro, Y., Jacobson, M.S.: On non-z(modk) dominating sets. Discussiones Mathe-
maticae Graph Theory 23, 89–199 (2003)

21. Caro, Y., Klostermeyer, W.: The odd domination number of a graph. Journal of
Combinatorial Mathematics and Combinatorial Computing 44, 65–84 (2003)

22. Caro, Y., Klostermeyer, W.F., Yuster, R.: Connected odd dominating sets
in graphs (2011),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.2320

23. Chang, T.Y., Clark, W.E.: The domination numbers of the 5 × n and the 6 × n
grid graphs. Journal of Graph Theory 17(1), 81–107 (1993)

24. Chang, T.Y., Clark, W.E., Hare, E.O.: Domination numbers of grid graphs, i. Ars
Combinatoria 38, 97–111 (1994)

25. Chen, W.Y.C., Gu, N.S.S.: Loop deletion for the lamp lighting problem (2011)
(manuscript), http://www.billchen.org/preprint/lamp/lamp.htm

26. Chen, W.Y.C., Li, X., Wang, C., Zhang, X.: The minimum all-ones problem for
trees. SIAM Journal on Computing 33(2), 379–392 (2004)

27. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(1-3), 165–177 (1990)

28. Clark, W.E., Dunning, L.A.: Tight upper bounds for the domination numbers of
graphs with given order and minimum degree. The Electronic Journal of Combi-
natorics 4(1, R26), 1–25 (1997)

29. Clark, W.E., Ismail, M.E.H., Suen, S.: Application of upper and lower bounds for
the domination number to Vizing’s conjecture. Ars Combinatoria (2003)

30. Clark, W.E., Suen, S., Dunning, L.A.: Tight upper bounds for the domination num-
bers of graphs with given order and minimum degree, II. The Electronic Journal
of Combinatorics 7(1, R58), 1–19 (2000)

31. Cockayne, E.J., Hare, E.O., Hedetniemi, S.T., Wimer, T.V.: Bounds for the dom-
ination number of grid graphs. Congressus Numerantium 47, 217–228 (1985)

32. Cockayne, E.J., Hedetniemi, S.T.: Independence graphs. In: Proceedings of the
5th Southeastern Conference on Combinatorics, Graph Theory and Computing,
pp. 471–491. Utilitas Mathematica, Winnipeg (1974)

33. Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Net-
works 7, 247–261 (1977)

34. Conlon, M.M., Falidas, M., Forde, M.J., Kennedy, J.W., McIlwaine, S., Stern, J.:
Inversion numbers of graphs. Graph Theory Notes of New York 37, 42–48 (1999)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.2320
http://www.billchen.org/preprint/lamp/lamp.htm

A Survey of the Game “Lights Out!” 197

35. Cowen, R., Hechler, S.H., Kennedy, J.W., Ryba, A.: Inversion and neighborhood
inversion in graphs. Graph Theory Notes of New York 37, 37–41 (1999)

36. Dawes, R.W.: Minimum odd neighborhood covers for trees. In: Sherwani, N.A.,
Kapenga, J.A., de Doncker, E. (eds.) Great Lakes CS Conference 1989. LNCS,
vol. 507, pp. 161–169. Springer, Heidelberg (1991)

37. Delahan, F., Klostermeyer, W.F., Trapp, G.: Another way to solve Nine-Tails.
ACM SIGCSE Bulletin 27(4), 27–28 (1995)

38. Dodis, Y., Winkler, P.: Universal configurations in light-flipping games. In: Pro-
ceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA 2001),
pp. 926–927 (2001)

39. Eriksson, H., Eriksson, K., Sjostrand, J.: Note on the lamp lighting problem. Ad-
vances in Applied Mathematics 27, 357–366 (2004)

40. Fraenkel, A.S.: Two-player games on cellular automata. In: Proceedings of the 2000
MSRI Workshop on Combinatorial Games — More Games of No Chance. Mathe-
matical Sciences Research Institute Publications, vol. 42, pp. 279–306. Cambridge
University Press, Cambridge (2002)

41. Galvin, F.: Solution. The Mathematical Intelligencer 11(2), 32 (1989)
42. Gassner, E., Hatzl, J.: A parity domination problem in graphs with bounded

treewidth and distance-hereditary graphs. Journal of Computing 82(2), 171–187
(2008)

43. Goddard, W., Henning, M.A.: Domination in planar graphs with small diameter.
Journal of Graph Theory 40(1), 1–25 (2002)

44. Goldwasser, J., Klostermeyer, W.: Maximization versions of ”Lights Out” games
in grids and graphs. Congressus Numerantium 126, 99–111 (1997)

45. Goldwasser, J., Klostermeyer, W., Trapp, G.: Characterizing switch-setting prob-
lems. Linear and Multilinear Algebra 43(1-3), 121–136 (1997)

46. Goldwasser, J., Klostermeyer, W., Ware, H.: Fibonacci polynomials and parity
domination in grid graphs. Graphs and Combinatorics 18(2), 271–283 (2002)

47. Goldwasser, J., Klostermeyer, W.F., Trapp, G.E., Zhang, C.Q.: Setting switches
in a grid. Technical Report TR-95-20, Department of Statistics and Computer
Science, West Viginia University (1995),
http://ww.cs.wvu.edu/usr05/wfk/.public-html/switch.ps

48. Goncalves, D., Pinlou, A., Rao, M., Rhomassé, S.: The domination number of grids.
SIAM Journal on Discrete Mathematics 25(3), 1443–1453 (2011)

49. Hare, E.O., Hedetniemi, S.T., Hare, W.R.: Algorithms for computing the domina-
tion number of k × n complete grid graphs. Congressus Numerantium 55, 81–92
(1986)

50. Heck, P.: Dynamic programming for pennies a day. ACM SIGCSE Bulletin 26(1),
213–217 (1994)

51. Jacobson, M.S., Kinch, L.F.: On the domination number of products of graphs: I.
Ars Combinatoria 18, 33–44 (1983)

52. Jacobson, M.S., Peters, K.: Complexity questions for n-domination and related
parameters. Congressus Numerantium 68, 7–22 (1989)

53. Kikuno, T., Yoshida, N., Kakuda, Y.: A linear algorithm for the domination number
of a series-parallel graph. Discrete Applied Mathematics 5, 299–311 (1983)

54. Klostermeyer, W.: Lights Out!: A survey of parity domination in grid graphs (2002),
http://citeseer.nj.nec.com/498805.html

55. Livingston, M., Stout, Q.F.: Perfect dominating sets. Congressus Numerantium 79,
187–203 (1990)

56. Livingston, M.L., Stout, Q.F.: Constant time computation of minimum dominating
sets. Congressus Numerantium 105, 116–128 (1994)

http://ww.cs.wvu.edu/usr05/wfk/.public-html/switch.ps
http://citeseer.nj.nec.com/498805.html

198 R. Fleischer and J. Yu

57. Losada, R.: All Lights and Lights Out (in Spanish). In: SUMA, vol. 40 (2002),
English version http://centros5.pntic.mec.es/~antoni48/Lights.doc

58. Lotto, B.: It all adds up to elegance and power: A computer puzzle as a paradigm
for doing mathematics. Vasser Quarterly 93(1), 19–23 (1996)

59. MacGillivray, G., Seyffarth, K.: Domination numbers of planar graphs. Journal of
Graph Theory 22(3), 213–229 (1996)

60. Martin-Sánchez, Ó., Pareja-Flores, C.: Two reflected analyzes of Lights Out. Math-
ematical Magazine 74(4), 295–304 (2001)

61. Masters, J.D., Stout, Q.F., van Wieren, D.M.: Unique domination in cross-product
graphs. Congressus Numerantium 118, 49–71 (1996)

62. Pelletier, D.: Merlin’s magic square. American Mathematical Monthly 94, 143–150
(1987)

63. Pfaff, J., Laskar, R., Hedetniemi, S.T.: Linear algorithms for independent domina-
tion and total domination in series-parallel graphs. Congressus Numerantium 45,
71–82 (1984)

64. Pless, V., Huffman, W. (eds.): Handbook of Coding Theory, vol. 1. Elsevier Science
Publishing Co., New York (1998)

65. Scherphuis, J.: Jaap’s puzzle page (2013),
http://www.jaapsch.net/puzzles/lights.htm

66. Sutner, K.: Additive automata on graphs. Complex Systems 2(6), 649–661 (1988)
67. Sutner, K.: Linear cellular automata and the Garden-of-Eden. The Mathematical

Intelligencer 11(2), 49–53 (1989)
68. Sutner, K.: The σ-game and cellular automata. American Mathematical

Monthly 97(1), 24–34 (1990)
69. Sutner, K.: De Bruijn graphs and linear cellular automata. Complex Systems 5(1),

19–30 (1991)
70. Sutner, K.: On the computational complexity of finite cellular automata. Journal

of Computer and System Sciences 50(1), 87–97 (1995)
71. Sutner, K.: Linear cellular automata and de Bruijn automata. In: Delorme, M.,

Mazoyer, J. (eds.) Cellular Automata: A Parallel Model. Mathematics and its Ap-
plications, vol. 460. Kluwer, Boston (1999)

72. Sutner, K.: Sigma-automata and Chebyshev polynomials. Theoretical Computer
Science 230(1-2), 49–73 (2000)

73. Sutner, K.: Decomposition of additive cellular automata. Complex Systems 13(3),
245–270 (2001)

74. Vardy, A.: The intractability of computing the minimum distance of a code. IEEE
Transactions on Information Theory 43(6), 1757–1766 (1997)

75. Wang, X., Wu, Y.: σ-game on trees: covering radius and tree order (2007)
76. Ware, H.: Divisibility properties of Fibonacci polynomials over GF(2). Master’s

thesis, Department of Statistics and Computer Science, West Virginia University
(1997), http://www.csee.wvu.edu/~java/etd/ware.pdf

http://centros5.pntic.mec.es/~antoni48/Lights.doc
http://www.jaapsch.net/puzzles/lights.htm
http://www.csee.wvu.edu/~java/etd/ware.pdf

Random Access to High-Order Entropy

Compressed Text

Roberto Grossi

Dipartimento di Informatica, Università di Pisa, Italy
grossi@di.unipi.it

Abstract. This paper is a survey on the problem of storing a string in
compressed format, so that (a) the resulting space is close to the high-
order empirical entropy of the string, which is a lower bound on the
compression achievable with text compressors based on contexts, and
(b) constant-time access is still provided to the string as if it was uncom-
pressed. This is obviously better than decompressing (a large portion
of) the whole string each time a random access to one of its substrings
is needed. A storage scheme that satisfies these requirements can thus
replace the trivial explicit representation of a text in any data structure
that requires random access to it, alleviating the algorithmic designer
from the task of compressing it.

1 Introduction

Massive textual data and text with markup are the formats of choice for doc-
uments, data interchange, document databases, data backup, log analysis, and
configuration files. These forms of unstructured, semi-structured, and replicated
data are gaining increasing popularity. Most of their processing is in the main
memory in computing clusters where space is an important issue. At the same
time, they are often highly compressible when considered as strings.

While most sequential processing methods decompress on the fly and scan the
content of these compressed strings (e.g. using tools such as zcat or bzcat), there
are many situations in which fast random access to some selected contiguous
segments (substrings) of these compressed strings is needed. The decompression
of the whole strings is too expensive because the accessed substrings may be
relatively few and small, and potentially scattered through the memory.

Problem Statement. The above scenario motivates the introduction of a com-
pressed string storage scheme (csss), which stores a string S[1, n] from the al-
phabet [σ] = {1, . . . , σ} in compressed form, while allowing random access to
the string via the operation:

Access(i,m): return the substring S[i, i+m−1] for m ≥ 1 and 1 ≤ i ≤ n−m+1.

The dynamic version of a csss supports also update operations on S, namely,
insertions, deletions or substitutions of symbols in S.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 199–215, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

200 R. Grossi

Model and Complexity. We adopt the standard RAM model with a word
size of Θ(lg n) bits. We also assume that each symbol of the alphabet [σ] is
encoded by �lg σ� bits1 This means that the uncompressed string S requires
n�lg σ� bits to be stored in raw form, and Access to any substring of m symbols
can be optimally (and trivially) performed in Θ(1 + m lg σ/ lgn) time as each
word stores Θ(lg n/ lg σ) symbols.2

When S is highly compressible, which is the case in almost all large-scale texts,
the compressed representation of S can reach its information theoretic minimum,
called entropy. For each c ∈ [σ], let pc = nc/n be its empirical probability of
occurring in S, where nc is the number of occurrences of symbol c in S. The zero-
th order empirical entropy of S is defined as H0(S) = −

∑σ
c=1 pc lg pc, where

H0(S) ≤ lg σ. Popular compressors such as those based in Huffman coding and
Arithmetic coding are able to store S using nH0(S) bits plus some lower order
term. Note that this compressed representation is effective when H0(S) < lg σ.
But this is not theoretically the best for a compressible text.

We can exploit the fact that a certain portion of S, say ω, is often followed
by a symbol c in S. In other words, the number of occurrence of ω and ωc
are very close. The conditional probability of finding c after reading ω in S
is therefore very high, potentially much larger than pc. This translates into a
better entropy notion. For any string ω of length k, let ωS be the string of
single symbols following the occurrences of ω in S, taken from left to right,
and |ωS | be the length of ωS. The kth order empirical entropy of S is defined
as Hk(S) = 1

n

∑
ω∈[σ]k |ωS| H0(ωS). Not surprisingly, for any k ≥ 0 we have

Hk(S) ≥ Hk+1(S). The value of nHk(S) bits is a lower bound to the output size
of any compressor that encodes each symbol of S only considering the symbol
itself and the k immediately preceding symbols [24].

Requirements on Time and Space Bounds. Based on the above discussion,
we require that a csss for string S fulfills the following conditions:

– It supports Access optimally in Θ(1 + m lg σ/ lg n) time for decoding any
substring of S of length m.

– It takes n (Hk(S) + ρ(k, σ, n)) bits, where ρ(k, σ, n) is the redundancy per
symbol, or any additional space required to support random access.

The rationale for the above two conditions is that a csss for S can replace
S itself for any RAM algorithm A having S as input. This replacement does
not penalize the asymptotic time complexity of A, and its space complexity is
not worsened when Hk(S) + ρ(k, σ, n) ≤ �lg σ�. For highly compressible S, it is
actually Hk(S) + ρ(k, σ, n) = o(lg σ), thus showing the importance of using a
csss for massive texts.

The redundancy ρ(k, σ, n) is a quantity of significant fundamental interest,
particularly for lower bounds (see [28] and references therein), and it is critical

1 The logarithms are to the base 2 unless otherwise specified, and σ ≤ n is customarily
taken to be a (usually slowly-growing) function of n.

2 Several authors prefer to use lgσ n in place of lgn/ lg σ.

Random Access to High-Order Entropy Compressed Text 201

in practice. We anticipate that the best redundancy is currently ρ(k, σ, n) =

O
(

lg σ
lgn (k lg σ + lg lg n)

)
, which holds simultaneously for all 0 ≤ k ≤ lg n/ lgσ.

As k increases, the Hk term decreases, but ρ(k, σ, n) increases. However, as long
as k = o(lg n/ lgσ), we have that the term nρ(k, σ, n) = o(n lg σ) is asymp-
totically smaller than the space required by S in raw form. Interestingly, no
non-trivial lower bounds on the redundancy ρ(k, σ, n) are known. The rest of
the paper describes the state of the art on this topic.

Impact on Succinct Data Structures. csss is a natural fit for systematic
data structures for texts, also known as succinct indexes for texts, where the
indexing data structure is separated from the input string S. This concept was
born for proving lower bounds [7,13,14], and rapidly extended to to analyze the
upper bounds [33,1] on the space required to encode some data structures. Non-
systematic data structures instead encode both S and the index data structure
together, with no clear separation between the two objects. Some of the advan-
tages of systematic data structures are pointed out in [1] and rephrased here in
terms of csss.

(1) A systematic data structure does not make assumptions on S, which can
therefore be replaced by a csss for S thus providing high-order entropy bounds,
namely, n (Hk(S) + ρ(k, σ, n)) bits plus the space required by the succinct index.
Note that a non-systematic data structure requires instead S to be stored in a
specific format.

(2) The same csss for S can be shared among several systematic data struc-
tures. Here, we can build several succinct indexes on the same csss for S without
introducing replication. Note that multiple non-systematic data structures must
instead replicate S (or its equivalent format) internally.

These features can be made effective by showing how to obtain high-order
entropy bounds with static systematic data structures on texts.

Lemma 1 (Barbay et al. [1], Sadakane and Grossi [33]). Given a csss

for a string S of length n over the alphabet [σ], let n (Hk(S) + ρ(k, σ, n)) be
its number of required bits. Let I1, I2, . . . , Id be static systematic data structures
defined on the same S, where each Ij uses n τj(σ, n) bits, without accounting
for the storage of S. It is possible to build a static succinct data structure G
supporting all the functionalities of I1, I2, . . . , Id in their same asymptotic time
costs, namely, if a functionality takes t(n) time in some Ij , it now still takes
O(t(n)) time in G. The overall number of bits for G is

n

⎛
⎝Hk(S) + ρ(k, σ, n) +

d∑
j=1

τj(σ, n)

⎞
⎠ .

The global succinct data structure G in Lemma 1 strips the representation of
S from each Ij , and uses a shared csss for S. When the algorithms for the
functionalities of I1, I2, . . . , Id need access to S, simply G calls Access on the
csss for S. The functionalities have only a constant slow-down factor in their

202 R. Grossi

time complexities, while the space occupancy greatly reduces from representing d
times the same S in some (unknown) format versus a single and optimal entropy-
encoded representation of S by the csss. In many applications it is often the
case that ρ(k, σ, n) +

∑d
j=1 τj(σ, n) = o(lg σ), making the simple idea behind

Lemma 1 very useful.

Paper Organization. Section 2 describes the basic scheme that is shared by the
static csss presented in Section 3 and the dynamic csss presented in Section 4.
Finally, some further discussion and conclusions are given in Section 5.

2 Basic Scheme

As widely used in practice, the basic approach employs a compressor C of choice.
It partitions S into disjoint substrings called blocks B1, B2, . . . , Br, and stores S
as the sequence Z = C(B1) · C(B2) · · ·C(Br) obtained by concatenating the
output of C on the blocks. To perform Access(i,m), it has to find the index j
of the block Bj of S that contains position i, and decode C(Bj), C(Bj+1), . . . ,
until it gets the wanted m symbols. For the sake of discussion, suppose that all
blocks in S have the same size w, so that finding j is simple arithmetics, namely,
j − 1 = �(i − 1)/w�.

When considering the above approach in terms of the requirements on time
and space of a csss described in Section 1, we run into a trade-off that can work
in some practical cases but it surely causes some theoretical drawbacks. One
one hand, if w is much larger than m, then Access has no guarantee to take
Θ(1 + m lg σ/ lgn) time. On the other hand, if w is too small, then Z has not
guarantee to use n (Hk(S) + ρ(k, σ, n)) bits of space; for instance, some repeti-
tions inside S of the form xx for some substring x, could be split among two or
more blocks Bj , Bj+1, . . . , Bj+� such that the size of C(Bj)·C(Bj+1) · · ·C(Bj+�)
is significantly larger than the output size of compressing their concatenation
C(Bj ·Bj+1 · · ·Bj+�).

Nevertheless this basic scheme is still good if we replace the black-box com-
pressor C with a pool of suitable succinct data structures. Summing up, we need
the following ingredients to implement the basic scheme in a better way, where
points 1–2 indicate how to partition S into blocks, and points 3–5 indicate how
to encode the sequence of blocks of S (see Fig. 1).

1. Partition into blocks: Strategy to partition S into blocks B1, B2, . . . , Br,
which can have fixed size w or variable sizes.

2. Identify the target block: Succinct data structure(s) or rule to find in O(1)
time the index j of the block Bj containing position i, as required by the
implementation of Access(i,m).

3. Encode a block: Strategy to assign an encoding E(Bj) to each block Bj , for
1 ≤ j ≤ r.

4. Retrieve a block from its encoding : Succinct data structure(s) to store, and
retrieve in O(1) time, each block Bj from its encoding E(Bj), for 1 ≤ j ≤ r.

Random Access to High-Order Entropy Compressed Text 203

2

1
5

3 4

11

1

2

2

3

3

· · ·· · ·

· · ·j

j

r

r

Bj

BjE(Bj)

E(Bj)

S

Z

encode

Fig. 1. An illustration of points 1–5 in the basic scheme

5. Find the encoding of the target block: Succinct data structure(s) to store
Z = E(B1) ·E(B2) · · ·E(Br), the concatenation the encodings of the blocks,
and access each E(Bj) in O(1) time.

Using the scheme of points 1–5, we can implement Access(i,m) as follows. We
find the index j by points 1–2 and retrieve E(Bj) by point 5. We return Bj by
points 3–4. We repeat this for Bj+1, Bj+2, . . . , until we decode the wanted m
symbols. As we will see, this implementation requires O(1) time.

In the following we describe, in chronological order, some approaches that fol-
low the above scheme using high-order entropy bounds for the space complexity,
employing some basic succinct representation of bitvectors and binary trees that
are surveyed in other chapters of this book ([30].). For example, point 3 is easy
arithmetics when the blocks have the same size.

When the blocks are of variable sizes, a fully indexable dictionary (FID) [29]
can be employed to mark with a 1 the position in S at the beginning of each block
and with 0s the rest of the positions in S. The resulting bitvector X contains r
1s and n−r 0s, and can be stored in the FID using

⌈
lg
(
n
r

)⌉
+O(n lg lgn/ lgn) =

O(r lg(n/r)+n lg lg n/ lgn) bits. We remark that this space bound is often negligi-
ble when compared to that taken by the other succinct data structures employed
in the csss.

We recall that a FID supports two basic constant-time operations: Rankb(i)
returns the number of occurrences of bit b ∈ {0, 1} in the first i positions in
X ; Selectb(i) returns the position of the ith occurrence of bit b in X . We can
thus locate the block index j, corresponding to the block Bj in S that contains
position i as mentioned in point 2, by computing j = Rank1(i).

204 R. Grossi

3 Static Schemes

We describe the family of csss where only Access operation is supported on
input string S, which does not change during its lifetime. The first scheme has
variable-size blocks in the partition of S (point 1 in Section 2) but produces
fixed-size encodings for them (point 3); the last two schemes have fixed-size
blocks for S but produce variable-size encodings for them. Table 1 summarizes
some distinguishing features for the three static schemes discussed in this section.

Table 1. Summary of discussed results on static csss

redundancy ρ(k, σ, n) context size block size ref.

O(lg σ
lgn
((k + 1) lg σ + lg lg n)) any k variable §3.1

O(lg σ
lgn
(k lg σ + lg lg n)) fixed k < (1− ε) lg n/ lg σ (1/2) lg n/ lg σ §3.2

O(lg σ
lgn
(k lg σ + lg lg n)) k = o(lgn/ lg σ) (1/2) lg n/ lg σ §3.3

The three schemes share the same optimal time cost of Θ(1 + m lg σ/ lgn)
for Access, and O(n lg σ) construction time. Space is n (Hk(S) + ρ(k, σ, n)) bits,
where the redundancy ρ(k, σ, n) per symbol is reported in the table and is slightly
higher (a term (k + 1) instead of k) for the first scheme. The first scheme is
oblivious with respect to the value of k (which is not part of the input but appears
only in the analysis) and allows for potentially long blocks, even though the range
of values for k = Ω(lg n/ lg σ) gives a too large redundancy ρ(k, σ, n) = Ω(lg σ).
The second method requires a specific choice of k < (1 − ε) lg n/ lgσ, for any
0 < ε < 1, and all blocks must contain (1/2) lgn/ lg σ symbols. Interestingly,
it also supports append operations to add symbols at the end of S in constant
amortized time per symbol. The third scheme works for all k = o(lg n/ lg σ)
simultaneously, and all blocks must contain (1/2) lgn/ lg σ symbols.

3.1 LZ78 Parsing and Encoding

Sadakane and Grossi [33] introduced the notion here called csss, meeting the
time and space requirements described in Section 1 with redundancy ρ(k, σ, n) =
O(lg σ

lgn ((k + 1) lg σ + lg lg n)) simultaneously for any k.3 We give a simplified

description of the ideas in [34], following the basic scheme of Section 2.
As for point 1, the partitioning of the input string S produces r blocks of

variable sizes using first the Ziv-Lempel compression algorithm [38], also known
as LZ78 parsing, and then a greedy post-processing.

The LZ78 parsing works as follows. First we initialize a trie T as empty, the
current position p = 1 in S. Then, we parse S into blocks from left to right,

3 The authors of [15] pointed out a mistake in the smaller redundancy originally re-
ported in [34] that we fix here in Lemma 2.

Random Access to High-Order Entropy Compressed Text 205

finding the longest string t ∈ T that appears as a prefix of S[p, n] (where t is the
empty string when T is empty). Thus we obtain the block S[p, p+|t|] ≡ t·S[p+|t|]
to be inserted into T . We set p = p+|t|+1, and repeat the parsing to discover the
next block. The resulting trie T is called an LZ-trie, and r′ is the final number
of blocks generated by algorithm LZ78 (and thus the number of nodes in T).
We use Lemma 2.3 from [20] for bounding r′ in terms of the kth-order empirical
entropy Hk(S) of the string S.

Lemma 2 (Kosaraju and Manzini [20]). Let r′ be the number of blocks
produced by any parsing of the string S, such that each block appears at most M
times. For any k > 0,

r′ lg r′ ≤ nHk(S) + r′ lg
n

r′
+ r′ lgM +Θ(kr′ lg σ)

The greedy post-processing of the LZ78 parsing with window size w works as
follows, for a parameter4 w = 1

2 lg n/ lgσ. We define a block short if it contains
less than w symbols, and long otherwise. We perform a left-to-right scan of the
r′ blocks found by the LZ78 parsing, tagging each block as either short or long.
However, during this scan, we cluster together maximal runs of consecutive short
blocks, so that the resulting substring, called dense block, is not longer than w
symbols: a dense block replaces the short blocks that it contains. Moreover, we
impose that any two consecutive dense regions are always separated by a (short
or long) block.

This greedy post-processing thus partitions S into r blocks, where r ≤ r′,
satisfying the following conditions.

– The blocks are pairwise disjoint and tagged as either long, short, or dense:
by construction, no two consecutive short blocks or dense blocks can exist.

– Any two consecutive blocks contains more than w symbols in total.

As a result, any substring of S of length m overlaps with O(1 +m/w) = O(1 +
m lg σ/ lgn) blocks. Retrieving each such block in constant time provides the
claimed bound for Access. We thus discuss how to encode the sequence of blocks
so that each of them can be retrieved in constant time (see points 3–5 in the
basic scheme of Section 2, as we use a FID for point 2 as already discussed).

We consider the r blocks as a set of r strings, which are stored in a fast
compressed trie F . Note that we do not specify the details on how to store F
since there are many ways described in the chapter of this book dealing with
succinct trees [30]. Conceptually F is a refinement of the LZ-trie produced during
the LZ78 parsing, augmented with the dense blocks. However, since the dense
blocks are of length at most w, there cannot be more than σw = O(

√
n) distinct

ones, so they increment the size of the LZ-trie by o(n) bits when obtaining F .
As a result, for each block Bj of the partition of S we get a unique identifier in

[r] using F and vice versa. This identifier is the encoding E[Bj]. The theoretical
implementation of F so that given E[Bj], we can retrieve Bj in constant time

4 In practical situations it is more convenient to fix a larger value of w.

206 R. Grossi

is quite complex (see [34]) but practical non-constant implementations can be
adapted to this goal using string dictionaries (e.g. [4,27]).

Using the above identifiers, each block Bj is encoded by the b = �lg r� bits
of E(Bj), and the sequence Z = E(B1) ·E(B2) · · ·E(Br) is the encoding of the
sequence of blocks.5 In order to retrieve the jth block Bj , we access the jth b-bit
integer E(Bj) in Z by simple arithmetics, and use this integer as the identifier
for the wanted block. This is given to F as an input query, and the outcome is
Bj as explained above.

When computing the space bound, we need O(r lg(n/r) + n lg lg n/ lgn) bits
for the FID in point 2, O(n lg σ lg lgn/ lgn) bits for storing F in a succinct way
(point 4) given the choice of w, and r�lg r� ≤ r lg r + r bits for Z (point 5).
Observing that r ≤ r′, we can apply Lemma 2 on r, and using the fact that
r ≤ 2n/w and M ≤ σ by construction, we can thus bound the space of Z as

r lg r + r ≤ nHk(S) +
2n

w
(1 + lgw) +

n

w
lg σ +Θ

(
nk lg σ

w

)

The total redundancy ρ(k, σ, n) is therefore

O

(
lg lg n

lgn/ lg σ
+

1

w
lgw +

1

w
lg σ +

k lg σ

w

)
= O

(
lg σ

lg n
((k + 1) lg σ + lg lg n)

)

using the choice w = 1
2 lg n/ lgσ.

Theorem 1 (Sadakane and Grossi [34]). A csss using LZ78 parsing and
encoding can be implemented with redundancy of ρ(k, σ, n) = O(lg σ

lg n ((k+1) lg σ+

lg lg n)) simultaneously for any k.

Note that this csss actually works with any parsing (not only LZ78) that guar-
antees a high-order entropy bound as stated in Lemma 2. The choice of LZ78 is
motivated by the property that the space requirement of the LZ-trie dictionary
(and so of the dictionary F) can be shown to be a lower-order term.

3.2 Statistical Encoding

González and Navarro [15] observed that an alternative and simpler csss can
be obtained by using a semi-static kth-order modeling plus statistical encoding,
yielding a redundancy of ρ(k, σ, n) = O(lg σ

lgn (k lg σ + lg lg n)) for any fixed k <

(1− ε) lg n/ lg σ and any constant 0 < ε < 1.
A semi-static kth-order modeler applied to a string S produces the empirical

conditional probability of finding a symbol c after reading substring ω in S (see
Model and complexity in Section 1). Formally, q1, q2, . . . , qn are the empirical
probabilities such that qi = nc

S/|ωS| for k + 1 ≤ i ≤ n, where ωS is the string of
single symbols following all the occurrences of substring ω ≡ S[i− k, i− 1] in S,

5 A smarter encoding from [8] can be employed but the final redundancy does not
change asymptotically.

Random Access to High-Order Entropy Compressed Text 207

and nc
S is the number of occurrence of symbol c ≡ S[i] in ωs. As a result, it is

noted in [15] that
∑n

i=k+1 −qi lg qi = nHk(S). Hence, any statistical encoder E,
such as Arithmetic coding [37], that encodes the ith symbol of S with −qi lg qi
bits, has output size |E(S)| = nHk(S) + O(k lg n) bits where the additive term
is an upper bound for the first k symbols of S.

The above considerations are exploited in [15], as described below by following
our basic scheme of Section 2. The input string S is partitioned in blocks of fixed
size w = 1

2 lg n/ lg σ. Thus there are r = �n/w� blocks and any block can be
located in constant time by simple arithmetics (points 1–2). We therefore discuss
how to encode the sequence of blocks so that each of them can be retrieved in
constant time (points 3–5).

As for point 3, the semi-static statistical encoder E is applied to the individual
blocks using the statistics of their immediately previous k symbols. Namely, for
any given block Bj of S, j > 1, let κj denote the kth-order context of Bj, defined
as the last k symbols of Bj−1 preceding Bj in S. Then, the encoding E(Bj) is
obtained using the conditional probabilities of the semi-static kth-order modeler
applied to the concatenated sequence κj · Bj . It is worth noting that only the
symbols of Bj are encoded, and decoding E(Bj) needs the knowledge of its
context κj .

As for point 4, we store the mapping between each block Bj and its encoding
E(Bj), for 1 ≤ j ≤ r, using a two-dimensional table T of w-long strings, such
that T [κj, E(Bj)] = Bj , for 1 ≤ j ≤ r. (Here, κ1 is the empty string.)

It remains to describe the succinct data structures for storing and accessing
the sequence Z of the statistical encodings of the blocks (point 5).

– Define Zj = E(Bj) if the number of bits |E(Bj)| ≤ (1/2) lgn, or Zj = Bj

otherwise, for 1 ≤ j ≤ r: store Z = Z1 · Z2 · · ·Zr along with a two-level
index [25] to record the lengths |E(Bj)| and mark the starting position of
each Zj inside Z.

– Store a FID D such that D[j] = 1 if and only if Zj = Bj , for 1 ≤ j ≤ r. This
marks the blocks Bj in S that are stored verbatim because their statistical
encodings E(Bj) are too large.

– Store the concatenation of contexts K = κ1 · κ2 · · ·κr as a long string.

By construction, any substring of S of length m overlaps with O(1 +m/w) =
O(1 +m lg σ/ lgn) blocks. Retrieving each such block Bj in constant time pro-
vides the claimed bound for Access. To this end, we retrieve Zj from Z using its
two-level index. We check whether D[j] = 1 and, if so, we merely return Zj as
Zj = Bj . Otherwise, Zj = E(Bj): we extract κj from K by simple arithmetics,
and return T [κj, E(Bj)] as Bj.

The space requirement of this csss can be computed as follows. The two-
dimensional table T has size upper bounded by σk × 2(1/2) lgn × (1/2) lgn =
O(σk

√
n lgn), which is O(n1−ε) when k < (1/2 − ε) lg n/ lgσ. Playing with

the multiplicative constant in the choice of w, we can allow for k < (1 −
ε) lgn/ lg σ. The storage of D requires O(r) = O(n lg σ/ lgn) bits and that of
K takes O(nk lg2 σ/ lgn) bits. Finally, using Arithmetic coding as encoder E,

208 R. Grossi

the storage of Z takes nHk(S)+O(k lgn+r) bits, plus O(n lg σ lg lg n/ lgn) bits
for its two-level index.

Theorem 2 (González and Navarro [15]). A csss using semi-static kth-
order modeling plus statistical encoding can be implemented with redundancy of
ρ(k, σ, n) = O(lg σ

lgn (k lg σ + lg lg n)) for any fixed k < (1 − ε) lg n/ lgσ and any
constant 0 < ε < 1.

Interestingly, this csss can also support append operations, where the input
string S is extended as S · c1 · · · c2 · · · cg by appending symbols c1, c2, . . . , cg.
Using the logarithmic method and the global rebuilding technique to dynamize
static data structures, the amortized cost is O(1) per appended symbol.

3.3 Frequency Encoding

Ferragina and Venturini [9] coined the term csss and described a simplification
that avoids the use of LZ-based or statistical compressors, still guaranteeing a
redundancy of ρ(k, σ, n) = O(lg σ

lgn (k lg σ + lg lg n)) simultaneously for all k =

o(lg n/ lg σ).
We follow our basic scheme of Section 2 to describe this approach. As done

in Section 3.2, the input string S is partitioned into blocks of fixed size w =
1
2 lgn/ lg σ. Thus there are r = �n/w� blocks and each block can be located in
constant time by simple arithmetics (points 1–2).

The main idea is how to encode the blocks (points 3–5). We observe that while
there are r = n/w blocks, the number of distinct blocks is at most σw =

√
n.

These distinct blocks are sorted in non-increasing order of frequency, namely,
according to the number of times each distinct block appears in the partition of
S (hence, the total sum of frequencies is r). The distinct blocks thus sorted are
then assigned codewords in lexicographic order, starting form the empty string,
ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, . . . , so that less frequent blocks cannot get
assigned shorter codewords than more frequent blocks. This is a crucial fact,
as we will see. For each block Bj of S, then its encoding E(Bj) is simply the
codeword assigned to Bj (as a distinct block) in this way. This completes point 3.

As for point 4, we store the mapping between each block Bj and its encoding
E(Bj), for 1 ≤ j ≤ r, using a lookup table T such that T [E(Bj)] = Bj , for
1 ≤ j ≤ r.

Finally, we store Z = E(B1) · E(B2) · · ·E(Br), the concatenation the encod-
ings of the blocks, along with a two-level index [25] to mark the starting position
of each E(Bj) inside Z (point 5).

By construction, any substring of S of length m overlaps with O(1+m/w) =
O(1 +m lg σ/ lgn) blocks. Retrieving each such block Bj in constant time pro-
vides the claimed time bound for Access: retrieve E(Bj) from Z using its two-
level index and return T [E(Bj)] as Bj .

The space requirement of this csss can be computed as follows. Table T
requires O(

√
n lgn) bits. The two-level index for Z requires O(n lg σ lg lgn

lg n) bits.
It is interesting to analyze the space requirement for Z as argued next. Let Sw

Random Access to High-Order Entropy Compressed Text 209

be the sequence of blocks as they appear in S. A relevant property is that the
0th-order entropy encoding of Sw gives the kth-order entropy encoding of S.

Lemma 3 (Ferragina and Venturini [9]). For any 1 ≤ w ≤ n, it holds
rH0(Sw) ≤ nHk(S) +O(rk lg σ), simultaneously over all k ≤ w.

The codewords E(Bj) assigned to the blocks in Sw attain the 0th-order entropy
according to the golden rule of data compression: assign shorter codewords to
more frequent symbols. The crucial property is therefore that the

∑r
j=1 |E(Bj)|

bits in Z cannot be larger than the 0th-order encoding of Sw.

Theorem 3 (Ferragina and Venturini [9]). A csss using frequency encod-
ing can be implemented with redundancy of ρ(k, σ, n) = O(lg σ

lgn (k lg σ + lg lgn))

simultaneously for all k = o(lg n/ lg σ).

Fredriksson and Nikitin [12] employed a similar idea of frequency encoding using
other forms of codewords but their redundancy is ρ(k, σ, n) = 1 + o(Hk(S) + 1),
which can be larger than O(n lg σ

lgn (k lg σ + lg lg n)). Among others, they adopted

the Fibonacci codes [10]: any positive integer x has a unique representation as
a sum Fibonacci numbers, such that no two of them are consecutive. Thus the
code for x uses lgφ n + 1 bits, where φ is the golden ratio: since the bit in the
last position is 1, another 1 can be appended so that this is the only position
where two consecutive 1s appear. This fact is useful to locate each E(Bj) inside
Z by looking at their unique pattern of consecutive pair of 1s.

4 Dynamic Schemes

The dynamic version of csss is responsive to the changes of the input string S
without recomputing from scratch the entire scheme after each update to S. The
goal is to guarantee optimal time for Access and still high-order entropy bounds
for the space in this dynamic setting. Jansson et al. [19] define the following two
variants of dynamic csss.

The compressed random access memory (CRAM) supports Access and

Replace(i, c): replace S[i] by a symbol c ∈ [σ].

The extended compressed random access memory (ECRAM) supports Access
and

Insert(i, c): insert the symbol c into S between positions i− 1 (if it exists) and i,
and make S one symbol longer.

Delete(i): delete S[i] and make S one symbol shorter.

Table 2 reports the bounds achieved by the known dynamic schemes for csss.
The space bounds are n (Hk(S) + ρ(k, σ, n)) bits and, for brevity, we use the
notation ρstat in the table as a shorthand for the redundancy bound seen in
Section 3.3 for the the static case, namely, O(lg σ

lg n (k lg σ+lg lg n)) simultaneously

210 R. Grossi

Table 2. Summary of discussed results on dynamic csss

Access(i,m) Replace redundancy ρ(k, σ, n) ref.

Θ(1 +m lg σ/ lg n) O
(
min

{
lgn
lg σ

, (k+1) lg n
lg lgn

})
O(ρstat) §4.1

Θ(1 +m lg σ/ lg n) O(1/ε) O(ε(k + 1) lg σ + ρstat) §4.1
Θ(1 +m lg σ/ lg n) O(1) O(ρstat) §4.2

Access(i,m) Insert/Delete redundancy ρ(k, σ, n) ref.

Θ(lg n/ lg lg n+m lg σ/ lg n) Θ(lg n/ lg lg n) O(k lg lgn/ lgn+ ρstat) §4.1
Θ(lg n/ lg lg n+m lg σ/ lg n) Θ(lg n/ lg lg n) O(lg σ lg lgn/ lg n) §4.2

for all k = o(lg n/ lg σ). The reason is that these dynamic schemes use the
frequency coding framework presented in Section 3.3 as a baseline.

The top part of Table 2 provides the bounds for the CRAM, and it shows
that the CRAM can be implemented with the same optimal Access time and
high-order entropy bound of the static csss seen in Section 3.

The bottom part of Table 2 provides the bounds for the extended CRAM,
noting that Replace can be theoretically simulated by Delete followed by Insert.
It is observed in [19] that the Access and Insert/Delete bounds are optimal as
the extended CRAM solves the list representation problem, for which there is a
cell probe lower bound of Ω(lg n/ lg lg n) [11]. There is no dependency on ρstat
and k in the redundancy in the last line because Access has a larger complexity
than that in the static case. Finally, note that the scheme in Section 3.2 supports
append operations in constant amortized time.

4.1 Managing CRAM and Extended CRAM

Jansson et al. [19] started out from the frequency coding of Ferragina and Ven-
turini [9] (Section 3.3) as a baseline to design a dynamic version of their csss.
We review the basic scheme of Section 2 to highlight the difficulties of this dy-
namization process.

First of all, the partition of the input string S into fixed-size blocks (points 1–
2) can be handled with some standard techniques for dynamic data structures.
Since the block size is w = (1/2) lgn/ lgσ, when n grows or shrinks by a constant
factor, we rebuilt all the storage scheme using an updated value of w. This has to
be incrementally deamortized to provide the worst-case bounds discussed before.

The real difficulty comes with the frequency coding of blocks (points 3–5). The
golden rule behind frequency coding is that shorter codewords are assigned to
more frequent blocks. When a single symbol is changed in a block, the frequency
of the old block should be decreased by one and that of the new block should
be either initialized to one (if this is the first time that the block appears) or
increased by one. However, it is inefficient to update the lookup table T and
recode the entire Z described in Section 3.3, as it could take nearly O(r) time.

Random Access to High-Order Entropy Compressed Text 211

The lifetime of the csss is therefore divided into phases, where at the end
of each phase there is a reconstruction (and deamortization applies too). Two
fundamental ideas are employed during a phase.

The first idea is to take a snapshot F0 of the frequencies of blocks at the
beginning of the phase, and maintain an updated version F1 of the frequencies
during the phase. However, F0 is the one employed to encode the blocks during
the phase, while F1 becomes the new F0 only in the next phase. This approach
makes sense because the high-order empirical entropy of a string does not change
too much after a small change to the string.

Lemma 4 (Jansson et al. [19]). For any two strings T and T ′ that differ in
a single symbol from [σ], let t = max{|T |, |T ′|}. It holds t |Hk(T) − Hk(T

′)| =
O((k + 1)(lg t+ lg σ)).

We can therefore use F0 and delay the update of the encodings of the blocks,
changing only part of the data structures. However, after some updates, we have
to face the costly process of re-encoding. This requires changing Z heavily, which
is expensive for several reasons. One of them is that the encoding of the blocks
is of variable size, and so we cannot simply maintain Z as the concatenation of
the encodings.

Consequently, the second idea is to use a memory-manager data structure to
store a set of r variable-length codewords that represent the content of Z. The
codewords can change length, up to lg r bits, while r cannot change during the
phase. We want to access the ith codeword and reallocate it when it changes, in
constant time, while keeping the wasted space small.

Lemma 5 (Jansson et al. [19]). Let z be the total number of bits in the
encoding of Z. Its r codewords can be stored using a memory manager that
occupies z+O(lg4 z+r lg lg z) bits while supporting the access and the reallocation
operations in constant time each.

Other data structures and invariants are described in [19] to support Access
and Replace, while more sophisticated solutions are needed to support Insert and
Delete. The CRAM has also a practical implementation [32].

Theorem 4 (Jansson et al. [19]). The CRAM can be implemented so that Ac-
cess takes optimal Θ(1 +m lg σ/ lgn) time and Replace takes O(1/ε) time for any
ε > 0, with a redundancy of ρ(k, σ, n) = O(ε(k+1) lg σ+ lg σ

lgn (k lg σ+lg lgn)) simul-

taneously for all k = o(lg n/ lg σ). The redundancy can be reduced toO(lg σ
lgn (k lg σ+

lg lg n)) by increasing the cost of Replace to O
(
min
{

lgn
lg σ ,

(k+1) lgn
lg lgn

})
time.

Theorem 5 (Jansson et al. [19]). The extended CRAMcan be implemented so
that Access takes optimal Θ(lg n/ lg lg n+m lg σ/ lgn) time, and Insert and Delete
take Θ(lg n/ lg lg n) time, with a redundancy of ρ(k, σ, n) = O(k lg lgn/ lgn+ lg σ

lgn

(k lg σ + lg lg n)) simultaneously for all k = o(lg n/ lg σ).

212 R. Grossi

4.2 Multiple Encodings of Blocks

Grossi et al. [17] conceptually represented S as a sequence Sw of r macro-symbols
over the macro-alphabet [σw], where each macro-symbol is a block of S. They
exploited the property in Lemma 3 stating that the 0th-order entropy encoding
of Sw gives the kth-order entropy encoding of S.

This implies that if we can maintain a dynamic compressed representation of
Sw in rH0(Sw)+O(r lg lg n) bits, we obtain a dynamic compressed representation
of S in nHk(S) + O(n lg σ

lg n (k lg σ + lg lg n)) bits as r = n/w. Hence, the plan

for the frequency coding of blocks (points 3–5) is to use Lemma 5 with z =
rH0(Sw) +O(r) to store the codewords in Z.

We can therefore focus on dynamically maintaining the encoding of the macro-
symbols in [σw] to obtain a 0th-order entropy encoding of Sw. We divide the
whole set of assigned codewords into O(lg r) classes Cj . In the ideal static sit-
uation, each macro-symbol y of frequency fy is assigned a codeword from the
class Cj such that r

2j < fy ≤ r
2j+1 . Recalling that

∑
y∈[σw] fy = r, the 0th-order

entropy plus a lower-order term is achieved for Sw when the codeword for y is
lg(r/fy) = j +O(1) bits long. This implies that |Cj | ≤ 2j+O(1). In the dynamic
setting, we need flexibility and so we assign more than one class to y, under the
requirement that y has at most one codeword assigned from each such class.

When a symbol of S is replaced, the frequency of a macro-symbol can change.
Thus, macro-symbols may move to different classes in the lifetime of the data
structure. Once a macro-symbol enters a class for the first time, it is assigned
an available codeword e of that class; the next time it will re-enter that class, it
will reuse the same codeword e. Since the number of available codewords in any
class is limited, it may happen that the last available codeword is consumed in
this way (i.e., |Cj | = 2j+O(1)). If so, it is shown in [17] that Ω(r) Replaces have
been done, and so we can amortized the cost (which can be deamortized with
an incremental rebuilding technique).

This mechanism causes no significant waste of bits in the 0th-order empirical
entropy of Sw, since the extra space is a lower-order term: the waste due to
multiple codewords (from distinct classes) for the same y is just O(fy) bits.

Lemma 6 (Grossi et al. [17]). For any macro-symbol y ∈ [σw], the overall
space required by the codewords of y in the encoding of Sw is fy lg

r
fy

+ O(fy)

bits.

The implication of Lemma 6 is that the encoding of Sw takes
∑

y∈[σw] fy lg
r
fy

+

O(fy) = rH0(Sw) +O(r) bits.
Other properties and data structures are employed to obtain the bounds for

the CRAM and the extended CRAM. In the latter, a variable-size partition of S
is maintained.

Theorem 6 (Grossi et al. [17]). The CRAM can be implemented so that
Access takes Θ(1 + m lg σ/ lg n) time and Replace takes O(1) time, with a re-
dundancy of ρ(k, σ, n) = O(lg σ

lgn (k lg σ + lg lg n)) simultaneously for all k =

o(lg n/ lg σ).

Random Access to High-Order Entropy Compressed Text 213

Theorem 7 (Grossi et al. [17]). The extended CRAM can be implemented so
that Access takes Θ(lg n/ lg lgn +m lg σ/ lg n) time, and Insert and Delete take
Θ(lg n/ lg lg n) time, with a redundancy of ρ(k, σ, n) = O(lg σ lg lgn/ lgn).

5 Further Discussion and Conclusions

This paper described a survey on compressed string storage schemes (csss) that
have optimal access time, as if the text was uncompressed, and squeeze the text
of n symbols over alphabet [σ] to reach a space bound in bits that is close to
the kth-order empirical entropy nHk + o(n lg σ) (see Table 1). Time bounds for
replacing, inserting and deleting individual text symbols are also optimal (see
Table 2). Interestingly, there are currently no lower bounds on the redundancy
o(n lgα) when a csss has optimal access time. From the practical point of view,
some of the proposed methods have been implemented but still the research in
this direction has not been fully explored all the directions. For example, one
main limitation in practice is that the required value of the block size w =
(1/2) lgn/ lgσ is quite small, even for ASCII text. New results in this direction
could bring also fresh theoretical questions to investigate.

When removing some of the optimality constraints on a csss, such as the
constant-time bound for accessing O(w) symbols of the text or the high-order
entropy Hk, there are a plethora of ideas and solutions. Indeed, random access
to compressed data is a basic problem in many applications on massive data sets,
and there are too many practical and effective solutions to be mentioned in this
paper (e.g. see the book [36]).

Compressed text indexing is a good source of ideas and sophisticated tools (e.g.
see the surveys [16,18,26]) that can achieve high-order Hk entropy bounds. For
example, several solutions are based on storing the Burrows-Wheeler transform
[5] in some 0th-order compressed data structures, but recovering a substring of
the text is suboptimal when compared to the optimal access cost of csss. On
the other hand, these solutions have indexing and searching functionalities while
csss can only support Access.

Another field that is steadily growing is that of grammar compressed texts
(e.g. see the survey [22] and a practical algorithm [21]). Some elegant results can
decode a substring of length m in O(m+ lgn) time [2], where n is the length of
the uncompressed text, and there is a matching lower bound for the logarithmic
cost [35]. In general, these methods can potentially compress better than the
csss described in this survey, but finding the optimal grammar is NP-hard. The
problem admits a logarithmic approximation factor [6,31], where the measure is
the number of rules rather than the number of bits to represent the grammar.

Several other kinds of encodings have the property that each substring of
the input text is translated into a substring of the corresponding encoded text
(e.g. [3,23]), but they do not achieve high order entropy but still compress well in
practice. One theoretical question is related to the encoding in [8] that shows how
to store optimally a sequence of integers with constant-time random access to
read and change one element. In our notation, the stated bound is �n lg σ�+O(1)

214 R. Grossi

bits, which can save Θ(n) bits over the raw representation in n�lg σ� bits. When
comparing it to the bound of nHk+o(n lg σ) for csss, the extra space is just O(1)
bits instead of o(n lg σ), but Hk can be much lower than lg σ for compressible
text (and so nHk = o(n lg σ)). An interesting open problem is whether it is
possible to combine the best of the two choices in some tradeoff that can blend
the two opposite situations mentioned above.

Acknowledgments. I am in debt with Giuseppe Ottaviano for reading and
commenting a preliminary version of this paper, and with Philip Bille, Gonzalo
Navarro, Kunihiko Sadakane, Rossano Venturini for answering clarification re-
quests, and Rossano for pointing out the open question mentioned at the end of
the conclusions.

References

1. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

2. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings. In: SODA, pp. 373–389 (2011)

3. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length codes.
In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS, vol. 5721, pp.
122–130. Springer, Heidelberg (2009)

4. Brisaboa, N.R., Cánovas, R., Claude, F., Mart́ınez-Prieto, M.A., Navarro, G.: Com-
pressed string dictionaries. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011.
LNCS, vol. 6630, pp. 136–147. Springer, Heidelberg (2011)

5. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

6. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Transactions on Information
Theory 51(7), 2554–2576 (2005)

7. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text re-
trieval. J. Algorithms 48(1), 2–15 (2003)

8. Dodis, Y., Patrascu, M., Thorup, M.: Changing base without losing space. In:
STOC, pp. 593–602 (2010)

9. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy
bounds. Theor. Comput. Sci. 372(1), 115–121 (2007)

10. Fraenkel, A.S., Kleinb, S.T.: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics 64(1), 31–55 (1996)

11. Fredman, M.L., Saks, M.E.: The cell probe complexity of dynamic data structures.
In: STOC, pp. 345–354 (1989)

12. Fredriksson, K., Nikitin, F.: Simple random access compression. Fundam. In-
form. 92(1-2), 63–81 (2009)

13. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379, 405–417 (2007)

14. Golynski, A.: Optimal lower bounds for rank and select indexes. Theor. Comput.
Sci. 387, 348–359 (2007)

15. González, R., Navarro, G.: Statistical encoding of succinct data structures. In:
Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–305.
Springer, Heidelberg (2006)

Random Access to High-Order Entropy Compressed Text 215

16. Grossi, R.: A quick tour on suffix arrays and compressed suffix arrays. Theor.
Comput. Sci. 412(27), 2964–2973 (2011)

17. Grossi, R., Raman, R., Rao, S.S., Venturini, R.: Dynamic compressed strings with
random access. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013, Part I. LNCS, vol. 7965, pp. 504–515. Springer, Heidelberg (2013)

18. Hon, W.-K., Shah, R., Vitter, J.S.: Compression, indexing, and retrieval for massive
string data. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 260–274.
Springer, Heidelberg (2010)

19. Jansson, J., Sadakane, K., Sung, W.K.: Cram: Compressed random access memory.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I.
LNCS, vol. 7391, pp. 510–521. Springer, Heidelberg (2012)

20. Kosaraju, R., Manzini, G.: Compression of low entropy strings with Lempel-Ziv
algorithms. SIAM Journal of Computing 29(3), 893–911 (1999)

21. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference, pp. 296–305 (1999)

22. Lohrey, M.: Algorithmics on slp-compressed strings: A survey. Groups Complexity
Cryptology 4(2), 241–299 (2012)

23. Manber, U.: A text compression scheme that allows fast searching directly in the
compressed file. ACM Trans. Inf. Syst. 15(2), 124–136 (1997)

24. Manzini, G.: An analysis of the Burrows-Wheeler transform. Journal of the
ACM 48(3), 407–430 (2001)

25. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

26. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39(1)
(2007)

27. Ottaviano, G., Grossi, R.: Fast compressed tries through path decompositions. In:
ALENEX, pp. 65–74 (2012)

28. Patrascu, M., Viola, E.: Cell-probe lower bounds for succinct partial sums. In:
Charikar, M. (ed.) SODA, pp. 117–122. SIAM (2010)

29. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

30. Raman, R., Rao, S.S.: Succinct representations of ordinal trees. In: Brodnik, A.,
López-Ortiz,A.,Raman,V.,Viola,A. (eds.)MunroFestschrift 2013. LNCS, vol. 8066,
pp. 319–332. Springer, Heidelberg (2013)

31. Rytter, W.: Application of lempel-ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211–222 (2003)

32. Sadakane, K.: Personal communication (2012)
33. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.

In: Proc. of the 17th ACM-SIAM SODA, pp. 1230–1239 (2006)
34. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds.

In: SODA, pp. 1230–1239. ACM Press (2006)
35. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-

compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 247–258. Springer, Heidelberg (2013)

36. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Compressing and Index-
ing Documents and Images. Morgan Kaufmann Publishers (1999)

37. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.
Commun. ACM 30(6), 520–540 (1987)

38. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory 24(5), 530–536 (1978)

Succinct and Implicit Data Structures

for Computational Geometry

Meng He

Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
mhe@cs.dal.ca

Abstract. Many classic data structures have been proposed to support
geometric queries, such as range search, point location and nearest neigh-
bor search. For a two-dimensional geometric data set consisting of n ele-
ments, these structures typically require O(n), close to O(n) or O(n lgn)
words of space; while they support efficient queries, their storage costs
are often much larger than the space required to encode the given data.
As modern applications often process very large geometric data sets, it
is often not practical to construct and store these data structures.
This article surveys research that addresses this issue by designing

space-efficient geometric data structures. In particular, two different but
closely related lines of research will be considered: succinct geometric
data structures and implicit geometric data structures. The space usage
of succinct geometric data structures is equal to the information-theoretic
minimum space required to encode the given geometric data set plus a
lower order term, and these structures also answer queries efficiently. Im-
plicit geometric data structures are encoded as permutations of elements
in the data sets, and only zero or O(1) words of extra space is required
to support queries. The succinct and implicit data structures surveyed
in this article support several fundamental geometric queries and their
variants.

1 Introduction

Many applications such as spatial databases, computer graphics and geographic
information systems store and process geometric data sets that typically consist
of point coordinates. In other applications such as relational databases and data
mining applications, the given data are essentially sets of records whose fields
are values of different properties, and thus can be modeled as geometric data in
multidimensional space. Thus the study of geometric data structures which can
potentially be used to preprocess these data sets so that various queries can be
performed quickly is critical to the design of a large number of efficient software
systems.

Researchers have studied many different geometric queries. Among them, the
following three geometric query problems are perhaps the most fundamental:

– Range Search: Preprocess a point set, so that information regarding points
inside a query region, e.g., the number of points in this region, can be effi-
ciently computed;

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 216–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Succinct and Implicit Data Structures for Computational Geometry 217

– Point Location: Preprocess a subdivision of space into a set of cells, so that
the cell that contains a query point can be located quickly;

– Nearest Neighbor: Preprocess a point set, so that the point closest to a query
point can be found efficiently.

Extensive work has been done to design data structures that provide fast sup-
port for these queries. Take planar point location for example. A number of
different data structures have been designed to support point location in 2D,
achieving O(lg n)1 optimal query time using linear space, including the classic
data structures proposed by several different groups of researchers in the 70’s
and 80’s [53,52,32,28,68]. Such work has yielded a large number of solutions to
geometric query problems, and invented many data structure design techniques.

Most geometric data structures designed to manipulate data sets in two-
dimensional space use linear, almost linear, or O(n lg n) words of space. Asymp-
totically, O(n)-space structures occupy less space than other solutions, but the
constants hidden in the asymptotic space bounds are however usually large. As
modern applications often process large data sets measured in terabytes or even
petabytes, it has become undesirable or even infeasible to construct these data
structures. Even for smaller data sets of several gigabytes, the storage cost of
these structures often makes it impossible to load them into internal memory
of computer systems, and performance is sacrificed if they have to be stored in
external memory which is orders of magnitude slower. Thus, during the past
decade, researchers have been developing data structure techniques that can be
used to reduce storage cost drastically.

Succinct data structures have been used to design more space-efficient so-
lutions to geometric query problems. Initially proposed by Jacobson [50] to
represent combinatorial objects such as bit vectors, trees and graphs, the re-
search in succinct data structures aims at designing data structures that can
represent the given data using space close to the information-theoretic lower
bound, and support efficient navigational operations in them. Numerous results
have been achieved to represent combinatorial objects and text indexes suc-
cinctly [61,66,10,64,35,67,62], which save a lot of space compared with standard
data structures.

The study of implicit data structures is another line of research that is focused
on improving space efficiency of data structures, and it has also been applied to
computational geometry. The term implicit means that structural information is
encoded in the relative ordering of data elements, rather than explicit pointers.
Thus an implicit data structure is stored as a permutation of its data elements,
and with zero or a constant number of words of additional space, it can support
operations. The standard binary heap is one of the earliest and most well-known
data structures that are implicit. Later, researchers have designed implicit data
structures for a number of problems such as partial match on a set of multi-key
records [59,40,6] and dynamic predecessor search [60,39].

The aim of this article is to survey research work that has been conducted to
design succinct geometric data structures and implicit geometric data structures,

1 lgn denotes log2 n.

218 M. He

in order to help researchers understand and follow research work in this area.
The main ideas of the most relevant work are summarized, and main results
are presented in theorems. To help readers evaluate these contributions, some
background information of each geometric query discussed in this article is also
given, though a thorough review of all the related work which is not necessarily
focused on space efficiency issues is out of the scope of this survey. In the rest
of this article, we devote one section to each of the three fundamental geometric
queries listed in this section, to discuss succinct and implicit data structures de-
signed for these queries and their variants. We present some concluding remarks
and give some open problems in the last section.

2 Range Search

In this section, we survey succinct and implicit data structures designed for
range search. As there are many variants of range search queries and they may
be studied under different models, we further divide this section into subsections.
In each subsection, before we describe succinct or implicit solutions, we define
each range query and give some background information.

2.1 Implicit Data Structures for Orthogonal Range Reporting

Orthogonal range reporting is a fundamental range search problem. In this prob-
lem, we preprocess a set, N , consisting of n points in d-dimensional space, so
that given a d-dimensional axis-aligned query box P , the points in N ∩P can be
reported efficiently. Thus in the two-dimensional case, P is an orthogonal query
rectangle. We follow the convention and let k denote the number of points to be
reported.

This problem has been studied extensively. The classic kd-tree proposed by
Bentley [11] is a linear-space data structure that can answer orthogonal range
reporting queries in O(n1−1/d + k) time. Thus in the two-dimensional case, the
query time is O(

√
n + k). By allowing penalties for each point to be reported,

different query time can be achieved; in two-dimensional space, the linear-space
data structure of Chazelle [25] can answer queries in O(lg n + k lgε n) time, for
any positive constant ε. However, to achieve the optimal O(lg n+k) query time,
more space is required. The data structure of Chazelle [25] uses O(n lgε n) words
of space to answer queries in optimal time, for any positive constant ε. For more
recent results that aim at improving query time in higher dimensions using more
space under the RAM model, see the work of Chan et al. [22]. For similar work
under the pointer machine model, we refer to results presented by Afshani et
al. [1,2].

The first implicit data structure for range reporting is an implicit represen-
tation of kd-tree proposed by Munro in 1979 [59]. This is the only implicit or
succinct geometric structure that was not designed within the past decade. Orig-
inally, this structure was introduced as a structure storing multi-key data records
to support partial matching, but its description can be easily rewritten to sup-
port geometric queries as follows. To construct this data structure, let C[0..n−1]

Succinct and Implicit Data Structures for Computational Geometry 219

be the array in which each element stores the coordinates of a point in N , and
the construction algorithm reorders the elements of C to encode the kd-tree im-
plicitly. Assume that dimensions are numbered 0, 1, . . . , d− 1. The construction
algorithm consists of �lg n� stages. Initially, before stage 0, we treat the entire
array C as one segment containing all the array entries; in each stage, we essen-
tially divide each segment of C produced in the previous stage into two halves
and reorder elements accordingly. More precisely, in stage i, for each segment S
produced in the previous stage, we perform the following three steps:

1. Look for the point whose coordinate in dimension (j = i mod d) is the
median among the coordinates of all the points in S in this dimension, and
swap it with the point stored in the middle of S. Let m be this median value.

2. Move the points in S whose coordinates in dimension j are smaller than m
to the first half of S, and those with large coordinates to the second half.

3. Let the first half and the median element be one new segment, and the
second half the other new segment.

At the end of the last stage, each segment will store exactly one point, and the
content of array C becomes the implicit structure.

Readers who are familiar with kd-trees can now see that after this construc-
tion algorithm, the array C encodes a kd-tree implicitly. If we number the levels
of a kd-tree starting from the root level as levels 0, 1, . . ., then a segment pro-
duced in the ith stage in this algorithm corresponds to a node at the ith level of
the kd-tree. Furthermore, the region represented by each node can be inferred
during a top-down traversal by checking the median values. Thus we can modify
algorithms over kd-trees to support orthogonal range reporting: Start from the
segment that contains all the points. Each time we investigate a segment pro-
duced in stage i, we check if the region corresponding to this segment is entirely
contained in the query box. If it is, then report all the points stored in this seg-
ment. Otherwise, perform the algorithm recursively on the two child segments
produced from this segment. The analysis on the original kd-tree can also be
used to show the following theorem:

Theorem 1 ([59]). Given a set of n points in d-dimensional space, there exists
an implicit data structure that can answer orthogonal range reporting queries
over this point set in O(n1−1/d+k) time, where k is the number of points reported.
This data structure can be constructed in O(n lg n) time.

Arroyuelo et al. [8] designed adaptive data structures for two-dimensional or-
thogonal range reporting, including an implicit version. Their data structures
are adaptive in the sense that they take advantage of the inherent sortedness
of given data to improve search efficiency. In their work, they say that a set of
points form a monotonic chain if, when listed from left to right, the y-coordinates
of these points are either monotonically increasing or monotonically decreasing;
the sortedness of a given point set is then measured in terms of the minimum
number, m, of monotonic chains that the points in this set can be decomposed
into. Their linear-space data structure can support two-dimensional orthogonal

220 M. He

range counting in O(m + lgn + k) time. For any point set, m is bounded by
O(

√
n) (this is an obvious consequence of the Erdős-Szekeres theorem), so the

query performance matches that of the kd-tree in the worst case, and can be sig-
nificantly better if m is small. Though it is NP-hard to compute m, there is an
O(n3)-time approximation algorithm that can achieve constant approximation
ratio [38].

We briefly summarize the main idea of constructing the implicit version of this
data structure. Observe that, if we decompose the point set into m monotonic
chains and store each chain in a separate array, then we can perform binary
search m times to answer a query. If we concatenate these arrays into a single
array storing all point coordinates, we need encode the starting position of each
sub-array, which requires O(m lg n) = O(

√
n lgn) bits. This can be encoded

using a standard technique: in each sub-array, we group points into pairs. If we
swap the points in a pair, then we use this to encode a 1 bit; otherwise, a 0 bit is
encoded. If we know whether the chain this pair is in is monotonically increasing
or decreasing, then we can decode this bit by comparing this pair of coordinates.
Extra care has to be taken to address the case in which chains contain odd
numbers of points, so that the encoded information can be decoded correctly.
Note that the query performance of this implicit structure is slightly worse than
their linear-space structure; the techniques used in the latter to speed up query
requires the storing of duplicate copies of some points which is not allowed in
the design of implicit data structures. We summarize the space and time cost of
their implicit data structure in the following theorem:

Theorem 2 ([8]). Given a set of n points in two-dimensional space, there exists
an implicit data structure that can answer orthogonal range reporting queries
over this point set in O(m lg n+k) time, where k is the number of points reported,
and m = O(

√
n) is the minimum number of monotonic chains that this set can

be decomposed into. This data structure can be constructed in O(n3) time.

2.2 Succinct Data Structures for Orthogonal Range Counting and
Reporting

Another fundamental range query is orthogonal range counting. Here we focus
on the two-dimensional case, as this is what the succinct data structures that
we survey in this section are designed for. In the two-dimensional range count-
ing problem, we are to preprocess a set, N , of n points in the plane, so that
given an axis-aligned query rectangle, P , the number of points in N ∩ P can be
computed efficiently. Among linear-space data structures for this problem, the
structure of Chazelle [25] supports range counting in O(lg n) time. When point
coordinates are integers, JáJá et al. [51] designed a linear-space structure that
answers queries in O(lg n/ lg lg n) time. This matches the lower bound on query
time proved by Pǎtraşcu [63] under the cell probe model for data structures

occupying O(n lgO(1) n) words of space.

Succinct and Implicit Data Structures for Computational Geometry 221

In a special case, the point sets are in rank space, i.e., they are on an n×n grid.
The general orthogonal range counting and reporting problems can be reduced
to this using a well-known technique [42], and Pǎtraşcu’s lower bound mentioned
in the previous paragraph also applies to this special case. Some range search
structures [42,25,5] for the more general case were achieved by first considering
rank space. Indeed, this reduction allowed Chazelle [25] to use operations under
RAM to achieve the first linear-space solution that supports range counting in
O(lg n) time, which is more space-efficient than the classic range tree [12] which
uses O(n lg n) space to provide the same query support. In addition, the study
of this problem is crucial to the design of several space-efficient text indexing
structures [54,14].

To describe succinct data structures designed for this problem, some back-
ground knowledge is required. In particular, there is a key structure which is
also used in most other succinct data structures: bit vectors. Given a bit vector
B[1..n] storing 0 and 1 bits, the following three operations are considered:

– access(B, i) which returns B[i];
– rankα(B, i) which returns the number of times the bit α occurs in B[1..i],

for α ∈ {0, 1};
– selectα(B, i) which returns the position of the ith occurrence of α in B, for

α ∈ {0, 1}.

Jacobson [50] considered this problem under the bit probe model; later Clark
and Munro [27] showed how to represent a bit vector succinctly using n+ o(n)
bits to support these three operations in O(1) time under the word RAM model
with word size of O(lg n) bits (this is the model that almost all succinct data
structures assume; unless otherwise specified, succinct data structure results
surveyed in the rest of this article assume this model). We refer to the work of
Pǎtraşcu [64] for the most recent result on this extensively studied fundamental
problem.

The definitions of rank and select operations on bit vectors can be gener-
alized to a string S[1..n] over alphabet [σ]2, by letting α take any value in [σ].
The first succinct data structure designed for this problem is the wavelet tree of
Grossi et al. [44]. In a wavelet tree representing string S, each node, v, represents
a range of alphabet symbols [a..b]. Let Sv be the subsequence of S (not necessar-
ily a contiguous subsequence) consisting of all the characters of S in [a..b], and
let nv = |Sv|. Then a bit vector Bv of length nv is constructed for the node v,
in which Bv[i] = 0 iff Sv[i] ∈ [a..�(a+ b)/2�]. Thus the 0 bits correspond to the
characters in the smaller half of the range of alphabet symbols represented by
v, and 1 bits correspond to the greater half. Node v has two children v1 and v2,
corresponding to the two subsequences of Sv that consist of all the characters
of Sv in [a..�(a + b)/2�] and [�(a + b)/2� + 1..b], respectively. In other words,
v1 and v2 correspond to the 0 and 1 bits stored in Bv, respectively. Bit vectors
for these children and their descendants are defined in a recursive manner. To
construct a wavelet tree for S, the root represents the range [1..σ], and nodes at

2 [σ] denotes the set {1, 2, . . . , σ}.

222 M. He

01100010

11011 011

0 0111 0 11

Fig. 1. A wavelet tree constructed for the string 35841484 over an alphabet of size 8.
This is also a wavelet tree constructed for the following point set on an 8 by 8 grid:
{1, 3}, {2, 5}, {3, 8}, {4, 4}, {5, 1}, {6, 4}, {7, 8}, {8, 4}.

each successive level are created recursively as mentioned previously. Each leaf
represents a range of size 2. Thus the wavelet tree has �lg σ� levels. The wavelet
tree is not stored explicitly. Instead, for each level, we visit the nodes from left
to right, and concatenate the bit vectors created for these nodes. The concate-
nated bit vector is represented using a bit vector structure supporting rank and
select. Thus the wavelet tree is stored as �lg σ� bit vectors of the same length
n, which occupy (n+ o(n))�lg σ� bits in total. See Figure 1 for an example.

No additional information is required to navigate in the wavelet tree; during a
top-down traversal, the rank operation over each length-n bit vector is sufficient
to identify the starting and ending positions of the bit vector Bv which corre-
sponds to a node v. By taking advantage of this, one can design algorithms that
support access, rank and select operations over S. These algorithms perform
a constant number of rank/select operations over the bit vector constructed for
each level of the tree, and hence their running time is O(lg σ).

Mäkinen et al. [54] showed that a wavelet tree can be used to support or-
thogonal range counting and reporting for n points on an n× n grid, when the
points have distinct x-coordinates (this restriction can be removed through a
reduction [14]). To construct a wavelet tree for such a point set, we conceptu-
ally treat it as a string S of length n over alphabet [n], in which S[i] stores the
y-coordinate of the point whose x-coordinate is i. Thus Figure 1 can also be
considered as a wavelet tree constructed for 8 points on an 8 by 8 grid, and this
point set is given in the caption of the figure. To show how to support range
search, take range counting for example. Suppose that the given query rectangle
P is [x1..x2] × [y1..y2]. To count the number of points in P , we perform a top-
down traversal of the wavelet tree, and use a variable c (initially 0) to record the
number of points that we have identified to be inside P during this traversal. At
each node v, if the range [a, b] represented by v is a subset of [y1..y2], then the
entries of Sv that correspond to points inside P form a contiguous substring of
Sv. The starting and ending positions of this substring in Sv can be computed
by performing rank queries over bit vectors, during the top-down traversal. With
these positions, we can increased the value of c by the size of this substring. If
range [a, b] intersects [y1..y2] but is not its subset, then we visit the children
of v whose ranges intersect [y1..y2] and perform the above process recursively.

Succinct and Implicit Data Structures for Computational Geometry 223

This algorithms visits at most two nodes and performs a constant number of
rank/select operations over bit vectors at each level of the wavelet tree, and
thus range counting can be supported in O(lg n) time. Range reporting can be
supported in a similar manner, in O((k + 1) lgn) time.

There is a similarity between wavelet trees and Chazelle [25]’s data structure
for orthogonal range search in rank space. During the construction of Chazelle’s
structure for n points on an n× n grid, a set of �lg n� conceptual bit vectors of
length n is also defined. Unlike bit vectors in wavelet trees, these vectors encode
the process of performing mergesort on y-coordinates when points are pre-sorted
by x-coordinate. Bits in these conceptual vectors are then organized in a set of
non-succinct data structures to facilitate queries; these non-succinct structures
could be replaced by succinct bit vectors designed after Chazelle’s work to reduce
space cost. Similar algorithms can be performed on wavelet trees and Chazelle’s
structure to support range search. The exact content of these bit vectors are
however not the same. The underlaying tree structures are also different in these
two structures: The bit vectors corresponding to the nodes at the same level of
a wavelet tree may be of different lengths, while this is not the case in Chazelle’s
structure due to the nature of mergesort. The difference in layout allows wavelet
trees to directly encode strings succinctly to support rank/select when the string
length is much larger than the alphabet size.

To speed up rank/select operations on strings, Ferragina et al. [37] designed a
data structure called generalized wavelet tree. The main difference between this
structure and the original wavelet tree is that each node, v, in the generalized
wavelet tree has t = lgε n children for a positive constant ε less than 1. Instead
of constructing a bit vector for v, a string over alphabet [t] is constructed, and
each character in [t] corresponds to a subrange represented by a child of v. They
then designed a succinct representation of strings over an alphabet of size t
that can support access, rank and select in constant time. Thus a generalized
wavelet tree has O((lg σ/ lg lg n) + 1) levels, and operations at each level can
be supported in constant time. This can be used to support access, rank and
select in O((lg σ/ lg lgn)+ 1) time. Note that the idea of increasing the fanout
of a tree structure to speed up query time by an O(lg lg n) factor is a standard
strategy under the word RAM model, and was also used by JáJá et al. [51] for
range search. New auxiliary structures, however, had to be designed to guarantee
that the resulting data structure is still succinct.

To further use a generalized wavelet tree to provide better support for range
search, we need a succinct representation of n points on a narrow grid, i.e.,
an n × O(lgε n) grid, that supports range counting and reporting in constant
time. The simultaneous work of two groups of researchers, Bose et al. [14] and
Yu et al. [70] designed such data structures. These data structures are essentially
equivalent and they provide the same support for queries. The following theorem
summarizes the support for range search provided by a generalized wavelet tree:

Theorem 3 ([14,70]). A set of n points on an n × n grid can be represented
using n lgn+o(n lgn) bits to support orthogonal range counting in O(lg n/ lg lg n)
time, and orthogonal range reporting in O((k + 1) lg n/ lg lg n) time, where k is

224 M. He

the number of points reported. This data structure can be constructed in O(n lg n)
time.

Bose et al. [14] further used this to improve previous results on designing succinct
data structures for integer sequences and text indexes. One text index they de-
signed is an improvement over previous results on position-restricted text search,
which looks for the occurrences of a given query string within a given substring
of the text.

2.3 Other Range Queries

2D 3-Sided Orthogonal Range Reporting. In the 2D 3-sided orthogonal range
reporting problem, we are given a set, P , of n points in the plane, and the query
is to report the points in 3-sided query ranges of the form [x1, x2] × (−∞, y2].
The classic priority search tree of McCreight [58] can answer such a query in
O(lg n + k) time, where k is the number of points to be reported. Each node
in a priority search tree stores one point from P ; the entire tree can be viewed
as a min-heap over the y-coordinates of points in P , and a binary search tree
over x-coordinates. To facilitate the navigation in the tree by x-coordinate, each
node also stores the median value of the x-coordinates of the points stored in
its descendants, as this value is used to distribute points to subtrees rooted at
the left or right child of this node. Brönnimann et al. [15] designed a variant
of priority search trees to avoid storing this extra median x-coordinate in each
node, and this variant can be made implicit. To lay out points from P in an
array, they store the point, p0, with the smallest y-coordinate among points in
P at the head of the array, and the point, p1, with the median x-coordinate
among points in P \ {p0} in the next entry. Then they divided all the points in
P \{p0, p1} into two halves by this median x-coordinate, and recurse in these two
subarrays. The query algorithm for the original priority search tree can be easily
adapted to this implicit variant to answer a 3-sided orthogonal range reporting
query in O(lg n+ k) time.

If we would like to use this implicit priority search tree to support range
reporting for both query ranges of the form [x1, x2] × (−∞, y2] and ranges of
the form [x1, x2] × [y1,∞), then two trees have to be constructed. To avoid
the duplication of point coordinates, De et al. [29] designed a min-max priority
search tree which stores one copy of point coordinates to answer queries of both
forms. They also showed that their structure can be made implicit, answering
queries in O(lg n+ k) time.

Simplex, Halfspace and Ball Range Reporting. In the simplex range reporting
problem, the query region is a simplex, while in halfspace range reporting, it
is a halfspace. For these two problems, Brönnimann et al. [15] showed how to
lay out, in an array of coordinates, the variants of partition trees proposed by
Matousek [55,56]. In d-dimensional space, one variant of their implicit partition
tree can answer simplex range reporting in O(n1−1/d+ε + k) time, where k is
the number of points to be reported and ε is a positive constant that can be

Succinct and Implicit Data Structures for Computational Geometry 225

arbitrarily small. The query performance is very close to O(n1−1/d + k) which
is believed to be the optimal query time using linear-space structures [57,20].
They designed another implicit partition tree that can support halfspace range
reporting in O(n1−1/
d/2�+ε + k) time. For discussions of better trade-offs for
halfspace range reporting in different cases using linear-space structures, see [20].
Both implicit data structure can be constructed in O(n lg n) expected time.

In the unpublished full version of [15], Brönnimann et al. further showed how
to speed up the support for simplex range reporting at the cost of increased pre-
processing time. More precisely, the nε factor in the query time can be replaced
by polylog n, and the preprocessing time is increased to O(n polylog n). They
also stated that that their implicit data structures can support simplex range
counting, i.e., counting the number of points in the query simplex, without the
O(k) additive term (this applies to both trade-offs).

The d-dimensional ball range reporting problem, in which the query region
is a ball, can be reduced to (d + 1)-dimensional halfspace range reporting by
the standard lifting transformation that maps points in Rd to points on the
unit paraboloid in Rd+1. Thus it follows from [15] that there is an implicit data
structure supporting ball range reporting in Rd in O(n1−1/
(d+1)/2� polylog n+
k) time.

3 Point Location

In the planar point location query problem, we preprocess a planar subdivision
with n vertices, so that the face containing a given query point can be located
quickly. In a special case of this problem, the planar subdivision is a planar
triangulation, i.e., a planar subdivision in which each face is a triangle. When
the data set is static, the general problem can be reduced to this special case by
triangulating all the faces of the planar subdivision. As mentioned in Section 1, a
number of linear-space classic solutions were proposed to support point location
in the optimal O(lg n) time based on different techniques [53,52,32,28,68].

Succinct data structures that represent planar triangulations and planar maps
[17,18,9] using O(n) bits support queries regarding connectivity information such
as adjacency test, but they cannot be directly combined with point location
structures without using additional space of O(n) words or O(n lg n) bits. Thus,
to design space-efficient solutions to point location, Bose et al. [13] proposed to
design data structures called succinct geometric indexes. These data structures
occupy o(n) bits, excluding the space needed for the input array, which stores the
coordinates of the n vertices of the subdivision. The n vertices may be permuted
in the array. Hence o(n) bits of space is the only extra storage required to support
queries, in addition to the storage cost required of the given data.

They first designed a succinct geometric index that supports point location in
planar triangulations. To construct this index, they use graph separators twice to
decompose the given planar triangulation T . More precisely, they first, in the top-
level partition, apply the t-separator theorem [3] on the dual graph of T , choosing
t = lg3 f/f , where f is the number of faces of T . By doing so, they partition

226 M. He

T into a separator consisting of O(n/ lg3/2 n) faces and O(n/ lg3/2 n) subgraphs
called regions; each region consists of O(lg3 n) vertices and corresponds to a
connected component of the dual graph after removing the separator. They
further, in the bottom-level partition, apply the separator theorem on each region
to create subregions consisting of O(lg n) vertices each. The reason why they
perform two levels of partition is that they intend to create one point location
structure for the top-level partition (any linear-space solution supporting query
in logarithmic time will be sufficient) and a point location structure for each
region to answer queries. The structure for the top-level partition is constructed
by first triangulating the graph consisting of the outer face and the separator for
the top-level partition, and then building a structure to answer point location.
This structure will either report that the query point is in a separator face
and thus terminate, or locate the region containing the query point. Since the
size of this graph is O(n/ lg3/2 n), O(n/ lg1/2 n) = o(n) bits would be sufficient.
Then, they construct a similar point location structure for each region to tell
whether the given query point is in a separator face of this region, or in a
particular subregion. They hope that, since there are O(lg3 n) vertices in each
region, O(lg lgn) bits would be sufficient to identify each vertex and to encode
each pointer in these point location structures. This guarantees that all these
point location structures occupy o(n) bits in total. Finally, if the point is in a
subregion, they check each face of the subregion to compute the result. If this
idea works, then the query time would be O(lg n).

The main challenge for this to work is that after applying the separator the-
orem, each vertex could appear in multiple regions and/or subregions, so that
we can not simply assign an O(lg lg n)-bit identifier for each vertex when con-
structing the point location structure of a region. To overcome this difficulty,
they use the following strategy to assign identifiers at three different levels for
each vertex. First, for each subregion that a vertex is in, a subregion-label of
O(lg lg n) bits is assigned by applying the approach of Denny and Sohler [30]
that permutes the vertex set to encode the graph structure of a planar trian-
gulation. For each subregion, the rank of a vertex in the permuted sequence for
this subregion becomes its subregion-label for its occurrence in this subregion.
Next, for each region, a region-label is assigned to each of its vertices as follows:
Visit the subregions in this region in an arbitrary order, and for each subregion
visited, visit its vertices by subregion-label. During this traversal, they incre-
mentally assign region-labels (starting from 1) for each vertex in the order in
which it is first visited; thus, even if a vertex appears in multiple subregions, it
has a distinct region-label. Finally, each vertex is assigned a distinct graph-label
over the entire triangulation. Graph-labels are constructed from region-labels in
a way similar to the way in which region-labels are constructed from subregion-
labels. Point coordinates are then stored in an array, indexed by graph-label.
Given a subregion (or region) and a subregion-label (or region-label) of a vertex,
the graph-label of this vertex can be computed in constant time using succinct
sparse bit vectors [66] and other data structures; readers with background in
succinct data structures can attempt to design an o(n)-bit structure achieving

Succinct and Implicit Data Structures for Computational Geometry 227

this on their own. With this, a vertex in the point location structure constructed
for a region can be identified using its O(lg lg n)-bit region-label, to guarantee
that the succinct index constructed occupies o(n) bits only. Graph-labels are
also used as point coordinates in the point location structure constructed for the
top-level partition, so that no point coordinates are duplicated.

To further construct a succinct index for a general planar subdivision, they
partition each large face into smaller faces and assign identifiers at three different
levels to each face. Their main result can then be summarized in the following
theorem:

Theorem 4 ([13]). Given a planar subdivision of n vertices, there exists an
o(n)-bit succinct geometric index that supports point location in O(lg n) time.
This index can be constructed in O(n) time.

Three variants of the succinct geometric index for planar triangulations were
also designed, to match the query efficiency of data structures with improved
query time under various assumptions. The first index supports point location
using lg n+2

√
lgn+O(lg1/4 n) point-line comparisons, which matches the query

efficiency of the linear-space structure of Seidel and Adamy [69]. The second ad-
dresses the case in which the query distribution is known. In this case, let pi
denote the probability of a query point residing in face pi, and the entropy
of the distribution is H =

∑f
i=1(pi lg

1
pi
), where f is the number of faces.

They designed a succinct index supporting point location in O(H +1) expected
time, which matches the query time of the linear-space structure of Iacono [49].
The third variant assumes that the point coordinates are integers bounded by
U ≤ 2w, where w is the number of bits in a word, and it supports queries
in O(min{lgn/ lg lg n,

√
lgU/ lg lgU}) time. This matches the query efficiency

of the linear-space structure of Chan and Pǎtraşcu [23]3. These three succinct
geometric indexes can be constructed in linear time.

The succinct geometric index can be further used to design implicit data
structures for point location. The main idea is to adopt the standard approach of
encoding one bit of information by swapping one pair of points, in order to encode
the o(n)-bit geometric index in the permuted sequence of point coordinates. This
requires several modifications to the succinct index, including labeling schemes.
The support for queries becomes slower, as O(lg n) time is required to decode
one word of information. The implicit structure is summarized in the following
theorem:

Theorem 5 ([13]). Given a planar subdivision of n vertices, there exists an
implicit data structure that supports point location in O(lg2 n) time. This data
structure can be constructed in O(n) time.

3 The query time of this variant of succinct geometric index was stated as
O(min{lg n/ lg lg n,√lgU}) in [13], and this was because a preliminary version of
the structure in [23] was used to prove the query time. It is trivial to apply the main
result of [23] to achieve the query time stated here.

228 M. He

Bose et al. [13] also showed how to design succinct geometric indexes and implicit
data structures for a related problem called vertical ray shooting. In this problem,
a set of n disjoint line segments is given, and the query returns the line segment
immediately below a given query point. The succinct index and implicit data
structure support this query in O(lg n) and O(lg2 n) time, respectively. They
can be constructed in O(n lg n) time.

He et al. [48] considered the problem of maintaining a dynamic planar subdi-
vision to support point location. The update operations they consider include

– Inserting a new vertex v by replacing the edge between two existing vertices
u1 and u2 with two new edges (v, u1) and (v, u2);

– Deleting a node of degree 2 by replacing its two incident edges with a single
edge connecting its two neighbors if they were not adjacent;

– Inserting an edge between two existing vertices across a face whose boundary
contains these two vertices, preserving planarity;

– Deleting an edge between two vertices of degrees greater than 2.

To design a succinct geometric index for this problem, they designed a succinct
version of the P-tree proposed by Aleksandrov and Djidjev [4] which maintains
the partition of a planar subdivision with constant face size under the same
update operations; these operations can be used to transform any connected
planar subdivision to any other connected planar subdivision. He et al. then
applied two-level partitioning on the given subdivision using a succinct P-tree.
Combined with linear-space data structures for dynamic point location [26,7],
they designed succinct geometric indexes to match the query times of previous
results, though the update times are slightly slower:

Theorem 6 ([48]). Let G be a planar subdivision of n vertices in which faces
are of constant size and vertices have coordinates that can be encoded in M =
Θ(lg n) bits. Under the word RAM model with Θ(lg n)-bit word size, there exists
a data structure that can represent G in nM + o(n) bits to supports, for any
positive constant ε,

– point location in O(lg n) time and updates in O(lg3+ε n) amortized time4;
– point location in O(lg2 n) time and updates in O(lg2+ε n) worst-case time.

4 Nearest Neighbor Search

Given a set, N , of n points in the plane, the two-dimensional nearest neighbor
query returns the point that is closest (in terms of Euclidean distance) to a given
query point. It is well-known that this problem can be reduced to planar point
location: Construct the Voronoi diagram. Then the answer is the point whose
Voronoi cell contains the query point. This however cannot be used directly to
design implicit structures for nearest neighbor search, as the reduction requires
O(n) extra space.

4 This tradeoff is from the unpublished full version of He et al. [48].

Succinct and Implicit Data Structures for Computational Geometry 229

To design an implicit data structure for two-dimensional nearest neighbor
search, Brönnimann et al. [15] applied a separator theorem (such as the t-
separator theorem [3]5) on T to partition the Voronoi diagram into a separa-
tor of O(n/ lg n) cells and clusters of O(lg2 n) cells each. Thus a point location
structure of O(n) bits can be constructed to tell which separator cell or cluster
contains the query point. By choosing an appropriate parameter for the sepa-
rator, this point location structure can be represented using at most n/2 bits,
which can be encoded using the standard techniques of encoding bits by swap-
ping pairs of points. This yields an implicit data structure supporting nearest
neighbor search in O(lg2 n) time.

Brönnimann et al. [15] showed that a similar approach can be used to con-
struct implicit data structures for a set of n halfspaces in 3-dimensional space
in O(n lg n) time, which answer ray shooting and linear programming queries in
the intersection of halfspaces in O(lg2 n) time. These two queries are defined as
follows: A ray shooting query determines the first halfspace hit by a query ray.
In a linear programming query, linear constraints are represented as halfspaces,
and the query returns a point that minimizes the value of a query linear func-
tion while satisfying all these constraints. Note that the linear-space structure
of Dobkin and Kirkpatrick [31] can answer both queries in O(lg n) time in R3.

To further improve the query efficiency for nearest neighbor search, Chan and
Chen [21] designed a recursive structure. They organize points in an array recur-
sively in a generalization of the van Emde Boas layout [34]: Apply the separator
theorem to partition the Voronoi diagram into a separator consisting of O(

√
bn)

cells and O(b) clusters each consisting of O(n/b) cells; the parameter b is to be
determined by the recursive formula for the query time. According to this de-
composition, they reorder the array of points, so that points corresponding to
the separator are stored in the first segment of the array, and points correspond-
ing to each cluster are stored in a subsequent segment. They then apply this
strategy recursively to the separator as well as each cluster, reordering points in
a separator or cluster in each recursion.

Their query algorithm over this structure is also recursive: First determine
the cluster containing the cell whose corresponding point is nearest to the given
query point among all the points whose cells are not in the separator. Then,
perform this algorithm recursively in both this cluster and the separator, to
find two points that are candidates of the nearest neighbor. Between these two
points, the one that is closer to the query point is the answer. The challenging
part is how to locate this cluster, and they proved geometric properties between
the Voronoi diagrams of a point set and a subset of it, and designed additional
recursive structures. As with the van Emde Boas tree, the query time of their
structure is also determined by a recursive function. With the choice of parameter
b = n1/3, the main recurrences in the critical cases are of the form Q(n) =
2Q(n2/3) + O(lgc n), where c is a constant number depending on the particular

5 They actually applied the separator theorem of Frederickson [41] which requires
O(n lg n) time. However, the t-separator theorem would work as well, and the ad-
vantage is that a t-separator can be computed in O(n) time.

230 M. He

case. Thus the query time can be shown to be O(lglog3/2 2 n lg lgn) = O(lg1.71 n),
and their main result can be summarized in the following theorem:

Theorem 7 ([21]). Given a set of n points in two-dimensional space, there ex-
ists an implicit data structure that supports nearest neighbor search in O(lg1.71 n)
time. This data structure can be constructed in O(n lg n) time.

Chan [19] considered the approximate nearest neighbor search problem in
constant-dimensional space. Here the word “approximate” means that for any
fixed positive constant ε, the distance between the query point q and the point
returned as the answer is guaranteed to be within a factor of 1 + ε from the
minimum distance to q. When point coordinates are integers, they designed a
simple strategy of laying out coordinates in an array based on shifting and sort-
ing. Surprisingly, it can be proved that this guarantees an approximation ratio
of 1 + ε. As random choices are made by the preprocessing algorithm, its query
time is expected.

Theorem 8 ([19]). Given a set of n points with integer coordinates in constant-
dimensional space, there exists an implicit data structure that supports approx-
imate nearest neighbor search in O(lg n) expected time. This data structure can
be constructed in O(n lg n) time.

We finally mention that when polylogarithmic query time is not required, there
is an implicit data structure for points in Rd supporting nearest neighbor search
in O(n1−1/
(d+1)/2� polylog n) time. This again uses the implicit halfspace range
reporting structure [15] summarized in Section 2.3, via lifting transformation.
For ray shooting and linear programming queries in intersections of halfspaces
in Rd where d ≥ 4, Brönnimann et al. [15] designed an implicit structure that
can answer these queries in O(n1−1/
d/2� polylog n) time, which is also based on
their structure for halfspace range search.

5 Conclusion

In this article, we have surveyed previous results on designing succinct and im-
plicit data structures for geometric query problems. Research in these directions
developed new algorithmic approaches for computational geometry,
succinct data structures and implicit data structures. As more and more applica-
tions process large geometric data structures, we also expect that such research
will have great impact in the engineering of modern software systems.

There has been some recent development in the design of solutions to geomet-
ric query problems that make use of succinct data structures. Unlike the work
surveyed in this article that focus on designing succinct solutions, the key strat-
egy is to use succinct data structures to either achieve improvement upon previ-
ous results in terms of running time, or to reduce space usage by non-constant
factors. Note that some of Chazelle [25]’s structures already used tricks under
word RAM which happen to be useful for succinct data structures as well, though
these tricks do not include techniques particularly developed later for succinct

Succinct and Implicit Data Structures for Computational Geometry 231

data structures. Among the works that focus on using succinct structures to im-
prove running time, the work of He and Munro [45] on dynamic two-dimensional
orthogonal range counting problem is perhaps the most relevant to this survey.
In this problem, in addition to supporting queries, the insertion/deletion of a
point into/from the given point set is also considered. The structure of He and
Munro occupies O(n) words of space, answers queries in O((lg n/ lg lg n)2) time,
and performs updates in O((lg n/ lg lg n)2) amortized time. This is currently the
most efficient linear-space solution to this problem. Succinct data structures are
also extensively used in the design of data structures occupying linear or near-
linear space for dynamic range median [46], range majority [33], path queries on
weighted trees [47], orthogonal range maxima [36] and adaptive and approximate
range counting [24]. The use of succinct data structure techniques is crucial to
achieving these results.

We end our article by giving several important open problems in the design
of succinct and implicit geometric data structures:

– Can implicit partitions trees be further improved to match the performance
of Chan’s optimal partition trees [20]?

– Can the implicit data structures that achieve polylogarithmic query times,
including the structures for 2D point location and nearest neighbor search,
be further improved? The O(lg1.71 n) and O(lg2 n) query times are slower
than logarithmic query times of linear-space data structures for the same
problems.

– The implicit geometric data structures that we have surveyed are all designed
for static data sets, and the only dynamic succinct geometric structure is the
structure of He et al. [48] for point location. Brönnimann et al. [15] consid-
ered semi-dynamization of their implicit geometric data structures which
only allows the insertion of points without supporting deletions. Thus de-
signing fully dynamic versions of most of the succinct and implicit struc-
tures surveyed here remains open. Many dynamic succinct and implicit data
structures have been already designed for bit vectors [65], strings [43,62],
trees [67], graphs [16] and partial search [60,39], and thus we expect that
progress can be made regarding this open problem.

– Even though a number of data structures have been presented here, there are
many other geometric query problems that do not have succinct or implicit
solutions. In fact, for each geometric query problem that has a linear-space
solution, we can ask the following questions: Can we construct a succinct or
implicit solution to this query problem? If the answer is negative, how to
give a related lower bound proof?

References

1. Afshani, P., Arge, L., Larsen, K.D.: Orthogonal range reporting: query lower
bounds, optimal structures in 3-d, and higher-dimensional improvements. In: Pro-
ceedings of the 26th Annual ACM Symposium on Computational Geometry,
pp. 240–246 (2010)

232 M. He

2. Afshani, P., Arge, L., Larsen, K.G.: Higher-dimensional orthogonal range reporting
and rectangle stabbing in the pointer machine model. In: Proceedings of the 28th
Annual ACM Symposium on Computational Geometry, pp. 323–332 (2012)

3. Aleksandrov, L., Djidjev, H.: Linear algorithms for partitioning embedded graphs
of bounded genus. SIAM Journal on Discrete Mathematics 9(1), 129–150 (1996)

4. Aleksandrov, L.G., Djidjev, H.N.: A dynamic algorithm for maintaining graph
partitions. In: Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 71–82.
Springer, Heidelberg (2000)

5. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: Proceedings of the 41st IEEE Symposium on Foundations of Com-
puter Science, pp. 198–207 (2000)

6. Alt, H., Mehlhorn, K., Munro, J.I.: Partial match retrieval in implicit data struc-
tures. Information Processing Letters 19(2), 61–65 (1984)

7. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location.
In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, pp. 305–314 (2006)

8. Arroyuelo, D., Claude, F., Dorrigiv, R., Durocher, S., He, M., López-Ortiz, A.,
Munro, J.I., Nicholson, P.K., Salinger, A., Skala, M.: Untangled monotonic chains
and adaptive range search. Theoretical Computer Science 412(32), 4200–4211
(2011)

9. Barbay, J., Castelli Aleardi, L., He, M., Munro, J.I.: Succinct representation of
labeled graphs. Algorithmica 62(1-2), 224–257 (2012)

10. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary re-
lations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52:1–52:27
(2011)

11. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9), 509–517 (1975)

12. Bentley, J.L.: Decomposable searching problems. Information Processing Let-
ters 8(5), 244–251 (1979)

13. Bose, P., Chen, E.Y., He, M., Maheshwari, A., Morin, P.: Succinct geometric in-
dexes supporting point location queries. ACM Transactions on Algorithms 8(2),
10:1–10:26 (2012)

14. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

15. Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms
and data structures. In: Symposium on Computational Geometry, pp. 239–246
(2004)

16. Castelli Aleardi, L., Devillers, O., Schaeffer, G.: Dynamic updates of succinct tri-
angulations. In: Proceedings of the 17th Canadian Conference on Computational
Geometry, pp. 134–137 (2005)

17. Castelli Aleardi, L., Devillers, O., Schaeffer, G.: Succinct representation of triangu-
lations with a boundary. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS
2005. LNCS, vol. 3608, pp. 134–145. Springer, Heidelberg (2005)

18. Castelli Aleardi, L., Devillers, O., Schaeffer, G.: Succinct representations of planar
maps. Theoretical Computer Science 408(2-3), 174–187 (2008)

19. Chan, T.M.: A minimalist’s implementation of an approximate nearest neighbor
algorithm in fixed dimensions (2006) (unpublished manuscript)

20. Chan, T.M.: Optimal partition trees. Discrete & Computational Geometry 47(4),
661–690 (2012)

Succinct and Implicit Data Structures for Computational Geometry 233

21. Chan, T.M., Chen, E.Y.: In-place 2-d nearest neighbor search. In: Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 904–911
(2008)

22. Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM,
revisited. In: Proceedings of the 27th ACM Symposium on Computational Geom-
etry, pp. 1–10 (2011)

23. Chan, T.M., Pǎtraşcu, M.: Transdichotomous results in computational geometry, I:
Point location in sublogarithmic time. SIAM Journal on Computing 39(2), 703–729
(2009)

24. Chan, T.M., Wilkinson, B.T.: Adaptive and approximate orthogonal range count-
ing. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 241–251 (2013)

25. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17(3), 427–462 (1988)

26. Cheng, S.W., Janardan, R.: New results on dynamic planar point location. SIAM
Journal on Computing 21(5), 972–999 (1992)

27. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage. In: Pro-
ceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 383–391 (1996)

28. Cole, R.: Searching and storing similar lists. Journal of Algorithms 7(2), 202–220
(1986)

29. De, M., Maheshwari, A., Nandy, S.C., Smid, M.H.M.: An in-place min-max prior-
ity search tree. Computational Geometry: Theory and Applications 46(3), 310–327
(2013)

30. Denny, M., Sohler, C.: Encoding a triangulation as a permutation of its point
set. In: Proceedings of the 9th Canadian Conference on Computational Geometry
(1997)

31. Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed poly-
hedra - a unified approach. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443,
pp. 400–413. Springer, Heidelberg (1990)

32. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)

33. Elmasry, A., He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority data
structures. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC
2011. LNCS, vol. 7074, pp. 150–159. Springer, Heidelberg (2011)

34. Emde Boas, P.: Preserving order in a forest in less than logarithmic time. In:
Proceedings of the 16th Annual Symposium on Foundations of Computer Science,
pp. 75–84 (1975)

35. Farzan, A., Munro, J.I.: Succinct representations of arbitrary graphs. In: Halperin,
D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 393–404. Springer, Hei-
delberg (2008)

36. Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with ap-
plications to orthogonal range maxima. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 327–338. Springer,
Heidelberg (2012)

37. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of
sequences and full-text indexes. ACM Transactions on Algorithms 3(2), 20:1–20:24
(2007)

38. Fomin, F.V., Kratsch, D., Novelli, J.C.: Approximating minimum cocolorings. In-
formation Processing Letters 84(5), 285–290 (2002)

234 M. He

39. Franceschini, G., Grossi, R.: Optimal worst-case operations for implicit cache-
oblivious search trees. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003.
LNCS, vol. 2748, pp. 114–126. Springer, Heidelberg (2003)

40. Frederickson, G.N.: Implicit data structures for the dictionary problem. Journal of
the ACM 30(1), 80–94 (1983)

41. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM Journal on Computing 16(6), 1004–1022 (1987)

42. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, pp. 135–143 (1984)

43. González, R., Navarro, G.: Rank/select on dynamic compressed sequences and
applications. Theoretical Computer Science 410(43), 4414–4422 (2009)

44. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 841–850 (2003)

45. He, M., Munro, J.I.: Space efficient data structures for dynamic orthogonal range
counting. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844,
pp. 500–511. Springer, Heidelberg (2011)

46. He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear space. In:
Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS,
vol. 7074, pp. 160–169. Springer, Heidelberg (2011)

47. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Ep-
stein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer,
Heidelberg (2012)

48. He, M., Nicholson, P.K., Zeh, N.: A space-efficient framework for dynamic point lo-
cation. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676,
pp. 548–557. Springer, Heidelberg (2012)

49. Iacono, J.: Expected asymptotically optimal planar point location. Computational
Geometry 29(1), 19–22 (2004)

50. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of the 30th
Annual IEEE Symposium on Foundations of Computer Science, pp. 549–554 (1989)

51. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

52. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM Journal on Com-
puting 12(1), 28–35 (1983)

53. Lipton, R.J., Tarjan, R.E.: Application of a planar separator theorem. In: Proceed-
ings of the 18th Annual IEEE Symposium on Foundations of Computer Science,
pp. 162–170 (1977)

54. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoretical
Computer Science 387(3), 332–347 (2007)

55. Matousek, J.: Efficient partition trees. Discrete & Computational Geometry 8,
315–334 (1992)

56. Matousek, J.: Reporting points in halfspaces. Computational Geometry: Theory
and Applications 2, 169–186 (1992)

57. Matousek, J.: Range searching with efficient hiearchical cutting. Discrete & Com-
putational Geometry 10, 157–182 (1993)

58. McCreight, E.M.: Priority search trees. SIAM Journal on Computing 14(2), 257–276
(1985)

59. Munro, J.I.: A multikey search problem. In: Proceedings of the 17th Allerton Con-
ference on Communication, Control and Computing, pp. 241–244 (1979)

Succinct and Implicit Data Structures for Computational Geometry 235

60. Munro, J.I.: An implicit data structure supporting insertion, deletion, and search
in O(log2 n) time. Journal of Computer and System Sciences 33(1), 66–74 (1986)

61. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM Journal on Computing 31(3), 762–776 (2001)

62. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. In: Pro-
ceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 865–876 (2013)

63. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proceedings of
the 39th Annual ACM Symposium on Theory of Computing, pp. 40–46 (2007)

64. Pǎtraşcu, M.: Succincter. In: Proceedings of 49th IEEE Annual Symposium on
Foundations of Computer Science, pp. 305–313 (2008)

65. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)

66. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007)

67. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proceedings of the
21st Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 134–149 (2010)

68. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Com-
munications of the ACM 29(7), 669–679 (1986)

69. Seidel, R., Adamy, U.: On the exact worst case query complexity of planar point
location. Journal of Algorithms 37(1), 189–217 (2000)

70. Yu, C.C., Hon, W.K., Wang, B.F.: Improved data structures for the orthog-
onal range successor problem. Computational Geometry: Theory and Applica-
tions 44(3), 148–159 (2011)

In Pursuit of the Dynamic Optimality

Conjecture

John Iacono

Polytechnic Institute of New York University, Brooklyn, New York, USA

Abstract. In 1985, Sleator and Tarjan introduced the splay tree, a self-
adjusting binary search tree algorithm. Splay trees were conjectured to
perform within a constant factor as any offline rotation-based search
tree algorithm on every sufficiently long sequence—any binary search
tree algorithm that has this property is said to be dynamically optimal.
However, currently neither splay trees nor any other tree algorithm is
known to be dynamically optimal. Here we survey the progress that has
been made in the almost thirty years since the conjecture was first for-
mulated, and present a binary search tree algorithm that is dynamically
optimal if any binary search tree algorithm is dynamically optimal.

1 Introduction

A binary search tree (BST) is a classic structure of computer science. A binary
search tree stores a totally ordered set of data and supports the operations of
insert, delete, and predecessor queries. Here we focus only on predecessor queries
which we call searches. Since there are no insertions and deletions, we can assume
the tree contains the integers from 1 to n.

To execute each search in the BST model, there is a single pointer that starts
at the root of the tree, and at unit cost can move the pointer to the left child,
right child, parent, or perform a rotation with the parent (we call these BST
unit-cost primitives). In order to properly execute the search it is required that
the result of the search be touched by the pointer in the course of executing the
search. This model was formalized in [Wil89].

We consider search sequences X of length m: X = x1, x2, . . . xm. To avoid
issues with small sequences and the initial state of the tree, we assume m is
sufficiently long (often only m = Ω(n) is needed) and that the tree is in some
canonical initial state. A BST-model algorithm is simply a way of choosing a
sequence of BST unit cost primitives to execute each search. A BST-model al-
gorithm is online if its choice of BST unit cost primitives to execute search
xi is a function of x1, . . . xi. The online BST model is still very permissive, as
only BST-model unit cost operations are counted, and unlimited computation
could be done to determine these operations. What is normally thought of as a
BST is an online BST model algorithm that can be implemented on a BST where

� Research supported by NSF grants CCF-1018370 and 0430849.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 236–250, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

In Pursuit of the Dynamic Optimality Conjecture 237

O(log n) bits of data can be augmented on every node, and where unit cost oper-
ations are chosen based on the current search, the contents of the node currently
pointed to, including any augmented data, and O(log n) bits of global state. Such
a BST algorithm is called a real-world BST, a term coined by [BCFL12]. We let
RA(X) denote the cost in the BST model to execute X using some BST-model
algorithm A.

Let OPT(X) be the fastest runtime of any BST that can execute X ; that is
OPT(X) = minA RA(X). Given enough time (i.e. exponential in m), OPT(X)
can be computed exactly, and an offline algorithmA such thatRA(X) = OPT(X)
can be produced.

Splay trees are a BST structure introduced by Sleator and Tarjan [ST85b].
They use a simple restructuring heuristic, to move the searched item to the root.
This heuristic has the following effect on nodes other than the one searched: if
the node x is at depth d and l of the ancestors of x are on the search path, after
the search x will be at depth d+ l

2 +O(1). The work of [Sub96] explores a class
of heuristics that have the same general properties of splay trees. Splay trees
have been proven to have a number of amortized bounds on their performance,
including such basic facts as O(log n) amortized runtime per search. However,
the focus of this work is on the dynamic optimality conjecture:

Conjecture 1 (Dynamic Optimality Conjecture [ST85b]). Rsplay(X) =
O(OPT(X))

We refer to any BST algorithm A such that RA(X) = O(OPT(X) + f(n)) for
some f(n) as dynamically optimal. Rather then focus on splay trees themselves,
we focus on whether there are any dynamically optimal BSTs. We present several
different formulations of this, from weakest to strongest.

Offline Optimality. It is possible to compute in polynomial time (in, say, the
RAM model) an algorithm A such that RA(X) = O(OPT(X))? As we have
noted that computing such an algorithm is possible, given enough time, this
question concerns only running time, and is the easiest of the questions presented.
We believe that computing OPT(X) exactly is likely to be NP-complete. NP
completeness for this very closely related problem was presented in [DHI+09]:
instead of a sequence of single searches to be executed on a BST, a sequence
of sets of items to be searched are provided and the algorithm can order the
searches in each set in whatever manner is beneficial to it. Computing the exact
optimal cost for executing such a sequence of sets of searches was shown to be
NP-complete.

Online Optimality. Is there an online BST algorithm A such that RA(X) =
O(OPT(X))? In this statement of the problem, A could do significant compu-
tation in order to determine which BST unit-cost operation to perform at every
step, subject only to the requirement that it is online. This conjecture repre-
sents the claim that there is no asymptotic difference in power between online
and offline algorithms in the BST model. Such equivalence in power between

238 J. Iacono

online and offline power is generally not possible in more permissive models,
and is typically only found in very strict models such as the optimality of the
move-to-front rule for search in a linked list [ST85a]. In more permissive models
like the RAM, an offline algorithm could fill an array A such that A[i] = xi and
thus could trivially achieve offline performance that an online algorithm could
never match.

Online Real-World Optimality. The end goal of this line of research is to obtain,
not just an online BST algorithm A such that RA(X) = O(OPT(X)), but one
where the runtime in the BST model dominates the runtime and which could be
reasonably implemented. The real-world BST model gives a formalization of that
goal, and data structures such as splay trees meet the definition of a real-world
BST.

Our hope is that solving the offline optimality problem is the bottleneck, and
that a solution to that could be transformed into an online real-world algorithm.

We begin this survey by reviewing a geometric view of the problem. We then
summarize the results on the lower and upper bounds for OPT(X). Finally we
present a conditional result whereby a concrete online algorithm is presented
which is dynamically optimal if any online algorithm is dynamically optimal.
Throughout the presentation we try to identify possible avenues for improvement
in as well as the challenges of each of the approaches presented.

2 Geometric View

We now present a geometric view of a binary search tree algorithm A, first intro-
duced in [DHI+09]. This geometric view was created in the hope that reasoning
with this view would be significantly simpler than reasoning with rotation-based
trees.

Suppose you have a BST algorithm executing some search sequence X . Let
the set of points GX = {(xi, i)} be the geometric view of this sequence. Consider
the execution of a BST algorithm A on this sequence. Let tA(i) be all the nodes
touched by the pointer in executing xi. Then let GA

X = {(j, i)|j ∈ tA(i)}; that
is, (i, j) is in GA

X if algorithm A when executing xi touches j. Observe that
GX ⊆ GA

X for any algorithm X , since the item to be searched must be touched
in the execution of X by any valid algorithm. This thus gives GA

X as a plot of
everything touched in an execution, seemingly stripping away the specific pointer
movements and rotations performed. Also, the runtime of A on X is O(|GA

X |).
Call two points p, q a set of points P arborally satisfied (AS) if there is at

least one other point in P in or on the orthogonal rectangle they define. Call a
set of points P an arborally satisfied set (ASS) if all pairs of points p, q ∈ P that
differ in both coordinates are AS. We have shown that all point sets GA

X are
ASS. Moreover, we have shown that given a ASS point set P where GX ⊆ P ,
there is a BST algorithm A with runtime O(|P |) such that GA

X = P .
Thus, the following two problems are equivalent: (1) find an O(1)-competitive

offline BST to executeX , and (2) find anO(1)-factor approximation of a minimal
ASS superset of GA

X .

In Pursuit of the Dynamic Optimality Conjecture 239

One can observe a kind of duality between the time a key is searched and
its value. Suppose X is a permutation of 1..n. Then the transpose of GX is
also a permutation X and represents some sequence XT where if xi = j in
X then xT

j = i in XT . As the horizontal and vertical coordinates are treated

symmetrically in the definition of ASS, it follows that OPT(X) = OPT(XT).
Note that this statement of the geometric view is offline. An algorithm for

computing an ASS superset P of GX is said to be online if the points of P
are only a function of the points of GX with the same or smaller y-coordinate.
Note that an online BST algorithm yields an online ASS superset algorithm
directly from the preceding definitions. However, the conversion in the other
direction does not preserve online-ness. The method used by Fox [Fox11] to turn
a particular online ASS superset algorithm into an online BST algorithm could
probably be adapted to turn any online ASS superset algorithm into an online
BST algorithm.

While computing OPT(X) offline seems like a clean geometric optimization
problem, a solution has remained elusive. The main stumbling block is that it is
fairly easy to come up with a minimal superset P of GX such that all pairs of
points in GX are AS with respect to P ; the problem is that the points in P \GX

must all also be pairwise AS for the set P to be ASS.

3 Lower Bounds

One defining feature of this problem is the existence of non-trivial lower bounds
on OPT(X) for particular fixedX , as opposed to lower bounds whereX is drawn
from a distribution. There are several known bounds, we present each of them
separately.

Independent Rectangle Bound [DHI+09]. Given a set of rectangles R, each of
which is defined by two points in P , we say R is an independent set of rectangles
if no corner of one rectangle lies properly inside of another. Define IRB(P) to
be the size of the maximum set of independent rectangles possible with respect
to point set P . It has been shown that OPT(X) = Ω(IRB(PX)).

Computing a value which is Θ(IRB(GX)) can be done with a simple sweep al-
gorithm. We call an unsatisfied (i.e. not AS) rectangle defined by two points a +-
type rectangle if its upper point is to the right of its lower point. Let IRB+(GX)
to be the point set obtained from P by repeatedly looking at the lowest + type
unsatisfied rectangle (with lowest upper coordinate), and adding a point to the
set in the upper-right corner of this rectangle. This process is repeated until no
more unsatisfied +-type rectangles remain. IRB−(GX) is defined in a symmetric
way. See Figure 4 for an illustration of the result of this process. We have shown
that IRB(P) = Θ(|IRB−(GX)|+ |IRB+(GX)|).

The independent rectangle bound is the best known lower bound on OPT(X),
but there are two other bounds that predate it due to Wilber, which are inter-
esting in their own right. They were both introduced at the same time in [Wil89]
using the language of BSTs and we briefly state them here in the language of
the geometric representation.

240 J. Iacono

Fig. 1. Here we consider all combinatorial cases of overlapping +-rectangles are inde-
pendent, and when they are not. The top three pairs of rectangles are independent;
the bottom two are not.

Alternation Bound. The alternation bound can be computed using a the geomet-
ric view GX as follows: pick a vertical line �, and sweep in order of y-coordinate
through the points of X , counting the number of times the points of GX in
this sweep alternate between the left and right side of the line �. Split the point
set GX into two sets using the line and repeat the process recursively on each
side. See Figure 2 for an illustration of this process. The lower bound is the
total number of alternations in all levels of the recursion. In computing this
bound, there is freedom to choose the vertical line at each step; classically the
line at each step is chosen to go though the median x-coordinate, and we will
call this lower bound ALT(X). While OPT(X) = Ω(ALT(X)) it can be shown
that it is not always tight; for all n there is a sequence Xn of size n such that
ALT(Xn) = Θ(OPT(Xn) log logn). Such a sequence can be created randomly by
picking O(log n) nodes that are to the left of the dividing line in all levels of the
recursion but one and randomly searching only them. Each random search must
take time O(log logn) in expectation but will only contribute O(1) to the lower
bound calculation. There are several possible avenues for improving this bound:
one would be to figure out how to choose the lines best (and [Har06] shows that
you don’t have to restrict the lines to vertical ones), or perhaps change them
dynamically. Another avenue for improvement would be to somehow do another
type of recursion that would directly reduce the gap exhibited above, possibly
reducing it O(log log logn) or O(log∗ n). The main interest in this lower bound is
that is it the only bound that has been turned into an algorithm (see Tango trees
below); thus improvements on this bound have a reasonable chance of being able
to create a better algorithm than what is known.

Funnel Bound. Given a point (xi, i) ∈ GX , the funnel of xi, f(xi) is the set
of points below xi that form unsatisfied rectangles with (xi, i). For each funnel,
look at the points in the funnel sorted by y coordinate, and count the number
of alternations from the left to the right of xi that occur; this is the amortized

In Pursuit of the Dynamic Optimality Conjecture 241

Fig. 2. The interleave bound. As each line is introduced we restrict out view to the cell
bounded by previous lines in and containing the current one. In this cell, we connect
the points, top to bottom, and a connection that crosses the current line is colored
blue and contributes one unit to the lower bound. Green connections are do not cross
the current dividing line and do not contribute to the lower bound. As all blue lines
generated are distinct, we can visualize the entire bound using the right diagram.

242 J. Iacono

lower bound for xi; computing and summing this value for all xi in X gives the
lower bound. A different, tree-based view of this bound is as follows: execute X
on a binary search tree, and perform a series of single rotations to bring xi to
the root; this BST algorithm was first proposed by Allen and Munro in [AM78].
The amortized lower bound for xi is the number of turns on the path from the
root to xi. It is worth noting that this will maintain at each step a treap where
the heap value of each x is the last i such that xi = x, or equivalently the
working set number of the item. This tree view gives an immediate idea for an
algorithm—since only the turns in the tree contribute to the lower bound, is it
possible to create a method to maintain a representation of the treap so that an
item can be searched in a time proportional to the number of turns in the tree?
The main obstacle to this approach is that there could be a linear number of
items that are one turn away, thus some kind of amortization would be needed
to show that that situation could not happen in each search.

Relationship among These Bounds. All of these three bounds are lower bounds,
that is all of them compute values which are O(OPT(X)). No relationship is
known among the alternation bound and the funnel bound. However, the al-
ternation bound and the funnel bound have been shown to correspond to sets
of independent rectangles, and thus they are asymptotically implied by the in-
dependent rectangle bound [DHI+09]. We have mentioned that the alternation
bound is not known to be tight. However, while the independent rectangle bound
asymptotically implies the funnel bound, the converse is unknown, and we con-
jecture that they are equivalent.

Improving the Bounds. In proving the independent rectangle bound, it was
shown the need to put a point in each independent rectangle to satisfy the
empty rectangles in the original set. Now, adding these points could cause new
unsatisfied rectangles, including those that are defined entirely by added points.
We call these problems secondary effects and it is easy to show that they occur.
The question is, are these secondary effects asymptotically significant or not?
If one believes that the independent rectangle bound is tight, they could try to
show that if one were to put points to satisfy the rectangles in phases, where the
points in each phase satisfy the unsatisfied rectangles in the previous phase, the
number of problems would form some kind of exponential progression. On the
other hand, to show the bound is not tight one would need an example where
these secondary effects dominate.

4 Upper Bounds

In this section we survey the various progress towards the dynamic optimality
conjecture by producing actual BSTs.

4.1 Concrete Bounds

One approach has been to come up with concrete closed-form bounds that ex-
press the runtime of a particular BST data structure. These bounds initially

In Pursuit of the Dynamic Optimality Conjecture 243

Fig. 3. The funnel bound. For each yellow node, the blue nodes are the nodes in its
funnel, and the lines correspond to pairs in the funnel which cross the yellow node and
yield one unit of lower bound.

244 J. Iacono

began with the analysis of splay trees [ST85b], with the working set bound,
which says a search is fast if it was searched recently, and the dynamic finger
bound [Col00,CMSS00] which says that a search is fast if it is close in key value
to the previous search. In [BCDI07], we proposed combining these bounds into
one which bounds a search as being fast if it is close in key value to some search
that has been searched frequently; a BST-model algorithm with this bound was
claimed in [Der09] but may be buggy [Sle11]. These bounds all can easily be
seen to not be tight, that is there are classes of sequences X such that they are
ω(OPT(X)). Can refining bounds of this type have any hope of a closed form
solution that is an asymptotically tight expression of OPT(X)? For example,
in the closely related problem of the runtime of the best static tree where each
search beings where the previous one ended, a closed-form expression for the
asymptotic runtime was obtained [BDIL13]. However, for optimal BST’s with
rotations, this approach seems difficult as it is easy to come up with search
sequences which can be executed quickly on a BST but which all known con-
crete upper bounds are not tight and which seem to defy a simple formulaic
characterization.

4.2 Tango Trees [DHIP07]

In the language of competitive analysis, the problem of finding a dynamically
optimal binary search tree is to find one which is O(1)-competitive with the
best offline tree. Any tree with O(log n) search time is trivially O(log n) com-
petitive. Tango trees are a data structure that was created to have a non-trivial
approximation factor of O(log log n). Specifically, they are created to be within
a O(log logn) factor of the alternation lower bound.

We present another view of computing the alternation bound, one which leads
easily to the central idea of the Tango tree construction. This computation is
presented algorithmically. To compute the alternation bound, envision a refer-
ence tree which is a balanced binary containing [1..n]. Each nonleaf node in the
tree has one of its children designed as the preferred child—the preferred child is
designated based on which subtree of that node has had the most recent search.
Now to compute the bound, go though the sequence X and execute each search
on the reference tree. The process of executing a search involves starting at the
root and following children, which are either preferred or not; at the end of the
search the nodes where the search did not follow the preferred child are updated
to reflect that the preferred child has changed and is now aligned with the search
path; the sum of these preferred child changes is equivalent to the alternation
lower bound. Given a node, call the preferred path the path in the reference tree
obtained by following preferred children starting from that node until a leaf is
reached. Due to the balanced nature of the reference tree, the size of any pre-
ferred path is O(log n). Given this setup, the idea behind the Tango tree is to
store each preferred path in a balanced binary search tree of height O(log logn).
Thus a search in the reference tree that involved following logn nodes among k
preferred paths (and this has a lower bound of O(k)) can be executed in time
O((k + 1) log logn) time. Details of the Tango tree involve arranging the BST’s

In Pursuit of the Dynamic Optimality Conjecture 245

created from each preferred path into one BST, and using split and merge oper-
ations to maintain the changing of the preferred paths. However, this method is
limited by the fact that the alternation bound is sometimes tight and sometimes
off by a Θ(log log n) factor. Thus, no improvement in the competitive ratio is
possible while still using the alternation bound as-is as the basis of the com-
petitive ratio. Note that [DS09] improved Tango trees to have some additional
desirable properties, such as O(log n) worst-case time per search, as opposed to
O(log n log logn) in their original presentation.

4.3 Greedy

If one were to come up with an idea for candidates for the best possible offline
method there is one greedy method that stands out. Search for the current item.
Then for (asymptotically) free one can rearrange the nodes on the search path
into any tree. The heuristic that makes the most sense would be to place the
node to be searched next at the root, or if the node to be searched next is not on
the search path, place the subtree that contains it as close to the root at possible.
Then, recurse on the the remaining nodes on the search path. This method was
first proposed by Lucas [Luc88].

In the geometric view, there is a natural greedy method to find an ASS su-
perset of GX : from bottom to top, add points on every row so that the point set
is satisfied from that row down. See Figure 4 for an illustration of this process.
It turns out that by applying the geometric-to-BST conversion to this method,
Lucas’s greedy tree method is obtained; thus the two greedy methods are in fact
identical.

While this method seems intuitively to be a good idea, basic facts like O(log n)
amortized time per search were not known until the work of Fox [Fox11], who
also showed that there is an equivalent online BST to this method. Showing
that this method which greedily looks into the future has an equivalent online
method provides some support for the belief that the best online and offline BST
algorithms have asymptotically the same runtime.

In the geometric view, recall that the independent rectangle lower bound
can be computed by sweeping twice though RX and satisfying the + and −
unsatisfied rectangles separately. The greedy method is a single sweep though
RX satisfying both the + and the − rectangles at the same time (again, see
Figure 4). Proving that the point sets obtained though these two methods are
within a constant factor of each other would be enough to show the greedy
method is a dynamically optimal binary search tree. We have spent much time
coding and looking for ways to prove such a correspondence to no avail.

4.4 Combining Trees

In [DILÖ13], we have shown that given any constant number of online BST
algorithms (subject to certain technical restrictions described in the paper),
there is an online BST algorithm that performs asymptotically as well on any
sequence as the best input BST algorithm. If the output algorithm did not have

246 J. Iacono

Fig. 4. The geometric view of binary search trees. A black dot at location (x, y) rep-
resents that we wish to search for key value x at time y; it is set set GX . The black
dots, combined with the solid blue and red represent an execution of Lucas’s greedy
future algorithm to execute this search sequence; a dot at (x, y) represents the greedy
algorithm touching item with key x at time y. The solid dots are satisfied, that is for
every two dots not in the same row or column, you can find a third one on the rect-
angle they define. Color simply represents being to the left or to the right of black.
The �-shaped markers are a visual representation of a the incremental construction of
the independent rectangle lower bound for the minimal satisfied superset of the black
points. Showing Lucas’s method is dynamically optimal is equivalent to showing the
solid and �’s are always within a constant factor of each other for any such diagram.

In Pursuit of the Dynamic Optimality Conjecture 247

to be in the BST model this would be trivial as the input algorithms could just
be run in parallel; however the BST-model restriction makes this non-trivial. It
is open whether or not it is possible to combine a superconstant number of BST
algorithms. This would be of interest as a dynamically optimal BST could be
viewed as combining all algorithms and taking the minimum. As the number of
BST algorithms can be limited to be a function of n (see next section), this opens
the possibility of having an algorithm with a runtime of O(OPT(X)+ f(n)), for
some possibly huge function n.

4.5 Search Optimality

In [BCK03], the notion of search optimality was presented. The search cost of
a search BST algorithm is simply the depth of the node to be searched. Any
rotations or pointer movements off the search path are free; in this way the
BST can be arbitrarily reconfigured between searches at zero cost. It was shown
that there is a BST model algorithm for which the search cost is O(OPT(X)).
The general method was to use a machine learning approach to finding the best
tree after each search based on the searches performed so far. If one were to
try to adapt this method to the standard online BST model cost function, a
reasonable starting point would be to try to determine if there is any cohesion
of the trees produced by the method from one search to the next, and to try to
figure out if one could use such cohesion to transform one tree to the next in
time proportional the the search cost.

5 Online Optimality

In this section we present the only new result of this paper: we present the
best possible online BST algorithm for sufficiently long search sequences. In
particular, we prove the following:

Theorem 1. There is an online BST algorithm OnOpt such that if there is
an online algorithm A such that RA(X) = O(OPT(X) + f(n)) for some func-
tion f(n), then there is an algorithm OnOpt and a function g(n) such that
ROnOpt(X) = O(OPT(X) + g(n)).

The algorithm is decidedly not in the real-world BST model, and is a relatively
straightforward application of known methods from learning theory.

We begin by summarizing a classic result from learning theory (see [AHK12]
for a survey of its origins, variants and applications). The setup is that there
are a sequence of events Z = z1, z2, . . . , z� which are presented in an online
manner—each event is an integer in the range [1..ρ]. Before each event is re-
vealed, one of η experts numbered [1..η] is chosen. After the event is chosen a
penalty is determined based on an η×ρ table M which assigns penalties to each
combination of event and expert; M [a, z] is the penalty if expert a was chosen
and event z happened.

248 J. Iacono

Thus, if a single expert a were to be chosen for all events, the total penalty
would be

∑�
k=1 M [a, zk]. The main result we will use is that it is possible to pick

online an expert before each event such that the total penalty is asymptotically
that of the best expert:

Theorem 2 (Weighted Majority Algorithm). For any ε > 0, there is an
online choice of expert E = e1, e2, . . . z� such that

m∑
k=1

M [ek, zk] ≤
ρ ln η

ε
+ (1 + ε)min

a

m∑
k=1

M [a, zk]

Now we apply this theorem to BSTs. Let X = x1, x2, . . . xm be a sequence of
searches in a BST-model data structure containing the integers 1..n; for conve-
nience we assume m is a multiple of f(n), and we assume f(n) ≥ n. We let the
events be the nf(n) different search sequences of length f(n); thus ρ = nf(n). We
divide the search sequence into epochs of size f(n), and denote the ith epoch as
zi. Note that each epoch zi is an event.

How many BST-model algorithms are there to execute an epoch, assuming
at the beginning and end of each epoch the BST is in a canonical state (e.g. a
left path)? There are at most nf(n)5O(nf(n)). This is because you can encode an
algorithm by encoding the O(nf(n)) fundamental operations spent to execute
each of the nf(n) possible epochs, and the 5 possible BST unit-cost operations
at unit of time executing each epoch. We view the set of online BST epoch al-
gorithms as the experts. Thus e ≤ nf(n)5O(nf(n)). This is a gross overestimate
as this counts the offline algorithms, and does not cull those which do not prop-
erly execute each search. The cost M [a, zk] is simply the runtime of BST epoch
algorithm a on epoch k.

Plugging this into Theorem gives:

Lemma 1. There is a way to choose an algorithm Ak at each epoch such that:

m∑
k=1

M [Ak, xk] = O

(
nf(n)nf(n) + min

a

m∑
k=1

M [a, xk]

)

Now, recall OPT(X) is the fastest any offline BST-model algorithm can execute
the search sequence X .

Lemma 2. Given a search sequence X of length m on a set of size n, let zi be
a search sequence of size n which is the ith epoch of S. Then for any f(n) ≥ n

OPT(S) = Θ

⎛
⎝m/f(n)∑

i=1

(OPT(zi) + f(n))

⎞
⎠

Proof. Follows directly from the fact that any BST can be converted into any
other in O(n) time. Thus you can be forced into a canonical state every n searches
and this only changes the optimal time by a constant.

In Pursuit of the Dynamic Optimality Conjecture 249

These lemmas give a proof of Theorem 1. Specifically, if there is an unknown
online BST algorithm with runtime O(OPT(X)+f(n)), then using the weighted
majority algorithm to pick an algorithm to run every f(n) steps yields an online
BST algorithm that runs in time O(OPT(X)+nf(n)nf(n)), which is O(OPT(X))
for sufficiently long sequences X .

References

[AHK12] Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing 8(1), 121–164
(2012)

[AM78] Allenand, B., Ian Munro, J.: Self-organizing binary search trees. J.
ACM 25(4), 526–535 (1978)

[BCDI07] Badoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theor. Comput. Sci. 382(2), 86–96
(2007)

[BCFL12] Bose, P., Collette, S., Fagerberg, R., Langerman, S.: De-amortizing binary
search trees. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 121–132. Springer, Heidelberg
(2012)

[BCK03] Blum, A., Chawla, S., Kalai, A.: Static optimality and dynamic search-
optimality in lists and trees. Algorithmica 36(3), 249–260 (2003)

[BDIL13] Bose, P., Doüıeb, K., Iacono, J., Langerman, S.: The power and limitations
of static binary search trees with lazy finger. CoRR, abs/1304.6897 (2013)

[CMSS00] Cole, R., Mishra, B., Schmidt, J.P., Siegel, A.: On the dynamic finger con-
jecture for splay trees. part i: Splay sorting log n-block sequences. SIAM J.
Comput. 30(1), 1–43 (2000)

[Col00] Cole, R.: On the dynamic finger conjecture for splay trees. part ii: The proof.
SIAM J. Comput. 30(1), 44–85 (2000)

[Der09] Derryberry, J.: Adaptive Binary Search Trees. PhD thesis, CMU (2009)
[DHI+09] Demaine, E.D., Harmon, D., Iacono, J., Kane, D.M., Patrascu, M.: The

geometry of binary search trees. In: Mathieu, C. (ed.) SODA, pp. 496–505.
SIAM (2009)

[DHIP07] Demaine, E.D., Harmon, D., Iacono, J., Patrascu, M.: Dynamic optimality
- almost. SIAM J. Comput. 37(1), 240–251 (2007)

[DILÖ13] Demaine, E.D., Iacono, J., Langerman, S., Özkan, Ö.: Combining binary
search trees. CoRR, abs/1304.7604 (2013)

[DS09] Derryberry, J.C., Sleator, D.D.: Skip-splay: Toward achieving the unified
bound in the bst model. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 194–205. Springer, Heidelberg
(2009)

[Fox11] Fox, K.: Upper bounds for maximally greedy binary search trees. In: Dehne,
F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 411–422.
Springer, Heidelberg (2011)

[Har06] Harmon, D.: New Bounds on Optimal Binary Search Trees. PhD thesis,
MIT (2006)

[Luc88] Lucas, J.M.: Canonical forms for competitive binary search tree algorithms.
Technical Report DCS-TR-250, Rutgers University (1988)

250 J. Iacono

[Sle11] Sleator, D.: Achieving the unified bound in the bst model. In: 5th Bertinoro
Workshop on Algorithms and Data Structures. Talk (2011)

[ST85a] Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging
rules. Commun. ACM 28(2), 202–208 (1985)

[ST85b] Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J.
ACM 32(3), 652–686 (1985)

[Sub96] Subramanian, A.: An explanation of splaying. J. Algorithms 20(3), 512–525
(1996)

[Wil89] Wilber, R.E.: Lower bounds for accessing binary search trees with rotations.
SIAM J. Comput. 18(1), 56–67 (1989)

A Survey of Algorithms and Models

for List Update

Shahin Kamali and Alejandro López-Ortiz

School of Computer Science, University of Waterloo
Waterloo, Ont., N2L 3G1, Canada

{s3kamali,alopez-o}@uwaterloo.ca

Abstract. The list update problem was first studied by McCabe [47]
more than 45 years ago under distributional analysis in the context of
maintaining a sequential file. In 1985, Sleator and Tarjan [55] introduced
the competitive ratio framework for the study of worst case behavior on
list update algorithms. Since then, many deterministic and randomized
online algorithms have been proposed and studied under this framework.
The standard model as originally introduced has a peculiar cost function
for the rearrangement of the list after each search operation. To ad-
dress this, several variants have been introduced, chiefly the MRM model
(Mart́ınez and Roura, [46]; Munro, [49]), the paid exchange model, and
the compression model. Additionally, the list update problem has been
studied under locality of reference assumptions, and several models have
been proposed to capture locality of input sequences. This survey gives
a brief overview of the main list update algorithms, the main alterna-
tive cost models, and the related results for list update with locality of
reference. Open problems and directions for future work are included.

1 Introduction

List update is a fundamental problem in the context of online computation.
Consider an unsorted list of l items. The input to the algorithm is a sequence
of n requests that must be served in an online manner. Let A be an arbitrary
online list update algorithm. To serve a request to an item x, A linearly searches
the list until it finds x. If x is the ith item in the list, A incurs a cost i to access
x. Immediately after this access, A can move x to any position closer to the front
of the list at no extra cost; this is called a free exchange. Also, A can exchange
any two consecutive items at a cost of 1; these are called paid exchanges. An
efficient algorithm can thus use free and paid exchanges to minimize the overall
cost of serving a sequence. This model is called the standard cost model [7].

The competitive ratio, first introduced formally by Sleator and Tarjan [55], has
served as a practical measure for the study and classification of online algorithms
in general and list update algorithms in particular. An algorithm is said to be
α-competitive (assuming a cost-minimization problem) if the cost of serving
any specific request sequence never exceeds α times the optimal cost (up to
some additive constant) of an offline algorithm which knows the entire request
sequence in advance.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 251–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

252 S. Kamali and A. López-Ortiz

Notwithstanding its wide applicability, competitive analysis has some draw-
backs. For certain problems, it gives unrealistically pessimistic performance
ratios and fails to distinguish between algorithms that have vastly differing per-
formance in practice. Such anomalies have led to the introduction of many alter-
natives to competitive analysis of online algorithms. For a comprehensive survey
of alternative models, see [31].

As well, a common objection to competitive analysis is that it relies on an
optimal offline algorithm, OPT, as a baseline for comparing online algorithms.
While this may be convenient, it is rather indirect: One could argue that in com-
paring two online algorithms A and B, all the information we should need is the
cost incurred by the algorithms on each request sequence. For example, for some
problems, OPT is too powerful, causing all online algorithms to seem equally
bad. Certain alternative measures allow direct comparison of online algorithms,
for example, the Max-Max Ratio [18], the Relative Worst Order Analysis [23,24],
and the Bijective Analysis [12,13,14]. These measures have been applied mostly
to the paging problem as well as some other online problems.

To the best of our knowledge, relative worst order analysis [33] and bijec-
tive analysis [13,14] are the only alternative measures which have already been
applied to the list update problem. As mentioned above, both these measures di-
rectly compare two online algorithms A and B. For a given sequence, the relative
worst order analysis considers the worst ordering of the sequence for both A and
B and compares their outcome on these orderings. Then, among all sequences,
it considers the one that maximizes the worst case performance. For a precise
definition, see [24]. Besides the list update problem, relative worst order analysis
has been applied to other online problems including bin packing [23,36], paging
[24,25], scheduling [35], and seat reservation [26].

Under bijective analysis, we say A is no worse than B if we can define a
bijection f on the input sequences of the same length, such that the cost of A for
any sequence σ is not more than that of B for f(σ), where f(σ) is the bijected
sequence of σ. Bijective analysis proved successful in proving that LRU and
MTF are the unique optimal algorithms for respectively paging and list update
problems under a locality of reference assumption, while all other measures have
failed to show this empirically observed separation.

The list update problem is closely related to the paging problem. For paging,
there is a small memory (cache) of size k and a large memory of unbounded
size. The input is a sequence of page requests. If a requested page a is already
in the cache the algorithm pays no cost; otherwise, it pays a cost of one unit
to bring a into the cache. On bringing a page to the cache, an algorithm might
need to evict some pages from the cache to make room for the incoming page.
Paging algorithms are usually described by their eviction strategy; for example,
Least-Recently-Used (LRU) evicts the page in the cache that was least recently
used, and First-In-First-Out (FIFO) evicts the page that was first brought to the
cache. Paging can be seen as a type of list update problem with an alternative
cost model [53,55]: Each page is equivalent to an item in the list and the access
cost for the first k items (k being the size of the cash) is 0, while the cost for

A Survey of Algorithms and Models for List Update 253

other items is 1. The only difference between the two problems is that when a
requested page is not in the cache, a paging algorithm should bring the page to
the cache. This is optional for a list update algorithm.

1.1 Outline

In this survey, we give an overview of selected results regarding list update in the
standard and alternative cost models. We do not aim to be exhaustive, but rather
give highlights of the field. For other surveys on the list update problem, we
refer the reader to [2,4,48]. In Section 2, we review a selection of existing results
on list update for the standard model. In particular, we consider the classical
deterministic and randomized algorithms for the problem. While list update
algorithms with a better competitive ratio tend to have better performance in
practice, the validity of the cost model has been debated, and a few other models
have been proposed for the problem. In Section 3, we review the main results
related to these alternative cost models which include the MRM cost model,
the paid exchange model, the compression model, and the free exchange model.
In Section 4, we discuss the list update problem with locality of reference and
review the proposed models which measure this locality.

2 Algorithms

List update algorithms were among the first algorithms studied using competitive
analysis. Three well-known deterministic online algorithms are Move-To-Front
(MTF), Transpose, and Frequency-Count (FC). MTF moves the requested item
to the front of the list; whereas Transpose exchanges the requested item with the
item that immediately precedes it. FC maintains an access count for each item
ensuring that the list always contains items in non-increasing order of frequency
count. Timestamp is an efficient list update algorithm introduced by Albers [1]:
After accessing an item x, Timestamp inserts x in front of the first item y that
is before x in the list and was requested at most once since the last request for
x. If there is no such item y, or if this is the first access to x, Timestamp does
not reorganize the list. Sleator and Tarjan showed that MTF is 2-competitive,
while Transpose and FC do not have constant competitive ratios [55]. Karp and
Raghavan proved a lower bound of 2 − 2/(l + 1) (reported in [40]), and Irani
proved thatMTF gives a matching upper bound [40]. It is known that Timestamp
is also optimum under competitive analysis [1].

Besides MTF and Timestamp which have optimum competitive ratio, El-Yaniv
showed that there are infinitely many algorithms which have optimum ratio [34].
In doing so, he introduced a family of algorithms called Move-to-Recent-Item

(MRI): A member of this family has an integer parameter k ≥ 1, and it inserts
an accessed item x just after the last item y in the list which precedes x and is
requested at least k+1 times since the last request to x. If such item y does not
exist, or if this is the first access to x, the algorithm moves x to front of the list.
It is known that any member of MRI family of algorithms is 2-competitive [34].

254 S. Kamali and A. López-Ortiz

Note that when k = 0,MRI is the same asTimestamp, and when k tends to infinity,
it is the same asMTF. Schulz proposed another family of algorithm called Sort-By-
Rank (SBR) [54], which is parameterized by a real value α where 0 ≤ α ≤ 1. The
extreme values of α result in MTF (when α = 0) and Timestamp (when α = 1). It
is known that any member of SBR family is also 2-competitive [54].

Classical list update algorithms have also been studied under relative worst
order analysis [33]. It is known thatMTF, Timestamp, and FC perform identically
according to the relative worst order ratio, while Transpose is worse than all these
algorithms. Note that these results are almost aligned with the results under
competitive analysis.

In terms of the optimum offline algorithm for the list update problem, Manasse
et al. presented an offline optimal algorithm which computes the optimal list
ordering at any step in time Θ(n × (l!)2) [45], where n is the length of the
request sequence. This time complexity was improved to Θ(n × 2l(l − 1)!) by
Reingold and Westbrook [51]. Hagerup proposed another offline algorithm which
runs in time O(2l l! f(l) + l × n), where f(l) ≤ l! 3l! [38]. Note that the time
complexity of these algorithms is incomparable to one another. As pointed out
in [38]: “[Hagerup’s algorithm] is probably the best algorithm known for l = 4,
but it loses out rapidly for larger values of l due to the growth of f(l).” Another
algorithm by Pietzrak is reported to run in time Θ(n l3 l!) [48]. It should be
mentioned that Ambühl claims that the offline list update problem is NP-hard
[8], although a full version of the proof remains to be published.

2.1 Paid Exchanges vs Free Exchanges

All the main existing online algorithms for the list update problem are economi-
cal, i.e., they only use free exchanges (look at Table 1). In fact, there is only one
known non-trivial class of algorithms that uses paid exchanges [37]. This raises
the question of how important it is to make use of paid exchanges. In their
seminal paper, Sleator and Tarjan claimed that free exchanges are sufficient to
achieve an optimal solution [55]. The following example by Reingold and West-
brook shows that this is not the case, and that paid exchanges are sometimes
necessary [51].

Consider the initial list configuration (1,2,3) and the request sequence
〈3, 2, 2, 3〉. One can verify that any algorithm relying solely on free exchanges
must incur a cost of at least 9. On the other hand, if we apply two paid exchanges
(at a cost of 2) before any access is made and refashion the list into (2,3,1), the
accesses 〈3, 2, 2, 3〉 can be served on that list at a cost of 2,1,1,2 respectively, for
a total access cost of 6 and an overall cost of 2 + 6 = 8 once we include the cost
of the paid accesses.

Considering the above example, one might ask: what is the approximation
ratio of the best (offline) list update algorithm which is restricted to only use
free exchanges? This question is still open and remains to be answered. We
conjecture this ratio to be strictly larger than 1 and smaller than or equal to
4/3.

A Survey of Algorithms and Models for List Update 255

Table 1. A review of online strategies for list update problem

Algorithm Competitive Ratio deterministic Projective Economical

MTF 2 [55,40] � � �
Transpose non-constant [55] � x �

Frequency Count non-constant [55] � � �
Random-MTF (RMTF) 2 [21] x � �
Move-Fraction (MFk) 2k [55] � x �

Timestamp 2 [1] � � �
MRI family 2 [34] � � �
SBR family 2 [54] � � �

Timestamp family (randomized) 1.618 [1] x � �
SPLIT 1.875 [40,42] x x �
BIT 1.75 [52] x � �

Random Reset (RST) 1.732 [52] x � �
COMB 1.60 [6] x � �

Reingold and Westbrook showed that there are optimal offline algorithms
which only make use of paid exchanges [51]. Note that this is the exact opposite
of the situation as claimed by Sleator and Tarjan. It is still not clear how an
online algorithm can make good use of paid exchanges. Almost all existing op-
timal online algorithms only use free exchanges, while there are optimal offline
algorithms which only use paid exchanges. This calls into question the validity
of the standard model (see Section 3.4).

2.2 Randomization

As mentioned earlier, any deterministic list update algorithm has a competitive
ratio of at least 2 − 2/(l + 1). In order to go past this lower bound, a few
randomized algorithms have been proposed. However, it is important to observe
that the competitive ratio of a randomized algorithm is not a worst case measure,
and in that sense, it is closer in nature to the average competitive ratio of a
deterministic algorithm.

Randomized online algorithms are usually compared against an oblivious ad-
versary which has no knowledge of the random bits used by the algorithm. To
be more precise, an oblivious adversary generates a request sequence before the
online algorithm starts serving it, and in doing so, it does not look at the random
bits used by the algorithm. Note that the oblivious adversary knows the algo-
rithm code. Two stronger types of adversaries are adaptive online and adaptive
offline adversaries. An adaptive online adversary generates the tth requests of
an input sequence by looking at the actions of the algorithm for serving the last
t − 1 requests. An adaptive offline adversary is even more powerful and knows
the random bits used by the algorithm, i.e., before giving the input sequence
to the online algorithm, it can observe how the algorithm serves the sequence.
The definition of the competitive ratio of an online algorithm is slightly different

256 S. Kamali and A. López-Ortiz

when compared with different adversaries, and is based on the expectations over
the random choices made by the online algorithm (and adaptive adversaries).
For a precise definition of competitiveness for randomized algorithms, we refer
the reader to [52].

Ben-David et al. proved that if there is a randomized algorithm which is c-
competitive against an adaptive offline adversary, then there exist deterministic
algorithms which are also c-competitive [19]. In this sense, randomization does
not help to improve the competitive ratio of online algorithms against adaptive
offline adversaries. In fact, for the list update problem, the adaptive online and
adaptive offline adversaries are equally powerful, and the lower bound 2−2/(l+1)
for deterministic algorithms extends to adaptive adversaries [50,52]. This implies
that there is no randomized algorithm which achieves a competitive ratio better
than 2−2/(l+1) when compared against adaptive adversaries. So, randomization
can only help in obtaining a better competitive ratio when compared against
an oblivious adversary. In the following review of randomized algorithms, by
the notion of c-competitiveness, we mean c-competitiveness against an oblivious
adversary.
Random-MTF (RMTF) is a simple randomized algorithm for the list update

problem: after accessing an item, RMTF moves it to the front with probability
0.5. The competitive ratio of RMTF is 2 [21], which is no better than the best
deterministic algorithms. The first randomized algorithm that beats the deter-
ministic lower bound was introduced by Irani in 1991 [40]. In this algorithm,
called SPLIT, each item x has a pointer to another item which precedes it in
the list, and after each access to x, the algorithm moves x to either the front
of the list or front of the item that x points to (we omit the details here). This
randomized algorithm has a competitive ratio of 1.875 [40,42]. Reingold et al.
proposed another randomized algorithm named BIT [52]: Before serving the se-
quence, the algorithm assigns a bit b(x) to each item x which is randomly set
to be 0 or 1. At the time of an access to an element x, the content of b(x) is
complemented. Then, if b(x) = 1, the algorithm moves x to the front; otherwise
(when b(x) = 0), it does nothing. Note that BIT uses randomness only in the
initialization phase, and after that it runs deterministically; in this sense the
algorithm is barely random. It is known that BIT has a competitive ratio of 1.75
[52].
BIT is a member of a more generalized family of online algorithms called

COUNTER[52]. A COUNTER algorithm has two parameters: an integer s and a
fixed subset S of {0, 1, ..., s − 1}. The algorithm keeps a counter modulo s for
each item. With each access to an item x, the algorithm decrements the counter
of x and moves it to the front of the list if the new value of the counter is a
member of S. With good assignments of s and S, a COUNTER algorithm can be
better than BIT. For example, with s = 7, S = {0, 2, 4}, the ratio will be 1.735,
which is better than the 1.75 of BIT [52].

It is also known that a random reset policy can improve the ratio even further:
The algorithm Random Reset maintains a counter c(x) for each item x in the
list. The counter is initially set randomly to be a number i between 0 and s

A Survey of Algorithms and Models for List Update 257

with probability πi. When the requested item has a counter larger than 1, the
algorithm makes no move and decrements the counter. If the counter is 1, it
moves the item to front and resets the item counter to i < s with probability
πi. Unlike COUNTER algorithms, RANDOM RESET algorithms are not barely
random. The best values of s and D result in an algorithm with a competitive
ratio of

√
3 ≈ 1.732 [52].

The deterministic Timestamp algorithm described earlier is indeed a special
case of a family of randomized algorithms introduced by Albers [1]. A random-
ized Timestamp(p) algorithm has a parameter p. Upon a request to an item,
the algorithm applies the MTF strategy with probability p and (determinis-
tic) Timestamp with probability 1− p. The competitive ratio of Timestamp(p) is
max{2− p, 1+ p(2− p)} which achieves its minimum when p = (3−

√
5)/2; this

gives a competitive ratio of 1.618. Albers et al. proposed another hybrid algo-
rithm which randomly chooses between two other algorithms [6]. This algorithm
is called COMB. Upon a request to an item, the algorithm applies BIT strategy
with probability 0.8 and (deterministic) Timestamp with probability 0.2. COMB
has a competitive ratio of 1.6 [6], which is the best competitive ratio among
existing randomized online algorithm for the list update problem.

There has been some research for finding lower bounds for competitive ratio of
randomized list update algorithms against an oblivious adversary [40,52,56]. The
best existing lower bound is 1.5 proven by Teia, assuming the list is sufficiently
large [56]. Under the partial cost model, where an algorithm pays i− 1 units to
access an item in the ith position, Ambühl et al. proved a lower bound of 1.50084
for a randomized online algorithm. Note that there is still a gap between the best
upper and lower bounds [10].

Although randomized algorithms achieve better competitive ratios than de-
terministic algorithms, the validity of such comparisons is under question. As
mentioned earlier, the competitive ratio of a randomized algorithm (against an
oblivious adversary) is defined by the expectation over the random choices made
by the online algorithm. In that sense, the competitive ratio does not capture
the worst-case behavior of randomized algorithms, instead, it captures the ex-
pected cost over random bits for the worst sequence generated by the adversary.
A better comparison would be to compare the worst cost over random bits,
which is captured by adaptive adversaries. As mentioned earlier, randomized
online algorithms cannot achieve improved ratios against adaptive adversaries.
To conclude, the improved competitive ratios of randomized online algorithms
are mostly due to the decreased power of adversary rather than enhanced power
or smarts of online algorithms. There is empirical evidence supporting this, as
in real life sequences (e.g., when there is locality of reference) deterministic al-
gorithms outperform their randomized counterparts [15,13]. Besides randomized
competitive analysis, randomized algorithms have also been studied under the
relative worst order ratio. It is known that under this framework RMTF and BIT
are not comparable [33].

258 S. Kamali and A. López-Ortiz

2.3 Projective Property

Most of the existing algorithms for the list update problem satisfy the projective
property. Intuitively, an algorithm is projective if the relative position of any two
items x, y in the list maintained by the algorithm only depends on their relative
position in the initial configuration and also the requests to x and y in the input
sequence. The algorithms with the projective property are usually studied under
the partial cost model, where an algorithm pays i− 1 units to access an item in
the ith position.

In order to achieve an upper bound for the competitive ratio of an algorithm
A with the projective property, it suffices to compare the cost of A when applied
to sequences of two items with the cost of an optimal algorithm OPT2 for serving
those sequences. Fortunately, the nature of OPT2 is well-understood and there
are efficient optimal offline algorithms for lists of size two [51]. This opens the
door for deriving upper bounds for the competitive ratio of projective algorithms
under the partial cost model, which also extend to the full cost model.

Ambühl et al. showed that COMB is the optimum randomized projective algo-
rithm under competitive analysis [9,11]. Consequently, if one wants to improve
on the randomized competitive ratio 1.6 of COMB, they should introduce a new
algorithm which is not projective.

3 Alternative Models

The validity of the standard cost model for the list update has been debated,
and a few other models have been proposed for this problem. In this section, we
review these models and the main relevant results.

3.1 MRM Model

Mart́ınez and Roura [46], and also Munro [49], independently addressed the
drawbacks of the standard cost model. The result is a model that we refer to as
the MRM model. The standard model is not realistic in some practical settings
such as when the list is represented by an array or linked list. Mart́ınez and
Roura argued that, in a realistic setting, a complete rearrangement of all items
in the list which precede the requested item at position i would require a cost
proportional to i, while this has cost proportional to i2 in the standard cost
model. Munro provided the example of accessing the last item of the list of size
l and then reversing the entire list. The real cost of this operation in an array or
a linear link list should be O(l), while it costs about l2/2 in the standard cost
model. As a consequence, their main objection to the standard model is that it
prevents online algorithms from using their true power. They instead proposed
the MRM model in which the cost of accessing the ith item of the list plus the
cost of reorganizing the first i items is linear in i.

Surprisingly, it turns out that the offline optimum benefits substantially more
from this realistic adjustment than the online algorithms do. Under the MRM

A Survey of Algorithms and Models for List Update 259

model, every online algorithm has an amortized cost of Θ(l) per access for some
arbitrary long sequences, while there are optimal algorithms which incur a cost
of Θ(lg l) on every sequence. Hence, all online list update algorithms have a
competitive ratio of Ω(l/ lg l). Among offline algorithms which have an amortized
access cost of Θ(lg l) per request, we might mention Order By Next Request
(OBNR) proposed by Munro [49]: After accessing an item x at position i, OBNR
reorders the elements from position 1 to position p in order of next access (i.e.,
the items which will be requested earlier appear closer to front). Here p is the
first position at or beyond i which is a power of 2, i.e., p = 2�lg i.

We would like to observe that randomization does not help to improve the
competitive ratio under the MRM model, and the same lower bound holds for
randomized online algorithms, i.e., there is no randomized algorithm with a
constant competitive ratio under the MRM model [46]. One may be tempted
to argue that this is proof that the new model makes the offline optimum too
powerful and hence this power should be removed; however, this is not correct as
in real life online algorithms can rearrange items at the cost indicated. Note that
the ineffectiveness of this power for improving the worst case competitive ratio
does not preclude the possibility that under certain realistic input distributions
(or other similar assumptions on the input) this power might be of use. Mart́ınez
and Roura observed this and posed the question [46]: “[An] important open
question is whether there exist alternative ways to define competitiveness such
that MTF and other good online algorithms for the list update problem would be
competitive, even for the [modified] cost model”. This question was answered by
Angelopoulos et al. who showed that MTF is the unique optimal algorithm under
bijective analysis for input sequences which have locality of reference [13,14].

Unlike the standard model, under which the offline problem is NP-hard,
Golynski and López-Ortiz introduced an offline algorithm which computes the
optimal arrangement in time O(n3) (n is the length of the input sequence) and
serves any input sequence optimally under the MRM model [37]. It remains open
to investigate whether an optimal offline algorithm with a better running time
exists. Kamali et al. did an empirical study of the performance of the list update
algorithms under the MRM model and observed that a context-based algorithm,
initially applied for compression purposes, outperforms other algorithms [43].

3.2 Paid Exchange Model

Reingold et al. considered another variant of the standard model in which the
access cost is similar to the standard model, but the cost for paid exchanges is
scaled up by a value d ≥ 1 [52]. As pointed out in [52], “This is a very natural
extension, because there is no a priori reason to assume that the execution time
of the program that swaps a pair of adjacent elements is the same as that of the
program that does one iteration of the search loop”. In the new model, the cost
involved in a paid exchange is d, while free exchanges are not allowed. We refer
to this model as the d-paid exchange model. Reingold et al. suggested a family
of randomized COUNTER algorithms for this model [52]. Each algorithm in this
family has a parameter s and maintains a modulo s counter for each item.

260 S. Kamali and A. López-Ortiz

The counters are initially set independently and uniformly at random. When
there is a request to an item x the counter for x is decremented. In case the
counter becomes s − 1, x is moved to front. The competitive ratio of these
algorithms improves as d increases. For the best selection of s, the ratio will be
2.75 when d = 1. This decreases to (5 +

√
17)/4 ≈ 2.28 when d tends to infinity.

On the other hand, for any value of d ≥ 1, no deterministic algorithm can be
better than 3-competitive under the d-paid exchange model [52]. The proof is
based on a cruel adversary which requests the last item in the list maintained
by the online algorithm A. If the cost paid by A for paid exchanges is more
than half of the cost it pays for the accesses, the adversary takes the optimal
static approach. (It sorts items in decreasing order of their frequencies in the
sequence and does not move any item.) Otherwise, the adversary maintains a
list which is the same list as the one maintained by the algorithm, but in reverse
order. Hence, the total access cost that the adversary pays is n, compared to the
n× l that the online algorithm pays (l being the size of the list), while the cost
involved in exchanges remain the same in both. A precise analysis gives the lower
bound of 3. This lower bound extends to randomized algorithms when compared
against adaptive adversaries [52]. Westbrook showed that a deterministic version
of the COUNTER family has a competitive ratio of at most (5 +

√
17)/2 ≈ 4.56

(reported in [7]). These algorithms perform similar to randomized COUNTER
algorithms, except that the counters are initially set to be 0. Note that there is
still a gap between the best upper and lower bounds.

Sleator and Tarjan studied the list update problem under the standard model
when no free exchanges are allowed [55]. We refer to this model as the paid
exchange model. Note that this model is equivalent to the d-paid exchange model
with d = 1. Recall that almost all existing algorithms only make use of free
exchanges. Under the paid exchange model, free exchanges can be replaced by
a set of paid exchanges (paying an additional cost). For example, MTF pays
almost twice for each request, since after accessing an element at index i, the
algorithm pays another i − 1 units to move the item to the front using paid
exchanges. In fact, any algorithm with a competitive ratio i under the standard
model has a competitive ratio of at most 2i under the paid exchange model.
This holds because OPT pays the same cost under both the standard and paid
exchange models. In particular, MTF has a competitive ratio of 4 under the paid
exchange model [55]. So, there is a gap between the lower bound 3 and the upper
bound of 4 given by MTF. To close this gap, one might consider the algorithm
MTF-Every-Other-Access which moves a requested item to the front of the list
on every even request for the item. Note that this is equal to (deterministic)
COUNTER algorithm with s = 2. A detailed analysis shows that this algorithm
is 2-competitive under the standard model [21], and 3-competitive under the
paid exchange model (we skip the details in this review). Hence, the algorithm is
optimal under both models, and the lower bound 3 is tight for the paid exchange
model.

A Survey of Algorithms and Models for List Update 261

3.3 Compression Model

An important application of the list update problem is in data compression. Such
an application was first reported by Bentley et al. who suggested that an online
list update algorithm can be used as a subroutine for a compression scheme [20].
Consider each character of a text as an item in the list, and the text as the input
sequence. A compression algorithm writes an arbitrary initial configuration in
the compressed file, as well as the access cost of ALG for serving each character
in unary. Hence, the size of the compressed file is equal to the access cost of
the list update algorithm. The initial scheme proposed in [20] used MTF as
its subroutine. Albers and Mitzenmacher [5] used Timestamp and showed that in
some cases it outperformsMTF. Bachrach et al. studied compressions schemes for
a large family of list update algorithms which includes MTF and Timestamp [16].
In order to enhance the performance of the compression schemes, the Burrows-
Wheeler Transform (BWT) can be applied to the input string to increase the
amount of locality [27]. Dorrigiv et al. observed that after applying the BWT,
the schemes which use MTF outperform other schemes in most cases [32].

All the above studies adopt the standard cost model for analysis of compres-
sions schemes. More formally, when an item is accessed in the ith position of
the list, the value of i is written in unary format on the compressed file. In
practice, however, the value of i is written in binary format using Θ(lg i) bits.
Hence the true “cost” of the access is logarithmic in what the standard model
assumes. This was first observed in the literature by Dorrigiv et al. in [32] where
they proposed a new model for the list update problem which is more appropri-
ate for compression purposes. We refer to this model as the compression model.
Under this model, the cost of accessing an item in the ith position is Θ(lg i).
They observed that there is a meaningful difference between the standard model
and compression model: Consider the Move-Fraction (MF) family of list update
algorithms proposed by Sleator and Tarjan [55]. An algorithm in this family
has a parameter k (k ≥ 2) and upon a request to an item in the ith position,
moves that item �i/k� − 1 positions towards the front. While MFk is known to
be 2k-competitive under the standard model [55], it is not competitive under the
compression model [32]. For example, MF2 is 4-competitive under the standard
model, and Ω(lg l) competitive under the compression model. A precise analysis
of MTF under the compression model shows that it has a competitive ratio of 2
under the compression model, which makes it an optimal algorithm under this
model. We skip the details in this review.

A randomized algorithm can also be applied for text compression if the ran-
dom bits used by the algorithm are included in the compressed file. The number
of random bits does not change the size of the file dramatically, specially for
barely random algorithms like BIT. So it is worthwhile to study these algorithms
under the compression model.

3.4 Free Exchange Model

Recall that all well known existing online algorithms for the list update problem
only use free exchanges, while an optimal offline can restrict itself to using paid

262 S. Kamali and A. López-Ortiz

exchanges only. This suggests that it is more appropriate to consider a model
which does not allow paid exchanges, i.e., after an access to an element an
algorithm can only move the item to somewhere closer to the front. This is a
natural variant of the standard model which we call the free exchange model.
Since most of the existing algorithms for list update only use free exchanges,
they have the same cost under this model. As mentioned earlier, under the
standard model, OPT needs to use paid exchanges. Hence, restricting the model
to only allow free exchanges decreases the power of OPT. However, the lower
bound of 2 (the lower bound for the competitive ratio of any deterministic online
algorithm under the standard model) can be extended to the free exchange
model, i.e., under the free exchange model, any deterministic online algorithm
has a competitive ratio of at least 2. The proof is straightforward and omitted
in this review.

4 Locality of Reference

Another issue in the analysis of online algorithms is that “real-life” sequences
usually exhibit locality of reference. Informally, this property suggests that the
currently requested item is likely to be requested again in the near future. For
the paging problem, several models for capturing locality of reference have been
proposed [22,57,3,17].

Borodin et al. suggested the notion of access graph to model locality for paging
[22]. This model assumes that input sequences are consistent with an access
graph G, which is known to the online algorithm. Each page is associated to a
vertex of G. In a consistent sequence, there is an edge between vertices associated
with two consecutive requests. The quality of algorithms is then compared using
competitive analysis [22,41,28] or any other measure, e.g., the relative worst order
ratio [25]. It is known that an algorithm FAR, which brings the structure of the
access graph into account, is a uniformly competitive algorithm, i.e., it is within a
constant factor of the best attainable competitive ratio for any access graph [41].
In that sense, FAR outperforms both FIFO and LRU, which are k-competitive
for some graph families (e.g., cycles of length k + 1). Among classical paging
algorithms, most results show an advantage for LRU over other algorithms, in
particular FIFO [28,25].

Other models defined for capturing locality of reference in paging include that
of Karlin et al., which assumes the sequences are generated by a Markov chain
[44], and that of Torng, which compares the average length of sequences in a
window containing m different pages [57]. The model considered by Torng is
related to the concept of working set defined by Denning [29,30]. At any time t,
and for a time window of size τ , the working set W (t, τ) is the number of pages
accessed by a process in the time window τ . Denning shows that in practical
scenarios the size of the working set is a concave function of τ . Inspired by
this, Albers et al. defined a model for locality, called concave analysis, in which
the sequences are consistent with a concave function f so that the maximum
number of distinct requests in a window of size τ is at most f(τ) [3]. Measuring

A Survey of Algorithms and Models for List Update 263

the performance of online algorithms by the page fault rate (the ratio between
the number of faults and all requests), they showed that LRU is the optimal
algorithm for sequences which are consistent with a concave function, while this
is not the case for FIFO. Later, Angelopoulos et al. showed that under the same
model of locality, LRU is the unique optimal algorithm for paging with respect to
bijective analysis, when the quality is measured by the number of faults (rather
than the fault rate) [12,14].

In practical scenarios, input sequences for the list update problem have a
high degree of locality. This is particularly the case when list update is used
for compression purposes after BWT (see Section 3.3). Hester and Hirschberg
claim [39]: “Move-To-Front performs best when the list has a high degree of
locality”. Angelopoulos et al. formalized this claim by showing that MTF is the
unique optimal solution under bijective analysis for sequences that have locality
of reference with respect to concave analysis [13,14].

Albers and Lauer further studied the problem under locality of reference as-
sumption [4]. They defined a new model which is based on the number of runs
in input sequences: For an input sequence σx,y involving two elements only, a
run is a maximal subsequence of requests to the same item. A run is long if it
contains at least two requests; otherwise, it is short. Consider the items in the
list to be x and y. Consider a long run R of requests to x. Let R′ denote the
next long run which comes after R in the sequence. Note that there might be
short runs between R and R′. If R′ is formed by requests to y, then a long run
change happens. Also, a single extra long run change happens when the first
long run and the first request of the sequence reference the same item. For an
arbitrary sequence σ, define the number of runs (resp. long run changes) to be
the total number of runs (resp. long run changes) of the projected sequences
over all pairs (x, y). Let r(σ) and l(σ) respectively denote the total number of

runs and long run changes in σ. Define λ = l(σ)
r(σ) , i.e., λ represents the fraction

of long run changes among all the runs. Note that we have 0 ≤ λ ≤ 1. The
larger values for λ imply a higher locality of the sequence, e.g., when all runs
are long, we get λ = 1. Also, note that the length of long runs does not affect
the value of λ. Using this notion of locality, the competitive ratio of MTF is at
most 2

1+λ , i.e., for sequences with high locality MTF is 1-competitive. The ratio
of Timestamp does not improve on request sequences satisfying λ-locality, i.e.,
it remains 2-competitive. The same holds for algorithm COMB, i.e., it remains
1.6-competitive. However, for the algorithm BIT, the competitive ratio improves
to min{1.75, 2+λ

1+λ}.

5 Concluding Remarks

The standard model for the list update problem has been found wanting for cer-
tain applications and alternative models have been proposed. These models are
not yet fully-studied, and some aspects of them remain to be settled. In order to
obtain meaningful results for new models, one might require alternative analysis
methods which act as substitutes for competitive analysis. These methods can

264 S. Kamali and A. López-Ortiz

also be applied for comparing deterministic online algorithms with randomized
algorithms. As discussed earlier, such comparison is not valid under competitive
analysis. There are also open questions regarding the list update problem with
locality of reference, e.g., whether the access graph model can be applied for the
list update problem, and in case it can, how one can devise a reasonable online
algorithm which brings the graph structure into account. (Recall that such an
algorithm exists for paging.)

References

1. Albers, S.: Improved randomized on-line algorithms for the list update problem.
SIAM J. Comput. 27, 682–693 (1998)

2. Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2), 3–26 (2003)
3. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. J. Com-
put. Systems Sci. 70(2), 145–175 (2005)

4. Albers, S., Lauer, S.: On list update with locality of reference. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 96–107. Springer, Heidelberg
(2008)

5. Albers, S., Mitzenmacher, M.: Average case analyses of list update algorithms,
with applications to data compression. Algorithmica 21(3), 312–329 (1998)

6. Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP
algorithm for the list update problem. Inform. Process. Lett. 56, 135–139 (1995)

7. Albers, S., Westbrook, J.: Self-organizing data structures. In: Fiat, A. (ed.) Online
Algorithms 1996. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)

8. Ambühl, C.: Offline list update is NP-hard. In: Paterson, M. (ed.) ESA 2000. LNCS,
vol. 1879, pp. 42–51. Springer, Heidelberg (2000)

9. Ambühl, C., Gärtner, B., von Stengel, B.: Optimal projective algorithms for the list
update problem. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000.
LNCS, vol. 1853, pp. 305–316. Springer, Heidelberg (2000)

10. Ambühl, C., Gärtner, B., von Stengel, B.: A new lower bound for the list update
problem in the partial cost model. Theoret. Comput. Sci. 268, 3–16 (2001)

11. Ambühl, C., Gärtner, B., von Stengel, B.: Optimal projective algorithms for the
list update problem. CoRR, abs/1002.2440 (2010)

12. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equiva-
lence of paging strategies. In: Proc. 18th Symp. on Discrete Algorithms (SODA),
pp. 229–237 (2007)

13. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: List update with locality of refer-
ence. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008.
LNCS, vol. 4957, pp. 399–410. Springer, Heidelberg (2008)

14. Angelopoulos, S., Schweitzer, P.: Paging and list update under bijective analysis.
In: Proc. 20th Symp. on Discrete Algorithms (SODA), pp. 1136–1145 (2009)

15. Bachrach, R., El-Yaniv, R.: Online list accessing algorithms and their applications:
Recent empirical evidence. In: Proc. 8th Symp. on Discrete Algorithms (SODA),
pp. 53–62 (1997)

16. Bachrach, R., El-Yaniv, R., Reinstadtler, M.: On the competitive theory and prac-
tice of online list accessing algorithms. Algorithmica 32(2), 201–245 (2002)

17. Becchetti, L.: Modeling locality: A probabilistic analysis of LRU and FWF. In:
Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 98–109. Springer,
Heidelberg (2004)

A Survey of Algorithms and Models for List Update 265

18. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.
Algorithmica 11, 73–91 (1994)

19. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power
of randomization in on-line algorithms. Algorithmica 11, 2–14 (1994)

20. Bentley, J.L., Sleator, D., Tarjan, R.E., Wei, V.K.: A locally adaptive data com-
pression scheme. Commun. ACM 29, 320–330 (1986)

21. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

22. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. J. Comput. Systems Sci. 50, 244–258 (1995)

23. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms.
ACM Trans. Algorithms 3(2) (2007)

24. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst-order ratio applied to
paging. J. Comput. Systems Sci. 73(5), 818–843 (2007)

25. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO
under relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

26. Boyar, J., Medvedev, P.: The relative worst order ratio applied to seat reservation.
ACM Trans. Algorithms 4(4) (2008)

27. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, DEC SRC (1994)

28. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185
(1999)

29. Denning, P.J.: The working set model for program behaviour. Commun.
ACM 11(5), 323–333 (1968)

30. Denning, P.J.: Working sets past and present. IEEE Trans. Softw. Eng. 6, 64–84
(1980)

31. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36, 67–81 (2005)

32. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: An application of self-organizing data
structures to compression. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526,
pp. 137–148. Springer, Heidelberg (2009)

33. Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List factoring and relative worst order
analysis. Algorithmica 66(2), 287–309 (2013)

34. El-Yaniv, R.: There are infinitely many competitive-optimal online list accessing
algorithms. Manuscript (1996)

35. Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Separating online scheduling algorithms
with the relative worst order ratio. J. Comb. Optim. 12(4), 363–386 (2006)

36. Epstein, L., Favrholdt, L.M., Kohrt, J.S.: Comparing online algorithms for bin
packing problems. J. Sched. 15(1), 13–21 (2012)

37. Golynski, A., López-Ortiz, A.: Optimal strategies for the list update problem under
the MRM alternative cost model. Inform. Process. Lett. 112(6), 218–222 (2012)

38. Hagerup, T.: Online and offline access to short lists. In: Kučera, L., Kučera, A.
(eds.) MFCS 2007. LNCS, vol. 4708, pp. 691–702. Springer, Heidelberg (2007)

39. Hester, J.H., Hirschberg, D.S.: Self-organizing linear search. ACM Computing Sur-
veys 17, 295–312 (1985)

40. Irani, S.: Two results on the list update problem. Inform. Process. Lett. 38, 301–306
(1991)

41. Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with
locality of reference. SIAM J. Comput. 25, 477–497 (1996)

266 S. Kamali and A. López-Ortiz

42. Irani, S., Reingold, N., Sleator, D., Westbrook, J.: Randomized competitive algo-
rithms for the list update problem. In: Proc. 2nd Symp. on Discrete Algorithms
(SODA), pp. 251–260 (1991)

43. Kamali, S., Ladra, S., López-Ortiz, A., Seco, D.: Context-based algorithms for the
list-update problem under alternative cost models. In: Proc. Data Compression
Conf., (DCC) (to appear, 2013)

44. Karlin, A., Phillips, S., Raghavan, P.: Markov paging. In: Proc. 33rd Symp. on
Foundations of Computer Science (FOCS), pp. 208–217 (1992)

45. Manasse, M., McGeoch, L.A., Sleator, D.: Competitive algorithms for online prob-
lems. In: Proc. 20th Symp. on Theory of Computing (STOC), pp. 322–333 (1988)

46. Mart́ınez, C., Roura, S.: On the competitiveness of the move-to-front rule. Theoret.
Comput. Sci. 242(1-2), 313–325 (2000)

47. McCabe, J.: On serial files with relocatable records. Oper. Res. 12, 609–618 (1965)
48. Mohanty, R., Narayanaswamy, N.S.: Online algorithms for self-organizing sequen-

tial search - a survey. Elect. Coll. on Comput. Complexity 16, 97 (2009)
49. Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA

2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)
50. Reingold, N., Westbrook, J.: Randomized algorithms for the list update problem.

Technical Report YALEU/DCS/TR-804, Yale University (1990)
51. Reingold, N., Westbrook, J.: Off-line algorithms for the list update problem. In-

form. Process. Lett. 60(2), 75–80 (1996)
52. Reingold, N., Westbrook, J., Sleator, D.D.: Randomized competitive algorithms

for the list update problem. Algorithmica 11, 15–32 (1994)
53. Rivest, R.: On self-organizing sequential search heuristics. Commun. ACM 19, 63–

67 (1976)
54. Schulz, F.: Two new families of list update algorithms. In: Chwa, K.-Y., Ibarra,

O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 99–108. Springer, Heidelberg (1998)
55. Sleator, D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.

Commun. ACM 28, 202–208 (1985)
56. Teia, B.: A lower bound for randomized list update algorithms. Inform. Process.

Lett. 47, 5–9 (1993)
57. Torng, E.: A unified analysis of paging and caching. Algorithmica 20(2), 175–200

(1998)

Orthogonal Range Searching for Text Indexing

Moshe Lewenstein

Bar-Ilan University
moshe@cs.biu.ac.il

Abstract. Text indexing, the problem in which one desires to prepro-
cess a (usually large) text for future (shorter) queries, has been researched
ever since the suffix tree was invented in the early 70’s. With textual data
continuing to increase and with changes in the way it is accessed, new
data structures and new algorithmic methods are continuously required.
Therefore, text indexing is of utmost importance and is a very active
research domain.

Orthogonal range searching, classically associated with the compu-
tational geometry community, is one of the tools that has increasingly
become important for various text indexing applications. Initially, in the
mid 90’s there were a couple of results recognizing this connection. In
the last few years we have seen an increase in use of this method and
are reaching a deeper understanding of the range searching uses for text
indexing.

In this monograph we survey some of these results.

1 Introduction

The text indexing problem assumes a (usually very large) text that is to be
preprocessed in a fashion that will allow efficient future queries of the following
type. A query is a (significantly shorter) pattern. One wants to find all text
locations that match the pattern in time proportional to the pattern length and
number of occurrences.

Two classical data structures that are most widespread amongst all the data
structures solving the text indexing problem are the suffix tree [104] and the
suffix array [87] (see Section 2 for definitions, time and space usage).

While text indexing for exact matches is a well studied problem, many other
text indexing related problems have become of interest as the field of text in-
dexing expands. For example, one may desire to find matches within subranges
of the text [86], or to find which documents of a collection contain a searched
pattern [90], or one may want our text index compressed [93].

Also, the definition of a match may vary. We may be interested in a parame-
terized match [15,85], a function match [5], a jumbled match [4,14,25,33,89] etc.

� This paper was written while on Sabbatical in U. of Waterloo. This research was
supported by the U. of Waterloo and BSF grant 2010437, a Google Research Award
and GIF grant 1147/2011.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 267–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

268 M. Lewenstein

These examples are only a very few of the many different interesting ways that
the field of text indexing has expanded.

New problems require more sophisticated ideas, new methods and new data
structures. This indeed has happened in the realm of text indexing. New data
structures have been created and known data structures from other domains have
been incorporated for the use of text indexing data structures all mushrooming
into an expanded, cohesive collection of text indexing methods. One of these
incorporated methods is that of orthogonal range searching problems.

Orthogonal range searching refers to the preprocessing of a collection of points
in d-dimensional space to allow queries on ranges defined by rectangles whose
sides are aligned with the coordinate axes (orthogonal).

In the problems we consider here we assume that all input point sets are in
rank space, i.e., they have coordinates on the integer grid [n]d = {0, . . . , n− 1}d.
The rank-space assumption can easily be made less restrictive, but we do not
dwell on this here as the rank-space assumption works well for most of the results
here.

The set of problems one typically considers in range searching are queries on
the range such as emptiness, reporting (all points in the range), report any (one)
point, range minimum/maximum, closest point. In general, some function on the
set of points in the range.

We will consider different range searching variants in the upcoming sections
and will discuss the time and space complexity of each at the appropriate place.
For those interested in further reading of orthogonal range searching problems
we suggest starting with [1, 28].

Another set of orthogonal range searching problems is on arrays (not point
sets1). We will lightly discuss this type of orthogonal range searching, specifically
for Range Minimum Queries (RMQ).

In this monograph we take a look at some of the solutions to text indexing
problems that have utilized range searching techniques. The reductions cho-
sen are, purposely, quite straightforward with the intention of introducing the
simplicity of the use of this method. Also, it took some time for the pattern
matching community to adopt this technique into their repertoire. Now more
sophisticated reductions are emerging and members of the community have also
been contributing to better range searching solutions, reductions for hardness
and more.

2 Problem Definitions and Preliminaries

Given a string S, |S| is the length of S. Throughout this paper we denote n = |S|.
An integer i is a location or a position in S if i = 1, . . . , |S|. The substring
S[i, . . . , j] of S, for any two positions i ≤ j, is the substring of S that begins at
index i and ends at index j. The suffix Si of S is the substring S[i, . . . , n].

1 Nevertheless, the problems mentioned here can all be transformed to point sets using
orthogonal range searching, if one so desired. This is done by adding a dimension
and changing the values to be coordinates on the last dimension.

Orthogonal Range Searching for Text Indexing 269

Suffix Tree. The suffix tree [48, 88, 101, 104] of a string S, denoted ST(S), is
a compact trie of all the suffixes of S$ (i.e., S concatenated with a delimiter
symbol $ �∈ Σ, where Σ is the alphabet set, and for all c ∈ Σ, $ < c). Each
of its edges is labeled with a substring of S (actually, a representation of it,
e.g., the start location and its length). The “compact” property is achieved by
contracting nodes having a single child. The children of every node are sorted
in the lexicographical order of the substrings on the edges leading to them.
Consequently, each leaf of the suffix tree represents a suffix of S, and the leaves
are sorted from left to right in the lexicographical order of the suffixes that
they represent. ST(S) requires O(n) space. The suffix tree can be prepared in
O(n+ Sort(Σ)), where n is the text size, Σ is the alphabet, and Sort(Q) is the
time required to sort the setQ [48]. For the suffix tree one can search anm-length
pattern in O(m+ occ), where occ is the number of occurrences of the pattern. If
the alphabet Σ is large this potentially increases to O(m log |Σ| + occ), as one
need to find the correct edge exiting at every node. If randomization is allowed
then one can introduce hash functions at the nodes to obtain O(m+occ), even if
the alphabet is large, without affecting the original O(n+Sort(Σ)) construction
time.

Suffix Array. The suffix array [71, 87] of a string S, denoted SA(S), is a per-
mutation of the indices 1, . . . , n indicating the lexicographic ordering of the suf-
fixes of S. For example, consider S = mississippi. The suffix array of S is
[11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3], that is S11 = ”i” < S8 = ”ippi” < S5 = ”issippi” <
. . . < S3 = ”ssissippi”, where < denotes less-than lexicographically. The con-
struction time of a suffix array is O(n + Sort(Σ)) [71]. The time to answer
an query P of length m on the suffix array is O(m + logn + occ) [87]2. The
O(m+ logn) is required to find the range of suffixes (see Section 3.1 for details)
which have P as a prefix and then since P appears as a prefix of suffix Si it
must appear at location i of the string S. Hence, with a scan of the range we
can report all occurrences in additional O(occ) time.

Relations between the Suffix Tree and Suffix Array. Let S = s1s2 . . . sn
be a string. Let SA = SA(S) be its suffix array and ST = ST(S) its suffix tree.
Consider ST’s leaves. As these represent suffixes and they are in lexicographic
ordering, ST is actually a tree over SA. In fact, one can even view ST as a search
tree over SA.

Say we have a pattern P whose path from the root of ST ends on the edge
entering node v in ST (the locus). Let l(v) denote the leftmost leaf in the subtree
of v and r(v) denote the rightmost leaf in the subtree of v. Assume that i is the
location of SA that corresponds to l(v), i.e. the suffix SSA[i] is associated with
l(v). Likewise assume j corresponds to r(v). Then the range [i, j] contains all the
suffixes that begin with P and it is maximal in the sense that no other suffixes
begin with P . We call this range the SA-range of P .

Consider the previous example S = mississippi with suffix array
[11, 8, 5, 2, 1, 10, 9, 7, 4, 6, 3]. For a query pattern P = si we have that the SA-

2 This requires LCP information. Details appear in Section 3.1.

270 M. Lewenstein

range for P is [8, 9], i.e. P is a common prefix of {sSA[8] . . . sn, sSA[9] . . . sn} =
{sissippi, sippi}.

Beforehand, we pointed out that finding the SA-range for a given P takes
O(m+log n) in the suffix array. However, given the relationship between a node
in the suffix tree and the SA-range in the suffix array, if we so desire, we can
use the suffix tree as a search tree for the suffix array and find the SA-range in
O(m) time. For simplification of results, throughout this paper we assume that
indeed we find SA-ranges for strings of length m in O(m) time.

Moreover, one can find for P = p1, . . . , pm all nodes in a suffix tree represent-
ing pi, . . . , pm for 1 ≤ i ≤ m in O(m) time using suffix links. Hence, one can find
all SA-ranges for pi, . . . , pm for 1 ≤ i ≤ m in O(m) time.

3 1D Range Minimum Queries

While the rest of this paper contains results for orthogonal range searching in
rank space, one cannot disregard a couple of important range searching results
that are widely used in text indexing structures. The range searching we refer
to is the Range Minimum Query (RMQ) problem on an array (not a point set).
RMQ is defined as follows.

Let S be a set of linearly ordered elements whose elements can be compared
(for ≤) in constant time.

d-Dimensional Range Minimum Query (d-RMQ)
Input: A d-dimensional array A over S of size N = n1 · n2 · . . . · nd

where ni is the size of dimension i.
Output: A data structure over A supporting the following queries.
Query: Return the minimum element in a range

q = [a1..b1]× [a2..b2]× . . .× [ad..bd] of A.

1-dimensional RMQ plays an important role in text indexing data structures.
Hence, we give a bit of detail on results about RMQ data structure construction.

The 1-dimensional RMQ problem has been well studied. Initially, Gabow,
Bentley and Tarjan [54] introduced the problem. They reduced the problem to
the Lowest Common Ancestor (LCA) problem [61] on Cartesian Trees [103]. The
Cartesian Tree is a binary tree defined on top of an array of n elements from a
linear order. The root is the minimum element, say at location i of the array.
The left subtree is recursively defined as the Cartesian tree of the sub-array of
locations 1 to i−1 and the right subtree is defined likewise on the sub-array from
i+1 to n. It is quite easy to see the connection between the RMQ problem and
the Cartesian tree, which is what was utilized in [54], where the LCA problem
was solved optimally in O(n) time and O(n) space while supporting O(1) time
queries. This, in turn, yielded the result of O(n) preprocessing time and space
for the 1D RMQ problem with answers in O(1) time.

Orthogonal Range Searching for Text Indexing 271

Sadakane [97] proposed a position-only solution, i.e. one that return the posi-
tion of the minimum rather than the minimum itself, of 4n+o(n) bits space with
O(1) query time. Fischer and Heun [53] improved the space to 2n+o(n) bits and
preprocessed in O(n) time for subsequent O(1) time queries. They also showed
that the space must be of size 2n − O(log n). Davoodi, Raman and Rao [42]
showed how to achieve the same succinct representation in a different way with
o(n) working space, as opposed to the n + o(n) working space in [53]. It turns
out that there are two different models, the encoding model and the indexing
model. The model difference was already noted in [44]. For more discussion on
the modeling differences see [23]. In the encoding model we preprocess the array
A to create a data structure enc and queries have to be answered using enc only,
without access to A. In the indexing model, we create an index idx and are able
to refer to A when answering queries. The result of Fischer and Heun [53] is the
encoding model result. For the indexing model Brodal et al. [23] and Fischer
and Heun [53], in parallel, showed that an index of size O(n/g) bits is possible
with query time O(g). Brodal et al. [23] showed that this is an optimal tradeoff
in the indexing model.

Range minimum queries on an array have been extended to 2D in [8, 13, 22,
23, 43, 56] and to higher dimension d in [13, 23, 31, 41].

3.1 The LCP Lemma

The Longest Common Prefix (LCP) of two strings plays a very important role
in text indexing and other string matching problems. So, define as follows.

Definition 1. Let x and y be two strings over an alphabet Σ. The longest com-
mon prefix of x and y, denoted LCP (x, y), is the largest string z that is a prefix
of both x and y. The length of LCP (x, y) is denoted |LCP (x, y)|.

The first sophisticated use of the LCP function for string matching was for string
matching with errors in a paper by Landau and Vishkin [82]. An interesting and
very central result to text indexing structures appears in the following lemma,
which is not difficult to verify.

Lemma 1. [87] Let S[1], S[2], . . . , S[n] be a sequence of n lexicographically or-
dered strings. Then |LCP(S[i], S[j])| = mini≤h<j |LCP(S[h], S[h+1])|.

This allows a data structure over the suffix array of size O(n) that returns
the LCP value of any two substrings in O(1) time. This is done by building
an RMQ data structure over the array containing the values of the LCP of
lexicographically consecutive suffixes and using the lemma.

This result was implicitly3 used in [87] to reduce the O(m log n) time for a
search of an m-length pattern P in a suffix array indexing a text of length n to

3 They did not actually use the RMQ data structure. Rather, since they know the
path a binary search will follow, they know which interval one needs to (RMQ)query
when consulting a given suffix array position (there is only one path towards it in
the virtual binary search tree). So they directly store that range LCP value.

272 M. Lewenstein

O(m + logn). The idea is as follows. Both find the SA-range for P based on a
binary search of the pattern P on the suffixes of the suffix array. The O(m log n)
time follows for a naive binary search because it takes O(m) time to check if P
is a prefix of a suffix and the O(log n) follows from the binary search.

Reducing to O(m + logn) is done as follows. The binary search is still used.
Initially P is compared to the string in the center of the lexicographic ordering.
This may take O(m) time. However, at every stage of the binary search we
maintain |LCP(P, Ti)| for the suffix Ti of T with the maximal |LCP(P, Ti)|, over
all the suffixes to which P has already been compared. When comparing P
to the next suffix, say Tj , in the binary search, first |LCP(Ti, Tj)| is evaluated
(in constant time) if |LCP(Ti, Tj)| �= |LCP(P, Ti)| we immediately know the
value of |LCP(P, Tj)| - give it a moment of thought - and we can compare the
character at location |LCP(P, Tj)|+1 of P and Tj and continue the binary search
from there. Otherwise, |LCP(Ti, Tj)| = |LCP(P, Ti)| in which case we continue
the comparison of P and Tj (but only) from the |LCP(P, Tj)|+1-th character.
Hence, one can claim, in an amortized sense, that the pattern is scanned only
once. So, the search time is O(m+ logn).

The dynamic version of this method is much more involved but has interesting
applications, see [9].

3.2 Document Retrieval

The Document Retrieval problem is very close to the text indexing problem.
Here we are given a collection of documents D1, . . . , Dk and desire to preprocess
them in order to answer document queries Q. A document query asks for the set
of documents where Q appears.

The generalized suffix array (for generalized suffix tree, see [60]) is a suffix
array for a collection of texts T1, . . . , Tk and can be viewed as the suffix array for
T1$1T2$2 . . . $k−1Tk. However, we may remove, before finalizing the suffix array,
all suffixes that start with a delimiter as they contain no interesting information.
In order to solve the document retrieval problem one can build a generalized
suffix array for D1, . . . , Dk. The problem is that when one seeks a query Q one
will find all the occurrences of Q in all documents, whereas we desire to know
only in which documents Q appears and are not interested in all match locations.

A really neat trick to solve this problem was proposed by Muthukrishnan [90].
Imagine the generalized suffix array for D1, . . . , Dk of size n =

∑
1≤i≤k |Di| and

a document retrieval query Q of length m. In O(m+log n), or even in O(m) time
(as discussed in the end of Section 2) it is possible to find the SA-range for Q.
Now we’d like to report all documents who have a suffix in this range. So, create
a document array for the suffix array. The document array for D1, . . . , Dk will
be of length n and will contain at location i the document id d if SA[i] is a suffix
beginning in document d. So, the former problem now becomes the problem of
finding the unique id’s in the SA-range of the document array.

Muthukrishnan [90] proposed a transformation to the RMQ problem in the
following sense. Take the document array DA and generate, yet another, array

Orthogonal Range Searching for Text Indexing 273

which we will call the predecessor document array. Let ψ(i) = j if j < i, DA(i) =
DA(j) and for all j < k < i,DA(k) �= DA(i). ψ(i) = −1 if there is no such j.
The predecessor document array has ψ(i) at location i. The following observation
now follows.

Lemma 2. Let D1, . . . , Dk be a collection of documents and let SA be their
generalized suffix array. Let Q be a query and let [i, j] be the SA-range of Q.
There is a one-one mapping between the documents in range [i, j] in the document
array and the values < i in range [i, j] in the predecessor document array.

Proof. Let i1 < i2 < . . . < ir be all locations in [i, j] where document id d
appears in the document array. Then the i1-th location of the predecessor doc-
ument array will be < i. However, locations i2 < i3 < . . . < ir will contain
i1, i2, . . . , ir−1, all greater than or equal to i, in the predecessor document array.

��
Hence, it is natural to consider an extended RMQ problem defined now.

Bounded RMQ
Input: An array A.
Output: A data structure over A supporting the following

bounded RMQ queries.
Query: Given a range [i, j] and a number b find all values in the

range [i, j] of value < b.

The bounded RMQ problem can be solved by recursively applying the known
RMQ solution. Find an RMQ on A[i, j], say it is at location r. If it is less than
b then reiterate on A[i, r − 1] and A[r + 1, j]. The preprocessing time and space
are the same as those of the RMQ problem. The query time is O(ans), where
ans is the number of elements smaller than b.

This yields an O(m+docc) solution for the document retrieval problem, where
docc is the number of documents in which the query Q appears.

4 Indexing with One Error

The problem of approximate text indexing, i.e. the text indexing problem where
up to a given number of errors is allowed in a match is a much more difficult
problem than text indexing. The problem is formally defined as follows.

Input: Text T of length n over alphabet Σ and an integer k.
Output: A data structure for T supporting k-error queries.
Query: A k-error query is a pattern Q = q1q2 . . . qm of length m over alphabet

Σ for which we desire to find all locations i in T where Q matches
with ≤ k errors.

274 M. Lewenstein

We note that there are several definitions of errors. The edit distance allows
for mismatches, insertions and deletions [84], the Hamming distance allows for
mismatches only. For text indexing with k errors (for Hamming distance, Edit
distance and more) Cole et al. [36] introduced a novel data structure which, for
the Hamming distance version, uses space (n logk n) (it is preprocessed within
an O(log logn) factor of the space complexity) and answers queries in O(logk n+
m + occ). See also [26, 100] for different space/time tradeoffs for the Hamming
distance version.

Throughout the rest of this section we focus and discuss the special case of one
error. Moreover, we will do so for the mismatch error, but a similar treatment
will handle insertions and deletions. The reduction to range queries presented
in this section was obtained in parallel by Amir et al. [10] and by Ferragina,
Muthukrishnan and de Berg [51]. The goal of [51] was to show geometric data
structures that solve certain methods in object oriented programming. They
also used their data structure to solve the dictionary matching with one error.
In [10] Amir et al. solved dictionary matching with one error and also solved
the text indexing with one error. For the sake of simplicity, we will present the
result of text indexing with one error from [10], but the reduction is the same
for dictionary matching (see definition in [10]).

The algorithm that we will shortly describe combines a bidirectional construc-
tion of suffix trees, which had been known before. Specifically, it is similar to the
data structure of [21]. However, in [21] a reduction to 2D range searching was
not used.

4.1 Bidirectional Use of Suffix Arrays

For simplicity’s sake we make the following assumption. Assume that there are
no exact matches of the pattern in the text. We will relax this assumption later
and show how to handle it in Section 4.3.

The Main Idea: Assume there is a pattern occurrence at text location i with
a single mismatch in location i+ j − 1. This means that q1 . . . qj−1 has an exact
match at location i and qj+1 . . . qm has an exact match at location i+ j.

The distance between location i and location i + j is dependent on the
mismatch location, and that is somewhat problematic. We therefore choose to
“wrap” the pattern around the mismatch. In other words, if we stand exactly at
location i+ j − 1 of the text and look left, we see qj−1 . . . q1. If we look right we
see qj+1 . . . qm. This leads to the following algorithm.

For the data structure supporting 1-mismatch queries construct a suffix array
SAT of text string T and a suffix array SATR of the string TR, where TR is the
reversed text TR = tn . . . t1.

In order to reply to the 1-mismatch queries do as follows:

Orthogonal Range Searching for Text Indexing 275

�
i
ippi
issippi
ississppi
mississippi
pi
ppi
sippi
sissippi
ssippi
ssissippi

12
11
8
5
2
1
10
9
7
4
6
3

2 4 13 7 10 3 11 12 5 8 6 9
12 10 1 7 4 11 3 2 9 6 8 5

i
p
p
i
s
s
i
s
s
i
m

i
m

i
s
s
i
m

i
s
s
i
s
s
i
m

SAT

m p
i
s
s
i
s
s
i
m

p
p
i
s
s
i
s
s
i
m

s
i
m

s
i
s
s
i
m

s
s
i
m

s
s
i
s
s
i
m

�

SATR

A

T = mississippi

Q = ispi

Fig. 1. A range query grid representing T and TR. The dashed rectangle represents a
mismatch at location 2 of Q and the solid rectangle represents a mismatch at location
3 of Q.

Query Reply:

For l = 1, ...,m do
1. Find the maximal SAT -range Il = [il, jl] of ql+1 . . . qm in SAT , if it is non-

empty.
2. Find the maximal SATR-range RIl = [ril, rjl] of ql−1 . . . q1 in SATR , if it is

non-empty.
3. If both Il and RIl are non-empty, then return the intersection of SAT and SATR

on their respective ranges.

Steps 1 and 2 of the query reply can be done for the l’s in overall linear time (see
end of Section 2). Hence, we only need an efficient implementation of Step 3.

4.2 Set Intersection via Range Reporting

In Step 3, given SA-ranges Il = [il...jl] and RIl = [ril...rjl] we want to report
the points in the intersection of SAT and SATR w.r.t. to the corresponding
coordinates of the two ranges. We show that this quite straightforwardly reduces
to the 2D range reporting problem.

276 M. Lewenstein

Range Reporting in 2D (rank space)
Input: A point set P = {(x1, y1), . . . , (xn, yn)} ⊆ [1, n]× [1, n].
Output: A data structure representing P that supports the following

range reporting queries.
Query: Given a range R = [a, b]× [c, d] report all points of P

contained in R.

Since the arrays (the suffix array for T and the suffix array for TR) are per-
mutations, every number between 1 and n + 1 (we include suffix ε) appears
precisely once in each array. The coordinates of every number i are (xi, yi),
where xi = SA−1

T (i) and yi = SA−1
TR(n − i + 3) (the choice of n − i + 3 is

to align the appropriate reverse suffix with suffix i — explanation: i becomes
n− i+ 1 when reversing the text. Then one needs to move over one to the mis-
match location and one more to the next location). We define the point set to be
P = {(x2, y2), . . . , (xn+1, yn+1)} and construct a 2D range reporting structure
for it (efficiency to be discussed in a moment). It is clear that the range elements
intersection corresponds precisely with a 2D query Il ×RIl.

The current best range reporting data structures in 2D are as follows:

1. Alstrup, Brodal and Rauhe [2]: a data structure requiring O(n logε n)
space, for any constant ε, that can answer queries in O(log logn+ k), where
k is the number of points reported.

2. Chan, Larsen and Pǎtraşcu [28]: a data structure requiring
O(n log logn) space that can answer queries in O(log logn(1 + k)).

3. Chan, Larsen and Pǎtraşcu [28]: a data structure requiring O(n) space
that can answer queries in O(logε n(1+k)). Other succinct results of interest
appear in a footnote4.

Therefore, we have the following.

Theorem 1. Let T = t1 . . . tn and Q = q1 . . . qm. When no exact match exists,
indexing with one error can be solved with O(s(n)) space such that queries can
be answered in O(qt(n,m, occ)) time, where:

s(n) = the space for a range reporting data structure and
occ = the number of occurrences of Q in T with one error, and
qt(n,m,occ) = the query time for the same range reporting data structure.

Proof: Other than the range reporting data structure the space required is
O(n). Likewise, Steps 1 and 2 of the query response require total time O(m) for
j = 1, ...,m. Hence, the space and time are dominated by the range reporting
data structure at hand, i.e. space O(s(n)) and query time qt(n,m, occ). ��
4 Note that prior succinct solutions show a novel adaptation of the method of
Chazelle [29] to Wavelet Trees [58], see [70], [86] and [16]. It is especially worth
reading the chapter of ”Application as Grids” in [91] for more results along this line.

Orthogonal Range Searching for Text Indexing 277

4.3 Indexing with One Error When Exact Matches Exist

We assumed that the text contained no exact pattern occurrence in the text. In
fact, the algorithm would also work for the case where there are exact pattern
matches in the text, but its time complexity would suffer. Recall that the main
idea of the algorithm was to pivot a pattern position and check, for every text
location, whether the pattern to the left and to the right of the pivot were exact
matches. However, if the pattern occurs as an exact match in the text then at
that occurrence a match is announced for all m pivots. So, this means that every
exact occurrence is reported m times. The worst case could end up being as bad
as O(m ∗ occ) (for example if the text is an and the pattern is am then it would
be O(nm)).

To handle the case of exact occurrences one can use the following idea. Add
a third dimension to the range reporting structure representing the character in
the text at the mismatch location. The desired intersection is of all suffix labels
such that this character is different from the symbol at that respective pattern
location. This leads to a specific variant of range searching.

3D 5-Sided Range Reporting (rank space)
Input: A point set P = {(x1, y1, z1), . . . , (xn, yn, zn)}

⊆ [1, n]× [1, n]× [1, n].
Output: A data structure representing P that supports the

following range reporting queries.
Query: Given a range R = [a, b]× [c, d]× [e,∞] report all points

of P contained in R.

3D 5-Sided Range Reporting can be solved with space O(n logO(ε) n) and
query time O(occ+ log logn) [28].

Back to our problem. We need to update the preprocessing phase.

Preprocessing: Preprocess for 3-dimensional range queries on the matrix
[1, ..., n] × [1, ..., n] × Σ. If Σ is unbounded, then use only the O(n) symbols
in T . The new geometric points are (xi, yi, zi), where xi and yi will be the same
as before and zi = ti−1 will be the text character that needs to mismatch. This
will be added in the preprocessing stage.

The only necessary modification is for Step 3 of the query reply which be-
comes:

3. If Il and RIl both exist, then return all the points in Il ×Rl ×Σ for which the
z-coordinate is not the respective pattern mismatch symbol.

The above step can be implemented by two 3D 5-sided range queries on the
three dimensional range Il×Rl× [1, a−1] and Il×Rl× [a+1, |Σ|] where a is the
current pattern symbol being examined. We assume that the alphabet symbols
are numbered 1, ..., |Σ|.

See Figure 2 depicting the 3D queries.

278 M. Lewenstein

�
i
ippi
issippi
ississppi
mississippi
pi
ppi
sippi
sissippi
ssippi
ssissippi

12
11
8
5
2
1
10
9
7
4
6
3

12 10 1 7 4 11 3 2 9 6 8 5
SAT

SATR

T = mississippi

Q = ispi

mismatch at “p”
of “ispi”

i
p
p
i
s
s
i
s
s
i
m

i
m

i
s
s
i
m

i
s
s
i
s
s
i
m

m p
i
s
s
i
s
s
i
m

p
p
i
s
s
i
s
s
i
m

s
i
m

s
i
s
s
i
m

s
s
i
m

s
s
i
s
s
i
m

�

mismatch at “s”
of “ispi”

Fig. 2. The 3D 5-sided range queries on a 3D grid representing T and TR and the
appropriate ”not to match” character. The dashed boxes represent a mismatch at
location 2 of Q and the solid boxes represent a mismatch at location 3 of Q.

Theorem 2. Let T = t1 . . . tn and Q = q1 . . . qm. Indexing with one error can
be solved with O(n logO(ε) n) space and O(occ + m log logn) query time, where
occ is the number of occurrences of the pattern in the text with at most one error.

Proof: As in Theorem 1, the space and query time of the solution are dominated
by the range searching structure. Hence, using the results of [28], the space is

O(n logO(ε) n) and the query time is O(occ +m log log n). ��

4.4 Related Material

For a succinct index for dictionary matching the best result appears in [62].
A wildcard character is one that matches all other symbols. When used we

denote them with φ.
Iliopoulos and Rahman [67] consider the problem of indexing a text T to

answer queries of the formQ = Q1φ
dQ2, where d, |Q1| and |Q2| are known during

the preprocessing. The is known as gap-indexing. Bille and Gørtz [19] consider
the same problem. However, they required only d to be known in advance. The
solution in [19] uses a reduction to range reporting. The reduction they apply
is similar to the one presented in this chapter. In fact, it is easier because the
gap’s location within the query pattern is known. So, one does not need to check
every position of the pattern as one does in the case of mismatch. Hence, the 2D

Orthogonal Range Searching for Text Indexing 279

range reporting data structure is sufficient. One does need to adapt the search
for a difference of d instead of 1. This requires setting yi = n− i+ d+ 2.

5 Compressed Full-Text Indexes

Given that texts may be very large it makes sense to compress them - and
there are many methods to do so. On the other hand, these are not constructed
to allow text indexing. Doing both at once has been the center of a lot of re-
search activity over the last decade. However, reaching this stage has happened
in phases. Initially, pattern matching on compressed texts was considered start-
ing by Amir et al. [6]. By pattern matching on compressed texts we mean that
a compressed text, with some predefined compressor, and a pattern are given
and the goal is to find the occurrences of the pattern efficiently without decom-
pressing the text. The second phase was text indexing while maintaining a copy
of the original text and augmenting it with some sublinear data structure (usu-
ally based on a compressor) that would allow text indexing, e.g. [72]. We will
call this phase, the intermediate phase. Finally, compressed full-text indexing
was achieved, that is text indexing without the original text and with a data
structure with size depending on the compressibility of the string. See Section 3
for the discussion on the encoding model vs. the indexing model. Compressed
full-text indexes of note are that of Ferragina and Manzini [50], the FM-Index,
that of Grossi and Vitter [59], the Compressed Suffix Array and that of Grossi,
Gupta and Vitter [58], the Wavelet Tree. For an extensive survey on compressed
full-text indexes see [93].

In this section we will present two results, that of Kärkkäinen and Ukko-
nen [72] and that of Claude and Navarro [34]. The latter uses a central idea of
the former. However, the former is from the intermediate phase. So, it main-
tains a text to reference. This certainly makes the indexing easier. The latter is
a compressed full-text index. The former uses the more general LZ77 and the
latter uses SLPs (Straight Line Programs). Both LZ77 and SLP compressions
are defined in this section.

5.1 LZ77 Compressed Indexing

The Lempel-Ziv compression schemes are among the best known and most widely
used. In this section (and in Section 7) we will be interested in the variant known
as LZ77 [107]. For sake of completeness we describe the LZ77 scheme here.

An Overview of the Lempel-Ziv Algorithm. Given an input string S of
length n, the algorithm encodes the string in a greedy manner from left to
right. At each step of the algorithm, suppose that we have already encoded
S[1, . . . , k − 1] with i − 1 phrases ρ1, . . . , ρi−1 (phrase - to be defined shortly).
We search for the location t, such that 1 ≤ t ≤ k − 1, for which the longest
common prefix of Sk = S[k, . . . , n] and the suffix St is maximal. Once we have
found the desired location, suppose the aforementioned longest common prefix

280 M. Lewenstein

is the substring S[t, . . . , r], a phrase, ρi, will be added to the output which will
include Fi the encoding of the distance to the substring (i.e., the value k − t),
Li the length of the substring (i.e., the value r − t+ 1), and the next character
Ci = S[k + (r − t + 1)]. The algorithm continues by encoding Sk+(r−t+1)+1 =
S[k+(r− t+1)+1, . . . , n]. The sequence of phrases is called the string’s (LZ77)
parse and is defined:

Z = ρ1 = (F1, L1, C1), ρ2 = (F2, L2, C2), . . . , ρc(n) = (Fc(n), Lc(n), Cc(n))

We denote with u(i) =

i−1∑
j=1

(Lj + 1) + 1 the start location of ρi in the string S.

Finally, we denote the output of the LZ77 algorithm on the input S as LZ(S).

Kärkkäinen and Ukkonen Method. Farach and Thorup [47], in their paper
on search in LZ77 compressed texts, noted a neat, useful observation. Say T
of length n is the text to be compressed and Z is its LZ parse containing c(n)
phrases.

Lemma 3. [47] Let Q be a query pattern and let j be the smallest integer such
that Q = T [j . . . j + |Q| − 1]. Then u(i) ∈ [j, j + |Q| − 1] for some 1 ≤ i ≤ c(n).

In other words, the first appearance of Q in T cannot be contained in a sin-
gle phrase. Kärkkäinen and Ukkonen [72] utilized this lemma to show how to
augment the text with a sublinear text indexing data structure based on LZ77.

The idea is as follows. Say we search for a pattern Q = q1, . . . , qm in the text
T which has been compressed by LZ77. The occurrences of Q in T are defined
differently for those that intersect with more than one phrase (which must exist
if there are any matches according to Lemma 3) and those that are completely
contained in a single phrase. The former are called primary occurrences and the
latter are called secondary occurrences. The algorithm proposed in [72] first finds
primary occurrences and then uses the primary occurrences to find secondary
occurrences. Both steps use orthogonal range searching schemes.

In order to find the primary occurrences they used a bi-directional scheme
based on Lemma 3. Take every phrase ρi = tu(i), . . . , tu(i+1)−1 and creates its
reverse ρRi = tu(i+1)−1, . . . , tu(i). Now, consider a primary occurrence and the
first phrase it starts in, say ρi. Then there must be a j such that q1, . . . , qj is a
suffix of ρi and qj+1, . . . , qm is a prefix of the suffix of T , tu(i+1), . . . , tn. So, to
find the primary occurrences it is sufficient to find k such that:

1. qj , . . . , q1 is a prefix of ρRi .
2. qj+1, . . . , qm is a prefix of the suffix tu(i+1), . . . , tn of T .

Let π be the lexicographic sort of ρR1 , ρ
R
2 , . . . , ρ

R
c(n), i.e. ρ

R
π(1) < ρRπ(2) < . . . <

ρRπ(c(n)). This leads to a range reporting scheme, similar to that of the previ-

ous section, of size c(n) × c(n), where the point set P = {(x(i), y(i) | x(i) =
SA−1

T (u(i + 1)), y(i) = π−1(i)}.

Orthogonal Range Searching for Text Indexing 281

Therefore, for every 1 ≤ j ≤ m we need to (1) find the range of π for which
every ρRπ(i) within has qj , . . . , q1 as a prefix and (2) find the range of suffixes that
have qj+1, . . . , qm as a prefix. Once we do so we revert to range reporting, as
in the previous section. However, finding the ranges is not as simple as in the
previous section. Recall that we want to maintain the auxiliary data in sublinear
space. So, saving a suffix array for the text is not a possibility. Also, the reversed
phrases need to be indexed for finding the range of relevant phrases.

To this end a sparse suffix tree was used in [73]. A sparse suffix tree is a
compressed trie over a subset of the suffixes and is also known as a Patricia Trie
over this suffix set. As it is a compressed trie it is of size O(subset size), in our
case O(c(n)). Lately, in [18] it was shown how to construct a sparse suffix array
in optimal space and near-optimal time.

The sparse suffix tree can be constructed for the suffixes Tu(i+1) and, since
we have the original text on hand, we can maintain the compressed suffix tree
in O(c(n)) words. Navigation on this tree is the same as in a standard suffix
tree. For the reversed phrases we can associate each with a prefix of the text.
Reversing them gives a collection of suffixes of the reversed text. Now construct
a sparse suffix tree for these reversed suffixes and this will allow finding the range
in π (with the help of the existing text) as in the previous section. Hence,

Theorem 3. Let T be a text and Z its LZ77 parse. One can construct a text
indexing scheme which maintains T along with a data structure of size O(|Z|)
such that for a query Q we can find all its primary occurrences in O(|Q|(|Q| +
logε |Z|) + occ ∗ logε |Z|), where occ is the number of primary occurrences.

Proof. For the query Q, as described above, each pattern position is evaluated
for primary occurrences. That is for each of the |Q| pattern positions, we first
traverse the auxiliary sparse suffix trees in O(|Q|) time and once the ranges (for
that pattern position is found) we perform a range query. The traversal will cost
O(|Q|2) time.

Using the 2D succinct range reporting of Chan et al. [28] (see previous section)
we have linear space, i.e. O(|Z|), and O(logε |Z|(1+k)) query time where k is the
number of points found, which is the same as the number of primary occurrences
found.

Hence, over the |Q| pattern positions the range querying will cost∑|Q|
i=1 log

ε |Z|(1 + occi) time, where occi is the number of primary occurrences

when we split the pattern at position i. However,
∑|Q|

i=1 log
ε |Z|(1 + occi) =∑|Q|

i=1 log
ε |Z|+

∑|Q|
i=1 log

ε |Z|∗occi = |Q| logε |Z|+logε |Z|occ. Recalling that the
traversal cost O(|Q|2) time yields the desired. ��

We note that the secondary occurrences still need to be found. This is another
interesting part of the paper and we refer the interested reader to [72].

See the following papers for more along the following line using Lempel Ziv
compressors [12, 50, 81, 96].

282 M. Lewenstein

5.2 SLP Text Indexing

Claude and Navarro [34] proposed a full-text indexing scheme based on straight
line programs (SLPs). An SLP is a grammar based compression for a text T . The
grammar produces exactly one word T and the rules are in Chomsky Normal
Form, i.e. each rule is A → BC, where A,B,C are variables of the grammar or
A → a, where A is a variable and a is a terminal (a character of T).

The text indexing scheme that they propose follows the previous idea [72]
of finding primary and secondary occurrences. However, for SLPs things are
slightly different. Consider the derivation tree for the text T , that is deriving
the full word T by generating from the start symbol S as the root (if S → AB
then A and B will be children of the root S in the derivation tree - from here
the derivation tree is applied recursively until the full T is spelled out in the
left-to-right order of the leaves). Every occurrence of a pattern Q in the text T
has a unique lowest variable V which produces this occurrence, but its children
do not. That is if the children of V are V1 and V2, i.e. there is a rule V → V1V2,
then V1 produces x, q1, . . . , qj (where x ∈ Σ∗) and V2 produces qj+1, . . . , qm, y
(where y ∈ Σ∗) for some j. We say that V splits pattern Q at location j. An
occurrence of Q is called a primary occurrence if for some V and j V splits this
occurrence of Q. All other occurrences are secondary occurrences.

The format of the algorithm is to, once again, find the primary occurrences
and then to deduce the occurrences of Q in the text therefrom. With the goal
of finding the primary occurrences in mind, once again, our grid will be of size
c(n)× c(n), where c(n) is the size of the variable set of the grammar. Each side
of the grid will have one coordinate for each variable. The range searching point
set is defined per rule, V → V1V2. The location (x, y) on the grid corresponding
to V1 (for x) on one side and V2 (for y) on the other will have a point, V , on
the grid. The ordering of the variables on either side of the grid follows from the
desire to satisfy the following conditions.

1. qj , . . . , q1 is a prefix of V R
i .

2. qj+1, . . . , qm is a prefix of Vl.
3. There is a rule V → ViVl.

It is easy to see that the desired ordering, as in the LZ77 scheme, has the phrases
in the x-coordinate in reverse lexicographic ordering and has the phrases in the
y-coordinate in lexicographic ordering. The challenge here is to actually find
the range of variables where qj , . . . , q1 is a prefix of V R

i . This is because it is
a full-text index and the text is not accessible any more. Nevertheless, this is
doable in the SLP compression scheme using a suffix array type of search and
comparing qj , . . . , q1 with the variable at hand. This comparison is not trivial.
However, the full scheme is out of scope of this survey and we refer the reader
to the full paper [34]. The result achieved is as follows:

Theorem 4. Let T be a text of size N represented by an SLP with n variables
and height h. There is a representation using n(logN + 3 logn + O(log |Σ| +
log h) + o(logn)) bits such that Q of length can be found in O((m(m + h) +
hocc) logn) query time.

Orthogonal Range Searching for Text Indexing 283

An extension of this idea to a general grammar can be found in [35], where the
dependency on h was removed from the search time. There is also other work
for different compressors. See [55] for one of the latest.

6 Weighted Ancestors

6.1 2-Sided Sorted Range Reporting in 2D

In this section we consider the 2-sided sorted range reporting problem5 which is
defined now.

2-Sided Sorted Range Reporting in 2D
Input: A point set P = {(x1, y1), . . . , (xn, yn)} ⊆ [1, U]× [1, U].
Output: A data structure representing P that supports the following

2-sided sorted range reporting queries.
Query: Given a range R = [−∞, a]× [−∞, b] report all points of P

contained in R sorted by their y-coordinate
(from highest to lowest).

Note that we deviate from the assumption that the points are in rank-space.
This is important for the the application of this section. We now show a method
to solve the 2-sided sorted range reporting. The idea is as follows.

Consider the dynamic predecessor problem in which we need to support the
following operations (a) insertions/deletions of integers (∈ [1, U]) and (b) prede-
cessor queries. This is a classical problem and is solved with a van-Emde Boas
tree [102] or with y-fast tries [105] in O(n) space (n is the current number of
integers) and O(log logU) time for the operations, where [1, U] is the domain of
the elements.

Dietz and Raman [45] asked whether this could be made partially persistent6

within the same query times. In other words can one create a data structure
where insertions and deletions are supported on the current version but prede-
cessor queries can be made on any of the versions (current or previous) of the
data structure. Recently, Chan [27] accomplished this by constructing a par-
tially persistent predecessor data structure with space O(n) and operations time
O(log logU). Chan’s result [27] is in fact more general, showing that the first
predecessor can be found (in any previous version) in O(log logU) time but the
predecessor of the predecessor (etc.) can be found in O(1) time. This yields a
time of O(log logU + k) to find the k previous elements in sorted order in a
chosen version of the data structure.

5 Results in Section 6.1 stem from wonderful research chats with Timothy Chan.
6 Actually Dietz and Raman [45] asked about persistency in general, which may refer
to full persistence or partial persistence. We stick to partial persistence as it is
sufficient for our needs.

284 M. Lewenstein

We utilize this for the 2-sided sorted range reporting by creating a data
structure for P as follows7. Consider the sort of the x-coordinates of P , i.e.
some permutation π for which xπ(1) < xπ(2) < . . . < xπ(n). Now we insert
the y-coordinates into the data structure according to π. That is we insert
yπ(1) and then yπ(2) until yπ(n). Now, a 2-sided sorted range reporting query
R = [−∞, a] × [−∞, b] is answered as follows; first use a predecessor query to
find a within xπ(1), xπ(2), . . . , xπ(n) - that is find i such that xπ(i) ≤ a < xπ(i+1).
Then we go to the i-th copy of the partially persistent data structure which con-
tains the points (xπ(1), yπ(1)), (xπ(2), yπ(2)), . . . , (xπ(i), yπ(i)). Hence, the points
are exactly the points that satisfy that their x-coordinate ∈ [−∞, a]. Now to
find the relevant points (y ∈ [−∞, b]) in R sorted by their y-coordinate we need
to apply the predecessor query. This yields an O(log logU + occ) when using the
data structure from [27]. Hence,

Theorem 5. The 2-sided sorted range reporting problem on an n-point set over
a U × U grid can be solved with O(n) space and O(log logU + occ) time.

6.2 Weighted Ancestors to 2-Sided Range Successor in 2D

Consider the weighted ancestors problem on an edge-weighted tree introduced
by Farach and Muthukrishnan [46] for the sake of obtaining a perfect-hash for
substrings. An edge-weighted tree is a tree where each edge e has a weight
w(e) ∈ [1, U]. Each node v is associated with a weight w(v) =

∑
e∈pv

w(e),
where pv is the path from root-to-v. The weighted ancestors problem is defined
as follows.

Input: An edge-weighed tree T with weight function w.
Ouput: A data structure supporting weighted ancestor queries.
Query: Given a node u and a threshold t find the ancestor v of u such that
w(v) ≥ t, but w(p(v)) < t, where p(v) is the parent of v.

The weighted ancestor problem is a natural extension of the predecessor prob-
lem to trees. The application considered by [46] was on suffix trees. A suffix tree
can be viewed as an edge-weighted tree with the edge weights denoting the length
of the text with which the edge is marked. Now, say you are given indices i and
j and want to find the locus of T [i . . . j] in the suffix tree. This can be done
by going to the leaf representing i and asking a weighted ancestor query with
threshold j − i+ 1. The answer to the query is the locus of T [i . . . j].

In [46] a solution was given with O(n logn) preprocessing time, O(n) space,
and O(log logU) query time. Their solution is based on a heavy path decompo-
sition in order to linearize the input tree. Each path of the heavy path decompo-
sition is assigned a predecessor structure. The preprocessing time of O(n log n)
can be improved to O(n) and this has been pointed out in [11, 79]. It should be

7 We point out that for our purposes, finding one successor, the results of Dietz and
Raman [45] are sufficient because (a) we seek only one successor and (2) the insertions
are done first and then the queries are asked.

Orthogonal Range Searching for Text Indexing 285

mentioned that the authors of [46] were considering a PRAM model and hence
the O(n log n) time is really O(log n) parallel time and O(n) work. Lately, it was
shown that if the depth of the answer is d in the tree then the query can be
answered in O(log log d) time [78].

We now present a solution for this problem using 2-sided sorted range report-
ing.

Consider the edge-weighted input tree T . We assume that every internal node
in the tree has at least two children. Otherwise, create a dummy child with
an arbitrary edge weight, say 1. Now consider the leaves l1, . . . , lk ordered in
inorder. For every two adjacent leaves denote their lowest common ancestor
with LCA(li, li+1) and nw(i) = w(LCA(li, li+1)). With one scan of the tree all
these values are computable. Now generate an array of the nw values. Say we are
given a weighted ancestor query, node u and threshold t. We may assume that
u is a leaf. Otherwise, we simply choose a descendant leaf to represent u (the
answer will be the same). Consider the node v which is the answer to the query
and consider its parent p(v). Since p(v) has at least two children v has at least
one sibling. Say, v has a sibling to its left (in inorder). Let u = li then in the nw
array the first location j < i that satisfies nw(j) < t is the node for which the
LCA(lj , li) = p(v). To obtain this j we revert to 2-sided sorted range reporting.
We set the points on the grid to be P = (j, nw(j)). The query is bounded by i
in the x-coordinates and t in the y-coordinates. What we are looking for is the
first answer, the element with the largest y-coordinate.

Note that once this is done it is still necessary to find v (we only obtained
p(v)). This can be done with a predecessor structure for each node. That is, for
each node p(v) save the index h of the leftmost leaf lh for each of p(v)’s children.
A predecessor query with i will return the correct edge with child v, the weighted
ancestor of u. Hence,

Theorem 6. Let T be an n node edge-weighted tree with weights from [1, U].
Then using 2-sided sorted range reporting one can answer weighted ancestor
queries in O(log logU) time. The space required is O(n).

Note that for a suffix tree, the motivation in [46], the weights are from [1, n]. So,
the query time for a suffix tree is O(log logn).

Recall (from Section 3) the definition of an SA-range and its relation to the
suffix tree. Hence, the method just described precisely finds the boundaries of
the SA-range for a given suffix i (in the suffix array) and its prefix of length
(threshold) t.

7 Compressed Substring Retrieval

In this section we are concerned with the substring compression problem. The
substring compression problem was introduced in [37]. Some of the definitions
and layout here are from [37]. The solution, specifically the reduction to range
successor queries, is from [75].

286 M. Lewenstein

In substring compression one is given a text to preprocess so that, upon re-
quest, a compressed substring is returned. The goal is to do so quickly, preferably
in O(c(s)) time, where c(s) is the size of the compressed substring. Generalized
substring compression is the same with the following twist. The queries contain
an additional context substring (or a collection of context substrings) and the
answers are the substring in compressed format, where the context substring is
used to make the compression more efficient.

The compressor of interest is, once again, LZ77. We use the terminology from
Section 5. Some extra terminology is as follows. The string S may be encoded
within the context of the string T . We denote this by LZ(S | T). The encoded
result will be equivalent to the result when LZ77 is performed on the concate-
nated string T $S, where $ is a symbol that does not appear in either S or T .
However, only the portion of LZ(T $S) which represents the compression of S is
output by the algorithm.

Formally, given a string S of length n, we wish to preprocess S in such a way
that allows us to efficiently answer the following queries:

Substring Compression Query (SCQ(i, j)): given any two indices i and j,
such that 1 ≤ i ≤ j ≤ n, we wish to output LZ(S[i, . . . , j]).

Generalized Substring Compression Query (GSCQ(i, j, α, β)): given any
four indices i, j, α, and β, such that 1 ≤ i ≤ j ≤ n and 1 ≤ α ≤ β ≤ n, we
wish to output LZ(S[i, . . . , j] | S[α, . . . , β]).

The goal is to do answer queries quickly. Query times for both of the above
query types will strongly depend on the number of phrases actually encoded.
We denote these as C(i, j) and Cα,β(i, j) for SCQ and GSCQ, respectively.

7.1 SCQ to Range Successor in 2D

Recall the definition of LZ77 from Section 5. Imagine that we have already
computed the phrases for S[i . . . k − 1] and desire to compute the next phrase
which is a prefix of S[k . . . j]. In other words, we want to find the location i ≤
t ≤ k − 1 for which the longest common prefix of S[k, . . . , j] and the suffix St is
maximal. Consider the suffix Sk, which is an extension of S[k . . . j]. Clearly, it
is sufficient to find the suffix St for which |LCP(Sk, St)| is maximized (without
necessarily computing the value |LCP(Sk, St)| at this stage). Therefore we have
two steps: (1) finding the location t, and (2) computing |LCP(Sk, St)|. Step (2)
is easy since we assume that we have a full LCP data structure as described in
Section 3. So, our goal is to solve Step (1). To do so we generalize our problem
to the following.

Interval Longest Common Prefix (ILCP(k, l, r)): given k, l, r, we look for
location l ≤ t ≤ r of S for which the suffix St has the longest common prefix
with Sk.

Clearly, for us it is sufficient to compute ILCP(k, i, k − 1).

Orthogonal Range Searching for Text Indexing 287

To compute the Interval Longest Common Prefix (ILCP(k, l, r)) we use a
reduction to the problem of 3-sided range successor query. That is given a 2D
rank-space input on an n × n grid, a 3-sided query R = [a, b] × [−∞, c] seeks
the point in R with the largest y-coordinate. The 3-sided range successor query
problem was considered under a different guise in [38] where it was called the
range next value problem. There it was considered as an array problem for which
one desires to preprocess the array to allow queries that seek the largest value
on a range less than a value v. This can be translated to a grid and vice versa.

7.2 4-Sided and 3-Sided Sorted Range Reporting

The 3-sided range successor query generalizes quite nicely to the 3-sided sorted
range reporting in 2D which we define now.

3-Sided Sorted Range Reporting in 2D (rank space)
Input: A point set P = {(x1, y1), . . . , (xn, yn)} ⊆ [1, n]× [1, n].
Output: A data structure representing P that supports the following

3-sided sorted range reporting queries.
Query: Given a range R = [a, b]× [−∞, c] report all points of P

contained in R sorted by their y-coordinate
(from highest to lowest).

A solution for the 3-sided range successor query problem was proposed in
Lenhof and Smid [83]8, and modified in [76] (improved query times) to work
in rank space, i.e. on an [n] × [n] grid for n values with queries supported in
O(log logn) worst-case time, using O(n logn) space. However, there are now
better results which solve, not only the 3-sided range successor problem, but the
more general 3-sided sorted range reporting. The 3-sided sorted range reporting
generalizes the 3-sided range successor query because the solutions presented
can report the first location and stop.

For the same reason the 3-sided solutions work just as well for the 4-sided
sorted range reporting, as they can report all points until the y-coordinates
surpasses the range boundary and then stop.

The current best range 3-sided sorted range reporting data structures in 2D
are as follows:

1. Navarro and Nekrich [95]:
(a): a data structure with O(n) space where queries can be answered in
O(log n(1 + k)) where k is the number of points reported and
(b): a data structure with O(n log logn) space where queries can be answered
in O(log logn(1 + k)) and
(c): a data structure with O(n logε n) space for any constant ε > 0, where
queries can be answered in O(log logn+ k),

2. Crochemore et al. [38]: a data structure that requires O(n1+ε) space for
any constant ε > 0 and can answer queries in O(k) time.

8 Note, they called it the Range Searching for Minimum problem.

288 M. Lewenstein

a
ba
aba
aaba
baaba
abaaba
aabaaba
baabaaba
abaabaaba
aabaabaaba
baabaabaaba
abaabaabaaba

12
11
10
9
8
7
6
5
4
3
2
1

12 9 6 3 10 7 4 1 11 8 5 2

a
a
b
a
a
b
a

a
a
b
a

a
a
b
a
a
b
a
a
b
a

a
b
a

S - order

a
b
a
a
b
a

a
b
a
a
b
a
a
b
a

a
b
a
a
b
a
a
b
a
a
b
a

b
a

b
a
a
b
a

b
a
a
b
a
a
b
a

b
a
a
b
a
a
b
a
a
b
a

a

SA(S)

S = abaabaabaaba

Goal:
Compress
Substring S[4,11]

Fig. 3. The grid depicts P , the geometric representation of S = abaabaabaaba. The
light point at (8, 10) represents the suffix S8 (and 10-th in the suffix array), as the
substring baab, yet to be encoded, starts at position 8 in the string S. The grayed area
of the grid represents the part of the substring which has already been encoded, that
is S[4, 7]. When finding the start location t, we will be limited to using points found in
the gray area.

7.3 The Interval Longest Common Prefix to 3-Sided Sorted Range
Reporting

The reduction works as follows. Let SA(S) be the suffix array of our input string
S of length n. We associate each suffix Si with its string index i and with its
lexicographic index SA−1(i). From these two we generate a pair (xi, yi), where
xi = i and yi = SA−1(i). We then preprocess the set P = {(xi, yi) | 1 ≤ i ≤
n} ⊆ [1, n]× [1, n] for 3-sided sorted range reporting queries. An example of the
geometric representation of the scenario can be seen in Figure 3.

Computation of the ILCP. Consider the suffix Sk and the set of suffixes
Γ = {Sl, . . . , Sr}. Since |LCP(Sk, St)| = maxt′∈[l,r]|LCP(Sk, St′)|, St is in fact
the suffix lexicographically closest to Sk, out of all the suffixes of the set Γ .

We will first assume that we are searching for a suffix St1 , such that the suffix
St1 is lexicographically smaller than Sk. The process for the case where the suffix
chosen is lexicographically greater than Sk is symmetric. Therefore, once both

Orthogonal Range Searching for Text Indexing 289

are found all we will need to do is to choose the best of both, i.e., the option
yielding the greater |LCP(Sk, St)| value.

Since we have assumed w.l.o.g. that St1 is lexicographically smaller than Sk,
we have actually assumed that yt1 < yk, or equivalently, that t1 appears to the
left of k in the suffix array. Incorporating the lexicographical ranks of Sk and
St1 into the expression, t1 is actually the value which maximizes the expression
max{yt1 | l ≤ t1 ≤ r and yt1 < yk}. Notice that t1 = xt1 .

Now consider the set P = {(xi, yi) | 1 ≤ i ≤ n}. Assuming that indeed
yt1 < yk, we are interested in finding the maximal value yt1 , such that yt1 < yk,
and l ≤ xt1 ≤ r. It immediately follows that the point (xt1 , yt1) ∈ P is the point
in the range [l, r]× [−∞, yk− 1] having the maximal y-coordinate, and therefore
can be obtained efficiently by obtaining the largest y-coordinate in the output
of the 3-sided sorted range query. Once we have found the point (xt1 , yt1), we
have t1, as xt1 = t1.

Equivalently, there exists t2 such that St2 is the suffix lexicographically larger
than Sk and closest to it. In other words, we assume yt2 > yk, or equivalently,
that t2 appears to the right of k in the suffix array. t2 can be found using
a symmetric procedure. An example of the queries performed can be seen in
Figure 4.

Determining whether t = t1 or t = t2 is implemented by calculating both
|LCP(Sk, St1)| and |LCP(Sk, St2)|, and choosing the larger of the two. This gives
us phrase ρi. To finish simply reiterate. Hence,

12
11
10
9
8
7
6
5
4
3
2
1

12 9 6 3 10 7 4 1 11 8 5 2

S - order

SA(S)

12
11
10
9
8
7
6
5
4
3
2
1

12 9 6 3 10 7 4 1 11 8 5 2

S - order

SA(S)

Fig. 4. Continued example from Figure 3 with string string S = abaabaabaaba. The
grid on the right-hand side depicts the 3-sided range successor query for [l, r]×[−∞, yk−
1], where the grid on the left-hand side depicts the [l, r] × [yk + 1,∞] query. In both
queries the values given for the example queries are: k = 8, l = 4 and r = 7. S[l, r] is the
substring that has already been encoded. The query [l, r]× [−∞, yk − 1] outputs (4, 7)
and the query on [l, r]× [yk + 1,∞] outputs (5, 11). S5 is chosen since |LCPS8, S5| >
|LCPS8, S4|.

290 M. Lewenstein

Theorem 7. Let T be a text of length n. We can preprocess T in O(s(n)) space
so that we can answer substring compression queries Q in O(|LZ(Q)|qt(n)) time,
where s(n) and qt(n) are the space and query times mentioned above (occ = 1).

The GSCQ Problem. The generalized substring compression solution is more
involved and uses binary searches on suffix trees applying range queries (3-sided
range successor queries and emptiness queries) during the binary search. The
interested reader should see [75].

Other Applications. The reduction from this section to range searching struc-
tures, i.e. the set of P = {(xi, yi) | 1 ≤ i ≤ n} ⊆ [1, n]× [1, n], defined by a suffix
Si with xi = i and y(i) = SA−1(i) had been considered beforehand.

This reduction was first used, to the best of our knowledge, by Ferragina [49]
as part of the scheme for searching in a dynamic text indexing scheme. The
reduction and point set were used also in position restricted substring search [86].
However, in both range reporting was used.

To the best of our knowledge, the first use of 3-sided range successor queries
for text indexing was for range non-overlapping indexing and successive list in-
dexing [76] and in parallel for position restricted substring search in [39].

See Section 9 for more range-restricted string search problems.

8 Top-k Document Retrieval

The Top k Document Retrieval problem is an extension of the Document Re-
trieval problem described in Section 3.2. The extension is to find the top k
documents in which a given pattern Q appears, under some relevance measure.
Examples of such relevance measures are (a) tf(Q,d), the number of times Q
occurs in document d, (b) mind(Q,d), the minimum distance between two occur-
rences of Q and d, (c) docrank(d), an arbitrary static rank assigned to document
d. In general, the type of relevance measures which which we shall discuss here
are those that are defined by a function that assigns a numeric weight w(S, d)
to every substring S in document d, such that w(S, d) depends only on the set
of starting positions of occurrences of S in d. We call such a relevance measure
a positions based relevance measure.

The following theorem is the culmination of the work of Hon, Shah and Vit-
ter [65] and of Navarro and Nekrich [94].

Theorem 8. Let D be a collection of strings (documents) of total length n, and
let w(S, d) be a positions based relevance measure for the documents d ∈ D.
Then there exists an O(n)-word space data structure that, given a string Q and
an integer k reports k documents d containing Q of highest relevance, i.e. with
highest w(Q, d) values, in decreasing order of w(Q, d), in O(|Q|+ k) time.

Orthogonal Range Searching for Text Indexing 291

Hon, Shah and Vitter [65] reduced this to a problem on arrays and achieved
query time of O(|Q| + k log k). We will outline their idea within this section.
Navarro and Nekrich [94] then showed how to adapt their solution to a 3-sided
2 dimensional range searching problem on weighted points. The solution of the
range searching problem given in [94] builds upon earlier work on top k color
queries for document retrieval [74], another interesting result. We will describe
the adaptation and range searching result shortly.

8.1 Flattening the Top-k Document Retrieval Suffix Tree

Consider a generalized suffix tree ST for the document collection D. The leaves
have a one-one correspondence with the locations within the documents. If leaf
l is associated with location i of document d, we say that it is a d-leaf. Let
l1, l2, . . . , lq be the set of d-leaves. Then a node is a d-node if (a) it is a d-leaf or
if (b) it is an internal node v of ST such that it is the lowest common ancestor
of adjacent d-leaves li and li+1. Let v be a d-node. If u is is the lowest common
ancestor of v that is a d-node we say that u is v’s d-parent (and that v is u’s
d-child). If there is no lowest common ancestor of v which is a d-node then the
d-parent will be a dummy node which is the parent of the root. One can easily
verify that the set of d-nodes form a tree, called a d-tree, and that an internal
d-node has at least two d-children. It is also straightforward to verify that the
lowest common ancestor of any two d-nodes is a d-node. Hence,

Lemma 4. Let v be a node in the generalized suffix tree ST for the document
collection D. For every document d for which the subtree of v contains a d-leaf
there is exactly one d-node in the subtree of v that has a d-parent to an ancestor
of v.

Proof. 1. Every d-parent of a d-node in the subtree of v is either in the subtree
or is an ancestor of v. 2. Assume, by contradiction, that there are two d-nodes
x1 and x2 in the subtree of v each with a d-parent that is an ancestor of v.
However, their lowest common ancestor, which must be a d-node, is no higher
than v itself (since v is a common ancestor). Hence, their d-parents must be in
v’s subtree a contradiction.

Hence, since every d-node has a d-parent, there must be exactly one d-node
with a d-parent to an ancestor of v. ��

Corollary 1. Let v be an arbitrary node in ST and let u be a descendant of v
such that u is a d-node and its d-parent is an ancestor of v. Then all d-nodes u′

which are descendants of v are also descendants of u.

A node in ST may be a d-node for different d’s, say for di1 , . . . , dir . Nevertheless,
since every internal d-node has at least two d-children, the d-tree is linear in the
number of d-leaves and, hence, the collection of all d-trees is linear in the size of
the ST which is O(n).

292 M. Lewenstein

In light of this in [65] an array A was constructed by a pre-order traversal of
the tree ST such that for each node v which is a d-node for d ∈ {di1 , . . . , dir}
indexes j +1 to j + r are allocated in the array and contain the di1 -parent of v,
. . ., the dir -parent of v. The integer interval [lv, rv] denotes the interval bounded
by the minimal and maximal indexes in A assigned to v or its descendants.
Values lv and rv are stored in v.

The array A was used to obtain the query result of O(|Q| + k log k) in [65].
We now show how this was used in [94].

8.2 Solving with Weighted Range Searching

Let j + t be the index in A associated with dit -node v for dit ∈ {di1 , . . . , dir}
and with its dit -parent ut. Let S be the string such that the locus of S is v. We
generate a point (j + t, depth(ut)), where depth denotes the depth of a node in
the ST. The weight of the point p is w(S, dit). Note that all points have different
x-coordinates and are on an integer n× n grid.

It is still necessary to store a mapping from the x-coordinates of points to the
document numbers. A global array of size O(n) is sufficient for this task.

Queries. To answer a top-k query Q first find the locus v of Q (in O(|Q|) time).
Now, by Lemma 4 for each document d containing Q there is a unique d-node u
which is a descendant of v with a d-parent who is an ancestor of v. By Corollary 1
w(Q, d) = w(S, d), where S is the string with locus u, and w(S, d) is the weight
of the point corresponding to the pointer from u to its d-parent. So, there is a
unique point (x, y) with x ∈ [lv, rv] and y ∈ [0, depth(v)− 1] for every document
d that contains Q. Therefore, it is sufficient to report the k heaviest weight nodes
in [lv, rv] × [0, depth(v) − 1]. To do so Navarro and Nekrich [94] proposed the
three sided top-k range searching problem.

Three sided top-k range searching
Input: A set of n weighted points on an n× n grid G.
Output: A data structure over G supporting the following queries.
Query: Given 1 ≤ k, h ≤ n and 1 ≤ a ≤ b ≤ n return the k

heaviest weighted points in the range [a, b]× [0, h].

In [94] a solution was given that usesO(n)-word space andO(h+k) query time.
This result is similar to that of [74]. It is easy to note that for the application
of top-k document retrieval this yields an O(depth(v) + k) query time, which is
O(|Q|+ k), an optimal solution.

8.3 External Memory Top-k Document Retrieval

Lately, a new result for top-k document retrieval for the external memory model
has appeared in [98]. The result is I/O optimal and uses O(n log∗ n) space.

More on research in the vicinity of top-k document retrieval can be found
in [92]. See also [17] to see how to add rank functionality to a suffix tree.

Orthogonal Range Searching for Text Indexing 293

9 Range Restricted String Problems

Research inspired by the problem of applying string problems limited to ranges
has been of interest in the pattern matching community from around 2005.
Some of the results are general. Others focus on specific applications. One such
application is the substring compression problem that was discussed in Section 7.
These problems are natural candidates for range searching solutions and indeed
many of them have been solved with these exact tools.

The first three results on range restricted variants of text indexing appeared
almost in parallel. The results were for property matching (the conference version
of [7]), substring compression [37] and position-restricted substring searching [86].

Property matching is the problem of generating a text index for a text and
a collection of ranges over the text. The subsequent pattern queries asks for the
locations where the text appears and are fully contained in some interval. The
initial definition was motivated by weighted matching. In weighted matching a
text is given with probabilities on each of the text symbols and each pattern
occurrence in the text has weight which is the multiplication of the probabilities
on the text symbols associated with that occurrence. Weighted matching was
reduced to property matching. In [7] a solution was given using O(n) space,
where n is the text size, such that queries are answered in O(|Q| + occπ) time,
where Q is the pattern query and occπ is the number of appearances within the
interval set π. The preprocessing time was near optimal and in a combination of a
couple of papers was solved in optimal time [66,69]. See also [40]. In [77] property
matching was solved in the dynamic case, where intervals can be inserted and
removed. Formally, π denotes the collection of intervals and the operations are:

– Insert(s, f) - Insert a new interval (s, f) into π.
– Delete(s, f) - Delete the interval (s, f) from π.

In [77] it was shown how to maintain a data structure under interval deletions.
Queries are answered in O(Q| + occπ) time and deletions take O(f − s) time.
If both insertions and deletions are allowed then the insertion/deletion time is
O(f − s+ log logn), where n is the text length.

In [63] a succinct version was given that uses a compressed suffix array (CSA).
The solution has a multiplicative logarithmic penalty for the query and update
time.

Position-restricted substring searching is the problem where the goal is to
preprocess an index to allow range-restricted queries. That is the query consists
of a pattern query Q and a range described by text indices i and j. This is dif-
ferent from property matching because the interval is not given a-priori. On the
other hand, it is one interval only. The queries considered in [86] are position-
restricted reporting and position-restricted counting. Another two related queries
also considered are substring rank and substring select, which are natural exten-
sions of rank and select [24, 57, 68]. These are defined as follows.

294 M. Lewenstein

1. PRI-Report: Preprocess text T = t1 · · · tn to answer queries Report(Q =
q1 · · · qm, i, j), which reports all occurrences of Q in ti . . . tj .

2. PRI-Count: Preprocess text T = t1 · · · tn to answer queries Count(Q =
q1 · · · qm, i, j), which returns the number of occurrences of Q in ti . . . tj.

3. Substring Rank: Preprocess text T = t1 · · · tn to answer queries SSR(Q =
q1 · · · qm, k), which returns the number of occurrences of Q in t1 · · · tk.

4. Substring Select: Preprocess text T = t1 · · · tn to answer queries
SSS(Q, k), which returns the kth occurrence of Q in T .

We note that substring rank and position-restricted counting reduce to each
other. Also, position-restricted reporting can be obtained from applying one
substring-rank and occi,j substring-selects, where occi,j is the number of pattern
occurrences in ti . . . tj . We leave it to the reader to verify the details.

Reporting: For the reporting problem Mäkinen and Navarro [86] reduced the
problem to range reporting. The way to do so is to first find the SA-range of Q.
Then this range and the position-restricted range i to j define a rectangle for
which range reporting is used. One can use any of the data structures mentioned
in Section 4. For example with O(n logε n) space, for any constant ε, one can
answer queries in O(m+log logn+occi,j) (we assume the alphabet is from [1, n]
otherwise if it is from [1, U] then there is an extra additive factor of log logU).
Crochemore et al. [39] noticed that a different type of reduction, namely range
next value, could be more useful. The authors of [86] were more concerned with
space issues. So, they also proposed a data structure which uses n+ o(n) space
and reports in O(m+ logn+ occi,j). The reporting time was improved by Bose
et al. [20] to O(m+ logn/ log logn+ occi,j) with the same space constraints. Yu
et al. [106] suggested a different algorithm with the same space and reporting
time, but were able to report the occurrences in their original order.

Bille and Gørtz [19] went on to show that with O(n(logε n+ log logU)) space
the query time can be improved to O(m + occi,j), which is optimal. They also
solved position-restricted reporting merged with property matching. The space
and query time remain the same.

An interesting result for the reporting variant appeared in [64]. Specifically,
it was shown that a succinct space polylogn time index for position-restricted
substring searching is at least as hard as designing a linear space data structure
for 3D range reporting in polylogn time.

Counting: In [86] the same data structure that uses n+ o(n) space and reports
in O(m+logn) was used for counting9. Once again, Bose et al. [20] can improve
the counting time to O(m + logn/ log logn). Kopelowitz et al. [80] presented
a counting data structure that uses O(n(log n/ log logn)) space and answers
counting queries in time O(m + log log |Σ|). Recently, in the upcoming journal
version of [19] a similar result appears. The space is the same. However, the
counting time is O(m + log logn), which can be slightly worse.

9 There is another result there that assumes faster query times that is flawed. See the
introduction in [80] for an explanation.

Orthogonal Range Searching for Text Indexing 295

Substring Select: In [86] a solution for indexing for substring select is given. The
space is O(nK log σ/ logn), whereK is an upper bound on the size of the queried
patterns. The query time is O(m log σ/ log logn). This was improved in [80] to
allow for any length query with O(n log n/ log logn) space and optimal O(m)
query time. The proposed solution in [80] uses persistent data structure which
is a basic ingredient in most of the range searching solutions.

Substring compression has been expanded on in Section 7. It was introduced
in [37] and improved upon in [75]. The results are detailed in Section 7. One of
the problems that is of interest in substring compression is the ILCP (interval
longest common prefix) query (see Section 7). This inspired Amir et al. [3] to
consider extensions to LCP range queries of different types.

Range Non-overlapping Indexing and Successive List Indexing [76].
In range non-overlapping indexing one wants to prepare an index so that when
give a pattern query one can return a maximal set of occurrences so that the
occurrences do not overlap. In successive list indexing one prepares an index to
answer queries where a pattern is given along with a position i and one desires to
find the first occurrence of the pattern after i. A reduction to range successor was
used to solve this problem. Along with the results of sorted range reporting [95]
one can solve the former with space O(n logε n) space and O(log logn + occ)
query time. For the latter the query time is O(log log n).

Range Successor in 2D solves several of the problems mentioned in this
section. This has been discussed in Section 7 and is referred to in [38, 95, 106].
It is interesting that its generalization sorted range reporting [95] is a variant
of range reporting that was considered in the community because of the unique
range search problems that arise.

10 Lower Bounds on Text Indexing via Range Reporting

A novel use of range searching is its use to show lower bounds on text indexing
via reductions from range reporting [32].

Theorem 9. Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a set of n points in
[1, n] × [1, n]. We can construct a text T of length O(n logn) bits along with
O(n log n) bits of auxiliary data such that we can answer range reporting queries
on S with O(log2 n) pattern match queries on T , each query is a pattern of length
O(log n).

We denote the set of x-coordinates, of S, X = {x1, . . . , xn} and the set of y-
coordinates, of S, Y = {y1, . . . , yn}.

The idea is as follows. Each point (x, y) ∈ [1, n] × [1, n]. So, x and
y both have binary representations of logn bits10. Denote with b(w) the

10 We assume that n is a power of 2. Otherwise, it will be �log n� + 1.

296 M. Lewenstein

binary representation of a number w and the reverse of the binary rep-
resentation with bR(w). The text T (from the theorem) constructed is
bR(x1)#b(y1)$b

R(x2)#b(y2)$. . . $b
R(x1)#b(y1).

To obtain the result a collection of pattern queries on T is generated whose
answers will yield an answer to the range reporting problem on the point set
S. To this end, sort b(y1), . . . , b(yn) and bR(x1), . . . , b

R(xn). Let π denote the
ordering of the former and τ denote the ordering of the latter, i.e. b(π(y1)) <
. . . < b(π(yn)), where < is a lexicographic-less than, and bR(τ(x1)) < . . . <
bR(τ(xn)). The n-length arrays A =< bR(τ(x1)), . . . , b

R(τ(xn)) > and B =<
b(π(y1)), . . . , b(π(yn)) > will be the basis of the search.

Over each of the arrays construct a binary search tree with each node repre-
senting a range of elements. Without loss of generality, consider the binary tree
over B. The root represents all elements of Y . The left son is associated with
one bit 0 and represents R0 = {y ∈ Y |0 is prefix of b(y)} and the right son
represents R1 = {y ∈ Y |1 is prefix of b(y)} - each is a range over B - check. The
left son of the left son of the root represents R00 = {y ∈ Y |00 is prefix of b(y)},
etc. In general, each node is associated with a binary string, say b0 . . . bi, formed
by the walk down from the root to the node and is also associated with a range,
which we call a node-range, Rb0...bi = {y ∈ Y |b0 . . . bi is prefix of b(y)}. The
number of nodes in the binary tree and, hence, the number of ranges is ≤ 2n−1.
Each range can be represented as a pair of indexes to the array. Hence, the size
of the auxiliary information is O(n)-words, or O(n log n) bits. We construct a
complementary binary tree for A, with ranges RX .

An easy well known observation is that any range Rq,r = {y|1 ≤ q ≤ y ≤ r ≤
n} can be expressed as the disjoint union of at most 2 logn node-ranges. The
node-ranges of the disjoint union can be found by a traversal up and down the
binary tree using the binary representations of q and r.

Now consider a range query on S, say [xleft, xright]× [ybottom, ytop]. This can
be seen as a query for all (x, y) such that y ∈ Rybottom,ytop and x ∈ RXxleft,xright .
By the previous observation this can be transformed into O(log2 n) queries for
all (x, y) such that x is in one of the node-ranges in the disjoint union expressing
Rybottom,ytop and y is in one of the node-ranges in the disjoint union expressing
RXxleft,xright .

We show an a indexing query that searches for all (x, y) such that x ∈ RXc

and y ∈ Rd both node-ranges, the former for the binary string c over the array A
and the latter for the binary string d over the array B. We define a pattern query
Q = cR#d. We query the text index with Q. Every location where Q appears
corresponds to a point that is in the desired range as cR must align with the end
of an bR(xi), which is the same as c being a prefix of b(xi) and d is a prefix of
(yi), which is exactly the desired.

Chazelle [30] showed that in the pointer machine model an index supporting
2D range reporting in O(polylog(n) + occ) query time, where occ is the number
of occurrences, requires Ω(n(log n/ log logn)) words of storage. Hence,

Orthogonal Range Searching for Text Indexing 297

Theorem 10. In the pointer machine model a text index on T of size n which
returns locations of pattern occurrences in O(polylog(n) + occ) time requires
Ω(n(log n/ log logn)) bits.

More on This Result and Related Work. In [32] there are also very in-
teresting results reducing text indexing to range searching. The reduction is
known as a Geometric BWT, transforming a BWT into a point representation.
The reductions in both directions show that obtaining improvements in space
complexity of either will imply space complexity improvements on the other.

Another two lower bounds, along the lines of the lower bound described here,
are for position restricted substring search [64], for forbidden patterns [52] and
for aligned pattern matching [99].

Acknowledgement. I wanted to thank my numerous colleagues who were kind
enough to provide insightful comments on an earlier version and pointers to work
that I was unaware of. These people include (in alphabetical order) Phillip Bille,
Timothy Chan, Francisco Claude, Pooya Davoodi, Johannes Fischer, Travis
Gagie, Roberto Grossi, Orgad Keller, Tsvi Kopelowitz, Muthu Muthukrishnan,
Gonzalo Navarro, Yakov Nekrich, Rahul Shah, Sharma Thankachan, Rajeev Ra-
man, and Oren Weimann. Special thanks to Orgad, Rahul, Sharma and Yakov
for numerous Skype conversations in which I learned more than can be contained
within this monologue.

References

1. Agarwal, P.K.: Range searching. In: Handbook of Discrete and Computational
Geometry, pp. 575–598. CRC Press, Inc. (1997)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: Proc. of Foundations of Computer Science (FOCS), pp. 198–207
(2000)

3. Amir, A., Apostolico, A., Landau, G.M., Levy, A., Lewenstein, M., Porat, E.:
Range LCP. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 683–692. Springer, Heidelberg (2011)

4. Amir, A., Apostolico, A., Landau, G.M., Satta, G.: Efficient text fingerprinting
via Parikh mapping. Journal of Discrete Algorithms 1(5-6), 409–421 (2003)

5. Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. SIAM
Journal on Computing 35(5), 1007–1022 (2006)

6. Amir, A., Benson, G., Farach, M.: Let sleeping files lie: Pattern matching in z-
compressed files. Journal of Computer and System Sciences 52(2), 299–307 (1996)

7. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theoretical Computer Science 395(2-3), 298–310
(2008)

8. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

298 M. Lewenstein

9. Amir, A., Francheschini, G., Grossi, R., Kopelowitz, T., Lewenstein, M., Lewen-
stein, N.: Managing unbounded-length keys in comparison-driven data structures
with applications to on-line indexing. SIAM Journal on Computing (to appear,
2013)

10. Amir, A., Keselman, D., Landau, G.M., Lewenstein, M., Lewenstein, N., Rodeh,
M.: Text indexing and dictionary matching with one error. Journal of Algo-
rithms 37(2), 309–325 (2000)

11. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static
pattern matching. ACM Transactions on Algorithms 3(2) (2007)

12. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1-2), 54–101 (2012)

13. Atallah, M.J., Yuan, H.: Data structures for range minimum queries in multidi-
mensional arrays. In: Proc. of the Symposium on Discrete Algorithms (SODA),
pp. 150–160 (2010)

14. Badkobeh, G., Fici, G., Kroon, S., Lipták, Z.: Binary jumbled string matching for
highly run-length compressible texts. Information Processing Letters 113, 604–608
(2013)

15. Baker, B.S.: Parameterized pattern matching: Algorithms and applications. Jour-
nal of Computer and System Sciences 52(1), 28–42 (1996)

16. Barbay, J., Claude, F., Navarro, G.: Compact binary relation representations with
rich functionality. The Computing Research Repository (arXiv), abs/1201.3602
(2012)

17. Bialynicka-Birula, I., Grossi, R.: Rank-sensitive data structures. In: Consens,
M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 79–90. Springer,
Heidelberg (2005)

18. Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse
suffix tree construction in small space. In: Proc. of International Colloquium on
Automata, Languages and Complexity, ICALP (2013)

19. Bille, P., Gørtz, I.L.: Substring range reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (2011)

20. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

21. Brodal, G.S., Ga̧sieniec, L.: Approximate dictionary queries. In: Hirschberg, D.S.,
Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 65–74. Springer, Heidelberg
(1996)

22. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Rao, S.S.: Two dimensional
range minimum queries and Fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.)
ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)

23. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

24. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum
space. SIAM Journal on Computing 28(5), 1627–1640 (1999)

25. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. In-
formation Processing Letters 92(6), 293–297 (2004)

26. Chan, H.-L., Lam, T.W., Sung, W.-K., Tam, S.-L., Wong, S.-S.: A linear size
index for approximate pattern matching. Journal of Discrete Algorithms 9(4),
358–364 (2011)

27. Chan,T.M.:Persistentpredecessor searchandorthogonalpoint location on theword
ram. In:Proc. of SymposiumonDiscreteAlgorithms (SODA), pp. 1131–1145 (2011)

Orthogonal Range Searching for Text Indexing 299

28. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. of the Symposium on Computational Geometry, SOCG (2011)

29. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17(3), 427–462 (1988)

30. Chazelle, B.: Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM 37(2), 200–212 (1990)

31. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line.
International Journal of Computational Geometry and Applications 1(1), 33–45
(1991)

32. Chien, Y.-F., Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Geometric
Burrows-Wheeler transform: Compressed text indexing via sparse suffixes and
range searching. Algorithmica (to appear, 2013)

33. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference
(PSC), pp. 105–117 (2009)

34. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2011)

35. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012)

36. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. of Symposium on Theory of Computing (STOC),
pp. 91–100 (2004)

37. Cormode, G., Muthukrishnan, S.: Substring compression problems. In: Proc. of
Symposium on Discrete Algorithms (SODA), pp. 321–330 (2005)

38. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Tischler, G., Walen,
T.: Improved algorithms for the range next value problem and applications. The-
oretical Computer Science 434, 23–34 (2012)

39. Crochemore, M., Iliopoulos, C.S., Rahman, M.S.: Finding patterns in given inter-
vals. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 645–656.
Springer, Heidelberg (2007)

40. Crochemore, M., Kubica, M., Walen, T., Iliopoulos, C.S., Rahman, M.S.: Finding
patterns in given intervals. Fundamenta Informaticae 101(3), 173–186 (2010)

41. Davoodi, P., Landau, G., Lewenstein, M.: Multi-dimensional range minimum
queries (manuscript, 2013)

42. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees for
range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) CO-
COON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

43. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range mini-
mum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer,
Heidelberg (2009)

44. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text
retrieval. Journal of Algorithms 48(1), 2–15 (2003)

45. Dietz, P.F., Raman, R.: Persistence, amortization and randomization. In: Proc.
of Symposium on Discrete Algorithms (SODA), pp. 78–88 (1991)

46. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: Formalization and
algorithms. In: Hirschberg, D.S., Meyers, G. (eds.) CPM 1996. LNCS, vol. 1075,
pp. 130–140. Springer, Heidelberg (1996)

47. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. Al-
gorithmica 20(4), 388–404 (1998)

300 M. Lewenstein

48. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity
of suffix tree construction. Journal of the ACM 47(6), 987–1011 (2000)

49. Ferragina, P.: Dynamic text indexing under string updates. Journal of Algo-
rithms 22(2), 296–328 (1997)

50. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

51. Ferragina, P., Muthukrishnan, S., de Berg, M.: Multi-method dispatching: A ge-
ometric approach with applications to string matching problems. In: Proc. of
Symposium on Theory of Computing (STOC), pp. 483–491 (1999)

52. Fischer, J., Gagie, T., Kopelowitz, T., Lewenstein, M., Mäkinen, V., Salmela,
L., Välimäki, N.: Forbidden patterns. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 327–337. Springer, Heidelberg (2012)

53. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing 40(2), 465–492 (2011)

54. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. of the Symposium on Theory of Computing (STOC),
pp. 135–143 (1984)

55. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

56. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

57. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets:
a tool for text indexing. In: Proc. of Symposium on Discrete Algorithms (SODA),
pp. 368–373 (2006)

58. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. of Symposium on Discrete Algorithms (SODA), pp. 841–850 (2003)

59. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing 35(2), 378–407
(2005)

60. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press (1997)

61. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13(2), 338–355 (1984)

62. Hon, W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Compressed
dictionary matching with one error. In: Proc. of the Data Compression Conference
(DCC), pp. 113–122 (2011)

63. Hon, W.-K., Patil, M., Shah, R., Thankachan, S.V.: Compressed property suffix
trees. In: Proc. of the Data Compression Conference (DCC), pp. 123–132 (2011)

64. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: On position restricted
substring searching in succinct space. Journal of Discrete Algorithms 17, 109–114
(2012)

65. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string
retrieval problems. In: Proc. of Foundations of Computer Science (FOCS), pp.
713–722 (2009)

66. Iliopoulos, C.S., Rahman, M.S.: Faster index for property matching. Information
Processing Letters 105(6), 218–223 (2008)

67. Iliopoulos, C.S., Rahman, M.S.: Indexing factors with gaps. Algorithmica 55(1),
60–70 (2009)

Orthogonal Range Searching for Text Indexing 301

68. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554
(1989)

69. Juan, M.T., Liu, J.J., Wang, Y.L.: Errata for “faster index for property matching“.
Information Processing Letters 109(18), 1027–1029 (2009)

70. Kärkkäinen, J.: Repetition-Based Text Indexes. PhD thesis, University of
Helsinki, Finland (1999)

71. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
Journal of the ACM 53(6), 918–936 (2006)

72. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proc. 3rd South American Workshop on String
Processing (WSP). International Informatics Series 4, pp. 141–155. Carleton Uni-
versity Press (1996)

73. Kärkkäinen, J., Ukkonen, E.: Sparse suffix trees. In: Cai, J.-Y., Wong, C.K. (eds.)
COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996)

74. Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: Proc.
of Symposium on Discrete Algorithms (SODA), pp. 401–411 (2011)

75. Keller, O., Kopelowitz, T., Landau, S., Lewenstein, M.: Generalized substring
compression. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS,
vol. 5577, pp. 26–38. Springer, Heidelberg (2009)

76. Keller, O., Kopelowitz, T., Lewenstein, M.: Range non-overlapping indexing and
successive list indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007)

77. Kopelowitz, T.: The property suffix tree with dynamic properties. In: Amir, A.,
Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 63–75. Springer, Heidelberg
(2010)

78. Kopelowitz, T., Kucherov, G., Nekrich, Y., Starikovskaya, T.A.: Cross-document
pattern matching. Journal of Discrete Algorithms (to appear, 2013)

79. Kopelowitz, T., Lewenstein, M.: Dynamic weighted ancestors. In: Proc. of Sym-
posium on Discrete Algorithms (SODA), pp. 565–574 (2007)

80. Kopelowitz, T., Lewenstein, M., Porat, E.: Persistency in suffix trees with ap-
plications to string interval problems. In: Grossi, R., Sebastiani, F., Silvestri, F.
(eds.) SPIRE 2011. LNCS, vol. 7024, pp. 67–80. Springer, Heidelberg (2011)

81. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theo-
retical Computer Science 483, 115–133 (2013)

82. Landau, G.M., Vishkin, U.: Fast string matching with k differences. Journal of
Computer and System Sciences 37(1), 63–78 (1988)

83. Lenhof, H.-P., Smid, M.H.M.: Using persistent data structures for adding range
restrictions to searching problems. Theoretical Informatics and Applications
(ITA) 28(1), 25–49 (1994)

84. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

85. Lewenstein, M.: Parameterized matching. In: Encyclopedia of Algorithms (2008)
86. Mäkinen, V., Navarro, G.: Position-restricted substring searching. In: Correa,

J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714.
Springer, Heidelberg (2006)

87. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

88. McCreight, E.M.: A space-economical suffix tree construction algorithm. Journal
of the ACM 23(2), 262–272 (1976)

89. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Informa-
tion Processing Letters 110(18-19), 795–798 (2010)

302 M. Lewenstein

90. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Proc.
of the Symposium on Discrete Algorithms (SODA), pp. 657–666 (2002)

91. Navarro, G.: Wavelet trees for all. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012.
LNCS, vol. 7354, pp. 2–26. Springer, Heidelberg (2012)

92. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. The Computing Research Repository (arXiv), abs/1304.6023
(2013)

93. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), 2 (2007)

94. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: Proc. of Symposium on Discrete Algorithms (SODA), pp. 1066–1077
(2012)

95. Nekrich, Y., Navarro, G.: Sorted range reporting. In: Fomin, F.V., Kaski, P. (eds.)
SWAT 2012. LNCS, vol. 7357, pp. 271–282. Springer, Heidelberg (2012)

96. Russo, L.M.S., Oliveira, A.L.: A compressed self-index using a Ziv-Lempel dictio-
nary. Information Retrieval 11(4), 359–388 (2008)

97. Sadakane, K.: Succinct data structures for flexible text retrieval systems. Journal
of Discrete Algorithms 5(1), 12–22 (2007)

98. Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: On optimal top-k string
retrieval. The Computing Research Repository (arXiv), abs/1207.2632 (2012)

99. Thankachan, S.V.: Compressed indexes for aligned pattern matching. In: Grossi,
R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp. 410–419.
Springer, Heidelberg (2011)

100. Tsur, D.: Fast index for approximate string matching. Journal of Discrete Algo-
rithms 8(4), 339–345 (2010)

101. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

102. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

103. Vuillemin, J.: A unifying look at data structures. Communications of the
ACM 23(4), 229–239 (1980)

104. Weiner, P.: Linear pattern matching algorithm. In: Proc. of the Symposium on
Switching and Automata Theory, pp. 1–11 (1973)

105. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(n).
Information Processing Letters 17(2), 81–84 (1983)

106. Yu, C.-C., Hon, W.-K., Wang, B.-F.: Improved data structures for the orthogonal
range successor problem. Computational Geometry 44(3), 148–159 (2011)

107. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

A Survey of Data Structures

in the Bitprobe Model

Patrick K. Nicholson1, Venkatesh Raman2, and S. Srinivasa Rao3

1 Cheriton School of Computer Science, University of Waterloo, Canada
p3nichol@cs.uwaterloo.ca

2 The Institute of Mathematical Sciences, Chennai, India
vraman@imsc.res.in

3 School of Computer Science and Engineering,
Seoul National University, Republic of Korea

ssrao@cse.snu.ac.kr

1 Introduction

In this paper we survey data structures in the bitprobe model [31,15,50,30,11].
This model was introduced by Minsky and Papert in their book “Perceptrons”
[31], studied later in the context of retrieval problems by Elias and Flower [15],
and generalized by Yao [50] to the cell probe model. In the bitprobe model, we
concern ourselves with the number of bit accesses or bit flips that occur during
a computation. We wish to analyze the trade-off between the space occupied by
a data structure, and the number of bits accesses that must be made to it in
order to answer queries. Each bit access is referred to as a probe in this model.
Furthermore, the amount of computation permitted by the query algorithm to
determine which bits to probe is a secondary concern.

In Section 2 we discuss the membership problem, giving a brief history of
the problem in other models of computation, and explain why this problem is
fascinating in the bitprobe model. We survey the numerous recent results for this
problem, mentioning the techniques used. In Section 3 we discuss the problem
of maintaining an integer counter such that the operations increment and/or
decrement can be executed efficiently. In Section 4 we briefly survey some of
the other problems that have been considered in the bitprobe model, such as
the greater-than problem, and various lower bounds. Finally, in Section 5, we
conclude with a list of open problems.

2 The Membership Problem

The static membership problem, also known as the dictionary problem, is likely
the first data structuring problem encountered in an introductory course on
algorithms. Formally, the problem asks us to store a subset N of n elements
from a universe [1,m], such that we can efficiently determine, for any x ∈ [1,m],
“Is x ∈ N ?”. In the comparison model, the cost of a query is equal to the number
of comparisons that are made with the query element x to determine the yes or

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 303–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

304 P.K. Nicholson, V. Raman, and S.S. Rao

no answer. It is well-known that storing the set N in sorted order and performing
a binary search over the elements is the best possible solution when comparisons
with the query element are the only way to determine the relative order between
elements [27, Sec. 6.2]. If we relax the constraint thatN be stored in sorted order,
and allow N to be stored in one of at most p permutations of sorted order, Alt,
Mehlhorn, and Munro [2] proved a lower bound showingΩ(p1/n) comparisons are
necessary for answering membership queries. To circumvent this lower bound, by
further relaxing the model, Borodin et al. [5] mention (citing a communication
by Feldman) that if comparisons between elements in N are also permitted—
i.e., comparisons do not have to involve the query element— then it is possible to
store N in one of (n/4)! permutations of sorted order, described by involutions,
while still supporting search in Θ(lg n) comparisons.

In the word-RAM model, the cost of a query is measured in terms of the
number of word operations that are carried out: i.e., arithmetic and read/write
operations on an infinite array of w-bit cells called words. Note the connection
between this model and the more powerful cell probe model, where only the
read/write operations on cells are counted to measure cost. Since intermediate
computation is not counted, lower bounds proved in the cell probe model hold in
the word-RAM model, regardless of which arithmetic operations supported. The
space usage of a data structure in the word-RAM model is the largest memory
address that is used during a computation. When a bound on m is given, then
a bit vector can be used to store N using m bits, and support queries (and
even insertions and deletions) in constant time. However, the space usage of
such a data structure can be prohibitive. A major breakthrough result for the
membership problem was that of Fredman, Komlós and Szemerédi [19], now
frequently referred to as FKS-hashing. They showed that on a word-RAM with
Θ(lgm)-bit words, it is possible to answer membership queries using O(1) word
operations, using only O(n lgm) bits of space (a linear-in-n number of words).

The query time of FKS-hashing is clearly optimal (to within constant factors)
in the word-RAM model, so we might wonder about the its space usage. The
information theoretic lower bound indicates that a data structure solving this
problem must occupy lg

(
m
n

)
= n lg(m/n)+Θ(n) bits of space. For sparse subsets

N , this shows that FKS-hashing is within a constant factor of optimal space
usage, but when n is closer to m, there is room for improvement. These gaps
were eventually closed by Brodnik and Munro [10], Pagh [36] and Pǎtraşcu [38],
who showed that it was possible to achieve O(1) time using lg

(
m
n

)
+ o(lg

(
m
n

)
)

bits of space.
Buhrman, Miltersen, Radhakrishnan, and Venkatesh [11] revived the study

of the membership problem in the bitprobe model, where time and space are
measured in bits. In this model, FKS-hashing uses O(lgm) probes to answer
queries, and Buhrman et al. [11] asked whether this can be reduced. Recall that
the trivial bit vector data structure, which stores m bits— each one correspond-
ing to an element in the universe— can answer membership queries in one probe.
Buhrman et al. showed, rather surprisingly, that if randomization and errors are
allowed, one probe is sufficient to answer membership queries, using O(n lgm)

A Survey of Data Structures in the Bitprobe Model 305

bits of space1. Note that prior to the work of Buhrman et al., for the case where
the query algorithm is allowed to make errors, there were existing data struc-
tures that improved upon the trivial bit vector, such as the Bloom filter [3] and
its variants [9]. To represent a universe of size m, a Bloom filter uses a bit vector
of size m′ < m, together with a set of k different hash functions, f1, . . . , fk, map-
ping m → m′. To store an element x, we set the bits in locations f1(x), . . . , fk(x)
to 1. To check if an element q is present, we probe locations f1(q), . . . , fk(q) and
return that it is, if and only if all locations store a 1. Thus, even Bloom filters
typically probe more than a single bit.

Consider the case where n = 1, and the query algorithm is not allowed to make
an error. In this case, a trivial generalization of the bit vector can achieve tm1/t

bits of space, and answer queries in t probes. The idea is to store t characteristic
bit vectors; one for each 1/t-th fraction of the bits of the sole element to be
stored. As we shall see later, this strategy is space optimal, to within constant
factors. We encourage the reader to try to generalize this strategy to the case
where n = 2, to get a feel for the difficulties that arise in the bitprobe model. In
particular, think about the case where t = 2, and try to come up with a data
structure that occupies O(

√
m) bits2.

Before discussing results on membership in the bitprobe model, we introduce
some terminology.

2.1 Membership “Schemes”

Following the convention of prior work [11,40,41] we use the notation (n,m, s, t)-
scheme to refer to a storage scheme that uses s bits to store any n element subset
of a universe of size m, such that queries can always be answered using t probes.
Thus, for a fixed set N the storage scheme is used to compute a data structure,
Φ(N) ∈ {0, 1}s; i.e., a data structure that occupies s bits. Furthermore, the query
algorithm, which is fixed once-and-for-all like the storage scheme, can perform
membership queries for any element q ∈ [1,m], by probing no more than t
locations in Φ(N).

For example, a bit vector together with direct lookup is equivalent to a
(n,m,m, 1)-scheme for the membership problem, whereas the FKS-hashing based
data structures we discussed previously [10,36] are (n,m, lg

(
m
n

)
+o(
(
m
n

)
), Θ(lgm))-

schemes. There are several additional ways of categorizing a (n,m, s, t)-scheme,
which we now define, following definitions of Buhrman et al. [11]:

Deterministic or Randomized: In a deterministic scheme the answer pro-
vided by the query algorithm must always be correct, and neither the storage
scheme nor the query algorithm has access to random bits. In a randomized
scheme the query algorithm may use random bits to decide which locations to

1 The bound assumes an arbitrary constant error probability ε > 0. See Section 2.3.
2 As we will see later this bound is not possible for t = 2, but it clearly illustrates one
difficulty of the bitprobe model. Note that it is possible to achieve O(

√
m) bits for

the case where n = 2, and t = 3.

306 P.K. Nicholson, V. Raman, and S.S. Rao

probe in the data structure, and is also permitted to answer incorrectly with
some failure probability, denoted by ε. However, in a randomized scheme the
storage scheme (i.e., the method to compute the data structure Φ(N)) must
be deterministic. Randomized schemes are further subdivided into the following
categories:

1. One-sided ε-error schemes: Schemes which never have false negatives— i.e.,
the query algorithm never returns a negative answer when the query element
is in N— but may return false positives with probability ε; i.e., the query
algorithm returns a positive answer given a query element not in N . Note
that if we desire no false positives, rather than no false negatives, this is
equivalent to storing a one-sided ε-error scheme on the complement of N .

2. Two-sided ε-error schemes: Schemes which permit both false positives and
false negatives with probability ε.

Non-adaptive or Adaptive: In non-adaptive schemes the locations of the
data structure to be probed are fixed based only on the query. In contrast,
in adaptive schemes the location of only the first probe is fixed based on the
query, whereas the locations of subsequent probes can also depend upon the
bits returned by prior probes. Thus, we can think of a (deterministic) adaptive
scheme as a binary decision tree of depth t, where the root represents the first
bit read, and the left/right children represent the location of which bit to read
next, depending on whether the root represents a zero/one, respectively. Note
that to be adaptive, the scheme need only have two nodes at the same level in
the tree where the locations probed differ.

From the above discussion we note that any non-adaptive scheme can simulate
an adaptive t-probe scheme, at the cost of doing at most an exponential (2t− 1)
number of probes: simply probe all the locations in the decision tree and examine
the bits to determine the path that would have been followed by the adaptive
scheme.

Non-explicit or Explicit: A non-explicit scheme can be thought of as an
existential proof. It essentially shows that there is a storage scheme that achieves
the desired space bounds, such that membership queries can be answered in the
desired number of probes, but does not provide intuition as to how to construct
it efficiently, or how a query algorithm would compute which bits to probe. On
the other hand, explicit schemes are divided into two categories:

1. Explicit storage scheme: an explicit storage scheme is one that, given N , can
compute the data structure of s bits in time polynomial in s.

2. Explicit query scheme: an explicit query scheme is a (n,m, s, t)-scheme where
the locations of the probes to be performed by the query algorithm are
computable in time polynomial in t and lgm, for any query element q ∈
[1,m].

We use the terminology fully explicit scheme to describe a scheme that has both
of the above properties.

A Survey of Data Structures in the Bitprobe Model 307

Note that the query algorithm is only aware of the values n, m, s, t, and
the query element. So, if the scheme requires the use of prime numbers of size
Θ(p) (e.g., to be used for describing a finite field, or a hash function) then these
primes must be acquired by the query algorithm. They can be acquired in one
of two ways. The first method is by computing the prime number using a pre-
defined deterministic strategy that matches the one used by the data structure;
presumably for the primes to be useful they have to be shared between the
query algorithm and the data structure. The second method is for the query
algorithm to read the prime number, via Θ(lg p) probes, directly from the data
structure. Indeed, there are schemes that use the second method, which we
discuss later. However, if we choose the former strategy, we make the observation
that, at present, all deterministic methods for computing a prime number of size
Θ(p) that take O(polylog(p)) time rely on Cramér’s Conjecture [47] (or similar
conjectures). Without assuming any such conjecture the best time bound for
a deterministic algorithm is Õ(p0.525) [47]. Thus, unless we assume Cramér’s
conjecture, the query algorithm cannot make use of arbitrary prime numbers of
size Θ(mε), for any constant ε > 0, in a fully explicit scheme.

2.2 Deterministic Schemes

In this section we adopt the notation of Radhakrishnan, Shah, and Shanni-
grahi [41] and use sN(n,m, t) to denote the minimum space s such that there
exists a deterministic non-adaptive (n,m, s, t)-scheme. We use sA(n,m, t) anal-
ogously for adaptive schemes. A summary of the results discussed in this section
can be found in Table 1.

The first effort to address the worst-case behaviour of the membership problem
in the bitprobe model was that of Buhrman et al. [11]. They showed that(

m

n

)
≤ max

i≤nt

(
2sA(n,m, t)

i

)
. (1)

As pointed out by Alon and Feige [1] this bound can be written as:

sA(n,m, t) = Ω(tn1−1/tm1/t) , (2)

when n ≤ m1−ε, for some constant ε > 0. The bound is proved via an information
theory argument. Note that this bound implies that the trivial (n,m,m, 1)-
scheme is optimal to within constant factors. It also implies (Corollary 1.1 in [11])
that FKS-hashing makes an optimal number of probes (to within a constant
factor) for schemes that use Θ(n lgm) bits of space, when n ≤ m1−ε, for some
constant ε > 0. Later, Pagh [37] improved the upper bound of FKS-hashing,
describing a data structure that uses Θ(lg(m/n)+1) probes, and achieves space
within a constant factor of the information theory lower bound. For the case when
n = Θ(m), which is not covered by the lower bound of Equation 1, Viola [48] has
shown that, for all sufficiently large m divisible by 3, sA(m/3,m, t) ≥ lg

(
m

m/3

)
+

m/2O(t) − lgm.

308 P.K. Nicholson, V. Raman, and S.S. Rao

Table 1. Summary of results for deterministic membership schemes in the bitprobe
model. A dagger (†) in the “Type” column indicates that the scheme is fully explicit.

Type Bound Constraints Reference

Lower Bound
(
m
n

) ≤ maxi≤nt

(
2sA(n,m,t)

i

)
[11]

Lower Bound sA(n,m, t) = Ω(tn1−1/tm1/t) n ≤ m1−ε for ε > 0 [11,1]

Lower Bound sA(m/3,m, t) ≥ lg (m
m/3

)
+m/2O(t) − lgm m divisible by 3 [48]

Lower Bound sN (n,m, 3) = Ω(n1/2m1/2/ lg1/2 m) Valid when n > 16 lgm [1]

Upper Bound† sA(n,m,Θ(lgm)) ≤ lg (m
n

)
+ o(lg

(
m
n

)
) [10,36,38]

Upper Bound† sA(n,m,Θ(lg(m/n)) ≤ Θ(lg
(
m
n

)
) [37]

Upper Bound† sA(n,m, t) = O(nt′m1/t′)
t′ = t−Θ(lg n+ lg lgm) and

[11]
t > Θ(lg n+ lg lgm)

Upper Bound† sA(n,m, t) = O
(
tnm1/(t−n+1)

)
t > n ≥ 2 [41]

Upper Bound sA(n,m, t) = O
(
ntm1/(t−(n−1)(t−1)21−t)

)
t > n ≥ 2 [41]

Upper Bound† sA(n,m, t) ≤ (2t − 1)m1/(t−min{2�lgn�,n−3/2}) t > 2�lgn�, n ≥ 3 [29]

Upper Bound sN (n,m, t) = O(ntm4/(t+1)) t is odd [11]

Upper Bound† sA(n,m, lg lgn� + 2) = o(m) n = O(m1/ lg lgm) [40]
Upper Bound† sA(n,m, lg(n+ 1)� + 1) ≤ (n+ lg(n+ 1)�)√m [40]
Upper Bound sA(n,m, 2) = O((mn lg(lg(m)/n))/ lgm) n < lgm [1]

Upper Bound sA(n,m, 3) = O(n1/3m2/3) [1]

Upper Bound sN (n,m, 4) = O(n1/3m2/3) [1]
Upper Bound† sN (n,m,Θ(

√
n lg n)) = O(

√
mn lg n) [44]

When both t and n are very small relative to m, the primary concern is with
the exponent of m. In particular, the goal is to make the exponent as close to
the Equation 2 lower bound of 1/t as possible, even though— as we shall see—
it is not possible even when n = 2. For upper bounds, Buhrman et al. showed

sN (n,m, t) = O(ntm4/(t+1)) for odd t, and (3)

sA(n,m, t) = O(nt′m1/t′) , (4)

where t′ = t−Θ(lg n+lg lgm) and t > Θ(lg n+lg lgm). The first bound is non-
explicit and relies on the existence of a special kind of expander graph, whereas
the second is fully explicit and generalizes FKS-hashing. The first bound shows
that non-adaptivity is not too restrictive, since the exponent in the space bound
for the non-adaptive scheme is only about four times larger than that of the lower
bound in Equation 2. Compare this with our earlier discussion of simulating an
adaptive scheme using a non-adaptive scheme that proved non-adaptivity was
no more than exponentially worse. The exponent in the second bound matches
the lower bound, after subtracting Θ(lg n+lg lgm) probes. Note that the lg lgm
term comes from reading prime numbers stored by the data structure (see our
earlier discussion regarding prime numbers).

Radhakrishnan, Raman, and Rao [40] focused on explicit deterministic con-
structions for small numbers of probes, describing a fully explicit scheme that,
for n = O(m1/ lg lgm), shows sA(n,m, �lg lg n� + 2) = o(m). They also gave
the following useful fully explicit bound: sA(n,m, �lg(n + 1)� + 1) ≤ (n +
�lg(n + 1)�)

√
m. The idea is to divide the universe into buckets of size

√
m,

A Survey of Data Structures in the Bitprobe Model 309

and assign �lg(n + 1)� + 1 bits to each bucket, indicating the rank of the
largest element stored in the bucket. Rao [44] described several non-adaptive
schemes. His main non-adaptive result is a fully explicit scheme3 showing that:
sN (n,m,Θ(

√
n lgn)) = O(

√
mn lgn).

Later, Alon and Feige [1] improved the result of Radhakrishnan, Raman, and
Rao (that we stated first), for the case when n < lgm, by providing an explicit
storage scheme showing sA(n,m, 2) = O((mn lg(lg(m)/n))/ lgm). The storage
scheme makes use of an explicit construction of regular bipartite graphs of high
girth, combined with an application of Hall’s Theorem. They also describe non-
explicit schemes showing that sA(n,m, 3) = O(n1/3m2/3), and sN (n,m, 4) =
O(n1/3m2/3), based on similar graph and hypergraph theoretic techniques. They
note that if the number of probes is increased to a larger constant, these non-
explicit schemes can be converted into explicit storage schemes. Finally, they
showed that if n > 16 lgm, sN (n,m, 3) = Ω(n1/2m1/2/ lg1/2 m). This lower
bound is proved using techniques from extremal hypergraph theory4.

Radhakrishnan, Shah, and Shannigrahi [41] presented two results. The first is
a fully explicit scheme that, for t > n ≥ 2, shows

sA(n,m, t) = O
(
tnm1/(t−n+1)

)
. (5)

The second result is a non-explicit scheme that, for t > n ≥ 2, shows

sA(n,m, t) = O
(
ntm1/(t−(n−1)(t−1)21−t)

)
. (6)

Equation 5 is proved using a recursive unary encoding scheme, whereas Equa-
tion 6 is proved by a probabilistic argument. The probabilistic argument essen-
tially sends all the elements in N into one table from a set of 2t−1 possible tables.
Each table has its own hash function, which is assumed to assign elements to
table entries uniformly at random. The argument shows that false positives can
be avoided by deleting at most half the elements from the universe. Thus, by
remapping to a universe of size 2m, we can store a universe of size m using
this scheme. Note that although both Equations 5 and 6 approach the optimal
space bound exponent for fixed n and sufficiently large t, the second bound is
significantly stronger when n is close to t.

Recently, Lewenstein, Munro, Nicholson and Raman [29] reduced the gap
between between existing explicit and non-explicit schemes by describing a fully
explicit scheme, for t ≥ 2�lg n�+ 1, showing that:

sA(n,m, t) ≤ (2t − 1)m1/(t−min{2
lgn�,n−3/2}) . (7)

The scheme uses a recursive decomposition of the universe into buckets, assigning
two bits for each bucket.

3 Although some of the schemes presented by Rao [44] require Cramér’s conjecture in
order to be fully explicit, the main result (Corollary 4.2.7) does not.

4 See also a survey by Blue [4] of the techniques used by Alon and Feige for non-
adaptive upper and lower bounds.

310 P.K. Nicholson, V. Raman, and S.S. Rao

Table 2. Summary of results for deterministic membership schemes in the bitprobe
model, for the special case when n = 2. A dagger (†) indicates that the scheme is fully
explicit.

Scheme Lower Bound Upper Bound Constraints Reference

sA(2,m, 1) Ω(m) O(m)† [11]

sA(2,m, 2) Ω(m4/7) O(m2/3)† Ω(m2/3) lower bound for a restricted class [41,40]

sA(2,m, 3) Ω(m1/3) O(m2/5)† [11,41,29]

sN (2,m, 2) Ω(m) O(m)† [11]
sN (2,m, 3) Ω(

√
m) O(

√
m)† [11,41]

sA(2,m, t) Ω(m1/t) O(t2m1/(t−1))† [41]

sA(2,m, t) Ω(m1/t) O
(
tm1/(t−(t−1)21−t)

)
[41]

sA(2,m, t) Ω(m1/t) (2t − 1)m1/(t−22−t)† [29]

The First Non-trivial Special Case, When n = 2: If n = 1 then the
scheme we discussed earlier can achieve the bound s(1,m, t) = tm1/t, which
matches the exponent-of-m in the lower bound of Equation 2. The idea is to
store t characteristic bit vectors; one for each 1/t-th fraction of the bits of the
sole element to be stored. The first non-trivial special case that has been studied
heavily, though is still not very well understood, is when n = 2. Equation 2
implies sA(2,m, 1) = Ω(m), which raises the question of how the bound behaves
for other values of t. We summarize the results for this special case in Table 2.

Buhrman et al. [11] showed that for non-adaptive schemes, adding a second
probe does not improve the space bound over one probe, i.e., sN (2,m, 2) =
Ω(m). However, if adaptivity is permitted it is possible to get a o(m) space
bound. This shows a strict separation between the power of adaptive and non-
adaptive probes. However, rather surprisingly, even the 2-probe case is still not
completely settled! For upper bounds, Radhakrishnan, Raman, and Rao [40]
showed that sA(2,m, 2) = O(m2/3) via a subtle fully explicit scheme. They also
proved a matching lower bound for a restricted class of schemes, but could not
show it in general. Later, Radhakrishnan, Shah, and Shannigrahi [41] showed
that sA(2,m, 2) = Ω(m4/7) by modelling the problem as a graph, and mak-
ing a forbidden subgraph argument. Interestingly, this is the only lower bound
for adaptive schemes that beats the bound of Equation 2 when n � m. They
also conjectured that the true lower bound asymptotically matches the O(m2/3)
upper bound.

For t = 3, the complexity of non-adaptive schemes is settled [11,41] asymp-
totically: sN (2,m, 3) = Θ(

√
m). However, for adaptive schemes there are no

lower bounds other than that of Equation 2. Plugging n = 2 and t = 3 into
Equation 6 implies there is a non-explicit scheme with sA(2,m, 3) = O(m2/5),
whereas the fully explicit scheme of [40, Theorem 1] only yields the bound
sA(2,m, 3) = O(m1/2). For general values of t ≥ 3 in the n = 2 case, the
scheme of Equation 6 yields the following bound:

sA(2,m, t) = O
(
tm1/(t−(t−1)21−t)

)
. (8)

A Survey of Data Structures in the Bitprobe Model 311

Radhakrishnan, Shah, and Shannigrahi [41] pointed out that by using limited
independence their scheme can be turned into explicit storage scheme. However,
they left finding a fully explicit scheme that matches their non-explicit bound
in this case as an open problem. This open problem was recently solved by
Lewenstein, Munro, Nicholson and Raman [29], who describe a fully explicit
scheme that matches Equation 8 when t = 3, and improves upon it when t > 3
and 2t = o(mε), for any constant ε > 0. They show that:

sA(2,m, t) ≤ (2t − 1)m1/(t−22−t) . (9)

The scheme is a natural generalization of the earlier 2-element 2-probe scheme
of Radhakrishnan, Raman, and Rao [40], but also uses a property of modular
arithmetic in a subtle way. The construction of a fully explicit scheme matching
the bound of Equation 6 for n ≥ 3 continues to be open.

2.3 Randomized Schemes

For randomized schemes, upper and lower bounds for the membership prob-
lem are better understood. As in the deterministic setting, the first results
were those of Buhrman et al [11], who showed that there is a two-sided ε-error
(n,m,O((n lgm)/ε2), 1)-scheme, for 0 < ε ≤ 1/4. The scheme is non-explicit and
based on the existence of certain kinds of expander graphs, and a special kind
of cover-free family of sets called a Nisan-Wigderson design [33]. They also show
that the scheme is almost optimal, by proving that any two-sided ε-error scheme
with n/m1/3 ≤ ε ≤ 1/4 must occupy Ω((n lgm)/(ε lg ε)) bits of space. Using
similar techniques, they also prove the existence of (i.e., show there is a non-
explicit) one-sided ε-error (n,m,O((n2 lgm)/ε2), 1)-scheme, for 0 < ε ≤ 1/4.

At the cost of increasing the space by a (lgm)-factor they show how to make
their one-sided error scheme fully explicit5. Furthermore, they show that this
quadratic-in-n space term is necessary for one-probe scheme, by proving a lower
bound of Ω(n2/(ε2 lg(n/ε)) bits of space for any one-probe, one-sided ε-error
scheme, where n/m1/3 ≤ ε ≤ 1/4. Both the one-sided and two-sided lower
bounds are proved using lower bounds for cover-free families of sets. Finally,
they show that if a constant t > 1 probes are allowed, there is a one-sided
ε-error (n,m,O(n1+δ lgm), t)-scheme, for any constant δ > 0.

Later, Ta-Shma [46] gave an explicit construction of a two-sided ε-error

(n,m, n2O(((lg lgm)/ε)3), 1)-scheme. This improves upon the Buhrman et al.’s
scheme when lgn = Ω((lg lgm+ lg(1/ε))3).

3 Integer Counters with Increment and Decrement

In this section, we consider the problem of representing integers using close to
the optimal number of bits, while also supporting increment and decrement op-
erations efficiently. If we use the standard binary representation of integers, an

5 We note that their scheme uses finite fields of order Θ(n lgm). Thus, if n = Ω(mε)
for any ε > 0, then this scheme is only fully explicit assuming Cramér’s Conjecture.

312 P.K. Nicholson, V. Raman, and S.S. Rao

integer in the range [0, . . . , 2n − 1] can be represented using n bits (which is
optimal), but supporting increment and decrement operations in this represen-
tation requires reading and modifying Θ(n) bits in the worst case. Using Gray
codes [25] to represent the integers, one can reduce the number of bits that need
to be modified during each increment or decrement operation to 1, but it still
requires Θ(n) bits to be read in the worst case. On the other hand, one can show
that any deterministic scheme that supports increment or decrement operations
on an n-bit representation of integers in the range [0, . . . , 2n − 1] is required to
read lg n + 1 bits and modify Ω(1) bits in the worst case (see Section 3.2). In
this section we survey the integer representations whose performance is close
to these lower bounds. We also briefly discuss the representations supporting
addition and subtraction operations efficiently.

Applications of representing integers using a positional number system (such
as the standard binary representation) to binomial queues has been first studied
by Vuillemin [49]. Redundant binary counters studied by Clancy and Knuth [12]
and by various others have been used to making purely functional and persistent
data structures more efficient. Their applications to data structures such as heaps
and random-access lists are explored by Okasaki [34] (see also [16] for more appli-
cations). An application of maintaining a counter under increment/decrement
operations in O(1) amortized time in the bitprobe model to a space-efficient
representation of a dynamic multiset (which in turn can be used to obtain an
“optimal dynamic Bloom filter”) has been described in [35].

3.1 Problem Definition and Notation

We define a counter as any data structure which represents integers modulo
L, for any positive integer L, using d bits where 2d ≥ L. We refer to d as the
dimension of the counter. The data structure supports two operations called
increment and decrement where increment (resp. decrement) refers to changing
the counter to represent its next (resp. previous) value modulo L. The space-
efficiency of a counter is the ratio L/2d. A counter with space-efficiency equal to
one is referred to as a space-optimal counter, while a counter with space-efficiency
less than one as a redundant counter. For counters of dimension d with space-
efficiency e, we define a (d, e, r, w)-scheme as a description of the increment and
decrement operations which can be performed by reading r bits and writing w
bits in the worst-case.

We define a code as any cyclic sequence of 2d distinct (i.e., all possible) d-bit
strings. We use X = xdxd−1 . . . x1 to denote a bit string in a code. We use r
and w to denote the number of bits read and written respectively during any
(increment or decrement) operation. The average number of bits read (written)
to perform increment/decrement is computed by adding the total number of
bits read (written) to perform L increments/decrements starting from zero, and
dividing this by L.

A Survey of Data Structures in the Bitprobe Model 313

3.2 Counters with Increment and Decrement

The standard n-bit binary representation of integers in the range [0, . . . , 2n − 1]
gives rise to a code, which we refer to as the Standard Binary Code (SBC). It
uses n bits xnxn−1 . . . x1 to represent an integer in the range [0, . . . , 2n − 1],
and gives an (n, 1, n, n)-scheme. (Although its worst-case performance is bad,
the average number of bits read and written to perform increment/decrement is
only 2.) A Gray code is any code in which successive bit strings in the sequence
differ in exactly one position. Gray codes have been studied extensively owing
to their utility in digital circuits [45]. The problem of generating Gray codes has
also been discussed by Knuth [28]. The Binary Reflected Gray Code (BRGC) [25]
gives an (n, 1, n, 1)-scheme for increment/decrement. Bose et al. [6,26] developed
a different Gray code called Recursive Partition Gray Code (RPGC) to improve
the average-case read complexity. A counter of dimension n using RPGC requires
on average O(lg n) reads to perform increment/decrement operations.

For redundant counters, Munro and Rahman [43] gave an (n + 1, 1/2, lgn +
4, 4)-scheme, i.e., using one additional bit of space, the worst-case number of
bits read is reduced from n to logn + 4. This scheme represents the counter
using an n-bit BRGC in addition to a bit indicating the “delayed bit flip”. It
partitions the BRGC into two parts consisting of the lower lgn bits and the
upper n− lg n bits. During an increment or decrement operation, updates (i.e.,
bit flips) in the lower part are done immediately, but updates in the upper
part are done in a delayed manner, using the additional bit to keep track of
this information. For efficiency close to one, Bose et al. [6] describe an (n +
t lgn, 1−O(n−t), O(t lg n), 3)-scheme for any parameter t > 0. Their scheme uses
RPGC, and a technique to improve the space-efficiency at the cost of increased
read complexity. Fredman [18] provided a redundant (O(n), 1/2O(n), O(lg n), 1)-
scheme, that with a constant factor space overhead supports increments with a
logarithmic number of bit reads and a single bit write. Brodal et al. [7] improved
some of these schemes, as summarized in Table 3. The main ingredients of the
schemes of Brodal et al. [7] are: (i) using BRGC or RPGC to store the ‘lower
part’ while using SBC to store the ‘upper part’; (ii) using the least significant
bits of the upper part to store the additional ‘indicator bit’, achieving a trade-
off between the space efficiency and read complexity; and (iii) showing a one-bit
trade-off between the read and write complexities.

Lower Bound. The increment/decrement algorithms in any (d, e, r, w)-scheme
can be represented by a decision tree of height r in which the nodes are associated
with the positions in the d-bit sequence representing the counter. At each leaf
in the decision tree, we store the bits that are modified (written) along with
their positions. Now, if we have a (n, 1, r, w)-scheme with r ≤ �lg n�, then the
number of nodes in the decision tree is at most n − 1. Thus, at most n − 1 of
the n bits in the counter representation are ever read during any increment (or
decrement) operation. The bit(s) that is not read has to be modified (written)
without reading its value – otherwise, the efficiency will be less than 1. Since
without reading a bit, we can only set it to a fixed value (either 0 or 1), there
will be at least two different configurations which will be modified to the same

314 P.K. Nicholson, V. Raman, and S.S. Rao

Table 3. Summary of results for increment/decrement counters

Dimension
Space- Bits read (r) Bits written (w) Inc. &

Ref.
efficiency Average-case Worst-case Worst-case Dec.

n 1

2− 21−n

n

n Y Binary
n 1 Y [25]

6 lgn 1 Y [6]

O(lg(2c−1) n) c N [6]
O(lg n) n− 1 3 Y [7]

n+ 1 1/2 O(1) lg n+ 4 4 Y [43]

n+ lg n 2/n−O(2−n) 3 lg n+ 1 lg n+ 1 Y [17]

n+ t lg n 1−O(n−t) O(lg(2c) n) O(t lgn) 2c+ 1 (c ≥ 1) N [6]

O(n) 1/2O(n) O(lg n) O(lg n) 1 N [18]

n+ t ≥ 1− 1
2t

O(log log n)

log n+ t+ 1 3
N

[7]
log n+ t+ 2 2
log n+ t+ 3 1
log n+ t+ 2 3

Y
log n+ t+ 3 2

configuration after the operation, which violates the properties of a code (that
each configuration has a unique predecessor/successor). Hence, any (n, 1, r, w)-
scheme has r ≥ lg n+ 1.

3.3 Supporting Addition and Subtraction

To add an integer M to an integer N , where M and N are represented in SBC
or BRGC using m and n bits respectively, where m ≤ n, we need O(n) time
in the worst-case. Munro and Rahman [43] gave a representation which uses
n+O(log2 n) bits to represent an integer in the range [0, . . . , 2n − 1]. Peforming
addition or subtraction using this representation takes reading O(m + logn)
bits and writing O(m) bits in the worst-case. Brodal et al. [7] improved the
efficiency of this scheme, and also gave other schemes exhibiting different trade-
offs between the efficiency and the read complexity. Table 4 summarizes these
results.

Table 4. Summary of results for addition and subtraction operations

Efficiency Read Write Reference

1 n+m n Binary

Θ(1/nlog n) O(m + log n) O(m) [43]

≥ (1− 1/2t)log n O(m+ t log n)
O(m) [7]Ω(1/n) O(m + log n)

Θ(1) O(m+ log n log log n)

A Survey of Data Structures in the Bitprobe Model 315

4 Other Problems in the Bitprobe Model

Pǎtraşcu and Tarniţǎ [39] consider lower bounds in the bitprobe model for several
problems, such as dynamic partial sums and dynamic connectivity. They also
consider upper bounds for the greater-than problem. In the greater-than problem
the algorithm receives a number x1 ∈ [1,m] as input, and after seeing it is
allowed to flip tu bits in memory. Later, the algorithm receives another number
x2 ∈ [1,m] and is allowed to probe tq bits of memory to decide whether x1 >
x2. Fredman [20] had shown a lower bound of tu + tq = Ω(lgm/ lg lgm) for
this problem. Pǎtraşcu and Tarniţǎ [39] show a matching upper bound of tq =
tu = O(lgm/ lg lgm) for a generalization of the greater-than problem called the
coloured predecessor problem6. This problem is the same as the usual predecessor
problem, except that each element stores a “colour” drawn from a fixed set
of constant size. Instead of reporting the predecessor of an arbitrary position
x1 ∈ [1,m], we are asked to report the colour of the predecessor, if one exists.
Later, Mortensen, Pagh, and Pǎtraşcu [32] returned to the greater-than problem
and proved tight trade-off bounds of: tu = Θ(logtq m) and 2tq = Θ(logtu m).
Finally, Rahman [42] gave upper bounds for the coloured predecessor problem,
showing that tq = O(k2(lgm/ lg lgm)1/k) and tu = O(k lgm/ lg lgm) could be
achieved simultaneously, for any positive integer k.

Elias and Flower [15], and, later, Miltersen [30] studied the so-called full prob-
lem, in which the storage scheme represents some element x ∈ D, and answers the
query, “Is x ∈ D0?”, whereD0 is any subset ofD. Yao and Yao [51] studied a vari-
ant of the membership problem that, given a query element q, decides whether
there is an element stored in the data structure matching q, except with pos-
sibly 1 bit flipped. They showed this problem was solvable using Θ(lgm lg lg n)
probes into a data structure occupying Θ(n lgm lgn) bits of space. This result
was later improved by Brodal and Venkatesh [8], who described a data structure
that occupies O(n lgm lg lgm) bits and uses lgm probes to answer the query.
Demaine and López-Ortiz [13] proved lower bounds on the size of indexing struc-
tures for text retrieval in the bitprobe model. Gál and Miltersen [21] examined
the problem of evaluating polynomials in the bitprobe model. Viola [48] showed,
using information theoretic arguments, that to representm ternary values (trits)
such that an individual trit can be read using t (adaptive) probes requires space
(lg 3)m + m/2O(t) bits. This matches an upper bound by Dodis, Pǎtraşcu and
Thorup [14], up to the constant factor in the big-Oh.

Golynski [23] studied the problem of supporting rank and select queries on
bit vectors. Rank queries ask to count the number of 1 (or 0) bits in an ar-
bitrary prefix of the bit vector, and select queries ask for the position of the
j-th left-to-right occurence of 1 (or 0) in the bit vector. Golynski proved lower
bounds showing that, if the bit vector must be stored explicitly, the data struc-
tures stored in addition to the bit vector must occupy Ω(m lg lgm/ lgm) bits
(for arbitrary n) in order to answer rank and select queries in Θ(lgm) probes.
Density-sensitive bounds (i.e., bounds that are parameterized in terms of n)

6 Not to be confused with the coloured generalized union-split-find problem (c.f., [22]).

316 P.K. Nicholson, V. Raman, and S.S. Rao

have also been proved [23,24]. Finally, the recent work of Lewenstein et al. [29]
uses techniques from the membership problem to attack the problem of sup-
porting rank queries, range counting queries (i.e., counting the number of 1 bits
in an arbitrary range a bit vector), and range emptiness queries (i.e., returning
whether a single one bit exists in an arbitrary range), on bit vectors where both
n and t are small relative to m.

5 Open Problems

We conclude with a list of open problems:

1. Improve the lower bounds for the membership problem for the case of n = 2.
In particular, is the (n,m, 3m2/3, 2)-scheme of Radhakrishnan, Raman, and
Rao [40] optimal? What can be said for higher values of t?

2. Close the gap between explicit schemes and non explicit schemes for mem-
bership for n ≥ 3 elements. Can any of the non-explicit schemes (such as
those of Radhakrishnan et al. [41]) be made fully explicit?

3. Improve the read complexity for space-optimal counters. The best known
representation in terms of read complexity to support increment/decrement
operations, by Brodal et al. [7], requires reading n − 1 bits. This represen-
tation is obtained a simple generalization of a (4, 1, 3, 2)-scheme, which in
turn is obtained through an exhaustive search. Obtaining a representation
with O(1) efficiency that supports addition and subtraction operations with
optimal read and write complexities is another interesting open problem.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments and corrections to the preliminary version of this paper. The
first author was supported in part by a David Cheriton Scholarship, and a Derick
Wood Graduate Scholarship. The third author was supported in part by the
Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology
(Grant number 2012-0008241).

References

1. Alon, N., Feige, U.: On the power of two, three and four probes. In: Proceedings of the
Twentieth AnnualACM-SIAMSymposiumonDiscreteAlgorithms, SODA2009, pp.
346–354. Society for Industrial and Applied Mathematics, Philadelphia (2009)

2. Alt, H., Mehlhorn, K., Munro, J.I.: Partial match retrieval in implicit data struc-
tures. Inf. Process. Lett. 19(2), 61–65 (1984)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422–426 (1970)

4. Blue, R.: The Bit Probe Model for Membership Queries: Non-Adaptive Bit Queries.
Master’s thesis, University of Maryland (2009)

A Survey of Data Structures in the Bitprobe Model 317

5. Borodin, A., Fich, F.E., Meyer auf der Heide, F., Upfal, E., Wigderson, A.: A
tradeoff between search and update time for the implicit dictionary problem. Theor.
Comput. Sci. 58, 57–68 (1988)

6. Bose, P., Carmi, P., Jansens, D., Maheshwari, A., Morin, P., Smid, M.: Improved
methods for generating quasi-Gray codes. In: Kaplan, H. (ed.) SWAT 2010. LNCS,
vol. 6139, pp. 224–235. Springer, Heidelberg (2010)

7. Brodal, G.S., Greve, M., Pandey, V., Rao, S.S.: Integer representations towards
efficient counting in the bit probe model. In: Ogihara, M., Tarui, J. (eds.) TAMC
2011. LNCS, vol. 6648, pp. 206–217. Springer, Heidelberg (2011)

8. Brodal, G.S., Venkatesh, S.: Improved bounds for dictionary look-up with one error.
Information Processing Letters 75(1), 57–59 (2000)

9. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485–509 (2004)

10. Brodnik, A., Munro, J.I.: Membership in constant time and almost-minimum space.
SIAM Journal on Computing 28(5), 1627–1640 (1999)

11. Buhrman, H., Miltersen, P.B., Radhakrishnan, J., Venkatesh, S.: Are bitvectors
optimal? SIAM Journal on Computing 31(6), 1723–1744 (2002)

12. Clancy, M.J., Knuth, D.E.: A programming and problem-solving seminar. Tech.
rep., Stanford, CA, USA (1977)

13. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text re-
trieval. Journal of Algorithms 48(1), 2–15 (2003)

14. Dodis, Y., Pǎtraşcu, M., Thorup, M.: Changing base without losing space. In:
Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 593–602.
ACM (2010)

15. Elias, P., Flower, R.A.: The complexity of some simple retrieval problems. Journal
of the ACM (JACM) 22(3), 367–379 (1975)

16. Elmasry, A., Jensen, C., Katajainen, J.: Two skew-binary numeral systems and
one application. Theory Comput. Syst. 50(1), 185–211 (2012)

17. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic word problems. J. ACM 44(2),
257–271 (1997)

18. Fredman, M.L.: Observations on the complexity of generating quasi-Gray codes.
SIAM Journal on Computing 7(2), 134–146 (1978)

19. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst
case access time. Journal of the ACM (JACM) 31(3), 538–544 (1984)

20. Fredman, M.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

21. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379(3), 405–417 (2007)

22. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear planar
subdivisions. ACM Transactions on Algorithms 5(3), 28:1–28:51 (2009)

23. Golynski, A.: Optimal lower bounds for rank and select indexes. Theoretical Com-
puter Science 387(3), 348–359 (2007)

24. Golynski, A., Orlandi, A., Raman, R., Rao, S.S.: Optimal indexes for sparse bit
vectors. Algorithmica, 1–19 (2011)

25. Gray, F.: Pulse code communications. U.S. Patent (2632058) (1953)

26. Jansens, D.: Improved Methods for Generating Quasi-Gray Codes. Master’s thesis,
School of Computer Science, Carleton University (April 2010)

27. Knuth, D.E.: Sorting and searching: The art of computer programming III.
Addison-Wesley, Reading (1973)

318 P.K. Nicholson, V. Raman, and S.S. Rao

28. Knuth, D.E.: The Art of Computer Programming. Fascicle 2: Generating All Tu-
ples and Permutations (Art of Computer Programming), vol. 4. Addison-Wesley
Professional (2005)

29. Lewenstein, M., Munro, J.I., Nicholson, P.K., Raman, V.: Explicit data structures
in the bitprobe model (submitted manuscript, 2013)

30. Miltersen, P.B.: The bit probe complexity measure revisited. In: Enjalbert, P., Wag-
ner, K.W., Finkel, A. (eds.) STACS 1993. LNCS, vol. 665, pp. 662–671. Springer,
Heidelberg (1993), http://portal.acm.org/citation.cfm?id=646509.694667

31. Minsky, M.L., Papert, S.: Perceptrons: An Introduction to Computational Geom-
etry. The MIT Press (1969)

32. Mortensen, C.W., Pagh, R., Patrascu, M.: On dynamic range reporting in one
dimension. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 104–111. ACM (2005)

33. Nisan, N., Wigderson, A.: Hardness vs randomness. Journal of Computer and Sys-
tem Sciences 49(2), 149–167 (1994)

34. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
35. Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: SODA, pp.

823–829. SIAM (2005)
36. Pagh, R.: Low redundancy in static dictionaries with constant query time. SIAM

Journal on Computing 31(2), 353–363 (2001)
37. Pagh, R.: On the cell probe complexity of membership and perfect hashing. In:

Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC
2001, pp. 425–432. ACM, New York (2001)

38. Pǎtraşcu, M.: Succincter. In: Proceedings of the 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, pp. 305–313. IEEE Computer Society (2008)

39. Pǎtraşcu, M., Tarniţǎ, C.E.: On dynamic bit-probe complexity. Theoretical Com-
puter Science 380(1), 127–142 (2007)

40. Radhakrishnan, J., Raman, V., Rao, S.S.: Explicit deterministic constructions for
membership in the bitprobe model. In: Meyer auf der Heide, F. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 290–299. Springer, Heidelberg (2001)

41. Radhakrishnan, J., Shah, S., Shannigrahi, S.: Data structures for storing small sets
in the bitprobe model. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS,
vol. 6347, pp. 159–170. Springer, Heidelberg (2010)

42. Rahman, M.Z.: Data Structuring Problems in the Bit Probe Model. Master’s thesis,
University of Waterloo (2007)

43. Rahman, M.Z., Munro, J.I.: Integer representation and counting in the bit probe
model. Algorithmica 56(1), 105–127 (2010)

44. Rao, S.S.: Succinct Data Structures. Ph.D. thesis, Institute of Mathematical Sci-
ences (2001)

45. Savage, C.: A survey of combinatorial Gray codes. SIAMReview 39, 605–629 (1996)
46. Ta-Shma, A.: Storing information with extractors. Information Processing Let-

ters 83(5), 267–274 (2002)
47. Tao, T., Croot III., E., Helfgott, H.: Deterministic methods to find primes. Math-

ematics of Computation 81(278), 1233–1246 (2012)
48. Viola, E.: Bit-probe lower bounds for succinct data structures. SIAM Journal on

Computing 41(6), 1593–1604 (2012)
49. Vuillemin, J.: A data structure for manipulating priority queues. Commun.

ACM 21(4), 309–315 (1978)
50. Yao, A.C.: Should tables be sorted? J. ACM 28(3), 615–628 (1981)
51. Yao, A.C., Yao, F.F.: Dictionary look-up with one error. Journal of Algo-

rithms 25(1), 194–202 (1997)

http://portal.acm.org/citation.cfm?id=646509.694667

Succinct Representations of Ordinal Trees

Rajeev Raman1 and S. Srinivasa Rao2,

1 Department of Computer Science, University of Leicester, UK
r.raman@mcs.le.ac.uk

2 School of Computer Science and Engineering, Seoul National University, S. Korea
ssrao@cse.snu.ac.kr

Abstract. We survey succinct representations of ordinal, or rooted, or-
dered trees. Succinct representations use space that is close to the ap-
propriate information-theoretic minimum, but support operations on the
tree rapidly, usually in O(1) time.

1 Introduction

An increasing number of applications such as information retrieval, XML pro-
cessing, data mining etc. require large amounts of tree-structured data to be
represented in main memory. Unfortunately, the memory consumption of clas-
sical ways of representing such data is often prohibitively large: for example,
the standard in-memory representation of XML documents in a number of com-
mon programming languages such as C++, Java or Python requires memory an
order of magnitude more than the size of the XML document on disk [40]. A
similar situation arises when attempting to build a suffix tree data structure to
index a collection of documents [31]. The large memory usage of standard tree
representations severely affects the scalability of such applications.

This problem has led to the intensive study of succinct, or highly space-
efficient, tree representations. This survey focusses on succinct ordinal trees,
i.e. rooted, ordered trees. The standard way to represent an ordinal tree is to
store pointers from each node to its first child and its next sibling; this represents
the structure of the tree using 2n pointers, or 2n�lgn� bits1. However, this is
significantly more space than necessary. As there are Cn−1 = 1

n

(
2n−2
n−1

)
ordinal

trees on n nodes, there is an information-theoretic worst-case lower bound of
lgCn−1 = 2n − O(lg n) bits on any ordinal tree representation, and there is a
trivial encoding of an n-node ordinal tree as an integer of �lgCn−1� bits: the tree
is encoded by its position in any systematic enumeration of all n-node ordinal
trees. It has been known for several years (see e.g. [30] and references therein)

� Work partly supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (Grant number 2012-0008241).

1 We use lg to denote the logarithm base 2.

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 319–332, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

320 R. Raman and S.S. Rao

that there are many—less brute-force—ways of encoding the structure of an n-
node ordinal tree in 2n + O(1) bits. Thus, a succinct tree representation can
potentially offer a Θ(lg n) factor space savings in the worst case.

At first sight it appears that it would be difficult to perform operations quickly
on such a compact representation: in particular, converting a compact represen-
tation to a standard one to perform operations defeats the purpose of considering
the compact representation. However, standard representations also have limita-
tions: for instance, in the basic first-child next-sibling representation described
above, navigating to the parent of a node takes O(n) time, unless a parent
pointer is added, increasing the space usage to 3n�lgn� bits from 2n�lgn� bits.
Determining the size of the subtree rooted at a node in O(1) time would require
storing an additional Θ(n lg n) bits, and adding more complex functionality such
as level-ancestor [6] or lowest common ancestor [1] would add a further Θ(n lg n)
bits each. In short, while standard representations can support a number of nav-
igational and other queries in ‘linear’ space (Θ(n) words or Θ(n lg n) bits), as
the set of operations increases, so does the constant within the Θ(n). To miti-
gate this space blow-up, real-world software libraries can sometimes attempt to
minimize the constant factor in the space usage by omitting some pointers, with
disastrous results [14, p144]. On the other hand, as we will see, a number of suc-
cinct representations have been developed that use only 2n+ o(n) bits of space,
and support a wide variety of navigational and other operations in O(1) time
on the word RAM model. A key advantage of succinct representations is that
as their functionality increases, usually only the constant in the o(n) increases.
Thus, adding new functionality has very little additional cost.

Furthermore, as a number of implementations and empirical evaluations have
demonstrated (see Section 5), the practical performance of succinct ordinal tree
representations is excellent, both in terms of memory usage and speed. They have
also only been integrated successfully into a range of applications [13,3,45]. Fur-
thermore, they are currently available in well-documented open-source libraries
such as SDSL [22] and succinct [37].

The paper is organised as follows. After some preliminaries, we discuss the
main succinct representations of ordinal trees. We then cover specialized topics
including dynamization and the redundancy of tree representations, and con-
clude with implementations, empirical evaluations and practical issues.

2 Preliminaries

2.1 Terminology

Succinct ordinal trees can be dynamic, i.e. allow changes to the tree, or static.
Our focus will be more on static trees, though we address dynamization issues
in Section4.1. For static trees, we assume that the input tree is pre-processed
to obtain a succinct representation: we do not normally focus on the time and
space requirements for the pre-processing (which is, however, an important issue
in practice). The space used by the succinct representation of an n-node tree can
be expressed as I(n) + R(n) bits where I(n) = �lgCn−1� = 2n− O(lg n) is the

Succinct Representations of Ordinal Trees 321

information-theoretic lower bound and R(n) ≥ 0 is called the redundancy. The
redundancy is a term of great practical significance, and studying the trade-off
between redundancy and query time is of fundamental importance.

Succinct tree representations are of two kinds: systematic (also known as suc-
cinct indices) and non-systematic. In systematic tree representations, we sep-
arate the storage for the encoding of the tree (which usually takes 2n + O(1)
bits) from the succinct index, an auxiliary data structure created during pre-
processing to help answer queries rapidly. A query is answered by reading O(1)
words (each ofO(lg n) consecutive bits) from the query and the succinct index. In
a systematic representation, the redundancy is essentially the size of the succinct
index. Separating the ‘structure of the tree’ from auxiliary data structures not
only makes it easier to show lower bounds on the redundancy needed to achieve
a particular query time [19,24], it also has several algorithmic advantages [4].
Non-systematic representations do not have this conceptual separation, but it is
known that the redundancy needed to achieve a particular query time is lower
for non-systematic representations than for systematic representations.

2.2 Features of Succinct Tree Representations

Succinct tree representations require some care in their use. Firstly, the number-
ing of nodes is based upon the position of the representation of the nodes in the
encoding of the tree. This is particularly problematic in the dynamic case, since
a single update may change the numbers of every node in the tree. Furthermore,
certain operations can be implemented efficiently in one tree encoding, but are
hard or impossible to implement in another. Since different encodings number
nodes differently, it may not be possible to come up with a succinct represen-
tation that supports the union of the operations of two encodings. Finally, this
way of numbering nodes sometimes means that the ‘natural’ numbering of nodes
is a sequence of non-consecutive integers from the range {1, . . . , 2n+O(1)}.

2.3 FIDs

Given a subset S from a universe U , we define a fully indexable dictionary (FID,
from now on) on S to be any data structure that supports the following opera-
tions on S in constant time, for any x ∈ U , and 1 ≤ i ≤ |U |:

– rank(x): return the number of elements in S that are less than x,
– select(i, S): return the i-th smallest element in S, and
– select(i, S̄): return the i-th smallest element in U \ S.

Lemma 1. [41] Given a subset of size n from the universe [m], there is a FID
that uses lg

(
m
n

)
+O(m lg lgm/ lgm) bits.

Given a bitvector B, we define its FID to be the FID for the set S where B is
the characteristic vector of set S.

322 R. Raman and S.S. Rao

3 Ordinal Tree Representations

In this section we describe the main succinct ordinal tree representations.

3.1 Operations on Ordinal Trees

We first introduce a set of useful operations that are supported by various ordinal
tree representations. Given an ordinal tree, we consider the following operations:

– parent(x): returns the parent of node x;
– child(x, i): returns the i-th child of node x, for i ≥ 1;
– child rank(x): returns the number of left siblings of node x plus 1;
– depth(x): returns the depth of node x;
– level ancestor(x, i): returns the ancestor of node x that is i levels above

x, for i ≥ 0 (if x is at depth d, it returns the ancestor of x at depth d− i);
– desc(x): returns the number of descendants of node x;
– degree(x): returns the degree of node x;
– height(x): returns the height of the subtree rooted at node x;
– LCA(x, y): returns the lowest common ancestor of the nodes x and y;
– left leaf(x) (right leaf(x)): returns the leftmost (rightmost) leaf of the

subtree rooted at node x;
– leaf rank(x): returns the number of leaves up to node x in preorder;
– leaf select(i): returns the i-th leaf among all the leaves from left to right;
– leaf size(x): returns the number of leaves in the subtree rooted at node x;
– rank

PRE/POST/DFUDS/LEVEL
(x): returns the position of node x in the preorder,

postorder, DFUDS order or level order traversal of the tree;
– select

PRE/POST/DFUDS/LEVEL
(j): returns the j-th node in the preorder, postorder

or DFUDS order or level order traversal of the tree;
– level left(i) (level right(i)): returns the first (last) node visited in a

preorder traversal among all the nodes whose depths are i;
– level succ(x) (level pred(x)): the level successor (predecessor) of node x,

i.e. the node visited immediately after (before) node x in a preorder traversal
among all the nodes that are at the same level as node x.

3.2 Jacobson’s Representation

Jacobson [26] proposed the first succinct tree representation for ordinal trees. His
representation is based on the level order unary degree sequence (LOUDS) of a
tree, which visits the nodes in a level-order traversal of the tree and encodes their
degrees in unary. (In a level-order traversal of a tree, the root is visited first, fol-
lowed by all the children of the root, from left to right, followed by all the nodes
at each successive level.) See Figure 1 for an example. This representation uses
2n+O(1) bits to encode an ordinal tree on n nodes, and an additional o(n) bits to
support rank and select operations on the encoding. Jacobson considered these
operations in the bit probe model, and showed how to support them in O(lg n)

Succinct Representations of Ordinal Trees 323

Fig. 1. An example of the DFUDS, LOUDS and BP sequences of a given ordinal tree

probes. Clark and Munro [10] further showed how to support the rank and
select operations in O(1) time under the word RAM model with Θ(lg n) word
size. Thus the LOUDSrepresentation supports parent, child and child rank

operations in O(1) time. In addition to these operations, it is straightforward
to support rank

LEVEL
, select

LEVEL
, level succ and level pred operations in

constant time.

3.3 Balanced Parenthesis Representation

Munro and Raman [33] proposed another type of succinct representation of trees
based on the isomorphism between balanced parenthesis sequences (BP) and or-
dinal trees. The BP sequence of a given tree is obtained by performing a depth-
first traversal, and writing an opening parenthesis each time a node is visited,
and a closing parenthesis immediately after all its descendants are visited. This
gives a 2n-bit encoding of an n-node tree as a sequence of balanced parenthe-
ses, and a node can be identified e.g. by the position of the opening parenthesis
of the pair corresponding to it. See Figure 1 for an example. Extending the
ideas from Jacobson [26], Munro and Raman showed how to support a few ba-
sic operations in constant time on a balanced parenthesis sequence of length n
using an auxiliary structure of size o(n) bits. By showing how to translate the
operations on the tree to the basic operation on the parenthesis sequence rep-
resenting it, Munro and Raman [33] presented a succinct representation of an
ordinal tree on n nodes in 2n+ o(n) bits based on BP, which supports parent,
desc, depth, rank

PRE/POST
and select

PRE/POST
in constant time, and child(x, i)

in O(i) time. Munro et al. [34] provided constant-time support for leaf rank,
leaf select, left leaf, right leaf and leaf size on the BP representation
using o(n) additional bits, which were used to design space-efficient suffix trees.
Chiang et al. [8] showed how to support degree in constant time. The support
for level ancestor, level succ and level pred in constant time was further

324 R. Raman and S.S. Rao

provided by Munro and Rao [36], which has applications in the succinct represen-
tations of functions. Lu and Yeh [32] showed how to support child, child rank,
height and LCA operations in constant time.

Using a different approach to support the operations, Sadakane and Navarro
[43] augmented the BP sequence with o(n)-bit auxiliary structure to obtain a
“fully functional” representation as described in Section 3.7.

3.4 Depth-First Unary Degree Sequence Representation

Benoit et al. [5] observed that by visiting the nodes in depth-first order (i.e.,
preorder) and encoding their degrees in unary (instead of visiting them in level
order to produce the LOUDS encoding), one can support other useful operations
such as desc. The resulting encoding of the tree is called the depth first unary
degree sequence (DFUDS). More specifically, the DFUDS sequence represents
a node of degree d by d opening parentheses followed by a closing parenthe-
sis. All the nodes are listed in preorder (an extra opening parenthesis is added
to the beginning of the sequence). See Figure 1 for an example. The DFUDS

number of a node is defined to be the rank of the opening parenthesis in its
parent’s description that corresponds to this node. Benoit et al. [5] presented
a succinct tree representation based on DFUDS that occupies 2n + o(n) bits
and supports child, parent, degree and desc in constant time. In their rep-
resentation, each node is referred to by the position of the first parenthesis in
the representation of the node. Jansson et al. [27] extended this representa-
tion using o(n) additional bits to provide constant-time support for child rank,
depth, level ancestor, LCA, left leaf, right leaf, leaf rank, leaf select,
leaf size, rank

PRE
and select

PRE
. Barbay et al. [4] further showed how to sup-

port rank
DFUDS

and select
DFUDS

. The operations rank
PRE

, select
PRE

, rank
DFUDS

and select
DFUDS

support the constant-time conversions between the preorder
number and DFUDS number of the same node, which is used to support vari-
ous queries on labeled trees by Barbay et al. [4].

3.5 Representations Based on Tree Covering

Another approach to represent ordinal trees is based on a tree covering algorithm
(TC). This approach, first proposed by Geary et al. [20], is based on an algorithm
to cover an ordinal tree with a set of mini-trees, each of which is further covered
by a set of micro-trees.

Geary et al. [20] proposed an algorithm to cover a given ordinal tree on n
nodes into O(n/M) mini-trees, each of size O(M), for a given parameter M .
This decomposition guarantees that any two mini-trees computed by this algo-
rithm are either disjoint, or only joined at their common root, and in addition,
every mini-tree, except possibly the one containing the root, has size Θ(M). See
Figure 2(a) for an example. The tree structure representing how these O(n/M)
mini-trees are connected is then stored using O(n lg n/M) bits. Similarly, each
mini-tree is further decomposed into O(M/M ′) micro-trees, each of size O(M ′),

Succinct Representations of Ordinal Trees 325

(a) (b)

Fig. 2. An example of covering an ordinal tree using the algorithm of (a)
Geary et al. [20], and (b) Farzan and Munro [15], with parameter M = 3.

for a parameter M ′, using the same algorithm, and the tree structures of all the
mini-trees (representing their micro-tree decomposition) is stored using a total
of O(n(lgM)/M ′) bits. Each of the micro-trees is represented as a pointer to a
table of size at most 22M

′
. This table stores the representations of all possible

micro-trees of size M ′.
By choosing M = �lg4 n� and M ′ = �(lg n)/24�, Geary et al. [20] obtain

a representation that takes 2n + o(n) bits. They further show how to sup-
port various operations (namely, child, child rank, depth, level ancestor,
desc, degree, rank

PRE/POST
and select

PRE/POST
) on the ordinal tree in constant

time by storing various auxiliary structures using o(n) bits. He et al. [25] ex-
tended the representation by supporting several additional operations, namely
LCA, height, left leaf, right leaf, leaf rank, leaf select, leaf size,
rank

DFUDS
, select

DFUDS
, level left, level right, level succ and level pred.

Farzan and Munro [15] modified the tree covering algorithm so that each
mini-tree has at most one node, other than the root of the mini tree, that is
connected to the root of another mini-tree. See Figure 2(b) for an example.
This simplifies the representation of the tree, as well as the auxiliary structures
needed to support various operations on the tree. They call this approach as the
uniform approach, and justify the name by demonstrating that this approach
can be applied to obtain succinct representations for various other families of
trees, including cardinal trees.

3.6 “Universal” Representation

The succinct tree representations described so far are systematic encodings: they
encode the structure of the tree as a bit-string of length 2n+ o(n) bits, together
with an index of o(n) bits, where the index depends upon the choice of structure
bit-string and the operations to be supported. Operations are supported in O(1)
time by reading O(1) words from the structure bit-string and/or the index.

326 R. Raman and S.S. Rao

Since the index depends on the choice of structure bit-string, which also de-
termines the node numbering, this approach leads to certain difficulties [17]. For
example, certain operations can be implemented efficiently using one encoding,
but are hard or impossible to implement in another. As noted in the introduc-
tion, it is not possible in general to create a representation that supports the
union of the sets of operations of two representations without losing optimality.
Even if we represent the given tree as two separate copies, each using the re-
spective structure bit-strings and index data structures (thus losing optimality)
we would still face the problem that a series of linked operations using both
representations would require us to be able to map nodes of one numbering to
the other, which is not always easy to achieve.

Farzan et al. [17] proposed an optimal-space succinct encoding for ordinal
trees that can return b = O(w) consecutive bits from the structure bit-strings
of other (BP, DFUDS or TC) encodings, where w is the word-size, in O(1)
time. Since we can emulate access to the structure bit-strings of other encod-
ings, by adding the appropriate index of o(n) bits, one can directly support any
operations supported by those encodings, with only a constant factor slowdown
and negligible additional space cost. This representation is called the universal
representation (UNIVERSAL).

3.7 “Fully-Functional” Representation

Sadakane and Navarro [43] proposed an ordinal tree representation that is based
on storing the structure bit-string of BP, and constructing auxiliary structures to
support the operations. But it differs from the BP representation by significantly
simplifying the auxiliary structures, and also improving the lower-order term in
space. In particular, they base navigation on the key primitive of excess search.
The excess of a position in a parentheses sequence is the difference between the
numbers of open and closed parentheses from the start of the sequence to the
given position (the depth of a node equals the excess of its open parenthesis in
the BP sequence). An excess search operation such as fwd excess(i, d) returns
the closest position j ≥ i whose where the excess equals the excess at i plus
d. They propose a simple and flexible data structure, called the range min-max
tree for supporting excess search, and then reduce a wide range of operations
on the ordinal trees to simple combinations excess search and other primitive
operations. The resulting representation, which they call as a fully-functional
(FF) representation, (i) is conceptually simpler than most of the earlier repre-
sentations, (ii) has smaller redundancy than the earlier ones, (iii) can be easily
implemented, and (iv) can be efficiently dynamized.

Table 1 shows the comparison between the functionalities of various succinct
tree representations that we described in this section.

Succinct Representations of Ordinal Trees 327

Table 1. Navigational operations supported in O(1) time on various succinct ordinal
tree representations. All these representations use 2n+ o(n) bits.

Operations LOUDS BP DFUDS TC/ UNIVERSAL FF

parent, child, child rank � � � � �
depth, level ancestor � � � �
degree � � � � �
height � � �
LCA � � � �
desc, leaf size � � � �
left leaf, right leaf � � � �
leaf rank, leaf select � � � �
rankPRE, selectPRE � � � �
rankPOST, selectPOST � � �
rankDFUDS, selectDFUDS � �
rankLEVEL, selectLEVEL �
level left, level right � �
level succ, level pred � � � �

4 Additional Topics

4.1 Dynamization

Following upon dynamization of binary trees [35,42], dynamization of succinct
ordinal trees was considered by Sadakane and Navarro [43] and Farzan and
Munro [16]. In the former, the update operations are taken to be edits on the
BP sequence representing the tree, e.g. adding or deleting a parenthesis pair,
while Farzan and Munro consider the slightly less general operations of adding
a leaf or a new node breaking an existing edge. In both cases, navigation and
other operations should continue to be supported once the update is complete.

A fundamental difference is in the way the operations are specified in the two
approaches. Sadakane and Navarro follow the static API of [33], and perform
many navigation operations via excess search. A key feature is that operations
on a node are specified by the position of that node in the BP bit-string. As
noted by Joannou and Raman [28], when using this approach, any navigation
operation has several steps that are known require Ω(lg n/ lg lg n) time (unless
updates are allowed to take more than poly-log time). However, the resulting
dynamization does support the full range of navigational operations supported
by the FF representation, together with the updates, in O(lg n/ lg lgn) time.

An alternative is the finger model [16,42,35], where updates are done us-
ing a finger, which is effectively a “pointer” to a node in the tree. A finger
may be moved using some navigational operations, and crucially, updates can
only happen in the vicinity of a finger. In the finger model, the non-constant
lower bounds above do not apply and both updates and navigation operations
can in fact be performed in O(1) time [16] (the time for updates is amortized).

328 R. Raman and S.S. Rao

However, the set of operations supported by Farzan and Munro is smaller than
that of Sadakane and Navarro: in addition to the basic navigation operations,
only child, child rank and desc are supported.

4.2 Compressibility

When considering the information-theoretic lower bound of 2n−O(lg n) bits, it
must be noted that this is a worst-case bound. The same information-theoretic
lower bound applies if the tree is a random tree or highly regular (e.g. complete
k-ary tree). On the other hand, trees we find in practice are usually compressible.
Although there has been work on compressing labelled trees [18], the work on
representing compressible ordinal trees is far less mature. Jansson et al. [27]
provided a definition of tree compressibility based on degree sequences (and
gave a combinatorial justification thereof). They showed that it is possible to
compress a given ordinal tree in the minimum possible space (according to their
measure of compressibility), plus lower-order terms, and still support operations
in O(1) time. Bille et al. [7] considered ordinal trees that are compressed by
sharing subtrees, which is a form of grammar-based compression. They showed
that by generalizing excess search to such grammar-compressed BP strings, it is
possible to support many of the operations of the representation of [43] in O(lg n)
time. The space used is O(m lg n) bits, where m is the size of the grammar that
generates the given tree.

4.3 Redundancy

The redundancy of a succinct representation is a quantity of both practical and
fundamental importance, and papers have increasingly focussed on obtaining
the best possible redundancy while still obtaining the best running times for
operations (typically O(1) time). As noted in the introduction, the redundancy
is viewed slightly differently for systematic and non-systematic representations.
For systematic representations, it is known that for the BP encoding, an index
of size Θ(n lg lgn/ lgn) bits is needed to perform a full set of navigational oper-
ations [24]. However, using a non-systematic encoding, it is possible to obtain a
redundancy of O(n/(lg n)c) for any constant c > 0 [39,43].

We close on a lighter note. We note that even without the redundancy caused
by requiring O(1)-time operations, the basic representations such as BP, DFUDS
etc. are at least 2n−O(1) bits long, while the lower bound is 2n−O(lg n) bits.
We consider how to eliminate this O(lg n)-bit additive overhead. As noted in
the introduction, a trivial encoding—encoding a given tree by its position in an
enumeration—achieves the lower bound, albeit at the cost of making operations
quite difficult. However, Golin et al. [23] note that binary trees can be encoded as
follows: write down the size of the left subtree of the root (which is a number from
{0, . . . , n−1}), and then recurse on the left and right subtrees; finally encode this
sequence as a mixed-radix number. This approach gives an optimal-space (zero
redundancy) encoding of binary trees such that operations can be performed in

Succinct Representations of Ordinal Trees 329

polynomial time; via the standard equivalence between binary and ordinal trees,
we also obtain an optimal succinct ordinal tree representation where navigation
can be performed in polynomial time.

5 Implementations and Experimental Evaluation

Succinct representations of trees have been applied in a number of practical
contexts. In the context of dictionary indexing, Clark [11] implemented succinct
binary trees, and an implementation of a compact trie, the Bonsai tree, was
used for text prediction and compression [12].

Ordinal tree implementations were apparently first studied in detail by Geary
et al. [21] who implemented a simplified version of the BP representation of
Munro and Raman (although [33] mentions a previous BP implementation by
Chupa [9], details appear not to be in the public domain). Delpratt et al. [14] con-
sidered engineering the LOUDS representation and suggested a useful practical
trick called double numbering. This addresses the issue that while the ‘natural’
numbering of notes in the succinct representation of an n-node tree is often as
non-consecutive integers from {1, . . . , 2n+O(1)}, for a variety of applications, a
‘compact’ numbering from {1, . . . , n} is desirable, particularly in order to asso-
ciate information with the nodes. In theory, this can often be achieved in O(1)
time by means of select, to convert a user-provided node number (in a compact
numbering) to the representation’s natural numbering, followed by the appro-
priate tree operation, finally followed by a rank operation to convert the answer
back to a node number in a compact numbering. However, this is a significant
overhead in practice, and Delpratt et al. note that it is often better to number a
node as a pair 〈x, y〉, where x and y number the node according to the compact
and natural numberings, as updating the pair during operations is often trivial.

Subsequently, Arroyuelo et al. [2] implemented a simplifiedO(lg n)-time excess
search algorithm based on [43] for navigating in the BP representation; the
resulting implementation appears to have similar speed performance, greater
functionality and better space usage to that of Geary et al. [21]. Joannou and
Raman [28] observe that the reason that the simple O(lg n)-time excess search of
Arroyuelo et al. performs comparably to the O(1)-time implementation of Geary
et al. for navigation is that navigation in ordinal trees (i.e. a sequence of steps
moving from a node to an adjacent one) induces a kind of locality of access in
the BP sequence; consequently, the O(lg n)-time worst-case cost may not be paid
frequently. They advocate the use of splay trees [44] as a data structure for excess
search to exploit this locality, and show good empirical performance. However,
they do not perform a theoretical worst-case analysis. They also present the first
empirical study of dynamic ordinal trees. Grossi and Ottaviano [38] present a
highly engineered version of excess search.

In general, the experimental results show that succinct ordinal tree represen-
tations are competitive with naive representations, even when both the succinct
and naive representations are too large to fit in cache, and small enough to fit
in main memory. Succinct representations are usually much faster in case the

330 R. Raman and S.S. Rao

succinct representation fits into faster memory (cache/main memory) while the
naive representation does not. Admittedly, an O(1)-time operation on a suc-
cinct ordinal tree can be more complex (in terms of the number of instructions
performed) than the same operation in a classical ordinal tree representation,
where an operation may be as simple as just following a pointer. However, when
storing relatively large data, following a pointer can incur a cache miss or a TLB
miss (which is even worse [29]). On the other hand, the best practical implemen-
tations of a succinct data structure will spend many instructions sequentially
accessing memory locations, which is usually very fast in practice. Furthermore,
since more information is packed into the faster levels of the memory hierarchy,
succinct data structures show better locality as well.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: On finding lowest common ancestors in
trees. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison, M.A.,
Karp, R.M., Strong, H.R. (eds.) STOC, pp. 253–265. ACM (1973)

2. Arroyuelo, D., Cánovas, R., Navarro, G., Sadakane, K.: Succinct trees in practice.
In: Blelloch, G.E., Halperin, D. (eds.) ALENEX, pp. 84–97. SIAM (2010)

3. Arroyuelo, D., Claude, F., Maneth, S., Mäkinen, V., Navarro, G., Nguyen, K.,
Sirén, J., Välimäki, N.: Fast in-memory XPath search using compressed indexes.
In: Li, F., Moro, M.M., Ghandeharizadeh, S., Haritsa, J.R., Weikum, G., Carey,
M.J., Casati, F., Chang, E.Y., Manolescu, I., Mehrotra, S., Dayal, U., Tsotras, V.J.
(eds.) ICDE, pp. 417–428. IEEE (2010)

4. Barbay, J., He, M., Munro, J.I., Satti, S.R.: Succinct indexes for strings, binary
relations and multilabeled trees. ACM Transactions on Algorithms 7(4), 52 (2011)

5. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

6. Berkman, O., Vishkin, U.: Finding level-ancestors in trees. J. Comput. Syst.
Sci. 48(2), 214–230 (1994)

7. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings. In: SODA, pp. 373–389. SIAM (2011)

8. Chiang, Y.T., Lin, C.C., Lu, H.I.: Orderly spanning trees with applications. SIAM
J. Comput. 34(4), 924–945 (2005)

9. Chupa, K.: Efficient Representation of Binary Search Trees. Master’s thesis, Uni-
versity of Waterloo (1997)

10. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended ab-
stract). In: ACM-SIAM SODA, pp. 383–391 (1996)

11. Clark, D.R.: Compact PAT trees. Ph.D. thesis, University of Waterloo, Waterloo,
Ontario., Canada (1998)

12. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: a compact representation of trees.
Softw. Pract. Exper. 23(3), 277–291 (1993)

13. Delpratt, O., Raman, R., Rahman, N.: Engineering succinct DOM. In: EDBT.
ACM Intl. Conference Proceeding Series, vol. 261, pp. 49–60. ACM (2008)

14. Delpratt, O., Rahman, N., Raman, R.: Engineering the LOUDS succinct tree
representation. In: Àlvarez, C., Serna, M. (eds.) WEA 2006. LNCS, vol. 4007,
pp. 134–145. Springer, Heidelberg (2006)

Succinct Representations of Ordinal Trees 331

15. Farzan, A., Munro, J.I.: A uniform approach towards succinct representation of
trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 173–184.
Springer, Heidelberg (2008)

16. Farzan, A., Munro, J.I.: Succinct representation of dynamic trees. Theor. Comput.
Sci. 412(24), 2668–2678 (2011)

17. Farzan, A., Raman, R., Rao, S.S.: Universal succinct representations of trees? In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 451–462. Springer, Heidelberg
(2009)

18. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1) (2009)

19. Gál, A., Miltersen, P.B.: The cell probe complexity of succinct data structures.
Theor. Comput. Sci. 379(3), 405–417 (2007)

20. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Transactions on Algorithms 2(4), 510–534 (2006)

21. Geary, R.F., Rahman, N., Raman, R., Raman, V.: A simple optimal representation
for balanced parentheses. Theor. Comput. Sci. 368(3), 231–246 (2006)

22. Gog, S.: Succinct data structure library, SDSL (2013),
https://github.com/simongog/sdsl

23. Golin, M.J., Iacono, J., Krizanc, D., Raman, R., Rao, S.S., Shende, S.: Encoding
2-d range maximum queries. CoRR abs/1109.2885v2 (2012)

24. Golynski, A., Grossi, R., Gupta, A., Raman, R., Rao, S.S.: On the size of succinct
indices. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698,
pp. 371–382. Springer, Heidelberg (2007)

25. He, M., Munro, J.I., Rao, S.S.: Succinct ordinal trees based on tree covering. ACM
Transactions on Algorithms 8(4), 42 (2012)

26. Jacobson, G.J.: Space-efficient static trees and graphs. In: IEEE Symposium on
Foundations of Computer Science, pp. 549–554 (1989)

27. Jansson, J., Sadakane, K., Sung, W.K.: Ultra-succinct representation of ordered
trees with applications. Journal of Computer and System Sciences 78(2), 619–631
(2012)

28. Joannou, S., Raman, R.: Dynamizing succinct tree representations. In: Klasing, R.
(ed.) SEA 2012. LNCS, vol. 7276, pp. 224–235. Springer, Heidelberg (2012)

29. Jurkiewicz, T., Mehlhorn, K.: The cost of address translation. In: Sanders, P., Zeh,
N. (eds.) ALENEX, pp. 148–162. SIAM (2010)

30. Katajainen, J., Mäkinen, E.: Tree compression and optimization with applications.
Int. J. Found. Comput. Sci. 1(4), 425–448 (1990)

31. Kurtz, S.: Reducing the space requirement of suffix trees. Softw., Pract. Ex-
per. 29(13), 1149–1171 (1999)

32. Lu, H., Yeh, C.: Balanced parentheses strike back. ACM Trans. Algorithms 4(3),
1–13 (2008)

33. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static
trees. SIAM J. Comput. 31(3), 762–776 (2001)

34. Munro, J.I., Raman, V., Rao, S.S.: Space efficient suffix trees. J. Algorithms 39(2),
205–222 (2001)

35. Munro, J.I., Raman, V., Storm, A.J.: Representing dynamic binary trees succinctly.
In: Kosaraju, S.R. (ed.) SODA, pp. 529–536. ACM/SIAM (2001)

36. Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 1006–1015. Springer, Heidelberg (2004)

https://github.com/simongog/sdsl

332 R. Raman and S.S. Rao

37. Ottaviano, G.: The succinct library (2013), https://github.com/ot/succinct
38. Grossi, R., Ottaviano, G.: Design of practical succinct data structures for large

data collections. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.)
SEA 2013. LNCS, vol. 7933, pp. 5–17. Springer, Heidelberg (2013)

39. Patrascu, M.: Succincter. In: FOCS, pp. 305–313. IEEE Computer Society (2008)
40. Poyias, A.: XXML: Handling extra-large XML documents. siXML technology

whitepaper (February 2013),
https://lra.le.ac.uk/bitstream/2381/27744/1/SiXDOMWhitepaper.pdf

41. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007); Preliminary version in SODA 2002

42. Raman, R., Rao, S.S.: Succinct dynamic dictionaries and trees. In: Baeten, J.C.M.,
Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719,
pp. 357–368. Springer, Heidelberg (2003)

43. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Charikar, M. (ed.)
SODA, pp. 134–149. SIAM (2010)

44. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

45. Tabei, Y.: Succinct multibit tree: Compact representation of multibit trees by using
succinct data structures in chemical fingerprint searches. In: Raphael, B., Tang, J.
(eds.) WABI 2012. LNCS, vol. 7534, pp. 201–213. Springer, Heidelberg (2012)

https://github.com/ot/succinct
https://lra.le.ac.uk/bitstream/2381/27744/1/SiXDOMWhitepaper.pdf

Array Range Queries

Matthew Skala

University of Manitoba, Winnipeg, Canada
mskala@cs.umanitoba.ca

Abstract. Array range queries are of current interest in the field of
data structures. Given an array of numbers or arbitrary elements, the
general array range query problem is to build a data structure that can
efficiently answer queries of a given type stated in terms of an interval of
the indices. The specific query type might be for the minimum element
in the range, the most frequently occurring element, or any of many
other possibilities. In addition to being interesting in themselves, array
range queries have connections to computational geometry, compressed
and succinct data structures, and other areas of computer science. We
survey recent and relevant past work on this class of problems.

Keywords: array, range query, document retrieval, range search, selec-
tion, range frequency, top-k.

1 Introduction

Given an array of numbers or arbitrary elements, the general array range query
problem is to build a data structure that can efficiently answer queries of a given
type stated in terms of an interval of the indices. For instance, we might ask for
the minimum element value that occurs in the range. It is possible to define a
nearly endless variety of such problems by making different choices for the type
of query to answer, the amount of space allowed, the model of computation, and
so on. Much work has been done on these problems, especially in the last few
years. Besides the steady procession of improvements in time and space bounds,
work on array ranges has led to new techniques and insights in data structure
design applicable to many other problems.

In this paper we survey current results on array range queries. In this intro-
duction we first define the scope of the survey and discuss classification of range
queries. Then we introduce some commonly-used techniques for these problems,
and in subsequent sections we describe current work in the field organized by
our classification.

We are primarily interested in range queries on arrays as such; that is, se-
quences of data indexed by consecutive integers. Geometric problems are typi-
cally approached using different techniques and are not the main focus here. The
1999 survey of Agarwal and Erickson gives detailed coverage of geometric range
query work up to that date [1], and we mention some recent geometric work rele-
vant to array range queries. Similarly, although many of the data structures used

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 333–350, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

334 M. Skala

for array range queries are related to those used for string searching problems,
our focus here is not on string search. Array ranges can be naturally general-
ized to queries on paths in trees, and we discuss some of that work without
attempting to cover it all.

Array range queries tend to be distinguished by small input and output sizes.
A query typically consists of just the starting and ending indices of the range;
in some problems there may also be something else in the query, such as a color
or a threshold, but seldom more than a constant number of such things. The
answer to a query is usually also of small size, such as a single element or just
an answer of “yes” or “no.” It is unusual for the output size to be as big as the
entire contents of the range.

Unless otherwise specified, we assume a RAM model of computation in which
the machine can perform operations on words of length O(log n) in unit time;
data structures of O(n) such words; and a static analysis, in which we are allowed
to see the entire array in advance and possibly process it in larger working space
to build the data structure, after which the element values cannot change. In
dynamic versions of array range query problems, the question arises of what is
an update. Changing the value of the element at one index, without changing the
number of elements nor the values at any other indices, may be the most natural
form of dynamic update for an array. However, because of the way they use
geometric data structures internally, many dynamic array range data structures
also support insertions and deletions, shifting all later elements up or down by
one index position, at no additional cost over changing the value of a single
element. Unless otherwise specified, we assume that a dynamic update can be
an insertion or deletion.

1.1 Classification of Array Range Queries

The unending desire for novel results has led researchers to consider a bewilder-
ing assortment of different kinds of array range query problems, and it may not
be possible to fit them all into a consistent classification scheme. However, we
can discern a few general categories that may be useful in organizing the discus-
sion. Very often, a single paper may describe several different problems, possibly
connected by a common data structure that cuts across our classification.

First, an array range query usually considers one of three things about array
element values to determine how they can satisfy the query. We discuss each of
these in its own section.

– The array elements may be values that have an order, typically real numbers,
with the ordering or magnitude of the numbers relevant to the query result.
In this case the element values are often called weights. These queries are
discussed in Section 2.

– The interesting thing about array elements may be only whether each value
does or does not occur in the range at least once, without regard for an
ordering of the values nor how many times each value occurs. Elements
considered this way are often called colors. These queries are discussed in
Section 3.

Array Range Queries 335

– The number of times each value occurs in the range, not only whether it is
zero or nonzero, may be important to the query result. Considering element
frequencies in this way can be said to combine weights (because some values
can be ranked above others) and colors (because the values as such are not
ordered). These queries are discussed in Section 4.

When considering the ordered element value (weight), a query may meaningfully
be stated in terms of the actual value, or its rank among the values that occur
in the query range. Similarly, a query based on color could be concerned with
an actual color value, or “the first (or k-th) color to occur in the range.” And a
frequency query could be in terms of a given value of the frequency (either a raw
number or a ratio to the query range length) or as a rank among frequencies,
such as the mode. In all three categories, then, we can describe range query
problems based on raw value and on rank, and that provides a second dimension
for our classifiation.

Having defined the property of interest, and whether to consider it as a raw
value or as a rank, we can describe different range query problems depending on
what information is given as input to the query.

– The values of interest may be completely determined by the problem, so that
a query consists of only a range of indices. Such problems can often be seen
as special cases of more general problems, of separate interest because they
may be easier than the general versions.

– A single value or rank of interest may be specified in the query.
– A threshold may be part of the query, with all values or ranks above or below

the threshold being of interest. In some cases, upper and lower thresholds
may give rise to significantly different problems. A closely-related category
allows an interval (two thresholds) to be given in the query and then matches
values within the interval, giving the effect of the intersection of an upper
and a lower threshold query, possibly with better bounds.

– A few problems have been described in which the query includes an exact
value or a threshold that can be chosen with generality, but the choice is
made during preprocessing, and must be the same for all queries.

Finally, there may be several different forms in which a query can return its
result, and different kinds of results from what would otherwise be the same
problem may require different data structures and have different bounds.

– The query may return a single element weight, color, or frequency matching
the criteria, or a rank on one of those properties. These six possibilities
correspond to the first two dimensions of our categorization.

– The query may return the index of an element at which the match occurs.
Many queries usually thought of as returning values (the previous category)
implicitly do it by returning indices where those values occur; but asking for
the index is a slightly stronger question, and may be more difficult.

– The query may return a list of all matching values or indices.
– The query may return only a decision result: “yes” or “no” to whether a

matching result occurs in the range at all.

336 M. Skala

1.2 Techniques for Array Range Query

Many range query data structures begin their preprocessing by doing rank space
reduction [38,22]. Rank space reduction starts with an array A[1..n] of arbitrary
elements and creates an array B[1..n] of integers in the range 1 to n, where each
element of B[i] represents the rank of A[i] among the set of values that occur in
A. A similar array B′ is created to translate the ranks back to element values
from A. If original values are ever needed, then the ranks from B can be looked
up in B′. This reduction means that the rest of the data structure can deal
exclusively with integers the size of n; and in particular, it can use the usual
RAM techniques to do predecessor queries in O(log logn) time.

If a query consists solely of an interval of indices into an array of size n, only
O(n2) distinct queries are possible. Then we could store the answers to all of
them in a table that size, and answer queries in constant time just by looking up
the answers in the table. Quadratic space is rarely satisfactory, but if we split
the input into blocks of size Ω(

√
n), there are O(n) intervals that start and end

on block boundaries and we could afford to store a constant-sized answer for
each of them in linear space. Many array range data structures use such a table
as the first step in a recursion that will eventually answer arbitrary queries.

It is also common practice to reduce to some other, already-solved array range
query problem. Indeed, many of the array range queries we discuss here originally
arise as reductions used to solve other problems. The rank and select queries
of the succinct data structures literature [61,60,72,46,79] are often invoked as
building blocks for more complicated array range problems. Given a vector of
bits, the rank query asks for the number of 1 bits that occur between the start
of the vector and a given index; the select query is the reverse, asking for the
index of the i-th 1 bit. Rank and select within a range of indices (instead of only
counting from the start) are easy to answer by doing, and subtracting out, one
additional rank query at the start of the range.

Wavelet trees [48] are also popular building blocks; they generalize succinct
bit vectors with rank and select to larger alphabets while providing a few other
queries useful in solving array range problems. Navarro provides a general sur-
vey [74]. A wavelet tree stores an array (usually called a string in this context) of
elements from some alphabet, in a binary structure that divides the alphabet in
half at each level. Each node contains a succinct bit vector naming the subtrees
responsible for each remaining array elements at that level. The overall space
requirement for the basic data structure is O(n log σ) bits where σ is the size of
the alphabet, and it can support rank and select on any letter in O(log σ) time;
but it can also be used as part of the solution to many other kinds of queries.

2 Weight Queries

When the values stored in the array have meanings directly relevant to the query,
they are usually called weights. Weights might not be real numbers, but typically
have some structure such as a total order, a group, or a semigroup.

Array Range Queries 337

2.1 Range Minimum Query

Range Minimum Query (RMQ) on weights equipped with an order is one of the
earliest-studied array range query problems. Range maximum is equivalent. This
problem has the important property that the minimum of a union of two sets
must be the minimum of one of the sets; so the query range can be decomposed
into a constant number of smaller ranges and the answer found by solving those
as subproblems. Highlights of the work on this problem, including the variation
for two-dimensional arrays, are shown in Table 1.

Table 1. Selected results on array range minimum query

space (bits) query time year ref. note

O(n log n) O(1) 1984 [51] LCA
O(n log n) O(log n) 1984 [38] 2-D
O(n log n) O(1) 1989,1993 [9,10]
4n+ o(n) O(1) 2002 [84] O(n log n) bits prep. space

array + 2n+ o(n) O(1) 2007 [35] 2n− o(n) space lower bound

O(n log n) O(1) 2007 [4] 2-D, O(n log(k) n) prep. time
O(n log n) O(1) 2009 [26] cache-oblivious, O(n/B) prep. time
2n+ o(n) O(1) 2010 [34]
array +O(n) O(1) 2012 [14] 2-D
O(n log n) O(1) 2013 [29] simplified

The one-dimensional array RMQ problem can be reduced to Lowest Common
Ancestor (LCA), and constant-time linear-space solutions for that problem go
back at least as far as the work of Harel and Tarjan in 1984 [51]. It is generally
taken for granted (whether explicitly stated or not) that data structures for
this problem must return the index of a minimum element, not only the weight.
Berkman and Vishkin’s work [9,10] is usually cited as the first significant data
structure for RMQ. Their main concern was with doing the preprocessing in a
parallel model, and with applying the data structure to other problems beyond
range queries; but they achieved constant time RMQ with a linear space data
structure by reducing from RMQ to LCA and then, by means of Cartesian
trees, back to RMQ with the constraint that successive elements differ by at
most one. Bender and Farach-Colton [8] give a simplified presentation of this
data structure. Preprocessing time can be linear with a careful implementation,
and subsequent results have also achieved linear preprocessing time.

Sadakane gives a succinct data structure for RMQ, again as part of a solution
to LCA [84]. It uses 4n+o(n) bits, but it requires asymptotically more than that
(O(n log n) bits) temporarily during preprocessing. Fischer and Huen improve
the data structure space bound to 2n + o(n) bits with access to the original
array [35], and never require more than that even during preprocessing. They
also give a lower bound of 2n−o(n) bits, and claim an advantage of not using bit
vector rank and select (which may make implementation easier). This is usually
cited as the current best result for the one-dimensional array RMQ problem in

338 M. Skala

the basic RAM model. Fischer [34] later improves it to avoid the requirement for
access to the original array. In this volume, Durocher [29] gives a new linear-space
data structure with constant time query, using simple, practical techniques.

For RMQ on two-dimensional arrays, Gabow, Bentley, and Tarjan [38] give a
solution with O(n log n) space and preprocessing time, and O(log n) query. Note
that we describe the array as

√
n by

√
n for a total of n elements overall to make

these results more easily comparable to the one-dimensional case. Amir, Fischer,
and Lewenstein [4] give a linear-space, constant query time data structure for

two-dimensional array RMQ with O(n log(k) n) preprocessing time, where log(k)

means logarithm iterated any constant number of times.
Demaine, Landau, and Weimann [26] extend RMQ in several directions at

once, as well as reviewing some extensions of the problem in more detail. They
give an algorithm for one-dimensional arrays with the usual linear space and
constant query time as well as optimal O(n/B) preprocessing time in the cache-
oblivious model (B is the block size); they solve Bottleneck Edge Query (BEQ),
which is a generalization to paths in graphs, in linear space, O(k) query time,

and O(n log(k) n) preprocessing time, as well as giving some results on a dynamic
version; and they show a combinatorial lower bound that suggests Cartesian
trees cannot usefully be applied to the two-dimensional array RMQ problem.
Other techniques than Cartesian trees may still be applicable. Brodal, Davoodi,
and Rao [14] give a data structure for two-dimensional RMQ in O(n/c) bits (not
words; c can be chosen) plus access to the original array, with linear preprocessing
and O(c) query time, and they show a matching lower bound.

2.2 Counting and Reporting

Purely counting elements in an array range is trivial, so the term range counting
usually refers to counting elements subject to some restriction, such as elements
whose weight is in a specified interval. Similarly, range reporting on arrays usu-
ally refers to reporting elements whose weights are within an interval. These
definitions make the array range queries equivalent to geometric range queries
on a two-dimensional grid, and the best results use geometric range query tech-
niques. Conversely, solutions to geometric versions of these problems often start
with rank-space reduction to integer coordinates, so the equivalence is close.

We summarize interesting results on counting, reporting, and emptiness in
Table 2. The 1988 data structure of Chazelle [22] is a precursor to the wavelet
tree, without the optimization of using succinct bit vectors in the nodes; it
achieves O(log n) time for counting and O(log n+ k logε n) for reporting, where
k is the number of results, in linear space. By using a wavelet tree, Mäkinen
and Navarro [70] achieve O(log n) time for counting and O(k logn) for report-
ing. Bose et al. [11] improve both these query times by a factor of log logn.
Other significant results also involve logε n trade-offs: for instance, O(log n+ k)
reporting with O(n logε n) space [3]. Nekrich [75,76] gives a good survey of pre-
vious work up to 2009, as well as a O(log n + k logε n) dynamic reporting data
structure (linear space, O(log3+ε n) updates) and a O(logn/ log logn+ k logε n)
static linear-space reporting data structure.

Array Range Queries 339

Table 2. Selected results on range counting and reporting

problem space query time year ref.

counting

O(n) O(log n) 1988 [22]
n+ o(n) O(log n) 2007 [70]
n+ o(n) O(log n/ log log n) 2009 [11]
n+ o(n) O((log n/ log log n)2)∗ 2011 [52]

O(n) O(log σ)† 2011 [55]
n+ o(n) O(log σ log n)† 2012 [78]

compressed O(log σ/ log log n)† 2012 [56]

reporting

O(n) O(log n+ k logε n) 1988 [22]
O(n logε n) O(log n+ k) 2000 [3]
n+ o(n) O(k log n) 2007 [70]
n+ o(n) O(k log n/ log log n) 2009 [11]
O(n) O(log n+ k logε n)∗ 2007,2009 [75,76]

O(n) O((1 + k) log σ)† 2011 [55]

O(n log log n) O(log σ + k log log σ)† 2011 [55]
n+ o(n) O((log n+ k) log σ log n)† 2012 [78]

compressed O((1 + k) log σ/ log log n)† 2012 [56]
∗dynamic †on trees

Range counting results are often presented as barely-discussed corrollaries in
papers on range reporting, but He and Munro [52] give a succinct dynamic data
structure specifically for counting, with O((log n/ log logn)2) time for queries
and updates in the worst case of large alphabet size; they state the bounds in
a more complicated form taking into account the possibility of small alphabets,
and discuss applications to geometric range counting. He, Munro, and Zhou [55]
also propose extending counting and reporting queries to paths in trees; they
achieve O((1 + k) log σ) reporting time (to report k elements, σ distinct weights
in the tree) with linear space, and O(log σ+ k log log σ) time with O(n log logn)
space. Patil, Shah, and Thankachan [78] give succinct data structures for tree
path counting and reporting at a logn time penalty. Then He, Munro, and Zhou
improve their earlier linear-space results to compressed space [56], also improving
the query times by log logn.

2.3 Other Weight Queries

There is a near-trivial folklore solution to range sum, or equivalently range mean,
in a static array: just precompute and store the sums for all ranges begin-
ning at the start of the array, and then subtract the sums for the endpoints
to answer an arbitrary range query in constant time. This approach general-
izes to arbitrary dimension by applying the principle of inclusion and exclusion
on ranges with one corner fixed at the origin, although the constant in the
query time is exponential in the number of dimensions. Fredman [37] introduced
the dynamic one-dimensional version of the problem (with updates consisting of
changing a single element’s value) and gave aO(log n) time, linear-space solution.

340 M. Skala

A typical modern approach might use any standard balanced tree augmented
with subtree sums to allow query, update, insertion, and deletion in O(log n)
time. Matching Ω(log n) bounds have been shown in various models of compu-
tation [37,85,50].

There are matching upper and lower bounds of Θ(n+mα(m,n)) time to do m
array range sum queries off-line, where α is the inverse Ackermann function [23].
Brodnik et al. [18] give a constant-time solution using O

(
(n+ UO(log n)) logU

)
bits of memory in the RAMBO model of computation, where bits can be shared
among memory words, summing integers modulo U . The high-dimensional dy-
namic array case was extensively studied in the database community around the
turn of the century [57,44,24,82]. Almost all of these results still apply when
“sum” is generalized to arbitrary group operations; some of the related work
can be further generalized to arbitrary semigroups, forming a connection to the
results on range minimum because minimum is a semigroup operation.

Range minimum was generalized in one direction to semigroups, but a differ-
ent generalization is to the range selection problem of returning a chosen order
statistic. The special case of range median was the first to be studied: Krizanc,
Morin, and Smid [67,68] gave multiple results for it trading off time and space,
with O(nε) time for linear space on array ranges. They also considered tree
paths. Gagie, Puglisi, and Turpin [43] review existing results on range median
and then supersede most of them by showing how to use wavelet trees to answer
selection, for general order statistics chosen at query time, in O(log σ) time with
a linear-space data structure. Subsequent results by Brodal and Jørgensen [17];
Gfeller and Sanders [45]; and then all four of those authors together [16] in-
clude queries in O(log n/ log logn) time with linear space, a dynamic version
with O((log n/ log logn)2) query time in O(n logn/ log logn) space, and various
results on other models including a cell-probe lower bound of O(log n/ log logn)

for dynamic range median if updates are O(logO(1) n). Jørgensen and Larsen [63]
give additional lower bounds, notably including Ω(n1+Ω(1)) space for constant-
time queries; and a linear-space static data structure with query time O((1 +
log k)/ log log n) where k is the order statistic desired, optimal by their lower
bounds except for small values of k. In compressed space, He, Munro, and Nichol-
son [53] give a dynamic data structure with query time, in a recently-posted cor-
rection to the conference paper [54], O((log n/ log logn)(log σ/ log log σ)). The
earlier-mentioned tree path counting results of He, Munro, and Zhou [55,56] and
of Patil, Shah, and Thankachan [78] can also be applied to tree path selection
with nearly the same bounds; in the case of the He, Munro, and Zhou results
the denominator in the query time changes from log logn to log log σ.

Instead of selecting a single order statistic, we could ask for the first k or-
der statistics: a top-k problem. Range reporting answers top-k queries if the
results are returned in sorted order, preferably with output-sensitive time, and
many current range reporting data structures work that way. However, Brodal et
al. [15] describe a linear-space data structure for top-k reporting with O(k) out-
put time, and that is better than the lower bound for range reporting. As we dis-
cussed, “range reporting” in current use implies that queries include thresholds

Array Range Queries 341

on element weights, in effect an extra dimension of the geometric problem, and
that is not part of the definition of top-k queries. Nekrich and Navarro [77] give
a linear-space data structure for sorted reporting with a threshold in O(k logε n)
time, as well as some other time-space trade-offs.

3 Color Queries

If we consider array elements primarily with respect to distinctness, possibly
imposing an order on the distinct values, we can define array range queries based
on these colors. Color range query problems often arise in the document retrieval
literature, and are often presented along the way to solving other problems rather
than as independent results.

Gagie et al. [42] have a useful framework for understanding recent work on
colored range queries. As they explain, the colored range listing problem is fun-
damental. Given a range, colored range listing returns the index of the first
element of each distinct color in the range. Looking at the array elements is
easy; the difficulty lies in removing the duplicates to give output-sensitive time.
Some of the first output-sensitive results are due to Janardan and Lopez [62],
whose linear-space static data structure reports k results in O(log n + k) time.
Gupta, Janardan, and Smid [49] suggest transforming each element A[i] in the
original array A into a point (i, j) on the plane using the largest j < i such
that A[j] = A[i], and give dynamic results. Muthukrishnan [73] describes an
equivalent transformation in terms of an array C. In either form, appropriate
range queries on the transformed input give the answers to colored range list-
ing. Muthukrishnan’s data structure uses O(n) space and O(k) query time. The
subsequent improvements to range minimum queries allow tighter space bounds
with or without compromises on the query time, and much subsequent work on
colored range listing comes down to applying better RMQ results in this set-
ting. Gagie, Puglisi, and Turpin [43] describe how to use wavelet trees for range
selection, the generalization of range minimum, and apply it to colored range
listing. Using range selection instead of range minimum eliminates the need to
store the suffix array in the document retrieval application they consider. The
recent publication of Gagie et al. on compressed document retrieval [41] includes
a good survey of colored range problems within their framework.

Merely counting the distinct colors instead of returning them is the range
color counting problem. Bozanis et al. [13] give a linear-space O(log n)-time
data structure for it. Lai, Poon, and Shi [69] apply a result of Gupta et al. [49]
to solve the dynamic version with a log2 penalty: either O(n log n) space and
O(log n) query, or linear space and O(log2 n) query. Gagie and Kärkkäinen [40]
reduce it to compressed space with query time logarithmic in the length of the
query range, slightly better than O(log n). They also give some dynamic results,
expanded in the journal version by Gagie et al. [41].

If we ask for colors to be listed in order, combining the distinctness of col-
ors with the ordering of weights, we have the top-k color reporting problem.
Karpinski and Nekrich [66] give a linear-space data structure for this problem

342 M. Skala

with optimal O(k) query time. This top-k problem defined by an ordering of
the element values is different from a top-k problem defined by frequency rank
within the range, as considered in the next section. Authors working on such
problems use similar or identical terminology for the two.

4 Frequency Queries

When queries concern element frequencies, most combinations of the other pa-
rameters in our classification yield interesting and distinct problems: we can ask
about raw frequencies or their ranks, provide exact values or thresholds, and
return several different kinds of results. High frequencies and low frequencies
often necessitate different techniques and sometimes even have different bounds.

4.1 Queries Related to Raw Frequency

The well-known element uniqueness problem, of determining whether any ele-
ment in an array occurs more than once, has a lower bound of Ω(n logn) in the
algebraic decision tree model [7]. Determining whether the frequency exceeds
k requires Θ(n log(n/k)) (matching upper and lower bounds) [71,27]. These
bounds also apply to the time for preprocessing plus one query on the array
range versions of the problems. The array range query of whether any element
has frequency at least k in the range, k chosen during preprocessing, is trivial
to solve with a linear-space data structure and constant-time queries: just store,
for each range starting point, the end of the shortest range for which the answer
is “yes.” Greve et al. [47] describe that data structure. But for k > 1, even if
chosen during preprocessing, testing the existence of an element with frequency
exactly k in the range is more difficult. Greve et al. [47] show matching upper
and lower time bounds of Θ(log n/ log logn) with k chosen at query time, as-
suming a linear-space data structure, the cell probe model for the lower bound,
and word RAM for the upper bound.

A closely related but not identical class of problems considers a threshold on
the proportion of array elements in a range that contain a given value. These
problems represent a stepping stone to the frequency-rank problems in the next
subsection. Results for these problems are summarized in Table 3.

Given β fixed at preprocessing time, the range β-majority query problem is
to return an element that occurs (or all such elements) in at least β proportion
of the elements of the query range. A geometric data structure of Karpinski and
Nekrich [65] can be applied to solve this inO(n/β) space andO((1/β)(log logn)2)
query time. Durocher et al. [30,31] give a solution in O(n log(1+1/β)) space and
O(1/β) query time, and Gagie et al. [39] in O(n) space and O((1/β) log logn)
query time; in recent work, Belazzougui, Gagie, and Navarro improve the query
time to optimal O(1/β) [6]. Elmasry et al. [32] study a dynamic version of this
problem, mostly in a geometric setting with β fixed and updates consisting of
point addition and removal; for arrays, their data structure gives O(n) space
and O((1/β) log n/ log log n) query time, with O((1/β) log3 n/ log logn) amor-
tized insertion and O((1/β) log n) amortized deletion.

Array Range Queries 343

Table 3. Selected results on array range majority and minority

problem space query time year ref.

β-majority

O(n/β) O(1/β) 2008 [65]
O(n log(1 + 1/β)) O(1/β) 2011,2013 [30,31]

O(n) O((1/β) log log n) 2011 [39]
O(n) O((1/β) log n/ log logn)∗ 2011 [32]
O(n) O(1/β) 2012 [6]

α-majority

O(n(H + 1)) O(1/α) 2011 [39]
O(n log n) O(1/α) 2012 [21]

n log log σ +O(n) O(1/α) 2012 [6]
O(n) O((1/α) log log(1/α)) 2012 [6]

n+ o(n) O((1/α) log log σ) 2012 [6]

α-minority O(n) O(1/α) 2012 [21]
∗dynamic

When the proportion threshold is α chosen at query time, it is easy to solve
range majority at a factor of logn space penalty by building copies of a slightly
modified β-majority data structure for each power of two value of β and then
choosing the closest one at query time. Chan et al. describe that technique [21].
Gagie et al. [39] give a compressed range α-majority data structure (O(n(H+1))
words where H is entropy, bounded above by log σ where σ is the number of
distinct elements) with O(1/α) query time. Belazzougui, Gagie, and Navarro [6]
give multiple new results for this problem with query time varying depending
on space, as summarized in our table.

Another possibility is to make the frequency threshold depend on the ele-
ment value. De Berg and Haverkort [25] describe significant-presence queries.
An element value has a significant presence in a query range if at least a spec-
ified fraction of the elements with that value in the entire array occur within
the query range: the range covers a fraction of the color class rather than the
color class necessarily covering a fraction of the range. The significant-presence
range query is to find all the values which have significant presence in the range.
The main results of de Berg and Haverkort concern approximate versions of this
problem in an arbitrary-dimensional geometric setting, but they solve the exact
problem on one-dimensional arrays with the threshold fixed during preprocessing
using linear space and O(log n+ k) query time.

Querying for a threshold on frequency in the opposite direction, that is, con-
sidering elements that occur at least once in the query range but less than some
number of times, requires significantly different techniques. Chan et al. [21] solve
range α-minority (α may be chosen at query time) using O(n) space and O(1/α)
query time.

4.2 Queries Related to Frequency Rank

Rangemode (most frequent element) is arguably a more natural and useful query
than range majority; indeed, previous results on range majority are often inspired

344 M. Skala

by or connected with work on the more difficult question of range mode. Range
mode and more general frequency rank problems are of great current interest
because of applications in document retrieval: in an array of document identifiers
corresponding to a suffix array, high-frequency elements in a range identify the
documents that contain a given substring many times.

Krizanc et al. [67,68] introduce the range mode problem for arrays, immedi-
ately also generalizing it to paths in trees. They give data structures for arrays
and trees with O(n2−2ε) space and O(nε logn) query time, where ε can be cho-
sen. Setting it to 1/2 gives linear space and O(

√
n logn) time. They also give

a O(n2 log logn/ logn)-space, constant-time data structure, slightly beating the
obvious quadratic-sized table of all possible answers. In the same work they
consider range median; and the connection between median and mode has per-
sisted in later work by others, with results on both problems often appearing
simultaneously.

Petersen [80] improves the O(nε log n)-time result to O(nε) with the same
O(n2−2ε) space; however, the hidden constant in the space requirement goes to
infinity as ε approaches 1/2, so linear space is no longer achievable. He improves
the space bound for constant time to O(n2/ logn); then, with Grabowski [81],
to O(n2 log logn/ log2 n).

Bose et al. [12] consider approximate range mode, where the goal is to return
an element with frequency at least β (chosen at preprocessing) times the fre-
quency of the true mode. Their general data structure requiresO(n/(1−β)) space
and O(log log1/β n) time, but for β ∈ {1/2, 1/3, 1/4} they give data structures
with constant time and O(n log n), O(n log logn), or O(n) space, respectively.
They also give results on an approximate version of the range median.

Chan et al. [19,20] have the best current results on linear-space array range
mode, including O(

√
n/ logn) time with linear space; actually O(

√
n/w) on a

w-sized word RAM, thus O(
√

n/B) in external memory. They give an argument,
based on a reduction from boolean matrix multiplication, suggesting that the

√
n

factor in the time may be difficult or impossible to remove with a linear-space
data structure; and some results on the dynamic one-dimensional version where
updates consist of changing single element values (not insertion or deletion), and
some higher-dimensional geometric range mode queries.

Top-k array range frequency is closely related to top-k document retrieval, the
problem of returning the documents with top k most occurrences of a search sub-
string, or the top k best values of some relevance function related to counting
substring occurrences. Top-k document retrieval reduces to top-k array range
frequency on the suffix array; however, because the queries are related to sub-
strings, they correspond to internal nodes of the suffix tree, and there are only a
linear number of possible query ranges. True top-k array range frequency would
allow a quadratic number of distinct query ranges. This distinction allows the
data structures for top-k document retrieval to achieve better results than would
be possible for top-k array range frequency; and the techniques used, although
related, are not directly applicable to the general array range problems. Hon,
Shah, and Vitter [59], and Hon, Shah, and Thankachan [58] have some interesting

Array Range Queries 345

recent work on the document retrieval problem. On the array version, there is
very little work on the exact problem; recall that merely finding the mode is
a difficult problem, and the top-k version must be at least as hard. Some of
the work of Janardin and Lopez [62] is applicable to special cases of top-k fre-
quency. Gagie et al. [41], as well as giving results on document retrieval, solve
an ε-approximate version, in O((n/ε) log n) space (worst case; they state a more
precise bound in terms of entropy) and O(k log σ log(1/ε)) query time. Chan et
al. [21] use a one-sided version (one end of the query must be index 0, making
the problem much easier) with O(n) space and O(k) query time as part of their
range majority data structure.

Top-k array range frequency naturally suggests a selection version, of finding
the k-th most frequent element in an array range. That is an open problem in the
case of general k. We have described the special case of range mode already. Chan
et al. [21] introduce the range least frequent element problem, giving a linear-time
data structure with O(

√
n) query time and an argument from boolean matrix

multiplication suggesting that, as with mode, a significantly better query time
may not be possible.

5 Conclusion

We have surveyed work in array range queries, an active field of current data
structure research. We have also described a classification scheme for array range
query problems. Not all imaginable categories in our classification are covered
by existing work; the missing ones may suggest open problems of interest.

Acknowledgement. We gratefully acknowledge the suggestions made by an
anonymous reviewer.

References

1. Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In:
Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Com-
putational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American
Mathematical Society, Providence (1999)

2. Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.): ICALP 2009, Part I. LNCS, vol. 5555. Springer, Heidelberg (2009)

3. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range
searching. In: 41st Annual Symposium on Foundations of Computer Science, FOCS
2000, Redondo Beach, California, USA, November 12-14, pp. 198–207 (2000)

4. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries.
In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer,
Heidelberg (2007)

5. Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.): ISAAC 2011. LNCS,
vol. 7074. Springer, Heidelberg (2011)

346 M. Skala

6. Belazzougui, D., Gagie, T., Navarro, G.: Better space bounds for parameterized
range majority and minority. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 121–132. Springer, Heidelberg (2013)

7. Ben-Or, M.: Lower bounds for algebraic computation trees (preliminary report). In:
Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing,
Boston, Massachusetts, April 25-27, pp. 80–86 (1983)

8. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

9. Berkman, O., Vishkin, U.: Recursive *-tree parallel data-structure. In: Proceedings
of the 30th Annual IEEE Symposium on Foundations of Computer Science, FOCS
1989, Research Triangle Park, NC, October 30-November 1, pp. 196–202. IEEE
Computer Society Press, Los Alamitos (1989)

10. Berkman, O., Vishkin, U.: Recursive star-tree parallel data structure. SIAM J.
Comput. 22(2), 221–242 (1993)

11. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

12. Bose, P., Kranakis, E., Morin, P., Tang, Y.: Approximate range mode and range
median queries. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404,
pp. 377–388. Springer, Heidelberg (2005)

13. Bozanis, P., Kitsios, N., Makris, C., Tsakalidis, A.: New upper bounds for general-
ized intersection searching problems. In: Fülöp, Z., Gécseg, F. (eds.) ICALP 1995.
LNCS, vol. 944, pp. 464–474. Springer, Heidelberg (1995)

14. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

15. Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online sorted range re-
porting. In: [28], pp. 173–182

16. Brodal, G.S., Gfeller, B., Jørgensen, A.G., Sanders, P.: Towards optimal range
medians. Theoret. Comput. Sci. 412(24), 2588–2601 (2011)

17. Brodal, G.S., Jørgensen, A.G.: Data structures for range median queries. In: [28],
pp. 822–831

18. Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.E.,
Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 103–114. Springer, Boston
(2006)

19. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. In: Dürr, C., Wilke, T.
(eds.) 29th International Symposium on Theoretical Aspects of Computer Science,
STACS 2012, Paris, France, February 29-March 3. LIPIcs, vol. 14, pp. 290–301.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

20. Chan, T.M., Durocher, S., Larsen, K.G., Morrison, J., Wilkinson, B.T.: Linear-
space data structures for range mode query in arrays. Theory Comput. Sys., 1–23
(2013)

21. Chan, T.M., Durocher, S., Skala, M., Wilkinson, B.T.: Linear-space data structures
for range minority query in arrays. In: [36], pp. 295–306

22. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

Array Range Queries 347

23. Chazelle, B., Rosenberg, B.: The complexity of computing partial sums off-line.
Internat. J. Comput. Geom. Appl. 1(1), 33–45 (1991)

24. Chun, S.J., Chung, C.W., Lee, J.H., Lee, S.L.: Dynamic update cube for range-sum
queries. In: Apers, P.M.G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao,
K., Snodgrass, R.T. (eds.) Proceedings of the Twenty-seventh International Con-
ference on Very Large Data Bases, Roma, Italy, September 11-14, pp. 521–530.
Morgan Kaufmann Publishers (2001)

25. de Berg, M., Haverkort, H.J.: Significant-presence range queries in categorical data.
In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 462–
473. Springer, Heidelberg (2003)

26. Demaine, E.D., Landau, G.M., Weimann, O.: On Cartesian trees and range mini-
mum queries. In: [2], pp. 341–353

27. Dobkin, D., Munro, J.I.: Determining the mode. Theoret. Comput. Sci. 12(3), 255–
263 (1980)

28. Dong, Y., Du, D.-Z., Ibarra, O. (eds.): ISAAC 2009. LNCS, vol. 5878. Springer,
Heidelberg (2009)

29. Durocher, S.: A simple linear-space data structure for constant-time range mini-
mum query. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Munro
Festschrift 2013. LNCS, vol. 8066, pp. 48–60. Springer, Heidelberg (2013)

30. Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in
constant time and linear space. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 244–255. Springer, Heidelberg (2011)

31. Durocher, S., He, M., Munro, J.I., Nicholson, P.K., Skala, M.: Range majority in
constant time and linear space. Inform. and Comput. 222, 169–179 (2013)

32. Elmasry, A., He, M., Munro, J.I., Nicholson, P.K.: Dynamic range majority data
structures. In: [5], pp. 150–159

33. Eppstein, D. (ed.): Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Mathematics (SODA 2002), January 6-8. ACM Press, New York (2002)

34. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

35. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

36. Fomin, F.V., Kaski, P. (eds.): SWAT 2012. LNCS, vol. 7357. Springer, Heidelberg
(2012)

37. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

38. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing, April 30-May 2, pp. 135–143. ACM Press, Washington, DC
(1984)

39. Gagie, T., He, M., Munro, J.I., Nicholson, P.K.: Finding frequent elements in com-
pressed 2D arrays and strings. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.)
SPIRE 2011. LNCS, vol. 7024, pp. 295–300. Springer, Heidelberg (2011)

40. Gagie, T., Kärkkäinen, J.: Counting colours in compressed strings. In: Giancarlo,
R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 197–207. Springer, Heidel-
berg (2011)

348 M. Skala

41. Gagie, T., Kärkkäinen, J., Navarro, G., Puglisi, S.J.: Colored range queries and
document retrieval. Theoret. Comput. Sci. 483, 36–50 (2013)

42. Gagie, T., Navarro, G., Puglisi, S.J.: Colored range queries and document re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

43. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009)

44. Geffner, S., Agrawal, D., Abbadi, A.E., Smith, T.R.: Relative prefix sums: An
efficient approach for querying dynamic OLAP data cubes. In: Kitsuregawa, M.,
Papazoglou, M.P., Pu, C. (eds.) Proceedings of the 15th International Conference
on Data Engineering, Sydney, Austrialia, March 23-26, pp. 328–335. IEEE Com-
puter Society (1999)

45. Gfeller, B., Sanders, P.: Towards optimal range medians. In: [2], pp. 475–486

46. Golynski, A.: Optimal lower bounds for rank and select indexes. Theoret. Comput.
Sci. 387(3), 348–359 (2007)

47. Greve, M., Jørgensen, A.G., Larsen, K.D., Truelsen, J.: Cell probe lower bounds
and approximations for range mode. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198,
pp. 605–616. Springer, Heidelberg (2010)

48. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoret-
ical and Experimental Analysis of Discrete Algorithms), pp. 841–850. ACM/SIAM
(2003)

49. Gupta, P., Janardan, R., Smid, M.: Further results on generalized intersection
searching problems: Counting, reporting, and dynamization. J. Algorithms 19(2),
282–317 (1995)

50. Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the com-
plexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)

51. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984)

52. He, M., Munro, J.I.: Space efficient data structures for dynamic orthogonal range
counting. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844,
pp. 500–511. Springer, Heidelberg (2011)

53. He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear space. In:
[5], pp. 160–169

54. He, M., Munro, J.I., Nicholson, P.K.: Dynamic range selection in linear space.
CoRR abs/1106.5076v3 (2013), http://arxiv.org/abs/1106.5076v3

55. He, M., Munro, J.I., Zhou, G.: Path queries in weighted trees. In: [5], pp. 140–149

56. He, M., Munro, J.I., Zhou, G.: Succinct data structures for path queries. In: Ep-
stein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 575–586. Springer,
Heidelberg (2012)

57. Ho, C.T., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data
cubes. In: Peckman, J.M. (ed.) Proceedings, ACM SIGMOD International Con-
ference on Management of Data: SIGMOD 1997, Tucson, Arizona, USA, May 13-
15. SIGMOD Record (ACM Special Interest Group on Management of Data),
vol. 26(2), pp. 73–88. ACM Press (1997)

58. Hon, W.K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-time
index for top-k document retrieval. In: [64], pp. 173–184

http://arxiv.org/abs/1106.5076v3

Array Range Queries 349

59. Hon, W.K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: 50th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2009, Atlanta, Georgia, USA, October 25-27, pp. 713–722. IEEE
Computer Society (2009)

60. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symp. on
Foundations of Computer Science, vol. 30, pp. 549–554 (1989)

61. Jacobson, G.: Succinct Static Data Structures. PhD thesis, Carnegie-Mellon, Tech-
nical Report CMU-CS-89-112 (January 1989)

62. Janardan, R., Lopez, M.: Generalized intersection searching problems. Internat. J.
Comput. Geom. Appl. 3(1), 39–69 (1993)

63. Jørgensen, A.G., Larsen, K.G.: Range selection and median: Tight cell probe lower
bounds and adaptive data structures. In: [83], pp. 805–813

64. Kärkkäinen, J., Stoye, J. (eds.): CPM 2012. LNCS, vol. 7354. Springer, Heidelberg
(2012)

65. Karpinski, M., Nekrich, Y.: Searching for frequent colors in rectangles. In: Pro-
ceedings of the 20th Annual Canadian Conference on Computational Geometry,
Montréal, Canada, August 13-15 (2008)

66. Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: [83],
pp. 401–411

67. Krizanc, D., Morin, P., Smid, M.: Range mode and range median queries on lists
and trees. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906,
pp. 517–526. Springer, Heidelberg (2003)

68. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nord. J. Comput. 12(1), 1–17 (2005)

69. Lai, Y., Poon, C., Shi, B.: Approximate colored range and point enclosure queries.
J. Discrete Algorithms 6(3), 420–432 (2008)

70. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoret. Com-
put. Sci. 387(3), 332–347 (2007)

71. Munro, J.I., Spira, P.M.: Sorting and searching in multisets. SIAM J. Comput. 5(1),
1–8 (1976)

72. Munro, J.I.: Tables. In: Chandru, V., Vinay, V. (eds.) FSTTCS 1996. LNCS,
vol. 1180, pp. 37–42. Springer, Heidelberg (1996)

73. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: [33],
pp. 657–666

74. Navarro, G.: Wavelet trees for all. In: [64], pp. 2–26
75. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. In:

Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 15–26.
Springer, Heidelberg (2007)

76. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009)

77. Nekrich, Y., Navarro, G.: Sorted range reporting. In: [36], pp. 271–282
78. Patil, M., Shah, R., Thankachan, S.V.: Succinct representations of weighted trees

supporting path queries. J. Discrete Algorithms 17, 103–108 (2012)
79. Patrascu, M.: Succincter. In: Proceedings of the 49th Annual IEEE Symposium

on Foundations of Computer Science, Philadelphia, Pennsylvania, USA, October
25-23, pp. 305–313. IEEE (2008)

80. Petersen, H.: Improved bounds for range mode and range median queries. In: Gef-
fert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.)
SOFSEM 2008. LNCS, vol. 4910, pp. 418–423. Springer, Heidelberg (2008)

350 M. Skala

81. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
time and sub-quadratic space. Inf. Process. Lett. 109(4), 225–228 (2009)

82. Poon, C.K.: Dynamic orthogonal range queries in OLAP. Theoret. Comput.
Sci. 296(3), 487–510 (2003)

83. Randall, D. (ed.): Proceedings of the Twenty-Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25. SIAM (2011)

84. Sadakane, K.: Succinct representations of lcp information and improvements in the
compressed suffix arrays. In: [35], pp. 225–232

85. Yao, A.C.C.: On the complexity of maintaining partial sums. SIAM J. Com-
put. 14(2), 277–288 (1985)

Indexes for Document Retrieval with Relevance�

Wing-Kai Hon1, Manish Patil2, Rahul Shah2,
Sharma V. Thankachan2, and Jeffrey Scott Vitter3

1 National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Louisiana State University, USA
{mpatil,rahul,thanks}@csc.lsu.edu

3 The University of Kansas, USA
jsv@ku.edu

Abstract. Document retrieval is a special type of pattern matching that
is closely related to information retrieval and web searching. In this prob-
lem, the data consist of a collection of text documents, and given a query
pattern P , we are required to report all the documents (not all the occur-
rences) in which this pattern occurs. In addition, the notion of relevance
is commonly applied to rank all the documents that satisfy the query,
and only those documents with the highest relevance are returned. Such
a concept of relevance has been central in the effectiveness and usability
of present day search engines like Google, Bing, Yahoo, or Ask. When
relevance is considered, the query has an additional input parameter k,
and the task is to report only the k documents with the highest relevance
to P , instead of finding all the documents that contains P . For example,
one such relevance function could be the frequency of the query pattern
in the document. In the information retrieval literature, this task is best
achieved by using inverted indexes. However, if the query consists of an
arbitrary string—which can be a partial word, multiword phrase, or more
generally any sequence of characters—we cannot take advantages of the
word boundaries and we need a different approach.
This leads to one of the active research topics in string matching

and text indexing community in recent years, and various aspects of
the problem have been studied, such as space-time tradeoffs, practical
solutions, multipattern queries, and I/O-efficiency. In this article, we
review some of the initial frameworks for designing such indexes and
also summarize the developments in this area.

1 Introduction

Query processing forms a central aspect of databases which in turn is supported
by data structures that are commonly referred to as indexes. In databases, the
notion of queries is semantically well-defined; hence a tuple (or a record) either

� This work is supported in part by Taiwan NSC Grant 99-2221-E-007-123 (W. Hon)
and US NSF Grant CCF–1017623 (R. Shah and J. S. Vitter) and CCF–1218904 (R.
Shah).

A. Brodnik et al. (Eds.): Munro Festschrift, LNCS 8066, pp. 351–362, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

352 W.-K. Hon et al.

qualifies or does not qualify for the query, and a database operation will return
exactly all those tuples that satisfy the query conditions. In contrast, information
retrieval takes a somewhat fuzzy approach on query processing. The data are
often unstructured and the notions of precision, recall, and relevance add their
flavors to which tuples are returned. Often the criteria for a tuple to satisfy the
query is not just a binary decision. The notion of relevance-ranking is central to
information retrieval where the output is ranked by relevance score—which is an
indicator of how strongly the tuple (or a web document, in case of search engines)
matches the query. In recent times, various extensions to the standard relational
database model have been proposed to cope with an increasing need to integrate
databases and information retrieval. Top-k query processing is one such line of
research, which adds the notion of relevance to database query processing.

Formally, a top-k query comes with a parameter k. Amongst all tuples that
satisfy the query, they are ranked by their relevance scores, and only the k most
relevant tuples are reported. In document retrieval and duplicate elimination
(as a part of the projection operation) in databases, we get multiple occurrences
of the same tuple (or key) satisfying the query and relevance depends on the
contribution of each such tuple. In this case, only one tuple (out of the multiple
occurrences) is to be reported with composite score. A simple example of such a
score function is the frequency —which is number of times a particular attribute
occurs in the query result. In terms of web-search this is known as term-frequency,
which is the number of times the query term occurs in a given document. There
can be even more complex statistical scoring functions, for instance when one
considers OLAP queries (with slice-and-dice type ranges).

In terms of document retrieval, we are given a set D={d1, d2, d3, ..., dD} of D
string documents of total length n. We build an index on this collection. Then
pattern P (of length p) comes as an query, and we are required to output the list
of all ndoc documents in which the pattern P appears (not all occ occurrences).
This is called the document listing problem and was introduced by Matias et
al. [27]. Muthukrishnan [28] gave the first optimal O(p+ ndoc) query time solu-
tion in linear space, i.e., O(n) words. Since then, this has been an active research
area [37,40,15] with focus on making the index space-efficient. In top-k document
retrieval, there is a relevance score involved in addition to the uniqueness con-
dition. Let S(P, di) be the set of occurrences of pattern P in the document di.
The relevance score of P with respect to di is a function w(P, di) that depends
only on the set S(P, di). Now, as a query result, we are required to report only
the top-k highest scoring documents. The formal definition is given below:

Problem 1 (Top-k document retrieval problem). Let w(P, d) be the score
function capturing the relevance of a pattern P with respect to a document d.
Given a document collection D= {d1, d2, ..., dD} of D documents, build an index
answering the following query: given input P and k, find k documents d with the
highest w(P, d) values in sorted (or unsorted) order.

This problem was introduced in [17], where they proposed an O(n logD)
words index with query time O(p + k + logD log logD) (works only for

Indexes for Document Retrieval with Relevance 353

document-frequency as the score function). The recent flurry of activi-
ties [5,10,14,19,23,25,31,36,18,24,21,26,39,41] came with Hon et al.’s work [22].
In this survey article, we review the various aspects of top-k document retrieval
as listed below:

– We begin by describing the linear space and optimal time (internal mem-
ory) framework based on the work of Hon et al. [22] and of Navarro and
Nekrich [30].

– In Section 3, we focus on the I/O model [3] solution for top-k document
retrieval by Shah et al. [38] that occupies almost-linear O(n log∗ n) space
and can answer queries in O(p/B + logB n+ k/B) I/Os.

– In Section 4 we briefly explain the first succinct index that was proposed by
Hon et al. [22] occupying roughly twice the size of text with O(p+k logO(1) n)
query time and also review the later developments in this line of work.

– We also briefly discuss variants of document retrieval problem in Section 5
such as multipattern queries, queries with forbidden pattern, parameterized
top-k queries.

– Finally, we conclude in Section 6 by listing some of the interesting open
problems in this research area.

2 Linear Space Framework

This section briefly explains the linear space framework for top-k document
retrieval based on the work of Hon, Shah and Vitter [22] and Navarro and
Nekrich [30]. The generalized suffix tree (GST) of a document collection D=
{d1, d2, d3, . . . , dD} is the combined compact trie (a.k.a. Patricia trie) of all the
non-empty suffixes of all the documents. We use n to denote the total length
of all the documents, which is also the number of the leaves in GST. For each
node u in GST, consider the path from the root node to u. Let depth(u) be the
number of nodes on the path, and prefix(u) be the string obtained by concate-
nating all the edge labels of the path. For a pattern P that appears in at least
one document, the locus of P , denoted as uP , is the node closest to the root
satisfying that P is a prefix of prefix (uP). By numbering all the nodes in GST in
the pre-order traversal manner, the part of GST relevant to P (i.e., the subtree
rooted at uP) can be represented as a range.

Nodes are marked with document-ids. A leaf node � is marked with a doc-
ument d ∈ D if the suffix represented by � belongs to d. An internal node
u is marked with d if it is the lowest common ancestor of two leaves marked
with d. Notice that a node can be marked with multiple documents. For each
node u and each of its marked documents d, define a link to be a quadruple
(origin , target , doc, score), where origin = u, target is the lowest proper ances-
tor1 of u marked with d, doc = d, and score = w

(
prefix(u), d

)
. Two crucial

properties of the links identified in [22] are listed below.

1 Define a dummy node as the parent of the root node, marked with all the documents.

354 W.-K. Hon et al.

– For each document d that contains a pattern P , there is a unique link whose
origin is in the subtree of uP and whose target is a proper ancestor of uP .
The score of the link is exactly the score of d with respect to P .

– The total number of links is bounded by O(n).

We say that a link is stabbed by node u if it is originated in the subtree of u
and targets a proper ancestor of u. Therefore, top-k document retrieval can be
viewed as the problem of indexing the O(n) links described above to efficiently
report the k highest scored links stabbed by any given node uP . By mapping each
link Li = (oi, ti, doc, scorei) to a 3d point (xi, yi, zi) = (oi, depth(ti), scorei), the
above problem can be reduced to the following range searching query: report k
points with the highest z coordinate among those points with xi ∈ [uP , u

′
P] and

yi < depth(uP), which is a 4-constraint query. Here u′
P represents the pre-order

rank of the right most leaf in the subtree of uP .
While general 4-sided orthogonal range searching is proved hard [6], the main

idea is to make use of the special property that the reduce subproblem can only
have p distinct values, hence it can be decomposed into p 3-constrained queries
(which can be solved optimally). Thus a linear space index with near-optimal
O(p + k log k) is achieved by Hon et al. [22]. This query time is improved to
optimal O(p+ k) by Navarro and Nekrich [30].

Theorem 1. There exists a linear space index of O(n)-word space for answering
top-k document retrieval queries in optimal O(p+ k) time.

Nekrich [30] showed that the index space can be reduced to O(n(log σ + logD +
log logn)) bits, if the requirement is to retrieve only the top-k documents without
their associated scores. With term-frequency as the score they achieved the index
that is further compressed occupyingO(n(log σ+ logD)) bits. Hon et al. [18] pro-
posed an alternative approach to directly compress the index to achieve an n(1 +
o(1))(log σ+2 logD) bits index withO(p+k log logn+poly log logn) query time.

3 External-Memory Framework

��

��
��

�� ��

�� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

������

	
�������������

Fig. 1. Rank Components

With the advent of enterprise search, deep
desktop search, and email search tech-
nologies, the indexes that reside on disks
(external memory) are more and more
important. Unfortunately, the (linear
space) approach described in the pre-
vious section cannot lead to an op-
timal external memory solution as it
inevitably adds an extra O(p) addi-
tive factor in query time. Therefore,
we need to explore some other prop-
erties that can potentially simplify the
problem. In this section, we briefly de-
scribe the I/O-efficient framework by

Indexes for Document Retrieval with Relevance 355

Shah et al. [38]. They showed how to decompose the 4-constrained query (as de-
scribed in the previous section) into at most log(n/B) (instead of p) 3-constrained
queries, by exploring the fact that, out of four constraints in the given query,
two of them always correspond to a tree range. Here B denotes the disk block
size.

Here we solve a threshold variant of the problem (i.e., among all those links
stabbed by uP , retrieve those with weight at least a given threshold τ). Note
that, both threshold and top-k variants are equivalent due to the existence of a
linear-space structure to compute threshold τ given (uP , k) in O(1) time such
that the number of number of outputs reported by threshold variant of the prob-
lem is between k and k+O(k+ logn). It is known that no linear-space external
memory structure can answer the (even the simpler) 1d top-k range reporting

query in O(logO(1) n + k/B) I/Os if the output order must be ensured [2]. We
thus turn our attention to solving the unordered variant of the top-k document
retrieval problem.

We start with some definitions: Let size(u) denote the number of leaves in
the subtree of u. We define the rank of u,

rank(u) =

⌊
log�size(u)

B
�
⌋

Note that rank(·) ∈ [0, �log� n
B ��] and nodes with the same rank will form a

contiguous subtree, and we call each subtree a component (see Figure 1). The
rank of a component is defined as the rank of nodes within it.

We classify the links into the following three types based on the rank of its
target with respect to the rank of query node uP : low-ranked links : links with
rank(target) < rank(uP), high-ranked links : links with rank(target) > rank(uP),
equi-ranked links : links with rank(target) = rank(uP). The links within each of
these categories can be processed separately as follows:

1. None of the low-ranked links can be an output as their target will not be an
ancestor of uP , hence can be ignored while querying.

2. For a high-ranked link Li, if oi ∈ [uP , u
′
P], then the condition that ti is

an ancestor of uP will be implicitly satisfied. Thus, we are left with only
3-constraints, which can be modeled as a 3-sided query [2,4].

3. We group together all the links whose target node ti belongs to component
C to form a set SC . Further we replace the origin oi in each of the links by
its lowest ancestor si within C (Figure 2). Then, an equi-ranked link Li ∈ C
is an output iff ti < uP ≤ si and scorei ≥ τ , which can be modeled as a 3d
dominance query [1].

Putting everything together, the top-k document retrieval problem can be re-
duced to O(log(n/B)) 3-constraint queries. Thus, by maintaining appropriate
structures for handling such queries, we can obtain a linear-space index with
O(log2(n/B) + k/B) I/Os, which is optimal for k ≥ B log2(n/B). For optimally
handling the case when k is small, bootstrapping techniques are introduced (for
details we refer to [38]). We summarize the main result in the following Theorem.

356 W.-K. Hon et al.

Theorem 2. There exists external memory index of almost-linear O(n log∗ n)
words space for answering top-k document retrieval queries in optimal O(p/B+
logB n+ k/B) I/Os.

Fig. 2. Pseudo Origin

If the score function is monotonic, the top-
k document retrieval problem can be re-
duced to the top-k categorical range max-
ima query (Top-CRMQ) problem. Given
an integer array A[1...n] and associated
category (color) array C[1...n], where each
A[i] has an associated color C[i], we ap-
ply range top-k query (a, b, k) to find the
top-k (distinct) colors in the range [a, b].
The notion of top-k associates a score with
each color c occurring in the query range,
where the score of a color c in the range
[a, b] is max{A[i]|i ∈ [a, b] and C[i] = c}.
We can now model the top-k document re-
trieval problem into Top-CRMQ: arrange
all links in the ascending order of origin,
then construct arrays A and C such that
A[i] represents the score of the ith link
and C[i] represents the document to which
it belongs. Now, top-k document retrieval
is equivalent to Top-CRMQ on A with [a, b] as the input range, where [a, b]
represents the maximal range of all links with origin within the subtree of uP .
Thus by integrating with the recent solution for the Top-CRMQ problem by
Nekrich et al. [35], an external memory top-k document retrieval index with
space O(nα(B))-words and query I/O bound O(p/B + k/B + logB n + α(B))
can be obtained, where α(·) is the inverse Ackermann function.

4 Succinct Frameworks

In the succinct framework, the goal is achieve the index space proportional to the
size of text (i.e., n log σ bits). We use the score function to be term-frequency.
We begin this section by briefly explaining the marking scheme introduced by
Hon et al. [22] and then review the later developments in this line of work.

Marked Nodes in GST: Certain nodes in the GST can be identified as marked
nodes with respect to a parameter g called the grouping factor as follows. The
procedure starts by combining every g consecutive leaves (from left to right)
together as a group, and marking the lowest common ancestor (LCA) of the
first and last leaves in each group. Further, we mark the LCA of all pairs of
marked nodes. Additionally, we ensure that the root is always marked. At the
end of this procedure, the number of marked nodes in GST will be O(n/g).
Hon et al. [22] showed that, given any node u with u∗ being its highest marked

Indexes for Document Retrieval with Relevance 357

descendent (if exists), number of leaves in GST (u\u∗) (i.e., the number of leaves
in the subtree of u, but not in the subtree of u∗) is at most 2g.

We begin by the describing the data structure for a top-k document retrieval
problem for a fixed k. First, We implement the marking scheme in GST as
described above with g = k log2+ε n, where ε > 0 is any constant. The top-k
documents corresponding to each of the O(n/g) marked nodes (as the locus)
are maintained explicitly in O(k logn) bits, for a total of O((n/g)k logn) =
o(n/ logn) bits. In order to answer a top-k query, we first find the locus node
uP , and then its highest marked descendent node u∗

P . If a document d is in
the top-k list with respect to node uP , then either it is in the top-k list with
respect to u∗

P as well or there is at least one leaf in the GST (uP\u∗
P) with the

corresponding suffix in document d. By using this observation, we can obtain a
set of O(g+k) possible candidate documents. By computing the term frequencies
of each document in the candidate set, we can identify the documents in the
final output. Note that instead of a GST, we maintain its compressed variant.
An additional |CSA| bits structure is used for computing term-frequency in
O(log2+ε n) time, where CSA represents the compressed suffix array [11,16] of
the concatenated text of all documents, and |CSA| represents its size in bits.
Thus the query time can be bounded by O(p + k log4+2ε n). In order to handle
top-k queries for any general k, we maintain the above described data structure
for k = 1, 2, 4, 8, ..., with overall space requirement roughly equal to twice that
of the input text.

Theorem 3. There exists a succinct data structure of space roughly twice the
size of text (in compressed form) with query time O(log4+ε n) per reported doc-
ument.

A series of work has been done to improve the above succinct index. The per-
document retrieval time is improved to O(log k log2+ε n) by Belazzougui and
Navarro [5], whereas the fastest succinct index is by Hon et al. [21], where the
query time is O(log k log1+ε n). Note that the space occupancy of all these suc-
cinct indexes is roughly twice the size of text. An interesting open question to
design a space optimal index (i.e., |CSA| + o(n) bits) has been positively an-
swered by Tsur [39], where the per-document report time is O(log k log2+ε n).
Very recently, Navarro and Thankachan [33] improved the query time of Tsur’s
index to O(log2 k log1+ε n), and is currently the fastest space optimal index.

Instead of using an additional CSA for document frequency computation of
the candidate document, an alternative approach is to use a data structure called
the document arrayE[1...n], where E[i] denotes the document to which the suffix
corresponding to ith leftmost leaf in GST belongs to. The resulting index space
is |CSA|+ n logD(1 + o(1)) bits. The first result of the kind is due to Gagie et
al. [14] with per-document report time is O(log2+ε n), which was improved to
O(log k log1+ε n) by Belazzougui and Navarro [5], and to O((log σ log logn)1+εn)
by Hon et al. [18]. Here σ represents the alphabet size. Culpepper et al. [10]
have proposed another document array-based index. Even though their query
algorithm is only a heuristic (no worst-case bound), it is one of the simplest and
most efficient indexes in practice. Another trade-off is by Gagie et al. [14], where

358 W.-K. Hon et al.

the index space is |CSA|+O(n logD
log logD) bits and query time is O(log3+ε n). This

result is also improved by Belazzougui and Navarro [5], where they achieved by
a per-document report time of O(log k log2+ε n) with an index space of |CSA|+
O(n log log logD) bits.

5 Variants of Document Retrieval

In this section, we briefly describe some of the variants of document retrieval
problem along with the known results.

5.1 Two-Pattern Document Listing

In this case, the query consists of two patterns P1 and P2 (of length p1 and p2
respectively), and the task is to report all those ndoc documents containing both
P1 and P2. The first solution was given by [28], which requires Õ(n3/2) space
and answers a query in O(p1+p2+

√
n+ndoc) time2. Clearly, this solution is not

practical due to its huge space requirement. Cohen and Porat [8] showed that this
problem can be reduced to set-intersection. Based on their elegant framework for
the the set-intersection problem, they proposed an O(n log n)-word space index
with O(p1 + p2 +

√
n× ndoc log2.5 n) query time. Later Hon et al. [19] improved

the space as well as the query time of Cohen and Porat’s index to O(n)-word and
O(p1+p2+

√
n× ndoc log1.5 n) respectively. In addition, Hon et al. [19] extended

their solution to handle multipattern queries (i.e., query input consists of two or
more patterns) and also to top-k queries. Using Geometric-BWT techniques [7],
Fischer et al. [12] showed that in pointer machine model, any index for two-

pattern document listing with query time O(p1 + p2 + logO(1) n + ndoc) must
require Ω(n(log n/ log logn)3) bits space.

5.2 Forbidden/Excluded Pattern Queries

A variant of a two-pattern document listing is pattern matching with forbidden
(excluded) pattern. Given two patterns P1 and P2, the goal is to list all ndoc
documents containing P1 but not P2. Fischer et al. [12] introduced the problem
and proposed an index of size O(n1.5) bits with query time O(p1 + p2 +

√
n +

ndoc). Recently, Hon et al. [20] gave a space-efficient solution for this problem,
occupying linear space of O(n) words. However, the query time is increased to
O(p1 + p2 +

√
n× ndoc log2.5 n).

5.3 Parameterized Top-k Queries

In this case, the query consists of two parameters x and y (x ≤ y) in addition to P
and k and the task is to retrieve the top-k documents with highest w(P, ·) among

2 The notation Õ ignores poly-logarithmic factors. Precisely, Õ(f(n)) ≡
O(f(n) logO(1) n).

Indexes for Document Retrieval with Relevance 359

only those documents d with Par(P, d) ∈ [x, y], where Par(·, ·) is a predefined
function. Navarro and Nekrich [30] showed that such queries can be answered
in O(p + (k + logn) logε n) time by maintaining a linear-space index. For the
case when w(·, ·) is page rank, Par(·, ·) is term-frequency and y is unbounded,
Karpinski and Nekrich [25] gave an optimal query time data structure with
O(n logD)-word space.

6 Conclusions and Open Problems

In this article, we briefly reviewed some of the theoretical frameworks for de-
signing top-k document retrieval indexes in different settings. However, we have
not covered the details of practical solutions [24,36,26,32,34] as well as some of
the other related topics (we recommend the recent article by Navarro [29] for
an exhaustive survey). Even though many efficient solutions are already avail-
able for the central problem, there are still many interesting variations and open
questions one could ask. We conclude with some of them as listed below:

1. The current I/O-optimal index requires O(n log∗ n)-word space. It is inter-
esting to see if we can bring down this space to linear (i.e., O(n) words)
without sacrificing the optimality in the I/O bound. Designing these indexes
in the Cache-Oblivious model is another future research direction.

2. The optimal space-compressed index (by Navarro and Thankachan [33])
takes O(log2 k log1+ε n) query time. The fastest compressed space index (by
Hon et al. [21]) takes twice the size of text. An interesting problem is to
design a space-optimal index, while keeping the query time the same (or
better) as that of the fastest compressed index known.

3. Top-kth document retrieval: instead of reporting all top-k documents, report
the kth highest-scored document corresponding to the query.

4. Top-k version of forbidden pattern query: the query consists of P1, P2, and
k, and the task is to report the top-k documents based on w(P1, ·) among
all those documents d which does not contain the forbidden pattern P2.

5. Another space-time trade-off for parametrized top-k query. For example,
design an optimal query time index using O(n logε n) words of space.

6. Currently the gap between the upper and lower bound for two-pattern query
problem is huge. It is interesting to see if this gap can be reduced. Can
we obtain similar (or better) lower bounds for the forbidden pattern query
problem. We strongly believe that the lower bounds for this problems are
different from the currently known upper bounds [12,20] by at most poly logn
factors only.

7. Even though many succinct indexes have been proposed for top-k queries
for frequency or page-rank based score functions, it is still unknown if such
a succinct index can be designed if the score function is term-proximity (i.e.,
w(P, d) is the difference between the positions of the closest occurrences
of P in document d). Designing such an index even for special cases (say,
long patterns or allow approximate score, etc), or deriving lower bounds are
interesting research directions.

360 W.-K. Hon et al.

8. Approximate pattern matching (i.e., allowing bounded errors and don’t cares)
is another active research area [9]. Adding this aspect to document retrieval
leads to many new problems. The following is one such problem: report all
those documents in which the edit (or hamming) distance between one of its
substrings and P is at most π, where π ≥ 1 is an input parameter.

9. Indexing a highly repetitive document collection (which is highly compress-
ible using LZ-based compression techniques) is an active line of research. In
the recent work by Gagie et al. [13], an efficient document retrieval index
suitable for a repetitive collection is proposed. An open problem is to extend
these results for handling top-k queries.

References

1. Afshani, P.: On dominance reporting in 3D. In: Halperin, D., Mehlhorn, K. (eds.)
ESA 2008. LNCS, vol. 5193, pp. 41–51. Springer, Heidelberg (2008)

2. Afshani, P., Brodal, G.S., Zeh, N.: Ordered and unordered top-k range reporting
in large data sets. In: SODA, pp. 390–400 (2011)

3. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

4. Arge, L., Samoladas, V., Vitter, J.S.: On two-dimensional indexability and opti-
mal range search indexing. In: Proc. 18th Symposium on Principles of Database
Systems (PODS), pp. 346–357 (1999)

5. Belazzougui, D., Navarro, G.: Improved compressed indexes for full-text document
retrieval. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS,
vol. 7024, pp. 386–397. Springer, Heidelberg (2011)

6. Chazelle, B.: Lower bounds for orthogonal range searching: I. the reporting case.
J. ACM 37(2), 200–212 (1990)

7. Chien, Y.-F., Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Geometric
burrows-wheeler transform: Compressed text indexing via sparse suffixes and range
searching. Algorithmica (2013)

8. Cohen, H., Porat, E.: Fast set intersection and two-patterns matching. Theor. Com-
put. Sci. 411(40-42), 3795–3800 (2010)

9. Cole, R., Gottlieb, L.-A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: STOC, pp. 91–100 (2004)

10. Culpepper, J.S., Navarro, G., Puglisi, S.J., Turpin, A.: Top-k ranked document
search in general text databases. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part
II. LNCS, vol. 6347, pp. 194–205. Springer, Heidelberg (2010)

11. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

12. Fischer, J., Gagie, T., Kopelowitz, T., Lewenstein, M., Mäkinen, V., Salmela,
L., Välimäki, N.: Forbidden patterns. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 327–337. Springer, Heidelberg (2012)

13. Gagie, T., Karhu, K., Navarro, G., Puglisi, S.J., Sirén, J.: Document listing on
repetitive collections. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 107–119. Springer, Heidelberg (2013)

14. Gagie, T., Navarro, G., Puglisi, S.J.: Colored range queries and document re-
trieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 67–81.
Springer, Heidelberg (2010)

Indexes for Document Retrieval with Relevance 361

15. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comput. Sci. 426, 25–41 (2012)

16. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2005)

17. Hon, W.-K., Patil, M., Shah, R., Wu, S.-B.: Efficient index for retrieving top-k
most frequent documents. J. Discrete Algorithms 8(4), 402–417 (2010)

18. Hon, W.-K., Shah, R., Thankachan, S.V.: Towards an optimal space-and-query-
time index for top-k document retrieval. In: Kärkkäinen, J., Stoye, J. (eds.) CPM
2012. LNCS, vol. 7354, pp. 173–184. Springer, Heidelberg (2012)

19. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: String retrieval for multi-
pattern queries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393,
pp. 55–66. Springer, Heidelberg (2010)

20. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Document listing for queries
with excluded pattern. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS,
vol. 7354, pp. 185–195. Springer, Heidelberg (2012)

21. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster compressed top-k
document retrieval. In: DCC (2013)

22. Hon, W.-K., Shah, R., Vitter, J.S.: Space-efficient framework for top-k string re-
trieval problems. In: FOCS 2009, pp. 713–722 (2009)

23. Hon, W.-K., Shah, R., Vitter, J.S.: Compression, indexing, and retrieval for massive
string data. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 260–
274. Springer, Heidelberg (2010)

24. Culpepper, M.P.J.S., Scholer, F.: Efficient in-memory top-k document retrieval. In:
SIGIR (2012)

25. Karpinski, M., Nekrich, Y.: Top-k color queries for document retrieval. In: SODA,
pp. 401–411 (2011)

26. Konow, R., Navarro, G.: Faster Compact Top-k Document Retrieval. In: DCC
(2013)

27. Matias, Y., Muthukrishnan, S.M., Şahinalp, S.C., Ziv, J.: Augmenting suffix trees,
with applications. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.)
ESA 1998. LNCS, vol. 1461, pp. 67–78. Springer, Heidelberg (1998)

28. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:
SODA, pp. 657–666 (2002)

29. Navarro, G.: Spaces, trees and colors: The algorithmic landscape of document re-
trieval on sequences. CoRR, abs/1304.6023 (2013)

30. Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear
space. In: SODA, pp. 1066–1077 (2012)

31. Navarro, G., Puglisi, S.J.: Dual-sorted inverted lists. In: Chavez, E., Lonardi, S.
(eds.) SPIRE 2010. LNCS, vol. 6393, pp. 309–321. Springer, Heidelberg (2010)

32. Navarro, G., Puglisi, S.J., Valenzuela, D.: Practical compressed document retrieval.
In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 193–205.
Springer, Heidelberg (2011)

33. Navarro, G., Thankachan, S.V.: Faster top-k document retrieval in optimal space
(submitted)

34. Navarro, G., Valenzuela, D.: Space-efficient top-k document retrieval. In: Klasing,
R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 307–319. Springer, Heidelberg (2012)

35. Nekrich, Y., Patil, M., Shah, R., Thankachan, S.V., Vitter, J.S.: Top-k categorical
range maxima queries (submitted)

36. Patil, M., Thankachan, S.V., Shah, R., Hon, W.-K., Vitter, J.S., Chandrasekaran,
S.: Inverted indexes for phrases and strings. In: SIGIR, pp. 555–564 (2011)

362 W.-K. Hon et al.

37. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Discrete
Algorithms 5(1), 12–22 (2007)

38. Shah, R., Sheng, C., Thankachan, S.V., Vitter, J.S.: On optimal top-k string re-
trieval. CoRR, abs/1207.2632 (2012)

39. Tsur, D.: Top-k document retrieval in optimal space. Inf. Process. Lett. 113(12),
440–443 (2013)

40. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007)

41. Vitter, J.S.: Compressed data structures with relevance. In: CIKM, pp. 4–5 (2012)

Author Index

Afshani, Peyman 1
Agrawal, Manindra 1

Barbay, Jérémy 97
Borodin, Allan 112
Bose, Prosenjit 133
Boyar, Joan 12
Brodal, Gerth Stølting 150

Cardinal, Jean 164
Chan, Timothy M. 27

Demaine, Erik D. 33
Demaine, Martin L. 33
Doerr, Benjamin 1
Doerr, Carola 1
Durocher, Stephane 48

Eisenstat, Sarah 33
Ellen, Faith 12

Fiorini, Samuel 164
Fleischer, Rudolf 176

Grossi, Roberto 199

He, Meng 216
Hon, Wing-Kai 351
Howat, John 133

Iacono, John 236

Kamali, Shahin 251
Kirkpatrick, David 61

Larsen, Kasper Green 1
Lewenstein, Moshe 267
López-Ortiz, Alejandro 251

Ma, Qiang 77
Mehlhorn, Kurt 1
Morgan, Thomas D. 33
Morin, Pat 133
Muthukrishnan, S. 77

Nicholson, Patrick K. 303

Patil, Manish 351

Raman, Rajeev 319
Raman, Venkatesh 303
Rao, S. Srinivasa 303, 319

Sandler, Mark 77
Shah, Rahul 351
Skala, Matthew 333

Thankachan, Sharma V. 351

Uehara, Ryuhei 33

Vitter, Jeffrey Scott 351

Yu, Jiajin 176

	Preface
	Table of Contents
	The Query Complexity of Finding a Hidden Permutation
	1 Introduction
	2 Preliminaries
	3 Deterministic Complexity
	4 The Randomized Strategy
	4.1 The Main Strategy

	5 The Lower Bound
	5.1 Potential Function
	5.2 Potential at the End
	5.3 Putting Things Together

	References

	Bounds for Scheduling Jobs on Grid Processors
	1 Introduction
	2 Preliminaries
	3 Lower Bounds
	4 Properties of Optimal Packings for Restricted Grid Scheduling
	5 Simple Non-optimal Algorithms
	6 A Matching Upper Bound
	7 Conclusions and Open Problems
	References

	Quake Heaps: A Simple Alternative to Fibonacci Heaps
	1 Introduction
	2 Quake Heaps
	3 Comments
	References

	Variations on Instant Insanity
	1 Introduction
	2 Definitions
	2.1 Instant Insanity
	2.2 Positive Not-All-Equal Satisfiability

	3 Regular Prism Pieces
	3.1 Partial versus Complete Insanity
	3.2 Regular Prism Pieces
	3.3 Regular Prism Pieces with Restricted Motion

	4 Irregular Prism Pieces
	5 Conclusion
	References

	A Simple Linear-Space Data Structure for Constant-Time Range Minimum Query
	1 Introduction
	1.1 Motivation
	1.2 Definitions and Model of Computation

	2 Related Work
	3 A New "426830A O(n), O(1) "526930B RMQ Data Structure
	3.1 �O(n), O(√n)� Data Structure
	3.2 �O(n log log n), O(log log n)� Data Structure
	3.3 �O(n log log n), O(1)� Data Structure
	3.4 �O(n), O(1)� Data Structure
	3.5 Generalizing to an Arbitrary Array Size n

	4 Directions for Future Work
	4.1 Succinctness
	4.2 Higher Dimensions
	4.3 Dynamic Data

	References

	Closing a Long-Standing Complexity Gap for Selection: V3(42)=50
	1 Introduction
	1.1 The Selection Problem
	1.2 Background on Selecting the Third Largest
	1.3 The New Result for V3(42)

	2 The Algorithm and Its Analysis
	2.1 Representation and Realization of Posets
	2.2 A Decision Tree Formulation of the Algorithm
	2.3 Analysis

	3 Conclusion
	References

	Frugal Streaming for Estimating Quantiles
	1 Introduction
	2 Background and Notations
	3 Frugal Streaming Algorithm
	3.1 1 Unit Memory Algorithm to Estimate Median
	3.2 1 Unit of Memory to Estimate Any Quantile

	4 Analysis of Frugal-1U-Median
	4.1 Approaching Speed
	4.2 Stability

	5 Algorithm Extensions
	6 Related Work and Algorithms to Compare
	6.1 GK Algorithm
	6.2 q-digest Algorithm
	6.3 Selection Algorithm

	7 Empirical Evaluations
	7.1 Synthetic Data
	7.2 HTTP Streams Data
	7.3 Twitter Data Set

	8 Conclusions and Future Directions
	References

	From Time to Space: Fast Algorithms That Yield Small and Fast Data Structures
	1 Introduction
	2 Adaptive Analysis
	Sorted Search
	Union of Sorted Sets
	Sorting

	3 Encodings and Data Structures
	3.1 Integers
	3.2 Sets and Bit Vectors
	3.3 Permutations and Functions
	3.4 Strings

	4 Fast Algorithms That Yield Compression Schemes
	4.1 From Unbounded Search to Integer Compression
	4.2 From Merging Algorithms to Set and String Compression
	4.3 From Sorting Algorithms to Permutations Data Structures

	5 Selected Open Problems
	References

	Computing (and Life) Is All about Tradeoffs A Small Sample of Some Computational Tradeoffs
	1 Introduction
	2 Complexity Theory: Time Space Tradeoffs
	2.1 Time vs Space in Turing Machine Models
	2.2 The Branching Program Model

	3 Complexity Theory: Parallel vs Sequential Complexity
	4 Randomization vs Time and Accuracy
	5 The Streaming Model and Other Space Restricted Models
	5.1 Multi-pass and RAM Comparison Based Models
	5.2 Streaming Space vs Approximation
	5.3 Priority Branching Trees and Programs: Space vs Approximation

	6 Communication Complexity
	7 Distributed Computing
	8 Tradeoffs in Data Structures
	8.1 Implicit and Semi-implicit Data Structures
	8.2 The Cell Probe Model

	9 Proof Complexity: Time vs Space Revisited
	10 A Variety of Current and Potential Tradeoff Studies
	References

	A History of Distribution-Sensitive Data Structures
	1 Introduction
	2 Optimum Binary Search Trees
	3 Distribution Patterns
	3.1 Static and Dynamic Optimality
	3.2 Key-Independent Optimality
	3.3 The Working-Set Property
	3.4 The Queueish Property
	3.5 The Static and Dynamic Finger Properties
	3.6 The Unified Property

	4 Examples of Distribution-Sensitive Data Structures
	4.1 Splay Trees
	4.2 Other Data Structures

	5 Searching with Temporal Fingers
	5.1 Defining Temporal Distance
	5.2 Background

	6 The Data Structure
	6.1 The Old Data Structure
	6.2 The Young Data Structure
	6.3 Performing a Query
	6.4 Access Cost

	References

	A Survey on Priority Queues
	1 Introduction
	2 The Beginning: Binary Heaps
	3 Reducing the Number of Comparisons
	4 Double-Ended Priority Queues
	5 Implicit Data Structures
	6 DecreaseKey and Meld
	7 Self-adjusting Priority Queues
	8 Distribution Sensitive Priority Queues
	9 RAM Priority Queues
	10 Hierarchical Memory Models
	11 Priority Queues for Sorting with Limited Space
	12 Empirical Investigations
	13 Concluding Remarks
	References

	On Generalized Comparison-Based Sorting Problems
	1 Introduction
	2 Sorting to and from a Partial Order
	2.1 Partial Order Production
	2.2 Sorting with Partial Information

	3 The Role of Graph Entropy
	4 Approximating the Entropy and Efficient Algorithms
	4.1 From Partial Order Production to Multiple Selection
	4.2 From Sorting under Partial Information to Multiple Merging

	5 Partial Order Identification
	5.1 Partial Order Identification Using Central Elements
	5.2 Partial Order Identification Using Chain Decompositions

	6 Sorting with Forbidden Comparisons
	References

	A Survey of the Game ``Lights Out!''
	1 Introduction
	2 Preliminaries
	2.1 The Game
	2.2 The Math
	2.3 Historical Review

	3 Solving All-On Configurations
	3.1 A Graph Theoretical Proof
	3.2 An Algebraic Proof
	3.3 A Greedy Algorithm
	3.4 Historical Review

	4 Universally Solvable Graphs
	4.1 Lights Out! on Grid Graphs
	4.2 Lights Out! on Other Graph Classes
	4.3 Historical Reviews

	5 Optimization Problems
	5.1 Minimum Odd Covers
	5.2 Maximizing Off Nodes
	5.3 Bounds for Trees
	5.4 Historical Review

	References

	Random Access to High-Order Entropy Compressed Text
	1 Introduction
	2 Basic Scheme
	3 Static Schemes
	3.1 LZ78 Parsing and Encoding
	3.2 Statistical Encoding
	3.3 Frequency Encoding

	4 Dynamic Schemes
	4.1 Managing CRAM and Extended CRAM
	4.2 Multiple Encodings of Blocks

	5 Further Discussion and Conclusions
	References

	Succinct and Implicit Data Structures for Computational Geometry
	1 Introduction
	2 Range Search
	2.1 Implicit Data Structures for Orthogonal Range Reporting
	2.2 Succinct Data Structures for Orthogonal Range Counting and Reporting
	2.3 Other Range Queries

	3 Point Location
	4 Nearest Neighbor Search
	5 Conclusion
	References

	In Pursuit of the Dynamic Optimality Conjecture
	1 Introduction
	2 Geometric View
	3 Lower Bounds
	4 Upper Bounds
	4.1 Concrete Bounds
	4.2 Tango Trees [DHIP07]
	4.3 Greedy
	4.4 Combining Trees
	4.5 Search Optimality

	5 Online Optimality
	References

	A Survey of Algorithms and Models for List Update
	1 Introduction
	1.1 Outline

	2 Algorithms
	2.1 Paid Exchanges vs Free Exchanges
	2.2 Randomization
	2.3 Projective Property

	3 Alternative Models
	3.1 MRM Model
	3.2 Paid Exchange Model
	3.3 Compression Model
	3.4 Free Exchange Model

	4 Locality of Reference
	5 Concluding Remarks
	References

	Orthogonal Range Searching for Text Indexing
	1 Introduction
	2 Problem Definitions and Preliminaries
	3 1D Range Minimum Queries
	3.1 The LCP Lemma
	3.2 Document Retrieval

	4 Indexing with One Error
	4.1 Bidirectional Use of Suffix Arrays
	4.2 Set Intersection via Range Reporting
	4.3 Indexing with One Error When Exact Matches Exist
	4.4 Related Material

	5 Compressed Full-Text Indexes
	5.1 LZ77 Compressed Indexing
	5.2 SLP Text Indexing

	6 Weighted Ancestors
	6.1 2-Sided Sorted Range Reporting in 2D
	6.2 Weighted Ancestors to 2-Sided Range Successor in 2D

	7 Compressed Substring Retrieval
	7.1 SCQ to Range Successor in 2D
	7.2 4-Sided and 3-Sided Sorted Range Reporting
	7.3 The Interval Longest Common Prefix to 3-Sided Sorted Range Reporting

	8 Top-k Document Retrieval
	8.1 Flattening the Top-k Document Retrieval Suffix Tree
	8.2 Solving with Weighted Range Searching
	8.3 External Memory Top-k Document Retrieval

	9 Range Restricted String Problems
	10 Lower Bounds on Text Indexing via Range Reporting
	References

	A Survey of Data Structures in the Bitprobe Model
	1 Introduction
	2 The Membership Problem
	2.1 Membership ``Schemes''
	2.2 Deterministic Schemes
	2.3 Randomized Schemes

	3 Integer Counters with Increment and Decrement
	3.1 Problem Definition and Notation
	3.2 Counters with Increment and Decrement
	3.3 Supporting Addition and Subtraction

	4 Other Problems in the Bitprobe Model
	5 Open Problems
	References

	Succinct Representations of Ordinal Trees
	1 Introduction
	2 Preliminaries
	2.1 Terminology
	2.2 Features of Succinct Tree Representations
	2.3 FIDs

	3 Ordinal Tree Representations
	3.1 Operations on Ordinal Trees
	3.2 Jacobson's Representation
	3.3 Balanced Parenthesis Representation
	3.4 Depth-First Unary Degree Sequence Representation
	3.5 Representations Based on Tree Covering
	3.6 ``Universal" Representation
	3.7 ``Fully-Functional" Representation

	4 Additional Topics
	4.1 Dynamization
	4.2 Compressibility
	4.3 Redundancy

	5 Implementations and Experimental Evaluation
	References

	Array Range Queries
	1 Introduction
	1.1 Classification of Array Range Queries
	1.2 Techniques for Array Range Query

	2 Weight Queries
	2.1 Range Minimum Query
	2.2 Counting and Reporting
	2.3 Other Weight Queries

	3 Color Queries
	4 Frequency Queries
	4.1 Queries Related to Raw Frequency
	4.2 Queries Related to Frequency Rank

	5 Conclusion
	References

	Indexes for Document Retrieval with Relevance
	1 Introduction
	2 Linear Space Framework
	3 External-Memory Framework
	4 Succinct Frameworks
	5 Variants of Document Retrieval
	5.1 Two-Pattern Document Listing
	5.2 Forbidden/Excluded Pattern Queries
	5.3 Parameterized Top-k Queries

	6 Conclusions and Open Problems
	References

	Author Index

