
6.000x9.0006.000x9.000 .322

AutoTemplate

,!7IB1B8-hgcdha!

,!7IB1B8-hgcdha!:t;K;k;K;k
ISBN 9781118762370

GERSTEN
SMITH

M O K H T A R  S .  B A Z A R A A 
H A N I F  D .  S H E R A L I

C .  M .  S H E T T Y

Prepared by  H A N I F  D .  S H E R A L I 
J O A N N A  L E L E N O

BA
Z

A
R

A
A • SH

ER
A

LI • SH
ET

T
Y

Solutions M
anual to Accom

pany
N

O
N

LIN
EA

R
 PRO

G
R

A
M

M
IN

G
 

Solutions Manual to Accompany

NONLINEAR
PROGRAMMING
Th eory and Algorithms

Th ird Edition
Th ird

Edition

Pantone 2748C Black





Solutions Manual
to Accompany

Nonlinear Programming:
Theory and Algorithms

bazaraa-fm_grid.qxd  6/25/2013  7:08 AM  Page i



bazaraa-fm_grid.qxd  6/25/2013  7:08 AM  Page ii



Solutions Manual
to Accompany

Nonlinear Programming:
Theory and Algorithms

Third Edition

Mokhtar S. Bazaraa
Department of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA

Hanif D. Sherali
Department of Industrial and Systems Engineering

Virginia Polytechnic Institute and State University
Blacksburg, VA

C. M. Shetty
Department of Industrial and Systems Engineering

Georgia Institute of Technology
Atlanta, GA

Solutions Manual Prepared by:

Hanif D. Sherali

Joanna M. Leleno

Acknowledgment: This work has been partially supported by the National
Science Foundation under Grant No. CMMI-0969169.

bazaraa-fm_grid.qxd  6/25/2013  7:08 AM  Page iii



Copyright © 2013 by John Wiley & Sons, Inc. 

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. 
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representation or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993
or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 978-1-118-76237-0

10 9 8 7 6 5 4 3 2 1

bazaraa-fm_grid.qxd  6/25/2013  7:08 AM  Page iv



v 

 

TABLE OF CONTENTS 
 
Chapter 1: Introduction ...................................................................................... 1 
 
 1.1, 1.2, 1.4, 1.6, 1.10, 1.13 
 
Chapter 2 Convex Sets ...................................................................................... 4 
 
 2.1, 2.2, 2.3, 2.7, 2.8, 2.12, 2.15, 2.21, 2.24, 2.31, 2.42, 2.45,  
 2.47, 2.49, 2.50, 2.51, 2.52, 2.53, 2.57 
 
Chapter 3: Convex Functions and Generalizations .......................................... 15 
 
 3.1, 3.2, 3.3, 3.4, 3.9, 3,10, 3.11, 3.16, 3.18, 3.21, 3.22, 3.26,  
 3.27, 3.28, 3.31, 3.37, 3.39, 3.40, 3.41, 3.45, 3.48, 3.51, 3.54,  
 3.56, 3.61, 3.62, 3.63, 3.64, 3.65 
 
Chapter 4: The Fritz John and Karush-Kuhn-Tucker Optimality Conditions .. 29 
 
 4.1, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.12, 4.15, 4.27, 4.28, 4.30,  
 4.31, 4.33, 4.37, 4.41, 4.43 
 
Chapter 5: Constraint Qualifications ................................................................ 46 
 
 5.1, 5.12, 5.13, 5.15, 5.20 
 
Chapter 6: Lagrangian Duality and Saddle Point Optimality Conditions ........ 51 
 
 6.2, 6.3, 6.4, 6.5, 6.7, 6.8, 6.9, 6.14, 6.15, 6.21, 6.23, 6.27, 6.29,  
 
Chapter 7: The Concept of an Algorithm ......................................................... 64 
 
 7.1, 7.2, 7.3, 7.6, 7.7, 7.19 
 
Chapter 8: Unconstrained Optimization ........................................................... 69 
 
 8.10, 8.11, 8.12, 8.18, 8.19, 8.21, 8.23, 8.27, 8.28, 8.32, 8.35,  
 8.41, 8.47, 8.51, 8.52 
 
Chapter 9: Penalty and Barrier Functions ........................................................ 88 
 
 9.2, 9.7, 9.8, 9.12, 9.13, 9.14, 9.16, 9.19, 9.32 
 
Chapter 10: Methods of Feasible Directions .................................................... 107 
 
 10.3, 10.4, 10.9, 1.012, 10.19, 10.20, 10.25, 10.33, 10.36, 10.41,  
 10.44, 10.47, 10.52 



vi 

 

 
Chapter 11: Linear Complementary Problem, and Quadratic, Separable, 

Fractional, and Geometric Programing ........................................ 134 
 
 11.1, 11.5, 11.12, 11.18, 11.19, 11.22, 11.23, 11.24, 11.36, 11.41,  
 11.42, 11.47, 11.48, 11.50, 11.51, 11.52 
 



CHAPTER 1: 

 

INTRODUCTION 

1.1 In the figure below, 
min

x  and 
max

x  denote optimal solutions for Part (a) 

and Part (b), respectively. 
 

0

1

2

2
x

1
x4323

2

23

(4, 2)

2 Feasible regionmin
xmax

x
 

 
1.2 a. The total cost per time unit (day) is to be minimized given the storage 

limitations, which yields the following model: 

 Minimize 1 1 2 2
1 2 1 1 2 2 1 1 2 2

1 2

( , )
2 2

d Q d Q
f Q Q k h k h c d c d

Q Q
       

 subject to  
1 1 2 2

s Q s Q S   

  
1 2

0, 0.Q Q   

Note that the last two terms in the objective function are constant and 
thus can be ignored while solving this problem. 
 

 b. Let 
j

S  denote the lost sales (in each cycle) of product j, j = 1, 2. In 

this case, we replace the objective function in Part (a) with 

1 2 1 2
( , , , ),F Q Q S S  where 

1 2 1 2
( , , , )F Q Q S S  = 

1 1 1
( , )F Q S  + 

2 2 2
( , ),F Q S  

and where 
2

( , ) ( ) , 1,2.
2( )

j j
j j j j j j j j j j

j j j j

d Q
F Q S k c Q S PQ h j

Q S Q S
     

 
  



 

2 

  This follows since the cycle time is 
j j

j

Q S

d


, and so over some T 

days, the number of cycles is 
j

j j

Td

Q S
. Moreover, for each cycle, the 

fixed setup cost is 
j

k , the variable production cost is 
j j

c Q , the lost 

sales cost is 
j j
S , the profit (negative cost) is 

j
PQ , and the 

inventory carrying cost is ( )
2
j j

j
j

h Q
Q

d
. This yields the above total cost 

function on a daily basis.  
 
1.4 Notation: 

j
x  : production in period j, j = 1,…,n 

  
j

d  : demand in period j, j = 1,…,n 

  
j

I  : inventory at the end of period j, j = 0, 1,…,n. 

 The production scheduling problem is to: 

 Minimize 
1

1
[ ( ) ]

n

j j
j

f x cI 


  

 subject to 
     

1j j j j
x d I I     for j = 1,…,n 

     
j

I K   for j = 1,…,n–1 

     0
n

I   

     0, 0
j j

x I    for j = 1,…,n–1. 

 

1.6 Let X denote the set of feasible portfolios. The task is to find an x X   

such that there does not exist an x X  for which t tc x c x  and 

 V  V 
ttx x x x  , with at least one inequality strict.  One way to find 

efficient portfolios is to solve: 

Maximize 
1 2

{  V : }t tc x x x x X    

 for different values of 
1 2

( , ) 0    such that 
1 2

1.    

 
1.10 Let x and p denote the demand and production levels, respectively, and let 

Z denote a standard normal random variable. Then we need p to be such 
that ( 5) 0.01,P p x    which by the continuity of the normal random 

variable is equivalent to ( 5) 0.01.P x p    Therefore, p must satisfy 



 

3 

5 150
( ) 0.01,

7

p
P Z

 
   

 where Z is a standard normal random variable. From tables of the standard 
normal distribution we have ( 2.3267) 0.01.P Z    Thus, we want 

145

7

p 
 2.3267,  or that the chance constraint is equivalent to 

161.2869.p   

 
1.13 We need to find a positive number K that minimizes the expected total 

cost. The expected total cost is 
2

(1 ) ( )p P x K       

1
( ).pP x K     Therefore, the mathematical programming problem 

can be formulated as follows: 

  Minimize   
2 1

0 0
(1 ) ( ) ( )

K
p f x dx p f x dx   


    

  subject to 0.K   

 If the conditional distribution functions 
2

( )F x   and 
1

( )F x   are 

known, then the objective function is simply 
2

(1 ) ( )p F K    

1
(1 ( )).p F K   
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CHAPTER 2: 

 

CONVEX SETS 

2.1 Let 
1 2

( )x conv S S  . Then there exists [0,1]   and 
1 2 1 2
,x x S S   

such that 
1 2

(1 )x x x    . Since 
1

x  and 
2

x  are both in 
1

S , x must be 

in 
1

( )conv S . Similarly, x must be in 
2

( )conv S . Therefore, 
1

( )x conv S   

2
( )conv S . (Alternatively, since 

1 1
( )S conv S  and 

2 2
( )S conv S , we 

have 
1 2 1 2

( ) ( )S S conv S conv S    or that 
1 2

[ ]conv S S   

1
( )conv S 

2
( )conv S .)  

      An example in which 
1 2

( )conv S S   
1

( )conv S   
2

( )conv S  is given 

below: 

    

1
S

2
S

 
 
 Here, 

1 2
( )conv S S   , while 

1 2 1
( ) ( )conv S conv S S   in this case. 

 
2.2 Let S be of the form { : }S x Ax b   in general, where the constraints 

might include bound restrictions. Since S is a polytope, it is bounded by 
definition. To show that it is convex, let y and z be any points in S, and let 

(1 )x y z    , for 0 1  . Then we have Ay b  and Az b , 

which implies that 

   (1 ) (1 )Ax Ay Az b b b          , 

 or that x S . Hence, S is convex. 
 
      Finally, to show that S is closed, consider any sequence { }

n
x x  such 

that 
n

x S , n . Then we have 
n

Ax b , n , or by taking limits as 

n   , we get Ax b , i.e., x S  as well. Thus S is closed. 
 
2.3 Consider the closed set S shown below along with ( )conv S , where 

( )conv S  is not closed: 



 

5 

 
 

 Now, suppose that pS    is closed. Toward this end, consider any 
sequence { }

n
x x , where ( )

n
x conv S , n . We must show that 

( )x conv S . Since ( )
n

x conv S , by definition (using Theorem 2.1.6), 

we have that we can write 
1

1

p
r

n nr n
r

x x



  , where r

n
x S  for 

1,..., 1r p  , n , and where 
1

1
1

p

nr
r





 , n , with 0

nr
  , ,r n . 

Since the 
nr
 -values as well as the r

n
x -points belong to compact sets, 

there exists a subsequence K such that { }
nr K r
  , 1,..., 1r p   , 

and { }r r
n

x x , 1,..., 1r p   . From above, we have taking limits as 

n   , n K , that 

  
1

1

p
r

r
r

x x



  , with 

1

1
1

p

r
r





 , 0

r
  , 1,..., 1r p   , 

 where rx S , 1,..., 1r p    since S is closed. Thus by definition, 

( )x conv S  and so ( )conv S  is closed.     

 

2.7 a. Let 1y  and 2y  belong to AS. Thus, 1 1y Ax  for some 1x S  and 
2y  = 2Ax  for some 2x S . Consider 1 2(1 )y y y    , for any 

0 1  . Then 1 2[ (1 ) ]y A x x    . Thus, letting 
1 2(1 )x x x    , we have that x S  since S is convex and that 

y Ax . Thus y AS , and so, AS is convex. 

 
 b. If 0  , then {0}S  , which is a convex set. Hence, suppose that 

0  . Let 1x  and 2x S  , where 1x S  and 2x S . Consider 
1 2(1 )x x x       for any 0 1  . Then, 1[x x     

2(1 ) ]x . Since 0  , we have that 1 2(1 )x x x    , or that 

x S  since S is convex. Hence x S   for any 0 1  , and 
thus S  is a convex set. 

 
2.8 

1 2 1 2 1 2
{( , ) : 0 1, 2 3}.S S x x x x       
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1 2 1 2 1 2

{( , ) : 1 0, 2 1}.S S x x x x          

 
2.12 Let 

1 2
S S S  . Consider any y, z S , and any (0,1)   such that 

1 2
y y y   and 

1 2
z z z  , with 

1 1 1
{ , }y z S  and 

2 2 2
{ , }y z S . 

Then 
1 2 1 2

(1 ) (1 ) (1 )y z y y z z             . Since both sets 

1
S  and 

2
S  are convex, we have (1 )

i i i
y z S    , i = 1, 2. Therefore, 

(1 )y z    is still a sum of a vector from 
1

S  and a vector from 
2

S , 

and so it is in S. Thus S is a convex set.  
 
 Consider the following example, where 

1
S  and 

2
S  are closed, and convex. 

sequence { }
n

y sequence {z }
n

1
S 2

S

 
 
 Let 

n n n
x y z  , for the sequences { }

n
y  and { }

n
z  shown in the figure, 

where 
1

{ }
n

y S , and 
2

{ }
n

z S . Then { } 0
n

x   where 
n

x S , n , 

but 0 S . Thus S is not closed.  
 
      Next, we show that if 

1
S  is compact and 

2
S  is closed, then S is closed. 

Consider a convergent sequence { }
n

x  of points from S, and let x denote its 

limit. By definition, 
n n n

x y z  , where for each n, 
1n

y S  and 

2n
z S . Since { }

n
y  is a sequence of points from a compact set, it must be 

bounded, and hence it has a convergent subsequence. For notational 
simplicity and without loss of generality, assume that the sequence { }

n
y  

itself is convergent, and let y denote its limit. Hence, 
1

y S . This result 

taken together with the convergence of the sequence { }
n

x  implies that 

{ }
n

z  is convergent to z, say. The limit, z, of { }
n

z  must be in 
2

S , since 
2

S  

is a closed set. Thus, x y z  , where 
1

y S  and 
2

z S , and therefore, 

x S . This completes the proof.      
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2.15 a. First, we show that ˆ( )conv S S . For this purpose, let us begin by 

showing that 
1

S  and 
2

S  both belong to Ŝ . Consider the case of 
1

S  

(the case of 
2

S  is similar). If 
1

x S , then 
1 1

A x b , and so, ˆx S  

with y = x, z = 0, 
1

1  , and 
2

0  . Thus 
1 2

ˆS S S  , and since 

Ŝ  is convex, we have that 
1 2

ˆ[ ]conv S S S  .  

       Next, we show that ˆ ( )S conv S . Let ˆx S . Then, there exist 

vectors y and z such that x y z  , and 
1 1 1

A y b  , 
2 2 2

A z b   for 

some 
1 2

( , ) 0    such that 
1 2

1   . If 
1

0   or 
2

0  , then 

we readily obtain y = 0 or z = 0, respectively (by the boundedness of 

1
S  and 

2
S ), with 

2
x z S   or 

1
x y S  , respectively, which 

yields x S , and so ( )x conv S . If 
1

0   and 
2

0  , then 

1 1 2 2
x y z   , where 

1
1

1
y y


  and 

2
2

1
z z


 . It can be easily 

verified in this case that 
1 1

y S  and 
2 2

z S , which implies that both 

vectors 
1

y  and 
2

z  are in S. Therefore, x is a convex combination of 

points in S, and so ( )x conv S . This completes the proof      

 
 b. Now, suppose that 

1
S  and 

2
S  are not necessarily bounded. As above, 

it follows that ˆ( )conv S S , and since Ŝ  is closed, we have that 

ˆ( )c conv S S . To complete the proof, we need to show that 

ˆ ( )S c conv S  . Let ˆx S , where x y z   with 
1 1 1

A y b  , 

2 2 2
A z b  , for some 

1 2
( , ) 0    such that 

1 2
1   . If 

1 2
( , ) 0   , then as above we have that ( )x conv S , so that 

( )x c conv S  . Thus suppose that 
1

0   so that 
2

1   (the case of 

1
1   and 

2
0   is similar). Hence, we have 

1
0A y   and 

2 2
A z b , which implies that y is a recession direction of 

1
S  and 

2
z S  (if 

1
S  is bounded, then 0y   and then 

2
x z S   yields 

( )x c conv S  ). Let 
1

y S  and consider the sequence 

         
1

[ ] (1 ) ,
n n n

n

x y y z 


     where 0 1
n
   for all n. 
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  Note that 
1

1

n

y y S


  , 
2

z S , and so ( )
n

x conv S , n . 

Moreover, letting { } 0
n
  , we get that { }

n
x y z x   , and so 

( )x c conv S   by definition. This completes the proof.     

 
2.21 a. The extreme points of S are defined by the intersection of the two 

defining constraints, which yield upon solving for 
1

x  and 
2

x  in terms 

of 
3

x  that 

  
31

5 21 xx    , 3 3
2

3 5 2

2

x x
x

 



, where 

3
5

2
x  . 

  For characterizing the extreme directions of S, first note that for any 
fixed 

3
x , we have that S is bounded. Thus, any extreme direction must 

have 
3

0d  . Moreover, the maximum value of 
3

x  over S is readily 

verified to be bounded. Thus, we can set 
3

1d   . Furthermore, if 

(0,0,0)x   and 
1 2

( , , 1)d d d  , then x d S  , 0  , implies 

that  
                                     

1 2
2 1d d   (1) 

  and that 2 2
2 1

4 d d  , i.e., 2 2
2 1

4d d , 0  . Hence, if 
1

0d  , 

then we will have 
2

d   , and so (for bounded direction 

components) we must have 
1

0d   and 
2

0d  . Thus together with 

(1), for extreme directions, we can take 
2

0d   or 
2

1/2d  , yielding 

(0,0, 1)  and 
1

(0, , 1)
2
  as the extreme directions of S. 

 b. Since S is a polyhedron in 3R , its extreme points are feasible solutions 
defined by the intersection of three linearly independent defining 
hyperplanes, of which one must be the equality restriction 

1 2
1x x  . Of the six possible choices of selecting two from the 

remaining four defining constraints, we get extreme points defined by 

four such choices (easily verified), which yields 
3

(0,1, )
2

, 
3

(1,0, )
2

, 

(0,1,0) , and (1,0,0)  as the four extreme points of S. The extreme 

directions of S are given by extreme points of 
1 2 3

{( , , ) :D d d d  

1 2 3
2 0d d d   , 

1 2
0d d  , 

1 2 3
1d d d   , 0}d  , which is 

empty. Thus, there are no extreme directions of S (i.e., S is bounded). 
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 c. From a plot of S, it is readily seen that the extreme points of S are 

given by (0, 0), plus all point on the circle boundary 2 2
1 2

2x x   that 

lie between the points ( 2/5, 2 2/5)  and ( 2/5, 2 2/5) , 

including the two end-points. Furthermore, since S is bounded, it has 
no extreme direction.  

 
2.24 By plotting (or examining pairs of linearly independent active constraints), 

we have that the extreme points of S are given by (0, 0), (3, 0), and (0, 2). 
Furthermore, the extreme directions of S are given by extreme points of 

1 2
{( , ) :D d d  

1 2
2 0d d    

1 2
3 0d d  , 

1 2
1d d  , 0}d  , 

which are readily obtained as 
2 1

( , )
3 3

 and 
3 1

( , )
4 4

. Now, let 

  1

2

4 3/4 ,1 1/4
x
x              

 where 1

2

3 0(1 ) ,0 2
x
x                  

 

 for ( , ) 0   . Solving, we get 7/9   and 20/9,   which yields 

  
7 2 204 3 0 3/4

1 0 2 1/49 9 9
                       

. 

 
2.31 The following result from linear algebra is very useful in this proof: 
 ( )  An ( 1) ( 1)m m    matrix G with a row of ones is invertible if and 

only if the remaining m rows of G are linearly independent. In other words, 

if 
1t

B a
G

e
    

, where B is an m m  matrix, a is an 1m   vector, and e 

is an 1m   vector of ones, then G is invertible if and only if B is 
invertible. Moreover, if G is invertible, then  

 1
t

M g
G

h f
     

, where 1 11
( )tM B I ae B


   , 11

g B a


  , 

11t th e B


  , and 
1

f


 , and where 11 te B a   . 

      By Theorem 2.6.4, an n-dimensional vector d is an extreme point of D 

if and only if the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N  such that 

B

N

d
d
 
 
 

, where 
N

d  = 0 and 1 0
B D D

d B b  , where 1D
b     

0 . From 

Property ( )  above, the matrix t
A
e
 
  

 can be decomposed into [ ]
D D

B N , 

where 
D

B  is a nonsingular matrix, if and only if A can be decomposed into 

[ ]B N , where B is an m m  invertible matrix. Thus, the matrix 
D

B  must 
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necessarily be of the form 
1

j
t

B a

e

 
 
 

, where B is an m m  invertible 

submatrix of A. By applying the above equation for the inverse of G, we 
obtain 

   

1
1

1

1
1

1 1

j
j

B D D

B a B ad B b 








          

  
 

, 

 where 11 t
j

e B a   . Notice that 0
B

d   if and only if 0   and 

1 0
j

B a  . This result, together with Theorem 2.6.6, leads to the 

conclusion that d is an extreme point of D if and only if d is an extreme 
direction of S. 

 
 Thus, for characterizing the extreme points of D, we can examine bases of 

t
A
e
 
  

, which are limited by the number of ways we can select ( 1)m   

columns out of n, i.e.,  

     !
1 ( 1)!( 1)!

nn
m m n m

   
, 

 which is fewer by a factor of 
1

( 1)m 
 than that of the Corollary to 

Theorem 2.6.6. 
 

2.42 Problem P: Minimize { : , 0}.tc x Ax b x   

 (Homogeneous) Problem D: Maximize { : 0}t tb y A y  . 

 Problem P has no feasible solution if and only if the system Ax b , 
0x  , is inconsistent. That is, by Farkas’ Theorem (Theorem 2.4.5), this 

occurs if and only if the system 0tA y  , 0tb y   has a solution, i.e., if 

and only if the homogeneous version of the dual problem is unbounded.   
 

 
2.45 Consider the following pair of primal and dual LPs, where e is a vector of 

ones in m : 

  
: Max : Min 0

subject to 0
0.  unres.

t t

t
e p x
A p Ax e
p x

 


P D
 

 Then, System 2 has a solution  P	 is	 unbounded	 ሺtake	 any	 feasible	
solution	to	System	2,	multiply	it	by	a	scalar	λ,	and	take	   ሻ	 	D	
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is	infeasible	ሺsince	P		is	homogeneousሻ	 	∄	a	solution	to	 0Ax  	 	
∄	a	solution	to	 0Ax  .							 

 

2.47 Consider the system , 0tA y c y  : 

   
1 2

2 2 3y y    

   
1 2

2 1y y   

   
1

3 2y    

   
1 2

( , ) 0y y  . 

 The first equation is in conflict with 
1 2

( , ) 0y y  . Therefore, this system 

has no solution. By Farkas’ Theorem we then conclude that the system 

0Ax  , 0tc x   has a solution. 
 
2.49 ( )  We show that if System 2 has a solution, then System 1 is 

inconsistent. Suppose that System 2 is consistent and let 
0

y  be its solution. 

If System 1 has a solution, 
0

x , say, then we necessarily have 
0 0

0t tx A y  . 

However, since 
0
t t tx A c , this result leads to 

0
0tc y  , thus 

contradicting 
0

1tc y  . Therefore, System 1 must be inconsistent. 

 ( )  In this part we show that if System 2 has no solution, then System 1 

has one. Assume that System 2 has no solution, and let 
1 0

{( , ) :S z z  

1
tz A y  , 

0
tz c y , }my   . Then S is a nonempty convex set, and 

1 0
( , ) (0,1)z z S  . Therefore, there exists a nonzero vector 

1 0
( , )p p  and 

a real number ߙ such that 
1 1 0 0 1 0

0t tp z p z p p     for any 

1 0
( , )z z S . By the definition of S, this implies that 

1 0 0
t t tp A y p c y p     for any my   . In particular, for y = 0, we 

obtain 
0

0 p  . Next, observe that since α is nonnegative and 

1 0
( )t t tp A p c y     for any my   , then we necessarily have 

1 0
0t t tp A p c    (or else y can be readily selected to violate this 

inequality). We have thus shown that there exists a vector 
1 0

( , )p p  where 

0
0p  , such that 

1 0
0Ap p c  . By letting 

1
0

1
x p

p
 , we concluce that 

x solves the system 0Ax c  . This shows that System 1 has a solution. 
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2.50 Consider the pair of primal and dual LPs below, where e is a vector of 

ones in p : 

  

: Max : Min 0
subject to 0 subject to

0,  unres. 0
unres.

t t

t t
e u x
A u B v Ax e
u v Bx

x

  
 

P D

 

 Hence, System 2 has a solution P  is unbounded (take any solution to 
System 2 and multiply it with a scalar λ	 and	 take	    ሻ	  	 D	 is	
infeasible	ሺsince	P	is	homogeneousሻ	 	there	does	not	exist	a	solution	
to	 0Ax  ,	 0Bx  	 	System	1	has	no	solution.						 

 
2.51 Consider the following two systems for each {1,..., } :i m  

 System I:  0Ax   with 0
i

A x   

 System II: 0, 0tA y y  , with 0
i

y  , 

 where 
i

A  is the ith row of A. Accordingly, consider the following pair of 

primal and dual LPs: 
 

 

: Max : Min 0

subject to 0 subject to
0  unres,

t t
i
t

i

e y x

A y Ax e
y x

 


P D

 

 
 where 

i
e  is the ith unit vector. Then, we have that System II has a solution 

  P is unbounded   D is infeasible   System I has no solution. Thus, 
exactly one of the systems has a solution for each {1,..., }i m . Let 

1
{ {1,..., } :I i m   System I has a solution; say }ix , and let 

2
{ {1,..., } :I i m   System II has a solution; say, }iy . Note that 

1 2
{1,..., }I I m   with 

1 2
I I   . Accordingly, let 

1

i

i I
x x


   and 

2

i

i I
y y


  , where 0x   if 

1
I    and 0y   if 

2
I   . Then it is 

easily verified that x  and y  satisfy Systems 1 and 2, respectively, with 

1 2

0i i

i I i I
Ax y Ax y

 
      since 0iAx  , 

1
i I  , and 0iy  , 

2
i I  , and moreover, for each row i of this system, if 

1
i I   then we 

have 0i
i

A x   and if 
2

i I  then we have 0iy  . 
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2.52 Let 1
2

( )
x

f x e x


  . Then 
1

{ : ( ) 0}S x f x  . Moreover, the Hessian 

of f is given by 1 0
0 0

x
e
 

 
 

, which is positive semidefinite, and so, f is a 

convex function. Thus, S is a convex set since it is a lower-level set of a 
convex function. Similarly, it is readily verified that 

2
S  is a convex set. 

Furthermore, if 
1 2

x S S  , then we have 1 1
2

x x
e x e
 

    or 

12 0
x

e
  , which is achieved only in the limit as 

1
x   . Thus, 

1 2
S S  . A separating hyperplane is given by 

2
0x  , with 

1 2
{ : 0}S x x   and 

2 2
{ : 0}S x x  , but there does not exist any 

strongly separately hyperplane (since from above, both 
1

S  and 
2

S  contain 

points having 
2

0x  ). 

 

2.53 Let 2 2
1 2

( ) 4f x x x   . Let 2 2
1 2

{ : 4}X x x x   . Then, for any 

x X , the first-order approximation to ( )f x  is given by 

    1
1 1 2 2

2

2
( ) ( ) ( ) ( ) ( ) (2 ) (2 ) 82

t t
FO

x
f x f x x x f x x x x x x xx

 
         

 
. 

 Thus S is described by the intersection of infinite halfspaces as follows: 
 
    

1 1 2 2
(2 ) (2 ) 8x x x x  , x X  , 

 
 which represents replacing the constraint defining S by its first-order 

approximation at all boundary points. 
 
 
2.57 For the existence and uniqueness proof see, for example, Linear Algebra 

and Its Applications by Gilbert Strang (Harcourt Brace Jovanovich, Inc., 
1988). 

 
 If 

1 2 3 1 2 3
{( , , ) : 2 0}L x x x x x x    , then L is the nullspace of 

[2 1 1]A   , and its orthogonal complement is given by 
2
1
1


 
 
  

 for any 

   . Therefore, 
1

x  and 
2

x  are orthogonal projections of x onto L, and 

L , respectively. If x = (1   2   3), then 
1 2

1
2
3

 
 

  
x + x  where 

2

2
1
1


 

  
  

x . 
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Thus, 

21 2 2 1
2 1 1

63 1 1

t

 
   

    
       

= . Hence, 
1

1
(4 11 19)

6
x =  and 

2
1

(2 1 1)
6

x = . 
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CHAPTER 3: 

 

CONVEX FUNCTIONS AND GENERALIZATIONS 

3.1 a. 
4 4
4 0

 
  

 is indefinite. Therefore, ( )f x  is neither convex nor 

concave.  

 b. 1 2( 3 ) 1 1

1 1

2 3( 1)
( )

3( 1) 9
x x x x

H x e
x x

    
   

. Definiteness of the matrix 

( )H x  depends on 
1

x . Therefore, ( )f x  is neither convex nor concave 

(over 2R ). 

 c. 
2 4
4 6

H
    

 is indefinite since the determinant is negative. 

Therefore, ( )f x  is neither convex nor concave. 

 d. 
4 2 5
2 2 0
5 0 4

H
 

 
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 

 e. 
4 8 3
8 6 4
3 4 4

H
 
  
  

 is indefinite. Therefore, ( )f x  is neither convex 

nor concave. 
 

3.2 2( ) [ ( 1)].
bb ax bf x abx e abx b      Hence, if b = 1, then f is convex 

over { : 0}.x x   If b > 1, then f is convex whenever ( 1),babx b   i.e., 
1/( 1)

.
bb

x
ab

    
 

 

3.3 2 2
2 1

( ) 10 3( )f x x x   , and its Hessian matrix is 

2
1 2 1

1

6 2 2
( ) 6

2 1

x x x
H x

x

  
  

  
. Thus, f is not convex anywhere and for f to 

be concave, we need 2
1 2

6 2 0x x    and 2 2
1 2 1

6 2 4 0,x x x    i.e., 

2
1 2

3x x  and 2
1 2

x x , i.e., 2
1 2

x x . Hence, if 
1 2

{( , ) :S x x  

1
1 1x   , 

2
1 1}x   , then ( )f x  is neither convex nor concave on S. 
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If S is a convex set such that 2
1 2 1 2

{( , ) : }S x x x x  , then ( )H x  is 

negative semidefinite for all x S . Therefore, ( )f x  is concave on S. 

 

3.4 2 2( ) ( 1)f x x x  , 3( ) 4 2f x x x   , and 2( ) 12 2 0f x x     if 
2 1/6x  . Thus f is convex over 

1
{ : 1/ 6}S x x   and over 

2
{ : 1/ 6}.S x x    Moreover, since ( ) 0f x   whenever 1/ 6x   or 

1/ 6x   , and thus f lies strictly above the tangent plane for all 
1

x S  as 

well as for all 
2

,x S  f is strictly convex over 
1

S  and over 
2

S . For all the 

remaining values for x, ( )f x  is strictly concave. 

 

3.9 Consider any 
1
,x  

2
,nx R  and let 

1 2
(1 )x x x      for any 

0 1.   Then 
 
 

1
( ) max{ ( ),..., ( )} ( )

k r
f x f x f x f x      for some {1,..., },r k  

whence 
1 2

( ) ( ) (1 ) ( )
r r r

f x f x f x      by the convexity of 
r

f , i.e., 

1 2
( ) ( ) (1 ) ( )f x f x f x      since 

1 1
( ) ( )

r
f x f x  and 

2 2
( ) ( ).

r
f x f x  Thus f is convex.  

 
 If 

1
,...,

k
f f  are concave functions, then 

1
,...,

k
f f   are convex functions 

1
max{ ( ),..., ( )}

k
f x f x    is convex i.e., 

1
min{ ( ),..., ( )}

k
f x f x  is 

convex, i.e., 
1

( ) min{ ( ),..., ( )}
k

f x f x f x  is concave. 

 

3.10 Let 
1

x , 
2

nx   , [0,1]  , and let 
1 2

(1 )x x x     . To establish the 

convexity of ( )f   we need to show that 
1 2

( ) ( ) (1 ) ( )f x f x f x     . 

Notice that 
 ( )f x  

1 2
[ ( )] [ ( ) (1 ) ( )]g h x g h x h x       

  
1 2

[ ( )] (1 ) [ ( )]g h x g h x     

  
1 2

( ) (1 ) ( ).f x f x     

 In this derivation, the first inequality follows since h is convex and g is 
nondecreasing, and the second inequality follows from the convexity of g. 
This completes the proof. 

 
3.11 Let 

1
x , 

2
x S , [0,1]  , and let 

1 2
(1 )x x x     . To establish the 

convexity of f over S we need to show that 

1 2
( ) ( ) (1 ) ( ) 0f x f x f x      . For notational convenience, let 
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1 2 2 2
( ) ( ) ( ) ( ) ( ) (1 ) ( ) ( )D x g x g x g x g x g x g x      . Under the 

assumption that ( ) 0g x   for all x S , our task reduces to demonstrating 

that ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  . By the concavity of 

( )g x  we have 

 
1 2 1 2 2

( ) ( ) ( ) [ ( ) (1 ) ( )] ( )D x g x g x g x g x g x        

            
1 2 1

(1 )[ ( ) (1 ) ( )] ( )g x g x g x     . 

 After a rearrangement of terms on the right-hand side of this inequality we 
obtain 

 ( )D x  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) ] 2 (1 ) ( ) ( )g x g x g x g x          

  2 2
1 2 1 2

(1 )[ ( ) ( ) 2 ( ) ( )]g x g x g x g x       

  2
1 2

(1 )[ ( ) ( )] .g x g x      

 Therefore, ( ) 0D x   for any 
1

x , 
2

x S , and any [0,1]  , and thus 

( )f x  is a convex function.  

 

 Symmetrically, if g is convex, { : ( ) 0}S x g x  , then from above, 
1

g
 

is convex over S, and so ( ) 1/ ( )f x g x  is concave over S.      

 

3.16 Let 
1

x , 
2

x  be any two vectors in nR , and let [0,1]  . Then, by the 

definition of ( )h  , we obtain 
1 2 1

( (1 ) ) ( )h x x Ax b        

2
(1 )( )Ax b  

1 2
( ) (1 ) ( )h x h x   . Therefore, 

 
1 2 1 2 1 2

( (1 ) ) [ ( (1 ) )] [ ( ) (1 ) ( )]f x x g h x x g h x h x              

 
1 2 1 2

[ ( )] (1 ) [ ( )] ( ) (1 ) ( ),g h x g h x f x f x          

 where the above inequality follows from the convexity of g. Hence, ( )f x  

is convex.      

 By multivariate calculus, we obtain ( ) [ ( )]tf x A g h x   , and ( )
f

H x   

[ ( )]t
g

A H h x A . 

 

3.18 Assume that ( )f x  is convex. Consider any x, ny R , and let (0,1)  . 

Then  

 ( ) (1 ) (1 )
1 1

x y x y
f x y f f f   
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                 ( ) ( )f x f y  , 

 and so f is subadditive. 
 

 Conversely, let f be a subadditive gauge function. Let x, ny R  and 

[0,1]  . Then 

 ( (1 ) ) ( ) [(1 ) ] ( ) (1 ) ( )f x y f x f y f x f y             , 

 and so f is convex.  
 
3.21 See the answer to Exercise 6.4. 
 
3.22 a. See the answer to Exercise 6.4. 
 
 b. If 

1 2
,y y  then 

1 2
{ : ( ) , } { : ( ) , },x g x y x S x g x y x S      

and so 
1 2

( ) ( ).y y   

 

3.26 First assume that 0x  . Note that then ( ) 0f x   and 0t x   for any 

vector   in nR .  

 ( ) If   is a subgradient of ( )f x x  at x = 0, then by definition we 

have tx x  for all nx R . Thus in particular for x  , we obtain 

2  , which yields 1  . 

 ( ) Suppose that 1  . By the Schwarz inequality, we then obtain 

t x   x x , and so   is a subgradient of ( )f x x  at x = 0. 

 This completes the proof for the case when 0.x   Now, consider 0.x   

 ( ) Suppose that   is a subgradient of ( )f x x  at x . Then by 

definition, we have 
 

  ( )tx x x x    for all nx R . (1) 

 
 In particular, the above inequality holds for x = 0, for x x , where 

0  , and for x  . If x = 0, then t x x  . Furthermore, by 

employing the Schwarz inequality we obtain  
 

  tx x x   . (2) 

 
 If x x , 0  , then x x , and Equation (1) yields 

( 1) ( 1) tx x     . If 1  , then tx x , and if 1  , then 
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tx x . Therefore, in either case, if   is a subgradient at x , then it 

must satisfy the equation. 
 

  t x x  . (3) 

 

 Finally, if x  , then Equation (1) results in t tx x      . 

However, by (2), we have t x x  . Therefore, (1 ) 0   . This 

yields 
 
  1 0   (4) 

 
 Combining (2) – (4), we conclude that if   is a subgradient of ( )f x x  

at 0x  , then t x x   and 1  . 

 ( ) Consider a vector nR   such that 1   and t x x  , where 

0x  . Then for any x, we have ( ) ( ) ( )tf x f x x x x x       

( ) (1 ) 0t tx x x x x        , where we have used the 

Schwarz inequality ( )t x x   to derive the last inequality. Thus   is 

a subgradient of ( )f x x  at 0x  . This completes the proof.   

 In order to derive the gradient of ( )f x  at 0x  , notice that 1   and 

t x x   if and only if 
1

x
x

  . Thus 
1

( )f x x
x

  . 

 
3.27 Since 

1
f  and 

2
f  are convex and differentiable, we have 

 

 
1 1 1
( ) ( ) ( ) ( ), .tf x f x x x f x x      

 
2 2 2

( ) ( ) ( ) ( ), .tf x f x x x f x x      

 Hence, 
1 2

( ) max{ ( ), ( )}f x f x f x  and 
1 2

( ) ( ) ( )f x f x f x   give 

 

  
1

( ) ( ) ( ) ( ),tf x f x x x f x x      (1) 

  
2

( ) ( ) ( ) ( ), .tf x f x x x f x x      (2) 

 
 Multiplying (1) and (2) by   and (1 ) , respectively, where 0 1  , 

yields upon summing: 
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 1 2
( ) ( ) ( ) [ ( ) (1 ) ( )], ,tf x f x x x f x f x x          

  
1 2
( ) (1 ) ( ), 0 1,f x f x           is a subgradient of f at x . 

 
( ) Let   be a subgradient of f at x . Then, we have, 

 

  ( ) ( ) ( ) , .tf x f x x x x     (3) 

 
 But 

1 2
( ) max{ ( ), ( )}f x f x f x                 

                            
1 1 1

max{ ( ) ( ) ( ) 0 ( ),tf x x x f x x x x x       

                                    
2 2 2

( ) ( ) ( ) 0 ( )},tf x x x f x x x x x       (4) 

 
 where 

1
0 ( )x x  and 

2
0 ( )x x  are functions that approach zero as 

x x . Since 
1 2
( ) ( ) ( )f x f x f x  , putting (3) and (4) together yields 

 

 
1 1

max{( ) [ ( ) ] 0 ( ),tx x f x x x x x       

          
2 2

( ) [ ( ) ] 0 ( )} 0, .tx x f x x x x x x         (5) 

 
 Now, on the contrary, suppose that 

1 2
{ ( ), ( )}conv f x f x    . Then, there 

exists a strictly separating hyperplane x   such that 1   and 

t    and 
1 2

{ ( ) , ( ) },t tf x f x        i.e., 

 

                   
1

[ ( )] 0t f x      and 
2

[ ( )] 0t f x     . (6) 

 

 Letting ( )x x    in (5), with 0  , we get upon dividing with 

0  : 
 

 
1 1

max{ [ ( ) ] 0 ( 0),t f x       

         
2 2

[ ( ) ] 0 ( 0)} 0, 0.t f x           (7) 

 
 But the first terms in both maxands in (7) are negative by (6), while the 

second terms 0 . Hence we get a contradiction. Thus 
1

{ ( ),conv f x    

2
( )}f x , i.e., it is of the given form.  
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 Similarly, if 
1

( ) max{ ( ),..., ( )}
m

f x f x f x , where 
1
,...,

m
f f  are 

differentiable convex functions and x  is such that ( ) ( ),
i

f x f x  

{1,..., },i I m    then   is a subgradient of f at 

{ ( ), }.
i

x conv f x i I     A likewise result holds for the minimum 

of differentiable concave functions. 
 
3.28 a. See Theorem 6.3.1 and its proof. (Alternatively, since   is the 

minimum of several affine functions, one for each extreme point of X, 
we have that   is a piecewise linear and concave.) 

 
 b. See Theorem 6.3.7. In particular, for a given vector u , let 

1
( ) { ,..., }

k
X u x x  denote the set of all extreme points of the set X 

that are optimal solutions for the problem to minimize 

{ ( ) : }.t tc x u Ax b x X    Then ( )u  is a subgradient of ( )u  at 

u  if and only if ( )u  is in the convex hull of 
1

,..., ,
k

Ax b Ax b   

where ( )
i

x X u  for 1,..., .i k  That is, ( )u  is a subgradient of 

( )u  at u  if and only if 
1

( )
k

i i
i

u A x b 


   for some nonnegative 

1
,..., ,

k
   such that 

1
1.

k

i
i




  

 
3.31 Let 

1
: min{ ( ) : }f x x SP  and 

2
: min{ ( ) : },

s
f x x SP  and let 

1
{ : ( ) ( ), }S x S f x f x x S       and 

2
{ : ( )

s
S x S f x     

( ), }.
s

f x x S   Consider any 
1
.x S   Hence, x  solves Problem 

1
P . 

Define ( ) ( ), .h x f x x S    Thus, the constant function h is a convex 

underestimating function for f over S, and so by the definition of 
s

f , we 

have that 
 

 ( ) ( ) ( ), .
s

f x h x f x x S     (1) 

 

 But ( ) ( )
s

f x f x   since ( ) ( ), .
s

f x f x x S    This, together with (1), 

thus yields ( ) ( )
s

f x f x   and that x  solves Problem 
2

P  (since (1) 

asserts that ( )f x  is a lower bound on Problem 
2

P ). Therefore, 
2
.x S   

Thus, we have shown that the optimal values of Problems 
1

P  and 
2

P  

match, and that 
1 2

.S S     
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3.37 

2 2
1 2

2 2
1 2

2
1

2
2

4 3 1 4 3
( ) ,

1 2 5
2 5

x x

x x

x e e
f x f

e
x e





 
                     

 

 
2 2
1 2

2
2 1 1 2

2
1 2 2

8 2 4 1 10 4
( ) 2 , 2 ,

1 4 14 2 1

x x x x x
H x e H e

x x x

                   
 

 with 
1

2.
1

f e     
 

 Thus, the linear (first-order) approximation of f at 
1
1
 
  

 is given by 

 
1 1 2
( ) ( 2) ( 1)(4 3) ( 1)( 2 5),f x e x e x e           

 and the second-order approximation of f at 
1
1
 
  

 is given by  

 
2 1 2

( ) ( 2) ( 1)(4 3) ( 1)( 2 5)f x e x e x e           

                2 2
1 1 2 2

10( 1) 8( 1)( 1) ( 1) .e x x x x         

 
 

1
f  is both convex and concave (since it is affine). The Hessian of 

2
f  is 

given by 
1

,
1

H  
  

 which is indefinite, and so 
2

f  is neither convex nor 

concave. 
 

3.39 The function ( ) tf x x Ax  can be represented in a more convenient form 

as 
1

( ) ( )
2

t tf x x A A x  , where ( )tA A  is symmetric. Hence, the 

Hessian matrix of ( )f x  is tH A A  . By the superdiagonalization 

procedure, we can readily verify that 
4 3 4
3 6 3
4 3 2

H


 
 
 
 

. H is positive 

semidefinite if and only if 2,   and is positive definite for 2.   

Therefore, if 2,   then ( )f x  is strictly convex. To examine the case 

when 2,   consider the following three points: 
1

x  = (1, 0, 0), 
2

x  = (0, 0, 

1), and 
1 2

1 1
.

2 2
x x x   As a result of direct substitution, we obtain 

1 2
( ) ( ) 2,f x f x   and ( ) 2.f x   This shows that ( )f x  is not strictly 

convex (although it is still convex) when 2.   
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3.40 3 2( ) ( ) 3f x x f x x    and ( ) 6 0,f x x x S     . Hence f is 

convex on S. Moreover, ( ) 0, int( )f x x S    , and so f is strictly 

convex on int(S). To show that f is strictly convex on S, note that 
( ) 0f x   only for 0 ,x S   and so following the argument given after 

Theorem 3.3.8, any supporting hyperplane to the epigraph of f over S at 
any point x  must touch it only at [ , ( )],x f x  or else this would contradict 

the strict convexity of f over int(S). Note that the first nonzero derivative of 
order greater than or equal to 2 at 0x   is ( ) 6,f x   but Theorem 3.3.9 

does not apply here since 0 ( ).x S    Indeed, this shows that 
3( )f x x  is neither convex nor concave over R. But Theorem 3.3.9 

applies (and holds) over int(S) in this case.  
 
3.41 The matrix H is symmetric, and therefore, it is diagonalizable. That is, 

there exists an orthogonal n n  matrix Q, and a diagonal n n  matrix D 

such that .tH QDQ  The columns of the matrix Q are simply normalized 

eigenvectors of the matrix H, and the diagonal elements of the matrix D 
are the eigenvalues of H. By the positive semidefiniteness of H, we have 

{ } 0,diag D   and hence there exists a square root matrix 1/2D  of D (that 

is 1/2 1/2 ).D D D  

 

 If 0,x   then readily Hx = 0. Suppose that 0tx Hx   for some 0x  . 
Below we show that then Hx is necessarily 0. For notational convenience 

let 1/2 .tz D Q x  Then the following equations are equivalent to 

0tx Hx  : 

    1/2 1/2 0t tx QD D Q x   

    0tz z  , i.e., 2 0z   

    0.z   

 By premultiplying the last equation by 1/2 ,QD  we obtain 1/2 0,QD z   

which by the definition of z gives 0.tQDQ x   Thus Hx = 0, which 

completes the proof.     

 
3.45 Consider the problem 
 

  P: Minimize 2 2
1 2

( 4) ( 6)x x    

   subject to 2
2 1

x x  

    
2

4.x   
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 Note that the feasible region (denote this by X) of Problem P is convex. 

Hence, a necessary condition for x X  to be an optimal solution for 
Problem P is that 

 

  ( ) ( ) 0, ,tf x x x x X      (1) 

 

 because if there exists an x̂ X such that ˆ( ) ( ) 0,tf x x x    then 

ˆ( )d x x   would be an improving (since f is differentiable) and feasible 

(since X is convex) direction. 
 

 For (2, 4) ,tx   we have 
2(2 4) 4

( ) .
2(4 6) 4

f x
             

 

 
 Hence, 
 

 1
1 2

2

2
( ) ( ) [ 4, 4] 4 4 24.

4
t x

f x x x x x
x

 
           

 (2) 

 

 But 2
1 2

4,x x   
2

4x X x     and 
1

2 2,x    and so 

1
4 8x    and 

2
4 16.x    Hence, ( ) ( ) 0tf x x x    from (2). 

 
 Furthermore, observe that the objective function of Problem P (denoted by 

( ))f x  is (strictly) convex since its Hessian is given by 
2 0

,
0 2
 
  

 which is 

positive definite. Hence, by Corollary 2 to Theorem 3.4.3, we have that (1) 

is also sufficient for optimality to P, and so (2, 4)tx   (uniquely) solves 

Problem P. 
 
3.48 Suppose that 

1
  and 

2
  are in the interval (0, ),  and such that 

2 1
.   

We need to show that 
2 1

( ) ( ).f x d f x d     

 
 Let 

1 2
/ .    Note that (0,1),   and 

1 2
( )x d x d       

(1 ) .x  Therefore, by the convexity of f, we obtain 
1

( )f x d   

2
( ) (1 ) ( ),f x d f x      which leads to 

1 2
( ) ( )f x d f x d     

since, by assumption, ( ) ( )f x f x d   for any (0, ).   
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 When f is strictly convex, we can simply replace the weak inequalities 
above with strict inequalities to conclude that ( )f x d  is strictly 

increasing over the interval (0, ).  

 
3.51 ( ) If the vector d is a descent direction of f at x , then ( )f x d   

( ) 0f x   for all (0, ).   Moreover, since f is a convex and 

differentiable function, we have that ( ) ( ) ( ) .tf x d f x f x d      

Therefore, ( ) 0.tf x d   

 ( ) See the proof of Theorem 4.1.2.     

 Note: If the function ( )f x  is not convex, then it is not true that 

( ) 0tf x d   whenever d is a descent direction of ( )f x  at x . For 

example, if 3( ) ,f x x  then 1d    is a descent direction of f at 0,x   

but ( ) 0.f x d   

 
3.54 ( ) If x  is an optimal solution, then we must have ( ; ) 0,f x d   

,d D   since ( ; ) 0f x d   for any d D  implies the existence of 

improving feasible solutions by Exercise 3.5.1. 
 ( ) Suppose ( ; ) 0,f x d   ,d D   but on the contrary, x  is not an 

optimal solution, i.e., there exists x̂ S  with ˆ( ) ( ).f x f x  Consider 

ˆ( ).d x x   Then d D  since S is convex. Moreover, ( )f x d   

ˆ ˆ( (1 ) ) ( ) (1 ) ( ) ( ),f x x f x f x f x          0 1.    Thus d is 

a feasible, descent direction, and so ( ; ) 0f x d   by Exercise 3.51, a 

contradiction. 
 
 Theorem 3.4.3 similarly deals with nondifferentiable convex functions. 
 

 If ,nS R  then x  is optimal   ( ) 0,tf x d   nd R   

   ( ) 0f x   (else, pick ( )d f x   to get a contradiction). 

 

3.56 Let 
1
,x  

2
.nx R  Without loss of generality assume that 

1 2
( ) ( ).h x h x  

Since the function g is nondecreasing, the foregoing assumption implies 
that 

1 2
[ ( )] [ ( )],g h x g h x  or equivalently, that 

1 2
( ) ( ).f x f x  By the 

quasiconvexity of h, we have 
1 2 1

( (1 ) ) ( )h x x h x     for any 

[0,1].   Since the function g is nondecreasing, we therefore have, 

1 2 1 2 1 1
( (1 ) ) [ ( (1 ) )] [ ( )] ( ).f x x g h x x g h x f x           This 

shows that ( )f x  is quasiconvex.     

 



 

26 

3.61 Let   be an arbitrary real number, and let { : ( ) }.S x f x    

Furthermore, let 
1

x  and 
2

x  be any two elements of S. By Theorem 3.5.2, 

we need to show that S is a convex set, that is, 
1 2

( (1 ) )f x x      for 

any [0,1].   By the definition of ( )f x , we have 

 

1 2 1 2
1 2

1 2 1 2

( (1 ) ) ( ) (1 ) ( )
( (1 ) ) ,

( (1 ) ) ( ) (1 ) ( )

g x x g x g x
f x x

h x x h x h x

   
 

   

   
   

   
 (1) 

 
 where the inequality follows from the assumed properties of the functions 

g and h. Furthermore, since 
1

( )f x   and 
2

( )f x  , we obtain 

 
  

1 1
( ) ( )g x h x   and 

2 2
(1 ) ( ) (1 ) ( ).g x h x      

 
 By adding these two inequalities, we obtain 

1 2
( ) (1 ) ( )g x g x     

1 2
[ ( ) (1 ) ( )].h x h x     Since h is assumed to be a positive-valued 

function, the last inequality yields 
 

1 2

1 2

( ) (1 ) ( )
,

( ) (1 ) ( )

g x g x

h x h x

 


 

 


 
 

 
 or by (1), 

1 2
( (1 ) ) .f x x      Thus, S is a convex set, and therefore, 

( )f x  is a quasiconvex function.    

 Alternative proof: For any ,R   let { : ( )/ ( ) }.S x S g x h x     We 

need to show that S  is a convex set. If 0  , then S    since 

( ) 0g x   and ( ) 0h x  , x S  , and so S  is convex. If 0,   then 

{ : ( ) ( ) 0}S x S g x h x      is convex since ( ) ( )g x h x  is a 

convex function, and S  is a lower level set of this function.      

 
3.62 We need to prove that if ( )g x  is a convex nonpositive-valued function on 

S and ( )h x  is a convex and positive-valued function on S, then 

( ) ( )/ ( )f x g x h x  is a quasiconvex function on S. For this purpose we 

show that for any 
1

x , 
2

,x S  if 
1 2

( ) ( ),f x f x  then 
1

( ) ( ),f x f x   

where 
1 2

(1 ) ,x x x      and [0,1].   Note that by the definition of 

f and the assumption that ( ) 0h x   for all ,x S  it suffices to show that 

1 1
( ) ( ) ( ) ( ) 0.g x h x g x h x    Towards this end, observe that 
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1 1 2 1

( ) ( ) [ ( ) (1 ) ( )] ( )g x h x g x g x h x      since ( )g x  is convex and 

( ) 0h x   on S; 

 
1 1 1 2

( ) ( ) ( )[ ( ) (1 ) ( )]g x h x g x h x h x      since ( )h x  is convex and 

( ) 0g x   on S; 

 
2 1 1 2

( ) ( ) ( ) ( ) 0,g x h x g x h x   since 
1 2

( ) ( )f x f x  and ( ) 0h x   on S. 

 
 From the foregoing inequalities we obtain 
 

1 1
( ) ( ) ( ) ( )g x h x g x h x   

 
1 2 1 1 1

[ ( ) (1 ) ( )] ( ) ( )[ ( )g x g x h x g x h x      
2

(1 ) ( )]h x  

 
2 1 1 2

(1 )[ ( ) ( ) ( ) ( )] 0,g x h x g x h x     

 
 which implies that 

1 2 1
( ) max{ ( ), ( )} ( ).f x f x f x f x           

 
 Note: See also the alternative proof technique for Exercise 3.61 for a 

similar simpler proof of this result. 
 
3.63 By assumption, ( ) 0,h x   and so the function ( )f x  can be rewritten as 

( ) ( )/ ( ),f x g x p x  where ( ) 1/ ( ).p x h x  Furthermore, since ( )h x  is a 

concave and positive-valued function, we conclude that ( )p x  is convex 

and positive-valued on S (see Exercise 3.11). Therefore, the result given in 
Exercise 3.62 applies. This completes the proof.     

 
3.64 Let us show that if ( )g x  and ( )h x  are differentiable, then the function 

defined in Exercise 3.61 is pseudoconvex. (The cases of Exercises 3.62 
and 3.63 are similar.) To prove this, we show that for any 

1
x , 

2
x S , if 

1 2 1
( ) ( ) 0tf x x x   , then 

2 1
( ) ( ).f x f x  From the assumption that 

( ) 0h x  , it follows that 
1 2 1

( ) ( ) 0tf x x x    if and only if 

1 1
[ ( ) ( )h x g x 

1 1 2 1
( ) ( )] ( ) 0.tg x h x x x    Furthermore, note that 

1 2 1 2 1
( ) ( ) ( ) ( ),tg x x x g x g x     since ( )g x  is a convex and 

differentiable function on S, and 
1 2 1 2 1

( ) ( ) ( ) ( ),th x x x h x h x     since 

( )h x  is a concave and differentiable function on S. By multiplying the 

latter inequality by 
1

( ) 0,g x   and the former one by 
1

( ) 0,h x   and 

adding the resulting inequalities, we obtain (after rearrangement of terms): 
 

1 1 1 1 2 1 1 2 1 2
[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( ) ( ).th x g x g x h x x x h x g x g x h x       
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 The left-hand side expression is nonegative by our assumption, and 
therefore, 

1 2 1 2
( ) ( ) ( ) ( ) 0,h x g x g x h x   which implies that 

2 1
( ) ( ).f x f x  This completes the proof.    

 

3.65 For notational convenience let 
1 1

( ) ,tg x c x    and let 
2 2

( ) .th x c x    

In order to prove pseudoconvexity of 
( )

( )
( )

g x
f x

h x
  on the set 

{ : ( ) 0}S x h x   we need to show that for any 
1
,x  

2
,x S  if 

1 2 1
( ) ( ) 0,tf x x x    then 

2 1
( ) ( ).f x f x  

 

 Assume that 
1 2 1

( ) ( ) 0tf x x x    for some 
1
,x  

2
.x S  By the definition 

of f, we have 
1 22

1
( ) [ ( ) ( ) ].

[ ( )]
f x h x c g x c

h x
    Therefore, our 

assumption yields 
1 1 1 2 2 1

[ ( ) ( ) ] ( ) 0.th x c g x c x x    Furthermore, by 

adding and subtracting 
1 1 2 1

( ) ( )h x g x   we obtain 
2 1

( ) ( )g x h x   

2 1
( ) ( )h x g x 0.  Finally, by dividing this inequality by 

1 2
( ) ( ) ( 0),h x h x   

we obtain 
2 1

( ) ( ),f x f x  which completes the proof of pseudoconvexity 

of ( ).f x  The psueoconcavity of ( )f x  on S can be shown in a similar way. 

Thus, f is pseudolinear.    
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CHAPTER 4: 

 

THE FRITZ JOHN AND KARUSH-KUHN-TUCKER 

OPTIMALITY CONDITIONS 

4.1 2( ) .xf x xe  Then 2 2( ) 2 0x xf x xe e       implies that 
2 (1 2 ) 0xe x     1/2.x x   Also, 2( ) 4 ( 1).xf x e x    Hence, at 

1/2,x   we have that ( ) 0,f x   and so 1/2x   is a strict local max for 

f. This is also a global max and there does not exist a local/global min 
since from f  , the function is concave for 1x   with ( )f x    as 

,x    and f is convex and monotone decreasing for 1x   with 

( ) 0f x   as ).x    

4.4 Let 1 222 2
1 1 2 2 1

( ) 2 3 .
x x

f x x x x x x e


      

 a. The first-order necessary condition is ( ) 0,f x   that is: 

  
1 2

1 2

2
1 2

2
1 2

4 3 2 0
.

02

x x

x x

x x e

x x e





               

 

  The Hessian ( )H x  of ( )f x  is  

  
1 2 1 2

1 2 1 2

2 2

2 2
4 4 2 1

( ) ,
2 1 2

x x x x

x x x x
e e

H x
e e

 

 

   
   

 and as can be easily verified, 

( )H x  is a positive definite matrix for all x. Therefore, the first-order 

necessary condition is sufficient in this case. 
 

 b. (0,0)x   is not an optimal solution. ( ) [ 1 1] ,tf x    and any 

direction 
1 2

( , )d d d  such that 
1 2

0d d    (e.g., (1,0))d   is a 

descent direction of ( )f x  at x . 

 

 c. Consider (1,0).d   Then 2 2( ) 2 3 .f x d e        The 

minimum value of ( )f x d  over the interval [0, )  is 0.94 and is 

attained at 0.1175.   
 

 d. If the last term is dropped, 2 2
1 1 2 2 1

( ) 2 3 .f x x x x x x     Then the 

first-order necessary condition yields a unique solution 
1

6/7x   and 
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2
3/7.x   Again, the Hessian of ( )f x  is positive definite for all x, 

and so the foregoing values of 
1

x  and 
2

x  are optimal. The minimum 

value of ( )f x  is given by –63/49. 

 
4.5 The KKT system is given by: 
 

  3
1

4x  
1

24x  
2

x  
1

u  
2

2u  
3

u   1  

  3
2

4x  
2

12x  
1

x  
1

u  
2

u   
4

u  1  

  
1

x  
2

x       6  

  
1

2x  
2

x       3  

  
1 1 2
(6 ) 0,u x x        

2 1 2
(3 2 ) 0u x x    

  
3 1

0,u x     
4 2

0,u x   

  
1 2

0, 0, 0
i

x x u    for i = 1, 2, 3, 4. 

 
 If x  = (3, 3), then denoting the Lagrange multipliers by u , we have that 

3 4
0.u u   Consequently, the first two equations give 

1
152u   and 

2
12.u   Thus, all the KKT conditions are satisfied at x  = (3, 3). The 

Hessian of the objective function is positive definite, and so the problem 
involves minimizing a strictly convex function over a convex set. Thus, x  
= (3, 3) is the unique global optimum.  

 
4.6 a. In general, the problem seeks a vector y in the column space of A (i.e., 

y = Ax) that is the closest to the given vector b. If b is in the column 
space of A, then we need to find a solution of the system Ax = b. If in 
addition to this, the rank of A is n, then x is unique. If b is not in the 
column space of A, then a vector in the column space of A that is the 
closest to b is the projection of the vector b onto the column space of 
A. In this case, the problem seeks a solution to the system Ax = y, 
where y is the projection vector of b onto the column space of A. In 
answers to Parts (b), (c), and (d) below it is assumed that b is not in 
the column space of A, since otherwise the problem trivially reduces 
to “find a solution to the system Ax = b.” 

 
 b. Assume that 

2
  is used, and let ( )f x  denote the objective function 

for this optimization problem. Then, ( ) 2 ,t t t t tf x b b x A b x A Ax    

and the first-order necessary condition is .t tA Ax A b  The Hessian 

matrix of ( )f x  is ,tA A  which is positive semidefinite. Therefore, 
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( )f x  is a convex function. By Theorem 4.3.8 it then follows that the 

necessary condition is also sufficient for optimality. 
 
 c. The number of optimal solutions is exactly the same as the number of 

solutions to the system .t tA Ax A b  
 

 d. If the rank of A is n, then tA A  is positive definite and thus invertible. 

In this case, 1( )t tx A A A b  is the unique solution. If the rank of A is 

less than n, then the system t tA Ax A b  has infinitely many 
solutions. In this case, additional criteria can be used to select an 
appropriate optimal solution as needed. (For details see Linear 
Algebra and Its Applications by Gilbert Strang, Harcourt Brace 
Jovanovich, Publishers, San Diego, 1988, Third Edition.) 

 
 e. The rank of A is 3, therefore, a unique solution exists. 

5 2 1
( ) 2 6 4 ,

1 4 5

tA A
 

  
 
 

 and [4 12 12] .t tA b   The unique solution 

is 
20 2

[2 ] .
7 7

tx


  

 
4.7 a. The KKT system for the given problem is: 
 
  

1 1 1 2 3
2 2x u x u u          9/2  

  
2 1

2x u      
2

u            
4

u   = 4 

    2
1

x  – 
2

x  0  

     
1 2

6x x   

  2
1 1 2
( ) 0,u x x    

2 1 2
(6 ) 0,u x x     

1 3
0,x u   

2 4
0x u   

  
1

0,x   
2

0,x   0
i

u   for i = 1, 2, 3, 4. 

 

  At (3/2, 9/4) ,tx   denoting the Lagrange multipliers by u , we 

necessarily have 
2 3 4

0,u u u    which yields a unique value for 

1
u  namely, 

1
1/2.u   The above values for 

1
x , 

2
x , and 

i
u  for i = 1, 2, 

3, 4 satisfy the KKT system, and therefore x  is a KKT point. 
 
 b. Graphical illustration: 
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  From the graph, it follows that at ,x  the gradient of ( )f x  is a 

negative multiple of the gradient of 2
1 1 2
( ) ,g x x x   where 

1
( ) 0g x   is the only active constraint at .x  

2
x

x

( )f x

1
x

6

6

1
( )g x

9
( ,2)
4

 
 c. It can be easily verified that the objective function is strictly convex, 

and that the active constraint function is also convex (in fact, the 
entire feasible region is convex in this case). Hence, x  is the unique 
(global) optimal solution to this problem. 

 

4.8 a. The objective function 1 2
1 2

1 2

3 3
( , )

2 6

x x
f x x

x x

 


 
 is pesudoconvex 

over the feasible region (see the proof of Lemma 11.4.1). The 
constraint functions are linear, and are therefore quasiconvex and 
quasiconcave. Therefore, by Theorem 4.3.8, if x  is a KKT point for 
this problem, then x  is a global optimal solution. 

 
 b. First note that (0,0) (6,0) 1/2,f f   and moreover, [ (0,0)f    

(1 )(6,0)] = 1/2 for any [0,1].   Since (0, 0) and (6, 0) are 

feasible solutions, and the feasible region is a polyhedral set, any 
convex combination of (0, 0) and (6, 0) is also a feasible solution. It is 
thus sufficient to verify that one of these two points is a KKT point. 
Consider (6, 0). The KKT system for this problem is as follows:  
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  2
1 2 32

1 2

5
2

(2 6)

x
u u u

x x


  

 
  = 0 

  1
1 22

1 2

5 15
2

(2 6)

x
u u

x x


 

 
 

4
u  = 0 

  
1 2

2 12x x   

  
1 2

2 4x x    

  
1 2

0, 0, 0
i

x x u    for i = 1, 2, 3, 4 

  
1 1 2 2 1 2 3 1 4 2
(2 12) 0, ( 2 4) 0, 0, 0.u x x u x x u x u x          

 
  Substituting (6, 0) for 

1 2
( , )x x  into this KKT system yields the 

following unqiue values for the Lagrangian multipliers: 

1 2 3
0,u u u    and 

4
u   5/36. Since 0,

i
u   1,2,3,4,i   we 

conclude that (6, 0) is indeed a KKT point, and therefore, by Part (a), 
it solves the given problem. Hence, by the above argument, any point 
on the line segment joining (0, 0) and (6, 0) is an optimal solution. 

 
4.9 Note that 0,c   as given. 
 

 a. Let ( ) ,tf d c d   and ( ) 1.tg d d d   The KKT system for the 

given problem is as follows: 
 
   2c du   0  

        td d  1  

   ( 1)tu d d   0  

        0.u   
 

  /d d c c   and /2u u c   yields a solution to this system. 

Hence, d  is a KKT point. Moreover, d  is an optimal solution, 
because it is a KKT point and sufficiency conditions for optimality are 
met since ( )f d  is a linear function, hence it is pseudoconvex, and 

( )g d  is a convex function, hence it is quasiconvex. Furthermore, d  

is the unique global optimal solution since the KKT system provides 
necessary and sufficient conditions for optimality in this case, and 

/ ,d c c  /2u c  is its unique solution. To support this 

statement, notice that if u > 0, then 1,td d   which together with the 

first equation results in /d c c  and /2.u c  If u = 0, then the 

first equation is inconsistent regardless of d since 0.c   
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 b. The steepest ascent direction of a differentiable function ( )f x  at x  

can be found as an optimal solution d  to the following problem: 
 

   Maximize { ( ) : 1},t tf x d d d   

 
  which is identical to the problem considered in Part (a) with 

( ).c f x   Thus, if ( ) 0,f x   then the steepest ascent direction is 

given by ( )/ ( )d f x f x   . 

 
4.10 a. In order to determine whether a feasible solution x  is a KKT point, 

one needs to examine if there exists a feasible solution to the system: 
 
  ( ) ( ) 0, 0

i i i
i I

f x g x u u


      for ,i I  

 
  where I is the set of indices of constraints that are active at .x  
 

  Let ( )c f x   and let [ ( ), ].t
i

A g x i I    Then the KKT system 

can be rewritten as follows: 
 

   , 0.tA u c u   (1) 

 
  Therefore, x  is a KKT point if and only if System (1) has a solution. 

Note that System (1) is linear, and it has a solution if and only if the 
optimal objective value in the following problem is zero: 

 

  Minimize te y  

  subject to tA u y c   

   0, 0,u y   

 
  where e is a column vector of ones, y is a vector of artificial variables, 

and where y  denotes that the components of y are ascribed the same 

sign as that of the respective components of c. This problem is a Phase 

I LP for finding a nonnegative solution to .tA u c  
 
 b. In the presence of equality constraints ( ) 0,

i
h x   1,..., ,i    the KKT 

system is given by 
 

  
1

( ) ( ) ( ) 0, 0
i i i i i

i I i
f x g x u h x v u

 
       


 for ,i I  
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  where I is the set of indices of the inequality constraints that are active 

at .x  Let tA  be as defined in Part (a), and let 

[ ( ), 1,..., ]t
i

B h x i     be the n    Jacobian matrix at x  for the 

equality constraints. Then the corresponding Phase I problem is given 
as follows: 

 

  Minimize te y  

  subject to t tA u B v y c    

   0, 0.u y   

 

 c. In this example, we have (1, 2,5) ,tx   ( ) (8,3,23) .tc f x     

Furthermore, {1,3},I   and therefore,  

  
1 3

2 1
[ ( ) ( )] 4 1 .

1 0

tA g x g x
 

     
  

 Thus, (1,2,5)tx   is a KKT 

point if and only if the optimal objective value of the following 
problem is zero: 

 
  Minimize 

1
y  + 

2
y  +

3
y   

  subject to 
1

2u  + 
3

u  +
1

y    = 8 

   
1

4u  + 
3

u   
2

y   = 3 

       
1

u      
3

y  = 23 

       
1 3

0, 0, 0
i

u u y    for i = 1, 2, 3. 

     
  However, the optimal solution to this problem is given by 

1
u  = 2.5, 

3
u  = 13, 

1
y  = 

2
y  = 0, 

3
y  = 20.5, and the optimal objective value is 

positive (20.5), and so we conclude that (1, 2,5)tx   is not a KKT 

point. 
 

4.12 Let 
j

j j

a
y x

b
  and 

j j
j

c a
d

b
  for j = 1,…, n. Then the given 

optimization problem is equivalent to the following, re-written in a more 
convenient form: 

 

 Minimize  
1

n j

j j

d

y
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 subject to 
1

1
n

j
j

y


  

   0
j

y   for j = 1,…, n. 

 
 The KKT system for the above problem is given as follows: 
 

 
2

0
j

j
j

d
v u

y


    for j = 1,…, n 

 
 0, 0,

j j j
u y u   and 0

j
y   for j = 1,…, n. 

 
 Readily, for each j = 1,…, n, 

j
y  must take on a positive value, and hence 

0,
j

u   1,..., .j n   The KKT system thus yields ,
j

j

d
y

v
  ,j  

which upon summing and using 
1

1
n

j
j

y


  gives 

2

1
.

n

j
j

v d


 
  
  

 Thus 

( , , )y v u  given by 

1

,
j

j n

j
j

d
y

d





 1,..., ,j n   

2

1
,

n

j
j

v d


 
  
  

 and 

0,
j

u   1,..., ,j n   is the (unique) solution to the above KKT system. 

The unique KKT point for the original problem is thus given by  
 

    
j

x   

1

,
j j

n

j j j
j

b a c

a a c



 1,..., .j n   

 
4.15 Consider the problem 
 

 Minimize  
1

n

j
j

x

  

 subject to 
1

,
n

j
j

x b


  

   0, 1,..., ,
j

x j n    
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 where b is a positive constant. Since feasibility requires j
x  > 0, 

1,..., ,j n   the only active constraint is the equality restriction, and 

because of the linear independence constraint qualification, the KKT 
conditions are necessary for optimality. The KKT system for this problem 
is thus given as follows: 

 

   1 0
n

i
i j

v x


   for j = 1,…, n 

   
1

.
n

j
j

x b


  

 
 By multiplying the jth equation by 

j
x  for j = 1,…,n, and noting that 

1
,

n

j
j

x b


  we obtain 

   0
j

x vb   for j = 1,…, n. 

 

 Therefore, 
1

0,
n

j
j

x nbv


   which gives the unique value for the 

Lagrange multiplier 
1

/ .
n

j
j

v x nb


    By substituting this expression for v 

into each of the equations 0
j

x vb   for j = 1,…, n, we then obtain 

1

1 n

j k
k

x x
n 

   for j = 1,…, n. This necessarily implies that the values of 

j
x  are all identical, and since 

1
,

n

j
j

x b


  we have that 1/ ,n
j

x b  

1,...,j n   yields the unique KKT solution, and since the KKT 

conditions are necessary for optimality, this gives the unique optimum to 

the above problem. Therefore, 1/

1

1 n n
j

j
x b

n 
  is the optimal objective 

function value. We have thus shown that for any positive vector x such that 

1
,

n

j
j

x b


  we have that  

 
1

1 n

j
j

x
n 

  minimum 

1/
1/

1 1 1

1
: .

n
n nn n

j j j
j j j

x x b b x
n   
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 But, for any given positive vector x, the product of its components is a 

constant, and so the above inequality implies that 

1/

1 1

1
.

n
nn

j j
j j

x x
n  

 
   
 

 

Furthermore, if any component is zero, then this latter inequality holds 
trivially.    

 
4.27 a. d = 0 is a feasible solution and it gives the objective function value 

equal to 0. Therefore, 0.z   
 

 b. If 0,z   then ( ) 0.tf x d   By Theorem 4.1.2, d  is a descent 

direction. Furthermore, by the concavity of ( )
i

g x  at ,x  ,i I  since 

( ) 0,
i

g x   there exists a 0   such that ( ) ( )t
i i

g x d g x d     

for (0, ).   Since the vector d  is a feasible solution to the given 

problem, we necessarily have ( ) 0t
i

g x d   for ,i I  and thus 

( ) 0
i

g x d   for (0, ).   All the remaining constraint functions 

are continuous at ,x  and so again there exists a 
1

0   such that 

( ) 0
i

g x d   for 
1

(0, ),   1,..., .i m   This shows that d  is a 

feasible descent direction at .x  
 
 c. If 0,z   then the dual to the given linear program has an optimal 

solution of objective function value zero. This dual problem can be 
formulated as follows: 

 

  Maximize 
1 2
t tv e v e   

  subject to  
1 2

( ) ( )
i i

i I
g x u v v f x


       

   0
i

u   for ,i I
1 2

0, 0,v v   

 

  where ne R  is a vector of ones. Thus if 0,z   then 
1

v  and 
2

v  are 

necessarily equal to 0 at an optimal dual solution, and so there exist 
nonnegative numbers ,

i
u  ,i I  such that ( )f x   ( )

i i
i I

g x u

   0. 

Thus, x  satisfies the KKT conditions. 
 

4.28 Consider the unit simplex { : 1, 0},tS y e y y    which is essentially 

an (n – 1)-dimensional body. Its center is given by 
0

1 1
( ,..., ) .ty
n n
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Examine a (maximal) sphere with center 0
y  and radius r that is inscribed 

with S. Then, r is the distance from 
0

y  to the center of the one less 

dimensional simplex, say, formed in the 
1 1

( ,..., )
n

y y  -space, where the 

latter center in the full y-space is thus given by 
1 1

( ,..., ,0).
1 1n n 

 Hence, 

we get 
 

   
2

2
2

1 1 1 1
( 1) .

( 1) ( 1)
r n

n n n nn

 
       

 

 
 Therefore, the given problem examines the (n – 1)-dimensional sphere 

formed by the intersection of the sphere given by 
2 2

0
y y r   with the 

hyperplane 1,te y   without the nonnegativity restrictions 0,y   and 

seeks the minimal value of any coordinate in this region, say, that of 
1

y . 

The KKT conditions for this problem are as follows: 
 
  

1 01 0
2( ) 1y y u v     

  
0 0

2( ) 0
i i

y y u v        for i = 2,…, n 

  
2

0
1/ ( 1)y y n n    

  1te y   

  
0

0,u   
2

0 0
1

0.
( 1)

u y y
n n

 
    

 

 

 Let 
1 1

[0, ,..., ] .
1 1

ty
n n


 

 To show that y  is a KKT point for this 

problem, all that one needs to do is to substitute y  for y in the foregoing 

KKT system and verify that the resulting system in 
0

( , )u v  has a solution. 

Readily, 
1

1,
1

t n
e y

n


 


 and 

0
y y  has (n – 1) coordinates equal to 

1
,

( 1)n n 
 and one coordinate (the first one) equal to 

1
,

n
  so that 

2

0
1

.
( 1)

y y
n n

 


 This means that y  is a feasible solution. 

Moreover, the equations for indices 2 through n of the KKT system yield 



 

40 

0
2

,
( 1)

u
v

n n
 


 which together with the first equation gives 

0
1

0.
2

n
u


   Thus, y  is a KKT point for this problem. Since the 

problem is a convex program, this is an optimal solution. Thus, since this 
is true for minimizing any coordinate of y, even without the nonnegativity 
constraints present explicitly, the intersection is embedded in the 
nonnegative orthant.  

 
4.30 Substitute y x x   to obtain the following equivalent form of Problem 

P:  

   Minimize  2 : 0 .y d Ay   

 
 a. Problem P  seeks a vector in the nullspace of A that is closest to the 

given vector d, i.e., to the vector ( ).f x  Since the rank of A is m, an 

optimal solution to the problem P  is the orthogonal projection of the 
vector ( )f x  onto the nullspace of A (i.e., start from ,x  take a unit 

step along ( ),f x  and then project the resulting point orthogonally 

back onto the constraint surface Ax = b). 
 
 b. The KKT conditions for Problem P  are as follows: 
 

   tx A v  = x d  
   Ax = b. 
 
  The objective function of P  is strictly convex, and the constraints are 

linear, and so the KKT conditions for Problem P  are both necessary 
and sufficient for optimality. 

 
 c. If x  is a KKT point for Problem P , then there exists a vector v  of 

Lagrange multipliers associated with the equations Ax = b, such that  
 

   ,tA v d  that is, ( ) 0.tf x A v    

 
  Hence, x  is a KKT point for Problem P provided 0.v   
 
 d. From the KKT system, we get 
 

    ˆ tx x d A v    (1) 
 
  Multiplying (1) by A and using ˆ ,Ax Ax b   we get 
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    .tAA v Ad  
 

  Since A is of full row rank, the ( )m m  matrix tAA  is nonsingular. 

Thus, 1( ) .tv AA Ad  Substituting this into (1), we get 
1ˆ ( ) .t tx x d A AA Ad    

 

4.31 Let 1( ) ( ) .t t t
N B

c f x f x B N     The considered direction finding 

problem is a linear program in which the function tc d  is to be minimized 
over the region { : 0 1, },

j
d d j J    where J is the set of indices for 

the nonbasic variables. It is easy to verify that 0t
N

c d   at optimality. In 

fact, an optimal solution to this problem is given by: 0
j

d   if 0,
j

c   

and 1
j

d   if 0,
j

c   .j J   To verify if d  is an improving direction, 

we need to examine if ( ) 0,tf x d   where  

 

  ( ) [ ( ) ( ) ]t t t B
B N

N

d
f x d f x f x

d

 
     

  
 

  1[ ( ) ( ) ] .t t t
B N N N

f x B N f x d c d     

 

 Therefore, 0t
N

c d   implies that ( ) 0.tf x d   Hence, if 0,d   then we 

must have 0
N

d   (else 0
B

d   as well), whence 0t
N

c d   from above. 

This means that d  is an improving direction at .x  Moreover, to show that 

d  is a feasible direction at ,x  first, note that 
 

 
1

[ ] 0,N
N N

N

B Nd
Ad B N Nd Nd

d

 
     
  

 and therefore, 

( )A x d b   for all 0.   Moreover,  

  
1 1

0N

N

B b B Nd
x d

d






  
   
  

  

 for 0   and sufficiently small since 1 0B b   and 0,
N

d   which 

implies that 0x d   for all 0 ,    where 0.   Thus, d  is a 
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feasible direction at .x  Hence, 0d   implies that d  is an improving 
feasible direction. 

 

 Finally, suppose that d  = 0, which means that 0.
N

d   Then 0.c   The 

KKT conditions at x  for the original problem can then be written as 
follows: 

 

  ( ) 0t
B B

f x u B v     

  ( ) 0t
N N

f x u N v     

  0, 0, 0, 0.t t
B B N N B N

u x u x u u     

 

 Let 0,
B

u   1( ) ,t t
B

v f x B   and 1( ) ( ) .t t t
N N B

u f x f x B N     

Simple algebra shows that ( , , )
B N

u u v  satisfies the above system (solve 

for v from the first equation and substitute it in the second equation). 

Therefore, x  is a KKT point whenever 0d   (and is optimal if, for 

example, f is pseudoconvex).     

 
4.33 In the first problem, the KKT system is given by: 
 

  0tc Hx A u     (1) 
  Ax y b    (2) 

  0tu y   

  0, 0, 0.x y u    

 
 Since the matrix H is invertible, Equation (1) yields 

1 1 0.tH c x H A u     By premultiplying this equation by A, we obtain 
1 1 0,tAH c Ax AH A u     which can be rewritten as 

 

  1 1 0.tAH c b Ax b AH A u       (3) 
 
 Next, note that from Equation (2), we have ,y b Ax   so that Equation 

(3) can be further rewritten as 

  0,h Gu y    where 0, 0, 0.tu y u y    (4) 

 
 In the second given problem, the KKT system is given by  
 

  0, 0, 0, 0,th Gv z v z v z       (5) 
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 where z is the vector of Lagrange multipliers. By comparing (4) and (5), 
we see that the two problems essentially have identical KKT systems, 
where u v  and ,y z  that is, the Lagrange multipliers in the first 

problem are decision variables in the second problem, while the Lagrange 
multipliers in the second problem are slack variables in the first problem. 

 

4.37 We switch to minimizing the function 2 2
1 2 1 1 2 2

( , ) 4 .f x x x x x x     

 
 a. The KKT system is as follows: 
 
 

1
2x  

2
4x  

1
2vx  = 0 

 
1

4x  
2

2x  
2

2vx  = 0 

 2
1

x  2
2

x   = 1. 

 
  There are four solutions to this system: 
 

   
1 2

( , ) (1/ 2, 1/ 2),x x   and v = 3 

   
1 2

( , ) ( 1/ 2, 1/ 2),x x     and v = 3 

   
1 2

( , ) (1/ 2, 1/ 2),x x    and v = –1 

   
1 2

( , ) ( 1/ 2, 1/ 2),x x    and v = –1. 

  
  The objective function 

1 2
( , )f x x  takes on the value of –3 for the first 

two points, and the value of 1 at the remaining two. Since the linear 
independence constraint qualification (CQ) holds, the KKT conditions 
are necessary for optimality. Hence, there are two optimal solutions: 

1
(1/ 2, 1/ 2)x   and 

2
( 1/ 2, 1/ 2).x     To support this 

statement, one can use a graphical display, or use the second-order 
sufficiency condition given in Part (b) below.  

 

 b. 2 2 2
1 1 2 1 2

( ) 4 ( 1).L x x x x v x x       Therefore, 

 

    2 1 2
( ) 2 .

2 1
v

L x
v

       
 

 

  For v = 3, 2 ( )L x  is a positive definite matrix and therefore, 

1
( 2 /2, 2/2)x   and 

2
( 2 /2, 2 /2)x     are both strict local 

optima. 
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 c. See answers to Parts (a) and (b). 
 
4.41 a. See the proof of Lemma 10.5.3. 
 
 b. See the proof of Theorem 10.5.4. 
 
 c. Let 

d
P  denote the given problem and note that since this problem is 

convex, the KKT conditions are sufficient for optimality. Hence, it is 
sufficient to produce a KKT solution to Problem 

d
P  of the given form 

d̂ . Toward this end, consider the KKT conditions for Problem 
d

P : 

 

   
1

( ) 2 0tf x A v du     (1) 

   
1

0A d   (2) 

   2 21, 0, ( 1) 0.d u u d     

 
  Premultiplying (1) by 

1
A  and using (2), we get 

 

   
1 1 1

( ) 0.tA f x A A v    

 

  Since 
1

A  is of full (row) rank, 
1 1

tA A  is nonsingular, and so we get 

 

   1
1 1 1

( ) ( ).tv A A A f x    (3) 

 
  Thus, (1) yields 
 

   2 ( ) .du P f x d     (4) 

 

  Hence, if d  = 0, we can take ˆ 0d d   and u = 0, which together 

with (3) yields ˆ 0d   as a KKT point (hence, an optimum to 
d

P , with 

say, 1).   On the other hand, if 0,d   then let ˆ ,
d

d
d

  

,
2

d
u   and let v be given by (3). Thus, noting that 

1
ˆ 0A d   since 

1
0,A P   we get that d̂  is a KKT point and hence an optimum to 

d
P  

(with 0).d    
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 d. If 
n

A I  , then 
1

A  is an m n  submatrix of 
n

I , where m is the 

number of variables that are equal to zero at the current solution .x  

Then 
1 1

,t
m

A A I  and 
1 1

0
.

0 0
t m

I
A A

 
  
 

 Therefore, 

0 0
,0

n m
P I 

 
  
 

 and 0
j

d   if 0
j

x  , and 
( )

j
j

f x
d

x


 


 if 

0.
j

x   Hence, d  is the projection of ( )f x  onto the nullspace of 

the active (nonnegativity) constraints. 
 
4.43 Note that { : 0}C d Ad   is the nullspace of A, and P is the projection 

matrix onto the nullspace of A. If ,d C  then Pd = d, and so, d = Pw with 

.w d  On the other hand, if d = Pw for some nw R , we have that Ad = 
APw = 0 since AP = 0. Hence, .d C  This shows that d C  if and only 

if there exists a nw R  such that Pw = d. Next, we show that if H is a 

symmetric matrix, then 0td Hd   for all d C  if and only if tP HP  is 
positive semidefinite. 

 ( ) Suppose that 0td Hd   for all .d C  Consider any nw R  and 
let d = Pw. Then Ad = APw = 0 since AP = 0, and so .d C  Thus 

0td Hd  , which yields 0t tw P HPw   for any .nw R  Hence, the 

matrix tP HP  is positive semidefinite. 

 ( ) If 0t tw P HPw   for all ,nw R  then in particular for any d C , 

we have 0,t td P HPd   which gives 0td Hd   since for any d C  we 

have Pd = d.     
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CHAPTER 5: 

 

CONSTRAINT QUALIFICATIONS 

 
5.1 Let T denote the cone of tangents of S at x  as given in Definition 5.1.1. 
 
 a. Let W denote the set of directions defined in this part of the exercise. 

That is, d W  if there exists a nonzero sequence { }
k

  convergent to 

zero, and a function : nR R   that converges to 0 as 0  , such 

that ( )
k k k

x d S       for any k. We need to show that W = T. 

First, note that 0 W  and 0 T . Now, let d be a nonzero vector 
from the set T. Then there exist a positive sequence { }

k
  and a 

sequence { }
k

x  of points from S convergent to x  such that 

lim ( )
k kk

d x x


  . Without loss of generality, assume that 

,
k

x x k   (since 0).d   Therefore, for this sequence { }
k

x , 

consider the nonzero sequence { }
k

  such that 
k
d  is the projection 

of 
k

x x  onto the vector d. Hence, { } 0 .
k

   Furthermore, let 

( ) .
k k k

y x x d    Because of the projection operation, we have 

that 
 

   
2 222 ,

k k k
x x d y    

 

  i.e., 

22

2
2 22

1 .

k
k

k k

x xy
d

d 

  
  

 
 

 (1) 

 

  But we have that cos( ),k
kk

d

x x





 where 

k
  is the angle between 

( )
k

x x  and d. Since d T , we have that 0
k
   and so 

cos( ) 1
k
   and thus 0k

k

y


  from (1). Consequently, we can 

define : nR R   such that ( )
k k k

y     so that 
k k

x x d    
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( ) , ,
k k

S k      with ( ) / 0
k k k

y     as 0
k

  . Hence, 

.d W  
 
  Next, we show that if ,d W  then .d T  For this purpose, let us 

note that if ,d W  then the sequence { } ,
k

x S  where 

( ),
k k k k

x x d       converges to ,x  and moreover, the 

sequence 
1

( )
k

k

x x d


    
  

 converges to the zero vector. This 

shows that there exists a sequence { },
k
  where 

1
,

k
k




  and a 

sequence { }
k

x  of points from S convergent to x  such that 

lim ( ).
k kk

d x x


   This means that ,d T  and so the proof is 

complete. 
 
 b. Again, let W denote the set of directions defined in this part of the 

exercise. That is, d W  if there exists a nonnegative scalar   and a 
sequence { }

k
x  of points from S convergent to ,x  

k
x x  for all k, 

such that lim .k

k
k

x x
d

x x








 Again in this case, we have 0 W  

and 0 ,T  and so let d be a nonzero vector in T. Then there exists a 

sequence { }
k

x  of points from S different from x  and a positive 

sequence { }
k
  such that ,

k
x x  and 

lim .k
k kk

k

x x
d x x

x x





 


 Under the assumption that ,d T  the 

sequence  k k
x x   is contained in a compact set. Therefore, it 

must have a convergent subsequence. Without loss of generality, 

assume that the sequence k

k

x x

x x

  
 

  
 itself is convergent. If so, then 

we conclude that lim ,k

k
k

x x
d

x x








 where .d   Hence, 

.d W   
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  Conversely, let ,d W  where again, 0.d   Then we can simply take 

0
k

k
x x

  


 to readily verify that .d T  This completes the 

proof.     

 
5.12 a. See the proof of Theorem 10.1.7. 
 
 b. By Part (a), x  is a FJ point. Therefore, there exist scalars 

0
u  and 

i
u  

for ,i I  such that 
 
  

0
( ) ( ) 0,

i i
i I

u f x u g x


     

  
0

0, 0
i

u u   for ,i I  
0

( ,
i

u u  for ) 0.i I   

 
  If 

0
0,u   then the system 

 
  ( ) 0,

i i
i I

u g x


   

  0
i

u   for i I  

 
  has a nonzero solution. Then, by Gordan’s Theorem, no vector d 

exists such that ( ) 0t
i

g x d   for all .i I  This means that 

0
,G    and so 

0
( ) ,c G    whereas G    (since 0 ).G  This 

contradicts Cottle’s constraint qualification. 
 

5.13 a. [1 0] ,tx   {1, 2},I   
1
( ) [2 0] ,tg x 

2
( ) [0 1] .tg x    The 

gradients of the binding constraints are linearly independent; hence, 
the linear independence constraint qualification holds. This implies 
that Kuhn-Tucker’s constraint qualification also holds (see Figure 5.2 
in the text and its associated comments). 

 

 b. If [1 0] ,tx   then the KKT conditions yields: 

 
   –1 + 

1
2u   = 0 

     – 
2

u  = 0, 

 

  i.e., 
1

1

2
u   and 

2
0.u   Since the Lagrange multipliers are 

nonnegative, we conclude that x  is a KKT point. 
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  Note that a feasible solution must be in the unit circle centered at the 
origin; hence no feasible solution can have its first coordinate greater 
than 1. Therefore, x  (which yields the objective value of –1) is the 
global optimal solution. 

 
5.15 X is an open set, the functions of nonbinding constraints are continuous at 

,x  and the functions whose indices are in the set J are pseudoconcave at 
.x  Therefore, by the same arguments as those used in the proof of Lemma 

4.2.4, any vector d that satisfies the inequalities ( ) 0t
i

g x d   for ,i J  

and ( ) 0t
i

g x d   for i I J   is a feasible direction at .x  Hence, if x  

is a local minimum, then the following system has no solution: 
 

  ( ) 0tf x d   

  ( ) 0t
i

g x d   for i I J   

  ( ) 0t
i

g x d   for .i J  

 
 Accordingly, consider the following pair of primal and dual programs P 

and D, where 
0

y R  is a dummy variable: 

 
 P: Maximize 

0
y   

  subject to 
0

( ) 0tf x d y    

   
0

( ) 0,t
i

g x d y     i I J    

   ( ) 0,t
i

g x d    .i J   

 
 D: Minimize 0 
  subject to 

0
( ) ( ) 0

i i
i I

u f x u g x


     (1) 

   
0

1
i

i I J
u u

 
    (2) 

   
0

( ,
i

u u  for ) 0.i I    (3) 

 
 Then, since the foregoing system has no solution, then we must have that P 

has an optimal value of zero (since if 
0

0y   for a feasible solution 

0
( , ),y d  then P is unbounded), which means that D is feasible, i.e., (1) – 

(3) has a solution. If 
0

0u   in any such solution, then x  is a KKT point 

and we are done. Else, suppose that 
0

0,u   which implies by (2) that 

.I J    Furthermore, letting d belong to the given nonempty set in the 
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exercise such that ( ) 0t
i

g x d   for ,i J  and ( ) 0t
i

g x d   for 

,i I J     we have by taking the inner product of (2) with d that  
 

   ( ) ( ) 0,t t
i i i i

i J i I J
u g x d u g x d

  
      

 
 which yields a contradiction since the first term above is nonpositive and 

the second term above is strictly negative because 
i

u  > 0 for at least one 

.i I J     Thus 
0

u  > 0, and so x  is a KKT point.      

 

5.20 Let ( ) 1 0tg d d d    be the nonlinear defining constraint. Then 

( ) 2 .t tg d d d d   Hence 
1

G  is the set G  defined in the text, and so by 

Lemma 5.2.1, we have that 
1
.T G  Therefore, we need to show that 

1
.G T  Let d be a nonzero vector from 

1
.G  If 0,td d   i.e., 

( ) 0,tg d d   then we readily have that d D  (see the proof of Lemma 

4.2.4 for details), and hence, .d T  Thus, suppose that 0.td d   Then d 

is tangential to the sphere 1.td d   Hence, since 
2

0,C d   and 
1

0C d   

with ,d d  there exists a sequence { }
k

d  of feasible points ,
k

d d  

,
k

d d  and 1t
k k

d d   such that lim .k

k
k

d dd

d d d





 Therefore, 

.d T  
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CHAPTER 6: 

 

LAGRANGIAN DUALITY AND SADDLE POINT OPTIMALITY 

CONDITIONS 

 
6.2 For the problem illustrated in Figure 4.13, a possible sketch of the 

perturbation function ( )v y  and the set G are very much similar to that 

shown in Figure 6.1 (note that the upper envelope of G also increases with 
y, and only a partial view of G (from above) is shaded in Figure 6.1. 
Hence, as in Figure 6.1, there is no duality gap for this case. 

 
6.3 Let the left-hand side of the inequality be given by ˆ ˆ( , ).x y  Hence, we get 

 
 ˆ ˆ ˆsup inf ( , ) ( , ) inf ( , ) inf sup ( , ).

x X x X x Xy Y y Y
x y x y x y x y   

   
        

 

6.4 Let 
1 2

(1 ) ,y y y      where 
1

y  and 
2

my R    and where 

[0,1].   We need to show that 
1 2

( ) ( ) (1 ) ( ).v y v y v y      For this 

purpose, let 
 

1 1 1,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X       

2 2 2,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X       

,
( ) { : ( ) , 1,..., , ( ) , 1,..., , }

i i i m i
X y x g x y i m h x y i x X          

( ) ( ),
k k

v y f x  where 
k

x  optimizes (6.9) when ,
k

y y  for k = 1, 2, and let 

( ) ( ),v y f x
  where x  optimizes (6.9) when .y y  

 
 By the definition of the perturbation function ( ),v y  this means that  

 
 ( )

k k
x X y  and ( ) min{ ( ) : ( )}

k k
f x f x x X y   for k = 1, 2, and 

 ( )x X y
   and ( ) min{ ( ) : ( ).f x f x x X y

    

 
 Under the given assumptions (the functions ( )

i
g x  are convex, the 

functions ( )
i

h x  are affine, and the set X is convex) we have from the 

definition of convexity that 
1 2

(1 ) ( )x x x X y       for any 

[0,1].   But ( ) min{ ( ) : ( )},f x f x x X y
    and so ( ) ( ),f x f x
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which together with the convexity of ( )f x  implies that ( ) ( )v y f x
   

1 2 1 2
( ) ( ) (1 ) ( ) ( ) (1 ) ( ).f x f x f x v y v y           This completes 

the proof.     

 
6.5 The perturbation function from Equation (6.9) for Example 6.3.5 is given 

by  
 
 

1 2 1 2
( ) min{ : 2 3 ,v y x x x x y       with 

1 2
, {0,1,2,3}}.x x   

 
 Hence, by examining the different combinations of discrete solutions in the 

1 2
( , )x x -space, we get  

 

 

1 2

1 2

1 2

1 2

1

if 3
0 if 3 2 [evaluated at   ( , ) (0,0)]

1 if 2 1 [evaluated at   ( , ) (1,0)]

2 if 1 0 [evaluated at   ( , ) (2,0)]
( ) 3 if 0 2 [evaluated at   ( , ) (3,0)]

4 if 2 4 [evaluated at   (

y
y x x

y x x

y x x
v y y x x

y x

  
    

     
    

    
  

2

1 2

1 2

, ) (3,1)]

5 if 4 6 [evaluated at   ( , ) (3,2)]

6 if 6 [evaluated at   ( , ) (3,3)]

x

y x x

y x x











   
  

 

 
 Note that the optimal primal solution is given by 

1 2
( , ) (3,0)x x   of 

objective value –3, which also happens to be the optimum to the 
underlying linear programming relaxation in which we restrict 

1
x  and 

2
x  

to lie in [0, 3], thus portending the existence of a saddle point solution. 
Indeed, for 1,u   we see from Example 6.3.5 that ( ) 3,u    and so 

1 2
( , , )x x u  is a saddle point solution and there does not exist a duality gap 

in this example. Moreover, we see that  
 
   ( ) 3 ,v y y y    

 
 as in Equation (6.10) of Theorem 6.2.7, thus verifying the necessary and 

sufficient condition for the absence of a duality gap.  
 
6.7 Denote { : },S conv x X Dx d    and note that since X is a compact 

discrete set, we have that S is a polytope. Hence, for any linear function 
( ),f x  we have min ( ) : , } min{ ( ) : }.f x Dx d x X f x x S     

Therefore, for each fixed ,mR   we get 
 



 

53 

 ( ) min{ ( ) : , }t tc x Ax b Dx d x X        

                        min{ ( ) : }.t tc x Ax b x S     

 

 Now, consider the LP : min{ : , }.tc x Ax b x S   Then, by strong 

duality for LPs, we get 
 

min{ : , } max min { ( )} max ( ).
m m

t t t

x SR R
c x Ax b x S c x Ax b

 
  

 
       (1) 

 
 This establishes the required result. Moreover, the optimal value of 

Problem DP is given by min{ : },tv c x x S    where 

 

 { : , , } { : , }.S conv x Ax b Dx d x X x Ax b x S         (2) 

 

 Thus, we get min{ : , },tv c x Ax b x S     which yields from (1) that 

max ( ),
mR

v


 


  where a duality gap exists if this inequality is strict. 

Therefore, the disparity in (2) potentially causes such a duality gap.     

 
6.8 Interchanging the role of x and y as stated in the exercise for convenience, 

and noting Exercise 6.7 and Section 6.4, we have 
 

1 ( , )
max ( ) max min{ ( ) : ,  ,  ,  }t t

x y
v c x x y Ay b y Y Dx d x X

 
           

and 

2
max ( ) max min{ ( ) : ,  }.t t

x
v c x Ax b Dx d x X

 
         

 
 Let 

1
{ : }S conv x X Dx d    and 

2
{ : }.S conv y Y Ay b    

 Then from Exercise 6.7 (see also Section 6.4), we have that 
 

  
1 1 2

min{ : ,  ,  }tv c x x S y S x y     (1) 

 
  and 
 

  
2 1

min{ : ,  }.tv c x Ax b x S     (2) 

 
 Hence, we get 
 

 
2 1

min{ : ,  ,  }tv c x Ay b x y x S     
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1 2 1

min{ : , , } ,tc x x S y S x y v      where the inequality follows 

since 
2

{ : }.S y Ay b   This proves the stated result, where (1) and (2) 

provide the required partial convex hull relationships. 
 
6.9 First, we show that if ( , ) (0,0),

u v
d d   then ( , )u v  solves Problem (D). 

Problem (D) seeks the maximum of a concave function ( , )u v  over 

{( , ) : 0},u v u   and so the KKT conditions are sufficient for optimality. 

To show that ( , )u v  is a KKT point for (D), we need to demonstrate that 

there exists a vector 
1

z  such that 

 
 

1
( , ) 0

u
u v z    

 ( , ) 0
v

u v   

    
1 1

0, 0.tz u z   

 
 By assumption, we have ( , ) ( ) 0,

v
u v h x    and ( , ) ( ).

u
u v g x   

Moreover, since 0,
u

d   we necessarily have ( ) 0g x   and ( ) 0.tg x u   

Thus, 
1

( )z g x   solves the KKT system, which implies that ( , )u v  

solves (D). (Alternatively, note from above that if x  evaluates ( , ),u v  

then the given condition implies that x  is feasible to P with ( ) 0,tu g x   

and hence ( , , )x u v  is a saddle point, and so by Theorem 6.2.5, x  and 

( , )u v  respectively solve P and D with no duality gap.) 

 
 Next, we need to show that if ( , ) (0,0),

u v
d d   then ( , )

u v
d d  is a feasible 

ascent direction of ( , )u v  at ( , ).u v  Notice that v is a vector of 

unrestricted variables, and by construction 0
ui

d   whenever 0.
i

u   

Hence, ( , )
u v

d d  is a feasible direction at ( , ).u v  To show that it is also an 

ascent direction, let us consider ( , )tu v d : 

 

( , )tu v d  ˆ( , ) ( , ) ( ) ( ) ( ) ( )t t t t
u u v v

u v d u v d g x g x h x h x        

  2

: 0 : 0
( ) ( ) ( ) ( ) max{0, ( )}.

i i

t
i i i

i u i u
h x h x g x g x g x

 
     

 
 All the foregoing terms are nonnegative and at least one of these is 

positive, for otherwise, we would have ( , ) (0,0).
u v

d d   
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Thus, ( , ) 0.tu v d   This demonstrates that ( , )
u v

d d  is an ascent 

direction of ( , )u v  at ( , ).u v     

 
 In the given numerical example,  
 
 

 2 2
1 2 1 2 1 1 2 2 1 2

( , ) min{ ( 4) ( 2 8)u u x x u x x u x x          : 

               2
1 2

( , ) }.x x R  

 
 Iteration 1: 

1 2
( ,  ) (0,  0).u u   

 
 At 

1 2
( ,  ) (0,  0)u u   we have (0,  0) 0,   with 

1 2
0.x x   Thus, 

1
max{0,  4} 4,d    and 

2
max{0,  8} 0.d     Next, we need to 

maximize the function 
1 2

( , )u u  from (0, 0) along the direction (4, 0). 

Notice that  
 
 [(0,  0) (4,  0)] (4 ,  0)      

 2 2 2
1 2 1 2 1 2

min{ 4 ( 4) : ( ,  ) }x x x x x x R        

 2
1 1 1

min{ 4 : }x x x R    

 2
2 2 2

min{ 4 : } 16x x x R      

 28 16 ,      

 and max{ (4 ,  0) : 0}     is achieved at 1.   Hence, the new iterate 

is (4, 0). 
 
 Iteration 2: 

1 2
( ,  ) (4,  0).u u   

 
 At 

1 2
( ,  ) (4,  0)u u   we readily obtain that  

 

 2 2 2
1 2 1 2 1 2

(4,  0) min{ 4( 4) : ( ,  ) } 8,x x x x x x R          

 
 with 

1 2
2.x x   Thus, 

1 1
(2,  2) 0,d g   and 

2
max{0,  2} 0.d     

Based on the property of the dual problem, we conclude that at 

1 2
( ,  ) (4,  0)u u   the Lagrangian dual function 

1 2
( , )u u  attains its 

maximum value. Thus 
1 2

( ,  ) (4,  0)u u   is an optimal solution to Problem 

D.  
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6.14 Let 
1 0
( , )v v  be the Lagrangian dual function for the transformed problem. 

That is, 
1 0 0
( , ) inf{ ( ) ( ( ) ) ( ) : ( , ) }.t tv v f x v g x s v h x x s X        

 The above formulation is separable in the variables x and s, which yields  

 
1 0 0 0
( , ) inf{ ( ) ( ) ( ) : } inf{ : 0}.t t tv v f x v g x v h x x X v s s        

 Note that if 
0

0,v   then 
0

inf{ : 0} 0,tv s s    and otherwise, we get 

0
inf{ : 0} .tv s s     Therefore, the dual problem seeks the 

unconstrained maximum of 
1 0
( , ),v v  where 

 

 0 0
1 0

inf{ ( ) ( ) ( ) : } if 0
( , )

otherwise.

t tf x v g x v h x x X v
v v

     


 

 
 This representation of 

1 0
( , )v v  shows that the two dual problems are 

equivalent (with 
0

).v u  

 
6.15 For simplicity, we switch to the minimization of 

1 2 3
( ) 3 2 .f x x x x     

 
 a. 

1 2 1 1
( ) 4 3 min{( 3 )u u u u x         

              
1 2 2 3

( 2 2 ) ( 1 ) : }.u x u x x X       (1) 

 
  The set X has three extreme points 

1
x  = (0, 0, 0), 

2
x  = (1, 0, 0), and 

3
x  = (0, 2, 0), and three extreme directions 

1
d  = (0, 0, 1), 

2
d  = 

1 1
(0, , ),

2 2
 and 

3
1 2

( , 0, ).
3 3

d   Hence, for ( ) ,u    we must 

have (examining the extreme directions) that  
 
  

1 2 2 1 2 1 2
{( , ) : 1, 2 3, 2 5}.u U u u u u u u u        (2) 

 
  Hence, any 0u   such that u U  will achieve the minimum in (1) 

at an extreme point, whence, 
 
  

1 2 1 2 2
( ) min{ 4 3 , 3 3 3, 3 4}.u u u u u u          (3) 

 
  Putting (2) and (3) together and simplifying the conditions, we get 
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1 2 1 2

1 2 1 2 1 2 1 2

2 1 1 2

4 3  if  3 and 1

1
3 3 3 if 3, 1, 2 3,  and 2 5

3( )
1

3 4 if  and 2 3
3

  otherwise.

u u u u

u u u u u u u u
u

u u u u



   

          
    



 
 b. In this case, we get  
 
 

1 2 1 1 1 2 1 2 3
( ) 2 3 min{( 3 2 ) ( 2 ) ( 1 ) }

x X
u u u u x u x u u x


            

 
 
  i.e., 
 
  

1 2 1 1 1 2
( ) 2 3 min{( 3 2 ) ( 2 ) :u u u u x u x           

                           
1 2 1 2

2 4, ( , ) 0}x x x x    

              
1 2 3 3

min{( 1 ) : 0}.u u x x      

 
  Noting that the extreme points of the polytope in the first 

minimization problem in 
1 2

( , )x x  are (0, 0), (4, 0), and (0, 2), and that 

the second minimization problem yields an optimal objective function 
value of zero if 

1 2
1u u    and goes to   otherwise, we get that  

 
  

1 2 1 1
( ) 2 3 min{0, 12 8 , 4 2 }u u u u u          if 

1 2
1,u u    

 
  and is   otherwise. Thus, 
 

  

1 2 1 1 2

1 2 1 1 2

2 1 1 2

2 3  if  2 and 1

12 6 3  if  4/3 and  1
( )

4 3  if  4/3 2 and 1

  otherwise.

u u u u u

u u u u u
u

u u u u


     
             


 

 
 c. We can select those constraints to define X that will make the 

minimization over this set relatively easy, e.g., when the minimization 
problem decomposes into a finite number of simpler, lower 
dimensional, independent problems. 
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6.21 Let inf{ ( ) : ( ) 0,f x g x    ( ) 0,h x   }.x X  Readily,   is a finite 

number, since x  solves Problem P: minimize ( )f x  subject to ( ) 0,g x   

( ) 0, .h x x X   Moreover, the system 

 
  ( ) 0, ( ) 0, ( ) 0,f x g x h x x X      

 
 has no solution. By Lemma 6.2.3, it then follows that there exists a 

nonzero vector 
0

( , , ),u u v  such that 
0

( , ) 0,u u   and 

 

  
0

( ( ) ) ( ) ( ) 0t tu f x u g x v h x     for all .x X  (1) 

 
 That is, 

0 0
( , , , )u u v x u   for all .x X  But, since x  solves 

Problem P, we have ( ).f x   Moreover, ( ) 0h x   and ( ) 0,g x   so 

that ( ) 0tv h x   and ( ) 0.tu g x   Therefore, for any x in X 

 

 
0 0 0

( , , , ) ( ) ( ) ( ) ( , , , ).t tu u v x u f x u g x v h x u u v x      

 
 This establishes the second inequality. To prove the first inequality, note 

that for any 0,u   we have 
 

  
0 0

( , , , ) ( , , , ) ( ) ( )tu u v x u u v x u u g x      

  ( ) ( ) ( ) ( ) ( ).t t tv v h x u u g x u g x     (2) 

 

 Now, from (1) for ,x x  since ( ) ,f x   we get ( ) ( ) 0,t tu g x v h x   

i.e., ( ) 0.tu g x   But ( ) 0g x   since x  is a feasible solution, and 0,u   

which necessarily implies that ( ) 0.tu g x   Thus, (2) implies that for any 

0u   and ,v R   we have that 
0 0

( , , , ) ( , , , ) 0.u u v x u u v x      

 
6.23 a. ( )u   

1 2 3 4 1 1 2 3 4
min{ 2 2 3 ( 8)x x x x u x x x x           

    
2 1 3 4

( 2 4 2) : }u x x x x X     

   
1 2 1 1 2

min{ 2 ) (2 ) :u u x u x       

    
1 2 1 2

8, 0, 0}x x x x     

   
1 2 3 1 2 4

min{1 2 ) ( 3 4 ) :u u x u u x        

    
3 4 3 4 1 2

2 6, 0, 0} 8 2 .x x x x u u       
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  The extreme points of 
1 2 1 2

{( , ) 0 : 8}x x x x    are (0, 0), (8, 0), 

and (0, 8) in the 
1 2

( , )x x -space, and the extreme points of 

3 4 3 4
{( , ) 0 : 2 6}x x x x    are (0, 0), (6, 0), and (0, 3) in the 

3 4
( , )x x -space. Thus,  

 
  

1 2 1 2 1
( ) 8 2 min{0, 16 8 8 ,16 8 }u u u u u u          

                      
1 2 1 2

min{0,6 6 12 , 9 3 12 }.u u u u       (1) 

 
  Noting that 

1 2
( , ) 0,u u   we get that 

 

1 2
1 2 1

1 2 1 2

0 if 2
min{0, 16 8 8 ,16 8 }

16 8 8  if 2.

u u
u u u

u u u u

          
 (2) 

 
  Similarly, 
 
  

1 2 1 2
min{0,6 6 12 ,9 3 12 }u u u u      

        

1 2 1 2

1 2 1 2

1 2

1 2 1 2

1 2

0 if 2 1 and 4 3

6 6 12  if 2 1 and

                           8 5

9 3 12  if 4 3 and

                          8 5.

u u u u

u u u u

u u

u u u u

u u

    
     


  
    
   

 (3) 

 
  Examining the six possible combinations given by (2) and (3), and 

incorporating these within (1), we get that (upon eliminating 
redundant conditions on 

1 2
( , )),u u  ( ) ( )

i
u u   if ,

i
u U  i = 1,…,6, 

where  
 

1 1 2
( ) 8 2u u u    and 

  
1 1 2 1 2 1 2 1 2

{( , ) 0 : 2 1, 2, 4 3}U u u u u u u u u          

2 1 2
( ) 6 2 14u u u     and 

  
2 1 2 1 2 1 2

{( , ) 0 : 2, 2 1}U u u u u u u        

3 1 2
( ) 9 5 10u u u      and 

  
3 1 2 1 2 1 2

{( , ) 0 : 4 3, 2}U u u u u u u       

4 2
( ) 16 6u u     and 

  
4 1 2 1 2 1 2 1 2

{( , ) 0 : 2 1, 2, 4 3}U u u u u u u u u          
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5 1 2
( ) 10 6 6u u u      and 

  
5 1 2 1 2 1 2 1 2

{( , ) 0 : 2, 2 1, 8 5}U u u u u u u u u           

6 1 2
( ) 25 3 18u u u      and 

  
6 1 2 1 2 1 2 1 2

{( , ) 0 : 8 5, 4 3, 2}U u u u u u u u u          

 
 b. Note that u = (4, 0) belongs to 

1
U  alone. Thus,   is differentiable at 

(4, 0), with (4,0) ( 8, 2).     

 c. When u = (4, 0) and ( 8, 2),d     the second coordinate of 

(4,0) ( 8, 2)u d       is 2 ,  which is negative for all 

0.   Since 
2

0,u   we have that the gradient of ( )u  at (4, 0) is 

not a feasible direction at (4, 0). However, projecting d onto 

2
( 0),d d   we get that ( 8,0)d     is a feasible direction of 

( )u  at (4, 0). Moreoever, (4,0) 64 0.t d     Thus, d   is an 

improving, feasible direction. 
 d. To maintain feasibility, we must have 4 8 0,   i.e.,   should be 

restricted to values in the interval [0, 1/2]. Moreoever,  
 
  ( ) [(4,0) ( 8,0)] [(4 8 ,0)]u d            

  
1 2 1 2 1 2

min{(2 8 ) (6 8 ) : 8, 0, 0}x x x x x x          

  
3 4 3 4 3 4

min{(5 8 ) (1 8 ) : 2 6, 0, 0}x x x x x x          

  32(1 2 )   

  32(1 2 ) min{0,16(1 4 ),16(3 4 )}         

  min{0,6(5 8 ),3(1 8 )}     

  32(1 2 ) min{0,16(1 4 )}       

  min{0,3(1 8 )}   when 0 1/2.   

 
  Thus, we get 
 

  
32 64 for 0 1/8

( ) 29 40 for 1/8 1/4
13 24 for 1/4 1/2.

u d
 

   
 

        
   

 

 
  The maximum of ( ) [(4 8 ,0)]u d       over [0, 1/2]   is 

19,  and is attained at 1/4.   
 
6.27 For any 0,u   we have 
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0

( ) min{ ( )}.
x

u x ug x


   

 
 a. For this case, we have (over 0x  ): 
 

   
2

for 0
( )

0 for 0.

u
x x

x ug x x
x

    
 

 

 
  When u = 0, we get ( ) 0u   (achieved uniquely at x = 0). 

  When u > 0, we get ( )u    (as 0 ).x   

 
  Moreover,   is a subgradient of   at u = 0 if and only if  

 
  ( ) (0) ,  0u u u       

 
  i.e., ( ) ,  0.u u u     

 
  Noting the form of ,  we get that any R   is a subgradient. (Note 

that at u = 0, we get ( )u  is evaluated by only x = 0, where 

(0) 0,g   which is a subgradient, but Theorem 6.3.3 does not apply 

since g is not continuous at x = 0. Furthermore, if we consider all 
,u R  then any ( ) 0u   for u < 0, and any 0   is a subgradient 

of   at u = 0.) 
 
 b. For this case, we have (over 0)x  : 

 

  
2

for 0
( )

for 0.

u
x x

x ug x x
u x

    
  

 

 
  When u = 0, we get ( ) 0u   evaluated (uniquely) at x = 0. 

 

  When u > 0, we get ( )u    (as 0 ).x   

 
  As above, any R   is a subgradient of   at u = 0. Moreover, if we 

consider all of ,u R  then for 8 0,u    it can be verified that 

( )u u    (see Part (c) below), so then any 1    is a subgradient 

of   at u = 0. 
 
 c. In this case, we get 
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2

for 0
( )

for 0.

u
x x

x ug x x
u x

    
 

 

 
  When u = 0, we get ( ) 0,u   evaluated uniquely at x = 0.  

  When u > 0, we get 
0

2
( ) min{ , min{ }}.

x

u
u u x

x



   

 

  The convex function 
2u

x
x

  over x > 0 achieves a minimum at 

2x u  of value 2 2 .u  Hence, when u > 0, we get 

( ) min{ ,2 2 },u u u   i.e., 

 

  
0 if 0

( ) if 8

2 2 if 8.

u
u u u

u u


 
 
 

 

 
  Moreover, any 1   is a subgradient, considering either just 0u   

or all of ,u R  since in this case, ( )u    when u < 0. 

 
6.29 Assume that .X    
 
 a. The dual problem is: maximize ( ),v  where ( ) min{ ( )v f x    

( ) : }.tv Ax b x X   

 
 b. The proof of concavity of ( )v  is identical to that of Theorem 6.3.1. 

Alternatively, since X is a nonempty compact polyhedral set, and for 

each fixed v, since the function ( ) ( )tf x v Ax b   is concave, we 

have by Theorem 3.4.7 that there exists an extreme point of X that 
evaluates ( ).v  Thus, if ( )vert X  denotes the finite set of extreme 

points of X, we have that 
ˆ ( )

ˆ ˆ( ) min { ( ) ( )}.t

x vert X
v f x v Ax b


    Thus, 

the dual function ( )v  is given by the minimum of a finite number of 

affine functions, and so is piecewise linear and concave [see also 
Exercise 3.9]. 

 
 c. For a given ˆ,v  let ˆ( )X v  denote the set of optimal extreme point 

solutions to the problem of minimizing ˆ( ) ( )tf x v Ax b   over X. 
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Then, by Theorem 6.3.7, ˆ( )v  is a subgradient of ( )v  at v̂  if and 

only if ˆ( )v Ax b    for some x in the convex hull of ˆ( ).X v  

Moreoever, denoting ˆ( )v  as the subdifferential (set of 

subgradients) of   at ˆ,v  we have that d is an ascent direction for   at 

v̂  if and only if ˆinf{ : ( )} 0,t d v      i.e., if and only if 

ˆ ˆ ˆmin{ ( ) : ( )} 0.td Ax b x X v    Hence, if Ax = b for some 

ˆ( ),x X v  then the set of ascent directions of ( )v  at v is empty. 

Otherwise, an ascent direction exists. In this case, the steepest ascent 

direction, ˆ,d  can be found by employing Theorem 6.3.11. Namely, 

ˆ ˆ ˆ/ ,d    where ̂  is a subgradient of ( )v  at v̂  with the smallest 

Euclidean norm. To find ˆ,  we can solve the following problem: 

minimize Ax b  subject to ˆ[ ( )].x conv X v  If x̂  is an optimal 

solution for this problem, then ˆ ˆ .Ax b    

 
 d. If X is not bounded, then it is not necessarily true that for each v there 

exists an optimal solution for the problem to minimize 

( ) ( )tf x v Ax b   subject to .x X  For all such vectors the dual 

function value ( )v  is .  However, ( )v  is still concave and 

piecewise linear over the set of all vectors v for which 

min{ ( ) ( ) : }tf x v Ax b x X    exists. 
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CHAPTER 7: 

 

THE CONCEPT OF AN ALGORITHM 

 

7.1 a. With 2( ) ,x x   and the map C defined in the exercise, we have: 

 
  if [ 1,  1],x    then ( ) ,y C x x   and hence, ( ) ( );y x   

  if 1,x    then ( ) 1,y C x x    and hence,  

  2 2( ) ( 1) ( );y x x x      

  if 1,x   then ( ) 1,y C x x    and hence, 

  2 2( ) ( 1) ( ).y x x x      

 
  Evidently, the map B is closed over ( ,0) (0, ),    and moreover, if 

0x   and ( ),y B x  then ,
2

x
y   and hence 

2
( )

4

x
y    

2 ( ).x x  Thus, both the maps C and B satisfy all the assumptions 

of Theorem 7.3.4. 
 

 (b) For any x we have ( ) ( ( )) ( ),
2

x
A x C B x C   which by the definition 

of the map C means that the map ( )A x  is as given in Part (b) of this 

exercise. However, the composite map A is not closed at 2x    and 

at 2.x   To see this, let 
1

2 ,  .
n

x n
n

     Then 2,
n

x    and 

1
( )

2n n
y A x

n
    with 0.

n
y   But 0 ( 2) 1.A     Similarly, 

let 
1

2 ,  .
n

x n
n

    Then 2,
n

x   and 
1

( )
2n n

y A x
n

   with 

0,
n

y   but 0 (2) 1.A   

 
 c. If the starting point 

0
[ 2,  2],x    then for each k we have 

[ 2,  2],
k

x    and thus 
1

,
2
k

k

x
x    which yields { } 0.

k
x   If the 

starting point 
0

2,x    then there exists an integer 0K   such that if 

,k K  then 2,
k

x    and if ,k K  then [ 2,  2].
k

x    This means 

that except for a finite number of elements, all elements of the 
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sequence { }
k

x  are in the interval [ 2,  2],  and thus from above, we 

have that for ,k K  
1

,
2
k

k

x
x    and so { } 0.

k
x   A similar 

argument can be used to show that if 
0

2,x   then we still obtain 

{ } 0.
k

x   

 
7.2 a. A is closed for this case. To see this, let { }

n
x x  and let { }

n
y y  

where 2 2 2,  .
n n

x y n    Thus in the limit, we get 2 2 2.x y   

Hence, ( ),y A x  and so A is closed. 

 

 b. Let { }
n

x x  and let { }
n

y y  where 2,  .t
n n

x y n   Thus, taking 

limits in the latter inequality, we get 2,tx y   and so ( ).y A x  

Thus, A is closed. 
 

 c. Let { }
n

x x  and let { }
n

y y  where 2,  .
n n

y x n    Hence, 

taking limits as ,n    we get 2,y x   or that ( ).y A x  Thus, 

A is closed. 
 

 d. Consider the sequences 
1

{ } { }
n

x
n

  and 
2

1
{ } 1 .

n
y

n

    
  

 

Then{ } 0 ,
n

x   { } 1,
n

y   with 2 2 1,  ,
n n

x y n    i.e., 

( ),  .
n n

y A x n   However, in the limit, 1 (0) [ 1,  0].A    Thus A 

is not closed at x = 0.  
 
7.3 Let Y denote the set { : , 0}.y By b y   We need to show that for any 

sequence { }
k

x  convergent to ,x  if for each k, 
k

y  is an optimal solution to 

the problem: minimize t
k

x y  subject to ,y Y  and { } ,
k

y y  then y  

solves the problem: minimize tx y  subject to .y Y   

 
 Note that for each k we have 
 
   

k
y Y     (1) 

   and 

   t t
k k k

x y x y  for all .y Y   (2) 
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  Since Y is closed, (1) implies that .y Y Moreover, taking the limit 

of the inequality in (2) as k    for any fixed ,y Y  we get that 
t tx y x y  for all .y Y  Thus, y  solves the problem to minimize 

{ : }.tx y y Y       

 
7.6 It needs to be shown that for any sequences { }

k
x  and { },

k
v  if  

 
 1. ,

k
x X  with ,

k
x x  

 
 2. ( ), ,

k k
v C x k   with ,

k
v v  

 
  then ( ).v C x  By the definition of the map C, ( )v C x  for x X  

means that there exist vectors ( )a A x  and ( )b B x  such that v = a 

+ b. Hence, what needs to be shown is that under the given 

assumptions, we have ,v a b   where ( ),a A x  and ( ),b B x  

where .x X   
 
  Since ( ), ,

k k
v C x k   we have that for each k, there exist 

( )
k k

a A x  and ( )
k k

b B x  such that .
k k k

v a b   Since Y is 

compact with { }
k

a Y  and { } ,
k

b Y  there exists a subsequence 

indexed by K such that { }
k K

a a  and { } .
k K

b b  Since A and B 

are closed, we thus have that ( )a A x  and ( ).b B x  Moreover, 

taking limits as ,k    ,k K  we get { } .
k K

v a b   But the 

entire sequence { }
k

v v  by assumption. Hence, ,v a b   where 

( ),a A x  ( ),b B x  and x X  (since X is closed). 

 
7.7 We show that for any sequence { , } ( , ),

n n
x z x z  and ( , )

n n n
y A x z  for 

each n with { } ,
n

y y  we have that ( , ).y A x z  The proof below is 

general for any vector norm in the sense that it does not use any specific 
type of vector norm.  

 
 By the definition of ,

n
y  we have 

 
  (1 ) ,

n n n n n
y x z     where [0,1]

n
   is such that 

  (1 )
n n n

y x z     for any [0,1].   

 



 

67 

 Note that the sequence { }
n
  is bounded, and hence it must have a 

convergent subsequence. For notational simplicity and without loss of 
generality, assume that the sequence { }

n
  itself converges, and let   

denote its limit. Then we can directly evaluate the limit y  of { },
n

y  that is 

(1 ) .y x z     It remains to show that (1 )y x z     for any 

[0,1].   For this purpose, note that for each n we have  

 

 ( ) (1 )( ) (1 )
n n n

y x x z z x z            for any [0,1].   

 
 By the Cauchy-Schwartz property of vector norms ,  we thus obtain that, 

for each n, ( ) (1 )( ) (1 )
n n n

y x x z z x z            for 

any [0,1].   Finally, by taking the limit as n    we obtain 

 

 (1 )y x z     for any [0,1],   which completes the proof.    

 
7.8 We need to show that for any sequence { , } ( , ),

n n
x z x z  if { } ,

n
y y  

where for each n, 
n

y  satisfies 

 

 
n n n

y x z   and 
n

y w  for any w such that ,
n n

w x z   then 

 
  y x z      (1) 

  and 
  y w  for any w such that .w x z   (2) 

 

  Since , ,
n n n

y x z n    taking limits as ,n    we have that (1) 

holds true. Hence, we need to establish (2). Note that we can assume 
that 0, .

n
z n   In case 0,z   then (1) implies that y x  and any 

w satisfying w x z   must also yield ,w x  and so (2) holds. 

Thus, suppose that 0.z   Now, by the definition of ,
n

y  it follows 

that 
 

  
n

y  solves 
2

221 1
min{ : }, .

2 2 2
n

n

z
w w x n    (3) 

 
  Since the KKT conditions are necessary and sufficient for the problem 

in (3) (with Slater’s constraint qualification holding for n large 
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enough), we have that there exists a Lagrange multiplier 
n

u  such that 

for each n, we get 
 
  ( ) 0

n n n n
y u y x      (4) 

  
n n n

y x z      (5) 

  0,
n

u   0.
n n n n

u y x z       (6) 

 
  Now, if ,y x  then since 0,z   (6) implies that in the limit, 

{ } 0.
n

u u   Otherwise, (4) yields that { }
n

u u  where 

/ .u y x y   In any case, the limit u  of { }
n

u  exists, and so 

taking limits in (4) – (6) as ,n    we get 
 
  ( ) 0, , 0, [ ] 0.y u y x y x z u u y x z          (7) 

 
  This means that y  satisfies the KKT conditions of  

  
2

2 21 1
min{ : },

2 2 2

z
w w x   i.e., y  solves this (convex) 

program, and so (2) holds true.     

 
7.19 See the proof of Lemma 5.1, and the comments that follow it in Nonlinear 

Programming by Willard I. Zangwill, Prentice Hall, Inc., Englewood 
Cliffs, NJ, 1969. 
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CHAPTER 8: 
 

UNCONSTRAINED OPTIMIZATION 
 
8.10 a. ( ) Under the given assumptions, we have that: 

  there exists [ , ]a b   such that ( ) ( )     for all [ , ],a b   

and for any 
1
,  

2
[ , ]a b   such that 

1 2
,   we have: 

(1) if 
2
   then 

1 2
( ) ( )     

(2) if 
1
   then 

1 2
( ) ( ).     

Let 
1
  and 

2
  be any two distinct values in the interval [a, b]. 

Without loss of generality, assume that 
1 2

.   Furthermore, let 

1 2
ˆ ( , ).    We need to show that 

1 2
ˆ( ) max{ ( ), ( )}       for 

any 
1 2

ˆ ( , ).    

 
If 

2
,   then by (1) we have that 

1 2 1
max{ ( ), ( )} ( ).       

Moreover, (1) yields 
1

ˆ( ) ( )     because 
1

ˆ .     Therefore, 

1 2
ˆ( ) max{ ( ), ( )}.       

 
If 

1
,   then by (2) we have that 

1 2 2
max{ ( ), ( )} ( ),       and 

furthermore, (2) again yields 
2

ˆ( ) ( )     because 
2

ˆ .     

 

Finally, if 
1 2

,     then ̂  must be either in the interval 

1
( , ]   or else in the interval 

2
( , ).   In the latter case, we have 

2 1 2
ˆ( ) ( ) max{ ( ), ( )}          by the above property (2). In the 

former case, the above property (1) yields 
1

ˆ( ) ( )      

1 2
max{ ( ), ( )}.     Therefore, 

1 2
ˆ( ) max{ ( ), ( )}       for any 

1 2
ˆ ( , ),    which proves that ( )   is strongly quasiconvex over 

the interval [a, b]. 
 
( ) Suppose that ( )   is strongly quasiconvex over the interval [a, 

b] and attains its minimum value over this interval at .  Note that the 

minimizer   is necessarily unique. Consider any two values 
1
  and 

2
  in the interval [a, b] such that 

1 2
.   If 

2
   or 

1
,   

then we readily have 
1 2

( ) ( )     or 
2 1

( ) ( ),     respectively, 
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because   is the unique minimizer of ( )   over the interval [a, b]. If 

1
,   then 

1 2
( , ),    and 

1 2
( ) max{ ( ), ( )}       

2
( ).   The last inequality follows from the assumed strong 

quasiconvexity of ( ),   and the equality follows from the assumption 

that   minimizes ( )   over [a, b]. If 
2

,   then 
2 1

( , ),    

and by similar arguments we obtain 
2 1

( ) max{ ( ), ( )}       

1
( ).   This proves that ( )   is strongly unimodal over the interval 

[a, b].     

 
 b. The proof of this part follows basically the same type of arguments as 

in Part (a). 
 

8.11 The quadratic function 2( )q a b c      passing through the points 

( , ),
i i
   i = 1, 2, 3, in the function-space implies that 

 

  2
1 1 1

a b c      

  2
2 2 2

a b c      

  2
3 3 3

.a b c      

 
 Solving for (a, b, c) yields the function as stated (which is in the form of a 

Lagrangian Interpolation Polynomial, and is readily verified to yield 
( ) , 1,2,3).

i i
q i     

 
 Furthermore, we have 
 

1 2 3 2 1 3 3 1 2

1 2 1 3 2 1 2 3 3 1 3 2

(2 ) (2 ) (2 )
( ) 0

( )( ) ( )( ) ( )( )
q

           


           

     
    

     
 (1) 

 
 when 

1 2 3 2 3 2 1 3 3 1
[2 ( )]( ) [2 ( )]( )                    

 
3 1 2 1 2
[2 ( )]( ) 0.          

 
 Defining 

ij
a  and 

ij
b  as in the exercise, this yields 

 
 

1 23 2 31 3 12 1 23 2 31 3 12
2 [ ] ,a a a b b b            i.e.,    as 

defined in the exercise. 
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 For the example, we have 
1

4,   
2

1,   
3

7,   
23

1,a    
31

3,a   

12
2,a    

23
7,b    

31
15,b   and 

12
8.b    Hence, we get 

 

 
1 ( 7)(4) (15)(1) ( 8)(7)

2.3.
2 ( 1)(4) (3)(1) ( 2)(7)

    
  

   
 

 
 In order to show that 

1 3
     when 

1 2 3
( , , )    satisfies the TPP, 

first of all, note that by differentiating (1), we get (upon performing some 
algebra) that 

 

 3 2 2 1 1 2 3 2

2 1 3 1 3 2

2[( )( ) ( )( )]
( )

( )( )( )
q

       


     

    
 

  
, (2) 

 
 where the denominator in (2) is positive since 

1 2 3
,     and the 

numerator is positive because of the TPP. Hence, ( )q   is strictly convex, 

and so   is its unique minimizer. Moreover, we get from (1) that (after 
some algebra) 

 

 
2

2 1 3 2 2 3 1 2 3 2 1
1

2 1 3 1 3 2

( )( )( 2 ) ( )( )
( ) .

( )( )( )
q

          


     

      
 

  
 (3) 

 
 In (3), note that all the factors involving the  -variables are positive and 

that 
2 1

( ) 0    and 
2 3

( ) 0,    with at least one inequality strict by 

the TPP. Hence, 
1

( ) 0q    and so q is strictly decreasing at 
1
.  Likewise, 

it can be verified that 
3

( ) 0q    and so q is strictly increasing at 
3
.  

Since ( ) 0q    and q is strictly convex, we conclude that 
1 3

.     

 
a. We can start with 

1
0   and 

1
(0).   Assuming that the direction d 

defining ( )   is one of descent (else this procedure will determine a 

sequence for 
2
  that approaches zero), we can take a trial step ˆ 0   and 

compute ˆ ˆ( ).    

 

 Case (i): 
1

ˆ .   In this case, we let 
3

ˆ,   
3

ˆ,   and we continue 

bisecting the interval 
1 3

[ , ]  , moving toward 
1
 , until we find a 

bisection point   such that 
1

( )       (which exists since d is a 



 

72 

descent direction). Then we set 
2
    and 

2
( ) ,     to obtain a TPP 

1 2 3
( , , ).    

 

 Case (ii):  
1

ˆ .   In this case, we set 
2

ˆ,   
2

ˆ,   and we continue 

doubling the interval 
1 2

[ , ]   until we find a right end-point   such that 

2
( ) .       If no such   exists, then   is monotonically decreasing 

along d (not necessarily ),   and no TPP exists. Else, we set 
3
    

and 
3
    to obtain a TPP 

1 2 3
( , , ).    

 
b. Suppose that   is strictly quasiconcave. By virtue of the TPP, there exists 

a minimizing solution 
1 3

[ , ],     and by Exercise 8.10b,   is strictly 

unimodal over 
1 3

[ , ].    

 
 Case (i): First consider the case when 

1 3
,   where, without loss of 

generality, suppose that 
1 3
   (the case of 

1 3
   is similar). In this 

case, we get 
1 3
     from above, where by the strict quasiconvexity 

of ,  we have that 
1 3 3

( ) max{ , } .         Now, consider the 

three cases discussed in Section 8.3. 
 

 Case 1: If 
2

,   then the new TPP is 1
1 2

( , , )
new
     if 

2
   

and is 2
2 3

( , , )
new
     if 

2
.   In the case of 1 ,

new
  if 

2
,   

then strict unimodality asserts that 
1

[ , ].     Furthermore, if 
2

,   

then if 
1

,   we again get 
1

[ , ],     and if 
1
   also, then the 

function is constant over 
1

[ , ]   with any point in this interval being an 

optimum. For the case of 2 ,
new
  since 

3
   and 

2
,   we again 

conclude the existence of 
2 3

[ , ].     

 
 Case 2: If 

2
,   the argument is similar to Case 1. 

 
 Case 3: If 

2
   and 

3 1
     (else we stop), we replace   at a 

distance /2  away from 
2
  as described in Section 8.3, which yields Case 

1 or Case 2 above. 
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 Case (ii):  
1 3

.   In this case, by the TPP, we must have 
2 1 3

,     

and from above, we would obtain 
1 3

.     By the strict 

quasiconvexity of ,  whether 
2

,   
2

,   or 
2

,   we must 

have 
1 3

( ) .        Now we can analyze the three cases of 

2
,   

2
,   and 

2
   similar to above in order to conclude that 

the new TPP contains a minimizing solution. 
 

c. Let 2 3 4( ) 3 2 2 3           for 0.   Hence, we get (0) 0   

and (1) 0,   and so we try 1/2   to obtain 

(1/2) 25/16 1.5625.      Thus, 
1 2 3

( , , ) (0, 1/2, 1)     yields a 

TPP, with 
1 2

0, 1.5625,     and 
3

0.   For this case, we get 

31
1b   and 

31
1.a   Thus, 

2
1

.
2

    Using 0.1   for the sake of 

illustration, we replace   at 0.5 + /2,  say, i.e.,   = 0.55, which yields 

2
(0.55) 1.6477 ( ).      Thus, the new TPP is given by (0.5, 0.55, 1) 

with the interval of uncertainty being 0.5. We can continue in this fashion 
until 

3 1
.     The actual optimal solution for this instance is 

0.638   (to a tolerance of 0.001) with ( ) 1.7116.     

 
8.12 a. We need to show that if 

1 2 3
,       then min{ ( ) :   

0} .    

 By contradiction, suppose that min{ ( ) : 0} ( ) .         Then by 

the strict quasiconvexity of ( ),   since max{ ( ), ( )} ( ) ,
i i

          

1, 2,3,i   we obtain: 
 

 (i) If 
1
,    then ( ) ,    

2
( , ),     which contradicts that 

1
( )    because 

1 2
( , ).    

 (ii) If 
1 3

,     then ( ) ,    
1 3

( , ) ( , ),I          

which contradicts that 
2

( )    because 
2

.I   

 (iii) If 
3
,    then ( ) ,    

2
( , ),     which contradicts that 

3
( )    because 

3 2
( , ).     

 
 Therefore, min{ ( ) : 0}     .      
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 b. The continuity of ( ),   where 
1 2 3

( , , ),     follows directly from 

the definition of continuity and the fact that   is continuous. Hence, 

we need to show that ( ) ( )
new

     whenever 
1
,  

2
,  and 

3
  are 

not all equal to each other. The minimizer   of the quadratic fit 

function lies in the interval 
1 3

( , ).   Let ( ).     First, suppose 

that 
2
.    If 

2
,    then 

1 2
( , , )

new
     and 

3
    (by 

the strict quasiconvexity of   and since 
1 2 3
, ,    are not all equal to 

each other), and so ( ) ( )
new

      
3

( )   
3 3
    

( ).   If 
2

,    then 
2 3

( , , ),
new
     and noting that 

1
    

since 
2 1

,      we get 
1

( ) ( ) ( )
new

             

1 1
( ).      Hence, ( ) ( )

new
     in this case. Similar 

derivations lead to ( ) ( )
new

     if 
2

,    and likewise if 

2
.    

 

8.18 By the definition of 
1

( )
2

t tf x c x x Hx   and ( ),F x  we have 

 

  
1

( ) ( ) ( ) ( ) ( ) ,
2

t t t t tF x f x f x c Hx c Hx d x x Dx c c          

 

 where 2d Hc  and 22 2 .tD H H H   
 
 If the steepest descent method is used to find the minimum of ( ),F x  then 

its rate of convergence is governed by the condition number of the matrix 
D. More precisely, the rate of convergence is bounded above by 

2 2( 1) /( 1) ,    where   is the ratio of the largest to the smallest 

eigenvalue of D. Since 22 ,D H  the eigenvalues of D are two times the 

squares of the eigenvalues of H, and so 2 ,   where   is the ratio of 

the largest to the smallest eigenvalue of matrix H. Next, simple algebra 

yields 2 2 2 2 2 2( 1) /( 1) ( 1) /( 1)         whenever 1.   Since 

the smaller this ratio, the faster the convergence rate of the steepest descent 
method, this implies that the steepest descent method applied to the 
minimization of ( )F x  will converge at a slower rate than when applied to 

minimizing ( ).f x  
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8.19 Let 2 0,
k

y K   and noting that 1,   define 
3

( ) .
( )( )

y
g y

y y 


 
 

We need to show that ( )g y  is maximized at 2y   over 0.y   

Differentiating g, we get 
 

   
4 2

3 2
( ) .

[( )( )]

y
g y

y y


 

 
 

 

 

  Setting this to zero uniquely yields 2.y   Furthermore, we obtain 

 

   
3 5 7 4 2

3 4

2( )( )[ (3 )]
( ) .

[( )( )]

y y y y
g y

y y

    
 

      
 

 

 

  Hence, at least over 20 3 ,y    g is concave, and so g is 

maximized at 2y   over the interval 2[0, 3 ].  But for 
23 ,y   we get ( ) 0,g y   i.e., g is decreasing. Thus g is 

maximized at 2y   over 0.y   

 
8.21 First, let us establish the Kantorovich inequality. Since the matrix H is 

symmetric and positive definite, there exist matrices Q and D, where Q is 
orthonormal and D is diagonal with positive diagonal entries given by the 

eigenvalues 
1 2

0 ...
n

d d d     of H, such that .tH QDQ  Now, 

conider the nonsingular linear transformation .x Qy  Then, noting that 
tQ Q I  since Q is orthonormal, i.e., 1 ,tQ Q   we get 

 

          t t t tx x y Q Qy y y   

       [ ]t t t t tx Hx y Q QDQ Qy y Dy   

  and 1 1 1[ ] .t t t t tx H x y Q QD Q Qy y D y     

 
 Thus the left-hand side of the Kantorovich inequality equals 
 

  
2

1

( )
( )

( )( )

t

t t

y y
f y

y Dy y D y
  for .ny R  
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 Now, noting that ( ) ( )f y f y   for any 0,   we can restrict our 

attention without loss of generality to y such that 1,y   and so, we need 

to show equivalently that  
 

  
1 21

1 4
min

( )( ) (1 )t ty y Dy y D y




 
 

  
 

 

  i.e., 
2

1

1

(1 )
max ( )( )

4
t t

y
y Dy y D y








    . (1) 

 

 For any normalized vector y the expression 2

1

nt
i i

i
y Dy d y


   is simply a 

convex combination of 
1
,..., ,

n
d d  that is, it represents some value in the 

interval 
1

[ , ],
n

d d  where 
1

d  and 
n

d  are respectively the smallest and the 

largest eigenvalues of H. Therefore, for any fixed y, there exists a unique 

[0,1]   such that 
1

(1 ) ,t
n

y Dy d d     where by algebra, we have 

that 2

1

( )
.

( )
n i

i
i n

d d
y

d d



 


 Likewise, 1

1

1 1ˆ ˆ( ) (1 )( )t

n

y D y
d d

      

where 2

1

1 1

ˆ

1 1

n i
i

i

n

d d
y

d d



 
 

   
 

 
  

 
 

2 1

1

.n i
i

i in

d d d
y

dd d


 


 

 

 Hence, since 
1
/ 1,

i
d d   ,i  we have that ˆ .   Consequently, since 

1

1 1
,

n
d d

  we get that 1

1

1 1
( ) (1 )( ).t

n

y D y
d d

      Thus, for the left-

hand side of (1), we get 
 

1
1 21 0 1 1

1 1
min ( )( ) max (1 ) (1t t

y
n

y Dy y D y d d
d d

   

  

   
                      

 

 
2 2

2

0 1

( 1) ( 1)
max 1 ,


  
  

  
    

  
 (2) 
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 where 
1

/ .
n

d d   The concave function in the last maximand is 

maximized when 1/2   and yields the value 
2 2( 1) ( 1)

1 ,
4 4

 
 
 

   

and so from (2), we have that (1) holds true. This establishes the 
Kantorovich inequality. 

 

 For the bound on the convergence rate we then have for any ,nx R  
 

 
2 2 2

1 2 2 2

( ) 4 1 2 ( 1)
1 1 ,

( )( ) (1 ) (1 ) ( 1)

t

t t

x x

x Hx x H x

   
  

  
    

  
 

 
 which thus establishes (8.18).     

 
8.23 Author’s note: This is a good problem to assign to the students as a 

project exercise since it illustrates well the numerical behavior of the 
different algorithmic schemes of Parts a – h, revealing the effect of ill-
conditioning on these various methods. Observe that the optimal solution 
to this problem is given by (1, 1,…, 1), of objective value equal to zero. 

 
8.27 Since the minimum of ( )

j
f x d  over R   occurs at 0,   

1,..., ,j n   we have that 

 

  
0

( ) ( ) 0, 1,..., ,t
j j

d
f x d f x d j n

d 


 
       

 
 i.e., ( ) 0,D f x   where D is an n n  matrix whose rows are given by 

1
,..., .t t

n
d d  Since 

1
,...,

n
d d  are linearly independent, we have that D is 

nonsingular, which therefore implies that ( ) 0.f x   However, this does 

not imply that f has a local minimum at x (for example, see Figure 4.1 with 
(0, 0),x   

1
(1, 0),d   and 

2
(0, 1)).d   

 
8.28 Since H is n n  and symmetric, it has n real eigenvalues 

1
,...,

n
   with a 

corresponding set of n orthogonal (thus linearly independent) eigenvectors 
or characteristic vectors 

1
,..., ,

n
d d  such that ,

i i i
Hd d  1,..., .i n   For 

any {1,..., },i j n   we thus have 0,t t
i j j i j

d Hd d d   and so 

1
,...,

n
d d  are H-conjugate. 
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8.32 a. We establish this result by induction. First, consider 
1

d  and 
2

,d  

where 
1 1

d a  and 1 2
2 2 1

1 1

.
t

t

d Ha
d a d

d Hd

 
  
  

 Then, we have 

 1 2
1 2 1 2 1 1

1 1

0.
t

t t t
t

d Ha
d Hd d Ha d Hd

d Hd

 
   
  

 Moreover, 
1

d  and 
2

d  are 

linearly independent since 
2

a  does not belong to the one-dimensional 

space spanned by 
1 1

.a d  Now, by induction, suppose that 

1 1
,...,

k
d d   are linearly independent with 0,t

i j
d Hd   

{1,..., 1}i j k     for some 3 ,k n   and consider the case of 

.
k

d  Note that 
1 1
,...,

k
d d   lie in the ( 1)k  -dimensional space 

spanned by the linearly independent vectors 
1 1
,..., ,

k
a a   but since 

k
a  

does not belong to this space, we have that 
1
,...,

k
d d  are linearly 

independent. Therefore, to complete the proof, we need to show that 

0,t
p k

d Hd   1,..., 1.p k    Hence, consider any {1,..., 1}.p k   

We then have 
 

  
1

1

t
kt t ti k

p k p k p it
i

i i

d Ha
d Hd d Ha d Hd

d Hd





 
   
 
 

 

               

t
p kt t

p k p pt
p p

d Ha
d Ha d Hd

d Hd

 
     
 

 

  since 0, {1,..., 1}, .t
p i

d Hd i k i p       
 

 
  This establishes the H-conjugancy result. 
 

 b. Since the vectors 
1
,...,

n
a a  are unit vectors in ,nR  and each 

k
d  is 

some linear combination of the vectors 
i

a  for 1 ,i k   w clearly 

have that D is upper triangular. Moreover, the only nonzero element in 
the kth row of 

k
d  arises from ,

k
a  which is therefore of unit value. 

Thus, D has unit elements along its diagonal. 
 

 c. For this instance, we get 
1

(1, 0, 0) ,td   
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  1 2
2

1 1

1 1 1 1 2
2

1 0 1 0 1 .
24 0 4 0 4

t

t

d Ha
d

d Hd

                                                    
 

 

  1 3 2 3
3

1 1 2 2

2 1 2
1 0 1 ,
6 0 4

t t

t t

d Ha d Ha
d

d Hd d Hd

        
            
        

        
 

i.e., 

  
3

2 1 2 5/11
2 19

1 0 1 8/11 .
2 116 0 4 10/11

d
                                           

 

 

 d. In this case, 
1

(1, 0, 0) ,ta   
2

(0, 1, 0) ,ta   and 
3

(0, 0, 1) .ta   

Thus, we get 
1

(1, 0, 0) ,td   

  1 2
2

1 1

0 1 0 1 0
0

1 0 1 0 1 .
20 0 0 0 0

t

t

d Ha
d

d Hd

                                                 
 

 

  1 3 2 3
3

1 1 2 2

0 1 0
0 0 1
1 0 0

t t

t t

d Ha d Ha
d

d Hd d Hd

        
          
        

        
 

 

       
0 1 0 1/2

1 2
0 0 1 2/3 .

2 31 0 0 1

                                         
 

 

  Note that 
1 0 1/2
0 1 2/3
0 0 1

D
 
  
 
 

 is upper triangular with ones along the 

diagonal.  
 
8.35 For notational simplicity, the subscript j is dropped, i.e., we let ,

j
D D  

( ) ( ),
j

f y f y    ,
j

q q  ,
j

p p  ,
j

   ,
j

   and .
j

v v  

Furthermore, we let 
1

( ) ( )
j

f y f y     and 
1
,

j
D D   and we denote 

( ) ( ),ta f y D f y    ( ) ( ),tb f y D f y     and .tc q Dq  We need to 

show that there exists a value for   such that ( ) 0.D f y    By 

Equations (8.45) and (8.46), we have 
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( ) [ ]( ( ))
t t t

t t

pp Dqq D vv
D f y D q f y

cp q p q
         

( ) ( )
( )

t t t t t

t t t

pp q Dqq Dq vv q pp f y Dqq D f y
Dq D f y

c cp q p q p q
  

         

( )t

t

vv f y

p q
 
  

( ) ( ) ( )
( ) ,

t t t

t t

pp f y Dqq D f y vv f y
p D f y

cp q p q
  

       

 

 where the last step follows from ,tc q Dq  and 0tv q   (by virtue of the 

selection of  ). Furthermore, since ( )t tp q p f y    (because 

( ) 0tp f y   due to exact line searches), we obtain 

 

 
( ) ( )

( ) ( ) .
t t

t

Dqq D f y vv f y
D f y D f y

c p q
 

 
      (1) 

 

 By Equation (8.47) and the definition of ,
Dq

v p


   we get 

 

2

( ) ( ) ( ) ( ) ( )
.

( )

t t t t t

t t t t

vv f y cpp f y pq D f y Dqp f y Dqq D f y

cp q p q p q p q

     
     (2) 

 
 Now, as per the Hint, and due to exact line searches, let us note the 

following relationships: 
 

 2( ) ( ), , ( ) / ,t t t tpp f y aD f y p q a q D f y q p a            

 ( ) ,tpq D f y ap    and 

 ( ) ( ) ( ) .t tDqp f y Dq f y D f y aDq         (3) 

 
 Based on (3), we get from Equation (2) that  
 

 
( )

( ) ( ) .
t

t

vv f y c a
D f y D f y Dq Dq

a cp q
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 Note that c a b   since ( ) ( ) 0,tf y D f y    which results in 

( )
( ) .

t

t

vv f y b b
D f y Dq

a cp q
 

    Substituting this in (1), we get using (3), 

 

( ) ( ) [ ( ) ]
a b b

D f y D f y Dq D f y Dq
c a c

         

       (1 ) ( ) (1 ) (1 ) ( ( ) ).
b a b b a

D f y Dq D f y q
a c a a c

            

 

 This demonstrates that if 
( ) ( )

,
( ) ( )

t

t

a f y D f y

b f y D f y


 

 
   

 
 then ( )D f y   

is automatically zero, thus completing the proof.     

 
8.41 We derive C by solving the following problem: 
 

  P: Minimize 21

2 ij
i j

C  

   subject to 
                  [ ]

k k k
C B p q   

                  , .
ij ji

C C i j   

 

 Let ,
k k k

b q B p   and let 
1

[ ,..., ] .t
k n

p a a  Substituting this into 

Problem P, and factoring in the symmetry condition by defining 
ij

C  only 

for ,i j  we get: 

 

  P: Minimize 
12 2

1 1 1

1

2

n n n

ii ij
i i j i

C C


   
    

   subject to 
                   , 1,..., .

ii i ji j ji j i
j i j i

C a C a C a b i n
 

       

 
 Because P is a linearly constrained convex program, the KKT conditions 

are both necessary and sufficient for optimality. Denoting 
1
,...,

n
   as the 

(unrestricted) Lagrange multipliers associated with the respective equality 
constraints, the KKT conditions yield 

 
  0, 1,...,

ii i i
C a i n       (1) 



 

82 

  2 0,
ij j i i j

C a a i j        (2) 

  , 1,..., .
ii i ij j ij j i

j i j i
C a C a C a b i n

 
       (3) 

 
 From (1) and (2), we get  
 
  , 1,...,

ii i i
C a i n      (4) 

  , .
2

i j j i
ij

a a
C i j

 
      (5) 

 
 Substituting (4) and (5) into (3) and collecting terms yields 
 

 2 21
, 1,..., .

2 2
i

i i j j j i
j i j i

a
a a a b i n 

 

 
      

  
 (6) 

 Define 

  
21 1

.
2 2

t
k k k

Q p I p p     (7) 

 
 Note that Q is symmetric and positive definite (since 0),

k
p   and is 

therefore nonsingular. Moreover, (6) is given by .Q b   Thus, we get 

 

  
121 1

,
2 2

t
k k k k k k

p I p p q B p


         
 

 
 or using the Sherman-Morrison-Woodbury formula (see Equation (8.55)), 

we get 
 

  
2 2

2 1
.

2

t
k k

k k k

k k

p p
I q B p

p p


 
        
  

 (8) 

 
 Hence, the correction matrix C is given by (4) and (5), with 

, ,
ij ji

C C i j    where   is computed via (8). 

 
8.47 Consider the following problem: 
 

  P: Minimize 2 2
1 2

x x  

   subject to 
1 2

4 0.x x    
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 a. Since Problem P is a linearly constrained convex program, note that 
the KKT conditions are both necessary and sufficient for optimality. 
The KKT conditions for Problem P yield (with v unrestricted): 

 
   

1
2 0x v   

   
2

2 0x v   

   
1 2

4x x  , 

  or that 
1 2

2x x   and v = 4. Hence x = (2, 2)t  solves Problem P. 

 
 b. Consider the following (penalty) problem: 
 

  PP: Minimize 2 2 2
1 2 1 2

{ ( ) ( 4) },F x x x x x      

  where 0.   For   = 10, we get 

 

   1 1 2

2 1 2

2 20( 4)
( )

2 20( 4)

x x x
F x

x x x

   
      

 

 

  Starting with 1x  = (0, 0)t  and using Fletcher and Reeves’ conjugate 

gradient method, we get: 
 

  (i) 1 (0, 0) ,ty   1 1 80
( ) ,

80
d F y       

 and 
1
  is given by  

  1 1 2 2

0 0
minimize ( ) minimize 2(80 ) 10[160 4] .F y d

 
  

 
       

   Hence 
1
  = 0.0249843, and 2 1 1

1
1.998744

.
1.998744

y y d       
 

  (ii) Next, we compute 2 2 1
1

( ) ,d F y d    where  

   

22

1 21

( )
.

( )

F y

F y






 Note that 2 3.947248

( ) ,
3.947248

F y      
 which  

   yields 
1

31.161532
.

12800
   Thus,  

   2 31.1615323.947248 80
,

3.947248 8012800
d

          
 i.e., 

   2 3.7524885
.

3.7524885
d

    
 We hence compute 

2
  by minimizing  
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   2 2( )F y d  over 0.   Solving 2 2( ) 0
d

F y d
d




   yields  

   
2
  = 0.0250452, which gives 3 2 2

2
1.9047622

.
1.9047622

y y d       
 

  This completes one loop of the algorithm, and we get 

2 1.9047622
,

1.9047622
x     

 reset 1 2y x  and repeat. Continuing in this 

fashion, we find an  -optimal solution to Problem PP within some 
tolerance 0   based on terminating the procedure when 

( )jF y    for some iterate j, where the true optimum is given by 

1.9047619
.

1.9047619
 
  

 

 
8.51 a. Note that the points 

1 1
{ ,

j
x x d  for j = 1,…,n} define vertices of a 

simplex if they are affinely independent, i.e., if 
1
,...,

n
d d  are linearly 

independent. To show this, consider the system of linear equations 

defined by 
1

0.
n

j j
j

d 


  This yields  

   0, 1,..., .
i j

j i
a b i n 


     (1) 

 
  Performing row operations on (1) by subtracting the (i+1)th equation 

from the ith equation for i = 1,…,n–1 yields the following equivalent 
system of equations: 

 
   

1
( ) ( ) 0, 1,..., 1

i i
a b b a i n          (2) 

   
1

1
0.

n

j n
j

b a 



     (3) 

 

  Since ( ) / 2 0,a b c    Equation (2) yields 
1 2

,
n

      

which when substituted into (3) implies that 
1 2

0.
n

       

Hence, 
1
,...,

n
d d  are linearly independent. 

 
  Furthermore, observe that 
 

 
22 22 2
2

( 1) 1 1
2j
c

d a n b n n
n
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2 2 2

2

( 1)
1 1 .

2

n c
n c

n

       

 
  Thus, c represents the distance from 

1
x  to each of the other vertices 

2 1
,..., .

n
x x   Furthermore,  

  
2 2 2 2

1 1
2( ) ,

r s r s
x x d d a b c        {1,..., }.r s n    

Hence c represents the length of each edge of the constructed simplex. 
 
 b. Consider the problem to minimize  

   2 2 2
1 1 2 3 2 1 3

( ) 2 2 3 3 10 .f x x x x x x x x       

 
  Denoting the iterates with superscripts, and noting that n = 3, and 

taking 3 2,c   we get a = 4 and b = 1. Taking 1 (0, 0, 0) ,tx   this 

yields 2x  = (4, 1, 1) ,t  3x  = (1, 4, 1) ,t  and 4x  = (1, 1, 4) .t  (Note 

that the length of each edge of this simplex is 3 2.)c   We then get: 

 

  Step 1: 1( ) 0,f x   2( ) 22,f x   3( ) 46,f x   and 4( ) 20.f x    

Thus, 4rx x  and 3,sx x  which yields 
 

    1 2 41
5/3, 2/3, 5/3 .

3
tx x x x       

 
  Step 2: Using   = 1, we get 
 

   
5/3 2/3 7/3

ˆ 2/3 10/3 8/3 ,
5/3 2/3 7/3

x
     
         
     
     

 with 
46

ˆ( ) ( ),
9

rf x f x


   

   and so we go to Step 4. 
 

  Step 4: Since 1 2 4 ˆmax{ ( ), ( ), ( )} 22 ( ),f x f x f x f x   we replace 
3x  with x̂  to get a simplex defined by 1 2 4 ˆ{ , , }x x x x  with x̂  now 

playing the role of the revised 3x  (i.e., 3 ˆ),x x  and we return to 

Step 1 for the next iteration. 
 
  The iterations now continue until the simplex shrinks close to a point. 
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8.52 For notational simplicity let ,
j

D D  and ( ).
j

d D f y   Then 

1
,

j j j
y y d    where 

j
  minimizes ( )

j
f y d  along the direction 

.d  Note that  
 

  
1

( ) ( ) ( ) ( )
2

t t
j j j j

f y d c y d y d H y d          

                           21 1
( )

2 2
t t t t

j j j j
d Hd c Hy d c y y Hy       

                      2 11 1
,

2 2
t t t t

j j j
d Hd d D d c y y Hy       

 

 since 1( ) ( ) ,
j j

c Hy f y D d     where D is assumed to be symmetric 

and positive definite. Thus, the minimizing value of   is given by 
 

  
1

.
t

j t

d D d

d Hd



      (1) 

 Next, we examine 
1

( )
j

e y  , where y  is a minimizing solution for f: 

 

 
1 1 1 1 1

2 ( ) ( ) ( ) ( ) ( )t t
j j j j j j j

e y y y H y y y y H y y 
           

 
1

2( ) ( ) ( ) ( )t t
j j j j j

y y H y y y y H y y  
       

 2 12 2 ( ),t t
j j j
d Hd d D d e y       

 since 
1

( )
j j j

y y d     and 1( )
j j

H y y Hy c D d      as above. 

Hence, 
 

  

1 2

1

1
( ) 2

1 .
( ) ( )

t t
j jj

j j

d D d d Hde y

e y e y

 



          (2) 

 
 Note that  
 

  1 1 12 ( ) ( ) ( )t t
j j j

e y y y H y y d D H D d         (3) 
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 because ( ) 0,f y Hy c      and so, 
1

( )
j j

H y y c Hy
      

1( ) ,
j

f y D d   which yields 1 1( )
j

y y H D d     or 

1 1( ) .t
j

y y d D H     Substituting Equations (1) and (3) into (2) yields 

 

  
1 2

1 1 1 1

( )
( ) ( ) 1 .

( )( )

t

j j t t

d D d
e y e y

d Hd d D H D d



   

 
  

  
 (4) 

 By assumption, the matrix D is symmetric and positive definite. Therefore, 
there exist an orthonormal matrix Q and a diagonal positive definite matrix 
P (with the square-root of the eigenvalues of D along the diagonal) such 

that .tD QPPQ  In order to express Equation (4) in a more convenient 

form, let 1 tr P Q d  and let .tG PQ HQP  Then, since ,tQQ I  we 

get  
 

  1 1 1 ,t t t td D d d QP P Q d r r     

  1 1 Pr ,t t t t t t td HD d QP PQ HQPP Q d r PQ HQ r Gr     

and  1 1 1 1 1 1 1 ,t t t td D H D d r P Q H QP r r G r         

 
 which allows us to rewrite Equation (4) as 
 

  
2

1 1

( )
( ) ( ) 1 .

( )( )

t

j j t t

r r
e y e y

r Gr r G r 

 
  

  
 

 
 The matrix G is readily verified to be positive definite, and so the 

Kantorovich inequality (see Exercise 8.21 and Equation (8.18)) can be 
applied to obtain an upper bound on the convergence rate as 

 

  
2

1 2

( 1)
( ) ( ),

( 1)j j
e y e y








 

 
 where   is the ratio of the largest to the smallest eigenvalue of the matrix 

G.  
 
 It remains to show that the matrices G and DH have the same eigenvalues. 

For this purpose note that if   is an eigenvalue of DH and x is a 

corresponding eigenvector, then ,DHx x  i.e., ,tQPPQ Hx x  which 

yields ,tPQ HQPz z  where 1 .tz P Q x  This demonstrates that 
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,Gz z  i.e.,   is an eigenvalue of G. The converse is likewise true. 

Therefore, ,
j

   which completes the proof. 
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CHAPTER 9: 
 

PENALTY AND BARRIER FUNCTIONS 
 
9.2 Using the quadratic penalty function, the penalty problem is given as 

follows: 
 

 PP: 1

1 2

2 2 2
1 1 2 2 1 2( , )

Minimize{ ( ) 2 3 2 4 [3 2 6] }.
x

x x
F x e x x x x x x         

 
 Note that 
 

 
1

1 2 1 2

1 2 1 2

2 6 2 6 [3 2 6]
( ) .

2 8 4 [3 2 6]

x
e x x x x

F x
x x x x




       
     

 

 
 Hence, with   = 10, we get 

 

 1 2 2 2
1 1 2 2 1 2

( ) 2 3 2 4 10[3 2 6]
x

F x e x x x x x x         

 
 and 
 

 
1

1 2

1 2

2 6 (1 3 ) 2 (1 6 ) 36
( )

2 (1 6 ) 8 (1 ) 24

x
e x x

F x
x x

  
  

       
     

 

            
1

1 2

1 2

2 186 122 360
.

122 88 240

x
e x x

x x

    
   

 

 
 Using the conjugate gradient method of Fletcher and Reeves with x =      

(1, 1)t  as the starting solution, we perform the following two iterations: 

 
 Iteration 1: 
 

 1 (1, 1) ,tx   1 2 52
( ) ,

30
e

F x
     

 1 1 52 2
( )

30
e

d F x
      

 

 
46.563436

,
30

    
 and the step length   is obtained as a solution to 

1 1

0
minimize{ ( )}F x d




 . The optimal step length is given by   = 

0.004, which yields the new iterate  
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 2 1 1 [1.86253744, 1.12] .tx x d    

 
 Iteration 2: 

  2 3.832776378145
( ) .

3.282956768
F x

     
 

 
 Hence, we compute 
 

 2 2 1
1

( ) ,d F x d     where 

2
2

1 2
1

( )
0.0083.

( )

F x

F x








 


 

 
 This gives 
 

 2 3.4463
.

3.033957
d

    
 

 

 The line search problem to minimize 2 2( )F x d   over 0   yields 

the optimal step length   = 0.0041. Hence, the next iterate is given by 
 

 3 2 2 [1.172123914, 1.107560776] .tx x d    

 

 We can now reset, and continue (with a search along 3 3( )),d F x   

until F  is sufficiently small).  

 
9.7 a. The KKT conditions, which are necessary for optimality here, yield 

2
1
2
2

3 1 0
,

1 03

x
v

x

                 
 i.e., 

1
/3x v   and 

2
/3.x v   But 

1 2 1 2
1 0.5x x x x      and 3/4v   yields the unique KKT 

solution, and thus provides the optimal solution (since an optimum 

exists). Hence, (0.5, 0.5).x   

 
 b. Consider 

1 2
( , ) ( , 1),x x    where 0.   Then the objective 

function value of the penalty problem is equal to 
3 3 3 2 2 31 (1 ) 1,             which decreases without 
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bound as     for any   > 0. Hence, for each   > 0, the penalty 

problem is unbounded. 
 
 c. Theorem 9.2.2 requires the penalty problem to have an optimum for 

each   > 0, and so this result is not applicable for the present 

problem. 
 
 d. The penalty problem with the added bounds is given by 
 

   Minimize 3 3 2
1 2 1 2

( 1)x x x x     

   subject to  
1 2

1 1, 1 1.x x       

 
  For convenience, we assume that   > 1 is large enough. It is readily 

verified that the KKT solution at which the gradient of the objective 
vanishes is better than any other solution at which either 

1
x  or 

2
x  are 

at any of their bounds. Since the KKT conditions are necessary for 
optimality in this case, this KKT point must be the optimal solution. 
To derive this solution, we examine the system 

 

   
2
1 1 2
2
2 1 2

3 2 ( 1) 0
.

03 2 ( 1)

x x x

x x x





               
 

 

  Subtracting the second equation from the first yields 2 2
1 2

,x x  i.e., 

1 2
.x x   But 

1 2
x x   gives an objective value of ,  which is 

inferior, for example, to the solution (1/2, 1/2) of objective value 1/4. 

Hence, 
1 2

x x  at optimality, which yields 2
1 1

3 4 2 0,x x     or 

2

1 2

4 16 24
.

6
x x

    
   For   large enough, feasibility 

requires the    choice, which yields the optimal solution x x  

given by  

 
2

1 2 2

2 4 6 2 1
.

3 3(2 4 6 ) 1 1
2

x x 
   

  


  
   

   
 

  Hence, 
1 2

( , )x x   (1/2, 1/2) as ,    as expected from Part (a) 

and Theorem 9.2.2. 
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9.8 a. Let ( , ),
i i

a b  i = 1,…, n, denote the coordinates of the m = 4 existing 

facilities. Then the problem is as follows: 
 

  Minimize 2 2
1 2

1

1
( ) ( ) ( )

2

m

i i
i

f x x a x b

        

  subject to 
1 2

3 2 6x x   

    
1 2

( , ) 0.x x   

 

 b. The Hessian of the objective function is given by 
0

,
0
m

m
 
  

 which is 

PD. Hence, f is strictly convex. 
 
 c. Denoting 

1 2
( , , )u u v  as the respective Lagrange multipliers 

associated with the constraints 
1

0,x   
2

0,x   and 
1 2

3 2 6x x   

(all multiplied through by –1 for writing them in standard form for 
convenience), we get the following system of KKT conditions, where 
m = 4: 

 

   
1 1

1
3 0

m

i
i

mx a u v


     

   
2 2

1
2 0

m

i
i

mx b u v


     

   
1 2

3 2 6x x   

   
1 2 1 2

( , ) 0, ( , ) 0x x u u   

   
1 1 2 2

0.u x u x   

 
  This system yields the unique solution 

1 2
0,u u   

1 2
9 129

( , ) , ,
26 52

x x
   
 

 and 
19

.
13

v   Since the KKT conditions are 

sufficient (and necessary) in this case, this is an optimal solution. 
 
 d. The quadratic penalty function approach yields the following penalty 

problem: 
 

  PP( ) :  
1 2

2 2
1 2( , ) 1

1
Minimize ( ) ( )

2

m

i ix x i
x a x b



      
 

                     
22 2

1 2
1

1
(3 2 6) max {0, } ,

2 j
j

x x x
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  where /2  is the penalty parameter. Denoting ( )F x  as the objective 

function of Problem PP(μ), we have that 
 

  
1 2 1

1 2 2

(4 9 ) 6 max{0, } [ 18 ]
( ) .

6 4(1 ) max{0, } [ 12 ]

i
i

i
i

x x x a
F x

x x x b

   

   

      
  
      
  

 

 

  We start at 1 (0, 0)x   and apply the Fletcher and Reeves conjugate 

gradient method using 10.   

 

  Iteration 1: We get 1 177
( ) ,

127
F x

     
 and so 

1 1 177
( ) .

127
d F x

      
 Performing a line search to 

1 1

0
Minimize ( ),F x d




   yields   as a solution to 

1 1 1( ) 0,tF x d d     i.e., 
24258 177 177

0,
16208 127 127

t

          

 which 

yields   = 0.0074712, or 1 1 21.3224
( ) .

0.9488
x d x      

 

  Iteration 2: We next compute 2 4.2336
( ) .

5.9088
F x

     
 Hence, we 

compute 
 

   2 2 1
1

( )d F x d     where 

2
2

1 2
1

( )
.

( )

F x

F x











 

 
  This yields 

1
  = 0.0011133, with 

 

   2 4.2336 177 4.03655
0.0011133 .

5.9088 127 6.0502
d

                 
 

 

  Performing a line search along 2d  from 2x , we effectively compute 

the optimal step length   as a solution to 2 2 2( ) 0,tF x d d     

i.e., so long as 2 2 0,x d   which yields   = 0.24975, thus 
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producing 3 2 2 0.3142
.

2.4598
x x d       

 This yields 

3 0.1228
( )

0.0832
F x

     
, which is close (albeit with a loose tolerance) to 

0
.

0
 
  

 (Note that since the optimization essentially involved 

minimizing a strictly convex quadratic function (since the 
2max {0, }

j
x -terms did not play a role here), we expect the 

conjugate gradient method to converge in n = 2 iterations. Thus, with 

exact computations, we should have achieved 3 0
( ) .)

0
F x

     
 

Checking the feasibility of this solution, we see that 3 3
1 2

3 2x x  = 

5.8622. We can thus reset the conjugate gradient algorithm, increase 
  to 100, and repeat until we attain near-feasibility to a desired 

tolerance. 
 
9.12 Following the derivation of KKT Lagrange multipliers at optimality as in 

Section 9.2, and assuming that the conditions of Theorem 9.2.2 hold with 
{ : ( ) 0

i
X x g x   for 1,..., ;i m m M    ( ) 0

i
h x   for 

1,..., },i L     let x  be an optimal solution for the following 

penalty problem for each   > 0: 

 
  PP: Minimize ( ) ( )f x x  

   subject to ( ) 0
i

g x   for 1,..., ,i m m M    

     ( ) 0
i

h x   for 1,..., ,i L     

 

 where 
1 1

( ) [ ( )] [ ( )],
m

i i
i i

x g x h x  
 

  


 and where we assume that: 

 
 1. All functions f, 

i
g , 

i
h ,  , and   are continuously differentiable. 

 
 2. The functions ( )   and ( )   satisfy (9.1b), and furthermore,  

  ( ) 0y   for all y, with ( ) 0y   if 0.y   

 
 Hence, since x  solves the penalty problem PP for any given   > 0, by 

the KKT necessary optimality conditions, we can claim the existence of 
scalars ,

i
y  1,..., ,i m m M    and ,

i
w  1,..., ,i L     such that 
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1 1

( ) ( ) ( ) ( ) 0,
m M L

i i i i
i m i

f x x y g x w h x      
 

   
        




 (1) 

  ( ) 0
i i

y g x    for 1,..., ,i m m M    (2) 

  0
i

y   for           1,..., .i m m M    (3) 

 
 Moreover, by the definition of ( ),x  we have 

 

 
1 1

( ) [ ( )] ( ) [ ( )] ( ).
m

i i i i
i i

x g x g x h x h x         
 

      


 (4) 

 
 Let x  be an accumulation point of the generated sequence { }x , where, 

without loss of generality, let { } .x x   Also, define the sets 
0

I  and 
1

I  

as follows: 
 
  

0
{ {1,..., } : ( ) 0},

i
I i m g x    

 
  

1
{ { 1,..., } : ( ) 0}.

i
I i m m M g x      

 
 For   large enough, we have ( )

i
g x  < 0 for any i that is not in 

0 1
,I I  

so that  
 
 [ ( )] 0

i
g x   if {1,..., }i m  and 

0
,i I  

 
 0

i
y              if { 1,..., }i m m M    and 

1
i I  (from (2)). (5) 

 
 Therefore, for   large enough, we have from (1), (4), and (5) that  

 

 
0 1

( ) [ ( )] ( ) [ ( )] ( )
i i i i

i I i
f x g x g x h x h x       

 
       


 

 
1 1

( ) ( ) 0.
L

i i i i
i I i

y g x w h x   



  
    




 (6) 

 
 Let 
 

  
0

1

0 1

[ ( )] if 

if 

0 if 

i

i i

g x i I

u y i I

i I I



 

  
 
  

 (7a) 



 

96 

 

  
[ ( )] for 1,...,

for 1,..., .
i

i
i

h x i
v

w i L





      


   (7b) 

 
 Notice that 0

i
u   for 1,...,i m m M    by Assumption 2 and 

Equation (3). Since { }x x   and all the functions in (7) are continuous, 

the Lagrange multipliers u  and v  at x  can then be retrieved in the limit 
as follows: 

 
  lim

i i
u u

  for 1,..., ,i m M   

  lim
i i

v v
  for 1,..., .i L   

 
9.13 First, note that by the definition of ( ),

E
F x  we need to show that x  is a 

local minimizer for the following problem, denoted by EPP, which 
equivalently minimizes ( )

E
F x : 

 

 EPP: Minimize 
1 1

( )
m

i i
i i

f x y z
 

 
   

 


 

   subject to  ( )
i i

y g x  for 1,...,i m  

      ( )
i i

z h x  and ( )
i i

z h x   for 1,...,i    

      0
i

y   for 1,..., .i m  

 
 We show that under the assumptions of the problem, the solution x  

satisfies the second-order sufficient conditions for a local minimizer of 
Problem EPP as given by Theorem 4.4.2. 

 
 For this purpose, noting that ( ) 0, 1,..., ,

i
g x i m    and ( ) 0,

i
h x   

1,..., ,i    since x  is feasible to the original Problem P, we first show 
that if 

 
 max{0, ( )} 0

i i
y g x   for 1,...,i m  

 
 max{ ( ), ( )} 0

i i i
z h x h x    for 1,...,i   , 

 
 then ( , , )x y z  is a KKT point for Problem EPP. 
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 Note that ( , , )x y z  is a KKT point for EPP if there exist scalars ,
i

u  

, ,
i i

u v   and 
i

v  associated with the respective constraints ( )
i i

g x y   

0, 0,
i

y   ( ) 0,
i i

h x z   and ( ) 0,
i i

h x z    such that 

 

 
1 1

( ) ( ) ( ) ( ) 0
m

i i i i i
i i

f x u g x v v h x  

 
       


 

 0
i i

u u      for 1,...,i m  

 0
i i

v v      for 1,...,i    

 0
i

u   and 0
i

u   for 1,...,i m   (1) 

 0
i

v   and 0
i

v   for 1,...,i    

 0
i

u   for ,i I  

 
 where { {1,..., } : ( ) 0},

i
I i m g x    and where note that the only 

constraints of Problem EPP that are not active at ( , , )x y z  are the 

inequalities 0 ( )
i i

y g x   for i I  (i.e., for which ( ) 0).
i

g x   Let 

   maximum { , , , 1,..., },
i i

u i I v i    where , 1,..., ,
i

u i m  and 

, 1,..., ,
i

v i    are Lagrange multipliers for Problem P corresponding to 

.x  Next, let 
 

 
i i

u u   if i I  and 0
i

u    if i I  

 
i i

u u    for 1,...,i m  

 
1

( )
2i i

v v    for 1,...,i    

 
1

( )
2i i

v v    for 1,..., .i    

 

 It can be easily verified that , ,
i i i

u u v    and 
i

v   satisfy the KKT system 

(1). Therefore, ( , , )x y z  is a KKT point for Problem EPP. 

 
 Next, we need to show that the Hessian matrix of the restricted Lagrange 

function for Problem EPP is positive definite on the cone C  defined 

below. For notational simplicity and without loss of generality, we 

consider    maximum { , , , 1,..., }.
i i

u i I v i    In this case, the 
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Lagrange multipliers , ,u v   and v   all take on positive values. Now, 

consider the following sets: 
 

  { : 0}
i

I i I u     and 0 { : 0},
i

I i I u    

 

 and notice that 0
i

u    only if i I   and is zero otherwise. 

 
 The cone C  for Problem EPP as per Theorem 4.4.2 is the cone of all 

nonzero vectors [ ]t t t
x y z

d d d  such that 

 

 ( ) 0t t
i x i y

g x d e d     for ,i I   

 0t
i y

e d      for 1,..., ,i m  

 ( ) 0t t
i x i z

h x d e d     for 1,..., ,i    

 ( ) 0t t
i x i z

h x d e d     for 1,..., ,i    

 ( ) 0t t
i x i y

g x d e d     for 0 ,i I  

 

 where 
i

e  is the ith unit vector. Since 0t
i y

e d   for 1,..., ,i m  we 

necessarily obtain 0,
y

d   and furthermore, the last and the first of the 

above conditions reduce to ( ) 0t
i x

g x d   for i I   and 

( ) 0t
i x

g x d   for 0 ,i I  respectively. Moreover, the third and fourth 

conditions yield 0
z

d   (upon summing these), and ( ) 0t
i x

h x d   for 

1,..., .i    Hence, the cone C  is the cone of all nonzero vectors 

[ 0 0 ]t t td  such that  

 

 ( ) 0t
i

g x d   for ,i I   ( ) 0t
i

g x d   for 0 ,i I  and 

 ( ) 0t
i

h x d   for 1,..., .i     (2) 

 
 Next, consider the Hessian matrix of the restricted Lagrange function 

( , , )L x y z  for Problem EPP, where by (4.25), we have 

 

 
1 1 1

( , , ) ( ) ( ) ( ( ) )
m m

i i i i i i i
i i i I i

L x y z f x y z u g x y u y  
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1 1

( ( ) ) ( ( ) ).
i i i i i i

i i
v h x z v h x z 

 
    
 

 

 

 Therefore, the Hessian matrix 2 ( , , )L x y z  of ( , , )L x y z  evaluated at 

( , , )x y z  is given by 

 

 
1

2
0 0

( , , ) 0 0 0 ,
0 0 0

L

L x y z

 
    
  

 

 

 where 2 2 2
1

1
( ) ( ) ( ) ( ),

i i i i i
i I i

L f x u g x v v h x  

 
       


 and the 

remaining blocks are zero matrices of appropriate sizes. 
 
 Now, consider the quadratic form 
 

 2[ ] ( , , )t t t
x y z

d d d L x y z  [ ] .t t t t
x y z

d d d   

 

 Due to the structure of 2 ( , , )L x y z  we obtain 

 

 2
1

[ ] ( , , )[ ]t t t t t t t t
x y z x y z x x

d d d L x y z d d d d L d   

 

 2 2 2

1
[ ( ) ( ) ( ) ( )]t

x i i i i i x
i I i

d f x u g x v v h x d  

 
       


 

 

 2 2 2 2

1
[ ( ) ( ) ( )] ( ) ,t t

x i i i i x
i I i

d f x u g x v h x d d L x d
 

        


 

 
 where ( )L x  is the restricted Lagrange function for Problem P, and 

.
x

d d  But the quadratic form 2 ( )td L x d  is known to be positive for 

all nonzero vectors d such that 2 ( ) 0t
i

g x d   for ,i I   

( ) 0t
i

g x d   for 0 ,i I  and ( ) 0t
i

h x d   for 1,..., ,i    since x  

satisfies the second-order sufficient conditions for Problem P as given in 
Theorem 4.4.2. By Equation (2), we can thus assert that the Hessian of the 
restricted Lagrange function ( , , )L x y z  at ( , , )x y z  for Problem EPP is 

positive definite on the cone C . Therefore, ( , , )x y z  satisfies the 

conditions of Theorem 4.4.2 for the Problem EPP, and hence is a strict 
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local minimizer for this problem. This means that x  is a local minimizer 

of the function ,
E

F  which completes the proof.      

 
9.14 As in Equation (9.26), let 
 

 2

1
( , , ) ( ) max { ( ) ,0}

2

m
i

ALAG i
i

u
F x u v f x g x


    

      
2

2

1 1 1
( ) ( ).

4

m
i

i i i
i i i

u
v h x h x

  
    

 
 

 
 By assumption, 

k
x  minimizes ( , , ),

ALAG
F x u v  where u  and v  are 

given vectors, so that ( , , ) 0.
x ALAG k
F x u v   This means that  

 

 
1

( ) 2 max{ ( ) ,0} ( )
2

m
i

k i i k
i

u
f x g x g x


     

               
1 1

( ) 2 ( ) ( ) 0,
i i k i k i k

i i
v h x h x h x

 
     
 

 

 
 or equivalently, 
 

 
1

( ) 2 max{ ( ) ,0} ( )
2

m
i

k i i k
i

u
f x g x g x


      

             
1
( 2 ( )) ( ) 0.

i i k i k
i

v h x h x


  


 (1) 

 

 If 
1 1

( , , ) ( ) ( ) ( ),
m

i i i i
i i

L x u v f x u g x v h x
 

   


 then 

 

     
1 1

( , , ) ( ) ( ) ( ) ( ) ( ).
m

x k new new k new i i k new i i k
i i

L x u v f x u g x v h x
 

       


 

 
 The requirement that ( , , ) 0

x k new new
L x u v   together with Equation 

(1) (known to hold), yields the following expressions for 
new

u  and :
new

v  

 

 ( ) 2 max{ ( ) , 0}
2

i
new i i k

u
u g x


   for 1,..., ,i m  (2) 

 
 ( ) 2 ( )

new i i i k
v v h x   for 1,..., .i     (3) 
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 By taking the factor 2  within the maximand in (2) and factoring out ,

i
u  

we get 
 
 ( ) max{2 ( ), }

new i i i k i
u u g x u    for 1,..., .i m  (4) 

 
 Equations (4) and (3) show that 

new
u  and 

new
v   are as given by Equations 

(9.27) and (9.19), respectively.     

 
9.16 We are given that x  is a KKT point for P, and that u  and v  are the 

corresponding Lagrange multipliers. Therefore,  
 

 
1 1

( ) ( ) ( ) 0
m

i i i i
i i

f x u g x v h x
 

      


 

 ( ) 0
i

g x   for 1,...,i m  

 ( ) 0
i

h x   for 1,...,i    

 ( ) 0
i i

u g x   and 0
i

u   for 1,..., .i m  

 
 We are also given that the second-order sufficiency conditions and strict 

complementarity hold at ( , , )x u v  (so that I I   in Theorem 4.4.2). 

Thus, we have 
 

 2 ( ) 0td L x d   for all { 0d C d   : ( ) 0t
i

g x d   for ,i I  

 ( ) 0t
i

h x d   for 1,..., }.i    

 
 The KKT conditions for Problem P  are: 
 

 
1 1

( ) ( ) ( ) 0
m

i i i i
i i

f x u g x v h x
 

      


 

 
 2 0

i i
s u   for 1,...,i m  

 

 2( ) 0
i i

g x s   for 1,...,i m  

 
 ( ) 0

i
h x   for 1,..., .i    
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 Readily, if ( , , )x u v  is a KKT point for P, then ( , , , )x s u v , where 
2 ( ),

i i
s g x   1,..., ,i m  is a KKT point for P . The Hessian of the 

restricted Lagrangian function for Problem P  at ( , )x s  is given by 

 

 
2 ( ) 0( , ) ,

0
L xH x s

D

   
 

 

 
 where D is a diagonal matrix with 2 ,

i
u  1,..., ,i m  along the diagonal. 

We need to show that the quadratic form [ ]t t x
x s

s

d
d d H

d

 
 
 

 is positive 

definite on the cone  
 

 
0

{ : ( ) 2 0 for 1,..., ,
0

tx
i x i si

s

d
C g x d s d i m

d

              
 

            ( ) 0t
i x

h x d   for 1,..., }.i    

 
 Note that by the strict complementarity condition and the definition of s, 

we have 0
i

s   and 0
i

u   for each .i I  Also, 0
i

u   and 0
i

s   for 

.i I  Therefore, 
 

 2 2

1
[ ] ( ) 2

mt t tx
x s x x si i

is

d
d d H d L x d d u

d 

 
    

 
 

 2 2( ) 2 ,t
x x si i

i I
d L x d d u


      (1) 

 
 and the system 
 

 ( ) 2 0t
i x i si

g x d s d    for 1,..., ,i m  (2) 

 
 is equivalent to 
 

 ( ) 0t
i x

g x d   for ,i I    (3a) 

 

 ( ) 2 0t
i x i si

g x d s d    for .i I   (3b) 
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 Hence, for any ,x

s

d
C

d

 
 

 
 we have from (2) and (3) that if 0,

x
d   then 

,
x

d C  which implies that 2 ( ) 0t
x x

d L x d   in (1) with 22 0.
si i

i I
d u


  

On the other hand, if 0,
x

d   then we have 0
si

d   for i I  from (2) 

since 0
i

s   for ,i I  and so ( , ) 0
si

d i I   since 0.
s

d   Thus, in 

this case, we get 22 0
si i

i I
d u


  in (1) with 2 ( ) 0.t

x x
d L x d   Hence, in 

either case, the expression in (1) is positive-valued. Therefore, ( , )H x s  is 

positive definite on the cone C , which completes the proof.      

 
 If the strict complementarity condition does not hold, then we can only 

claim that ( , )H x s  is positive semidefinite on the cone C   since we 

could have x

s

d
C

d

 
 

 
 with 0, 0,

x s
d d   but yet the right-hand side 

of (1) being equal to zero. 
 
9.19 The corresponding barrier problem is given as follows: 
 

 Minimize 
1

( ) [ ( )]
m

i
i

f x g x 


   

 subject to ( ) 0
i

g x   for 1,..., ,i m  

   ( ) 0
i

g x   for 1,..., ,i m m M    

   ( ) 0
i

h x   for 1,..., .i    

 
 We assume the following as per Section 9.4: 
 
 1. The function   satisfies (9.28) and is continuously differentiable. 

 
 2. The functions f, ,

i
g  1,..., ,i m M   and ( ),

i
h x  1,..., ,i    are 

continuously differentiable. 
 
 3. The assumptions of Lemma 9.4.2 and Theorem 9.4.3 hold with 
 
  { : ( ) 0, 1,..., , ( ) 0, 1,..., }.

i i
X x g x i m m M h x i         

 4. The optimal solution x  to the problem 
 
  min{ ( ) : ( ) 0, 1,..., , ( ) 0, 1,..., }

i i
f x g x i m M h x i       
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  obtained as an accumulation point of the sequence { }x  is a regular 

point. 
 
 For simplicity, and without loss of generality, consider the case when 

{ }x  itself converges to x . Define the following two sets 
0

I  and 
1

I : 

 
  

0
{ {1,..., } : ( ) 0}

i
I i m g x    

  
1

{ { 1,..., } : ( ) 0}.
i

I i m m M g x      

 
 Since x  is a regular point, there exist unique Lagrange multipliers ,

i
u  

1,..., ,i m M   and ,
i

v  1,..., ,i    such that 

 

  
1 1 1

( ) ( ) ( ) ( ) 0
m m M

i i i i i i
i i m i

f x u g x u g x v h x


   
        


 (1) 

  0
i

u   for 1,...,i m M   

  0
i

u   for 
0 1

.i I I   

 
 By assumption, x  solves the barrier problem and hence, for each 0  , 

there exist Lagrange multipliers ,
i

y 1,..., ,i m m M    and ,
i

w  

1,..., ,i    such that 
 

 
1

( ) {[ ( )] ( )
m

i i
i

f x g x g x   


    

                       
1 1

( ) ( ) 0,
m M

i i i i
i m i

y g x w h x   



  
     


 (2) 

 0
i

y   for 1,..., ,i m m M    

 ( ) 0
i i

y g x    for 1,..., .i m m M    

 
 We further assume that { }

i
y  for 1,...,i m m M    and { }

i
w  for 

1,...,i    are contained within a compact set, and hence have convergent 

subsequences. Without loss of generality, suppose that { }
i i

y y   for 

1,..., ,i m m M    and that { }
i i

w w   for 1,...,i   . 

 

 By the above set of assumptions, since x x   as 0 ,   we obtain 
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 { ( )} ( ),f x f x    

 { ( )} ( )
i i

g x g x    for 1,..., ,i m M    

 { ( )} ( )
i i

h x h x    for  1,..., ,i    

 [ ( )]
i

g x   some 
i

y  for 1,..., ,i m  where 0
i

y   if 
0

i I  

 { } 0
i i

y y    for 1,..., ,i m m M    where 0
i

y   if 
1
.i I  

 { }
i i

w w   for 1,..., .i    

 

 In particular, we get from (2) in the limit as 0   that  

   
1 1

( ) ( ) ( ) 0,
m M

i i i i
i i

f x y g x w h x


 
      


 (3) 

 
 where 0

i
y   for 

0 1
.i I I   Since x  is a regular point, by the 

uniqueness of the multipliers satisfying Equation (1), we have from (1) and 
(3) that the unique Lagrange multipliers ,

i
u  1,..., ,i m M   and ,

i
v  

1,..., ,i    can be derived as limits of { }
i

y  and { }
i

w , respectively. That 

is 
 
  

0
lim [ ( )]

i i i
u y g x




   for 1,...,i m , 

  
0

lim
i i i

u y y 
   for 1,...,i m m M   , 

  
0

lim
i i

v w 
  for 1,..., .i    

 
9.32 For the problem in Example 9.51, where A = [1  2] and b = 2, using 

Equation (9.43), we obtain the following closed-form expressions for the 
direction vectors , ,

v u
d d  and 

x
d  at ,v  ,u  and ,x  respectively: 

 

 1 2 1 2

1 2 2 1

ˆ2 (2 )

4v

u u u u
d

x u x u

 



  (1a) 

 

 
1
2u v

d d     
    (1b) 

 

 1 1 1 2 2 2

1 2

ˆ ˆ 2
, .

t

v v
x

x u x d x u x d
d

u u

     
  
  

 (1c) 
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 Consequently, given any iterate ( , , )w x u v  and given ,  we set 

̂   (where 
0.35

1 0.7525127),
2

     and we compute 

( , , )
x u v

d d d  from (1) and then obtain the next iterate ˆ ˆ ˆ ˆ( , , )w x u v  

according to  
 
 ˆ ,

x
x x d   ˆ ,

u
u u d   and ˆ .

v
v v d   (2) 

 
 We then continue until the duality gap given by  
 
 

1 2
3 2x x v n      for some tolerance 0.   (3) 

 

 If the starting vectors are 
0

x   [2/9, 8/9 ] ,t  
0

u   [4, 1 ] ,t  
0

   8/9, and 

0
1,v    then the primal-dual path following algorithm produces the 

following results: 
 
 Iteration 1: (with , ,

v u
d d  and 

x
d  computed as in Example 9.5.1): 

 
 

1 0
0.6689001    

 
1

ˆ [0.17484, 0.9125797] ,tx x   
1

ˆ [3.8629302, 0.7258604] ,tu u   

 
1

ˆ 0.8629302.v v    The duality gap equals 
1

2 1.3378002.   

 
 Iteration 2: 
 
 

2 1
0.5033558    

 
 Using Equation (1), we get 
 

 0.0951426,
v

d   
0.0951426

,
0.1902852u

d
    

 and 
0.0402296

.
0.0201151x

d
    

 

 
 This yields 
 

 
2

[0.1346104, 0.9326948]tx   

 

 
2

[3.7677876, 0.5355752]tu   and 

 
 

2
0.7677876.v    
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 Note that the duality gap is now given by 
 

 
2 2 2

[3, 1] 2 2 1.0067116.t x v      

 
 The iterations can now continue until the duality gap is sufficiently small. 

(With 0.001,   we have that after 25 more iterations, i.e., after 

obtaining 
27

,x  the duality gap will equal 0.0008233 < 0.001.)   
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CHAPTER 10: 
 

METHODS OF FEASIBLE DIRECTIONS 
 
10.3 a. Let { : , 0}.S x Ax b x    Given ,x S  let { : 0}.

j
I j x   

Then the set of feasible directions at x  is given by 
 
   { : 0, 0

j
D d Ad d    for }.j I  

 
 b. Let { : , , 0}.S x Ax b Qx q x     Given ,x S  let 

1
{ : },

i i
I i A x b   and 

2
{ : 0},

j
I j x   where ,

i i
A x b  i = 

1,…,m, denote the rows of .Ax b  Then the set of feasible 
directions at x  is given by 

 
  

1 2
{ : 0, ; 0; 0, }.

i j
D d A d i I Qd d j I         

 
 c. Let { : , 0}.S x Ax b x    Given ,x S  and following the same 

notation as in Part (b) above, let 
1

{ : }
i i

I i A x b   and 

2
{ : 0}.

j
I j x   Then the set of feasible directions at x  is given 

by 
 
  

1 2
{ : 0, ; 0, }.

i j
D d A d i I d j I        

 
10.4 a. The direction-finding problem in this case decomposes into n 

(independent) linear one-dimensional problems, one for each ,
j

d  

where in the jth problem, the function 
j j
d  is minimized over the 

interval 
 
   [ 1, 1]  if 

j j j
a x b   

   [0, 1] if 
j j

x a  

   [ 1, 0]  if .
j j

x b  

 
  Therefore, an optimal solution is given by: 
 
   1

j
d    if 0

j
   and 

j j
x a  

   1
j

d   if 0
j

   and 
j j

x b  



 

109 

   0
j

d   otherwise. 

 
 b. Assume that 0

j
   for at least one j (else d = 0 is optimal). The 

direction-finding problem is given by: 
 

   Minimize 
1

n

j j
j

d

  

   subject to  
    0

j
d   for j such that 

j j
x b  (1) 

    0
j

d   for j such that 
j j

x a  (2) 

    2

1
1.

n

j
j

d


   (3) 

 

  It can be easily verified that the vector [ , 1,..., ],
j

d d j n    where 

 

   

1/ 2
2/ if

0 if ,

j j
j j I

j Id

j I




         


 

 
  and where { :

j j
I j x a   and 0,

j
   or 

j j
x b  and 0}

j
   

is a feasible solution to this problem. In order to prove that d  is an 

optimal solution we first show that the vector d  is a KKT point for 
this problem. For this purpose, let ,

j
u  for j such that 

j j
x b  or 

,
j j

x a  and w denote Lagrange multipliers associated with the 

constraints (1) – (3), respectively. The KKT system, aside from the 
primal feasibility restrictions (already verified above), is given by: 

 
  2 0

j j j
u wd     for j such that 

j j
x b  

  2 0
j j j

u wd     for j such that 
j j

x a  

  2 0
j j

wd    for j such that 
j j j

a x b   

  0
j j

u d   and 0
j

u   for all j such that 
j j

x a  or 
j j

x b  

  2

1
1 0,

n

j
j

w d


 
   

 
 0.w   
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  It can be easily verified that if , ,..., ,
j j

d d j n  then 

 
  

j
u  = 0 if j I  

  
j j

u    if j I  and 0
j

   

  
j j

u    if j I  and 0
j

   

  

1/ 2
21

2 j
j I

w


 
   

 
 

 

  satisfies the KKT system for this problem. Therefore, d  is a KKT 
point for the direction-finding problem. Furthermore, the objective 
function in this problem is linear and all the constraint functions are 

convex. Therefore, by Theorem 4.3.8, we can assert that d  is an 

optimal solution.     

 

 c. Note that 1 2

1 2

6 2 4
( ) ,

2 8 3

x x
f x

x x

  
      

 and the Hessian is 

6 2
,

2 8
H

    
 which is positive definite. Hence, f is strictly 

convex. In the computations below, for notational convenience, all 
vectors are given as row vectors. The method in Part (a) produces the 
following results: 

 
  Iteration 1. 
 

  1 1 1[ 2 3], ( ) [ 10 23], ( ) 53x f x f x         

  1
1

33
[1 1], min{ , 2} 2.

10
d     

 
  Iteration 2. 
 

  2 2 2[0 1], ( ) [ 2 11], ( ) 7x f x f x        

  2
2

11
[0 1], min{ , 2} 11/8.

8
d     

 
  Iteration 3. 
 

  3 3 3[0 3/8], ( ) [ 19/4 0], ( ) 9/16,x f x f x       
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  3 [0 1].d    

 

  The inner product of 3( )f x  and 3d  is zero and so we stop. The 

vector [0 3/8]  is a KKT point for this problem. Since the 

assumptions of Theorem 4.3.8 hold, we can conclude that this is an 
optimal  solution. 

 
  The method of Part (b) produces the following results: 
 
  Iteration 1. 
 

  1 1 1[ 2 3], ( ) [ 10 23], ( ) 53, {1, 2}x f x f x I          

  1
1

1 629 629
[10 23], min{ , 2} 2.

3912629
d     

 
  Iteration 2. 
 

  2 2 2[0 1], ( ) [ 2 11], ( ) 7, {2}x f x f x I         

  2
2

11
[0 1], min{ , 2} 11/8.

8
d     

 
  Iteration 3. 
 

  3 3 3[0 3/8], ( ) [ 19/4 0], ( ) 9/16, {2}x f x f x I        

  3 [0 0].d   

 
  Hence, as above, we terminate with [0 3/8]  as an optimal solution. 

Note that for this problem, the two methods happened to produce the 
same sequence of iterates. 

 
 d. Consider the problem in which the function 

1 2 1 2
( , ) 2f x x x x   is 

minimized over the rectangle given in Part (c). Hence, 

( ) [1 2].f x    Let [0 1 1/ ], 1, 2,...kx k k    For each iterate 
kx , the direction-finding map ( )D x  defined in Part (a) gives 

( ) [ 1 1].k kD x d    Thus, we have { , } ( , )k kx d x d  where 

[0 1]x   and [ 1 1].d    However, ( ) [ 1 0] [ 1 1].D x      This 

means that ( )D x  is not closed at x . 
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  For the direction-finding map ( )D x  described in Part (b), we obtain 

using this same example that  
 

  
1

( ) [ 1 2], { , } ( , ),
5

k k k kD x d x d x d     where [0 1]x   

and 
1

[ 1 2],
5

d    but ( ) [ 1 0] .D x d    Hence, in this case as 

well, the direction-finding map is not closed. 
 
 e. For example, for Part (b), see the counterexample given in Example 

10.2.3. 
 
10.9 Let P denote the original problem and let DF denote the given direction-

finding problem. First of all, note that d = 0 with objective value equal to 
zero is a feasible solution to Problem DF and that the feasible region of 
Problem DF is bounded since 1.d    Hence, Problem DF has an 

optimum with a nonpositive optimal objective value. Furthermore, d is an 
improving feasible direction at x if and only if  

 

  ( ) 0tf x d   and ( ) 0,t
i

g x d i I    , (1) 

 

 because ( ) 0 ( ) ( ), 0 ,tf x d f x d f x           for some 

0  , by the differentiability of f, and because for each ,i I  we have 
that 

 

  ( ) 0 ( ) ( ), 0,t
i i i

g x d g x d g x         

 
 by the pseudoconcavity of g at x. 
 

 Consequently, if the optimal objective value of Problem DF (denoted )v  

is zero, then there does not exist any improving feasible direction at x, for 
else, (1) would have a solution, which by scaling d so that 1,d    

would yield a feasible solution to DF with a negative objective value, thus 

contradicting that v  = 0. On the other hand, if v  < 0, then the optimal 

solution d  to Problem DF satisfies (1) and hence yields an improving 
feasible direction.  

 
10.12 a. If x̂  is a Fritz John point for the problem: 

min{ ( ) : ( ) 0, 1,..., },
i

f x g x i m   then there exists a vector 

( , ),
i

u i I  where ˆ{ : ( ) 0},
i

I i g x   and a scalar 
0

u  such that 
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0
ˆ ˆ( ) ( ) 0

i i
i I

f x u u g x


     

  
0

0, 0
i

u u   

  
0

( ,
i

u u  for ) (0, 0).i I   

 

  This means that the system 0, 0, 0,tA y y y    where the 

columns of tA  are ˆ( )f x  and ˆ( ),
i

g x  ,i I  has a solution (here 

0
[ ,

i
y u u  for ] ).ti I  Therefore, by Gordan’s Theorem, the 

system 0Ad   has no solution. That is, no (nonzero) vector d exists 

such that ˆ( ) 0tf x d   and ˆ( ) 0,t
i

g x d i I   . This implies that 

the feasible set in the problem: 
 
    Minimize z 

  subject to ˆ( )tf x d z   

    ˆ( )t
i

g x d z   for ,i I  

    1
j

d    if 
ˆ( )

0
j

f x

x





 

    1
j

d   if 
ˆ( )

0
j

f x

x





 

 

  has no point for which z < 0. However, ˆˆ( , ) (0, 0)z d   is a feasible 

solution for this problem, and therefore, it must be optimal. 
 

  A similar argument can be used to show that if ˆˆ( , ) (0, 0)z d   

solves the foregoing problem, then x̂  is a Fritz John point for the 
problem: min{ ( ) : ( ) 0, 1,..., },

i
f x g x i m   noting that the 

restrictions on the 
j

d -components are simply used to bound the 

objective value from below in case there exists a d such that 

ˆ( ) 0tf x d   and ˆ( ) 0,t
i

g x d   .i I   

 

 b. By the problem formulation, we have ˆ ˆˆ ˆˆ max{ ( ) , ( )t t
i

z f x d g x d    

for }.i I Since ˆ 0,z   we necessarily have ˆˆ( ) 0.tf x d   

Therefore, d̂  is an improving direction of ( )f x  at x̂ . Furthermore, 

since ˆˆ( ) 0, ,t
i

g x d i I     there exists ˆ 0   such that 
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ˆˆ( ) 0
i

g x d   for any ˆ(0, ), 1,..., ,i m     and so d̂  is also a 

feasible direction at x̂ . This shows that d̂  is an improving feasible 

direction at x̂ .        

 
 c. We could likewise select any ,k I  and use the following bounding 

constraints: 
 

   1
j

d    if 
ˆ( )

0k

j

g x

x





 

   1
j

d   if 
ˆ( )

0.k

j

g x

x





 

 

10.19 Let 
1

( ; ) ( ) ( ) .
2

t tQ d x f x d H x d    

 a. The required second-order approximation problem (QA), is given as 
follows: 

 
  QA: Minimize ( ; )Q d x  

  subject to Ad = 0 
   

0
0,

j
d j J    

   1 1, 1,..., .
j

d j n      

 

  Let d  denote an optimal solution to Problem QA. 
 
 b. Note that Problem QA involves minimizing a strictly convex 

function over a nonempty polyhedron. Therefore, the KKT 
conditions are both necessary and sufficient for optimality. If 

0,d   then there exist scalars 
0

0, ,
j

u j J   and a vector v such 

that 
 

   
0

(0; ) 0,t
j j

j J
Q x u e A v


     

 

  where 
j

e  is the jth unit vector in .nR  
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  Notice that ( ; ) ( ) ( ) ,Q d x f x H x d     which yields (0; )Q x  

( ).f x   Therefore, if d  = 0 solves the problem QA, then there 

exist scalars 
0

0, ,
j

u j J   and a vector v such that  

 

   
0

( ) 0.t
j j

j J
f x u e A v


     

 
  This implies that x  is a KKT point for the original problem. 
 

 c. Suppose that 0.d   Then the optimal objective value of Problem 

QA is given by ( ; ) 0,Q d x   since d = 0 is a feasible solution. 

Therefore, since 
1

( ) ( ) 0
2

t tf x d d H x d      and ( )H x  is a 

positive definite matrix, we necessarily have ( ) 0.tf x d   Thus, 

d  is an improving feasible direction for Problem P at x , where the 

feasibility of d  follows directly from the formulation of the 

constraints of Problem QA.      

 
10.20 The KKT conditions are given as follows: 
 
  

1 2 1 1 2 3
4 2 4 4x x x u u u      

  
1 2 1 2 4

2 4 5 6x x u u u       

  2
1 1 2 2 1 2
(2 ) 0, ( 5 5) 0u x x u x x      

  
3 1 4 2

0, 0u x u x   

  
1 2

0, 0, 0
i

x x u    for i = 1, 2, 3, 4. 

 
 The above KKT system has the following unique solution: 
 

  
1

( 201 1)/20x    

  
2

(101 201)/100x    

  
1 2

0.82243058, 0.93345463,u u   and 
3 4

0.u u   

 
 By Theorem 9.3.1, a suitable value for   is any real number such that 

0.93345463.   The Hessian H of the objective function ( )f x  is given 

by 
4 2

.
2 4

H
    

 Its eigenvalues are 
1
  = 6 and 

2
  = 2. The vectors 
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[ 1 1]t  and [1 1]t  are eigenvectors corresponding to 
1
  and 

2
 , 

respectively. The unconstrained minimum of ( )f x  can be found by 

solving the system ( )f x  = 0, which yields 

 
  

1 2
4 2 4x x   

  
1 2

2 4 6.x x    

 

 The unique solution to the above system is 
1

x  = 7/3 and 
2

x  = 8/3. 

 

 Hence, the contours of ( )f x  are elliptical, centered at (7/3, 8/3) ,t  with 

major and minor axes oriented along (1, 1)t  and (–1, 1 )t , respectively, as 

depicted in Figure 10.13a. 
 
 Successive iterations (beyond Iteration 1 as presented in Example 10.32) 

of applying Algorithm PSLP to this problem are as follows (note that 

constant terms ( ) ( )t
k k k

f x f x x   are not included in the objective 

function of Problem LP( , ))
k k

x  : 

 
 Iteration 2. 
 

 
2 2

(0.5, 0.9) , (1, 1) ,t t x   

 
 

2 2 1 2 1 2
LP( , ): Minimize 3.8 3.4 10max{0, 0.5 2 }x x x x     x   

                   subject to         
1 2

5 5x x   

     
1 2

0 1.5, 0 1.9.x x     

 
 An optimal solution to 

2 2
LP( , )x   is given by 

1
x  = 15/22 and 

2
x  = 

19/22, where 
2

0.13868
E

F    and 
2

0.5672,
EL

F   and so 
2

0.R   

Therefore, we need to shrink 
2

  to (0.5, 0.5) and repeat this step. 

 
 

2 2 1 2 1 2
LP( , ): Minimize 3.8 3.4 10max{0, 0.5 2 }x x x x     x   

                  subject to         
1 2

5 5x x   

     
1 2

0 1, 0.4 1.4.x x     
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 An optimal solution to 
2 2

LP( , )x   is given by 
1

x  = 15/22 and 
2

x  = 

19/22, where 
2

0.13868
E

F    and 
2

0.5672,
EL

F   and so 
2

0.R   

Therefore, again, we need to shrink 
2

  to (0.25, 0.25) and repeat this 

step. 
 
 

2 2 1 2 1 2
LP( , ): Minimize 3.8 3.4 10max{0, 0.5 2 }x x x x     x   

                  subject to         
1 2

5 5x x   

     
1 2

0.25 0.75, 0.65 1.15.x x     

 
 An optimal solution to 

2 2
LP( , )x   is given by 

1
x  = 15/22 and 

2
x  = 

19/22, where 
2

0.13868
E

F    and 
2

0.5672,
EL

F   and so 
2

0.R   

Once again, we need to shrink 
2

  to (0.125, 0.125) and repeat this step. 

 
 

2 2 1 2 1 2
LP( , ): Minimize 3.8 3.4 10max{0, 0.5 2 }x x x x     x   

                  subject to         
1 2

5 5x x   

     
1 2

0.375 0.625, 0.785 1.025.x x     

 
 An optimal solution to 

2 2
LP( , )x   is given by 

1
x  = 0.625 and 

2
x  = 

0.875, where 
2

0.51325
E

F   and 
2

0.39,
EL

F   and so 

2 2
1.1316 .R    We thus accept the new solution 

3
x  = (0.625, 0.875) 

and so amplify the trust region by a factor of 2. 
 
 Iteration 3. 
 
 

3
x  = (0.625, 0.875), 

3
  = (0.25, 0.25). 

 

3 3 1 2 1 2
LP( , ): Minimize 3.25 3.75 10 max{0, 0.78125 2.5 }x x x x     x   

      subject to            
1 2

5 5x x   

    
1 2

0.375 0.875, 0.625 1.125.x x     

 
 An optimal solution to 

3 3
LP( , )x   is given by 

1
x  = 0.6597 and 

2
x  = 

0.86806, where 
3E

F  = 0.060282056 and 
3EL

F  = 0.8675, and so 
2

R  = 

0.6949. We thus accept the new iterate as 
4

x , but retain 
3

  as the value 

of 
4
.  
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 Iteration 4. 
 
 

4
x  = (0.6597, 0.86806), 

4
  = (0.25, 0.25). 

 

4 4
LP( , ):x   

 
Minimize  
 

1 2 1 2
3.09732 3.84716 10 max{0, 0.87040818 2.6388 }x x x x       

subject to          
1 2

5 5x x   

          
1 2

0.4097 0.9097, 0.61806 1.11806.x x     

 
 An optimal solution to 

4 4
LP( , )x   is given by 

1
x  = 0.65887 and 

2
x  = 

0.86823, where 
4E

F  = 0.021547944 and 
4EL

F  = 0.022137689, and so 

2
R  = 0.97336. We therefore accept the new iterate as 

5
x , and we amplify 

4
  to get 

5
.  

 
 Iteration 5. 
 
 

5
x  = (0.65887, 0.86823), 

5
  = (0.5, 0.5). 

 

5 5
LP( , ):x   

Minimize  
 

1 2 1 2
3.10098 3.84482 10max{0, 0.868219353 2.63548 }x x x x       

subject to          
1 2

5 5x x   

        
1 2

0.15887 1.15887, 0.36823 1.366823.x x     

 
 An optimal solution to 

5 5
LP( , )x   is given by 

1
x  = 0.65887 and 

2
x  = 

0.86826, where 
5E

F  = 0.0 and 
5EL

F  = 0.0001153. Since 
5EL

F  is 

small enough (the direction 
5

d  = (0, 0.00003)t  is sufficiently small in 

norm), we stop; the solution 
1 2

( , )x x  = (0.65887, 0.86826) is close 

enough to the desired KKT point. 
 
10.25 Algorithm RSQP applied to Example 10.4.3: 
 
 Using superscripts for distinguishing vector iterates from its components, 

we have for the next iteration: 
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 2 (1.1290322, 0.7741936)tx   

 2 (0, 1.032258, 0, 0)tu   

 21 2

2 1

4 2 4 4 2
( ) , ( )

4 2 6 2 4

x x
f x f x

x x

              
 

 2 1.0322584
( )

5.16129
f x

     
 

 2 2 2 2 2 2 2 2
2 2

4 2
( ) ( ) ( ) ( )

2 4
L x f x u g x f x

           
 

 2 2
1 1

4.5161288
( ) 1.7752338, ( )

1
g x g x       

 

 2
2

( ) 0,g x   2
2

1
( )

5
g x      

 

 2 2
3 3

1
( ) 1.1290322, ( )

0
g x g x

       
 

 2 2
4 4

0
( ) 0.7741936, ( ) .

1
g x g x        

 

 
 Hence, the direction-finding quadratic program (QP) is given as follows: 
 

 2 2QP(x , u ) :  

 

 Minimize 2 2
1 2 1 2 1 2

1
1.0322584 5.16129 4 4 4

2
d d d d d d        

 subject to 
1 2

1.7752338 4.5161288 0d d    

    
1 2

5 0d d   

    
1

1.1290322 0d    

    
2

0.7741936 0.d    

 

 At optimality for 2 2QP( , ),x u  the first two constraints are active, thus 

yielding the following optimal solution via the KKT conditions: 
 

 2 [ 0.411302, 0.0822604]td    

 3 [0.4325705, 0.8884432, 0, 0] .tu   

 

 Taking a unit step along 2d  yields 
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  3 2 2 [0.7177302, 0.8564454] .tx x d    

 
 Note from Figure 10.13(a) that an optimal solution to the given original 

problem is 
 

  [0.6588722, 0.8682256] .tx   

 

 Hence, we are approaching x  and the iterations can now continue as 
above. 

 
 Algorithm MSQP applied to Example 10.4.3. 
 

 In this case, the solution 2x  after the first iteration is given as follows 
 

  2 [0.6588722, 0.8682256] .tx   

 

 Note that this coincides with x  above, and its optimality is verified 
below. 

 

  2 [0, 1.032258, 0, 0] .tu   

 

 2 2 23.1009624 4 2
( ) , ( )

3.844842 2 4
f x L x

              
 (as before) 

 

 2 2
1 1

2.6354888
( ) 0, ( )

1
g x g x       

 

 

 2 2
2 2

1
( ) 0, ( )

5
g x g x       

 

 2 2
3 3

1
( ) 0.6588722, ( )

0
g x g x

       
 

 2 2
4 4

0
( ) 0.8682256, ( ) .

1
g x g x        

 

 
 Hence, the direction-finding QP is given as follows: 
 

 2 2QP(x , u ) :  

 

 Minimize 2 2
1 2 1 2 1 2

1
3.1009624 3.844842 4 4 4

2
d d d d d d        
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 subject to 
1 2

2.6354888 0d d   

    
1 2

5 0d d   

    
1

0.6588722 0d    

    
2

0.8682256 0.d    

 
 Observe that 

1 2
( , ) (0, 0)d d   is a KKT solution for this problem with 

the vector of Lagrange multipliers associated with the respective 

constraints given by 3u   [0.822431039, 0.933454607, 0, 0] .t  Hence, 

we stop with 2x  as an optimal solution (with Lagrange multipliers 3)u . 

 

10.33 Let 2( ) ( )F d f x d    = 2 ( ) ( ) ( ).t t td d f x d f x f x      Let d  

denote an optimal solution to the problem: 
 

 D:  min
1

1
{ ( ) : 0}.

2
F d A d   

 
 a. The function ( )F d  is strictly convex, while the system of constraints 

1
0A d   is linear and consistent. Therefore, the KKT conditions are 

both necessary and sufficient for optimality. A vector d  is a KKT 

point for Problem D if 
1

( ) td f x A u    and 
1

0.A d   If d  

solves Problem D, then it must be a KKT point, that is: 
 

  1. It is in the nullspace, 
1

( ),N A  of 
1

A  (since 
1

0).A d   

  2. It is a sum of 
1

,tA u  which is in the orthogonal complement of the 

nullspace of 
1
,A  and ( ).f x  

 

  From linear algebra, we can therefore claim that d  is the projection 
vector of ( )f x  onto the nullspace of 

1
.A  If so, out of all vectors 

in 
1

( ),N A d  is closest to ( ).f x  

 

  If d  is the projection vector of ( )f x  onto 
1

( ),N A  then 

 

  1. d  must be a vector in 
1

( ),N A  that is 
1

0.A d   

  2. There exists a unique vector z  in the orthogonal complement 

of 
1

( )N A  such that ( ).d z f x    
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  That is, there exists a vector u such that 
1

,tA u z  which further 

yields the existence of a solution to the system 
1

0,A d   

1
( ) .tf x d A u    Thus, d  is a KKT point.       

 

 b. By premultiplying the equation 
1

( ) td f x A u    by 
1
,A  and 

noting that 
1

0,A d   we obtain 
1 1 1

( ) 0.tA f x A A u     If 
1

A  is of 

full row-rank, then 
1 1

tA A  is positive definite and hence nonsingular, 

and we get 1
1 1 1

( ) ( ),tu A A A f x   so that  

    1
1 1 1 1

[ ( ) ] ( ).t td I A A A A f x     

  (Observe that by the derivation in Part (a), we directly have 

( ),d P f x    where 1
1 1 1 1

( )t tP I A A A A   is the projection 

matrix onto the nullspace of 
1
.)A        

 

 c. Given that 
1

2 2 3
( ) [2 3 3] , ,

2 1 2
tf x A

       
 we get the 

KKT system 
 
   

1 1 2
2 2 2d u u     

   
2 1 2

3 2d u u    

   
3 1 2

3 3 2d u u     

   
1 2 3

2 2 3 0d d d    

   
1 2 3

2 2 0.d d d    

 

  This yields 
1 2

11 7
( , ) ( , ),

17 9
u u


  and 

1 2 3
( , , )td d d d   

266 380 76
( , , ) .

153 153 153
t

 

 

10.36 a. Let [ ],t t tM A E   where tE  is an ( )n n m   submatrix of 
n

I  

(the columns of 
n

I  correspond to the nonbasic variables). By 

assumption, A is an m n  matrix whose rank is m. Furthermore, 

rank ( ) ,tE n m   and so by construction, tM  is an n n  matrix 

of full rank. This implies that the matrix tM M  is invertible. The 
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projection matrix P that projects onto the nullspace of the gradients 

of the binding constraints is then given as 1( ) ,t tP I M MM M   

and the direction vector d is then given as .d Pc   Notice that 
,Md MPc   which by the formula for P gives 

1( ) 0.t tMd Mc MM MM Mc     Hence, 0,Md   and so d = 0 

since M is nonsingular.      

 

 b. Let 
0 1

[ ],t t tu u u  where 
0

u  and 
1

u  are 1m   and ( ) 1n m   

vectors, respectively. The vector 
0

u  is associated with the equality 

constraints ,Ax b  while the vector 
1

u  is associated with the n m  

nonnegativity constraints 0
j

x   corresponding to the nonbasic 

variables. The equation 1( )tu MM Mc   can be rewritten as 

,tMM u Mc   which by the structure of the matrix M and the 
vector u gives the following system: 

 

   
0 1

t tAA u AE u Ac      (1a) 

 

   
0 1

.t tEA u EE u Ec      (1b) 

 
  If [ ],A B N  where B is an m m  invertible matrix, and 

[ ],t t t
B N

c c c  then , ,t t t tAA BB NN AE N    ,t
n m

EE I   

and .
N

Ec c  

 
  Therefore, we can rewrite the system of Equation (1) as 
 

   
0 0 1

t t
B N

BB u NN u Nu Bc Nc      (2a) 

 

   
0 1

.t
N

N u u c      (2b) 

 
  By premultiplying (2b) by the matrix N, and adding the resulting 

equation to (29), we obtain 
0

.t
B

BB u Bc   That is, 

1
0

( ) ,t
B

u B c   which further gives 1
1

( ) .t t
N B

u c N B c   

Thus, 1
0
t t

B
u c B   and 1

1
.t t t

N B
u c c B N   This means that the 

jth entry of the vector 
1

u  is simply the value of the reduced cost 
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“
j j

c z ” used in the simplex method. Thus, the most negative 
j

u  

associated with the constraint 0
j

x   for any nonbasic variable is 

the most negative value of 
j j

c z  in the simplex method. 

 
  Given that ,d P c   we have ,x x d    where 0   denotes 

the optimal step length, so that we now need to show that 
1

,j

j

B a
d

e

 
  
 
 

 where j is the index of entering variable in the 

simplex method. By construction, 1( ) ,t tP I M M M M       

where ,
A

M
E

     
 and where E  is formed from E by deleting the 

row corresponding to .t
j

e  Let us rewrite the matrix A using three 

blocks: the matrix B, the column 
j

a , and the matrix N   (notice that 

[ ]).
j

N a N   This allows us to rewrite the matrix M   as follows: 

 

  ,
0 0 1

j
B a N

M
 

   
 

 where I is of order 1.n m   

 

  Furtheremore, let [ ].t t t
B j N

d d d d    Since 0,M d M P c      we 

obtain 
 
   0

B j j N
Bd a d N d     and 0.

N
d    

 
  Taking 1

j
d   by way of increasing the jth nonbasic variable by a 

unit, this yields 1
B j

d B a   and 
N

d   = 0. Thus 
1

.j

j

B a
d

e

 
  
  

     

 

 
 c. The above steps now match with the application of the simplex 

method. 
 
10.41 a. The figure below illustrates the trajectory of iterates. The details 

pertaining to these iterates are as follows: 
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  Iteration 1:  
 

  Start at the origin 1 (0, 0)tx   (with coordinates specified in the 

space of the 
1 2

( , )x x -variables). The nonbasic variables are 

1 2
{ , }x x  and the basic variables are 

3 4 5
{ , , }.x x x  Noting the 

orientation of 1( ),f x  we get 
1

0r   and 
2

0.r   Assuming 

2 1
,r r  we increase 

2
x  and perform a line search to get the new 

iterate 2x  as shown in the figure.  
 
  Iteration 2: 
 

  At 2x  we get the following: 
 
  Nonbasic variables:  

1 2
{ , };x x  

 
  Basic variables: 

3 4 5
{ , , };x x x  

 
  

1
0r   and 

2
0.r    

 

  Hence, we increase 
1

x . Performing a line search produces 3x  as 

shown in the figure. 
 
  Subsequent iterations: 
 

  The trajectory zigzags as shown, finally obtaining an iterate kx  as 
shown in the figure, where we have the following: 

 
  Nonbasic variables:  

1 5
{ , };x x  

 
  Basic variables: 

2 3 4
{ , , };x x x  

 
  

1
0r   and 

5
0.r   

 

  Since 
5

0x   and 
1

0,x   we decrease 
1

x  to reach the optimum x  

upon performing a line search. 
 



 

126 

  At ,x  the basis remains the same, but we now have 
1
r  = 0 (with 

1
x  

> 0) and 
5

r  > 0 (with 
5

x  = 0), and so the solution x  is a KKT point 

(and an optimum in this case).  
 

2
x

x

1
x

kx

1
0x 

5
0x 

4
0x 

3
0x 

2
0x 

1x

2x
3x
f

Convex Simplex
Method

 
 
 b. The reduced gradient method would essentially imitate the steepest 

descent method in the initial iterations for this example by following 
the negative (reduced) gradient as illustrated in the figure below, 
until the trajectory intercepts the  constraint 

5
x  = 0 as shown in the 

figure at the depicted point 4.x  At this solution, we now have the 
following: 

 
  Nonbasic variables:  

1 5
{ , };x x  

 
  Basic variables: 

2 3 4
{ , , };x x x  

 
  

1
0r   and 

5
0.r   

 
  Since 

5
0,x   the method would decrease 

1
x  (holding 

5
0)x  , and 

thus reach the solution x  and verify this to be optimal as in Part (a) 
above. 

 



 

127 

2
x

x

1
x

1
0x 

5
0x 

4
0x 

3
0x 

2
0x 1x

f

Reduced Gradient
Method

2x

3x

4x

f

 
 
 c. In this case, using the quadratic programming subproblem (10.62) in 

the space of the superbasic variables at the starting solution 1x , 
where we have 

1 2
{ , }x x  as superbasic variables and 

3 4 5
{ , , }x x x  

as basic variables, the direction generated is essentially oriented 
toward the unconstrained optimum (of the given quadratic objective 
function). Performing a line search along this direction produces the 

new iterate 2x  as shown in the figure. 
 

  Now, at 2x , since the basic variable 
5

x  has become zero, we 

exchange it in the basis with 
2

x , say, so that we now have: 

 
  Nonbasic variables:  

5
{ };x  

 
  Superbasic variables: 

1
{ };x  

 
  Basic variables: 

2 3 4
{ , , };x x x  

 
  

1
0.r    

 
  The quadratic approximation in the superbasic variable space over 

the one-dimensional subspace defined by 
5

0x   essentially 
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generates the same direction as would be obtained by the convex 
simplex or the reduced gradient method in this case, and leads to the 

solution x  in the next iterations, which is then verified to be a KKT 
point (optimal in this case) as in Parts (a) and (b) above. 

 

2
x

1
x

1
0x 

5
0x 

4
0x 

3
0x 

2
0x 1x

f
Superbasic Variable
Space Implementation

2x x

unconstrained opt.

 
 
10.44 We first add slack variables 

3
x  and 

4
x  to the first two inequalities. 

 

 Start with 1
1

[0 0 0 6 4] . {3, 4}tx I   

 
 Iteration 1: 
 

 nb nb b b 

 1
x  

2
x  

3
x  

4
x  

Solution 1x  0 0 6 4 
1( )f x  3 –4 0 0 

 3 2 1 0 

1 0
( )

0B
f x      

 –1 2 0 1 

r 3 –4 0 0 
 

   = 4,   = 0; ;   v = 2; [0 1 2 2] ;td     
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max

min{6/2, 4/2} 2;    
1

2 2
min{2, } .

3 3
    Hence,  

 2 2 2 2 2 2
0, , 6 , 4 .

3 3 3

t

x
 

   
 

 

 
 Iteration 2: 

2
{3, 4}.I   

 
 nb nb b b 

 1
x  

2
x  

3
x  

4
x  

Solution 2x  0 2 / 3  
2 2

6
3

  
2 2

4
3

  

2( )f x  3 0 0 0 

 1 2 1 0 

2 0
( )

0B
f x      

 –1 2 0 1 

r 3 0 0 0 
 
 We now get   = 0 and   = 0, and so we stop. The solution 

1
x  = 0, 

2
x  

= 2 / 3  is a KKT point. Note that the Hessian 

1

2

6 2 0
( )

0 12

x
H x

x

 
  
 

 is indefinite over the feasible region, and so is 

( ).H x  However, the KKT system for Problem P  to minimize ( )f x  

over the relaxed nonnegative region 0x   is given by 
 

  2
1 1 1

3 2 3 0x x u       (1) 

  2
2 2

6 4 0x u       (2) 

  
1 2 1 2 1 1 2 2

( , ) 0, ( , ) 0, 0.x x u u x u x u     (3) 

 
 Multiplying (1) by 

1
x  and (2) by 

2
x  and using (3) yields 

 

  3 2
1 1 1

3 2 3 0x x x      (4) 

  3
2 2

6 4 0.x x      (5) 

 
 Hence, (4) yields 

1
0x   as the only real root, which from (1) yields the 

Lagrange multiplier 
1

3.u   Also, from (5), we get that either 
2

0,x   
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which means that 
2

4u    from (2), or 
2

2 / 3,x   which yields 

2
0.u   Hence, the unique KKT solution to Problem P  is 

(0, 2 / 3)x   with Lagrange multipliers (3, 0), and since the KKT 

conditions are necessary for Problem P  (because the constraints are 
linear), we get that x  uniquely solves Problem P . But x  is also a 
feasible (KKT) solution to the given problem, which is a restriction of 
Problem P , and so x  is the unique global optimum for the given 
problem. 

 
10.47 a. By the given formula, we have that d = 0   0

j
r   for all j J , 

with 
j

r  = 0 if 
j

x  > 0, where J is the index set of the nonbasic 

variables. By Theorem 10.6.1, this happens if and only if the given 
point x is a KKT point. (Note that this condition implies that 

min{ : 0t
N N j

r d d   if 0
j

x   for } 0.)j J   

 

 b. By Part (a), if 0d   at some ,x  then 0
N

d   and we have 

( ) 0t t
N N

f x d r d    where 
N N

d d  solves the following 

problem: 
 

   min{ : 0t
N N j

r d d   if 0
j

x   for }.j J  (1) 

 

  Hence, d  is an improving direction. Furthermore, since 
B

x  > 0 and 

since 0
j

d   if 0
j

x   for ,j J  we have that d  is also a feasible 

direction (with 1 ).
B N

d B Nd   

 

 c. Let 1 22 2 2
1 1 2 2 1 2

( ) 3 2 2 3 3 .
x x

f x e x x x x x x
 

       

 
  Denote 

3
x  and 

4
x  as the slack variables in the two structural 

inequality constraints, respectively, and let kx  and kd  be the iterates 
and the search direction, respectively, at iteration k. Thus, 

 

  

1 2

1 2

2
1 2

2
1 2

6 4 2 1

3 2 6 3( ) .
0
0

x x

x x

e x x

e x xf x
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 Iteration 1. 
 

 1x  = (0, 0, 4, 3)t  with 1( )f x  = 3. 

 1( )f x  = (–5, 6, 0, 0)t . 

 
 Nonbasic variables:  

1 2
( , )x x  = (0, 0) 

 
 Basic variables:  

3 4
( , )x x  = (4, 3). 

 
 nb nb b b 

 1
x  

2
x  

3
x  

4
x  

Solution 1x  0 0 4 3 
1( )f x  –5 6 0 0 

1 0
( )

0B
f x      

 2 
–1 

1 
1 

1 
0 

0 
1 

r –5 6 0 0 
 

  Hence, 
5
0N

d     
 and 

2
5 .

1B
d      

 Thus, 1d  = [5, 0, –10, 5] ,t  

with 
max
  = 4/10 = 0.4. The line search problem is given as follows:  

 

  minimize 1 1
max

{ ( ) : 0 }f x d     ,  

  which yields   = 0.08206. This leads to the new iterate  
 

  2x  = (0.4103, 0, 3.1794, 3.4103)t  with 2( )f x  = 2.0675. 

 
  Retaining the same basis, we get the following: 
 
 Iteration 2. 
 

 nb nb b b 

 1
x  

2
x  

3
x  

4
x  

Solution 2x  0.4103 0 3.1794 3.4103 
2( )f x  0 2.5 0 0 

1 0
( )

0B
f x      

 2 
–1 

1 
1 

1 
0 

0 
1 

r 0 2.5 0 0 
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  Since 
1
r  = 0 and 

2
r  > 0 with 

2
x  = 0, the current solution 2x  is a 

KKT point. Because f is strictly convex (the Hessian of f is PD in the 

1 2
( , )x x -space), we get that 2x  is the unique global minimum. 

 
 d. Consider the following problem: 
 
  Minimize 

1 2
x x   

  subject to   
1 3

1x x   

     
2 4

1x x   

   
1 2 3 4

( , , , ) 0.x x x x   

 

  Let 
1 1

(0, 1 , 1, )k tx
k k

   for k   3, so that we have 
2 3

{ , }x x  as 

basic variables, and 
1 4

{ , }x x  as nonbasic variables. At Iteration k, 

we have the following: 
 

   nb b b nb 

   
1

x  
2

x  
3

x  
4

x  

Solution kx  
  

0 
1

1
k

  1 
1

k
 

( )kf x    –1 –1 0 0 

0
( )

1
k

B
f x      

 Basic: 
3

x  1 0 1 0 

2
x  0 1 0 1 

r   –1 0 0 1 
 
                                                  

  Thus,  1 1 ,t
N N

d r     and 
1 0

1 1 ,
0 1B

d
          

 i.e., 

                            

   1 1 t
B

d     

 

  Hence, kd  = [1, 1, –1, 1] .t  

 

  As k   , we get kx x   [0, 1, 1, 0]t  and 

1 4
x x  

3 2
x x  
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  kd d  = [1, 1, –1, 1] .t  However, in the limit at ,x  we have that 

d  is not a feasible direction since 
4

x  = 0 and 
4

1.d    In fact, for 

,x  the algorithm would use the same basis as above and compute the 

same r-vector, but since 
4

x  = 0 and 
4

r  > 0, it would select 

 
                                                       

   1 0 ,t
N

d   and so  1 0 ,t
B

d    thus yielding the direction                 

d = [1, 0, –1, 0] .t d  Hence, the given direction-finding map is not 

closed.  
 

10.52 Since ,
B N

Bx Nx b   we obtain 1 1 .
B N

x B b B Nx    To guarantee 

that all variables take on nonnegative values only, we need to require that 
1 1 0

N
B b B Nx    and 0.

N
x   Furthermore, by substituting 

1 1
N

B b B Nx   for 
B

x  into the objective function we obtain an 

equivalent problem P( )
N

x  in the nonbasic variable space. 

 
 a. At the current solution ,

N
x  letting { :

nb j
J j x  is nonbasic}, 

0
{ : 0},

nb j
J j J x    and { : 0},

nb j
J j J x     we have 

(noting that 0),
B

x   the set of binding constraints are given by 

0
j

x   for 
0
.j J  Furthermore, by the chain rule for 

differentiation, we obtain 
 

  1 1 1( ) ( , )t t
N B N N

F x f B b B Nx x B N       

                      1 1( , ) .t
N N N

f B b B Nx x    

 
  From the above equation it follows that ( )

N N
F x r   in the 

reduced gradient method. 
 
 b. The KKT system for P( )

N
x  is given as follows: 

 

  1 1 1( ) ( , )t
B N N

B N f B b B Nx x      

  1 1 1( , ) ( ) 0;t
N N N

f B b B Nx x B N u w        

  1 1 0;
N

B b B Nx    

  0, 0, 0;
N

x u w    

1 4
x x  

3 2
x x
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  1 1( ) 0, 0.t t
N N

u B b B Nx x w     

 
  Let u  and w  denote the Lagrange multipliers for the above system 

at .
N N

x x  Since 1 1 0,
B N

x B b B Nx     we necessarily have 

0.u   Therefore, at ,
N

x  we have  

  1 1( , )
N N N

w f B b B Nx x     

  1 1 1( ) ( , ),t
B N N

B N f B b B Nx x      

  so that the KKT system reduces to the following: 
 

1 1 1 1 1( , ) ( ) ( , ) 0;t
N N N B N N

f B b B Nx x B N f B b B Nx x           

1 1 1 1 1[ ( , ) ( ) ( , )] 0,t t
N N N N B N N

x f B b B Nx x B N f B b B Nx x           

 
  or more concisely, 
 

  0
N

r   and 0,t
N N

x r   

  where 
 

1 1 1 1 1( , ) ( ) ( , ) 0.t
N N N N B N N

r f B b B Nx x B N f B b B Nx x            

 
  The foregoing necessary and sufficient conditions for 

N
x  to be a 

KKT point for P( )
N

x  are equivalent to 0
j

r   for 
0

,j J  and 

0
j

r   for ,j J  which in turn are identical to the stopping rule 

used in the reduced gradient method (Theorem 10.6.1). Hence, this 
gives necessary and sufficient conditions for ( , )

B N
x x  to be a KKT 

point for the original problem.  
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CHAPTER 11: 
 

LINEAR COMPLEMENTARY PROBLEM, AND QUADRATIC, 
SEPARABLE, FRACTIONAL, AND GEOMETRIC PROGRAMMING 

 
11.1 a. The KKT system for the given LP is as follows: 
 

   tu A v c     
   Ax b  

   0, 0, 0.tu x x u    

 
 b. The KKT system for the problem given in Part (b) is as follows: 
 
   

1 2 3
2 1u u u    

   
1 2

3 2u u        
4

3u   

   
1 2 1

2 3x x y          = 6 

   
1 2

2x x          
2

2,y   

   
1 3 2 4 1 1 2 2

0, 0, 0, 0x u x u u y u y     

   
1 2 1 2

0, 0, 0, 0, 0
i

x x y y u      for i = 1, 2, 3, 4. 

 

  Let 
3 4 1 2

[ ] ,tw u u y y  
1 2 1 2

[ ] ,tz x x u u [ 1 3 6 2] ,tq     

and 

0 0 2 1
0 0 3 2

.
2 3 0 0
1 2 0 0

M

 
 

    
  

 

 
  Then the KKT system can be rewritten as the following linear 

complementarity problem:  , 0,w Mz q w    0,z   0.tw z   

 
  The complementary pivoting algorithm then proceeds as follows: 
 

 1
w  

2
w  

3
w  

4
w  

1
z  

2
z  

3
z  

4
z  

0
z  RHS 

1
w  1 0 0 0 0 0 –2 1 –1 –1 

2
w  0 1 0 0 0 0 –3 –2 –1 –3 

3
w  0 0 1 0 2 3 0 0 –1 6 

4
w  0 0 0 1 –1 2 0 0 –1 2 
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 1
w  

2
w  

3
w  

4
w  

1
z  

2
z  

3
z  

4
z  

0
z  RHS 

1
w  1 –1 0 0 0 0 1 3 0 2 

0
z  0 –1 0 0 0 0 3 2 1 3 

3
w  0 –1 1 0 2 3 3 2 0 9 

4
w  0 –1 0 1 –1 2 3 2 0 5 

1
w  1 –1 0 0 0 0 1 3 0 2 

0
z  0 –1 0 0 0 0 3 2 1 3 

3
w  0 1/2 1 –3/2 7/2 0 –3/2 –1 0 3/2 

2
z  0 –1/2 0 1/2 –1/2 1 3/2 1 0 5/2 

4
z  1/3 –1/3 0 0 0 0 1/3 1 0 2/3 

0
z  –2/3 –1/3 0 0 0 0 7/3 0 1 5/3 

3
w  1/3 1/6 1 –3/2 7/2 0 –7/6 0 0 13/6 

2
z  –1/3 –1/6 0 1/2 –1/2 1 7/6 0 0 11/6 

4
z  1/3 –1/3 0 0 0 0 1/3 1 0 2/3 

0
z  –2/3 –1/3 0 0 0 0 7/3 0 1 5/3 

1
z  2/21 1/21 2/7 –3/7 1 0 –1/3 0 0 13/21 

2
z  –2/7 –1/7 1/7 2/7 0 1 1 0 0 15/7 

2 4
u z  3/7 –2/7 0 0 0 0 0 1 –1/7 3/7 

1 3
u z  –2/7 –1/7 0 0 0 0 1 0 3/7 5/7 

1 1
x z  0 0 2/7 –3/7 1 0 0 0 1/7 6/7 

2 2
x z  0 0 1/7 2/7 0 1 0 0 –3/7 10/7 

 
  Because 

0
0,z   the algorithm stops with a solution to the linear 

complementarity problem obtained as follows: 
1

x  = 6/7, 
2

x  = 10/7, 

1
u  = 5/7, 

2
u  = 3/7, and all the remaining variables equal to zero. 

 
 c. For the modified LP, the KKT system is given as follows: 
 
   

2 3
1u u    

   
1 2 4

2 3u u u      

   
2 1

2x y   

   
1 2 2

2 2x x y     

   
1 2 1 2 1 2 3 4

( , , , , , , , ) 0x x y y u u u u   
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1 3 2 4 1 1 2 2

0.x u x u y u y u     

 
  Note that the first constraint implies (with 0)u   that the dual is 

infeasible, and since the primal is feasible, we have that the primal is 
unbounded. Hence, no complementarity solution exists and we 
expect Lemke’s algorithm to stop with a ray termination. Putting the 
above KKT system in a standard tableau (while keeping the columns 
of complementary pairs of variables adjacent for convenience, we 
obtain the following tableaus along with the shown sequence of 
pivots: 

 

 1
x  

3
u  

2
x  

4
u  

1
y  

1
u  

2
y  

2
u  

0
z  RHS 

3
u  0 1 0 0 0 0 0 1 –1 –1 

4
u  0 0 0 1 0 –1 0 –2 –1 –3 

1
y  0 0 1 0 1 0 0 0 –1 2 

2
y  –1 0 2 0 0 0 1 0 –1 2 

3
u  0 1 0 –1 0 1 0 3 0 2 

0
z

 0 0 0 –1 0 1 0 2 1 3 

1
y  0 0 1 –1 1 1 0 2 0 5 

2
y  –1 0 2 –1 0 1 1 2 0 5 

3
u  0 1 0 –1 0 1 0 3 0 2 

0
z

 0 0 0 –1 0 1 0 2 1 3 

1
y  1/2 0 0 –1/2 1 1/2 –1/2 1 0 5/2 

2
x  –1/2 0 1 –1/2 0 1/2 1/2 1 0 5/2 

2
u  0 1/3 0 –1/3 0 1/3 0 1 0 2/3 

0
z

 0 –2/3 0 –1/3 0 1/3 0 0 1 5/3 

1
y  1/2 –1/3 0 –1/6 1 1/6 –1/2 0 0 11/6 

2
x  –1/2 –1/3 1 –1/6 0 1/6 1/2 0 0 11/6 

2
u  0 1/3 0 –1/3 0 1/3 0 1 0 2/3 

0
z

 0 –2/3 0 –1/3 0 1/3 0 0 1 5/3 

1
x  1 –2/3 0 –1/3 2 1/3 –1 0 0 11/3 

2
x  0 –2/3 1 –1/3 1 1/3 0 0 0 11/3 

 
 

 1
x  

3
u  

2
x  

4
u  

1
y  

1
u  

2
y  

2
u  

0
z  RHS 
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1
u  0 1 0 –1 0 1 0 3 0 2 

0
z  0 –1 0 0 0 0 0 –1 1 1 

1
x  1 –1 0 0 2 0 –1 –1 0 3 

2
x  0 –1 1 0 1 0 0 –1 0 3 

 
  At this point, since 

2
u  just left the basis at the previous iteration, we 

enter 
2

y  and achieve ray termination. By Theorem 11.2.4 (with H   

0), since the primal is feasible (verified by Phase I or graphically in 
this case), we conclude that the primal is unbounded.  

 
11.5 Let P and PKKT denote the following given problems: 
 

 P: Minimize 
1

( )
2

t tf x c x x Hx   

  subject to Ax b  
    0,x   
 
 and 
 

 PKKT: Minimize ( , , ) t tg x u v c x b u   

   subject to Ax b  

     tHx A u v c     

     0tv x   
     0, 0,x v   u unrestricted. 

 
 a. From the KKT system formulation for Problem P we can assert that 

(x, u, v) is a feasible solution for Problem PKKT if and only if x is a 
KKT point for Problem P. Furthermore, if a triple (x, u, v) is feasible 

for PKKT, then we necessarily have ,t tu Ax u b  and 

,t t t tx Hx x A u x c    which yields ( ).t t tx Hx c x b u    Therefore, 

for any such (x, u, v), the objective function ( )f x  can be rewritten as 

1 1 1
( ) ( ) ( ) ( , , ).

2 2 2
t t t t tf x c x c x b u c x b u g x u v       

Therefore, an optimal solution for Problem PKKT is a KKT point for 
Problem P having the smallest value of the function ( ).f x  

 
  Furthermore, since the KKT conditions are necessary for Problem P, 

we can pose the global optimization of Problem P as finding a KKT 
solution having the least objective value. But this is precisely what 



 

139 

Problem PKKT accomplishes. Hence, for any symmetric matrix H, 
Problem PKKT determines a global optimum for Problem P. 

 
 b. Evident from Part (a). Also, based on Dorn’s duality (see Chapter 6), 

this is like minimizing the difference between the primal and dual 
objective values over the primal and dual space, in addition to 
complementary slackness, based on the dual problem written as 

1
min{ : , 0,

2
t t tx Hx u b Hx A u v c v       u unrestricted}. 

 
 c. For the given problem, we have the following: 
 
P: Minimize ( )f x   

   2 2 2 2
1 2 1 2 1 2

( 2) ( 2) 4 4 8x x x x x x           

 subject to 
1 2 3

2 4x x x     

   
1 2 4

3 2 12x x x    

   
1 2 5

3 2 6x x x    

   
1 2 3 4 5

( , , , , ) 0x x x x x   

 

and (with the objective written as 
1

),
2

g f  we have, 

 

PKKT: Minimize 
1 2 1 2 3

1
[4 4 4 12 6 ] 8

2
x x u u u      

  subject to 
1 2 3

2 4x x x     

   
1 2 4

3 2 12x x x    

   
1 2 5

3 2 6x x x    

   
1 1 2 3 1

2 2 3 3 4x u u u v        

   
2 1 2 3 2

2 2 2 4x u u u v        

   
1 1 2 2 3 1 4 2 5 3

0x v x v x u x u x u      (1) 

   (x, u, v) 0.  
 
  As per Exercise 11.4, we can solve PKKT using a branch-and-bound 

algorithm based on the dichotomy that one or the other of each 
complementary pair of variables is zero. However, in this case, 
viewing the problem in the 

1 2
( , )x x -space and noting that the 

objective function of Problem P is concave, we must have an extreme 
point optimum. Graphically, the optimum to Problem P is given by 
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1 2

4 36
( , ) ( , ),

7 7
x x    with 

3 4 5

102
( , , ) (0, 0, )

7
x x x    , 

1 2
( , )v v    

(0, 0),  and 
1 2 3

172 68
( , , ) ( , , 0),

49 49
u u u     with objective value (in P 

and PKKT) being equal to 
584

.
49


 

 
11.12 a. Let 1

p
 denote a 1p   vector of ones. An equilibrium pair ( , )x y  

for a bimatrix game with loss matrices A and B can be characterized 
as follows:   

 

  x  solves P1: Minimize tx Ay  

    subject to 1 1t
m

x    
1

v  (1) 

     
2

1 1t
m

x v   (2) 

     0x   

  y  solves P2: Minimize tx By  

    subject to 
3

1 1t
n

y v     (3) 

     
4

1 1t
n

y v   (4) 

     0y   

 
  where 

1 2
( , )v v  and 

3 4
( , )v v  are dual variables associated with the 

constraints of P1 and P2, respectively, and where the respective dual 
problems are given as follows: 

 
  D1: Maximize 

2 1
v v  

   subject to 
1 2

1 1
m m

v v Ay     (5) 

     
1 2

( , ) 0v v   

  D2: Maximize 
4 3

v v  

   subject to 
3 4

1 1 t
n n

v v B x     (6) 

     
3 4

( , ) 0.v v   

 
  Writing the primal-dual feasibility and complementary slackness 

necessary and sufficient optimality conditions for the above pair of 
primal and dual problems, and denoting surplus variables 

1 2
, ,s s  

3
,s  and 

4
s  for the constraints (1) – (4), respectively, and slack 

variables 
1

w  and 
2

w  for the constraints (5) and (6), respectively, we 
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have that ( , )x y  is an equilibrium pair if and only if there exist 

nonnegative variables 
1 2 3 4 1 2 3 4 1
, , , , , , , , ,v v v v s s s s w  and 

2
w  

such that 
 
   

1 2 1
1 1 0

m m
Ay v v w      

   
3 4 2

1 1 0t
n n

B x v v w      

   
1

1 1t
m

x s   

   
2

1 1t
m

x s     

   
3

1 1t
n

y s   

   
4

1 1t
n

y s     

   
1 2 3 4

0, 0, ( , , , ) 0,x y s s s s    

   
1 2 3 4 1 2

( , , , ) 0, 0, 0,v v v v w w    

   
1 1 2 2 3 3 4 4 1 2

0,t ts v s v s v s v x w y w       

 

  where 
1 2

, , , ,m n m nx R y R w R w R      

  
1 2 3 4 1 2 3 4

{ , , , , , , , } ,s s s s v v v v R  and where A and B are 

m n  matrices. The above system represents a linear 
complementarity problem of the type 

  

   , 0, 0,w Mz q w z     and 0,tw z   (7) 

 

  where 
1 2 1 2 3 4

[ ],t t tw w w s s s s  
1 2 3 4

[ ],t t tz x y v v v v  

[0 0 1 1 1 1],t t tq     and  

 

   

0 1 1 0 0

0 0 0 1 1

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

m m
t

n n
t
m

t
m

t
n

t
n

A

B

M

 
 

 
 
 

  
 
  
 
 

 

 
  and where 0 denotes a zero matrix of appropriate order. 
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 b. For any 
1 2 3 4

[ ]t t tz x y v v v v  we have t tz Mz x Ay   

1 2 3 4 2 1
1 ( ) 1 ( ) 1 ( )t t t t

m n m
x v v x By y v v x v v        

4 3
1 ( ) ( ) .t t

n
y v v x A B y    Hence, the matrix M is copositive if the 

matrix A + B is nonnegative. However, even then, the matrix M is not 
necessarily copositive plus. To see this, note that 

( ) [ ( ) ( ) 0 0 0].t t t t tM M z y A B x A B     Hence, 

  ( ) 0tM M z   if and only if [ ( ), ( )] 0.t t t ty A B x A B    

However, for example, consider the following matrix A + B: 
 

  
2 4

.
0 10

A B      
 Here for tx  = [0  1] and ty  = [1  0], we have 

( ) 0,t tz Mz x A B y    with 0z   (for any 
1 2 3 4

( , , , )v v v v  

0),  but ( )tx A B  = [0  10] and ( )t t ty A B  = [2  0], i.e., 

[ ]tM M z   0, which means that the matrix M in this example is 

not copositive plus. Nonetheless, for every bimatrix game, there 
exists an equilibrium pair as proven in Game Theory by Guillermo 
Owen (Academic Press, Second Edition, 1982).  

 
 c. For the given matrices A and B, the equilibrium-finding pairs of LPs 

P1 and P2 from Part (a) are given as follows: 
 
  

1 2
( , )x x  solves P1:  

  Minimize 
1 1 2 3 2 1 2 3
(3 2 3 ) ( 3 4 )x y y y x y y y      

  subject to 
1 2 1

1x x u    

   
1 2

( , ) 0.x x   

  
1 2 3

( , , )y y y  solves P2: 

  Minimize 
1 2 1 1 2 2 1 2 3

(2 3 ) (4 2 ) (3 )x x y x x y x x y      

  subject to 
1 2 3 2

1y y y u     

   
1 2 3

( , , ) 0.y y y   

 
  The duals D1 and D2 to Problems P1 and P2 are respectively given 

as follows: 
 
  D1: Maximize 

1
u  

   subject to 
1 1 2 3 1

3 2 3u y y y x     

    
1 1 2 3 2

3 4u y y y x     
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  D2: Maximize 
2

u  

   subject to 
2 1 2 1

2 3u x x y    

    
2 1 2 2

4 2u x x y    

    
2 1 2 3

3u x x y    

 
  We can formulate an LCP as in Part (a) and use the complementary 

pivoting algorithm to determine an equilibrium pair. However, 
assuming that x  > 0, we get by complementary slackness from D1 
that 

1 1 2 3 1 2 3
3 2 3 3 4 ,u y y y y y y       which together with 

1 2 3
1y y y    yields 

1
1/3y   and 

2 3
( ) 2/3.y y   It can be 

verified that y  > 0 gives a contradiction from D2. However, putting 

2
y  = 0, we get 

1 2 3
1 2

( , , ) ( , 0, )
3 3

y y y   and 
1

u  = 3, which by 

complementary slackness in D2 and primal feasibility in P1 yields 

2 1 2 1 2
2 3 3u x x x x     and 

1 2
x x  = 1, i.e., 

1 2
2 1

( , ) ( , ),
3 3

x x   with 
2

7
.

3
u   Now, it can be verified that 

1 2
2 1

( , ) ( , ),
3 3

x x   
1

u  = 3, 
1 2 3

1 2
( , , ) ( , 0, ),

3 3
y y y   

2
7

3
u   

satisfy the primal-dual optimality conditions associated with the pair 
of problems {P1, D1} and {P2, D2}. Thus, this yields an equilibrium 
pair for the given bimatrix game.  

 

11.18 a. Suppose that the matrix 
0

tH A
A

 
 
 

 is singular. Then there exists a 

nonzero vector [ ],t tx y  where nx R  and ,my R  such that 

 

   0tHx A y     (1) 

   Ax             = 0.   (2) 
 

  Premultiplying (1) by tx  and (2) by ,ty  we obtain 

 

   0t t tx Hx x A y   

   ty Ax                = 0, i.e., 0t tx A y  , 

 

  which yields 0.tx Hx   Now, if x = 0 then y   0, but (1) gives y = 0 

via tA y  = 0 since tA  has full column rank, a contradiction. Hence, x 
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  0. But then, by (2), we must have tx Hx  > 0 since the matrix H is 
positive definite over the nullspace of A. This contradicts the 

foregoing statement that 0.tx Hx   Therefore, the given matrix is 

nonsingular.        

 
 b. The KKT system for Problem QP is given by 
 

   tHx A v c      (3) 
   .Ax b     (4) 
 
  This is of the form 
 

   ,
0

t x cH A
v bA

              
 

 
  and therefore yields a unique solution by Part (a). 
 
 c. Consider the KKT system (3) – (4). Since the matrix H is positive 

definite and thus nonsingular, then Equation (3) yields 
1( ).tx H c A v    To compute v, we substitute this expression for 

x into Equation (4) to obtain 1 1( ).tAH A v AH c b     Since H is 

positive definite and A has full row rank, 1 tAH A  is also positive 
definite and thus nonsingular. This gives 

1 1 1( ) ( ).tv AH A AH c b      Therefore, 

 

   1 1 1 1 1( ) ( ).t tx H c H A AH A AH c b         

 
  Because the KKT conditions are necessary and sufficient for QP, this 

yields the unique optimal solution to QP. 
 
11.19 a. Let .

k
x x d   Then 

 

  
1 1 1

,
2 2 2

t t t t t t t
k k k k

c x x Hx c d d Hd x Hd c x x Hx       (1) 

 
  and for each ,

k
i W  we have 

 

  .t t t t
i i i k i i i

A x b A x A d b A d      (2) 
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  Thus, from (1) and (2), the problem given in (11.74) is equivalent to 

Problem QP( ),
k

x  after dropping the constant term 
1

2
t t

k k k
c x x Hx  

in (1) from the objective function. Therefore, if 
k

d  solves QP( ),
k

x  

then 
k k

x d  solves the problem given in (11.74). 

 
 b. The necessary and sufficient KKT conditions for Problem QP( )

k
x  

imply at optimality that 0,
k

k k i i
i W

c Hx Hd A v


     where 

i
v  

for 
k

i W  are the optimal Lagrange multipliers associated with the 

constraints t
i

A d  = 0 for .
k

i W  If 
k

d  = 0, then ,
i

v  ,
k

i W  solve 

the system 
 

  0.
k

k i i i i
i E i I

c Hx A v A v 

 
      (3) 

 
  But the KKT system for the original problem QP at 

k
x  is given as 

follows (aside from the primal feasibility of 
k

x ): 

 
  0,

k
k i i i i

i E i I
c Hx A v A v

 
      

 
  0

i
v   for all 

k
i I . 

 

  Therefore, if 0
i

v   for all ,
k

i I  then (3) implies that 
k

x  is a 

KKT point for QP, and thus is optimal for this problem. 
 
 c. Consider the given feasible solution 

k
x . If the direction vector 

k
d  

found as an optimal solution to Problem QP( )
k

x  is not a zero vector, 

then a move in the direction 
k

d  is made. If 
k k

x d  is feasible, then 

readily the next iterate 
1k k k

x x d    is a feasible solution. If 

k k
x d  is not a feasible solution, then we compute 

1
,

k k k k
x x d    where 

k
  is the maximum step length along 

k
d  

that maintains feasibility as computed via the equation given in the 

exercise. To verify this, note that t
i k i

A x b  for all ,
k

i W  and 

0t
i k

A d   for all 
k

i W  since 
k

d  solves Problem QP( ).
k

x  
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Therefore, ( )t
i k k i

A x d b   for all 
k

i W  and for any 0.   

This means that all the constraints in the working set 
k

W  remain 

binding at 
k k

x d  for any 0,   and thus also at .
k

   On 

the other hand, for any ,
k

i I  we either have 0t
i k

A d   or 

0t
i k

A d  . In the former case, this ith constraint will be satisfied for 

any step length 0   since .t
i k i

A x b  For the latter case, 

feasibility requires that ( ) ,t
i k k i

A x d b   or that 

 

  
t

i i k
t
i k

b A x

A d



  (since t

i k
A d  > 0).  (4) 

 
  Thus, the maximum step length 

k
  to maintain feasibility of 

1k k k k
x x d    is given from (4) and the foregoing argument as 

follows: 
 

  
: 0

minimum ,
t

k i k

t
i i k

k t
i I A d

i k

b A x

A d


 

    
  

  (5) 

 
  which is achieved at some i = q as stated in the exercise. Thus we 

have demonstrated that if the algorithm is initialized with a feasible 
solution 

1
x , then feasibility is maintained throughout the algorithm. 

 
  Next, we show that if 0,

k
d   then 

1
( ) ( ).

k k
f x f x   Notice that d 

= 0 is a feasible solution for Problem QP( ).
k

x  Therefore, by the 

optimality of 
k

d  and its uniqueness (by Exercise 11.18), we have 

 

  
1

( ) 0,
2

t t
k k k k

f x d d Hd      (6) 

 

  where ( )f x  is the objective function for Problem QP. But 
1

2
t
k k

d Hd  

> 0 since H is PD and 0,
k

d   and so ( ) 0.t
k k

f x d   This shows 

that 
k

d  is a descent direction at 
k

x . Moreover, since ( )f x  is a 

quadratic function, ( ) ( ) ( )t
k k k k k

f x d f x f x d        
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  21 1
( ) ( ( ) )

2 2
t t t
k k k k k k k

d Hd f x f x d d Hd       

  
1

( 1) ,
2

t
k k

d Hd    and therefore, we have from (6) that 

( ) ( )
k k k

f x d f x   whenever 0 1   and 0
k

d   solves 

QP( ).
k

x  In the given algoirhtm, if a descent direction is found, then 

because we take 
k

  = 1 if 
k k

x d  is feasible, or else, 
k

  computed 

by (5) then necessarily lies in the interval (0, 1), we have that 

1
( ) ( ).

k k
f x f x   The foregoing analysis asserts that the algorithm 

either verifies that a feasible solution is optimal, or else, through a 
finite number of working set reductions as in Part (b), it finds a 

0
k

d   that yields a strictly better feasible solution as in Part (c).  

 
  Now, on the contrary, suppose that the algorithm does not terminate 

finitely and so generates an infinite number of iterations. Whenever 

k
d  = 0 at any iteration, then either optimality is verified, or else, 

after a finite number of working set reductions, the algorithm either 
stops with an optimum or achieves a strict descent. Once the latter 
event occurs, the same working set cannot occur with (11.74) while 
yielding 

k
d  = 0, since this would mean (by the uniqueness of the 

solution to (11.74)) that a previous iterate has repeated, a 
contradiction to the strict descent property. Hence, since there are 
only a finite number of W-sets, and each combination of a W-set and 
the event 

k
d  = 0 cannot recur after a strict descent step, we must 

have 0
k

d   in the infinite sequence after a finite number of 

iterations, with each iteration then producing a strict descent. Now, at 
each such iteration, either the optimum 

k k
x d  to (11.74) 

corresponding to a certain 
k

W -set is feasible to QP, or else, the 

algorithm proceeds through a sequence of adding indices to the        
W-set, which must finitely produce feasibility to QP with a different 
W-set because of the strict descent property. However, since there are 
only a finite possible number of such W-sets, this contradicts the 
generation of an infinite sequence. Thus, the algorithm is finitely 
convergent. 

 
 d. The problem of Example 11.2.1 to be solved is as follows: 
 

  Minimize 2 2
1 2 1 1 2 2

2 6 2 2x x x x x x      

  subject to    
1 2

2x x   
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1 2

2 2x x    

     
1 2

0, 0.x x   

 
  Therefore, for the four inequalities above ( ,E   I = {1, 2, 3, 4}), we 

have 
 

  
1 2 3 4

1 1 1 0 2
, , , , ,

1 2 0 1 6
A A A A c

                                 
 and 

 

  
2 2

.
2 4

H
    

 

 

  Below, we denote vectors kx  and kd  with superscripts k to 
distinguish these from their components. 

 
  Iteration 1: 
 

  1
1 1

[0 0] , {3, 4}.tx W I    

 

  1QP( ) :x  Minimize 2 2
1 2 1 1 2 2

2 6 2 2d d d d d d      

   subject to 
1 2

0, 0.d d   

 

  The optimal solution is 1 [0 0] ,td   where the KKT system for 
1QP( )x  at 1d  gives 

3
2v    and 

4
6.v    Hence, we drop the 

Constraint i = 4 from the working set. This gives 
 

  2 1
2 2

{3}, [0 0] .tW I x x     

 
  Iteration 2: 
 

  2
2 2

[0 0] , {3}.tx W I    

 

  2QP( ) :x  Minimize 2 2
1 2 1 1 2 2

2 6 2 2d d d d d d      

   subject to 
1

0.d   
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  The optimal solution is 2 [0 3/2] .td   The solution 2 2x d  violates 

Constraint i = 2, and so we need to determine a step length 
2

1   as 

follows: 
 

  For Constraint i = 2:  2
2

3tA d   and 2
2 2

2.tb A x   

 
  Therefore, 

2
2/3,   and q = 2. This yields 

3 3
{2, 3},W I   and 

3 2 2
2

[0 0] .tx x d    

 
  Iteration 3: 
 

  3
3 3

[0 1] , {2, 3}.tx W I    

 

  3QP( ) :x  Minimize 2 2
1 2 1 1 2 2

4 2 2 2d d d d d d      

   subject to 
1 2

2 0d d    

    
1

0.d   

 

  The optimal solution is 3 [0 0] ,td   where the KKT system for 
3QP( )x  at 3d  gives 

2
1v   and 

3
5.v    Hence, we drop the 

Constraint i = 3 from the working set. This yields 
 

  4 3
4 4

{2}, [0 1] .tW I x x     

 
  Iteration 4: 
 

  4
4 4

[0 1] , {2}.tx W I    

 

  4QP( ) :x  Minimize 2 2
1 2 1 1 2 2

4 2 2 2d d d d d d      

   subject to 
1 2

2 0.d d    

 

  The optimal solution is 4 [5 5/2] .td   The solution 4 4x d  violates 

Constraint i = 1, only, and so the step length 
4

  is computed as 

 

  
4

1 1
4 4

1

1 2
,

7.5 15

t

t

b A x

A d
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  and q = 1. This yields 

5 5
{1, 2},W I   and 

5 4 4
4

[2/3 4/3] .tx x d    

 
  Iteration 5: 
 

  5
5 5

[2/3 4/3] , {1, 2}.tx W I    

 

  5QP( ) :x  Minimize 2 2
1 2 1 1 2 2

10
2 2 2

3
d d d d d d      

   subject to 
1 2

0d d   

    
1 2

2 0.d d    

 

  The optimal solution is 5 [0 0] ,td   where the KKT system for 
5QP( )x  at 5d  gives 

1
v  = 25/9 and 

2
4/9.v    Hence, we drop 

Constraint i = 2 from the working set, which yields 
 

  6 5
6 6

{1}, [2/3 4/3] .tW I x x     

 
  Iteration 6: 
 

  6
6 6

[2/3 4/3] , {1}.tx W I    

 

  6QP( ) :x  Minimize 2 2
1 2 1 1 2 2

10
2 2 2

3
d d d d d d      

   subject to 
1 2

0d d  . 

 

  The optimal solution is 6 [2/5 2/15] .td    The solution 
6 6 [4/5 6/5]tx d   satisfies all the constraints of QP, and so we 

take 7 [4/5 6/5] ,tx   with 
7 7

{1}.W I   

 
  Iteration 7: 
 

  7
7 7

[4/5 6/5] , {1}.tx W I    

 

  7QP( ) :x  Minimize 2 2
1 2 1 1 2 2

14 14
2 2

5 5
d d d d d d      
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   subject to 
1 2

0d d  . 

 

  The optimal solution is 7 [0 0] ,td   where the KKT system for 
7QP( )x  at 7d  gives 

1
v  = 14/5. We therefore stop with 

[4/5 6/5]tx   as an optimal solution to Problem QP. 

 

11.22 The matrix H is positive semidefinite, and so 
1

( )
2

t tf x c x x Hx   is 

convex. Since f is also differentiable, this implies that ( )f x  is unbounded 

from below in nR  if and only if it does not have a minimizing solution, 
which happens if and only if no vector x exists for which ( ) 0.f x   

Since ( ) ,f x c Hx    the proof is complete.                 

 
11.23 a. Suppose that 

r r
G x g  is implied by the remaining inequalities 

i i
G x g  for 1,..., , .i m i r   Let the latter constraints be denoted 

by .Gx g  Then we have by LP duality that  

 

  max{ : } min{ : , 0}.t t
r r r

g G x Gx g g u u G G u      

 
  Hence, since an optimum exists (given feasibility of Gx g  and 

that ),
r

g    we have that 

 

  there exists 0 : t
r

u u G G   and .t
r

g u g  (1) 

 
  Now, for any {1,..., }/ ,k m r  consider the RLT constraint 

 
  [( )( )] 0

r r k k L
g G x g G x     (2) 

 
  where [ ]

L
  denotes the linearized version of the expression in [ ]  

under the substitution (11.16). We need to show that (2) is implied by 
the remaining RLT inequalities, which in particular, include the 
following: 

 
  [( )( )] 0.

k k L
g G x g Gx     (3) 

 
  Taking the inner product of (3) with 0u   as given by (1) yields 
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  [( )( )] 0,t
k k r L

g G x u g G x    

 

  i.e., ( ) [( )( )] 0.t
k k k k r L

g G x u g g G x G x     (4) 

 

  But t
r

u g g  by (1) and ( ) 0
k k

g G x   by feasibility to the RLT 

system, and so (4) implies that 
 
  ( ) [( )( )] 0,

k k r k k r L
g G x g g G x G x     

 
  i.e., [( )( )] 0,

k k r r L
g G x g G x    or that (2) holds true.     

 
 b. For Example 11.28, note that the weighted sum of the defining 

inequalities  
 

  
1 2 1

1 3
{ (120 3 8 0) ( 0)}
8 8

x x x      yields 
2

(15 ) 0x   (5) 

 
  and so 

2
15x   is implied by 

1 2
3 8 120x x   and 

1
0.x   

Accordingly, in the notation of Part (a), any RLT inequality of the 
type  

 
  

2
[(15 )( )] 0

k k L
x g G x     (6) 

 
  is implied by the remaining RLT inequalities, which, in particular, 

include the following RLT restrictions: 
 
  

1 2
[(120 3 8 )( )] 0

k k L
x x g G x     (7a) 

 
  

1
[ ( )] 0,

k k L
x g G x     (7b) 

 
  as seen by weighting (7a) and (7b) by 1/8 and 3/8, respectively, as in 

(5), and summing to get (6).  
 
  The 15 RLT inequalities obtained by omitting 

2
(15 ) 0x   from 

the pairwise products are given by the constraints of 1LP( )  in the 

solution to Exercise 11.24 below, where this LP yields the same 
optimal value (and solution) as does LP( )  in Example 11.2.8. 
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11.24 Consider 1LP( ).  Since 
2

15x   is implied by the second structural 

constraint, we drop this from the formulation and we consider the 
following bound-and-constraint-factors: 

 
  

1
0x   

  
2

0x   

  
1

24 0x   

  
1 2

24 3 4 0x x    

  
1 2

120 3 8 0.x x    

 
 Taking pairwise products of these factors (systematically) including self-

products produces 
5 1 6

15
2 2
       

   
 constraints to yield the following 

formulation (note that the above restrictions are all implied by the 

constraints of 1LP( )) :  

 
1LP( ) :  Minimize 

11 22 1
24 144w w x     

  subject to 
   

11
0w   

   
12

0w   

   
1 11

24 0x w   

   
1 11 12

24 3 4 0x w w    

   
1 11 12

120 3 8 0x w w    

   
22

0w   

   
2 12

24 0x w   

   
2 12 22

24 3 4 0x w w    

   
2 12 22

120 3 8 0x w w    

   
11 1

576 48 0w x    

   
1 2 11 12

576 48 96 3 4 0x x w w      

   
1 2 11 12

2880 192 192 3 8 0x x w w      

   
11 22 1 2 12

576 9 16 144 192 24 0w w x x w       

   
1 2 11 12 22

2880 288 672 9 12 32 0x x w w w       

   
11 22 1 2 12

14400 9 64 720 1920 48 0.w w x x w       
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 The optimal solution is given by 
1 2 11 12 22

( , , , , )x x w w w   (8, 6, 192, 

48, 72), with 1[LP( )]v   = –216. The solution 
1 2

( , )x x  = (8, 6) is a 

feasible solution to the original problem NQP with objective value –52. 

Hence currently, 
1 2

( , )x x   = (8, 6), with v  = –52 and LB = –216. As in 

Example 11.2.8, we branch on 
1

x  at the value 8   (0, 24) to obtain the 

following partitioning: 
 

1
8x 

1
8x 

2 3

1

2 3

 
 

 Formulation of 2LP( ) :  

 
 Consider the following bound-and constraint-factor restrictions: 
 
  

1
0x     (1a) 

  
2

0x     (1b) 

  8 – 
1

0x     (1c) 

  
1 2

24 3 4 0x x     (1d) 

 
 Note that (1d) and (1c) imply that 

2
12x   (hence, 

2
15x   is implied), 

and that (1c) and 
2

12x   imply that 
1 2

3 8 24 96 120.x x     Hence 

for 2LP( ),  we only need to consider the 
4 1

2
 

 
 

 = 10 pairwise 

products of (1a – d), including self-products. This yields the following 
formulation: 

 
2LP( ) :  Minimize 

11 22 1
24 144w w x     

  subject to 
11

0w   

   
12

0w   

   
1 11

8 0x w   
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1 11 12

24 3 4 0x w w    

   
22

0w   

   
2 12

8 0x w   

   
2 12 22

24 3 4 0x w w    

   
11 1

64 16 0w x    

   
2 11 12

192 32 3 4 0x w w     

   
11 22 1 2 12

576 9 16 144 192 24 0.w w x x w       

 

 The optimal solution to 2LP( )  is given by 
1 2 11 12 22

( , , , , )x x w w w   

(0, 6, 0, 0, 36) with 2[LP( )]v   = –180. The solution 
1 2

( , )x x  = (0, 6) is 

feasible to NPQ with objective value –180. Hence, since –180 < –52, we 

update 
1 2

( , )x x   = (0, 6) and v  = –180, and we fathom Node 2. 

 

 Formulation of 3LP( ) :  

 
 Consider the following bound-and constraint-factors: 
 
  

1
8 0x      (2a) 

  
2

0x     (2b) 

  24 – 
1

0x    (2c) 

  
1 2

24 3 4 0x x     (2d) 

  
1 2

120 3 8 0.x x     (2e) 

 
 Note that these include all the original restrictions of the problem except 

for 
1

0x  , which is implied by (2a), and 
2

15,x   which is implied by 

(2a) and (2e), where the latter actually yield 
2

12.x   Hence, taking 

pairwise products of (2a) – (2e), including self-products, produces the 

following model with 
6

15
2
   
 

 constraints: 

 
3LP( ) :  Minimize 

11 22 1
24 144w w x     

  subject to 
11 1

64 16 0w x    

   
12 2

8 0w x   

   
1 11

32 192 0x w    
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11 12 2

3 4 32 192 0w w x     

   
1 2 11 12

144 64 3 8 960 0x x w w      

   
22

0w   

   
2 12

24 0x w   

   
2 12 22

24 3 4 0x w w    

   
2 12 22

120 3 8 0x w w    

   
11 1

576 48 0w x    

   
1 2 11 12

576 48 96 3 4 0x x w w      

   
1 2 11 12

2880 192 192 3 8 0x x w w      

   
11 22 1 2 12

576 9 16 144 192 24 0w w x x w       

   
1 2 11 12 22

2880 288 672 9 12 32 0x x w w w       

   
11 22 1 2 12

14400 9 64 720 1920 48 0.w w x x w       

 

 The optimal solution to 3LP( )  is given by 
1 2 11 12 22

( , , , , )x x w w w   

(24, 6, 576, 144, 36) with objective value 3[LP( )]v   = –180. Also, the 

feasible solution 
1 2

( , )x x  = (24, 6) yields an objective value of –180 in 

Problem NPQ. Hence, we fathom Node 3 as well, and the solutions 

1 2
( , )x x   equal to (0, 6) or (24, 6) are alternative optimal solutions to 

Problem NPQ of objective value –180. 
 
11.36 By substituting 

1j j j
     as given in Exercise 11.35 in the  -

form:  we obtain the following representation for x: 
 

1 1 1

1 1 1 1 1 1 1
1 2 2
( )

k k k

j j j j j k k j j
j j j

x             
  

  
  

           

   
1

1 1 1 1
2

(1 ) ( )
k

j j j k k
j

      


 


     . 

 
 Hence, 
 

 
1

1 1
1

( ) ,
k

j j j k k
j

x     


 


     (1) 

 
 where 

0
1.   Therefore, the equations representing x in the  -form and 

in the  -form are equivalent if ,
j

  j = 1,.., k, is as given in the exercise. 
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 Next, define a k k  matrix [ ],

ij
T t  where 

ii
t  = 1 for i = 1,…, k, 

, 1
1

i i
t     for i = 1,…, k–1, and 

ij
t  = 0 otherwise. Then, T   where 

1
( ,... )t

k
    and 

0 1 1
( , ,..., ) .t

k
      The matrix T is upper 

triangular with ones along the diagonal, and is therefore invertible.  
 
 To see how the other restrictions in   and   are related via this 

relationship, note that because 
0

  = 1, 0 1
j

   for 1,..., 1,j k   

and because 
i
  = 0 implies that 

j
  = 0 for all j > i, we have that all 

elements of the vector   computed via T   lie in the interval [0, 1]. 

Moreover, 
0

1,t te e T      where e is a conformable vector of 

ones. Also, since 1 ,T   where 1T   is an upper triangular matrix 
whose diagonal entries and all entries above it are equal to 1, we obtain 

0
  = 1 and 0 1

j
   for 1,..., 1j k   whenever 0

j
   for j = 1,…, 

k and 
1

1.
k

j
j




  What remains to be verified is that the two nonlinear 

requirements are also equivalent.  
 
 Consider the requirement “

p q
   = 0 if 

p
  and 

q
  are not adjacent,” 

and suppose that for some {1,..., 1}p k   we have 
p

  > 0 and 
1p

   > 

0. Then 
j

  = 0 for the remaining indices j. From the relationship between 

  and   (in particular, using 1 )T   we then obtain 

 
  

j
  = 1 for 0,1,..., 1j p   

  
1

1 ,
p p p

      and 

  0
p r

    for 1,..., .r k p   

 
 Also, if 

p
  = 1 for some {1,..., }p k  and 

j
  = 0 for all ,j p  then 

j
  = 1 for ,j p  and 

j
  = 0 for j > p. Thus the requirement “

i
  > 0 

implies that 
j

  = 1 for j < i” is met. 

 
 It can be shown similarly by viewing the form of T   that if ,

j
  j = 

0, 1 ,..., 1,k   satisfy the restriction that “
i
  > 0 implies that 

j
  = 1 for j 
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< i,” then 
j

 , j = 1,…,k, are such that “
p q

   = 0 if 
p

  and 
q

  are not 

adjacent.” Therefore, the two requirements are equivalent. This completes 
the proof of the equivalence of the two representations.               

 
11.41 In the case of linear fractional programs, if the feasible region is not 

bounded, then an optimal solution may not exist. This does not 
necessarily mean that the objective function (to be minimized) is 
unbounded below. As opposed to linear programs we may be faced with 
the case where the objective function is bounded but does not attain its 
lower bound on the feasible region. 

 
 In particular, consider the line search along the direction identified in the 

exercise. Without loss of generality, suppose that the objective function 

( ) ( )/( )t tf x p x q x     satisfies 0tq x    for all x X   

{ : , 0}.x Ax b x   Consider the solution x  at which the search 

direction B

N

d
d

d

 
  
 

 satisfies 
N j

d e  and 1 0,
B j

d B a    where 

j
e  is the jth unit vector, so that d is a recession direction of X. We then 

have 
 

 
( ) ( )

( ) ( )
( ) ( )

t t
B B B N N N
t t
B B B N N N

p x d p x d
f x d

q x d q x d

  
  

  

   
  

   
 

 

                                

1

1

[ ]
,

[ ]

t t t
B B N B Nj B j
t t t
B B N N Nj B j

p x p x p p B a

q x q x q q B a

 

 





   


   
 

 
 i.e., in obvious notation, ( )   is of the form 

 

  
0

0

( ) ( ) ,
j

j

p p
f x d

q q


  




  


 where 0

j
q   (1) 

 
 since 

0
0,

j
q q   0.   Note also from (1) that  

 

  
0 0

2
0

( ) 0,
[ ]

j j

j

q p p q

q q
 




  


 0   by Lemma 11.4.2. (2) 

 
 Now, consider the following two cases: 
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 Case (i):  
j

q  = 0. In this case, since 
0

0,tq q x     we get from (2) 

that 
j

p  < 0, and so this implies from (1) that ( )     as ,    

and the objective value is indeed unbounded by moving from x  along 
the direction d. 

 
 Case (ii): 

j
q  > 0. In this case, ( ) / ,

j j
p q    where from (2), we get 

0 0
/ / ( ).

j j
p q p q f x     Hence, in this case, the objective value 

decreases toward the finite lower bounding value /
j j

p q  as .    

 
11.42 a. For any 

1
  and 

2
,R   and for any [0, 1]   we have 

 
  

1 2 1 2
( (1 ) ) [ ( (1 ) ) ]f x d             

                                  
1 2

[ (1 ) ( (1 ) ) ]f x x d           

                                  
1 2

[ ( ) (1 )( )]f x d x d         

               
1 2 1 2

min{ ( ), ( )} min{ ( ), ( )}.f x d f x d          

 
  Here, the above inequality follows from the assumed quasiconcavity 

of the function ( )f x . The foregoing derivation shows that the 

function ( )   is also quasiconcave. 

 
 b. From Theorem 3.5.3, we can conclude that the minimum of the 

function ( )f x d  over an interval [0, b] must occur at one of the 

two endpoints. However, at   = 0 we have (0) ( ) 0,tf x d      

and so the minimum value must occur for .b   
 
 c. By Lemma 11.4.1, the given fractional function is quasiconcave, and 

so from Part (b), in the case of the convex simplex method, the linear 
search process reduces to evaluating 

max
,  and then directly setting 

k
  equal to 

max
.  (Also, see Lemma 11.4.2 for a related argument.) 

 
11.47 By defining 

0 2
( ),x f x  we obtain the following equivalent problem: 

 

  Minimize 
1 0 3
( ) ( )af x x f x  

  subject to 
0 2

( ).x f x  
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 However, because the functions 
2

( )f x  and 
3
( )f x  take on positive 

values, and the objective function is to be minimized, we can replace the 
equality constraint with the inequality 

0 2
( ),x f x  since this constraint 

will automatically be satisfied as an equality at optimality. Furthermore, 
since 

2
( )f x  is positive for any positive x, so is 

0
x . This allows us to 

rewrite the problem as follows: 
 

  Minimize{ 1
1 0 3 0 2
( ) ( ) : ( ) 1, 0}.af x x f x x f x x    (1) 

 
 Finally, note that if a function ( )h x  is a posynomial in 

1
,..., ,

n
x x  and if 

0
x  > 0, then for any real a, 

0
( )ax h x  is a posynomial in 

0
,x  

1
,..., .

n
x x  

Also, a sum of posynomial functions is a posynomial. Therefore, the 
problem given by (1) is in the form of the standard posynomial geometric 
program.  

 
 The numerical example can be restated as follows: 
 

  Minimize 1/3 1/6 1/2 3/4 1/3
1 2 0 1 2

2x x x x x   

  subject to 1 1/2 3/4 1 2/3
0 1 2 0 1 2

3 2
1

5 5
x x x x x x    

            x > 0. 
 
 Hence, we have: 
 
 M = 4, 

0
J  = {1, 2}, 

1
J  = {3, 4}, n = 3 (thus DD = 0), 

1
  = 2, 

2
  = 1, 

3
  = 3/5, 

4
  = 2/5, 

 
1 2 3

[0 1/3 1/6], [1/2 3/4 1/3], [ 1 1/2 3/4],t t ta a a       and 

 
4

[ 1 2/3 1].ta    

 
 Step 1. Solve the dual problem: 
 
 Since DD = 0, the dual problem has a unique feasible solution as given by 

the following constraints of Problem DGP in terms of ,
i
  i = 1,…, 4, and 

1
u : 

   
2

1

2
  –        

3
  –        

4
  =  0 

  
1

1

3
  +     

2
3

4
  +    

3
1

2
  +     

4
2

3
  =  0 
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1

1

6
  –     

2

1

3
  +    

3
3

4
  +        

4
  =  0 

  
1
  +       

2
    =  1 

    
3
  +       

4


1
u  =  0. 

 
 The unique solution to this system, and therefore the unique optimal 

solution to the dual problem, is given by  
 

 
1

35
,

51
   

2

16
,

51
   

3

34
,

51
   

4

26
,

51
 

  and 
1

8
.

51
u   (2) 

 
 Note that 

4
  < 0 and so the dual is infeasible. In fact, there does not exist 

a KKT solution for (11.53). To see this, note that (11.53) is given by 
 
  Minimize 

1 2
[ ]n    

  subject to 
3 4

[ ] 0.n     

 
 Denoting 

1
u  as the Lagrange multiplier, the KKT system is given by 

 

  1 3 3 4 41 1 2 2

1 2 3 4

[ ]
0

( ) ( )

u a aa a   

   


 

 
 (3) 

 
  

1 3 4 1 3 4
0, ( ) 1, [ 1] 0.u u          (4) 

 

 Denoting 1 31 2
1 2 3

1 2 1 2 3 4

, , ,
u  

  
     

  
  

 and 1 4
4

3 4

u 


 



 

as in (11.57), we get from (3) that 
4

1
0,

k k
k

a


  where 
1 2

1,    and 

1 3 4
.u     But this leads to the unique solution (2) where 

4
  < 0, a 

contradiction. (Note that with 
1

u  = 0, (3) yields 
1 1 2 2

0a a   , which 

yields 
1 2

0,    contradicting 
1 2

1.)    Hence, no KKT solution 

exists. 
 
 To provide additional insight, note that if we consider the solution 

1/25
1

1/x   and 
2

,x   for   > 0, with 1/2 3/4 2/3
0 1 2 1 2

3 2

5 5
x x x x x    

73/100 73/753 2
,

5 5
   then this defines a feasible trajectory with objective 
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value 
1/2

27/150 1/300 37/1503 2
2 .

5 5
      

 Hence, as 0 ,   the 

objective value approaches zero, which is a lower bound for the 

posynomial, with 
1

x    and 
2

0 .x   Hence, an optimum does not 

exist, although zero is the infimum value. 
 
11.48 For the given problem, we have M = 5 terms and n = 3 variables. Hence, 

the degree of difficulty DD = 1. To formulate the dual program, DGP, 
note that 

 
 

0
{1, 2, 3}J   and 

1
{4, 5}J   with m = 1; 

1
  = 25, 

2
  = 20, 

3
  = 

30, 
4

5
,

3
   and 

5

4
;

3
   

 

 
1 2 3 4

2 2 1 1
1/2 , 0 , 2 , 2 ,
1 1 1 0

a a a a
        

            
              

 and 
5

0
1/2 .

2
a

 
 
  

 

 
 This yields the following dual program: 
 

 DGP: Maximize 
5

1 1
1

[ / ] ( )
k k k

k
n u n u  


    (1) 

  subject to  
   

1 2 3 4
2 2 0         (2) 

   
1 3 4 5

1 1
2 2 0

2 2
         (3) 

   
1 2 3 5

2 0         (4) 

   
1 2 3

1      (5) 

   
4 5 1

u     (6) 

   
1

( , ) 0.u    (7) 

 
 From Equations (2) – (6), we get that 
 

 
2 1 3 1 4 1 5 1

3 1 15 7 17 9 1
, , , ,

4 16 16 4 16 4 2
                and 

 
1 1

25 13
.

16 14
u      (8) 

 
 The restrictions 

1
( , ) 0u   along with (8) yield 
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1

17
0 .

36
    (9) 

 
 Projecting Problem DGP onto the space of 

1
  by using (8) and (9) and 

solving this resultant problem yields the following solution 
1

( , )u    

(upon using (8) and (9)): 
 

 
1
   = 0.06967, 

2
   = 0.11475, 

3
   = 0.81558, 

4
   = 0.90575, 

5
   = 

0.43033, and 
1

u  = 1.33608,  (10a) 

 
 with objective value 
 

  v  = 5.36836.  (10b) 
 
 Using Equations (11.71a, b), we therefore get 
 
  

1 2 3
2 0.5y y y    = –0.5145 

     
1

2y        
3

y  = 0.20763 

      
1

y     
2 3

2y y   = 1.76331 

    
1

y     
2

2y  = –0.89956 

              
2 3

0.5 2y y  = –1.42062. 

 
 The solution to the above (consistent) system is given by  
 

 
1

y  = –0.32792, 
2

y  = 0.61374, and 
3

y  = 0.86347. (11) 

 

 Using the fact that ,jy

j
x e  we obtain the following optimal solution to 

the original problem: 
 

 
1

x  = 0.72042, 
2

x  = 1.84733, and 
3

x  = 2.37138, with optimal objective 

value ve


 = 214.51078 as given via (10b) (since [ ( )]).v n F y    

 
11.50 The given problem can be formulated as follows: 
 

 Minimize 2 2
1 2 1 2 3

2 6 6 4x x x x x     

 subject to 
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1 2 3

15x x x   

  
1 2 3

( , , ) 0.x x x   

 

 Letting 2 2
0 1 2

,x x x   this problem can be equivalently posed (see 

Exercise 11.47) as the following posynomial geometric program (GP): 
 

 GP: Minimize 1/2
0 1 2 3

2 6 6 4x x x x    

  subject to 

   1 1 1
1 2 3

15 1x x x     

   1 2 1 2
0 1 0 2

1x x x x    

   
0 1 2 3

( , , , ) 0.x x x x   

 For Problem GP, we have M = 7, n = 4, DD = M –n – 1 = 2, m = 2, 
0

J  = 

{1, 2, 3, 4}, 
1

J  = {5}, 
2

J  = {6, 7}, with 
1

  = 2, 
2

  = 6, 
3

  = 6, 
4

  = 

4, 
5

  = 15, 
6

  = 1, 
7

  = 1, and with 

 
1

1/2
0

,
0
0

a

 
 

  
 
  

 
2

0
1

,
0
0

a

 
 

  
 
  

 
3

0
0

,
1
0

a

 
 

  
 
  

 
4

0
0

,
0
1

a

 
 

  
 
  

 
5

0
1

,
1
1

a

 
    
  

  

 
6

1
2

,
0
0

a

 
 

  
 
  

 and 
7

1
0

.
2
0

a

 
 

  
 
  

  

 
 Hence, the dual geometric program is given as follows: 
 

 DGP: Maximize 
7

1 1 2 2
1

( ) ( )k
k

k k

n u n u u n u





 
  

  
    

  subject to 

   
1 6 7

1
0

2
      

      
2 5 6

2 0      

      
3 5 7

2 0      

      
4 5

0    

      
1 2 3 4

1        

      
1 5

u   
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2 6 7

u     

      ( , ) 0.u   

 
 Projecting Problem DGP onto the space of 

1 2
( , ),   we get 

 

 
3 1 2 4 5 6 2

2 1 1 1 1
, , , ,

3 3 3 6 2
              

 
7 1 2 1

1 1 1 1
, ,

6 2 2 3
u        and 

2 1
1

.
2

u   (1) 

 
 Solving this projected problem and using (1) yields the following solution 

( , ) :u    

 

 
1
   = 0.12716, 

2
   = 0.26975, 

3
   = 0.26975, 

4
   = 0.33333, 

5
   = 

0.33333, 
6

   = 0.03179, 
7

   = 0.03179, 
1

u  = 0.33333, and 
2

u  = 0.06358, 

with objective value v  = 3.79899. The system (11.71) for recovering the 
y-variables is given as follows: 

 

 
0

1

2
y  = 1.04353 

 
1

y  = 0.69697 

 
2

y  = 0.69697 

 
3

y  = 1.31407 

 
1 2 3

y y y    = –2.70805 

 
0 1

2y y   = –0.69315 

 
0 2

2y y   = –0.69315. 

 
 This system yields (consistent up to four decimal places) 
 

 
0

y  = 2.08706, 
1

y  = 0.69697, 
2

y  = 0.69697, and 
3

y  = 1.31407. 

 

 Accordingly, using ,jy

j
x e  0,j  1, 2, 3, we get 

 

 
0

x  = 8.06118, 
1

x  = 2.00766, 
2

x  = 2.00766, and 
3

x  = 3.72129, with 

objective value ve


 = 44.65606 (since [ ( )]).v n F y    
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11.51 Let x  solve the problem to minimize 
1 2
( ) ( ).f x f x  By assumption, 

2 1
( ) ( ) 0.f x f x    Therefore, 

0
( , )x x   solves the following problem:  

 
  Maximize 

0 0 2 1
{ : ( ) ( )}.x x f x f x    

 
 Furthermore, since 

2
( )f x  is a positive-valued function, and since the 

maximization of 
0

x  is equivalent here to minimizing its reciprocal, we 

obtain the following equivalent optimization problem:  
 

  Minimize 1 0 1
0

2 2

( )
{ : 1}.

( ) ( )

x f x
x

f x f x
     

 
 Finally, we note that by same arguments as those in the solution to 

Exercise 11.52 below, it can be easily shown that both the objective 
function and the function on the left-hand side of the constraint are 
posynomials.   

 
11.52 Throughout, we assume that 

3 4
( ) ( ) 0, 0,f x f x x     since a can be 

a general rational exponent. The problems 
 

  P1: Minimize 2
1

3 4

( )
( )

[ ( ) ( )]a

f x
f x

f x f x



 

 and 

  P2: Minimize 
1 2 0
( ) ( ) af x f x x  

 
   subject to 

0 3 4
( ) ( )x f x f x   

 
 are clearly equivalent. Also, note that 

3
( )f x  is positive-valued, and 

therefore the constraint in Problem P2 can be rewritten as 
 

  0 4

3 3

( )
1.

( ) ( )

x f x

f x f x
    (1) 

 
 It remains to show that the objective function as well as the expression on 

the left-hand side of (1) are posynomials. 
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 Readily, if 
1
( )f x  and 

2
( )f x  are posynomials in 

1
,..., ,

n
x x  then 

1 2 0
( ) ( ) af x f x x  is a posynomial in 

0
,x  

1
,..., .

n
x x  By assumption, 

3
( )f x  is a single-term posynomial, say, of the form 

3
1

( ) ,j
n a

j
j

f x x


   

where   > 0 and 
j

a , j = 1,…, n, are rational exponents. Then 

0

03

1
,

( )
j

n a

j
j

x
x

f x  
   where 

j j
a a   for j = 1,…, n, and 

0
1.a   Hence, 

0

3
( )

x

f x
 is a posynomial. Similarly, in the notation of (11.49), let 

4
4

1
( ) .kj

n a

k j
k J j

f x x
 

    Then 
4

4

13

( )
,

( )
kj

n a

k j
k J j

f x
x

f x


 
    where for each 

4
,k J  we have /

k k
    and .

kj kj j
a a a   This shows that the 

constraint function is also a posynomial, and this completes the proof.   
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