Communications and Control Engineering

For further volumes:
www.springer.com/series/61

http://www.springer.com/series/61

Hyeong Soo Chang - Jiagiao Hu - Michael C. Fu -
Steven 1. Marcus

Simulation-Based
Algorithms
for Markov

Decision Processes

Second Edition

@ Springer

Hyeong Soo Chang Michael C. Fu
Dept. of Computer Science and Engineering ~ Smith School of Business

Sogang University University of Maryland

Seoul, South Korea College Park, MD, USA

Jiagiao Hu Steven 1. Marcus

Dept. Applied Mathematics & Statistics Dept. Electrical & Computer Engineering
State University of New York University of Maryland

Stony Brook, NY, USA College Park, MD, USA

ISSN 0178-5354 Communications and Control Engineering

ISBN 978-1-4471-5021-3 ISBN 978-1-4471-5022-0 (eBook)
DOI 10.1007/978-1-4471-5022-0

Springer London Heidelberg New York Dordrecht

Library of Congress Control Number: 2013933558

© Springer-Verlag London 2007, 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

To Jung Won and three little rascals, Won,
Kyeong & Min, who changed my days into

a whole world of wonders and joys

— H.S. Chang

To my family — J. Hu

To my mother, for continuous support, and to
Lara & David, for mixtures of joy & laughter
—-M.C. Fu

To Shelley, Jeremy, and Tobin — S. Marcus

Preface to the 2nd Edition

Markov decision process (MDP) models are widely used for modeling sequential
decision-making problems that arise in engineering, computer science, operations
research, economics, and other social sciences. However, it is well known that many
real-world problems modeled by MDPs have huge state and/or action spaces, lead-
ing to the well-known curse of dimensionality, which makes solution of the result-
ing models intractable. In other cases, the system of interest is complex enough
that it is not feasible to explicitly specify some of the MDP model parameters,
but simulated sample paths can be readily generated (e.g., for random state tran-
sitions and rewards), albeit at a non-trivial computational cost. For these settings,
we have developed various sampling and population-based numerical algorithms to
overcome the computational difficulties of computing an optimal solution in terms
of a policy and/or value function. Specific approaches include multi-stage adap-
tive sampling, evolutionary policy iteration and random policy search, and model
reference adaptive search. The first edition of this book brought together these al-
gorithms and presented them in a unified manner accessible to researchers with
varying interests and background. In addition to providing numerous specific algo-
rithms, the exposition included both illustrative numerical examples and rigorous
theoretical convergence results. This book reflects the latest developments of the
theories and the relevant algorithms developed by the authors in the MDP field,
integrating them into the first edition, and presents an updated account of the top-
ics that have emerged since the publication of the first edition over six years ago.
Specifically, novel approaches include a stochastic approximation framework for
a class of simulation-based optimization algorithms and applications into MDPs
and a population-based on-line simulation-based algorithm called approximation
stochastic annealing. These simulation-based approaches are distinct from but com-
plementary to those computational approaches for solving MDPs based on explicit
state-space reduction, such as neuro-dynamic programming or reinforcement learn-
ing; in fact, the computational gains achieved through approximations and para-
meterizations to reduce the size of the state space can be incorporated into most of
the algorithms in this book.

vii

viii Preface to the 2nd Edition

Our focus is on computational approaches for calculating or estimating optimal
value functions and finding optimal policies (possibly in a restricted policy space).
As a consequence, our treatment does not include the following topics found in most
books on MDPs:

(i) characterization of fundamental theoretical properties of MDPs, such as exis-
tence of optimal policies and uniqueness of the optimal value function;
(ii) paradigms for modeling complex real-world problems using MDPs.

In particular, we eschew the technical mathematics associated with defining con-
tinuous state and action space MDP models. However, we do provide a rigorous
theoretical treatment of convergence properties of the algorithms. Thus, this book is
aimed at researchers in MDPs and applied probability modeling with an interest in
numerical computation. The mathematical prerequisites are relatively mild: mainly
a strong grounding in calculus-based probability theory and some familiarity with
Markov decision processes or stochastic dynamic programming; as a result, this
book is meant to be accessible to graduate students, particularly those in control,
operations research, computer science, and economics.

We begin with a formal description of the discounted reward MDP framework
in Chap. 1, including both the finite- and infinite-horizon settings and summariz-
ing the associated optimality equations. We then present the well-known exact so-
lution algorithms, value iteration and policy iteration, and outline a framework of
rolling-horizon control (also called receding-horizon control) as an approximate so-
lution methodology for solving MDPs, in conjunction with simulation-based ap-
proaches covered later in the book. We conclude with a brief survey of other re-
cently proposed MDP solution techniques designed to break the curse of dimen-
sionality.

In Chap. 2, we present simulation-based algorithms for estimating the opti-
mal value function in finite-horizon MDPs with large (possibly uncountable) state
spaces, where the usual techniques of policy iteration and value iteration are either
computationally impractical or infeasible to implement. We present two adaptive
sampling algorithms that estimate the optimal value function by choosing actions
to sample in each state visited on a finite-horizon simulated sample path. The first
approach builds upon the expected regret analysis of multi-armed bandit models and
uses upper confidence bounds to determine which action to sample next, whereas
the second approach uses ideas from learning automata to determine the next sam-
pled action. The first approach is also the predecessor of a closely related approach
in artificial intelligence (AI) called Monte Carlo tree search that led to a break-
through in developing the current best computer Go-playing programs (see Sect. 2.3
Notes).

Chapter 3 considers infinite-horizon problems and presents evolutionary ap-
proaches for finding an optimal policy. The algorithms in this chapter work with a
population of policies—in contrast to the usual policy iteration approach, which up-
dates a single policy—and are targeted at problems with large action spaces (again

Preface to the 2nd Edition ix

possibly uncountable) and relatively small state spaces. Although the algorithms
are presented for the case where the distributions on state transitions and rewards
are known explicitly, extension to the setting when this is not the case is also dis-
cussed, where finite-horizon simulated sample paths would be used to estimate the
value function for each policy in the population.

In Chap. 4, we consider a global optimization approach called model reference
adaptive search (MRAS), which provides a broad framework for updating a prob-
ability distribution over the solution space in a way that ensures convergence to
an optimal solution. After introducing the theory and convergence results in a gen-
eral optimization problem setting, we apply the MRAS approach to various MDP
settings. For the finite- and infinite-horizon settings, we show how the approach
can be used to perform optimization in policy space. In the setting of Chap. 3, we
show how MRAS can be incorporated to further improve the exploration step in
the evolutionary algorithms presented there. Moreover, for the finite-horizon setting
with both large state and action spaces, we combine the approaches of Chaps. 2
and 4 and propose a method for sampling the state and action spaces. Finally, we
present a stochastic approximation framework for studying a class of simulation-
and sampling-based optimization algorithms. We illustrate the framework through
an algorithm instantiation called model-based annealing random search (MARS)
and discuss its application to finite-horizon MDPs.

In Chap. 5, we consider an approximate rolling-horizon control framework for
solving infinite-horizon MDPs with large state/action spaces in an on-line manner
by simulation. Specifically, we consider policies in which the system (either the ac-
tual system itself or a simulation model of the system) evolves to a particular state
that is observed, and the action to be taken in that particular state is then computed
on-line at the decision time, with a particular emphasis on the use of simulation.
We first present an updating scheme involving multiplicative weights for updating
a probability distribution over a restricted set of policies; this scheme can be used
to estimate the optimal value function over this restricted set by sampling on the
(restricted) policy space. The lower-bound estimate of the optimal value function is
used for constructing on-line control policies, called (simulated) policy switching
and parallel rollout. We also discuss an upper-bound based method, called hindsight
optimization. Finally, we present an algorithm, called approximate stochastic an-
nealing, which combines Q-learning with the MARS algorithm of Section 4.6.1 to
directly search the policy space.

The relationship between the chapters and/or sections of the book is shown be-
low. After reading Chap. 1, Chaps. 2, 3, and 5 can pretty much be read indepen-
dently, although Chap. 5 does allude to algorithms in each of the previous chapters,
and the numerical example in Sect. 5.1 is taken from Sect. 2.1. The first two sections
of Chap. 4 present a general global optimization approach, which is then applied to
MDPs in the subsequent Sects. 4.3, 4.4 and 4.5, where the latter two build upon work
in Chaps. 3 and 2, respectively. The last section of Chap. 4 deals with a stochastic
approximation framework for a class of optimization algorithms and its applications
to MDPs.

X Preface to the 2nd Edition

Finally, we acknowledge the financial support of several US Federal fund-
ing agencies for this work: the National Science Foundation (under Grants DMI-
9988867, DMI-0323220, CMMI-0900332, CNS-0926194, CMMI-0856256, EECS-
0901543, and CMMI-1130761), the Air Force Office of Scientific Research (under
Grants F496200110161, FA95500410210, and FA95501010340), and the Depart-
ment of Defense.

Seoul, South Korea Hyeong Soo Chang
Stony Brook, NY, USA Jiagiao Hu
College Park, MD, USA Michael Fu

College Park, MD, USA Steve Marcus

Contents

1 Markov Decision Processes 1
1.1 Optimality Equations 3

1.2 Policy Iteration and Value Iteration 5

1.3 Rolling-Horizon Control 7

1.4 Survey of Previous Work on Computational Methods 8

1.5 Simulation L o 10

1.6 Preview of Coming Attractions 13

17 Notes e 14

2 Multi-stage Adaptive Sampling Algorithms 19
2.1 Upper Confidence Bound Sampling 21
2.1.1 Regret Analysis in Multi-armed Bandits 21

2.1.2 Algorithm Description 22

2.1.3 Alternative Estimators 25

2.1.4 Convergence Analysis 25

2.1.5 Numerical Example 33

2.2 Pursuit Learning Automata Sampling 37
2.2.1 Algorithm Description 42

2.2.2 Convergence Analysis 44

2.2.3 ApplicationtoPOMDPs 52

2.2.4 Numerical Example 54

23 NOES . . . vttt 57

3 Population-Based Evolutionary Approaches 61
3.1 Evolutionary Policy Iteration 63
3.1.1 Policy Switching 63

3.1.2 Policy Mutation and Population Generation 65

3.1.3 StoppingRule 65

3.1.4 Convergence Analysis 66

3.1.5 Parallelization 67

3.2 Evolutionary Random Policy Search 67

xi

xii

Contents

3.2.1 Policy Improvement with Reward Swapping 68
32.2 Exploration 71
3.2.3 Convergence Analysis 73
3.3 Numerical Examples 76
3.3.1 A One-Dimensional Queueing Example 76
3.3.2 A Two-Dimensional Queueing Example 83
3.4 Extension to Simulation-Based Setting 86
35 Notes . . . o o o 87
Model Reference Adaptive Search 89
4.1 The Model Reference Adaptive Search Method 91
4.1.1 The MRAS Algorithm (Idealized Version) 92
4.1.2 The MRAS; Algorithm (Adaptive Monte Carlo Version). . 96
4.1.3 The MRAS, Algorithm (Stochastic Optimization) 98
4.2 Convergence Analysisof MRAS 101
42.1 MRASpConvergence 101
422 MRAS; Convergence 107
423 MRAS; Convergence 117
4.3 Application of MRAS to MDPs via Direct Policy Learning 131
4.3.1 Finite-Horizon MDPs 131
4.3.2 Infinite-Horizon MDPs 132
4.3.3 MDPs with Large State Spaces 132
4.3.4 Numerical Examples. 135
4.4 Application of MRAS to Infinite-Horizon MDPs in Population-
Based Evolutionary Approaches 141
4.4.1 Algorithm Description 142
442 Numerical Examples. 143
4.5 Application of MRAS to Finite-Horizon MDPs Using Adaptive
Sampling 144
4.6 A Stochastic Approximation Framework 148
4.6.1 Model-Based Annealing Random Search 149
4.6.2 Application of MARS to Finite-Horizon MDPs 166
47 Notes 177
On-Line Control Methods via Simulation 179
5.1 Simulated Annealing Multiplicative Weights Algorithm 183
5.1.1 Basic Algorithm Description 184
5.1.2 Convergence Analysis 185
5.1.3 Convergence of the Sampling Version of the Algorithm . . 189
5.1.4 Numerical Example 191
5.1.5 Simulated Policy Switching 194
52 Rollout 195
5.2.1 ParallelRollout 197
5.3 Hindsight Optimization 199
5.3.1 Numerical Example 200

5.4 Approximate Stochastic Annealing 204

Contents xiii

5.4.1 Convergence Analysis 207

5.4.2 Numerical Example 215

55 NOteS . . . o v it 216
References o 219

Selected Notation and Abbreviations!

R (R set of (non-negative) real numbers

Z(ZM) set of (positive) integers

H horizon length (number of stages or periods)

X state space

A action space

A(x) admissible action space in state x

P(x,a)(y) probability of transitioning to state y from state x when taking
action a

f(x,a,u) next state reached from state x when taking action a for random
number u

R(x,a) non-negative bounded reward obtained in state x when taking
action a

C(x,a) non-negative bounded cost obtained in state x when taking
action a

R'(x,a,w) non-negative bounded reward obtained in state x when taking
action a for random number w

Rmax upper bound on one-period reward

y discount factor € (0, 1]

b4 policy (a sequence of mappings prescribing an action to take for
each state)

i (x) action prescribed for state x in stage i under policy

(x) action prescribed for state x (under stationary policy)

¥ an optimal policy

rk an estimated optimal policy at kth iteration

I set of all non-stationary Markovian policies

I set of all stationary Markovian policies: (1.10)

V¥ (x) optimal reward-to-go value from stage i in state x: (1.5)

Notation specific to a particular chapter is noted parenthetically. Equation numbers indicate where
the quantity is defined.

XV

Xvi

W.I.t.
Ua, b)
DU(a, b)
N(u,0?)

Selected Notation and Abbreviations

optimal reward-to-go value function from stage i

estimated optimal reward-to-go value function from stage i
based on N; simulation replications in that stage

optimal value for starting state x: (1.2)

optimal value function

reward-to-go value function for policy = from stage i: (1.6)
value function for policy 7: (1.11)

expected total discounted reward over horizon length H under
policy 7, starting from state x (=V;' (x))

Q-function value giving expected reward for taking action a
from state x in stage i, plus expected total discounted optimal
reward-to-go value from next state reached in stage i + 1: (1.9)
infinite-horizon Q-function value: (1.14)

estimate for Q;‘(x, a) based on N; samples

estimate for Q*(x, a)

action selection distribution over A(x)

almost sure(ly)

cumulative distribution function

independent and identically distributed

probability density function

probability mass function

such that (or subject to)

with probability

with respect to

(continuous) uniform distribution with support on [a, b]
discrete uniform distribution on {a,a +1,...,b — 1, b}
normal (Gaussian) distribution with mean (vector) i and
variance o2 (covariance matrix X)

expectation under p.d.f. f (Chap. 4)

expectation/probability under p.d.f./p.m.f. f(-,0) (Chap. 4)
expectation/probability under p.d.f./p.m.f. f(-,0) (Chap. 4)
for all

there exists

Kullback-Leibler (KL) divergence between two p.d.f.s/p.m.f.s
(Chaps. 4, 5)

distance metric (Chap. 3)

infinity-norm distance between two policies (Chap. 3)

total variation distance between two p.m.f.s (Chap. 5)

natural exponential family (Chap. 4)

equal by definition

equal in distribution

if and only if

implies (or weak convergence)
indicator function of the set {-}

Selected Notation and Abbreviations

IX|

-1l

XVy

XAY

x+

e

[x]

[x]
f(n)=0(gn))
f(n)=0(g0n)

cardinality (number of elements) of set X

norm of a function or vector, or induced norm of a matrix
max(x, y)

min(x, y)

max(x, 0)

min(—x, 0)

least integer greater than or equal to x

greatest integer less than or equal to x

limsup,,_, o g ((Z))

f(n)=0(gn)) and g(n) = O(f(n))

xvii

Chapter 1
Markov Decision Processes

Define a Markov decision process (MDP) by the five-tuple (X, A, A(), P, R),
where X denotes the state space, A denotes the action space, A(x) C A is the set
of admissible actions in state x, P (x, a)(y) is the probability of transitioning from
state x € X to state y € X when action a € A(x) is taken, and R(x, a) is the reward
obtained when in state x € X and action a € A(x) is taken. We will assume through-
out the book that the reward is non-negative and bounded, i.e., 0 < R(x, @) < Rmax
for all x € X, a € A(x). More generally, R(x, a) may itself be a random variable, or
viewed as the (conditioned on x and a) expectation of an underlying random reward.
For simplicity and mathematical rigor, we will usually assume that X is a countable
set, but the discussion and notation can be generalized to uncountable state spaces.
We have assumed that the components of the model are stationary (not explicitly
time-dependent); the nonstationary case can be incorporated into this model by aug-
menting the state with a time variable. Note that an equivalent model description is
done with a cost function C such that C(x, a) is the cost obtained when in state
x € X and action a € A(x) is taken, in which case a minimum/infimum operator
needs to replace a maximum/supremum operator in appropriate places below.

The evolution of the system is as follows (see Fig. 1.1). Let x; denote the state
at time (stage or period) t € {0, 1, ...} and a; the action chosen at that time. If
xr =x € X and a; = a € A(x), then the system transitions from state x to state
Xr+1 = y € X with probability P(x,a)(y), and a reward of R(x,a) is obtained.
Once the transition to the next state has occurred, a new action is chosen, and the
process is repeated.

Let IT be the set of non-stationary Markovian policies 7 = {m;,r =0, 1, ...},
where 7; : X — A is a function such that 7;(x) € A(x) for each x € X. The goal is
to find a policy 7 that maximizes the expected total discounted reward given by

H-1
V”(x):E|:Z Y R (xe, 7 (x0)) xozx], (1.1)
t=0

for some given initial state x € X, where 0 < y <1 is the discount factor, and H
may be infinite, in which case we require y < 1. The optimal value function is

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes, 1
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_1, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5022-0_1

2 1 Markov Decision Processes

Fig. 1.1 MDP “standard” action a € A(x)
model
current state next state y ~ {P(x,a)}
zeX one-stage reward R(z,a)
Fig. 1.2 MDP simulation action a € A(z)
model J

current state

i next state y = f(x,a,w)
x

one-stage reward R'(z,a,w)

{f, ”'}

w ~ U(0, 1)T

denoted by V* : X — R, where the optimal value for a given state x € X is given
by

V*(x) = sup V™ (x), (1.2)
mwell

and a corresponding optimal policy yielding that optimal value function will be
denoted by 7 *, where

V) =VT (x), xeX. (1.3)

We will also describe an MDP using a simulation model, denoted by (X, A, A(-),
f» R"), where f is the next-state transition function such that the system dynamics
are given by

x,+1=f(xt,at,w,) fort:O,l,...,H_l, (14)

and R'(x;,as, w;) < Rmax is the associated non-negative reward, where x; € X,
as € A(x), and {w;} is an i.i.d. (random number) sequence distributed U (0, 1), rep-
resenting the uncertainty in the system (see Fig. 1.2). Thus, the simulation model as-
sumes a single random number for both the reward and next-state transition in each
period. The expected discounted reward to be maximized is given by (1.1) with R re-
placed by R’ and the expectation taken over the random sequence {w;,7 =0, 1, ...},
and the optimal value function is still given by (1.2), with a corresponding optimal
policy satisfying (1.3). Note that any simulation model (X, A, A(-), f, R") with dy-
namics (1.4) can be transformed into a model (X, A, A(-), P, R) with state tran-
sition function P. Conversely a standard MDP model (X, A, A(-), P, R) can be
represented as a simulation model (X, A, A(-), f, R').

1.1 Optimality Equations 3
1.1 Optimality Equations

For the finite-horizon problem (H < 00), we define the optimal reward-to-go value
for state x € X in stage i by

Vi () = sup V7 (x), (15)
mwell

where the reward-to-go value for policy w for state x in stage i is defined by

H—1

V,'ﬂ(x) = E|:Z VZ_iR(xt» ”t(xt))

t=i

X; =x:|, (1.6)

i=0,...,H —1, with V;;(x) =0 for all x € X. Note that V" (x) = V{ (x) and
V*(x) = Vi (x), where V™ and V* are the value function for w and the optimal
value function, respectively. It is well known that V;* can be written recursively as
follows: forallx e X andi =0,..., H — 1,

V¥ (x) = sup {R(x,a)Jr)/ ZP(x,a)(y)V,-";](y)}, (1.7)
aceA(x) yex

or, equivalently, by defining the Q-function,

Vi@ = sup Qf(x,a), (1.8)
acA(x)
Qf(x,a)=R(x,a)+y Y _ Px,a)(M V(). (1.9)
yeX

The solution of these optimality equations is usually referred to as (stochastic) dy-
namic programming, which yields the optimal value as defined by Eq. (1.2) for a
given initial state xq:
Vi (x0) = sup V(' (xo).
rell

Simulation-based methods for estimating this optimal value for a given initial state
are the focus of Chap. 2, where simulation will be required to estimate Q7 (x,a)
as expressed by the simulation model equivalent of Eq. (1.9) given by Eq. (1.17)
below, and an adaptive sampling procedure will be used to determine which actions
to simulate to estimate V*(x).

For an infinite-horizon MDP (H = o0), we consider the set I1; C IT of all sta-
tionary Markovian policies such that

My={r el |m =my Vi,1'}, (1.10)

since under mild regularity conditions, an optimal policy always exists in I1; for
the infinite-horizon problem. In a slight abuse of notation, we use 7 for the pol-
icy {m, m,...,} for the infinite-horizon problem, and we define the optimal value

4 1 Markov Decision Processes

associated with an initial state x € X: V*(x) =sup V" (x),x € X, where for
xeX,0<y<1,mell,

VT (x)=E [Zy (e, 7 (1))

for which the well-known Bellman optimality principle holds as follows. For all
xeX,

xo_x:| (1.11)

V*(x)= sup {R(x a)—i—)/ZP(x a)(y)V* (y)} (1.12)

acA(x) veX

where V*(x), x € X, is unique, and there exists an optimal policy 7 * € I1; satisfy-
ing

¥ (x) eargsup{R(x a)—l—yZP(x a)(y)V* (y)} xeX, (1.13)
acA(x) yex

and V™" (x) = V*(x) forall x € X.

In order to simplify the notation, we use V* and V7 to denote the optimal value
function and value function for policy , respectively, in both the finite and infinite-
horizon settings.

Define

O*(x,a)=R(x,a)+y Z P(x,a)(y)V*(y), x€X, acAX). (1.14)
yeX

Then it immediately follows that

sup Q*(x,a)=V*(x), xeX,
acA(x)

and that Q* satisfies the following fixed-point equation: for x € X, a € A(x),

Q*(x,a)=R(x,a)+y Y _P(x,a)(y) sup Q*(v.a). (L.15)

yeXx a’'eA(y)

Our goal for infinite-horizon problems is to find an (approximate) optimal policy
* € I that achieves the (approximate) optimal value for any given initial state.

For a simulation model (X, A, A(-), f, R") with dynamics (1.4), the reward-to-go
value for policy 7 for state x in stage i over a horizon H corresponding to (1.6) is
given by

H-1
Vin (x) = E|:Z Vt_iR/(Xt, 7T (X1), wt)

t=i

B :x}, (1.16)

1.2 Policy Iteration and Value Iteration 5

where x € X, x; = f(x;—1,m—1(xr—1), ws—1) is a random variable denoting the
state at stage ¢ following policy 7, and wj, ..., wy_1 are i.i.d. U (0, 1). The corre-
sponding optimal reward-to-go value V* is defined by (1.5), satisfying

Vi (x) = s;q()){E[R’(x,a,U)]—i-yE[S (fGa,)]}, U~UO,D,

which can be expressed as in (1.8) in terms of the Q-function defined analogously
to (1.9) as follows:

Qf(x,a)=E[R (x,a, V)| +yE[V/,(f(x,a,U))], U~U®©,1). (1.17)

For notational simplification, we will often drop the explicit dependence on U or w
whenever there is an expectation involved, e.g., we would simply write Eq. (1.17)
as

Qi (x.a) = E[R'(x.)| + Y E[V{}, (f (x. @)].

where the expectation is understood to be with respect to the randomness in the
one-stage reward(s) and next-state transition(s). Using this notation, we write the
corresponding infinite-horizon relationships for the simulation model:

V*x)= sup E[R'(x,a)+yV*(f(x.@)]= sup Q*(x,a),

acA(x) acA(x)
n¥(x) € argsup E[R'(x,a) + y V*(f(x,a))] = argsup O*(x, a),
acA(x) acA(x)

Q*(x,a) = E[R'(x,a)| +yE[V*(f(x,)],

= E[R'(x.a)] + yE[sup O (f(x.a), a/)].

a' eA(f (x,a))

In the remainder of the chapter, we include the expressions for both the MDP stan-
dard and simulation models.

1.2 Policy Iteration and Value Iteration

Policy iteration and value iteration are the two most well-known techniques for
determining the optimal value function V* and/or a corresponding optimal pol-
icy * for infinite-horizon problems. Before presenting each, we introduce some
notation. Let B(X) be the space of bounded real-valued functions on X. For
® € B(X),x € X, we define an operator T : B(X) — B(X) by

T(®)(x) = sup {R(x,a)ﬂ/ZP(x,a)(y)Cb(y)}, (1.18)
acA(x) yex
T(@)(x)= sup E[R'(x,a)+y®(f(x,a)], (1.19)

acA(x)

6 1 Markov Decision Processes

for the standard and simulation models, respectively. Similarly, we define an opera-
tor T : B(X) — B(X) for w € II; by

Tz (®)(x) = R(x, 7 (x)) +y Z P(x, 7)) (0P (), (1.20)
yeX
T2 (®)(x) = E[R'(x, m(x))] + YE[®(f (x, 7 (x)))]. (1.21)

‘We begin with policy iteration. Each step of policy iteration consists of two parts:
policy evaluation and policy improvement. Each iteration preserves monotonicity in
terms of the policy performance.

Policy evaluation is based on the result that for any policy € Iy, there ex-
ists a corresponding unique @ € B(X) such that for x € X, T (®)(x) = @ (x) and
@ (x) = V7 (x). The policy evaluation step obtains V7" for a given & € II by solv-
ing the corresponding fixed-point functional equation over all x € X:

V”(x)=R(x,n(x))+yZp(x,n(x))(y)v”(y), (1.22)
yeX
VT(x) = E[R’(x, n(x))] +)/E[V” (f(x, n(x)))], (1.23)

which, for finite X, is just a set of | X| linear equations in | X | unknowns.

The policy improvement step takes a given policy 7 and obtains a new policy 7
by satisfying the condition T(V™)(x) = T3 (V™) (x), x € X, i.e., for each x € X, by
taking the action

7i(x) € argsup{R(x, ay+yy. P(x,a)(y)V”(y)}, (1.24)
aceA(x) yex

T(x) € argAs(uE){E[R’(x, a)] +)/E[V’r (f(x, a))]}. (1.25)
ae X

The policy improvement step ensures that the value function of 77 is no worse than
that of 77, i.e.,

Vix)>V™(x) VxeX.

Starting with an arbitrary policy mo € I1;, at each iteration k > 1, policy itera-
tion applies the policy evaluation and policy improvement steps alternately until
V7 (x) = V™=1(x) Vx € X, in which case an optimal policy has been found. For
finite policy spaces, and thus in particular for finite state and action spaces, policy
iteration guarantees convergence to an optimal solution in a finite number of steps.

Value iteration iteratively updates a given value function by applying the operator
T successively, i.e., for v € B(X), a new value function is obtained by computing
foreachx € X,

B(x) = sup {R(x, a+yy, P(x,a><y>v(y>},

aceA(x) yex

1.3 Rolling-Horizon Control 7

D(x) = sg;()){E[R/(x,a)]+yE[v(f(x,a))]}.
acA(x

Let {v,} be the sequence of value iteration functions defined by v, = T (v,_1),
where n = 1,2, ... and vg € B(X) is arbitrary. Then for any n =0, 1, ..., the value
iteration function v, satisfies ||v, — V*|| < y"|lvg — V*|, i.e., T is a contraction
mapping and successive applications of 7 will lead to v, converging to V* by
Banach’s fixed-point theorem. Thus, value iteration is often called the method of
successive approximations. In particular, taking vo = 0, v, is equal to the optimal
reward-to-go value function V};_, for the finite-horizon problem, where this proce-
dure is called “backward induction.” Unlike policy iteration, however, value itera-
tion may require an infinite number of iterations to converge, even when the state
and action spaces are finite.

The running-time complexity of value iteration is polynomial in |X|, |A]|,
1/(1 —y); in particular, one iteration is O (| X I2|A]) in the size of the state and action
spaces. Even though the single iteration running-time complexity O(|X|?|A|) of
value iteration is smaller than the corresponding O (| X |*|A| 4+ |X|?) single-iteration
time complexity of policy iteration, the number of iterations required for value iter-
ation can be very large—possibly infinite, as just mentioned.

1.3 Rolling-Horizon Control

In this section, we consider an approximation framework for solving infinite-horizon
MDP problems. This rolling-horizon control (also called receding-horizon control)
framework will be discussed together with simulation-based approaches in Chap. 5.
The idea of rolling-horizon control can be used to solve problems in an on-line man-
ner, where an optimal exact solution with respect to a fixed-length moving horizon at
each decision time is obtained and its initial action is applied to the system. The in-
tuition behind the approach is that if the horizon is sufficiently long so as to provide
a good estimate of the stationary behavior of the system, the moving-horizon con-
trol should perform well. Indeed, the value of the rolling-horizon policy converges
geometrically to the optimal value, uniformly in the initial state, as the length of
the moving horizon increases, where the convergence rate is characterized by the
discount factor (cf. Theorem 1.1 below).

Furthermore, under mild conditions, there always exists a minimal finite horizon
H* such that the rolling- H*-horizon control prescribes exactly the same action as
the policy that achieves the optimal infinite-horizon rewards at every state.

A rolling- H-horizon control policy my, is a stationary policy for the infinite-
horizon problem that is obtained from an optimal non-stationary policy {7, ...,
mj;_,} for the finite-horizon problem of length H < oo, by taking 7y = 7, i.e., for
a given starting state x € X, it satisfies the initial stage optimality equation

Vo) = R(x, mm(0) + Y P(x, 7n(0))) Vi (3),
yeX

8 1 Markov Decision Processes

Vo @) = E[R'(x. mn(0))] + ¥ E[V] (f (x. 7 ()].
or using the notation of the previous section,
Ty (Vi)) =T (V) (), x € X,

where V|* is the optimal reward-to-go function for the finite- H-horizon MDP be-
ginning in stage one. Although the rolling- H-horizon policy 7y, is determined us-
ing the finite-horizon MDP model, it is applied in the infinite-horizon setting. The
following result bounds the error between the true (infinite-horizon) optimal value
function and the value function associated with the rolling-horizon policy, providing
an explicit characterization of the geometric convergence rate in the discount factor
with respect to the horizon length.

Theorem 1.1 (Hernandez-Lerma and Lasserre [84])

Rmax. H
I—vy

0<V*(x)—V™(x) < , xeX.

Again, we reiterate that here V* and V™ denote infinite-horizon value func-
tions, whereas what is used to determine the stationary policy 7y, is a finite-horizon
optimal reward-to-go function V}*. Unfortunately, a large state space makes it very
difficult to solve such MDPs in practice even with a relatively small rolling horizon.
Motivated by this, we provide in Chap. 5 an error bound for approximate rolling-
horizon control defined from an estimate of Vl*. In addition, in Chap. 2, we present
adaptive sampling simulation-based algorithms that estimate V*, and in Chap. 5, we
study two approximate rolling-horizon controls via lower and upper bounds to V¥,
both implemented in numerical examples by simulation.

1.4 Survey of Previous Work on Computational Methods

While an optimal policy can, in principle, be obtained by the methods of dynamic
programming, policy iteration, and value iteration, such computations are often pro-
hibitively time-consuming. In particular, the size of the state space grows exponen-
tially with the number of state variables, a phenomenon referred to by Bellman as
the curse of dimensionality. Similarly, the size of the action space can also lead
to computational intractability. Lastly, the transition function/probabilities (f or P)
and/or random rewards may not be explicitly known, but a simulation model may be
available for producing sample paths, which means that traditional approaches can-
not be applied. These diverse computational challenges have given rise to a number
of approaches intended to result in more tractable computations for estimating the
optimal value function and finding optimal or good suboptimal policies. Some of
these approaches can be categorized as follows:

1. structural analysis and proof of structural properties;

1.4 Survey of Previous Work on Computational Methods 9

2. approximating the problem with a simpler problem;
3. approximating the dynamic programming equations or the value function;
4. algorithms in policy space.

The first approach can be exact, and involves the use of structural properties of the
problem or the solution, such as monotonicity, convexity, modularity, or factored
representations, to facilitate the process of finding an optimal solution or policy.

The remaining approaches all involve approximations or suboptimal policies.
The second class of approaches can involve (i) approximation of the model with a
simpler model (e.g., via state aggregation, linearization, or discretization, or (ii) re-
stricting the structure of the policies (e.g., linear policies, certainty equivalent poli-
cies, or open-loop feedback-control policies). The third approach is to approximate
the value function and/or the dynamic programming equations using techniques
such as state aggregation, basis function representations, and feature extraction. The
fourth class includes algorithms that work in policy space like policy iteration, but
are intended to provide more tractable algorithms than policy iteration. The algo-
rithms presented in this book use randomization, sampling, or simulation in the
context of the third and fourth approaches listed above.

To put the approaches of this book in context, we briefly compare them with
some other important randomized/simulation-based methods. Most of this work has
involved approximate solution of the dynamic programming equations or approx-
imation of value functions, and is referred to as reinforcement learning or neuro-
dynamic programming.

Q-learning, perhaps the most well-known example of reinforcement learning, is
a stochastic-approximation-based solution approach to solving (1.15). It is a model-
free approach that works for the case in which the parameters of the transition
function f (or transition probabilities P) and one-stage reward function R are un-
known. In asynchronous Q-learning, a sequence of estimates {Q} of Q* is con-
structed as follows. At time ¢, the decision maker observes state x; and takes an
action a; € A(x;) chosen according to a randomized policy (a randomized policy is
a generalized type of policy, in which, for an observed state x;, an action is chosen
randomly from a probability distribution over A(x;)). The decision maker receives
the reward R’(x;, a;, w;), moves to state f(x;,a;, w;), where w, ~ U (0, 1), and
updates the Q-value estimate at (x;, a;) by

O(xr,ar) < Oxi, ar) + oy (x4, at)[R’(xt, a, wy)

+vy sup O(f (v ar, wy),a’) — Q(xz,az)],

a' e A(f (x;,ar,wy))

where o, (x;, a;) is a non-negative stepsize coefficient. Note that at each step, only a
single value of the Q-function estimate is updated.

Under fairly general conditions, {Q} will converge to the function Q* for finite
state and action MDPs. A key requirement is that the randomized policy should en-
sure that each state is visited infinitely often and every action is taken (explored)

10 1 Markov Decision Processes

in every state infinitely often. Only limited results exist for the rate of conver-
gence of Q-learning, although it is well known that the convergence of stochastic-
approximation-based algorithms for solving MDPs can be quite slow. Furthermore,
because Q-learning is implemented with a lookup table of size | X| x |A[, it suffers
from the curse of dimensionality.

Another important aspect of the work involves approximating the optimal value
function V* using, for example, neural networks and/or simulation. V*(x), x € X, is
replaced with a suitable function approximation V(x,r),calleda “scoring function,”
where r is a vector of parameters, and an approximate optimal policy is obtained by
taking an action in

argsup E[R'(x,a) + y\7(f(x, a),r)]
acA(x)

in state x. The functional form of V is selected such that the evaluation of V(x, r)is
simple once the vector r is determined. A scoring function with a small number of
parameters can thus compactly represent a large state space. For example, V(x,r)
may be the output of some neural network in response to the input x, and r is the
associated vector of weights or parameters of the neural network. Alternatively, fea-
tures or basis functions can be selected to represent states, in which case r is the
associated vector of relative weights of the features or basis functions. Once the ar-
chitecture of scoring functions is selected, the main computational burden involves
“learning” the parameter vector r that most closely approximates the optimal value.
The success of the approach depends heavily on the choice of a good architecture,
which is generally problem dependent. Furthermore, the quality of the approxima-
tion is often difficult to gauge in terms of useful theoretical error bounds.

Up to now, the majority of the solution methods have concentrated on reducing
the size of the state space to address the state space “curse of dimensionality.” The
key idea throughout is to avoid enumerating the entire state space. However, most
of the above approaches generally require the ability to search the entire action
space in order to choose the best action at each step of the iteration procedure; thus
problems with very large action spaces may still pose a computational challenge.
The approach proposed in Chap. 3 is meant to complement these highly successful
techniques. In particular, there we focus on MDPs where the state space is relatively
small but the action space is very large, so that enumerating the entire action space
becomes practically inefficient. From a more general point of view, if one of the
aforementioned state space reduction techniques is considered, for instance, state
aggregation, then MDPs with small state spaces and large action spaces can also be
regarded as the outcomes resulting from the aggregation of MDPs with large state
and action spaces.

1.5 Simulation

In this book, simulation will mean stochastic (or Monte Carlo) simulation, as op-
posed to numerical approximations of (deterministic) differential equations, e.g., by

1.5 Simulation 11

the Runge—Kutta method. Specifically, simulation is used to generate realizations of
the system dynamics in the MDP simulation model described by (1.4). The context
that we most frequently have in mind is where f is not known explicitly but for
which the output of f can be easily generated, given the state, action, and input
random number. For example, in a capacity planning model in manufacturing, the
transitions and cost/rewards in the MDP model might correspond to outputs from a
run of a large simulation model of a complex semiconductor fabrication facility, the
action might be a choice of whether or not to add long-term capacity by purchasing
an expensive new piece of machinery, the current state is the existing capacity and
other relevant system information, and the input “random number” could represent
a starting seed for the simulation model. Here, we outline some important basic as-
pects connected with performing such simulations, but because this is not the focus
of the work in this book, the discussion will be brief. Specifically, we touch upon
the following:

random number generation;
random variate generation;
input analysis;

output analysis;

verification and validation;
variance reduction techniques.

The fundamental inputs driving the stochastics in Monte Carlo simulation are
random number streams. A random number stream is by definition a sequence of
i.i.d. U (0, 1) random variables, the realizations of which are called random “vari-
ates” in simulation terminology. An algorithm or procedure to generate such a se-
quence is usually called a pseudo-random number generator, and sometimes the re-
sulting output may also retain the “pseudo-" prefix (viz., pseudo-random number).
Most of the older common pseudo-random number generators are linear congruen-
tial generators (LCGs) based on the iteration:

X, = (axp—1+c¢) (mod m), n=1,2,...,

where m is the modulus (an integer), a is the multiplier, and c is the increment (the
latter two both integers between 1 and m — 1). The starting point x¢ is called the
seed. A prime modulus multiplicative linear congruential generator takes ¢ = 0 and
m prime. Clearly, one can iterate the recurrence to obtain

c@ —1)

Xy = [a”xo+
a—1

](modm), n=1,2,...,

so that any x, can be found in a deterministic manner just from the values of
X0, m, a, and c. The random numbers are then generated from the sequence of {x;}
via

Uy =Xy /m. (1.26)

12 1 Markov Decision Processes

Commercial random number generators improve upon the basic LCGs by employ-
ing more complicated forms of the recursion. A multiple recursive generator (MRG)
of order k is based on the following kth-order linear recurrence:

Xn = (a1xp—1 + - -+ + agxn—x) mod m, (1.27)

where m and k are positive integers, a; are integers of 0, 1, ..., m — 1, and again the
actual random number sequence is generated via (1.26). In order to obtain generators
with large periods in an efficient manner, instead of using (1.27) directly with a
single large modulus, one constructs an equivalent generator by combining smaller
modulus MRGs based on (1.27).

An alternative to pseudo-random numbers are quasi-Monte Carlo sequences (also
known as low-discrepancy sequences), which do not attempt to preserve the inde-
pendence between members of the sequence, but rather try to spread the numbers
out s0 as to most uniformly cover the [0, 1]¢ hypercube, for a d-dimensional prob-
lem. Examples of such sequences include Faure, Halton, Sobol, Hammersley, and
Niederreiter. These sequences lead to a deterministic O ((log N)¢ /N) error bound
for numerical integration, as opposed to the usual O(1/+/N) convergence rate as-
sociated with Monte Carlo integration, where N is the number of points sampled.

The form of the system dynamics in the MDP simulation model described by
(1.4) masks two fundamental steps in carrying out the mechanics of stochastic sim-
ulation. The first is the transformation from random number sequences to input
stochastic processes. The second is the transformation from input stochastic pro-
cesses to output stochastic processes, which leads to the state transformation implied
by (1.4).

The basic methodology for generating input processes usually involves an algo-
rithm for going from a random number to a random variate, given a target probability
distribution, which may be continuous or discrete. For example, to generate sample
paths associated with Brownian motion, Gaussian random variates need to be gen-
erated. If the input process involves dependencies, this is an additional step that
must be included. Random variate generation is done through a number of means,
primarily consisting of some combination of the following:

e Inverse Transform Method, which uses the c.d.f.;

e Acceptance—Rejection Method, which uses the p.d.f.;

e Composition Method, which takes a convex combination of distribution and uses
one of the two procedures above;

e Convolution Method, which takes the sum of r.v.’s and uses one of the first two
procedures above;

e specialized routines for a given distribution (e.g., normal/Gaussian).

The transformation from input processes to output processes usually constitutes
the bulk of a simulation model, in terms of implementation. For example, a semicon-
ductor fabrication facility simulation model is commonly based on a discrete-event
dynamic system model, which involves the mechanics of next-event scheduling. In
terms of model building, two fundamental aspects in implementing a simulation

1.6 Preview of Coming Attractions 13

model are verification, which is to make sure that the model is working as desired
(e.g., debugging the program properly), and validation, which is to make sure that
the model represents the real system closely enough to make it useful for the target
decision making or modeling goals. These two issues are quite different, but both
are critical.

Input analysis and output analysis refer to the use of statistical inference on data.
Input analysis takes actual “real-world” data to build the probability distributions
that drive the input processes to the simulation model. Output analysis takes output
data from the simulation model (i.e., simulated data) in order to make meaningful
statistical statements, generally in the form of point estimation and interval estima-
tion with confidence intervals. A key element of the Monte Carlo method is the
availability of confidence intervals, which provide a measure of precision for the
estimators of simulation output.

Because simulation can be quite expensive in terms of computational cost, an
important aspect has to do with efficiency of the estimation in the output analysis.
Methodologies for improving this aspect are called variance reduction techniques or
efficiency improvement techniques, and can lead to orders of magnitude reduction
in computation. Among the most effective of these are the following:

e control variates—exploiting correlation between simulation processes with
known distributional properties (usually the mean) and the target output perfor-
mance measure;

e importance sampling (“change of measure”’)—changing the parameters (e.g.,
mean) of input distributions with an appropriate reweighting of the target out-
put performance measure;

e stratified sampling—dividing the sampling procedure into subsets such that each
has much reduced variability in the target output performance measure, and car-
rying out conditional sampling on the subsets;

e conditional Monte Carlo—conditioning on certain processes in the simulation
to derive a conditional expectation estimator of the target output performance
measure;

e common random numbers—exploiting positive correlation to reduce variance
when comparing different systems or the same system at different parameter set-
tings (e.g., an MDP sample path using different actions from the same state).

Variance reduction techniques such as these can dramatically improve the perfor-
mance of simulation-based algorithms for solving MDPs, but this is an area on
which there has been scant research, so there is clearly untapped potential for
progress on this front.

1.6 Preview of Coming Attractions

Table 1.1 provides a summary of the various settings considered, based on vari-
ous characteristics of the MDP model. The term “analytical” means that f or P is

14 1 Markov Decision Processes

Table 1.1 Taxonomy

of problem settings Chapter

and solution approaches 2 3 4 5
finite horizon J 43,4.5,4.6
infinite horizon N 43,44, J
simulation-based Vv 43,4.5,4.6 J
analytical Vv 4.4
sampling Vv v J
population Vv 4.4,4.6 54
large state spaces J 43,45 J
large action spaces Vv J J

known explicitly, and the resulting optimality (or policy evaluation) equations will
be solved directly. As described in the previous section, the term “simulation” will
indicate realized states and/or rewards resulting in a “sample path” of length H for
the finite-horizon setting. On the other hand, “sampling” will be reserved to indicate
a means by which the next action or policy is chosen to be simulated. Chaps. 2,
4, and 5 all contain simulation-based sampling algorithms (Sect. 3.4 also includes
a brief discussion of simulation-based algorithms), which become the method of
choice in settings where

(i) either the transition function/probabilities are not explicitly known or it is com-
putationally infeasible to use them, due to the size of the state space, or
(ii) the one-stage reward is stochastic with its distribution not explicitly known.

For example, in many complex systems, it is often the case that a simulation model
is available that is essentially a black box that captures detailed stochastic inter-
actions in the system, e.g., the semiconductor fabrication facility simulation model
described earlier. In this setting, a state-action pair produces a simulated visited state
or one-stage reward, or both in the case where both assumptions hold. An underly-
ing implicit assumption is that the cost of simulation is relatively expensive in terms
of computational burden.

1.7 Notes

Texts on Markov decision processes include [12, 145], and [114], in which the stan-
dard results summarized here can be found. More advanced treatments, including
rigorous discussion of MDPs with uncountable (e.g., Borel) state spaces and un-
bounded rewards, can be found in [16, 82] and [85]; see also [61]. For the rela-
tionship between the simulation model and the standard MDP model, see [23] or
[85, Sect. 2.3]. For a recent summary of analysis and solution methods for finite
state and action MDPs, see [102]. It can be shown that policy iteration converges
faster to the optimal value than value iteration in terms of the number of iterations if

1.7 Notes 15

both algorithms begin with the same value [145], and policy iteration often outper-
forms value iteration in practical applications [22, 101]. In particular, for small-scale
problems (state space size less than 10,000), policy iteration performs considerably
better than value iteration, provided the discount factor is close to 1 [153]. See [123]
or [22] for a detailed discussion of the complexity of the two approaches, including
the state and action space-dependent time complexity of the linear programming
approach for solving MDPs. For a discussion of conditions under which there exists
a stationary optimal policy for infinite-horizon MDPs, see [3, 24, 85].

The geometric convergence of the rolling-horizon control to the optimal value
can be found in [84]. Existence of a minimal finite horizon H* such that the rolling-
H*-horizon control prescribes exactly the same action as the policy that achieves
the optimal infinite-horizon rewards at every state can be found in [18] for the dis-
counted case and [83] for the average case.

The idea of rolling-horizon control has been applied to many interesting prob-
lems in various contexts to solve the problems in an on-line manner, including plan-
ning problems (e.g., inventory control) that can be modeled as linear programs [76]
and that can be represented as a shortest path problem in an acyclic network (see [60]
for example problems and references therein), routing problems in communication
networks by formulating the problem as a non-linear optimal control problem [5],
dynamic games [178], aircraft tracking [139], the stabilization of non-linear time-
varying systems [105, 129, 130] in the model predictive control literature, and
macroplanning in economics [100]. For a survey relating rolling-horizon control,
approximate dynamic programming, and other suboptimal control methods, see
[13], where the former is referred to as receding-horizon control; for a bibliogra-
phy of applications in operations management problems, see [29].

One of the earliest works employing randomization to break the curse of di-
mensionality used random successive approximations and random multigrid algo-
rithms [154]. Classical references on reinforcement learning are [101, 171]. Re-
cent work on approximate dynamic programming and simulation-based methods
includes [75, 99, 142, 164]. Approximate dynamic programming has come to mean
mainly value function approximation, with the term neuro-dynamic programming
coined by [17], because neural networks represent one of the most commonly used
approaches for representing the value function or Q-function.

Q-learning was introduced by Watkins [180]; see also [17, 177]. Some results
exist on the convergence rate of Q-learning are found in [57]. For a recent survey
on research in neuro-dynamic programming, see [179].

Representative examples on the use of structural properties include [141] and
[166] for general approaches; [68, 160, 170], [145, Sect. 4.7], and [62] for mono-
tonicity; [24] for convexity; [2, 181], and [107, Chap. 5] for modularity; [159] for
approximating sequences; and [110] for factored representations. Work on approxi-
mating the value function includes [71] and [14] via state aggregation, [52] on using
basis functions with a linear programming approach, and [17] on feature extraction.

In parameterized policy space, a simulation-based method for solving average-
cost MDPs by iteratively estimating the performance gradient of a policy and up-
dating the policy parameters in a direction of improvement is proposed in [127].

16 1 Markov Decision Processes

Drawbacks of the approach include potentially large variance of the gradient es-
timator and the discarding of past gradient information. Additional related work
includes [128] and [185]. Actor-critic algorithms [9] use an approximation architec-
ture to learn a value function via simulation, and the value function is used to update
the policy parameters in a direction of performance improvement. Work employing
importance sampling in actor-critic algorithms includes [186]. A convergence proof
of some actor-critic algorithms under linearly parameterized approximations of the
value function for average-cost MDPs is provided in [111], but theoretical under-
standing has been limited to the case of lookup table representations of policies and
value functions.

Another approach for solving average-reward MDPs is simulation-based policy
iteration, which employs a simulation for policy evaluation at each iteration and ap-
plies policy improvement with the approximate solutions to the average evaluation
equations. In [48], three simulation estimators are analyzed for policy evaluation,
and conditions derived on the simulation runlengths that guarantee almost-sure con-
vergence of the algorithm. Chang [37] presents a simulation-based algorithm for
average MDPs based on the work by Garcia et al. [28, 70] of a decentralized ap-
proach to discrete optimization via the “fictitious play” algorithm applied to games
with identical payoffs. A given MDP is basically formulated as an identical payoff
game where a player is associated with each state and each player plays selecting an
action in his action set with the goal of minimizing the identical payoff, which is the
average cost of following the policy constructed from each player’s action selection.
This identical payoff game is iteratively solved with a simulation-based variant of
fictitious play in an off-line manner to find a pure Nash-equilibrium. If there exists
a unique optimal policy, the sequence of probability distributions over the policy
space generated by the algorithm converges to a distribution concentrated only on
the unique optimal policy with probability one.

On-line estimation of the “performance potential” of a policy by a single sample-
path simulation combined with gradient-based stochastic approximation simulation-
based policy iteration algorithm is presented in [59]. A “temporal-difference” learn-
ing for evaluating a policy in a similar context to simulation-based policy iteration
can be found in [80].

Some related models with MDPs have been studied by White and Eldeib [184],
and Satia and Lave [156], under the rubric of MDPs with “imprecisely known
transition probabilities,” and Givan et al. [71] under “bounded parameter Markov
Decision Processes.” All of these models can be viewed within the framework of
“controlled Markov set-chain” by Kurano et al. [115], even though the notion of
“Pareto-optimality” defined by Kurano et al. was not dealt with in any of these
efforts. Chang [36] develops a VI-type algorithm for solving controlled Markov set-
chains and analyze its finite-step error bounds and also develops PI-type algorithms
in [38] and establish their convergence. See [136] for various types of uncertainty
model for transition probability distributions, including the “entropy” model and
the interval model of Kurano et al., and related computational algorithms. Kalyana-
sundaram et al. [103] study continuous-time MDPs with unknown transition rates
and average reward criteria, and develop a PI-type algorithm based on single-policy
improvement, for obtaining robust (“max-min”) policies.

1.7 Notes 17

The material on stochastic simulation in this chapter merely touches upon some
basic ideas. Two standard texts are [63] and [120]; see also [64] for a more
recent textbook. Another classical but more eclectic text is [25]. An excellent
state-of-the-art reference to current simulation research is [81]; see also [7]. Re-
cent research advances in stochastic simulation research are reported at the an-
nual Winter Simulation Conference, whose proceedings are freely available on-
line at http://www.informs-cs.org/wscpapers.html. A classic on random variate gen-
eration is [54], which is available online for free download at http://luc.devroye.
org/rnbookindex.html, and a well-known reference on quasi-Monte Carlo is [135];
see also http://www.mcqmc.org/.

http://www.informs-cs.org/wscpapers.html
http://luc.devroye.org/rnbookindex.html
http://luc.devroye.org/rnbookindex.html
http://www.mcqmc.org/

Chapter 2
Multi-stage Adaptive Sampling Algorithms

In this chapter, the goal is to accurately and efficiently estimate the optimal value
function under the constraint that there is a finite number of simulation replications
to be allocated per state in stage i. The straightforward approach to this would be
simply to sample each action feasible in a state equally, but this is clearly not an ef-
ficient use of computational resources, so the main question to be decided is which
action to sample next. The algorithms in this chapter adaptively choose which ac-
tion to sample as the sampling process proceeds, based on the estimates obtained up
to that point, and lead to value function estimators that converge to the true value
asymptotically in the number of simulation replications allocated per state. These
algorithms are targeted at MDPs with large, possibly uncountable, state spaces and
relatively smaller finite action spaces. The primary setting in this chapter will be
finite-horizon models, which lead to a recursive structure, but we also comment on
how the algorithms can be used for infinite-horizon problems. Numerical experi-
ments are used to illustrate the algorithms.

Once we have an algorithm that estimates the optimal value/policy for finite-
horizon problems, we can create a non-stationary randomized policy in an on-line
manner in the context of receding-horizon control for solving infinite-horizon prob-
lems. This will be discussed in detail in Chap. 5.

Letting \A/Z.Ni (x) denote the estimate of the optimal reward-to-go function, Vl* (x),
defined by Eq. (1.5) for a given state x and stage i, based on N; simulations in
stage i, the objective is to estimate the optimal value V*(xq) for a given starting state
X0, as defined by Eq. (1.2). The approach will be to optimize over actions, based on
the recursive optimality equations given by (1.8) and (1.17). The former involves
an optimization over the action space, so the main objective of the approaches in
this chapter is to adaptively determine which action to sample next. Using a ran-
dom number w, the chosen action will then be used to simulate f(x, a, w) in order
to produce a simulated next state from x. This is used to update the estimate of
Q;‘(x, a), which will be called the Q-function estimate and denoted by QlN ‘(x,a),

which in turn determines the estimate \A/iN" (x), albeit not necessarily using Eq. (1.8)
as the estimate for the optimal value function. Figure 2.1 provides a generic algo-
rithm outline for the adaptive multi-stage sampling framework of this chapter.

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes, 19
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_2, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5022-0_2

20 2 Multi-stage Adaptive Sampling Algorithms

General Adaptive Multi-stage Sampling Framework

Input: stage i < H, state x € X, N; > 0, other parameters.

(Fori=H, V)" (x)= V" (x)=0.)
Initialization: algorithm parameters; total number of simulations set to 0.
Loop until total number of simulations reaches N;:

e Determine an action a to simulate next state via f(x,a, w), w~ U(0, 1).
e Update the following:))
number of times action a has been sampled N ; (x) < N ; (x)+1,

. . AN A A ~N; A
Q-function estimate va’ (x,a) based on R'(x,a, w) and VH_’I+l (f(x,a,w)),
the current optimal action estimate (for state x in stage i),

and other algorithm-specific parameters.

Output: \A/[Ni (x) based on Q-function estimates {vai (x,a)}.

Fig. 2.1 Adaptive multi-stage sampling framework

Specifically, Q7 (x, a) is estimated for each action a € A(x) by a sample mean
based on simulated next states and rewards from a fixed state x:

Ni(x)

Yo IR(raw) +y Vi (fraw))] @D

j=1

1
Ni(x)

OV (x,a)=

where NL’; (x) is the number of times action a has been sampled from state x in
stage i (ZaeA(x) Né(x) = N;), and the sequence {w;f, j=1,..., Né(x)} contains
the corresponding random numbers used to simulate the next states f(x,a, w;?).
Note that the number of next-state samples depends on the state x, action a, and
stage i.

In the general framework that estimates the Q-function via (2.1), the total number
of sampled (next) states is O (N Hy with N = max;—o,.. H—1 N;, which is indepen-
dent of the state space size. One approach is to select “optimal” values of N, [’1 (x) for
i=0,...,H—1,a € A(x), and x € X, such that the expected error between the val-
ues of VONO (x) and V(;" (x) is minimized, but this problem would be difficult to solve.
Both algorithms in this chapter construct a sampled tree in a recursive manner to
estimate the optimal value at an initial state and incorporate an adaptive sampling
mechanism for selecting which action to sample at each branch in the tree. The
upper confidence bound (UCB) sampling algorithm chooses the next action based
on the exploration-exploitation tradeoff captured by a multi-armed bandit model,
whereas in the pursuit learning automata (PLA) sampling algorithm, the action is
sampled from a probability distribution over the action space, where the distribution
tries to concentrate mass on (“pursue”) the estimate of the optimal action. The anal-
ysis of the UCB sampling algorithm is given in terms of the expected bias, whereas
for the PLA sampling algorithm we provide a probability bound. Another algorithm
that also uses a distribution over the action space but updates the distribution in a
different manner using multiple samples, and can handle infinite action spaces, is
presented in Sect. 4.5.

2.1 Upper Confidence Bound Sampling 21

2.1 Upper Confidence Bound Sampling

The UCB sampling algorithm is based on the expected regret analysis for multi-
armed bandit problems, in which the sampling is done based on upper confidence
bounds generated by simulation-based estimates. The UCB algorithm determines
Nli(x) fori =0,...,H —1,a € A(x), and x € X such that the expected differ-
ence is bounded as a function of NL’; (x)and N;,i =0, ..., H — 1, and such that the
bound (from above and from below) goes to zero as N;, i =0,...,H — 1, go to
infinity. The allocation rule (sampling algorithm) adaptively chooses which action
to sample, updating the value of N’ (x) as the sampling process proceeds, such that
the value function estimator is asymptotically unbiased (i.e., E [I7ON° x)] — VS‘ (x)
as N;j - o00,Vi=0,...,H— 1), and an upper bound on the bias converges to
zero at rate O (D, h}vllv L), where the logarithmic bound in the numerator is achiev-
able uniformly over time. The running-time complexity of the algorithm is at worst
O((|A|max;—o,.._ g1 N)¥), which is independent of the state space size, but de-
pends on the size of the action space, because the algorithm requires that each action
be sampled at least once for each sampled state.

2.1.1 Regret Analysis in Multi-armed Bandits

The goal of the multi-armed bandit problem is to play as often as possible the
machine that yields the highest (expected) reward. The regret quantifies the explo-
ration/exploitation dilemma in the search for the true “optimal” machine, which is
unknown in advance. The goal of the search process is to explore the reward distri-
bution of different machines while also frequently playing the machine that is em-
pirically best thus far. The regret is the expected loss due to not always playing the
true optimal machine. For an optimal strategy the regret grows at least logarithmi-
cally in the number of machine plays, and the logarithmic regret is also achievable
uniformly over time with a simple and efficient sampling algorithm for arbitrary
reward distributions with bounded support.

Specifically, an M-armed bandit problem is defined by random variables »; ;
for 1 <i <M and j > 1, where successive plays of machine i yield “rewards”
ni.1, M2, ..., which are independent and identically distributed according to an un-
known but fixed distribution n; with unknown expectation u;, and the goal is to
decide the machine i at each play to maximize

The rewards across machines are also independently generated. Let 7;(n) be the
number of times machine i has been played by an algorithm during the first n plays.

22 2 Multi-stage Adaptive Sampling Algorithms

Define the expected regret p(n) of an algorithm after n plays by

M
p(n) =p*n — Z,uiE[T,-(n)], where p* := max ;.
1

i=1

Any algorithm that attempts to minimize this expected regret must play a best ma-
chine (one that achieves u*) exponentially (asymptotically) more often than the
other machines, leading to p(n) = ® (Inn). One way to achieve the asymptotic loga-
rithmic regret is to use upper confidence bounds, which capture the tradeoff between
exploitation—choosing the machine with the current highest sample mean—and ex-
ploration—trying other machines that might have higher actual means. This leads
to an easily implementable algorithm in which the machine with the current highest
upper confidence bound is chosen.

We incorporate these results into a sampling-based process for finding an op-
timal action in a state for a single stage of an MDP by appropriately converting
the definition of regret into the difference between the true optimal value and the
approximate value yielded by the sampling process. We then extend the one-stage
sampling process into multiple stages in a recursive manner, leading to a multi-stage
(sampling-based) approximation algorithm for solving MDPs.

2.1.2 Algorithm Description

Figure 2.2 presents the upper confidence bound (UCB) adaptive sampling algorithm
for estimating V/;"(x) for a given state x. The inputs to the algorithm are the stage i,
a state x € X, and the number of samples N; > max,cx |A(x)|, and the output is
\A/l.N" (x), the estimate of the optimal reward-to-go value from state x, Vl* (x), given
by (2.5), which is the weighted average of Q-value estimates over the sampled ac-
tions. (Alternative optimal value function estimators are presented in Sect. 2.1.3.)
Since the Q-function estimate given by (2.1) requires the optimal value estimate

Vﬁ’r '(y) for the simulated next state y € X in the next period i + 1, the algorithm
requires recursive calls at (2.2) and (2.4) in the Initialization and Loop portions of
the algorithm, respectively. The initial call to the algorithm is done with i = 0, the
initial state xg, and Ny, and every sampling is done independently of previous sam-
plings. To help understand how the recursive calls are made sequentially, in Fig. 2.3,
we graphically illustrate the sequence of calls with two actions and H = 3 for the
Initialization portion.

For an intuitive description of the allocation rule, consider first only the one-stage
approximation. That is, we assume for now that the V*(x)-value for each sampled
state x € X is known. To estimate V{j'(x), obviously we need to estimate Q(x,a*),
where a* € argmax ¢ 4(y)(Qg(x, a)). The search for a* corresponds to the search
for the best machine in the multi-armed bandit problem. We start by sampling a
random number w* ~ U (0, 1) for each possible action once at x, which leads to
the next (sampled) state f(x, a, w?) according to f and reward R'(x,a, w?). We

2.1 Upper Confidence Bound Sampling 23

Upper Confidence Bound (UCB) Sampling Algorithm

Input: stage i < H, state x € X, N; > max,ex |A(x)].

(Fori=H, V)" (x) =V} (x)=0)

Initialization: Simulate next state f(x, a, w{), w{ ~ U(0, 1) for each a € A(x);
set Ni(x) =1Va e A(x), i = |A(x)|, and

Nit1

Q;vi (x,a)=Mi(x,a) =R (x,a, w]) + y\A/iH (f(x.a,wf)) VaeAw), 2.2)

where {w‘]’.} is the random number sequence for action a,

N, (i (x) is the number of times action a has been sampled thus far,
and n is the overall number of samples thus far.

Loop until 7 = N;:

e Generate w? ; ~ U (0, 1) for current estimate of optimal action a*:

Ni(0)+1
. AN . [2Inn
a €argmax| Q;" (x,a) + Rmax(H — i) - , 2.3)
acA(x) N (x)
where
Nix)
ANi _ o Ni
Q0;'(x,a)= N Z [R/(x, a, wf—) + Vvi+1+] (f(x, a, w;‘))] 2.4)
j=1
e Update Q-function estimate for @ = a using simulated next state
o a .
foraud,

M;(x,a) < M;(x,a)

Niyi

+R’(x,&, waNé(le) —+ ‘7i+1 (f(x,&, w&N{g(x)H))’

Ni(x) < Ni(x)+1,

AN M; a

ONi(x.a) < Mix,)
Ni ()

e n<n+1
Output:
Y NE(x) A,
AT #Q;v’(x,a). (2.5)
acA(x) !

Fig. 2.2 Upper confidence bound (UCB) sampling algorithm description

then iterate as follows (see Loop in Fig. 2.2). The next action to sample is the one
that achieves the maximum among the current estimates of Q(j(x, a) plus its current

upper confidence bound (cf. (2.3)), where the estimate QQ’ %(x,a) is given by the

24 2 Multi-stage Adaptive Sampling Algorithms

stage i=0 (a/\state

action action
a b

1 11

sampled subtree
from the node x

O

Fig. 2.3 Graphical illustration of a sequence of recursive calls made in Initialization of the UCB
sampling algorithm, where each circle corresponds to a simulated state, each arrow with associated
action signifies a sampling for the action (and a recursive call), and the boldface number near each
arrow indicates the sequencing for the recursive calls (for simplicity, an entire Loop process is
signified by a single number)

sample mean of the immediate reward plus V*-values (multiplied by the discount
factor) at all of the simulated next states (cf. Eq. (2.4)).

Among the Ny samples for state x, Ng(x) denotes the number of samples using
action a. If the sampling is done appropriately, we might expect that N, 3 (x)/Ng pro-
vides a good estimate of the likelihood that action a is optimal in state x, because
in the limit as No — oo, the sampling scheme should lead to Ng* (x)/Ng — 1 if a*
is the unique optimal action, or if there are multiple optimal actions, say a set A*,
then ZaeA* Nc?(x)/No —1,1ie., {N,(l)(x)/No}aeA(x) should converge to a probabil-
ity distribution concentrated on the set of optimal actions. For this reason, we use
a weighted (by Nfl) (x)/No) sum of the currently estimated value of Q(x,a) over
A(x) to approximate V' (x) (cf. Eq. (2.5)). Ensuring that the weighted sum concen-
trates on a* as the sampling proceeds will ensure that in the limit the estimate of
Vi (x) converges to V' (x).

The running-time complexity of the UCB adaptive sampling algorithm is
O((JA|N)H), where N = max; N;. To see this, let M; be the number of recur-
sive calls made to compute \A/l.N" in the worst case. At stage i, the algorithm makes
at most M; = |A|N; M,y recursive calls (in Initialization and Loop), leading to
Mo = O((JAIN)®). In contrast, backward induction has O(H|A||X|*) running-
time complexity. Therefore, the main benefit of the UCB sampling algorithm is
independence from the state space size, but this comes at the expense of exponential

2.1 Upper Confidence Bound Sampling 25

(versus linear, for backwards induction) dependence on both the action space and
the horizon length.

2.1.3 Alternative Estimators

We present two alternative estimators to the optimal reward-to-go value function
estimator given by Eq. (2.5) in the UCB sampling algorithm. First, consider the
estimator that replaces the weighted sum of the Q-function estimates in Eq. (2.5) by
the maximum of the estimates, i.e., fori < H,

\A/Z.N"(x)z max Q;Vi(x,a). (2.6)
acA(x)

For the non-adaptive case, it can be shown that this estimator is also asymptotically
unbiased, but with a finite-sample “optimistic” bias in the opposite direction as
the original estimator (i.e., upwards for maximization problems and downwards for
minimization problems such as the inventory control problem).

Next, consider an estimator that chooses the action that has been sampled the
most thus far in order to estimate the value function. It can be easily shown that this
estimator is less optimistic than the previous alternative, and so combining it with
the original estimator gives the following estimator:

1
"}iNi (x) = max{QlM (x.d). Z NaT(x)QfV, (x, a)}, ae argmax{Nt’;(x)},
acA(x) ! a
2.7)
which would again replace Eq. (2.5) in the algorithm. Intuitively, the rationale be-
hind combining via the max operator is that the estimator would be choosing the
best between two possible estimates of the Q-function.

It is conjectured that all of these alternatives are asymptotically unbiased, with
the estimator given by Eq. (2.6) having an “optimistic” bias (i.e., high for maxi-
mization problems, low for minimization problems). If so, valid, albeit conservative,
confidence intervals for the optimal value could also be easily derived by combining
the two oppositely biased estimators. Such a result can be established for the non-
adaptive versions of these estimators, but proving these results in our setting and
characterizing the convergence rate of the estimator given by Eq. (2.6) in a similar
manner as for the original estimator is considerably more difficult, so we restrict our
convergence analysis to the original estimator.

2.1.4 Convergence Analysis

Now we show the convergence properties of the UCB sampling algorithm. In par-
ticular, we show that the final estimate of the optimal value function generated by

26 2 Multi-stage Adaptive Sampling Algorithms

One-Stage Sampling Algorithm (OSA)
Input: state x € X and n > |A(x)|.
Initialization: Simulate next state f(x,a, w{), w{ ~ U(0, 1) for each a € A(x); set T (i) = 1
VYa € A(x), n =|A(x)|, and
Q(x, a)= R/(x, a, w’l’) + yU(f(x,a, w‘l’)) Va € A(x),

where {w‘;} is the random number sequence for action a,
T7 (i) is the number of times action a has been sampled thus far,
and 7 is the overall number of samples thus far.

Loop until 7 = n:

o Generate w‘%;} a1~ U (0, 1) for current estimate of optimal action:
. (Q(Y+ U 2Inn)
a € arg max x,a —),
acA(x) " TE)
where
T ()
O(x,a)= ! Z [R'(x,a,w) +yU(f(x.a,w))] (2.8)
,a)= »ad, W; Y ya, W) | .

T (n)

j=1

e Update Q-function estimate for a = a via (2.8) using simulated next state
f(x,a, w‘};(ﬁ)ﬂ), with 73 (n) < T’ (n) + 1.

e n<n+1.

Output:

- T ~
=Y 2o0.a. 2.9)
acA(x) n

Fig. 2.4 One-stage sampling algorithm (OSA) description

the algorithm is asymptotically unbiased, and the bias can be shown to be bounded
by a quantity that converges to zero at rate O (lei 61 11;\}1}/).

We start with a convergence result for the one-stage approximation. Consider the
following one-stage sampling algorithm (OSA) in Fig. 2.4 with a stochastic value
function U defined over X, where U (x) for x € X is a non-negative random vari-
able with unknown distribution and bounded above for all x € X. As before, every
sampling is done independently, and we assume that there is a black box that re-
turns U (x) once x is given to the black box. Fix a state x € X and index each action
in |A(x)| by numbers from 1 to |A(x)|. Consider an |A(x)|-armed bandit problem
where each a is a gambling machine. Successive plays of machine a yield “ban-
dit rewards” that are i.i.d. according to an unknown distribution 7, with unknown
expectation

Ox,a)= E[R/(x, a,w)—+ yE[U(f(x, a, w))]], w~U(Q,]1)

2.1 Upper Confidence Bound Sampling 27

and are independent across machines or actions. The term 7)) (n) signifies the num-
ber of times machine a has been played (or random number for action a has been
sampled) by OSA during the n plays. Define the expected regret p(n) of OSA after
n plays by
A
p(m)=V@@n— Y Q@ a)E[T; 0],
a=1

where V (x) = maxsecax) Q(x, a), and let

Umax = max Q(x, a) = max V(x).
xX,a X

We now state a key theorem in [4], which will be the basis of our convergence
results for the OSA algorithm.

Theorem 2.1 For any x with |A(x)| > 1, if OSA is run on |A(x)|-machines having
arbitrary bandit reward distributions 11, ..., | Ax)| With finite Unax, then

2

8U2. Inn 14
s B raies (145 e - owa)]

a:Q(x,a)<V(x)

where

V(x) = max (E[R’(x, a,w)+)/E[U(f(x, a, w))]]), w~U(@,1), Vx € X,

acA(x)

and Q(x, a) is the expected value of bandit rewards with respect to n,.

Proof The proof is a slight modification of the proof of Theorem 1 in [4]. For
a € A(x), define A, := V(x) — Q(x,a) and Oy, (x,a) = %Z?ZI(R’(x,a, w?) +
yU(f(x,a, w)). Let crs = Umax+/2Inr)/s. Let M; = a be the event that ma-
chine a is played at time #. For any machine corresponding to an action a, we find
an upper bound on T} (n) for any sequence of plays. For an arbitrary positive inte-
ger £, we have

n
Tim=1+) I{M=a)
1=[A(x)|+1

n
<t+ Y IH{My=a T ¢—1) =t}
1=|A(x)|+1

n
=+ Z I{QT;*(t—n(xaa*)+Ct—1»T;*<f—1>
1=|A(x)|+1

< Orr—1y(x, @) + cr—1.7x -1y, TS (1 — 1) > ¢}

28 2 Multi-stage Adaptive Sampling Algorithms

<L+ Z 1 mm(Q(*)+Ct—1,s)

O<s<t
t=|A(x)|+1

< max (Qy,(x,a) +ci— lsa)}

L<s,<t

n t—11—1

<C+Y Y D HOs(x.a*) ey < Oy, (x.0) + a1y, }- (2.10)

t=1 s=1s,=¢

Next observe that if 7{ QS (x,a*)+cr5 < Qsﬂ (x,a)+ct5,} =1, then at least one of
the following events must be true:

Os(x,a*) < V(x) —cry. (2.11)
Oy, (x,a) = Q(x,a) +Cr g, (2.12)
Vx) < Qx,a)+2c,- (2.13)

By using Hoeffding’s inequality [86] we can bound the probability of events (2.11)
and (2.12):
P(Os(x.a*) < V() —ers) e =174,
P(Qsa (x,a)>Q(x,a)+ Ct,sa) <4t _ 4

Note that for s, > [(8U, lnt)/A3'|, (2.13) cannot be true for any #, since

max

Vx)—Q@x,a) —2¢;5, = V(x) — Q(x,a) —2Umaxv/21Int /s,
>Vx)—0x,a) — A, =0.

Therefore, it follows that by taking ¢ = { Uha ln"'| in (2.10), we have

n t—11t-1

E[Tym] <t+> 3 Y [P(Os(x.a*) = V(x) —cry)

t=1 s=1s,=¢

+ P(Qy,(x,a) = Q(x,a) +c15,) |

SU oo t—1 t—1
5[ma* —‘+2222t—4
t=1 s=1s,=1

SUT%“‘X hn 4T (2.14)
- (V(X)— O(x, a))2 3" '

2.1 Upper Confidence Bound Sampling 29

By the definition of p(n), we have

[A()] [A(X)]
pm)=V(x) Y T m)— Y Ok, a)E[T; ()]
a=1 a=1

Z [7Xm](V) - 0(x, @)

< Y ETm](Ve) - 0k, a).

a:Q(x,a)<V(x)

and the proof is completed by applying the bound given by (2.14). U

Now let ¢ (x) be the set of non-optimal actions at state x, given by ¢ (x) = {a |
O(x,a) < V(x), a € A(x)}, and whenever ¢ (x) # @, we define the difference be-
tween the largest and the second largest expected bandit rewards by

a(x)= rr;)ln (V(x) Q(x,a)). (2.15)
ae
Throughout the analysis, we assume that «(x) satisfies the following condition.
Assumption 1 There exists a constant C > 0 such that

inf a(x) > C.
xeX

Note that Assumption 1 is trivially satisfied if the state space X is finite.
The convergence of the OSA algorithm is summarized in the following lemma.

Lemma 2.2 Given a stochastic value function U defined over X with finite Unax,
suppose we run OSA with the input n for any x € X with A(x) > 1. If Assumption 1
is satisfied, then

E[V”(x)] — V&) asn— oo.

Proof Observe that max,(V (x) — Q(x,a)) < Unax and 0 < a(x) < Upax. Define

[A(x)]
~ T
7(x) = a ()
a=1
Applying Theorem 2.1, we have
0=V - E[V)]= P
n

- 8Uny (AW = Dlnn (1 N n_z) (A@)] = D) Umax
no(x) 3 n

30 2 Multi-stage Adaptive Sampling Algorithms

Cilnn C
22,

n n

=<

(2.16)

for some constants C and C, where the last inequality follows from Assump-
tion 1 and the fact that p(n) = 0 if ¢ (x) = @. From the definition of V" (x) given by
Eq. (2.9), it follows that

V() — E[V'"()] = V() — E[V(x) - V() + V()]

=V) - E[V()]

+E[> @(Q(x,a)—é(x,a))] (2.17)

acA(x)

Letting n — o0, the first term V (x) — E [V (x)] is bounded by zero from below with
convergence rate of O(II’T”) by (2.16). We show now that the second expectation
term is zero.

Note that for every finite n, 7,7 (n) < n < oo and the event {7 (n) = k} is inde-
pendent of {wy, |, ...}. Let g (x) = E[R (x,a, w?) +yU(f(x,a, w?))]. Then,

T -
E|: > 1 (00 a) - Q(x,a))]

acA(x)

T, (n)
_ T (n) 1 S
_E|: Z n <Tax(n) = Ha(x)

acA(x)

T} (n)
1 X / a a
~ T Z [R'(x,a, wj) +yU(f(x,a, wj))]):|

j=1

S| =

(> E[T(m)]pa(x)

acA(x)

> E[Tgé)[’?’(x,a,w?)+VU(f(x,a,wj?))]D=0,

acA(x) j=1

by applying a result analogous to Wald’s equation.
Since

V(x)—E[V"(x)] = V&) — E[VW)],

the convergence follows directly from Eq. (2.17).
Therefore, because x was chosen arbitrarily, we have, for all x € X,

E[V'(x)] > V(x) asn— oo,

which concludes the proof of Lemma 2.2. g

2.1 Upper Confidence Bound Sampling 31

We now state the main convergence theorem for the UCB sampling algorithm,
whose proof is based upon an inductive application of Lemma 2.2.

Theorem 2.3 Assume that |A(x)| > 1 for all x € X. Suppose the UCB sampling
algorithm is run with the input N; for stage i =0,..., H — 1, and an arbitrary
initial state x € X. If Assumption 1 is satisfied, then

(i) Timpg— o0 M, oo -+ My, oo E[Vy " (1)] = Vi (x).
(i) Moreover, the bias induced by the algorithm is bounded by a quantity that con-

verges fo zero at rate O(ZH 1 lan)
H-1
5 In N;
Vo) = E[Vp' (0] < O(Z ; l)’ xeX
i=0 !
Proof Part (i). From the definition of VHH o
1 NaH_I(X)
NH) = Z Nu_1 Z (R (x,a, wi)~|—yV (f(x,a,w?)))

acA(x) j=1

NH—l(x)
= E ai(Rmax‘f‘V‘O):Rmax’ xeX.
Nu—1
acA(x)

Similarly for VZ,V 3?7, we have

NH*Z(X)

1
NH 2(x) Z x a, U)a)‘f‘)/VHH]I(f()C,a,w?)))
acA(x) N - j=1
NH_Z(X)
< Z a—(Rmax+VRmax)=Rmax(1+y)a xeX.

Ny_»

acA(x)

Continuing this backwards, we have forallx € X andi =0, ..., H — 1,
H—i—1
V,'Ni (x) < Rmax Z ¥! < Rmax(H —i).
j=0

Therefore, from Lemma 2.2 with Upax = Rmax(H — i), we have for i =
0,..., H — 1, and for arbitrary x € X,

E[0] @] " max (B[R ¢ a,w) +y BV (£ 0 w)]).

32 2 Multi-stage Adaptive Sampling Algorithms
But for arbitrary x € X, because \A/I[{VH ®)=V5(x)=0, x e X,

[NH 1()]NH_) VH L),

which in turn leads to E [VN” 2(x0)] — V;_‘I ,(x) as Ng_p — oo for arbitrary
x € X, and by an inductive argument, we have

lim lim --- lim E[Voo(x)] Vo(x) forallxeX,

N()*)OONI—)OO NH 1—>0Q

which concludes the proof of the first part of Theorem 2.3.

Part (ii)). We now argue that the bias of the optimal function estimator in the
UCB sampling algorithm is bounded by a quantity that converges to zero at rate
oy)t 1“N') Define ¥; € B(X) such that ¥; (x) = E[V," (x)] for all x € X and
i=0,. —land Yy(x) = V* (x) =0, x € X. In the proof of Lemma 2.2 (see
Eq. (2.17)), we showed that fori =0, ..., H — 1,

In N;
T(Wi+1)(x)—l1’i(X)§0(N) xeX,

where T is defined in Eq. (1.18). Therefore, we have

(lnNo)
TW)(x) —¥(x) <O , xeX. (2.18)
No
and
In Ny
l1’1(JC)ZT('1’2)(X)—0(N) xeX. (2.19)
1

Applying the T-operator to both sides of (2.19), and using the monotonicity prop-
erty of T, we have

2 <1nN1>
TW)X)=>T“(W)(x)— 0 v) xeX. (2.20)
1

Therefore, combining (2.18) and (2.20) yields

2 lnNO lan
T () (x) —%(x) <0 + , xeX.
No Ny

Repeating this argument yields

TH(\I/ < ll'lN,')
H)(x) —¥(x) <0 , xeX. (2.21)

2.1 Upper Confidence Bound Sampling 33

Observe that TH (W) (x) = VO* (x), x € X. Rewriting (2.21), we finally have

AN

e\ i

V(;‘(x)—E[VOO(x)]§0<'EO N), xeX,
=

and we know that VO* x) — E [VONO(x)] > 0, x € X. Therefore, it implies that
the worst possible bias is bounded by the quantity that converges to zero at rate

owing o) -

2.1.5 Numerical Example

To illustrate the algorithm, we consider some computational experiments on a finite-
horizon inventory control problem with lost sales. The objective is to find the (non-
stationary) policy to minimize expected costs, which comprise holding, order, and
penalty costs. Demand is a discrete random variable. Given an inventory level, or-
ders are placed and received, demand is realized, and the new inventory level for the
period is calculated, on which costs are charged.

Let D; denote the demand in period ¢, x; the inventory level at the end of period
t (which is the inventory at the beginning of period ¢ + 1), a; the order amount in
period ¢, p the per-period per-unit demand lost penalty cost, & the per-period per-
unit inventory holding cost, K the fixed (set-up) cost per order, and M the maximum
inventory level (storage capacity), i.e., x; € {0, 1, ..., M}. Then the state transition
follows the dynamics:

X41=(+a;,— D)7
The objective function is the expectation of the total cost given by

H—
[K - Ha; > 0} —G—hxt':_l —i—pxt_ﬂ],
0

—_

=

where xg is the starting inventory level, H is the number of periods (time horizon).
Note that we are ignoring per-unit order costs for simplicity.

We consider two versions: (i) fixed order amount ¢; (ii) any (integral) order
amount (up to capacity). In both cases, if the order amount would bring the in-
ventory level above the inventory capacity M, then that order cannot be placed, i.e.,
that order amount action is not feasible in that state. In case (i), there are just two
actions (order or no order), whereas in case (ii), the number of actions depends on
the capacity limit.

The examples presented here were chosen to be simple enough to allow the
optimal solution to be determined by standard techniques once the distribution is
given, so that the performance of the algorithms could be evaluated. However, the
algorithms themselves use no knowledge of the underlying probability distributions

34 2 Multi-stage Adaptive Sampling Algorithms

UCB Sampling Algorithm for Minimization Problems
Input: stage i # H, state x € X, N; > maxyey |A(x)].
(Fori=H, V)" (x) = V" (x)=0.)
Initialization: Simulate w{ ~ U (0, 1) for each a € A(x);
set Ni(x) =1Va e A(x), i = |A(x)|, and
0" .a)=R'(x.a,wl) +y V[(f(x.a.wf)) YaeA).

Loop until 7 = N;:

a

e Sample Wi o1~ U (0, 1) for current estimate of optimal action a*:
i € argmi (Q”"()~ (H —i) 21“’3)
acargmin| Q;" (x,a) — (H —i : ,
acA@) \ Ny (x)
where

Ni(x)

Z [R/(x,a,w?)+y‘7i]j_if'(f(x,a,w?))]. (2.22)
Jj=1

ANi —
0 0= s

e Update QIN’ (x, a) estimate via (2.22) using simulated next state
f(x,a, w[},{(ﬁ)-%—l)’ with N (x) < N3 (x) + 1.

e n<n+1.

Output:

W= 3 Mo g, (223)

acA(x) !

Fig. 2.5 Modified UCB algorithm for minimization problems

driving the randomness in the systems, specifically in this case the demand distri-
bution. Furthermore, there is no structural knowledge on the form of the optimal
policy.

In actual implementation, a slight modification is required for this example, be-
cause it is a minimization problem, whereas the UCB sampling algorithm was writ-
ten for a maximization problem. Conceptually, the most straightforward way would
be to just take the reward as the negative of the cost function. However, we instead
leave the problem as a minimization, in which case we need to replace the “max”
operator with the “min” operator and the addition with subtraction in (2.3):

e '(QN"()= (H—i) 21@)
a €argmin| Q;" (x,a) — —1 - ,
acA(x) \ ' Nj(x)

where Rpmax has been replaced by 1, because empirical results indicated that this
“unscaled” version exhibited better performance for this particular inventory control

2.1 Upper Confidence Bound Sampling 35

problem. The explicit modified UCB algorithm for minimization problems is given
in Fig. 2.5.

The alternative estimators would then be obtained by replacing the final estimator
given by Eq. (2.23) in Fig. 2.5 by the following, corresponding to Eqgs. (2.6) and
(2.7), respectively:

Vi) = min OV (x,a), (2.24)
acA(x)

Vi) = min{ 0V (x.a), Y. % 0" (x. a)}, (2.25)

acA(x) !

where the operator in defining a € arg max,{N (; (x)} remains a maximization opera-
tion.

With K =0 (no fixed order cost), the optimal order policy is easily solvable
without dynamic programming, because the periods are decoupled, and the problem
reduces to solving a single-period inventory optimization problem. In case (i), the
optimal policy follows a threshold rule, in which an order is placed if the inventory
is below a certain level; otherwise, no order is placed. The threshold (order point) is
given by

s = m>ig{x thE[(x+q—D)*|+ pE[(D—q—x)"]| = hE[(x — D)*]
+ pE[(D—x)*]},

i.e., one orders in period ¢ if x; < s (assuming that x; + ¢ < M; also, if the set
is empty, then take s = oo, i.e., an order will always be placed). In case (ii), the
problem becomes a newsboy problem, with a base-stock (order up to) solution given
by

S=F'(p/(p+h)),

i.e., one orders (S — x;)T in period ¢ (with the implicit assumption S < M).

For the K > 0 case (i), the optimal policy is again a threshold (order point) policy,
but the order point is non-stationary, whereas in case (ii), the optimal policy is of the
(s, S) type, again non-stationary. To obtain the true solutions, standard backwards
induction was employed, using knowledge of the underlying demand distribution.

For the numerical experiments, we used the following parameter settings: hori-
zon H = 3; capacity M = 20; initial inventory xo = 5; demand D, ~ DU (0, 9)
(discrete uniform); holding cost & = 1; penalty cost p = 1 and p = 10; fixed order
cost K =0 and K = 5; fixed order amount for case (i): ¢ = 10. Note that since the
order quantity is greater than the maximum demand for our values of the parameters,
i.e., ¢ > D, always, placing an order guarantees no lost sales.

Tables 2.1 and 2.2 give the performances of these estimators for each of the
respective cases (i) and (ii), including the optimal value and policy parameters. Fig-
ures 2.6, 2.7, 2.8, and 2.9 show the convergence of the estimates as a function of

36 2 Multi-stage Adaptive Sampling Algorithms

Table 2.1 Value function estimate for the inventory control example case (i) as a function of the
number of samples at each state: H =3, M =20,x0 =5, D; ~ DU(0,9),q = 10, h = 1, where
each entry represents the mean based on 30 independent replications (standard error in parentheses)

(K, p) Optimal N Estimator 1 Estimator 2 Estimator 3
K=0 10.440 4 15.03 (0.29) 9.13 (0.21) 9.56 (0.32)
p=1 s=0 8 12.82 (0.16) 10.21 (0.10) 10.30 (0.10)
16 11.75 (0.09) 10.33 (0.08) 10.38 (0.08)

32 11.23 (0.06) 10.45 (0.06) 10.49 (0.06)

K=0 24.745 4 30.45 (0.87) 19.98 (0.79) 20.48 (0.82)
p=10 5=6 8 28.84 (0.49) 23.09 (0.55) 23.68 (0.52)
16 26.69 (0.38) 23.88 (0.44) 23.94 (0.45)

32 26.12 (0.14) 24.73 (0.19) 24.74 (0.18)

K=5 10.490 4 18.45 (0.29) 10.23 (0.21) 10.41 (0.22)
p=1 51 =8 8 14.45 (0.15) 10.59 (0.10) 10.62 (0.10)
ii —o 16 12.48 (0.10) 10.51 (0.10) 10.52 (0.10)

32 11.47 (0.07) 10.46 (0.06) 10.46 (0.06)

K=5 31.635 4 37.52 (0.98) 26.42 (0.88) 26.92 (0.89)
p=10 51 =2 8 36.17 (0.43) 30.13 (0.49) 30.41 (0.51)
ji _s 16 33.81 (0.40) 30.76 (0.43) 30.80 (0.43)

32 33.11 (0.16) 31.62 (0.22) 31.64 (0.22)

the number of samples at each stage for each of the respective cases (i) and (ii) con-
sidered. In each table and figure, estimator 1 stands for the original estimator using
Eq. (2.23), and estimators 2 and 3 refer to the estimators using Eqs. (2.24) and (2.25)
with a* € arg maxa{NC’; (x)} in place of Eq. (2.23), respectively. The results indicate
convergence of all three estimators, with the two alternative estimators providing
superior empirical performance over the original estimator. We conjecture that this
is due to the fact that the original estimator’s use of a weighted average is too con-
servative, thus leading to unnecessarily slow convergence. We suspect this would be
the case for the non-adaptive sampling version using a weighted average estimator,
too.

Choosing an appropriate sample size is critical in practical applications. The em-
pirical performance of the two alternative estimators indicates that a heuristic stop-
ping rule for choosing the number of samples at each stage could be based on these
two estimates, which showed rapid convergence in the numerical examples. This
convergence implies that in Eq. (2.7), the first term in the “max” operator dominates
the second term (i.e., the original estimator), and the actions that have been sampled
the most almost “always” yield the largest Q-function values; in other words, at this
point, estimators 2 and 3 are “almost” the same, so if they are biased in opposite di-
rections, they must have reached a sample size at which they are “nearly” unbiased.

2.2 Pursuit Learning Automata Sampling 37

Table 2.2 Value function estimate for the inventory control example case (ii) as a function of the
number of samples at each state: H =3, M =20,x0 =15, D; ~ DU(0,9), h = 1, where each entry
represents the mean based on 30 independent replications (standard error in parentheses)

(K, p) Optimal N Estimator 1 Estimator 2 Estimator 3

K=0 7.500 21 24.06 (0.16) 3.12 (0.17) 9.79 (0.21)

p=1 S=4 25 22.05 (0.12) 5.06 (0.12) 6.28 (0.19)

30 20.36 (0.11) 5.91 (0.09) 6.47 (0.09)

35 18.82 (0.11) 6.26 (0.10) 6.62 (0.11)

K=0 13.500 21 29.17 (0.21) 6.04 (0.30) 13.69 (0.46)

p=10 §=9 25 28.08 (0.21) 9.28 (0.23) 12.06 (0.29)

30 27.30 (0.19) 11.40 (0.20) 13.28 (0.23)

35 26.06 (0.16) 12.23 (0.18) 13.07 (0.16)

K=5 10.490 21 33.05 (0.12) 8.73 (0.21) 18.62 (0.44)

p=1 51 =87 ? :8 25 29.99 (0.10) 10.96 (0.11) 11.79 (0.16)

2 _o Si —o 30 27.45 (0.10) 11.22 (0.05) 11.52 (0.07)

* 35 25.33 (0.09) 10.96 (0.06) 11.12 (0.07)

K=5 25.785 21 39.97 (0.22) 17.78 (0.49) 26.76 (0.52)

p=10 1= g~ gl = g 25 39.01 (0.19) 22.68 (0.26) 25.09 (0.33)
§2=0,02 =

=6 5—9 30 38.03 (0.16) 24.35 (0.17) 25.45 (0.27)

35 36.89 (0.12) 24.71 (0.23) 25.51 (0.28)

Once this is the case, it may be preferable to perform more independent replications
at a particular action than to sample more actions (larger N).

2.2 Pursuit Learning Automata Sampling

The second algorithm in the chapter is the pursuit learning automata (PLA) sampling
algorithm. We analyze the finite-time behavior of the PLA sampling algorithm, pro-
viding a bound on the probability that a given initial state takes the optimal action,
and a bound on the probability that the difference between the optimal value and
the estimate of it exceeds a given error. Similar to the UCB algorithm, the PLA
sampling algorithm constructs a sampled tree in a recursive manner to estimate the
optimal value at an initial state and incorporates an adaptive sampling mechanism
for selecting which action to simulate at each branch in the tree. In the PLA algo-
rithm, the action is determined by sampling from a probability distribution, which
is iteratively updated based on a probability estimate for the optimal action. We also
discuss how to apply the PLA sampling algorithm in the direct context of partially
observable MDPs (POMDPs).

The PLA sampling algorithm extends in a recursive manner (for MDPs) the pur-
suit algorithm from learning automata that is designed to solve (non-sequential)

38 2 Multi-stage Adaptive Sampling Algorithms
p=1
50 I
—— optimal
45+ —¥— estimator 1 |
-7 estimator 2
a0l —A— estimator 3 | |
X std err
)
= 35 .
£
@ 301 8
o
c
S o5f .
o
c
2 i
©
=
< i
>
% #
0 | | | | |
10 15 20 25 30
#samples at each stage
p=10
50 I
— optimal
45 —*— estimator 1 |
-7~ estimator 2
20k —A— estimator 3 | |
- X std err
2 4
©
£
G i
o
c
9
S
c
2 i
®
=
< i
>
101 8
5F i
0 | | | | |
10 15 20 25 30

#samples at each stage

Fig. 2.6 Convergence of value function estimate for the inventory control example case (i) ¢ = 10
as a function of the number of samples at each state: H =3, M =20,x0 =5, D; ~ DU(0,9),

h=1,K=0

stochastic optimization problems. A learning automaton is associated with a finite
set of actions (candidate solutions) and updates a probability distribution over the set
by iterative interaction with an environment and takes (samples) an action accord-
ing to the newly updated distribution. The environment provides a certain reaction

2.2 Pursuit Learning Automata Sampling 39

p=1
50 T
—— optimal
451 . . —— estimator 1 |
—7— estimator 2
40k —A— estimator 3 | |
x - std err
Q
= 351 B
£
® 301 b
]
c
§ ok i
©
c
2 20 .
[
=]
S 15 N
108
5 i
0 I I I I I I
5 10 15 20 25 30
#samples at each stage
p=10
50 T
—— optimal
—— estimator 1 |
—v— estimator 2
—A— estimator 3 | |
x- stderr
2 i
© .
£ AR
3 - 1
)
c
K] B
©
c
2 i
o
3
S 15 -
101 7
5K 4
0 | | | | | |
5 10 15 20 25 30

#samples at each stage

Fig. 2.7 Convergence of value function estimate for the inventory control example case (i) ¢ = 10
as a function of the number of samples at each state: H =3, M =20,x0 =5, D; ~ DU(0,9),
h=1,K=5

(reward) to the action taken by the automaton, where the reaction is random and the
distribution is unknown to the automaton. The automaton’s aim is to learn to choose
the action that yields the highest average reward. In the pursuit algorithm, the au-
tomaton pursues the current best action, which is estimated using sample average

40 2 Multi-stage Adaptive Sampling Algorithms

p=1

160

— optimal

—*— estimator 1
140 —— estimator 2 []

—A— estimator 3

x - std err

120

value function estimate
®)
© . O

60
40
20
0 - e ¥ hd
10 15 20 25 30 35
#samples at each stage
p=10
160
— optimal
—*— estimator 1
140 —— estimator 2 []
—A— estimator 3
X i
1201 std err

value function estimate

35

#samples at each stage

Fig. 2.8 Convergence of value function estimate for the inventory control example case (ii) as a
function of the number of samples at each state: H =3, M =20,x90 =5, D; ~DU(0,9),h =1,
K=0

rewards, by increasing the probability of selecting that action while decreasing the
probability of selecting all other actions.

Since learning automata are well-known adaptive decision-making devices op-
erating in unknown random environments, the PLA sampling algorithm’s sampling
process of taking an action is adaptive at each stage. At each given state in a given

2.2 Pursuit Learning Automata Sampling 41

160

—H—
140 -
A

X

optimal
estimator 1
estimator 2 [
estimator 3
std err

value function estimate

% ¥ X =
0 ! ! ! ! !

10 15 20 25 30 35
#samples at each stage

p=10

optimal
estimator 1
estimator 2 [
estimator 3
std err

value function estimate

10 15 20 25 30 35
#samples at each stage

Fig. 2.9 Convergence of value function estimate for the inventory control example case (ii) as
a function of the number of samples at each state: H =3, M = 20,x0 =5, D; ~ DU(0,9),
h=1,K=5

stage, a fixed sampling budget is allocated among feasible actions as in the UCB
sampling algorithm, and the budget is used with the current probability estimate for
the optimal action. A simulated state corresponds to an automaton and updates cer-
tain functions (including the probability distribution over the action space) at each
iteration of the algorithm.

42 2 Multi-stage Adaptive Sampling Algorithms

Based on the finite-time analysis of the pursuit algorithm, we analyze the finite-
time behavior of the PLA sampling algorithm, providing:

(i) a bound on the probability that the initial state at stage O takes the optimal
action, in terms of sampling parameters of the PLA sampling algorithm, and

(i) a bound on the probability that the difference between the estimate of VO* (x0)
and V(;‘ (x0) exceeds a given error.

2.2.1 Algorithm Description

Figure 2.10 presents the PLA sampling algorithm for estimating V;*(x) for a given
state x. The inputs to the algorithm are similar to the UCB algorithm: a state x €
X and the stage i, plus sampling parameters N; > 0 and u; € (0, 1), where the
latter is particular to the PLA sampling algorithm and the former does not require
sampling every action at least once, as in the UCB algorithm. The output is the same
as in the UCB algorithm: XA/I.N" (x), an estimate of V;*(x), the optimal reward-to-go

value for state x and stage i, where Vg” x) = Vg” (x) =0VNpy,x € X, butitis
estimated using the Q-function value at the estimated optimal action (cf. Eq. (2.29)),
somewhat analogous to the UCB algorithm alternative estimator given by Eq. (2.7).

As in the UCB sampling algorithm, whenever \A/l.l,v"’ (y) (for future periods i’ > i
and simulated next states y) is encountered in the Loop portion of the algorithm
at (2.26), a recursive call is required. The initial call to the algorithm is done with
stage i = 0, the initial state xo, No, and o, and every sampling is independent of
previous samplings.

As in the UCB sampling algorithm, the PLA sampling algorithm builds a sam-
pled tree of depth H, with the root node being the initial state x¢ at stage O and a
branching factor of N; at each level i (level O corresponds to the root). The root
node x initializes the probability distribution over the action space Py, as the uni-
form distribution (see the Initialization step in the PLA sampling algorithm). At
each iteration in the Loop step, an action is sampled from the probability distri-
bution Py, (k) and a random number wy is generated independently (an action and
a random number together corresponding to an edge in the tree). For the sampled
action a(k) € A(xgp), the Q-function estimate is updated using the simulated reward
R'(xg, a(k), wi) and next state f (xg, a(k), wg), and the count variable Ng(k) (xp) is

incremented, where a recursive call is made to estimate VINI at the simulated next

state. This is followed by updating the estimate of the optimal action—an action
that achieves the current best Q-function value (cf. (2.27))—and then updating the
probability distribution Py, (k) in the direction of the current estimate of the optimal
action a (cf. (2.28)) by adding u; to its probability mass and subtracting a propor-
tional amount from all other actions. This “pursuit” of the current best action gives
the original algorithm its name in its non-recursive one-stage original version. After
Ny iterations, the algorithm estimates the optimal value V{j'(xo) by the Q-function

2.2 Pursuit Learning Automata Sampling

43

Pursuit Learning Automata (PLA) Sampling Algorithm
Input: stage i < H, statex € X, N; >0, u; € (0, 1).
(Fori=H, V" (x) = V)" (x)=0)

Initialization: Set P, (0)(a) = 1/|A(x)|, Ni(x) =0, M;(x,a) =0 Ya € A(x);
k=0.

Loop until kK = N;:
e Sample a(k) ~ Py (k), wy ~U (0, 1).
e Update Q-function estimate for a = a(k) only:

M,'(x,a(k)) <—Mi(x,a(k))
+ R (x.att), wi) + VA (f (. ath), wi),
N} g () < Ni () + 1,

MY (x, a(k))
N:;(k) (x)

e Update optimal action estimate: (ties broken arbitrarily)

Qf.v" (x, a(k)) <«

a € arg max QIN’ (x,a).
acA(x)

e Update probability distribution over action space:
o k< k+1.

Output:

vV = 0N (x, a).

Pk + D(a) < (1 — ui) Pe(k)(a) + pil{a = a} Va e A(x).

(2.26)

2.27)

(2.28)

(2.29)

Fig. 2.10 Pursuit learning automata (PLA) sampling algorithm description

value at the currently estimated optimal action via Eq. (2.29), where

R 1
No
Qy (x0,a) = —5——
0 NO(xp) . 4~
ja(j)=a

> [R'Go.a.wj) + V' (f(xo.a,wp)]s

Zae Axo) Ng(xo) = Np. Note that here for notational simplicity we have not as-
sociated the random number streams {w;} with actions, as in the UCB sampling

algorithm, where we used {wj?}, aeAx).

Analogous to the UCB sampling algorithm, the running-time complexity of the
PLA sampling algorithm is O(N¥) with N = max; N;, independent of the state
space size. (For some performance guarantees, the value N depends on the size of

the action space; see the next section.)

44 2 Multi-stage Adaptive Sampling Algorithms

2.2.2 Convergence Analysis

All of the estimated optimal value and Q-values in the current section refer to the
values from the Qutput step of the algorithm. The following lemma provides a
probability bound on the estimate of the Q-value relative to the true Q-value when
the estimate of the Q-value is obtained under the assumption that the optimal value
for the remaining horizon is known (so that the recursive call is not required).

Lemma 2.4 (Cf. [146, Lemma 3.1]) Given § € (0, 1) and positive integer K such
that 6 < K < 00, consider running the one-stage non-recursive PLA sampling al-
gorithm obtained by replacing (2.26) by

MY (x,a) < MY (x,a) + R (x,a, wp) + VZ (f(x, a, wp)) (2.30)

with Ni > M(K, 8) and 0 < pu; < j1; (K, 8), where

1

= 2K Kl (K\¥ ,

MK,8)=| —In| —| — , ,lli(K,S):l—Z_l/)‘(K!‘s)7
Inl Inl\ &

and |l = %. Then for each action a € A(x), we have

P<§:1{a(j)=a} 51{) <.

j=0

Theorem 2.5 Let {X;, i =1,2,...} be a sequence of i.i.d. non-negative uniformly
bounded random variables, with0 < X; < D and E[X;] = uVi,andlet M € Z be
a positive integer-valued random variable bounded by L. Then for any given € > (0
andn € Z1, we have

1 M
(o
i=

Proof Define Ap(t) := eDI_D#, and let tmax be a constant satisfying tmax # 0
and 1 4 (D + €)Tax — eP™> =0 (see Fig. 2.11).

Let Y, = Zf;l (X; —). It is easy to see that the sequence {Y;} forms a martin-
gale w.r.t. {F;}, where F; is the o-field generated by {Y1, ..., Y;}. Therefore, for

any 7 > 0,

D+e D4e €

ze,M2n> <2 "I T

M
1
P(Mz;xi—uze,Mzn>
1=
=P(Yy = Me, M =>n)
= P(tYy — Ap(@(Y)y = tMe — Ap(D)(Y)y, M = n),

2.2 Pursuit Learning Automata Sampling 45

Fig. 2.11 Sketch of
functions fi(t) =P and
L@ =1+1(D+e)

O Tmax T

where

(V)u=D E[(AY)’|Fja]. AYj=Y; =Y.

Now for any T € (0, Tmax), and for any ny > ng, where ng, n; € Z+,

t—1-

_ D?
D2 (nl no)

t(ny —no)e >

ny

no
> ADm[Z E[(AY))*|Fj] - ZE[(AY;)%E_I]},

Jj=1 Jj=1
which implies that
tnie — Ap(t)(¥)n, = tnoe — Ap(t)(Y)n, VT € (0, Tmax)-

Thus for all T € (0, Tmax),

ZX /LZE,MZH)

i |

< P(tYu — Ap()(Y)m = tne — Ap(t)(Y)n, M > n)
< P(t¥y — Ap(@)(Y)y > tne — Ap(v)nD*, M > n)
P

(eTTM—ADM W > pene=nAp®D® pp >)

It can be shown that (cf. Lemma 1 in [163, p. 505]) the sequence {Z;(r) =
e™Vi=Ap™M) ¢ > 1} with Zo(r) = 1 forms a non-negative supermartingale. From

46 2 Multi-stage Adaptive Sampling Algorithms

the above inequality, it follows that

1 M
P(M EIX[—/,LEE,MZH>
i=

P(etYM—AD(r)<Y)M > etne—nAD(r)Dz)

IA

S P(Sup Z[(T) zetneanD(T)D2>

0<t<L

E[Zo(7)]

e — YT} by maximal inequality for supermartingales [163]
e - D

_ efn(refAD(r)Dz)' (2.31)

By using a similar argument, we can also show that

M
P (% D Xi—ps-—eMz n) < e @D, (2.32)
i=1

Thus by combining (2.31) and (2.32), we have

M
1
P(i 2} Xi—ul>e,M> n) < e n(Te=Ap()D?) (2.33)
1=
Finally, we optimize the right-hand side of (2.33) over t. It is easy to verify that the

optimal t* is given by 7% = % In Dge € (0, Tmax) and

D+e¢e D+e €
= In ——>0.
D D D

The — AD(‘C*)D2
Hence Theorem 2.5 follows. O

Lemma 2.6 Consider the non-recursive PLA sampling algorithm obtained by re-
placing (2.26) by

MY (x,a) < MY (x,a) + R (x, a, wp) + VE (f (6, @, wp)). (2.34)

Assume N;j > A(€,6) and 0 < u; < M;‘(e, 8), where

2M IMcs (2M, 5\ "/ Mes
Ae, 8) = | T80 | Red [28R , (2.35)
In!/ In/ 1)
with
{ " Rmax H In(4/6) —H
M, s =max, 6, ,
(RmaxH + €)In((Rmax H + €)/Rmax H) — €

2.2 Pursuit Learning Automata Sampling 47

1 =2]A)|/QIAX)| — 1), and u} (e, 8) =1 —27YNi_ Consider a fixed i, x € X,
€ >0,and § € (0, 1). Then, for all a € A(x) at the Output step,

P(‘QIN’ (x,a) — Qf(x,)| = €) <.

Proof For any action a € A(x), let I;(a) be the iteration at which action a is cho-
sen for the jth time, let QINIQ (x,a) be the current estimate of Q7 (x,a) at the kth
iteration, and let Né’k(x) be the number of times action a is sampled up to the kth
iteration at x, i.e., Né’k(x) = Z];:o I{a(j) = a}. By the PLA sampling algorithm,
the estimation QlN,’((x, a) is given by (cf. (2.34))

N ()

O, @)= — 5 Y (R a.wiy@) + Vi (f(a wy@)). (236)
a j=1

Since the sequence of random variables {w Ij(a)s j = 1} is i.i.d., a straightforward
application of Theorem 2.5 yields
AN)
P(|0;i(x.a) — Qf (x,a)| = €, NJ¥(x) = K)

,K(RmaxH*—G In RmaxH+e ¢)
< 2@ Rmax H Rmax H Rmax H 7 | (237)

Define the events
Ak = {|Q£J,i(x,a) — Qf(x,a)| =€} and By={Ni*(x)>K]}.
By the law of total probability,
P(Ap) = P(Ar N By) + P(A|Bf) P(Bg) < P(Ax N By) + P(By).

Taking

Ko [Rmax H In(4/8) “
| (RmaxH + €)In((Rmax H + €)/Rmax H) — € |’
we get from (2.37) that P (A N By) < §/2. On the other hand, by Lemma 2.4

1

. 5) -1
P(B{) = P(Ni*(x) <K) < 5 fork>A(K.8/2)and0 < pi <12 A5

Therefore P(Ay,) = P(|QlN" (x,a) — Q7 (x,a)| > €) < for N; > A(e,8) and 0 <
wi < ui (e,), where

M, M s (2Mc 5\ "/ Mes
)»(6, 5) _ €, In l €8 €,)
In!/ In!/)

Rinax H In(4/6) }
(RmaxH + €) In((Ryax H + €)/Rmax H) — 5—‘ '

Mcs = max{6, ’7

48 2 Multi-stage Adaptive Sampling Algorithms

L 1
Wi, 8)=1-2"MN <1277,

Since a € A(x) is arbitrary, the proof is complete. O
We now make an assumption for the purpose of the analysis. The assumption
states that at each stage, the optimal action is unique at each state. In other words,

the given MDP has a unique optimal policy. We will give a remark on this at the end
of this section.

Assumption 2 Forallx e X andi =0,1,..., H — 1,
0; (x) := Q;"(x, a*) — max Qf (x,a) > 0,
a#a*
where V*(x) = O} (x, a™).

Define 6 :=infycx j=0... . m—16i(x). Given §; € (0,1),i =0, ..., H — 1, define

,,,,,

H-1 _
pi=(1=38) [] 1 —snIli=%. (2.38)
i=1

Lemma 2.7 Assume that Assumption 2 holds. Select N; > X(zi%,é,-) (see

_ 1
Eq.(235)and 0 < p; < puf=1-2 N foragiven §; € (0,1), i =0,..., H — 1.
Then under the PLA sampling algorithm,

. 0
P<|V0N0(xo) — VO*(x0)| > 5) <1—-p,
where p is given by Eq. (2.38).

Proof Let X! be the set of sampled states in X by the algorithm at stage i. Suppose
for a moment that for all x € X§+1, with some N;41, (ti+1,and a given §;11 € (0, 1),

A N 0

Consider for x € X!,

Nj (x)
. 1
N;
0" (v = s D[R (v wf) + Vi (f (v @ wf))]
a j:1
where {w?}, j=1... NE’; (x) refers to the sampled random number sequence for

the sample execution of the action a in the algorithm. We find that for any sampled
x € X! at stage i,

2.2 Pursuit Learning Automata Sampling 49

ONi(x,a) — OV (x, a)
1 NE(x)

= Né(x) Zl (‘/}l]-\ﬁl—lrl (f(x’ a, w?)) - Vij—l(f(x’ a, w?)))
J=

Then under the assumption that (2.39) holds, for all @ € A(x) at any sampled x € X!
at stage i,

N ~ N 0
P(|va' (x,a)— 0} (x,a)| < ﬁ)
> (1= 8)N > (1 — 84Nt (2.40)
This is because if for all w{’s, j =1,..., Ni(x),

VA (f (roawf)) = Vi (f (xawf))| < e

for € > 0, then

N ()
1 ,
Ni(x) Z |Vl-/4\f1+1(f(x,a, w?)) - V;:_l(f(x,a, wj’))| <e,
a]=1

which further implies

| Ni(x)

Vi | 20 V2 a0 = Ve w)| <

and therefore

P(|0Y (x,a) — 0N (x,a)| <€)
Ni(x)

> U PV (£ (e acw$)) = Vi (f (@ wf))| <).

From Lemma 2.6, for all a € A(x), with N; > A(0/2%2,8;) and u; € (0,1 —
2= V/Niy for 8; € (0, 1),

. 0)
P(|Q5V'(x,a)—Q;-k(x,a)| > W) <8, xeX.. (2.41)
Combining (2.40) and (2.41),

P(10Y (r.a) — Qx| = 5oy + 55) = (1 = 8)(1 — 8y2) ¥
i *d D=5 T) = i i+1)

50 2 Multi-stage Adaptive Sampling Algorithms
and this yields the result that under the supposition of (2.39), for any x € X §
P(10Y (5 a) - QFr.0)] = 507) = (1= 81 = 14)
i s i =2itl) = i i+1 .
This implies that at the Output step,
ANi * 6 N; i
P(max|0Y (x.a) - Qf(x)] < 3) = (1 =) (1 = 8i)™ 1, ¥ e X{. (242)
ae
From the definition of 6, if
max| 0} (x,a) — 0} (x,a)| <6/2,
acA
then QlN’ (x,a*) > QIN’ (x,a) for all a # a* with a* = argmax . 4 Qf (x, a) (cf. the
proof of Theorem 3.1 in [146]). Therefore, by the definition of ViNi x), (\Z.N" (x) =

maxaea O, (x,a) = Q' (x,a*) and V7 (x) = Q} (x,a*)), with our choice of N; >
_ L
M55, 8;) and p; € (0,1 —27M), we have

AN 0
P(lviN' () = V()] > F) <1—(1=8)(1 =8V

if for all x € Xé‘“, with some N;41, i+1, and a given ;41 € (0, 1),

l+1 * 9
|Vz+1 — Vi 0] > i | < Sit1-

Now apply an inductive argument: since \711{\’ "(x) =Vj(x) =0, x € X, with
Ny_1>M0/28+ sy_1) > 1(0/21,8p—_1) and uy—1 € (0,1 — 27 1/Nu-1),

0 -
<| v [— Vj’;_l(x)|>2—H><8H1, xexH-1,
It follows that with Ny_p > A(0/2%, 8 _2) and upy—o € (0, 1 — 27 1/Nu-2),

P(IV"2 () = Vi (0] > 6/27 1) < 1= (1 = 8_2)(1 — 8) V!

forxeXH 2 and further follows that with Ny _ 3>A(9/2H L SH_3) and ug_3 €
(0,1 —2"V/Nu-3),

0
<| VIR () = Vi)| > 2)

<1—(1—=8g_3)(1— 8H_2)NH(1 — 8p—)Nu-2Ni—1

2.2 Pursuit Learning Automata Sampling 51
for x € X'=3. Continuing this way, we have
Ly 0
P<|V1 L) = Vi) > 2—2>
<1=(1 =81 =8 (1 =83)"M x o (1 = §pgy) V>N

for x € X!. Finally, with No > A(6/4, 89) and o € (0, 1 —271/Noy,

5 0
P<|VON°(XO) — Vg (x0)| > 5)
<1—-(1=8)1 =DM x - x (1 =8y_NNu-1,
which completes the proof. g

Theorem 2.8 Assyme that Assumption 2 holds. Given §; € (0,1),i =0, ..., H — 1,
select Ny > 1(0/2172,8) and 0 < p; <puf=1-2"YNiji=1,... H-1If

Ind
No > A(0/4, 8p) + i
1 =

and 0 < po < ug=1- 2= 1/26/%80) then under the PLA sampling algorithm with
pin Eq. (2.38), forall € € (0, 1),

P(Py(No)(a®) >1—¢€) > p,
where a* € argmax ;¢ 4(,,) Qo (X0, a).
Proof Define the event

E'(k) ={Pg(k)(a*) > 1 — €},
where a* = argmax, .4 Q(x0,a). Let A(9/4,89) = K. Then,

P(E'(k +K))= P(E'(k + K)|E(K))P(E(K)), k=1,2,...,

where the event E(K) is given as {maX,c4 |Q1N" (x,a) — Q7 (x,a)| < 6/2} at itera-
tionk =K.

By selecting No > K = A(§,80) and N; > A(555.8;), i =1,...,H — 1, and
wi’s for §; € (0,1), P(E(K)) > p by Lemma 2.7. We will obtain [such that
P(E'(k + K)|E(K)) = 1 if k > [, proving the statement of the theorem.

From the choice of K = A(6/4, §p), atiteration No > K, for each non-optimal ac-
tion a # a*, Py,(No)(a) is decremented by (1 — o). Therefore, Py, (k + K)(a™) =
1— Za#* Py, (K)(a)(1 — o) and Zu#* Py (K)(a)(1 — po)* < € is satisfied if

_ Ine

52 2 Multi-stage Adaptive Sampling Algorithms

Based on the proof of Lemma 2.7, the following result follows immediately. We
skip the details.

Theorem 2.9 Assume that Assumption 2 holds. Given §; € (0,1),i =0,...,H — 1
1

and € € (0, 0], select N; >)»(2,~€T,5i),0<l/«i <uf=1 -2 N, i=0,...,H—1.
Then under the PLA sampling algorithm with p in Eq. (2.38),

A €
P<|V0N°(xo) — Vi (x0)| > 5) <1-p.

From the statements of Lemma 2.7 and Theorems 2.8 and 2.9, the performance of
the PLA sampling algorithm depends on the value of 6. If 6; (x) is very small or even
0 (failing to satisfy Assumption 2) for some x € X, the PLA sampling algorithm
requires a very high sampling complexity to distinguish between the optimal action
and the second best action or multiple optimal actions if x is in the sampled tree
of the PLA sampling algorithm. In general, the larger 0 is, the more effective the
algorithm will be (the smaller the sampling complexity). Therefore, in the actual
implementation of the PLA sampling algorithm, if multiple actions’ performances
are very close after “enough” iterations in the Loop portion, it would be advisable
to keep only one action among the competitive actions (transferring the probability
mass). The parameter 6 can thus be viewed as a measure of problem difficulty.

Furthermore, to achieve a certain approximation guarantee at the root level of
the sampled tree (i.e., the quality of VONO (x0)), we need a geometric increase in the
accuracies of the optimal reward-to-go values for the sampled states at the lower
levels, making it necessary that the total number of samples at the lower levels
increases geometrically (N; depends on 2/12/6). This is because the estimate error
of V*(x;) for some x; € X affects the estimate of the sampled states in the higher
levels in a recursive manner (the error in a level “adds up recursively”).

However, the probability bounds in Theorems 2.8 and 2.9 are obtained with
coarse estimation of various parameters/terms. For example, we used the worst-
case values of 6;(x),x € X,i =0,...,H — 1 and (RmaxH)?> for bounding
Sup, cx Vi*(x),i =0,..., H — 1, and used conservative bounds in (2.40) and in
relating the probability bounds for the estimates at the two adjacent levels. Consid-
ering this, the performance of the PLA sampling algorithm should probably be more
effective in practice than the analysis indicates here.

2.2.3 Application to POMDPs

The simulation model we consider in this chapter covers the dynamics of partially
observable MDPs (POMDPs) with finite state, action, and observation spaces, as
such a POMDP can be reduced to the equivalent model of an information-state
MDP, where the state space is the set of all possible probability distributions over
the state space of the corresponding POMDP.

2.2 Pursuit Learning Automata Sampling 53

PLA Sampling Algorithm for POMDPs

Input: stage i < H, information state I; € X;, N; >0, u; € (0, 1).
(Fori=H, V" (x) = V)" (x)=0)

Initialization: Set P, (0)(a) = 1/|A(x)|, Ni(x) =0, M;(x,a) =0 Ya € A(x);
k=0.

Loop until kK = N;:
e Sample a(k) ~ Py(k),y ~ I;,z~ P(-|y,a(k)), o~ O(:|z, a(k)).
e Obtain the information-state Iik+l cforye X,

15, =00 (oly.a®) Y P(yly.al) L (y).
yeX

e Update Q-function estimate for a = a(k) only:

M; (x,a(k)) <~ M; (x,a(k))
+ Zr(x’ a(k), Z)Iik+1 (2) + ‘711:’_1?—1 (Iik+1)’
zeX

Nigoy @) < Njoy () + 1,

M (x,a(k))
N:z(k) (x)

e Update optimal action estimate: (ties broken arbitrarily)

vai (x, a(k)) R

a € argmax QIN’ (x,a).
acA(x)

e Update probability distribution over action space:
Py(k+1)(a) < (1 — u) Py (k)(a) + pil{a =a} Vae Ax).
o k< k+1.

Output: Return \A/I.N’ x)= QlN‘ (x,a).

Fig. 2.12 Modified PLA sampling algorithm description for POMDPs

Consider a POMDP model parameterized as follows: X is a finite set of states,
A(x) is a finite set of admissible actions for each x € X, O is a finite set of obser-
vations that provide incomplete state information, and /Iy is the initial information-
state, i.e., a probability distribution over X (/p(x),x € X denotes the probability
of being in state x € X). At stage i, the system is in x; (where this state informa-
tion is unknown to the decision maker). The decision maker takes an action a;, the
system makes a transition to x;4; by the probability P(x;11|x;,a;), I; represents
the decision maker’s knowledge of x;, and the decision maker obtains the reward of
r(xi,a;, xi+1). Atstage i + 1, the decision maker observes an observation generated
with the probability O (0;+1|x;+1, a;). The decision maker updates its information-

54 2 Multi-stage Adaptive Sampling Algorithms

Table 2.3 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (i) as a function of the number of samples at each state: H =3, M =20, x9 =5,
D, ~DU(0,9), h = 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K, p) Optimal N PLA UCB NMS
K=0 7.700 4 7.61 (0.28) 7.08 (0.29) 6.97 (0.30)
p=1 10 7.57 (0.12) 7.64 (0.10) 7.36 (0.18)
15 7.63 (0.09) 7.64 (0.08) 7.46 (0.14)
25 7.70 (0.08) 7.68 (0.08) 7.66 (0.11)
K=0 16.318 4 14.40 (0.44) 13.13 (0.77) 12.98 (0.50)
p=10 10 16.15 (0.23) 16.58 (0.23) 14.30 (0.35)
15 16.17 (0.24) 16.34 (0.14) 14.69 (0.35)
25 16.26 (0.16) 16.45 (0.15) 15.86 (0.20)
K=5 10.490 4 10.46 (0.27) 10.84 (0.36) 10.05 (0.29)
p=1 10 10.72 (0.10) 10.94 (0.13) 10.50 (0.22)
15 10.52 (0.09) 10.80 (0.09) 10.70 (0.16)
25 10.66 (0.07) 10.70 (0.05) 10.54 (0.12)
K=5 27.322 4 24.48 (0.51) 22.19 (0.76) 21.97 (0.72)
p=10 10 26.25 (0.31) 27.00 (0.24) 24.28 (0.49)
15 26.55 (0.25) 26.85 (0.23) 25.22 (0.42)
25 27.19 (0.08) 27.48 (0.08) 26.23 (0.33)
state by

Li1(0) =n00i11ly.a) Y P(ylx.a)li(x), yeX,
xeX

where 7 is the normalizing constant. From this information-state update procedure,
we can induce the probability P(/;+1|/;,a;) and map this into a next-state func-
tion i : ¥ x [0,1] - X;, where ¥ = {(x,a)|x € Xj,a € A(x)} and X7 is the set
of all possible information-states. The reward function R; : ¥ x [0, 1] — RT is
similarly induced. Once the equivalent information-state MDP is constructed, the
PLA sampling algorithm can be applied to the information-state MDP. Figure 2.12
presents the modification of the PLA algorithm (cf. Fig. 2.10) applied to the unre-
duced POMDP model.

2.2.4 Numerical Example

In this section, we compare the performance of the PLA sampling algorithm with
UCB sampling and with the non-adaptive multi-stage sampling (NMS) algorithm

2.2 Pursuit Learning Automata Sampling 55

Table 2.4 Value function estimates of the PLA, UCB, and NMS algorithms for the inventory con-
trol example case (ii) as a function of the number of samples at each state: H =3, M =20, x9 =5,
D, ~DU(0,9), h = 1, where each entry represents the mean based on 30 independent replications
(standard error in parentheses)

(K, p) Optimal N PLA UCB NMS
K=0 7.500 10 6.20 (0.19) 4.20 (0.30) 3.56 (0.28)
p=1 20 6.67 (0.14) 6.99 (0.12) 5.16 (0.18)
30 7.14 (0.09) 7.32 (0.07) 5.57 (0.16)
40 7.20 (0.06) 7.34 (0.05) 6.01 (0.16)
K=0 13.605 10 11.34 (0.28) 6.46 (0.45) 6.57 (0.56)
p=10 20 12.88 (0.26) 13.27 (0.24) 9.48 (0.54)
30 13.32(0.17) 13.92 (0.15) 10.02 (0.34)
40 13.57 (0.14) 14.04 (0.14) 11.53 (0.20)
K=5 10.490 10 10.98 (0.20) 9.33(0.32) 9.14 (0.40)
p=1 20 10.98 (0.10) 11.12 (0.09) 10.32 (0.20)
30 10.86 (0.11) 10.87 (0.05) 9.95 (0.19)
40 10.80 (0.07) 10.85 (0.05) 10.36 (0.18)
K=5 25.998 10 23.48 (0.37) 16.29 (0.71) 16.75 (0.74)
p=10 20 24.53 (0.19) 25.68 (0.16) 21.01 (0.47)
30 25.12 (0.13) 26.19 (0.15) 21.87 (0.34)
40 25.30 (0.14) 26.17 (0.10) 23.89 (0.22)

in [104], using the inventory control problem of Sect. 2.1.5. The numerical results
for UCB sampling are based on the alternative estimator 2 in Sect. 2.1.5 given by
(2.25). Similar to the PLA and UCB algorithms, NMS is also a simulation-tree based
method and estimates the value function at each visited state by taking the minimum
of the Q-value estimates. However, the difference between these algorithms is in
the way the actions are sampled at each decision period: both the PLA and the UCB
algorithms sample actions in an adaptive manner, whereas NMS simply samples
each action for a fixed number of times.

In the simulation experiments, we consider two cases for the action space, which
contains the possible order amounts to be placed: (i) a; € {0, 5, 10}, and (ii) a; €
{0,2,4,6,8,10,12, 14,16, 18,20}, t =0, ..., H — 1. All other parameter values
remain the same as in the examples of Sect. 2.1.5. For simplicity, the number of
samples at each stage, N;, is taken to be the same for alli =0, ..., H — 1, and this
quantity is denoted by N. Thus, the input parameter u; in the PLA algorithm is
chosentobe u; =1— 2_%, independent of stage i. In NMS, whenever a state x is
visited, each admissible action at x is sampled [N /|A(x)|] times.

56 2 Multi-stage Adaptive Sampling Algorithms

K=0, p=1
9 p
— PLA
--- UCB
8.5/ oo NMS
‘== Optimal
L 8r E
©
._g e ! s i ey o=, %
[}
() |
c
ke
©
C -
2
[}
>
©
S |
L L
5'50 5000 10000 15000
total periods simulated
K=0,p=10
18 P
— PLA
-=-- UCB
o NMS
17r == Optimal [
© g eyt R SRty egupdieiel
©]
£
D
e .
c 75
O] -
2
c
2
@ 1
S 14p =
© 1
> 1
i
!
137 7
1
n
[
12 ‘ :
0 5000 10000 15000

total periods simulated

Fig. 2.13 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H =3, M =20,x0=5,D, ~DU(0,9),h=1,K =0

The results, based on 30 independent simulation runs for each algorithm, are re-
ported in Tables 2.3 and 2.4. Figures 2.13, 2.14, 2.15, and 2.16 plot the (averaged)
value function estimates of the algorithms as a function of the total number of peri-
ods simulated. These results indicate that the PLA and UCB algorithms have com-
parable performance, and both outperform NMS in almost all test cases considered.
Moreover, both the PLA and the UCB estimates also show a significant reduction in
the standard error over the NMS estimate.

2.3 Notes 57

12 K=5, p=1
— PLA
--- UCB
o NMS
ey ‘== Optimal []
Q
[]
£ 11
17
[0}
C
£ 105
[5}
c
2 "
° .
2 1of |
®
>
9.5r |
9 i ‘
0 5000 10000 15000
total periods simulated
30 K=5, p=10
— PLA
i -=-- UCB H
o NMS
i o ‘== Optimal H
2 B imimimimim s s s T
©
[]
27 e
8 \F e
5 -
o
E -
c
-E 1
1
8 23f - |
© N
> 22 |
U
21 |
i
20 |
19 | ‘
0 5000 10000 15000

total periods simulated

Fig. 2.14 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (i) as a function of the number of samples
at each state: H =3, M =20,x0=5,D, ~DU(0,9),h=1,K =5

2.3 Notes

The expected regret analysis for multi-armed bandit models motivating the UCB
sampling algorithm goes back to [119] (see, also [27]). The specific index-based
policy used here was first proposed in [1], and the finite-time bounds are based on
the analysis in [4]. The assumption of bounded rewards can be relaxed by using a
result in [1], but the uniform logarithmic bound is not preserved.

2 Multi-stage Adaptive Sampling Algorithms

58
K=0, p=1
— PLA
Sr --.ucB |
NMS
sk ‘== Optimal ||
o) e e e e e ettt
T - -
£
k7]
[0}
c -
o
e 1
2 glLt: J
[} 5 1:
3 |&
1
z 4 .
:
i
b i
3
2 Il
0 1 2 3 4 5 6 7 8
total periods simulated x 10*
K=0, p=10
— PLA
16+ --- UCB i
----- NMS
‘== Optimal
T4 b e e mim i i m = =
(0]
k]
E12 .
"‘;)‘ 1
(0] 1
S10f-) i
S i
o 8rts .
= 1
g |r
60 i
1
1
&
4 .
2 Il Il Il Il
0 1 2 3 4 5 6 7 8
total periods simulated x10*

Fig. 2.15 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
at each state: H =3, M =20,x0=5,D; ~DU(0,9),h=1,K =0

The pursuit algorithm designed with learning automata that motivated the PLA
sampling algorithm presented here for MDPs was introduced in [173] (see also [137]
and [155]). The finite-time analysis of the pursuit algorithm is based on [146], where
bounds on the number of iterations and the parameter of the learning algorithm for
a given accuracy of performance are provided. General introductory material on
learning automata can be found in the book [133] and in the overview survey article
[174], whereas application of learning automata for solving controlled (ergodic)

2.3 Notes

K=5, p=1
12.5 : ‘
— PLA
--- UCB
12r L NMS]
‘== Optimal
115 =
e
©
£ 11
g
o 105
kel
2 10
2
<] .
=2 95rF
© I
g !
9
8.5
8 i i i i i i i
0 1 2 3 4 5 6 7 8
total periods simulated x 10"
K=5, p=10
30 ‘p :
— PLA
--- UCB
281 o NMS [
‘== QOptimal
26 e R e e R T R R e R R e T

N
~

value function estimate
N N
o N

-
[eo)

-
[}

1411

total periods simulated x 10*

3 4 5 6 7 8

59

Fig. 2.16 Value function estimates (mean of 30 simulation replications) of the PLA, UCB, and
NMS algorithms for the inventory control example case (ii) as a function of the number of samples
ateach state: H =3, M =20,x0=5,D, ~DU(0,9),h=1,K =5

Markov chains in a model-free reinforcement learning (RL) framework for a loss
function defined on the chains can be found in the books [143, 144]. Controlling
ergodic Markov chains for the infinite-horizon average reward within a similar RL
framework is considered in [183]. A uniform bound on the empirical performance
of policies within a simulation model of (partially observable) MDPs is provided
in [99]. Reducing a POMDP to an equivalent information-state MDP model can be

found in [3].

60 2 Multi-stage Adaptive Sampling Algorithms

The UCB sampling algorithm was called the adaptive multi-stage sampling
(AMS) algorithm when first introduced in [42]; we chose to change the name in
the presentation here, because both of the algorithms in this chapter are multi-stage
algorithms with adaptive sampling. The PLA sampling algorithm was originally
called the recursive automata sampling algorithm (RASA) in [45]. Again, since
both algorithms in this chapter are recursive, we chose the more descriptive “pursuit
learning automata” (PLA) label.

The idea of multi-stage adaptive sampling has been adopted by the artificial in-
telligence (AI) game-playing community in the form of Monte Carlo tree search
(MCTS), where it has become perhaps the dominant approach, “due to its spectacu-
lar success in the difficult problem of computer Go” (abstract, [26]). The MCTS ap-
proach estimates the value of a potential move by building a sampled game tree us-
ing simulation, analogous to the multi-stage UCB sampling algorithm of Sect. 2.2.1
(see Fig. 2.3), the major difference being that because the state space is finite, nodes
may be revisited multiple times during the sampling process and hence values stored
to increase the computational efficiency substantially. In fact, what is declared “the
most popular algorithm in the MCTS family, the Upper Confidence Bound for Trees
(UCT) algorithm” (p. 7, Sect. 3.3, [26]) is acknowledged in [108] to be closely re-
lated to the multi-stage adaptive sampling UCB algorithm introduced in [42].

Chapter 3
Population-Based Evolutionary Approaches

In this chapter, we present population-based evolutionary algorithms for finding op-
timal (stationary) policies for infinite-horizon MDPs. Specifically, the goal is to find
a stationary policy 7* € I, that maximizes the expected total discounted reward
given by Eq. (1.11). Note that the Bellman optimality principle, which can be used
to find w*(x) via (1.13) by serving as the basis of the policy improvement step in
policy iteration (PI) via Eq. (1.18), must optimize over the entire action space A(x)
for each state x. This can pose a computational challenge for problems with large
(possibly uncountable) action spaces. The algorithms in this chapter are targeted for
such large action space problems where the policy improvement step in PI becomes
computationally prohibitive, and value iteration (VI) is also impractical. The com-
putational complexity of each iteration of our algorithms is polynomial in the size
of the state space, but unlike PI and VI, it is insensitive to the size of the action
space, making the algorithms most suitable for problems with relatively small state
spaces compared to the size of the action spaces. In the case of infinite action spaces,
our approach avoids the need for any discretization or truncation that could lead to
computational difficulties, either resulting in an action space that is too large or in a
solution that is not accurate enough.

The approach taken by the algorithms in this chapter directly searches the policy
space to avoid carrying out an optimization over the entire action space at each PI
step, and updates a population of policies as in genetic algorithms (GAs), using ap-
propriate analogous operations for the MDP setting. A key feature of the algorithms
is an elite policy that has a value function at least as good as the best value function
in the previous population. The other key feature is an action selection distribution
that generates mutations of policies to explore the policy space. The monotonicity
property of the elite policy and the exploration property of the action selection dis-
tribution ensure that the algorithms converge with probability one to a population in
which the elite policy is an optimal policy. A description of a general framework for
the population-based evolutionary approach is provided in Fig. 3.1, where Ay C I
denotes the kth generation population of policies and n = | Ax| > 1 is the constant
population size.

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes, 61
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_3, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5022-0_3

62 3 Population-Based Evolutionary Approaches

General Population-Based Evolutionary Framework

Input: MDP (X, A, A(:), P, R), population size n > 1, initial population Ay,
action selection distribution P, V x € X, other policy mutation parameters.

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
e Generate an Elite Policy 7% based on Ay.

e Exploration: Generate (n — 1) policies {#,..., 7" 1}

via mutation operators and action selection distribution.
e Next Population Generation: Ay = {ﬁ",frl, .. .,ﬁ”_l}, i=1,...,.n—1.
o k<« k+1.

Output: 7% an estimated optimal policy.

Fig. 3.1 Population-based evolutionary framework

We now formally define the key concepts described above. An elite policy & €
I1; for A C Il is a policy such that Vrr € A,

Vi(x)>V™(x) VxeX.

If 7% denotes an elite policy for generation k, then the monotonicity property is as
follows:

v o) = viF) vrex.

An action selection distribution P, for state x € X is a probability distribution over
the action space A(x). If the action space is discrete, then we will let Py (a), a €
A(x) denote the probability of action a, where) . A@) Px(a)=1and Pr(a) =0
for all @ € A(x). If the action space is continuous, then P, (A) will denote the prob-
ability for the (open) set A C A(x).

We begin with a basic algorithm called evolutionary policy iteration (EPI) that
contains the main features of the population-based evolutionary approach and es-
tablish theoretical convergence. EPI uses an operation called policy switching to
generate an elite policy, and has primitive mutation operations to ensure exploration
of the policy space. Evolutionary random policy search (ERPS) builds upon the
ideas of EPI and enhances the approach considerably by using more sophisticated
mechanisms to generate an elite policy and to explore the policy space. The result-
ing algorithm is more computationally efficient, as well as being convergent in the
broader setting of uncountable action spaces. Both algorithms are tested on some
numerical examples, and are compared with PI to illustrate the substantial compu-
tational efficiency gains attainable by the approach.

3.1 Evolutionary Policy Iteration 63
3.1 Evolutionary Policy Iteration

Evolutionary policy iteration (EPI) is an iterative algorithm that works with a set
(population) of policies and which eliminates the operation of maximization over
the entire action space in the policy improvement step of PI. Central to EPI is an
operation called policy switching, which generates an improved policy from a set of
given policies, with a computation time on the order of the size of the state space.
Each iteration of EPI consists of two main steps: generation of an elite policy by
policy switching, and exploration of the policy space by generating additional poli-
cies via mutation and policy switching. A high-level description of EPI is shown in
Fig. 3.2, where some steps (e.g., mutation) are described at a conceptual level, with
details provided in the following subsections. Convergence of the EPI algorithm is
independent of the initial population Ag, due to the Policy Mutation step, which is
described in more detail in Sect. 3.1.2.

3.1.1 Policy Switching

Given a non-empty finite subset A C [y, a policy mps generated by policy switching
with respect to A is given by

Tps(x) € {argmax(V”(x))(x)}, xeX. 3.1)
TeA

An important property of policy switching is that the generated policy improves any

policy in A (Theorem 3 in [41]):

Theorem 3.1 Consider a non-empty finite subset A C Il and the policy mys gen-
erated by policy switching with respect to A given by (3.1). Then, for all x € X,
V7 (x) = maxzea V7 (x).

In each step, EPI generates a policy 7%, called the elite policy with respect to
the current population Ay, which improves any policy in A, via policy switching.
Thus, the new population A1 contains a policy that is superior to any policy in
the previous population, i.e., the desired monotonicity property holds.

Corollary 3.2 Under EPI, for all k > 0, V7" (x) > v (x) Vx € X.

Proof The proof is by induction. The base step (k = 0) is obvious from the definition
of #% and #! by Theorem 3.1. Assume that v (x) > VﬁH(x),x e X, Vi <k.
Because EPI includes 7% in Az, the elite policy at k + 1 is generated over a
population that contains 7k, implying that V’%k+1 (x) > Vﬁk(x), xeX. [l

Because policy switching directly manipulates policies, eliminating the operation
of maximization over the entire action space, its computational-time complexity

64 3 Population-Based Evolutionary Approaches

Evolutionary Policy Iteration (EPI)

Input: MDP (X, A, A(:), P, R), population size n > 1, initial population Ay,
action selection distribution P, Vx € X,
policy mutation parameters go € [0, 1], P, € (0, 1), Pg € (0, 1], P; < P,.

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
e Elite Policy via policy switching:

1. Obtain the value function V7 for each & € Ag.
2. Generate an elite policy of Ay defined by
~ k b4
7t (x) € {argmax(V (x))(x)}, xeX. 3.2)
TeAk

o Exploration via policy mutation and policy switching:

1. Generate n — 1 random subsets S;,i =1,...,n — 1 of Ay
by selecting m € {2, ..., n — 1} with equal probability
and selecting m policies in Ay with equal probability.

2. Generate n — 1 policies 7', i =1,...,n — 1 defined by
7l (x) € {argmax(v”(x))(x)}, xeX. (3.3)
TEeS;
3. Foreachn/,i=1,...,n — 1, generate mutated policy #' from by

With probability go (local mutation),
changing 7' (x) according to P, w.p. P; foreach x € X,
else (with probability 1 — go) (global mutation)

changing 7' (x) according to Py w.p. Py for each x € X.
e Next Population Generation: Ay = (FF 7L A
o k<—k+1.

Output: 7% an estimated optimal policy.

Fig. 3.2 Evolutionary policy iteration (EPI) description

is O(m|X|), where m = |S;|, independent of the action space size, leading to
O (nm|X|) complexity in the Exploration step, and hence O (nm|X 1) overall when
including the O (|X|?) complexity for the policy evaluation needed to compute V7.
On the other hand, applying a single-policy improvement step of PI directly to
each policy in Ay, instead of generating 7w (S;), i =1,...,n — 1, is of complex-
ity O(n|X|%|Al).

After policy switching is used to generate an elite policy, n — 1 other policies
are generated by the two steps described in the second half of the Policy Switching
step. These policies are then mutated in the Policy Mutation step and combined
with the elite policy to form the next generation.

3.1 Evolutionary Policy Iteration 65

3.1.2 Policy Mutation and Population Generation

Policy mutation takes a given policy, and for each state, alters the specified action
probabilistically. The main reason to generate mutated policies is to ensure explo-
ration of the entire policy space, making a probabilistic convergence guarantee pos-
sible. EPI uses two types of mutation—*“local” and “global”’—which are differenti-
ated by how much of the policy is likely to be changed (mutated). Local mutation
is intended to mimic local search of “nearby” policies, whereas global mutation al-
lows EPI to escape from local optima. A high mutation probability indicates that
many components of the policy vector are likely to be mutated, representing a more
global change, whereas a low mutation probability implies that very little mutation
is likely to occur, meaning a more localized perturbation. For this reason, we assume
that P, < P,, with P; being very close to zero and P, being very close to one. The
Policy Mutation step first determines whether the mutation will be local or global
with probability gg. If the policy 7 is globally (locally) mutated, for each state x,
7 (x) is changed with probability P, (F;). If a mutation does occur, it is carried out
according to the action selection distribution Pk, i.e., if the mutated policy is de-
noted by 7/, then the new policy is generated according to P (7' (x) = a) = Py (a),
for all mutated states x (the actions for all other states remain unchanged). For ex-
ample, one simple Py is the uniform action selection distribution, in which case the
new (mutated) policy would randomly select a new action for each mutated state x
(independently) with equal probability over the set of admissible actions A(x). By
guaranteeing that every feasible action has a positive probability of being selected,
this mutation mechanism allows exploration of the entire policy space, guaranteeing
theoretical convergence of the algorithm.

3.1.3 Stopping Rule

Unlike in PI, even if the value functions for the two consecutive elite policies are
identical, this does not necessarily mean that the elite policy is an optimal policy,
so implementation of EPI requires specification of a stopping rule. The simplest
one is to stop the algorithm when a predefined maximum number of iterations is
reached. In the numerical experiments reported in Sect. 3.3, we use one of the most
common stopping rules in standard GAs, whereby the algorithm is stopped when no
further improvement in the value function is obtained for several, say K, consecutive
iterations. Specifically, we stop the algorithm at iteration kK when

v =vi) vxeX;m=1,2,..., K.

For increasing K, the probability of being in a neighborhood of the optimum in-
creases, and the elite policy at termination is optimal with more confidence. In par-
ticular, as K — 00, k — 00, since the algorithm will terminate when N = K, and if
N # K, the value of k increases by one.

66 3 Population-Based Evolutionary Approaches

3.1.4 Convergence Analysis

As mentioned earlier, the critical requirement for theoretical convergence is ensur-
ing that the optimal policy has a non-zero probability of being sampled from the
action sampling distribution.

Theorem 3.3 For finite X and qo € (0, 1), if P, >0, P, > 0, and 3 an optimal
policy m* and € > 0 s.t. Py(r*(x)) > €Vx, then

V) = VT), xeX wpl,
as k — oo, uniformly over X, regardless of Ay.

Proof Let y be the probability of generating an optimal policy by local mutation,
and let B the probability of generating an optimal policy by global mutation. Then,
letting * denote an optimal policy in 1y, we have

y = [[PPe(r*(®) = (P! > 0,

xeX

B =[] PPul(r*() = (Pee)¥ >0,

xeX

since |X| < oo, P > 0, P; > 0, and Py (r*(x)) > 0 Vx. Thus, the probability of
generating an optimal policy by the Policy Mutation step is positive, independent
of A().
Therefore, the probability that A; does not contain an optimal policy (starting
from an arbitrary Ag) is at most
(n—Dk

(1=)1 —g0) " ((1 = BY(g0) ",

which goes to zero as k — co. By Lemma 3.2, once Ay contains an optimal policy,
Ak+m contains an optimal policy for any m > 1, because the value of an optimal
policy at any state is the maximum among all policies in IT;. O

Theoretical convergence actually does not depend on the value of g, since the
distinction between global and local mutation is arbitrary. If gg does take one of its
extreme values (i.e., 0 or 1), then a corresponding mutation probability can be set
to zero, since it will never be selected, and the proof will go through similarly. For
example, if go = 0, then P, > 0 ensures 8 > 0, and the probability that A; does not
contain an optimal policy is at most (1 —)~ Dk,

Of course, the condition on 7* is difficult to verify in practice, since an optimal
policy is unknown a priori, but if the feasible action set is finite, the condition can
be easily satisfied.

3.2 Evolutionary Random Policy Search 67

Corollary 3.4 For finite X and qo € (0, 1), if P, > 0, P, > 0, and A(x) is finite
(and non-empty) for each x € X, and Py(a) > 0Va € A(x) Vx € X, then

V) = VT), xe X wpl,
as k — oo, uniformly over X, regardless of Ay.

Proof Since X is finite and A(x) is finite for each x € X, the condition in Theo-
rem 3.3 is satisfied by simply taking € = min,cx mingeA(x) Px (a). O

One possible simple choice for the action selection distribution Py is the (dis-
crete) uniform distribution on A(x), e.g., if the actions in A(x) are numbered
1,2,...,]A(x)|, then P, ~ DU(1,|A(x)|), where € = 1/(maxycx |A(x)|) in the
proof.

3.1.5 Parallelization

The EPI algorithm can be naturally parallelized to improve the convergence by
partitioning the policy space IT; into subsets of {/7'} such that U, 1 ! = I, and
IT' N IT/ =@ Vi # j, and applying EPI to each T’ in parallel. Once each parallel
application of EPI terminates, the best policy 7* from each is taken, and policy
switching is applied to the set of best policies {7 *}. If the number of subsets in the
partition is N, the overall convergence of the algorithm A is faster by a factor of N.
We state a general result regarding such parallelization.

Theorem 3.5 For a partition {IT'} of I, let w* denote an optimal policy in IT'
such that for all x € X, V™' (x) > max, i V" (x). Then, an optimal policy in I
is given by

7 (x) € {argmax(vﬂ*’i (x))(x)}, xeX.
{mt)

* improves the performance of each 7*‘, i.e.,

Proof Via policy switching, 7
VT(x) > MaX (i) v (x), x € X, implying that 77* is an optimal policy for IT,

since the partition covers the entire policy space. 0

3.2 Evolutionary Random Policy Search

Evolutionary random policy search (ERPS) is an enhancement of EPI that improves
upon both the elite policy determination and the mutation step by solving a sequence
of sub-MDP problems defined on smaller policy spaces. As in EPI, each iteration of
ERPS has two main steps:

68 3 Population-Based Evolutionary Approaches

1. An elite policy is generated by solving the sub-MDP problem constructed in the
previous iteration using a variant of the policy improvement technique called
policy improvement with reward swapping (PIRS).

2. Based on the elite policy, a group of policies is then obtained by using a “nearest
neighbor” heuristic and random sampling of the entire action space, from which
a new sub-MDP is created by restricting the original MDP problem (e.g., reward
structure, transition probabilities) to the current available subsets of actions.

In contrast to EPI, which treats policies as the most essential elements in the action
optimization step, and each elite policy is directly generated from a group of poli-
cies, in ERPS policies are regarded as intermediate constructions from which sub-
MDP problems are then constructed and solved. Furthermore, the “nearest neigh-
bor” heuristic provides a local search mechanism that leads to rapid convergence
once a policy is found in a small neighborhood of an optimal policy. Under appro-
priate assumptions, the sequence of elite policies converges with probability one to
an optimal policy, even for uncountable action spaces.

A high-level description of the ERPS algorithm is presented in Fig. 3.3. Detailed
discussion of each of the steps follows. The input parameters are similar to EPI, with
the search range parameters {r;} used to construct sub-MDPs replacing the mutation
parameters Pg/Py.

3.2.1 Policy Improvement with Reward Swapping

As mentioned earlier, the idea behind ERPS is to randomly split a large MDP prob-
lem into a sequence of smaller, manageable MDPs, and to extract a convergent se-
quence of policies via solving these smaller problems. For a given policy population
A, if we restrict the original MDP (e.g., rewards, transition probabilities) to the sub-
sets of actions " (x) := {7 (x) : m € A} Vx € X, then a sub-MDP problem is induced
from A as G := (X, I, I"(-), P, R), where I" :=J, I'(x) C A. Note that in gen-
eral I'(x) is a multi-set, which means that the set may contain repeated elements;
however, we can always discard the redundant members and view I (x) as the set of
admissible actions at state x. Since ERPS is an iterative random search algorithm,
rather than attempting to solve G4 exactly, it is more efficient to use approxima-
tion schemes and obtain an improved policy and/or good candidate policies with
worst-case performance guarantee.

Given a non-empty finite subset A C Iy, a policy mpirs generated by policy im-
provement with reward swapping (PIRS) with respect to the sub-MDP G 4 is given
by

TTpirs (x) € argmax{R(x, w+y Yy P, u)(y)VA@)}, (3.4)

uel (x) yeX

where VA (x) = maxzea V7 (x) Vx € X. PIRS is a variation of the policy im-
provement step in PI (cf. (1.24)) performed on the “swapped reward” V4 (x) =

3.2 Evolutionary Random Policy Search 69

max;e4 V7 (x), hence the name policy improvement with reward swapping. Note
that the “swapped reward” V4 (x) may not be the value function corresponding to
any single policy in A. However, we now show that the elite policy generated by
PIRS improves any policy in A.

Theorem 3.6 Consider a non-empty finite subset A C Iy and the policy mpirs gen-
erated by PIRS with respect to G given by (3.4). Then, for all x € X, V7irs(x) >
VA(x). Furthermore, if Tpirs IS not optimal for the sub-MDP G 5, then Vs (x) >
‘_/A(x)for at least one x € X.

Proof Let Vo(x) = R(x, pirs (X)) +¥ Xy x P(x, Tpirs (X)) () VA(y), and consider
the sequence Vi(x), Va(x),... generated by the recursion Vjyi(x) =
R(x, mpirs (X)) + ¥ Z),EX P(x, mpis () (W) Vi(y), Vi=0,1,2,.... At state x, by
definition of V4 (x), there exists 7 € A such that V4 (x) = V7 (x). It follows that

Vo) = R(x.m(0)) +y Y _ P(x. 1))V ()

yeXx

> R(x,m(0)) +v Y P(x, 7))V ()
yeXx

= V7 (x)

= ‘_/A(X),

and since x is arbitrary, we have

Vi) = R(x, 7irs () + ¥ Y, P, 7pirs (1)) (3) Vo ()
yeX

> R(x, 7pirs (1)) + 7 Y P, Tpins () VA ()
yeX

= Vo(x).

By induction V;11(x) > V;(x), Vx € X and Vi =0, 1, 2, It is well known [12]
that the sequence Vy(x), Vi(x), Va(x), ... generated above converges to V7pirs (x),
Vx € X. Therefore V™irs (x) > VA(x), Vx € X.If Vi (x) = VA (x), Vx € X, then
PIRS reduces to the standard policy improvement on policy mpirs, and it follows that
Tpirs Satisfies Bellman’s optimality equation and is thus optimal for G 4. Hence we
must have Vi (x) > V4 (x) for some x € X whenever Trpirs 1S NOt optimal. O

According to Theorem 3.6, in each step of ERPS, the elite policy 7% generated
by PIRS with respect to the current sub-MDP G4, , as given by (3.5), improves any
policy in Ag. Thus, the new population A, contains a policy that is superior to any
policy in the previous population. Since 7 is directly used to generate the (k + 1)th
sub-MDP (see Fig. 3.3 and Sect. 3.2.2), the desired monotonicity property follows
by the same induction argument used to establish Lemma 3.2.

70 3 Population-Based Evolutionary Approaches

Evolutionary Random Policy Search (ERPS)

Input: MDP (X, A, A(:), P, R), population size n > 1, initial population Ay,
action selection distribution P, Vx € X, policy mutation parameters:
exploitation probability go € [0, 1], search range r;,Vx; € X, i =1, ..., |X].

Initialization: Set iteration count k = 0.
Construct initial sub-MDP as G, := (X, o, I[o(-), P, R), To =J, To(x).

Loop until Stopping Rule is satisfied:
o Elite Policy via policy improvement with reward swapping (PIRS):

1. Obtain the value function V7 for each 7 € Ag.
2. Generate an elite policy of Ay using sub-MDP G 4, :

ffk(x)eargmax{R(x,u)—i—y P(x,u)(y)| max V*(y) } x € X. 3.5)
uely(x) };([nEAk]

e Exploration via mutation and local nearest neighbor search:
Generate n — 1 policies n*, i =1,...,n— 1, by

With probability g (exploitation)
choose the action 7/ (x) in the neighborhood of k), x e X,
by using the “nearest neighbor” heuristic.

else (with probability 1 — g¢) (exploration)
choose the action 7 (x) € A(x) according to Py, x € X.

Next Population Generation: A = 7k 7L R

Next sub-MDP: G4, = (X, i1, Ti41(), P, R), Ti1 = U, D1 (%).
o k< k+1.

Output: 7% an estimated optimal policy.

Fig. 3.3 Evolutionary random policy search (ERPS) description

Corollary 3.7 Under ERPS, for all k > 0,
v oy > v () varex. (3.6)

We now provide an intuitive comparison between PIRS and policy switching,
which is used in EPI and directly operates upon individual policies in the popula-
tion via (3.1), with a computational complexity is O(n|X]|). For a given group of
policies A, let £2 be the policy space for the sub-MDP G 4; it is clear that the size of
2 is on the order of n'X!. Policy switching only takes into account each individual
policy in A, while PIRS tends to search the entire space §2, which is much larger
than A. Although it is not clear in general that the elite policy generated by PIRS
improves the elite policy generated by policy switching, since the policy improve-
ment step is quite fast and it focuses on the best policy updating directions, this
should be the case in many situations. For example, consider the case where one
particular policy, say 7, dominates all other policies in A. It is obvious that policy

3.2 Evolutionary Random Policy Search 71

switching will choose 7 as the elite policy; thus, no further improvement can be
achieved. In contrast, PIRS considers the sub-MDP G 4; as long as 7 is not optimal
for G 4, a better policy can always be obtained.

The computational complexity of each iteration of PIRS is approximately the
same as that of policy switching, because the policy evaluation step of PIRS, which
is also used by policy switching, requires solution of n systems of linear equations,
and the number of operations required by using a direct method (e.g., Gaussian
elimination) is O (n|X|?), and this dominates the computational complexity of the
policy improvement step, which is at most O (n|X|?).

3.2.2 Exploration

According to Corollary 3.7, the performance of the elite policy at the current iter-
ation is no worse than the performances of the elite policies generated at previous
iterations; thus the PIRS step alone can be viewed as a local search procedure with
memory. As in EPI, to guarantee theoretical convergence, a mechanism to globally
explore the policy space is required. One possibility is to use unbiased random sam-
pling and choose at each iteration a sub-MDP problem by making use of the action
selection distribution P,. The sub-MDPs at successive iterations are then indepen-
dent of one another, and it is intuitively clear that we may obtain improved elite
policies after a sufficient number of iterations. Such an unbiased sampling scheme
is very effective in escaping local optima and is often useful in finding a good can-
didate solution. However, in practice, persistent improvements will be more and
more difficult to achieve as the number of iterations (sampling instances) increases,
since the probability of finding better elite policies becomes smaller and smaller.
Thus, it appears that a biased sampling scheme could be more helpful, which can be
accomplished by using a “nearest neighbor” heuristic.

To achieve a biased sampling configuration, ERPS combines exploitation (‘“near-
est neighbor” heuristic) with exploration (unbiased sampling). The key to balancing
these two types of searches is the use of the exploitation probability gg. For a given
elite policy 7, we construct a new policy, say 7, in the next population generation
as follows: At each state x € X, with probability go, 7 (x) is selected from a small
neighborhood of 7 (x); and with probability 1 — gg, 7 (x) is chosen by using the
unbiased random sampling. The preceding procedure is performed repeatedly until
we have obtained n — 1 new policies, and the next population generation is simply
formed by the elite policy 7 and the n — 1 newly generated policies. Intuitively,
on the one hand, the use of exploitation will introduce more robustness into the al-
gorithm and helps to locate the exact optimal policy, while on the other hand, the
exploration step will help the algorithm to escape local optima and to find attractive
policies quickly. In effect, we see that this idea is equivalent to altering the underly-
ing action selection distribution, in that Py is artificially made more peaked around
the action 7 (x).

Assuming that A is a non-empty metric space with a defined metric d(-, -), then
the “nearest neighbor” heuristic in ERPS (cf. Fig. 3.3) is implemented as follows:

72 3 Population-Based Evolutionary Approaches

e Discrete Action Space: Let r;, a positive integer, be the search range for state
xi, 1 =1,2,...,|X]|, with r; < |A(x;)| Vi. Generate a random variable [~
DU (1, r;), where DU (1, r;) represents the discrete uniform distribution between
1 and r;. Set 77/ (x;) = a € A(x;) such that a is the [th closest action to 7% (x;)
(measured by d(-, -)).

e Continuous Action Space: Let r; > 0 denote the search range for state x;, i =
1,2,...,]X]|. Choose an action uniformly from the set of neighbors {a :
d(a,7%(x;)) <ri, a € A(x;)}, i.e., an action w(x;) € A such that d(mw(x;),
mk(xi)) <ri.

The most favorable situation is an action space that is “naturally ordered,” e.g., in
inventory control problems where actions are the number of items or amount to be
ordered (A =1{0,1,2,...} or A =N, respectively), in which case the indexing and
ordering becomes trivial.

Note the difference in the search range r; between the discrete action space case
and the continuous action space case. In the former case, r; is a positive integer
indicating the number of candidate actions that are the closest to the current elite
action frk(xi), whereas in the latter case, r; is the distance from the current elite
action, which may take any positive value.

For the continuous case, if we further assume that A is a non-empty open con-
nected subset of Y with some metric (e.g., the infinity-norm), then a detailed im-
plementation of the above exploitation (local search) step is as follows.

e Generate a random vector A’ = (A}, ...,)T with each A} ~ U[—1, 1] indepen-
dentforall h=1,2, ..., N, and choose the action #/ (x;) = 7% (x;) + Alr;.
o If 79 (x;) ¢ A(x;), then repeat the above step.

In this specific implementation, the same search range r; is used along all directions
of the action space. However, in practice, it may often be useful to generalize r;
to an N-dimensional vector, where each component controls the search range in a
particular direction of the action space.

Note that the action space does not need to have any structure other than being
a metric space. The metric d(-, -) used in the “nearest neighbor” heuristic implicitly
imposes a structure on the action space. It follows that the efficiency of the algorithm
depends on how the metric is actually defined. Like most of the random search
methods for global optimization, our approach is designed to explore the structure
that good policies tend to be clustered together. Thus, in our context, a good metric
should have a good potential in representing this structure. For example, the discrete
metric (i.e.,d(a,a) =0Vae Aandd(a,b)=1Va,b e A, a=#b)should never be
considered as a good choice, since it does not provide us with any useful information
about the action space. For a given action space, a good metric always exists but may
not be known a priori. In the special case where the action space is a subset of it",
we take the Euclidean metric as the default metric, this is in accord with most of the
optimization techniques employed in R

3.2 Evolutionary Random Policy Search 73

3.2.3 Convergence Analysis

We define the distance between two policies 7 and 7’ by

N . . / A
doo(n,n) =]ggf(md(n(xl),n (x,)),

and for a given policy 7 € I1; and any o > 0, we define the o-neighborhood of &
by

N, 0):={n"|dw(n.7") <0, Vn' € II,}.

For each policy € I, we also define P as the transition matrix whose (x, y)th
entry is P(x,w(x))(y) and R, as the one-stage reward vector whose (x)th entry is
R(x,m(x)).

Since ERPS is a randomized algorithm, different runs of the algorithm will give
different sequences of elite policies (i.e., sample paths); thus, ERPS induces a prob-
ability distribution over the set of all sequences of elite policies. We denote by P()
and E(-) the probability and expectation taken with respect to this distribution.

Let || - ||oo denote the infinity-norm, given by ||V |« := maxyex |V (x)|. If the
argument is a matrix, it will denote the usual induced or spectral norm. We have the
following convergence result for the ERPS algorithm.

Theorem 3.8 Let 7* be an optimal policy with corresponding value function V™ 5
and let the sequence of elite policies generated by ERPS together with their corre-
sponding value functions be denoted by {#*, k=1,2,...} and {Vﬁk, k=1,2,...},
respectively. Assume that:

1. qo < 1.

2. Forany given £ >0, Py({a| d(a,7*(x)) < ¢, a€ A(x)}) >0, Vx € X.

3. There exist constants 0 >0, ¢ >0, L1 < 0o, and Ly < 00, such that for all w €
N (¥, @) we have || Py — Py lloo < max{Lidoo(, 7%), 15X — ¢} (0 <y < 1),

and ||Ry; — Ry |loo < Lodoo(m,).

Then for any given & > 0, there exists a random variable My > 0 with E (M) <0
such that ||V — V™ |l <& Yk > M,.

Assumption 1 restricts the exploitation probability from pure local search.
Assumption 2 simply requires that any “ball” that contains the optimal policy
will have a strictly positive probability measure. It is trivially satisfied if the set
{ald(a,*(x)) < £, a € A(x)} has a positive (Borel) measure Vx € X and the ac-
tion selection distribution Py has infinite tails (e.g., Gaussian distribution). Assump-
tion 3 imposes some Lipschitz type of conditions on P, and R;; as we will see, it
formalizes the notion that near optimal policies are clustered together. The assump-
tion can be verified if P, and R, are explicit functions of 7 (which is the case in
our numerical examples; see Sect. 3.3). For a given ¢ > 0, such a policy = satisfying
VT — V™ |lso < ¢ is referred to as an g-optimal policy.

74 3 Population-Based Evolutionary Approaches

The result in Theorem 3.8 implies the a.s. convergence of the sequence (vt ¢ k=
0,1,...} to the optimal value function V™ " To see this, note that Theorem 3.8 im-

plies that 75(|| vty loo > &) = 0 as k — oo for every given e, which means
that the sequence converges in probability. Furthermore, since ||Vﬁk —yT loo <
& Yk > M, is equivalent to S ||V7%k — V”*||oo <& Yk > Mg, we will also

have 75(sup,;>k | Vﬁk -y loo > €) — 0 as k — o0, and the a.s. convergence thus
follows.

Proof The first step in the proof is to derive an upper bound for [|[V™ — V7™ | 4 in
terms of the distance dw (7r, 7*). For policy 7 * and policy 7, we have

V™ = Rys + y Ppe VT, (3.7)
VT =Ry +yP V™. (3.8)

Now subtract the above two equations and define AV”™ S VAL *, APpx =
P, — Pyx and AR+ = R; — R;+. We have

AV =[I=U =y Pe) 'y AP] U=y Pe) (Y AP VT + ARy, (3.9)

Taking the norm of both sides of Eq. (3.9) and using the consistency property of the
operator norm (i.e., | BC|| < ||B] - ||C]]), it follows that

[av™] < [= =y Py AP] T | I =y P!, 310)
X (VAP lloo V™ lloo + | ARx+ |). (3.11)

By Assumption 3, we have ||A Py |00 < 1_7’/, thus

|(1 =y Prr) 'y APy

o ST =y P 1A P+ loo
< =yPe) A=p)
< 1.

We now try to divide both sides of (3.10) by || V™" || oo. Before we proceed, we need
to distinguish between two cases, || V7 oo =0and |[V™ |lso #0.

Case 1. If Ry =0 (i.e., R(x, 7*(x)) = 0 for all x € X), then we have V™ = 0.
Thus AV®T = V7 and AR;+ = R;. By noting ||P;|lcc = 1, it follows from
Eq. (3.8) that

1 1
=V = s lRrllo = —— ARz lloe. (3.12)

AVT
” * = 1= ylPrlic I—y

Then by Assumption 3,

Ly

AV, = 5

doo (7, T%). 3.13
y (. %) (3.13)

3.2 Evolutionary Random Policy Search 75

Case 2. If Ry > 0 (i.e., R(x,7*(x)) > O for some x € X), then from Eq. (3.7),
V™ > 0. Divide both sides of (3.10) by |V™ |, use the relation that ||(/ —
B! < m whenever ||B|| < 1 and the consistency property; it immediately
follows that

||Av; oo _ ||(1—yP_n:) Moo {yIIAPn*Iloo—i- ||Alfg*||oo}
V7o — 1= 1T =y Pe) MooV 1A Prlloo IV [l
U =y Pe) Mool — ¥ Prelloo
1= =y Pr) MooV 1A Prrlloc
{ynAPn*nm ARl }
IT—yPrlloo I =¥ Prellooll V™ oo
- K {ynAPH*noo ||ARH*||OO}
T -l LI =y Prrlloo 1Rerlloo

11—y Prx

K { yLi L

deo(m, %), (3.14)
17—y Prelloo ||Rn*||oo} (. 77)

= AP H
- _ Y ok oo
1 - Al

where K = [|[(I = y Pr<) Mlool] = ¥ Pr+lloo-
In view of (3.13) and (3.14), we conclude that for any given ¢ > 0, there exists
6 > 0 such that for any 7 € N (7*, o) where

doo(n, n*) = mafcx‘d(n(x,»), rr*(xi)) <4, (3.15)

we have VT — V7 |l = [[AV™ [l < 6. Also, max|<i<x|d((x;), 7*(x;)) <6
is equivalent to

d(m(x), 7)) <0, Yi=1,2,...,[X|. (3.16)

By Assumption 2, the set of actions that satisfies (3.16) will have a strictly posi-
tive probability measure, and since go < 1, it follows that the probability a popu-
lation generation does not contain a policy in the neighborhood A (7*, min{6, o })
of the optimal policy is strictly less than 1. Let i be the probability that a ran-
domly constructed policy is in N (7*, min{#, 0'}). Then at each iteration, the prob-
ability that at least one policy is obtained in A/ (r*, min{f, o'}) is 1 — (1 —)"~ 1,
where n is the population size. Assume that, at iteration k, we obtain a policy #J in
N (z*, min{0, o'}). Then, it is guaranteed that || VI VT | <& (by the initial part
of the proof). The elite policy obtained at the next iteration improves all the available
policies in Ay (by Theorem 3.6). Therefore, if 75! is the elite policy obtained in
the next iteration, then we have ||V7 oy lloo < IV — V™" |ls < &. Since we
now have an elite policy A5+ that satisfies || yat _yrt |loo < &, then in subse-
quent iterations of the algorithm we will always have an elite policy in A,, such that
VA" — V™ |lso <&, form =k +1,k+2,... (see Corollary 3.7). Let M, denote
the number of iterations required to generate such an elite policy for the first time.

76 3 Population-Based Evolutionary Approaches

We clearly have || vyt _yr lloo < & Yk > M,.. Now consider a random variable
M that is geometrically distributed with a success probability of 1 — (1 —)" ~!.
It is not difficult to see that M dominates M stochastically (i.e., M >4 M), and
because i > 0, it follows that E"(/\/lg) < 13"(./\;1) = H%W < 00. Il

Note that for a discrete finite action space, Assumption 3 in Theorem 3.8 is au-
tomatically satisfied, and Assumption 2 also holds trivially if we take Py(a) > 0
for all actions a € A(x). Furthermore, when the action space is finite, there always
exists an € > 0 such that the only e-optimal policy is the optimal policy itself. We
have the following stronger convergence result for ERPS when the action space is
finite.

Corollary 3.9 (Discrete Finite Action Space) If the action space is finite, qo < 1,
and the action selection distribution Py(a) > 0 Ya € A(x), Vx € X, then there
exists a random variable M > 0 with E(M) < oo such that vt =y vk > M.

3.3 Numerical Examples

In this section, we consider two discrete-time controlled queueing problems and
compare the performance of ERPS, EPI, and standard PI. For the size of state space
considered, VI would not be competitive. For ERPS, the same search range param-
eter is prescribed for all states, denoted by a single variable r, and since in both
problems, all actions a € A are admissible for all states x € X, the action selection
distribution is chosen to be the uniform distribution over the action space A for all
states x € X. We therefore drop the explicit display of x in Py, and simply use P
instead of Py. All computations were performed on an IBM PC with a 2.4 GHz
Pentium 4 processor and 512 MB memory, and the computational time units are in
seconds.

3.3.1 A One-Dimensional Queueing Example

We consider a finite-capacity single-server queue with controlled service comple-
tion probabilities. Assume that a server can serve only one customer in a period,
and the service of a customer begins/ends only at the beginning/end of any period.
Customers arrive at a queue independently with probability p = 0.2, and there is at
most one arrival per period (so no arrival with probability 0.8). The maximum queue
length is £, and an arrival that finds £ customers in the queue is lost. We let x;, the
state variable, be the number of customers in the system at the beginning of period 7.
The action to be chosen at each state is the service completion probability a, which
takes value in a set A. In period 7, a possible service completion is generated with
probability a(x;), which results in a transition to state x;41 a cost of R(x;, a(x;))

3.3 Numerical Examples 77

being incurred. The goal is to choose the optimal service completion probability for
each state such that the total discounted cost E [Z;ﬁo y!R(x;, a(x;))] is minimized
(since R is a cost function here, the definitions in the previous sections need to be
replaced with minimizing operators).

3.3.1.1 Discrete Action Space

Two different choices of one-stage cost functions are considered: (i) a simple cost
function that is convex in both state and action; (ii) a complicated non-convex cost
function. The MDP problem resulting from case (i) may possess some nice prop-
erties (e.g., free of multiple local optimal solutions), so finding an optimal solution
should be a relatively easy task, whereas the cost function in case (ii) introduces
some further computational difficulties (e.g., multiple local minima), intended to
more fully test the effectiveness of a global algorithm like ERPS. For both cases,
unless otherwise specified, the following parameter settings are used: maximum
queue length £ = 49; state space X = {0, 1,2, ..., 49}; discount factor y = 0.98;
action set A = {10_4k ck=0,1,..., 104}; and in ERPS, population size n = 10,
search range r = 10, and the standard Euclidean distance is used to define the neigh-
borhood. All results for ERPS are based on 30 independent replications.

For case (i), the one-stage cost at any period for being in state x and taking action
a is given by

R(x,a) = x + 50a°. (3.17)

We test the convergence of ERPS by varying the values of the exploitation prob-
ability. Table 3.1 compares the performance of the algorithm in terms of both CPU
time and the following performance measure:

*
relative error := max w, (3.18)

xeX [V*(x)|
which signifies the maximum relative deviation of the value function V from the
optimal value function V*. The computational time required for PI to find V*
was 15 seconds, and the value of ||V*| is approximately 2.32e+4-03. Test re-
sults indicate superior performance of ERPS over PI; in particular, for the cases
(g0 =0.25, K =32),(q0=0.5, K =16), and (g0 =0.75, K = 16), ERPS attains
the optimal solutions in all 30 independent trials within 2 seconds. Moreover, we see
that the algorithm performs quite well even when gg = 0, which corresponds to pure
random search from the action selection point of view. We believe that this is be-
cause that ERPS (under go = 0) will differ from a pure random search algorithm in
the space of policies, in that ERPS is a population-based approach and it contains a
PIRS step which tends to search the policy space induced by the population of poli-
cies, whereas a pure random search algorithm merely compares the performances

of all sampled policies and then simply takes the best one.

To explore the computational complexity of ERPS, tests were performed on

MDPs with increasing numbers of actions; for each problem, the foregoing setting

78 3 Population-Based Evolutionary Approaches

Table 3.1 Convergence

results for ERPS q0 K CPU time Relative error
(n =10, r = 10) based on 30
independent replications 0.0 2 0.84 (0.03) 3.98e-05 (8.20e-06)
(standard errors in 4 1.42 (0.05) 1.34e-05 (2.43e-06)
parentheses), where K is the 8 2.63 (0.10) 4.14¢-06 (8.58¢-07)
stopping rule parameter
16 5.20 (0.16) 7.64e—07 (1.07e—07)
32 8.96 (0.38) 2.72e-07 (3.17¢-08)
0.25 2 0.94 (0.02) 1.19e—08 (4.46e—09)
1.09 (0.02) 4.09e-09 (2.04e-09)
8 1.24 (0.02) 7.94e-10 (2.88e-10)
16 1.54 (0.03) 4.87e-11 (3.91e-11)
32 1.85 (0.04) 0.00e—00 (0.00e-00)
0.50 2 0.92 (0.02) 2.10e-08 (1.51e-08)
1.02 (0.02) 1.50e-09 (8.52e-10)
8 1.13 (0.02) 5.95e-10 (5.03e-10)
16 1.27 (0.03) 0.00e-00 (0.00e-00)
0.75 2 1.14 (0.02) 2.79e-09 (2.53e-09)
1.20 (0.02) 5.5%-11 (3.97e-11)
1.27 (0.02) 3.38e-11 (3.38e-11)
16 1.43 (0.03) 0.00e—-00 (0.00e-00)
1.0 2 12.13 (0.02) 1.92e-10 (5.97e-11)
4 12.17 (0.02) 5.60e—11 (4.00e—11)
8 12.27 (0.01) 0.00e—00 (0.00e—00)
is used except that the action space now takes the form A ={hk: k=0,1,..., %}

where h is the mesh size, selected sequenually (one for each problem) from the set
11 1 1 1 1
{m m 500° 1000° 2500° 5000 * 10000 25000° 500()0 * 100000 ° 2000()0} .
In Fig. 3.4, we plot the running time required for PI and ERPS to find the optimal

solutions as a function of the number of actions of each MDP considered, where the
results for ERPS are the averaged time over 30 independent replications. Empirical
results indicate that the computational time for PI increases linearly in the number
of actions (note the log scale used in Fig. 3.4), while the running time required for
ERPS does so in an asymptotic sense. We see that ERPS delivers very competitive
performances even when the action space is small; when the action space is rela-
tively large (number of actions greater than 10*), ERPS reduces the computational
efforts of PI by well over an order of magnitude. In the experiments, we used a
search range r = 10 in ERPS, regardless of the size of the action space; we believe
the performance of the algorithm could be enhanced by using a search range that is
proportional to the size of the action space. Moreover, the computational effort of

3.3 Numerical Examples 79

Fig. 3.4 Running time 300 T T T
required for PI and ERPS Pl
(n =10, r =10, based on 30 o501 _.. ERPS q=025 |
independent replications) to - _.. ERPS q;=0.50
find the optimal solutions to g -+ ERPS q=0.75
MDPs with different numbers § 200} B ,
of actions, (a) using log scale %
for horizontal axis; (b) using £
log—log plot = 1507 1
S
©
5 100f 1
Q
£
Q
o
501 b
= 2
0 - - .= i — =T T
10° 10° 10* 10°
number of actions
. —~ Pl
10° | | ERPSq=0.25 1

) _.. ERPS q=0.50
g -.. ERPS q;=0.75
3
k2 A

{ B
2 10 A
F yrd
c P
o s
5
3 .0
Q. 4
210
o
(8]

-1

10 ; ; ;
10° 10° 10* 10°

number of actions

ERPS can be reduced considerably if we are merely seeking solutions within some
required accuracy rather than insisting on the optimal solution.
For case (ii), we used the following one-stage cost function:

X] ?
R(x,a)=x+5|:751n(2na)—xi| , (3.19)

which induces a tradeoff in choosing between large values of a to reduce the state
x and appropriate values of a to make the squared term small. Moreover, since the
sine function is not monotone, the resultant MDP problem has a very high number
of local minima; some typical locally optimal policies are shown in Fig. 3.5.

Table 3.2 shows the convergence properties of EPI and ERPS, where both algo-
rithms start with the same initial population. The computational time required for
PI to find the optimal value function V* was 14 seconds. For EPI, we have tested

80 3 Population-Based Evolutionary Approaches

1 1

—eo— optimal policy —e— optimal policy
~ - locally optimal policy ~ - locally optimal policy
0.8 0.8
c c 0.6
o 9
© ©
1 ® g4
0.2
0
0 10 20 30 40 49 0 10 20 30 40 49
state state
1 i l ! !
—e— optimal policy I | —e— optimal policy
0.8 ~ - locally optimal policy |-, | 0.8 - - locally optimal policy
| | !
c I <=
il k]
© I ©
© ©
0
0 10 20 30 40 49

state

Fig. 3.5 Four typical locally optimal solutions to the test problem

different sets of values for the overall mutation probability go and the global and lo-
cal mutation probabilities P, and P, respectively; the results reported in Table 3.2
are the best results obtained. Also note that because of the slow convergence of EPI,
the values for the stopping control parameter K are chosen much larger than those
for ERPS. The typical performances of ERPS and EPI are given in Fig. 3.6, where
we have plotted the corresponding value functions of the generated elite policies for
some particular iterations.

In order to demonstrate the role of the exploitation probability gg in the ERPS al-
gorithm, we fix the stopping control parameter K = 10 and vary gg. The numerical
results are recorded in Table 3.3, where Ny indicates the number of times an opti-
mal solution was found out of 30 trials. The go = 1.0 case corresponds to pure local
search. Obviously in this case, the algorithm gets trapped into a local minimum,
which has a mean maximum relative deviation of 1.35e+01. However, note that the
standard error is very small, which means that the local minimum is estimated with
very high precision. This shows that the “nearest neighbor” heuristic is indeed use-
ful in fine-tuning the solutions. In contrast, the pure random search (go = 0) case
is helpful in avoiding the local minima, yielding a lower mean relative deviation of
2.42e-2, but it is not very good in locating the exact optimal solutions, as none was
found out of 30 trials. Roughly, increasing go between 0 and 0.5 leads to a more
accurate estimation of the optimal solution; however, increasing gg on the range 0.6

3.3 Numerical Examples 81

Table 3.2 Convergence

results for EPI (n = 10) and Algorithm K CPU time Relative error

ERPS (n =10, r = 10) based

on 30 independent EPI 20 2.13 (0.11) 3.48e-00 (3.16e-01)
replications (standard errors ¢0 = 0.9 40 3.82(0.17) 1.55¢-00 (1.73e-01)
in parentheses), where K is Py =09

80 6.83 (0.35) 8.34e-01 (8.57e—02)
160 17.03 (0.61) 1.65e-01 (1.83¢-02)

the stopping rule parameter P =0.1

ERPS 2 1.03 (0.02) 1.42e-01 (7.95¢-02)
:10_=18~5 4 1.12 (0.03) 8.64e-02 (6.01e—02)
8 1.29 (0.03) 4.32¢-02 (4.32e-02)
16 1.49 (0.03) 2.25e-07 (1.36e-07)
32 1.86 (0.04) 0.00e-00 (0.00e—00)
Table 3.3 Performance of
ERPS with different q0 CPU time Nopt Relative error
exploitation probabilities
(n=10, K =10, r =10) 0.0 3.47 (0.14) 0 2.42e-02 (6.04e-03)
based on 30 independent 0.1 2.04(0.04) 6 5.82e-05 (4.42¢-05)
;ﬁp;;izgfh“:sg;andard errors 5 1.48 (0.03) 14 8.75¢-06 (4.76¢—06)
0.3 1.36 (0.02) 23 1.78e—07 (1.08e—07)
0.4 1.28 (0.03) 22 3.25e-06 (2.56e—06)
0.5 1.32(0.03) 26 2.44e-06 (2.32e—06)
0.6 1.43 (0.04) 26 1.67e-01 (9.77e—02)
0.7 1.47 (0.04) 24 2.08e-01 (8.97e—02)
0.8 1.80 (0.04) 20 5.49¢-01 (1.51e-01)
0.9 2.28 (0.08) 8 1.19e-00 (1.89e-01)
1.0 8.90 (0.02) 0 1.35e4-01 (3.30e-16)

to 1.0 decreases the quality of the solution, because the local search part begins to
gradually dominate, so that the algorithm is more easily trapped in local minima.
This also explains why we have larger variances when ggp = 0.6,0.7, 0.8, 0.9 in Ta-
ble 3.3. Notice that the algorithm is very slow in the pure local search case; setting
qo < 1 speeds up the algorithm substantially.

To provide a numerical comparison between the “nearest neighbor” heuristic (bi-
ased sampling) and the policy mutation procedure (unbiased sampling), we con-
struct a new algorithm that uses the PIRS step to generate the elite policy from
the current population of policies but the policy mutation procedure (as in EPI) to
generate the remaining policies in the next population. Denote this new algorithm
by PIRS+PM. In both ERPS and PIRS+PM, we fix the population size n = 10, and
stop the algorithms only when a desired accuracy is reached. In Table 3.4, we record
the length of time required for different algorithms to reach a relative deviation of
at least 1.0e—03. Indeed, we see that ERPS uses far less time to reach a required
accuracy than PIRS+PM.

82 3 Population-Based Evolutionary Approaches

Fig. 3.6 Convergence of the 10° :
value function for case (ii), e
where £ is the iteration
counter: (a) ERPS (n = 10,
r=10, K =16,g9 =0.5);
(b) EPI (n = 10, K = 160,
q0=0.9, P, =0.9, ,=0.1) _5
2
E
5 103 —— k=0 |
g —A— k=5
—— k=10
o —v— k=20
10 —e— k=40 |
| —&— k=60
, —— optimal
4

—— k=0
—&— k=10
—— k=20
—7— k=40
——
—a—
——

4

value function

k=80
k=160
optimal

0 50
state

(b) EPI

3.3.1.2 Continuous Action Space

We test the algorithm when the action space A is continuous, where the service
completion probability can be any value between 0 and 1. Again, two cost functions
are considered, corresponding to cases (i) and (ii) in Sect. 3.3.1.1. In both cases, the
maximum queue length £, state space X, and the discount factor y are all taken to
be the same as before.

In the numerical experiments, we approximated the optimal costs V| and V;

for each of the respective cases (i) and (ii) by two value functions \71* and \72*,
which were computed by using a discretization-based policy iteration (PI) algo-
rithm, where we first uniformly discretize the action space into evenly spaced points
by using a mesh size /4, and then apply the standard PI algorithm on the discretized

3.3 Numerical Examples 83

Table 3.4 Average time required to reach a precision of at least 1.0e—6 for different algorithms,
based on 30 independent replications (standard errors in parentheses)

Algorithm Parameters CPU time Relative error

ERPS g0 =0.0 14.34 (1.68) 5.01e-04 (4.59¢-05)

r=10 go=0.1 1.05 (0.02) 4.28e-04 (5.29¢-05)
g0 =03 0.91 (0.04) 4.04e-04 (5.77¢-05)
go=0.5 0.94 (0.04) 4.36e-04 (6.01e-05)
go=0.7 1.63 (0.18) 3.06e-04 (5.59¢-05)
g0 =09 4.10 (0.64) 2.12e-04 (4.27¢-05)

PIRS+PM q0=0.9, P, =09, P, =0.1 66.6 (9.8) 5.19¢-04 (5.30e-05)
q0=0.7, P, =09, P, =0.1 39.1 (6.6) 5.60e-04 (5.19¢-05)
q0=0.5, P, =09, P, =0.1 21.7 (1.8) 6.14e-04 (4.42¢-05)
q0=03, P, =09, P, =0.1 23.4 (3.1) 4.85¢-04 (5.77e-05)
qo=0.1, P, =09, P, =0.1 21.1 2.9) 5.81e-04 (5.78¢-05)
q0=0.0, P, =10, P, =0.0 23.7 (2.7) 4.49¢-04 (5.71e-05)

problem. In both cases, we take 7 = 1e—8. Note that a brute-force calculation of ‘71*

or ‘72* requires more than 40 hours of CPU time.

We set the population size n = 10 and termination control parameter K = 10,
and test the ERPS algorithm by using different values of the search range r. The
performance of the algorithm is also compared with that of the discretization-based
PI algorithm. Tables 3.5 and 3.6 give the performances of both algorithms for cases
(1) and (ii), respectively. Note that the relative deviations are actually computed by
replacing the optimal value functions V* and V;* with their corresponding approxi-
mations ‘71* and \72* in Eq. (3.18).

Test results indicate that ERPS outperforms the discretization-based PI algorithm
in both cases, not only in computational time but also in solution quality. We observe
that the computational time for PI increases by a factor of 2 for each halving of the
mesh size, while the time for ERPS increases at a much slower rate.

3.3.2 A Two-Dimensional Queueing Example

The second example, shown in Fig. 3.7, is a slight modification of the first one, with
the difference being that now we have a single queue that feeds two independent
servers with different service completion probabilities a; and a;. We consider only
the continuous action space case. The action to be chosen at each state x is (a, an)T,
which takes value from the set A = [0, 1] x [0, 1]. We assume that an arrival that
finds the system empty will always be served by the server with service completion
probability a;. The state space of this problem is X = {0, 15,, 1s,, 2, ..., 48}, where
we have assumed that the maximum queue length (not including those in service) is

84 3 Population-Based Evolutionary Approaches

Table 3.5 Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic PI algo-
rithm for case (i), where the results of ERPS are based on 30 independent replications (standard
errors in parentheses)

Algorithm Parameters CPU time Relative error
ERPS g0 =0.25 2.66 (0.10) 1.12e-11 (3.72e-12)
1
(r = 7000) g0 =0.50 2.27 (0.09) 2.86e-12 (4.20e~13)
g0 =0.75 2.94 (0.08) 1.11e-12 (2.51e-13)
ERPS g0 =025 2.63 (0.10) 2.87e-12 (5.62¢-13)
1
(r = go00) g0 =0.50 2.93 (0.10) 6.12e-13 (1.49e—13)
g0 ="0.75 3.10 (0.11) 3.94e-13 (7.02¢-14)
ERPS g0 =025 2.85 (0.09) 8.80e-13 (2.45¢-13)
1
(r = 1e000) go = 0.50 3.27 (0.10) 1.87e~13 (3.85¢-14)
go=0.75 3.72 (0.10) 9.91e-14 (2.34e-14)
PI h= 4000 6 (N/A) 2.55e-08 (N/A)
h= 8000 12 (N/A) 1.35¢-08 (N/A)
h = 1505 6000 23 (N/A) 5.04e-09 (N/A)
h= 32000 46 (N/A) 5.84e-10 (N/A)
h= 128000 188 (N/A) 3.90e-11 (N/A)
h= s 793 (N/A) 3.83e-12 (N/A)
Fig. 3.7 A two-dimensional
queueing example L
p=0.2 departure
— = — =

&)

46, and 1g,, 15, are used to distinguish the situations whether server 1 or server 2 is
busy when there is only one customer in the system. As before, the discount factor
a=0.98.

The one-stage cost is taken to be

1X| ? x| . :
R(y,aj,a) =y+ TCOS(ﬂal)—y Iisy + TSln(ﬂaz)—y Iis,y, (3.20)

where

1 ifxe {151, 152},

x otherwise.

1 if server i is busy,
Iis;y = .
0 otherwise

(i=1,2), and y:!

The performances of the ERPS and the discretization-based PI are reported in
Table 3.7. In ERPS, both the population size n and the stopping control parame-

3.3 Numerical Examples 85

Table 3.6 Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic PI algo-
rithm for case (ii), where the results of ERPS are based on 30 independent replications (standard
errors in parentheses)

Algorithm Parameters CPU time Relative error
ERPS g0 =0.25 2.74 (0.10) 1.09e—07 (3.24e-08)
1
(r = 7000) go=0.50 2.86 (0.08) 2.19¢-08 (6.15¢-09)
g0=0.75 3.13 (0.09) 7.69e-09 (1.36e-09)
ERPS q0=0.25 3.06 (0.12) 1.47¢—08 (3.61e-09)
1
(r = go00) g0 =0.50 2.98 (0.13) 4.55¢-09 (9.77¢—10)
q0=0.75 3.57 (0.08) 1.76e-09 (4.21e-10)
ERPS g0 =0.25 3.17 (0.09) 9.50e-09 (3.55¢-09)
1
(r = 1e000) go = 0.50 3.26 (0.11) 1.42e-09 (2.44¢-10)
g0 =0.75 4.17 (0.12) 3.49¢-10 (7.70e~11)
PI h= 4000 5 (N/A) 8.35¢-04 (N/A)
h= 8000 11 (N/A) 4.51e-05 (N/A)
h= 16000 21 (N/A) 4.50e-05 (N/A)
h= 32000 42 (N/A) 9.66e-06 (N/A)
h= 128000 175 (N/A) 8.96e-07 (N/A)
h= s 734 (N/A) 2.34e-08 (N/A)
Table 3.7 A - - -
two-dimensional test Algorithm Parameters CPU time Relative error

example, where the ERPS
results (n =10, K =10)are ERPS q0=0.25 3.18 (0.15) 3.86e—04 (3.18e-05)

based on 30 independent =10 go=0.50 3.16 (0.16) 7.48e-03 (7.25¢-03)

replications (standard errors _ o o
in parentheses) q0=0.75 3.54(0.14) 5.83e-02 (1.78e-02)

ERPS g0 =0.25 3.31(0.12) 9.44e-05 (8.25¢-06)
1

r=20) ¢o=050 326 (0.12) 7.31e—03 (7.27e-03)

g0 =0.75 3.88 (0.17) 5.48e-02 (1.83e-02)

ERPS g0 =0.25 3.53(0.12) 2.06e-05 (1.97e-06)

1
r=20) ¢y=050 3.74 (0.12) 7.27e-03 (7.26e-03)
g0 =0.75 4.36 (0.14) 3.55e-02 (1.48e-02)

PI h= ﬁ 14 (N/A) 6.23e-02 (N/A)
h= ﬁ 55 (N/A) 2.98e-02 (N/A)
h= ﬁ 226 (N/A) 1.24e-03 (N/A)

ter K are set to 10. In PI, we adopt a uniform discretization, where the same mesh
size h is used in both coordinates of the action space. Again, in computing the

86 3 Population-Based Evolutionary Approaches

relative deviation, we approximated V* by V*, which was computed by using the
discretization-based PI algorithm with a mesh size h = ﬁ. Notice that the com-
putational time for PI increases by a factor of 4 for each halving of the mesh size,
whereas the time required by ERPS increases much more slowly.

These preliminary numerical experiments indicate some robustness with respect
to the choice of the exploitation probability gg, which balances exploitation and
exploration in action selections, in that values between 0.25 and 0.75 all seem to
work well. Another approach is to follow a similar strategy as in simulated annealing
whereby the value of g is gradually increased from O to 1, which corresponds to
the transitioning of the search mechanism from pure random sampling to pure local
search. The numerical results also demonstrate the potential for orders of magnitude
computational efficiency gains over traditional policy iteration on a select set of test
cases.

An important implementation issue is the dependence of ERPS on the underly-
ing distance metric, as determining a good metric could be challenging for those
problems that do not have a natural metric already available. One possible way to
circumvent this is to adaptively update/change the action selection distribution P
at each iteration of the algorithm based on the sampling information obtained dur-
ing the previous iterations in such a way that more promising policies will have a
larger chance of being selected. Using the model reference adaptive search (MRAS)
framework of Chap. 4, this approach will be developed in Sect. 4.4.

3.4 Extension to Simulation-Based Setting

In this chapter, the key steps of policy switching in EPI, given by (3.2) and (3.3),
and PIRS in ERPS, given by (3.5), are based on the computation of the exact
values of the infinite-horizon value function V7 (x),x € X, w € I, which essen-
tially requires solving a system of linear equations. For large state spaces, this may
be impractical. Furthermore, in the predominant setting of this book, the transi-
tion probabilities needed to solve the system of equations may not be explicitly
available; instead, we have a simulation model, i.e., (X, A, A(-), f, R') instead of
(X,A,AC), P, R).

In this simulation-based setting, we first have to approximate the infinite-horizon
value function by a finite-horizon value function:

X0 = x:| ,

selecting an appropriate horizon length H. Simulation is then applied to estimate
this value function, which can then be used in (3.2) and (3.3) for EPI, and in (3.5)
for ERPS, respectively. Unfortunately, the resulting computational complexity still
depends on the size of the state space, since the operations defined by (3.2), (3.3),
and (3.5) all require computation of the policy over the entire state space.

H-1

VT(x) = E|:Z J/tR/(xt, 7 (%), wt)

=0

3.5 Notes 87

In Chap. 5, we consider “on-line” versions of policy switching and PIRS, i.e.,
policies in which the system (either the actual system itself or a simulation model of
the system) evolves to a particular state that is observed, and the action to be taken
in that particular state is then computed on-line at the decision time via the methods
of policy switching and PIRS.

3.5 Notes

EPI and ERPS were introduced in [43] and [95], respectively, where in the latter
case, the PIRS step was called “policy improvement with cost swapping” (PICS).
The literature applying evolutionary algorithms such as GAs for solving MDPs is
relatively sparse. Reference [121] uses a GA approach to construct the minimal set
of affine functions that describes the value function in partially observable MDPs,
yielding a variant of value iteration (VI). Reference [46] proposes an approach that
maps heuristically “simple” GA [169] into the framework of PI. Unfortunately, the
convergence to an optimal policy is not always guaranteed. Some other work in-
cludes [182], where GAs are used to find good finite-horizon policies for partially
observable MDPs, and [8], where a genetic search in policy space similar to [46] for
solving infinite-horizon discounted MDPs is proposed with no convergence guaran-
tee. Chang [33] applies “marriage in honey-bees optimization” with a similar frame-
work to EPL.

A concept of elitism related to our work was introduced by De Jong [53]. How-
ever, in his work, the elitist is a best policy in the current population, whereas in
EPI and ERPS, the elite policy may not be the best policy in the current population,
but is guaranteed to be better than all policies in the previous population, although it
may not be a member of the previous population. Policy switching was introduced
in [41], although the operation of improving upon two given policies via (3.1) can
also be found in [148, p. 152].

The issue of large action spaces was addressed in early work by MacQueen [124],
who used some inequality forms of Bellman’s equation together with bounds on the
optimal value function to identify and eliminate non-optimal actions in order to re-
duce the size of the action sets to be searched at each iteration of the algorithm. Since
then, the procedure has been applied to several standard methods like policy itera-
tion (PI), value iteration (VI), and modified policy iteration (see Chap. 6 in [145] for
a review). All of these algorithms generally require a finite action space. Perhaps
the most straightforward and the most commonly used numerical approach in deal-
ing with MDPs with uncountable action spaces is via the use of discretization (see
[154]). In practice, this could lead to computational difficulties, either resulting in
an action space that is too large or in a solution that is not accurate enough.

The queueing examples used in the numerical experiments were adapted
from [52].

Chapter 4
Model Reference Adaptive Search

In this chapter, we present a general global optimization method called model ref-
erence adaptive search (MRAS), and explore some of its applications for solving
MDPs. We start by introducing the MRAS method in a deterministic optimization
context, where the performance function can be evaluated exactly. Then we general-
ize the method to stochastic settings where the performance function can only be es-
timated with some noise, e.g., via simulation or real-time observation. MRAS can be
applied either directly or indirectly for solving MDPs. In the former case, we use the
method as a particular policy learning approach to find the best policy within a class
of parameterized policies for both finite- and infinite-horizon MDPs, whereas in the
latter case, we combine the method with the ERPS algorithm introduced in Chap. 3
to provide another population-based MDP solution technique with balanced explo-
ration and exploitation. We also discuss an approach in which MRAS can be used
as another sampling mechanism in the adaptive multi-stage sampling approach of
Chap. 2. Finally, at the end of the chapter, we present a recently developed stochastic
approximation framework for studying a class of simulation- and sampling-based
optimization algorithms. We illustrate the framework through an exemplary algo-
rithm instantiation called model-based annealing random search (MARS) and dis-
cuss its application to finite-horizon MDPs. The MARS algorithm can also be used
as an on-line simulation-based approach for solving infinite-horizon MDPs, which
will be discussed in Chap. 5.

The MRAS approach falls into the class of model-based methods for global op-
timization, whereby new solutions are generated via an intermediate probability
model that is updated or induced from the previous solutions (see Fig. 4.1). Each
iteration of these algorithms usually involves the following two phases:

1. Generate/sample candidate solutions (random samples, trajectories) according to
a specified probability distribution model.

2. Update the probabilistic model, on the basis of the solutions generated in the first
phase, in order to bias the future search toward “better”” solutions.

The idea is to concentrate the probability mass of the distribution model on the set
of promising solutions, so that good solutions will be sampled with high probabil-

H.S. Chang et al., Simulation-Based Algorithms for Markov Decision Processes, 89
Communications and Control Engineering,
DOI 10.1007/978-1-4471-5022-0_4, © Springer-Verlag London 2013

http://dx.doi.org/10.1007/978-1-4471-5022-0_4

90 4 Model Reference Adaptive Search

Fig. 4.1 Depiction of two
phases iterated in probabilistic model
model-based methods

A 4

samples

updating mechanism

A 4

parameterized
family

parameter
selection

:

1

1

parameterized samples | |
distribution _>I:p :
1

1

1

1

1

reference
distributions

Fig. 4.2 Depiction of iterative procedure in the MRAS method

ity. Throughout, unless otherwise indicated, a “distribution” (function) will mean a
probability density/mass function (p.d.f./p.m.f.), covering both the continuous and
the discrete cases, with integrals understood to be replaced by summations in the
latter case.

The theoretical and practical efficiencies of model-based methods are primarily
determined by the two key questions of how to update these probabilistic models
and how to efficiently generate samples from them. In MRAS, these difficulties are
circumvented by sampling from a family of parameterized distributions and using a
sequence of intermediate reference models to facilitate and guide the updating of the
parameters associated with the family of parameterized distributions. A schematic
description of MRAS is given in Fig. 4.2. One hopes that the parameterized family
is specified with some structure so that, once the parameter is determined, sampling
from each of these distributions should be a relatively easy task. For example, for
optimization problems in N", one possible choice of the parameterized distribution
is the multivariate normal (Gaussian) distribution, which can be efficiently sampled
from and represented relatively compactly by its mean vector and covariance ma-
trix. An additional advantage of using the parameterized family is that the task of
updating the entire sampling distribution now simplifies to the task of updating its
associated parameters, which is carried out by minimizing a certain distance be-
tween the parameterized family and the reference distributions. The sequence of
reference distributions in MRAS is primarily used to guide the parameter updating
process and to express the desired properties of the method. Thus, these distributions
are often selected so that they can be shown to converge to a degenerate distribution
with all probability mass concentrated on the set of optimal solutions. Intuitively, the

4.1 The Model Reference Adaptive Search Method 91

sampling distribution can be viewed as a compact approximation of the reference
distribution (i.e., the projection of the reference distribution on the parameterized
family). Thus, as the sequence of reference distributions converges, the sequence of
samples generated from their compact approximations (i.e., sampling distributions)
should also converge to the optimum.

This chapter is organized as follows. The general MRAS approach for global op-
timization—both deterministic and stochastic—is presented in Sect. 4.1, followed
by convergence analysis in Sect. 4.2. The two main applications of MRAS in the
MDP setting are presented in Sects. 4.3 and 4.4, which include numerical results for
the algorithms, whereas Sect. 4.5 contains a brief discussion of a proposed algorithm
for applying MRAS to the adaptive sampling framework of Chap. 2. In Sect. 4.6, we
present a systematic framework based on stochastic approximation theory that al-
lows us to study a class of randomized optimization algorithms in a uniform manner.
A particular algorithm instantiation of the framework called model-based annealing
random search is presented in Sect. 4.6.1 and its application to the MDP setting is
discussed in Sect. 4.6.2. With the exception of the requisite Sect. 4.1, each of the
sections in this chapter can be read independently. In particular, for those readers
interested primarily in the practical implementation of the MRAS algorithms to the
various MDP settings rather than in the mathematics guaranteeing theoretical con-
vergence, the technical proofs of Sect. 4.2 can be skipped without loss of continuity.

4.1 The Model Reference Adaptive Search Method

We consider the following optimization problem:

x* €argmax J(x), xeX CR", 4.1)
xeX

where X is a non-empty set in ", and J : X — N is a deterministic function that
is bounded from below, i.e., 3IM > —oo such that J(x) > M Vx € X. Throughout
this chapter, we assume that (4.1) has a unique global optimal solution, i.e., Ix* € X’
such that J (x) < J(x*) Vx #x*, xe X.

MRAS works with a family of parameterized distributions { f(-,8), 6 € ®} on
the solution space, where © is the parameter space. Assume that at the kth itera-
tion of the method, we have a sampling distribution f (-, 6;). We generate candidate
solutions from this sampling distribution. The performances of these randomly gen-
erated solutions are then evaluated and used to calculate a new parameter vector
Ok+1 € © according to a specified parameter updating rule. The above steps are per-
formed repeatedly until a termination criterion is satisfied. The idea is that if the
parameter updating rule is chosen appropriately, the future sampling process will be
more and more concentrated on regions containing high-quality solutions.

In MRAS, the parameter updating is determined by a sequence of reference dis-
tributions {gx}. At each iteration k, we consider the projection of g; on the family

92 4 Model Reference Adaptive Search

of distributions {f(-,0), 6 € ®} and compute the new parameter vector 0 that
minimizes the Kullback-Leibler (KL) divergence

gk (X) } 1 8k (x)

X0 v fx0

where v is the Lebesgue/counting measure defined on X', X € :i" is a random vec-
tor taking values in X, and E,, denotes the expectation taken with respect to g.
Intuitively, f(-,0r+1) can be viewed as a compact representation (approximation)
of the reference distribution gx; consequently, the feasibility and effectiveness of the
method will, to some large extent, depend on the choices of reference distributions.

There are many different ways to construct the sequence of reference distri-
butions {gx}. In this chapter, we use the following simple iterative scheme. Let
g1(x) > 0 Vx € X be an initial distribution on the solution space X. At each
iteration k > 1, a new distribution is computed by tilting the previous distribu-
tion gx—1(x) with the performance function J(x) (for simplicity, here we assume
J(x)>0VxeX),ie.,

D(gk, fe, 9)) =Eg, |:ln gr(x)v(dx), 4.2)

J(X)gk—1(x)
S I ®)g—1(X)v(dx)’

By assigning greater weight to solutions having larger values for J, each iteration
of Eq. (4.3) improves the expected performance in the sense that

Eq [(J(X))?]
Eq [J(X)]

gk(x) = vxe X. (4.3)

Eg [](X)] = > Eg, [J(X)]'
Furthermore, it is possible to show that the sequence {gx, k = 1, 2, ...} will converge
to a distribution that concentrates only on the optimal solution for arbitrary g1, with
limy 00 Eg, [J(X)] = J (x¥).

The rest of this section introduces three algorithms:

o MRAS: the idealized version of the algorithm, where the objective function J is
deterministic and we assume that expectations can be evaluated exactly.

e MRAS;: applicable version of MRAS, where J is deterministic but expectations
are estimated by their corresponding sample averages.

e MRAS;: extension of MRAS; to stochastic optimization, where the objective
function J cannot be evaluated exactly, but can be estimated with some noise,
along with expectations approximated by sample averages.

Only the last two algorithms are of any practical interest, but the first serves as a
basic foundation.

4.1.1 The MRAS Algorithm (Idealized Version)

Figure 4.3 presents the MRAS algorithm, which is a particular instantiation of
MRAS that uses the sequence of reference distributions generated by Eq. (4.3).

4.1 The Model Reference Adaptive Search Method 93

Algorithm MRAS,

Input: p € (0, 1], & > 0, strictly increasing function H : R — R+,
family of distributions { (-, 6)}, with 6y s.t. f(x,00) >0Vxe X.

Initialization: Set iteration count k = 0.

Loop until Stopping Rule is satisfied:
e Calculate the (1 — p)-quantile:

Xk = Sl[lp{l (P (J(X) =1) = p}.

e Update elite threshold:

- Xk ifk=0or xx > xx—1 +¢,
Xk =1 - .
Xk—1 otherwise.

e Update parameter vector:

Ok+1 € argmax Eg,
fe®

[[”H(J(X))]k

FX.ap Xz HnS <X,9>]' (44)

o k< k+1.

Output: 6.

Fig. 4.3 Description of MRAS algorithm

Throughout the chapter, we use Py, and Eg, to denote the respective probability and
expectation taken with respect to the distribution f (-, 6x). Thus, under our notational
convention,

Py (JX) = x) = /X H{I®) = ¢} f(x, 60v(dx),

Eg[/X)] = /X J(X) f (X, Gp)v(dx).

In MRASy, only a portion of the samples—the set of elite samples—is used to
update the probability model. This is achieved primarily through a quantile estimate
of the performance function values of the current samples. In the MRAS algorithm,
the parameter p determines the approximate proportion of samples used to update
the probabilistic model. At each iteration k of the algorithm, the (1 — p)-quantile
of the performance function values with respect to the distribution f (-, 6y) is calcu-
lated. These quantile values {x;} are used to construct a sequence of non-decreasing
thresholds {xx}, and only those candidate solutions having performances better than
these thresholds will be used in the parameter update via (4.4). Intuitively, the pri-
mary reason for using the thresholds {xx} is that such a bootstrapping approach for
selecting the elite samples will quickly direct the search of the algorithm towards a
sequence of “improving” regions, which could be more efficient than simply using

94 4 Model Reference Adaptive Search

the sequence of quantile values {xx} or even a fixed threshold to determine the elite
samples.

During the initialization step of MRAS, a small number ¢ and a strictly increas-
ing function H : R — RT are also specified. The function is used to account
for the cases where the value of J(x) is negative for some X, and the parameter ¢
ensures that each strict increment in the sequence {x;} is lower bounded, i.e.,

inf G — xe—1) = €.
Xk;éXk 1
k=1,2,.
We require ¢ to be strictly positive for continuous problems, and non-negative for
discrete (finite) problems.

In continuous domains, the division by f (X, 6;) in the parameter update (4.4)
is well defined if f(x, 6¢) has infinite support (e.g., normal p.d.f.), whereas in dis-
crete/combinatorial domains, the division is still valid as long as each point x in
the solution space has a positive probability of being sampled. Additional regularity
conditions on f (X, 6x) imposed in Sect. 4.2 for the convergence proofs ensure that
the parameter update (4.4) can be used interchangeably with the following:

Okr1 € argmax/ [H(J(x))]kI{J(x) > X} In f(x, 0)v(dx).
0e® X
The following lemma shows that there is a sequence of reference models
{gx, k=1,2,...} implicit in MRASy, and that the corresponding parameter up-
dating in MRAS(indeed minimizes the KL-divergence D(gx+1, f (-, 0)).

Lemma 4.1 The parameter 6y computed at the kth iteration of the MRAS(algo-
rithm via (4.4) minimizes the KL-divergence D(gr+1, f (-, 0)), where

HI)T (%) = xx)gr (%)
Eg [HJ (X)) I{J(X) = i}
H{J (x) = Xo}

1) 1= X ZH0L
IS
Eool "5]

gkt1(x) := vVxe X, k=1,2,..., and

Proof For notational brevity, define ’Hk J(x)) := [cont . We have

S (x,00)
21(0) = S ES I I{J (x) > xo}
Eg | lEQE2A] Egy [Ho(J (X)) T (X) > 7o}

When k > 1, we have from the definition of g; above,
HINI{J(X) > x1}g1(X)
Eg [HIXNI{J(X) = x1}]
_ HTCNI{I () = x1H{J (%) > o0}
Eg, [H1(J XN (X) = 71} {JI (X) = 7o)]

g2(x) =

4.1 The Model Reference Adaptive Search Method 95

_ HUIU® =)
Eg, [H1(JOX)IH{I(X) > 1)1

where the last equality follows from the fact that the sequence {xi} is non-
decreasing. Proceeding iteratively, it is easy to see that

[H(JGNIFI{T (x) > 7}
Eg [Hx(JOXNI{I(X) >)]’

8k+1(X) = Vk=0,1,.... 4.5)

Thus, the KL-divergence between gx41 and f (-, #) can be written as

D(gi+1, f(,0)) = Eg.,, [Ingr1(X)] — gy, [In £ (X, 0)]

Eg [Hx (JXNI{I(X) > i} In £ (X, 0)]
Eg,[Hi(J XNT{I(X) > 7}

= Eg[Inges1 X)) -

k=0,1,.... The result f0110w§ by observing that minimizing D(gk+1, f (-, 0)) is
equivalent to maximizing Eg, [Hi(J (X)) I{J(X) > xx}1In f (X, 6)]. Il

4.1.1.1 Natural Exponential Family

Convergence of the MRAS algorithm clearly depends on the choice of the family of
parameterized distributions. For example, if the parameterized family is a singleton
set, i.e., contains only one distribution, then there is in general no way to ensure the
convergence of the algorithm. In addition, a practical consideration is selecting a
family for which the parameter update given by (4.4) is relatively easy. The natural
exponential family (NEF) results in a globally convergent algorithm for which the
parameter update given by (4.4) can be obtained analytically.

Definition 4.2 A parameterized family of distributions {f(-,0),0 € ® € %"} on
X is said to belong to the natural exponential family (NEF) if there exist mappings
h:R"—= R, T R — R and K : K" — N such that

f(x,0) =exp{9TT(x) — K(G)}h(x), Vo e®, 4.6)

where K(0) = In fx iy exp{0T T (x)}h(x)v(dx), @ is the natural parameter space
O ={0 e W" :|K(0)| < oo}, and the superscript “T” denotes the vector transpo-
sition. For the case where f(-,6) is a p.d.f., we assume that 7" is a continuous

mapping.

The function K (), called the log partition function, plays an important role in
the theory of natural exponential family. Let int(®) be the interior of ®. It is well-
known that for any 6 € int(®), K (0) is strictly convex with VoK () = Ey[7 (X)]
and Hessian matrix Covg[7Y (X)]. Therefore, the Jacobian of the mean vector func-
tion m(-) : W"* — R defined by

m() := E¢[T(X)]

96 4 Model Reference Adaptive Search

is strictly positive definite and invertible. From the inverse function theorem, it fol-
lows that m(0) is also invertible. Intuitively, m(0) can be viewed as a transformed
version of the sufficient statistic 7" (x), whose value contains all information nec-
essary in estimating the parameter 6. Many common distributions belong to the
NEEF, e.g., Gaussian, Poisson, binomial, geometric, and certain multivariate forms
of them.

For continuous optimization problems in NR", if multivariate normal p.d.f.s are
used in MRAS, i.e.,

1
fx,6) = exp(—5<x —)T x - uk)), (4.7)

1
N Q)| X

where 6y := (ur; Xk), in which the parameters are updated in (4.4) as

_ Eg[{IHU GO/ (X, 0} (I (X) =)X
T B HHU)/ f X 00 (T (X) = 3l

(4.8)

_ Eq [{IH I X/ f X, 00T (X) = 3} X = e)X = i)
Eg [{[H(J X)I*/f X, 00 {J (X) = X}

D+l

3

4.9)
the sequence of parameterized p.d.f.s will converge to a degenerate p.d.f. with all
probability mass at the global optimum.

If the components of the random vector X = (Xi, ..., X;) are independent, i.e.,
each has a univariate density/mass of the form

fxi, 0) = eXp(X,'ﬁi — K(ﬁi))h(xi), XieN, v, eN, Vi=1,...,n,
then the algorithm will lead to the following convergence:

lim m(G) = lim Eq [X]=x* where 6 :=(9F,...,05).
k— 00 k— 00

4.1.2 The MRAS Algorithm (Adaptive Monte Carlo Version)

MRASy is an idealized algorithm that assumes that quantile values and expecta-
tions with respect to f (-, &) can be evaluated exactly. In practice, i.i.d. samples are
drawn from f(-,0) in order to estimate expected values and quantiles with their
corresponding sample mean and sample quantiles. Figure 4.4 presents the MRAS
algorithm, which is an adaptive Monte Carlo version of MRAS(that uses sam-
ples from f(-,0) and adaptive updating of the quantile parameter and sample size.
For example, the parameter update given by (4.4) of MRASy is replaced with its
stochastic counterpart in (4.10).

However, the theoretical convergence can no longer be guaranteed for a sim-
ple stochastic counterpart of MRASy. In particular, the set {x : J(X) > xk,X €

{X}C, R X,I(Vk}} involved in (4.10) may be empty, since all the random samples

4.1 The Model Reference Adaptive Search Method 97

Algorithm MRAS|—Adaptive Monte Carlo Version

Input: pg € (0,1], Ng > 1,6 >0, « > 1, A € (0, 1], strictly increasing function H: h —
M, family of distributions { f (-, #)}, with 6 s.t. £(x,6p) >0Vx e X.

Initialization: Set iteration count k = 0; 6y = 6.

Loop until Stopping Rule is satisfied:

1. Generate Ni i.i.d. samples Ay = {X1 yees X,ivk} according to

FC0) = =2 f (0 +Af (-, 6).
2. Compute the sample (1 — pg)-quantile:

Xk (P Ni) = J(1 (1= po) Ny 1)+

where Ji) is the ith order statistic of {J(X;;), i=1,..., N}
3. Update elite threshold:
if k =0 or X (px. Ni) = Xk—1 + 5, then
3a. Set Xk = Xk (0ks Nk), Pk+1 = Pk» Nk+1 = Nis
else, find the largest p € (0, pg) such that xz (o, Ng) > xr—1 + %;
3b. if such a p exists, then set xi = xx (0, Ni), pk+1 =0, Nr+1 = Ni;
3c. else (no such p exists), set xx = Xk—1, Pk+1 = Pk> Ni41 = [aNg].
endif
4. Update parameter vector:
k
Ory1 € argmaxi > wq](x) >k In f(x,6). (4.10)
ve0 Nk g7 .00

5. k<k+1.

Output: 6.

Fig. 4.4 Description of MRAS| algorithm

generated at the current iteration may be much worse than those generated at the
previous iteration. Thus, we can only expect the algorithm to converge if the ex-
pected values in the MRAS algorithm are closely approximated. The quality of the
approximation will depend on the number of elite samples used at each iteration
in the parameter update, and this quantity depends on the quantile parameter—p in
MRASp—and the number of samples generated in each iteration. In MRAS/, the
sample size is adaptively increasing, and the quantile parameter is adaptively de-
creasing. The rate of increase in the sample size is controlled by an extra parameter
a > 1, specified during the initialization step. For example, if the initial sample size
is No, then after k increments, the sample size will be approximately [a* No].

At each iteration k, N; random samples Ay = {X}, ..., X,iv"} are drawn from

the distribution f G, ék), which is a mixture of the initial distribution f(-,6p) and
the distribution calculated from the previous iteration f(-, 6¢). In practice, the ini-

98 4 Model Reference Adaptive Search

tial distribution f(-,8p) can be chosen according to some prior knowledge of the
problem structure; however, if nothing is known about where the good solutions
are, it could be chosen such that each region in the solution space will have an (ap-
proximately) equal probability of being sampled. Intuitively, mixing in the initial
distribution forces the algorithm to explore the entire solution space and to maintain
a global perspective during the search process. Also note that if A = 1, then random
samples will always be drawn from the initial distribution, in which case MRAS;
becomes a pure random sampling approach.

At Step 2, the sample (1 — pg)-quantile xj is calculated by first ordering the
sample performances J (Xi)’ i=1,..., Ny from smallest to largest, J1) < Jo) <

- < Jvy)» and then taking the [(1 — px)Ni]th order statistic, where [a] is the
smallest integer greater than or equal to a. Step 3 of MRAS; extracts a sequence
of non-decreasing thresholds {x} from the sequence of sample quantiles {x}, and
determines the appropriate values of px41 and N4 to be used in the next iteration.
At each iteration k, Step 3 first checks whether the inequality xx(ox, Nx) > xr—1 +
g/2 is satisfied, where xi_ is the threshold value used in the previous iteration.
If the inequality holds, this means that both the current p; value and the current
sample size Ny are satisfactory, and the parameter update (in Step 4) is carried out
using the newly obtained sample quantile. Otherwise, either pi is too large or the
sample size Ny is too small. To determine which, it is checked to see if there exists
a smaller p < pi such that the above inequality can be satisfied with the new sample
(1 — p)-quantile. If such a p does exist, then the current sample size Ny is still
deemed acceptable, and only py is decreased. Accordingly, the parameter vector is
updated (in Step 4) using the sample (1 — p)-quantile. On the other hand, if no such
0 exists, then the parameter vector is updated (in Step 4) by using the previous elite
threshold, and the sample size Ny is increased by a factor «.

It is important to note that the set {x € Ay : J(X) > xx} could be empty if Step 3¢
is visited. If this happens, the right-hand side of (4.10) will be equal to zero, so any
6 € ® is a maximizer, in which case we take ék+1 = ék.

4.1.3 The MRAS; Algorithm (Stochastic Optimization)

Now we extend the MRAS method to the stochastic optimization setting, in which
only noisy estimates of the performance function are available. Specifically, we con-
sider optimization problems of the following form:

x* eargmaxE[j(x, w)], 4.11)
xeX

where the solution space X is a non-empty setin h", J : X x ¥ — N is a determin-
istic function, and ¥ is a random variable (possibly depending on x) taking values
in ¥, which represents the stochastic effects of the system and with respect to which
the expectation is taken. We assume that 7 (x, ¥) is measurable and integrable with
respect to the distribution of i for all x € X. Define J(x) = E[J (X, ¥)], and as-
sume that J(x) cannot be obtained easily, but that i.i.d. samples of J(x, 1) are

4.1 The Model Reference Adaptive Search Method

99

Algorithm MRAS;—Stochastic Optimization

cation rule {My}.
Initialization: Set iteration count k = 0; 6y = 6.

Loop until Stopping Rule is satisfied:

1. Generate Nj i.i.d. samples Ay = {X]i, ey XIICV"} according to

FC00) = A =2) fC.00) + [- 6o)-
Take M} observations for every x € Ay,
My

2. Compute the sample (1 — pg)-quantile:
%k (P Ni) = T(1(1=p) N) »

where j(i) is the ith order statistic of {j(X;{), i=1,...,N}.
3. ifk=0or x; (o, Np) > xx—1 + €, then
3a. Set xx = Xk (0k> Ni)s Pk+1= pks Niy1= Ny,
X; =X _p, where Xy, € {x € A : Tp (%) = ¥x (ox> Ni)bs
else, find the largest p € (0, pg) such that xz (o, Ni) > xx—1 + €;
3b. if p exists, then set xx = Xk (0, Nk), pk+1 =0, Nkt1 = Ng,
Xi=Xj_5e{xeAr: Tp(® =1k (0, No)};
3c. else, set xx = Tk (X _)s Ph1 = Pks N1 = TaNg],
Xi =Xe—1:
endif
4. Update parameter vector:

[H(Tx)1

B 1 .
Ok € argmax — Z (T, xk) In f(x,0),

beo N 7 fx.60
0 ifz<x—e¢,
where [(z, x) := (z—x+e)/)e ifx—e<z<y,
1 ifz>x.
5. k<k+1.
Output: 6.

Input: pg € (0,1], Ng>1,e>0,a > 1, A € (0, 1), strictly increasing function H : R —
M, family of distributions { (-, 6)}, with 6 s.t. f(x,6p) > 0 ¥x € X, simulation allo-

and calculate sample performances J (X) = MLk > iz Ji(X) VX € Ag.

(4.12)

Fig. 4.5 Description of MRAS; algorithm

available, e.g., via simulation or real-time observation, and denote the ith sample
by J; (x). We assume that (4.11) has a unique global optimal solution, i.e., Ix* € X

such that J (x) < J(x*) Vx #x*, xe X.

Figure 4.5 presents the MRAS, algorithm, which is a generalization of the
MRAS; algorithm appropriately modified and extended for stochastic settings, the

100 4 Model Reference Adaptive Search

main addition being the requirement of an additional sample mean to estimate the
performance function. Thus, in addition to the sampling allocation rule {Ny} used
in MRAS/, there is an observation allocation rule {My, k =0, 1, ...}, specified dur-
ing the initialization step of MRAS,, where M, indicates the number of simulation
observations to be allocated to each of the candidate solutions sampled at the kth
iteration. Assumption L3 in Sect. 4.2 provides conditions on {M}} that ensure con-
vergence of the algorithm. At iteration k, the sample mean based on the M} obser-
vations jk(x) = ML;{ Zle"l Ji(x) is used to estimate the true performance J (X).

At Step 2 of MRAS,, the sample (1 — pg)-quantile xx with respect to f G, 5k)
is calculated by first ordering the sample performances j{(X};), i=1,...,Ng
from smallest to largest, Ji.1) < Jk.2) < - < Jk.(vp)» and then taking the
[(1 — pg) Ny]th order statistic.

MRAS; also extends the MRAS; construction of the sequence of thresholds
{xx,k=0,1,...}. In particular, at each iteration k, the algorithm uses an additional
variable X7 to record the sample that achieves the current threshold value ;. When-
ever Step 3c is visited, M i.i.d. observations are allocated to X,’gfl (i.e., the sample
that achieves the threshold value at iteration k — 1), setting the current threshold as
i = Ti X;_) = ML,(Zf‘i‘l Ji (X} _,)- If more than one sample achieves a threshold
value, ties are broken arbitrarily. It is easy to observe that in a deterministic setting,
i.e., J(x) can be evaluated exactly, Steps 1-3 of MRAS, coincide with those of
MRAS;.

Another modification from MRAS; occurs at Step 4, where a continuous filter
function I(-, -), as opposed to the original indicator function, is used in parameter
updating (cf. (4.12)). The function eliminates from consideration those obviously
inferior solutions among Ay that have performance worse than y; — ¢. However,
since all performance evaluations will contain some noise, I (-, yx) is chosen to
be continuous to provide some robustness, in the sense that those solutions with
true performance better than y; but whose current estimates are slightly worse than
vk (between y; — ¢ and ;) will still be included in parameter updating. Thus, in
the long run, as more precise performance estimates are obtained, ¢, Yk) ensures
(w.p.1) that all solutions with true performance better than y, will be used to calcu-
late the new parameter §k+1.

The following lemma shows that there is a sequence of reference models {g}
implicit in MRAS,, and that the corresponding parameter update in MRAS, mini-
mizes the KL-divergence D(gx+1, f (-, 0)). The proof is simple and is thus omitted.

Lemma 4.3 The parameter §k+1 computed at the kth iteration of MRAS, via (4.12)
minimizes the KL-divergence D(gi+1, f (-, 0)), where

[H (T NI/ f (x.6011 (T (3. %)
Y xeag TGN/ f (%0011 (T (x). 7k)

8k+1(X) := if{ixe Ap: Ji(X) > jix — e} £ 0,
8k(X) otherwise,

4.13)

4.2 Convergence Analysis of MRAS 101
k=0,1,..., where

Xk (ok, Ni) if Step 3a is visited,
Xk =1 xk(p, Nx) if Step 3b is visited,
Je(XE_|) i Step 3c is visited.

4.2 Convergence Analysis of MRAS

In this section, we provide theoretical global convergence results for each of the
algorithms presented in the previous section when the parameterized distribution is
NEF.

4.2.1 MRASy Convergence

Proving global convergence of MRAS, requires some additional regularity condi-
tions.

Assumption A1 For any given constant § < J(x*), {x: J(x) > &} N X has a strictly
positive Lebesgue or discrete measure.

Assumption A2 For any given constant § > 0, supyc 4, J (X) < J (x*), where As :=
{x:|x—x*|| >3} N X, and we define the supremum over the empty set to be —oo.

Assumption A3 3 compact set = such that {x: J(x) > o} N X C Z, where xo =
sup;{/ : Pgy(J(X) > 1) > p} is defined as in the MRAS algorithm.

Assumption A4 The maximizer of (4.4) is an interior point of ® Vk.

Intuitively, Assumption Al ensures that any neighborhood of the optimal solu-
tion x* will have a positive probability of being sampled. For ease of exposition,
Assumption Al restricts the class of problems under consideration to either con-
tinuous or discrete problems, but the convergence results can be easily extended to
problems with a mixture of both continuous and discrete variables. Since J has a
unique global optimizer, Assumption A2 is satisfied by many functions encountered
in practice. Note that both Assumptions Al and A2 hold trivially when X is (dis-
crete) finite and the counting measure is used. Assumption A3 restricts the search of
the MRAS algorithm to some compact set; it is satisfied if the function J has com-
pact level sets or the solution space X is compact. In actual implementation of the
algorithm, the parameter updating step of MRAS given by (4.4) is often posed as an
unconstrained optimization problem, i.e., ® = %", in which case Assumption A4
is automatically satisfied.

The convergence of MRAS requires the following key observation.

102 4 Model Reference Adaptive Search
Lemma 4.4 [f Assumptions A3—A4 hold, then we have
m(Ox+1) == Eg [T(X)] =Eg., [T(X)], Vk=0,1,...,

where Eq, . and E
8k+1, respectively.

ary1 denote the expectations taken with respect to f (-, Ox41) and

Proof Define Ji (0, xx) = fX[’H(J(x))]kI{J(x) > xr}In f(x,0)v(dx). Since
f (-, 0) belongs to the NEF, we can write

T, 50 = /X [H(70)] T{I® = 7} Inh(0v(dx)
+/X[H(J(x))]"1{1(x)z;zk}eTr(x)u(dx)

—/X[H(J(x))]"I{J(x)zxk}1n[/Xexp(eTT(y))h(y)u(dy)]v(dx).

Thus the gradient of Ji (6, xx) with respect to 6 can be expressed as

Vo0, 1) = /){[H(J(x))]"l{f(x) > 7} T X (dx)

S TOT@h@)v(y)
[x e TOhyvdy) Jx

[H(J)] 1{I® = 2 Jviax),

where the validity of the interchange of derivative and integral above is guaranteed
by the dominated convergence theorem.

By Assumption A3 and the non-decreasing property of the sequence { xi}, it turns
out that the above gradient Vy Ji (6, xx) is finite and thus well-defined. Moreover,
since p > 0, it can be seen from the MRAS(algorithm that the set {x : J(x) >
Xk} N X has a strictly positive Lebesgue/counting measure. It follows that we must
have [[H(J) IFI{J(x) > xx}v(dx) > 0.

By setting Vg Jx (0, xx) = 0, it immediately follows that

k = 0T 1 (x)
/ [(HT)T (%) > xx}T (%) (dx):/ e h(x)Y (x) b(dx).
X X

— v
S HUT ORI (y) = xx}v(dy) v e TOh(y)v(dy)
and by the definitions of g1 (see the proof of Lemma 4.1) and f (-, #), we have
Eg [TX)]=Eo[T(X)]. (4.14)
By Assumption A4, since 641 is an optimal solution of the problem

argmax Ji (0, xk),
)

42 Convergence Analysis of MRAS 103
it must satisfy Eq. (4.14). Therefore we conclude that
Eg [TX)]=Eg, [TX)]. Vk=0,1,.... O
We have the following convergence result for the MRAS algorithm.

Theorem 4.5 Let {6y, k = 1,2, ...} be the sequence of parameters generated by
MRASy. If ¢ > 0 and Assumptions A1-A4 are satisfied, then

lilll m ‘9 = 11’1“ EQ) X =) X 4.15
Wh@)@ the llmlt iS Component-wise.

Proof In Lemma 4.4, we have already established a relationship between the
sequence of reference models {gx} and the sequence of sampling distributions
{f(,6r)}. Therefore, proving Theorem 4.5 amounts to showing that
limy— 00 Eg, [T (X)] =7 (x¥).
Recall from Lemma 4.1 that gx4+1 can be expressed recursively as
HIT) (X) = xu) gk (%)

- v X7k:1,2,....
8k+1(X) Eg [H(J X)) I{J(X) >)] *e

Thus

) Eg [[HJ NPT (X) >)]
Ege [GOV 0 = 0l = =5 o 700 = e

> Eg [H(JX)H{IX) =)] (4.16)

Since yx < J(x*) Vk, and each strict increment in the sequence {xj} is lower
bounded by the quantity & > 0, there exists a finite " such that xx+1 = xx, Yk > N.
Before we proceed any further, we need to distinguish between two cases, x 7 =
J(x*) and jn < J(x¥).

Case 1. If ypr = J(x*) (note that since p > 0, this could only happen when the
solution space is discrete), then from the definition of gz4; (see Lemma 4.1), we
obviously have

grr1(x) =0, Vx#x¥,
and

(x) = HICNIIE =T6D) gy
) = LU F I 0 = T6h

Hence it follows immediately that

Eg[TX)]=7(x") Vk=N.

104 4 Model Reference Adaptive Search
Case 2. If xnr < J(x*), then from Inequality (4.16), we have

Eg i [H(I X)) I{I(X) = jat1}]
> Eg [HIX){JX) =)], VE= N, 4.17)
Le., the sequence {Eq, [H(J (X)) I{J(X) = xx}]. kK =1,2,...} converges.

Now we show that the limit of the above sequence is H(J (x*)). To do so, we
proceed by contradiction and assume that

Hei= lim Eg [H(JO){IX) = i}] < H =HI (). 418
Define the set A as
A={x:Jx > xn}N {X:H(J(X)) = %} ne

Since H is strictly increasing, its inverse H ! exists. Thus A can be reformulated

as
A:{X:J(X)Zmax{)b\/, ’H‘«%)}}DX.

Since yn < J(x*), A has a strictly positive Lebesgue/discrete measure by Assump-
tion Al.
Notice that g can be rewritten as

k—1 _
HT)I{J(X) > x;)
=] — - g1(x).
il Eg[HUJX)I{JX) > xi}]
. . HTXNI{J(X)> Xk HITNI{J(X)>7%
Since limg_ oo Egk[;[((]"()))()){[{(;i&))g}k}] _ HU®) 7El*(x)_XN} ~ 1, Vx € A, we con-
clude that

lim gi(x) =00, VxeA.
k—o00

Thus, by Fatou’s lemma, we have
1:1iminf/ gr(X)v(dx) zliminf/ gr(X)v(dx)
k—oo Jx k=00 J A
2/ liminf gx (x)v(dx) = o0,
A k—o0

which is a contradiction. Hence, it follows that

klirgo Eg [H(JX))I{IX) = xi}] =H" (4.19)

4.2 Convergence Analysis of MRAS 105

To show limy o0 Eg [T (X)] = T (x*), we now bound the difference between
Eo [(X)] and T (x*). Note that Vk > N, we have

£ T 0] =16 < [1700 = 7() s ian

= /CHT(X) T ()@ v@x), (4.20)

where C := {x: J(x) > yn/} N X is the support of g, Yk > N.

By the assumption on 7" in Definition 4.2, for any given ¢ > 0, there exists a
8 > 0 such that ||x — x*|| < § implies |7 (x) — 7 (x*)|| < ¢. With A defined from
Assumption A2, we have from Inequality (4.20),

[Ee[T30] =7 (x")]

<[e -T6)aov@y
ASnC
+/ |7 ®) =7 (x*) | gk x)v(dx)
AsNC

5§+/ |7 ®) = T (x*) | gcx)vdx), Vk>N. @.21)
AsNC

The rest of the proof amounts to showing that the second term in (4.21) is also
bounded. Clearly the term ||7"(x) — 7" (x*)|| is bounded on the set As N C. We only
need to find a bound for g (x).

By Assumption A2, we have

sup J(x) < sup J(x) < J(x*).
xeAsNC XEAs

Define H;s := H* — H(supye As J(X)). Since H is strictly increasing, we have
Hs > 0. Thus, it follows that

H(J(x) <H*—Hs, VxeAsNC. (4.22)

On the othe_tr hand, from inequality (4.17) and Eq. (4.19), there exists N > N such
that Vk > N

_ 1
Egq[HIJX)H{IX) =)] =H* — 5 Hs. (4.23)
Observe that gi(x) can be alternatively expressed as
k—1

o [] HUU® =7
S S TR OVIVIeSE AT

i=

g, Vk=N.

106 4 Model Reference Adaptive Search

Thus, it follows from inequalities (4.22) and (4.23) that

w—Hs * N _
gk(mf(m) -g/\-/(x), vVxe AsNC, Vk>N.

Therefore,

|Ea[ro0] =76 =5+ s [roo 76| [soovian

xeA;sN
2* — Hs)k—/\/
<¢+ T
o [T00-T(x N s

=(1+ swp [reo-7()])s vk=zAX,

xcAsNC

where A is given by N:= max{N, [N + lnf/ln(%ﬂ 1.
Since ¢ is arbitrary, we have

lim £, [7(0] = T(x).
Finally, the proof is completed by applying Lemma 4.4 to both Cases 1 and 2. [J

Note that for many NEFs used in practice, 7 is a one-to-one mapping,
in which case the convergence result (4.15) can be equivalently written as
Y L (limg_s 00 m(6%)) = x*. Also note that for some particular distributions, the so-
lution vector x itself will be a component of 7" (x) (e.g., multivariate normal distri-
bution). Under these circumstances, we can interpret (4.15) as limg_, oo m(6f) = Xx*.
Another special case of particular interest is when the components of the random
vector X = (X1, ..., X) are independent, i.e., each has a univariate p.d.f./p.m.f. of
the form

Fxi, 0) =exp(xi¥i — K@))h(x), x €R, 0, €N, Vi=1,....n

In this case, since the distribution of the random vector X is simply the product
of the marginal distributions, we will clearly have 7" (x) = x. Thus, (4.15) is again
equivalent to limg_, oo m(0;) = x*, where 6y := (19]‘, e, z?,’f), and z?l.k is the value of
¥; at the kth iteration.

As mentioned in Sect. 4.1, for problems with finite solution spaces, Assump-
tions Al and A2 are automatically satisfied. Furthermore, if we take the input pa-
rameter ¢ = 0, then Step 2 of MRASy is equivalent to setting ;) = maxo<j<k Xi-
Thus, {xx} is non-decreasing and each strict increment in the sequence is bounded
from below by
[Jx) —J).

J(X)#J()
X,yeX

4.2 Convergence Analysis of MRAS 107

Therefore, the ¢ > 0 assumption in Theorem 4.5 can be relaxed to ¢ > 0.
As a result, we have the following results for the multivariate normal and inde-
pendent univariate cases.

Corollary 4.6 (Multivariate Normal) For continuous optimization problems in 0",
if multivariate normal p.d.f.s given by (4.7) are used in MRASy, where 6} =
(ks XZ%), € > 0, and Assumptions A1-A4 are satisfied, then

lim pur =x*, and lim X; =0,xn,
k— 00 k—o00

where 0,,«,, represents an n-by-n zero matrix.
Proof By Lemma 4.4, it is easy to show that
it = Eg (X), Vk=0,1,...,

and

Sit1 = Egu i [X = e DX =)], VE=0,1,....

The rest of the proof amounts to showing that
lim E, (X) =x", and lim Eg, [(X —)X — pck)T] = 0pxn,
k— 00 k— 00
which is the same as the proof of Theorem 4.5. g

Corollary 4.6 shows that in the multivariate normal case, the sequence of param-
eterized p.d.f.s will converge to a degenerate p.d.f. with all probability mass at the
global optimum.

Corollary 4.7 (Independent Univariate) If the components of the random vector
X =(X1,...,X,) used in MRAS(are independent, each has a univariate NEF dis-
tribution of the form

f(X,', 19,‘) = exp(x,-z?i — K(z?l-))h(xi), X; € 2)’%, 191' € 9%, Vi = 1, R (N
e > 0, and Assumptions A1-A4 are satisfied, then

lim m(6) ;= lim Eq [X]=x", where 6 :=(9},...,9}).
k— 00 k— 00

4.2.2 MRAS; Convergence

To establish convergence properties of MRAS, we show that with high probability,
the gaps between MRAS(and MRAS (e.g., approximation errors incurred by re-
placing expected values with sample averages) can be made small enough such that

108 4 Model Reference Adaptive Search

the convergence analysis of MRAS can be ascribed to the convergence analysis of
MRASy. As before, P, and E 3 denote the respective probability and expectation

taken with respect to the distribution f(-,), and we also let ﬁék and Eék denote

the respective probability and expectation taken with respect to f (-, 6). Note that
since the sequence {6} results from random samples generated at each iteration of
MRAS;|, these quantities are also random.

To establish convergence, we assume the following conditions on the initial dis-
tribution f (-, 8y) and the parameter update.

Assumption A3’ There exists a compact set Z, such that {x: J(x) > J(x*) —&} N
X C E,. Moreover, the initial distribution f(x, 6p) is bounded away from zero on
e, ie., fy:=infxez, f(X,6p) > 0.

Assumption A4’ The parameter vector 64 computed via (4.10) at Step 4 of
MRAS; is an interior point of & for all k.

Let gg+1, k=0, 1,..., be defined by
[H)/ F &G0 (0= 7}
Y oxen [T (DI (x0T ()= X}
=0 i (e AT (0 = Ki) £,
gr(x) otherwise,

(4.24)

where yy is given by

Xi(pr, Ni) if Step 3a is visited,
Xk =3 %k (p, Nx) if Step 3b is visited,
Xk—1 if Step 3c is visited.

The following lemma shows the connection between f (-, Or+1) and i1 the
proof is similar to the proof of Lemma 4.4, and is thus omitted here.

Lemma 4.8 If Assumption A4’ holds, then the parameter Oy, computed via (4.10)
at Step 4 of MRAS| satisfies

mO1) = Ez [T X)] =Eg, ,[TX)], k=0,1,....

Note that the region {x: J(x) > i} will become smaller and smaller as i in-
creases. Lemma 4.8 shows that the sequence of sampling distributions { f (-, 6x+1)}
is adapted to this sequence of shrinking regions. For example, consider the case

where {x: J(X) > x} is convex and 7" (x) = x. Since Eg . [X] is a convex com-

bination of X,](e X,lcv" , the lemma implies that E§k+1 [X] € {x:J(X) > xi}. Thus,
it is natural to expect that the random samples generated at the next iteration will
fall in the region {x : J(X) > xx} with large probabilities (e.g., consider the normal

4.2 Convergence Analysis of MRAS 109

p-d.f. where its mode is equal to its mean). In contrast, if we use a fixed sampling
distribution for all iterations as in pure random sampling (i.e., the A = 1 case), then
sampling from this sequence of shrinking regions could become a substantially dif-
ficult problem in practice.

Next, we present a useful intermediate result, which shows the convergence of the
quantile estimates when random samples are generated from a sequence of different
distributions.

Lemma 4.9 For any given p € (0, 1), let x be the set of true (1 — p)-quantiles
of J(X) with respect to f(01, and let Xk (p, Ni) be the corresponding sample
quantile of J(Xk s J(X,ICV"), where f(,0¢) and Ny are defined as in MRAS/,

and X}c, e X,ivk are i.i.d. with common distribution f G, ék). Then the distance from
Xk (0, Ni) to xi tends to zero as k — oo w.p.1.

Proof Our proof is based on the proof of Lemma Al in [151]. Notice that for given
p and f(-,6k), xx can be obtained as the optimal solution of the following problem
(see [87)):

min £ (v), 4.25)
veV

where V = [0, J (x¥)], £x(v) := E§k¢(J(X), v), and
_Jd=pU® —v) ifv=<J(Xx),
P00, v) = {p(v—](x)) if o> J(x).

Similarly, the sample quantile (o, Nx) can be expressed as the solution to the
sample average approximation of (4.25),

min £ (v), (4.26)
veV

where 7 (v) i= - ¥0% ¢(J(X{),v) and X},...,X}"* are iid. with density
FC.00.

Since the function ¢ (J (x), v) is bounded and continuous on V for all x € X, it is
not difficult to show that £; (v) is continuous on V.

Now consider a point v € V and let B; C)V be a sequence of open balls containing
v such that B;11 C B; Vi and limy _, » ﬁiLzl B; = v. Define the function

bi (J (%)) := sup{|p(J (%), u) — ¢(J(x),v)|: u € B;}.

From the dominated convergence theorem,
tim £g [5:(J00)] = Eg [lim bi(J00)| =0 vek=1.2.... @2D)

where the last equality follows because ¢ (J(x), v) is continuous on V.

110 4 Model Reference Adaptive Search

Since |Ek(u) — Ek(v)| < Nk Z |¢(J(X) u) — c/)(J(X) v)|, it follows that

sup |k (u) — G (v)| < — Zb X})). (4.28)

ueB;

We now show that NL,(levil bl-(J(Xi)) — Eék [b; (J(X))] as k — oo w.p.1.

Let M be an upper bound for b; (J (x)), and let 7, := [(2[J (x*) — M])/e], where
M is a lower bound for the function J(x), and ¢ is defined as in the MRAS; algo-
rithm. Note that the total number of visits to Step 3a and 3b of MRAS; is bounded
by 7, thus for any k > 7, the total number of visits to Step 3c is greater than
k — T.. Since conditional on 67k, Nik Zivi 1 bi(J (X,]()) is an unbiased estimate of
E i [b; (J(X))], by the Hoeffding inequality [86], for any ¢ > O,

5 —2Nig?
O =0) <2exp e Vk.
> §>

1

— > " bi(J (X)) — Eg, [6: (I (X))]

e
o

k
—2Nk§'2
SZexp(2) Vk

Jj=1
—2Oék_7;N()§2
M?2

—> 0 ask— oo, sincea > 1.

>¢

Therefore,

LS B) - £y 0]

§2exp() Yk > T,

Furthermore, it is easy to see that
o0

Z P (
=1

;‘) < 0.
Thus, by the Borel-Cantelli lemma

P(>§i.o.>=0,

which implies that - Z?’il bi(J (X)) — Eg [bi(J(X))] as k — oo w.p.1. Note
that by using a similar argument as above, we can also show that £z (v) — £x(v)
w.p.l as k — oo.

% (7 (X0)) = Eg,[bi (1 X0)]| >

1

N §bi<J<X£)> — Eg[6i(100)]

4.2 Convergence Analysis of MRAS 111

The above result together with (4.27) and (4.28) implies that for any § > 0, there
exists a small neighborhood B, of v such that

sup{[€x(u) — &k (v)|: u € By} <8 wp.l

for k sufficiently large. Since this holds for all v € V, we have V C UveV B,. Be-
cause V is compact, there exists a sequence of finite subcovers By, ..., By, such
that

sup{[€x(u) — Lk (v)| : u e By} <8 wp.l

for k sufficiently large, V C U;’?:l Bv_/. . Furthermore, by the continuity of £; (v), these
open balls can be chosen in such a way that

sup{|€x(u) — & (vj)|: ue By} <8 Vji=1,....m.
Since Zk(vj) — L (vj) wplask —ocoforall j=1,...,m,
|tk (vj) — te(vj)| <8 w.p.l

for k sufficiently large, Vj =1, ..., m. For any v € V, without loss of generality
assuming v € B,;, we have w.p.1 for k sufficiently large,

|6 (V) — € (V)] < |6 (V) — L)) + [e () —)]+ € (V) — L (v))] < 38,

which implies that (V) = £ (V) uniformly w.p.1 on V.

The rest of the proof follows from Theorem Al in [151, p. 69], which basically
states that if €5 (v) — £x(v) uniformly w.p.1, then the distance from y;(p, Ni) to
Xk tends to zero w.p.1 as k — oo. O

‘We now state the main theorem.

Theorem 4.10 Let ¢ > 0, and define the g-optimal set O := {x: J(x) > J(x*) —
ey N X. If Assumptions Al, A3, and A4’ are satisfied, then there exists a random
variable IC such that wp.1, K < oo, and:

() fx > J(x*) — & Yk = K.
(i) m(@s1) = Eg, [T (X)] € CONV{T(O,)). Vk = K. where CONV(Y (O;))
indicates the convex hull of the set T (O;).

Furthermore, let B be a positive constant satisfying the condition that the set
{x:HU (X)) > %} has a strictly positive Lebesgue/counting measure. If Assump-

tions Al, A2, A3, and A4 are all satisfied and o > (BH*)?, where H* =
H(J (X¥)), then

(iii) limk%oom(ék) = limy s oo E(;k[T(X)] =7 x* w.p.l.

112 4 Model Reference Adaptive Search

Proof Part (i). The first part of the proof is an extension of the proofs given in [87].
First we claim that given p; and ji—1, if xx—1 < J(x*) —¢, then 3K < 00 w.p.1 and
p € (0, py) such that (0, Ni) > jx—1 + 5 VK > IC. To show this, we proceed by
contradiction.

Let pf i= Py (JX) = -1 + F). If Jx—1 < J(X*) — &, then jy—1 + ¥ <
J(x*) — §. By Assumptions Al and A3’, we have

piz B (J(X) > J(x*) — g) > 3.C(e, 6p) > 0, (4.29)

where C(g, 6y) = fX I{J (x) > J(x*) — ¢/3} f (X, Bp)v(dX) is a constant.

Now assume that dp € (0, ,o,f) such that x(p, ék) < Xk—1+ 23—8, where xx(p, ék)
is the true (1 — p)-quantile of J(X) with respect to f(-, ;). By the definition of
quantiles, we have the following two inequalities:

(JX) = xk(p. 00) = p,

P
5 ~ (4.30)
Py (JX) < xx(p,60)) = 1—p>1—pf.

~k
It follows that ﬁék(J(X) < xx(p,6p) < f’gk(J(X) < Xk—1 + E) =1— pf by the

definition of p,f , which contradicts (4.30); thus, if y;—; < J(x*) — ¢, then we must
have

~ _ 2e N
Xk (0, 0) = Xk—1 + 3 Vo € (0, pf).

Therefore by (4.29), there exists p € (0, min{pg, AC(g,60)}) < (0, px) such that
Xk (P, 0k) = -1 + 23—8 whenever xx—1 < J(x*) — ¢. By Lemma 4.9, the distance
from the sample (1 — p)-quantile xx (0, Ni) to the set of (1 — p)-quantiles xx (o, 67k)
goes to zero as k — oo w.p.1, thus 3 K < o0 w.p.1 such that xp (0, Ny) > xk—1+ %
Vi >K.

Notice that from the MRAS; algorithm, if neither Step 3a nor 3b is visited
at the kth iteration, we will have pxy1 = pr and xx = xx—1. Thus, whenever
Xi—1 < J(x*) — ¢, Step 3a or 3b will be visited w.p.1 after a finite number of it-
erations. Furthermore, since the total number of visits to Steps 3a and 3b is finite
(i.e., bounded by (2[J(x*) — M])/e, where recall that M is a lower bound for
J (x)), we conclude that there exists IC < co w.p.1 such that

Xk >J(x)—e, Vk=Kwp.l

Part (ii). From the MRAS; algorithm, it is easy to see that x; > xx—1, Vk =
1,2,.... By Part (i), we have x; > J(x*) — e, Vk > KC w.p.1. Thus, by the defi-
nition of gx41(x) (see Eq. (4.24)), it follows immediately that if the set {x € Ay :
J(x) > xr} # 0, then the support of gr41(x) satisfies supp{gr+1} € O, Vk > K
w.p.1; otherwise we will have supp{gr+1} = ¥. We now discuss these two cases
separately.

4.2 Convergence Analysis of MRAS 113

Case 1. If supp{gr+1} S O, then we have {Y (supp{gr+1})} € {7 (O¢)}. Since
7T (X)] is the convex combination of T(Xk) T(X,ivk), it follows that

8k+1 [
Eg., [T (X)] € CONV{TY (supp{gr+1})} S CONV{T (O,)}.
Thus by Assumption A4’ and Lemma 4.8,
Ej, [T (X)] € CONV{T (O)}.

Case 2. If supp{gk+1} =¥ (note that this could only happen if Step 3c is vis-
ited), then from the algorithm, there exists some k < k + 1 such that xx = X; and

supp{g;} # ¥. Without loss of generality, let k be the largest iteration counter such
that the preceding properties hold. Since x; = xx > J(x*) — & Yk > K w.p.1, we
have supp{g;} € O, w.p.1. By following the discussion in Case 1, it is clear that

Eg [T (X)] € CONV{T(O,)} wp.I.

Furthermore, since 9A = 0,; =

[Y(X)] e CONV{T(O,)}, Vk=K wp.l.

= 641, we will again have

Eg, .,

Part (iii). Define gi11(x) as

[HJ NFI{T (%) > Hx—1)
S HT) FI{T (%) = fk—1}v(dx)’

where {xx,k =0,1,...} is defined as in MRAS;. Note that since y is a random
variable, gx41(x) is also a random variable. It follows that
S BRI NI (%) = Jx—1}Y (X)v(dx)

S BRI NI (X) > Hx—1}v(dx)

Vk=1,2,...,

Grp1(X) :=

By, [T®] =

Let w = (Xl,...,X(I)VO,X%,...,XIIV‘,...) be a particular sample path gener-
ated by the algorithm. For each w, the sequence {xx(w), k =0,1,...} is non-
decreasing and each strict increase is lower bounded by ¢/2. Thus, IN(w) > 0
such that x;(w) = xr—1(w) Yk > N (w). Now define £ := {w : limg_ 0 Yx (@) =
J(x*)}. By the definition of gx4+; (see Eq. (4.24)), for each w € £2; we clearly
have limg— oo Eg ([T (X)] = T (x*); thus, it follows from Lemma 4.8 that
limg oo E A (w)[T(X)] =7 (x*), Vo € £21. The rest of the proof amounts to show-
ing that the result also holds almost surely (a.s.) on the set £27.

Since limg— 00 Xk (@) = X (@) < J(x*) Vw € 22¢, by Fatou’s lemma,

l}(minf/ [BH(J 0)] T{I (%) = %x—1 }v(@x)
-0 Jx

/ hmmf[,BH(J(x))] {J(x) > Xk—1 }v(dx) >0 VYoe£2Ff, (4.31)
X

k— o0

114 4 Model Reference Adaptive Search

where the last inequality follows from the fact that SH(J(x)) > 1 Vx € {x: J(x) >
max{H ' ($), X7}} and Assumption Al.

Since f(x,60p) > 0Vxe X, we have X C supp{f(-, ék)} Vk; thus
Eg B Hie(T XN I (X) = -1} T (X)]

rX)] =% - _ Vk=1,2,...,
Ej, [BXH (J XNI{T (X) = Hr—1}]

gk+1 [

Where 7:Lk(J(X)) [H(J(x))] /f(x ék) We now show that Eng[T(X)] —
E [T (X)] as. on £27 as k — oo. Since we are only interested in the limiting
behavior of Ej, [T(X)] it is sufficient to show that

o Doxeny BHLT NI (%) = X} T (%)

1 = - T(X)| as.on 2f,
N Loxen BEHKI DT (%) = X}

gk+1 [

where and hereafter, whenever {x € Ay : J(X) > xx} = @, we define % =0.
For brevity, we introduce the following shorthand notation:

YE(x) = Eg [B*Ha (J (X)) 1{T (X) = x}].
V(0 = Eg [(JX0) I{J (X) = x} T (X)),
YR, x) o= B (T 0) T{T (%) >).

We also let 7; := [(2[J (x*) — M])/e]. Note that the total number of visits to
Steps 3a and 3b of MRAS is bounded by 7, thus for any k& > 7T, the total number
of visits to Step 3c is greater than k — 7.

We have

N e BH NI (0 2 1) T
A Loxen, BH T)T (%) > i)

- (NL T @07 ® 5 e, xklmx))

Eg, [TX0]

NLk ZXGAk i}k (X’)_(k) NLk ZXE/\k f}k(xv)_(k—l)
N (N% Snea P HDT®) mgk_l))
D ven TR) PRGue)

Since for each w € 27, xx (@) = yx—1(w) Yk > /\~/(a)), it follows that the first term

8 Lxea K IOT® g Yyen, P 1) T®) o, vis @)

i T— i T—
W 2oxen YE X N oxe, YOG, Hk—1)

To show that the second term also converges to zero, we denote by Vi the
event Vy = {jx—1 > J(x*) — ¢}. For any ¢ > 0, we also let Cy be the event

4.2 Convergence Analysis of MRAS 115
1 > - > -
Ci = {57 Loxen, VX0 Kkm1) = YX(Gir—1)| > £}. We have

P(Cri.0) = P({Ck NV u {Ck N Vli} i.O.)
= P(Cx NV i.0), since P(Vfio.)=0byPart(i). (4.32)

It is easy to see that conditioned on ék and xx—1, {I?k(x, Xk—1), X € Ay} are
i.i.d. and E[l?k(x, Xk—l)|9~k, Xk—1)] = l?k()zk_l) Vx € Ag. Furthermore, by Assump-
tion A3’, conditioned on the event Vg, the support [ag, b] of the random variable
}A’k(x, Xk—1), X € Ay satisfies [ag, bi] C [0, W]. Therefore, we have, from the
Hoeffding inequality [86], '

P(CklVi, Ok =0, k1= X)
1

— Ok o = Sk = = -
= P(N YR e = VG| > ¢ [Vea e =0, Xk —X)
XEAg
—2N¢?
< Zexp<7k§2)
(bk — ax)
—2N 2 [Afil?
§2exp<M> Vk=1,2.... (4.33)
(,87-[*)2”‘
Since
PV = [PQAVIR =6 fict =0, 5., @0.d0)
’X
< [PG =0 =10 f3 5, @0,
’X
where fék, T (-,-) is the joint distribution of random variables 6; and ¥r_;, we

have, by inequality (4.33),

— 2 2
PNV = zp<%)
(o k=T: 5 5
EZexp(2 (ﬁq]{\{f))zi M)) -
_2N0§2)\2f*2 o k
=2€XP< ale ((,37‘[*)2)) Yk >T,.

Since o/ (BH*)? > 1 (by assumption), it follows that

lim P(Cr N V) =0.
k—o00

116 4 Model Reference Adaptive Search

Furthermore, since e ™ < 1/x Vx > 0 we have

a’e ((ﬂH*)2
Not2A2f2\ «

PCiNYVy) <) Vk > Te,

and because (BH*)?/a < 1, we have

o H*
Y P@NV) <Te+ ~ czszz Z <(’3)

k=0 * k=T:

Finally by the Borel-Cantelli lemma and Eq. (4.32),
P(Cri0)=P({CrNVio0.)=0.

Since this holds for any ¢ > 0, we have le erAk ?k(x, Xk—1) = vk (Xk—1) w.p.1.
By following the same argument as before, we can also show that

1 A _ AL
w0 2 P 0T 00 = Py) wpll.

XeAg

Since liminfy_ o ¥* (Xk—1) > 0V € £2{ from (4.31), we have

1 Ok - A _
3 Sxea, P BoDT® G
N Loxen VRO Xk-1) Y*(—1)

on £27.

Thus, in conclusion, we have
Eg[YX)] = Eg[T(X)] wp.l.

On the other hand, by Assumptions Al, A2, and following the proof of Theo-
rem 4.5, it is not difficult to show that

Eg [TX)] = T (x*) wp.l.
Hence by Lemma 4.8, we have

klirgom(ék) = klgrolo Eék [T(X)] = klirgo Eg [T(X)] = T(x*) w.p.1. 0

Roughly speaking, the second result in Theorem 4.10 can be understood as finite-
time e-optimality. To see this, consider the special case where J (x) is locally con-
cave on the set O,. Let x,y € O, and n € [0, 1] be arbitrary. By the definition of
concavity, we will have J(nx + (1 — n)y) = nJ(x) + (1 — n)J(y) = J(x*) — ¢,
which implies that the set O, is convex. If in addition 7" (x) is also convex and one-
to-one on O, (e.g. multivariate normal p.d.f.), then CONV{Y (O,)} = 7 (O,), and
it follows that 7! (m(§k+1)) € Qg forall k > IC w.p.1.

The following results are now immediate.

4.2 Convergence Analysis of MRAS 117

Corollary 4.11 (Multivariate Normal) For continuous optimization problems in i",
if multivariate normal p.d.f.s are used in MRAS1, i.e.,

5 1 1 N . -
f(x,00) = 7?«@(—5(7‘—#1& Xy (X—Mk)>,

Vv @m)" | |
e>0,a> (BH*)?, and Assumptions A1, A2, A3, and A4’ are satisfied, then

lim fix =x*, and lim X =0,y, w.p.l.
k—o00 k— o0

Corollary 4.12 (Independent Univariate) If the components of the random vector
X =(Xy,...,X,) are independent, each has a univariate density/mass of the form

f(xi, 0) =exp(xi¥i — K@))h(x), x €R, 0, €R, Vi=1,...,n,
e>0,a> (BH*)?, and Assumptions A1, A2, A3, and A4’ are satisfied, then

klirr;om(ék) :=k£rgoE§k[X]=x* w.p.1, where 6 == (9%, ..., 9}).

4.2.3 MRAS; Convergence

We first make the following assumptions on the sample performances 7; (X).

Assumption L1 For any given € > 0, there exists a positive number n* such that
for all n > n*,

1 n
- E Ji(x) — J(x)
n

i=1

sup P(Zé) =¢(n,e),
xeX

where ¢ (-, -) is strictly decreasing in its first argument and non-increasing in its
second argument. Moreover, ¢ (n, €) — 0 as n — co.

Assumption L2 For any € > 0, there exist positive numbers m* and n* such that
for all m > m* and n > n*,

sup P
X, yeX

where ¢ satisfies the conditions in L1.

1 & 1 &
;;Z(X)— pOBAORICORI)

i=1

> e) < ¢(min{m, n}, €),

Assumption L1 is satisfied by many random sequences, e.g., the sequence of i.i.d.
random variables with (asymptotically) uniformly bounded variance, or a class of

118 4 Model Reference Adaptive Search

random variables (not necessarily i.i.d.) that satisfy the large deviations principle (cf.
[88, 189]). Assumption L2 can be viewed as a simple extension of Assumption L1.
Most random sequences that satisfy Assumption L1 will also satisfy Assumption L2.
For example, consider the particular case where 7;(x), i = 1,2, ... are i.i.d. with
uniformly bounded variance o2(x) and E(J;(x)) = J(x), Vx € X. Thus the vari-
ance of the random variable %2?;1 Ji (x) — % Y Tiy) is %UZ(X) + %oz(y),
which is also uniformly bounded on X. By Chebyshev’s inequality, we have, for

any X,y € &,
P(ze)

- supy y[7:02(%) + 02 ()]
- 2
€

1 m 1 n
— > T =~ T~ X+ ()

i=1 i=1

2 2
- supx’y[o‘ x)+o (Y)] :(p(min{m’n}’e).

min{m, n}e2

We impose the following regularity condition on the observation allocation rule.

Assumption L3 The observation allocation rule {My, k=0, 1, ...} satisfies My >
My_1 Vk=1,2,...,and My — oo as k — oo. Moreover, for any € > 0, there exist
8¢ € (0,1) and K. > 0 such that a?k¢(My_1,€) < (8.)F, Vk > K., where ¢ is
defined as in Assumption L1.

Assumption L3 is a mild condition and is very easy to verify. For instance, if

¢ (n, €) takes the form ¢ (n, €) = C,(f) , where C(¢) is a constant depending on €, then

the condition on Mj_; becomes M;_; >C (e)(g)k Vk > K. As another example,
if J;(x),i =1,2... satisfies the large deviations principle and ¢ (n, €) = e‘"c(é),
then the condition becomes My_; > [ln(‘g‘—j)/C(e)]k, Vk > K.

The following lemma implies the probability one convergence of the sequence
of stochastic thresholds {xx} generated by MRAS,.

Lemma 4.13 [f Assumptions L1-L3 are satisfied, then the sequence of random vari-
ables {X%, k=0,1, ...} generated by MRAS; converges w.p.1 as k — oc.

Proof Let Ay be the event that Steps 3a or 3b is visited at the kth iteration of the
algorithm, By := {J(X}) — J(X}_,) < 5}. Since each time Step 3a or 3b is visited,
we have jk(Xz) — T (X,’;fl) > ¢, we have

P(Ar N By)

< P(15050) = (6t 1) = e 0 {0 %0) - () =

)

N ™

4.2 Convergence Analysis of MRAS 119

5P< U {{jk(x)_jk—l(Y)ES}ﬂ{J(X)—](y)g%}})

XEAL,YEAk—1

< X P({jk(x)_jk—l(Y)Zé‘}ﬂ{J(X)—j(y)f%})

XEAk,YEAg—1

<|Agl|Ak=1] sup P<{jk(x)—jkI(Y)Eg}ﬂ{J(X)—J(Y)§§}>
X,yeX

< |AxllAk=1] sup P(.ik(x) — Tkt (y) = J(X) + J(y) > %)
x,yeX

&
< |Ag|| Ag—1 |¢(min{Mk, M1}, E) by Assumption L2
<a®N2¢ <Mk_1, %) < N2(e2)* ¥k > Kqa by Assumption L3,

Therefore,

o0 o0
Z P(Ax N By) < Kepp + NG Z (8e/2)* < 00.
k=1 k=K /2

By the Borel-Cantelli lemma, we have
P(A; N Bii.on)=0.

It follows that if Ay happens infinitely often, then w.p.1, B; will also happen in-
finitely often. Thus,

> 1 %0) ()]

k=1
= Y E)-IEo)+ Y VXD -]
k: Ay occurs k: Ai occurs
= Z [J(X}) —J(X;_;)] since X} =X} _ if Step 3c is visited
k: Ay occurs
= Yo XD -]+ Yo X)) -]
k: AxNBj occurs k: ApnBy occurs

=00 w.p.l,since e > 0.

However, this is a contradiction, since J (x) is bounded from above by J (x*). There-
fore, w.p.1, Aj can only happen a finite number of times, which implies that the
sequence {X7, k=0, 1,...} converges w.p.1. O

120 4 Model Reference Adaptive Search

Note that when the solution space X is finite, the set Ay will be finite for all &.
Thus, Lemma 4.13 may still hold if we replace Assumption L3 by some milder
conditions on Mj. One such condition is Z,fil ¢ (Mg, €) < oo, for example, when
the sequence J;(x),i = 1,2..., satisfies the large deviations principle and ¢ (n, €)
takes the form ¢ (n, &) = e ") A particular observation allocation rule that satis-
fies this conditionis My = M;_1 +1Vk=1,2,....

Define xx = J(X}), i.e., the true performance of the random sample Xj.
Lemma 4.13 implies that the sequence {xi} converges. It is easy to see that the
sequence of stochastic thresholds {xx} is just a sample average approximation of
the sequence {xx}. As we will see, by using a slightly stronger condition than As-
sumption L3, we can show that x; not only converges to xx, but also does so at an
exponential rate.

To establish the global convergence of MRAS,, we make the following addi-
tional assumptions.

Assumption B1 There exists a compact set = such that for the sequence of random
variables {X§,k =0, 1,...} generated by MRAS;, 3N < oo w.p.1 such that {x:
JX) = JX)—efNX S EVk=N.

Assumption B2 For any constant £ < J(x*), the set {x : J(x) > £} N X has a
strictly positive Lebesgue or discrete measure.

Assumption B3 For any given constant § > 0, supyc 4, J(X) < J (x*), where Ag :=
{x:|lx —x*|| > 8} N X, and we define the supremum over the empty set to be —oo.

Assumption B4 For each point z < J (x*), there exist Ay > 0 and Ly > 0, such that

[—(HE| . oo
o = Lz =zl forall z € (z — A, z+ Ap).

Assumption B5 The maximizer of (4.12) is an interior point of ® Vk.

Assumption B6 f(x,6)) > 0Vx e X and f, := infxez f(X, 6p) > 0, where Z is
defined in Assumption B1.

Since the sequence {X}} generated by MRAS; converges (see Lemma 4.13), As-
sumption B1 requires that the search of MRAS, will eventually end up in a compact
set. The assumption is trivially satisfied if the solution space X" is compact. Assump-
tion B2 ensures that the neighborhood of the optimal solution x* will be sampled
with a strictly positive probability. Since x* is the unique global optimizer of J, As-
sumption B3 is satisfied by many functions encountered in practice. Assumption B4
can be understood as a locally Lipschitz condition on [#(-)]¥; its suitability will be
discussed later. In actual implementation of the algorithm, Step 4 is often posed as
an unconstrained optimization problem, i.e., ® = R", in which case Assumption B5
is automatically satisfied. It is also easy to verify that Assumption B6 is satisfied by
most NEFs.

4.2 Convergence Analysis of MRAS 121

The next lemma relates the sequence of sampling distributions { f (-, ék)} to the
sequence of reference models {gx,k = 1,2, ...} defined by (4.13).

Lemma 4.14 [f Assumption B5 holds, then we have

mOrs1) = Eg.,

[TX)]=Eg, [YX)], Vk=0,1,...,

3.4, are the expectations taken with respect to the p.d.f./p.m.f.

£, Oks1) and i1, respectively.

where E; and E;
1

Proof Similar to the proof of Lemma 4.4. 0

We now construct a sequence of (idealized) distributions {g;} as

.
e = IO TI@)

Jeex HU O (J (%), xk—1)v(dx)

where xx—1 1= J(X;_,).

The outline of the convergence proof is as follows. First we establish the conver-
gence of the sequence of idealized distributions {g;}. Then we show that the refer-
ence models {g;} are in fact the (sample average) approximations of the sequence
{2} by proving Egz [T (X)] — E5 [T (X)] w.p.1 as k — oo. Thus, the convergence
of the sequence { f(-, 6x)} follows immediately by applying Lemma 4.14.

The convergence of the sequence {g;} is formalized in the following lemma.

Lemma 4.15 If Assumptions L1-L3, B1-B3 are satisfied, then

kl_i)rgoEgk[T(X)] =T(x*) w.p.l.

Proof Let £2; be the set of all sample paths such that Step 3a or 3b of MRAS, is
visited finitely often, and let £23 be the set of sample paths such that limy_, 5o {J (X) >
Xk — &} € E. By Lemma 4.13, we have P(§2;) = 1, and for each w € §2;, there
exists a finite N'(w) > 0 such that

X (@) =X;_i (@) Yk=N(o),

which implies that (@) = xx—1(w) Yk > N (w). Furthermore, by Assumption B1,
we have P(£23) =1 and {J(x) > xx_1(w) — &} C I, Yk > N (w) Yo € 2, N £2;3.
By following the same argument as in the proof of Theorem 4.5, it is easy to show
that

kl_i)rgo Eqw[TX)]=7(x*), Voe2:N2s.

Since P(£2; N £23) = 1, the proof is thus completed. O

122 4 Model Reference Adaptive Search

As mentioned earlier, the rest of the convergence proof now amounts to showing
that Eg [V (X)] = E5 [TV (X)] w.p.1 as k — oco. However, there is one more com-
plication: Since H is an increasing function and is raised to the kth power in both
8i+1 and gr11 (see Egs. (4.13) and (4.34)), the associated estimation error between
Je(x) and J (x) is exaggerated. Thus, even though we have limy_, o T (x) = J(x)
w.p.1, the quantities [H (T x))T* and [H(J x)]F may still differ considerably as k&
gets large. Therefore, the sequence {7k (x)} not only has to converge to J(x), but it
should also do so at a fast enough rate in order to keep the resultant approximation
error between [H(J; (x))1F and [H(J (x))]¥ ata manageable level. This requirement
is summarized in the following assumption.

Assumption L4 For any given ¢ > 0, there exist §* € (0, 1) and K > 0 such that
the observation allocation rule {My, k =0, 1, ...} satisfies

k - ¢ ¢ ok
M, Ay —, ——— <(Vk > K,

where ¢ is defined as in Assumption L1, and Ay and L are defined as in Assump-
tion B4.

Let H(z) = %%, for some positive constant 7. We have H¥(z) = ™% and

[HK(z)] = kre™ . 1t is easy to verify that W(;{)ki—(;}';k@)l < kte™ 4|z — 7| Vz €
(z — A,z + Ag), and Assumption B4 is satisfied for Ay = 1/k and Ly = te"k.
Thus, the condition in Assumption L4 becomes a*¢ (My, ¢ Ja*/?k) < (8*)* Vk > K,
where ¢ = ¢/te’. We consider the following two special cases of Assump-
tion L4. Let J;(x) be i.i.d. with E(J;(x)) = J(x) and uniformly bounded variance

SUPyc v 02(x) < o2. By Chebyshev’s inequality

c - o2akk?
o2k) = g

P(!ﬂ(x) —J(®)| =
Thus, it is easy to check that Assumption L4 is satisfied by My = (ua®)~
constant p > 1.

As a second example, consider the case where [J1(X), ..., Jn, (X) are i.i.d. with
E(J;[x)] = J (x) and bounded support [a, b]. By the Hoeffding inequality ([86])

P |j()_J()|>L <2 ﬂ
KON = g) = 2P\ b —a2eki?)

In this case, Assumption L4 is satisfied by My = (ua)* for any constant ;> 1.
Again, as discussed earlier following Lemma 4.13, Assumption L4 can be re-
placed by the weaker condition

- : ¢ ¢
Z(b(Mk,mln{Ak, W, ak/—%c}) <

k=1

for any

when the solution space X is finite.

4.2 Convergence Analysis of MRAS 123

The following result shows that under Assumption L4, the stochastic threshold
Xk converges to x; exponentially fast.

Proposition 4.16 If Assumptions L1-14 are satisfied, then
lim o*?) 3 — xx| =0 w.p.1.
k— 00

Proof Again, we consider the sequence {X}} generated by MRAS;.
We have for any ¢ > 0

P10 mi= o) = P(1300 - (501> 55
SP(U{|jk(X) e m})

XE Ak

5ZP(|ﬂ(x) J(x)| = k/z)

XEAg

_ ¢
< |Ak|:§£P(’jk(X) —J®| = W)

< &*No#(My, ¢ /o*/?) by Assumption L1
< Np (8*)k Vk > K by Assumption L4.

Thus

e ¢]

ZP<|Xk—Xk| f/z) IC+NOZ

k=1
And by Borel-Cantelli lemma,

P<{|)_(k — Xkl = ﬁ} i.0.> =0.

Since ¢ is arbitrary, the proof is thus completed. 0
We now state the main theorem.

Theorem 4.17 Let ¢ > 0 be a positive constant satisfying the condition that the set
x:HUX) > %} has a strictly positive Lebesgue/counting measure. If Assump-

tions L1-L4, B1-B6 are satisfied, and o > ((pH*)z, then

klirglom(ék) = lim E; [rTX)]=7K) wpl, (4.35)

where the limit above is component-wise.

124 4 Model Reference Adaptive Search

By the monotonicity of H and Assumption B2, it is easy to see that such a posi-
tive constant ¢ in Theorem 4.17 always exists. Moreover, for continuous problems,
@ can be chosen such that ¢ H* = 1; for discrete problems, if the counting measure
is used, then we can choose ¢ = 1/H*.

Proof For brevity, we define the function
Yi(Z.) = Hi(DI(Z,),

where

MO/ fx 0 ifZ=T(x),

Hi(Z) = _ Uk A
KO =N G b if Z = G,

By Assumption B6, the support of £ (-, f;) satisfies X < supp{ f (-, 6x)} Vk. Thus,
we can write

Eg 1V (J (X), xe-1)7 (X)]

EA ’Y‘ X = =
gk+1[X] E5 [Yie(J(X), xx-1)]

where Eék is the expectation taken with respect to f (-,6r). We now show

E; [TX)] — Eng[T(X)] w.p.1 as k — oco. Since we are only interested in

the limiting behavior of E; [7 (X)], from the definition of g1 (see Eq. (4.24)),

8k+1
it is sufficient to show that

Y xen, Ve (T (X), X) T (%)
erAk Y (jk(x)v Xk)

—> Eg [T(X)] w.p.1,

where, and also hereafter, whenever {x € Ay : jk (X) > xr — €} =@, we define 0/
0 =0. We have

Y v, V(T (), X0 T (%)
D xen, (T ®), X1)

Y en Ye(Th(®), x0T (X) B E V(I (X), xx-1) T (X)]

— Eg [TX)]

e Ye(JeX), 70) Eg V(I (X), xe—1)]
_ { 8 Lxea iU M) x0T Eg [V (X, Xkl)T(X)]} -
N Loxen Y (X, xe) Eg [Yi(J X), xx-1)]
. { M Loxen V(T ®), x0T x0 Ygen, Ve (X0, x0T (%) } .
= — . 11
NLkZXEAk Yk(t7k(x)v Xk) NLkZXGAk Yk(J(X),Xk)

We now analyze the terms [i] and [ii].

4.2 Convergence Analysis of MRAS 125

First we show that [i] — O w.p.1 as k — oo.
M Soxen, @I NI (),)T (%)
A Soxen, PHIT NI (%), x0)

B le (U)T (X0,) T (X!
E; [0FH(J NI X). -]

lil =

Since ¢ > 0, we have x; — & < J(x*) — ¢ for all k. Thus by Assumption B2, the
set {x: J(X) > xx—1 — &} N X has a strictly positive Lebesgue/discrete measure for
all k. It follows from Fatou’s lemma that

1}{12£ng (0" i (7 (X)) T (T (X), xu—1)]

f hmmf[(pH(J(x))] (J(x), Xk,l)v(dx) >0, (4.36)
X

k—o00

where the last inequality follows from the fact that o H(J (x)) > 1 Vx € {x: J(x) >
max{’}-l_l(é), J(x*) —¢}}.
Note that

1 - ~ ~ - -
~ 2 $ AT)T (00, x¢) = B [0 Hi(JX0) T (1 (X), sa1)]

XE Ak

(> (T @) (T). xx) — — Z O (7 (0) (T (%), i 1))

XEAg XEAg

(> (T)T (T (), k1)

— Eg [o M (7 (X)) T (I (XD, Xk 1)])

Let £2; be defined as before (see the proof of Lemma 4.15). For each w € §2;, it is
easy to see that there exists A/ (w) such that for all k > N (w),

— Z i (J0) (T (). k) — — Z o Hi(J(0) (I (%), xk—1) =0.
XEAg XEAg

4.37)

We denote by Uy the event that the total number of visits to Step 3a or 3b of

MRAS; is less than or equal to +/k at the kth iteration of the algorithm, and by W
the event that {J(x) > yxx—1 — e} N X C Z. For any & > 0, let Qy be the event

‘— Y ST (T, xe-1) = Eg [Hi (T X0) T (T (X0, x-1)]| 2 €.

xXeAg

126 4 Model Reference Adaptive Search

Note that we have P (U i.0.) =0 by Lemma 4.13, and P (W, i.0.) = 0 by Assump-
tion B1. Therefore,

P(Qrio)=P({QNUU{QNU}io.)
= P(Qx NUy i.0.)
= P({Q NU "W U{ Qe NU N Wi} i0.)
= P(Qx NUx N Wy i0.). (4.38)

From Assumption B6, it is easy to see that the event W implies that the sup-
port [ak, bx] of the random variable (pk’;'-lk(J(x))I(J(x), Xk—1), X € Ay satisfies

[ak, br] < [O, %]. Moreover, conditional on ék and xr_1, X}(, e X,](V" are i.i.d.
ra