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Preface to the 2nd Edition

Markov decision process (MDP) models are widely used for modeling sequential
decision-making problems that arise in engineering, computer science, operations
research, economics, and other social sciences. However, it is well known that many
real-world problems modeled by MDPs have huge state and/or action spaces, lead-
ing to the well-known curse of dimensionality, which makes solution of the result-
ing models intractable. In other cases, the system of interest is complex enough
that it is not feasible to explicitly specify some of the MDP model parameters,
but simulated sample paths can be readily generated (e.g., for random state tran-
sitions and rewards), albeit at a non-trivial computational cost. For these settings,
we have developed various sampling and population-based numerical algorithms to
overcome the computational difficulties of computing an optimal solution in terms
of a policy and/or value function. Specific approaches include multi-stage adap-
tive sampling, evolutionary policy iteration and random policy search, and model
reference adaptive search. The first edition of this book brought together these al-
gorithms and presented them in a unified manner accessible to researchers with
varying interests and background. In addition to providing numerous specific algo-
rithms, the exposition included both illustrative numerical examples and rigorous
theoretical convergence results. This book reflects the latest developments of the
theories and the relevant algorithms developed by the authors in the MDP field,
integrating them into the first edition, and presents an updated account of the top-
ics that have emerged since the publication of the first edition over six years ago.
Specifically, novel approaches include a stochastic approximation framework for
a class of simulation-based optimization algorithms and applications into MDPs
and a population-based on-line simulation-based algorithm called approximation
stochastic annealing. These simulation-based approaches are distinct from but com-
plementary to those computational approaches for solving MDPs based on explicit
state-space reduction, such as neuro-dynamic programming or reinforcement learn-
ing; in fact, the computational gains achieved through approximations and para-
meterizations to reduce the size of the state space can be incorporated into most of
the algorithms in this book.

vii



viii Preface to the 2nd Edition

Our focus is on computational approaches for calculating or estimating optimal
value functions and finding optimal policies (possibly in a restricted policy space).
As a consequence, our treatment does not include the following topics found in most
books on MDPs:

(i) characterization of fundamental theoretical properties of MDPs, such as exis-
tence of optimal policies and uniqueness of the optimal value function;

(ii) paradigms for modeling complex real-world problems using MDPs.

In particular, we eschew the technical mathematics associated with defining con-
tinuous state and action space MDP models. However, we do provide a rigorous
theoretical treatment of convergence properties of the algorithms. Thus, this book is
aimed at researchers in MDPs and applied probability modeling with an interest in
numerical computation. The mathematical prerequisites are relatively mild: mainly
a strong grounding in calculus-based probability theory and some familiarity with
Markov decision processes or stochastic dynamic programming; as a result, this
book is meant to be accessible to graduate students, particularly those in control,
operations research, computer science, and economics.

We begin with a formal description of the discounted reward MDP framework
in Chap. 1, including both the finite- and infinite-horizon settings and summariz-
ing the associated optimality equations. We then present the well-known exact so-
lution algorithms, value iteration and policy iteration, and outline a framework of
rolling-horizon control (also called receding-horizon control) as an approximate so-
lution methodology for solving MDPs, in conjunction with simulation-based ap-
proaches covered later in the book. We conclude with a brief survey of other re-
cently proposed MDP solution techniques designed to break the curse of dimen-
sionality.

In Chap. 2, we present simulation-based algorithms for estimating the opti-
mal value function in finite-horizon MDPs with large (possibly uncountable) state
spaces, where the usual techniques of policy iteration and value iteration are either
computationally impractical or infeasible to implement. We present two adaptive
sampling algorithms that estimate the optimal value function by choosing actions
to sample in each state visited on a finite-horizon simulated sample path. The first
approach builds upon the expected regret analysis of multi-armed bandit models and
uses upper confidence bounds to determine which action to sample next, whereas
the second approach uses ideas from learning automata to determine the next sam-
pled action. The first approach is also the predecessor of a closely related approach
in artificial intelligence (AI) called Monte Carlo tree search that led to a break-
through in developing the current best computer Go-playing programs (see Sect. 2.3
Notes).

Chapter 3 considers infinite-horizon problems and presents evolutionary ap-
proaches for finding an optimal policy. The algorithms in this chapter work with a
population of policies—in contrast to the usual policy iteration approach, which up-
dates a single policy—and are targeted at problems with large action spaces (again



Preface to the 2nd Edition ix

possibly uncountable) and relatively small state spaces. Although the algorithms
are presented for the case where the distributions on state transitions and rewards
are known explicitly, extension to the setting when this is not the case is also dis-
cussed, where finite-horizon simulated sample paths would be used to estimate the
value function for each policy in the population.

In Chap. 4, we consider a global optimization approach called model reference
adaptive search (MRAS), which provides a broad framework for updating a prob-
ability distribution over the solution space in a way that ensures convergence to
an optimal solution. After introducing the theory and convergence results in a gen-
eral optimization problem setting, we apply the MRAS approach to various MDP
settings. For the finite- and infinite-horizon settings, we show how the approach
can be used to perform optimization in policy space. In the setting of Chap. 3, we
show how MRAS can be incorporated to further improve the exploration step in
the evolutionary algorithms presented there. Moreover, for the finite-horizon setting
with both large state and action spaces, we combine the approaches of Chaps. 2
and 4 and propose a method for sampling the state and action spaces. Finally, we
present a stochastic approximation framework for studying a class of simulation-
and sampling-based optimization algorithms. We illustrate the framework through
an algorithm instantiation called model-based annealing random search (MARS)
and discuss its application to finite-horizon MDPs.

In Chap. 5, we consider an approximate rolling-horizon control framework for
solving infinite-horizon MDPs with large state/action spaces in an on-line manner
by simulation. Specifically, we consider policies in which the system (either the ac-
tual system itself or a simulation model of the system) evolves to a particular state
that is observed, and the action to be taken in that particular state is then computed
on-line at the decision time, with a particular emphasis on the use of simulation.
We first present an updating scheme involving multiplicative weights for updating
a probability distribution over a restricted set of policies; this scheme can be used
to estimate the optimal value function over this restricted set by sampling on the
(restricted) policy space. The lower-bound estimate of the optimal value function is
used for constructing on-line control policies, called (simulated) policy switching
and parallel rollout. We also discuss an upper-bound based method, called hindsight
optimization. Finally, we present an algorithm, called approximate stochastic an-
nealing, which combines Q-learning with the MARS algorithm of Section 4.6.1 to
directly search the policy space.

The relationship between the chapters and/or sections of the book is shown be-
low. After reading Chap. 1, Chaps. 2, 3, and 5 can pretty much be read indepen-
dently, although Chap. 5 does allude to algorithms in each of the previous chapters,
and the numerical example in Sect. 5.1 is taken from Sect. 2.1. The first two sections
of Chap. 4 present a general global optimization approach, which is then applied to
MDPs in the subsequent Sects. 4.3, 4.4 and 4.5, where the latter two build upon work
in Chaps. 3 and 2, respectively. The last section of Chap. 4 deals with a stochastic
approximation framework for a class of optimization algorithms and its applications
to MDPs.
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Selected Notation and Abbreviations1

� (�+) set of (non-negative) real numbers
Z (Z+) set of (positive) integers
H horizon length (number of stages or periods)
X state space
A action space
A(x) admissible action space in state x
P (x, a)(y) probability of transitioning to state y from state x when taking

action a
f (x, a,u) next state reached from state x when taking action a for random

number u
R(x, a) non-negative bounded reward obtained in state x when taking

action a
C(x, a) non-negative bounded cost obtained in state x when taking

action a
R′(x, a,w) non-negative bounded reward obtained in state x when taking

action a for random number w
Rmax upper bound on one-period reward
γ discount factor ∈ (0,1]
π policy (a sequence of mappings prescribing an action to take for

each state)
πi(x) action prescribed for state x in stage i under policy π
π(x) action prescribed for state x (under stationary policy π )
π∗ an optimal policy
π̂ k an estimated optimal policy at kth iteration
Π set of all non-stationary Markovian policies
Πs set of all stationary Markovian policies: (1.10)
V ∗
i (x) optimal reward-to-go value from stage i in state x: (1.5)

1Notation specific to a particular chapter is noted parenthetically. Equation numbers indicate where
the quantity is defined.
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xvi Selected Notation and Abbreviations

V ∗
i optimal reward-to-go value function from stage i

V̂
Ni

i estimated optimal reward-to-go value function from stage i
based on Ni simulation replications in that stage

V ∗(x) optimal value for starting state x: (1.2)
V ∗ optimal value function
V π
i reward-to-go value function for policy π from stage i: (1.6)

V π value function for policy π : (1.11)
Vπ
H (x) expected total discounted reward over horizon length H under

policy π , starting from state x (=V π
0 (x))

Q∗
i (x, a) Q-function value giving expected reward for taking action a

from state x in stage i, plus expected total discounted optimal
reward-to-go value from next state reached in stage i + 1: (1.9)

Q∗(x, a) infinite-horizon Q-function value: (1.14)
Q̂
Ni

i (x, a) estimate for Q∗
i (x, a) based on Ni samples

Q̂(x, a) estimate for Q∗(x, a)
Px action selection distribution over A(x)
a.s. almost sure(ly)
c.d.f. cumulative distribution function
i.i.d. independent and identically distributed
p.d.f. probability density function
p.m.f. probability mass function
s.t. such that (or subject to)
w.p. with probability
w.r.t. with respect to
U(a,b) (continuous) uniform distribution with support on [a, b]
DU(a,b) discrete uniform distribution on {a, a + 1, . . . , b− 1, b}
N(μ,σ 2) normal (Gaussian) distribution with mean (vector) μ and

variance σ 2 (covariance matrix Σ )
Ef expectation under p.d.f. f (Chap. 4)
Eθ,Pθ expectation/probability under p.d.f./p.m.f. f (·, θ) (Chap. 4)
Ẽθ , P̃θ expectation/probability under p.d.f./p.m.f. f̃ (·, θ) (Chap. 4)
∀ for all
∃ there exists
D(·, ·) Kullback–Leibler (KL) divergence between two p.d.f.s/p.m.f.s

(Chaps. 4, 5)
d(·, ·) distance metric (Chap. 3)
d∞(·, ·) infinity-norm distance between two policies (Chap. 3)
dT (·, ·) total variation distance between two p.m.f.s (Chap. 5)
NEF natural exponential family (Chap. 4)
:= equal by definition
d= equal in distribution
⇐⇒ if and only if
�⇒ implies (or weak convergence)
I {·} indicator function of the set {·}
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|X| cardinality (number of elements) of set X
‖ · ‖ norm of a function or vector, or induced norm of a matrix
x ∨ y max(x, y)
x ∧ y min(x, y)
x+ max(x,0)
x− min(−x,0)
�x� least integer greater than or equal to x
�x� greatest integer less than or equal to x
f (n)=O(g(n)) lim supn→∞

f (n)
g(n)

<∞
f (n)=Θ(g(n)) f (n)=O(g(n)) and g(n)=O(f (n))



Chapter 1
Markov Decision Processes

Define a Markov decision process (MDP) by the five-tuple (X,A,A(·),P,R),
where X denotes the state space, A denotes the action space, A(x) ⊆ A is the set
of admissible actions in state x, P(x, a)(y) is the probability of transitioning from
state x ∈X to state y ∈X when action a ∈A(x) is taken, and R(x, a) is the reward
obtained when in state x ∈X and action a ∈A(x) is taken. We will assume through-
out the book that the reward is non-negative and bounded, i.e., 0≤ R(x, a)≤ Rmax
for all x ∈X,a ∈A(x). More generally, R(x, a) may itself be a random variable, or
viewed as the (conditioned on x and a) expectation of an underlying random reward.
For simplicity and mathematical rigor, we will usually assume that X is a countable
set, but the discussion and notation can be generalized to uncountable state spaces.
We have assumed that the components of the model are stationary (not explicitly
time-dependent); the nonstationary case can be incorporated into this model by aug-
menting the state with a time variable. Note that an equivalent model description is
done with a cost function C such that C(x, a) is the cost obtained when in state
x ∈ X and action a ∈ A(x) is taken, in which case a minimum/infimum operator
needs to replace a maximum/supremum operator in appropriate places below.

The evolution of the system is as follows (see Fig. 1.1). Let xt denote the state
at time (stage or period) t ∈ {0,1, . . .} and at the action chosen at that time. If
xt = x ∈ X and at = a ∈ A(x), then the system transitions from state x to state
xt+1 = y ∈ X with probability P(x, a)(y), and a reward of R(x, a) is obtained.
Once the transition to the next state has occurred, a new action is chosen, and the
process is repeated.

Let Π be the set of non-stationary Markovian policies π = {πt , t = 0,1, . . .},
where πt :X→A is a function such that πt (x) ∈A(x) for each x ∈X. The goal is
to find a policy π that maximizes the expected total discounted reward given by

V π(x)=E

[
H−1∑
t=0

γ tR
(
xt ,πt (xt )

)∣∣∣∣∣x0 = x

]
, (1.1)

for some given initial state x ∈ X, where 0 < γ ≤ 1 is the discount factor, and H

may be infinite, in which case we require γ < 1. The optimal value function is

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes,
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_1, © Springer-Verlag London 2013
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2 1 Markov Decision Processes

Fig. 1.1 MDP “standard”
model

Fig. 1.2 MDP simulation
model

denoted by V ∗ :X→�+, where the optimal value for a given state x ∈X is given
by

V ∗(x)= sup
π∈Π

V π(x), (1.2)

and a corresponding optimal policy yielding that optimal value function will be
denoted by π∗, where

V ∗(x)= V π∗(x), x ∈X. (1.3)

We will also describe an MDP using a simulation model, denoted by (X,A,A(·),
f,R′), where f is the next-state transition function such that the system dynamics
are given by

xt+1 = f (xt , at ,wt ) for t = 0,1, . . . ,H − 1, (1.4)

and R′(xt , at ,wt ) ≤ Rmax is the associated non-negative reward, where xt ∈ X,
at ∈A(x), and {wt } is an i.i.d. (random number) sequence distributed U(0,1), rep-
resenting the uncertainty in the system (see Fig. 1.2). Thus, the simulation model as-
sumes a single random number for both the reward and next-state transition in each
period. The expected discounted reward to be maximized is given by (1.1) withR re-
placed by R′ and the expectation taken over the random sequence {wt, t = 0,1, . . .},
and the optimal value function is still given by (1.2), with a corresponding optimal
policy satisfying (1.3). Note that any simulation model (X,A,A(·), f,R′) with dy-
namics (1.4) can be transformed into a model (X,A,A(·),P,R) with state tran-
sition function P . Conversely a standard MDP model (X,A,A(·),P,R) can be
represented as a simulation model (X,A,A(·), f,R′).
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1.1 Optimality Equations

For the finite-horizon problem (H <∞), we define the optimal reward-to-go value
for state x ∈X in stage i by

V ∗
i (x)= sup

π∈Π
V π
i (x), (1.5)

where the reward-to-go value for policy π for state x in stage i is defined by

V π
i (x)=E

[
H−1∑
t=i

γ t−iR
(
xt ,πt (xt )

)∣∣∣∣∣xi = x

]
, (1.6)

i = 0, . . . ,H − 1, with V ∗
H (x) = 0 for all x ∈ X. Note that V π(x) = V π

0 (x) and
V ∗(x) = V ∗

0 (x), where V π and V ∗ are the value function for π and the optimal
value function, respectively. It is well known that V ∗

i can be written recursively as
follows: for all x ∈X and i = 0, . . . ,H − 1,

V ∗
i (x)= sup

a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)V ∗
i+1(y)

}
, (1.7)

or, equivalently, by defining the Q-function,

V ∗
i (x) = sup

a∈A(x)
Q∗
i (x, a), (1.8)

Q∗
i (x, a) = R(x, a)+ γ

∑
y∈X

P (x, a)(y)V ∗
i+1(y). (1.9)

The solution of these optimality equations is usually referred to as (stochastic) dy-
namic programming, which yields the optimal value as defined by Eq. (1.2) for a
given initial state x0:

V ∗
0 (x0)= sup

π∈Π
V π

0 (x0).

Simulation-based methods for estimating this optimal value for a given initial state
are the focus of Chap. 2, where simulation will be required to estimate Q∗

i (x, a)

as expressed by the simulation model equivalent of Eq. (1.9) given by Eq. (1.17)
below, and an adaptive sampling procedure will be used to determine which actions
to simulate to estimate V ∗

i (x).
For an infinite-horizon MDP (H =∞), we consider the set Πs ⊆Π of all sta-

tionary Markovian policies such that

Πs =
{
π ∈Π | πt = πt ′ ∀t, t ′

}
, (1.10)

since under mild regularity conditions, an optimal policy always exists in Πs for
the infinite-horizon problem. In a slight abuse of notation, we use π for the pol-
icy {π,π, . . . , } for the infinite-horizon problem, and we define the optimal value
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associated with an initial state x ∈ X: V ∗(x) = supπ∈Πs
V π(x), x ∈ X, where for

x ∈X,0< γ < 1,π ∈Πs ,

V π(x)=E

[ ∞∑
t=0

γ tR
(
xt ,π(xt )

)∣∣∣∣∣x0 = x

]
, (1.11)

for which the well-known Bellman optimality principle holds as follows. For all
x ∈X,

V ∗(x)= sup
a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)V ∗(y)
}
, (1.12)

where V ∗(x), x ∈X, is unique, and there exists an optimal policy π∗ ∈Πs satisfy-
ing

π∗(x) ∈ arg sup
a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)V ∗(y)
}
, x ∈X, (1.13)

and V π∗(x)= V ∗(x) for all x ∈X.
In order to simplify the notation, we use V ∗ and V π to denote the optimal value

function and value function for policy π , respectively, in both the finite and infinite-
horizon settings.

Define

Q∗(x, a)=R(x, a)+ γ
∑
y∈X

P (x, a)(y)V ∗(y), x ∈X, a ∈A(x). (1.14)

Then it immediately follows that

sup
a∈A(x)

Q∗(x, a)= V ∗(x), x ∈X,

and that Q∗ satisfies the following fixed-point equation: for x ∈X, a ∈A(x),

Q∗(x, a)=R(x, a)+ γ
∑
y∈X

P (x, a)(y) sup
a′∈A(y)

Q∗(y, a′). (1.15)

Our goal for infinite-horizon problems is to find an (approximate) optimal policy
π∗ ∈Πs that achieves the (approximate) optimal value for any given initial state.

For a simulation model (X,A,A(·), f,R′) with dynamics (1.4), the reward-to-go
value for policy π for state x in stage i over a horizon H corresponding to (1.6) is
given by

V π
i (x)=E

[
H−1∑
t=i

γ t−iR′
(
xt ,πt (xt ),wt

)∣∣∣∣∣xi = x

]
, (1.16)
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where x ∈ X, xt = f (xt−1,πt−1(xt−1),wt−1) is a random variable denoting the
state at stage t following policy π , and wi, . . . ,wH−1 are i.i.d. U(0,1). The corre-
sponding optimal reward-to-go value V ∗

i is defined by (1.5), satisfying

V ∗
i (x)= sup

a∈A(x)
{
E
[
R′(x, a,U)

]+ γE
[
V ∗
i+1

(
f (x, a,U)

)]}
, U ∼U(0,1),

which can be expressed as in (1.8) in terms of the Q-function defined analogously
to (1.9) as follows:

Q∗
i (x, a)=E

[
R′(x, a,U)

]+ γE
[
V ∗
i+1

(
f (x, a,U)

)]
, U ∼U(0,1). (1.17)

For notational simplification, we will often drop the explicit dependence on U or wj

whenever there is an expectation involved, e.g., we would simply write Eq. (1.17)
as

Q∗
i (x, a)=E

[
R′(x, a)

]+ γE
[
V ∗
i+1

(
f (x, a)

)]
,

where the expectation is understood to be with respect to the randomness in the
one-stage reward(s) and next-state transition(s). Using this notation, we write the
corresponding infinite-horizon relationships for the simulation model:

V ∗(x) = sup
a∈A(x)

E
[
R′(x, a)+ γV ∗(f (x, a))]= sup

a∈A(x)
Q∗(x, a),

π∗(x) ∈ arg sup
a∈A(x)

E
[
R′(x, a)+ γV ∗(f (x, a))]= arg sup

a∈A(x)
Q∗(x, a),

Q∗(x, a) = E
[
R′(x, a)

]+ γE
[
V ∗(f (x, a))],

= E
[
R′(x, a)

]+ γE
[

sup
a′∈A(f (x,a))

Q∗(f (x, a), a′)].
In the remainder of the chapter, we include the expressions for both the MDP stan-
dard and simulation models.

1.2 Policy Iteration and Value Iteration

Policy iteration and value iteration are the two most well-known techniques for
determining the optimal value function V ∗ and/or a corresponding optimal pol-
icy π∗ for infinite-horizon problems. Before presenting each, we introduce some
notation. Let B(X) be the space of bounded real-valued functions on X. For
Φ ∈ B(X), x ∈X, we define an operator T : B(X)→ B(X) by

T (Φ)(x) = sup
a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)Φ(y)

}
, (1.18)

T (Φ)(x) = sup
a∈A(x)

E
[
R′(x, a)+ γΦ

(
f (x, a)

)]
, (1.19)
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for the standard and simulation models, respectively. Similarly, we define an opera-
tor Tπ : B(X)→ B(X) for π ∈Πs by

Tπ(Φ)(x) = R
(
x,π(x)

)+ γ
∑
y∈X

P
(
x,π(x)

)
(y)Φ(y), (1.20)

Tπ(Φ)(x) = E
[
R′
(
x,π(x)

)]+ γE
[
Φ
(
f
(
x,π(x)

))]
. (1.21)

We begin with policy iteration. Each step of policy iteration consists of two parts:
policy evaluation and policy improvement. Each iteration preserves monotonicity in
terms of the policy performance.

Policy evaluation is based on the result that for any policy π ∈ Πs , there ex-
ists a corresponding unique Φ ∈ B(X) such that for x ∈X, Tπ(Φ)(x)=Φ(x) and
Φ(x)= V π(x). The policy evaluation step obtains V π for a given π ∈Πs by solv-
ing the corresponding fixed-point functional equation over all x ∈X:

V π(x) = R
(
x,π(x)

)+ γ
∑
y∈X

P
(
x,π(x)

)
(y)V π(y), (1.22)

V π(x) = E
[
R′
(
x,π(x)

)]+ γE
[
V π
(
f
(
x,π(x)

))]
, (1.23)

which, for finite X, is just a set of |X| linear equations in |X| unknowns.
The policy improvement step takes a given policy π and obtains a new policy π̂

by satisfying the condition T (V π)(x)= Tπ̂ (V
π)(x), x ∈X, i.e., for each x ∈X, by

taking the action

π̂(x) ∈ arg sup
a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)V π(y)

}
, (1.24)

π̂(x) ∈ arg sup
a∈A(x)

{
E
[
R′(x, a)

]+ γE
[
V π
(
f (x, a)

)]}
. (1.25)

The policy improvement step ensures that the value function of π̂ is no worse than
that of π , i.e.,

V π̂ (x)≥ V π(x) ∀x ∈X.
Starting with an arbitrary policy π0 ∈ Πs , at each iteration k ≥ 1, policy itera-
tion applies the policy evaluation and policy improvement steps alternately until
V πk (x) = V πk−1(x) ∀x ∈ X, in which case an optimal policy has been found. For
finite policy spaces, and thus in particular for finite state and action spaces, policy
iteration guarantees convergence to an optimal solution in a finite number of steps.

Value iteration iteratively updates a given value function by applying the operator
T successively, i.e., for v ∈ B(X), a new value function is obtained by computing
for each x ∈X,

v̂(x) = sup
a∈A(x)

{
R(x, a)+ γ

∑
y∈X

P (x, a)(y)v(y)

}
,
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v̂(x) = sup
a∈A(x)

{
E
[
R′(x, a)

]+ γE
[
v
(
f (x, a)

)]}
.

Let {vn} be the sequence of value iteration functions defined by vn = T (vn−1),
where n= 1,2, . . . and v0 ∈ B(X) is arbitrary. Then for any n= 0,1, . . . , the value
iteration function vn satisfies ‖vn − V ∗‖ ≤ γ n‖v0 − V ∗‖, i.e., T is a contraction
mapping and successive applications of T will lead to vn converging to V ∗ by
Banach’s fixed-point theorem. Thus, value iteration is often called the method of
successive approximations. In particular, taking v0 = 0, vn is equal to the optimal
reward-to-go value function V ∗

H−n for the finite-horizon problem, where this proce-
dure is called “backward induction.” Unlike policy iteration, however, value itera-
tion may require an infinite number of iterations to converge, even when the state
and action spaces are finite.

The running-time complexity of value iteration is polynomial in |X|, |A|,
1/(1−γ ); in particular, one iteration is O(|X|2|A|) in the size of the state and action
spaces. Even though the single iteration running-time complexity O(|X|2|A|) of
value iteration is smaller than the corresponding O(|X|2|A| + |X|3) single-iteration
time complexity of policy iteration, the number of iterations required for value iter-
ation can be very large—possibly infinite, as just mentioned.

1.3 Rolling-Horizon Control

In this section, we consider an approximation framework for solving infinite-horizon
MDP problems. This rolling-horizon control (also called receding-horizon control)
framework will be discussed together with simulation-based approaches in Chap. 5.
The idea of rolling-horizon control can be used to solve problems in an on-line man-
ner, where an optimal exact solution with respect to a fixed-length moving horizon at
each decision time is obtained and its initial action is applied to the system. The in-
tuition behind the approach is that if the horizon is sufficiently long so as to provide
a good estimate of the stationary behavior of the system, the moving-horizon con-
trol should perform well. Indeed, the value of the rolling-horizon policy converges
geometrically to the optimal value, uniformly in the initial state, as the length of
the moving horizon increases, where the convergence rate is characterized by the
discount factor (cf. Theorem 1.1 below).

Furthermore, under mild conditions, there always exists a minimal finite horizon
H ∗ such that the rolling-H ∗-horizon control prescribes exactly the same action as
the policy that achieves the optimal infinite-horizon rewards at every state.

A rolling-H -horizon control policy πrh is a stationary policy for the infinite-
horizon problem that is obtained from an optimal non-stationary policy {π∗0 , . . . ,
π∗H−1} for the finite-horizon problem of length H <∞, by taking πrh = π∗0 , i.e., for
a given starting state x ∈X, it satisfies the initial stage optimality equation

V ∗
0 (x) = R

(
x,πrh(x)

)+ γ
∑
y∈X

P
(
x,πrh(x)

)
(y)V ∗

1 (y),
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V ∗
0 (x) = E

[
R′
(
x,πrh(x)

)]+ γE
[
V ∗

1

(
f
(
x,πrh(x)

))]
,

or using the notation of the previous section,

Tπrh

(
V ∗

1

)
(x)= T

(
V ∗

1

)
(x), x ∈X,

where V ∗
1 is the optimal reward-to-go function for the finite-H -horizon MDP be-

ginning in stage one. Although the rolling-H -horizon policy πrh is determined us-
ing the finite-horizon MDP model, it is applied in the infinite-horizon setting. The
following result bounds the error between the true (infinite-horizon) optimal value
function and the value function associated with the rolling-horizon policy, providing
an explicit characterization of the geometric convergence rate in the discount factor
with respect to the horizon length.

Theorem 1.1 (Hernández-Lerma and Lasserre [84])

0≤ V ∗(x)− V πrh(x)≤ Rmax

1− γ
· γH , x ∈X.

Again, we reiterate that here V ∗ and V πrh denote infinite-horizon value func-
tions, whereas what is used to determine the stationary policy πrh is a finite-horizon
optimal reward-to-go function V ∗

1 . Unfortunately, a large state space makes it very
difficult to solve such MDPs in practice even with a relatively small rolling horizon.
Motivated by this, we provide in Chap. 5 an error bound for approximate rolling-
horizon control defined from an estimate of V ∗

1 . In addition, in Chap. 2, we present
adaptive sampling simulation-based algorithms that estimate V ∗

1 , and in Chap. 5, we
study two approximate rolling-horizon controls via lower and upper bounds to V ∗

1 ,
both implemented in numerical examples by simulation.

1.4 Survey of Previous Work on Computational Methods

While an optimal policy can, in principle, be obtained by the methods of dynamic
programming, policy iteration, and value iteration, such computations are often pro-
hibitively time-consuming. In particular, the size of the state space grows exponen-
tially with the number of state variables, a phenomenon referred to by Bellman as
the curse of dimensionality. Similarly, the size of the action space can also lead
to computational intractability. Lastly, the transition function/probabilities (f or P )
and/or random rewards may not be explicitly known, but a simulation model may be
available for producing sample paths, which means that traditional approaches can-
not be applied. These diverse computational challenges have given rise to a number
of approaches intended to result in more tractable computations for estimating the
optimal value function and finding optimal or good suboptimal policies. Some of
these approaches can be categorized as follows:

1. structural analysis and proof of structural properties;
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2. approximating the problem with a simpler problem;
3. approximating the dynamic programming equations or the value function;
4. algorithms in policy space.

The first approach can be exact, and involves the use of structural properties of the
problem or the solution, such as monotonicity, convexity, modularity, or factored
representations, to facilitate the process of finding an optimal solution or policy.

The remaining approaches all involve approximations or suboptimal policies.
The second class of approaches can involve (i) approximation of the model with a
simpler model (e.g., via state aggregation, linearization, or discretization, or (ii) re-
stricting the structure of the policies (e.g., linear policies, certainty equivalent poli-
cies, or open-loop feedback-control policies). The third approach is to approximate
the value function and/or the dynamic programming equations using techniques
such as state aggregation, basis function representations, and feature extraction. The
fourth class includes algorithms that work in policy space like policy iteration, but
are intended to provide more tractable algorithms than policy iteration. The algo-
rithms presented in this book use randomization, sampling, or simulation in the
context of the third and fourth approaches listed above.

To put the approaches of this book in context, we briefly compare them with
some other important randomized/simulation-based methods. Most of this work has
involved approximate solution of the dynamic programming equations or approx-
imation of value functions, and is referred to as reinforcement learning or neuro-
dynamic programming.

Q-learning, perhaps the most well-known example of reinforcement learning, is
a stochastic-approximation-based solution approach to solving (1.15). It is a model-
free approach that works for the case in which the parameters of the transition
function f (or transition probabilities P ) and one-stage reward function R are un-
known. In asynchronous Q-learning, a sequence of estimates {Q̂} of Q∗ is con-
structed as follows. At time t , the decision maker observes state xt and takes an
action at ∈A(xt ) chosen according to a randomized policy (a randomized policy is
a generalized type of policy, in which, for an observed state xt , an action is chosen
randomly from a probability distribution over A(xt )). The decision maker receives
the reward R′(xt , at ,wt ), moves to state f (xt , at ,wt ), where wt ∼ U(0,1), and
updates the Q-value estimate at (xt , at ) by

Q̂(xt , at )← Q̂(xt , at )+ αt (xt , at )
[
R′(xt , at ,wt )

+ γ sup
a′∈A(f (xt ,at ,wt ))

Q̂
(
f (xt , at ,wt ), a

′)− Q̂(xt , at )
]
,

where αt (xt , at ) is a non-negative stepsize coefficient. Note that at each step, only a
single value of the Q-function estimate is updated.

Under fairly general conditions, {Q̂} will converge to the function Q∗ for finite
state and action MDPs. A key requirement is that the randomized policy should en-
sure that each state is visited infinitely often and every action is taken (explored)
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in every state infinitely often. Only limited results exist for the rate of conver-
gence of Q-learning, although it is well known that the convergence of stochastic-
approximation-based algorithms for solving MDPs can be quite slow. Furthermore,
because Q-learning is implemented with a lookup table of size |X| × |A|, it suffers
from the curse of dimensionality.

Another important aspect of the work involves approximating the optimal value
function V ∗ using, for example, neural networks and/or simulation. V ∗(x), x ∈X, is
replaced with a suitable function approximation Ṽ (x, r), called a “scoring function,”
where r is a vector of parameters, and an approximate optimal policy is obtained by
taking an action in

arg sup
a∈A(x)

E
[
R′(x, a)+ γ Ṽ

(
f (x, a), r

)]

in state x. The functional form of Ṽ is selected such that the evaluation of Ṽ (x, r) is
simple once the vector r is determined. A scoring function with a small number of
parameters can thus compactly represent a large state space. For example, Ṽ (x, r)
may be the output of some neural network in response to the input x, and r is the
associated vector of weights or parameters of the neural network. Alternatively, fea-
tures or basis functions can be selected to represent states, in which case r is the
associated vector of relative weights of the features or basis functions. Once the ar-
chitecture of scoring functions is selected, the main computational burden involves
“learning” the parameter vector r that most closely approximates the optimal value.
The success of the approach depends heavily on the choice of a good architecture,
which is generally problem dependent. Furthermore, the quality of the approxima-
tion is often difficult to gauge in terms of useful theoretical error bounds.

Up to now, the majority of the solution methods have concentrated on reducing
the size of the state space to address the state space “curse of dimensionality.” The
key idea throughout is to avoid enumerating the entire state space. However, most
of the above approaches generally require the ability to search the entire action
space in order to choose the best action at each step of the iteration procedure; thus
problems with very large action spaces may still pose a computational challenge.
The approach proposed in Chap. 3 is meant to complement these highly successful
techniques. In particular, there we focus on MDPs where the state space is relatively
small but the action space is very large, so that enumerating the entire action space
becomes practically inefficient. From a more general point of view, if one of the
aforementioned state space reduction techniques is considered, for instance, state
aggregation, then MDPs with small state spaces and large action spaces can also be
regarded as the outcomes resulting from the aggregation of MDPs with large state
and action spaces.

1.5 Simulation

In this book, simulation will mean stochastic (or Monte Carlo) simulation, as op-
posed to numerical approximations of (deterministic) differential equations, e.g., by
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the Runge–Kutta method. Specifically, simulation is used to generate realizations of
the system dynamics in the MDP simulation model described by (1.4). The context
that we most frequently have in mind is where f is not known explicitly but for
which the output of f can be easily generated, given the state, action, and input
random number. For example, in a capacity planning model in manufacturing, the
transitions and cost/rewards in the MDP model might correspond to outputs from a
run of a large simulation model of a complex semiconductor fabrication facility, the
action might be a choice of whether or not to add long-term capacity by purchasing
an expensive new piece of machinery, the current state is the existing capacity and
other relevant system information, and the input “random number” could represent
a starting seed for the simulation model. Here, we outline some important basic as-
pects connected with performing such simulations, but because this is not the focus
of the work in this book, the discussion will be brief. Specifically, we touch upon
the following:

• random number generation;
• random variate generation;
• input analysis;
• output analysis;
• verification and validation;
• variance reduction techniques.

The fundamental inputs driving the stochastics in Monte Carlo simulation are
random number streams. A random number stream is by definition a sequence of
i.i.d. U(0,1) random variables, the realizations of which are called random “vari-
ates” in simulation terminology. An algorithm or procedure to generate such a se-
quence is usually called a pseudo-random number generator, and sometimes the re-
sulting output may also retain the “pseudo-” prefix (viz., pseudo-random number).
Most of the older common pseudo-random number generators are linear congruen-
tial generators (LCGs) based on the iteration:

xn = (axn−1 + c) (mod m), n= 1,2, . . . ,

where m is the modulus (an integer), a is the multiplier, and c is the increment (the
latter two both integers between 1 and m − 1). The starting point x0 is called the
seed. A prime modulus multiplicative linear congruential generator takes c= 0 and
m prime. Clearly, one can iterate the recurrence to obtain

xn =
[
anx0 + c(an − 1)

a − 1

]
(mod m), n= 1,2, . . . ,

so that any xn can be found in a deterministic manner just from the values of
x0,m,a, and c. The random numbers are then generated from the sequence of {xn}
via

un = xn/m. (1.26)
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Commercial random number generators improve upon the basic LCGs by employ-
ing more complicated forms of the recursion. A multiple recursive generator (MRG)
of order k is based on the following kth-order linear recurrence:

xn = (a1xn−1 + · · · + akxn−k) mod m, (1.27)

where m and k are positive integers, ai are integers of 0,1, . . . ,m− 1, and again the
actual random number sequence is generated via (1.26). In order to obtain generators
with large periods in an efficient manner, instead of using (1.27) directly with a
single large modulus, one constructs an equivalent generator by combining smaller
modulus MRGs based on (1.27).

An alternative to pseudo-random numbers are quasi-Monte Carlo sequences (also
known as low-discrepancy sequences), which do not attempt to preserve the inde-
pendence between members of the sequence, but rather try to spread the numbers
out so as to most uniformly cover the [0,1]d hypercube, for a d-dimensional prob-
lem. Examples of such sequences include Faure, Halton, Sobol, Hammersley, and
Niederreiter. These sequences lead to a deterministic O((logN)d/N) error bound
for numerical integration, as opposed to the usual O(1/

√
N) convergence rate as-

sociated with Monte Carlo integration, where N is the number of points sampled.
The form of the system dynamics in the MDP simulation model described by

(1.4) masks two fundamental steps in carrying out the mechanics of stochastic sim-
ulation. The first is the transformation from random number sequences to input
stochastic processes. The second is the transformation from input stochastic pro-
cesses to output stochastic processes, which leads to the state transformation implied
by (1.4).

The basic methodology for generating input processes usually involves an algo-
rithm for going from a random number to a random variate, given a target probability
distribution, which may be continuous or discrete. For example, to generate sample
paths associated with Brownian motion, Gaussian random variates need to be gen-
erated. If the input process involves dependencies, this is an additional step that
must be included. Random variate generation is done through a number of means,
primarily consisting of some combination of the following:

• Inverse Transform Method, which uses the c.d.f.;
• Acceptance–Rejection Method, which uses the p.d.f.;
• Composition Method, which takes a convex combination of distribution and uses

one of the two procedures above;
• Convolution Method, which takes the sum of r.v.’s and uses one of the first two

procedures above;
• specialized routines for a given distribution (e.g., normal/Gaussian).

The transformation from input processes to output processes usually constitutes
the bulk of a simulation model, in terms of implementation. For example, a semicon-
ductor fabrication facility simulation model is commonly based on a discrete-event
dynamic system model, which involves the mechanics of next-event scheduling. In
terms of model building, two fundamental aspects in implementing a simulation
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model are verification, which is to make sure that the model is working as desired
(e.g., debugging the program properly), and validation, which is to make sure that
the model represents the real system closely enough to make it useful for the target
decision making or modeling goals. These two issues are quite different, but both
are critical.

Input analysis and output analysis refer to the use of statistical inference on data.
Input analysis takes actual “real-world” data to build the probability distributions
that drive the input processes to the simulation model. Output analysis takes output
data from the simulation model (i.e., simulated data) in order to make meaningful
statistical statements, generally in the form of point estimation and interval estima-
tion with confidence intervals. A key element of the Monte Carlo method is the
availability of confidence intervals, which provide a measure of precision for the
estimators of simulation output.

Because simulation can be quite expensive in terms of computational cost, an
important aspect has to do with efficiency of the estimation in the output analysis.
Methodologies for improving this aspect are called variance reduction techniques or
efficiency improvement techniques, and can lead to orders of magnitude reduction
in computation. Among the most effective of these are the following:

• control variates—exploiting correlation between simulation processes with
known distributional properties (usually the mean) and the target output perfor-
mance measure;

• importance sampling (“change of measure”)—changing the parameters (e.g.,
mean) of input distributions with an appropriate reweighting of the target out-
put performance measure;

• stratified sampling—dividing the sampling procedure into subsets such that each
has much reduced variability in the target output performance measure, and car-
rying out conditional sampling on the subsets;

• conditional Monte Carlo—conditioning on certain processes in the simulation
to derive a conditional expectation estimator of the target output performance
measure;

• common random numbers—exploiting positive correlation to reduce variance
when comparing different systems or the same system at different parameter set-
tings (e.g., an MDP sample path using different actions from the same state).

Variance reduction techniques such as these can dramatically improve the perfor-
mance of simulation-based algorithms for solving MDPs, but this is an area on
which there has been scant research, so there is clearly untapped potential for
progress on this front.

1.6 Preview of Coming Attractions

Table 1.1 provides a summary of the various settings considered, based on vari-
ous characteristics of the MDP model. The term “analytical” means that f or P is
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Table 1.1 Taxonomy
of problem settings
and solution approaches

Chapter

2 3 4 5

finite horizon
√

4.3, 4.5, 4.6

infinite horizon
√

4.3, 4.4,
√

simulation-based
√

4.3, 4.5, 4.6
√

analytical
√

4.4

sampling
√ √ √

population
√

4.4, 4.6 5.4

large state spaces
√

4.3, 4.5
√

large action spaces
√ √ √

known explicitly, and the resulting optimality (or policy evaluation) equations will
be solved directly. As described in the previous section, the term “simulation” will
indicate realized states and/or rewards resulting in a “sample path” of length H for
the finite-horizon setting. On the other hand, “sampling” will be reserved to indicate
a means by which the next action or policy is chosen to be simulated. Chaps. 2,
4, and 5 all contain simulation-based sampling algorithms (Sect. 3.4 also includes
a brief discussion of simulation-based algorithms), which become the method of
choice in settings where

(i) either the transition function/probabilities are not explicitly known or it is com-
putationally infeasible to use them, due to the size of the state space, or

(ii) the one-stage reward is stochastic with its distribution not explicitly known.

For example, in many complex systems, it is often the case that a simulation model
is available that is essentially a black box that captures detailed stochastic inter-
actions in the system, e.g., the semiconductor fabrication facility simulation model
described earlier. In this setting, a state-action pair produces a simulated visited state
or one-stage reward, or both in the case where both assumptions hold. An underly-
ing implicit assumption is that the cost of simulation is relatively expensive in terms
of computational burden.

1.7 Notes

Texts on Markov decision processes include [12, 145], and [114], in which the stan-
dard results summarized here can be found. More advanced treatments, including
rigorous discussion of MDPs with uncountable (e.g., Borel) state spaces and un-
bounded rewards, can be found in [16, 82] and [85]; see also [61]. For the rela-
tionship between the simulation model and the standard MDP model, see [23] or
[85, Sect. 2.3]. For a recent summary of analysis and solution methods for finite
state and action MDPs, see [102]. It can be shown that policy iteration converges
faster to the optimal value than value iteration in terms of the number of iterations if
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both algorithms begin with the same value [145], and policy iteration often outper-
forms value iteration in practical applications [22, 101]. In particular, for small-scale
problems (state space size less than 10,000), policy iteration performs considerably
better than value iteration, provided the discount factor is close to 1 [153]. See [123]
or [22] for a detailed discussion of the complexity of the two approaches, including
the state and action space-dependent time complexity of the linear programming
approach for solving MDPs. For a discussion of conditions under which there exists
a stationary optimal policy for infinite-horizon MDPs, see [3, 24, 85].

The geometric convergence of the rolling-horizon control to the optimal value
can be found in [84]. Existence of a minimal finite horizon H ∗ such that the rolling-
H ∗-horizon control prescribes exactly the same action as the policy that achieves
the optimal infinite-horizon rewards at every state can be found in [18] for the dis-
counted case and [83] for the average case.

The idea of rolling-horizon control has been applied to many interesting prob-
lems in various contexts to solve the problems in an on-line manner, including plan-
ning problems (e.g., inventory control) that can be modeled as linear programs [76]
and that can be represented as a shortest path problem in an acyclic network (see [60]
for example problems and references therein), routing problems in communication
networks by formulating the problem as a non-linear optimal control problem [5],
dynamic games [178], aircraft tracking [139], the stabilization of non-linear time-
varying systems [105, 129, 130] in the model predictive control literature, and
macroplanning in economics [100]. For a survey relating rolling-horizon control,
approximate dynamic programming, and other suboptimal control methods, see
[13], where the former is referred to as receding-horizon control; for a bibliogra-
phy of applications in operations management problems, see [29].

One of the earliest works employing randomization to break the curse of di-
mensionality used random successive approximations and random multigrid algo-
rithms [154]. Classical references on reinforcement learning are [101, 171]. Re-
cent work on approximate dynamic programming and simulation-based methods
includes [75, 99, 142, 164]. Approximate dynamic programming has come to mean
mainly value function approximation, with the term neuro-dynamic programming
coined by [17], because neural networks represent one of the most commonly used
approaches for representing the value function or Q-function.

Q-learning was introduced by Watkins [180]; see also [17, 177]. Some results
exist on the convergence rate of Q-learning are found in [57]. For a recent survey
on research in neuro-dynamic programming, see [179].

Representative examples on the use of structural properties include [141] and
[166] for general approaches; [68, 160, 170], [145, Sect. 4.7], and [62] for mono-
tonicity; [24] for convexity; [2, 181], and [107, Chap. 5] for modularity; [159] for
approximating sequences; and [110] for factored representations. Work on approxi-
mating the value function includes [71] and [14] via state aggregation, [52] on using
basis functions with a linear programming approach, and [17] on feature extraction.

In parameterized policy space, a simulation-based method for solving average-
cost MDPs by iteratively estimating the performance gradient of a policy and up-
dating the policy parameters in a direction of improvement is proposed in [127].
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Drawbacks of the approach include potentially large variance of the gradient es-
timator and the discarding of past gradient information. Additional related work
includes [128] and [185]. Actor-critic algorithms [9] use an approximation architec-
ture to learn a value function via simulation, and the value function is used to update
the policy parameters in a direction of performance improvement. Work employing
importance sampling in actor-critic algorithms includes [186]. A convergence proof
of some actor-critic algorithms under linearly parameterized approximations of the
value function for average-cost MDPs is provided in [111], but theoretical under-
standing has been limited to the case of lookup table representations of policies and
value functions.

Another approach for solving average-reward MDPs is simulation-based policy
iteration, which employs a simulation for policy evaluation at each iteration and ap-
plies policy improvement with the approximate solutions to the average evaluation
equations. In [48], three simulation estimators are analyzed for policy evaluation,
and conditions derived on the simulation runlengths that guarantee almost-sure con-
vergence of the algorithm. Chang [37] presents a simulation-based algorithm for
average MDPs based on the work by Garcia et al. [28, 70] of a decentralized ap-
proach to discrete optimization via the “fictitious play” algorithm applied to games
with identical payoffs. A given MDP is basically formulated as an identical payoff
game where a player is associated with each state and each player plays selecting an
action in his action set with the goal of minimizing the identical payoff, which is the
average cost of following the policy constructed from each player’s action selection.
This identical payoff game is iteratively solved with a simulation-based variant of
fictitious play in an off-line manner to find a pure Nash-equilibrium. If there exists
a unique optimal policy, the sequence of probability distributions over the policy
space generated by the algorithm converges to a distribution concentrated only on
the unique optimal policy with probability one.

On-line estimation of the “performance potential” of a policy by a single sample-
path simulation combined with gradient-based stochastic approximation simulation-
based policy iteration algorithm is presented in [59]. A “temporal-difference” learn-
ing for evaluating a policy in a similar context to simulation-based policy iteration
can be found in [80].

Some related models with MDPs have been studied by White and Eldeib [184],
and Satia and Lave [156], under the rubric of MDPs with “imprecisely known
transition probabilities,” and Givan et al. [71] under “bounded parameter Markov
Decision Processes.” All of these models can be viewed within the framework of
“controlled Markov set-chain” by Kurano et al. [115], even though the notion of
“Pareto-optimality” defined by Kurano et al. was not dealt with in any of these
efforts. Chang [36] develops a VI-type algorithm for solving controlled Markov set-
chains and analyze its finite-step error bounds and also develops PI-type algorithms
in [38] and establish their convergence. See [136] for various types of uncertainty
model for transition probability distributions, including the “entropy” model and
the interval model of Kurano et al., and related computational algorithms. Kalyana-
sundaram et al. [103] study continuous-time MDPs with unknown transition rates
and average reward criteria, and develop a PI-type algorithm based on single-policy
improvement, for obtaining robust (“max-min”) policies.
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The material on stochastic simulation in this chapter merely touches upon some
basic ideas. Two standard texts are [63] and [120]; see also [64] for a more
recent textbook. Another classical but more eclectic text is [25]. An excellent
state-of-the-art reference to current simulation research is [81]; see also [7]. Re-
cent research advances in stochastic simulation research are reported at the an-
nual Winter Simulation Conference, whose proceedings are freely available on-
line at http://www.informs-cs.org/wscpapers.html. A classic on random variate gen-
eration is [54], which is available online for free download at http://luc.devroye.
org/rnbookindex.html, and a well-known reference on quasi-Monte Carlo is [135];
see also http://www.mcqmc.org/.

http://www.informs-cs.org/wscpapers.html
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://www.mcqmc.org/


Chapter 2
Multi-stage Adaptive Sampling Algorithms

In this chapter, the goal is to accurately and efficiently estimate the optimal value
function under the constraint that there is a finite number of simulation replications
to be allocated per state in stage i. The straightforward approach to this would be
simply to sample each action feasible in a state equally, but this is clearly not an ef-
ficient use of computational resources, so the main question to be decided is which
action to sample next. The algorithms in this chapter adaptively choose which ac-
tion to sample as the sampling process proceeds, based on the estimates obtained up
to that point, and lead to value function estimators that converge to the true value
asymptotically in the number of simulation replications allocated per state. These
algorithms are targeted at MDPs with large, possibly uncountable, state spaces and
relatively smaller finite action spaces. The primary setting in this chapter will be
finite-horizon models, which lead to a recursive structure, but we also comment on
how the algorithms can be used for infinite-horizon problems. Numerical experi-
ments are used to illustrate the algorithms.

Once we have an algorithm that estimates the optimal value/policy for finite-
horizon problems, we can create a non-stationary randomized policy in an on-line
manner in the context of receding-horizon control for solving infinite-horizon prob-
lems. This will be discussed in detail in Chap. 5.

Letting V̂ Ni

i (x) denote the estimate of the optimal reward-to-go function, V ∗
i (x),

defined by Eq. (1.5) for a given state x and stage i, based on Ni simulations in
stage i, the objective is to estimate the optimal value V ∗(x0) for a given starting state
x0, as defined by Eq. (1.2). The approach will be to optimize over actions, based on
the recursive optimality equations given by (1.8) and (1.17). The former involves
an optimization over the action space, so the main objective of the approaches in
this chapter is to adaptively determine which action to sample next. Using a ran-
dom number w, the chosen action will then be used to simulate f (x, a,w) in order
to produce a simulated next state from x. This is used to update the estimate of
Q∗
i (x, a), which will be called the Q-function estimate and denoted by Q̂Ni

i (x, a),

which in turn determines the estimate V̂ Ni

i (x), albeit not necessarily using Eq. (1.8)
as the estimate for the optimal value function. Figure 2.1 provides a generic algo-
rithm outline for the adaptive multi-stage sampling framework of this chapter.

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes,
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_2, © Springer-Verlag London 2013
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General Adaptive Multi-stage Sampling Framework

Input: stage i < H , state x ∈X, Ni > 0, other parameters.
(For i =H , V̂ NH

H (x)= V
NH

H (x)= 0.)
Initialization: algorithm parameters; total number of simulations set to 0.
Loop until total number of simulations reaches Ni :

• Determine an action â to simulate next state via f (x, â,w), w ∼U(0,1).
• Update the following:

number of times action a has been sampled Ni
â
(x)←Ni

â
(x)+ 1,

Q-function estimate Q̂Ni

i (x, â) based on R′(x, â,w) and V̂ Ni+1
i+1 (f (x, â,w)),

the current optimal action estimate (for state x in stage i),
and other algorithm-specific parameters.

Output: V̂
Ni

i (x) based on Q-function estimates {Q̂Ni

i (x, a)}.

Fig. 2.1 Adaptive multi-stage sampling framework

Specifically, Q∗
i (x, a) is estimated for each action a ∈ A(x) by a sample mean

based on simulated next states and rewards from a fixed state x:

Q̂
Ni

i (x, a)= 1

Ni
a(x)

Ni
a(x)∑
j=1

[
R′
(
x, a,wa

j

)+ γ V̂
Ni+1
i+1

(
f
(
x, a,wa

j

))]
, (2.1)

where Ni
a(x) is the number of times action a has been sampled from state x in

stage i (
∑

a∈A(x) Ni
a(x)= Ni ), and the sequence {wa

j , j = 1, . . . ,Ni
a(x)} contains

the corresponding random numbers used to simulate the next states f (x, a,wa
j ).

Note that the number of next-state samples depends on the state x, action a, and
stage i.

In the general framework that estimates theQ-function via (2.1), the total number
of sampled (next) states is O(NH ) with N =maxi=0,...,H−1Ni , which is indepen-
dent of the state space size. One approach is to select “optimal” values of Ni

a(x) for
i = 0, . . . ,H −1, a ∈A(x), and x ∈X, such that the expected error between the val-
ues of V̂ N0

0 (x) and V ∗
0 (x) is minimized, but this problem would be difficult to solve.

Both algorithms in this chapter construct a sampled tree in a recursive manner to
estimate the optimal value at an initial state and incorporate an adaptive sampling
mechanism for selecting which action to sample at each branch in the tree. The
upper confidence bound (UCB) sampling algorithm chooses the next action based
on the exploration-exploitation tradeoff captured by a multi-armed bandit model,
whereas in the pursuit learning automata (PLA) sampling algorithm, the action is
sampled from a probability distribution over the action space, where the distribution
tries to concentrate mass on (“pursue”) the estimate of the optimal action. The anal-
ysis of the UCB sampling algorithm is given in terms of the expected bias, whereas
for the PLA sampling algorithm we provide a probability bound. Another algorithm
that also uses a distribution over the action space but updates the distribution in a
different manner using multiple samples, and can handle infinite action spaces, is
presented in Sect. 4.5.



2.1 Upper Confidence Bound Sampling 21

2.1 Upper Confidence Bound Sampling

The UCB sampling algorithm is based on the expected regret analysis for multi-
armed bandit problems, in which the sampling is done based on upper confidence
bounds generated by simulation-based estimates. The UCB algorithm determines
Ni
a(x) for i = 0, . . . ,H − 1, a ∈ A(x), and x ∈ X such that the expected differ-

ence is bounded as a function of Ni
a(x) and Ni , i = 0, . . . ,H − 1, and such that the

bound (from above and from below) goes to zero as Ni , i = 0, . . . ,H − 1, go to
infinity. The allocation rule (sampling algorithm) adaptively chooses which action
to sample, updating the value of Ni

a(x) as the sampling process proceeds, such that
the value function estimator is asymptotically unbiased (i.e., E[V̂ N0

0 (x)] → V ∗
0 (x)

as Ni →∞,∀ i = 0, . . . ,H − 1), and an upper bound on the bias converges to
zero at rate O(

∑
i

lnNi

Ni
), where the logarithmic bound in the numerator is achiev-

able uniformly over time. The running-time complexity of the algorithm is at worst
O((|A|maxi=0,...,H−1Ni)

H ), which is independent of the state space size, but de-
pends on the size of the action space, because the algorithm requires that each action
be sampled at least once for each sampled state.

2.1.1 Regret Analysis in Multi-armed Bandits

The goal of the multi-armed bandit problem is to play as often as possible the
machine that yields the highest (expected) reward. The regret quantifies the explo-
ration/exploitation dilemma in the search for the true “optimal” machine, which is
unknown in advance. The goal of the search process is to explore the reward distri-
bution of different machines while also frequently playing the machine that is em-
pirically best thus far. The regret is the expected loss due to not always playing the
true optimal machine. For an optimal strategy the regret grows at least logarithmi-
cally in the number of machine plays, and the logarithmic regret is also achievable
uniformly over time with a simple and efficient sampling algorithm for arbitrary
reward distributions with bounded support.

Specifically, an M-armed bandit problem is defined by random variables ηi,j
for 1 ≤ i ≤ M and j ≥ 1, where successive plays of machine i yield “rewards”
ηi,1, ηi,2, . . . , which are independent and identically distributed according to an un-
known but fixed distribution ηi with unknown expectation μi , and the goal is to
decide the machine i at each play to maximize

E

[
n∑

j=1

ηi,j

]
.

The rewards across machines are also independently generated. Let Ti(n) be the
number of times machine i has been played by an algorithm during the first n plays.
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Define the expected regret ρ(n) of an algorithm after n plays by

ρ(n)= μ∗n−
M∑
i=1

μiE
[
Ti(n)

]
, where μ∗ :=max

i
μi .

Any algorithm that attempts to minimize this expected regret must play a best ma-
chine (one that achieves μ∗) exponentially (asymptotically) more often than the
other machines, leading to ρ(n)=Θ(lnn). One way to achieve the asymptotic loga-
rithmic regret is to use upper confidence bounds, which capture the tradeoff between
exploitation—choosing the machine with the current highest sample mean—and ex-
ploration—trying other machines that might have higher actual means. This leads
to an easily implementable algorithm in which the machine with the current highest
upper confidence bound is chosen.

We incorporate these results into a sampling-based process for finding an op-
timal action in a state for a single stage of an MDP by appropriately converting
the definition of regret into the difference between the true optimal value and the
approximate value yielded by the sampling process. We then extend the one-stage
sampling process into multiple stages in a recursive manner, leading to a multi-stage
(sampling-based) approximation algorithm for solving MDPs.

2.1.2 Algorithm Description

Figure 2.2 presents the upper confidence bound (UCB) adaptive sampling algorithm
for estimating V ∗

0 (x) for a given state x. The inputs to the algorithm are the stage i,
a state x ∈ X, and the number of samples Ni ≥ maxx∈X |A(x)|, and the output is
V̂
Ni

i (x), the estimate of the optimal reward-to-go value from state x, V ∗
i (x), given

by (2.5), which is the weighted average of Q-value estimates over the sampled ac-
tions. (Alternative optimal value function estimators are presented in Sect. 2.1.3.)
Since the Q-function estimate given by (2.1) requires the optimal value estimate
V̂
Ni+1
i+1 (y) for the simulated next state y ∈X in the next period i + 1, the algorithm

requires recursive calls at (2.2) and (2.4) in the Initialization and Loop portions of
the algorithm, respectively. The initial call to the algorithm is done with i = 0, the
initial state x0, and N0, and every sampling is done independently of previous sam-
plings. To help understand how the recursive calls are made sequentially, in Fig. 2.3,
we graphically illustrate the sequence of calls with two actions and H = 3 for the
Initialization portion.

For an intuitive description of the allocation rule, consider first only the one-stage
approximation. That is, we assume for now that the V ∗

1 (x)-value for each sampled
state x ∈X is known. To estimate V ∗

0 (x), obviously we need to estimate Q∗
0(x, a

∗),
where a∗ ∈ arg maxa∈A(x)(Q∗

0(x, a)). The search for a∗ corresponds to the search
for the best machine in the multi-armed bandit problem. We start by sampling a
random number wa ∼ U(0,1) for each possible action once at x, which leads to
the next (sampled) state f (x, a,wa) according to f and reward R′(x, a,wa). We



2.1 Upper Confidence Bound Sampling 23

Upper Confidence Bound (UCB) Sampling Algorithm

Input: stage i < H , state x ∈X, Ni ≥maxx∈X |A(x)|.
(For i =H , V̂ NH

H (x)= V
NH

H (x)= 0.)

Initialization: Simulate next state f (x, â,wa
1 ), w

a
1 ∼U(0,1) for each a ∈A(x);

set Ni
a(x)= 1 ∀a ∈A(x), n̄= |A(x)|, and

Q̂
Ni

i (x, a)=Mi(x, a)=R′
(
x, a,wa

1

)+ γ V̂
Ni+1
i+1

(
f
(
x, a,wa

1

)) ∀a ∈A(x), (2.2)

where {wa
j } is the random number sequence for action a,

Ni
a(x) is the number of times action a has been sampled thus far,

and n̄ is the overall number of samples thus far.

Loop until n̄=Ni :
• Generate wâ

Ni
â
(x)+1

∼U(0,1) for current estimate of optimal action a∗:

â ∈ arg max
a∈A(x)

(
Q̂
Ni

i (x, a)+Rmax(H − i)

√
2 ln n̄

Ni
a(x)

)
, (2.3)

where

Q̂
Ni

i (x, a)= 1

Ni
a(x)

Ni
a(x)∑
j=1

[
R′
(
x, a,wa

j

)+ γ V̂
Ni+1
i+1

(
f
(
x, a,wa

j

))]
. (2.4)

• Update Q-function estimate for a = â using simulated next state
f (x, â,wâ

Ni
â
(x)+1

):

Mi(x, â)← Mi(x, â)

+R′
(
x, â,wâ

Ni
â
(x)+1

)+ V̂
Ni+1
i+1

(
f
(
x, â,wâ

Ni
â
(x)+1

))
,

Ni
â
(x)← Ni

â
(x)+ 1,

Q̂
Ni

i (x, â)← Mi(x, â)

Ni
â
(x)

.

• n̄← n̄+ 1.

Output:

V̂
Ni

i (x)=
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a). (2.5)

Fig. 2.2 Upper confidence bound (UCB) sampling algorithm description

then iterate as follows (see Loop in Fig. 2.2). The next action to sample is the one
that achieves the maximum among the current estimates of Q∗

0(x, a) plus its current

upper confidence bound (cf. (2.3)), where the estimate Q̂N0
0 (x, a) is given by the
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Fig. 2.3 Graphical illustration of a sequence of recursive calls made in Initialization of the UCB
sampling algorithm, where each circle corresponds to a simulated state, each arrow with associated
action signifies a sampling for the action (and a recursive call), and the boldface number near each
arrow indicates the sequencing for the recursive calls (for simplicity, an entire Loop process is
signified by a single number)

sample mean of the immediate reward plus V ∗
1 -values (multiplied by the discount

factor) at all of the simulated next states (cf. Eq. (2.4)).
Among the N0 samples for state x, N0

a (x) denotes the number of samples using
action a. If the sampling is done appropriately, we might expect that N0

a (x)/N0 pro-
vides a good estimate of the likelihood that action a is optimal in state x, because
in the limit as N0 →∞, the sampling scheme should lead to N0

a∗(x)/N0 → 1 if a∗
is the unique optimal action, or if there are multiple optimal actions, say a set A∗,
then

∑
a∈A∗ N0

a (x)/N0 → 1, i.e., {N0
a (x)/N0}a∈A(x) should converge to a probabil-

ity distribution concentrated on the set of optimal actions. For this reason, we use
a weighted (by N0

a (x)/N0) sum of the currently estimated value of Q∗
0(x, a) over

A(x) to approximate V ∗
0 (x) (cf. Eq. (2.5)). Ensuring that the weighted sum concen-

trates on a∗ as the sampling proceeds will ensure that in the limit the estimate of
V ∗

0 (x) converges to V ∗
0 (x).

The running-time complexity of the UCB adaptive sampling algorithm is
O((|A|N)H ), where N = maxi Ni . To see this, let Mi be the number of recur-
sive calls made to compute V̂ Ni

i in the worst case. At stage i, the algorithm makes
at most Mi = |A|NiMi+1 recursive calls (in Initialization and Loop), leading to
M0 = O((|A|N)H ). In contrast, backward induction has O(H |A||X|2) running-
time complexity. Therefore, the main benefit of the UCB sampling algorithm is
independence from the state space size, but this comes at the expense of exponential
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(versus linear, for backwards induction) dependence on both the action space and
the horizon length.

2.1.3 Alternative Estimators

We present two alternative estimators to the optimal reward-to-go value function
estimator given by Eq. (2.5) in the UCB sampling algorithm. First, consider the
estimator that replaces the weighted sum of the Q-function estimates in Eq. (2.5) by
the maximum of the estimates, i.e., for i < H ,

V̂
Ni

i (x)= max
a∈A(x)

Q̂
Ni

i (x, a). (2.6)

For the non-adaptive case, it can be shown that this estimator is also asymptotically
unbiased, but with a finite-sample “optimistic” bias in the opposite direction as
the original estimator (i.e., upwards for maximization problems and downwards for
minimization problems such as the inventory control problem).

Next, consider an estimator that chooses the action that has been sampled the
most thus far in order to estimate the value function. It can be easily shown that this
estimator is less optimistic than the previous alternative, and so combining it with
the original estimator gives the following estimator:

V̂
Ni

i (x)=max

{
Q̂
Ni

i (x, â),
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a)

}
, â ∈ arg max

a

{
Ni
a(x)
}
,

(2.7)
which would again replace Eq. (2.5) in the algorithm. Intuitively, the rationale be-
hind combining via the max operator is that the estimator would be choosing the
best between two possible estimates of the Q-function.

It is conjectured that all of these alternatives are asymptotically unbiased, with
the estimator given by Eq. (2.6) having an “optimistic” bias (i.e., high for maxi-
mization problems, low for minimization problems). If so, valid, albeit conservative,
confidence intervals for the optimal value could also be easily derived by combining
the two oppositely biased estimators. Such a result can be established for the non-
adaptive versions of these estimators, but proving these results in our setting and
characterizing the convergence rate of the estimator given by Eq. (2.6) in a similar
manner as for the original estimator is considerably more difficult, so we restrict our
convergence analysis to the original estimator.

2.1.4 Convergence Analysis

Now we show the convergence properties of the UCB sampling algorithm. In par-
ticular, we show that the final estimate of the optimal value function generated by
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One-Stage Sampling Algorithm (OSA)

Input: state x ∈X and n≥ |A(x)|.

Initialization: Simulate next state f (x, a,wa
1 ),w

a
1 ∼U(0,1) for each a ∈A(x); set T x

a (n̄)= 1
∀a ∈A(x), n̄= |A(x)|, and

Q̃(x, a)=R′
(
x, a,wa

1

)+ γU
(
f
(
x, a,wa

1

)) ∀a ∈A(x),
where {wa

j } is the random number sequence for action a,
T x
a (n̄) is the number of times action a has been sampled thus far,

and n̄ is the overall number of samples thus far.

Loop until n̄= n:
• Generate wã∗

T x
â
(n̄)+1 ∼U(0,1) for current estimate of optimal action:

â ∈ arg max
a∈A(x)

(
Q̃(x, a)+Umax

√
2 ln n̄

T x
a (n̄)

)
,

where

Q̃(x, a)= 1

T x
a (n̄)

T x
a (n̄)∑
j=1

[
R′
(
x, a,wa

j

)+ γU
(
f
(
x, a,wa

j

))]
. (2.8)

• Update Q-function estimate for a = â via (2.8) using simulated next state
f (x, â,wâ

T x
â
(n̄)+1), with T x

â
(n̄)← T x

â
(n̄)+ 1.

• n̄← n̄+ 1.

Output:

Ṽ n(x)=
∑

a∈A(x)

T x
a (n)

n
Q̃(x, a). (2.9)

Fig. 2.4 One-stage sampling algorithm (OSA) description

the algorithm is asymptotically unbiased, and the bias can be shown to be bounded
by a quantity that converges to zero at rate O(

∑H−1
i=0

lnNi

Ni
).

We start with a convergence result for the one-stage approximation. Consider the
following one-stage sampling algorithm (OSA) in Fig. 2.4 with a stochastic value
function U defined over X, where U(x) for x ∈ X is a non-negative random vari-
able with unknown distribution and bounded above for all x ∈X. As before, every
sampling is done independently, and we assume that there is a black box that re-
turns U(x) once x is given to the black box. Fix a state x ∈X and index each action
in |A(x)| by numbers from 1 to |A(x)|. Consider an |A(x)|-armed bandit problem
where each a is a gambling machine. Successive plays of machine a yield “ban-
dit rewards” that are i.i.d. according to an unknown distribution ηa with unknown
expectation

Q(x,a)=E
[
R′(x, a,w)+ γE

[
U
(
f (x, a,w)

)]]
, w ∼U(0,1)
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and are independent across machines or actions. The term T x
a (n) signifies the num-

ber of times machine a has been played (or random number for action a has been
sampled) by OSA during the n plays. Define the expected regret ρ(n) of OSA after
n plays by

ρ(n)= V (x)n−
|A(x)|∑
a=1

Q(x,a)E
[
T x
a (n)

]
,

where V (x)=maxa∈A(x) Q(x, a), and let

Umax =max
x,a

Q(x, a)=max
x

V (x).

We now state a key theorem in [4], which will be the basis of our convergence
results for the OSA algorithm.

Theorem 2.1 For any x with |A(x)|> 1, if OSA is run on |A(x)|-machines having
arbitrary bandit reward distributions η1, . . . , η|A(x)| with finite Umax, then

ρ(n)≤
∑

a:Q(x,a)<V (x)

[
8U2

max lnn

V (x)−Q(x,a)
+
(

1+ π2

3

)(
V (x)−Q(x,a)

)]
,

where

V (x)= max
a∈A(x)

(
E
[
R′(x, a,w)+ γE

[
U
(
f (x, a,w)

)]])
, w ∼U(0,1), ∀x ∈X,

and Q(x,a) is the expected value of bandit rewards with respect to ηa .

Proof The proof is a slight modification of the proof of Theorem 1 in [4]. For
a ∈ A(x), define Δa := V (x)−Q(x,a) and Q̃m(x, a) = 1

m

∑m
j=1(R

′(x, a,wa
j )+

γU(f (x, a,wa
j ))). Let cr,s = Umax

√
(2 ln r)/s. Let Mt = a be the event that ma-

chine a is played at time t . For any machine corresponding to an action a, we find
an upper bound on T x

a (n) for any sequence of plays. For an arbitrary positive inte-
ger �, we have

T x
a (n) = 1+

n∑
t=|A(x)|+1

I {Mt = a}

≤ �+
n∑

t=|A(x)|+1

I
{
Mt = a, T x

a (t − 1)≥ �
}

≤ �+
n∑

t=|A(x)|+1

I
{
Q̃T x

a∗ (t−1)
(
x, a∗

)+ ct−1,T x
a∗ (t−1)

≤ Q̃T x
a (t−1)(x, a)+ ct−1,T x

a (t−1), T
x
a (t − 1)≥ �

}
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≤ �+
n∑

t=|A(x)|+1

I
{

min
0<s<t

(
Q̃s

(
x, a∗

)+ ct−1,s
)

≤ max
�≤sa<t

(
Q̃sa (x, a)+ ct−1,sa

)}

≤ �+
n∑
t=1

t−1∑
s=1

t−1∑
sa=�

I
{
Q̃s

(
x, a∗

)+ ct,s ≤ Q̃sa (x, a)+ ct,sa
}
. (2.10)

Next observe that if I {Q̃s(x, a
∗)+ ct,s ≤ Q̃sa (x, a)+ ct,sa } = 1, then at least one of

the following events must be true:

Q̃s

(
x, a∗

)≤ V (x)− ct,s , (2.11)

Q̃sa (x, a)≥Q(x,a)+ ct,sa , (2.12)

V (x) <Q(x,a)+ 2ct,sa . (2.13)

By using Hoeffding’s inequality [86] we can bound the probability of events (2.11)
and (2.12):

P
(
Q̃s

(
x, a∗

)≤ V (x)− ct,s
)≤ e−4 ln t = t−4,

P
(
Q̃sa (x, a)≥Q(x,a)+ ct,sa

)≤ e−4 ln t = t−4.

Note that for sa ≥ �(8U2
max ln t)/Δ2

a�, (2.13) cannot be true for any t , since

V (x)−Q(x,a)− 2ct,sa = V (x)−Q(x,a)− 2Umax
√

2 ln t/sa

≥ V (x)−Q(x,a)−Δa = 0.

Therefore, it follows that by taking �= � 8U2
max lnn
�2
a

� in (2.10), we have

E
[
T x
a (n)

] ≤ �+
n∑
t=1

t−1∑
s=1

t−1∑
sa=�

[
P
(
Q̃s

(
x, a∗

)≤ V (x)− ct,s
)

+ P
(
Q̃sa (x, a)≥Q(x,a)+ ct,sa

)]
≤
⌈

8U2
max lnn

Δ2
a

⌉
+

∞∑
t=1

t−1∑
s=1

t−1∑
sa=1

2t−4

≤ 8U2
max lnn

Δ2
a

+ 1+ 2
∞∑
t=1

t−2

≤ 8U2
max lnn

(V (x)−Q(x,a))2
+ 1+ π2

3
. (2.14)
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By the definition of ρ(n), we have

ρ(n) = V (x)

|A(x)|∑
a=1

T x
a (n)−

|A(x)|∑
a=1

Q(x,a)E
[
T x
a (n)

]

=
|A(x)|∑
a=1

E
[
T x
a (n)

](
V (x)−Q(x,a)

)

≤
∑

a:Q(x,a)<V (x)
E
[
T x
a (n)

](
V (x)−Q(x,a)

)
,

and the proof is completed by applying the bound given by (2.14). �

Now let φ(x) be the set of non-optimal actions at state x, given by φ(x) = {a |
Q(x,a) < V (x), a ∈ A(x)}, and whenever φ(x) �= ∅, we define the difference be-
tween the largest and the second largest expected bandit rewards by

α(x)= min
a∈φ(x)

(
V (x)−Q(x,a)

)
. (2.15)

Throughout the analysis, we assume that α(x) satisfies the following condition.

Assumption 1 There exists a constant C > 0 such that

inf
x∈Xα(x)≥ C.

Note that Assumption 1 is trivially satisfied if the state space X is finite.
The convergence of the OSA algorithm is summarized in the following lemma.

Lemma 2.2 Given a stochastic value function U defined over X with finite Umax,
suppose we run OSA with the input n for any x ∈X with A(x) > 1. If Assumption 1
is satisfied, then

E
[
Ṽ n(x)

]→ V (x) as n→∞.

Proof Observe that maxa(V (x)−Q(x,a))≤Umax and 0< α(x)≤Umax. Define

Ṽ (x)=
|A(x)|∑
a=1

T x
a (n)

n
Q(x, a).

Applying Theorem 2.1, we have

0 ≤ V (x)−E
[
Ṽ (x)

]= ρ(n)

n

≤ 8U2
max(|A(x)| − 1) lnn

nα(x)
+
(

1+ π2

3

)
(|A(x)| − 1)Umax

n
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≤ C1 lnn

n
+ C2

n
, (2.16)

for some constants C1 and C2, where the last inequality follows from Assump-
tion 1 and the fact that ρ(n)= 0 if φ(x)= ∅. From the definition of Ṽ n(x) given by
Eq. (2.9), it follows that

V (x)−E
[
Ṽ n(x)

] = V (x)−E
[
Ṽ (x)− Ṽ (x)+ Ṽ n(x)

]
= V (x)−E

[
Ṽ (x)

]
+E

[ ∑
a∈A(x)

T x
a (n)

n

(
Q(x,a)− Q̃(x, a)

)]
. (2.17)

Letting n→∞, the first term V (x)−E[Ṽ (x)] is bounded by zero from below with
convergence rate of O( lnn

n
) by (2.16). We show now that the second expectation

term is zero.
Note that for every finite n, T x

a (n) ≤ n <∞ and the event {T x
a (n)= k} is inde-

pendent of {wa
k+1, . . .}. Let μa(x)=E[R′(x, a,wa

j )+ γU(f (x, a,wa
j ))]. Then,

E

[ ∑
a∈A(x)

T x
a (n)

n

(
Q(x,a)− Q̃(x, a)

)]

=E

[ ∑
a∈A(x)

T x
a (n)

n

(
1

T x
a (n)

T x
a (n)∑
j=1

μa(x)

− 1

T x
a (n)

T x
a (n)∑
j=1

[
R′
(
x, a,wa

j

)+ γU
(
f
(
x, a,wa

j

))])]

= 1

n

( ∑
a∈A(x)

E
[
T x
a (n)

]
μa(x)

−
∑

a∈A(x)
E

[T x
a (n)∑
j=1

[
R′
(
x, a,wa

j

)+ γU
(
f
(
x, a,wa

j

))]])= 0,

by applying a result analogous to Wald’s equation.
Since

V (x)−E
[
Ṽ n(x)

]= V (x)−E
[
Ṽ (x)

]
,

the convergence follows directly from Eq. (2.17).
Therefore, because x was chosen arbitrarily, we have, for all x ∈X,

E
[
Ṽ n(x)

]→ V (x) as n→∞,

which concludes the proof of Lemma 2.2. �
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We now state the main convergence theorem for the UCB sampling algorithm,
whose proof is based upon an inductive application of Lemma 2.2.

Theorem 2.3 Assume that |A(x)| > 1 for all x ∈ X. Suppose the UCB sampling
algorithm is run with the input Ni for stage i = 0, . . . ,H − 1, and an arbitrary
initial state x ∈X. If Assumption 1 is satisfied, then

(i) limN0→∞ limN1→∞ · · · limNH−1→∞E[V̂ N0
0 (x)] = V ∗

0 (x).
(ii) Moreover, the bias induced by the algorithm is bounded by a quantity that con-

verges to zero at rate O(
∑H−1

i=0
lnNi

Ni
), i.e.,

V ∗
0 (x)−E

[
V̂
N0
0 (x)

]≤O

(
H−1∑
i=0

lnNi

Ni

)
, x ∈X.

Proof Part (i). From the definition of V̂ NH−1
H−1 ,

V̂
NH−1
H−1 (x) =

∑
a∈A(x)

1

NH−1

NH−1
a (x)∑
j=1

(
R′
(
x, a,wa

j

)+ γ V̂
NH

H

(
f
(
x, a,wa

j

)))

≤
∑

a∈A(x)

NH−1
a (x)

NH−1
(Rmax + γ · 0)=Rmax, x ∈X.

Similarly for V̂ NH−2
H−2 , we have

V̂
NH−2
H−2 (x) =

∑
a∈A(x)

1

NH−2

NH−2
a (x)∑
j=1

(
R′
(
x, a,wa

j

)+ γ V̂
NH−1
H−1

(
f
(
x, a,wa

j

)))

≤
∑

a∈A(x)

NH−2
a (x)

NH−2
(Rmax + γRmax)=Rmax(1+ γ ), x ∈X.

Continuing this backwards, we have for all x ∈X and i = 0, . . . ,H − 1,

V̂
Ni

i (x)≤Rmax

H−i−1∑
j=0

γ j ≤Rmax(H − i).

Therefore, from Lemma 2.2 with Umax = Rmax(H − i), we have for i =
0, . . . ,H − 1, and for arbitrary x ∈X,

E
[
V̂
Ni

i (x)
] Ni→∞−→ max

a∈A(x)
(
E
[
R′(x, a,w)+ γE

[
V̂
Ni+1
i+1

(
f (x, a,w)

)]])
.
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But for arbitrary x ∈X, because V̂ NH

H (x)= V ∗
H (x)= 0, x ∈X,

E
[
V̂
NH−1
H−1 (x)

] NH−1→∞−→ V ∗
H−1(x),

which in turn leads to E[V̂ NH−2
H−2 (x)] → V ∗

H−2(x) as NH−2 → ∞ for arbitrary
x ∈X, and by an inductive argument, we have

lim
N0→∞ lim

N1→∞· · · lim
NH−1→∞E

[
V̂
N0
0 (x)

]= V ∗
0 (x) for all x ∈X,

which concludes the proof of the first part of Theorem 2.3.

Part (ii). We now argue that the bias of the optimal function estimator in the
UCB sampling algorithm is bounded by a quantity that converges to zero at rate
O(
∑H−1

i=0
lnNi

Ni
). Define Ψi ∈ B(X) such that Ψi(x)=E[V̂ Ni

i (x)] for all x ∈X and
i = 0, . . . ,H − 1 and ΨH(x)= V ∗

H (x)= 0, x ∈X. In the proof of Lemma 2.2 (see
Eq. (2.17)), we showed that for i = 0, . . . ,H − 1,

T (Ψi+1)(x)−Ψi(x)≤O

(
lnNi

Ni

)
, x ∈X,

where T is defined in Eq. (1.18). Therefore, we have

T (Ψ1)(x)−Ψ0(x)≤O

(
lnN0

N0

)
, x ∈X. (2.18)

and

Ψ1(x)≥ T (Ψ2)(x)−O

(
lnN1

N1

)
, x ∈X. (2.19)

Applying the T -operator to both sides of (2.19), and using the monotonicity prop-
erty of T , we have

T (Ψ1)(x)≥ T 2(Ψ2)(x)−O

(
lnN1

N1

)
, x ∈X. (2.20)

Therefore, combining (2.18) and (2.20) yields

T 2(Ψ2)(x)−Ψ0(x)≤O

(
lnN0

N0
+ lnN1

N1

)
, x ∈X.

Repeating this argument yields

T H (ΨH )(x)−Ψ0(x)≤O

(
H−1∑
i=0

lnNi

Ni

)
, x ∈X. (2.21)
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Observe that T H (ΨH )(x)= V ∗
0 (x), x ∈X. Rewriting (2.21), we finally have

V ∗
0 (x)−E

[
V̂
N0
0 (x)

]≤O

(
H−1∑
i=0

lnNi

Ni

)
, x ∈X,

and we know that V ∗
0 (x) − E[V̂ N0

0 (x)] ≥ 0, x ∈ X. Therefore, it implies that
the worst possible bias is bounded by the quantity that converges to zero at rate

O(
∑H−1

i=0
lnNi

Ni
). �

2.1.5 Numerical Example

To illustrate the algorithm, we consider some computational experiments on a finite-
horizon inventory control problem with lost sales. The objective is to find the (non-
stationary) policy to minimize expected costs, which comprise holding, order, and
penalty costs. Demand is a discrete random variable. Given an inventory level, or-
ders are placed and received, demand is realized, and the new inventory level for the
period is calculated, on which costs are charged.

Let Dt denote the demand in period t , xt the inventory level at the end of period
t (which is the inventory at the beginning of period t + 1), at the order amount in
period t , p the per-period per-unit demand lost penalty cost, h the per-period per-
unit inventory holding cost, K the fixed (set-up) cost per order, and M the maximum
inventory level (storage capacity), i.e., xt ∈ {0,1, . . . ,M}. Then the state transition
follows the dynamics:

xt+1 = (xt + at −Dt)
+.

The objective function is the expectation of the total cost given by

H−1∑
t=0

[
K · I {at > 0} + hx+t+1 + px−t+1

]
,

where x0 is the starting inventory level, H is the number of periods (time horizon).
Note that we are ignoring per-unit order costs for simplicity.

We consider two versions: (i) fixed order amount q; (ii) any (integral) order
amount (up to capacity). In both cases, if the order amount would bring the in-
ventory level above the inventory capacity M , then that order cannot be placed, i.e.,
that order amount action is not feasible in that state. In case (i), there are just two
actions (order or no order), whereas in case (ii), the number of actions depends on
the capacity limit.

The examples presented here were chosen to be simple enough to allow the
optimal solution to be determined by standard techniques once the distribution is
given, so that the performance of the algorithms could be evaluated. However, the
algorithms themselves use no knowledge of the underlying probability distributions
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UCB Sampling Algorithm for Minimization Problems

Input: stage i �=H , state x ∈X, Ni >maxx∈X |A(x)|.
(For i =H , V̂ NH

H (x)= V
NH

H (x)= 0.)

Initialization: Simulate wa
1 ∼U(0,1) for each a ∈A(x);

set Ni
a(x)= 1 ∀a ∈A(x), n̄= |A(x)|, and

Q̂
Ni

i (x, a)=R′
(
x, a,wa

1

)+ γ V̂
Ni+1
i+1

(
f
(
x, a,wa

1

)) ∀a ∈A(x).

Loop until n̄=Ni :
• Sample wâ

Ni
â
(x)+1

∼U(0,1) for current estimate of optimal action a∗:

â ∈ arg min
a∈A(x)

(
Q̂
Ni

i (x, a)− (H − i)

√
2 ln n̄

Ni
a(x)

)
,

where

Q̂
Ni

i (x, a)= 1

Ni
a(x)

Ni
a(x)∑
j=1

[
R′
(
x, a,wa

j

)+ γ V̂
Ni+1
i+1

(
f
(
x, a,wa

j

))]
. (2.22)

• Update Q̂Ni

i (x, â) estimate via (2.22) using simulated next state

f (x, â,wâ
T x
â
(n̄)+1), with Ni

â
(x)←Ni

â
(x)+ 1.

• n̄← n̄+ 1.

Output:

V̂
Ni

i (x)=
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a). (2.23)

Fig. 2.5 Modified UCB algorithm for minimization problems

driving the randomness in the systems, specifically in this case the demand distri-
bution. Furthermore, there is no structural knowledge on the form of the optimal
policy.

In actual implementation, a slight modification is required for this example, be-
cause it is a minimization problem, whereas the UCB sampling algorithm was writ-
ten for a maximization problem. Conceptually, the most straightforward way would
be to just take the reward as the negative of the cost function. However, we instead
leave the problem as a minimization, in which case we need to replace the “max”
operator with the “min” operator and the addition with subtraction in (2.3):

â ∈ arg min
a∈A(x)

(
Q̂
Ni

i (x, a)− (H − i)

√
2 ln n̄

Ni
a(x)

)
,

where Rmax has been replaced by 1, because empirical results indicated that this
“unscaled” version exhibited better performance for this particular inventory control
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problem. The explicit modified UCB algorithm for minimization problems is given
in Fig. 2.5.

The alternative estimators would then be obtained by replacing the final estimator
given by Eq. (2.23) in Fig. 2.5 by the following, corresponding to Eqs. (2.6) and
(2.7), respectively:

V̂
Ni

i (x) = min
a∈A(x) Q̂

Ni

i (x, a), (2.24)

V̂
Ni

i (x) = min

{
Q̂
Ni

i (x, â),
∑

a∈A(x)

Ni
a(x)

Ni

Q̂
Ni

i (x, a)

}
, (2.25)

where the operator in defining â ∈ arg maxa{Ni
a(x)} remains a maximization opera-

tion.
With K = 0 (no fixed order cost), the optimal order policy is easily solvable

without dynamic programming, because the periods are decoupled, and the problem
reduces to solving a single-period inventory optimization problem. In case (i), the
optimal policy follows a threshold rule, in which an order is placed if the inventory
is below a certain level; otherwise, no order is placed. The threshold (order point) is
given by

s = min
x≥0

{
x : hE[(x + q −D)+

]+ pE
[
(D − q − x)+

]≥ hE
[
(x −D)+

]
+ pE

[
(D − x)+

]}
,

i.e., one orders in period t if xt < s (assuming that xt + q ≤ M ; also, if the set
is empty, then take s =∞, i.e., an order will always be placed). In case (ii), the
problem becomes a newsboy problem, with a base-stock (order up to) solution given
by

S = F−1(p/(p+ h)
)
,

i.e., one orders (S − xt )
+ in period t (with the implicit assumption S ≤M).

For theK > 0 case (i), the optimal policy is again a threshold (order point) policy,
but the order point is non-stationary, whereas in case (ii), the optimal policy is of the
(s, S) type, again non-stationary. To obtain the true solutions, standard backwards
induction was employed, using knowledge of the underlying demand distribution.

For the numerical experiments, we used the following parameter settings: hori-
zon H = 3; capacity M = 20; initial inventory x0 = 5; demand Dt ∼ DU(0,9)
(discrete uniform); holding cost h= 1; penalty cost p = 1 and p = 10; fixed order
cost K = 0 and K = 5; fixed order amount for case (i): q = 10. Note that since the
order quantity is greater than the maximum demand for our values of the parameters,
i.e., q >Dt always, placing an order guarantees no lost sales.

Tables 2.1 and 2.2 give the performances of these estimators for each of the
respective cases (i) and (ii), including the optimal value and policy parameters. Fig-
ures 2.6, 2.7, 2.8, and 2.9 show the convergence of the estimates as a function of



36 2 Multi-stage Adaptive Sampling Algorithms

Table 2.1 Value function estimate for the inventory control example case (i) as a function of the
number of samples at each state: H = 3,M = 20, x0 = 5, Dt ∼ DU(0,9), q = 10, h = 1, where
each entry represents the mean based on 30 independent replications (standard error in parentheses)

(K,p) Optimal N Estimator 1 Estimator 2 Estimator 3

K = 0
p = 1

10.440
s = 0

4 15.03 (0.29) 9.13 (0.21) 9.56 (0.32)

8 12.82 (0.16) 10.21 (0.10) 10.30 (0.10)

16 11.75 (0.09) 10.33 (0.08) 10.38 (0.08)

32 11.23 (0.06) 10.45 (0.06) 10.49 (0.06)

K = 0
p = 10

24.745
s = 6

4 30.45 (0.87) 19.98 (0.79) 20.48 (0.82)

8 28.84 (0.49) 23.09 (0.55) 23.68 (0.52)

16 26.69 (0.38) 23.88 (0.44) 23.94 (0.45)

32 26.12 (0.14) 24.73 (0.19) 24.74 (0.18)

K = 5
p = 1

10.490
s1 = 0
s2 = 0
s3 = 0

4 18.45 (0.29) 10.23 (0.21) 10.41 (0.22)

8 14.45 (0.15) 10.59 (0.10) 10.62 (0.10)

16 12.48 (0.10) 10.51 (0.10) 10.52 (0.10)

32 11.47 (0.07) 10.46 (0.06) 10.46 (0.06)

K = 5
p = 10

31.635
s1 = 6
s2 = 6
s3 = 5

4 37.52 (0.98) 26.42 (0.88) 26.92 (0.89)

8 36.17 (0.43) 30.13 (0.49) 30.41 (0.51)

16 33.81 (0.40) 30.76 (0.43) 30.80 (0.43)

32 33.11 (0.16) 31.62 (0.22) 31.64 (0.22)

the number of samples at each stage for each of the respective cases (i) and (ii) con-
sidered. In each table and figure, estimator 1 stands for the original estimator using
Eq. (2.23), and estimators 2 and 3 refer to the estimators using Eqs. (2.24) and (2.25)
with a∗ ∈ arg maxa{Ni

a(x)} in place of Eq. (2.23), respectively. The results indicate
convergence of all three estimators, with the two alternative estimators providing
superior empirical performance over the original estimator. We conjecture that this
is due to the fact that the original estimator’s use of a weighted average is too con-
servative, thus leading to unnecessarily slow convergence. We suspect this would be
the case for the non-adaptive sampling version using a weighted average estimator,
too.

Choosing an appropriate sample size is critical in practical applications. The em-
pirical performance of the two alternative estimators indicates that a heuristic stop-
ping rule for choosing the number of samples at each stage could be based on these
two estimates, which showed rapid convergence in the numerical examples. This
convergence implies that in Eq. (2.7), the first term in the “max” operator dominates
the second term (i.e., the original estimator), and the actions that have been sampled
the most almost “always” yield the largest Q-function values; in other words, at this
point, estimators 2 and 3 are “almost” the same, so if they are biased in opposite di-
rections, they must have reached a sample size at which they are “nearly” unbiased.
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Table 2.2 Value function estimate for the inventory control example case (ii) as a function of the
number of samples at each state: H = 3,M = 20, x0 = 5, Dt ∼DU(0,9), h= 1, where each entry
represents the mean based on 30 independent replications (standard error in parentheses)

(K,p) Optimal N Estimator 1 Estimator 2 Estimator 3

K = 0
p = 1

7.500
S = 4

21 24.06 (0.16) 3.12 (0.17) 9.79 (0.21)

25 22.05 (0.12) 5.06 (0.12) 6.28 (0.19)

30 20.36 (0.11) 5.91 (0.09) 6.47 (0.09)

35 18.82 (0.11) 6.26 (0.10) 6.62 (0.11)

K = 0
p = 10

13.500
S = 9

21 29.17 (0.21) 6.04 (0.30) 13.69 (0.46)

25 28.08 (0.21) 9.28 (0.23) 12.06 (0.29)

30 27.30 (0.19) 11.40 (0.20) 13.28 (0.23)

35 26.06 (0.16) 12.23 (0.18) 13.07 (0.16)

K = 5
p = 1

10.490
s1 = 0, S1 = 0
s2 = 0, S2 = 0
s3 = 0, S3 = 0

21 33.05 (0.12) 8.73 (0.21) 18.62 (0.44)

25 29.99 (0.10) 10.96 (0.11) 11.79 (0.16)

30 27.45 (0.10) 11.22 (0.05) 11.52 (0.07)

35 25.33 ( 0.09) 10.96 (0.06) 11.12 (0.07)

K = 5
p = 10

25.785
s1 = 6, S1 = 9
s2 = 6, S2 = 9
s3 = 6, S3 = 9

21 39.97 (0.22) 17.78 (0.49) 26.76 (0.52)

25 39.01 (0.19) 22.68 (0.26) 25.09 (0.33)

30 38.03 (0.16) 24.35 (0.17) 25.45 (0.27)

35 36.89 (0.12) 24.71 (0.23) 25.51 (0.28)

Once this is the case, it may be preferable to perform more independent replications
at a particular action than to sample more actions (larger N ).

2.2 Pursuit Learning Automata Sampling

The second algorithm in the chapter is the pursuit learning automata (PLA) sampling
algorithm. We analyze the finite-time behavior of the PLA sampling algorithm, pro-
viding a bound on the probability that a given initial state takes the optimal action,
and a bound on the probability that the difference between the optimal value and
the estimate of it exceeds a given error. Similar to the UCB algorithm, the PLA
sampling algorithm constructs a sampled tree in a recursive manner to estimate the
optimal value at an initial state and incorporates an adaptive sampling mechanism
for selecting which action to simulate at each branch in the tree. In the PLA algo-
rithm, the action is determined by sampling from a probability distribution, which
is iteratively updated based on a probability estimate for the optimal action. We also
discuss how to apply the PLA sampling algorithm in the direct context of partially
observable MDPs (POMDPs).

The PLA sampling algorithm extends in a recursive manner (for MDPs) the pur-
suit algorithm from learning automata that is designed to solve (non-sequential)
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Fig. 2.6 Convergence of value function estimate for the inventory control example case (i) q = 10
as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),
h= 1,K = 0

stochastic optimization problems. A learning automaton is associated with a finite
set of actions (candidate solutions) and updates a probability distribution over the set
by iterative interaction with an environment and takes (samples) an action accord-
ing to the newly updated distribution. The environment provides a certain reaction
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Fig. 2.7 Convergence of value function estimate for the inventory control example case (i) q = 10
as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),
h= 1,K = 5

(reward) to the action taken by the automaton, where the reaction is random and the
distribution is unknown to the automaton. The automaton’s aim is to learn to choose
the action that yields the highest average reward. In the pursuit algorithm, the au-
tomaton pursues the current best action, which is estimated using sample average



40 2 Multi-stage Adaptive Sampling Algorithms

Fig. 2.8 Convergence of value function estimate for the inventory control example case (ii) as a
function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼DU(0,9), h = 1,
K = 0

rewards, by increasing the probability of selecting that action while decreasing the
probability of selecting all other actions.

Since learning automata are well-known adaptive decision-making devices op-
erating in unknown random environments, the PLA sampling algorithm’s sampling
process of taking an action is adaptive at each stage. At each given state in a given
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Fig. 2.9 Convergence of value function estimate for the inventory control example case (ii) as
a function of the number of samples at each state: H = 3,M = 20, x0 = 5,Dt ∼ DU(0,9),
h= 1,K = 5

stage, a fixed sampling budget is allocated among feasible actions as in the UCB
sampling algorithm, and the budget is used with the current probability estimate for
the optimal action. A simulated state corresponds to an automaton and updates cer-
tain functions (including the probability distribution over the action space) at each
iteration of the algorithm.
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Based on the finite-time analysis of the pursuit algorithm, we analyze the finite-
time behavior of the PLA sampling algorithm, providing:

(i) a bound on the probability that the initial state at stage 0 takes the optimal
action, in terms of sampling parameters of the PLA sampling algorithm, and

(ii) a bound on the probability that the difference between the estimate of V ∗
0 (x0)

and V ∗
0 (x0) exceeds a given error.

2.2.1 Algorithm Description

Figure 2.10 presents the PLA sampling algorithm for estimating V ∗
i (x) for a given

state x. The inputs to the algorithm are similar to the UCB algorithm: a state x ∈
X and the stage i, plus sampling parameters Ni > 0 and μi ∈ (0,1), where the
latter is particular to the PLA sampling algorithm and the former does not require
sampling every action at least once, as in the UCB algorithm. The output is the same
as in the UCB algorithm: V̂ Ni

i (x), an estimate of V ∗
i (x), the optimal reward-to-go

value for state x and stage i, where V̂ NH

H (x) = V
NH

H (x) = 0 ∀NH,x ∈ X, but it is
estimated using theQ-function value at the estimated optimal action (cf. Eq. (2.29)),
somewhat analogous to the UCB algorithm alternative estimator given by Eq. (2.7).

As in the UCB sampling algorithm, whenever V̂
Ni′
i′ (y) (for future periods i′ > i

and simulated next states y) is encountered in the Loop portion of the algorithm
at (2.26), a recursive call is required. The initial call to the algorithm is done with
stage i = 0, the initial state x0, N0, and μ0, and every sampling is independent of
previous samplings.

As in the UCB sampling algorithm, the PLA sampling algorithm builds a sam-
pled tree of depth H , with the root node being the initial state x0 at stage 0 and a
branching factor of Ni at each level i (level 0 corresponds to the root). The root
node x0 initializes the probability distribution over the action space Px0 as the uni-
form distribution (see the Initialization step in the PLA sampling algorithm). At
each iteration in the Loop step, an action is sampled from the probability distri-
bution Px0(k) and a random number wk is generated independently (an action and
a random number together corresponding to an edge in the tree). For the sampled
action a(k) ∈A(x0), the Q-function estimate is updated using the simulated reward
R′(x0, a(k),wk) and next state f (x0, a(k),wk), and the count variable N0

a(k)(x0) is

incremented, where a recursive call is made to estimate V̂ N1
1 at the simulated next

state. This is followed by updating the estimate of the optimal action—an action
that achieves the current best Q-function value (cf. (2.27))—and then updating the
probability distribution Px0(k) in the direction of the current estimate of the optimal
action â (cf. (2.28)) by adding μi to its probability mass and subtracting a propor-
tional amount from all other actions. This “pursuit” of the current best action gives
the original algorithm its name in its non-recursive one-stage original version. After
N0 iterations, the algorithm estimates the optimal value V ∗

0 (x0) by the Q-function
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Pursuit Learning Automata (PLA) Sampling Algorithm

Input: stage i < H , state x ∈X, Ni > 0, μi ∈ (0,1).
(For i =H , V̂ NH

H (x)= V
NH

H (x)= 0.)

Initialization: Set Px(0)(a) = 1/|A(x)|,Ni
a(x)= 0,Mi(x, a)= 0 ∀a ∈A(x);

k = 0.

Loop until k =Ni :
• Sample a(k)∼ Px(k), wk ∼U(0,1).
• Update Q-function estimate for a = a(k) only:

Mi

(
x, a(k)

)←Mi

(
x, a(k)

)
+R′

(
x, a(k),wk

)+ V̂
Ni+1
i+1

(
f
(
x, a(k),wk

))
, (2.26)

Ni
a(k)(x)←Ni

a(k)(x)+ 1,

Q̂
Ni

i

(
x, a(k)

)← M
Ni

i (x, a(k))

Ni
a(k)(x)

.

• Update optimal action estimate: (ties broken arbitrarily)

â ∈ arg max
a∈A(x)

Q̂
Ni

i (x, a). (2.27)

• Update probability distribution over action space:

Px(k + 1)(a)← (1−μi)Px(k)(a)+μiI {â = a} ∀a ∈A(x). (2.28)

• k← k + 1.

Output:

V̂
Ni

i (x)= Q̂
Ni

i (x, â). (2.29)

Fig. 2.10 Pursuit learning automata (PLA) sampling algorithm description

value at the currently estimated optimal action via Eq. (2.29), where

Q̂
N0
0 (x0, a)= 1

N0
a (x0)

∑
j :a(j)=a

[
R′(x0, a,wj )+ V̂

N1
1

(
f (x0, a,wj )

)]
,

∑
a∈A(x0)

N0
a (x0) = N0. Note that here for notational simplicity we have not as-

sociated the random number streams {wj } with actions, as in the UCB sampling
algorithm, where we used {wa

j }, a ∈A(x).
Analogous to the UCB sampling algorithm, the running-time complexity of the

PLA sampling algorithm is O(NH ) with N = maxi Ni , independent of the state
space size. (For some performance guarantees, the value N depends on the size of
the action space; see the next section.)
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2.2.2 Convergence Analysis

All of the estimated optimal value and Q-values in the current section refer to the
values from the Output step of the algorithm. The following lemma provides a
probability bound on the estimate of the Q-value relative to the true Q-value when
the estimate of the Q-value is obtained under the assumption that the optimal value
for the remaining horizon is known (so that the recursive call is not required).

Lemma 2.4 (Cf. [146, Lemma 3.1]) Given δ ∈ (0,1) and positive integer K such
that 6 ≤ K <∞, consider running the one-stage non-recursive PLA sampling al-
gorithm obtained by replacing (2.26) by

M
Ni

i (x, a)←M
Ni

i (x, a)+R′(x, a,wk)+ V ∗
i+1

(
f (x, a,wk)

)
(2.30)

with Ni > λ̄(K, δ) and 0<μi < μ̄i(K, δ), where

λ̄(K, δ)=
⌈

2K

ln l
ln

[
Kl

ln l

(
K

δ

) 1
K
]⌉
, μ̄i(K, δ)= 1− 2−1/λ̄(K,δ),

and l = 2|A(x)|
2|A(x)|−1 . Then for each action a ∈A(x), we have

P

(
Ni∑
j=0

I
{
a(j)= a

}≤K

)
< δ.

Theorem 2.5 Let {Xi, i = 1,2, . . .} be a sequence of i.i.d. non-negative uniformly
bounded random variables, with 0≤Xi ≤D and E[Xi] = μ ∀i, and let M ∈Z+ be
a positive integer-valued random variable bounded by L. Then for any given ε > 0
and n ∈Z+, we have

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi −μ

∣∣∣∣∣≥ ε,M ≥ n

)
≤ 2e−n(

D+ε
D

ln D+ε
D
− ε

D
).

Proof Define ΛD(τ) := eDτ−1−τD
D2 , and let τmax be a constant satisfying τmax �= 0

and 1+ (D + ε)τmax − eDτmax = 0 (see Fig. 2.11).
Let Yk =∑k

i=1(Xi −μ). It is easy to see that the sequence {Yk} forms a martin-
gale w.r.t. {Fk}, where Fj is the σ -field generated by {Y1, . . . , Yj }. Therefore, for
any τ > 0,

P

(
1

M

M∑
i=1

Xi −μ≥ ε,M ≥ n

)

= P(YM ≥Mε,M ≥ n)

= P
(
τYM −ΛD(τ)〈Y 〉M ≥ τMε −ΛD(τ)〈Y 〉M,M ≥ n

)
,
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Fig. 2.11 Sketch of
functions f1(τ )= eτD and
f2(τ )= 1+ τ(D + ε)

where

〈Y 〉n =
n∑

j=1

E
[
(�Yj )

2
∣∣Fj−1

]
, �Yj = Yj − Yj−1.

Now for any τ ∈ (0, τmax), and for any n1 ≥ n0, where n0, n1 ∈Z+,

τ(n1 − n0)ε ≥ eDτ − 1− τD

D2
(n1 − n0)D

2

≥ ΛD(τ)

[
n1∑
j=1

E
[
(�Yj )

2|Fj−1
]− n0∑

j=1

E
[
(�Yj )

2|Fj−1
]]
,

which implies that

τn1ε −ΛD(τ)〈Y 〉n1 ≥ τn0ε −ΛD(τ)〈Y 〉n0 ∀τ ∈ (0, τmax).

Thus for all τ ∈ (0, τmax),

P

(
1

M

M∑
i=1

Xi −μ≥ ε,M ≥ n

)

≤ P
(
τYM −ΛD(τ)〈Y 〉M ≥ τnε −ΛD(τ)〈Y 〉n,M ≥ n

)
≤ P
(
τYM −ΛD(τ)〈Y 〉M ≥ τnε −ΛD(τ)nD

2,M ≥ n
)

= P
(
eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D

2
,M ≥ n

)
.

It can be shown that (cf. Lemma 1 in [163, p. 505]) the sequence {Zt(τ ) =
eτYt−ΛD(τ)〈Y 〉t , t ≥ 1} with Z0(τ )= 1 forms a non-negative supermartingale. From
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the above inequality, it follows that

P

(
1

M

M∑
i=1

Xi −μ≥ ε,M ≥ n

)

≤ P
(
eτYM−ΛD(τ)〈Y 〉M ≥ eτnε−nΛD(τ)D

2)
≤ P
(

sup
0≤t≤L

Zt (τ )≥ eτnε−nΛD(τ)D
2
)

≤ E[Z0(τ )]
eτnε−nΛD(τ)D

2 by maximal inequality for supermartingales [163]

= e−n(τε−ΛD(τ)D
2). (2.31)

By using a similar argument, we can also show that

P

(
1

M

M∑
i=1

Xi −μ≤−ε,M ≥ n

)
≤ e−n(τε−ΛD(τ)D

2). (2.32)

Thus by combining (2.31) and (2.32), we have

P

(∣∣∣∣∣ 1

M

M∑
i=1

Xi −μ

∣∣∣∣∣≥ ε,M ≥ n

)
≤ 2e−n(τε−ΛD(τ)D

2). (2.33)

Finally, we optimize the right-hand side of (2.33) over τ . It is easy to verify that the
optimal τ ∗ is given by τ ∗ = 1

D
ln D+ε

D
∈ (0, τmax) and

τ ∗ε −ΛD

(
τ ∗
)
D2 = D+ ε

D
ln
D + ε

D
− ε

D
> 0.

Hence Theorem 2.5 follows. �

Lemma 2.6 Consider the non-recursive PLA sampling algorithm obtained by re-
placing (2.26) by

M
Ni

i (x, a)←M
Ni

i (x, a)+R′(x, a,wk)+ V ∗
i+1

(
f (x, a,wk)

)
. (2.34)

Assume Ni > λ(ε, δ) and 0<μi < μ∗i (ε, δ), where

λ(ε, δ)=
⌈

2Mε,δ

ln l
ln

[
lMε,δ

ln l

(
2Mε,δ

δ

)1/Mε,δ
]⌉
, (2.35)

with

Mε,δ =max

{
6,

⌈
RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH)− ε

⌉}
,
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l = 2|A(x)|/(2|A(x)| − 1), and μ∗i (ε, δ) = 1− 2−1/Ni . Consider a fixed i, x ∈ X,
ε > 0, and δ ∈ (0,1). Then, for all a ∈A(x) at the Output step,

P
(∣∣Q̂Ni

i (x, a)−Q∗
i (x, a)

∣∣≥ ε
)
< δ.

Proof For any action a ∈ A(x), let Ij (a) be the iteration at which action a is cho-

sen for the j th time, let Q̂Ni

i,k(x, a) be the current estimate of Q∗
i (x, a) at the kth

iteration, and let Ni,k
a (x) be the number of times action a is sampled up to the kth

iteration at x, i.e., Ni,k
a (x) =∑k

j=0 I {a(j) = a}. By the PLA sampling algorithm,

the estimation Q̂Ni

i,k(x, a) is given by (cf. (2.34))

Q̂
Ni

i,k(x, a)=
1

N
i,k
a (x)

N
i,k
a (x)∑
j=1

(
R′(x, a,wIj (a))+ V ∗

i+1

(
f (x, a,wIj (a))

))
. (2.36)

Since the sequence of random variables {wIj (a), j ≥ 1} is i.i.d., a straightforward
application of Theorem 2.5 yields

P
(∣∣Q̂Ni

i,k(x, a)−Q∗
i (x, a)

∣∣≥ ε, Ni,k
a (x)≥K

)
≤ 2e−K(

RmaxH+ε
RmaxH

ln RmaxH+ε
RmaxH

− ε
RmaxH

)
. (2.37)

Define the events

Ak =
{∣∣Q̂Ni

i,k(x, a)−Q∗
i (x, a)

∣∣≥ ε
}

and Bk =
{
Ni,k
a (x)≥K

}
.

By the law of total probability,

P(Ak)= P(Ak ∩Bk)+ P
(
Ak

∣∣Bc
k

)
P
(
Bc
k

)≤ P(Ak ∩Bk)+ P
(
Bc
k

)
.

Taking

K =
⌈

RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH)− ε

⌉
,

we get from (2.37) that P(Ak ∩Bk)≤ δ/2. On the other hand, by Lemma 2.4

P
(
Bc
k

)= P
(
Ni,k
a (x) < K

)
<
δ

2
for k > λ̄(K, δ/2) and 0<μi < 1− 2

− 1
λ̄(K, δ2 ) .

Therefore P(ANi
)= P(|Q̂Ni

i (x, a)−Q∗
i (x, a)| ≥ ε) < δ for Ni > λ(ε, δ) and 0 <

μi < μ∗i (ε, δ), where

λ(ε, δ) =
⌈

2Mε,δ

ln l
ln

[
lMε,δ

ln l

(
2Mε,δ

δ

)1/Mε,δ
]⌉
,

Mε,δ = max

{
6,

⌈
RmaxH ln(4/δ)

(RmaxH + ε) ln((RmaxH + ε)/RmaxH)− ε

⌉}
,
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μ∗i (ε, δ) = 1− 2
− 1

Ni < 1− 2−
1

λ(ε,δ) .

Since a ∈A(x) is arbitrary, the proof is complete. �

We now make an assumption for the purpose of the analysis. The assumption
states that at each stage, the optimal action is unique at each state. In other words,
the given MDP has a unique optimal policy. We will give a remark on this at the end
of this section.

Assumption 2 For all x ∈X and i = 0,1, . . . ,H − 1,

θi(x) :=Q∗
i

(
x, a∗

)−max
a �=a∗Q

∗
i (x, a) > 0,

where V ∗
i (x)=Q∗

i (x, a
∗).

Define θ := infx∈X,i=0,...,H−1 θi(x). Given δi ∈ (0,1), i = 0, . . . ,H − 1, define

ρ := (1− δ0)

H−1∏
i=1

(1− δi)
∏i

j=1 Nj . (2.38)

Lemma 2.7 Assume that Assumption 2 holds. Select Ni > λ( θ

2i+2 , δi) (see

Eq. (2.35)) and 0 <μi < μ∗i = 1− 2
− 1

Ni for a given δi ∈ (0,1), i = 0, . . . ,H − 1.
Then under the PLA sampling algorithm,

P

(∣∣V̂ N0
0 (x0)− V ∗

0 (x0)
∣∣> θ

2

)
< 1− ρ,

where ρ is given by Eq. (2.38).

Proof Let Xi
s be the set of sampled states in X by the algorithm at stage i. Suppose

for a moment that for all x ∈Xi+1
s , with some Ni+1,μi+1, and a given δi+1 ∈ (0,1),

P

(∣∣V̂ Ni+1
i+1 (x)− V ∗

i+1(x)
∣∣> θ

2i+2

)
< δi+1. (2.39)

Consider for x ∈Xi
s ,

Q̃
Ni

i (x, a)= 1

Ni
a(x)

Ni
a(x)∑
j=1

[
R′
(
x, a,wa

j

)+ V ∗
i+1

(
f
(
x, a,wa

j

))]
,

where {wa
j }, j = 1, . . . ,Ni

a(x) refers to the sampled random number sequence for
the sample execution of the action a in the algorithm. We find that for any sampled
x ∈Xi

s at stage i,
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Q̂
Ni

i (x, a)− Q̃
Ni

i (x, a)

= 1

Ni
a(x)

Ni
a(x)∑
j=1

(
V̂
Ni+1
i+1

(
f
(
x, a,wa

j

))− V ∗
i+1

(
f
(
x, a,wa

j

)))
.

Then under the assumption that (2.39) holds, for all a ∈A(x) at any sampled x ∈Xi
s

at stage i,

P

(∣∣Q̂Ni

i (x, a)− Q̃
Ni

i (x, a)
∣∣≤ θ

2i+2

)

≥ (1− δi+1)
Ni
a(x) ≥ (1− δi+1)

Ni+1 . (2.40)

This is because if for all wa
j ’s, j = 1, . . . ,Ni

a(x),

∣∣V Ni+1
i+1

(
f
(
x, a,wa

j

))− V ∗
i+1

(
f
(
x, a,wa

j

))∣∣≤ ε

for ε > 0, then

1

Ni
a(x)

Ni
a(x)∑
j=1

∣∣V Ni+1
i+1

(
f
(
x, a,wa

j

))− V ∗
i+1

(
f
(
x, a,wa

j

))∣∣≤ ε,

which further implies

1

Ni
a(x)

∣∣∣∣∣
Ni
a(x)∑
j=1

[
V
Ni+1
i+1

(
f
(
x, a,wa

j

))− V ∗
i+1

(
f
(
x, a,wa

j

))]∣∣∣∣∣≤ ε,

and therefore

P
(∣∣Q̂Ni

i (x, a)− Q̃
Ni

i (x, a)
∣∣≤ ε

)

≥
Ni
a(x)∏
j=1

P
(∣∣V Ni+1

i+1

(
f
(
x, a,wa

j

))− V ∗
i+1

(
f
(
x, a,wa

j

))∣∣≤ ε
)
.

From Lemma 2.6, for all a ∈ A(x), with Ni > λ(θ/2i+2, δi) and μi ∈ (0,1 −
2−1/Ni ) for δi ∈ (0,1),

P

(∣∣Q̃Ni

i (x, a)−Q∗
i (x, a)

∣∣> θ

2i+2

)
< δi, x ∈Xi

s. (2.41)

Combining (2.40) and (2.41),

P

(∣∣Q̂Ni

i (x, a)−Q∗
i (x, a)

∣∣≤ θ

2i+2
+ θ

2i+2

)
≥ (1− δi)(1− δi+1)

Ni+1 ,
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and this yields the result that under the supposition of (2.39), for any x ∈Xi
s ,

P

(∣∣Q̂Ni

i (x, a)−Q∗
i (x, a)

∣∣≤ θ

2i+1

)
≥ (1− δi)(1− δi+1)

Ni+1 .

This implies that at the Output step,

P

(
max
a∈A
∣∣Q̂Ni

i (x, a)−Q∗
i (x, a)

∣∣< θ

2

)
≥ (1− δi)(1− δi+1)

Ni+1 , x ∈Xi
s. (2.42)

From the definition of θ , if

max
a∈A
∣∣Q̂Ni

i (x, a)−Q∗
i (x, a)

∣∣< θ/2,

then Q̂Ni

i (x, a∗) > Q̂
Ni

i (x, a) for all a �= a∗ with a∗ = arg maxa∈AQ∗
i (x, a) (cf. the

proof of Theorem 3.1 in [146]). Therefore, by the definition of V̂ Ni

i (x), (V̂ Ni

i (x)=
maxa∈A Q̂Ni

i (x, a)= Q̂
Ni

i (x, a∗) and V ∗
i (x)=Q∗

i (x, a
∗)), with our choice of Ni >

λ( θ

2i+2 , δi) and μi ∈ (0,1− 2
− 1

Ni ), we have

P

(∣∣V̂ Ni

i (x)− V ∗
i (x)

∣∣> θ

2i+1

)
< 1− (1− δi)(1− δi+1)

Ni+1

if for all x ∈Xi+1
s , with some Ni+1,μi+1, and a given δi+1 ∈ (0,1),

P

(∣∣V̂ Ni+1
i+1 (x)− V ∗

i+1(x)
∣∣> θ

2i+2

)
< δi+1.

Now apply an inductive argument: since V̂
NH

H (x) = V ∗
H (x) = 0, x ∈ X, with

NH−1 > λ(θ/2H+1, δH−1)≥ λ(θ/2H , δH−1) and μH−1 ∈ (0,1− 2−1/NH−1),

P

(∣∣V̂ NH−1
H−1 (x)− V ∗

H−1(x)
∣∣> θ

2H

)
< δH−1, x ∈XH−1

s .

It follows that with NH−2 > λ(θ/2H , δH−2) and μH−2 ∈ (0,1− 2−1/NH−2),

P
(∣∣V̂ NH−2

H−2 (x)− V ∗
H−2(x)

∣∣> θ/2H−1)< 1− (1− δH−2)(1− δH−1)
NH−1

for x ∈XH−2
s and further follows that with NH−3 > λ(θ/2H−1, δH−3) and μH−3 ∈

(0,1− 2−1/NH−3),

P

(∣∣V̂ NH−3
H−3 (x)− V ∗

H−3(x)
∣∣> θ

2H−2

)

< 1− (1− δH−3)(1− δH−2)
NH−2(1− δH−1)

NH−2NH−1
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for x ∈XH−3
s . Continuing this way, we have

P

(∣∣V̂ N1
1 (x)− V ∗

1 (x)
∣∣> θ

22

)

< 1− (1− δ1)(1− δ2)
N2(1− δ3)

N2N3 × · · · × (1− δH−1)
N2···NH−1

for x ∈X1
s . Finally, with N0 > λ(θ/4, δ0) and μ0 ∈ (0,1− 2−1/N0),

P

(∣∣V̂ N0
0 (x0)− V ∗

0 (x0)
∣∣> θ

2

)

< 1− (1− δ0)(1− δ1)
N1 × · · · × (1− δH−1)

N1···NH−1 ,

which completes the proof. �

Theorem 2.8 Assume that Assumption 2 holds. Given δi ∈ (0,1), i = 0, . . . ,H − 1,
select Ni > λ(θ/2i+2, δi) and 0<μi < μ∗i = 1− 2−1/Ni , i = 1, . . . ,H − 1. If

N0 > λ(θ/4, δ0)+
⌈

ln 1
ε

ln 1
1−μ∗0

⌉

and 0 <μ0 <μ∗0 = 1− 2−1/λ(θ/4,δ0), then under the PLA sampling algorithm with
ρ in Eq. (2.38), for all ε ∈ (0,1),

P
(
Px0(N0)

(
a∗
)
> 1− ε

)
> ρ,

where a∗ ∈ arg maxa∈A(x0)
Q∗

0(x0, a).

Proof Define the event

E′(k)= {Px0(k)
(
a∗
)
> 1− ε

}
,

where a∗ = arg maxa∈AQ∗
0(x0, a). Let λ(θ/4, δ0)=K . Then,

P
(
E′(κ +K)

)≥ P
(
E′(κ +K)

∣∣E(K))P (E(K)), κ = 1,2, . . . ,

where the event E(K) is given as {maxa∈A |Q̂Ni

i (x, a)−Q∗
i (x, a)|< θ/2} at itera-

tion k =K .
By selecting N0 > K = λ(θ4 , δ0) and Ni > λ( θ

2i+2 , δi), i = 1, . . . ,H − 1, and
μi ’s for δi ∈ (0,1), P(E(K)) ≥ ρ by Lemma 2.7. We will obtain l such that
P(E′(κ +K)|E(K))= 1 if κ > l, proving the statement of the theorem.

From the choice ofK = λ(θ/4, δ0), at iterationN0 >K , for each non-optimal ac-
tion a �= a∗, Px0(N0)(a) is decremented by (1−μ0). Therefore, Px0(κ +K)(a∗)=
1−∑a �=a∗ Px0(K)(a)(1−μ0)

κ and
∑

a �=a∗ Px0(K)(a)(1−μ0)
κ < ε is satisfied if

κ > l = � ln ε
ln(1−μ∗0)�. �
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Based on the proof of Lemma 2.7, the following result follows immediately. We
skip the details.

Theorem 2.9 Assume that Assumption 2 holds. Given δi ∈ (0,1), i = 0, . . . ,H − 1

and ε ∈ (0, θ ], select Ni > λ( ε

2i+2 , δi),0 <μi < μ∗i = 1− 2
− 1

Ni , i = 0, . . . ,H − 1.
Then under the PLA sampling algorithm with ρ in Eq. (2.38),

P

(∣∣V̂ N0
0 (x0)− V ∗

0 (x0)
∣∣> ε

2

)
< 1− ρ.

From the statements of Lemma 2.7 and Theorems 2.8 and 2.9, the performance of
the PLA sampling algorithm depends on the value of θ . If θi(x) is very small or even
0 (failing to satisfy Assumption 2) for some x ∈ X, the PLA sampling algorithm
requires a very high sampling complexity to distinguish between the optimal action
and the second best action or multiple optimal actions if x is in the sampled tree
of the PLA sampling algorithm. In general, the larger θ is, the more effective the
algorithm will be (the smaller the sampling complexity). Therefore, in the actual
implementation of the PLA sampling algorithm, if multiple actions’ performances
are very close after “enough” iterations in the Loop portion, it would be advisable
to keep only one action among the competitive actions (transferring the probability
mass). The parameter θ can thus be viewed as a measure of problem difficulty.

Furthermore, to achieve a certain approximation guarantee at the root level of
the sampled tree (i.e., the quality of V̂ N0

0 (x0)), we need a geometric increase in the
accuracies of the optimal reward-to-go values for the sampled states at the lower
levels, making it necessary that the total number of samples at the lower levels
increases geometrically (Ni depends on 2i+2/θ ). This is because the estimate error
of V ∗

i (xi) for some xi ∈ X affects the estimate of the sampled states in the higher
levels in a recursive manner (the error in a level “adds up recursively”).

However, the probability bounds in Theorems 2.8 and 2.9 are obtained with
coarse estimation of various parameters/terms. For example, we used the worst-
case values of θi(x), x ∈ X, i = 0, . . . ,H − 1 and (RmaxH)2 for bounding
supx∈X V ∗

i (x), i = 0, . . . ,H − 1, and used conservative bounds in (2.40) and in
relating the probability bounds for the estimates at the two adjacent levels. Consid-
ering this, the performance of the PLA sampling algorithm should probably be more
effective in practice than the analysis indicates here.

2.2.3 Application to POMDPs

The simulation model we consider in this chapter covers the dynamics of partially
observable MDPs (POMDPs) with finite state, action, and observation spaces, as
such a POMDP can be reduced to the equivalent model of an information-state
MDP, where the state space is the set of all possible probability distributions over
the state space of the corresponding POMDP.
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PLA Sampling Algorithm for POMDPs

Input: stage i < H , information state Ii ∈Xi , Ni > 0, μi ∈ (0,1).
(For i =H , V̂ NH

H (x)= V
NH

H (x)= 0.)

Initialization: Set Px(0)(a) = 1/|A(x)|,Ni
a(x)= 0,Mi(x, a)= 0 ∀a ∈A(x);

k = 0.

Loop until k =Ni :
• Sample a(k)∼ Px(k), y ∼ Ii , z∼ P (·|y, a(k)), o∼O(·|z, a(k)).
• Obtain the information-state I ki+1: for y ∈X,

I ki+1(y)= ηO
(
o|y, a(k)) ∑

y′∈X
P
(
y|y′, a(k))Ii(y′).

• Update Q-function estimate for a = a(k) only:

Mi

(
x, a(k)

)← Mi

(
x, a(k)

)
+
∑
z∈X

r
(
x, a(k), z

)
I ki+1(z)+ V̂

Ni+1
i+1

(
I ki+1

)
,

Ni
a(k)(x)← Ni

a(k)(x)+ 1,

Q̂
Ni

i

(
x, a(k)

)← M
Ni

i (x, a(k))

Ni
a(k)(x)

.

• Update optimal action estimate: (ties broken arbitrarily)

â ∈ arg max
a∈A(x)

Q̂
Ni

i (x, a).

• Update probability distribution over action space:

Px(k + 1)(a)← (1−μi)Px(k)(a)+μiI {â = a} ∀a ∈A(x).
• k← k + 1.

Output: Return V̂ Ni

i (x)= Q̂
Ni

i (x, â).

Fig. 2.12 Modified PLA sampling algorithm description for POMDPs

Consider a POMDP model parameterized as follows: X is a finite set of states,
A(x) is a finite set of admissible actions for each x ∈X, O is a finite set of obser-
vations that provide incomplete state information, and I0 is the initial information-
state, i.e., a probability distribution over X (I0(x), x ∈ X denotes the probability
of being in state x ∈ X). At stage i, the system is in xi (where this state informa-
tion is unknown to the decision maker). The decision maker takes an action ai , the
system makes a transition to xi+1 by the probability P(xi+1|xi, ai), Ii represents
the decision maker’s knowledge of xi , and the decision maker obtains the reward of
r(xi, ai, xi+1). At stage i+1, the decision maker observes an observation generated
with the probability O(oi+1|xi+1, ai). The decision maker updates its information-
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Table 2.3 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (i) as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,
Dt ∼DU(0,9), h= 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K,p) Optimal N PLA UCB NMS

K = 0
p = 1

7.700 4 7.61 (0.28) 7.08 (0.29) 6.97 (0.30)

10 7.57 (0.12) 7.64 (0.10) 7.36 (0.18)

15 7.63 (0.09) 7.64 (0.08) 7.46 (0.14)

25 7.70 (0.08) 7.68 (0.08) 7.66 (0.11)

K = 0
p = 10

16.318 4 14.40 (0.44) 13.13 (0.77) 12.98 (0.50)

10 16.15 (0.23) 16.58 (0.23) 14.30 (0.35)

15 16.17 (0.24) 16.34 (0.14) 14.69 (0.35)

25 16.26 (0.16) 16.45 (0.15) 15.86 (0.20)

K = 5
p = 1

10.490 4 10.46 (0.27) 10.84 (0.36) 10.05 (0.29)

10 10.72 (0.10) 10.94 (0.13) 10.50 (0.22)

15 10.52 (0.09) 10.80 (0.09) 10.70 (0.16)

25 10.66 (0.07) 10.70 (0.05) 10.54 (0.12)

K = 5
p = 10

27.322 4 24.48 (0.51) 22.19 (0.76) 21.97 (0.72)

10 26.25 (0.31) 27.00 (0.24) 24.28 (0.49)

15 26.55 (0.25) 26.85 (0.23) 25.22 (0.42)

25 27.19 (0.08) 27.48 (0.08) 26.23 (0.33)

state by

Ii+1(y)= ηO(oi+1|y, ai)
∑
x∈X

P (y|x, ai)Ii(x), y ∈X,

where η is the normalizing constant. From this information-state update procedure,
we can induce the probability P(Ii+1|Ii, ai) and map this into a next-state func-
tion h : Ψ × [0,1] → XI , where Ψ = {(x, a)|x ∈ XI ,a ∈ A(x)} and XI is the set
of all possible information-states. The reward function RI : Ψ × [0,1] → �+ is
similarly induced. Once the equivalent information-state MDP is constructed, the
PLA sampling algorithm can be applied to the information-state MDP. Figure 2.12
presents the modification of the PLA algorithm (cf. Fig. 2.10) applied to the unre-
duced POMDP model.

2.2.4 Numerical Example

In this section, we compare the performance of the PLA sampling algorithm with
UCB sampling and with the non-adaptive multi-stage sampling (NMS) algorithm
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Table 2.4 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (ii) as a function of the number of samples at each state: H = 3,M = 20, x0 = 5,
Dt ∼DU(0,9), h= 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K,p) Optimal N PLA UCB NMS

K = 0
p = 1

7.500 10 6.20 (0.19) 4.20 (0.30) 3.56 (0.28)

20 6.67 (0.14) 6.99 (0.12) 5.16 (0.18)

30 7.14 (0.09) 7.32 (0.07) 5.57 (0.16)

40 7.20 (0.06) 7.34 (0.05) 6.01 (0.16)

K = 0
p = 10

13.605 10 11.34 (0.28) 6.46 (0.45) 6.57 (0.56)

20 12.88 (0.26) 13.27 (0.24) 9.48 (0.54)

30 13.32 (0.17) 13.92 (0.15) 10.02 (0.34)

40 13.57 (0.14) 14.04 (0.14) 11.53 (0.20)

K = 5
p = 1

10.490 10 10.98 (0.20) 9.33 (0.32) 9.14 (0.40)

20 10.98 (0.10) 11.12 (0.09) 10.32 (0.20)

30 10.86 (0.11) 10.87 (0.05) 9.95 (0.19)

40 10.80 (0.07) 10.85 (0.05) 10.36 (0.18)

K = 5
p = 10

25.998 10 23.48 (0.37) 16.29 (0.71) 16.75 (0.74)

20 24.53 (0.19) 25.68 (0.16) 21.01 (0.47)

30 25.12 (0.13) 26.19 (0.15) 21.87 (0.34)

40 25.30 (0.14) 26.17 (0.10) 23.89 (0.22)

in [104], using the inventory control problem of Sect. 2.1.5. The numerical results
for UCB sampling are based on the alternative estimator 2 in Sect. 2.1.5 given by
(2.25). Similar to the PLA and UCB algorithms, NMS is also a simulation-tree based
method and estimates the value function at each visited state by taking the minimum
of the Q-value estimates. However, the difference between these algorithms is in
the way the actions are sampled at each decision period: both the PLA and the UCB
algorithms sample actions in an adaptive manner, whereas NMS simply samples
each action for a fixed number of times.

In the simulation experiments, we consider two cases for the action space, which
contains the possible order amounts to be placed: (i) at ∈ {0,5,10}, and (ii) at ∈
{0,2,4,6,8,10,12,14,16,18,20}, t = 0, . . . ,H − 1. All other parameter values
remain the same as in the examples of Sect. 2.1.5. For simplicity, the number of
samples at each stage, Ni , is taken to be the same for all i = 0, . . . ,H − 1, and this
quantity is denoted by N . Thus, the input parameter μi in the PLA algorithm is

chosen to be μi = 1− 2− 1
N , independent of stage i. In NMS, whenever a state x is

visited, each admissible action at x is sampled �N/|A(x)|� times.
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Fig. 2.13 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼DU(0,9), h= 1,K = 0

The results, based on 30 independent simulation runs for each algorithm, are re-
ported in Tables 2.3 and 2.4. Figures 2.13, 2.14, 2.15, and 2.16 plot the (averaged)
value function estimates of the algorithms as a function of the total number of peri-
ods simulated. These results indicate that the PLA and UCB algorithms have com-
parable performance, and both outperform NMS in almost all test cases considered.
Moreover, both the PLA and the UCB estimates also show a significant reduction in
the standard error over the NMS estimate.
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Fig. 2.14 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼DU(0,9), h= 1,K = 5

2.3 Notes

The expected regret analysis for multi-armed bandit models motivating the UCB
sampling algorithm goes back to [119] (see, also [27]). The specific index-based
policy used here was first proposed in [1], and the finite-time bounds are based on
the analysis in [4]. The assumption of bounded rewards can be relaxed by using a
result in [1], but the uniform logarithmic bound is not preserved.
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Fig. 2.15 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼DU(0,9), h= 1,K = 0

The pursuit algorithm designed with learning automata that motivated the PLA
sampling algorithm presented here for MDPs was introduced in [173] (see also [137]
and [155]). The finite-time analysis of the pursuit algorithm is based on [146], where
bounds on the number of iterations and the parameter of the learning algorithm for
a given accuracy of performance are provided. General introductory material on
learning automata can be found in the book [133] and in the overview survey article
[174], whereas application of learning automata for solving controlled (ergodic)
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Fig. 2.16 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
at each state: H = 3,M = 20, x0 = 5,Dt ∼DU(0,9), h= 1,K = 5

Markov chains in a model-free reinforcement learning (RL) framework for a loss
function defined on the chains can be found in the books [143, 144]. Controlling
ergodic Markov chains for the infinite-horizon average reward within a similar RL
framework is considered in [183]. A uniform bound on the empirical performance
of policies within a simulation model of (partially observable) MDPs is provided
in [99]. Reducing a POMDP to an equivalent information-state MDP model can be
found in [3].



60 2 Multi-stage Adaptive Sampling Algorithms

The UCB sampling algorithm was called the adaptive multi-stage sampling
(AMS) algorithm when first introduced in [42]; we chose to change the name in
the presentation here, because both of the algorithms in this chapter are multi-stage
algorithms with adaptive sampling. The PLA sampling algorithm was originally
called the recursive automata sampling algorithm (RASA) in [45]. Again, since
both algorithms in this chapter are recursive, we chose the more descriptive “pursuit
learning automata” (PLA) label.

The idea of multi-stage adaptive sampling has been adopted by the artificial in-
telligence (AI) game-playing community in the form of Monte Carlo tree search
(MCTS), where it has become perhaps the dominant approach, “due to its spectacu-
lar success in the difficult problem of computer Go” (abstract, [26]). The MCTS ap-
proach estimates the value of a potential move by building a sampled game tree us-
ing simulation, analogous to the multi-stage UCB sampling algorithm of Sect. 2.2.1
(see Fig. 2.3), the major difference being that because the state space is finite, nodes
may be revisited multiple times during the sampling process and hence values stored
to increase the computational efficiency substantially. In fact, what is declared “the
most popular algorithm in the MCTS family, the Upper Confidence Bound for Trees
(UCT) algorithm” (p. 7, Sect. 3.3, [26]) is acknowledged in [108] to be closely re-
lated to the multi-stage adaptive sampling UCB algorithm introduced in [42].



Chapter 3
Population-Based Evolutionary Approaches

In this chapter, we present population-based evolutionary algorithms for finding op-
timal (stationary) policies for infinite-horizon MDPs. Specifically, the goal is to find
a stationary policy π∗ ∈ Πs that maximizes the expected total discounted reward
given by Eq. (1.11). Note that the Bellman optimality principle, which can be used
to find π∗(x) via (1.13) by serving as the basis of the policy improvement step in
policy iteration (PI) via Eq. (1.18), must optimize over the entire action space A(x)
for each state x. This can pose a computational challenge for problems with large
(possibly uncountable) action spaces. The algorithms in this chapter are targeted for
such large action space problems where the policy improvement step in PI becomes
computationally prohibitive, and value iteration (VI) is also impractical. The com-
putational complexity of each iteration of our algorithms is polynomial in the size
of the state space, but unlike PI and VI, it is insensitive to the size of the action
space, making the algorithms most suitable for problems with relatively small state
spaces compared to the size of the action spaces. In the case of infinite action spaces,
our approach avoids the need for any discretization or truncation that could lead to
computational difficulties, either resulting in an action space that is too large or in a
solution that is not accurate enough.

The approach taken by the algorithms in this chapter directly searches the policy
space to avoid carrying out an optimization over the entire action space at each PI
step, and updates a population of policies as in genetic algorithms (GAs), using ap-
propriate analogous operations for the MDP setting. A key feature of the algorithms
is an elite policy that has a value function at least as good as the best value function
in the previous population. The other key feature is an action selection distribution
that generates mutations of policies to explore the policy space. The monotonicity
property of the elite policy and the exploration property of the action selection dis-
tribution ensure that the algorithms converge with probability one to a population in
which the elite policy is an optimal policy. A description of a general framework for
the population-based evolutionary approach is provided in Fig. 3.1, where Λk ⊂Πs

denotes the kth generation population of policies and n= |Λk|> 1 is the constant
population size.
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General Population-Based Evolutionary Framework

Input: MDP (X,A,A(·),P ,R), population size n > 1, initial population Λ0,
action selection distribution Px ∀x ∈X, other policy mutation parameters.

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
• Generate an Elite Policy π̂ k based on Λk .
• Exploration: Generate (n− 1) policies {π̃1, . . . , π̃n−1}

via mutation operators and action selection distribution.
• Next Population Generation: Λk+1 = {π̂ k, π̃1, . . . , π̃n−1}, i = 1, . . . , n− 1.
• k← k + 1.

Output: π̂ k an estimated optimal policy.

Fig. 3.1 Population-based evolutionary framework

We now formally define the key concepts described above. An elite policy π̂ ∈
Πs for Λ⊂Πs is a policy such that ∀π ∈Λ,

V π̂ (x)≥ V π(x) ∀x ∈X.

If π̂ k denotes an elite policy for generation k, then the monotonicity property is as
follows:

V π̂k+1
(x)≥ V π̂k (x) ∀x ∈X.

An action selection distribution Px for state x ∈X is a probability distribution over
the action space A(x). If the action space is discrete, then we will let Px(a), a ∈
A(x) denote the probability of action a, where

∑
a∈A(x)Px(a)= 1 and Px(a)≥ 0

for all a ∈A(x). If the action space is continuous, then Px(A) will denote the prob-
ability for the (open) set A⊂A(x).

We begin with a basic algorithm called evolutionary policy iteration (EPI) that
contains the main features of the population-based evolutionary approach and es-
tablish theoretical convergence. EPI uses an operation called policy switching to
generate an elite policy, and has primitive mutation operations to ensure exploration
of the policy space. Evolutionary random policy search (ERPS) builds upon the
ideas of EPI and enhances the approach considerably by using more sophisticated
mechanisms to generate an elite policy and to explore the policy space. The result-
ing algorithm is more computationally efficient, as well as being convergent in the
broader setting of uncountable action spaces. Both algorithms are tested on some
numerical examples, and are compared with PI to illustrate the substantial compu-
tational efficiency gains attainable by the approach.
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3.1 Evolutionary Policy Iteration

Evolutionary policy iteration (EPI) is an iterative algorithm that works with a set
(population) of policies and which eliminates the operation of maximization over
the entire action space in the policy improvement step of PI. Central to EPI is an
operation called policy switching, which generates an improved policy from a set of
given policies, with a computation time on the order of the size of the state space.
Each iteration of EPI consists of two main steps: generation of an elite policy by
policy switching, and exploration of the policy space by generating additional poli-
cies via mutation and policy switching. A high-level description of EPI is shown in
Fig. 3.2, where some steps (e.g., mutation) are described at a conceptual level, with
details provided in the following subsections. Convergence of the EPI algorithm is
independent of the initial population Λ0, due to the Policy Mutation step, which is
described in more detail in Sect. 3.1.2.

3.1.1 Policy Switching

Given a non-empty finite subset Λ⊂Πs , a policy πps generated by policy switching
with respect to Λ is given by

πps(x) ∈
{

arg max
π∈Λ

(
V π(x)

)
(x)
}
, x ∈X. (3.1)

An important property of policy switching is that the generated policy improves any
policy in Λ (Theorem 3 in [41]):

Theorem 3.1 Consider a non-empty finite subset Λ⊂Πs and the policy πps gen-
erated by policy switching with respect to Λ given by (3.1). Then, for all x ∈ X,
V πps(x)≥maxπ∈Λ V π(x).

In each step, EPI generates a policy π̂ k , called the elite policy with respect to
the current population Λk , which improves any policy in Λk via policy switching.
Thus, the new population Λk+1 contains a policy that is superior to any policy in
the previous population, i.e., the desired monotonicity property holds.

Corollary 3.2 Under EPI, for all k ≥ 0, V π̂k+1
(x)≥ V π̂k (x) ∀x ∈X.

Proof The proof is by induction. The base step (k = 0) is obvious from the definition
of π̂0 and π̂1 by Theorem 3.1. Assume that V π̂i (x) ≥ V π̂i−1

(x), x ∈ X, ∀i ≤ k.
Because EPI includes π̂ k in Λk+1, the elite policy at k + 1 is generated over a
population that contains π̂ k , implying that V π̂k+1

(x)≥ V π̂k (x), x ∈X. �

Because policy switching directly manipulates policies, eliminating the operation
of maximization over the entire action space, its computational-time complexity
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Evolutionary Policy Iteration (EPI)

Input: MDP (X,A,A(·),P ,R), population size n > 1, initial population Λ0,
action selection distribution Px ∀x ∈X,
policy mutation parameters q0 ∈ [0,1],Pl ∈ (0,1),Pg ∈ (0,1], Pl < Pg .

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
• Elite Policy via policy switching:

1. Obtain the value function V π for each π ∈Λk .
2. Generate an elite policy of Λk defined by

π̂ k(x) ∈
{

arg max
π∈Λk

(
V π(x)

)
(x)
}
, x ∈X. (3.2)

• Exploration via policy mutation and policy switching:

1. Generate n− 1 random subsets Si, i = 1, . . . , n− 1 of Λk

by selecting m ∈ {2, . . . , n− 1} with equal probability
and selecting m policies in Λk with equal probability.

2. Generate n− 1 policies πi, i = 1, . . . , n− 1 defined by

πi(x) ∈
{

arg max
π∈Si

(
V π(x)

)
(x)
}
, x ∈X. (3.3)

3. For each πi, i = 1, . . . , n− 1, generate mutated policy π̃ i from πi by
With probability q0 (local mutation),

changing πi(x) according to Px w.p. Pl for each x ∈X,
else (with probability 1− q0) (global mutation)

changing πi(x) according to Px w.p. Pg for each x ∈X.

• Next Population Generation: Λk+1 = {π̂ k, π̃1, . . . , π̃n−1}.
• k← k + 1.

Output: π̂ k an estimated optimal policy.

Fig. 3.2 Evolutionary policy iteration (EPI) description

is O(m|X|), where m = |Si |, independent of the action space size, leading to
O(nm|X|) complexity in the Exploration step, and hence O(nm|X|3) overall when
including the O(|X|2) complexity for the policy evaluation needed to compute V π .
On the other hand, applying a single-policy improvement step of PI directly to
each policy in Λk , instead of generating π(Si), i = 1, . . . , n − 1, is of complex-
ity O(n|X|2|A|).

After policy switching is used to generate an elite policy, n − 1 other policies
are generated by the two steps described in the second half of the Policy Switching
step. These policies are then mutated in the Policy Mutation step and combined
with the elite policy to form the next generation.
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3.1.2 Policy Mutation and Population Generation

Policy mutation takes a given policy, and for each state, alters the specified action
probabilistically. The main reason to generate mutated policies is to ensure explo-
ration of the entire policy space, making a probabilistic convergence guarantee pos-
sible. EPI uses two types of mutation—“local” and “global”—which are differenti-
ated by how much of the policy is likely to be changed (mutated). Local mutation
is intended to mimic local search of “nearby” policies, whereas global mutation al-
lows EPI to escape from local optima. A high mutation probability indicates that
many components of the policy vector are likely to be mutated, representing a more
global change, whereas a low mutation probability implies that very little mutation
is likely to occur, meaning a more localized perturbation. For this reason, we assume
that Pl " Pg , with Pl being very close to zero and Pg being very close to one. The
Policy Mutation step first determines whether the mutation will be local or global
with probability q0. If the policy π is globally (locally) mutated, for each state x,
π(x) is changed with probability Pg(Pl). If a mutation does occur, it is carried out
according to the action selection distribution Px , i.e., if the mutated policy is de-
noted by π ′, then the new policy is generated according to P(π ′(x)= a)= Px(a),
for all mutated states x (the actions for all other states remain unchanged). For ex-
ample, one simple Px is the uniform action selection distribution, in which case the
new (mutated) policy would randomly select a new action for each mutated state x
(independently) with equal probability over the set of admissible actions A(x). By
guaranteeing that every feasible action has a positive probability of being selected,
this mutation mechanism allows exploration of the entire policy space, guaranteeing
theoretical convergence of the algorithm.

3.1.3 Stopping Rule

Unlike in PI, even if the value functions for the two consecutive elite policies are
identical, this does not necessarily mean that the elite policy is an optimal policy,
so implementation of EPI requires specification of a stopping rule. The simplest
one is to stop the algorithm when a predefined maximum number of iterations is
reached. In the numerical experiments reported in Sect. 3.3, we use one of the most
common stopping rules in standard GAs, whereby the algorithm is stopped when no
further improvement in the value function is obtained for several, sayK , consecutive
iterations. Specifically, we stop the algorithm at iteration k when

V π̂k+m(x)= V π̂k (x) ∀x ∈X; m= 1,2, . . . ,K.

For increasing K , the probability of being in a neighborhood of the optimum in-
creases, and the elite policy at termination is optimal with more confidence. In par-
ticular, as K→∞, k→∞, since the algorithm will terminate when N =K , and if
N �=K , the value of k increases by one.
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3.1.4 Convergence Analysis

As mentioned earlier, the critical requirement for theoretical convergence is ensur-
ing that the optimal policy has a non-zero probability of being sampled from the
action sampling distribution.

Theorem 3.3 For finite X and q0 ∈ (0,1), if Pl > 0,Pg > 0, and ∃ an optimal
policy π∗ and ε > 0 s.t. Px(π∗(x))≥ ε∀x, then

V π̂k (x)→ V π∗(x), x ∈X w.p.1,

as k→∞, uniformly over X, regardless of Λ0.

Proof Let γ be the probability of generating an optimal policy by local mutation,
and let β the probability of generating an optimal policy by global mutation. Then,
letting π∗ denote an optimal policy in Πs , we have

γ ≥
∏
x∈X

PlPx

(
π∗(x)

)≥ (Plε)
|X| > 0,

β ≥
∏
x∈X

PgPx

(
π∗(x)

)≥ (Pgε)
|X| > 0,

since |X| <∞,Pl > 0,Pg > 0, and Px(π
∗(x)) > 0 ∀x. Thus, the probability of

generating an optimal policy by the Policy Mutation step is positive, independent
of Λ0.

Therefore, the probability that Λk does not contain an optimal policy (starting
from an arbitrary Λ0) is at most

(
(1− γ )(1− q0)

)(n−1)k(
(1− β)(q0)

)(n−1)k
,

which goes to zero as k→∞. By Lemma 3.2, once Λk contains an optimal policy,
Λk+m contains an optimal policy for any m ≥ 1, because the value of an optimal
policy at any state is the maximum among all policies in Πs . �

Theoretical convergence actually does not depend on the value of q0, since the
distinction between global and local mutation is arbitrary. If q0 does take one of its
extreme values (i.e., 0 or 1), then a corresponding mutation probability can be set
to zero, since it will never be selected, and the proof will go through similarly. For
example, if q0 = 0, then Pg > 0 ensures β > 0, and the probability that Λk does not
contain an optimal policy is at most (1− β)(n−1)k .

Of course, the condition on π∗ is difficult to verify in practice, since an optimal
policy is unknown a priori, but if the feasible action set is finite, the condition can
be easily satisfied.
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Corollary 3.4 For finite X and q0 ∈ (0,1), if Pl > 0,Pg > 0, and A(x) is finite
(and non-empty) for each x ∈X, and Px(a) > 0 ∀a ∈A(x) ∀x ∈X, then

V π̂k (x)→ V π∗(x), x ∈X w.p.1,

as k→∞, uniformly over X, regardless of Λ0.

Proof Since X is finite and A(x) is finite for each x ∈ X, the condition in Theo-
rem 3.3 is satisfied by simply taking ε =minx∈X mina∈A(x)Px(a). �

One possible simple choice for the action selection distribution Px is the (dis-
crete) uniform distribution on A(x), e.g., if the actions in A(x) are numbered
1,2, . . . , |A(x)|, then Px ∼ DU(1, |A(x)|), where ε = 1/(maxx∈X |A(x)|) in the
proof.

3.1.5 Parallelization

The EPI algorithm can be naturally parallelized to improve the convergence by
partitioning the policy space Πs into subsets of {Πi} such that

⋃
i Π

i = Πs and
Πi ∩Πj = ∅ ∀i �= j , and applying EPI to each Πi in parallel. Once each parallel
application of EPI terminates, the best policy π∗,i from each is taken, and policy
switching is applied to the set of best policies {π∗,i}. If the number of subsets in the
partition is N , the overall convergence of the algorithm A is faster by a factor of N .
We state a general result regarding such parallelization.

Theorem 3.5 For a partition {Πi} of Πs , let π∗,i denote an optimal policy in Πi

such that for all x ∈X, V π∗,i (x)≥maxπ∈Πi V π(x). Then, an optimal policy in Πs

is given by

π∗(x) ∈
{

arg max
{π∗,i }

(
V π∗,i (x)

)
(x)
}
, x ∈X.

Proof Via policy switching, π∗ improves the performance of each π∗,i , i.e.,
V π∗(x)≥max{π∗,i } V π∗,i (x), x ∈X, implying that π∗ is an optimal policy for Πs ,
since the partition covers the entire policy space. �

3.2 Evolutionary Random Policy Search

Evolutionary random policy search (ERPS) is an enhancement of EPI that improves
upon both the elite policy determination and the mutation step by solving a sequence
of sub-MDP problems defined on smaller policy spaces. As in EPI, each iteration of
ERPS has two main steps:
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1. An elite policy is generated by solving the sub-MDP problem constructed in the
previous iteration using a variant of the policy improvement technique called
policy improvement with reward swapping (PIRS).

2. Based on the elite policy, a group of policies is then obtained by using a “nearest
neighbor” heuristic and random sampling of the entire action space, from which
a new sub-MDP is created by restricting the original MDP problem (e.g., reward
structure, transition probabilities) to the current available subsets of actions.

In contrast to EPI, which treats policies as the most essential elements in the action
optimization step, and each elite policy is directly generated from a group of poli-
cies, in ERPS policies are regarded as intermediate constructions from which sub-
MDP problems are then constructed and solved. Furthermore, the “nearest neigh-
bor” heuristic provides a local search mechanism that leads to rapid convergence
once a policy is found in a small neighborhood of an optimal policy. Under appro-
priate assumptions, the sequence of elite policies converges with probability one to
an optimal policy, even for uncountable action spaces.

A high-level description of the ERPS algorithm is presented in Fig. 3.3. Detailed
discussion of each of the steps follows. The input parameters are similar to EPI, with
the search range parameters {ri} used to construct sub-MDPs replacing the mutation
parameters Pg/Pl .

3.2.1 Policy Improvement with Reward Swapping

As mentioned earlier, the idea behind ERPS is to randomly split a large MDP prob-
lem into a sequence of smaller, manageable MDPs, and to extract a convergent se-
quence of policies via solving these smaller problems. For a given policy population
Λ, if we restrict the original MDP (e.g., rewards, transition probabilities) to the sub-
sets of actions Γ (x) := {π(x) : π ∈Λ} ∀x ∈X, then a sub-MDP problem is induced
from Λ as GΛ := (X,Γ,Γ (·),P,R), where Γ :=⋃x Γ (x)⊂ A. Note that in gen-
eral Γ (x) is a multi-set, which means that the set may contain repeated elements;
however, we can always discard the redundant members and view Γ (x) as the set of
admissible actions at state x. Since ERPS is an iterative random search algorithm,
rather than attempting to solve GΛ exactly, it is more efficient to use approxima-
tion schemes and obtain an improved policy and/or good candidate policies with
worst-case performance guarantee.

Given a non-empty finite subset Λ⊂Πs , a policy πpirs generated by policy im-
provement with reward swapping (PIRS) with respect to the sub-MDP GΛ is given
by

πpirs(x) ∈ arg max
u∈Γ (x)

{
R(x,u)+ γ

∑
y∈X

P (x,u)(y)V̄ Λ(y)

}
, (3.4)

where V̄ Λ(x) = maxπ∈Λ V π(x) ∀x ∈ X. PIRS is a variation of the policy im-
provement step in PI (cf. (1.24)) performed on the “swapped reward” V̄ Λ(x) =
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maxπ∈Λ V π(x), hence the name policy improvement with reward swapping. Note
that the “swapped reward” V̄ Λ(x) may not be the value function corresponding to
any single policy in Λ. However, we now show that the elite policy generated by
PIRS improves any policy in Λ.

Theorem 3.6 Consider a non-empty finite subset Λ⊂Πs and the policy πpirs gen-
erated by PIRS with respect to GΛ given by (3.4). Then, for all x ∈ X, V πpirs(x) ≥
V̄ Λ(x). Furthermore, if πpirs is not optimal for the sub-MDP GΛ, then V πpirs(x) >

V̄ Λ(x) for at least one x ∈X.

Proof Let V0(x)=R(x,πpirs(x))+γ
∑

y∈X P (x,πpirs(x))(y)V̄
Λ(y), and consider

the sequence V1(x),V2(x), . . . generated by the recursion Vi+1(x) =
R(x,πpirs(x)) + γ

∑
y∈X P (x,πpirs(x))(y)Vi(y), ∀i = 0,1,2, . . . . At state x, by

definition of V̄ Λ(x), there exists π ∈Λ such that V̄ Λ(x)= V π(x). It follows that

V0(x) ≥ R
(
x,π(x)

)+ γ
∑
y∈X

P
(
x,π(x)

)
(y)V̄ Λ(y)

≥ R
(
x,π(x)

)+ γ
∑
y∈X

P
(
x,π(x)

)
(y)V π(y)

= V π(x)

= V̄ Λ(x),

and since x is arbitrary, we have

V1(x) = R
(
x,πpirs(x)

)+ γ
∑
y∈X

P
(
x,πpirs(x)

)
(y)V0(y)

≥ R
(
x,πpirs(x)

)+ γ
∑
y∈X

P
(
x,πpirs(x)

)
(y)V̄ Λ(y)

= V0(x).

By induction Vi+1(x)≥ Vi(x), ∀x ∈X and ∀i = 0,1,2, . . . . It is well known [12]
that the sequence V0(x),V1(x),V2(x), . . . generated above converges to V πpirs(x),

∀x ∈X. Therefore V πpirs(x)≥ V̄ Λ(x), ∀x ∈X. If V πpirs(x)= V̄ Λ(x), ∀x ∈X, then
PIRS reduces to the standard policy improvement on policy πpirs, and it follows that
πpirs satisfies Bellman’s optimality equation and is thus optimal for GΛ. Hence we
must have V πpirs(x) > V̄ Λ(x) for some x ∈X whenever πpirs is not optimal. �

According to Theorem 3.6, in each step of ERPS, the elite policy π̂ k generated
by PIRS with respect to the current sub-MDP GΛk

, as given by (3.5), improves any
policy in Λk . Thus, the new populationΛk+1 contains a policy that is superior to any
policy in the previous population. Since π̂ k is directly used to generate the (k+1)th
sub-MDP (see Fig. 3.3 and Sect. 3.2.2), the desired monotonicity property follows
by the same induction argument used to establish Lemma 3.2.
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Evolutionary Random Policy Search (ERPS)

Input: MDP (X,A,A(·),P ,R), population size n > 1, initial population Λ0,
action selection distribution Px ∀x ∈X, policy mutation parameters:
exploitation probability q0 ∈ [0,1], search range ri ,∀xi ∈X, i = 1, . . . , |X|.

Initialization: Set iteration count k = 0.
Construct initial sub-MDP as GΛ0 := (X,Γ0,Γ0(·),P ,R), Γ0 =⋃x Γ0(x).

Loop until Stopping Rule is satisfied:
• Elite Policy via policy improvement with reward swapping (PIRS):

1. Obtain the value function V π for each π ∈Λk .
2. Generate an elite policy of Λk using sub-MDP GΛk

:

π̂ k(x) ∈ arg max
u∈Γk(x)

{
R(x,u)+ γ

∑
y∈X

P (x,u)(y)
[

max
π∈Λk

V π (y)
]}
, x ∈X. (3.5)

• Exploration via mutation and local nearest neighbor search:
Generate n− 1 policies π̃ i , i = 1, . . . , n− 1, by

With probability q0 (exploitation)
choose the action π̃ i (x) in the neighborhood of π̂ k(x), x ∈X,
by using the “nearest neighbor” heuristic.

else (with probability 1− q0) (exploration)
choose the action π̃ i (x) ∈A(x) according to Px, x ∈X.

• Next Population Generation: Λk+1 = {π̂ k, π̃1, . . . , π̃n−1}.
• Next sub-MDP: GΛk+1 := (X,Γk+1,Γk+1(·),P ,R), Γk+1 =⋃x Γk+1(x).
• k← k + 1.

Output: π̂ k an estimated optimal policy.

Fig. 3.3 Evolutionary random policy search (ERPS) description

Corollary 3.7 Under ERPS, for all k ≥ 0,

V π̂k+1
(x)≥ V π̂k (x) ∀ x ∈X. (3.6)

We now provide an intuitive comparison between PIRS and policy switching,
which is used in EPI and directly operates upon individual policies in the popula-
tion via (3.1), with a computational complexity is O(n|X|). For a given group of
policies Λ, let Ω be the policy space for the sub-MDP GΛ; it is clear that the size of
Ω is on the order of n|X|. Policy switching only takes into account each individual
policy in Λ, while PIRS tends to search the entire space Ω , which is much larger
than Λ. Although it is not clear in general that the elite policy generated by PIRS
improves the elite policy generated by policy switching, since the policy improve-
ment step is quite fast and it focuses on the best policy updating directions, this
should be the case in many situations. For example, consider the case where one
particular policy, say π̄ , dominates all other policies in Λ. It is obvious that policy
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switching will choose π̄ as the elite policy; thus, no further improvement can be
achieved. In contrast, PIRS considers the sub-MDP GΛ; as long as π̄ is not optimal
for GΛ, a better policy can always be obtained.

The computational complexity of each iteration of PIRS is approximately the
same as that of policy switching, because the policy evaluation step of PIRS, which
is also used by policy switching, requires solution of n systems of linear equations,
and the number of operations required by using a direct method (e.g., Gaussian
elimination) is O(n|X|3), and this dominates the computational complexity of the
policy improvement step, which is at most O(n|X|2).

3.2.2 Exploration

According to Corollary 3.7, the performance of the elite policy at the current iter-
ation is no worse than the performances of the elite policies generated at previous
iterations; thus the PIRS step alone can be viewed as a local search procedure with
memory. As in EPI, to guarantee theoretical convergence, a mechanism to globally
explore the policy space is required. One possibility is to use unbiased random sam-
pling and choose at each iteration a sub-MDP problem by making use of the action
selection distribution Px . The sub-MDPs at successive iterations are then indepen-
dent of one another, and it is intuitively clear that we may obtain improved elite
policies after a sufficient number of iterations. Such an unbiased sampling scheme
is very effective in escaping local optima and is often useful in finding a good can-
didate solution. However, in practice, persistent improvements will be more and
more difficult to achieve as the number of iterations (sampling instances) increases,
since the probability of finding better elite policies becomes smaller and smaller.
Thus, it appears that a biased sampling scheme could be more helpful, which can be
accomplished by using a “nearest neighbor” heuristic.

To achieve a biased sampling configuration, ERPS combines exploitation (“near-
est neighbor” heuristic) with exploration (unbiased sampling). The key to balancing
these two types of searches is the use of the exploitation probability q0. For a given
elite policy π̂ , we construct a new policy, say π̃ , in the next population generation
as follows: At each state x ∈ X, with probability q0, π̃(x) is selected from a small
neighborhood of π̂(x); and with probability 1 − q0, π̃ (x) is chosen by using the
unbiased random sampling. The preceding procedure is performed repeatedly until
we have obtained n− 1 new policies, and the next population generation is simply
formed by the elite policy π̂ and the n − 1 newly generated policies. Intuitively,
on the one hand, the use of exploitation will introduce more robustness into the al-
gorithm and helps to locate the exact optimal policy, while on the other hand, the
exploration step will help the algorithm to escape local optima and to find attractive
policies quickly. In effect, we see that this idea is equivalent to altering the underly-
ing action selection distribution, in that Px is artificially made more peaked around
the action π̂ (x).

Assuming that A is a non-empty metric space with a defined metric d(·, ·), then
the “nearest neighbor” heuristic in ERPS (cf. Fig. 3.3) is implemented as follows:
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• Discrete Action Space: Let ri , a positive integer, be the search range for state
xi, i = 1,2, . . . , |X|, with ri < |A(xi)| ∀i. Generate a random variable l ∼
DU(1, ri), where DU(1, ri) represents the discrete uniform distribution between
1 and ri . Set π̃ j (xi) = a ∈ A(xi) such that a is the lth closest action to π̂ k(xi)

(measured by d(·, ·)).
• Continuous Action Space: Let ri > 0 denote the search range for state xi, i =

1,2, . . . , |X|. Choose an action uniformly from the set of neighbors {a :
d(a, π̂k(xi)) ≤ ri, a ∈ A(xi)}, i.e., an action π(xi) ∈ A such that d(π(xi),
πk∗ (xi))≤ ri .

The most favorable situation is an action space that is “naturally ordered,” e.g., in
inventory control problems where actions are the number of items or amount to be
ordered (A= {0,1,2, . . .} or A=�+, respectively), in which case the indexing and
ordering becomes trivial.

Note the difference in the search range ri between the discrete action space case
and the continuous action space case. In the former case, ri is a positive integer
indicating the number of candidate actions that are the closest to the current elite
action π̂ k(xi), whereas in the latter case, ri is the distance from the current elite
action, which may take any positive value.

For the continuous case, if we further assume that A is a non-empty open con-
nected subset of �N with some metric (e.g., the infinity-norm), then a detailed im-
plementation of the above exploitation (local search) step is as follows.

• Generate a random vector λi = (λi1, . . . , λ
i
N )

T with each λih ∼U [−1,1] indepen-
dent for all h= 1,2, . . . ,N , and choose the action π̃ j (xi)= π̂ k(xi)+ λiri .

• If π̃ j (xi) /∈A(xi), then repeat the above step.

In this specific implementation, the same search range ri is used along all directions
of the action space. However, in practice, it may often be useful to generalize ri
to an N -dimensional vector, where each component controls the search range in a
particular direction of the action space.

Note that the action space does not need to have any structure other than being
a metric space. The metric d(·, ·) used in the “nearest neighbor” heuristic implicitly
imposes a structure on the action space. It follows that the efficiency of the algorithm
depends on how the metric is actually defined. Like most of the random search
methods for global optimization, our approach is designed to explore the structure
that good policies tend to be clustered together. Thus, in our context, a good metric
should have a good potential in representing this structure. For example, the discrete
metric (i.e., d(a, a)= 0 ∀a ∈A and d(a, b)= 1 ∀a, b ∈A, a �= b) should never be
considered as a good choice, since it does not provide us with any useful information
about the action space. For a given action space, a good metric always exists but may
not be known a priori. In the special case where the action space is a subset of �N ,
we take the Euclidean metric as the default metric, this is in accord with most of the
optimization techniques employed in �N .
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3.2.3 Convergence Analysis

We define the distance between two policies π and π ′ by

d∞
(
π,π ′

) := max
1≤i≤|X|

d
(
π(xi),π

′(xi)
)
,

and for a given policy π ∈Πs and any σ > 0, we define the σ -neighborhood of π
by

N (π,σ ) := {π ′ | d∞(π,π ′)≤ σ, ∀π ′ ∈Πs

}
.

For each policy π ∈Πs , we also define Pπ as the transition matrix whose (x, y)th
entry is P(x,π(x))(y) and Rπ as the one-stage reward vector whose (x)th entry is
R(x,π(x)).

Since ERPS is a randomized algorithm, different runs of the algorithm will give
different sequences of elite policies (i.e., sample paths); thus, ERPS induces a prob-
ability distribution over the set of all sequences of elite policies. We denote by P̂(·)
and Ê(·) the probability and expectation taken with respect to this distribution.

Let ‖ · ‖∞ denote the infinity-norm, given by ‖V ‖∞ := maxx∈X |V (x)|. If the
argument is a matrix, it will denote the usual induced or spectral norm. We have the
following convergence result for the ERPS algorithm.

Theorem 3.8 Let π∗ be an optimal policy with corresponding value function V π∗ ,
and let the sequence of elite policies generated by ERPS together with their corre-
sponding value functions be denoted by {π̂ k, k = 1,2, . . .} and {V π̂k , k = 1,2, . . .},
respectively. Assume that:

1. q0 < 1.
2. For any given � > 0, Px({a| d(a,π∗(x))≤ �, a ∈A(x)}) > 0, ∀x ∈X.
3. There exist constants σ > 0, φ > 0, L1 <∞, and L2 <∞, such that for all π ∈

N (π∗, σ ) we have ‖Pπ − Pπ∗‖∞ ≤max{L1d∞(π,π∗), 1−γ
γ
− φ} (0 < γ < 1),

and ‖Rπ −Rπ∗‖∞ ≤ L2d∞(π,π∗).

Then for any given ε > 0, there exists a random variable Mε > 0 with Ê(Mε) <∞
such that ‖V π̂k − V π∗‖∞ ≤ ε ∀k ≥Mε .

Assumption 1 restricts the exploitation probability from pure local search.
Assumption 2 simply requires that any “ball” that contains the optimal policy
will have a strictly positive probability measure. It is trivially satisfied if the set
{a|d(a,π∗(x)) ≤ �, a ∈ A(x)} has a positive (Borel) measure ∀x ∈ X and the ac-
tion selection distribution Px has infinite tails (e.g., Gaussian distribution). Assump-
tion 3 imposes some Lipschitz type of conditions on Pπ and Rπ ; as we will see, it
formalizes the notion that near optimal policies are clustered together. The assump-
tion can be verified if Pπ and Rπ are explicit functions of π (which is the case in
our numerical examples; see Sect. 3.3). For a given ε > 0, such a policy π satisfying
‖V π − V π∗‖∞ ≤ ε is referred to as an ε-optimal policy.
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The result in Theorem 3.8 implies the a.s. convergence of the sequence {V π̂k , k =
0,1, . . .} to the optimal value function V π∗ . To see this, note that Theorem 3.8 im-
plies that P̂(‖V π̂k − V π∗‖∞ > ε)→ 0 as k→∞ for every given ε, which means
that the sequence converges in probability. Furthermore, since ‖V π̂k − V π∗‖∞ ≤
ε ∀k ≥Mε is equivalent to supk̄≥k ‖V π̂k̄ − V π∗‖∞ ≤ ε ∀k ≥Mε , we will also

have P̂(supk̄≥k ‖V π̂k̄ − V π∗‖∞ > ε)→ 0 as k→∞, and the a.s. convergence thus
follows.

Proof The first step in the proof is to derive an upper bound for ‖V π − V π∗‖∞ in
terms of the distance d∞(π,π∗). For policy π∗ and policy π , we have

V π∗ = Rπ∗ + γPπ∗V
π∗ , (3.7)

V π = Rπ + γPπV
π . (3.8)

Now subtract the above two equations and define �V π∗ = V π − V π∗ , �Pπ∗ =
Pπ − Pπ∗ and �Rπ∗ =Rπ −Rπ∗ . We have

�V π∗ = [I−(I−γPπ∗)−1γ�Pπ∗
]−1

(I−γPπ∗)−1(γ�Pπ∗V π∗ +�Rπ∗
)
. (3.9)

Taking the norm of both sides of Eq. (3.9) and using the consistency property of the
operator norm (i.e., ‖BC‖ ≤ ‖B‖ · ‖C‖), it follows that∥∥�V π∗∥∥∞ ≤ ∥∥[I − (I − γPπ∗)

−1γ�Pπ∗
]−1∥∥∞∥∥(I − γPπ∗)

−1
∥∥∞ (3.10)

× (γ ‖�Pπ∗‖∞‖V π∗‖∞ + ∥∥�Rπ∗∥∥∞). (3.11)

By Assumption 3, we have ‖�Pπ∗‖∞ <
1−γ
γ

, thus

∥∥(I − γPπ∗
)−1

γ�Pπ∗
∥∥∞ ≤ ∥∥(I − γPπ∗)

−1
∥∥∞γ ‖�Pπ∗‖∞

<
∥∥(I − γPπ∗)

−1
∥∥∞(1− γ )

< 1.

We now try to divide both sides of (3.10) by ‖V π∗‖∞. Before we proceed, we need
to distinguish between two cases, ‖V π∗‖∞ = 0 and ‖V π∗‖∞ �= 0.

Case 1. If Rπ∗ = 0 (i.e., R(x,π∗(x)) = 0 for all x ∈ X), then we have V π∗ = 0.
Thus �V π∗ = V π and �Rπ∗ = Rπ . By noting ‖Pπ‖∞ = 1, it follows from
Eq. (3.8) that

∥∥�V π∗∥∥∞ = ∥∥V π
∥∥∞ ≤ 1

1− γ ‖Pπ‖∞‖Rπ‖∞ = 1

1− γ
‖�Rπ∗‖∞. (3.12)

Then by Assumption 3,

∥∥�V π∗∥∥∞ ≤ L2

1− γ
d∞
(
π,π∗

)
. (3.13)
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Case 2. If Rπ∗ > 0 (i.e., R(x,π∗(x)) > 0 for some x ∈ X), then from Eq. (3.7),
V π∗ > 0. Divide both sides of (3.10) by ‖V π∗‖∞, use the relation that ‖(I −
B)−1‖ ≤ 1

1−‖B‖ whenever ‖B‖ < 1 and the consistency property; it immediately
follows that

‖�V π∗‖∞
‖V π∗‖∞ ≤ ‖(I − γPπ∗)−1‖∞

1− ‖(I − γPπ∗)−1‖∞γ ‖�Pπ∗‖∞
{
γ ‖�Pπ∗‖∞ + ‖�Rπ∗‖∞

‖V π∗‖∞
}

= ‖(I − γPπ∗)−1‖∞‖I − γPπ∗‖∞
1− ‖(I − γPπ∗)−1‖∞γ ‖�Pπ∗‖∞
×
{

γ ‖�Pπ∗‖∞
‖I − γPπ∗‖∞ + ‖�Rπ∗‖∞

‖I − γPπ∗‖∞‖V π∗‖∞
}

≤ K
1−K γ ‖�Pπ∗‖∞‖I−γPπ∗‖∞

{
γ ‖�Pπ∗‖∞
‖I − γPπ∗‖∞ + ‖�Rπ∗‖∞

‖Rπ∗‖∞
}

≤ K
1−K γ ‖�Pπ∗‖∞‖I−γPπ∗‖∞

{
γL1

‖I − γPπ∗‖∞ + L2

‖Rπ∗‖∞
}
d∞
(
π,π∗

)
, (3.14)

where K= ‖(I − γPπ∗)−1‖∞‖I − γPπ∗‖∞.
In view of (3.13) and (3.14), we conclude that for any given ε > 0, there exists

θ > 0 such that for any π ∈N (π∗, σ ) where

d∞
(
π,π∗

) := max
1≤i≤|X|

d
(
π(xi),π

∗(xi)
)≤ θ, (3.15)

we have ‖V π − V π∗‖∞ = ‖�V π∗‖∞ ≤ ε. Also, max1≤i≤|X| d(π(xi),π∗(xi)) ≤ θ

is equivalent to

d
(
π(xi),π

∗(xi)
)≤ θ, ∀i = 1,2, . . . , |X|. (3.16)

By Assumption 2, the set of actions that satisfies (3.16) will have a strictly posi-
tive probability measure, and since q0 < 1, it follows that the probability a popu-
lation generation does not contain a policy in the neighborhood N (π∗,min{θ, σ })
of the optimal policy is strictly less than 1. Let ψ be the probability that a ran-
domly constructed policy is in N (π∗,min{θ, σ }). Then at each iteration, the prob-
ability that at least one policy is obtained in N (π∗,min{θ, σ }) is 1− (1− ψ)n−1,
where n is the population size. Assume that, at iteration k, we obtain a policy π̃ j in
N (π∗,min{θ, σ }). Then, it is guaranteed that ‖V π̃j −V π∗‖∞ ≤ ε (by the initial part
of the proof). The elite policy obtained at the next iteration improves all the available
policies in Λk+1 (by Theorem 3.6). Therefore, if π̂ k+1 is the elite policy obtained in
the next iteration, then we have ‖V π̂k+1 −V π∗‖∞ ≤ ‖V π̃j −V π∗‖∞ ≤ ε. Since we
now have an elite policy π̂ k+1 that satisfies ‖V π̂k+1 − V π∗‖∞ ≤ ε, then in subse-
quent iterations of the algorithm we will always have an elite policy in Λm such that
‖V π̂m − V π∗‖∞ ≤ ε, for m= k + 1, k + 2, . . . (see Corollary 3.7). Let Mε denote
the number of iterations required to generate such an elite policy for the first time.
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We clearly have ‖V π̂k − V π∗‖∞ ≤ ε ∀ k ≥Mε . Now consider a random variable
M̄ that is geometrically distributed with a success probability of 1− (1− ψ)n−1.
It is not difficult to see that M̄ dominates Mε stochastically (i.e., M̄≥st Mε), and
because ψ > 0, it follows that Ê(Mε)≤ Ê(M̄)= 1

1−(1−ψ)n−1 <∞. �

Note that for a discrete finite action space, Assumption 3 in Theorem 3.8 is au-
tomatically satisfied, and Assumption 2 also holds trivially if we take Px(a) > 0
for all actions a ∈ A(x). Furthermore, when the action space is finite, there always
exists an ε > 0 such that the only ε-optimal policy is the optimal policy itself. We
have the following stronger convergence result for ERPS when the action space is
finite.

Corollary 3.9 (Discrete Finite Action Space) If the action space is finite, q0 < 1,
and the action selection distribution Px(a) > 0 ∀a ∈ A(x), ∀x ∈ X, then there
exists a random variable M> 0 with Ê(M) <∞ such that V π̂k = V π∗ ∀k ≥M.

3.3 Numerical Examples

In this section, we consider two discrete-time controlled queueing problems and
compare the performance of ERPS, EPI, and standard PI. For the size of state space
considered, VI would not be competitive. For ERPS, the same search range param-
eter is prescribed for all states, denoted by a single variable r , and since in both
problems, all actions a ∈ A are admissible for all states x ∈X, the action selection
distribution is chosen to be the uniform distribution over the action space A for all
states x ∈ X. We therefore drop the explicit display of x in Px , and simply use P
instead of Px . All computations were performed on an IBM PC with a 2.4 GHz
Pentium 4 processor and 512 MB memory, and the computational time units are in
seconds.

3.3.1 A One-Dimensional Queueing Example

We consider a finite-capacity single-server queue with controlled service comple-
tion probabilities. Assume that a server can serve only one customer in a period,
and the service of a customer begins/ends only at the beginning/end of any period.
Customers arrive at a queue independently with probability p = 0.2, and there is at
most one arrival per period (so no arrival with probability 0.8). The maximum queue
length is L, and an arrival that finds L customers in the queue is lost. We let xt , the
state variable, be the number of customers in the system at the beginning of period t .
The action to be chosen at each state is the service completion probability a, which
takes value in a set A. In period t , a possible service completion is generated with
probability a(xt ), which results in a transition to state xt+1 a cost of R(xt , a(xt ))
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being incurred. The goal is to choose the optimal service completion probability for
each state such that the total discounted cost E[∑∞

t=0 γ
tR(xt , a(xt ))] is minimized

(since R is a cost function here, the definitions in the previous sections need to be
replaced with minimizing operators).

3.3.1.1 Discrete Action Space

Two different choices of one-stage cost functions are considered: (i) a simple cost
function that is convex in both state and action; (ii) a complicated non-convex cost
function. The MDP problem resulting from case (i) may possess some nice prop-
erties (e.g., free of multiple local optimal solutions), so finding an optimal solution
should be a relatively easy task, whereas the cost function in case (ii) introduces
some further computational difficulties (e.g., multiple local minima), intended to
more fully test the effectiveness of a global algorithm like ERPS. For both cases,
unless otherwise specified, the following parameter settings are used: maximum
queue length L = 49; state space X = {0,1,2, . . . ,49}; discount factor γ = 0.98;
action set A = {10−4k : k = 0,1, . . . ,104}; and in ERPS, population size n = 10,
search range r = 10, and the standard Euclidean distance is used to define the neigh-
borhood. All results for ERPS are based on 30 independent replications.

For case (i), the one-stage cost at any period for being in state x and taking action
a is given by

R(x, a)= x + 50a2. (3.17)

We test the convergence of ERPS by varying the values of the exploitation prob-
ability. Table 3.1 compares the performance of the algorithm in terms of both CPU
time and the following performance measure:

relative error :=max
x∈X

|V (x)− V ∗(x)|
|V ∗(x)| , (3.18)

which signifies the maximum relative deviation of the value function V from the
optimal value function V ∗. The computational time required for PI to find V ∗
was 15 seconds, and the value of ‖V ∗‖∞ is approximately 2.32e+03. Test re-
sults indicate superior performance of ERPS over PI; in particular, for the cases
(q0 = 0.25, K = 32), (q0 = 0.5, K = 16), and (q0 = 0.75, K = 16), ERPS attains
the optimal solutions in all 30 independent trials within 2 seconds. Moreover, we see
that the algorithm performs quite well even when q0 = 0, which corresponds to pure
random search from the action selection point of view. We believe that this is be-
cause that ERPS (under q0 = 0) will differ from a pure random search algorithm in
the space of policies, in that ERPS is a population-based approach and it contains a
PIRS step which tends to search the policy space induced by the population of poli-
cies, whereas a pure random search algorithm merely compares the performances
of all sampled policies and then simply takes the best one.

To explore the computational complexity of ERPS, tests were performed on
MDPs with increasing numbers of actions; for each problem, the foregoing setting
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Table 3.1 Convergence
results for ERPS
(n= 10, r = 10) based on 30
independent replications
(standard errors in
parentheses), where K is the
stopping rule parameter

q0 K CPU time Relative error

0.0 2 0.84 (0.03) 3.98e–05 (8.20e–06)

4 1.42 (0.05) 1.34e–05 (2.43e–06)

8 2.63 (0.10) 4.14e–06 (8.58e–07)

16 5.20 (0.16) 7.64e–07 (1.07e–07)

32 8.96 (0.38) 2.72e–07 (3.17e–08)

0.25 2 0.94 (0.02) 1.19e–08 (4.46e–09)

4 1.09 (0.02) 4.09e–09 (2.04e–09)

8 1.24 (0.02) 7.94e–10 (2.88e–10)

16 1.54 (0.03) 4.87e–11 (3.91e–11)

32 1.85 (0.04) 0.00e–00 (0.00e–00)

0.50 2 0.92 (0.02) 2.10e–08 (1.51e–08)

4 1.02 (0.02) 1.50e–09 (8.52e–10)

8 1.13 (0.02) 5.95e–10 (5.03e–10)

16 1.27 (0.03) 0.00e–00 (0.00e–00)

0.75 2 1.14 (0.02) 2.79e–09 (2.53e–09)

4 1.20 (0.02) 5.59e–11 (3.97e–11)

8 1.27 (0.02) 3.38e–11 (3.38e–11)

16 1.43 (0.03) 0.00e–00 (0.00e–00)

1.0 2 12.13 (0.02) 1.92e–10 (5.97e–11)

4 12.17 (0.02) 5.60e–11 (4.00e–11)

8 12.27 (0.01) 0.00e–00 (0.00e–00)

is used except that the action space now takes the form A= {hk : k = 0,1, . . . , 1
h
},

where h is the mesh size, selected sequentially (one for each problem) from the set
{ 1

100 ,
1

250 ,
1

500 ,
1

1000 ,
1

2500 ,
1

5000 ,
1

10000 ,
1

25000 ,
1

50000 ,
1

100000 ,
1

200000 }.
In Fig. 3.4, we plot the running time required for PI and ERPS to find the optimal

solutions as a function of the number of actions of each MDP considered, where the
results for ERPS are the averaged time over 30 independent replications. Empirical
results indicate that the computational time for PI increases linearly in the number
of actions (note the log scale used in Fig. 3.4), while the running time required for
ERPS does so in an asymptotic sense. We see that ERPS delivers very competitive
performances even when the action space is small; when the action space is rela-
tively large (number of actions greater than 104), ERPS reduces the computational
efforts of PI by well over an order of magnitude. In the experiments, we used a
search range r = 10 in ERPS, regardless of the size of the action space; we believe
the performance of the algorithm could be enhanced by using a search range that is
proportional to the size of the action space. Moreover, the computational effort of
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Fig. 3.4 Running time
required for PI and ERPS
(n= 10, r = 10, based on 30
independent replications) to
find the optimal solutions to
MDPs with different numbers
of actions, (a) using log scale
for horizontal axis; (b) using
log–log plot

ERPS can be reduced considerably if we are merely seeking solutions within some
required accuracy rather than insisting on the optimal solution.

For case (ii), we used the following one-stage cost function:

R(x, a)= x + 5

[ |X|
2

sin(2πa)− x

]2

, (3.19)

which induces a tradeoff in choosing between large values of a to reduce the state
x and appropriate values of a to make the squared term small. Moreover, since the
sine function is not monotone, the resultant MDP problem has a very high number
of local minima; some typical locally optimal policies are shown in Fig. 3.5.

Table 3.2 shows the convergence properties of EPI and ERPS, where both algo-
rithms start with the same initial population. The computational time required for
PI to find the optimal value function V ∗ was 14 seconds. For EPI, we have tested
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Fig. 3.5 Four typical locally optimal solutions to the test problem

different sets of values for the overall mutation probability q0 and the global and lo-
cal mutation probabilities Pg and Pl , respectively; the results reported in Table 3.2
are the best results obtained. Also note that because of the slow convergence of EPI,
the values for the stopping control parameter K are chosen much larger than those
for ERPS. The typical performances of ERPS and EPI are given in Fig. 3.6, where
we have plotted the corresponding value functions of the generated elite policies for
some particular iterations.

In order to demonstrate the role of the exploitation probability q0 in the ERPS al-
gorithm, we fix the stopping control parameter K = 10 and vary q0. The numerical
results are recorded in Table 3.3, where Nopt indicates the number of times an opti-
mal solution was found out of 30 trials. The q0 = 1.0 case corresponds to pure local
search. Obviously in this case, the algorithm gets trapped into a local minimum,
which has a mean maximum relative deviation of 1.35e+01. However, note that the
standard error is very small, which means that the local minimum is estimated with
very high precision. This shows that the “nearest neighbor” heuristic is indeed use-
ful in fine-tuning the solutions. In contrast, the pure random search (q0 = 0) case
is helpful in avoiding the local minima, yielding a lower mean relative deviation of
2.42e–2, but it is not very good in locating the exact optimal solutions, as none was
found out of 30 trials. Roughly, increasing q0 between 0 and 0.5 leads to a more
accurate estimation of the optimal solution; however, increasing q0 on the range 0.6
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Table 3.2 Convergence
results for EPI (n= 10) and
ERPS (n= 10, r = 10) based
on 30 independent
replications (standard errors
in parentheses), where K is
the stopping rule parameter

Algorithm K CPU time Relative error

EPI
q0 = 0.9
Pg = 0.9
Pl = 0.1

20 2.13 (0.11) 3.48e–00 (3.16e–01)

40 3.82 (0.17) 1.55e–00 (1.73e–01)

80 6.83 (0.35) 8.34e–01 (8.57e–02)

160 17.03 (0.61) 1.65e–01 (1.83e–02)

ERPS
q0 = 0.5
r = 10

2 1.03 (0.02) 1.42e–01 (7.95e–02)

4 1.12 (0.03) 8.64e–02 (6.01e–02)

8 1.29 (0.03) 4.32e–02 (4.32e–02)

16 1.49 (0.03) 2.25e–07 (1.36e–07)

32 1.86 (0.04) 0.00e–00 (0.00e–00)

Table 3.3 Performance of
ERPS with different
exploitation probabilities
(n= 10, K = 10, r = 10)
based on 30 independent
replications (standard errors
in parentheses)

q0 CPU time Nopt Relative error

0.0 3.47 (0.14) 0 2.42e–02 (6.04e–03)

0.1 2.04 (0.04) 6 5.82e–05 (4.42e–05)

0.2 1.48 (0.03) 14 8.75e–06 (4.76e–06)

0.3 1.36 (0.02) 23 1.78e–07 (1.08e–07)

0.4 1.28 (0.03) 22 3.25e–06 (2.56e–06)

0.5 1.32 (0.03) 26 2.44e–06 (2.32e–06)

0.6 1.43 (0.04) 26 1.67e–01 (9.77e–02)

0.7 1.47 (0.04) 24 2.08e–01 (8.97e–02)

0.8 1.80 (0.04) 20 5.49e–01 (1.51e–01)

0.9 2.28 (0.08) 8 1.19e–00 (1.89e–01)

1.0 8.90 (0.02) 0 1.35e+01 (3.30e–16)

to 1.0 decreases the quality of the solution, because the local search part begins to
gradually dominate, so that the algorithm is more easily trapped in local minima.
This also explains why we have larger variances when q0 = 0.6,0.7,0.8,0.9 in Ta-
ble 3.3. Notice that the algorithm is very slow in the pure local search case; setting
q0 < 1 speeds up the algorithm substantially.

To provide a numerical comparison between the “nearest neighbor” heuristic (bi-
ased sampling) and the policy mutation procedure (unbiased sampling), we con-
struct a new algorithm that uses the PIRS step to generate the elite policy from
the current population of policies but the policy mutation procedure (as in EPI) to
generate the remaining policies in the next population. Denote this new algorithm
by PIRS+PM. In both ERPS and PIRS+PM, we fix the population size n= 10, and
stop the algorithms only when a desired accuracy is reached. In Table 3.4, we record
the length of time required for different algorithms to reach a relative deviation of
at least 1.0e–03. Indeed, we see that ERPS uses far less time to reach a required
accuracy than PIRS+PM.
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Fig. 3.6 Convergence of the
value function for case (ii),
where k is the iteration
counter: (a) ERPS (n= 10,
r = 10,K = 16, q0 = 0.5);
(b) EPI (n= 10,K = 160,
q0 = 0.9,Pg = 0.9,Pl = 0.1)

3.3.1.2 Continuous Action Space

We test the algorithm when the action space A is continuous, where the service
completion probability can be any value between 0 and 1. Again, two cost functions
are considered, corresponding to cases (i) and (ii) in Sect. 3.3.1.1. In both cases, the
maximum queue length L, state space X, and the discount factor γ are all taken to
be the same as before.

In the numerical experiments, we approximated the optimal costs V ∗
1 and V ∗

2
for each of the respective cases (i) and (ii) by two value functions V̂ ∗

1 and V̂ ∗
2 ,

which were computed by using a discretization-based policy iteration (PI) algo-
rithm, where we first uniformly discretize the action space into evenly spaced points
by using a mesh size h, and then apply the standard PI algorithm on the discretized
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Table 3.4 Average time required to reach a precision of at least 1.0e–6 for different algorithms,
based on 30 independent replications (standard errors in parentheses)

Algorithm Parameters CPU time Relative error

ERPS
r = 10

q0 = 0.0 14.34 (1.68) 5.01e–04 (4.59e–05)

q0 = 0.1 1.05 (0.02) 4.28e–04 (5.29e–05)

q0 = 0.3 0.91 (0.04) 4.04e–04 (5.77e–05)

q0 = 0.5 0.94 (0.04) 4.36e–04 (6.01e–05)

q0 = 0.7 1.63 (0.18) 3.06e–04 (5.59e–05)

q0 = 0.9 4.10 (0.64) 2.12e–04 (4.27e–05)

PIRS+PM q0 = 0.9, Pg = 0.9, Pl = 0.1 66.6 (9.8) 5.19e–04 (5.30e–05)

q0 = 0.7, Pg = 0.9, Pl = 0.1 39.1 (6.6) 5.60e–04 (5.19e–05)

q0 = 0.5, Pg = 0.9, Pl = 0.1 21.7 (1.8) 6.14e–04 (4.42e–05)

q0 = 0.3, Pg = 0.9, Pl = 0.1 23.4 (3.1) 4.85e–04 (5.77e–05)

q0 = 0.1, Pg = 0.9, Pl = 0.1 21.1 (2.9) 5.81e–04 (5.78e–05)

q0 = 0.0, Pg = 1.0, Pl = 0.0 23.7 (2.7) 4.49e–04 (5.71e–05)

problem. In both cases, we take h= 1e–8. Note that a brute-force calculation of V̂ ∗
1

or V̂ ∗
2 requires more than 40 hours of CPU time.

We set the population size n = 10 and termination control parameter K = 10,
and test the ERPS algorithm by using different values of the search range r . The
performance of the algorithm is also compared with that of the discretization-based
PI algorithm. Tables 3.5 and 3.6 give the performances of both algorithms for cases
(i) and (ii), respectively. Note that the relative deviations are actually computed by
replacing the optimal value functions V ∗

1 and V ∗
2 with their corresponding approxi-

mations V̂ ∗
1 and V̂ ∗

2 in Eq. (3.18).
Test results indicate that ERPS outperforms the discretization-based PI algorithm

in both cases, not only in computational time but also in solution quality. We observe
that the computational time for PI increases by a factor of 2 for each halving of the
mesh size, while the time for ERPS increases at a much slower rate.

3.3.2 A Two-Dimensional Queueing Example

The second example, shown in Fig. 3.7, is a slight modification of the first one, with
the difference being that now we have a single queue that feeds two independent
servers with different service completion probabilities a1 and a2. We consider only
the continuous action space case. The action to be chosen at each state x is (a1, a2)

T ,
which takes value from the set A = [0,1] × [0,1]. We assume that an arrival that
finds the system empty will always be served by the server with service completion
probability a1. The state space of this problem is X = {0,1S1,1S2,2, . . . ,48}, where
we have assumed that the maximum queue length (not including those in service) is



84 3 Population-Based Evolutionary Approaches

Table 3.5 Comparison of the ERPS algorithm (n= 10, K = 10) with the deterministic PI algo-
rithm for case (i), where the results of ERPS are based on 30 independent replications (standard
errors in parentheses)

Algorithm Parameters CPU time Relative error

ERPS
(r = 1

4000 )
q0 = 0.25 2.66 (0.10) 1.12e–11 (3.72e–12)

q0 = 0.50 2.27 (0.09) 2.86e–12 (4.20e–13)

q0 = 0.75 2.94 (0.08) 1.11e–12 (2.51e–13)

ERPS
(r = 1

8000 )
q0 = 0.25 2.63 (0.10) 2.87e–12 (5.62e–13)

q0 = 0.50 2.93 (0.10) 6.12e–13 (1.49e–13)

q0 = 0.75 3.10 (0.11) 3.94e–13 (7.02e–14)

ERPS
(r = 1

16000 )
q0 = 0.25 2.85 (0.09) 8.80e–13 (2.45e–13)

q0 = 0.50 3.27 (0.10) 1.87e–13 (3.85e–14)

q0 = 0.75 3.72 (0.10) 9.91e–14 (2.34e–14)

PI h= 1
4000 6 (N/A) 2.55e–08 (N/A)

h= 1
8000 12 (N/A) 1.35e–08 (N/A)

h= 1
16000 23 (N/A) 5.04e–09 (N/A)

h= 1
32000 46 (N/A) 5.84e–10 (N/A)

h= 1
128000 188 (N/A) 3.90e–11 (N/A)

h= 1
512000 793 (N/A) 3.83e–12 (N/A)

Fig. 3.7 A two-dimensional
queueing example

46, and 1S1,1S2 are used to distinguish the situations whether server 1 or server 2 is
busy when there is only one customer in the system. As before, the discount factor
α = 0.98.

The one-stage cost is taken to be

R(y, a1, a2)= y+
[ |X|

2
cos(πa1)− y

]2

I{S1} +
[ |X|

2
sin(πa2)− y

]2

I{S2}, (3.20)

where

I{Si } =
{

1 if server i is busy,

0 otherwise
(i = 1,2), and y =

{
1 if x ∈ {1S1,1S2},
x otherwise.

The performances of the ERPS and the discretization-based PI are reported in
Table 3.7. In ERPS, both the population size n and the stopping control parame-
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Table 3.6 Comparison of the ERPS algorithm (n= 10, K = 10) with the deterministic PI algo-
rithm for case (ii), where the results of ERPS are based on 30 independent replications (standard
errors in parentheses)

Algorithm Parameters CPU time Relative error

ERPS
(r = 1

4000 )
q0 = 0.25 2.74 (0.10) 1.09e–07 (3.24e–08)

q0 = 0.50 2.86 (0.08) 2.19e–08 (6.15e–09)

q0 = 0.75 3.13 (0.09) 7.69e–09 (1.36e–09)

ERPS
(r = 1

8000 )
q0 = 0.25 3.06 (0.12) 1.47e–08 (3.61e–09)

q0 = 0.50 2.98 (0.13) 4.55e–09 (9.77e–10)

q0 = 0.75 3.57 (0.08) 1.76e–09 (4.21e–10)

ERPS
(r = 1

16000 )
q0 = 0.25 3.17 (0.09) 9.50e–09 (3.55e–09)

q0 = 0.50 3.26 (0.11) 1.42e–09 (2.44e–10)

q0 = 0.75 4.17 (0.12) 3.49e–10 (7.70e–11)

PI h= 1
4000 5 (N/A) 8.35e–04 (N/A)

h= 1
8000 11 (N/A) 4.51e–05 (N/A)

h= 1
16000 21 (N/A) 4.50e–05 (N/A)

h= 1
32000 42 (N/A) 9.66e–06 (N/A)

h= 1
128000 175 (N/A) 8.96e–07 (N/A)

h= 1
512000 734 (N/A) 2.34e–08 (N/A)

Table 3.7 A
two-dimensional test
example, where the ERPS
results (n= 10, K = 10) are
based on 30 independent
replications (standard errors
in parentheses)

Algorithm Parameters CPU time Relative error

ERPS
(r = 1

100 )
q0 = 0.25 3.18 (0.15) 3.86e–04 (3.18e–05)

q0 = 0.50 3.16 (0.16) 7.48e–03 (7.25e–03)

q0 = 0.75 3.54 (0.14) 5.83e–02 (1.78e–02)

ERPS
(r = 1

200 )
q0 = 0.25 3.31 (0.12) 9.44e–05 (8.25e–06)

q0 = 0.50 3.26 (0.12) 7.31e–03 (7.27e–03)

q0 = 0.75 3.88 (0.17) 5.48e–02 (1.83e–02)

ERPS
(r = 1

400 )
q0 = 0.25 3.53 (0.12) 2.06e–05 (1.97e–06)

q0 = 0.50 3.74 (0.12) 7.27e–03 (7.26e–03)

q0 = 0.75 4.36 (0.14) 3.55e–02 (1.48e–02)

PI h= 1
100 14 (N/A) 6.23e–02 (N/A)

h= 1
200 55 (N/A) 2.98e–02 (N/A)

h= 1
400 226 (N/A) 1.24e–03 (N/A)

ter K are set to 10. In PI, we adopt a uniform discretization, where the same mesh
size h is used in both coordinates of the action space. Again, in computing the



86 3 Population-Based Evolutionary Approaches

relative deviation, we approximated V ∗ by V̂ ∗, which was computed by using the
discretization-based PI algorithm with a mesh size h= 1

15000 . Notice that the com-
putational time for PI increases by a factor of 4 for each halving of the mesh size,
whereas the time required by ERPS increases much more slowly.

These preliminary numerical experiments indicate some robustness with respect
to the choice of the exploitation probability q0, which balances exploitation and
exploration in action selections, in that values between 0.25 and 0.75 all seem to
work well. Another approach is to follow a similar strategy as in simulated annealing
whereby the value of q0 is gradually increased from 0 to 1, which corresponds to
the transitioning of the search mechanism from pure random sampling to pure local
search. The numerical results also demonstrate the potential for orders of magnitude
computational efficiency gains over traditional policy iteration on a select set of test
cases.

An important implementation issue is the dependence of ERPS on the underly-
ing distance metric, as determining a good metric could be challenging for those
problems that do not have a natural metric already available. One possible way to
circumvent this is to adaptively update/change the action selection distribution P
at each iteration of the algorithm based on the sampling information obtained dur-
ing the previous iterations in such a way that more promising policies will have a
larger chance of being selected. Using the model reference adaptive search (MRAS)
framework of Chap. 4, this approach will be developed in Sect. 4.4.

3.4 Extension to Simulation-Based Setting

In this chapter, the key steps of policy switching in EPI, given by (3.2) and (3.3),
and PIRS in ERPS, given by (3.5), are based on the computation of the exact
values of the infinite-horizon value function V π(x), x ∈ X,π ∈ Πs , which essen-
tially requires solving a system of linear equations. For large state spaces, this may
be impractical. Furthermore, in the predominant setting of this book, the transi-
tion probabilities needed to solve the system of equations may not be explicitly
available; instead, we have a simulation model, i.e., (X,A,A(·), f,R′) instead of
(X,A,A(·),P,R).

In this simulation-based setting, we first have to approximate the infinite-horizon
value function by a finite-horizon value function:

V π(x)=E

[
H−1∑
t=0

γ tR′
(
xt ,π(xt ),wt

)∣∣∣∣∣x0 = x

]
,

selecting an appropriate horizon length H . Simulation is then applied to estimate
this value function, which can then be used in (3.2) and (3.3) for EPI, and in (3.5)
for ERPS, respectively. Unfortunately, the resulting computational complexity still
depends on the size of the state space, since the operations defined by (3.2), (3.3),
and (3.5) all require computation of the policy over the entire state space.
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In Chap. 5, we consider “on-line” versions of policy switching and PIRS, i.e.,
policies in which the system (either the actual system itself or a simulation model of
the system) evolves to a particular state that is observed, and the action to be taken
in that particular state is then computed on-line at the decision time via the methods
of policy switching and PIRS.

3.5 Notes

EPI and ERPS were introduced in [43] and [95], respectively, where in the latter
case, the PIRS step was called “policy improvement with cost swapping” (PICS).
The literature applying evolutionary algorithms such as GAs for solving MDPs is
relatively sparse. Reference [121] uses a GA approach to construct the minimal set
of affine functions that describes the value function in partially observable MDPs,
yielding a variant of value iteration (VI). Reference [46] proposes an approach that
maps heuristically “simple” GA [169] into the framework of PI. Unfortunately, the
convergence to an optimal policy is not always guaranteed. Some other work in-
cludes [182], where GAs are used to find good finite-horizon policies for partially
observable MDPs, and [8], where a genetic search in policy space similar to [46] for
solving infinite-horizon discounted MDPs is proposed with no convergence guaran-
tee. Chang [33] applies “marriage in honey-bees optimization” with a similar frame-
work to EPI.

A concept of elitism related to our work was introduced by De Jong [53]. How-
ever, in his work, the elitist is a best policy in the current population, whereas in
EPI and ERPS, the elite policy may not be the best policy in the current population,
but is guaranteed to be better than all policies in the previous population, although it
may not be a member of the previous population. Policy switching was introduced
in [41], although the operation of improving upon two given policies via (3.1) can
also be found in [148, p. 152].

The issue of large action spaces was addressed in early work by MacQueen [124],
who used some inequality forms of Bellman’s equation together with bounds on the
optimal value function to identify and eliminate non-optimal actions in order to re-
duce the size of the action sets to be searched at each iteration of the algorithm. Since
then, the procedure has been applied to several standard methods like policy itera-
tion (PI), value iteration (VI), and modified policy iteration (see Chap. 6 in [145] for
a review). All of these algorithms generally require a finite action space. Perhaps
the most straightforward and the most commonly used numerical approach in deal-
ing with MDPs with uncountable action spaces is via the use of discretization (see
[154]). In practice, this could lead to computational difficulties, either resulting in
an action space that is too large or in a solution that is not accurate enough.

The queueing examples used in the numerical experiments were adapted
from [52].



Chapter 4
Model Reference Adaptive Search

In this chapter, we present a general global optimization method called model ref-
erence adaptive search (MRAS), and explore some of its applications for solving
MDPs. We start by introducing the MRAS method in a deterministic optimization
context, where the performance function can be evaluated exactly. Then we general-
ize the method to stochastic settings where the performance function can only be es-
timated with some noise, e.g., via simulation or real-time observation. MRAS can be
applied either directly or indirectly for solving MDPs. In the former case, we use the
method as a particular policy learning approach to find the best policy within a class
of parameterized policies for both finite- and infinite-horizon MDPs, whereas in the
latter case, we combine the method with the ERPS algorithm introduced in Chap. 3
to provide another population-based MDP solution technique with balanced explo-
ration and exploitation. We also discuss an approach in which MRAS can be used
as another sampling mechanism in the adaptive multi-stage sampling approach of
Chap. 2. Finally, at the end of the chapter, we present a recently developed stochastic
approximation framework for studying a class of simulation- and sampling-based
optimization algorithms. We illustrate the framework through an exemplary algo-
rithm instantiation called model-based annealing random search (MARS) and dis-
cuss its application to finite-horizon MDPs. The MARS algorithm can also be used
as an on-line simulation-based approach for solving infinite-horizon MDPs, which
will be discussed in Chap. 5.

The MRAS approach falls into the class of model-based methods for global op-
timization, whereby new solutions are generated via an intermediate probability
model that is updated or induced from the previous solutions (see Fig. 4.1). Each
iteration of these algorithms usually involves the following two phases:

1. Generate/sample candidate solutions (random samples, trajectories) according to
a specified probability distribution model.

2. Update the probabilistic model, on the basis of the solutions generated in the first
phase, in order to bias the future search toward “better” solutions.

The idea is to concentrate the probability mass of the distribution model on the set
of promising solutions, so that good solutions will be sampled with high probabil-
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Fig. 4.1 Depiction of two
phases iterated in
model-based methods

Fig. 4.2 Depiction of iterative procedure in the MRAS method

ity. Throughout, unless otherwise indicated, a “distribution” (function) will mean a
probability density/mass function (p.d.f./p.m.f.), covering both the continuous and
the discrete cases, with integrals understood to be replaced by summations in the
latter case.

The theoretical and practical efficiencies of model-based methods are primarily
determined by the two key questions of how to update these probabilistic models
and how to efficiently generate samples from them. In MRAS, these difficulties are
circumvented by sampling from a family of parameterized distributions and using a
sequence of intermediate reference models to facilitate and guide the updating of the
parameters associated with the family of parameterized distributions. A schematic
description of MRAS is given in Fig. 4.2. One hopes that the parameterized family
is specified with some structure so that, once the parameter is determined, sampling
from each of these distributions should be a relatively easy task. For example, for
optimization problems in �n, one possible choice of the parameterized distribution
is the multivariate normal (Gaussian) distribution, which can be efficiently sampled
from and represented relatively compactly by its mean vector and covariance ma-
trix. An additional advantage of using the parameterized family is that the task of
updating the entire sampling distribution now simplifies to the task of updating its
associated parameters, which is carried out by minimizing a certain distance be-
tween the parameterized family and the reference distributions. The sequence of
reference distributions in MRAS is primarily used to guide the parameter updating
process and to express the desired properties of the method. Thus, these distributions
are often selected so that they can be shown to converge to a degenerate distribution
with all probability mass concentrated on the set of optimal solutions. Intuitively, the
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sampling distribution can be viewed as a compact approximation of the reference
distribution (i.e., the projection of the reference distribution on the parameterized
family). Thus, as the sequence of reference distributions converges, the sequence of
samples generated from their compact approximations (i.e., sampling distributions)
should also converge to the optimum.

This chapter is organized as follows. The general MRAS approach for global op-
timization—both deterministic and stochastic—is presented in Sect. 4.1, followed
by convergence analysis in Sect. 4.2. The two main applications of MRAS in the
MDP setting are presented in Sects. 4.3 and 4.4, which include numerical results for
the algorithms, whereas Sect. 4.5 contains a brief discussion of a proposed algorithm
for applying MRAS to the adaptive sampling framework of Chap. 2. In Sect. 4.6, we
present a systematic framework based on stochastic approximation theory that al-
lows us to study a class of randomized optimization algorithms in a uniform manner.
A particular algorithm instantiation of the framework called model-based annealing
random search is presented in Sect. 4.6.1 and its application to the MDP setting is
discussed in Sect. 4.6.2. With the exception of the requisite Sect. 4.1, each of the
sections in this chapter can be read independently. In particular, for those readers
interested primarily in the practical implementation of the MRAS algorithms to the
various MDP settings rather than in the mathematics guaranteeing theoretical con-
vergence, the technical proofs of Sect. 4.2 can be skipped without loss of continuity.

4.1 The Model Reference Adaptive Search Method

We consider the following optimization problem:

x∗ ∈ arg max
x∈X

J (x), x ∈X ⊆�n, (4.1)

where X is a non-empty set in �n, and J : X →� is a deterministic function that
is bounded from below, i.e., ∃M>−∞ such that J (x)≥M ∀x ∈ X . Throughout
this chapter, we assume that (4.1) has a unique global optimal solution, i.e., ∃x∗ ∈X
such that J (x) < J (x∗) ∀x �= x∗, x ∈X .

MRAS works with a family of parameterized distributions {f (·, θ), θ ∈ Θ} on
the solution space, where Θ is the parameter space. Assume that at the kth itera-
tion of the method, we have a sampling distribution f (·, θk). We generate candidate
solutions from this sampling distribution. The performances of these randomly gen-
erated solutions are then evaluated and used to calculate a new parameter vector
θk+1 ∈Θ according to a specified parameter updating rule. The above steps are per-
formed repeatedly until a termination criterion is satisfied. The idea is that if the
parameter updating rule is chosen appropriately, the future sampling process will be
more and more concentrated on regions containing high-quality solutions.

In MRAS, the parameter updating is determined by a sequence of reference dis-
tributions {gk}. At each iteration k, we consider the projection of gk on the family



92 4 Model Reference Adaptive Search

of distributions {f (·, θ), θ ∈ Θ} and compute the new parameter vector θk+1 that
minimizes the Kullback–Leibler (KL) divergence

D
(
gk, f (·, θ)

) :=Egk

[
ln

gk(X)
f (X, θ)

]
=
∫
X

ln
gk(x)
f (x, θ)

gk(x)ν(dx), (4.2)

where ν is the Lebesgue/counting measure defined on X , X ∈ �n is a random vec-
tor taking values in X , and Egk denotes the expectation taken with respect to gk .
Intuitively, f (·, θk+1) can be viewed as a compact representation (approximation)
of the reference distribution gk ; consequently, the feasibility and effectiveness of the
method will, to some large extent, depend on the choices of reference distributions.

There are many different ways to construct the sequence of reference distri-
butions {gk}. In this chapter, we use the following simple iterative scheme. Let
g1(x) > 0 ∀x ∈ X be an initial distribution on the solution space X . At each
iteration k ≥ 1, a new distribution is computed by tilting the previous distribu-
tion gk−1(x) with the performance function J (x) (for simplicity, here we assume
J (x) > 0 ∀x ∈X ), i.e.,

gk(x)= J (x)gk−1(x)∫
X J (x)gk−1(x)ν(dx)

, ∀x ∈X . (4.3)

By assigning greater weight to solutions having larger values for J , each iteration
of Eq. (4.3) improves the expected performance in the sense that

Egk

[
J (X)

]= Egk−1[(J (X))2]
Egk−1[J (X)]

≥Egk−1

[
J (X)

]
.

Furthermore, it is possible to show that the sequence {gk, k = 1,2, . . .}will converge
to a distribution that concentrates only on the optimal solution for arbitrary g1, with
limk→∞Egk [J (X)] = J (x∗).

The rest of this section introduces three algorithms:

• MRAS0: the idealized version of the algorithm, where the objective function J is
deterministic and we assume that expectations can be evaluated exactly.

• MRAS1: applicable version of MRAS0, where J is deterministic but expectations
are estimated by their corresponding sample averages.

• MRAS2: extension of MRAS1 to stochastic optimization, where the objective
function J cannot be evaluated exactly, but can be estimated with some noise,
along with expectations approximated by sample averages.

Only the last two algorithms are of any practical interest, but the first serves as a
basic foundation.

4.1.1 The MRAS0 Algorithm (Idealized Version)

Figure 4.3 presents the MRAS0 algorithm, which is a particular instantiation of
MRAS that uses the sequence of reference distributions generated by Eq. (4.3).
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Algorithm MRAS0

Input: ρ ∈ (0,1], ε ≥ 0, strictly increasing function H : �→�+,
family of distributions {f (·, θ)}, with θ0 s.t. f (x, θ0) > 0 ∀x ∈X .

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
• Calculate the (1− ρ)-quantile:

χk = sup
l

{
l : Pθk

(
J (X)≥ l

)≥ ρ
}
.

• Update elite threshold:

χ̄k =
{
χk if k = 0 or χk ≥ χ̄k−1 + ε,

χ̄k−1 otherwise.

• Update parameter vector:

θk+1 ∈ arg max
θ∈Θ

Eθk

[ [H(J (X))]k
f (X, θk)

I
{
J (X)≥ χ̄k

}
lnf (X, θ)

]
. (4.4)

• k← k + 1.

Output: θk .

Fig. 4.3 Description of MRAS0 algorithm

Throughout the chapter, we use Pθk and Eθk to denote the respective probability and
expectation taken with respect to the distribution f (·, θk). Thus, under our notational
convention,

Pθk
(
J (X)≥ χ

)= ∫
X
I
{
J (x)≥ χ

}
f (x, θk)ν(dx),

Eθk

[
J (X)

]= ∫
X
J (x)f (x, θk)ν(dx).

In MRAS0, only a portion of the samples—the set of elite samples—is used to
update the probability model. This is achieved primarily through a quantile estimate
of the performance function values of the current samples. In the MRAS0 algorithm,
the parameter ρ determines the approximate proportion of samples used to update
the probabilistic model. At each iteration k of the algorithm, the (1 − ρ)-quantile
of the performance function values with respect to the distribution f (·, θk) is calcu-
lated. These quantile values {χk} are used to construct a sequence of non-decreasing
thresholds {χ̄k}, and only those candidate solutions having performances better than
these thresholds will be used in the parameter update via (4.4). Intuitively, the pri-
mary reason for using the thresholds {χ̄k} is that such a bootstrapping approach for
selecting the elite samples will quickly direct the search of the algorithm towards a
sequence of “improving” regions, which could be more efficient than simply using
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the sequence of quantile values {χk} or even a fixed threshold to determine the elite
samples.

During the initialization step of MRAS0, a small number ε and a strictly increas-
ing function H : � → �+ are also specified. The function H is used to account
for the cases where the value of J (x) is negative for some x, and the parameter ε
ensures that each strict increment in the sequence {χ̄k} is lower bounded, i.e.,

inf
χ̄k �=χ̄k−1
k=1,2,...

(χ̄k − χ̄k−1)≥ ε.

We require ε to be strictly positive for continuous problems, and non-negative for
discrete (finite) problems.

In continuous domains, the division by f (x, θk) in the parameter update (4.4)
is well defined if f (x, θk) has infinite support (e.g., normal p.d.f.), whereas in dis-
crete/combinatorial domains, the division is still valid as long as each point x in
the solution space has a positive probability of being sampled. Additional regularity
conditions on f (x, θk) imposed in Sect. 4.2 for the convergence proofs ensure that
the parameter update (4.4) can be used interchangeably with the following:

θk+1 ∈ arg max
θ∈Θ

∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
lnf (x, θ)ν(dx).

The following lemma shows that there is a sequence of reference models
{gk, k = 1,2, . . .} implicit in MRAS0, and that the corresponding parameter up-
dating in MRAS0 indeed minimizes the KL-divergence D(gk+1, f (·, θ)).

Lemma 4.1 The parameter θk+1 computed at the kth iteration of the MRAS0 algo-
rithm via (4.4) minimizes the KL-divergence D(gk+1, f (·, θ)), where

gk+1(x) := H(J (x))I {J (x)≥ χ̄k}gk(x)
Egk [H(J (X))I {J (X)≥ χ̄k}] ∀x ∈X , k = 1,2, . . . , and

g1(x) := I {J (x)≥ χ̄0}
Eθ0[ I {J (X)≥χ̄0}

f (X,θ0)
] .

Proof For notational brevity, define Ĥk(J (x)) := [H(J (x))]k
f (x,θk)

. We have

g1(x)= I {J (x)≥ χ̄0}
Eθ0[ I {J (X)≥χ̄0}

f (X,θ0)
] =

I {J (x)≥ χ̄0}
Eθ0[Ĥ0(J (X))I {J (X)≥ χ̄0}]

.

When k ≥ 1, we have from the definition of gk above,

g2(x) = H(J (x))I {J (x)≥ χ̄1}g1(x)
Eg1[H(J (X))I {J (X)≥ χ̄1}]

= H(J (x))I {J (x)≥ χ̄1}I {J (x)≥ χ̄0}
Eθ1[Ĥ1(J (X))I {J (X)≥ χ̄1}I {J (X)≥ χ̄0}]
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= H(J (x))I {J (x)≥ χ̄1}
Eθ1[Ĥ1(J (X))I {J (X)≥ χ̄1}]

,

where the last equality follows from the fact that the sequence {χ̄k} is non-
decreasing. Proceeding iteratively, it is easy to see that

gk+1(x)= [H(J (x))]kI {J (x)≥ χ̄k}
Eθk [Ĥk(J (X))I {J (X)≥ χ̄k}]

, ∀k = 0,1, . . . . (4.5)

Thus, the KL-divergence between gk+1 and f (·, θ) can be written as

D
(
gk+1, f (·, θ)

) = Egk+1

[
lngk+1(X)

]−Egk+1

[
lnf (X, θ)

]
= Egk+1

[
lngk+1(X)

]− Eθk [Ĥk(J (X))I {J (X)≥ χ̄k} lnf (X, θ)]
Eθk [Ĥk(J (X))I {J (X)≥ χ̄k}]

,

k = 0,1, . . . . The result follows by observing that minimizing D(gk+1, f (·, θ)) is
equivalent to maximizing Eθk [Ĥk(J (X))I {J (X)≥ χ̄k} lnf (X, θ)]. �

4.1.1.1 Natural Exponential Family

Convergence of the MRAS0 algorithm clearly depends on the choice of the family of
parameterized distributions. For example, if the parameterized family is a singleton
set, i.e., contains only one distribution, then there is in general no way to ensure the
convergence of the algorithm. In addition, a practical consideration is selecting a
family for which the parameter update given by (4.4) is relatively easy. The natural
exponential family (NEF) results in a globally convergent algorithm for which the
parameter update given by (4.4) can be obtained analytically.

Definition 4.2 A parameterized family of distributions {f (·, θ), θ ∈ Θ ⊆ �m} on
X is said to belong to the natural exponential family (NEF) if there exist mappings
h : �n→�, Υ : �n→�m, and K : �m→� such that

f (x, θ)= exp
{
θT Υ (x)−K(θ)

}
h(x), ∀θ ∈Θ, (4.6)

where K(θ) = ln
∫

x∈X exp{θT Υ (x)}h(x)ν(dx), Θ is the natural parameter space
Θ = {θ ∈ �m : |K(θ)| <∞}, and the superscript “T ” denotes the vector transpo-
sition. For the case where f (·, θ) is a p.d.f., we assume that Υ is a continuous
mapping.

The function K(θ), called the log partition function, plays an important role in
the theory of natural exponential family. Let int(Θ) be the interior of Θ . It is well-
known that for any θ ∈ int(Θ), K(θ) is strictly convex with ∇θK(θ) = Eθ [Υ (X)]
and Hessian matrix Covθ [Υ (X)]. Therefore, the Jacobian of the mean vector func-
tion m(·) : �m→�m defined by

m(θ) :=Eθ

[
Υ (X)

]
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is strictly positive definite and invertible. From the inverse function theorem, it fol-
lows that m(θ) is also invertible. Intuitively, m(θ) can be viewed as a transformed
version of the sufficient statistic Υ (x), whose value contains all information nec-
essary in estimating the parameter θ . Many common distributions belong to the
NEF, e.g., Gaussian, Poisson, binomial, geometric, and certain multivariate forms
of them.

For continuous optimization problems in �n, if multivariate normal p.d.f.s are
used in MRAS0, i.e.,

f (x, θk)= 1√
(2π)n|Σk| exp

(
−1

2
(x−μk)

T Σ−1
k (x−μk)

)
, (4.7)

where θk := (μk; Σk), in which the parameters are updated in (4.4) as

μk+1 = Eθk [{[H(J (X))]k/f (X, θk)}I {J (X)≥ χ̄k}X]
Eθk [{[H(J (X))]k/f (X, θk)}I {J (X)≥ χ̄k}] , (4.8)

Σk+1 = Eθk [{[H(J (X))]k/f (X, θk)}I {J (X)≥ χ̄k}(X−μk+1)(X−μk+1)
T ]

Eθk [{[H(J (X))]k/f (X, θk)}I {J (X)≥ χ̄k}] ,

(4.9)
the sequence of parameterized p.d.f.s will converge to a degenerate p.d.f. with all
probability mass at the global optimum.

If the components of the random vector X = (X1, . . . ,Xn) are independent, i.e.,
each has a univariate density/mass of the form

f (xi , ϑi)= exp
(
xiϑi −K(ϑi)

)
h(xi ), xi ∈ �, ϑi ∈ �, ∀i = 1, . . . , n,

then the algorithm will lead to the following convergence:

lim
k→∞m(θk) := lim

k→∞Eθk [X] = x∗, where θk :=
(
ϑk1 , . . . , ϑ

k
n

)
.

4.1.2 The MRAS1 Algorithm (Adaptive Monte Carlo Version)

MRAS0 is an idealized algorithm that assumes that quantile values and expecta-
tions with respect to f (·, θ) can be evaluated exactly. In practice, i.i.d. samples are
drawn from f (·, θ) in order to estimate expected values and quantiles with their
corresponding sample mean and sample quantiles. Figure 4.4 presents the MRAS1
algorithm, which is an adaptive Monte Carlo version of MRAS0 that uses sam-
ples from f (·, θ) and adaptive updating of the quantile parameter and sample size.
For example, the parameter update given by (4.4) of MRAS0 is replaced with its
stochastic counterpart in (4.10).

However, the theoretical convergence can no longer be guaranteed for a sim-
ple stochastic counterpart of MRAS0. In particular, the set {x : J (x) ≥ χ̄k,x ∈
{X1

k, . . . ,XNk

k }} involved in (4.10) may be empty, since all the random samples
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Algorithm MRAS1—Adaptive Monte Carlo Version

Input: ρ0 ∈ (0,1], N0 > 1, ε ≥ 0, α > 1, λ ∈ (0,1], strictly increasing function H: �→
�+, family of distributions {f (·, θ)}, with θ0 s.t. f (x, θ0) > 0 ∀x ∈X .

Initialization: Set iteration count k = 0; θ̃0 = θ0.

Loop until Stopping Rule is satisfied:

1. Generate Nk i.i.d. samples Λk = {X1
k
, . . . ,XNk

k
} according to

f̃ (·, θ̃k)= (1− λ)f (·, θ̃k)+ λf (·, θ0).
2. Compute the sample (1− ρk)-quantile:

χ̃k(ρk,Nk)= J(�(1−ρk)Nk�),

where J(i) is the ith order statistic of {J (Xi
k
), i = 1, . . . ,Nk}.

3. Update elite threshold:
if k = 0 or χ̃k(ρk,Nk)≥ χ̄k−1 + ε

2 , then
3a. Set χ̄k = χ̃k(ρk,Nk), ρk+1 = ρk, Nk+1 =Nk ;

else, find the largest ρ̄ ∈ (0, ρk) such that χ̃k(ρ̄,Nk)≥ χ̄k−1 + ε
2 ;

3b. if such a ρ̄ exists, then set χ̄k = χ̃k(ρ̄,Nk), ρk+1 = ρ̄, Nk+1 =Nk ;
3c. else (no such ρ̄ exists), set χ̄k = χ̄k−1, ρk+1 = ρk, Nk+1 = �αNk�.

endif
4. Update parameter vector:

θ̃k+1 ∈ arg max
θ∈Θ

1

Nk

∑
x∈Λk

[H(J (x))]k
f̃ (x, θ̃k)

I
{
J (x)≥ χ̄k

}
lnf (x, θ). (4.10)

5. k← k + 1.

Output: θ̃k .

Fig. 4.4 Description of MRAS1 algorithm

generated at the current iteration may be much worse than those generated at the
previous iteration. Thus, we can only expect the algorithm to converge if the ex-
pected values in the MRAS0 algorithm are closely approximated. The quality of the
approximation will depend on the number of elite samples used at each iteration
in the parameter update, and this quantity depends on the quantile parameter—ρ in
MRAS0—and the number of samples generated in each iteration. In MRAS1, the
sample size is adaptively increasing, and the quantile parameter is adaptively de-
creasing. The rate of increase in the sample size is controlled by an extra parameter
α > 1, specified during the initialization step. For example, if the initial sample size
is N0, then after k increments, the sample size will be approximately �αkN0�.

At each iteration k, Nk random samples Λk = {X1
k, . . . ,XNk

k } are drawn from
the distribution f̃ (·, θ̃k), which is a mixture of the initial distribution f (·, θ0) and
the distribution calculated from the previous iteration f (·, θ̃k). In practice, the ini-
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tial distribution f (·, θ0) can be chosen according to some prior knowledge of the
problem structure; however, if nothing is known about where the good solutions
are, it could be chosen such that each region in the solution space will have an (ap-
proximately) equal probability of being sampled. Intuitively, mixing in the initial
distribution forces the algorithm to explore the entire solution space and to maintain
a global perspective during the search process. Also note that if λ= 1, then random
samples will always be drawn from the initial distribution, in which case MRAS1
becomes a pure random sampling approach.

At Step 2, the sample (1 − ρk)-quantile χ̃k is calculated by first ordering the
sample performances J (Xi

k), i = 1, . . . ,Nk from smallest to largest, J(1) ≤ J(2) ≤
· · · ≤ J(Nk), and then taking the �(1 − ρk)Nk�th order statistic, where �a� is the
smallest integer greater than or equal to a. Step 3 of MRAS1 extracts a sequence
of non-decreasing thresholds {χ̄k} from the sequence of sample quantiles {χ̃k}, and
determines the appropriate values of ρk+1 and Nk+1 to be used in the next iteration.
At each iteration k, Step 3 first checks whether the inequality χ̃k(ρk,Nk)≥ χ̄k−1 +
ε/2 is satisfied, where χ̄k−1 is the threshold value used in the previous iteration.
If the inequality holds, this means that both the current ρk value and the current
sample size Nk are satisfactory, and the parameter update (in Step 4) is carried out
using the newly obtained sample quantile. Otherwise, either ρk is too large or the
sample size Nk is too small. To determine which, it is checked to see if there exists
a smaller ρ̄ < ρk such that the above inequality can be satisfied with the new sample
(1 − ρ̄)-quantile. If such a ρ̄ does exist, then the current sample size Nk is still
deemed acceptable, and only ρk is decreased. Accordingly, the parameter vector is
updated (in Step 4) using the sample (1− ρ̄)-quantile. On the other hand, if no such
ρ̄ exists, then the parameter vector is updated (in Step 4) by using the previous elite
threshold, and the sample size Nk is increased by a factor α.

It is important to note that the set {x ∈Λk : J (x)≥ χ̄k} could be empty if Step 3c
is visited. If this happens, the right-hand side of (4.10) will be equal to zero, so any
θ ∈Θ is a maximizer, in which case we take θ̃k+1 := θ̃k .

4.1.3 The MRAS2 Algorithm (Stochastic Optimization)

Now we extend the MRAS method to the stochastic optimization setting, in which
only noisy estimates of the performance function are available. Specifically, we con-
sider optimization problems of the following form:

x∗ ∈ arg max
x∈X

E
[
J (x,ψ)

]
, (4.11)

where the solution space X is a non-empty set in�n, J :X ×Ψ →� is a determin-
istic function, and ψ is a random variable (possibly depending on x) taking values
in Ψ , which represents the stochastic effects of the system and with respect to which
the expectation is taken. We assume that J (x,ψ) is measurable and integrable with
respect to the distribution of ψ for all x ∈ X . Define J (x) = E[J (x,ψ)], and as-
sume that J (x) cannot be obtained easily, but that i.i.d. samples of J (x,ψ) are
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Algorithm MRAS2—Stochastic Optimization

Input: ρ0 ∈ (0,1], N0 > 1, ε > 0, α > 1, λ ∈ (0,1), strictly increasing function H : �→
�+, family of distributions {f (·, θ)}, with θ0 s.t. f (x, θ0) > 0 ∀x ∈ X , simulation allo-
cation rule {Mk}.

Initialization: Set iteration count k = 0; θ̃0 = θ0.

Loop until Stopping Rule is satisfied:

1. Generate Nk i.i.d. samples Λk = {X1
k
, . . . ,XNk

k
} according to

f̃ (·, θ̃k)= (1− λ)f (·, θ̃k)+ λf (·, θ0).
Take Mk observations for every x ∈Λk ,

and calculate sample performances J̄k(x)= 1
Mk

∑Mk

i=1 Ji (x) ∀x ∈Λk .
2. Compute the sample (1− ρk)-quantile:

χ̃k(ρk,Nk)= J̄(�(1−ρk)Nk�),

where J̄(i) is the ith order statistic of {J̄ (Xi
k
), i = 1, . . . ,Nk}.

3. if k = 0 or χ̃k(ρk,Nk)≥ χ̄k−1 + ε, then
3a. Set χ̄k = χ̃k(ρk,Nk), ρk+1 = ρk, Nk+1 =Nk ,

X∗
k
=X1−ρk , where X1−ρk ∈ {x ∈Λk : J̄k(x)= χ̃k(ρk,Nk)};

else, find the largest ρ̄ ∈ (0, ρk) such that χ̃k(ρ̄,Nk)≥ χ̄k−1 + ε;
3b. if ρ̄ exists, then set χ̄k = χ̃k(ρ̄,Nk), ρk+1 = ρ̄, Nk+1 =Nk ,

X∗
k
=X1−ρ̄ ∈ {x ∈Λk : J̄k(x)= χ̃k(ρ̄,Nk)};

3c. else, set χ̄k = J̄k(X∗k−1), ρk+1 = ρk, Nk+1 = �αNk�,
X∗
k
=X∗

k−1.
endif

4. Update parameter vector:

θ̃k+1 ∈ arg max
θ∈Θ

1

Nk

∑
x∈Λk

[H(J̄k(x))]k
f̃ (x, θ̃k)

Ĩ
(
J̄k(x), χ̄k

)
lnf (x, θ), (4.12)

where Ĩ (z,χ) :=

⎧⎪⎨
⎪⎩

0 if z≤ χ − ε,

(z− χ + ε)/ε if χ − ε < z < χ,

1 if z≥ χ.

5. k← k + 1.

Output: θ̃k .

Fig. 4.5 Description of MRAS2 algorithm

available, e.g., via simulation or real-time observation, and denote the ith sample
by Ji (x). We assume that (4.11) has a unique global optimal solution, i.e., ∃x∗ ∈X
such that J (x) < J (x∗) ∀x �= x∗, x ∈X .

Figure 4.5 presents the MRAS2 algorithm, which is a generalization of the
MRAS1 algorithm appropriately modified and extended for stochastic settings, the
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main addition being the requirement of an additional sample mean to estimate the
performance function. Thus, in addition to the sampling allocation rule {Nk} used
in MRAS1, there is an observation allocation rule {Mk,k = 0,1, . . .}, specified dur-
ing the initialization step of MRAS2, where Mk indicates the number of simulation
observations to be allocated to each of the candidate solutions sampled at the kth
iteration. Assumption L3 in Sect. 4.2 provides conditions on {Mk} that ensure con-
vergence of the algorithm. At iteration k, the sample mean based on the Mk obser-
vations J̄k(x)= 1

Mk

∑Mk

i=1 Ji (x) is used to estimate the true performance J (x).

At Step 2 of MRAS2, the sample (1 − ρk)-quantile χ̃k with respect to f̃ (·, θ̃k)
is calculated by first ordering the sample performances J̄k(Xi

k), i = 1, . . . ,Nk

from smallest to largest, J̄k,(1) ≤ J̄k,(2) ≤ · · · ≤ J̄k,(Nk), and then taking the
�(1− ρk)Nk�th order statistic.

MRAS2 also extends the MRAS1 construction of the sequence of thresholds
{χ̄k, k = 0,1, . . .}. In particular, at each iteration k, the algorithm uses an additional
variable X∗

k to record the sample that achieves the current threshold value χ̄k . When-
ever Step 3c is visited, Mk i.i.d. observations are allocated to X∗

k−1 (i.e., the sample
that achieves the threshold value at iteration k − 1), setting the current threshold as
χ̄k = J̄k(X∗

k−1)= 1
Mk

∑Mk

i=1 Ji (X∗
k−1). If more than one sample achieves a threshold

value, ties are broken arbitrarily. It is easy to observe that in a deterministic setting,
i.e., J (x) can be evaluated exactly, Steps 1–3 of MRAS2 coincide with those of
MRAS1.

Another modification from MRAS1 occurs at Step 4, where a continuous filter
function Ĩ (·, ·), as opposed to the original indicator function, is used in parameter
updating (cf. (4.12)). The function eliminates from consideration those obviously
inferior solutions among Λk that have performance worse than γ̄k − ε. However,
since all performance evaluations will contain some noise, Ĩ (·, γ̄k) is chosen to
be continuous to provide some robustness, in the sense that those solutions with
true performance better than γ̄k but whose current estimates are slightly worse than
γ̄k (between γ̄k − ε and γ̄k) will still be included in parameter updating. Thus, in
the long run, as more precise performance estimates are obtained, Ĩ (·, γ̄k) ensures
(w.p.1) that all solutions with true performance better than γ̄k will be used to calcu-
late the new parameter θ̃k+1.

The following lemma shows that there is a sequence of reference models {g̃k}
implicit in MRAS2, and that the corresponding parameter update in MRAS2 mini-
mizes the KL-divergence D(g̃k+1, f (·, θ)). The proof is simple and is thus omitted.

Lemma 4.3 The parameter θ̃k+1 computed at the kth iteration of MRAS2 via (4.12)
minimizes the KL-divergence D(g̃k+1, f (·, θ)), where

g̃k+1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

[[H(J̄k(x))]k/f̃ (x,θ̃k)]Ĩ (J̄k(x),χ̄k)∑
x∈Λk [[H(J̄k(x))]k/f̃ (x,θ̃k)]Ĩ (J̄k(x),χ̄k)

if {x ∈Λk : J̄k(x) > χ̄k − ε} �= ∅,
g̃k(x) otherwise,

(4.13)
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k = 0,1, . . . , where

χ̄k :=

⎧⎪⎨
⎪⎩
χ̃k(ρk,Nk) if Step 3a is visited,

χ̃k(ρ̄,Nk) if Step 3b is visited,

J̄k(X∗
k−1) if Step 3c is visited.

4.2 Convergence Analysis of MRAS

In this section, we provide theoretical global convergence results for each of the
algorithms presented in the previous section when the parameterized distribution is
NEF.

4.2.1 MRAS0 Convergence

Proving global convergence of MRAS0 requires some additional regularity condi-
tions.

Assumption A1 For any given constant ξ < J(x∗), {x : J (x)≥ ξ}∩X has a strictly
positive Lebesgue or discrete measure.

Assumption A2 For any given constant δ > 0, supx∈Aδ
J (x) < J (x∗), where Aδ :=

{x : ‖x− x∗‖ ≥ δ} ∩X , and we define the supremum over the empty set to be −∞.

Assumption A3 ∃ compact set Ξ such that {x : J (x)≥ χ̄0} ∩X ⊆Ξ , where χ̄0 =
supl{l : Pθ0(J (X)≥ l)≥ ρ} is defined as in the MRAS0 algorithm.

Assumption A4 The maximizer of (4.4) is an interior point of Θ ∀k.

Intuitively, Assumption A1 ensures that any neighborhood of the optimal solu-
tion x∗ will have a positive probability of being sampled. For ease of exposition,
Assumption A1 restricts the class of problems under consideration to either con-
tinuous or discrete problems, but the convergence results can be easily extended to
problems with a mixture of both continuous and discrete variables. Since J has a
unique global optimizer, Assumption A2 is satisfied by many functions encountered
in practice. Note that both Assumptions A1 and A2 hold trivially when X is (dis-
crete) finite and the counting measure is used. Assumption A3 restricts the search of
the MRAS0 algorithm to some compact set; it is satisfied if the function J has com-
pact level sets or the solution space X is compact. In actual implementation of the
algorithm, the parameter updating step of MRAS0 given by (4.4) is often posed as an
unconstrained optimization problem, i.e., Θ = �m, in which case Assumption A4
is automatically satisfied.

The convergence of MRAS0 requires the following key observation.
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Lemma 4.4 If Assumptions A3–A4 hold, then we have

m(θk+1) :=Eθk+1

[
Υ (X)

]=Egk+1

[
Υ (X)

]
, ∀k = 0,1, . . . ,

where Eθk+1 and Egk+1 denote the expectations taken with respect to f (·, θk+1) and
gk+1, respectively.

Proof Define Jk(θ, χ̄k) :=
∫
X [H(J (x))]kI {J (x)≥ χ̄k} lnf (x, θ)ν(dx). Since

f (·, θ) belongs to the NEF, we can write

Jk(θ, χ̄k) =
∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
lnh(x)ν(dx)

+
∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
θT Υ (x)ν(dx)

−
∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
ln

[∫
X

exp
(
θT Υ (y)

)
h(y)ν(dy)

]
ν(dx).

Thus the gradient of Jk(θ, χ̄k) with respect to θ can be expressed as

∇θJk(θ, χ̄k) =
∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
Υ (x)ν(dx)

−
∫
X eθ

T Υ (y)Υ (y)h(y)ν(dy)∫
X eθ

T Υ (y)h(y)ν(dy)

∫
X

[
H
(
J (x)

)]k
I
{
J (x)≥ χ̄k

}
ν(dx),

where the validity of the interchange of derivative and integral above is guaranteed
by the dominated convergence theorem.

By Assumption A3 and the non-decreasing property of the sequence {χ̄k}, it turns
out that the above gradient ∇θJk(θ, χ̄k) is finite and thus well-defined. Moreover,
since ρ > 0, it can be seen from the MRAS0 algorithm that the set {x : J (x) ≥
χ̄k} ∩X has a strictly positive Lebesgue/counting measure. It follows that we must
have

∫
X [H(J (x))]kI {J (x)≥ χ̄k}ν(dx) > 0.

By setting ∇θJk(θ, χ̄k)= 0, it immediately follows that

∫
X

[H(J (x))]kI {J (x)≥ χ̄k}Υ (x)∫
X [H(J (y))]kI {J (y)≥ χ̄k}ν(dy)

ν(dx)=
∫
X

eθ
T Υ (x)h(x)Υ (x)∫

X eθ
T Υ (y)h(y)ν(dy)

ν(dx),

and by the definitions of gk+1 (see the proof of Lemma 4.1) and f (·, θ), we have

Egk+1

[
Υ (X)

]=Eθ

[
Υ (X)

]
. (4.14)

By Assumption A4, since θk+1 is an optimal solution of the problem

arg max
θ

Jk(θ, χ̄k),
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it must satisfy Eq. (4.14). Therefore we conclude that

Egk+1

[
Υ (X)

]=Eθk+1

[
Υ (X)

]
, ∀k = 0,1, . . . . �

We have the following convergence result for the MRAS0 algorithm.

Theorem 4.5 Let {θk, k = 1,2, . . .} be the sequence of parameters generated by
MRAS0. If ε > 0 and Assumptions A1–A4 are satisfied, then

lim
k→∞m(θk) := lim

k→∞Eθk

[
Υ (X)

]= Υ
(
x∗
)
, (4.15)

where the limit is component-wise.

Proof In Lemma 4.4, we have already established a relationship between the
sequence of reference models {gk} and the sequence of sampling distributions
{f (·, θk)}. Therefore, proving Theorem 4.5 amounts to showing that
limk→∞Egk [Υ (X)] = Υ (x∗).

Recall from Lemma 4.1 that gk+1 can be expressed recursively as

gk+1(x) := H(J (x))I {J (x)≥ χ̄k}gk(x)
Egk [H(J (X))I {J (X)≥ χ̄k}] ∀x ∈X , k = 1,2, . . . .

Thus

Egk+1

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}] = Egk [[H(J (X))]2I {J (X)≥ χ̄k}]
Egk [H(J (X))I {J (X)≥ χ̄k}]

≥ Egk

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}]
. (4.16)

Since χ̄k ≤ J (x∗) ∀k, and each strict increment in the sequence {χ̄k} is lower
bounded by the quantity ε > 0, there exists a finite N such that χ̄k+1 = χ̄k, ∀k ≥N .
Before we proceed any further, we need to distinguish between two cases, χ̄N =
J (x∗) and χ̄N < J(x∗).

Case 1. If χ̄N = J (x∗) (note that since ρ > 0, this could only happen when the
solution space is discrete), then from the definition of gk+1 (see Lemma 4.1), we
obviously have

gk+1(x)= 0, ∀x �= x∗,

and

gk+1
(
x∗
)= [H(J (x∗))]kI {J (x∗)= J (x∗)}∫

X [H(J (x))]kI {J (x)= J (x∗)}ν(dx)
= 1 ∀k ≥N .

Hence it follows immediately that

Egk+1

[
Υ (X)

]= Υ
(
x∗
) ∀k ≥N .



104 4 Model Reference Adaptive Search

Case 2. If χ̄N < J(x∗), then from Inequality (4.16), we have

Egk+1

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k+1

}]
≥Egk

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}]
, ∀k ≥N , (4.17)

i.e., the sequence {Egk [H(J (X))I {J (X)≥ χ̄k}], k = 1,2, . . .} converges.
Now we show that the limit of the above sequence is H(J (x∗)). To do so, we

proceed by contradiction and assume that

H∗ := lim
k→∞Egk

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}]
<H∗ :=H

(
J
(
x∗
))
. (4.18)

Define the set A as

A := {x : J (x)≥ χ̄N
}∩ {x :H(J (x))≥ H∗ +H∗

2

}
∩X .

Since H is strictly increasing, its inverse H−1 exists. Thus A can be reformulated
as

A=
{

x : J (x)≥max

{
χ̄N , H−1

(H∗ +H∗
2

)}}
∩X .

Since χ̄N < J(x∗), A has a strictly positive Lebesgue/discrete measure by Assump-
tion A1.

Notice that gk can be rewritten as

gk(x)=
k−1∏
i=1

H(J (x))I {J (x)≥ χ̄i}
Egi [H(J (X))I {J (X)≥ χ̄i}] · g1(x).

Since limk→∞ H(J (x))I {J (x)≥χ̄k}
Egk [H(J (X))I {J (X)≥χ̄k}] =

H(J (x))I {J (x)≥χ̄N }
H∗ > 1, ∀x ∈ A, we con-

clude that

lim
k→∞gk(x)=∞, ∀x ∈A.

Thus, by Fatou’s lemma, we have

1 = lim inf
k→∞

∫
X
gk(x)ν(dx)≥ lim inf

k→∞

∫
A
gk(x)ν(dx)

≥
∫
A

lim inf
k→∞ gk(x)ν(dx)=∞,

which is a contradiction. Hence, it follows that

lim
k→∞Egk

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}]=H∗. (4.19)
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To show limk→∞Egk [Υ (X)] = Υ (x∗), we now bound the difference between
Egk [Υ (X)] and Υ (x∗). Note that ∀k ≥N , we have

∥∥Egk

[
Υ (X)

]−Υ
(
x∗
)∥∥ ≤ ∫

X

∥∥Υ (x)− Υ
(
x∗
)∥∥gk(x)ν(dx)

=
∫
C

∥∥Υ (x)− Υ
(
x∗
)∥∥gk(x)ν(dx), (4.20)

where C := {x : J (x)≥ χ̄N } ∩X is the support of gk, ∀k >N .
By the assumption on Υ in Definition 4.2, for any given ζ > 0, there exists a

δ > 0 such that ‖x− x∗‖< δ implies ‖Υ (x)− Υ (x∗)‖< ζ . With Aδ defined from
Assumption A2, we have from Inequality (4.20),∥∥Egk

[
Υ (X)

]−Υ
(
x∗
)∥∥

≤
∫
Ac
δ∩C
∥∥Υ (x)− Υ

(
x∗
)∥∥gk(x)ν(dx)

+
∫
Aδ∩C

∥∥Υ (x)−Υ
(
x∗
)∥∥gk(x)ν(dx)

≤ ζ +
∫
Aδ∩C

∥∥Υ (x)−Υ
(
x∗
)∥∥gk(x)ν(dx), ∀k >N . (4.21)

The rest of the proof amounts to showing that the second term in (4.21) is also
bounded. Clearly the term ‖Υ (x)− Υ (x∗)‖ is bounded on the set Aδ ∩ C. We only
need to find a bound for gk(x).

By Assumption A2, we have

sup
x∈Aδ∩C

J (x)≤ sup
x∈Aδ

J (x) < J
(
x∗
)
.

Define Hδ := H∗ − H(supx∈Aδ
J (x)). Since H is strictly increasing, we have

Hδ > 0. Thus, it follows that

H
(
J (x)

)≤H∗ −Hδ, ∀x ∈Aδ ∩ C. (4.22)

On the other hand, from inequality (4.17) and Eq. (4.19), there exists N̄ >N such
that ∀k ≥ N̄

Egk

[
H
(
J (X)

)
I
{
J (X)≥ χ̄k

}]≥H∗ − 1

2
Hδ. (4.23)

Observe that gk(x) can be alternatively expressed as

gk(x)=
k−1∏
i=N̄

H(J (x))I {J (x)≥ χ̄i}
Egi [H(J (X))I {J (X)≥ χ̄i}] · gN̄ (x), ∀k ≥ N̄ .
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Thus, it follows from inequalities (4.22) and (4.23) that

gk(x)≤
( H∗ −Hδ

H∗ −Hδ/2

)k−N̄
· gN̄ (x), ∀x ∈Aδ ∩ C, ∀k ≥ N̄ .

Therefore,

∥∥Egk

[
Υ (X)

]− Υ
(
x∗
)∥∥ ≤ ζ + sup

x∈Aδ∩C

∥∥Υ (x)−Υ
(
x∗
)∥∥∫

Aδ∩C
gk(x)ν(dx)

≤ ζ + sup
x∈Aδ∩C

∥∥Υ (x)−Υ
(
x∗
)∥∥( H∗ −Hδ

H∗ −Hδ/2

)k−N̄

≤
(

1+ sup
x∈Aδ∩C

∥∥Υ (x)− Υ
(
x∗
)∥∥)ζ ∀k ≥ N̂ ,

where N̂ is given by N̂ :=max{N̄ , �N̄ + ln ζ/ ln( H∗−Hδ

H∗−Hδ/2 )�}.
Since ζ is arbitrary, we have

lim
k→∞Egk

[
Υ (X)

]= Υ
(
x∗
)
.

Finally, the proof is completed by applying Lemma 4.4 to both Cases 1 and 2. �

Note that for many NEFs used in practice, Υ is a one-to-one mapping,
in which case the convergence result (4.15) can be equivalently written as
Υ −1(limk→∞m(θk))= x∗. Also note that for some particular distributions, the so-
lution vector x itself will be a component of Υ (x) (e.g., multivariate normal distri-
bution). Under these circumstances, we can interpret (4.15) as limk→∞m(θk)= x∗.
Another special case of particular interest is when the components of the random
vector X = (X1, . . . ,Xn) are independent, i.e., each has a univariate p.d.f./p.m.f. of
the form

f (xi , ϑi)= exp
(
xiϑi −K(ϑi)

)
h(xi ), xi ∈ �, ϑi ∈ �, ∀i = 1, . . . , n.

In this case, since the distribution of the random vector X is simply the product
of the marginal distributions, we will clearly have Υ (x) = x. Thus, (4.15) is again
equivalent to limk→∞m(θk)= x∗, where θk := (ϑk1 , . . . , ϑ

k
n), and ϑki is the value of

ϑi at the kth iteration.
As mentioned in Sect. 4.1, for problems with finite solution spaces, Assump-

tions A1 and A2 are automatically satisfied. Furthermore, if we take the input pa-
rameter ε = 0, then Step 2 of MRAS0 is equivalent to setting χ̄k = max0≤i≤k χi .
Thus, {χ̄k} is non-decreasing and each strict increment in the sequence is bounded
from below by

min
J (x)�=J (y)

x,y∈X

∣∣J (x)− J (y)
∣∣.
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Therefore, the ε > 0 assumption in Theorem 4.5 can be relaxed to ε ≥ 0.
As a result, we have the following results for the multivariate normal and inde-

pendent univariate cases.

Corollary 4.6 (Multivariate Normal) For continuous optimization problems in �n,
if multivariate normal p.d.f.s given by (4.7) are used in MRAS0, where θk :=
(μk; Σk), ε > 0, and Assumptions A1–A4 are satisfied, then

lim
k→∞μk = x∗, and lim

k→∞Σk = 0n×n,

where 0n×n represents an n-by-n zero matrix.

Proof By Lemma 4.4, it is easy to show that

μk+1 =Egk+1(X), ∀k = 0,1, . . . ,

and

Σk+1 =Egk+1

[
(X−μk+1)(X−μk+1)

T
]
, ∀k = 0,1, . . . .

The rest of the proof amounts to showing that

lim
k→∞Egk (X)= x∗, and lim

k→∞Egk

[
(X−μk)(X−μk)

T
]= 0n×n,

which is the same as the proof of Theorem 4.5. �

Corollary 4.6 shows that in the multivariate normal case, the sequence of param-
eterized p.d.f.s will converge to a degenerate p.d.f. with all probability mass at the
global optimum.

Corollary 4.7 (Independent Univariate) If the components of the random vector
X= (X1, . . . ,Xn) used in MRAS0 are independent, each has a univariate NEF dis-
tribution of the form

f (xi , ϑi)= exp
(
xiϑi −K(ϑi)

)
h(xi ), xi ∈ �, ϑi ∈ �, ∀i = 1, . . . , n,

ε > 0, and Assumptions A1–A4 are satisfied, then

lim
k→∞m(θk) := lim

k→∞Eθk [X] = x∗, where θk :=
(
ϑk1 , . . . , ϑ

k
n

)
.

4.2.2 MRAS1 Convergence

To establish convergence properties of MRAS1, we show that with high probability,
the gaps between MRAS0 and MRAS1 (e.g., approximation errors incurred by re-
placing expected values with sample averages) can be made small enough such that
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the convergence analysis of MRAS1 can be ascribed to the convergence analysis of
MRAS0. As before, Pθ̃k and Eθ̃k

denote the respective probability and expectation

taken with respect to the distribution f (·, θ̃k), and we also let P̃θ̃k and Ẽθ̃k
denote

the respective probability and expectation taken with respect to f̃ (·, θ̃k). Note that
since the sequence {θ̃k} results from random samples generated at each iteration of
MRAS1, these quantities are also random.

To establish convergence, we assume the following conditions on the initial dis-
tribution f (·, θ0) and the parameter update.

Assumption A3′ There exists a compact set Ξε such that {x : J (x)≥ J (x∗)− ε} ∩
X ⊆ Ξε . Moreover, the initial distribution f (x, θ0) is bounded away from zero on
Ξε , i.e., f∗ := infx∈Ξε f (x, θ0) > 0.

Assumption A4′ The parameter vector θ̃k+1 computed via (4.10) at Step 4 of
MRAS1 is an interior point of Θ for all k.

Let g̃k+1, k = 0,1, . . . , be defined by

g̃k+1(x) :=

⎧⎪⎪⎨
⎪⎪⎩

[[H(J (x))]k/f̃ (x,θ̃k)]I {J (x)≥χ̄k}∑
x∈Λk [[H(J (x))]k/f̃ (x,θ̃k)]I {J (x)≥χ̄k}
if {x ∈Λk : J (x)≥ χ̄k} �= ∅,

g̃k(x) otherwise,

(4.24)

where χ̄k is given by

χ̄k :=

⎧⎪⎨
⎪⎩
χ̃k(ρk,Nk) if Step 3a is visited,

χ̃k(ρ̄,Nk) if Step 3b is visited,

χ̄k−1 if Step 3c is visited.

The following lemma shows the connection between f (·, θ̃k+1) and g̃k+1; the
proof is similar to the proof of Lemma 4.4, and is thus omitted here.

Lemma 4.8 If Assumption A4′ holds, then the parameter θ̃k+1 computed via (4.10)
at Step 4 of MRAS1 satisfies

m(θ̃k+1) :=Eθ̃k+1

[
Υ (X)

]=Eg̃k+1

[
Υ (X)

]
, k = 0,1, . . . .

Note that the region {x : J (x) ≥ χ̄k} will become smaller and smaller as χ̄k in-
creases. Lemma 4.8 shows that the sequence of sampling distributions {f (·, θ̃k+1)}
is adapted to this sequence of shrinking regions. For example, consider the case
where {x : J (x) ≥ χ̄k} is convex and Υ (x) = x. Since Eg̃k+1 [X] is a convex com-

bination of X1
k, . . . ,XNk

k , the lemma implies that Eθ̃k+1
[X] ∈ {x : J (x)≥ χ̄k}. Thus,

it is natural to expect that the random samples generated at the next iteration will
fall in the region {x : J (x)≥ χ̄k} with large probabilities (e.g., consider the normal
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p.d.f. where its mode is equal to its mean). In contrast, if we use a fixed sampling
distribution for all iterations as in pure random sampling (i.e., the λ= 1 case), then
sampling from this sequence of shrinking regions could become a substantially dif-
ficult problem in practice.

Next, we present a useful intermediate result, which shows the convergence of the
quantile estimates when random samples are generated from a sequence of different
distributions.

Lemma 4.9 For any given ρ ∈ (0,1), let χk be the set of true (1 − ρ)-quantiles
of J (X) with respect to f̃ (·, θ̃k), and let χ̃k(ρ,Nk) be the corresponding sample
quantile of J (X1

k), . . . , J (X
Nk

k ), where f̃ (·, θ̃k) and Nk are defined as in MRAS1,

and X1
k, . . . ,XNk

k are i.i.d. with common distribution f̃ (·, θ̃k). Then the distance from
χ̃k(ρ,Nk) to χk tends to zero as k→∞ w.p.1.

Proof Our proof is based on the proof of Lemma A1 in [151]. Notice that for given
ρ and f̃ (·, θ̃k), χk can be obtained as the optimal solution of the following problem
(see [87]):

min
v∈V

�k(v), (4.25)

where V = [0, J (x∗)], �k(v) := Ẽθ̃k
φ(J (X), v), and

φ
(
J (x), v

) :=
{
(1− ρ)(J (x)− v) if v ≤ J (x),
ρ(v− J (x)) if v ≥ J (x).

Similarly, the sample quantile χ̃k(ρ,Nk) can be expressed as the solution to the
sample average approximation of (4.25),

min
v∈V

�̄k(v), (4.26)

where �̄k(v) := 1
Nk

∑Nk

j=1 φ(J (X
j
k ), v) and X1

k, . . . ,XNk

k are i.i.d. with density

f̃ (·, θ̃k).
Since the function φ(J (x), v) is bounded and continuous on V for all x ∈X , it is

not difficult to show that �k(v) is continuous on V .
Now consider a point v ∈ V and letBi ⊆ V be a sequence of open balls containing

v such that Bi+1 ⊆ Bi ∀i and limL→∞∩Li=1Bi = v. Define the function

bi
(
J (x)

) := sup
{∣∣φ(J (x), u)− φ

(
J (x), v

)∣∣ : u ∈ Bi}.
From the dominated convergence theorem,

lim
i→∞ Ẽθ̃k

[
bi
(
J (X)

)]= Ẽθ̃k

[
lim
i→∞bi

(
J (X)

)]= 0 ∀k = 1,2, . . . , (4.27)

where the last equality follows because φ(J (x), v) is continuous on V .
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Since |�̄k(u)− �̄k(v)| ≤ 1
Nk

∑Nk

j=1 |φ(J (Xj
k ), u)− φ(J (Xj

k ), v)|, it follows that

sup
u∈Bi

∣∣�̄k(u)− �̄k(v)
∣∣≤ 1

Nk

Nk∑
j=1

bi
(
J
(
Xj
k

))
. (4.28)

We now show that 1
Nk

∑Nk

j=1 bi(J (X
j
k ))→ Ẽθ̃k

[bi(J (X))] as k→∞ w.p.1.
Let M be an upper bound for bi(J (x)), and let Tε := �(2[J (x∗)−M])/ε�, where

M is a lower bound for the function J (x), and ε is defined as in the MRAS1 algo-
rithm. Note that the total number of visits to Step 3a and 3b of MRAS1 is bounded
by Tε , thus for any k > Tε , the total number of visits to Step 3c is greater than
k − Tε . Since conditional on θ̃k , 1

Nk

∑Nk

j=1 bi(J (X
j
k )) is an unbiased estimate of

Ẽθ̃k
[bi(J (X))], by the Hoeffding inequality [86], for any ζ > 0,

P

(∣∣∣∣∣ 1

Nk

Nk∑
j=1

bi
(
J
(
Xj
k

))− Ẽθ̃k

[
bi
(
J (X)

)]∣∣∣∣∣> ζ

∣∣∣∣∣θ̃k = θ

)
≤ 2 exp

(−2Nkζ
2

M2

)
∀k.

Therefore,

P

(∣∣∣∣∣ 1

Nk

Nk∑
j=1

bi
(
J
(
Xj
k

))− Ẽθ̃k

[
bi
(
J (X)

)]∣∣∣∣∣> ζ

)

≤ 2 exp

(−2Nkζ
2

M2

)
∀k

≤ 2 exp

(−2αk−TεN0ζ
2

M2

)
∀k > Tε

−→ 0 as k→∞, since α > 1.

Furthermore, it is easy to see that

∞∑
k=1

P

(∣∣∣∣∣ 1

Nk

Nk∑
j=1

bi
(
J
(
Xj
k

))− Ẽθ̃k

[
bi
(
J (X)

)]∣∣∣∣∣> ζ

)
<∞.

Thus, by the Borel–Cantelli lemma

P

(∣∣∣∣∣ 1

Nk

Nk∑
j=1

bi
(
J
(
Xj
k

))− Ẽθ̃k

[
bi
(
J (X)

)]∣∣∣∣∣> ζ i.o.

)
= 0,

which implies that 1
Nk

∑Nk

j=1 bi(J (X
j
k ))→ Ẽθ̃k

[bi(J (X))] as k→∞ w.p.1. Note

that by using a similar argument as above, we can also show that �̄k(v)→ �k(v)

w.p.1 as k→∞.
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The above result together with (4.27) and (4.28) implies that for any δ > 0, there
exists a small neighborhood Bv of v such that

sup
{∣∣�̄k(u)− �̄k(v)

∣∣ : u ∈ Bv}< δ w.p.1

for k sufficiently large. Since this holds for all v ∈ V , we have V ⊆⋃v∈V Bv . Be-
cause V is compact, there exists a sequence of finite subcovers Bv1, . . . ,Bvm such
that

sup
{∣∣�̄k(u)− �̄k(vj )

∣∣ : u ∈ Bvj }< δ w.p.1

for k sufficiently large, V ⊆∪mj=1Bvj . Furthermore, by the continuity of �k(v), these
open balls can be chosen in such a way that

sup
{∣∣�k(u)− �k(vj )

∣∣ : u ∈ Bvj }< δ ∀j = 1, . . . ,m.

Since �̄k(vj )→ �k(vj ) w.p.1 as k→∞ for all j = 1, . . . ,m,

∣∣�̄k(vj )− �k(vj )
∣∣< δ w.p.1

for k sufficiently large, ∀ j = 1, . . . ,m. For any v ∈ V , without loss of generality
assuming v ∈ Bvj , we have w.p.1 for k sufficiently large,

∣∣�̄k(v)− �k(v)
∣∣≤ ∣∣�̄k(v)− �̄k(vj )

∣∣+ ∣∣�k(v)− �k(vj )
∣∣+ ∣∣�̄k(vj )− �k(vj )

∣∣< 3δ,

which implies that �̄k(v)→ �k(v) uniformly w.p.1 on V .
The rest of the proof follows from Theorem A1 in [151, p. 69], which basically

states that if �̄k(v)→ �k(v) uniformly w.p.1, then the distance from χ̃k(ρ,Nk) to
χk tends to zero w.p.1 as k→∞. �

We now state the main theorem.

Theorem 4.10 Let ε > 0, and define the ε-optimal set Oε := {x : J (x) ≥ J (x∗)−
ε} ∩ X . If Assumptions A1, A3′, and A4′ are satisfied, then there exists a random
variable K such that w.p.1, K<∞, and:

(i) χ̄k > J (x∗)− ε, ∀k ≥K.
(ii) m(θ̃k+1) := Eθ̃k+1

[Υ (X)] ∈ CONV{Υ (Oε)}, ∀k ≥ K, where CONV{Υ (Oε)}
indicates the convex hull of the set Υ (Oε).

Furthermore, let β be a positive constant satisfying the condition that the set
{x : H(J (x)) ≥ 1

β
} has a strictly positive Lebesgue/counting measure. If Assump-

tions A1, A2, A3′, and A4′ are all satisfied and α > (βH∗)2, where H∗ :=
H(J (x∗)), then

(iii) limk→∞m(θ̃k) := limk→∞Eθ̃k
[Υ (X)] = Υ (x∗) w.p.1.
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Proof Part (i). The first part of the proof is an extension of the proofs given in [87].
First we claim that given ρk and χ̄k−1, if χ̄k−1 ≤ J (x∗)− ε, then ∃K̄<∞ w.p.1 and
ρ̄ ∈ (0, ρk) such that χ̃k′(ρ̄,Nk′)≥ χ̄k−1 + ε

2 ∀k′ ≥ K̄. To show this, we proceed by
contradiction.

Let ρ∗k := P̃θ̃k
(J (X) ≥ χ̄k−1 + 2ε

3 ). If χ̄k−1 ≤ J (x∗) − ε, then χ̄k−1 + 2ε
3 ≤

J (x∗)− ε
3 . By Assumptions A1 and A3′, we have

ρ∗k ≥ P̃θ̃k

(
J (X)≥ J

(
x∗
)− ε

3

)
≥ λC(ε, θ0) > 0, (4.29)

where C(ε, θ0)=
∫
X I {J (x)≥ J (x∗)− ε/3}f (x, θ0)ν(dx) is a constant.

Now assume that ∃ρ ∈ (0, ρ∗k ) such that χk(ρ, θ̃k) < χ̄k−1 + 2ε
3 , where χk(ρ, θ̃k)

is the true (1 − ρ)-quantile of J (X) with respect to f̃ (·, θ̃k). By the definition of
quantiles, we have the following two inequalities:

P̃θ̃k

(
J (X)≥ χk(ρ, θ̃k)

)≥ ρ,

P̃θ̃k

(
J (X)≤ χk(ρ, θ̃k)

)≥ 1− ρ > 1− ρ∗k .
(4.30)

It follows that P̃θ̃k (J (X) ≤ χk(ρ, θ̃k)) ≤ P̃θ̃k
(J (X) < χ̄k−1 + 2ε

3 ) = 1 − ρ∗k by the
definition of ρ∗k , which contradicts (4.30); thus, if χ̄k−1 ≤ J (x∗)− ε, then we must
have

χk(ρ, θ̃k)≥ χ̄k−1 + 2ε

3
, ∀ρ ∈ (0, ρ∗k ).

Therefore by (4.29), there exists ρ̄ ∈ (0,min{ρk,λC(ε, θ0)}) ⊆ (0, ρk) such that
χk(ρ̄, θ̃k) ≥ χ̄k−1 + 2ε

3 whenever χ̄k−1 ≤ J (x∗) − ε. By Lemma 4.9, the distance
from the sample (1− ρ̄)-quantile χ̃k(ρ̄,Nk) to the set of (1− ρ̄)-quantiles χk(ρ̄, θ̃k)
goes to zero as k→∞ w.p.1, thus ∃ K̄<∞ w.p.1 such that χ̃k′(ρ̄,Nk′)≥ χ̄k−1+ ε

2
∀ k′ ≥ K̄.

Notice that from the MRAS1 algorithm, if neither Step 3a nor 3b is visited
at the kth iteration, we will have ρk+1 = ρk and χ̄k = χ̄k−1. Thus, whenever
χ̄k−1 ≤ J (x∗) − ε, Step 3a or 3b will be visited w.p.1 after a finite number of it-
erations. Furthermore, since the total number of visits to Steps 3a and 3b is finite
(i.e., bounded by (2[J (x∗) −M])/ε, where recall that M is a lower bound for
J (x)), we conclude that there exists K<∞ w.p.1 such that

χ̄k > J
(
x∗
)− ε, ∀k ≥K w.p.1.

Part (ii). From the MRAS1 algorithm, it is easy to see that χ̄k ≥ χ̄k−1, ∀k =
1,2, . . . . By Part (i), we have χ̄k ≥ J (x∗) − ε, ∀k ≥ K w.p.1. Thus, by the defi-
nition of g̃k+1(x) (see Eq. (4.24)), it follows immediately that if the set {x ∈ Λk :
J (x) ≥ χ̄k} �= ∅, then the support of g̃k+1(x) satisfies supp{g̃k+1} ⊆ Oε ∀k ≥ K
w.p.1; otherwise we will have supp{g̃k+1} = ∅. We now discuss these two cases
separately.
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Case 1. If supp{g̃k+1} ⊆ Oε , then we have {Υ (supp{g̃k+1})} ⊆ {Υ (Oε)}. Since
Eg̃k+1[Υ (X)] is the convex combination of Υ (X1

k), . . . ,Υ (X
Nk

k ), it follows that

Eg̃k+1

[
Υ (X)

] ∈ CONV
{
Υ
(
supp{g̃k+1}

)}⊆ CONV
{
Υ (Oε)

}
.

Thus by Assumption A4′ and Lemma 4.8,

Eθ̃k+1

[
Υ (X)

] ∈ CONV
{
Υ (Oε)

}
.

Case 2. If supp{g̃k+1} = ∅ (note that this could only happen if Step 3c is vis-
ited), then from the algorithm, there exists some k̂ < k + 1 such that χ̄k = χ̄

k̂
and

supp{g̃
k̂
} �= ∅. Without loss of generality, let k̂ be the largest iteration counter such

that the preceding properties hold. Since χ̄
k̂
= χ̄k > J (x∗) − ε ∀ k ≥ K w.p.1, we

have supp{g̃
k̂
} ⊆Oε w.p.1. By following the discussion in Case 1, it is clear that

Eθ̃
k̂

[
Υ (X)

] ∈ CONV
{
Υ (Oε)

}
w.p.1.

Furthermore, since θ̃
k̂
= θ̃

k̂+1 = · · · = θ̃k+1, we will again have

Eθ̃k+1

[
Υ (X)

] ∈ CONV
{
Υ (Oε)

}
, ∀k ≥K w.p.1.

Part (iii). Define ĝk+1(x) as

ĝk+1(x) := [H(J (x))]kI {J (x)≥ χ̄k−1}∫
X [H(J (x))]kI {J (x)≥ χ̄k−1}ν(dx)

, ∀k = 1,2, . . . ,

where {χ̄k, k = 0,1, . . .} is defined as in MRAS1. Note that since χ̄k is a random
variable, ĝk+1(x) is also a random variable. It follows that

Eĝk+1

[
Υ (X)

]=
∫
X [βH(J (x))]kI {J (x)≥ χ̄k−1}Υ (x)ν(dx)∫

X [βH(J (x))]kI {J (x)≥ χ̄k−1}ν(dx)
.

Let ω = (X1
0, . . . ,XN0

0 ,X1
1, . . . ,XN1

1 , . . .) be a particular sample path gener-
ated by the algorithm. For each ω, the sequence {χ̄k(ω), k = 0,1, . . .} is non-
decreasing and each strict increase is lower bounded by ε/2. Thus, ∃Ñ (ω) > 0
such that χ̄k(ω) = χ̄k−1(ω) ∀k ≥ Ñ (ω). Now define Ω1 := {ω : limk→∞ χ̄k(ω) =
J (x∗)}. By the definition of g̃k+1 (see Eq. (4.24)), for each ω ∈ Ω1 we clearly
have limk→∞Eg̃k(ω)[Υ (X)] = Υ (x∗); thus, it follows from Lemma 4.8 that
limk→∞Eθ̃k(ω)

[Υ (X)] = Υ (x∗), ∀ω ∈Ω1. The rest of the proof amounts to show-
ing that the result also holds almost surely (a.s.) on the set Ωc

1 .
Since limk→∞ χ̄k(ω)= χ̄Ñ (ω) < J(x∗) ∀ω ∈Ωc

1 , by Fatou’s lemma,

lim inf
k→∞

∫
X

[
βH
(
J (x)

)]k
I
{
J (x)≥ χ̄k−1

}
ν(dx)

≥
∫
X

lim inf
k→∞

[
βH
(
J (x)

)]k
I
{
J (x)≥ χ̄k−1

}
ν(dx) > 0 ∀ω ∈Ωc

1 , (4.31)
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where the last inequality follows from the fact that βH(J (x))≥ 1 ∀x ∈ {x : J (x)≥
max{H−1( 1

β
), χ̄Ñ }} and Assumption A1.

Since f (x, θ0) > 0 ∀x ∈X , we have X ⊆ supp{f̃ (·, θ̃k)} ∀k; thus

Eĝk+1

[
Υ (X)

]= Ẽθ̃k
[βkH̃k(J (X))I {J (X)≥ χ̄k−1}Υ (X)]
Ẽθ̃k

[βkH̃k(J (X))I {J (X)≥ χ̄k−1}]
∀k = 1,2, . . . ,

where H̃k(J (x)) := [H(J (x))]k/f̃ (x, θ̃k). We now show that Eg̃k+1[Υ (X)] →
Eĝk+1[Υ (X)] a.s. on Ωc

1 as k→∞. Since we are only interested in the limiting
behavior of Eg̃k+1[Υ (X)], it is sufficient to show that

1
Nk

∑
x∈Λk

βkH̃k(J (x))I {J (x)≥ χ̄k}Υ (x)
1
Nk

∑
x∈Λk

βkH̃k(J (x))I {J (x)≥ χ̄k}
−→Eĝk+1

[
Υ (X)

]
a.s. on Ωc

1 ,

where and hereafter, whenever {x ∈Λk : J (x)≥ χ̄k} = ∅, we define 0
0 = 0.

For brevity, we introduce the following shorthand notation:

Ŷ k(χ) := Ẽθ̃k

[
βkH̃k

(
J (X)

)
I
{
J (X)≥ χ

}]
,

Ŷ kΥ (χ) := Ẽθ̃k

[
βkH̃k

(
J (X)

)
I
{
J (X)≥ χ

}
Υ (X)

]
,

Ŷ k(x, χ) := βkH̃k

(
J (x)

)
I
{
J (x)≥ χ

}
.

We also let Tε := �(2[J (x∗) −M])/ε�. Note that the total number of visits to
Steps 3a and 3b of MRAS1 is bounded by Tε , thus for any k > Tε , the total number
of visits to Step 3c is greater than k − Tε .

We have

1
Nk

∑
x∈Λk

βkH̃k(J (x))I {J (x)≥ χ̄k}Υ (x)
1
Nk

∑
x∈Λk

βkH̃k(J (x))I {J (x)≥ χ̄k}
−Eĝk+1

[
Υ (X)

]

=
( 1

Nk

∑
x∈Λk

Ŷ k(x, χ̄k)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k)
−

1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)

)

+
( 1

Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)
− Ŷ kΥ (χ̄k−1)

Ŷ k(χ̄k−1)

)
.

Since for each ω ∈Ωc
1 , χ̄k(ω)= χ̄k−1(ω) ∀k ≥ Ñ (ω), it follows that the first term

1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k)
−

1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)
= 0, ∀k ≥ Ñ (ω).

To show that the second term also converges to zero, we denote by Vk the
event Vk = {χ̄k−1 > J(x∗) − ε}. For any ζ > 0, we also let Ck be the event
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Ck = {| 1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)− Ŷ k(χ̄k−1)|> ζ }. We have

P(Ck i.o.) = P
({Ck ∩ Vk} ∪

{
Ck ∩ Vc

k

}
i.o.
)

= P(Ck ∩ Vk i.o.), since P
(
Vc
k i.o.

)= 0 by Part (i). (4.32)

It is easy to see that conditioned on θ̃k and χ̄k−1, {Ŷ k(x, χ̄k−1), x ∈ Λk} are
i.i.d. and E[Ŷ k(x, χ̄k−1)|θ̃k, χ̄k−1)] = Ŷ k(χ̄k−1) ∀x ∈Λk . Furthermore, by Assump-
tion A3′, conditioned on the event Vk , the support [ak, bk] of the random variable

Ŷ k(x, χ̄k−1), x ∈Λk satisfies [ak, bk] ⊆ [0, (βH∗)k
λf∗ ]. Therefore, we have, from the

Hoeffding inequality [86],

P(Ck|Vk, θ̃k = θ, χ̄k−1 = χ)

= P

(∣∣∣∣ 1

Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)− Ŷ k(χ̄k−1)

∣∣∣∣> ζ

∣∣∣∣Vk, θ̃k = θ, χ̄k−1 = χ

)

≤ 2 exp

( −2Nkζ
2

(bk − ak)2

)

≤ 2 exp

(−2Nkζ
2[λf∗]2

(βH∗)2k

)
∀k = 1,2 . . . . (4.33)

Since

P(Ck ∩ Vk) =
∫
θ,χ

P (Ck ∩ Vk|θ̃k = θ, χ̄k−1 = χ)fθ̃k,χ̄k−1
(dθ, dχ)

≤
∫
θ,χ

P (Ck|Vk, θ̃k = θ, χ̄k−1 = χ)fθ̃,χ̄k−1
(dθ, dχ),

where fθ̃k,χ̄k−1
(·, ·) is the joint distribution of random variables θ̃k and χ̄k−1, we

have, by inequality (4.33),

P(Ck ∩ Vk) ≤ 2 exp

(−2Nkζ
2[λf∗]2

(βH∗)2k

)
,

≤ 2 exp

(−2(αk−TεN0)ζ
2[λf∗]2

(βH∗)2k

)
∀k ≥ Tε,

= 2 exp

(−2N0ζ
2λ2f 2∗

αTε

(
α

(βH∗)2

)k)
∀k ≥ Tε.

Since α/(βH∗)2 > 1 (by assumption), it follows that

lim
k→∞P(Ck ∩ Vk)= 0.
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Furthermore, since e−x < 1/x ∀x> 0 we have

P(Ck ∩ Vk) <
αTε

N0ζ 2λ2f 2∗

(
(βH∗)2

α

)k
∀k ≥ Tε,

and because (βH∗)2/α < 1, we have

∞∑
k=0

P(Ck ∩ Vk) < Tε + αTε

N0ζ 2λ2f 2∗

∞∑
k=Tε

(
(βH∗)2

α

)k
<∞.

Finally by the Borel–Cantelli lemma and Eq. (4.32),

P(Ck i.o.)= P(Ck ∩ Vk i.o.)= 0.

Since this holds for any ζ > 0, we have 1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)→ Ŷ k(χ̄k−1) w.p.1.
By following the same argument as before, we can also show that

1

Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)Υ (x)→ Ŷ kΥ (χ̄k−1) w.p.1.

Since lim infk→∞ Ŷ k(χ̄k−1) > 0 ∀ω ∈Ωc
1 from (4.31), we have

1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)Υ (x)
1
Nk

∑
x∈Λk

Ŷ k(x, χ̄k−1)
→ Ŷ kΥ (χ̄k−1)

Ŷ k(χ̄k−1)
a.s. on Ωc

1 .

Thus, in conclusion, we have

Eg̃k

[
Υ (X)

]→Eĝk

[
Υ (X)

]
w.p.1.

On the other hand, by Assumptions A1, A2, and following the proof of Theo-
rem 4.5, it is not difficult to show that

Eĝk

[
Υ (X)

]→ Υ
(
x∗
)

w.p.1.

Hence by Lemma 4.8, we have

lim
k→∞m(θ̃k) := lim

k→∞Eθ̃k

[
Υ (X)

]= lim
k→∞Eg̃k

[
Υ (X)

]= Υ
(
x∗
)

w.p.1. �

Roughly speaking, the second result in Theorem 4.10 can be understood as finite-
time ε-optimality. To see this, consider the special case where J (x) is locally con-
cave on the set Oε . Let x,y ∈ Oε and η ∈ [0,1] be arbitrary. By the definition of
concavity, we will have J (ηx + (1 − η)y) ≥ ηJ (x) + (1 − η)J (y) ≥ J (x∗) − ε,
which implies that the set Oε is convex. If in addition Υ (x) is also convex and one-
to-one on Oε (e.g. multivariate normal p.d.f.), then CONV{Υ (Oε)} = Υ (Oε), and
it follows that Υ −1(m(θ̃k+1)) ∈Oε for all k ≥K w.p.1.

The following results are now immediate.
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Corollary 4.11 (Multivariate Normal) For continuous optimization problems in�n,
if multivariate normal p.d.f.s are used in MRAS1, i.e.,

f (x, θ̃k)= 1√
(2π)n|Σ̃k|

exp

(
−1

2
(x− μ̃k)

T Σ̃−1
k (x− μ̃k)

)
,

ε > 0, α > (βH∗)2, and Assumptions A1, A2, A3′, and A4′ are satisfied, then

lim
k→∞ μ̃k = x∗, and lim

k→∞ Σ̃k = 0n×n w.p.1.

Corollary 4.12 (Independent Univariate) If the components of the random vector
X= (X1, . . . ,Xn) are independent, each has a univariate density/mass of the form

f (xi , ϑi)= exp
(
xiϑi −K(ϑi)

)
h(xi ), xi ∈ �, ϑi ∈ �, ∀i = 1, . . . , n,

ε > 0, α > (βH∗)2, and Assumptions A1, A2, A3′, and A4′ are satisfied, then

lim
k→∞m(θ̃k) := lim

k→∞Eθ̃k
[X] = x∗ w.p.1, where θ̃k :=

(
ϑk1 , . . . , ϑ

k
n

)
.

4.2.3 MRAS2 Convergence

We first make the following assumptions on the sample performances Ji (x).

Assumption L1 For any given ε > 0, there exists a positive number n∗ such that
for all n≥ n∗,

sup
x∈X

P

(∣∣∣∣∣1n
n∑
i=1

Ji (x)− J (x)

∣∣∣∣∣≥ ε

)
≤ φ(n, ε),

where φ(·, ·) is strictly decreasing in its first argument and non-increasing in its
second argument. Moreover, φ(n, ε)→ 0 as n→∞.

Assumption L2 For any ε > 0, there exist positive numbers m∗ and n∗ such that
for all m≥m∗ and n≥ n∗,

sup
x,y∈X

P

(∣∣∣∣∣ 1

m

m∑
i=1

Ji (x)− 1

n

n∑
i=1

Ji (y)− J (x)+ J (y)

∣∣∣∣∣≥ ε

)
≤ φ
(
min{m,n}, ε),

where φ satisfies the conditions in L1.

Assumption L1 is satisfied by many random sequences, e.g., the sequence of i.i.d.
random variables with (asymptotically) uniformly bounded variance, or a class of
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random variables (not necessarily i.i.d.) that satisfy the large deviations principle (cf.
[88, 189]). Assumption L2 can be viewed as a simple extension of Assumption L1.
Most random sequences that satisfy Assumption L1 will also satisfy Assumption L2.
For example, consider the particular case where Ji (x), i = 1,2, . . . are i.i.d. with
uniformly bounded variance σ 2(x) and E(Ji (x)) = J (x), ∀x ∈ X . Thus the vari-
ance of the random variable 1

m

∑m
i=1 Ji (x) − 1

n

∑n
i=1 Ji (y) is 1

m
σ 2(x) + 1

n
σ 2(y),

which is also uniformly bounded on X . By Chebyshev’s inequality, we have, for
any x,y ∈X ,

P

(∣∣∣∣∣ 1

m

m∑
i=1

Ji (x)− 1

n

n∑
i=1

Ji (y)− J (x)+ J (y)

∣∣∣∣∣≥ ε

)

≤ supx,y[ 1
m
σ 2(x)+ 1

n
σ 2(y)]

ε2

≤ supx,y[σ 2(x)+ σ 2(y)]
min{m,n}ε2

= φ
(
min{m,n}, ε).

We impose the following regularity condition on the observation allocation rule.

Assumption L3 The observation allocation rule {Mk,k = 0,1, . . .} satisfies Mk ≥
Mk−1 ∀k = 1,2, . . . , and Mk →∞ as k→∞. Moreover, for any ε > 0, there exist
δε ∈ (0,1) and Kε > 0 such that α2kφ(Mk−1, ε) ≤ (δε)

k, ∀ k ≥ Kε , where φ is
defined as in Assumption L1.

Assumption L3 is a mild condition and is very easy to verify. For instance, if
φ(n, ε) takes the form φ(n, ε)= C(ε)

n
, where C(ε) is a constant depending on ε, then

the condition on Mk−1 becomes Mk−1 ≥ C(ε)(α2

δε
)k ∀k ≥Kε . As another example,

if Ji (x), i = 1,2 . . . satisfies the large deviations principle and φ(n, ε) = e−nC(ε),
then the condition becomes Mk−1 ≥ [ln(α2

δε
)/C(ε)]k, ∀k ≥Kε .

The following lemma implies the probability one convergence of the sequence
of stochastic thresholds {χ̄k} generated by MRAS2.

Lemma 4.13 If Assumptions L1–L3 are satisfied, then the sequence of random vari-
ables {X∗

k, k = 0,1, . . .} generated by MRAS2 converges w.p.1 as k→∞.

Proof Let Ak be the event that Steps 3a or 3b is visited at the kth iteration of the
algorithm, Bk := {J (X∗

k)− J (X∗
k−1)≤ ε

2 }. Since each time Step 3a or 3b is visited,
we have J̄k(X∗

k)− J̄k−1(X∗
k−1)≥ ε, we have

P(Ak ∩Bk)

≤ P

({
J̄k
(
X∗
k

)− J̄k−1
(
X∗
k−1

)≥ ε
}∩ {J (X∗

k

)− J
(
X∗
k−1

)≤ ε

2

})



4.2 Convergence Analysis of MRAS 119

≤ P

( ⋃
x∈Λk,y∈Λk−1

{{
J̄k(x)− J̄k−1(y)≥ ε

}∩ {J (x)− J (y)≤ ε

2

}})

≤
∑

x∈Λk,y∈Λk−1

P

({
J̄k(x)− J̄k−1(y)≥ ε

}∩ {J (x)− J (y)≤ ε

2

})

≤ |Λk||Λk−1| sup
x,y∈X

P

({
J̄k(x)− J̄k−1(y)≥ ε

}∩ {J (x)− J (y)≤ ε

2

})

≤ |Λk||Λk−1| sup
x,y∈X

P

(
J̄k(x)− J̄k−1(y)− J (x)+ J (y)≥ ε

2

)

≤ |Λk||Λk−1|φ
(

min{Mk,Mk−1}, ε
2

)
by Assumption L2

≤ α2kN2
0φ

(
Mk−1,

ε

2

)
≤N2

0 (δε/2)
k ∀k ≥Kε/2 by Assumption L3.

Therefore,

∞∑
k=1

P(Ak ∩Bk)≤Kε/2 +N2
0

∞∑
k=Kε/2

(δε/2)
k ≤∞.

By the Borel–Cantelli lemma, we have

P(Ak ∩Bk i.o.)= 0.

It follows that if Ak happens infinitely often, then w.p.1, Bc
k will also happen in-

finitely often. Thus,

∞∑
k=1

[
J
(
X∗
k

)− J
(
X∗
k−1

)]

=
∑

k: Ak occurs

[
J
(
X∗
k

)− J
(
X∗
k−1

)]+ ∑
k: Ac

k occurs

[
J
(
X∗
k

)− J
(
X∗
k−1

)]

=
∑

k: Ak occurs

[
J
(
X∗
k

)− J
(
X∗
k−1

)]
since X∗

k =X∗
k−1 if Step 3c is visited

=
∑

k: Ak∩Bk occurs

[
J
(
X∗
k

)− J
(
X∗
k−1

)]+ ∑
k: Ak∩Bc

k occurs

[
J
(
X∗
k

)− J
(
X∗
k−1

)]

=∞ w.p.1, since ε > 0.

However, this is a contradiction, since J (x) is bounded from above by J (x∗). There-
fore, w.p.1, Ak can only happen a finite number of times, which implies that the
sequence {X∗

k, k = 0,1, . . .} converges w.p.1. �
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Note that when the solution space X is finite, the set Λk will be finite for all k.
Thus, Lemma 4.13 may still hold if we replace Assumption L3 by some milder
conditions on Mk . One such condition is

∑∞
k=1 φ(Mk, ε) <∞, for example, when

the sequence Ji (x), i = 1,2 . . . , satisfies the large deviations principle and φ(n, ε)
takes the form φ(n, ε)= e−nC(ε). A particular observation allocation rule that satis-
fies this condition is Mk =Mk−1 + 1 ∀ k = 1,2, . . . .

Define χk = J (X∗
k), i.e., the true performance of the random sample X∗

k .
Lemma 4.13 implies that the sequence {χk} converges. It is easy to see that the
sequence of stochastic thresholds {χ̄k} is just a sample average approximation of
the sequence {χk}. As we will see, by using a slightly stronger condition than As-
sumption L3, we can show that χ̄k not only converges to χk , but also does so at an
exponential rate.

To establish the global convergence of MRAS2, we make the following addi-
tional assumptions.

Assumption B1 There exists a compact set Ξ such that for the sequence of random
variables {X∗

k, k = 0,1, . . .} generated by MRAS2, ∃N <∞ w.p.1 such that {x :
J (x)≥ J (X∗

k)− ε} ∩X ⊆Ξ ∀ k ≥N .

Assumption B2 For any constant ξ < J(x∗), the set {x : J (x) ≥ ξ} ∩ X has a
strictly positive Lebesgue or discrete measure.

Assumption B3 For any given constant δ > 0, supx∈Aδ
J (x) < J (x∗), where Aδ :=

{x : ‖x− x∗‖> δ} ∩X , and we define the supremum over the empty set to be −∞.

Assumption B4 For each point z≤ J (x∗), there exist Δk > 0 and Lk > 0, such that
|(H(z))k−(H(z̄))k |

|(H(z))k | ≤ Lk|z− z̄| for all z̄ ∈ (z−Δk, z+Δk).

Assumption B5 The maximizer of (4.12) is an interior point of Θ ∀k.

Assumption B6 f (x, θ0) > 0 ∀x ∈ X and f∗ := infx∈Ξ f (x, θ0) > 0, where Ξ is
defined in Assumption B1.

Since the sequence {X∗
k} generated by MRAS2 converges (see Lemma 4.13), As-

sumption B1 requires that the search of MRAS2 will eventually end up in a compact
set. The assumption is trivially satisfied if the solution space X is compact. Assump-
tion B2 ensures that the neighborhood of the optimal solution x∗ will be sampled
with a strictly positive probability. Since x∗ is the unique global optimizer of J , As-
sumption B3 is satisfied by many functions encountered in practice. Assumption B4
can be understood as a locally Lipschitz condition on [H(·)]k ; its suitability will be
discussed later. In actual implementation of the algorithm, Step 4 is often posed as
an unconstrained optimization problem, i.e.,Θ =�m, in which case Assumption B5
is automatically satisfied. It is also easy to verify that Assumption B6 is satisfied by
most NEFs.
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The next lemma relates the sequence of sampling distributions {f (·, θ̃k)} to the
sequence of reference models {g̃k, k = 1,2, . . .} defined by (4.13).

Lemma 4.14 If Assumption B5 holds, then we have

m(θ̃k+1)=Eθ̃k+1

[
Υ (X)

]=Eg̃k+1

[
Υ (X)

]
, ∀k = 0,1, . . . ,

where Eθ̃k+1
and Eg̃k+1 are the expectations taken with respect to the p.d.f./p.m.f.

f (·, θ̃k+1) and g̃k+1, respectively.

Proof Similar to the proof of Lemma 4.4. �

We now construct a sequence of (idealized) distributions {ĝk} as

ĝk+1(x)= [H(J (x))]k Ĩ (J (x),χk−1)∫
x∈X [H(J (x)]k Ĩ (J (x),χk−1)ν(dx)

∀k = 1,2, . . . , (4.34)

where χk−1 := J (X∗
k−1).

The outline of the convergence proof is as follows. First we establish the conver-
gence of the sequence of idealized distributions {ĝk}. Then we show that the refer-
ence models {g̃k} are in fact the (sample average) approximations of the sequence
{ĝk} by proving Eg̃k [Υ (X)]→Eĝk [Υ (X)] w.p.1 as k→∞. Thus, the convergence
of the sequence {f (·, θ̃k)} follows immediately by applying Lemma 4.14.

The convergence of the sequence {ĝk} is formalized in the following lemma.

Lemma 4.15 If Assumptions L1–L3, B1–B3 are satisfied, then

lim
k→∞Eĝk

[
Υ (X)

]= Υ
(
x∗
)

w.p.1.

Proof Let Ω2 be the set of all sample paths such that Step 3a or 3b of MRAS2 is
visited finitely often, and letΩ3 be the set of sample paths such that limk→∞{J (x)≥
χk − ε} ⊆ Ξ . By Lemma 4.13, we have P(Ω2) = 1, and for each ω ∈ Ω2, there
exists a finite N (ω) > 0 such that

X∗
k(ω)=X∗

k−1(ω) ∀k ≥N (ω),

which implies that χk(ω)= χk−1(ω) ∀k ≥N (ω). Furthermore, by Assumption B1,
we have P(Ω3) = 1 and {J (x) ≥ χk−1(ω)− ε} ⊆Π, ∀k ≥N (ω) ∀ω ∈Ω2 ∩Ω3.
By following the same argument as in the proof of Theorem 4.5, it is easy to show
that

lim
k→∞Egk(ω)

[
Υ (X)

]= Υ
(
x∗
)
, ∀ω ∈Ω2 ∩Ω3.

Since P(Ω2 ∩Ω3)= 1, the proof is thus completed. �
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As mentioned earlier, the rest of the convergence proof now amounts to showing
that Eg̃k [Υ (X)] → Eĝk [Υ (X)] w.p.1 as k→∞. However, there is one more com-
plication: Since H is an increasing function and is raised to the kth power in both
g̃k+1 and ĝk+1 (see Eqs. (4.13) and (4.34)), the associated estimation error between
J̄k(x) and J (x) is exaggerated. Thus, even though we have limk→∞ J̄k(x)= J (x)
w.p.1, the quantities [H(J̄k(x))]k and [H(J (x))]k may still differ considerably as k
gets large. Therefore, the sequence {J̄k(x)} not only has to converge to J (x), but it
should also do so at a fast enough rate in order to keep the resultant approximation
error between [H(J̄k(x))]k and [H(J (x))]k at a manageable level. This requirement
is summarized in the following assumption.

Assumption L4 For any given ζ > 0, there exist δ∗ ∈ (0,1) and K > 0 such that
the observation allocation rule {Mk,k = 0,1, . . .} satisfies

αkφ

(
Mk,min

{
Δk,

ζ

αk/2
,

ζ

αk/2Lk

})
≤ (δ∗)k ∀k ≥K,

where φ is defined as in Assumption L1, and Δk and Lk are defined as in Assump-
tion B4.

Let H(z) = eτz, for some positive constant τ . We have Hk(z) = eτkz and

[Hk(z)]′ = kτeτkz. It is easy to verify that |Hk(z)−Hk(z̄)|
Hk(z)

≤ kτeτkΔk |z − z̄| ∀z̄ ∈
(z − Δk, z + Δk), and Assumption B4 is satisfied for Δk = 1/k and Lk = τeτ k.
Thus, the condition in Assumption L4 becomes αkφ(Mk, ζ̄ /α

k/2k)≤ (δ∗)k ∀k ≥K,
where ζ̄ = ζ/τeτ . We consider the following two special cases of Assump-
tion L4. Let Ji (x) be i.i.d. with E(Ji (x))= J (x) and uniformly bounded variance
supx∈X σ 2(x)≤ σ 2. By Chebyshev’s inequality

P

(∣∣J̄k(x)− J (x)
∣∣≥ ζ̄

αk/2k

)
≤ σ 2αkk2

Mkζ̄ 2
.

Thus, it is easy to check that Assumption L4 is satisfied by Mk = (μα2)k for any
constant μ> 1.

As a second example, consider the case where J1(x), . . . ,JNk
(x) are i.i.d. with

E(Ji[x)] = J (x) and bounded support [a, b]. By the Hoeffding inequality ([86])

P

(∣∣J̄k(x)− J (x)
∣∣≥ ζ̄

αk/2k

)
≤ 2 exp

( −2Mkζ̄
2

(b− a)2αkk2

)
.

In this case, Assumption L4 is satisfied by Mk = (μα)k for any constant μ> 1.
Again, as discussed earlier following Lemma 4.13, Assumption L4 can be re-

placed by the weaker condition

∞∑
k=1

φ

(
Mk,min

{
Δk,

ζ

αk/2
,

ζ

αk/2Lk

})
<∞

when the solution space X is finite.
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The following result shows that under Assumption L4, the stochastic threshold
χ̄k converges to χk exponentially fast.

Proposition 4.16 If Assumptions L1–L4 are satisfied, then

lim
k→∞αk/2|χ̄k − χk| = 0 w.p.1.

Proof Again, we consider the sequence {X∗
k} generated by MRAS2.

We have for any ζ > 0

P

(
|χ̄k − χk| ≥ ζ

αk/2

)
= P

(∣∣J̄k(X∗
k

)− J
(
X∗
k

)∣∣≥ ζ

αk/2

)

≤ P

( ⋃
x∈Λk

{∣∣J̄k(x)− J (x)
∣∣≥ ζ

αk/2

})

≤
∑

x∈Λk

P

(∣∣J̄k(x)− J (x)
∣∣≥ ζ

αk/2

)

≤ |Λk| sup
x∈X

P

(∣∣J̄k(x)− J (x)
∣∣≥ ζ

αk/2

)

≤ αkN0φ
(
Mk, ζ/α

k/2) by Assumption L1

≤ N0
(
δ∗
)k ∀k ≥K by Assumption L4.

Thus
∞∑
k=1

P

(
|χ̄k − χk| ≥ ζ

αk/2

)
≤K+N0

∞∑
k=K

(
δ∗
)k
<∞.

And by Borel–Cantelli lemma,

P

({
|χ̄k − χk| ≥ ζ

αk/2

}
i.o.

)
= 0.

Since ζ is arbitrary, the proof is thus completed. �

We now state the main theorem.

Theorem 4.17 Let ϕ > 0 be a positive constant satisfying the condition that the set
{x : H(J (x)) ≥ 1

ϕ
} has a strictly positive Lebesgue/counting measure. If Assump-

tions L1–L4, B1–B6 are satisfied, and α > (ϕH∗)2, then

lim
k→∞m(θ̃k)= lim

k→∞Eθ̃k

[
Υ (X)

]= Υ
(
x∗
)

w.p.1, (4.35)

where the limit above is component-wise.
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By the monotonicity of H and Assumption B2, it is easy to see that such a posi-
tive constant ϕ in Theorem 4.17 always exists. Moreover, for continuous problems,
ϕ can be chosen such that ϕH∗ ≈ 1; for discrete problems, if the counting measure
is used, then we can choose ϕ = 1/H∗.

Proof For brevity, we define the function

Yk(Z,χ) := H̃k(Z)Ĩ (Z,χ),

where

H̃k(Z)=
{
[H(J (x))]k/f̃ (x, θ̃k) if Z = J (x),
[H(J̄k(x))]k/f̃ (x, θ̃k) if Z = J̄k(x).

By Assumption B6, the support of f̃ (·, θ̃k) satisfies X ⊆ supp{f̃ (·, θ̃k)} ∀k. Thus,
we can write

Eĝk+1

[
Υ (X)

]= Ẽθ̃k
[Yk(J (X),χk−1)Υ (X)]
Ẽθ̃k

[Yk(J (X),χk−1)]
,

where Ẽθ̃k
is the expectation taken with respect to f̃ (·, θ̃k). We now show

Eg̃k+1[Υ (X)] → Eĝk+1[Υ (X)] w.p.1 as k →∞. Since we are only interested in
the limiting behavior of Eg̃k+1[Υ (X)], from the definition of g̃k+1 (see Eq. (4.24)),
it is sufficient to show that∑

x∈Λk
Yk(J̄k(x), χ̄k)Υ (x)∑

x∈Λk
Yk(J̄k(x), χ̄k)

→Eĝk+1

[
Υ (X)

]
w.p.1,

where, and also hereafter, whenever {x ∈ Λk : J̄k(x) > χ̄k − ε} = ∅, we define 0/
0= 0. We have∑

x∈Λk
Yk(J̄k(x), χ̄k)Υ (x)∑

x∈Λk
(J̄k(x), χ̄k)

−Eĝk+1

[
Υ (X)

]

=
∑

x∈Λk
Yk(J̄k(x), χ̄k)Υ (x)∑

x∈Λk
Yk(J̄k(x), χ̄k)

− Ẽθ̃k
[Yk(J (X),χk−1)Υ (X)]
Ẽθ̃k

[Yk(J (X),χk−1)]

=
{ 1
Nk

∑
x∈Λk

Yk(J (x),χk)Υ (x)
1
Nk

∑
x∈Λk

Yk(J (x),χk)
− Ẽθ̃k

[Yk(J (X),χk−1)Υ (X)]
Ẽθ̃k

[Yk(J (X),χk−1)]
}

[i]

+
{ 1
Nk

∑
x∈Λk

Yk(J̄k(x), χ̄k)Υ (x)
1
Nk

∑
x∈Λk

Yk(J̄k(x), χ̄k)
−

1
Nk

∑
x∈Λk

Yk(J (x),χk)Υ (x)
1
Nk

∑
x∈Λk

Yk(J (x),χk)

}
. [ii]

We now analyze the terms [i] and [ii].



4.2 Convergence Analysis of MRAS 125

First we show that [i]→ 0 w.p.1 as k→∞.

[i] =
1
Nk

∑
x∈Λk

ϕkH̃k(J (x))Ĩ (J (x),χk)Υ (x)
1
Nk

∑
x∈Λk

ϕkH̃k(J (x))Ĩ (J (x),χk)

− Ẽθ̃k
[ϕkH̃k(J (X))Ĩ (J (X),χk−1)Υ (X)]
Ẽθ̃k

[ϕkH̃k(J (X))Ĩ (J (X),χk−1)]
.

Since ε > 0, we have χk − ε ≤ J (x∗) − ε for all k. Thus by Assumption B2, the
set {x : J (x)≥ χk−1 − ε} ∩X has a strictly positive Lebesgue/discrete measure for
all k. It follows from Fatou’s lemma that

lim inf
k→∞ Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)]
≥
∫
X

lim inf
k→∞

[
ϕH
(
J (x)

)]k
Ĩ
(
J (x),χk−1

)
ν(dx) > 0, (4.36)

where the last inequality follows from the fact that ϕH(J (x))≥ 1 ∀x ∈ {x : J (x)≥
max{H−1( 1

ϕ
), J (x∗)− ε}}.

Note that

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)− Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)]

=
(

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)− 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk−1

))

+
(

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk−1

)

− Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)])
.

Let Ω2 be defined as before (see the proof of Lemma 4.15). For each ω ∈Ω2, it is
easy to see that there exists N (ω) such that for all k ≥N (ω),

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)− 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk−1

)= 0.

(4.37)
We denote by Uk the event that the total number of visits to Step 3a or 3b of

MRAS2 is less than or equal to
√
k at the kth iteration of the algorithm, and by Wk

the event that {J (x)≥ χk−1 − ε} ∩X ⊆Ξ . For any ξ > 0, let Qk be the event∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk−1

)− Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)]∣∣∣∣≥ ξ.
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Note that we have P(Uc
k i.o.)= 0 by Lemma 4.13, and P(Wc

k i.o.)= 0 by Assump-
tion B1. Therefore,

P(Qk i.o.) = P
({Qk ∩ Uk} ∪

{
Qk ∩ Uc

k

}
i.o.
)

= P(Qk ∩ Uk i.o.)

= P
({Qk ∩ Uk ∩Wk} ∪

{
Qk ∩ Uk ∩Wc

k

}
i.o.
)

= P(Qk ∩ Uk ∩Wk i.o.). (4.38)

From Assumption B6, it is easy to see that the event Wk implies that the sup-
port [ak, bk] of the random variable ϕkH̃k(J (x))Ĩ (J (x),χk−1), x ∈ Λk satisfies

[ak, bk] ⊆ [0, (ϕH∗)k
λf∗ ]. Moreover, conditional on θ̃k and χk−1, X1

k, . . . ,XNk

k are i.i.d.

random variables with common density f̃ (·, θ̃k), we have, by the Hoeffding inequal-
ity,

P(Qk|Wk, θ̃k = θ,χk−1 = χ) ≤ 2 exp

( −2Nkξ
2

(bk − ak)2

)

≤ 2 exp

(−2Nkξ
2λ2f 2∗

(ϕH∗)2k

)
∀k = 1,2, . . . .

Thus,

P(Qk ∩Wk) =
∫
θ,χ

P (Qk ∩Wk|θ̃k = θ,χk−1 = χ)fθ̃k,χk−1
(dθ, dχ)

≤
∫
θ,χ

P (Qk|Wk, θ̃k = θ,χk−1 = χ)fθ̃k,χk−1
(dθ, dχ)

≤ 2 exp

(−2Nkξ
2λ2f 2∗

(ϕH∗)2k

)
,

where fθ̃k,χk−1
(·, ·) is the joint distribution of random variables θ̃k and χk−1. It fol-

lows that

P(Qk ∩ Uk ∩Wk) ≤ P(Qk ∩Wk|Uk)

≤ 2 exp

(−2αk−
√
kN0ξ

2λ2f 2∗
(ϕH∗)2k

)

≤ 2 exp

(−2N0ξ
2f 2∗ λ2

α
√
k

(
α

(ϕH∗)2

)k)
,

where the second inequality above follows because the event Uk implies that the
total number of visits to Step 3c is greater than k−√k.
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Moreover, since e−x < 1/x ∀x> 0, we have

P(Qk ∩ Uk ∩Wk) <
α
√
k

N0ξ2f 2∗ λ2

(
(ϕH∗)2

α

)k
= 1

N0ξ2f 2∗ λ2

(
α
√
k/k(ϕH∗)2

α

)k
.

By assumption, we have (ϕH∗)2
α

< 1. Thus, there exist δ < 1 and Tδ > 0 such that

α
√
k/k (ϕH∗)2

α
≤ δ ∀k ≥ Tδ . Therefore,

∞∑
k=1

P(Qk ∩ Uk ∩Wk) < Tδ + 1

N0ξ2f 2∗ λ2

∞∑
k=Tδ

δk <∞.

Thus, we have by the Borel–Cantelli lemma

P(Qk ∩ Uk ∩Wk i.o.)= 0,

which implies that P(Qk i.o.)= 0 by Eq. (4.38). Since ξ > 0 is arbitrary, we have∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk−1

)− Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)]∣∣∣∣
→ 0 w.p.1. (4.39)

Therefore, by combining (4.37) and (4.39), we have

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)

→ Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)]
w.p.1. (4.40)

The same argument can also be used to show that

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)
Υ (x)

→ Ẽθ̃k

[
ϕkH̃k

(
J (X)

)
Ĩ
(
J (X),χk−1

)
Υ (X)

]→ 0 w.p.1.

And because lim infk→∞ Ẽθ̃k
[ϕkH̃k(J (X))Ĩ (J (X),χk−1)] > 0 (see (4.36)), we

have [i]→ 0 w.p.1 as k→∞.
To complete the proof, we still need to show that the second term [ii]→ 0 w.p.1

as k→∞. Note that

[ii] =
1
Nk

∑
x∈Λk

ϕkH̃k(J̄k(x))Ĩ (J̄k(x), χ̄k)Υ (x)
1
Nk

∑
x∈Λk

ϕkH̃k(J̄k(x))Ĩ (J̄k(x), χ̄k)

−
1
Nk

∑
x∈Λk

ϕkH̃k(J (x))Ĩ (J (x),χk)Υ (x)
1
Nk

∑
x∈Λk

ϕkH̃k(J (x))Ĩ (J (x),χk)
.
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From (4.36) and (4.40), it is easy to see that

lim inf
k→∞

1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)
> 0 w.p.1.

Therefore, to prove that [ii]→ 0 w.p.1, it is sufficient to show that w.p.1

1

Nk

∑
x∈Λk

ϕkH̃k

(
J̄k(x)

)
Ĩ
(
J̄k(x), χ̄k

)→ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)

and

1

Nk

∑
x∈Λk

ϕkH̃k

(
J̄k(x)

)
Ĩ
(
J̄k(x), χ̄k

)
Υ (x)

→ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)
Υ (x).

We have∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J̄k(x)

)
Ĩ
(
J̄k(x), χ̄k

)− 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)∣∣∣∣
≤
∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J̄k(x)

)
Ĩ
(
J̄k(x), χ̄k

)− 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J̄k(x), χ̄k

)∣∣∣∣
+
∣∣∣∣ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J̄k(x), χ̄k

)

− 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)∣∣∣∣. (4.41)

The first term on the right-hand side of inequality (4.41) is bounded by

ϕk

Nk

∑
x∈Λk

|H̃k(J̄k(x))− H̃k(J (x))|
H̃k(J (x))

H̃k

(
J (x)

)
Ĩ
(
J̄k(x), χ̄k

)

= ϕk

Nk

∑
x∈Λk

|[H(J̄k(x))]k − [H(J (x))]k |
[H(J (x))]k

[H(J (x))]k
f̃ (x, θ̃k)

Ĩ
(
J̄k(x), χ̄k

)

≤ (ϕH∗)k

Nkλf∗

∑
x∈Λk

|[H(J̄k(x))]k − [H(J (x))]k|
[H(J (x))]k ∀k ≥N (ω), (4.42)

for all ω ∈ Ω3 by Assumptions B1 and B6, where we recall from the proof of
Lemma 4.15 that Ω3 is the set of sample paths such that limk→∞{x : J (x) ≥
χk − ε} ∩X ⊆Ξ .
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Letting Δk be defined as in Assumption B4, we have

P
(

max
x∈Λk

∣∣J̄k(x)− J (x)
∣∣≥Δk

)
≤ P

( ⋃
x∈Λk

{∣∣J̄k(x)− J (x)
∣∣≥Δk

})

≤
∑

x∈Λk

P
(∣∣J̄k(x)− J (x)

∣∣≥Δk

)

≤ |Λk| sup
x∈X

P
(∣∣J̄k(x)− J (x)

∣∣≥Δk

)
≤ αkN0φ(Mk,Δk) by Assumption L1

≤ N0
(
δ∗
)k ∀k ≥K by Assumption L4.

Furthermore,

∞∑
k=1

P
(

max
x∈Λk

∣∣J̄k(x)− J (x)
∣∣≥Δk

)
≤K+N0

∞∑
k=K

(
δ∗
)k
<∞,

which implies that P(maxx∈Λk
|J̄k(x)− J (x)| ≥Δk i.o.)= 0 by the Borel–Cantelli

lemma.
Let Ω4 := {ω : maxx∈Λk

|J̄k(x)− J (x)| < Δk i.o.}. For each ω ∈Ω3 ∩Ω4, we
see that the right-hand side of inequality (4.42) is further bounded by

(ϕH∗)k

λf∗Nk

∑
x∈Λk

Lk
∣∣J̄k(x)− J (x)

∣∣ for sufficiently large k, by Assumption B4

≤ (ϕH∗)k

λf∗
Lk max

x∈Λk

∣∣J̄k(x)− J (x)
∣∣

≤ αk/2Lk

λf∗
max
x∈Λk

∣∣J̄k(x)− J (x)
∣∣, since α >

(
ϕH∗)2.

Note that for any given ζ > 0,

P
{
αk/2Lk max

x∈Λk

∣∣J̄k(x)− J (x)
∣∣≥ ζ

}
≤
∑

x∈Λk

P

{∣∣J̄k(x)− J (x)
∣∣≥ ζ

αk/2Lk

}
.

And by using Assumption L4 and a similar argument as in the proof for Proposi-
tion 4.16, it is easy to show that

αk/2Lk max
x∈Λk

∣∣J̄k(x)− J (x)
∣∣→ 0 w.p.1.

Let Ω5 := {ω : αk/2Lk maxx∈Λk
|J̄k(x) − J (x)| → 0}. Since P(Ω3 ∩Ω4 ∩Ω5) ≥

1− P(Ωc
3)− P(Ωc

4)− P(Ωc
5)= 1, it follows that the first term on the right-hand

side of inequality (4.41) → 0 as k→∞ w.p.1.
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On the other hand, the second term on the right-hand side of inequality (4.41) is
bounded by

ϕk

Nk

∑
x∈Λk

H̃k

(
J (x)

)∣∣Ĩ(J̄k(x), χ̄k)− Ĩ
(
J (x),χk

)∣∣

≤ (ϕH∗)k

Nkλf∗

∑
x∈Λk

∣∣Ĩ(J̄k(x), χ̄k)− Ĩ
(
J (x), χ̄k

)∣∣+ ∣∣Ĩ(J (x), χ̄k)− Ĩ
(
J (x),χk

)∣∣
∀k ≥N (ω), ω ∈Ω3

≤ (ϕH∗)k

Nkλf∗
1

ε

∑
x∈Λk

[∣∣J̄k(x)− J (x)
∣∣+ |χ̄k − χk|

]
by the definition of Ĩ (·, ·)

≤ αk/2

λf∗ε
max
x∈Λk

∣∣J̄k(x)− J (x)
∣∣+ αk/2

λf∗ε
|χ̄k − χk|→ 0 w.p.1,

by Assumption L4 and Proposition 4.16.
By repeating the above argument, we can also show that

1

Nk

∑
x∈Λk

ϕkH̃k

(
J̄k(x)

)
Ĩ
(
J̄k(x), χ̄k

)
Υ (x)

→ 1

Nk

∑
x∈Λk

ϕkH̃k

(
J (x)

)
Ĩ
(
J (x),χk

)
Υ (x) w.p.1.

Thus, we have [ii]→ 0 as k→∞ w.p.1.
Hence the proof is completed by applying Lemmas 4.14 and 4.15. �

Proofs of the following results for the multivariate normal and independent uni-
variate cases are straightforward and hence omitted.

Corollary 4.18 (Multivariate Normal) For continuous optimization problems in�n,
if multivariate normal p.d.f.s are used in MRAS2, i.e.,

f (x, θ̃k)= 1√
(2π)n|Σ̃k|

exp

(
−1

2
(x− μ̃k)

T Σ̃−1
k (x− μ̃k)

)
,

where θ̃k := (μ̃k; Σ̃k), Assumptions L1–L4, B1–B5 are satisfied, and α > (ϕH∗)2,
then

lim
k→∞ μ̃k = x∗, and lim

k→∞ Σ̃k = 0n×n w.p.1,

where 0n×n represents an n-by-n zero matrix.
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Corollary 4.19 (Independent Univariate) If the components of the random vector
X are independent, each has a univariate density/mass function of the form

f (xi , ϑ̃i)= exp
(
xi ϑ̃i −K(ϑ̃i)

)
h(xi ), xi ∈ �, ϑ̃i ⊂�, ∀i = 1, . . . , n,

Assumptions L1–L4, B1–B6 are satisfied, and α > (ϕH∗)2, then

lim
k→∞m(θ̃k)= lim

k→∞Eθ̃k
[X] = x∗ w.p.1, where θ̃k :=

(
ϑ̃k1 , . . . , ϑ̃

k
n

)
.

4.3 Application of MRAS to MDPs via Direct Policy Learning

In this section, we apply the MRAS method to solving MDPs with finite state spaces.
Central to the context of this section are that the underlying transition distribution
and/or the one-stage cost function are unknown and that only simulation samples
are available. Thus, standard techniques like value iteration and policy iteration are
not directly applicable. There is a class of well-established approaches, often re-
ferred to as reinforcement learning (see Chap. 1 for a description and references),
that have proven useful for attacking these types of problem. Many reinforcement
learning algorithms, including the well-known Q-learning, work directly with the
value function or Q-function, and iteratively update/learn these quantities in order
to better approximate the true optimal value function. Thus, these algorithms can
be viewed as variants of value iteration in simulation settings. In contrast, the idea
of this section is to interpret an MDP as a stochastic optimization problem on the
(randomized) policy space, and then use MRAS as a specific optimization strategy to
directly search the policy space to find good policies. We focus on the MRAS2 algo-
rithm proposed in Sect. 4.1.3, and consider both finite- and infinite-horizon MDPs.
The key in applying MRAS2 to both settings is to define an appropriate (parame-
terized) distribution on the policy space, so that random samples (policies) can be
generated efficiently.

4.3.1 Finite-Horizon MDPs

In the finite-horizon setting, since the optimal policy is in general non-stationary,
we need to define the parameterized sampling distributions on the space of non-
stationary policies. This step can be carried out by specifying at each stage t ∈
{0, . . . ,H −1}, a parameterized marginal distribution f (a, θ t,x) ∀a ∈A(x) for each
state x ∈X, where θ t,x is a parameter that depends on both t and x. Note that when
the action space is finite, f (·, θ t,x) becomes a p.m.f. with

∑
a∈A(x) f (a, θ t,x) =

1 ∀x, t , where f (a, θ t,x) represents the probability of taking action a at state x and
stage t . Once these marginal distributions are specified, we can generate Nk poli-
cies at the kth iteration of MRAS2, simulate these Nk policies, and calculate their
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corresponding cumulative rewards. A detailed description of these steps is given in
Fig. 4.6, where for simplicity, we have assumed that all simulations start from a
given initial state x0.

GivenNk deterministic policies πi, i = 1, . . . ,Nk , and their corresponding value
function estimates V̄ πi

k , we can directly apply the MRAS2 algorithm with J̄k(Xi
k)

in Fig. 4.5 replaced by V̄ πi

k to update the parameters associated with the marginal
distributions. As discussed in Sect. 4.1.1, we restrict f (·, θ t,x) to natural exponen-
tial families, so that the parameter updating (4.43) can be carried out in analytical
form, which makes the algorithm easy to implement. It is worth mentioning that
when applying MRAS2, the distribution f(·, θ̃k) that appears in Eq. (4.43) is a joint
distribution, which is the product of marginal distributions f̃ (·, θ̃ t,xk ). Thus, in the
finite action space case, f(πi, θ̃k) would actually indicate the probability that policy
πi is generated given the current parameter θ̃k = {θ t,xk , ∀t, x}.

This algorithm can be used in an on-line manner, in the same way as the Simu-
lated Annealing Multiplicative Weights (SAMW) algorithm presented in Sect. 5.1,
to approximately solve large or infinite-horizon MDPs.

4.3.2 Infinite-Horizon MDPs

In the infinite-horizon setting, since we are working with stationary policies, the
policy generation and reward collection step is easier than that in the finite-horizon
case. However, except for shortest path problems, there is a slight complication
in simulating a given policy, because there is no explicit terminal stage/state in
a general infinite-horizon setting. One simple way to address this issue is to use
the cumulative reward of a finite but large horizon problem to approximate the re-
ward of the infinite-horizon problem. Precisely, for a given (stationary) policy π , let
{x0,π(x0),w0, x1,π(x1),w1 . . .} be a particular sample path of an infinite-horizon
MDP with cumulative reward

∑∞
t=0 γ

tR′(xt ,π(xt ),wt ). For any given δ > 0, it can

be easily verified that if we simulate for at least Tδ ≥ �ln δ(1−γ )
Rmax

/ lnγ � periods, then
the reward accumulated on the finite path {x0,π(x0),w0, . . . , xTδ ,π(xTδ ),wTδ } can
at most differ from

∑∞
t=0 γ

tR′(xt ,π(xt ),wt ) by δ. Thus, when estimating value
functions in Fig. 4.7, each sample path will only be simulated for a finite horizon
length Tδ . All other components in Fig. 4.7 essentially remain the same as in the
finite-horizon case, except that the marginal distributions f (·, θx) are now station-
ary.

4.3.3 MDPs with Large State Spaces

For MDPs with large state spaces, the aforementioned policy learning approach may
lead to computational inefficiency, since the size of the policy space to be searched
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MRAS2 for Finite-Horizon MDPs

Input: ρ0 ∈ (0,1], N0 > 1, ε > 0, α > 1, λ ∈ (0,1), strictly increasing function H:
� → �+, simulation allocation rule {Mk}, initial state x0 ∈ X, family of distributions
{f (·, θ t,x), x ∈ X, t = 0, . . . ,H − 1} with θ

t,x
0 s.t. f (a, θ t,x0 ) > 0 ∀a ∈ A(x), x ∈X,

t = 0, . . . ,H − 1.

Initialization: Set iteration count k = 0; θ̃ t,x0 = θ
t,x
0 ∀ t, x.

Loop until Stopping Rule is satisfied:

• Construct Nk non-stationary policies πi = {πi0, . . . , πiH−1}, i = 1, . . . ,Nk .

· With probability 1− λ, generate πi by sampling actions

πit (x)∼ f (·, θ̃ t,x
k

) ∀x ∈X, t = 0, . . . ,H − 1.

· With probability λ, generate πi by sampling actions

πit (x)∼ f (·, θ̃ t,x0 ) ∀x ∈X, t = 0, . . . ,H − 1.

Let Λk = {π1, . . . , πNk } be the set of Nk generated policies. Simulate for Mk

paths, each policy π ∈ Λk starting from x0; calculate the averaged reward V̄ π
k
=

1
Mk

∑Mk

j=1 V
π
k,j

, where V π
k,j

is the cumulative reward obtained at the j th simulation
of policy π .

• Compute the sample (1− ρk)-quantile:

χ̃k(ρk,Nk)= V̄(�(1−ρk)Nk�),

where V̄(i) is the ith order statistic of {V̄ πi

k
, i = 1, . . . ,Nk}.

• if k = 0 or χ̃k(ρk,Nk)≥ χ̄k−1 + ε, then
· set χ̄k = χ̃k(ρk,Nk), ρk+1 = ρk, Nk+1 =Nk ,

X∗
k
=X1−ρk , where X1−ρk ∈ {π ∈Λk : V̄ π

k
= χ̃k(ρk,Nk)};

else, find the largest ρ̄ ∈ (0, ρk) such that χ̃k(ρ̄,Nk)≥ χ̄k−1 + ε;
· if ρ̄ exists, then set χ̄k = χ̃k(ρ̄,Nk), ρk+1 = ρ̄, Nk+1 =Nk ,

X∗
k
=X1−ρ̄ ∈ {π ∈Λk : V̄ π

k
= χ̃k(ρ̄,Nk)};

· else, set χ̄k = J̄k(X∗k−1), ρk+1 = ρk, Nk+1 = �αNk�,
X∗
k
=X∗

k−1.
endif

• Update parameter vector:

θ̃
t,x
k+1 ∈ arg max

θ t,x∈Θ
1

Nk

∑
π∈Λk

[H(V̄ π
k
)]k

f(π, θ̃k)
Ĩ
(
V̄ π
k , χ̄k

)
lnf
(
πt (x), θ

t,x
) ∀t, x, (4.43)

where f(π, θ̃k) = (1 − λ)
∏
x∈X

H−1∏
t=0

f
(
πt (x), θ̃

t,x
k

) + λ
∏
x∈X

H−1∏
t=0

f
(
πt (x), θ̃

t,x
0

)
and

θ̃k = {θ̃ t,xk , ∀ t, x}.
• k← k + 1.

Output: θ̃k .

Fig. 4.6 Application of MRAS2 to finite-horizon MDPs
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MRAS2 for Infinite-Horizon MDPs

Input: ρ0 ∈ (0,1], N0 > 1, ε > 0, α > 1, λ ∈ (0,1), strictly increasing function H: �→
�+, simulation allocation rule {Mk}, initial state x0 ∈X, simulation horizon Tδ , family
of (univariate) distributions {f (·, θx), x ∈ X} with θx0 s.t. the initial marginal distribu-
tions f (a, θx0 ) > 0 ∀a ∈A(x), x ∈X.

Initialization: Set iteration count k = 0; θ̃ x0 = θx0 ∀x.

Loop until Stopping Rule is satisfied:

• Construct a population of Nk stationary policies Λk = {π1 . . . , πNk }.
· With probability 1− λ, generate πi by sampling actions

πi(x)∼ f (·, θ̃x
k
) ∀x ∈X.

· With probability λ, generate πi by sampling actions

πi(x)∼ f (·, θ̃x0 ) ∀x ∈X.
Simulate for Mk paths, each policy π ∈ Λk , where each simulation starts from x0

and lasts for Tδ periods. Calculate the averaged reward V̄ π
k
= 1

Mk

∑Mk

j=1 V
π
k,j

, where

V π
k,j

is the cumulative reward obtained at the j th simulation of policy π .
• Compute the sample (1− ρk)-quantile:

χ̃k(ρk,Nk)= V̄(�(1−ρk)Nk�),

where V̄(i) is the ith order statistic of {V̄ πi

k
, i = 1, . . . ,Nk}.

• if k = 0 or χ̃k(ρk,Nk)≥ χ̄k−1 + ε, then
· set χ̄k = χ̃k(ρk,Nk), ρk+1 = ρk, Nk+1 =Nk ,

X∗
k
=X1−ρk , where X1−ρk ∈ {π ∈Λk : V̄ π

k
= χ̃k(ρk,Nk)};

else, find the largest ρ̄ ∈ (0, ρk) such that χ̃k(ρ̄,Nk)≥ χ̄k−1 + ε;
· if ρ̄ exists, then set χ̄k = χ̃k(ρ̄,Nk), ρk+1 = ρ̄, Nk+1 =Nk ,

X∗
k
=X1−ρ̄ ∈ {π ∈Λk : V̄ π

k
= χ̃k(ρ̄,Nk)};

· else, set χ̄k = J̄k(X∗k−1), ρk+1 = ρk, Nk+1 = �αNk�,
X∗
k
=X∗

k−1.
endif

• Update parameter vector:

θ̃ xk+1 ∈ arg max
θx∈Θ

1

Nk

∑
π∈Λk

[H(V̄ π
k
)]k

f(π, θ̃k)
Ĩ
(
V̄ π
k , χ̄k

)
lnf
(
π(x), θx

) ∀x, (4.44)

where f(π, θ̃k)= (1− λ)
∏
x∈X

f
(
π(x), θ̃x

k

)+ λ
∏
x∈X

f
(
π(x), θ̃x0

)
and θ̃k = {θ̃ xk , ∀x}.• k← k + 1.

Output: θ̃k .

Fig. 4.7 Application of MRAS2 to infinite-horizon MDPs
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by the algorithm (assume the action space is finite) grows exponentially with the
state space size. Moreover, in the finite-horizon setting, the policy space size will
also increase exponentially with the horizon length. In these situations, it is useful to
consider various compact representations of the policy space, which can be achieved
either by explicit policy parameterization or by restricting the search to a subset of
structured policies. In the former case, policies are parameterized, and thus deter-
mined, by a small number of parameters, and the policy learning via MRAS simply
becomes optimization over the smaller parameter space. One such example is the
classical (s, S) inventory control problem, where we parameterize control policies
by a threshold pair (s, S), and search for the best thresholds (s∗, S∗) over all possible
combinations of (s, S) rather than for the best policy among the set of all admissible
policies. In the latter case, we often need to have an idea of what form good policies
might take, either from practical experience or from some analysis; for example, in
designing the optimal feedback control law for a linear quadratic Gaussian (LQG)
system, if we know that a good control law is linear, then we can restrict the search
to the set of linear controllers instead of the general non-linear controllers.

4.3.4 Numerical Examples

We now illustrate the performance of MRAS2 on both finite- and infinite-horizon
MDPs. In the former case, we consider the inventory control problem of Sect. 2.1.5.
In the latter case, we apply the algorithm to the controlled queueing example in-
troduced in Sect. 4.6.2.2. For MDPs with large state spaces, we also consider an
inventory control problem with continuous demand, where the optimal policy is of
(s, S)-type.

Note that since MRAS2 was presented in a maximization context, the following
slight modifications are required before it can be applied to minimization problems:
(i) The performance function H needs to be initialized as a strictly decreasing func-
tion. Throughout this section, we take H(z) := e−κz for z ∈ �, where κ > 0 is a
constant. (ii) The sample (1− ρk)-quantile χ̃k will now be calculated by first order-
ing the sample performances J̄k(Xi

k), i = 1, . . . ,Nk from largest to smallest, and
then taking the �(1 − ρk)Nk�th order statistic. (iii) The threshold function should
now be modified as

Ĩ (z,χ) :=

⎧⎪⎨
⎪⎩

0 if z≥ χ + ε,

(χ + ε− z)/ε if χ < z < χ + ε,

1 if z≤ χ.

(iv) The inequalities at Step 3 of MRAS2 need to be replaced with χ̃k(ρk,Nk) ≤
χ̄k − ε and χ̃k(ρ̄,Nk)≤ χ̄k − ε.

In actual implementation of MRAS2, a smoothed parameter updating procedure
is used, i.e., first a smoothed parameter vector θ̂k+1 is computed at each iteration k
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according to

θ̂k+1 := υθ̃k+1 + (1− υ)θ̂k, ∀k = 0,1, . . . , and θ̂0 := θ̃0,

where θ̃k+1 is the parameter computed at Step 4 of MRAS2, and υ ∈ (0,1] is a
smoothing parameter; then f (·, θ̂k+1) (instead of f (·, θ̃k+1)) is used in Step 1 to
generate new samples. Although this modification will not affect the theoretical
convergence results, it may improve the numerical performance of the algorithm.

For numerical comparison purposes, we also applied a simple stochastic version
of the standard simulated annealing (SAN) algorithm to all test cases, where each
time the algorithm visits a solution, we allocate L simulation observations to that
solution, estimate the performance of that solution by averaging over L replications,
and then use standard SAN to solve the underlying problem. In the algorithm, the
value of L is chosen large, so that a relatively precise estimate of the value function
can be obtained during the search.

4.3.4.1 An Inventory Control Example

We consider the inventory control example of Sect. 2.1.5 with the following param-
eter settings: horizon H = 3; capacity M = 20; initial inventory x0 = 5; demand
Dt ∼ DU(0,9); holding cost h = 1; penalty cost p = 1 and p = 10; fixed order
cost K = 5; and the order amount can be any integer value up to the capacity level.

For this problem, we specify the marginal distributions in MRAS2 via the use of
an |X|× |A|×H stochastic matrix P, where the entry P(i, j, t) i = 1, . . . , |X|, j =
1, . . . , |A|, t ∈ {0, . . . ,H − 1} indicates the probability of taking action aj ∈ A at
state xi ∈ X and stage t , and we set P(i, j, t) = 0 for aj /∈ A(xi). Thus, at each
iteration k of the algorithm, given the stochastic matrix Pk , we can then sample Nk

policies according to Pk , and simulate their corresponding cumulative rewards. Note
that when parameterized by the stochastic matrix Pk , the probability of generating
a non-stationary policy π is given by

f (π,Pk)=
H−1∏
t=0

|X|∏
i=1

|A|∏
j=1

[
P(i, j, t)

]I {π∈Πi,j (t)} =
H−1∏
t=0

|X|∏
i=1

e(θ
i,t )T Υ i,t (π),

where Πi,j (t) denotes the set of policies which take action aj at state xi
and stage t , θi,t := [ln P(i,1, t), . . . , ln P(i, |A|, t)]T , and Υ i,t (π) := {I {π ∈
Πi,1(t)}, . . . , I {π ∈ Πi,|A|(t)}}T . Thus, by Definition 4.2, the parameterized dis-
tribution f (·,Pk) belongs to a NEF. Moreover, it is not difficult to show that the
entries of P are updated in (4.43) as

Pk+1(i, j, t) :=
∑

π∈Λk

[H(V̄ π
k )]k

f(π,Pk)
Ĩ (V̄ π

k , χ̄k)I {π ∈Πi,j (t)}∑
π∈Λk

[H(V̄ π
k )]k

f(π,Pk)
Ĩ (V̄ π

k , χ̄k)

,
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where Λk := {πi, . . . , πNk } is the set of Nk policies generated, and f(π,Pk) =
(1− λ)f (π,Pk)+ λf (π,P0). Thus, if there exists a unique optimal policy π∗ and
all the relevant conditions in Theorem 4.17 are satisfied, then a straightforward in-
terpretation of the convergence result (4.35) yields

lim
k→∞Pk(i, j, t)= I

{
π∗ ∈Πi,j (t)

}
, ∀i, j, t,

which indicates that the sequence of stochastic matrices {Pk} will converge to a
matrix P∗ with all probability mass at the optimal policy π∗.

For both test cases, i.e., p = 1 and p = 10, our numerical results are based on the
following parameter setting: P0(i, j, t)= 1/|A(xi)| ∀aj ∈ A(xi), t = 0, . . . ,H − 1
and P0(i, j, t) = 0 ∀aj /∈ A(xi), ε = 0.1, initial sample size N0 = 100, ρ0 = 0.1,
λ= 0.01, α = 1.04, κ = 0.1, smoothing parameter υ = 0.5, and the simulation al-
location rule is chosen to be Mk = �1.05Mk−1� with M0 = 50. For SAN, we have
used the parameters suggested in [49]: initial temperature T = 50,000, temperature
reduction factor rT = 0.85, number of simulation observations L= 100, the search
neighborhood of a policy π is taken to be N (π)= {π ′ ∈Π :maxx |πt (x)−π ′t (x)| ≤
1, ∀t = 0, . . . ,H − 1}, and the initial policy is randomly selected (uniform distri-
bution) from the policy space Π .

For each case, we performed 30 independent simulation runs of both algorithms,
and their average performance is shown in Fig. 4.8, where we plotted the value func-
tion estimates of the current best sampled policies given the number of simulations
used. We see that MRAS2 outperforms SAN and yields smaller variance than SAN
does. In particular, MRAS2 shows a reduction in the standard deviation over SAN
by a factor of 3 and 2 for the respective cases p = 1 and p = 10.

4.3.4.2 A Controlled Queueing Example

For the infinite-horizon setting, we consider the one-dimensional queueing example
introduced in Sect. 4.6.2.2 with continuous action space, i.e., the service completion
probability a can take any value between 0 and 1, and the non-linear one-stage cost
function is

R(x, a)= x + 5

[ |X|
2

sin(2πa)− x

]2

.

The objective is to minimize the expected total discounted cost from a given initial
state x, i.e.,

inf
π∈Πs

E

[ ∞∑
t=0

γ tR
(
xt ,π(xt )

)∣∣∣∣∣x0 = x

]
.

We consider two cases: x0 = 5 and x0 = 45.
In MRAS2, we use the univariate independent normal distribution as the marginal

distribution (truncated between 0 and 1). Initially, a mean μ0(x) and a variance
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Fig. 4.8 Average
performance of MRAS2 and
SAN (mean and standard
deviation) on an inventory
control problem, based on 30
independent simulation runs,
(a) p = 1, K = 5;
(b) p = 10, K = 5

σ 2
0 (x) are specified for all x ∈X; then at each iteration the new parameters μk+1(x)

and σ 2
k+1(x) are updated iteratively in (4.44) as

μk+1(x)=
∑

π∈Λk

[H(V̄ π
k )]k

f(π;μk,σ 2
k )
Ĩ (V̄ π

k , χ̄k)π(x)∑
π∈Λk

[H(V̄ π
k )]k

f(π;μk,σ 2
k )
Ĩ (V̄ π

k , χ̄k)

,

σ 2
k+1(x)=

∑
π∈Λk

[H(V̄ π
k )]k

f(π;μk,σ 2
k )
Ĩ (V̄ π

k , χ̄k)[π(x)−μk+1(x)]2∑
π∈Λk

[H(V̄ π
k )]k

f(π;μk,σ 2
k )
Ĩ (V̄ π

k , χ̄k)

, ∀x ∈X,

where Λk = {πi, i = 1, . . . ,Nk} is the set of Nk stationary policies indepen-
dently generated according to the distribution f(·;μk,σ 2

k )= (1− λ)f (·;μk,σ 2
k )+

λf (·;μ0, σ
2
0 ), and f (π;μk,σ 2

k ) =
∏

x∈X f (π(x);μk(x), σ 2
k (x)) is the (truncated)

joint normal density. Again, if there exists a unique optimal policy, a simple inter-
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Fig. 4.9 Average
performance of MRAS2 and
SAN (mean and standard
deviation) on a controlled
queueing problem, based on
30 independent simulation
runs, (a) x0 = 5; (b) x0 = 45

pretation of Theorem 4.17 gives limk→∞μk(x) = π∗(x) and limk→∞ σ 2
k (x) = 0

for all x ∈X.
The following parameter settings are used in MRAS2: ε = 0.1, initial sample

size N0 = 100, ρ0 = 0.1, λ= 0.01, α = 1.04, κ = 0.01, smoothing parameter υ =
0.5, Mk = �1.05Mk−1� with M0 = 50. The initial mean μ0(x) is randomly selected
from [0,1] according to the uniform distribution for all x ∈ X, and σ 2

0 (x) = 1 for
all x ∈ X. For SAN: initial temperature T = 50,000, temperature reduction factor
rT = 0.85, number of simulation observations L = 100, the search neighborhood
of a (stationary) policy π is taken to be N (π)= {π ′ ∈Πs :maxx |π(x)− π ′(x)| ≤
0.02}, and the initial policy is uniformly selected from the policy space Π . In both
algorithms, each generated/sampled policy is simulated for 500 periods so that the
truncation error of the cumulative rewards on any sample path is less than 10.

Figure 4.9 shows the performances of MRAS2 and SAN for both test cases. For
the x0 = 5 case, since SAN uses local search, it may quickly locate a good policy.
Thus, the algorithm shows a relatively faster initial convergence rate. However, we
see that the algorithm may frequently get trapped at some local optimal solutions.
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MRAS2 outperforms SAN after about 170,000 simulations, and converges to the
global optimum in all 30 simulation runs. For the x0 = 45 case, MRAS2 slightly
outperforms SAN and converges to the global optimum in all runs. SAN does not
always converge to the global optimum within the allowed total number of simula-
tions. Note that, as in the finite-horizon case, one salient feature of MRAS2 is that
it shows a significant variance reduction over SAN. We see that, in both cases, the
reduction in the standard deviation of MRAS2 over SAN is a factor of more than 10.

4.3.4.3 An Inventory Control Problem with Continuous Demand

To further illustrate the algorithm, we consider an inventory control problem with
i.i.d. exponentially distributed continuous demands. At the beginning of period t ,
the inventory level xt is reviewed, then an order in the amount of at ≥ 0 is placed
and received immediately, and a demand Dt is realized. We assume that unsatisfied
demands are fully backlogged. Thus, the inventory level {xt } evolves according to
the following dynamics:

xt+1 = xt + at −Dt .

For a given ordering policy π , we define the H -period average cost

V̄ π
H := 1

H

H−1∑
i=0

[
I
{
π(xi) > 0

}(
K + cπ(xi)

)+ hx+i+1 + px−i+1

]
,

where p is the per period per unit penalty cost, h is the per period per unit inventory
holding cost, c is the per unit ordering cost, and K is the set-up cost. The goal is to
minimize, over the set of all policies Π , the long-run average cost per period, i.e.,

inf
π∈Π V̄

π := inf
π∈Π lim inf

H→∞ V̄ π
H .

Note that the above cost function is convex, but we will not exploit this property
in MRAS2; however, we do take advantage of the fact that the optimal policy is of
(s, S) threshold form, i.e., an order is placed if the inventory level falls below the
level s, and the amount of the order is the difference between S and the current
inventory level. Therefore, in MRAS2, the problem becomes searching for the best
policy (s∗, S∗) over the set of all admissible (s, S) policies to minimize the average
cost per period.

The following two test cases, taken from [66], are used to test the performance
of MRAS2: (i) p = 10, K = 100; (ii) p = 10, K = 10,000. In both cases, we take
c= h= 1 and mean demand E[D] = 200.

In our experiments with MRAS2, we take normal distributions as the marginal
distributions, and use the same set of parameters as in the previous section, ex-
cept that the initial mean is now uniformly selected from [0,2000] × [0,4000]
and the initial variance is taken to be 106. For SAN, T = 50,000, rT = 0.85,
L= 100, the neighborhood of a (s, S) policy is chosen to be N((s, S))= {(s′, S′) :
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Fig. 4.10 Average
performance of MRAS2 and
SAN (mean and standard
deviation) on an inventory
control problem, based on 30
independent simulation runs,
(a) p = 10, K = 100;
(b) p = 10, K = 10,000

|s′ − s| ≤ 50, |S′ − S| ≤ 50}, and the initial (s, S) policy is uniformly selected from
[0,2000] × [0,4000]. In simulation, the average cost per period is estimated by av-
eraging the accumulated cost over 50 periods after a warm-up length of 50 periods.

We performed 30 independent simulation runs for each test case. The average
performance of both algorithms are given in Fig. 4.10, where we plotted the average
value functions of the current policies found by both algorithms given the total num-
ber of simulations used. We see that in both cases, MRAS2 consistently outperforms
SAN and yields much smaller variance than SAN does.

4.4 Application of MRAS to Infinite-Horizon MDPs
in Population-Based Evolutionary Approaches

In Sect. 3.2, the construction of sub-MDPs in ERPS is based on information ob-
tained from local search and random sampling from a pre-specified fixed action
selection distribution P . The idea is to use local search to fine tune the solution, and
use P to keep the search at a global level in order to avoid local optima. In ERPS,
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the balance between these two types of search is maintained by an extra parameter
called the exploitation probability. However, the choice of the exploitation probabil-
ity is clearly problem dependent, and how to choose the most appropriate value of
this parameter for a given problem is an open issue. One possible way to get around
this, and to further improve the performance of ERPS, is to adaptively update the
underlying action selection distribution by using the past sampling information, so
that more promising actions will have larger probabilities of being sampled in the
future. In this section, we use MRAS as a specific mechanism for updating the action
selection distribution, and by combining it with the PIRS step, propose an algorithm
with balanced explorative and exploitative search.

4.4.1 Algorithm Description

The algorithm, called evolutionary random policy search with adaptive action selec-
tion (ERPS-AAS) (see Fig. 4.11), is an extension of the ERPS algorithm introduced
in Sect. 3.2. Basically, we replace the original action selection distribution P in
ERPS by a set of parameterized distributions, which are updated iteratively after
evaluating the performance of the population of policies at each iteration. These up-
dated distributions are then used to generate the next population of policies, from
which a new sub-MDP is constructed. Note that the PIRS step is still retained in the
algorithm to preserve the monotonicity through an elite policy.

During the initialization of ERPS-AAS, the action selection distributions are
specified as a set of state-dependent parameterized distributions, i.e., we assign
for each state x ∈ X a different distribution f (·, θx). Then an initial population
of policies Λ0 = {π1, . . . , πn} is constructed by sampling an action πi(x) from
f (·, θx0 ) for all x ∈ X, i = 1, . . . , n. As in ERPS, the initial sub-MDP GΛ0 is
thus obtained by restricting the original MDP to the subset of actions Γ0(x) =
{π1(x), . . . , πn(x)} ∀x ∈X.

In updating the action selection distributions (i.e., Step 1 in Exploration), the
number of samples used to calculate the new parameter is equal to the population
size, which is fixed throughout the algorithm. Since there is no performance se-
lection involved in parameter updating, Eq. (4.45) is essentially a sample average
approximation of Eq. (4.4) in the MRAS0 algorithm with the selection parame-
ter ρ = 1. The reason for choosing a simple stochastic counterpart of MRAS0 as
opposed to the MRAS1 algorithm is mainly of practical concern, since a straight-
forward application of MRAS1 would require the population size to increase, which
makes the policy evaluation step very expensive to compute.

In ERPS-AAS, no explicit local search is used in constructing the next popula-
tion of policies. Roughly speaking, from our experience with MRAS, what happens
is that the action selection distributions will be more “peaked” around those elite ac-
tions (i.e., actions corresponding to an elite policy), so their neighboring actions will
have larger probabilities of being sampled; whereas those actions farther away will
be sampled less frequently. Therefore, the balance between local and global searches
is automatically maintained by sampling from the action selection distributions.



4.4 Application of MRAS to Infinite-Horizon MDPs in Population-Based 143

ERPS with Adaptive Action Selection (ERPS-AAS)

Input: MDP (X,A,A(·),P ,R), population size n > 1, strictly increasing function H : � →
�+, family of distributions {f (·, θx), x ∈X} with θx0 s.t. the initial action selection distribu-
tion f (a, θx0 ) > 0 ∀a ∈A(x) ∀x ∈X.

Initialization: Set iteration count k = 0.
Construct an initial population of policies Λ0 = {π1, . . . , πn} by sampling from
f (·, θx0 ). Construct the initial sub-MDP as GΛ0 := (X,Γ0,Γ0(·),P ,R), where Γ0(x) =
{π1(x), . . . , πn(x)} and Γ0 =⋃x Γ0(x).

Loop until a specified stopping rule is satisfied:
• Elite Policy via policy improvement with reward swapping (PIRS):

1. Obtain the value function V π for each π ∈Λk .
2. Generate an elite policy of Λk using sub-MDP GΛk

:

π̂ k(x) ∈ arg max
u∈Γk(x)

{
R(x,u)+ γ

∑
y∈X

P (x,u)(y)
[

max
π∈Λk

V π (y)
]}
, x ∈X.

• Exploration via adaptive action selection (AAS) sampling:

1. Update parameter in action selection distribution:

θxk+1 ∈ arg max
θx∈Θ

1

n

∑
π∈Λk

[H(V π (x))]k
f (π(x), θxk )

lnf
(
π(x), θx

)
, ∀x ∈X. (4.45)

2. Generate n− 1 policies π̃ i , i = 1, . . . , n− 1, by sampling actions

π̃ i (x)∼ f (·, θxk+1) ∀x ∈X.

• Next Population Generation: Λk+1 = {π̂ k, π̃1, . . . , π̃n−1}.
• Next sub-MDP: GΛk+1 := (X,Γk+1,Γk+1(·),P ,R),

where Γk+1(x)= {π̂ k(x), π̃1(x), . . . , π̃n−1(x)}, Γk+1 =⋃x Γk+1(x).
• k← k + 1.

Output: π̂ k an estimated optimal policy.

Fig. 4.11 Evolutionary random policy search with adaptive action selection

Note that throughout the algorithm, both the parameter updating and the action
sampling are carried out independently across the states. This is equivalent to using
independent univariate distributions in MRAS0.

4.4.2 Numerical Examples

Again, we consider the infinite-horizon queueing example of Sect. 4.6.2.2 with con-
tinuous action space and the one-stage cost function

R(x, a)= x + 5

[ |X|
2

sin(2πa)− x

]2

,
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and the objective is to minimize the expected total discounted cost:

min
π∈Πs

E

[ ∞∑
t=0

γ tR
(
xt ,π(xt )

)]
.

In ERPS-AAS, we choose the population size n= 25 and the performance func-
tion H(z) := e−z for z ∈ �. The action selection distribution at state x ∈X is speci-
fied as a truncated (between 0 and 1) univariate normal distributionN(μ(x), σ 2(x)),
with the initial mean μ0(x) randomly selected according to the uniform distribution
U(0,1) and the initial variance σ 2

0 (x) = 1 for all x ∈ X. Thus, parameters are up-
dated iteratively in (4.45) as

μk+1(x)=
∑

π∈Λk

[H(V π (x))]k
f (π(x);μk(x),σ 2

k (x))
π(x)∑

π∈Λk

[H(V π (x))]k
f (π(x);μk(x),σ 2

k (x))

,

σ 2
k+1(x)=

∑
π∈Λk

[H(V π (x))]k
f (π(x);μk(x),σ 2

k (x))
(π(x)−μk+1(x))

2

∑
π∈Λk

[H(V π (x))]k
f (π(x);μk(x),σ 2

k (x))

∀x ∈X,

where f (π(x);μk(x), σ 2
k (x)) indicates the probability that action π(x) is generated

from the truncated normal distribution N(μk(x), σ
2
k (x)), i.e., the action selection

distribution.
Figure 4.12 shows the convergence of the value functions at the initial states

x0 = 0 and x0 = 20 (averaged over 30 independent replication runs) versus the num-
ber of algorithm iterations, where we have included for comparison the performance
of the original ERPS algorithm under the following parameter setting: population
size n = 25, search range r = 10−4, and exploitation probability q0 = 0.25, 0.5,
and 0.75. We see that at the minor expense of only an extra parameter updating step
(4.45), ERPS-AAS provides even better performance than the original ERPS algo-
rithm, as indicated by the superior convergence rate of the algorithm over ERPS in
both cases x0 = 0 and x0 = 20. To illustrate how the algorithm performs at different
initial states, we also plotted in Fig. 4.13 the typical convergence behavior of the
value functions of the generated elite policies for both algorithms, which clearly
shows the uniform superior convergence rate of ERPS-AAS over ERPS across the
states.

4.5 Application of MRAS to Finite-Horizon MDPs Using
Adaptive Sampling

For finite-horizon MDPs in which both the state space and the action space are
huge (e.g., uncountable), we now outline an approach that incorporates the sam-
pling approach of MRAS for the action space into the adaptive multi-stage sam-
pling simulation-based framework of Chap. 2, as summarized in Fig. 2.1. MRAS
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Fig. 4.12 Average
performance of ERPS-AAS
and the original ERPS
algorithm (mean based on 30
independent replication runs),
(a) x0 = 0; (b) x0 = 20

provides yet another alternative adaptive sampling mechanism in the approach of
Chap. 2, replacing the upper confidence bound (UCB) approach from multi-armed
bandit models and pursuit learning automata (PLA) approach for deciding on the
next action to sample. As in Chap. 2, the resulting algorithms will be independent
of the size of the state space, but now it will also be independent of the size of
the action space. However, as in Chap. 2, the computation will increase exponen-
tially with the horizon length, and this will be further exacerbated by the additional
requirements of the MRAS algorithm for requiring multiple samples of the action
space at each iteration. Figure 4.14 outlines the framework for the MRAS approach
applied to the adaptive multi-stage sampling setting.

The algorithm uses all of the samples to update the Q-function estimates, but
possibly only a portion to update the sampling parameter vector θ . Note the use of
common random numbers by using the same wk over all actions in an iteration.

The main steps in each iteration (cf. Loop in Fig. 4.14) are the following:

• generation—sampling actions from the probability distribution;
• estimation—updating Q-function estimates for each action sampled;
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Fig. 4.13 Typical performance of ERPS-AAS and ERPS, (a) ERPS-AAS (n = 25); (b) ERPS
(n = 25, r = 10−4, q0 = 0.25); (c) ERPS (n = 25, r = 10−4, q0 = 0.5); (d) ERPS
(n= 25, r = 10−4, q0 = 0.75)

• selection and update—choosing the elite population, which is then used for up-
dating the parameter (vector) in the probability distribution.

The selection step in MRAS is generally carried out using quantile estimation,
which would involve the Q-function estimates in this setting.

To summarize the approach, we reiterate its features here, contrasting them with
various concepts and approaches contained in the rest of the book:

• It is simulation based, in that it uses simulation to generate the next state in esti-
mating the Q-function (cf. f (x, aj (k),wk) in second step in Loop in Fig. 4.14).

• It uses multi-stage adaptive sampling as in Chap. 2, in that it uses a sampling
mechanism for selecting the action that generates the next state transition via
simulation (cf. first step in Loop in Fig. 4.14).

• It is population-based as in Chap. 3, in that it iteratively generates a set of candi-
date solutions rather than a single estimate as in Chap. 2; however, as in Chap. 2
and unlike Chap. 3, the algorithm works with actions for a single state at a time
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MRAS Multi-Stage Sampling Framework

Input: stage i < H , state x ∈X (for i =H , V̂ Ni

i (x)= V̂
NH

H (x)= 0),
initial population size n0, simulation budget Ni > 0, λ ∈ (0,1],
parameterized distribution family f (·, θ), initial θ0, strictly increasing function H : �→�+,
simulation allocation rule {Mk,k = 0,1, . . .}.

Initialization: Set Ni
a(x)= 0,Ci(x, a)= 0 ∀a ∈A(x); k = 0.

Loop until
∑k

r=0 nrMr ≥Ni :
• Sample aj (k)∼ (1− λ)f (·, θk)+ λf (·, θ0), j = 1, . . . , nk,

wl
k ∼U(0,1), l = 1, . . . ,Mk .

• Update Q-function estimate for each aj (k), j = 1, . . . , nk :

Ci
(
x, aj (k)

)← Ci
(
x, aj (k)

)

+
Mk∑
l=1

[
R′
(
x, aj (k),w

l
k

)+ V̂
Ni+1
i+1

(
f
(
x, aj (k),w

l
k

))]
,

Ni
aj (k)

(x)← Ni
aj (k)

(x)+Mk,

Q̂
Ni

i

(
x, aj (k)

)← Ci(x, aj (k))

Ni
aj (k)

(x)
.

• Update population size nk+1 (non-decreasing) and probability distribution parameter (vec-
tor):

θk+1 ∈ arg max
θ∈Θ

1

nk

∑
j∈Λ∗k

[H(Q̂Ni

i (x, aj (k)))]k
f (aj (k), θk)

lnf
(
aj (k), θ

)
, ∀i = 1, . . . , |X|, (4.46)

where Λ∗
k is the elite subset of actions selected from {aj (k), j = 1, . . . , nk}.

• k← k + 1.

Output: V̂ Ni

i (x) some function of {Q̂Ni

i (x, a)}.

Fig. 4.14 Framework for applying MRAS to multi-stage sampling

(initially given, then recursively generated in time through simulated next stages)
rather than with (stationary) policies over the entire state space (cf. nk in first step
in Loop in Fig. 4.14).

• It uses a model-based global optimization algorithm, in that it updates a proba-
bility distribution over the action space, which is the same approach as the PLA
algorithm of Chap. 2. However, unlike the PLA algorithm, it can handle infinite
and uncountable action spaces, generates a set of actions in each iteration (as
mentioned in the previous item), and employs a compact representation via a pa-
rameterized distribution rather than updating each action individually, which is
impractical for large action spaces (cf. third step in Loop in Fig. 4.14, where the
version of (4.10) from MRAS2 used here and given by (4.46) replaces (2.28) in
the PLA algorithm).
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4.6 A Stochastic Approximation Framework

In this section, we present a stochastic approximation framework to study model-
based optimization algorithms. The framework is based on the MRAS method pre-
sented in Sect. 4.1. It is intended to combine the robust features of model-based
algorithms encountered in practice with rigorous theoretical convergence guaran-
tees. Specifically, we exploit a natural connection between a class of model-based
algorithms and the well-known stochastic approximation (SA) method. We show
that, regardless of the type of decision variables involved in (4.1), algorithms con-
forming to the framework can be equivalently formulated in the form of a gener-
alized stochastic approximation procedure on a transformed continuous parameter
space for solving a sequence of stochastic optimization problems with differentiable
structures. This viewpoint allows us to study the asymptotic properties of these al-
gorithms, both convergence and rate, by using existing theory and tools from SA.

The key idea that leads to the stochastic approximation framework is based on re-
placing the reference sequence {gk} in the original MRAS method by a more general
distribution sequence in the recursive form:

ĝk+1(x)= αkgk+1(x)+ (1− αk)f (x, θk) ∀k, (4.47)

where αk ∈ (0,1] is a smoothing parameter, so that ĝk+1 is a mixture of the reference
distribution gk+1 and the sampling distribution f (x, θk) obtained at the kth iteration.
Intuitively, such a mixture retains the properties of gk+1 while ensuring that its dif-
ference from f (x, θk) is only incremental, so that the new sampling distribution
f (x, θk+1) obtained by minimizing D(ĝk+1, f (·, θ)) will not deviate significantly
from the current sampling distribution f (x, θk). This is especially useful in actual
implementation, when gk and f (·, θk) can only be estimated and calculated based
on the set of sampled solutions.

When {ĝk+1} is used in (4.2) to minimize the KL-divergence with f , the follow-
ing lemma states a key link between the two successive mean vector functions of
the projected (exponential family) probability distributions.

Lemma 4.20 If f (·, θ) belongs to a NEF and the new parameter vector θk+1 ob-
tained via minimizing D(ĝk+1, f (·, θ)) is an interior point of Θ , i.e., θk+1 ∈ int(Θ)
for all k, then

m(θk+1)−m(θk)=−αk∇θD
(
gk+1, f (·, θ)

)∣∣
θ=θk ∀k = 0,1,2, . . . , (4.48)

where recall that m(θ) :=Eθ [Υ (X)] and Υ (x) is the sufficient statistic of the NEF.

Proof Since θk+1 ∈ int(Θ), it satisfies the first order necessary condition for opti-
mality. By using an argument similar to the proof of Lemma 4.4, it can be shown
that m(θk+1)=Eθk+1[Υ (X)] =Eĝk+1[Υ (X)]. Therefore, by (4.47),

m(θk+1)=Eĝk+1

[
Υ (X)

]= αkEgk+1

[
Υ (X)

]+ (1− αk)m(θk).
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Thus, the difference between the two successive mean vector functions can be writ-
ten as

m(θk+1)−m(θk)= αk
(
Egk+1

[
Υ (X)

]−m(θk)
)=−αk∇θD(gk+1, f (·, θ)

)∣∣
θ=θk ,

where the interchange of derivative and expectation in the last step follows from the
properties of NEFs and the fact that X does not depend on θ . �

Lemma 4.20 states that regardless of the specific form of the reference dis-
tribution gk , the mean vector function m(θk) (i.e., a one-to-one transforma-
tion of the parameter θk) is updated at each step along the gradient descent
direction of the time-varying objective function for the minimization problem
minθ∈Θ D(gk+1, f (·, θ)) ∀ k. Note that the parameter sequence {αk} turns out to
be the gain sequence for the gradient iteration, so that the special case αk ≡ 1 corre-
sponds to the original MRAS method. This suggests that all model-based algorithms
that fall under the framework can be equivalently viewed as gradient-based recur-
sions on the parameter space Θ for solving a sequence of optimization problems
with differentiable structures. This new interpretation of model-based algorithms
provides a key insight to understand how these algorithms address hard optimiza-
tion problems with little structure.

In actual implementation, when expectations are replaced by sample averages
based on Monte Carlo sampling, (4.48) becomes a recursive algorithm of stochastic
approximation type with direct gradient estimation. Thus, the rich body of tools and
results from stochastic approximation can be incorporated into the framework to
analyze model-based algorithms.

4.6.1 Model-Based Annealing Random Search

To illustrate the stochastic approximation framework, we present a specific algo-
rithm instantiation called model-based annealing random search (MARS) [92, 93].
MARS can be viewed as an implementable version of the Annealing Adaptive
Search (AAS) algorithm, which was originally introduced in [147] as a useful means
to understand the behavior of simulated annealing.

In the idealized AAS algorithm, solutions are generated at each iteration k by
sampling from a Boltzmann distribution characterized by a temperature parameter
Tk . Within the context of problem (4.1), the density/mass function of the Boltzmann
distribution can be written as

gk(x)= eJ (x)/Tk∫
X eJ (x)/Tk ν(dx)

. (4.49)

It is well-known that as the temperature Tk decreases to some small constant T ∗ ≥ 0,
the sequence {gk} will converge to a limiting density/mass function g∗ that con-
centrates its mass around the optimal solution x∗. Consequently, as the sampling
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Algorithm MARS0—Idealized Version

Input: annealing schedule {Tk}, gain sequence {αk}, initial parameterized density/mass
function f (x, θ0), with θ0 s.t. f (x, θ0) > 0 ∀x ∈X .

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
• Update parameter vector:

θk+1 ∈ arg min
θ∈Θ

D
(
ĝk+1, f (·, θ)

)
, (4.50)

where ĝk+1 = αkgk+1(x)+ (1− αk)f (x, θk) and gk+1 is given by (4.49).
• k← k + 1.

Output: θk .

Fig. 4.15 Description of MARS0 algorithm

process proceeds, solutions generated from Boltzmann distributions with small Tk
values will be close to the global optimum with high probability. Unfortunately,
the algorithm is not readily implementable for solving optimization problems, be-
cause the practical problem of sampling exactly from the Boltzmann distribution gk
is known to be extremely difficult. Prior work to address this issue has primarily
focused on embedding Markov chain Monte Carlo sampling techniques within the
AAS algorithm (e.g., [190]).

The MARS algorithm provides an alternative approach to address the implemen-
tation difficulty of AAS. The basic idea is to use a sequence of NEF distributions
to approximate the target Boltzmann distributions and then use the sequence as sur-
rogate distributions to generate candidate points. Thus, by treating Boltzmann dis-
tributions as reference distributions, candidate solutions are drawn at each iteration
of MARS indirectly from a Boltzmann distribution by sampling exactly from its ap-
proximation. This is in contrast to Markov chain-based techniques [190] that aim to
directly sample from the Boltzmann distributions. The idealized MARS algorithm
we call MARS0 is stated in Fig. 4.15.

Under the gradient interpretation of MARS0, Lemma 4.20 implies that the mean
vector function m(θk+1) of the new sampling distribution f (·, θk+1) obtained in
(4.50) can be viewed as an iterate generated by a gradient descent algorithm for solv-
ing the iteration-varying stochastic minimization problem minθ∈Θ D(gk+1, f (·, θ))
on the transformed parameter space Θ . The solution to this problem, as k goes to
infinity, is an optimal parameter θ∗ that provides the best possible approximation to
the limiting Boltzmann distribution g∗.

Note that to implement MARS0 would still require the full information about
the Boltzmann distribution gk+1, which is generally unavailable unless the entire
solution space X can be enumerated. Therefore, a rational approach in practice is
to use only a finite number of samples generated at each iteration k to construct an
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Algorithm MARS1—Implementable Version

Input: annealing schedule {Tk}, gain sequence {αk}, sample size {Nk}, exploration pa-
rameter sequence {λk}, initial parameterized density/mass function f (x, θ̂0), with θ̂0 s.t.
f (x, θ̂0) > 0 ∀x ∈X .

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:

• Generate a population of Nk i.i.d. solutions Λk = {X1
k
, . . . ,XNk

k
} from f̂ (x, θ̂k) :=

(1− λk)f (x, θ̂k)+ λkf (x, θ̂0).
• Update parameter vector:

θ̂k+1 ∈ arg min
θ∈Θ

D
(
ĝk+1, f (·, θ)

)
, (4.51)

where ĝk+1 is given by (4.52).
• k← k + 1.

Output: θ̂k .

Fig. 4.16 Description of MARS1 algorithm

empirical distribution ḡk+1, and then use ḡk+1 to approximate gk+1. This results in
the implementable version of MARS0 presented in Fig. 4.16.

In addition to {Tk} and {αk}, the MARS1 algorithm requires specifications of two
parameter sequences {Nk} and {λk}, where Nk specifies the number of candidate
solutions to be generated at each iteration, and the exploration parameter λk allows
the algorithm to explore the entire feasible region by occasionally sampling from the
initial distribution f (x, θ̂0), so that there is a positive probability for the algorithm to
reach anywhere in X at each iteration. In (4.51), the KL divergence is with respect
to ĝk+1, an estimate of ĝk+1 in (4.50) of Algorithm MARS0 based on the sampled
solutions in Λk , i.e.,

ĝk+1(x)= αk
∑
y∈Λk

ḡk+1(x)δ(x− y)+ (1− αk)f (x, θ̂k), x ∈X , (4.52)

where δ is the Dirac delta function and we have replaced the Boltzmann distribution
gk+1 in (4.49) by a discrete empirical distribution

ḡk+1(x) := e
J(x)
Tk+1 /f̂ (x, θ̂k)∑

y∈Λk
e

J(y)
Tk+1 /f̂ (y, θ̂k)

∀x ∈Λk. (4.53)

Intuitively, the division by f̂ (x, θ̂k) in ḡk+1 is used to compensate for solutions that
are unlikely to be chosen, which makes ḡk+1 a good approximation of the Boltz-
mann distribution gk+1.
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We assume that the new parameter obtained in (4.51) of Algorithm MARS1 sat-
isfies the following condition:

Assumption C1 The parameter θ̂k+1 computed in (4.51) of Algorithm MARS1 sat-
isfies θ̂k+1 ∈ int(Θ) for all k.

Similar to Lemma 4.20, the following result shows the connection between the
successive mean vector functions obtained in Algorithm MARS1. The proof is sim-
ilar to that of Lemma 4.20 and is thus omitted.

Lemma 4.21 If Assumption C1 holds, then the mean vector function m(θ̂k+1) of
f (x, θ̂k+1) satisfies

m(θ̂k+1)−m(θ̂k)=−αk
(
m(θ̂k)−Eḡk+1

[
Υ (X)

]) ∀k = 0,1,2, . . . . (4.54)

Finally, to recapitulate the connection of Algorithm MARS1 to stochastic gradi-
ent search, we rewrite (4.54) as follows:

m(θ̂k+1)−m(θ̂k)

=−αk
(
m(θ̂k)−Egk+1

[
Υ (X)

]+Egk+1

[
Υ (X)

]−Eḡk+1

[
Υ (X)

])
,

=−αk∇θD
(
gk+1, f (·, θ)

)∣∣
θ=θ̂k

− αk

(∫
X e

J(x)
Tk+1 Υ (x)ν(dx)∫

X e
J(x)
Tk+1 ν(dx)

−
1
Nk

∑
x∈Λk

e
J(x)
Tk+1 Υ (x)/f̂ (x, θ̂k)

1
Nk

∑
x∈Λk

e
J(x)
Tk+1 /f̂ (x, θ̂k)

)
. (4.55)

This becomes a Robbins–Monro type stochastic approximation algorithm in terms
of the true gradient of D(gk+1, f (·, θ)) with respect to θ and an error term due to
the combined effect of bias and noise caused by Monte-Carlo random sampling in
MARS1.

4.6.1.1 Global Convergence of MARS1

Note that (4.55) generalizes a typical stochastic approximation recursion in that the
function D(gk+1, f (·, θ)) may change shape with k. Such a generalization has been
studied in [56] under a scalar setting and later extended by [168] to a multivariate
setting in the context of non-linear adaptive control. The basic idea is that while the
underlying objective function varies with k, the optimal solutions to the sequence
of time-varying optimization problems will reach a limit as k goes to infinity. This
desired property is justified in our setting, because the idealized sequence of Boltz-
mann distributions {gk} converges to a limiting distribution g∗ as k goes to infinity.
This will in turn imply the convergence of the sequence of the (idealized) optimal
solutions {θk} to a global optimizer θ∗.
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Since the MARS1 algorithm is randomized, it induces a probability distribution
over the set of all sequences of sampled solutions. We denote by P(·) and E[·]
the probability and expectation taken with respect to this distribution, and denote
by I {A} the indicator function of set A. In the rest of the section, probability one
convergence of random vectors and matrices is to be understood with respect to P .
We define Fk = σ {Λ0,Λ1, . . . ,Λk−1}, k = 1,2, . . . as the sequence of increasing
σ -fields generated by the set of all sampled solutions up to iteration k − 1. Note
that given Fk , the parameter θ̂k is completely determined and the set of solutions
Λk generated at the kth iteration is conditionally independent of the past. We use
P̂
θ̂k
(·|Fk) and Ê

θ̂k
[·|Fk] to denote the conditional probability and expectation with

respect to the mixture distribution f̂ (·, θ̂k). The following shorthand notations will
also be frequently used:

Uk = 1

Nk

∑
x∈Λk

e
J(x)
Tk+1 Υ (x)/f̂ (x, θ̂k),

Ūk = Ê
θ̂k
[Uk|Fk] =

∫
X
e

J(x)
Tk+1 Υ (x)ν(dx)

Vk = 1

Nk

∑
x∈Λk

e
J(x)
Tk+1 /f̂ (x, θ̂k),

V̄k = Ê
θ̂k
[Vk|Fk] =

∫
X
e

J(x)
Tk+1 ν(dx).

(4.56)

To simplify the presentation and analysis of the algorithm, we assume throughout
this section that the solution space X is compact and that J (x) > 0 ∀x ∈ X . In
addition, we make the following assumptions on the objective function, which are
essentially identical to conditions A1 and A2 in Sect. 4.2.

Assumption C2 For any constant ε < J(x∗), the set {x ∈ X : J (x) ≥ ε} has a
strictly positive Lebesgue or discrete measure.

Assumption C3 For any δ > 0, supx∈Aδ
J (x) < J (x∗), where Aδ := {x ∈ X : ‖x−

x∗‖ ≥ δ}, and we use the convention that the supremum over the empty set is −∞.

To present the main convergence result, we will also need the following condi-
tions on the input parameters of MARS1.

Assumption C4 The mapping Υ (x) given in Definition 4.2 is bounded on X . More-
over, for any ξ > 0, there exists δ > 0 such that ‖Υ (x) − Υ (x∗)‖ ≤ ξ whenever
‖x− x∗‖ ≤ δ.

Assumption C5 The gain sequence {αk} satisfies αk > 0 ∀k,
∑∞

k=0 αk =∞, and∑∞
k=0 α

2
k <∞.
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Assumption C6

(a) The sequence {Tk} satisfies Tk > 0 ∀k and Tk → T ∗ ≥ 0 as k→∞;
(b) The sequence {λk} satisfies λk > 0 ∀k and λk → λ∗ ∈ [0,1) as k→∞;

(c) Moreover, eJ
∗/Tk

Nkλk
→ 0 as k→∞, where J ∗ := J (x∗).

Since X is compact, Assumption C4 is satisfied for natural exponential distri-
butions with continuous mappings Υ , e.g., normal, exponential, and Gamma distri-
bution with fixed shape parameters. When X is discrete, the assumption also holds
trivially for many mass functions encountered in practice, e.g., Bernoulli, binomial,
and Poisson. Note that since Υ (x) is bounded, the initial parameterized density/mass
function f (x, θ̂0) is bounded away from zero on X for any given θ̂0 ∈ int(Θ), i.e.,
f∗ := infx∈X f (x, θ̂0) > 0. Assumption C5 is a typical SA condition; it requires that
the gain αk should decrease to zero at a rate that is neither too fast nor to slow (see,
e.g., [167]). Assumption C6 requires that both {Tk} and {λk} should converge to
some limits. However, the sequence {Tk} is not necessarily monotone. This allows
the use of non-monotonic cooling schedules in MARS, including various adaptive
schedules, which have been observed to have superior performance than monotone
schedules on some problems in both SAN and AAS (e.g., [118, 190]). Assump-
tion C6(c) states that the three parameter sequences {Tk}, {Nk}, and {λk} should be
chosen in balance. Roughly speaking, the annealing schedule {Tk} determines the
convergence speed of the sequence of (idealized) Boltzmann distribution {gk} to
the limiting distribution g∗, whereas {Nk} determines whether {gk} can be closely
approximated by the surrogate distributions {f (·, θ̂k)}. Thus, if the temperature Tk
decays to zero at a fast rate, then the sample size Nk should also be increased suffi-
ciently fast to ensure that the sequence {f (·, θ̂k)} can properly “track” the sequence
of convergent Boltzmann distributions. We consider the following special cases of
Assumption C6(c): (i) If T ∗ > 0 and λ∗ > 0, then for Assumption C6(c) to hold,
it is sufficient to let Nk →∞ as k→∞. (ii) If Tk = T0

ln(1+k) , Nk = Θ(kβ), and
λk =Ω(k−γ ) for some constants T0 > 0, β > 0, and γ > 0, then Assumption C6(c)
is satisfied for β > γ , provided that T0 is sufficiently large. (iii) If Tk = T0

1+ck ,
Nk = Θ(βk), and λk = Ω(k−γ ) for constants T0 > 0, c > 0, β > 1, and γ > 0,
then it is easy to verify that Assumption C6(c) is satisfied by taking β > eJ

∗c/T0 .
We need the following intermediate results. First, we establish that for the class

of optimization problems characterized by conditions C2 and C3, the sequence of
Boltzmann distributions converges (in a weak sense) to a limiting distribution. De-
fine Υ ∗ := Υ (x∗) if T ∗ = 0, Υ ∗ := Eg∗ [Υ (X)] whenever T ∗ > 0, where g∗ is the
limiting Boltzmann distribution parameterized by T ∗ > 0.

Lemma 4.22 If Assumptions C2, C3, C4, and C6(a) are satisfied, then

Egk

[
Υ (X)

]→ Υ ∗ as k→∞,

where the limit is taken component-wise.
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Proof The T ∗ > 0 case is trivial and is thus omitted. In the T ∗ = 0 case, we have
Υ ∗ = Υ (x∗). By Assumption C4, for any ξ > 0, we can find a δ > 0 such that ‖x−
x∗‖< δ implies ‖Υ (x)−Υ ∗‖< ξ . Define Aδ = {x ∈X : ‖x−x∗‖ ≥ δ}. We have by
Assumption C3 that J̄ = supx∈Aδ

J (x) < J ∗. Take ε = J̄+J ∗
2 . By Assumption C2,

the set Bε := {x ∈X : J (x) > ε} has a positive Lebesgue/discrete measure. Thus,∥∥Egk

[
Υ (X)

]−Υ ∗∥∥
≤Egk

[∥∥Υ (X)−Υ ∗∥∥]
=
∫
Ac
δ

∥∥Υ (x)−Υ ∗∥∥gk(x)ν(dx)+
∫
Aδ

∥∥Υ (x)− Υ ∗∥∥gk(x)ν(dx)

≤ ξ + sup
x∈X

∥∥Υ (x)−Υ ∗∥∥∫Aδ
e
J(x)
Tk ν(dx)∫

X e
J(x)
Tk ν(dx)

≤ ξ + sup
x∈X

∥∥Υ (x)−Υ ∗∥∥∫Aδ
e
J(x)
Tk ν(dx)∫

Bε
e
J(x)
Tk ν(dx)

≤ ξ + sup
x∈X

∥∥Υ (x)−Υ ∗∥∥e−(J∗−J̄ )2Tk
ν(Aδ)

ν(Bε)
.

Since Υ (x) is bounded, ξ is arbitrary, and J ∗ > J̄ , we have Egk [Υ (X)] → Υ ∗ as
Tk → 0. �

The next result shows that the conditional bias of the error term in (4.55) con-
verges to zero w.p.1.

Lemma 4.23 If Assumptions C4 and C6 hold, then∣∣∣∣Êθ̂k

[
Uk

Vk

∣∣∣∣Fk

]
− Ūk

V̄k

∣∣∣∣→ 0 as k→∞ w.p.1,

where the limit is component-wise.

Proof To simplify exposition, we focus on the ith components of Uk and Ūk

(i = 1, . . . ,m), and define Ui
k = 1

Nk

∑
x∈Λk

e
J(x)
Tk+1 Υi(x)/f̂θ̂k (x), Ūi

k = Ê
θ̂k
[Ui

k|Fk] =∫
X e

J(x)
Tk+1 Υi(x)ν(dx), where Υi(x) is the ith component of Υ . Denote by V the vol-

ume of X . Note that since J (x) > 0 ∀x, we have V̄k > V (cf. Eq. (4.56)). Moreover,
by Assumption C4, since the mapping Υ is bounded on X , there exist constants C1
and C2 such that C1 ≤ Υi(x)≤ C2 ∀x. We have

Ui
k

Vk

− Ūi
k

V̄k

= Ui
k

Vk

− Ui
k

V̄k

+ Ui
k

V̄k

− Ūi
k

V̄k

= Ui
k

Vk

V̄k −Vk

V̄k

+ 1

V̄k

(
Ui
k − Ūi

k

)
. (4.57)
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Taking conditional expectations on both sides of (4.57) yields, w.p.1.,

∣∣∣∣Êθ̂k

[
Ui
k

Vk

∣∣∣∣Fk

]
− Ūi

k

V̄k

∣∣∣∣
=
∣∣∣∣Êθ̂k

[
Ui
k

Vk

V̄k −Vk

V̄k

∣∣∣∣Fk

]∣∣∣∣
≤ C

|V̄k|
Ê
θ̂k

[|V̄k −Vk|
∣∣Fk

]
, where C =max

{|C1|, |C2|
}

≤ C

|V̄k|
Ê
θ̂k

[
(V̄k −Vk)

2
∣∣Fk

]1/2 by Hölder’s inequality

= C√
Nk|V̄k|

Ê
θ̂k

[
e2J (X)/Tk+1 f̂−2(X, θ̂k)

∣∣Fk

]1/2

= C√
Nk

Egk+1

[
eJ (X)/Tk+1

V̄k

f̂−1(X, θ̂k)

∣∣∣∣Fk

]1/2

≤ C√
Vf∗

√√√√e
J∗
Tk+1

Nkλk
.

Thus, the desired result follows by applying Assumption C6(c). �

We have the following convergence theorem for MARS1.

Theorem 4.24 If Assumptions C1 to C6 hold, then

m(θ̂k)→ Υ ∗ as k→∞ w.p.1.

Proof We rewrite (4.54) in the following recursive form:

ηk+1 = ηk − ξk,

where ηk :=m(θ̂k)−Υ ∗, and ξk = αk(m(θ̂k)− Uk

Vk
). Let Mk = Ê

θ̂k
[ξk|Fk] and Zk =

ξk −Mk . To show the desired convergence result, we establish that the multivariate
versions of conditions (i)–(iv) in [56] hold.
[i] First we show that for every ε > 0, P(‖ηk‖> ε, ηTk Mk < 0 i.o.)= 0. We write
Mk as

Mk = αk

(
m(θ̂k)−Υ ∗ + Υ ∗ −Egk+1

[
Υ (X)

]+Egk+1

[
Υ (X)

]− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

])
.

(4.58)
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It follows that

ηTk Mk = αk

(
‖ηk‖2 + ηTk

(
Υ ∗ −Egk+1

[
Υ (X)

])

+ ηTk

(
Egk+1

[
Υ (X)

]− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]))
.

Since ηk is bounded, by Lemma 4.22, the second term in the parentheses above
vanishes to zero as k→∞, whereas Lemma 4.23 implies that the third term also
vanishes to zero w.p.1. as k→∞. Therefore, for almost every sample path gen-
erated by MARS1, we must have ηTk Mk > 0 whenever ‖ηk‖ > ε for k sufficiently
large, i.e., P(‖ηk‖> ε, ηTk Mk < 0 i.o.)= 0.

[ii] Note that m(θ̂k)=E
θ̂k
[Υ (X)] and Uk

Vk
=Eḡk+1[Υ (X)], where ḡk+1 is defined in

(4.53). Since the mapping Υ is bounded on X by Assumption C4, both m(θ̂k) and
Uk

Vk
are bounded. Moreover, we have from Assumption C5 that αk → 0 as k→∞.

Therefore, ‖Mk‖(1 + ‖ηk‖)−1 → 0 as k→∞ w.p.1, which establishes condition
(ii) in [56].
[iii] By definition, we have Zk = αk(Êθ̂k

[Uk

Vk
|Fk] − Uk

Vk
). Therefore,

∞∑
k=1

E
[‖Zk‖2]= ∞∑

k=1

α2
kE

[(
Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
− Uk

Vk

)T(
Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
− Uk

Vk

)]
<∞,

since Uk

Vk
is bounded and

∑∞
k=1 α

2
k <∞ by Assumption C5.

[iv] Finally, we establish that P(lim infk→∞‖ηk‖ > 0,
∑∞

k=1 ‖Mk‖ < ∞) = 0.
From (4.58), we have ‖Mk‖ ≥ αk(‖ηk‖− ‖Υ ∗ −Egk+1[Υ (X)]‖− ‖Egk+1[Υ (X)] −
Ê
θ̂k
[Uk

Vk
|Fk]‖). Let Ω1 = {lim infk→∞‖ηk‖> 0} and Ω2 = {∑∞

k=1 ‖Mk‖<∞}. For
every sample point ω ∈Ω1, we can find a δ > 0 such that lim infk→∞‖ηk‖> δ > 0.
This implies that there exists a Kδ(ω) such that ‖ηk‖ ≥ δ ∀k ≥ Kδ(ω). In addi-
tion, let Ω3 = {‖Egk+1[Υ (X)] − Ê

θ̂k
[Uk

Vk
|Fk]‖→ 0}. Note that Lemma 4.23 implies

P(Ω3)= 1. Since Egk+1[Υ (X)] → Υ ∗ as k→∞, there exists a K̄δ/2(ω) for every
ω ∈Ω3 such that

∥∥Υ ∗ −Egk+1

[
Υ (X)

]∥∥+ ∥∥∥∥Egk+1

[
Υ (X)

]− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]∥∥∥∥< δ

2

for all k ≥ K̄δ/2(ω). Consequently, we have, for every ω ∈Ω1 ∩Ω3, ‖Mk‖> δ
2αk

for all k ≥K∗(ω) :=max{Kδ(ω), K̄δ/2(ω)}. Thus by Assumption C5,

∞∑
k=1

‖Mk‖ ≥
∞∑

k=K∗(ω)
‖Mk‖ ≥ δ

2

∞∑
k=K∗(ω)

αk =∞ ∀ω ∈Ω1 ∩Ω3,

which implies P(Ω1∩Ω2∩Ω3)= 0. Hence, it follows that P(Ω1∩Ω2)= P(Ω1∩
Ω2∩Ω3)+P(Ω1∩Ω2∩Ωc

3)≤ P(Ωc
3)= 0, this shows condition (iv) in [56], which

completes the proof. �
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The interpretation of Theorem 4.24 depends on the parameterized distribution
family used in MARS1 and, in particular, on the specific form of the function Υ (x).
For example, in continuous optimization, if T ∗ = 0 and normal distributions are
used as parameterized family, then Theorem 4.24 implies that the sequence of sam-
pling distributions {f

θ̂k
} in MARS will converge to a degenerate distribution with all

mass concentrated at the global optimizer x∗, in the sense that limk→∞E
θ̂k
[X] = x∗

and limk→∞ Cov
θ̂k
[X] = 0 w.p.1. Another case of interest is when independent uni-

variate density/mass functions are used and the parameterized family takes the form
f (x, θ)=∏n

i=1 exp(xiϑi −K(ϑi)), where xi and ϑi are the respective ith compo-
nents of x = (x1, . . . ,xn)T and the parameter vector θ = (ϑ1, . . . , ϑn)

T , in which
case, we have Υ (x) = x and m(θ̂k) = E

θ̂k
[X]. Thus, if T ∗ = 0, then the result of

Theorem 4.24 reduces to limk→∞E
θ̂k
[X] = x∗ w.p.1, i.e., the means of the sequence

of sampling distributions converge to x∗ w.p.1. As a third example, consider a dis-
crete optimization problem with a feasible region X that contains m distinct values
{a1, . . . , am}. To approach the problem, we can specify an m-by-1 probability vec-
tor Q, whose ith entry qi indicates the probability that a solution will take the ith
value ai ∈ X . When parameterized by Q, the probability of sampling a solution x
can be written as f (x, θ)=∏m

i=1 q
I {x=ai }
i := eθ

T Υ (x), where θ = [lnq1, . . . , lnqm]T
and Υ (x)= [I {x= a1}, . . . , I {x= am}]T . Note that Υ (x) satisfies Assumption C4.
Thus, when T ∗ = 0, a straightforward interpretation of Theorem 4.24 yields

lim
k→∞

∑
x∈X

m∏
i=1

(
qki
)I {x=ai }I {x= aj } = I

{
x∗ = aj

} ∀j w.p.1,

where qki is the ith entry of the vector Qk obtained at the kth iteration of MARS.
This implies that limk→∞ qki = I {x∗ = ai} w.p.1 ∀i. In other words, the sequence
of probability vectors Qk will converge to a limiting vector that assigns unit mass
to the global optimum x∗.

4.6.1.2 Asymptotic Normality of MARS1

To fix ideas, we consider a sample size sequence Nk =Θ(kβ) and a gain sequence
of the form αk = c/kα for some constants β > 0, c > 0, and α ∈ ( 1

2 ,1). Note that
such a choice of αk satisfies Assumption C5. In addition, we require that {Tk} and
{λk} satisfy the following strengthened version of Assumption C6.

Assumption D1 For a given sample size sequence Nk = Θ(kβ) and a gain se-
quence αk = Θ(k−α), the sequence {Tk} satisfies Tk > T ∗ > 0 ∀k and

limk→∞ k
α+β

2 ( 1
T ∗ − 1

Tk
) = 0. In addition, the sequence {λk} satisfies λk > 0 ∀ k,

λk → λ∗ ∈ [0,1) as k→∞, and λk =Ω(k−γ ) for some positive constant γ < β
2 .

It is easy to see that Theorem 4.24 still holds with Assumption C6 replaced by
Assumption D1. Thus, by the invertibility of m(·), the sequence of parameters {θ̂k}
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generated by MARS1 will settle down to some limit (possibly infinite) as k→∞
w.p.1. We shall also assume the following regularity condition:

Assumption D2 The limit of the sequence of parameters {θ̂k} generated by MARS1
as k→∞ is an interior point of Θ , i.e., m−1(Υ ∗) ∈ int(Θ).

Since m(·) is continuously differentiable on int(Θ), Assumption D2 implies that
the Jacobian of m(·) at m−1(Υ ∗) is strictly positive definite. Therefore, by the in-
verse function theorem, there exists an open neighborhood N (Υ ∗) of Υ ∗ such that
m−1(·) is continuously differentiable on N (Υ ∗). This, together with the bounded-
ness of Υ , further implies that the sequence of sampling distributions {f (·, θ̂k)} in
MARS1 will converge point-wise to a limiting distribution f (·,m−1(Υ ∗)) w.p.1.

Given the specific forms of Nk and αk , we can rewrite (4.54) in the form of a
recursion in [58]:

ηk+1 =
(
1− ck−α

)
ηk + k−(2α+β)/2Rk + k−(3α+β)/2Wk,

where ηk =m(θ̂k)−Υ ∗,

Rk = ckβ/2
(

Uk

Vk

− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

])
, Wk = ck(α+β)/2

[
Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
−Υ ∗

]
.

The term Rk has the following properties.

Lemma 4.25 If Assumptions C1–C4, D1, and D2 hold, then there exists a symmet-
ric positive semi-definite matrix Σ such that Ê

θ̂k
[RkRT

k |Fk]→Σ as k→∞ w.p.1.
In addition, the sequence {Rk} is uniformly square integrable in the sense that

lim
k→∞E

[
I
{‖Rk‖2 ≥ rkα

}‖Rk‖2]= 0 ∀r > 0.

Proof Let Ui
k = N−1

k

∑
x∈Λk

e
J(x)
Tk+1 Υi(x)/f̂ (x, θ̂k) and Ūi

k = Ê
θ̂k
[Uk|Fk] =∫

X e
J(x)
Tk+1 Υi(x)ν(dx) be the ith components of Uk and its conditional expectation.

Denote by Σk
i,j the (i, j)th entry of the matrix Σk := Ê

θ̂k
[RkRT

k |Fk] and by V the

volume of X . Define ε = V
2 , and let Ωk = {|Ui

k − Ūi
k|< ε ∩ |Vk − V̄k|< ε} and Ωc

k

be the complement of Ωk .

By using a second order two-variable Taylor expansion of
Ui
k

Vk
around the neigh-

borhood Ωk of (Ūi
k, V̄k), we can write, for every sample path generated by MARS1,

Ui
k

Vk

=
[

Ūi
k

V̄k

− Ūi
k

(V̄k)2
(Vk − V̄k)+ 1

V̄k

(
Ui
k − Ūi

k

)+ Ũk

Ṽ3
k

(Vk − V̄k)
2

− 1

Ṽ2
k

(Vk − V̄k)
(
Ui
k − Ūi

k

)]
I {Ωk} + Ui

k

Vk

I
{
Ωc
k

}
, (4.59)
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where Ũk and Ṽk are on the respective line segments from Ūi
k to Ui

k and from V̄k to
Vk . By rearranging terms in (4.59), we have

Ui
k

Vk

− Ūi
k

V̄k

= 1

V̄k

(
Ui
k − Ūi

k

)− Ūi
k

(V̄k)2
(Vk − V̄k)

+
[

Ũk

Ṽ3
k

(Vk − V̄k)
2 − 1

Ṽ2
k

(Vk − V̄k)
(
Ui
k − Ūi

k

)]
I {Ωk}

+
[

Ui
k

Vk

− Ūi
k

V̄k

− 1

V̄k

(
Ui
k − Ūi

k

)+ Ūi
k

(V̄k)2
(Vk − V̄k)

]
I
{
Ωc
k

}
. (4.60)

It follows that

Σk
i,j = c2kβÊ

θ̂k

[(
Ui
k

Vk

− Ê
θ̂k

[
Ui
k

Vk

∣∣∣∣Fk

])(
Uj
k

Vk

− Ê
θ̂k

[
Uj
k

Vk

∣∣∣∣Fk

])∣∣∣∣Fk

]

= c2kβ
1

V̄2
k

Ê
θ̂k

[(
Ui
k − Ūi

k

)(
Uj
k − Ūj

k

)∣∣Fk

]

− c2kβ
Ūj
k

V̄3
k

Ê
θ̂k

[(
Ui
k − Ūi

k

)
(Vk − V̄k)

∣∣Fk

]

− c2kβ
Ūi
k

V̄3
k

Ê
θ̂k

[(
Uj
k − Ūj

k

)
(Vk − V̄k)

∣∣Fk

]

+ c2kβ
Ūi
kŪj

k

V̄4
k

Ê
θ̂k

[
(Vk − V̄k)

2
∣∣Fk

]
+ c2kβRk

= [i] − [ii] − [iii] + [iv] + c2kβRk,

where Rk represents a remainder term. We now analyze terms [i]–[iv].

[i] = c2kβ
1

V̄2
k

(
Ê
θ̂k

[
Ui
kUj

k

∣∣Fk

]− Ūi
kŪj

k

)

= c2kβ

V̄2
k

[
1

N2
k

Ê
θ̂k

[∑
x∈Λk

e
J(x)
Tk+1 Υi(x)/f̂ (x, θ̂k) ·

∑
x∈Λk

e
J(x)
Tk+1 Υj (x)/f̂ (x, θ̂k)

∣∣∣∣Fk

]

− Ūi
kŪj

k

]

= c2kβ
1

V̄2
k

1

Nk

(
Ê
θ̂k

[
e

2J (X)
Tk+1 Υi(X)Υj (X)/f̂ 2(X, θ̂k)

∣∣Fk

]− Ūi
kŪj

k

)
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= c2kβ

Nk

(
Ê
θ̂k

[
1

V̄2
k

e
2J (X)
Tk+1 Υi(X)Υj (X)/f̂ 2(X, θ̂k)

∣∣∣∣Fk

]
− Ūi

kŪj
k

V̄2
k

)

= c2kβ

Nk

(
Egk

[
Υi(X)Υj (X)

gk(X)

f̂ (X, θ̂k)

∣∣∣∣Fk

]
−Egk

[
Υi(X)

]
Egk

[
Υj (X)

])
.

By following a similar argument as above, it can be shown that

[ii] = c2kβ

Nk

(
Egk

[
Υj (X)

]
Egk

[
Υi(X)

gk(X)

f̂ (X, θ̂k)

∣∣∣∣Fk

]
−Egk

[
Υi(X)

]
Egk

[
Υj (X)

])
,

[iii] = c2kβ

Nk

(
Egk

[
Υi(X)

]
Egk

[
Υj (X)

gk(X)

f̂ (X, θ̂k)

∣∣∣∣Fk

]
−Egk

[
Υi(X)

]
Egk

[
Υj (X)

])
,

[iv] = c2kβ

Nk

(
Egk

[
Υi(X)

]
Egk

[
Υj (X)

]
Egk

[
gk(X)

f̂ (X, θ̂k)

∣∣∣∣Fk

]

−Egk

[
Υi(X)

]
Egk

[
Υj (X)

])
.

Note that |e
J(x)
Tk+1 Υi(x)/f̂ (x, θ̂k)| ≤ e

J∗
T ∗ |Υi(x)|/λkf∗. Thus by Assumption C4, Ho-

effding’s inequality implies that

Ê
θ̂k

[
I
{
Ωc
k

}∣∣Fk

] ≤ P̂
θ̂k

(∣∣Ui
k − Ūi

k

∣∣≥ ε|Fk

)+ P̂
θ̂k

(|Vk − V̄k| ≥ ε
∣∣Fk

)
= O

(
e−CNkλ

2
k
)

for some ε-dependent constant C > 0. This result, when combined with the condi-
tions Nk = Θ(kβ), λk = Ω(k−γ ), and γ <

β
2 (Assumption D1), indicates that all

terms containing I {Ωc
k } in the remainder Rk are on the order of o(k−β). More-

over, a straightforward calculation also shows that all terms involving I {Ωk} in Rk

are higher order terms of N−1
k . Consequently, we have ckβRk = o(1) by taking

Nk =Θ(kβ).
Since Tk → T ∗ > 0, it is easy to show that limk→∞ gk(x)= g∗(x) ∀x ∈X , where

g∗(x)= eJ (x)/T
∗∫

X eJ (x)/T
∗
ν(dx)

. Thus, by the point-wise convergence of {f (·, θ̂k)} (see the

discussion after Assumption D2), the dominated convergence theorem implies that
the (i, j)th entry of Σk as k→∞ is

Σi,j = Ψ

(
Eg∗
[
Υi(X)Υj (X)

g∗(X)
f̂ (X,m−1(Υ ∗))

]

−Eg∗
[
Υj (X)

]
Eg∗
[
Υi(X)

g∗(X)
f̂ (X,m−1(Υ ∗))

]

+Eg∗
[
Υi(X)

]
Eg∗
[
Υj (X)

]
Eg∗
[

g∗(X)
f̂ (X,m−1(Υ ∗))

]
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−Eg∗
[
Υi(X)

]
Eg∗
[
Υj (X)

g∗(X)
f̂ (X,m−1(Υ ∗))

])

= ΨEg∗
[(
Υi(X)−Eg∗

[
Υi(X)

])(
Υj (X)−Eg∗

[
Υj (X)

]) g∗(X)
f̂ (X,m−1(Υ ∗))

]

= Ψ Êm−1(Υ ∗)

[(
Υi(X)−Eg∗

[
Υi(X)

])

× (Υj (X)−Eg∗
[
Υj (X)

])( g∗(X)
f̂ (X,m−1(Υ ∗))

)2]

for some constant Ψ > 0. Therefore, the limiting matrix Σ is given by

Σ = Ψ Ĉovm−1(Υ ∗)

[(
Υ (X)−Eg∗

[
Υ (X)

]) g∗(X)
f̂ (X,m−1(Υ ∗))

]
,

where Ĉovm−1(Υ ∗)(·) is the covariance under

f̂
(
x,m−1(Υ ∗))= (1− λ∗

)
f
(
x,m−1(Υ ∗))+ λ∗f (x, θ̂0).

We now show the second claim in the lemma. By Hölder’s inequality, we have

lim
k→∞E

[
I
{‖Rk‖2 ≥ rkα

}‖Rk‖2]
≤ lim sup

k→∞
[
P
(‖Rk‖2 ≥ rkα

)]1/2[
E
[‖Rk‖4]]1/2

. (4.61)

By the definition of Rk , it follows that

P
(‖Rk‖2 ≥ rkα

) = P

(∥∥∥∥Uk

Vk

− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]∥∥∥∥≥
√
r

c
k
α−β

2

)

≤ E[‖Uk

Vk
− Ê

θ̂k
[Uk

Vk
|Fk]‖2]

r

c2 k
α−β by Chebyshev’s inequality

= E[Ê
θ̂k
[‖Uk

Vk
− Ê

θ̂k
[Uk

Vk
|Fk]‖2|Fk]]

r

c2 k
α−β

= E[Ê
θ̂k
[c2kβ‖Uk

Vk
− Ê

θ̂k
[Uk

Vk
|Fk]‖2|Fk]]

rkα

= E[tr(Σk)]
rkα

= O
(
k−α
)

by taking Nk = Θ(kβ) and using an argument similar to the proof of the previ-
ous part of the theorem, where tr(Σk) is the trace of Σk . On the other hand, it is



4.6 A Stochastic Approximation Framework 163

straightforward to show that

E
[‖Rk‖4] = c4k2βE

[∥∥∥∥Uk

Vk

− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]∥∥∥∥
4]

= c4k2βE

[
Ê
θ̂k

[∥∥∥∥Uk

Vk

− Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]∥∥∥∥
4∣∣∣∣Fk

]]

= c4k2βO
(
N−2
k

)
= O(1).

Consequently, the right-hand-size of (4.61) is bounded above by O(k−α/2), which
approaches zero as k→∞. �

We next show that the term Wk vanishes to zero w.p.1. To do so, we break Wk

into two parts and write Wk = ck(α+β)/2W1,k + ck(α+β)/2W2,k , where

W1,k =
Ê
θ̂k
[Uk|Fk]

Ê
θ̂k
[Vk|Fk]

−Υ ∗ and W2,k = Ê
θ̂k

[
Uk

Vk

∣∣∣∣Fk

]
− Ê

θ̂k
[Uk|Fk]

Ê
θ̂k
[Vk|Fk]

.

The convergence of Wk is a direct consequence of the following lemmas, which are
strengthened versions of Lemma 4.22 and Lemma 4.23.

Lemma 4.26 If Assumptions C2, C3, and D1 hold, then

k
α+β

2 W1,k → 0 as k→∞.

Proof Note that since Tk′ > T ∗ ∀k′ by D1, for any k > 0, we can find a mono-
tonically non-increasing subsequence {Tki , i = 0,1, . . .} such that Tk0 = Tk+1 and
limi→∞ Tki = T ∗. We have, for any integer N > 0,∫

X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx)

≤
∫
X

N−1∑
i=0

∣∣gki+1(x)− gki (x)
∣∣ν(dx)

=
N−1∑
i=0

∫
X

∣∣gki+1(x)− gki (x)
∣∣ν(dx)

≤
N−1∑
i=0

√
2D(gki+1 , gki ) by Pinsker’s inequality (e.g., [176]).

On the other hand, we have from the definition of KL-divergence,
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D(gki+1 , gki )

=Egki+1

[
gki+1(X)

gki (X)

]

=
(

1

Tki+1

− 1

Tki

)
Egki+1

[
J (X)

]− lnEgki

[
e
( 1
Tki+1

− 1
Tki

)J (X)]

≤
(

1

Tki+1

− 1

Tki

)[
Egki+1

[
J (X)

]−Egki

[
J (X)

]]
by Jensen’s inequality

≤
(

1

Tki+1

− 1

Tki

)
J ∗
∫
X

∣∣gki+1(x)− gki (x)
∣∣ν(dx)

≤
(

1

Tki+1

− 1

Tki

)
J ∗
√

2D(gki+1 , gki ) by Pinsker’s inequality.

This implies
√

2D(gki+1 , gki )≤ 2J ∗( 1
Tki+1

− 1
Tki
). Therefore,

∫
X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx) ≤

N−1∑
i=0

2J ∗
(

1

Tki+1

− 1

Tki

)

= 2J ∗
(

1

TkN
− 1

Tk+1

)
. (4.62)

We now use (4.62) to bound ‖k α+β
2 W1,k‖:∥∥k α+β

2 W1,k
∥∥

= ∥∥k α+β
2
(
Egk+1

[
Υ (X)

]−Eg∗
[
Υ (X)

])∥∥
= k

α+β
2
∥∥Egk+1

[
Υ (X)

]− lim
N→∞EgkN

[
Υ (X)

]∥∥ by Lemma 4.22

≤ k
α+β

2 lim
N→∞

∫
X

∥∥Υ (x)∥∥∣∣gkN (x)− gk+1(x)
∣∣ν(dx)

≤ Ck
α+β

2 lim
N→∞

∫
X

∣∣gkN (x)− gk+1(x)
∣∣ν(dx) where

∥∥Υ (X)∥∥≤ C

≤ 2J ∗Ck
α+β

2

(
1

T ∗
− 1

Tk+1

)
,

which approaches zero as k→∞ by Assumption D1. �

Lemma 4.27 Assume Assumptions C1–C4, D1, and D2 hold, and β > α, then

k
α+β

2 W2,k → 0 as k→∞ w.p.1,

where the limit is component-wise.
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Proof By taking conditional expectations on both sides of (4.60), we can bound
‖W2,k‖ by terms that are similar to those in the proof of Lemma 4.25. Next, in-
voking the a.s. convergence of the sequence {θ̂k}, an argument similar to the proof
of Lemma 4.25 implies that all bounding terms of ‖W2,k‖ are on the order of

O(N−1
k ), independent of Tk . Therefore, k

α+β
2 W2,k approaches zero as k→∞ by

taking Nk =Θ(kβ) with β > α. �

We have the following asymptotic convergence rate result for MARS1. Its proof
follows from Lemmas 4.25, 4.26, and 4.27 above, and then by applying Theorem 2.2
in [58].

Theorem 4.28 Let αk = c/kα and Nk =Θ(kβ) for constants c > 0, α ∈ ( 1
2 ,1), and

β > α. Assume Assumptions C1–C4, D1, and D2 hold. Then

k
α+β

2
(
m(θ̂k)−Υ ∗) dist−→N (0,Σ) as k→∞,

where Σ = κĈovm−1(Υ ∗)[(Υ (X) − Eg∗ [Υ (X)])g∗(X)/f̂ (X,m−1(Υ ∗))] for some
constant κ > 0.

It is interesting to note that in contrast to the optimal asymptotic rate of O(1/
√
k)

for general stochastic approximation algorithms, Theorem 4.28 states that the
asymptotic rate of convergence for MARS1 is at least O(1/

√
k) (i.e., when the

values of α and β are chosen close to 1/2). Moreover, this rate can be made arbi-
trarily fast by using a sample size sequence {Nk} that increases sufficiently fast as
k→∞. However, increasing sample sizes too fast may have a negative impact on
the algorithm’s practical performance, as the normality result is expressed in terms
of the number of algorithm iterations, not the sample size. Therefore, there is a
trade-off between the need for large values of β to increase the algorithm’s (asymp-
totic) convergence speed and the desirability of using small values of β to reduce the
per iteration computational cost. Also note that the result of Theorem 4.28 depends
on the asymptotic approximation quality of the sequence of surrogate distributions.
To illustrate this, we proceed with a heuristic argument and assume that the second

order moment of k
α+β

2 (m(θ̂k)−Γ ∗) coincides with that of the limiting normal distri-
bution. Then, for k sufficiently large, we have from Theorem 4.28 that the amplified
mean squared error of MARS1

kα+βE
[∥∥m(θ̂k)− Υ ∗∥∥2]

≈ κ

d∑
i=1

Êm−1(Υ ∗)
[(
Υi(X)−Eg∗

[
Υi(X)

])2(
g∗(X)/f̂

(
X,m−1(Υ ∗)))2]

= κ

d∑
i=1

Eg∗
[(
Υi(X)−Eg∗

[
Υi(X)

])2
g∗(X)/f̂

(
x,m−1(Υ ∗))],
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which is (approximately) proportional to the ratio g∗(x)/f̂ (x,m−1(Γ ∗)) in a small
neighborhood of the global optimum. This indicates that if f̂ (·,m−1(Γ ∗)) can
closely approximate g∗ in the vicinity of x∗, then a better (asymptotic) mean squared
error can be attained.

4.6.2 Application of MARS to Finite-Horizon MDPs

We modify and extend the MARS algorithm to a stochastic setting and present
a simulation-based algorithm called approximate stochastic annealing (ASA) for
solving finite horizon MDPs. At each iteration, the ASA algorithm estimates the
optimal policy by sampling from a probability distribution function over the policy
space. The distribution is then modified using a Boltzmann selection scheme based
on the simulated/estimated value functions of the sampled policies. This idea of
working with a probability distribution over the policy space is in the same spirit as
that of the MRAS approach presented in Sect. 4.3. However, central to MRAS (and
many other model-based algorithms such as EDAs and CE) is a selection step to
concentrate the search on promising regions of the policy space, which frequently
requires a quantile estimation of the (unknown) distribution of the value function es-
timates. MARS eliminates the need for such a selection step by implicitly sampling
from a sequence of convergent Boltzmann distributions that assigns more weight to
high quality policies as the sampling process proceeds. ASA also shares similarities
with the learning automata approach for stochastic optimization [146] and the PLA
sampling algorithm of Chap. 2, which iteratively update a probability distribution
over the feasible region in a direction that pursues the current estimated optimal so-
lution. From this perspective, ASA can be viewed as a generalized pursuit scheme
that pursues a population of policies by assigning each policy a weight proportional
to its current reward estimate in updating distribution functions.

We recall the discrete-time finite H -horizon MDP defined in Chap. 1 with system
dynamics xt+1 = f (xt , at ,wt ) for t = 0,1, . . . ,H −1, where xt represents the state
of the system at time t taking values from a finite state space X, at is the control at
time t chosen from a finite action set A, {wt ∈W ∀t} is a sequence of independent
(not necessarily identically distributed) random vectors representing the stochastic
uncertainty of the system, and f is the next-state transition function describing the
system dynamics. Let R′ : X × A ×W →�+ ∪ {0} be a non-negative one-stage
reward function associated with the system. We assume that the reward function
R′ satisfies Rmax := supx∈X,a∈A,w∈W R′(x, a,w) <∞. Define Π as the set of non-
stationary non-randomized Markovian policies π = {πt , t = 0, . . . ,H − 1}, where
each πt : X→ A is a function that specifies the action to be applied at time t for
each x ∈ X. For an initial state x0 = x, the expected total reward (value function)
associated with a policy π is given by

V π(x) :=Ew

[
H−1∑
t=0

R′
(
xt ,πt (xt ),wt

)∣∣∣∣∣x0 = x

]
, (4.63)
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where Ew is understood with respect to the joint distribution of w0, . . . ,wH−1. The
objective is to identify an optimal policy π∗ ∈Π that maximizes the expected total
reward for a given state x, i.e.,

V π∗(x)= sup
π∈Π

V π(x). (4.64)

Throughout this section, we assume that the optimal policy π∗ is unique.
In ASA, candidate policies are constructed at each iteration k by using a |X|-by-

|A|-by-H stochastic matrix qk , whose (i, j, t)th entry qk(i, j, t) specifies the prob-
ability that the ith state xi takes action aj at time t . Note that every such stochastic
matrix qk induces a probability mass function over the policy space Π :

φ(qk,π) :=
H−1∏
t=0

|X|∏
i=1

|A|∏
j=1

[
qk(i, j, t)

]I {π∈Πi,j (t)} ∀π ∈Π,

where Πi,j (t) := {π : πt (xi)= aj } denotes the set of non-randomized policies that
assign action aj to state xi at time t .

The proposed ASA algorithm is presented in Fig. 4.17. There are two alloca-
tion rules in ASA. The first is the sample size sequence {Nk}, which specifies the
number of policies to be generated at each iteration. Note that not all Nk policies
are sampled from φ(qk,π); instead, they are drawn from the mixture of φ(qk,π)
and the initial distribution φ(q0,π), where the mixing intensity of the two distri-
butions is determined by a parameter βk . Another allocation rule is {Mk}, which
allocates Mk simulation replications to each policy generated at every step. In par-
ticular, each time a given policy π is simulated, a sample path (simulation real-
ization) ωi := {x0,π0(x0),w0, . . . , xH−1,πH−1(xH−1),wH−1} is observed, and an
estimate of the value function (4.63) based on ωi can be obtained as follows:

V π
i :=

H−1∑
t=0

R
(
xt ,πt (xt ),wt

)
.

In (4.66), the current probability matrix is updated using a Boltzmann selection
scheme, where each π in the current population of sampled policies Λk is weighted
by an empirical Boltzmann mass function

ḡk+1(π)= eV̄
π
k /Tk+1 φ̂−1(qk,π)∑

π ′∈Λk
eV̄

π ′
k /Tk+1 φ̂−1(qk,π ′)

∀π ∈Λk,

which becomes more concentrated on promising policies in Λk as the parameter Tk
decreases to zero. Note that the division by φ̂ in ḡk+1 is used to compensate for
policies that are unlikely to be chosen, which makes ḡk a good approximation of the
true Boltzmann mass function

gk+1(π)= eV
π/Tk+1∑

π ′∈Π eV
π ′/Tk+1

∀π ∈Π. (4.65)
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Approximate Stochastic Annealing

Input: annealing schedule {Tk}, parameter sequences {αk} and {βk} satisfying 0 ≤
αk,βk ≤ 1 ∀k, a sample size sequence {Nk}, and a simulation allocation sequence {Mk}.
Set q0(i, j, t)= 1/|A| ∀i, j, t .

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
• Sample Nk policies Λk := {π1,π2, . . . , πNk } from φ̂(qk,π) = (1− βk)φ(qk,π)+
βkφ(q0,π) as follows: for each i = 1, . . . ,Nk ,
– with probability 1− βk , construct a policy πi using the stochastic matrix qk ;
– with probability βk , construct πi using q0.

• Perform Mk independent simulation replication runs for each π ∈Λk and let V̄ π
k
=

M−1
k

∑Mk

l=1 V
π
j

.
• Update matrix qk by

qk+1(i, j, t)= αk

∑
π∈Λk

eV̄
π
k /Tk+1 φ̂−1(qk,π)I {π ∈Πi,j (t)}∑
π∈Λk

eV̄
π
k /Tk+1 φ̂−1(qk,π)

+ (1− αk)qk(i, j, t). (4.66)

• k← k + 1.

Output: qk .

Fig. 4.17 Description of ASA algorithm

In addition, the smoothing parameter αk used in (4.66) ensures that the difference
between qk+1 and qk is incremental, so that the new distribution φ(qk+1,π) does
not deviate significantly from the current distribution φ(qk,π).

Equation (4.66) can be written in the form of a standard stochastic approximation
recursion as follows:

qk+1(i, j, t)− qk(i, j, t)= αk

[∑
π∈Λk

ḡk+1(π)I
{
π ∈Πi,j (t)

}− qk(i, j, t)

]
. (4.67)

Note that the above equation shares certain similarities with the learning automata
approach [146]. Since ḡk+1 gives more weight to policies with better performance,
it is easy to see from (4.67) that the stochastic matrix qk+1 is updated in the aver-
aged direction of (estimated) promising policies inΛk . In other words, the algorithm
pursues at each iteration all promising policies in the current population Λk , gen-
eralizing the learning automata algorithm of [146], which pursues only the current
estimated best policy.
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4.6.2.1 Convergence Analysis

We define Fk as the increasing σ -fields generated by the set of all sampled policies
and random generation of simulation sample paths up to iteration k − 1. The con-
ditional probability and expectation P(·|Fk) and E[·|Fk] are to be understood with
respect to φ̂(qk,π) and the joint distribution of stochastic generation of simulation
sample paths wk = {wk

0, . . . ,w
k
H−1} at the kth iteration. To simplify exposition, the

following shorthand notations are used throughout this section:

Yk =
∑
Π

eV
π/Tk+1I

{
π ∈Πi,j (t)

}
,

Zk =
∑
Π

eV
π/Tk+1 ,

Ŷk = N−1
k

∑
Λk

eV
π/Tk+1 φ̂−1(qk,π)I

{
π ∈Πi,j (t)

}
,

Ẑk = N−1
k

∑
Λk

eV
π/Tk+1 φ̂−1(qk,π),

Ȳk = N−1
k

∑
Λk

eV̄
π
k /Tk+1 φ̂−1(qk,π)I

{
π ∈Πi,j (t)

}
,

Z̄k = N−1
k

∑
Λk

eV̄
π
k /Tk+1 φ̂−1(qk,π).

To analyze ASA, we rewrite (4.67) in the following recursive form:

ηk+1 = ηk − ξk, (4.68)

where ηk := qk(i, j, t)− I {π∗ ∈Πi,j (t)} and

ξk = αk

[
ηk + I

{
π∗ ∈Πi,j (t)

}− Ȳk

Z̄k

]

= αk

[
ηk + I

{
π∗ ∈Πi,j (t)

}− Ŷk

Ẑk
+ Ŷk

Ẑk
− Ȳk

Z̄k

]
.

We first show that the sequence of idealized Boltzmann distribution {gk} con-
verges to a limiting distribution that concentrates only on the optimal policy π∗.

Lemma 4.29 If Tk → 0 as k→∞, then Egk [I {π ∈Πi,j (t)}] → I {π∗ ∈Πi,j (t)}
as k→∞.

Proof Note that∣∣Egk

[
I
{
π ∈Πi,j (t)

}] − I
{
π∗ ∈Πi,j (t)

}∣∣
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≤ Egk

[∣∣I{π ∈Πi,j (t)
}− I

{
π∗ ∈Πi,j (t)

}∣∣]
=
∑
π �=π∗

∣∣I{π ∈Πi,j (t)
}− I

{
π∗ ∈Πi,j (t)

}∣∣ eV
π/Tk∑

π ′∈Π eV
π ′/Tk

≤
∑

π �=π∗ e(V
π−V π∗ )/Tk

1+∑π ′ �=π∗ e(V
π ′−V π∗ )/Tk

≤
∑
π �=π∗

e(V
π−V π∗ )/Tk ,

which approaches zero as Tk → 0, since |Π | is finite and V π∗ >V π ∀π �= π∗. �

Note that Lemma 4.29 implies the existence of a small T ∗ > 0 such that the
Boltzmann distribution g∗ parameterized by T ∗ can be arbitrarily close to the de-
generated optimal distribution.

The next lemma states that Ŷk

Ẑk
is an asymptotically unbiased estimator of Yk

Zk
.

Lemma 4.30 If Nkβk →∞ as k→∞, then

E

[
Ŷk

Ẑk

∣∣∣∣Fk

]
→ Yk

Zk
as k→∞ w.p.1.

Proof

Ŷk

Ẑk
− Yk

Zk
= Ŷk

Ẑk
− Ŷk

Zk
+ Ŷk

Zk
− Yk

Zk

= Ŷk

Ẑk

Zk − Ẑk

Zk
+ 1

Zk
(Ŷk − Yk).

Taking conditional expectations at both sides yields

∣∣∣∣E
[
Ŷk

Ẑk

∣∣∣∣Fk

]
− Yk

Zk

∣∣∣∣ =
∣∣∣∣E
[
Ŷk

Ẑk

Zk − Ẑk

Zk

∣∣∣∣Fk

]∣∣∣∣
≤ 1

|Zk|E
[|Zk − Ẑk|

∣∣Fk

]
since

∣∣∣∣ Ŷk
Ẑk

∣∣∣∣≤ 1

≤ 1

|Zk|E
[
(Zk − Ẑk)

2
∣∣Fk

]1/2 by Hölder’s inequality

≤ 1

|Zk|
1√
Nk

E
[
e2V π/Tk+1 φ̂−2(qk,π)|Fk

]1/2
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= 1√
Nk

(∑
Π

φ̂−1(qk,π)
eV

π/Tk+1

Zk

eV
π/Tk+1

Zk

)1/2

≤ 1√
Nk

(∑
Π

β−1
k φ−1(q0,π)gk+1(π)

)1/2

≤ |A||X|H/2

√
Nkβk

.

Thus, the desired result follows by taking Nkβk →∞. �

Moreover, under some appropriate conditions on {Tk} and {Mk}, the conditional

expectation of the error term Ŷk

Ẑk
− Ȳk

Z̄k
caused by simulation noise vanishes asymp-

totically.

Lemma 4.31 If the simulation allocation rule and the annealing schedule satisfy
MkT

2
k+1 − 1

Tk+1
→∞ as k→∞, then

E

[∣∣∣∣ Ŷk
Ẑk

− Ȳk

Z̄k

∣∣∣∣
∣∣∣∣Fk

]
→ 0 as k→∞ w.p.1.

Proof Let ĝk+1(π)= eV
π /Tk+1 φ̂−1(qk,π)∑

π ′∈Λk e
V π

′
/Tk+1 φ̂−1(qk,π

′)
∀π ∈Λk . We have

∣∣∣∣ Ŷk
Ẑk

− Ȳk

Z̄k

∣∣∣∣ =
∣∣∣∣ 1

Ẑk
(Ŷk − Ȳk)+ Ȳk

Z̄k

Z̄k − Ẑk

Ẑk

∣∣∣∣
≤ 1

|Ẑk|
(|Ŷk − Ȳk| + |Z̄k − Ẑk|

)
since

∣∣∣∣ ȲkZ̄k
∣∣∣∣≤ 1

≤ 1

|Ẑk|
2

Nk

∑
Λk

∣∣eV π/Tk+1 − eV̄
π
k /Tk+1

∣∣φ̂−1(qk,π)

= 1

|Ẑk|
2

Nk

∑
Λk

eV
π/Tk+1

∣∣1− e

V̄ π
k
−Vπ

Tk+1
∣∣φ̂−1(qk,π)

= 2
∑
Λk

ĝk+1(π)
∣∣1− e

V̄ π
k
−Vπ

Tk+1
∣∣.

Therefore,

E

[∣∣∣∣ Ŷk
Ẑk

− Ȳk

Z̄k

∣∣∣∣
∣∣∣∣Fk

]
≤ 2E

[∑
Λk

ĝk+1(π)
∣∣1− e

V̄ π
k
−Vπ

Tk+1
∣∣∣∣∣∣Fk

]
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= 2E

[
E

[∑
Λk

ĝk+1(π)
∣∣1− e(V̄

π
k −V π )/Tk+1

∣∣∣∣∣∣Λk

]∣∣∣∣Fk

]

= 2E

[∑
Λk

ĝk+1(π)E
[∣∣1− e(V̄

π
k −V π )/Tk+1

∣∣∣∣Λk

]∣∣∣∣Fk

]
.

Note that Hölder’s inequality implies that

E
[∣∣1− e(V̄

π
k −V π )/Tk+1

∣∣∣∣Λk

] ≤ E
[(

1− e

V̄ π
k
−Vπ

Tk+1
)2∣∣Λk

]1/2

= [1− 2E
[
e

(V̄ π
k
−Vπ )

Tk+1
∣∣Λk

]+E
[
e

2(V̄ π
k
−Vπ )

Tk+1
∣∣Λk

]]1/2

≤ [E[e 2(V̄ π
k
−Vπ )

Tk+1
∣∣Λk

]− 1
]1/2

, (4.69)

where the last step follows from Jensen’s inequality, since

E
[
e(V̄

π
k −V π )/Tk+1

∣∣Λk

]≥ eE[(V̄ π
k −V π )/Tk+1|Λk] = 1.

Since the one-stage reward function is uniformly bounded by Rmax, it is clear that
the difference |V̄ π

k −V π | is bounded by L :=HRmax. For a given π ∈Π , let Ak =
{|V̄ π

k − V π | ≤ Tk+1C} and Ac
k be the complement of Ak , where C := L

√
L. It

follows that

E
[
e

2(V̄ π
k
−Vπ )

Tk+1
∣∣Λk

] = E
[
e

2(V̄ π
k
−Vπ )

Tk+1 I {Ak}
∣∣Λk

] [i]

+E
[
e

2(V̄ π
k
−Vπ )

Tk+1 I
{
Ac
k

}∣∣Λk

]
. [ii]

We now analyze terms [i] and [ii].

[i] ≤ E

[
1+ 2(V̄ π

k − V π)

Tk+1
+ e2C − 2C − 1

C2

(V̄ π
k − V π)2

T 2
k+1

∣∣∣∣Λk

]

= 1+ e2C − 2C − 1

C2T 2
k+1

1

Mk

Var
(
V π
i

∣∣Λk

)

≤ 1+ (e2C − 2C − 1)L2

4C2

1

MkT
2
k+1

, (4.70)

where the first inequality follows from the fact that ex ≤ 1 + x + (eb−b−1)
b2 x2 for

|x| ≤ b and the last inequality follows because Var(X) ≤ L2/4 for any bounded
non-negative random variable 0≤X ≤ L.

Regarding term [ii], we have

[ii] ≤ e
2L

Tk+1 P
(
Ac
k

∣∣Λk

)
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= e
2L

Tk+1 P
(∣∣V̄ πk − V π

∣∣≥ Tk+1C
∣∣Λk

)
≤ 2e

2L
Tk+1 e

−2MkT
2
k+1C

2

L2 by Hoeffding’s inequality

= 2e
2L( 1

Tk+1
−MkT

2
k+1). (4.71)

Combining (4.70) and (4.71), it is easy to observe that (4.69) is on the order of

O(eL(T
−1
k+1−MkT

2
k+1)). This further implies that

E

[∣∣∣∣ Ŷk
Ẑk

− Ȳk

Z̄k

∣∣∣∣
∣∣∣∣Fk

]
=O
(
eL(T

−1
k+1−MkT

2
k+1)
)
,

which goes to zero as MkT
2
k+1 − T −1

k+1 →∞. �

We have the following convergence theorem for ASA, which implies that the se-
quence of stochastic matrices qk generated at successive iterations of the algorithm
will converge to a limiting matrix that assigns unit mass to the optimal policy π∗.

Theorem 4.32 Assume that the following conditions hold:

(a) αk > 0 ∀k,
∑∞

k=0 αk =∞, and
∑∞

k=0 α
2
k <∞;

(b) Tk → 0 as k→∞;
(c) Nkβk →∞ as k→∞;
(d) MkT

2
k+1 − T −1

k+1 →∞ as k→∞.

Then

qk(i, j, t)→ I
{
π∗ ∈Πi,j (t)

} ∀i, j, t as k→∞ w.p.1.

Proof We consider recursion (4.68) and define Uk = E[ξk|Fk] and Δk = ξk − Uk .
To show the desired result, we establish that conditions (i)–(iv) in [56] hold.

(i) First we show that for any ε > 0, P(|ηk|> ε,ηkUk < 0 i.o.)= 0. We have

Uk = αk

[
ηk + I

{
π∗ ∈Πi,j (t)

}− Yk

Zk
+ Yk

Zk
−E

[
Ŷk

Ẑk

∣∣∣∣Fk

]

+E

[
Ŷk

Ẑk
− Ȳk

Z̄k

∣∣∣∣Fk

]]
. (4.72)

Therefore,

ηkUk = αk

[
η2
k + ηk

(
I
{
π∗ ∈Πi,j (t)

}− Yk

Zk

)

+ ηk

(
Yk

Zk
−E

[
Ŷk

Ẑk

∣∣∣∣Fk

])
+ ηk

(
E

[
Ŷk

Ẑk
− Ȳk

Z̄k

∣∣∣∣Fk

])]
.
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Since ηk is bounded, the second term above vanishes to zero by Lemma 4.29,
whereas the third and last terms both go to zero w.p.1 by Lemma 4.30 and
Lemma 4.31. Thus, for almost every sample path generated by the algorithm, we
have ηkUk > 0 whenever ηk > ε for k sufficiently large, which implies P(|ηk| >
ε,ηkUk < 0 i.o.)= 0.

(ii) Since all terms in the square bracket of (4.72) are bounded and αk → 0 by
condition (a), we have |Uk|(1+ |ηk|)−1 → 0 as k→∞.

(iii) By definition, we have

Δk = αk

[
E

[
Ȳk

Z̄k

∣∣∣∣Fk

]
− Ȳk

Z̄k

]
.

It follows that

∞∑
k=1

E
[|Δk|2

]= ∞∑
k=1

α2
kE

[(
E

[
Ȳk

Z̄k

∣∣∣∣Fk

]
− Ȳk

Z̄k

)2]
<∞,

since Ȳk
Z̄k

is bounded and
∑

k α
2
k <∞ by condition (a).

(iv) Finally, we show that

P

(
lim inf
k→∞ |ηk|> 0,

∞∑
k=1

|Uk|<∞
)
= 0.

From (4.72), we have

|Uk| ≥ αk

[
|ηk| −

∣∣∣∣I{π∗ ∈Πi,j (t)
}− Yk

Zk

∣∣∣∣
−
∣∣∣∣ YkZk −E

[
Ŷk

Ẑk

∣∣∣∣Fk

]∣∣∣∣−E

[∣∣∣∣ Ŷk
Ẑk

− Ȳk

Z̄k

∣∣∣∣
∣∣∣∣Fk

]]
.

Let Ω1 = {lim infk |ηk| > 0}. For every sample path ω ∈ Ω1, there exists an
ω-dependent constant δ > 0 such that lim infk |ηk| > δ. Consequently, by Lem-
mas 4.29, 4.30, and 4.31, for almost every ω ∈ Ω1, we have |Uk| ≤ αkδ/2 for k
sufficiently large. Therefore by condition (a), it follows that for almost all ω ∈Ω1,

∞∑
k=1

|Uk| ≥
∞∑

k=K(ω)
|Uk| ≥ δ

2

∞∑
k=K(ω)

αk =∞,

which establishes condition (iv).
Finally, combining (i)–(iv) and applying the main theorem in [56] yield ηk → 0

as k→∞ w.p.1. �
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4.6.2.2 A Numerical Example

To illustrate the performance of ASA, we again consider the finite H -horizon in-
ventory control problem of Sect. 2.1.5. At each time t , given the current inventory
level xt , an order in the amount of at is placed and received immediately, and a
demand Dt is realized. Assume that the inventory has a finite capacity 20, xt takes
values from the set of non-negative integers between 0 and 20, the order amount
at ∈ {0,2,4,6,8,10} for all t = 0, . . . ,H −1, and the demands Dt are i.i.d. discrete
random variables with the discrete uniformly distribution DU(0,9). The inventory
level evolves according to the following recursion: xt+1 = (xt + at −Dt)

+, where
any at that makes the current inventory position (i.e., xt + at ) exceed the inven-
tory capacity is considered inadmissible. For a given initial inventory level x0, the
objective is to minimize the expected total cost over the set of all non-stationary
Markovian policies, i.e.,

min
π∈Π E

[
H−1∑
t=0

(
KI
{
πt (xt ) > 0

}+ h
(
xt + πt (xt )−Dt

)+

+ p
(
Dt − xt − πt (xt )

)+)∣∣∣∣∣x0 = x

]
,

where K is the fixed set-up cost per order, h is the per unit inventory holding cost,
and p is the per unit demand penalty cost for unsatisfied demands.

The following two sets of parameters are used in our simulation experiments:
(a) horizon H = 3, set-up cost K = 5, penalty cost p = 10, holding cost h= 1; (b)
horizon H = 12, set-up cost K = 5, penalty cost p = 1, holding cost h= 1.

In our experiments, we have used two different annealing schedules in ASA:
a polynomial schedule (PS) Tk = 10−5 + 1/

√
k, and a logarithmic schedule

(LS) Tk = 1/ ln(k + 1). The other parameters are as follows: βk = 1/
√
k, Nk =

max{20, �k0.501�}, and Mk = max{10, �1.01 ln3 k�}, where �a� is the largest inte-
ger no greater than a. As in a typical stochastic approximation algorithm, we found
empirically that the performance of ASA is primarily determined by the choice of
the gain sequence {αk}, but is insensitive to the choices of the above parameters.
In all test cases, we have used a relatively conservative gain αk = 1/(k + 100)0.501,
where the constant 100 is used to keep initial step sizes small in early iterations
of the algorithm to prevent unstable behavior, whereas a slow decay rate 0.501 is
used to produce non-negligible step sizes and prevent slow improvement in later
iterations. Note that the above parameter settings satisfy the relevant conditions in
Theorem 4.32 for convergence.

For the purpose of comparison, we have also applied the simulated annealing
(SAN) algorithm to the above test cases, where the basic idea is to interpret an MDP
as a stochastic optimization problem over the policy space and then use SAN as a
particular optimization technique to search for good policies. Whenever a policy
is visited by the algorithm, its value function is estimated by first performing L
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Fig. 4.18 Average
performance of ASA and
SAN on an inventory control
problem (mean based on 50
independent replication runs),
(a) x0 = 0; (b) x0 = 20

independent simulation replications of that policy and then averaging the simulated
value function estimates over L replication runs. In our implementation of SAN,
L is set to 100, the same annealing schedules PS and LS as in ASA are used, the
neighborhood of a policy π is taken to be N (π)= {π ′ ∈Π :maxx |πt (x)−π ′t (x)| ≤
2, ∀ t = 0, . . . ,H − 1}, and the initial policy is uniformly selected from the set of
admissible policies.

For each test case, we performed 50 independent replication runs of both ASA
and SAN. The performances of both algorithms are shown in Fig. 4.18, which plots
the averaged current best value function estimates as a function of the number of the
total simulation runs consumed thus far. Simulation results indicate convergence
of ASA and SAN with both annealing schedules, with the performance of ASA
consistently dominating that of SAN. Since SAN combines local search, it shows a
fast initial improvement, but the algorithm frequently stagnates at solutions/policies
that are far from optimal, especially in test case (b) when the horizon length is
large.
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4.7 Notes

MRAS was introduced in [94], and the presentation in Sects. 4.1 and 4.2 is based on
[94] for MRAS0 and MRAS1 and [96] for MRAS2. The term model-based meth-
ods for optimization is from [192], where such methods are contrasted with tradi-
tional instance-based methods, whose search for new candidate solutions depends
directly on previously generated solutions, instead of indirectly through a probabil-
ity model. Well-known instance-based methods include simulated annealing (SAN)
[106], genetic algorithms (GAs) [74, 169], tabu search [73], and the nested partitions
(NP) method [161, 162]. Other model-based methods include ant colony optimiza-
tion (ACO) [55], the cross-entropy (CE) method [51, 150], probability collectives
[187], and the estimation of distribution algorithms (EDAs) [132]; see [69] for a
general discussion of such randomized methods. There is a close relationship be-
tween MRAS and the CE method; a detailed description of their similarities and
differences can be found in [69] and [94]. In addition, the natural exponential fam-
ily (NEF) [131] plays a prominent role in both methods.

The construction in Eq. (4.3) has previously been used in EDAs with proportional
selection schemes [191], and in randomized algorithms for solving Markov decision
processes [44] (see also the SAMW algorithm of Sect. 5.1). In those approaches,
the construction of the resulting distributions are carried out explicitly to generate
new samples, whereas in MRAS, they serve as the reference distributions that are
projected on the family of parameterized distributions.

There is a long history of using optimization methods to solve control problems
with parameterized policies (cf. [6]). Some examples include those discussed in
Sects. 1.7 and 3.5, the stochastic approximation-based methods such as [20], as
well as the indirect policy search method introduced in [134], which is based on
successive estimation of the probability densities that the policy induces on states at
different points in time.

In [126], a framework similar to the one presented in Sect. 4.3 but based on
the CE method is proposed for solving MDPs, focusing on infinite-horizon MDPs
with discrete action spaces. It uses the stochastic matrix P to simulate random tra-
jectories/sample paths and then iteratively updates the entries of P based on the
performances of these trajectories. In Sect. 4.3, in contrast, marginal distributions
are updated by using the performances of the randomly generated (deterministic)
policies.

The stochastic approximation framework was proposed in [97]. In particular, the
framework has been used to study the convergence of the CE method in [91, 97]
by casting a Monte Carlo version of the recursion (4.48) in the form of a general-
ized Robbins–Monro algorithm, and then following the argument of the ordinary
differential equation (ODE) approach [10, 116, 117]. The MARS algorithm was
introduced in [92, 93]. Under the equivalent gradient interpretations, a primary dif-
ference between MARS and CE is that the gradient in (4.55) is time-varying vs.
stationary in CE. Stationarity in general only guarantees local convergence, whereas
the time-varying feature of MARS provides a viable way to ensure the algorithm to
escape from local minima, leading to global convergence. The presentation of the
ASA algorithm in Sect. 4.6.2 is based on [89].



Chapter 5
On-Line Control Methods via Simulation

Policy iteration and value iteration are examples of off-line computation of value
functions and optimal policies, in which the policy (or the parameters in a param-
eterized policy) is pre-computed and stored, and is then used to determine which
action should be taken when a particular state is observed in the evolution of the
system. In this chapter, we consider policies in which the system (either the real
system or a simulation) evolves to a particular observed state, and the action to be
taken in that particular state is then computed on-line at the decision time, with a
particular emphasis on the use of simulation.

In Chap. 1, we discussed rolling-horizon control as an approximation framework
for solving infinite-horizon MDPs. The rolling-horizon control policy is based on
optimal values of finite-horizon MDPs with respect to a selected finite moving hori-
zon, and the corresponding value function converges to the optimal value of the
infinite-horizon MDP as the horizon length increases, uniformly in the initial state.
Unfortunately, large state space and/or action spaces make it very difficult to solve
finite-horizon MDPs in practice even with a relatively small rolling horizon, partic-
ularly when this needs to be done on-line before the action is taken. This motivates
us to study an approximate rolling-horizon control that uses approximately optimal
values for finite-horizon MDPs with respect to the selected moving horizon in an
on-line context.

Throughout this chapter, we assume that the state space X and the action space
A are countable, and the admissible action sets A(x), x ∈X, are finite. Furthermore,
we use the MDP simulation model from Chap. 1.

To emphasize the dependence on the horizon length H , we introduce the fol-
lowing notation for the H -horizon expected total discounted reward under policy π
starting from initial state x:

Vπ
H (x)=E

[
H−1∑
t=0

γ tR′
(
xt ,πt (xt ),wt

)∣∣∣∣∣x0 = x

]
,

instead of using the reward-to-go value function V π
0 defined by Eq. (1.6), and let

V∗H (x) = supπ∈Π Vπ
H (x), x ∈ X. Recall that a rolling-horizon control policy πrh ∈
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Πs with a horizon H <∞ is a policy that satisfies

Tπrh

(
V∗H−1

)
(x)= T

(
V∗H−1

)
(x), x ∈X,

where the T operators are defined by Eqs. (1.18), (1.19), (1.20), and (1.21). In
other words, the rolling-horizon control policy πrh is obtained from an optimal
non-stationary policy π∗ = {π∗t , t = 0,1, . . . ,H − 1} for the H -horizon problem
by defining πrh = π∗0 . That is, at state xt ∈X at decision time t , the decision maker
takes the optimal first-stage action π∗0 (xt ) by looking H steps ahead instead of look-
ing at the entire infinite horizon, and then at time t + 1, the decision maker does the
same thing at xt+1 by looking H steps ahead from the state xt+1 by moving/rolling
the H -step horizon forward. This results in a stationary policy πrh for the infinite
horizon, because we keep moving the H -step horizon forward, but it is derived from
a non-stationary policy for the finite-horizon problem.

The performance of the rolling-horizon control policy relative to an optimal pol-
icy is bounded by (cf. Theorem 1.1)

0≤ V ∗(x)− V πrh(x)≤ Rmax

1− γ
· γH , x ∈X.

For an approximate rolling-horizon control defined from the estimates of the V∗H−1-
function (or V ∗

1 ) values, we now show that the infinite-horizon discounted reward
obtained by following the approximate rolling-horizon control relative to the op-
timal value is bounded by two error terms. The first error term is from the finite-
horizon approximation, where it approaches zero geometrically with a given dis-
count factor, and the second term is due to the approximation of the optimal reward-
to-go value. If the rolling horizon is sufficiently long and the approximation of the
optimal finite-horizon value is sufficiently accurate, the error bound will be rela-
tively small.

Theorem 5.1 Given V ∈ B(X) such that |V∗H−1(x) − V (x)| ≤ ε for all x in X,
consider a policy π ∈Πs such that Tπ(V )= T (V ). Then,

0≤ V ∗(x)− V π(x)≤ Rmax

1− γ
· γH + 2γ ε

1− γ
, x ∈X.

Proof The lower bound is trivially true, so we prove only the upper bound. Let {vn}
be the sequence of value iteration functions, with vn = T (vn−1), v0(x)= 0, x ∈X.
From the contraction mapping property of the T -operator, for all x in X,∣∣T (vH−1)(x)− T (V )(x)

∣∣≤ γ · sup
x∈X
∣∣vH−1(x)− V (x)

∣∣≤ γ ε, (5.1)

and

sup
x∈X
∣∣V ∗(x)− vH (x)

∣∣ = sup
x∈X
∣∣T (V ∗)(x)− T (vH−1)(x)

∣∣
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≤ γ sup
x∈X
∣∣V ∗(x)− vH−1(x)

∣∣
= γ sup

x∈X
∣∣T (V ∗)(x)− T (vH−2)(x)

∣∣
≤ γ 2 sup

x∈X
∣∣V ∗(x)− vH−2(x)

∣∣
· · ·
≤ γH sup

x∈X
∣∣V ∗(x)− v0(x)

∣∣≤ Rmax

1− γ
· γH . (5.2)

Therefore, from (5.1) and (5.2), and since vH = T (vH−1), for all x ∈X,∣∣V ∗(x)− T (V )(x)
∣∣ ≤ ∣∣T (vH−1)(x)− T (V )(x)

∣∣+ ∣∣V ∗(x)− T (vH−1)(x)
∣∣

≤ Rmax

1− γ
· γH + γ ε. (5.3)

Below we show that T (V )(x)− V π(x)≤ γ ε(1+γ )
1−γ for all x ∈X. It then follows

from (5.3) that, for all x ∈X,

V ∗(x)− V π(x) ≤ V ∗(x)− T (V )(x)+ T (V )(x)− V π(x)

≤ Rmax

1− γ
· γH + γ ε + γ ε(1+ γ )

1− γ

≤ Rmax

1− γ
· γH + 2γ ε

1− γ
,

which gives the desired result. Now, for all x ∈X,

T (V )(x) = E
[
R′
(
x,π(x),w

)+ γV
(
f
(
x,π(x),w

))]
≤ E
[
R′
(
x,π(x),w

)+ γ
(
vH−1

(
f
(
x,π(x),w

))+ ε
)]

= E
[
R′
(
x,π(x),w

)+ γ vH−1
(
f
(
x,π(x),w

))]+ γ ε

≤ E
[
R′
(
x,π(x),w

)+ γ vH
(
f
(
x,π(x),w

))]+ γ ε

≤ E
[
R′
(
x,π(x),w

)+ γ
(
T (V )

(
f
(
x,π(x),w

))+ γ ε
)]+ γ ε by (5.1)

= E
[
R′
(
x,π(x),w

)+ γ T (V )
(
f
(
x,π(x),w

))]+ γ 2ε + γ ε

= E
[
R′
(
x,π(x),w

)+ γE
[
R′
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
)

+ γV
(
f
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
))]]+ γ 2ε + γ ε

= E
[
R′
(
x,π(x),w

)]+ γE
[
R′
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
)]

+ γ 2E
[
V
(
f
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
))]+ γ ε(1+ γ )

≤ E
[
R′
(
x,π(x),w

)]+ γE
[
R′
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
)]
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+ γ 2E
[
T (V )

(
f
(
f
(
x,π(x),w

)
,π
(
f
(
x,π(x),w

))
,w′
))]

+ γ 2ε(1+ γ )+ γ ε(1+ γ ).

Repeating the iteration in this way, we have, for all n= 0,1, . . . , and x ∈X,

T (V )(x) ≤ E

[
n∑
t=0

γ tR′
(
xt ,π(xt ),wt

)∣∣∣∣∣x0 = x

]
+ γ n+1E

[
T (V )(xn+1)

∣∣x0 = x
]

+ γ ε(1+ γ )+ · · · + γ n+1ε(1+ γ ), (5.4)

where xt is the random variable representing the state at time t under π . Since T (V )
is bounded, the second term on the right-hand side of Eq. (5.4) converges to zero
as n→∞ and the first term becomes V π(x). Therefore it follows that T (V )(x)−
V π(x)≤ γ ε(1+γ )

1−γ . �

Motivated by the bound in Theorem 5.1, either the UCB or the PLA sampling al-
gorithm presented in Chap. 2 can be used within the approximate rolling-horizon
control framework. A non-stationary randomized policy is created in an on-line
manner by simulation, as follows. Suppose at time t ≥ 0, the current state is x ∈X.
Each action’s expected total reward is estimated by

1

Nt

Nt∑
j=1

[
R′
(
x, a,wa

j

)+ γ V̂
Nt+1
t+1

(
f
(
x, a,wa

j

))]
, a ∈A(x), (5.5)

where the sequence {wa
j , j = 1, . . . ,Nt } contains the corresponding random num-

bers used to simulate the next states from x by taking a. The UCB or the PLA
sampling algorithm is applied at the next states f (x, a,wa

j ), j = 1, . . . ,Nt , to ob-

tain the value of V̂ Nt+1
t+1 (f (x, a,wa

j )). Recall that V̂ Nt+1
t+1 (f (x, a,wa

j )) is an estimate
of the unknown value of

V∗H−1

(
f
(
x, a,wa

j

))

= sup
π∈Π

E

[
t+H−1∑
s=t+1

γ s−t−1R′
(
xs,πs(xs),ws

)∣∣∣∣∣xt+1 = f
(
x, a,wa

j

)]
,

and Ni is the total number of samples that are used per state sampled in stage i − t ,
where i = t, t + 1, . . . , t +H − 1. The decision maker chooses the action that max-
imizes the expected total reward estimated by (5.5). The use of common random
numbers, i.e., using the same stream {wj , j = 1, . . . ,Nt } for every a ∈A(x) in (5.5),
to compare the different actions, should reduce the variance. The resulting random-
ized policy yields an approximate rolling H -horizon control for the infinite-horizon
problem.

However, the time complexities of the two algorithms to estimate V ∗
1 (x) or

V∗H−1(x) for a given state x ∈ X are exponentially dependent on the horizon size
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(O(NH) for a sampling budget N used per state in each stage). Therefore, even for
a small state space problem, applying the UCB or the PLA algorithm in an on-line
context can be quite cumbersome.

In this chapter, we present on-line simulation-based control methods for solving
infinite-horizon MDPs with large state and/or action spaces within the framework of
approximate rolling-horizon control. Simulation is used to estimate V ∗

1 . The meth-
ods are especially suited for MDP problems where we can easily design a relatively
small finite subset Λ⊂Π of heuristic policies. The simulation complexity of each
method depends polynomially on the horizon size, because the sampling is done
with respect to a restricted policy space rather than the action space.

We first present an adaptive sampling algorithm called simulated annealing mul-
tiplicative weights (SAMW), which approximates V∗H (x), x ∈X by maxπ∈Λ Vπ

H (x),

x ∈ X for a finite subset Λ ⊂ Π of heuristic policies. Therefore, SAMW can be
used for solving finite-horizon MDP problems when an optimal policy in Λ⊂Π is
sought. In an on-line context, the SAMW algorithm can be also used for two other
purposes. First, it can be used for creating an approximate version of policy switch-
ing discussed in Sect. 3.1.1 in Chap. 3 for the EPI algorithm. This is particularly
useful for solving MDPs having both large state and action spaces. Because only
the given heuristic policies need to be simulated, the method works independently of
the size of the state and action spaces. Second, it can be incorporated into obtaining
an approximate “parallel rollout,” defined with maxπ∈Λ Vπ

H−1(x), x ∈X.
We then provide two approximate rolling-horizon controls, (parallel) rollout and

“hindsight optimization,” via lower and upper bounds to V ∗
1 , respectively, where

both can be implemented easily by simulation. We illustrate the effectiveness of
both approaches by considering a simple packet scheduling problem.

Finally, we apply the model-based annealing random search (MARS) of
Sect. 4.6.1 as a direct policy search procedure over the policy space and combine it
with the Q-learning method to present yet another on-line simulation-based MDP
algorithm.

5.1 Simulated Annealing Multiplicative Weights Algorithm

In this section, we present a simulation-based algorithm called simulated annealing
multiplicative weights (SAMW) for estimating maxπ∈Λ Vπ

H (x) for H <∞, when a
non-empty finite subset Λ⊂Π and x ∈X are given.

Recall that V π(x0) in Eq. (1.1) denotes the value function of following policy
π ∈Π over a finite horizon H for a given initial state x0, i.e., V π(x0) = Vπ

H (x0).
Because the initial state x0 is fixed throughout this section, we use the notation V π ,
omitting the initial state x0, for simplicity. Without loss of generality, we assume
that Rmax ≤ 1/H in this section. The problem we consider is that of estimating the
optimal value function over a given subset Λ⊂Π :

V ∗ :=max
π∈Λ V

π . (5.6)

Any policy π∗ that achieves V ∗ is called an optimal policy in Λ.
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At each iteration, the SAMW algorithm updates a probability distribution over Λ
by a simple multiplicative weight rule using the estimated (from simulation) value
functions for all policies in Λ, requiring |Λ| sample paths. (The idea of updating
the probability distribution over the “solution” space Λ at each iteration is similar to
MRAS presented in Chap. 4. Refer to Sect. 4.1 for the relationship between MRAS
and SAMW.) The time complexity of the algorithm is O(|Λ|H). With a proper “an-
nealing” of the control parameter associated with the algorithm—analogous to the
cooling parameter in simulated annealing, the sequence of distributions generated
by the multiplicative weight rule converges to a distribution concentrated only on
policies that achieve V ∗, motivating the moniker “simulation annealing multiplica-
tive weights.”

The algorithm is “asymptotically efficient,” in the sense that a finite-time upper
bound is obtained for the sample mean of the value of an optimal policy inΛ, and the
upper bound converges to V ∗ with rate O( 1√

T
), where T is the number of iterations.

A sampling version of the algorithm that does not enumerate all policies inΛ at each
iteration, but instead samples from the sequence of generated distributions, is also
shown to converge to V ∗.

5.1.1 Basic Algorithm Description

Let Φ be the set of all probability distributions over Λ. For φ ∈ Φ and π ∈Λ, let
φ(π) denote the probability for policy π . The goal is to concentrate the probabil-
ity on the optimal policies π∗ in Λ. The SAMW algorithm iteratively generates a
sequence of distributions, where φi denotes the distribution at iteration i. Each it-
eration of SAMW requires H random numbers w0, . . . ,wH−1, i.e., i.i.d. U(0,1)
and independent of previous iterations. Each policy π ∈Λ is then simulated using
the same sequence of random numbers for that iteration (different random number
sequences can also be used for each policy, and all of the results still hold) in order
to obtain a sample path estimate of the value V π :

V π
i :=

H−1∑
t=0

γ tR′
(
xt ,πt (xt ),wt

)
, (5.7)

where the subscript i denotes the iteration count, which has been omitted for nota-
tional simplicity in the quantities xt and wt . The estimates {V π

i ,π ∈Λ} are used for
updating a probability distribution over Λ at each iteration i. Note that 0≤ V π

i ≤ 1
(a.s.) by the boundedness assumption Rmax ≤ 1/H .

The iterative updating to compute the new distribution φi+1 from φi and {V π
i }

uses a simple multiplicative rule:

φi+1(π)= φi(π)
β
V π
i

i

Zi
, ∀π ∈Λ, (5.8)
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where βi > 1 is a parameter of the algorithm, the normalization factor Zi is given
by

Zi =
∑
π∈Λ

φi(π)β
V π
i

i ,

and the initial distribution φ1 is the uniform distribution, i.e.,

φ1(π)= 1

|Λ| ∀π ∈Λ.

5.1.2 Convergence Analysis

For φ ∈Φ , define

V̄i (φ) :=
∑
π∈Λ

V π
i φ(π),

Ψ π
T := 1

T

T∑
i=1

V π
i ,

where Ψπ
T is the sample mean estimate for the value function of policy π . Again,

note that (a.s.) 0 ≤ V̄i(φ) ≤ 1 for all φ ∈ Φ . We remark that V̄i (φ) represents an
expected reward for each fixed (iteration) experiment i, where the expectation is
w.r.t. the distribution of the policy.

The following lemma provides a finite-time upper bound for the sample mean
of the value function of an optimal policy in terms of the probability distributions
generated by SAMW via Eq. (5.8).

Lemma 5.2 For βi = β > 1, i = 1, . . . , T , the sequence of distributions φ1, . . . , φT

generated by SAMW via Eq. (5.8) satisfies (a.s.)

Ψπ∗
T ≤ β − 1

lnβ
· 1

T

T∑
i=1

V̄i
(
φi
)+ ln |Λ|

T lnβ
,

for any optimal policy π∗ in Λ.

Proof The idea of the proof follows that of Theorem 1 in [65]. Recall that KL di-
vergence between two p.m.f.s p and q is given by

D(p, q)=
∑
π∈Λ

p(π) ln

(
p(π)

q(π)

)
, p, q ∈Φ. (5.9)
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Consider any Dirac distribution φ∗ ∈Φ such that, for an optimal policy π∗ in Λ,
φ∗(π∗)= 1 and φ∗(π)= 0 for all π ∈Λ− {π∗}. We first prove that

V π∗
i ≤ (β − 1)V̄i(φi)+D(φ∗, φi)−D(φ∗, φi+1)

lnβ
, (5.10)

where φi and φi+1 are generated by SAMW via Eq. (5.8) and βi > 1.
From the definition of D given by Eq. (5.9),

D
(
φ∗, φi+1)−D

(
φ∗, φi

) =∑
π∈Λ

φ∗(π) ln

(
φi(π)

φi+1(π)

)
=
∑
π∈Λ

φ∗(π) ln
Zi

βV
π
i

= −
∑
π∈Λ

φ∗(π) lnβV
π
i + lnZi

∑
π∈Λ

φ∗(π)

= (− lnβ)
∑
π∈Λ

φ∗(π)V π
i + lnZi

≤ (− lnβ)V̄i
(
φ∗
)+ ln

[∑
π∈Λ

φi(π)
(
1+ (β − 1)V π

i

)]

= (− lnβ)V π∗
i + ln

(
1+ (β − 1)V̄i

(
φi
))

≤ (− lnβ)V π∗
i + (β − 1)V̄i

(
φi
)
,

where the first inequality follows from the property βa ≤ 1+(β−1)a for β ≥ 0, a ∈
[0,1], and the last inequality follows from the property ln(1+ a) ≤ a for a >−1.
Solving for V π∗

i (recall β > 1) yields (5.10).
Summing inequality (5.10) over i = 1, . . . , T ,

T∑
i=1

V π∗
i ≤ β − 1

lnβ

T∑
i=1

V̄i
(
φi
)+ 1

lnβ

(
D
(
φ∗, φ1)−D

(
φ∗, φT+1))

≤ β − 1

lnβ

T∑
i=1

V̄i
(
φi
)+ 1

lnβ
D
(
φ∗, φ1)

≤ β − 1

lnβ

T∑
i=1

V̄i
(
φi
)+ ln |Λ|

lnβ
,

where the second inequality follows from D(φ∗, φT+1)≥ 0, and the last inequality
uses the uniform distribution property that

φ1(π)= 1

|Λ| ∀π =⇒ D
(
φ∗, φ1)≤ ln |Λ|.

Dividing both sides by T yields the desired result. �
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If β−1
lnβ is very close to 1 and at the same time ln |Λ|

T lnβ is very close to 0, then the
above inequality implies that the expected per-iteration performance of SAMW is
very close to the optimal value. However, letting β→ 1, ln |Λ|

lnβ →∞. On the other

hand, for fixed β and T increasing, ln |Λ|
lnβ becomes negligible relative to T . Thus,

from the form of the bound, it is clear that the sequence βT should be chosen as a
function of T such that βT → 1 and T lnβT →∞ in order to achieve convergence.

Define the total variation distance for p.m.f.s p and q by

dT (p, q) :=
∑
π∈Λ

∣∣p(π)− q(π)
∣∣.

The following lemma states that the sequence of distributions generated by SAMW
converges to a stationary distribution, with a proper tuning or annealing of the β-
parameter.

Lemma 5.3 Let {ψ(T )} be a decreasing sequence such that ψ(T ) > 1 ∀T and
limT→∞ψ(T )= 1. For βi = ψ(T ), i = 1, . . . , T + k, k ≥ 1, the sequence of dis-
tributions φ1, . . . , φT generated by SAMW via Eq. (5.8) satisfies (a.s.)

lim
T→∞dT

(
φT ,φT+k

)= 0.

Proof From the definition of D given by Eq. (5.9),

D
(
φT ,φT+1) =∑

π∈Λ
φT (π) ln

(
φT (π)

φT+1(π)

)
≤max

π∈Λ ln

(
φT (π)

φT+1(π)

)

= max
π∈Λ ln

ZT

ψ(T )V
π
T

≤ max
π∈Λ ln

∑
π∈Λ φT (π)ψ(T )
ψ(T )V

π
T

= max
π∈Λ
(
1− V π

T

)
lnψ(T )

≤ lnψ(T ),

since ψ(T ) > 1 and 0≤ V π
T ≤ 1 for all π and any T .

Applying Pinsker’s inequality [176],

dT
(
φT ,φT+1)≤√2D

(
φT ,φT+1

)≤√2 lnψ(T ).

Therefore,

dT
(
φT ,φT+k

)≤ k∑
j=1

dT
(
φT+j−1, φT+j

)≤ k−1∑
j=0

√
2 lnψ(T + j).
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Because dT (φT ,φT+k) ≥ 0 for any k and
∑k−1

j=0
√

2 lnψ(T + j)→ 0 as T →∞,

dT (φ
T ,φT+k)→ 0 as T →∞. �

Theorem 5.4 Let {ψ(T )} be a decreasing sequence such that ψ(T ) > 1 ∀T ,
limT→∞ψ(T ) = 1, and limT→∞ T lnψ(T ) =∞. For βi = ψ(T ), i = 1, . . . , T ,
the sequence of distributions φ1, . . . , φT generated by SAMW via Eq. (5.8) satisfies
(a.s.)

ψ(T )− 1

lnψ(T )
· 1

T

T∑
i=1

V̄i
(
φi
)+ ln |Λ|

T lnψ(T )
→ V ∗,

and φi → φ∗ ∈Φ , where φ∗(π)= 0 for all π such that V π < V ∗.

Proof Using x − 1≤ x lnx for all x ≥ 1 and Lemma 5.2,

Ψπ∗
T ≤ ψ(T )− 1

lnψ(T )
· 1

T

T∑
i=1

V̄i
(
φi
)+ ln |Λ|

T lnψ(T )

≤ ψ(T ) · 1

T

T∑
i=1

V̄i
(
φi
)+ ln |Λ|

T lnψ(T )
. (5.11)

In the limit as T →∞, the left-hand side converges to V ∗ by the law of large
numbers, and in the rightmost expression in (5.11), ψ(T )→ 1 and the second term
vanishes, so it suffices to show that 1

T

∑T
i=1 V̄i(φ

i) is bounded from above by V ∗
(in the limit).

From Lemma 5.3, for every ε > 0, there exists T ′ <∞ such that dT (φi, φi+k)≤
ε for all i > T ′ and any integer k ≥ 1. Then, for T > T ′, we have (a.s.)

1

T

T∑
i=1

V̄i
(
φi
)

= 1

T

[
T ′∑
i=1

V̄i
(
φi
)+ T∑

i=T ′+1

V̄i
(
φi
)]

≤ 1

T

T ′∑
i=1

V̄i
(
φi
)+ 1

T

T∑
i=T ′+1

V̄i
(
φT

′)+ 1

T

T∑
i=T ′+1

∑
π∈Λ

∣∣φi(π)− φT
′
(π)
∣∣V π

i

≤ 1

T

T ′∑
i=1

V̄i
(
φi
)+ 1

T

T∑
i=1

V̄i
(
φT

′)+ 1

T

T∑
i=T ′+1

∑
π∈Λ

∣∣φi(π)− φT
′
(π)
∣∣V π

i

≤ 1

T

T ′∑
i=1

V̄i
(
φi
)+ 1

T

T∑
i=1

V̄i
(
φT

′)+ 1

T

T∑
i=T ′+1

|Λ|ε, (5.12)
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the last inequality following from maxπ∈Λ |φi+k(π)−φi(π)| ≤ ε and V π
i ≤ 1 ∀i >

T ′ ∀k ≥ 1,π ∈ Λ. As T →∞, the first term of the right-hand side of (5.12) van-
ishes, and the second term converges by the law of large numbers to V π,π ∼ φT

′
,

which is bounded from above by V ∗. Since ε can be chosen arbitrarily close to zero,
the desired convergence follows.

The second part of the theorem follows directly from the first part with
Lemma 5.3, with a proof obtained in a straightforward manner by assuming there
exists a π ∈Λ such that φ∗(π) �= 0 and V π < V ∗, leading to a contradiction. �

An example of a decreasing sequence {ψ(T )}, T = 1,2, . . . , that satisfies the

condition of Theorem 5.4 is ψ(T )= 1+
√

1
T
, T > 0.

5.1.3 Convergence of the Sampling Version of the Algorithm

Instead of estimating the value functions for every policy in Λ according to
Eq. (5.7), which requires simulating all policies in Λ, a sampling version of the
algorithm would sample a subset of the policies in Λ at each iteration i accord-
ing to φi and simulate only those policies (and estimate their corresponding value
functions). In this context, Theorem 5.4 essentially establishes that the expected
per-iteration performance of SAMW approaches the optimal value as T →∞ for
an appropriately selected tuning sequence {βi}. Here, we show that the actual (distri-
bution sampled) per-iteration performance also converges to the optimal value using
a particular annealing schedule of the parameter β . For simplicity, we assume that a
single policy is sampled at each iteration (i.e., subset is a singleton).

Theorem 5.5 Let Tk =∑k
j=1 j

2. For βi = 1 + 1
k
, Tk−1 < i ≤ Tk , let {φi} denote

the sequence of distributions generated by SAMW via Eq. (5.8), with “resetting” of
φi(π) = 1

|Λ| ∀π at each i = Tk . Let π̂ (φi) denote the policy sampled from φi (at
iteration i). Then

1

Tk

Tk∑
i=1

V
π̂(φi )
i → V ∗ w.p.1.

Proof The sequence of random variables κi = V
π̂(φi )
i − V̄i (φ

i) forms a martingale
difference sequence with |κi | ≤ 1, since E[κi |κ1, . . . , κi−1] = 0 for all i. Let εk =
2
√

lnk
k

and Ik = [Tk−1+1, Tk]. Applying Azuma’s inequality [149, p. 309], we have,
for every εk > 0,

P

(
1

k2

∣∣∣∣∑
i∈Ik

(
V
π̂(φi)
i − V̄i

(
φi
))∣∣∣∣> εk

)
≤ 2e−0.5k2ε2

k = 2

k2
. (5.13)
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The sum of the probability bound in (5.13) over all k from 1 to∞ is finite. Therefore,
by the Borel–Cantelli lemma (a.s.) all but a finite number of Ik’s (k = 1, . . . ,∞)

satisfy

∑
i∈Ik

V̄i
(
φi
)≤∑

i∈Ik
V
π̂(φi)
i + k2εk, (5.14)

so those Ik that violate inequality (5.13) can be ignored (a.s.).
From Lemma 5.2 with the definition of βi , for all i ∈ Ik ,

k2Ψπ∗
k2 ≤

∑
i∈Ik

βi − 1

lnβi
V̄i
(
φi
)+ ln |Λ|

lnβi
≤
∑
i∈Ik

βi V̄i
(
φi
)+ ln |Λ|

βi−1
βi

=
∑
i∈Ik

(
1+ 1

k

)
V̄i
(
φi
)+ ln |Λ|(k + 1)

≤
∑
i∈Ik

V̄i
(
φi
)+ k+ ln |Λ|(k + 1), (5.15)

where the last inequality follows from V̄i (φ)≤ 1 ∀φ ∈Φ and |Ik| = k2.
Combining inequalities (5.14) and (5.15) and summing, we have

TkΨ
π∗
Tk
≤

∑
i∈I1∪···∪Ik

V
π̂(φi)
i +

k∑
j=1

[
2j
√

ln j + j
(
ln |Λ| + 1

)+ ln |Λ|],
so

Ψπ∗
Tk
≤ 1

Tk

∑
i∈I1∪···∪Ik

V
π̂(φi)
i + 1

Tk

k∑
j=1

[
2j
√

ln j + j
(
ln |Λ| + 1

)+ ln |Λ|]. (5.16)

Because Tk is O(k3), the term on the right-hand side of (5.16) vanishes as k→∞.
Therefore, for every ε > 0, (a.s.) for all but a finite number of values of Tk ,

Ψπ∗
Tk
≤ 1

Tk

Tk∑
i=1

V
π̂(φi )
i + ε.

We now argue that {φi} converges to a fixed distribution as k →∞, so that

eventually the term 1
Tk

∑Tk
i=1 V

π̂(φi )
i is bounded from above by V ∗. With similar

reasoning as in the proof of Lemma 5.3, for every ε > 0, there exists T ′ ∈ Ik for
some k > 1 such that, for all i > T ′ with i+j ∈ Ik , j ≥ 1, dT (φi, φi+j )≤ ε. Taking
T > T ′ with T ∈ Ik ,
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1

T

T∑
i=1

V
π̂(φi)
i

= 1

T

[
T ′∑
i=1

V
π̂(φi )
i +

T∑
i=T ′+1

V
π̂(φi )
i

]

≤ 1

T

T ′∑
i=1

V
π̂(φi )
i + 1

T

T∑
i=T ′+1

V
π̂(φT

′
)

i + 1

T

T∑
i=T ′+1

V
π̂(φi )
i − V

π̂(φT
′
)

i

≤ 1

T

T ′∑
i=1

V
π̂(φi )
i + 1

T

T∑
i=1

V
π̂(φT

′
)

i + 1

T

T∑
i=T ′+1

(
V
π̂(φi)
i − V

π̂(φT
′
)

i

)
. (5.17)

Letting T →∞, the first term on the right-hand side of (5.17) vanishes, and the
second term is bounded from above by V ∗, because the second term converges to
V π,π ∼ φT

′
, from the law of large numbers. We know that, for all i > T ′ in Ik ,

−ε+φi(π)≤ φi+j (π)≤ φi(π)+ ε for all π ∈Λ and any j . Therefore, as ε can be
chosen arbitrarily close to zero, the sequence {φi} converges to the distribution φT

′
,

making the last term vanish (once each policy is sampled from the same distribution
over Λ, the simulated value would be the same for the same random numbers),
providing the desired convergence result. �

5.1.4 Numerical Example

To illustrate the performance of SAMW, we consider a finite-horizon inventory con-
trol problem, the same one presented in Sect. 2.1, but with different problem param-
eter values. Given an inventory level, orders are placed and received, demand is re-
alized, and the new inventory level is calculated. Let Dt , a discrete random variable,
denote the demand in period t , xt the inventory level at period t , at the order amount
at period t , p the per period per unit demand lost penalty cost, h the per period per
unit inventory holding cost, and M the inventory capacity. Thus, the inventory level
evolves according to the following dynamics:

xt+1 = (xt + at −Dt)
+.

The goal is to minimize, over a given set of (non-stationary) policies Λ, the expected
total cost over the entire horizon from a given initial inventory level x0, i.e.,

min
π∈ΛE

[
H−1∑
t=0

[
h
(
xt + πt (xt )−Dt

)+ + p
(
0,Dt − xt − πt (xt )

)+]∣∣∣∣∣x0 = x

]
.

Since there are no ordering costs, the optimal order policy follows a base-stock
policy, in which ordering is placed to bring the inventory to the base-stock level
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Fig. 5.1 Average performance (mean of 25 simulation replications, resulting in confidence
half-widths within 5 % of estimated mean) of SAMW, the UCB sampling algorithm, and NMS
on the inventory control problem (h= 0.003, p = 0.012)

St . Specifically, an order is placed in period t if the inventory level xt is below the
threshold St , with the order amount being (St − xt )

+. Exploiting this structural
property, we restrict the search of SAMW to the set of threshold policies, i.e., Λ=
(S0, S1, S2), St ∈ {0,5,10,15,20}, t = 0,1,2, rather than considering the set of all
admissible policies.

We implemented two versions of SAMW, i.e., the fully sampled version of
SAMW, which constructs the optimal value function estimate by enumerating all
policies in Λ and using all value function estimates, and the single sampling version
of SAMW introduced in Theorem 5.5, which uses just one sampled policy in each
iteration to update the optimal value function estimate; however, updating φi re-
quires value function estimates for all policies in Λ. For numerical comparison, we
also applied the UCB sampling algorithm discussed in Sect. 2.1 and a non-adaptive
multi-stage sampling (NMS) algorithm [104].

The following parameter values were used in our experiments: M = 20, H = 3,
h = 0.003, p = 0.012, x0 = 5 and xt ∈ {0,5,10,15,20} for t = 1, . . . ,H , at ∈
{0,5,10,15,20} for all t = 0, . . . ,H − 1, and Dt is a discrete uniformly distributed
random variable taking values in {0,5,10,15,20}. The values of h and p are chosen
so as to satisfy the reward bound (Rmax ≤ 1/H ) assumed in the SAMW convergence
results. Figure 5.1 shows the performance of these algorithms as a function of the
total number of periods simulated, based on 25 independent replications. The re-
sults indicate convergence of both versions of SAMW; however, the two alternative
UCB and NMS algorithms seem to provide superior empirical performance over
SAMW. We believe this is because the annealing schedule for β used in SAMW
is too conservative for this problem, thus leading to slow convergence. To improve
the empirical performance of SAMW, we also implemented both versions of the
algorithm with β being held constant throughout the search, i.e., independent of T .



5.1 Simulated Annealing Multiplicative Weights Algorithm 193

Fig. 5.2 Average performance (mean of 25 simulation replications, resulting in confidence
half-widths within 5 % of estimated mean) of SAMW, the UCB sampling algorithm, and NMS
on the inventory control problem (h= 3, p = 12)

The β = 2 case is included in Fig. 5.1, which shows significantly improved perfor-
mance. Experimentation with the SAMW algorithm also revealed that it performed
even better for cost parameter values in the inventory control problem that do not
satisfy the strict reward bound. One such example is shown in Fig. 5.2, for the case
h = 3 and p = 12 (all other parameter values unchanged). Furthermore, note that
the value of the horizon size in our experiments is relatively small (H = 3) to focus
on the quality of the estimate by each algorithm. As the value of H increases, both
UCB and NMS algorithms suffer from large sampling complexities.

SAMW can be naturally parallelized to reduce its computational cost. Partition
the given policy space Λ into {Δj } such that Δj ∩ Δj ′ = ∅ for all j �= j ′ and⋃

j Δj = Λ, and apply the algorithm in parallel for T iterations on each Δj . For
a fixed value of β > 1, we have the following finite-time bound from Lemma 5.2:

V ∗
T ≤max

j

{
β − 1

lnβ
· 1

T

T∑
i=1

V̄i
(
φij
)(
xij
)+ ln |Δj |

T lnβ

}
,

where φij is the distribution generated for Δj at iteration i.
The original version of SAMW recalculates an estimate of the value function for

all policies in Λ at each iteration, requiring each policy to be simulated. If Λ is large,
this may not be practical, and the sampling version of SAMW given by Theorem 5.5
also requires each value function estimate in order to update the φi at each iteration.
One simple alternative is to use the prior value function estimates for updating φi ,
except for the single sampled one; thus, only one simulation per iteration would be
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required. Specifically,

V π
i := V π

i−1 if π not sampled at iteration i;
else obtain a new estimate of V π

i via Eq. (5.7).

An extension of this is to use a threshold on φi to determine which policies will be
simulated. Since the sequence of the distributions generated by SAMW converges to
a distribution concentrated on the optimal policies in Λ, as the number of iterations
increases, the contributions from non-optimal policies get smaller and smaller, so
these policies need not be resimulated (and value function estimates updated) very
often. Specifically,

V π
i := V π

i−1 if φi(π)≤ ε;
else obtain a new estimate of V π

i via Eq. (5.7).

The cooling schedule presented in Theorem 5.5 is just one way of controlling
the parameter β . Characterizing properties of good schedules is critical to effective
implementation, as the numerical experiments showed. The numerical experiments
also demonstrated that the algorithm may work well outside the boundaries of the
assumptions under which theoretical convergence is proved, specifically the bound
on the one-period reward function and the value of the cooling parameter β .

5.1.5 Simulated Policy Switching

Recall that, for a given non-empty finite subset Λ⊂Πs , policy switching is defined
by the operation on the right-hand side of (3.1). The key advantage of policy switch-
ing is that it works independently of the size of the state and the action spaces and
improves all policies in Λ. Consider the H -horizon policy switching policy such
that

πps,H (x) ∈
{

arg max
π∈Λ

(
Vπ
H (x)

)
(x)
}
, x ∈X.

The decision maker can apply SAMW at each decision time t to estimate
maxπ∈Λ Vπ

H (xt ) and obtain an approximate π∗ in Λ for the initial state xt , and
take π∗(xt ) at time t and move on to the next state xt+1.

An important property of simulated policy switching is that if we estimate
Vπ
H (x),π ∈ Λ, by the sample mean of V̄π

H (x) based on simulation, then the pol-
icy switching operation defined by

π̄ps,H (x) ∈
{

arg max
π∈Λ

(
V̄π
H (x)

)
(x)
}
, x ∈X, (5.18)

is an ordinal comparison, which leads to an exponential convergence rate.
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For example, at each decision time t , the decision maker generates a set of N
random number sequences {wj

0 , . . . ,w
j

H−1}, j = 1, . . . ,N , to estimate Vπ
H (x) for

the current state x by the sample mean V̄π
H (x) of the reward sums over N sample

paths,

V̄π
H (x) :=

1

N

N∑
j=1

H−1∑
t ′=0

γ t
′
R′
(
x
j

t ′ ,π
(
x
j

t ′
)
,w

j

t ′
)
, x

j

0 = x, j = 1, . . . ,N,

where each policy π ∈Λ is simulated with the same random number sequence. The
decision maker then takes the action prescribed by the (simulated) policy switching
at t , moving to the next state at time t + 1. This process is repeated at time t + 1. In
this case, we can immediately state the following on the probability of the correct
selection:

Theorem 5.6 Consider Λ= {π1, . . . , π |Λ|} ⊂Πs and a fixed state x ∈X. Assume
that

Vπ1

H (x) > Vπ2

H (x) > · · ·> Vπ |Λ|
H (x).

For π̄ps,H defined on Λ by (5.18),

P
(
π̄ps,H (x)= π1(x)

)≥ 1− αe−Nβ,

for some constants α,β > 0.

That is, the probability of the correct selection (selecting the action prescribed by
policy switching at x) by π̄ps,H (x) converges to one exponentially in N .

One drawback of policy switching is that it gives insufficient emphasis and free-
dom in the evaluation of the initial action, which is the only action actually se-
lected and committed to. Parallel rollout was designed to overcome this drawback
by combining rollout and policy switching. We now present the rollout method of
incorporating the (estimate) value of maxπ∈Λ V π

H−1(x), x ∈X, into an approximate
rolling-horizon control as an estimate of V ∗

1 . We begin with the single-policy case
(|Λ| = 1) and then generalize to the multi-policy case.

5.2 Rollout

Although obtaining an optimal policy for an MDP is often quite difficult due to the
curse of dimensionality, a heuristic policy can be easily designed in many cases. The
idea of the rollout approach is to improve a heuristic policy via simulation. We “roll
out” or simulate the available policy over a selected finite horizon H <∞ and then
apply the most “promising” action to the system in an on-line manner.
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We define the H -horizon rollout policy πro,H with a base-policy π ∈Πs to be a
policy such that

πro,H (x) ∈ arg max
a∈A(x)

E
[
R′(x, a,w)+ γVπ

H−1

(
f (x, a,w)

)]
, x ∈X.

To analyze the performance of the H -horizon rollout policy relative to its base-
policy π , we first begin with a lemma that can be easily proven by the monotonicity
property of the operator Tπ and the convergence to the unique fixed point of V π

from successive applications of the operator.

Lemma 5.7 Suppose there exists ψ ∈ B(X) for which Tπ(ψ)(x) ≥ ψ(x) for all
x ∈X; then V π(x)≥ψ(x) for all x ∈X.

Theorem 5.8 For any ε > 0, if H ≥ 1+ logγ
ε(1−γ )
Rmax

, then for all x ∈X,

V πro,H (x)≥ V π(x)− ε.

Proof Define ψ = Vπ
H−1. By definition of the rollout policy, for any x ∈X,

Tπro,H (ψ)(x) = E
[
R′
(
x,πro,H (x),w

)+ γψ
(
f
(
x,πro,H (x),w

))]
≥ E
[
R′
(
x,π(x),w

)+ γψ
(
f
(
x,π(x),w

))]= Vπ
H (x)≥ψ(x).

Therefore, for all x ∈X, we see that V πro,H (x)≥ Vπ
H−1(x) by Lemma 5.7. Now we

can write for all x ∈X, V π(x)= Vπ
H−1(x)+ γH−1E[V π(xH−1)|x0 = x], where E

is taken with respect to the probability distribution over the state xH−1 at timeH−1.
We know that supx∈X V π(x)≤ Rmax

1−γ . This implies that V πro,H (x)≥ V π(x)− Rmax
1−γ ·

γH−1. Letting Rmax
1−γ · γH−1 ≤ ε yields the desired result. �

Note that as H →∞, the above result gives the result of a single step of policy
improvement of PI. Therefore, we can view the rollout approach as an on-line im-
plementation of the policy improvement step of PI via simulation. Rollout can be
easily implemented regardless of the size of the state space.

The following result is immediate from Theorem 5.1.

Corollary 5.9 If supx∈X |V ∗
1 (x)− Vπ

H−1(x)| ≤ ε,

0≤ V ∗(x)− V πro,H (x)≤ Rmax

1− γ
· γH + 2γ ε

1− γ
, x ∈X.

To implement the H -horizon rollout policy by simulation using common ran-
dom numbers, at each decision time t , the decision maker generates random num-
bers wj

0 ∼ U(0,1), j = 1, . . . ,N , where wj

0 determines the random next state yj

from the current state x by taking a ∈ A(x), i.e., f (x, a,wj

0) = yj . A set of L
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random number sequences {wk
1, . . . ,w

k
H−1}, k = 1, . . . ,L, is then generated to es-

timate Vπ
H−1(y

j ) by the sample mean V̄π
H−1(y

j ) over L sample paths:

V̄π
H−1

(
yj
) := 1

L

L∑
k=1

H−1∑
t ′=1

γ t
′−1R′

(
xkt ′,π

(
xkt ′
)
,wk

t ′
)
, xk1 = yj , j = 1, . . . ,N,

where the policy π is simulated with the same random number sequence across the
next state yj , j = 1, . . . ,N . The decision maker then takes the action prescribed by
the (simulated) rollout policy at t ,

arg max
a∈A(x)

1

N

N∑
j=1

(
R′
(
x, a,w

j

0

)+ γ V̄π
H−1

(
yj
))
,

moving to the next state at time t + 1. This process is repeated at t + 1.

5.2.1 Parallel Rollout

The rollout approach with a single base-policy is promising if we have a good base-
policy. Note that in practice, what we are really interested in is the ranking of ac-
tions, not the degree of approximation. Therefore, as long as the rollout policy pre-
serves the true ranking of actions well, the resulting policy will perform fairly well.
Differential training, or the use of common random numbers, can be used for this
purpose.

However, when we have multiple heuristic policies available, because we cannot
predict the performance of each policy in advance, selecting a particular single base-
policy to be rolled out is not an easy task. Furthermore, for some cases, each base-
policy available may be good for different system paths. When this is the case, we
wish to combine these base-policies dynamically in an on-line manner to generate a
single policy that adapts automatically to different paths of the system, in addition
to alleviating the difficulty of choosing a single base-policy to be rolled out.

Parallel rollout is a generalization of the rollout approach when a set Λ ⊂ Πs

of heuristic policies can be obtained rather than a single policy. The name “parallel
rollout” comes from the idea that we roll out each available policy over a selected
finite horizon H <∞ to estimate its infinite-horizon value in parallel via a simu-
lation over H , and then apply the most “promising” action based on the estimates
of the heuristic policies to the system in an on-line manner. Like rollout, parallel
rollout can be easily implemented regardless of the size of the state space.

We define the H -horizon parallel rollout policy πpr,H with a non-empty finite
subset Λ⊂Πs to be a policy such that

πpr,H (x) ∈ arg max
a∈A(x)

E
[
R′(x, a,w)+ γ max

π∈Λ Vπ
H−1

(
f (x, a,w)

)]
,
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where Vπ
H−1-function values are approximated by sample averages via simulation

for each π ∈Λ.

Theorem 5.10 For πpr,H defined on a non-empty finite subset Λ ⊂Πs , given any

ε > 0, if H ≥ 1+ logγ
ε(1−γ )
Rmax

, then for all x ∈X,

V πpr,H (x)≥max
π∈Λ V

π(x)− ε.

Proof As in the proof of Theorem 5.8, we define ψ(x)=maxπ∈Λ Vπ
H−1(x), x ∈X.

We have, for any π ∈Λ and x ∈X,

Tπpr,H (ψ)(x) = E
[
R′
(
x,πpr,H (x),w

)+ γψ
(
f
(
x,πpr,H (x),w

))]
≥ E
[
R′
(
x,π(x),w

)+ γψ
(
f
(
x,π(x),w

))]= Vπ
H (x).

Therefore,

Tπpr,H (ψ)(x)≥max
π∈Λ Vπ

H (x)≥ψ(x), x ∈X.

Thus, for all x ∈ X, we have V πpr,H (x) ≥ maxπ∈Λ Vπ
H−1(x) by Lemma 5.7. We

know that V πpr,H (x) ≥ maxπ∈Λ V π(x) − Rmax
1−γ · γH−1 (cf. Theorem 5.8). Letting

Rmax
1−γ · γH−1 ≤ ε yields the desired result. �

As with rollout, the following performance bound follows from Theorem 5.1.

Corollary 5.11 If supx∈X |V ∗
1 (x)−maxπ∈Λ Vπ

H−1(x)| ≤ ε,

0≤ V ∗(x)− V πpr,H (x)≤ Rmax

1− γ
· γH + 2γ ε

1− γ
, x ∈X.

The parallel rollout method is based on multi-policy improvement stated in the
following theorem, which generalizes the single policy-improvement step of the PI
algorithm to the case of multiple policies, where this result coincides with H →∞
in Theorem 5.10.

Theorem 5.12 Given a non-empty finite subset Λ ⊂ Πs , define a parallel rollout
policy πpr such that, for x ∈X,

πpr(x) ∈ arg max
a∈A(x)

E
[
R′(x, a,w)+ γ max

π∈Λ V
π
(
f (x, a,w)

)]
.

Then,

V πpr(x)≥max
π∈Λ V

π(x), x ∈X.
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The policy obtained by parallel rollout (with H = ∞) is essentially the same
as the PIRS (policy improvement with reward swapping) step of the ERPS algo-
rithm in Chap. 3 (cf. (3.4)), where it was used in a different context to obtain an
“elite” policy. Using simulation differentiates parallel rollout from the PIRS pro-
cedure, which becomes impractical for large enough state spaces. Note that the
SAMW algorithm can be incorporated into parallel rollout for estimating the value
of maxπ∈Λ Vπ

H−1(x), x ∈X.

5.3 Hindsight Optimization

The method of hindsight optimization is based on approximating V ∗
1 or V∗H−1 by an

upper bound and using the approximation for the rolling-horizon control for solv-
ing an infinite-horizon MDP problem. The bound used by hindsight optimization is
obtained simply by interchanging the order of expectation and maximization in the
recursive definition of Q∗

0 in Eq. (1.9), and applying Jensen’s inequality. More pre-
cisely, we bound the Q∗

0-function value of a current control choice a at x, Q∗
0(x, a),

with

Qho
0 (x, a)=E

[
R′(x, a,w)+ γV ho

1

(
f (x, a,w)

)]
,

where

V ho
1 (y)=E

[
max

a1,...,aH−1

H−1∑
t=1

γ t−1R′(xt , at ,wt )

∣∣∣∣∣x1 = y

]
, y ∈X,

with at ∈A(xt ) at each t . From the above equation, once a particular random num-
ber sequence {w0,w1, . . . ,wH−1} is selected, w0 determines the next state y from
state x by taking a ∈ A(x), i.e., f (x, a,w0) = y, and the maximization inside be-
comes a deterministic problem of choosing a “best” control sequence over H − 1
time steps (starting with the next state) to maximize the total (discounted) reward
with respect to the random number sequence. The best control sequence is the se-
quence of controls the decision maker would select after taking the action a if it
somehow knew the random numbers to come (i.e., in “hindsight”). Therefore, the
inner deterministic problem is called a “hindsight optimization problem” and the
approximated Q∗

0-function value is the “hindsight-optimal Q-function value.” The
hindsight-optimal Q-function value Qho

0 (x, a), x ∈X,a ∈A(x), estimates the value
of Q∗(x, a) for the approximate rolling-horizon control. The controller simply takes
arg maxa∈A(x) Qho

0 (x, a) at state x ∈X.
We remark that a hindsight optimization problem can often be solved exactly,

and this solution can be used to obtain a theoretical bound for the performance
when we evaluate a target policy. One drawback with hindsight optimization is that
the computational complexity of obtaining the best control sequence may be large.
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5.3.1 Numerical Example

We consider a simple scheduling problem for randomly arriving packets into a single
server. Each packet belongs to a finite set of classes, and if the server does not
serve a packet before its deadline, the packet is lost. Each class is associated with
a weight that represents the importance of the class. Every packet takes one-unit
time to serve. Packets arrive into the queue within each time interval, and the server
makes decisions at the beginning of each time step to minimize the weighted number
of the lost packets, i.e., weighted loss, over a long finite horizon.

It is assumed that at most one packet can be generated per class per unit time and
each packet arriving at time t has the same deadline t + d . Each class traffic source
is associated with a hidden Markov model (HMM), where the HMM’s current state
information is not available to the scheduler, who observes only packet arrivals.

If a heavy burst of important classes is expected, the server should stop serv-
ing relatively unimportant packets to gain smaller weighted loss (higher weighted
throughput) even if the server can minimize the (unweighted) number of lost pack-
ets to achieve throughput optimality. For this type of traffic pattern, a static-priority
(SP) may well be a good policy. SP serves the highest-weight class that has a packet
unscheduled that is alive or pending in the buffer at each time, breaking ties by
serving the earlier arriving packet. On the other hand, the server should preserve the
throughput optimality by “earliest-deadline-first” (EDF) or “current-minloss” (CM)
in the opposite situation or if the average load of the packet arrivals is close to one.
EDF serves the class with the earliest-expiring packet unscheduled that is alive at
each time, breaking ties by serving the higher class packet. CM first generates the
set of packets such that serving all of the packets in the set gives the maximum
weighted throughput provided that there are no future packet arrivals, and then se-
lects a packet in the set such that CM maximizes the unweighted throughput over
any finite interval.

The heuristic policies are such that each policy is near-optimal over different
packet arrival patterns, where in this case, the decision maker may well wish to
combine those policies to develop a single policy that somehow improves all of the
heuristic policies adapting to different traffic patterns. To this end, parallel rollout
can be employed with EDF, SP, and CM as candidate base-policies. However, we
exclude EDF because CM is proven to be no worse than EDF for any traffic in terms
of the weighted loss [72].

To apply hindsight optimization, we need to consider an additional constraint:
we cannot schedule a packet before it arrives into the queue. That is, we cannot
arbitrarily schedule a packet even if we have an empty slot in our scheduling plan
unless the empty slot is within the packet’s lifetime (from the packet’s arrival time
to its deadline). There exist several solution algorithms published for this off-line
problem with a polynomial-time complexity in the number of packets (e.g., Peha
and Tobagi’s algorithm [140]). Therefore, it is straightforward to apply hindsight
optimization.

We model the scheduling problem as an MDP. The state space X of this problem
is infinite, given by X =Θ1× · · ·×Θm×{0,1}m×d . Θi is the set of the probability
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distributions over the HMM states for Class i ∈ C = {1, . . . ,m} and the last factor
{0,1}m×d is a set of vectors, where a vector in the set represents the set of pending
packets in the buffer Bt at time t , along with their laxities. If there exists a packet
p whose laxity (the time remaining before its deadline) is lt (p) in the buffer at
time t , then the entry of the vector indexed with C(p) and lt (p) is 1, where C(p)
denotes the class of the packet p. The action space A is {1, . . . ,m}, where choosing
an admissible action i ∈ A corresponds to serving the pending packet in the buffer
whose laxity is smallest in Class i. The buffer Bt , the set containing the packets that
are in the buffer at time t , evolves as follows:

Bt+1 =
(
Bt \

{
p ∈ Bt : lt (p)= 1 or p = ρ(Bt )

})∪At+1,

where ρ(Bt ) denotes the packet in Bt served by a scheduling policy ρ. Bt+1 is thus
stochastically described by the random arrivals in At+1 during the time interval
(t, t + 1), which are generated by the given HMMs. Therefore, the state transition
function P for the MDP is defined in the obvious manner representing underlying
stochastic transitions in each of the HMMs, the change in the buffer by adding new
packets in At+1 generated by the HMMs, and the expiration of unserved packets
and the removal of the packet served by the action selected. The cost function is
given by ∑

p:lt (p)=1,p∈Bt−pi
λC(p),

for xt ∈ X, i ∈ A(xt ) at time t , where λi, i ∈ C is the weight for Class i, and pi is
the Class i packet with the smallest laxity among pending Class i packets.

For the experiment, each packet’s laxity was set to be 20 (d = 20), seven classes
(1 through 7) of packets were considered, and the weights of the seven classes were
set such that Class i has a weight of λi = ωi−1. By decreasing the parameter ω
in [0,1], we accentuate the disparity in importance between classes, making the
scheduling problem more class-sensitive. We show below how performance depends
on ω. Note that at the one extreme of ω= 0, SP is optimal, and at the other extreme
of ω= 1, both EDF and CM are optimal.

Rollout with CM as the base-policy (ROCM), rollout with SP as the base-policy
(ROSP), parallel rollout with CM and SP as base-policies (PARA), hindsight-
optimization-based policy (HO), and CM, along with SP and EDF were tested
against random traffic generated from four different sets of randomly selected HMM
models for the packet arrival processes. For each set, we selected an HMM for each
class from the same distribution. The HMM state space of size 3 was selected, re-
sulting in a total of 37 HMM states. The HMM states were arranged in a directed
cycle, and the self-transition probability for each state was chosen uniformly from
the interval [0.9, 1.0], i.e., U(0.9,1.0). The packet arrival generation probability at
each state was selected such that one state is “low traffic” ∼U(0,0.01), one state is
“medium traffic” ∼U(0.2,0.5), and one state is “high traffic” ∼U(0.7,1.0). After
randomly selecting the HMMs for each of the seven classes from the distribution,
we used the stationary distribution obtained over the HMM states to normalize the
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arrival generation probabilities for each class so that arrivals are (roughly) equally
likely in high-cost (Classes 1 and 2), medium-cost (Classes 3 and 4), and low-cost
(Classes 5–7) and to make a randomly generated traffic from the HMM set have
overall arrivals at about one packet per time unit to create a difficult scheduling
problem.

Each scheduling policy was run for 62,500 time periods and the “competitive
ratio” achieved by each policy was measured. The competitive ratio here is the ratio
between the weighted loss of a scheduling policy and the weighted loss incurred by
applying Peha and Tobagi’s algorithm for the same traffic. ROCM, ROSP, PARA,
and HO scheduling policies used 50 sample-paths (random number sequences) and
a rolling horizon of length 40 for estimating an optimal action at the current state by
simulation.

Figure 5.3 shows empirical competitive ratio plots for traffic from four different
sets of traffic models. We can see that PARA successfully combines the given base-
policies, CM and SP, improving the performances of all of the base-policies, which
shows that parallel rollout generates a single policy that adapts automatically to dif-
ferent trajectories of the system, in addition to alleviating the difficulty of choosing
a single base-policy to be rolled out.

Figure 5.4 shows empirical competitive ratio plots for the same traffic from the
same four sets of traffic models as in Fig. 5.3. For NMS, each action was sampled
twice at each sampled state, i.e., sampling width of 2, and a rolling horizon of length
4 was used. To have better estimates of Q-function values, the value of following
CM was used at the leaf node (state) of the sampled tree instead of zero. We can
see that HO provides reasonable performance but worse than PARA. Furthermore,
not surprisingly, NMS performed like SP when zero value was used at the rolling
horizon of the sampling (not shown), and like ROCM or CM itself if CM was used
to estimate value at the rolling horizon due to the low sampling.

Overall, all simulation-based rolling-horizon control approaches improved the
performance of CM. This is more noticeable in the region of low ω values. This
is because as the value of ω increases, the performance of CM gets closer to the
optimal performance and there is no enough theoretical margin for improvement.
The average improvement over CM by ROCM is not high, which shows that the
action choice at each time is almost similar to CM itself. On the other hand, PARA
outperformed or showed similar performances as all the other simulation-based ap-
proaches. At ω no bigger than 0.3, it improved CM about 30–60 %. In particular
at ω very near zero, it improved CM and/or SP in the order of a magnitude. Note
that, as the value of ω decreases, the complexity of the scheduling problem gets
more difficult. This result is quite expected because SP is the right choice for traf-
fic patterns for the heavy burst of important class packets, whereas CM is the right
choice for the other traffic patterns, roughly speaking. Rolling out these policies at
the same time makes the resulting parallel rollout approach adapt well to the right
traffic pattern automatically. The hindsight-optimization-based policy HO also out-
performed CM by a smaller than PARA but significant margin over a broad range
of ω. Furthermore, not surprisingly, NMS performed like SP when zero value was
used at the horizon of the sampling, and like ROCM or CM itself if CM was used
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Fig. 5.3 Empirical competitive ratio plots for traffic from four different sets of traffic models,
where ROCM is rollout with CM as the base-policy, ROSP is rollout with SP as the base-policy,
PARA is parallel rollout with CM and SP as the base-policies, and for this competitive ratio, the
off-line optimization solution algorithm in [140] was used to obtain the theoretical bound

to estimate value at the rolling horizon, due to the low rolling horizon and sampling
width.

These results indicate that simulation-based on-line control via parallel rollout
or hindsight optimization can be applied in practice for approximately solving an
infinite-horizon MDP when a set of heuristic policies is given or an algorithm which
can solve the hindsight optimization problem with a low running-time complexity
can be devised.
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Fig. 5.4 Empirical competitive ratio plots for traffic from four different sets of traffic models,
where HO refers to the hindsight-optimization-based policy, NMS used the value of applying CM
at the leaf nodes, ROCM is rollout with CM as the base-policy, PARA is parallel rollout with
CM and SP as the base-policies, and for this competitive ratio, the off-line optimization solution
algorithm in [140] was used to obtain the theoretical bound

5.4 Approximate Stochastic Annealing

In this section, we present an on-line simulation-based algorithm called approxi-
mate stochastic annealing (ASA) for solving infinite-horizon MDPs. The algorithm
combines Q-learning with the MARS algorithm of Sect. 4.6.1 to directly search the
policy space. At each iteration, ASA estimates the optimal policy by sampling from
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a probability distribution function over the policy space, which is then updated based
on the Q-function estimates obtained via a recursion of Q-learning type. The under-
lying idea is to use Q-learning to evaluate the performance of the sampled policies
on-line, and then use these performance estimates in a Boltzmann selection scheme
to update the distribution model in a direction of performance improvement. Both
ASA and the SAMW algorithm of Sect. 5.1 work with probability distributions over
the policy space. However, the main difference is that SAMW focuses on estimat-
ing the optimal value function at a specified initial state and requires enumerating an
entire set of policies in constructing the distribution function, whereas ASA returns
the optimal value function estimates for all states in X and updates the distribution
function only based on the sampled policies. We note that since ASA involves Q-
learning as an integral component for policy performance evaluation, it suffers from
the curse of dimensionality—an issue that we will not address.

We consider the infinite-horizon discounted reward MDP simulation model of
Chap. 1 with finite state and action spaces. The objective is to identify an optimal
policy π∗ ∈Πs that maximizes the expected total discounted reward for all initial
states x, i.e.,

V ∗(x) := V π∗(x)= sup
π∈Πs

V π(x). (5.19)

For simplicity and without loss of generality, we assume that every action is admis-
sible in every state. In addition, we also assume that the optimal policy is unique and
that the underlying MDP is communicating, i.e., for any two states x, y ∈X, there
exists a deterministic policy such that y is accessible from x in the Markov chain
induced by the policy.

The optimal value function V ∗ in (5.19) satisfies Bellman’s optimality equation,
which can be equivalently expressed in terms of the Q-function as follows:

Q∗(x, a)=E
[
R′(x, a,w)+ γ max

b∈A Q
∗(f (x, a,w), b)] (5.20)

∀x ∈ X, a ∈ A, where Q∗(x, a) := E[R′(x, a,w)+ γV ∗(f (x, a,w))]. When the
transition function f and/or the reward function R′ are unknown, one of the most
well-known methods for solving (5.20) is the Q-learning algorithm. It is an on-
line model-free approach for estimating the optimal Q-function via a recursion of
stochastic approximation type:

Qt+1(xt , at ) =
(
1− βt (xt , at )

)
Qt(xt , at )+ βt (xt , at )

×
[
R′(xt , at ,wt )+ γ max

b∈A Qt

(
f (xt , at ,wt ), b

)]
, (5.21)

where xt , at , wt are the state, action, and random simulation noise at time t , Qt

is the current estimate of the Q-function with Q0(x, a) = 0 ∀x ∈ X, a ∈ A, and
βt (xt , at ) is the state-action dependent learning rate at time t .

In ASA, policies are constructed at each iteration t using an |X|-by-|A| stochastic
matrix qt , whose (i, j)th entry qt (i, j) specifies the probability that state i takes
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Approximate Stochastic Annealing

Input: an initial state x0, annealing schedule {Tt }∞t=0, a small constant 0< λ< 1, parame-
ter sequences {αt }∞t=0 and {βt (i, j)}∞t=0 satisfying 0< αt ,βt (i, j) < 1 ∀ t, i ∈X, j ∈A,
a sample size sequence {Nt }∞t=0. Set Q0(i, j)= 0 and q0(i, j)= 1/|A| ∀ i, j.

Initialization: Set t = 0.

Loop until Stopping Rule is satisfied:
• Sample Nt policies Λt := {π1,π2, . . . , πNt } from φ̂(π, qt ) = (1 − λ)φ(π,qt ) +
λφ(π,q0) as follows: for each l = 1, . . . ,Nt , with probability 1−λ, construct a policy
πl using the stochastic matrix qt ; with probability λ, construct πl using q0.

• For each action j , denote by Ct,j the number of times j has been sampled, i.e., Ct,j =∑
π∈Λt

I {π(xt )= j}. Update the Q-function estimates:

Qt+1(xt , j)=
(
1− βt (xt , j)

)
Qt(xt , j)+ βt (xt , j)

Ct,j

×
Ct,j∑
k=1

[
R′
(
xt , j,w

k
t,j

)+ γ max
a∈AQt

(
f
(
xt , j,w

k
t,j

)
, a
)]

(5.22)

whenever Ct,j > 0, and Qt+1(xt , j) =Qt(xt , j) whenever Ct,j = 0, where wk
t,j

is
the random simulation noise the kth time when action j is taken.

• Update matrix qt by

qt+1(i, j)= (1− αt )qt (i, j)

+ αt

∑
π∈Λt

e

∑|X|
s=1

Qt (s,π(s))
Tt φ̂−1(π, qt )I {π ∈Πi,j }∑

π∈Λt
e

∑|X|
s=1

Qt (s,π(s))
Tt φ̂−1(π, qt )

. (5.23)

• Sample a policy π̄ from φ̂(π, qt+1). Apply action at = π̄(xt ) at the current state xt
and observe a new state xt+1. t← t + 1.

Output: qt , Qt .

Fig. 5.5 Description of ASA algorithm for infinite-horizon MDPs

action j . For a given qt , define a probability mass function over the policy space Πs :
φ(π,qt ) :=∏|X|

i=1

∏|A|
j=1[qt (i, j)]I {π∈Πi,j } ∀π ∈Πs , where Πi,j := {π : π(i)= j} is

the set of stationary policies that assign action j to state i. We now provide a detailed
description of each iteration step in the algorithm presented in Fig. 5.5.

At the beginning of each iteration, policies are drawn from a mixture of φ(π,qt )
and the initial distribution φ(π,q0), where the mixing intensity is determined by an
initially specified parameter λ. To simplify exposition, we have set λ to a constant;
other non-constant, state-dependent choices of λ may also be used.
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Given the current state xt , the decision maker interacts with an on-line simulation
model, tries out all actions π(xt ), π ∈Λt specified by the set of policies Λt chosen
in the previous step, receives the random reward R′(xt ,π(xt ),wt ), and moves to
the next (simulated) state f (xt ,π(xt ),wt ). The Q-values at the visited state-action
pairs are then updated accordingly based on a slight variant of the Q-learning recur-
sion (5.21). Note that since ASA is a population-based approach, a particular action
j ∈Amay be sampled multiple times Ct,j . Therefore in (5.22), there is an averaging
over Ct,j replications in addition to the stochastic averaging used in (5.21).

The performance of each sampled policy is evaluated as the sum of the current
Q-function estimates under the policy across all states in X, i.e.,

∑|X|
s=1Qt(s,π(s)).

These performance estimates are then used in a Boltzmann selection scheme to up-
date the probability matrix qt . Note that given qt and Λt , the second term (without
αt ) in the right-hand-side of (5.23) can be written as an expectation of an indicator
function

∑
π∈Λt

ḡt (π)I {π ∈Πi,j (t)}, where

ḡt (π) := exp(
∑|X|

s=1Qt(s,π(s))/Tt )φ̂
−1(π, qt )∑

π ′∈Λt
exp(
∑|X|

s=1Qt(s,π ′(s))/Tt )φ̂−1(π ′, qt )
∀π ∈Λt

is an empirical estimate of the true Boltzmann mass function

gt (π)= e
∑|X|

s=1 Q
∗(s,π(s))/Tt∑

π ′∈Π e
∑|X|

s=1 Q
∗(s,π ′(s))/Tt

∀π ∈Πs, (5.24)

which becomes concentrated on promising policies in Λt as Tt decreases to zero.
Thus, each π in Λt is weighted by ḡt (π) in updating qt .

Finally, the decision maker randomly generates a policy from the updated dis-
tribution φ̂(π, qt+1), adopts the action stipulated by the sampled policy, observes a
new state xt+1, and moves on to the next iteration.

Note that Eq. (5.23) can be written in the following form:

qt+1(i, j)− qt (i, j)= αt

[∑
π∈Λt

ḡt (π)I {π ∈Πi,j } − qt (i, j)

]
. (5.25)

Since ḡt puts more weight on policies with better performance, it is easy to see
that the stochastic matrix qt+1 is updated in the averaged direction of (estimated)
promising policies in Λt .

5.4.1 Convergence Analysis

Let Ft be the σ -field generated by the set of all sampled policies and random real-
ization of stochastic uncertainty up to time t−1, i.e., Ft = σ(x0,Λ0,w0, . . . ,Λt−1,

wt−1, xt ), where wt := {wk
t,j , k = 1, . . . ,Ct,j , j = 1, . . . , |A|}. Note that given Ft ,
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both Qt and qt are completely determined. Thus, we use P(·|Ft ) and E[·|Ft ] to
denote the conditional probability and expectation taken with respect to φ̂(π, qt )

and the distribution of system uncertainty wt at the t th iteration. To simplify the
exposition, the following shorthand notations will be used:

Yt (i, j) =
∑
Π

e
∑|X|

s=1 Q
∗(s,π(s))/Tt I {π ∈Πi,j },

Zt =
∑
Π

e
∑|X|

s=1 Q
∗(s,π(s))/Tt ,

Ŷt (i, j) = 1

Nt

∑
Λt

e

∑|X|
s=1 Q

∗(s,π(s))
Tt φ̂−1(π, qt )I {π ∈Πi,j },

Ẑt = 1

Nt

∑
Λt

e

∑|X|
s=1 Q

∗(s,π(s))
Tt φ̂−1(π, qt ),

Ȳt (i, j) = 1

Nt

∑
Λt

e

∑|X|
s=1 Qt (s,π(s))

Tt φ̂−1(π, qt )I {π ∈Πi,j },

Z̄t = 1

Nt

∑
Λt

e

∑|X|
s=1 Qt (s,π(s))

Tt φ̂−1(π, qt ).

To analyze ASA, we rewrite (5.25) in the following recursive form:

ηt+1(i, j)= ηt (i, j)− ξt (i, j),

where ηt (i, j) := qt (i, j)−I {π∗ ∈Πi,j } and ξt (i, j)= αt [ηt (i, j)+I {π∗ ∈Πi,j }−
Ŷt (i,j)

Ẑt
+ Ŷt (i,j)

Ẑt
− Ȳt (i,j)

Z̄t
].

The main convergence result is stated in Theorem 5.18. Its proof is based on the
following intermediate results. Lemma 5.13 shows that the sequence of idealized
Boltzmann distribution {gt } converges to a limiting distribution that concentrates
only on the optimal policy π∗.

Lemma 5.13 If Tt → 0 as t →∞, then Egt [I {π ∈ Πi,j }] → I {π∗ ∈ Πi,j } as
t→∞.

Proof Note that∣∣Egt

[
I {π ∈Πi,j }

]− I
{
π∗ ∈Πi,j

}∣∣
≤Egt

[∣∣I {π ∈Πi,j } − I
{
π∗ ∈Πi,j

}∣∣]
=
∑
π �=π∗

∣∣I {π ∈Πi,j } − I
{
π∗ ∈Πi,j

}∣∣× e
∑|X|

s=1 Q
∗(s,π(s))/Tt∑

π ′∈Π e
∑|X|

s=1 Q
∗(s,π ′(s))/Tt
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≤
∑
π �=π∗

e
∑|X|

s=1(Q
∗(s,π(s))−V ∗(s))/Tt

1+∑π ′ �=π∗ e
∑|X|

s=1(Q
∗(s,π ′(s))−V ∗(s))/Tt

≤
∑
π �=π∗

e
∑|X|

s=1(Q
∗(s,π(s))−V ∗(s))/Tt ,

which converges to zero as Tt → 0, since
∑|X|

s=1(Q
∗(s,π(s))− V ∗(s)) < 0 for all

π �= π∗. �

The next lemma states that Ŷt (i,j)

Ẑt
is an asymptotically unbiased estimator of

Yt (i,j)
Zt

.

Lemma 5.14 If Nt →∞ as t →∞, then |E[ Ŷt (i,j)
Ẑt

|Ft ] − Yt (i,j)
Zt

| → 0 as t →∞
w.p.1.

Proof Note that

Ŷt (i, j)

Ẑt
− Yt (i, j)

Zt
= Ŷt (i, j)

Ẑt
− Ŷt (i, j)

Zt
+ Ŷt (i, j)

Zt
− Yt (i, j)

Zt

= Ŷt (i, j)

Ẑt

Zt − Ẑt

Zt
+ 1

Zt

(
Ŷt (i, j)− Yt (i, j)

)
.

Taking conditional expectations on both sides yields

∣∣∣∣E
[
Ŷt (i, j)

Ẑt

∣∣∣∣Ft

]
− Yt (i, j)

Zt

∣∣∣∣
=
∣∣∣∣E
[
Ŷt (i, j)

Ẑt

Zt − Ẑt

Zt

∣∣∣∣Ft

]∣∣∣∣
≤ 1

|Zt |E
[|Zt − Ẑt |

∣∣Ft

]
since

∣∣∣∣ Ŷt (i, j)
Ẑt

∣∣∣∣≤ 1

≤ 1

|Zt |E
[
(Zt − Ẑt )

2
∣∣Ft

]1/2 by Hölder’s inequality

≤ 1

|Zt |
1√
Nt

E
[
e2
∑|X|

s=1 Q
∗(s,π(s))/Tt φ̂−2(π, qt )

∣∣Ft

]1/2

= 1√
Nt

(∑
Π

φ̂−1(π, qt )

(
e
∑|X|

s=1 Q
∗(s,π(s))/Tt

Zt

)2)1/2
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≤ 1√
Nt

(∑
Π

λ−1φ−1(π, q0)gt (π)

)1/2

≤ (|A||X|/λ)1/2

√
Nt

.

Thus, the desired result follows by taking Nt →∞. �

We also need the following result.

Lemma 5.15 At the t th iteration of algorithm ASA, the probability that action j ∈A
will be sampled at most λNt|A| −2

√
Nt ln t times is upper bounded by 1

t2
, i.e., P(Ct,j ≤

λNt|A| − 2
√
Nt ln t |Ft )≤ 1

t2
.

Proof Let j ∈A. For a given number Nt of samples at the t th iteration of ASA, de-
fine the indicator function Ik = 1 if an action other than j is obtained at the kth sam-
ple; Ik = 0 otherwise. It follows that μk := E[Ik|Ft ] ≤ 1− λ

|A| and |Ik −μk| ≤ 1.

Let m be a positive integer such that m≤ λNt|A| for t sufficiently large, we have, from
Hoeffding’s inequality,

P(Ct,j ≤ m|Ft )= P

(
Nt∑
k=1

Ik > Nt −m

∣∣∣∣∣Ft

)

≤ P

(
1

Nt

Nt∑
k=1

(Ik −μk) >
1

Nt

(
λNt

|A| −m

)∣∣∣∣∣Ft

)

≤ exp

(
−2(λNt/|A| −m)2

4Nt

)
.

Finally, setting exp(− (λNt /|A|−m)2
2Nt

)= 1/t2 and solving for m yield m= λNt/|A| −
2
√
Nt ln t as required. �

Moreover, under some appropriate conditions on {Tt } and {βt (i, j)}, the Q-
function estimates generated by (5.22) converge to Q∗ with rate at least o(Tt ).

Lemma 5.16 Assume the following conditions hold:

(a) λNt|A| − 2
√
Nt ln t→∞;

(b) Tt ≥ K

min{(λNt /|A|−2
√
Nt ln t)1/2,t} ∀t for some constant K > 0;

(c) 0 ≤ βt (i, j) ≤ 1,
∑∞

t=0 βt (i, j) = ∞,
∑∞

t=0 β
2
t (i, j) < ∞ w.p.1, where

βt (i, j)= 0 unless i = xt and j ∈ {π(xt ) : π ∈Λt };
(d) 1

βt (i,j)
( 1
Tt+1

− 1
Tt
)→ 0 w.p.1 as t→∞ for i = xt and j ∈ {π(xt ) : π ∈Λt }.

Then limt→∞ Qt(i,j)−Q∗(i,j)
Tt

= 0 ∀i ∈X j ∈A w.p.1.
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Proof First we argue that under algorithm ASA, all state-action pairs will be visited
infinitely often (i.o.) as t →∞ w.p.1. Fix a state i ∈ X, let Nt(i) be the number
of visits to state i by time t and tk(i) be the time of the kth visit to state i. For
any j ∈ A, note that

∑Nt (i)
k=1 P(at ′ = j |tk(i) = t ′) ≥∑Nt (i)

k=1 λ/|A| = ∞ whenever
limt→∞Nt(i) = ∞ w.p.1. This, when combined with the earlier communication
assumption on the MDP and Lemma 4 in [165], indicates that all state-action pairs
will be visited i.o. w.p.1.

Define ζt (xt , j) = (Qt (xt , j)−Q∗(xt , j))/Tt ; dividing both sides of (5.22) by
Tt , we have

ζt+1(xt , j) =
(
1− βt (xt , j)

)
ζt (xt , j)

(
1

Tt+1
− 1

Tt

)(
Qt+1(xt , j)−Q∗(xt , j)

)

+ βt (xt , j)

Tt

1

Ct,j

Ci,j∑
k=1

[
R
(
xt , j,w

k
t,j

)

+ γ max
a∈A Qt

(
f
(
xt , j,w

k
t,j

)
, a
)−Q∗(xt , j)

]

= (1− βt (xt , j)
)
ζt (xt , j)+ βt (xt , j)

{
ζt (xt , j)

+ 1

TtCt,j

Ct,j∑
k=1

[
R
(
xt , j,w

k
t,j

)

+ γ max
a∈A Qt

(
f
(
xt , j,w

k
t,j

)
, a
)−Qt(xt , j)

]

+ 1

βt (xt , j)

(
1

Tt+1
− 1

Tt

)(
Qt+1(xt , j)−Q∗(xt , j)

)}

= (1− βt (xt , j)
)
ζt (xt , j)

+ βt (xt , j)
[
Ht(xt , j)+Mt(xt , j)+Gt(xt , j)

]
,

where

Ht(xt , j) := ζt (xt , j)+ 1

TtCt,j

Ct,j∑
k=1

[
R
(
xt , j,w

k
t,j

)

+ γ max
a∈A Q

∗(f (xt , j,wk
t,j

)
, a
)−Qt(xt , j)

]
,

Mt(xt , j) := γ

TtCt,j

Ct,j∑
k=1

[
max
a∈A Qt

(
f
(
xt , j,w

k
t,j

)
, a
)

−max
a∈A Q

∗(f (xt , j,wk
t,j

)
, a
)]
,
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Gt(xt , j) := 1

βt (xt , j)

(
1

Tt+1
− 1

Tt

)(
Qt+1(xt , j)−Q∗(xt , j)

)
.

We have by (5.20), E[Ht(xt , j)|Ft ] = E[E[Ht(xt , j)|Λt ]|Ft ] = E[ζt (xt , j) +
1
Tt
(Q∗(xt , j)−Qt(xt , j))|Ft ] = 0. Furthermore, it is easy to show that

E
[
H 2
t (xt , j)

∣∣Ft

] = E

[
1

T 2
t Ct,j

Var
(
R
(
xt , j,w

k
t,j

)

+ γ max
a∈A Q

∗(f (xt , j,wk
t,j

)
, a
)∣∣Λt

)∣∣∣∣Ft

]
.

Let Bt = {Ct,j ≤ λNt|A| − 2
√
Nt ln t}. Since R is uniformly bounded, it immediately

follows that, for some constant K1 > 0,

E
[
H 2
t (xt , j)

∣∣Ft

] ≤ K1E

[
1

T 2
t Ct,j

∣∣∣∣Ft

]

= K1E

[
1

T 2
t Ct,j

I {Bt }
∣∣∣∣Ft

]
+K1E

[
1

T 2
t Ct,j

I
{
Bc
t

}∣∣∣∣Ft

]

≤ K1
1

T 2
t

P (Bt |Ft )+K1
1

T 2
t (

λNt|A| − 2
√
Nt ln t)

≤ K1

(
1

t2T 2
t

+ 1

T 2
t (

λNt|A| − 2
√
Nt ln t)

)
by Lemma 5.15

≤ 2K1

K2
by condition (b).

On the other hand, we have

∣∣Mt(xt , j)
∣∣ ≤ γ

TtCt,j

Ct,j∑
k=1

∣∣∣max
a∈A Qt

(
f
(
xt , j,w

k
t,j

)
, a
)

−max
a∈A Q

∗(f (xt , j,wk
t,j

)
, a
)∣∣∣

≤ γ

TtCt,j

Ct,j∑
k=1

max
a∈A
∣∣Qt

(
f
(
xt , j,w

k
t,j

)
, a
)

−Q∗(f (xt , j,wk
t,j

)
, a
)∣∣

≤ γ max
x∈X,a∈A

∣∣ζt (x, a)∣∣.
Next, by using an argument similar to the proof of the convergence of Q-learning,
it is easy to see the iterates Qt generated by recursion (5.22) remain bounded dur-
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ing the updating process. Therefore, we have |Gt(xt ,π(xt ))| → 0 w.p.1 by condi-
tion (d). Finally, since all state-action pairs are visited infinitely often w.p.1, a direct
application of Proposition 4.5 in [17] yields ζt (i, j)→ 0 ∀i, j w.p.1, which shows
the desired result. �

Lemma 5.16 gives rise to the following result, indicating that the conditional

expectation of the error term Ŷt (i,j)

Ẑt
− Ȳt (i,j)

Z̄t
caused by simulation noise vanishes to

zero asymptotically.

Lemma 5.17 Assume all conditions in Lemma 5.16 hold. Then E[| Ŷt (i,j)
Ẑt

−
Ȳt (i,j)

Z̄t
||Ft ]→ 0 w.p.1.

Proof Let

ĝt (π)= e
∑|X|

s=1
Q∗(s,π(s))

Tt φ̂−1(π, qt )∑
π ′∈Λt

e
∑|X|

s=1
Q∗(s,π ′(s))

Tt φ̂−1(π ′, qt )
∀π ∈Λt .

We have∣∣∣∣ Ŷt (i, j)
Ẑt

− Ȳt (i, j)

Z̄t

∣∣∣∣
=
∣∣∣∣ Ŷt (i, j)− Ȳt (i, j)

Ẑt
+ Ȳt (i, j)

Z̄t

Z̄t − Ẑt

Ẑt

∣∣∣∣
≤ 1

|Ẑt |
(∣∣Ŷt (i, j)− Ȳt (i, j)

∣∣+ |Z̄t − Ẑt |
)

≤ 1

|Ẑt |
2

Nt

∑
Λt

∣∣e 1
Tt

∑|X|
s=1 Q

∗(s,π(s)) − e
1
Tt

∑|X|
s=1 Qt(s,π(s))

∣∣φ̂−1(π, qt )

= 2
∑
Λt

e
1
Tt

∑|X|
s=1 Q

∗(s,π(s))
φ̂−1(π, qt )

Nt |Ẑt |

× ∣∣1− e
1
Tt

∑|X|
s=1(Qt (s,π(s))−Q∗(s,π(s)))∣∣

= 2
∑
Λt

ĝt (π)
∣∣1− e

1
Tt

∑|X|
s=1(Qt (s,π(s))−Q∗(s,π(s)))∣∣.

Therefore,

E

[∣∣∣∣ Ŷt (i, j)
Ẑt

− Ȳt (i, j)

Z̄t

∣∣∣∣
∣∣∣∣Ft

]
≤ 2 max

a∈A

∣∣∣∣∣1− exp

( |X|∑
s=1

(Qt (s, a)−Q∗(s, a))/Tt

)∣∣∣∣∣,
which approaches zero as t→∞ w.p.1 by Lemma 5.16. �
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We have the following main convergence theorem for ASA.

Theorem 5.18 Assume all conditions in Lemma 5.16 are satisfied. If in addition,
Tt → 0 as t →∞ and αt > 0,

∑∞
t=0 αt =∞, and

∑∞
t=0 α

2
t <∞, then qt (i, j)→

I {π∗ ∈Πi,j } ∀ij as t→∞ w.p.1.

Proof We consider the recursion ηt+1(i, j) = ηt (i, j) − ξt (i, j) and define
Ut(i, j) = E[ξt (i, j)|Ft ] and Δt(i, j) = ξt (i, j) − Ut(i, j). To show the desired
result, we establish that conditions (i)–(iv) in [56] hold.

(i) First we show that, for any ε > 0, P(|ηt (i, j)|> ε,ηt (i, j)Ut (i, j) < 0 i.o.)=
0. We have

Ut(i, j) = αt

[
ηt (i, j)+ I

{
π∗ ∈Πi,j

}− Yt (i, j)

Zt
+ Yt (i, j)

Zt

−E

[
Ŷt (i, j)

Ẑt

∣∣∣∣Ft

]
+E

[
Ŷt (i, j)

Ẑt
− Ȳt (i, j)

Z̄t

∣∣∣∣Ft

]]
. (5.26)

Therefore,

ηt (i, j)Ut (i, j) = αt

[
η2
t (i, j)+ ηt (i, j)

(
I
{
π∗ ∈Πi,j

}− Yt (i, j)

Zt

)

+ ηt (i, j)

(
Yt (i, j)

Zt
−E

[
Ŷt (i, j)

Ẑt

∣∣∣∣Ft

])

+ ηt (i, j)

(
E

[
Ŷt (i, j)

Ẑt
− Ȳt (i, j)

Z̄t

∣∣∣∣Ft

])]
.

Since ηt (i, j) is bounded, the second term above vanishes to zero by Lemma 5.13,
whereas the third and last terms both go to zero w.p.1 by Lemma 5.14 and
Lemma 5.17. Thus, for almost every sample path generated by the algorithm, we
have ηk(i, j)Ut (i, j) > 0 whenever ηt (i, j) > ε for t sufficiently large, which im-
plies P(|ηt (i, j)|> ε,ηt (i, j)Ut (i, j) < 0 i.o.)= 0.

(ii) Since all terms in the square bracket of (5.26) are bounded and αt → 0 by
assumption, we have |Ut(i, j)|(1+ |ηt (i, j)|)−1 → 0 as t→∞.

(iii) We have Δt(i, j) = αt [E[ Ȳt (i,j)Z̄t
|Ft ] − Ȳt (i,j)

Z̄t
]. Since Ȳt (i,j)

Z̄t
is bounded

and
∑

t α
2
t <∞, it follows that

∑∞
t=1E[|Δt(i, j)|2] =∑∞

t=1 α
2
t E[(E[ Ȳt (i,j)Z̄t

|Ft ] −
Ȳt (i,j)

Z̄t
)2]<∞.

(iv) Finally, we show that P(lim inft→∞ |ηt (i, j)| > 0,
∑∞

t=1 |Ut(i, j)| <∞) =
0. From (5.26), we have |Ut(i, j)| ≥ αt [|ηt (i, j)| − |I {π∗ ∈ Πi,j } − Yt (i,j)

Zt
| −

|Yt (i,j)
Zt

−E[ Ŷt (i,j)
Ẑt

|Ft ]|−E[| Ŷt (i,j)
Ẑt

− Ȳt (i,j)

Z̄t
||Ft ]]. Let Ω1 = {lim inft |ηt (i, j)|> 0}.

For every sample path ω ∈ Ω1, there exists a constant δ(ω) > 0 such that
lim inft |ηt (i, j)| > δ(ω). Consequently, by Lemmas 5.13, 5.14, and 5.17, for al-
most every ω ∈ Ω1, we can find a K(ω) > 0 such that |Ut(i, j)| ≥ αtδ(ω)/2
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for t ≥ K(ω). Since
∑∞

t=0 αt = ∞, it follows that, for almost all ω ∈ Ω1,∑∞
t=0 |Ut(i, j)| ≥∑∞

t=K(ω) |Ut(i, j)| ≥ δ(ω)
2

∑∞
t=K(ω) αt = ∞, which shows con-

dition (iv).
Finally, combining (i)–(iv) and applying the main theorem in [56] yield ηt → 0

w.p.1. �

5.4.2 Numerical Example

We consider the infinite-horizon version (H =∞) of the inventory control problem
of Sect. 4.6.2 with the following two sets of parameters: (1) initial state x0 = 5,
setup cost K = 5, penalty cost p = 10, holding cost h = 1; (2) x0 = 5, K = 5,
p = 1, and h= 1. For a given initial inventory level x0, the objective is to minimize
the expected total discounted cost over the set of all stationary Markovian policies,
i.e., minπ∈Πs E[

∑∞
t=0 γ

t (KI {π(xt ) > 0} + h(xt + π(xt ) − Dt)
+ + p(Dt − xt −

π(xt ))
+)|x0 = x], where the discount factor γ = 0.95.

In our experiments, a logarithmic annealing schedule Tt = 10/ ln(1+ t) is used.
The Q-learning rate is taken to be βt (i, j) = 5/(100+Nt(i, j))

0.501, where recall
that Nt(i, j)=∑t

l=1 I {i = xl, j ∈ {π(xl) : π ∈Λl}}. The gain in (5.23) is taken to
be αt = 0.1/(t + 100)0.501 with a large stability constant 100 and a slow decay rate
of 0.501. In addition, the numerator constant is set to a small number, 0.1. This is
because the q matrix is updated in early iterations based on unreliable estimates of
the Q-values. Therefore, it is intuitive that the initial gains in (5.23) should be kept
relatively small to make the algorithm less sensitive to the misinformation induced
by (5.22). The other parameters are as follows: λt = 0.01 and sample size Nt =
�ln2(1+ t)�, where �c� is the largest integer no greater than c. Note that the above
setting satisfies the relevant conditions in Theorem 2.3 for convergence.

We have also applied the SARSA algorithm [152] and a population-based version
of the Q-learning algorithm to the above test cases. Both SARSA and Q-learning
use the same learning rate βt as in ASA. The underlying learning policy in SARSA
is taken to be a Boltzmann distribution over the current admissible set of actions,
i.e., exp(Qt (xt , a)/Tt (xt ))/

∑
b∈A exp(Qt (xt , b)/Tt (xt )). Note that the crucial dif-

ferences between ASA and SARSA are that ASA is population-based and searches
the entire policy space, while SARSA works with a distribution over the action set
of the current sampled state at each time step. For the purpose of a fair compari-
son, the Q-learning algorithm is implemented in a way to allow it to use the same
number of simulation samples per iteration as ASA does. In particular, at each it-
eration of the algorithm, a population of Nt actions are sampled from a uniform
distribution over the current admissible actions, and the entries of the Q-table are
then updated according to (5.22). Furthermore, an ε-greedy policy is used at the end
of each iteration step of Q-learning to determine the action that leads to the next
state, i.e., with probability 1− εt (xt ), selects an action that minimizes the current
Q-function estimates; with probability εt (xt ), uniformly generates an action from
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the set of admissible actions. The values of Tt (xt ) and εt (xt ) are chosen based on
parameter settings discussed in [165].

Figure 5.6 shows the sample convergence behavior of all three comparison al-
gorithms, where the two sub-figures at the top of each case plot the current value
function estimates as a function of the number of time step t (i.e., the number of
algorithm iterations), and the other two show the value function estimates versus
the total number of periods simulated thus far (i.e., computational efforts). It is clear
from the figure that the proposed ASA outperforms both SARSA and Q-learning
in terms of the number of algorithm iterations. Thus, at an additional computational
expense of using an on-line simulation model to assist the decision making process,
ASA allows the decision maker to identify the (near) optimal inventory replenish-
ment policy within the shortest time. In addition, note that since both ASA and the
version of Q-learning implemented are population-based, they show a more stable
behavior than SARSA, as the latter tends to overshoot the optimal values in both
test cases. However, this instability behavior of SARSA can be alleviated by using
smaller learning rates, which could potentially lead to slower convergence.

5.5 Notes

The upper bound of the result in Theorem 5.1 can be improved if the MDP satisfies
an ergodicity condition [40, 84].

The SAMW algorithm is based on the “weighted majority algorithm” of [122],
specifically exploiting the work of the “multiplicative weights” algorithm studied
by Freund and Schapire [65] in a different context: non-cooperative repeated two-
player bimatrix zero-sum games. A result related to Theorem 5.5 is proved in [65]
in the context of solving two-player zero-sum bimatrix repeated game, and the proof
of Theorem 5.5 is based on the proof there.

The idea of simulating a given (heuristic) policy to obtain an (approximately)
improved policy originated from Tesauro’s work in backgammon [172], and Bert-
sekas and Castanon [15] extended the idea to solve finite-horizon MDPs with total
reward criterion. Successful applications of the rollout idea include [15] for stochas-
tic scheduling problems; [158] for a vehicle routing problem; [138] and [109] for
network routing problems; [157] for pricing of bandwidth provisioning over a sin-
gle link; [175] for dynamic resource allocation of a geographical positioning system
(GPS) server with two traffic classes when the leaky bucket scheme is employed as
a traffic policing mechanism; [79] for sensor scheduling for target tracking, using
a POMDP model and particle filtering for information-state estimation; [41] for a
buffer management problem, where rollout of a fixed threshold policy (Droptail)
worked well in numerical experiments; [21] and [113] for various queueing models,
where they obtained explicit expressions for the value function of a fixed threshold
policy, which plays the role of a heuristic base-policy, and showed numerically that
the rollout of the policy behaves almost optimally; see also [112], where the devia-
tion matrix for M/M/1 and M/M/1/N queues is derived and used for computing
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Fig. 5.6 Performance comparison of ASA, SARSA, and Q-learning on an inventory control prob-
lem
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the bias vector for a particular choice of cost function and a certain base-policy,
from which the rollout policy of the base-policy is generated. Further references on
rollout applications can be found in [13].

Combining rollout and policy switching for parallel rollout was first proposed in
[41], where it was shown that the property of multi-policy improvement in parallel
rollout in Theorem 5.12 also holds for finite-horizon MDPs with total reward cri-
terion. Differential training is presented in [11]. Multi-policy improvement can be
used for designing “multi-policy iteration” [30] as a variant of PI. Iwamoto [98]
established a formal transformation via an “invariant imbedding” to construct a
controlled Markov chain that can be solved in a backward manner, as in back-
ward induction for finite-horizon MDPs, for a given controlled Markov chain with
a non-additive forward recursive objective function. Based on this transformation,
Chang [32] extended the methods of parallel rollout and policy switching for for-
ward recursive objective functions and showed that a similar policy-improvement
property holds as in MDPs. Chang further studied the multi-policy improvement
with a constrained setting in the MDP model of Chap. 1 (see, also [35] for average
MDPs) where a policy needs to satisfy some performance constraints in order to
be feasible [34] and with a uncertain transition-probability setting within the model
called “controlled Markov set-chain” where the transition probabilities in the origi-
nal MDP model vary in some given domain at each decision time and this variation
is unobservable or unknown to the controller [38].

The performance analysis for (parallel) rollout with average reward criterion is
presented in [39] in the context of rolling-horizon control under an ergodicity condi-
tion. The ordinal comparison analysis of policies, motivated from policy switching,
in Markov reward processes with average reward criterion is presented in [31], ana-
lyzing the convergence rate of “ε-ordinal comparison” of stationary policies under
an ergodicity condition. The exponential convergence rate of ordinal comparisons
can be established using large deviations theory; see [50] and [67].

Although interchanging the order of expectation and maximization via Jensen’s
inequality to obtain an upper bound is a well-known technique in many applications
(cf. [77, 78, 125]), its use in hindsight optimization for Q∗

0-function value estimates
in the framework of the (sampling-based) approximate rolling-horizon control for
solving MDPs was first introduced in [47].

Some papers have reported the success of hindsight optimization; e.g., [188]
considered a network congestion problem with continuous action space, and [175]
studied the performance of hindsight optimization along with parallel rollout for a
resource allocation problem.

The scheduling problem example in Sect. 5.3.1 was excerpted from [41].
The presentation of the ASA algorithm in Sect. 5.4 is based on [90]. The structure

of the algorithm is similar to that of actor-critic methods, e.g., [9, 19, 111]. How-
ever, actor-critic algorithms frequently rely on gradient methods to find improved
policies, whereas ASA uses a derivative-free adaptive random search scheme to
search for good policies, resulting in global convergence.
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